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Preface

The objective of our Summer School 2007 on Formal Logical Methods for System
Security and Correctness was to present the state-of-the-art in the field of proof technol-

ogy in connection with secure and correct software. The lecturers have shown that meth-

ods of correct-by-construction program and process synthesis allow a high level pro-

gramming method more amenable to security and reliability analysis and guarantees. By

providing the necessary theoretical background and presenting corresponding applica-

tion oriented concepts, the objective was an in-depth presentation of such methods cov-

ering both theoretical foundations and industrial practice. In detail the following courses

were given:

GILLES BARTHE lectured on Verification Methods for Software Security and Cor-
rectness. The objective of the lectures was to present static enforcement mechanisms to

ensure reliability and security of mobile code. First, he introduced a type based verifier

for ensuring information flow policies and a verification condition generator for Java

bytecode programs. He also described how these mechanisms have been certified using

the proof assistant Coq. Second, he related these two enforcement mechanisms to their

counterparts for Java programs.

ROBERT CONSTABLE’s lectures Logical Foundations of Computer Security were

concerned with developing correct-by-construction security protocols for distributed sys-

tems on communication networks. He used computational type theory to express logi-

cally sound cryptographic services and established them by machine generated formal

proofs.

In his course Building a Software Model-Checker JAVIER ESPARZA introduced

jMoped, a tool for the analysis of Java programs. He then explained the theory and algo-

rithms behind the tool. In jMoped is assumed that variables have a finite range. He started

by considering the computational complexity of verifying different classes of programs

satisfying this constraint. After choosing a reasonable class of programs, he introduced a

model-checking algorithm based on pushdown automata and then addressed the problem

of data. He presented an approach to this problem based on BDDs and counterexample-

based abstraction refinement with interpolants.

With Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evalu-
ation ORNA GRUMBERG presented a powerful model checking technique called Sym-

bolic Trajectory Evaluation (STE), which is particularly suitable for hardware. STE is

applied to a circuit M , described as a graph over nodes (gates and latches). The specifi-

cation consists of assertions in a restricted temporal language. The assertions are of the

form A =⇒ C, where the antecedent A expresses constraints on nodes n at different

times t, and the consequent C expresses requirements that should hold on such nodes

(n, t). Abstraction in STE is derived from the specification by initializing all inputs not

appearing in A to the X ( unknown ) value. A refinement amounts to changing the as-

sertion in order to present node values more accurately. A symbolic simulation and the

specific type of abstraction, used in STE, was described. We proposed a technique for

automatic refinement of assertions in STE, in case the model checking results in X . In

“ ”
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this course the notion of hidden vacuity for STE was defined and several methods for

detecting it was suggested.

JOHN HARRISON lectured on Automated and Interactive Theorem Proving. He cov-

ered a range of topics from Boolean satisfiability checking (SAT), several approaches

to first-order automated theorem proving, special methods for equations, decision pro-

cedures for important special theories, and interactive proofs. He gave some suitable

references.

MARTIN HOFMANN gave a series of lectures on Correctness of Effect-based Pro-
gram Transformations in which a type system was considered capable of tracking read-

ing, writing and allocation in a higher-order language with dynamically allocated refer-

ences. He gave a denotational semantics to this type system which allowed us to validate

a number of effect-dependent program equivalences in the sense of observational equiv-

alence. On the way we learned popular techniques such as parametrised logical relations,

regions, admissible relations, etc which belong to the toolbox of researchers in principles

of programming languages.

Abstract and Concrete Models of Recursion was the course of MARTIN HYLAND.

Systems of information flow are fundamental in computing systems generally and secu-

rity protocols in particular. One key issue is feedback (or recursion) and we developed

an approach based on the notion of trace. He covered applications to fixed point theory,

automata theory and topics in the theory of processes.

In his course Security Analysis of Network Protocols JOHN MITCHELL provided an

introduction to network protocols that have security requirements. He covered a variety

of contemporary security protocols and gave students information needed to carry out

case studies using automated tools and formal techniques. The first lectures surveyed

protocols and their properties, including secrecy, authentication, key establishment, and

fairness. The second part covered standard formal models and tools used in security

protocol analysis, and described their advantages and limitations.

With his lectures on The Engineering Challenges of Trustworthy Computing GREG

MORRISETT talked about a range of language, compiler, and verification techniques that

can be used to address safety and security issues in systems software today. Some of the

techniques, such as software fault isolation, are aimed at legacy software and provide

relatively weak but important guarantees, and come with significant overhead. Other

techniques, such as proof-carrying code, offer the potential of fine-grained protection

with low overhead, but introduce significant verification challenges.

The focus of TOBIAS NIPKOW’s lecture series Verified Decision Procedures for Lin-
ear Arithmetic was on decision procedures for linear arithmetic (only +, no ∗) and their

realization in foundational theorem provers. Although we used arithmetic for concrete-

ness, the course was also a general introduction of how to implement arbitrary decision

procedures in foundational provers. The course focused on two well-known quantifier

elimination algorithms (and hence decision procedures) for linear arithmetic: Fourier-

Motzkin elimination, which is complete for rationals and reals, and Cooper’s method,

which is complete for the integers.

In his series of lectures Proofs with Feasible Computational Content HELMUT

SCHWICHTENBERG considered logical propositions concerning data structures. If such

a proposition involves (constructive) existential quantifiers in strictly positive positions,

then—according to Brouwer, Heyting and Kolmogorov—it can be seen as a computa-

tional problem. A (constructive) proof of the proposition then provides a solution to this

vi



problem, and one can machine extract (via a realizability interpretation) this solution in

the form of a lambda calculus term, which can be seen as a functional program. He con-

centrated on the question how to control at the proof level the complexity of the extracted

programs.

STAN WAINER lectured on Proof Systems, Large Functions and Combinatorics.

Proof-theoretic bounding functions turn out to have surprisingly deep connections with

finitary combinatorics. These four lectures showed how the power of Peano Arithmetic,

and various natural fragments of it, is precisely delineated by variants of the Finite Ram-

sey Theorem.

The contributions in this volume have emerged from these lectures of the 28th In-

ternational Summer School at Marktoberdorf from July 31 to August 12, 2007. About

90 participants from 30 countries attended—including students, lecturers and staff. The

Summer School provided two weeks of learning, discussion and development of new

ideas, and was a fruitful event, at both the professional and social level.

We would like to thank all lecturers, staff, and hosts in Marktoberdorf. In particular

special thanks goes to Dr. Katharina Spies, Silke Müller, and Sonja Werner for their great

and gentle support.

The Marktoberdorf Summer School was arranged as an Advanced Study Institute of

the NATO Science for Peace and Security Programme with support from the town and

county of Marktoberdorf and the Deutscher Akademischer Austausch Dienst (DAAD).
We thank all authorities involved.

THE EDITORS
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Compilation of Certificates

INRIA Sophia-Antipolis Méditerranée, France

Abstract. The purpose of the course is to stress the importance of verification meth-

ods for bytecode, and to establish a strong relation between verification at source

and bytecode levels. In order to illustrate this view, we shall consider the example

of verification condition generation, which underlies many verification tools and

plays a central role in Proof Carrying Code infrastructure, and information flow

type systems, that are used to enforce confidentiality policies in mobile applica-

tions.

Keywords. Information flow typing, program verification, preservation of typing,

preservation of proof obligations, proof carrying code

1. Introduction

Reliability and security of executable code is an important concern in many application

domains, and in particular mobile code where code consumers run code that originate

from untrusted and potentially malicious producers. While many formal techniques and

tools have been developed to address this concern, it is particularly striking to notice that

many of them operate on source programs, rather than on executable code; the extended

static checking tool ESC/Java [8] and the information flow aware language Jif [17] are

prominent examples of environments that provide guarantees about source (Java) pro-

grams. However, source code verification is not appropriate in the context of mobile

code, where code consumers need automatic and efficient verification procedures that

can be run locally on executable code and that dispense them from trusting code produc-

ers (that are potentially malicious), networks (that may be controlled by an attacker), and

compilers (that may be buggy).

Proof Carrying Code (PCC) [20,18,19] is a security architecture for mobile code that

targets automated verification of executable code and therefore does not require trust in

the code producer, nor in the compiler, nor in the network. In a typical PCC architecture,

programs are compiled with a certifying compiler that returns, in addition to executable

code, evidence that the code satisfies a desired policy. The evidence is provided in the

form of formal objects, that can be used by automatic verification procedures to verify

independently that the compiled code is indeed compliant to the policy. Typically, a cer-

tifying compiler will generate both program annotations, which specify loop invariants

tailored towards the desired policy, as well as proof objects, a.k.a. certificates, that the

program is correct w.r.t. its specification. Early work on PCC is based on verification

condition generation and exploits the Curry-Howard isomorphism to reduce proof check-

ing to type checking; thus, upon reception of an annotated program with a certificate, the

code consumer will automatically extract a set of verification conditions φ1 . . . φn using

Gilles BARTHE, Benjamin GRÉGOIRE and Tamara REZK
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a verification condition generator and will establish the validity of these conditions using

the certificate, which should be a tuple (M1, . . . , Mn) of λ-terms such that Mi : φi for

i = 1 . . . n.

The idea of certifying compilation is also present in typed low-level languages,

where the certificates take the form of type annotations, and certificate checkers are type

systems that reject all executable code that does not comply with the consumer policy.

Typed assembly languages [23] and the Java Virtual Machine (JVM) [16] provide two

well-known examples of typed low-level languages, in which programs come equipped

with type information. In the case of the JVM, the type annotations refer to the signa-

ture of methods, the type of fields and local variables, etc. These type annotations are

used by the bytecode verifier, which performs a dataflow analysis to ensure adherence

to the JVM safety policy (no arithmetic on references, no stack underflow or overflow,

correct initialization of objects before accessing them, etc) [15]. Lightweight bytecode

verification [21] extends the idea of bytecode verification by requiring that programs also

come with additional typing information (concretely the stack type at at junction points)

in order to enable a verification procedure that analyzes the program in one pass.

Through their associated verification mechanisms for executable code, infrastruc-

tures based on certifying compilers and typed low-level languages suitably address the

security concerns for mobile code. Nevertheless, current instances of certifying compil-

ers mostly focus on basic safety policies and do not take advantage of the existing meth-

ods for verifying source code. Ideally, one would like to develop expressive verification

methods for executable code and to establish their adequacy with respect to verification

methods for source programs, so as to be able to transfer evidence from source programs

to executable code. The purpose of these notes is to present two exemplary enforcement

mechanisms for executable code, and to show how they connect to similar enforcement

mechanisms for source code.

The first mechanism aims at ensuring information flow policies for confidentiality: it

is a type-based mechanism, compatible with the principles of bytecode verification. We

show that the type system is sound, i.e. enforce non-interference of typable programs,

and that source programs that are typable in a standard type system for information flow

are compiled into programs that are typable in our type system. The benefits of type

preservation are two-fold: they guarantee program developers that their programs written

in an information flow aware programming language will be compiled into executable

code that will be accepted by a security architecture that integrates an information flow

bytecode verifier. Conversely, they guarantee code consumers of the existence of prac-

tical tools to develop applications that will provably meet the policy enforced by their

information flow aware security architecture.

The second mechanism aims at ensuring adherence of programs to a logical speci-

fication that establishes their functional correctness or their adherence to a given policy:

it is a verification condition generator for programs specified with logical annotations

(pre-conditions, post-conditions, etc) compatible with Proof Carrying Code. We show

that the verification condition generator is sound, i.e. a program meets its specification,

expressed as a pre- and post-condition, provided all verification conditions are valid, and

that verification conditions are preserved by compilation. Since verification conditions

for source programs and their compilation are syntactically equal (and not merely logi-

cally equivalent), one can reuse directly certificates for source programs and bundle them

with the compiled program. Preservation of proof obligations provide benefits similar to

G. Barthe et al. / Compilation of Certificates2



operations op ::= + | − | × | /
comparisons cmp ::= < | ≤ |= |�= | ≥ |>
expressions e ::= x | c | e op e
tests t ::= e cmp e
instructions i ::= x := e assignment

| if(t){i}{i} conditional

| while(t){i} loop

| i; i sequence

| skip skip

| return e return value

where c ∈ Z and x ∈ X .

Figure 1. INSTRUCTION SET FOR BASIC LANGUAGE

preservation of typing and extends the applicability of PCC by offering a means to trans-

fer evidence from source code to executable code and thus to certify complex policies of

executable code using established verification infrastructure at source level.

Contents The relation between source verification and verification of executable code

is established in the context of a small imperative and assembly languages, and for a non-

optimizing compiler, all presented in Section 2. Section 3 is devoted to information flow

whereas Section 4 is devoted to verification condition generation. Section 5 discusses

the impact of program optimizations on our results, and mentions the main difficulties in

extending our results to more realistic settings.

2. Setting

Although the results presented in these notes have been developed for a sequential frag-

ment of the Java Virtual Machine that includes objects, exceptions, and method calls (see

Section 5), we base our presentation on a simple imperative language, which is compiled

to a stack-based virtual machine.

This section introduces the syntax and the semantics of these simple source and

bytecode languages. In addition, we define a non-optimizing compiler, which in the later

sections will be shown to preserve information flow typing as well as verification condi-

tions.

Both the source and bytecode languages use named variables taken from a fixed

set X , and manipulate memories, i.e. mappings from variables to values. In our setting,

values are just integers, thus a memory ρ has type X → Z. We denote by L the set of

memories.

2.1. The source language: IMP

Programs Figure 1 defines the basic source language IMP. We let E be the set of

expressions, and I be the set of instructions. In this language, a program p is simply an

instruction followed by a return (i.e. p = i; return e).

G. Barthe et al. / Compilation of Certificates 3



x
ρ

↪→ ρ(x) c
ρ

↪→ c

e1
ρ

↪→ v1 e2
ρ

↪→ v2

e1 op e2
ρ

↪→ v1 op v2

e1
ρ

↪→ v1 e2
ρ

↪→ v2

e1 cmp e2
ρ

↪→ v1 cmp v2

e
ρ

↪→ v
[ρ, x := e] ⇓S ρ ⊕ {x ← v} [ρ, skip] ⇓S ρ

[ρ, i1] ⇓S ρ′ [ρ′, i2] ⇓S ρ′′
[ρ, i1; i2] ⇓S ρ′′

t
ρ

↪→ true [ρ, it] ⇓S ρ′
[ρ, if(t){it}{if}] ⇓S ρ′

t
ρ

↪→ false [ρ, if ] ⇓S ρ′
[ρ, if(t){it}{if}] ⇓S ρ′

t
ρ

↪→ true [ρ, i] ⇓S ρ′ [ρ′, while(t){i}] ⇓S ρ′′
[ρ, while(t){i}] ⇓S ρ′′

t
ρ

↪→ false
[ρ, while(t){i}] ⇓S ρ

Figure 2. SEMANTICS OF THE BASIC LANGUAGE

instruction i ::= push c push value on top of stack

| binop op binary operation on stack

| load x load value of x on stack

| store x store top of stack in variable x
| goto j unconditional jump

| if cmp j conditional jump

| return return the top value of the stack

where c ∈ Z, x ∈ X , and j ∈ P .

Figure 3. INSTRUCTION SET FOR THE BASIC BYTECODE

Operational semantics States consist of an instruction and a memory. Thus, the set

StateS = I × L of states is defined as the set of pairs of the form [ρ, i], where i is an

instruction.

Figure 2 presents the big step semantics of the basic source language. The first rela-

tion
ρ

↪→⊆ (E ×L)×Z defines the evaluation under a memory ρ of an expression e into a

value. Abusing notation, we use the same syntax for the evaluation of tests. The second

relation ⇓S⊆ StateS × L defines the big-step semantics of an instruction i as a relation

between an initial memory and a final memory. There is no rule for the return, as it only

appears at the end of the program. We rather define the semantics of programs directly

with the clause:

p = i; return e [ρ0, i] ⇓S ρ e
ρ

↪→ v
p : ρ0 ⇓S ρ, v

G. Barthe et al. / Compilation of Certificates4



ṗ[k] = push c
〈k, ρ, os〉 � 〈k + 1, ρ, c :: os〉

ṗ[k] = binop op v = v1 op v2

〈k, ρ, v1 :: v2 :: os〉 � 〈k + 1, ρ, v :: os〉

ṗ[k] = load x
〈k, ρ, os〉 � 〈k + 1, ρ, ρ(x) :: os〉

ṗ[k] = store x
〈k, ρ, v :: os〉 � 〈k + 1, ρ ⊕ {x ← v}, os〉

ṗ[k] = if cmp j v1 cmp v2

〈k, ρ, v1 :: v2 :: os〉 � 〈k + 1, ρ, os〉
ṗ[k] = if cmp j ¬(v1 cmp v2)
〈k, ρ, v1 :: v2 :: os〉 � 〈j, ρ, os〉

ṗ[k] = goto j
〈k, ρ, os〉 � 〈j, ρ, os〉

ṗ[k] = return
〈k, ρ, v :: os〉 � ρ, v

Figure 4. SEMANTICS OF THE BASIC BYTECODE

2.2. The Virtual Machine : VM

Programs A bytecode program ṗ is an array of instructions (defined in figure 3). We

let P be the set of program points, i.e. P = {0 . . . n − 1} where n is the length of ṗ.

Instructions act on the operand stack (push and load, binop perform an operation with

the two top elements, store saves the top element in a variable) or on the control flow

(goto for an unconditional jump and if for a conditional jump). Note that, unlike source

programs, return instructions may arise anywhere in the code. We nevertheless assume

that the program is well-formed, i.e. that the last instruction of the program is a return.

Operational semantics A bytecode state is a triple 〈k, ρ, os〉 where k is a program

counter, i.e. an element of P , ρ is a memory, and os the operand stack that contains

intermediate values needed by the evaluation of source language expressions. We note

StateB the set of bytecode states.

The small-step semantics of a bytecode program is given by the relation �⊆
StateB× (StateB +L×Z) which represents one step of execution. Figure 4 defines this

relation.

The reflexive and transitive closure �∗⊆ StateB × StateB of � is inductively

defined by

〈k, ρ, os〉 �∗ 〈k, ρ, os〉
〈k, ρ, os〉 � 〈k′, ρ′, os′〉 〈k′, ρ′, os′〉 �∗ 〈k′′, ρ′′, os′′〉

〈k, ρ, os〉 �∗ 〈k′′, ρ′′, os′′〉

Finally, the evaluation of a bytecode program ṗ : ρ0 ⇓ ρ, v, from an initial memory

ρ0 to a final memory ρ and a return value v is defined by

〈0, ρ0, ∅〉 �∗ 〈k, ρ, os〉 〈k, ρ, os〉 � ρ, v
ṗ : ρ0 ⇓ ρ, v

Remark that the last transition step is necessary done by a return instruction so the mem-

ory is unchanged.

G. Barthe et al. / Compilation of Certificates 5



Compilation of expressions

[[x]] = load x
[[c]] = push c

[[e1 op e2]] = [[e2]]; [[e1]]; binop op

Compilation of instructions

k : [[skip]] =

k : [[x := e]] = [[e]]; store x

k : [[i1; i2]] = k : [[i1]]; k2 : [[i2]]
where k2 = k + |[[i1]]|

k : [[return e]] = [[e]]; return

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto l; k2 : [[i2]]
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i1]]| + 1
l = k2 + |[[i2]]|

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i]]| + 1

Figure 5. COMPILATION SCHEME

2.3. The compiler

The compiler from the source language to the bytecode language is defined in Fig-

ure 5. Compilation of expression [[e]] generates a bytecode sequence which evaluate e and

store/push the result on the top of the operand stack. For the compilation of instructions

k : [[i]] the compiler argument k indicates the starting position of the resulting bytecode

sequence.

Compilation of an assignment x := e is the compilation of the expression e followed

by a store x. At the end of the evaluation of [[e]] the value of e is on the top of the operand

stack, then a store x instruction stores this value in the variable x and pop the value from

the stack.

The compilation of a conditional k : [[if(e1 op e2){i1}{i2}]] starts by the sequence

corresponding to the evaluation of the two expressions e2 and e1. After this sequence

the operand stack contains on the top the values of e1 and e2, the if cmp k2 instruction

evaluates the comparison and pop the two value from the stack. If the test is true the

evaluation continues at label k1 corresponding to the beginning of the true branch, if the

G. Barthe et al. / Compilation of Certificates6



test is false the if instruction jumps to label k2 to the beginning of the false branch. At

the end of the true branch a goto instruction jumps to the code of the false branch.

The compilation of a loop k : [[while(e1 cmp e2){i}]] evaluates the two expressions

e2 and e1 and then performs a conditional jump. If the test is false the evaluation jumps to

the code corresponding to the body of the loop, if the test is true the evaluation continue

by the evaluation of the loop body and then perform a jump to the label corresponding to

the beginning of the evaluation of the test.

Finally the compilation of a program p = (i; return e) is defined by:

[[p]]
def≡ 0: [[i]]; [[e]]; return

2.3.1. Correctness

The compiler is correct in the sense that the semantics of a source program is the same

as its compiled version. In other words, for all source program p and initial memory ρ0,

executing p with initial memory ρ0 terminates with final memory ρ and return value v,

iff executing [[p]] with initial memory ρ0 terminates with final memory ρ and return value

v
The correctness proof of compiler is done by exhibiting a strong form of simulation

between the evaluation of the source program and the evaluation of the bytecode pro-

gram. In order to carry the proof, we define a new notion of reduction for bytecode states:

s �n s′, which stands for s evaluates to s′ in exactly n steps of reduction �. Remark

that the relation s �∗ s′ can be defined by ∃n, s �n s′.

Lemma 2.1 For all bytecode program ṗ, expression e, memory ρ and operand stack os
such that l = |[[e]]| and ṗ[k..k + l − 1] = [[e]] the following proposition holds:

∀ n k′ os′,
〈k, ρ, os〉 �n 〈k′, ρ, os′〉 ∧ k′ ≥ k + l ⇒
∃ v n′ > 0, 〈k, ρ, os〉 �n 〈k + l, ρ, v :: os〉 �n−n 〈k′, ρ, os′〉

The proof is by induction over e. The base cases are trivial. The case of binary expres-

sions is proved using the induction hypothesis.

Lemma 2.2 (Correctness for expressions) For all bytecode program ṗ, expression e,
value v, memory ρ and operand stack os such that l = |[[e]]| and ṗ[k..k + l − 1] = [[e]]

e
ρ

↪→ v ⇐⇒ 〈k, ρ, os〉 �∗ 〈k + l, ρ, v :: os〉

The proof is by induction over e. The only difficult case is the ⇐= for binary expressions.

We have e = e1 op e2 and [[e]] = [[e2]]; [[e1]]; binop op and

〈k, ρ, os〉 �∗ 〈k + l, ρ, v :: os〉

Using the previous lemma there exists v1 and v2 such that v = v1 + v2 and

〈k, ρ, os〉 �∗

〈k + |[[e2]]|, ρ, v2 :: os〉 �∗

〈k + |[[e2]]| + |[[e1]]|, ρ, v1 :: v2 :: os〉 �∗

〈k + l, ρ, v :: os〉
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We conclude using the induction hypothesis.

Lemma 2.3 For all bytecode program ṗ, instruction i which is not a skip, memory ρ and
operand stack os such that l = |[[k]]| and ṗ[k..k+l−1] = k : [[i]] the following proposition
holds:

∀ n k′ ρ′ os os′,
〈k, ρ, os〉 �n 〈k′, ρ′, os′〉 ∧ k′ ≥ k + l ⇒
∃ ρ′′ n′ > 0, 〈k, ρ, os〉 �n 〈k + l, ρ′′, os〉 �n−n 〈k′, ρ′, os′〉

The proof is done using a general induction principle on n (i.e the induction hypothesis

can be applied to any n′ < n) and by case analysis on i. Remark that this lemma can

be proved with os = ∅ due to the fact that the compiler maintains the invariant that the

operand stack is empty at the beginning and at the end of the evaluation of all instructions.

This invariant is used in the proof of the next lemma.

Lemma 2.4 (Correctness for instructions) For all bytecode program ṗ, instruction i,
memories ρ and ρ′ such that l = |[[i]]| and ṗ[k..k + l − 1] = k : [[i]]

[ρ, i] ⇓S ρ′ ⇐⇒ 〈k, ρ, ∅〉 �∗ 〈k + l, ρ′, ∅〉

The direction =⇒ is done by induction on the evaluation of i (i.e one the derivation of

[ρ, i] ⇓S ρ′) and presents no difficulty. To prove the direction ⇐= we prove that :

∀n, 〈k, ρ, ∅〉 �n 〈k + l, ρ′, ∅〉 =⇒ [ρ, i] ⇓S ρ′

The proof is done using a general induction principle on n and by case analysis on i. The

cases of loop and conditional use the previous lemma.

Proposition 2.5 (Correctness of the compiler) For all source program p, initial mem-
ory ρ0, final memory ρ and return value v,

p : ρ0 ⇓S ρ, v ⇐⇒ [[p]] : ρ0 ⇓ ρ, v

This is a direct application of the above lemmas.

3. Information flow

Confidentiality (also found in the literature as privacy or secrecy) policies aim to guar-

antee that an adversary cannot access information considered as secret. Thus, confiden-

tiality is not an absolute concept but is rather defined relative to the observational capa-

bilities of the adversary. In these notes, we assume that the adversary cannot observe or

modify intermediate memories, and cannot distinguish if a program terminates or not. In

addition, we consider that information is classified either as public, and thus visible by

adversary, or secret. We refer to [22] for further details on information flow.
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3.1. Security policy

In this section, we specify formally (termination insensitive) non-interference [7,13], a

baseline information flow policy, which assumes that an adversary can read the public

inputs and outputs of a run, and which ensures that adversaries cannot deduce the value

of secret inputs from observing the value of public outputs. In its more general form, non-

interference is expressed relative to a lattice of security levels. For the purpose of these

notes, we consider a lattice with only two security levels, and let S = {L, H} be the

set of security levels, where H (high) and L (low) respectively correspond to secret and

public information; one provides a lattice structure by adding the subtyping constraint

L ≤ H .

A policy is a function that classifies all variables as low or high.

Definition 3.1 (Policy) A policy is a mapping Γ : X → S .

In order to state the semantic property of non-interference, we begin by defining when

two memories are indistinguishable from the point of view of an adversary.

Definition 3.2 (Indistinguishability of memories) Two memories ρ, ρ′ : L are indistin-
guishable w.r.t. a policy Γ, written ρ ∼Γ ρ′ (or simply ρ ∼ ρ′ when there is no ambigu-
ity), if ρ(x) = ρ′(x) for all x ∈ X such that Γ(x) = L.

One can think about the adversary as a program with access to only low parts of the

memory and that is put in sequence with the code that manipulates secret information.

Its goal is to distinguish between two different executions starting with indistinguishable

memories ρ1 and ρ2. This is stated in the following definition.

Definition 3.3 (Non-interfering program) A bytecode program ṗ is non-interfering

w.r.t. a policy Γ, if for every ρ1, ρ
′
1, ρ2, ρ

′
2, v1, v2 such that ṗ : ρ1 ⇓ ρ′

1, v1 and
ṗ : ρ2 ⇓ ρ′2, v2 and ρ1 ∼ ρ2, we have ρ′1 ∼ ρ′2 and v1 = v2.

The definition of non-interference applies both to bytecode programs, as stated above,

and source programs. Note moreover that by correctness of the compiler, a source pro-

gram p is non-interfering iff its compilation [[p]] is non-interfering.

3.2. Examples of insecure programs

This section provides examples of insecure programs that must be rejected by a type

system. For each example, we provide the source program and its compilation. In all

examples, xL is a low variable and yH is a high variable.

Our first example shows a direct flow of information, when the result of some se-

cret information is copied directly into a public variable. Consider the program xL :=
yH ; return 0 and its compilation in Figure 6(a). The program stores in the variable xL

the value held in the variable yH , and thus leaks information.

Our second example shows an indirect flow of information, when assignments to

low variables within branching instructions that test on secret information leads to infor-

mation leakages. Consider the program if(yH = 0){xL := 0}{xL := 1}; return 0 and

its compilation in Figure 6(b). The program yields an implicit flow, as the final value

of xL depends on the initial value of yH . Indeed, the final value of xL depends on the

G. Barthe et al. / Compilation of Certificates 9



1 load yH

2 store xL

3 push 0
4 return

1 push 0
2 load yH

3 if = 7
4 prim 0
5 store xL

6 goto 9
7 prim 1
8 store xL

9 push 0
10 return

1 push 0
2 load yH

3 if = 6
4 push 0
5 return
6 push 0
7 store xL

8 push 0
9 return

1 push 0
2 load yH

3 if = 6
4 push 0
5 return
6 push 1
7 return

Figure 6. EXAMPLES OF INSECURE PROGRAMS

initial value of yH . The problem is caused by an assignment to xL in the scope of an if
instruction depending on high variables.

Our third example1 shows an indirect flow of information, caused by an abrupt ter-

mination within branching instructions that test on secret information leads to infor-

mation leakages. Consider the program if(yH = 0){return 0}{skip};xL := 0; return 0
and its compilation in Figure 6(c); it yields an implicit flow, as the final value of xL

depends on the initial value of yH . Our fourth example is of a similar nature, but

caused by a return whose value depends on a high expression. Consider the program

if(yH = 0){return 0}{return 1} and its compilation in Figure 6(c). Indeed, the final

value of xL is 0 if the initial value of yH is 0. The problem is caused by a return instruc-

tion within the scope of a high if instruction.

3.3. Information flow typing for source code

In this section, we introduce a type system for secure information flow for IMP inspired

from [24]. Typing judgments are implicitly parametrized by the security policy Γ of the

form:

� e : τ (expressions)

� i : τ (statements)

where e is an expression, i is a statement and τ is a security level. The intuitive meaning

of � e : τ is that τ is an upper bound of the security levels of variables that occur in e,

whereas the intuitive meaning of � i : τ is that i is non-interfering and does not assign

to variables with security level lower than τ .

Figure 7 and Figure 8 respectively present the typing rules for expressions and in-

structions. The rule for assignments prevents direct flows, whereas the rule for if state-

ments prevents indirect flows. Note that the typing rule for return is only sound because

we do not allow return expressions to appear within statements: indeed, the source code

of the program in Figure 6(c), in which a return statement appears in a high branching

statement, is insecure.

The type system is sound, in the sense that typable programs are non-interfering.

1Both the third and fourth examples are not legal source programs in our syntax. We nevertheless provide

the source code for readability.
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VAR

� x : Γ(x)
VAL

� c : L

OP

� ei : τ for i = 1, 2
� e1 op e2 : τ

TEST

� ei : τ for i = 1, 2
� e1 cmp e2 : τ

SUBE
� e : τ τ ≤ τ ′

� e : τ ′

Figure 7. INFORMATION FLOW TYPING RULES FOR EXPRESSIONS

ASSIGN

� e : τ τ ≤ Γ(x)
� x := e : Γ(x)

SEQ

� i : τ � i′ : τ

� i; i′ : τ

SUBC
� i : τ τ ′ ≤ τ

� i : τ ′

COND

� t : τ � i : τ � i′ : τ

� if(t){i}{i′} : τ

WHILE

� t : τ � i : τ

� while(t){i} : τ

SKIP

� skip : H

RET

� e : L

� return e : L

Figure 8. INFORMATION FLOW TYPING RULES FOR STATEMENTS

Proposition 3.4 (Soundness of source type system) If p = i; return e is typable, i.e.
� i : τ and return e : L, then p is non-interfering.

One can prove the above proposition directly, in the style of [24]. An alternative is to

derive soundness of the source type system from soundness of the bytecode type system,

as we do in the next section.

3.4. Information flow for bytecode

To prevent illicit flows in a non-structured language, one cannot simply enforce local

constraints in the typing rules for branching instructions: one must also enforce global

constraints that prevent low assignments and updates to occur under high guards (condi-

tional branching that depends on high information). In order to express the global con-

straints that are necessary to enforce soundness, we rely on some additional information

about the program. Concretely, we assume given control dependence regions (cdr) which

approximate the scope of branching statements, as well as a security environment, that

G. Barthe et al. / Compilation of Certificates 11



attaches to each program point a security level, intuitively the upper bound of all the

guards under which the program point executes.

Before explaining the typing rules, we proceed to define the concept of control de-

pendence region, which is closely related to the standard notion used in compilers. The

notion of region can be described in terms of a successor relation �→⊆ P × P between

program points. Intuitively, j is a successor of i, written i �→ j, if performing one-step

execution from a state whose program point is i may lead to a state whose program point

is j. Then, a return point is a program point without successor (corresponding to a return
instruction); in the sequel, we write i �→ exit if i is a return point and let Pr denote the

set of return points. Finally, if instructions usually have two successors; when it is the

case, the program point of this instruction is referred as a branching point. Formally, the

successor relation �→ is given by the clauses:

• if ṗ[i] = goto j, then i �→ j;

• if ṗ[i] = if cmp j, then i �→ i + 1 and i �→ j. Since if instructions have two

successors, they are thus referred to as branching points;

• if ṗ[i] = return, then i has no successors, and we write i �→ exit;
• otherwise, i �→ i + 1.

Control dependence regions are characterized by a function that maps a branching pro-

gram point i to a set of program points region(i), called the region of i, and by a partial

function that maps branching program points to a junction point jun(i). The intuition be-

hind regions and junction points is that region(i) includes all program points executing

under the guard of i and that jun(i), if it exists is the sole exit to the region of i; in par-

ticular, whenever jun(i) is defined there should be no return instruction in region(i). The

properties to be satisfied by control dependence regions, called SOAP properties, are:

Definition 3.5 A cdr structure (region, jun) satisfies the SOAP (Safe Over APproxima-
tion) properties if the following holds:

SOAP1: for all program points i, j, k such that i �→ j and i �→ k and j �= k, either
k ∈ region(i) or k = jun(i);

SOAP2: for all program points i, j, k, if j ∈ region(i) and j �→ k, then either k ∈
region(i) or k = jun(i);

SOAP3: for all program points i, j, if j ∈ region(i) and j �→ exit then jun(i) is unde-
fined.

Given a cdr structure (region, jun), it is straightforward to verify whether or not it satisfies

the SOAP properties.

Definition 3.6 A security environment is a mapping se : P → S.

The bytecode type system is implicitly parametrized by a policy Γ, a cdr structure

(region, jun), and a security environment se. Typing judgments are of the form

i � st ⇒ st′

where i is a program point, and st and st′ are stacks of security levels. Intuitively, st and

st′ keep track of security levels of information on the operand stack during all possible

executions.
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P [i] = push n
i � st ⇒ se(i) :: st

P [i] = binop op
i � k1 :: k2 :: st ⇒ (k1 
 k2) :: st

P [i] = store x se(i) 
 k ≤ Γ(x)
i � k :: st ⇒ st

P [i] = load x
i � st ⇒ (Γ(x) 
 se(i)) :: st

P [i] = goto j
i � st ⇒ st

P [i] = return se(i) = L
i � k :: st ⇒ ε

P [i] = if cmp j ∀j′ ∈ region(i), k ≤ se(j′)
i � k :: st ⇒ liftk(st)

Figure 9. TRANSFER RULES FOR VM INSTRUCTIONS

Figure 9 presents a set of typing rules that guarantee non-interference for bytecode

programs, where � denotes the lub of two security levels, and for every k ∈ S, liftk is

the point-wise extension to stack types of λl. k � l. The transfer rule for if requires that

the security environment of program points in a high region is high. In conjunction with

the transfer rule for load, the transfer rule for if prevents implicit flows and rejects the

program of Figure 6(b). Likewise, in conjunction with the transfer rule for push, which

requires that the value pushed on top of the operand stack has a security level greater

than the security environment at the current program point, and the typing rule for return

which requires that se(i) = L and thus avoids return instructions under the guard of high

expressions, the transfer rule for return prevents implicit flows and rejects the program

of Figure 6(c). Besides, the transfer rule for return requires that the value on top of the

operand stack has a low security level, since it will be observed by the adversary. It thus

rightfully rejects the program of Figure 6(d).

In addition, the operand stack requires the stack type on the right hand side of ⇒
to be lifted by the level of the guard, i.e. the top of the input stack type. It is necessary

to perform this lifting operation to avoid illicit flows through operand stack. The fol-

lowing example, which uses a new instruction swap that swaps the top two elements of

the operand stack, illustrates why we need to lift the operand stack. This is a contrived

example because it does not correspond to any simple source code, but it is nevertheless

accepted by a standard bytecode verifier.

1 push 1
2 push 0
3 push 0
4 load yH

5 if 7
6 swap
7 store xL

8 push 0
9 return
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In this example, the final value of variable xL depends on the initial value of yH and so

the program is interfering. It is rightfully rejected by our type system, thanks to the lift

of the operand stack at program point 5.

One may argue that lifting the entire stack is too restrictive, as it leads the typing

system to reject safe programs; indeed, it should be possible, at the cost of added com-

plexity, to refine the type system to avoid lifting the entire stack. Nevertheless, one may

equally argue that lifting the stack is unnecessary, because as noted in Section 2 the stack

at branching points only has one element in all compiled programs, in which case a more

restrictive rule of the form below is sufficient:

P [i] = if cmp j ∀j′ ∈ region(i).k ≤ se(j′)
i � k :: ε ⇒ ε

Furthermore, there are known techniques to force that the stack only has one element at

branching points.

Typability Typing rules are used to establish a notion of typability. Following Freund

and Mitchell [12], typability stipulates the existence of a function, that maps program

points to stack types, such that each transition is well-typed.

Definition 3.7 (Typable program) A program ṗ is typable w.r.t. a memory security pol-
icy Γ, and cdr structure (region, jun), and a security environment se : P → S iff there
exists a type S : P → S� such that:

• S0 = ε (the operand stack is empty at the initial program point 0);

• for all i ∈ P and j ∈ P ∪{exit}, i �→ j implies that there exists st ∈ S� such that
i � Si ⇒ st and st � Sj .

where we write Si instead of S(i) and � denotes the point-wise partial order on type
stack with respect to the partial order taken on security levels.

The type system is sound, in the sense that typable programs are non-interfering.

Proposition 3.8 Let ṗ be a bytecode program and (region, jun) a cdr structure that sat-
isfies the SOAP properties. Suppose ṗ is typable with respect to region and to a memory
security policy Γ. Then ṗ is non-interfering w.r.t. Γ.

The proof is based on the SOAP properties, and on two unwinding lemmas showing

that execution of typable programs does not reveal secret information. In order to state

the unwinding lemmas, one must define an indexed indistinguishability relation between

stacks and states.

Definition 3.9 (Indistinguishability of states)

• A S-stack S is high, written high(S), if all levels in S are high.

• Indistinguishability os ∼S,S os′ between stacks os and os (relative to S-stacks S
and S′) is defined inductively by the clauses:
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high(S) high(S′) #os = #S #os′ = #S′

os ∼S,S os′

os ∼S,S os′

v :: os ∼L::S,L::S v :: os′
os ∼S,S os′

v :: os ∼H::S,H::S v′ :: os′

where # denotes the length of a stack.
• Indistinguishability between states 〈i, ρ, os〉 ∼S,S 〈i′, ρ′, os′〉 (relative to stack

of security levels S and S′) holds iff os ∼S,S os′ and ρ ∼ ρ′.

We must also introduce some terminology and notation: we say that the security envi-

ronment se is high in region region(i) if se(j) is high for all j ∈ region(i). Besides, we

let pc(s) denote the program counter of a state s. Then, the unwinding lemmas can be

stated as follows:

• locally respects: if s ∼S,T t, and pc(s) = pc(t) = i, and s � s′, t � t′,
i � S ⇒ S′, and i � T ⇒ T ′, then s′ ∼S ,T t′.

• step consistent: if s ∼S,T t, and pc(s) = i, and s � s′ and i � S ⇒ S′, and se(i)
is high, and S is high, then s′ ∼S ,T t.

In order to repeatedly apply the unwinding lemmas, we need additional results about

preservation of high contexts.

• high branching: if s ∼S,T t with pc(s) = pc(t) = i and pc(s′) �= pc(t′), if

s � s′, t � t′, i � S ⇒ S′ and i � T ⇒ T ′, then S′ and T ′ are high and se is

high in region region(i).
• high step: if s � s′, and pc(s) � S ⇒ S′, and the security environment at

program point pc(s) is high, and S is high, then S′ is high.

The combination of the unwinding lemmas, the high context lemmas, the monotonic-

ity lemmas and the SOAP properties enable to prove that typable programs are non-

interfering. The proof proceeds by induction on the length of derivations: assume that we

have two executions of a typable program ṗ, and that sn and s′m are final states:

s0 � · · · � sn

s′0 � · · · � s′m

such that pc(s0) = pc(s′0) and s0 ∼Spc(s0),Spc(s0)
s′0. We want to establish that either

the states sn and s′m are indistinguishable, i.e. sn ∼Spc(sn),Spc(sm)
s′m, or that both stack

types Spc(sn) and Spc(sm) are high. By induction hypothesis, we know that the property

holds for all strictly shorter execution paths.

Define i0 = pc(s0) = pc(s′0). By the locally respects lemma and typability hypoth-

esis, s1 ∼st,st s′1 for some stack types st and st ′ such that i0 � Si0 ⇒ st , st � Spc(s1),

i0 � Si0 ⇒ st ′, st ′ � Spc(s1)
.

• If pc(s1) = pc(s′1) we can apply monotony of indistinguishability (w.r.t. indexes)

to establish that s1 ∼Spc(s1),Spc(s1)
s′1 and conclude by induction hypothesis.
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• If pc(s1) �= pc(s′1) we know by the high branching lemma that se is high in region

region(i0) and st and st ′ are high. Hence both Spc(s1) and Spc(s1)
are high.

Using the SOAP properties, one can prove that either jun(i0) is undefined and

both Spc(sn) and Spc(sm) are high, or that jun(i0) is defined and there exists k, k′,
1 ≤ k ≤ n and 1 ≤ k′ ≤ m such that k = k′ = jun(i0) and sk ∼Spc(sk),Si0

s′0
s0 ∼Si0 ,Spc(s

k
)

s′k . Since s0 ∼Si0 ,Si0
s′0 we have by transitivity and symmetry

of ∼, sk ∼Spc(sk),Spc(s
k

)
s′k with pc(sk) = pc(s′k ) and we can conclude by

induction hypothesis.

3.5. Preservation of Typability

In this section, we focus on preservation of typability by compilation. Since the bytecode

type system uses both a cdr structure (region, jun) and a security environment se, we

must extend the compiler of Section 2.3 so that it generates for each program p a cdr

structure (region, jun) and the security environment se such that [[p]] is typable w.r.t.

(region, jun) and se. The cdr structure of the compiled programs can be defined easily.

For example, the region of if statement is given by the clause:

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto l; k2 : [[i2]]
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i1]]| + 1
l = k2 + |[[i2]]|

region(k1 − 1) = [k1, l − 1]
jun(k1 − 1) = l

blev(k1 − 1) =
⋃{τ |� e1 cmp e2 : τ}

Note that in addition to the region, we define the branching level blev(k1 − 1) of k1 − 1
as the minimal level of its associated test, i.e. blev(k1 − 1) low if all variables in e1 and

e2 are low, and high otherwise.

Likewise, the region of while statement is given by the clause:

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i]]| + 1
region(k1 − 1) = [k, l − 1]

jun(k1 − 1) = l
blev(k1 − 1) =

⋃{τ |� e1 cmp e2 : τ}

The security environment is derived from the cdr structure and the branching level of

program points. Formally, we define

se(i) =
⋃

{blev(j) | i ∈ region(j)}

with the convention that
⋃ ∅ = L.

Theorem 3.10 (Typability Preservation) Let p be a typable source program. Then [[p]]
is a typable bytecode program w.r.t. the generated cdr structure (region, jun) and the
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generated security environment se. In addition, the cdr structure (region, jun) satisfies
the SOAP properties.

Using the fact that the compiler preserves the semantics of program, the soundness of the

information flow type system for bytecode and preservation of typability, we can derive

soundness of the information flow type system for the source language.

Corollary 3.11 (Soundness of source type system) Let p be a typable IMP program
w.r.t. to a memory security policy Γ. Then p is non-interfering w.r.t. Γ.

By preservation of typing, [[p]] is typable, and thus non-interfering by soundness of the

bytecode type system. By correctness of the compiler, the program p is non-interfering

iff its compilation [[p]] is non-interfering, and therefore p is non-interfering.

3.6. Optimizations

Simple optimizations such as constant folding, dead code elimination, and rewriting

conditionals whose conditions always evaluate to the same constant can be modeled as

source-to-source transformations and can be shown to preserve information-flow typing.

Figure 10 provides examples of transformations that preserve typing.2 Most rules are of

the form

P [i] = ins constraints

P [i] = ins′
P [i, i + n] = 	ins constraints

P [i, i + n] = 	ins′

where ins is the original instruction and ins′ is the optimized instruction. In some cases

however, the rules are of the form

P [i, n + m] = 	ins constraints

P [i, n + m′] = 	ins′

with m �= m′. Therefore such rules do not preserve the number of instructions, and the

transformations must recompute the targets of jumps, which is omitted here.

In the rules, we use F to denote a stack-preserving sequence of instructions, i.e. a

sequence of instructions such that the stack is the same at the beginning and the end of F
execution, which we denote as F∈ StackPres in the rules. We also assume that there are

no jumps from an instruction in F outside F , so that all executions must flow through

the immediate successor of F , and that there are no jumps from an instruction outside

F inside F , so that all executions enter F through its immediate predecessor. In other

words, we assume that ins :: F :: ins′ is a program fragment, where ins and ins′ are

the instructions preceding and following F .

The last rule uses VAL(x, i) to denote the safe approximation of the value of x at

program point i; this approximation can be statically computed through, e.g., symbolic

analysis. The optimizations use two new instructions nop and dup, the first one simply

jump to the next program point, the second duplicates the top value of the stack and

continues the execution to the next program point.

2Thanks to Salvador Cavadini for contributing to these examples.
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P [i, i + n + 2] = i :: F :: pop i ∈ {load x, push n}
P [i, i + n] = F

P [i, i + n] = binop op :: F :: pop
P [i, i + n] = pop :: F :: pop

P [i] = store x x is dead at P [i]
P [i] = pop

P [i, i + n] = load x :: F :: load x store x �∈ F
P [i, i + n] = load x :: F :: dup

P [i, i + n] = store x :: F :: load x store x �∈ F
P [i, i + n] = dup :: store x :: F

P [i, i + 2 + n] = store x :: load x :: F :: store x store x, load x �∈ F
P [i, i + n] = F :: store x

P [i, i + 2] = push c1 :: push c2 :: binop op
P [i] = push (c1 op c2)

P [i] = load x VAL(x, i) = n
P [i] = push n

In all rules, we assume that F is stack-preserving.

Figure 10. OPTIMIZING TRANSFORMATION RULES

As noted in [4], more aggressive optimizations may break type preservation, even

though they are semantics preserving, and therefore security preserving. For example,

applying common subexpression elimination to the program

xH := n1 ∗ n2; yL := n1 ∗ n2

where n1 and n2 are constant values, will result in the program

xH := n1 ∗ n2; yL := xH

Assuming that variable xH is a high variable and yL is a low variable, the original pro-

gram is typable, but the optimized program is not, since the typing rule for assignment

will detect an explicit flow yL := xH . For this example, one can recover typability by

creating a low auxiliary variable zL in which to store the result of the computation n1∗n2,

and assign zL to xH and yL, i.e.

zL := n1 ∗ n2;xH := zL; yL := zL
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source logical expressions ē ::= res | x̄ | x | c | ē op ē
source logical tests t̄ ::= ē cmp ē
source propositions φ ::= t̄ | ¬φ | φ ∧ φ | φ ∨ φ | φ ⇒ φ | ∃x. φ | ∀x. φ

Figure 11. SPECIFICATION LANGUAGE FOR SOURCE PROGRAMS

wpS(skip, ψ) = ψ, ∅ wpS(x := e, ψ) = ψ{x ← e}, ∅

wpS(i2, ψ) = φ2, θ2 wpS(i1, φ2) = φ1, θ1

wpS(i1; i2, ψ) = φ1, θ1 ∪ θ2

wpS(it, ψ) = φt, θt wpS(if , ψ) = φf , θf

wpS(if(t){it}{if}, ψ) = (t ⇒ φt) ∧ (¬t ⇒ φt), θt ∪ θf

wpS(i, I) = φ, θ
wpS(whileI(t){i}, ψ) = I, {I ⇒ (t ⇒ φ) ∧ (¬t ⇒ ψ)} ∪ θ

Figure 12. WEAKEST PRE-CONDITION FOR SOURCE PROGRAMS

The above examples show that a more systematic study of the impact of program opti-

mizations on information flow typing is required.

4. Verification conditions

Program logics are expressive frameworks that enable reasoning about complex proper-

ties as well as program correctness. Early program verification techniques include Hoare

logics, and weakest pre-condition calculi, which are concerned with proving program

correctness in terms of triples, i.e. statements of the form {P}c{Q}, where P and Q are

respectively predicates about the initial and final states of the program c. The intended

meaning of a statement {P}c{Q} is that any terminating run of the program c starting

with a state s satisfying the pre-condition P will conclude in a state s′ that satisfies the

post-condition Q. In these notes, we focus on a related mechanism, called verification

condition generation, which differs from the former by operating on annotated programs,

and is widely used in program verification environments.

4.1. Source language

The verification condition generator VCgen operates on annotated source programs, i.e.

source programs that carry a pre-condition, a post-condition, and an invariant for each
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stack expressions ōs ::= os | ē :: ōs |↑k ōs
bytecode logical expressions ē ::= res | x̄ | x | c | ē op ē | ōs[k]
bytecode logical tests t̄ ::= ē cmp ē
bytecode propositions φ ::= t̄ | ¬φ | φ ∧ φ | φ ∨ φ | φ ⇒ φ | ∃x. φ | ∀x. φ

where os is a special variable representing the current stack operand stack.

Figure 13. SPECIFICATION LANGUAGE FOR BYTECODE PROGRAMS

loop.

Definition 4.1 (Annotated source program)

• The set of propositions is defined in Figure 11, where x̄ is a special variable rep-
resenting the initial value of the variable x, and res is a special value representing
the final value of the evaluation of the program.

• A pre-condition is a proposition that only refers to the initial values of variables.
An invariant is a proposition that refers to the initial and current values of vari-
ables (not to the final result). A post-condition is a proposition.

• An annotated program is a triple (p, Φ, Ψ), where Φ is a pre-condition, Ψ is a
post-condition, and p is a program in which all while loops are annotated (we note
whileI(t){s} for a loop annotated with invariant I).

The VCgen computes a set of verification conditions (VC). Their validity ensure that the

program meets its contract, i.e. that every terminating run of a program starting from a

state that satisfies the program pre-condition will terminate in a state that satisfies the

program post-condition, and that loop invariants hold at the entry and exit of each loops.

Definition 4.2 (Verification conditions for source programs)

• The weakest pre-condition calculus wpS(i, ψ) relative to a instruction i and a
post-condition ψ is defined by the rules of Figure 12.

• The verification conditions of an annotated program (p,Φ,Ψ) with p = i; return e
is defined as

VCgenS(p, Φ, Ψ) = {Φ ⇒ φ{	x ← 	̄x}} ∪ θ

where wpS(i,Ψ{res ← e}) = φ, θ.

4.2. Target language

As for the source language, the verification condition generator operates on annotated

bytecode programs, i.e. bytecode that carry a pre-condition, a post-condition and loop

invariants. In an implementation, it would be reasonable to store invariants in a separate

annotation table, the latter being a partial function form program points to propositions.

Here we find it more convenient to store the annotations directly in the instructions.
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Definition 4.3 (Annotated bytecode program)

• The set of bytecode propositions is defined in Figure 13.

• An annotation is a proposition that does not refer to the operand stack. A pre-
condition is an annotation that only refers to the initial value of variables. An
invariant is an annotation that does not refer to the result of the program. A post-
condition is an annotation.

• An annotated bytecode instruction is either an bytecode instruction or a bytecode
proposition and a bytecode instruction:

ī ::= i | φ : i

• An annotated program is a triple (ṗ, Φ̇, Ψ̇), where Φ̇ is a pre-condition, Ψ̇ is a post-
condition, and ṗ is a bytecode program in which some instructions are annotated.

At the level of the bytecode language, the predicate transformer wp is a partial function

that computes, from a partially annotated program, a fully annotated program in which

all labels of the program have an explicit pre-condition attached to them. However, wp
is only defined on programs that are sufficiently annotated, i.e. through which all loops

must pass through an annotated instruction. The notion of sufficiently annotated is char-

acterized by an inductive and decidable definition and does not impose any specific struc-

ture on programs.

Definition 4.4 (Well-annotated program) A annotated program ṗ is well-annotated if
every program point satisfies the inductive predicate reachAnnotṗ defined by the clauses:

ṗ[k] = φ : i
k ∈ reachAnnotṗ

ṗ[k] = return
k ∈ reachAnnotṗ

∀k′. k �→ k′ ⇒ k′ ∈ reachAnnotṗ
k ∈ reachAnnotṗ

Given a well-annotated program, one can generate an assertion for each label, using the

assertions that were given or previously computed for its successors. This assertion repre-

sents the pre-condition that an initial state before the execution of the corresponding label

should satisfy for the function to terminate only in a state satisfying its post-condition.

Definition 4.5 (Verification conditions for bytecode programs) Let (ṗ, Φ̇, Ψ̇) be a
well-annotated program.

• The weakest pre-condition wpL(k) of a program point k and the weakest pre-
condition wpi(k) of its corresponding instruction are defined in Figure 14.

• The verification conditions VCgenB(ṗ, Φ̇, Ψ̇) is defined by the clauses:

Φ̇ ⇒ wpL(0){	x ← 	̄x}) ∈ VCgenB(ṗ, Φ̇, Ψ̇)
ṗ[k] = φ : i

φ ⇒ wpi(k)) ∈ VCgenB(ṗ, Φ̇, Ψ̇)
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wpi(k) = wpL(k + 1){os ← c :: os} if ṗ[k] = push c
wpi(k) = wpL(k + 1){os ← (os[0] op os[1]) ::↑2 os} if ṗ[k] = binop op
wpi(k) = wpL(k + 1){os ← x :: os} if ṗ[k] = load x
wpi(k) = wpL(k + 1){os, x ← ↑ os, os[0]} if ṗ[k] = store x
wpi(k) = wpL(l) if ṗ[k] = goto l
wpi(k) = (os[0] cmp os[1] ⇒ wpL(k + 1){os ← ↑2 os})

∧ (¬(os[0] cmp os[1]) ⇒ wpL(l){os ← ↑2 os})
if ṗ[k] = if cmp l

wpi(k) = Ψ̇{res ← os[0]} if ṗ[k] = return

wpL(k) = φ if ṗ[k] = φ : i
wpL(k) = wpi(k) otherwise

Figure 14. WEAKEST PRE-CONDITION FOR BYTECODE PROGRAMS

ρ̄, os, ρ � os �→ os
ρ̄, os, ρ � ē �→ e ρ̄, os, ρ � ōs �→ os′

ρ̄, os, ρ � ē :: ōs �→ v :: os′

ρ̄, os, ρ � ōs �→ v1 :: . . . :: vk :: os′

ρ̄, os, ρ �↑k ōs �→ os′
ρ̄, os, ρ � ōs �→ v0 :: . . . :: vk :: os′

ρ̄, os, ρ � ōs[k] �→ vk

ρ̄, os, ρ � x̄ �→ ρ̄(x) ρ̄, os, ρ � x �→ ρ(x) ρ̄, os, ρ � c �→ c
ρ̄, os, ρ � ē1 �→ v1 ρ̄, os, ρ � ē2 �→ v2

ρ̄, os, ρ � ē1 op ē2 �→ v1 op v2

Figure 15. INTERPRETATION OF BYTECODE EXPRESSIONS

4.3. Soundness

Bytecode (resp. source) propositions can be interpreted as predicates on bytecode (resp.

source) states. In the case of bytecode, the interpretation builds upon a partially defined

interpretation of expressions (partiality comes from the fact that some expressions refer

to the operand stack and might not be well defined w.r.t. particular states).

Definition 4.6 (Correct program)

• The evaluation of logical bytecode expressions ē in an initial memory ρ̄, a current
operand stack os and a current memory ρ to a value v is defined by the rules of
Figure 15. This evaluation is naturally extended to bytecode propositions ρ̄, os, ρ �
P �→ φv , where φv is a boolean formula, with the following rule for tests:
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ρ̄, os, ρ � ē1 �→ v1 ρ̄, os, ρ � ē2 �→ v2

ρ̄, os, ρ � ē1 cmp ē2 �→ v1 cmp v2

• An initial memory ρ̄, a current operand stack os and a current memory ρ validate
a logical bytecode proposition φ,ρ̄, os, ρ � φ, if ρ̄, os, ρ � φ �→ φv and φv is a
valid boolean formula.

• A well-annotated bytecode program (ṗ, Φ̇, Ψ̇) is correct, written � VCgenB(ṗ, Φ̇, Ψ̇),
if all the verification conditions are valid.

Soundness establishes that the VCgen is a correct backwards abstraction of one step

execution.

Lemma 4.7 (One step soundness of VCgen) For all correct programs (ṗ, Φ̇, Ψ̇):

〈k, ρ, os〉 � 〈k′, ρ′, os′〉
ρ̄, os, ρ � wpi(k)

}
⇒ ρ̄, os′, ρ′ � wpL(k′)

Furthermore, if the evaluation terminates 〈k, ρ, os〉 � ρ, v (i.e the instruction at posi-
tion k is a return) then ρ̄, ∅, ρ′ � Ψ̇{res ← v}

Soundness of the VCgen w.r.t. pre-condition and post-condition follows.

Corollary 4.8 (Soundness of VCgen) For all correct programs (ṗ, Φ̇, Ψ̇), initial mem-
ory ρ̄, final memory ρ and final value v, if ṗ : ρ̄ ⇓ ρ, v and ρ̄, ∅, ∅ � Φ̇ then
ρ̄, ∅, ρ � Ψ̇{res ← v}

The proof proceeds as follows. First, we prove by induction on n that

〈k, ρ, os〉 �n 〈k′, ρ′, os′〉
ρ̄, os, ρ � wpi(k)

}
⇒ ρ̄, os′, ρ′ � wpi(k

′)

If n = 0, it is trivial. If n = 1+m, we have 〈k, ρ, os〉 � 〈k1, ρ1, os1〉 �n 〈k′, ρ′, os′〉.
It is sufficient to prove that ρ̄, os1, ρ1 � wpi(k1), since then we can conclude the proof

using the induction hypothesis. Using the previous lemma, we get ρ̄, os1, ρ1 � wpL(k1).
We now conclude with a case analysis:

• if the program point k1 is not annotated then wpL(k1) = wpi(k1), and we are

done;

• if the program point k1 is annotated, say ṗ[k1] = φ : i, then wpL(k1) = φ. Since

the program is correct the proposition φ ⇒ wpi(k1) is valid and so ρ̄, os1, ρ1 �
wpi(k1).

Second, since ṗ : ρ̄ ⇓ ρ, v there exists n such that

〈0, ρ0, ∅〉 �n 〈k, ρ, os〉 � ρ, v

By step one above, we have ρ0, os, ρ � wpi(k). Furthermore, ṗ[k] = return so wpi(k) =
Ψ̇{res ← os[0]}. This concludes the proof.
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4.4. Preservation of proof obligations

We now extend our compiler so that it also inserts annotations in bytecode programs,

and show that it transforms programs into well-annotated programs, and that further-

more it transforms correct source programs into correct bytecode programs. In fact, we

show a stronger property, namely that the proof obligations at source and bytecode level

coincide.

The compiler of Section 2.3 is modified to insert invariants in bytecode:

k : [[whileI(e1 cmp e2){i}]] = I : [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i]]| + 1

As expected, the compiler produces well-annotated programs.

Lemma 4.9 (Well-annotated programs) For all annotated source program(p,Φ, Ψ),
the bytecode program [[p]] is well-annotated.

In addition, the compiler “commutes” with verification condition generation. Further-

more, the commutation property is of a very strong form, since it claims that proof obli-

gations are syntactically equal.

Proposition 4.10 (Preservation of proof obligations – PPO) For all annotated source
program (p,Φ, Ψ):

VCgenS(p,Φ, Ψ) = VCgenB([[p]], Φ, Ψ)

Thus, correctness proofs of source programs can be used directly as proof of bytecode

programs without transformation. In particular, the code producer can directly prove the

source program and send the proofs and the compiled program to the code consumer

without transforming the proofs.

Using the fact that the compiler preserves the semantics of program, the soundness

of the verification condition generator for bytecode and PPO, we can derive soundness

of the source verification condition generator. (The notion of correct source program is

defined in the same way as that of bytecode program).

Corollary 4.11 (Soundness of VCgenS ) If � VCgenS(p,Φ, Ψ) then for all initial mem-
ories ρ0 satisfying Φ, if p : ρ0 ⇓S ρ, v then ρ0, ρ � Ψ.

By correctness of the compiler, [[p]] : ρ0 ⇓ ρ, v. By preservation of proof obligations,

� VCgenB([[p]], Φ, Ψ). By correctness of the bytecode VCgen, ρ0, ρ � Ψ.

4.5. Optimizations

Preservation of proof obligations does not hold in general for program optimizations, as

illustrated by the following example:

r1 := 1
{true}
r2 := r1

{r1 = r2}

r1 := 1
{true}
r2 := 1
{r1 = r2}
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The proof obligations related to the sequence of code containing the assignment r2 := r1

is true ⇒ r1 = r1 and true ⇒ r1 = 1 for the original and optimized version respectively.

The second proof obligation is unprovable, since this proof obligation is unrelated to the

sequence of code containing the assignment r1 := 1.

In order to extend our results to optimizing compilers, we are led to consider certifi-

cate translation, whose goal is to transform certificates of original programs into certifi-

cates of compiled programs. Given a compiler [[·]], a function [[·]]spec to transform spec-

ifications, and certificate checkers (expressed as a ternary relation “c is a certificate that

P adheres to φ”, written c : P |= φ), a certificate translator is a function [[·]]cert such that

for all programs p, policies φ, and certificates c,

c : p |= φ =⇒ [[c]]cert : [[p]] |= [[φ]]spec

In [2], we show that certificate translators exist for most common program optimizations,

including program transformations that perform arithmetic reasoning. For such transfor-

mations, one must rely on certifying analyzers that generate automatically certificates of

correctness for the analysis, and then appeal to a weaving process to produce a certificate

of the optimized program.

Whereas [2] shows the existence of certificate translators on a case-by-case basis, a

companion work [3] uses the setting of abstract interpretation [10,11] to provide suffi-

cient conditions for transforming a certificate of a program p into a certificate of a pro-

gram p′, where p′ is derived from p by a semantically justified program transformation,

such as the optimizations considered in [2].

5. Extensions to sequential Java

The previous sections have considered preservation of information flow typing and

preservation of proof obligations for a simple language. In reality, these results have been

proved for a sequential Java-like language with objects, exceptions, and method calls.

The purpose of this section is to highlight the main issues of this extension. The main

difficulties are three-fold:

• dealing with object-orientation: Java and JVM constructs induce a number of well-

known difficulties for verification. For instance, method signatures (for type sys-

tems) or specifications (for logical verification) are required for modular verifica-

tion. In addition, signatures and specifications must account for all possible termi-

nation behaviors; in the case of method specifications, it entails providing excep-

tional post-conditions as well as normal post-conditions. Furthermore, signatures

and specifications must be compatible with method overriding;

• achieving sufficient precision: a further difficulty in scaling up our results to a Java-

like language is precision. The presence of exceptions and object-orientation yields

a significant blow-up in the control flow graph of the program, and, if no care is

taken, may lead to overly conservative type-based analyses and to an explosion

of verification conditions. In order to achieve an acceptable degree of usability,

both the information flow type system and the verification condition generator

need to rely on preliminary analyses that provide a more accurate approximation

of the control flow graph of the program. Typically, the preliminary analyses will
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perform safety analyses such as class analysis, null pointer analysis, exception

analysis, and array out-of-bounds analysis. These analyses drastically improve the

quality of the approximation of the control flow graph (see [6] forthe case of null

pointer exceptions). In particular, one can define a tighter successor relation �→ that

leads to more precise cdr information and thus typing in the case of information

flow [5], and to more compact verification conditions in the case of functional

verification [14];

• guaranteeing correctness of the verification mechanisms: the implementation of

type-based verifiers and verification condition generators for sequential Java byte-

code are complex programs that form the cornerstone of the security architectures

that we propose. It is therefore fundamental that their implementation is correct,

since flaws in the implementation of a type system or of a verification condition

generator can be exploited to launch attacks. We have therefore used the Coq proof

assistant [9] to certify both verification mechanisms. The verification is based on

Bicolano, a formal model of a fragment of the Java Virtual Machine in the Coq

proof assistant. In addition to providing strong guarantees about the correctness

of the type system and verification condition generator, the formalization serves

as a basis for a Foundational Proof Carrying Code architecture. A distinctive fea-

ture of our architecture is that both the type system and the verification condition

generator are executable inside higher order logic and thus one can use reflection

for verifying certificates. As compared to Foundational Proof Carrying Code [1],

which is deductive in nature, reflective Proof Carrying Code exploits the interplay

between deduction and computation to support efficient verification procedures

and compact certificates.

6. Conclusion

Popular verification environments such as Jif (for information flow) and ESC/Java (for

functional verification) target source code, and thus do not address directly the concerns

of mobile code, where code consumers require guarantees on the code they download and

execute. The purpose of these notes has been to demonstrate in a simplified setting that

one can bring the benefits of source code verification to code consumers by developing

adequate verification methods at bytecode level and by relating them suitably to source

code verification.

Acknowledgments This work is partially supported by the EU project MOBIUS, and

by the French ANR project PARSEC.

References

[1] A. W. Appel. Foundational Proof-Carrying code. In Proceedings of LICS’01, pages 247–258. IEEE

Computer Society, 2001.

[2] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing compilers. In Static
Analysis Symposium, number 4134 in Lecture Notes in Computer Science, Seoul, Korea, August 2006.

Springer-Verlag.

[3] G. Barthe and C. Kunz. Certificate translation in abstract interpretation. In S. Drossopoulou, editor,

European Symposium on Programming, number xxxx in Lecture Notes in Computer Science. Springer-

Verlag, 2008.

G. Barthe et al. / Compilation of Certificates26



[4] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker and certifying compiler for

Java. In Symposium on Security and Privacy. IEEE Press, 2006.

[5] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference java bytecode verifier.

In R. De Niccola, editor, European Symposium on Programming, volume 4421 of Lecture Notes in
Computer Science, pages 125 – 140. Springer-Verlag, 2007.

[6] P. Chalin and P.R. James. Non-null references by default in java: Alleviating the nullity annotation

burden. In Erik Ernst, editor, Proceedings of ECOOP’07, volume 4609 of Lecture Notes in Computer
Science, pages 227–247. Springer, 2007.

[7] E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P. Dobkin, A. K.

Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages 297–335. Academic Press,

1978.

[8] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML — progress and issues in build-

ing and using ESC/Java2, including a case study involving the use of the tool to verify portions of an

Internet voting tally system. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, edi-

tors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer Science, pages 108–128.

Springer-Verlag, 2005.

[9] Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0, January 2004.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Principles of Programming Languages, pages 238–

252, 1977.

[11] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Principles of Program-
ming Languages, pages 269–282, 1979.

[12] S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language and Verifier. Journal
of Automated Reasoning, 30(3-4):271–321, December 2003.

[13] J. Goguen and J. Meseguer. Security policies and security models. In Proceedings of SOSP’82, pages

11–22. IEEE Computer Society Press, 1982.

[14] B. Grégoire and J.-L. Sacchini. Combining a verification condition generator for a bytecode language

with static analyses. In G. Barthe and C. Fournet, editors, Proceedings og TGC’07, volume 4912 of

Lecture Notes in Computer Science, pages xxx–xxx. Springer, 2007.

[15] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning,

30(3-4):235–269, December 2003.

[16] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley, second

edition edition, 1999.

[17] A.C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings of POPL’99, pages

228–241. ACM Press, 1999.

[18] G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119. ACM Press, 1997.

[19] G.C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, October 1998. Available

as Technical Report CMU-CS-98-154.

[20] G.C. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proceedings of OSDI’96,

pages 229–243. Usenix, 1996.

[21] E. Rose. Lightweight bytecode verification. Journal of Automated Reasoning, 31(3-4):303–334, 2003.

[22] A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE Journal on Selected
Areas in Comunications, 21:5–19, January 2003.

[23] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing

compiler for ML. In Proceedings of PLDI’96, pages 181–192, 1996.

[24] D. Volpano and G. Smith. A Type-Based Approach to Program Security. In M. Bidoit and M. Dauchet,

editors, Proceedings of TAPSOFT’97, volume 1214 of Lecture Notes in Computer Science, pages 607–

621. Springer-Verlag, 1997.

G. Barthe et al. / Compilation of Certificates 27



This page intentionally left blank



Formal Foundations of Computer Security

Mark BICKFORD and Robert CONSTABLE

Department of Computer Science, Cornell University

1. Introduction

We would like to know with very high confidence that private data in computers is not
unintentionally disclosed and that only authorized persons or processes can modify it.
Proving security properties of software systems has always been hard because we are
trying to show that something bad cannot happen no matter what a hostile adversary tries
and no matter what coding errors are made. For a limited interactive program like a chess
player, it might be possible to "prove" that all rules are followed and king is safe in a
certain board position, but in a large complex system, like the Internet, the many points
of attack and many ways to introduce errors seem to defy absolute guarantees.

Services such as public key cryptography, digital signatures, and nonces provide
the means to secure selected Internet communications and specific transactions. How-
ever, public key cryptography depends on mathematically deep computational complex-
ity assumptions, and nonces depend on statistical assumptions. When formal methods
researchers include complexity theory and probability theory in the formal mathematical
base, the task of giving a formal logical account of security properties and proving them
formally becomes daunting.

In this paper we explain a significantly less costly and more abstract way of pro-
viding adequate formal guarantees about cryptographic services. Our method is based
on properties of the data type of Atoms in type theory and it is most closely related to
the use of types in abstract cryptographic models [2,4,1,16,3]. Atoms provide the ba-
sis for creating "unguessable tokens" as shown in Bickford [10]. Essential to the use of
atoms is the concept that an expression e of type theory is computationally independent
of atom a, written e‖a. Bickford [10] discovered this concept and has shown that this
logical primitive is sufficient for defining cryptographic properties of processes in the
rich model of distributed computing formalized by the authors in [11,12] and elaborated
and implemented in Nuprl [7]. We will explain independence in detail.

The goal of this paper is to elaborate this approach to proving security properties
and illustrate it on simple examples of security specifications and protocols of the kind
presented in John Mitchell’s lectures [29] including Needham-Schroeder-Lowe protocol
[25,19] and the core of the SSL protocol. We illustrate new ways of looking at proofs in
terms of assertions about events that processes "believe’ and "conjecture," and we relate
them to what is constructively known. We will show how to provide formal proofs of
security properties using a logic of events. It is possible that proofs of this type could be
fully automated in provers such as Coq, HOL, MetaPRL, Nuprl, and PVS – those based
on type theory. We also exposit elements of our formal theory of event structures needed
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to understand these simple applications and to understand how they can provide guar-
anteed security services in the standard computing model of asynchronous distributed
computing based on message passing.

Mark Bickford has implemented the theory of event structures and several applica-
tions in the Nuprl prover and posted them in its Formal Digital Library [7], the theory
of event structures could be implemented in the other provers based on type theories,
though it might be less natural to treat some concepts in intensional theories. At certain
points in this article we will refer to the formal version of concepts and the fundamental
notions of type theory in which they are expressed.

2. Intuitive Account of Event Structures.

2.1. The Computing Model – General Features

Our computing model resembles the Internet. It is a network of asynchronously commu-
nicating sequential processes. Accommodating processes that are multi-threaded sharing
local memory is accomplished by building them from sequential processes if the need
arises - it won’t in our examples.

At the lowest level, processes communicate over directed reliable links, point to
point. Links have unique labels, and message delivery is not only reliable but messages
arrive at their destination in the order sent (FIFO). Messages are not blocked on a link,
so the link is a queue of messages. These are the default assumptions of the basic model,
and it is easy to relax them by stipulating that communication between Pi and Pj goes
through a virtual process Pk which can drop messages and reorder them. Moreover, we
can specify communications that do not mention specific links or contents, thus modeling
Internet communications.

Messages are tagged so that a link can be used for many purposes. The content
is typed, and polymorphic operations are allowed. We need not assume decidability of
equality on message contents, but it must be possible to decide whether tags are equal.

Processes In our formal computing model, processes are called message automata
(MA). Their state is potentially infinite and contents are accessed by typed identifiers,
x1, x2,... The contents are typed, using types from the underlying type theory. We use
an extremely rich collection of types, capable of defining those of any existing program-
ming language as well as the types used in computational mathematics, e.g. higher-order
functions, infinite precision computable real numbers, random variables, etc.

Message automata are finite sets of clauses (order is semantically irrelevant). Each
clause is either a declaration of the types of variables, an action or a frame condition.
The frame conditions are a unique feature distinguishing our process model from others,
so we discuss them separately in the next subsection. The other clauses are standard for
process models such as I/O automata [21,20] or distributed programs [8] or distributed
state machines, or distributed abstract state machines.

The action clauses can be labeled so that we speak of action a. Actions also have
kinds k1, k2... so that we can classify them. One of the essential kinds is a receive action.
Such an action will receive a tagged message on a link (by reading a message queue),
but we can classify an action without naming the link. All actions can send messages. An
initial action will initialize a state variable, and an internal action will update a state vari-
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able, possibly depending on a received value or a random value, xi := f(state, value).
We will not discuss the use of random values. Actions that update variables can be
guarded by a boolean expression, called the precondition for the action. (Note, receive ac-
tions are not guarded.) The complete syntax for message automata is given by the Nuprl
definition [12]. There is also an abstract syntax for them in which message automata are
called realizers.

For each base level receive action a, we can syntactically compute the sender by
looking at the link. For a receive action routed through the network, we may not be able
to compute the sender. For each action that updates the state, if it is not the first, we can
compute its predecessor from a trace of the computation (discussed below).

2.2. Composition and Feasibility

Frame Conditions One of the novel features of our process model is that execution
can be constrained by frame conditions which limit which actions can send and receive
messages of a certain type on which links and access the state using identifiers. For
example, constraints on state updates have the form only a can affect xi.

Composition of Processes Processes are usually built from subprocesses that are com-
posed to create the main process. Suppose S1, S2..., Sn are sub processes. Their compo-
sition is denoted S1 ⊕ ... ⊕ Sn. In our account of processes, composition is extremely
simple, namely the union of the actions and frame conditions, but the result is a feasible
process only if the subprocesses are compatible. For Si and Sj to be compatible, the
frame conditions must be consistent with each other and with the actions. For example,
if S1 requires that only action k can change x1, then S2 can’t have an action k′ that also
changes x1.

We say that a process is feasible if and only if it has at least one execution. If S1

and S2 are feasible and compatible with each other, then S1 ⊕S2 is feasible. If we allow
any type expression from the mathematical theory to appear in the code, then we can’t
decide either feasibility or compatibility. So in general we use only standard types in the
process language, but it is possible to use any type as long as we take the trouble to prove
compatibility "by hand" if it is not decided by an algorithm.

2.3. Execution

Scheduling Given a network of processes P (distributed system, DSystem) it is fairly
clear how they compute. Each process Pi with state Si with a schedule schi and message
queues mi at its links executes a basic action ai; it can receive a message by reading a
queue, change its state, and send a list of tagged messages (appending them to outgoing
links). Thus given the queues, mi, state si, and action ai, the action produces new queues,
m′

i, state s′i, and action a′
i. This description might seem deterministic

mi, si, ai → m′
i, s

′
i, a

′
i

But in fact, the new message queues can be changed by the processes that access them,
and in one transition of Pi, an arbitrary number of connected processes Pj could have
taken an arbitrary number of steps, so the production of m′

i is not deterministic even
given the local schedule schi. Also, the transition from si to s′i can be the execution of
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any computable function on the state, so the level of atomicity in our model can be very
"large," in terms of the number of steps that it takes to compute the state transition.

Given the whole network and the schedules, schi, we can define deterministic exe-
cution indexed by natural numbers t.

〈mi, si, ai〉@t
−−→
schi 〈m′

i, s
′
i, a

′
i〉@t + 1

for each i in N, a process might "stutter" by not taking any action (s′i = si, a
′
i = ai,

and outbound message links are unchanged). If we do not provide the scheduler, then the
computation is underdetermined.

Fair Scheduling We are interested in all possible fair executions, i.e. all possible fair
schedules. A fair schedule is fair if each action is tried infinitely often. If a guard is true
when an action is scheduled, then the action is executed. A round-robin scheduler is fair.
Note, if a guard is always true, then the action is eventually taken. This gives rise to a set
of possible executions, E . We want to know those properties of systems that are true in
all possible fair executions.

2.4. Events

As a distributed system executes, we focus on the changes, the "things that happen."
We call these events. Events happen at a processes Pi. In the base model, events have
no duration, but there is a model wtih time where they have duration. We allow that
the code a process executes may change over time as sub-processes are added, so we
imagine processes as locations where local state is kept; they are a locus of action where
events are sequential. This is a key idea in the concept of cooperating (or communicating)
sequential processes [Dijkstra, Hoare]. So in summary, we say that all events happen at
a location (locus, process) which can be assigned to the event as loc(e). We also write
e@i for events at i.

Events have two dimensions, or aspects, local and communication. An update is
local and can send a message, and a receive event can update state, modify the state
and send a message. These dimensions are made precise in terms of the order relations
induced. The dimensional is sequentially ordered, say at Pi, e0 < e1 < e2 < ... starting
from an initial event. The communication events are between processes, say e@i receives
a message from e′@j, than e′ < e and in general sender(e) < e. (Note, a process can
send to itself so possibly i = j.) The transitive closure of these distinct orderings defines
Lamport’s causal order, e < e′. To say e < e′ means that there is a sequence of local
events and communication events such that

e = e1 < e2, < ... < en = e′.

One of the most basic concepts in the theory of events is that causal order is well-
founded. If f(e) computes the immediate predecessor of e, either a local action or a send,
then e > f(e) > f(f(e)) > e0. The order is strongly well founded in that we can
compute the number of steps until we reach an initial event.
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Event Structures There are statements we cannot make about an asynchronous message
passing system. For example, there is no global clock that can assign an absolute time
t to every event of the system. It is not possible to know the exact time it takes from
sending a message to its being read. We don’t always know how long it will take before
a pending action will be executed.

What can we say about executions? What relationships can we reason about? The
simplest relationship is the causal order among events at locations. We can say that a
state change event e at i causes another one e′ at i, so e < e! We can even say that e is
the predecessor of e′, say pred(e′) = e. We can say that event e at i sends a message to j
which is received at event e′ at j. We will want to say sender(e′) = e. Also pred(e′) =
e.

The language for causal order involves events e in the type E of all events. These
occur at a location from the type Loc. If we talk about E, Loc,≤ we have events with
order. This is a very spare and abstract account of some of the expressible relationships
in an execution of a distributed system.

Given an execution (or computation) comp, we can pick out the locations say
P1, P2, P3, and the events - all the actions taken, say e1, e2, e3, ... Each action has a loca-
tion apparent from its definition, say loc(e). Some of the events are comparable ei < ej

and others aren’t, e.g. imagine two processes that never communicate e1, e2, ... at i and
e′i, e

′
2, ... at j. Then never do we have ei ≤ e′j nor ej ≤ ei. These events and their

relationship define an event structure with respect to E, Loc,≤.
It is natural to talk about the value of events which receive messages, the value,

val(e), is the message sent. For the sake of uniformity, we might want all events to have
a value, including internal events. In the full theory implemented in Nuprl, this is the
case, but we do not need those values in this work.

Temporal Relationships We can use events to define temporal relationships. For exam-
ple, when an event occurs at location i, we can determine the value of any identifier x
referring to the state just as the event occurs, x when e. To pin down the value exactly,
we consider the kind of action causing e. If e is a state change, say x := f(state), then
x when e is the value of x used by f . If the action is reading the input queue at link
< i, j > labeled by e, the value of x is the value during the read which is the same as
just before or just after the read because reads are considered atomic actions that do not
change the state. They do change the message queue.

In the same way we can define x after e. This gives us a way to say when an event
changes a variable, namely "e changes x", written xΔe is defined as

xΔe iff after e �= x when e.

This language of "temporal operators" is very rich. At a simpler level of granularity
we can talk about the network topology and its labeled communication links � < i, j >.
This is a layer of language independent of the state, say the network layer. The actions
causing events are send and receive on links.

Computable Event Structures We are interested in event structures that arise from com-
putation, called computable event structures. There is a class of those arising from the
execution of distributed systems. We say that these structures are realizable by the sys-

M. Bickford and R. Constable / Formal Foundations of Computer Security 33



tem, and we will talk about statements in the language of events that are realizable. For
example, we can trivially realize this statement at any process: there is an event ei at P

that sends a natural number, and after each such event there is a subsequent event ei+1

that sends a larger number, so at the receiving process there will be corresponding events
e.g. val(e′i) < val(e′i+1)over N. To realize this assertion, we add to P a clause that ini-
tializes a variable counter of type (N) and another clause that sends the counter value
and then increments the counter.

2.5. Specifying Properties of Communication

Processes must communicate to work together. Some well studied tasks are forming pro-
cess groups, electing group leaders, attempting to reach consensus, synchronizing ac-
tions, achieving mutually exclusive access to resources, tolerating failures of processes,
taking snapshots of state and keeping secrets in a group. Security properties usually in-
volve properties of communication, and at their root are descriptions of simple handshake
protocols that govern how messages are exchanged. These are the basis of authentication
protocols. As an example, suppose we want a system of processes P with the property
that two of its processes, say S and R connected by link �1 from S toR and �2 from R

to S should operate using explicit acknowledgement. So when S sends to R on �1 with
tag tg, it will not send again on �1 with this tag until receiving an acknowledgement tag,
ack, on �2. The specification can be stated as a theorem about event structures arising
from extensions mathcal(P )′ of P , namely:

Theorem 1 For any distributed system P with two designated processes S and R linked

by S
�1→R and R

�2→S with two new tags, tg and ack, we can construct an extension P ′

of P such that the following specification holds: ∀e1, e2 : E.loc(e1) = loc(e2) =
S & kind (e1) = kind(e2) = send(�1, tg). e1 < e2 ⇒ ∃r : E. loc(r) =
S & kind (r) = rcv(�2, ack). e1 < r < e2.

This theorem is true because we know how to add clauses to processes S and R to
achieve the specification, which means that the specification is constructively achievable.
We can prove the theorem constructively and in the process define the extension P ′

implicitly. Here is how.
Proof: What would be required of P ′ to meet the specification? Suppose in P ′ we

have e1 < e2 as described in the theorem. We need to know more than the obvious fact
that two send events occurred namely < tg, m1 >, < tg, m2 > were sent to R. One
way to have more information is to remember the first event in the state. Suppose we
use a new Boolean state variable of S, called rdy, and we require that a send on �1 with
tag tg happens only if rdy = true and that after the send, rdy = false. Suppose we
also stipulate in a frame condition that only a receive on �2 sets ready to true, then we
know that rdy when e1 = true, rdy after e1 = false and rdy when e2 = true. So
between e1 and e2, some event e′ must happen at S that sets rdy to true. But since only
a rcv(�2, ack) can do so, then e′ must be the receive required by the specification.

This argument proves constructively that P ′ exists, and it is clear that the proof
shows how to extend process S namely add these clauses:
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a : if rdy = truethen
send(�1, < tg, m >); rdy := false

r : rcv(�2, ack) effect rdy := true
only[a, r] affect rdy

QED

We could add a liveness condition that a send will occur by initializing rdy to true.
If we want a live dialogue we would need to extend R by

rcv(�1, < tg, m >) effect send (�2, ack)

but our theorem did not require liveness.

Now suppose that we don’t want to specify the communication at the basic level of
links but prefer to route messages from S to R and back by a network left unspecified
assuming no attackers. In this case, the events e1, e2 have destinations, say kind(e2) =
sendto(R, tag) and kind(r) = rcvfrom(R, ack). The same argument just given works
assuming that there is a delivery system, and the frame conditions govern the message
content not the links.

We might want to know that the communication is actually between S and R even
when there is potential eavesdropper. What is required of the delivery system to authen-
ticate that messages are going between S and R? This question already requires some
security concepts to rule out that the messages are being intercepted by another party
pretending to be R for example.

Here is a possible requirement. Suppose S and R have process identifiers,
uid(S), uid(R). Can we guarantee that if S sends to R at event e1 then sends to R again
at e2, there will be a message r such that e1 < r < e2 and from receiving r, S has evi-
dence that at R there was an event v1 which received the uid(S) and tg from e1 and an
event v2 at R that sent back to S an acknowledgement of receiving tag from S? This can
be done if we assume that the processes S and R have access to a Signature Authority
(SA). This is a cryptographic service that we will describe in the next section building it
using nonces.

A plausible communication is that S will sign uid(S) and sendto(R). Let
signS(m) be a message signed by S. Any recipient can ask the signature authority SA
to verify that signS(m) is actually signed by S. So when R receives signS(uid(s)) it
verifies this and sends signR(uid(R)) back as acknowledgement. An informal argument
shows that this is possible, and only R can acknowledge and does so only if S has signed
the message. We take up this issue in the next section.

3. Intuitive Account of Cryptographic Services

In the previous section we suggested how a signature authority can be used to guarantee
that a message came from the process which signed it. That argument can be the basis for
guaranteeing that the signing process receives a message. If the message includes a nonce
created by another process, say by S at event e, then it is certain that the signing event s
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came after e, thus e < s. Thus nonces can be used to signal the start of a communication
exchange as we saw earlier, and in addition, for us they are the basis of the signature
authority as well as a public key service. Thus we will examine a Nonce Service and the
concept of a nonce first.

3.1. Nonce Services and Atoms

Informal definitions of nonce might say "a bit string or random number used only once,
typically in authentication protocols." This is not a very precise or suggestive definition,
and it is not sufficiently abstract. We will provide a precise definition and explain other
uses of nonces. One way to implement them is using a long bit string that serves as a
random number that is highly unlikely to be guessed. We will not discuss implementation
issues, nevertheless, the standard techniques will serve well to implement our abstract
definition.

Nonce Server We will define a Nonce Server to be a process NS that can produce on
demand an element that no other process can create or guess. Moreover, the NS produces
a specific nonce exactly once on request. So it is not that a nonce is "used only once,"
it is created exactly once, but after it is created, it might be sent to other processes or
combined with other data. But how can a Nonce Server be built, how can it provide an
element n that no other process can create, either by guessing it or computing it out of
other data? To answer this question, we must look at the concept of an Atom in a type
theory such as Computational Type Theory (CTT), a logic implemented by Nuprl and
MetaPRL. Then we will explain how a Nonce Server is built using atoms.

The Type of Atoms The elements of the type Atoms in CTT are abstract and unguess-
able. Their semantics is explained by Stuart Allen [6]. There is only one operation on
the type Atom, it is to decide whether two of them are equal by computing atomeq(a, b)
whose type is a Boolean. The canonical elements of Atom are tok(a), tok(b),...where
the names a, b,... are not accessible except to the equality test and are logically indistin-
guishable.

A precise way to impose indistinguishability is to stipulate a permutation rule for all
judgements, J(a, b, . . .) of CTT logic. Any such judgement is a finite expression which
can thus contain only a finite number of atoms, say a, b, . . .. The permutation rule asserts
that if J(a, b, . . .) is true, then so is J(a′, b′, . . .) where a′, b′ . . . are a permutation of the
atoms. Moreover, the evaluation rules for expressions containing atoms can only involve
comparing them for equality and must reduce to the same result under permutation.

It is important to realize that any finite set of atoms, A, say a1, . . . , an can be enu-
merated by a function f from {1, ..., n} onto A. However, any such function is essen-
tially a table of values, e.g. if x = 1 then a, else if x = 2 then a2 . . .. Thus the func-
tion f will explicitly mention the atoms a1, . . . , an. Thus if we stipulate that a process
does not mention an atom ai, then there is no way it can compute it.

The type of all atoms, Atom, is not enumerable because it is unbounded, so any
enumerating function expression would be an infinite table which is not expressible in
any type theory. On the other hand, Atom is not finite either because for any enumeration
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a1, . . . an there is an atom a not among them. Notice that in standard classical set theory
such as ZFC, there is no set such as Atom because any set A is either finite or infinite.
Even if we add an infinite set of urelements to ZFC, say ZFC(U), this set U is finite or
infinite.

In the Nuprl implementation of Atom, we use tak(a) where a is a string, but each
session of Nuprl is free to permute these strings so the user never knows what they are
from one computation to the next.

A Nonce Server can be built as a process NS that has in its state a large finite list
of atoms, say L. The process can access the list only by a pointer variable ptr which
is initialized to the head of L. When a request is made for a nonce, the atom L(ptr) is
returned and the pointer is advanced. The frame conditions on Nonce Server are that only
ptr can access L, the ptr only increases, no other state variable has type Atom, and the
code at Nonce Server does not contain an atom. Moreover, no other process P has the
atoms of L in its state initially nor in its transition function.

The fundamental property on NC is called the Fundamental Nonce Theorem. It is
defined in Bickford [10] and proved using Nuprl by Bickford. Informally it says this.

Theorem 2 If Nonce(n) is the value returned by a request to NS and e is any event,
then either val(e) does not contain Nonce(n) or n ≤ e.

To build a Signature Authority (SA) we use a similar mechanism. When process
uid(P ) wants to sign data d, the SA process puts < uld(P ), d > in a row of a table
indexed by new atom a. The atom is the signed data to verify that uid(P ) signed d, the
verifying process sends a and the data < uid(P ), d > to SA. The SA process checks
that row a consists of < uid(P ), d > .

To understand how we precisely describe a Nonce Server and a Signature Authority,
we need to be precise about the idea that a value v of type theory does not mention an
atom a. We will say that v is independent of a, written v ‖ a, or more fully, specifying
the type of v, v : T ‖a.

3.2. Independence

Urelements As we mentioned earlier, there is an analogue of the Atom type in set
theory, and a simple definition of independence. The set of urelements in set theory is like
the type of atoms in the sense that urelements are unstructured nonsets. Let ZFC(U) be
ZFC set theory with a set U whose elements are nonsets. We could even take ZFC(Atom).
In this theory, to say that a set x is independent of atom a is to say that ¬(a ∈ x).

To say that an expression exp of type T is independent of atom a, written exp : T ‖
a, is to say that "exp does not contain a." In the case where exp is a closed term such as
17 or λ(x.x) or < 17, a > to say it is independent of a is to say that a does not occur in
the expression. Clearly 17 : N‖a, λ(xx) : A → A‖a but < 17, a > is not independent
of a.
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Extensional Type Theories In an extensional type theory such as CTT, independence
is more involved than is apparent from the case of closed terms. Types are essentially
equivalence classes of terms, and to say that t‖a is to say that some "member of t′s
equivalence class" does not mention a. The expression λ(x.λ(y.x)(a)) is extensionally
equal to λ(x.x), and even though it is closed and equal to λ(x.x), a occurs in it. However,
if we apply the expression to an integer like 17, we get 17. So, unless it is applied to an
atom, the result is not an atom, and we can say

λ(x.λ(y.x)(a)) : N → N‖a.

We will see below that if f = f ′ and f ′ : S → T ‖a then f : S → T ‖a. It is also
clear that if f : S → T ‖a and s : T ‖a, then f(s) : T ‖a.

In Bickford [10], there is a simple axiomatization of the concept of independence
that has worked well in practice and is the basis for a collection of tactics that automates
reasoning about independence. We present this small complete set of axioms in the next
section, table 6. Here we describe them informally.

3.3. Rules for Independence from Atoms

The most basic rule about independence is called Independence Base, and it says that
any closed term t of type T is independent of atom a exactly when a does not occur in t.
The most obvious case includes instances such as a does not occur in the number 0. We
write this as 0 : N‖a or when the type is not important, 0‖a.

Another basic rule is that if t = t′ in T , and t : T ‖a, then t′ : T ‖a. This is quite
important as a basis for extending independence from the obvious base case to more
subtle examples such as λ(x.0)(a) : N‖a even though a does occur in the expression
λ(x.0)(a). Since λ(x.0)(a) reduces to 0, we have λ(x.0)(a) = 0 in N. The rule is called
Independence Equality.

The equality rule is justified by the basic fact of type theory, following from Martin-
Löf’s semantics, that in any type T , if t reduces to a canonical term t′ and t′ ∈ T , then
t = t′ and t ∈ T . The canonical members of a type determine its properties, and these
properties must all respect equality. So if proposition P is true of t, P (t), and t reduces to
t′ in T , then P (t′) as well. So for t : T ‖a to be a proposition of type theory, it must obey
this equality rule. Indeed, the rule requires that if T = T ′ and a = a′, then t′ : T ′‖a′

holds.

The application rule says that if f : s → T ‖a and s : S‖a, then f(s) : T ‖a. The
basic idea is that if atom a does not appear in a closed program for f , then the compu-
tation can’t produce a result with a in it. This rule is clear under the set theoretic idea
of a function, however in type theory it is much more subtle, depending on extensional
equality. it also depends on the type types. For example, consider this function

λ(x.if even(x) then 0 else a).

As a function from even numbers, it is independent of a, because it is equal to λ(x.0)
on even number. But over N, it is not independent of a.
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The above three rules are critical ones. We also need a way to say that ¬(a :
Atom‖a) which we take as an axiom, and that if ¬(a = b inAtom), then b : Atom‖a.
The full type theory needs to treat other constructors explicitly, such as subtyping,
A � B, set types, {x : A|P (x)}, quotient types A//Eq., the Top type, and others which
we won’t discuss.

3.4. Authentication Example

Suppose we have a group (G) of processes that agree on how to authenticate communi-
cation, that is, for any pair A (Alice) and B (Bob) distinct processes, they have a way to
"know" after an exchange of messages that

1. A sent a nonce to B that A created and only B received.
2. B sent a nonce to A that B created and only A received. On this basis, other

messages m can be sent with the same property:

A sent, only B received in this exchange.
B sent, only A received in this exchange.

The processes in G all have an authentication protocol, AP and events from this
protocol can be recognized as satisfying a predicate AP (e). Other processes not in G
can recognize these events as well they have a distinct tag. The processes in G can draw
conclusions from messages satisfying AP as long as each process follows the protocol -
some authors [29] say as long as the processes in G are honest.

Here is the original Needham-Shroeder authentication protocol treated in event
logic, and we reveal the flaw found by Lowe in the original Needham-Schroeder correct-
ness argument, creating the correct Needham-Schroeder-Lowe (NSL) protocol. LetKB

encrypt using B’s public key. Our method is to show what statements A and B believe
and conjecture at various events.

If B receives an initiation message KB(< nA, uid(A) >) at b encrypted by B’s
public key, then B decodes the message and checks that uid(A) ∈ G and if so conjec-
tures that

B1 : nA is a nonce created by A at some event a < b.
B2 : A encrypted the nonce at some a′, a < a′ < b.
B3 : A sent the nonce to B at some a′′, a < a′ < a′′ < b.
B4 : No other process E received the nonce at e for

any e satisfying a < a′ < e < b.

Thus by the nonce property, no other process has the nonce in its state, e.g. only A
and B have it. B acts in such a way as to prove these properties B1 − B4.

B already knows

• Some process E encrypted < nA, uid(A) > and sent it to B.
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Thus there is event e1 such that e1 < b, e1 sends KB(< nA, uid(A) >). Note E is
by definition loc(e1), and B is trying to prove E = A.

B creates a nonce nB and knows Nonce(nB). B encrypts < nA, nB > with A’s
public key, following the NS protocol. B sends KA(< nA, nB >) to A.

A already knows that there is an event a at which it created nA and a1 after a at
which it sent KE(< nA, uid(A) >) to E. A assumes E is the target for an authentication
pair A, E, and believes:

A1 : There will be an event e1, a < e1 at which
E receives KA(< nA, uid(A) >).

A2 : There will be an event e2, a < e1 < e2 at which E decrypts.
A3 : Since E knows the protocol, it will send a nonce,

nE along with nA encrypted by KA back to A.

A receives KA(< nA, nB >), decodes to find nB , it knows E received nA and sent
it back. If E follows the NS protocol, then nB is a nonce created by E.

Thus A conjectures as follows:

A4: nB is a nonce created by E.
A5: If E receives KE(nB) it will know A, E is an authentication pair.

A sends KE(nB).
B receives KB(nB) and knows:

• A received, decrypted, and resent nB .
• A recognized its nonce nA, and is in (G), thus following NS.

So B now deduces that:

• B1 is true since A continued to follow NS.
• B2 is true since A followed NS.

The original protocol assumed that B would know B3 as well and hence deduce
B4. But B can’t get beyond B2. B does not have the evidence that A encrypted <
nA, uid(A) > .

What evidence is missing? There is no evidence at B that E = A, just as there
is no evidence at A so far that E = B. So the NS protocol allows a process that is
neither A nor B to have both nA and nB . This is a mistake as Lowe [19] noticed (in
trying to formally prove NS correct). He proposed a fix, that B be required to send
KA(< nA, nB, uid(B) >), so that A can check who sent nB .

Notice, if A received KA(< nA, nB, uid(B) >) then it would see a problem be-
cause it used KE to send < na, uid(A) > . If E = B, there is no problem for A, so
it will continue the protocol, and then if B receives KB(nB) it knows that A sent the
nonce, so it knows B3 and hence B4. So the Lowe fix gives a correct protocol for creat-
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ing an authentication pair under NSL. We can turn this into an event logic proof which
shows that what A and B believe is actually true in all fair executions of this protocol,
thus in the corresponding event structures. Other processes might guess the message be-
ing encrypted, but they will not receive the atom which is the encryption of it for the
same reason that they do not receive the nonce used in authentication.

Deriving Needham-Schroeder-Lowe from a theorem . Assume (G) is a group of pro-
cesses that "seek the capability" to have private communications based on shared nonces
and plan to establish that an arbitrary pair of them can authenticate each other, A "knows"
it is communicating with B and B "knows" it is communicating with A, and no third
party can "listen in" by means of software.

Theorem 3 If there is an exchange of messages between A and B such that

1. A creates a new nonce nA at a0 and sends KB(< nA, uid(A) >) to B at a1

after 40 and
2. B receives KB(< nA, uid(A) >) at b1 after a1 and decodes it at b2, creates a

new nonce nB at b3, and sends KA(< nA, nB, uid(A) >) at b4 and
3. A receives KA(< nA, nB, uid(A) >) at a′ after b4 and decodes the contents at

a′
2 after a′

1, and sends KB(nB) to B at a′
3 after a′

1 after b′0

Then C1: only A and B have the nonces nA and nB , and C2: the corresponding event
pairs are matching sends and receives.

a1 b1

a′
1 b4

a3 b′1

Also at a′
2 and b′2 each process believes the conclusions C1 and C2, so the beliefs are

correct.

4. Technical Details

Our goal is, to model processes as “all distributed programs” and to carry out security
proofs in a general purpose logic of distributed systems. By doing this, security theorems
have a greater significance since we will be proving impossibility results for adversaries
in a general computation system. We will also be using the same logical framework for
all proofs about programs – security proofs will not be done in a special logical system.
Therefore the confidence in the soundness of our logic and the correctness of our tools
that we gain from using them for proofs that programs satisfy any kind of specification
will apply also to our security proofs. If a security property depends on cryptography as
well as a non-trivial distributed algorithm, then we can verify both parts of the protocol
in one system.

4.1. Event Structures

In this section we first present enough of the language of event structures (which we
call event logic) to explain the semantics of all but the read-frame clause. Then we will
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discuss some extra structure that must be added to allow us to give the semantics for the
read-frame clause.

The details of how a mathematical structure is represented in type theory (as a depen-
dent product type which includes its axioms via the propositions as types isomorphism)
is not relevant to this paper, so we present event structures by giving the signatures of the
operators it provides and describing the axioms. In the following, D denotes a universe
of types that have decidable equality tests, and the types Loc, Act, and Tag are all names
for the same type Id of identifiers. This type is actually implemented, for software engi-
neering reasons related to namespace management and abstract components, as another
space of atoms like the ones used here for protected information. Here Id is just a type
in D. The type Lnk is the product Loc × Loc × Id, so a link l is a triple 〈i, j, x〉 with
src(l) = i and dst(l) = j.

Basic Event Structures The account will be layered, starting with the most basic prop-
erties of events and adding layer by layer more expressiveness.

Table 1. Signatures in the Logic of Events

Events with Order Definitional extensions

E: D loc: E → Loc

pred?: E → (E + Loc) first: E → Bool

sender?: E → (E + Unit) isrcv: E → Bool

x < y , x <loc y

and with Values

Kind = Loc × Act + Lnk × Tag sender: {e : E|isrcv(e)} → E

vtyp: Kind → Type link: {e : E|isrcv(e)} → Link

kind: e : E → Kind tag: {e : E|isrcv(e)} → Tag

val: e : E → vtyp(kind(e))

and with State

typ: Id → Loc → Type state(i) = x : Id → typ(x, i)

initially: x : Id → i : Loc → typ(x, i)

when: x : Id → e : E → typ(x, loc(e)) state-when: e : E → state(loc(e))

after: x : Id → e : E → typ(x, loc(e)) state-after: e : E → state(loc(e))

Events with Order Events are the atomic units of the theory. They are the occurrences
of atomic actions in space/time. The structure of event space is determined by the or-
ganization of events into discrete loci, each a separate locus of actions through time at
which events are sequentially ordered. Loci abstract the notion of an agent or a process.
They do not share state. All actions take place at these locations.

There are two kinds of events, internal actions and signal detection (message recep-
tion). These events are causally ordered, e before e′, denoted e < e′. As Lamport postu-
lated, causal order is the structure of time. Causal order is defined in terms of two primi-
tive functions, pred? and sender? which compute respectively the previous action at its
locus (if the event is not the first at that location) and the sender of a received message.
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To give an idea of how these layers are formally presented, we show in table 1 the
signature of some of the layers. In these definitions we use the disjoint union of two sets
or types, A+ B and the computable function space operator A → B. The type Unit has
a single distinguished element.

The signature of events with order requires only two discrete types E and Loc, and
two partial functions. The function pred? finds the predecessor event of e if e is not the
first event at a locus or it returns the location if e is the first event. The sender?(e) is the
event that sent e if e is a receive, otherwise it is a unit. We can find the location of an
event by tracing back the predecessors until the value of pred belongs to Loc. This is a
kind of partial function on E. From pred? and sender? we can define Boolean valued
functions that identify the first event and receive events. We can define a function loc that
returns the location of an event. Causal order, e < e′, is defined as the transitive closure
of the relations e = pred?(e′) and e = sender?(e′). We can also define the local linear
ordering of events at a location, <loc, the restriction of causal order, <, to a location.

Events with Value We next classify events by their kind, by introducing the type Kind
and a function kind from events to kinds. The type Kind is a disjoint union that repre-
sents our two basic kinds: an internal action at a location, or the receive of a message on
a link with a given tag. Each kind of action has a value associated with it. The value of
a receive event is the message received. The value of an internal action can be chosen
randomly or nondeterministically. The value of an event e is val(e) and its type depends
only on kind(e).

Events with State We are interested in actions with observable results. Observables are
known by identifiers and have types. At a fixed location or agent, the map of identifiers
to values is its state. Relations when, after, and initially (which we write with infix
notation) connect events to the values of identifiers, e.g. x when e is the value of the
variable x at the location loc(e) when event e occurs. For the basic event structures, we
need only the six simple axioms listed in table 2.

Table 2. Axioms of Basic Event Structures

1. On any link, an event sends boundedly many messages; formally: ∀l : Link.∀e : E.∃e′ :
E.∀e′′ : E.R(e′′, e) ⇒ e′′ < e′ ∧ loc(e′) = dst(l) where R(e′′, e) ≡ isrcv(e′′) ∧
sender(e′′) = e ∧ link(e′′) = l

2. The predecessor function is one-to-one; formally: ∀e1, e2 : E. pred?(e1) = pred?(e2) ⇒
e1 = e2

3. Causal order is (strongly) well-founded; formally: ∃f : E → N.∀e1, e2 : E. e1 < e2 ⇒
f(e1) < f(e2)

4. The location of the sender of an event is the source of the link on which the message was
received; formally: ∀e : E. isrcv(e) ⇒ loc(sender(e)) = src(link(e)

5. Links deliver messages in FIFO (first in first out) order; formally: ∀e1, e2 : E. link(e1) =
link(e2) ⇒ sender(e1) < sender(e2) ⇒ e1 < e2

6. State variables change only at events, so that: ∀e : E.¬ first(e) ⇒ (x when e) =
(x after pred(e))

4.2. Message Automata

In our theory, all processes can be built out of nine basic clauses by composition. We
call the resulting family of realizers message automata. As we said in the informal intro-
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Table 3. Message Automaton Frame Clauses

only k1,k2,... affect x at location i Only actions with kind in the given list may affect the state
variable x at location i.
only k1,k2,... send on link l with tag tg Only actions with kind in the given list may send
messages tagged tg on link l .
only k1,k2,... read x at location i Only actions with kind in the given list may read the state
variable x at location i.
k affects only x,y,... at location i An action of kind k affects only state variables in the given
list.
k sends only on links l1,l2,... An action of kind k sends only on links in the given list.

duction, a message automaton is a representation of a distributed program. The behavior
of such a program will be an infinite history (which we will abstract to form an event
structure) but the program itself is a finite object. We may define a message automaton
as a finite set of clauses and a clause as an instance of one of the following nine schemes,
which we partition into four active clauses and five frame clauses. In this abstract syntax,
locations i,j,. . . and state variables, x,y,. . . are simply identifiers, while an action kind,
k,k′,. . . is either a internal action internal(i, a) (where a is an identifier) at some loca-
tion i, or a receive action, rcv(l, tag), where l is a link, which is a triple (source, destina-
tion, name) of identifiers, and tag is an identifier (used to partition the messages received
on the link into classes of different types or different meanings). Every action kind k has
a unique location: if k is internal(i, a) then its location is i and if k is rcv(l, tag) then its
location is the destination of link l. The full syntax of the message automaton clauses in-
cludes abstract syntax for declaring the types of state variables and tagged messages, but
to avoid overloading the reader with details we will omit those parts of the syntax since
the essential concepts can be understood without them. In tables 4 and 3 we indicate, for
each of the nine clause schemes, the name we use for it, and its syntactic form, followed
by its intended meaning. The formal meaning is defined by the event structures that are
consistent with the clause, which we discuss in the next section. Message automata A
and B are sets of these clauses, and we write A ⊕ B for the union of the clauses from
both A and B, and call it the join of A and B. The join is the basic composition operator
on automata. We can generate runnable code (we currently generate Java) from a mes-
sage automaton (and a configuration table that maps locations to hosts and link names
to ports) [13]. Only the active clauses generate any code; the frame clauses only restrict
the set of message automata that are feasible. A message automaton is feasible if there
is at least one event structure consistent with it, and in particular, a feasible automaton
must obey all of its own frame clauses. So, for example, an automaton that contained
both clauses

effect of internal(i,a) is x:=f(state,val)
only [rcv(l,tag), internal(i,b)] affect x at location i

or both clauses

effect of internal(i,a) is y:= x + 1
only [rcv(l,tag), internal(i,b)] read x at location i

would be infeasible (unless a = b), since, in the first case, internal(i, a) affects state
variable x but is not listed in the frame clause given for x at location i, and, in the second
case, internal(i, a) reads variable x to update variable y, but is not listed in the read-
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frame clause given for x at location i. There is an essentially syntactic check for feasibil-
ity (modulo type checking, which, in an expressive logic, can require theorem proving),
so we could implement a compiler that refuses to generate code for an “illegal” program
that fails the feasibility test.

Table 4. Message Automaton Active Clauses

at location i initially x = v In the initial state of agent i, the state variable x has value v.
effect of k is x:=f(state,val) Every action of kind k with a value v, updates the state variable x,
at the location of k, to the value f(s, v) where s is the current state.
k sends on link l : f(state,v) Every action of kind k with a value v, sends on link l a (possibly
empty) list of tagged messages, f(s, v) where s is the current state.
precondition internal(i,a) is P(state) An internal action of kind internal(i, a) may not occur
at i unless P is true in the current state, and, infinitely often, the agent either checks that P is
false or performs an action of kind internal(i, a).

Semantics of Message Automata The logical semantics of a message automaton M is
the set of event structures es that are consistent with it, so the semantics can be defined
by a relation Consistent(es, M). We define the semantics so that an event structure is
consistent with an automaton if and only if it is consistent with each of its clauses. This
reduces the definition of the semantics to a base case for each clause scheme, and gives
use the rule that

Consistent(es, A⊕ B) ⇔ Consistent(es, A) ∧ Consistent(es, B)

The semantics of a clause C is given by a formula, ΨC, in event logic, that describes
how the clause C constrains the observable history es of the system. The relation
Consistent(es, C) is then defined by

Consistent(es, C) ⇔ (es |= ΨC)

We give a simplified version of the semantics in table 5. The simplifications are that
we suppress those parts of the constraints relating to the type declarations of the state
variables and action values that we have omitted from the simplified syntax. We also treat
all the state variables as discrete variables; in the full theory we also allow state variables
to be functions of time, so that we can reason about clocks and real-time processes. Also,
the syntax for the precondition clause allows the value of a local action to be chosen
randomly from a finite probability space (like [1/3, 1/6, 1/2]) and the semantics of this
is in terms of a theory of independent random processes, given the precise definition of
independence of the previous section.

Feasibility and Realizability We have a formal definition of a predicate Feasible(M)
on message automata that defines an essentially syntactic check that M is internally
consistent. We have a (rather difficult) fully formalized, constructive proof that

Feasible(M) ⇒ ∃es. Consistent(es, M)

We say that M realizes specification ψ if M is feasible and every event structure consis-
tent with M satisfies ψ.

M realizes ψ ≡ (Feasible(M) ∧ ∀ es. Consistent(es, M) ⇒ es |= ψ)
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If M realizes ψ then any feasible extension M ⊕X of M also realizes ψ, so when ψ
is a security specification we can see that a proof of M realizes ψ shows that adversaries
expressible as a message automaton, X , cannot violate ψ unless they are able to violate
the frame clauses in M .

Table 5. Semantics of Message Automaton Clauses (except read-frame)

∀e@i. P [e] ≡ ∀e : E. loc(e) = i ⇒ P [e] state when e ≡ λx. (x when e) msgs(e, l) ≡
[ 〈tag(e′), val(e′)〉 | sender(e′) = e ∧ link(e′) = l ]

at location i initially x = v ∀e@i. first(e) ⇒ x when e = v
effect of k is x:=f(state,val) ∀e : E.kind(e) = k ⇒ x after e = f(state when e, val(e))
k sends on link l : f(state,v) ∀e : E. kind(e) = k ⇒ msgs(e, l) = f(state when e, val(e))
precondition internal(i,a) is P(state) (∀e : E. kind(e) = internal(i, a) ⇒
P (state when e)) ∧ (∀e@i. ∃e′ ≥ e. kind(e′) = internal(i, a) ∨ ¬P (state after e′))
only ks affect x at location i ∀e@i. kind(e) ∈ ks ∨ x after e = x when e
only ks send on link l with tag tg ∀e : E. kind(e) = rcv(l, tg) ⇒ kind(sender(e)) ∈ ks
k affects only xs at location i ∀e@i. kind(e) = k ⇒ ∀x : Id. x ∈ xs ∨ x after e = x when e
k sends only on links ls ∀e. (isrcv(e) ∧ kind(sender(e))) = k ⇒ link(e) ∈ ls

4.3. Independence

As we said in the introduction, our theory of processes admits all possible computable
functions. Any theory of “all programs” must allow a program to apply any computable
function and surely, for any data-type T that the secure agents can use to store protected
information in their state, there must be an onto function f : list(bit) → T , or since
list(bit) is equipotent with the natural numbers, a surjection f : N → T ? An adversary,
then, only has to discover, by eavesdropping, what the type T of protected information is
and then start enumerating the range of f . Our solution to this problem is to base security
on a very simple notion of what it means for an agent to learn a secret - namely that
the secret is coded by atoms and the atoms are present in the state of the process. We
will say that an atom a is unknown to a process i if for all events e at i, state when e
is independent of the atom a. We now make this idea precise. We have added a new
primitive expression to CTT, the logic of Nuprl. The meaning of the new primitive is
that the element x of type T is independent of the atom a; we write this as (x : T ‖a).
Such an expression will be a type if a ∈ Atom, T ∈ Type1, x ∈ T . Two expressions
(x : T ‖a) and (x′ : T ′‖a′) represent the same type if a = a′ ∈ Atom, T = T ′ ∈ Type ,
x = x′ ∈ T .
Definition The proposition (x : T ‖a) is true if and only if a evaluates to tok(b) for
some name b, and there exists a term y in type T such that x = y ∈ T and y does
not mention name b. As is standard for propositions with no computational content, the
members of the type (x : T ‖a) will be just the terms that evaluate to a fixed term Ax (for
“axiom”), if the proposition is true, and the type will be empty if the proposition is false.
This completes our definition of the new primitive proposition (x : T ‖a), and once we
justify a few simple inference rules about it we have everything we need for our security
application.

1In Nuprl. there is no type Type of all types; instead there is a cumulative hierarchy of universes.In this
paper, we use the symbol Type for an arbitrary universe.
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Lemma 4 (apply independence)

((f : (x : A → B[x])‖a) ∧ (x : A‖a)) ⇒ (f(x) : B[x]‖a)

Proof If a evaluates to tok(b) and f = f ′ ∈ (x : A → B[x]) and f ′ does not mention
b, and if x = x′ ∈ A and x′ does not mention b, then the term f ′(x′) does not mention
b and by the definition of the dependent function type x : A → B[x], we have f(x) =
f ′(x′) ∈ B[x]. �

Lemma 5 (independence absurdity)

(a : Atom‖a) ⇒ False

Proof If a evaluates to tok(b) and y = a ∈ Atom and y does not mention b, then we
have y = tok(b) ∈ Atom, by computation, and y = tok(c) ∈ Atom, by the permutation
rule for names. Thus tok(b) = tok(c) ∈ Atom, and this implies False. �

The complete set of rules for independence as implemented in the current Nuprl sys-
tem are listed in table 6. The lemmas in this section prove the validity of the application
and absurdity rules. In general, independence is not preserved by subtypes. If (x : B‖a)
and x is a member of a subtype A of B, then it may not be true that (x : A‖a). A simple
example of this is that for a ∈ Atom we have (a : Top‖a), Atom a subtype of Top,
but ¬(a : Atom‖a). This is because Top is the type which has every closed term as
a member but in which any two members are equal, so a = 17 ∈ Top and 17 men-
tions no names. If, however, A is a subtype of B in which equality is just the restriction
of the equality in B to the members of A, then independence is preserved. This is the
justification for the last of the rules in table 6. Complete proofs can be found in [10].

Table 6. Rules for Independence

INDEPENDENCEEQUALITY
H |= T1 = T2 ∈ TypeH |= x1 = x2 ∈ T1H |= a1 = a2 ∈ Atom

H |= (x1 : T1‖a1) = (x2 : T2‖a2) ∈ Type

INDEPENDENCEBASE
H |= x ∈ TH |= a ∈ Atomclosed x mentions no names

H |= (x : T‖a)

INDEPENDENCEATOMS
H |= ¬(x = a ∈ Atom)

H |= (x : Atom‖a)

INDEPENDENCEAPPLICATION
H |= (f : (v : A → B)‖a)H |= (x : A‖a)

H |= (f(x) : B[x/v]‖a)

INDEPENDENCEABSURDITY
H, (a : Atom‖a), J |= T

INDEPENDENCESET
H |= (x : T‖a)H |= x ∈ {v : T | P}

H |= (x : {v : T | P}‖a)

To make these rule valid, the whole logic is constrained in several ways. The first
constraint is that the names a, b, . . . are unhideable. This means that a definition like
f(x) = ( if x = 1 then tok(a) else tok(b)) is not allowed because the names a and
b occur on the righthand side of the definition but not on the lefthand side. If this were
allowed, then we could prove a judgement that f(1) = tok(a), and use the permutation
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rule to conclude f(1) = tok(b) and then conclude that tok(a) = tok(b), which will
compute to False. Definitions of this kind must include any names they mention among
the parameters on the lefthand side, so f{a, b}(x) = ( if x = 1 then tok(a) else tok(b))
is an allowed definition.

Here is a sample theorem about independence.

Theorem 6

∀a : Atom. ∀i : Z. (i : Z‖a)

Proof By induction on i: the case i = 0 follows from the Base rule. Assume (i : Z‖a)
and show (i + 1 : Z‖a) and (i − 1 : Z‖a): i + 1 is (λx. x + 1)(i) so this case follow
from the Application rule, the base rule, and the induction hypothesis. The i − 1 case is
the same. Qed

Repeated use of the method of proof used in this theorem allows us to prove a very
general theorem about event structures, namely that if the initial state of an agent is
independent of atom a, and all messages received prior to event e are independent of a,
then the state when e is independent of a. This basic result allows us to use the inductive
approach to verifying cryptographic protocols initiated by Paulson [27] and elaborated
by Millen and Ruess [23].

Using independence, we can formulate and prove the Fundamental Nonce Theorem
in Nuprl. Here is the exact theorem proved.

∀i,i’,a,nonce,L,ptr:Id.
((¬(ptr = L))
⇒ (∀as:Atom1 List. ∀es:ES.
(nonce-p(es;i;i’;L;nonce;a;ptr;as)
⇒ nonce-assumption(es;i;L;as)
⇒ (∀e:E(Nonce(i;i’))
let a = Nonce(i;i’)(e) in ∀e’:E
((¬e c≤ e’)
⇒ ((((¬(loc(e’) = i))
⇒ es_state_when(es;e’):es_state(es;loc(e’))||a)
∧ ((loc(e’) = i)
⇒ es_state_update(es_state_when(es;e’);L;
λt.[]):es_state(es;loc(e’))||a))
∧ val(e’):valtype(e’)||a
∧ e’ sends || a))))))

Here are the two key definitions used in the proof. The second gives the frame conditions
for the Nonce Server.

nonce-assumption(es;i;L;as) ==
no_repeats(Atom1;as)
∧ (∀a∈as.(∀j:Id. j || a)
∧ (∀e:E
((↑first(e))
⇒ (((¬(loc(e) = i))

⇒ es_state_when(es;e):es_state(es;loc(e))||a)
∧ ((loc(e) = i)
⇒ (((vartype(i;L) ⊆r (Atom1 List))
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∧ ((Atom1 List) ⊆r vartype(i;L)))
∧ es_state_update(es_state_when(es;e);L;λt.[]):

es_state(es;loc(e))||a))))))

nonce-p(es;i;i’;L;nonce;a;ptr;as) ==
@i ptr initially 0:N
∧ @i L initially as:Atom1 List
∧ @i events of kind rcv((link a from i’ to i),nonce) change

ptr to λs,v.
(s.ptr
+ 1) State(ptr : N) (val:Top)
∧ @i only events in [] change
L : Atom1 List
∧ @i only events in [rcv((link a from i’ to i),nonce)] change
ptr : N
∧ @i: only members of [rcv((link a from i’ to i),nonce)] read L
∧ @i: rcv((link a from i’ to i),nonce) affects only [ptr]
∧ (@i:rcv((link a from i’ to i),nonce) sends only on

link/tags in [<(link a from i to i’), nonce>]
∧ rcv((link a from i’ to i),nonce)(v:Top)
sends on (link a from i to i’) [nonce:Atom1, λsv.let s,v = sv
in
if s.ptr <z ||s.L||
then inl s.L[s.ptr]
else inr ·
fi <state, v>]?[])

4.4. Verification

We are interested in problems of the form: find processes that exhibit behavior φ in a
network G. We say that the processes realize the specification φ, and that the specification
is realizable. We state this as the problem of proving that such a network exists, and
create the proof in such a manner that we can effectively find the processes. This is the
process design problem stated in a logical way. One way to do the proof is to explicitly
write abstract code for the processes and prove it satisfies φ. The message automata
defined below are the terms in the logic of events that correspond to code; they include
clauses that support reasoning about security. We will see later that the processes can
be defined implicitly as well, and our concepts for controlling access to information
correspond to the security clauses in the automata.

Specifying Security Properties The general form of a security assertion will be that a
program R (which is a feasible message automaton) satisfies a given property ψ, no mat-
ter how it is extended to another feasible automaton. So we may think of adversaries as
any set of clauses X such that R⊕X is feasible, and R satisfies its security property ψ no
matter what these adversaries X are. Thus, the only constraints that the adversaries must
obey are the feasibility constraints, and these are essentially the frame conditions in R.
These frame conditions are all local constraints. They constrain only how the agents that
contribute clauses to R (call these the agents in R) read and write their own state vari-
ables and the links that they send on, so an adversary could only violate these constraints
by adding code inside of the “process space” of one of the secure agents. We allow for
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the possibility that the “adversary” X is actually some other code running at the same lo-
cation (in the same process) as one of the agents in R, so when we prove that R satisfies
a security property we will be saying that provided all the agents in R guarantee that all
the code running at their location obey the local constraints in R, the security property
will hold, no matter what extra code, at these locations or any other locations, has been
added. We mention here that the last three frame clauses, the read-frame, action-frame,
and action-send-frame, are needed only in the proof of security properties. The active
clauses and the first two frame clauses suffice for a logic of program development for dis-
tributed systems when the specifications are properties like consensus, mutual exclusion,
etc. This is because the first two frame conditions alow us to constrain programs enough
to prove the usual kinds of state invariants needed to prove normal, non-security, kinds of
specifications. It was only in attempting to specify and prove security properties that we
discovered the need for the other frame clauses. These clauses all constrain “data-flow”
and are essential in proofs that secret information will not be leaked.

Proof and Verification Formal proofs are very useful data objects in systems that have
tools for manipulating them as our provers do. Proof objects can be modified to create
many variants of an argument and to extract important dependency information; they can
be transformed to different kinds of proofs, and any algorithms and processes that are
implicit in them can be extracted. We have created completely formal proofs that several
protocol specifications are achievable. These are organized in the style of the sequent
calculus that underlies Coq, HOL, MetaPRL, Nuprl, PVS etc. Most elements of event
logic can easily be formalized in any of these provers. Our proofs use tools from software
model checking and SAT solvers as well as powerful tactics that automate much of the
proof construction. There is a well-established theory and practice for creating correct-
by-construction functional programs by extracting them from constructive proofs of as-
sertions of the form ∀x : A.∃y : B.R(x, y) [14,9,15,22,26,18,17,28]. There have been
several efforts to extend this methodology to concurrent programs [5,24], but there is
no practice and the results are limited. In this subsection, we explain a practical refine-
ment method for creating correct-by-construction and secure-by-construction processes
(protocols).

Refinement proofs Suppose that we want to prove that φ is realizable, and we start a
proof of the top-level goal |= φ. From the form of the goal, the proof system knows
that we must produce a feasible distributed system D that realizes φ so it adds a new
abstraction D(x, . . . , z) to the library (where x, . . . , z are any parameters mentioned in
φ). The new abstraction has no definition initially—that will be filled in automatically
as the proof proceeds. This initial step leads to a goal where from the hypothesis that
an event structure es is consistent with D(x, . . . , z) we must show the conclusion that
φ(es), i.e., that es satisfies φ. Now, suppose that we can prove a lemma stating that in
any event structure, es,

ψ1(es) ∧ ψ2(es) ⇒ φ(es).
In this case, the user can refine the initial goal φ(es) by asserting the two subgoals

ψ1(es) and ψ2(es) (and then finishing the proof of φ(es) using the lemma). If ψ1 is
already known to be realizable, then there is a lemma |= ψ1 in the library and, there is
a realizer A1 for ψ1. Thus to prove ψ1(es), it is enough to show that es is consistent
with A1, and since this follows from the fact that es is consistent with D(x, . . . , z)
and that A1 ⊂ D(x, . . . , z), the system will automatically refine the goal ψ1(es) to
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A1 ⊂ D(x, . . . , z). If ψ2 is also known to be realizable with realizer A2 then the system
produces the subgoal A2 ⊂ D(x, . . . , z), and if not, the user uses other lemmas about
event structures to refine this goal further.

Whenever the proof reaches a point where the only remaining subgoals are that
D(x, . . . , z) is feasible or have the form Ai ⊂ D(x, . . . , z), then it can be completed
automatically by defining D(x, . . . , z) to be the join of all the Ai. In this case, all the
subgoals of the form Ai ⊂ D(x, . . . , z) are automatically proved, and only the feasibility
proof remains. Since each of the realizers Ai is feasible, the feasibility of their join
follows automatically from the pairwise compatibility of the Ai and the system will prove
the compatibility of the realizers Ai automatically if they are indeed compatible.

Compatible realizers Incompatibilities can arise when names for variables, local ac-
tions, links, locations, or message tags that may be chosen arbitrarily and independently,
happen to clash. Managing all of these names is tedious and error prone, so we have
added automatic support for managing them. We are able to ensure that the names inher-
ent in any term are always visible as explicit parameters. The logic provides a permu-
tation rule mentioned in Section 2.1 that says that if proposition φ(x, y, . . . , z) is true,
where x, y, . . . , z are the names mentioned in φ, then proposition φ(x′, y′, . . . , z′) is true,
where x′, y′, . . . , z′ is the image of x, y, . . . , z under a permutation of all names. Using
the permutation rule, our automated proof assistant will always permute any names that
occur in realizers brought in automatically as described above.

Acknowledgements: We would like to thank Melissa Totman for helping prepare
the manuscript and Stuart Allen for prior discussions about the use of atoms as nonces.2
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Abstract. In this paper we introduce jMoped, a tool for the analysis of Java pro-
grams based on model-checking techniques. We then proceed to introduce and ex-
plain the theory underlying the tool, and how it shaped some design choices.

1. Introduction

Model checking is a technique for the automatic verification of computer systems based
on exhaustive exploration of the space of reachable states [15]. It has been very success-
fully applied to large hardware systems. The extension and application of model check-
ing to software is one of the main challenges of today’s research on formal verification.

In this paper we discuss some of the issues involved in building a software model
checker. We follow a perhaps unusual presentation order. Instead of going from basic
theory to algorithms and then to a tool, we proceed the other way round. In Section 2
we introduce jMoped, a tool for the analysis of Java programs1. jMoped is based on
the Moped model checker developed by Stefan Schwoon in his PhD thesis [32] (see
also [20]), which was later given a Java front-end by Dejvuth Suwimonteerabuth and
coauthors [33,35,34]. In the rest of the paper we discuss the theory behind jMoped,
and how it influenced the design decisions. In Section 3 we study the computational
complexity of the fundamental problem in software verification: does some execution
reach a given program point? We work under the (strong but very useful) assumption that
variables only have a finite domain; conceptually, one can even assume that all variables
are booleans. While one could think that under this assumption the problem is trivially
decidable, we show that this is not the case. Even if all variables are boolean, a program
can still have an infinite number of reachable states, due to features like (unbounded)
recursion and thread generation. To address this we give programs a formal semantics
in terms of rewrite systems, and apply several theoretical results. The main result of our
analysis is that unbounded recursion is easier to handle than thread generation. Finally, in
Section 4 we study the core algorithms behind jMoped in more detail. These algorithms
efficiently solve the reachability of program points for (possibly recursive) sequential
programs with procedures.

The paper is a survey that draws heavily from the following sources: [35,34] for
Section 2, [3] for Section 3, and [19,20,32] for Section 4.

1jMoped is freely available. For download and documentation type “jMoped download” in a search engine.
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How to read this paper. If you only want to gain an impression of how jMoped works,
read Section 2. If you are interested in the problem of modelling and analysing programs,
read Section 3; the section is written in survey style, and no proofs are given. Section 3
contains Theorem 3.1, the theoretical basis of jMoped. The algorithms that allow to prove
the theorem are presented in Section 4 and illustrated by examples. Finally, if you want
to understand these algorithms “to the bone”, read the two appendices, which contain
detailed correctness proofs.

2. jMoped in a nutshell

Given a Java method (say an implementation of a sorting algorithm for arrays of inte-
gers), and a finite input range (say, arrays of length at most 10 whose elements are either
0 or 1), jMoped computes all reachable states of the program for all possible input argu-
ments within the range (210 in our example) and generates coverage information for these
executions. Moreover, jMoped checks for some standard errors (null pointer exceptions
and array bound violations) and for errors defined by the user by means of assertions
inserted in the code. When an error is found, jMoped finds out the arguments that lead to
the error. A JUnit [25] test case can also be automatically generated for further testing.

From the architectural point of view, jMoped consists of a graphical user interface,
a translator that converts the Java program into a so-called symbolic pushdown system
(SPDS), and Moped [32], a model checker for SPDSs at the back-end. The graphical
interface is a plug-in for Eclipse [17], the well-known environment for the development
of Java programs. That is, the user experiences jMoped as an additional feature that com-
plements the editing and simulation facilities of the Eclipse environment. The transla-
tor supports all fundamental basic features of Java, e.g. assignments, method calls, and
recursion, inheritance, abstraction, and polymorphism. On the other hand, the current
version still fails to translate floats and multithreaded programs.

2.1. jMoped as a Testing Tool

Traditionally, testing and model checking are seen as distinct methodologies; testing
can detect bugs but not prove their absence, and model checking seeks to establish the
absence of bugs, possibly at the cost of taking very long to complete (or not finishing
at all). We think that model checking can and should support the testing task. jMoped is
conceived as a tool in which a model checker supports the task of testing a program.

The size of variables is bounded by user-defined (artificial) ranges. Thus, the model-
checking procedure can be thought of as an extended symbolic testing procedure, which
is still incomplete (because only runs within the given bounds are considered); however,
once the bounds are established, the model checker will perform exact checks on all
executions within these bounds. This is very suitable for finding boundary cases, i.e.
inputs with special properties that are easily forgotten during testing, but are prone to
cause bugs. E.g., two boundary cases for a sorting procedure would be an array where all
elements are the same, or an array that is already sorted. Even relatively small bounds on
the inputs are likely to contain many interesting boundary cases, and the model checker
will test all of them (and find the faulty ones). Thus, the approach can greatly enhance
the confidence in the correctness of a program, without strictly guaranteeing it.
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The results of a model-checking procedure can support testing in other ways, too.
The quality of a set of test cases is usually measured by so-called coverage metrics, e.g.,
counting how many lines of code were exercised by the test cases. Such metrics can also
be obtained by running a model checker on a set of inputs and checking which lines were
found to be reachable. In jMoped, the user can observe the progress of these metrics
while the checker is running. Moreover, the user may stop the checker at any time (e.g.,
if the attained level of coverage is deemed satisfactory), or ask it to specifically search
for inputs that can reach a certain target in the program. Moreover, if the checker finds
that bugs are caused by certain inputs, those inputs can be saved in a library of JUnit test
cases, where they may be useful for future test runs.

2.2. Working with jMoped

As mentioned above, jMoped consists of three parts: a graphical user interface, a transla-
tor from Java bytecode into SPDS, and an SPDS model checker. The checker is capable
of handling programs with thousands of lines, provided that the data complexity is low,
as is the case, for instance, with device drivers [32]. However, the graphical interface was
developed for unit testing, with smaller, more data-intensive programs in mind of at most
a few hundred lines. The interface is also described in more detail in [2].

The graphical interface takes the form of an Eclipse plug-in. Figure 1 shows a
screenshot of the interface. In the following we guide the reader through a session with
jMoped using this figure.

The user starts by editing or loading a Java program in the editing window, (on the
right of the figure). In this case, the program is an implementation for Quicksort taken
from [29]. The program has been annotated with an assertion (line 45), i.e., an statement
that is expected to hold in all executions when the control reaches the line. The assertion
states that a call to the method isSorted is expected to return true.

The user selects a method from which the analysis should start (the method sort
starting at line 43 was chosen) and chooses the bounds for the simulation of the program.
There are two bounds, whose values can be set on the left-hand-side of the figure. The
first one is the number of bits of every number that appears in a program. This includes
constants, integer variables, and the lengths of arrays or strings. In Java this number is
32. In jMoped the user sets the length to a smaller value (typically between 3 and 7).
The second bound is the heap size, which directly affects the number of objects that can
be instantiated. jMoped simulates the Java heap when manipulating objects. Indirectly,
a bound on the length of integers implies a bound on the heap size. The reason is that
memory addresses must be integers. However, this indirect bound is almost always too
large, and so the user must choose a smaller one. A typical heap bound is 32 bytes. The
analysis in Figure 1 is performed with 3 bits and heap size 7.

It is also possible to specify how many bits to use for individual variables, parame-
ters, or fields. The annotation at line 42 of Figure 1 means that the length of array a has
two bits, and each of its elements has one bit.

jMoped can now exhaustively explore the program for all inputs within the bounds
provided by the user. The user launches this process using a pop-up menu. The state
space exploration is done in two steps. First, the program (which reads inputs from its
user) is transformed into another program that does not read any input; instead, it non-
deterministically generates one. In the second step the checker exhaustively explores all
behaviours of the transformed program.
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Figure 1. A view of the plug-in.

During the analysis, jMoped graphically displays its progress. First, black markers
are placed in front of all statements. While the checker is running, the parts of the state
space found to be reachable are mapped back to the Java program, and the appearance of
the corresponding markers is changed. When a black marker turns green, it means that
the corresponding Java statement is reachable from some argument values. A red marker
means that an assertion statement has been violated by some argument values. Other
markers indicate null pointer exceptions, array bound violations, and heap overflows (see
below). The green markers indicate the degree of coverage reached by exploring the
executions within the bounds.

After the analysis, users can either create a call trace or a JUnit test case that reaches
a given statement or violates some assertion. An example of the call trace can be seen in
lower left part of Figure 1, where the assertion violation occurred when the method sort
was called with the array [1,0,1].

jMoped has another mode of operation, in which it explores the set of reachable
states backwards. Given a postcondition, jMoped computes the set of all states (within
the given bounds) from which the states of the postcondition can be reached. In a typical
scenario, a user will want to achieve 100% coverage, i.e. the checker should test a set
of inputs such that every statement is exercised at least once. The idea for achieving this
is to combine the two modes of operation. First, one uses the standard mode to cover
as many instructions as possible. Say all but three instructions were covered. Then, in a
second phase, one applies three backward searches starting from these three particular
instructions. Since these are specific searches with the “difficult” instructions as goal, the
hope is that they have better success chances than the “blind” forward search.
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2.3. Motivation for the next sections

jMoped and method invocation. The input language of model checkers usually allows
for the definition of procedures. However, most model checkers translate a program with
procedures into a program without procedures by means of inlining. Inlining is the pro-
cess of replacing a procedure call by the body of the procedure. In the absence of re-
cursive procedures, every program is equivalent to another one without procedures, ob-
tained by exhaustive inlining. However, the procedure-free program may be exponen-
tially longer than the original one; an example is a program with procedures P1, . . . ,Pn,
in which procedure Pi calls procedure Pi+1 twice for 1 ≤ i ≤ n− 1. Moreover, in the
presence of recursive procedures the inlining procedure does not terminate.

jMoped does not inline methods, and it can deal with recursive methods. For this,
jMoped has to solve a difficult problem: an execution of a recursive program may visit an
infinite number of different program states, even if the range of all variables is finite. The
reason is that the stack of activation records (in Java parlance, the stack of frames of the
JVM) can become arbitrarily large during the execution, and, since the stack is part of the
program state, the execution may visit infinitely many different states. It can be argued
that this can only occur if the execution is non-terminating. This is true, but erroneous
programs (sometimes even correct ones) may exhibit such behaviours, and jMoped does
not and should not work only under the assumption that the program always terminates.

How does jMoped manage to exhaustively examine infinitely many program states?
By means of a data structure allowing to represent certain infinite sets of states. The
theory behind this idea is discussed in Section 3, and the algorithm implementation in
Section 4.

jMoped and multithreaded programs. Currently jMoped cannot analyze multithreaded
programs. There are several reasons for this. A fundamental reason is that multithreading
introduces a second “source of infinity” in the state space, on top of recursion. If no bound
is put on the number of threads, then, since the program state includes the local states
of the threads, there can be infinitely many reachable states. While analysis problems
concerning the infinity due to recursion are decidable, even very simple problems become
undecidable if both recursion and multithreading are present. This problem has been very
throughly discussed in the literature, and we discuss it in detail in Section 3.

jMoped and exhaustive testing. As mentioned above, jMoped simulates the execution
of the program for all possible inputs within the range given by the user. It could be ar-
gued that such a brute-force approach cannot be practicable. It must be mentioned that
jMoped does not proceed by simulating the executions one by one. It uses binary decision
diagrams (BDDs), a compact data structure that, loosely speaking, allows to simultane-
ously conduct all executions “in one go”. This considerably extends the possibilities of a
purely sequential simulation. For example, our tool can test a Quicksort implementation
for all arrays of length 60 whose elements are either 0 or 1. This means checking 260 test
cases, which obviously cannot be achieved in reasonable time by sequentially simulat-
ing the program on each test case. The use of these data structures will be discussed in
Section 4.5.
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3. Rewrite Models of Boolean Programs

The basic problem solved by jMoped is the reachability of a given program point in
a given Java program by means of an execution respecting the bounds selected by the
user on the ranges of the variables. Conceptually, a program in which variables have
been restricted to have a finite range can be seen as a boolean program, an imperative,
possibly nondeterministic program acting on variables of boolean type. An instruction of
the real program is simulated by an instruction acting on a number of boolean variables,
one for each bit needed to represent the finite range. For instance, if we restrict the range
of an integer variable v to the interval [0..3] we can simulate an assignment to v by a
simultaneous assignment to two boolean variables; the same can be achieved, with more
coding, for other types of variables. The executions of the boolean program correspond
to the executions of the program in which the values of the variables stay within the
specified range. We say that the boolean program is an underapproximation of the real
program: every execution of the boolean program is an execution of the real program,
but not necessarily the other way round.

In order to analyse and verify boolean programs we need to find semantic mappings
linking them to formal models with a strong theory and powerful analysis algorithms.
This has been the subject of intensive research since the late 90s.

We show in this section that semantic models for boolean programs can be elegantly
formulated as rewrite systems. In this approach, program states are formalised as terms,
and program instructions as rewrite rules. A step of the program is matched by a rewrite
step in its corresponding rewrite system. The nature of the program determines the class
of terms we use. In particular, we use string-rewriting and multiset-rewriting as special
cases of term rewriting.

We refrain from giving a formal, general definition of rewrite system. Informally,
in this paper a rewrite system is a finite set of rules of the form t1 → t2, where t1 and
t2 are terms over some signature. The rule t1 → t2 indicates that a term t containing an
occurrence of t1 as a subterm can be rewritten into the term t ′ obtained by replacing
the occurrence of t1 by t2. However, the term rewriting system may also have a rewrite
policy, specifying which occurrences can be replaced.

Once we have a rewrite model of a program, we wish to analyze it. From the model-
checking or program-analysis point of view questions like termination and confluence
play a minor rôle. One is far more interested in the reachability problem, and actually on
a generalisation of it: Given a rewriting system and two (possibly infinite!) sets of terms
T and T ′, can some element of T be rewritten into an element of T ′? The software model
checking community has attacked this question by studying symbolic reachability tech-
niques. In this approach, one tries to find data structures providing finite representations
of a sufficiently interesting class of infinite sets of terms, and satisfying at least one of the
two following properties: (1) if a set T is representable, then the set of terms reachable
from T by means of an arbitrary number of rewriting steps is also representable; more-
over, its representation can be effectively computed from the representation of T , and (2)
same property with the set of terms that can be rewritten into terms of T .

We survey a number of results on symbolic reachability algorithms for different
classes of programs. We start with sequential programs, move to concurrent programs
without recursion and, finally, consider the difficult case of concurrent programs with
recursive procedures. For each class we give a small example of a program and its se-
mantics, and then present analysis results.
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procedure p();
p0: if (?) then
p1: call main();
p2: if ? then call p() fi

else
p3: call p()

fi;
p4: return

procedure main();
m0: if ? then return fi;
m1: call p;
m2: return

p0 → p1

p0 → p3

p1 → m0 p2

p2 → p0 p4

p2 → p4

p3 → p0 p4

p4 → ε
m0 → ε

m0 → m1

m1 → p0 m2

m2 → ε

Figure 2. A sequential program and its semantics.

Notation. In the rest of the paper, given a set R of rewrite rules we denote by postR(R)
the set of terms reachable from T by one application of one of the rules of R (a rewriting
step), and by post∗R(T ) the set of terms reachable from T by means of an arbitrary num-
ber of rewriting steps. Similarly, preR(T ) denotes the set of terms that can be rewritten
into terms of T in one rewriting step, and pre∗R(T ) the set of terms that can be rewrit-
ten into terms of T in an arbitrary number of rewriting steps. Since the set of rules will
always be clear from the context, we will omit the subscript.

3.1. Sequential programs

Consider the program of Figure 2. It consists of two procedures, main() and p(), and
has no variables. The intended semantics of if ? then c1 else c2 fi is a nondeterministic
choice between c1 and c2. The program state is not determined by the current value of the
program counter only; we also need information about the procedure calls that have not
terminated yet. This suggests to represent a state of the program as a string p0 p1 . . . pn

where p0 is the current value of the program counter and p1 . . . pn is the stack of return
addresses of the procedure calls whose execution has not terminated yet. For instance,
the initial state of the program of Figure 2 is m0, but the state reached after the execution
of m1 : callp() is not p0, it is the string p0 m2.

We can capture the behaviour of the program by the set of string-rewriting rules on
the right of Figure 2. A procedure call is modelled by a rule of the form X → Y Z, where
X is the current program point, Y the initial program point of the callee, and Z the return
address of the caller. A return instruction is modelled by a rule X → ε, where ε denotes
the empty string. However, with the ordinary rewriting policy of string-rewriting systems

X → w

uX v
r

−→uwv

where
r

−→ denotes a rewrite step, we have m0 p2 m2
r
−→m0 p0 p4 m2 (rule p2 → p0 p4),

which is not allowed by the intuitive semantics. We need to use the prefix-rewriting policy
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bool function foo(l);
f0: if l then
f1: return false

else
f2: return true

fi

procedure main();
m0: while b do
m1: b := foo(b)

od
m2: return

b〈t, f0〉 → b〈t, f1〉
b〈 f , f0〉 → b〈 f , f2〉
b〈l, f1〉 → f
b〈l, f2〉 → t

t m0 → t m1

f m0 → f m2

bm1 → b〈b, f0〉m0

bm2 → b

Figure 3. A sequential program with global and local variables and its semantics.

X → w

X v
r
−→wv

instead. We also need to interpret ε as the empty string. With these changes we have for
instance the rewriting chain

m0
r

−→m1
r
−→ p0 m2

r
−→ p1 m2

r
−→m0 p2 m2

r
−→ p2 m2

r
−→ p4 m2

r
−→m2

r
−→ε

Notice that the string-rewriting system of Figure 2 is monadic, i.e., the left-hand-side
of the rewrite rules consists of one single symbol.

3.1.1. Adding variables

Consider the program of Figure 3, where b is a global variable and l is a local variable
of the function foo(). In the presence of variables, a state of a sequential program can be
modelled as a string over the alphabet containing

• a symbol for every valuation of the global variables; and
• a symbol 〈v, p〉 for every program point p and for every valuation v of the local

variables of the procedure p belongs to.

If the procedure for the control point p has no local variables, then we adopt the con-
vention that there is a unique valuation ⊥ of the variables, and most of the time shorten
〈⊥, p〉 to just p. States are modelled by strings of the form g〈v1, p1〉 . . . 〈vn, pn〉, where
g encodes the current values of the global variables, and each pair 〈vi, pi〉 corresponds to
a procedure call that has not terminated yet (recall that we can have vi = ⊥ and then we
write pi instead of 〈⊥, pi〉). can b. The symbol vi encodes the values of the local vari-
ables of the caller right before the call takes place, while pi encodes the return address
at which execution must be resumed once the callee terminates. It is straightforward to
assign rewrite rules to the program instructions. For instance, the call to foo(b) in main()
is modelled by the rules

t m1 → t 〈t, f0〉m0 and f m1 → f 〈 f , f0〉m0
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indicating that control is transferred to f0, that the local variable l gets assigned the
current value of the global variable b, and that the return address is m0. The complete
set of rules is shown on the right of Figure 3. The symbols b and l stand in the rules for
either true or false.

3.1.2. Pushdown systems

Notice that the rewrite system of a program with global variables is no longer monadic.
However, the left-hand-sides of the rules are strings of length 2. The string-rewriting
systems satisfying this condition are called pushdown systems, due to their similarity
with pushdown automata. A string g〈v1, p1〉 . . . 〈vn, pn〉 modelling a program state can
be interpreted as the current configuration of a pushdown automaton. The valuation g of
the global variables is interpreted as the current control location of the automaton, and
the rest of the string as the current stack content. A rewrite rule like t m1 → t 〈t, f0〉m0

corresponds to a transition rule of the automaton: if the current control location is t and
the topmost stack symbol is ml , then the automaton can stay in state t, and replace m1

by the word 〈t, f0〉m0. This is an example of a push-rule, which increases the length of
the stack by 1. A rule like b〈l, f1〉 → f expresses that if the automaton is in control state
b and 〈l, f1〉 is the current topmost stack symbol,then the automaton can move to the
control state f and pop 〈l, f1〉 from the stack.

So, formally, we define a pushdown system as a triplet P = (P,Γ,Δ) where P is
a finite set of control locations, Γ is a finite stack alphabet, and Δ ⊆ (P× Γ)× (P×
Γ∗) is a finite set of transition rules. Clearly, every pushdown system corresponds to a
prefix-rewriting, string-rewriting system. Moreover, every rewrite system coming from a
sequential boolean program is a pushdown system.

3.1.3. Analysis

String-rewriting systems with prefix-rewriting have an interesting story. They seem to
have been studied for the first time by Büchi [9], who called them canonical systems (see
also Chapter 5 of his unfinished book [10]). Büchi proved the fundamental result that
given a regular set S of strings, the sets pre∗(S) and post∗(S) are also regular. The result
was rediscovered by Caucal [12]. Book and Otto (who were also unaware of Büchi’s
work) proved that pre∗(S) is regular for monadic string-rewriting systems with ordinary
rewriting and presented a very simple algorithm that transform a finite automaton ac-
cepting S into another one accepting pre∗(S). This algorithm was adapted to pushdown
systems in [4,22], and its performance was improved in [19].

Theorem 3.1 [4,22,19] Given a pushdown system P = (P,Γ,Δ) and a finite-state au-
tomaton A over the alphabet P∪Γ, the sets post∗(L(A)) and pre∗(L(A)) are regular and
effectively constructible in polynomial time in the sizes of P and A.

More precisely, let nP and nΔ be the number of control states and transition rules
of P , and let nQ and nδ be the number of states and transitions of A, respectively.
Let n = max{nQ,nP}. An automaton recognising post∗(L(A)) can be constructed in
O(nP|nΔ(n+nΔ)+nPnδ) time and space, and the automaton recognising pre∗(L(A)) can
be constructed in O(n2nΔ) time and O(nnΔ + nδ) space.

The theory of pushdown systems and related models (canonical systems, monadic
string-rewriting systems, recursive state machines, context-free processes, Basic Process

J. Esparza / Building a Software Model Checker 61



thread p();
p0: if ? then
p1: b := true;

else
p2: b := false

fi;
p3: end

thread main();
m0: while b do
m1: fork p()

od;
m2: end

b ‖ p0 → b ‖ p1

b ‖ p0 → b ‖ p2

b ‖ p1 → t ‖ p3

b ‖ p2 → f ‖ p3

b ‖ p3 → b ‖ ε

t ‖ m0 → t ‖ m1

f ‖ m0 → f ‖ m2

b ‖ m1 → b ‖ m0 ‖ p0

b ‖ m2 → b ‖ ε

Figure 4. A program with dynamic thread generation and its semantics.

Algebra, etc. ) is very rich, and even a succinct summary would exceed the scope of this
paper. A good summary of the results up to the year 2000 can be found in [11].

The algorithms behind Theorem 3.1 are the core of jMoped. They are also at the
basis of the MOPS tool [14]. The algorithms are described in detail in Section 4.

3.2. Multithreaded programs without procedures

Programming languages deal with concurrency in many different ways. Java uses
threads, and, since jMoped is targeted at Java, we study threads here. (In scientific com-
puting cobegin-coend sections are a popular primitive.) Languages also differ in their
synchronisation and communication mechanisms: shared variables, rendezvous, asyn-
chronous message passing. This point is less relevant for this paper, and we only consider
the shared variables paradigm. In this section we study programs without procedures.
The combination of concurrency and procedures is harder to analyze, and we delay it to
the next section.

3.2.1. Threads

The program on the left of Figure 4 spawns a new thread p() each time the while
loop of main() is executed. This thread runs concurrently with main() and with the
other instances of p() spawned earlier. Threads communicate with each other through
shared variables, in this case the global variable b. Since p() nondeterministically de-
cides whether b should be set to true or false, main() can create an unbounded number
of instances of p().

The state of the program can be modelled as a multiset containing the following
elements:

• the current value of the global variable b,
• the current value of the program counter for the main() thread, and
• the current value of the program counter for each thread p().

For instance, the multiset {0,m1, p1, p2, p2} is a possible (and in fact reachable) state
of the program with four threads. In order to model the program by means of rewrite
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rules we introduce a parallel composition operator ‖ and model the state as (0 ‖ m1 ‖
p1 ‖ p2 ‖ p2) . Intuitively, we consider a global variable as a process running in parallel
with the program and communicating with it. We rewrite modulo the equational theory
of ‖, which states that ‖ is associative, commutative, and has the empty multiset (denoted
again by ε) as neutral element:

u ‖ (v ‖ w) = (u ‖ v) ‖ w u ‖ v = v ‖ u u ‖ ε = u .

Observe that, since we rewrite modulo the equational theory, it does not matter which
rewriting policy we use (ordinary or prefix-rewriting). The complete set of rewrite rules
for the program of Figure 4 is shown on the right of the figure. As in the non-concurrent
case, if the program has no global variables then the rewrite system is monadic. Observe
that without global variables no communication between threads is possible.

Notice that instructions like p : wait(b); p′ : . . . forcing a thread to wait until the
global variable b becomes true can be modelled by the rule t ‖ p → t ‖ p′.

3.2.2. Analysis.

While the reachability problem for pushdown systems can be solved in polynomial time
(Theorem 3.1), it becomes harder for multiset rewriting.

Theorem 3.2 [24,18] The reachability problem for monadic multiset-rewriting systems
is NP-complete.

NP-hardness can be proved by a straightforward reduction to SAT, while membership in
NP requires a little argument. We can also prove a result similar to Theorem 3.1. In order
to formulate the result, observe first that a multiset M over an alphabet A = {a1, . . . ,an}
can be represented by the vector 〈x1, . . . ,xn〉 ∈ INn, where xi, i ∈ {1, . . . ,n}, is the number
of occurrences of ai in M. This encoding allows to represent sets of multisets by means of
arithmetical constraints on integer vectors. The sets of vectors definable by formulas of
Presburger arithmetic are called semi-linear sets. This name is due to the fact that every
semi-linear set is a finite union of linear sets, defined as follows. A set V ⊆ INn is linear
if there is a root vector v0 ∈ INn and a finite number of periods v1, . . . ,vk ∈ INn such that

V = {v0 + n1v1 + . . . ,nkvk | n1, . . . ,nk ∈ IN} .

Semi-linear sets share many properties with regular sets. They are closed under
boolean operations. Moreover, if we associate to each word w of a regular language its
Parikh image (the multiset containing as many copies of each symbol a as there are oc-
currences of a in w) we get a semi-linear set of multisets2. Conversely, every semi-linear
set is the Parikh image of some regular language.

Intuitively, the following theorem states that semi-linear sets are to monadic
multiset-rewriting what regular sets are to prefix-rewriting (see Theorem 3.1).

Theorem 3.3 [18] Given a monadic multiset-rewriting system and a semi-linear set of
states S, the sets post∗(S) and pre∗(S) are semi-linear and effectively constructible.

2Parikh’s theorem states the same result for context-free languages.
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Unfortunately, Theorem 3.3 does not hold for non-monadic multiset-rewriting sys-
tems. It is easy to see that these systems are equivalent to (place/transition) Petri nets. In
a nutshell, a rewrite rule

(X1 ‖ . . . ‖ Xn) → (Y1 ‖ . . . ‖ Ym)

corresponds to a Petri net transition that takes a token from the places X1, . . . ,Xn and puts
a token on the places Y1, . . . ,Ym. It is well-known that for Petri nets post∗(S) can be a non
semi-linear set of states even when S is a singleton [23].

The reachability problem for multiset-rewriting systems is equivalent to the reacha-
bility problem for Petri nets, and so, using well-known results of net theory we obtain:

Theorem 3.4 [28,26,27] The reachability problem for multiset-rewriting systems is de-
cidable and EXPSPACE-hard.

The known algorithms for the reachability problem of Petri nets are too compli-
cated for practical use (not to speak of their complexity, which exceeds any primitive-
recursive function). However, many program analysis problems can be stated as control
point reachability problems in which we wish to know if a program point can be reached
by a thread, independently of which or how many other threads run in parallel with it. In
multiset-rewriting terms, the question is if the rewrite system associated to the program
can reach a state of the form X ‖ t for some multiset t. This target set of states is upward-
closed: if some term t belongs to the set, then t ‖ t ′ also belongs to the set for every
multiset t ′. Moreover, multiset-rewriting systems have the following important property:
if t

r
−→ t ′, then t ‖ t ′′

r
−→ t ′ ‖ t ′′ for every multiset t ′′. This makes them well-structured sys-

tems in the sense of [1,21], and allows to apply a generic backward reachability algo-
rithm to the control-reachability problem. More precisely, one can show that (1) every
upward-closed set admits a finite representation (its set of minimal multisets), (2) if U is
upward-closed then U ∪pre(U) is upward-closed, where pre(U) = {t | ∃u ∈U : t

r
−→u},

and (3) every sequence U1 ⊆U2 ⊆U3 . . . of upward-closed sets reaches a fixed point after
finitely many steps. The generic backwards reachability algorithm iteratively computes
(the finite representations of) U,U∪pre(U),U ∪pre(U)∪pre2(U) . . . until the fixed point
is reached. So we have:

Theorem 3.5 Given a multiset-rewriting system and an upward-closed set of states S,
the set pre∗(S) is upward-closed and effectively constructible.

The approach we described above has been adopted for instance in [16] for the
verification of multithreaded Java programs. It has also influenced the Magic and the
Spade checkers [13,30].

3.3. Putting procedures and threads together

The analysis of programs containing both procedures and concurrency is notoriously
difficult. It is easy to show that a two-counter machine can be simulated by a boolean
program consisting of two recursive procedures running in parallel and accessing one
single global boolean variable. Intuitively, the two recursion stacks associated to the two
procedures are used to simulate the two counters; the depth of the stack corresponds to
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process p();
p0: if (?) then
p1: call p()

else
p2: skip

fi;
p3: return

process main();
m0: if (?) then
m1: fork p()

else
m2: call main()

fi;
m3: return

# p0 → # p1

# p0 → # p2

# p1 → # p0 p3

# p2 → # p3

# p3 → #ε

#m0 → #m1

#m0 → #m2

#m1 → # p0#m3

#m2 → #m0 m3

#m3 → #ε

## → #

Figure 5. A program with dynamic thread generation and its semantics.

the current value of the counter. Increments and decrements can be simulated by calls and
returns. The global variable is used as a semaphore indicating which counter has to be
accessed next. Since two-counter machines are Turing powerful, all interesting analysis
problems about these programs are bound to be undecidable.

In multithreaded programs with procedures the same code unit can be called follow-
ing different policies: procedural call (caller waits until callee terminates), or thread call
(caller runs concurrently with callee). We use the keyword process to denote such a unit.

Consider the program of Figure 5. A way of describing its semantics was proposed
by Bouajjani, Müller-Olm and Touili in [8]. The idea is to represent a state at which n
threads are active by a string #wn#wn−1 . . .#w1. Here, w1, . . .wn are the strings modelling
the states of the threads, and they are ordered according to the following criterion: for
every 1 ≤ i < j ≤ n, the i-th thread (i.e., the thread in state wi) must have been created
no later than the j-th thread. The reason for putting younger threads to the left of older
ones will be clear in a moment.

We can now try to capture the semantics of the program by string-rewriting rules.
Notice however that we cannot use the prefix-rewriting policy. Loosely speaking, a thread
in the middle of the string should also be able to make a move, and this amounts to
rewriting “in the middle”, and not only “on the left”’. So we must go back to the ordinary
rewriting policy

X → w

uX v
r

−→uwv

Instructions not involving thread creation are modelled as in the non-concurrent
case, with one difference: Since we can only rewrite on the left of a wi substring, we
“anchor” the rewrite rules, and use for instance # p1 → # p0 p3 instead of p1 → p0 p3. The
thread creation at program point m1 is modelled by the rule #m1 → # p0#m3. Notice that
we would not be able to give a rule if we wanted to place the new thread to the right of
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its creator, because the stack length of the creator at the point of creating the new thread
can be arbitrarily large. This class of string-rewriting systems is called dynamic networks
of pushdown systems (DPN) in [8]. The complete set of rewrite rules for the program of
Figure 5 is shown on the right of the same figure.

3.3.1. Analysis.

Notice that DPNs are neither prefix-rewriting nor monadic. However, we still have good
analisability results. First of all, it can be proved that the pre∗ operation preserves regu-
larity:

Theorem 3.6 [8] For every regular set S of states of a DPN, the set pre∗(S) is regular
and a finite-state automaton recognising it can be effectively constructed in polynomial
time.

The post∗ operation, however, does not preserve regularity. To see this, consider a
program which repeatedly creates new threads and counts (using its stack) the number of
threads it has created. The set of reachable states is not regular, because in each of them
the number of spawned threads must be equal to the length of the stack. Nevertheless,
the post∗ operation preserves context-freeness.

Theorem 3.7 [8] For every context-free (pushdown automata definable) set S of states
of a DPN, the set post∗(S) is context-free and a pushdown automaton recognising it can
be effectively constructed in polynomial time.

Since intersection of a regular language with a context-free language is always
context-free, and since the emptiness problem of context-free languages is decidable,
this result allows to solve the reachability problem between a context-free initial set of
configurations and a regular set of target configurations.

So far we have only considered the variable-free case. The results above can be
extended to the case in which processes have local variables, but global variables make
the model Turing powerful. In this case over/underapproximate analysis approaches can
be adopted, which are outside the scope of this paper (see, e.g., [6,7,31,5]).

3.4. Discussion

We have studied rewriting models for sequential and concurrent boolean programs where
concurrent processes communicate through shared variables.

Sequential boolean programs with procedure calls can be modelled by prefix-
rewriting systems (pushdown systems). The reachability problem and the symbolic
reachability problem for regular sets of states can be solved in polynomial time.

Concurrent programs with dynamic thread creation but without procedures can be
modelled by multiset-rewriting systems (Petri nets). The reachability problem is decid-
able, but the algorithm is not useful in practice. The control reachability problem can
be solved by a simple algorithm based on the theory of well-structured systems. The
symbolic reachability problem can be solved for the monadic fragment and semi-linear
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sets. The monadic fragment corresponds to programs without global variables, and so to
absence of communication between threads.

Concurrent programs with thread creation and procedures, but without communica-
tion between threads, can be model by dynamic networks of pushdown systems [8], a
class of string-rewriting systems. The reachability problem can be solved in polynomial
time. The pre∗ operation preserves regularity (and can be computed in polynomial time),
while the post∗ operation preserves context-freeness.

Concurrent programs with procedures and one single global variable are already
Turing powerful, and so very difficult to analyze. Several approximate analysis have been
proposed based on the automata techniques presented in this paper (see e.g. [6,7,31,5]).
The constrained dynamic networks of [8] replace global variables by a more restricted
form of communication in which a process can wait for a condition on the threads it
created, or for a result computed by a procedure it called.

Summarising: the problem of analyzing sequential programs is much simpler from
a computational point of view than the problem of analyzing multithreaded programs.
This is one of the reasons why jMoped does not currently support multithreading. Any
extension of jMoped to multithreading will have to cope with the undecidability of the
reachability problem.

4. Algorithms for reachability in pushdown systems

We have seen in the previous section that sequential boolean programs can be translated
into pushdown systems. Pushdown systems are string-rewriting systems using the prefix-
rewriting policy, and satisfying an additional property: the left-hand side of a rule is a
string of length two. The first letter of the string encodes the valuation of the global
variables, while the second letter encodes the current value of the program counter and
the valuation of the active local variables (see Figure 2). Theorem 3.1 states that given
a pushdown system and a finite-state automaton A, the sets post∗(L(A)) and pre∗(L(A))
are regular and effectively constructible in polynomial time in the sizes of the pushdown
system and A. Moreover, the theorem gives a complexity estimate.

In this section we describe the algorithms behind Theorem 3.1. The algorithms for
computing pre∗(L(A)) and post∗(L(A)) were presented in [4], but their complexity was
not evaluated (it was only said that they run in polynomial time). Efficient implemen-
tations and detailed complexity analysis were first given in [19]. In Section 4.1 we in-
troduce basic definitions, and recall some results of [4]. The ‘abstract’ solution of [4] is
described in Section 4.2, and the efficient algorithms of [19] are discussed in Section 4.4.
The correctness proofs and complexity analyses are given in appendices.

4.1. Pushdown systems and P -automata

Recall that a pushdown system (already defined in Section 3) is a triplet P = (P,Γ,Δ)
where P is a finite set of control locations, Γ is a finite stack alphabet, and Δ ⊆ (P×Γ)×
(P×Γ∗) is a finite set of transition rules. In the following, if ((q,γ),(q′,w)) ∈ Δ then we
write 〈q,γ〉 ↪→ 〈q′,w〉, i.e., we reserve the arrow ↪→ for transition rules in order to avoid
confusion.
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We introduce some further notions. A configuration of P is a pair 〈p,w〉 where p∈ P
is a control location and w ∈ Γ∗ is a stack content. The set of all configurations is denoted
by C .

If 〈q,γ〉 ↪→ 〈q′,w〉, then for every v ∈ Γ∗ the configuration 〈q,γv〉 is an immediate
predecessor of 〈q′,wv〉, and 〈q′,wv〉 an immediate successor of 〈q,γv〉. This corresponds
exactly to the idea that 〈q,γv〉 can be rewritten into 〈q′,wv〉.

The reachability relation ⇒ is the reflexive and transitive closure of the immediate
successor relation. A run of P is a maximal sequence of configurations such that for
each two consecutive configurations cici+1, ci+1 is an immediate successor of ci. A run
corresponds to a maximal sequence of rewrites.

The predecessor function pre : 2C → 2C of P is defined as expected: c belongs to
pre(C) if some immediate successor of c belongs to C. As in the previous section, pre∗

denotes the reflexive and transitive closure of pre. Clearly, pre∗(C) = {c ∈ C | ∃c′ ∈
C. c ⇒ c′}. Similarly, we define post(C) as the set of immediate successors of elements
in C and post∗ as the reflexive and transitive closure of post.

4.1.1. P -Automata

We fix a pushdown system P = (P,Γ,Δ) for the rest of the section.
We wish to use finite automata in order to recognise possibly infinite sets of config-

urations of P . For technical reasons it is convenient to introduce a variant of the usual
automata model.

A P -automaton is an automaton with Γ as alphabet, and P as set of initial states
(we consider automata with possibly many initial states). Formally, a P -automaton is an
automaton A = (Γ,Q,δ,P,F) where Q is the finite set of states, δ ⊆ Q×Γ×Q is the set
of transitions, P is the set of initial states and F ⊆ Q the set of final states. We define the
transition relation →⊆ Q×Γ∗×Q as the smallest relation satisfying:

• q
ε
−→q for every q ∈ Q,

• if (q,γ,q′) ∈ δ then q
γ
−→q′, and

• if q
w
−→q′′ and q′′

γ
−→q′ then q

wγ
−−→q′.

All the automata used in this section are P -automata, and so we drop the P from
now on. An automaton accepts or recognises a configuration 〈p,w〉 if p

w
−→q for some

p ∈ P, q ∈ F . The set of configurations recognised by an automaton A is denoted by
Conf (A ). A set of configurations of P is regular if it is recognized by some automaton.

Notice that given a P automaton one can easily construct a normal automaton ac-
cepting the same language. It suffices to add a new initial state to the P -automaton, say
q0, and a transition q0

pi−−→ pi for every old initial state pi. P -automata just have some
technical advantages as data structures.

Notation In the paper, we use the symbols p, p′, p′′ etc., eventually with indices, to de-
note initial states of an automaton (i.e., the elements of P). Non-initial states are denoted
by s,s′,s′′ etc., and arbitrary states, initial or not, by q,q′,q′′.

4.2. Computing pre∗(C) for a regular language C

Our input is an automaton A accepting C. Without loss of generality, we assume that
A has no transition leading to an initial state. We compute pre∗(C) as the language
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p0

p1

p2

s1 s2
γ0 γ0

Δ = { 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉,
〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉,
〈p2, γ2〉 ↪→ 〈p0, γ1〉,
〈p0, γ1〉 ↪→ 〈p0, ε〉 }

p0

p1

p2

s1 s2
γ0 γ0

γ1 γ0

γ1γ2

γ1

Figure 6. The automata A (left) and Apre∗ (right)

accepted by an automaton A pre∗ obtained from A by means of a saturation procedure.
The procedure adds new transitions to A , but no new states. New transitions are added
according to the following saturation rule:

If 〈p,γ〉 ↪→ 〈p′,w〉 and p′
w
−→q in the current automaton,

add a transition (p,γ,q) .

Notice that all new transitions start at initial states. Let us illustrate the procedure
by an example. Let P = (P,Γ,Δ) be a pushdown system with P = {p0, p1, p2} and Δ

as shown in in the left half of Figure 6. Let A be the automaton that accepts the set
C = {〈p0,γ0γ0〉}, also shown in the figure. The result of the algorithm is shown in the
right half of Figure 6.

The saturation procedure eventually reaches a fixed point because the number of
possible new transitions is finite. The correctness is proved in Appendix 1.

4.3. Computing post∗(C) for a regular set C

We provide a solution for the case in which each transition rule 〈p,γ〉 ↪→〈p′,w〉 of Δ sat-
isfies |w| ≤ 2. This restriction is not essential, but leads to a simpler solution. Moreover,
any pushdown system can be transformed into an equivalent one in this form. Moreover,
the pushdown systems derived from sequential programs, as discussed in Section 3, sat-
isfy this condition: we have |w|= 2 for transition rules modelling procedure calls, |w|= 0
for transition rules modelling return instructions, and |w| = 1 for the rest.

Our input is an automaton A accepting C. Without loss of generality, we assume
that A has no transition leading to an initial state. We compute post∗(C) as the language

accepted by an automaton A post∗ with ε-moves. We denote the relation ( ε
−→)∗

γ
−→( ε

−→)∗

by
γ

=⇒. A post∗ is obtained from A in two stages:

• Add to A a new state r for each transition rule r ∈Δ of the form 〈p,γ〉 ↪→〈p′,γ′γ′′〉,
and a transition (p′,γ′,r).

• Add new transitions to A according to the following saturation rules:
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Figure 7. A post∗

If 〈p,γ〉 ↪→ 〈p′,ε〉 ∈ Δ and p
γ

=⇒ q in the current automaton,
add a transition (p′,ε,q).

If 〈p,γ〉 ↪→ 〈p′,γ′〉 ∈ Δ and p
γ

=⇒ q in the current automaton,
add a transition (p′,γ′,q).

If r = 〈p,γ〉 ↪→ 〈p′,γ′γ′′〉 ∈ Δ and p
γ

=⇒ q in the current automaton,
add a transition (r,γ′′,q).

Correctness and termination are proved in Appendix 1. Consider again the pushdown
system P and the automaton A from Figure 6. Then the automaton shown in Figure 7 is
the result of the algorithm above and accepts post∗({〈p0,γ0γ0〉}).

4.4. Efficient Algorithms

In this section we present an efficient implementation of the abstract algorithm of Sec-
tions 4.2 and 4.3. We restrict ourselves to pushdown systems which satisfy |w| ≤ 2 for
every rule 〈p,γ〉 ↪→ 〈p′,w〉. As already mentioned in Section 4.3, any pushdown system
can be put into such a normal form with linear size increase, and the pushdown systems
derived from sequential programs satisfy this condition.

4.4.1. An Efficient Algorithm for Computing pre∗(C)

Given an automaton A accepting the set of configurationsC, we want to compute pre∗(C)
by constructing the automaton A pre∗ .

Algorithm 1 computes the transitions of A pre∗ by implementing the saturation rule
from section 4.2. The sets rel and trans contain the transitions that are known to belong
to A pre∗ ; rel contains the transitions that have already been examined. No transition is
examined more than once.

The idea of the algorithm is to avoid unnecessary operations. When we have a rule
〈p,γ〉 ↪→〈p′,γ′γ′′〉, we look out for pairs of transitions t1 = (p′,γ′,q′) and t2 = (q′,γ′′,q′′)
(where q′,q′′ are arbitrary states) so that we may insert (p,γ,q′′) – but we don’t know
in which order such transitions appear in trans. If every time we see a transition like t2
we check the existence of t1, many checks might be negative and waste time to no avail.
However, once we see t1 we know that all subsequent transitions (q′,γ′′,q′′) must lead to
(p,γ,q′′). It so happens that the introduction of an extra rule 〈p,γ〉 ↪→ 〈q′,γ′′〉 is enough
to take care of just these cases. We collect these extra rules in a set called Δ′; this notation
should make it clear that the pushdown system itself is not changed. Δ′ is merely needed
for the computation and can be thrown away afterwards.
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Algorithm 1
Input: a pushdown system P = (P,Γ,Δ) in normal form;

a P -Automaton A = (Γ,Q,δ,P,F) without transitions into P
Output: the set of transitions of Apre∗

1 rel ← /0; trans ← δ; Δ′ ← /0;
2 for all 〈p,γ〉 ↪→ 〈p′,ε〉 ∈ Δ do trans ← trans∪{(p,γ, p′)};
3 while trans �= /0 do
4 pop t = (q,γ,q′) from trans;
5 if t /∈ rel then
6 rel ← rel∪{t};
7 for all 〈p1,γ1〉 ↪→ 〈q,γ〉 ∈ (Δ∪Δ′) do
8 trans ← trans∪{(p1,γ1,q′)};
9 for all 〈p1,γ1〉 ↪→ 〈q,γγ2〉 ∈ Δ do

10 Δ′ ← Δ′ ∪{〈p1,γ1〉 ↪→ 〈q′,γ2〉};
11 for all (q′,γ2,q′′) ∈ rel do
12 trans ← trans∪{(p1,γ1,q′′)};
13 return rel

For a better illustration, consider again the example shown in Figure 6.
The initialisation phase evaluates the ε-rules and adds (p0,γ1, p0). When the latter is

taken from trans, the rule 〈p2,γ2〉 ↪→ 〈p0,γ1〉 is evaluated and (p2,γ2, p0) is added. This,
in combination with (p0,γ0,s1) and the rule 〈p1,γ1〉 ↪→ 〈p2,γ2γ0〉, leads to (p1,γ1,s1),
and Δ′ now contains 〈p1,γ1〉 ↪→ 〈p0,γ0〉. We now have p1

γ1−−→ s1
γ0−−→s2, so the next step

adds (p0,γ0,s2), and Δ′ is extended by 〈p0,γ0〉 ↪→ 〈s1,γ0〉. Because of Δ′, (p0,γ0,s2)
leads to (p1,γ1,s2). Finally, Δ′ is extended by 〈p0,γ0〉 ↪→〈s2,γ0〉, but no other transitions
can be added and the algorithm terminates.

Theorem 4.1 Let P = (P,Γ,Δ) be a pushdown system and let A = (Γ,Q,δ,P,F) be
an automaton. There exists an automaton A pre∗ recognising pre∗(Conf (A )). Moreover,
A pre∗ can be constructed in O(n2

QnΔ) time and O(nQnΔ + nδ) space, where nQ = |Q|,
nδ = |δ|, and nΔ = |Δ|.

The Theorem is proved in Appendix 2. It is easy to see that a naive implementation
of the abstract procedure of Section 4.2 leads to an O(n2

P n3
A ) time and O(nP nA ) space

algorithm, where nP = |P|+ |Δ|, and nA = |Q|+ |δ|.

4.4.2. An Efficient Algorithm for Computing post∗(C)

Given a regular set of configurations C, we want to compute post∗(C), i.e. the set of
successors of C. Without loss of generality, we assume that A has no ε-transitions.

Algorithm 2 calculates the transitions of A post∗ , implementing the saturation rule
from section 4.3. The approach is in some ways similar to the solution for pre∗; again we
use trans and rel to store the transitions that we need to examine. Note that transitions
from states outside of P go directly to rel since these states cannot occur in rules.

The algorithm is very straightforward. We start by including the transitions of A ;
then, for every transition that is known to belong to A post∗ , we find its successors. A
noteworthy difference to the algorithm in Section 4.3 is the treatment of ε-moves: ε-
transitions are eliminated and simulated with non-ε-transitions; we maintain the sets
eps(q) for every state q with the meaning that whenever there should be an ε-transition
going from p to q, eps(q) contains p.
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Algorithm 2
Input: a pushdown system P = (P,Γ,Δ) in normal form;

a P -Automaton A = (Γ,Q,δ,P,F) without transitions into P
Output: the automaton Apost∗

1 trans ← δ∩ (P×Γ×Q);
2 rel ← δ\ trans; Q′ ← Q; F ′ ← F ;
3 for all r = 〈p,γ〉 ↪→ 〈p′,γ1γ2〉 ∈ Δ do
4 Q′ ← Q′ ∪{qr};
5 trans ← trans∪{(p′,γ1,qr)};
6 for all q ∈ Q′ do eps(q) ← /0;
7 while trans �= /0 do
8 pop t = (p,γ,q) from trans;
9 if t /∈ rel then

10 rel ← rel∪{t};
11 for all 〈p,γ〉 ↪→ 〈p′,ε〉 ∈ Δ do
12 if p′ /∈ eps(q) then
13 eps(q) ← eps(q)∪{p′};
14 for all (q,γ′,q′) ∈ rel do
15 trans ← trans∪{(p′,γ′,q′)};
16 if q ∈ F ′ then F ′ ← F ′ ∪{p′};
17 for all 〈p,γ〉 ↪→ 〈p′,γ1〉 ∈ Δ do
18 trans ← trans∪{(p′,γ1,q)};
19 for all r = 〈p,γ〉 ↪→ 〈p′,γ1γ2〉 ∈ Δ do
20 rel ← rel∪{(qr ,γ2,q)};
21 for all p′′ ∈ eps(qr) do
22 trans ← trans∪{(p′′,γ2,q)};
23 return (Γ,Q′,rel,P,F ′)

γ0
s1p0

γ0
s2

m1

m2

p1
γ1

p2

γ0

γ2

γ0

γ0

γ0

ε

γ1

Figure 8. Apost∗ as computed by Algorithm 2.

Again, consider the example in Figure 7. In that example, m1 is the node associated
with the rule 〈p0,γ0〉 ↪→ 〈p1,γ1γ0〉, and m2 is associated with 〈p1,γ1〉 ↪→ 〈p2,γ2γ0〉. The
transitions (p1,γ1,m1) and (m1,γ0,s1) are a consequence of (p0,γ0,s1); the former leads
to (p2,γ2,m2) and (m2,γ0,m1) and, in turn, to (p0,γ1,m2). Because of 〈p0,γ1〉 ↪→〈p0,ε〉,
we now need to simulate an ε-move from p0 to m2. This is done by making copies of
all the transitions that leave m2; in this example, (m2,γ0,m1) is copied and changed to
(p0,γ0,m1). The latter finally leads to (p1,γ1,m1) and (m1,γ0,m1). Figure 8 shows the
result, similar to Figure 7 but with the ε-transition resolved.

Theorem 4.2 Let P = (P,Γ,Δ) be a pushdown system, and A = (Γ,Q,δ,P,F) be an
automaton. There exists an automaton A post∗ recognising post∗(Conf (A )). Moreover,
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A post∗ can be constructed in O(nPnΔ(nQ + nΔ)+ nPnδ) time and space, where nP = |P|,
nΔ = |Δ|, nQ = |Q|, and nδ = |δ|.

The proofs are given in Appendix 2. In [22] the same problem was considered (with
different restrictions on the rules in the pushdown system).

4.5. Symbolic Pushdown Systems

In Section 3 we have shown how to translate a sequential boolean program into a push-
down system. Recall that states are modelled by strings of the form g〈v1, p1〉 . . . 〈vn, pn〉,
where g encodes the current values of the global variables, and each pair 〈vi, pi〉 corre-
sponds to a procedure call that has not terminated yet. In the terminology of pushdown
systems, the string corresponds to a configuration 〈g , 〈v1, p1〉 . . . 〈vn, pn〉〉. So, more pre-
cisely:

• the control location of the configuration is g, the current values of the global
variables;

• the topmost stack symbol is 〈v1, p1〉 i.e., the current values v1 of the local variables
of the procedure being executed, and the current value p1 of the program counter;

• the rest of the stack content corresponds to activation records for each procedure
call; an activation record is a pair 〈vi, pi〉, where vi stores the values of the local
variables before a procedure call, and pi stores the return address.

It follows immediately from this description that the number of transition rules of
a pushdown system grows exponentially in the number of variables of the program. An
assignment, being executed at program point l1, after which execution continues at l2, is
modelled by a set of rules of the form

〈g1,〈v1, l1〉〉 ↪→ 〈g2,〈v2, l2〉〉.

For each pair g1, l1 of valuations we get a different rule (or more if the program is nondter-
minstic). If the program has 20 global variables and the procedure being currently ex-
ecuted has 20 local variables, all of them boolean, the assignment is modelled by 240

pushdown rules.
Obviously, 240 rules cannot be stored or manipulated one by one. For this reason

we use symbolic pushdown systems (SPSD). A SPDS is just a compact representation
of a PDS. It has symbolic rules, which correspond to sets of “similar” rules. Instead of

the 240 rules above, a SPDS has one single symbolic rule 〈p, l1〉
R

↪−−→ 〈p, l2〉, where R
is the set of all fourtuples (g1, l1,g2, l2) for which 〈g1,〈v1, l1〉〉 ↪→ 〈g2,〈v2, l2〉〉 is a rule.
The key point is that (g1, l1,g2, l2) can be seen as a bitvector, and we can now use ade-
quate data structures to compactly represent sets of bitvectors. In jMoped we use binary
decision diagrams (BDDs). Since BDDs are a very popular data structure, we refrain
from explaining the technique in large detail. We only sketch how the algorithm for the
computation of predecessors can be implemented for symbolic pushdown systems.

4.5.1. Symbolic Computation of Predecessors

We briefly explain how to lift the algorithm for computing the predecessors of a regular
set of configurations so that it can profit from BDD technology.
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Recall: given a regular set C of configurations of P , we want to compute pre∗(C). Let
A be a P -automaton that accepts C. We modify A to an automaton that accepts pre∗(C)
by adding new transitions according to the saturation rule:

If 〈p,γ〉 ↪→ 〈p′,γ1 . . .γn〉 and p′
γ1−−→q1

γ2−−→·· ·
γn
−−→q

in the current automaton, add a transition (p,γ,q).

For the symbolic case, the saturation rule becomes:

If 〈p,γ〉
R

↪−−→ 〈p′,γ1γ2 . . .γn〉 and p′
γ1−−→
R1

q1
γ2−−→
R2

· · ·
γn−−→
Rn

q in the

current automaton, replace p
γ

−→
R′

q by p
γ

−→
R′′

q where

R′′ = R′ ∪ {(g, l,gn) | (g, l,g0, l1, . . . , ln) ∈ R
∧ ∃g1, . . . ,gn−1 : ∀1 ≤ i ≤ n : (gi−1, li,gi) ∈ Ri }.

Clearly, in both cases we are carrying the same computation. The key observation
is that R′′ can be computed without having to enumerate the bitvectors of R or R′. Given
BDDs for R and R′, we directly construct a BDD for R′′. In favourable cases this leads to
an enormous speed-up.

5. Conclusions

In this paper we have presented jMoped, discussed the basic theory behind it, and de-
scribed its core algorithm. Some of the ideas embodied in the tool seem to have passed
the test of time, and it can be useful to summarize them.

Working with model checkers can be very frustrating. Usually, after launching an
analysis the user can only wait for an answer, which may or may not arrive; the tools do
not allow the user to monitor the progress of the analysis. Moreover, if the user interrupts
the analysis before it is completed, the tool does not return any information, however
partial. One of the design choices behind jMoped was to give the user as much control
of the tool as possible, and to keep him or her as much informed as possible. That is
why jMoped was designed to have the feeling of a testing tool: during the analysis the
green markers describe the progress made in covering the program, and if the analysis is
interrupted, one can see how far it went.

Fom the theoretical point of view, we think that our choice of giving programs a
rewrite semantics has paid off. While this choice may look very natural in retrospect, it
took quite some time to develop. The program-analysis community tended to give se-
mantics by directly defining the set of executions, which in the presence of recursion and
parallelism can become very cumbersome. The rewrite style is close to the operational
semantics of process algebras, but even here there is also a substantial difference. Tra-
ditional operational semantics puts much emphasis on notions of encapsulation and ab-
straction. While these are essential for many applications, they also make the connection
to simple abstract machines (like pushdown systems or Petri nets) less clear, and hinders
the development of verification algorithms.
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Appendix 1: Correctness of the abstract algorithms

Computing pre∗(C): Correctness

Let A be a P -automaton, and let A pre∗ be the automaton obtained from A by means of
the saturation rule defined in Section 4.2:

If 〈p,γ〉 ↪→ 〈p′,w〉 and p′
w
−→q in the current automaton,

add a transition (p,γ,q).

Observe that all new transitions added by the procedure start at an initial state, i.e.,
an element of P. In the sequel we use the following notation:

• q
w

−→
i

q′ denotes that the automaton obtained after adding i transitions to A con-

tains a path labelled by w leading from q to q′; in particular, q
w
−→

0
q′ denotes that

A contains such a path.
• q

w
−→q′ denotes that there is an index i satisfying q

w
−→

i
q′. Equivalently, it denotes

that A pre∗ contains a path labelled by w leading from q to q′.

We show that A pre∗ recognises the set pre∗(Conf (A )). The result is proved in The-
orem 5.1 at the end of this subsection. We need two preliminary lemmata.

Lemma 5.1 For every configuration 〈p,v〉 ∈ Conf (A ), if 〈p′,w〉 ⇒ 〈p,v〉 then p′
w
−→q

for some final state q of A pre∗ .
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Proof: Let 〈p′,w〉
k=⇒ 〈p,v〉 denote that we derive 〈p,v〉 from 〈p′,w〉 in k steps. We

proceed by induction on k.

Basis. k = 0. Then p′ = p and w = v. Since 〈p,v〉 ∈ Conf (A ), we have p
v
−→

0
q for some

final state q, and so p
v
−→q, which implies p′

w
−→q.

Step. k > 0. Then, by the definition of
k=⇒, there is a configuration 〈p′′,u〉 such that

〈p′,w〉
1=⇒ 〈p′′,u〉

k−1=⇒ 〈p,v〉 .

We apply the induction hypothesis to 〈p′′,u〉
k−1=⇒ 〈p,v〉, and obtain

p′′
u

−→q for some q ∈ F .

Since 〈p′,w〉
1=⇒ 〈p′′,u〉, there are γ,w1,v1 such that

w = γw1, u = u1w1, and 〈p′,γ〉 ↪→ 〈p′′,u1〉.

Let q1 be a state of A pre∗ such that

p′′
u1−−→q1

w1−−→q.

By the saturation rule, we have

p′
γ
−→q1

w1−−→q ,

which implies

p′
γw1−−−→q ,

and since w = γw1, we are done. �

Lemma 5.2 Let p
w

−→q be a path of A pre∗ . The following properties hold:

(a) 〈p,w〉 ⇒ 〈p′,w′〉 for a configuration 〈p′,w′〉 such that p′
w′

−−→
0

q; moreover,

(b) if q is an initial state, then w′ = ε.

Proof:
Let i be an index such that p

w
−→

i
q. We prove (a) and (b) simultaneously by induction

on i.

Basis. i = 0. Then p
w
−→q is a path of A .

(a) Take p′ = p and w′ = w.
(b) Since A contains no transitions leading to an initial state, we have w = ε and

p′ = p. So 〈p,w〉 ⇒ 〈p′,ε〉.
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Step. i ≥ 1. The proofs of (a) and (b) have a common initial part. Let t = (p1,γ,q′)
be the i-th transition added to A . (Notice that we can safely write (p1,γ,q′) instead of
(q1,γ,q′) because all new transitions start at an initial state.) Let j be the number of times
that t is used in p

w
−→

i
q.

The proof is by induction on j. If j = 0, then we have p
w

−→
i−1

q, and (a), (b) follow

from the induction hypothesis (induction on i). So assume that j > 0. Then there exist u
and v such that w = uγv and

p
u
−→
i−1

p1
γ

−→
i

q′
v
−→

i
q (0)

The application of the induction hypothesis (induction on i) to p
u
−→
i−1

p1 yields (notice

that p1 is an initial state, and so both (a) and (b) can be applied):

〈p,u〉 ⇒ 〈p1,ε〉 (1)

Since the transition (p1,γ,q′) has been added by applying the saturation rule, there
exist p2 and w2 such that

〈p1,γ〉 ↪→ 〈p2,w2〉 (2.1)

p2
w2−−→
i−1

q′ (2.2)

From this point on the proofs for (a) and (b) diverge.
(a) From (0) and (2.2) we get

p2
w2−−→
i−1

q′
v
−→

i
q (3)

Since the transition t is used in (3) less often than in (0), we can apply the induction
hypothesis (induction on j) to (3), and obtain

〈p2,w2v〉 =⇒ 〈p′,w′〉 (4.1)

p′
w′

−−→
0

q (4.2)

Putting (1), (2.1), and (4.1) together, we get

〈p,uγv〉
(1)
=⇒ 〈p1,γv〉

(2.1)
=⇒ 〈p2,w2v〉

(4.1)
=⇒ 〈p′,w′〉 (5)

We obtain (a) from (5) and (4.2).
(b) Since q is an initial state, and A pre∗ contains no transitions leading from non-

initial to initial states, q′ is an initial state. The application of the induction hypothesis
(induction on i) to (2.2) yields:

〈p2,w2〉 =⇒ 〈q′,ε〉 (6)
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Since t appears less often in q′
v
−→

i
q than in (0), we can apply the induction hypoth-

esis (induction on j) to q′
v

−→
i

q. We get

〈q′,v〉 =⇒ 〈q,ε〉 (7)

Putting (1), (2.1), (6) and (7) together, we get

〈p,uγv〉
(1)

=⇒ 〈p1,γv〉
(2.1)
=⇒ 〈p2,w2v〉

(6)
=⇒ 〈q′,v〉

(7)
=⇒ 〈q,ε〉

Since q is an initial state, (b) is obtained by taking p′ = q. �

Theorem 5.1 Let A pre∗ be the automaton obtained from A by exhaustive application of
the saturation rule defined in Section 4.2. A pre∗ recognises the set pre∗(Conf (A )).

Proof: Let 〈p,w〉 be a configuration of pre∗(Conf (A )). Then 〈p,w〉 ⇒ 〈p′,w′〉 for a
configuration 〈p′,w′〉 ∈ Conf (A ). By Lemma 5.1, p

w
−→q for some final state q of A pre∗ .

So 〈p,w〉 is recognised by A pre∗ .
Conversely, let 〈p,w〉 be a configuration recognised by A pre∗ . Then p

w
−→q in

A pre∗ for some final state q. By Lemma 5.2(a), 〈p,w〉 ⇒ 〈p′,w′〉 for a configura-

tion 〈p′,w′〉 such that p′
w′

−−→
0

q. Since q is a final state, 〈p′,w′〉 ∈ Conf (A ), and so

〈p,w〉 ∈ pre∗(Conf (A )). �

Computing post∗(C): Correctness

Let A be a P -automaton, and let A post∗ be the automaton obtained from A by means of
the saturation rules defined in Section 4.3:

If 〈p,γ〉 ↪→ 〈p′,ε〉 ∈ Δ and p
γ

=⇒ q in the current automaton,
add a transition (p′,ε,q).

If 〈p,γ〉 ↪→ 〈p′,γ′〉 ∈ Δ and p
γ

=⇒ q in the current automaton,
add a transition (p′,γ′,q).

If r = 〈p,γ〉 ↪→ 〈p′,γ′γ′′〉 ∈ Δ and p
γ

=⇒ q in the current automaton,
add a transition (r,γ′′,q).

In the sequel we use the following notation:

• q
w
−→

i
q′ denotes that the automaton obtained after the i-th application of the satu-

ration rule contains a path labelled by w leading from q to q′; in particular, q
w

−→
0

q′

denotes that A contains such a path (unless q′ is a state added by the algorithm).
• q

w
−→q′ denotes that there is an index i satisfying q

w
−→

i
q′. Equivalently, it denotes

that A post∗ contains a path labelled by w leading from q to q′.
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We show that A post∗ recognises the set post∗(Conf (A )). The result is proved in
Theorem 5.2 at the end of this subsection. We need two preliminary lemmata.

Lemma 5.3 For every configuration 〈p,v〉 ∈ Conf (A ), if 〈p,v〉 ⇒ 〈p′,w〉 then p′
w
−→q

for some final state q of A post∗ .

Proof: Let 〈p,v〉
k=⇒ 〈p′,w〉 denote that we derive 〈p′,w〉 from 〈p,v〉 in k steps. We

proceed by induction on k.

Basis. k = 0. Then p′ = p and w = v. Since 〈p,v〉 ∈ Conf (A ), we have p
v

−→
0

q for some

final state q, and so p
v

−→q, which implies p′
w

−→q.

Step. k > 0. Then, by the definition of
k=⇒, there is a configuration 〈p′′,u〉 such that

〈p,v〉
k−1=⇒ 〈p′′,u〉

1=⇒ 〈p′,w〉 .

We apply the induction hypothesis to 〈p,v〉
k−1=⇒ 〈p′′,u〉, and obtain

p′′
u

−→q for some q ∈ F .

Since 〈p′′,u〉
1=⇒ 〈p′,w〉, there are γ,u1,v1,w1 such that

u = γu1, w = w1u1, and 〈p′′,γ〉 ↪→ 〈p′,w1〉.

There are three possible cases, according to the length of w1. We consider only the case
|w1| = 2, the others being simpler. Since |w1| = 2, we have w1 = γ′γ′′. Let q1 be a state
of A pre∗ such that

p′′
γ

−→q1
u1−−→q.

By the initialisation and the saturation rule, we have

p′
γ′

−→r
γ′′

−−→q1
u1−−→q ,

which implies

p′
w1u1−−−→q ,

and since w = w1u1, we are done. �

Lemma 5.4 Let p
w
−→q be a path of A post∗ . Then the following property holds: 〈p′,w′〉⇒

〈p,w〉 for a configuration 〈p′,w′〉 such that p′
w′

−−→
0

q.

Proof: Let i be an index such that p
w

−→
i

q. We prove the lemma by induction on i.

Basis. i = 0. Take p′ = p and w′ = w.
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Step. i ≥ 1. Let t be the transition added to A in the i-th step. Let j be the number of
times that t is used in p

w
−→

i
q. A does not have any transitions leading to initial states,

and the algorithm does not add any such transitions; therefore, if t starts in an initial state,
t can be used at most once and only at the start of the path.

The proof is by induction on j. If j = 0, then we have p
w

−→
i−1

q, and we apply the

induction hypothesis (induction on i). So assume that j > 0. We distinguish the three
possible cases of the saturation rule:

(i) and (ii): t = (p1,v,q1), where v = ε or v = γ1: Then j = 1 and there exists w1 such
that w = vw1 and q1 such that

p = p1
v

−→
i

q1
w1−−→
i−1

q (0)

Since t was added via the saturation rule, there exist p2 and γ2 such that

〈p2,γ2〉 ↪→ 〈p1,v〉 (1.1)

p2
γ2−−→

i−1
q1 (1.2)

From (0) and (1.2) we get

p2
γ2

−−→
i−1

q1
w1−−→
i−1

q (2)

t is not used in (2), so applying the induction hypothesis (on j) we obtain

〈p′,w′〉 =⇒ 〈p2,γ2w1〉 (3.1)

p′
w′

−−→
0

q (3.2)

Combining (1.1) and (3.1) we have

〈p′,w′〉
(3.1)
=⇒ 〈p2,γ2w1〉

(1.1)
=⇒ 〈p1,vw1〉 = 〈p,w〉 (4)

The lemma follows from (3.2) and (4).

(iii) Let t = (r,γ′′,q′) be a transition resulting from the application of the third part
of the saturation rule. Then there exist u, v such that w = uγ′′v and

p
u

−→
i−1

r
γ′′

−−→
i

q′
v

−→
i

q (5)

Because t was added via the saturation rule, we conclude that there exists some rule
of the form

〈p2,γ2〉 ↪→ 〈p1,γ
′γ′′〉 (6.1)

with p2
γ2
−−→
i−1

q′ (6.2)

J. Esparza / Building a Software Model Checker 81



i.e. (6.1) is the rule associated with r. Application of the induction hypothesis (on i)
yields

〈p3,w3〉 ⇒ 〈p,u〉 (7.1)

p3
w3−−→
0

r (7.2)

for some pair 〈p3,w3〉; due to the construction of the automaton it holds that 〈p3,w3〉 =
〈p1,γ

′〉. Combining (5) and (6.2) we get

p2
γ2−−→

i−1
q′

v
−→

i
q

Since t occurs less often than j in this path, we can apply the induction hypothesis (on j)
to obtain the existence of some 〈p′,w′〉 such that

〈p′,w′〉 ⇒ 〈p2,γ2v〉 (8.1)

p′
w′

−−→
0

q (8.2)

Finally, if we put together (6.1), (7.1) and (8.1), we get

〈p′,w′〉
(8.1)
=⇒ 〈p2,γ2v〉

(6.1)
=⇒ 〈p1,γ

′γ′′v〉 = 〈p3,w3γ′′v〉
(7.1)
=⇒ 〈p,uγ′′v〉 = 〈p,w〉 (9)

and (a) follows from (8.2) and (9). �

Theorem 5.2 Let A post∗ be the automaton obtained from A by exhaustive application of
the saturation rule defined in Section 4.3. A post∗ recognises the set post∗(Conf (A )).

Proof:
Let 〈p,w〉 be a configuration of post∗(Conf (A )). Then 〈p′,w′〉 ⇒ 〈p,w〉 for a con-

figuration 〈p′,w′〉 ∈ Conf (A ). By Lemma 5.3, p
w

−→q for some final state q of A post∗ . So
〈p,w〉 is recognised by A post∗ .

Conversely, let 〈p,w〉 be a configuration recognised by A post∗ . Then p
w
−→q in

A post∗ for some final state q. By Lemma 5.4, 〈p′,w′〉 ⇒ 〈p,w〉 for a configuration

〈p′,w′〉 such that p′
w′

−−→
0

q. Since q is a final state, 〈p′,w′〉 ∈ Conf (A ), and so 〈p,w〉 ∈

post∗(Conf (A )). �

Appendix 2: Correctness and complexity of the implementations

Algorithm 1: Correctness and Complexity

In this section we prove the correctness of the algorithm for pre∗ given in section 4.4.1
along with the complexity bounds given in Theorem 4.1.
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Termination: rel is empty initially and can only grow afterwards. Q and Γ are finite
sets, therefore rel can only take finitely many elements. Similarly, trans can only be of
finite size. Once no more transitions can be added to rel, trans can no longer grow and
will be empty eventually.

Because of the finiteness of rel and Δ there will be finitely many members of Δ′, and
so the loop at line 7 is traversed only finitely often.

Lemma 5.5 For every transition t, if t ∈ trans at any time during the execution of the
algorithm, then t will be “used” exactly once, i.e. the part between lines 6 and 12 will be
entered exactly once for t.

Proof: rel is empty initially and contains exactly the used transitions later. Until t is
removed from trans, the algorithm cannot terminate. When t is removed from trans, it is
used if and only if it is not yet a used transition, otherwise it will be ignored. �

Correctness:

(1) Throughout the algorithm rel ⊆ δpre∗ holds. rel contains only elements from
trans, so we inspect the lines that change trans, and show that all the additions are
in compliance with the algorithm given in section 4.2 the correctness of which
has already been proved. More precisely, we show that all additions model that
algorithm’s saturation rule:

If 〈p,γ〉 ↪→ 〈p′,w〉 and p′
w
−→q, then add (p,γ,q).

• In line 1, trans is assigned δ which allows us to recognise C.
• Lines 2 and 12 directly model the saturation rule.
• In line 8, if the rule 〈p1,γ1〉 ↪→ 〈q,γ〉 is taken from Δ, then we directly model

the saturation rule. Otherwise, 〈p1,γ1〉 ↪→ 〈q,γ〉 was added to Δ′ because
〈p1,γ1〉 ↪→ 〈p′′,γ′γ〉 ∈ Δ and (p′′,γ′,q) in trans for some p′′,γ′ and again the
saturation rule applies.

(2) After termination δpre∗ ⊆ rel holds. Initially, trans contains δ, and because of
Lemma 5.5 all of δ will eventually end up in rel. Moreover, we prove that
all possible applications of the saturation rule are used. Assume that we have
〈p,γ〉 ↪→ 〈p′,w〉 and p′

w
−→q w.r.t. rel.

• If w = ε, then q = p′, and (p,γ, p′) is added in line 2.
• If w = γ1, then there is some transition t1 = (p′,γ1,q) in rel. Because rel con-

tains only the used transitions, and because of line 8, (p,γ,q) will be added to
trans.

• If w = γ1γ2, then rel contains t1 = (p′,y1,q′) and t2 = (q′,γ2,q).

∗ If t1 is used before t2, Δ′ will have the rule 〈p,γ〉 ↪→ 〈q′,γ2〉. Then, when t2
is used, (p,γ,q) is added in line 8.

∗ If t2 is used before t1, it is in rel when t1 is used. Then (p,γ,q) is added in
line 12.

J. Esparza / Building a Software Model Checker 83



Complexity: Let nQ = |Q|, nδ = |δ|, and nΔ = |Δ|, i.e. the number of states and transi-
tions in A , and the number of rules in the pushdown system. The size of A can be written
as nQ + nδ.

Imagine that prior to running the algorithm, all rules of the form 〈p,γ〉 ↪→ 〈p′,γ′w〉
have been put into “buckets” labelled (p′,γ′). If the buckets are organised in a hash table
this can be done in O(nΔ) time and space. Similarly, all rules in Δ′ can be put into such
buckets at run-time, and the addition of one rule takes only constant time.

If rel and δ are implemented as hash tables, then addition and membership test take
constant time. Moreover, if trans is a stack, then addition and removal of transitions take
constant time, too.

When (q,γ,q′) is used, we need to regard just the rules that are in the (q,γ)-bucket.
Because of Lemma 5.5, every possible transition is used at most once. Based on these
observations, let us compute how often the statements inside the main loop are executed.

Line 10 is executed once for each combination of rules 〈p1,γ1〉 ↪→ 〈q,γγ2〉 and tran-
sitions (q,γ,q′), i.e. O(nQnΔ) times, therefore the size of Δ′ is O(nQnΔ), too. For the loop
starting at line 11, q′ and γ2 are fixed, so line 12 is executed O(n2

QnΔ) times.
Line 8 is executed once for each combination of rules 〈p1,γ1〉 ↪→ 〈q,γ〉 in (Δ∪Δ′)

and transitions (q,γ,q′). As stated previously, the size of Δ′ is O(nQnΔ), so line 8 is
executed O(n2

QnΔ) times.
Let us now count the iterations of the main loop, i.e. how often line 4 is executed.

This directly depends on the number of elements that are added to trans. Initially, there
are nδ + O(nΔ) elements from lines 1 and 2. Notice that nδ = O(nQ · nΔ · nQ). We al-
ready know that the other additions to trans are no more than O(n2

QnΔ) in number. As a
conclusion, the whole algorithm takes O(n2

QnΔ) time.
Memory is needed for storing rel, trans and Δ′.

• Line 1 adds nδ transitions to trans.
• In line 2, there are O(nΔ) additions.
• In lines 8 and 12, p1 and γ1 are taken from the head of a rule in Δ. This means that

these lines can only add O(nΔnQ) transitions to rel.
• The size of Δ′ is O(nQnΔ) (see above).

From these facts it follows that the algorithm takes O(nQnΔ + nδ) space, the size needed
to store the result. Algorithm 1 is therefore optimal with respect to memory usage.

The result of the analysis is summarised in Theorem 4.1.

Algorithm 2: Correctness and Complexity

We prove the correctness of the algorithm for post∗ given in section 4.4.2 along with the
complexity bounds given in Theorem 4.2.

For better understanding of the following paragraphs it is useful to consider the
structure of the transitions in A post∗ . Let Q1 = (Q\P) and Q2 = (Q′ \Q).

In the beginning, there are no transitions into P, i.e. we just have transitions from P
into Q1, and from Q1 into Q1. After line 5 is executed once, we also have transitions
from P to Q2. All the other additions to rel are now either from P to Q1 ∪Q2 except for
line 20; here we have transitions from Q2 to Q1 ∪Q2. We can summarise these observa-
tions in the following facts:

• After execution of the algorithm, rel contains no transitions leading into P.
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• The algorithm does not add any transitions starting in Q1.

Termination: The algorithm terminates. This can be seen from the fact that the size of
Q′ is bounded by |Q|+ |Δ|; hence, rel’s maximum size is |Q′| · |Γ| · |Q′|, and we can use
a similar reasoning as in the algorithm for pre∗.

Correctness: We show that the algorithm is an implementation of the construction
given earlier. In section 4.3 we defined δpost∗ to be the smallest set of transitions con-
taining δ, containing a transition (p1,γ1,qr) for every rule r = 〈p,γ〉 ↪→ 〈p1,γ1γ2〉 and
satisfying the following saturation properties:

• If 〈p,γ〉 ↪→ 〈p′,ε〉 ∈ Δ and p
γ

=⇒ q, then (p′,ε,q) ∈ δpost∗ .

• If 〈p,γ〉 ↪→ 〈p′,γ′〉 ∈ Δ and p
γ

=⇒ q, then (p′,γ′,q) ∈ δpost∗ .

• If r = 〈p,γ〉 ↪→ 〈p′,γ′γ′′〉 ∈ Δ and p
γ

=⇒ q, then (r,γ′′,q) ∈ δpost∗ .

The automaton constructed in Algorithm 2 does not have ε-transitions, so we cannot
show that rel = δpost∗ . Instead, we show that after execution, it holds that ((q,γ,q′) ∈
rel) ⇐⇒ (q

γ
=⇒ q′) for all q,q′ ∈ Q, γ ∈ Γ.

“⇒” Since elements from trans flow into rel, we inspect all the lines that change
either trans or rel:

∗ Lines 1 and 2 add elements from δ which is a subset of δpre∗ .
∗ Line 5 is a consequence of the initialisation rule.
∗ In line 15 we have (p,γ,q) and (q,γ′,q′) in rel, 〈p,γ〉 ↪→ 〈p′,ε〉 in Δ, hence

p′
ε
−→q

γ′

−→q′, so (p,γ′,q′) does not change the desired property.
∗ Line 18 is a direct implementation of the second saturation property.
∗ Line 20 is a direct implementation of the third saturation property.
∗ In line 22 it holds that p′′ ∈ eps(qr); from this we conclude the exis-

tence of some rule 〈p1,γ1〉 ↪→ 〈p′′,ε〉 and some transition (p1,γ1,qr). So,

p′′
ε
−→qr

γ2
−−→q, and the addition of (p′′,γ2,q) doesn’t change the property.

“⇐” By the same argumentation as in Lemma 5.5 we can say that all the elements in
trans eventually end up in rel. Therefore it is sufficient to prove that any element
of δpost∗ is added to either rel or trans during execution of the algorithm.
We observe the following: Since there are no transitions leading into P, the ε-
transitions can only go from states in P to states in Q1 ∪Q2; therefore no two ε-

transitions can be adjacent. The relation p
γ

=⇒ q from section 4.3 can be written
as follows:

(p
γ

=⇒ q) ⇐⇒ (p,γ,q)∨∃q′:((p,ε,q′)∧ (q′,γ,q))

The desired property follows from the following facts:

∗ Because of lines 1 and 2, after execution δ ⊆ rel holds.
∗ If 〈p′,γ′〉 ↪→ 〈p,ε〉 and (p′,γ′,q) ∈ rel, then p is added to eps(q). We will see

that whenever there is p in eps(q′) and (q′,γ,q) in rel for some p,q′,q ∈ Q′ and
y ∈ Γ, eventually (p,γ,q) will be in rel.
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∗ Either (q′,γ,q) is known before p ∈ eps(q′) is known. Then (p,γ,q) is added
in line 15;

∗ Or p ∈ eps(q′) is known before (q′,γ,q). Recall that q′ ∈ Q1 ∪ Q2. ε-
transitions are added only after the initialisation phase, and the only transi-
tions starting in Q1 ∪Q2 added after initialisation are those in line 20. In this
case (p,γ,q) is added in line 22.

∗ If 〈p′,γ′〉 ↪→ 〈p,γ〉 and (p′,γ′,q) ∈ rel, then (p,γ,q) is added in line 18.
∗ If r = 〈p′,γ′〉 ↪→〈p,γγ′′〉 then (p,γ,r) is added in line 5. If moreover (p′,γ′,q)∈

rel, (r,γ′′,q) is added in line 20.

Complexity: Let nP,nQ,nΔ,nδ be the sizes of P,Q,Δ and δ, respectively. Once again
let rel and δ be implemented as a hash table and trans as a stack, so that all the needed
addition, membership test and removal operations take constant time. The sets eps can
be implemented as bit-arrays with one entry for each state in P; again addition and mem-
bership test cost only constant time.

The rules in Δ can be sorted into buckets according to their left-hand side (at the
cost of O(Δ) time and space); i.e. put every rule 〈p,γ〉 ↪→ 〈p′,w〉 into the bucket labelled
(p,γ). The transitions in rel can be sorted into buckets according to the source state (i.e. a
transition (q,γ,q′) would be sorted into a bucket labelled q); since no transition is added
to rel more than once, this costs no more than O(|rel|) time and space.

For every transition t = (p,γ,q) ∈ rel, the part from line 10 and 22 is executed only
once. Because we just need to take a look at the (p,γ)-bucket for rules, we can make the
following statements:

• Line 5 is executed O(nΔ) times.
• Line 18 is executed once for every combination of rules 〈p,γ〉 ↪→ 〈p′,γ′〉 and

transitions (p,γ,q) of which there are at most |Δ| |Q′| many, i.e. there are
O(nΔ(nQ + nΔ)) many executions.

• Line 20 is executed O(nΔ(nQ + nΔ)) times (like line 18).
• Since eps(q), q ∈ Q′ can contain at most nP entries, line 22 is executed

O(nPnΔ(nQ + nΔ)) times.
• For line 15, analysis becomes more complicated. First, observe that the part from

line 13 to 16 is executed only once for every (p,ε,q) ∈ δpost∗ . Let us distinguish
two cases:

∗ q ∈ Q1: Altogether, there are O(nδ) many transitions going out from the states
in Q1, and each of them can be copied at most once to every state in P which
means O(nPnδ) many operations (remember that the algorithm adds no transi-
tions leaving states in Q1!)

∗ q∈ Q2: If r = 〈p1,γ1〉 ↪→〈p2,γ2γ3〉, then all the transitions leaving qr are of the
form (qr,γ3,q′′) where q′′ may be in Q1 ∪Q2. There are O(nΔ) many states in
Q2, so we end up with O(nPnΔ(nQ + nΔ)) many operations.

• Line 8 is executed at most once for every transition in δ and for every transition
added in the lines discussed above, i.e. O(nPnΔ(nQ + nΔ)+ nPnδ) times. This is
also an upper bound for the size of rel resp. trans.
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• The initialisation phase can be completed in O(nδ + nΔ + nQ) (for the transitions
in δ we just need to decide whether the source state is in P and add the transition
to either trans or rel).

• We need O(nQ +nΔ) space to store Q′, O(nQ) for F ′ and O(nP(nQ +nΔ)) for eps.

The result of this subsection is summarised in Theorem 4.2.
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Symbolic Trajectory Evaluation (STE):

Automatic Refinement and

Vacuity Detection
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Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for hard-

ware model checking. It is based on combining 3-valued abstraction with symbolic

simulation, using 0,1 and X ("unknown"). The X value is used to abstract away

parts of the circuit. The abstraction is derived from the user’s specification. Cur-

rently the process of refinement in STE is performed manually. This paper presents

an automatic refinement technique for STE. The technique is based on a clever se-

lection of constraints that are added to the specification so that on the one hand

the semantics of the original specification is preserved, and on the other hand, the

part of the state space in which the "unknown" result is received is significantly

decreased or totally eliminated. In addition, this paper raises the problem of vacuity

of passed and failed specifications. This problem was never discussed in the frame-

work of STE. We describe when an STE specification may vacuously pass or fail,

and propose a method for vacuity detection in STE.

Keywords. Symbolic Trajectory Evaluation (STE), model checking, abstraction-

refinement, vacuity

1. Introduction

This paper is an overview of the work presented in [30] and [29]. It presents the frame-

work of Symbolic Trajectory Evaluation (STE) and describes automatic refinement and

vacuity detection in this context.

Symbolic Trajectory Evaluation (STE) [26] is a powerful technique for hardware

model checking. STE combines 3-valued abstraction with symbolic simulation. It is ap-

plied to a circuit M , described as a graph over nodes (gates and latches). Specifications

in STE consist of assertions in a restricted temporal language. The assertions are of the

form A =⇒ C, where the antecedent A expresses constraints on nodes n at different

times t, and the consequent C expresses requirements that should hold on such nodes

(n, t). For each node, STE computes a symbolic representation, often in the form of a

Binary Decision Diagram (BDD) [8]. The BDD represents the value of the node as a

function of the values of the circuit’s inputs. For precise symbolic representation, mem-

ory requirements might be prohibitively high. Thus, in order to handle very large circuits,

it is necessary to apply some form of abstraction.

Abstraction in STE is derived from the specification by initializing all inputs not ap-

pearing in A to the X (“unknown”) value. The rest of the inputs are initialized according
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to constraints in A to the values 0 or 1 or to symbolic variables. A fourth value, ⊥, is

used in STE for representing a contradiction between a constraint in A on some node

(n, t) and the actual value of node n at time t in the circuit.

In [18], a 4-valued truth domain {0, 1, X, ⊥} is defined for the temporal language

of STE, corresponding to the 4-valued domain of the values of circuit nodes. Thus, STE

assertions may get one of these four values when checked on a circuit M . The values

0 and 1 indicate that the assertion fails or passes on M , respectively. The ⊥ truth value

indicates that no computation of M satisfies A. Thus, the STE assertion passes vacu-

ously. The X truth value indicates that the antecedent is too coarse and underspecifies

the circuit.

In the latter case a refinement is needed. Refinement in STE amounts to changing

the assertion in order to present node values more accurately.

STE has been in active use in the hardware industry, and has been very successful

in verifying huge circuits containing large data paths [27,25,34]. Its main drawback,

however, is the need for manual abstraction and refinement, which can be labor-intensive.

In this work we propose a technique for automatic refinement of assertions in STE.

In our technique, the initial abstraction is derived, as usual in STE, from the given speci-

fication. The refinement is an iterative process, which stops when a truth value other than

X is achieved. Our automatic refinement is applied when the STE specification results

with X . We compute a set of input nodes, whose refinement is sufficient for eliminating

the X truth value. We further suggest heuristics for choosing a small subset of this set.

Selecting a "right" set of inputs has a crucial role in the success of the abstraction and

refinement process: selecting too many inputs will add many variables to the computation

of the symbolic representation, and may result in memory and time explosion. On the

other hand, selecting too few inputs or selecting inputs that do not affect the result of the

verification will lead to many iterations with an X truth value.

We point out that, as in any automated verification framework, we are limited by

the following observations. First, there is no automatic way to determine whether the

provided specification is in accord with the user intention. Therefore, we assume that

it is, and we make sure that our refined assertion passes on the concrete circuit if and

only if the original assertion does. Second, bugs cannot automatically be fixed. Thus,

counterexamples are analyzed by the user.

Another important contribution of our work is identifying that STE results may hide

vacuity. This possibility was never raised before. Hidden vacuity may occur since an

abstract execution of M on which the truth value of the specification is 1 or 0, might not

correspond to any concrete execution of M . In such a case, a pass is vacuous, while a

counterexample is spurious. We propose two algorithms for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-

ment [27]. We ran it on two nontrivial circuits with several assertions. Our experimen-

tal results show success in automatically identifying a set of inputs that are crucial for

reaching a definite truth value. Thus, a small number of iterations were needed.

The rest of the paper is organized as follows. Section 2 reviews related work. In Sec-

tion 3 we give some background and basic definitions and notations. Section 4 describes

the inherent limitations of automatic refinement of specifications versus manual refine-

ment, and characterizes our proposed refinement technique. Section 5 presents heuris-

tics for choosing a subset of inputs to be refined. Section 6 defines the vacuity problem

in STE and suggests several methods for vacuity detection. Section 7 briefly summa-
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rizes experimental results of our refinement technique. Finally, Section 8 concludes and

suggests directions for future research.

2. Related Work

Abstraction is a well known methodology in model checking for fighting the state ex-

plosion problem. Abstraction hides certain details of the system in order to result in a

smaller model. Two types of semantics are commonly used for interpreting temporal

logic formulas over an abstract model. In the two-valued semantics, a formula is either

true or false in the abstract model. When the formula is true, it is guaranteed to hold for

the concrete model as well. On the other hand, false result may be spurious, meaning that

the result in the concrete model may not be false. In the three-valued semantics [7,28],

a third truth value is introduced: the unknown truth value. With this semantics, the true

and false truth values in the abstract model are guaranteed to hold also in the concrete

model, whereas the unknown truth value gives no information about the truth value of

the formula in the concrete model.

In both semantics, when the model checking result on the abstract model is incon-

clusive, the abstract model is refined by adding more details to it, making it more similar

to the concrete model. This iterative process is called Abstraction-Refinement, and has

been investigated thoroughly in the context of model checking [14,10,21,15,3].

The work presented in this paper is the first attempt to perform automatic refinement

in the framework of STE. In [13], it is shown that the abstraction in STE is an abstract

interpretation via a Galois connection. However, [13] is not concerned with refinement.

In [32], an automatic abstraction-refinement for symbolic simulation is suggested. The

main differences between our work and [32] is that we compute a set of sufficient inputs

for refinement and that our suggested heuristics are significantly different from those

proposed in [32].

Recently, two new refinement methods have been suggested. The automatic refine-

ment presented in [12] is based on a notion of responsibility and can be combined with

the method presented here. The method in [16] is applicable only in the SAT-based STE

framework developed there. In [1], a method for automatic abstraction without refine-

ment is suggested.

Generalized STE (GSTE) [36] is a significant extension of STE that can verify all

ω-regular properties. Two manual refinement methods for GSTE are presented in [35].

In the first method, refinement is performed by changing the specification. In the sec-

ond method, refinement is performed by choosing a set of nodes in the circuit, whose

values and the relationship among them are always represented accurately. In [33], SAT-

based STE is used to get quick feedback when debugging and refining a GSTE assertion

graph. However, the debugging and refinement process itself is manual. An automatic

refinement for GSTE has recently been introduced in [11].

An additional source of abstraction in STE is the fact that the constraints of A on

internal nodes are propagated only forward through the circuit and through time. We

do not deal with this source of abstraction. In [36], they handle this problem by the

Bidirectional (G)STE algorithm, in which backward symbolic simulation is performed,

and new constraints implied by the existing constraints are added to A. STE is then

applied on the enhanced antecedent. Our automatic refinement can be activated at this

stage.
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Vacuity refers to the problem of trivially valid formulas. It was first noted in [4].

Automatic detection of vacuous pass under symbolic model checking was first proposed

in [5] for a subset of the temporal logic ACTL called w-ACTL. In [5], vacuity is defined

as the case in which, given a model M and a formula φ, there exists a sub formula ξ
of φ which does not affect the validity of φ. Thus, replacing ξ with any other formula

will not change the truth value of φ in M . In [19,20] the work of [5] has been extended

by presenting a general method for detecting vacuity for specifications in CTL*. Further

extensions appear in [2,9].

In the framework of STE, vacuity, sometimes referred to as antecedent failure, is

discussed in [18,26]. Roughly speaking, it refers to the situation in which a node is as-

signed with a ⊥ value, implying that there are no concrete executions of the circuit that

satisfy all the constraints in A. As a result, A =⇒ C is trivially satisfied. This is in fact a

special case of vacuity as defined in [5]. The work presented here is the first to raise the

problem of hidden vacuity, in which the formula is trivially satisfied despite the fact that

no nodes are assigned with the ⊥ value.

3. Background

3.1. Circuits

There are different levels in which hardware circuits can be modeled. We concentrate

on a synchronous gate-level view of the circuit, in which the circuit is modeled by log-

ical gates such as AND and OR and by delay elements (latches). Aspects such as tim-

ing, asynchronous clock domains, power consumption and physical layout are ignored,

making the gate-level model an abstraction of the real circuit.

More formally, a circuit M consists of a set of nodes N , connected by directed

edges. A node is either an input node or an internal node. Internal nodes consist of latches

and combinational nodes. Each combinational node is associated with a Boolean func-

tion. The nodes are connected by directed edges, according to the wiring of the electric

circuit. We say that a node n1 enters a node n2 if there exists a directed edge from n1

to n2. The nodes entering a certain node are its source nodes, and the nodes to which

a node enters are its sink nodes. The value of a latch at time t can be expressed as a

Boolean expression over its source nodes at times t and t − 1, and over the latch value

at time t − 1. The value of a latch at time 0 is determined by a given initial value. The

outputs of the circuit are designated internal nodes whose values are of interest. We re-

strict the set of circuits so that the directed graph induced by M may contain loops but

no combinational loops.

Throughout the paper we refer to a node n at a specific time t as (n, t).
An example of a circuit is shown in Figure 1. It contains three inputs In1, In2 and

In3, two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5.

For simplicity, the clocks of the latches were omitted and we assume that at each time

t the latches sample their data source node from time t − 1. Note the negation on the

source node In2 of N2.

The bounded cone of influence (BCOI) of a node (n, t) contains all nodes (n′, t′)
with t′ ≤ t that may influence the value of (n, t), and is defined recursively as follows:

the BCOI of a combinational node at time t is the union of the BCOI of its source nodes
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Figure 1. A Circuit

at time t, and the BCOI of a latch at time t is the union of the BCOI of its source nodes

at times t and t− 1 according to the latch type.

3.2. Four-Valued Symbolic Simulation

Usually, the circuit nodes receive Boolean values, where the value of a node can be

described by a Boolean expression over its inputs. In STE, a third value, X ("unknown"),

is introduced. Attaching X to a certain node represents lack of information regarding

the Boolean value of that node. The motivation for the introduction of X is that its use

decreases the size of the Boolean expressions of the circuit nodes. This, however, is done

at the expense of the possibility of receiving unknown values for the circuit outputs.

1 0

X

Figure 2. The � partial order

A fourth value, ⊥, is also added to represent the over-constrained value, in which

a node is forced both to 0 and to 1. This value indicates that a contradiction exists

between external assumptions on the circuit and its actual behavior. The set of values

Q ≡ {0, 1, X,⊥} forms a complete lattice with the partial order 0 � X , 1 � X , ⊥ � 0
and ⊥ � 1 (see Figure 2 1. This order corresponds to set inclusion, where X represents

the set {0, 1}, and ⊥ represents the empty set. As a result, the greatest lower bound
(the lattice’s meet) � corresponds to set intersection and the least upper bound (the lat-

tice’s join) � corresponds to set union. The Boolean operations AND, OR and NOT are

extended to the domain Q as shown in Figure 3.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT

X X
0 1

1 0

⊥ ⊥
Figure 3. Quaternary operations

1Some works refer to the partial order in which X is the smallest element in the lattice and ⊥ is the greatest.
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A state s of the circuit M is an assignment of values from Q to all circuit nodes,

s : N → Q. Given two states s1, s2, we say that s1 � s2 ⇐⇒ ((∃n ∈ N : s1(n) =
⊥) ∨ (∀n ∈ N : s1(n) � s2(n))). A state is concrete if all nodes are assigned with

values out of {0, 1}. A state s is an abstraction of a concrete state sc if sc � s.

A sequence σ is any infinite series of states. We denote by σ(i), i ∈ N, the state

at time i in σ, and by σ(i)(n), i ∈ N, n ∈ N , the value of node n in the state σ(i).
σi, i ∈ N, denotes the suffix of σ starting at time i. We say that σ1 � σ2 ⇐⇒ ((∃i ≥
0, n ∈ N : σ1(i)(n) = ⊥) ∨ (∀ i ≥ 0 : σ1(i) � σ2(i))). Note that we refer to states and

sequences that contain ⊥ values as least elements w.r.t �.

In addition to the quaternary set of values Q, STE uses Boolean symbolic variables

which enable to simulate many runs of the circuit at once. Let V be a set of symbolic

Boolean variables over the domain {0, 1}. A symbolic expression over V is an expression

consisting of quaternary operations, applied to V ∪ Q. A symbolic state over V is a

mapping which maps each node of M to a symbolic expression. Each symbolic state

represents a set of states, one for each assignment to the variables in V . A symbolic
sequence over V is a series of symbolic states. It represents a set of sequences, one for

each assignment to V . Given a symbolic sequence σ and an assignment φ to V , φ(σ)
denotes the sequence that is received by applying φ to all symbolic expressions in σ.

Given two symbolic sequences σ1,σ2 over V , we say that σ1 � σ2 if for all assignments

φ to V , φ(σ1) � φ(σ2).
Sequences may be incompatible with the behavior of M . A (symbolic) trajectory π

is a (symbolic) sequence that is compatible with the behavior of M [24]: let val(n, t, π)
be the value of a node (n, t) as computed according to the values of its source nodes in

π. It is required that for all nodes (n, t), π(t)(n) � val(n, t, π) (strict equality is not

required in order to allow external assumptions on nodes values to be embedded into π).

A trajectory is concrete if all its states are concrete. A trajectory π is an abstraction of a

concrete trajectory πc if πc � π.

The difference between assigning an input with a symbolic variable and assigning

it with X is that a symbolic variable is used to obtain an accurate representation of the

value of the input. For example, the negation of a variable v is ¬v whereas the negation

of X is X . In addition, if two different inputs are assigned with the same variable v in

a symbolic sequence σ, then it implies that the two inputs have the same value in every

concrete sequence derived from σ by applying to it an assignment φ. However, if the

inputs are assigned with X , then it does not imply that they have the same value in any

concrete sequence corresponding to σ.

Figure 4 describes a symbolic trajectory of the circuit from Figure 1 up to time 1.

The values given by the user are marked in bold, and include the input values and the

initial values of the latches. The notation v3?1 : X stands for "if v3 holds then 1 else X".

Time In1 In2 In3 N1 N2 N3 N4 N5 N6

0 v1 1 v2 1 v2 v2 X 1 X
1 v3 X 0 v3?1 : X X X v2 v2 v2

Figure 4. Four-valued Symbolic Simulation
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3.3. Trajectory Evaluation Logic (TEL)

We now describe the Trajectory Evaluation Language (TEL) used to specify properties

for STE. This logic is a restricted version of the Linear Temporal Logic (LTL) [23],

where only the next time temporal operator is allowed.

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as follows:

f ::= n is p | f1 ∧ f2 | p → f |Nf

where n ∈ N , p is a Boolean expression over V and N is the next time operator. Note that

TEL formulas can be expressed as a finite set of constraints on values of specific nodes

at specific times. N t denotes the application of t next time operators. The constraints on

(n, t) are those appearing in the scope of N t. The maximal depth of a TEL formula f ,

denoted depth(f ), is the maximal time t for which a constraint exists in f on some node

(n, t), plus 1.

Usually, the satisfaction of a TEL formula f on a symbolic sequence σ is defined

in the 2-valued truth domain [26], i.e., f is either satisfied or not satisfied. In [18], Q is

used also as a 4-valued truth domain for an extension of TEL. We also use a 4-valued

semantics. However, our semantic definition is different from [18] w.r.t⊥ values. In [18],

a sequence σ containing ⊥ values could satisfy f with a truth value different from ⊥.

In our definition this is not allowed. We believe that our definition captures better the

intent behind the specification w.r.t contradictory information about the state space. The

intuition behind our definition is that a sequence that contains⊥ value does not represent

any concrete sequence, and thus vacuously satisfies all properties.

Given a TEL formula f over V , a symbolic sequence σ over V , and an assignment φ to

V , we define the satisfaction of f as follows:

[φ, σ |= f ] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(σ)(i)(n) = ⊥. Otherwise:

[φ, σ |= n is p] = 1 ↔ φ(σ)(0)(n) = φ(p)

[φ, σ |= n is p] = 0 ↔ φ(σ)(0)(n) �= φ(p) and φ(σ)(0)(n) ∈ {0, 1}
[φ, σ |= n is p] = X ↔ φ(σ)(0)(n) = X

[φ, σ |= p → f ] = (¬φ(p) ∨ φ, σ |= f)

[φ, σ |= f1 ∧ f2] = (φ, σ |= f1 ∧ φ, σ |= f2)

[φ, σ |= Nf ] = φ, σ1 |= f

Note that given an assignment φ to V , φ(p) is a constant (0 or 1). In addition, the⊥ truth

value is determined only according to φ and σ, regardless of f .

We define the truth value of σ |= f as follows:

[σ |= f ] = 0 ↔ ∃φ : [φ, σ |= f ] = 0

[σ |= f ] = X ↔ ∀φ : [φ, σ |= f ] �= 0 and ∃φ : [φ, σ |= f ] = X

[σ |= f ] = 1 ↔ ∀φ : [φ, σ |= f ] �∈ {0, X} and ∃φ : [φ, σ |= f ] = 1

[σ |= f ] = ⊥ ↔ ∀φ : [φ, σ |= f ] = ⊥
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It has been proved in [18] that the satisfaction relation is monotonic, i.e., for all TEL

formulas f , symbolic sequences σ1, σ2 and assignments φ to V , if φ(σ2) � φ(σ1) then

[φ, σ2 |= f ] � [φ, σ1 |= f ]. This also holds for our satisfaction definition.

Theorem 3.1 [29] Given a TEL formula f and two symbolic sequences σ1 and σ2, if
σ2 � σ1 then [σ2 |= f ] � [σ1 |= f ].

It has been proved in [18] that every TEL formula f has a defining sequence, which

is a symbolic sequence σf so that [σf |= f ] = 1, and for all σ, [σ |= f ] ∈ {1,⊥} if

and only if σ � σf . For example, σq→(n is p) is the sequence s(n,q→p)sxsxsx..., where

s(n,q→p) is the state in which n equals (q → p) ∧ (¬q → X), and all other nodes equal

X , and sx is the state in which all nodes equal X . σf may be incompatible with the

behavior of M .

The defining trajectory πf of M and f is a symbolic trajectory so that [πf |= f ] ∈
{1,⊥} and for all trajectories π of M , [π |= f ] ∈ {1,⊥} if and only if π � πf . The ⊥
may arise in case of a contradiction between M and f . (Similar definitions for σf and

πf exist in [26] with respect to a 2-valued truth domain).

Given σf , πf is computed iteratively as follows: For all i, πf (i) is initialized to

σf (i). Next, the value of each node (n, i) is calculated according to its functionality and

the values of its source nodes. The calculated value is then incorporated into πf (i)(n)
using the � operator. The computation of πf (i) continues until no new values are derived

at time i. Note that since there are no combinational loops in M , it is guaranteed that

eventually no new node values at time i will be derived. An example of a computation of

πf is given in Example 1.

3.4. Verification in STE

Specification in STE is given by STE assertions. STE assertions are of the form A =⇒
C, where A (the antecedent) and C (the consequent) are TEL formulas. A expresses

constraints on circuit nodes at specific times, and C expresses requirements that should

hold on circuit nodes at specific times. M |= (A =⇒ C) if and only if for all concrete

trajectories π of M and assignments φ to V , [φ, π |= A] = 1 implies that [φ, π |= C] = 1.

A natural verification algorithm for an STE assertion A =⇒ C is to compute the

defining trajectory πA of M and A and then compute the truth value of πA |= C. If

[πA |= C] ∈ {1,⊥} then it holds that M |= (A =⇒ C). If [πA |= C] = 0 then it

holds that M �|= (A =⇒ C). If [πA |= C] = X , then it cannot be determined whether

M |= (A =⇒ C).
The case in which there is φ so that φ(πA) contains ⊥ is known as an antecedent

failure. The default behavior of most STE implementations is to consider antecedent

failures as illegal, and the user is required to change A in order to eliminate any⊥ values.

In this paper we take the approach that supports the full semantics of STE as defined

above. That is, concrete trajectories φ(πA) which include ⊥ are ignored, since they do

not satisfy A and therefore vacuously satisfy A =⇒ C.

Note that although πA is infinite, it is sufficient to examine only a bounded prefix

of length depth(A) in order to detect ⊥ values in πA. The first ⊥ value in πA is the

result of the � operation on some node (n, t), where the two operands have contradicting

assignments 0 and 1. Since ∀i > depth(A) : σA(i) = sx, it must hold that t ≤ depth(A).
The truth value of πA |= C is determined as follows:
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1. If for all φ, there exists i, n so that φ(πA)(i)(n) = ⊥, then [πA |= C] = ⊥.

2. Otherwise, if there exists φ such that for some i ≥ 0, n ∈ N , φ(πA)(i)(n) ∈
{0, 1} and φ(σC)(i)(n) ∈ {0, 1}, and φ(πA)(i)(n) �= φ(σC)(i)(n), and φ(πA)
does not contain ⊥, then [πA |= C] = 0.

3. Otherwise, if there exists φ such that for some i ≥ 0, n ∈ N , φ(πA)(i)(n) = X
and φ(σC)(i)(n) ∈ {0, 1}, and φ(πA) does not contain ⊥, then [πA |= C] = X .

4. Otherwise, [πA |= C] = 1.

Note that, similarly to detecting ⊥, in order to determine the truth value of πA |=
C, it is sufficient to examine only a bounded prefix of length depth(C), since ∀i >
depth(C) : σC(i) = sx.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6

0 0 X v1 X v1?1 : X 1 X X X
1 X X X X X X 1 v1 v1

Figure 5. The Defining Trajectory πA

Example 1 Consider again the circuit M in Figure 1. Also consider the STE assertion
A =⇒ C, where A = (In1 is 0) ∧ (In3 is v1) ∧ (N3 is 1), and C = N(N6 is 1). Figure 5
describes the defining trajectory πA of M and A, up to time 1. It contains the symbolic
expression of each node at time 0 and 1. The state πA(i) is represented by row i. The
notation v1?1 : X stands for “if v1 holds then 1 else X”. σC is the sequence in which
all nodes at all times are assigned X , except for node N6 at time 1, which is assigned 1.
[πA |= C] = 0 due to those assignments in which v1 = 0. We will return to this example
in Section 6.

3.5. STE Implementation

Most widely used STE implementations are BDD-based (e.g., [27]). BDDs are used to

represent the value of each node (n, t) as a function of the circuit’s inputs. Since node

values range over the quaternary domain {0, 1, X,⊥}, two BDDs are used to represent

the function of each node (n, t). This representation is called dual rail.
The dual rail of a node (n, t) in πA consists of two functions defined from V to

{0, 1}: f1
n,t and f0

n,t, where V is the set of symbolic variables appearing in A. For each

assignment φ to V , if f1
n,t ∧¬f0

n,t holds under φ, then (n, t) equals 1 under φ. Similarly,

¬f1
n,t ∧ f0

n,t, ¬f1
n,t ∧ ¬f0

n,t and f1
n,t ∧ f0

n,t stand for 0, X and ⊥ under φ, respectively.

Likewise, g1
n,t and g0

n,t denote the dual rail representation of (n, t) in σC . Note that

g1
n,t ∧ g0

n,t never holds, since we always assume that C is not self-contradicting.

The BDDs for f1
n,t and f0

n,t can be computed for each node (n, t), based on the

node’s functionality and the BDDs of its input nodes. Usual BDD operations are suf-

ficient. Once this computation terminates, the BDDs for f1
n,t, f0

n,t are compared with

g1
n,t, g0

n,t in order to determine the truth value of the specification A =⇒ C on M . In

the following section, we further elaborate on the use of the dual rail representation in

computing the STE result.
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Example 2 Consider the symbolic trajectory described in Figure 4, where V =
{v1, v2, v3}.

• The value of node (In1, 1), v3, is given by the dual rail representation
f1

In1,1(V ) = v3, f0
In1,1(V ) = ¬v3.

• The value of node (In2, 1), X , is given by the dual rail representation f1
In2,1(V ) =

0, f0
In2,1(V ) = 0.

• The value of node (N1, 1), v3?1 : X , is given by the dual rail representation
f1

N1,1(V ) = v3, f0
N1,1(V ) = 0.

4. Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectory πA of a circuit M and an antecedent A is an abstraction

of all concrete trajectories of M on which the consequent C is required to hold. This

abstraction is directly derived from A. If [πA |= C] = X , then A is too coarse, that is, it

contains too few constraints on the values of circuit nodes. Our goal is to automatically

refine A (and subsequently πA) in order to eliminate the X truth value.

In this section we examine the requirements that should be imposed on automatic re-

finement in STE. We then describe our automatic refinement methodology, and formally

state the relationship between the two abstractions, derived from the original and the re-

fined antecedent. We refer only to STE implementations that compute πA. We assume

that antecedent failures are handled as described in Section 3.

We first describe the handling of ⊥ values which is required for the description of

the general abstraction and refinement process in STE. In the dual-rail notation given

earlier, the Boolean expression ¬f1
n,t∨¬f0

n,t represents all assignments φ to V for which

φ(πA)(t)(n) �= ⊥. Thus, the Boolean expression nbot ≡ ∧
(n,t)∈A(¬f1

n,t ∨ ¬f0
n,t) rep-

resents all assignments φ to V for which φ(πA) does not contain ⊥. It is sufficient to

examine only nodes (n, t) on which there exists a constraint in A. This is because there

exists a node (n, t) and an assignment φ to V such that φ(πA)(t)(n) = ⊥ only if there

exists a node (n′, t′) on which there exists a constraint in A and φ(πA)(t′)(n′) = ⊥. That

is, the constraint on (n′, t′) in A contradicts the behavior of M . Thus, [πA |= C] = ⊥ if

and only if nbot ≡ 0.

We now describe how the abstraction and refinement process in STE is done tra-

ditionally, with the addition of supporting ⊥ in πA. The user writes an STE assertion

A =⇒ C for M , and receives a result from STE. If [πA |= C] = 0, then the set of

all φ so that [φ, πA |= C] = 0 is provided to the user. This set, called the symbolic
counterexample, is given by the Boolean expression over V :

(
∨

(n,t)∈C

((g1
n,t ∧ ¬f1

n,t ∧ f0
n,t) ∨ (g0

n,t ∧ f1
n,t ∧ ¬f0

n,t))) ∧ nbot.

Each assignment φ in this set represents a counterexample φ(πA). The counterexamples

are given to the user to analyze and fix.

If [πA |= C] = X , then the set of all φ so that [φ, πA |= C] = X is provided to the

user. This set, called the symbolic incomplete trace, is given by the Boolean expression

over V :
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(
∨

(n,t)∈C

((g1
n,t ∨ g0

n,t) ∧ ¬f1
n,t ∧ ¬f0

n,t)) ∧ nbot.

The user decides how to refine the specification in order to eliminate the partial informa-

tion that causes the X truth value. If [πA |= C] = ⊥, then the assertion passes vacuously.

Otherwise, [πA |= C] = 1 and the verification completes successfully.

We point out that, as in any automated verification framework, we are limited by

the following observations. First, there is no automatic way to determine whether the

provided specification is in accord with the user’s intention. Therefore, we assume it

is, and we make sure that our refined assertion passes on the concrete circuit if and

only if the original assertion does. Second, bugs cannot automatically be fixed. Thus,

counterexamples are analyzed by the user.

We emphasize that automatic refinement is valuable even when it eventually results

in a fail. This is because counterexamples present specific behaviors of M and are sig-

nificantly easier to analyze than incomplete traces.

As mentioned before, we must assume that the given specification is correct. Thus,

automatic refinement of A must preserve the semantics of A =⇒ C: Let Anew =⇒ C
denote the refined assertion. Let runs(M) denote the set of all concrete trajectories of

M . We require that Anew =⇒ C holds on runs(M) if and only if A =⇒ C holds on

runs(M).
In order to achieve the above preservation, we choose our automatic refinement as

follows. Whenever [πA |= C] = X , we add constraints to A that force the value of

input nodes at certain times (and initial values of latches) to the value of fresh symbolic
variables, that is, symbolic variables that do not already appear in V . By initializing an

input (in, t) with a fresh symbolic variable instead of X , we represent the value of (in, t)
accurately and add knowledge about its effect on M . However, we do not constrain input

behavior that was allowed by A, nor do we allow input behavior that was forbidden by

A. Thus, the semantics of A is preserved. In Section 5, a small but significant addition is

made to our refinement technique.

We now formally state the relationship between the abstractions derived from the

original and the refined antecedents. Let A be the antecedent we want to refine. A is

defined over a set of variables V . Let Vnew be a set of symbolic variables so that V ∩
Vnew = ∅. Let PIref be the set of inputs at specific times, selected for refinement. Let

Anew be a refinement of A over V ∪ Vnew, where Anew is received from A by attaching

to each input (in, t) ∈ PIref a unique variable vin,t ∈ Vnew and adding conditions to A
as follows:

Anew = A ∧
∧

(in,t)∈PIref

N t(p → (in is vin,t)),

where p = ¬q if (in, t) has a constraint N t(q → (in is e)) in A for some Boolean

expressions q and e over V , and p = 1 otherwise ((in, t) has no constraint in A). The

reason we consider A is to avoid a contradiction between the added constraints and the

original ones, due to constraints in A of the form q → f .

Let πAnew be the defining trajectory of M and Anew, over V ∪ Vnew. Let φ be an

assignment to V . Then runs(Anew, M, φ) denotes the set of all concrete trajectories π
for which there is an assignment φ′ to Vnew so that (φ ∪ φ′)(πAnew ) is an abstraction

of π. Since for all concrete trajectories π, [(φ ∪ φ′), π |= Anew] = 1 ⇐⇒ π �
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(φ ∪ φ′)(πAnew), we get that runs(Anew, M, φ) are exactly those π for which there is

φ′ so that [(φ ∪ φ′), π |= Anew] = 1.

The reason the trajectories in runs(Anew, M, φ) are defined with respect to a single

extension to the assignment φ rather than all extensions to φ is that we are interested

in the set of all concrete trajectories that satisfy φ(Anew) with the truth value 1. Since

every trajectory π ∈ runs(Anew, M, φ) is concrete, it can satisfy φ(Anew) with the truth

value 1 only with respect to a single assignment to Vnew. The fact that there are other

assignments to Vnew for which π does not satisfy φ(Anew) with the truth value 1 is not

a concern, since the truth value of Anew =⇒ C is determined only according to the

concrete trajectories π and assignments φ to V ∪ Vnew so that [φ, π |= Anew] = 1.

Theorem 4.1 1. For all assignments φ to V , runs(A, M, φ) = runs(Anew, M, φ).
2. If [πAnew |= C] = 1 then for all φ it holds that ∀π ∈ runs(A, M, φ) : [φ, π |=

C] = 1.
3. If there is φ′ to Vnew and π ∈ runs(Anew, M, φ ∪ φ′) so that [(φ ∪ φ′), π |=

Anew] = 1 but [(φ ∪ φ′), π |= C] = 0 then π ∈ runs(A, M, φ) and [φ, π |=
A] = 1 and [φ, π |= C] = 0.

Theorem 4.1 implies that if Anew =⇒ C holds on all concrete trajectories of M , then

so does A =⇒ C. Moreover, if Anew =⇒ C yields a concrete counterexample ce, then

ce is also a concrete counterexample w.r.t A =⇒ C. The proof of Theorem 4.1 can be

found in [29].

5. Selecting Inputs for Refinement

After choosing our refinement methodology, we need to describe how exactly the re-

finement process is performed. We assume that [πA |= C] = X , and thus automatic

refinement is activated. Our goal is to add a small number of constraints to A forcing

inputs to the value of fresh symbolic variables, while eliminating as many assignments

φ as possible so that [φ, πA |= C] = X . The refinement process is incremental - inputs

(in, t) that are switched from X to a fresh symbolic variable will not be reduced to X in

subsequent iterations.

5.1. Choosing Our Refinement Goal

Assume that [πA |= C] = X , and the symbolic incomplete trace is generated. This

trace contains all assignments φ for which [φ, πA |= C] = X . For each such assignment

φ, the trajectory φ(πA) is called an incomplete trajectory. In addition, this trace may

contain multiple nodes that are required by C to a definite value (either 0 or 1) for some

assignment φ, but equal X . We refer to such nodes as undecided nodes. We want to keep

the number of added constraints small. Therefore, we choose to eliminate one undecided

node (n, t) in each refinement iteration, since different nodes may depend on different

inputs. Our motivation for eliminating only part of the undecided nodes is that while it

is not sufficient for verification it might be sufficient for falsification. This is because

an eliminated X value may be replaced in the next iteration with a definite value that

contradicts the required value (a counterexample).
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Algorithm 1 EliminateIrrelevantPIs((n, t)
sinks_relevant ← ∨

(m,t )∈out(n,t) relevantm,t

relevantn,t ← sinks_relevant ∧ ¬f0
n,t ∧ ¬f1

n,t

We suggest to choose an undecided node (n, t) with a minimal number of inputs in

its BCOI. Out of those, we choose a node with a minimal number of nodes in its BCOI.

Our experimental results support this choice. The chosen undecided node is our refine-
ment goal and is denoted (root, tt). We also choose to eliminate at once all incomplete

trajectories in which (root, tt) is undecided. These trajectories are likely to be eliminated

by similar sets of inputs. Thus, by considering them all at once we can considerably

reduce the number of refinement iterations, without adding too many variables.

The Boolean expression (¬f1
root,tt∧¬f0

root,tt∧(g1
root,tt∨g0

root,tt))∧nbot represents

the set of all φ for which (root, tt) is undecided in φ(πA). Our goal is to add a small

number of constraints to A so that (root, tt) will not be X whenever (g1
root,tt ∨ g0

root,tt)
holds.

5.2. Eliminating Irrelevant Inputs

Once we have a refinement goal (root, tt), we need to choose inputs (in, t) for which

constraints will be added to A. Naturally, only inputs in the BCOI of (root, tt) are con-

sidered, but some of these inputs can be safely disregarded.

Consider an input (in, t), an assignment φ to V and the defining trajectory πA. We

say that (in, t) is relevant to (root, tt) under φ, if there is a path of nodes P from (in, t)
to (root, tt) in (the graph of) M , so that for all nodes (n, t′) in P , φ(πA)(t′)(n) = X .

(in, t) is relevant to (root, tt) if there exists φ so that (in, t) is relevant to (root, tt)
under φ.

For each (in, t), we compute the set of assignments to V for which (in, t) is relevant

to (root, tt). The computation is performed recursively starting from (root, tt). (root, tt)
is relevant when it is X and is required to have a definite value:

(¬f 1
root,tt ∧ ¬f0

root,tt ∧ (g1
root,tt ∨ g0

root,tt)) ∧ nbot.

A source node (n, t) of (root, tt) is relevant whenever (root, tt) is relevant and (n, t)
equals X . Let out(n, t) return the sink nodes of (n, t) that are in the BCOI of (root, tt).
Proceeding recursively as described in Algorithm 1, we compute for each (in, t) the set

of assignments in which it is relevant to (root, tt).
For all φ that are not in relevantin,t, changing (in, t) from X to 0 or to 1 in φ(πA)

can never change the value of (root, tt) in φ(πA) from X to 0 or to 1. To see why this

is true, note that if φ is not in relevantin,t it means that there is at least one node (n′, t′)
on a path in M from (in, t) to (root, tt) whose value under φ is definite (0 or 1). Since

all nodes in M represent monotonic functions, changing the value of (in, t) in φ from X
to 0 or 1 will not change the value of (n′, t′) and therefore will not change the value of

(root, tt).
Consequently, if (in, t) is chosen for refinement, we can optimize the refinement by

associating (n, t) with a fresh symbolic variable only when relevantin,t holds. This can

be done by adding the following constraint to the antecedent:
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relevantin,t → Nt(in is vin,t).

If (in, t) is chosen in a subsequent iteration for refinement of a new refinement goal

(root′, tt′), then the previous constraint is extended by disjunction to include the condi-

tion under which (in, t) is relevant to (root′, tt′). Theorem 4.1 holds also for the opti-

mized refinement. Let PI be the set of inputs of M . The set of all inputs that are relevant

to (root, tt) is

PI(root,tt) = {(in, t) | in ∈ PI ∧ relevantin,t �≡ 0}.

Adding constraints to A for all relevant inputs (in, t) will result in a refined antecedent

Anew. In the defining trajectory of M and Anew, it is guaranteed that (root, tt) will not

be undecided. Note that PI(root,tt) is sufficient but not minimal for elimination of all un-

desired X values from (root, tt). Namely, adding constraints for all inputs in PI(root,tt)

will guarantee the elimination of all cases in which (root, tt) is undecided. However,

adding constraints for only a subset of PI(root,tt) may still eliminate all such cases.

The set PI(root,tt) may be valuable to the user even if automatic refinement does not

take place, since it excludes inputs that are in the BCOI of (root, tt) but will not change

the verification results w.r.t (root, tt).

5.3. Heuristics for Selection of Important Inputs

If we add constraints to A for all inputs (in, t) ∈ PI(root,tt), then we are guaranteed to

eliminate all cases in which (root, tt) was equal to X while it was required to have a

definite value. However, such a refinement may add many symbolic variables to A, thus

significantly increase the complexity of the computation of the defining trajectory. We

can reduce the number of added variables at the cost of not guaranteeing the elimination

of all undesired X values from (root, tt), by choosing only a subset of PI(root,tt) for

refinement. As mentioned before, a 1 or a 0 truth value may still be reached even without

adding constraints for all relevant inputs.

We apply the following heuristics in order to select a subset of PI(root,tt) for refine-

ment. Each node (n, t) selects a subset of PI(root,tt) as candidates for refinement, held

in candidatesn,t. The final set of inputs for refinement is selected out of candidatesroot,tt.

PI denotes the set of inputs (in, t) of M . Each input in PI(root,tt) selects itself as a can-

didate. Other inputs have no candidates for refinement. Let out(n, t) return the sink nodes

of (n, t) that are in the BCOI of (root, tt), and let degin(n, t) return the number of source

nodes of (n, t) that are in the BCOI of (root, tt). Given a node (n, t), sourceCandn,t

denotes the sets of candidates of the source nodes of (n, t), excluding the source nodes

that do not have candidates. The candidates of (n, t) are determined according to the

following conditions:

1. If there are candidate inputs that appear in all sets of sourceCandn,t, then they

are the candidates of (n, t).
2. Otherwise, if (n, t) has source nodes that can be classified as control and data,

then the candidates of (n, t) are the union of the candidates of its control source

nodes, if this union is not empty. For example, a latch has one data source node

and at least one control source node - its clock. The identity of control source

nodes is automatically extracted from the netlist representation of the circuit.
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3. If none of the above holds, then the candidates of (n, t) are the inputs with the

largest number of occurrences in sourceCandn,t.

We prefer to refine inputs that are candidates of most source nodes along paths from

the inputs to the refinement goal, i.e., influence the refinement goal over several paths.

The logic behind this heuristic is that an input that has many paths to the refinement goal

is more likely to be essential to determine the value of the refinement goal than an input

that has less paths to the refinement goal.

We prefer to refine inputs that affect control before those that affect data since the

value of control inputs has usually more effect on the verification result. Moreover, the

control inputs determine when data is sampled. Therefore, if the value of a data input is

required for verification, it can be restricted according to the value of previously refined

control inputs. In the final set of candidates, sets of nodes that are entries of the same

vector are treated as one candidate. Since the heuristics did not prefer one entry of the

vector over the other, then probably only their joint value can change the verification

result. Additional heuristics choose a fixed number of l candidates out of the final set.

6. Detecting Vacuity and Spurious Counterexamples

In this section we raise the problem of hidden vacuity and spurious counterexamples that

may occur in STE. This problem was never addressed before in the context of STE.

In STE, the antecedent A functions both as determining the level of the abstraction

of M , and as determining the trajectories of M on which C is required to hold. An

important point is that the constraints imposed by A are applied (using the � operator)

to abstract trajectories of M . If for some node (n, t) and assignment φ to V , there is a

contradiction between φ(σA)(t)(n) and the value propagated through M to (n, t), then

φ(πA)(t)(n) = ⊥, indicating that there is no concrete trajectory π so that [φ, π |= A] =
1.

In this section we point out that due to the abstraction in STE, it is possible that

for some assignment φ to V , there are no concrete trajectories π so that [φ, π |= A] =
1, but still φ(πA) does not contain ⊥ values. This is due to the fact that an abstract

trajectory may represent more concrete trajectories than the ones that actually exist in

M . Consequently, it is possible to get [φ, πA |= C] ∈ {1, 0} without any indication that

this result is vacuous, i.e., for all concrete trajectories π, [φ, π |= A] = 0. Note that

this problem may only happen if A contains constraints on internal nodes of M . Given a

constraint a on an input, there always exists a concrete trajectory that satisfies a (unless

a itself is a contradiction, which can be easily detected). This problem exists also in STE

implementations that do not compute πA, such as [24].

Example 3 We return to Example 1 from Section 3. Note that the defining trajectory πA

does not contain ⊥. In addition, [πA |= C] = 0 due to the assignments to V in which
v1 = 0. However, A never holds on concrete trajectories of M when v1 = 0, since
N3 at time 0 will not be equal to 1. Thus, the counterexample is spurious, but we have
no indication of this fact. The problem occurs when calculating the value of (N3,0) by
computing X � 1 = 1. If A had contained a constraint on the value of In2 at time 0, say
(In2 is v2), then the value of (N3,0) in πA would have been (v1∧v2)�1 = (v1∧v2?1 : ⊥),
indicating that for all assignments in which v1 = 0 or v2 = 0, πA does not correspond
to any concrete trajectory of M .
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Vacuity may also occur if for some φ to V , C under φ imposes no requirements. This is

due to constraints of the form p → f where φ(p) is 0.

An STE assertion A =⇒ C is vacuous in M if for all concrete trajectories π of M
and assignments φ to V , either [φ, π |= A] = 0, or C under φ imposes no requirements.

This definition is compatible with the definition in [5] for ACTL.

We say that A =⇒ C passes vacuously on M if A =⇒ C is vacuous in M and

[πA |= C] ∈ {⊥, 1}. A counterexample π is spurious if there is no concrete trajectory

πc of M so that πc � π. Given πA, the symbolic counterexample ce is spurious if

for all assignments φ to V in ce, φ(πA) is spurious. We believe that this definition is

more appropriate than a definition in which ce is spurious if there exists φ that satisfies

ce and φ(πA) is spurious. The reason is that the existence of at least one non-spurious

counterexample represented by ce is more interesting than the question whether each

counterexample represented by ce is spurious or not.

We say that A =⇒ C fails vacuously on M if [πA |= C] = 0 and ce is spurious.

As explained before, vacuity detection is required only when A constrains internal

nodes. It is performed only if [πA |= C] ∈ {0, 1} (if [πA |= C] = ⊥ then surely

A =⇒ C passes vacuously). In order to detect non-vacuous results in STE, we need to

check whether there exists an assignment φ to V and a concrete trajectory π of M so

that C under φ imposes some requirement and [φ, π |= A] = 1. In case the original

STE result is fail, namely, [πA |= C] = 0, π should also constitute a counterexample for

A =⇒ C. That is, we require that [φ, π |= C] = 0.

We propose two different algorithms for vacuity detection. The first algorithm uses

Bounded Model Checking (BMC) [6] and runs on the concrete model. The second al-

gorithm uses STE and requires automatic refinement. The algorithm that uses STE takes

advantage of the abstraction in STE, as opposed to the first algorithm which runs on the

concrete model. In case non-vacuity is detected, the trajectory produced by the second

algorithm (which constitutes either a witness or a counterexample) may not be concrete.

However, it is guaranteed that there exists a concrete trajectory of which the produced

trajectory is an abstraction. The drawback of the algorithm that uses STE, however, is

that it requires automatic refinement.

6.1. Vacuity Detection using Bounded Model Checking

Since A can be expressed as an LTL formula, we can translate A and M into a Bounded

Model Checking (BMC) problem. The bound of the BMC problem is determined by the

depth of A. Note that in this BMC problem we search for a satisfying assignment for A,

not for its negation. Additional constraints should be added to the BMC formula in order

to fulfill the additional requirements on the concrete trajectory.

For detection of vacuous pass, the BMC formula is constrained in the following

way: Recall that (g1
n,t, g

0
n,t) denotes the dual rail representation of the requirement on the

node (n, t) in C. The Boolean expression g1
n,t ∨ g0

n,t represents all assignments φ to V
under which C imposes a requirement on (n, t). Thus,

∨
(n,t)∈C g1

n,t∨g0
n,t represents all

assignments φ to V under which C imposes some requirement. This expression is added

as an additional constraint to the BMC formula. If BMC finds a satisfying assignment

to the resulting formula, then the assignment of BMC to the nodes in M constitutes a

witness indicating that A =⇒ C passed non-vacuously. Otherwise, we conclude that

A =⇒ C passed vacuously.
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For detection of vacuous fail, the BMC formula is constrained by conjunction with

the (symbolic) counterexample ce. For STE implementations that compute πA, ce =∨
(n,t)∈C((g1

n,t ∧¬f1
n,t ∧ f0

n,t)∨ (g0
n,t ∧ f1

n,t ∧¬f0
n,t)). There is no need to add the nbot

constraint that guarantees that none of the nodes equals ⊥, since the BMC formula runs

on the concrete model, and thus the domain of the nodes in the BMC formula is Boolean.

If BMC finds a satisfying assignment to the resulting formula, the assignment of BMC

to the nodes in M constitutes a concrete counterexample for A =⇒ C. Otherwise, we

conclude that A =⇒ C failed vacuously.

Vacuity detection using BMC is an easier problem than solving the original STE

assertion A =⇒ C using BMC. The BMC formula for A =⇒ C contains the following

constraints on the values of nodes:

• The constraints of A.

• The constraints of M on nodes appearing in A.

• The constraints of M on nodes appearing in C.

• A constraint on the values of the nodes appearing in C that guarantees that at least

one of the requirements in C does not hold.

On the other hand, the BMC formula for vacuity detection contains only the first

two types of constraints on the values of nodes. Therefore, for vacuity detection using

BMC, only the BCOI of the nodes in A is required, whereas for solving the original STE

assertion A =⇒ C using BMC, both the BCOI of the nodes appearing in A and the

BCOI of the nodes appearing in C are required.

6.2. Vacuity Detection using Symbolic Trajectory Evaluation

For vacuity detection using STE, the first step is to split A into two different TEL for-

mulas: Ain is a TEL formula that contains exactly all the constraints of A on inputs, and

Aout is a TEL formula that contains exactly all the constraints of A on internal nodes. If

there exists an assignment φ to V so that [φ, πAin |= Aout] = 1, then we can conclude

that there exists a concrete trajectory of M that satisfies A. Note that since Ain does

not contain constraints on internal nodes, it is guaranteed that no hidden vacuity occurs.

However, it is also necessary to guarantee that in case [πA |= C] = 1, C under φ im-

poses some requirement, and in case [πA |= C] = 0, then φ(πAin

) should constitute a

counterexample. Namely, φ ∧ ce �≡ 0, where ce is the symbolic counterexample.

If we cannot find such an assignment φ, this does not necessarily mean that the result

of A =⇒ C is vacuous: if there are assignments φ to V for which [φ, πAin |= Aout] =
X , then the trajectory φ(πAin

) is potentially an abstraction of a witness or a concrete

counterexample for A =⇒ C. However, it is too abstract in order to determine whether

or not Aout holds on it. If we refine Ain to a new antecedent as described in Section 4,

then it is possible that the new antecedent will yield more refined trajectories that contain

enough information to determine whether they indeed represent a witness or concrete

counterexample.

Algorithm 2 describes vacuity detection using STE. It receives the original an-

tecedent A and consequent C. In case [πA |= C] = 0, it also receives the symbolic

counterexample ce. inputConstraints is a function that receives a TEL formula A and

returns a new TEL formula that consists of the constraints of A on inputs. Similarly,

internalConstraints returns a new TEL formula that consists of the constraints of A on
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internal nodes. Note that since Ain does not contain constraints on internal nodes, then

πAin

does not contain ⊥ values, and thus we can assume that f1
n,t ∧ f0

n,t never holds. By

abuse of notation, f1
n,t and f0

n,t are here the dual rail representation of a node (n, t) in

πAin

. Similarly, we use g1
n,t and g0

n,t for the dual rail representation of a node (n, t) in

the defining sequence of either C or Aout, according to the context.

Algorithm 2 STEVacuityDetection(A, C, ce)

1: Ain ← inputConstraints(A)
2: Aout ← internalConstraints(A)
3: Φ ← ∧

(n,t)∈Aout((g1
n,t ∧ f1

n,t) ∨ (g0
n,t ∧ f0

n,t))

{Φ represents all assignments to V for which [φ, πAin |= Aout] = 1}

4: if [πA |= C] = 1 ∧ ((
∨

(n,t)∈C(g1
n,t ∨ g0

n,t)) ∧ Φ) �≡ 0 then
5: return non-vacuous

6: else if [πA |= C] = 0 ∧ ((Φ ∧ ce) �≡ 0) then
7: return non-vacuous

8: end if
9: if ∃φ : [φ, πAin |= Aout] = X then

10: Ain ← refine(Ain)
11: goto 3

12: else
13: return vacuous

14: end if

The algorithm computes the set Φ, which is the set of all assignments to V for which

[φ, πAin |= Aout] = 1. Lines 4 and 6 check whether there exists a suitable assignment

φ in Φ that corresponds to a witness or to a counterexample. If such a φ exists, then the

result is non-vacuous. If no such φ exists, then if there exist assignments for which the

truth value of Aout on πAin

is X , then Ain is refined and Φ is recomputed. Otherwise,

the result is vacuous.

Note that in case [πA |= C] = 0, we check whether Φ contains an assignment

that constitutes a counterexample by checking that the intersection between Φ and the

symbolic counterexample ce produced for [πA |= C] is not empty. However, as a result

of the refinement, Φ may contain new variables that represent new constraints of the

antecedent that were not taken into account when computing ce. The reason that checking

whether (Φ ∧ ce) �≡ 0 still returns a valid result is as follows. By construction, we know

that for all assignments φ ∈ Φ, [φ, πAin |= Aout] = 1. Since [φ, πAin |= Ain] = 1,

we get that [φ, πAin |= Ain ∪ Aout] = 1, where Ain ∪ Aout is the TEL formula that

contains exactly all the constraints in Ain and Aout. Since [φ, πAin |= Aout] = 1,

we get that φ(πAin

) does not contain ⊥ values. Therefore, for all nodes (n, t) so that

φ(πA)(t)(n) = b, b ∈ {0, 1} it holds that φ(πAin

)(t)(n) = b. Thus, for all φ′ ∈ ce, φ′ is

a counterexample also with respect to the antecedent Ain ∪Aout.

Besides the need for refinement, an additional drawback of Algorithm 2 in compar-

ison with vacuity detection using BMC, is that it attempts to solve a much harder prob-

lem - it computes a set of trajectories that constitute witnesses or concrete counterex-

amples, whereas in vacuity detection using BMC only one such trajectory is produced

- a satisfying assignment to the SAT formula. This is in analogy to using STE versus
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using BMC for model checking - STE finds the set of all counterexamples for A =⇒ C,

while BMC finds only one counterexample. However, the advantage of Algorithm 2 is

that it exploits the abstraction in STE, whereas vacuity detection using BMC runs on the

concrete model.

In [29], vacuity detection for SAT-based STE is presented as well.

6.3. Preprocessing for Vacuity Detection

There are some cases in which even if there exist constraints in A on internal nodes,

vacuity detection can be avoided by a preliminary analysis based on the following obser-

vation: hidden vacuity may only occur if for some assignment φ to V , an internal node

(n, t) is constrained by A to either 0, or 1, but its value as calculated according to the

values of its source nodes is X . We call such a node (n, t) a problematic node. For ex-

ample, in Example 1 from Section 3, the value of (N3,0) as calculated according to its

source nodes is X , and it is constrained by A to 1.

In order to avoid unnecessary vacuity detection, we suggest to detect all problematic

nodes as follows. Let int(A) denote all internal nodes (n, t) on which there exists a

constraint in A. Let h1
n,t and h0

n,t denote the dual rail representation of the node (n, t)
in σA. Let m1

n,t and m0
n,t denote the dual rail representation of the value of (n, t) as

calculated according to the values of its source nodes in πA. Then the Boolean expression∨
(n,t)∈int(A)((h

0
n,t ∨h1

n,t)∧¬m1
n,t ∧¬m0

n,t) represents all assignments to V for which

there exists a problematic node (n, t). If this Boolean expression is identical to 0, then

no problematic nodes exist and vacuity detection is unnecessary.

7. Experimental Results

We implemented our automatic refinement algorithm AutoSTE on top of STE in Intel’s

FORTE environment [27]. AutoSTE receives a circuit M and an STE assertion A =⇒
C. When [πA |= C] = X , it chooses a refinement goal (root, tt) out of the undecided

nodes, as described in Section 5. Next, it computes the set of relevant inputs (in, t). The

Heuristics described in Section 5 are applied in order to choose a subset of those inputs.

In our experimental results we restrict the number of refined candidates in each iteration

to 1. A is changed as described in Section 5 and STE is rerun on the new assertion.

We ran AutoSTE on two different circuits, which are challenging for Model Check-

ing: the Content Addressable Memory (CAM) from Intel’s GSTE tutorial, and IBM’s

Calculator 2 design [31]. The latter has a complex specification.Therefore, it constitutes

a good example for the benefit the user can gain from automatic refinement in STE. All

runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

A detailed description of the experiments can be found in [29].

8. Conclusions and Future Work

This work describes a first attempt at automatic refinement of STE assertions. We have

developed an automatic refinement technique which is based on heuristics. The refined

assertion preserves the semantics of the original assertion. We have implemented our
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automatic refinement in the framework of Forte, and ran it on two nontrivial circuits of

dissimilar functionality. The experimental results show success in automatic verification

of several nontrivial assertions.

Another important contribution of our work is identifying that STE results may hide

vacuity. This possibility was never raised before. We formally defined STE vacuity and

proposed two methods for vacuity detection.

Additional work is needed in order to further evaluate the suggested automatic re-

finement on industrial-size examples of different functionality. Such an evaluation is very

likely to result in new heuristics. A preliminary work has recently been done for STE

in [12] and for GSTE in [11].

We would also like to implement our suggested vacuity detection algorithms and

compare their performance. In addition, we would like to develop an automatic refine-

ment techniques to SAT based STE [33,24,17], and integrate SAT based refinement tech-

niques [22,10].
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Automated and Interactive Theorem

Proving

John HARRISON

johnh@ichips.intel.com
Intel Corporation JF1-13, 2111 NE 25th Avenue, Hillsboro OR 97124, USA

Abstract. The idea of mechanizing reasoning is an old dream that can be traced

at least back to Leibniz. Since about 1950, there has been considerable research

on having computers perform logical reasoning, either completely autonomously

(automated theorem proving) or in cooperation with a person (interactive theorem

proving). Both approaches have achieved notable successes. For example, several

open mathematical problems such as the Robbins Conjecture have been settled by

automated theorem provers, while interactive provers have been applied to formal-

ization of non-trivial mathematics and the verification of complex computer sys-

tems. However, it can be difficult for a newcomer to gain perspective on the field,

since it has already fragmented into various special subdisciplines. The aim of these

lectures will be to give a broad overview that tries to establish some such per-

spective. I will cover a range of topics from Boolean satisfiability checking (SAT),

several approaches to first-order automated theorem proving, special methods for

equations, decision procedures for important special theories, and interactive proof.

I will not say much in detail about applications, but will give some suitable refer-

ences for those interested.

1. Introduction and propositional logic

2. First order logic

3. Algebraic and arithmetical theories

4. Interactive theorem proving

5. Proof-producing decision procedures

Implementations of many algorithms discussed, in (I hope) a fairly simple and

pedagogical style, can be found on my Web page in a comprehensive package of

logical code:

http://www.cl.cam.ac.uk/˜jrh13/atp/index.html

Formal Logical Methods for System Security and Correctness
O. Grumberg et al. (Eds.)
IOS Press, 2008
© 2008 IOS Press. All rights reserved.
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0. Preamble

Our main goal is machine assistance with logical decision problems roughly of the form:

given a formula p in some formal logical system, is p logically valid / consistent / satis-

fiable / true? There are two different aspects:

• Theoretical: What is possible in principle?

• Practical: What is possible/useful to use?

The theoretical questions actually lie at the root of much of modern theoretical com-

puter science, at least in its historical development. For example, the development of

models of computation such as Turing machines was explicitly aimed at giving a neg-

ative answer to the Entscheidungsproblem (decision problem) for first order logic. And

the famous P = NP question was first framed as a question about satisfiability in propo-

sitional logic. On the practical side, machine-assisted theorem proving is important in

program verification, as well as various artificial intelligence systems, and sometimes

even compilers.

We will mainly focus on subsets of classical first-order logic, since most of the im-

portant techniques can be illustrated in this context. But mechanization of proof in other

logics such as intutionistic logic, higher-order logic and temporal logic is also important.

Many of these use refinements or extensions of methods we will consider here, and you

will get more information from other lecturers. In particular, many fragments of temporal

logic can be decided automatically in a practical fashion (Clarke, Grumberg, and Peled

1999).

The gap between theory and practice can be quite wide, and the tractability of a

problem can depend on the point of view. For example, the decision procedure proposi-

tional logic might be regarded as trivial (because it’s decidable), or intractable (because

it’s NP-complete). In practice, it seems to be challenging, but current implementations

can handle some surprisingly big problems. And of course, the tractability of a problem

depends on how much CPU time you’re willing to devote to it; what is tractable for a

sophisticated attempt to solve an open problem in mathematics might be intractable for

a small prover inside a program verifier.

For the purposes of these lectures, the main prerequisite is just the basic formal

syntax of first-order logic and a few items of terminology. You might want to just glance

quickly through this and come back to it later when needed. But do try to grasp the

important distinction between validity in all interpretations and truth in a particular one.

0.1. Syntax

Here is a rough translation table from natural language to formal logic. For example,

p∧q⇒ p∨q means ‘if p and q are true, then either p or q is true’. We assume that ‘or’

is interpreted inclusively, i.e. p∨q means ‘p or q or both’.
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English Formal logic Other

false ⊥ F
true � T
not p ¬p −p, ∼ p, p
p and q p∧q p&q, p ·q
p or q p∨q p | q, p or q
p implies q p⇒ q p→ q, p⊃ q
p iff q p⇔ q p≡ q, p∼ q
For all x, p ∀x. p (∀ x)(p)
There exists x such that p ∃x. p (∃ x)(p)

Although this is useful as a general guide, we sometimes need to be quite precise

about the formal language. We first have a class of terms, which are built up from vari-

ables (like ‘x’) and constants (like ‘1’) by applying functions (like ‘+’). For formal sim-

plicity, we can imagine constants as functions that take no arguments, and so regard terms

as generated by the following BNF grammar:

term −→ variable

| f unction(term, . . . , term)

We will freely use conventional mathematical notation, writing x + 1 rather than

+(x,1()) for example, but we should think of the underlying abstract syntax tree as what

we’re really manipulating. Likewise we have a BNF grammar for formulas:

f ormula −→ relation(term, . . . , term)

| ⊥
| �
| ¬ f ormula

| f ormula∧ f ormula

| f ormula∨ f ormula

| f ormula⇒ f ormula

| f ormula⇔ f ormula

| ∀variable. f ormula

| ∃variable. f ormula

The most basic atomic formulas of the form relation(term, . . . , term) are formed by

applying a relation or predicate symbol to terms, for example the ‘≤’ operator to two

numbers. From these basic formulas, more complex ones are built up by applying the

logical connectives like ‘∧’ and quantifiers like ‘∀x. ’.
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0.2. Semantics

Formulas of first order logic mean nothing in isolation, but only with respect to an in-
terpretation or model that tells us how to interpret the constants, functions and relations,

and a valuation that tells us how to interpret the variables. Formally speaking, an inter-

pretation M consists of:

• A set D (the domain), normally assumed nonempty.

• For each n-ary function symbol f , a function fM : Dn → D.

• For each n-ary relation symbol f , a function RM : Dn → bool.

while a valuation is simply a function v : V →D assigning to each variable an element of

the domain. Now, given an interpretation M and a valuation v, each formula p maps to a

well-defined truth value, which can be found by interpreting all the constants, functions

and relations and applying the valuation to all variables. We will give a more formal

description below, but it might be more enlightening just to see a few examples. Take a

language with two constants 0 and 1, one binary function ‘·’ and one binary relation ‘=’,

and consider the formula:

∀x.¬(x = 0)⇒∃y. x · y = 1

One natural way to interpret the formulas is with the domain D being R, the set

of real numbers, and the constants and functions interpreted in the obvious way. In that

case, the formula says that every nonzero real number x has a multiplicative inverse y. It

is therefore true in that interpretation. However, it’s important to remember that there are

many other possible interpretations of the symbols, and these may or may not make the

formula come out true. For example, let the domain D be the set {0,1,2}, interpret 0 and

1 in the natural way and ‘·’ as multiplication modulo 3:

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

A little calculation shows that the formula also holds in this interpretation, even

though it’s very different from the original ‘intended’ model. Yet the slight change of

taking as the domain D = {0,1,2,3} with multiplication modulo 4 makes the formula

false, because the element 2 doesn’t have an inverse:

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

2 0 3 2 1
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A formula is (logically) valid if it is true in all interpretations, whatever their

(nonempty) domain and however the functions and relations are interpreted. Dually, we

say that a formula is satisfiable if it has some interpretation in which it holds for all

valuations. It’s important to observe that, in general, logical validity is a much stronger

requirement than validity in some particular intended interpretation. Thus, the problems

of deciding whether a formula holds in all interpretations and is true in some particular

interpretation are, in general, quite different, and one may be much easier or harder than

the other.

Since equality is such a central relation in mathematics, we often want to restrict our-

selves to normal interpretations where the equality symbol is interpreted by equality in

the interpretation. One can show that a formula p is satisfiable in a normal interpretation

if the formula together with additional ‘equality axioms’ is satisfiable in any interpreta-

tion at all. These equality axioms consist of an assertion that equality is an equivalence

relation, i.e. is reflexive, symmetric and transitive:

∀x. x = x

∀x y. x = y⇔ y = x

∀x y z. x = y∧ y = z⇒ x = z

as well as assertions of congruence for each n-ary function f in p:

∀x1 · · ·xny1 · · ·yn. x1 = y1∧·· ·∧ xn = yn ⇒ f (x1, . . . ,xn) = f (y1, . . . ,yn)

and similarly for each n-ary relation R in p:

∀x1 · · ·xny1 · · ·yn. x1 = y1∧·· ·∧ xn = yn ⇒ R(x1, . . . ,xn)⇒ R(y1, . . . ,yn)

0.3. Explicit implementation

To make the above definitions completely concrete and explicit, here is an implementa-

tion in Objective CAML. We start with a few auxiliary functions to perform ‘set’ opera-

tions on lists:

open List;;
let insert x l = if mem x l then l else x::l;;

let union l1 l2 = fold_right insert l1 l2;;
let unions l = fold_right union l [];;
let intersect l1 l2 = filter (fun x -> mem x l2) l1;;
let subtract l1 l2 = filter (fun x -> not (mem x l2)) l1;;
let subset l1 l2 = for_all (fun t -> mem t l2) l1;;
let set_eq l1 l2 = subset l1 l2 & subset l2 l1;;

and then define the syntax of terms and formulas:
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type term = Var of string
| Fn of string * term list;;

type formula = False
| True
| Atom of string * term list
| Not of formula
| And of formula * formula
| Or of formula * formula
| Imp of formula * formula
| Iff of formula * formula
| Forall of string * formula
| Exists of string * formula;;

For some purposes, it’s important to know the free variables FV (p) of a formula

p. This can be defined recursively as follows; note that variables are ‘bound’ by outer

quantifiers. Intuitively speaking, it’s only the valuation of the free variables that affects

the truth-value assigned to a formula, so a sentence (= formula with no free variables) is

true or false in any particular interpretation, without reference to the valuation.

let rec fvt tm =
match tm with

Var x -> [x]
| Fn(f,args) -> unions (map fvt args);;

let rec fv fm =
match fm with

False -> []
| True -> []
| Atom(p,args) -> unions (map fvt args)
| Not(p) -> fv p
| And(p,q) -> union (fv p) (fv q)
| Or(p,q) -> union (fv p) (fv q)
| Imp(p,q) -> union (fv p) (fv q)
| Iff(p,q) -> union (fv p) (fv q)
| Forall(x,p) -> subtract (fv p) [x]
| Exists(x,p) -> subtract (fv p) [x];;

We now define what an interpretation is. Note that to implement this in a program-

ming language, we’re forced to use a finite domain, which we represent as a list. How-

ever, the definition of validity below extends mathematically to an arbitrary domain:

type (’a)interpretation =
Interp of (’a)list *

(string -> (’a)list -> ’a) *
(string -> (’a)list -> bool);;

let domain(Interp(d,funs,preds)) = d
and func(Interp(d,funs,preds)) = funs
and relation(Interp(d,funs,preds)) = preds;;

and here is that definition:
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let (|->) x a f = fun y -> if y = x then a else f(y);;

let rec termval md v tm =
match tm with

Var(x) -> v x
| Fn(f,args) -> func(md) f (map (termval md v) args);;

let rec holds md v fm =
match fm with

False -> false
| True -> true
| Atom(r,args) -> relation(md) r (map (termval md v) args)
| Not(p) -> not(holds md v p)
| And(p,q) -> (holds md v p) & (holds md v q)
| Or(p,q) -> (holds md v p) or (holds md v q)
| Imp(p,q) -> not(holds md v p) or (holds md v q)
| Iff(p,q) -> (holds md v p = holds md v q)
| Forall(x,p) -> for_all (fun a -> holds md ((x |-> a) v) p) (domain md)
| Exists(x,p) -> exists (fun a -> holds md ((x |-> a) v) p) (domain md);;

We can even apply it to the various interpretations of our example formula:

let rec (--) m n = if n < m then [] else m::(m+1 -- n);;

let mod_interp n =
let fns f args =

match (f,args) with
("0",[]) -> 0

| ("1",[]) -> 1 mod n
| ("*",[x;y]) -> (x * y) mod n
| _ -> failwith "uninterpreted function"

and prs p args =
match (p,args) with

("=",[x;y]) -> x = y
| _ -> failwith "uninterpreted relation" in

Interp(0 -- (n - 1),fns,prs);;

let p = Forall("x",Imp(Not(Atom("=",[Var "x"; Fn("0",[])])),
Exists("y",Atom("=",[Fn("*",[Var "x"; Var "y"]);

Fn("1",[])]))));;

for example:

# holds (mod_interp 3) (fun x -> failwith "") p;;
- : bool = true
# holds (mod_interp 4) (fun x -> failwith "") p;;
- : bool = false

1. Propositional logic

In propositional logic, one only has nullary relation symbols and no quantifiers. A valid

propositional formula is often called a tautology. At first sight this might seem a some-

what boring subset, but many problems of practical interest can be expressed in it, as we

note below.
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1.1. Decidability

The problems of propositional validity (= tautology) and satisfiability testing are both

decidable. Moreover, they are interreducible, since p is valid precisely if ¬p is not satis-

fiable, though in computer science at least it’s traditional to emphasize the satisfiability

problem ‘SAT’. Indeed, it’s not hard to see that the problems are decidable. The truth of

a propositional formula is determined by the assignments of truth-values to its relation

symbols. A formula only involves finitely many of these, and so the number of possible

interpretations is finite and we can try them all. It’s so easy that we can present explicit

code. First we have a function to return all the relations in a formula:

let rec preds fm =
match fm with

True | False -> []
| Atom(a,[]) -> [a]
| Not p -> preds p
| And(p,q) | Or(p,q) | Imp(p,q) | Iff(p,q) -> union (preds p) (preds q)
| _ -> failwith "preds: non-propositional formula";;

and to convert a function from names to booleans into a proper interpretation:

let interpretation v =
Interp([false;true],

(fun f a -> failwith "no function symbols allowed"),
(fun p a -> if a = [] then v(p) else failwith "non-nullary"));;

Now the following auxiliary function tries a formula p on all valuations that can be

constructed from the initial one v by assigning to the atoms in ats:

let rec alltrue ats v p =
match ats with

a::oas -> alltrue oas ((a |-> true) v) p & alltrue oas ((a |-> false) v) p
| [] -> holds (interpretation v) (fun x -> failwith "") p;;

and so we can get functions for tautology and satisfiability checking, e.g.

let tautology p = alltrue (preds p) (fun _ -> failwith "") p;;
let satisfiable p = not(tautology(Not p));;

For instance, here we try p⇒ p, p⇒ q and (p⇒ q)⇒ (¬q⇒¬p):

# tautology(Imp(Atom("p",[]),Atom("p",[])));;
- : bool = true
# tautology(Imp(Atom("p",[]),Atom("q",[])));;
- : bool = false
# tautology(Imp(Imp(Atom("p",[]),Atom("q",[])),

Imp(Not(Atom("q",[])),Not(Atom("p",[])))));;
- : bool = true

From a theoretical point of view then, SAT is easy. But the situation looks very dif-

ferent if we think about the computational complexity. The above algorithm essentially

takes 2n steps if there are n atomic propositions. This is hardly practical even for a hun-

dred atomic propositions, let alone thousands or millions. And in fact, no subexponential
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algorithm for SAT is known. On the contrary, the extensive theory of NP-completeness

(Cook 1971) implies that if there is a polynomial-time algorithm for SAT, then there are

also polynomial-time algorithms for many apparently very difficult combinatorial prob-

lems, which fuels the belief that the existence of such an algorithm is unlikely. Still,

there are algorithms that often perform quite well on many real problems. These still usu-

ally involve true/false case-splitting of variables, but in conjunction with more intelligent

simplification.

1.2. The Davis-Putnam method

Most high-performance SAT checkers are based on the venerable Davis-Putnam algo-

rithm (Davis and Putnam 1960), or more accurately on the ‘DPLL’ algorithm, a later

improvement (Davis, Logemann, and Loveland 1962).

The starting-point is to put the formula to be tested for satisfiability in ‘conjunctive

normal form’. A formula is said to be in conjunctive normal form (CNF) when it is an

‘and of ors’, i.e. of the form:

C1∧C2∧·· ·∧Cn

with each Ci in turn of the form:

li1∨ li2∨·· ·∨ limi

and all the li j’s literals, i.e. primitive propositions or their negations. The individual con-

juncts Ci of a CNF form are often called clauses. We usually consider these as sets,

since both conjunction and disjunction are associative, commutative and idempotent, so

it makes sense to talk of ⊥ as the empty clause. If Ci consists of one literal, it is called

a unit clause. Dually, disjunctive normal form (DNF) reverses the role of the ‘and’s and

‘or’s. These special forms are analogous to ‘fully factorized’ and ‘fully expanded’ in

ordinary algebra — think of (x + 1)(x + 2)(x + 3) as CNF and x3 + 6x2 + 11x + 6 as

DNF. Again by analogy with algebra, we can always translate a formula into CNF by

repeatedly rewriting with equivalences like:

¬(¬p)⇔ p

¬(p∧q)⇔¬p∨¬q

¬(p∨q)⇔¬p∧¬q

p∨ (q∧ r)⇔ (p∨q)∧ (p∨ r)

(p∧q)∨ r ⇔ (p∨ r)∧ (q∨ r)

However, this in itself can cause the formula to blow up exponentially before we

even get to the main algorithm, which is hardly a good start. One can do better by in-

troducing new variables to denote subformulas, and putting the resulting list of equiv-

alences into CNF — so-called definitional CNF. It’s not hard to see that this preserves

satisfiability. For example, we start with the formula:

(p∨ (q∧¬r))∧ s
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introduce new variables for subformulas:

(p1 ⇔ q∧¬r)∧
(p2 ⇔ p∨ p1)∧
(p3 ⇔ p2∧ s)∧
p3

then transform to CNF:

(¬p1∨q)∧ (¬p1∨¬r)∧ (p1∨¬q∨ r)∧
(¬p2∨ p∨ p1)∧ (p2∨¬p)∧ (p2∨¬p1)∧
(¬p3∨ p2)∧ (¬p3∨ s)∧ (p3∨¬p2∨¬s)∧
p3

The DPLL algorithm is based on the following satisfiability-preserving transforma-

tions:

I The 1-literal rule: if a unit clause p appears, remove ¬p from other clauses and

remove all clauses including p.

II The affirmative-negative rule: if p occurs only negated, or only unnegated, delete

all clauses involving p.

III Case-splitting: consider the two separate problems by adding p and ¬p as new

unit clauses.

If you get the empty set of clauses, the formula is satisfiable; if you get an empty

clause, it is unsatisfiable. Since the first two rules make the problem simpler, one only

applies the case-splitting rule when no other progress is possible. In the worst case, many

case-splits are necessary and we get exponential behaviour. But in practice it works quite

well.

1.3. Industrial-strength SAT checkers

The above simple-minded sketch of the DPLL algorithm leaves plenty of room for im-

provement. The choice of case-splitting variable is often critical, the formulas can be

represented in a way that allows for efficient implementation, and the kind of back-

tracking that arises from case splits can be made more efficient via ‘intelligent back-

jumping’ and ‘conflict clauses’. Two highly efficient DPLL-based theorem provers are

Chaff (Moskewicz, Madigan, Zhao, Zhang, and Malik 2001) and BerkMin (Goldberg

and Novikov 2002).

Another interesting technique that is used in the tools from Prover Technology

(www.prover.com), as well as the experimental system Heerhugo (Groote 2000), is

Stålmarck’s dilemma rule (Stålmarck and Säflund 1990). This involves using case-splits

in a non-nested fashion, accumulating common information from both sides of a case

split and feeding it back:
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In some cases, this works out much better than the usual DPLL algorithm. For a

nice introduction, see Sheeran and Stålmarck (2000). Note that this method is covered

by patents (Stålmarck 1994).

1.4. Applications of propositional logic

There is a close correspondence between propositional logic and digital circuit design.

At a particular time-step, we can regard each internal or external wire in a (binary) digital

computer as having a Boolean value, ‘false’ for 0 and ‘true’ for 1, and think of each cir-

cuit element as a Boolean function, operating on the values on its input wire(s) to produce

a value at its output wire. The most basic building-blocks of computers used by digital

designers, so-called logic gates, correspond closely to the usual logical connectives. For

example an ‘AND gate’ is a circuit element with two inputs and one output whose output

wire will be high (true) precisely if both the input wires are high, and so it corresponds

exactly in behaviour to the ‘and’ (‘∧’) connective. Similarly a ‘NOT gate’ (or inverter)

has one input wire and one output wire, which is high when the input is low and low

when the input is high; hence it corresponds to the ‘not’ connective (‘¬’). Thus, there is

a close correspondence between digital circuits and formulas which can be sloganized as

follows:

Digital design Propositional Logic

circuit formula

logic gate propositional connective

input wire atom

internal wire subexpression

voltage level truth value
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An important issue in circuit design is proving that two circuits have the same func-

tion, i.e. give identical results on all inputs. This arises, for instance, if a designer makes

some special optimizations to a circuit and wants to check that they are “safe”. Using

the above correspondences, we can translate such problems into checking that a number

of propositional formulas Pn ⇔ P′n are tautologies. Slightly more elaborate problems in

circuit design (e.g. ignoring certain ‘don’t care’ possibilities) can also be translated to

tautology-checking. Thus, efficient methods for tautology checking directly yield useful

tools for hardware verification.

Many other finite arithmetical and combinatorial problems can also be encoded as

problems of propositional validity or satisfiability. Notably, one can express the assertion

that a particular number is prime as a propositional formula, essentially by encoding a

multiplier circuit and claiming that a certain combination of outputs can only occur in

degenerate cases. For instance, the following formula asserts that 5 is prime:

(out0 ⇔ x0∧ y0)∧
(out1 ⇔ (x0∧ y1 ⇔¬(x1∧ y0)))∧
(v22 ⇔ x0∧ y1∧ x1∧ y0)∧
(u20 ⇔ (x1∧ y1 ⇔¬v22))∧
(u21 ⇔ x1∧ y1∧ v22)∧
(out2 ⇔ u20)∧
(out3 ⇔ u21)∧
out0∧¬out1∧out2∧¬out3
⇒⊥

Proving such a formula to be a tautology verifies that the number is prime, while

proving it to be satisfiable indicates that the number is composite. Moreover, a satisfying

valuation can be mapped into factors.

Although the above is hardly competitive with more direct means of factoring and

primality testing, the situation with some combinatorial problems is better. The corner-

stone of the elaborate theory of NP-completeness is exactly the huge collection of combi-

natorial problems that can all be reduced to each other and to propositional satisfiability.

Recently it’s become increasingly clear that this is useful not just as a theoretical reduc-

tion but as a practical approach. Surprisingly, many combinatorial problems are solved

better by translating to SAT than by customized algorithms! This is no doubt a tribute to

the enormous engineering effort that has gone into SAT solvers. Thus, we might consider

SAT, the satisfiability problem, as a kind of machine code into which other combinatorial

problems can be ‘compiled’.

2. First-order logic

In contrast to propositional logic, many interesting questions about first order and higher

order logic are undecidable even in principle, let alone in practice. Church (1936) and

Turing (1936) showed that even pure logical validity in first order logic is undecidable,

introducing in the process many of the basic ideas of computability theory.

On the other hand, it is not too hard to see that logical validity is semidecidable —

this is certainly a direct consequence of completeness theorems for proof systems in first

order logic (Gödel 1930), and was arguably implicit in work by Skolem (1922). This
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means that we can at least program a computer to enumerate all valid first order formulas.

One simple approach is based on the following logical principle, due to Skolem and

Gödel but usually mis-named “Herbrand’s theorem”:

Let ∀x1, . . . ,xn.P[x1, . . . ,xn] be a first order formula with only the indicated universal

quantifiers (i.e. the body P[x1, . . . ,xn] is quantifier-free). Then the formula is satisfi-

able iff the infinite set of ‘ground instances’ p[ti
1, . . . , t

i
n] that arise by replacing the

variables by arbitrary variable-free terms made up from functions and constants in

the original formula is propositionally satisfiable.

We can get the original formula into the special form required by some simple nor-

mal form transformations, introducing Skolem functions to replace existentially quanti-

fied variables. By the compactness theorem for propositional logic, if the infinite set of

instances is unsatisfiable, then so will be some finite subset. In principle we can enumer-

ate all possible sets, one by one, until we find one that is not propositionally satisfiable.

(If the formula is satisfiable, we will never discover it by this means. By undecidability,

we know this is unavoidable.) A precise description of this procedure is tedious, but a

simple example may help. Suppose we want to prove that the following is valid. This is

often referred to as the ‘drinker’s principle’, because you can think of it as asserting that

there is some person x such that if x drinks, so does everyone.

∃x.∀y.D(x)⇒ D(y)

We start by negating the formula. To prove that the original is valid, we need to

prove that this is unsatisfiable:

¬(∃x.∀y.D(x)⇒ D(y))

We then make some transformations to a logical equivalent so that it is in ‘prenex

form’ with all quantifiers at the front.

∀x.∃y.D(x)∧¬D(y)

We then introduce a Skolem function f for the existentially quantified variable y:

∀x.D(x)∧¬D( f (x))

We now consider the Herbrand universe, the set of all terms built up from con-

stants and functions in the original formula. Since here we have no nullary constants,

we need to add one c to get started (this effectively builds in the assumption that

all interpretations have a non-empty domain). The Herbrand universe then becomes

{c, f (c), f ( f (c)), f ( f ( f (c))), . . .}. By Herbrand’s theorem, we need to test all sets of

ground instances for propositional satisfiability. Let us enumerate them in increasing

size. The first one is:

D(c)∧¬D( f (c))

This is not propositionally unsatisfiable, so we consider the next:
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(D(c)∧¬D( f (c)))∧ (D( f (c))∧¬D( f ( f (c)))

Now this is propositionally unsatisfiable, so we terminate with success.

2.1. Unification-based methods

The above idea (Robinson 1957) led directly some early computer implementations, e.g.

by Gilmore (1960). Gilmore tested for propositional satisfiability by transforming the

successively larger sets to disjunctive normal form. A more efficient approach is to use

the Davis-Putnam algorithm — it was in this context that it was originally introduced

(Davis and Putnam 1960). However, as Davis (1983) admits in retrospect:

. . . effectively eliminating the truth-functional satisfiability obstacle only uncovered

the deeper problem of the combinatorial explosion inherent in unstructured search

through the Herbrand universe . . .

The next major step forward in theorem proving was a more intelligent means of

choosing substitution instances, to pick out the small set of relevant instances instead of

blindly trying all possibilities. The first hint of this idea appears in Prawitz, Prawitz, and

Voghera (1960), and it was systematically developed by Robinson (1965), who gave an

effective syntactic procedure called unification for deciding on appropriate instantiations

to make terms match up correctly.

There are many unification-based theorem proving algorithms. Probably the best-

known is resolution, in which context Robinson (1965) introduced full unification to au-

tomated theorem proving. Another important method quite close to resolution and de-

veloped independently at about the same time is the inverse method (Maslov 1964; Lif-

schitz 1986). Other popular algorithms include tableaux (Prawitz, Prawitz, and Voghera

1960), model elimination (Loveland 1968; Loveland 1978) and the connection method

(Kowalski 1975; Bibel and Schreiber 1975; Andrews 1976). Crudely speaking:

• Tableaux = Gilmore procedure + unification

• Resolution = Davis-Putnam procedure + unification

Tableaux and resolution can be considered as classic representatives of ‘top-down’

and ‘bottom-up’ methods respectively. Roughly speaking, in top-down methods one

starts from a goal and works backwards, while in bottom-up methods one starts from the

assumptions and works forwards. This has significant implications for the very nature

of unifiable variables, since in bottom-up methods they are local (implicitly universally

quantified) whereas in top-down methods they are global, correlated in different portions

of the proof tree. This is probably the most useful way of classifying the various first-

order search procedures and has a significant impact on the problems where they perform

well.

2.2. Decidable problems

Although first order validity is undecidable in general, there are special classes of for-

mulas for which it is decidable, e.g.

• AE formulas, which involve no function symbols and when placed in prenex form

have all the universal quantifiers before the existential ones.
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• Monadic formulas, involving no function symbols and only monadic (unary) re-

lation symbols.

• Purely universal formulas

The decidability of AE formulas is quite easy to see, because no function sym-

bols are there to start with, and because of the special quantifier nesting, none are intro-

duced in Skolemization. Therefore the Herbrand universe is finite and the enumeration

of ground instances cannot go on forever. The decidability of the monadic class can be

proved in various ways, e.g. by transforming into AE form by pushing quantifiers in-

wards (‘miniscoping’). Although neither of these classes is particularly useful in prac-

tice, it’s worth noting that the monadic formulas subsume traditional Aristotelian syllo-

gisms, at least on a straightforward interpretation of what they are supposed to mean. For

example

If all M are P, and all S are M, then all S are P

can be expressed using monadic relations as follows:

(∀x.M(x)⇒ P(x))∧ (∀x.S(x)⇒M(x))⇒ (∀x.S(x)⇒ P(x))

For purely universal formulas, we can use congruence closure (Nelson and Oppen

1980; Shostak 1978; Downey, Sethi, and Tarjan 1980). This allows us to prove that one

equation follows from others, e.g. that

∀x. f ( f ( f (x)) = x∧ f ( f ( f ( f ( f (x))))) = x⇒ f (x) = x

As the name implies, congruence closure involves deducing all equalities between

subterms that follow from the asserted ones by using equivalence and congruence prop-

erties of equality. In our case, for example, the first equation f ( f ( f (x)) = x implies

f ( f ( f ( f (x))) = f (x) and hence f ( f ( f ( f ( f (x))))) = f ( f (x)), and then symmetry and

transitivity with the second equation imply f ( f (x)) = x, and so on. It straightforwardly

extends to deciding the entire universal theory by refutation followed by DNF transfor-

mation and congruence closure on the equations in the disjuncts, seeing whether any

negated equations in the same disjunct are implied.

An alternative approach is to reduce the problem to SAT by introducing a propo-

sitional variable for each equation between subterms, adding constraints on these vari-

ables to reflect congruence properties. This has the possibly significant advantage that no

potentially explosive DNF transformation need be done, and exploits the power of SAT

solvers. For example if Em,n (for 0 ≤ m,n ≤ 5) represents the equation f m(x) = f n(x),
we want to deduce E3,0 ∧ E5,0 ⇒ E1,0 assuming the equality properties

∧
n En,n (re-

flexivity),
∧

m,n Em,n ⇒ En,m (symmetry),
∧

m,n,p Em,n ∧ En,p ⇒ Em,p (transitivity) and∧
m,n Em,n ⇒ Em+1,n+1 (congruence).

2.3. Theories

Also interesting in practice are situations where, rather than absolute logical validity, we

want to know whether statements follow from some well-accepted set of mathematical

axioms, or are true in some particular interpretation like the real numbers R. We gener-

alize the notion of logical validity, and say that p is a logical consequence of axioms A,
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written A |= p, if for any valuation, every interpretation that makes all the formulas in A
true also makes p true. (This looks straightforward but unfortunately there is some incon-

sistency in standard texts. For example the above definition is found in Enderton (1972),

whereas in Mendelson (1987) the definition has the quantification over valuations per

formula: every interpretation in which each formula of A is true in all valuations makes

p true in all valuations. Fortunately, in most cases all the formulas in A are sentences,

formulas with no free variables, and then the two definitions coincide.) Ordinary validity

of p is the special cases /0 |= p, usually written just |= p.

By a theory, we mean a set of formulas closed under first-order validity, or in other

words, the set of logical consequences of a set of axioms. The smallest theory is the set

of consequences of the empty set of axioms, i.e. the set of logically valid formulas. Note

also that for any particular interpretation, the set of formulas true in that interpretation is

also a theory. Some particularly important characteristics of a theory are:

• Whether it is consistent, meaning that we never have both T |= p and T |= ¬p.

(Equivalently, that we do not have T |= ⊥, or that some formula does not follow

from T .)

• Whether it is complete, meaning that for any sentence p, either T |= p or T |=¬p.

• Whether it is decidable, meaning that there is an algorithm that takes as input a

formula p and decides whether T |= p.

Note that since we have a semidecision procedure for first-order validity, any com-

plete theory based on a finite (or even semicomputable, with a slightly more careful anal-

ysis) set of axioms is automatically decidable: just search in parallel for proofs of A⇒ p
and A⇒¬p.

3. Arithmetical theories

First order formulas built up from equations and inequalities and interpreted over com-

mon number systems are often decidable. A common way of proving this is quantifier
elimination.

3.1. Quantifier elimination

We say that a theory T in a first-order language L admits quantifier elimination if for each

formula p of L, there is a quantifier-free formula q such that T |= p ⇔ q. (We assume

that the equivalent formula contains no new free variables.) For example, the well-known

criterion for a quadratic equation to have a (real) root can be considered as an example

of quantifier elimination in a suitable theory T of reals:

T |= (∃x. ax2 +bx+ c = 0)⇔ a �= 0∧b2 ≥ 4ac∨a = 0∧ (b �= 0∨ c = 0)

If a theory admits quantifier elimination, then in particular any closed formula (one

with no free variables, such as ∀x.∃y. x < y) has a T -equivalent that is ground, i.e. con-

tains no variables at all. In many cases of interest, we can quite trivially decide whether

a ground formula is true or false, since it just amounts to evaluating a Boolean combina-

tion of arithmetic operations applied to constants, e.g. 2 < 3⇒ 42 +5 < 23. (One inter-

esting exception is the theory of algebraically closed fields of unspecified characteristic,

J. Harrison / Automated and Interactive Theorem Proving126



where quantifiers can be eliminated but the ground formulas cannot in general be eval-

uated without knowledge about the characteristic.) Consequently quantifier elimination

in such cases yields a decision procedure, and also shows that such a theory T is com-

plete, i.e. every closed formula can be proved or refuted from T . For a good discussion

of quantifier elimination and many explicit examples, see Kreisel and Krivine (1971).

One of the simplest examples is the theory of ‘dense linear (total) orders without end

points’ is based on a language containing the binary relation ‘<’ as well as equality, but

no function symbols. It can be axiomatized by the following set of sentences:

∀x y. x = y∨ x < y∨ y < x
∀x y z. x < y∧ y < z⇒ x < z
∀x. x �< x
∀x y. x < y⇒∃z. x < z∧ z < y
∀x.∃y. x < y
∀x.∃y. y < x

3.2. Presburger arithmetic

One of the earliest theories shown to have quantifier elimination is linear arithmetic over

the natural numbers or integers, as first shown by Presburger (1930). Linear arithmetic

means that we are allows the usual equality and inequality relations, constants and addi-

tion, but no multiplication, except by constants. In fact, to get quantifier elimination we

need to add infinitely many divisibility relations Dk for all integers k ≥ 2. This doesn’t

affect decidability because those new relations are decidable for particular numbers.

Presburger’s original algorithm is fairly straightforward, and follows the classic

quantifier elimination pattern of dealing with the special case of an existentially quanti-

fied conjunction of literals. (We can always put the formula into disjunctive normal form

and distribute existential quantifiers over the disjuncts, then start from the innermost

quantifier.) For an in-depth discussion of Presburger’s original procedure, the reader can

consult Enderton (1972) and Smoryński (1980), or indeed the original article, which is

quite readable — Stansifer (1984) gives an annotated English translation. A somewhat

more efficient algorithm more suited to computer implementation is given by Cooper

(1972).

3.3. Complex numbers

Over the complex numbers, we can also allow multiplication and still retain quantifier

elimination. Here is a sketch of a naive algorithm for complex quantifier elimination.

By the usual quantifier elimination pre-canonization, it suffices to be able to eliminate a

single existential quantifier from a conjunction of positive and negative equations:

∃x. p1(x) = 0∧·· ·∧ pn(x) = 0∧q1(x) �= 0∧·· ·qm(x) �= 0

We’ll sketch now how this can be reduced to the m≤ 1 and n≤ 1 case. To reduce n
we can use one equation to reduce the powers of variables in the others by elimination,

e.g.
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2x2 +5x+3 = 0∧ x2−1 = 0⇔ 5x+5 = 0∧ x2−1 = 0

⇔ 5x+5 = 0∧0 = 0

⇔ 5x+5 = 0

To reduce m, we may simply multiply all the qi(x) together since qi(x) �= 0 ∧
qi+1(x) �= 0⇔ qi(x) ·qi+1(x) �= 0. Now, the problem that remains is:

∃x. p(x) = 0∧q(x) �= 0

or equivalently ¬(∀x. p(x) = 0⇒ q(x) = 0). Consider the core formula:

∀x. p(x) = 0⇒ q(x) = 0

Assume that neither p(x) nor q(x) is the zero polynomial. Since we are working in

an algebraically closed field, we know that the polynomials p(x) and q(x) split into linear

factors whatever they may be:

p(x) = (x−a1) · (x−a2) · · · · · (x−an)

q(x) = (x−b1) · (x−b2) · · · · · (x−bm)

Now p(x) = 0 is equivalent to
∨

1≤i≤n x = ai and q(x) = 0 is equivalent to
∨

1≤ j≤m x =
b j. Thus, the formula ∀x. p(x) = 0⇒ q(x) = 0 says precisely that

∀x.
∨

1≤i≤n

x = ai ⇒
∨

1≤ j≤m

x = b j

or in other words, all the ai appear among the b j . However, since there are just n linear

factors in the antecedent, a given factor (x− ai) cannot occur more than n times and

thus the polynomial divisibility relation p(x)|q(x)n holds. Conversely, if this divisibil-

ity relation holds for n �= 0, then clearly ∀x. p(x) = 0⇒ q(x) = 0 holds. Thus, the key

quantified formula can be reduced to a polynomial divisibility relation, and it’s not dif-

ficult to express this as a quantifier-free formula in the coefficients, thus eliminating the

quantification over x.

3.4. Real algebra

In the case of the real numbers, one can again use addition and multiplication arbitrarily

and it is decidable whether the formula holds in R. A simple (valid) example is a case of

the Cauchy-Schwartz inequality:

∀x1 x2 y1 y2. (x1 · y1 + x2 · y2)2 ≤ (x2
1 + x2

2) · (y2
1 + y2

2)

This decidability result is originally due to Tarski (1951), though Tarski’s method

has non-elementary complexity and has apparently never been implemented. Perhaps the

most efficient general algorithm currently known, and the first actually to be implemented

on a computer, is the Cylindrical Algebraic Decomposition (CAD) method introduced by

Collins (1976). (For related work around the same time see Łojasiewicz (1964) and the
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method, briefly described by Rabin (1991), developed in Monk’s Berkeley PhD thesis.)

A simpler method, based on ideas by Cohen, was developed by Hörmander (1983) —

see also Bochnak, Coste, and Roy (1998) and Gårding (1997) — and it is this algorithm

that we will sketch.

Consider first the problem of eliminating the quantifier from ∃x. P[x], where P[x]
is a Boolean combination of univariate polynomials (in x). Suppose the polynomials

involved in the body are p1(x), . . . , pn(x). The key to the algorithm is to obtain a sign
matrix for the set of polynomials. This is a division of the real line into a (possibly empty)

ordered sequence of m points x1 < x2 < · · ·< xm representing precisely the zeros of the

polynomials, with the rows of the matrix representing, in alternating fashion, the points

themselves and the intervals between adjacent pairs and the two intervals at the ends:

(−∞,x1),x1,(x1,x2),x2, . . . ,xm−1,(xm−1,xm),xm,(xm,+∞)

and columns representing the polynomials p1(x), . . . , pn(x), with the matrix entries giv-

ing the signs, either positive (+), negative (−) or zero (0), of each polynomial pi at the

points and on the intervals. For example, for the collection of polynomials:

p1(x) = x2−3x+2

p2(x) = 2x−3

the sign matrix looks like this:

Point/Interval p1 p2

(−∞,x1) + −
x1 0 −

(x1,x2) − −
x2 − 0

(x2,x3) − +
x3 0 +

(x3,+∞) + +

Note that x1 and x3 represent the roots 1 and 2 of p1(x) while x2 represents 1.5,

the root of p2(x). However the sign matrix contains no numerical information about

the location of the points xi, merely specifying the order of the roots of the various

polynomials and what signs they take there and on the intervening intervals. It is easy to

see that the sign matrix for a set of univariate polynomials p1(x), . . . , pn(x) is sufficient

to answer any question of the form ∃x.P[x] where the body P[x] is quantifier-free and all

atoms are of the form pi(x) ��i 0 for any of the relations =, <, >,≤,≥ or their negations.

We simply need to check each row of the matrix (point or interval) and see if one of them

makes each atomic subformula true or false; the formula as a whole can then simply be

“evaluated” by recursion.

In order to perform general quantifier elimination, we simply apply this basic op-

eration to all the innermost quantified subformulas first (we can consider a universally
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quantified formula ∀x.P[x] as ¬(∃x.¬P[x]) and eliminate from ∃x.¬P[x]). This can then

be iterated until all quantifiers are eliminated. The only difficulty is that the coefficients

of a polynomial may now contain other variables as parameters. But we can quite easily

handle these by performing case-splits over the signs of coefficients and using pseudo-

division of polynomials instead of division as we present below.

So the key step is finding the sign matrix, and for this the following simple observa-

tion is key. To find the sign matrix for

p, p1, . . . , pn

it suffices to find one for the set of polynomials

p′, p1, . . . , pn,q0,q1, . . . ,qn

where p′, which we will sometimes write p0 for regularity’s sake, is the derivative of p,

and qi is the remainder on dividing p by pi. For suppose we have a sign matrix for the

second set of polynomials. We can proceed as follows.

First, we split the sign matrix into two equally-sized parts, one for the p′, p1, . . . , pn
and one for the q0,q1, . . . ,qn, but for now keeping all the points in each matrix, even if

the corresponding set of polynomials has no zeros there. We can now infer the sign of

p(xi) for each point xi that is a zero of one of the polynomials p′, p1, . . . , pn, as follows.

Since qk is the remainder of p after division by pk, p(x) = sk(x)pk(x)+ qk(x) for some

sk(x). Therefore, since pk(xi) = 0 we have p(xi) = qk(xi) and so we can derive the sign

of p at xi from that of the corresponding qk.

Now we can throw away the second sign matrix, giving signs for the q0, . . . ,qn, and

retain the (partial) matrix for p, p′, p1, . . . , pn. We next ‘condense’ this matrix to remove

points that are not zeros of one of the p′, p1, . . . , pn, but only of one of the qi. The signs

of the p′, p1, . . . , pn in an interval from which some other points have been removed can

be read off from any of the subintervals in the original subdivision — they cannot change

because there are no zeros for the relevant polynomials there.

Now we have a sign matrix with correct signs at all the points, but undetermined

signs for p on the intervals, and the possibility that there may be additional zeros of p
inside these intervals. But note that since there are certainly no zeros of p′ inside the

intervals, there can be at most one additional root of p in each interval. Whether there

is one can be inferred, for an internal interval (xi,xi+1), by seeing whether the signs of

p(xi) and p(xi+1), determined in the previous step, are both nonzero and are different.

If not, we can take the sign on the interval from whichever sign of p(xi) and p(xi+1) is

nonzero (we cannot have them both zero, since then there would have to be a zero of

p′ in between). Otherwise we insert a new point y between xi and xi+1 which is a zero

(only) of p, and infer the signs on the new subintervals (xi,y) and (y,xi+1) from the signs

at the endpoints. Other polynomials have the same signs on (xi,y), y and (y,xi+1) that

had been inferred for the original interval (xi,xi+1). For external intervals, we can use the

same reasoning if we temporarily introduce new points−∞ and +∞ and infer the sign of

p(−∞) by flipping the sign of p′ on the lowest interval (−∞,x1) and the sign of p(+∞)
by copying the sign of p′ on the highest interval (xn,+∞).
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3.5. Word problems

Suppose K is a class of structures, e.g. all groups. The word problem for K asks whether a

set E of equations between constants implies another such equation s = t in all algebraic

structures of class K. More precisely, we may wish to distinguish:

• The uniform word problem for K: deciding given any E and s = t whether E |=M
s = t for all interpretations M in K.

• The word problem for K,E: with E fixed, deciding given any s = t whether E |=M
s = t for all interpretations M in K.

• The free word problem for K: deciding given any s = t whether |=M s = t for all

interpretations M in K.

As a consequence of general algebraic results (e.g. every integral domain has a field

of fractions, every field has an algebraic closure), there is a close relationship between

word problems and results for particular interpretations. For example, for any universal

formula in the language of rings, such as a word problem implication
∧

i si = ti ⇒ s = t,
the following are equivalent, and hence we can solve it using complex quantifier elimi-

nation:

• It holds in all integral domains of characteristic 0

• It holds in all fields of characteristic 0

• It holds in all algebraically closed fields of characteristic 0

• It holds in any given algebraically closed field of characteristic 0

• It holds in C

There is also a close relationship between word problems and ideal membership

questions (Scarpellini 1969; Simmons 1970), sketched in a later section. These ideal

membership questions can be solved using efficient methods like Gröbner bases (Buch-

berger 1965; Cox, Little, and O’Shea 1992).

3.6. Practical decision procedures

In many ‘practical’ applications of decision procedures, a straightforward implementa-

tion of one of the above quantifier elimination procedures may be a poor fit, in both a

positive and negative sense:

• Fully general quantifier elimination is not needed

• The decidable theory must be combined with others

For example, since most program verification involves reasoning about integer in-

equalities (array indices etc.), one might think that an implementation of Presburger

arithmetic is appropriate. But in practice, most of the queries (a) are entirely universally

quantified, and (b) do not rely on subtle divisibility properties. A much faster algorithm

can be entirely adequate. In some cases the problems are even more radically limited.

For example, Ball, Cook, Lahriri, and Rajamani (2004) report that the majority of their

integer inequality problems fall into a very class with at most two variables per inequality

and coefficients of only±1, for which a much more efficient decision procedure is avail-

able (Harvey and Stuckey 1997). Of course there are exceptions, with some applications

such as indexed predicate abstraction (Lahiri and Bryant 2004) demanding more general

quantifier prefixes.
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It’s quite common in program verification to need a combination of a decidable

theory, or indeed more than one, with uninterpreted function symbols. For example, in

typical correctness theorems for loops, one can end up with problems like the following

(the antecedent comes from a combination of the loop invariant and the loop termination

condition):

x−1 < n∧¬(x < n)⇒ a[x] = a[n]

In pure Presburger arithmetic one can deduce x−1 < n∧¬(x < n)⇒ x = n, but one

needs a methodology for making the further trivial deduction x = n⇒ a[x] = a[n]. For

non-trivial quantifier prefixes, this problem rapidly becomes undecidable, but for purely

universal formulas like the above, there are well-established methods. The Nelson and

Oppen (1979) approach is the most general. It exploits the fact that the only communica-

tion between component procedures need be equations and negated equations (s = t and

s �= t), by virtue of a result in logic known as the Craig interpolation theorem. An alterna-

tive, which can be viewed as an optimization of Nelson-Oppen for some common cases,

is due to Shostak (1984). It has taken a remarkably long time to reach a rigorous under-

standing of Shostak’s method; indeed Reuß and Shankar (2001) showed that Shostak’s

original algorithm and all the then known later refinements were in fact incomplete and

potentially nonterminating!

4. Interactive theorem proving

Even though first order validity is semi-decidable, it is seldom practical to solve inter-

esting problems using unification-based approaches to pure logic. Nor is it the case that

practical problems often fit conveniently into one of the standard decidable subsets. The

best we can hope for in most cases is that the human will have to guide the proof pro-

cess, but the machine may be able to relieve the tedium by filling in gaps, while always

ensuring that no mistakes are made. This kind of application was already envisaged by

Wang (Wang 1960)

[...] the writer believes that perhaps machines may more quickly become of practi-

cal use in mathematical research, not by proving new theorems, but by formalizing

and checking outlines of proofs, say, from textbooks to detailed formalizations more

rigorous than Principia [Mathematica], from technical papers to textbooks, or from

abstracts to technical papers.

The first notable interactive provers were the SAM (semi-automated mathematics)

series. In 1966, the fifth in the series, SAM V, was used to construct a proof of a hitherto

unproven conjecture in lattice theory (Bumcrot 1965). This was indubitably a success for

the semi-automated approach because the computer automatically proved a result now

called “SAM’s Lemma” and the mathematician recognized that it easily yielded a proof

of Bumcrot’s conjecture.

Not long after the SAM project, the AUTOMATH (de Bruijn 1970; de Bruijn 1980)

and Mizar (Trybulec 1978; Trybulec and Blair 1985) proof checking systems appeared,

and each of them in its way has been profoundly influential. Although we will refer to

these systems as ‘interactive’, we use this merely as an antonym of ‘automatic’. In fact,
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both AUTOMATH and Mizar were oriented around batch usage. However, the files that

they process consist of a proof, or a proof sketch, which they check the correctness of,

rather than a statement for which they attempt to find a proof automatically.

Mizar has been used to proof-check a very large body of mathematics, spanning pure

set theory, algebra, analysis, topology, category theory and various unusual applications

like mathematical puzzles and computer models. The body of mathematics formally built

up in Mizar, known as the ‘Mizar Mathematical Library’ (MML), seems unrivalled in

any other theorem proving system. The ‘articles’ (proof texts) submitted to the MML

are automatically abstracted into human-readable form and published in the Journal of
Formalized Mathematics, which is devoted entirely to Mizar formalizations.1

4.1. LCF — a programmable proof checker

The ideal proof checker should be programmable, i.e. users should be able to extend

the built-in automation as much as desired. There’s no particular difficulty in allow-

ing this. Provided the basic mechanisms of the theorem prover are straightforward and

well-documented and the source code is made available, there’s no reason why a user

shouldn’t extend or modify it. However, the difficulty comes if we want to restrict the

user to extensions that are logically sound — as presumably we might well wish to, since

unsoundness renders questionable the whole idea of machine-checking of supposedly

more fallible human proofs. Even fairly simple automated theorem proving programs are

often subtler than they appear, and the difficulties of integrating a large body of special

proof methods into a powerful interactive system without compromising soundness is

not trivial.

One influential solution to this difficulty was introduced in the Edinburgh LCF

project led by Robin Milner (Gordon, Milner, and Wadsworth 1979). Although this was

for an obscure ‘logic of computable functions’ (hence the name LCF), the key idea, as

Gordon (Gordon 1982) emphasizes, is equally applicable to more orthodox logics sup-

porting conventional mathematics, and subsequently many programmable proof check-

ers were designed using the same principles, such as Coq,2 HOL (Gordon and Melham

1993), Isabelle (Paulson 1994) and Nuprl (Constable 1986).

The key LCF idea is to use a special type (say thm) of proven theorems in the im-

plementation language, so that anything of type thm must by construction have been

proved rather than simply asserted. (In practice, the implementation language is usually

a version of ML, which was specially designed for this purpose in the LCF project.) This

is enforced by making thm an abstract type whose only constructors correspond to ap-

proved inference rules. But the user is given full access to the implementation language

and can put the primitive rules together in more complicated ways using arbitrary pro-

gramming. Because of the abstract type, any result of type thm, however it was arrived at,

must ultimately have been produced by correct application of the primitive rules. Yet the

means for arriving at it may be complex. We will consider how to render some decision

procedures in proof-producing style in the next section.

1Available on the Web via http://www.mizar.org/JFM.
2See the Coq Web page http://pauillac.inria.fr/coq.
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4.2. An LCF kernel for first-order logic

To explain the LCF idea in more concrete terms, we will show a complete LCF-style

kernel for first order logic with equality, implemented in Objective CAML, starting with

the basic syntax for first-order logic defined at the beginning. Before proceeding, we

define some OCaml functions for useful syntax operations: constructing an equation,

checking whether a term occurs in another, and checking whether a term occurs free in a

formula. Note that we want to avoid the fv function earlier to emphasize that we aren’t

even relying on set operations.

let mk_eq s t = Atom("=",[s;t]);;

let rec occurs_in s t =
s = t or
match t with

Var y -> false
| Fn(f,args) -> exists (occurs_in s) args;;

let rec free_in t fm =
match fm with

False -> false
| True -> false
| Atom(p,args) -> exists (occurs_in t) args
| Not(p) -> free_in t p
| And(p,q) -> free_in t p or free_in t q
| Or(p,q) -> free_in t p or free_in t q
| Imp(p,q) -> free_in t p or free_in t q
| Iff(p,q) -> free_in t p or free_in t q
| Forall(y,p) -> not (occurs_in (Var y) t) & free_in t p
| Exists(y,p) -> not (occurs_in (Var y) t) & free_in t p;;

There are many complete proof systems for first order logic. We will adopt a Hilbert-

style proof system close to one first suggested by Tarski (1965), and subsequently pre-

sented in a textbook (Monk 1976). The idea is to avoid defining relatively tricky syntactic

operations like substitution. We first define the signature for the OCaml abstract datatype

of theorems:

module type Proofsystem =
sig type thm

val axiom_addimp : formula -> formula -> thm
val axiom_distribimp :

formula -> formula -> formula -> thm
val axiom_doubleneg : formula -> thm
val axiom_allimp : string -> formula -> formula -> thm
val axiom_impall : string -> formula -> thm
val axiom_existseq : string -> term -> thm
val axiom_eqrefl : term -> thm
val axiom_funcong : string -> term list -> term list -> thm
val axiom_predcong : string -> term list -> term list -> thm
val axiom_iffimp1 : formula -> formula -> thm
val axiom_iffimp2 : formula -> formula -> thm
val axiom_impiff : formula -> formula -> thm
val axiom_true : thm
val axiom_not : formula -> thm
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val axiom_or : formula -> formula -> thm
val axiom_and : formula -> formula -> thm
val axiom_exists : string -> formula -> thm
val modusponens : thm -> thm -> thm
val gen : string -> thm -> thm
val concl : thm -> formula

end;;

and then the actual implementation of the primitive inference rules. For example,

modusponens is the traditional modus ponens inference rule allowing us to pass from

two theorems of the form � p⇒ q and � p to another one � q:

� p⇒ q � p
� q

In the usual LCF style, this becomes a function taking two arguments of type thm and

producing another. In fact, most of these inference rules have no theorems as input, and

can thus be considered as axiom schemes. For example, axiom addimp creates theorems

of the form � p ⇒ (q ⇒ p) and axiom existseq creates those of the form ∃x. x = t
provided x does not appear in the term t:

module Proven : Proofsystem =
struct type thm = formula

let axiom_addimp p q = Imp(p,Imp(q,p))
let axiom_distribimp p q r = Imp(Imp(p,Imp(q,r)),Imp(Imp(p,q),Imp(p,r)))
let axiom_doubleneg p = Imp(Imp(Imp(p,False),False),p)
let axiom_allimp x p q = Imp(Forall(x,Imp(p,q)),Imp(Forall(x,p),Forall(x,q)))
let axiom_impall x p =

if not (free_in (Var x) p) then Imp(p,Forall(x,p))
else failwith "axiom_impall"

let axiom_existseq x t =
if not (occurs_in (Var x) t) then Exists(x,mk_eq (Var x) t)
else failwith "axiom_existseq"

let axiom_eqrefl t = mk_eq t t
let axiom_funcong f lefts rights =

fold_right2 (fun s t p -> Imp(mk_eq s t,p))
lefts rights (mk_eq (Fn(f,lefts)) (Fn(f,rights)))

let axiom_predcong p lefts rights =
fold_right2 (fun s t p -> Imp(mk_eq s t,p))

lefts rights (Imp(Atom(p,lefts),Atom(p,rights)))
let axiom_iffimp1 p q = Imp(Iff(p,q),Imp(p,q))
let axiom_iffimp2 p q = Imp(Iff(p,q),Imp(q,p))
let axiom_impiff p q = Imp(Imp(p,q),Imp(Imp(q,p),Iff(p,q)))
let axiom_true = Iff(True,Imp(False,False))
let axiom_not p = Iff(Not p,Imp(p,False))
let axiom_or p q = Iff(Or(p,q),Not(And(Not(p),Not(q))))
let axiom_and p q = Iff(And(p,q),Imp(Imp(p,Imp(q,False)),False))
let axiom_exists x p = Iff(Exists(x,p),Not(Forall(x,Not p)))
let modusponens pq p =

match pq with Imp(p’,q) when p = p’ -> q
| _ -> failwith "modusponens"

let gen x p = Forall(x,p)
let concl c = c

end;;
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Although simple, these rules are in fact complete for first-order logic with equality.

At first they are tedious to use, but using the LCF technique we can build up a set of

derived rules. The following derives p⇒ p:

let imp_refl p = modusponens (modusponens (axiom_distribimp p (Imp(p,p)) p)
(axiom_addimp p (Imp(p,p))))

(axiom_addimp p p);;

Before long, we can reach the stage of automatic derived rules that, for example,

prove propositional tautologies automatically, perform Knuth-Bendix completion, and

prove first order formulas by standard proof search and translation into primitive infer-

ences.

4.3. Proof style

One feature of the LCF style is that proofs (being programs) tend to be highly procedural,
in contrast to the more declarative proofs supported by Mizar — for more on the contrast

see Harrison (1996b). This can have important disadvantages in terms of readability

and maintainability. In particular, it is difficult to understand the formal proof scripts in

isolation; they need to be run in the theorem prover to understand what the intermediate

states are. Nevertheless as pointed out in (Harrison 1996a) it is possible to implement

more declarative styles of proof on top of LCF cores. For more recent experiments with

Mizar-like declarative proof styles see Syme (1997), Wenzel (1999), Zammit (1999) and

Wiedijk (2001).

4.4. A panorama of interactive theorem provers

There are numerous interactive theorem provers in the world. Wiedijk (2006) gives an

instructive survey of some of the main interactive theorem provers (including a few such

as Otter that might be considered automatic but which can be used in a more interactive

style) giving the highlights of each one and showing proofs of the irrationality of
√

2 in

each. Here is a quick summary of each one considered there:

• HOL — Seminal LCF-style prover for classical simply typed higher-order logic

with several versions.

• Mizar — Pioneering system for formalizing mathematics, originating the declar-

ative style of proof.

• PVS — Prover designed for applications with an expressive classical type theory

and powerful automation.

• Coq — LCF-like prover for constructive Calculus of Constructions with reflective

programming language.

• Otter/IVY — Powerful automated theorem prover for pure first-order logic plus a

proof checker.

• Isabelle/Isar — Generic prover in LCF style with a newer declarative proof style

influenced by Mizar.

• Alfa/Agda — Prover for constructive type theory integrated with dependently

typed programming language.

• ACL2 — Highly automated prover for first-order number theory without explicit

quantifiers, able to do induction proofs itself.
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• PhoX — prover for higher-order logic designed to be relatively simple to use in

comparison with Coq, HOL etc.

• IMPS — Interactive prover for an expressive logic supporting partially defined

functions.

• Metamath — Fast proof checker for an exceptionally simple axiomatization of

standard ZF set theory.

• Theorema — Ambitious integrated framework for theorem proving and computer

algebra built inside Mathematica.

• Lego — Well-established framework for proof in constructive type theory, with a

similar logic to Coq.

• Nuprl — LCF-style prover with powerful graphical interface for Martin-Löf type

theory extended with new constructs.

• Omega — Unified combination in modular style of several theorem-proving tech-

niques including proof planning.

• B prover — Prover for first-order set theory designed to support verification and

refinement of programs.

• Minlog — Prover for minimal logic supporting practical extraction of programs

from proofs.

5. Proof-producing decision procedures

Suppose we want to have the power of standard decision procedures such as quantifier

elimination for real algebra, but we are determined to produce a proof. Most obviously,

this might be because we really distrust complicated code, and want to have a theorem

prover in the LCF style. There are other reasons too for insisting on a proof. For example,

the idea behind proof-carrying code (Necula 1997) is that code will be accompanied by

a proof of certain key properties, which can be checked at the point of use. Unless one

expects the runtime environment to implement a variety of quite complicated decision

procedures, it’s preferable to keep this proof restricted to a limited repertoire of steps.

We can still use arbitrary decision procedures, provided they can record a simple proof.

Assuming then that we do want to produce a proof, how much difference does this

make to the implementation of decision procedures? Essentially we can divide decision

procedures into two kinds: those that admit a nice compact proof, and those that (appar-

ently) do not. Different techniques are appropriate in order to generate proofs in the two

cases.

5.1. Separate certification

An interesting characteristic of decision problems generally, not just those for logical

questions, is whether they admit some sort of ‘certificate’ which can be used to check the

correctness of the answer relatively simply and easily. Of course, ‘simple’ and ‘easy’ are

used vaguely here, but there is one well-known instance where there is a nice rigorous

general theory, namely the class of NP problems. A decision problem is in the class NP if

there is a certificate that can be used to check the correctness of a positive (‘yes’) answer

in a time polynomial in the size of the input instance. Dually, a problem is in the class

co-NP if there is a similar certificate for negative answers. For example, the problem of
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deciding if a number is prime is clearly in co-NP, because if a number isn’t prime, a

suitable certificate is the factors, which can be checked in polynomial time. For instance,

to verify that the number

3490529510847650949147849619903898133417764638493387843990820577×
32769132993266709549961988190834461413177642967992942539798288533

is not prime, one simply needs to multiply the two factors and check that you get the num-

ber in question. But note that finding the certificate can be very difficult. The above prob-

lem, for example (‘RSA129’), was eventually solved by a cooperative effort of around a

thousand users lavishing spare CPU cycles on the task.

Moreover, it turns out that if a number is prime, that admits a polynomial-time

checkable certificate too (Pratt 1975), albeit not quite such a simple one as just the fac-

tors. Therefore the problem of primality testing is not only in co-NP, but also in NP. Ac-

tually, quite recently it has been proved that the problem can be solved directly in poly-

nomial time (Agrawal, Kayal, and Saxena 2002). Still, the above is a good illustration of

our theme of separate certifiability.

Turning to logical problems, the obvious starting-point is the SAT problem for

propositional logic. As noted, this was the original NP problem: if a formula is satisfiable

then a suitable certificate is a satisfying valuation, which can be checked in polynomial

time by a recursive pass over the formula. It is not known whether the problem is also

in NP, i.e. whether every tautology has some short ‘proof’ in a rather general sense of

proof. This is another well-known open problem in complexity theory, NP = co-NP.

Still, if we consider first-order theorem proving as discussed earlier, it is the case in

practice that real problems normally do admit short proofs in one of the usual standard

systems (though theoretical counterexamples are known). Thus, a realistic first-order

proof is usually dominated by a search through a huge space of possible proofs, but the

final proof, when found, is usually short and can be checked quickly. This approach has

been used for a long time to incorporate first-order proof methods into LCF-style provers

(Kumar, Kropf, and Schneider 1991), and more recently, has even been exploited to plug

in ‘off-the-shelf’ external first-order provers into LCF systems (Hurd 1999). Similarly

Harrison and Théry (1998) use the Maple computer algebra system to solve polynomial

factorization and transcendental function integration problems. In each case the checking

process (respectively multiplying polynomials and taking derivatives) is substantially

easier than the process of finding the certificate (in both cases the certificate is just the

‘answer’).

Another interesting example is the universal theory of the complex numbers with

addition and multiplication. We have seen a quantifier elimination procedure for this

theory in general, but it doesn’t seem to admit efficient certification. Restricting ourselves

to universally quantified formulas, however, things are better, thanks to a classic theorem

of algebraic geometry, the (weak) Hilbert Nullstellensatz:

The polynomial equations p1(x1, . . . ,xn) = 0, . . . , pk(x1, . . . ,xn) = 0 in an alge-

braically closed field have no common solution iff there are polynomials q1(x1, . . . ,xn),
. . . , qk(x1, . . . ,xn) such that the following polynomial identity holds:

q1(x1, . . . ,xn) · p1(x1, . . . ,xn)+ · · ·+qk(x1, . . . ,xn) · pk(x1, . . . ,xn) = 1
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To verify a universal formula, we can negate it and split it into disjunctive normal

form, then refute each disjunct, all variables being implicitly existentially quantified. By

a trick due to Rabinowitsch, we can replace any negated equations by equations at the

cost of introducing more variables, since p �= 0 is equivalent to ∃x. px− 1 = 0. Now to

refute a conjunction of equations

p1(x1, . . . ,xn) = 0∧·· ·∧ pk(x1, . . . ,xn) = 0

we just have to come up with the various ‘cofactors’ qi(x1, . . . ,xn) such that

q1(x1, . . . ,xn) · p1(x1, . . . ,xn)+ · · ·+qk(x1, . . . ,xn) · pk(x1, . . . ,xn) = 1

It is now easy to see that the original set of equations has no solution, because by

this identity, the existence of a common zero for the pi(x1, . . . ,xn) would imply 0 = 1.

Note that this reasoning relies only on one direction of the Nullstellensatz (the easy one),

but we need to appeal to the other direction to know that such cofactors always exist.

The traditional Nullstellensatz proofs are nonconstructive, but there are algorithms for

finding the cofactors. Perhaps the simplest and most effective is to take the standard

Gröbner basis algorithm (Buchberger 1965) and instrument it with a little additional

‘proof recording’ (Harrison 2001).

If we turn to the universal theory of the reals, there is again a Nullstellensatz, though

a significantly more complicated one. The direct analog of the complex Nullstellensatz

involved adding a ‘sum of squares’:

The polynomial equations p1(x1, . . . ,xn) = 0, . . . , pk(x1, . . . ,xn) = 0 in an real

closed field have no common solution iff there are polynomials q1(x1, . . . ,xn), . . . ,

qk(x1, . . . ,xn) and s1(x1, . . . ,xn), . . . , sm(x1, . . . ,xn) such that the following polyno-

mial identity holds:

q1(x1, . . . ,xn) · p1(x1, . . . ,xn)+ · · ·+qk(x1, . . . ,xn) · pk(x1, . . . ,xn)+
s1(x1, . . . ,xn)2 + · · ·+ sm(x1, . . . ,xn)2 =−1

Since a sum of squares over the reals is nonnegative, it is similarly easy to get a

proof out of that certificate. There are more general forms of the real Nullstellensatz that

allow one to refute a collection of strict and non-strict inequalities, equations and inequa-

tions. Although theoretically, analogs of the Rabinowitsch trick mean that equations are

enough:

p > 0⇔ ∃x. px2−1 = 0

p≥ 0⇔ ∃x. p− x2 = 0

the general Nullstellensatz is more efficient in practice. For a more detailed study of this

topic, and a method of generating the certificates using semidefinite programming, see

Parrilo (2003). We will content ourselves with one simple example. Suppose we want to

show that if a quadratic equation has a (real) solution, its discriminant is nonnegative:

∀a b c x.ax2 +bx+ c = 0⇒ b2−4ac≥ 0
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A suitable certificate is the following. Since the first term on the right is a square,

and the second is zero by hypothesis, it is clear that the LHS is nonnegative. Almost all

the computational cost is in coming up with the appropriate square term and multiple of

the input equation to make this identity hold; checking it is then easy.

b2−4ac = (2ax+b)2−4a(ax2 +bx+ c)

Our theme of checkability has been stressed by a number of researchers, notably

Blum (1993). He suggests that in many situations, checking results may be more practi-

cal and effective than verifying code. This argument is related to, in some sense a gen-

eralization of, arguments by Harrison (1995) in favour of the LCF approach to theorem

proving rather than so-called ‘reflection’. Mehlhorn et al. (1996) describe the addition

of result checking to routines in the LEDA library of C++ routines for computational

geometry (e.g. finding convex hulls and Voronoi diagrams).

5.2. Reflection

For some decision problems, no particularly efficient certification method is known —

take for example the general first-order theory of reals. In this case, if we want an easily

checkable certificate, the only option seems to be to implement the procedure in such

a way that it generates a complete ‘trace’ of logical inferences justifying its every step.

The problem is that such a certificate is likely to be very large, making it inefficient to

check and possibly even to generate.

An implementation of Hörmander’s algorithm that produces a HOL proof as it runs

has been written by McLaughlin (McLaughlin and Harrison 2005). It is substantially

slower than a standard implementation that does not produce theorems. Nevertheless, a

few techniques help to narrow the gap. In particular, by proving suitably general lemmas,

one can encode quite ‘generic’ patterns of transformation, so that many of the steps of the

algorithm can be justified just by an instantiation of the lemma to specific variables. This

idea has long been used by HOL experts — for an early example see Melham (1989) —

under the name ‘proforma theorems’.

In an extreme form, one can essentially encode all the data structures inside the logic,

and express the steps of the algorithm as equations or implications that can be ‘executed’

by rewriting or more delicate logical steps. This may involve defining a separate class

of syntactic objects inside the logic and defining the semantic map. For example, for

Presburger arithmetic in HOL, we have defined a type of restricted first-order terms of

arithmetic:

let cform_INDUCT,cform_RECURSION = define_type
"cform = Lt int

| Gt int
| Eq int
| Ne int
| Divides int int
| Ndivides int int
| And cform cform
| Or cform cform
| Nox bool";;

together with the semantic map
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let interp = new_recursive_definition cform_RECURSION
‘(interp x (Lt e) ⇔ x + e < &0) ∧
(interp x (Gt e) ⇔ x + e > &0) ∧
(interp x (Eq e) ⇔ (x + e ⇔&0)) ∧
(interp x (Ne e) ⇔ ¬(x + e = &0)) ∧
(interp x (Divides c e) ⇔ c divides (x + e)) ∧
(interp x (Ndivides c e) ⇔ ¬(c divides (x + e))) ∧
(interp x (And p q) ⇔ interp x p ∧ interp x q) ∧
(interp x (Or p q) ⇔ interp x p ∨ interp x q) ∧
(interp x (Nox P) ⇔ P)‘;;

Now, the core quantifier elimination transformation can be expressed directly as theo-

rems about the syntax, e.g.

|- ∀p d. alldivide d p ∧ &0 < d
==> ((∃x. interp x p) ⇔

∃j. &1 <= j ∧ j <= d ∧
(interp j (minusinf p) ∨
∃b. b IN Bset p ∧ interp (b + j) p))

where the various syntactic notions alldivide, minusinf and interp are defined on

the syntax. Now, in order to eliminate a quantifier in HOL from an expression ∃x. P[x],
one first ‘rewrites backwards’ with the definition of interp to map it into a formula in

the canonical form ∃x.interp x p, appeals to the above general theorem to transform it

into a quantifier-free equivalent, then ‘rewrites forward’ with the definition of interp to

eliminate the internal syntax:

x

f (x)

�x�

� f (x)�

�

�

	 	

Semantics to syntax

Syntax to semantics

f
Syntactic
transform

A similar approach is popular in the Coq theorem prover, where it is commonly

called reflection. The benefits in Coq are disproportionately large since making the syn-

tactic transformations by ‘calculation’ is much more efficient than inference in general,

which not only checks proofs as it goes, but generates large ‘proof objects’.

A further generalization of reflection is to attempt to verify a decision procedure

once and for all, so that it can be relied upon without producing a proof as it runs. This is

certainly an interesting topic, but takes us too far from our main theme. You should hear

more on this topic from other lectures.
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Transformations

Martin HOFMANN

Institut für Informatik, Ludwig-Maximilians-Universität, Munich, Germany

Abstract. We consider a type system capable of tracking reading, writing and allo-

cation in a higher-order language with dynamically allocated references.

We give a denotational semantics to this type system which allows us to validate

a number of effect-dependent program equivalences in the sense of observational

equivalence. An example is the following:

x = e; y = e; e′(x, y) is equivalent to x = e; e′(x, x)

provided that e does not read from memory regions that it writes to and moreover

does not allocate memory that is encapsulated in the values of x and y.

Here x can be a higher-order function or a reference or a combination of both.

The two sides of the above equivalence turn out to be related in the denotational

semantics which implies that they are observationally equivalent, ie can be replaced

by one another in any (well-typed) program.

On the way we learn popular techniques such as parametrised logical relations,

regions, admissible relations, etc., which belong to the toolbox of researchers in

principles of programming languages.

Keywords. program transformation, denotational semantics, correctness of programs,

logical relations.

1. Introduction

Many analyses and logics for imperative programs are concerned with establishing

whether particular mutable variables may be read or written by a phrase. For example,

the equivalence of while-programs

C ; if B then C’ else C’’ =
if B then (C;C’) else (C;C’’)

is valid when B does not read any variable which C might write. Hoare-style program-

ming logics often have rules with side conditions on possibly-read and possibly-written

variable sets, and reasoning about concurrent processes is dramatically simplified if one

can establish that none of them may write a variable which another may read.

Effect systems are static analyses that compute upper bounds on the possible side-

effects of computations. The literature contains many effect systems that analyse which

storage cells may be read and which storage cells may be written (as well as many other

properties), but few satisfactory accounts of the semantics of this information, or of the
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uses to which it may be put. Note that because effect systems over-estimate the possible

side-effects of expressions, the information they capture is of the form that particular

variables will definitely not be read or will definitely not be written. But what does that

mean?

Thinking operationally, it may seem entirely obvious what is meant by saying that

a variable X will not be read (written) by a command C, viz. no execution trace of

C contains a read (resp. write) operation to X . But such intensional interpretations of

program properties are over-restrictive, cannot be interpreted in a standard semantics,

do not behave well with respect to program equivalence or contextual reasoning and are

hard to maintain during transformations. Thus we seek extensional properties that are

more liberal than the intensional ones yet still validate the transformations or reasoning

principles we wish to apply.

We begin by defining a simple language with global integer references and describe

an effect typing system allowing us to track reading to and writing from individual loca-

tions. We then state a list of effect-dependent program equivalences whose correctness

with respect to observational equivalence we then embark on proving. To do this, we de-

velop a relational semantics which models effects as sets of relations that are preserved

by computations exhibiting that effect. The more side effects the fewer relations are pre-

served. In particular, if an operation may read location 	 then only those relations R for

which sRs′ implies s(	) = s′(	) can be preserved. If an operation writes 	 then only

those relations R for which sRs′ implies s[	:=n]Rs′[	:=n] for all n can be preserved.

The relational semantics then defines a partial equivalence relation between values of

the same given type which is shown to imply observational equivalence and at the same

time to include the equational theory generated by our list of effect-dependent program

transformations which therefore are valid with respect to observational equivalence.

We then extend this basic framework to encompass dynamically allocated refer-

ences, recursive definitions, references of structured and even functional types (the latter

two not contained in these lecture notes, though). Each of these extensions requires new

methods such as domains, partial bijections, Kripke logical relations, which are of inde-

pendent interest. With dynamically allocated references manifest effects can sometimes

be discounted from the analysis on the grounds that they affect only “private” portions of

the store, a phenomenon known as effect masking. We thus also explain effect masking

semantically and show how it helps us to justify more program transformations.

These notes are based on joint work with Lennart Beringer, Nick Benton, and An-

drew Kennedy; a large portion of the material is from our joint publications [5,4]; Quasi-

PERS in the context of logical relations appear here for the first time.

2. Syntax

Types are given by the following grammar:

A, B := unit | int | bool | ref | A×B | A → B

We assume an infinite supply L of locations ranged over by 	, possibly decorated, and

an infinite supply of variables ranged over by x, y, z possibly decorated. In concrete

examples we may also use other identifiers for variables.

Terms (e) are given by the grammar:
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e ::= x | n | 	 | true | false | e1 op e2 | () | (e1, e2) | e.1 | e.2 | e1 e2 |
λx.e | let x⇐e1 in e2 | if e1 then e2 else e3 | !e | e1:=e2

Here n ranges over integer constants and op ranges over a suitable set of binary operators

including arithmetic operations and comparisons.

The expression !e denotes the value contained in the reference (denoted by) e and

e1:=e2 denotes assignment. The type unit has exactly one element denoted (). The type

A × B is the cartesian product of A and B, its elements are pairs (x, y) where x : A
and y : B. The components of such a pair are accessed with the projections .1 and .2. In

examples, we also use products with more than one two factors whose components are

then accessed with .1, .2, .3, etc. We use the abbreviation

e1; e2
def
= let x⇐e1 in e2

when x is not free in e2.

2.1. Example programs

The following example programs illustrate the language concepts; we give them here

with their types informally anticipating the typing rules from the next subsection.

ASSIGNER
def
= λx.	:=x : int→ unit

This assigns a given value to the fixed location 	.

COUNTER
def
= λx.(λu.x:=!x + 1, λu.!x, λu.x:=0) :

ref→ (unit→ unit)× (unit→ int)× (unit→ unit)

The function COUNTER takes a reference as an argument and returns a “counter object”

comprising methods for incrementing, getting the current value of, and resetting that

reference.

MEMO
def
= λl1.λl2.λf.

l1:=0; l2:=f(0);

λx.if x = !l1 then !l2 else

let u⇐f x in l1:=x; l2:=u; u :

ref→ ref→ (int→ int) → int→ int

A memo functional. It takes two references and a function f as arguments. It returns a

function f ′ which does the same as f but is arguably more efficient: f ′ saves the last

argument it has been called with in reference l1 and puts the corresponding f -value in

l2. Thus, if f ′ is called several times with the same argument in a row then only the first

time a possibly expensive call to f is launched.
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x ∈ dom(Γ)
Γ � x : Γ(x) Γ � 	 : ref

Γ � n : int Γ � () : unit Γ � true : bool Γ � false : bool
Γ � e1 : int Γ � e2 : int

Γ � e1 op e2 : int
Γ � e1 : A Γ � e2 : B

Γ � (e1, e2) : A×B

Γ � e : A×B

Γ � e.1 : A

Γ � e : A×B

Γ � e.2 : B
Γ � e1 : A → B Γ � e2 : A

Γ � e1 e2 : B

Γ, x:A � e : B

Γ � λx.e : A → B

Γ � e1 : A Γ, x:A � e2 : B

Γ � let x⇐e1 in e2 : B
Γ � e1 : bool Γ � e2 : A Γ � e3 : A

Γ � if e1 then e2 else e3 : A

Γ � e : ref
Γ � !e : int

Γ � e1 : ref Γ � e2 : int
Γ � e1:=e2 : unit

Figure 1. Typing rules without effects

2.2. Typing rules

A typing context Γ binds variables to types, we may write it in the form

Γ := x1 : A1, . . . , xn : An

Then dom(Γ)
def
= {x1, . . . , xn} and Γ(xi) = Ai.

A typing judgement is an assertion of the form Γ � e : A where Γ binds the free

variables of e. It is inductively defined by the typing rules in Figure 1.

3. Semantics

We do not give evaluation rules for references but instead show how, even in the presence

of references, terms and functions can be understood as mathematical functions. This

kind of giving semantics is known as denotational semantics. Note that, for the sake of

simplicity, our language does not contain recursion, hence all programs terminate. This

simplification allows us to use ordinary total functions on sets rather than continuous

functions on Scott domains or similar. It is perfectly possible to add terminating loops

such as for-loops, which again we refrain from doing, this time only to keep the syntax

small.

We model states as functions from locations to integer values and assign to each type

A a set �A� by the following clauses:

�int� = Z

�unit� = {()}
�bool� = {true, false}

�A×B� = �A�} × �B�

�A → B� = �A�⇒ T (�B�)

T (X) = S ⇒ S×X

S = L ⇒ Z

The last three clauses deserve some explanation: For sets X, Y the set X ⇒ Y comprises

all functions from X to Y . If there were no references we could simply put �A → B� =
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�x�η s = (s, η(x))

�c�η s = (s, c)

�(e1, e2)�η s = (s2, (v1, v2)) where (s1, v1) = �e1�η s, (s2, v2) = �e2�η s1

�e1 e2�η s = v1 v2 s2 where (s1, v1) = �e1�η s, (s2, v2) = �e2�η s1

�λx.e�η s = (s, f) where f(v) = �e�η[x�→v]

�let x⇐e1 in e2�η s = �e2�η[x�→v1] s1 where (s1, v1) = �e1�η s

�if e1 then e2 else e3�η s = �e2�η s1 when �e1�η s = (s1, true)

�if e1 then e2 else e3�η s = �e3�η s1 when �e1�η s = (s1, false)

�!e� = s1(	) where (s1, 	) = �e�η s

�e1:=e2�η s = (s2[	 �→v2], ()) where (s1, 	) = �e1�η s, (s2, v2) = �e2�η s1

Figure 2. Selected semantic equations defining runtime behaviour

�A� ⇒ �B�. But a term such as λx.	:=x does not merely return a value but also has

a side effect, namely to assign the argument to the reference 	. Semantically, this is

modelled by the operator T (−), a so-called monad. Here T (X) is simply an abbreviation

for the set of functions that explain how to get from a given state the new state and the

value. Accordingly, elements of T (�A�) will also serve as denotations of (as yet to be

evaluated) terms of type A. Variables of type A, on the other hand, will always have

values in �A� because we assume a call-by-value semantics whereby an expression must

be fully evaluated before its value can be bound to a variable. Of course, when binding a

function to a variable, side effects may be encapsulated in that function as “latent effects”

which only come to bear when the function is evaluated. Accordingly, an element of, say

�unit→ unit� does in general refer to the state.

Let Γ be a type context. An environment for Γ is a function η that maps each variable

x ∈ dom(Γ) to an element η(x) ∈ �Γ(x)�. If now Γ � e : A then we define an element

�e�η ∈ T (�A�)

by the clauses in Figure 2. Note that �e�η is not an element of �A� itself because the

evaluation of e may cause side effects and its value may depend on the state. The missing

clauses are left as exercises.

A-normal form By introducing additional let-expressions it is possible to transform any

term into a term in which the term formers (−,−), .1, .2, application, !(−),−:=−, are

applied to variables only and such that moreover the guard of a case distinction is a

variable. For example, the term g(!x)(!f y) becomes

let u⇐!x in
let l⇐f y in
let v⇐!l in let h⇐g u in h v
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(λx.e)v sem= e[x := v]

(v1, v2).1
sem= v1

(v1, v2).2
sem= v2

v
sem= () if v : unit

v
sem= (v.1, v.2) if v : A×B

v
sem= λx.v x if v : A → B

if v then (if v then e1 else e2) else e2
sem= if v then e1 else e2

(let x⇐e1 in e2).1
sem= let x⇐e1 in e2.1

Figure 3. Semantically valid equations

This form has been called administrative normal form (ANF, A normal form) in [7]. If

we assume that terms are in ANF the semantic equations and also typing rules can be

considerably simplified. For example, we have

�(x, y)�η s = (s, (η(x), η(y)))

�x:=y�η s = (s[η(x)�→η(y)], ())

and so forth. We henceforth assume all terms to be in ANF except in concrete examples.

The ANF also appears in the compilation of functional languages and is closely

related to static single assignment (SSA) form known from intermediate language used

by compilers.

4. Effect-independent equivalences

If two terms have equal semantics they can be replaced by one another. The equations in

Figure 4 hold in this sense where v, v1, v2 are values, i.e., terms obtained by the following

grammar:

v ::= x | 	 | c | λx.e | (v1, v2) | v.1 | v.2 | if v then v1 else v2

If v is a value then �v�η s = (s, w) for some semantic value w depending only on v and

η but not on s. There are several more such generally valid equations involving “let” and

“if”. We remark that it is possible to give a complete set of equations that characterise

semantic equality assuming that expressions may have arbitrary side effects [3]. Here,

however, we are interested in equivalences that might not hold in general, but do hold

under extra assumptions on the kinds of side effects that could possibly happen.
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5. Monads and metalanguage

The expressions on the left-hand side of the semantic equations (Fig. 2) look very much

like terms of a programming language themselves even though they are meant to be

“plain English”. One can formalise this and accordingly introduce a metalanguage [17]

which then allows one to interpret various concrete languages with different features. In-

deed, this was one of the initial motivations for the design of the programming language

ML (Meta Language) [10].

Such a metalanguage is then a simply-typed lambda calculus with an additional type

former T which can be instantiated according to the kinds of side effects offered by

the concrete language to be interpreted. This type former T must come equipped with

constructs val and let governed by the following typing rules.

Γ � e1 : T (A1) Γ, x:A1 � e2 : T (A2)
Γ � let x⇐e1 in e2 : A2

Γ � e : A

Γ � val e : T (A)

Thus the definition of a monad comprises the operator T itself as well as “let” and “val”,

just as a group is not only the underlying set but also the multiplication operation. Again,

just as groups the monads admit an equational axiomatisation. Of course, additional type

and term formers depending on the particular instance are needed. In our case this is the

type ref and the operations for reading and writing.

read : ref→ T (int)

write : ref→ int→ T (unit)

To model exceptions one would use T (A) = A
+∪ exn where exn is a set modelling

a basic type of exceptions. One then introduces constants

throw : exn→ T (A)

catch : (exn× T (A)) → T (A)

Function types in the metalanguage are always pure thus do a priori not have side effects.

The function space in the concrete language is then rendered as A → T (B).
The pure programming language Haskell allows one to define one’s own monads

and boasts syntactic abbreviations which create the illusion of working in a side-effecting

concrete language where in fact one always works with a pure meta language.

The type structure of the meta language is somewhat richer than that of the concrete

language in that the latter has no pendant of types like int→ int which denote (in the

meta language!) side-effect-free functions. More one this topic can be found in [3].

6. Effects

Our goal is to employ refined types to gain information about the nature of side effects

possibly occurring during the evaluation of a term statically that is to say without know-

ing the environment in which the term is to be evaluated.

For each location 	 ∈ L we introduce the type ref� which contains precisely that one

reference: a singleton type. Furthermore, for each 	 ∈ L we introduce the two elementary
effects rd � (reading) and wr � (writing). An effect is then a set of elementary effects.
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The refined types are given by the grammar

A, B := unit | int | bool | ref� | A×B | A ε→ B

where 	 ∈ L and ε is an effect. The refined typing judgement takes the form

Γ � e : A, ε

where now Γ maps variables to refined types. The refined typing judgement says that the

evaluation of e in an environment that respects the refined typing in Γ will yield a result

in A and moreover exhibit at most the side effects declared in ε. Later on we will provide

rigorous definitions of “respects” and “exhibit” allowing us to justify effect-dependent

program transformations.

The effect in A
ε→ B is often called a latent effect for it will be brought to bear not

immediately but only once a function of that type is being evaluated.

We abbreviate A
∅→ B by A → B and we abbreviate Γ � e : A, ∅ by Γ � e : A.

Also, we may elide the empty context.

For example, for arbitrary 	 ∈ L we have the following refined typings.

� 	:=9 : unit, {wr�}
� 	:=!	 : unit, {rd�,wr �}

� λx.	:=x : int
{wr�}→ unit

� COUNTER : ref� → (unit
{rd�,wr�}→ unit)×

(unit
{rd�}→ int)× (unit

{wr�}→ unit)

� MEMO : ref�1 → ref�2 → (int ε1→ int) ε2→ int
ε3→ int

In the last typing ε1 is arbitrary, ε2 = ε1 ∪ {wr �1 ,wr �2} and ε3 = ε1 ∪ {rd �1 ,wr �1 ,
rd �2 ,wr �2}. This last example shows that effect annotation can only conservatively ap-

proximate the actual behaviour of a program. A computation MEMO 	1 	2 f v may or

may not exhibit the effect ε1 depending on whether or not the required f -value can be

looked up or not. The second example is also interesting in that, semantically, the term in

question is side-effect free, but our type system has no way of discovering this. However,

we could use our semantics to justify a stronger type system that would ascribe a pure

typing to the term 	:=!	.

7. Effect system

We now give typing rules that formally define the refined typing judgment. We assume

ANF, i.e., the typing rules apply to terms in ANF which will save a considerable amount

of repetition. Recall that Γ � A abbreviates Γ � A, ∅, etc. Also some trivial rules,

e.g., for arithmetic operators are omitted. The rules are in Figure 4. The last three rules

in Figure 4 define and use an auxiliary subtyping relation that allows one to weaken

the refined typing. so as to obtain common refined typings e.g. in two branches of a

conditional. For example, without subtyping we would not be able to assign a type to

if x then λy.y else λy.!	.
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Γ � x : Γ(x)
Γ(x) = ref� Γ(y) = int

Γ � x:=y : unit, {wr �}
Γ(x) = ref�

Γ � !x : int, {rd�}
Γ � e1 : A1, ε1 Γ, x:A1 � e2 : A2, ε2

Γ � let x⇐e1 in e2 : A2, ε1 ∪ ε2

Γ(x) = A1
ε→ A2 Γ(y) = A1

Γ � x y : A2, ε
Γ � e1 : A, ε1 Γ � e2 : A, ε2 Γ(x) = bool

Γ � if x then e1 else e2 : A, ε1 ∪ ε2

Γ, x:A � e : B, ε

Γ � λx.e : A
ε→ B, ∅

Γ � e : A1, ε1 A1 <: A2 ε1 ⊆ ε2

Γ � e : A2, ε2

A <: A

A1 <: A2 A3 <: A4 ε1 ⊆ ε2

A2
ε1→ A3 <: A1

ε2→ A4

Figure 4. Typing rules for effect typing

Effect polymorphism and type inference In general, any given term will have infinitely

many different types that are mutually incomparable in the subtyping relation. The in-

formation about a term that can be gleaned through the typing rules thus comprises an

infinite set. In order to analyse programs automatically one will thus use a finitary nota-

tion for such infinite families of types. It is common to employ type schemes like in the

Hindley-Milner type inference for the simply-typed lambda calculus and used in the ML

programming language.

These type schemes then contain type variables, effect variables, and location vari-

ables. In addition type schemes may contain constraints stipulating inclusion of certain

effects and difference of locations.

The types for the running examples given above can be considered as instances of

such type schemes if one interprets the metavariables ε, 	, etc. as actual variables.

Just as in the case of ML type inference one will allow schematic types for let-bound

variables which can then be instantiated in different ways in the body. Thus, the following

term cannot be typed with the rules given above but can be typed with the help of type

schemes:

let f⇐λx.x:=0 in (f 	1); (f 	2)

with 	1 and 	2 two different locations.

Using type schemes one would assign the type ref�
wr�→ unit which can be instan-

tiated with 	 = 	1 and 	 = 	2. This is particularly important in the case of recursive

definitions “let rec” where, incidentally, ML does not allow multiple instantiations in

the body. For any given term there then exists a most general schematic type which can

be efficiently computed with an appropriate extension of the Hindley-Milner inference

algorithm. We will not consider the area of automatic type inference in these notes; for

more information see [9,14,24] which are the standard references on effect typing.

8. Effect-based program transformation

We will now employ effect information in order to justify program transformations. Here

is a first example of such a program transformation.
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Dead code elimination Suppose that a term contains a subterm e which admits the

typing Γ � e : unit, ε in its context where {	 | wr � ∈ ε} = ∅ then e can be replaced by

(), i.e., removed. In what sense is such replacement admissible? In any case the semantics

of the two terms are in general not equal. We shall answer that question in the next

section.

To facilitate the formulation of further equivalences we introduce the following no-

tations:

rds(ε) = {	 | rd � ∈ ε}
wrs(ε) = {	 | wr � ∈ ε}

Here are further transformations:

Code motion: Suppose that two terms e1, e2 admit the following typings in their

context: Γ � e1 : A, ε1 and Γ � e2 : A, ε2 where rds(ε1) ∩ wrs(ε2) = ∅,
wrs(ε1) ∩ rds(ε2) = ∅, and wrs(ε1) ∩ wrs(ε2) = ∅. Then the term (e1, e2) (i.e.,

let x1 ⇐ e1 in let x2⇐e2 in (x1, x2) in ANF) may be replaced with let x2 ⇐
e2inlet x1⇐e1 in (x1, x2) . Along with the general rule that semantically equal terms

may be replaced by one another this means that the order of evaluation of e1 and e2 may

be exchanged.

Duplicated code Suppose that the term e can be typed as Γ � e : A, ε in its context

where rds(ε) ∩ wrs(ε) = ∅. Then (e, e) may be replaced with let x⇐e in (x, x). This

then means that the duplicate execution of e can be contracted to a single one.

Pure Lambda Hoist Suppose that a term e can be typed as Γ � e : A in its context;

thus, e is pure (free of side effects). Then the following two terms can be replaced by one

another:

λx.let y⇐e in e′(x, y)

let x⇐e in λy.e′(x, y)

This means that side-effect-free computations that do not depend on formal parameters

can be extracted (“hoisted”) from a function (method) body and evaluated once and for

all in advance.

We note that in general the typing assumptions made in the context are crucial for

the required typings to hold. Here is an example of this situation:

f : unit ε→ A � f(	:=1) : A, ε ∪ {wr �}

Thus Duplicated Computation applies to the term f(	:=1) provided that rds(ε) ∩
(wrs(ε) ∪ {	}) = ∅. Thus, the effect typing allows one to add information about side

effects to the specification of a function (method), here f , and to use that information at

the call sites of the function for the purposes of program transformation.

Note that the semantics of let x⇐ f(	:=1) in (x, x) and (f(	:=1), f(	:=1)) are

different because the semantics does not model effect annotations. Refining the semantics

so that it does allow to capture such information is the main goal of this work as are

extensions to a richer language of course.

Before, however, refining the semantics, we must make it clear in what sense we

want program equivalences to hold.
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9. Observational equivalence

We choose to justify program equivalences as observational equivalence, i.e., we will

show that two terms deemed equivalent can be replaced by one another within any closed

term of basic type. Formally,

Definition 9.1. Let v1 and v2 be closed and pure terms of some refined type A, i.e.,

� v1 : A

� v2 : A

Then v1 and v2 are observationally equivalent at type A, written,

|= v1 ≡ v2 : A

if for all closed and pure terms v : A
ε→ bool with ε arbitrary one has that whenever

�v v1�(s0) = (s1, b1)

�v v2�(s0) = (s2, b2)

then b1 = b2. Here s0 is the initial state defined for example by s0(	) = 0 for all 	.

The term v thus represents the observation made about v1 and v2. The state reached

after the observation is discarded, only the boolean result is retained.

However, in our situation the following is the case: if |= v1 = v2 : A and � v : A
ε→

bool and

�v v1]�(s0) = (s1, b1)

�v v2�(s0) = (s2, b2)

then s1 = s2 follows, too. To see this, fix 	 ∈ L and suppose that s1(	) = c. Define

another observation v′ := λx.v x; (!	==c) where == is an equality test. From the obser-

vational equivalence of v1 and v2 applied to v′ it can then be concluded that s2(	) = c,

too. Note that this would not be so if local references not visible from the outside are

admitted.

By a similar argument it follows that observational equivalence would stay the same

if observations of integer type or multiple observations were allowed.

Definition 9.2. Two terms e1, e2, where x1:A1, . . . , xn:An � e1, e2 : A, ε are observa-

tionally equivalent at A, ε if λx1 . . . λxn.λy.ei for i = 1, 2 are observationally equivalent

at A1 → · · · → An → unit
ε→ A.

Notice that observational equivalence is always type-dependent.

Proposition 9.1. If two terms have equal semantics then they are observationally equiv-
alent at any type. The converse is in general not true.

This is because the definition of observational equivalence refers to terms only via

their semantics.
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10. Relational semantics

Before we embark on the formal definition let us informally motivate the concept of

modelling effects as sets of relations to be preserved. Assume that we have only two

locations X and Y , i.e. L = {X,Y } and let c : S → S be (a denotation of) a command.

How can we formalise that c

• may read X but not Y
• may write Y but not X

Note that c, being a denotation, we do not have access to its execution trace. One obvious

attempt at giving such a formalisation would be to require that there exists a function

f : Z → Z such that

c(s).X = s.X

c(s).Y = s.Y ∨ c(s).Y = f(s.X)

and the decision in the disjunction only depends on s.X
In order to formalise the latter restriction we might additionally require the existence

of a function g : Z → {0, 1} such that

c(s).Y = g(s.X) · s.Y + (1− g(s.X)) · f(s.X)

Let us temporaily say that c has property Direct if such functions f, g exist.

Alternatively, we can formalise the intended effect property by requiring that for all

relations R ⊆ S× S compatible with these effects we have

∀s, s′.sRs′ ⇒ c(s)Rc(s′)

where R is “compatible with these effects” if

• whenever sRs′ then s.X = s′.X (because we may read X)

• whenever sRs′ and v ∈ Z then s[Y �→v]Rs′[Y �→v] (because we may write Y )

Let us temporarily say that command c has property Relational if this is the case. One

can now show that the two properties Direct and Relational are equivalent. The property

Direct has the advantage of being (perhaps) more intuitive; the formulation Relational,
on the other hand, eases compositional reasoning; e.g. it is straightforward that if c satis-

fies Relational so does the composition c; c. Furthermore, Relational is easy to generalise

to more complicated sets of effects: A command may exhibit some effect ε if it preserves

all store relations that are compatible with that effect; the more effects are exhibited the

fewer relations are to be preserved.

The relational semantics of effects has the additional advantage that it generalises to

a symmetric, transitive relation in the case where commands return values with nontrivial

observational equivalence.

We will now formalise this notion and extend it to all types. This will result in a re-

fined relational semantics that distinguishes refined types with equal underlying type and

in particular validates the above program equivalences. Of course, this semantics should

not be coarser than observational equivalence; as we shall see this will be a consequence

of the relational semantics being compositionally defined and nontrivial (not all values

receive the same denotation).
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Definition 10.1. A binary relation R on a set A is a partial equivalence relation (PER)

if R is symmetric and transitive. The support of R is the set supp(R) = {x | xRx}.
The restriction of R to supp(R) is an equivalence relation. Thus, a PER corresponds to a

partition of a subset of A into classes.

For each refined type A we define the underlying simple type |A| in the obvious

way by removing all effect information. This notation also applies to typing contexts and

judgements.

It is our goal to define a PER �A� on �|A|� for each type A such that the support

supp(�A�) singles out those elements of �|A|� that respect the effect information con-

tained in A. On this support, the equivalence relation �A� should refine observational

equivalence and identify at least those elements whose equivalence can be deduced from

the equational theory generated by our program equivalences and congruence rules.

As already mentioned in the introduction we describe effects of computations by

sets of state relations to be preserved.

Definition 10.2. For each effect ε we define a set of relationsRε on states as follows:

R ∈ R∅ ⇐⇒ R ⊆ S× S

R ∈ Rε1∪ε2 ⇐⇒ R ∈ Rεi
for i = 1, 2

R ∈ Rrd�
⇐⇒ ∀s s′.sRs′ ⇒ s.	 = s′.	

R ∈ Rwr�
⇐⇒ ∀s s′ v.sRs′ ⇒ s[	�→v]Rs′[	 �→v]

Definition 10.3 (relational semantics). The definition of the relational semantics is then

given as follows.

(v, v′) ∈ �A� ⇐⇒ v = v′ and A ∈ {bool, unit, int}
(v, v′) ∈ �ref�� ⇐⇒ v = v′ = 	

((v1, v2), (v′1, v
′
2)) ∈ �A1 ×A2� ⇐⇒ (vi, v

′
i) ∈ �Ai� for i = 1, 2

(f, f ′) ∈ �A
ε→ B� ⇐⇒ ∀(v, v′) ∈ �A�.(f v, f ′ v′) ∈ Tε(�B�)

(f, f ′) ∈ Tε(A) ⇐⇒ ∀R∈Rε.∀s, s′.sRs′ ⇒ s1Rs′1 ∧ vAv′

where f(s) = (s1, v), f ′(s′) = (s′1, v
′)

Consider that f ∈ T (�int�) and that (f, f) ∈ T{rd�}(�int�). Let R ∈ R{rd�} be

given by

sRs′ ⇐⇒ s(	) = s′(	)

We then find that if sRs′ and f(s) = (s1, v), f(s′) = (s′1, v
′) then in particular v = v′

so the result depends only on 	. Now fix s and consider the relation R′ ∈ R{rd�} given

by

s′R′s′′ ⇐⇒ s′ = s′′ = s
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Thus, if f(s) = s1, v then s1Rs1 so s1 = s, i.e., f did indeed not write.

By experimenting a bit more one sees that the relational semantics does indeed cap-

ture our intuitions about reading and writing. For example, if (f, f) ∈ T{rd�,wr� } then

we can show by similar arguments that f will modify at most the 	′ component of the

store and if it does so then to a value that depends only on 	, etc.

We can now state and prove the fundamental lemma which essentially asserts the

soundness of our effect typing rules with respect to our relational semantics. More pre-

cisely, it says that the effect information obtained syntactically does indeed adequately

describe the semantic behaviour of the term. The proof of the fundamental lemma is by

induction on typing derivations and does not present any surprises.

Theorem 10.1 (fundamental lemma). Suppose that Γ � e : A, ε and (η(x), η′(x)) ∈
�Γ(x)� for all x ∈ dom(Γ). Then (�e�η, �e�η′) ∈ Tε(�A�).

Theorem 10.2 (observational equivalence). Let e, e′ be terms with Γ � e : A, ε and
Γ � e′ : A, ε. For all η, η′ with (η(x), η′(x)) : �Γ(x)� for x ∈ dom(Γ) suppose that
(�e�η, �e�η′) ∈ Tε(�A�).

This is proved by applying the fundamental lemma to the observation and using the

fact that the relational semantics at base types is equality.

Theorem 10.3 (Program equivalences). The abovementioned program equivalence
“dead code” is semantically valid in the following sense: If Γ � e : unit, ε and
wrs(ε) = ∅ and (η(x), η′(x)) : �Γ(x)� for all x ∈ dom(Γ) then (�e�η, �()�η′) ∈
Tε(�unit�). Analogous statements hold for the other equivalences , “code motion”,
“duplicated code”, “pure lambda hoist”.

More generally: if the equivalence of two terms e, e′ where Γ � e : A, ε and Γ �
e′ : A, ε is derivable using equational reasoning (with reflexivity and congruence rules

restricted to well-typed terms) from the four program equivalences, and universally valid

semantic equivalences (terms with equal denotational semantics (�−�) are equivalent)

then for η, η′ as above it holds that (�e�η, �e′�η′) ∈ Tε(�A�).

11. Dynamic allocation

We add a new basic type ref and a new term former ref(−) such that ref(e) : ref
when e : int. The idea is that ref(e) generates a new reference initialised with the value

of the variable e.

This constructs permits more elegant versions of our example programs:
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COUNTER
def
= let x⇐ref(0) in (λu.x:=!x + 1, λu.!x, λu.x:=0) :

(unit→ unit)× (unit→ int)× (unit→ unit)

MEMO
def
= let l1⇐ref(0) in let l2⇐ref(0) in λf.

l1:=0; l2:=0;

λx.if x = !l1 then !l1 else

let u⇐f x in l1:=x; l2:=u; u :

(int→ int) → int→ int

In order to model this semantically, we assume a set S of states endowed with the follow-

ing operations: There is a constant ∅ ∈ S, the empty state. If s ∈ S then dom(s) ⊆ L and

if 	 ∈ dom(s) then s.	 ∈ Z is a value; if v ∈ Z, 	 ∈ dom(s) then s[	�→v] ∈ S; finally

new(s, v) yields a pair (	, s′) where 	 ∈ L and s′ ∈ S. These operations are subject to

the following axioms:

dom(∅) = ∅
dom(s[	 �→v]) = dom(s)
(s[	 �→v]).	′ = if 	 = 	′ then v else s.	′

new(s, v) = (	, s′) ⇒ dom(s′) = dom(s) ∪ {	}∧
	 �∈ dom(s) ∧ s′.	 = v

This abstract datatype can be implemented in a number of ways, e.g., as finite maps. We

do not want to commit ourselves to any particular implementation, in particular, we do

not make the perhaps plausible assumption that the newly allocated reference 	0 when

new(s, v) = (s′, 	0) depends only on dom(s).
Assuming ANF we then put

�!x�η s = s.η(x)

�x:=y�η s = s[η(x) �→η(y)]

�ref(x)�η s = new(s, η(x))

The other semantic equations remain unchanged.

12. Refined typing with regions

We will now extend refined typing to dynamic allocation. To that end we partition the

allocated memory area into disjoint regions. These regions are not reflected physically at

runtime; they merely play a role in the type system. Thus, the denotational semantics is

not affected by the regions in any way.

We assume an infinite supply Regs of region (identifiers) and define refined types as

follows:

A, B := unit | int | bool | refr | A×B | A ε→ B

where an effect ε is a subset of the set of elementary effects
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{rd r,wr r, al r | r ∈ Regs}

Thus, accesses to individual references are approximated by accesses to regions.

Furthermore, a new elementary effect al r signalling an allocation within region r is in-

troduced. The refined type refr represents the set of locations within region r.
The typing rules are analogous to the global case. For example, we can deduce:

COUNTER : (unit
{rd r,wr r}→ unit)× (unit

{rd r}→ int)× (unit
{wr r}→ unit)

where r is an arbitrary region. We give explicitly the rules for allocation and for writing:

Γ(x) = int

Γ � ref(x) : refr : {al r}
Γ(x) = refr Γ(y) = int

Γ � x:=y : unit, {wr r}
Note that the choice of region r in the rule for allocation is arbitrary. Of course, when

typing a program, we will try to use as many regions as possible so as to maximise the ap-

plicability of program transformations which will for example require that simultaneous

write accesses happen in different regions.

With integer references only it happens rarely that we are not able to spend a differ-

ent region on every single allocation made. Once we have structured data like lists and

recursion, even primitive recursion, it will no longer be possible to do so.

An altogether new feature is the following masking rule

Γ � e : A, ε r does not occur in Γ or τ

Γ � e : A, ε \ {wr r, rd r, al r}
This rule allows one to delete effects concerning a region r that is mentioned neither in

the types of the free variables nor in the type of the result. If, for instance, e is a closed

expression of type int which internally uses one or more instances of COUNTER, then

e can a priori be typed as

� e : int, {rd r,wr r, al r}

with r an arbitrary region. The masking rule then allows us to derive the pure typing

� e : int.

We will now extend the relational semantics to this situation and in particular show

that effect-dependent program equivalences continue to hold in the presence of masking.

Thus, the above term e could be evaluated several times instead of once, etc. without

altering the semantic meaning in the sense of observational equivalence.

We remark that this region-based type system was originally introduced by Tofte

and Talpin in order to enable block-structured memory management without garbage

collection. The idea is to type a program (automatically) in the region type system with

aggressive use of masking. At runtime masked regions are then deallocated (freed) after

the masked expression has been evaluated. We remark that unlike in our application this

does require a certain amount of runtime support in the form of a table that records which

physical locations belong to which region. In our example the COUNTER objects would

be deallocated once the result has been computed.

Tofte and Talpin employ this kind of memory management in their ML-Kit compiler.

More recently, region-based memory management has appeared (for obvious reasons) in

Real-Time Java (www.rtsj.org).
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12.1. Formal preliminaries

Definition 12.1 (Quasi PER). A binary relation R on a set A is a Quasi PER (QPER) if

whenever xRy and zRy and zRw, then xRw, too. In other words, RR−1R = R.

QPERs have been introduced as “difunctional relations” in a 1940s paper and appear

from time to time in the literature. The terminology QPER is nonstandard.

If R is a QPER define R1 = RR−1 and R2 = R−1R. Both R1 and R2 are PERs

and R defines a bijection between their respective sets of equivalence classes.

Definition 12.2. If R is any binary relation on a set A we denote QPER(R) the least

QPER containing R.

The following characterisation of QPER(R) is interesting but will not be needed in

the sequel.

Proposition 12.1. Let R be a binary relation on a set A. One has

(x, x′) ∈ QPER(R) ⇐⇒
∀k, k′ : A ⇒ {0, 1}.(∀y, y′.yRy′ ⇒ ky = k′y′) ⇒ kx = k′x′

In the previous sections we approximated contextual equivalence by a partial equiv-

alence relation �A� for each refined type A. In the presence of dynamic allocation such

a simple-minded setup will no longer work and we move to families of relations (known

as “Kripke logical relation”) indexed by state layouts which we refer to as parameters.

Parameters introduce (a) a ‘representation independence’ for state, capturing the fact

that behaviour is invariant under permutation of locations; and (b) a distinction between

observable and non-observable locations, as expressed syntactically by the masking rule.

Furthermore, the relations �A�ϕ for ϕ a parameter will not be PERs but only QPERs.

Lemma 12.2. Let R,S be binary relations on sets A, B, let Q be a QPER on C and
f, f ′ : A×B → C be functions. If

∀a, a′, b, b′.aRa′ ∧ bSb′ ⇒ f(a, b)Qf ′(a′, b′)

then

∀a, a′, b, b′.aQPER(R)a′ ∧ bQPER(S)b′ ⇒ f(a, b)Qf ′(a′, b′)

Proof. Fix a, a′ such that aRa′ and form U = {(b, b′) | f(a, b)Qf ′(a′, b′)}.
The assumption yields S ⊆ U so, since U is a QPER (!), we obtain

∀a, a′, b, b′.aRa′ ∧ bQPER(S)b′ ⇒ f(a, b)Qf ′(a′, b′)

The claim now follows using the QPER{(a, a′) | ∀b,b′.bQPER(S)b′⇒f(a,b)Qf ′(a′, b′)}.
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12.2. Partial bijections

The relational interpretation of types will depend on parameters that approximate the

current store layout. The central ingredient of parameters are partial bijections which we

now define. They describe the locations which belong to a given region in two computa-

tions that are deemed equivalent.

Definition 12.3 (partial bijection). A partial bijection is a triple (L, L′, f) where L, L′

are finite subsets of L and f ⊆ L × L′ such that (l1, l′1) ∈ f and (l2, l′2) ∈ f imply

l1 = l2 ⇔ l′1 = l′2.

If t = (L, L′, f) is a partial bijection, we write dom(t) = L,dom′(t) = L′ and refer

to f simply by t itself. We let (	, 	′) denote the partial bijection ({	}, {	′}, {(	, 	′)}), and

let ∅ denote the empty partial bijection.

Two partial bijections t1, t2 are disjoint if dom(t1) ∩ dom(t2) = ∅ and dom′(t1) ∩
dom′(t2) = ∅. In this case, we write t1 ⊗ t2 for the partial bijection given by

t1 ⊗ t2 = (dom(t1) ∪ dom(t2),
dom′(t1) ∪ dom′(t2),
t1 ∪ t2)

Partial bijections are ordered as follows: t′ ≥ t if and only if t′ = t ⊗ t′′ for some

(uniquely determined) t′′.

12.3. Parameters

When modelling global store we approximated observational equivalence by a partial

equivalence relation �A� for each refined type A. In the presence of dynamic allocation

such a simple-minded setup will no longer work and we move to families of relations in-

dexed by store layouts which we refer to as parameters. Parameters introduce (a) a ‘rep-

resentation independence’ for state, capturing the fact that behaviour is invariant under

permutation of locations; and (b) a distinction between observable and non-observable

locations, as expressed syntactically by the masking rule. Aspect (a) of parameters is ex-

pressed by assigning to each region identifier a partial bijection between locations in the

store.

For aspect (b) of parameters we introduce a special symbol τ �∈ Regs to represent

the part of the store arising from regions “masked out” by the masking rule. Commands

must not alter this portion of the store at all. We will thus sometimes refer to τ as the

silent region. This intended meaning will become clear subsequently; for now, τ is just a

symbol.

We are now ready to give a formal definition of parameters.

Definition 12.4 (parameter). A parameter ϕ is a function that assigns to every region r
(including the silent region) a partial bijection ϕ(r) such that

• distinct regions map to disjoint partial bijections.

• dom(ϕ) =
⋃

r∈Regs∪{τ} dom(ϕ(r)) and dom′(ϕ) =
⋃

r∈Regs∪{τ} dom′(ϕ(r))
are both finite sets so that in fact ϕ(r) = ∅ for all but finitely many regions r.
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If ϕ and ϕ′ are parameters such that

dom(ϕ) ∩ dom(ϕ′) = dom′(ϕ) ∩ dom′(ϕ′) = ∅

then ϕ, ϕ′ are called disjoint and we write ϕ⊗ ϕ′ for the obvious juxtaposition of ϕ and

ϕ′ given by (ϕ⊗ ϕ′)(r) = ϕ(r)⊗ ϕ′(r).
Whenever we write ϕ⊗ψ then ϕ and ψ are presumed to be disjoint from each other

so, a statement like ∃ψ. . . . ϕ ⊗ ψ . . . is understood as “there exists ψ disjoint from ϕ
such that . . . ϕ⊗ ψ. . . ”.

The set of parameters is partially ordered by ϕ′ ≥ ϕ ⇐⇒ ϕ′ = ϕ ⊗ ψ for some

necessarily unique ψ.

If t is a partial bijection then [r �→t] is the parameter such that ϕ(r) = t, ϕ(r′) = ∅
when r′ �= r.

Thus, if 	 �∈ dom(ψ) and 	′ /∈ dom′(ψ) then we can form ψ⊗[r �→(	, 	′)] to add the

link (	, 	′) to r in ψ. Similarly, if r �∈ dom(ϕ), we can form ϕ⊗ [r �→∅] to initialise a new

region r with ∅.
We let ϕ−r denote the parameter defined by

(ϕ−r)(r′) = ϕ(r′) when r′ �= r
(ϕ−r)(τ) = ϕ(τ)⊗ (dom(ϕ(r)), dom′(ϕ(r)), ∅)

Definition 12.5 (state relations). If L, L′ are sets of locations, a state relation on L, L′ is

defined as a nonempty relation R ⊆ S × S such that whenever (s, s′) ∈ R and s ∼L s1

and s′ ∼L s′1 then (s1, s
′
1) ∈ R, too. We write StRel(L, L′) for the set of all state

relations on L, L′.

Given such a relation, we now formalize what it means to ‘respect’ an effect ε under

some parameter ϕ.

Definition 12.6 (relations and effects). Let R be a state relation on dom(ϕ), dom′(ϕ).
We say that R respects ε at ϕ if it is preserved by all commands that exhibit only ε on

the state layout delineated by ϕ. Formally, we define:

• R respects {rd r} at ϕ if (s, s′) ∈ R implies s.	 = s′.	′ for all (	, 	′) ∈ ϕ(r);
• R respects {wr r} at ϕ if for all (s, s′) ∈ R and for all (	, 	′) ∈ ϕ(r) and v ∈ Z,

we have (s[	�→v], s′[	′ �→v]) ∈ R;

• R respects {al r} always.

We then define the setRε(ϕ) of all store relations that respect ε at ϕ as follows:

Rε(ϕ) = {R ∈ StRel(dom(ϕ),dom′(ϕ)) | ∀e ∈ ε, R resp. e at ϕ}.

Unfortunately, we cannot track the allocation effect with relations; this will be done

separately in the definition of the monad.

Finally, we introduce two additional bits of notation. If s, s′ ∈ S we define

s, s′ |= ϕ ⇐⇒
dom(s) = dom(ϕ) ∧ dom(s′) = dom′(ϕ)

We also define the following:
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s ∼ϕ s′ ⇐⇒ ∀r ∈ Regs.∀(	, 	′) ∈ ϕ(r). s.	 = s′.	′

13. Logical Relation

This section defines the relational semantics of refined types.

Definition 13.1 (logical relation). Let A be a refined type and ϕ be a parameter. We

define a QPER �A�ϕ on �|A|� by the following clauses.

�A�ϕ ≡ {(v, v) | v ∈ �|A|�} when A ∈ {int, bool, unit}
�refr�ϕ ≡ ϕ(r)

�A×B�ϕ ≡ �A�ϕ × �B�ϕ

�A
ε→ B�ϕ ≡ {(f, f ′) | ∀ ϕ′ ≥ ϕ.∀(x, x′) ∈ �A�ϕ .

(f(x), f ′(x′)) ∈ (Tε�B�)ϕ }
(TεQ)ϕ ≡ QPER({(f, f ′) | s, s′ |= ϕ ⇒

∀ R ∈ Rε(ϕ).s R s′ ⇒ s1 R s′1 ∧
∃ψ.(ψ(r) �= ∅ ⇒ r ∈ als(ε)) ∧ s1, s

′
1 |= ϕ⊗ ψ ∧

s1 ∼ψ s′1 ∧ (v, v′) ∈ Qϕ⊗ψ

where (s1, v)=f s and (s′1, v
′)=f ′ s′})

We define �Θ�ϕ by �Θ�ϕ ≡ {(γ, γ′) | ∀ i. (γ(xi), γ′(xi)) ∈ �Ai�ϕ} where Θ = x1 :
A1, . . . , xn : An.

The definition of the logical relation on computation types deserves some explana-

tion. First, it says that the store behaviour of two related computations must respect all re-

lations that are compatible with the declared effect. Since these relations are completely

unconstrained on the silent region τ , this implies in particular that the silent region may

neither be read nor modified. The existential quantifier asserts a (disjoint) extension ψ of

the current parameter ϕ which is to hold all newly allocated references. The result values

(v, v′) are then required to be related with respect to the extended parameter ϕ⊗ψ. Note

that if v and v′ contain newly allocated references then (v, v′) ∈ �B�ϕ will in general

not hold.

The semantics of value types is monotonic with respect to the ordering on parame-

ters.

Lemma 13.1 (Monotonicity). If ϕ′ ≥ ϕ then �A�ϕ ⊇ �A�ϕ.

Lemma 13.2 (QPER). For each ϕ the relation �A�ϕ is a QPER.

Lemma 13.3 (masking). Suppose that r does not occur anywhere in A. Then �A�ϕ =
�A�ϕ−r.

Lemma 13.4 (extension).

Rε−r(ϕ) = Rε(ϕ⊗ [r �→ ∅])
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The following establishes semantic soundness for our subtyping relation.

Lemma 13.5 (Soundness of subtyping). If A1 ≤ A2 then for all ϕ one has �A1�ϕ ⊆
�A2�ϕ.

We now have the following ‘fundamental theorem’ of logical relations, which states

that terms are related to themselves.

Theorem 13.6 (Fundamental Theorem). If Γ � e : A, ε and (γ, γ′) ∈ �Γ�ϕ, then

(�e�γ, �e�γ′) ∈ Tε(�A�)ϕ.

Proof. The proof is by induction on typing derivations; thanks to Lemma 12.2 we can do

as if the QPER(−) closures were absent in applications of the induction hypothesis. We

now give the cases for the typing rule for “let ” and for the masking rule.

Case “let ”: Here e is let x⇐e1 in e2 and we have Γ � e1 : A1, ε1 and Γ, x:A1 �
e2 : A : ε2, so e = let x⇐e1 in e2 and ε = ε1 ∪ ε2.

Let (γ, γ′) ∈ �Γ�ϕ and R ∈ Rε(ϕ) and sRs′ and s, s′ |= ϕ and (š1, v̌) = �e1�γ s
and (š′1, v̌

′) = �e1�γ
′ s′. By the induction hypothesis applied to e1 and the aforemen-

tioned use of Lemma 12.2 we have s1Rs′1 and š1, š
′
1 |= ϕ⊗ ψ̌ and (v̌1, v̌

′
1) ∈ �A1�ϕ⊗ψ̌ .

By monotonicity we have (γ, γ′) ∈ �Γ�ϕ⊗ψ̌ and so (γ[x�→v̌], γ′[x�→v̌′]) ∈
�Γ, x:A1�ϕ⊗ψ̌ . We conclude with the induction hypothesis applied to e2.

Case “masking rule”: Suppose Γ � e : A, ε and r �∈ Γ, A. Suppose (γ, γ′) ∈ �Γ�ϕ0 .

Put f = �e�γ, f ′ = �e�γ′, ϕ = ϕ0 − r. By the masking lemma we have (γ, γ′) ∈ �Γ�ϕ.

Let us apply IH(e) to ϕ⊗ [r �→∅]. We obtain (f, f ′) ∈ Tε(�A�)ϕ⊗[r 	→∅].

We should now prove (f, f ′) ∈ Tε−r(�A�)ϕ whence (f, f ′) ∈ Tε−r(�A�)ϕ0 by

masking lemma again.

So assume s, s′ |= ϕ and R ∈ Rε−r(ϕ) and sRs′. By the extension lemma we have

R ∈ Rε(ϕ⊗ [r �→∅]) so the induction hypothesis gives s1Rs′1 and ψ such that s1, s
′
1 |=

ϕ⊗ [r �→∅]⊗ ψ and (v, v′) ∈ �A�ϕ⊗[r 	→∅]⊗ψ where f s = (s1, v) and f ′ s′ = (s′1, v
′).

The masking lemma gives (v, v′) ∈ �A�ϕ⊗(ψ−r) and we are done.

14. Applications

We introduce the notation

s ∼rdsϕ(ε) s′ ⇐⇒ ∀r∈rds(ε).∀(	, 	′)∈ϕ(r).s.	 = s′.	′

It expresses that s and s′ agree on those locations that are read given effect ε.

We also define

nwrsϕ(ε) = dom(ϕ) \⋃
r∈wrs(ε) dom(ϕ(r))

nwrs ′ϕ(ε) = dom′(ϕ) \⋃
r∈wrs(ε) dom′(ϕ(r))

Thus nwrsϕ(ε) and nwrs ′ϕ(ε) comprise the locations on the left (resp. right) side that

are not written to, given effect ε. This includes the locations in the silent region.
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Lemma 14.1. Suppose Γ � e : TεA and (γ, γ′) ∈ �Γ�ϕ and s0, s
′
0 |= ϕ and �e�γs0 =

(s1, x) and �e�γ′s′0 = (s′1, x
′).

If s0 ∼rdsϕ(ε) s′0 then there exists ψ with ψ(r) �= ∅ ⇒ r ∈ alsε and disjoint from
s0, s

′
0 such that

1. s1, s
′
1 |= ϕ⊗ ψ and (x, x′) ∈ �A�ϕ⊗ψ and s1 ∼ψ s′1.

2. s0 ∼nwrsϕ(ε) s1 and s′0 ∼nwrs ϕ(ε) s′1.
3. For each (	, 	′) ∈ ϕ(r) where r ∈ Regs we have either

• s0.	 = s1.	 and s′0.	
′ = s′1.	

′ (unchanged) or
• s1.	 = s′1.	

′ (identically written).

4. Suppose that 	 ∈ dom(ϕ) but there is no 	′, r such that (	, 	′) ∈ ϕ(r). Then
s0.	 = s1.	. A symmetric statement holds for s′0, s

′
1.

Notice that Part 2 asserts in particular that the contents of the silent region do not

change from s0 to s1.

Definition 14.1 (semantic equality). Suppose that Γ � ei : A, ε for i = 1, 2. We write

Γ |= e1 = e2 : A, ε to mean that for all ϕ and (γ, γ′) ∈ �Θ�ϕ one has (�e1�γ, �e2�γ
′) ∈

�A�ϕ.

Proposition 14.2. If Γ |= e1 = e2 : A, ε then e1 and e2 are observationally equivalent.

Proposition 14.3. If Γ |= e1 = e2 : A, ε and Γ |= e2 = e3 : A, ε then Γ |= e1 = e3 :
A, ε.

Proof. Suppose that (γ, γ′) ∈ �Γ�ϕ. We should prove (�e1�γ, �e3�γ
′) ∈ Tε(�A�)ϕ.

We have (�ei�γ, �ei�γ
′) ∈ Tε(�A�)ϕ for i = 1, 2, 3 by the Fundamental Lemma.

The assumption gives (�ei�γ, �ei+1�γ
′) ∈ Tε(�A�)ϕ for i = 1, 2. We conclude by

QPER-ness.

Similarly, we can show that semantic equality is symmetric and transitive on well-

typed terms and that it is a congruence with respect to all term formers.

We can now state our program equivalences in the form of semantic equalities.

Proposition 14.4 (duplicated computation). Suppose that Γ � e : A, ε and suppose that
rds(ε) ∩ wrs(ε) = als(ε) = ∅. Thus, e reads and writes on disjoint portions of the store
and makes no allocations except possibly in the silent region. Then Γ |= e1 = e2 : A, ε
where

e1 := let x⇐e in val (x, x)
e2 := let x⇐e in let y⇐e in val (x, y)

Analogous statements hold for dead code, pure lambda hoist, commuting computa-

tions.

We remark that the program equivalences we get for pure computations are complete

in the following sense:

Proposition 14.5. Let C be a cartesian closed category and T be a strong monad on
C. Suppose that in the Kleisli category CT the laws of dead computation, commuting
computations, duplicated computations, lambda hoist are valid. Then CT is cartesian
closed.
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In particular, the Kleisli category consisting of computations of type T∅(A) modulo

contextual equivalence is cartesian closed.

15. Recursion

In order to model recursion we associate a Scott domain (in fact ω-chain complete partial

order with bottom would suffice) with every type and in particular define �A
ε→ B� as

the domain of strict, continuous maps from �A� to T �B� where TX is the domain of

strict maps from the flat domain of states to S ⊗X where ⊗ denotes strict product. I.e.,

a computation either does not terminate (is bottom) or returns a pair consisting of a new

state and a (non-bottom) value. Recursive definitions can then be interpreted in the usual

way as suprema of Kleene chains.

One must then make sure that all semantic relations �A�ϕ are admissible QPERS, ie

contain (⊥,⊥) and are closed under suprema of chains in the sense that if (vi, v
′
i) ∈ �A�ϕ

then (
⊔

i vi,
⊔

i v′
i) ∈ �A�ϕ, too. This is achieved by adding appropriate clauses at base

types and adapting the closure operator QPER(R) so as to yield the least admissible

QPER comprising R.

Unfortunately, the program equivalence “dead code” breaks down in the presence of

recursions since the elided code fragment might not terminate. One can fix this by intro-

ducing a termination condition as a semantic side condition to be discharged either by

semantic reasoning or by some other type system, e.g. by introducing a “nontermination

effect”. Similar considerations apply to pure lambda hoist.

16. Conclusion

We have given a relational semantics to a region-based effect type system for a higher-

order language with dynamically allocated store. The relational semantics is shown

sound for contextual equivalence and thus provides a powerful proof principle for the

latter. We have used the semantics to establish the soundness of a collection of useful

effect-based program transformations. It would probably be very hard to establish these

directly from the definition of contextual equivalence and no such proof appears to exist

in the literature.

There has been a great deal of previous work on the soundness of region-based

memory management and of its close cousin, encapsulated monadic state, as provided

by runST in Haskell [12]. We mention some particularly relevant references. Baner-

jee et al. [2] translate the region calculus into a variant of System F and give a denota-

tional model showing that references in masked regions do not affect the rest of the com-

putation. Moggi and Sabry [18] prove syntactic type soundness for encapsulated lazy

state. Fluet and Morrisett [8] bring the two lines of work together by giving a type- and

behaviour-preserving translation from a variant of the region calculus into an extension

of System F with a region-indexed family of monads. Naumann [19] uses simulation re-

lations to capture a notion of observational purity for boolean-valued specifications that

allows mutation of encapsulated state.

The general problem of modelling and proving equivalences in languages with dy-

namically allocated store and higher order features is a difficult one, with a very long
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history [25]. The basic techniques we use here, such as partial bijections and para-

metric logical relations, have been developed and refined over the last 25 years or so

[11,15,20,21,22,6]. The focus of much of this previous work has been on showing tricky

equivalences between particular pairs of terms, such as the well-known Meyer-Sieber

examples [15]. One might expect that equivalences justified by simple program analyses,

such as those considered here, would generally be much easier to establish than some

of the more contorted examples from the literature. Whilst this is broadly true – our re-

lational reasoning technique is far from complete, yet suffices for establishing the inter-

esting equational consequences of the effect system – completely generic reasoning is

surprisingly difficult. When proving concrete equivalences one treats the context generi-

cally, but has two particular, literal terms in one’s hand, whose denotations one can work

with explicitly. In the case of purely type-based equivalences, on the other hand, both the

context and the terms are abstract; all one knows are the types, and the semantics of those

types has to capture enough information to justify all instances of the transformation.

An alternative approach to proving ‘difficult’ contextual equivalences is to use tech-

niques based on bisimulation. Originally developed for process calculi by Park and

Milner [16], bisimulation was adapted for the untyped lambda calculus by Abramsky

[1]. Other researchers, particularly Sumii and Pierce, subsequently developed notions of

bisimulation for typed lambda calculi that could deal with the kind of encapsulation (data

abstraction) given by existential types [23]. These methods have recently been refined by

Koutavas and Wand, and applied to an untyped higher-order language with storage [13]

and to object-based calculi. It would be extremeSly worthwhile to investigate whether

bisimulation methods can be applied to the typed (and, as discussed above, type-directed)

impure equivalences studied here.

Like the characterisation of contextual equivalence with logical relations given by

Pitts and Stark, this does not directly solve the problem at hand here. Firstly, we use

typed contextual equivalence which has fewer observing contexts and is thus coarser than

untyped contextual equivalence. Indeed, in [13] an extension to the typed case is left as

an open question.

Secondly, as already mentioned, our applications concern relative contextual equiv-

alences involving unknown programs. It is not yet clear how the bisimulation method

fares with those. It is, however, true that it could be interesting and profitable to base our

technical development on bisimulations rather than logical relations.
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Abstract. We present a view of recursion in terms of traced monoidal categories.

We sketch relevant abstract mathematics and give examples of the applicability of

this point of view to various aspects of modern computer science.

Keywords. Finite automata, Flow diagrams, Fixed points, Categories, Traces

Introduction

I hope that this account of the material from my lectures at the Marktoberdorf 2007

Summer School is sufficiently self-contained to make it possible for those not present

to learn from it. There is certainly little overlap with the notes I produced before the

lectures; and the relation to the slides which I used for the lectures and which can be

found on the Summer School website is not close either. The earlier material contains

some inexact formulations, and I have attempted to make things more precise where I

can. It is best to think of what is presented here as another reworking of some basic

material.

The idea of recursion is central to programming. For example a subroutine may be

called many times in the running of a programme: each time it is called it does what is

in some sense the same thing (though hopefully to different initial data). The idea that

recursion amounts to repeating the same thing over and over is familiar enough from a

range of computing practice. These lectures will introduce an abstract mathematical way

to think about this basic phenomenon. The examples will probably be quite familiar, but

we shall look at them in a new way.

There are many abstract approaches to recursion. I have chosen to concentrate on one

which is both abstract and of considerable generality, but which reflects current concrete

practice. The focus will be on the idea of what is called a trace on a symmetric monoidal

category. The definition is relatively recent: the original paper, treating a more general

situation than we need, is [16].

Ideas drawn from abstract mathematics can seem far from concrete practice, but of-

ten the apparent distance is illusory. Typical diagrammatic methods in computing (for

example wiring diagrams) reflect free categories with structure, and this makes an imme-

diate connection between the concrete and the abstract. (A precise mathematical treat-

ment of relevant notions of free structure is given in [11] and the treatment is further

extended in [12].) For the purpose of this paper one can see the situation as follows. On

the one hand the abstract notion of trace introduced to analyse recursion can be given

Formal Logical Methods for System Security and Correctness
O. Grumberg et al. (Eds.)
IOS Press, 2008
© 2008 IOS Press. All rights reserved.
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a concrete diagrammatic representation; on the other many diagrams with feedback are

best analysed in terms of a trace

The notion of a traced monoidal category is treated in a computer science context

in the book [9] by Hasegawa. That also discusses diagrams for which I have no space

here. Unfortunately the book is out of print, but some information can be extracted from

the author’s home page. Another source of ideas but from a different perspective is [23].

The magnum opus [4] by Bloom and Esik deals in effect with traced monoidal categories

with good properties, though from a point of view quite different from mine. The wealth

of material is daunting but it is a valuable reference. Generally there is nothing in the

literature which provides ideal background for what I say here. I have tried to do with-

out too many prerequisites. However there is no avoiding some category theory, and I

have had to restrict myself to the merest sketch. Mac Lane’s book [20] remains a stan-

dard reference both for the basic theory and for relevant material on monoidal categories

(chapter VII). For those with no real idea of category theory the gentler introduction in

[1] is recommended. The book [2] by Barr and Wells focuses on the needs of computer

scientists. A third edition and much electronic material can be found on the web.

My aim has been to give a treatment of abstract material via examples. So I touch

on simple mathematical examples of trace which involve relations, partial functions and

permutations. I give a brief indication of how both flow diagrams from basic imperative

programming and fixed points in functional programming fit into the view of recursion in

terms of traces. But our leading examples will be finite automata and regular languages.

This familiar material illustrates very well the flavour of the trace point of view.

There are a range of exercises, and those who hope to learn from this account should

regard them as an integral part of the whole. I hope that for the most part they will be ac-

cessible to those with little background in abstract mathematics. Their organisation could

probably be improved. There seems no point in trying to give an indication of difficulty.

Experience at the summer school made it clear that this varied very much according to

background, and also (if I may allow myself a tease) according to the standards of proof

which people find acceptable.

1. Motivation: Finite Automata and Regular Languages

1.1. An example

Let us start by looking at a typical small finite automaton.

.

.

.
c

1

b

b

a

2 3 c
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We regard 1 as the initial state and 3 as the terminal state. Then with the usual con-

ventions, the automaton accepts the regular language a(ba)∗b(c(ab)∗)∗. This fact is not

entirely obvious. It arises from a matrix identity. To be in accord with the usual notation

for functions and matrices I write this as

⎛
⎝0 b c

a 0 0
0 b c

⎞
⎠

∗

=

⎛
⎝ (c∗ba)∗ (c∗ba)∗c∗b (c∗ba)∗cc∗

(ac∗b)∗a (ac∗b)∗ (ac∗b)∗acc∗

((ba)∗c)∗b(ab)∗a ((ba)∗c)∗b(ab)∗ ((ba)∗c)∗

⎞
⎠ .

The bottom left hand entry, the entry in the (3, 1) place, is the reverse of the regular of

the regular language accepted. (That we get the reverse just comes from the change of

convention.)

What we have here is an example of something familiar to most computer science

students: the relation between finite automata and regular languages. Just because of it is

so well known1 it seems best to use this relation as the main focus of these notes. So let

us start by reviewing some of this well known material.

1.2. Finite automata

The traditional approach is as follows. One is given a finite alphabet Σ. Then a finite

automaton on the alphabet Σ is given by a finite set of states Q and an action Σ×Q→ Q.

The key issue is what sort of action to take. We shall see that a particularly judicious

choice is to take non-deterministic automata and allow internal silent actions or moves:

that is, arrows are marked either by a letter of the alphabet Σ or by 1 (or τ in Milner’s

notation) signifying the silent action.

Definition 1 A finite non-deterministic automaton on the alphabet Σ is given a finite set
of states Q and together with the action which is a relation (1 + Σ)×Q→ Q.

When the action is just a relation Σ × Q → Q, we have the usual notion of non-

deterministic automaton. If further such an action is a partial function then the automaton

is deterministic. The case of automata with silent actions but which are otherwise deter-

ministic is also important. (There is nothing wrong mathematically with the restricted

case where the action is total, but total functions generally are difficult from the point of

view of recursion.)

Let Σ∗ be the set of words in Σ. Mathematically it is the free monoid on Σ (the

monoid operation is concatenation) and so one readily extends the action to a monoid

action, which is again a relation Σ∗×Q→ Q. Given an initial state q0 and some terminal

states ti we are in the usual situation: we say that a word w is accepted or recognized by

the machine if w.q0 is related to some terminal ti. In this context a set of words is called a

language and we consider the languages recognized by finite automata, the recognizable
languages.

1Before the summer school participants are asked to fill in a questionnaire indicating their degree of knowl-

edge of various topics involved in the lectures. This was the one about which most students felt they had good

knowledge, and the only one about which all knew something.
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1.3. Regular languages

Let Σ be a finite alphabet and Σ∗ the collection of finite words from Σ. Alternatively

Σ∗ = List(Σ) is the set of finite lists. We call a subset of Σ∗ a language, and now denote

such languages by a, b and so on. The collection P (Σ∗) of languages has algebraic

structure given by the following collection of operations.

• A constant zero 0 which is the empty set of words.

• A binary operation of sum a + b given by the union a ∪ b.

• A constant, the unit 1, which is the set containing just the empty word.

• A binary operation of multiplication ab given by {xy|x ∈ a and y ∈ b}, that is,

by elementwise concatenation of words from a and from b
• A unary operation, the star a∗ which is the infinite union 1 + a + a2 + · · · , that

is, the collection of all finite concatenations of words from a.

We postpone discussion of the properties of these operations to sections 8 and 10.1, but

we use them here to define the notion of regular language.

Definition 2 The family of regular languages or regular events is the least family of
languages containing the singleton letters from Σ and closed under the above operations.

The fact that every regular language is recognizable follows by induction on the basis

of the following familiar exercises. (Depending on your background you may or may

not be used to using silent actions to help here. If you are not used to this point of view

note that the reduction of non-deterministic to deterministic automata using the power

set goes through. That is relevant to the exercises below.)

1.4. Kleene’s Theorem

In a first year computer science course one is likely to see the following famous result of

Stephen Kleene.

Theorem 1 The languages recognizable by finite automata coincide with the regular
languages or regular events.

One direction of this equivalence, namely that regular languages are recognizable, is in

a sense hands on coding2 and so is generally felt to be the easier. I invite readers to re-

member their preferred proof in the exercises below. The other direction, that recogniz-

able languages are regular, is usually taken to be the harder direction. In this paper we

try to show that the two directions hang together conceptually. To make this clear we

need to know some abstract mathematics. In particular we need to know that there are

particular traced monoidal categories Aut of finite automata and Reg of matrices of

regular langauges. Then the fact that recognizable languages are regular arises from the

following.

Theorem 2 The definition of languages by automata is implemented by a traced
monoidal functor Aut→ Reg.

2With our choice of notion of automaton it is very easy. This is not an accident. Think about it!
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This would not perhaps be very compelling were it an isolated phenomenon. But it

is not. As we say in the Introduction, diagrammatic methods pervade computer science.

As well as automata of many kinds, there are circuits, flow diagrams, interactive systems,

action structures and even diagrammatic methods in proof theory. One unifying point

of view is that to the degree that one can glue diagrams together, one has a categorical

composition. Moreover many diagrams permit feedback, giving a form of recursion. One

general form of feedback is encapsulated in the idea of a traced monoidal category, and

often with suitable modifications (which we illustrate in the case of finite automata)

diagrams with feedback can be interpreted as maps in a traced monoidal category. So

one can consider traced monoidal categories as a general setting in which to understand

feedback. Before giving the mathematical background to this point of view, we briefly

consider another example in the next section.

Exercise 1

1. Show that for any finite set there is a finite automaton which recognizes it.
2. Formulate and prove a result to the effect that if there are no loops in an automa-

ton, then the language recognized is finite.
3. Show that if a language is recognized by a non-deterministic finite automaton,

then there is a deterministic finite automaton which also recognizes it.
4. Show that the empty set is a recognizable language and that the recognizable

languages are closed under unions.
5. Show that the singleton containing the empty word is recognizable, and that the

recognizable languages are closed under concatenation: if a and b are recogniz-
able then so is ab = {xy|x ∈ a and y ∈ b}.

6. Show that if a is recognizable then so is a∗ =
⋃

n≥0 an the set of all finite
concatenations of words from a.

2. Motivation: imperative programs and state

2.1. Imperative programming

Kleene’s Theorem is concerned with understanding (indeed computing) the result of a

certain restricted form of feedback. In this section we consider how a general form of

feedback is used to define a general computation processes.

In 1971 when I started as a graduate student in Oxford, my supervisor Robin Gandy

taught an undergraduate course in recursion theory using register machines. I think that

he had the idea originally from John Shepherdson, but some version had occured to

many people independently around 1960. In Gandy’s treatment, register machines were

officially given by numbered sequences of commands of the forms:

x := x + 1 goto i ; if x = 0 then goto i; else x := x− 1 goto j .

(Here i and j refer to the next command to be executed.) So computing was explained

in terms of a very primitive (one might say basic) kind of imperative programming. But

almost immediately Gandy stopped using the official sequence of commands and started

using flow diagrams. Here I define what are essentially the flow diagrams for a slight

modification of the primitive language for register machines.
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We suppose that we are given a finite set of locations, references or registers x, y ,

z ... . Our flow diagrams will be formed by linking instances of atomic nodes equipped

with input and output ports. Take as the atomic nodes the following:

• for each register x, nodes x := x + 1 with one input and one output port;

• for each register x, nodes x := x− 1 with one input and one output port;

• for each register x, nodes if x = 0 then; else with one input port and two output

ports

A flow diagram program is given by a finite collection of instances of such registers

together with wirings from instances of output ports to input ports. (Usually it would

come with a special start node (instruction) with just one output, and a stop node with

just an input., but we would do best in effect to allow a number of start and stop nodes.)

If the flow diagram has the structure of a tree, then intuitively for any starting values

in the registers, computation proceeds through the diagram without any return to a node

already visited. But cycles in the diagram give feedback loops and so allow real recursion

to occur.

2.2. Implementation on states

The standard interpretation of register machines is that they define partial recursive func-

tions. This derives from a reading of machines as operating on states, and as with finite

automata, this operation can also be thought of in terms of traced monoidal categories.

We give the barest outline of this point of view.

A state is an assignment of natural numbers to registers: supposing there are r reg-

isters, we write S = Nr for the set of states. Let P be the collection of partial functions

φ : S → S. Take a register machine M with n inputs and m outputs. The operation of the

machine gives an n×m matrix ΦM = (φij) with entries φij ∈ P . Here φij is the partial

function on states which arises when we start the machine at unput j and we emerge at

output i. It is evident that the matrix has the property that the partial functions in the

columns have disjoint domains. It follows that we can consider these matrices as maps

in a simple unique decomposition category, in the sense of Haghverdi and Scott. (See [7]

and [8] for ramifications of the theory of such special traced monoidal categories.) Write

Par for the traced monoidal category just described. Now there is also a traced monoidal

category Flow of flow diagrams, and quite analogous to the situation for finite automata

we have the following.

Theorem 3 The interpretation of register machines as operations on state is imple-
mented by a traced monoidal functor Flow → Par.

A more detailed analysis of flow diagrams in what is essentially the spirit of the

above discussion can be found in [21]. There is not space to develop things further. Of

course the standard definition of computability by flow diagrama or register machines is

well known. So the following exercises are more for contemplation than detailed work.

Exercise 2

1. Probably you have experience of much more advanced programming, but just for
fun write a program in the form of a flow diagram to calculate the Fibonacci se-
quence. How would you show that it does so? Can you say how many instructions
are traversed in the calculation of the nth Fibonacci number?
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2. Show that in the original programming language with numbered instructions,
one can restrict the first (augment the register by one) instruction to the case

i : x := x + 1 goto i + 1 .

What is one doing in this argument?
3. Write out a formal explanation of the operation of a flow diagram program as an

operation on states?

3. Background: Elementary Category Theory

3.1. Categories

The definition of a category due to Eilenberg and Mac Lane arose from an attempt to

make precise the sense in which the totality of mathematical structures of a given kind,

together with the structure-preserving maps between them, can itself be regarded as a

mathematical structure in its own right. We refer the reader to [1], to [2] and to [20]

for the basic mathematical theory. The account in [2] is particularly directed towards

computer science. Here we content ourselves with an informal account.

A category C consists of a collection ob(C) of objects (here denoted by uppercase

letters U, V, W, X, Y, Z, ...) and for each pair (X, Y ) of objects a collection C(X, Y ) of

morphisms (or arrows or maps) from X to Y (one writes suggestively f : X → Y for

f ∈ C(X, Y )); together with

identities 1X = idX ∈ C(X, X) for each X in ob(C),
composition mX,Y,Z = ◦ : C(Y, Z)× C(X, Y ) → C(X, Z) (g, f) → g ◦ f = gf,

satisfying the following axioms:

• if f ∈ C(X, Y ) then f ◦ 1X = f and 1Y ◦ f = f ;

• h ◦ (g ◦ f) = (h ◦ g) ◦ f whenever f ∈ C(X, Y ), g ∈ C(Y,Z) and h ∈ C(Z, W ).

It is good to have a range of examples in mind. The original motivation comes from

large categories. First there are categories of sets: the category Sets of sets itself is the

basic example, but one has also categories which give the Boolean-valued models for set

theory, and at yet a further level of generality toposes [15]. Then there are categories of

algebras: familiar examples are the categories of groups and of rings; more generally one

has the category of T -algebras for a monad (sometimes called a triple) T . Then there

are categories of spaces: the most familiar is Top, the category of topological spaces;

but there are many other notions of space, for example [Δop,Sets], the category of

simplicial sets (see [22]), and from algebraic geometry, the category of schemes. Finally

we mention some categories in computer science: Scott domains are well established

and stable domains have now a substantial theory; I mention as well the more recent

categories of games.

It is not only the case that collections of mathematical structures form categories, but

also the case that many structures which appear in mathematics are themselves categories

of some kind. This is a particularly fertile idea, which I learnt early in my career from

Bill Lawvere. I do not try to survey the range of special examples, which have emerged
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over the years, but give a traditional list of small categories. Preorders are categories with

at most one map between any two objects. Monoids are categories with just one object.

Groupoids are categories in which all maps are invertible. Finally groups are one object

groupoids.

3.2. Free categories

Let G = (E−→−→V ) be a directed graph: V is the collection of vertices, E the collection

of directed edges and the two maps give source and target. The category CG generated

by G has as objects the set V of vertices, and as maps A → B the paths

A = A1 → A2 → A3 → · · · → An = B

from A to B in the graph. Identities are the trivial paths, and composition is given by

concatenation of paths. This is the simplest example of a free construction in category

theory. Free categories with structure play an important role in theoretical computer sci-

ence, and frequently they can be constructed in just the same hands on fashion.

3.3. Functors and natural transformations

The idea of a functor arose out of the observation that in algebraic topology invariants

such as the homology groups are defined in a simple uniform fashion, with the conse-

quence that maps between spaces induce maps between the homology groups in a natu-
ral way. This amounts to regarding the categories as (large) structures and the construc-

tions as structure preserving maps, and so one arrives at the general notion of a functor.

A functor F : C → D assigns to each object X ∈ C an object F (X) ∈ D and to each

map f : X → Y a map F (f) : F (X) → F (Y ) such that

• F (1X) = 1F (X)

• F (g ◦ f) = F (g) ◦ F (f) whenever g ◦ f is defined.

Clearly for any category C, there is an identity functor 1C : C → C; it acts as the set-

theoretic identity on both objects and maps. Furthermore if F : C → D and G : D → E
are functors there is a composite G ◦ F : C → E ; again this is given by set-theoretic

composition on both objects and maps. If we restrict to small categories in the spirit

of Lawvere this gives us the (large) category of all small categories Cat. This has as

objects the small categories C; and as maps, functors F : C → D. The identities and

composition are as just described.

The idea of natural isomorphisms and more generally of natural transformations was

part of category theory from the beginning. Suppose that F,G : C → D are functors.

A natural transformation α : F → G consists of a family of maps αU : FU → GU
indexed over the objects U ∈ C such that for all maps f : U → V in C, the diagram

FU
αU � GU

FV

Ff

� αV � GV

Gf

�
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commutes. If all αU are isomorphism, then α is a natural isomorphism.

If C and D are small categories, then [C, D], with objects the functors from C to D
and with maps the natural transformations, is itself a small category.

Exercise 3

1. Show that CG is the free category generated by G in the sense that any graph
homomorphism from G to the underlying grapg of some category D extends
uniquely to a functor from CG to D.

2. (a) What is the free category on the unique graph of the form (0−→−→1)?
(b) What is the free category on the unique graph of the form (0−→−→1)?
(c) What is the free category on the graph (1−→−→2) where the source and target
are distinct?
(d) What is the free category on the graph (N−→−→N) with source the identity and
target the successor?

3. Show that Cat has products. Show further that we have a natural isomorphism

Cat(C× D, E) ∼= Cat(C[D, E]),

so that Cat is a cartesian closed category. (Hence it models the typed lambda
calculus, see for example [19].)

4. Background: Symmetric monoidal categories

4.1. Intuition and examples

We refer to Mac Lane [20] for the notion of a monoidal and of a symmetric monoidal

category. Here we give an informal description. A monoidal category is a category A
equipped with

• a tensor functor ⊗ : A×A → A
• a choice of object I ∈ A

making A a monoid in a suitable up to isomorphism sense. That means that we have

natural isomorphisms

aUV W : (U ⊗ V )⊗W −→ U ⊗ (V ⊗W ),

lU : I ⊗ U −→ U and rU : U ⊗ I −→ U,

rather than equalities; and for good sense, these natural isomorphisms should satisfy co-

herence conditions. However there is a precise sense (the Mac Lane Coherence Theo-

rem) in which one can replace such a monoidal category by one in which we do have

equality. Such monoidal categories are called strictly associative or just strict. Most of

the examples with which we are concerned are strict or have obvious strict replacements.

A monoidal category is symmetric if it is equipped with a symmetry that is, a natural

isomorphism
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cUV : U ⊗ V −→ V ⊗ U

with c2 = 1, again satisfying coherence conditions. The symmetry isomorphism is very

seldom an identity.

I first run through some simple general sources of symmetric monoidal categories.

These require the knowledge of very elementary category theory.

1. Categories with finite products are symmetric monoidal. A choice of terminal object

and of binary products gives the monoidal structure.

2. Dually, categories with finite coproducts are symmetric monoidal. A choice of initial

object and of binary coproducts gives the monoidal structure.

3. Categories with biproducts (which we treat briefly in section 8 but see [20] for details)

are symmetric monoidal. In this case the monoidal structure is both a product and co-

product.

4. If T is any commutative algebraic theory, then the category of T -algebras automati-

cally has a tensor product.

It is good to have a couple of very specific examples.

5. The category Rel of (finite) sets and relations has a tensor product given by coproduct

(disjoint union) of sets. This is an example of a category with biproducts.

6. The category Rel of (finite) sets and relations has a tensor product given by product

of sets. In Rel this is neither a categorical product or coproduct. This is an example of a

subcategory of a category of algebras for a commutative theory - the theory of complete∨
-lattices.

4.2. The free symmetric monoidal category

We describe the free symmetric monoidal category on an object. (Technically we are

considering the strictly associative version of this notion.) The category Perm (for per-

mutations) has as objects the natural numbers 0, 1, ... . The maps from n to n are the

elements of the symmetric group Sn with their usual composition; there are no maps n

to m when n �= m. The tensor product is given by n + m on objects with the obvious

extension to maps. The braid relations

si.si+1.si = si+1.si.si+1 for 1 ≤ i ≤ n− 2; si.sj = sj .si for |i− j| > 1,

where si is the transposition (i i + 1), enforce the coherence of the obvious symmetry

cn,m ∈ Sn+m = Perm(n + m, n + m).
The monoidal categories are a rich area of study. There are many more identifica-

tions of free such structures relevant to computer science. An early and important one

is the (augmented) simplicial category originally from topology: the characterization by

generators and relations in [22] comes from a characterization as a free monoidal cate-

gory. There is also a wealth of material relating monoidal and symmetric monoidal cate-

gories to higher dimensional category theory.
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4.3. The category of automata

We want to explain how to give a category Aut whose maps correspond to finite au-

tomata (on a fixed language Σ). As in the case of the free symmetric monoidal category

Perm, we take the objects of Aut to be the natural numbers. As maps from n to m it

is natural to take finite automata with n distinct (numbered) input states and m distinct

(distinct) output states. (However we do not ask the inputs to be distinct from the out-

puts.) We can almost do what we want, but in fact we need to take the automata modulo

contraction of insignificant silent actions. We quickly explain this notion. Let us say that

a state is a sink if no actions lead from it and a source if no actions lead too it. A silent

action is insignificant if it leads from a state which becomes a sink when it is deleted to

a state which becomes a source when it is deleted.

The key point is that in Aut, the composition of A : n → m and B : m → p is the

automaton obtained from A and B taken disjointly by adding a silent action from each

output of A to the corresponding input of B. To have identities for this composition, we

need to contract some silent actions3 and these actions are insignificant. (Then it does

not matter whether we give identities n → n by drawing n silent actions or simply by

identifying input and output nodes with no actions.)

The category Aut has a very easy tensor product. On objects we take addition as

before and on maps the disjoint union of finite automata. Symmetries are represented by

trivial automata in the same style as identities.

Exercise 4

1. Suppose that A is a symmetric monoidal category. Note that any A(A, A) is a
monoid under composition. Show that the monoid A(I, I) is commutative.

2. Suppose that A is a category with (chosen) finite products. Show how to define
the structure a, l and r of a monoidal category on A. Look up the axioms for a
monoidal category and show that they hold.

3. The example Perm above is the free symmeric monoidal category generated by
an object. What does this mean? What is needed to prove it?

4. Look up the coherence diagrams for a symmetry and show that they hold for the
evident symmetry on Perm.

5. The objects in the free monoidal category with a particular kind of tensor product
generated by a single object can be taken to be 0, 1, 2, · · · as was the case for
Perm. (The object n corresponds to the n-fold tensor product of the generating
object.)
(a) What is the free category with coproducts on an object? So what is the free
category with products on an object?
(b) What is the free symmetric monoidal category in which the unit I is initial?
So what is the free symmetric monoidal category in which the unit I is terminal?

6. (i) What becomes of our category Aut if we take Σ = ∅, the empty set?
(ii) What becomes of our category Aut if we take Σ = 1, a one element set?

7. With a little manipulation you should be able to use the flow diagrams from Sec-
tion 2.1 to give a category Flow along the following lines. Again take the objects

3An alternative formulation is that we do not allow dangling silent actions, that is, unque silent action form

an input or to an output. That gives a slightly different category. I am not sure yet which I prefer.
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to be the natural numbers. We will need some dummy flow diagrams (wirings
with no nodes) to represent identities. Then the basic idea is that maps from n to
m are given by a flow diagram with a map from {1, · · · , n} to some inputs and
a map from some outputs to {1, · · · , m}. Tensor product on objects is addition
as before and on maps one takes the disjoint union of flow diagrams. Represent
identities and symmetries by trivial automata.

5. Special case: permutations

This section is a warm-up for the general notion of trace. We look at an instance where

the computational force seems pretty trivial. (Though in fact this example is the basis for

an analysis of the proof theory of multiplicative Linear Logic [6], which forms part of

the celebrated Geometry of Interaction perspective.)

We consider the category Perm whose nonempty sets of maps are Perm(n, n) =
Sn, the finite symmetric groups for n = 0, 1, 2 · · · .

For σ ∈ Sn+m we define the trace trm(σ) ∈ Sn of σ as follows. First we define a

subsidiary function σm : n + m → n recursively by

σm(i) =

{
σ(i) if σ(i) ∈ n,

σm(σ(i)) otherwise.

Then we set trm(σ)(i) = σm(i) for 1 ≤ i ≤ n; that is trm(σ) is the restriction of the

function σm to n.

Exercise 5

1. Justify the recursive definition of σm. On what is it a recursion?
2. Prove that trm(σ) is as required a permutation.
3. Show that for σ ∈ Sk, trm(σ) can be defined for 0 ≤ m ≤ k inductively in m by

the formulae

tr0(σ) = σ ; trm+1(σ) = trm(tr1(σ))

4. How does taking the trace of a permutation affect the decomposition into cycles?
How does it affect the parity of the permutation?

5. Suppose that σ ∈ Sn and τ ∈ Sm. We define σ + τ ∈ Sn+m by

(σ + τ)(i) =

{
σ(i) if 1 ≤ i ≤ n,

τ(i− n) + n if n1 ≤ i ≤ n + m.

What is trm(σ + τ)?
6. Let σ ∈ Sn+m and τ ∈ Sm. Show that trm((1 + τ)σ) = trm(σ(1 + τ)) where

1 ∈ Sn is the identity.
7. Let γ ∈ S2n be the product of the disjoint transpositions (i n + i) for 1 ≤ i ≤ n.

What is trn(γ).
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6. Traced monoidal categories

6.1. The definition of trace

Here I define the basic notion in terms of which we consider recursion, that of traced

monoidal category. We do not need the subtleties of the braided case explained in the

basic reference [16]. So for us a traced monoidal category is a symmetric monoidal

category equipped with a trace operation

f : A⊗ U → B ⊗ U

trU (f) : A → B

satisfying elementary properties of feedback. These are as follows.

• (Domain Naturality)

For f : A⊗ U → B ⊗ U and g : C → A we have

trU (f(g ⊗ idU )) = trU (f)g .

• (Codomain Naturality)

For f : A⊗ U → B ⊗ U and h : B → D we have

trU ((h⊗ idU )f) = htrU (f) .

• (Trace Naturality)

For f : A⊗ U → B ⊗ V and k : V → U we have

trU ((id⊗ k)f) = trV (f(id⊗ k))

• (Action)

For f : A⊗ I = A → B ⊗ I = B,

trI(f) = f

and for f : A⊗ U ⊗ V → B ⊗ U ⊗ V ,

trV (trU (f)) = trU⊗V (f)

• (Independence)

For f : A⊗ U → B ⊗ U and g : C → D

trU (g ⊗ f) = g ⊗ trU (f)

• (Symmetry)

For cU,U the symmetry on U

trU (cU,U ) = idU .
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I have followed my own private preferences in changing the names of some of these ax-

ioms. I regard the first three conditions as all instances of naturality. My Traced Natu-

rality is often called Dinaturality. What I call Action is usually and oddly called Vanish-

ing. My Independence is otherwise Superposing. The Symmetry Axiom is usually called

Yanking which has at least a good diagrammatic sense. A useful perspective on the ax-

ioms is provided by Hasegawa [9]. He also gives diagrams (without the braidings in [16])

without which the axioms are hard to understand. I drew pictures in the lectures, and the

slides can be found on the conference website, but I do not have enough space here.

6.2. The free compact closed category

It is a commonplace amongst workers in Linear Logic that traced monoidal categories

provide a backdrop to Girard’s Geometry of Interaction. This rests on a construction

which was the main result of the original paper [16].

If C is a traced monoidal category, then its integral completion Int(C) is defined as

follows.

• The objects of Int(C) are pairs (A0, A1) of objects of C.

• Maps (A0, A1) → (B0, B1) in Int(C) are maps A0 ⊗B1 → B0 ⊗A1 of C.

• Composition of f : (A0, A1) → (B0, B1) and g : (B0, B1) → (C0, C1) is given

by taking the trace tr((σ); f ⊗ g; τ) of the composite of f ⊗ g with the obvious

symmetries

A0 ⊗ C1 ⊗B0 ⊗B1
σ−→ A0 ⊗B1 ⊗B0 ⊗ C1 ,

and

B0 ⊗A1 ⊗ C0 ⊗B1
τ−→ C0 ⊗A1 ⊗B0 ⊗B1 .

• Identities (A0, A1) → (A0, A1) are given by the identity A0 ⊗A1 → A0 ⊗A1.

To understand the basic result, you need to know that a compact closed category is

a symmetric monoidal category in which all objects have duals. Then the following is

proved in [16].

Theorem 4 Suppose that C is a traced monoidal category. Then Int(C) is a compact
closed category. Moreover Int extends to a 2-functor left biadjoint to the forgetful 2-
functor from compact closed categories to traced monoidal categories.

In the sense of this theorem Int(C) is the free compact closed category generated by the

traced monoidal category C.

Exercise 6

1. Show that what we defined in Section 5 is a trace on the category Perm. (We
already checked some axioms.)

2. Show that the category Aut whose maps are finite automata has a trace.
3. Show that the category Flow whose maps are flow diagram programs has a

trace. (This assumes that you have completed an earlier exercise.)
4. Does the category Sets have a trace? (If you have trouble consider Section 7.)
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5. (i) Show that the monoidal category of finite sets and relations with + as tensor
product has a trace. Is it unique? (If you have trouble consider Section 9.)
(ii) Show that the monoidal category of finite sets and relations with × as tensor
product has a trace. Is it unique?

6. (i) Does the free category with products generated by an object have a trace? If
it does is it unique?
(ii) Does the free symmetric monoidal category with I terminal generated by an
object have a trace? If it does is it unique?

7. A trace is said to be uniform just when it satisfies the following condition. When-
ever

A⊗X
f� B ⊗X

A⊗ Y

A⊗ h

�

g
� B ⊗ Y

B ⊗ h

�

commutes, then trX(f) = trY (g). Can you find an example of a uniform trace?
8. Show that any compact closed category is equipped with a trace, and prove the

above theorem.
9. Show that the trace on a compact closed category is essentially unique. (Which

earlier question does this answer?)

7. Traced monoidal categories with products

The notion of a category with products is easy and accessible and we do not give details

here. The interesting feature for us is that a general form of functional programming is

based on the idea of the (least) fixed point of functionals. In this section we connect that

idea with the idea of a trace.

7.1. Traces and fixed points

We consider the special case of a symmetric monoidal category where the tensor product

is a categorical product. Write Δ = ΔA : A → A×A for the standard diagonal map.

Suppose first that in such a category we have a trace operation

f : A× U → B × U

trU (f) : A → B

We derive from it an operation

f : A×B → B

fixBf : A → B

by setting
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fixBf = trB(ΔB .f) .

Proposition 1 The operation fix is a natural parametrised fixed point operation. That is
it satisfies the following.

• (Fixed Point Property)
For f : A×B → B,

f.(A× fixBf).ΔA = fixBf

• (Naturality)
If f : A×B → B and g : C → A then

fixB(f(g ×B)) = (fixBf)g .

• (Second Naturality)
If f : A×B → C and g : C → B then

fixBgf = g.fixCf(A× g) .

• (Diagonal)
For f : A×B ×B → B

fixB(fixBf) = fixB×B(ΔB .f) .

When dealing with fixed points the variable-free categorical notation becomes intoler-

able. When f : A × B → B we show the variables by writing f(a, b). And then

fixBf : A → B can be written μb.f(a, b). This notation presupposes the simple form of

Naturality. With it the other equations (Fixed Point Property, Second Naturality, Diago-

nal) in the last proposition become the following.

f(a, μb.f(a, b)) = μb.f(a, b))

μb.g(f(a, b)) = g(μc.f(a, g(c)))

μb1.μb2f(a, b1, b2) = μb.f(a, b, b)

The proposition above has a converse. Suppose first that in a category with finite

products we have a natural parametrised fixed point operation

f : A×B → B

fixBf : A → B .

We derive from it an operation

f : A× U → B × U

trU (f) : A → B
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as follows. We write f = (f1, f2) where f1 : A × U → B and f2 : A × U → U : take

fixU (f2) : A → U and set

trU (f) = (A× fixU (f2)).ΔA .

Proposition 2 The operation tr() just defined is a trace on a category with products.

The passage from trace to fixed point and back are inverse to one another. This

general fact was established independently by the author and Masahito Hasegawa (see

[9]) but equivalent observations in a different conceptual framework were made earlier

by the authors of [4] and [23].

Theorem 5 There is a bijection between traces and natural parametrised fixed point
operators on a category with products.

7.2. Functional programming

In the simplest view of functional programming we define partial functions φ : Nk → N.

Write Pk for the poset of such functions under extension. It is a Scott in fact algebraic

domain with the compact elements being the finite functions. Now in the category with

objects products of the Pk and with Scott continuous maps we can take least fixed points.

We check that this is a natural parametrized fixed point operator.

Suppose that f : A × B → B. For a ∈ A define fa : B → B by fa(b) = f(a, b).
Then

μb.f(a, b) =
∨
n

fn
a (⊥)

The naturality in A is evident, and we check the other axioms. First μb.f(a, b) is a fixed

point as by continuity we have

f(μb.f(a, b)) = fa(
∨
n

fn
a (⊥)) =

∨
n

fn+1
a (⊥) = μb.f(a, b) .

The Second Naturality equation follows by similar considerations. We have

g(μc.f(a, g(c)) = g(
∨
n

(fag)n(⊥)) =
∨
n

g(fag)n(⊥) =
∨
n

(gfa)n(g⊥)

But then

μb.g(f(a, b)) =
∨
n

(gfa)n(⊥) ≤
∨
n

(gfa)n(g⊥) ≤
∨
n

(gfa)n+1(⊥) = μb.g(f(a, b))

shows that μb.g(f(a, b)) = g(μc.f(a, g(c)).
Finally we wish to show the Diagonal Property. First let b̂ = μb.f(a, b, b); then

b̂ = μb.f(a, b̂, b̂), and is least with this property. Suppose that b1 ≤ b̂. Then b2 ≤ b̂,

implies f(a, b1, b2) ≤ b̂. Arguing inductively we have fn
a,b1

(⊥) ≤ b̂ for all n and so

M. Hyland / Abstract and Concrete Models for Recursion 191



taking sups, μb2.f(a, b1, b2) ≤ b̂. This shows that b1 ≤ b̂ implies μb2.f(a, b1, b2) ≤ b̂.

Repeating the inductive argument we deduce that

μb1μb2.f(a, b1, b2) ≤ μb.f(a, b, b) .

Now let b̂ = μb1μb2.f(a, b1, b2), so that μb2.f(a, b̂, b2) = b̂ and so f(a, b̂, b̂) = b̂.

Suppose that b ≤ b̂. Then f(a, b, b) ≤ f(a, b̂, b̂) = b̂. Again arguing inductively we

deduce that the iterates approximating μb.f(a, b, b) are all less than or equal to b̂. This

gives an inequality the other way round, and we deduce that

μb1μb2.f(a, b1, b2) = μb.f(a, b, b) .

Exercise 7

1. Establish the Bekic condition for a natural parametrised fixed point operator. If
f : A×B × C → B × C then we can compute the double fixed point

fixB×C(f) : A → B × C

as follows. We write f = (f1, f2) where f1 : A × B × C → B and f2 :
A×B × C → C. Then μ(b, c).f(a, b, c) is the pair(

μb.f1(a, b, μc.f2(a, b, c)), μc.f2(a, μb.f1(a, b, μc.f2(a, b, c)), c)
)
.

2. Prove the two propositions above in whatever notation you prefer. (I think it is
much easier to manipulate the diagrams: you could refer to the slides on the
Marktoberdorf Summer School website.)

3. Prove the theorem above. (Again you may find it easier with diagrams.)
4. Here is an alternative approach to defining a trace in a category with finite prod-

ucts and a natural parametrised fixed point operation. Given f : A×U → B×U ,
we make use of two instances of the first projection fstA,B : A × B → A and
fstB,U : B × U → B; and we set

trU (f) = fstB,U .fixB×U (f(fstA,B × U) .

Is this a (the same) trace as defined earlier?
5. Let C be the category of complete lattices and order-preserving maps. It is a

category with evident products. Show that any h : B → B in C has a least fixed
point μb.h(b). Show that the operation taking f : A×B → B to μb.f : A → B
is a natural parametrised fixed point operator.

6. Show that a symmetric monoidal category may admit more than one notion of
trace.

8. Categories with biproducts

We consider the special case where the tensor product in a traced monoidal category is

a biproduct. This situation is discussed in detail in [20], but for completeness we give a

sketch here.
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The first important fact, which we invite the reader to establish in the exercises be-

low, is that a category C with biproducts is enriched in commutative monoids. For the

general theory of enriched categories one should consult [17]. The concrete content of

the enrichment is that each hom-set C(A, B) is equipped with the structure of a commu-

tative monoid (which we write additively) and composition is bilinear in that structure. It

follows that for each object A its endomorphisms EndC(A) = C(A, A) has the structure

of what is now called (following Bill Lawvere and Steve Schanuel) a rig, that is to say a

(noncommutative) ring without negatives. We make the definition explicit. A rig is a set

R equipped with

• 0 ∈ R and (−+−) : R×R → R
• 1 ∈ R and (−.−) : R×R → R

satisfying the familiar rules

• 0 and + make R an (additive) commutative monoid,

• 1 and . make R a (multiplicative) monoid,

• the multiplicative structure distributes over the additive.

This analysis has a kind of converse. Let R be a rig. Then there is a category

Mat(R) with objects the natural numbers and with maps from n to m being n × m
matrices with entries in R.

Theorem 6 Mat(R) is a category with biproducts.

Exercise 8

1. Suppose that A is a category with biproducts.
(i) Show that for any objects A, B ∈ A the hom-setA(A, B) has the structure of
a commutative monoid.
(ii) Show that a map A⊕B → C⊕D can be represented by a matrix with entries
from A(A, C), A(B, C), A(A, D) and A(B, D). Show further that composition
of such maps is by matrix multplication.

2. (i) Show that composition in A is a bilinear map of commutative monoids.
(ii) Deduce that for any object A ∈ A, EndA(A) = A(A, A) is a rig.

3. Prove that as claimed above Mat(R) is a category with biproducts.
4. What is the free category with biproducts generated by an object. (It suffices to

identify the free rig on no generators. Why?)

9. Traced Categories with biproducts

In this section we explain what it is to equip a category with biproducts with a trace

in terms of rigs. Here we concentrate on the one object case, which is the only case

considered in the main reference [4].

9.1. Conway rigs

We recall the notion originally studied briefly by Conway [5]) and discussed also in

[4] where it is called a Conway Algebra; but as there is other algebraic structure also

associated with the fertile mind of John Horton Conway we rename the structure.
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Definition 3 A Conway Rig is a rig A equipped with a unary operation

(−)∗ : A −→ B ; a→ a∗

satisfying the two equations

(ab)∗ = 1 + a(ba)∗b and (a + b)∗ = (a∗b)∗a∗ .

Theorem 7 In a traced monoidal category C where the tensor product is a biproduct,
each EndC(A) is a Conway Rig, the operation (−)∗ being given by

a∗ = tr(
(

0 1
1 a

)
) .

where we interpret the matrix as a map
(

0 1
1 a

)
: A⊕A → A⊕A in the obvious way.

For a converse we restrict ourselves here to the case of a category with biproducts

generated by a single object U . (The more general case is just a bit more fiddly.) Then

it suffices to require that EndC(U) be a Conway Rig. The point is this, though there is

much checking to do. One takes the trace of a map A⊕C −→ B⊕C given by the matrix(
a b
c d

)

with a ∈ C(A, B), b ∈ C(C, B), c ∈ C(A, C) d ∈ C(C, C) using the natural formula

tr(
(

a b
c d

)
) = a + bd∗c

Note that setting C = U and using the operation (−)∗ on EndC(U) in the formula

enables us inductively to define the trace in all cases.

Theorem 8 Suppose that C is a category with biproducts generated by an object U . Then
traces on C correspond exactly to choices of Conway Rig structures on EndC(U).

Exercise 9

1. Show that in a traced category with biproducts we must have

tr(
(

1 a
1 a

)
) = a∗ .

2. Show that in a traced category with biproducts we must have

tr(
(

1 a + b
1 a + b

)
) = (b∗a)∗b∗ .

3. Construct a proof of Theorem 7 above.
4. Show that if R is a Conway Algebra, then so is Mn(A) the n × n matrices with

entries in R.
5. Construct a proof of Theorem 8 above.
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10. Regular Languages and Finite Automata: reprise

10.1. The category of regular languages

The most familiar Conway Rig is that of regular languages or events. Let Σ be a finite

alphabet and Σ∗ the collection of finite words from Σ. Alternatively Σ∗ = List(Σ) is the

set of finite lists. The collection P (Σ∗) of subsets of Σ∗ has the structure of a Conway

Rig where

• the zero 0 is the empty set of words;

• the sum a + b is given by union a ∪ b;

• the unit 1 is the set containing just the empty word;

• the multiplication ab is given by {xy|x ∈ a and y ∈ b}, that is, by elementwise

concatenation of words from a and from b;

• the star a∗ is 1 + a + a2 + · · · , that is, the collection of all finite concatenations

of words from a.

The substructure generated by the singleton languages whose only words are the letters

from Σ has as elements exactly the regular languages: it gives us the Conway Rig Reg of

regular languages. By Section 9 there is a traced monoidal category Reg = Mat(Reg)
with objects 0, 1, 2, · · · in the usual way, and where the maps from n to m are given by

m× n-matrices whose entries are regular languages.

10.2. Definition by finite automata

Recall the category Aut with objects also the natural numbers and with maps given by

automata. Note that an automaton can be presented as a matrix with entries very simple

elements of Reg. (The presentation of the category Aut in this fashion can be thought of

along the lines of the Girard’s Geometry of Interaction, but that takes us too far afield.)

Consider an automaton A ∈ Aut(n, m). A is itself a k × k matrix where as we have

things k ≥ n, m. We interpret A as follows. We compute the k × k matrix A∗, and then

restrict to the n input columns and m output rows. This gives us an n ×m matrix with

elements from Reg, that is a map in Reg(n, m). This provides us with evident data for

a functor M : Aut→ Reg. And the root of Kleene’s Theorem is that this all works.

Theorem 9 M : A → Reg is a strong monoidal functor which preserves trace.

Exercise 10

1. Show that both P (Σ∗) and Reg are Conway algebras.
2. Show that in P (Σ∗) and so in Reg the following natural equations hold

(a∗)∗ = a∗ = (an)∗(1 + a + · · ·+ an−1)

3. When I took Part III of the Mathematical Tripos at Cambridge I had the good
fortune to take a course by John Conway based on sections from his book [5]. He
gave the following equation

(a + b)∗ = ((a + b)(b + (ab∗)3)∗(1 + (a + b))(1 + ab∗ + (ab∗)2 + (ab∗)3)
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as an example of something valid in regular events but not provable from the
above axioms for what we now call Conway Rigs and the two equations above.
Check its validity. (Where did it come from?)

4. Show that M in the theorem is indeed a strong monoidal functor and that it does
preserve trace. Is there a connection between these two facts?

11. Concluding section: Free Traced Category with Biproducts

By Section 9 to identify the free traced monoidal category with biproducts on an object U
it suffices to identify the free Conway Rig on no generators. The category in question is

then given by the matrices construction Mat. Fortunately the free Conway was analyzed

years ago by Conway himself, though his analysis is not widely known. In [5] Conway

effectively identifies the elements of the free Conway rig on no generators: at least he

gives the distinct elements. They are those in the set

{n |n ≥ 0} ∪ {n(1∗)m |n, m ≥ 1} ∪ {1∗∗}.

The last set of exercises gives an indication of why this is and touches on related matters.

Some of the algebraic manipulation is hard. I remark however that at the Summer School,

John Harrison showed me that even the hardest, which had originally taken me a couple

of days to discover, was readily found by the Prover9 system of William McCune. So in

extremis download it and play!

Exercise 11

1. (i) Show that 1 + (1∗)n = (1∗)n.
(ii) Show that (1∗)n + 1∗∗ = 1∗∗ + 1∗∗ = 1∗∗.
(iii) Show that n.1∗∗ = 1∗.1∗∗ = 1∗∗.1∗∗ = 1∗∗.
(iv) Show that 1∗∗∗ = 2∗ = 1∗∗.

2. Using the above equations and developing anything further you need, show that
any element in the free Conway rig on no generators is equivalent to one of those
given by Conway.

3. What is the algebraic structure on the elements of the free Conway Rig. (That is,
determine the addition, multiplication and star tables.)

4. Show that the elements given by Conway are all distinct.
5. I have an interest in understanding classical proofs. here is a calculation in the

free Conway rig coming from [14]. Compute the trace in the last four arguments
of the matrix ⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1
0 0 0 0 1 0
1 0 0 0 1 0
0 1 0 0 1 1
1 0 1 0 0 0
0 0 2 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Fortunately the cited paper is full of typos and the answer given there is not
correct. So there is no point in cheating.
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6. Prove that the following is true in any Conway Algebra.

a∗∗∗∗ = a∗∗∗ .
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Abstract. We present formal proof rules for inductive reasoning about the way that
data transmitted on the network remains secret from a malicious attacker. Extending
a compositional protocol logic with an induction rule for secrecy, we prove sound-
ness for a conventional symbolic protocol execution model, adapt and extend previ-
ous composition theorems, and illustrate the logic by proving properties of two key
agreement protocols. The first example is a variant of the Needham-Schroeder pro-
tocol that illustrates the ability to reason about temporary secrets. The second ex-
ample is Kerberos V5. The modular nature of the secrecy and authentication proofs
for Kerberos make it possible to reuse proofs about the basic version of the protocol
for the PKINIT version that uses public-key infrastructure instead of shared secret
keys in the initial steps.

Keywords. Security protocol analysis, Logic, Secrecy

1. Introduction

Two important security properties for key exchange and related protocols are authentica-
tion and secrecy. Intuitively, authentication holds between two parties if each is assured
that the other has participated in the same session of the same protocol. A secrecy prop-
erty asserts that some data that is used in the protocol is not revealed to others. If a pro-
tocol generates a fresh value, called a nonce, and sends it in an encrypted message, then
under ordinary circumstances the nonce remains secret in the sense that only agents that
have the decryption key can obtain the nonce. However, many protocols have steps that
receive a message encrypted with one key, and send some of its parts out encrypted with
a different key. Since network protocols are executed asynchronously by independent
agents, some potentially malicious, it is non-trivial to prove that even after arbitrarily
many steps of independent protocol sessions, secrets remain inaccessible to an attacker.

Our general approach involves showing that every protocol agent that receives data
protected by one of a chosen set of encryption keys only sends sensitive data out under
encryption by another key in the set. This reduces a potentially complicated proof about
arbitrary runs involving arbitrarily many agents and a malicious attacker to a case-by-
case analysis of how each protocol step might save and send data. We formalize this
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form of inductive reasoning about secrecy in a set of new axioms and inference rules
that are added to Protocol Composition Logic (PCL) [14,8,9,10,11], prove soundness of
the system over a conventional symbolic protocol execution model, and illustrate its use
with two protocol examples. The extended logic may be used to prove authentication or
secrecy, independently and in situations where one property may depend upon the other.
Among other challenges, the inductive secrecy rule presented here is carefully designed
to be sound for reasoning about arbitrarily many simultaneous protocols sessions, and
powerful enough to prove meaningful properties about complex protocols used in prac-
tice. While the underlying principles are similar to the “rank function method" [20] and
work using the strand space execution model [21], our system provides precise formal
proof rules that are amenable to automation. In addition, casting secrecy induction in
the framework of Protocol Composition Logic avoids limitations of some forms of rank
function arguments and eliminates the need to reason explicitly about possible actions
of a malicious attacker. From a broader point of view, we hope that our formal logic
will help clearly identify the vocabulary, concepts, and forms of reasoning that are most
effective for proving security properties of large-scale practical protocols.

Our first protocol example is a variant of the Needham-Schroeder protocol, used in
[16] to illustrate a limitation of the original rank function method and motivate an exten-
sion for reasoning about temporary secrets. The straightforward formal proof in section
4 therefore shows that our method does not suffer from the limitations identified in [16].
Intuitively, the advantage of our setting lies in the way that modal formulas of PCL state
properties about specific points in protocol execution, rather than only properties that
must be true at all points in all runs.

Our second protocol example is Kerberos V5 [17], which is widely used for authen-
ticated client-server interaction in local area networks. The basic protocol has three sec-
tions, each involving an exchange between the client and a different service. We develop
a formal proof that is modular, with the proof for each section assuming a precondition
and establishing a postcondition that implies the precondition of the following section.
One advantage of this modular structure is illustrated by our proof for the PKINIT [7]
version that uses public-key infrastructure instead of shared secret keys in the initial
steps. Since only the first section of PKINIT is different, the proofs for the second and
third sections of the protocol remain unchanged. While lengthy machine-checked proofs
of Kerberos were previously given [3], and non-formal mathematical proofs have been
developed for other abstractions of Kerberos [5], this is the first concise formal logic
proof of secrecy and authentication for Kerberos and PKINIT.

Compositional secrecy proofs are made possible by the composition theorems de-
veloped in this paper. While these theorems resemble composition theorems for the sim-
pler proof system presented in earlier work [10,15], adapting that approach for reason-
ing about secrecy requires new insights. For example, while proving that a protocol step
does not violate secrecy, it is sometimes necessary to use information from earlier steps.
This history information, which was not necessary in our earlier proofs of authentication
properties, appears as preconditions in the secrecy induction of the sequential and staged
composition theorems.

The rest of the paper is organized as follows. Some background on PCL is given
in section 2, followed by the secrecy-related axioms and proof rules in section 3. The
first protocol example is presented in section 4. Composition theorems are developed in
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section 5, and applied in the proofs for Kerberos in section 6. Related work is summarized
in section 7 with conclusions in section 8.

2. Background

Protocol Composition Logic (PCL) is developed in [14,8,9,10], with [11] providing a
relatively succinct overview of the most current form. A simple “protocol programming
language” is used to represent a protocol by a set of roles, such as “Initiator”, “Respon-
der” or “Server”, each specifying a sequence of actions to be executed by an honest
participant. Protocol actions include nonce generation, encryption, decryption and com-
munication steps (sending and receiving). A principal can execute one or more copies
of each role, concurrently. We use the word thread to refer to a principal executing a
particular instance of a role. A thread X is identified with a pair (X̂, η), where X̂ is a
principal and η is a unique session id. A run is a record of all actions executed by honest
principals and the attacker during concurrent execution of one or more instances of the
protocol. Table 1 describes the syntax of the fragment of the logic that we will need in
this paper. Protocol proofs usually use modal formulas of the form ψ[P ]Xϕ. The infor-
mal reading of the modal formula is that if X starts from a state in which ψ holds, and
executes the program P , then in the resulting state the security property ϕ is guaran-
teed to hold irrespective of the actions of an attacker and other honest principals. Many
protocol properties are naturally expressible in this form.

The formulas of the logic are interpreted over protocol runs containing actions of
honest parties executing roles of the protocol and a Dolev-Yao attacker (whose possible
actions are define by a set of symbolic computation rules). We say that protocolQ satis-
fies formula φ, denotedQ � φ, if in all runs R ofQ the formula φ holds, i.e.,Q, R � φ.
For each run, satisfaction of a formula is defined inductively. For example, Send(X, t)
holds in a run where the thread X has sent the term t. For every protocol action, there is a
corresponding action predicate which asserts that the action has occurred in the run. Ac-
tion predicates are useful for capturing authentication properties of protocols since they
can be used to assert which principals sent and received certain messages. Encrypt(X, t)
means that X computes the encrypted term t, while New(X, n) means X generates fresh
nonce n. Honest(X̂) means that X̂ acts honestly, i.e., the actions of every thread of X̂
precisely follow some role of the protocol. Start(X) means that the thread X did not
execute any actions in the past. Has(X, t) means X possesses term t. This is “possess”
in the symbolic sense of computing the term t using Dolev-Yao rules, e.g. receiving it in
the clear or receiving it under encryption where the decryption key is known.

To illustrate the terminology used in this section we describe the formalization of
Kerberos V5, which is a protocol used to establish mutual authentication and a shared
session key between a client and an application server [17]. It involves trusted princi-
pals known as the Kerberos Authentication Server (KAS) and the Ticket Granting Server
(TGS). There are pre-shared long-term keys between the client and the KAS, the KAS
and the TGS, and the TGS and the application server. Typically, the KAS shares long-
term keys with a number of clients and the TGS with a number of application servers.
However, there is no pre-shared long term secret between a given client and an applica-
tion server. Kerberos establishes mutual authentication and a shared session key between
the client and the application server using the chain of trust leading from the client to the
KAS and the TGS to the application server.
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Action formulas

a ::= Start(X) |Send(X, t) |Receive(X, t) |New(X, t) |SymEnc(X, t, k) |PkEnc(X, t, k) |
SymDec(X, t, k) |PkDec(X, t, k) | Sign(X, t, k) |Verify(X, t, k) |Hash(X, t, k)

Formulas

φ ::= a |Has(X, t) |Honest(X̂) |φ ∧ φ | ¬φ | ∃V. φ

Modal form

Ψ ::= φ [Actions]X φ

Table 1. Syntax of the logic

Kerberos has four roles, one for each kind of participant - Client, KAS, TGS
and Server. The long-term shared symmetric keys are written here in the form ktype

X,Y

where X and Y are the principals sharing the key. The type appearing in the superscript
indicates the relationship between X and Y in the transactions involving the use of the
key. There are three types required in Kerberos: c → k indicates that X is acting as a
client and Y is acting as a KAS, t→ k is for TGS and KAS and s → t is for application
server and TGS. Kerberos runs in three stages with the client role participating in all
three. The description of the roles below is based on the A level formalization of Kerberos
V5 in [5].

In the first stage, the client thread (C) generates a nonce (n1) and sends it to the
KAS (K̂) along with the identities of the TGS (T̂ ) and itself. The KAS generates a new
nonce (AKey - Authentication Key) to be used as a session key between the client and
the TGS. It then sends this key along with some other fields to the client encrypted under
two different keys - one it shares with the client (kc→k

C,K ) and one it shares with the TGS
(kt→k

T,K ). The message portion encrypted with kt→k
T,K is called the ticket granting ticket

(tgt). The client extracts AKey by decrypting the component encrypted with kc→k
C,K and

using a match actions to separate AKey from the nonce and T̂ .
In the second stage, the client generates another nonce, encrypts its identity with

the session key established in stage one and sends it to the TGS along with the ticket
granting ticket and the nonce. The TGS decrypts tgt with the key it shares with KAS and
extracts the session key. It then uses the session key to decrypt the client’s encryption and
matches this with the identity of the client. The TGS then generates a new nonce to be
used as a session key between the client and the application server. It then sends this key
along with some other fields to the client encrypted under two different keys - the session
key derived in the first stage and one it shares with the aplication server. The encryption
with later key is called the service ticket (st). The client extracts this new session key by
decrypting the component encrypted with the previous session key.

In the third stage, the client encrypts its identity and a timestamp with SKey and
sends it to the application server along with the service ticket. The server decrypts st
and extracts the SKey. It then uses the session key to decrypt the client’s encryption,
matches the first component of the decryption with the identity of the client and extracts
the timestamp. It then encrypts the timestamp with the session key and sends it back to
the client. The client decrypts the message and matches it against the timestamp it used.
The control flow of Kerberos exhibits a staged architecture where once one stage has
been completed successfully, the subsequent stages can be performed multiple times or
aborted and started over if an error occurs.
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Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

textkc := symdec enckc, k
c→k
C,K ;

match textkc as AKey.n1.T̂ ;

· · · stage boundary · · ·

new n2;

encct := symenc Ĉ, AKey;

send tgt.encct.Ĉ.Ŝ, n2;

receive Ĉ.st.enctc;

texttc := symdec enctc, AKey;

match texttc as SKey.n2.Ŝ;

· · · stage boundary · · ·

enccs := symenc Ĉ.t, SKey;

send st.enccs;

receive encsc;

textsc := symdec encsc, SKey;

match textsc as t;

]C

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , kc→k
C,K ;

send Ĉ.tgt.enckc;

]K

TGS = (T, K̂) [

receive tgt.encct.Ĉ.Ŝ.n2;

texttgt := symdec tgt, kt→k
T,K ;

match texttgt as AKey.Ĉ;

textct := symdec encct, AKey;

match textct as Ĉ;

new SKey;

st := symenc SKey.Ĉ, ks→t
S,T ;

enctc := symenc SKey.n2.Ŝ, AKey;

send Ĉ.st.enctc;

]T

Server = (S, T̂ ) [

receive st.enccs;

textst := symdec st, ks→t
S,T ;

match textst as SKey.Ĉ;

textcs := symdec enccs, SKey;

match textcs as Ĉ.t;

encsc := symenc t, SKey;

send encsc;

]S

Table 2. Formal description of Kerberos V5, with · · · stage boundary · · · comments.

3. Proof System for Secrecy Analysis

In this section, we extend PCL with new axioms and rules for establishing secrecy. Se-
crecy properties are formalized using the Has(X, s) predicate, which is used to express
that honest principal X̂ has the information needed to compute the secret s. In a typ-
ical two party protocol, X̂ is one of two honest agents and s is a nonce generated by
one of them. As an intermediate step, we establish that all occurrences of the secret on
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the network are protected by keys. This property can be proved by induction over pos-
sible actions by honest principals, showing that no action leaks the secret if it was not
compromised already.

We introduce the predicate SafeMsg(M, s,K) to assert that every occurrence of
s in message M is protected by a key in the set K. Technically speaking, there is an
(n + 2)-ary predicate SafeMsgn(M, s,K) for each n > 0, allowing the elements of set
K to be listed as arguments. However, we suppress this syntactic detail in this paper.
The semantic interpretation of this predicate is defined by induction on the structure of
messages. It is actually independent of the protocol and the run.

Definition 1 (SafeMsg) Given a run R of a protocolQ, we say Q, R � SafeMsg(M, s,
K) if there exists an i such that SafeMsgi(M, s,K) where SafeMsgi is defined by induc-
tion on i as follows:

SafeMsg0(M, s,K) if M is an atomic term different from s

SafeMsg0(HASH(M), s,K) for any M

SafeMsgi+1(M0.M1, s,K) if SafeMsgi(M0, s,K) and SafeMsgi(M1, s,K)

SafeMsgi+1(Esym[k](M), s,K) if SafeMsgi(M, s,K) or k ∈ K
SafeMsgi+i(Epk[k](M), s,K) if SafeMsgi(M, s,K) or k̄ ∈ K

The axioms SAF0 to SAF5 below parallel the semantic clauses and follow immedi-
ately from them. Equivalences follow as the term algebra is free.

SAF0 ¬SafeMsg(s, s,K) ∧ SafeMsg(x, s,K),

where x is an atomic term different from s

SAF1 SafeMsg(M0.M1, s,K) ≡ SafeMsg(M0, s,K) ∧ SafeMsg(M1, s,K)

SAF2 SafeMsg(Esym[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k ∈ K
SAF3 SafeMsg(Epk[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k̄ ∈ K
SAF4 SafeMsg(HASH(M), s,K)

The formula SendsSafeMsg(X, s,K) states that all messages sent by thread X are “safe"
while SafeNet(s,K) asserts the same property for all threads. These predicates are defin-
able in the logic as SendsSafeMsg(X, s,K) ≡ ∀M.(Send(X, M) ⊃ SafeMsg(M, s,K))
and SafeNet(s,K) ≡ ∀X. SendsSafeMsg(X, s,K).

In secrecy proofs, we will explicitly assume that the thread generating the secret and
all threads with access to a relevant key belong to honest principals. This is semantically
necessary since a dishonest principal may reveal its key, destroying secrecy of any data
encrypted with it. These honesty assumptions are expressed by the formulas KeyHonest
and OrigHonest respectively. KOHonest is the conjunction of the two.

• KeyHonest(K) ≡ ∀X. ∀k ∈ K. (Has(X, k) ⊃ Honest(X̂))

• OrigHonest(s) ≡ ∀X. (New(X, s) ⊃ Honest(X̂)).
• KOHonest(s,K) ≡ KeyHonest(K) ∧ OrigHonest(s)

We now have the necessary technical machinery to state the induction rule. At a
high-level, the NET rule states that if each “possible protocol step" P locally sends
out safe messages, assuming all messages in the network were safe prior to that step,
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then all messages on the network are safe. A possible protocol step P is drawn from
the set BS of all basic sequences of roles of the protocol. The basic sequences of a role
arise from any partition of the actions in the role into subsequences, provided that if
any subsequence contains a receive action, then this is the first action of the basic
sequence.

NET ∀ρ ∈ Q.∀P ∈ BS(ρ).

SafeNet(s,K) [P ]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)
Q � KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K)

(∗)

The side condition (∗) is: [P ]A does not capture free variables in Φ andK and the variable
s. Φ should be prefix closed (explained in Section 3). The NET rule is written as a rule
scheme, in a somewhat unusual form. When applied to a specific protocol Q, there is
one formula in the antecedent of the applicable rule instance for each role ρ ∈ Q and for
each basic sequence P ∈ BS(ρ); see [11].

The axioms NET0 to NET3 below are used to establish the antecedent of the
NET rule. Many practical security protocols consist of steps that each receive a mes-
sage, perform some operations, and then send a resulting message. The proof strategy in
such cases is to use NET1 to reason that messages received from a safe network are
safe and then use this information and the SAF axioms to prove that the output message
is also safe.

NET0 SafeNet(s,K) [ ]X SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K) [receive M ]X SafeMsg(M, s,K)

NET2 SendsSafeMsg(X, s,K) [a]X SendsSafeMsg(X, s,K), where a is not a send.

NET3 SendsSafeMsg(X, s,K) [send M ]X SafeMsg(M, s,K) ⊃ SendsSafeMsg(X, s,K)

Finally, POS and POSL are used to infer secrecy properties expressed using the Has
predicate. The axiom POS states that if we have a safe network with respect to s and
key-set K then the only principals who can possess an unsafe message are the generator
of s or possessor of a key in K. The POSL rule lets a thread use a similar reasoning
locally.

POS SafeNet(s,K) ∧ Has(X, M) ∧ ¬SafeMsg(M, s,K)

⊃ ∃k ∈ K. Has(X, k) ∨ New(X, s)

POSL
ψ ∧ SafeNet(s,K) [S]X SendsSafeMsg(X, s,K) ∧ Has(Y, M) ∧ ¬SafeMsg(M, s,K)

ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)
,

where S is any basic sequence of actions.

Following are useful theorems which follow easily from the axioms.

SREC SafeNet(s,K) ∧ Receive(X, M) ⊃ SafeMsg(M, s,K)

SSND SafeNet(s,K) ∧ Send(X, M) ⊃ SafeMsg(M, s,K)

The collection of new axioms and rules are summarized in Appendix B. We write Γ � γ if
γ is provable from the formulas in Γ and any axiom or inference rule of the proof system,
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except the honesty rule HON from previous formulations of PCL (see Appendix A) and
the secrecy rule NET. We write Q � γ if γ is provable from the axioms and inference
rules of the proof system including the rules HON and NET for protocolQ.

In the following theorem and proof, the closure M̃ of a set M of messages is the
least set containing M and closed under pairing, unpairing, encryption with any public
key or symmetric key, decryption with a private key or a symmetric key not in K, and
hashing.

Theorem 1 IfM is a set of messages, all safe with respect to secret s and key-setK then
the closure M̃ contains only safe messages.

Proof. Since M̃ is the minimal set satisfying the given conditions, any element m ∈ M̃
can be constructed from elements in M using a finite sequence of the operations enu-
merated. From the semantics of SafeMsg it is easily seen that all the operations preserve
safeness. Hence by induction, all the elements of M̃ will be safe. �

Lemma 1 If a thread X possesses an unsafe message with respect to secret s and key-set
K then either X received an unsafe message earlier, or X generated s, or X possesses
a key in K.

Proof. Suppose thread X does not satisfy any of the conditions enumerated. Then all
the messages it initially knows and has received are safe messages. Since it does not
have a key in K, the list of operations in theorem 1 enumerates a superset of all the
operations it can do on this initial safe set (in the Dolev-Yao model). Hence, by theorem
1, X cannot compute any unsafe message. So it cannot possess an unsafe message – a
contradiction. �

Theorem 2 (Soundness) IfQ � γ, then Q � γ. Furthermore, if Γ � γ, then Γ � γ.

Proof. Soundness for this proof system is proved by induction on the length of proofs of
the axioms and rules. The most interesting cases are sketched below, after the following
definition.

A prefix closed formula Φ is a formula such that if a run R of a protocolQ satisfies
Φ then any prefix of R also satisfies Φ. For example, the formula ¬Send(X, t) is pre-
fix closed. This is because if in any run R, thread X has not sent the term t, it cannot
have sent t in any prefix of R. In general, the negation of any action formula is prefix
closed. Another example is ∀X. New(X, s) ⊃ X̂ = Â because this can be re-written as
∀X. ¬New(X, s) ∨ X̂ = Â which is a disjunction of the negation of an action formula
and an equality constraint.

NET : Consider a run R of protocol Q such that the consequent of NET is false.
We will show that the antecedent is false too. We have Q, R � KOHonest(s,K) ∧
Φ, but Q, R � SafeNet(s,K). This implies that Q, R � ∃m, X. Send(X, m) ∧
¬SafeMsg(m, s,K). Note that there must be a first instance when an unsafe message is
sent out - let m̃ be the first such message. Hence, we can split R into R0.R1.R2 such that
Q, R0 � SafeNet(s,K) and R1 = 〈X sends m̃; Y receives m̃〉, for some Y .
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More formally, let us have:

1. Q, R � KOHonest(s,K) ∧ Φ
2. Q, R � SafeNet(s,K)

Condition 2 implies that Q, R � ∃m, X. Send(X, m) ∧ ¬SafeMsg(m, s,K). Note that
there must be a first instance when an unsafe message is sent out - let m̃ be the first such
message. Hence, we can split R into R0.R1.R2 such that:

• Q, R0 � SafeNet(s,K)
• R1 = 〈([receive x; S′]Y | [send m̃; T ′]X −→ [S ′(m̃/x)]Y | [T ′]X)〉

Since this is the first send of an unsafe message, therefore X could not have received
an unsafe message earlier. Therefore, by the lemma, either X generated s or, X has a
key in K. In both cases, KOHonest(s,K) implies Honest(X̂). Therefore the fragment
[send m̃]X must be part of a sequence of actions [P ]X such that P is a basic sequence
of one of the roles in Q. That is, R = R′

0.R
′
1.R

′
2 such that R′

0 is a prefix of R0, P
matches R′

1|X with substituition σ and R′
2 is the rest of R. So we have:

• P matches R′
1|X with substituition σ

• Q, R′
0 � SafeNet(s,K)

• Q, R′
0.R

′
1 � Honest(X̂) ∧ Φ, since Φ is prefix closed.

• Q, R′
0.R

′
1 � SendsSafeMsg(X, s,K)

Hence, we have:Q, R � SafeNet(s,K)[P ]X Honest(X̂)∧Φ ⊃ SendsSafeMsg(X, s,K),
thus violating the premise.

POS : SafeNet(s,K) implies no thread sent out an unsafe message in the run. Hence no
thread received an unsafe message. Therefore, by lemma 1, any thread X possessing an
unsafe message must have either generated s or possesses a key in K.

POSL : The premise of the rule informally states that starting from a “safe” network
and additional constraints ψ thread X concludes that some thread Y possesses an unsafe
message M in all possible runs of any protocol. Specifically this should be true for a run
where thread X executes the basic sequence [S]X uninterspersed with the actions of any
other thread except the receipt of messages sent by X . Now the premise implies that X
only sends safe messages - also since S is a basic sequence, the only message that X can
receive in [S]X will be only at its beginning, which, due to the starting “safe” network
precondition will be a safe message. Hence we can conclude that thread Y possessed
an unsafe message before X started executing [S]X i.e., when SafeNet(s,K) was true.
Therefore using axiom POS we derive that thread Y either generated s or possesses a
key in K, which establises the conclusion of POSL.

Formally, assume that the following formula is valid:

P : ψ∧SafeNet(s,K)[S]X SendsSafeMsg(X, s,K)∧Has(Y, M)∧¬SafeMsg(M, s,K)

Consider R, an arbitrary run of the protocolQ such that R = R0.R1.R2 and the follow-
ing conditions hold:

1. S matches R1|X with substituition σ.
2. Q, R0 |= σ(ψ ∧ SafeNet(s,K))
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Therefore, from the validity of P we have:

Q, R0.R1 |= σ(SendsSafeMsg(X, s,K) ∧ Has(Y, M) ∧ ¬SafeMsg(M, s,K))

Now, we construct a run R′
1
∼= σS, that is, R′

1 has only actions of the thread X (any
send/receive by X is with a buffer chord). Since the conditions 1 and 2 still hold for the
run R′ = R0.R

′
1.R2, we have:

Q, R0.R
′
1 |= σ(SendsSafeMsg(X, s,K) ∧ Has(Y, M) ∧ ¬SafeMsg(M, s,K))

We have two cases here: Y = X or, Y �= X . In the first case, since Q, R0 |=
σSafeNet(s,K) and [S]X can receive at most once - just after R0, therefore, if thread X
possesses an unsafe message then σ(∃k ∈ K. Has(X, k) ∨ New(X, s)) - and this fact
cannot be altered by further actions of X .

In the second case, we observe that R′
1 does not contain the action of any thread

other than X , excepting receipt of the messages sent by X , which are safe anyway.
Therefore, Q, R0 |= σ(Has(Y, M) ∧ ¬SafeMsg(M, s,K)). From this, condition 2 and
POS we have: Q, R0 |= σ(∃k ∈ K. Has(Y, k) ∨ New(Y, s)). Again, further actions by
any thread after R0 cannot alter this fact. Therefore,Q, R0.R1 |= σ(∃k ∈ K.Has(Y, k)∨
New(Y, s)).

Hence, for all runs R the following formula holds:

Q, R |= ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)

�

4. Analysis of a variant of NSL

In this section we use the proof system developed in section 3 to prove a secrecy prop-
erty of a simple variant NSLV AR of the Needham-Schroeder-Lowe protocol, proposed
in [16], in which parties A and B use an authenticated temporary secret na to establish a
secret key k that is in turn used to protect the actual message m. The main difference from
the original NSL protocol is that the initiator’s nonce is leaked in the final message. Rea-
soning from A’s point of view, nonce na should be secret between A and B at the point
of the run in the protocol where A is just about to send the last message. This protocol
was originally used to demonstrate a limitation of the original rank function method in
reasoning about temporary secrets. Modal formulas in PCL allow us to naturally express
and prove properties that hold at intermediate points of a protocol execution.

Formally, NSLV AR is a protocol defined by roles {Init,Resp}, with the roles,
written using the protocol program notation, given in Table 3.

Theorem 3 Let ˜Init denote the initial segment of the initiator’s role ending just before
the last send action. The nonce na is a shared secret between A and B in every state of
the protocol where A has executed ˜Init and no further actions, as long as both Â and B̂
are honest. Formally,

NSLV AR � [ ˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ (Has(X, na) ⊃ X̂ = Â ∨ X̂ = B̂)
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Init = (A, B̂, m) [

new na;

encr1 := pkenc Â.na, B̂;

send encr1;

receive enci;

texti := pkdec enci, Â;

match texti as na.B̂.k;

encr2 := symenc m, k;

send encr2.na;

]A

Resp = (B) [

receive encr1;

textr1 := pkdec encr1, B̂;

match textr1 as Â.na;

new k;

enci := pkenc na.B̂.k, Â;

send enci;

receive encr2.na;

m := symdec encr2, k;

]B

Table 3. Formal description of NSLVAR

Proof Sketch. To prove the secrecy property, we start off by proving an authentication
property [ ˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ Φ, where Φ is the conjunction of the fol-
lowing formulas:

Φ1 : ∀X, Ŷ . New(X, na) ∧ PkEnc(X, X̂.na, Ŷ ) ⊃ Ŷ = B̂

Φ2 : ∀X, Ŷ , n. New(X, na) ⊃ ¬PkEnc(X, n.X̂.na, Ŷ )

Φ3 : ∀X, e. New(X, na) ⊃ ¬Send(X, e.na)

Φ4 : Honest(X̂) ∧ Send(X, e.n) ⊃ New(X, n)

Φ5 : Honest(X̂) ∧ PkEnc(X, X̂′.n, Ŷ ) ⊃ X̂′ = X̂

Informally, Φ1 and Φ2 hold because from the thread A’s point of view it is known that it
itself generated the nonce na and did not send it out encrypted with any other principal’s
public key except B̂’s and that too in a specific format described by the protocol. Φ3

holds because we are considering a state in the protocol execution where A has not yet
sent the last message - sending of the last message will make Send(A, e.na) true with
e = Esym[k](m). These intuitive explanations can be formalized using a previously
developed fragment of PCL but we will omit those steps in this paper. Φ4 and Φ5 follow
from a straightforward use of the honesty rule.

In the next step we prove the antecedents of the NET rule. We take K =
{k̄A, k̄B} where the bar indicates private key which makes KeyHon(K) ≡ Honest(Â) ∧
Honest(B̂). In addition, since thread A generates na, therefore KOHonest(na,K) ≡
Honest(Â) ∧ Honest(B̂). We show that all basic sequence of the protocol send
“safe” messages, assuming that formula Φ holds and that the predicate SafeNet holds
at the beginning of that basic sequence. Formally, for every basic sequence P ∈
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[ ˜Init]A New(A, na) (1)

(−1), N1 [ ˜Init]A New(X, na) ⊃ X = A (2)

Start(A)[]A ¬PkEnc(A, Â.na, Ŷ ) ∨ Ŷ = B̂ (3)

¬PkEnc(A, Â.na, Ŷ ) ∨ Ŷ = B̂ [new na; ]A ¬PkEnc(A, Â.na, Ŷ ) ∨ Ŷ = B̂ (4)

� [encr1 := pkenc Â.na, B̂; ]A PkEnc(A, Â.na, B̂) (5)

¬PkEnc(A, Â.na, Ŷ ) ∨ Ŷ = B̂ [send encr1;

receive enci;

texti := pkdec enci, Â;

match texti as na.B̂.k;

encr2 := symenc m, k; ]A ¬PkEnc(A, Â.na, Ŷ ) ∨ Ŷ = B̂ (6)

[ ˜Init]A PkEnc(A, Â.na, Ŷ ) ⊃ Ŷ = B̂ (7)

(−1) [ ˜Init]A Φ1 (8)

Table 4. Formal proof of [ ˜Init]A Φ1

{Init1, Init2,Resp1,Resp2} we prove that:

SafeNet(na,K)[P]A Honest(Â′) ∧ Φ ⊃ SendsSafeMsg(A′, na,K)

The formal proof is done in Appendix C. The variables used in the basic sequence
we are inducting over are consistently primed so that we do not capture variables in Φ, na

or K. Finally, we use the NET rule and POS axiom to show that na is a shared secret
between A and B at a state where A has just finished executing ˜Init. �

5. Compositional Reasoning for Secrecy

In this section, we present composition theorems that allow secrecy proofs of compound
protocols to be built up from proofs of their parts. An application of this method to
the Kerberos protocol is given in the next section. We consider three kinds of com-
position operations on protocols—parallel, sequential, and staged—as in our earlier
work [10,15]. However, adapting that approach for reasoning about secrecy requires new
insights. One central concept in our compositional proof methods is the notion of an
invariant. An invariant for a protocol is a logical formula that characterizes the envi-
ronment in which it retains its security properties. While in previous work we had one
rule for establishing invariants (the HON rule [10]), reasoning about secrecy requires,
in addition, the NET rule introduced in this paper. A second point of difference arises
from the fact that reasoning about secrecy requires a certain degree of global knowledge.
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Specifically, while proving that a protocol step does not violate secrecy, it is sometimes
necessary to use information from earlier steps. In the technical presentation, this history
information shows up as preconditions in the secrecy induction of the sequential and
staged composition theorems.

Definition 2 (Parallel Composition) The parallel compositionQ1 | Q2 of protocolsQ1

andQ2 is the union of the sets of roles ofQ1 andQ2.

The parallel composition operation allows modelling agents who simultaneously
engage in sessions of multiple protocols. The parallel composition theorem provides a
method for ensuring that security properties established independently for the constituent
protocols are still preserved in such a situation.

Theorem 4 (Parallel Composition) If Q1 � Γ and Γ � Ψ and Q2 � Γ then Q1 | Q2 �
Ψ, where Γ denotes the set of invariants used in the proof of Ψ.

One way to understand the parallel composition theorem is to visualize the proof
tree for Ψ for protocol Q1 in red and green colors. The steps which use the invariant
rules are colored red and correspond to the part Q1 � Γ, while all other proof steps are
colored green and correspond to the part Γ � Ψ. While composing protocols, all green
steps are obviously preserved since they involve proof rules which hold for all protocols.
The red steps could possibly be violated because ofQ2. For example, one invariant may
state that honest principals only sign messages of a certain form, while Q2 may allow
agents to sign other forms of messages. The conditionQ2 � Γ ensures that this is not the
case, i.e., the red steps still apply for the composed protocol.

Definition 3 (Sequential Composition) A protocolQ is a sequential composition of two
protocols Q1 and Q2, if each role of Q is obtained by the sequential composition of a
role ofQ1 with a role ofQ2.

In practice, key exchange is usually followed by a secure message transmission pro-
tocol which uses the resulting shared key to protect data. Sequential composition is used
to model such compound protocols. Formally, the composed role P1; P2 is obtained by
concatenating the actions of P1 and P2 with the output parameters of P1 substituted for
the input parameters of P2 (cf. [10]).

Theorem 5 (Sequential Composition) IfQ is a sequential composition of protocolsQ1

andQ2 then we can concludeQ � KOHonest(s,K)∧Φ ⊃ SafeNet(s,K) if the following
conditions hold for all P1; P2 in Q, where P1 ∈ Q1 and P2 ∈ Q2:

1. (Secrecy induction)

• ∀i.∀S ∈ BS(Pi). θPi
∧ SafeNet(s,K) [S]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)

2. (Precondition induction)

• Q1 | Q2 � Start(X) ⊃ θP1 and Q1 | Q2 � θP1 [P1]X θP2
• ∀i.∀S ∈ BS(Pi). θPi

[S]X θPi
.

The final conclusion of the theorem is a statement that secrecy of s is preserved
in the composed protocol. The secrecy induction is very similar to the NET rule. It
states that all basic sequences of the two roles only send out safe messages. This step is
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compositional since the condition is proved independently for steps of the two protocols.
One point of difference from the NET rule is the additional precondition θPi . This
formula usually carries some information about the history of the execution, which helps
in deciding what messages are safe for A to send out. For example, if θPi says that A
received some message m, then it is easy to establish that m is a safe message for A to
send out again. The precondition induction proves that the θPi’s hold at each point where
they are assumed in the secrecy induction. The first bullet states the base case of the
induction: θP1 holds at the beginning of the execution and θP2 holds when P1 completes.
The second bullet states that the basic sequences of P1 and P2 preserve their respective
preconditions.

Definition 4 (Staged Composition) A protocol Q is a staged composition of protocols
Q1,Q2, . . . ,Qn if each role of Q is of the form RComp(〈R1, R2, . . . , Rn〉), where Ri

is a role of protocolQi.

Consider the representation of sequential composition of n protocols as a directed
graph with edges from Qi to Qi+1. The staged composition operation extends sequen-
tial composition by allowing self loops and arbitrary backward arcs in this chain. This
control flow structure is common in practice, e.g., Kerberos [17], IEEE 802.11i [1], and
IKEv2 [6]. A role in this composition, denoted RComp(〈...〉) corresponds to a possible
execution path in the control flow graph by a single thread (cf. [15]). Note that the roles
are built up from a finite number of basic sequences of the component protocol roles.

Theorem 6 (Staged Composition) If Q is a staged composition of protocols Q1, Q2,
· · · , Qn then we can conclude Q � KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K) if for all
RComp(〈P1, P2, · · · , Pn〉) ∈ Q:

1. (Secrecy induction)

• ∀i.∀S ∈ BS(Pi). θPi
∧ SafeNet(s,K) [S]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)

2. (Precondition induction)

• Q1 | Q2 · · · | Qn � Start(X) ⊃ θP1 and Q1 | Q2 · · · | Qn � ∀i. θPi
[Pi]X θPi+1

• ∀i.∀S ∈ S
j≥i BS(Pj). θPi

[S]X θPi
.

The secrecy induction for staged composition is the same as for sequential compo-
sition. However, the precondition induction requires additional conditions to account for
the control flows corresponding to backward arcs in the graph. The technical distinction
surfaces in the second bullet of the precondition induction. It states that precondition θPi

should also be preserved by basic sequences of all higher numbered components, i.e.,
components from which there could be backward arcs to the beginning of Pi.

6. Analysis of Kerberos V5

In this section we analyze Kerberos V5, which was described in section 2. The security
properties of Kerberos that we prove are listed in table 5. We abbreviate the honesty
assumptions by defining Hon(X̂1, · · · , X̂n) ≡ Honest(X̂1) ∧ · · ·Honest(X̂n). The se-
curity objectives are of two types: authentication and secrecy. The authentication objec-
tives take the form that a message of a certain format was indeed sent by some thread
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SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (Has(X, AKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (Has(X, SKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).Esym[kc→k

C,K ](AKey.n1.T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂ )

SEC
tgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 5. Kerberos Security Properties

of the expected principal. The secrecy objectives take the form that a putative secret is
known only to certain principals. For example, AUTHclient

kas states that when the thread
C finishes executing the Client role, some thread of K̂ (the KAS) indeed sent the ex-
pected message; SECclient

akey states that the authorization key is secret after execution of
the Client role by C; the other security properties are analogous.

Theorem 7 (KAS Authentication) On execution of the Client role by a principal it is
guaranteed that the intended KAS indeed sent expected response assuming that the both
the client and the KAS are honest. Similar result holds for a principal executing the TGS
role. Formally, KERBEROS � AUTHclient

kas , AUTH tgs
kas

Proof Sketch. In the course of executing the Client role, principal Ĉ receives a message
containing the encrypted term Esym[kc→k

C,K ](AKey.n1.T̂ ). Using axiom ENC4, we de-

rive that this message was encrypted by one of the owners of kc→k
C,K , which is either Ĉ

or K̂. Then, by using the rule HON we establish that no thread of Ĉ does this unless
Ĉ = K̂, and so this must be some thread of K̂ . Once again we use the HON rule to
reason that if an honest thread encrypts a message of this form then it also sends out a
message of the form described in AUTHkas. The proof of AUTHtgs

kas is along identical
lines. In Appendix D.2, we first give a template proof for the underlying reasoning and
then instantiate it for both AUTHclient

kas and AUTHtgs
kas. �

Theorem 8 (Authentication Key Secrecy) On execution of the Client role by a prin-
cipal, secrecy of the Authentication Key is preserved assuming that the client, the KAS
and the TGS are all honest. Similar results hold for principals executing the KAS and
TGS roles. Formally, KERBEROS � SECclient

akey , SECkas
akey , SECtgs

akey

Proof Sketch. In Appendix D.3 we formally prove the secrecy of the session key AKey
with respect to the key-set K = {kc→k

C,K , kt→k
T,K }. The proof is modular and broadly, there

are two stages to the proof:
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1. In the first stage we assume certain conditions, denoted Φ, and the honesty of
principals Ĉ, K̂ and T̂ and prove that this implies SafeNet(AKey,K). The proof
of this part uses the Staged Composition Theorem. The components of this proof
are:

• secrecy induction - we will describe this shortly.
• precondition induction - in case of KERBEROS most basic sequences do not

need any precondition to facilitate the secrecy induction. For two of the basic
sequences in the Client program, the preconditions are simply of the form that
a certain message was received. Since receiving a message is a monotonic
property, that is - once it is true it is always true thereafter - the precondition
induction goes through simply.

2. In the second stage we prove that execution of the Client,KAS or the TGS
roles discharge the assumptions Φ. These proofs are derived from the authentica-
tion properties AUTHclient

kas , AUTHtgs
kas. Now we combine the two derivations,

use the POS axiom and conclude SECclient
akey , SECkas

akey and SECtgs
akey .

As the form of the secrecy induction suggests, we do an induction over all the basic
sequences of KERBEROS. Broadly, the induction uses a combination of the following
types of reasoning:

- The secrecy axioms enumerated in the proof system section. The structure of Ker-
beros suggests that in many of the basic sequences the messages being sent out are func-
tions of messages received. A key strategy here is to use NET1 and the safe network
hypothesis to derive that the message received is safe and then proceed to prove that the
messages being sent out are also safe. Consider as an example the sequence of actions
by an application server thread [Server]S : S′ receives a message Esym[SKey′](Ĉ′.t′)
and sends out a message Esym[SKey′](t′). It is provable, just by using the SAF axioms
that the later message is safe if the former message is safe.

- Derivations from Φ: The structure of Φ is dictated by the structure of the basic
sequences we are inducing over. A practical proof strategy is starting the induction with-
out figuring out a Φ at the outset and construct parts of the Φ as we do induction over
an individual basic sequence. In case of KERBEROS, these parts are formulae that state
that the generating thread of the putative secret AKey did not perform certain types of
action on AKey or did it in a restricted form. The motivation for this structure of the
Φ parts is that many of the basic sequences generate new nonces and send them out un-
protected or protected under a set of keys different from K. The Φ parts tell us that this
is not the way the secret in consideration was sent out. For example consider one of the
parts Φ1 : ∀X, M. New(X, AKey) ⊃ ¬(Send(X, M) ∧ ContainsOpen(M, AKey)) -
this tells us that the generator of AKey did not send it out unprotected in the open.

- Derivations from the θ’s, that is, the preconditions. These are conditions which
are true at the beginning of the basic sequence we are inducing over with respect to the
staged control flow that KERBEROS exhibits. As before, a practical proof strategy is to
find out what precondition we need for the secrecy induction and do the precondition
induction part afterwards. Consider for example the end of the first stage of the client
thread [Client]C . We know that at the beginning of the second stage the following
formula always holds - θ : Receive(Ĉ′, tgt′.Esym[kc→k

C ,K ](AKey′.n′
1.T̂

′)). The reason
this information is necessary is that the second stage sends out tgt′ in the open - in order
to reason that this send is safe, given the safe network hypothesis at the beginning of the
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second stage, we use the precondition and the theorem SREC to derive that tgt′ was
safe to begin with. �

Theorem 9 (TGS Authentication) On execution of the Client role by a principal it is
guaranteed that the intended TGS indeed sent the expected response assuming that the
client, the KAS and the TGS are all honest. Similar result holds for a principal executing
the Server role. Formally, KERBEROS � AUTHclient

tgs , AUTHserver
tgs

Proof Sketch. The proof of AUTHserver
tgs can be instantiated from the template proof

for theorem 7 and is formally done in Appendix D.2. The proof of AUTHclient
tgs uses the

secrecy property SECclient
akey established in theorem 8 and is formally done in Appendix

D.4. At a high level, the client reasons that since AKey is known only to Ĉ, K̂ and T̂ ,
the term Esym[AKey](SKey.n2.Ŝ) - which it receives during the protocol execution
- could only have been computed by one of them. Some non-trivial technical effort is
required to prove that this encryption was indeed done by a thread of T̂ and not by
any thread of Ĉ or K̂, which could have been the case if e.g., there existed a reflection
attack. After showing that it was indeed a thread of T̂ who encrypted the term, we use
the honesty rule to show that it indeed sent the expected response to C’s message. �

Theorem 10 (Service Key Secrecy) On execution of the Client role by a principal,
secrecy of the Service Key is preserved assuming that the client, the KAS, the TGS and
the application server are all honest. Similar result holds for a principal executing the
TGS role. Formally, KERBEROS � SECclient

skey , SECtgs
skey

Proof Sketch. The idea here is that the Service Key SKey is protected by the key-set
{ks→t

S,T , AKey}. The proof of this theorem being very similar to the proof of theorem 8
is omitted from this paper. �

Kerberos with PKINIT

We prove theorems for Kerberos with PKINIT [22] that are analogous to theorems 7-10
and are listed in Table 6. The proofs are omitted due to space constraints. In the first
stage of Kerberos with PKINIT, the KAS establishes the authorization key encrypted
with a symmetric key which in turn is sent to the client encrypted with its public key.
For client Ĉ and KAS K̂ let us denote this symmetric key by kpkinit

C,K . Since the structure
of the rest of the protocol remains the same with respect to the level of formalization
in this paper [7], we can take advantage of the PCL proofs for the symmetric key ver-
sion. In particular, the proofs for the properties of Kerberos with PKINIT analogous to
AUTHtgs

kas, AUTHclient
tgs and AUTHserver

tgs are identical in structure to the symmetric
key version. The proof of the property corresponding to AUTHclient

kas is different because
of the differing message formats in the first stage. There is an additional step of proving
the secrecy of kpkinit

C,K , after which the secrecy proofs of AKey and SKey are reused
with only the induction over the first stage of the client and the KAS being redone.

7. Related Work

Some secrecy proofs using the CSP [20] or strand space [21] protocol execution model
use inductive arguments that are similar to the form of inductive reasoning codified in
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SECk : Hon(Ĉ, K̂) ⊃ (GoodKeyAgainst(X, k) ∨ X̂ ∈ {Ĉ, K̂})

SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (GoodKeyAgainst(X, AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X, SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Epk[pkC ](CertK .SIG[skK](k.ck)).

Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).Esym[k](AKey.n1.tK .T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
k : [Client]C SECk SECkas

k : [KAS]K SECk

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂)

SECtgs
akey : [TGS]T SECakey ⊃ ∃n1, k, ck, tK . AUTHkas

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂ )

SEC
tgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 6. PKINIT Security Properties

our formal system. For example, within CSP, properties of messages that may appear on
the network have been identified by defining a rank function [20,16], with an inductive
proof used to show that rank is preserved by the attacker actions and all honest parties.
In comparison, arguments in our formal logic use a conjunction involving the SafeNet
predicate and protocol specific properties Φ in our inductive hypotheses. These two for-
mulas together characterize the set of possible messages appearing on the network and
can be viewed as a symbolic definition of a rank function. We believe that our method is
as powerful as the rank function method for any property expressible in our logic. How-
ever, it is difficult to prove a precise connection without first casting the rank function
method in a formal setting that relies on a specific class of message predicates.

One drawback of the rank functions approach is that the induction is performed
by “global” reasoning – trying to capture all possible properties of the system at once.
This makes the method less applicable since it cannot handle protocols which deal with
temporary secrets or use authentication to ensure secrecy properties. Although some of
these issues can be resolved by extensions of the rank function method [13,12], we expect
that the tools available in PCL are more general and may be better suited for application
to real-world protocols.

Our composition theorems allow us to use a divide-and-conquer approach for com-
plex protocols with different parts serving different purposes. By varying the precon-
ditions of the secrecy induction in the staged composition theorem, we are essentially
modifying the rank function as we shift our attention from one protocol stage to the
other.
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Because of its widespread deployment and relative complexity, Kerberos has been
the subject of several logical studies. Bella and Paulson use automated theorem proving
techniques to reason explicitly about properties of Kerberos that hold in all traces con-
taining actions of honest parties and a malicious attacker [3]. Our high-level axiomatic
proofs are significantly more concise since we do not require explicit reasoning about
attacker actions. Another line of work uses a multiset rewriting model [4,2] to develop
proofs in the symbolic and computational model. However, proofs in these papers use
unformalized (though rigorous) mathematical arguments and are not modular.

8. Conclusion

We present formal axioms and proof rules for inductive reasoning about secrecy and
prove soundness of this system over a conventional symbolic model of protocol execu-
tion. The proof system uses a safe message predicate to express that any secret conveyed
by the message is protected by a key from a chosen list. This predicate allows us to de-
fine two additional concepts: a principal sends safe messages if every message it sends
is safe, and the network is safe if every message sent by every principal is safe.

Our main inductive rule for secrecy, NET, states that if every honest principal pre-
serves safety of the network, then the network is safe, assuming that only honest princi-
pals have access to keys in the chosen list. The remainder of the system makes it possible
to discharge assumptions used in the proof, and prove (when appropriate) that only hon-
est principals have the chosen keys. While it might initially seem that network safety de-
pends on the actions of malicious agents, a fundamental advantage of Protocol Compo-
sition Logic is that proofs only involve induction over protocol steps executed by honest
parties.

We illustrate the expressiveness of the logic presented in this paper by proving prop-
erties of two protocols, a variant of the Needham-Schroeder protocol that illustrates the
ability to reason about temporary secrets, and Kerberos. The modular nature of the se-
crecy and authentication proofs for Kerberos makes it possible to reuse proofs about the
basic version of the protocol for the PKINIT version that uses public-key infrastructure
instead of shared secret keys in the initial steps. Compositional secrecy proofs are made
possible by the composition theorems developed in section 5 of this paper.

We have also developed a proof system for secrecy analysis that is sound over a
“computational" protocol execution model which involves probabilistic polynomial-time
computation [19]. The proofs of Kerberos security properties in the computationally
sound logic turn out to be syntactically analogous to the symbolic version described in
this paper. However, the proofs for NSL and variants are not entirely analogous to the
symbolic versions. Specifically, these proofs involve axioms capturing some subtle ways
in which cryptographic reduction proofs work which do not seem to have a direct corre-
spondence with the symbolic way of interpreting the cryptographic primitives.
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A. Protocol Logic

A.1. Axioms and Inference Rules

A representative fragment of the axioms and inference rules in the proof system are
collected in Table 7. For expositional convenience, we divide the axioms into four
groups.

The axioms about protocol actions state properties that hold in the state reached by
executing one of the actions in a state in which formula φ holds. Note that the a in axiom
AA1 is any one of the actions and a is the corresponding predicate in the logic. Axiom
N1 states that two different threads cannot generate the same nonce while axiom AN2
states that if a thread generates a nonce and does nothing else, only that thread possesses
the nonce.

The possession axioms reflect a fragment of Dolev-Yao rules for constructing or
decomposing messages while the encryption axioms symbolically model encryption. The
generic rules are used for manipulating modal formulas.

A.2. The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles of a
protocol. It is similar to the basic invariance rule of LTL [18]. The honesty rule is used
to combine facts about one role with inferred actions of other roles.

For example, suppose Alice receives a response from a message sent to Bob. Alice
may wish to use properties of Bob’s role to reason about how Bob generated his reply.
In order to do so, Alice may assume that Bob is honest and derive consequences from
this assumption. Since honesty, by definition in this framework, means “following one
or more roles of the protocol,” honest principals must satisfy every property that is a
provable invariant of the protocol roles. Using the notation just introduced, the honesty
rule may be written as follows.

[ ]X φ ∀ρ ∈ Q.∀PεBS(ρ). φ [P ]X φ

Q � Honest(X̂) ⊃ φ
HON

no free variable
in φ except X
bound in [P ]X

In words, if φ holds at the beginning of every role of Q and is preserved by all its
basic sequences, then every honest principal executing protocol Q must satisfy φ. The
side condition prevents free variables in the conclusion Honest(X̂) ⊃ φ from becoming
bound in any hypothesis. Intuitively, since φ holds in the initial state and is preserved by
all basic sequences, it holds at all pausing states of any run.
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Axioms for protocol actions

AA1 φ[a]X a

AA2 Start(X)[ ]X ¬a(X)

AA3 ¬Send(X, t)[b]X¬Send(X, t) if σSend(X, t) �= σb for all substitutions σ

AN2 φ[new x]X Has(Y, x) ⊃ (Y = X)

ARP Receive(X, p(x))[match q(x) as q(t)]X Receive(X, p(t))

P1 Persist(X, t)[a]X Persist(X, t) , for Persist ∈ {Has, Send, Receive}
N1 New(X, n) ∧ New(Y, n) ⊃ X = Y

Possession Axioms

ORIG New(X, x) ⊃ Has(X, x) TUP Has(X, x) ∧ Has(X, y) ⊃ Has(X, x.y)

REC Receive(X, x) ⊃ Has(X, x) PROJ Has(X, x.y) ⊃ Has(X, x) ∧ Has(X, y)

Encryption Axioms

Let Enc ∈ {SymEnc, PkEnc}, Dec ∈ {SymDec, PkDec} in the following:

ENC0 [m′ := enc m, k; ]X Enc(X, m, k)

ENC1 Start(X) [ ]X ¬Enc(X, m, k)

ENC2 π(X, m, k) [a]X π(X, m, k), for π ∈ {Enc,¬Enc}
where, either a �= enc · · · or, a = (p := enc k′, q), such that (q, k′) �= (m, k)

ENC3 Enc(X, m, k) ⊃ Has(X, k) ∧ Has(X, m)

ENC4 SymDec(X, E[k](m), k) ⊃ ∃Y. SymEnc(Y, m, k)

PENC4 PkDec(X, E[k](m), k̄) ⊃ ∃Y. PkEnc(Y, m, k)

Generic Rules

θ[P ]Xφ θ[P ]Xψ
θ[P ]Xφ ∧ ψ

G1
θ′ ⊃ θ θ[P ]Xφ φ ⊃ φ′

θ′[P ]Xφ′ G2
φ

θ[P ]Xφ
G3

Table 7. Fragment of the Proof System

B. New Definitions, Axioms and Rules for Secrecy

SendsSafeMsg(X, s,K) ≡ ∀M. (Send(X, M) ⊃ SafeMsg(M, s,K))

SafeNet(s,K) ≡ ∀X. SendsSafeMsg(X, s,K)

KeyHonest(K) ≡ ∀X. ∀k ∈ K. (Has(X, k) ⊃ Honest(X̂))

OrigHonest(s) ≡ ∀X. (New(X, s) ⊃ Honest(X̂))

KOHonest(s,K) ≡ KeyHonest(K) ∧ OrigHonest(s)
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SAF0 ¬SafeMsg(s, s,K) ∧ SafeMsg(x, s,K),

where x is an atomic term different from s

SAF1 SafeMsg(M0.M1, s,K) ≡ SafeMsg(M0, s,K) ∧ SafeMsg(M1, s,K)

SAF2 SafeMsg(Esym[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k ∈ K

SAF3 SafeMsg(Epk[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k̄ ∈ K

SAF4 SafeMsg(HASH(M), s,K)

NET ∀ρ ∈ Q.∀P ∈ BS(ρ).

SafeNet(s,K) [P ]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)
Q � KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K)

(∗)

(∗): [P ]A does not capture free variables in Φ, K, s, and Φ is prefix closed.

NET0 SafeNet(s,K) [ ]X SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K) [receive M ]X SafeMsg(M, s,K)

NET2 SendsSafeMsg(X, s,K) [a]X SendsSafeMsg(X, s,K), where a is not a send.

NET3 SendsSafeMsg(X, s,K) [send M ]X SafeMsg(M, s,K) ⊃ SendsSafeMsg(X, s,K)

POS SafeNet(s,K) ∧ Has(X, M) ∧ ¬SafeMsg(M, s,K)

⊃ ∃k ∈ K. Has(X, k) ∨ New(X, s)

POSL
ψ ∧ SafeNet(s,K) [S]X SendsSafeMsg(X, s,K) ∧ Has(Y, M) ∧ ¬SafeMsg(M, s,K)

ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)
,

where S is any basic sequence of actions.

SREC SafeNet(s,K) ∧ Receive(X, M) ⊃ SafeMsg(M, s,K)

SSND SafeNet(s,K) ∧ Send(X, M) ⊃ SafeMsg(M, s,K)
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C. PCL Proof of NSL Variant Secrecy

As in the theorem, ˜Init is the initial segment of the Init role excluding the last send
action. To prove the secrecy property, we start off by proving an authentication property
[ ˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ Φ, where Φ is the conjunction of the following
formulas:

Φ1 : ∀X, Ŷ . New(X, na) ∧ Send(X, Epk[kY ](X̂.na)) ⊃ Ŷ = B̂

Φ2 : ∀X, Ŷ , n. New(X, na) ⊃ ¬Send(X, Epk[kY ](n.X̂.na))

Φ3 : ∀X, e. New(X, na) ⊃ ¬Send(X, e.na)

Φ4 : Honest(X̂) ∧ Send(X, Esym[k0](m0).n) ⊃ New(X, n)

Φ5 : Honest(X̂) ∧ PkEnc(X, X̂′.n, Ŷ ) ⊃ X̂′ = X̂

In the next step we prove the antecedents of the NET rule. We take K =
{k̄A, k̄B} where the bar indicates private key which makes KeyHon(K) ≡ Honest(Â) ∧
Honest(B̂). In addition, since thread A generates na, therefore KOHonest(na,K) ≡
Honest(Â) ∧ Honest(B̂). We show that all basic sequence of the protocol send
“safe” messages, assuming that formula Φ holds and that the predicate SafeNet holds
at the beginning of that basic sequence. Formally, for every basic sequence P ∈
{Init1, Init2,Resp1,Resp2} we prove that:

SafeNet(na,K)[P]A Honest(Â′) ∧ Φ ⊃ SendsSafeMsg(A′, na,K)

The variables used in the basic sequence we are inducting over are consistently
primed so that we do not capture variables in Φ, na or K. Finally, we use the NET rule
and POS axiom to show that na is a shared secret between A and B at a state where A
has just finished executing ˜Init.

Let, [Init1]A : [new n′
a;

enc′r1 := pkenc Â′.n′
a, B̂′;

send enc′r1; ]A

Case 1 : n′
a �= na (1)

(1) [Init1]A SafeMsg(Epk [kB ](Â′.n′
a), na,K) (2)

(2), NET∗ SafeNet(na,K)[Init1]A SendsSafeMsg(A′, na,K) (3)

Case 2 : n′
a = na (4)

[Init1]A New(A′, na) ∧ Send(A′, Epk[kB ](Â′.na)) (5)

Φ1 [Init1]A B̂′ = B̂ (6)

(6) [Init1]A SafeMsg(Epk[kB ](Â′.n′
a), na,K) (7)

(7), NET∗ SafeNet(na,K)[Init1]A SendsSafeMsg(A′, na,K) (8)
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Let, [Init2]A : [receive enc′i;

text′i := pkdec enc′i, Â′;

match text′i as n′
a.B̂′.k′;

enc′r2 := symenc m′, k′;

send enc′r2.n′
a; ]A

[Init2]A Send(A′, Esym[k′](m′).n′
a) (9)

Φ4 Honest(X̂) ∧ Send(X, Esym[k0](m0).n) ⊃ New(X, n) (10)

(9), (10) [Init2]A New(A′, n′
a) ∧ Send(A′, Esym[k′](m′).n′

a) (11)

Φ3, (11) [Init2]A n′
a �= na (12)

SAF0, (12) [Init2]A SafeMsg(n′
a, na,K) (13)

SAF0 [Init2]A SafeMsg(m′, na,K) (14)

SAF∗, (13), (14) [Init2]A SafeMsg(Esym[k′](m′).n′
a, na,K) (15)

(15) SafeNet(na,K) [Init2]A SendsSafeMsg(A′, na,K) (16)

Let, [Resp1]B : [receive enc′r1;

text′r1 := pkdec enc′r1, B̂′;

match text′r1 as Â′.n′
a;

new k′;

enc′i := pkenc n′
a.B̂′.k′, Â′;

send enc′i; ]B

[Resp1]B New(B′, k′) ∧ Send(B′, Epk[kA ](n′
a.B̂′.k′)) (17)

Φ2, (17) [Resp1]B k′ �= na (18)

Case 1 : SafeMsg(n′
a, na,K) (19)

SAF∗, (18) SafeMsg(Epk[kA ](n′
a.B̂′.k′), na,K) (20)

NET∗, (20) SafeNet(na,K) [Resp1]B SendsSafeMsg(B′ , na,K) (21)
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Case 2 : ¬SafeMsg(n′
a, na,K) (22)

ENC4 [receive enc′r1;match enc′r1 as Epk[kB ](Â′.n′
a); ]B

∃X. PkEnc(X, Â′.n′
a, B̂′) (23)

Inst X �→ X0 [receive enc′r1;match enc′r1 as Epk[kB ](Â′.n′
a); ]B

PkEnc(X0, Â′.n′
a, B̂′) (24)

(24) [receive enc′r1;match enc′r1 as Epk[kB ](Â′.n′
a); ]B

Has(X0, n′
a) (25)

NET∗, (25) SafeNet(na,K)

[receive enc′r1;match enc′r1 as Epk[kB ](Â′.n′
a); ]B

SendsSafeMsg(B′, na,K) ∧ Has(X0, n′
a) ∧ ¬SafeMsg(n′

a, na,K) (26)

POSL, (26) SafeNet(na,K)

[receive enc′r1;match enc′r1 as Epk[kB ](Â′.n′
a); ]B

∃k ∈ K. Has(X0, k) ∨ New(X0, na) (27)

(27) X̂0 = Â ∨ X̂0 = B̂ (28)

(28) Honest(X̂0) (29)

Φ5 Honest(X̂) ∧ PkEnc(X, X̂′.n, Ŷ ) ⊃ X̂′ = X̂ (30)

(24), (28), SafeNet(na,K)

(29), (30) [receive enc′r1;match enc′r1 as Epk[kB ](Â′.n′
a); ]B

Â′ = Â ∨ Â′ = B̂ (31)

SAF3, (31) SafeNet(na,K) [Resp1]B SafeMsg(Epk [kA ](n′
a.B̂′.k′), na,K) (32)

(32) SafeNet(na,K)[Resp1]B SendsSafeMsg(B′, na,K) (33)

Let, [Resp2]B : [receive enc′r2.n
′
a;

m′ := symdec enc′r2, k′; ]B

NET∗ SafeNet(na,K)[Resp2]B SendsSafeMsg(B′, na,K) (34)

NET [ ˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ SafeNet(na,K) (35)

POS, (35) [ ˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ (Has(X, na) ⊃ X̂ = Â ∨ X̂ = B̂) (36)
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D. Proof of Kerberos Security Properties

D.1. Environmental Assumptions

Long term symmetric keys possessed by pairs of honest principals are possessed by only
themselves.

Γ0 : ∀X, Y, Z, type. Hon(X̂, Ŷ ) ∧ Has(Z, k
type
X,Y ) ⊃ (Ẑ = X̂ ∨ Ẑ = Ŷ )

D.2. Proofs of AUTHclient
kas , AUTH tgs

kas and AUTHserver
tgs

Below we give a template proof of [Role]X Hon(X̂, Ŷ ) ⊃ ∃η. SymEnc((Ŷ , η),
M1, k

type
X,Y ), where Role receives the message M0.Esym[ktype

X,Y ](M1).M2.
Reference to equations by negative numbers is relative to the current equation - e.g.,

(-1) refers to the last equation. Reference by positive number indicates the actual number
of the equation.

[Role]X SymDec(X, Esym[k
type
X,Y ](M1), k

type
X,Y ) (1)

Hon(X̂, Ŷ ), Γ0 [Role]X ∃η. SymEnc((X̂, η), M1, ktype
X,Y )

ENC4, (−1) ∨ ∃η. SymEnc((Ŷ , η), M1, ktype
X,Y ) (2)

Case 1 : X̂ = Ŷ (3)

(−2,−1) [Role]X ∃η. SymEnc((Ŷ , η), M1, ktype
X,Y ) (4)

Case 2 : X̂ �= Ŷ (5)

HON Honest(X̂0) ∧ X̂0 �= Ŷ0 ⊃ ∀M. ¬SymEnc(X0, M, ktype
X0,Y0

) (6)

Hon(X̂), (−1) [Role]X ¬∃η. SymEnc((X̂, η), M1, ktype
X,Y ) (7)

(−6,−1) [Role]X ∃η. SymEnc((Ŷ , η), M1, ktype
X,Y ) (8)
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Instantiating for AUTHclient
kas :

[Client]C ∃η. SymEnc((Ĉ, η), AKey.n1.T̂ , kc→k
C,K ) (9)

HON Honest(X̂) ∧ SymEnc(X, Key.n.T̂0, k
c→k
C0,X )

⊃ Send(X, Ĉ0.Esym[kt→k
T0,X ](Key.Ĉ0).Esym[kc→k

C0,X ](Key.n.T̂0)) (10)

Hon(K̂), [Client]C ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).

(−2,−1) Esym[kc→k
C,K ](AKey.n1.T̂ )) (11)

(−1) AUTHclient
kas (12)

Instantiating for AUTHtgs
kas:

[TGS]T ∃η. SymEnc((K̂, η), AKey.Ĉ, kt→k
T,K ) (13)

HON Honest(X̂) ∧ SymEnc(X, Key.Ĉ0, kt→k
Y,X )

⊃ ∃n. Send(X, Ĉ0.Esym[kt→k
Y,X ](Key.Ĉ0).Esym[kc→k

C0,X ](Key.n.Ŷ )) (14)

Hon(K̂), [TGS]T ∃η, n. Send((K̂, η), Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).

(−2,−1) Esym[kc→k
C,K ](AKey.n1.T̂ )) (15)

(−1) AUTHtgs
kas (16)

Instantiating for AUTHserver
tgs :

[Server]S ∃η. SymEnc((T̂ , η), Esym[ks→t
S,T ](SKey.Ĉ)) (17)

HON Honest(X̂) ∧ SymEnc(X, Key.Ĉ0, ks→t
Y,X )

⊃ ∃n, Key′. Send(X, Ĉ0.Esym[ks→t
Y,X ](Key.Ĉ0).Esym[Key′](Key.n.Ŷ )) (18)

Hon(T̂ ), [Server]S ∃η, n, Key′. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).

(−2,−1) Esym[Key′](SKey.n.Ŝ)) (19)

(−1) AUTHserver
tgs (20)
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D.3. Proof of SECclient
akey , SECkas

akey , SECtgs
akey

In this section we formally prove the secrecy of the session key AKey with respect to
the key-set K = {kc→k

C,K , kt→k
T,K }.

The assumed condition Φ is the conjunction of the following formulas where the
predicate ContainsOpen(m, a) asserts that a can be obtained from m by a series of
unpairings only - no decryption required.

Φ1 : ∀X, M. New(X, AKey) ⊃ ¬(Send(X, M) ∧ ContainsOpen(M, AKey))

Φ2 : ∀X, Ĉ0, K̂0, T̂0, n. New(X, AKey) ∧ SymEnc(X, AKey.n.T̂0, kc→k
C0,K0

)

⊃ X̂ = K̂ ∧ Ĉ0 = Ĉ ∧ T̂0 = T̂

Φ3 : ∀X, Ŝ0, Ĉ0. New(X, AKey) ⊃ ¬SymEnc(X, AKey.Ĉ0, ks→t
S0,X)

Observe that Φ is prefix closed. The only principals having access to a key in K are
Ĉ, K̂ and T̂ . In addition, Φ2 assumes that some thread ofK generated AKey. Therefore,
we have KOHonest(AKey,K) ≡ Hon(Ĉ, K̂, T̂ ). As the form of the secrecy induction
suggests, we do an induction over all the basic sequences of KERBEROS.

Let, [Client1]C : [new n′
1;send Ĉ′.T̂ ′.n′

1; ]C

[Client1]C New(C′, n′
1) ∧ Send(C′, Ĉ′.T̂ ′.n′

1) (1)

Φ1, (1) [Client1]C n′
1 �= AKey (2)

(2) [Client1]C SafeMsg(Ĉ′.T̂ ′.n′
1, AKey,K) (3)

NET2, (3) SafeNet(AKey,K) [Client1]C SendsSafeMsg(C′, AKey,K) (4)

Let, [Client2]C : [receive Ĉ′.tgt′.enc′kc;

text′kc := symdec enc′kc, k
c→k
C ,K ;

match text′kc as AKey′.n′
1.T̂ ′; ]C

NET∗ SafeNet(AKey,K) [Client2]C SendsSafeMsg(C′, AKey,K) (5)
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Precondition θ3 : Receive(C′, Ĉ′.tgt′.Esym[kc→k
C ,K ](AKey′.n′

1.T̂ ′))

Let, [Client3]C : [new n′
2;

enc′ct := symenc Ĉ′, AKey′;

send tgt′.enc′ct.Ĉ
′.Ŝ′, n′

2; ]C

SREC SafeNet(AKey,K) ∧ θ3 ⊃

SafeMsg(Ĉ′.tgt′.Esym[kc→k
C ,K ](AKey′.n′

1.T̂ ′), AKey,K) (6)

SAF1 SafeMsg(Ĉ′.tgt′.Esym[kc→k
C ,K ](AKey′.n′

1.T̂ ′), AKey,K) ⊃

SafeMsg(tgt′ , AKey,K) (7)

(7) θ3 ∧ SafeNet(AKey,K) [Client3]C SafeMsg(tgt′ , AKey,K) (8)

[Client3]C New(C′, n′
2) ∧ Send(C′, tgt′.Esym[AKey′](Ĉ′).Ĉ′.Ŝ′.n′

2) (9)

Φ1, (9) [Client3]C n′
2 �= AKey (10)

(8), (10) θ3 ∧ SafeNet(AKey,K) [Client3]C

SafeMsg(tgt′ , AKey,K) ∧ SafeMsg(n′
2, AKey,K) (11)

(11) θ3 ∧ SafeNet(AKey,K) [Client3]C

SafeMsg(tgt′ .Esym[AKey′](Ĉ′).Ĉ′.Ŝ′.n′
2, AKey,K) (12)

NET∗, (12) θ3 ∧ SafeNet(AKey,K) [Client3]C SendsSafeMsg(C′, AKey,K) (13)

· · · proof for following BS similar to (5) · · ·

SafeNet(AKey,K) [receive Ĉ′.st′.enc′tc;

text′tc := symdec enc′tc, AKey′;

match text′tc as SKey′.n′
2.Ŝ′; ]C

SendsSafeMsg(C′, AKey,K) (14)

Precondition θ5 : Receive(C′, Ĉ′.st′.Esym[AKey′](SKey′.n′
2.Ŝ′))

· · · proof for following BS similar to (13) · · ·

θ5 ∧ SafeNet(AKey,K) [enc′cs := symenc Ĉ′.t′, SKey′;

send st′.enc′cs; ]C

SendsSafeMsg(C′, AKey,K) (15)
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· · · proof for following BS similar to (5) · · ·
SafeNet(AKey,K) [receive enc′sc;

text′sc := symdec enc′sc, SKey′;

match text′sc as t′; ]C

SendsSafeMsg(C′, AKey,K) (16)

Let, [KAS]K : [receive Ĉ′.T̂ ′.n′
1;

new AKey′;

tgt′ := symenc AKey′.Ĉ′, kt→k
T ,K ;

enc′kc := symenc AKey′.n′
1.T̂ ′, kc→k

C ,K ;

send Ĉ′.tgt′.enc′kc; ]K

Case 1 : AKey′ = AKey

[KAS]K New(K ′, AKey) ∧ SymEnc(K ′, AKey.n′
1.T̂ ′, kc→k

C ,K ) (17)

Φ2, (17) [KAS]K Ĉ′ = Ĉ ∧ K̂′ = K̂ ∧ T̂ ′ = T̂ (18)

(18) [KAS]K kc→k
C ,K ∈ K ∧ kt→k

T ,K ∈ K (19)

SAF∗, (19) SafeNet(AKey,K) [KAS]K SafeMsg(

Ĉ′.Esym[kt→k
T ,K ](AKey′.Ĉ′).Esym[kc→k

C ,K ](AKey′.n′
1.T̂ ′),

AKey,K) (20)

Case 2 : AKey′ �= AKey

NET1 SafeNet(AKey,K) [receive Ĉ′.T̂ ′.n′
1; ]K SafeMsg(Ĉ′.T̂ ′.n′

1, AKey,K)
(21)

(21) SafeNet(AKey,K) [receive Ĉ′.T̂ ′.n′
1; ]K SafeMsg(n′

1, AKey,K) (22)

SAF∗, (22) SafeNet(AKey,K) [KAS]K SafeMsg(

Ĉ′.Esym[kt→k
T ,K ](AKey′.Ĉ′).Esym[kc→k

C ,K ](AKey′.n′
1.T̂ ′)),

AKey,K) (23)

(20), (23), NET∗ SafeNet(AKey,K) [KAS]K SendsSafeMsg(K′, AKey,K) (24)
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Let, [TGS]T : [receive tgt′ .enc′ct.Ĉ
′.Ŝ′.n′

2;

text′tgt := symdec tgt′ , kt→k
T,K ;

match text′tgt as AKey′.Ĉ′;

text′ct := symdec enc′ct, AKey′;

match text′ct as Ĉ′;

new SKey′;

st′ := symenc SKey′.Ĉ′, ks→t
S,T ;

enc′tc := symenc SKey′.n′
2.Ŝ′, AKey′;

send Ĉ′.st′.enc′tc; ]T

NET1, SAF1 SafeNet(AKey,K) [receive enc′ct1.enc′ct2.Ĉ′.Ŝ′.n′
2; ]K

SafeMsg(n′
2, AKey,K) (25)

[TGS]T New(T ′, SKey′) ∧ SymEnc(T ′, SKey′.Ĉ′, ks→t
S ,T ) (26)

Φ3, (26) [TGS]T SKey′ �= AKey (27)

(25), (27), SafeNet(AKey,K) [TGS]T SafeMsg(

SAF∗ Ĉ′.Esym[ks→t
S ,T ](SKey′.Ĉ′).Esym[AKey′](SKey′.n′

2.Ŝ′), AKey,K) (28)

NET∗, (28) SafeNet(AKey,K) [TGS]T SendsSafeMsg(T ′, AKey,K) (29)

Let, [Server]S : [receive st′.enc′cs;

text′st := symdec st′, ks→t
S,T ;

match text′st as SKey′.Ĉ′;

text′cs := symdec enc′cs, SKey′;

match text′cs as Ĉ′.t′;

enc′sc := symenc t′, SKey′;

send enc′sc; ]S

NET1, SAF0 SafeNet(AKey,K) [Server]S SafeMsg(Esym[SKey′](Ĉ′.t′), AKey,K) (30)

SAF∗, (30) SafeNet(AKey,K) [Server]S SafeMsg(t′, AKey,K) ∨ SKey′ ∈ K (31)

SAF1, (31) SafeNet(AKey,K) [Server]S SafeMsg(Esym[SKey′](t′), AKey,K) (32)

NET2 SafeNet(AKey,K) [Server]S SendsSafeMsg(S′, AKey,K) (33)
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Theorem 6 Φ ∧ Hon(Ĉ, K̂, T̂ ) ⊃ SafeNet(AKey,K) (34)

POS, (34) Φ ∧ Hon(Ĉ, K̂, T̂ ) ⊃

(Has(X, AKey) ⊃ (X̂ = Ĉ ∨ X̂ = K̂ ∨ X̂ = T̂ )) (35)

Based on AUTHclient
kas , the actions in [KAS]K , AUTHclient

tgs and a few additional steps, we can infer
that:

KERBEROS � [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ Φ

KERBEROS � [KAS]K Hon(Ĉ, K̂, T̂ ) ⊃ Φ

KERBEROS � [TGS]T Hon(Ĉ, K̂, T̂ ) ⊃ Φ

Combining these with the secrecy derivation (35) we have:

KERBEROS � SECclient
akey , SECkas

akey, SECtgs
akey
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D.4. Proof of AUTHclient
tgs

This proof uses the secrecy property SECclient
akey which established the secrecy of AKey

among Ĉ, K̂ and T̂ assuming their honesty. Again, reference to equations by negative
numbers is relative to the current equation - e.g., (-1) refers to the last equation. Reference
by positive number indicates the actual number of the equation.

[Client]C SymDec(C, Esym[AKey](SKey.n2.Ŝ), AKey) (1)

(−1) [Client]C ∃X. SymEnc(X, SKey.n2.Ŝ, AKey) (2)

Inst X �→ X0, (−1) [Client]C SymEnc(X0, SKey.n2.Ŝ, AKey) (3)

ENC3, (−1) [Client]C Has(X0, AKey) (4)

SECclient
AKey , (−1) X̂0 = Ĉ ∧ X̂0 = K̂ ∧ X̂0 = T̂ (5)

HON Honest(X̂) ∧ SymEnc(X, Key′.n.Ŝ0, Key) ∧ Key �= kc→k
Z,X ⊃

∃K̂0, Ĉ0. SymDec(X, Esym[kt→k
X,K0

](Key.Ĉ0))∧

Send(X, Ĉ0.Esym[ks→t
S0,X ](Key′.Ĉ0).Esym[Key](Key′.n.Ŝ0)) (6)

Inst, (−4,−1) [Client]C SymDec(X0, Esym[kt→k
X0,K0

](AKey.Ĉ0))∧

Send(X0, Ĉ0.Esym[ks→t
S,X0

](SKey.Ĉ0).Esym[AKey](SKey.n2.Ŝ)) (7)

(−1) [Client]C ∃Y. SymEnc(Y, AKey.Ĉ0, kt→k
X0,K0

) (8)

Inst Y �→ Y0, (−1) [Client]C SymEnc(Y0, AKey.Ĉ0, kt→k
X0,K0

) (9)

ENC3, (−1) [Client]C Has(Y0, AKey) (10)

SECclient
AKey , (−1) Honest(Ŷ0) (11)

HON Honest(X̂) ∧ SymEnc(Y, Key.Ŵ , kt→k
X,Z ) ⊃ New(X, Key) (12)

(−4,−1) [Client]C New(Y0, AKey) (13)

AUTHclient
kas New(X, AKey) ∧ SymEnc(X, AKey.Ŵ , kt→k

Y,Z )

⊃ Ŷ = T̂ ∧ Ẑ = K̂ ∧ Ŵ = Ĉ (14)

(9,−2,−1) X̂0 = T̂ ∧ K̂0 = K̂ ∧ Ĉ0 = Ĉ (15)

(7,−1) [Client]C ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).

Esym[AKey](SKey.n2.Ŝ)) (16)

(−1) AUTHclient
tgs (17)
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The Engineering Challenges of

Trustworthy Computing

Greg MORRISETT

School of Engineering and Applied Sciences, Harvard University

Abstract. This article provides motivation, background, and references to a hand-

ful of topics in language-based security. Specifically, the notes describe three tech-

niques that have been proposed by researchers to address low-level errors in pro-

duction code. The techniques include software-based fault isolation, type and proof

systems for assembly code, and type-safety mechanisms for C code.

Introduction

The software that makes up our computing and communications infrastructure is full of

bugs. Some of these bugs are benign, but many times, they can lead to a critical failure or

security hole. At best, these bugs can cause a program to crash. At worst, they can allow

an attacker to gain complete control of a service or machine.

The classic example of a security-relevant bug is the buffer overrun [1], where a

programmer assumes that external input will always fit into an array of some particular,

fixed size. A malicious user will craft an input that is larger than the array, and if the code

fails to do the proper checks, then the input will overwrite the portion of memory next

to the array. When the array is allocated on the control-stack, this allows the attacker to

overwrite the values of local variables as well as meta-data, such as the return address

of the current procedure. Thus, the attacker has a way to change where the program will

“return” when the procedure completes. A very clever attacker will include a program

fragment as part of the input and cause control to transfer to this newly injected code. In

this fashion, the attacker can cause a server to execute arbitrary code and potentially take

over the operation of a machine.

Buffer overruns are not new: Back in 1988, Robert Morris, Jr. exploited a buffer

overrun in the finger daemon to launch the original Internet worm. Since then, liter-

ally thousands of viruses and worms have exploited buffer overruns to gain control of

machines. Indeed, at one point, over 50% of the security-relevant bugs in operating sys-

tems reported to the Computer Emergency Response Team involved buffer overruns. To-

day, major software vendors know about this particular vulnerability and have deployed

a number of tools to try to find, detect, or stop buffer overrun based attacks. Yet these

attacks continue to be successful. For instance, in spite of a very concerted effort by

Microsoft to stamp out buffer overruns, a few months after the Vista operating system

was released, an exploitable buffer overrun was found in the code that controls animated

cursors.
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IOS Press, 2008
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Why are buffer overruns such a problem? In part, this is due to the fact that most

of our systems software, including operating systems, network stacks, file systems,

databases, web servers and browsers, etc. are coded in low-level, error-prone languages

such as C and C++. By default, these languages fail to enforce basic constraints on the

integrity of the abstractions provided by the language. In particular, these langauges do

not check that a given array index is in bounds and for some reason, programmers just

don’t seem to be good at realizing when they need to insert the checks themselves.

Of course, the lack of array-bounds-checking is not the only bug that hackers have

successfully exploited in C/C++ code. Other examples include format string mismatches,

failure to check for error codes upon return, memory leaks, and race conditions. Some

of these problems are mitigated by using a type-safe language such as Java or C#. In

particular, type-safe languages provide basic integrity guarantees for objects, as well

as basic integrity guarantees for control-flow. These guarantees are achieved through a

combination of static and dynamic checks, as well as run-time services such as garbage

collection and stack-inspection.

But type-safe languages do not solve all of the reliability and security problems we

face. For example, most type-safe languages check array indices at run-time and signal

an error by throwing an exception. If this exception is not caught, then the program will

still crash. Thus, while an attacker cannot successfully inject code into the server through

an input bug, they can still cause a denial of service.

Another critical issue is that high-level, type-safe languages such as Java and C#

depend upon tools such as type-checkers and just-in-time compilers, as well as run-time

services such as garbage collection to enforce the type-safety guarantee. Yet those tools

and services, more often than not, are coded in C. Indeed, Sun’s Java SDK includes over

700,000 lines of C code, and thus it is difficult to claim that Java is really “type-safe”.

Yet another key engineering issue is that it is prohibitively expensive to take existing

C/C++ code and rewrite it in a safe language. A system such as Windows Vista con-

sists of roughly 50-70 million lines of C code, most of which was inherited from Win-

dows XP. Rewriting the code in any language is likely to introduce new bugs and break

compatability with existing applications and tools.

Even where it may be cost-effective to re-implement a service, there is a problem

that today’s type-safe languages do not always provide the degree of control needed for

a given application. Indeed, one of the goals of a high-level language is to abstract from

the hardware resources in order to provide portability. Yet, in some settings, such as

device drivers or embedded systems, we need direct access and control over machine

resources. One of the reasons that C has remained popular for these settings is that it

strikes a relatively good balance between portability and control.

Finally, type-safety alone does not guarantee that programs are safe from failures or

attacks. There are many instances of bugs that occur at the level of libraries or abstrac-

tions above the level of a given language. For example, an SQL injection attack is not all

that different from a buffer overrun: The programmer fails to check that input from an

untrusted source respects some crucial property. Yet SQL injection attacks can happen

just easily in a type-safe language as in C.

Of course, there is no way to guarantee the absence of all bugs in a program. But

we can do a much better job of carefully categorizing common bugs and failures, and

designing both languages and tools to catch or (better yet) prevent these problems during

development. There are many challenges involved in this enterprise, from developing ap-
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propriate securty policies, to engineering practical solutions that are applicable to current

systems.

In what follows, we will discuss a handful of representative techniques that have

emerged from the programming language and compiler communities. Some, such as

Software-Based Fault Isolation (SFI), are extremely practical and can be applied to just

about any existing software, yet the security guarantees provided by the mechanism are

relatively weak. Other mechansisms, such as Proof-Carrying Code, can enforce arbitary

security policies in principle, but depend upon a radical change in the way we develop

software.

1. Software-Based Isolation

One of the key reasons that operating systems crash is due to bugs in third-party device

drivers. Good security design suggests that drivers and other services should be placed in

their own address space so that they are isolated from the kernel. Then a bug in a driver,

such as a buffer overrun, will not be able to corrupt the state of the kernel. Perhaps the

device will stop functioning, but at least the kernel can continue to make progress, and

ideally take some corrective actions (e.g., re-initializing the driver).

Similarly, one of the many reasons a web server crashes is due to CGI scripts or

servlets that malfunction and corrupt the state of the server. Again, good security design

suggests that these services be run in a separate address space in order to isolate failures.

So why are drivers and other kernel modules run in the same domain as the kernel?

Why are CGI scripts and servlets run within the same domain as a web-server? The

answer is performance. If we put a driver in a separate address space, then we must cross

a domain boundary (i.e., perform a context switch) each time the kernel and driver must

communicate. Furthermore, data must be copied to and from the kernel, and of course,

many DMA devices do not support virtualized access. For a video or even high-speed

network driver, these overheads can be prohibitive. Indeed, the drivers are often carefully

tuned to avoid any copies at all.

Similarly, for a web-server, the cost of forking an entire process just to perform a

simple script action can cause a machine to thrash under heavy load. In both cases, the

kernel and the web-server, it has become necessary to run extensions in the context of a

service purely for performance reasons. Yet, those extensions, more often than not, have

bugs that can lead to failures or security holes.

Thus, a central challenge for security researchers is to provide some form of domain

isolation without the overheads of traditional operating system processes, including the

costs of starting a new process, crossing process boundaries, and copying data to and

from processes.

One way to achieve some degree of isolation is to rely upon a type-safe language,

such as Java. The type-safety guarantee ought to ensure that server state is appropriately

protected from buggy extensions, as long as the state is appropriately encapsulated in

interfaces. However, using a high-level language like Java can come with its own over-

heads (e.g., pauses due to garbage collection) that may make this choice unattractive.

Furthermore, Java does not provide the low-level control over data layout and hardware

resources needed to write device drivers. Especially in the context of kernels and embed-

ded systems, we need an isolation solution that can work for essentially arbitary machine

code.
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A naive approach is to have the server interpret any extension code. Then, within the

interpreter, the server can check to ensure that the extension is only reading and writing

addresses which it should be granted access, and jumping only to appropriate locations

within the kernel. Of course, interpreting machine code adds a tremendous time overhead

(roughly 10-100x) so this approach is not really suitable.

1.1. Berkeley SFI

There is an approach suggested by Wahbe et al. [17] called software-based fault isolation
or SFI that can provide isolation for (almost) arbitrary machine code and with relatively

low overhead. The basic idea is to read in the code and insert additional checks each time

an address is read or written to make sure the effective address lies within the (logical)

domain of the extension. In other words, we re-write the machine code so that it becomes

“self-checking” with respect to the memory isolation property. This is an instance of a

more general notion of an in-lined reference monitor [13] which in principle, can enforce

arbitrary safety policies, not just memory isolation. Alternatively, we can think of SFI

as what you get when you partially evaluate the machine-code interpreter that has been

augmented with additional checks.

The central challenge with SFI is that it is not sufficient to insert checks upon reads

and writes; we must also adjust jumps so that they take into account the inserted instruc-

tions. For jumps with statically known destinations, doing this adjustment is not diffi-

cult. For computed jumps (jumps through registers), the situation is a bit more tricky. For

first-order procedural code (i.e., C code that does not use function pointers), computed

jumps are used for two purposes: (1) when a procedure returns to its caller, it jumps to

a supplied return address, and (2) some switch statements are compiled into a computed

jump to a destination loaded from an array of addresses—a “jump-table”.

On most architectures, we do not have to worry about adjusting return addresses

because when the procedure is called, the return address is constructed relative to the

point of the call. For switch statements, the rewriter must somehow be able to identify

jump tables and adjust the locations. Similarly, for higher-order code involving function

pointers, closures, or object vtables, the rewriter needs to know what are the possible

entry points so that adjustments can be made. All of these issues are simplified if the

rewriter works at the assembly level, instead of the machine code level, where addressing

is made explicit through the use of symbolic labels.

Nevertheless, just because the compiler adjusts jump targets at compile time, there is

no guarantee that a bug in the extension will not cause a jump target to become corrupted.

For example, if an extension has a buffer overrun, then the return address of a function

might be replaced with a new value that causes control to transfer past a check. Thus,

just as we must check that all reads and writes are to appropriate locations, we must

also check that all jumps are to code destinations within the logical address space of the

extension. Furthermore, if we wish to stop code injection attacks, then we should not

allow the code of the extension to be overwritten.

The overhead of doing a check on every read, write, and computed jump can still

be considerable. If we only check writes and jumps, the overheads can be reduced con-

siderably while still maintaining server integrity, but at the price of some confidentiality.

Finally, instead of checking that each address we write or jump to is in the logical do-

main of the extension, we can use some simple tricks to force this property without using
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conditionals. In particular, if we align the code and data segments of the extension to a

power-of-two address, then we can simply use some bit-masking operations on an ad-

dress to force it to lie within the appropriate segment. The advantage is that bit-masking

operations are usually much cheaper than conditionals on a pipelined architecture. The

disadvantage is when an ill-behaved extension attempts to write to an address outside of

its domain, it will simply be forced to clobber some arbitrary address in its domain in-

stead of halting with an error message. This style of isolation, where the a faulty program

does not necessarily halt, but rather, is forced to execute something else that satisfies the

security policy is known as “sandboxing”.

1.2. SFI on CISC Machines

The original work on SFI was designed for a RISC architecture (the MIPS) that had a rel-

atively large number of registers. The large number of registers made it easy to dedicate

a few registers to the sandboxing task (one for writing, one for jumping, and a couple

of scratch registers for computing effective addresses.) In particular, the rewriter kept an

invariant that at each program point, the dedicated write and jump registers always held

values that lay within the data and code segment ranges respectively. Thus, even if the

code manages to jump past a bit-masking operation, it will still only be able to write

a value in the data segment of the extension, and only jump to an address in the code

segment of the extension. With all of these tricks in place, the overhead of the checks

could be reduced to a few percent over the unchecked code.

Unfortunately, many of the tricks used in the original SFI work do not apply to CISC

architectures such as the Intel x86. For one thing, the x86 only has a small number of

registers, so we cannot afford to dedicate many registers to the sandboxing task. Another

issue is that instructions on the x86 are of many different sizes, and it is possible to

get different instruction “parses” out of a code segment depending upon the address

with which you start. Any sandboxing technique must make sure that, in the presence of

arbitrary jumps into the code segment, no checks or invariants will be broken.

To address these concerns, McCamant and Morrisett [8] suggested a solution

wherein jumps were constrained via bit-masking to sixteen-byte aligned addresses. The

rewriter would then ensure that, a sequence of instructions would never span more than

sixteen bytes by inserting appropriate no-ops. This ensured that there was at most one

“parse” to the instruction sequence. In addition, sixteen bytes was big enough that the

sandboxing instructions for a write or jump could be packed into the same “atomic” se-

quence. Since jumps were forced via masking to sixteen-byte aligned addresses, this en-

sured that the masking operations could not be bypassed. In turn, this made it possible

to avoid the use of dedicated registers for writing and jumping. The overheads for the

padding and checks lead to an average overhead of about 20%, which is relatively small

when compared to other mechanisms.

Another difference between the original SFI work and that of McCamant and Mor-

risett is that the latter included a separate, small checker that could be run to verify

that the rewritten code respected the invariants necessary to ensure memory and control-

flow isolation. Thus, the rewriter (or compiler) did not have to be trusted. Rather, only

the invariant checker needed to be correct. Finally, McCamant modeled a subset of the

x86 using the ALCL2 proof development environment, and formally (i.e., mechanically)

proved that the invariants enforced by the checker were sufficient to ensure the desired

security policy.
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It is important to note that the SFI sandboxing policy provides only relatively weak

guarantees, and like operating system processes, the abstractions may not be a good

match to the application at hand. For example, SFI is not a good solution when the server

makes a call into an extension and assumes that the extension will always return within

a reasonable time. As another example, though a buffer overrun in an extension will

not lead to a code injection attack, it can still lead to a “jump-to-libc” attack where the

extension code transfers control to some existing library routine within the extension’s

code space.

1.3. CFI and XFI

Abadi et al. extended the ideas behind SFI to address the “jump-to-libc” concern and

provide a much better security policy thatn basic SFI [4]. In particular, they formulated a

notion of control-flow integrity and a practical and efficient technique for achieving it. In

their setting, they assume that extensions come with a non-deterministic finite automata

(NFA) where the states represent instructions and the edges represent potential control-

flow transfers. The SFI control-flow policy is a special case where every instruction is the

potential target of each computed jump. In practice, a compiler can produce a much more

refined NFA that reasonably constrains the execution paths of the program. In particular,

within a procedure, the NFA will correspond to the control-flow graph of the procedure.

Across procedures, the NFA can only capture the fact that control might flow into

the procedure and then back out to any one of the call sites. For example, if a procedure

foo is called by both bar and baz, then the NFA might specify that upon return from

foo, control can only transfer to either the call site of foo within bar or within baz.

This is enough to prevent a “jump-to-libc” attack from being successful, for a change to

the return address will not cause control to transfer to an arbitrary procedure.

The CFI policy is enforced by inserting a bit pattern before each potential jump

target. A unique bit pattern is chosen for the set of potential targets for a given jump.

In the example above, the return sites within both bar and baz would share a bit-

pattern since either one could be the target of foo’s return. In addition, code is inserted

before each computed jump to check that the intended destination respects the NFA

policy by examining the bit pattern right before the destination. Assuming that the code

segment cannot be mutated, and that the bit patterns are chosen at random, then with

high probability, an atacker cannot cause control to be transferred outside the set of paths

represented by the NFA.

A compelling aspect of the CFI work is that the authors constructed a (paper) model

for a toy assembly language and proved that the approach ensured control-flow integrity

under an extremely strong attacker model. In particular, they modeled the attacker as

performing arbitrary (possibly concurrent) changes to the data store in memory. Today, it

seems feasible to construct an accurate model and proof for a realistic architecture (e.g.,

the x86) within a mechanized proof development environment such as Coq, NuPRL,

Isabelle/HOL or ACL2.

In later work, Erlingsson et al. extended the basic CFI framework and integrated

finer grain protection mechanisms for data access and control [7]. They are able to pro-

vide this finer policy in part because they can amortize the cost of access checks across

basic blocks and larger units by leveraging the enforced control-flow graph. However,

unlike SFI, this extended CFI framework (known as XFI), demands relatively close co-
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operation with the compiler in the sense that it assumes a particular calling convention

and treatment of the control stack. While this assumption meets most systems code writ-

ten in C, there are still some routines (e.g., longjmp) that are not compatible with the

underlying ideas. Furthermore, when the data are organized into relatively large, coarse-

grained objects, XFI (and SFI) have small overheads (on the order of 0-10%). But for

fine-grained objects (e.g., linked lists), the overheads become much greater (e.g., 60% or

more).

In summary the idea of rewriting code to enforce a particular isolation policy is a

powerful one: We can enforce both memory and control-flow isolation, and even stronger

policies such as CFI’s with relatively low overhead on extremely low-level code (essen-

tially assembly language). On the other hand, the security guarantees, while important,

are still relatively weak. Furthermore, these techniques do not work as well when we

have fine-grained policies dictating access control to data.

2. TAL and PCC

Strongly-typed programming languages, such as ML, Scheme, and Java provide a strong

form of memory isolation and control-flow integrity. For example, in Java, reads and

writes to memory must be done via object or array references. Such a reference provides

a limited capability for accessing memory according to the reference type. Similarly, the

destination of a “computed jump” is entirely limited by the type system in the sense that

we can only pass control to a procedure or method when it is “of the right type”.

But as argued in the introduction, high-level languages are unsuitable for certain

programming tasks where control is needed over machine resources, data layout, and

control. Furthermore, the run-time systems of today’s high-level languages, which in-

cludes support for services such as garbage collection, are typically written in low-level

languages such as C. Thus, a central research question over the past ten years has been

how to adapt the ideas behind type and proof systems for high-level languages to the

setting of low-level (i.e., machine) code.

Restricted versions of lambda calculi, such as continuation-passing style (CPS), cor-

respond quite closely to the low-level intermediate languages used by modern compil-

ers (e.g., static-single assignment or SSA.) Thus, a good starting point is to study and

adapt type systems for these restricted lambda calculi to the setting of machine code.

This was the approach suggested by Morrisett et al. [10] where they showed how to sys-

tematically compile a simple subset of an ML-like language to MIPS assembly code in

a type-preserving fashion. With this approach, they justified a type system for the MIPS

assembly language (TAL) that was based upon a straightforward adaptation of typed

CPS.

At about the same time that TAL was developed, Necula and Lee proposed the idea

of proof-carrying code (PCC) [11]. They observed that in principle, one could impose

an arbitrary security policy on untrusted machine code by simply requiring that the code

come equipped with an explicit, machine-checkable proof that the code would respect

the policy when executed. In the original work, they developed a simple packet filter

program (to be executed in the context of a kernel) and constructed a proof that the

resulting code respected a simple memory and control-flow isolation property. The proof

was based upon an axiomatic treatment of the machine code instructions. Utilizing the
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Curry-Howard isomorphism, the proof was represented as a dependently-typed LF term,

and thus proof checking could be reduced to type-checking.

Of course, to make PCC scalable, we need some largely automated way to con-

struct proofs that code respects a given policy. If we limit the policy to some form of

type-safety, in the style of TAL, then the proofs can be built automatically via a type-

preserving compiler. This was the approach that Necula and Lee (among others) took in

their Special-J compiler [5].

In many respects, the logic-based formulation of PCC was much better than the

original formulation of TAL. In particular, certain conditions in TAL, such as checking

that an array index was in bounds, weren’t easily captured by a conventional type system.

Later versions of TAL included limited support for dependent types [16,6] to address this

problem, but nevertheless, the approach is less general than PCC since many provably

“safe” instruction sequences cannot be validated by the type system.

On the other hand, there are subtleties in providing a modular axiomatic seman-

tics and proof system for machine code, in large part because of the issue of computed

jumps. Indeed, a modular and relatively complete treatment of axiomatic semantics in

the presence of higher-order functions and state is a central research topic these days.

Furthermore, there are a number of interesting semantic issues when one attempts to

give a logical interpretation of conventional types at the machine level. In particular, the

technical details involving state and first-class code pointers are amazingly tricky to get

right. Many of these issues were addressed by Shao in his work on verified assembly

language [14] as well as Appel’s work on so-called “foundational” PCC [2].

A key open question for researchers is how to really tap the potential of proof-

carrying code. If we move beyond simple isolation or type-safety policies, how do we

get proofs? Presumably, given a high-level language with a suitable program logic or

advanced type system that can capture relevant aspects of policies, a “proof-preserving”

compiler can take over and yield a proof that the resulting machine code is respects the

given policy.

3. Towards Safer C/C++ Code

The C and C++ programming languages are absolutely horrible when it comes to secu-

rity. But, as argued in the introduction, they are nonetheless the languages of choice when

it comes to building systems software. And porting existing applications and services

from C/C++ to a new language is often prohibitively expensive.

Recently, software companies have started using static analysis tools to try to find

and detect security-relevant bugs in C and C++ code. For example, Microsoft uses a tool

called Prefast to search for common coding problems including buffer overruns, failure to

check return codes, etc. Because Microsoft has been hurt so badly from security-related

errors, developers are now required to run Prefast on code before it can be checked in

to a repository. Companies such as Coverity and Fortify sell tools similar to Prefast that

also look for common bugs in C and C++ code. These tools are used by third parties such

as banks, investment houses, and the military where security issues are a prime concern.

A key advantage of all of these tools is that they work on existing C/C++ code with-

out modification, and unlike conventional testing, can cover all of the paths in the code.

However, none of these tools offers a guarantee that they will enforce some isolation pol-
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icy such as memory-safety much less type-safety. Indeed, the cursor animation overflow

bug in Vista passed through Prefast without warning.

They key reason why these tools are unsound is due to the lack of structure and

enforced abstraction in C code. Consequently, any sound static analysis for arbitary C

code must be extremely precise and essentially reason at the level of the machine in order

to avoid generating false positives (i.e., signalling a warning when there is no problem.)

False positives are a big concern for these tools because developers are unwilling to wade

through thousands of potential bug reports just to find the one or two that can actually be

exploited by a hacker. And of course, to achieve high precision, one needs sophisticated,

whole-program analysis in order to account for the contexts in which a given procedure

might run. For instance, a procedure such as memcpy that copies the contents of one

buffer to another needs to know the sizes of the buffers relative to one another in order to

determine if there is a potential overflow. In turn, this demands reasoning about memcpy
in a context-sensitive fashion (i.e., at each call site.)

Unfortunately, it is difficult to scale precise, whole-program, context and path-

sensitive analyses to the multi-million line applications that Microsoft develops. Thus,

their Prefast tool uses a modular dataflow analysis that works in a context-insensitive and

largely path-insensitive fashion. To be sound, such an analysis would signal far too many

false positives to be effective. Consequently, t the analysis makes optimistic assumptions

regarding inputs to procedures which may in fact turn out to be invalid. To help mitigate

this problem, Microsoft has forced developers to annotate procedure interfaces with a

limited form of pre- and post-conditions that capture some of the assumptions.

In my opinion, these bug-finding tools are extremely effective in spite of the fact

that they are unsound. They strike an engineering compromise between usability and

soundness. Nevertheless, one can expect that hackers will simply adjust their tactics to

look for code that violates the optimistic assumptions made by the tools when searching

for bugs.

3.1. Other Tricks for Partially Securing C

Microsoft utilizes a few other tricks to try to minimize the potential damage that an

attacker can do when a bug slips through. This kind of “defense in depth” is another

key security principle that can help to minimize the damage an attacker might otherwise

achieve. For example, they have modified the compiler so that it inserts a random value,

called a “cookie”, between all stack-allocated character buffers and the return address.

Before returning from a procedure, the code checks to make sure the cookie has not been

overwritten. Thus, a buffer overrun on a stack-allocated character buffer will be trapped,

assuming the attacker cannot guess the value of the cookie. This approach is quite similar

to StackGuard [3] which has been available for some time.

Other tricks that Microsoft uses to mitigate attacks include address space random-

ization (ASR) and on newer x86 implementations that support it, no-execute stack seg-

ments. The no-execute stack segment, which is enforced by the virtual memory manage-

ment unit (MMU), ensures that control cannot be transferred to an address within the

segment of memory that holds the control stack. Thus, a buffer overrun that attempts to

inject code by overwriting a stack buffer will be trapped by the MMU. ASR helps to stop

jump-to-libc attacks by modifying the loader to place libraries in random locations in

memory. Thus, an attacker must guess where to jump to when they overflow a buffer.
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While all of these mechanisms help to stop potential attacks, they are nonetheless

incomplete, even for buffer overruns. For example, if input overruns a heap-allocated

buffer, then an attacker can still launch a code-injection attack1. Because only newer

machines support hardware-based no-execute stack segments, and because Microsoft

only inserts cookies for procedures that manipulate character buffers, even simple stack-

based attacks are still easily possible. And finally, because they only use a small number

of different locations for loading libraries, a worm with a jump-to-libc attack will succeed

a significant number of times.

Lest you think that I am picking on Microsoft, I note that their practices are actually

well beyond those used by most of the industry. In short, industry still only has stop-gap

measures that plug some of the holes, and you can bet that attackers will quickly shift to

exploit those holes that remain.

3.2. Going All the Way: Ccured and Cyclone

At least two research projects, Ccured [12] and Cyclone [9], have tried to provide a

strong and sound isolation guarantee for C code. To ensure soundness, both systems rely

upon inserted checks and meta-data. In particular, both systems have the notion of a

“fat pointer” which, unlike a normal C pointer, includes extra information that makes it

possible to check whether an offset, relative to that pointer, lies within the boundary of

an object.

The emphasis in the Ccured system is on making it easy to port legacy C code to

the new system. In particular, Ccured requires minimal changes and annotation from the

programmer. It performs a whole-program, type-based analysis to determine whether or

not given operations will be safe. If so, then checks can be omitted. Otherwise, not only

must the compiler insert a check (e.g., for an array bounds), but it must also constrain

the pointer used to contain appropriate meta-data so that these properties can be checked

at run-time. In practice, the compiler is able to eliminate almost all run-time checks and

results in code that has relatively low overheads, yet offers a much stronger memory

isolation guarantee and control-flow isolation guarantee than SFI or even XFI.

Ccured does require a few changes to the C code. For instance, since the sizes of

objects change, explicit allocations via malloc must be adjusted. As another example,

to avoid an unsoundness with union values, the programmer must re-work the code to

avoid using the union (e.g., by using a struct instead.)

Because the meta-data inserted by the compiler renders changes to data representa-

tions, care must be taken when crossing from “cured” code yinto native C code. In partic-

ular, the meta-data must be stripped off on input and somehow added back upon return,

or else the data must be marshaled across the interface, not unlike foreign function inter-

faces for other high-level languages. The addition of meta-data can also make it difficult

to interface to memory-mapped devices, making the approach somewhat difficult to use

in the context of a driver.

Finally, to preserve type-safety, Ccured relies upon a conservative garbage collector

to reclaim all heap-allocated memory objects. The issue is that if a programmer manually

deallocates an object, then the type system cannot ensure that other references to the ob-

ject will not be used in the future. Thus, the data cannot truly be recycled to hold an ob-

1To be fair, Microsoft also employs some infrequent integrity checks on the heap to try to avoid this problem,

but the checks are only run infrequently.
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ject of an alternative type. Of course, the need for a garbage collector also makes Ccured

difficult to use in contexts such as a real-time kernel due to the potential for pauses. The

garbage collector also imposes a relatively healthy space overhead. And finally, certain

run-time services, such as garbage collection itself, cannot be easily written in Ccured.

Cyclone takes a different approach to achieving soundness than Ccured. In particu-

lar, programmers must make extensive changes to the code by adding additional typing

annotations that refine the types of objects. For example, Cyclone makes a distinction

between fat pointers and normal pointers. Only fat pointers can be used with arbitrary

pointer arithmetic, as only fat pointers provide the necessary meta-data to perform the

needed run-time checks. Thus, whereas Ccured infers where fat and thin pointers are

needed, Cyclone requires that programmers make the choice explicit.

The disadvantage of the Cyclone approach is clear: it is not longer easy to apply the

compiler to existing C code, but rather, programmers must make extensive changes. The

advantage of explicit annotations is that type-checking becomes modular (i.e., does not

require the whole program) and programmers are made aware of data representations.

For instance, they can be assured that thin pointers really will match the native pointer

representation, which makes interfacing with legacy code and devices a bit simpler.

Cyclone also includes support for some manual memory management: it incor-

porates a region-based, type-and-effect system, derived from the work of Tofte and

Talpin [15], that allows programmers to allocate and deallocate collections of objects.

The type system tracks which collections are live at each program point, and uses the

effect system in conjunction with region and effect polymorphism to keep type-checking

modular.

The original region type system of Tofte and Talpin only supported lexically-scoped

regions. Thus computations that were “tail-recursive” in a region (such as CPS code or

event-processing code) could only deallocate regions at the end of the program, leading

to massive space leaks. Cyclone worked around this problem by incorporating a more

general form of regions protected by linear capabilities. The resulting system was strong

enough that one could code a copying garbage collector safely in the language without

needing to rely upon a meta-level collector.

In practice, the extra annotations needed on Cyclone code and the region-based type-

and-effect system resulted in a complicated language, where porting existing C code of

any substantial size was not very practical. In contrast, Ccured could be used to port

relatively large applicaitons. On the other hand, for new system code or code intended

for real-time settings or where control over resources was critical, Cyclone is a relatively

good fit.
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Reflecting Quantifier Elimination for

Linear Arithmetic
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Abstract. This paper formalizes and verifies quantifier elimination procedures for

dense linear orders and for real and integer linear arithmetic in the theorem prover

Isabelle/HOL. It is a reflective formalization because it can be applied to HOL for-

mulae themselves. In particular we obtain verified executable decision procedures

for linear arithmetic. The formalization for the various theories is modularized with

the help of locales, a structuring facility in Isabelle.

1. Introduction

This research is about adding decision procedures to theorem provers in a reliable man-

ner, i.e. without having to trust the decision procedure. The traditional LCF approach [16]

involves programming the decision procedure in the implementation language of the the-

orem prover using the basic inference rules of the logic. This is safe but tricky to write

and maintain. There are two alternatives: checking externally generated certificates (for

an example see [22]), and reflection, i.e. the formalization and verification of the deci-

sion procedure in the logic itself. The focus of this paper is reflection, partly because the

theories we consider do not lend themselves to certificate checking: there are no short

certificates, i.e. checking the certificates is as expensive as generating them in the first

place.

The mathematical subject matter of the paper is quantifier elimination, i.e. the pro-

cess of computing a quantifier-free equivalent of a quantified formula, yielding in partic-

ular a decision procedure for closed formulae. Many numeric theories enjoy quantifier

elimination. The most celebrated instance is quantifier elimination for real closed fields,

i.e. (R, +, ∗), due to Tarski [31]. We reflect quantifier elimination procedures for dense

linear orders, and linear real and integer arithmetic.

Everything has been formalized and verified in the logic HOL (higher-order logic)

of the theorem prover Isabelle [27] and is available online in the Archive of Formal

Proofs at afp.sf.net. In particular we have made use of locales, a structuring facility akin

to parameterized theories. Locales are a fairly recent addition to Isabelle [1,2] and this

article demonstrates locales in a serious application.

In summary, the article makes the following contributions:

1. A detailed exposition of a formalization of quantifier elimination for linear real

and integer arithmetics in HOL.

2. Reflective implementations of quantifier elimination.
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3. A modular development based on locales.

Note that our presentation aims for simplicity and minimality of concepts, not for

practical efficiency. For example, we restrict to as few atomic propositions as possible,

typically by having only one of ≤ and <. In practice one would avoid this as it tends to

lead to inefficiencies due to coding, e.g. if s = t is replaced by s ≤ t ∧ t ≤ s. Neverthe-

less our presentation provides a convenient starting point for more efficient implementa-

tions, as demonstrated elsewhere [8], where the reflective implementation is two orders

of magnitude faster than the LCF approach.

The core of the article is structured as follows: We start with an abstract generic

account of logical formulae (§4); quantifier elimination is given as a locale parametric

in the specific logical theory of interest. This locale is instantiated four times: for dense

linear orders (§5), for linear real arithmetic (Fourier-Motzkin elimination in §6.2 and

Ferrante and Rackoff’s procedure in §6.4), and for linear integer arithmetic (§7).

2. Reflection, Informally

Reflection means to perform a proof step by computation inside the logic rather than

inside some external programming language (ML). Inside the logic it is not possible to

write functions by pattern matching over the syntax of formulae because two syntacti-

cally distinct formulae may be logically equivalent. Hence the relevant fragment of for-

mulae must be represented (reflected) inside the logic as a datatype. We call it rep, the

representation.

The two levels of formulae must be connected by two functions:

I (a HOL function) maps an element of rep to the formula it represents, and

reify (an ML function) maps a formula to its representation.

The two functions should be inverses of each other. Informally I(reify(P )) = P should

hold. More precisely, taking the ML representation of a formula P and applying reify to

it yields an ML representation of a term p of type rep such that I(p) = P holds.

Typically, the formalized proof step is some equivalence P ↔ P ′ where P is given

and P ′ is some simplified version of P (e.g. the elimination of quantifiers). This transfor-

mation is now expressed as a recursive function simp of type rep → rep. We prove (typi-

cally by induction on rep) that simp preserves the interpretation: I(simp(p))↔ I(p). To

apply this theorem to a given formula P we proceed as follows:

1. Create a rep-term p from P using reify. This reification step must be performed

in ML.

2. Prove P ↔ I(p). Usually this is trivial by rewriting with the definition of I .

3. Instantiate simp’s correctness theorem I(simp(p))↔ I(p), compute the result p′

of evaluating simp(p) and obtain the theorem I(p′) ↔ I(p) (and by symmetry

I(p) ↔ I(p′)). This is the evaluation step.

4. Simplify I(p′), again by rewriting with the definition of I , yielding a theorem

I(p′) ↔ P ′

The final theorem P ↔ P ′ holds by transitivity.

The evaluation step is crucial for efficiency as all other steps are typically linear-

time. We employ Isabelle’s recent code generator [18] for compiling and evaluating
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simp(p) in ML. Other approaches include evaluation via LISP (Boyer and Moore’s

“metafunctions” [5], the mother of all reflections) and the use of an internal λ-calculus

evaluator [17] as in Coq.

There is also the practical issue of where reify comes from. In general, the imple-

mentor of the reflected proof procedure must program it in ML and link it into the above

chain of deductions. But because reify must be the inverse of I , it is often possible to au-

tomate this step. Isabelle implements a sufficiently general inversion scheme for I such

that for all of the examples in this paper, reify is performed automatically.

In principle the reader may now forget about the details of reflection and merely keep

in mind that all the algorithms in this paper, although expressed on some representation

of formulae, carry over to HOL formulae automatically.

3. Basic Notation

HOL conforms largely to everyday mathematical notation. This section introduces fur-

ther non-standard notation and in particular a few basic data types with their primitive

operations.

The basic types of truth values, natural numbers, integers and reals are called bool,
nat, int and real. The space of total functions is denoted by⇒. Type variables are denoted

by α, β, etc. The notation t::τ means that term t has type τ .

Sets over type α, type α set, follow the usual mathematical convention.

Lists over type α, type α list, come with the empty list [], the infix constructor ·, the

infix @ that appends two lists, and the conversion function set from lists to sets. Variable

names ending in s usually stand for lists. In addition to the standard functions map and

filter, Isabelle/HOL also supports Haskell-style list comprehension notation, with minor

differences: instead of [e | x <- xs, ...] we write [e. x ← xs, . . .], and [x←xs.
. . .] is short for [x. x←xs, . . .].

Finally note that = on type bool means “iff”.

Although all our algorithms and formal theorems conform to HOL syntax, we fre-

quently switch to everyday mathematical notation during informal explanations.

4. Logic

The data type of formulae is defined in the usual manner:

α fm = TrueF | FalseF | Atom α
| And (α fm) (α fm)
| Or (α fm) (α fm)
| Neg (α fm)
| ExQ (α fm)

This representation provides the customary logical operators but leaves the type of

atoms open by making it a parameter α. Variables are represented by de Bruijn in-

dices: quantifiers do not explicitly mention the name of the variable being bound be-

cause that is implicit. For example, ExQ (ExQ . . . 0 . . . 1 . . .) represents a formula

∃x1.∃x0. . . . x0 . . . x1 . . .. Note that the only place where variables can appear is inside
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atoms. The only distinction between free and bound variables is that the index of a free

variable is larger than the number of enclosing binders.

Further logical operators can be introduced as abbreviations, in particular AllQ ϕ ≡
Neg (ExQ (Neg ϕ)).

4.1. Auxiliary Functions

The set of atoms is computed by the (easy to define) function

atoms :: α fm⇒ α set.

Conjunctions and disjunctions of lists of formulae are created by the functions

list-conj :: α fm list ⇒ α fm
list-disj :: α fm list ⇒ α fm

Their definition is straightforward:

list-conj [ϕ1,. . .,ϕn] = and ϕ1 (and . . . ϕn)

where and is an intelligent version of And:

and FalseF ϕ = FalseF
and ϕ FalseF = FalseF
and TrueF ϕ = ϕ
and ϕ TrueF = ϕ
and ϕ1 ϕ2 = And ϕ1 ϕ2

Similar for list-disj and or, an optimized version of Or. For convenience the following

abbreviation is introduced:

Disj us f ≡ list-disj (map f us)

More interesting is the conversion to DNF:

dnf :: α fm⇒ α list list

dnf TrueF = [[]]
dnf FalseF = []
dnf (Atom ϕ) = [[ϕ]]
dnf (Or ϕ1 ϕ2) = dnf ϕ1 @ dnf ϕ2

dnf (And ϕ1 ϕ2) = [d1 @ d2. d1 ← dnf ϕ1, d2 ← dnf ϕ2]

The resulting list of lists represents the disjunction of conjunctions of atoms. Working

with lists rather than type fm has the advantage of a well-developed library and notation.

Note that dnf assumes that its argument contains neither quantifiers nor negations.

Most of our work will be concerned with quantifier-free formulae where all negations

have not just been pushed right in front of atoms but actually into them. This is easy

for linear orders because ¬(x < y) is equivalent with y ≤ x. This conversion will be

described later on because it depends on the type of atoms. The (easy to define) predicates

qfree :: α fm⇒ bool
nqfree :: α fm⇒ bool
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check whether their argument is free of quantifiers (qfree), and free of negations and

quantifiers (nqfree).

There is also a mapping functional

mapfm :: (α⇒ β)⇒ α fm⇒ β fm

which recurses down a formula, e.g.

mapfm h (And ϕ1 ϕ2) = And (mapfm h ϕ1) (mapfm h ϕ2)

until it finds an atom: mapfm h (Atom a) = Atom (h a).

4.2. Interpretation

The interpretation or semantics of a fm is defined via the obvious homomorphic mapping

to an HOL formula: And becomes ∧, Or becomes ∨, etc. The interpretation of atoms is a

parameter of this mapping. Atoms may refer to variables and are thus interpreted w.r.t. a

valuation. Since variables are represented as natural numbers, the valuation is naturally

represented as a list: variable i refers to the ith entry in the list (starting with 0). This

leads to the following interpretation function:

interpret :: (α⇒ β list ⇒ bool)⇒ α fm⇒ β list ⇒ bool

interpret h TrueF xs = True
interpret h FalseF xs = False
interpret h (Atom a) xs = h a xs
interpret h (And ϕ1 ϕ2) xs = (interpret h ϕ1 xs ∧ interpret h ϕ2 xs)
interpret h (Or ϕ1 ϕ2) xs = (interpret h ϕ1 xs ∨ interpret h ϕ2 xs)
interpret h (Neg ϕ) xs = (¬ interpret h ϕ xs)
interpret h (ExQ ϕ) xs = (∃ x. interpret h ϕ (x·xs))

In the equation for ExQ the value of the bound variable x is added at the front of the

valuation. De Bruijn indexing ensures that in the body 0 refers to x and i + 1 refers to

bound variable i further up.

4.3. Atoms

Atoms are more than a type parameter α. They come with an interpretation (their se-

mantics), and a few other specific functions. These functions are also parameters of the

generic part of quantifier elimination. Thus the further development will be like a module

parameterized with the type of atoms and some functions on atoms. These parameters

will be instantiated later on when applying the framework to various linear arithmetics.

In Isabelle this parameterization is achieved by means of a locale [1], a named con-

text of types, functions and assumptions about them. We call this context ATOM. It pro-

vides the following functions

Ia :: α⇒ β list ⇒ bool
aneg :: α⇒ α fm
depends0 :: α⇒ bool
decr :: α⇒ α
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with the following intended meaning:

Ia a xs is the interpretation of atom a w.r.t. valuation xs, where variable i (i :: nat!) is

assigned the ith element of xs.

aneg negates an atom. It returns a formula which should be free of negations. This is

strictly for convenience: it means we can eliminate all negations from a formula.

In the worst case we would have to introduce negated versions of all atoms, but in

the case of linear orders this is not necessary because we can turn, for example,

¬(x < y) into (y < x) ∨ (y = x).
depends0 a checks if atom a contains (depends on) variable 0, and decr a decrements

every variable in a by 1.

Within context ATOM we introduce the abbreviation I ≡ interpret Ia. The assump-

tions on the parameters of ATOM can now be stated quite succinctly:

I (aneg a) xs = (¬ Ia a xs) nqfree (aneg a)
¬ depends0 a =⇒ Ia a (x·xs) = Ia (decr a) xs

Function aneg must return a quantifier and negation-free formula whose interpretation

is the negation of the input. And when interpreting an atom not containing variable 0

we can drop the head of the valuation and decrement the variables without changing the

interpretation.

These assumptions must be discharged when the locale is instantiated. We do not

show this in the text because the proofs are straightforward in all cases.

The negation normal form (NNF) of a formula is defined in the customary manner

by pushing negations inwards. We show only a few representative equations:

nnf :: α fm⇒ α fm

nnf (Neg (Atom a)) = aneg a
nnf (Or ϕ1 ϕ2) = Or (nnf ϕ1) (nnf ϕ2)
nnf (Neg (Or ϕ1 ϕ2)) = And (nnf (Neg ϕ1)) (nnf (Neg ϕ2))
nnf (Neg (And ϕ1 ϕ2)) = Or (nnf (Neg ϕ1)) (nnf (Neg ϕ2))

The first equation differs from the usual definition and gets rid of negations altogether —

see the explanation of aneg above.

The fact that nnf preserves interpretations is a trivial inductive consequence of the

assumptions about the locale parameters: I (nnf ϕ) xs = I ϕ xs.

4.4. Quantifier Elimination

The elimination of all quantifiers from a formula is achieved by eliminating them one by

one in a bottom-up fashion. Thus each step needs to deal merely with the elimination of

a single quantifier in front of a quantifier-free formula. This step is theory-dependent and

hard. The lifting to arbitrary formulae is simple and can be defined once and for all. We

assume we are given a function qe :: α fm ⇒ α fm for the elimination of a single ExQ,

i.e. I (qe ϕ) = I (ExQ ϕ) if qfree ϕ. Note that qe is not applied to ExQ ϕ but just to ϕ,

ExQ remains implicit. Lifting qe is straightforward:
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lift-nnf-qe :: (α fm⇒ α fm)⇒ α fm⇒ α fm

lift-nnf-qe qe (And ϕ1 ϕ2) = and (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (Or ϕ1 ϕ2) = or (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (Neg ϕ) = neg (lift-nnf-qe qe ϕ)
lift-nnf-qe qe (ExQ ϕ) = qe (nnf (lift-nnf-qe qe ϕ))
lift-nnf-qe qe ϕ = ϕ

To simplify life for qe we put its argument into NNF.

We can go even further and put the argument of qe into DNF because then we can

pull the disjunction out of the existential quantifier as follows (using customary logical

notation):

(∃x.
∨
i

∧
j

aij) = (
∨
i

∃x.
∧
j

aij)

where aij are the atoms of the DNF. Thus qe can be applied directly to a conjunction of

atoms. Using

(∃x.A ∧B(x)) = (A ∧ (∃x. B(x)))

where A does not depend on x, we can push the quantifier right in front of a conjunction

of atoms all of which depend on x. This simplifies matters for qe as much as possible.

Now we look at the formalization of this second lifting procedure:

lift-dnf-qe :: (α list ⇒ α fm)⇒ α fm⇒ α fm

Because we represent the DNF via lists of lists of atoms, the first argument of lift-dnf-qe
takes a list rather than a conjunction of atoms.

The separation of a list (conjunction) of atoms into those that do contain 0 and those

that do not, and the application of qe to the former is performed by an auxiliary function:

qelim qe as = (let qf = qe [a← as. depends0 a];
indep = [Atom(decr a). a← as, ¬ depends0 a]

in and qf (list-conj indep))

Because the innermost quantifier is eliminated, all references to other quantifiers need to

be decremented. For the atoms independent of the innermost quantifier this needs to be

done explicitly, for the other atoms this must happen inside qe.

The main function lift-dnf-qe recurses down the formula (we omit the obvious equa-

tions) until it finds an ExQ ϕ, removes the quantifiers from ϕ, puts the result into NNF

and DNF, and applies qelim qe to each disjunct:

lift-dnf-qe qe (ExQ ϕ) = Disj (dnf (nnf (lift-dnf-qe qe ϕ))) (qelim qe)

4.4.1. Correctness

Correctness of these lifting functions is roughly expressed as follows: if qe eliminates

one existential while preserving the interpretation, then lift qe eliminates all quantifiers

while preserving the interpretation.
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For compactness we employ a set theoretic language for expressing properties of

functions: A → B is the set of functions from A to B, lists A the set of lists over A, − A
the complement of A, and |P| ≡ {x | P x}.

First we look at lift-nnf-qe. Elimination of all quantifiers is easy:

Lemma 1 If qe ∈ |nqfree| → |qfree| then qfree (lift-nnf-qe qe ϕ).

Preservation of the interpretation is slightly more involved:

Lemma 2 If qe ∈ |nqfree| → |qfree| and nqfree ϕ =⇒ I (qe ϕ) xs = (∃ x. I ϕ (x·xs))
for all ϕ and xs, then I (lift-nnf-qe qe ϕ) xs = I ϕ xs.

For lift-dnf-qe the statements are a bit more involved still, but essentially analogous to

those for lift-nnf-qe. The only difference is that qe applies to lists of atoms as instead of

a formula ϕ.

Lemma 3 If qe ∈ lists |depends0| → |qfree| then qfree (lift-dnf-qe qe ϕ).

Lemma 4 If qe ∈ lists |depends0| → |qfree| and ∀ as∈ lists |depends0|. is-dnf-qe qe as,
then I (lift-dnf-qe qe ϕ) xs = I ϕ xs.

where is-dnf-qe qe as≡ ∀ xs. I (qe as) xs = (∃ x. ∀ a∈set as. Ia a (x·xs)). The right-hand

side is equal to ∃ x. I (list-conj (map Atom as)) (x·xs).
All proofs are straightforward inductions using a number of additional lemmas.

4.4.2. Complexity

Conversion to DNF may (unavoidably) cause exponential blowup. Since this can happen

every time a quantifier is eliminated, even if qe runs in linear time, the worst case run-

ning time of lift-dnf-qe qe is non-elementary in the size of the formula, i.e. a tower of

exponents 2·
2

whose height is the size of the formula. In contrast, conversion to NNF

is linear. This leads to more reasonable upper bounds. For example, if qe takes quadratic

time, the worst case running time of lift-nnf-qe qe is only doubly exponential. Thus we

have the choice between an essentially infeasible lifting function lift-dnf-qe which allows

each quantifier elimination step to focus on conjunctions of atoms, or a potentially fea-

sible lifting function lift-nnf-qe which requires each quantifier elimination step to deal

with arbitrary combinations of conjunctions and disjunctions.

4.4.3. Equality

We can generalize quantifier elimination via DNF even further based on the predicate

calculus law

(∃x. x = t ∧ φ) = φ[t/x] (1)

provided x does not occur in t. In two of our theories this will enable us to remove

equalities completely: in linear real arithmetic, any equation containing variable x is

either independent of the value of x (e.g. x = x or x = x + 1) or can be brought into the

form x = t with x not in t. But even if one cannot remove all equalities, as in most non-

linear theories, it is useful to deal with x = t separately for obvious efficiency reasons.

Hence we extend locale ATOM to locale ATOM-EQ containing the following additional

parameters
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solvable0 :: α⇒ bool
trivial :: α⇒ bool
subst0 :: α⇒ α⇒ α

with the following intended meaning expressed by the corresponding assumptions:

• For solvable atoms, any valuation of the variables > 0 can be extended to a satis-

fying valuation: solvable0 eq =⇒ ∃ e. Ia eq (e·xs).
• Trivial atoms satisfy every valuation: trivial eq =⇒ Ia eq xs.

• Function subst0 substitutes its first argument, a solvable equality, into its second

argument. This is expressed by requiring that the substitution lemma must hold

under certain conditions: If solvable0 eq and ¬ trivial eq and Ia eq (x·xs) and
depends0 a then Ia (subst0 eq a) xs = Ia a (x·xs). And substituting a solvable

atom into itself results in a trivial atom: solvable0 eq =⇒ trivial (subst0 eq eq).

Now we can define a lifting function that takes a quantifier elimination procedure

qe on lists of atoms and extends it to lists containing trivial atoms (by filtering them out)

and solvable atoms (by substituting them in):

lift-eq-qe qe as =
(let as = [a←as. ¬ trivial a]
in case [a←as. solvable0 a] of

[]⇒ qe as
| eq · eqs⇒ (let ineqs = [a←as. ¬ solvable0 a]

in list-conj (map (Atom ◦ subst0 eq) (eqs @ ineqs))))

>From the assumptions of locale ATOM-EQ it is not hard to prove that if qe performs

quantifier elimination on any list of unsolvable atoms depending on variable 0, then

lift-eq-qe qe is a quantifier elimination procedure on any list of atoms depending on 0:

Lemma 5 If ∀ as ∈ list(|depends0| ∩ −|solvable0|). is-dnf-qe qe as then
∀ as ∈ list|depends0|. is-dnf-qe (lift-eq-qe qe) as.

In our instantiations, the unsolvable atoms will be the inequalities (<) and qe will only

need to deal with them; = is taken care of completely by this lifting process.

Finally we compose lift-dnf-qe and lift-eq-qe:

lift-dnfeq-qe = lift-dnf-qe ◦ lift-eq-qe

and obtain a corollary to lemmas 4 and 5:

Corollary 1 If qe∈ lists |depends0|→ |qfree| and ∀ as∈ lists(|depends0| ∩ −|solvable0|).
is-dnf-qe qe as then I (lift-dnfeq-qe qe ϕ) xs = I ϕ xs.

In the same manner we obtain

Corollary 2 If qe ∈ list |depends0| → |qfree| then qfree (lift-dnfeq-qe qe ϕ).
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5. Dense Linear Orders

The theory of dense linear orders (without endpoints) is an extension of the theory of

linear orders with the axioms

y < z =⇒ ∃ x. y < x ∧ x < z ∃ u. x < u ∃ l. l < x

It is the canonical example of quantifier elimination [23] and the basis for the arithmetic

theories to come. The equivalence (∃ x. y < x ∧ x < z) = (y < z) is an easy conse-

quence of the axioms. It generalizes to arbitrary conjunctions of inequalities containing

the quantified variable: partition the inequalities into those of the form li < x and those

of the form x < uj and combine all pairs:

(∃x. (
∧
i

li < x) ∧ (
∧
j

x < uj)) = (
∧
ij

li < uj) (2)

The only-if direction holds by transitivity. The if direction follows because the right-

hand formula is just another way of saying that the maximum of the li is less than the

minimum of the uj . By denseness there must exists a value in between, which is the

witness for the existential formula.

Now we formalize this theory and its quantifier elimination procedure. We concen-

trate on quantifier elimination via DNF, thus obtaining a non-elementary procedure.

5.1. Atoms

There are just the two relations < and = and no function symbols. Thus atomic formulae

can be represented by the following datatype:

atom = Less nat nat | Eq nat nat

Because there are no function symbols, the arguments of the relations must be variables.

For example, Less i j represents the atom xi < xj in de Bruijn notation. We define two

auxiliary predicates is-Less and is-Eq which do what their name suggests.

Now we can instantiate locale ATOM. Type parameter α becomes type atom. The

interpretation function Ia becomes Idlo where

Idlo (Eq i j) xs = (xs[i] = xs[j ])
Idlo (Less i j) xs = (xs[i] < xs[j ])

The notation xs[i] means selection of the ith element of xs. The type of Idlo is explicitly

restricted such that xs must be a list of elements over a dense linear order, where the

latter is formalized as a type class [19] with the axioms shown at the start of this section.

Thus all valuations in this section are over dense linear orders. Parameter aneg becomes

negdlo:

negdlo (Less i j) = Or (Atom (Less j i)) (Atom (Eq i j))
negdlo (Eq i j) = Or (Atom (Less i j)) (Atom (Less j i))

The instantiation of the parameters adepends and adecr is obvious:
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dependsdlo (Eq i j) = (i = 0 ∨ j = 0)
dependsdlo (Less i j) = (i = 0 ∨ j = 0)

decrdlo (Less i j) = Less (i − 1) (j − 1)
decrdlo (Eq i j) = Eq (i − 1) (j − 1)

It is straightforward to show that this instantiation satisfies all the axioms of ATOM.

The extension to ATOM-EQ (see §4.4.3) is easy: solvable0 becomes λEq i j ⇒ i=0 ∨
j=0 | a ⇒ False, trivial becomes λEq i j ⇒ i=j | a ⇒ False and subst0 is defined as

follows:

subst0 (Eq i j) (Less m n) = Less (subst i j m) (subst i j n)
subst0 (Eq i j) (Eq m n) = Eq (subst i j m) (subst i j n)

subst i j k = (if k = 0 then if i = 0 then j else i else k) − 1

Discharging the assumptions of ATOM-EQ is straightforward.

5.2. Quantifier Elimination

The quantifier elimination procedure sketched above assumes that it is given a list,

i.e. conjunction of atoms. Variable 0, the innermost one, is to be eliminated. Because

lift-dnfeq-qe already takes care of equalities, we can concentrate on the case where all

atoms are Less:

qe-less as =
(if Less 0 0 ∈ set as then FalseF else
let lbs = [i. Less (Suc i) 0← as];

ubs = [j. Less 0 (Suc j)← as];
pairs = [Atom(Less i j). i← lbs, j← ubs]

in list-conj pairs)

This is exactly the above informal algorithm, except that we also take care of the unsat-

isfiable atom x0 < x0 and we decrement the variables to compensate for the eliminated

quantifier. Instead of detecting only the contradiction x0 < x0 one could (and should)

return FalseF upon finding any xi < xi.

5.3. Correctness

Theorem 1 ∀ a∈set as. is-Less a ∧ dependsdlo a =⇒ is-dnf-qe qe-less as

Remember that is-dnf-qe abbreviates an equivalence (see §4.4.1). The proof of the →-

direction of the equivalence distinguishes whether lbs or ubs are empty (in which case

the lack of endpoints guarantees the existence of x) or not (in which case density comes

to the rescue). The other direction follows via transitivity.

Defining dlo-qe = lift-dnfeq-qe qe-less we obtain the main result

Corollary 3 I (dlo-qe ϕ) xs = I ϕ xs

as a consequence of Corollary 1, Theorem 1 and the lemma qfree (qe-less as).
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6. Linear Real Arithmetic

Linear real arithmetic is concerned with terms built up from variables, constants, addi-

tion, and multiplication with constants. Relations between such terms can be put into a

normal form r �� c0 ∗ x0 + · · · cn ∗ xn with �� ∈ {=, <} and r, c0, . . . , cn ∈ R. It is this

normal form we work with in this section.

Note that although we phrase everything in terms of the real numbers, the rational

number work just as well. In fact, any ordered, divisible, torsion free, Abelian group will

do.

This time we will present two quantifier elimination procedures: one resembling

the one for DLO, so called Fourier-Motzkin elimination, and a clever algorithm due to

Ferrante and Rackoff [14] which brings the complexity down from non-elementary to

doubly exponential.

6.1. Atoms

Type atom formalizes the normal forms explained above:

atom = Less real (real list) | Eq real (real list)

The second constructor argument is the list of coefficients [c0,. . .,cn] of the variables 0
to n — remember de Bruijn! Coefficient lists should be viewed as vectors and we define

the usual vector operations on them:

x ∗s xs is the componentwise multiplication of a scalar x with a vector xs.

xs + ys and xs − ys are componentwise addition and subtraction on two vectors.

〈xs,ys〉 = (
∑

(x,y)← zip xs ys. x∗y) is the inner product of two vectors, i.e. the sum

over the componentwise products.

If the two vectors involved in an operation are of different length, the shorter one is

padded with 0s (as in Obua’s treatment of matrices [28]). We can prove all the algebraic

properties we need, like 〈xs + ys,zs〉 = 〈xs,zs〉 + 〈ys,zs〉.
Now we instantiate locale ATOM just like for DLO in §5.1. The main function is the

interpretation IR of atoms, which is straightforward:

IR (Less r cs) xs = (r < 〈cs,xs〉)
IR (Eq r cs) xs = (r = 〈cs,xs〉)

Although this is irrelevant in our context, note that our lists do not form a vector

space. Clearly the 0 vector would have to be [], but then there are almost no inverses: [x]
+ [− x] is [0] but not []. For a vectors space we would need to remove trailing 0s after

each operation. And certain laws like xs + 0 = xs would only hold for vectors without

trailing 0s. A proper treatment of vectors spaces requires lists of different lengths to have

different types. A solution along these lines is given by Harrison [21].

It is easy to extend the instantiation of ATOM to ATOM-EQ (see §4.4.3): solvable0

is any Eq whose head coefficient is nonzero (λEq r (c·cs)⇒ c �= 0 | a ⇒ False), trivial
is any Eq where both sides are zero (λEq r cs⇒ r=0 ∧ (∀ c ∈ set cs. c=0) | a⇒ False),

and subst0 is defined as follows:
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subst0 (Eq r (c·cs)) (Less s (d·ds)) = Less (s − r ∗ d / c) (ds − (d / c) ∗s cs)
subst0 (Eq r (c·cs)) (Eq s (d·ds)) = Eq (s − r ∗ d / c) (ds − (d / c) ∗s cs)

Discharging the assumptions of ATOM-EQ is straightforward.

6.2. Fourier-Motzkin Elimination

Fourier-Motzkin Elimination is a procedure discovered by Fourier [15].1 Essentially, it

works like for dense linear orders. You put the formula into DNF and for each conjunct

the inequalities are split into those of the form l < x and those of the form x < u, and

then you “multiply out” exactly as in (2). Except that one has to transform the inequalities

into the form l < x and x < u explicitly and the l and u can be proper terms, not just

variables.

Quantifier elimination for the special case of a list of atoms as, all of which are of

the form Less, is a one-liner

qe-less as = list-conj [Atom(combine p q). p←lbounds as, q←ubounds as]

where lbounds and ubounds select the inequalities where variable 0 has respectively a

positive and a negative coefficient

lbounds as = [(r/c, (−1/c) ∗s cs). Less r (c·cs)← as, c>0]
ubounds as = [(r/c, (−1/c) ∗s cs). Less r (c·cs)← as, c<0]

and they are combined as explained above:

combine (r1, cs1) (r2, cs2) = Less (r1 − r2) (cs2 − cs1)

The correctness theorem

Theorem 2 ∀ a∈set as. is-Less a ∧ dependsR a =⇒ is-dnf-qe qe-less as

is proved along the same lines as its counterpart Theorem 1, except that linear arithmetic

reasoning is necessary now.

The extension with equality is provided by locale ATOM-EQ. Defining lin-qe =
lift-dnfeq-qe qe-less we obtain the main result

Corollary 4 I (lin-qe ϕ) xs = I ϕ xs

as a consequence of Corollary 1, Theorem 2 and the lemma qfree (qe-less as).
Above we transformed inequalities into l < x and x < u by dividing with the

coefficient of x. Alternatively one can combine r1 < c1x + t1 and r2 < c2x + t2 into

c1r2 − c2r1 < c1t2 − c2t1 provided c1 > 0, c2 < 0, and x does not occur in the ti.

1Motzkin [26] and Farkas [13] cited Fourier but were concerned with the algebraic background, not the

algorithm.
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6.3. An Optimization

The above code is correct but produces horribly bloated results: even if the initial for-

mula is closed, the result will not just be TrueF or FalseF but some complicated formula

equivalent to that. As a trivial example take ∃x.1 < x∧x < 2. It is converted to 1 < 2. To

be able to cope with larger inputs, it is essential to simplify intermediate results as much

as possible: at the very least, unsatisfiable atoms should be replaced by FalseF and tauto-

logical ones by TrueF. This is very easy to spot: Less r cs is unsatisfiable/tautological iff

all elements of cs are 0 and r≥0/r<0. Here is a corresponding function which simplifies

individual atoms to TrueF or FalseF whenever it can:

asimp (Less r cs) =
(if ∀ c∈set cs. c = 0 then if r < 0 then TrueF else FalseF else Atom (Less r cs))
asimp (Eq r cs) =
(if ∀ c∈set cs. c = 0 then if r = 0 then TrueF else FalseF else Atom (Eq r cs))

This simplification is applied when lower and upper bounds are combined:

qe-less ′ as = list-conj [asimp(combine p q). p←lbounds as, q←ubounds as]

The definition of list-conj via and ensures that any TrueF is dropped and any FalseF
propagates to the output.

It is not hard to prove that I (qe-less ′ as) xs = I (qe-less as) xs, from which the

analogous version of Corollary 4 for lin-qe ′ = lift-dnfeq-qe qe-less ′ instead of lin-qe
follows easily.

6.4. Ferrante and Rackoff

Fourier-Motzkin elimination has non-elementary complexity because of the repeated

DNF conversions. Ferrante and Rackoff [14], inspired by Cooper [11], avoid putting the

formula explicitly into DNF but still capitalize on the fact that it has a DNF. Below, let

φ be some quantifier-free formula with a free variable x. Substituting x by some r is

written φ(r).
When eliminating x from φ, we can partition the atoms of φ that depend on x into

3 categories: l < x, x < u and x = t. Let LB(φ) denote the set of all such l in φ,

UB(φ) the set of such u, and EQ(φ) the set of such t. The DNF of a formula over

these atoms can be seen as a finite union of finite intersections of half-open intervals

(l,∞) and (−∞, u) and points t. Each such intersection is equivalent to either a single

interval (l,∞), (−∞, u) or (l, u), or to a point t — or it is empty, in which case we

can silently forget about it. Thus there are 4 possibilities why φ can hold: φ(x) holds

for any sufficiently large x (case (l,∞)), φ(x) holds for any sufficiently small x (case

(−∞, u)), φ(x) holds for all x ∈ (l, u) for some l ∈ LB(φ) and u ∈ UB(φ), or φ(t) for

some t ∈ EQ(φ). This leads to the following optimized version of the equivalence due

to Ferrante and Rackoff: 2

2The special treatment of equality is missing in Ferrante and Rackoff’s work, probably to simplify matters.

The asymptotic complexity remains unaffected.
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(∃x.φ(x)) = (φ(−∞) ∨ φ(∞) ∨
∨

l∈LB(φ)

u∈UB(φ)

φ(
l + u

2
) ∨

∨
t∈EQ(φ)

φ(t)) (3)

The choice of (l + u)/2 is arbitrary: any value in (l, u) will do.

Notation φ(−∞) and φ(∞) is merely suggestive syntax for the following form of

“substitution”:

(−∞ < u) = True
(l < −∞) = False
(−∞ = t) = False

(∞ < u) = False
(l < ∞) = True
(∞ = t) = False

Ferrante and Rackoff only sketch the proof of (3). We examine some of the delicate

details. The proof of the←-direction is obvious in case the witness is (l + u)/2 or t. For

−∞ and∞, the following lemmas provide the witness:

∃x.∀y ≤ x. φ(−∞) = φ(y) ∃x.∀y ≥ x. φ(∞) = φ(y)

They are proved by induction on φ.

The proof of the→-direction is more subtle. We have φ(x). Assuming x /∈ EQ(φ),
¬φ(−∞) and ¬φ(∞), we have to show that φ((l + u)/2) for some l ∈ LB(φ) and

u ∈ UB(φ). In fact, we show that there are l and u such that l < u and φ(y) for

all y ∈ (l, u). From the assumptions it follows by induction on φ that there must be

l0 ∈ LB(φ) and u0 ∈ UB(φ) such that x ∈ (l0, u0). Now we show (by induction on φ)

the lemma that “innermost” intervals (l, u) completely satisfy φ:

Lemma 6 If φ(x), x ∈ (l, u), x /∈ EQ(φ), (l, x)∩LB(φ) = ∅ and (x, u)∩UB(φ) = ∅,
then ∀y ∈ (l, u). φ(y).

Given x ∈ (l0, u0) we define l = max{l ∈ LB(φ) | l < x} and u = min{u ∈ UB(φ) |
x < u}. It is easy to see that this satisfies the premises of the lemma and the desired

conclusion follows.

Now we describe the implementation of Ferrante and Rackoff’s procedure, starting

at the top with (3):

FR1 ϕ = (let as = atoms0 ϕ; lbs = lbounds as; ubs = ubounds as;
intvs = [subst ϕ (between p q) . p← lbs, q← ubs];
eqs = [subst ϕ rcs . rcs← ebounds as]

in list-disj (inf − ϕ · inf + ϕ · intvs @ eqs))

Function FR1 expects a formula ϕ in NNF. Function atoms0 collects the atoms of ϕ that

depend on variable 0. Functions LB, UB and EQ are realized by lbounds, ubounds (see

above) and ebounds:

ebounds as = [(r/c, (−1/c) ∗s cs). Eq r (c·cs)← as, c �=0]

Function between picks the mid-point between two points:

between (r, cs) (s, ds) = ((r + s) / 2, (1 / 2) ∗s (cs + ds))
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Substitution, as usual for variable 0, is first defined for atoms

asubst (r, cs) (Less s (d·ds)) = Less (s − d ∗ r) (d ∗s cs + ds)
asubst (r, cs) (Eq s (d·ds)) = Eq (s − d ∗ r) (d ∗s cs + ds)
asubst (r, cs) (Less s []) = Less s []
asubst (r, cs) (Eq s []) = Eq s []

and then lifted to formulae: subst ϕ rcs≡mapfm (asubst rcs) ϕ. The characteristic lemma

is

qfree ϕ =⇒ I (subst ϕ (r, cs)) xs = I ϕ ((r + 〈cs,xs〉)·xs)

It remains to define the substitution of −∞ for 0:

inf− (And ϕ1 ϕ2) = and (inf− ϕ1) (inf− ϕ2)
inf − (Or ϕ1 ϕ2) = or (inf − ϕ1) (inf− ϕ2)
inf− (Atom (Less r (c·cs))) =
(if c < 0 then TrueF else if 0 < c then FalseF else Atom (Less r cs))
inf− (Atom (Eq r (c·cs))) = (if c = 0 then Atom (Eq r cs) else FalseF)

The remaining cases are the identity. The definition of inf + is dual.

The proof of the main correctness theorem

nqfree ϕ =⇒ I (FR1 ϕ) xs = (∃ x. I ϕ (x·xs))

is essentially the proof of (3). Defining FR = lift-nnf-qe FR1 we obtain the overall cor-

rectness as a corollary to Lemma 2: I (FR ϕ) xs = I ϕ xs.

Ferrante and Rackoff show that their procedure executes in space O(2cn) and hence

time O(22dn

) where n is the size of the input. This significant improvement over the non-

elementary complexity of Fourier’s procedure becomes relevant in the context of deeply

nested and alternating quantifiers because that is the situation where conversion to DNF

can blow up repeatedly.

7. Presburger Arithmetic

Presburger Arithmetic is linear integer arithmetic. Presburger [29] showed that this the-

ory has quantifier elimination. In contrast to linear real arithmetic we need an addi-

tional predicate to obtain quantifier elimination: there is no quantifier-free equivalent

of ∃x. x + x = y if we restrict to linear arithmetic. The way out is to allow the di-

visibility predicate as well, but only of the form d | t where d is a constant. Now

∃x. x + x = y is equivalent with 2 | x. Alternatively one can introduce congruence rela-

tions s ≡ t (mod d) instead of divisibility. On the other hand we do not need both < and

= (or ≤) on the integers because i < j is equivalent with i + 1 ≤ j. Hence we restrict

our attention to ≤. All atoms are assumed to be of the form i ≤ k0 ∗ x0 + · · ·+ kn ∗ xn

or d ‖ i + k0 ∗ x0 + · · · kn ∗ xn, where ‖ is | or �, and d, i, k0, . . . , kn ∈ Z and d > 0.

The negated atom i �≤ j is equivalent with j + 1 ≤ i.
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7.1. Atoms

The above language of atoms is formalized as follows:

atom = Le int (int list) | Dvd int int (int list) | NDvd int int (int list)

Atoms are interpreted w.r.t. a list of variables as usual:

IZ (Le i ks) xs = (i ≤ 〈ks,xs〉)
IZ (Dvd d i ks) xs = (d dvd i + 〈ks,xs〉)
IZ (NDvd d i ks) xs = (¬ d dvd i + 〈ks,xs〉)

where dvd is HOL’s divisibility predicate. Note that we can reuse the polymorphic vector,

i.e. list operations like 〈.,.〉 introduced for linear real arithmetic.

There is a slight complication here: We want to exclude the atoms Dvd 0 i ks and

NDvd 0 i ks because they behave anomalously and the algorithm does not generate them

either. Catering for them would complicate the algorithm with case distinctions. In order

to restrict attention to a subset of atoms, locale ATOM in fact has another parameter not

mentioned so far: anormal :: α⇒ bool with the axioms

anormal a =⇒ ∀ b∈atoms (aneg a). anormal b
¬ depends0 a =⇒ anormal a =⇒ anormal (decr a)

In words: negation and decrementation do not lead outside the normal atoms.

A formula is defined as normal iff all its atoms are:

normal ϕ = (∀ a∈atoms ϕ. anormal a)

With the help of the above axioms the following modified version of Lemma 4 can

be proved:

Lemma 7 If qe ∈ lists |depends0| → |qfree| and qe ∈ lists (|depends0| ∩ |anormal|)
→ |normal| and ∀ as ∈ lists( |depends0| ∩ |anormal| ). is-dnf-qe qe as then normal ϕ
implies I (lift-dnf-qe qe ϕ) xs = I ϕ xs.

The parameters of locale ATOM are instantiated as follows. The interpretation of

atoms is given by function IZ above, their negation by

negZ (Le i ks) = Atom (Le (1 − i) (− ks))
negZ (Dvd d i ks) = Atom (NDvd d i ks)
negZ (NDvd d i ks) = Atom (Dvd d i ks)

and their decrementation by

decrZ (Le i ks) = Le i (tl ks)
decrZ (Dvd d i ks) = Dvd d i (tl ks)
decrZ (NDvd d i ks) = NDvd d i (tl ks)

Parameter depends0 becomes λa. hd-coeff a �= 0 where
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hd-coeff (Le i ks) = (case ks of []⇒ 0 | k·x⇒ k)
hd-coeff (Dvd d i ks) = (case ks of []⇒ 0 | k·x⇒ k)
hd-coeff (NDvd d i ks) = (case ks of []⇒ 0 | k·x⇒ k)

and parameter anormal becomes λa. divisor a �= 0 where

divisor (Le i ks) = 1
divisor (Dvd d i ks) = d
divisor (NDvd d i ks) = d

7.2. Algorithm

In this section we describe and formalize a DNF-based algorithm. It differs from Pres-

burger’s original algorithm because that one covers only = (and congruence) — Pres-

burger merely states that it can be extended to <. Our algorithm resembles Enderton’s

version [12], except that the main case split is different: Enderton distinguishes if there

are congruences or not, we distinguish if there are lower bounds or not.

Input to the algorithm is P (x), a conjunction of atoms. As an example we pick

l ≤ 2x ∧ 3x ≤ u. The algorithm consists of the following steps:

1. Set all coefficients of x to the positive least common multiple (lcm) of all coeffi-

cients of x in P (x). Call the result Q(m ∗ x).
Example: Q(6 ∗ x) = (3l ≤ 6x ∧ 6x ≤ 2u).

2. Set R(x) = Q(x) ∧m | x.

Example: R(x) = (3l ≤ x ∧ x ≤ 2u ∧ 6 | x).
3. Let δ be the lcm of all divisors d in R(x) and let L be the set of lower bounds for x

in R(x). If L �= ∅ then return
∨

t∈T R(t) where T = {l+n | l ∈ L∧0 ≤ n < δ}.
If L = ∅ return

∨
t∈T R′(t) where R′ is R without ≤-atoms and T = {n | 0 ≤

n < δ}.
Example: δ = 6, L = {3l} and the result is

∨
0≤n<6 R(3l + n).

Instead of lower bounds, one may just as well choose upper bounds. In fact, as a local

optimization one typically picks the smaller of the two sets.

The first two steps of the algorithm are clearly equivalence preserving. Now we

have a conjunction R(x) of atoms where x has coefficient 1 everywhere. Equivalence

preservation of the last step is proved in both directions separately.

First we assume the returned formula and show R(t) for some t. If L �= ∅ then R(t)
for some t ∈ T and we are done. Now assume L = ∅. By assumption there must be some

0 ≤ n < δ such that R′(n). If there are no upper bounds for x in R(x) either, then R(x)
contains no ≤-atoms, R′ = R, and hence R(n). Otherwise let U be the set of all upper

bounds of x in R(x), let m be the minimum of U and let t = n− ((n−m) div δ + 1)δ.

We show R(t). >From R′(n) and the definition of R′ and t, R′(t) follows. All ≤-atoms

must be upper bound constraints x ≤ u and hence m ≤ u. Because (n−m) mod δ < δ
we obtain t ≤ m ≤ u. Thus t satisfies all ≤-atoms, and hence R(t).

Now assume that R(z) for some z. In this direction it is important to note that

(non)divisibility atoms a(x) are cyclic in their divisor d, i.e. a(x) is equivalent with

a(x mod d) because the coefficient of x is 1. This carries over to any multiple of d, in

particular δ. If L = ∅ we obtain R′(z mod δ) with 0 ≤ z mod δ < δ as required because

R′(x) consists only of (non)divisibility atoms. If L �= ∅ we show R(t) where t = m + n
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where m is the maximum of L and n = (z−m) mod δ. Let a(x) be some atom in R(x).
If a is a lower bound atom for x, a(t) follows because t ≥ m and m is the maximum

of L. If a is an upper bound atom for x, a(t) follows because t ≤ z and a(z). If a is a

(non)divisibility atom, a(t) follows from a(z) because t mod δ = z mod δ.

7.3. Formalization

The above algorithm consist of two steps which we implement separately. First the head

coefficients of a list of atoms are set to 1 or -1 and the divisibility predicate is added:

hd-coeffs1 as =
(let m = zlcms (map hd-coeff as) in Dvd m 0 [1]·map (hd-coeff1 m) as)

where zlcms computes the positive lcm of a list of integers, hd-coeff extracts the head

coefficient from an atom (see §7.1), and hd-coeff1 sets the head coefficient of one atom

to 1 or -1:

hd-coeff1 m (Le i (k·ks)) =
(let m ′ = m div |k| in Le (m ′ ∗ i) (sgn k·m ′ ∗s ks))
hd-coeff1 m (Dvd d i (k·ks)) =
(let m ′ = m div k in Dvd (m ′ ∗ d) (m ′ ∗ i) (1·m ′ ∗s ks))
hd-coeff1 m (NDvd d i (k·ks)) =
(let m ′ = m div k in NDvd (m ′ ∗ d) (m ′ ∗ i) (1·m ′ ∗s ks))

sgn i = (if i = 0 then 0 else if 0 < i then 1 else − 1)

We prove that hd-coeffs1 leaves the interpretation unchanged:

Lemma 8 If ∀ a∈set as. hd-coeff a �= 0 then (∃ x. ∀ a∈set (hd-coeffs1 as). IZ a (x·e))
= (∃ x. ∀ a∈set as. IZ a (x·e)).

In the second step the actual quantifier elimination is performed:

qe-pres as =
(let ds = [a←as. is-dvd a]; d = zlcms(map divisor ds); ls = lbounds as
in if ls = []

then Disj [0..d−1] (λn. list-conj(map (Atom ◦ asubst n []) ds))
else Disj ls (λ(i,ks).

Disj [0..d−1] (λn. list-conj(map (Atom ◦ asubst (i+n) (−ks)) as))))

where is-dvd a is true iff a is of the form Dvd or NDvd, and lbounds collects the lower

bounds for variable 0, lbounds as = [(i,ks). Le i (k·ks)← as, k>0], and asubst is substi-

tution:

asubst i ′ ks ′ (Le i (k·ks)) = Le (i − k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ (Dvd d i (k·ks)) = Dvd d (i + k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ (NDvd d i (k·ks)) = NDvd d (i + k ∗ i ′) (k ∗s ks ′ + ks)

The following lemma shows that asubst is indeed substitution:
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IZ (asubst i ks a) xs = IZ a ((i + 〈ks,xs〉)·xs)

The actual quantifier elimination procedure is the lifted composition of the two basic

steps:

pres-qe = lift-dnf-qe (qe-pres ◦ hd-coeffs1)

7.4. Correctness

The main correctness theorem is

Theorem 3 If ∀ a∈set as. divisor a �= 0 and ∀ a∈set as. hd-coeff-is1 a then
I (qe-pres as) xs = (∃ x. ∀ a∈set as. IZ a (x·xs)).

Its proof was given in §7.2. Predicate hd-coeff-is1 a is true iff the head coefficient of a is

1 or -1. Combining this theorem with Lemma 8 (and the lemma that hd-coeff1 establishes

hd-coeff-is1) yields: If ∀ a∈set as. divisor a �= 0 and ∀ a∈set as. hd-coeff a �= 0 then I
((qe-pres ◦ hd-coeffs1) as) e = (∃ x. ∀ a∈set as. IZ a (x·e)). Because depends0 a =
(hd-coeff a �= 0) and anormal a = (divisor a �= 0), Lemma 7 yields as a corollary:

normal ϕ =⇒ I (pres-qe ϕ) xs = I ϕ xs

This requires an easy (qfree ((qe-pres ◦ hd-coeffs1) as) and a tedious lemma:

if ∀ a∈set as. hd-coeff a �= 0 ∧ divisor a �= 0 then normal((qe-pres◦hd-coeffs1) as).

8. Related Work

This paper is an outgrowth of [9]. One of the many differences of the two papers is the

replacement of Cooper’s NNF-based algorithm [11] for Presburger arithmetic by a DNF-

based one. These two algorithms are related to each other like Ferrante and Rackoff’s

is to Fourier’s. One can also view this article as translating some of the programs in

Harrison’s forthcoming textbook [20] from OCaml to HOL and verifying them (and a

number of additional ones).

Another popular quantifier elimination method for Presburger arithmetic is due to

Pugh [30] and takes Fourier’s method as a starting point. Linear arithmetic over both reals

and integers also admits quantifier elimination [32]. Chaieb reflected this algorithm in

Isabelle [7]. The decision problem for first-order arithmetic theories can also be solved by

automata theoretic methods. Büchi [6] initiated this approach for Presburger arithmetic.

It was later extended to mixed integer and real arithmetic [4].

An LCF-style quantifier elimination procedure for real closed fields has been imple-

mented by McLaughlin [25], a reflective version of Collin’s CAD method [10] has been

implemented but only partly verified by Mahboubi [24].

The special case of decision procedures for quantifier free linear real arithmetic has

received an enormous amount of attention for its practical relevance and because it is

solvable in polynomial time. In particular it is possible to generate short certificates that

can be checked quickly (e.g. [3]).
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Content in Proofs of List Reversal

Helmut SCHWICHTENBERG
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Abstract. Berger [2] observed that the well-known linear list reversal algorithm

can be obtained as the computational content of a weak (or “classical”) existence

proof. The necessary tools are a refinement [3] of the Dragalin/Friedman [4,5] A-

translation, and uniform (or “non-computational”) quantifiers [1]. Both tools are

implemented in the Minlog proof assistant (www.minlog-system.de), in ad-

dition to the more standard realizability interpretation. The aim of the present paper

is to give an introduction into the theory underlying these tools, and to explain their

usage in Minlog, using list reversal as a running example.

1. Minimal arithmetic in finite types

1.1. Gödel’s T

Types are built from base types ι by function type formation ρ → σ. As base types we

only need the types N of natural numbers, B of booleans and the parametrized constructs

of the list type L(ρ) and the pair type ρ × σ. For these base types the constructors have

standard names, as follows. We also spell out the type of their recursion operators:

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : B→ τ → τ → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : N→ τ → (N→ τ → τ) → τ,

nilL(ρ) := CL(ρ)
1 , consρ→L(ρ)→L(ρ) := CL(ρ)

2 ,

Rτ
L(ρ) : L(ρ)→ τ → (ρ → L(ρ)→ τ → τ) → τ,

(×+
ρσ

)ρ→σ→ρ×σ := Cρ×σ
1 ,

Rτ
ρ×σ : ρ× σ → (ρ → σ → τ) → τ.

One often writes x :: l as shorthand for cons x l, and 〈y, z〉 for ×+yz. The terms of

Gödel’s T [7] are inductively defined from typed variables xρ and the constants, that is,

Formal Logical Methods for System Security and Correctness
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constructors and recursion operators, by abstraction λxρMσ and application Mρ→σNρ.

For example, the projections of a pair to its components can be defined easily:

M0 := Rρ
ρ×σMρ×σ(λxρ,yσxρ), M1 := Rρ

ρ×σMρ×σ(λxρ,yσyσ).

Another example is the append-function :+: for lists, which should satisfy the recursion

equations

nil :+: v2 := v2, (x :: v1) :+: v2 := x :: (v1 :+: v2).

It can be defined as the term

v1 :+: v2 := RL(α)→L(α)
L(α) v1(λv2v2)(λx, ,p,v2(x :: (pv2)))v2.

The conversion relations are the standard ones, and also the notion of a normal form of a

term. Clearly normal closed terms are of the form Ci
�N .

1.2. Heyting Arithmetic

We define Heyting Arithmetic HAω for our language based on Gödel’s T, which is

finitely typed. Among the prime formulas are those built from terms r of type B by

means of a special operator atom(rB); we call them decidable prime formulas. They

include for instance equations between terms of type N, since the boolean-valued binary

equality function =N : N→ N→ B can be defined by

(0 =N 0) := tt, (Sn =N 0) := ff,

(0 =N Sm) := ff, (Sn =N Sm) := (n =N m).

For falsity we can take the atomic formula F := atom(ff) – called arithmetical falsity –

built from the boolean constant ff. Below we will also need the (logical) falsity ⊥, which

we can view as just a particular propositional symbol. The formulas of HAω are built

from prime formulas by the connectives→ and ∀. We define negation ¬A by A → F or

A → ⊥ (depending on the context), and the weak (or “classical”) existential quantifier

by

∃̃xA := ¬∀x¬A.

We use natural deduction rules: →+, →−, ∀+ and ∀− of Figure 1. It will be conve-

nient to write derivations as terms, where the derived formula is viewed as the “type” of

the term. This representation is known under the name Curry-Howard correspondence.

From now on we use M , N etc. to range over derivation terms, and r, s etc. for object

terms.

We give an inductive definition of derivation terms in Figure 1, where for clarity we

have written the corresponding derivations to the left. For the universal quantifier ∀ there

is an introduction rule ∀+x and an elimination rule ∀−, whose right premise is the term
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derivation term

u : A uA

[u : A]

| M
B →+u

A → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

| M
A ∀+x (with var.cond.)∀xA

(λxMA)∀xA (with var.cond.)

| M
∀xA(x) r ∀−

A(r)

(M∀xA(x)r)A(r)

Figure 1. Derivation terms for → and ∀

r to be substituted. The rule ∀+x is subject to the standard (Eigen-) variable condition:

The derivation term M of the premise A should not contain any open assumption with x
as a free variable. The induction axioms are

Indp,A(p) : ∀p

(
A(tt) → A(ff) → A(pB)

)
,

Indn,A(n) : ∀n

(
A(0) → ∀n(A(n) → A(Sn)) → A(nN)

)
,

Indv,A(v) : ∀v

(
A(nil)→ ∀x,v(A(v) → A(x :: v)) → A(vL(ρ))

)
,

Indx,A(x) : ∀x

(∀yρ,zσA(〈y, z〉) → A(xρ×σ)
)
.

We show that the fragment of HAω with decidable prime formulas is “classical” in

the sense that the principle of indirect proof holds. Here we make essential use of the fact

that our formulas are built with the connectives→ and ∀. Recall that negation ¬A and the

weak existential quantifier ∃̃xA are definable. In the next section we will (inductively)
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define the proper (or “constructive”) existential quantifier, which will cause proofs to

have computational content. In this richer language the principle of indirect proof does

not hold any more.

Lemma (Ex falso quodlibet). HAω � F → A.

Proof. Induction on A, using boolean induction for atomic formulas.

The following lemma expresses the principle of indirect proof.

Lemma (Stability). HAω � ¬¬A → A.

Proof. Induction on A.

1.3. Inductive constructions

In addition to atomic prime formulas of the form atom(rB), we want to form initial

propositions with inductively defined predicates, each of which is given by its clauses.

Rather than introducing them in general, for simplicity we here restrict ourselves to just

two examples: list reversal Rev and the existential quantifier.

To define inductively the property of two lists that the second is the reversal of the

first, the clauses are

InitRev : Rev(nil,nil), (1)

GenRev : Rev(v, w) → Rev(v :+: x:, x :: w). (2)

Recall that we use x :: v for the cons-operator, and v :+: w for the append function. x:
denotes x :: nil, i.e., the singleton list consisting of x. We will view Rev as a predicate

“without computational content”. The reader should not be confused here: of course the

clauses involving Rev do express how a computation of the reverted list should proceed.

However, the predicate Rev itself does not require a witness.

Another particularly important example of an inductively defined predicate is the

existential quantifier, which takes a formula A(xρ) as parameter. It is given by only one

clause:

∃+ : ∀x(A(xρ) → ∃xA(xρ)).

This time will view the predicate ∃xA(xρ) as one “with computational content”, which

intuitively is the pair of the witness xρ and the content of the proof of A(x). Proper

definitions will be given in the next section.

The intended meaning of an inductively defined predicate is that it should be the

least one satisfying its clauses. This is expressed by means of an elimination scheme,

which in the case of the existential quantifier is

∃− : ∃xA(xρ) → ∀x(A(xρ) → C) → C with x /∈ FV(C).
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2. Realizability

Clearly proper existence proofs have computational content. A well-known and natural

way to define this concept is the notion of realizability, which can be seen as an incarna-

tion of the Brouwer-Heyting-Kolmogorov interpretation of proofs.

2.1. Computational content

The concept of “computational content” of a proof only makes sense after we have intro-

duced inductively defined predicates (such as the existential quantifier) to our “negative”

language, initially involving ∀ and → only. We first define the realizability type τ(A)
of a formula A, and when it is computationally relevant. Then we go on and define the

formula t realizes A, written t r A, for t of type τ(A).
Every formula A possibly containing inductively defined predicates can be seen

as a “computational problem”. We define τ(A) as the type of a potential realizer of

A, i.e., the type of the term (or “program”) to be extracted from a proof of A. More

precisely, we assign to every formula A an object τ(A) (a type or the “nulltype” symbol

ε). In case τ(A) = ε proofs of A have no computational content; such formulas A are

called Harrop formulas, or computationally irrelevant (c.i.). Non-Harrop formulas are

also called computationally relevant (c.r.). The definition can be conveniently written if

we extend the use of ρ → σ to the nulltype symbol: (ρ → ε) := ε, (ε → σ) := σ,

(ε → ε) := ε. With this understanding of ρ → σ we can simply write

τ(atom(rB)) := ε, τ(Rev(v, w)) := ε,

τ(∃xA(xρ)) := ρ× τ(A),

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)),

Let A be a formula and t either a term of type τ(A) if the latter is a type, or the

nullterm symbol ε if τ(A) = ε. For a convenient definition we extend the use of term

application to the nullterm symbol: εt := ε, tε := t, εε := ε. We define the formula

t r A, to be read t realizes A.

t r atom(r) := atom(r),

t r Rev(v, w) := Rev(v, w),

t r ∃xA(x) := t0 r A(t1),

t r (A → B) := ∀x(x r A → tx r B),

t r (∀xA) := ∀x tx r A.

Formulas which do not contain ∃ play a special role in this context; we call them negative.

Their crucial property is (ε r A) = A. Clearly every formula of the form t r A is

negative.

We now define the extracted term [[M ]] of a derivation M . For derivations MA where

τ(A) = ε (i.e., A is a Harrop formula) let [[M ]] := ε (the nullterm symbol). Now assume
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that M derives a formula A with τ(A) �= ε. Recall our extended use of term application

to the nullterm symbol. We also understand that in case τ(A) = ε, λ
x

τ(A)
u

[[M ]] means

just [[M ]]. Then

[[uA]] := xτ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAM)A→B ]] := λ
x

τ(A)
u

[[M ]],

[[MA→BN ]] := [[M ]][[N ]],

[[(λxρM)∀xA]] := λxρ [[M ]],

[[M∀xAr]] := [[M ]]r.

We also need to define extracted terms for our axioms: induction axioms and for

the existential quantifier the clause ∃+ and its elimination axiom ∃−. For the lat-

ter this is rather obvious: For ∃− : ∃xA(xρ) → ∀x(A(xρ) → C) → C we take

[[∃−]] := λpλf (f(p0)(p1)), assuming τ(A) �= ε; here p has type ρ × τ(A). For

∃+ : ∀x(A(xρ) → ∃xA(xρ)) let [[∃+]] := λx,y〈x, y〉. For the induction axioms we take

the corresponding recursion operators.

Theorem (Soundness). Let M be a derivation of a formula A from assumptions ui : Ci.
Then we can find a derivation of [[M ]] r A from assumptions ūi : xui

r Ci.

Proof. Induction on M .

2.2. A constructive proof for list reversal

Let Rev be the graph of the list reversal function. We view Rev as an inductively defined

predicate without computational content, given by the clauses (1) and (2) above.

A straightforward proof of ∀v∃wRev(v, w) proceeds as follows. We first prove a

lemma ListInitLastNat stating that every non-empty list can be written in the form

v :+: x:. Using it, ∀v∃wRev(v, w) can be proved by induction on the length of v. In the

step case, our list is non-empty, and hence can be written in the form v :+: x:. Since v
has smaller length, the IH (induction hypothesis) yields its reversal w. Then we can take

x :: w.

2.3. Extraction from the existence proof for list reversal

Here is the term neterm (for “normalized extracted term”) extracted from a formaliza-

tion of this proof, with variable names f for unary functions on lists and p for pairs of

lists and numbers:

[x0]
(Rec nat=>list nat=>list nat)x0([v2](Nil nat))
([x2,f3,v4]
[if v4
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(Nil nat)
([x5,v6][let p7 (cListInitLastNat v6 x5)

(right p7::f3 left p7)])])

where the square brackets in [x] is a notation for λ-abstraction λx. The term contains

the constant cListInitLastNat denoting the content of the auxiliary proposition, and

in the step the function defined recursively calls itself via f3. The underlying algorithm

defines an auxiliary function g by

g(0, v) := nil,

g(n + 1,nil) := nil,

g(n + 1, x :: v) := let w :+: y: = x :: v in y :: g(n, w)

and gives the result by applying g to lh(v) and v. It clearly takes quadratic time. To run

this algorithm one has to normalize the term obtained by applying neterm to the length

of a list and the list itself:

(animate "ListInitLastNat")
(animate "Id")
(pp (nt (mk-term-in-app-form

neterm (pt "4") (pt "1::2::3::4:"))))
; 4::3::2::1:

We have used here of a mechanism to “animate” or “deanimate” lemmata, or more pre-

cisely the constants that denote their computational content. This method can be de-

scribed generally as follows. Suppose a proof of a theorem uses a lemma. Then the proof

term contains just the name of the lemma, say L. In the term extracted from this proof

we want to preserve the structure of the original proof as much as possible, and hence we

use a new constant cL at those places where the computational content of the lemma is

needed. When we want to execute the program, we have to replace the constant cL cor-

responding to a lemma L by the extracted program of its proof. This can be achieved by

adding computation rules for cL. We can be rather flexible here and enable/block rewrit-

ing by using animate/deanimate as desired. To obtain the let expression in the

term above, we have used implicitely the “identity lemma” Id : P → P ; its realizer has

the form λf,x(fx). If Id is not animated, the extracted term has the form cId(λxM)N ,

which is printed as [let x N M ].

3. Substituting for falsity in weak existence proofs

We now aim at finding computational content in weak existence proofs. First we de-

scribe a general method that can be employed here; it is sometimes called “refined A-

translation”. The difference to the treatment in [3] is that we avoid to work with different

formal systems (called Z, Z0, ZX and ZX
0 there) and only deal with arithmetic in finite

types HAω based on minimal logic. Then we apply the method to some examples, in

particular to our running example of list reversal.

H. Schwichtenberg / Content in Proofs of List Reversal 273



3.1. The refined A-translation method

It is known that any proof of a specification of the form ∀x∃̃yB with B quantifier-free

and the weak (or “classical”) existential quantifier ∃̃y can be transformed into a proof of

∀x∃yB, now with the constructive existential quantifier ∃y . Here is a simple idea of how

to prove this. First recall that our given proof is in minimal logic, and therefore does not

assume anything about ⊥. Hence we can replace ⊥ anywhere in the proof by ∃yG. Then

the end formula ∀y(G → ⊥) → ⊥ is turned into ∀y(G → ∃yG) → ∃yG, and since the

premise is trivially provable, we have the claim.

Unfortunately, this simple argument is not quite correct. First, G may contain⊥, and

hence is changed under the substitution⊥ �→ ∃yG. Second, we may have used axioms or

lemmata involving ⊥ (e.g., ⊥ → A), which need not be derivable after the substitution.

But in spite of this, the simple idea can be turned into something useful.

Assume that the lemmata �D and the goal formula G are such that we can derive

�D → Di[⊥ �→ ∃yG], (3)

G[⊥ �→ ∃yG] → ∃yG. (4)

Assume also that the substitution ⊥ �→ ∃yG turns the axioms into instances of the same

scheme with different formulas, or else into derivable formulas. Then from our given

derivation (in minimal logic) of �D → ∀y(G → ⊥) → ⊥ we obtain

�D[⊥ �→ ∃yG] → ∀y(G[⊥ �→ ∃yG] → ∃yG) → ∃yG.

Now (3) allows to drop the substitution in �D, and by (4) the second premise is derivable.

Hence we obtain as desired

�D → ∃yG.

We shall identify classes of formulas – to be called definite and goal formulas – such that

slight generalizations of (3) and (4) hold. This will be done in 3.2. In 3.3 we then prove

the general theorem about extraction from classical proofs.

3.2. Definite and goal formulas

A formula is relevant if it “ends” with ⊥. More precisely, relevant formulas are defined

inductively by the clauses

• ⊥ is relevant,

• if C is relevant and B is arbitrary, then B → C is relevant, and

• if C is relevant, then ∀xC is relevant.

Clearly we can derive ⊥ → C for C relevant. A formula which is not relevant is called

irrelevant.
We define goal formulas G and definite formulas D inductively. P ranges over prime

formulas (including ⊥).
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G ::= P | D → G provided D irrelevant⇒ D quantifier-free

| ∀xG provided G irrelevant,

D ::= P | G → D provided D irrelevant⇒ G irrelevant

| ∀xD.

Let AF denote A[⊥ �→ F ].

Lemma. For definite formulas D and goal formulas G we have derivations from F → ⊥
of

((DF → F ) → ⊥) → D for D relevant, (5)

DF → D, (6)

G → GF for G irrelevant, (7)

G → (GF → ⊥) → ⊥. (8)

Proof. (5)–(8) can be proved simultaneously, by induction on formulas.

Lemma. For goal formulas �G = G1, . . . , Gn we have a derivation from F → ⊥ of

(�GF → ⊥) → �G → ⊥. (9)

Proof. Assume F → ⊥. By (8) we have

Gi → (GF
i → ⊥) → ⊥

for all i = 1, . . . , n. Now the assertion follows by minimal logic: Assume �GF → ⊥
and �G; we must show ⊥. By G1 → (GF

1 → ⊥) → ⊥ it suffices to prove GF
1 → ⊥.

Assume GF
1 . By G2 → (GF

2 → ⊥) → ⊥ it suffices to prove GF
2 → ⊥. Assume GF

2 .

Repeating this pattern, we finally have assumptions GF
1 , . . . , GF

n available, and obtain⊥
from �GF → ⊥.

3.3. Extraction from weak existence proofs

Theorem (Elimination of ⊥ from weak existence proofs). Assume that for arbitrary
formulas �A, definite formulas �D and goal formulas �G we have a derivation of

�A → �D → ∀y(�G → ⊥) → ⊥. (10)

Then we can also derive

(F → ⊥) → �A → �DF → ∀y(�GF → ⊥) → ⊥.
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In particular, substitution of the formula

∃y
�GF := ∃y(GF

1 ∧ · · · ∧GF
n )

for ⊥ yields

�A[⊥ �→ ∃y
�GF ] → �DF → ∃y

�GF . (11)

Proof. The first assertion follows from (6) (to infer �D from �DF ) and (9) (to infer �G → ⊥
from �GF → ⊥). The second assertion is a simple consequence since ∀y(�GF → ∃y

�GF )
and F → ∃y

�GF are both derivable.

Let M be this derivation of (11). Assume that we have terms �s and �t realizing �A and
�D (with free variables among the parameters of (10)), and derivations of

�A → �D → si r Ai[⊥ �→ ∃y
�GF (�y )], �A → �D → tj r DF

j .

Then by the Soundness Theorem for realizability we can derive

�A → �D → [[M ]]�s�t r ∃y
�GF (�y )

and hence by definition of realizability

�A → �D → [[M ]]�s�t 0 r �GF ([[M ]]�s�t 1).

In particular, if �GF (�y ) is a negative Harrop formula, we can derive

�A → �D → �GF ([[M ]]�s�t ).

3.4. Example: Fibonacci numbers

Let αn be the n-th Fibonacci number, i.e.,

α0 := 0, α1 := 1, αn := αn−2 + αn−1 for n ≥ 2.

We give a weak existence proof for the Fibonacci numbers:

∀n∃̃k G(n, k), i.e., ∀k(G(n, k) → ⊥) → ⊥

from clauses expressing that G is the graph of the Fibonacci function:

v0 : G(0, 0), v1 : G(1, 1), v2 : ∀n,k,l

(
G(n, k) → G(n + 1, l) → G(n + 2, k + l)

)
.

Clearly the clause formulas are definite and G(n, k) is a goal formula. To construct a

derivation, assume further
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u : ∀k(G(n, k) → ⊥).

Our goal is⊥. To this end we first prove a strengthened claim in order to get the induction

through:

∀nB(n) with B(n) := ∀k,l

(
G(n, k) → G(n + 1, l) → ⊥) → ⊥.

This is proved by induction on n. The base case follows from the first two clauses. In the

step case we can assume that we have k, l satisfying G(n, k) and G(n + 1, l). We need

k′, l′ such that G(n + 1, k′) and G(n + 2, l′). Using the third clause simply take k′ := l
and l′ := k + l. – To obtain our goal ⊥ from ∀nB, it clearly suffices to prove its premise

∀k,l(G(n, k) → G(n + 1, l) → ⊥). So let k, l be given and assume u1 : G(n, k) and

u2 : G(n + 1, l). Then u applied to k and u1 gives our goal ⊥.

The derivation term is

M = λnλ∀k(G(n,k)→⊥)
u .

Indn,BnMbaseMstep(λk,lλ
G(n,k)
u1

λG(n+1,l)
u2

.uku1)

where

Mbase = λ
∀k,l(G(0,k)→G(1,l)→⊥)
w0 .w001v0v1

Mstep = λnλB
wλ

∀k,l(G(n+1,k)→G(n+2,l)→⊥)
w1 .

w(λk,lλ
G(n,k)
u3

λG(n+1,l)
u4

.w1l(k + l)u4(v2nklu3u4)).

Indeed, one can interactively generate this proof in the Minlog proof assistant and print

its lambda-term (which does not show the formulas involved) by proof-to-expr.

The result (after renaming bound variables) is given in Figure 2.

As described in the proof of the theorem above, we now can substitute ⊥ by

∃kG(n, k) and obtain a proper existence proof M∃, named (11) above. Therefore

[[M∃]] = λn.R(N→N→N)→N
N n[[M∃

base]][[M
∃
step]](λk,lk)

where

[[M∃
base]] = λN→N→N

w0
.w001

[[M∃
step]] = λnλ(N→N→N)→N

w λN→N→N
w1

.w(λkλl.w1l(k + l))

The term machine extracted from this proof is almost literally the same:

[n0]
(Rec nat=>(nat=>nat=>nat)=>nat)n0([f1]f1 0 1)
([n1,H2,f3]H2([n4,n5]f3 n5(n4+n5)))
([n1,n2]n1)

H. Schwichtenberg / Content in Proofs of List Reversal 277



(lambda (m)
(lambda (u)
((((|Ind| m)

(lambda (w0) ((((w0 0) 1) |Intro|) |Intro|)))
(lambda (n)
(lambda (w)
(lambda (w1)
(w
(lambda (k)
(lambda (l)
(lambda (u3)
(lambda (u4)
((((w1 l) (+ k l)) u4)
(((((|Intro| n) k) l)

u3) u4)))))))))))
(lambda (k)
(lambda (l)
(lambda (u1) (lambda (u2) ((u k) u1))))))))

Figure 2. Expression for the Fibonacci proof

with H a name for variables of type (nat=>nat=>nat)=>nat and f of type

nat=>nat=>nat. The underlying algorithm defines an auxiliary functional G by

G(0, f) := f(0, 1), G(n + 1, f) := G(n, λk,lf(l, k + l))

and gives the result by applying G to the original number and the first projection λk,lk.

This is a linear algorithm in tail recursive form. It is somewhat unexpected since it passes

functions (rather than pairs, as one would ordinarily do), and hence uses functional pro-

gramming in a proper way. This clearly is related to the use of classical logic, which by

its use of double negations has a functional flavour.

3.5. A weak existence proof for list reversal

Assuming (1) and (2) we now prove

∀v∃̃wRev(v, w) ( := ∀v

(∀w(Rev(v, w) → ⊥) → ⊥)
). (12)

Fix v and assume u : ∀w¬Rev(v, w); we need to derive a contradiction. To this end

we prove that all initial segments of v are non-revertible, which contradicts (1). More

precisely, from u and (2) we prove

∀v2A(v2) with A(v2) := ∀v1

(
v1 :+: v2 = v → ∀w¬Rev(v1, w)

)
by induction on v2. For v2 = nil this follows from our initial assumption u. For the step

case, assume v1 :+: (x :: v2) = v, fix w and assume further Rev(v1, w). We need to
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derive a contradiction. Properties of the append function imply that (v1 :+:x:):+:v2 = v.

The IH for v1:+:x: gives ∀w¬Rev(v1:+:x:, w). Now (2) yields the desired contradiction.

We formalize this proof, to see what the result of its A-translation is. For readability

we write vw for the result v :+: w of appending the list w to the list v, vx for the result

v :+: x: of appending the one element list x: to the list v, and xv for the result x :: v
of constructing a list by writing an element x in front of a list v. The following lemmata

will be used.

Compat: ∀P∀v1,v2

(
v1 = v2 → P (v1) → P (v2)

)
,

Symm: ∀v1,v2

(
v1 = v2 → v2 = v1

)
,

Trans: ∀v1,v2,v3

(
v1 = v2 → v2 = v3 → v1 = v3

)
,

L1 : ∀v v = v nil,

L2 : ∀v1,x,v2 (v1x)v2 = v1(xv2),

The proof term is

M := λvλ
∀w¬Rev(v,w)
u .Indv2,A(v2)vvMBaseMStep nil Tnil v=v nil InitRev

with

MBase := λv1λ
v1nil=v
u1

.Compat { v | ∀w¬Rev(v, w) } vv1

(Symm v1v(Trans v1(v1 nil)v(L1v1)u1))u,

MStep := λx,v2λ
A(v2)
uIH

λv1λ
v1(xv2)=v
u1

λwλRev(v1,w)
u2

.

uIH(v1x)(Trans ((v1x)v2)(v1(xv2))v(L2v1xv2)u1)

(xw)
(
GenRev v1wxu2

)
.

Again one can interactively generate this proof in Minlog and print its lambda-term

by proof-to-expr. The result (after renaming bound variables and writing LA for

ListAppend) is given in Figure 3.

We now have a proof M of ∀v ∃̃wRev(v, w) from the clauses InitRev : D1 and

GenRev : D2. Both are definite formulas without ⊥. Also Rev(v, w) =: G is a goal

formula not containing ⊥. Hence DF
i is Di and GF is G. Moreover D1, D2 and G are

negative Harrop formulas. Therefore �t is empty here and for the extracted term [[M∃]]
of the derivation M∃ of D1 → D2 → ∃wRev(v, w) (obtained from M by substituting

∃wRev(v, w) for⊥) we can derive D1 → D2 → Rev(v, [[M∃]]). The term neterm ma-

chine extracted from a formalization of the proof above is (after “animating” Compat)

[v0]
(Rec list nat=>list nat=>list nat=>list nat)v0([v1,v2]v2)
([x1,v2,g3,v4,v5]g3(v4:+:x1:)(x1::v5))
(Nil nat)
(Nil nat)
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(lambda (v0)
(lambda (u)
((((((((|Ind| v0) v0)

(lambda (v1)
(lambda (u1)
((((|Compat| v0) v1)

(((|Symm| v1) v0)
(((((|Trans| v1) ((|LA| v1) ’())) v0)

(|LOne| v1))
u1)))

u))))
(lambda (x)
(lambda (v2)
(lambda (uIH)
(lambda (v1)
(lambda (u1)
(lambda (w)
(lambda (u2)
((((uIH ((|LA| v1) (cons x ’())))

(((((|Trans|
((|LA|

((|LA| v1) (cons x ’())))
v2))

((|LA| v1) (cons x v2)))
v0)

(((|LTwo| v1) x) v2))
u1))

(cons x w))
((((|Intro| v1) w) x) u2))))))))))

’())
|Truth-Axiom|)

’())
|Intro|)))

Figure 3. Expression for the list reversal proof

with g a variable for binary functions on lists. To run this algorithm one has to normalize

the term obtained by applying neterm to a list:

(pp (nt (mk-term-in-app-form neterm (pt "1::2::3::4:"))))
; 4::3::2::1:

In fact, the underlying algorithm defines an auxiliary function h by

h(nil, v2, v3) := v3, h(x :: v1, v2, v3) := h(v1, v2 :+: x:, x :: v3)
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and gives the result by applying h to the original list and twice nil.
Notice that the second argument of h is not needed. However, its presence makes

the algorithm quadratic rather than linear, because in each recursion step v2 :+: x: is

computed, and the list append function :+: is defined by recursion over its first argument.

We will be able to get rid of this superfluous second argument by redoing the proof, this

time taking “uniformity” into account.

4. Uniformity

Recall that in the weak existence proof for reverted lists in 3.5 we have made use of an

auxiliary proposition

∀v2A(v2) with A(v2) := ∀v1

(
v1 :+: v2 = v → ∀w¬Rev(v1, w)

)
.

It turns out that its proof (by induction on v2) “does not use v1 computationally”, and

hence that we can replace ∀v1 by a “uniform quantifier” ∀U
v1

. This will lead to a better

algorithm. We first explain the notions involved.

4.1. Uniform proofs

We extend the definition of the extracted term of a derivation to the case where our

formulas may involve the uniform universal quantifier ∀U. Using this concept we define

the notion of a uniform proof, which gives a special treatment to ∀U. More precisely, for

a derivation M , we now simultaneously define

• its extracted term [[M ]] of type τ(A), and

• when M is uniform.

For derivations MA where τ(A) = ε (i.e., A is a Harrop formula) let [[M ]] := ε (the null-
term symbol); every such derivation is uniform. Now assume that M derives a formula

A with τ(A) �= ε. We extend the definition in 2.1 by

[[(λxρM)∀
U
xA]] := [[M∀U

xAr]] := [[M ]].

In all the rules uniformity is preserved, except possibly in the introduction rule for the

uniform universal quantifier: (λxρM)∀
U
xA is uniform if M is and – in addition to the

usual variable condition – x /∈ FV([[M ]]).

Remark. It may happen that a uniform proof has non-uniform subproofs: there are no

restrictions concerning ∀U in subproofs ending with a Harrop formula: all such subproofs

are uniform by definition.
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4.2. Introducing uniformities

To apply the concept of uniformity to our present proof for list reversal, we certainly

need to know which occurrences of universal quantifiers can be made uniform.

Clearly this cannot be done everywhere. For instance, the induction axiom

Indv,A(v) : ∀v

(
A(nil)→ ∀x,v(A(v) → A(x :: v)) → A(vL(N))

)
requires non-uniform universal quantifiers ∀v and ∀x,v, because otherwise the Soundness

Theorem would not hold. For the same reason the existence introduction and elimination

axioms

∃+ : ∀x(A(xρ) → ∃xA(xρ)),

∃− : ∃xA(xρ) → ∀x(A(xρ) → C) → C with x /∈ FV(C)

need non-uniform quantifiers ∀x.

Having identified some ∀-occurrences as non-uniform, we need to propagate this

information through the entire proof. Here we follow an idea dating back to Gentzen [6],

about occurrences of formulas in a proof being connected (“verbunden”). However, in

our case we will need to define when two occurrences of a universal quantifier in a proof

are connected. The definition is an inductive one, with the following clauses:

• In an axiom ∀P A(P ) whose predicate variable P is substituted with a formula B,

every occurrence of a universal quantifier in B is connected with all its copies in

the (possibly many) occurrences of P in A(P ).
• In an application of the→+ rule

[u : A]

| M
B →+u

A → B

each occurrence of a universal quantifier in the assumption u : A is connected

with the corresponding occurrence of this quantifier in premise A of the end for-

mula A → B. Moreover, each occurrence of ∀ in the conclusion B of the end for-

mula A → B is connected with the corresponding occurrence in the end formula

B of M .

• In an application of the→− rule

| M
A → B

| N
A →−

B

each occurrence of a universal quantifier in the premise A of the end formula

A → B of M is connected with the corresponding occurrence in the end formula

A of N . Moreover, each occurrence of ∀ in the conclusion B of the end formula
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A → B of M is connected with the corresponding occurrence in the end formula

B.

For the rules ∀+ and ∀− the clauses are similar (and even more straightforward).

Now the first step in introducing uniformities into a proof is to mark as non-uniform

all occurrences of ∀ which are connected to a non-uniform occurrence of a universal

quantifier in an induction axiom or an ∃+ or ∃− axiom.

The next step consists in considering the remaining occurrences of ∀ in formulas of

the proof, and to group them in equivalence classes w.r.t. the connection relation. Then

we look at a topmost occurrence of a non-marked ∀, and try to make it and all others

connected with it uniform. After having done this, we check whether the resulting proof

is uniform, in the sense of the definition in 4.1. If it is, we keep these uniformities; if

not, we change all ∀’s connected with our topmost one back to non-uniform ones. This

procedure can be iterated until all ∀’s in the proof have been considered.

4.3. List reversal with uniformities

We now apply this general method of introducing uniformities to the present case of list

reversal. To this end we describe our proof in more detail, particularly by writing proof

trees with formulas. Let ¬∃A := A → ∃wRev(v, w). M∃
Base is the derivation

Compat { v | ∀w¬∃Rev(v, w) } v v1

v=v1 → ∀w¬∃Rev(v, w) → ∀w¬∃Rev(v1, w)
| N

v=v1

∀w¬∃Rev(v, w) → ∀w¬∃Rev(v1, w) ∃+ : ∀w¬∃Rev(v, w)

∀w¬∃Rev(v1, w) →+u1
v1 nil = v → ∀w¬∃Rev(v1, w)

∀v1

(
v1 nil = v → ∀w¬∃Rev(v1, w)

)
(= A(nil))

where N is a derivation involving L1 with a free assumption u1 : v1 nil=v.

M∃
Step is the derivation in Figure 4, where N1 is a derivation involving L2 with free

assumption u1 : v1(xv2)=v, and N2 is one involving GenRev with the free assumption

u2 : Rev(v1, w).
All quantifiers ∀w are connected to the ∀w in ∃+ (in M∃

Base) and hence need to

be non-uniform. Also the quantifiers ∀x and ∀v2 in the end formula of M∃
Step must be

non-uniform. However, all occurrences of the universal quantifier ∀v1 can be marked as

uniform.

4.4. Extraction

The extracted term neterm then is

[v0]
(Rec list nat=>list nat=>list nat)v0([v1]v1)
([x1,v2,f3,v4]f3(x1::v4))
(Nil nat)

H. Schwichtenberg / Content in Proofs of List Reversal 283



u0 : A(v2) v1x

(v1x)v2=v → ∀w¬∃Rev(v1x, w)
| N1

(v1x)v2=v

∀w¬∃Rev(v1x, w) xw

¬∃Rev(v1x, xw)
| N2

Rev(v1x, xw)
∃wRev(v, w) →+u2¬∃Rev(v1, w)

∀w¬∃Rev(v1, w) →+u1
v1(xv2) = v → ∀w¬∃Rev(v1, w)

∀v1

(
v1(xv2) = v → ∀w¬∃Rev(v1, w)

)
(= A(xv2)) →+u0

A(v2) → A(xv2)
∀x,v2(A(v2) → A(xv2))

Figure 4. The step derivation with uniformity

with f a variable for unary functions on lists. Again, to run this algorithm one has to

normalize the term obtained by applying neterm to a list:

(pp (nt (mk-term-in-app-form neterm (pt "1::2::3::4:"))))
; 4::3::2::1:

This time, the underlying algorithm defines an auxiliary function g by

g(nil, w) := w, g(x :: v, w) := g(v, x :: w)

and gives the result by applying g to the original list and nil. So we have obtained (by

automated extraction from a weak existence proof involving uniformity) the standard

linear algorithm for list reversal, with its use of an accumulator.
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[7] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunkts. Dialectica,

12:280–287, 1958.

H. Schwichtenberg / Content in Proofs of List Reversal 285



This page intentionally left blank



Proof Theory, Large Functions

and Combinatorics

Stanley S. Wainer

School of Mathematics, University of Leeds, UK
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1. Introduction – Ramsey’s Theorem

These lecture notes bring together, in detail, some well–established results by various

authors (the present one included) in a central area of mathematical logic where proofs

and computations occur as opposite sides of the same coin. The emphasis here is on

the analysis of proof–theoretic complexity (though some of the combinatorial results

were first obtained by different methods) and the hope is that our treatment will serve

as a further illustration of the fundamental nature of proof theory as a unifying tool in

mathematical logic and computer science.

The proofs of certain well known, basic theorems of mathematics demand the ex-

istence, or prior computation, of “large” numerical functions. Proof theory, on the other

hand, provides complexity, and rate-of-growth classifications of the functions “provably

computable” or “provably recursive” in given formal theories basic to the foundations of

mathematics. Thus if a mathematical theorem is expressible in the language of a given

theory T but necessitates (implies) the existence of computable functions whose rates of

growth exceed those provably computable in it, then that theorem is “independent” of T ,

i.e. not provable. Such independence results serve to measure the mathematical power of

the theories in question, and since the famous result of Paris–Harrington [8] published in

1977 (and treated below) a whole industry of “Reverse Mathematics” has developed, see

Simpson [11]. A rich source of examples is finite combinatorics, particularly “Ramsey

Theory”, see Graham, Rothschild and Spencer [4], and in this paper we carry through

the proof theoretical analysis of two fundamental first-order theories IΔ0(exp) and PA,

to show how the Finite Ramsey Theorem and, respectively, the Paris–Harrington modi-

fication of it, yield independence results.

Ramsey’s Theorem [9] (1930) has a wide variety of finite and infinite versions. For

infinite sets it says that for every positive integer n, each finite partitioning (or “colour-

ing”) of the n-element subsets of an infinite set X has an infinite homogeneous or
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“monochromatic” subset Y ⊂ X , meaning all n-element subsets of Y have the same

colour (lie in the same partition).

The Finite Ramsey Theorem is usually stated as:

∀n,k,l ∃m (m → (k)n
l )

where, letting m[n] denote the collection of all n-element subsets of m = {0, . . . , m−1},

m → (k)n
l means that for every function (colouring) c : m[n] → l there is a subset

Y ⊂ m of cardinality at least k, which is homogeneous for c, i.e. c is constant on the

n-element subsets of Y .

Whereas by Jockusch [5] the Infinite Ramsey Theorem (with n varying) is not arith-

metically expressible (even by restricting to recursive partitions), the Finite Ramsey The-

orem clearly is. For by standard coding, the relation m → (k)n
l is easily seen to be ele-

mentary recursive (i.e. its characteristic function is definable from addition and truncated

subtraction by bounded sums and products) so it is expressible as a formula of arithmetic

with bounded quantifiers only. The Finite Ramsey Theorem therefore asserts the exis-

tence of a recursive function which computes the least such m from n, k, l. This function

is known to have superexponential growth-rate, see [4], so it is primitive recursive but

not elementary, because every elementary function is bounded by an iterated exponen-

tial of fixed (not varying) stack–height. We show next that the provably recursive func-

tions of IΔ0(exp) are elementary. Thus the Finite Ramsey Theorem is independent of

IΔ0(exp) though it is provable in the Σ1–inductive fragment of Peano Arithmetic. Later,

we characterize the provably recursive functions of PA itself, and thereby show that the

Modified Finite Ramsey Theorem of Paris and Harrington has growth–rate beyond even

PA!

2. Basic Arithmetic in IΔ0(exp)

IΔ0(exp) is a theory in classical logic, based on the language {=, 0, S, P,+,−· , · , exp2}
where S, P denote the successor and predecessor functions. We shall generally use infix

notations x+1, x−· 1, 2x rather than the more formal S(x), P (x), exp2(x) etcetera. The

axioms of IΔ0(exp) are the usual axioms for equality, the following defining axioms for

the constants:

x + 1 �= 0 x + 1 = y + 1 → x = y
0 −· 1 = 0 (x + 1) −· 1 = x
x + 0 = x x + (y + 1) = (x + y) + 1
x −· 0 = x x −· (y + 1) = (x −· y) −· 1
x · 0 = 0 x · (y + 1) = (x · y) + x
20 = 0 + 1 2x+1 = 2x + 2x

and the axiom-scheme of “bounded induction”:

B(0) ∧ ∀x(B(x) → B(x + 1)) → ∀xB(x)

for all “bounded” formulas B as defined below.

Definition 2.1 We write t1 ≤ t2 for t1 −· t2 = 0 and t1 < t2 for t1 + 1 ≤ t2, where t1,

t2 denote arbitrary terms of the language.
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A Δ0- or bounded formula is a formula in the langage of IΔ0(exp), in which all

quantifiers occur bounded, thus ∀x<t B(x) stands for ∀x(x < t → B(x)) and ∃x<t B(x)
stands for ∃x(x < t ∧ B(x)) (similarly with ≤ instead of <).

A Σ1-formula is any formula of the form ∃x1∃x2 . . .∃xk
B where B is a bounded

formula. The prefix of unbounded existential quantifiers is allowed to be empty, thus

bounded formulas are Σ1.

The first task in any axiomatic theory is to develop, from the axioms, those basic al-

gebraic properties which are going to be used frequently without further reference. Thus,

in the case of IΔ0(exp) we need to establish the usual associativity, commutativity and

distributivity laws for addition and multiplication, the laws of exponentiation, and rules

governing the relations ≤ and < just defined. These are mostly tedious and straightfor-

ward to prove, using inductions on quantifier–free formulas.

Lemma 2.2 In IΔ0(exp) one can prove (the universal closures of)
the associativity law for addition: x + (y + z) = (x + y) + z
the associativity law for multiplication: x · (y · z) = (x · y) · z
the distributivity law: x · (y + z) = x · y + x · z
the commutativity laws: x + y = y + x and x · y = y · x
the law: x −· (y + z) = (x −· y) −· z
case-distinction: x = 0 ∨ x = (x −· 1) + 1
and the exponentiation law: 2x+y = 2x · 2y.

Lemma 2.3 The following (and their universal closures) are provable in IΔ0(exp):

1. x ≤ 0 ↔ x = 0 and ¬x < 0
2. 0 ≤ x and x ≤ x and x < x + 1
3. x < y + 1 ↔ x ≤ y
4. x ≤ y ↔ x < y ∨ x = y
5. x ≤ y ∧ y ≤ z → x ≤ z and x < y ∧ y < z → x < z
6. x ≤ y ∨ y < x
7. x < y → x + z < y + z
8. x < y → x · (z + 1) < y · (z + 1)
9. x < 2x and x < y → 2x < 2y .

Of course in any theory many new functions and relations can be defined out of the

given constants. What we are interested in are those which can not only be defined in the

language of the theory, but also can be proven to exist. This gives rise to one of the main

definitions in this paper.

Definition 2.4 We say that a function f : Nk → N is provably Σ1 in an arithmetical
theory T if there is a Σ1-formula F (�x, y), called a “defining formula” for f , such that

• f(�n) = m if and only if F (�n,m) is true (in the standard model)

• T � ∃y F (�x, y)
• T � F (�x, y) ∧ F (�x, y′) → y = y′

Since Σ1-definable functions are recursive, we shall often use the terms “provably Σ1”

and “provably recursive” synonymously.
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If, in addition, F is a bounded formula and there is a bounding term t(�x ) for f such

that T � F (�x, y) → y < t(�x ) then we say that f is provably bounded in T. In this case

we clearly have T � ∃y<t(�x ) F (�x, y).

The importance of this definition is brought out by the following:

Theorem 2.5 If f is provably Σ1 in T we may conservatively extend T by adding a new
function symbol for f together with the defining axiom F (�x, f(�x )).

Proof. This is simply because any model M of T can be made into a model (M, f)
of the extended theory, by interpreting f as the function on M uniquely determined

by the second and third conditions above. So if A is a closed formula not involving f ,

provable in the extended theory, then it is true in (M, f) and hence true in M. Then by

Completeness, A must already be provable in T .

We next develop the stock of functions provably Σ1 in IΔ0(exp), and prove that

they are exactly the elementary functions.

Lemma 2.6 Each term defines a provably bounded function of IΔ0(exp).

Proof. Let f be the function defined explicitly by f(�n) = t(�n) where t is any term of

IΔ0(exp). Then we may take y = t(�x ) as the defining formula for f , since ∃y (y =
t(�x )) derives immediately from the axiom t(�x ) = t(�x ), and y = t(�x ) ∧ y′ = t(�x ) →
y = y′ is an equality axiom. Furthermore, as y = t(�x ) is a bounded formula and y =
t → y < t + 1 is provable, f is provably bounded.

Lemma 2.7 Define 2k(x) by 20(x) = x and 2k+1(x) = 22k(x). Then for every term
t(x1, . . . , xn) built up from the constants 0, S, P,+,−· , · , exp2, there is a k such that

IΔ0(exp) � t(x1, . . . , xn) < 2k(x1 + . . . + xn).

Proof. We can prove in IΔ0(exp) both 0 < 2x and x < 2x. Now suppose t is any term

constructed from subterms t0, t1 by application of one of the function constants. Assume

inductively that t0 < 2k0(s0) and t1 < 2k1(s1) are both provable, where s0, s1 are the

sums of all variables appearing in t0, t1 respectively. Let s be the sum of all variables

appearing in either t0 or t1, and let k be the maximum of k0 and k1. Then, by the various

arithmetical laws in the preceeding lemmas, we can prove t0 < 2k(s) and t1 < 2k(s),
and it is then a simple matter to prove t0+1 < 2k+1(s), t0−· 1 < 2k(s), t0−· t1 < 2k(s),
t0 + t1 < 2k+1(s), t0 · t1 < 2k+1(s) and 2t0 < 2k+1(s). Hence IΔ0(exp) proves

t < 2k+1(s).

Lemma 2.8 Suppose f is defined by composition

f(�n) = g0( g1(�n), . . . , gm(�n) )

from functions g0, g1, . . . , gm, each of which is provably bounded in IΔ0(exp). Then f
is provably bounded in IΔ0(exp).

Proof. By the definition of “provably bounded” there is, for each gi (i ≤ m) a bounded

defining formula Gi and (by the last lemma) a number ki such that, for 1 ≤ i ≤ m,

IΔ0(exp) � ∃yi<2ki
(s) Gi(�x, yi), where s is the sum of the variables �x; and for i = 0,
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IΔ0(exp) � ∃y<2k0 (s0) G0(y1, . . . , ym, y)

where s0 is the sum of the variables y1, . . . , ym. Let k := max(k0, k1, . . . , km) and let

F (�x, y) be the bounded formula

∃y1<2k(s) . . . ∃ym<2k(s) C(�x, y1, . . . , ym, y)

where C(�x, y1, . . . , ym, y) is the conjunction

G1(�x, y1) ∧ . . . ∧ Gm(�x, ym) ∧ G0(y1, . . . , ym, y).

Then clearly, F is a defining formula for f , and by prenex operations,

IΔ0(exp) � ∃y F (�x, y).

Furthermore, by the uniqueness condition on each Gi, we can also prove in IΔ0(exp)

C(�x, y1, . . . , ym, y) ∧ C(�x, z1, . . . , zm, y′)
→ y1 = z1 ∧ . . . ∧ ym = zm ∧ G0(y1, . . . , ym, y) ∧ G0(y1, . . . , ym, y′)
→ y = y′

and hence by the quantifier rules of logic,

IΔ0(exp) � F (�x, y) ∧ F (�x, y′) → y = y′.

Thus f is provably Σ1 with F as a bounded defining formula, and it only remains to find

a bounding term. But IΔ0(exp) proves

C(�x, y1, . . . , ym, y) → y1 < 2k(s) ∧ . . . ∧ ym < 2k(s) ∧ y < 2k(y1 + . . . + ym)

and

y1 < 2k(s) ∧ . . . ∧ ym < 2k(s) → y1 + . . . + ym < 2k(s) · m.

Therefore by taking t(�x ) to be the term 2k(2k(s) · m) we obtain

IΔ0(exp) � C(�x, y1, . . . , ym, y) → y < t(�x )

and hence

IΔ0(exp) � F (�x, y) → y < t(�x ).

This completes the proof.

Lemma 2.9 Suppose f is defined by bounded minimization

f(�n,m) = μk<m ( g(�n, k) = 0 )

from a function g which is provably bounded in IΔ0(exp). Then f is provably bounded
in IΔ0(exp).
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Proof. Let G be a bounded defining formula for g and let F (�x, z, y) be the bounded

formula

y ≤ z ∧ ∀i<y ¬G(�x, i, 0) ∧ (y = z ∨ G(�x, y, 0)).

Obviously F (�n,m, k) is true in the standard model if and only if either k is the least

number less than m such that g(�n, k) = 0, or there is no such and k = m. But this is

exactly what it means for k to be the value of f(�n,m), so F is a defining formula for f .

Furthermore IΔ0(exp) � F (�x, z, y) → y < z + 1, so t(�x, z) = z + 1 can be taken as

a bounding term for f . Also it is clear that we can prove

F (�x, z, y) ∧ F (�x, z, y′) ∧ y < y′ → G(�x, y, 0) ∧ ¬G(�x, y, 0)

and similarly with y and y′ interchanged. Therefore

IΔ0(exp) � F (�x, z, y) ∧ F (�x, z, y′) → ¬y < y′ ∧ ¬y′ < y

and hence, because y < y′ ∨ y′ < y ∨ y = y′ is provable, we have

IΔ0(exp) � F (�x, z, y) ∧ F (�x, z, y′) → y = y′.

It remains to check that IΔ0(exp) � ∃y F (�x, z, y). This is the point where bounded

induction comes into play, since ∃y F (�x, z, y) is a bounded formula. We prove it by

induction on z.

For the basis, recall that y ≤ 0 ↔ y = 0 and ¬ i < 0 are provable. Therefore

F (�x, 0, 0) is provable, and hence so is ∃y F (�x, 0, y).
For the induction step from z to z + 1, we can prove y ≤ z → y + 1 ≤ z + 1 and,

using i < y + 1 ↔ i < y ∨ i = y,

∀i<y ¬G(�x, i, 0) ∧ (y = z ∧ ¬G(�x, y, 0)) → ∀i<y+1¬G(�x, i, 0) ∧ y + 1 = z + 1

from which follows F (�x, z, y) → F (�x, z+1, y+1)∨F (�x, z+1, y) and hence, by logic,

∃yF (�x, z, y) → ∃yF (�x, z + 1, y) which is the induction step. This completes the proof.

Theorem 2.10 Every elementary function is provably bounded in the theory IΔ0(exp).

Proof. The elementary functions can be characterized as those definable from the con-

stants 0, S, P , +, −· , ·, exp2 by composition and bounded minimization. The above

lemmas show that each such function is provably bounded in IΔ0(exp).

2.1. The provably recursive functions of IΔ0(exp)

Definition 2.11 A closed Σ1-formula ∃�z B(�z), with B a bounded formula, is said to be

“true at m”, and we write m |= ∃�z B(�z), if there are numbers �m = m1,m2, . . . , ml

all less than m, such that B(�m) is true (in the standard model). A finite set Γ of closed

Σ1-formulas is “true at m”, written m |= Γ, if at least one of them is true at m.

If Γ(x1, . . . , xk) is a finite set of Σ1 formulas all of whose free variables occur

among x1, . . . , xk, and if f : Nk → N, then we write f |= Γ to mean that for all numerical

assignments �n = n1, . . . , nk to the variables �x = x1, . . . , xk we have f(�n) |= Γ(�n).
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Note 2.12 (Persistence) For sets Γ of closed Σ1-formulas, if m |= Γ and m < m′ then

m′ |= Γ. Similarly for sets Γ(�x ) of Σ1-formulas with free variables, if f |= Γ and

f(�n) ≤ f ′(�n) for all �n ∈ Nk then f ′ |= Γ.

Lemma 2.13 If Γ(�x ) is a finite set of Σ1-formulas (whose disjunction is) provable in
IΔ0(exp) then there is an elementary function f , strictly increasing in each of its vari-
ables, such that f |= Γ.

Proof. It is convenient to use a Tait-style [12] formalism for the logic of IΔ0(exp).
Thus we derive finite sets Γ of formulas written in negation normal form, where Γ, A is

shorthand for Γ ∪ {A} etcetera. The axioms will be all sets of formulas Γ which contain

either a complementary pair of equations t1 = t2, t1 �= t2, or an identity t = t, or an

equality axiom t1 �= t2,¬ e(t1), e(t2) where e(t) is any equation or inequation with a

distinguished subterm t, or a substitution instance of one of the defining axioms for the

constants. The logical rules are standard, and the cut rule and induction rule (replacing

the equivalent axiom scheme) are respectively:

Γ, C Γ, ¬C

Γ
Γ, B(0) Γ, ¬B(y), B(y + 1)

Γ, B(t)

where C is the cut formula and, in the induction rule, B is any bounded formula, y is not

free in Γ and t is any term.

Note that if Γ is provable in IΔ0(exp) then it has a proof in the formalism just

described, in which all cut formulas are Σ1. For if Γ is classically derivable from non-

logical axioms A1, . . . , As then there is a cut-free proof in Tait-style logic of ¬A1, Δ, Γ
where Δ = ¬A2, . . . ,¬As. We show how to cancel ¬A1 using a Σ1 cut. If A1 is an

induction axiom on the formula B we have a cut-free proof in logic of

B(0) ∧ ∀y(¬B(y) ∨ B(y + 1)) ∧ ∃x¬B(x), Δ, Γ

and hence, by inversion, cut-free proofs of B(0), Δ, Γ and ¬B(y), B(y + 1), Δ, Γ and

∃x¬B(x), Δ, Γ. From the first two of these we obtain B(x), Δ, Γ by the induction rule

above, then ∀xB(x), Δ, Γ, and then from the third we obtain Δ, Γ by a cut on the Σ1-

formula ∃x¬B(x). If A1 is the universal closure of any other (quantifier-free) axiom then

we immediately obtain Δ, Γ by a cut on the Σ1-formula ¬A1. Having thus cancelled

¬A1 we can similarly cancel each of ¬A2, . . . ,¬As in turn, so as to yield the desired

proof of Γ which only uses cuts on Σ1-formulas.

Now, choosing such a proof for Γ(�x ), we proceed by induction on its height, show-

ing at each new proof-step how to define the required elementary function f such that

f |= Γ.

(i) If Γ(�x ) is an axiom then for all �n, Γ(�n) contains a true atom. Therefore f |= Γ
for any f . To make f sufficiently increasing choose f(�n) = n1 + . . . + nk.

(ii) If Γ, B0∨B1 arises by an application of the ∨-rule from Γ, B0, B1 then (because

of our definition of Σ1-formula) B0 and B1 must both be bounded formulas. Thus by

our definition of “true at”, any function f satisfying f |= Γ, B0, B1 must also satisfy

f |= Γ, B0 ∨ B1.

(iii) Only a slightly more complicated argument applies to the dual case where

Γ, B0 ∧ B1 arises by an application of the ∧-rule from the premises Γ, B0 and Γ, B1.
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For if f0(�n) |= Γ(�n), B0(�n) and f1(�n) |= Γ(�n), B1(�n) for all �n, then it is easy to see

(by persistence) that f |= Γ, B0 ∧ B1 where f(�n) = f0(�n) + f1(�n).
(iv) If Γ, ∀yB(y) arises from Γ, B(y) by the ∀-rule (y not free in Γ) then since all the

formulas are Σ1, ∀yB(y) must be bounded and so B(y) must be of the form y �<t ∨ B′(y)
for some term t. Now assume f0 |= Γ, y �< t,B′(y) for some increasing elementary

function f0. Then for all assignments �n to the free variables �x, and all assignments k to

the variable y, f0(�n, k) |= Γ(�n), k �< t(�n), B′(�n, k). Therefore by defining f(�n) =
Σk<g(�n) f0(�n, k) where g is an increasing elementary function bounding t, we easily see

that either f(�n) |= Γ(�n) or else, by persistence, B′(�n, k) is true for every k < t(�n).
Hence f |= Γ, ∀yB(y) as required, and clearly f is elementary since f0 and g are.

(v) Now suppose Γ, ∃yA(y, �x ) arises from Γ, A(t, �x ) by the ∃-rule, where A is Σ1.

Then by the induction hypothesis there is an elementary f0 such that for all �n, f0(�n) |=
Γ(�n), A(t(�n), �n). Then either f0(�n) |= Γ(�n) or else f0(�n) bounds true witnesses for all

the existential quantifiers already in A(t(�n), �n). Therefore by choosing any elementary

bounding function g for the term t, and defining f(�n) = f0(�n)+g(�n), we see that either

f(�n) |= Γ(�n) or f(�n) |= ∃yA(y, �n) for all �n.

(vi) If Γ comes about by the cut rule with Σ1 cut formula C ≡ ∃�zB(�z) then the

two premises are Γ, ∀�z ¬B(�z) and Γ, ∃�z B(�z). The universal quantifiers in the first

premise can be inverted (without increasing proof-height) to give Γ, ¬B(�z) and since

B is bounded the induction hypothesis can be applied to this to give an elementary f0

such that for all numerical assignments �n to the (implicit) variables �x and all assignments

�m to the new free variables �z, f0(�n, �m) |= Γ(�n), ¬B(�n, �m). Applying the induc-

tion hypothesis to the second premise gives an elementary f1 such that for all �n, either

f1(�n) |= Γ(�n) or else there are fixed witnesses �m < f1(�n) such that B(�n, �m) is true.

Therefore if we define f by substitution from f0 and f1 thus:

f(�n) = f0(�n, f1(�n), . . . , f1(�n))

then f will be elementary, greater than or equal to f1, and strictly increasing since both

f0 and f1 are. Furthermore f |= Γ. For otherwise there would be a tuple �n such that

Γ(�n) is not true at f(�n) and hence, by persistence, not true at f1(�n). So B(�n, �m) is true

for certain numbers �m < f1(�n). But then f0(�n, �m) < f(�n) and so, again by persistence,

Γ(�n) cannot be true at f0(�n, �m). This means B(�n, �m) is false, by the above, and so we

have a contradiction.

(vii) Finally suppose Γ(�x ), B(�x, t) arises by an application of the induction rule on

the bounded formula B from premises Γ(�x ), B(�x, 0) and Γ(�x ), ¬B(�x, y), B(�x, y+1).
Applying the induction hypothesis to each of the premises one obtains increasing ele-

mentary functions f0 and f1 such that for all �n and all k, f0(�n) |= Γ(�n), B(�n, 0) and

f1(�n, k) |= Γ(�n), ¬B(�n, k), B(�n, k + 1). Define f(�n) = f0(�n) + Σk<g(�n) f1(�n, k)
where g is some increasing elementary bounding function for the term t. Then f is ele-

mentary and increasing, and by persistence from the above properties of f0 and f1, either

f(�n) |= Γ(�n), or else B(�n, 0) and B(�n, k) → B(�n, k + 1) are true for all k < t(�n). In

this latter case B(�n, t(�n)) is true by induction on k up to the value of t(�n). Either way,

we have f |= Γ(�x ), B(�x, t(�x )) and this completes the proof.

Theorem 2.14 A number-theoretic function is elementary if and only if it is provably
recursive in IΔ0(exp).
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Proof. We have already shown that every elementary function is provably bounded, and

hence provably Σ1, in IΔ0(exp). Conversely suppose f is provably Σ1. Then there is

a Σ1-formula F (�x, y) ≡ ∃z1 . . .∃zk
B(�x, y, z1 . . . zk) which defines f and such that

IΔ0(exp) � ∃y F (�x, y). By the lemma immediately above, there is an elementary

function g such that for every tuple of arguments �n there are numbers m0,m1, . . . , mk

less than g(�n) satisfying the bounded formula B(�n,m0,m1, . . . , mk). Using elemen-

tary sequence-coding functions, let h(�n) = 〈g(�n), g(�n), . . . , g(�n)〉 so that if m =
〈m0,m1, . . . , mk〉 where m0,m1, . . . , mk < g(�n), then m < h(�n). Then, because f(�n)
is the unique m0 for which there are m1, . . . , mk satisfying B(�n,m0,m1, . . . , mk), we

can define f as follows:

f(�n) = ( μm<h(�n) B(�n, (m)0, (m)1, . . . , (m)k) )0.

Since B is a bounded formula of IΔ0(exp) it is elementarily decidable, and since the

least number operator μ is bounded by the elementary function h, the entire definition of

f therefore involves only elementary operations. Hence f is an elementary function.

3. The Provably Recursive Functions of Arithmetic

This section develops the classification theory of the provably recursive functions of

arithmetic. The topic has a long history tracing back to Kreisel [7] who, in setting out his

“no-counter-example” interpretation, gave the first explicit characterization of the func-

tions “computable in” arithmetic, as those definable by recursions over standard well-

orderings of the natural numbers with order-types less than ε0. Such a characterization

was perhaps not so surprising in light of the earlier, groundbreaking work of Gentzen [3],

showing that these well-orderings are just the ones over which one can prove transfi-

nite induction in arithmetic, and thereby prove the totality of functions defined by recur-

sions over them. Subsequent independent work by Schwichtenberg and the present au-

thor around 1970, extending previous results of Grzegorczyk and Robbin, then provided

other complexity characterizations in terms of natural, simply-defined hierarchies of so-

called “fast growing” bounding functions. (This is a good place to advertise our forth-

coming book [10].) What was surprising was the deep connection later discovered by Ke-

tonen and Solovay [6], between these bounding functions and a variety of combinatorial

results related to the “modified” Finite Ramsey Theorem of Paris and Harrington [8]. It

is through this connection that one gains immediate access to a range of mathematically

meaningful independence results for arithmetic and stronger theories. Thus, classifying

the provably recursive functions of a theory not only gives a measure of its computational

power, it also serves to delimit its mathematical power in providing natural examples of

true mathematical statements it cannot prove.

The theories we shall be concerned with in this chapter are PA (Peano Arithmetic)

and its inductive fragments IΣn. We take, as our formalization of PA, IΔ0(exp) together

with all induction axioms

A(0) ∧ ∀a(A(a) → A(a + 1)) → A(t)

for arbitrary formulas A and (substitutible) terms t. IΣn has the same base-theory

IΔ0(exp), but the induction axioms are restricted to formulas A of the form Σi or Πi

with i ≤ n, defined for the purposes of this chapter as follows:
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Definition 3.1 Σ1-formulas have already been defined. A Π1 formula is the dual or (clas-

sically) negation of a Σ1-formula. For n > 1, a Σn formula is one formed by prefixing

just one existential quantifier to a Πn−1 formula, and a Πn formula is one formed by

prefixing just one universal quantifier to a Σn−1 formula. Thus only in the cases Σ1 and

Π1 do strings of like quantifiers occur. In all other cases, strings of like quantifiers are

assumed to have been contracted into one such, using the pairing functions which are

available in IΔ0(exp). This is no real restriction, but merely a matter of convenience for

later results.

It doesn’t matter whether one restricts to Σn or Πn induction formulas since, in

the presence of the subtraction function, induction on a Πn formula A is reducible to

induction on its Σn dual ¬A, and vice-versa. For if one replaces A(a) by ¬A(t −· a) in

the induction axiom, and then contraposes, one obtains

A(t −· t) ∧ ∀a(A(t −· (a + 1)) → A(t −· a)) → A(t −· 0)

from which follows the induction axiom for A(a) itself, since t −· t = 0, t −· 0 = t, and

t −· a = (t −· (a + 1)) + 1 if t −· a �= 0.

Historically of course, Peano’s Axioms only include definitions of zero, successor,

addition and multiplication, whereas the base-theory we have chosen includes predeces-

sor, modified subtraction and exponentiation as well. We do this because IΔ0(exp) is

both a natural and convenient theory to have available from the start. However these extra

functions can all be provably Σ1-defined in IΣ1 from the “pure” Peano Axioms using

the Chinese Remainder Theorem, so we are not actually increasing the strength of any

of the theories here by including them. Furthermore the results in this chapter would not

at all be affected by adding to the base-theory any other elementary (or even primitive

recursive) functions one wishes.

3.1. Ordinals below ε0

Throughout the rest of this chapter, α, β, γ, δ, . . . will denote ordinals less than ε0. Every

such ordinal is either 0 or can be represented uniquely in so-called Cantor Normal Form

thus:

α = ωγ1 · c1 + ωγ2 · c2 + . . . + ωγk · ck

where γk < . . . < γ2 < γ1 < α and the coefficients c1, c2, . . . , ck are arbitrary positive

integers. If γk = 0 then α is a successor ordinal, written Succ(α), and its immediate

predecessor α − 1 has the same representation but with ck reduced to ck − 1. Otherwise

α is a limit ordinal, written Lim(α), and it has infinitely-many possible “fundamental

sequences”, i.e., increasing sequences of smaller ordinals whose supremum is α. How-

ever we shall pick out one particular fundamental sequence {α(n)} for each such limit

ordinal α, as follows: first write α as δ+ωγ where δ = ωγ1 ·c1 + . . .+ωγk · (ck −1) and

γ = γk. Assume inductively that when γ is a limit, its fundamental sequence {γ(n)} has

already been specified. Then define, for each n ∈ N,

α(n) =
{

δ + ωγ−1 · (n + 1) if Succ(γ)
δ + ωγ(n) if Lim(γ).
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Clearly {α(n)} is an increasing sequence of ordinals with supremum α. For ε0 itself we

choose the fundamental sequence ε0(n) = ω if n = 0 and ωε0(n−1) otherwise.

Definition 3.2 With each α < ε0 and each natural number n, associate a finite set of

ordinals α[n] as follows:

α[n] =

⎧⎨
⎩

∅ if α = 0
(α − 1)[n] ∪ {α − 1} if Succ(α)
α(n)[n] if Lim(α).

Lemma 3.3 For each α = δ + ωγ and all n,

α[n] = δ[n] ∪ { δ + ωγ1 · c1 + . . . + ωγk · ck | ∀i(γi ∈ γ[n] ∧ ci ≤ n) }.

Proof. By induction on γ. If γ = 0 then γ[n] is empty and so the right hand side is just

δ[n] ∪ {δ}, which is the same as α[n] = (δ + 1)[n] according to the definition above.

If γ is a limit then γ[n] = γ(n)[n] so the set on the right hand side is the same as

the one with γ(n)[n] instead of γ[n]. By the induction hypothesis applied to α(n) =
δ + ωγ(n), this set equals α(n)[n], which is just α[n] again by definition.

Now suppose γ is a successor. Then α is a limit and α[n] = α(n)[n] where α(n) =
δ +ωγ−1 · (n+1). This we can write as α(n) = α(n− 1)+ωγ−1 where, in case n = 0,

α(−1) = δ. By the induction hypothesis for γ − 1, the set α[n] therefore consists of

α(n − 1)[n] together with all ordinals of the form

α(n − 1) + ωγ1 · c1 + . . . + ωγk · ck

where for all i = 1, . . . , k, γi ∈ (γ−1)[n] and ci ≤ n. Similarly for each of α(n−1)[n],
α(n− 2)[n], ... , α(1)[n]. Since for each m ≤ n, α(m− 1) = δ + ωγ−1 ·m, this last set

is just the union of δ[n] together with all ordinals of the form

δ + ωγ−1 · m + ωγ1 · c1 + . . . + ωγk · ck

where m ≤ n and for all i = 1 . . . k, γi ∈ (γ − 1)[n] and ci≤n. But this is the set

required because γ[n] = (γ − 1)[n] ∪ {γ − 1}. This completes the proof.

Corollary 3.4 For every limit ordinal α < ε0 and every n, α(n) ∈ α[n+1]. Furthermore
if β ∈ γ[n] then ωβ ∈ ωγ [n] provided n �= 0.

Definition 3.5 The maximum coefficient of β = ωβ1 · b1 + . . . + ωβl · bl is defined

inductively to be the maximum of all the bi and all the maximum coefficients of the

exponents βi.

Lemma 3.6 If β < α and the maximum coefficient of β is ≤ n then β ∈ α[n].

Proof. By induction on α. Let α = δ+ωγ . If β < δ, then β ∈ δ[n] by IH and δ[n] ⊆ α[n]
by the lemma. Otherwise β = δ +ωβ1 · b1 + . . .+ωβk · bk with α > γ > β1 > . . . > βk

and bi ≤ n. By IH βi ∈ γ[n]. Hence β ∈ α[n] by the lemma.

Definition 3.7 Let Gα(n) denote the cardinality of the finite set α[n]. Then immediately

from the definition of α[n] we have
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Gα(n) =

⎧⎨
⎩

0 if α = 0
Gα−1(n) + 1 if Succ(α)
Gα(n)(n) if Lim(α).

The hierarchy of functions Gα is called the “slow growing hierarchy”.

Lemma 3.8 If α = δ + ωγ then for all n

Gα(n) = Gδ(n) + (n + 1)Gγ(n).

Therefore for each α < ε0, Gα(n) is the elementary function which results by substitut-
ing n + 1 for every occurrence of ω in the Cantor Normal Form of α.

Proof. By induction on γ. If γ = 0 then α = δ + 1, so Gα(n) = Gδ(n) + 1 = Gδ(n) +
(n+1)0 as required. If γ is a successor then α is a limit and α(n) = δ+ωγ−1 ·(n+1), so

by n+1 applications of the induction hypothesis for γ−1 we have Gα(n) = Gα(n)(n) =
Gδ(n)+(n+1)Gγ 1(n) · (n+1) = Gδ(n)+(n+1)Gγ(n) since Gγ−1(n)+1 = Gγ(n).
Finally, if γ is a limit then α(n) = δ + ωγ(n), so applying the induction hypothesis to

γ(n), we have Gα(n) = Gα(n)(n) = Gδ(n)+(n+1)Gγ(n)(n) which immediately gives

the desired result since Gγ(n)(n) = Gγ(n) by definition.

Definition 3.9 (Coding ordinals) Encode each ordinal β = ωβ1 ·b1+ωβ2 ·b2+. . .+ωβl ·bl

by the sequence number β̄ constructed recursively as follows:

β̄ = 〈〈β̄1, b1〉, 〈β̄2, b2〉, . . . , 〈β̄l, bl〉〉.
The ordinal 0 is coded by the empty sequence number 0. Note that β̄ is numerically

greater than the maximum coefficient of β, and greater than the codes β̄i of all its expo-

nents, and their exponents etcetera.

Lemma 3.10 There is an elementary function h(m,n) such that, with m = β̄,

h(β̄, n) =

⎧⎨
⎩

0 if β = 0
β − 1 if Succ(β)
β(n) if Lim(β).

Furthermore, for each fixed α < ε0 there is an elementary well-ordering ≺α⊂ N2 such
that for all b, c ∈ N, b ≺α c if and only if b = β̄ and c = γ̄ for some β < γ < α.

Thus the principles of transfinite induction and transfinite recursion over initial seg-
ments of the ordinals below ε0, can all be expressed in the language of elementary re-
cursive arithmetic.

3.2. The fast growing hierarchy

Definition 3.11 The “Hardy Hierarchy” {Hα}α<ε0 is defined by recursion on α thus:

Hα(n) =

⎧⎨
⎩

n if α = 0
Hα−1(n + 1) if Succ(α)
Hα(n)(n) if Lim(α).
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The “Fast Growing Hierarchy” {Fα}α<ε0 is defined by recursion on α thus:

Fα(n) =

⎧⎨
⎩

n + 1 if α = 0
Fn+1

α−1 (n) if Succ(α)
Fα(n)(n) if Lim(α)

where Fn+1
α−1 (n) is the n + 1-times iterate of Fα−1 on n.

Note 3.12 The Hα and Fα functions could equally well be defined purely number-

theoretically, by working over the well-orderings ≺α instead of directly over the ordinals

themselves. Thus they are examples of ε0-recursive functions.

Lemma 3.13 For all α, β and all n,

1. Hα+β(n) = Hα(Hβ(n)),
2. Hωα(n) = Fα(n).

Proof. The first part is proven by induction on β, the unstated assumption being that the

Cantor Normal Form of α+β is just the result of concatenating their two separate Cantor

Normal Forms, so that (α + β)(n) = α + β(n). This of course requires that the leading

exponent in the normal form of β is not greater than the final exponent in the normal

form of α. We shall always make this assumption when writing α + β.

If β = 0 the equation holds trivially because H0 is the identity function. If Succ(β)
then by the definition of the Hardy functions and the induction hypothesis for β − 1,

Hα+β(n) = Hα+(β−1)(n + 1) = Hα(Hβ−1(n + 1)) = Hα(Hβ(n)).

If Lim(β) then by the induction hypothesis for β(n),

Hα+β(n) = Hα+β(n)(n) = Hα(Hβ(n)(n)) = Hα(Hβ(n)).

The second part is proved by induction on α. If α = 0 then Hω0(n) = H1(n) =
n + 1 = F0(n). If Succ(α) then by the limit case of the definition of H , the induction

hypothesis, and the first part above,

Hωα(n) = Hωα 1·(n+1)(n) = Hn+1
ωα 1(n) = Fn+1

α−1 (n) = Fα(n).

If Lim(α) then the equation follows immediately by the induction hypothesis for α(n).
This completes the proof.

Lemma 3.14 For each α < ε0, Hα is strictly increasing and Hβ(n) < Hα(n) whenever
β ∈ α[n]. The same holds for Fα, with the slight restriction that n �= 0, for when n = 0
we have Fα(0) = 1 for all α.

Proof. By induction on α. The case α = 0 is trivial since H0 is the identity function and

0[n] is empty. If Succ(α) then Hα is Hα−1 composed with the successor function, so

it is strictly increasing by the induction hypothesis. Furthermore if β ∈ α[n] then either

β ∈ (α−1)[n] or β = α−1 so, again by the induction hypothesis, Hβ(n) ≤ Hα−1(n) <
Hα−1(n + 1) = Hα(n). If Lim(α) then Hα(n) = Hα(n)(n) < Hα(n)(n + 1) by the

induction hypothesis. But as noted previously, α(n) ∈ α[n+1] = α(n+1)[n+1], so by

applying the induction hypothesis to α(n+1) we have Hα(n)(n+1) < Hα(n+1)(n+1) =
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Hα(n + 1). Thus Hα(n) < Hα(n + 1). Furthermore if β ∈ α[n] then β ∈ α(n)[n] so

Hβ(n) < Hα(n)(n) = Hα(n) straightaway by the induction hypothesis for α(n).
The same holds for Fα = Hωα provided we restrict to n �= 0 since if β ∈ α[n] we

then have ωβ ∈ ωα[n]. This completes the proof.

Lemma 3.15 If β ∈ α[n] then Fβ+1(m) ≤ Fα(m) for all m ≥ n.

Proof. By induction on α, the zero case being trivial. If α is a successor then either

β ∈ (α − 1)[n] in which case the result follows straight from the induction hypothesis,

or β = α − 1 in which case it’s immediate. If α is a limit then we have β ∈ α(n)[n]
and hence by the induction hypothesis, Fβ+1(m) ≤ Fα(n)(m). But Fα(n)(m) ≤ Fα(m)
either by definition of F in case m = n, or by the last lemma when m > n since then

α(n) ∈ α[m].

3.3. Provable recursiveness of Hα and Fα

We now prove that for every α < ε0(i), with i > 0, the function Fα is provably recursive

in the theory IΣi+1.

Since all of the machinery we have developed for coding ordinals below ε0 is el-

ementary, we can safely assume that it is available to us in an appropriate conservative

extension of IΔ0(exp), and can in fact be defined (with all relevant properties proven)

in IΔ0(exp) itself. In particular we shall again make use of the function h such that, if

a codes a successor ordinal α then h(a, n) codes α − 1, and if a codes a limit ordinal

α then h(a, n) codes α(n). Note that we can decide whether a codes a succesor ordinal

(Succ(a)) or a limit ordinal (Lim(a)), by asking whether h(a, 0) = h(a, 1) or not. It is

easiest to develop first the provable recursiveness of the Hardy functions Hα, since they

have a simpler, unnested recursive definition. The fast growing functions are then easily

obtained by the equation Fα = Hωα .

Definition 3.16 Let H(a, x, y, z) denote the following Δ0(exp) formula:

(z)0 = 〈0, y〉 ∧ π2(z) = 〈a, x〉 ∧
∀i<lh(z)(lh((z)i) = 2 ∧ (i > 0 → (z)i,0 > 0)) ∧
∀0<i<lh(z)(Succ((z)i,0) → (z)i−1,0 = h((z)i,0, (z)i,1) ∧ (z)i−1,1 = (z)i,1+1) ∧
∀0<i<lh(z)(Lim((z)i,0) → (z)i−1,0 = h((z)i,0, (z)i,1) ∧ (z)i−1,1 = (z)i,1).

Lemma 3.17 (Definability of Hα) Hα(n) = m if and only if ∃zH(ᾱ, n,m, z) is true.
Furthermore, for each α < ε0 we can prove in IΔ0(exp),

∃zH(ᾱ, x, y, z) ∧ ∃zH(ᾱ, x, y′, z) → y = y′.

Proof. The meaning of the formula ∃zH(ᾱ, n,m, z) is that there is a finite sequence of

pairs 〈αi, ni〉, beginning with 〈0,m〉 and ending with 〈α, n〉, such that at each i > 0, if

Succ(αi) then αi−1 = αi−1 and ni−1 = ni+1, and if Lim(αi) then αi−1 = αi(ni) and

ni−1 = ni. Thus by induction up along the sequence, and using the original definition of

Hα, we easily see that for each i > 0, Hαi
(ni) = m, and thus at the end, Hα(n) = m.

Conversely, if Hα(n) = m then there must exist such a computation-sequence, and this

proves the first part of the lemma.

For the second part notice that, by induction on the length of the computation-

sequence s, we can prove, for each n, m,m′, s, s′ that
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H(ᾱ, n,m, s) → H(ᾱ, n, m′, s′) → s = s′ ∧ m = m′.

This proof can be formalized directly in IΔ0(exp) to give

H(ᾱ, x, y, z) → H(ᾱ, x, y′, z′) → z = z′ ∧ y = y′

and hence

∃zH(ᾱ, x, y, z) → ∃zH(ᾱ, x, y′, z) → y = y′.

as required.

Thus in order for Hα to be provably recursive it remains only to prove (in the re-
quired theory) ∃y∃zH(ᾱ, x, y, z).

Lemma 3.18 In IΔ0(exp) we can prove

∃zH(ωa, x, y, z) → ∃zH(ωa · c, y, w, z) → ∃zH(ωa · (c + 1), x, w, z)

where ωa is the elementary term 〈〈a, 1〉〉 which constructs, from the code a of an ordinal
α, the code for the ordinal ωα, and b ·0 = 0, b · (z +1) = b ·z⊕b, with ⊕ the elementary
function which computes α + β from ᾱ and β̄.

Proof. By assumption we have sequences s, s′ satisfying H(ωa, n,m, s) and H(ωa ·
c,m, k, s′). Add ωa · c (in the sense of ⊕) to the first component of each pair in s.

Then the last pair in s′ and the first pair in s become identical. By concatenating the

two – taking this double pair only once – construct an elementary term t(s, s′) satisfying

H(ωa · (c + 1), n, k, t). We can then prove

H(ωa, x, y, z) → H(ωa · c, y, w, z′) → H(ωa · (c + 1), x, w, t)

in a conservative extension of IΔ0(exp), and hence in IΔ0(exp) derive

∃zH(ωa, x, y, z) → ∃zH(ωa · c, y, w, z) → ∃zH(ωa · (c + 1), x, w, z).

Lemma 3.19 Let H(a) be the Π2 formula ∀x∃y∃zH(a, x, y, z). Then with Π2-induction
we can prove the following:

1. H(ω0).
2. Succ(a) → H(ωh(a,0)) → H(ωa).
3. Lim(a) → ∀xH(ωh(a,x)) → H(ωa).

Proof. The term t0 = 〈〈0, x + 1〉, 〈1, x〉〉 witnesses H(ω0, x, x + 1, t0) in IΔ0(exp), so

H(ω0) is immediate.

With the aid of the lemma just proven we can derive

H(ωh(a,0)) → H(ωh(a,0) · c) → H(ωh(a,0)) · (c + 1)

Therefore by Π2 induction we obtain

H(ωh(a,0)) → H(ωh(a,0) · (x + 1))

and then
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H(ωh(a,0)) → ∃y∃zH(ωh(a,0) · (x + 1), x, y, z).

But there is an elementary term t1 with the property

Succ(a) → H(ωh(a,0) · (x + 1), x, y, z) → H(ωa, x, y, t1)

since t1 only needs to tagg onto the end of the sequence z the new pair 〈ωa, x〉, thus

t1 = π(z, 〈ωa, x〉). Hence by the quantifier rules,

Succ(a) → H(ωh(a,0)) → H(ωa).

The final case is now straightforward, since the term t1 just constructed also gives

Lim(a) → H(ωh(a,x), x, y, z) → H(ωa, x, y, t1)

and so by quantifier rules again,

Lim(a) → ∀xH(ωh(a,x)) → H(ωa).

Definition 3.20 (Structural Transfinite Induction) The structural progressiveness of a

formula A(a) is expressed by SProgaA, which is the conjunction of the formulas A(0),
∀a(Succ(a) → A(h(a, 0)) → A(a)), and ∀a(Lim(a) → ∀xA(h(a, x)) → A(a)).
The principle of structural transfinite induction up to an ordinal α is then the following

axiom-scheme, for all formulas A:

SProgaA → ∀a≺ᾱA(a)

where a ≺ ᾱ means a lies in the field of the well-ordering ≺α (i.e. a = 0 ∨ 0 ≺α a).

Note 3.21 The last lemma shows that the Π2 formula H(ωa) is structural progressive,

and that this is provable with Π2-induction.

We now make use of a famous result of Gentzen [3], which says that transfinite

induction is provable in arithmetic up to any α < ε0. We prove this fact in a slightly

more general form, where one can recurse to all points strictly below the present one,

and need not refer to distinguished fundamental sequences.

Definition 3.22 (Transfinite Induction) The (general) progressiveness of a formula A(a)
is

ProgaA := ∀a

(∀b≺aA(b) → A(a)
)
.

The principle of transfinite induction up to an ordinal α is the scheme

ProgaA → ∀a≺ᾱA(a)

where again a ≺ ᾱ means a lies in the field of the well-ordering ≺α.

Lemma 3.23 Structural transfinite induction up to α is derivable from transfinite induc-
tion up to α.
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Proof. Let A be an arbitrary formula and assume SProgaA; we must show ∀a≺ᾱA(a).
Using transfinite induction for the formula a ≺ ᾱ → A(a) it suffices to prove

∀a

(∀b≺a;b≺ᾱA(b) → a ≺ ᾱ → A(a)
)

which is equivalent to

∀a≺ᾱ

(∀b≺aA(b) → A(a)
)
.

This is easily proved from SProgaA, using the properties of the h function, and distin-

guishing the cases a = 0, Succ(a) and Lim(a).

We now come to Gentzen’s theorem. In the proof we will need some properties of

≺ which can all be proved in IΔ0(exp): irreflexivity and transitivity for ≺, and also,

following Schütte,

a≺ 0 → A,
c ≺ b ⊕ ω0 → (c ≺ b → A) → (c = b → A) → A,
a ⊕ 0 = a,
a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c,
0 ⊕ a = a,
ωa0 = 0,
ωa(x + 1) = ωax ⊕ ωa,
a �= 0 → c ≺ b ⊕ ωa → c ≺ b ⊕ ωe(a,b,c)m(a, b, c),
a �= 0 → c ≺ b ⊕ ωa → e(a, b, c) ≺ a.
where e and m are appropriate function constants, easily seen to be elementary by com-

paring Cantor Normal Forms.

Theorem 3.24 (Gentzen) For every Π2 formula F and each i > 0 we can prove in IΣi+1

the principle of transfinite induction up to α for all α < ε0(i).

Proof. Starting with any Πj formula A(a), we construct the formula

A+(a) := ∀b(∀c≺bA(c) → ∀c≺b⊕ωaA(c))

where, as mentioned above, ⊕ is the elementary addition function on ordinal-codes thus:

ᾱ ⊕ γ̄ = α + γ. Note that since A is Πj then A+ is (provably equivalent to) a Πj+1

formula. The crucial point is that

IΣj � ProgaA(a) → ProgaA+(a).

So assume ProgaA(a), that is ∀a(∀b≺aA(b) → A(a)), and ∀b≺aA+(b). We have to show

A+(a). So assume further ∀c≺bA(c) and c ≺ b⊕ωa. We have to show A(c), making use

of the various properties of ≺ listed above.

If a = 0, then c ≺ b⊕ω0. It suffices to derive A(c) from c ≺ b as well as from c = b.

In the first case it follows by assumption, and in the second case from the progressiveness

of A.

If a �= 0, from c ≺ b⊕ωa we obtain c ≺ b⊕ωe(a,b,c)m(a, b, c) where e(a, b, c) ≺ a.

We then obtain A+(e(a, b, c)) and by the definition of A+(x) we get

∀u≺b⊕ωe(a,b,c)xA(u) → ∀u≺(b⊕ωe(a,b,c)x)⊕ωe(a,b,c)A(u)
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and hence

∀u≺b⊕ωe(a,b,c)xA(u) → ∀u≺b⊕ωe(a,b,c)(x+1)A(u).

Also

∀u≺b⊕ωe(a,b,c)0A(u)

and using an appropriate instance of the Πj induction scheme we can then conclude

∀u≺b⊕ωe(a,b,c)m(a,b,c)A(u)

and hence A(c) as required.

Now fix i > 0 and (throughout the rest of this proof) let ≺ denote the well-ordering

≺ε0(i). Given any Π2 formula F (v) define A(a) to be the formula ∀v≺aF (v). Then

A is also (provably equivalent to) a Π2 formula and furthermore it is easy to see that

ProgvF (v) → ProgaA(a) is derivable in IΔ0(exp). Therefore by iterating the above

procedure i times starting with j = 2, we obtain successively the formulas A+, A++, ...

A(i) where A(i) is Πi+2 and

IΣi+1 � ProgvF (v) → ProguA(i)(u).

Now fix any α < ε0(i) and choose k so that α ≤ ε0(i)(k). By applying k + 1 times the

progressiveness of A(i)(u), one obtains A(i)(k + 1) without need of any further induc-

tion, since k is fixed. Therefore

IΣi+1 � ProgvF (v) → A(i)(k + 1).

But by instantiating the outermost universally quantified variable of A(i) to zero we

have A(i)(k + 1) → A(i−1)(ωk+1). Again instantiating to zero the outermost univer-

sally quantified variable in A(i−1) we similarly obtain A(i−1)(ωk+1) → A(i−2)(ωωk+1
).

Continuing in this way, and noting that ε0(i)(k) consists of an exponential stack of i ω’s

with k + 1 on the top, we finally get down (after i steps) to

IΣi+1 � ProgvF (v) → A(ε0(i)(k)).

Since A(ε0(i)(k)) is just ∀
v≺ε0(i)(k)

F (v) we have therefore proved, in IΣi+1, transfinite

induction for F up to ε0(i)(k), and hence up to the given α.

Theorem 3.25 For each i and every α < ε0(i), the fast growing function Fα is provably
recursive in IΣi+1.

Proof. If i = 0 then α is finite and Fα is therefore primitive recursive, and so provably

recursive in IΣ1.

Now suppose i > 0. Since Fα = Hωα we need only show, for every α < ε0(i),
that Hωα is provably recursive in IΣi+1. But a lemma above shows that its defining Π2

formula H(ωa) is provably progressive in IΣ2, and therefore by the Gentzen result,

IΣi+1 � ∀a≺ᾱH(ωa).

One further application of progressiveness then gives
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IΣi+1 � H(ωᾱ)

which, together with the definability of Hα proved above, completes the provable Σ1-

definability of Hωα in IΣi+1.

3.4. Ordinal Bounds for Provable Recursion in PA

For the converse of the above result we perform an ordinal analysis of PA-proofs in

a system which allows higher levels of induction to be reduced, via cut elimination,

to Σ1-inductions. The cost of such reductions is a successive exponential increase in

the ordinals involved, but in the end this enables us to read off fast growing bounding

functions for provable recursion.

It would be naive to try to carry through cut elimination directly on PA-proofs since

the inductions would get in the way. Instead, the trick is to unravel the inductions by

means of the ω-rule: from the infinite sequence of premises {A(n) | n ∈ N } derive

∀xA(x). The disadvantage is that this embeds PA into a “semi-formal” system with

an infinite rule, so proofs will now be well-founded trees with ordinals measuring their

heights. The advantage is that this system admits cut elimination, and furthermore it

bears a close relationship with the fast growing hierarchy, as we shall see.

3.5. The infinitary system n:N �α Γ

We shall inductively generate, according to the rules below, an infinitary system of (clas-

sical) one-sided sequents n:N �α Γ in Tait–style (i.e., with negation of compound

formulas defined by de Morgan’s laws) where:

(i) n:N is a new kind of atomic formula, declaring a bound on numerical “inputs”

from which terms appearing in Γ are computed according to the N -rules and axioms.

(ii) Γ is any finite set of closed formulas, either of the form m : N , or else formulas

in the language of arithmetic based on {=, 0, S, P,+,−· , ·, exp2}, possibly with the ad-

dition of any number of further primitive-recursively-defined function symbols. Recall

that Γ, A denotes the set Γ ∪ {A} etc.

(iii) Ordinals α, β, γ < ε0 denote bounds on the heights of derivations, assigned in

a carefully controlled way due originally to Buchholz [1] (see also [2]) though modified

somewhat here. Essentially, the condition is that if a sequent with bound α is derived

from a premise with bound β then β ∈ α[n] where n is the declared input bound.

(iv) Any occurrence of a number n in a formula should of course be read as its

corresponding numeral, but we need not introduce explicit notation for this since the

intention will be clear in context.

The first axiom and rule are “computation rules” for N , and the rest are just for-

malised versions of the truth definition, with Cut added.

(N1) For arbitrary α,

n:N �α Γ, m:N provided m ≤ n + 1

(N2) For β, β′ ∈ α[n],

n:N �β n′:N n′:N �β Γ
n:N �α Γ
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(Ax) If Γ contains a true atom (i.e., an equation or inequation between closed terms)

then for arbitrary α,

n:N �α Γ

(∨) For β ∈ α[n],

n:N �β Γ, A, B

n:N �α Γ, A ∨ B

(∧) For β, β′ ∈ α[n]

n:N �β Γ, A n:N �β Γ, B

n:N �α Γ, A ∧ B

(∃) For β, β′ ∈ α[n],

n:N �β m:N n:N �β Γ, A(m)
n:N �α Γ, ∃xA(x)

(∀) Provided βi ∈ α[max(n, i)] for every i,

max(n, i):N �βi Γ, A(i) for every i ∈ N

n:N �α Γ, ∀xA(x)

(Cut) For β, β′ ∈ α[n],

n:N �β Γ, C n:N �β Γ, ¬C

n:N �α Γ

(C is called the “cut formula”).

Definition 3.26 The functions Bα are defined by the recursion:

B0(n) = n + 1, Bα+1(n) = Bα(Bα(n)), Bλ(n) = Bλ(n)(n)

where λ denotes any limit ordinal with assigned fundamental sequence λ(n).

Note 3.27 Since, at successor stages, Bα is just composed with itself once, an easy com-

parison with the fast growing Fα shows that Bα(n) ≤ Fα(n) for all n > 0. It is also easy

to see that for each positive integer k, Bω·k(n) is the 2n+1-times iterate of Bω·(k−1) on

n. Thus another comparison with the definition of Fk shows that Fk(n) ≤ Bω·k(n) for

all n. Thus every primitive recursive function is bounded by a Bω·k for some k. Further-

more, just as for Hα and Fα, Bα is strictly increasing and Bβ(n) < Bα(n) whenever

β ∈ α[n]. The next two lemmas show that these functions Bα are intimately related with

the infinitary system we have just set up.

Lemma 3.28 m ≤ Bα(n) if and only if n:N �α m:N is derivable by the N1 and N2
rules only.
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Proof. For the “if” part, note that the proviso on the axiom N1 is that m ≤ n + 1 and

therefore m ≤ Bα(n) is automatic. Secondly if n:N �α m:N arises by the N2 rule

from premises n:N �β n′:N and n′:N �β m:N where β, β′ ∈ α[n] then, assuming

inductively that m ≤ Bβ (n′) and n′ ≤ Bβ(n), we have m ≤ Bβ (Bβ(n)) and hence

m ≤ Bα(n).
For the “only if” proceed by induction on α, assuming m ≤ Bα(n). If α = 0 then

m ≤ n + 1 and so n:N �α m:N by N1. If α = β + 1 then m ≤ Bβ(n′) where

n′ = Bβ(n), so by the induction hypothesis, n:N �β n′:N and n′:N �β m:N .

Hence n:N �α m:N by N2 since β ∈ α[n]. Finally, if α is a limit then m ≤ Bα(n)(n)
and so n:N �α(n) m:N by the induction hypothesis. But since α[n] = α(n)[n] the

ordinal bounds β on the premises of this last derivation also lie in α[n], which means that

n:N �α m:N as required.

Definition 3.29 A sequent n:N �α Γ is said to be term controlled if every closed term

occuring in Γ has numerical value bounded by Bα(n). An infinitary derivation is then

term controlled if every one of its sequents is term controlled.

Note 3.30 For a derivation to be term controlled it is sufficient that each axiom is term

controlled, since in any rule, the closed terms occuring in the conclusion must already

occur in a premise (in the case of the ∀ rule, the premise i = 0). Thus if α is the ordinal

bound on the conclusion, every such closed term is bounded by a Bβ(n) for some β ∈
α[n] and hence is bounded by Bα(n) as required.

Lemma 3.31 (Bounding Lemma) Let Γ be a set of Σ1-formulas or atoms of the form
m:N . If n:N �α Γ has a term controlled derivation in which all cut formulas are Σ1,
then Γ is true at Bα+1(n). Here, the definition of “true at” is extended to include atoms
m:N by saying that m:N is true at k if m < k.

Proof. By induction over α according to the generation of the sequent n:N �α Γ,

which we shall denote by S.

(Axioms) If S is either a logical axiom or of the form N1 then Γ contains either a

true atomic equation or inequation, or else an atom m:N where m < n + 2, so Γ is

automatically true at Bα+1(n).
(N2) If S arises by the N2 rule from premises n:N �β n′:N and n′:N �β Γ

where β, β′ ∈ α[n] then, by the induction hypothesis, Γ is true at Bβ +1(n′) where

n′ < Bβ+1(n). Therefore by persistence, Γ is true at Bβ +1(Bβ+1(n)) which is less

than or equal to Bα(Bα(n)) = Bα+1(n). So by persistence again, Γ is true at Bα+1(n).
(∨, ∧) Because of our definition of Σ1-formulas, the ∨ and ∧ rules only apply to

bounded (Δ0(exp)) formulas, so the result is immediate in these cases (by persistence

and the fact that the rules preserve truth).

(∀) Similarly, the only way in which the ∀ rule can be applied is in a bounded context,

where Γ = Γ′,∀x(x �< t ∨ A(x)), t is a closed term, and A(x) a bounded formula.

Suppose then, that S arises by the ∀ rule from premises max(n, i):N �βi Γ′, i �<
t ∨ A(i) where βi ∈ α[max(n, i)] for every i. Since the derivation is term controlled

we know that (the numerical value of) t is less than or equal to Bα(n). Therefore by the

induction hypothesis and persistence again: for every i < t, the set Γ′, A(i) is true at

Bβi+1(Bα(n)). But βi ∈ α[Bα(n)] and so Bβi+1(Bα(n)) ≤ Bα(Bα(n)) = Bα+1(n).
Hence Γ is true at Bα+1(n) using persistence once more.
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(∃) If Γ contains a Σ1-formula ∃xA(x) and S arises by the ∃ rule from premises

n:N �β m:N and n:N �β Γ, A(m) then by the induction hypothesisis, Γ, A(m)
is true at Bβ +1(n) where m < Bβ+1(n). Therefore, by the definition of “true at”, Γ is

true at whichever is the greater of Bβ+1(n) and Bβ +1(n). But since β, β′ ∈ α[n] both

of these are less than Bα+1(n), so Γ is again true at Bα+1(n).
(Cut) Finally suppose S comes about by a cut on the Σ1 formula C ≡ ∃�xD(�x )

with D bounded. Then the premises are n:N � Γ, C and n:N � Γ, ¬C with

ordinal bounds β, β′ ∈ α[n] respectively. By the induction hypothesis applied to the

first premise, we have numbers �m < Bβ+1(n) such that Γ, D(�m) is true at Bβ+1(n).
By inverting the universal quantifiers in ¬C ≡ ∀�x¬D(�x ), the second premise gives

max(n, �m):N �β Γ, ¬D(�m). Then by the induction hypothesis (since Γ,¬D(�m) is

now a set of Σ1-formulas) we have Γ,¬D(�m) true at Bβ +1(max(n, �m)), which is less

than Bβ +1(Bβ+1(n)), which is less than or equal to Bα+1(n). Therefore (by persis-

tence) Γ must be true at Bα+1(n), for otherwise both D(�m) and ¬D(�m) would be true,

and this cannot be.

3.6. Embedding of PA

The Bounding Lemma above becomes applicable to PA if we can embed it into the

infinitary system and then (as done in the next sub-section) reduce all the cuts to Σ1

form. This is standard proof-theoretic procedure. First, comes a simple technical lemma

which will be needed frequently.

Lemma 3.32 (Weakening) If n:N �α Γ and n ≤ n′ and Γ ⊆ Γ′ and α[m] ⊆ α′[m] for
every m ≥ n′ then n′:N �α Γ′. Furthermore, if the given derivation of n:N �α Γ is
term controlled then so will be the derivation of n′:N �α Γ′ provided of course, that
all the closed terms occurring in Γ′ are bounded by Bα (n′).

Proof. Proceed by induction on α. Note first that if n:N �α Γ is an axiom then Γ, and

hence also Γ′, contains either a true atom or a declaration m:N where m ≤ n + 1. Thus

n′:N �α Γ′ is an axiom also.

(N2) If n:N �α Γ arises by the N2 rule from premises n:N �β m:N and

m:N �β Γ where β, β′ ∈ α[n] then, by applying the induction hypothesis to each of

these, n can be increased to n′ in the first, and Γ can be increased to Γ′ in the second.

But then since α[n] ⊆ α[n′] ⊆ α′[n′] the rule N2 can be re-applied to yield the desired

n′:N �α Γ′.
(∃) If n:N �α Γ arises by the ∃ rule from premises n:N �β m:N and n:N �β

Γ, A(m) where ∃xA(x) ∈ Γ and β, β′ ∈ α[n] then, by applying the induction hypothesis

to each premise, n can be increased to n′ and Γ increased to Γ′. The ∃ rule can then be

re-applied to yield the desired n′:N �α Γ′, since as above, β, β′ ∈ α′[n′].
(∀) Suppose n:N �α Γ arises by the ∀ rule from premises

max(n, i):N �βi Γ, A(i)

where ∀xA(x) ∈ Γ and βi ∈ α[max(n, i)] for every i. Then, by applying the induction

hypothesis to each of these premises, n can be increased to n′ and Γ increased to Γ′.
The ∀ rule can then be re-applied to yield the desired n′:N �α Γ′, since for each i,
βi ∈ α[max(n′, i)] ⊆ α′[max(n′, i)].
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The remaining rules ∨, ∧ and Cut, are handled easily by increasing n to n′ and Γ to

Γ′ in the premises, and then re-applying the rule.

Theorem 3.33 (Embedding) Suppose PA � Γ(x1, . . . , xk) where x1, . . . , xk are all the
free variables occurring in Γ. Then there is a fixed number d such that, for all numerical
instantiations n1, n2, . . . , nk of the free variables, we have a term controlled derivation
of

max(n1, n2, . . . , nk):N �ω·d Γ(n1, n2, . . . , nk).

Furthermore, the (non-atomic) cut formulas occurring in this derivation are just the
induction formulas which occur in the original PA proof.

Proof. We work with a Tait-style formalisation of PA in which the induction axioms are

replaced by corresponding rules:

Γ, A(0) Γ,¬A(z), A(z + 1)
Γ, A(t)

with z not free in Γ and t any term. As in the case of IΔ0(exp) we may suppose that

the given PA-proof of Γ(�x ) has been reduced to free-cut-free form, wherein the only

non-atomic cut formulas are the induction formulas. We simply have to transform each

step of this PA-proof into an appropriate, term controlled infinitary derivation.

(Axioms) If Γ(�x ) is an axiom of PA then with �n = n1, n2, . . . , nk substituted

for the variables �x = x1, x2, . . . , xk, there must occur a true atom in Γ(�n). Thus we

automatically have a derivation of max�n:N �α Γ(�n) for arbitrary α. However we

must choose α appropriately so that, for all �n, this sequent is term controlled. To do this,

simply note that, since PA only has primitive-recursively-defined function constants,

every one of the (finitely many) terms t(�x ) appearing in Γ(�x ) is primitive recursive, and

therefore there is a number d such that for all �n, Bω·d(max�n) bounds the value of every

such t(�n). So choose α = ω · d.

(∨, ∧, Cut) If Γ(�x ) arises by a ∨, ∧ or cut rule from premises Γ0(�x ) and

Γ1(�x ) then, inductively, we can assume that we already have infinitary derivations of

max�n:N �ω·d0 Γ0(�n) and max�n:N �ω·d1 Γ1(�n) where d0 and d1 are indepen-

dent of �n. So choose d = max(d0, d1) + 1 and note that ω · d0 and ω · d1 both be-

long to ω · d[max�n]. Then by re-applying the corresponding infinitary rule, we obtain

max�n:N �ω·d Γ(�n) as required, and this derivation will again be term controlled pro-

vided the premises were.

(∀) Suppose Γ(�x ) arises by an application of the ∀ rule from the premise

Γ0(�x ), A(�x, z) where Γ = Γ0,∀zA(�x, z). Assume that we already have a d0 such

that for all �n and all m, there is a term controlled derivation of max(�n,m):N �ω·d0

Γ0(�n), A(�n,m). Then with d = d0+1 we have ω·d0 ∈ ω·d[max(�n,m)], and so an appli-

cation of the infinitary ∀ rule immediately gives max�n:N �ω·d Γ(�n). This is also term

controlled because any closed term appearing in Γ(�n) must appear in Γ0(�n), A(�n, 0) and

so is already bounded by Bω·d0(max�n).
(∃) Suppose Γ(�x ) arises by an application of the ∃ rule from the premise

Γ0(�x ), A(�x, t(�x )) where Γ = Γ0,∃zA(�x, z). If the witnessing term t contains any other

variables besides x1, . . . , xk we can assume they have been substituted by zero. Thus

by the induction we have, for every �n, a term controlled derivation of max�n:N �ω·d0
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Γ0(�n), A(�n, t(�n)) for some fixed d0 independent of �n. Now it is easy to see, by check-

ing through the rules, that any occurrences of the term t(�n) may be replaced by (the

numeral for) its value, say m. Furthermore, because the derivation is term controlled,

m ≤ Bω·d0(max n) and hence max�n:N �ω·d0 m:N . Therefore by the infinitary ∃
rule we immediately obtain max�n:N �ω·d Γ0(�n),∃zA(�n, z) where d = d0 + 1, and

this derivation is again term controlled.

(Induction) Finally, suppose Γ(�x ) = Γ0(�x ), A(�x, t(�x )) arises by the induction rule

from premises Γ0(�x ), A(�x, 0) and Γ0(�x ),¬A(�x, z), A(�x, z + 1). Assume inductively,

that we have d0 and d1 and, for all �n and all i, term controlled derivations of

max�n:N �ω·d0 Γ0(�n), A(�n, 0)

max(�n, i): N �ω·d1 Γ0(�n),¬A(�n, i), A(�n, i + 1).

Now let d2 be any number ≥ max(d0, d1) and such that Bω·d2 bounds every subterm of

t(�x ) (again there is such a d2 because every subterm of t defines a primitive recursive

function of its variables). Then for all �n, if m is the numerical value of the term t(�n) we

have a term controlled derivation of

max(�n,m):N �ω·(d2+1) Γ0(�n), A(�n,m).

For, in the case m = 0 this follows immediately from the first premise above by

weakening the ordinal bound; and if m > 0 then by successive cuts on A(�n, i) for

i = 0, 1, . . . , m − 1, with weakenings where necessary, we obtain first a term controlled

derivation of

max(�n,m):N �ω·d2+m Γ0(�n), A(�n,m)

and then, since m ∈ ω[max(�n,m)], another weakening provides the desired ordinal

bound ω · (d2 + 1).
Since, by our choice of d2, max(�n,m) ≤ Bω·d2(max�n) we also have

max�n:N �ω·d2 max(�n,m):N

and so, combining this with the sequent just derived, the N2 rule gives

max�n:N �ω·(d2+2) Γ0(�n), A(�n,m).

It therefore only remains to replace the numeral m by the term t(�n), whose value it is.

But it is easy to check, by induction over the logical structure of formula A, that provided

d2 is in addition chosen to be at least twice the height of the formation tree of A, then for

all �n there is a cut-free derivation of

max�n:N �ω·d2 Γ0(�n),¬A(�n,m), A(�n, t(�n)).

Therefore, fixing d2 accordingly and setting d = d2 + 3, a final cut on the formula

A(�n,m) yields the desired term controlled derivation, for all �n, of

max�n:N �ω·d Γ0(�n), A(�n, t(�n)).

This completes the induction case, and hence the proof, noting that the only non-atomic

cuts introduced are on induction formulas.
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3.7. Cut elimination

Once a PA proof is embedded in the infinitary system, we need to reduce the cut

complexity before the Bounding Lemma becomes applicable. As we shall see, this en-

tails an iterated exponential increase in the original ordinal bound. Thus ε0, the first

exponentially-closed ordinal after ω, is a measure of the proof-theoretic complexity of

PA.

Lemma 3.34 (∀-Inversion) If n: N �α Γ,∀aA(a) then max(n, m): N �α Γ, A(m) for
every m. Furthermore if the given derivation is term controlled, so is the resulting one.

Proof. We proceed by induction on α. Note first that if the sequent n: N �α Γ,∀aA(a)
is an axiom then so is n:N �α Γ and then the desired result follows immediately by

weakening.

Suppose n:N �α Γ,∀aA(a) is the consequence of a ∀ rule with ∀aA(a) the “main

formula” proven. Then the premises are, for each i,

max(n, i):N �βi Γ, A(i),∀aA(a)

where βi ∈ α[max(n, i)]. So by applying the induction hypothesis to the case i = m one

immediately obtains max(n, m): N �βm Γ, A(m). Weakening then allows the ordinal

bound βm to be increased to α.

In all other cases the formula ∀aA(a) is a “side formula” occurring in the premise(s)

of the final rule applied. So by the induction hypothesis, ∀aA(a) can be replaced by

A(m) and n by max(n, m). The result then follows by re-applying that final rule.

Note that each transformation preserves term control.

Definition 3.35 We insert a subscript “Σr” on the proof-gate thus:

n:N �α
Σr

Γ

to indicate that, in the infinitary derivation, all cut formulas are of the form Σi or Πi

where i ≤ r.

Lemma 3.36 (Cut Reduction) Suppose n: N �α
Σr

Γ, C and n: N �γ
Σr

Γ′,¬C where
r ≥ 1 and C is a Σr+1 formula. Suppose also that α[n′] ⊆ γ[n′] for all n′ ≥ n. Then

n:N �γ+α
Σr

Γ,Γ′.

Furthermore, if the given derivations are term controlled, so is the resulting one.

Proof. We proceed by induction on α according to the derivation of n: N �α
Σr

Γ, C. If

this is an axiom then C, being non-atomic, can be deleted and it’s still an axiom, and so

is n: N �γ+α
Σr

Γ,Γ′. Furthermore this sequent is term controlled if the given ones are,

since Bγ+α(n) is greater than or equal to Bγ(n) and Bα(n).
Now suppose C is the “main formula” proven in the final rule of the derivation.

Since C ≡ ∃xD(x) with D a Πr formula, this final rule is an ∃ rule with premises

n: N �β0
Σr

m:N and n: N �β1
Σr

Γ, D(m), C where β0, β1 ∈ α[n] ⊆ γ[n]. By the

induction hypothesis we then have
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n: N �γ+β1
Σr

Γ, D(m),Γ′ (∗)
Since ¬C ≡ ∀x¬D(x) we can apply ∀-inversion to the given derivation of n: N �γ

Σr

Γ′,¬C to obtain max(n, m): N �γ
Σr

Γ′,¬D(m) as inversion does not affect the cut

formulas. Hence by the N2 rule, using n: N �β0
Σr

m:N and a weakening,

n: N �γ+β1
Σr

Γ,¬D(m),Γ′ (∗∗)
Then from (∗) and (∗∗) a cut on D(m) gives the desired result:

n: N �γ+α
Σr

Γ,Γ′.

Notice, however, that (∗∗) requires β1 to be nonzero so that γ ∈ γ + β1[n]. If, on the

other hand, β1 = 0 then either n: N �β1
Σr

Γ is an axiom or else D(m) is a true atom, in

which case ¬D(m) may be deleted from max(n, m): N �γ
Σr

Γ′,¬D(m) and then, by

N2, n: N �γ+α
Σr

Γ′. Whichever is the case, the desired result follows immediately by

weakening.

Finally suppose otherwise, i.e., C is a “side formula” in the final rule of the deriva-

tion of n: N �α
Σr

Γ, C. Then by applying the induction hypothesis to the premise(s), C
gets replaced by Γ′ and the ordinal bounds β are replaced by γ + β. Re-application of

that final rule then yields n: N �γ+α
Σr

Γ,Γ′ as required.

It is clear, at each step, that the new derivations introduced are term controlled pro-

vided that the assumed ones are.

Theorem 3.37 (Cut Elimination) If n: N �α
Σr+1

Γ where n ≥ 1 then

n: N �ωα

Σr
Γ.

Furthermore, if the given derivation is term controlled so is the resulting one.

Proof. Proceeding by induction on α, first suppose n: N �α
Σr+1

Γ comes about by

a cut on a Σr+1 or Πr+1 formula C. Then the premises are n: N �β0
Σr+1

Γ, C and

n: N �β1
Σr+1

Γ,¬C where β0, β1 ∈ α[n]. By an appropriate weakening we may increase

whichever is the smaller of β0, β1 so that both ordinal bounds become β = max(β0, β1).
Applying the induction hypothesis we obtain

n: N �ωβ

Σr
Γ, C and n: N �ωβ

Σr
Γ,¬C.

Then since one of C,¬C is Σr+1, the above Cut Reduction Lemma with α = γ = ωβ

yields

n: N �ωβ ·2
Σr

Γ.

But β ∈ α[n] and so ωβ · 2[m] ⊆ ωα[m] for every m ≥ n. Therefore by weakening,

n: N �ωα

Σr
Γ.

Now suppose n: N �α
Σr+1

Γ arises by any rule (or axiom) other than a cut on a

Σr+1 or Πr+1 formula. First, apply the induction hypothesis to the premises (if any),

thus reducing r + 1 to r and increasing ordinal bounds β to ωβ , and then re-apply that

final rule to obtain n: N �ωα

Σr
Γ, noting that if β ∈ α[n] then ωβ ∈ ωα[n] provided

n ≥ 1. Note again, that the resulting derivation is term controlled if the original one is.
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Theorem 3.38 (Preliminary Cut Elimination) If n: N �ω·d+c
Σr+1

Γ with r ≥ 1 and n ≥ 1,
then

n: N �ωd·2c+1

Σr
Γ

and this derivation is term controlled if the first one is.

Proof. This is just a special case of the main Cut Elimination Theorem above, where

α < ω2. Essentially the same steps are applied, but with a few extra technicalities.

3.8. The classification theorem

Theorem 3.39 For each i the following are equivalent:

1. f is provably recursive in IΣi+1;
2. f is elementarily definable from Fα = Hωα for some α < ε0(i).

Proof. We have already shown that if α < ε0(i) then Fα is provably recursive in

ISigmai+1, and since IDelta0(exp) provides closure under elementary definability

it follows that every function elementarily definable from Fα is provably recursive in

ISigmai+1.

Conversely suppose that f : Nk → N is provably recursive in IΣi+1. Then there is a

Σ1-formula F (�x, y) such that for all �n and m, f(�n) = m if and only if F (�n,m) is true,

and such that

IΣi+1 � ∃yF (�x, y).

By the Embedding Theorem there is a fixed number d and, for all instantiations �n of the

variables �x, a term controlled derivation of

max�n:N �ω·d
Σi+1

∃yF (�n, y).

Suppose i > 0. Let n = max(1,max�n). Then by the Preliminary Cut Elimination

Theorem with c = 0,

n: N �ωd·2
Σi

∃yF (�n, y)

and by weakening, since ωd · 2[m] ⊆ ωd+1[m] for all m ≥ n,

n: N �ωd+1

Σi
∃yF (�n, y).

Now, if i > 1, apply the ordinary Cut Elimination Theorem i − 1 times, bringing the

cuts down to the Σ1 level and simultaneously increasing the ordinal bound ωd+1 by i−1
iterated exponentiations to the base ω. This produces

n: N �α
Σ1

∃yF (�n, y)

with ordinal bound α < ε0(i) (recalling that, as defined earlier, ε0(i) consists of an

exponential stack of i + 1 ω’s). Since this last derivation is still term controlled, we can

next apply the Bounding Lemma to conclude that ∃yF (�n, y) is true at Bα+1(n), which

is less than or equal to Fα+1(n). This means that for all �n, Fα+1(n) bounds the value
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m of f(�n) and bounds witnesses for all the existential quantifiers in the prefix of the Σ1

defining-formula F (�n,m). Thus, relative to Fα+1, the defining formula is bounded and

therefore elementarily decidable, and f can be defined from it by a bounded least-number

operator. That is, f is elementarily definable from Fα+1.

In case i = 0 the Bounding Lemma applies immediately, without any cut elimina-

tion, to give ∃yF (�n, y) true at Bω·d+1(n). But this is less than or equal to Fd (n) for

some d′ < ω = ε0(0), and f is then elementarily definable from Fd . This completes the

proof.

Corollary 3.40 Every function provably recursive in IΣi+1 is bounded by an Fα = Hωα

for some α < ε0(i). Hence Hε0(i+1) is not provably recursive in IΣi+1, for otherwise it
would dominate itself.

4. The Paris–Harrington Independence Result for PA

If the Hardy hierarchy is extended to ε0 itself by the definition

Hε0(n) = Hε0(n)(n)

then clearly (by what we have already done) the provable recursiveness of Hε0 is a conse-

quence of transfinite induction up to ε0. However this function is obviously not provably

recursive in PA, for if it were we would have an α < ε0 such that Hε0(n) ≤ Hα(n) for

all n, contradicting the fact that α ∈ ε0[m] for some m and hence Hα(m) < Hε0(m).
Thus, although transfinite induction up to any fixed ordinal below ε0 is provable in PA,

transfinite induction all the way up to ε0 itself is not. This is Gentzen’s result, that ε0 is

the least upper bound of the “provable ordinals” of PA. Together with the Gödel incom-

pleteness phenomena, it forms the foundational basis of all logical independence results

for PA and related theories.

The question that remained until the later 1970’s was whether there might be other

independence results of a more natural and clear mathematical character, i.e. genuine

mathematical statements formalizable in the language of arithmetic which, though true,

are not provable in PA. The first and most famous one, the Modified Finite Ramsey The-

orem of Paris and Harrington [8], is treated below, but whereas their original indepen-

dence proof used non-standard model theoretic ideas, the proof given here (following

Graham, Rothschild and Spencer [4]) is essentially a basic, slimmed–down version of the

purely combinatorial analysis by Ketonen and Solovay [6] which first established direct,

refined comparisons with the Hardy hierarchy.

4.1. The Modified Finite Ramsey Theorem

The Modified Finite Ramsey Theorem of Paris and Harrington [8] is, like the Finite Ram-

sey Theorem, also expressible as a Π0
2-formula, but its growth rate is much higher and it

is now independent of full Peano Arithmetic. Their modification is to replace the require-

ment that the finite homogeneous set Y has cardinality at least k, by the requirement

that Y is “large” in the sense that its cardinality is at least as big as its smallest element,

i.e., |Y | ≥ min Y . (Thus {5, 7, 8, 9, 10} is large but {6, 7, 80, 900, 1010} is not.) We can

now (if we wish, and it’s simpler to do so) dispense with the parameter k and state the

modified version as:
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∀n,l ∃m (m → (large)n
l )

where m → (large)n
l means that every colouring c : m[n] → l has a large homogeneous

set Y ⊂ m, it being assumed always that Y must have at least n + 1 elements in order

to avoid the trivial case Y = m = n.

That the Modified Finite Ramsey Theorem is indeed true follows easily from the

Infinite Ramsey Theorem. For assume, toward a contradiction, that it is false. Then there

are fixed n and l such that for every m there is a colouring cm : m[n] → l with no large

homogeneous set. Define a “diagonal” colouring on all n + 1-element subsets of N by:

d({x0, x1, . . . , xn−1, xn}) = cxn({x0, x1, . . . , xn−1})
where x0, x1, . . . , xn−1, xn are written in increasing order. Then by the Infinite Ramsey

Theorem, d has an infinite homogeneous set Y ⊂ N. We can therefore select from Y an

increasing sequence {y0, y1, . . . , yy0} with y0 ≥ n + 1. Now let m = yy0 and choose

Y0 = {y0, y1, . . . , yy0−1}. Then Y0 is a large subset of m and is homogeneous for cm

since cm(x0, . . . , xn−1) = d(x0, . . . , xn−1,m) is constant on all {x0, . . . , xn−1} ∈
Y

[n]
0 . This is the desired contradiction.

The Paris-Harrington function is

PH(n, l) = μm (m → (large)n
l )

and we show here that, for a suitable elementary function l(n),

Hε0(n) ≤ PH(n + 1, l(n)).

Though it does not give the refined bounds of Ketonen-Solovay, this is enough for the

independence result since, by the work of the previous section, it shows that PH grows

faster than every provably recursive function of PA.

The proof has two parts. First, define certain colourings on finite sets of ordinals

below ε0, for which we can prove that all of their homogeneous sets must be “relatively

small”. Then use the Hardy functions to associate the interval of numbers x between n
and Hε0(n) with the strictly decreasing sequence of ordinals PxPx−1 . . . Pn(ε0) where,

for any β, Pi(β) denotes the maximum element of β[i]. This crucial correspondence is

due to the simple fact that for any α �= 0,

Hα(k) = μy > k.Py−1Py−2 · · ·Pk(α) = 0.

By the correspondence one obtains colourings on n+1-element subsets of Hε0(n) which

have no large homogeneous sets. Hence PH must grow at least as fast as Hε0 .

Definition 4.1 Given Cantor Normal Forms α = ωα1 · a1 + . . . + ωαr · ar and β =
ωβ1 · b1 + . . . + ωβs · bs with α > β, let D(α, β) denote the first (i.e. greatest) exponent

αi at which they differ. Thus ωα1 ·a1 + . . .+ωαi 1 ·ai−1 = ωβ1 · b1 + . . .+ωβi 1 · bi−1

and ωαi · ai > ωβi · bi + . . . + ωβs · bs.

Definition 4.2 For each n ≥ 2 the function Cn from the n + 1-element subsets

of ε0(n − 1) into 2n − 1 is given by the following induction. The definition of

Cn({α0, α1, . . . , αn}) requires that the ordinals are listed in descending order; when-
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ever we need to emphasise this we write Cn(α0, α1, . . . , αn)> instead. Note that if

α, β < ε0(n − 1) then D(α, β) < ε0(n − 2).

C2(α0, α1, α2)> =

⎧⎨
⎩

0 if D(α0, α1) > D(α1, α2)
1 if D(α0, α1) < D(α1, α2)
2 if D(α0, α1) = D(α1, α2)

and for each n > 2,

Cn(α0, . . . , αn)> =

⎧⎨
⎩

2 · Cn−1({δ0, . . . , δn−1}) if D(α0, α1) > D(α1, α2)
2 · Cn−1({δn−1, . . . , δ0})+1 if D(α0, α1) < D(α1, α2)
2n − 2 if D(α0, α1) = D(α1, α2)

where δi = D(αi, αi+1) for each i < n.

Lemma 4.3 If S = {γ0, γ1. . . . , γr}> is homogeneous for Cn then, letting max(γ0)
denote the maximum coefficient of γ0 and k(n) = 1 + 2 + · · · + (n − 1) + 2, we have
|S| < max(γ0) + k(n).

Proof. Proceed by induction on n ≥ 2.

For the base-case we have ε0(1) = ωω and C2 : (ωω)[3] → 3. Since S is a subset of

ωω the values of D(γi, γi+1), for i < r, are integers. Let γ0, the greatest member of S,

have Cantor Normal Form:

γ0 = ωm · cm + ωm−1 · cm−1 + . . . + ω2 · c2 + ω · c1 + c0

where some of cm−1, . . . , c1, c0 may be zero, but cm > 0. Then for each i < r,

D(γi, γi+1) ≤ cm ≤ max(γ0). Now if C2 has constant value 0 or 1 on S[3] then all

D(γi, γi+1), for i < r, are distinct, and since we have r distinct numbers ≤ max(γ0)
it follows that |S| = r + 1 < max(γ0) + 3 as required. If, on the other hand, C2 has

constant value 2 on S [3] then all the D(γi, γi+1) are equal, say to j. But then the Cantor

Normal Form of each γi contains a term ωj · ci,j where 0 ≤ cr,j < cr−1,j < . . . <
c0,j = cj ≤ max(γ0). In this case we have r+1 distinct numbers ≤ max(γ0) and hence,

again, |S| = r + 1 < max(γ0) + 3.

For the induction step assume n > 2. Assume also that r ≥ k(n), for otherwise the

desired result |S| < max(γ0) + k(n) is automatic.

First, suppose Cn is constant on S[n+1] with even value < 2n−2. Note that the final

n + 1-tuple of S is (γr−n, γr−n+1, γr−n+2, . . . , γr)>. Therefore, by the first case in the

definition of Cn,

D(γ0, γ1) > D(γ1, γ2) > . . . > D(γr−n+1, γr−n+2)

and this set is homogeneous for Cn−1 (the condition r ≥ k(n) ensures that it has

more than n elements). Consequently, by the induction hypothesis, r − n + 2 <
max(D(γ0, γ1))+k(n−1) and therefore, since D(γ0, γ1)) occurs as an exponent in the

Cantor Normal Form of γ0,

|S| = r + 1 < max(D(γ0, γ1)) + k(n − 1) + (n − 1) ≤ max(γ0) + k(n)

as required.
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Second, suppose Cn is constant on S[n+1] with odd value. Then by the definition of

Cn we have

D(γr−n+1, γr−n+2) > D(γr−n, γr−n+1) > . . . > D(γ0, γ1)

and this set is homogeneous for Cn−1. So by applying the induction hypothesis one

obtains r − n + 2 < max(D(γr−n+1, γr−n+2)) + k(n − 1) and hence

|S| = r + 1 < max(D(γr−n+1, γr−n+2)) + k(n).

Now in this case, since D(γ1, γ2) > D(γ0, γ1) it follows that the initial seg-

ments of the Cantor Normal Forms of γ0 and γ1 are identical down to and includ-

ing the term with exponent D(γ1, γ2). Therefore D(γ1, γ2) = D(γ0, γ2). Similarly

D(γ2, γ3) = D(γ1, γ3) = D(γ0, γ3) and by repeating this argument one obtains even-

tually, D(γr−n+1, γr−n+2) = D(γ0, γr−n+2). Thus D(γr−n+1, γr−n+2) is one of the

exponents in the Cantor Normal Form of γ0, so its maximum coefficient is bounded by

max(γ0) and, again, |S| < max(γ0) + k(n).
Finally suppose Cn is constant on S[n+1] with value 2n − 2. In this case all the

D(γi, γi+1) are equal, say to δ, for i < r − n + 2. Let di be the coefficient of ωδ in the

Cantor Normal Form of γi. Then d0 > d1 > . . . > dr−n+1 > 0 and so r − n + 1 <
d0 ≤ max(γ0). Therefore |S| = r + 1 < max(γ0) + k(n) and this completes the proof.

Lemma 4.4 For each n ≥ 2 let l(n) = 2k(n) + 2n − 1. Then there is a colouring
cn:Hε0(n−1)(k(n))[n+1] → l(n) which has no large homogeneous sets.

Proof. Fix n ≥ 2 and let k = k(n). Recall that

Hε0(n−1)(k) = μy > k.Py−1Py−2 · · ·Pk(ε0(n − 1)) = 0.

As i increases from k up to Hε0(n−1)(k) − 1, the associated sequence of ordinals αi =
PiPi−1 · · ·Pk(ε0(n−1)) strictly decreases to 0. Therefore, from the above colouring Cn

on sets of ordinals below ε0(n− 1), we can define a colouring dn on the (n + 1)-subsets

of {2k, 2k + 1, . . . , Hε0(n−1)(k) − 1} thus:

dn(x0, x1, . . . , xn)< = Cn(αx0−k, αx1−k, . . . αxn−k)>.

Clearly, every homogeneous set {y0, y1, . . . , yr}< for dn corresponds to a homogeneous

set {αy0−k, αy1−k, . . . αyr−k}> for Cn, and by the previous lemma it has fewer than

max(αy0−k)+k elements. Now the maximum coefficient of any Pi(β) is no greater than

the maximum of i and max(β), so max(αy0−k) ≤ y0−k. Therefore every homogeneous

set {y0, y1, . . . , yr}< for dn has fewer than y0 elements.

From dn construct cn:Hε0(n−1)(k)[n+1] → l(n) as follows:

cn(x0, x1, . . . , xn)< =
{

dn(x0, x1, . . . , xn) if x0 ≥ 2k
x0 + 2n − 1 if x0 < 2k

Suppose {y0, y1, . . . , yr}< is homogeneous for cn with colour ≥ 2n − 1. Then by the

second clause, y0 + 2n − 1 = cn(y0, y1, . . . , yn) = cn(y1, y2, . . . , yn+1) = y1 + 2n − 1
and hence y0 = y1 which is impossible. Therefore any homogeneous set for cn has least

element y0 ≥ 2k and, by the first clause, it must be homogeneous for dn also. Thus it

has fewer than y0 elements, and hence this colouring cn has no large homogeneous sets.
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Theorem 4.5 (Paris-Harrington 1977) The Modified Finite Ramsey Theorem is true but
not provable in PA.

Proof. Suppose, toward a contradiction, that ∀n∀l ∃m (m → (large)n
l ) were provable in

PA. Then the function

PH(n, l) = μm(m → (large)n
l )

would be provably recursive in PA, and so also would be the function f(n) =
PH(n + 2, l(n + 1)). For each n, f(n) is so big that every colouring on f(n)[n+2]

with l(n + 1) colours, has a large homogeneous set. The last lemma, with n replaced

by n + 1, gives a colouring cn+1 : Hε0(n)(k(n + 1))[n+2] → l(n + 1) with no

large homogeneous sets. Therefore f(n) > Hε0(n)(k(n + 1)) for otherwise cn+1, re-

stricted to f(n)[n+2], would have a large homogeneous set. Since Hε0(n) is increasing,

Hε0(n)(k(n + 1)) > Hε0(n)(n) = Hε0(n). Hence f(n) > Hε0(n) for all n, and since

Hε0 eventually dominates all provably recursive functions of PA it follows that f cannot

be provably recursive. This is the contradiction.
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