


Monographs in Theoretical Computer Science

An EATCS Series

Editors: W. Brauer J. Hromkovič G. Rozenberg A. Salomaa
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Preface

The purpose of this Handbook is to highlight both theory and applications of
weighted automata.

Weighted finite automata are classical nondeterministic finite automata
in which the transitions carry weights. These weights may model, e.g., the
cost involved when executing a transition, the amount of resources or time
needed for this, or the probability or reliability of its successful execution. The
behavior of weighted finite automata can then be considered as the function
(suitably defined) associating with each word the weight of its execution.
Clearly, weights can also be added to classical automata with infinite state
sets like pushdown automata; this extension constitutes the general concept
of weighted automata.

To illustrate the diversity of weighted automata, let us consider the fol-
lowing scenarios. Assume that a quantitative system is modeled by a classical
automaton in which the transitions carry as weights the amount of resources
needed for their execution. Then the amount of resources needed for a path in
this weighted automaton is obtained simply as the sum of the weights of its
transitions. Given a word, we might be interested in the minimal amount of
resources needed for its execution, i.e., for the successful paths realizing the
given word. In this example, we could also replace the “resources” by “profit”
and then be interested in the maximal profit realized, correspondingly, by a
given word. Furthermore, if the transitions carry probabilities as weights, the
reliability of a path can be formalized as the product of the probabilities of its
transitions, and the reliability of a word could be defined again as the maxi-
mum of the reliabilities of its successful paths. As another example, we may
obtain the multiplicity of a word, defined as the number of paths realizing it,
as follows: let each transition have weight 1; for paths take again the product
of the weights of its transitions (which equals 1); then the multiplicity of a
word equals the sum of the weights of its successful paths. Finally, if in the
latter example we replace sum by “maximum,” weight 1 is associated to a
word if and only if it is accepted by the given classical automaton.

v



vi Preface

In all of these examples, the algebraic structure underlying the computa-
tions with the weights is that of a semiring. Therefore, we obtain a uniform
and powerful automaton model if the weights are taken from an abstract
semiring. Here the multiplication of the semiring is used for determining the
weight of a path, and the weight of a word is then obtained by the sum of the
weights of its successful paths. In particular, classical automata are obtained
as weighted automata over the Boolean semiring. Many constructions and al-
gorithms known from classical automata theory can be performed very gener-
ally for such weighted automata over large classes of semirings. For particular
properties, sometimes additional assumptions on the underlying semiring are
needed.

Another dimension of diversity evolves by considering weighted automata
over discrete structures other than finite words, e.g., infinite words, trees,
traces, series-parallel posets, or pictures. Alternatively, in a weighted automa-
ton, the state set needs not to be finite, so we can consider, e.g., weighted
pushdown automata with states being pairs of states (in the usual mean-
ing) and the contents of the pushdown tape. Moreover, weighted context-free
grammars and algebraic systems arise from weighted automata over trees by
using the well-known equivalence between frontier sets of recognizable tree
languages and context-free languages.

For the definition of weighted automata and their behaviors, matrices and
formal power series are used. This makes it possible to use methods of linear
algebra over semirings for more succinct, elegant, and convincing proofs.

Weighted finite automata and weighted context-free grammars were first
introduced in the seminal papers of Marcel-Paul Schützenberger (1961) and
Noam Chomsky and Marcel-Paul Schützenberger (1963), respectively. These
general models have found much interest in Computer Science due to their
importance both in theory as well as in current practical applications. For
instance, the theory of weighted finite automata and weighted context-free
grammars was essential for the solution of classical automata theoretic prob-
lems like the decidability of the equivalence: of unambiguous context-free lan-
guages and regular languages; of deterministic finite multitape automata; and
of deterministic pushdown automata. For the variety of theoretical results
discovered, we refer the reader to the indispensable monographs by Samuel
Eilenberg (1974), Arto Salomaa and Matti Soittola (1978), Wolfgang Wechler
(1978), Jean Berstel and Christophe Reutenauer (1984), Werner Kuich and
Arto Salomaa (1986), and Jacques Sakarovitch (2003). (See Chap. 1 for precise
references.) On the other hand, weighted automata and weighted context-free
grammars have been used as basic concepts in natural language processing
and speech recognition, and recently, weighted automata have been used in
algorithms for digital image compression.
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Since the publication of the mentioned monographs, the field of weighted
automata has further developed both in depth and breadth.1 The editors of
this Handbook are very happy that international experts of the different areas
agreed to write survey articles on the present shape of their respective field.
The chapters of this Handbook were written such that a basic knowledge of
automata and formal language theory suffices for their understanding.

Next, we give a short overview of the contents of this Handbook. Part I pro-
vides foundations. More specifically, in Chap. 1, Manfred Droste and Werner
Kuich present basic foundations for the theory of weighted automata, in par-
ticular, semirings, formal power series, and matrices. As is well known, regular
and context-free languages can be obtained as least solutions of suitable fixed
point equations. In Chap. 2, Zoltán Ésik provides an introduction to that
part of the theory of fixed points that has applications to weighted automata
and their behaviors, and to weighted context-free grammars in the shape of
algebraic systems.

Part II of this Handbook investigates different concepts of weighted recog-
nizability. In Chap. 3, Zoltán Ésik and Werner Kuich develop the theory of
finite automata starting from ideas based on linear algebra over semirings.
In particular, they derive the fundamental Kleene–Schützenberger character-
ization of the behaviors of weighted automata over Conway semirings. In
Chap. 4, Jacques Sakarovitch presents the theory of rational and recogniz-
able formal power series over arbitrary semirings and graded monoids. As a
consequence, he derives that the equivalence of deterministic multitape trans-
ducers is decidable. A seminal theorem of J. Richard Büchi (1960) and Calvin
C. Elgot (1961) shows the equivalence in expressive power between classi-
cal finite automata (over finite and infinite words) and monadic second-order
logic. In Chap. 5, Manfred Droste and Paul Gastin present a weighted version
of monadic second-order logic and derive corresponding equivalence results
for weighted automata. In Chap. 6, Mehryar Mohri presents several funda-
mental algorithms for weighted graphs, weighted automata, and regulated
transducers as, e.g., algorithms for shortest-distance computation, ε-removal,
determinization, minimization, and composition.

In Part III of this Handbook, alternative types of weighted automata and
various discrete structures other than words are considered. In Chap. 7, Ion
Petre and Arto Salomaa present the core aspects of the theory of algebraic
power series in noncommuting variables, weighted pushdown automata, and
their relationship to formal languages. In Chap. 8, Juha Honkala extends
the theory of algebraic power series by considering Lindenmayerian algebraic
systems and several restricted such systems. The following two chapters con-
sider weighted automata acting on extensions of finite words. In Chap. 9,
Zoltán Fülöp and Heiko Vogler survey the theory of weighted tree automata
and weighted tree transducers. This combines classical results of weighted au-
1 For instance, see the biennial workshops on “Weighted Automata: Theory and
Applications” (WATA) since 2002.



viii Preface

tomata and transducers on words and of unweighted tree automata and tree
transducers. In Chap. 10, Ina Fichtner, Dietrich Kuske, and Ingmar Meinecke
present different weighted automata models for concurrent processes, formal-
ized by traces and series-parallel posets, and analyze their relationships. They
also consider two-dimensional extensions of words, namely pictures.

Part IV deals with applications of weighted automata. In Chap. 11, Jürgen
Albert and Jarkko Kari present the use of weighted automata and transducers
for digital image compression and give comparisons with the image compres-
sion standard JPEG. In Chap. 12, George Rahonis describes the theory of
fuzzy recognizable languages. This theory arises by considering weighted au-
tomata over particular semirings, namely bounded distributive lattices. In
Chap. 13, Christel Baier, Marcus Größer, and Frank Ciesinski present the
main concepts of Markov decision processes as an operational model for prob-
abilistic systems, and basic steps for the (qualitative and quantitative) analysis
against linear-time properties. In Chap. 14, Kevin Knight and Jonathan May
address the reawakened interest in string and tree automata among compu-
tational linguists. The chapter surveys tasks occurring in natural language
processing and shows their solutions by using weighted automata.

Some of the chapters contain open problems. We hope that this will stim-
ulate further research.

Finally, we would like to express our thanks to all authors of this Hand-
book and to the referees for their careful work. Moreover, warm thanks go to
Carmen Heger for her support in the technical compilation of the chapters.

Manfred Droste Werner Kuich Heiko Vogler
Leipzig Wien Dresden

May 13, 2009
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1 Introduction

It is the goal of this chapter to present basic foundations for the theory of
weighted automata: semirings and formal power series.

Weighted automata are classical automata in which the transitions carry
weights. These weights may model, e.g., the cost involved when executing the
transition, the amount of resources or time needed for this, or the probability
or reliability of its successful execution. In order to obtain a uniform model
of weighted automata for different realizations of weights and their computa-
tions, the weight structures are often modeled as semirings. A semiring con-
sists of a set with two operations addition and multiplication satisfying certain
natural axioms like associativity, commutativity, and distributivity, just like
the natural numbers with their laws for sums and products. The behavior of
weighted automata can then be defined as a function associating to each word
the total weight of its execution; see Chaps. 3 and 4 of this handbook [12, 38].

Any function from the free monoid Σ∗ of all words over a given alphabet Σ
into a semiring S is called a formal power series. It is important to notice that

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series,
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each language over Σ can be viewed as a formal power series over the Boolean
semiring B and Σ∗ (by identifying the language with its characteristic series).
Therefore, formal power series form a generalization of formal languages, and
similarly, weighted automata generalize classical automata. For other semi-
rings (like the natural or real numbers), formal power series can be viewed as
weighted, multivalued or quantified languages in which each word is assigned
a weight, a number, or some quantity.

In this chapter, we will present the basics of the theory of semirings and
formal power series as far as they are used in the forthcoming chapters of this
handbook. Now, we give a summary of the contents of this chapter.

First, we consider various particular monoids and semirings. Many semi-
rings (like the natural numbers) carry a natural order. Also, when generalizing
the star operation (= Kleene iteration) from languages to formal power series,
important questions on the existence of infinite sums arise. This leads to the
notions of ordered, complete or continuous monoids and semirings. Besides
these, we will consider the related concepts of star semirings and Conway
semirings, and also locally finite semirings.

Next, we introduce formal power series, especially locally finite families of
power series and cycle-free power series. It is a basic result that the collection
of all formal power series over a given semiring and an alphabet can be en-
dowed with addition and Cauchy multiplication yielding again the structure of
a semiring, as well as with several further useful operations like the Hadamard
product or the Hurwitz (shuffle) product. We prove that, under suitable as-
sumptions, certain equalities involving the Kleene-star of elements are valid.
Moreover, various important properties of the underlying semiring transfer to
the semiring of formal power series. In particular, this includes properties like
being ordered, complete, continuous, or Conway. We also consider morphisms
between semirings of formal power series.

As is well known, the set of transitions of a classical finite automaton can
be uniformly represented by matrices with entries 0 or 1. A similar representa-
tion is also easily possible for the transitions of a weighted automaton: here the
matrices have entries from the underlying semiring, namely the weights of the
transitions. This yields very compact representations of weighted automata
and often very concise algebraic proofs about their behaviors. We prove a
theorem on (infinite) matrices central for automata theory: In a complete
star semiring, the blocks of the star of a matrix can be represented by apply-
ing rational operations to the blocks of the matrix. Moreover, the Kronecker
(tensor) product of matrices is considered.

Finally, we consider cycle-free equations. They have a unique solution and
can be used to show that two expressions represent the same formal power
series. Again, we obtain results on how to compute the blocks of the star of
a matrix, but now for arbitrary semirings, by imposing restrictions on the
matrix.

In the literature, a number of authors have dealt with the interplay between
semirings, formal power series and automata theory. The following books and
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surveys deal with this topic: Berstel [2], Berstel and Reutenauer [3], Bloom and
Ésik [4], Carré [5], Conway [6], Eilenberg [8], Ésik and Kuich [9], Kuich [28],
Kuich and Salomaa [29], Sakarovitch [37], Salomaa and Soittola [39], Wech-
ler [40].

Further books on semirings and formal power series are Golan [15] and
Hebisch and Weinert [20]. G�lazek [13] is a bibliography on semirings and
formal power series.

Some ideas and formulations of this presentation originate from Kuich and
Salomaa [29] and Ésik and Kuich [11].

2 Monoids and Semirings

In this section, we consider monoids and semirings. The definitions and results
on monoids and semirings are mainly due to Bloom and Ésik [4], Eilenberg [8],
Goldstern [16], Karner [22, 23], Krob [25, 26], Kuich [27, 28], Kuich and Salo-
maa [29], Manes and Arbib [31], and Sakarovitch [36]. Our notion of contin-
uous monoids and semirings is a specialization of the continuous algebras as
defined, e.g., in Guessarian [17], Goguen, Thatcher, Wagner, and Wright [14],
Adámek, Nelson, and Reiterman [1].

A monoid consists of a non-empty set M , an associative binary operation ·
on M and a neutral element 1 such that m · 1 = 1 · m = m for every m ∈ M .
A monoid M is called commutative if m1 ·m2 = m2 ·m1 for every m1, m2 ∈ M .
The binary operation is usually denoted by juxtaposition and often called
product.

If the operation and the neutral element of M are understood, then we de-
note the monoid simply by M . Otherwise, we use the triple notation 〈M, ·, 1〉.
A commutative monoid M is often denoted by 〈M, +, 0〉.

The most important type of a monoid in our considerations is the free
monoid Σ∗ generated by a nonempty set Σ. It has all the (finite) words
over Σ

x1 . . . xn, with xi ∈ Σ, 1 ≤ i ≤ n, n ≥ 0,

as its elements, and the product w1 · w2 is formed by writing the string w2

immediately after the string w1. The neutral element of Σ∗ (the case n = 0),
also referred to as the empty word, is denoted by ε.

The elements of Σ are called letters or symbols. The set Σ itself is called
an alphabet. The length of a word w = x1 . . . xn, n ≥ 0, in symbols |w|, is
defined to be n.

A morphism h of a monoid M into a monoid M ′ is a mapping h : M → M ′

compatible with the neutral elements and operations in 〈M, ·, 1〉 and 〈M ′, ◦, 1′〉,
i.e., h(1) = 1′ and h(m1 · m2) = h(m1) ◦ h(m2) for all m1, m2 ∈ M .

If Σ is an alphabet and 〈M, ·, 1〉 is any monoid, then every mapping h :
Σ → M can be uniquely extended to a morphism h� : Σ∗ → M by putting
h�(ε) = 1 and h�(x1x2 . . . xn) = h(x1)·h(x2)· · · · ·h(xn) for any x1, . . . , xn ∈ Σ,
n ≥ 1. Usually, h� is again denoted by h.
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Next, we consider monoids with particular properties, like carrying an
order or having an infinite sum operation. For our purposes, it suffices to
consider commutative monoids. A commutative monoid 〈M, +, 0〉 is called
idempotent, if m + m = m for all m ∈ M , and it is called ordered if it is
equipped with a partial order ≤ preserved by the + operation. An ordered
monoid M is positively ordered, if m ≥ 0 for each m ∈ M . A commutative
monoid 〈M, +, 0〉 is called naturally ordered if the relation 	 defined by: m1 	
m2 if there exists an m such that m1 + m = m2, is a partial order. Clearly,
this is the case, i.e., 	 is antisymmetric, iff whenever m, m′, m′′ ∈ M with
m + m′ + m′′ = m, then m + m′ = m. Then in particular M is positively
ordered. We note that if 〈M, +, 0〉 is idempotent, then M is naturally ordered
and for any m1, m2 ∈ M we have m1 +m2 = sup{m1, m2} in 〈M,	〉. Further,
m1 	 m2 iff m1 + m2 = m2. Morphisms of ordered monoids are monoid
morphisms which preserve the order.

If I is an index set, an infinitary sum operation
∑

I : M I → M associates
with every family (mi | i ∈ I) of elements of M an element

∑
i∈I mi of M .

A monoid 〈M, +, 0〉 is called complete if it has infinitary sum operations
∑

I

(for any index set I) such that the following conditions are satisfied:

(i)
∑

i∈∅ mi = 0,
∑

i∈{j} mi = mj ,
∑

i∈{j,k} mi = mj + mk, for j 
= k.
(ii)

∑
j∈J (

∑
i∈Ij

mi) =
∑

i∈I mi, if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 
= j′.

A morphism of complete monoids is a monoid morphism preserving all sums.
Note that any complete monoid is commutative.

Recall that a non-empty subset D of a partially ordered set P is called
directed if each pair of elements of D has an upper bound in D.

A positively ordered commutative monoid 〈M, +, 0〉 is called a continuous
monoid if each directed subset of M has a least upper bound and the +
operation preserves the least upper bound of directed sets, i.e., when

m + sup D = sup(m + D),

for all directed sets D ⊆ M and for all m ∈ M . Here, m + D is the set
{m + d | d ∈ D}.

It is known that a positively ordered commutative monoid M is continuous
iff each chain in M has a least upper bound and the + operation preserves
least upper bounds of chains, i.e., when m + supC = sup(m + C) holds for all
non-empty chains C in M . (See Markowsky [32].)

Proposition 2.1. Any continuous monoid 〈M, +, 0〉 is a complete monoid
equipped with the following sum operation:

∑

i∈I

mi = sup

{∑

i∈F

mi

∣
∣ F ⊆ I, F finite

}

,

for all index sets I and all families (mi | i ∈ I) in M .
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A function f : P → Q between partially ordered sets is continuous if
it preserves the least upper bound of any directed set, i.e., when f(supD) =
sup f(D), for all directed sets D ⊆ P such that sup D exists. It follows that any
continuous function preserves the order. A morphism of continuous monoids
is defined to be a monoid morphism which is a continuous function. Clearly,
any morphism between continuous monoids is a complete monoid morphism.

A semiring is a set S together with two binary operations + and · and
two constant elements 0 and 1 such that:

(i) 〈S, +, 0〉 is a commutative monoid,
(ii) 〈S, ·, 1〉 is a monoid,
(iii) the distributivity laws (a + b) · c = a · c + b · c and c · (a + b) = c · a + c · b

hold for every a, b, c ∈ S,
(iv) 0 · a = a · 0 = 0 for every a ∈ S.

A semiring S is called commutative if a · b = b · a for every a, b ∈ S.
Further, S is called idempotent if 〈S, +, 0〉 is an idempotent monoid. By the
distributivity law, this holds iff 1 + 1 = 1.

If the operations and the constant elements of S are understood, then we
denote the semiring simply by S. Otherwise, we use the notation 〈S, +, ·, 0, 1〉.
In the sequel, S will denote a semiring.

Intuitively, a semiring is a ring (with unity) without subtraction. A typical
example is the semiring of nonnegative integers N. A very important semiring
in connection with language theory is the Boolean semiring B = {0, 1} where
1 + 1 = 1 · 1 = 1. Clearly, all rings (with unity), as well as all fields, are
semirings, e.g., the integers Z, rationals Q, reals R, complex numbers C, etc.

Let N
∞ = N ∪ {∞} and N = N ∪ {−∞,∞}. Then 〈N∞, +, ·, 0, 1〉,

〈N∞, min, +,∞, 0〉 and 〈N, max, +,−∞, 0〉, where +, ·, min and max are de-
fined in the obvious fashion (observe that 0 ·∞ = ∞· 0 = 0 and (−∞)+∞ =
−∞), are semirings.

Let R+ = {a ∈ R | a ≥ 0}, R
∞
+ = R+ ∪ {∞} and R+ = R+ ∪ {−∞,∞}.

Then 〈R+, +, ·, 0, 1〉, 〈R∞
+ , +, ·, 0, 1〉 and 〈R∞

+ , min, +,∞, 0〉 are semirings. The
semirings 〈N∞

+ , min, +,∞, 0〉 and 〈R∞
+ , min, +,∞, 0〉 are called tropical semi-

rings or min-plus semirings. Similarly, the semirings 〈N, max, +,−∞, 0〉 and
〈R+, max, +,−∞, 0〉 are called max-plus semirings or arctic semirings. A fur-
ther example is provided by the semiring 〈[0, 1],max, ·, 0, 1〉, called the Viterbi
semiring in probabilistic parsing.

We note that the tropical and the arctic semirings are very often employed
in optimization problems of networks, cf., e.g., Heidergott, Olsder, and van
der Woude [21].

Let Σ be a finite alphabet. Then each subset of Σ∗ is called a formal
language over Σ. We define, for formal languages L1, L2 ⊆ Σ∗, the product
of L1 and L2 by

L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.
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Then 〈2Σ∗
,∪, ·, ∅, {ε}〉 is a semiring, called the semiring of formal languages

over Σ. Here, 2U denotes the power set of a set U and ∅ denotes the empty
set.

If U is a set, 2U×U is the set of binary relations over U . Define, for two
relations R1 and R2, the product R1 · R2 ⊆ U × U by

R1 · R2 = {(u1, u2) |
(u1, u) ∈ R1 and (u, u2) ∈ R2}
there exists u ∈ U such that

and furthermore, define

Δ = {(u, u) | u ∈ U}.

Then 〈2U×U ,∪, ·, ∅, Δ〉 is a semiring, called the semiring of binary relations
over U .

Further semirings are the chain of nonnegative reals 〈R∞
+ , max, min, 0,∞〉

and any Boolean algebra, in particular the power set Boolean algebras 〈2U ,∪,
∩, ∅, U〉 where U is any set. These examples can be generalized as follows.
Recall that a partially ordered set 〈L,≤〉 is a lattice if for any two elements
a, b ∈ L, the least upper bound a ∨ b = sup{a, b} and the greatest lower
bound a ∧ b = inf{a, b} exist in 〈L,≤〉. A lattice 〈L,≤〉 is distributive, if
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L; and bounded, if L contains a
smallest element, denoted 0, and a greatest element, denoted 1. Now, let 〈L,≤〉
be any bounded distributive lattice. Then 〈L,∨,∧, 0, 1〉 is a semiring. Since
any distributive lattice L also satisfies the dual law a∨(b∧c) = (a∨b)∧(a∨c) for
all a, b, c ∈ L, the structure 〈L,∧,∨, 1, 0〉 is also a semiring. Such semirings are
often used for fuzzy automata; see Chap. 12 [35] of this book. Another semiring
is the �Lukasiewicz semiring 〈[0, 1],max,⊗, 0, 1〉 where a⊗b = max{0, a+b−1}
which occurs in multivalued logic (see Hájek [18]).

Recall that in formal language theory, the Kleene-iteration L∗ of a lan-
guage L ⊆ Σ∗ is defined by L∗ =

⋃
n≥0 Ln. Later on, we wish to extend this

star operation to formal power series (i.e., functions) r : Σ∗ → S where S is a
semiring. For this, it will be useful to know which semirings carry such a star
operation like the semiring of formal languages. We will call a star semiring
any semiring equipped with an additional unary operation ∗. The following
semirings are star semirings:

(i) The Boolean semiring 〈B,+, ·, ∗, 0, 1〉 with 0∗ = 1∗ = 1.
(ii) The semiring 〈N∞, +, ·, ∗, 0, 1〉 with 0∗ = 1 and a∗ = ∞ for a 
= 0.
(iii) The semiring 〈R∞

+ , +, ·, ∗, 0, 1〉 with a∗ = 1/(1 − a) for 0 ≤ a < 1 and
a∗ = ∞ for a ≥ 1.

(iv) The tropical semirings 〈R∞
+ , min,+, ∗,∞, 0〉 and 〈N∞, min, +, ∗,∞, 0〉

with a∗ = 0 for all a ∈ R
∞
+ resp. all a ∈ N

∞.
(v) The arctic semirings 〈R+, max, +, ∗,−∞, 0〉 and 〈N, max, +, ∗,−∞, 0〉

with (−∞)∗ = 0∗ = 0 and a∗ = ∞ for a > 0.
(vi) The semiring 〈2Σ∗

,∪, ·, ∗, ∅, {ε}〉 of formal languages over a finite alpha-
bet Σ, as noted before, with L∗ =

⋃
n≥0 Ln for all L ⊆ Σ∗.
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(vii) The semiring 〈2U×U ,∪, ·, ∗, ∅, Δ〉 of binary relations over U with R∗ =⋃
n≥0 Rn for all R ⊆ U × U . The relation R∗ is called the reflexive and

transitive closure of R, i.e., the smallest reflexive and transitive binary
relation over S containing R.

(viii) The �Lukasiewicz semiring 〈[0, 1],max,⊗, ∗, 0, 1〉 with a∗ = 1 for all a ∈
[0, 1].

(ix) The idempotent naturally ordered commutative semiring 〈{0, 1, a,∞},
+, ·, ∗, 0, 1〉, with 0 	 1 	 a 	 ∞, a · a = a, 0∗ = 1∗ = 1, a∗ = ∞∗ = ∞.

(x) The bounded distributive lattice semiring 〈L,∨,∧, ∗, 0, 1〉 with a∗ = 1
for all a ∈ L.

The semirings (i)–(v) and (viii)–(x) are commutative. The semirings (i),
(iv)–(x) are idempotent.

A semiring 〈S, +, ·, 0, 1〉 is called ordered if 〈S, +, 0〉 is an ordered monoid
and multiplication with elements s ≥ 0 preserves the order; it is positively
ordered, if furthermore, 〈S, +, 0〉 is positively ordered. When the order on S is
the natural order, 〈S, +, ·, 0, 1〉 is automatically a positively ordered semiring.

A semiring 〈S, +, ·, 0, 1〉 is called complete if 〈S, +, 0〉 is a complete monoid
and the following distributivity laws are satisfied (see Bloom and Ésik [4],
Conway [6], Eilenberg [8], Kuich [28]):

∑

i∈I

(a · ai) = a ·
(∑

i∈I

ai

)

,
∑

i∈I

(ai · a) =
(∑

i∈I

ai

)

· a.

This means that a semiring S is complete if it is possible to define “infinite
sums” (i) that are an extension of the finite sums, (ii) that are associative and
commutative and (iii) that satisfy the distributivity laws.

In complete semirings for each element a, we can define the star a∗ of a
by

a∗ =
∑

j≥0

aj ,

where a0 = 1 and aj+1 = a · aj = aj · a for j ≥ 0. Hence, with this star
operation, each complete semiring is a star semiring called a complete star
semiring. The semirings (i)–(viii) are complete star semirings. The semiring
(ix) is complete, but it violates the above equation for the element a, hence
it is not a complete star semiring. The distributive lattice semiring L satisfies
a∗ =

∨
j≥0 aj for each a ∈ L, but is not necessarily complete. It is a complete

semiring iff (L,∨,∧) is a join-continuous complete lattice, i.e., any subset of L
has a supremum in L and a∧

∨
i∈I ai =

∨
i∈I(a∧ai) for any subset {ai | i ∈ I}

of L.
A semiring 〈S, +, ·, 0, 1〉 is called continuous if 〈S, +, 0〉 is a continuous

monoid and if multiplication is continuous, i.e.,

a · (supi∈I ai) = supi∈I(a · ai) and (supi∈I ai) · a = supi∈I(ai · a)
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for all directed sets {ai | i ∈ I} and a ∈ S (see Bloom and Ésik [4]). It follows
that the distributivity laws hold for infinite sums:

a ·
(∑

i∈I

ai

)

=
∑

i∈I

(a · ai) and
(∑

i∈I

ai

)

· a =
∑

i∈I

(ai · a)

for all families (ai | i ∈ I).

Proposition 2.2. Any continuous semiring is complete.

All the semirings in (i)–(ix) are continuous.
We now consider two equations that are important in automata theory.

Let S be a star semiring. Then for a, b ∈ S:

(i) The sum star identity is valid for a and b if (a + b)∗ = (a∗b)∗a∗.
(ii) The product star identity is valid for a and b if (ab)∗ = 1 + a(ba)∗b.

If the sum star identity (resp. the product star identity) is valid for all a, b ∈ S,
then we say that the sum star identity (resp. the product star identity) is valid
(in the star semiring S).

A Conway semiring is now a star semiring in which the sum star iden-
tity and the product star identity are valid (see Conway [6], Bloom and
Ésik [4]). All the star semirings in (i)–(x) are Conway semirings. The semiring
〈Q∞

+ , +, ·, ∗, 0, 1〉, with Q
∞
+ = R

∞
+ ∩(Q∪{∞}) and operations defined as in (iii),

is a Conway semiring (since the sum star identity and product star identity
hold in R

∞
+ ) but is not complete. Now we have the following proposition.

Proposition 2.3. Let S be a star semiring. Then S is a Conway semiring
iff, for all a, b ∈ S:

(i) (a + b)∗ = (a∗b)∗a∗.
(ii) (ab)∗a = a(ba)∗.
(iii) a∗ = 1 + aa∗ = 1 + a∗a.

Proof. If S is a Conway semiring, we obtain (iii) from the product star identity
with b = 1, resp. a = 1. Then (ii) follows from the product star identity,
distributivity, and (iii). Conversely, for the product star identity compute
(ab)∗ by using (iii) and then (ii). ��

Next we introduce conditions which often simplify the definition or the cal-
culation of the star of elements. A semiring S is k-closed, where k ≥ 0, if for
each a ∈ S,

1 + a + · · · + ak = 1 + a + · · · + ak + ak+1.

It is called locally closed, if for each a ∈ S, there is an integer k ≥ 0 such that
the above equality is valid. (See Carré [5], Mohri [33], Ésik and Kuich [10],
Zhao [41], Zimmermann [42].) If 〈S, +, ·, 0, 1〉 is a k-closed semiring, then define
the star of a ∈ S by

a∗ = 1 + a + · · · + ak.
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An analogous equality defines the star in a locally closed semiring. With this
star operation, each k-closed (resp. locally closed) semiring is a star semi-
ring called a k-closed (resp. locally closed) star semiring. The semirings (i),
(iv), (viii), and (x) are 0-closed star semirings; the semiring (ix) is a 1-closed
semiring, but not a 1-closed star semiring. In [10, 41], the following was shown.

Theorem 2.4. Any locally closed star semiring is a Conway semiring.

Next we consider morphisms between semirings. Let S and S′ be semi-
rings. Then a mapping h : S → S′ is a morphism from S into S′ if h(0) = 0,
h(1) = 1, h(a + b) = h(a) + h(b) and h(a · b) = h(a) · h(b) for all a, b ∈ S.
That is, a morphism of semirings is a mapping that preserves the semiring
operations and constants. A bijective morphism is called an isomorphism.
For instance, the semirings 〈R∞

+ , min, +,∞, 0〉 and 〈[0, 1],max, ·, 0, 1〉 are iso-
morphic via the mapping x �→ e−x, and the semiring 〈R∞

+ , max, min, 0,∞〉 is
isomorphic to 〈[0, 1],max, min, 0, 1〉 via the mapping x �→ 1 − e−x. A mor-
phism h of star semirings is a semiring morphism that preserves additionally
the star operation, i.e., h(a∗) = h(a)∗ for all a ∈ S. Similarly, a morphism of
ordered (resp. complete, continuous) semirings is a semiring morphism that
preserves the order (resp. all sums, all suprema of directed subsets). Note
that every continuous semiring is an ordered semiring and every continuous
semiring morphism is an ordered semiring morphism.

Complete and continuous semirings are typically infinite. For results on
weighted automata, sometimes it is assumed that the underlying semiring is
finite or “close” to being finite. A large class of such semirings can be obtained
by the notion of local finiteness (which stems from group theory where it is
well known).

A semiring S is locally finite (see Wechler [40], Droste and Gastin [7]) if
each finitely generated subsemiring is finite. We note that a semiring 〈S, +, ·,
0, 1〉 is locally finite iff both monoids 〈S, +, 0〉 and 〈S, ·, 1〉 are locally finite. In-
deed, if 〈S, +, 0〉 and 〈S, ·, 1〉 are locally finite and U is a finite subset of S, then
the submonoid V of 〈S, ·, 1〉 generated by U is finite and the submonoid W of
〈S, +, 0〉 generated by V is also finite. Now, it is easy to check that W ·W ⊆ W
and we deduce that the subsemiring of 〈S, +, ·, 0, 1〉 generated by U is the finite
set W .

For instance, if both sum and product are commutative and idempo-
tent, then the semiring is locally finite. Consequently, any bounded distribu-
tive lattice 〈L,∨,∧, 0, 1〉 is a locally finite semiring. In particular, the chain
〈[0, 1],max, min, 0, 1〉 and any Boolean algebra are locally finite. Further, the
�Lukasiewicz semiring 〈[0, 1],max,⊗, 0, 1〉 is locally finite, since its additive and
multiplicative monoid are commutative and locally finite. Moreover, each pos-
itively ordered locally finite semiring is locally closed, and each positively or-
dered finite semiring is k-closed where k is less than the number of elements
of the semiring.

Examples of infinite but locally finite fields are provided by the algebraic
closures of the finite fields Z/pZ for any prime p.
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3 Formal Power Series

In this section, we define and investigate formal power series (for exposi-
tions, see Salomaa and Soittola [39], Kuich and Salomaa [29], Berstel and
Reutenauer [3], Sakarovitch [37]). Let Σ be an alphabet and S a semiring.
Mappings r from Σ∗ into S are called (formal) power series. The values of r
are denoted by (r, w), where w ∈ Σ∗, and r itself is written as a formal sum

r =
∑

w∈Σ∗

(r, w)w.

The values (r, w) are also referred to as the coefficients of the series. The
collection of all power series r as defined above is denoted by S〈〈Σ∗〉〉.

This terminology reflects the intuitive ideas connected with power series.
We call the power series “formal” to indicate that we are not interested in
summing up the series but rather, for instance, in various operations defined
for series.

Given r ∈ S〈〈Σ∗〉〉, the support of r is the set

supp(r) = {w ∈ Σ∗ | (r, w) 
= 0}.

A series r ∈ S〈〈Σ∗〉〉 where every coefficient equals 0 or 1 is termed the charac-
teristic series of its support L, in symbols, r = char(L) or r = 1L. The subset
of S〈〈Σ∗〉〉 consisting of all series with a finite support is denoted by S〈Σ∗〉.
Series of S〈Σ∗〉 are referred to as polynomials. It will be convenient to use
the notations S〈Σ ∪ {ε}〉, S〈Σ〉 and S〈{ε}〉 for the collection of polynomials
having their supports in Σ ∪ {ε}, Σ and {ε}, respectively.

Examples of polynomials belonging to S〈Σ∗〉 are 0 and aw, where a ∈ S
and w ∈ Σ∗, defined by:

(0, w) = 0 for all w,

(aw, w) = a and (aw, w′) = 0 for w 
= w′.

Often, 1w is denoted by w or 1{w}.
Next, we introduce several operations on power series. For r1, r2, r ∈

S〈〈Σ∗〉〉 and a ∈ S, we define the sum r1 + r2, the (Cauchy) product r1 · r2,
the Hadamard product r1 � r2, and scalar products ar, ra, each as a series
belonging to S〈〈Σ∗〉〉, as follows:

• (r1 + r2, w) = (r1, w) + (r2, w)
• (r1 · r2, w) =

∑
w1w2=w(r1, w1)(r2, w2)

• (r1 � r2, w) = (r1, w)(r2, w)
• (ar, w) = a(r, w)
• (ra, w) = (r, w)a

for all w ∈ Σ∗.
It can be checked that 〈S〈〈Σ∗〉〉, +, ·, 0, ε〉 and 〈S〈Σ∗〉, +, ·, 0, ε〉 are semi-

rings, the semirings of formal power series resp. of polynomials over Σ and S.
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We just note that the structure 〈S〈〈Σ∗〉〉, +,�, 0, char(Σ∗)〉 is also a semi-
ring (the full Cartesian product of Σ∗ copies of the semiring 〈S, +, ·, 0, 1〉).

Clearly, the formal language semiring 〈2Σ∗
,∪, ·, ∅, {ε}〉 is isomorphic to

〈B〈〈Σ∗〉〉, +, ·, 0, ε〉. Essentially, a transition from 2Σ∗
to B〈〈Σ∗〉〉 and vice versa

means a transition from L to char(L) and from r to supp(r), respectively. Fur-
thermore, the operation corresponding to the Hadamard product is the inter-
section of languages. If r1 and r2 are the characteristic series of the languages
L1 and L2, then r1 � r2 is the characteristic series of L1 ∩ L2.

This basic transition between 2Σ∗
and B〈〈Σ∗〉〉 will be very important in

all of the following as it often gives a hint how to generalize classical results
from formal language theory into the realm of formal power series (with an
arbitrary or suitable semiring S replacing B).

Let ri ∈ S〈〈Σ∗〉〉 (i ∈ I), where I is an arbitrary index set. Then for w ∈ Σ∗

let Iw = {i | (ri, w) 
= 0}. Assume now that for all w ∈ Σ∗, Iw is finite. Then
we call the family of power series {ri | i ∈ I} locally finite. In this case, we
can define the sum

∑
i∈I ri by

(∑

i∈I

ri, w

)

=
∑

i∈Iw

(ri, w)

for all w ∈ Σ∗. Also, in this case for each r ∈ S〈〈Σ∗〉〉, the families {r·ri | i ∈ I}
and {ri · r | i ∈ I} are also locally finite, and r ·

∑
i∈I ri =

∑
i∈I r · ri and

(
∑

i∈I ri) · r =
∑

i∈I ri · r. Indeed, let w ∈ Σ∗ and put J =
⋃

w=uv Iv, a finite
set. Then

(

r ·
∑

i∈I

ri, w

)

=
∑

w=uv

(r, u)
(∑

i∈J

ri, v

)

=
∑

w=uv

∑

i∈J

(r, u) · (ri, v)

=
∑

i∈J

∑

w=uv

(r, u) · (ri, v) =
∑

i∈J

(r · ri, w) =
(∑

i∈I

r · ri, w

)

,

as (r · ri, w) 
= 0 implies i ∈ J . This proves the first equation, and the second
one follows similarly.

A power series r ∈ S〈〈Σ∗〉〉 is called proper or quasiregular if (r, ε) = 0.
The star r∗ of a proper power series r ∈ S〈〈Σ∗〉〉 is defined by

r∗ =
∑

n≥0

rn.

Since r is proper, we infer (rn, w) = 0 for each n > |w|. Hence, {rn | n ≥ 0}
is locally finite, (r∗, w) =

∑
0≤n≤|w|(r

n, w), and the star of a proper power
series is well-defined.

We generalize this result to cycle-free power series. A power series r ∈
S〈〈Σ∗〉〉 is called cycle-free of index k > 0 if (r, ε)k = 0. It is called cycle-free
if there exists a k ≥ 1 such that r is cycle-free of index k. Again, we define
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the star of a cycle-free power series r ∈ S〈〈Σ∗〉〉 by

r∗ =
∑

n≥0

rn.

Since r is cycle-free of some index k ≥ 1, an easy proof by induction on the
length of w ∈ Σ∗ yields (rn, w) = 0 for n ≥ k · (|w| + 1). Hence, {rn | n ≥ 0}
is locally finite, (r∗, w) =

∑
0≤n<k(|w|+1)(r

n, w), and the star of a cycle-free
power series is well-defined.

Next, we wish to consider identities that are valid for a cycle-free power
series r, like, e.g., rr∗ + ε = r∗r + ε = r∗. Using the distributivity laws given
above for locally finite families, this follows from:

rr∗ + ε = r ·
∑

n≥0

rn + ε =
∑

n≥0

rn+1 + ε = r∗.

Theorem 3.1. Let r be a cycle-free power series. Then, for each n ≥ 0,

r∗ = rn+1r∗ +
∑

0≤j≤n

rj = r∗rn+1 +
∑

0≤j≤n

rj .

Proof. We obtain by substitutions

r∗ = rr∗ + ε = r(rr∗ + ε) + ε = r2r∗ + r + ε = · · · .

The proof of the second equality is analogous. ��

Theorem 3.2. Let r, s ∈ S〈〈Σ∗〉〉 and assume that rs is cycle-free. Then sr
is cycle-free and

(rs)∗r = r(sr)∗.

Proof. Since rs is cycle-free, ((rs)k, ε) = 0 for some k > 0. Hence,
(
(sr)k+1, ε

)
= (s, ε)

(
(rs)k, ε

)
(r, ε) = 0

and sr is cycle-free. It follows that (rs)∗r =
∑

n≥0((rs)
n ·r) =

∑
n≥0 r·(sr)n =

r · (sr)∗. ��

The Hurwitz product (also called shuffle product) is defined as follows. For
w1, w2 ∈ Σ∗ and x1, x2 ∈ Σ, we define w1 �� w2 ∈ S〈〈Σ∗〉〉 by

w1 �� ε = w1, ε �� w2 = w2,

and
w1x1 �� w2x2 = (w1x1 �� w2)x2 + (w1 �� w2x2)x1.

For r1, r2 ∈ S〈〈Σ∗〉〉, the Hurwitz product r1 �� r2 ∈ S〈〈Σ∗〉〉 of r1 and r2 is
then defined by
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r1 �� r2 =
∑

w1,w2∈Σ∗

(r1, w1)(r2, w2)(w1 �� w2).

Observe that

(r1 �� r2, w) =
∑

|w1|+|w2|=|w|
(r1, w1)(r2, w2)(w1 �� w2, w)

is a finite sum for all w ∈ Σ∗. Hence, {
∑

w1w2=w(r1, w1)(r2, w2)w1 �� w2 |
w ∈ Σ∗} is locally finite and the Hurwitz product of two power series is
well-defined.

In language theory, the shuffle product is customarily defined for languages
L and L′ by

L �� L′ = {w1w
′
1 . . . wnw′

n | w1 . . . wn ∈ L, w′
1 . . . w′

n ∈ L′, n ≥ 1}.

If r1, r2 ∈ B〈〈Σ∗〉〉, then this definition is “isomorphic” to that given above for
formal power series.

When the semiring S is ordered by ≤, we may order S〈〈Σ∗〉〉, and thus
S〈Σ∗〉 by the pointwise order: We define r ≤ r′ for r, r′ ∈ S〈〈Σ∗〉〉 iff (r, w) ≤
(r′, w) for all w ∈ Σ∗. Equipped with this order, clearly both S〈〈Σ∗〉〉 and
S〈Σ∗〉 are ordered semirings.

If 〈S, +, ·, 0, 1〉 is a complete semiring, we can define an infinitary sum
operation on S〈〈Σ∗〉〉 as follows: If ri ∈ S〈〈Σ∗〉〉 for i ∈ I, then

∑
i∈I ri =∑

w∈Σ∗(
∑

i∈I(ri, w))w. By arguing elementwise for each word w ∈ Σ∗, we
obtain the following proposition.

Proposition 3.3. Let S be a semiring.

(a) If S is complete, S〈〈Σ∗〉〉 is also complete.
(b) If S is continuous, S〈〈Σ∗〉〉 is also continuous.

We just note here that an analogous result holds if S is a Conway semiring,
with an appropriate definition of the star operation in S〈〈Σ∗〉〉; see Chap. 3,
Theorem 2.8 [12] of this book.

Proposition 3.3 and the Hurwitz product are now used to prove that each
complete star semiring is a Conway semiring (see Kuich [27], Hebisch [19]).

Theorem 3.4. Each complete star semiring is a Conway semiring.

Proof. Let S be a complete star semiring and let a, b ∈ S. Let ā, b̄ be letters.
Note that to each word w̄ = c̄1c̄2 . . . c̄n, with c̄i ∈ {ā, b̄} for 1 ≤ i ≤ n,
there corresponds the element w = c1c2 . . . cn ∈ S. Let S′ be the complete
star semiring generated by 1. Then S′ is commutative. By Proposition 3.3,
〈S′〈〈{ā, b̄}〉〉,+, ·, 0, ε〉 is a complete semiring. Also, observe that ā �→ a, b̄ �→ b
induces a complete star semiring morphism from the complete star semiring
S′〈〈{ā, b̄}∗〉〉 to S.
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Using induction, the following equalities can be shown for all n, m ≥ 0:

(
ā + b̄

)n =
∑

0≤j≤n

āj �� b̄n−j ,

ān �� b̄m =
∑

0≤j≤n

(
āj �� b̄m−1

)
b̄ān−j

and
ā∗ �� b̄n =

∑

j≥0

āj �� b̄n =
(
ā∗b̄

)n
ā∗.

Hence, we infer the equality

(
ā + b̄

)∗ =
∑

n≥0

∑

j≥0

āj �� b̄n,

which implies immediately
(
ā + b̄

)∗ = (ā∗b̄)∗ā∗.

Applying the complete star semiring morphism defined above, we obtain
the sum star identity in S:

(a + b)∗ = (a∗b)∗a∗.

The product star identity is clear by

(ab)∗ = 1 +
∑

n≥1

(ab)n = 1 + a

( ∑

n≥0

(ba)n

)

b

= 1 + a(ba)∗b. ��

Finally, we show that morphisms between two semirings and also particular
morphisms between free monoids induce morphisms between the associated
semirings of formal power series.

First, let Σ be an alphabet, S, S′ two semirings and h : S → S′ a mor-
phism. We define h̄ : S〈〈Σ∗〉〉 → S′〈〈Σ∗〉〉 by h̄(r) = h ◦ r for each r ∈ S〈〈Σ∗〉〉,
i.e., (h̄(r), w) = h((r, w)) for each w ∈ Σ∗. Often, h̄ is again denoted by h.
The following is straightforward by elementary calculations.

Proposition 3.5. Let Σ be an alphabet, S, S′ two semirings and h : S →
S′ a semiring morphism. Then h : S〈〈Σ∗〉〉 → S′〈〈Σ∗〉〉 is again a semiring
morphism. Moreover, if r is cycle-free, so is h(r) and h(r∗) = (h(r))∗.

Second, let S be a semiring, Σ,Σ′ two alphabets and h : Σ∗ → Σ′∗

a morphism. We define h−1 : S〈〈Σ′∗〉〉 → S〈〈Σ∗〉〉 by h−1(r′) = r′ ◦ h for
each r′ ∈ S〈〈Σ′∗〉〉, that is, (h−1(r′), v) = (r′, h(v)) for each v ∈ Σ∗. We call
h : Σ∗ → Σ′∗ length-preserving, if |v| = |h(v)| for each v ∈ Σ∗; equivalently,
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h(x) ∈ Σ′ for each x ∈ Σ. Further, h is non-deleting, if h(x) 
= ε for each
x ∈ Σ; equivalently, |v| ≤ |h(v)| for each v ∈ Σ∗. If h is non-deleting or
if S is complete, we define h̄ : S〈〈Σ∗〉〉 → S〈〈Σ′∗〉〉 by letting (h̄(r), w) =∑

v∈Σ∗,h(v)=w(r, v) for each r ∈ S〈〈Σ∗〉〉 and w ∈ Σ′∗. Observe that if h is
non-deleting, h−1(w) is a finite set for each w ∈ Σ∗, and hence h̄(r) is well
defined.

Proposition 3.6. Let S be a semiring, Σ,Σ′ two alphabets and h : Σ∗ → Σ′∗

a morphism.

(i) Let h be length-preserving. Then the mapping h−1 : S〈〈Σ′∗〉〉 → S〈〈Σ∗〉〉
is a semiring morphism. Moreover, if r′ ∈ S〈〈Σ′∗〉〉 is cycle-free, then so
is h−1(r′), and h−1(r′∗) = (h−1(r′))∗.

(ii) Let h be nondeleting, or assume that S is complete. Then h̄ : S〈〈Σ∗〉〉 →
S〈〈Σ′∗〉〉 is a semiring morphism. Moreover, if h is non-deleting and r ∈
S〈〈Σ∗〉〉 is cycle-free, then so is h̄(r), and h̄(r∗) = (h̄(r))∗.

Proof. This can be shown again by elementary calculations. For (i), note that
if v ∈ Σ∗ and h(v) = w1w2 with w1, w2 ∈ Σ′∗, then since h is length-
preserving, there are v1, v2 ∈ Σ∗ with v = v1v2 and h(v1) = w1, h(v2) = w2.
This implies that h−1 preserves the Cauchy product. ��

4 Matrices

In this section, we introduce and investigate (possibly infinite) matrices. These
are important here since the structure and the behavior of weighted automata
can often be compactly described using matrices (see Chaps. 3, 4, and 7 of
this book [12, 38, 34]), and hence results from matrix algebra can be used to
derive results for weighted automata.

Consider two nonempty index sets I and I ′ and a set U . A mapping A :
I × I ′ → U is called a matrix. The values of A are denoted by Ai,i′ , where
i ∈ I and i′ ∈ I ′. The values Ai,i′ are also referred to as the entries of the
matrix A. In particular, Ai,i′ is called the (i, i′)-entry of A. The collection of
all matrices as defined above is denoted by U I×I′

.
If both I and I ′ are finite, then A is called a finite matrix. If I or I ′ is

a singleton, then AI×I′
is denoted by A1×I′

or AI×1, and A is called a row
or column vector, respectively. If A ∈ U I×1 (resp. A ∈ U1×I′

), then we often
denote the ith entry of A for i ∈ I (resp. i ∈ I ′), by Ai instead of Ai,1

(resp. A1,i). If I = {1, . . . , m} and I ′ = {1, . . . , n}, the set U I×I′
is denoted

by Um×n.
As before, we introduce some operations and special matrices inducing a

monoid or semiring structure to matrices. Let S be a semiring. For A, B ∈
SI×I′

, we define the sum A + B ∈ SI×I′
by (A + B)i,i′ = Ai,i′ + Bi,i′ for all

i ∈ I, i′ ∈ I ′. Furthermore, we introduce the zero matrix 0 ∈ SI×I′
. All entries
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of the zero matrix 0 are 0. By these definitions, 〈SI×I′
, +, 0〉 is a commutative

monoid.
Let A ∈ SI×I′

. Consider, for i ∈ I, the set of indices {j | Aij 
= 0}. Then
A is called a row finite matrix if these sets are finite for all i ∈ I. Similarly,
consider, for i′ ∈ I ′, the set of indices {j | Aji′ 
= 0}. Then A is called a
column finite matrix if these sets are finite for all i′ ∈ I ′.

If A is row finite or B is column finite, or if S is complete, then for A ∈
SI1×I2 and B ∈ SI2×I3 , we define the product AB ∈ SI1×I3 by

(AB)i1,i3
=

∑

i2∈I2

Ai1,i2Bi2,i3 for all i1 ∈ I1, i3 ∈ I3.

Furthermore, we introduce the matrix of unity E ∈ SI×I . The diagonal entries
Ei,i of E are equal to 1, the off-diagonal entries Ei1,i2 (i1 
= i2) of E are equal
to 0, for i, i1, i2 ∈ I.

It is easily shown that matrix multiplication is associative, the distributiv-
ity laws are valid for matrix addition and multiplication, E is a multiplicative
unit, and 0 is a multiplicative zero. So, we infer that 〈SI×I , +, ·, 0, E〉 is a
semiring if I is finite or if S is complete. Moreover, the row finite matrices in
SI×I and the column finite matrices in SI×I form semirings.

If S is complete, infinite sums can be extended to matrices. Consider SI×I′

and define, for Aj ∈ SI×I′
, j ∈ J , where J is an index set,

∑
j∈J Aj by its

entries: (∑

j∈J

Aj

)

i,i′
=

∑

j∈J

(Aj)i,i′ , for all i ∈ I, i′ ∈ I ′.

By this definition, SI×I is a complete semiring.
If S is ordered, the order on S is extended pointwise to matrices A and B

in SI×I′
:

A ≤ B if Ai,i′ ≤ Bi,i′ for all i ∈ I, i′ ∈ I ′.

If S is continuous, then so is SI×I .
Eventually, if S is a locally closed star semiring, then Sn×n, n ≥ 1, is

again a locally closed star semiring (see Ésik and Kuich [10], Zhao [41]); and
if S is a Conway semiring, then Sn×n, n ≥ 1, is again a Conway semiring (see
Conway [6], Bloom and Ésik [4], Ésik and Kuich [9]). Clearly, if S is locally
finite, then so is Sn×n for each n ≥ 1 (cf. [7]).

For the remainder of this chapter, I (resp. Q), possibly provided with
indices, denotes an arbitrary (resp. finite) index set. For the rest of this section,
we assume that all products of matrices are well-defined.

We now introduce blocks of matrices. Consider a matrix A in SI×I . Assume
that we have a decomposition I =

⋃
j∈J Ij where J and all Ij (j ∈ J) are

non-empty index sets such that Ij1 ∩ Ij2 = ∅ for j1 
= j2. The mapping A,
restricted to the domain Ij1 × Ij2 , i.e., A �Ij1×Ij2

: Ij1 × Ij2 → S is, of course,
a matrix in SIj1×Ij2 . We denote it by A(Ij1 , Ij2) and call it the (Ij1 , Ij2)-block
of A.
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We can compute the blocks of the sum and the product of matrices A and
B from the blocks of A and B in the usual way:

(A + B)(Ij1 , Ij2) = A(Ij1 , Ij2) + B(Ij1 , Ij2),

(AB)(Ij1 , Ij2) =
∑

j∈J

A(Ij1 , Ij)B(Ij , Ij2).

In a similar manner, the matrices of SI×I′
can be partitioned into blocks.

This yields the computational rule

(A + B)(Ij , I
′
j′) = A(Ij , I

′
j′) + B(Ij , I

′
j′).

If we consider matrices A ∈ SI×I′
and B ∈ SI′×I′′

partitioned into compatible
blocks, i.e., I ′ is partitioned into the same index sets for both matrices, then
we obtain the computational rule

(AB)(Ij , I
′′
j′′) =

∑

j′∈J ′

A(Ij , I
′
j′)B(I ′j′ , I

′′
j′′).

Now let us assume that I and I ′ are finite, or that S is complete. In the sequel,
the following isomorphisms are needed:

(i) The semirings

(
SI′×I′)I×I

, S(I×I′)×(I×I′), S(I′×I)×(I′×I),
(
SI×I

)I′×I′

are isomorphic by the correspondences between

(Ai1,i2)i′1,i′2
, A(i1,i′1),(i2,i′2)

, A(i′1,i1),(i′2,i2), (Ai′1,i′2
)
i1,i2

for all i1, i2 ∈ I, i′1, i
′
2 ∈ I ′.

(ii) The semirings SI×I〈〈Σ∗〉〉 and (S〈〈Σ∗〉〉)I×I are isomorphic by the corre-
spondence between (A, w)i1,i2

and (Ai1,i2 , w) for all i1, i2 ∈ I, w ∈ Σ∗.

Moreover, analogous isomorphisms are valid if the semirings of row finite or
column finite matrices are considered. Observe that, in case S is complete,
these correspondences are isomorphisms of complete semirings, i.e., they re-
spect infinite sums. These isomorphisms are used without further mention.
Moreover, the notation Ai1,i2 , where A ∈ SI1×I2〈〈Σ∗〉〉 and i1 ∈ I1, i2 ∈ I2, is
used: Ai1,i2 is the power series in S〈〈Σ∗〉〉 such that the coefficient (Ai1,i2 , w)
of w ∈ Σ∗ is equal to (A, w)i1,i2 . Similarly, the notation (A, w), where A ∈
(S〈〈Σ∗〉〉)I1×I2 and w ∈ Σ∗, is used: (A, w) is the matrix in SI1×I2 whose
(i1, i2)-entry (A, w)i1,i2 is equal to (Ai1,i2 , w) for each i1 ∈ I1, i2 ∈ I2.

For the proof of the next theorem, we need a lemma.

Lemma 4.1. Let S be a complete star semiring. Then for all a, b ∈ S,

(a + b)∗ = (a + ba∗b)∗(1 + ba∗).
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Proof. Using Theorem 3.4, we have

(a + ba∗b)∗(1 + ba∗) = (a∗ba∗b)∗a∗(1 + ba∗)

=
∑

n≥0

(a∗b)2na∗ +
∑

n≥0

(a∗b)2n+1a∗

= (a∗b)∗a∗ = (a + b)∗. ��

The next theorem is central for automata theory (see Conway [6], Lehmann
[30], Kuich and Salomaa [29], Kuich [28], Bloom and Ésik [4], Kozen [24]). It
allows us to compute the blocks of the star of a matrix A by sum, product,
and star of the blocks of A.

For notational convenience, we will denote in Theorem 4.2 and in Corol-
laries 4.3 and 4.4 the matrices A(Ii, Ij) by Ai,j , for 1 ≤ i, j ≤ 3.

Theorem 4.2. Let S be a complete star semiring. Let A ∈ SI×I and I =
I1 ∪ I2 with I1, I2 
= ∅ and I1 ∩ I2 = ∅. Then

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.

Proof. Consider the matrices

A1 =
(

A1,1 0
0 A2,2

)

and A2 =
(

0 A1,2

A2,1 0

)

.

The computation of (A1 + A2A
∗
1A2)

∗(E+A2A
∗
1) and application of Lemma 4.1

prove our theorem. ��

Corollary 4.3. If A2,1 = 0, then

A∗ =

(
A∗

1,1 A∗
1,1A1,2A

∗
2,2

0 A∗
2,2

)

.

Corollary 4.4. Let I = I1 ∪ I2 ∪ I3 be a decomposition into pairwise disjoint
nonempty subsets. If A2,1 = 0, A3,1 = 0, and A3,2 = 0, then

A∗ =

⎛

⎜
⎝

A∗
1,1 A∗

1,1A1,2A
∗
2,2 A∗

1,1A1,2A
∗
2,2A2,3A

∗
3,3 + A∗

1,1A1,3A
∗
3,3

0 A∗
2,2 A∗

2,2A2,3A
∗
3,3

0 0 A∗
3,3

⎞

⎟
⎠ .

Next, we consider an arbitrary partition of the index set I.
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Theorem 4.5. Let S be a complete star semiring, and let I =
⋃

j∈J Ij be a
decomposition into pairwise disjoint nonempty subsets. Fix j0 ∈ J . Assume
that the only non-null blocks of the matrix A ∈ SI×I are A(Ij , Ij0), A(Ij0 , Ij)
and A(Ij , Ij), for all j ∈ J . Then

A∗(Ij0 , Ij0) =
(

A(Ij0 , Ij0) +
∑

j∈J, j 	=j0

A(Ij0 , Ij)A(Ij , Ij)
∗
A(Ij , Ij0)

)∗
.

Proof. We partition I into Ij0 and I ′ = I − Ij0 . Then A(I ′, I ′) is a block-
diagonal matrix and (A(I ′, I ′)∗)(Ij , Ij) = A(Ij , Ij)

∗ for all j ∈ J − {j0}. By
Theorem 4.2, we obtain

A∗(Ij0 , Ij0) =
(
A(Ij0 , Ij0) + A(Ij0 , I

′)A(I ′, I ′)∗A(I ′, Ij0)
)∗

.

The computation of the right-hand side of this equality proves our theorem.
��

We now introduce the Kronecker product (also called tensor product)
A ⊗ B ∈ S(I1×I2)×(I′

1×I′
2) for the matrices A ∈ SI1×I′

1 and B ∈ SI2×I′
2 , by

defining its entries:

(A ⊗ B)(i1,i2),(i′1,i′2)
= Ai1,i′1

Bi2,i′2
, for all i1 ∈ I1, i′1 ∈ I ′1, i2 ∈ I2, i′2 ∈ I ′2.

Sometimes, the Kronecker product A ⊗ B is defined to be in (SI2×I′
2)I1×I′

1

with
(
(A ⊗ B)i1,i′1

)
i2,i′2

= Ai1,i′1
Bi2,i′2

, for all i1 ∈ I1, i′1 ∈ I ′1, i2 ∈ I2, i′2 ∈ I ′2.

Since the semirings S(I1×I2)×(I1×I2) and (SI2×I2)I1×I1 are isomorphic, this
will not make any difference in the computations.

Easy proofs show the following computational rules for Kronecker prod-
ucts.

Theorem 4.6. Let A, A′ ∈ SI1×I′
1 , B, B′ ∈ SI2×I′

2 , C ∈ SI3×I′
3 . Then:

(i) (A + A′) ⊗ B = A ⊗ B + A′ ⊗ B.
(ii) A ⊗ (B + B′) = A ⊗ B + A ⊗ B′.
(iii) A ⊗ 0 = 0 and 0 ⊗ B = 0.
(iv) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

Theorem 4.7. Let A ∈ SI1×I2〈{ε}〉, B ∈ SI2×I3〈{ε}〉, C ∈ SI4×I5〈〈Σ∗〉〉 and
D ∈ SI5×I6〈〈Σ∗〉〉. Assume that S is complete or that (A, ε) and (C, w) are
row finite for all w ∈ Σ∗, or that (B, ε) and (D, w) are column finite for all
w ∈ Σ∗. Furthermore, assume that all entries of (B, ε) commute with those
of (C, w) for all w ∈ Σ∗. Then

(AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D).
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Proof. Let ij ∈ Ij for j = 1, 3, 4, 6. Then we obtain
(
(AB) ⊗ (CD)

)
(i1,i3),(i4,i6)

= (AB)i1,i3(CD)i4,i6

=
∑

i2∈I2

∑

i5∈I5

Ai1,i2Bi2,i3Ci4,i5Di5,i6

=
∑

i2∈I2

∑

i5∈I5

Ai1,i2Ci4,i5Bi2,i3Di5,i6

=
∑

(i2,i5)∈I2×I5

(A ⊗ C)(i1,i4),(i2,i5)(B ⊗ D)(i2,i5),(i3,i6)

=
(
(A ⊗ C)(B ⊗ D)

)
(i1,i4),(i3,i6)

. ��

The Kronecker product is useful for investigating the Hadamard product
of formal power series, cf., e.g., Chap. 4, Sect. 4.2 [38] of this book.

5 Cycle-Free Linear Equations

Let Σ be an alphabet and S any semiring. Cycle-free linear equations over
S〈〈Σ∗〉〉 are a useful tool for proving identities in S〈〈Σ∗〉〉. Assume that two
expressions are shown to be solutions of such an equation. Then the uniqueness
of the solution (shown below) implies that these two expressions represent the
same formal power series in S〈〈Σ∗〉〉.

A cycle-free linear equation (over S〈〈Σ∗〉〉) has the form

y = ry + s,

where r, s ∈ S〈〈Σ∗〉〉 and r is cycle-free. A solution to this equation is given
by a power series σ ∈ S〈〈Σ∗〉〉 such that σ = rσ + s.

Theorem 5.1. The cycle-free equation y = ry+s with r, s ∈ S〈〈Σ∗〉〉, r cycle-
free, has the unique solution σ = r∗s.

Proof. By Theorem 3.1, we obtain

rσ + s = rr∗s + s = (rr∗ + ε)s = r∗s = σ.

Hence, σ is a solution.
Assume that r is cycle-free of index k, i.e., (r, ε)k = 0, and that � is a

solution. Then by substitution, we obtain for all n ≥ 0,

� = r� + s = · · · = rn� +
∑

0≤j<n

rjs.

We now compute the coefficients (�, w) for each w ∈ Σ∗:
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(�, w) =
(
rk(|w|+1)�, w

)
+

∑

0≤j<k(|w|+1)

(
rjs, w

)
= (r∗s, w) = (σ, w).

Hence, � = σ. ��

For power series over arbitrary semirings, the sum star identity and the
product star identity are valid only for some cycle-free power series.

Theorem 5.2. Let r, s ∈ S〈〈Σ∗〉〉 and assume that r, r∗s and r + s are cycle-
free. Then the sum star identity is valid for r and s.

Proof. We show that (r∗s)∗r∗ is a solution of the cycle-free equation
y = (r + s)y + ε:

Indeed, by Theorem 3.2, we have

(r + s)(r∗s)∗r∗ + ε = rr∗(sr∗)∗ + (sr∗)(sr∗)∗ + ε

= rr∗(sr∗)∗ + (sr∗)∗ = r∗(sr∗)∗ = (r∗s)∗r∗.

We now apply Theorem 5.1. ��

Theorem 5.3. Let r, s ∈ S〈〈Σ∗〉〉 and assume that rs is cycle-free. Then the
product star identity is valid for r and s.

Proof. By Theorems 3.2 and 3.1, we obtain

ε + r(sr)∗s = ε + rs(rs)∗ = (rs)∗. ��

Corollary 5.4. Let r, s ∈ S〈〈Σ∗〉〉 and assume that r is cycle-free and s is
proper. Then the sum star identity and the product star identity are valid for
r and s.

Compare the next lemma with Lemma 4.1.

Lemma 5.5. Let r, s ∈ S〈〈Σ∗〉〉 and assume that r, r + s and r + sr∗s are
cycle-free. Then

(r + s)∗ = (r + sr∗s)∗(ε + sr∗).

Proof. By our assumptions, the power series r∗, (r+s)∗ and (r+sr∗s)∗ exist.
By Theorem 3.1, we have

(r + s)∗ = r(r + s)∗ + s(r + s)∗ + ε.

Hence, (r + s)∗ is a solution of the equation y = ry + s(r + s)∗ + ε. By The-
orem 5.1 and the cycle-freeness of r, another representation of this unique
solution is r∗s(r + s)∗ + r∗. Substituting r∗s(r + s)∗ + r∗ into the third occur-
rence in the above equality yields

(r + s)∗ = (r + sr∗s)(r + s)∗ + sr∗ + ε.
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This shows that (r + s)∗ is a solution of the equation

y = (r + sr∗s)y + sr∗ + ε.

By Theorem 5.1 and the cycle-freeness of r + sr∗s, another representation for
the unique solution of this equation is

(r + sr∗s)∗(ε + sr∗). ��

Consider matrices A ∈ SI1×I2〈〈Σ∗〉〉 and B ∈ SI2×I3〈〈Σ∗〉〉 such that ei-
ther the matrices (A, w) ∈ SI1×I2 are row finite for all w ∈ Σ∗ or the matrices
(B, w) ∈ SI2×I3 are column finite for all w ∈ Σ∗. Then AB ∈ SI1×I3〈〈Σ∗〉〉
is well-defined. Hence, for a matrix A ∈ SI×I〈〈Σ∗〉〉, such that the matri-
ces (A, w) ∈ SI×I are row (resp. column) finite for all w ∈ Σ∗, all pow-
ers An ∈ SI×I〈〈Σ∗〉〉 are well-defined. If, furthermore, A is cycle-free then
A∗ ∈ SI×I〈〈Σ∗〉〉 is well-defined. If (A, w) is row and column finite for all
w ∈ Σ∗, then so is (An, w) for all n ∈ N and w ∈ Σ∗.

Lemma 4.1 is the main tool for proving the matrix identities of Theo-
rem 4.2. In an analogous manner, Lemma 5.5 is a main tool for proving—under
different assumptions—the same matrix identities in the next theorem.

For the rest of the section, let I = I1∪I2 with I1, I2 
= ∅ and I1∩I2 = ∅. The
notation is similar to that in Theorem 4.2, but with A ∈ SI×I〈〈Σ∗〉〉 instead of
A ∈ SI×I . For notational convenience, we will denote in Theorems 5.6 and 5.7
and in Corollaries 5.8 and 5.9 the matrices A(Ii, Ij) by Ai,j , for 1 ≤ i, j ≤ 3.

Theorem 5.6. Assume that A ∈ SI×I〈〈Σ∗〉〉 is cycle-free and (A, w) is row
and column finite for all w ∈ Σ∗. Furthermore, assume that A1,1, A2,2, A1,1+
A1,2A

∗
2,2A2,1 and A2,2 + A2,1A

∗
1,1A1,2 are cycle-free. Then

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.

Proof. Consider the matrices

A1 =
(

A1,1 0
0 A2,2

)

and A2 =
(

0 A1,2

A2,1 0

)

.

Since the blocks of the block-diagonal matrix A1 are cycle-free, the matrix A∗
1

exists and equals

A∗
1 =

(
A∗

1,1 0
0 A∗

2,2

)

.

This implies that

A1 + A2A
∗
1A2 =

(
A1,1 + A1,2A

∗
2,2A2,1 0

0 A2,2 + A2,1A
∗
1,1A1,2

)

.
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Since the blocks of the block-diagonal matrix A1 +A2A
∗
1A2 are cycle-free, the

matrix (A1 + A2A
∗
1A2)∗ exists and equals

(A1 + A2A
∗
1A2)∗ =

(
(A1,1 + A1,2A

∗
2,2A2,1)∗ 0

0 (A2,2 + A2,1A
∗
1,1A1,2)∗

)

.

We now apply Lemma 5.5 with r = A1 and s = A2. The computation of

(A1 + A2A
∗
1A2)∗(E + A2A

∗
1)

proves the theorem. ��
Theorem 5.7. Consider A ∈ SI×I〈〈Σ∗〉〉 such that (A, w) is row and column
finite for all w ∈ Σ∗. Furthermore, assume that A1,1 and A2,2 are cycle-free,
and A1,2 or A2,1 is proper. Then A is cycle-free and

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.

Proof. We only prove the case where A2,1 is proper. The proof of the other
case is similar. An easy proof by induction on j ≥ 1 shows that

(A, ε)j =
(

(A1,1, ε)j
∑

j1+j2=j−1(A1,1, ε)j1(A1,2, ε)(A2,2, ε)j2

0 (A2,2, ε)j

)

.

Now let A1,1 and A2,2 be cycle-free of index k. Then (A, ε)2k = 0 and A
is cycle-free. Furthermore (A1,1 + A1,2A

∗
2,2A2,1, ε) = (A1,1, ε) and (A2,2 +

A2,1A
∗
1,1A1,2, ε) = (A2,2, ε). Hence, the assumptions of Theorem 5.6 are sat-

isfied and our theorem is proved. ��
Corollary 5.8. Consider A ∈ SI×I〈〈Σ∗〉〉 such that (A, w) is row and column
finite for all w ∈ Σ∗. Furthermore, assume that A1,1 and A2,2 are cycle-free
and that A2,1 = 0. Then A is cycle-free and

A∗ =
(

A∗
1,1 A∗

1,1A1,2A
∗
2,2

0 A∗
2,2

)

.

Observe that for finite matrices, the row and column finiteness of (A, w) for
all w ∈ Σ∗ is satisfied and is not needed as assumption in Theorem 5.7. If A
is finite and proper, all assumptions of Theorem 5.7 are satisfied.

Corollary 5.9. Let I be finite and A ∈ SI×I〈〈Σ∗〉〉 be proper. Then

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.
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1 Introduction

Fixed points and fixed point computations occur in just about every field of
computer science. Their widespread use is due to the fact that the seman-
tics of recursion can be described by fixed points of functions or functionals,
or more generally, functors or morphisms. Of course, the treatment of fixed
points in mathematics goes well back before their first use in computer sci-
ence: They frequently occur in analysis, algebra, geometry, and logic. One
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of the first occurrences of fixed points in the theory of automata and for-
mal languages were probably the equational characterizations of regular and
context-free languages as least solutions to right-linear and polynomial fixed
point equations. Kleene’s theorem for regular languages follows from the fixed
point characterization just by a few simple equational properties of the fixed
point operation. Many results in the theory of automata and languages can
be derived from basic properties of fixed points.

The aim of this paper is to provide an introduction to that part of the the-
ory of fixed points that has applications to weighted automata and weighted
languages. We start with a treatment of fixed points in the ordered setting
and review some basic theorems guaranteeing the existence of least (or great-
est) fixed points. Then we establish several (equational) properties of the least
fixed point operation including the Bekić identity asserting that systems of
fixed point equations can be solved by the technique of successive elimination.
Then we use the Bekić identity and some other basic laws to introduce the
axiomatic frameworks of Conway and iteration theories. We provide several
axiomatizations of these notions and review some completeness results show-
ing that iteration theories capture the equational properties of the fixed point
operation in a large class of models. In the last two sections, we treat fixed
points of linear functions and affine functions over semirings and semimodules.
The main results show that for such functions, the fixed point operation can
be characterized by a star operation possibly in conjunction with an omega
operation. We show that the equational properties of the fixed point operation
are reflected by corresponding properties of the star and omega operations.

Some Notation

The composition of functions f : A → B and g : B → C is written g ◦ f ,
x �→ g(f(x)). The identity function A → A will be denoted idA. When f :
A → B and g : A → C, the target pairing (or just pairing) of f and g is the
function 〈f, g〉 : A → B × C, x �→ (f(x), g(x)), x ∈ A. In the same way, one
defines the (target) tupling f = 〈f1, . . . , fn〉 : A → B1 × · · · × Bn of n ≥ 0
functions fi : A → Bi. When n = 0, the Cartesian product B1 × · · · ×Bn is a
singleton set and f is the unique function from A to this set. The ith projection
function A1 × · · · × An → Ai will be denoted prA1×···×An

Ai
, or prA1×···×An

i ,
or just pri. A base function is any tupling of projections. When f : A → A′

and g : B → B′, f × g is the function A × B → A′ × B′ mapping each pair
(x, y) ∈ A × B to (f(x), g(y)). Clearly, f × g = 〈f ◦ prA×B

A , g ◦ prA×B
B 〉.

2 Least Fixed Points

When A is a set, an endofunction over A is a function A → A. We say that
a ∈ A is a fixed point of f if f(a) = a. We also say that a is a solution of
or solves the fixed point equation x = f(x). When A is partially ordered by a



Fixed Point Theory 31

relation ≤, we also define prefixed points of f as those elements a ∈ A with
f(a) ≤ a. Dually, we call a ∈ A a post-fixed point of f if a ≤ f(a). Thus, a fixed
point is both a prefixed point and a post-fixed point. A least fixed point of f
is least among the fixed points of f , and a least prefixed point is least among
all prefixed points of f . Greatest fixed points and greatest post-fixed points
are defined dually. It is clear that the extremal (i.e., least or greatest) fixed
points, prefixed points and post-fixed points are unique whenever they exist.

Least prefixed points give rise to the following fixed point induction prin-
ciple. When P is a poset and f : P → P has a least prefixed point x, then we
have x ≤ y whenever f(y) ≤ y. As an application of the principle, we establish
a simple fact.

Proposition 2.1. Let P be a partially ordered set and let f : P → P be
monotone. If f has a least prefixed point, then it is the least fixed point of f .
Dually, if f has a greatest post-fixed point, then it is the greatest fixed point
of f .

Proof. We only prove the first claim since the second follows by reversing the
order. Suppose that p is the least prefixed point of f . Then f(p) ≤ p, and
since f is monotone, f(f(p)) ≤ f(p). This shows that f(p) is a prefixed point.
Thus, by fixed point induction, p ≤ f(p). Since p is both a prefixed point and
a post-fixed point, it is a fixed point. 
�

Next, we provide conditions guaranteeing the existence of fixed points.
Recall that a directed set in a partially ordered set P is a nonempty subset
D of P such that any two elements of D have an upper bound in D. A chain
in P is a linearly ordered subset of P . Note that every nonempty chain is a
directed set.

Definition 2.2. A complete partial order, or cpo is a partially ordered set
P = (P,≤) which has a least element denoted ⊥P or just ⊥ such that each
directed set D ⊆ P has a supremum

∨
D.

It is known that a partially ordered set P is a cpo iff it has suprema of all
chains, or suprema of well-ordered chains, cf. [43]. See also [16].

Definition 2.3. Suppose that P, Q are partially ordered sets and f : P → Q.
We say that f is continuous if it preserves all existing suprema of directed
sets: For all directed sets D ⊆ P , if

∨
D exists, then so does

∨
f(D), and

f
(∨

D
)

=
∨

f(D).

Every continuous function P → Q is monotone, since for all x, y ∈ P with
x ≤ y, f(y) = f(

∨
{x, y}) =

∨
{f(x), f(y)}, i.e., f(x) ≤ f(y). From [43], it is

also known that a function f : P → Q is continuous iff it preserves suprema
of nonempty chains, or suprema of nonempty well-ordered chains.
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Remark 2.4. Suppose that P,Q are partially ordered sets and f : P → Q and
g : Q → P are monotone functions. We say that (f, g) is a Galois connection
if for all x ∈ P and y ∈ Q, f(x) ≤ y iff x ≤ g(y). It is known that when (f, g)
is a Galois connection then f preserves all existing suprema, and g preserves
all existing infima. In particular, f is continuous, and when P has a least
element ⊥P then Q also has a least element ⊥Q, and f(⊥P ) = ⊥Q.

Theorem 2.5. Suppose that P is a cpo and f : P → P is monotone. Then f
possesses a least prefixed point (which is the least fixed point of f).

Proof. Define xα = f(xβ), if α is the successor of the ordinal β, and xα =∨
{xβ : β < α} if α is a limit ordinal. In particular, x0 is the least element ⊥.

It is a routine matter to verify that xα ≤ xβ whenever α ≤ β. Thus, there is a
(least) ordinal α with xα = xα+1. This element xα is the least prefixed point
of f . 
�

A partial converse of Theorem 2.5 is proved in [43]: If P is a partially
ordered set such that any monotone endofunction P → P has a least fixed
point, then P is a cpo.

The above rather straightforward argument makes use of the axiom of
choice. An alternative proof which avoids using this axiom is presented in [19].
A special case of the theorem is the Knaster–Tarski fixed point theorem [50,
19] asserting that a monotone endofunction of a complete lattice L has a least
(and by duality, also a greatest) fixed point.

When the endofunction f in Theorem 2.5 is continuous, the least fixed
point can be constructed in ω steps.

Corollary 2.6. Suppose that P is a cpo and f : P → P is continuous. Then
the least prefixed point of f is

∨
{fn(⊥) : n ≥ 0} (which is the least fixed point

of f).

Proof. Using the above notation, we have by continuity that f(xω) = xω,
where xω =

∨
{fn(⊥) : n ≥ 0}. 
�

Note that the same result holds if we only assume that P is a countably
complete or ω-complete partially ordered set, i.e., when it has a least element
and suprema of ω-chains, or equivalently, suprema of countable directed sets,
and if f is ω-continuous, i.e., it preserves suprema of ω-chains, or suprema of
countable directed sets.

Dually, if P is a partially ordered set which has infima of all chains, and
thus a greatest element �, and if f : P → P is monotone, then f has a greatest
post-fixed point which is the greatest fixed point of f . This greatest fixed point
can be constructed as the first xγ with xγ = xγ+1, where xα = f(xβ) if α
is the successor of the ordinal β, and xα =

∧
{xβ : β < α} if α is a limit

ordinal, the infimum of the set {xβ : β < α}. Thus, x0 = �. If, in addition,
f preserves infima of nonempty chains, then the greatest post-fixed point is∧
{fn(�) : n ≥ 0}.
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Besides single fixed point equations x = f(x), we will consider finite sys-
tems of fixed point equations:

x1 = f1(x1, . . . , xn),
...

xn = fn(x1, . . . , xn).

Each component equation xi = fi(x1, . . . , xn) of such a system may be con-
sidered as a fixed point equation in the unknown xi and the parameters
x1, . . . , xi−1, xi+1, . . . , xn. This leads to parametric fixed point equations of
the sort x = f(x, y), where f is a function P × Q → P .

Note that when P and Q are cpo’s and A is a set, then P × Q and QA,
equipped with the pointwise order, are cpo’s. Moreover, the set of all con-
tinuous functions P → Q is also a cpo denoted (P → Q). For any partially
ordered sets, P1, P2, Q and function f : P1 × P2 → Q, f is monotone or con-
tinuous iff it is separately monotone or continuous in either argument, i.e.,
when the functions p1f : P2 → Q and fp2 : P1 → Q, p1f(y) = f(p1, y),
fp2(x) = f(x, p2), p1 ∈ P1, p2 ∈ P2 have the appropriate property. More-
over, a function f = 〈f1, f2〉 : Q → P1 × P2 is monotone or continuous iff
both functions fi = pri ◦ f , i = 1, 2 are monotone or continuous, where pr1

and pr2 denote the first and second projection functions P1 × P2 → P1 and
P1 × P2 → P2.

Definition 2.7. Suppose that P , Q are partially ordered sets such that f :
P × Q → P is monotone and for each y ∈ P the endofunction fy : P → P ,
fy(x) = f(x, y) has a least prefixed point. Then we define f† : Q → P as the
function mapping each y ∈ Q to the least prefixed point of fy.

In a similar fashion, one could define a greatest (post)fixed point oper-
ation. Since the properties of this operation follow from the properties of
the least (pre)fixed point operation by simple duality, below we will consider
only the least fixed point operation. Nested least and greatest fixed points
are considered in the μ-calculus, cf. Arnold and Niwinski [1]. It is known that
over complete lattices, the alternation hierarchy obtained by nesting least and
greatest fixed points is infinite.

Notice the pointwise nature of the above definition. For each y ∈ Q, f†(y)
is (fy)†, the least prefixed point of the function fy : P → P (which may be
identified with a function P × R → P , where R has a single element).

The above definition of the dagger operation is usually applied in the case
when P, Q are cpo’s. In that case, the existence of the least prefixed point is
guaranteed by Theorem 2.5.

Proposition 2.8. Suppose that f : P ×Q → P is monotone. Then f† is also
monotone. Moreover, when P and Q are cpo’s and f is continuous, so is f†.
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Proof. Assume that y ≤ z in Q. If x is a prefixed point of fz, then fy(x) =
f(x, y) ≤ f(x, z) = fz(x) ≤ x, so that x is also a pre-fixed point of fy. Thus,
the least prefixed point of fy is below the least prefixed point of fz, i.e.,
f†(y) ≤ f†(z).

Assume now that P and Q are cpo’s and f is continuous. Let D denote a
directed subset of Q. We have

f†(y) =
∨{

fn
y (⊥P ) : n ≥ 0

}
=

∨{
fn(⊥P , y) : n ≥ 0

}
, for all y ∈ Q,

where we define f0(x, y) = x and fn+1(x, y) = f(fn(x, y), y), for all n ≥ 0.
Now,

∨{
fn

(
⊥P ,

∨
D

)
: n ≥ 0

}
=

∨{∨{
fn(⊥P , y) : y ∈ D

}
: n ≥ 0

}

=
∨{

fn(⊥P , y) : n ≥ 0, y ∈ D
}

=
∨{∨{

fn(⊥P , y) : n ≥ 0
}

: y ∈ D
}

=
∨{

f†(y) : y ∈ D
}
. 
�

It is also known that for cpo’s P , Q, the function ((P × Q) → P ) →
(Q → P ) which maps each continuous f : P × Q → P to the continuous
function f † : Q → P is itself continuous; see, e.g., [19].

The dagger operation satisfies several nontrivial equational properties. We
list a few below. Let P , Q, R denote cpo’s and f, g, . . . monotone or continuous
functions whose sources and targets are specified below.

Fixed point identity

f† = f ◦
〈
f†, idQ

〉
(1)

where f : P × Q → P .
Parameter identity

(
f ◦ (idP × g)

)† = f† ◦ g (2)

where f : P × Q → P and g : R → Q.
Composition identity

(
f ◦

〈
g,prP×R

R

〉)† = f ◦
〈(

g ◦
〈
f,prQ×R

R

〉)†
, idR

〉
(3)

where f : Q × R → P , g : P × R → Q and prP×R
R : P × R → P and

prQ×R
R : Q × R → Q are projection functions.

Double dagger identity or Diagonal identity

(
f†)† =

(
f ◦ (〈idP , idP 〉 × idQ)

)†
, (4)

where f : P × P × Q → P .
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Pairing identity or Bekić identity

〈f, g〉† =
〈
f† ◦

〈
h†, idR

〉
, h†〉 (5)

where f : P × Q × R → P , g : P × Q × R → Q and

h = g ◦
〈
f†, idQ×R

〉
. (6)

Permutation identity

(
π ◦ f ◦

(
π−1 × idQ

))† = π ◦ f†, (7)

where

f : P1 × · · · × Pn × Q → P1 × · · · × Pn and
π =

〈
prP1×···×Pn

i1
, . . . ,prP1×···×Pn

in

〉

for some permutation (i1, . . . , in) of the first n positive integers, and where
π−1 is the inverse of π, i.e., π−1 = 〈prP1×···×Pn

j1
, . . . ,prP1×···×Pn

jn
〉 where

(j1, . . . , jn) is the inverse of (i1, . . . , in).

For these identities, we refer to [4, 20, 44, 45, 47, 51] and [9]. Each of the
above identities can be explained using an ordinary functional language. For
example, the fixed point identity (1) says that f†(y) is a solution of the fixed
point equation x = f(x, y) in the unknown x and parameter y. It is customary
to write this least solution as μx.f(x, y). Using this μ-notation, the fixed point
identity reads f(μx.f(x, y), y) = μx.f(x, y). The parameter identity (2) is
implicit in the μ-notation. It is due to the pointwise nature of the definition
of dagger, and it says that solving x = f(x, y) and then substituting g(z)
for y gives the same result as first substituting g(z) for y and then solving
x = f(x, g(z)). In the composition identity (3), one considers the equations
x = f(g(x, z), z) and y = g(f(y, z), z), with least solutions μx.f(g(x, z), z)
and μy.g(f(y, z), z). The composition identity asserts that these are related:
μx.f(g(x, z), z) = f(μy.g(f(y, z), z), z). The double dagger identity (4) asserts
that the least solution of x = f(x, x, z) is the same as the least solution of
y = f†(y, z), where f†(y, z) is in turn the least solution of x = f(x, y, z). In
the μ-notation, μx.μy.f(x, y, z) = μx.f(x, x, z). The Bekić identity (5) asserts
that systems

x = f(x, y, z), (8)
y = g(x, y, z) (9)

can be solved by Gaussian elimination (or successive elimination). To find
the least solution of the above system, where f, g are appropriate func-
tions, one can proceed as follows. First, solve the first equation to obtain
x = f†(y, z), then substitute this solution for x in the second equation to ob-
tain y = g(f†(y, z), y, z) = h(y, z). The identity asserts that the second com-
ponent of the least solution of the above system is the least solution of y =
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h(y, z), i.e., h†(z). Moreover, it asserts that the first component is f†(h†(z), z),
which is obtained by back substituting h†(z) for y in f†(y, z), the solution
of just the first equation. In the μ-notation, μ(x, y).(f(x, y, z), g(x, y, z)) =
(μx.f(μy.h(y, z), z), μy.h(y, z)), where h(y, z) = g(μx.f(x, y, z), y, z).

We still want to illustrate the Bekić identity over semirings. So, suppose
that S is a continuous semiring, cf. [21]. It will be shown later that there is
a star operation ∗ : S → S such that least solutions of fixed point equations
x = ax+b can be expressed as a∗b. Suppose now that f, g : S2 → S, f(x, y) =
ax + by + e and g(x, y) = cx + dy + f and consider the system of fixed point
equations

x = ax + by + e,

y = cx + dy + f.

Then f†(y), the least solution of just the first equation is a∗(by + e) =
a∗by + a∗e. Thus, h(y) = g(f†(y), y) is (d + ca∗b)y + ca∗e + f , and h† =
(d + ca∗b)∗(ca∗e + f) is the second component of the least solution of the
above system. The first component is f†(h†) = a∗b(d+ca∗b)∗(ca∗e+f)+a∗e.
Using the matrix notation, the least solution of

(
x
y

)

=
(

a b
c d

)(
x
y

)

+
(

e
f

)

is
(

x
y

)

=
(

a∗b(d + ca∗b)∗ca∗ + a∗ a∗b(d + ca∗b)∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

) (
e
f

)

.

We leave it to the reader to express the permutation identity (7) in the μ-
notation.

A special case of the fixed point identity is

(
f ◦ prP×Q

Q

)† = f, (10)

where f : Q → P , and a special case of the parameter identity is

(
f ◦ prP×Q×R

P×Q

)† = f† ◦ prQ×R
Q , (11)

where f : P × Q → P . A special case of the permutation identity (7) is

Transposition identity

(
πP,Q

Q,P ◦ 〈f, g〉 ◦
(
πQ,P

P,Q × idR

))† = πP,Q
Q,P ◦ 〈f, g〉†, (12)

where f : P × Q × R → P and g : P × Q × R → Q, and where πP,Q
Q,P =

〈prP×Q
Q ,prP×Q

P 〉 and πQ,P
P,Q = 〈prQ×P

P ,prQ×P
Q 〉.
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In the μ-notation, (10) can be written as μx.f(y) = f(y), while the trans-
position identity (12) asserts that μ(x, y).(f(x, y, z), g(x, y, z)) is the transpo-
sition of μ(y, x).(g(x, y, z), f(x, y, z)). Equation (11), being a special case of
the parameter identity, is implicit in the μ-notation.

Theorem 2.9. All of the above identities hold for the least prefixed point op-
eration.

Proof. It is clear that the fixed point (1), parameter (2), and permutation
(7) identities hold. We now establish the pairing identity (5). Suppose that
f : P ×Q×R → P , g : P ×Q×R → Q such that f† and h† exist. This means
that for all y ∈ Q and z ∈ R, f†(y, z) is the least prefixed point solution of
the single equation (8), and for all z ∈ R, h†(z) is the least prefixed point
solution of the equation

y = h(y, z).

We want to show that for all z, (f†(h†(z), z), h†(z)) is the least prefixed point
solution of the system consisting of (8) and (9). But

f
(
f†(h†(z), z

)
, h†(z), z

)
= f†(h†(z), z

)

and

g
(
f†(h†(z), z

)
, h†(z), z

)
= h

(
h†(z), z

)
= h†(z),

showing that (f†(h†(z), z), h†(z)) is a solution. Suppose that (x0, y0) is any
prefixed point solution, so that f(x0, y0, z) ≤ x0 and g(x0, y0, z) ≤ y0. Then
f†(y0, z) ≤ x0, and thus

h(y0, z) = g
(
f†(y0, z), z

)
≤ g(x0, y0, z) ≤ y0.

Thus, by fixed point induction, h†(z) ≤ y0 and f†(h†(z), z) ≤ f†(y0, z) ≤ x0.
The double dagger and composition identities may be established directly

using fixed point induction. Below, we show that these are already implied by
(10), (11) and the pairing (5), and transposition (12) identities. First, note
that by the pairing and transposition identities, we also have the following
version of the pairing identity:

〈f, g〉† =
〈
k†,

(
g ◦

(
πQ,P

P,Q × idR

))† ◦
〈
k†, idR

〉〉
(13)

where

k = f ◦
〈
prP×R

P ,
(
g ◦

(
πQ,P

P,Q × idR

))†
,prP×R

R

〉
. (14)

Now, for the double dagger identity (4), assume that f : P × P × Q → P .
Let g = prP×P×Q

1 and consider the function 〈f, g〉 : P × P × Q → P × P .
We can compute the second component of 〈f, g〉† in two ways using the two
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versions of the pairing identity. The first version gives f††, while the second
gives, using (10) and (11), (f ◦ (〈idP , idP 〉 × idQ))†.

As for the composition identity (3), assume that f : Q × R → P , g :
P × R → P . Then define f ′ = f ◦ 〈prP×Q×R

Q ,prP×Q×R
R 〉 and g′ = g ◦

〈prP×Q×R
P ,prP×Q×R

R 〉, and use the two versions of the pairing identity (and
(10)) to compute the first component of 〈f ′, g′〉† in two different ways. 
�

As already noted, the above identities are not all independent, (10), (11),
(12) are instances of (1), (2), and (7), respectively. By the proof of Theo-
rem 2.9, (10), (11) and the pairing (5), and transposition (12) identities imply
(in conjunction with the usual laws of function composition and the Carte-
sian structure) the double dagger (4) and composition (3) identities. The fixed
point identity is a particular instance of the composition identity (take P = Q

and g = prP×Q
P ). In fact, the following systems are all equivalent, cf. [9]:

1. The system consisting of (10), (11), and the pairing (5), and transposition
(12) (or permutation (7)) identities.

2. The system consisting of (10), (11) and the two versions of the pairing
identity, (5) and (13).

3. The system consisting of the parameter (2), double dagger (4), and com-
position (3) identities.

Several other identities follow. For example, the following “symmetric ver-
sion” of the Bekić identity follows. For all f, g as in the Bekić identity,

〈f, g〉† =
〈
k†, h†〉 (15)

where h and k are defined in (6) and (14). In the μ-notation, (15) can be
written as

μ(x, y).
(
f(x, y, z), g(x, y, z)

)

=
(
μx.f

(
x, μy.g(x, y, z), z

)
, μy.g

(
μx.f(x, y, z), y, z

))
.

3 Conway Theories

In most applications of fixed point theory, one considers a collection T of
functions f : An → Am, for a fixed set A, sometimes equipped with additional
structure, where n, m are nonnegative integers. For example, T may consist of
the monotone, or continuous functions Pn → Pm, where P is a cpo. When T
contains the projection functions and is closed under composition and tupling,
we call T a Lawvere theory of functions, or just a theory of functions. The
collection of all functions An → A of a theory of functions is a function clone,
cf. [16].

There is a more abstract notion due to Lawvere [42]. We may think of a
theory T of functions over a set A as a category whose objects are not the
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sets An, but rather the nonnegative integers n. A morphism n → m in T is
a function An → Am, subject to certain conditions. As such, T is a category
with all finite products in the categorical sense (cf., e.g., [3]), with n+m being
the product of n and m, and 0 being the terminal object.

Definition 3.1. A theory is a small category whose objects are the nonneg-
ative integers such that each integer n is the n-fold product of object 1 with
itself.

Morphisms between theories are defined in the natural way. They preserve
objects, composition, and the projections. It follows that morphisms also pre-
serve tupling (and thus pairing) and the identity morphisms. Below, when T
is a theory, we denote by T (m, n) the set of morphisms n → m in T . (Note
the reversal of the source and the target.)

Below, we will assume that each theory T comes with given projection mor-
phisms prn

i : n → 1, i = 1, . . . , n making object n the n-fold product of 1 with
itself. In a similar way, we write prn,m

n and prn,m
m for the projections n+m → n

and n + m → m, given by 〈prn+m
1 , . . . ,prn+m

n 〉 and 〈prn+m
n+1 , . . . ,prn+m

n+m〉,
respectively, and idn = 〈prn

1 , . . . ,prn
n〉 for the identity morphism n → n.

Without loss of generality, we will assume that id1 = pr1
1. Since 0 is a ter-

minal object, for each n, there is a unique morphism n → 0. In any the-
ory, a base morphism is a tupling of projection morphisms. For example, the
identity morphisms and the morphisms with target 0 are base morphisms.
Note that there is a base morphism n → m corresponding to each func-
tion ρ : {1, . . . , m} → {1, . . . , n}, namely the morphism 〈prn

ρ(1), . . . ,prn
ρ(m)〉.

When ρ is bijective, injective, etc. we will also say that the corresponding
base morphism has the appropriate property. When f : p → m and g : q → n,
f × g : p + q → m + n is 〈f ◦ prp,q

p , g ◦ prp,q
q 〉. When T is understood, we will

just write f : n → m for f ∈ T (m, n).
There is a representation theorem for theories (see, e.g., [9]) by which each

theory is isomorphic to a theory of functions. But very often there are more
natural ways of representing the morphisms of a theory (e.g., as matrices over
a semiring).

When a theory T is equipped with a dagger operation † : T (n, n + p) →
T (n, p), n, p ≥ 0, we define when the fixed point identity and the other iden-
tities given above hold in T in the natural and expected way. For example,
the fixed point identity (1) is given by

f† = f ◦
〈
f†, idp

〉
, (16)

where f : n+p → n. As another example, the pairing identity (5) is understood
in the form

〈f, g〉† =
〈
f† ◦

〈
h†, idp

〉
, h†〉 (17)

where f : n + m + p → n, g : n + m + p → m and

h = g ◦
〈
f †, idm+p

〉
.
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Definition 3.2. A Conway theory is a theory T equipped with a dagger oper-
ation † : T (n, n + p) → T (n, p) which satisfies (10), (11), the pairing (5), and
transposition (12) (or permutation (7)) identities.

Morphisms of Conway theories, or theories equipped with a dagger opera-
tion, also preserve dagger. Two alternative axiomatizations of Conway theories
are given below. By the discussion at the end of the preceding section, we have
the following theorem.

Theorem 3.3. Let T be a theory equipped with a dagger operation. The fol-
lowing are equivalent:

1. T is a Conway theory.
2. T satisfies (10), (11), and the two versions of the pairing identity, (5) and

(13).
3. T satisfies the parameter (2), double dagger (4), and composition (3) iden-

tities.

Corollary 3.4. Any Conway theory satisfies all of the identities defined above.

Yet another axiomatization can be derived from the following result.

Theorem 3.5. Suppose that T is a theory equipped with a scalar dagger op-
eration † : T (1, 1 + p) → T (1, p), p ≥ 0 satisfying the scalar parameter (18),
scalar composition (19) and scalar double dagger (20) identities below.

Scalar parameter identity

(
f ◦ (id1 × g)

)† = f† ◦ g, (18)

for all f : 1 + p → 1 and g : q → p.
Scalar composition identity

(
f ◦

〈
g,pr1,p

p

〉)† = f ◦
〈(

g ◦
〈
f,pr1,p

p

〉)†
, idp

〉
, (19)

for all f, g : 1 + p → 1.
Scalar double dagger identity

f†† =
(
f ◦ (〈id1, id1〉 × idp)

)†
, (20)

for all f : 2 + p → 1.

Then there is a unique way to extend the dagger operation to all morphisms
n + p → n for all n, p ≥ 0 such that T becomes a Conway theory.

Proof. The unique extension is given by induction on n. When n = 0, † :
T (0, p) → T (0, p) is the identity function on the singleton set T (0, p). On
morphisms in T (1, 1 + p), the dagger is already defined. Suppose that n > 1
and f ∈ T (n, n + p). Then let m = n − 1 and write f as f = 〈f1, f2〉 where
f1 : m + 1 + p → m, f2 = m + 1 + p → 1. Then define f† as 〈f†

1 ◦ 〈h†, idp〉, h†〉
where h = g ◦ 〈f†

1 ,pr1+p
1 〉. 
�
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Corollary 3.6. A theory T equipped with a dagger operation is a Conway
theory iff T satisfies the scalar versions of the parameter, composition, and
double dagger identities and the scalar version of the pairing identity (17),
where f is arbitrary but g is scalar (i.e., m = 1).

A detailed study of the identities true of all Conway theories is given in [5].
It is shown that there is an algorithm to decide whether an identity holds in
all Conway theories, and that this decision problem is complete for PSPACE.
The proof is based on a description of the structure of the free Conway theories
using “aperiodic congruences” of flowchart schemes.

Remark 3.7. In any theory T equipped with a dagger operation, one may de-
fine a feedback operation ↑ : T (n + p, n + q) → T (p, q), n, p, q ≥ 0: Given
〈f, g〉 : n + q → n + p with f : n + q → n and g : n + q → p, we define
↑〈f, g〉 = g ◦ 〈f†, idq〉. Then T , equipped with the feedback operation and
the operation × as “tensor product” is a traced monoidal category [38]. The
same notion was earlier defined under a different name in connection with
flowcharts; see [49]. In fact, Conway theories correspond to traced monoidal
categories whose tensor product is a (Cartesian) product. Another aspect of
the connection is that traced monoidal categories are axiomatized by the iden-
tities that hold for flowchart schemes, and Conway theories by those that hold
for flowchart schemes modulo aperiodic simulations (and the iteration theo-
ries defined in the next section are axiomatized by the identities that hold
for flowchart schemes with respect to arbitrary simulations, or strong behav-
ioral equivalence). Flowchart schemes were first axiomatized in [8]. For more
information on the connection between Conway theories and traced monoidal
categories, we refer to [36, 49]. See also Chap. 6, Sect. 8 in [9].

4 Iteration Theories

The Conway identities do not capture all equational properties of the least
(pre)fixed point operation. In order to achieve completeness, we now introduce
the commutative identity in any theory T equipped with a dagger operation:

pr1 ◦ 〈f ◦ (ρ1 × idp), . . . , f ◦ (ρn × idp)〉† =
(
f ◦ (ρ × idp)

)†
, (21)

where f : n + p → 1, n ≥ 1, each ρi : n → n is a base morphism (i.e.,
a tupling of projections), and ρ is the unique base morphism 1 → n, i.e., ρ is
the diagonal 〈id1, . . . , id1〉. Particular instances of the commutative identity
are the group identities. Suppose that G is a finite group of order n with group
operation denoted. Moreover, suppose for simplicity that the carrier of G is
the set {1, . . . , n} with 1 being the unit element of G. For each i, define ρi as
the tupling of the n projection morphisms prn

i·j , so that ρi = 〈prn
i1, . . . ,prn

in〉.
Then the commutative identity above is called the group identity associated
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with G. (When the permutation identity holds, as will be the case below, it
does not matter how the elements of the group G are enumerated.)

The commutative identity (21) can be explained in theories of continuous
or monotone functions over cpo’s as follows. Suppose that P is a cpo and
f : Pn+p → P is continuous. Moreover, suppose that each ρi : Pn → Pn

is a tupling of projections, i.e., a base function. Then consider the system of
equations in n unknowns and p parameters:

x1 = f(xρ1(1), . . . , xρ1(n), y1, . . . , yp),
...

xn = f(xρn(1), . . . , xρn(n), y1, . . . , yp).

The commutative identity asserts that the first component of the least solution
of this parametric system is just the least solution of the single parametric
equation

x = f(x, . . . , x, y1, . . . , yp).

When the permutation identity holds, the same is true for all other compo-
nents.

Definition 4.1. An iteration theory is a Conway theory satisfying the group
identities.

Morphisms of iteration theories are Conway theory morphisms. Iteration
theories were defined in [6, 7] and independently in [24]. The axiomatiza-
tion in [24] used the Conway theory identities and the “vector form” of the
commutative identity; see below. The completeness of the group identities in
conjunction with the Conway theory identities was proved in [27].

Theorem 4.2. An identity involving the dagger operation holds in all theo-
ries of continuous functions on cpo’s iff it holds in all theories of monotone
functions on cpo’s iff it holds in iteration theories.

The proof is based on a concrete description of the free iteration theories
as theories of regular trees, cf. [9], which are the unfoldings of finite flowchart
schemes [8]. By this concrete description, it is known that there is a P-time
algorithm to decide whether an identity holds in all iteration theories; see [18].

Theorem 4.2 can be generalized to a great extent. The following result was
proved in [26].

Theorem 4.3. The iteration theory identities are complete for the class of
all theories T equipped with a partial order ≤ on each hom-set T (n, m) and
a dagger operation such that the operations of composition and tupling are
monotone. Moreover, the fixed point identity (1), the parameter identity (2),
and the fixed point induction axiom hold, so that

f ◦ 〈g, idp〉 ≤ g =⇒ f† ≤ g, (22)

for all f : n + p → n and g : p → n.
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Thus, in such theories, called Park theories in [26], the fixed point equation
ξ = f ◦ 〈ξ, idp〉 has a least solution, namely f†. With the same argument as
in the proof of Proposition 2.8, it follows that the dagger operation is also
monotone. Equivalently, one may define Park theories as ordered theories as
above satisfying the scalar parameter identity (18), the scalar versions of the
fixed point and pairing identities, i.e., (16) with n = 1 and (17) with m = 1,
and the fixed point induction axiom (22) for n = 1. See the proof of the Bekić
identity. Moreover, the fixed point identity may be replaced by the inequality
f ◦ 〈f†, idp〉 ≤ f†, for all appropriate f . Instances of Park theories are the
continuous theories and rational theories, cf. [9, 51]. In a continuous theory T ,
each T (m, n) is a cpo and composition is continuous. The dagger operation is
defined by least fixed points. In particular, the theory of continuous functions
over a cpo is a continuous theory. A rational theory T is also ordered, but not
all directed sets in T (m, n) have suprema. But there are enough suprema to
have least solutions of fixed point equations. It is known that each rational
theory embeds in a continuous theory.

More generally, one often considers certain 2-categories, called 2-theories,
such that for each f : n + p → n there is an initial solution of the fixed point
equation ξ = f ◦ 〈ξ, idp〉. The identities satisfied by such 2-theories are again
those of iteration theories, cf. [34].

An essential feature of iteration theories is that the “vector form” of each
identity true of iteration theories holds in all iteration theories. In a semantic
setting, this means the following. Given a theory T and an integer k, we
can form a new theory Tk whose morphisms m → n are the morphisms
mk → nk of T . The composition operation in Tk is that inherited from T ,
and the ith projection morphism n → 1 in Tk is 〈prnk

(i−1)k+1, . . . ,prnk
ik 〉. If

T is equipped with a dagger operation, then Tk is equipped with the dagger
operation inherited from T , since if f : n+p → n in Tk, then f is a morphism
nk + pk → nk in T and we may define f† in Tk as the morphism f† in T . For
details, see [27].

Theorem 4.4. When T is a Conway or iteration theory, so is Tk for each k.

Proof. The claim is clear for Conway theories, since the vector form of each
defining identity of Conway theories is also a defining identity. As for iter-
ation theories, by the completeness of the iteration theory identities for the
least fixed point operation on continuous functions on cpo’s (Theorem 4.2),
it suffices to prove that if T is the theory of continuous functions on a cpo P ,
equipped with the least fixed point operation, then each Tk is an iteration
theory. But Tk is isomorphic to the theory of continuous functions over P k,
which is an iteration theory. 
�

The commutative identity and the group identities seem to be extremely
difficult to verify in practice. But in most cases, this is not so. The commu-
tative identity, and thus the group identities are implied by certain quasi-
identities, which are usually easy to establish.
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Definition 4.5. Let C be a set of morphisms in a theory T equipped with a
dagger operation. We say that T has a functorial dagger with respect to C if

f ◦ (ρ × idp) = ρ ◦ g =⇒ f† = ρ ◦ g†, (23)

for all f : n + p → n, g : m + p → m in T and ρ : m → n is in C.

When T has a functorial dagger with respect to the set of all base morphisms
(all morphisms, respectively), we also say that T has a weak (strong, respec-
tively) functorial dagger. It is known that every Conway theory has a functo-
rial dagger with respect to the set of injective base morphisms. Moreover, if T
has a strong functorial dagger, then it has a unique morphism 0 → 1. In [25],
it is proved that if a Conway theory has a functorial dagger with respect to
the set of base morphisms 1 → n, n ≥ 2, then it has a weak functorial dagger.

Proposition 4.6. If a Conway theory T has a weak functorial dagger, then
T is an iteration theory.

Proof. We show that under the assumptions, the commutative identity (21)
holds. So, let f : n + p → 1 and let ρ1, . . . , ρn be base morphisms n → n, and
let ρ denote the unique base morphism 1 → n. Define g = f ◦ (ρ × idp) and
h = 〈f ◦ (ρ1 × idp), . . . , f ◦ (ρn × idp)〉. Then h ◦ (ρ × idp) = ρ ◦ g, so that
h† = ρ ◦ g†, completing the proof. 
�

For other quasi-identities implying the commutative identity, we refer to
[9, 11]. It is known that there exist iteration theories which do not have a
weak functorial dagger.

Simpson and Plotkin [48] proved the following equational completeness
result for iteration theories. Suppose that T is a nontrivial iteration theory
equipped with a dagger operation, so that T has at least two morphisms 2 → 1,
or equivalently, pr2

1 �= pr2
2 in T . Then there are two cases. Either an identity

holds in T iff it holds in all iteration theories, or it holds in all iteration theories
with a unique morphism 0 → 1. It was argued in [9, 11] that all fixed point
models satisfy at least the iteration theory identities. Thus, by the Plotkin–
Simpson result, all nontrivial fixed point models either satisfy exactly the
iteration theory identities, or the identities that hold in all iteration theories
with a single “constant.” Such iteration theories are, for example, the matrix
theories over nontrivial iteration semirings defined below. Iteration theories
of Boolean functions are described in [28].

5 Unique Fixed Points

Suppose that T is a theory. We say that a morphism f = 〈f1, . . . , fm〉 : n → m
in T is ideal if none of the morphisms fi : n → 1 is a projection. Following
Elgot [22], we call T an ideal theory if whenever f is ideal, then for all g in T
with appropriate target, f ◦ g is ideal.
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An important example of an ideal theory can be constructed over complete
metric spaces M = (M,d), where d denotes a distance function. It is clear that
when (M,d) is complete, so is any finite power Mn of M equipped with the dis-
tance function dn defined by dn((x1, . . . , xn), (y1, . . . , yn)) = max{d(xi, yi) :
i = 1, . . . , n}. Now, a function f : M → M ′ between metric spaces M = (M,d)
and M ′ = (M ′, d′) is called a proper contraction if there is a constant 0 < c < 1
such that d′(f(x), f(y)) ≤ cd(x, y) for all x, y ∈ M . The following simple but
important fact is Banach’s fixed point theorem [2].

Theorem 5.1. When M is a complete metric space and f : M → M is a
proper contraction, then f has a unique fixed point.

Proof. If x, y are both fixed points, then d(x, y) = d(f(x), f(y)) ≤ cd(x, y) for
some 0 < c < 1. It follows that d(x, y) = 0, i.e., x = y.

To show that there is at least one fixed point, let x0 ∈ M and define
xn+1 = f(xn) for all n ≥ 0. Since f is a proper contraction, the sequence
(xn)n is a Cauchy sequence, and since M is complete, it has a limit x. Since
f is a proper contraction, it follows that f(x) = x. 
�

Let M be a complete metric space. Consider the collection TM of all func-
tions Mn → Mm, n, m ≥ 0 of the form f = 〈f1, . . . , fm〉 such that each
fi : Mm → M is a proper contraction or a projection. It is clear that TM

is closed under composition and tupling, so that it is a theory of functions
over M . Moreover, TM is an ideal theory, since if M is nontrivial then a
function f = 〈f1, . . . , fm〉 is an ideal morphism iff each fi is a proper con-
traction which implies that each component function of f ◦ g is also a proper
contraction for any g in TM with appropriate target.

Definition 5.2. An iterative theory (cf. Elgot [22]) is an ideal theory T
equipped with a dagger operation defined on ideal morphisms in T (n, n + p),
n, p ≥ 0 such that for each ideal f : n + p → n, the morphism f† : p → n is
the unique solution of the fixed point equation ξ = f ◦ 〈ξ, idp〉.

Thus, the fixed point identity (16) and the unique fixed point rule

f ◦ 〈g, idp〉 = g =⇒ g = f†

hold for all ideal f : n + p → n and all g : p → n in T .

Remark 5.3. Let T be an ideal theory. We say that f : n + p → n in T is a
power ideal morphism if for some k ≥ 1, fk is ideal. When f : n + p → n is a
power ideal morphism in an iterative theory T , then the fixed point equation
ξ = f ◦ 〈ξ, idp〉 has a unique solution, namely the solution of ξ = fk ◦ 〈ξ, idp〉,
where fk is ideal. See [22]. (Here, f0 = prn,p

n and fk+1 = f ◦ 〈fk,prn,p
p 〉.)

The following result is from [13]; see also [9].

Theorem 5.4. An ideal theory T is an iterative theory iff for each ideal mor-
phism f : 1 + p → 1 there is a unique solution of the equation ξ = f ◦ 〈ξ, idp〉.
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Proof. The proof is based on a version of the pairing identity. One argues by
induction. In the induction step, one shows that if the fixed point equation
for ideal morphisms n + q → n and m + q → m have unique solutions, then
the same holds for ideal morphisms n + m + p → n + m. 
�

In an iterative theory, the dagger operation is only partially defined. In
order to be able to solve all fixed point equations over an iterative theory T,
there must be at least one morphism 0 → 1 in T .

Theorem 5.5. Suppose that T is an iterative theory with at least one mor-
phism 0 → 1. Then for each ⊥ : 0 → 1, the dagger operation on T has a
unique extension to all morphisms n + p → n, n, p ≥ 0 such that T becomes a
Conway theory with id†

1 = ⊥. Moreover, equipped with this unique extension,
T is an iteration theory having a weak functorial dagger.

This result was proved in [6, 7] and [24]. Iteration theories arising from
Theorem 5.5 are called pointed iterative theories. One application of the the-
orem is the following.

Corollary 5.6. Suppose that M is a complete metric space and consider the
theory TM defined above. Let x0 be a point in M . Then there is a unique way
to define a dagger operation on TM such that TM becomes a Conway theory
with id†

M = x0. This unique Conway theory is an iteration theory with a weak
functorial dagger.

Without proof, we mention the following theorem.

Theorem 5.7. An identity holds in all pointed iterative theories iff it holds
in iteration theories.

See [9, 24]. Thus, the equational properties of the least fixed point op-
eration are the same as the equational properties of the unique fixed point
operation.

6 Fixed Points of Linear Functions

Let S be a semiring. A function Sn → S is called linear if it is of the form

f(x1, . . . , xn) = s1x1 + · · · + snxn

for some s1, . . . , sn ∈ S. A linear function Sn → Sm is a tupling of linear
functions Sn → S. Since any composition of linear functions is linear, it
follows that linear functions over S determine a theory TS .

The linear function f given above may be represented by the n-dimensional
row matrix (s1, . . . , sn). More generally, any linear function Sn → Sm may
be represented by an m × n matrix M = (sij)ij over S: The linear function
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determined by M maps x ∈ Sn, an n-dimensional column vector to Mx,
an m-dimensional column. It follows that TS can be represented as the theory
T with T (m, n) = Sm×n, m, n ≥ 0, the set of all m × n matrices over S,
whose composition operation is matrix product. The projections are the row
matrices with an entry equal to 1 and all other entries equal to 0. The identity
morphism idn, n ≥ 0 is the n × n unit matrix En. We denote this theory by
MATS and call it the matrix theory over S.

Proposition 6.1. TS is isomorphic to MATS.

Note that in MATS , a base morphism, also called a base or functional
matrix, is a 0–1 matrix with a single occurrence of 1 in each row (at least when
S is nontrivial). In particular, every permutation matrix is a base matrix.
Note that the inverse of a permutation matrix π is its transpose, πT . It is
educational to see that for all A ∈ MATS(p, n) and B ∈ MATS(q, n),

〈A, B〉 =
(

A
B

)

,

and if A ∈ MATS(p, n) and B ∈ MATS(q, m) then

A × B =
(

A 0pm

0qn B

)

,

where 0pn and 0qm are zero matrices of appropriate dimension.
Below, we will show that any dagger operation on MATS satisfying the pa-

rameter identity determines and is determined by a star operation on MATS ,
and, in fact, on the semiring S. Moreover, we show how to express the Conway
identities and the commutative and group identities in terms of the star op-
eration giving rise to Conway matrix theories, matrix iteration theories, and
Conway and iteration semirings.

Proposition 6.2. Suppose that MATS is equipped with a dagger operation
such that the parameter identity holds. Then there is a unique star operation
A �→ A∗ defined on the square matrices A ∈ MATS(n, n), n ≥ 0 such that
for all (A, B) ∈ MAT(n, n+ p) with A ∈ MATS(n, n) and B ∈ MATS(n, p)

(A, B)† = A∗B. (24)

If MATS is equipped with a star operation and if we define dagger by (24),
then the parameter identity holds.

Proof. If the parameter identity (2) holds, then

(A B)† =
(

(A En)
(

En 0
0 B

))†
= (A En)†B.

Thus, we define A∗ = (A, En)†. With this definition, (24) holds. Moreover,
if MATS is equipped with a star operation and if we define dagger by (24),
then the parameter identity holds. 
�
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Theorem 6.3. Suppose that MATS is equipped with both a star and a dagger
operation which are related by (24).

1. The fixed point identity (1) holds iff the star fixed point identity holds:

A∗ = AA∗ + En (25)

for all A ∈ MATS(n, n), n ≥ 0.
2. The double dagger identity (4) holds iff the sum star identity holds:

(A + B)∗ = (A∗B)∗A∗ (26)

for all A, B ∈ MATS(n, n), n ≥ 0.
3. The composition identity (3) holds iff the product star identity holds:

(AB)∗ = En + A(BA)∗B (27)

for all A ∈ MATS(n, m), B ∈ MATS(m, n), m, n ≥ 0.
4. The identity (10) holds iff the zero star identity holds:

0∗nn = En, (28)

where the entries of the n × n matrix 0nn are all 0.
5. The pairing identity (5) holds iff the matrix star identity holds:

(
A B
C D

)∗
=

(
α β
γ δ

)

(29)

where A ∈ MATS(n, n), B ∈ MATS(n, m), C ∈ MATS(m, n), and D ∈
MATS(m, m), and where

α = A∗BδCA∗ + A∗, β = A∗Bδ,

γ = δCA∗, δ = (D + CA∗B)∗.

6. The permutation identity (7) holds iff the star permutation identity holds:
(
πAπT

)∗ = πA∗πT , (30)

where A ∈ MATS(n, n) and where π ∈ MATS(n, n) is a permutation
matrix with transpose πT .

7. The transposition identity (12) holds iff the star transposition identity
holds, i.e., the identity (30) when n = p + q and π =

( 0 Ep

Eq 0

)
.

8. The group identity associated with a finite group G of order n holds iff star
group identity associated with G holds:

e1M
∗
Gun = (a1 + · · · + an)∗ (31)

where MG is the n×n matrix whose (i, j)th entry is ai−1j, for all 1≤ i, j ≤ n,
and e1 = prn

1 is the 1×n 0–1 matrix whose first entry is 1 and whose other
entries are 0. Finally, un is the n × 1 matrix all of whose entries are 1.
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Definition 6.4. A Conway matrix theory (matrix iteration theory) is a ma-
trix theory MATS equipped with a star operation defined on square matrices
such that when dagger is defined by (24) then it is a Conway theory (itera-
tion theory, respectively). A morphism of Conway matrix theories or matrix
iteration theories is a theory morphism which preserves star.

It follows that morphisms also preserve the additive structure.
Note that A∗ = A∗A + En holds for all n × n matrices A in any Con-

way matrix theory. As an immediate corollary to Theorem 3.3, Theorem 3.5,
Corollary 3.6, and Theorem 6.3 we obtain the following corollary.

Corollary 6.5. A matrix theory T equipped with a star operation is a Conway
theory iff one of the following three groups of identities holds in T .

1. The zero star (28), matrix star (29), and star transposition (or star per-
mutation (30)) identities.

2. The product star (27) and sum star (26) identities.
3. The scalar versions of the product star, sum star, and matrix star identities,

i.e., (27) with m = n = 1, (26) with n = 1, and (29) with m = 1.

Thus, all identities (25)–(30) hold in Conway matrix theories. By adding to
the axioms, the star group identities (31) associated with the finite groups,
one obtains three sets of equational axioms for matrix iteration theories.

We note the following version of the matrix star identity:
(

A B
C D

)∗
=

(
(A + BD∗C)∗ (A + BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

)

.

When n = m = 1, the product star and sum star identities only involve
elements of the semiring S. This consideration gives rise to the following
definitions; see also [21].

Definition 6.6. A ∗-semiring is a semiring S equipped with a unary star op-
eration ∗ : S → S. A Conway semiring [9] is a ∗-semiring S which satisfies
the (scalar) product star and sum star identities, i.e.,

(ab)∗ = a(ba)∗b + 1, (32)
(a + b)∗ = (a∗b)∗a∗, a, b ∈ S. (33)

An iteration semiring [9, 27] is a Conway semiring, which when the star
of a square matrix is inductively defined by the scalar version of the matrix
star identity (i.e., (29) with m = 1), satisfies each star group identity (31)
associated with a finite group G. A morphism of ∗-semirings also preserves the
star operation. A morphism of Conway or iteration semirings is a ∗-semiring
morphism.
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Corollary 6.7. When MATS is a Conway matrix theory or a matrix itera-
tion theory, then S is a Conway semiring or an iteration semiring. Suppose
that S is a Conway semiring (iteration semiring, resp.). Then there is a unique
way of extending the star operation on S to all square matrices over S such
that MATS becomes a Conway matrix theory, or a matrix iteration theory.

Proof. This follows from Theorems 3.5 and 6.3. 
�

Of course, the unique extension is given by the scalar version of the matrix
star identity (29) with m = 1. Using the above results, one can show that the
category of Conway semirings is equivalent to the category of Conway matrix
theories, and that the category of iteration semirings is equivalent to the
category of matrix iteration theories.

In any Conway matrix theory, the group identities follow from the functo-
rial star conditions defined below.

Definition 6.8. Suppose that MATS is equipped with a star operation. Let
C be a set of matrices in MATS. We say that MATS satisfies the functorial
star implication for C, or that MATS has a functorial star with respect to C,
if for all A ∈ MATS(n, n) and B ∈ MATS(m, m) and all C ∈ MATS(n, m)
in C,

AC = CB =⇒ A∗C = CB∗.

When MATS has a functorial star with respect to the set of all matrices
in MATS, then MATS is said to have a strong functorial star. And when
MATS has a functorial star with respect to the set of all base matrices,
MATS is said to have a weak functorial star.

Proposition 6.9. A Conway matrix theory MATS has a functorial star with
respect to C iff it has functorial dagger with respect to C when dagger is defined
by (24).

Thus, MATS has a strong or weak functorial star iff it has a strong or
weak functorial dagger. Moreover, MATS has a weak functorial star iff it has
a weak functorial star with respect to all n × 1 base matrices, n ≥ 2.

Corollary 6.10. If MATS is a Conway matrix theory with a weak functorial
star, then MATS is a matrix iteration theory.

We mention one more property of Conway and iteration semirings. The
dual of a ∗-semiring S is equipped with the same sum and star operation and
constants as S, but multiplication, denoted ◦, is defined by a ◦ b = ba, the
product of a and b in S in the reverse order.

Proposition 6.11. The dual of a Conway or iteration semiring is also a Con-
way or iteration semiring.

See [27]. In the rest of this section, we will exhibit three subclasses of
iteration semirings.
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6.1 Inductive ∗-Semirings

Recall from [21] that an ordered monoid is a commutative monoid
(M, +, 0) such that the sum operation is monotone. An ordered semiring is a
semiring which is an ordered monoid such that the product operation is also
monotone. Moreover, an ordered semiring S is positively ordered if 0 ≤ s for
all s ∈ S. A morphism of ordered semirings is a monotone semiring morphism.
This section is based on [31].

Definition 6.12. An inductive ∗-semiring is an ordered semiring S which is
a ∗-semiring such that for any a, b ∈ S, a∗b is the least prefixed point of
the function S → S, x �→ ax + b. A morphism of inductive ∗-semirings is a
morphism of ordered semirings which is a ∗-semiring morphism.

Proposition 6.13. Any inductive ∗-semiring S is positively ordered.

Proof. The least solution of the equation x = x is 1∗ ·0 = 0. Since any element
of S is a solution, it follows that 0 is the least element of S. 
�

Proposition 6.14. When S is an inductive ∗-semiring, the star operation is
monotone.

Proof. This follows from Proposition 2.8. 
�

The dual of an inductive ∗-semiring is not necessarily an inductive
∗-semiring.

Definition 6.15. A symmetric inductive ∗-semiring is an inductive ∗-semi-
ring whose dual is also an inductive ∗-semiring.

Proposition 6.16. An inductive ∗-semiring S is symmetric iff for all
a, b, x ∈ S, if xa + b ≤ x, then ba∗ ≤ x.

If S is an ordered semiring, MATS is equipped with the pointwise par-
tial order. It is clear that the theory operations are monotone as is the sum
operation on matrices.

Theorem 6.17. Let S be an ordered semiring which is a ∗-semiring. Then
S is an inductive ∗-semiring iff MATS is a Park theory when the dagger is
defined by (24).

Proof. This follows from Theorem 6.3 and the Bekić identity (5). 
�

Corollary 6.18. Thus, when S is an inductive ∗-semiring, then for each A ∈
MATS(n, n) and B ∈ MATS(n, p), (A, B)† = A∗B is the least prefixed point
solution of the equation X = AX + B.

Corollary 6.19. Any inductive ∗-semiring S is an iteration semiring, so that
MATS is a matrix iteration theory.
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Proof. By Theorem 4.3. 
�

Corollary 6.20. If S is an inductive ∗-semiring, so is Sn×n, for each n ≥ 0.

Recall from [21] that an ordered semiring S is continuous if S is a cpo
with least element 0 and the sum and product operations are continuous.

Proposition 6.21. Every continuous semiring is a symmetric inductive
∗-semiring where a∗ =

∨
{
∑n

i=1 ai : n ≥ 0}.

Proof. This follows from Corollary 2.6. When S is a continuous semiring, then
for each a, b ∈ S, the function f(x) = ax + b is continuous with least prefixed
point

∨
fn(0, b). But for each n, fn(0, b) =

∑n
i=1 aib = (

∑n
i=1 ai)b, so that by

continuity,
∨

fn(0, b) = (
∨
{
∑n

i=1 ai : n ≥ 0})b. Since the dual of a continuous
semiring is also continuous, it follows now that any continuous semiring is a
symmetric inductive ∗-semiring. 
�

Kozen [40] defines a Kleene algebra as an idempotent symmetric inductive
∗-semiring. In [39], it is shown that there is an idempotent inductive ∗-semiring
which is not a Kleene algebra.

Remark 6.22. Kozen showed in [40] that for each alphabet A, the semiring
of regular languages over A, equipped with the partial order of set inclusion
is the free Kleene algebra on A. Krob [41] proved that the same semiring is
the free iteration semiring on A satisfying the identity 1∗ = 1, and thus also
the free idempotent inductive ∗-semiring on A. See also [14, 15] and [10]. For
recent extensions of these results, see [12, 29]. It is shown in [12] that for each
alphabet A, the ∗-semiring of rational power series [33] over the semiring N

∞ is
the free iteration semiring over A satisfying three additional simple identities.
Moreover, an identity holds in these semirings iff it holds in all continuous (or
complete, see below) semirings. And the same semirings, equipped with the
sum order, are the free symmetric inductive ∗-semirings. The paper [12] also
contains a characterization of the semirings of rational power series over the
semiring N as the free “partial iteration semirings.”

6.2 Complete Semirings

For the definition of complete semirings and their morphisms, we refer to [21]
where original references can be found. When S is a complete semiring, then
we may equip each hom-set MATS(n, m) = Sn×m with the pointwise sum
operation, so that the straightforward generalizations of the defining axioms
of complete semirings hold. In particular,
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∑

j∈J

∑

i∈Ij

Ai =
∑

i∈
⋃

j∈J Ij

Ai,

B

(∑

i∈I

Ai

)

=
∑

i∈I

BAi,

(∑

i∈I

Ai

)

C =
∑

i∈I

AiC,

where I is any set which is the disjoint union of sets Ij , j ∈ J , and where
Ai, i ∈ I is a family of matrices in MATS(m, n), and B ∈ MATS(p,m) and
C ∈ MATS(n, q).

Now, any complete semiring S can be turned into a ∗-semiring by defining
s∗ =

∑
sk. By the above remark, if S is complete, then each semiring Sn×n is

also complete and is thus a ∗-semiring with A∗ =
∑

Ak, for each A ∈ Sn×n.
We can use the star operation on S and the scalar version of the matrix
star identity to define another star operation on Sn×n. However, the two star
operations coincide as noticed in [17, 37]. We have the following result, cf. [9].

Theorem 6.23. When S is a complete semiring, then S is an iteration semi-
ring with a strong functorial star. Thus, S is an iteration semiring and MATS

is a matrix iteration theory.

In a rationally additive semiring S, only certain sums are required to exist
including the geometric sums s∗ =

∑
n≥0 sn, for all s ∈ S. It is shown in [30]

that they are also iteration semirings with a strong functorial star.

6.3 Iterative Semirings

An ideal of a semiring S is a set I ⊆ S which is closed under the sum operation
and contains 0. Moreover, SI = IS = I. Let I be an ideal of S and S0 a
subsemiring of S. Below, we will say that S is the direct sum of S0 and I if
each s ∈ S can be written in a unique way in the form s0 + a, where s0 ∈ S0

and a ∈ I. The following result is from [9].

Theorem 6.24. Suppose that S is the direct sum of S0 and I, where S0 is a
subsemiring of S and I is an ideal. Moreover, suppose that each fixed point
equation x = ax + b with a ∈ I has a unique solution in S. If S0 is a Conway
semiring, then there is a unique way to extend the star operation on S0 to the
whole semiring S such that S becomes a Conway semiring. Moreover, when
S0 is an iteration semiring, then so is S.

Proof. First, we define a∗ for all a ∈ I as the unique solution of the equation
x = ax + 1. When a ∈ I ∩ S0, the star fixed point identity guarantees that
this unique solution is just a∗ taken in the Conway semiring S0. Moreover, it
follows that the unique solution of x = ax + b is a∗b, for all b. Then the star
operation on S is defined as follows. Given s ∈ S, write s in the unique way
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as a sum s0 + a with s0 ∈ S0 and a ∈ I. Then by the sum star identity we are
forced to define s∗ = (s∗0a)∗s∗0, where s∗0 is taken in S0 and s∗0a is in I, since
I is an ideal. For more details, the reader is referred to [9]. 
�

Thus, under the above assumptions, if S0 is a Conway semiring, then
MATS is a Conway matrix theory and if S0 is an iteration semiring then
MATS is a matrix iteration theory. In either case, we have the following
proposition.

Proposition 6.25. Under the assumptions of Theorem 6.24, for any matrices
A ∈ MATS(n, n) and B ∈ MATS(n, p) such that each entry of A is in I,
A∗B is the unique solution of the fixed point equation X = AX + B.

An application of Theorem 6.24 is that if S is a Conway semiring or an
iteration semiring, then so is the power series semiring S〈〈A∗〉〉 (for the de-
finition of power series semirings, see [21]) for any set A. This follows since
S〈〈A∗〉〉 is the direct sum of S and the ideal I of proper power series, and when
s is a proper power series and r is any power series in S〈〈A∗〉〉, the function
x �→ sx + r is a proper contraction with respect to the complete metric on
S〈〈A∗〉〉 defined by d(s, s′) = 2−n, where n is the length of the shortest word
w with (s, w) �= (s′, w), for all distinct series s, s′.

Definition 6.26. We call a semiring S an iterative semiring if S is the direct
sum of an iteration semiring S0 generated by 1 and an ideal I such that each
equation x = ax + b with a ∈ I has a unique solution.

Corollary 6.27. Each iterative semiring is an iteration semiring.

7 Fixed Points of Affine Functions

In this section, we will consider pairs (S, V ) consisting of a semiring S and a
(left) S-semimodule V . An affine function is a function f : V n → V of the
form

f(x1, . . . , xn) = s1x1 + · · · + snxn + v,

where each si is in S and v is in V . An affine function V n → V m is a target
tupling of affine functions V n → V . The collection of all affine functions is a
theory of functions over V denoted TV .

Each affine function V n → V m may be represented by a pair (A, v) consist-
ing of a matrix A ∈ Sm×n and a column vector v ∈ V m. This representation
gives rise to the following definition.

Definition 7.1. Let (S, V ) be a semiring–semimodule pair. The matricial the-
ory MatrS,V [23] over (S, V ) has as morphisms n → m all pairs (A, v) where
A ∈ MATS(m, n) and v ∈ V m. Composition is defined by
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(A, v) ◦ (B, w) = (AB, v + Aw),

where AB is the usual matrix product and Aw is the action of A on w, i.e.,
(Aw)i =

∑n
j=1 Aijwj. The projection morphism prn

i is the pair (ei, 0), where
ei is the ith n-dimensional unit row vector considered as a row matrix. Mor-
phisms between matricial theories are theory morphisms which preserve the
additive structure.

It can be seen that a morphism MatrS,V → MatrS′,V ′ is completely
determined by a semiring morphism hS : S → S′ and a semimodule morphism
hV : V → V ′ such that (sv)hV = (shS)(vhV ) for all s ∈ S and v ∈ V . Thus,
the category of matricial theories is equivalent to the category of semiring–
semimodule pairs.

Proposition 7.2. The theory TV is a quotient of MatrS,V . A surjective the-
ory morphism MatrS,V → TV maps (A, v) ∈ MatrS,V (m, n) to the function
〈f1, . . . , fm〉 : V n → V m with fi(u1, . . . , un) = Ai1u1 + · · · + Ainun + vi, for
all i.

The above morphism is usually not injective. To get a faithful repre-
sentation, one can use (A, v) ∈ MatrS,V (m, n) to induce a function (S ×
V )n → (S × V )m. Indeed, we can map (A, v) ∈ MatrS,V (m, n) to the func-
tion g = 〈g1, . . . , gm〉 : (S × V )n → (S × V )m, gi((x1, u1), . . . , (xn, un)) =
(Ai1x1 + · · · + Ainxn, Ai1u1 + · · · + Ainun + vi). This mapping (A, v) �→ g is
always injective.

Below, we will show that when MatrS,V is equipped with a dagger opera-
tion such that it is a Conway or an iteration theory, then the dagger operation
determines and is determined by a star and an omega operation satisfying
certain natural axioms. For all omitted details we refer to [9]. Each matricial
theory MatrS,V has MATS as its underlying matrix theory.

Suppose that MatrS,V is equipped with a dagger operation. Hence the
dagger operation applied to (A, v) ∈ MatrS,V (n, n + p) produces f† = (C, z)
where C ∈ MATS and z ∈ V n. Two operations are implicitly defined by
the dagger operation. For each A ∈ MATS , consider ((A, En), 0n), where all
entries of 0n ∈ V n are 0. Then we define A∗ and Aω by

(
(A, En), 0n

)† =
(
A∗, Aω

)
. (34)

Thus, A �→ A∗ is a map MATS(n, n) → MATS(n, n), and A �→ Aω is a map
from MATS(n, n) to V n, for each n ≥ 0.

Theorem 7.3. Suppose that MatrS,V is equipped with a dagger operation and
that the star and omega operations are defined as above. Then the parameter
identity holds in T if and only if the dagger operation is determined by the
star and omega operations:

(
(A, B), v

)† =
(
A∗B, A∗v + Aω

)
, (35)
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for all ((A, B), v) ∈ MatrS,V (n, n + p) with A ∈ MATS(n, n), B ∈
MATS(n, p) and v ∈ V n.

Suppose that the dagger, star, and omega operations are related by (35).

• The star fixed point identity (25) and the omega fixed point identity

AAω = Aω, A ∈ MATS(n, n), (36)

hold if and only if the fixed point identity holds.
• The product star identity (27) and the product omega identity

(AB)ω = A(BA)ω, (37)

A ∈ MATS(n, m), B ∈ MATS(m, n), hold if and only if the composition
identity holds.

• The sum star identity and the sum omega identity

(A + B)ω = (A∗B)ω + (A∗B)∗Aω, (38)

A, B ∈ MATS(n, n), hold if and only if the double dagger identity holds.
• The zero star identity and the zero omega identity

0ω
nn = 0n (39)

hold if and only if (10) holds.
• The matrix star identity (29) and the matrix omega identity (40) hold if

and only if the pairing identity holds.
(

A B
C D

)ω

=
(

A∗B(D + CA∗B)ω + A∗B(D + CA∗B)∗CAω + Aω

(D + CA∗B)ω + (D + CA∗B)∗CAω

)

(40)

for all A ∈ MATS(n, n), B ∈ MATS(n, m), C ∈ MATS(m, n), D ∈
MATS(m, m).

• The star permutation identity (30) and the omega permutation identity
(41) hold if and only if the permutation identity holds.

(
πAπT

)ω = πAω, (41)

where π ∈ MATS(n, n) is a permutation matrix and A ∈ MATS(n, n).
• The star transposition identity and the omega transposition identity hold

iff the transposition identity holds, where the omega transposition identity
is (41) with π restricted to matrices of the form

( 0 Ep

Eq 0

)
.

• The star group identity (31) and the omega group identity (42) associated
with a finite group G hold if and only if the group identity associated with
G holds.

e1M
ω
G = (a1 + · · · + an)ω (42)

where a1, . . . , an ∈ S and MG is defined above.
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Conversely, if MatrS,V is a matricial theory equipped with star and omega
operations defined for all square matrices in MATS, and if the dagger opera-
tion is defined by (35), then MatrS,V satisfies the parameter identity and all
of the above equivalences hold.

If the star and omega sum and product identities hold, then the omega
pairing identity can be expressed in either of the following two forms:

(
A B
C D

)ω

=
(

(A + BD∗C)ω + (A + BD∗C)∗BDω

(D + CA∗B)ω + (D + CA∗B)∗CAω

)

,

(
A B
C D

)ω

=
(

(A∗BD∗C)∗Aω + (A∗BD∗C)∗A∗BDω + (A∗BD∗C)ω

(D∗CA∗B)∗D∗CAω + (D∗CA∗B)∗Dω + (D∗CA∗B)ω

)

.

Definition 7.4. A matricial iteration theory is a matricial theory which is
also an iteration theory. A Conway matricial theory is a matricial theory which
is a Conway theory. Morphisms of matricial iteration theories and Conway
matricial theories are matricial theory morphism which preserve dagger and
thus star and omega.

The following results follow from Theorem 7.3, and the axiomatization
results in Sect. 3 (Theorems 3.3 and 3.5).

Corollary 7.5. Let MatrS,V be a matricial theory. Suppose that either
MatrS,V is equipped with a star and an omega operation and dagger is defined
by (35), or that MatrS,V is equipped with a dagger operation satisfying the
parameter identity in which the star and omega operations are defined by (34).
Then T is a Conway matricial theory if and only if T satisfies either of the
following groups of equational axioms:

1. The zero star (28) and zero omega (39) identities, the matrix star (29)
and matrix omega (40) identities, and the star and omega transposition
identities.

2. The sum and product star and omega identities, (26), (27), (37), (38).
3. The scalar versions of the sum and product star and omega identities (i.e.,

the identities (26), (38), (27), and (37) with n = m = 1), and the scalar
version of the matrix star and matrix omega identities, i.e., (29) and (40)
with m = 1.

Moreover, MatrS,V is a matricial iteration theory iff it is a Conway matricial
theory satisfying the star and omega group identities (31), (42) associated with
finite groups. In either case, the dagger, star, and omega operations are related
by (34) and (35).

Note that the star and omega fixed point identities hold in any Conway
matricial theory. Also, if MatrS,V is a Conway matricial theory, then MATS

is a Conway matrix theory, and if MatrS,V is a matricial iteration theory
then MATS is a matrix iteration theory.
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If MATS is equipped with a star operation, we may equip MatrS,V with
an omega operation such that Aω = 0n, for all A ∈ MATS(n, n). When
MATS is a matrix iteration theory, MatrS,V is a matricial iteration the-
ory. Similarly, if MATS is a Conway matrix theory, MatrS,V is a Conway
matricial theory. In particular, any matrix iteration theory MATS may be
viewed as the matricial iteration theory MatrS,V where V = {0} is the trivial
S-semimodule.

In a matricial theory MatrS,V , any morphism 0 → 1 may be identified
with an element of V . Similarly, each morphism 1 → 1 in the underlying
matrix theory MATS may be considered to be an element of the semiring S.
Thus, when the matrix star and omega identities hold, the star and omega
operations are determined by operations ∗ : S → S and ω : S → V .

Definition 7.6. A Conway semiring–semimodule pair consists of a Conway
semiring S, an S semimodule V and an operation ω : S → V which satisfies
the sum and product omega identities

(a + b)ω = (a∗b)∗aω + (a∗b)ω, (43)
(ab)ω = a(ba)ω (44)

for all a,b in S. An iteration semiring–semimodule pair is a Conway semiring–
semimodule pair such that S is an iteration semiring, which when star and
omega on matrices are defined by the matrix star and matrix omega identities
(29) and (40) with m = 1, satisfies the omega group identity associated with
any finite group. Morphisms of Conway and iteration semiring–semimodule
pairs are morphisms of semiring–semimodule pairs which preserve star and
omega.

Proposition 7.7.

• When MatrS,V is a matricial iteration theory, (S, V ) is an iteration semi-
ring–semimodule pair, and when MatrS,V is a Conway matricial theory,
(S, V ) is a Conway semiring–semimodule pair.

• Let (S, V ) be an iteration (or Conway) semiring–semimodule pair. There
is a unique way to extend the star and omega operations on S to all square
matrices in MATS so that MatrS,V becomes a matricial iteration theory
(or Conway matricial theory, respectively).

In fact, the category of Conway matricial theories is equivalent to the category
of Conway semiring–semimodule pairs, and the category of matricial iteration
theories is equivalent to the category of iteration semiring–semimodule pairs.

In any Conway matricial theory, the group identities follow from the func-
torial star and omega conditions.

Definition 7.8. Suppose that MatrS,V is equipped with a star and omega
operation. Let C be a set of matrices in MATS. We say that MatrS,V satisfies
the functorial star implication for C, or has a functorial star with respect to C if
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MATS does. We say that MatrS,V satisfies the functorial omega implication
for C, or that MatrS,V has a functorial omega with respect to C, if for all
A ∈ MATS(n, n) and B ∈ MATS(m, m) and all C ∈ MATS(n, m) in C,

AC = CB =⇒ Aω = CBω.

When MatrS,V has a functorial star and omega with respect to the set of all
matrices (all base matrices, respectively) in MATS, then MatrS,V is said to
have a strong functorial star and omega (weak functorial star and omega,
respectively).

Proposition 7.9. Suppose that MatrS,V is a Conway matricial theory.

• For any set C ⊆ MATS, MatrS,V has a functorial dagger with respect
to C if and only if MatrS,V has a functorial star and omega with respect
to C.

• MatrS,V has a functorial star and omega with respect to all injective base
matrices.

• If MatrS,V has a functorial star and omega with respect to all n × 1 base
matrices, n ≥ 2, then the star and omega group identities hold in MatrS,V .

• MatrS,V has a weak functorial star and omega if and only if MatrS,V has
a functorial star and omega with respect to all n× 1 base matrices, n ≥ 2.

Corollary 7.10. Any Conway matricial theory with a weak functorial star
and omega is a matricial iteration theory.

We end this section by exhibiting two classes of iteration semiring–semi-
module pairs.

7.1 Complete Semiring–Semimodule Pairs

This section is based on [32]. Recall the definition of a complete monoid and
that of a complete semiring. We call a semiring–semimodule pair (S, V ) a com-
plete semiring–semimodule pair if S is a complete semiring, V is a complete
monoid, and the action is completely distributive, so that (

∑
i∈I si)(

∑
j∈J vj) =∑

(i,j)∈I×J sivj . Moreover, we require that an infinite product operation S ×
S × · · · → S,

(s1, s2, . . .) �→
∏

j≥1

sj

is given mapping infinite sequences over S to V subject to the following con-
ditions:

∏

j≥1

sj =
∏

j≥1

(snj−1+1 · · · snj ), (45)

s1 ·
∏

i≥1

si+1 =
∏

i≥1

si, (46)

∏

j≥1

∑

ij∈Ij

sij =
∑

(i1,i2,...)∈I1×I2×···

∏

j≥1

sij , (47)
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where in the first equation 0 = n0 ≤ n1 ≤ n2 ≤ · · · and I1, I2, . . . are sets.
(Complete semimodules of complete semirings without an infinitary product
operation on the semiring are studied in Chap. 23 of [35]. When (S, V ) is a
complete semiring–semimodule pair, then equipped only with the binary and
infinitary multiplication operations, (S, V ) is an ω-semigroup [46].)

Suppose that (S, V ) is complete. Then we define

s∗ =
∑

i≥0

si and sω =
∏

i≥1

s,

for all s ∈ S.

Theorem 7.11. Every complete semiring–semimodule pair (S, V ) is an iter-
ation semiring–semimodule pair.

Proof. We already know that S is an iteration semiring. We establish the sum
omega and product omega identities and leave the proof of the group identities
to the reader. So, suppose that a, b ∈ S. We also consider the set {a, b} as an
alphabet Σ. When w is a finite or infinite word over this alphabet, we let w
denote the corresponding product over S which is either an element of S (finite
product) or an element in V (infinite product). Our proof of the sum omega
identity uses the fact that {a, b}ω = ({a}∗{b})ω ∪ ({a}∗{b})∗{a}ω = K ∪ L
holds over the alphabet Σ.3

(a + b)ω =
∏

j≥1

(a + b)

=
∑

w∈{a,b}ω

w

=
∑

u∈K

u +
∑

v∈L

v

=
∏

j≥1

∑

u∈{a}∗{b}
u +

( ∑

v∈({a}∗{b})∗
v

) ∏

j≥1

a

= (a∗b)ω + (a∗b)∗aω.

As for the product omega identity, let cj = a if j ≥ 1 is odd, and let cj = b if
j ≥ 1 is even. Then

(ab)ω =
∏

j≥1

(ab) =
∏

j≥1

cj = a
∏

j≥2

cj = a(ba)ω. 
�

Thus, MatrS,V is a matricial iteration theory, so that when the dagger
is defined by (24), then all iteration theory identities hold over any complete
semiring–semimodule pair. Without proof, we mention the following proposi-
tion.
3 Here, for any language X of nonempty finite words, we denote by Xω the set
{x1x2 . . . : xi ∈ X} of ω-words.



Fixed Point Theory 61

Proposition 7.12. When (S, V ) is a complete semiring–semimodule pair then
for each n, (Sn×n, V n) is also a complete semimodule pair with infinitary
product such that for each A1, A2, . . . ∈ Sn×n, and for each i, the ith entry
of A1 · A2 · · · is the sum of all elements of the form (A1)i,j1 · (A2)j1,j2 · · · .
Moreover, for each A ∈ MATS(n, n), Aω in MatrS,V is the same as Aω in
the complete semiring–semimodule pair (Sn×n, V n).

7.2 Bi-inductive Semiring–Semimodule Pairs

This section is based on [32]. We call a semiring–semimodule pair (S, V ) or-
dered if S is an ordered semiring and V is an ordered monoid, ordered by ≤,
such that sv ≤ s′v′ whenever s ≤ s′ in S and v ≤ v′ in V .

Definition 7.13. Suppose that (S, V ) is an ordered semiring–semimodule pair
equipped with a star operation ∗ : S → S and an omega operation ω : S → V
such that

aa∗ + 1 ≤ a∗ (48)
ax + y ≤ x =⇒ a∗y ≤ x, (49)

for all a ∈ S and x, y ∈ S or x, y ∈ V , and

aaω ≥ aω (50)
ax + y ≥ x =⇒ aω + a∗y ≥ x, (51)

for all a ∈ S and x, y ∈ V . Then we call (S, V ) a bi-inductive semiring–
semimodule pair. A morphism of bi-inductive semiring–semimodule pairs is
a morphism of semiring–semimodule pairs which preserves the order and the
star and omega operations.

The terminology is due to the fact that bi-inductive semiring–semimodule
pairs satisfy both an induction axiom (49) and a coinduction axiom (51).
Affine functions x �→ ax + v over V have both a least prefixed point and
a greatest post-fixed point, namely a∗v and aω + a∗v, where a∗ is the least
prefixed point solution of x = ax + 1 over S and aω is the greatest post-
fixed point solution of x = ax over V . Note that if (S, V ) is a bi-inductive
semiring–semimodule pair then S is an inductive ∗-semiring.

Proposition 7.14. If (S, V ) is bi-inductive, then 0 is the least and 1ω is the
greatest element of V .

Proof. The fact that 0 is least follows from Proposition 6.13. The fact that 1ω

is the greatest element of V follows by noting that any element of V solves
the equation x = 1x. 
�

Theorem 7.15. Every bi-inductive semiring–semimodule pair (S, V ) is an
iteration semiring–semimodule pair. Moreover, the star and omega operations
are monotone.
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Proof. We already know that S is an iteration semiring and that ∗ is monotone.
The fact that ω is monotone follows from (the dual of) Proposition 2.8.

We prove that the product omega identity holds. Indeed, if a, b ∈ S, then
aba(ba)ω = a(ba)ω, thus (ab)ω ≥ a(ba)ω. Thus, (ab)ω ≥ a(ba)ω ≥ ab(ab)ω =
(ab)ω, proving (ab)ω = a(ba)ω.

Next, we prove that the sum omega identity holds. Given a, b ∈ S,

(a + b)[(a∗b)∗aω + (a∗b)ω]
= a(a∗b)∗aω + a(a∗b)ω + b(a∗b)∗aω + b(a∗b)ω

= a[a∗(ba∗)∗b + 1]aω + aa∗(ba∗)ω + (ba∗)∗baω + (ba∗)ω

= aa∗(ba∗)∗baω + aaω + aa∗(ba∗)ω + (ba∗)∗baω + (ba∗)ω

= (aa∗ + 1)(ba∗)∗baω + (aa∗ + 1)(ba∗)ω + aω

= [a∗(ba∗)∗b + 1]aω + a∗(ba∗)ω

= (a∗b)∗aω + (a∗b)ω.

It follows by (51) that (a+b)ω ≥ (a∗b)∗aω +(a∗b)ω. As for the reverse inequal-
ity, note that for all x ∈ V , if (a + b)x = ax + bx ≥ x, then aω + a∗bx ≥ x, so
that (a∗b)ω +(a∗b)∗aω ≥ x. Taking x = (a+ b)ω, we have (a∗b)ω +(a∗b)∗aω ≥
(a + b)ω.

We omit the verification of the group identities. 
�

Thus, when (S, V ) is a bi-inductive semiring–semimodule pair, then
MatrS,V is an iteration semiring–semimodule pair. Thus, MatrS,V is a matri-
cial iteration theory, so that when dagger is defined by (24), then all iteration
theory identities hold.

Theorem 7.16. Suppose that (S, V ) is a bi-inductive semiring–semimodule
pair. Then for any (A, v) : n → n in MatrS,V , A∗v is the least prefixed point
solution and Aω + A∗v is the greatest post-fixed point solution of x = Ax + v.
Thus, each (Sn×n, V n) is also a bi-inductive semiring–semimodule pair.
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14. M. Boffa. Une remarque sur les systèmes complets d’identités rationnelles.
(A remark on complete systems of rational identities). Theoretical Infor-
matics and Applications, RAIRO, 24:419–423, 1990 (in French).

15. M. Boffa. Une condition impliquant toutes les identités rationnelles
(A condition implying all rational identities). Theoretical Informatics and
Applications, RAIRO, 29:515–518, 1995 (in French).

16. P.M. Cohn. Universal Algebra. Harper & Row, New York, 1965.
17. J.C. Conway. Regular Algebra and Finite Machines. Chapman & Hall,

London, 1971.
18. B. Courcelle, G. Kahn, and J. Vuillemin. Algorithmes d’équivalence et
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récursives simples. In Proc. ICALP 74, Saarbrücken, volume 14 of Lecture
Notes in Computer Science, pages 200–213. Springer, Berlin, 1974.

19. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order, 2nd
edition, Cambridge University Press, Cambridge, 2002.

20. J.W. De Bakker and D. Scott. A theory of programs. Technical Report,
IBM Vienna, 1969.

21. M. Droste and W. Kuich. Semirings and formal power series. In W. Kuich,
M. Droste, and H. Vogler, editors. Handbook of Weighted Automata. Chap-
ter 1. Springer, Berlin, 2009.

22. C.C. Elgot. Monadic computation and iterative algebraic theories. In
J.C. Shepherdson, editor, Logic Colloquium 1973, volume 80 of Studies
in Logic, pages 175–230. North-Holland, Amsterdam, 1975.



64 Zoltán Ésik
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29. Z. Ésik. Iteration semirings. In Proc. DLT 08, volume 5257 of Lecture
Notes in Computer Science, pages 1–20. Springer, Berlin, 2008.
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Zoltán Ésik1,2,� and Werner Kuich3

1 Department of Computer Science, University of Szeged, Szeged, Hungary
2 GRLMC, Rovira i Virgili University, Tarragona, Spain
3 Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien,

1040 Wien, Austria
kuich@tuwien.ac.at

www.dmg.tuwien.ac.at/kuich

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2 Finite Automata over Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.1 Finite Automata over Arbitrary Power Series Semirings . . . . . . . . . . 72
2.2 Finite Automata over Conway Semirings . . . . . . . . . . . . . . . . . . . . . . . 75
2.3 Finite Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Finite Automata over Quemirings . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1 Semiring–Semimodule Pairs and Quemirings . . . . . . . . . . . . . . . . . . . . 85
3.2 Finite Automata over Quemirings and a Kleene Theorem . . . . . . . . . 91
3.3 Finite Linear Systems over Quemirings . . . . . . . . . . . . . . . . . . . . . . . . . 99

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

1 Introduction

The purpose of this chapter is to develop the theory of finite automata starting
from ideas based on linear algebra over semirings. Many results in the theory
of automata and languages depend only on a few equational axioms. For
example, Conway [4] has shown that Kleene’s fundamental theorem equating
the recognizable languages with the regular ones follows from a few simple
identities defining Conway semirings. Such semirings are equipped with a star
operation subject to the sum star identity and product star identity.

The use of equations has several advantages. Proofs can be separated into
two parts, where the first part establishes the equational axioms, and the sec-
� The first author was partially supported by grant no. MTM2007-63422 from the
Ministry of Education and Science of Spain.

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-01492-5 3, c© Springer-Verlag Berlin Heidelberg 2009

69
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ond is based on simple equational reasoning. Such proofs have a transparent
structure and are usually very easy to understand, since manipulating equa-
tions is one of the most common ways of mathematical reasoning. Moreover,
since many results depend on the same equations, the first part of such proofs
usually provides a basis to several results. Finally, the results obtained by
equational reasoning have a much broader scope, since many models share
the same equations.

This chapter consists of this and two more sections. Section 2 constitutes a
generalization of the theory of regular languages over finite words. In this sec-
tion, we define finite automata over power series semirings and over Conway
semirings, and prove theorems of the Kleene–Schützenberger type. Moreover,
we introduce finite linear systems and show the coincidence of the set of com-
ponents of the solutions of such finite linear systems with the set of behaviors
of finite automata.

Section 3 constitutes a generalization of the Büchi theory on languages
over infinite words. In this section, we first define the algebraic structures
needed for this generalization: semiring–semimodule pairs and quemirings.
Then we define finite automata over quemirings and prove theorems of the
Kleene–Büchi type. Moreover, we consider linear systems over quemirings as
a generalization of regular grammars with finite and infinite derivations and
show the coincidence of the set of components of the solutions of such linear
systems with the set of behaviors of finite automata over quemirings.

The presentation of this chapter is influenced by the ideas presented in
Bloom and Ésik [2], and Ésik and Kuich [10, 11].

2 Finite Automata over Semirings

In this section, we deal with finite automata over semirings. Here, semirings
constitute a generalization of formal languages with finite words. The main
results of this section are various generalizations of the theorem of Kleene–
Schützenberger [24].

This section consists of three subsections. In Sect. 2.1, we define finite
automata over a semiring S and an alphabet Σ whose behavior is a formal
power series in S〈〈Σ∗〉〉. The main result of this subsection is the theorem of
Kleene–Schützenberger (Theorem 2.5): A power series of S〈〈Σ∗〉〉 is rational
iff it is the behavior of a cycle-free finite automaton over the semiring S and
the alphabet Σ.

In Sect. 2.2, we introduce finite S′-automata over a Conway semiring S,
where S′ is a subset of S. The main result of this subsection is the following
generalization of the theorem of Kleene–Schützenberger (Theorem 2.12): The
star semiring generated by S′ equals the set of behaviors of finite S′-automata
over semirings. The results in Sects. 2.1 and 2.2 are similar; but in Sect. 2.1
we consider cycle-free finite automata over an arbitrary semiring, while in
Sect. 2.2, we consider arbitrary finite automata over a Conway semiring.
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In Sect. 2.3, we consider finite linear systems as a generalization of right
linear context-free grammars. The main result of this subsection is that a
semiring element is a component of the solution of a finite linear system iff it
is the behavior of a finite automaton (Theorems 2.18 and 2.23).

We now give a typical example which will be helpful for readers with
some background in semiring theory (as given in Droste and Kuich [5]) and
automata theory. Readers without this background should consult it when
finite automata are defined in Sect. 2.2.

Example 2.1. Let A = (Q, Σ, δ, 1, {1}) be a finite automaton (a definition
is given at the end of Sect. 2.2), where Q = {1, 2}, Σ = {a, b, c, d}, and
δ(1, a) = {1}, δ(1, b) = {2}, δ(2, c) = {1}, δ(2, d) = {2} are the only nonempty
images of δ.

The graph of A is

and the adjacency matrix of this graph is

A =
(
{a} {b}
{c} {d}

)

.

(Whenever we use matrices in this example, they are 2× 2-matrices and their
entries are formal languages over Σ, i.e., elements of the semiring 2Σ∗

.)
Consider the powers of A, e.g.,

A2 =
(
{aa, bc} {ab, bd}
{ca, dc} {cb, dd}

)

,

A3 =
(
{aaa, abc, bca, bdc} {aab, abd, bcb, bdd}
{caa, cbc, dca, ddc} {cab, cbd, dcb, ddd}

)

.

It is easily proved by induction on k that (Ak)ij is the language of inscriptions
of the paths of length k from state i to state j, k ≥ 0, 1 ≤ i, j ≤ 2. Define
A∗ by (A∗)ij =

⋃
k≥0(A

k)ij , 1 ≤ i, j ≤ 2. Then (A∗)ij is the language of
inscriptions of all the paths from state i to state j, 1 ≤ i, j ≤ 2.

We now construct regular expressions for the entries of A∗. Consider the
inscriptions of paths from 1 to 1 not passing 1: they are a and bdnc. Hence,
the language of inscriptions of these paths is {a} ∪ {b}{d}∗{c}. Consider now
the language of inscriptions of paths from 1 to 1: it is ({a} ∪ {b}{d}∗{c})∗.
Hence, (A∗)11 = ({a} ∪ {b}{d}∗{c})∗. We obtain (A∗)12, if we concatenate
(A∗)11 with the language of inscriptions of all paths from 1 to 2 not passing
through 1: {b}{d}∗. Hence, (A∗)12 = (A∗)11{b}{d}∗. By symmetry, we obtain
(A∗)22 = ({d} ∪ {c}{a}∗{b})∗ and (A∗)21 = (A∗)22{c}{a}∗. Hence,
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A∗ =
(

({a} ∪ {b}{d}∗{c})∗ ({a} ∪ {b}{d}∗{c})∗{b}{d}∗
({d} ∪ {c}{a}∗{b})∗{c}{a}∗ ({d} ∪ {c}{a}∗{b})∗

)

.

The language ‖A‖ accepted by the finite automaton A is the language
of inscriptions of all paths from the initial state 1 to the final state 1, i.e.,
‖A‖ = (A∗)11 = ({a} ∪ {b}{d}∗{c})∗.

2.1 Finite Automata over Arbitrary Power Series Semirings

In this subsection, S denotes an arbitrary semiring and Σ a finite alphabet.
A finite automaton

A = (Q,R,A, P )

(over the semiring S and the alphabet Σ) is given by:

(i) A finite nonempty set of states Q
(ii) A transition matrix A ∈ (S〈Σ ∪ {ε}〉)Q×Q

(iii) An initial state vector R ∈ (S〈Σ ∪ {ε}〉)1×Q

(iv) A final state vector P ∈ (S〈Σ ∪ {ε}〉)Q×1

The finite automaton A is called cycle-free if the transition matrix A is cycle-
free, cf. Droste and Kuich [5]. The behavior ‖A‖ of the cycle-free finite au-
tomaton A = (Q,R,A, P ) is defined by

‖A‖ =
∑

q1,q2∈Q

Rq1(A
∗)q1,q2Pq2 = RA∗P.

Since A is cycle-free, A∗ and ‖A‖ are well defined.
The (directed) graph of the cycle-free finite automaton A = (Q,R,A, P ),

where Q = {q1, . . . , qn}, is constructed in the usual manner. It has nodes
q1, . . . , qn and an edge from node qi to node qj if Aqi,qj 	= 0. The weight of
this edge is Aqi,qj ∈ S〈Σ ∪ {ε}〉. The initial (resp. final) weight of a node
qi is given by Ri (resp. Pi). A node is called initial (resp. final) if its initial
(resp. final) weight is unequal to 0. The weight of a path is the product of the
weights of its edges. It is easily shown that (Ak)qi,qj is the sum of the weights
of paths of length k from node qi to node qj . Since (A∗)qi,qj =

∑
k≥0(A

k)qi,qj ,
(A∗)qi,qj is the sum of the weights of the paths from node qi to node qj . Hence,
Rq1(A

∗)qi,qj Pq2 is this sum for nodes q1 and q2, multiplied on the left and right
by the initial weight of node q1 and the final weight of node q2, respectively.
Eventually, the behavior of A is the sum of all these terms with summation
over all initial states q1 and all final states q2.

Theorem 2.2. If A is a cycle-free finite automaton then ‖A‖ is the sum of
the weights of all paths from an initial state to a final state multiplied by the
initial and final weights of these states.

Two cycle-free finite automata A and A′ are equivalent if ‖A‖ = ‖A′‖.
A finite automaton A = (Q,R,A, P ) is called normalized if |Q| ≥ 2 and:
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(i) Rq1 = ε for some q1 ∈ Q; Rq = 0, for all q ∈ Q, q 	= q1.
(ii) Pqn = ε for some qn ∈ Q, qn 	= q1; Pq = 0, for all q ∈ Q, q 	= qn.
(iii) Aq,q1 = Aqn,q = 0 for all q ∈ Q.

Hence, the directed graph of a normalized finite automaton has the unique
initial node q1 and the unique final node qn, both with weight ε; moreover, no
edges are leading to the initial node and no edges are leaving the final node.

Theorem 2.3. Each cycle-free finite automaton is equivalent to a normalized
cycle-free finite automaton.

Proof. Let A = (Q,R,A, P ) be a cycle-free finite automaton. Define the finite
automaton A′ by

A
′ =

⎛

⎝{q0} ∪ Q ∪ {qf}, (ε 0 0),

⎛

⎝
0 R 0
0 A P
0 0 0

⎞

⎠ ,

⎛

⎝
0
0
ε

⎞

⎠

⎞

⎠ .

Here, q0 and qf are new states. Then A′ is normalized. Moreover, Corollary 5.8
of Droste and Kuich [5] implies that A′ is cycle-free and ‖A′‖ = ‖A‖. 
�

Remark. Usually, a finite automaton A = (Q,R,A, P ) is defined as above
with the exception that the entries of R and P are in S〈{ε}〉. We have chosen
the more general definitions for two reasons:

(i) This definition is compatible with the definitions of finite S′-automata
given in Sects. 2.2 and 3.2.

(ii) This definition is in correspondence with the definition of finite linear
systems generalizing right linear grammars. (See Theorems 2.18, 3.20
and 3.21, and Corollaries 2.20 and 3.24.)

Moreover, by Theorem 2.3, our finite automata are exactly as powerful as the
usual finite automata.

The three operations sum, product, and star are customarily referred to as
rational operations. A power series r belonging to S〈〈Σ∗〉〉 is termed rational
(over S and Σ) if r can be obtained from the polynomials of S〈Σ∗〉 by finitely
many applications of the rational operations, where the star is applied only to
proper power series. The formula telling how a given rational series in S〈〈Σ∗〉〉
is obtained from the polynomials of S〈Σ∗〉 by rational operations is referred to
as regular expression (see Salomaa [22], Kuich and Salomaa [19]). The family
of rational power series (over S and Σ) is denoted by Srat〈〈Σ∗〉〉.

Observe that Srat〈〈Σ∗〉〉 can equivalently be defined as follows: a power
series r is in Srat〈〈Σ∗〉〉 if r can be obtained from the polynomials of S〈Σ∗〉 by
finitely many applications of the rational operations, where the star is applied
only to cycle-free power series, see Droste and Kuich [5]. Let r = r0 + r1 be
cycle-free, where r0 = (r, ε)ε and r1 =

∑
w∈Σ+(r, w)w. Then by the sum star

identity (Corollary 5.4 of Droste and Kuich [5]) we obtain r∗ = (r∗0r1)∗r∗0 .
Hence, r∗ ∈ Srat〈〈Σ∗〉〉 according to the original definition.
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The collection of all behaviors of cycle-free finite automata (over S and Σ)
is denoted by Srec〈〈Σ∗〉〉. The classical theorem of Kleene essentially states that
B

rat〈〈Σ∗〉〉 and B
rec〈〈Σ∗〉〉 coincide.

As a generalization of this theorem of Kleene, we now prove a variant of
the theorem of Kleene–Schützenberger. (See Schützenberger [24], Conway [4],
Eilenberg [6], Salomaa and Soittola [23], Kuich and Salomaa [19], Kuich [18],
Berstel and Reutenauer [1], Ésik and Kuich [9]).

Before proving this generalization, we show that each cycle-free finite au-
tomaton is equivalent to one with a proper transition matrix. In the fol-
lowing proof and then without mention, we use the isomorphism between
(S〈〈Σ∗〉〉)Q×Q and SQ×Q〈〈Σ∗〉〉 to simplify our notation (see Droste and
Kuich [5], before Lemma 4.1).

Theorem 2.4. Each cycle-free finite automaton is equivalent to a cycle-free
finite automaton A′ = (Q′, R′, A′, P ′), where A′ ∈ (S〈Σ〉)Q×Q, P ′ ∈
(S〈{ε}〉)Q×1, and there exists a q0 ∈ Q′ such that R′

q0
= ε, R′

q = 0 for
all q 	= q0.

Proof. For each cycle-free finite automaton, there exists by Theorem 2.3, an
equivalent normalized cycle-free finite automaton A = (Q,R,A, P ). Let A0 =
(A, ε)ε and A1 =

∑
x∈Σ(A, x)x, and define the finite automaton A′ by Q′ = Q,

A′ = A∗
0A1, R′ = R, P ′ = A∗

0P . Then

‖A′‖ = R(A∗
0A1)∗A∗

0P = R(A0 + A1)∗P = RA∗P = ‖A‖.

Here, we have applied in the second equality the sum star identity (Corol-
lary 5.4 of Droste and Kuich [5]). 
�

We define, for finite automata A = (Q,R,A, P ) and A′ = (Q′, R′, A′, P ′)
with Q ∩ Q′ = ∅, the finite automata A + A′, A · A′ and A+:

A + A
′ =

(

Q ∪ Q′, (R R′),
(

A 0
0 A′

)

,

(
P
P ′

))

,

A · A′ =
(

Q ∪ Q′, (R 0),
(

A PR′

0 A′

)

,

(
0
P ′

))

,

A
+ = (Q, R, A + PR,P ).

In the construction of A · A′ (resp. A+), we assume that the entries of PR′

(resp. PR) are in S〈Σ ∪ {ε}〉 or else A or A′ to be normalized.

Theorem 2.5 (Theorem of Kleene–Schützenberger). Srat〈〈Σ∗〉〉 =
Srec〈〈Σ∗〉〉.

Proof. (i) An easy proof by induction on |Q| using Corollary 5.9 of Droste and
Kuich [5] shows that A∗ ∈ (Srat〈〈Σ∗〉〉)Q×Q if A ∈ (S〈Σ〉)Q×Q. This implies
by Theorem 2.4 immediately that Srec〈〈Σ∗〉〉 ⊆ Srat〈〈Σ∗〉〉.
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(ii) Let r, r′ ∈ Srec〈〈Σ∗〉〉 and assume that r = ‖A‖ and r′ = ‖A′‖ for
cycle-free finite automata A and A′.

Application of Corollary 5.8 of Droste and Kuich [5] shows that A + A′

and A · A′ are cycle-free and that the equations ‖A + A′‖ = ‖A‖ + ‖A′‖ and
‖A ·A′‖ = ‖A‖ · ‖A′‖ are valid. Hence, r + r′ = ‖A + A′‖ and r · r′ = ‖A ·A′‖
are in Srec〈〈Σ∗〉〉.

Let now r ∈ Srec〈〈Σ∗〉〉 be a proper power series. By Theorem 2.4, there ex-
ists a finite automaton A = (Q,R,A, P ) with A ∈ (S〈Σ〉)Q×Q, R ∈
(S〈{ε}〉)1×Q and P ∈ (S〈{ε〉})Q×1 such that r = ‖A‖. Consider now the finite
automaton A+. Since (r, ε) = (R, ε)(P, ε) = 0, we obtain ((A + PR)2, ε) =
((PR)2, ε) = (P, ε)(R, ε)(P, ε)(R, ε) = (P, ε)(r, ε)(R, ε) = 0 and A+ is cycle-
free.

We now compute the behavior of A+ and obtain
∥
∥A

+
∥
∥ = R(A + PR)∗P = R(A∗PR)∗A∗P = (RA∗P )(RA∗P )∗ = ‖A‖ · ‖A‖∗.

Here, we have applied in the second equality Theorem 5.2 (the sum star iden-
tity) and in the third equality Theorem 3.2 of Droste and Kuich [5].

Easy constructions yield aε, x ∈ Srec〈〈Σ∗〉〉, a ∈ S, x ∈ Σ. Hence, S〈Σ ∪
{ε}〉 ⊆ Srec〈〈Σ∗〉〉. Moreover, for a proper power series r ∈ Srec〈〈Σ∗〉〉, r∗ =
ε + rr∗ by Theorem 3.1 of Droste and Kuich [5]. Hence, r∗ ∈ Srec〈〈Σ∗〉〉 and
we have proved Srat〈〈Σ∗〉〉 ⊆ Srec〈〈Σ∗〉〉. This implies our theorem. 
�

2.2 Finite Automata over Conway Semirings

Recall from Droste and Kuich [5] and Ésik [8] that a Conway semiring is a
star semiring that satisfies the sum star identity

(a + b)∗ = (a∗b)∗a∗

and the product star identity

(ab)∗ = 1 + a(ba)∗b

for all semiring elements a, b. It then follows that the star fixed point identity

a∗ = 1 + aa∗

and the simplified product star identity

a(ba)∗ = (ab)∗a

hold for all semiring elements a, b.
Let S be a star semiring. Then for A ∈ Sn×n, we define A∗ ∈ Sn×n

inductively as follows:

(i) For n = 1 and A = (a), a ∈ S, we define A∗ = (a∗).
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(ii) For n > 1, we partition A into blocks A =
(

a b
c d

)
and define A∗ =

( α β
γ δ

)

with a, α ∈ S1×1, b, β ∈ S1×(n−1), c, γ ∈ S(n−1)×1, d, δ ∈ S(n−1)×(n−1) by

α = (a + bd∗c)∗, β = αbd∗, γ = δca∗, δ = (d + ca∗b)∗.

(See Theorem 3.3 of Conway [4], Theorem 4.21 of Kuich and Salomaa [19],
Theorem 2.5 of Kuich [18], Theorem 5.7 of Droste and Kuich [5], Bloom and
Ésik [2], Sect. 6 of Ésik [8], and Example 2.1.) If 〈S, +, ·, ∗, 0, 1〉 is a star
semiring, then the star operation in the star semiring 〈Sn×n, +, ·, ∗, 0, E〉 will
always be defined as above.

Theorem 2.6 (Conway [4], Bloom and Ésik [2], Ésik and Kuich [12],
Ésik [8]). If S is a Conway semiring, then for n ≥ 1, Sn×n again is a Conway
semiring.

Let A and A∗ be given as in (ii) of the definition of A∗ above, but with
a, α ∈ Sn1×n1 , b, β ∈ Sn1×n2 , c, γ ∈ Sn2×n1 , d, δ ∈ Sn2×n2 , n1 +n2 = n. Then
the matrix star identity is valid in the star semiring S if A∗ is independent of
the partition of n in summands.

Theorem 2.7 (Conway [4], Bloom and Ésik [2], Ésik and Kuich [12],
Ésik [8]). If S is a Conway semiring, then the matrix star identity holds.

Let S be a star semiring. Then for r ∈ S〈〈Σ∗〉〉, we define the star r∗ ∈
S〈〈Σ∗〉〉 of r inductively as follows:

(r∗, ε) = (r, ε)∗, (r∗, w) = (r, ε)∗
∑

uv=w, u �=ε

(r, u)(r∗, v), w ∈ Σ∗, w 	= ε.

(See Bloom and Ésik [2], and Theorem 3.5 of Kuich and Salomaa [19].) If
〈S, +, ·, ∗, 0, 1〉 is a star semiring, then the star operation in the star semiring
〈S〈〈Σ∗〉〉, +, ·, ∗, 0, ε〉 will be always defined as above.

Theorem 2.8 (Bloom and Ésik [2], Ésik and Kuich [12]). If S is a Con-
way semiring and Σ is an alphabet then S〈〈Σ∗〉〉 is again a Conway semiring.

Corollary 2.9. If S is a Conway semiring, Σ is an alphabet and n ≥ 1, then
(S〈〈Σ∗〉〉)n×n is again a Conway semiring.

Each complete semiring is a Conway semiring (Kuich [17], Hebisch [14],
Bloom and Ésik [2], see also Droste and Kuich [5] and Ésik [8]). Moreover, for
a complete semiring S, the star operations in the complete semirings Sn×n

and S〈〈Σ∗〉〉 are the same as the star operations in the Conway semirings Sn×n

and S〈〈Σ∗〉〉, respectively.
For the rest of this subsection, S denotes a Conway semiring and S′ denotes

a subset of S. We now generalize the finite automata of Sect. 2.1 to finite S′-
automata over a Conway semiring S.
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A finite S′-automaton

A = (n, R, A, P ), n ≥ 1

(over the Conway semiring S) is given by:

(i) A transition matrix A ∈ (S′ ∪ {0, 1})n×n

(ii) An initial state vector R ∈ (S′ ∪ {0, 1})1×n

(iii) A final state vector P ∈ (S′ ∪ {0, 1})n×1

The behavior ‖A‖ of A is defined by

‖A‖ =
∑

1≤i1,i2≤n

Ri1(A
∗)i1,i2Pi2 = RA∗P.

The (directed) graph of A is constructed analogous to that in Sect. 2.1.
It has nodes 1, . . . , n and an edge from node i to node j if Aij 	= 0. The
weight of this edge is Aij ∈ S′ ∪{1}. The initial (resp. final) weight of a node
i is given by Ri (resp. Pi). A node is called initial (resp. final) if its initial
(resp. final) weight is unequal to 0. The weight of a path is the product of the
weights of its edges. It is easily shown that (Ak)ij is the sum of the weights
of paths of length k from node i to node j. If S is a complete semiring, and
hence (A∗)ij =

∑
k≥0(A

k)ij , then (A∗)ij is the sum of the weights of the paths
from node i to node j. Hence, Si1(A

∗)i1,i2Pi2 is this sum for nodes i1 and i2,
multiplied on the left and right by the initial weight of node i1 and the final
weight of node i2, respectively. Eventually, the behavior of A is the sum of all
these terms with summation over all initial states i1 and all final states i2.

Theorem 2.10. Let S be a complete semiring and S′ ⊆ S. If A is a finite
S′-automaton then ‖A‖ is the sum of the weights of all paths from an initial
state to a final state multiplied by the initial and final weights of these states.

Two finite S′-automata A and A′ are equivalent if ‖A‖ = ‖A′‖. A finite
S′-automaton A = (n, R, A, P ) is called normalized if n ≥ 2 and:

(i) R1 = 1, Ri = 0, for all 2 ≤ i ≤ n.
(ii) Pn = 1, Pi = 0, for all 1 ≤ i ≤ n − 1.
(iii) Ai,1 = An,i = 0, for all 1 ≤ i ≤ n.

Hence, the directed graph of a normalized finite S′-automaton has the unique
initial node 1 and the unique final node n, both with weight 1; moreover, no
edges are leading to the initial node and no edges are leaving the final node.

Theorem 2.11. Let S be a Conway semiring and S′ ⊆ S. Then each finite
S′-automaton is equivalent to a normalized finite S′-automaton.

Proof. Let A = (n, R, A, P ) be a finite S′-automaton. Define the finite S′-
automaton A′ by
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A
′ =

⎛

⎝1 + n + 1, (1 0 0),

⎛

⎝
0 R 0
0 A P
0 0 0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎞

⎠ .

Then A′ is normalized. Applying the matrix star identity yields the proof that
‖A′‖ = ‖A‖. 
�

The substar semiring of S that is generated by S′ is denoted by Rat(S′).
The collection of all behaviors of finite S′-automata is denoted by Rec(S′). The
classical theorem of Kleene essentially states that Rat(B〈Σ〉) and Rec(B〈Σ〉)
coincide. As a generalization of the theorem of Kleene–Schützenberger, we
show that Rat(S′) = Rec(S′). (See Conway [4], Bloom and Ésik [2], Kuich
[17, 18], Ésik and Kuich [9]).

We now define, for given finite S′-automata A = (n, R, A, P ) and A′ =
(n′, R′, A′, P ′), the finite S-automata A + A′, A · A′ and A∗:

A + A
′ =

(

n + n′, (R R′),
(

A 0
0 A′

)

,

(
P
P ′

))

,

A · A′ =
(

n + n′, (R 0),
(

A PR′

0 A′

)

,

(
0
P ′

))

,

A
∗ =

(

1 + n, (1 0),
(

0 R
P A

)

,

(
1
0

))

.

Theorem 2.12. Let S be a Conway semiring and S′ ⊆ S. Then Rat(S′) =
Rec(S′).

Proof. (i) An easy proof by induction on n using the matrix star identity
shows that A∗ ∈ Rat(S′)n×n if A ∈ (S′∪{0, 1})n×n. This implies immediately
Rec(S′) ⊆ Rat(S′).

(ii) Easy constructions yield S′ ∪ {0, 1} ⊆ Rec(S′). Consider now a and
a′ in Rec(S′). Then there exist finite S′-automata A = (n, R, A, P ) and A′ =
(n′, R′, A′, P ′) such that ‖A‖ = a and ‖A′‖ = a′. Clearly, A + A′ and A∗

are finite S′-automata. If PR′ is in S′ ∪ {0, 1}, then also A · A′ is a finite
S′-automaton. If PR′ is not in S′ ∪ {0, 1}, choose A or A′ to be normalized.
This is, by Theorem 2.11, no loss of generality. Then again A ·A′ is a finite S′-
automaton. Application of the matrix star identity shows that the equations
‖A + A′‖ = ‖A‖ + ‖A′‖ = a + a′, ‖A · A′‖ = ‖A‖ · ‖A′‖ = a · a′ and ‖A∗‖ =
‖A‖∗ = a∗ are valid. 
�

We now turn to the power series semiring S〈〈Σ∗〉〉. A finite S〈Σ ∪ {ε}〉-
automaton A = (n, R, A, P ) is called a finite automaton (over S and Σ)
without ε-moves if A ∈ (S〈Σ〉)n×n, R ∈ (S〈{ε}〉)1×n with R1 = ε, Rj = 0
for 2 ≤ j ≤ n, P ∈ (S〈{ε}〉)n×1. (This definition holds also for arbitrary
semirings.) For S = B, this is the usual definition, i. e., such a finite B〈Σ〉-
automaton is a nondeterministic finite automaton without ε-moves in the
classical sense.
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We now show that each finite S〈Σ ∪ {ε}〉-automaton is equivalent to a
finite automaton without ε-moves.

Theorem 2.13. Let S be a Conway semiring. Then each finite S〈Σ ∪ {ε}〉-
automaton is equivalent to a finite automaton over A and Σ without ε-moves.

Proof. For each finite S〈Σ ∪ {ε}〉-automaton there exits, by Theorem 2.11,
an equivalent normalized finite S〈Σ ∪ {ε}〉-automaton. Let A = (n, R, A, P )
be such a normalized finite S〈Σ ∪ {ε}〉-automaton. Let A0 = (A, ε)ε and
A1 =

∑
x∈Σ(A, x)x and define the finite automaton without ε-moves A′ =

(n, R, A∗
0A1, A

∗
0P ). Then

‖A′‖ = R(A∗
0A1)∗A∗

0P = R(A0 + A1)∗P = RA∗P = ‖A‖.

Here, we have applied in the second equality the sum star identity. 
�

Observe that, in case of a Conway semiring S, we have Rat(S〈Σ∪{ε}〉) =
Srat〈〈Σ∗〉〉. Indeed, it is clear that Srat〈〈Σ∗〉〉 ⊆ Rat(S〈Σ ∪ {ε}〉). The reverse
inclusion is consequence of the fact that if r ∈ Srat〈〈Σ∗〉〉 then r∗ ∈ Srat〈〈Σ∗〉〉,
which is shown as follows. Given r, write r = r0 + r1, where r0 = (r, ε)ε and
r1 =

∑
w∈Σ+(r, w)w. Now, one can easily see that r1 is also in Srat〈〈Σ∗〉〉, and

by the sum star identity we obtain r∗ = (r∗0r1)∗r∗0 ∈ Srat〈〈Σ∗〉〉.
Analogously, in case of a Conway semiring, by Theorem 2.13, we have

Rec(S〈Σ ∪ {ε}〉) = Srec〈〈Σ∗〉〉.

Corollary 2.14. Srat〈〈Σ∗〉〉 = Srec〈〈Σ∗〉〉 = {‖A‖ | A is a finite automaton
over S and Σ without ε-moves}.

The classical theorem of Kleene in terms of formal power series essentially
states that B

rat〈〈Σ∗〉〉 and B
rec〈〈Σ∗〉〉 coincide.

Corollary 2.15. B
rat〈〈Σ∗〉〉 = B

rec〈〈Σ∗〉〉 = {‖A‖ | A is a finite automaton
over B and Σ without ε-moves}.

Usually, a nondeterministic finite automaton without ε-moves is defined as
follows (see Hopcroft and Ullman [15]). A nondeterministic finite automaton
(in the classical sense)

A = (Q, Σ, δ, q1, F )

is given by:

(i) A finite nonempty set of states Q
(ii) An input alphabet Σ
(iii) A transition function δ : Q × Σ → 2Q

(iv) An initial state q1 ∈ Q
(v) A set of final states F ⊆ Q
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The transition function δ is extended to a mapping δ̂ : Q × Σ∗ → 2Q by

δ̂(q, ε) = {q}, δ̂(q, wx) =
{
p

∣
∣ p ∈ δ(r, x) for some r ∈ δ̂(q, w)

}
,

for q ∈ Q, w ∈ Σ∗ and x ∈ Σ.
A word w ∈ Σ∗ is accepted by A if δ̂(q1, w) ∩ F 	= ∅. The language ‖A‖

accepted by A, is defined by

‖A‖ =
{
w ∈ Σ∗ ∣

∣ δ̂(q1, w) ∩ F 	= ∅
}
.

We now connect the notion of a finite automaton A over 2Σ∗
without ε-

moves with the notion of a nondeterministic finite automaton A as defined
above.

Assume that A = (n, R, A, P ) and A = (Q, Σ, δ, q1, F ). Then A and A
correspond to each other if the following conditions are satisfied:

(i) |Q| = n; so we may assume Q = {q1, . . . , qn}, where i corresponds to qi,
1 ≤ i ≤ n.

(ii) x ∈ Aij ⇔ qj ∈ δ(qi, x), 1 ≤ i, j ≤ n, x ∈ Σ.
(iii) Rq1 = {ε}, Rqi = ∅, 2 ≤ i ≤ n.
(iv) Pi = {ε} ⇔ qi ∈ F , Pi = ∅ ⇔ qi /∈ F .

It is easily seen that ‖A‖ = ‖A‖ if A and A correspond to each other. This is
due to the fact that

w ∈ (Ak)ij ⇐⇒ qj ∈ δ̂(qi, w), 1 ≤ i, j ≤ n, k ≥ 0, w ∈ Σ∗, |w| = k,

and
w ∈ (A∗)ij ⇐⇒ qj ∈ δ̂(qi, w), 1 ≤ i, j ≤ n, w ∈ Σ∗.

(In the complete star semiring (2Σ∗
)n×n, we have A∗ =

⋃
n≥0 An.) Hence,

‖A‖ = RA∗P =
⋃

1≤i,j≤n

Ri(A∗)ijPj =
⋃

qj∈F

(A∗)1j

=
⋃

qj∈F

{
w

∣
∣ qj ∈ δ̂(q1, w)

}
=

{
w

∣
∣ δ̂(q1, w) ∩ F 	= ∅

}
= ‖A‖.

It is clear that Rec(Σ) coincides with the collection of all languages over Σ
accepted by a nondeterministic finite automaton, and Rat(Σ) coincides with
the set of all languages that can be constructed from the finite subsets of Σ∗

by the rational operations of union, concatenation, and Kleene-iteration.

Corollary 2.16 (Kleene’s theorem [16]). In the semiring 2Σ∗
of formal

languages over Σ, Rat(Σ) = Rec(Σ).
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2.3 Finite Linear Systems

A finite linear system (over the semiring S) is of the form

y = Ay + P.

Here, y =

( y1

...
yn

)

is a column vector of variables y1, . . . , yn, A ∈ Sn×n and

P ∈ Sn×1. A solution to the finite linear system y = Ay + P is given by a
column vector σ ∈ Sn×1 such that σ = Aσ + P .

A finite linear system y = Ay + P over the semiring S〈〈Σ∗〉〉 is called
cycle-free if A is cycle-free.

Theorem 2.17. The cycle-free finite linear system y = Ay+P over the semi-
ring S〈〈Σ∗〉〉 has the unique solution σ = A∗P .

Proof. The proof is analogous to the proof of Theorem 5.1 of Droste and
Kuich [5]. 
�

The next theorem connects finite automata and finite linear systems. The
special form of the cycle-free finite linear system in Theorem 2.18(i) is needed
in connection with regular grammars in Theorem 2.20. In the sequel, ek de-
notes the kth row vector of unity.

Theorem 2.18. Let r ∈ S〈〈Σ∗〉〉. Then the following statements are equiva-
lent:

(i) r is a component of the solution of a cycle-free finite linear system y =
Ay +P over the semiring S〈〈Σ∗〉〉, where A ∈ (S〈Σ〉)n×n, Ai,1 = 0 for all
1 ≤ i ≤ n, and P1 ∈ S〈Σ ∪ {ε}〉, Pi ∈ S〈Σ〉, 2 ≤ i ≤ n.

(ii) r is in Srec〈〈Σ∗〉〉.
Proof. (i) ⇒ (ii): The solution of y = Ay + P is σ = A∗P . We now con-
struct cycle-free finite automata Ak such that ‖Ak‖ = σk, 1 ≤ k ≤ n:
Ak = ({1, . . . , n}, ek, A, P ). Hence, by Theorem 2.3, σk ∈ Srec〈〈Σ∗〉〉.

(ii) ⇒ (i): Let r ∈ Srec〈〈Σ∗〉〉. Then by Theorem 2.4, there exists a cycle-free
finite automaton A = ({1, . . . , n}, e1, A, P ), A ∈ (S〈Σ〉)n×n, P ∈ (S〈{ε}〉)n×1,
such that ‖A‖ = r. Consider now the finite linear system

(
y0

y

)

=
(

0 e1A
0 A

) (
y0

y

)

+
(

e1P + e1AP
AP

)

.

Here, y =

( y1

...
yn

)

. By Corollary 5.8 of Droste and Kuich [5], this finite linear

system is cycle-free and its solution is given by

σ =
(

ε e1AA∗

0 A∗

) (
e1P + e1AP

AP

)

.

Hence, σ0 = e1P + e1AP + e1AA∗AP = e1P + e1AP + e1AAA∗P = e1A
∗P =

‖A‖ = r. Here, we have applied Theorems 3.1 and 3.2 of Droste and
Kuich [5]. 
�
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Let G = ({y1, . . . , yn}, Σ, Π, y1) be a context-free grammar. Then G is
called right linear if Π contains only productions of the form yi → xyj or
yi → x, where x ∈ Σ ∪ {ε} and 1 ≤ i, j ≤ n. And G is called regular if Π
contains only productions of the form yi → xyj , yi → x, where x ∈ Σ, or
y1 → ε; but if y1 → ε ∈ Π then y1 must not appear on the right side of any
production of the grammar.

Consider the right linear grammars Gi = ({y1, . . . , yn}, Σ, Π, yi), 1 ≤
i ≤ n. Then define the finite linear system y = Ay + P over the semi-
ring 2Σ∗

by Ai,j = {x | yi → xyj ∈ Π} and Pi = {x | yi → x ∈ Π},
1 ≤ i, j ≤ n. Conversely, given a finite linear system y = Ay + P with
Ai,j , Pi ∈ Σ ∪ {ε}, 1 ≤ i, j ≤ n, over the semiring 2Σ∗

, define the right lin-
ear grammars Gi = ({y1, . . . , yn}, Σ, Π, yi) by yi → xyj ∈ Π iff x ∈ Ai,j

and yi → x ∈ Π iff x ∈ Pi. Whenever we speak of right linear grammars
corresponding to a finite linear system, or vice versa, then we mean the cor-
respondence in the sense of the above definition.

The next theorem is a special case of a result referred to in Petre and
Salomaa [21].

Theorem 2.19. Let Gi = ({y1, . . . , yn}, Σ, Π, yi), 1 ≤ i ≤ n, be regular gram-
mars and consider the corresponding finite linear system over 2Σ∗

with unique
solution σ. Then σi = L(Gi), 1 ≤ i ≤ n.

Consider a cycle-free finite linear system of the form of Theorem 2.18(i)
and the corresponding right linear grammars G1, . . . , Gn. Then G1 is regular.

Corollary 2.20. A language is generated by a regular grammar iff it is ac-
cepted by a nondeterministic finite automaton.

More statements on the correspondence of finite automata and right linear
grammars can be found in the forthcoming Theorems 3.20 and 3.21, Corol-
lary 3.24 with k = 0, and Corollary 3.25.

We now turn to Conway semirings S.

Theorem 2.21. Let S be a Conway semiring. Then σ = A∗P is a solution
to the finite linear system y = Ay + P over S.

Proof. Aσ + P = AA∗P + P = (AA∗ + E)P = A∗P = σ. Here, we have
applied Theorem 2.6 and the star fixed point identity, cf. Ésik [8]. 
�

We call the above solution of the system y = Ay+P the canonical solution.
Next, we consider inductive star semirings, cf. Ésik and Kuich [9], Ésik [8]. Re-
call that every inductive star semiring is a Conway semiring (and an iteration
semiring).

Theorem 2.22. Let S be an inductive star semiring. Then the canonical so-
lution is the least solution to the finite linear system y = Ay + P over S.

Proof. By Corollary 6.18 of Ésik [8]. 
�
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Let S′ ⊆ S. A finite linear system y = Ay+P over the semiring S is called
finite S′-linear system if the entries of A and P are in S′ ∪ {0, 1}.

The next theorem connects finite S′-linear systems and finite S′-automata.

Theorem 2.23. Let S be a Conway semiring and S′ ⊆ S. Then for a ∈ S,
the following statements are equivalent:

(i) a is a component of the canonical solution of a finite S′-linear system.
(ii) a is the behavior ‖A‖ of a finite S′-automaton A.

Proof. (i) ⇒ (ii): Consider the finite S′-linear system y = Ay + P with n
variables and the kth component ekA∗P of its canonical solution, 1 ≤ k ≤ n.
Then the behavior of the finite S′-automaton Ak = (n, ek, A, P ) equals ekA∗P
for all 1 ≤ k ≤ n.

(ii) ⇒ (i): By Theorem 2.11, a is, without loss of generality, the behavior
of a normalized finite S′-automaton A = (n, e1, A, P ). The behavior ‖A‖ =
e1A

∗P is then the first component of the canonical solution of the finite S′-
linear system y = Ay + P . 
�

Corollary 2.24. Let S be an inductive star semiring and S′ ⊆ S. Then for
a ∈ S, the following statements are equivalent:

(i) a is a component of the least solution of a finite S′-linear system.
(ii) a is the behavior ‖A‖ of a finite S′-automaton A.

Since every continuous semiring is an inductive star semiring, the last two
results also apply for continuous semirings.

3 Finite Automata over Quemirings

In this section, we deal with semiring–semimodule pairs and finite automata
over quemirings. Here, semiring–semimodule pairs constitute a generalization
of formal languages with finite and infinite words. The semiring models formal
languages with finite words while the semimodule models formal languages
with infinite words. The main result of this section is a generalization of the
Kleene theorem of Büchi [3] in the setting of semiring–semimodule pairs. (See
also Perrin and Pin [20].)

This section consists of three subsections. In Sect. 3.1 we introduce the al-
gebraic structures used in this section: semiring–semimodule pairs and quemi-
rings.

In Sect. 3.2, we define finite automata over quemirings. Given a Conway
semiring–semimodule pair (S, V ), cf. Bloom and Ésik [2], Ésik [8], we prove
a Kleene theorem for S′-finite automata, where S′ is a subset of S: the col-
lection of all behaviors of S′-finite automata coincides with the generalized
star quemiring generated by S′ (Theorem 3.14). A special case of this Kleene
theorem is the result of Büchi [3].
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In Sect. 3.3, we consider finite linear systems over quemirings as a gener-
alization of regular grammars with finite and infinite derivations. We show a
connection between certain solutions of these finite linear systems, the weights
of finite and infinite derivations with respect to regular grammars and the be-
haviors of finite automata over quemirings.

We now give a typical example on Büchi automata over infinite words.

Example 3.1. A (finite) Büchi automaton

A = (Q, Σ, δ, q, G)

is given by:

(i) A finite set of states Q = {q1, . . . , qn}, n ≥ 1
(ii) An input alphabet Σ
(iii) A transition function δ : Q × Σ → 2Q

(iv) An initial state q ∈ Q
(v) A set of repeated states G = {q1, . . . , qk}, k ≥ 0

A run of A on an infinite word w ∈ Σω, w = a1a2a3 . . . , is an infinite
sequence of states q(0), q(1), q(2), q(3), . . . such that the following conditions
are satisfied:

(i) q(0) = q.
(ii) q(i) ∈ δ(q(i − 1), ai) for i ≥ 1.

A word w ∈ Σω is Büchi accepted by A if there exists a run ρ of A on w and
a repeated state in G occurring infinitely often in ρ.

The behavior ‖A‖ ⊆ Σω of A is defined to be the set of infinite words that
are Büchi accepted by A (see Büchi [3]).

Let now A = (Q, Σ, δ, 2, {1}) be a Büchi automaton, where Q = {1, 2},
Σ = {a, b, c, d}, and δ(1, a) = {1}, δ(1, b) = {2}, δ(2, c) = {1}, δ(2, d) = {2}
are the only nonempty images of δ. The graph of A is

and the adjacency matrix of this graph is

A =
(
{a} {b}
{c} {d}

)

.

(See Example 2.1.)
The language of inscriptions of paths from 1 to 1 not passing 1 is given

by {a} ∪ {b}{d}∗{c}. Hence, the ω-language of inscriptions of infinite paths
starting in 1 and passing infinitely often through 1 is ({a}∪{b}{d}∗{c})ω and
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the ω-language of inscriptions of infinite paths starting in 1, passing finitely
often through 1 and infinitely often through 2 is ({a}∪ {b}{d}∗{c})∗{b}{d}ω.
By symmetry, the ω-language of inscriptions of infinite paths starting in 2 and
passing infinitely often through 2 (resp. finitely often through 2 and infinitely
often through 1) is ({d} ∪ {c}{a}∗{b})ω (resp. ({d} ∪ {c}{a}∗{b})∗{c}{a}ω).

We now define a column vector Aω by

Aω =
(

({a} ∪ {b}{d}∗{c})ω ∪ ({a} ∪ {b}{d}∗{c})∗{b}{d}ω

({d} ∪ {c}{a}∗{b})ω ∪ ({d} ∪ {c}{a}∗{b})∗{c}{a}ω

)

,

where (Aω)1 (resp. (Aω)2) is the ω-language of inscriptions of all infinite paths
starting in 1 (resp. 2). Observe that

({a} ∪ {b}{d}∗{c})ω ∩ ({a} ∪ {b}{d}∗{c})∗{b}{d}ω = ∅

and
({d} ∪ {c}{a}∗{b})ω ∩ ({d} ∪ {c}{a}∗{b})∗{c}{a}ω = ∅.

The ω-language of inscriptions of infinite paths starting in 2 and passing
infinitely often through 1 is {d}∗{c}({a} ∪ {b}{d}∗{c})ω. We define a column
vector Aω,1 by

Aω,1 =
(

({a} ∪ {b}{d}∗{c})ω

{d}∗{c}({a} ∪ {b}{d}∗{c})ω

)

,

where (Aω,1)1 (resp. (Aω,1)2) is the ω-language of inscriptions of all infinite
paths starting in 1 (resp. 2) and passing infinitely often through 1.

The ω-language ‖A‖ is the ω-language of all inscriptions of infinite paths
starting in 2 and passing infinitely often through 1, i.e., ‖A‖ = (Aω,1)2.

3.1 Semiring–Semimodule Pairs and Quemirings

Suppose that S is a semiring and V is a commutative monoid written addi-
tively. We call V a (left) S-semimodule if V is equipped with a (left) action

S × V → V,

(s, v) �→ sv

subject to the following rules:

s(s′v) = (ss′)v,

(s + s′)v = sv + s′v,

s(v + v′) = sv + sv′,

1v = v,

0v = 0,

s0 = 0,
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for all s, s′ ∈ S and v, v′ ∈ V . When V is an S-semimodule, we call (S, V ) a
semiring–semimodule pair.

Suppose that (S, V ) is a semiring–semimodule pair such that S is a star
semiring, and S and V are equipped with an omega operation ω : S → V .
Then we call (S, V ) a star semiring–omega semimodule pair. Following Bloom
and Ésik [2], see also Ésik [8], we call a star semiring–omega semimodule pair
(S, V ) a Conway semiring–semimodule pair if S is a Conway semiring and if
the omega operation satisfies the sum omega identity and the product omega
identity:

(a + b)ω = (a∗b)ω + (a∗b)∗aω

(ab)ω = a(ba)ω,

for all a, b ∈ S. It then follows that the omega fixed point identity holds, i.e.,

aaω = aω,

for all a ∈ S.

Theorem 3.2 (Bloom and Ésik [2], Ésik and Kuich [12], Ésik [8]). If
(S, V ) is a Conway semiring–semimodule pair, then for n ≥ 1, (Sn×n, V n×1)
again is a Conway semiring–semimodule pair.

Ésik and Kuich [13] define a complete semiring–semimodule pair to be a
semiring–semimodule pair (S, V ) such that S is a complete semiring, V is a
complete monoid with

s

(∑

i∈I

vi

)

=
∑

i∈I

svi,

(∑

i∈I

si

)

v =
∑

i∈I

siv,

for all s ∈ S, v ∈ V , and for all families si, i ∈ I over S and vi, i ∈ I over V .
Moreover, it is required that an infinite product operation

(s1, s2, . . .) �→
∏

j≥1

sj

is given mapping infinite sequences over S to V subject to the following three
conditions:

∏

i≥1

si =
∏

i≥1

(sni−1+1 · · · · · sni),

s1

( ∏

i≥1

si+1

)

=
∏

i≥1

si,

∏

j≥1

∑

ij∈Ij

sij =
∑

(i1,i2,...)∈I1×I2×···

∏

j≥1

sij ,
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where in the first equation 0 = n0 ≤ n1 ≤ n2 ≤ · · · and I1, I2, . . . are arbitrary
index sets. Suppose that (S, V ) is complete. Then we define

s∗ =
∑

i≥0

si,

sω =
∏

i≥1

s,

for all s ∈ S. This turns (S, V ) into a star semiring–omega semimodule pair.
By Ésik and Kuich [13], see also Ésik [8], each complete semiring–semimodule
pair is a Conway semiring–semimodule pair.

A star–omega semiring is a semiring S equipped with unary operations
∗ and ω : S → S. A star–omega semiring S is called complete if (S, S) is a
complete semiring–semimodule pair, i.e., if S is complete and is equipped with
an infinite product operation that satisfies the three conditions stated above
and the omega operation is determined by the infinite product as above.

Example 3.3. Suppose that Σ is an alphabet. Let Σ∗ denote the set of all finite
words over Σ including the empty word ε, and let Σω denote the set of all ω-
words over Σ. The set 2Σ∗

of all subsets of Σ∗, equipped with the operations
of set union as sum and concatenation as product is a semiring, where 0 is
the empty set ∅ and 1 is the set {ε}. Moreover, equipped with the usual star
operation, 2Σ∗

is a Conway semiring. Also, 2Σω

, equipped with union as the
sum operation and the empty set as 0 is a commutative idempotent monoid.
Define an action of 2Σ∗

on 2Σω

by KL = {uv | u ∈ K, v ∈ L}, for all
K ⊆ Σ∗ and L ⊆ Σω. Moreover, for each sequence (K0, K1, . . . ) over 2Σ∗

, let∏
j≥0 Kj = {u0u1 . . . ∈ Σω | ui ∈ Ki, i ≥ 0}. Then (2Σ∗

, 2Σω

) is a complete
semiring–semimodule pair with idempotent module 2Σω

. Note that in this
example, 1ω = 0, where 1 = {ε} and 0 = ∅.

Example 3.4. Consider the semiring N
∞ = N ∪ {∞}, obtained by adjoining

a top element ∞ to the semiring of the natural numbers. Note that N
∞ is a

complete semiring where an infinite sum is ∞ iff either a summand is ∞ or
the number of nonzero summands is infinite. Moreover, ∞ multiplied with a
nonzero element on either side gives ∞. Define an infinite product

(n1, n2, . . .) �→
∏

j≥1

nj

on N
∞ as follows. If some nj is 0, then so is the product. Otherwise, if all but

a finite number of the nj are 1s, then the infinite product is the product of
those nj with nj > 1. In all remaining cases, the infinite product is ∞. Then
N

∞ is a complete star–omega semiring, where ∗ and ω are defined as above.
Let Σ denote an alphabet. The semiring S = N

∞〈〈Σ∗〉〉 of all power series
over Σ∗ with coefficients in N

∞ is a complete and continuous semiring. Now
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let V = N
∞〈〈Σω〉〉 be the collection of all formal power series over Σω with

coefficients in N
∞. Thus, the elements of V are formal sums of the sort

s =
∑

w∈Σω

(s, w)w,

where each coefficient (s, w) belongs to N
∞. Now V can be turned into an S-

semimodule by the pointwise sum operation and the action (r, s) �→ rs defined
by

(rs, w) =
∑

u∈Σ∗, v∈Σω , uv=w

(r, u)(s, v),

where the infinite sum on the right hand side exists since N
∞ is complete. We

may also define an infinite product taking sequences over S to series in V .
Given s1, s2, . . . in S, we define

∏
j≥1 sj to be the series r in V with

(r, w) =
∑

w=w1w2...∈Σω

∏

j≥1

(sj , wj).

Then (N∞〈〈Σ∗〉〉, N∞〈〈Σω〉〉) is a complete semiring–semimodule pair, and thus
a Conway semiring–semimodule pair.

This can be generalized to a large extent. Suppose that S is a complete
star–omega semiring. If Σ is a set, consider the complete semiring S〈〈Σ∗〉〉
and the complete monoid S〈〈Σω〉〉 of all series over Σω with coefficients in
S equipped with the pointwise sum operation. If we define the action sr of
s ∈ S〈〈Σ∗〉〉 on r ∈ S〈〈Σω〉〉 by

(sr, w) =
∑

w=uv

(s, u)(r, v),

then (S〈〈Σ∗〉〉, S〈〈Σω〉〉) becomes a semiring–semimodule pair. Now, S〈〈Σ∗〉〉 is
a star semiring, and if we define the infinite product operation

(s1, s2, . . .) �→
∏

j≥1

sj ∈ S〈〈Σω〉〉

by
(∏

j≥1

sj , w

)

=
∑

w=w1w2...∈Σω

∏

j≥1

(sj , wj),

then (S〈〈Σ∗〉〉, S〈〈Σω〉〉) becomes a complete semiring–semimodule pair, hence
a Conway semiring–semimodule pair, satisfying sω = 0, where each s ∈ S is
identified with a series in the usual way.

Consider a star semiring–omega semimodule pair (S, V ). Following Bloom
and Ésik [2], see also Ésik [8] and Example 3.1, we define a matrix operation
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ω : Sn×n → V n×1 on a star semiring–omega semimodule pair (S, V ) as follows.
When n = 0, then Aω is the unique element of V 0×1. When n = 1, so that
A = (a), for some a ∈ S, Aω = (aω). For n > 1, we partition A into blocks

A =
(

a b
c d

)

, (1)

where a ∈ S1×1, b ∈ S1×(n−1), c ∈ S(n−1)×1, d ∈ S(n−1)×(n−1), and define

Aω =
(

(a + bd∗c)ω + (a + bd∗c)∗bdω

(d + ca∗b)ω + (d + ca∗b)∗caω

)

. (2)

Let A and Aω be given as in the definition above, but with a ∈ Sn1×n1 ,
b ∈ Sn1×n2 , c ∈ Sn2×n1 , d ∈ Sn2×n2 , where n1 + n2 = n. Then the matrix
omega identity is valid in the star semiring–omega semimodule pair if Aω is
independent of the partition of n into summands.

Theorem 3.5 (Bloom and Ésik [2], Ésik and Kuich [12], Ésik [8]). If
(S, V ) is a Conway semiring–semimodule pair, then the matrix omega identity
holds in the Conway semiring–semimodule pair (Sn×n, V n×1) for all n ≥ 1.

Following Ésik and Kuich [11] (see also Example 3.1), we define matrix
operations ω,k : Sn×n → V n×1, 0 ≤ k ≤ n, as follows. Assume that A ∈ Sn×n

is decomposed into blocks a, b, c, d as in (1), but with a of dimension k × k
and d of dimension (n − k) × (n − k). Then

Aω,k =
(

(a + bd∗c)ω

d∗c(a + bd∗c)ω

)

. (3)

Observe that Aω,0 = 0 and Aω,n = Aω.
Suppose that (S, V ) is a semiring–semimodule pair and consider T = S×V .

Define on T the operations

(s, u) · (s′, v) = (ss′, u + sv),
(s, u) + (s′, v) = (s + s′, u + v)

and constants 0 = (0, 0) and 1 = (1, 0). Equipped with these operations and
constants, T satisfies the identities

(x + y) + z = x + (y + z), (4)
x + y = y + x, (5)
x + 0 = x, (6)

(x · y) · z = x · (y · z), (7)
x · 1 = x, (8)
1 · x = x, (9)

(x + y) · z = (x · z) + (y · z), (10)
0 · x = 0. (11)
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Define also the unary operation ¶ on T : (s, u)¶ = (s, 0). Thus, ¶ selects the
“first component” of the pair (s, u), while multiplication with 0 on the right
selects the “second component,” for (s, u) · 0 = (0, u), for all u ∈ V . The new
operation satisfies:

x¶ · (y + z) = (x¶ · y) + (x¶ · z), (12)
x = x¶ + (x · 0), (13)

x¶ · 0 = 0, (14)
(x + y)¶ = x¶ + y¶, (15)
(x · y)¶ = x¶ · y¶. (16)

Note that when V is idempotent, also

x · (y + z) = x · y + x · z

holds.
Elgot [7] defined a quemiring to be an algebraic structure T equipped

with the above operations ·, +,¶ and constants 0, 1 satisfying the identities
(4)–(11) and (12)–(16). A morphism of quemirings is a function preserving the
operations and constants. It follows that x¶¶ = x¶, for all x in a quemiring T .
Moreover, x¶ = x iff x · 0 = 0.

When T is a quemiring, S = T¶ = {x¶ | x ∈ T} is easily seen to be a
semiring. Moreover, V = T0 = {x · 0 | x ∈ T} contains 0 and is closed under
+, and furthermore, sx ∈ V for all s ∈ S and x ∈ V . Each x ∈ T may be
written in a unique way as the sum of an element of T¶ and of an element of
T0 as x = x¶+ x · 0. Sometimes, we will identify S ×{0} with S and {0}×V
with V . It is shown in Elgot [7] that T is isomorphic to the quemiring S × V
determined by the semiring–semimodule pair (S, V ).

Suppose now that (S, V ) is a star semiring–omega semimodule pair. Then
we define on T = S × V a generalized star operation:

(s, v)⊗ = (s∗, sω + s∗v) (17)

for all (s, v) ∈ T . Note that the star and omega operations can be recovered
from the generalized star operation, since s∗ is the first component of (s, 0)⊗

and sω is the second component. Thus,

(s∗, 0) = (s, 0)⊗¶,

(0, sω) = (s, 0)⊗ · 0.

Observe that, for (s, 0) ∈ S × {0}, (s, 0)⊗ = (s∗, 0) + (0, sω).
Suppose now that T is an (abstract) quemiring equipped with a generalized

star operation ⊗. As explained above, T as a quemiring is isomorphic to the
quemiring S ×V associated with the semiring–semimodule pair (S, V ), where
S = T¶ and V = T0, an isomorphism being the map x �→ (x¶, x · 0). It is
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clear that a generalized star operation ⊗ : T → T is determined by a star
operation ∗ : S → S and an omega operation ω : S → V by (17) iff

x⊗¶ = (x¶)⊗¶, (18)
x⊗ · 0 = (x¶)⊗ · 0 + x⊗¶ · x · 0 (19)

hold. Indeed, these conditions are clearly necessary. Conversely, if (18) and
(19) hold, then for any x¶ ∈ T¶ we may define

(x¶)∗ = (x¶)⊗¶, (20)
(x¶)ω = (x¶)⊗ · 0. (21)

It follows that (17) holds. The definition of star and omega was forced.
Let us call a quemiring equipped with a generalized star operation ⊗ sat-

isfying (18) and (19) a generalized star quemiring.

3.2 Finite Automata over Quemirings and a Kleene Theorem

In this subsection, we consider finite automata over quemirings and prove
a Kleene theorem. Throughout this subsection, (S, V ) denotes a Conway
semiring–semimodule pair and T denotes the generalized star quemiring S×V .
Moreover, S′ denotes a subset of S.

A finite S′-automaton (over the quemiring T )

A = (n, R, A, P, k)

is given by:

(i) A finite set of states {1, . . . , n}, n ≥ 1
(ii) A transition matrix A ∈ (S′ ∪ {0, 1})n×n

(iii) An initial state vector R ∈ (S′ ∪ {0, 1})1×n

(iv) A final state vector P ∈ (S′ ∪ {0, 1})n×1

(v) a set of repeated states {1, . . . , k}, k ≥ 0

The behavior of A is an element of T and is defined by

‖A‖ = RA∗P + RAω,k.

If A =
(
n, (i1 i2),

(
a b
c d

)
,
( p1

p2

)
, k

)
, where

i1 ∈ (S′ ∪ {0, 1})1×k, i2 ∈ (S′ ∪ {0, 1})1×(n−k),

a ∈ (S′ ∪ {0, 1})k×k, b ∈ (S′ ∪ {0, 1})k×(n−k),

c ∈ (S′ ∪ {0, 1})(n−k)×k, d ∈ (S′ ∪ {0, 1})(n−k)×(n−k),

p1 ∈ (S′ ∪ {0, 1})k×1, p2 ∈ (S′ ∪ {0, 1})(n−k)×1,

we write also
A = (n; i1, i2; a, b, c, d; p1, p2; k).
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Theorem 3.6. If (S, V ) is a complete semiring–semimodule pair and A is a
finite S′-automaton, then ‖A‖ = F + I, where F is the sum of the weights of
all finite paths from an initial state to a final state, multiplied by the initial
and final weights of these states, and where I is the sum of the weights of
all infinite paths starting at an initial state, passing infinitely often through
repeated states, and multiplied by the initial weight of this initial state.

Proof. By formalization of the considerations in Example 3.1 (see the proof
of Theorem 3.5 of Ésik and Kuich [11]).

Note that the finite S′-automata A = (n, R, A, P ) and A′ = (n, R, A, P, 0)
over a Conway semiring S and a star semiring–omega semimodule pair (S, V ),
respectively, have the same behavior ‖A‖ = ‖A′‖ = RA∗P .

By definition, ω-Rat(S′) is the Conway semiring–semimodule pair gener-
ated by S′.

We now will prove a Kleene theorem: Let a ∈ S × V . Then a ∈ ω-Rat(S′)
iff a is the behavior of a finite S′-automaton. To achieve this result, we need
a few theorems and corollaries. In our arguments, we will use Theorem 3.5.

Let A = (n, R, A, P, k) be a finite S′-automaton. It is called normalized if:

(i) n ≥ 2 and k ≤ n − 2.
(ii) Rn−1 = 1 and Rj = 0 for j 	= n − 1.
(iii) Pn = 1 and Pj = 0 for j 	= n.
(iv) Ai,n−1 = 0 and An,i = 0 for all 1 ≤ i ≤ n.

Two finite S′-automata A and A′ are equivalent if ‖A‖ = ‖A′‖.

Theorem 3.7. Each finite S′-automaton A = (n, R, A, P, k) is equivalent to
a normalized finite S′-automaton A′ = (n + 1 + 1, R′, A′, P ′, k).

Proof. We define R′ = (0 1 0), A′ =
(

A 0 P
R 0 0
0 0 0

)
and P ′ =

(
0
0
1

)
. Let now

A = (n; i1, i2; a, b, c, d; p1, p2; k). Then

A′ =

⎛

⎜
⎜
⎝

a b 0 p1

c d 0 p2

i1 i2 0 0
0 0 0 0

⎞

⎟
⎟
⎠

and the first k entries of A′ω,k are equal to
⎛

⎝a + (b 0 p1)

⎛

⎝
d 0 p2

i2 0 0
0 0 0

⎞

⎠

∗ ⎛

⎝
c
i1
0

⎞

⎠

⎞

⎠

ω

=

⎛

⎝a + (b 0 p1)

⎛

⎝
d∗ 0 d∗p2

i2d
∗ 1 i2d

∗p2

0 0 1

⎞

⎠

⎛

⎝
c
i1
0

⎞

⎠

⎞

⎠

ω

= (a + bd∗c)ω.
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Hence, the last n − k + 2 entries of A′ω,k are equal to
⎛

⎝
d 0 p2

i2 0 0
0 0 0

⎞

⎠

∗ ⎛

⎝
c
i1
0

⎞

⎠ (a + bd∗c)ω =

⎛

⎝
d∗c

i2d
∗c + i1
0

⎞

⎠ (a + bd∗c)ω

and we obtain

‖A′‖ = R′A′∗P ′ + R′A′ω,k = (A′∗)n+1,n+2 +
(
A′ω,k

)
n+1

= RA∗P + (i2d∗c + i1)(a + bd∗c)ω = RA∗P + RAω,k = ‖A‖. 
�

Lemma 3.8. If A = (n; i1, i2; a, b, c, d; p1, p2; k) is a finite S′-automaton then

‖A‖ = i1(a + bd∗c)∗(p1 + bd∗p2) + i2d
∗c(a + bd∗c)∗(p1 + bd∗p2)

+ i2d
∗p2 + i1(a + bd∗c)ω + i2d

∗c(a + bd∗c)ω.

Let A = (n; i1, i2; a, b, c, d; f, g; m) and A′ = (n′; h, i; a′, b′, c′, d′; p1, p2; k)
be finite S′-automata. Then we define the finite S′-automata A+A′ and A ·A′

to be

A + A
′ =

(

n + n′; (i1 h), (i2 i);
(

a 0
0 a′

)

,

(
b 0
0 b′

)

,

(
c 0
0 c′

)

,

(
d 0
0 d′

)

;
(

f
p1

)

,

(
g
p2

)

, m + k

)

and

A · A′ =
(

n + n′; (i1 0), (i2 0);
(

a fh
0 a′

)

,

(
b fi
0 b′

)

,

(
c gh
0 c′

)

,

(
d gi
0 d′

)

;
(

0
p1

)

,

(
0
p2

)

, m + k

)

.

For the definition of A ·A′, we assume that either
(
f
g

)
(h i) ∈ (S′ ∪ {0, 1})n×n′

or A′ is normalized. Observe that the definitions of A + A′ and A · A′ (and
of A⊗ which is defined below) are the usual ones except that certain rows
and columns are permuted. These permutations are needed since the set of
repeated states of a finite S′-automaton is always a set {1, . . . , k}.

Theorem 3.9. Let A and A′ be finite S′-automata. Then ‖A + A′‖ = ‖A‖ +
‖A′‖ and ‖A · A′‖ = ‖A‖ · ‖A′‖.
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Proof. Let A and A′ be defined as above. We first show ‖A+A′‖ = ‖A‖+‖A′‖
and compute ‖A + A′‖ · 0. The transition matrix of A + A′ is given by

A =

⎛

⎜
⎜
⎝

a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

⎞

⎟
⎟
⎠ .

We now compute the first m + k entries of Aω,m+k. This column vector of
dimension m + k is given by

((
a 0
0 a′

)

+
(

b 0
0 b′

) (
d 0
0 d′

)∗ (
c 0
0 c′

))ω

=
(

a + bd∗c 0
0 a′ + b′d′∗c′

)ω

=
(

(a + bd∗c)ω

(a′ + b′d′∗c′)ω

)

.

The last n + n′ − (m + k) entries of Aω,m+k are given by the product of
(

d 0
0 d′

)∗ (
c 0
0 c′

)

=
(

d∗c 0
0 d′∗c′

)

with the column vector computed above. Hence, we obtain by Lemma 3.8

‖A + A
′‖ · 0 = (i1 h i2 i)Aω,m+k

= i1(a + bd∗c)ω + h(a′ + b′d′∗c′)ω + i2d
∗c(a + bd∗c)ω

+ id′∗c′∗(a′ + b′d′∗c′)ω

= (‖A‖ + ‖A′‖) · 0.

We now compute ‖A + A′‖¶. If, in the transition matrix A of A + A′ we
commute the m + 1, . . . , m + k row and column with the m + k + 1, . . . , n + k
row and column, and do the same with the initial and final vector we obtain
by the star permutation identity (see Conway [4], Bloom and Ésik [2], Ésik
and Kuich [9], and Ésik [8]).

‖A + A
′‖¶ = (i1 i2 h i)

⎛

⎜
⎜
⎝

a b 0 0
c d 0 0
0 0 a′ b′

0 0 c′ d′

⎞

⎟
⎟
⎠

∗ ⎛

⎜
⎜
⎝

f
g
p1

p2

⎞

⎟
⎟
⎠

= (i1 i2)
(

a b
c d

)∗ (
f
g

)

+ (h i)
(

a′ b′

c′ d′

)∗ (
p1

p2

)

= (‖A‖ + ‖A′‖)¶.

Hence, ‖A + A′‖ = ‖A‖ + ‖A′‖.
We now show ‖A ·A′‖ = ‖A‖·‖A′‖ and compute ‖A ·A′‖·0. The transition

matrix of A · A′ is given by
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A =

⎛

⎜
⎜
⎝

a fh b fi
0 a′ 0 b′

c gh d gi
0 c′ 0 d′

⎞

⎟
⎟
⎠ .

We now compute the first m + k entries of Aω,m+k. This column vector of
dimension m + k is given by

((
a fh
0 a′

)

+
(

b fi
0 b′

) (
d∗ d∗gid′∗

0 d′∗

) (
c gh
0 c′

))ω

=
(

a + bd∗c (f + bd∗g)(h + id′∗c′)
0 a′ + b′d′∗c′

)ω

=
(

(a + bd∗c)ω + (a + bd∗c)∗(f + bd∗g)(h + id′∗c′)(a′ + b′d′∗c′)ω

(a′ + b′d′∗c′)ω

)

.

The last n + n′ − (m + k) entries of Aω,m+k are given by the product of
(

d gi
0 d′

)∗ (
c gh
0 c′

)

=
(

d∗c d∗g(h + id′∗c′)
0 d′∗c′

)

with the column vector computed above. Hence, we obtain

‖A · A′‖ · 0
= (i1 0 i2 0)Aω,m+k

= i1(a + bd∗c)ω + i1(a + bd∗c)∗(f + bd∗g)(h + id′∗c)(a′ + b′d′∗c′)ω

+ i2d
∗c(a + bd∗c)ω + i2d

∗c(a + bd∗c)∗(f + bd∗g)(h + id′∗c′)
× (a′ + b′d′∗c′)ω + i2d

∗g(h + id′∗c′)(a′ + b′d′∗c′)ω.

On the other side, we obtain by Lemma 3.8

‖A‖ · ‖A′‖ · 0
= ‖A‖ · 0 + ‖A‖¶ · ‖A′‖ · 0
= i1(a + bd∗c)ω + i2d

∗c(a + bd∗c)ω + (i1(a + bd∗c)∗(f + bd∗g)
+ i2d

∗c(a + bd∗c)∗(f + bd∗g) + i2d
∗g)(h + id′∗c′)(a′ + b′d′∗c′)ω.

Hence, ‖A · A′‖ · 0 = ‖A‖ · ‖A′‖ · 0.
We now compute ‖A · A′‖¶. If, in the transition matrix A of A · A′, we

commute the m + 1, . . . ,m + k row and column with the m + k + 1, . . . , n + k
row and column, and do the same with the initial and final vector we obtain
by the star permutation identity (see Conway [4], Bloom and Ésik [2], Ésik
and Kuich [9], and Ésik [8]),
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‖A · A′‖¶ = (i1 i2 0 0)

⎛

⎜
⎜
⎝

a b fh fi
c d gh gi
0 0 a′ b′

0 0 c′ d′

⎞

⎟
⎟
⎠

∗ ⎛

⎜
⎜
⎝

0
0
p1

p2

⎞

⎟
⎟
⎠

= (i1 i2)
(

a b
c d

)∗ (
f
g

)

(h i)
(

a′ b′

c′ d′

)∗ (
p1

p2

)

= ‖A‖¶ · ‖A′‖¶ = ‖A‖ · ‖A′‖¶.

Hence, ‖A · A′‖ = ‖A‖ · ‖A′‖. 
�

Let A = (n;h, i; a, b, c, d; f, g; k) be a finite S′-automaton and write R =
(h i), A =

(
a b
c d

)
and P =

(
f
g

)
. Then we define the finite S′-automaton A⊗

to be

A
⊗ =

(

1 + n + n; (1 0), (0 0);
(

0 h
0 a

)

,

(
i R
b 0

)

,

(
0 c
P 0

)

,

(
d 0
0 A

)

;
(

1
0

)

,

(
0
0

)

; 1 + k

)

.

Theorem 3.10. Let A be a finite S′-automaton. Then ‖A⊗‖ = ‖A‖⊗.

Proof. Let A be defined as above. Let

A′ =

⎛

⎜
⎜
⎝

0 h i R
0 a b 0
0 c d 0
P 0 0 A

⎞

⎟
⎟
⎠ .

We first compute ‖A⊗‖¶. Observe that A′ can be written as

A′ =

⎛

⎝
0 R R
0 A 0
P 0 A

⎞

⎠

and that ‖A⊗‖¶ = (A′∗)11. We obtain

(A′∗)11 =
(

(R R)
(

A 0
0 A

)∗ (
0
P

))∗

= (RA∗P )∗ = (‖A‖¶)∗ = ‖A‖⊗¶.

We now compute the first 1 + k entries of A′ω,1+k. This column vector of
dimension 1 + k is given by

((
0 h
0 a

)

+
(

i R
b 0

) (
d 0
0 A

)∗ (
0 c
P 0

))ω

=
(

RA∗P h + id∗c
0 a + bd∗c

)ω

.
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Hence,

‖A⊗‖ · 0 =
(
A′ω,1+k

)
1

= (RA∗P )ω + (RA∗P )∗(h + id∗c)(a + bd∗c)ω.

By definition, ‖A‖⊗ · 0 = (‖A‖¶)ω + (‖A‖¶)∗‖A‖ · 0. Thus,

‖A‖⊗ · 0 = (RA∗P )ω + (RA∗P )∗(h + id∗c)(a + bd∗c)ω = ‖A⊗‖ · 0

and we obtain ‖A⊗‖ = ‖A‖⊗. 
�

Theorem 3.11. Let A = (n, R, A, P, k) be a finite S′-automaton. Then there
exists a finite S′-automaton A¶ such that ‖A¶‖ = ‖A‖¶.

Proof. ‖A‖¶ = (n, R, A, P, 0). 
�

Theorem 3.12. Let a ∈ S′ ∪ {0, 1}. Then there exists a finite S′-automaton
Aa such that ‖Aa‖ = a.

Proof. Let Aa =
(
2, (1 0), ( 0 a

0 0 ) ,
(
0
1

)
, 0

)
. Then

‖Aa‖ = (1 0)
(

1 a
0 1

) (
0
1

)

= a. 
�

Corollary 3.13. The behaviors of finite S′-automata form a generalized star
quemiring that contains S′.

Theorem 3.14 (Kleene theorem). Let (S, V ) be a Conway semiring–semi-
semimodule pair. Then the following statements are equivalent for (s, v) ∈
S × V :

(i) (s, v) = ‖A‖, where A is a finite S′-automaton.
(ii) (s, v) ∈ ω-Rat(S′).
(iii) s ∈ Rat(S′) and v is of the form

∑
1≤i≤m sit

ω
i with si, ti ∈ Rat(S′).

Proof. (i) ⇒ (iii): Each entry in A∗ and Aω,k is of the form s and
∑

1≤i≤m sit
ω
i ,

respectively, with s, si, ti ∈ Rat(S′).
(iii) ⇒ (ii): (s, v) = (s, 0) + (0, v). Since (s, 0) is in Rat(S′) ⊆ ω −Rat(S′)

and (0, v) = (0,
∑

1≤i≤m sit
ω
i ) is in ω − Rat(S′), (s, v) is in ω − Rat(S′).

(ii) ⇒ (i): By Corollary 3.13. 
�

We now consider finite S〈Σ ∪ {ε}〉-automata over the Conway semiring–
semimodule pair (S〈〈Σ∗〉〉, S〈〈Σω〉〉), where S is a complete star–omega semi-
ring, and will delete ε-moves in these finite S〈Σ ∪ {ε}〉-automata without
changing their behavior.

Theorem 3.15. Let (S〈〈Σ∗〉〉, S〈〈Σω〉〉) be a Conway semiring–semimodule
pair satisfying (sε)ω = 0 for all s ∈ S. Let A = (n, R, A, P, k) be a fi-
nite S〈Σ ∪ {ε}〉-automaton. Then there exists a finite S〈Σ ∪ {ε}〉-automaton
A′ = (n, R′, A′, P ′, k) with ‖A′‖ = ‖A‖ satisfying the following conditions:
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(i) A′ ∈ (S〈Σ〉)n×n.
(ii) R′ ∈ (S〈{ε}〉)1×n.
(iii) P ′ ∈ (S〈{ε}〉)n×1.

Proof. Without loss of generality, we assume by Theorem 3.7 that R ∈
(S〈{ε}〉)1×n and P ∈ (S〈{ε}〉)n×1. Let A =

(
a b
c d

)
, where a is a k × k-matrix

and d is a (n− k)× (n− k)-matrix. Let a = a0 + a1, b = b0 + b1, c = c0 + c1,
d = d0 + d1, such that the supports of the entries of a0, b0, c0, d0 (resp.
a1, b1, c1, d1) are subsets of {ε} (resp. Σ). By assumption, (a0 + b0d

∗
0c0)ω = 0.

Define the matrices A01, A02, and A1 to be A01 =
(

0 b0
0 d0

)
, A02 =

(
a0 0
c0 0

)

and A1 =
(

a1 b1
c1 d1

)
. We now specify the finite S〈Σ ∪ {ε}〉-automaton A′: R′ =

R(A∗
01A02)∗, A′ = A∗

01A1(A∗
01A02)∗ and P ′ = A∗

01P . The behavior of A′ is
then given by

‖A′‖ = R′A′∗P ′ + R′A′ω,k

= R(A∗
01A02)∗

(
A∗

01A1(A∗
01A02)∗

)∗
A∗

01P

+ R(A∗
01A02)∗

(
A∗

01A1(A∗
01A02)∗

)ω,k

= R(A01 + A02 + A1)∗P + R(A01 + A02 + A1)ω,k

= RA∗P + RAω,k = ‖A‖.

Here, we have applied Theorem 2.10 of Ésik and Kuich [11] in the third
equality. 
�

In the next theorem, we construct a finite S〈Σ ∪ {ε}〉-automaton without
ε-moves with a unique initial state of initial weight ε.

Theorem 3.16. Let (S〈〈Σ∗〉〉, S〈〈Σω〉〉) be a Conway semiring–semimodule
pair as in Theorem 3.15, and consider a finite S〈Σ ∪ {ε}〉-automaton A =
(n, R, A, P, k). Then there exists a finite S〈Σ ∪ {ε}〉-automaton A′ = (n +
1, R′, A′, P ′, k) with ‖A′‖ = ‖A‖ satisfying the following conditions:

(i) A′ ∈ (S〈Σ〉)(n+1)×(n+1).
(ii) R′

j = 0, 1 ≤ j ≤ n, and R′
n+1 = ε.

(iii) P ′ ∈ (S〈{ε}〉)(n+1)×1.

Proof. We assume that A satisfies the conditions of Theorem 3.15. We specify
A′ by R′ = (0 ε), A′ = ( A 0

RA 0 ) and P ′ = ( P
RP ). We compute A′∗ =

(
A∗ 0

RAA∗ ε

)

and, for A =
(

a b
c d

)
, R = (i1 i2),

A′ω,k =

⎛

⎝
a b 0
c d 0

i1a + i2c i1b + i2d 0

⎞

⎠

ω,k

=

⎛

⎝
(a + bd∗c)ω

d∗c(a + bd∗c)ω

(i1(a + bd∗c) + i2d
∗c)(a + bd∗c)ω

⎞

⎠

=
(

Aω,k

RAω,k

)

.
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Hence, ‖A′‖ = RAA∗P + RP + RAω,k = ‖A‖. 
�

In the case of the Boolean semiring, the finite B〈Σ∪{ε}〉-automata of The-
orem 3.16 with P ′ = 0 are nothing else than the finite automata introduced
by Büchi [3].

In the case of the semiring N
∞, we get the following result.

Theorem 3.17. The constructions of Theorems 3.15 and 3.16 do not change,
for w ∈ Σ∗ (resp. for w ∈ Σω), in the digraphs of the finite automata, the
number of finite paths with label w from an initial state to a final state (resp.
the number of infinite paths with label w starting in an initial state and passing
infinitely often through repeated states).

3.3 Finite Linear Systems over Quemirings

In this subsection, we consider finite linear systems over quemirings as a gen-
eralization of regular grammars with finite and infinite derivations.

A finite S′-linear system (with variables y1, . . . , yn, over the quemiring
S × V ) is a system of equations

y = Ay + P (22)

where A ∈ (S′∪{0, 1})n×n, P ∈ (S′∪{0, 1})n×1, y =

( y1

...
yn

)

. A column vector

σ ∈ (S × V )n×1 is called a solution to the system (22) if

σ = Aσ + P.

Theorem 3.18. Let (S, V ) be a Conway semiring–semimodule pair. Consider
a finite S′-linear system

y = Ay + P,

where A ∈ (S′ ∪ {0, 1})n×n, P ∈ (S′ ∪ {0, 1})n×1, and y =

( y1

...
yn

)

is a column

vector of variables. Then for each 0 ≤ k ≤ n, Aω,k + A∗P is a solution of
y = Ay + P .

Proof. We obtain by Theorem 3.2 and the star and omega fixed point identities
(cf. Ésik [8]), for each 0 ≤ k ≤ n,

A(Aω,k + A∗P ) + P = Aω,k + A∗P. 
�

Let k ∈ {0, . . . , n} and Ai = (n, ei, A, P, k), 1 ≤ i ≤ n, be finite S′-
automata, where ei is the ith vector of unity. Then ‖Ai‖ is the ith component
of a solution given in Theorem 3.18 of the finite S′-linear system y = Ay +P .

Therefore, we call the solution

( ‖A1‖
...

‖An‖

)

= Aω,k + A∗P of y = Ay + P the kth

automata-theoretic solution of y = Ay + P .
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Theorem 3.19. Let (S, V ) be a Conway semiring–semimodule pair and S′ ⊆ S.
Let A = (n, R, A, P, k) be a finite S′-automaton. Then ‖A‖ = Rσ, where σ is
the kth automata-theoretic solution of the finite S′-linear system y = Ay + P .

Bi-inductive semiring–semimodule pairs were defined in Ésik and Kuich
[13], see also Ésik [8]. As shown in these papers, every bi-inductive semiring–
semimodule pair is a Conway semiring–semimodule pair. Suppose that (S, V )
is a bi-inductive semiring–semimodule pair and consider the quemiring S×V ,
which is equipped with the pointwise partial order inherited from the orders
on S and V . Moreover, consider the above finite S′-linear system y = Ay + P
and write it in more detail as

y′ = ay′ + by′′ + p′, (23)
y′′ = cy′ + dy′′ + p′′ (24)

where y′ denotes the matrix of the first k entries of y, etc. We point out
that the first k components of the above kth automata theoretic solution of
y = Ay + P over S × V can be obtained by first taking the least solution
d∗(cy′ + p′′) of (24) and substituting this least solution into (23), and then by
taking the greatest solution (a+bd∗c)ω+(a+bd∗c)∗(p′+bd∗p′′) of the resulting
equation. The last n − k components of the kth automata theoretic solution
are then obtained by substituting this greatest solution into d∗(cy′ + p′′), the
least solution of (24). Thus, we obtain the kth automata theoretic solution

(
a b
c d

)ω,k

+
(

a b
c d

)∗ (
p′

p′′

)

.

Let S be a complete star–omega semiring and consider a finite S′-linear
system y = Ay + P over the quemiring S〈〈Σ∗〉〉 × S〈〈Σω〉〉 as defined before
Theorem 3.18 for S′ = S〈Σ ∪ {ε}〉. Write this system in the form

yi =
∑

1≤j≤n

∑

x∈Σ∪{ε}
(Aij , x)xyj +

∑

x∈Σ∪{ε}
(Pi, x)x, 1 ≤ i ≤ n.

Analogous to the correspondence stated below Theorem 2.18, the right linear
grammars Gi = ({y1, . . . , yn}, Σ, Π, yi), 1 ≤ i ≤ n, with weights in the semi-
ring S, where Π = {yi → (Aij , x)xyj | 1 ≤ j ≤ n, x ∈ Σ ∪ {ε}} ∪ {yi →
(Pi, x)x | x ∈ Σ ∪ {ε}} correspond to this finite S〈Σ ∪ {ε}〉-linear system.
Here, (Aij , x) and (Pi, x) are the weights of the productions yi → xyj and
yi → x, respectively. Furthermore, let Ak

i = (n, ei, A, P, k) be finite S′-
automata, 1 ≤ i ≤ n, for some fixed k ∈ {0, . . . , n}, where ei is the ith
row vector of unity.

Consider now a finite derivation with respect to Gi:

yi ⇒ (Ai,i1 , x1)x1yi1 ⇒ · · · ⇒ (Ai,i1 , x1) . . . (Aim−1,im , xm)x1 . . . xmyim

⇒ (Ai,i1 , x1) . . . (Aim−1,im , xm)(Pim , xm+1)x1 . . . xmxm+1
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generating the word x1 . . . xmxm+1 with weight

(Ai,i1 , x1) . . . (Aim−1,im , xm)(Pim , xm+1).

This finite derivation corresponds to the following finite path in the directed
graph of Ak

i :
(yi, x1, yi1), . . . , (yim−1 , xm, yim)

with weight
(Ai,i1 , x1) . . . (Aim−1,im , xm),

initial weight 1 and final weight (Pim , xm+1)xm+1.
Consider now an infinite derivation with respect to Gi:

yi ⇒ (Ai,i1 , x1)x1yi1 ⇒ · · · ⇒ (Ai,i1 , x1) . . . (Aim−1,im , xm)x1 . . . xmyim ⇒ · · ·

generating the infinite word x1x2 . . . xm . . . with weight

(Ai,i1 , x1) . . . (Aim−1,im , xm) . . . .

This infinite derivation corresponds to the following infinite path in the di-
rected graph of Ak

i :

(yi, x1, yi1), . . . , (yim−1 , xm, yim), . . .

with weight (Ai,i1 , x1) . . . (Aim−1,im , xm) . . . and initial weight 1.
If S is a complete star–omega semiring, then (S〈〈Σ∗〉〉, S〈〈Σω〉〉) is a com-

plete semiring–semimodule pair by Ésik and Kuich [13], see also Ésik [8].
Hence, we obtain by Theorem 3.6, the following result for Gi and Ak

i as de-
fined above.

Theorem 3.20. If S is a complete star–omega semiring and 1 ≤ i ≤ n,
0 ≤ k ≤ n, then for w ∈ Σ∗, (‖Ak

i ‖, w) = ((A∗P )i, w) is the sum of the
weights of all finite derivations of w with respect to Gi; and for w ∈ Σω,
(‖Ak

i ‖, w) = ((Aω,k)i, w) is the sum of the weights of all infinite derivations
of w with respect to Gi such that at least one of the variables of {y1, . . . , yk}
appears infinitely often in these infinite derivations.

In particular, if S = N
∞ and (Aij , x), (Pi, x) ∈ {0, 1}, x ∈ Σ ∪ {ε}, 1 ≤

i, j ≤ n, then we get the following result.

Theorem 3.21. For w ∈ Σ∗, (‖Ak
i ‖, w) = ((A∗P )i, w) is the number of finite

derivations of w with respect to Gi; and for w ∈ Σω, (‖Ak
i ‖, w) = ((Aω,k)i, w)

is the number of all infinite derivations of w with respect to Gi such that
at least one of the variables of {y1, . . . , yk} appears infinitely often in these
infinite derivations.
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Given a right linear grammar Gi = ({y1, . . . , yn}, Σ, Π, yi), 1 ≤ i ≤ n, with
weights as above, and k ∈ {0, . . . , n}, L(Gi)k is defined to be the weighted
language

L(Gi)k =
{(

(A∗P )i, w
)
w

∣
∣ w ∈ Σ∗} ∪

{((
Aω,k

)
i
, w

)
w

∣
∣ w ∈ Σω

}
.

The next theorem, Theorem 3.22, shows that such weighted languages can
be generated by right linear grammars with weights in the semiring S which
have only two types of productions:

yi → axyj and yi → aε,

where a ∈ S and x ∈ Σ. Hence, in such right linear grammars, there are
no productions yi → ayj . Corollary 3.23 shows then that the two types of
productions can be chosen as

yi → axyj and yi → ax,

where a ∈ S and x ∈ Σ. (Of course, ε is no longer derived. Compare this with
the definition of a regular grammar below Theorem 2.18. Moreover, compare
the forthcoming Corollary 3.23 with Theorem 2.18.)

Theorem 3.22. Let (S〈〈Σ∗〉〉, S〈〈Σω〉〉) be a Conway semiring–semimodule
pair where (sε)ω = 0 for all s ∈ S, consider a finite S〈Σ ∪ {ε}〉-linear sys-
tem y = Ay + P , where A ∈ (S〈Σ ∪ {ε}〉)n×n, P ∈ (S〈Σ ∪ {ε}〉)n×1, and

y =

( y1

...
yn

)

and let i ∈ {1, . . . , n}. Then there exists a finite S〈Σ ∪{ε}〉-linear

system y′ = A′y′ + P ′, where A′ ∈ (S〈Σ〉)(n+1)×(n+1), P ′ ∈ (S〈{ε}〉)(n+1)×1,
and y′ = ( y

yn+1 ) such that, for all 0 ≤ k ≤ n, the (n+1)st component of the kth
automata-theoretic solution of y = Ay + P coincides with the ith component
of the kth automata theoretic solution of y′ = A′y′ + P ′.

Proof. Consider the finite S〈Σ ∪ {ε}〉-automaton Ak
i = (n, ei, A, P, k), whose

behavior is ‖Ak
i ‖ = (A∗P )i +(Aω,k)i. Starting with Ak

i , perform the construc-
tions of Theorems 3.15 and 3.16. This yields a finite S〈Σ ∪ {ε}〉-automaton
A′ = (n + 1, en+1, A

′, P ′, k) with behavior ‖A′‖ = (A′∗P ′)n+1 + (A′ω,k)n+1 =
‖Ak

i ‖. 
�

Corollary 3.23. Let (S〈〈Σ∗〉〉, S〈〈Σω〉〉) be a Conway semiring–semimodule
pair where (sε)ω = 0 for all s ∈ S, consider a finite S〈Σ ∪ {ε}〉-linear sys-
tem y = Ay + P , where A ∈ (S〈Σ ∪ {ε}〉)n×n, P ∈ (S〈Σ ∪ {ε}〉)n×1, and

y =

( y1

...
yn

)

and let i ∈ {1, . . . , n}. Then there exists a finite S〈Σ ∪{ε}〉-linear

system y′ = A′y′ + P ′, where A′ ∈ (S〈Σ〉)(n+1)×(n+1), P ′ ∈ (S〈Σ〉)(n+1)×1,
and y′ = ( y

yn+1 ) such that (A′ω,k + A′∗A′P ′′)n+1 = (Aω,k + AA∗P )i.
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Proof. Let y′ = A′y′ + P ′′ be the finite S〈Σ ∪ {ε}〉-linear system constructed
according to Theorem 3.22 from y = Ay + P . Consider the finite S〈Σ ∪ {ε}〉-
linear system y′ = A′y′ + P ′, where P ′ = A′P ′′. Then (A′ω,k + A′∗P ′)n+1 =
(A′ω,k + A′∗A′P ′′)n+1 = (Aω,k + AA∗P )i. 
�

Corollary 3.24. Let S be a complete star–omega semiring and consider, for
some i ∈ {1, . . . , n}, the right linear grammar Gi = ({y1, . . . , yn}, Σ, Π, yi)
with weights in S.

Then there exists a right linear grammar G(i) = ({y1, . . . , yn, yn+1}, Σ,
Π(i), yn+1) with weights, which has only the two types of productions

yi → axyi and yi → aε (resp. yi → axyj and yi → ax),

a ∈ S, x ∈ Σ, such that, for all 0 ≤ k ≤ n,

L
(
G

(i)
n+1

)
k

= L(Gi)k

(
resp. L

(
G

(i)
n+1

)
k

= L(Gi)k −
{(

L(Gi)k, ε
)
ε
})

.

If we consider finite N
∞〈Σ ∪ {ε}〉-linear systems, we obtain the following

result about the derivations with respect to the right linear grammars Gi

defined above.

Corollary 3.25. The constructions of Theorem 3.22 and Corollary 3.23 do
not change, for w ∈ Σ+ (resp. for w ∈ Σω), the number of finite derivations
of w with respect to Gi (resp. the number of infinite derivations of w with
respect to Gi such that at least one of the variables of {y1, . . . , yn} appears
infinitely often in these infinite derivations).

Hence, the constructions transform unambiguous grammars into unam-
biguous grammars.
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20. D. Perrin and J.-É. Pin, Infinite Words, Elsevier, 2004
21. I. Petre and A. Salomaa. Algebraic systems and pushdown automata. In

this Handbook, chapter 7. Springer, Berlin, 2009
22. A. Salomaa. Formal Languages. Academic Press, San Diego, 1973.
23. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal

Power Series. Springer, Berlin, 1978.
24. M.P. Schützenberger. On the definition of a family of automata. Informa-

tion and Control, 4:245–270, 1961.



Chapter 4:
Rational and Recognisable Power Series�

Jacques Sakarovitch

LTCI, ENST/CNRS,
46 rue Barrault, 75634 Paris Cedex 13, France
sakarovitch@enst.fr

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2 Rational Series and Weighted Rational Expressions . . . . . . . 107

2.1 Series over a Graded Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.2 Rational Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Weighted Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.1 The Behaviour of a Weighted Automaton . . . . . . . . . . . . . . . . . . . . . . . 122
3.2 The Fundamental Theorem of Automata . . . . . . . . . . . . . . . . . . . . . . . 126
3.3 Conjugacy and Covering of Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 Recognisable Series and Representations . . . . . . . . . . . . . . . . . . 138

4.1 The Family of Recognisable Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2 Other Products on Recognisable Series . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3 Series on a Product of Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Series over a Free Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 The Representability Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Reduced Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3 Applications of the Reduction of Representations . . . . . . . . . . . . . . . . 161

6 Support of Rational Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1 General Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Notes to Sect. 2: Rational Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3 Notes to Sect. 3: Weighted Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.4 Notes to Sect. 4: Recognisable Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
� This chapter is adapted from Chaps. III and IV of the book Elements of Automata
Theory, Jacques Sakarovitch, 2009, c©Cambridge University Press, where missing
proofs, detailed examples and further developments can be found.

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-01492-5 4, Springer-Verlag Berlin Heidelberg 2009

105



106 Jacques Sakarovitch

7.5 Notes to Sect. 5: Series over a Free Monoid . . . . . . . . . . . . . . . . . . . . . 170
7.6 Notes to Sect. 6: Support of Rational Series . . . . . . . . . . . . . . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

1 Introduction

Weighted automata realise power series—in contrast to ‘classical’ automata
which accept languages. There are many good reasons that make power series
worth an interest compared to languages, beyond the raw appeal to generali-
sation that inhabits every mathematician.

First, power series provide a more powerful mean for modelisation, replac-
ing a pure acceptance/rejection mode by a quantification process. Second, by
putting automata theory in a seemingly more complicated framework, one
benefits from the strength of mathematical structures thus involved and some
results and constructions become simpler, both conceptually, and on the com-
plexity level. Let us also mention, as a third example, that in the beginning
of the theory, weighted automata were probably considered for their ability of
defining languages—via the supports of realised power series—rather than for
the power series themselves. In all these instances, what matters is that the
choice of the semiring S of multiplicity be as wide as possible and our first
aim is to develop as far as possible a theory with a priori no assumption at
all on S.

With this in mind, I have chosen as the main thread of this chapter to
lay comprehensive bases for the proof of the decidability of the equivalence of
deterministic k-tape transducers which is, at least in my opinion, one of the
most striking examples of the application of algebra to “machine theory.” To
that end, I develop in particular the following points:

(a) The definition of rational series over graded monoids (in order to deal with
direct product of free monoids) and not over free monoids only. A side
benefit of the definition of series over arbitrary (graded) monoids is that
it makes clearer the distinction between the rational and the recognisable
series.

(b) The reduction theory of series over a free monoid and with coefficients in
a (skew) field that leads to a procedure for the decidability of equivalence
(with a cubic complexity).

(c) As it is natural for series with coefficients in a field, and since the topo-
logical machinery is set anyway, the star of series is defined in a slightly
more general setting than cycle-free series.

(d) The basics for rational relations with multiplicity, for the weighted gener-
alisation of the often called Kleene–Schützenberger theorem on transduc-
ers as well as of the Myhill theorem (on recognisable sets in a product of
monoids) or of McKnight theorem (on the inclusion of recognisable set in
rational ones in finitely generated monoids).
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The core of this chapter pertains to a now classical part of automata theory,
originating in the seminal paper of M.P. Schützenberger [46] and having been
exposed in several treatises already quoted in Chap. 1: Eilenberg [14], Salomaa
and Soittola [45], Berstel and Reutenauer [5], and Kuich and Salomaa [29].
I have not resisted though to include some more recent developments which are
the result of my own work with my colleagues M.-P. Béal and S. Lombardy: the
derivation of weighted expressions [33], and the connection between conjugacy
and equivalence [3, 4].

The presentation given here (but for the last quoted result that is too re-
cent) is adapted from Chaps. III and IV of my book Elements of Automata
Theory [43], where missing proofs, detailed examples, and further develop-
ments can be found. I am grateful to Reuben Thomas who has translated this
book from French to English and to Cambridge University Press for allow-
ing me to use the material for this chapter. Finally, I want to acknowledge
the always inspiring discussions I have had in the last 10 years with Sylvain
Lombardy.

2 Rational Series and Weighted Rational Expressions

In the preceding chapters, the formal power series that have been considered
are series over a free monoid with coefficients in a semiring S that is almost
always supposed to be complete or continuous, opening the way to straight-
forward generalisations of results and methods developed for languages, that
are series with multiplicity in the Boolean semiring, and classical automata.

Our first purpose is to build a theory where no assumptions are made
on the semiring of coefficients, and as few as possible on the base monoid.
There will be some redundancy with Chaps. 1 and 3, but I have preferred
to write a comprehensive text that naturally flows rather than to interrupt
it with references to results that are always stated under slightly different
hypotheses.

In what follows, M is a monoid and S a semiring, a priori arbitrary.

2.1 Series over a Graded Monoid

For any set E, the set of maps from E to S is usually written SE and canon-
ically inherits from S a structure of semiring when equipped with pointwise
addition and multiplication. When E is a monoid M , we equip SM with an-
other multiplication which derives from the monoid structure of M, and we
thus use different notation and terminology for these maps together with this
other semiring structure—indeed, the ones set up in Chap. 1, Sect. 3.

Any map from M to S is a formal power series over M with coefficients
in S—abbreviated as S-series over M , or even as series if there is ambiguity
neither on S nor on M . The set of these series is written S〈〈M〉〉. If r is a
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series, the image of an element m of M under r is written (r,m) rather than
(m)r and is called the coefficient of m in r.

The support of a series r is the subset of elements of M whose coeffi-
cient in r is not 0S . A series with finite support is a polynomial ; the set of
polynomials over M with coefficients in S is written S〈M〉.

For all r and r′, and all s in S, the following operations on S〈〈M〉〉 are
defined:

(i) The (left and right) ‘exterior’ multiplications1:

sr and rs by ∀m ∈ M (sr,m) = s(r,m) and (rs, m) = (r,m)s.

(ii) The pointwise addition:

r + r′ by ∀m ∈ M (r + r′, m) = (r,m) + (r′, m).

(iii) The Cauchy product :

rr′ by ∀m ∈ M (rr′, m) =
∑

u,v∈M
uv=m

(r, u)(r′, v). (∗)

Addition makes S〈〈M〉〉 a commutative monoid, whatever S and M ; to-
gether with the two exterior multiplications, it makes S〈〈M〉〉 a left and right
semimodule2 on S.

The Cauchy product raises a problem for there could very well exist ele-
ments m in M such that the set of pairs (u, v) satisfying uv = m is infinite,
and hence there could exist series such that the sum on the right-hand side
of (∗) is not defined. Thus, we cannot ensure, without further assumptions,
that the Cauchy product is a binary operation totally defined on S〈〈M〉〉. This
difficulty can be overcome in at least three ways.

The first is to retreat: we no longer consider S〈〈M〉〉 but only the set S〈M〉
of polynomials. If r and r′ are polynomials, the sum in (∗) is infinite but
only a finite number of terms are non-zero; the Cauchy product is defined
on S〈M〉 and makes it indeed a semiring (a semi-algebra on S), a subsemi-
algebra of S〈〈M〉〉 when that is defined.

The second is to assume that S is complete: every sum, even if infinite, is
defined on S, and the Cauchy product of two series is defined for any M . This
is the case, for example, if S is equal to B, B〈〈M〉〉, 〈N∞, +, ·〉 or 〈N∞, min,+〉.
The theory of finite automata over a free monoid and with multiplicity in a
complete semiring has been developed in Chap. 3 of this book.

The third way, which is ours, aims at being able to define weighted au-
tomata, and hence series, without restriction on S, and we are led in this case
1 Which are called scalar products in Chap. 1.
2 For sake of uniformity in this book, I use the terms ‘semimodule’ and ‘semialge-
bra’ whereas in [43] and other publications, I follow the convention of Berstel and
Reutenauer [5] and speak of ‘module’ and ‘algebra’ (over a semiring).
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to make assumptions about M : we suppose for the rest of this chapter that the
monoids are graded, a condition that we shall describe in the next paragraph
and which allows the natural generalisation of the standard construction of
formal power series of a single variable.3 This somewhat different assumption
makes it necessary to restate, and sometimes to reprove again, some of the
statements already established when S is complete.

2.1.1 Graded Monoid

For the Cauchy product to be always defined on S〈〈M〉〉, independently of S,
it is necessary (and sufficient) that, for all m in M , the set of pairs (u, v) such
that uv = m is finite—we will say that m is finitely decomposable. However,
making S〈〈M〉〉 a semiring is not an end in itself: the development of the theory
to come is the characterisation of the behaviour of finite automata by means
of rational operations—a fundamental theorem—and then not only must sum
and product be defined on the series, but so must the star operation, which
implies an infinite sum. This forces us to have some sort of topology on S〈〈M〉〉,
to which we shall return in the next paragraph.

The construction of series on Σ∗, which generalises that of series of one
variable, shows that it is from the length of words in Σ∗ that we build a topol-
ogy on S〈〈Σ∗〉〉. The existence of an additive length is the main assumption
that we shall make about M . Returning to the initial problem, we then seek
an additional condition that ensures that every element is finitely decompos-
able. For reasons of simplicity, we assume that M is finitely generated. This
solves the problem, while allowing us to deal with the cases that interest us.

Definition 2.1. A function ϕ : M → N is a length on M if:

(i) ϕ(m) is strictly positive for all m other than 1M

(ii) ∀m, n ∈ M ϕ(mn) ≤ ϕ(m) + ϕ(n)

We shall say that a length is a gradation if it is additive; that is, if:

(iii) ∀m, n ∈ M ϕ(mn) = ϕ(m) + ϕ(n)

and that M is graded if it is equipped with a gradation.

Every free monoid and every Cartesian product of free monoids is graded.
The definition implies that ϕ(1M ) = 0 and that a finite monoid, more generally
a monoid that contains an idempotent other than the identity (for example,
a zero), cannot be equipped with a gradation.

Proposition 2.2. In a finitely generated graded monoid, the number of ele-
ments whose length is less than an arbitrary given integer n is finite.
3 A fourth method exists that takes out of both the first and the third. It involves
making an assumption about M (we require it to be an ordered group) and consider-
ing only a subset of S〈〈M〉〉 (those series whose support is well ordered). A reference
to that set of series will be made in Sect. 5.3.



110 Jacques Sakarovitch

In other words, every element of a graded monoid M can only be written
in a finite number of different ways as the product of elements of M other
than 1M . We can deduce in particular the following corollary.

Corollary 2.3. In a finitely generated graded monoid, every element is fi-
nitely decomposable.

Note that a finite monoid is not graded, but that every element in it is
nonetheless finitely decomposable. From Corollary 2.3, we deduce the propo-
sition aimed at by Definition 2.1:

Proposition 2.4. Let M be a finitely generated graded monoid and S a semi-
ring. Then S〈〈M〉〉, equipped with the Cauchy product, is a semiring, and what
is more, a (left and right) semi-algebra4 on S.

In the following, M is a graded monoid that is implicitly assumed to be
finitely generated. To simplify the notation and in imitation of the free monoid,
we will write the length function as a pair of vertical bars, that is, |m| rather
than ϕ(m).

From the semiring S〈〈M〉〉, one then builds other semirings, by means of
classical constructions; let us quote in particular and for further reference the
following fundamental isomorphism.

Lemma 2.5. Let S be a semiring, M a graded monoid, and Q a finite set;
then the set of square matrices of dimension Q and with entries in the semi-
ring S〈〈M〉〉 is a semiring, isomorphic to that of series over M with coefficient
in the semiring of square matrices of dimension Q and with entries in S; that
is, S〈〈M〉〉Q×Q ∼= SQ×Q〈〈M〉〉.

Remark 2.6. A notion that is often considered in relationship with gradation
is equidivisibility. A monoid M is equidivisible if whenever mn = pq with m,
n, p, and q in M , there exists u such that mu = p and n = uq or m = pu
and un = q. There is then a theorem by F.W. Levi which states that a graded
equidivisible monoid is free (cf. [30]). This notion is also to be compared with
the one of equisubtractivity that is considered below.

2.1.2 Topology on S〈〈M〉〉

The definition to come of the star operation, an infinite sum, calls for the
definition of a topology on S〈〈M〉〉.

Since S〈〈M〉〉 = SM is the set of maps from M to S, it is naturally equipped
with the product topology of the topology on S. If this topology on S is defined
by a distance, the product topology on S〈〈M〉〉 coincides, as M is countable,
with the simple convergence topology :
4 If S is a ring, S〈〈M〉〉 is even what is classically called a graded algebra, which is
the origin of the terminology chosen for graded monoids.
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rn converges to r, if and only if,
for all m in M , (rn, m) converges to (r,m).

We shall reexamine the topology question using only the notion of distance,
more in line with intuition and explain how to define a distance between two
series under the assumption that M is graded. The foregoing reference to
simple convergence topology was nevertheless worthwhile, as it made clear
that the basis of the topology on S〈〈M〉〉 is the topology on S.

Distance on S〈〈M〉〉

A distance on a set E is a map d which relates to every pair (x, y) of ele-
ments of E a positive real number d(x, y), called the distance from x to y (or
between x and y), which satisfies the following properties:

• Symmetry: d(x, y) = d(y, x)
• Positivity: d(x, y) > 0 if x 
= y and d(x, x) = 0
• Triangular inequality: d(x, y) ≤ d(x, z) + d(y, z)

When this triangular inequality can be replaced by

• ∀x, y, z ∈ E d(x, y) ≤ max{d(x, z),d(y, z)}

the distance d is called ultrametric.
A sequence {xn}n∈N of elements of E converges to x if the distance be-

tween xn and x becomes arbitrarily small as n grows; that is, more formally,

∀η > 0 ∃N ∈ N ∀n ≥ N d(xn, x) ≤ η.

Such an element x is unique; it is called the limit of the sequence {xn}n∈N

and we write x = limn→+∞ xn, or simply x = lim xn if there is no ambiguity.
We say that d equips E with a topology.

Remark 2.7. We can always assume that a distance is a real number less than
or equal to 1. If that is not the case, then by taking

f(x, y) = inf{d(x, y), 1},

we obtain a distance f on E that defines the same topology ; that is, a distance
for which the same sequences will converge to the same limits.

Remark 2.8. Whatever E is, we can choose a trivial distance function which
is 1 for every pair of distinct elements. This is equivalent to saying that two
distinct elements are never ‘close’ to each other, and that the only convergent
sequences are those that are eventually stationary. We then say that E is
equipped with the discrete topology.
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We are confronted with two situations which seem fundamentally different.
The first is that of a semiring S such as B, N, Z, N

∞, etc., whose elements are
‘detached’ from each other. The natural topology on these semirings is the
discrete topology. The second is that of semirings such as Q, Q+, R, etc., or
even later S〈〈M〉〉 itself, which can act as a semiring of coefficients for series on
another monoid; that is, semirings on which there is a priori a distance which
can be arbitrarily small. On these semirings as well, we can choose a discrete
topology, but it is more satisfactory to preserve their ‘native’ topology. By
means of the definition of a distance and the topological notions derived from
it, we treat these two situations in the same way.

We first assume that S is equipped with a distance c which is bounded
by 1. The length function on M allows us to put an ordering on the elements
of M and we set

d(r, r′) =
1
2

∑

n∈N

(
1
2n

max
{
c
(
(r,m), (r′, m)

) ∣
∣ |m| = n

}
)

.

We then verify that d is indeed a distance on S〈〈M〉〉, ultrametric when c
is, and that the topology defined on S〈〈M〉〉 by d is, as stated, the simple
convergence topology; that is, the following property.

Property 2.9. A sequence {rn}n∈N of series of S〈〈M〉〉 converges to r, if and
only if, for all m in M the sequence of coefficients (rn, m) converges to (r,m).

Furthermore, choosing a topology on a semiring only really makes sense
if the constituent operations of the semiring, addition and multiplication, are
consistent with the topology—we say they are continuous—that is, if the
limit of a sum (resp. of a product) is the sum (resp. the product) of the limits.
We say in this case that not only is the semiring equipped with a topology,
but that it is a topological semiring. We easily verify that if S is topological,
then so is S〈〈M〉〉. In other words, if {rn}n∈N and {r′n}n∈N are two convergent
sequences of elements of S〈〈M〉〉, we have

lim(rn + r′n) = (lim rn) + (lim r′n) and lim(rnr′n) = (lim rn)(lim r′n).

Note that conversely the fact that the sequence {rn + r′n}n∈N or {rnr′n}n∈N

converges says nothing about whether {rn}n∈N or {r′n}n∈N converges or not.
If S is a topological semiring, then so is SQ×Q and the isomorphism quoted

in Lemma 2.5 is moreover a bi-continuous bijection.

Summable Families

Let T be a semiring5 equipped with a distance which makes it a topological
semiring. We thus know precisely what means that an infinite sequence {tn}n∈N

5 We have temporarily changed the symbol we use for a semiring on purpose: T will
not only play the role of S but also of S〈〈M〉〉 in what follows.
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converges to a limit t when n tends to infinity. We must now give an equally
precise meaning to the sum of an infinite family {ti}i∈I and it turns out to be
somewhat harder. The difficulty arises from the fact that we want a sort of
associativity–commutativity extended ‘to infinity’, and hence to ensure that
the result and its existence does not depend on an arbitrary order put on the
set I of indices.

We shall therefore define an ‘absolute’ method of summability, and a family
will be described as ‘summable’ if we can find an increasing sequence of finite
sets of indices, a sort of ‘kernels’, such that not only do partial sums on these
sets tend to a limit, but above all that any sum on a finite set containing one
of these kernels stays close to this limit. More precisely, we take the following
definition.

Definition 2.10. A family {ti}i∈I of elements of T indexed by an arbitrary
set I is called summable if there exists t in T such that, for all positive η,
there exists a finite subset Jη of I such that, for all finite subsets L of I which
contain Jη, the distance between t and the sum of {ti} for i in L is less than η;
that is,

∃t ∈ T, ∀η > 0, ∃Jη finite, Jη ⊂ I, ∀L finite, Jη ⊆ L ⊂ I

d
(∑

i∈L

ti, t

)

≤ η.

The element t thus defined is unique and is called the sum of the fam-
ily {ti}i∈I .

The sum just defined is obviously equal to the usual sum if I is finite, and
we write

t =
∑

i∈I

ti.

From the definition of a summable family, we easily deduce an associativity
property restricted to finite groupings, but that repeats infinitely.

Property 2.11. Let {ti}i∈I be a summable family with sum t in T . Let K be a
set of indices and {Jk}k∈K a partition of I where all the Jk are finite (that is,
I =

⋃
k∈K Jk and the Jk are pairwise disjoint). Set sk =

∑
i∈Jk

ti for every k
in K. Then the family {sk}k∈K is summable with sum t.

As in the preceding chapters, we say that a family of series {ri}i∈I is
locally finite if for every m in M there is only a finite number of indices i such
that (ri, m) is different from 0S .

Property 2.12. A locally finite family of power series is summable.

This simple property is a good example of what the topological structure
placed on S〈〈M〉〉 imposes and adds. That we can define a sum for a locally
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finite family of series is trivial: pointwise addition is defined for each m, inde-
pendently of any assumption about M . To say that the family is summable is
to add extra information: it ensures that partial sums converge to the result
of pointwise addition.

For every series r, the family of series {(r,m)m | m ∈ M}, where m is
identified with its characteristic series, is locally finite, and we have

r =
∑

m∈M

(r,m)m,

which is the usual notation that is thus justified. We also deduce from this
notation that S〈M〉 is dense in S〈〈M〉〉. Property 2.12 extends beyond locally
finite families and generalises to a proposition which links the summability of
a family of series and that of families of coefficients.

Property 2.13. A family {ri}i∈I of S〈〈M〉〉 is summable with sum r if and only
if for each m in M , the family {(ri, m)}i∈I of elements of S is summable with
sum (r,m).

2.2 Rational Series

We are now ready to define the star operation on a series. We must never-
theless introduce here an assumption on the semiring, somehow an axiom of
infinite distributivity. After that, the definition of rational series comes eas-
ily, the double definition indeed, one as a closure under rational operations
and one by means of rational expressions which opens the way to effective
computations.

2.2.1 Star of a Series

We start by considering the problem in arbitrary semirings and not only in
the semirings of series.

Let t be an element of a topological semiring T ; it is possible for the family
{tn}n∈N to be, or not to be summable. If it is summable, we call its sum the
‘star of t’ and write it t∗:

t∗ =
∑

n∈N

tn.

Whether t∗ is defined depends on t, on T , on the distance on T , or on a
combination of all these elements. For example, (0T )∗ = 1T is defined for
all T ; if T = Q, we have (1

2 )∗ = 2 if Q is equipped with the natural topology,
or undefined if the chosen topology is the discrete topology, while 1∗ is not
defined in either case.

Lemma 2.14. Let T be a topological semiring and t an element of T whose
star is defined. We have the double equality

t∗ = 1T + tt∗ = 1T + t∗t. (1)
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Proof. We obviously have t≤n = 1T +tt<n = 1T +t<nt. As lim t<n = lim t≤n =
t∗, and as addition and multiplication are continuous operations on T , we
obtain (1) by taking the limit of each side of the above equation. ��
Remark 2.15. If T is a topological ring, and if the star of t is defined, (1) can
be written t∗ − tt∗ = t∗ − t∗t = 1 or (1 − t)t∗ = t∗(1 − t) = 1 and so t∗ is the
inverse of 1 − t. Hence, the classic identity

t∗ =
1

1 − t
= 1 + t + t2 + · · · , (2)

is justified in full generality. It also means that forming the star can be con-
sidered as a substitute of taking the inverse in poor structure that has no
inverse.

Star of a Proper Series

By reference to polynomials and to series in one variable, we call the constant
term of a series r of S〈〈M〉〉 the coefficient of the neutral element of M in r:
c(r) = (r, 1M ). A power series is called proper if its constant term is zero. The
sum of two proper series is a proper series; the product of a proper series with
any other series is a proper series, since M is graded.

If r is proper, the family {rn | n ∈ N} is locally finite, and thus the star
of a proper series of S〈〈M〉〉 is defined.

Lemma 2.16 (Arden). Let r and u be two series of S〈〈M〉〉; if r is a proper
series, each of the equations

X = rX + u and (3)
X = Xr + u (4)

has a unique solution: the series r∗u and ur∗, respectively.

Proof. In (1), we replace t by r and multiply on the left (resp. on the right)
by u and we obtain that r∗u (resp. ur∗) is a solution of (3) (resp. of (4)).
Conversely, if v is a solution of the equation X = u + rX, we have

v = u + rv =⇒ v = u + ru + r2v = · · · = r<nu + rnv,

for all integers n. Since r is proper, and multiplication continuous, we have
lim rn = lim rnv = 0, from which follows v = lim(r<nu) = (lim r<n)u =
r∗u. ��

From which, we deduce the following proposition.

Proposition 2.17. Let r and u be two proper series of S〈〈M〉〉; the following
equalities (or identities) hold:

(r + u)∗ = r∗(ur∗)∗ = (r∗u)∗r∗, (S)
(ru)∗ = 1 + r(ur)∗u, (P )

∀n ∈ N r∗ = r<n(rn)∗. (Zn)
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Following [12], the identity (S) is called the sum star identity in Chap. 1,
(P ) the product star identity.

Remark 2.18. It follows by Lemma 2.5 that a square matrix m of dimension Q
with elements in S〈〈M〉〉 is a proper series of SQ×Q〈〈M〉〉 if all its elements are
proper series; (we say in this case that m is proper), and hence that the
identities (S), (P ), and (Zn) are satisfied by proper matrices.

Strong Semirings and Star of an Arbitrary Series

The star of an arbitrary series, not necessarily proper, may or may not be
defined. The following proposition allows us to tell the difference between the
two cases. First, we make a timely definition to avoid a difficulty.

Definition 2.19. A topological semiring is strong if the product of two sum-
mable families is a summable family; that is, if the two families {ri | i ∈ I}
and {uj | j ∈ J} are summable with sum s and t, respectively, then the family
{riuj | (i, j) ∈ I × J} is summable with sum st.

All the semirings which we shall consider are strong: semirings equipped
with the discrete topology, the sub-semirings of C

n (equipped with the natural
topology), and the positive semirings. We then easily verify the following
property.

Property 2.20. The semirings of matrices and the semirings of series on a
graded monoid, with coefficients in a strong semiring are strong.

Let r be a series of S〈〈M〉〉; the proper part of r is the proper series that
coincides with r for all the elements m of M other than 1M . It is convenient
to write r0 = c(r) for the constant term of r, and rp for the proper part of r:

(rp1M ) = 0S and ∀m ∈ M\1M (rp, m) = (r,m),

and we write r = r0 + rp (rather than r = r01M + rp). These definitions and
notations are taken in view of the following, which generalises to a series with
coefficients in an arbitrary strong semiring, a result already established for
series with coefficients in a continuous semiring.

Proposition 2.21. Let S be a strong topological semiring and M a graded
monoid. Let r be a series of S〈〈M〉〉, r0 its constant term and rp its proper
part. Then r∗ is defined if and only if r∗0 is defined and in this case we have

r∗ = (r∗0rp)∗r∗0 = r∗0(rpr
∗
0)∗. (5)

Proof. The condition is necessary since (rn, 1M ) = rn
0 and, if r∗ is defined,

the coefficients of 1M in {rn}n∈N form a summable family.
Conversely, assume that {rn

0 }n∈N is summable, with sum r∗0 . For all pairs
of integers k and l, set
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Pk,l =
∑

i0,i1,...,ik∈N

i0+i1+···+ik=l

ri0
0 rpr

i1
0 rp · · · rik−1

0 rpr
ik
0 .

By convention, set P0,l = rl
0 and Pk,0 = rk

p . We verify by inspection that, for
all integers n,

rn = (r0 + rp)n =
l=n∑

l=0

Pn−l,l. (6)

By induction on k, we will show that the family

Fk =
{
ri0
0 rpr

i1
0 rp · · · rik−1

0 rpr
ik
0

∣
∣ i0, i1, . . . , ik ∈ N

}

is summable in S〈〈M〉〉, with sum

Qk = (r∗0rp)kr∗0 = r∗0(rpr
∗
0)k.

The ingredients of the proof are depicted in Fig. 1.
In fact, the hypothesis on r0 ensures the property for k = 0, and also that

the family G = {r0
nrp | n ∈ N} is summable in S〈〈M〉〉, with sum r0

∗rp.
The family Fk+1 is the product of the families G and Fk and the assumption
that S, and hence S〈〈M〉〉 is strong gives us the conclusion.

Hence, we deduce that, for each k, the family {Pk,l | l ∈ N} is summable,
with sum Qk. The family {Qk | k ∈ N} is locally finite, hence summable, with
sum

u =
∞∑

k=0

Qk = (r∗0rp)∗r∗0 = r∗0(rpr
∗
0)∗.

We can now easily finish the proof by showing that the ‘doubly indexed’
family {Pk,l | k, l ∈ N} is summable, with sum u. Equation (6) and Prop-
erty 2.11 then ensure that the family {rn | n ∈ N} is summable with sum u. ��

The case of cycle-free series (see Chap. 1 and 3) falls in the scope of
Proposition 2.21. In the same spirit as Remark 2.18, we note that (5) holds
for every matrix m such that the star of its matrix of constant terms is defined.
A particularly interesting case of this is where the matrix of constant terms
is a strict upper triangular, another case of cycle-free series.

Proposition 2.22 (Bloom–Ésik [7]). Let S be a strong topological semiring
and M a graded monoid. Let r and u be series of S〈〈M〉〉 with constant terms r0

and u0, respectively, and such that r∗0, u∗
0, and (r0 + u0)∗ are defined. Then

the identities (S), (P ), and (Zn) hold for r and u.

In other words, with the terminology of Chap. 1, and if one skips the
question of the definition of star, if S is a Conway semiring, so is S〈〈M〉〉.

Remark 2.23. Along the line of Remark 2.15, it holds that if S is a ring, a series
of S〈〈M〉〉 is invertible, if and only if its constant term is invertible.

For the rest of the chapter, S is a strong topological semiring.
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Fig. 1. A graphical representation of Proposition 2.21

2.2.2 The Family of Rational Series

We first characterise rational series ‘from above’ with the definition of rational
operations and of closed families, and then inductively ‘from below’, with the
definition of weighted rational expressions.

S-Rational Operations

The rational operations on S〈〈M〉〉 are:

(i) The S-algebra operations, that is:
• The two exterior multiplications by the elements of S
• The addition
• The product

(ii) The star operation, which is not defined everywhere.

Point (ii) leads us to tighten the notion of closure: a subset E of S〈〈M〉〉 is
closed under star if s∗ belongs to E for every series s in E such that s∗ is
defined.

A subset of S〈〈M〉〉 is rationally closed if it is closed under the rational
operations; that is, if it is a subsemi-algebra of S〈〈M〉〉 closed under the star
operation. The intersection of any family of rationally closed subsets is ratio-
nally closed, and thus the rational closure of a set E is the smallest rationally
closed subset which contains E , written SRat E .

Definition 2.24. A series of S〈〈M〉〉 is S-rational if it belongs to the rational
closure of S〈M〉, the set of polynomials on M with coefficients in S. The set
of S-rational series (over M with coefficients in S) is written SRat M .

If the monoid M is implied by the context, we shall say S-rational series,
or just rational series, if S is also understood.
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Example 2.25.

(i) Let M be the one-generator free monoid {x}∗ and S be a field F. Then
FRat x∗ is exactly the set of series developments of (F-)rational functions
(that is, quotients of two polynomials) and this is where the name ratio-
nal—rather the more common regular (for expressions and languages)—
comes from.

(ii) If S = B, we simply write RatM for BRatM and its elements are the
rational subsets of M .

(iii) If S = N and M = Σ∗×Δ∗, NRat Σ∗×Δ∗ is the set of rational relations
from Σ∗ to Δ∗ with multiplicity in N, which we shall consider later.

Characteristic Series and Unambiguous Rational Sets

The notions introduced so far allow for a precise definition of unambiguity6

(for rational sets) and some illustrative computations. For brevity, let us de-
note by P the characteristic series of a subset P of M (rather than by char(P )
as in Chap. 1).

Definition 2.26. Set S = N and let P and Q be two subsets of M .

(i) The union P ∪ Q is unambiguous if and only if (P ∪ Q) = P + Q.
(ii) The product PQ is unambiguous if and only if (PQ) = P Q.
(iii) The star of P is unambiguous if and only if P ∗ = (P )∗.

A subset of M is unambiguously rational if it belongs to the unambiguous
rational closure of finite subsets of M . The family of unambiguous rational
subsets of M is written URat M .

Then P ∈ URat M if, and only if P ∈ NRat M and then P ∈ SRat M
for any S. It is well known for instance that URat Σ∗ = Rat Σ∗ and that
URat(Σ∗ × Δ∗) is strictly contained in Rat(Σ∗ × Δ∗).

As Σ freely generates Σ∗, we have (Σ)∗ = Σ∗, and thus Σ∗ = ε + ΣΣ∗ =
ε + Σ∗Σ which gives (ε − Σ)Σ∗ = Σ∗(ε − Σ) = ε, and thus Σ∗ = (ε − Σ)−1

if S = Z.
If P is a non-empty prefix-closed subset of Σ∗, the border of P is the set:

C = PΣ\P.

As an example, Fig. 2 shows the prefix-closed subset {ε, b, ba} and its border
{a, bb, baa, bab}.

Let P is a non-empty prefix-closed subset of Σ∗ and let h = pa with p
in P and a in Σ (this is the unique expression of h in this form). There are
two, mutually exclusive, possible cases: h is in C or h is in P . Conversely,
every word of P ∪ C can be written in this way, except ε. Hence, we deduce
the equality between characteristic series:
6 A more or less folklore notion; an early reference for unambiguous rational sets
is [15].
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Fig. 2. A prefix-closed subset and its border

C + P = PΣ + ε,

which we first rewrite as ε − C = P (ε − Σ) then by right multiplication by
Σ∗ = (ε−Σ)−1, as Σ∗−CΣ∗ = P . We thus have proved the following lemma.

Lemma 2.27. Let P be a non-empty prefix-closed subset and C = PΣ\P its
border. Every word f of Σ∗\P can be written uniquely as f = cg with c in C
and g in Σ∗.

Rational S-Expressions

The definition of expressions will provide useful tools and handier ways to
deal with rational series. Let {0, 1, +, ·, ∗} be five function symbols. Naturally,
the functions + and · are binary, ∗ is unary, and 0 and 1 are nullary (they
represent constants). We define, for each s in S, two unary functions, also
written s.

Definition 2.28. A weighted rational expression over M with weight in S, or
rational S-expression over M , is obtained inductively in the following manner:

(i) 0, 1, and m, for all m in M , are rational expressions (the atomic expres-
sions).

(ii) If E is a rational expression and s is in S, then (sE) and (Es) are rational
expressions.

(iii) If E and F are rational expressions, then so are (E+F), (E ·F), and (E∗).

We write SRatE M for the set of rational S-expressions over M .

Remark 2.29.

(i) We can restrict the atomic expressions, other than 0 and 1, to be ele-
ments g of any given generating set G of M without reducing the power
of the definition. That is what we usually do when M is a free monoid Σ∗.

(ii) We could have considered the elements of S to be atoms and not opera-
tors, again without changing the power of the definition, and that would
simplify somewhat some upcoming equations. The chosen way is, how-
ever, more consistent with the upcoming definition of the derivation of
S-expressions over Σ∗.
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We define the depth of an expression E, d(E), as the height of the syntactical
tree of the corresponding expression:

d(0) = d(1) = d(m) = 0, for all m in M,

d((sE)) = d((Es)) = d((E∗)) = 1 + d(E),

d((E + F)) = d((E · F)) = 1 + max
(
d(E), d(F)

)
.

The constant term of an expression E, c(E), is defined by induction on the
depth of E; it is an element of S, computed by the following equations:

c(1) = 1S , c(0) = c(m) = 0S for all m in M,

c((sE)) = sc(E), c((Es)) = c(E)s,
c((E + F)) = c(E) + c(F), c((E · F)) = c(E)c(F), and

c((E∗)) = c(E)∗ if the right-hand side is defined in S.

A rational S-expression may represent an element of S〈〈M〉〉 or not, the
distinction between the two cases being made by the constant term, exactly
as for the star of an arbitrary series and using that result. We shall say that
an expression in SRatE M is valid if its constant term is defined. The series
denoted by a valid expression E, which we write |E|, is defined by induction
on the depth of E by the equations

|0| = 0S , |1| = 1M , |m| = m for all m in M,

|(sE)| = s|E|, |(Es)| = |E|s,
|(E + F)| = |E| + |F|, |(E · F)| = |E||F|, and |(E∗)| = |E|∗.

We verify both that these equations are well defined and that they are
consistent, in the sense that the constant term of the expression E is the
constant term of the series |E|, in parallel, and in the same induction, using
Proposition 2.21. In other words, and in order to define |E|, we shall also have
proved the following.

Property 2.30. For all valid S-expressions E in SRatE M , c(E) = (|E|, 1M ).

Example 2.31. Take M = {a, b}∗ and S = Q. The Q-expression (a∗+(−1b∗))∗

is valid, as is E1 = (1
6a∗ + 1

3b∗)∗ since c(1
6a∗ + 1

3b∗) = 1
2 , and hence c(E1) = 2

is defined; (a∗ + b∗)∗ is not valid.

The set of series denoted by valid S-expressions is rationally closed, and
every rationally closed subset of S〈〈M〉〉 that contains every element of M
(and thus S〈M〉) contains every series denoted by a valid S-expression, which
proves the following proposition.

Proposition 2.32. A series of S〈〈M〉〉 is S-rational if and only if it is denoted
by a valid rational S-expression over M .
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3 Weighted Automata

An automaton over M with weight (or with multiplicity) in S, or S-automaton7

over M is a graph labelled with elements of S〈〈M〉〉, associated with two maps
from the set of vertices to S〈〈M〉〉. We develop and complete this definition. We
build on the identification of a graph with its incidence matrix and the proofs
will be performed systematically with matrix computations. The essence of
an automaton, however, remains that of a graph and the behaviour of on
automaton is defined in the language of graphs. We also continue to use the
graph representation and its vocabulary to aid intuition.

3.1 The Behaviour of a Weighted Automaton

An automaton A over M with weights in S is specified by the choice of the
following:8

• A non-empty set Q of states of A, also called the dimension of A.
• An element E of S〈〈M〉〉Q×Q, a square matrix of dimension Q with entries

in S〈〈M〉〉, called the transition matrix of A; we can view each entry Ep,q

different from 0S as the label of a unique edge which goes from state p
to state q in the graph with vertices Q and we write p

x−→ q, or p
x−→
A

q, if

x = Ep,q. (If Ep,q = 0S , we consider there to be no edge from p to q.)
• Two elements I and T of S〈〈M〉〉Q; that is, two functions I and T from Q

to S〈〈M〉〉: I is the initial function and T the final function of A; they can
also be seen as vectors of dimension Q: I is a row vector and T a column
vector, called respectively the initial vector and final vector of A.

The S-automaton A is written, naturally enough,

A = 〈I, E, T 〉.

We use the familiar conventions to represent S-automata graphically (see
figures below); the values of I labelling the incoming arrows and those of T
the outgoing arrows.

A path in A is a sequence of transitions such that the source of each is the
destination of the previous one; it can be written

c := p0
x1−→ p1

x2−→ p2
x3−→ · · · xn−−→ pn.

The label, or result of c, written |c|, is the product of the labels of the transitions
of c. In the above case, |c| = x1x2 · · ·xn.

A computation in A is a path to which is added an arrow arriving at the
source and one leaving from the destination, with their respective labels. The
computation corresponding to the above path is hence
7 Or weighted automaton if S is understood or immaterial.
8 This definition is a priori more general than the one given in Chap. 3; the two will
coincide for finite automata.
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d :=
Ip0−−→ p0

x1−→ p1
x2−→ p2

x3−→ · · · xn−−→ pn
Tpn−−→ .

The label or result of d, still written |d|, is the product of the label of the
incoming arrow, that of the path, and that of the outgoing arrow, in that
order; in our case: |d| = Ip0x1x2 · · ·xnTpn .

The definitions we have made for weighted automata are indeed a gener-
alisation of the classical definitions:

(i) An automaton over Σ is a B-automaton over Σ∗; an automaton over M
is a B-automaton over M .

(ii) The distinction between path and computation, which are often used as
synonyms, may seem useless. But apart from the fact that it is consistent
with our terminology—‘path’ refers to ‘graph’ while ‘computation’ refers
to ‘automaton’, and what distinguishes an automaton from a graph is
precisely that initial and final states are taken into account—it was only
introduced in order to make precise definitions that incorporate the gen-
erality that we have now allowed for I and T . In the majority of cases,
the non-zero elements of I and T will be scalar (that is, elements of S),
usually equal to 1S and the two notions will coincide.

(iii) Along the same lines, the disappearance of the notion of a successful
computation is merely apparent. A state p such that the component Ip

is non-zero (that is, different from 0S〈〈M〉〉) can be called initial, and a
state where Tp is non-zero can be called final. We can then say that a
computation is successful if its source is an initial state and its destination
is a final state.

Definition 3.1. The behaviour of an automaton A = 〈I, E, T 〉 of finite di-
mension Q is defined if and only if for all p and q in Q the family of labels
of paths with source p and destination q is summable. In this case, the family
of labels of computations of A is summable and its sum is the behaviour of A,
written9 |A|. We also say that A accepts or realises the series |A|.

The description of the transitions of an automaton by a matrix is justified
by the fact that a walk over a graph corresponds to a matrix multiplication.
This is expressed by the following proposition.

Lemma 3.2. Let A = 〈I, E, T 〉 be an S-automaton over M of finite dimen-
sion. For every integer n, En is the matrix of the sums of the labels of paths
of length n.

Proof. By induction on n. The assertion is true for n = 1 (and also for n = 0
by convention). The definition of the (n + 1)st power of E is

∀p, q ∈ Q
(
En+1

)
p,q

=
∑

r∈Q

(
En
)
p,r

Er,q.

9 Written ‖A‖ in Chap. 3.
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Every path of length n + 1 is the concatenation of a path of length n with a
path of length 1, that is, a single transition. We can therefore write10

{c | c := p −→
A

q, l(c) = n + 1}

=
⋃

r∈Q

{(d, e) | d := p −→
A

r, l(d) = n, e := r −→
A

q ∈ E},

and hence
∑

{|c| | c := p −→
A

q, l(c) = n + 1}

=
∑

r∈Q

(
{|d||e| | d := p −→

A
r, l(d) = n, e := r −→

A
q ∈ E}

)

=
∑

r∈Q

[(∑
{|d| | d := p −→

A
r, l(d) = n}

)
Er,q

]
.

As
∑

{|d| | d = p −→
A

r, l(d) = n} = (En)p,r by the induction hypothesis, the

lemma is proved. ��

Since the sum of the results of the computations of length n is equal by
definition to the product I · En · T , and since the behaviour of A is equal to
the sum of the results of the computations of all the lengths, the following
statement holds.

Corollary 3.3. Let A = 〈I, E, T 〉 be a S-automaton of finite dimension whose
behaviour is defined, then E∗ is defined and we have |A| = I · E∗ · T .

Example 3.4. The N-automaton over {a, b}∗ defined by

B1 =
〈

(1 0),
(

a + b b
0 a + b

)

,

(
0
1

)〉

is shown in Fig. 3 (left). A simple calculation allows us to determine its be-
haviour:

∀f ∈ Σ∗ (|B1|, f) = |f |b; that is |B1| =
∑

f∈Σ∗

|f |bf = u1.

Another N-automaton is shown in Fig. 3 (right)

C1 =
〈

(1 0),
(

a + b b
0 2a + 2b

)

,

(
0
1

)〉

.

If we use the convention that each word f of Σ∗ is considered as a number
written in binary, interpreting a as the digit 0 and b as the digit 1, and if we
10 The length of a path c is here written l(c).
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Fig. 3. The N-automata B1 and C1

Fig. 4. The M-automaton S1

write f̄ for the integer represented by the word f , it is easy to verify that f̄
is computed by C1 in the sense that

∀f ∈ Σ∗ (|C1|, f) = f̄ ; that is, |C1| =
∑

f∈Σ∗

f̄f.

Example 3.5. To illustrate the case where S is different from N: let M =
〈N∞, min, +,∞, 0〉 be the ‘tropical’ semiring (cf. Chap. 1, Sect. 2). The M-
automaton S1 over {a, b}∗ and defined by

S1 =
〈

(0 0),
(

0a + 1b ∞
∞ 1a + 0b

)

,

(
0
0

)〉

is shown in Fig. 4. Clearly, the support of |S1| is all of {a, b}∗ and the coeffi-
cient in |S1| of an arbitrary word f of {a, b}∗ is min{|f |a, |f |b}.

Remark 3.6. The behaviour of an automaton was defined by returning to the
essence of an ‘automaton’: a procedure for describing computations. With this
definition, the behaviour of the two automata in Fig. 5(a), (b) are not defined
although in the first case the family {I · En · T}n∈N is summable since all its
terms are zero, and in the second E∗ is defined since E2 = 0.

Such a definition of the behaviour is more ‘robust’ than one that would be
based on the transition matrix and its star only. For instance, it is invariant
under the decomposition of a transition into a strictly longer path. Figure 6

Fig. 5. Two Z-automata with behavioural problems
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Fig. 6. Advocating for a path-based definition of the behaviour of automata

illustrates this point: as the automaton in (a) is obviously equivalent to the
one in (b), those in (c) and (d) should also be equivalent.

In Chap. 3, the behaviour of an automaton is defined under the assumption
that the automaton is cycle-free. Under the same assumption, the behaviour—
as defined here—is always well defined and, by Corollary 3.3, equal to the one
defined in Chap. 3.

Remark 3.7. On the other hand, these examples also lead us to note that the
transition between each pair of states p and q must be unique, and labelled
Ep,q; otherwise, we would be able to ‘decompose’ these entries in such a way
that the family of labels of paths would no longer be summable.

From Lemma 2.5 and Proposition 2.21, we deduce a sort of generalisation
of the same Proposition 2.21.

Proposition 3.8. Let S be a strong topological semiring and M a graded
monoid. The behaviour of an S-automaton over M , A = 〈I, E, T 〉 is defined
if and only if the behaviour of the S-automaton A0 = 〈I, E0, T 〉 is defined,
where E0 is the matrix of constant terms of entries of E, and in that case we
have

|A| = I · (E0
∗ · Ep)∗ · E0

∗ · T.

The example of Fig. 5(b) shows that it is not sufficient that E0
∗ be defined,

nor even that E0 be nilpotent11 for the behaviour of A be defined. On the
other hand, the behaviour of A is defined when E0 is strict upper triangular
since in this case the number of computations in A0 is finite. And this is the
case (up to a renaming of the states) if the automaton is cycle-free.

Definition 3.9. A S-automaton over M , A = 〈I, E, T 〉, is finite if:

(i) The dimension of A is finite.
(ii) The coefficients of E, I and T are polynomials; that is, have finite support.

3.2 The Fundamental Theorem of Automata

One hesitates to say of a proposition, ‘here is the fundamental theorem’. How-
ever, this seems justified for the one that follows: it states completely generally,
11 That is, there exists an n such that E0

n = 0.
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at least under the current assumption that M is a finitely generated graded
monoid and S a strong topological semiring that what one can ‘do’ with a
finite automaton is precisely what one can ‘do’ with rational operations.

Theorem 3.10. A series of S〈〈M〉〉 is rational if and only if it is the behaviour
of some finite S-automaton over M .

Remark 3.11. Theorem 3.10 is usually called Kleene’s theorem, and again in
this handbook (cf. Chap. 3). When M is a free monoid Σ∗, there is no pos-
sibility to distinguish between rational and recognisable sets or series, but at
the level of speech. When M is not free, recognisable sets or series take their
own quality and become a distinct family from the one of rational sets, or
series. We thus have two distinct results: the first one (Theorem 3.10) that
states that in any graded monoid the elements of one certain family—for
which there is no reason to coin two different names—may have two distinct
characterisations: by rational expressions and by finite automata and another
one (Theorem 4.6 below) that states that two families of sets or series, which
are distinct in general, coincide in the case of free monoids.

Since every language of Σ∗ is the behaviour of an unambiguous automaton
(of a deterministic one indeed)—we quoted above that URatΣ∗ = Rat Σ∗—
we then have the following.

Proposition 3.12. The characteristic series of a rational language of Σ∗ is
a S-rational series, for any semiring S.

3.2.1 Proper Automata

We can make Theorem 3.10 both more precise and more general, closer to the
properties used in the proof. For this, we need to define a restricted class of
S-automata.

Definition 3.13. An S-automaton over M , A = 〈I, E,R〉, is proper if:

(i) The matrix E is proper.
(ii) The entries of I and T are scalar; that is, I ∈ S1×Q and T ∈ SQ×1.

It follows from Proposition 3.8 that the behaviour of a proper automaton
is well defined; the following result adds the converse.

Proposition 3.14. Every S-automaton A over M whose behaviour is defined
is equivalent to a proper automaton whose entries, other than the scalar entries
of the initial and final vectors, are linear combinations of proper parts of the
entries of A.

Proof. We first show that A = 〈I, E, T 〉 is equivalent to an automaton B =
〈J, F, U〉 where the entries of J and U are scalar. We set
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J =
(
1 0 0

)
, F =

⎛

⎜
⎜
⎜
⎜
⎝

0 I 0

0 E T

0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, U =

⎛

⎜
⎜
⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎟
⎟
⎠

. (7)

Every path in B is a path or a computation in A and the behaviour of B is
defined if and only if that of A is, and in that case E∗ is defined.12 We verify
by induction that, for every integer n greater than or equal to 2,

Fn =

⎛

⎝
0 I · En−1 I · En−2 · T
0 En En−1 · T
0 0 0

⎞

⎠ . (8)

We have J ·U = J ·F ·U = 0, J ·Fn+2 ·U = I ·En ·T , hence J ·F ∗ ·U = I ·E∗ ·T
and 〈J, F, U〉 is equivalent to A.

Next, starting from an automaton B = 〈J, F, U〉 whose initial and final
vectors are scalar, we set

F = F0 + Fp.

The behaviour of B is defined if and only if the behaviour of the automaton
〈J, F0, U〉 is defined, and in this case F ∗

0 is defined, also. We then have

|B| = J · F ∗ · U = J · H∗ · V,

with H = F ∗
0 ·Fp and V = F ∗

0 ·U . Since F ∗
0 is an element of SQ×Q, the entries

of H are linear combinations (with coefficients in S) of entries of Fp and the
entries of V are scalar. ��

3.2.2 Standard Automata

It is convenient to define an even more restricted class of automata and to
show that an automaton of that class can be canonically associated with every
S-expression.

Definition 3.15. An S-automaton A = 〈I, E, T 〉 is standard if the initial
vector I has a single non-zero coordinate i, equal to 1S, and if this unique
initial state i is not the destination of any transition whose label is non-zero.

In matrix terms, this means that A can be written

A =

〈
(

1 0
)

,

⎛

⎜
⎝

0 K

0 F

⎞

⎟
⎠ ,

⎛

⎜
⎝

c

U

⎞

⎟
⎠

〉

. (9)

12 The automaton B is the normalised automaton A
′ built in Chap. 3 (proof of

Theorem 2.11).
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The definition does not forbid the initial state i from also being final, that is,
the scalar c is not necessarily zero. If A is not only standard but also proper,
c is the constant term of |A|. The proof of Proposition 3.14 itself proves the
following proposition.

Proposition 3.16. Every S-automaton A over M whose behaviour is defined
is equivalent to a standard proper automaton whose entries, other than the
scalar entries of the initial and final vectors, are linear combinations of proper
parts of the entries of A.

We now define operations on standard automata (as in Chap. 3, Sect. 2.2)
that are parallel to the rational operations. Let A (as in (9)) and A′ (with
obvious translation) be two proper standard automata; the following standard
S-automata are defined:

• sA =

〈
(
1 0

)
,

⎛

⎜
⎝

0 sK

0 F

⎞

⎟
⎠,

⎛

⎝
sc

U

⎞

⎠

〉

and

As =

〈
(
1 0

)
,

⎛

⎜
⎝

0 K

0 F

⎞

⎟
⎠,

⎛

⎝
cs

Us

⎞

⎠

〉

• A + A
′ =

〈
(
1 0 0

)
,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 K K′

0 F 0

0 0 F ′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c + c′

U

U ′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

〉

• A · A′ =

〈
(
1 0 0

)
,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 K cK′

0 F H

0 0 F ′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cc′

V

U ′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

〉

where H = (U · K ′) · F ′ and V = Uc′ + (U · K ′) · U ′

• A
∗ =

〈
(
1 0

)
,

⎛

⎜
⎝

0 c∗K

0 G

⎞

⎟
⎠,

⎛

⎝
c∗

Uc∗

⎞

⎠

〉

which is defined if and only if c∗ is defined, and where G = U · c∗K + F .
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Fig. 7. The Q-automaton SE1

By construction, sA, As, A+A′, A ·A′, and A∗ are all proper. Straightfor-
ward computations show that |sA| = s|A|, |As| = |A|s, |A + A′| = |A| + |A′|,
|A · A′| = |A||A′| and |A∗| = |A∗|.

With every valid rational S-expression E, we thus canonically associate,
by induction on the depth of E, a proper standard S-automaton SE that we
call the standard automaton of E. Let �(E) denote the literal length of E, that
is, the number of atoms different from 0 and 1 in E. The following proposition
holds.

Proposition 3.17. If E is a valid rational S-expression, then |||SE||| = |E| and
the dimension of SE is �(E) + 1.

Example 3.18 (Example 2.31 continued). Figure 7 shows the Q-automaton
SE1 associated with the rational expression E1 = (1

6a∗ + 1
3b∗)∗ by the con-

struction described above.

3.2.3 Statement and Proof of the Fundamental Theorem

Definition 3.19. We will say that a family of series is proper if it contains
the proper part of each of its elements.13

In particular, the polynomials form a proper family of S〈〈M〉〉.

Theorem 3.20. Let C be a proper family of series of S〈〈M〉〉. A series s
of S〈〈M〉〉 belongs to SRat C if and only if s is the behaviour of a proper
standard S-automaton over M of finite dimension whose (non-scalar) entries
are finite linear combinations of elements of C.

Proof. The proof of Theorem 3.20 splits in the “if” and “only if” parts, which
by Proposition 2.32, essentially amount to show respectively that given a
proper automaton we can compute an equivalent valid rational expression and
conversely that given a valid rational expression we can compute an equivalent
automaton.
13 As opposed to all the series in the family being proper.
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We write D for the family of behaviours of proper standard S-automata
whose entries are linear combinations of elements of C. We first show that D
contains 0S , behaviour of the standard automaton 〈1S , 0S , 0S〉 of dimension 1
and 1S , behaviour of 〈1S , 0S , 1S〉, as well as every element in C: for r in C,
rp is in C since C is a proper family and it holds:

r =
(
1S 0S

)
·
(

0S rp

0S 0S

)∗
·
(

r0

1S

)

.

If A and A′ are two proper standard S-automata whose entries are linear
combinations of elements of C, the above constructions sA, As, A + A′, A ·A′

and A∗ show that D is rationally closed.
Conversely, we start from a proper automaton A = 〈I, E, T 〉 whose behav-

iour is thus defined and equal to |A| = I · E∗ · T . This part then amounts to
prove that the entries of the star of a proper matrix E belong to the rational
closure of the entries of E, a classical statement established in general under
different hypotheses (e.g. [12]). Since we have to reprove it anyway, we choose
a slightly different method. We write |A| = I · V with V = E∗ · T . Since E is
proper and by Lemmas 2.5 and 2.16, V is the unique solution of

X = E · X + T (10)

and we have to prove that all entries of the vector V belong to the rational
closure of the entries of E. Lemma 2.16 already states that the property holds
if A is of dimension 1. For A of dimension Q, we write (10) as a system of
‖Q‖ equations:

∀p ∈ Q Vp =
∑

q∈Q

Ep,qVq + Tp. (11)

We choose (arbitrarily) one element q in Q and by Lemma 2.16 again, it
comes:

Vq = E∗
q,q

[ ∑

p∈Q\{q}
Eq,pVp + Tq

]

,

an expression for Vq that can be substituted in every other equation of the
system (11), giving a new system

∀p ∈ Q\{q} Vp =
∑

r∈Q\{q}
[Ep,r + Ep,qE

∗
q,qEq,r]Vr + Ep,qE

∗
q,qTq + Tp.

And the property is proved by induction hypothesis. ��

The fundamental theorem states the equality of two families of series (in-
finite objects), but its proof is better understood as the description of two
algorithms. Here, we have chosen on one hand the construction of the stan-
dard automaton of an expression and on the other hand the algorithm known
as the state elimination method for the computation of an expression denoting
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the behaviour of an automaton. In the latter case, the result depends on the or-
der of elimination (the choice of the state q in (11)). The relationship between
the possible different results is given by the following Proposition 3.21. We
shall say that two (S-)expressions E and F are equivalent modulo an identity I
if E can be transformed into F by using instances of I and of the so-called
‘natural identities’ which express that the expressions are interpreted in a
semiring (associativity, distributivity of · over +, commutativity of +).

Proposition 3.21. Let A be an S-automaton of dimension Q. The expres-
sions denoting |A| and obtained by the state elimination method with distinct
orders on Q are all equivalent modulo the identities S and P .

3.3 Conjugacy and Covering of Automata

After the definition of any structure, one looks for morphisms between objects
of that structure, and weighted automata are no exception. Moreover, mor-
phisms of graphs and, therefore, of classical Boolean automata, are not less
classical, and one waits for their generalisation to weighted automata. Taking
into account multiplicity proves, however, to be not so simple. In the sequel,
all automata are supposed to be of finite dimension.

3.3.1 From Conjugacy to Covering

We choose to describe the morphisms of weighted automata, which we call
coverings, via the notion of conjugacy, borrowed from the theory of symbolic
dynamical systems.

Definition 3.22. An S-automaton A = 〈I, E, T 〉 is conjugate to an S-auto-
maton B = 〈J, F, U〉 if there exists a matrix X with entries in S such that

IX = J, EX = XF, and T = XU.

The matrix X is the transfer matrix of the conjugacy and we write A
X=⇒ B.

In spite of the idea conveyed by the terminology, the conjugacy relation is
not an equivalence but a pre-order relation. Suppose that A

X=⇒ C holds; if
C

Y=⇒ B, then A
XY=⇒ B, but if B

Y=⇒ C then A is not necessarily conjugate
to B, and we write A

X=⇒ C
Y⇐= B or even A

X=⇒ Y⇐= B. This being well
understood, we shall speak of “conjugate automata” when the orientation
does not matter.

As JFnU = IXFnU = IEXFn−1U = · · · = IEnXU = IEnT for every
integer n, the following proposition holds.

Proposition 3.23. Two conjugate automata are equivalent.
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Fig. 8. Two conjugate Z-automata

Example 3.24. It is easily checked that the Z-automaton V1 of Fig. 8 is conju-
gate to the Z-automaton W1 of the same figure with the transfer matrix X1:

X1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

Let ϕ be an equivalence relation on Q or what is the same, let ϕ : Q → R
be a surjective map and Hϕ the Q × R-matrix where the (q, r) entry is 1 if
ϕ(q) = r, 0, otherwise. Since ϕ is a map, each row of Hϕ contains exactly
one 1 and since ϕ is surjective, each column of Hϕ contains at least one 1.
Such a matrix is called an amalgamation matrix [31, Definition 8.2.4].

Definition 3.25. Let A and B be two S-automata of dimension Q and R,
respectively. We say that B is a S-quotient of A and conversely that A is a
S-covering of B if there exists a surjective map ϕ : Q → R such that A is
conjugate to B by Hϕ.

The notion of S-quotient is lateralised since the conjugacy relation is not
symmetric. Somehow, it is the price we pay for extending the notion of mor-
phism to S-automata. Therefore, the dual notions co-S-quotient and co-S-
covering are defined in a natural way.

Definition 3.26. With the above notation, we say that B is a co-S-quotient
of A and conversely that A is a co-S-covering of B if there exists a surjective
map ϕ : Q → R such that B is conjugate to A by tHϕ.

We also write ϕ : A → B and call ϕ, by way of metonymy, a S-covering,
or a co-S-covering from A onto B.

Example 3.27. Consider the N-automaton C2 of Fig. 9 and the map ϕ2 from
{j, r, s, u} to {i, q, t} such that jϕ2 = i, uϕ2 = t and rϕ2 = sϕ2 = q, then

Hϕ2 =

⎛

⎜
⎜
⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞

⎟
⎟
⎠

and ϕ2 is an N-covering from C2 onto V2 and a co-N-covering from C2 onto V′
2.
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Fig. 9. C2 is an N-covering of V2 and a co-N-covering of V2

3.3.2 Minimal S-Quotient

Let us first express that in a S-covering ϕ : A → B the image is somewhat
immaterial and only counts the map equivalence of ϕ. From any amalgamation
matrix Hϕ, we construct a matrix Kϕ by transposing Hϕ and by arbitrarily
cancelling certain entries in such a way that Kϕ is row monomial (with exactly
one 1 per row); Kϕ is not uniquely determined by ϕ, but also depends on
the choice of a ‘representative’ in each class for the map equivalence of ϕ.
Whatever Kϕ, the product KϕHϕ is the identity matrix of dimension R (as the
matrix representing ϕ−1ϕ). Easy matrix computations establish the following.

Proposition 3.28. Let A = 〈I, E, T 〉 and B = 〈J, F, U〉 be two S-automata of
dimension Q and R, respectively. A surjective map ϕ : Q → R is a S-covering
if and only if A satisfies the two equations:

Hϕ · Kϕ · E · Hϕ = E · Hϕ, (12)

and
Hϕ · Kϕ · T = T. (13)

In which case, B satisfies

F = Kϕ · E · Hϕ, J = I · Hϕ and U = Kϕ · T. (14)

Theorem 3.29. Let A be a S-automaton of finite dimension over M . Among
all the S-quotients of A (resp. among all the co-S-quotients of A), there exists
one, unique up to isomorphism and effectively computable from A, which has
a minimal number of states and of which all these S-automata are S-coverings
(resp. co-S-coverings).
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Proof. A surjective map ϕ : Q → R defines a S-covering ϕ : A → B if (12)
and (13) (which do not involve B) are satisfied.

To prove the existence of a minimal S-quotient, it suffices to show that
if ϕ : Q → R and ψ : Q → P are two maps that define S-coverings, the map
ω : Q → V also defines a S-covering, where ω = ϕ ∨ ψ is the map whose
map equivalence is the upper bound of those of ϕ and ψ; that is, the finest
equivalence which is coarser than the map equivalences of ϕ and ψ. In other
words, there exist ϕ′ : R → V and ψ′ : P → V such that ω = ϕϕ′ = ψψ′

and each class modulo ω = ϕ ∨ ψ can be seen at the same time as a union of
classes modulo ϕ and as a union of classes modulo ψ. It follows that

E · Hω = E · Hϕ · Hϕ′ = E · Hψ · Hψ′ ; (15)

and if two states p and r of Q are congruent modulo ω, there exists q such
that pϕ = qϕ and qψ = rψ (in fact, a sequence of states qi, etc.). The rows p
and q of E · Hϕ are equal, and the rows q and r of E · Hψ are equal; hence,
by (15), the rows p and r of E · Hω are equal, also.

To compute this minimal S-quotient, we can proceed by successive refine-
ments of partitions, exactly as for the computation of the minimal automaton
of a language from a deterministic automaton which recognises the language.

In what follows, the maps ϕi are identified with their map equivalences;
the image is irrelevant. A state r of Q is identified with the row vector of
dimension Q, characteristic of r, and treated as such. For example, rϕ = sϕ
can be written r · Hϕ = s · Hϕ.

The maps ϕ0 have the same map equivalence as T , that is,

r · Hϕ0 = s · Hϕ0 ⇐⇒ r · T = s · T,

which can also be written

Hϕ0 · Kϕ0 · T = T, (16)

and the same equation holds for every map finer than ϕ0. For each i, ϕi+1 is
finer than ϕi and, by definition, r and s are joint in ϕi (that is, r·Hϕi = s·Hϕi)
and disjoint in ϕi+1 if r · E · Hϕi 
= s · E · Hϕi . Let j be the index such that
ϕj+1 = ϕj , that is, such that

r · Hϕj = s · Hϕj =⇒ r · E · Hϕj = s · E · Hϕj , (17)

which can be rewritten

Hϕj · Kϕj · E · Hϕj = E · Hϕj . (18)

By (16) and (18), ϕj is a S-covering.
Conversely, every S-covering ψ satisfies (13) and is hence finer than ϕ0.

Then for all i, if ψ is finer than ϕi, it must also be finer than ϕi+1. In fact,
if r and s are joint in ψ, it follows that r · Hψ = s · Hψ, and hence also
r · Hϕi = s · Hϕi since ϕi is coarser than ψ, and hence r and s are joint
in ϕi+1: ψ is finer than ϕj , which is thus the coarsest S-covering. ��
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Remark 3.30. Even if the minimal S-quotient of a S-automaton and the min-
imal automaton of a language are computed with the same algorithm, they
are nevertheless fundamentally different: the second automaton is canoni-
cally associated with the language, whereas the first is associated with the
S-automaton we started from, and not with its behaviour.

Remark 3.31. The above construction applies of course if S = B, and thus
shows that the notion of minimal (B-)quotient is well defined even for a non-
deterministic automaton (as we just wrote, this minimal quotient is not associ-
ated with the recognised language anymore). Moreover, it can be checked that
two Boolean automata are bisimilar if and only if their minimal B-quotients
are isomorphic (cf. [2]).

3.3.3 From Covering to Conjugacy

We have defined quotients (and co-quotients) as a special case of conjugacy.
Under some supplementary hypothesis—that is naturally met in cases that
are important to us: N, Z, etc.—it can be established that a kind of converse
holds and that any conjugacy can basically be realised by the composition of
an inverse co-covering and a covering.

In order to state these results, we need two further definitions. A matrix is
non-degenerate if it contains no zero row nor zero column. We call a circulation
matrix a diagonal invertible matrix.

Theorem 3.32 ([3]). Let A be a Z-automaton conjugate to a Z-automaton
B by a non-negative and non-degenerate transfer matrix X. Then there exists
a Z-automaton C that is a co-Z-covering of A and a Z-covering of B.

We can free ourselves from the two hypotheses on the transfer matrix if
we allow a further conjugacy by a circulation matrix.

Theorem 3.33 ([3]). Let A be a Z-automaton conjugate to a Z-automaton
B by a transfer matrix X. Then there exists two Z-automata C and D and a
circulation matrix D, such that C is a co-Z-covering of A, D a Z-covering of
B and C is conjugate to D by D.

Example 3.34 (Example 3.24 continued). The Z-automata X1 of Fig. 10 is a
co-Z-covering of V1, Y1 is a Z-covering of W1, and X1 is conjugate to Y1 by
the circulation matrix where the only −1 entry is at state 1.

The proof of Theorem 3.33 involves indeed two properties. Let us say first
that a semiring has property (SU ) if every element is a sum of units. The
semiring N, the ring Z, and all fields have property (SU). In any semiring
with (SU), every matrix X can be written as X = CDR where C is a co-
amalgamation, R an amalgamation, and D a circulation matrix. In Z, the
dimension of D will be the sum of the absolute value of the entries of X.
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Fig. 10. The co-covering and covering of V1 and W1

Having secured the existence of C, D, and R, the second step consists
in building the automata C and D that will fit in. To that end, we say that
a commutative monoid is equisubtractive if for all p, q, r, and s such that
p+ q = r + s there exist x, y, z, and t such that p = x+y, q = z + t, r = x+ z
and s = y+t. A semiring is equisubtractive if it is so as a monoid for addition.

The semirings N and Z are equisubtractive, and if S is equisubtractive,
then so are S〈Σ∗〉 and S〈〈Σ∗〉〉. The construction of C and D will then follow
from the following property.

Lemma 3.35. Let S be an equisubtractive semiring and let t1, t2, . . . , tn, s1, s2,
. . . , sm be elements of S such that

t1 + t2 + · · · + tn = s1 + s2 + · · · + sm.

There exists an n × m matrix G with entries in S such that the sum of the
entries of each row i is equal to ti and the sum of the entries of each column j
is equal to sj.

Another consequence of the definition of equi-subtractive semiring and of
Lemma 3.35 is to allow a sort of converse to Theorem 3.29. The existence of
a minimal S-covering implies a kind of Church–Rosser property: if we have
two diverging arrows, that is, the upper part of a commutative diagram, we
can construct the lower part of it. The following proposition states that it
is possible to complete a commutative diagram when the lower part of it is
known.

Proposition 3.36 ([43, 3]). Let S be an equisubtractive semiring and let A,
B and C be three S-automata.

(a) If A and B are S-coverings of C (resp. co-S-coverings of C), there exists
a S-automaton D which is a S-covering (resp. a co-S-covering) of both A

and B.
(b) If A is a S-covering of C and B is a co-S-covering of C, there exists a

S-automaton D which is both a co-S-covering of A and a S-covering of B.
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4 Recognisable Series and Representations

As in the last section, S denotes a strong topological semiring and M a graded
monoid, a priori arbitrary. We shall now consider another family of series
of S〈〈M〉〉, other than SRat M , but that coincide with it when M is a free
monoid Σ∗: this is the Kleene–Schützenberger theorem (Theorem 4.6). We
first define these series by means of representations. We then consider the
Hadamard product of series, which is a weighted generalisation of intersection.
In a third subsection, by considering the series over a Cartesian product of
monoids, we briefly sketch the prolegomena to a theory of weighted relations.
This allows us, among other things, to establish the weighted generalisation
of results on the morphic image of rational sets (Theorem 4.35).

4.1 The Family of Recognisable Series

An S-representation of M of dimension Q is a morphism μ from M to the
semiring of square matrices of dimension Q with entries in S. By definition,
in fact so that we can multiply the matrices, the dimension Q is finite. An
S-representation of M (of dimension Q) is also the name we give a triple
(λ, μ, ν) where, as before,

μ : M → SQ×Q

is a morphism and where λ and ν are two vectors:

λ ∈ S1×Q and ν ∈ SQ×1;

that is, λ is a row vector and ν a column vector of dimension Q, with entries
in S. Such a representation defines a map from M to S by

∀m ∈ M m �→ λ · mμ · ν;

that is, the series r:
r =

∑

m∈M

(λ · mμ · ν)m.

A series r of S〈〈M〉〉 is realised or recognised by the representation (λ, μ, ν).
We also say that (λ, μ, ν) realises or recognises the series r.

Definition 4.1. A series of S〈〈M〉〉 is S-recognisable if it is recognised by an
S-representation. The set of S-recognisable series over M is written SRec M .

Example 4.2 (Example 3.4 continued). Take S = N and M = {a, b}∗. Let
(λ1, μ1, ν1) be the representation defined by

aμ1 =
(

1 0
0 1

)

, bμ1 =
(

1 1
0 1

)

, λ1 =
(
1 0
)

and ν1 =
(

0
1

)

.

For all f in {a, b}∗, we verify that λ1 · fμ1 · ν1 = |f |b, hence the series u1 =∑
f∈Σ∗ |f |bf is N-recognisable.
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Remark 4.3. It is not difficult to check that Definition 4.1 coincides, for S = B,
with the definition of the recognisable subsets of a monoid as the sets that are
saturated by a congruence of finite index [14]. If r is a B-recognisable se-
ries over M , realised by the representation (λ, μ, ν), then μ : M → B

Q×Q

is a morphism from M to a finite monoid. The series r of B〈〈M〉〉, r =∑
m∈M (λ · mμ · ν)m, can be seen as the subset r = Pμ−1 of M where P =

{p ∈ B
Q×Q | λ · p · ν = 1B}. Conversely, a morphism α from M into a finite

monoid N is a morphism from M into the monoid of Boolean matrices of
dimension N (the representation of N by right translations over itself) and
the B-representation that realises any subset recognised by α easily follows.

These definitions and the following two properties of SRec M do not in-
volve multiplication in S〈〈M〉〉, and are hence valid without even requiring
that M be graded.

Proposition 4.4. Every finite linear combination, with coefficients in S, of
S-recognisable series over M is an S-recognisable series.

Proof. Let r and u be two S-recognisable series over M , respectively recog-
nised by the S-representations (λ, μ, ν) and (η, κ, ζ). For all s in S, the series
sr is recognised by the representation (sλ, μ, ν), the series rs by the represen-
tation (λ, μ, νs), and the series r +u by the representation (δ, π, ξ) defined by
the following block decomposition:

δ =
(
λ η
)
, mπ =

(
mμ 0
0 mκ

)

, ξ =
(

ν
ζ

)

. ��

Let ϕ : S → T be a morphism of semirings which extends to a morphism
ϕ : S〈〈M〉〉 → T 〈〈M〉〉 by (rϕ, m) = (r,m)ϕ for all r in S〈〈M〉〉 and all m in M .
If (λ, μ, ν) is a representation of the series r of S〈〈M〉〉, then (λϕ, μϕ, νϕ) is a
representation of rϕ. That is:

Proposition 4.5. Let ϕ : S → T be a morphism of semirings. The image
under ϕ of an S-recognisable series over M is a T -recognisable series over M .

We can now get to our main point.

Theorem 4.6 (Kleene–Schützenberger). Let S be a strong topological
semiring, and Σ a finite alphabet. A series of S〈〈Σ∗〉〉 is S-rational if and
only if it is S-recognisable. That is,

SRec Σ∗ = SRat Σ∗.

We prove the two inclusions one at a time:

SRec Σ∗ ⊆ SRat Σ∗ and SRat Σ∗ ⊆ SRec Σ∗. (19)

Each of the inclusions is obtained from the Fundamental Theorem together
with the freeness of Σ∗ and the finiteness of Σ. This is used in both cases by
means of the following result.
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Lemma 4.7. Let S be a semiring and Σ a finite alphabet. Let Q be a finite
set and μ : Σ∗ → SQ×Q a morphism. We set

X =
∑

a∈Σ

(aμ)a.

Then for all f in Σ∗, we have (X∗, f) = fμ.

Proof. The matrix X is a proper series of SQ×Q〈〈Σ∗〉〉, and hence X∗ is de-
fined. We first prove, by induction on the integer n, that

Xn =
∑

f∈Σn

(fμ)f,

an equality trivially verified for n = 0, and true by definition for n = 1. It
follows that

Xn+1 = Xn · X =
( ∑

f∈Σn

(fμ)f
)

·
(∑

a∈Σ

(aμ)a
)

=
∑

(f,a)∈Σn×Σ

(fμ · aμ)fa

=
∑

(f,a)∈Σn×Σ

(fa)μfa =
∑

g∈Σn+1

(gμ)g,

since, for each integer n, Σn+1 is in bijection with Σn × Σ as Σ∗ is freely
generated by Σ. For the same reason, Σ∗ is the disjoint union of the Σn, for n
in N, and it follows, for all f in Σ∗, that

(X∗, f) =
(
X |f |, f

)
= fμ. ��

Proof (of Theorem 4.6). Each of the two inclusions (19) is proved in the form
of a property.

Property 4.8. If Σ is finite, S-recognisable series on Σ∗ are S-rational.

Proof. Let (λ, μ, ν) be a representation which recognises a series r; that is,
(r, f) = λ · fμ · ν, for all f in Σ∗. Let 〈λ,X, ν〉 be the automaton defined by

X =
∑

a∈Σ

(aμ)a.

By Lemma 4.7, we have

r =
∑

f∈Σ∗

(λ · fμ · ν)f = λ ·
(∑

f∈Σ∗

(fμ)f
)

· ν = λ · X∗ · ν.

By the Fundamental Theorem, the series r belongs to the rational closure of
the entries of X. These entries are finite linear combinations of elements of Σ
since Σ is finite: r belongs to SRat Σ∗. ��
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Property 4.9. The S-rational series on Σ∗ are S-recognisable.

Proof. By Theorem 3.20, the series r is the behaviour of a proper finite S-
automaton 〈I,X, T 〉 , such that the entries of X are finite linear combinations
of elements of Σ (and those of I and T are scalar). We can therefore write
X =

∑
a∈Σ(aμ)a where aμ is the matrix of coefficients of the letter a in X.

By Lemma 4.7, we have

∀f ∈ Σ∗ (r, f) = (I · X∗ · T, f) = I · fμ · T,

and the series r is recognised by the representation (I, μ, T ). ��

The two inclusions (19) prove the theorem. ��

4.2 Other Products on Recognisable Series

The two products that we shall now consider, the Hadamard and shuffle prod-
ucts are defined on general series—the second one for series on a free monoid—
but it is their effect on recognisable series which will interest us, and we first
define a product on representations.

4.2.1 Tensor Product of S-Representations

The tensor product of matrices has been defined in Chap. 1. Let A be a matrix
of dimension P ×P ′ and B a matrix of dimension R×R′ (with entries in the
same semiring S); the tensor product of A by B written A⊗B is a matrix of
dimension (P × R) × (P ′ × R′) defined by

∀p ∈ P, ∀p′ ∈ P ′, ∀r ∈ R, ∀r′ ∈ R′ A ⊗ B(p,r),(p′,r′) = Ap,p′Br,r′ .

If S is commutative, the tensor product is also. We shall need the tensor
product to be commutative under more general assumptions. We shall say that
two sub-semirings U and V of a non-commutative semiring S are commutable
if every element of U commutes with every element of V . For example, the
centre of S and any sub-semiring of S are commutable. As another example,
1T ×T and T×1T are two commutable sub-semirings14 in T×T . The following
result has already been quoted (Chap. 1, Theorem 4.7).

Lemma 4.10. Let A, B, C, and D be four matrices with entries in S, re-
spectively of dimension P × Q, P ′ × Q′, Q × R, and Q′ × R′, and such that
all the entries of B commute with those of C. Then

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D).

It then follows:
14 On the other hand, we shall not say that two matrices A and B are commutable
to mean that all the entries of A commute with those of B; this would be too easily
confused with the fact that the two matrices commute, that is, AB = BA.
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Proposition 4.11 (Tensor product of representations). Let U and V be
two commutable sub-semirings of S. Let M and N be two arbitrary monoids
and μ : M → UQ×Q and κ : N → V R×R two representations. The map μ⊗κ,
defined for all (m, n) in M × N by

(m, n) [μ ⊗ κ] = mμ ⊗ nκ

is a representation of M × N in S(Q×R)×(Q×R).

Proof. For all (m, n) and (m′, n′) in M × N , we have
(
(m, n)[μ ⊗ κ]

)
·
(
(m′, n′)[μ ⊗ κ]

)
= (mμ ⊗ nκ) · (m′μ ⊗ n′κ)
= (mμ · m′μ) ⊗ (nκ · n′κ)
= (mm′)μ ⊗ (nn′)κ = (mm′, nn′)[μ ⊗ κ],

since under the proposition’s assumptions, all the entries of m′μ commute
with those of nκ. ��

4.2.2 Hadamard Product

The Hadamard product is to series (sets with multiplicity) what intersection is
to sets, which only really makes sense if the semiring of coefficients is commu-
tative. In the same way that the recognisable subsets of an arbitrary monoid
are closed under intersection, we have the following.

Theorem 4.12. Let S be a commutative semiring and M an arbitrary monoid.
Then SRec M is closed under the Hadamard product.

Under the more precise assumptions of Proposition 4.11, we can state a
more general result.

Theorem 4.13 (Schützenberger). Let U and V be two commutable sub-
semirings of S and M a monoid. The Hadamard product of a U -recognisable
series over M and a V -recognisable series over M is an S-recognisable series
over M .

More precisely, if (λ, μ, ν) recognises r and (η, κ, ζ) recognises u, then r
u
is recognised by (λ ⊗ η, μ ⊗ κ, ν ⊗ ζ).

Proof. First note that, since the map m �→ (m, m) is a morphism from M
to M × M , Proposition 4.11 implies that the map m �→ mμ ⊗ mκ is also a
morphism, and we also write it μ ⊗ κ.

Let r be a series over M recognised by the U -representation (λ, μ, ν) and u
be a series over M recognised by the V -representation (η, κ, ζ). By definition,
we have for all m in M ,

(r
u,m) = (λ · mμ · ν)(η · mκ · ζ) = (λ · mμ · ν) ⊗ (η · mκ · ζ),



Rational and Recognisable Series 143

the second equality expressing the product of two coefficients of S as the
tensor product of two 1× 1 matrices. Under the assumptions of the theorem,
we can apply Lemma 4.10 (three times) and obtain

(r
u,m) = (λ ⊗ η) · (mμ ⊗ mκ) · (ν ⊗ ζ) = (λ ⊗ η) · (m[μ ⊗ κ]) · (ν ⊗ ζ) .

Again, according to these assumptions, μ ⊗ κ is an S-representation, the se-
ries r
u is recognisable, and is recognised by the stated representation. ��

As a consequence of Theorem 4.6, the Hadamard product of two S-rational
series on Σ∗ is an S-rational series (if S is a commutative semiring). More-
over, the tensor product of representations of Σ∗ translates directly into a
construction on S-automata over Σ∗ whose labels are linear combinations of
letters of Σ, which is the natural generalisation of the Cartesian product of
automata, and which we can call the Hadamard product of S-automata.

Example 4.14. The N-automaton C2 of Fig. 9 is the Hadamard product of the
N-automaton C1 of Fig. 3 by itself. Therefore, for every f in Σ∗, it holds
f|||C2||| = f

2
.

4.2.3 Shuffle Product

We now suppose that M is a free monoid Σ∗ and that S is commutative
(usually S = N but that is not required). The shuffle product (or Hurwitz
product) of two words of Σ∗, and then by linearity of two series in S〈〈Σ∗〉〉,
has been defined at Chap. 1, mostly for ancillary purposes. Let us recall this
definition as the interest of which goes far beyond the computations it was
used for so far.

Definition 4.15. For all f and g in Σ∗, the shuffle of f and g, written f � g,
is an homogeneous polynomial of S〈Σ∗〉 defined by induction on |f | + |g| by

∀f ∈ Σ∗ f � ε = ε � f = f,

∀f, g ∈ Σ∗, ∀a, b ∈ A fa � gb = (fa � g)b + (f � gb)a,

The shuffle is extended ‘by linearity’ to S〈〈Σ∗〉〉, that is,

∀r, u ∈ S〈〈Σ∗〉〉 r � u =
∑

f,g∈Σ∗

(r, f)(u, g)f � g,

which is defined since the family of polynomials f � g for f and g in Σ∗ is
locally finite.

Example 4.16.

ab � ab = 4aabb + 2abab,

ab � ba = abab + 2abba + 2baab + baba and
(ε + a) � a∗ = [a∗]2.
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Shuffle is an associative, commutative, and continuous product and makes
of S〈〈Σ∗〉〉 a commutative S-algebra. The shuffle of two words is characterised
by the following.

Proposition 4.17. Let χ : Σ∗ → S〈Σ∗ × Σ∗〉 be the morphism (of monoids)
defined by aχ = (a, ε) + (ε, a), for all a in Σ∗. It then follows that

∀h ∈ Σ∗ hχ =
∑

f,g∈Σ∗

(f � g, h)(f, g).

Theorem 4.18. Let S be a commutative semiring. The shuffle of two S-
recognisable series on Σ∗ is an S-recognisable series.

Proof. Let r and u be S-recognisable series on Σ∗, respectively recognised
by the S-representations (λ, μ, ν) and (η, κ, ζ). For all h in Σ∗, the definition
yields

(r � u, h) =
∑

f,g∈Σ∗

(
(r, f)(u, g)

)
(f � g, h)

=
∑

f,g∈Σ∗

(
(λ · fμ · ν)(η · gκ · ζ)

)
(f � g, h)

=
∑

f,g∈Σ∗

(
(λ ⊗ η) ·

(
(f, g)[μ ⊗ κ]

)
· (ν ⊗ ζ)

)
(f � g, h)

= (λ ⊗ η) ·
(
(hχ)[μ ⊗ κ]

)
· (ν ⊗ ζ) by Proposition 4.17.

By the theorem’s assumptions, χ ◦ [μ ⊗ κ] is an S-representation; the series
r � u is recognisable. ��

A consequence of Theorem 4.6 again, the shuffle of two S-rational series
on Σ∗ is an S-rational series (if S is a commutative semiring). As for the
Hadamard product, the construction on representations that underlies the
proof of Theorem 4.18 translates into a construction on S-automata over Σ∗,
which we can call the shuffle product of S-automata.

Formally, if A′ = 〈Q′, Σ, E′, I ′, T ′〉 and A′′ = 〈Q′′, Σ, E′′, I ′′, T ′′〉 are two
proper S-automata over Σ∗ whose labels are linear combinations of letters
of Σ, the shuffle of |||A′||| and |||A′′||| is realised by the S-automaton written A′�A′′

and defined by

A
′ � A

′′ = 〈Q′ × Q′′, Σ, E, I ′ ⊗ I ′′, T ′ ⊗ T ′′〉 ,

where the set E of transitions is described by

E =
{(

(p′, p′′), k′a, (q′, p′′)
) ∣
∣ (p′, k′a, q′) ∈ E′ and p′′ ∈ Q′′}

∪
{(

(p′, p′′), k′′a, (p′, q′′)
) ∣
∣ p′ ∈ Q′ and (p′′, k′′a, q′′) ∈ E′′}.
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Example 4.19. The Z-automaton W1 of Fig. 8 is the shuffle product of the
obvious two state Z-automata that respectively accept (ab)∗ and (−ab)∗. The
equivalence with V1 in the same figure yields the identity15

(ab)∗ � (−ab)∗ =
(
−4a2b2

)∗
. (20)

4.3 Series on a Product of Monoids

Series on a (Cartesian) product of monoids is a major subject in itself and
their study could occupy a whole chapter of this book: they are the behav-
iour of transducers with multiplicity, of interest both from a theoretical and
applications point of view (cf. Chaps. 7, 11, and 14, for instance). Here, we
confine ourselves to few definitions and results stemming from the canonical
isomorphisms between several semirings of series and with the aim of being
able to state (and to prove) results about the image of series under morphisms
and of comparing the families of rational and recognisable series.

4.3.1 The Canonical Isomorphisms

Polynomials or series in several (commutative) variables can be ordered with
respect to one or another variable. It is a purely formal exercise to verify that
these manipulations generalise to polynomials, or to series, over a product of
monoids.

The semialgebras S〈〈M〉〉 and S〈〈N〉〉 are canonically isomorphic to two sub-
S-semi-algebras of S〈〈M×N〉〉: we identify m with (m, 1N ) and n with (1M , n).
This identification enables us to build the two canonical isomorphisms.

Proposition 4.20. The three S-semi-algebras

S〈〈M × N〉〉, [S〈〈M〉〉] 〈〈N〉〉 and [S〈〈N〉〉] 〈〈M〉〉

are isomorphic. Under these isomorphisms, the three sub-S-semi-algebras

S〈M × N〉, S〈M〉〈N〉 and [S〈N〉] 〈M〉

correspond.

Remark 4.21. Modulo this canonical embedding and if S is commutative, then
every element of S〈〈M〉〉 commutes with every element of S〈〈N〉〉 in S〈〈M×N〉〉.

Definition 4.22. Let r be in S〈〈M〉〉 and u be in S〈〈N〉〉. The tensor product
of r and u, written r ⊗ u, is the series of S〈〈M × N〉〉 defined by

∀(m, n) ∈ M × N
(
r ⊗ u, (m, n)

)
= (r,m)(u, n).

15 Due to M. Petitot (see Sect. 7).
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This definition allows the weighted generalisation of a result and is usually
credited to Myhill.

Proposition 4.23. Suppose that S is commutative. A series r of S〈〈M ×
N〉〉 is recognisable if and only if there exists a finite family {ji}i∈I of series
of SRec M and a finite family {ui}i∈I of series of SRec N such that

r =
∑

i∈I

ji ⊗ ui.

Proof. If j is in SRec M , that is, if j is recognised by the representation
(λ, μ, ν), the map (m, n) �→ mμ is also a morphism and the series j′ of S〈〈M ×
N〉〉 defined by (j′, (m, n)) = λ · mμ · ν = (j, m) is recognisable. Likewise, if
u ∈ SRec N , the series u′ of S〈〈M × N〉〉 defined by (u′, (m, n)) = (u, n) is
recognisable. Definition 4.22 shows that

j ⊗ u = j′ � u′,

which is thus recognisable and Proposition 4.4—hence, we need S to be
commutative—implies that the condition is sufficient.

Conversely, suppose that r is recognised by (λ, μ, ν), a representation
of M × N of dimension Q. By definition of a representation, for all (m, n)
in M × N, it holds (m, n)μ = (m, 1N )μ(1M , n)μ. The map μ′ : M → SQ×Q

defined by mμ′ = (m, 1N )μ is a morphism. For each q in Q, let jq be the series
defined by

∀m ∈ M (jq, m) = [λ · mμ′]q,

which is a recognisable series of S〈〈M〉〉. Likewise, μ′′ : N → SQ×Q defined by
nμ′′ = (1M , n)μ is a morphism and uq defined by

∀n ∈ N (uq, n) = [nμ′′ · ν]q,

is a recognisable series of S〈〈N〉〉. Since for all (m, n) of M × N, we have

λ · (m, n)μ · ν =
∑

q∈Q

[λ · mμ′]q[nμ′′ · ν]q,

it follows that
r =

∑

q∈Q

jq ⊗ uq. ��

4.3.2 Rational Series in a Product

The Fundamental Theorem of (S-)automata for series in S〈〈M ×N〉〉 directly
yields (weighted and generalised version of a theorem by Elgot and Mezei [16])
the following.



Rational and Recognisable Series 147

Proposition 4.24. Let G and H be generating sets of M and N, respectively.
A series of S〈〈M ×N〉〉 is rational if and only if it is the behaviour of a proper
finite S-automaton whose coefficients are S-linear combinations of elements
of (G × 1N ) ∪ (1M × H).

Proposition 4.25. The canonical isomorphism from S〈〈M × N〉〉 to
[S〈〈N〉〉] 〈〈M〉〉 sends SRat(M × N) to [SRat N ]RatM .

Proof. From the inclusion

S〈N〉 ⊆ S〈M〉N ⊆ SRat(M × N),

we deduce successively, by liberal use of the canonical embeddings,

SRat N ⊆ SRat(M × N),
[SRat N ]〈M〉 ⊆ SRat(M × N),

[SRat N ]RatM ⊆ SRat(M × N).

Conversely, let r be in SRat(M × N). There exists a proper S-automaton
〈I,X, T 〉 such that r = I ·X∗ ·T and such that the coefficients of X are finite
S-linear combinations of elements of (M × 1)∪(1 × N). We write X = Y +Z,
in such a way that the coefficients of Y are linear combinations of elements
of M × 1 and those of Z are linear combinations of elements of 1 × N (with
coefficients in S). The series r is the result of the automaton 〈I, Z∗ · Y,Z∗ · T 〉
whose coefficients are linear combinations of elements of M × 1, with coeffi-
cients in 1 × SRat N . ��

The specialisation of this proposition when M is a free monoid gives the
weighted version of what is often known as the ‘Kleene–Schützenberger the-
orem for rational relations’ (cf. Corollary 4.29). We shall state it after the
definition of weighted relations.

4.3.3 Weighted Relations

We first need a few more definitions and notation. We write Sc for the centre
of S, that is, the set of elements of S which commute with every element
of S—Sc is a sub-semiring of S. In any case, 1S belongs to Sc, which is thus
never empty.

The scalar product16 of two series r and u in S〈〈M〉〉, written (r, u) is
defined by

(r, u) =
∑

m∈M

(r,m)(u,m),

which may or may not be defined since the family {(r,m)(u,m) | m ∈ M} is
not necessarily summable. It is defined if r or u is a polynomial. The identi-
fication of m with its characteristic series m makes this notation consistent
16 Different from what is called the scalar product in Chap. 1.
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with the notation (r,m) for the coefficient of m in r. Even if S is not com-
mutative, but if r or u belong to Sc〈〈M〉〉, we have (r, u) = (u, r). In this case,
the scalar product is even compatible with left and right multiplication by
arbitrary elements of S:

k(r, u) = (kr, u),
(r, u)k = (u, r)k = (u, rk) = (rk, u).

Definition 4.26. An S-relation from M to N , written θ : S〈〈M〉〉 → S〈〈N〉〉,
or more often θ : M → N , is any series θ of [Sc〈〈N〉〉] 〈〈M〉〉.

The image of every m in M under θ is the series (θ,m) of S〈〈N〉〉, written
more simply mθ.

The image of every r in S〈〈M〉〉 under θ, denoted rθ, is then obtained ‘by
linearity’. It is defined if and only if the family {(r,m)(θ,m) | m ∈ M} is a
summable family of series of S〈〈N〉〉 and is its sum.

The graph θ̂ of an S-relation θ is the series of Sc〈〈M × N〉〉 which corre-
sponds to θ under the canonical isomorphism. The inverse of θ, namely θ−1,
is the S-relation from N to M , and hence a series of [Sc〈〈M〉〉] 〈〈N〉〉, which
has the same graph θ̂ as θ. It then holds

∀(m, n) ∈ M × N (mθ, n) =
(
θ̂, (m, n)

)
=
(
m, nθ−1

)
. (21)

Remark 4.27. Instead of assuming that the semiring of coefficients is com-
mutative, we have ‘only’ imposed the condition that the coefficients of the
relation, θ̂, belong to the centre of this semiring. This could seem a rather
weak generalisation; in fact, it allows us first and foremost to consider, as S-
relations from M to N , the characteristic relations of relations from M to N ,
even if S is not commutative.

Example 4.28. For every series u in Sc〈〈M〉〉, and in particular for every char-
acteristic series u, the Hadamard product with u (or S-intersection with u) is
an S-relation from M to itself, written ιu: rιu = r
u and rιu is defined for
all r in S〈〈M〉〉.

It is then natural to say that an S-relation from M to N is rational if its
graph is a Sc-rational series of S〈〈M × N〉〉. And the announced specialisation
of Proposition 4.25 then reads as the following corollary.

Corollary 4.29 (Kleene–Schützenberger). An S-relation θ from Σ∗ to N
is rational if and only if there exists an (ScRat N)-representation of Σ∗,
namely (λ, μ, ν), such that for all f in Σ∗, fθ = λ · fμ · ν, that is,

ScRat(Σ∗ × N) ∼= [ScRat N ]Rec Σ∗.

Example 4.30. The rational B-relation from Σ∗ = {a, b}∗ into itself realised
by the transducer of Fig. 11 is also realised by the [BRatΣ∗]-representation
of Σ∗ of dimension 1 (1, μ, 1) with aμ = aa∗ and bμ = bb∗.
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Fig. 11. A transducer to be transformed into a representation

It follows from (21) that the image rθ of a series r in S〈〈M〉〉 by an S-
relation θ from M to N is defined if and only if (r, nθ−1) is defined for every n
in N , and we have

(rθ, n) =
(
r, nθ−1

)
.

Hence, we have the following definition.

Definition 4.31. We say that an S-relation θ : M → N is of finite co-image
if nθ−1 is a polynomial for all n.

The image of any series by a relation of finite co-image is always defined,
and this is the case that we shall only consider here. Regulated relations which
were defined by Jacob starting from their representations as in Corollary 4.29
are relations of finite co-image; they were popularised by a number of authors
inspired by Jacob’s work (cf. Chap. 7, Sect. 4).

Proposition 4.32. Let M and N be two graded monoids. An S-relation θ :
M → N with finite co-image is continuous.

4.3.4 Morphic Image of Recognisable and Rational Series

An S-relation θ : M → N is multiplicative if its restriction to M is a morphism
to S〈〈N〉〉, viewed as a multiplicative monoid. The definition of S-relations
implies in fact that θ is a morphism from M to Sc〈〈N〉〉. In particular, the
characteristic relation θ of a morphism θ from M to N is a multiplicative
S-relation.

We begin with a weighted generalisation of a theorem on recognisable sets.

Proposition 4.33. Let θ : M → N be a morphism of monoids and u an S-
recognisable series on N . Then uθ−1 is an S-recognisable series on M .

Proof. By assumption, there exists (λ, μ, ν), an S-representation of N , such
that for all n in N , (u, n) = (λ · nμ · ν). Whence, for all m in M ,

(
uθ−1, m

)
= (u,mθ) = λ · (mθ)μ · ν.

Thus, the S-representation of M (λ, θμ, ν) recognises the series uθ−1. ��

The hypothesis that the coefficients of an S-relation are taken in Sc allows
us to establish the following.
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Fig. 12. Lifting of S-intersection with r

Proposition 4.34. If θ : M → N is a multiplicative S-relation, then θ is a
morphism of S-semialgebras, from S〈M〉 to S〈〈N〉〉.

Let M and N be two graded monoids. Let θ : M → N be a multiplicative
S-relation; if for all m in M , mθ is a proper series of S〈〈N〉〉, then θ is of finite
co-image, hence is defined on all of S〈〈M〉〉 and is continuous. In particular,
a monoid morphism θ : M → N is continuous if mθ 
= 1N for all m in M and
then the S-relation θ is a continuous morphism of S-semi-algebras from S〈〈M〉〉
to S〈〈N〉〉. It follows that if r is in S〈〈M〉〉, r∗ is defined if and only if (rθ)∗ is
defined and we have (r∗)θ = (rθ)∗. And the following theorem then holds.

Theorem 4.35. Let M and N be graded monoids and θ : M → N a contin-
uous morphism of monoids.

(i) If r ∈ SRat M , then rθ ∈ SRat N .
(ii) If θ is surjective and u ∈ SRat N , then there exists r ∈ SRat M such that

rθ = u.

Example 4.36. Let α : Σ∗ → M be a surjective morphism; a set R of Σ∗ is
a cross-section of Σ∗ for α if α is injective over R and Rα = M , that is, if
M = (R)α. A monoid M is rationally enumerable if such an R exists that is
a rational subset of Σ∗.

It easily comes that M is rationally enumerable if and only if it is an
unambiguous rational subset of itself: M ∈ URat M , that is, M ∈ NRat M
and then M ∈ SRat M for any S.

We prove a last lemma before the result we are aiming at.

Lemma 4.37. Let θ : M → N be a function and r a S-series on N . We have
(cf. diagram in Fig. 12)

θιr = ιrθ−1θ.

Proof. For every m in M, we have

(mιrθ−1)θ =
(
rθ−1
m

)
θ =

((
rθ−1, m

)
m
)
θ

= (r,mθ)mθ = r
mθ = (mθ)ιr. ��
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Theorem 4.38. Let U and V be two commutable sub-semirings of S, u in
V RatN and r in URec N . Then the Hadamard product of u and r is an
S-rational series on N .

Proof. As N is finitely generated there exists a finite alphabet Σ and a sur-
jective continuous morphism θ : Σ∗ → N . By Theorem 4.35(ii), there exists a
series u in V Rat Σ∗ such that

uθ = u.

The coefficients of u commute with those of r, and hence with those of rθ−1.
Lemma 4.37 allows us to rewrite the equality r
u = r
uθ as

r
u =
[
rθ−1
u

]
θ. (22)

Proposition 4.33 ensures that rθ−1 is U -recognisable (on Σ∗), Theorem 4.13
that rθ−1 
u is S-recognisable, hence S-rational, and finally (22) and Theo-
rem 4.35(i) that r
u is S-rational on N . ��

Corollary 4.39. If M is rationally enumerable, then SRec M ⊆ SRat M .

Proof. By hypothesis (cf. Example 4.36), M ∈ SRat M for any S. We have
r � M = r for all r in S〈〈M〉〉 and we apply Theorem 4.38. ��

Corollary 4.39 is the weighted generalisation of a theorem by McKnight
[35], Theorem 4.38, the one of a classical result on subsets of a monoid. As
for subsets also, the morphic image of a recognisable series is not necessarily
recognisable, the inverse morphic image of a rational series is not necessarily
rational.

We stop here with the theory of weighted relations, which could, of course,
be further developed. In particular, the composition and evaluation theorems
hold for weighted rational relations (cf. [24, 45, 43]). But our aim here was
just to set the framework in which we could establish Theorems 4.35, 4.38,
and Corollary 4.39, and in the next section, Corollary 5.32.

5 Series over a Free Monoid

So far, we have developed the theory of rational series under the assumption
that M is graded (so that we knew how to define star). In our presentation,
the Kleene–Schützenberger theorem and recognisable series appeared as a
last touch added to the fundamental theorem of automata in the case of free
monoids. We now require M to be a free monoid and change our point of view:
rational and recognisable series coincide and somehow recognisable series and
their representations become the main subject.

The whole thing takes an algebraic turn. We first give another characteri-
sation of recognisable series, and then under the hypothesis that the semiring
of weights is a field, we develop the theory of reduction (that is, minimisation)
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of representations. In a third subsection, we review a number of applications of
this reduction theory—and first of all, the decidability of equivalence—which
in many instances, do not apply only to the case of weights in a field, but also
in any sub-semiring of a field.

5.1 The Representability Theorem

Representations define recognisable series; we first show how, by means of the
quotient operation, we can recover a representation from a series when it is
recognisable. This is an abstract view since a series is an infinite object; we
then give an effective implementation of this result, starting from a rational
expression that denotes a rational series; this is another proof of one direction
of the Kleene–Schützenberger theorem.

5.1.1 Characterisation of Recognisable Series

The (left) quotient of a series is the generalisation to series of the (left) quotient
of a subset of a monoid (a free monoid in this case).

The free monoid Σ∗ acts by quotient on S〈〈Σ∗〉〉: for all f in Σ∗ and all
series r in S〈〈Σ∗〉〉, the series f−1r is defined by

f−1r =
∑

g∈Σ∗

(r, fg)g, that is, ∀g ∈ Σ∗ (
f−1r, g

)
= (r, fg),

and in particular
∀f ∈ Σ∗ (

f−1r, ε
)

= (r, f). (23)

As the definition says, the quotient is an action, that is,

∀f, g ∈ Σ∗ (fg)−1r = g−1
[
f−1r

]
,

and for every given f , the operation r �→ f−1r is an endomorphism of the
S-semi-module S〈〈Σ∗〉〉: it is additive:

f−1(r + u) = f−1r + f−1u,

and commutes with the exterior multiplications of S on S〈〈Σ∗〉〉:

f−1(kr) = k
(
f−1r

)
and f−1(rk) =

(
f−1r

)
k.

Moreover, it is continuous. These three properties ensure that the operation
of quotient by f is entirely defined on S〈〈Σ∗〉〉 by its values on Σ∗.

Example 5.1. Let r2 = (a∗)2 =
∑

k∈N
(k+1)ak in NRat a∗. For every integer n,

we have (
an
)−1

r2 =
∑

k∈N

(n + k + 1)ak = r2 + na∗.

All quotients of r2 are distinct.
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Example 5.1 shows that, in general, and unlike the case for (recognisable)
languages, the family of quotients of a rational, and thus recognisable series is
not necessarily finite. On the other hand, and despite its simplicity, it exhibits
the property that we seek: of course, there are infinitely many quotients, but
they can all be expressed as the linear combination of a finite number of
suitably chosen series.

Definition 5.2. A subset U of S〈〈Σ∗〉〉 is called stable if it is closed under
quotient; that is, for all r in U and all f in Σ∗, f−1r is still in U .

Theorem 5.3. A series on Σ∗ with coefficients in S is S-recognisable if and
only if it is contained in a finitely generated stable subsemimodule of S〈〈Σ∗〉〉.

To allow later references to parts of the proof of this result, it is split
into more precise properties and definitions. Let us begin with a notation:
Lemma 4.7 shows how close automata and representations are. We shall thus
denote the latter in the same way as the former by uppercase gothic letters.

Definition 5.4. With every S-representation A = (λ, μ, ν) of dimension Q
we associate a morphism of S-semimodules ΦA : SQ → S〈〈Σ∗〉〉 by

∀x ∈ SQ (x)ΦA = |||(x, μ, ν)||| =
∑

f∈Σ∗

(x · fμ · ν)f.

Proposition 5.5. If r is a series realised by A = (λ, μ, ν), then ImΦA is a
stable (finitely generated) subsemi-module of S〈〈Σ∗〉〉 that contains r.

Proof. The subsemimodule ImΦA is finitely generated since SQ is, and it is
stable since for all f in Σ∗ and all x in SQ we have

f−1 [(x)ΦA] = (x · fμ)ΦA,

and contains r = (λ)ΦA. ��

Proposition 5.6. Let U be a stable subsemimodule of S〈〈Σ∗〉〉 generated by
G = {g(1), g(2), . . . , g(n)}. Then every series in U is an S-recognisable series
of S〈〈Σ∗〉〉, realised by a representation of dimension n.

Proof. The set G canonically defines a linear map from Sn onto U :

x = (x1, x2, . . . , xn) �−→ x · G = x1g
(1) + x2g

(2) + · · · + xng(n).

A series u belongs to U means that there exists at least one x in Sn such that
u = x · G.

If U is stable, for every a in Σ, and every i, a−1g(i) belongs to U and there
exists a vector m(i) in S (at least one) such that a−1g(i) = m(i) ·G. Let aμ be
the n× n-matrix whose ith row is m(i). As the quotient by a is a linear map,
for any u in U , u = x ·G it holds a−1u = (x · aμ) ·G. These matrices aμ, for a
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in Σ, define a representation of Σ∗ and as the quotient is an action of Σ∗, for
every f in Σ∗, it holds f−1u = (x · fμ) · G.

From (23), follows then (u, f) = (f−1u, ε) = ((x·fμ)·G, ε) and u is realised
by the representation (x, μ, (G, ε)) where (G, ε) denotes the (column) vector
((g(1), ε), (g(2), ε), . . . , (g(n), ε)). ��

Propositions 5.5 and 5.6 together prove Theorem 5.3.

5.1.2 Derivation of Rational S-Expressions

The derivation of rational S-expressions is the lifting to the level of expres-
sions of the quotient of series and will enable us to effectively implement
Theorem 5.3: the derived terms of an expression denote a set of generators of
a stable subsemimodule that contains the series denoted by the expression.
It will give us the weighted generalisation of Antimirov’s construction on ra-
tional expressions [1]; this is another example where taking multiplicities into
account yield better understanding of constructions and results on languages.

S-Derivatives

For the rest of this subsection, addition in S is written ⊕ to distinguish it
from the + operator in expressions. The addition induced on S〈〈Σ∗〉〉 is also
written ⊕. The set of left linear combinations of S-expressions with coefficients
in S, or polynomials of S〈S RatE Σ∗〉, is a left S-semi-module on S:

kE ⊕ k′E′ ≡ k′E′ ⊕ kE and kE ⊕ k′E ≡ [k ⊕ k′] E. (BK)

In the following, [k E] or k E is a monomial in S〈S RatE Σ∗〉 whereas (k E) is
an expression in S RatE Σ∗.

As it is the case in general for semi-modules, there is no multiplication de-
fined on S〈S RatE Σ∗〉. However, an external right multiplication of an element
of S〈S RatE Σ∗〉 by an expression and by a scalar is needed. This operation is
first defined on monomials and then extended to polynomials by linearity:

([k E] · F) ≡ k (E · F), ([k E] k′) ≡ k (E k′),
([E ⊕ E′] · F) ≡ (E · F) ⊕ (E′ · F), ([E ⊕ E′] k) ≡ (E k) ⊕ (E′ k).

This multiplication on S〈S RatE Σ∗〉 is not associative—since the product
operator in expression is not—but is consistent with interpretation: the series
denoted by the left-hand sides and right-hand sides are equal.

Definition 5.7. Let E be in S RatE Σ∗ and let a be in Σ. The S-derivative
of E with respect to a, denoted by ∂

∂a E, is a polynomial of rational expressions
with coefficients in S, defined inductively by the following formulas.

∂

∂a
0 =

∂

∂a
1 = 0,

∂

∂a
b =

{
1 if b = a,

0 otherwise,
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∂

∂a
(k E) = k

∂

∂a
E,

∂

∂a
(E k) =

([
∂

∂a
E

]

k

)

,

∂

∂a
(E+F) =

∂

∂a
E ⊕ ∂

∂a
F, (24)

∂

∂a
(E · F) =

([
∂

∂a
E

]

· F
)

⊕ c(E)
∂

∂a
F, (25)

∂

∂a
(E∗) = c(E)∗

([
∂

∂a
E

]

· (E∗)
)

. (26)

The derivative of a polynomial of expressions is defined by linearity:

∂

∂a

(⊕

i∈I

ki Ei

)

=
⊕

i∈I

ki
∂

∂a
Ei. (27)

Implicitly, the (polynomials of) expressions are reduced with trivial identities,
for instance,

∂

∂a
E = 1 =⇒ ∂

∂a
(E · F) = F ⊕ c(E)

∂

∂a
F.

Notice that (26) is defined only if (E∗) is a valid expression. The S-derivative
of an expression with respect to a word f is defined by induction on the length
of f :

∀f ∈ Σ+, ∀a ∈ Σ
∂

∂fa
E =

∂

∂a

(
∂

∂f
E

)

. (28)

The definition of S-derivatives of S-expressions is consistent with that of
quotient of series, as expressed by the following.

Proposition 5.8. ∀E ∈ S RatE Σ∗, ∀f ∈ Σ+

∣
∣
∣
∣

∂

∂f
(E)
∣
∣
∣
∣ = f−1|E|.

The Derived Term Automaton

Definition 5.9. The set TD(E) of true derived terms of an expression E
in S RatE Σ∗ is inductively defined by the following rules:

TD(0) = TD(1) = ∅, ∀a ∈ Σ TD(a) = {1},

∀k ∈ S, TD(k E) = TD(E), TD(E k) =
⋃

K∈TD(E)

(K k),

TD(E + F) = TD(E) ∪ TD(F),

TD(E · F) =
[ ⋃

K∈TD(E)

(K · F)
]

∪ TD(F),

TD(E∗) =
⋃

K∈TD(E)

(
K · (E∗)

)
.
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It follows from the definition that TD(E) is a finite set of monomials
of S〈S RatE Σ∗〉, whose cardinal is smaller than or equal to �(E). The rea-
son for the two distinct definitions (Definitions 5.7 and 5.9), which may look
redundant will be explained below.

The expression E itself does not belong necessarily to TD(E) and we define
the set of derived terms of E to be: D(E) = TD(E) ∪ {E}. A mechanical
induction on the depth of the expressions establishes then the following.

Theorem 5.10. Let D(E) = {K1, . . . ,Kn} be the set of derived terms of an
expression E in S RatE Σ∗. For every letter a in Σ, there exists an n × n-
matrix aμ with entries in S such that

∀i ∈ [n]
∂

∂a
Ki =

⊕

j∈[n]

aμi,jKj .

From (28), it then follows, by induction on the length of words.

Corollary 5.11. For every word f in Σ∗, the S-derivative of any expression E
in S RatE Σ∗ with respect to f is a linear combination of derived terms of E.

The statement of Theorem 5.10 is in itself the definition of an S-representa-
tion AE = (λ, μ, ν) of dimension D(E) if we add

λi =

{
1S if Ki = E,

0S otherwise,
and νj = c(Kj).

We also write AE for the S-automaton 〈λ,X, ν〉 where X =
⊕

a∈Σ aμa and
call it the derived term automaton of E.

Proposition 5.12. Let E be in S RatE Σ∗. Then |AE| = |E|.

Derivation is thus another means to build an automaton from an expres-
sion, different from the one we have seen in the course of the proof of The-
orem 3.20 which yielded the standard automaton of the expression. The two
constructions are related by the following, which is the weighted generalisation
of a theorem by Champarnaud and Ziadi [10].

Theorem 5.13 ([33]). Let E be in S RatE Σ∗. Then SE is an S-covering
of AE.

Remark 5.14. Definitions 5.7 and 5.9 are both based on an induction on the
depth of the expression and then reunited by Theorem 5.10 and Corollary 5.11.
It seems that it could be possible, and more natural, to define the derived
terms of E as the monomials that appear in the S-derivatives of E.

The problem is that this is not always true if S is not a positive semi-
ring: some derived terms may never appear in an S-derivative—as it can be
observed for instance with the Z-expression E5 = (1 − a)a∗ (cf. Fig. 13).
And with such a definition of derived terms, more utilitarian than structural,
Theorem 5.13 would not hold anymore.
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Fig. 13. Two Z-automata for E5

5.2 Reduced Representations

We now suppose that S is a field, not necessarily commutative, hence a skew
field, or division ring. The preceding considerations about quotients of series
will take on, we might say, a new dimension since the ring of series S〈〈Σ∗〉〉 is
not only an S-algebra, but a left and right S-vector space, and the notion of
dimension of subspaces will give us a new invariant.

5.2.1 Rank of a Series

Definition 5.15. Let S be a division ring. The rank of a series r of S〈〈Σ∗〉〉
is the dimension of the subspace of S〈〈Σ∗〉〉 generated by the (left) quotients
of r.

In this setting, and with no further ado, Theorem 5.3 becomes the following
theorem.

Theorem 5.16. A series r over Σ∗ with coefficients in a division ring is
recognisable if and only its rank is finite.

From Definition 5.4 and Proposition 5.5, it follows that if r is a series
realised by an S-representation A = (λ, μ, ν) of dimension n, the rank of r
is smaller than or equal to dim(Im ΦA) which is smaller than or equal to n,
that is, the rank of a recognisable series r is smaller than, or equal to, the
dimension of any representation that realises it.

Definition 5.17. A representation of a recognisable series r is reduced if its
dimension is minimal, equal to the rank of r.

From Proposition 5.6, it follows that with every base of the subspace gener-
ated by the quotients of r is associated a reduced representation. The reduced
representations will be characterised by means of the following definition.
With every S-representation A = (λ, μ, ν) of dimension Q, we associate the
morphism of S-semi-modules ΨA : S〈Σ∗〉 → SQ defined by

∀f ∈ Σ∗ (f)ΨA = λ · fμ.
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Theorem 5.18. An S-representation A = (λ, μ, ν) is reduced if and only if
ΨA is surjective and ΦA injective.

Proof. Let r be the series realised by A. The morphism

ΨA ◦ ΦA : S〈Σ∗〉 → S〈〈Σ∗〉〉 is such that (f)[ΨA ◦ ΦA] = f−1r

for every f in Σ∗ and Im ΨA ◦ ΦA is the subspace generated by the quotients
of r. For the dimension of Im ΨA ◦ ΦA be equal to n, the dimension of A, it is
necessary and sufficient that the dimension of both ImΨA and ImΦA be equal
to n. The second equality holds if and only if the dimension of Ker ΦA is zero.

��

Remark 5.19. The significance of the map ΨA goes beyond the case of weights
taken in a field. Without linearisation, (Σ∗)ΨA is the reachability set of A. If
S = B, (Σ∗)ΨA is a set of subsets of states of A, namely the set of states of
the determinisation of A (by the so-called subset construction).

5.2.2 The Reduction Algorithm

It is not enough to know that reduced representations exist and to characterise
them. We want to be able to effectively compute them and establish the
following.

Theorem 5.20. A reduced representation of a recognisable series r is effec-
tively computable from any representation that realises r with a procedure
whose complexity is cubic in the dimension of the representation.

For the rest of this section, let A = (λ, μ, ν) be a S-representation of Σ∗

of dimension n (that realises the series r = |||A|||).

Word Base

The effective computation from A of a reduced representation of r is based
on one definition and two propositions that are related but whose scope and
aim are nevertheless rather different.

Definition 5.21. We call word base for A a prefix-closed subset P of Σ∗ such
that the set (P )ΨA = {λ · pμ | p ∈ P} is a base of Im ΨA.

Proposition 5.22. Word bases for A do exist.

Proof. If λ = 0, ImΨA is the null vector space of dimension 0 and the empty
set (which is prefix-closed!) is a word base. Assuming that λ is non-zero, the
family of prefix-closed subsets P of Σ∗ such that {λ · pμ | p ∈ P} is a free
subset of Sn is not empty since it contains at least the singleton {ε}. Every
such subset contains at most k = dim(ImΨA) elements and there exist thus
maximal elements (for the inclusion order) in that family.
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It remains to show that such a maximal element P is a word base, that is,
(P )ΨA generates Im ΨA. By way of contradiction, let f in Σ∗ such that λ · fμ
does not belong to 〈〈〈(P )ΨA 〉〉〉; the word f factorises in f = pg, with p in P ,
and we choose f in such a way that g is of minimal length. The word g is not
empty: g = ah, with a in Σ, and λ · fμ = λ · (pa)μ · hμ. As P is maximal,
λ · (pa)μ belongs to 〈〈〈(P )ΨA 〉〉〉, that is, λ · (pa)μ =

∑
pi∈P xi(λ · piμ). It then

follows

λ · fμ =
( ∑

pi∈P

xi(λ · piμ)
)

· hμ =
∑

pi∈P

xi

(
λ · (pih)μ

)
.

By the minimality of g, every λ · (pih)μ belongs to 〈〈〈(P )ΨA 〉〉〉: contradiction.
��

In the sequel, we do not consider the trivial case λ = 0 anymore.

Proposition 5.23. With every word base P for A of cardinal m is associ-
ated a representation A′ = (λ′, μ′, ν′) of dimension m—effectively computable
from P and A—which is conjugate to A and with the property that ΨA′ is
surjective. Moreover, if ΦA is injective, then so is ΦA′ .

Proof. Let P = {p1 = ε, p2, . . . , pm} be a word base for A and X the m × n-
matrix (with entries in S) whose i-th row is λ · (pi)μ. Let us denote ν′ = X · ν
and by λ′ the (row) m-vector whose entries are all 0 but the first one which
is 1—thus λ′ · X = λ.

For every a in Σ, let aμ′ be the m × m-matrix (with entries in S) whose
ith row is the vector of coordinates of λ · (pia)μ in the base λ · (P )μ, that is,

λ · (pia)μ =
j=m∑

j=1

(aμ′)i,j(λ · pjμ). (29)

Since λ · (pia)μ = (λ · piμ) · aμ, the set of equations (29) for all i may be
rewritten in a more compact way as

aμ′ · X = X · aμ

and A′ is conjugated to A by X.
If P is not a word base for A′, there exist m coefficients αi such that∑i=m

i=1 αi(λ′ · piμ
′) = 0, but multiplying this equality on the right by X yields

∑i=m
i=1 αi(λ · piμ) = 0, a contradiction (with the fact that P is a word base

for A).
If ΦA′ is not injective, there exists a non-zero vector y in Sm such that

y ·fμ′ ·ν′ = 0, and thus (y ·X) ·fμ ·ν = 0 for every f in Σ∗. If ΦA is injective,
then y ·X = 0, and thus y = 0 for the same reason as above, a contradiction.

��
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Remark 5.24 (Remark 5.19 continued). Let D be the determinisation of a
classical automaton A (that is, an automaton with weight in B) of dimension Q
by the subset construction. If we form the (Boolean) matrix X whose rows
are the states of D (Boolean vectors of dimension Q), then D is conjugate
to A by X.

Demonstration of the Reduction Theorem (Theorem 5.20)

We first observe that Proposition 5.23 has obviously a dual formulation, which
we rather state on the transpose of the representation A, tA = (tν, tμ, tλ)
where atμ = t(aμ) for every a in Σ and it comes f tμ = t(tfμ) for every f
in Σ∗. We then have the following connection between A and tA.

Lemma 5.25. If ΨtA is surjective, then ΦA is injective.

Proof. If xΦA = 0 then x · fμ · ν = 0 for every f in Σ∗ and x belongs to the
orthogonal of the subspace generated by the vectors {fμ · ν | f ∈ Σ∗} which
is of dimension n by hypothesis: thus x = 0. ��

Starting from a representation A, we first compute a word base for tA

which determines a representation tA′ such that ΨtA′ is surjective, and thus
by Lemma 5.25, ΦA′ is injective. We then compute a word base for A′ which
determines a representation A′′ such that ΨA′′ is surjective and ΦA′′ is injec-
tive: A′′ is reduced. The proof of Theorem 5.20 will be complete when we
have proved that word bases are effectively computable (with the ascribed
complexity).

The foregoing proofs all correspond to effective computations, assuming of
course that the operations in S (addition, multiplication, taking the inverse)
are effective. All the complexities that follow are calculated assuming that
each operation in S has a fixed constant cost, independent of its operands.
Computations in Sn are based on the Gaussian elimination procedure.

Definition 5.26. A sequence of k vectors (v1, v2, . . . , vk) of Sn is an echelon
system if, for all i in [k]:

(i) vi
i = 1S.

(ii) ∀j < i vi
j = 0S.

An echelon system is free, and hence k � n.The following proposition is
classic, at least for commutative fields, and its proof is not really different for
division rings.

Proposition 5.27 (Gaussian elimination). Let S be a skew field and let
us view Sn as a left vector space over S. Let U = (v1, v2, . . . , vk) be an echelon
system and let w be a vector in Sn.

(i) We can decide whether w is in 〈〈〈U 〉〉〉, the subspace generated by U , and in
this case, compute effectively the coordinates of w in U .
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(ii) If w is not in 〈〈〈U 〉〉〉, we can compute effectively w′ such that U ′ = U ∪{w′}
is echelon and generates the same subspace as U ∪ {w}.

The complexity of these operations (deciding whether w is in 〈〈〈U 〉〉〉 and
computing the coordinates of either w or w′) is O(kn).

From this proposition, we deduce the effective nature of the assertions,
constructions, and specifications used in the proofs of this section. More pre-
cisely, the corollary follows.

Corollary 5.28. Let U be a finite set of vectors of Sn and let w be in Sn.

(i) We can decide whether w belongs to 〈〈〈U 〉〉〉.
(ii) We can extract effectively from U a basis V of 〈〈〈U 〉〉〉.
(iii) We can compute effectively the coordinates in V of an (explicitly given)

vector of 〈〈〈U 〉〉〉.

The following proposition and its proof exhibit the computation underlying
Proposition 5.23 (remember, we have defined the border of a prefix-closed
subset at Sect. 2.2.2).

Proposition 5.29. Word bases for A are effectively computable, with com-
plexity O(dn3), where d is the cardinal of Σ.

Proof. We set P0 = {ε} and C0 = ∅. The algorithm to compute a word base P
can be written in the following manner.

If Ek = (PkΣ\Pk)\Ck is non-empty, choose an arbitrary f in Ek and
decide whether λ · fμ belongs to 〈〈〈λ · Pkμ 〉〉〉.

(i) If not, then Pk+1 = Pk ∪ {f} and Ck+1 = Ck.
(ii) If so, then Pk+1 = Pk and Ck+1 = Ck ∪ {f}.

Set k = k + 1 and start again.
The algorithm terminates when Ek is empty and at that moment Ck =

PkΣ\Pk is the border of Pk. The algorithm must terminate since Pk has at
most n elements, so Pk∪Ck has at most ‖Σ‖n+1 elements and this set grows
by 1 at each step of the algorithm.

By construction, Pk is prefix-closed, and each element f of Ck is such
that λ · fμ belongs to 〈〈〈λ · Pkμ 〉〉〉: when Ek is empty, Pk is maximal. ��

5.3 Applications of the Reduction of Representations

We consider here three applications: the decidability of equivalence of S-
automata (for certain S), the generalisation of the recurrence relation on the
coefficients of a rational series over non-commuting variables, and a struc-
tural interpretation of equivalence of S-automata in terms of conjugacy and
covering (again for certain S).
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5.3.1 Equivalence Decidability

Even if a series has not a unique reduced representation (they are all similar),
the existence of reduced representations implies the decidability of equivalence
for automata with weights in a field.

Theorem 5.30. The equivalence of recognisable series over Σ∗ with coeffi-
cients in a (sub-semiring of a) skew field—and thus of rational series—is de-
cidable, with a procedure which is cubic in the dimension of the representation
of the series.

Proof. Let S be a sub-semiring of a skew field F. Two series r1 and r2

of SRec Σ∗ are also in FRec Σ∗ and r1 = r2 holds if, and only if, (r1 − r2)
is a series of FRec Σ∗ of rank 0, and the rank of (r1 − r2) can be computed
effectively. ��

This result, together with the well-known decidability of equivalence of
classical Boolean automata, should not let us think that this is the universal
status. For instance, the following holds.

Theorem 5.31 ([28]). The equivalence of recognisable series over Σ∗ with
coefficients in the semiring M = 〈N∞, min, +〉 is undecidable.

Theorem 5.30 has however far reaching and to some extent ‘unexpected’
consequences, as the following one, discovered by T. Harju and J. Karhumäki.

Corollary 5.32 ([22]). The equivalence of rational series over Σ∗
1 × Σ∗

2 ×
· · · × Σ∗

k with coefficients in N is decidable.

Proof. By Proposition 4.25, a series in NRatΣ∗
1 ×Σ∗

2 × · · · ×Σ∗
k is a series in

[NRatΣ∗
2 ×· · ·×Σ∗

k ]Rat Σ∗
1 . By Corollary 4.29, the latter family is isomorphic

to [NRatΣ∗
2 ×· · ·×Σ∗

k ]Rec Σ∗
1 and the decidability of equivalence follows from

Theorem 5.33. ��

Theorem 5.33. NRatΣ∗
2 × · · · × Σ∗

k is a sub-semiring of a skew field.

This result is the direct consequence of a series of classical results in math-
ematics which we shall not prove here (cf. for instance [11]) but simply state.

Definition 5.34 (Hahn–Malcev–Neumann). Let S be a semiring and G
an ordered group. We write Swo〈〈G〉〉 to denote the set of series on G with
coefficients in S whose support is a well-ordered subset of G.

Theorem 5.35 (Birkhoff–Tarski–Neumann–Iwazawa17). A finite direct
product of free groups is ordered.

Theorem 5.36 (Malcev–Neumann). If S is a skew field and G an ordered
group, then Swo〈〈G〉〉 is a skew field.
17 And possibly others.
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Theorems 5.35 and 5.36 imply that Swo〈〈F (Σ2) × · · · × F (Σk)〉〉 is a skew
field (here F (Σ) is the free group generated by Σ). To deduce Theorem 5.33,
we must also ensure that SRat Σ∗—in fact S〈〈Σ∗〉〉—is included in Swo〈〈F (Σ)〉〉,
respectively that

S〈〈Σ∗
2 × · · · × Σ∗

k〉〉 ⊆ Swo〈〈F (Σ2) × · · · × F (Σk)〉〉;

that is, to be more precise, that we can order F (Σ2) × · · · × F (Σk) in such a
way that the above inclusion is true and this is not difficult either.

Now, by straightforward computations, 1-way k-tape Turing machines are
faithfully modelised by automata over Σ∗

1×Σ∗
2×· · ·×Σ∗

k and two deterministic
such machines are equivalent if and only if the corresponding automata are
equivalent as automata over Σ∗

1 × Σ∗
2 × · · · × Σ∗

k with multiplicity in N.

Corollary 5.37 ([22]). The equivalence of 1-way k-tape deterministic Turing
machines is decidable.

5.3.2 Recurrence Relations

Another consequence of Theorem 5.16 is the generalisation to series over non-
commuting variables of the characterisation by linear recurrences of coeffi-
cients of rational series over one variable (recall also Lemma 2.27).

Theorem 5.38 ([46]). A series r of S〈〈Σ∗〉〉 is recognisable if and only if
there exists a finite prefix-closed subset P and its border C = PΣ\P , such
that for each pair (c, p) in C ×P , there exists a coefficient sc,p in S such that

∀g ∈ Σ∗, ∀c ∈ C (r, cg) =
∑

p∈P

sc,p(r, pg). (30)

Proof. Let P be a word base for an S-representation A = (λ, μ, ν) that recog-
nises r and (λ′, μ′, ν′) the S-representation computed as in Proposition 5.23.
For each c = pa in C and all q in P , we set sc,q = (aμ′)p,q. From (29) follows
that, for all g in Σ∗, it holds:

(r, cg) = λ · pμ · aμ · gμ · ν =
∑

q∈P

aμ′
p,qλ · qμ · gμ · ν =

∑

q∈P

sc,q(r, qg).

Conversely, (30) implies that every quotient f−1r belongs to the sub-
space T generated by p−1r for p in P . This last property is trivially verified
if f is in P and (30) can be rewritten as

∀c ∈ C c−1r =
∑

p∈P

sc,pp
−1r;

that is, the property is verified for f in C. A contrario, suppose that f−1r
does not belong to T ; by Lemma 2.27, we have f = cg and choose f such
that g is of minimal length. By (30), we have, for all h in Σ∗,
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(r, cgh) =
∑

p∈P

sc,p(r, pgh) that is, f−1r =
∑

p∈P

sc,p(pg)−1r.

For each p in P , either pg is in P , or pg = c′g′ with c′ in C, then |c′| > |p|;
hence, |g′| < |g| and (pg)−1r is in T by the assumption of minimality of g.
Hence, f−1r belongs to T , which is a contradiction. Also, r is recognisable by
Theorem 5.16. ��

Remark 5.39. If Σ = {a}, every prefix-closed subset of Σ∗ has the form
P = {ε, a, . . . , aj−1} for some integer j, and C is a singleton: C = {aj}.
Equation (30) becomes

∀n ∈ N
(
r, an+j

)
= sj−1

(
r, an+j−1

)
+ sj−2

(
r, an+j−2

)
+ · · · + s0

(
r, an

)
;

that is, a linear recurrence in its standard form.

Another way to exploit Proposition 5.23, is by ‘computing’ the coefficients
of a reduced representation of a recognisable series as a function of the coef-
ficients of the series itself. Going from the series back to the representation
does not so much correspond to an effective procedure like those described in
Proposition 5.23 and Theorem 5.38, as it expresses a fundamental property
of recognisable series on a field (see an application with Theorem 6.4).

Proposition 5.40 ([46]). Let S be a skew field, r an S-recognisable series of
rank n, and (λ, μ, ν) a reduced representation of r. There exist two sets of n
words: P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} (which we can choose to
be respectively prefix-closed and suffix-closed) and two n× n matrices αP and
βQ such that

∀f ∈ Σ∗ fμ = αP · ((r, pifqj)) · βQ,

where ((r, pifqj)) denote the n × n matrix whose entry (i, j) is (r, pifqj).

5.3.3 From Equivalence to Conjugacy

At Section 3.3, we have seen that it directly follows from the definition that two
conjugate automata are equivalent (Proposition 3.23). For certain semirings S,
this statement can be given a kind of converse, which reads as follows.

Theorem 5.41 ([4]). Let S be B, N, Z, or any (skew) field. Two S-automata
are equivalent if and only if there exists a third S-automaton that is conjugate
to both of them.

The proof of Theorem 5.41 relies on the idea of joint reduction which is
defined by means of the notion of representation. Let A = 〈λ, μ, ν〉 be an S-
representation of dimension Q and the associated map ΨA : Σ∗ → SQ. We have
already seen (Proposition 5.23 and Remark 5.24) that, in the two contrasting
cases of the Boolean semiring and of a field, we can choose a word base P
such that:
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Fig. 14. Structural decomposition of the equivalence of two S-automata

(i) {λ·pμ | p ∈ P} is a set of vectors, which is equal to (Σ∗)ΨA in the Boolean
case, which generates the same S-vector space in the field case.

(ii) There exists an automaton R which is conjugate to A by the transfer
matrix X whose rows are the vectors {λ · pμ | p ∈ P}.

Let now A = 〈λ, μ, ν〉 and B = 〈η, κ, χ〉 be two S-representations of di-
mension Q and R, respectively, and let C be the sum of A and B: C = 〈ζ, π, ω〉
is an S-representation of dimension Q ∪ R, ζ = [λ η] is the horizontal con-
catenation of λ and η, ω = [ ν

χ ] the vertical concatenation of ν and χ, and
π =

[
μ 0
0 κ

]
is the representation whose diagonal blocs are μ and κ. We per-

form the same construction as before on C; we consider the set of vectors
(Σ∗)ΨC = {[λ · fμ η · fκ] | f ∈ Σ∗} and look for a finite set V of vectors [x y]
which, roughly speaking, generates the same S-semi-module as (Σ∗)ΨC.

The computation of V provides indeed at the same time an automaton Z

which is conjugate to C by the transfer matrix Z whose rows are the vectors
in V . If A and B are equivalent, then Z, or a slight modification of it (depend-
ing on which semiring S the computations are currently done), is conjugate
to both A and B by the transfer matrices X and Y, respectively, where X
and Y are respectively the ‘left’ and ‘right’ parts of the matrix Z. In every
case listed in Theorem 5.41, the finite set V is effectively computable, a proof
that has to be done separately for each case (cf. [4]).

Together with the result of decomposition of conjugacy by means of a se-
quence of co-covering, circulation, and covering (Theorem 3.33), and Propo-
sition 3.36 that allows us to build diagrams upward; this result yields a struc-
tural decomposition of the equivalence of two S-automata as shown in Fig. 14.
In the case S = N, this decomposition takes the following form.

Corollary 5.42. Two equivalent N-automata can be transformed, one into the
other, by a chain of two state-splittings (in- and out-) and two state-mergings
(out- and in-).

6 Support of Rational Series

It follows directly from Proposition 4.5 that for any (graded) monoid M , we
have the following corollary.
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Corollary 6.1. If S is a positive semiring, the support of an S-recognisable
series over M is a recognisable subset of M .

The assumption on S is necessary, even in the case where M is a free
monoid Σ∗, as shown by the following example.

Example 6.2 (Example 4.2 continued). We have seen that u1 =
∑

f∈Σ∗ |f |bf
is a Z-rational series, and thus so is r1 =

∑
f∈Σ∗ |f |af . The series z1 =

r1 − u1 =
∑

f∈Σ∗(|f |a − |f |b)f is a Z-rational series. The complement of
supp z1 = {f ∈ Σ∗ | |f |a 
= |f |b} is the language Z1 = {f ∈ Σ∗ | |f |a = |f |b},
which we know is not rational.

In this short section, we study certain conditions which ensure the ratio-
nality of the support of a series, and some closure properties of the family
of languages thus defined. We end with several undecidable properties for Z-
rational series, somewhat surprising in this context where properties seem to
be all decidable and effective.

Recall that a series r of S〈〈Σ∗〉〉 is fundamentally a map from Σ∗ to S.
It is therefore natural to write, for every subset U of S, Ur−1 for the set of
words of Σ∗ whose coefficient in r belongs to U :

Ur−1 = {f ∈ Σ∗ | (r, f) ∈ U}.

The first result concerns locally finite semirings (defined in Chap. 1).

Proposition 6.3. Let S be a locally finite semiring and let r be an S-rational
series over Σ∗. For all subsets U of S, Ur−1 is rational.

Proof. Since r is also recognisable, r is recognised by a S-representation
(λ, μ, ν), of finite dimension Q, that is, μ : Σ∗ → SQ×Q is a morphism. Since S
is locally finite, the image (Σ∗)μ = M is a finite submonoid of SQ×Q. The
language Ur−1 is recognised by the morphism μ : Σ∗ → M , a well-known
characterisation of rational (or recognisable) languages of Σ∗. ��

Another way to state (and to prove indeed) Proposition 6.3 is to re-
mark that if S is locally finite, then the reachability set (Σ∗)ΨA of any S-
representation A is finite—opening the way to the immediate construction
for equivalent deterministic or minimal automata, a basic fact that seems to
have been often overlooked, and thus often rediscovered (cf. also Chap. 12).
To express it in another way again: Counting in a (locally) finite semiring is
not counting.

Proposition 6.3 generalises in a remarkable way if S is a field. But it is not
a trivial remark anymore; it follows from the whole algebraic theory we have
built in this case.

Theorem 6.4 ([46]). Let S be a (skew) field. If r is an S-rational series over
Σ∗ with a finite image, then kr−1 is rational for all k in S.
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Proof. Let (λ, μ, ν) be a reduced representation that recognises r. By Propo-
sition 5.40, the image (Σ∗)μ is a finite sub-monoid of SQ×Q if r has a finite
image and the conclusion follows as in Proposition 6.3. ��

Since the family of supports of S-rational series over Σ∗ strictly contains
RatΣ∗, a natural question is to ask under which operations this family is
closed. The answer certainly depends on S; a fairly complete one can be given
for sub-semirings of R.

Proposition 6.5 ([46]). Let S be a sub-semiring of R. The set of supports of
S-rational series on Σ∗ contains Rat Σ∗ and is closed under union, product,
star, and intersection.

Proof. The first assertion is a restatement of Proposition 3.12. Since SRat Σ∗

is closed under the Hadamard product, we deduce first the closure by inter-
section, then because r and r� r have the same support, it follows that every
support of an S-rational series is the support of an S-rational series with
non-negative coefficients. Then for such series, we clearly have

supp (r + r′) = supp r ∪ supp r′, supp (rr′) = supp r supp r′ and
supp (r∗) = (supp r)∗. ��

The closure under morphisms and inverse morphisms is somewhat more
difficult to establish.

Proposition 6.6 (Fliess [17]). Let S be a sub-semiring of R. The set of
supports of S-rational series over Σ∗ is closed under morphisms and inverse
morphisms.

The set Rat Σ∗ is also closed under complement, but if S is not positive,
the set of supports of S-rational series can strictly contain Rat Σ∗. The clo-
sure under complement is precisely characteristic of membership of RatΣ∗ as
stated in the following result. Besides the reduction theory, its proof is based
upon the strongest version of the iteration theorem (or pumping lemma) for
rational languages, due to A. Ehrenfeucht, R. Parikh, and G. Rozenberg [13],
and itself is based on Ramsey’s theorem.

Theorem 6.7 (Restivo–Reutenauer [38]). Let S be a (sub-semiring of a)
skew field. If a language and its complement are each the support of an S-
rational series over Σ∗, then this language is rational.

We then construct, with this simple model of finite weighted automata,
some series for which we cannot answer some elementary questions, as soon
as the semiring of coefficients contains Z.

Theorem 6.8. It is undecidable if the support of a Z-rational series over Σ∗

is all of Σ∗.
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Proof. Let Δ = {x, y}; the morphism α : Δ∗ → N
2×2 defined by

xα =
(

1 0
0 2

)

and yα =
(

1 1
0 2

)

is injective (cf. the automaton C1 at Example 3.4).
Then let θ : Σ∗ → Δ∗ and θ : Σ∗ → Δ∗ be two morphisms. For i and j

equal to 1 or 2, the series ri,j defined by

∀f ∈ Σ∗ (ri,j , f) =
(
(fθ)α

)
i,j

−
(
(fμ)α

)
i,j

are Z-rational, hence so are the series ui,j = ri,j � ri,j , and the series

u =
∑

i,j

ui,j .

The support of u is not all of Σ∗ if and only if there exists f such that
(u, f) = 0; that is, since α is injective, if and only if fθ = fμ, which we know
to be undecidable (Post Correspondence Problem). ��

With the same construction, we easily obtain the following corollary.

Corollary 6.9. Let r be a Z-rational series over Σ∗. It is undecidable whether:

(i) r has infinitely many coefficients equal to zero.
(ii) r has at least one positive coefficient.
(iii) r has infinitely many positive coefficients.

Corollary 6.10. It is undecidable whether the supports of two Z-rational se-
ries over Σ∗ are equal.

7 Notes

I am grateful to M. Droste, Ch. Reutenauer, and W. Kuich who pointed out
some interesting references to me.

7.1 General Sources

As already mentioned in the Introduction, this chapter is essentially an epit-
ome of Chap. III and of a part of Chap. IV of [43] where more details, proofs,
and examples are to be found. More precise references to some of them are
given below.

A classical, and above all pioneering, reference on the subject is the treatise
by S. Eilenberg [14] whose influence is willingly acknowledged. Each of the
references quoted in the Introduction [45, 29] or in Chaps. 1 and 3 develop a
particular point of view that is worth interest. But the most advanced one is
the book of Jean Berstel and Christophe Reutenauer [5], a new revised edition
of which is now available and anyone really interested in weighted automata
should certainly not miss this work.
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7.2 Notes to Sect. 2: Rational Series

One can say that it is equation (2) that justifies the choice of Eilenberg,
op. cit., to call rational what was called regular in the foregoing literature.
Schützenberger and his school, to which I acknowledge membership, followed
him but one must recognise it has not been a universal move. If the termi-
nology is still disputable for languages, and expressions, I do not think the
question may even be asked when it comes to series. On the other hand and
in the same work, Eilenberg calls a monoid with the property that every
element is finitely decomposable a locally finite monoid. This terminology in-
conveniently conflicts with another accepted meaning of the phrase: a monoid
such that every finitely generated submonoid is finite (cf. [49]).

I was led to define strong semirings, a terminology suggested to me by
J. van der Hoeven, to be able to prove the equivalence between the existence
of the star of an arbitrary series and that of the star of its constant term.

7.3 Notes to Sect. 3: Weighted Automata

The construction of SE is the version given in [33] of the generalisation to
weighted automata of the construction of the Glushkov automaton or position
automaton first given by Caron and Flouret [9].

In a sense the Fundamental Theorem is what Kleene showed for automata
over Σ [26], or its usual weighted generalisation (often called the Kleene–
Schützenberger theorem). However, because these results apply to automata
over free monoids, their standard form—cf. Theorem 2.12, Chap. 3—states
the identity between rational and recognisable languages or series, which no
longer holds for automata (weighted or otherwise) over arbitrary monoids.
Kleene’s theorem was therefore split in two, as it were: one part which holds
for automata over arbitrary monoids and which, considering what the proof
involves, concentrates the substance of the theorem; and one part which holds
only for automata over free monoids and which is nearly a formality; this
distinction seems to appear for the first time in [42].

Proposition 3.21 can be credited to Conway [12] and Krob [27]; an elemen-
tary proof is given in [43, 44].

The matter of Sect. 3.3 is taken from [43] and [3]. Conjugacy of A to B

by X is called simulation from A into B in [7]. In a different setting, this kind
of mapping was called morphism of ‘modules sériels’ by Fliess in [18]. The
definition of S-covering as conjugacy by an amalgamation matrix is a hint for
similarity between S-coverings and state amalgamation in symbolic dynamical
systems [31, Sect. 2.4]. If B is obtained from A by an In-amalgamation, then A

is an N-covering of B. But the converse is not true. Roughly speaking, and with
the notations of Proposition 3.28, A = 〈I, E, T 〉 is an S-covering of B if the
rows with ‘equivalent’ indices of the matrix E·Hϕ are equal while B is obtained
by amalgamation from A if the rows with ‘equivalent’ indices of the matrix E
are equal. The notion of ‘equisubtractivity’ used in Sect. 3.3.3 in order to
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express conjugacy in terms of coverings and co-coverings is very similar to a
property introduced by Tarski in [51] where an extension of Lemma 3.35 to
infinite sums is established.

The presentation of the minimal S-quotient is taken from [43], whereas
the notion itself probably exists in many other works; for instance, two S-
automata are in bisimulation if and only if their minimal S-quotients are
isomorphic.

7.4 Notes to Sect. 4: Recognisable Series

The definition of representations in the form (λ, μ, ν) is due to Fliess [18].
Lemma 4.10 is a classic statement in matrix theory and can be found al-
ready in Gröbner [21] (cf. also [29, Theorem 4.33]). Theorem 4.12 is due to
Schützenberger [48], including the more general formulation of Theorem 4.13.
Theorem 4.18 is also due to Fliess [19]; the proof given here is that of [43].

The ‘shuffle identity’ (20) is an unpublished result of M. Petitot and was
indicated to me by M. Waldschmidt (personal communication); the proof I
gave for it in [43] was the starting point of [3].

The matter of Sect. 4.3, and especially the definition of weighted relations,
is taken from Chap. IV of [43]. Another theory of weighted relations, slightly
different from what I have very briefly sketched here, is that of Jacob [24, 25].
It consists of defining with regulated rational transductions the largest possible
family of relations which satisfy the evaluation and composition theorems and
which correspond to total maps (and hence maps whose composition is also
always defined), and to do that independently of the semiring of coefficients.
This point of view was adopted in related works [45, 29] which popularised
the work of Jacob.

7.5 Notes to Sect. 5: Series over a Free Monoid

Some authors speak of the translation of a series instead of quotient; I have
preferred to use the same term as for languages.

The original work is due to Schützenberger [46, 47]. The characterisation
of recognisable series (Theorem 5.3) is a generalisation, due to Jacob [24], of
the property stated by Fliess for the case of series on a field [18].

The derivation of weighted expressions is a generalisation of V. Antimirov’s
work [1] (where derived terms were called partial derivatives). We note once
more that the introduction of weights clarifies and structures a result on lan-
guages, even if having to take into account that not necessarily positive semi-
rings adds a certain complexity. This presentation is taken from [32]. With
somewhat different techniques, Rutten [40, 41] also proved Theorem 5.10 and
Proposition 5.12.

The original work for reduction of representations is again from Schützen-
berger [46]. The presentation here follows roughly [5] but as in a background
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and owes much to my discussions with S. Lombardy. It keeps the Hankel ma-
trix of a series—which could be given the central role as M. Fliess did in
[18]—as a subliminal object. It is important for the sequel that the theory
is generalised to non-commutative fields. In [20], it was also observed that
Schützenberger’s reduction algorithm applies to the case of series on a skew
field, but with a reference to a previous theory of non-commutative deter-
minants [39]. The cubic complexity of the reduction algorithm was already
established in [8].

The problem of the decidability of equivalence of deterministic k-tape au-
tomata was posed in [37] and was solved for k = 2 by M. Bird [6] by an ad
hoc method, then by L. Valiant [52] as a corollary of the decidability of the
equivalence of ‘finite-turn’ deterministic pushdown automata. The problem
remained open for k � 3 until the solution in [22]. The material for Theo-
rems 5.35 and 5.36 is standard if not elementary algebra, and is explained in
sufficiently comprehensive treatises such as [11]. A self-contained presentation
and proof of this is given in [43, IV.7]. The original proof of Theorem 5.36
by Neumann [36] has been greatly simplified by Higman [23] where he proved
what is often known as ‘Higman’s lemma’. The Russian version of the same
result was proved in [34].

Section 5.3.2 is adapted from [5] and Sect. 5.3.3 from [4]. A result analogous
to Theorem 5.41 holds for functional transducers as well, but this, its proof,
and its consequences somewhat fall out of the scope of this chapter (cf. [4]).

7.6 Notes to Sect. 6: Support of Rational Series

The subject is hardly touched there and the reader is referred once again
to [45] or to [5]. Theorem 6.4 has been generalised to commutative rings by
Sontag [50]. The proof of Theorem 6.8 is taken from [14].
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8. A. Cardon and M. Crochemore. Détermination de la représentation stan-
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1 Introduction

In automata theory, Büchi’s and Elgot’s fundamental theorems [6, 24, 7] es-
tablished the coincidence of regular and ω-regular languages with languages
definable in monadic second-order logic. At the same time, Schützenberger [56]
investigated finite automata with weights and characterized their behaviors
as rational formal power series. Both of these results have inspired a wealth
of extensions and further research, cf. [4, 23, 41, 54, 59] for monographs and
surveys as well as Chaps. 3 and 4 of this handbook [26, 55], and also led
to recent practical applications, e.g., in verification of finite-state programs
(model checking [3, 42, 45]), in digital image compression [11, 32, 34, 35], and
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in speech-to-text processing [8, 48, 50]; cf. also Chaps. 10, 11, 6, and 14 of the
present handbook [28, 1, 49, 37].

It is the goal of this chapter to introduce a logic with weights taken from
an arbitrary semiring and to present conditions under which the behaviors
of weighted finite automata are precisely the series definable in our weighted
monadic second-order logic. We will deal with both finite and infinite words. In
comparison to the essential predecessors [13, 14, 19], our logic will be defined
in a purely syntactical way, and the results apply to arbitrary (also non-
commutative) semirings.

Our motivation for this weighted logic is as follows. First, weighted au-
tomata and their behavior can be viewed as a quantitative extension of clas-
sical automata. The latter decide whether a given word is accepted or not,
whereas weighted automata also compute, e.g., the resources, time, or cost
used or the probability of its success when executing the word. We would like
to have an extension of Büchi’s and Elgot’s theorems to this setting. Second,
classical logic for automata describes whether a certain property (e.g., “there
exist three consecutive a’s”) holds for a given word or not. One could be in-
terested in knowing how often this property holds, i.e., again in extending the
previous qualitative statement to a quantitative one.

Next, we describe the syntax of our weighted logics. Its definition incor-
porates weights taken as elements from a given abstract semiring S, just as
done for weighted automata in order to model a variety of applications and
situations. Also, our syntax should extend classical (unweighted) MSO log-
ics. The semantics of a weighted logic formula ϕ should be a formal power
series over an extended alphabet and with values in S. It is possible to assign
a natural semantics to atomic formulas, to disjunction and conjunction, and
to existential and universal quantifications, but a problem arises with nega-
tion. It would be natural to define the semantics of ¬ϕ elementwise. But if
S is not a Boolean algebra, S does not have a natural complement opera-
tion. Therefore, we restrict negation to atomic formulas whose semantics will
take as values only 0 and 1 in S; then the negation of atomic formulas also
has natural semantics. In comparison to classical MSO-logic, this is not an
essential restriction, since the negation of a classical MSO-formula is equiv-
alent (in the sense of defining the same language) to one in which negation
is applied only to atomic formulas. This requires us to include conjunction
and universal quantifications into our syntax (which we do). In this sense, our
weighted MSO-logics then contains the classical MSO-logics which we obtain
by letting S = B, the 2-element Boolean algebra.

We define the semantics of sentences ϕ of our weighted MSO-logic by
structural induction over ϕ. Thus, as usual, we also define the semantics of
a formula ϕ with free variables, here as a formal power series over an ex-
tended alphabet. But even for the semiring of natural numbers or the tropical
semiring, it turns out that neither universal first-order nor universal second-
order quantification of formulas preserve recognizability, i.e., representabil-
ity of their semantics as behavior of a weighted automaton, and for other



Weighted Automata and Weighted Logics 177

(non-commutative) semirings, conjunction does not preserve recognizability.
Therefore, we have to restrict conjunction and universal quantifications. We
show that each formula in our logic which does not contain weights from
the semiring (except 0 or 1) has a syntactic representation which is “un-
ambiguous” and so its associated series takes on only 0 or 1 as values. We
permit universal second-order quantification only for such syntactically un-
ambiguous formulas, and universal first-order quantification for formulas in
the disjunctive-conjunctive closure of arbitrary constants from the semiring
and syntactically unambiguous formulas. With an additional restriction of
conjunction, we obtain our class of syntactically restricted weighted MSO-
formulas. Moreover, if we allow existential set quantifications only to occur
at the beginning of a formula, we arrive at syntactically restricted existential
MSO-logic.

Now, we give a summary of our results. First, we show for any semiring
S that the behaviors of weighted automata with values in S are precisely
the series definable by sentences of our syntactically restricted MSO-logic, or
equivalently, of our syntactically restricted existential MSO-logic.

Second, if the semiring S is additively locally finite, we can apply uni-
versal first-order quantification even to the existential-disjunctive-conjunctive
closure of the set of formulas described above and still obtain that the se-
mantics of such sentences are representable by weighted automata. Third, if
the semiring S is (additively and multiplicatively) locally finite, it suffices
to just restrict universal second-order quantification, and we still obtain sen-
tences with representable semantics. Locally finite resp. additively locally fi-
nite semirings were investigated in [12, 18]; they form large classes of semirings.
Fourthly, we also deal with infinite words. As is well known and customary (see
[10, 23] and Chap. 3 [26]), here one has to impose certain completeness proper-
ties on the semiring, i.e., infinite sums and products exist and interact nicely,
in order to ensure that the behavior of weighted automata (and the semantics
of weighted formulas) can be defined. Under such suitable completeness as-
sumptions on the semiring, we again obtain that our syntactically restricted
MSO-logic (syntactically defined in the same way, but now with semantics
on infinite words) is expressively equivalent to a model of weighted Muller
automata, and if the semiring is, furthermore, idempotent (like the max-plus-
and min-plus-semirings), the same applies to our extension of syntactically
restricted MSO-logic described above. We note that we obtain Büchi’s and
Elgot’s theorems for languages of finite and infinite words as particular con-
sequences. Moreover, if the semiring S is given in some effective way, then
the constructions in our proofs yield effective conversions of sentences of our
weighted logic to weighted automata, and vice versa. If, in addition, S is
a field or locally finite, for the case of finite words, we also obtain decision
procedures.
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2 MSO-Logic and Weighted Automata

In this section, we summarize for the convenience of the reader our notation
used for classical MSO-logic and basic background of weighted automata act-
ing on finite words. We assume that the reader is familiar with the basics of
monadic second-order logic and Büchi’s theorem for languages of finite words;
cf. [59, 36]. Let Σ be an alphabet. The syntax of formulas of MSO(Σ), the
monadic second-order logic over Σ, is given by the grammar

ϕ ::= Pa(x) | x ≤ y | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ranges over Σ, x, y are first-order variables and X is a set variable.
We let Free(ϕ) be the set of all free variables of ϕ.

We let Σ∗ be the free monoid of all finite words w = w(1) . . . w(n) (n ≥ 0).
If w ∈ Σ∗ has length n, we put dom(w) = {1, . . . , n}. The word w ∈ Σ∗ is
usually represented by the structure (dom(w),≤, (Ra)a∈Σ) where Ra = {i ∈
dom(w) | w(i) = a} for a ∈ Σ.

Let V be a finite set of first-order and second-order variables. A (V, w)-
assignment σ is a function mapping first-order variables in V to elements of
dom(w) and second-order variables in V to subsets of dom(w). If x is a first-
order variable and i ∈ dom(w) then σ[x → i] is the (V ∪ {x}, w)-assignment
which assigns x to i and acts like σ on all other variables. Similarly, σ[X → I]
is defined for I ⊆ dom(w). The definition that (w, σ) satisfies ϕ, denoted
(w, σ) |= ϕ, is as usual assuming that the domain of σ contains Free(ϕ). Note
that (w, σ) |= ϕ only depends on the restriction σ|Free(ϕ) of σ to Free(ϕ).

As usual, a pair (w, σ) where σ is a (V, w)-assignment will be encoded
using an extended alphabet ΣV = Σ × {0, 1}V . More precisely, we will write
a word over ΣV as a pair (w, σ) where w is the projection over Σ and σ is
the projection over {0, 1}V . Now, σ represents a valid assignment over V if
for each first-order variable x ∈ V, the x-row of σ contains exactly one 1. In
this case, we identify σ with the (V, w)-assignment such that for each first-
order variable x ∈ V, σ(x) is the position of the 1 on the x-row, and for each
second-order variable X ∈ V, σ(X) is the set of positions carrying a 1 on the
X-row. Clearly, the language

NV = {(w, σ) ∈ Σ∗
V | σ is a valid (V, w)-assignment}

is recognizable. We simply write Σϕ = ΣFree(ϕ) and Nϕ = NFree(ϕ). By Büchi’s
theorem, if Free(ϕ) ⊆ V then the language

LV(ϕ) = {(w, σ) ∈ NV | (w, σ) |= ϕ}

defined by ϕ over ΣV is recognizable. Again, we simply write L(ϕ) for
LFree(ϕ)(ϕ). Conversely, each recognizable language L in Σ∗ is definable by
an MSO-sentence ϕ, so L = L(ϕ).

Next, we turn to basic definitions and properties of semirings, formal power
series, and weighted automata. For background, we refer the reader to [4, 23,
41, 54] and to Chaps. 1, 3, 4 in this handbook [15, 26, 55].
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A semiring is a structure (S, +, ·, 0, 1) where (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition, and
0 · s = s · 0 = 0 for each s ∈ S. If the multiplication is commutative, we
say that S is commutative. If the addition is idempotent, then the semiring is
called idempotent. Important examples include:

• The natural numbers (N, +, ·, 0, 1) with the usual addition and multiplica-
tion,

• the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
• the tropical semiring Trop = (N∪{∞}, min, +,∞, 0) (also known as min-

plus semiring), with min and + extended to N∪{∞} in the natural way,
• the arctic semiring Arc = (N∪{−∞}, max, +,−∞, 0),
• the semiring ([0, 1],max, ·, 0, 1) which can be used to compute probabilities,
• the semirings of languages (P(Σ∗),∪,∩, ∅, Σ∗) and (P(Σ∗),∪, ·, ∅, {ε}).
Given two subsets A, B of a semiring S, we say that A and B commute
elementwise, if a · b = b · a for all a ∈ A and b ∈ B. We let SA denote the
subsemiring of S generated by A. Clearly, due to the distributivity law, the
elements of SA can be obtained by taking finite sums of finite products of
elements of A. It follows that if A, B ⊆ S and A and B commute elementwise,
then SA and SB also commute elementwise. If S is a semiring and n ∈ N, then
Sn×n comprises all (n×n)-matrices over S. With usual matrix multiplication
and the unit matrix E, (Sn×n, ·, E) is a monoid.

A formal power series over a set Z is a mapping r : Z → S. In this
paper, we will use for Z either the set Σ∗ of finite words, or in Sects. 7
and 8 the set Σω of infinite words. It is usual to write (r, w) for r(w). The set
supp(r) := {w ∈ Z | (r, w) �= 0} is called the support of r. The set of all formal
power series over S and Z is denoted by S〈〈Z〉〉. Now let r, r1, r2 ∈ S〈〈Z〉〉 and
s ∈ S. The sum r1+r2, the Hadamard product r1�r2, and the scalar products
s · r and r · s are each defined pointwise for w ∈ Z:

(r1 + r2, w) := (r1, w) + (r2, w),
(r1 � r2, w) := (r1, w) · (r2, w),

(s · r, w) := s · (r, w),
(r · s, w) := (r, w) · s.

Then (S〈〈Z〉〉, +,�, 0, 1) where 0 and 1 denote the constant series with values
0 resp. 1, is again a semiring.

For L ⊆ Z, we define the characteristic series 1L : Z → S by (1L, w) = 1
if w ∈ L, and (1L, w) = 0, otherwise. If S = B, the correspondence L �→ 1L

gives a useful and natural semiring isomorphism from (P(Z),∪,∩, ∅,Z) onto
(B〈〈Z〉〉, +,�, 0, 1).

Now we turn to weighted automata over finite words. We fix a semiring S
and an alphabet Σ. A weighted finite automaton over S and Σ is a quadruple
A = (Q, λ, μ, γ) where Q is a finite set of states, μ : Σ → SQ×Q is the tran-
sition weight function and λ, γ : Q → S are weight functions for entering and
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leaving a state, respectively. Here, μ(a) is a (Q×Q)-matrix whose (p, q)-entry
μ(a)p,q ∈ S indicates the weight (cost) of the transition p

a−→ q. We also write
wt(p, a, q) = μ(a)p,q. Then μ extends uniquely to a monoid homomorphism
(also denoted by μ) from Σ∗ into (SQ×Q, ·, E).

The weight of a path P : q0
a1−→ q1

a2−→ . . .
an−1−−−→ qn−1

an−→ qn in A (where
n ≥ 0) is the product weight(P ) := λ(q0) · μ(a1)q0,q1 · · ·μ(an)qn−1,qn · γ(qn).
This path has label a1 . . . an. If n = 0 and P = (q0), we have weight(P ) =
λ(q0)·γ(q0). The weight of a word w = a1 . . . an ∈ Σ∗ in A, denoted (‖A‖, w),
is the sum of weight(P ) over all paths P with label w. One can check that

(‖A‖, w) =
∑

p,q∈Q

λ(p) · μ(w)pq · γ(q) = λ · μ(w) · γ

with usual matrix multiplication, considering λ as a row vector and γ as a
column vector. If w = ε, we have (‖A‖, ε) = λ · γ. The formal power series
‖A‖ : Σ∗ → S is called the behavior of A. A formal power series r ∈ S〈〈Σ∗〉〉
is called recognizable, if there exists a weighted finite automaton A such that
r = ‖A‖. We let Rec(S, Σ∗) be the collection of all recognizable formal power
series over S and Σ.

Lemma 2.1 ([23]; see also Chap. 4 [55]).

(a) For any recognizable language L ⊆ Σ∗, the series 1L is recognizable.
(b) Let r, r1, r2 ∈ S〈〈Σ∗〉〉 be recognizable, and let s ∈ S. Then r1 + r2, s · r

and r · s are recognizable.
(c) Let S1, S2 ⊆ S be two sub-semirings such that S1 and S2 commute ele-

mentwise. Let r1 ∈ Rec(S1, Σ
∗) and r2 ∈ Rec(S2, Σ

∗). Then r1 � r2 ∈
Rec(S, Σ∗).

As an immediate consequence of Lemma 2.1(c), for any recognizable series
r ∈ S〈〈Σ∗〉〉 and recognizable language L ⊆ Σ∗, the series r � 1L is again
recognizable.

Now let h : Σ∗ → Γ ∗ be a homomorphism. For r ∈ S〈〈Γ ∗〉〉 let h−1(r) = r◦
h ∈ S〈〈Σ∗〉〉. That is, (h−1(r), w) = (r, h(w)) for all w ∈ Σ∗. We call h length-
preserving, if |w| = |h(w)| for each w ∈ Σ∗. We say that h is non-erasing, if
h(a) �= ε for each a ∈ Σ, or, equivalently, |w| ≤ |h(w)| for each w ∈ Σ∗. In this
case, for r ∈ S〈〈Σ∗〉〉, define h(r) : Γ ∗ → S by (h(r), v) :=

∑
w∈h−1(v)(r, w)

(v ∈ Γ ∗), noting that the sum is finite.

Lemma 2.2 ([23]; see also Chap. 4 [55]). Let h : Σ∗ → Γ ∗ be a homo-
morphism.

(a) h−1 : S〈〈Γ ∗〉〉 → S〈〈Σ∗〉〉 preserves recognizability.
(b) Let h be non-erasing. Then h : S〈〈Σ∗〉〉 → S〈〈Γ ∗〉〉 preserves recognizability.

We say r : Σ∗ → S is a recognizable step function, if r =
∑n

i=1 si · 1Li for
some n ∈ N, si ∈ S and recognizable languages Li ⊆ Σ∗ (i = 1, . . . , n). Then
clearly r is a recognizable series by Lemma 2.1(a), (b). The following closure
result is easy to see.
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Lemma 2.3.

(a) (cf. [12]) The class of all recognizable step functions over Σ and S is closed
under sum, scalar products, and Hadamard products.

(b) Let h : Σ∗ → Γ ∗ be a homomorphism. Then h−1 : S〈〈Γ ∗〉〉 → S〈〈Σ∗〉〉
preserves recognizable step functions.

Proof. (b) Let r =
∑n

i=1 si ·1Li be a recognizable step function with recogniz-
able languages Li ⊆ Γ ∗. Then each language h−1(Li) ⊆ Σ∗ is also recogniz-
able, hence h−1(r) =

∑n
i=1 si · (1Li ◦ h) =

∑n
i=1 si · 1h−1(Li) is a recognizable

step function. ��

3 Weighted Logics

In this section, we introduce our weighted logic and study its first properties.
We fix a semiring S and an alphabet Σ. For each a ∈ Σ, Pa denotes a unary
predicate symbol.

Definition 3.1. The syntax of formulas of the weighted MSO-logic is given
by the grammar

ϕ ::= s | Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X | ¬(x ∈ X)
| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where s ∈ S and a ∈ Σ. We denote by MSO(S, Σ) the collection of all such
weighted MSO-formulas ϕ.

Here, we do not permit negation of general formulas due to difficulties
defining then their semantics: The semantics of a weighted logic formula ϕ
should be a formal power series over an extended alphabet and with values
in S. It would be natural to define the semantics of ¬ϕ elementwise. In fact,
this is possible if S is a bounded distributive lattice with complement function,
like, e.g., any Boolean algebra or the semiring S = ([0, 1],max,min, 0, 1) with
complement function x �→ 1− x (x ∈ [0, 1]), cf. [16] and Chap. 12 [53]. But in
general, arbitrary semirings as well as many important specific semirings do
not have a natural complement function.

Therefore, as noted in the Introduction, we restrict negation to atomic
formulas whose semantics will take as values only 0 and 1 in S; thus, the
negation of atomic formulas takes as values 1 and 0. Since the negation of
a classical MSO-formula is equivalent (in the sense of defining the same lan-
guage) to one in which negation is applied only to atomic formulas, in this
sense our weighted MSO-logic contains the classical MSO-logic which we ob-
tain by letting S = B. Note that in this case, the constant s in the logic is
either 0 (false) or 1 (true).

Now we turn to the definition of the semantics of formulas ϕ ∈ MSO(S, Σ).
As usual, a variable is said to be free in ϕ if there is an occurrence of it in
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ϕ not in the scope of a quantifier. A pair (w, σ) where w ∈ Σ∗ and σ is a
(V, w)-assignment is represented by a word over the extended alphabet ΣV
as explained in Sect. 2. We will define the V-semantics [[ϕ]]V of ϕ as a formal
power series [[ϕ]]V : Σ∗

V → S. This will enable us to investigate when [[ϕ]]V is
a recognizable series. Also, by letting S = B, the Boolean semiring, we can
immediately compare our semantics with the classical one assigning languages
to formulas.

Definition 3.2. Let ϕ ∈ MSO(S, Σ) and V be a finite set of variables con-
taining Free(ϕ). The V-semantics of ϕ is a formal power series [[ϕ]]V ∈
S〈〈Σ∗

V〉〉. Let (w, σ) ∈ Σ∗
V . If σ is not a valid (V, w)-assignment, then we put

[[ϕ]]V(w, σ) = 0. Otherwise, we define [[ϕ]]V(w, σ) ∈ S inductively as follows:

[[s]]V(w, σ) = s

[[Pa(x)]]V(w, σ) =

{
1 if w(σ(x)) = a

0 otherwise

[[x ≤ y]]V(w, σ) =

{
1 if σ(x) ≤ σ(y)
0 otherwise

[[x ∈ X]]V(w, σ) =

{
1 if σ(x) ∈ σ(X)
0 otherwise

[[¬ϕ]]V(w, σ) =

{
1 if [[ϕ]]V(w, σ) = 0
0 if [[ϕ]]V(w, σ) = 1

if ϕ is of the form Pa(x),
(x ≤ y) or (x ∈ X)

[[ϕ ∨ ψ]]V(w, σ) = [[ϕ]]V(w, σ) + [[ψ]]V(w, σ)
[[ϕ ∧ ψ]]V(w, σ) = [[ϕ]]V(w, σ) · [[ψ]]V(w, σ)

[[∃x.ϕ]]V(w, σ) =
∑

i∈dom(w)

[[ϕ]]V∪{x}(w, σ[x → i])

[[∃X.ϕ]]V(w, σ) =
∑

I⊆dom(w)

[[ϕ]]V∪{X}(w, σ[X → I])

[[∀x.ϕ]]V(w, σ) =
∏

i∈dom(w)

[[ϕ]]V∪{x}(w, σ[x → i])

[[∀X.ϕ]]V(w, σ) =
∏

I⊆dom(w)

[[ϕ]]V∪{X}(w, σ[X → I])

where in the product over dom(w) we follow the natural order, and we fix some
order on the power set of {1, . . . , |w|} so that the last product is defined. We
simply write [[ϕ]] for [[ϕ]]Free(ϕ).

Note that if ϕ is a sentence, i.e., has no free variables, then [[ϕ]] ∈ S〈〈Σ∗〉〉.
We give several examples of possible interpretations for weighted formulas:

I. Let S be an arbitrary Boolean algebra (B,∨,∧, , 0, 1). In this case,
sums correspond to suprema, and products to infima. Here, we can de-
fine the semantics of ¬ϕ for an arbitrary formula ϕ by [[¬ϕ]](w, σ) :=
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[[ϕ]](w, σ), the complement of [[ϕ]](w, σ) in B. Then clearly [[ϕ ∧ ψ]] =
[[¬(¬ϕ ∨ ¬ψ)]], [[∀x.ϕ]] = [[¬(∃x.¬ϕ)]] and [[∀X.ϕ]] = [[¬(∃X.¬ϕ)]]. This
may be interpreted as a multi-valued logic. In particular, if S = B,
the 2-valued Boolean algebra, our semantics coincides with the usual
semantics of unweighted MSO-formulas, identifying characteristic series
with their supports. For the more general case where S is a bounded
distributive lattice with complement function, we refer the reader to
Chap. 12 [53].

II. Let S = (N,+, ·, 0, 1) and assume ϕ does not contain constants s ∈ N.
We may interpret [[ϕ]](w, σ) as the number of proofs or arguments we
have that (w, σ) satisfies the formula ϕ. Here, the notion of “proof”
should not be considered in an exact proof-theoretic, but in an intuitive
sense. Indeed, for atomic formulas, the number of proofs should be 0 or 1,
depending on whether ϕ holds for (w, σ) or not. Now if, e.g., [[ϕ]](w, σ) =
m and [[ψ]](w, σ) = n, the number of proofs that (w, σ) satisfies ϕ ∨ ψ
should be m + n (since any proof suffices), and for ϕ ∧ ψ it should be
m ·n (since we may pair the proofs of ϕ and ψ arbitrarily). Similarly, the
semantics of the existential and universal quantifiers can be interpreted.

III. The formula ∃x.Pa(x) counts how often a occurs in the word. Here, how
often depends on the semiring: e.g., natural numbers, Boolean semiring,
integers modulo 2, . . .

IV. Consider the probability semiring S = ([0, 1],max, ·, 0, 1) and the alpha-
bet Σ = {a1, . . . , an}. Assume that each letter ai has a reliability pi.
Then the series assigning to a word its reliability can be given by the
first-order formula ∀x.

∨
1≤i≤n(Pai(x) ∧ pi).

V. Let S = ([0, 1],max,⊗, 0, 1) where x⊗y = max(0, x+y−1), the semiring
occurring in the MV-algebra used to define the semantics of �Lukasiewicz
multi-valued logic [30]. For this semiring, a restriction of �Lukasiewicz
logic coincides with our weighted MSO-logic [58].

Observe that if ϕ ∈ MSO(S, Σ), we have defined a semantics [[ϕ]]V for
each finite set of variables V containing Free(ϕ). Now, we show that these
semantics are consistent with each other.

Proposition 3.3. Let ϕ ∈ MSO(S, Σ) and V a finite set of variables contain-
ing Free(ϕ). Then

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each (w, σ) ∈ Σ∗
V such that σ is a valid (V, w)-assignment. In particu-

lar, [[ϕ]] is recognizable iff [[ϕ]]V is recognizable, and [[ϕ]] is a recognizable step
function iff [[ϕ]]V is a recognizable step function.

Proof. The first claim can be shown by induction on the structure of ϕ.
For the final claim, consider the projection π : ΣV → Σϕ. For (w, σ) ∈ Σ∗

V ,
we have π(w, σ) = (w, σ|Free(ϕ)). If [[ϕ]] is recognizable then [[ϕ]]V = π−1([[ϕ]])�
1NV is recognizable by Lemmas 2.1 and 2.2. This also shows that if [[ϕ]] is a
recognizable step function, then so is [[ϕ]]V by Lemma 2.3.
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Conversely, let F comprise the empty word and all (w, σ) ∈ Σ+
V such that

σ assigns to each variable x (resp. X) in V \Free(ϕ) position 1, i.e., σ(x) = 1
(resp. σ(X) = {1}). Then F is recognizable, and for each (w, σ′) ∈ Σ∗

ϕ there
is a unique element (w, σ) ∈ F such that π(w, σ) = (w, σ′). Thus, [[ϕ]] =
π([[ϕ]]V � 1F ), as is easy to check. Hence, if [[ϕ]]V is recognizable, then so is
[[ϕ]] by Lemmas 2.1 and 2.2. Finally, note that [[ϕ]] assumes the same non-
zero values as [[ϕ]]V , and if s ∈ S, then [[ϕ]]−1(s) = π([[ϕ]]−1

V (s) ∩ NV) in case
s �= 0 or ϕ contains no free first order variable. If ϕ contains a free first order
variable, then [[ϕ]]−1(0) = π([[ϕ]]−1

V (0) ∩ NV) ∪ (Σ∗
ϕ \ Nϕ). Hence, if [[ϕ]]V is a

recognizable step function, so is [[ϕ]]. ��

Now, let Z ⊆ MSO(S, Σ). A series r : Σ∗ → S is called Z-definable, if
there is a sentence ϕ ∈ Z such that r = [[ϕ]]. The main goal of this paper is
the comparison of Z-definable with recognizable series, for suitable fragments
Z of MSO(S, Σ). Crucial for this will be closure properties of recognizable
series under the constructs of our weighted logic. However, it is well known
that Rec(S, Σ∗) is in general not closed under the Hadamard product, and
hence not under conjunction.

Example 3.4. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and consider the for-
mula ϕ = ∀x.((Pa(x) ∧ {a}) ∨ (Pb(x) ∧ {b})). Then ([[ϕ]], w) = {w} for each
w ∈ Σ∗. Clearly, [[ϕ]] is recognizable. However, ([[ϕ∧ϕ]], w) = {w}·{w} = {w2}
for each w ∈ Σ∗, and pumping arguments show that [[ϕ∧ϕ]] is not recognizable
(cf. [22]).

Next we show that Rec(S, Σ∗) is, in general, not closed under universal
quantification.

Example 3.5 (cf. [14]). Let S = (N, +, ·, 0, 1). Then [[∀x.2]](w) = 2|w| and
[[∀y∀x.2]](w) = (2|w|)|w| = 2|w|2 . Clearly, the series [[∀x.2]] is recognizable
by the weighted automaton (Q, λ, μ, γ) with Q = {1}, λ1 = γ1 = 1 and
μ(a)1,1 = 2 for all a ∈ Σ. However, [[∀y∀x.2]] is not recognizable. Suppose
there was an automaton A′ = (Q′, λ′, μ′, γ′) with behavior [[∀y∀x.2]]. Let
M = max{|λ′

p|, |γ′
p|, |μ′(a)p,q| | p, q ∈ Q′, a ∈ Σ}. Then for any w ∈ Σ∗

and for each path P labeled by w, we have weight(P ) ≤ M |w|+2 and since
there are |Q′||w|+1 paths labeled w we obtain (‖A′ ‖, w) ≤ |Q′||w|+1 ·M |w|+2,
a contradiction with (‖A′ ‖, w) = 2|w|2 .

A similar argument applies also for the tropical and the arctic semirings.
Observe that in all these cases, [[∀x.2]] has infinite image.

Example 3.6 (cf. [18]). Let S = (N, +, ·, 0, 1). Then ([[∃x.1]], w) = |w| and
[[∀y.∃x.1]], w) = |w||w| for each w ∈ Σ∗. Hence [[∃x.1]] is recognizable, but
[[∀y.∃x.1]] is not, by the argument of the previous example. In contrast, if S is
the tropical or arctic semiring (and 1 still the natural number 1), then [[∃x.1]]
takes on only two values, and [[∀y.∃x.1]] is recognizable.
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Example 3.7. Let S = (N, +, ·, 0, 1). Then [[∀X.2]](w) = 22|w|
for any w ∈

Σ∗, and as above [[∀X.2]] is not recognizable due to its growth. Again, this
counterexample also works for the tropical and the arctic semirings.

The examples show that unrestricted conjunction and universal quantifi-
cation are in general too strong to preserve recognizability. Therefore we will
consider fragments of MSO(S, Σ). Their syntactic definition needs a little
preparation on unambiguous formulas.

4 Unambiguous Formulas

In all of this section, let S be a semiring and Σ an alphabet. Here we will
define our concepts of unambiguous and of syntactically unambiguous MSO-
formulas. The idea is that if ϕ, ψ are formulas whose semantics [[ϕ]], [[ψ]] each
takes on only 0 and 1 as values, this is in general no longer true for ϕ∨ψ, ∃x.ϕ
and ∃X.ϕ (except if S is idempotent), but we can find “equivalent” constructs
assuming only 0, 1 as values and for these formulas, the Boolean semantics
will coincide with the weighted semantics. The unambiguous formulas may be
viewed as the logical counterpart of unambiguous rational expressions (and
may therefore have independent interest). We let MSO−(S, Σ) consist of all
formulas of MSO(S, Σ) which do not contain constants s ∈ S \ {0, 1}.

Definition 4.1. The class of unambiguous formulas in MSO−(S, Σ) is de-
fined inductively as follows:

1. All atomic formulas in MSO−(S, Σ) and their negations are unambiguous.
2. If ϕ, ψ are unambiguous, then ϕ∧ψ, ∀x.ϕ and ∀X.ϕ are also unambiguous.
3. If ϕ, ψ are unambiguous and supp([[ϕ]]) ∩ supp([[ψ]]) = ∅, then ϕ ∨ ψ is

unambiguous.
4. Let ϕ be unambiguous and V = Free(ϕ). If for any (w, σ) ∈ Σ∗

V , there is at
most one element i ∈ dom(w) such that [[ϕ]]V∪{x}(w, σ[x → i]) �= 0, then
∃x.ϕ is unambiguous.

5. Let ϕ be unambiguous and V = Free(ϕ). If for any (w, σ) ∈ Σ∗
V , there is at

most one subset I ⊆ dom(w) such that [[ϕ]]V∪{X}(w, σ[X → I]) �= 0, then
∃X.ϕ is unambiguous.

Note that, as for unambiguous rational expressions, this is not a purely
syntactic definition since some restrictions are on the semantics of formulas.
First we note the following proposition.

Proposition 4.2. Let ϕ ∈ MSO−(S, Σ) be unambiguous. We may also regard
ϕ as a classical MSO-formula defining the language L(ϕ) ⊆ Σ∗

ϕ. Then [[ϕ]] =
1L(ϕ) is a recognizable step function.
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Proof. Let (w, σ) ∈ Σ∗
ϕ. If (w, σ) /∈ Nϕ, then [[ϕ]](w, σ) = 0 and (w, σ) /∈ L(ϕ).

Assume now that (w, σ) ∈ Nϕ. We show by structural induction on ϕ that
[[ϕ]](w, σ) equals 1 if (w, σ) |= ϕ and equals 0, otherwise. This is clear for the
atomic formulas and their negations. It is also trivial by induction for conjunc-
tion and universal quantifications. Using the unambiguity of the formulas, we
also get the result by induction for disjunction and existential quantifications.
Therefore, [[ϕ]] = 1L(ϕ) and since L(ϕ) is a recognizable language in Σ∗

ϕ we
obtain that [[ϕ]] is a recognizable step function. ��

Next we wish to give a purely syntactic definition of a class of unambiguous
formulas and then show that any classical MSO-formula can be effectively
transformed into an equivalent one which is syntactically unambiguous. We
will proceed by structural induction on the given formula. Here (in contrast
to [14]), we will include the case of formulas containing set quantifiers. When
dealing with formulas of the form ∃X.ϕ and ∀X.ϕ, we employ a linear order
on the underlying structure (which is the power set of dom(w) where w ∈ Σ∗).
For this, we recall that we identify (in assignments) subsets of dom(w) with
their characteristic functions, and the set {0, 1}dom(w) carries the lexicographic
order as a natural linear order. Let y < x = ¬(x ≤ y).

Definition 4.3. For any ϕ, ψ ∈ MSO−(S, Σ), we define inductively formulas
ϕ+, ϕ−, ϕ

+−→ ψ and ϕ
+←→ ψ in MSO−(S, Σ) by the following rules:

1. If ϕ is atomic or the negation of an atomic formula, we put ϕ+ = ϕ and
ϕ− = ¬ϕ with the convention ¬¬ψ = ψ, and ¬0 = 1, ¬1 = 0.

2. (ϕ ∨ ψ)+ = ϕ+ ∨ (ϕ− ∧ ψ+) and (ϕ ∨ ψ)− = ϕ− ∧ ψ−.
3. (ϕ ∧ ψ)− = ϕ− ∨ (ϕ+ ∧ ψ−) and (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+.
4. (∃x.ϕ)+ = ∃x.(ϕ+(x) ∧ ∀y.(y < x ∧ ϕ(y))−) and (∃x.ϕ)− = ∀x.ϕ−.
5. (∀x.ϕ)− = ∃x.(ϕ−(x) ∧ ∀y.(x ≤ y ∨ ϕ(y))+) and (∀x.ϕ)+ = ∀x.ϕ+.
6. ϕ

+−→ ψ = ϕ− ∨ (ϕ+ ∧ ψ+) and ϕ
+←→ ψ = (ϕ+ ∧ ψ+) ∨ (ϕ− ∧ ψ−).

7. For set variables X,Y , we define the following macros:3

(X = Y ) = ∀z.
(
z ∈ X

+←→ z ∈ Y
)

(X < Y ) = ∃y.
(
(y ∈ Y ) ∧ ¬(y ∈ X) ∧ ∀z.

(
z < y

+−→
(
z ∈ X

+←→ z ∈ Y
)))

(X ≤ Y ) = (X = Y ) ∨ (X < Y ).

8. (∃X.ϕ)+ = ∃X.(ϕ+(X) ∧ ∀Y.((Y < X) ∧ ϕ(Y ))−) and (∃X.ϕ)− = ∀X.ϕ−.
9. (∀X.ϕ)− = ∃X.(ϕ−(X) ∧ ∀Y.((X ≤ Y ) ∨ ϕ(Y ))+) and (∀X.ϕ)+ = ∀X.ϕ+.

We define the class of (unweighted) syntactically unambiguous formulas as
the smallest class of formulas containing all formulas of the form

• ϕ+, ϕ−, ϕ
+−→ ψ or ϕ

+←→ ψ for ϕ, ψ ∈ MSO−(S, Σ), and

3 The authors are thankful to Christian Mathissen for this formula X < Y which
simplifies an earlier more complicated formula of the authors.
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• ∀x.ϕ,∀X.ϕ or ϕ ∧ ψ if it contains ϕ and ψ.

By induction, it is easy to show the following lemma.

Lemma 4.4. Let ϕ ∈ MSO−(S, Σ). Then:

• L(ϕ+) = L(ϕ) and L(ϕ−) = L(¬ϕ).
• [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).
• Each syntactically unambiguous formula is unambiguous.

The following result is a slight improvement of [14, Proposition 5.4].

Proposition 4.5. For each classical MSO-sentence ϕ, we can effectively con-
struct an unweighted syntactically unambiguous MSO(S, Σ)-sentence ϕ′ defin-
ing the same language, i.e., [[ϕ′]] = 1L(ϕ).

Proof. Using also conjunctions and universal quantifications, transform ϕ into
an equivalent MSO-sentence ψ in which negation is only applied to atomic
formulas. Then put ϕ′ = ψ+. ��

We define aUMSO(S, Σ), the collection of almost unambiguous formulas in
MSO(S, Σ), to be the smallest subset of MSO(S, Σ) containing all constants s
(s ∈ S) and all syntactically unambiguous formulas and which is closed under
disjunction and conjunction.

We call two formulas ϕ, ψ ∈ MSO(S, Σ) equivalent, denoted ϕ ≡ ψ, if
[[ϕ]] = [[ψ]]. Now we claim that each almost unambiguous formula ψ is equiva-
lent to a formula ψ′ of the form ψ′ =

∨n
j=1(sj ∧ ψ+

j ) for some n ∈ N, sj ∈ S

and ψj ∈ MSO−(S, Σ) (j = 1, . . . , n). Indeed, this follows from the following
equivalences for any ϕ, ξ, ζ ∈ MSO(S, Σ), π, ρ ∈ MSO−(S, Σ) and s, t ∈ S:

ϕ ∧ (ξ ∨ ζ) ≡ (ϕ ∧ ξ) ∨ (ϕ ∧ ζ),

π+ ∧ s ≡ s ∧ π+,

π+ ≡ 1 ∧ π+,

s ∧ t ≡ st,

π ≡ π+ if π is unambiguous.

Moreover, by forming suitable conjunctions of the formulas ψ+
j , ψ−

j in ψ′

above, we can obtain that the languages LFree(ψ′)(ψj) (j = 1, . . . , n) are pair-
wise disjoint; then ψ′ could be viewed as a “weighted unambiguous” formula
similar to Definition 4.1 (we will not need this notion, but it also motivates
the notion “almost unambiguous” for ψ).

As a consequence of this description (or Lemma 2.3) and Lemma 4.4, for
each ψ ∈ aUMSO(S, Σ), [[ψ]] is a recognizable step function.

For an arbitrary formula ϕ ∈ MSO(S, Σ), let val(ϕ) denote the set con-
taining all values of S occurring in ϕ.

Next, we turn to the definition of our (weighted) syntactically restricted
MSO(S, Σ)-formulas4:
4 The authors would like to thank Dietrich Kuske for joint discussions which led to
the development of this crucial concept.
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Definition 4.6. A formula ϕ ∈ MSO(S, Σ) is called syntactically restricted,
if it satisfies the following conditions:

1. Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula, but not in the
scope of a universal first order quantifier, then val(ψ) and val(ψ′) commute
elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unweighted syn-
tactically unambiguous formula.

3. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is almost unambiguous.

We let sRMSO(S, Σ) denote the set of all syntactically restricted formulas of
MSO(S, Σ).

Here, condition (1) requires us to be able to check for s, s′ ∈ S whether
s · s′ = s′ · s. We assume this basic ability to be given in syntax checks
of formulas from MSO(S, Σ). Note that for ψ, ψ′ ∈ MSO(S, Σ), val(ψ) and
val(ψ′) trivially commute elementwise, if S is commutative (which was the
general assumption of [14]) or if ψ or ψ′ is in MSO−(S, Σ), thus in particular,
if ψ or ψ′ is unambiguous. Hence, for each MSO(S, Σ)-formula ϕ, it can be
easily checked effectively whether ϕ is syntactically restricted or not.

A formula ϕ ∈ MSO(S, Σ) is existential, if it is of the form ϕ = ∃X1. . . .
∃Xn.ψ where ψ does not contain any set quantifier. The set of all syn-
tactically restricted and existential formulas of MSO(S, Σ) is denoted by
sREMSO(S, Σ).

Our first main result which will be proved in Sect. 5 is the following the-
orem.

Theorem 4.7. Let S be any semiring and Σ an alphabet. Let r : Σ∗ → S be
a series. The following are equivalent:

1. r is recognizable.
2. r is definable by some syntactically restricted sentence of MSO(S, Σ).
3. r is definable by some syntactically restricted existential sentence of

MSO(S, Σ).

We note that our proofs will be effective. That is, given a syntactically
restricted sentence ϕ of MSO(S, Σ), we can construct a weighted automaton
A with ‖A‖ = [[ϕ]] (provided the operations of S are given effectively). For the
converse, given A, we will explicitly describe a sentence ϕ ∈ sREMSO(S, Σ)
with [[ϕ]] = ‖A‖.

Slightly extending [14], we call an MSO(S, Σ)-formula ϕ restricted, if:

1. Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula, but not in the
scope of a universal first order quantifier, then val(ψ) and val(ψ′) commute
elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unambiguous
formula.
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3. Whenever ϕ contains ∀x.ψ as a subformula, then [[ψ]] is a recognizable step
function.

Note that in particular conditions (2) and (3) are not purely syntactic, but
use the semantics of formulas. In [14], it was shown that if S is a field or a
locally finite semiring (cf. Sect. 6), then it can be effectively checked whether
an arbitrary MSO(S, Σ)-sentence ϕ is restricted or not. For the general case,
this remained open.

Since, as noted before, the semantics of almost unambiguous formulas are
recognizable step functions, we have the following proposition.

Proposition 4.8. Each syntactically restricted formula ϕ ∈ MSO(S, Σ) is
restricted.

5 Definability Equals Recognizability

In all of this section, let S be a semiring and Σ an alphabet. We wish to prove
Theorem 4.7. For this, we first wish to show that whenever ϕ ∈ MSO(S, Σ) is
restricted, then [[ϕ]] is recognizable. We proceed by induction over the structure
of restricted MSO-formulas.

Lemma 5.1. Let ϕ ∈ MSO(S, Σ) be atomic or the negation of an atomic
formula. Then [[ϕ]] is a recognizable step function.

Proof. If ϕ = s with s ∈ S, we have [[ϕ]] = s · 1Σ∗ . If ϕ is one of the other
atomic formulas or their negations, then [[ϕ]] = 1L(ϕ) is immediate from the
definition. ��

Lemma 5.2. Let ϕ, ψ ∈ MSO(S, Σ) such that [[ϕ]] and [[ψ]] are recognizable.
Then [[ϕ∨ψ]], [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable. Moreover, if [[ϕ]] and [[ψ]] are
recognizable step functions, then [[ϕ ∨ ψ]] is also a recognizable step function.

Proof. For the disjunction, let V = Free(ϕ) ∪ Free(ψ). By definition, we have
[[ϕ ∨ ψ]] = [[ϕ]]V + [[ψ]]V . Hence the result follows from Proposition 3.3 and
Lemma 2.1, resp. 2.3.

For the existential quantifiers, let X be the variable x or X. Let V =
Free(∃X .ϕ) and note that X /∈ V and Free(ϕ) ⊆ V ∪ {X}. Consider the
projection π : Σ∗

V∪{X} → Σ∗
V which erases the X -row. One can show that

[[∃X .ϕ]] = π([[ϕ]]V ∪{X}). Then Proposition 3.3 and Lemma 2.2(b) show that
[[∃X .ϕ]] is recognizable. ��

Next we deal with conjunction. For any formula ϕ ∈ MSO(S, Σ), we let
Sϕ = Sval(ϕ), the subsemiring of S generated by all constants occurring in ϕ.

Lemma 5.3. Let ϕ, ψ ∈ MSO(S, Σ).
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(a) Assume that val(ϕ) and val(ψ) commute elementwise, and that [[ϕ]] ∈
Rec(Sϕ, Σ∗

ϕ) and [[ψ]] ∈ Rec(Sψ, Σ∗
ψ). Then [[ϕ ∧ ψ]] is recognizable.

(b) If [[ϕ]] and [[ψ]] are recognizable step functions, so is [[ϕ ∧ ψ]].

Proof. Let V = Free(ϕ)∪Free(ψ). By definition, we have [[ϕ∧ψ]] = [[ϕ]]V�[[ψ]]V .
(a) By Proposition 3.3, we get [[ϕ]]V ∈ Rec(Sϕ, Σ∗

V) and [[ψ]]V ∈
Rec(Sψ, Σ∗

V). As noted in Sect. 2, Sϕ and Sψ commute elementwise. Hence
the result follows from Lemma 2.1(c).

(b) We apply Proposition 3.3 and Lemma 2.3. ��

The most interesting case here arises from universal quantification. In [14],
a corresponding result was proved under the assumption that S is commuta-
tive. The reason that this assumption can be avoided is due to the following.
For a word (over an extended alphabet), the semantics of ∀x.ϕ is evaluated
along the sequence of positions, just as the weight of a path in a weighted
automaton is computed following the sequence of transitions. This will be
crucial in the proof.

Lemma 5.4. Let ψ ∈ MSO(S, Σ) such that [[ψ]] is a recognizable step func-
tion. Then [[∀x.ψ]] is recognizable.

Proof. Let W = Free(ψ) ∪ {x} and V = Free(∀x.ψ) = W \ {x}. By Proposi-
tion 3.3 (in case x /∈ Free(ψ)), [[ψ]]W is a recognizable step function. We may
write [[ψ]]W =

∑n
j=1 sj · 1Lj with n ∈ N, sj ∈ S and recognizable languages

L1, . . . , Ln ⊆ Σ∗
W such that (L1, . . . , Ln) is a partition of NW . Recall that if

(w, σ) ∈ (ΣW)∗ \ NW then [[ψ]](w, σ) = 0.
Let Σ̃ = Σ × {1, . . . , n}. A word in (Σ̃V)∗ will be written (w, ν, σ) where

(w, σ) ∈ Σ∗
V and ν ∈ {1, . . . , n}|w| is interpreted as a mapping from dom(w)

to {1, . . . , n}. Let L̃ be the set of (w, ν, σ) ∈ (Σ̃V)∗ such that (w, σ) ∈ NV and
for all i ∈ dom(w) and j ∈ {1, . . . , n} we have

ν(i) = j implies (w, σ[x → i]) ∈ Lj .

Observe that for each (w, σ) ∈ NV there is a unique ν such that (w, ν, σ) ∈ L̃
since (L1, . . . , Ln) is a partition of NW .

We claim that L̃ is recognizable. In [14, proof of Lemma 4.4], we con-
structed directly an automaton recognizing L̃. Here, we give an unpublished
argument (already developed for [13, 14]) using Büchi’s theorem.

First, let ξ ∈ MSO(Σ) be an arbitrary MSO formula. Define ξ̃ by re-
placing in ξ any occurrence of Pa(y) by

∨
1≤k≤n P(a,k)(y). Then assuming

that Free(ξ) ⊆ U , it is easy to check by structural induction on ξ that for
all (w, ν, σ) ∈ (Σ̃U )∗ with (w, σ) ∈ NU we have (w, ν, σ) |= ξ̃ if and only if
(w, σ) |= ξ.

By Büchi’s theorem, there is an MSO formula ψj with Free(ψj) ⊆ W such
that for all (w, τ) ∈ NW we have (w, τ) ∈ Lj if and only if (w, τ) |= ψj . Now,
we define
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ζ = ∀x.

( ∧

1≤j≤n

∨

a∈Σ

P(a,j)(x) → ψ̃j

)

.

Let (w, ν, σ) ∈ (Σ̃V)∗ with (w, σ) ∈ NV . We have (w, ν, σ) |= ζ if and only if
for all i ∈ dom(w) and j ∈ {1, . . . , n} we have

ν(i) = j implies (w, ν, σ[x �→ i]) |= ψ̃j

and this last statement is equivalent with (w, σ[x �→ i]) |= ψj which in turn
is equivalent with (w, σ[x �→ i]) ∈ Lj . Therefore, the formula ζ defines the
language L̃ and our claim is proved.

Now, we proceed similar as in [14] with slight changes as in [18] since here
S might not be commutative. There is a deterministic automaton Ã over the
alphabet Σ̃V , recognizing L̃. Now we obtain a weighted automaton A with
the same state set by adding weights to the transitions of Ã as follows: If
(p, (a, j, s), q) is a transition in Ã with (a, j, s) ∈ Σ̃V , we let this transition in
A have weight sj , i.e., μA(a, j, s)p,q = sj . All triples which are not transitions
in Ã get weight 0. Also, the initial state of Ã gets initial weight 1 in A, all
non-initial states of Ã get initial weight 0, and similarly for the final states
and final weights.

Since Ã is deterministic, for each (w, ν, σ) ∈ L̃ there is a unique path
Pw = (ti)1≤i≤|w| in Ã and we have in A

(
‖A‖, (w, ν, σ)

)
= weight(Pw) =

∏

i∈dom(w)

wt(ti)

whereas (‖A‖, (w, ν, σ)) = 0 for each (w, ν, σ) ∈ Σ̃∗
V \ L̃. For each i ∈ dom(w),

note that if ν(i) = j, then wt(ti) = sj by construction of A, and since
(w, ν, σ) ∈ L̃ we get (w, σ[x → i]) ∈ Lj and [[ψ]]W(w, σ[x → i]) = sj .

We consider now the strict alphabetic homomorphism h : Σ̃∗
V → Σ∗

V de-
fined by h((a, k, s)) = (a, s) for each (a, k, s) ∈ Σ̃V . Then for any (w, σ) ∈ NV

and the unique ν such that (w, ν, σ) ∈ L̃, we have
(
h(‖A‖), (w, σ)

)
=

(
‖A‖, (w, ν, σ)

)
=

∏

i∈dom(w)

wt(ti)

=
∏

i∈dom(w)

[[ψ]]W(w, σ[x → i]) = [[∀x.ψ]](w, σ).

Therefore, [[∀x.ψ]] = h(‖A‖) which is recognizable by Lemma 2.2. ��

Lemma 5.5. Let ψ ∈ MSO(S, Σ) be unambiguous. Then [[∀X.ψ]] is a recog-
nizable step function.

Proof. Since ψ is unambiguous, so is ∀X.ψ and by Proposition 4.2 we deduce
that [[∀X.ψ]] is a recognizable step function.
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The following result generalizes [14, Theorem 4.5] to non-commutative
semirings.

Theorem 5.6. Let S be any semiring, Σ be an alphabet and ϕ ∈ MSO(S, Σ)
be restricted. Then [[ϕ]] ∈ Rec(S, Σ∗

ϕ).

Proof. Note that if ϕ ∈ MSO(S, Σ), then trivially ϕ ∈ MSO(Sϕ, Σ). By
induction over the structure of ϕ, we show that [[ϕ]] ∈ Rec(Sϕ, Σ∗

ϕ). But this
is immediate by Lemmas 5.1–5.5. ��

Next we aim at showing that, conversely, recognizable series are definable.
First, for s ∈ S, we define

(x ∈ X) +−→ s = ¬(x ∈ X) ∨
(
(x ∈ X) ∧ s

)
.

This formula is almost unambiguous, and for any word w and valid assignment
σ we have

[[(x ∈ X) +−→ s]](w, σ) =

{
s if σ(x) ∈ σ(X),
1 otherwise.

We introduce a few other abbreviations which are all unambiguous formu-
las. We let min(y) := ∀x.y ≤ x, and max(z) := ∀x.x ≤ z, and (y = x + 1) :=
(x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z). If X1, . . . , Xm are set variables, put

partition(X1, . . . , Xm) := ∀x.
∨

i=1,...,m

(

(x ∈ Xi) ∧
∧

j �=i

¬(x ∈ Xj)
)

.

Now we show the following theorem.

Theorem 5.7. Let S be any semiring, Σ be an alphabet and r ∈ Rec(S, Σ∗).
Then r is sREMSO-definable.

Proof. Let A = (Q, λ, μ, γ) be a weighted automaton such that r = ‖A‖.
For each triple (p, a, q) ∈ Q × Σ × Q choose a set variable Xp,a,q, and let
V = {Xp,a,q | p, q ∈ Q, a ∈ Σ}. We choose an enumeration X = (X1, . . . , Xm)
of V with m = |Q|2 · |Σ|. Define the syntactically restricted formula

ψ
(
X

)
:= partition

(
X

)
∧

∧

p,a,q

∀x.(x ∈ Xp,a,q)
+−→ Pa(x)

∧ ∀x∀y.(y = x + 1) +−→
∨

p,q,r∈Q,a,b∈Σ

(x ∈ Xp,a,q) ∧ (y ∈ Xq,b,r).

Let w = a1 . . . an ∈ Σ+. If P = (q0
a1−→ q1

a2−→ · · · an−1−−−→ qn−1
an−−→ qn) is a

path in A over w, we define the (V, w)-assignment σP by σP (Xp,a,q) = {i |
(qi−1, ai, qi) = (p, a, q)}. Clearly, we have [[ψ]](w, σP ) = 1. Conversely, let σ be
a (V, w)-assignment such that [[ψ]](w, σ) = 1. For any i ∈ dom(w), there are
uniquely determined pi, qi ∈ Q such that i ∈ σ(Xpi,ai,qi) and if i < n then
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qi = pi+1. Hence, with q0 = p1 we obtain a unique path P = (q0
a1−→ q1

a2−→
· · · an−1−−−→ qn−1

an−−→ qn) for w such that σP = σ. This gives a bijection between
the set of paths in A over w and the set of (V, w)-assignments σ satisfying ψ,
i.e., such that [[ψ]](w, σ) = 1.

Consider now the formula

ϕ
(
X

)
:=ψ

(
X

)
∧ ∃y.

(

min(y) ∧
∨

p,a,q

(y ∈ Xp,a,q) ∧ λp

)

∧ ∀x.
∧

p,a,q

(x ∈ Xp,a,q)
+−→ μ(a)p,q

∧ ∃z.

(

max(z) ∧
∨

p,a,q

(z ∈ Xp,a,q) ∧ γq

)

.

Let P = (q0
a1−→ q1

a2−→ · · · an−1−−−→ qn−1
an−−→ qn) be a path in A over w and let

σP be the associated (V, w)-assignment. We obtain

[[ϕ]](w, σP ) = λq0 · μ(a1)q0,q1 · · ·μ(an)qn−1,qn · γqn = weight(P ) .

Note that [[ϕ(X)]](ε) = 0 due to the subformula starting with ∃y in ϕ. Hence,
in order to deal with w = ε, let ζ = r(ε)∧∀x.¬(x ≤ x). For w ∈ Σ+, we have
[[∀x.¬(x ≤ x)]](w) = 0. Now, [[∀x.¬(x ≤ x)]](ε) = 1 since an empty product is
1 by convention, hence we get [[ζ]](ε) = r(ε).

Now let ξ = ∃X1 · · · ∃Xm.(ϕ(X1, . . . , Xm) ∨ ζ). Then ξ ∈ MSO(S, Σ) is
existential, and [[ξ]](ε) = [[ζ]](ε) = r(ε). Using the bijection above, for w ∈ Σ+

we get

[[ξ]](w) =
∑

σ (V,w)-assignment

[[ϕ]](w, σ) =
∑

P path in A for w

[[ϕ]](w, σP )

=
∑

P path in A for w

weight(P ) = (‖A‖, w).

So [[ξ]] = ‖A‖. In general, ϕ is not syntactically restricted due to the constants
which may not commute. But it is known (cf. [23]) that we may choose A so
that λ(q), γ(q) ∈ {0, 1} for all q ∈ Q. In this case, ϕ is syntactically restricted
and ξ ∈ sREMSO(S, Σ). ��

Now Theorem 4.7 is immediate by Proposition 4.8 and Theorems 5.6
and 5.7.

Next we consider the effectiveness of our proof of Theorem 4.7 implication
(2) ⇒ (1). Note that our proof of Theorem 5.6 in general was not effective,
since in Lemma 5.4 we may not know the form of the step function [[ψ]].
However, we have the following proposition.

Proposition 5.8. Let S be an effectively given semiring and Σ an alphabet.
Given ϕ ∈ sRMSO(S, Σ), we can effectively compute a weighted automaton
A for [[ϕ]].
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Proof. We follow the argument for Theorem 5.6 and proceed by induction on
the structure of ϕ. Now, when dealing with a subformula ∀x.ψ of ϕ, then we
know the form of ψ =

∨n
j=1(sj ∧ ψ+

j ) with sj ∈ S and ψj ∈ MSO−(S, Σ) for
1 ≤ j ≤ n, and we can use these constituents within the proof of Lemma 5.4.

All other lemmas employed are also constructive, meaning that if weighted
automata are given for the arguments, then weighted automata can be effec-
tively computed for the results. ��

From this and decidability results for weighted automata, we immediately
obtain decidability results for sRMSO-sentences. For instance, if S is an effec-
tively given field (like Q, the rational numbers), for any two sRMSO-sentences
ϕ, ψ, we can decide whether [[ϕ]] = [[ψ]]: By Proposition 5.8, construct weighted
automata Aϕ, Aψ for ϕ, resp. ψ, and then decide whether ‖Aϕ ‖ = ‖Aψ ‖
(cf. [4, 41]).

For the implication (1) ⇒ (3) of Theorem 4.7, given a weighted automa-
ton A, we can “write down” an sREMSO-sentence ϕ with [[ϕ]] = ‖A‖.
Using this, from the theory of formal power series (cf. [4, 41, 54]) we im-
mediately obtain also undecidability results for the semantics of weighted
MSO-sentences. For instance, it is undecidable whether a given sREMSO-
sentence ϕ over Q, the field of rational numbers, and an alphabet Σ, satisfies
supp([[ϕ]]) = Σ∗. Also, by a result of Krob [38], the equality of given recog-
nizable series over the tropical semiring is undecidable. Hence, the equality of
two given sREMSO(Trop, Σ)-sentences is also undecidable.

6 Locally Finite Semirings

Here we will describe two larger classes of syntactically defined sentences
which, for more particular semirings, are expressively equivalent to weighted
automata.

First let us describe the semirings we will encounter. A monoid M is
called locally finite, if each finitely generated submonoid of M is finite. Clearly,
a commutative monoid M is locally finite iff each cyclic submonoid 〈a〉 of M
is finite. Let us call a semiring S additively locally finite if its additive monoid
(S, +, 0) is locally finite. This holds iff the cyclic submonoid 〈1〉 of (S, +, 0) is
finite. Examples for additively locally finite semirings include:

• All idempotent semirings S (i.e., x + x = x for each x ∈ S), in particular
the arctic and the tropical semirings, the semiring (P(Σ∗),∪, ·, ∅, {ε}) of
languages of Σ, and the semiring ([0, 1],max, ·, 0, 1) useful for describing
probabilistic settings;

• all fields of characteristic p, for any prime p;
• all products S1×· · ·×Sn (with operations defined pointwise) of additively

locally finite semirings Si (1 ≤ i ≤ n);
• the semiring of polynomials (S[X], +, ·, 0, 1) over a variable X and an

additively locally finite semiring S;
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• all locally finite semirings (see below).

Furthermore, a semiring (S, +, ·, 0, 1) is locally finite [12], if each finitely
generated subsemiring is finite. Clearly, equivalent to this is that both monoids
(S, +, 0) and (S, ·, 1) are locally finite (cf. Chap. 1 [15]). Examples of such
semirings include:

• Semirings S for which both addition and multiplication are idempotent and
commutative; in particular, any bounded distributive lattice (L,∨,∧, 0, 1).
Consequently, the chain ([0, 1],max, min, 0, 1) and any Boolean algebra are
locally finite;

• the �Lukasiewicz semiring ([0, 1],max,⊗, 0, 1) (cf. Sect. 3, example V);
• all matrix semirings Sn×n of n × n-matrices over a locally finite semiring

S for any n ≥ 2, these semirings are non-commutative;
• the algebraic closures of the finite fields Z /p Z (p prime) are (infinite)

locally finite fields.

Next we turn to the formulas we will consider here. We define
wUMSO(S, Σ), the collection of weakly unambiguous formulas in MSO(S, Σ),
to be the smallest subset of MSO(S, Σ) containing all constants s (s ∈ S)
and all syntactically unambiguous formulas ϕ+, ϕ− (ϕ ∈ MSO−(S, Σ)) which
is closed under disjunction, conjunction and existential quantifications (both
first and second order).

Definition 6.1. A formula ϕ ∈ MSO(S, Σ) is called syntactically weakly
restricted, if it satisfies the following conditions:

1. Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula but not in the
scope of a universal first order quantifier, then val(ψ) and val(ψ′) commute
elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unweighted syn-
tactically unambiguous formula.

3. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is weakly unambiguous.

We let swRMSO(S, Σ) denote the set of all syntactically weakly restricted
formulas of MSO(S, Σ).

Our first goal will be to show that all syntactically weakly restricted for-
mulas of MSO(S, Σ) have a recognizable semantics, provided S is additively
locally finite.

Theorem 6.2. Let S be any additively locally finite semiring, Σ be an alpha-
bet, and ϕ ∈ swRMSO(S, Σ). Then [[ϕ]] ∈ Rec(S, Σ∗

ϕ).

As in Sect. 5, we will proceed by induction on the structure of ϕ. As
preparation, first we aim to show that non-deleting homomorphisms preserve
recognizable step functions provided S is additively locally finite.

Lemma 6.3 ([4, Corollaries III.2.4,2.5]). Let r : Σ∗ → N be a recognizable
series over the semiring N. Then for any a, b ∈ N the languages r−1(a) and
r−1(a + b N) are recognizable.
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Proposition 6.4. Let S be additively locally finite. Let Σ, Γ be two alphabets
and h : Σ∗ → Γ ∗ be a non-erasing homomorphism.

(a) Let L ⊆ Σ∗ be a recognizable language. Then h(1L) : Γ ∗ → S is a recog-
nizable step function.

(b) h : S〈〈Σ∗〉〉 → S〈〈Γ ∗〉〉 preserves recognizable step functions.

Proof. (a) We shall use the same technique as in the proof of [14, Lemma 7.8].
For any s ∈ S and n ≥ 0, we define 0 ⊗ s = 0 (of S) and (n + 1) ⊗ s =
s + (n ⊗ s). Thus, n ⊗ s = s + · · · + s with n summands s. For any u ∈ Γ ∗,
let m(u) = |h−1(u) ∩ L|. Then (h(1L), u) = m(u) ⊗ 1. The additive monoid
〈1〉 generated by {1} is finite. We choose a minimal element a ∈ N such that
a⊗ 1 = (a + x)⊗ 1 for some x > 0 and we let b be the smallest such x. Then
〈1〉 = {0, 1, . . . , (a+b−1)⊗1}. Now for each u ∈ Γ ∗ we have m(u)⊗1 = d(u)⊗1
for some uniquely determined d(u) ∈ N with 0 ≤ d(u) ≤ a + b − 1. Note that
if 0 ≤ d < a, then m(u) ⊗ 1 = d ⊗ 1 iff m(u) = d, and if a ≤ d < a + b,
then m(u) ⊗ 1 = d ⊗ 1 iff m(u) ∈ d + b N. For each 0 ≤ d < a + b, let
Md = {u ∈ Γ ∗ | d(u) = d}. Then h(1L) =

∑a+b−1
d=0 d · 1Md

.
Also, let 1′

L ∈ N〈〈Σ∗〉〉 be the characteristic series of L over the semiring N.
Then by Lemma 2.2, the series r = h(1′

L) : Γ ∗ → N is recognizable, and
(r, u) =

∑
w∈h−1(u)(1

′
L, w) = m(u) for each u ∈ Γ ∗. Hence, Md = {u ∈ Γ ∗ |

m(u) = d} = r−1(d) if 0 ≤ d < a, and Md = {u ∈ Γ ∗ | m(u) ∈ d + b N} =
r−1(d + b N) if a ≤ d < a + b. In any case, Md is recognizable by Lemma 6.3.
Thus, h(1L) is a recognizable step function.

(b) Let r =
∑n

j=1 sj · 1Lj be a recognizable step function in S〈〈Σ∗〉〉.
Since h : S〈〈Σ∗〉〉 → S〈〈Γ ∗〉〉 is a semiring homomorphism, we have h(r) =∑n

j=1 sj · h(1Lj ). Now, apply (a) and Lemma 2.3(a). ��
Next we consider existential quantifications.

Lemma 6.5. Let S be additively locally finite and ϕ ∈ MSO(S, Σ) such that
[[ϕ]] is a recognizable step function. Then [[∃x.ϕ]] and [[∃X.ϕ]] are also recog-
nizable step functions.

Proof. Let V = Free(ϕ) and let X be x or X. Following the proof of
Lemma 5.2, we can write [[∃X .ϕ]] as the image under a length-preserving
projection of [[ϕ]]V∪{X} which is a recognizable step function by assumption
and Proposition 3.3. Now apply Proposition 6.4(b). ��

Now we can prove Theorem 6.2.

Proof of Theorem 6.2. We proceed by induction over the structure of ϕ, aiming
to show for each subformula ξ of ϕ that [[ξ]] ∈ Rec(Sϕ, Σ∗

ϕ). First, we claim
that if ξ is weakly unambiguous, then [[ξ]] : Σ∗

ξ → Sξ is a recognizable step
function. For constants and for syntactically unambiguous formulas, this is
clear by Lemma 4.4. For disjunctions and conjunctions of such formulas, we
apply Proposition 3.3 and Lemma 2.3(a), and for existential quantifications
Lemma 6.5 to obtain our claim. Next we can proceed using Lemmas 5.2–5.5.

��
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Next we consider the case where the semiring S is locally finite. First we
note the following proposition.

Proposition 6.6 ([12]). Let S be locally finite. Then every recognizable series
r ∈ S〈〈Σ∗〉〉 is a recognizable step function.

We call a formula ϕ ∈ MSO(S, Σ) weakly existential, if whenever ϕ con-
tains ∀X.ψ as a subformula, then ψ is syntactically unambiguous. Now we
show the following theorem.

Theorem 6.7. Let S be any locally finite semiring, Σ be an alphabet, and
ϕ ∈ MSO(S, Σ) be weakly existential. Then [[ϕ]] is recognizable.

Proof. We claim that for each subformula ψ of ϕ, [[ψ]] is a recognizable step
function. Due to Proposition 6.6, we only have to show that [[ψ]] is recognizable.
Proceeding by induction, this follows from Lemmas 5.1–5.5. ��

7 Weighted Automata on Infinite Words

In this section, we will consider weighted automata A acting on infinite words.
As in the case of weighted automata on finite words, we will define the weight
of an infinite path in A as the product of its—infinitely many—transitions,
and the weight of a word w as the sum of all the weights of successful paths
realizing w; in general, there might be infinitely (even uncountably) many
such paths realizing w. Hence we need to be able to form infinite sums and
products in the underlying semiring S. Such complete semirings have already
been considered in Conway [10] and Eilenberg [23]; see also [31]. For weighted
automata on infinite words and characterizations of their behaviors by rational
series, the reader should consult Chap. 3 [26].

Assume that the semiring S is equipped with infinitary sum operations∑
I : SI → S, for any index set I, such that for all I and all families (si | i ∈ I)

of elements of S the following hold:
∑

i∈∅
si = 0,

∑

i∈{j}
si = sj ,

∑

i∈{j,k}
si = sj + sk for j �= k,

∑

j∈J

(∑

i∈Ij

si

)

=
∑

i∈I

si, if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j �= j′,

∑

i∈I

(c · si) = c ·
(∑

i∈I

si

)

,
∑

i∈I

(si · c) =
(∑

i∈I

si

)

· c.

Then S together with the operations
∑

I is called complete [23, 39].
A complete semiring is said to be totally complete [25] if it is endowed with

a countably infinite product operation satisfying for all sequences (si | i ≥ 0)
of elements of S the following conditions:
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∏

i≥0

1 = 1, s0 ·
∏

i≥0

si+1 =
∏

i≥0

si,
∏

i≥0

si =
∏

i≥0

(sni · · · sni+1−1),

∏

j≥0

∑

i∈Ij

si =
∑

(ij)j≥0∈
∏

j≥0 Ij

∏

j≥0

sij ,

where in the third equation 0 = n0 < n1 < n2 < · · · is a strictly increas-
ing sequence and in the last equation I0, I1, . . . are arbitrary index sets and∏

j≥0 Ij denotes the full Cartesian product of these sets.
Now we say that a totally complete semiring S is conditionally completely

commutative (ccc), if whenever (si)i≥0 and (s′i)i≥0 are two sequences of ele-
ments of S such that si · s′j = s′j · si for all 0 ≤ j < i, then

( ∏

i≥0

si

)

·
( ∏

i≥0

s′i

)

=
∏

i≥0

(si · s′i). (1)

In [19], the authors considered totally complete semirings S satisfying (1) for
all sequences (si | i ≥ 0) and (s′i | i ≥ 0) in S. Such semirings are necessarily
commutative.

Next we wish to show that there is an abundance of conditionally complete
commutative semirings which are not commutative. For this, we recall the
notions of ordered and continuous semirings (cf. Chap. 1 [15]).

A semiring (S, +, ·, 0, 1) with a partial order ≤ is called ordered, if the
partial order is preserved by addition and also by multiplication with elements
s ≥ 0. Now let S be an ordered semiring such that s ≥ 0 for each s ∈ S. Then
S is called continuous, if each directed subset D of S has a supremum (least
upper bound) ∨D in S, and addition and multiplication preserve suprema of
directed subsets, i.e., s+∨D = ∨(s+D), s·∨D = ∨(s·D) and (∨D)·s = ∨(D·s)
for each directed subset D ⊆ S and each s ∈ S; here s + D = {s+ d | d ∈ D},
s · D = {s · d | d ∈ D} and analogously for D · s. We may (and will) equip
a continuous semiring with infinitary sum operations given by

∑
i∈I si =∨

{
∑

i∈F si | F ⊆ I finite} for any family (si | i ∈ I) of elements of S; as is
well known, then S is complete. We refer the reader to Chap. 1 [15] for many
examples of (both commutative and non-commutative) continuous semirings.
For instance, if S is continuous, the matrix semirings Sn×n and the power
series semiring S〈〈Σ∗〉〉 (with addition and Cauchy product) are continuous
and clearly non-commutative if n ≥ 2, resp. |Σ| ≥ 2. Now, we show the
following proposition.

Proposition 7.1. Let S be a continuous semiring and S′ = {s ∈ S | s ≥
1} ∪ {0}. We define an infinite product operation on S′ by letting

∏

i≥0

si =

{∨
n≥0

∏n
i=0 si if si �= 0 for all i ≥ 1,

0 otherwise

for each sequence (si | i ≥ 0) in S′. Then S′ is a continuous ccc semiring.
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Proof. Clearly S′ is a continuous semiring. We claim that S′ is totally com-
plete. For this, it suffices to check the infinitary distributivity law. Let Ij

(j ≥ 0) be index sets and si ∈ S′ for i ∈ Ij . We may assume Ij �= ∅ for each
j ≥ 0, and that si �= 0, thus si ≥ 1, for each i ∈ Ij (j ≥ 0).

By definitions of the infinite sum and product, we have

A :=
∏

j≥0

∑

i∈Ij

si =
∨

n≥0

n∏

j=0

∨

Fj⊆Ij

Fjfinite

∑

i∈Fj

si.

By continuity of multiplication and by distributivity, we obtain

A =
∨

n≥0

∨

Fj⊆Ij

Fjfinite
0≤j≤n

n∏

j=0

∑

i∈Fj

si =
∨

n≥0

∨

Fj⊆Ij

Fjfinite
0≤j≤n

∑

(i0,...,in)∈F0×···×Fn

n∏

j=0

sij .

We have to show that this quantity equals

B :=
∑

(ij)j≥0∈
∏

j≥0 Ij

∏

j≥0

sij =
∨

Ffinite
F⊆

∏
j≥0 Ij

∑

(ij)j≥0∈F

∨

n≥0

n∏

j=0

sij .

By continuity of addition and using a diagonalization argument, we obtain

B =
∨

Ffinite
F⊆

∏
j≥0 Ij

∨

n≥0

∑

(ij)j≥0∈F

n∏

j=0

sij .

We first show A ≤ B. Fix n ≥ 0 and for 0 ≤ j ≤ n let Fj ⊆ Ij finite. For all
k > n, choose ik ∈ Ik and let F = F0 × · · · × Fn ×

∏
j>n{ik} which is a finite

subset of
∏

j≥0 Ij . We have

∑

(i0,...,in)∈F0×···×Fn

n∏

j=0

sij =
∑

(ij)j≥0∈F

n∏

j=0

sij

and we deduce that A ≤ B. Conversely, we show B ≤ A. Fix a finite subset
F ⊆

∏
j≥0 Ij and some n ≥ 0. Consider m ≥ n such that |F ′| = |F | where

F ′ = {(i0, . . . , im) | (ij)j≥0 ∈ F}. For 0 ≤ j ≤ m, let Fj be the jth projection
of F ′ so that F ′ ⊆ F0 × · · · × Fm ⊆ I0 × · · · × Im. Then using si ≥ 1 for each
i ∈ Ij and j ≥ 0, we obtain

∑

(ij)j≥0∈F

n∏

j=0

sij =
∑

(i0,...,im)∈F ′

n∏

j=0

sij ≤
∑

(i0,...,im)∈F ′

m∏

j=0

sij

≤
∑

(i0,...,im)∈F0×···×Fm

m∏

j=0

sij

and we have shown B ≤ A.
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It remains to show that S′ is ccc. Let (si)i≥0 and (s′i)i≥0 be two sequences
in S′ such that si · s′j = s′j · si for all 0 ≤ j < i. Then by continuity of the
product, diagonalization, and our commutativity assumption we obtain
(∏

i≥0

si

)

·
(∏

i≥0

s′i

)

=
∨

m≥0

∨

n≥0

(
m∏

i=0

si

)

·
(

n∏

j=0

s′j

)

=
∨

n≥0

(
n∏

i=0

si

)

·
(

n∏

j=0

s′j

)

=
∨

n≥0

n∏

i=0

(si · s′i) =
∏

i≥0

(si · s′i)

as required. ��

Let S be a totally complete semiring. We call a subsemiring S′ ⊆ S a to-
tally complete subsemiring of S if S′ is closed in S under taking arbitrary sums
and countably-infinite products. If A ⊆ S, the totally complete subsemiring
generated by A is the smallest totally complete subsemiring of S containing
A. Due to the infinitary distributivity law, it can be obtained by taking arbi-
trary sums of the closure Acl of A ∪ {0, 1} under countably-infinite products.
To construct Acl, in general it does not suffice to take all countably-infinite
products of elements of A ∪ {0, 1}, since this set might not be closed under
countably-infinite products; the process of taking countably-infinite products
has to be iterated transfinitely (ω1 steps suffice).

Lemma 7.2. Let S be a ccc semiring and A, B ⊆ S such that A and B
commute elementwise. Let Stc

A and Stc
B be the totally complete subsemirings of

S generated by A, resp. B. Then Stc
A and Stc

B commute elementwise.

Proof. Choose any s ∈ Stc
B . First we show:

(1) If (ai)i≥1 is a sequence in S such that all ai (i ≥ 1) commute with s, then∏
i≥1 ai commutes with s.

Indeed, put a0 = s0 = si = 1 for i ≥ 2 and s1 = s. Since S is ccc, we
obtain:

(∏

i≥1

ai

)

· s =
(∏

i≥0

ai

)

·
(∏

i≥0

si

)

=
∏

i≥0

(ai · si) =
∏

i≥0

(si · ai)

=
(∏

i≥0

si

)

·
(∏

i≥0

ai

)

= s ·
∏

i≥1

ai.

(2) If (ai)i∈I is a family in S such that all ai (i ∈ I) commute with s, then∑
I ai commutes with s. Clearly, this holds in any complete semiring.

Now assume s ∈ B. Let Acl be the closure of A ∪ {0, 1} under countably
infinite products. By the description of Acl given above, by rule (1) and trans-
finite induction, we obtain that each element of Acl commutes with s. Now
Stc

A consists of all sums of elements from Acl. Hence rule (2) implies that each
element of Stc

A commutes with s.
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So, Stc
A and B commute elementwise. By a dual argument applied to Stc

B ,
we obtain that Stc

A and Stc
B commute elementwise. ��

We also note the following lemma.

Lemma 7.3. Let S be a totally complete and idempotent semiring. Then
ΣI1 = 1 for each set I of size at most continuum.

Proof. By distributivity, we have 1 =
∏

i≥0(1 + 1) =
∑

f∈2ω 1. Now let ≤ be
the natural partial order on the idempotent semiring S; i.e., for x, y ∈ S, we
have x ≤ y iff x + z = y for some z ∈ S. It follows that 1 ≤ ΣI1 ≤ Σ2ω1 = 1
for each non-empty subset I ⊆ 2ω. Hence, 1 =

∑
I 1. ��

For the rest of this section, let S be a totally complete semiring. Now we
present two weighted automata models acting on infinite words. We denote
by Σω the set of infinite words over Σ. Recall that a formal power series over
infinite words is a mapping r : Σω → S and that we denote by S〈〈Σω〉〉 the
set of formal power series over S and Σω.

Definition 7.4.

(a) A weighted Muller automaton (WMA for short) over S and Σ is a quadru-
ple A = (Q, λ, μ,F) where Q is a finite set of states, μ : Σ → SQ×Q is the
transition weight function, λ : Q → S is the weight function for entering
a state, and F ⊆ P(Q) is the family of final state sets.

(b) A WMA A is a weighted Büchi automaton (WBA for short) if there is a
set F ⊆ Q such that F = {S ⊆ Q | S ∩ F �= ∅}.

As for weighted finite automata, the value μ(a)p,q ∈ S indicates the weight
of the transition p

a→ q. We also write wt(p, a, q) = μ(a)p,q.
The weight of an infinite path P : q0

a0−→ q1
a1−→ q2 → · · · in A is the

product weight(P ) := λ(q0) ·
∏

i≥0 wt(qi, ai, qi+1). This path has label a0a1 . . .
and it is successful, if {q ∈ Q | q = qi for infinitely many i} ∈ F . The weight
of a word w = a0a1 . . . ∈ Σω in A, denoted (‖A‖, w), is the sum of weight(P )
over all successful paths P with label w. The formal power series ‖A‖ : Σω →
S is called the ω-behavior of A.

A series r : Σω → S is called Muller recognizable (resp. Büchi recognizable
or ω-recognizable) if there is a WMA (resp. WBA) A such that S = ‖A‖. The
class of all Muller recognizable (resp. ω-recognizable) series over S and Σ is
denoted by M-Rec(S, Σω) (resp. ω-Rec(S, Σω)).

The following result was proved in [19].

Theorem 7.5. M-Rec(S, Σω) = ω-Rec(S, Σω).

In the sequel, we wish to provide a logical characterization of the class
of ω-recognizable series in our weighted MSO logics interpreted over infinite
words. For this goal, we shall need closure properties of ω-recognizable series
which we recall in the following.
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Lemma 7.6.

(a) For any ω-recognizable language L ⊆ Σω, the series 1L is ω-recognizable.
(b) Let r, r1, r2 ∈ S〈〈Σω〉〉 be ω-recognizable, and let s ∈ S. Then r1 + r2 and

s · r are ω-recognizable.

Next we show the following lemma.

Lemma 7.7. Let S be a ccc semiring. Let S1, S2 ⊆ S be two totally com-
plete subsemirings such that S1 and S2 commute elementwise. Let r1 ∈
ω-Rec(S1, Σ

ω) and r2 ∈ ω-Rec(S2, Σ
ω). Then r1 � r2 ∈ ω-Rec(S, Σω).

Proof. We show that a classical construction of a weighted Muller automaton
for r1 � r2 (cf. [19, 51]) works under the present assumptions on S.

Let A1 = (Q1, λ1, μ1,F1) and A2 = (Q2, λ2, μ2,F2) be two WMA. We
construct the WMA A = (Q, λ, μ,F) in the following way. Its state set is Q =
Q1 × Q2, and the initial distribution is given by λ(q, q′) = λ1(q)λ2(q′) for all
(q, q′) ∈ Q. Its weight transition mapping is specified by wt((q, q′), a, (p, p′)) =
wt1(q, a, p)wt2(q′, a, p′) for all (q, q′), (p, p′) ∈ Q, a ∈ A. Finally, the family
F is constructed as follows: F = {F | π1(F ) ∈ F1, π2(F ) ∈ F2} where
πi : Q → Qi is the projection of Q on Qi (i = 1, 2). Now let w = a0a1 . . . ∈ Σω,
and let Pi = (qi

0
a0→ qi

1
a1→ qi

2 → · · · ) be a path for w in Ai (i = 1, 2). Then
P = ((q1

0 , q2
0) a0→ (q1

1 , q2
1) a1→ (q1

2 , q2
2) → · · · ) is a path for w in A. Clearly, P is

successful in A iff both P1 and P2 are successful in A1 resp. A2. Moreover,
since S is ccc and S1 and S2 commute elementwise, we obtain

weight(P ) = λ1

(
q1
0

)
λ2

(
q2
0

) ∏

i≥0

(
wt1

(
q1
i , ai, q

1
i+1

)
· wt2

(
q2
i , ai, q

2
i+1

))

=
(

λ1

(
q1
0

) ∏

i≥0

wt1
(
q1
i , ai, q

1
i+1

)
)

·
(

λ2(q2
0)

∏

i≥0

wt2
(
q2
i , ai, q

2
i+1

)
)

= weight(P1) · weight(P2).

From this, it easily follows that (‖A‖, w) = (‖A1 ‖, w) · (‖A2 ‖, w). Hence
‖A‖ = ‖A1 ‖ � ‖A2 ‖ = r1 � r2. ��

Now let h : Σ∗ → Γ ∗ be a length-preserving homomorphism. Then h can
be extended to a mapping h : Σω → Γω by letting h(w) = h(w(0))h(w(1)) . . . .

For r ∈ S〈〈Γω〉〉, let h−1(r) = r ◦ h ∈ S〈〈Σω〉〉. For r ∈ S〈〈Σω〉〉, define
h(r) : Γω → S by (h(r), v) :=

∑
w∈h−1(v)(r, w) for v ∈ Γω.

Lemma 7.8 ([19]). Let h : Σ∗ → Γ ∗ be a length-preserving homomorphism.
Then h−1 : S〈〈Γω〉〉 → S〈〈Σω〉〉 and h : S〈〈Σω〉〉 → S〈〈Γω〉〉 preserve ω-
recognizability.

We say that r ∈ S〈〈Σω〉〉 is an ω-recognizable step function, if r =∑n
i=1 si · 1Li for some n ∈ N, si ∈ S and ω-recognizable languages Li ⊆ Σω

(i = 1, . . . , n). Then clearly r is an ω-recognizable series by Lemma 7.6. The
following closure result is easy to see.
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Lemma 7.9.

(a) The class of all ω-recognizable step functions over Σ and S is closed under
sum, scalar products, and Hadamard products.

(b) Let h : Σ∗ → Γ ∗ be a length-preserving homomorphism. Then h−1 :
S〈〈Γω〉〉 → S〈〈Σω〉〉 preserves ω-recognizable step functions.

(c) Let h : Σω → Γω be a length-preserving homomorphism and assume that
S is idempotent. Then h : S〈〈Σω〉〉 → S〈〈Γω〉〉 preserves ω-recognizable step
functions.

Proof. (a) Straightforward.
(b) We follow the proof of Lemma 2.3(b) and note that the class of ω-

recognizable languages is closed under inverses of length-preserving homo-
morphisms (cf. [51]).

(c) For any language L ⊆ Σω, we have h(1L) = 1h(L) by Lemma 7.3. Now,
follow the argument for Proposition 6.4(b). ��

8 Weighted Logics on Infinite Words

In this section, we wish to develop weighted logics for infinite words which
are expressively equivalent to weighted Büchi automata. In particular, we will
derive analogues of Theorems 4.7 and 6.2 for infinite words.

MSO-logic over infinite words is defined as in Sect. 2. The only difference
is that the domain of an infinite word is now N. Again, the language

Nω
V =

{
(w, σ) ∈ Σω

V
∣
∣ σ is a valid (V, w)-assignment

}

is recognizable and by Büchi’s theorem, if Free(ϕ) ⊆ V, the language

Lω
V(ϕ) =

{
(w, σ) ∈ Nω

V
∣
∣ (w, σ) |= ϕ

}

defined by ϕ over ΣV is recognizable. We simply write Lω(ϕ) for Lω
Free(ϕ)(ϕ).

In all of this section, let S be a totally complete semiring and Σ an al-
phabet. Given weighted MSO-formulas as in Definition 3.1, we first have to
define their semantics for infinite words.

Definition 8.1. Let ϕ ∈ MSO(S, Σ) and V be a finite set of variables contain-
ing Free(ϕ). The ω-V-semantics of ϕ is a formal power series [[ϕ]]ωV ∈ S〈〈Σω

V 〉〉.
For short, in this section, we write [[ϕ]]V for [[ϕ]]ωV . Let (w, σ) ∈ Σω

V . If σ is not
a valid (V, w)-assignment, then we put [[ϕ]]V(w, σ) = 0. Otherwise, we define
[[ϕ]]V(w, σ) ∈ S inductively just as in Definition 3.2.

To define the semantics of ∀X.ϕ, we assume that in S products over index
sets of size continuum exist. Then we put

[[∀X.ϕ]]V(w, σ) =
∏

I⊆dom(w)

[[ϕ]]V∪{X}(w, σ[X → I]).

We simply write [[ϕ]] for [[ϕ]]Free(ϕ).
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We note that the additional assumption here on products in S can be lifted
again in a moment, since we will only consider formulas ϕ ∈ MSO(S, Σ) in
which universal set quantification is only applied to syntactically unambiguous
formulas, and we define uncountable products of the elements 0, 1 in the
obvious way.

Indeed, from now on, we will consider syntactically unambiguous, almost
unambiguous, syntactically restricted, and weakly unambiguous formulas in
MSO(S, Σ), precisely as defined before. Our two main results will be the
following.

Theorem 8.2. Let S be a totally complete semiring which is ccc, let Σ be an
alphabet, and let r : Σω → S be a series. The following are equivalent:

1. r is ω-recognizable.
2. r is definable by some syntactically restricted sentence of MSO(S, Σ).
3. r is definable by some syntactically restricted existential sentence of

MSO(S, Σ).

Theorem 8.3. Let S be a totally complete semiring which is ccc and idem-
potent, and let Σ be an alphabet. Let ϕ ∈ swRMSO(S, Σ). Then [[ϕ]] ∈
ω-Rec(S, Σω

ϕ).

For the proof of these results, we proceed almost exactly as before. For
the convenience of the reader, we just indicate the main steps below where we
assume that S is a totally complete semiring which is ccc.

As in the finitary case, the definition of the ω-semantics of a weighted
MSO-formula ϕ ∈ MSO(S, Σ) depends on the set V. In the following, we
show that [[ϕ]]V in fact depends only on Free(ϕ).

Proposition 8.4. Let ϕ ∈ MSO(S, Σ) and V a finite set of variables contain-
ing Free(ϕ). Then

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each (w, σ) ∈ Σω
V such that σ is a valid (V, w)-assignment. In particular,

[[ϕ]] is ω-recognizable iff [[ϕ]]V is ω-recognizable, and [[ϕ]] is an ω-recognizable
step function iff [[ϕ]]V is an ω-recognizable step function.

Proof. We can follow the proof of Proposition 3.3 taking into account Lem-
mas 7.6(a), 7.7, 7.8, and 7.9(a), (b). ��

We define the notion of unambiguous formulas (but now with respect to
infinite words) as in Definition 4.1. Then we have the following proposition.

Proposition 8.5. Let ϕ ∈ MSO(S, Σ) be unambiguous. We may also regard
ϕ as a classical MSO-formula defining the language Lω(ϕ) ⊆ Σω

ϕ . Then [[ϕ]] =
1Lω(ϕ) is an ω-recognizable step function.

Now we obtain the following lemma.
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Lemma 8.6. Let ϕ ∈ MSO−(S, Σ). Then:

• Lω(ϕ+) = Lω(ϕ) and Lω(ϕ−) = Lω(¬ϕ).
• [[ϕ+]] = 1Lω(ϕ) and [[ϕ−]] = 1Lω(¬ϕ).
• ϕ+ and ϕ− are unambiguous.

As a by-product, we have the following proposition.

Proposition 8.7. For each classical MSO-sentence ϕ, we can effectively con-
struct an unweighted syntactically unambiguous MSO(S, Σ)-sentence ϕ′ defin-
ing the same language, i.e., [[ϕ′]] = 1Lω(ϕ).

The definition of ω-restricted formulas is precisely as for restricted formu-
las, just replacing recognizable step functions by ω-recognizable step functions.

Now we proceed as in Sect. 5.

Lemma 8.8. Let ϕ ∈ MSO(S, Σ) be atomic or the negation of an atomic
formula. Then [[ϕ]] is an ω-recognizable step function.

Lemma 8.9. Let ϕ, ψ ∈ MSO(S, Σ) such that [[ϕ]] and [[ψ]] are ω-recognizable.
Then [[ϕ∨ψ]], [[∃x.ϕ]] and [[∃X.ϕ]] are ω-recognizable. Moreover, if [[ϕ]] and [[ψ]]
are ω-recognizable step functions, then [[ϕ ∨ ψ]] is also an ω-recognizable step
function.

Proof. We proceed analogously to Lemma 5.2, now using Proposition 8.4 and
Lemmas 7.6, 7.8, and 7.9(a). ��

Next we deal with conjunction. If ϕ ∈ MSO(S, Σ), we let Stc
ϕ be the totally

complete subsemiring of S generated by val(ϕ).

Lemma 8.10. Let ϕ, ψ ∈ MSO(S, Σ).

(a) Assume that val(ϕ) and val(ψ) commute elementwise, and that [[ϕ]] ∈
ω-Rec(Stc

ϕ , Σω
ϕ) and [[ψ]] ∈ ω-Rec(Stc

ψ , Σω
ψ). Then [[ϕ∧ψ]] is ω-recognizable.

(b) If [[ϕ]] and [[ψ]] are ω-recognizable step functions, so is [[ϕ ∧ ψ]].

Proof. (a) As shown in Lemma 7.2, Stc
ϕ and Stc

ψ commute elementwise. Now
apply Proposition 8.4 and Lemma 7.7.

(b) We apply Proposition 8.4 and Lemma 7.9(a). ��

Next we turn to universal quantification.

Lemma 8.11. Let ψ ∈ MSO(S, Σ) such that [[ψ]] is an ω-recognizable step
function. Then [[∀x.ψ]] is ω-recognizable.

Proof. We proceed as for Lemma 5.4, utilizing that the class of ω-recognizable
languages is closed under Boolean operations. Then the corresponding ω-
recognizable language L̃ can be accepted by a deterministic Muller automa-
ton Ã. We can transform Ã into a weighted Muller automaton A by keeping
its state set and the set of final states and defining initial weights and weights
of transitions as before. Proceeding as before, we obtain [[∀x.ϕ]] = h(‖A‖)
which is ω-recognizable by Lemma 7.8. ��
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Now we can prove Theorem 8.2.

Proof of Theorem 8.2. (3) ⇒ (2): Trivial.
(2) ⇒ (1): Combine Proposition 8.5 and Lemmas 8.8–8.11.
(1) ⇒ (3): (Here, we only need that S is totally complete.) Let A =

(Q, λ, μ, F ) be a weighted Büchi automaton with r = ‖A‖. By possibly adding
a new initial state, we may assume that λ(q) ∈ {0, 1} for each q ∈ Q. We define
the formula ψ(X) as in the proof of Theorem 5.7. Consider now the formula

ϕ
(
X

)
:= ψ

(
X

)
∧ ∃y.

(

min(y) ∧
∨

p,a,q

(y ∈ Xp,a,q) ∧ λp

)

∧ ∀x.
∧

p,a,q

(x ∈ Xp,a,q)
+−→ μ(a)p,q

∧
( ∨

(p,a,q)∈F×Σ×Q

∀x. ∃y.
(
x < y ∧ (y ∈ Xp,a,q)

)
)+

.

Intuitively, the last conjunct ensures that the considered paths are accepting.
The proof is now similar to the finitary case (Theorem 5.7). ��

Next, we turn to the proof of Theorem 8.3. We will need the following
lemma.

Lemma 8.12. Let S be idempotent and ϕ ∈ MSO(S, Σ) such that [[ϕ]] is an
ω-recognizable step function. Then [[∃x.ϕ]] and [[∃X.ϕ]] are also ω-recognizable
step functions.

Proof. We follow the proof of Lemma 6.5, applying Proposition 8.4 and
Lemma 7.9(c). ��

Now we can prove Theorem 8.3.

Proof of Theorem 8.3. Following the proof of Theorem 6.2, we proceed by
induction on the structure of ϕ. Here, we apply Lemmas 8.6, 7.9(a), 8.8–8.12,
and Propositions 8.4 and 8.5. ��

Finally, we note that all constructions for the proofs of Theorems 8.2
and 8.3 are again effective (if S is given effectively).

9 Conclusions and Open Problems

In this chapter, we have presented a weighted logic which is expressively equiv-
alent to weighted automata, both if interpreted over finite or infinite words, re-
spectively. In the case of finite words, together with Schützenberger’s theorem
(see [56] and Chaps. 3, 4 [26, 55]), we thus obtain for arbitrary semirings an
equivalence between weighted automata, rational expressions for formal power
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series, and our logical formalism by syntactically restricted MSO-logic. In the
case of infinite words, we needed completeness assumptions on the semiring.
Further equivalences were obtained in case the semiring is additively locally
finite or locally finite or (for infinite words) idempotent.

In [14], we also investigated weighted first-order logic and could show an
equivalence result to a concept of aperiodic series (cf. [12]), thus also extending
the classical equivalence result [46, 57] between aperiodic, starfree, and first-
order definable languages into a weighted setting. This needed the semiring
to be bi-aperiodic and commutative (in which case it is also locally finite, but
not conversely). We refer the reader to [14] for these results.

Weighted automata with discounting have been investigated in [17]. Dis-
counting is a well-known concept in mathematical economics as well as sys-
tems theory in which later events get less value than earlier ones, cf., e.g., [2].
In [17], the possible behaviors of such weighted automata with discounting
were characterized by rational resp. ω-rational expressions; also see [40] for
further results on this. In [18], they were further characterized by a discounted
restricted weighted logic. Somewhat surprisingly, the discounting only had to
be reflected in the semantics of the universal first-order quantifier.

In [20], also cf. Chap. 9 [29], an equivalence result for weighted automata
and a weighted logic over ranked trees was obtained for all commutative semi-
rings. In recent work [21], our present approach has been applied to unranked
trees, a syntactically defined weighted logic and arbitrary semirings.

Our approach has also been extended to pictures [27], traces [47], distrib-
uted processes [5], also cf. Chap. 10 [28] in this handbook, and very recently
to texts, sp-biposets and nested words with an application to algebraic formal
power series; see [43, 44]. In each case, crucial differences occur when deal-
ing with the universal first-order quantifier. In [52], weighted automata and
weighted logics for infinite trees were investigated. In [16], weighted logics with
values in bounded distributive lattices were considered; cf. also Chap. 12 [53].

These results show the robustness of our approach. One could also try to
define weighted temporal logics and study not only expressiveness but also
decidability and complexity of natural problems such as quantitative model
checking.

Open problems:

1. Given any signature S of predicate calculus and a semiring S, we might
define the syntax of a weighted logic as in Definition 3.1, employing the
new atomic formulas and their negations. The semantics can then be de-
fined similarly as in Definition 3.2 for arbitrary finite S-structures, and
for arbitrary S-structures assuming S is totally complete. Which results
of model theory [9, 33] can be developed for such a general weighted logic?

2. Find a model of weighted automata which is expressively equivalent to
the full logic MSO(S, Σ).
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3. Find a weighted temporal logic which is expressively equivalent to suitable
fragments of MSO(S, Σ).

4. Find applications.

References

1. J. Albert, and J. Kari. Digital image compression. In this Handbook. Chap-
ter 11. Springer, Berlin, 2009.

2. L. de Alfaro, T.A. Henzinger, and R. Majumda. Discounting the future in
systems theory. In Proc. of Automata, Languages and Programming, 30th
ICALP, Eindhoven, volume 2719 of Lecture Notes in Computer Science,
pages 1022–1037. Springer, Berlin, 2003.

3. A. Arnold. Finite Transition Systems, International Series in Computer
Science. Prentice Hall, Englewood Cliffs, 1994.

4. J. Berstel and Ch. Reutenauer. Rational Series and Their Languages,
volume 12 of Monographs in Theoretical Computer Science. An EATCS
Series. Springer, Berlin, 1988.

5. B. Bollig and I. Meinecke. Weighted distributed systems and their logics.
In Proc. of Logical Foundations of Computer Science, LFCS, New York,
volume 4514 of Lecture Notes in Computer Science, pages 54–68. Springer,
Berlin, 2007.
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29. Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers. In
this Handbook. Chapter 9. Springer, Berlin, 2009.

30. B. Gerla. Automata over MV-algebras. In Proc. of IEEE International
Symposium on Multiple-Valued Logic, 34th ISMVL, Toronto, pages 49–
54. IEEE Computer Society Press, Los Alamitos, 2004.

31. S. Golan. Semirings and Their Applications. Kluwer Academic, Dor-
drecht, 1999.

32. U. Hafner. Low bit-rate image and video coding with weighted finite au-
tomata. PhD thesis, Universität Würzburg, Germany, 1999.



210 Manfred Droste and Paul Gastin

33. W. Hodges. Model Theory. Cambridge University Press, Cambridge,
1993.

34. Z. Jiang, B. Litow, and O. de Vel. Similarity enrichment in image com-
pression through weighted finite automata. In Proc. of Computing and
Combinatorics, 6th COCOON, Sydney, volume 1858 of Lecture Notes in
Computer Science, pages 447–456. Springer, Berlin, 2000.

35. F. Katritzke. Refinements of data compression using weighted finite au-
tomata. PhD thesis, Universität Siegen, Germany, 2001

36. B. Khoussainov and A. Nerode. Automata Theory and Its Applications.
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1 Introduction

This chapter presents several fundamental algorithms for weighted automata
and transducers. While the mathematical counterparts of weighted transduc-
ers, rational power series, have been extensively studied in the past [22, 54,
13, 36], several essential weighted transducer algorithms, e.g., composition,
determinization, and minimization, have been devised only in the last decade
[38, 43], in part motivated by novel applications in speech recognition, speech
synthesis, machine translation, other areas of natural language processing,
image processing, optical character recognition, and more recently machine
learning.

These algorithms can be viewed as the generalization to the weighted
transducer case of the standard algorithms for un-weighted acceptors. How-
ever, this generalization is often not straightforward and has required a num-
ber of specific studies either because the old schema could not be applied in
the presence of weights and a novel technique was required, as in the case of
composition [50, 46], or because of the analysis of the conditions of application
of an algorithm as in the case of determinization [38, 3].

The chapter favors a presentation of weighted automata and transducers
in terms of graphs, the natural concepts for an algorithmic description and
complexity analysis. Also, while power series lead to more concise and rigorous
proofs in most cases [36], proofs related to questions of ambiguity naturally
require the introduction of paths and reasoning on graph concepts.

2 Preliminaries

This section introduces the definitions and notation related to weighted finite-
state transducers, weighted transducers for short, and weighted automata.

2.1 Semirings

For various operations to be well defined, the weight set associated to a
weighted transducer must have the structure of a semiring (see [20]). A system
(S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with identity
element 0, (S,⊗, 1) is a monoid with identity element 1, ⊗ distributes over ⊕,
and 0 is an annihilator for ⊗: for all a ∈ S, a⊗0 = 0⊗a = 0. Thus, a semiring
is a ring that may lack negation.

Table 1 lists several semirings. In addition to the Boolean semiring, and the
probability semiring used to combine probabilities, two semirings often used
in applications are the log semiring , which is isomorphic to the probability
semiring via the negative-log morphism, and the tropical semiring, which is
derived from the log semiring using the Viterbi approximation. In the following
definitions, S will be used to denote a semiring.
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Table 1. Semiring examples. ⊕log is defined by: x ⊕log y = − log(e−x + e−y)

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ ∪ {+∞} + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

A semiring is said to be commutative when the multiplicative operation
⊗ is commutative. The semirings listed in Table 1 are all commutative. It is
said to be idempotent if x ⊕ x = x for all x ∈ S. The Boolean semiring and
the tropical semiring are idempotent.

2.2 Weighted Transducers and Automata

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗

and by ε the empty string for which |ε| = 0. The mirror image of a string
x = x1 . . . xn is the string xR = xnxn−1 . . . x1.

Finite-state transducers are finite automata in which each transition is
augmented with an output label in addition to the familiar input label [12,
22, 54, 36]. Output labels are concatenated along a path to form an output
sequence and similarly with input labels. Weighted transducers are finite-state
transducers in which each transition carries some weight in addition to the
input and output labels [54, 36, 52]. The weights are elements of a semiring
(S,⊕,⊗, 0, 1).

The ⊗-operation is used to compute the weight of a path by ⊗-multiplying
the weights of the transitions along that path. The ⊕-operation computes the
weight of a pair of input and output strings (x, y) by ⊕-summing the weights
of the paths labeled with (x, y). The following gives a formal definition of
weighted transducers.

Definition 2.1. A weighted transducer T over a semiring (S,⊕,⊗, 0, 1) is
an 8-tuple T = (Σ, Δ, Q, I, F, E, λ, ρ) where Σ is a finite input alphabet, Δ a
finite output alphabet, Q is a finite set of states, I ⊆ Q the set of initial states,
F ⊆ Q the set of final states, E a finite multi-set3 of transitions, which are
elements of Q × (Σ ∪ {ε}) × (Δ ∪ {ε}) × S × Q, λ : I → S an initial weight
function, and ρ : F → S a final weight function mapping F to S.

For a state q ∈ Q, we will denote by E[q] the outgoing transitions of q and
more generally by E[Q′], the outgoing transitions of all states q in a subset

3 Thus, there can be two transitions from state p to state q with the same input
and output label, and even the same weight. In practice, this is avoided by keeping
only one such transition whose weight is the ⊕-sum of the weights of the original
redundant transitions. We will denote by 	 the standard join operation of multi-sets
as in {1, 2} 	 {1, 3} = {1, 1, 2, 3}.
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of states Q′ ⊆ Q. An ε-transition is a transition with both input and output
label equal to ε.

A path π of a transducer is an element of E∗ with consecutive transitions.
We denote by p[π] its origin or previous state and by n[π] its destination or
next state. A cycle π is a path with p[π] = n[π]. An ε-cycle is a cycle with
both input and output label equal to ε. We also denote by:

• P (Q1, Q2) the set of all paths from a subset Q1 ⊆ Q to a subset Q2 ⊆ Q
• P (Q1, x, Q2) the subset of all paths of P (Q1, Q2) with input label x
• P (Q1, x, y, Q2) the subset of all paths of P (Q1, x, Q2) with output label y

A path in P (I, F ) is said to be accepting or successful . The weight of a path π
obtained by ⊗-multiplying the weights of its constituent transitions is denoted
by w[π]. For any transducer T , we denote by T−1 its inverse, that is the
transducer obtained from T by swapping the input and output label of each
transition.

A transducer T is said to be regulated if the output weight associated by
T to any pair of strings (x, y) ∈ Σ∗ × Δ∗ defined as:

T (x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π]) (1)

is an element of S and its definition does not depend on the order of the terms
in the ⊕-sum. T (x, y) is defined to be 0 when P (I, x, y, F ) = ∅.4 Note that in
the absence of ε-cycles, the set of accepting paths P (I, x, y, F ) is finite for any
(x, y) ∈ Σ∗ × Δ∗ and thus T is regulated. Also, as we shall see later, in some
semirings, such as the four semirings of Table 1, all weighted transducers are
regulated. The weighted transducers we will be considering in this chapter
will be regulated. Figure 1(a) shows an example of a weighted transducer.

While our definition allows for multiple initial states with initial weights,
in all our examples there will be a unique initial state with initial weight 1, and
thus that weight is not indicated in figures. Since any weighted transducer can
be represented by an equivalent one with this property, this does not represent
a real limitation.

A state q ∈ Q is said to be non-accessible (non-coaccessible) when there is
no path from I to q (resp. from q to F ). Non-accessible and non-coaccessible
states are called useless states. They can be removed using a connection (or
trimming) algorithm in linear time without affecting the weight T associates
to any pair. A transducer with no useless state is said to be trim.

A transducer is said to be unambiguous if for any string x ∈ Σ∗ it admits
at most one accepting path with input label x. It is said to be deterministic or
4 Our definition of regulated transducers is more general that the standard one which
assumes that transducers do not have cycles with input or output ε [54, 36, 52]. The
usual definition leads to a simpler presentation but it rules out weighted transducers
that are crucial in applications or that can be obtained as a result of application of
various algorithms.
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Fig. 1. (a) Example of a weighted transducer T over the probability semiring.
(b) Example of a weighted automaton A over the probability semiring. A can be
obtained from T by removing output labels. A bold circle indicates an initial state
with initial weight 1 and a double-circle a final state. A final state q’s weight ρ(q) is
indicated after the slash symbol representing the state number

sequential if it has at most one initial state and at any state no two outgoing
transitions share the same input label.

A weighted automaton A can be defined as a weighted transducer with
identical input and output labels, for any transition. Thus, only string pairs
of the form (x, x) can have a non-zero weight by A, which is why the weight
associated by A to (x, x) is abusively denoted by A(x) and identified with
the weight associated by A to x. Similarly, in the graph representation of
weighted automata, the output (or input) label is omitted. Figure 1(b) shows
an example of a weighted automaton. The language accepted by A is the one
accepted by the un-weighted automaton obtained by ignoring its weights and
is denoted by L(A).

Note that (un-weighted) finite automata [51] can be viewed as weighted
automata over the Boolean semiring and, similarly, (un-weighted) finite-state
transducers [22, 54, 12, 36] as weighted transducers defined over the Boolean
semiring.

3 Shortest-Distance Algorithms

Shortest-paths problems are familiar problems in computer science and math-
ematics. In these problems, edge weights may represent distances, costs, or
any other real-valued quantity that can be added along a path, and that one
may wish to minimize. Thus, edge weights are real numbers and the specific
operations used are addition to compute the weight of a path and minimum
to select the best path weight.

This section introduces a generalization of this problem to the case where
the operations are those of a semiring. These problems turn out to be crucial
in the design of several algorithms such as ε-removal or pushing and in many
other contexts. Different algorithmic solutions will be presented depending on
the semiring properties.

We will consider directed graphs G = (Q, E, w) over a semiring S, where
Q is a set of vertices, E a set of edges, and w : E → S the edge weight function
which we can extend to any path π = e1 . . . ek by w[π] =

⊗k
i=1 w[ei].
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3.1 All-Pairs Shortest-Distance Problems

The general all-pairs shortest-distance algorithm described in this section is
defined for any complete semiring .5

3.1.1 Complete Semirings

A semiring (S,⊕,⊗, 0, 1) is said to be complete if for any index set I and any
family (ai)i∈I of elements of S,

⊕
i∈I ai is an element of S whose definition

does not depend on the order of the terms in the ⊕-sum and that has the
following properties [22, 20]:

⊕

i∈I

ai = 0 if card(I) = 0, (2)

⊕

i∈I

ai = ai if card(I) = 1, (3)

⊕

i∈I

ai =
⊕

j∈J

( ⊕

i∈Ij

ai

)

for any disjoint partition I =
⋃

j∈J

Ij , (4)

a ⊗
(⊕

i∈I

ai

)

=
⊕

i∈I

(a ⊗ ai) for any a ∈ S, (5)

(⊕

i∈I

ai

)

⊗ a =
⊕

i∈I

(ai ⊗ a) for any a ∈ S. (6)

A straightforward consequence of these axioms is that in a complete semiring
the identity (

⊕
i∈I ai)(

⊕
j∈J bj) =

⊕
(i,j)∈I×J (ai ⊗ bj) holds for any two fam-

ilies (ai)i∈I and (bj)j∈J of elements of S. Note that in a complete semiring all
weighted transducers are regulated since all infinite sums are elements of S.

A complete semiring S is a starsemiring [20], that is a semiring that
can be augmented with an internal unary closure operation ∗ defined by
a∗ =

⊕∞
n=0 an for any a ∈ S.6 Furthermore, associativity, commutativity,

and distributivity apply to these infinite sums.
The Boolean semiring ({0, 1},∨,∧, 0, 1) with a∗ = 1 for a ∈ {0, 1}, and

the tropical semiring (R+ ∪ {+∞}, min, +, +∞, 0), with a∗ = 0 for all a ∈
R+∪{+∞}, implicitly used in shortest-paths problems, are familiar examples
of complete semirings. The more general tropical semiring (R ∪ {−∞, +∞},
min, +, +∞, 0) with

5 The algorithm applies in fact more generally to any closed semiring as defined
in [41], which, unlike the definition given by [17], does not require idempotence.
Note that the earlier definition of closed semirings given by Aho et al. [1] is not
axiomatically correct (see [37, 26]). Any complete semiring is a closed semiring.
6 Thus, with the terminology of [20], it is a complete starsemiring . All complete
starsemirings are Conway semirings [20].
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a∗ =

{
0 if a ∈ R+;
−∞ otherwise,

(7)

and (+∞) + (−∞) = (−∞) + (+∞) = +∞, also defines a complete semiring.
Note that the family of complete semirings includes non-idempotent semirings
such as the probability semiring (R+ ∪ {+∞}, +,×, 0, 1) with the closure
operation defined by

a∗ =

{
1

1−a if 0 ≤ a < 1;
+∞ otherwise.

(8)

The log semiring (R+ ∪ {−∞, +∞},⊕log, +, +∞, 0) which is isomorphic to
the probability semiring is also a non-idempotent complete semiring with

a∗ =

{
log(1 − a) if 0 ≤ a < 1;
−∞ otherwise.

(9)

The lattice semiring (L,∨,∧,⊥,�) where L is a complete and distributive
lattice with infimum ⊥ and supremum � is a complete semiring with a∗ = �
for all a ∈ L, when it verifies properties (5) and (6) [20]. Thus, all weighted
transducers are regulated in the semirings just examined.

3.1.2 All-Pairs Shortest-Distance Algorithm

For a complete semiring, we can define the distance or shortest-distance from
vertex p to vertex q in G = (Q, E, w) by

d[p, q] =
⊕

π∈P (p,q)

w[π], (10)

where the ⊕-sum runs over the set of all paths from p to q. This definition
coincides with the classical definition of shortest-distance where the weights
are summed along the path and where the shortest path is sought for the
tropical semiring (R+ ∪ {+∞}, min, +, +∞, 0). The general all-pair shortest-
distance problem is that of computing the shortest distances d[p, q] for all pairs
(p, q) with p, q ∈ Q.

This problem can be solved by computing the closure of the matrix M =
(Mpq) ∈ S|Q|×|Q| defined by Mpq =

⊕
e∈E∩P (p,q) w[e] for all p, q ∈ Q. Indeed,

using the semiring operations in matrix multiplication [20], for n ∈ N, the
coefficient Mn

pq of Mn gives the ⊕-sum of the weights of all paths of length
at most n from p to q. For idempotent semirings such as the tropical semi-
ring for which 1 ⊕ x = 1 for all x ∈ S, only simple paths (paths with no
cycle) need to be considered in the computation of the shortest distances and
thus M∗ = M|Q|−1. Using the standard repeated squaring technique [17],
M|Q|−1 can be computed in time Θ(|Q|3(T⊕ +T⊗) log |Q|), where T⊕ denotes
the computational cost of the ⊕ operation, and T⊗ that of the ⊗ operation.
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Gen-All-Pairs(G)

1 for i ← 1 to |Q| do
2 for j ← 1 to |Q| do

3 d[i, j] ←
⊕

e∈E∩P (i,j)

w[e]

4 for k ← 1 to |Q| do
5 for i ← 1 to |Q|, i �= k do
6 for j ← 1 to |Q|, j �= k do
7 d[i, j] ← d[i, j] ⊕ (d[i, k] ⊗ d[k, k]∗ ⊗ d[k, j])
8 for i ← 1 to |Q|, i �= k do
9 d[k, i] ← d[k, k]∗ ⊗ d[k, i]

10 d[i, k] ← d[i, k] ⊗ d[k, k]∗

11 d[k, k] ← d[k, k]∗

Fig. 2. Generic all-pairs shortest-distance algorithm

There exists however a more efficient method for computing all-pairs shortest-
distances for all complete semirings based on a generalization of the Floyd–
Warshall algorithm.7

The Floyd–Warshall algorithm [25, 57] originally designed for the Boolean
semiring can be generalized to compute all-pair shortest-distances in all com-
plete semirings. Figure 2 gives the pseudo-code of an in-place implementation
of the algorithm where d[i, j] corresponds to the tentative shortest distance
from vertex i to vertex j. Lines 1–3 initialize each distance d[i, j] to the sum
of the weights of the transitions between i and j. By convention, the ⊕-sum
is 0 if i and j are not adjacent. The loops of lines 4–11 update the tentative
shortest-distances in a way that is similar to the steps of the standard Floyd–
Warshall algorithm but using operations of an arbitrary complete semiring.

Let T∗ denote the cost of the closure operation.

Theorem 3.1. Let G = (Q, E, w) be a weighted directed graph over a com-
plete semiring S. Then the algorithm Gen-All-Pairs computes the shortest-
distances d[i, j] between all pairs of vertices (i, j) of G in time Θ(|Q|3(T⊕ +
T⊗ + T∗)) and space Θ(|Q|2).

Proof. Let P k(i, j) denote the set of paths from i to j with all intermediate
vertices within {1, . . . , k}. For any i, j ∈ Q, k ∈ {0} ∪ Q, let dk

ij be the
sum of all paths from i to j with all intermediate vertices within {1, . . . , k}:
dk

ij =
⊕

w∈P k(i,j) w[π]. Since the semiring is complete, dk
ij is well defined and

in S.
Let π be a path in P k(i, j). It is either a path from i to j with all interme-

diate vertices within {1, . . . , k − 1} or it can be decomposed into a path from
i to k with all intermediate vertices within {1, . . . , k − 1}, followed by any

7 Ésik and Kuich also gave a cubic-time algorithm for computing M∗ for all Conway
semirings (see [20] for the definition), which include complete semirings [23].
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number of cycles at k with all intermediate vertices in {1, . . . , k−1}, followed
by a path from k to j with all intermediate vertices within {1, . . . , k − 1}.
Thus, for all i, j, k ∈ Q,

P k(i, j) = P k−1(i, j) ∪
(
P k−1(i, k)

(
P k−1(k, k)

)∗
P k−1(k, j)

)
. (11)

By definition, a path in P k−1(i, j) does not go through k, thus

P k−1(i, j) ∩
(
P k−1(i, k)

(
P k−1(k, k)

)∗
P k−1(k, j)

)
= ∅. (12)

Thus, even if S is not idempotent, dk
ij can be decomposed, for all i, j, k ∈ Q,

as
dk

ij = dk−1
i,j ⊕

(
dk−1

ik ⊗
(
dk−1

kk

)∗ ⊗ dk−1
kj

)
. (13)

This identity leads directly to an algorithm for computing all-pairs shortest
distances using a triple-indexed array. An in-place implementation of the al-
gorithm limits the space used to that of a single |Q| × |Q|-matrix (Fig. 2),
and thus the space complexity of the algorithm to O(|Q|2). The cubic-time
complexity follows directly the definition of the algorithm. ��

The efficiency of the algorithm can be improved for graphs G with rela-
tively small strongly connected components (SCCs) by decomposing G into
its SCCs, which can be done in linear time, then running Gen-All-Pairs on
each SCC.

The Gen-All-Pairs algorithm is useful in a variety of applications. With
the Boolean semiring, it can be used to compute the transitive closure of any
vertex of a graph and then coincides with the classical Floyd–Warshall algo-
rithm [25, 57]. With the tropical semiring, the algorithm can compute the all-
pairs shortest distances in the classical case including for graphs with negative
cycles using the general topical semiring (R∪{−∞, +∞}, min, +, +∞, 0). The
algorithm of [28] based on Dijkstra’s algorithm and that of Bellman–Ford has
a better time complexity for graphs with real-valued weights, O(|Q|2 log |Q|+
|Q||E|), but it cannot be used with graphs that have a negative cycle. Gen-

All-Pairs can also be used to compute the minimum spanning tree of a
directed graph using the complete semiring (R∪{−∞,∞}, min, max,∞,−∞)
[17]. Finally, it is also useful for computing the epsilon-removal of a weighted
automaton in the general case of complete semirings [40] where Johnson’s al-
gorithm does not apply, which is the main motivation for our presentation of
the algorithm.

Gen-All-Pairs can be used of course to compute single-source shortest
distances in graphs G weighted over a complete semiring. The complexity
of the Gen-All-Pairs algorithm in this case, (|Q|3), makes it impractical
for large graphs. The next section describes a single-source shortest-distance
algorithm which can be significantly more efficient in many cases.
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3.2 Single-Source Shortest-Distance Problems

The general single-source shortest-distance algorithm described in this section
is defined for any k-closed semiring [41, 20].8

3.2.1 k-Closed Semirings

Let k ≥ 0 be an integer. A semiring (S,⊕,⊗, 0, 1) is said to be k-closed if

∀a ∈ S,

k+1⊕

n=0

an =
k⊕

n=0

an. (14)

A k-closed semiring is thus a starsemiring with a∗ =
⊕k

n=0 an for all a ∈ S
(as defined in [20]). The Boolean semiring, the tropical semiring (R+∪{+∞},
min, +, +∞, 0), or (R∪ {−∞,∞}, min, max,∞,−∞) are examples of k-closed
semirings with k = 0.

3.2.2 General Single-Source Shortest-Distance Algorithm

The shortest-distance d[i, j] from any vertex i to any vertex j is well defined in
a k-closed semiring S. Given a source vertex s ∈ Q, the general single-source
shortest-distance problem consists of computing all distances d[s, q], q ∈ Q.

Figure 3 gives the pseudo-code of an algorithm computing the single-source
shortest-distances for any k-closed semiring [41]. The algorithm is based on a
generalization of the relaxation technique to the k-closed semirings.

The algorithm maintains two arrays d[q] and r[q] indexed with vertices.
d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps
track of the sum of the weights ⊕-added to d[q] since the last queue extraction
of q. The attribute r is needed for the shortest-distance algorithm to work in
non-idempotent cases. The algorithm uses a queue Q to store the set of states
to consider for the relaxation steps of lines 11–15 [41]. Any queue discipline,
e.g., FIFO, shortest-first, topological (in the acyclic case), can be used.

Different queue disciplines yield different running times for our algorithm.
The choice of the best queue discipline to use depends on the semiring and
the graph structure.

If the graph is acyclic, then using the topological order queue discipline
gives a linear-time algorithm: O(|Q|+(T⊕+T⊗)|E|). For the tropical semiring
(R+∪{+∞}, min, +, +∞, 0) and the best-first queue discipline, the algorithm
coincides with Dijkstra’s algorithm and its complexity is O(|E| + |Q| log |Q|)
using Fibonacci heaps. In the presence of negative weights but no negative cy-
cles, using a FIFO queue discipline, the algorithm coincides with the Bellman–
Ford algorithm.
8 See also [24, 20] for the related definition of locally closed semirings.



Weighted Automata Algorithms 223

Gen-Single-Source(G, s)

1 for i ← 1 to |Q| do
2 d[i] ← r[i] ← 0
3 d[s] ← r[s] ← 1
4 Q ← {s}
5 while Q �= ∅ do
6 q ← Head(Q)
7 Dequeue(Q)
8 r′ ← r[q]
9 r[q] ← 0

10 for each e ∈ E[q] do
11 if d[n[e]] �= d[n[e]] ⊕ (r′ ⊗ w[e]) then
12 d[n[e]] ← d[n[e]] ⊕ (r′ ⊗ w[e])
13 r[n[e]] ← r[n[e]] ⊕ (r′ ⊗ w[e])
14 if n[e] /∈ Q then
15 Enqueue(Q, n[e])

Fig. 3. Generic single-source shortest-distance algorithm

The initialization step of the algorithm (lines 1–3) takes O(|Q|) time, each
relaxation (lines 11–13) takes O(T⊕ + T⊗ + C(A)) time. There are exactly
N(q)|E[q]| relaxations at q. The total cost of the relaxations is thus: O((T⊕ +
T⊗ + C(A))|E|maxq∈QN(q)). Since each vertex q is inserted in Q N(q) times
(line 15), it is also extracted from Q N(q) times (lines 6–7), and the general
expression of the complexity is

O

(

|Q|+
(
T⊕+T⊗+C(A)

)
|E|maxq∈QN(q)+

(
C(I)+C(E)

) ∑

q∈Q

N(q)
)

, (15)

where C(E) is the worst cost of removing a vertex q from the queue Q, C(I)
that of inserting q in Q, and C(A) that of an assignment, including the possible
necessary cost of reorganizing the queue.

Theorem 3.2. Let G = (Q, E, w) be a weighted directed graph over a k-
closed commutative semiring S and let s ∈ Q be a distinguished source ver-
tex. Then, the algorithm Gen-Single-Source computes the single-source
shortest-distances d[s, q] to all vertices q ∈ Q regardless of the queue disci-
pline used for Q.

The proof of theorem is given in [41].

4 Rational Operations

Regulated weighted transducers are closed under the following three standard
operations called rational operations:
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• The sum (or union) of two weighted transducers T1 and T2 is defined by

∀(x, y) ∈ Σ∗ × Δ∗, (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y). (16)

• The product (or concatenation) of two weighted transducers T1 and T2 is
defined by

∀(x, y) ∈ Σ∗×Δ∗, (T1⊗T2)(x, y) =
⊕

x=x1x2
y=y1y2

T1(x1, y1)⊗T2(x2, y2). (17)

The sum runs over all possible ways of decomposing x into a prefix x1 ∈ Σ∗

and a suffix x2 ∈ Σ∗ and similarly y ∈ Δ∗ into a prefix y1 ∈ Δ∗ and a

suffix y2. The product of n > 0 instances of T ,

n
︷ ︸︸ ︷
T ⊗ · · · ⊗ T , is denoted

by Tn, and by convention T 0 = E , where E is the transducer defined by
{
E(x, y) = 1 if (x, y) = (ε, ε);
0 otherwise.

(18)

• The closure (or Kleene-closure) of a weighted transducer T is defined by

∀(x, y) ∈ Σ∗ × Δ∗, T ∗(x, y) =
+∞⊕

n=0

Tn(x, y), (19)

when
⊕+∞

n=0 Tn(x, y) is an element of S for all (x, y) ∈ Σ∗ × Δ∗. Note
that in the absence of accepting ε-paths, that is when P (I, ε, ε, F ) = ∅,
Tn(x, y) = 0 for n > |x|+ |y|, thus T ∗(x, y) is defined by a finite sum and
is always an element of S. In complete semirings, the closure operation is
defined for all weighted transducers.

Rational operations can be used to create complex weighted transducers from
simpler ones as in the standard case of un-weighted acceptors. They admit
simple and efficient algorithms. Figures 4(c)–(e) illustrate these algorithms for
the particular cases of the transducers T1 and T2 of Figs. 4(a)–(b).

The transducer sum of two transducers T1 and T2 can be constructed
from T1 and T2 by introducing a new state, made the unique initial state,
with ε-transitions to the initial states of T1 and T2 carrying the weight 1.
By construction, the sum of the weights of the paths with input label x and
output label y in the resulting transducer is exactly the sum of the weights
of the paths with these labels in T1 and those with these labels in T2, which
matches precisely the definition of T1 ⊕ T2 (Fig. 4(c)). The time and space
complexity of the algorithm is thus linear, O(|T1| + |T2|). Furthermore, the
algorithm admits a natural on-demand or on-the-fly construction: states and
transitions of the transducer sum can be created only as required by the
algorithm using T1 ⊕ T2. This is because the outgoing transition of a state of
T1 ⊕ T2 can be constructed only by using that state and T1 and T2 without
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Fig. 4. (a) Weighted transducer T1 and (b) weighted transducer T2 over the prob-
ability semiring. (c) Sum of T1 and T2, T1 ⊕ T2. (d) Product of T1 and T2, T1 ⊗ T2.
(e) Closure of T1, T ∗

1

inspecting other states of T1 ⊕ T2. This local availability of the information
needed to construct the output is what characterizes algorithms admitting
natural on-the-fly constructions.

Similarly, the product (or concatenation) of two transducers T1 and T2 can
be constructed from these transducers by making the final states of T1 non-
final and by creating an ε-transition from each final state p of T1 to each initial
state q of T2 carrying the final weight of p (Fig. 4(d)). It is straightforward
to verify the correctness of this construction. The time and space complexity
of the algorithm is O(|T1| + |T2| + |F1||I2|). The complexity of the product
computation is linear for transducers with a single initial state, which is the
typical situation in practice. As with the sum, the product algorithm admits
a natural on-demand implementation.

The closure of a transducer T1 can be constructed as in the standard case
of un-weighted acceptors. A new initial state is created that is also final with
final weight 1. An ε-transition with weight 1 is created from this state to
the previously initial state of the transducer. Finally, an ε-transition is added
from each final state p to the previously initial state carrying the final weight
of p (Fig. 4(e)). The correctness of the construction follows the definition
of the closure. The complexity of the algorithm is linear O(|T1|) and the
algorithm admits a natural on-demand implementation as in the case of the
other rational operations.
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5 Elementary Unary Operations

This section briefly describes three elementary unary operations that are often
useful in application.

• The reversal of a weighted transducers T produces a transducer TR that
assigns to each pair of strings (x, y) what T assigns to their mirror images
(xR, yR):

TR(x, y) = T
(
xR, yR

)
. (20)

• The inversion (or transposition) of a weighted transducer T produces a
new weighted transducer by swapping the input and output label of each
transition

T−1(x, y) = T (y, x). (21)

• The projection of a weighted transducer T on the input side (or left pro-
jection) yields an acceptor ↓T by omitting output labels:

↓T (x) =
⊕

y

T (x, y). (22)

Projection on the output side (or right projection), T↓, is defined in a
similar way.

These operations admit straightforward linear-time algorithms that are il-
lustrated by Fig. 5. Inversion and projection are trivial and clearly admit a
linear-time algorithm. When the semiring S is commutative, reversal can be
obtained by reverting the direction of each transition and making initial states
final and final states initial. It can also be obtained as in Fig. 5(a) by reverting
the direction of all transitions, creating a new state p made the unique ini-
tial state, with ε-transitions to each previously final state q carrying the final
weight of q, and making previously initial states final with the same weights.
In all cases, reversal does not admit a natural on-demand computation since
the computation of the outgoing transitions of a state of the output transducer
requires creating or inspecting other output states.

6 Fundamental Binary Operations

In this section, the semiring S is assumed to be commutative.

6.1 Composition

Composition is a general operation for combining two or more weighted trans-
ducers [22, 54, 36, 35]. It is a powerful tool used in a variety of applications
to create a complex weighted transducer from simpler ones representing sta-
tistical models or discriminative models.
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Fig. 5. Elementary operations applies to the transducer T = T1 ⊕ T2 of Fig. 4(c).
(a) Reversed transducer T R. (b) Inverted transducer T−1. (c) Projected trans-
ducer ↓T

The algorithm for the composition of weighted transducers is a gener-
alization of the standard composition algorithm for un-weighted finite-state
transducers. However, as we shall see later, the weighted case requires a more
subtle technique to deal with ε-path multiplicity issues [50, 46]. The algorithm
takes as input two weighted transducers

T1 = (Σ∗, Δ∗, Q1, I1, F1, E1, λ1, ρ1) and
T2 = (Δ∗, Ω∗, Q2, I2, F2, E2, λ2, ρ2)

such that the input alphabet of T2, Δ, coincides with the output alphabet
of T1, outputs a weighted transducer T = (Σ∗, Ω∗, Q, I, F, E, λ, ρ) realizing
the composition of T1 and T2.

Let T1 and T2 be two weighted transducers defined over S such that the
input alphabet of T2 coincides with the output alphabet of T1. Assume that
the infinite sum

⊕
z∈Δ∗ T1(x, z) ⊗ T2(z, y) is defined and in S for all (x, y) ∈

Σ∗ × Ω∗. This condition holds for all transducers defined over a complete
semiring such as the Boolean semiring, the tropical semiring, the probability
semiring and the log semiring, and for all acyclic transducers defined over
an arbitrary semiring. Then the result of the composition of T1 and T2 is a
weighted transducer denoted by T1 ◦ T2 and defined for all x, y by

(T1 ◦ T2)(x, y) =
⊕

z∈Δ∗

T1(x, z) ⊗ T2(z, y). (23)



228 Mehryar Mohri

The sum runs over all strings z labeling a path of T1 on the output side and
a path of T2 on input label z. The matrix notation we have used emphasizes
the connection of composition with matrix multiplication.9

There exists a general and efficient algorithm to compute the composition
of two weighted transducers. In the absence of εs on the input side of T1 or
the output side of T2, the states of T1 ◦ T2 can be identified with pairs of a
state of T1 and a state of T2, Q ⊆ Q1 × Q2. Initial states are those obtained
by pairing initial states of the original transducers, I = I1 × I2, and similarly
final states are defined by F = Q ∩ (F1 × F2). Transitions are obtained by
matching a transition of T1 with one of T2 from appropriate transitions of T1

and T2:
E =

⊎

(q1,a,b,w1,q2)∈E1
(q′

1,b,c,w2,q′
2)∈E2

{(
(q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)

)}
.

The following is the pseudo-code of the algorithm in the ε-free case.

Weighted-Composition(T1, T2)

1 Q ← I1 × I2

2 Q ← I1 × I2

3 while Q �= ∅ do
4 q = (q1, q2) ← Head(Q)
5 Dequeue(Q)
6 if q ∈ I1 × I2 then
7 I ← I ∪ {q}
8 λ(q) ← λ1(q1) ⊗ λ2(q2)
9 if q ∈ F1 × F2 then

10 F ← F ∪ {q}
11 ρ(q) ← ρ1(q1) ⊗ ρ2(q2)
12 for each (e1, e2) ∈ E[q1] × E[q2] such that o[e1] = i[e2] do
13 if

(
q′ = (n[e1], n[e2]) /∈ Q

)
then

14 Q ← Q ∪ {q′}
15 Enqueue(Q, q′)
16 E ← E 	 {(q, i[e1], o[e2], w[e1] ⊗ w[e2], q

′)}
17 return T

E, I, and F are all assumed to be initialized to the empty set. The algo-
rithm uses a queue Q containing the set of pairs of states yet to be examined.
The queue discipline of Q can be arbitrarily chosen and does not affect the
termination of the algorithm. The set of states Q is originally reduced to the
set of pairs of the initial states of the original transducers and Q is initialized
to the same (lines 1–2). At each execution of the loop of lines 3–16, a new
pair of states (q1, q2) is extracted from Q (lines 4–5). The initial weight of
9 Our choice of a matrix notation as opposed to a functional notation is motivated
by its convenience in applications.
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Fig. 6. Weighted transducers (a) T1 and (b) T2 over the probability semiring.
(c) Illustration of composition of T1 and T2, T1◦T2. Some states might be constructed
during the execution of the algorithm that are not co-accessible, e.g., (3, 2). Such
states and the related transitions can be removed by a trimming (or connection)
algorithm in linear-time

(q1, q2) is computed by ⊗-multiplying the initial weights of q1 and q2 when
they are both initial states (lines 6–8). Similar steps are followed for final
states (lines 9–11). Then for each pair of matching transitions (e1, e2), a new
transition is created according to the rules specified earlier (line 16). If the
destination state (n[e1], n[e2]) has not been found earlier on, it is added to Q
and inserted in Q (lines 14–15).

In the worst case, all transitions of T1 leaving a state q1 match all those
of T2 leaving state q′1, thus the space and time complexity of composition is
quadratic: O(|T1||T2|). However, an important feature of composition is that it
admits a natural on-demand computation which can be used to construct only
the part of the composed transducer that is needed. Figures 6(a)–(c) illustrate
the algorithm when applied to the transducers of Figs. 6(a)–(b) defined over
the probability semiring.

More care is needed when T1 admits output ε labels or T2 input ε labels.
Indeed, as illustrated by Fig. 7, a straightforward generalization of the ε-free
case would generate redundant ε-paths and, in the case of non-idempotent
semirings, would lead to an incorrect result. The weight of the matching paths
of the original transducers would be counted p times, where p is the number
of redundant paths in the result of composition.

To cope with this problem, all but one ε-path must be filtered out of
the composite transducer. Figure 7 indicates in boldface one possible choice
for that path, which in this case is the shortest. Remarkably, that filtering
mechanism itself can be encoded as a finite-state transducer F (Fig. 7(b)).

To apply that filter, we need to first augment T1 and T2 with auxiliary sym-
bols that make the semantics of ε explicit. Thus, let T̃1 (T̃2) be the weighted
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Fig. 7. Redundant ε-paths in composition. All transition and final weights are equal
to 1. (a) A straightforward generalization of the ε-free case would generate all the
paths from (1, 1) to (3, 2) when composing T1 and T2 and produce an incorrect
result in non-idempotent semirings. (b) Filter transducer F [46]. The shorthand x
is used to represent an element of Σ

transducer obtained from T1 (resp. T2) by replacing the output (resp. input)
ε labels with ε2 (resp. ε1) as illustrated by Fig. 7. Thus, matching with the
symbol e1 corresponds to remaining at the same state of T1 and taking a tran-
sition of T2 with input ε. e2 can be described in a symmetric way. The filter
transducer F disallows a matching (ε2, ε2) immediately after (ε1, ε1) since this
can be done instead via (ε2, ε1). By symmetry, it also disallows a matching
(ε1, ε1) immediately after (ε2, ε2). In the same way, a matching (ε1, ε1) imme-
diately followed by (ε2, ε1) is not permitted by the filter F since a shorter path
via the matchings (ε2, ε1)(ε1, ε1) is possible. Similarly, (ε2, ε2)(ε2, ε1) is ruled
out. It is not hard to verify that the filter transducer F is precisely a finite
automaton over pairs accepting the complement of the language

L = σ∗((ε1, ε1)(ε2, ε2) + (ε2, ε2)(ε1, ε1) + (ε1, ε1)(ε2, ε1) + (ε2, ε2)(ε2, ε1)
)
σ∗,

where σ = {(ε1, ε1), (ε2, ε2), (ε2, ε1), x} [4]. Thus, the filter F guarantees that
exactly one ε-path is allowed in the composition of each ε sequences. To obtain
the correct result of composition, it suffices then to use the ε-free composition
algorithm already described and compute
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T̃1 ◦ F ◦ T2. (24)

Indeed, the two compositions in T̃1 ◦F ◦ T̃2 no more involve εs. Since the size
of the filter transducer F is constant, the complexity of general composition
is the same as that of ε-free composition, that is O(|T1||T2|). In practice, the
augmented transducers T̃1 and T̃2 are not explicitly constructed, instead the
presence of the auxiliary symbols is simulated. Further filter optimizations
help limit the number of non-coaccessible states created, for example, by ex-
amining more carefully the case of states with only outgoing non-ε-transitions
or only outgoing ε-transitions [46].

Composition of weighted transducers can be further generalized to the
N -way composition of weighted transducers [4]. Furthermore, N -way compo-
sition of three or more transducers can be substantially faster than the use of
the standard composition [5].

6.2 Intersection

The intersection (or Hadamard product) of two weighted automata A1 and
A2 is defined by [22, 54, 36]:

(A1 ∩ A2)(x) = A1(x) ⊗ A2(x). (25)

It coincides with the special case of composition of weighted transducers where
the input label of each transition matches its output label. Thus, the same
algorithm can be used to compute intersection with the same complexity.
Figure 8 illustrates the application of the algorithm to two weighted automata
extracted from the weighted transducers of Fig. 6.

6.3 Difference

Negation is not defined for all semirings, but a difference operation can be
defined for a weighted automata A1 and an un-weighted deterministic au-
tomaton A2 as follows:10

∀x ∈ Σ∗, (A1 − A2)(x) =

{
A1(x) if x /∈ L(A2);
0 otherwise.

(26)

Thus, (A1 − A2) is the weighted automaton A1 from which all accepting
paths labeled with a string accepted by A2 are removed, which leads to the
following equivalent formulation:

∀x ∈ Σ∗, (A1 − A2)(x) =
(
A1 ∩ A2

)
(x), (27)

10 Of course, when negation is defined, A1⊕(�A2) defined by ∀x ∈ Σ∗, A1⊕(�A2) =
A1(x) � A2(x) can be computed by applying the sum algorithm to A1 and �A2.
The semantics of the difference operation considered here is different.
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Fig. 8. Weighted automata (a) A1 and (b) A2 over the probability semiring. (c) Il-
lustration of intersection of A1 and A2, A1 ∩ A2. Some states might be constructed
during the execution of the algorithm that are not co-accessible, e.g., (3, 2). Such
states and the related transitions can be removed by a trimming (or connection)
algorithm in linear-time

where A2 is a weighted automaton over the semiring S accepting exactly the
complement of L(A2) and assigning weight 1 to each string accepted. Since
A2 is deterministic, its complement A2 can be computed from A2 in linear
time, with the following two steps:

• Completion: first making A2 complete, that is creating an equivalent au-
tomaton to A2 such that all alphabet symbols can be read from any state.
This can be done by augmenting A2 with a new state p with self-loops
labeled with all alphabet symbols, and by adding a transition labeled with
a ∈ Σ from state q to p when no transition labeled with a is available at
q in A2.

• Complementation: then making all final states of the modified automaton
A2 non-final and vice versa. Finally, all weights of the automaton are set
to 1 to make it an automaton over S.

Both of these steps can be executed in linear time O(|A2| + |Σ|) and admit
a natural on-demand implementation. Note that the complementation of ar-
bitrary finite automata is PSPACE-complete [1]; this is the reason why A2

was assumed to be deterministic here. The difference can then be obtained
by computing the intersection of A1 and A2. Since intersection or composi-
tion also admit a natural on-the-demand computation, the same is true of
the difference algorithm. Note that using that property, the alphabet symbol
actually used in complementation can be limited to the symbols appearing in
A1 and A2. Thus, the overall complexity of difference is O(|A1|(|A2| + |Σ′|).

Figure 9 illustrates the difference algorithm.
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Fig. 9. (a) Un-weighted automaton A2. (b) Complete automaton equivalent to A2.
(c) Complement of A2, A2, all weights are equal to 1 and thus not indicated.
(d) Weighted automaton A1 defined over the probability semiring. (e) Difference
of A1 and A2, A1 − A2, obtained by intersection of A1 and A2

7 Optimization Algorithms

7.1 Epsilon-Removal

The use of various automata or transducer operations such as rational opera-
tions generate ε-transitions. These transitions cause some delay in the use of
the resulting transducers since the search for an alphabet symbol to match
in composition or other similar operations requires reading some sequences of
εs first. To make these weighted transducers more efficient to use, it may be
preferable to remove all ε-transitions, that is, to create an equivalent weighted
transducer with no ε-transition. This section describes a general ε-removal al-
gorithm that precisely achieves this task.

Simply removing ε-transitions from the input transducer clearly does not
result in an equivalent one. Instead, for a given state p, the non-ε-transitions
of all states q reachable from p via ε-transitions should be added to those of p.
In the weighted case, this does not result in an equivalent transducer since
the weights of the ε-transitions from p to q would be ignored. Thus, before
adding an outgoing transition of state q to p, the weight it carries must be
pre-⊗-multiplied by the sum of the weights of the ε-paths from p to q. To
ensure that this weight is an element of the semiring, we will assume that S
is complete.11

This leads to a two-step algorithm [40]. Given a transducer T , let Tε denote
the transducer derived from T by keeping only ε-transitions and let dε[p, q] =⊕

π∈P (p,ε,q) w[π] denote the distance from state p to state q in Tε. Then the
following are the two main steps of the algorithms:
11 The results presented also hold in the case of closed semirings.
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• ε-Closure computation: at each state p, the weighted ε-closure defined by

C(p) = {(q, w) : P (p, ε, q) �= ∅, w = dε[p, q]} (28)

is computed.
• Actual removal of εs: all ε-transitions are removed and for each p and

each (q, w) ∈ C(p), the transition set of p is augmented with the following
transitions

{(p, a, b, dε[p, q] ⊗ w, r) : (q, a, b, w, r) ∈ E, (a, b) �= (ε, ε)}. (29)

If there exists (q, w) ∈ C(p) with q ∈ F , then dε[p, q] ⊗ ρ(q) must be
⊕-added to the final weight of p.

The following is the pseudo-code of the algorithm which follows the main steps
just discussed.

Epsilon-Removal(T )

1 for each p ∈ Q do
2 Compute-Closure(C(p))

3 E′ ← Eε ← {(p, a, b, w, q) ∈ E : (a, b) �= (ε, ε)}
4 F ′ ← F
5 ρ′ ← ρ
6 for each p ∈ Q do
7 for each (q, w′) ∈ C[p] do

8 E′[p] ← E′[p] 	 {(p, a, b, w′ ⊗ w, r) : (q, a, b, w, r) ∈ Eε}
9 if q ∈ F then

10 if p /∈ F then
11 F ′ ← F ∪ {p}
12 ρ′[p] ← 0
13 ρ′[p] ← ρ′[p] ⊕ (w′ ⊗ ρ(q))
14 return T ′ = (Σ, Δ, Q, I, F ′, E′, λ, ρ′)

Theorem 7.1 ([40]). Let T be a weighted transducer over a complete semi-
ring S. Assume that the closures C(p) can be computed for any state p of T .
Then the weighted transducer T ′ returned by the epsilon-removal algorithm
just described is equivalent to T .

The proof is simple and is given in [40].
The ε-closures C(p) can be computed using an all-pair shortest-distance

algorithm over Tε when the semiring S is complete, or by applying the single-
shortest distance algorithm from each source p when the semiring is k-closed,
as described in Sect. 3. The complexity of the second stage of the algorithm
(lines 6–13) is in O(|Q|2 + |Q||E|) since in the worst case each C(p) contains
all states of the transducer. Thus, the overall complexity of the algorithm is

O
(
|Compute-Closure| + |Q|2 + |Q||E|(T⊕ + T⊗)

)
, (30)
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where O(|Compute-Closure|) denotes the total cost of the closure compu-
tation. We are now examining several special cases of practical interest:

• Tε is acyclic, that is T admits no ε-cycle, a rather frequent case in practice.
In that case, the single-source shortest distance algorithm can be used for
any semiring S and has linear time complexity. The total complexity of
applying the algorithm at each state is O(|Q|2 + |Q||E|(T⊕ + T⊗)) and
matches that of the second stage. Thus, the overall complexity of epsilon-
removal is then

O
(
|Q|2 + |Q||E|(T⊕ + T⊗)

)
. (31)

The algorithm can in fact be improved in that special case. The complexity
of the computation of the all-pairs shortest distances can be substantially
improved if the states of Tε are visited in reverse topological order and if
the single-source shortest-distance algorithm is interleaved with the actual
removal of εs as follows: for each state p of Tε visited in reverse topological
order,
– Run a single-source shortest-distance algorithm with source p to com-

pute the distance from p to each state q in Tε

– Then remove ε-transitions leaving q and update the final weight as
already described

The reverse topological order guarantees that the ε-paths leaving p are re-
duced to the ε-transitions leaving p. Thus, the cost of the shortest-distance
algorithm run from p only depends on the number of ε-transitions leaving
p and the total cost of the computation of the shortest-distances is linear:
O(|Q| + (T⊕ + T⊗)|E|).

• S is the tropical semiring. In that case, the complexity of the first stage
of the algorithm is that of a standard shortest-path algorithm from each
state of Tε. Using Fibonacci heaps, the complexity of the first stage of the
algorithm is thus O(|Q||E|+ |Q|2 log |Q|). Thus, the overall complexity of
epsilon-removal is again

O
(
|Q|2 + |Q||E|(T⊕ + T⊗)

)
. (32)

• S is a complete semiring. In that case, when the all-pairs shortest-distance
algorithm of Sect. 3 is the only algorithm available, the complexity of
the first stage of the algorithm is Θ(|Q|3(T⊕ + T⊗ + T∗)) and the overall
complexity of epsilon-removal is also

O
(
|Q|3(T⊕ + T⊗ + T∗) + |Q||E|(T⊕ + T⊗)

)
. (33)

Epsilon-removal does not create any new state. However, not all states of
the original transducer may be necessary. States with only incoming (or out-
going) ε-transitions become non-accessible (resp. non-coaccessible) after re-
moval of these transitions, which causes other states not to be accessible or
co-accessible. All of these states and corresponding transitions can be removed
in linear time using a standard trimming or connection algorithm.
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During the epsilon-removal construction, it may happen quite often in
practice that several transitions from the same state p to the same state q,
with the same input and output label, need to be constructed in the resulting
transducer T ′. To avoid this redundancy, the weights of these transitions are
⊕-summed to maintain at any time a single transition instead.

Note that epsilon-removal admits a natural on-demand computation since
the outgoing transitions of state q of the output automaton can be computed
directly using the ε-closure of q. However, the reverse topological order de-
scribed in the case of an acyclic Tε requires examining all states of Tε and
thus that version of the algorithm cannot be viewed as a natural on-demand
construction. In practice, both versions of the algorithm can be useful.

When epsilon-removal is to be followed immediately by the application of
determinization, the integration of these two operations often results in much
more efficient overall computation. This is because the ε-closure of a subset
of states created by determinization can be computed by a single shortest-
distance algorithm with all states of the subset serving as sources, rather than
a distinct one for each state of the subset. Since some states can be reached
by several elements of the subset, the first method provides more sharing.

This integration of determinization and epsilon-removal can be extended
to the weighted case where the weighted determinization [38] presented in the
next section is used.12

Epsilon-removal can be straightforwardly modified to remove transitions
with input label a and output label b, with (a, b) �= (ε, ε). This can be done for
example by relabeling ε-transitions with a new label and replacing (a, b) by
(ε, ε), applying epsilon-removal, and then restoring original εs. The resulting
transducer is equivalent to the original if (a, b) is assigned the semantics of
(ε, ε).

Figure 10 illustrates the epsilon-removal algorithm. Figure 10(c) shows the
transducer T ′ resulting from the transducer T of Fig. 10(a) by application of
epsilon-removal. Note that only three of the original states remain in T ′. As
already discussed, since state 2 and 3 admit only incoming ε-transitions (and
only outgoing ε-transitions in the case of state 3), after removal of ε-transitions
they become inaccessible and can thus be removed. Figure 10(b) indicates all
non-0 shortest-distances between states in Tε, which summarizes the closure
information. These distances are used to determine the weight of the new
transitions added.

Instead of removing an ε-transition from p to q by adding to state p all
non-ε-transitions leaving q, one can equivalently proceed by adding to q all
non-ε-transitions entering p. This is equivalent to applying epsilon-removal in
the same way as before but to the reverse of T . We will thus refer to reverse
epsilon-removal as the algorithm that consists of the following sequence of op-
12 It is, however, limited to the cases where the result of epsilon-removal is deter-
minizable, that is cases where the determinization algorithm terminates, which as
we shall see later, does not always hold in the weighted case.
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Fig. 10. (a) Weighted transducer T defined over the probability semiring.
(b) Weighted graph showing non-0 all-pair distance dε[p, q]. From each state p, the
outgoing weighted edges give the closure C(p). (c) Weighted transducer T ′ resulting
from T by epsilon-removal. (d) Weighted transducer T ′′ resulting from T by reverse
epsilon-removal

erations: reversal, epsilon-removal, reversal. Figure 10(d) shows T ′′ the result
of the application of reverse epsilon-removal to T . T ′′ is equivalent to T and
T ′′ and has the same number of states as T , but in this case has more tran-
sitions than T ′. Which algorithm epsilon-removal or reverse epsilon-removal,
produces the smallest transducer depends on the number of outgoing transi-
tions of the states q reached by an ε-path in the epsilon-removal case, or the
number of incoming transitions of the states p with incoming εs in the reverse
epsilon-removal case. The decision of the direction of epsilon-removal can be
made in fact for each pair of states (p, q) based upon these quantities.

7.2 Determinization

This section describes a general determinization algorithm for weighted au-
tomata and transducers [38] which generalizes the standard powerset con-
struction for un-weighted finite automata. The presentation will focus on the
case of weighted automata, the weighted transducer case can be treated in a
similar way or as a special case of the general algorithm we present [38].

A weighted automaton is said to be deterministic or subsequential if it
has a unique initial state and if no two transitions leaving any state share the
same input label. There exists a natural extension of the classical subset con-
struction to the case of weighted automata called determinization. Weighted
determinization requires some technical conditions on the semiring or the
weighted automaton which we will first introduce. These conditions hold in
most cases in practice.

Weighted determinization is a generic algorithm: it works with any weakly
divisible semiring . A semiring is said to be divisible if all non-0 elements
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admit an inverse, that is if S−{0} is a group. (S,⊕,⊗, 0, 1) is said to be
weakly divisible if for any x and y in S such that x ⊕ y �= 0, there exists at
least one z such that x = (x ⊕ y) ⊗ z. The ⊗-operation is cancellative if z is
unique and we can write: z = (x ⊕ y)−1x. When z is not unique, we can still
assume that we have an algorithm to find one of the possible z and call it
(x ⊕ y)−1x. Furthermore, we will assume that z can be found in a consistent
way, that is: ((u ⊗ x) ⊕ (u ⊗ y))−1(u ⊗ x) = (x ⊕ y)−1x for any x, y, u ∈ S
such that u �= 0. A semiring is zero-sum-free if for any x and y in S, x⊕ y = 0
implies x = y = 0.

Additionally, we assume that for any string x ∈ Σ∗, the sum of the
weights of the paths labeled with x and starting at an initial state is non-0:
w[P (I, x,Q)] �= 0. This condition is always satisfied with trim weighted au-
tomata over the tropical semiring or any zero-sum-free semiring.

The pseudo-code of the algorithm is given below with Q′, I ′, F ′, and E′

all initialized to the empty set.

Weighted-Determinization(A)

1 i′ ← {(i, λ(i)) : i ∈ I}
2 λ′(i′) ← 1
3 Q ← {i′}
4 while Q �= ∅ do
5 p′ ← Head(Q)
6 Dequeue(Q)
7 for each x ∈ i[E[Q[p′]]] do
8 w′ ←

⊕
{v ⊗ w : (p, v) ∈ p′, (p, x, w, q) ∈ E}

9 q′ ← {(q,
⊕

{w′−1 ⊗ (v ⊗ w) : (p, v) ∈ p′, (p, x, w, q) ∈ E}) :
q = n[e], i[e] = x, e ∈ E[Q[p′]]}

10 E′ ← E′ ∪ {(p′, x, w′, q′)}
11 if q′ /∈ Q′ then
12 Q′ ← Q′ ∪ {q′}
13 if Q[q′] ∩ F �= ∅ then
14 F ′ ← F ′ ∪ {q′}
15 ρ′(q′) ←

⊕
{v ⊗ ρ(q) : (q, v) ∈ q′, q ∈ F}

16 Enqueue(Q, q′)
17 return T ′

A weighted subset p′ of Q is a set of pairs (q, x) ∈ Q × S. We will denote
by Q[p′] the set of states q of the weighted subset p′. E[Q[p′]] represents the
set of transitions leaving these states, and i[E[Q[p′]]] the set of input labels
of these transitions.

The states of the output automaton can be identified with (weighted) sub-
sets of the states of the original automaton. A state r of the output automaton
that can be reached from the start state by a path π is identified with the set of
pairs (q, x) ∈ Q×S such that q can be reached from an initial state of the origi-
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Fig. 11. Determinization of weighted automata. (a) Weighted automaton over the
tropical semiring A. (b) Equivalent weighted automaton B obtained by determiniza-
tion of A. (c) Non-determinizable weighted automaton over the tropical semiring,
states 1 and 2 are non-twin siblings

nal machine by a path σ with i[σ] = i[π] and λ(p[σ])⊗w[σ] = λ(p[π])⊗w[π]⊗x.
Thus, x can be viewed as the residual weight at state q.

Determinization does not terminate for all weighted automata. As we
shall see, not all weighted automata are determinizable by the algorithm
just described. When it terminates, the algorithm returns a subsequential
weighted automaton A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′), equivalent to the input
A = (Σ, Q, I, F, E, λ, ρ).

The algorithm uses a queue Q containing the set of states of the resulting
automaton A′, yet to be examined. The queue discipline of Q can be arbitrarily
chosen and does not affect the termination of the algorithm. A′ admits a
unique initial state, i′, defined as the set of initial states of A augmented with
their respective initial weights. Its input weight is 1 (lines 1–2). Q originally
contains only the subset i′ (line 3). At each execution of the loop of lines 4–16,
a new subset p′ is extracted from Q (lines 5–6). For each x labeling at least one
of the transitions leaving a state p of the subset p′, a new transition with input
label x is constructed. The weight w′ associated to that transition is the sum
of the weights of all transitions in E[Q[p′]] labeled with x pre-⊗-multiplied
by the residual weight v at each state p (line 8). The destination state of the
transition is the subset containing all the states q reached by transitions in
E[Q[p′]] labeled with x. The weight of each state q of the subset is obtained by
taking the ⊕-sum of the residual weights of the states p ⊗-times the weight
of the transition from p leading to q and by dividing that by w′. The new
subset q′ is inserted in the queue Q when it is a new state (line 15). If any
of the states in the subset q′ is final, q′ is made a final state and its final
weight is obtained by summing the final weights of all the final states in q′,
pre-⊗-multiplied by their residual weight v (line 14).

Figure 11 illustrates the determinization of a weighted automaton over the
tropical semiring. The worst case complexity of determinization is exponential
even in the un-weighted case. However, in many practical cases such as for
weighted automata used in large-vocabulary speech recognition, this blow-
up does not occur. It is also important to notice that just like composition,
determinization admits a natural lazy implementation which can be useful for
saving space.
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Unlike the unweighted case, determinization does not halt on all input
weighted automata. In fact, some weighted automata, non-subsequentiable
automata, do not even admit equivalent subsequential machines. But even
for some subsequentiable automata, the algorithm does not halt. We say that
a weighted automaton A is determinizable if the determinization algorithm
halts for the input A. With a determinizable input, the algorithm outputs an
equivalent subsequential weighted automaton.

There exists a general twins property for weighted automata that provides
a characterization of determinizable weighted automata under some general
conditions. Let A be a weighted automaton over a weakly divisible semiring S.
Two states q and q′ of A are said to be siblings if there exist two strings x
and y in A∗ such that both q and q′ can be reached from I by paths labeled
with x and there is a cycle at q and a cycle at q′ both labeled with y. When
S is a commutative and cancellative semiring, two sibling states are said to
be twins iff for any string y:

w[P (q, y, q)] = w[P (q′, y, q′)]. (34)

A has the twins property if any two sibling states of A are twins.13 Figure 11(c)
shows an unambiguous weighted automaton over the tropical semiring that
does not have the twins property: states 1 and 2 can be reached by paths
labeled with a from the initial state and admit cycles with the same label b,
but the weights of these cycles (3 and 4) are different.

The following theorem is proven in [38].

Theorem 7.2 ([38]). Let A be a weighted automaton over the tropical semi-
ring. If A has the twins property, then A is determinizable.

With trim unambiguous weighted automata, the condition is also necessary
[38, 3].

Theorem 7.3 ([38, 3]). Let A be a trim unambiguous weighted automaton
over the tropical semiring. Then the three following properties are equivalent:

1. A is determinizable.
2. A has the twins property.
3. A is subsequentiable.

There exists an efficient algorithm for testing the twins property for trim un-
ambiguous and even cycle-unambiguous weighted automata in time
13 The notion of twins property was originally introduced for un-weighted finite-
state transducers by [15, 16] and was shown to be decidable. Polynomial-time al-
gorithms were later given to test this property for functional transducers in time
O(|Q|4(|Q|2+|E|2)|Δ|) by [58], O(|Q|4(|Q|2+|E|2)) by [11], and O(|Q|2(|Q|2+|E|2))
by [3], where Q is the set of states of the input transducer, E the set of its transitions
and Δ the output alphabet.
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O(|Q|2 + |E|2) [3].14 Note that any acyclic weighted automaton over a zero-
sum-free semiring has the twins property and is determinizable.

The existence of an equivalent sequential weighted automaton for a finitely
ambiguous weighted automaton over the tropical semiring was shown to be
decidable [32]. The twins property has also been shown more recently to be
a necessary and sufficient condition for the determinizability of finitely am-
biguous trim weighted automata, that is, trim automata for which at most
a fixed finite number of accepting paths are labeled by any string that are
defined over the tropical semiring of integers (Z ∪ {+∞}, min, +, +∞, 0) [31].
A more general notion of clones property was introduced by the same author
and shown to be a decidable necessary and sufficient condition characteriz-
ing determinizability for polynomially ambiguous automata over the tropical
semiring, that is weighted automata over the tropical semiring for which the
number of accepting paths of any string x is bounded by a fixed polynomial
defined over the length of x.

7.3 Weight Pushing

The choice of the distribution of the total weight along each successful path of
a weighted automaton does not affect the definition of the function realized by
that automaton, but it may have a critical impact on efficiency in many appli-
cations, e.g., information extraction or natural language processing, where a
heuristic pruning can often be used to visit only a subpart of the automaton.
There exists an algorithm, weight pushing, for normalizing the distribution
of the weights along the paths of a weighted automaton or more generally a
weighted directed graph [38, 43].

Let A be a weighted automaton over a semiring S. Assume that S is zero-
sum-free and weakly divisible. For any state q ∈ Q, assume that the following
sum is defined and in S:

d[q] =
⊕

π∈P (q,F )

(
w[π] ⊗ ρ(n[π])

)
. (35)

d[q] is the shortest-distance from q to F including the final weight. d[q] is
well defined for all q ∈ Q when S is a k-closed semiring. The weight pushing
algorithm consists of computing each shortest-distance d[q] and of re-weighting
the transition weights, initial weights, and final weights in the following way:

∀e ∈ E s.t. d
[
p[e]

]
�= 0, w[e] ← d

[
p[e]

]−1 ⊗ w[e] ⊗ d
[
n[e]

]
, (36)

∀q ∈ I, λ(q) ← λ(q) ⊗ d[q], (37)
∀q ∈ F s.t. d[q] �= 0, ρ(q) ← d[q]−1 ⊗ ρ(q). (38)

14 An automaton is cycle-unambiguous if for any state q and any string x there
exists at most one cycle at q labeled with x.
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Roughly speaking, the algorithm pushes the weights of each path as much as
possible toward the initial states. Figures 12(a)–(c) illustrate the application of
the algorithm in a special case both for the tropical and probability semirings.

Each of the operations described can be assumed to be done in constant
time, thus re-weighting can be done in linear time O(T⊗|A|) where T⊗ de-
notes the worst cost of an ⊗-operation. The complexity of the computation
of the shortest-distances depends on the semiring and the algorithm used
(see Sect. 3). In the case of k-closed semirings such as the tropical semi-
ring, d[q] can be computed using a single-source shortest-path algorithm. The
complexity of the algorithm is linear in the case of an acyclic automaton:
O(|Q| + (T⊕ + T⊗)|E|), where T⊕ denotes the worst cost of an ⊕-operation.
In the case of a general weighted automaton over the tropical semiring, the
complexity of the algorithm is O(|E| + |Q| log |Q|).

In the case of complete semirings such as (R+, +,×, 0, 1), a generalization
of the Floyd–Warshall algorithm for computing all-pairs shortest-distances
can be used. The complexity of the algorithm is Θ(|Q|3(T⊕ +T⊗ +T∗)) where
T∗ denotes the worst cost of the closure operation. The space complexity
of these algorithms is Θ(|Q|2). These complexities make it impractical to
use the Floyd–Warshall algorithm for computing d[q], q ∈ Q, for relatively
large graphs or automata of several hundred million states or transitions.
An approximate version of a generic shortest-distance algorithm can be used
instead to compute d[q] efficiently.

Note that if d[q] = 0, then since S is zero-sum-free, the weight of all paths
from q to F is 0. Let A be a weighted automaton over the semiring S. Assume
that S is complete or k-closed and that the shortest-distances d[q] are all well
defined and in S − {0}. Note that in both cases we can use the distributiv-
ity over the infinite sums defining shortest distances. Let e′ (π′) denote the
transition e (path π) after application of the weight pushing algorithm. e′ (π′)
differs from e (resp. π) only by its weight. Let λ′ denote the new initial weight
function, and ρ′ the new final weight function.

The following proposition is proven in [38, 43].

Proposition 7.4 ([38, 43]). Let B = (A,Q, I, F,E′, λ′, ρ′) be the result of
the weight pushing algorithm applied to the weighted automaton A, then:

1. The weight of a successful path π is unchanged after application of weight
pushing:

λ′[p[π′]
]
⊗ w[π′] ⊗ ρ′

[
n[π′]

]
= λ(p[π]) ⊗ w[π] ⊗ ρ(n[π]). (39)

2. The weighted automaton B is stochastic, i.e.,

∀q ∈ Q,
⊕

e′∈E′[q]

w[e′] = 1. (40)

These two properties of weight pushing are illustrated by Figs. 12(a)–(c):
the total weight of a successful path is unchanged after pushing; at each state
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Fig. 12. Weight pushing algorithm. (a) Weighted automaton A. (b) Equiva-
lent weighted automaton B obtained by weight pushing in the tropical semiring.
(c) Weighted automaton C obtained from A by weight pushing in the probability
semiring. (d) Minimal weighted automaton over the tropical semiring equivalent
to A

of the weighted automaton of Fig. 12(b), the minimum weight of the outgoing
transitions is 0, and at each state of the weighted automaton of Fig. 12(c),
the weights of outgoing transitions sum to 1.

Weight pushing can also be used to test the equivalence of two subsequen-
tial weighted automata [38, 43]. Let A and B be two subsequential weighted
automata to which weight pushing can be applied and let A′ and B′ be the re-
sulting automata after weight pushing. Then the equivalence of A and B can
be tested by applying the standard equivalence algorithm for un-weighted
automata [1] to A′ and B′ after considering each pair of (transition label,
transition weight) as a single label. The equivalence of two arbitrary weighted
automata A and B over the field of real numbers with alphabet Σ can be
tested in time O(|Σ|(|QA|+ |QB|)3), where |QA| denotes the number of states
of A and |QB| the number of states of B, using an algorithm [19] based on the
standardization technique of Schützenberger [55]. The equivalence of arbitrary
weighted automata over the tropical semiring is known to be undecidable [34].

7.4 Minimization

A deterministic weighted automaton is said to be minimal if there exists no
other deterministic weighted automaton with a smaller number of states and
realizing the same function. Two states of a deterministic weighted automaton
are said to be equivalent if exactly the same set of strings with the same
weights label paths from these states to a final state; the final weights being
included. Thus, two equivalent states of a deterministic weighted automaton
can be merged without affecting the function realized by that automaton.
A weighted automaton is minimal when it admits no two distinct equivalent
states after any redistribution of the weights along its paths.

There exists a general algorithm for computing a minimal deterministic
automaton equivalent to a given weighted automaton [38]. It is thus a gener-
alization of the minimization algorithms for un-weighted finite automata. In
fact, minimization of both un-weighted [39] and weighted finite-state trans-
ducers can be viewed as special instances of this algorithm.
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Fig. 13. Minimization of weighted automata. (a) Weighted automaton A′ over
the probability semiring. (b) Minimal weighted automaton B′ equivalent to A′.
(c) Minimal weighted automaton C′ equivalent to A′

The algorithm consists of first applying weight pushing to normalize the
distribution of the weights along the paths of the input automaton, and then
applying the classical un-weighted automata minimization while treating each
pair (label, weight) as a single label.

Theorem 7.5 ([38]). Let A be a deterministic weighted automaton over a
semiring S. Assume that the conditions of application of the weight pushing
algorithm hold, then the execution of the following steps:

1. Weight pushing
2. (Un-weighted) automata minimization, treating each pair (label, weight) as

a single label

yield a minimal weighted automaton equivalent to A.

The complexity of automata minimization is linear in the case of acyclic au-
tomata O(|Q| + |E|) [53] and in O(|E| log |Q|) in the general case [1]. Thus,
in view of the complexity results given in the previous section, in the case
of the tropical semiring, the total complexity of the weighted minimization
algorithm is linear in the acyclic case O(|Q|+ |E|) and in O(|E| log |Q|) in the
general case.

Figures 12(a), (b), and (d) illustrate the application of the algorithm in the
tropical semiring. The automaton of Fig. 12(a) cannot be further minimized
using the classical un-weighted automata minimization since no two states are
equivalent in that machine. After weight pushing, the automaton (Fig. 12(b))
has two states (1 and 2) that can be merged by the classical un-weighted
automata minimization.

Figures 13(a)–(c) illustrate the minimization of an automaton defined over
the probability semiring. Unlike the un-weighted case, a minimal weighted
automaton is not unique, but all minimal weighted automata have the same
graph topology, they only differ by the way the weights are distributed along
each path. The weighted automata B′ and C ′ are both minimal and equivalent
to A′. B′ is obtained from A′ using the algorithm described above in the
probability semiring and it is thus a stochastic weighted automaton in the
probability semiring.
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For a deterministic weighted automaton, the first operation of the semiring
can be arbitrarily chosen without affecting the definition of the function it
realizes. This is because by definition a deterministic weighted automaton
admits at most one path labeled with any given string. Thus, in the algorithm
described in Theorem 7.5, the weight pushing step can be executed in any
semiring S′ whose multiplicative operation matches that of S. The minimal
weighted automaton obtained by pushing the weights in S′ is also minimal in
S since it can be interpreted as a (deterministic) weighted automaton over S.

In particular, A′ can be interpreted as a weighted automaton over the
semiring (R+, max,×, 0, 1). The application of the weighted minimization al-
gorithm to A′ in this semiring leads to the minimal weighted automaton C ′

of Fig. 13(c). C ′ is also a stochastic weighted automaton in the sense that at
any state the maximum weight of all outgoing transitions is one.

This fact leads to several interesting observations. One is related to the
complexity of the algorithms. Indeed, we can choose a semiring S′ in which
the complexity of weight pushing is better than in S. The resulting automaton
is still minimal in S and has the additional property of being stochastic in S′.
It only differs from the weighted automaton obtained by pushing weights in
S in the way weights are distributed along the paths. They can be obtained
from each other by application of weight pushing in the appropriate semiring.
In the particular case of a weighted automaton over the probability semiring,
it may be preferable to use weight pushing in the (max,×)-semiring since the
complexity of the algorithm is then equivalent to that of classical single-source
shortest-paths algorithms. The corresponding algorithm is a special instance
of the generic shortest-distance algorithm for k-closed semirings presented
earlier in the chapter.

Another important point is that the weight pushing algorithm may not be
defined in S because the machine is not zero-sum-free or for other reasons.
But an alternative semiring S′ can sometimes be used to minimize the input
weighted automaton.

The results just presented were all related to the minimization of the num-
ber of states of a deterministic weighted automaton. The following simple
proposition shows that minimizing the number of states coincides with mini-
mizing the number of transitions.

Proposition 7.6. Let A be a minimal deterministic weighted automaton, then
A has the minimal number of transitions.

Proof. Let A be a deterministic weighted automaton with the minimal num-
ber of transitions. If two distinct states of A were equivalent, they could be
merged, thereby strictly reducing the number of its transitions. Thus, A must
be a minimal deterministic automaton. Since, minimal deterministic automata
have the same topology, in particular the same number of states and transi-
tions, this proves the proposition. ��
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7.5 Synchronization

The weight pushing algorithm normalizes the way the weights are distributed
along the paths. The algorithm presented in this section, synchronization of
weighted transducers, normalizes instead the way the input and output labels
are shifted with respect to each other along the paths. Roughly speaking, the
objective of the algorithm is to synchronize the consumption of non-ε symbols
by the input and output tapes of a transducer, to the extent that is possible.

The following concept helps analyze and describe the domain of application
of the algorithm.

Definition 7.7. The delay of a path π is defined as the difference of length
between its output and input labels:

d[π] = |o[π]| − |i[π]|. (41)

The delay of a path is thus simply the sum of the delays of its constituent tran-
sitions. A trim transducer T is said to have bounded delays if the delay along
all paths of T is bounded. We then denote by d[T ] ≥ 0 the maximum delay
in absolute value of a path in T . The following lemma gives a straightforward
characterization of transducers with bounded delays.

Lemma 7.8. A transducer T has bounded delays iff the delay of any cycle in
T is zero.

Proof. If T admits a cycle π with non-zero delay, then d[T ] ≥ |d[πn]| = n|d[π]|
is not bounded. Conversely, if all cycles have zero delay, then the maximum
delay in T is that of the simple paths which are of finite number. ��

We define the string delay of a path π as the string σ[π] defined by

σ[π] =

{
suffix of o[π] of length |d[π]| if d[π] ≥ 0;
suffix of i[π] of length |d[π]| otherwise.

(42)

For any state q ∈ Q, the string delay at state q, s[q], is defined by the set of
string delays of the paths from an initial state to q:

s[q] = {σ[π] : π ∈ P (I, q)}. (43)

Lemma 7.9. If T has bounded delays then the set s[q] is finite for any q ∈ Q.

Proof. The lemma follows immediately the fact that the elements of s[q] are
all of length less than d[T ]. ��

A weighted transducer T is said to be synchronized if along any successful
path of T the delay is zero or varies strictly monotonically. An algorithm that
takes as input a transducer T and computes an equivalent synchronized trans-
ducer T ′ is called a synchronization algorithm.The synchronization algorithm
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described here [42] applies to all weighted transducers with bounded delays.
The following is the pseudo-code of the algorithm.

Synchronization(T )

1 F ′ ← Q′ ← E′ ← ∅
2 Q ← i′ ← {(i, ε, ε) : i ∈ I}
3 while Q �= ∅ do
4 p′ = (q, x, y) ← Head(Q)
5 Dequeue(Q)
6 if (q ∈ F and |x| + |y| = 0) then
7 F ′ ← F ′ ∪ {p′}; ρ′(p′) ← ρ(q)
8 elseif (q ∈ F and |x| + |y| > 0) then
9 q′ ← (f, cdr(x), cdr(y))

10 E′ ← E′ 	 (p′, car(x), car(y), ρ(q), q′)
11 if (q′ /∈ Q′) then
12 Q′ ← Q′ ∪ {q′};Enqueue(Q, q′)
13 for each e ∈ E[q] do
14 if (|x i[e]| > 0 and |y o[e]| > 0) then
15 q′ ← (n[e], cdr(x i[e]), cdr(y o[e]))
16 E′ ← E′ 	 {(p′, car(x i[e]), car(y o[e]), w[e], q′)}
17 else q′ ← (n[e], x i[e], y o[e])
18 E′ ← E′ 	 {(p′, ε, ε, w[e], q′)}
19 if (q′ /∈ Q′) then
20 Q′ ← Q′ ∪ {q′};Enqueue(Q, q′)
21 return T ′

To simplify the presentation of the algorithm, we augment Q and F with
a new state f and set: ρ(f) = 1 and E[f ] = ∅. We denote by car(x) the first
symbol of a string x if x is not empty, ε otherwise, and denote by cdr(x) the
suffix of x such that x = car(x) cdr(x).

Each state of the resulting transducer T ′ corresponds to a triplet (q, x, y)
where q ∈ Q is a state of the original machine T and where x ∈ Σ∗ and
y ∈ Δ∗ are strings over the input and output alphabet of T .

The algorithm maintains a queue Q that contains at any time the set of
states of T ′ to examine. At each execution of the loop of lines 3–19, a new
state p′ = (q, x, y) is extracted from Q (line 4) and its outgoing transitions
are computed and added to E′. The state p′ is final iff q is final and x = y = ε
and in that case the final weight at p′ is simply the final weight at the original
state q (lines 5–6). If q is final but the string x and y are not both empty,
then the algorithm constructs a sequence of transitions from p′ to (f, ε, ε) to
consume the remaining input and output strings x and y (lines 7–11).

For each transition e of q, an outgoing transition e′ is created for p′ with
weight w[e]. The input and output labels of e′ are both ε if x i[e] or y o[e] is
the empty string, the first symbol of these strings otherwise. The remaining
suffixes of these strings are stored in the destination state q′ (lines 12–19).
Note that in all cases, the transitions created by the steps of the algorithm
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Fig. 14. (a) Weighted transducer T1 over the tropical semiring. (b) Equivalent
synchronized transducer T2. (c) Synchronized weighted transducer T3 equivalent to
T1 and T2 obtained by ε-removal from T2

described in lines 14–17 have zero delay. The state q′ is inserted in Q if it
has never been found before (lines 18–19). Figures 14(a)–(b) illustrate the
synchronization algorithm just presented.

Theorem 7.10 ([42]). Let T be a weighted transducer with bounded delays.
Then if we run the synchronization algorithm just described with input T ,
the algorithm terminates and returns a synchronized transducer T ′ equivalent
to T .

The algorithm creates a distinct state (q, x, ε) or (q, ε, y) for each string delay
x, y ∈ s[q] at state q �= f . The paths from a state (q, x, ε) or (q, ε, y), q ∈ F ,
to (f, ε, ε) are of length |x| or |y|. The length of a string delay is bounded
by d[T ]. Thus, there are at most |Σ|≤d[T ] + |Δ|≤d[T ] = O(|Σ|d[T ] + |Δ|d[T ])
distinct string delays at each state. Thus, in the worst case, the size of the
resulting transducer T ′ is

O
(
(|Q| + |E|)

(
|Σ|d[T ] + |Δ|d[T ]

))
. (44)

The string delays can be represented in a compact and efficient way using a
suffix tree. Indeed, let U be a tree representing all the input and output labels
of the paths in T found in a depth-first search of T . The size of U is linear
in that of T and a suffix tree V of U can be built in time proportional to the
number of nodes of U times the size of the alphabet [27], that is, in O((|Σ|+
|Δ|)(|Q| + |E|)). Since each string delay x is a suffix of a string represented
by U , it can be represented by two nodes n1 and n2 of V and a position in
the string labeling the edge from n1 to n2. The operations performed by the
algorithm to construct a new transition require either computing xa or a−1x
where a is a symbol of the input or output alphabet. Clearly, these operations
can be performed in constant time: xa is obtained by going down one position
in the suffix tree, and a−1x by using the suffix link at node n1. Thus, using



Weighted Automata Algorithms 249

this representation, the operations performed for the construction of each new
transition can be done in constant time. This includes the cost of comparison
of a newly created state (q′, x′, ε) with an existing state (q, x, ε), since the
comparison of the string delays x and x′ can be done in constant time. Thus,
the worst case space and time complexity of the algorithm is

O
(
(|Q| + |E|)

(
|Σ|d[T ] + |Δ|d[T ]

))
. (45)

This is not a tight evaluation of the complexity since it is not clear if the
worst case previously described can ever occur, but the algorithm can indeed
produce an exponentially larger transducer in some cases.

Note that the algorithm does not depend on the queue discipline used for
Q and that the construction of the transitions leaving a state p′ = (q, x, y) of
T ′ only depends on p′ and not on the states and transitions previously con-
structed. Thus, the transitions of T ′ can be naturally computed on demand.
Note also that the additive and multiplicative operations of the semiring are
not used in the definition of the algorithm. Only 1, the identity element of ⊗,
was used for the definition of the final weight of f . Thus, to a large extent,
the algorithm is independent of the semiring S. In particular, the behavior of
the algorithm is identical for two semirings having the same identity elements,
such as, for example, the tropical and log semirings.

The result of the synchronization algorithm may contain ε-transitions even
if the input contains none. An equivalent weighted transducer with no ε-
transitions can be computed from T ′ using the general epsilon-removal algo-
rithm described in a previous section [40]. Figure 14(c) illustrates the result
of that algorithm when applied to the synchronized transducer of Fig. 14(b).
Since epsilon-removal does not shift input and output labels with respect to
each other, the result of its application to T ′ is also a synchronized transducer.

Note that the synchronization algorithm does not produce any ε-cycle if the
original machine T does not contain any. Thus, in that case, the computation
of the ε-closures in T can be done in linear time [40] and the total time
complexity of epsilon-removal is O(|Q′|2+(T⊕+T⊗)|Q′||E′|). Also, on-demand
synchronization can be combined with on-demand epsilon-removal to directly
create synchronized transducers with no ε-transition on-the-fly.

A transducer T is said to be double-tape unambiguous, if when the input
and output labels of a transition are treated as single pair label (input label,
output label), no two accepting paths have the same label. A by-product of
synchronization followed by epsilon-removal is that the resulting transducer
is double-tape unambiguous. Note that the definition does not entail any
requirement on the weights.

Proposition 7.11 ([42]). Let T be a synchronized transducer and assume
that T has no ε-transition. Then T is double-tape unambiguous.
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Table 2. Properties of several transducer algorithms. The second column indicates
the time or space complexity of each algorithm, the third whether or not it admits
a natural on-demand computation

Algorithm Complexity On-demand

Sum O(|T1| + |T2|) +
Product O(|T1| + |T2| + |F1||I2|) +
Closure O(|T |) +
Reversal O(|T |) –
Inversion O(|T |) +
Projection O(|T |) +
Composition O(|T1||T2|) +
Intersection O(|A1||A2|) +
Completion O(|A| + |Σ|) +
Complementationa O(|A|) +
Difference O(|A1||A2|) +

Epsilon-removalb O(|Q|2 + |Q||E|) +
Determinization exponential +

Minimizationb O(|E| log |Q|) –

Synchronizationc O((|Q| + |E|)(|Σ|d[T ] + |Δ|d[T ])) +
a For A deterministic
b For the tropical semiring
c d(T ) denotes the maximum delay in an accepting path of T

8 Conclusion

Table 2 summarizes some of the essential properties of the algorithms de-
scribed in this chapter. There are of course many other algorithms related to
weighted automata and transducers. But those presented here constitute some
of the core algorithms. Many other algorithms related to weighted automata
can be derived either directly from these algorithms or as a combination.

These algorithms are useful in a variety of applications including statisti-
cal language modeling [7], parsing [45, 44, 8], phonological rule compilation
[29, 30, 49], speech recognition [38, 43, 48], speech synthesis [56, 6], image
processing [2], bio-informatics [21, 9], sequence modeling and prediction [18],
optical character recognition [14], and more generally any problem related
to sequences and probabilistic models defined over sequences [43, 33]. An ef-
ficient implementation of these algorithms and several others, including an
on-demand implementation when possible, is available from the FSM library
(executables only) [47] and the OpenFst library (source and executables) [10].
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1 Introduction

The theory of algebraic power series in non-commuting variables, as we un-
derstand it today, was initiated in [2] and developed in its early stages by the
French school. The main motivation was the interconnection with context-free
grammars: the defining equations were made to correspond to context-free
productions. Then the coefficient of a word w in the series equals the degree
of ambiguity of w according to the grammar.

We concentrate in this chapter on the core aspects of algebraic series, push-
down automata, and their relation to formal languages. We choose to follow
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here a presentation of their theory based on the concept of properness. Alter-
natively, one may present the theory in terms of complete semirings, as done
for example in [11] and [3]. The main difference between the two presentations
is in the handling of infinite sums, especially in connection with products and
stars of infinite matrices. While such sums are well defined in the case of
complete semirings, special care must be taken for arbitrary semirings. In the
case of proper algebraic systems and proper pushdown automata, the infinite
matrices have locally-finite stars. Consequently, if one considers the ambiguity
of context-free grammars, one option is to assume that the ambiguity is in
the semiring N

∞ and follow the results based on complete semirings, while
the other option is to consider proper grammars and take the ambiguity in
the semiring N.

We introduce in Sect. 2 some auxiliary notions and results needed through-
out the chapter, in particular the notions of discrete convergence in semirings
and C-cycle free infinite matrices. In Sect. 3, we introduce the algebraic power
series in terms of algebraic systems of equations. We focus on interconnec-
tions with context-free grammars and on normal forms. We then conclude
the section with a presentation of the theorems of Shamir and Chomsky–
Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational
transductions, as well as some representation results related to them. Sec-
tion 5 is dedicated to pushdown automata and focuses on the interconnections
with classical (non-weighted) pushdown automata and on the interconnections
with algebraic systems. We then conclude the chapter with a brief discussion
of some of the other topics related to algebraic systems and pushdown au-
tomata.

2 Auxiliary Notions and Results

We introduce in this section the notion of discrete convergence in arbitrary
semirings and in connection to it, a notion of convergence for column finite
(infinite) matrices. This allows us then to define the notion of C-cycle free
(infinite) matrices, needed in this chapter in connection with proper pushdown
transition matrices. We give here only the elements that are essential for the
purpose of this chapter, referring to [12] for more details, including other
notions of convergence.

Definition 2.1. A sequence in the semiring S is a mapping α : N → S. We
denote αn = α(n), for all n ∈ N and α = (αn)n∈N. We denote the set of all
sequences over S by SN. We say that α is convergent in S if there exist a ∈ S
and n0 ∈ N such that αn = a, for all n ≥ n0. In this case, a is called the limit
of α, denoted as limn→∞ αn = a.

The notion of convergence defined above is often called the discrete con-
vergence in the semiring S.
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We note that the notion of cycle-free formal power series defined in Chap. 1
is equivalent with saying that, for r ∈ S〈〈Σ∗〉〉, the sequence (rn, ε)n∈N is
convergent in S and its limit is 0. It has been observed already in Chap. 1
that the star of any cycle-free series exists. We give here a short proof of this
result that will be mirrored by a similar result for matrices.

Lemma 2.2. For any cycle-free formal power series r ∈ S〈〈Σ∗〉〉 and any
w ∈ Σ∗, there exists nw ∈ N such that (rn, w) = 0, for all n ≥ nw. Conse-
quently, r∗ exists and is locally finite.

Proof. We prove the claim by induction on |w|. For |w| = 0, it follows from
the definition of the limit in the discrete convergence that there exists n0 ∈ N

such that (rn, ε) = 0, for all n ≥ n0. Consider now an arbitrary w ∈ Σ+

and assume that the claim holds for all words shorter than w. Then for any
n ≥ n0,

(
rn, w

)
=

∑

w=uv

(
rn−n0 , u

)(
rn0 , v

)

=
(
rn−n0 , w

)(
rn0 , ε

)
+

∑

w=uv
|u|<|w|

(
rn−n0 , u

)(
rn0 , v

)

=
∑

w=uv
|u|<|w|

(
rn−n0 , u

)(
rn0 , v

)
.

If we choose nw ≥ n0 +nu, for all |u| < |w|, then the claim follows for n ≥ nw

based on the induction hypothesis. Indeed, in this case, (rn−n0 , u) = 0. In
particular, one may choose nw = n0(|w| + 1), for all w ∈ Σ∗.

The second part of the lemma follows by observing that

(r∗, w) =
∑

n≥0

(
rn, w

)
=

nw−1∑

n=0

(
rn, w

)
. ��

Definition 2.3. Let (Mn)n∈N ∈ (SI×I)N be a sequence of column finite (infi-
nite) matrices. We say that (Mn)n≥0 is convergent if the following two con-
ditions are satisfied:

(i) For all j ∈ I, there exists a finite set I(j) ⊆ I such that (Mn)i,j = 0, for
all n ∈ N and all i ∈ I \ I(j).

(ii) For all i, j ∈ I, the sequence ((Mn)i,j)n∈N ∈ SN is convergent in S.

For mi,j = limn→∞((Mn)i,j), we say that the matrix M = (mi,j)i,j∈I is the
limit of the sequence (Mn)n∈N, denoted M = limn→∞ Mn.

Note that condition (i) in Definition 2.3 is not equivalent with the matrices
Mn being column finite for all n ∈ N. Note also that a different notion of
convergence can be defined for row finite matrices; see [12].
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Definition 2.4. Let M ∈ (S〈〈Σ∗〉〉)I×I be a column finite matrix. We say
that M is C-cycle free if the sequence (Mn, ε)n∈N ∈ SI×I is convergent and
its limit is the zero matrix.

The notion of C-cycle free matrix is very similar with the notion of cycle-
free power series. We indicate explicitly the letter C to stress that our notion
is applied to column finite matrices only and also, to preserve the terminology
in [12]. Note that a related notion of R-cycle free matrices may also be defined
for row finite matrices. Note also that, based on the definition of discrete
convergence and that of convergent matrices, a matrix M ∈ (S〈〈Σ∗〉〉)I×I is
C-cycle free if and only if the following two conditions are satisfied:

(i) For all j ∈ I, there exists a finite set I(j) ⊆ I such that (Mn, ε)i,j = 0,
for all i /∈ I(j) and all n ≥ 0.

(ii) For all j ∈ I, there exists n(j) ∈ N such that (Mn, ε)i,j = 0, for all
n ≥ n(j) and all i ∈ I.

The following result will be needed in connection with proper pushdown
transition matrices and their stars.

Lemma 2.5. The star of any C-cycle free matrix is locally finite.

Proof. Let M ∈ (S〈〈Σ∗〉〉)I×I be a C-cycle free matrix. We claim that for any
j ∈ I and any w ∈ Σ∗, there exists a non negative integer n(j, w) such that
((Mn)i,j , w) = 0, for all i ∈ I and all n ≥ n(j, w). Then we obtain that

∑

n≥0

((
Mn

)
i,j

, w
)

=
n(j,w)∑

n=0

((
Mn

)
i,j

, w
)
,

showing that M∗ exists and is locally finite.
We prove the claim by induction on |w|. For |w| = 0, the claim follows from

the definition of C-cycle free matrices. Indeed, since limn→∞(Mn, ε) = 0, there
exists n(j) ∈ N for all j ∈ I such that (Mn, ε)i,j = 0, for all i ∈ I and all
n ≥ n(j).

Consider now w ∈ Σ∗ with |w| ≥ 1 and assume inductively that the claim
holds for all words shorter than w. Then for any i, j ∈ I, n ≥ n(j), w ∈ Σ∗,
we have that

((
Mn

)
i,j

, w
)

=
∑

w=uv
k∈I

((
Mn−n(j)

)
i,k

, u
)((

Mn(j)
)
k,j

, v
)

=
∑

w=uv
|u|<|w|

k∈I

((
Mn−n(j)

)
i,k

, u
)((

Mn(j)
)
k,j

, v
)

+
∑

k∈I

((
Mn−n(j)

)
i,k

, w
)((

Mn(j)
)
k,j

, ε
)
.
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Note now that ((Mn(j))k,j , ε) = 0. Also, if n − n(j) ≥ n(k, u), then it follows
by the induction hypothesis that ((Mn−n(j))i,k, u) = 0. Since there are only
finitely many k ∈ I with (Mn(j))k,j 
= 0, to obtain that ((Mn)i,j , w) = 0, it is
enough to define n(j, w) ∈ N as follows:

n(j, w) =

{
n(j), if w = ε,

max{n(j) + n(k, u) | (Mn(j))k,j 
= 0, |u| < |w|}, otherwise.
��

3 Algebraic Power Series

This section introduces algebraic power series in terms of algebraic systems
of equations and discusses various reduction, normal form, and characteriza-
tion results. Special emphasis will be in the interconnection with context-free
grammars and languages. The defining equations are algebraic, that is, poly-
nomial equations. Moreover, they are of a somewhat special form. The form
makes the interconnection with context-free grammars very direct.

The first comprehensive treatment about algebraic power series in non-
commuting variables is in [15] where also references to earlier work, mainly
by M.P. Schützenberger, are given.

3.1 Definition and Basic Reductions

Consider an alphabet Σ = {x1, . . . , xk}, k ≥ 1, and a commutative semi-
ring S. Let Y = {y1, . . . , yn}, n ≥ 1, be another alphabet, the alphabet of
variables.

Definition 3.1. An S-algebraic system is a set of equations of the form

yi = pi, i = 1, . . . , n,

where pi ∈ S〈(Σ ∪ Y )∗〉. The system is termed proper if, for all i and j,
(pi, ε) = 0 and (pi, yj) = 0.

A solution to the algebraic system consists of n power series r1, . . . , rn

in S〈〈Σ∗〉〉 “satisfying” the system in the sense that if each variable yi is
replaced by the series ri, then n valid equations result. This can be formalized
as follows. Consider a column vector

R =

⎛

⎜
⎝

r1

...
rn

⎞

⎟
⎠ ∈ (S〈〈(Σ ∪ Y )∗〉〉)n×1

consisting of n power series, and define the morphism

hR : (Σ ∪ Y )∗ → S〈〈(Σ ∪ Y )∗〉〉
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by hR(yi) = ri, 1 ≤ i ≤ n, and hR(x) = x, for x ∈ Σ. Defining

hR(p) =
∑

w∈(Σ∪Y )∗)

(p, w)hR(w),

where p ∈ S〈(Σ ∪ Y )∗〉, we now term R a solution of the original algebraic
system if ri = hR(pi), for all i, 1 ≤ i ≤ n.

So far, we have not used the assumption of the semiring S being com-
mutative. Indeed, some parts of the theory such as the interconnection with
pushdown automata remain valid without this assumption. We make this as-
sumption because it is needed in important parts of the theory and, moreover,
our main interest is in the semirings Z and N of integers and non-negative in-
tegers, as well as in the Boolean semiring B.

An S-algebraic system does not always possess a solution because, for
instance, an equation may be contradictory, such as the equation y1 = y1 +
x1 in the semiring N. However, every proper S-algebraic system possesses a
solution.

Theorem 3.2. Every proper S-algebraic system possesses exactly one solu-
tion where each component is quasi-regular. In addition, it may have other
solutions.

Proof. The theorem is established by considering an “approximation sequence”
Ri, i = 0, 1, . . . , of n-tuples (or column vectors) of power series. By definition,
R0 consists of 0’s, and Ri+1 is obtained by applying hRi to each component
of Ri, for i ≥ 0. For j ≥ 0, we consider also the truncation operator Tj defined
for power series r ∈ S〈〈Σ∗〉〉 by

Tj(r) =
∑

|w|≤j

(r, w)w.

The operator Tj is applied to n-tuples componentwise. An obvious induction
on j shows that Tj(Rj) = Tj(Rj+t), for all j and t. This shows that the
approximation sequence Ri converges (with respect to discrete convergence)
to a specific

R =

⎛

⎜
⎝

r1

...
rn

⎞

⎟
⎠ ∈ (S〈〈Σ∗〉〉)n×1,

where each ri is quasi-regular. Denoting

P =

⎛

⎜
⎝

p1

...
pn

⎞

⎟
⎠ ,

we see again inductively that Tj(R) = Tj(hR(P )) holds for all j ≥ 0, and
consequently, R is a solution. Finally, if R′ is another solution with quasi-
regular components, we have T0(R) = T0(R′). Assuming inductively that
Tj(R) = Tj(R′), we deduce
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Tj+1(R) = Tj+1

(
hR(P )

)
= Tj+1

(
hTj(R)(P )

)
= Tj+1

(
hTj(R′)(P )

)

= Tj+1

(
hR′(P )

)
= Tj+1(R′),

which completes the induction and shows that R = R′. ��
A proper S-algebraic system may have other solutions where the compo-

nents are not quasi-regular. For instance, the N-algebraic system consisting of
the single equation y1 = y1y1 has both of the power series r1 = 0 and r2 = ε
as solutions. The solution constructed above as the limit of the approximation
sequence is in the sequel referred to as the strong solution.

We are now ready for the basic definition.

Definition 3.3. A formal power series r ∈ S〈〈Σ∗〉〉 is S-algebraic, in symbols
r ∈ Salg〈〈Σ∗〉〉, if r = (r, ε)ε + r′, where r′ is some component of the strong
solution of a proper S-algebraic system.

We have stated and established Theorem 3.2 for proper S-algebraic sys-
tems. Then the approximation sequence converges with respect to the discrete
convergence, and the resulting solution was called strong. However, a more
general result is valid for continuous semirings S. By the fixpoint theorem, the
least solution of an S-algebraic system exists and is obtained by computing the
least upper bound of the approximation sequence associated to it. The least
solution is not necessarily strong. More details of this approach can be found
in Chap. 2 and [11]. More specific results can be obtained if we are dealing with
the Boolean semiring. The proofs of the following result can be found in [12].

Theorem 3.4. Every B-algebraic system possesses a strong solution. If r is
a component of the strong solution of a B-algebraic system, then the quasi-
regular part of r is a component of the strong solution of a proper B-algebraic
system.

We use in the next example and in several other places throughout the
chapter the so-called Dyck language and Dyck mapping. The Dyck language
LD over the alphabet {x1, x2} is the language of all correctly nested parenthe-
ses when x1 and x2 are viewed as the left and right parenthesis, respectively.
More generally, for X = X1 ∪ X1, X1 = {x | x ∈ X1}, the Dyck language
LD(X) consists of all words w such that D(w) = ε, where D is the Dyck
mapping,

D : X∗ → X∗

defined as follows. Intuitively, we view X1 as a set of left parenthesis and X1

as the set of corresponding right parenthesis. Then D removes from a word
over X all pairs of adjacent matching parenthesis, until no further removals
are possible. Thus, D(wx) = D(w)x for x ∈ X1, and

D(wx) =

{
w1 for D(w) = w1x,

D(w)x for D(w) /∈ X∗x,

for x ∈ X1.
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Example 3.5. We consider supports of some N-algebraic series. The considera-
tions are also preparatory for the next subsection. For the proper N-algebraic
system

y = yy + x1yx2 + x1x2,

the approximation sequence Ri, i = 0, 1, . . . , consists of singletons of power
series because there is only one variable y. We obtain

R0 = 0, R1 = x1x2, R2 = (x1x2)2 + x2
1x

2
2 + x1x2,

R3 = (x1x2)4 + (x1x2)2x2
1x

2
2 + x2

1x
2
2(x1x2)2 + (x2

1x
2
2)

2 + 2(x1x2)3 + x2
1x

2
2x1x2

+ x1x2x
2
1x

2
2 + x2

1x2x1x
2
2 + x3

1x
3
2 + x2

1x
2
2 + (x1x2)2 + x1x2.

The support of the resulting power series r equals the Dyck language LD over
the alphabet {x1, x2} (without the empty word). However, r is not the char-
acteristic series rD of LD because, as seen already from R3, some coefficients
in r are greater than 1. The characteristic series rD is the first component of
the solution of the N-algebraic system

y = x1yx2 + x1yx2y + x1x2y + x1x2.

Also, the N-algebraic system

y1 = y2 + y1y2,

y2 = x1y1x2 + x1x2

(which is not proper) can be used for the same purpose. Then the first com-
ponents of the vectors Ri, 0 ≤ i ≤ 4, in the approximation sequence are

0, 0, x1x2, (x1x2)2 + x1x2,

(x1x2)2x2
1x

2
2 + (x1x2)3 + x1x2x

2
1x

2
2 + (x1x2)2 + x2

1x
2
2 + x1x2.

Also, now the approximation sequence converges, and rD is the first com-
ponent of the (strong) solution of the N-algebraic system. Finally, also the
N-algebraic system

y = yx1yx2y + ε

(which is also not proper) possesses a (strong) solution whose support
equals LD. The same result is obtained from the asymmetric systems, where
either the first, or the last y on the right-hand side has been erased.

The next theorem deals with S-algebraic systems, such as the last one in
our example, where the polynomials are not necessarily quasi-regular. The
proof, similar to that of Theorem 3.2, is given in [12].

Theorem 3.6. Assume that in an S-algebraic system yi = pi, i = 1, . . . , n,
the support of each polynomial pi is contained in the language

(Σ ∪ Y )∗Σ(Σ ∪ Y )∗ ∪ {ε}.

Then the system possesses a unique solution, which moreover is strong.
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3.2 Interconnections with Context-Free Grammars

Every context-free grammar and semiring S give rise to an S-algebraic system.
Conversely, every S-algebraic system gives rise to a context-free grammar.
Explicitly, this correspondence can be described as follows.

Given a context-free grammar G with Σ and Y = {y1, . . . , yn} as the ter-
minal and non-terminal alphabets, y1 as the initial symbol and R as the set of
production rules, the corresponding S-algebraic system consists of the equa-
tions yi = pi, i = 1, . . . , n, where (pi, w) = 1 if yi → w is a production in R,
and (pi, w) = 0, otherwise. (Since R is finite, each pi is a polynomial.) Con-
versely, given an S-algebraic system yi = pi, i = 1, . . . , n, the corresponding
context-free grammar G = (Σ, Y, y1, R) is defined by the condition: yi → w is
in R if and only if (pi, w) 
= 0.

If we begin with an S-algebraic system, form the corresponding context-
free grammar and then again the corresponding S-algebraic system, then the
latter system does not necessarily coincide with the original one.

The most natural semiring for considerations dealing with formal lan-
guages is N. A word generated by a context-free grammar appears in the
support of the corresponding N-algebraic power series. Moreover, its degree
of ambiguity according to the grammar equals its coefficient in the series. If
we want to deal with arbitrary context-free grammars, we should consider the
semiring N

∞. We prefer dealing with N because every context-free grammar
can be transformed to an equivalent one where no word has infinitely many
leftmost derivations.

Definition 3.7. A language L ⊆ Σ∗ is S-algebraic if it equals the support of
a power series in Salg〈〈Σ∗〉〉.

Theorem 3.8. A language is context-free if and only if it is N-algebraic.

Proof. It suffices to establish the result for ε-free languages and quasi-regular
N-algebraic series. Let Gr be the grammar corresponding to a given proper
N-algebraic system yj = pj , 1 ≤ j ≤ n, where r is the first component of its
strong solution. To show that supp(r) = L(Gr), we first establish the inclusion
L(Gr) ⊆ supp(r) inductively. We consider the approximation sequence Ri as
in the proof of Theorem 3.2, and denote by ri

j , 1 ≤ j ≤ n, the jth component
of Ri. It is now straightforward to establish inductively on t the following
claim. Whenever a word w ∈ Σ∗ possesses a derivation of length at most t
from yj , 1 ≤ j ≤ n, then w ∈ supp(rt

j). Indeed, the claim holds for t = 1
by the definition of the corresponding grammar. The inductive step is proven
by dividing a (t + 1)-step derivation into a 1-step and t-step derivation, and
applying the induction hypothesis to the latter.

The inclusion L(Gr) ⊆ supp(r) follows. To prove the reverse inclusion,
it suffices to establish inductively on t the following claim. Whenever w ∈
supp(rt

j), 1 ≤ j ≤ n, then there is a derivation of w from yj according to Gr.
(Observe that we do not specify the length of the derivation.) For t = 0, the
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claim holds vacuously. Assume the claim holds for a fixed value t and consider
a word w ∈ supp(rt+1

j ). Consequently, for some

w′ = u1yj1u2 . . . umyjmum+1 ∈ supp(pj), uk ∈ Σ∗,

we have

w = u1wj1u2 . . . umwjmum+1, wjk
∈ supp

(
rt
jk

)
, 1 ≤ k ≤ m.

We now use the induction hypothesis and the fact that, according to the
definition of Gr, yj directly derives w′, and conclude that the claim holds for
the value t + 1. Thus, we have shown that L(Gr) = supp(r).

The argument above shows that every N-algebraic language is context-
free. Given an ε-free context-free grammar, we first eliminate from it all chain
productions, where a non-terminal goes to a non-terminal. Then the corre-
sponding N-algebraic system will be proper, and we can show the equality of
the two languages exactly as above. ��

The following generalization of Theorem 3.8 is easily obtained, [18]. Recall
that a semiring S is positive if the mapping h of S into B defined by

h(0) = 0, h(s) = 1 for s 
= 0,

is a morphism.

Theorem 3.9. All of the following five statements are equivalent for a lan-
guage L:

(i) L is a context-free language.
(ii) L is N-algebraic.
(iii) L is B-algebraic.
(iv) L is S-algebraic for all positive semirings S.
(v) L is S-algebraic for some positive semiring S.

There are Z-algebraic languages that are not context-free. An obvious way
to obtain such languages is to consider the difference between the characteris-
tic series of Σ∗ and L, where L ⊆ Σ∗ is an unambiguous context-free language
whose complement is not context-free.

There are several open language-theoretic problems in this area. For in-
stance, no characterization is known for Z-algebraic languages, in terms of
some of the well-known language hierarchies. N-algebraic languages over a one-
letter alphabet coincide with regular languages, but it is not known whether
this holds for Z-algebraic languages as well.

Apart from the language generated by a context-free grammar G, the corre-
sponding N-algebraic power series rG tells the degree of ambiguity of each word
in the language. In the following theorem, we assume that G is a context-free
grammar without ε-rules and chain rules. Then the corresponding N-algebraic
system is proper.
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Theorem 3.10. The coefficient of each word w in the N-algebraic power se-
ries rG equals the degree of ambiguity of w according to G. Consequently, G is
unambiguous (resp. of bounded ambiguity) if and only if the coefficients in rG

are at most 1 (resp. bounded).

Proof (outline). As before, we assume that the non-terminals of the given
grammar are y1, . . . , yn. We let each of them be the initial letter, obtaining
the grammars Gi, 1 ≤ i ≤ n. We consider also the proper N-algebraic system
gi = pi, 1 ≤ i ≤ n, corresponding to the grammar G = G1. If the n-tuple
(r1, . . . , rn) is the solution of the N-algebraic system, it follows by Theorem 3.8
that L(Gi) = supp(ri), 1 ≤ i ≤ n. For a word w, we denote by amb(Gi, w)
the ambiguity of w according to the grammar Gi. It can now be shown by
induction on |w| that amb(Gi, w) = (ri, w), 1 ≤ i ≤ n, whence the theorem
follows. Indeed, it suffices to consider the approximation sequence for the
solution, and separate the first step in a derivation according to Gi. The details
are given in [18]. ��

The following generalization is again immediate. Observe that now the
conditions corresponding to points (iii) and (v) in Theorem 3.9 are not ap-
plicable.

Theorem 3.11. The following three statements are equivalent for a
language L:

(i) L is an unambiguous context-free language.
(ii) The characteristic series of L is N-algebraic.
(iii) The characteristic series of L is S-algebraic for all positive semirings S.

We mention finally that Theorem 3.10 can be stated also without restric-
tions on the productions of G. Then we have to deal with N

∞-algebraic series
because the ambiguity of w may be ∞. The first component of the least so-
lution of the corresponding N

∞-algebraic system indicates the ambiguity of
each word in the language, [11]. However, the approximation sequence does
not necessarily converge with respect to the discrete convergence.

3.3 Normal Forms

We already pointed out that the algebraic systems under consideration are of a
special form, resembling the productions in a context-free grammar. (In fact,
very little is known about more general algebraic systems.) We now take
a step further by considering several “normal forms”: we may assume that
the polynomials pi appearing on the right-hand sides of the equations satisfy
certain additional conditions, without losing any power series as solutions.
Such normal forms are customary in language theory, and indeed the ones
considered below resemble those introduced for context-free grammars.
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Definition 3.12. An S-algebraic system

yi = pi, 1 ≤ i ≤ n, Y = {y1, . . . , yn},

over the alphabet Σ is in the Chomsky (resp. operator, Greibach) normal
form if, for each i, 1 ≤ i ≤ n,

supp(pi) ⊆ Σ ∪ Y 2

(resp. supp(pi) ⊆ {ε} ∪ Y Σ ∪ Y ΣY , supp(pi) ⊆ Σ ∪ ΣY ∪ ΣY 2).

Theorem 3.13. The components of the strong solution of a proper S-algebraic
system appear also as components of the strong solution of such a system in
the Chomsky normal form. Moreover, the latter system can be effectively con-
structed from the former.

Proof (outline). We first transform the given system into one, where the sup-
ports of the right-hand sides are contained in Σ ∪ Y Y +, by replacing letters
x ∈ Σ with new variables y and introducing the equations y = x. A similar
introduction of new variables is then applied to catenations larger than 2. For
instance, the equation y1 = y1y2y3 becomes

y1 = y1y4, y4 = y2y3. ��

In the constructions in the next theorem, we need the operators w−1,
w ∈ Σ∗, customary in language theory. By definition, for u ∈ Σ∗, w−1u = v if
u = wv, and w−1u = 0, otherwise. The operator w−1 is defined similarly from
the right, and extended additively to concern power series. The application of
this operator explains the presence of ε in the supports defining the operator
normal form.

Theorem 3.14. The first component of the strong solution of a proper S-
algebraic system appears also as the first component of the strong solution of
such a system in the operator normal form, effectively obtainable from the
given system.

Proof (outline). By the preceding theorem, we may assume that the given S-
algebraic system is in the Chomsky normal form. We separate in the equations
the Σ-parts and Y 2-parts, obtaining the system

yi =
∑

x∈Σ

(pi, x)x +
n∑

k,m=1

(pi, ykym)ykym, 1 ≤ i ≤ n.

We now construct a new S-algebraic system, with the set of variables

Y1 = y0 ∪ {yi,x | 1 ≤ i ≤ n, x ∈ Σ}.

The equations in the new system are
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y0 =
∑

x∈Σ

y1,xx,

yi,x = (pi, x)ε +
∑

x′∈Σ

n∑

k,m=1

(pi, ykym)yk,x′x′ym,x = qi,x,

where x ranges over Σ and 1 ≤ i ≤ n. Clearly, the new system is in the
operator normal form. We now claim that the yi,x-component of the strong
solution of the new system is obtained by applying the operator x−1 from the
right to the yi-component of the strong solution of the original system. The
theorem follows from this claim, by the equation for y0.

Let Rj (resp. Qj) be the approximation sequence associated to the system
yi = pi (resp. yi,x = qi,x), with the components rj

i (resp. rj
i,x). It can be shown,

by an induction on j that rj
i,x = rj

i x
−1, whence the claim follows. This holds

for j = 0, by the definition of the new system. The details of the inductive
step are presented in [12]. Thereby the equations

∑

x∈Σ

(
rx−1

)
x = r and r′

(
rx−1

)
= (r′r)x−1

are needed. The equations are valid only for quasi-regular power series r and r′.
��

Theorem 3.15. The first component of the strong solution of a proper S-
algebraic system appears also as the first component of the strong solution of
such a system in the Greibach normal form, effectively obtainable from the
given system.

Proof (outline). The proof consists of eliminating the left recursion from the
equations. The elimination can be based either on the Chomsky normal form,
[18], or on the operator normal form, [12]. Suppose we are dealing with the
Chomsky normal form. If the given system is yi = pi, 1 ≤ i ≤ n, we separate
on the right-hand sides the Σ-parts and the Y 2-parts as in the preceding
proof. The result can be written in the matrix form

Y = Y M + P

where the ith entry of the row vector P equals
∑

x∈Σ(pi, x)x and M is an
n × n matrix whose (j, k)th entry equals the polynomial

n∑

i=1

(pk, yjyi)yi,

for 1 ≤ j, k ≤ n. We now introduce a new variable yjk for each entry of
the matrix M . The resulting equations have the required form. For details,
we refer to [18]. The theorem now follows by observing that the matrix M+

exists. ��
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The arguments applied above show also many well-known facts about
context-free languages. For instance, the argument in Theorem 3.14 shows
that the family of context-free languages is closed under left and right deriv-
atives. The following theorem summarizes some of the results obtainable in
this fashion.

Theorem 3.16. The following five statements are equivalent for a language L:

(i) L is context-free.
(ii) L − ε is generated by a context-free grammar without chain rules and

ε-rules.
(iii) L − ε is generated by a context-free grammar where the right-hand side

of every production is in Y 2 ∪ Σ.
(iv) L is generated by a context-free grammar where the right-hand side of

every production is in Y ΣY ∪ Y Σ ∪ ε.
(v) L − ε is generated by a context-free grammar where the right-hand side

of every production is in ΣY 2 ∪ ΣY ∪ Σ.

We now take a step further by considering “meta” normal forms, that is,
classes of normal forms with parameters such that each of the (infinitely many)
values of the parameter gives rise to a normal form. The approach has turned
out to be very useful in language theory: in some cases a characterization of
all possible normal forms has been obtained. The results below are stated in
a form producing only quasi-regular series. The transition to general series
is straightforward. If r is the first component of the strong solution of the
system yi = pi, 1 ≤ i ≤ n, then for any s ∈ S. sε + r is the first component of
the strong solution of the system

y0 = sε + p1, yi = pi, 1 ≤ i ≤ n.

Theorem 3.17. Assume that m1, m2, m3 are non-negative integers. Then
every power series r ∈ Salg〈〈Σ∗〉〉 can be effectively obtained from the strong
solution of a proper S-algebraic system where the supports of the right-hand
sides of the equations are included in the set

Σ+ ∪ Σm1Y Σm2Y Σm3 ,

with Y being the alphabet of variables.

The proof of Theorem 3.17 is given in [12], the original ideas being due
to [1, 13, 17]. Observe that the Chomsky, operator, and Greibach normal
forms are essentially obtained from the triples (0, 0, 0), (0, 1, 0), and (1, 0, 0).
Theorem 3.17 can be generalized. Instead of the triple (m1, m2, m3), one can
consider an arbitrary t-tuple (m1, . . . , mt), t ≥ 3, and show that the supports
can be included in the set

Σ+ ∪ Σm1Y . . . Y Σmt .
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A further strengthening of Theorem 3.17 consists in restricting the powers of
Σ in Σ+ to lengths belonging to the length set of the support of the original
series. If only such powers are used, the system is said to be terminally
balanced. For instance, the system

y1 = y2y1 + x, y2 = x2

is in (0, 0, 0)-form, but not terminally balanced. The series

r1 =
∞∑

j=0

x2j+1

is, however, obtained also from the following terminally balanced system in
(0, 0, 0)-form:

y1 = y2y1 + x, y2 = y3y3, y3 = x.

In general, such a simple construction does not work. The general construc-
tion of terminal balancing, due to [14], is presented in [12]. The construction
works only for the Boolean semiring B. It is an open problem to what extent
the result can be extended to other semirings.

In conclusion for this subsection, some remarks about closure properties
are in order. The general closure theory, the theory of abstract families of
power series, [12, 7–9], is beyond the scope of this contribution. Some basic
results are rather easily obtainable [18]. The family of S-algebraic power series
generated by proper systems is closed under sum, product, and quasi-inverse.
It is closed under semiring morphisms and non-erasing monoid morphisms,
but not under arbitrary monoid morphisms. The Hadamard (or pointwise)
product of an S-algebraic and S-rational series is S-algebraic [19]. This result
corresponds to the well-known result about the intersection of context-free
and regular languages. Every Z-algebraic power series can be represented as
the difference of two N-algebraic series.

3.4 Theorems of Shamir and Chomsky–Schützenberger

We now discuss two famous theorems concerning algebraic power series. Both
deal with the computation of the coefficients and consequently, also with de-
grees of ambiguity in derivations according to a context-free grammar. The
methods for computing the coefficients, obtained by these theorems, are more
direct than the iterative method of the approximation sequence, discussed
above. The theorems of Shamir and Chomsky–Schützenberger were originally
presented in [20] and [2], respectively. Our discussion uses also ideas from [15]
and [18].

We consider first Shamir’s theorem. An important auxiliary concept is that
of an involutive monoid. Let X1 be an alphabet, and denote X1 = {x | x ∈ X1}
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and X = X1∪X1. Then the involutive monoid M(X) is the monoid generated
by X, with the defining relations

xx = ε, for all x ∈ X1.

The monoid M(X) can also be defined in terms of the Dyck mapping
D : X∗ → X∗. The relation ED defined by

wEDw′ ⇐⇒ D(w) = D(w′)

is a congruence, and M(X) can be defined as the factor monoid X∗/ED. Ob-
serve that power series and polynomials can be defined for arbitrary monoids
in the same way as for the free monoid Σ∗. Thus, S〈M(X)〉 stands for poly-
nomials over M(X), with coefficients in S.

Theorem 3.18. Let r ∈ S〈〈Σ∗〉〉 be a component in the strong solution of
a proper S-algebraic system. Then there exist an alphabet X = X1 ∪ X1,
x1 ∈ X1, and a morphism h : Σ+ → S〈M(X)〉 such that the condition

(r, w) =
(
h(w), x1

)

is satisfied for all w ∈ Σ+.

Proof. By Theorem 3.15, we assume that r = r1, where (r1, . . . , rn) is the
strong solution of the S-algebraic system yi = pi, 1 ≤ i ≤ n, with

supp(pi) ⊆ Σ ∪ ΣY ∪ ΣY 2, 1 ≤ i ≤ n, Y = {y1, . . . , yn}.

Define the alphabets X1 = {x1, . . . , xn} and X = X1 ∪ X1, as well as the
morphism h : Σ+ → S〈M(X)〉 by the condition

h(a) =
∑

i,j,k

(pi, ayjyk)xixkxj +
∑

i,j

(pi, ayj)xixj +
∑

i

(pi, a)xi,

for all a ∈ Σ. (Observe that the support of each h(a) is contained in the set
X1X

2
1 ∪ X1X1 ∪ X1.) We have to prove that, for all w ∈ Σ+,

(r1, w) =
(
h(w), x1

)
.

We do this by establishing the stronger claim

(ri, w) =
(
h(w), xi

)
, for all i = 1, . . . , n.

The proof is by induction on the length, |w|. The basis |w| = 1 is clear.
Then w = a ∈ Σ, and we have

(ri, w) = (pi, a) =
(
h(w), xi

)
.
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Assume that the claim holds for all words of length at most t, and consider
a word w = aw1, where a ∈ Σ and |w1| = t. Considering the form of the
supports supp(pi), we obtain first

(ri, w) = (ri, aw1) =
∑

j,k
w1=u1u2

(pi, ayjyk)(rj , u1)(rk, u2) +
∑

j

(pi, ayj)(rj , w1).

This implies, by the inductive hypothesis and a slight modification of the first
sum,

(ri, w) =
∑

j,k

(pi, ayjyk)
∑

w1=u1u2

(
h(u1), xj

)(
h(u2), xk

)
+

∑

j

(pi, ayj)
(
h(w1), xj

)
.

Hence, because h is a morphism, we have to establish the equation
(
h(a)h(w1), xi

)
=

∑

j,k

(pi, ayjyk)
∑

w=u1u2

(
h(u1), xj

)(
h(u2), xk

)

+
∑

j

(pi, ayj)
(
h(w1), xj

)

to complete the induction. Denote the two sums on the right-hand side of the
equation by A and B, respectively. We are interested in those terms of h(w1)
only which together with h(a) cancel in the Dyck mapping, to yield xi. This
means that if |w1| = 1 (resp. |w1| > 1), we have to consider only B (resp. A)
on the right side.

Assume that w1 = 1, that is, w1 is a letter. Then (h(a)h(w1), xi) = B.
This follows because the only terms in h(a)h(w1) canceling to xi are obtained
by multiplying a term with support xixj in h(a) and a term with support xj

in h(w1). The sum of such products equals B.
If |w1| > 1, we have (h(a)h(w1), xi) = A. Considering possible cance-

lations, the validity of this equation is first reduced to the validity of the
equation

(
h(w1), xjxk

)
=

∑

w1=u1u2

(
h(u1), xj

)(
h(u2), xk

)
.

This equation holds because
∑

w1=u1u2

(
h(u1), xj

)(
h(u2), xk

)
=

∑

w1=u1u2

(rj , u1)(rk, u2)

= (rjrk, w1) =
(
h(w1), xjxk

)
.

This completes the induction, and we obtain Shamir’s theorem. ��

Example 3.19. Consider the N-algebraic system over Σ = {a0, a1, a2}, consist-
ing of the single equation

y1 = a0 + a1y1 + a2y
2
1 .
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The system is proper and in Greibach normal form. Following the notation in
Shamir’s theorem, we obtain

h(a0) = x1, h(a1) = x1x1, h(a2) = x1x
2
1.

Hence, all values h(w) are monomials, with the coefficient 1. This implies
that the resulting power series is the characteristic series of its language. The
language is customarily referred to as the �Lukasiewicz language and can be
characterized as follows. Consider the morphism g of Σ+ into the additive
monoid of integers, defined by g(ai) = i− 1, 0 ≤ i ≤ 2. Then the �Lukasiewicz
language consists of all words w such that g(w) = −1 and g(w′) ≥ 0 for all
proper prefixes w′ of w.

Example 3.20. Consider the alphabet Σ = {a, b} and the proper N-algebraic
(actually right linear) system

y1 = ay1 + 2by2,

y2 = 3ay1 + by2 + b.

We obtain now

h(a) = x1x1 + 3x2x1, h(b) = 2x1x2 + x2x2 + x2.

In this case, it is easy to analyze cancelations to x1. Corresponding to words
of the form aibj , we have the polynomial

(x1x1 + 3x2x1)i(2x1x2 + x2x2 + x2)j .

For any i ≥ 0 and j = 1, we obtain the coefficient 2 and still have to cancel x2.
This requires arbitrarily many multiplications with x2x2 and the final mul-
tiplication with x2. Thus, every word in a∗bb∗ has the coefficient 2, whereas
all other words in a∗b∗ have the coefficient 0. A similar analysis shows that
every word in b+a+bb+ has the coefficient 12. In general, the possibility of
the cancelation to x1 shows that a change between the two letters in a word
introduces a factor 2 or 3 to its coefficient. Observe that this example can be
viewed also as a weighted grammar or a weighted finite automaton.

The converse of Shamir’s theorem can be stated as follows. For a proof,
see [18].

Theorem 3.21. Assume that r ∈ S〈〈Σ∗〉〉 is quasi-regular, h : Σ+→S〈M(X)〉,
X = X1 ∪X1, is a morphism with the property that h(a) is quasi-regular and
non-zero for every a ∈ Σ, and γ ∈ M(X), such that

(r, w) =
(
h(w), γ

)

holds for all w ∈ Σ+. Then r is S-algebraic.
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Instead of the involutive monoid M(X), Shamir’s theorem can be stated
for the free group G(X1) generated by X1. (Thus, elements of X1 are inverses,
not only right inverses as for M(X).) Then the morphism h will be more
complicated and more general normal forms for algebraic power series will be
needed. The details are given in [18].

Finally, we present the Chomsky–Schützenberger theorem. It gives a me-
thod, similarly as Shamir’s theorem, for computing the coefficients of an al-
gebraic power series. While Shamir’s theorem uses a morphism of the free
monoid into a multiplicative monoid of polynomials, the Chomsky–Schützen-
berger theorem produces the coefficients by a morphism from the characteris-
tic series of the intersection between a Dyck language and a regular language.

We omit the proof, [18], of the following Chomsky–Schützenberger the-
orem. The proof runs along the same lines as the corresponding result for
context-free languages.

Theorem 3.22. Let r ∈ S〈〈Σ∗〉〉 be a component in the strong solution of a
proper S-algebraic system. Then there exist an alphabet X = X1 ∪ X1 and a
regular language R over X such that r is a morphic image of the characteristic
series of the intersection LD(X) ∩ R.

4 Transductions

The theory of transductions originates from considerations about finite au-
tomata with outputs, generalized sequential machines, and pushdown trans-
ducers. Transductions can be viewed as mappings from B〈〈Σ∗

1 〉〉 into B〈〈Σ∗
2 〉〉

if only languages without multiplicities are considered. In general transduc-
tions between families of power series, the Boolean semiring is replaced by an
arbitrary commutative semiring S. Direct generalizations of customary trans-
ductions between languages lead into difficulties because infinite sums over S
may occur. Either one has to make strong summability assumptions about S,
or else restrict the attention to cases not leading to infinite sums over S. The
notion of a regulated representation is a convenient tool in the latter approach.
We say that a morphism

h : Σ∗
1 → (S〈〈Σ∗

2 〉〉)m×m

is a regulated representation if, for some positive integer t, all entries in all
matrices h(w) with |w| ≥ t are quasi-regular.

Let r be some component of the strong solution of a proper S-algebraic
system. For brevity, we refer to such series r as proper S-algebraic. Hence, all
proper S-algebraic series are quasi-regular.

Definition 4.1. A mapping τ : S〈〈Σ∗
1 〉〉 → S〈〈Σ∗

2 〉〉 is termed a regulated
semi-algebraic transduction if, for r ∈ S〈〈Σ∗

1 〉〉,
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τ(r) = (r, ε)r0 +
∑

w∈Σ+
1

(r, w)
(
h(w)

)
1m

,

where r0 ∈ Salg〈〈Σ∗
2 〉〉 and

h : Σ∗
1 →

(
Salg〈〈Σ∗

2 〉〉
)m×m

is a regulated representation. (As usual, Mij denotes the (i, j)th entry of a
matrix M .) If in addition r0 and all entries in every matrix h(a), a ∈ Σ1, are
proper S-algebraic series, then τ is termed a regulated algebraic transduction.

We are now ready for the fundamental result concerning regulated alge-
braic transductions.

Theorem 4.2. A regulated semi-algebraic (resp. regulated algebraic) trans-
duction maps every algebraic (resp. proper algebraic) series into an algebraic
(resp. a proper algebraic) series.

Proof. We use the notation in the definition above. We establish first the
claim in parentheses, concerning regulated algebraic transductions. Consider
a proper S-algebraic series r, and assume that all entries in the matrices
h(a), a ∈ Σ1, are proper S-algebraic series. Hence, they are quasi-regular. Let
yi = pi, i = 1, . . . , n, be the proper S-algebraic system defining r. For each of
the variables yi, we associate the m × m matrix of variables

⎛

⎜
⎝

yi
11 . . . yi

1m
...

...
yi

m1 . . . yi
mm

⎞

⎟
⎠ .

(Observe that each a ∈ Σ1 is replaced by h(a). No terms of S appear additively
in any pi, since the system is proper. Such terms would have to be multiplied
by the identity matrix.) When the variables yi in the original S-algebraic
system are replaced by the associated matrices and the resulting equations are
written out entry-wise, we obtain a proper S-algebraic system for the entries
in the matrices, in particular, for the (1, m)th entry. However, in this new
system, the coefficients on right-hand sides of the equations are power series
in Salg〈〈Σ∗〉〉. It is shown in [11] that Theorem 3.2 holds for such systems as
well. This establishes the claim concerning regulated algebraic transductions.
(Observe that the commutativity of S is needed.)

Consider next the claim concerning regulated semi-algebraic transduc-
tions. It is no loss of generality to assume that the given series r is proper
S-algebraic. For if r = (r, ε)ε + r′ and the claim holds for the proper S-
algebraic r′, then it clearly holds for r as well. Thus, we assume that the
entries in all matrices h(w), |w| = t ≥ 1, are quasi-regular. The proof is now
carried out by considering the words in Σt

1 as new letters and reducing the ar-
gument to the (already established) case of regulated algebraic transductions.
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Thus, consider the alphabet Σ3 = {z1, . . . , zl} where z1, . . . , zl are all the
words in Σt

1. Let
g : Σ∗

3 → Σ∗
1

be the natural morphism, mapping each zi to the appropriate product of
letters of Σ1. Let w ∈ Σ+

1 and define the series

rw =
∑

u∈Σ∗
3

(
r, wg(u)

)
u.

It is easy to see that rw is proper S-algebraic. (In fact, proper S-algebraic
series are closed under inverse monoid morphisms.) By the first part of the
proof, it follows that the entries of

∑

u∈Σ∗
3

(
r, wg(u)

)
h
(
g(u)

)

are proper S-algebraic. Because we can write

τ(r) =
∑

|w|<t

τ(w)τ(rw),

we conclude that τ(r) is S-algebraic, which completes the proof. ��

We now relax the requirement of the representation being regulated. In
the following definition, we assume that our commutative semiring S is also
complete.

Definition 4.3. A mapping τ : S〈〈Σ∗
1 〉〉 → S〈〈Σ∗

2 〉〉 is termed an algebraic
transduction if, for r ∈ S〈〈Σ∗

1 〉〉,

τ(r) = (r, ε)r0 +
∑

w∈Σ+
1

(r, w)
(
h(w)

)
1m

,

where r0 ∈ Salg〈〈Σ∗
2 〉〉 and

h : Σ∗
1 →

(
Salg〈〈Σ∗

2 〉〉
)m×m

is a semiring morphism.

It is not known whether an algebraic transduction maps an algebraic series
into an algebraic series. The problem goes essentially back to applying erasing
morphisms to algebraic series. However, if S is continuous, then an algebraic
transduction always maps an algebraic series to an algebraic series, [11]. The
following result can be obtained in the general case.

Theorem 4.4. Every algebraic transduction can be represented as the com-
position of a projection and a regulated semi-algebraic transduction.
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Proof (outline). The argument is commonly used in language theory: intro-
duce a new letter x′ to the alphabet Σ2. Multiply then in each entry of the
matrices of the algebraic transduction the coefficient of ε by x′. A regulated
semi-algebraic transduction results (with Σ2 ∪ {x′} instead of Σ2 as the tar-
get alphabet.) After applying this regulated transduction, apply the projection
erasing x′ and keeping the letters of Σ2 fixed. ��

A regulated rational transduction is defined exactly as a regulated semi-
algebraic transduction (Definition 4.1) except that now r0 ∈ Srat〈〈Σ∗

2 〉〉 and
the target semiring of h is (Srat〈〈Σ∗

2 〉〉)m×m. A regulated rational transduction
maps a series in Srat〈〈Σ∗

1 〉〉 into a series in Srat〈〈Σ∗
2 〉〉. The reader is referred

to [18] for further details, as well as for the proof of the following result
which can be viewed as another formulation of the Chomsky–Schützenberger
Theorem.

Theorem 4.5. For every proper S-algebraic series r, there is an alphabet
X = X1 ∪ X1 and a regulated rational transduction τ such that

r = τ
(
char

(
LD(X)

))
.

An alternative way of presenting the theory of transductions is to consider
power series in the product monoid Σ∗

1 ×Σ∗
2 . We now define (general) rational

transductions using this approach.

Definition 4.6. Assume that S is complete and τ : S〈〈Σ∗
1 〉〉 → S〈〈Σ∗

2 〉〉 is a
mapping such that τ(r) =

∑
(r, w)τ(w). If

∑
w × τ(w) ∈ Srat〈〈Σ∗

1 × Σ∗
2 〉〉,

then τ is said to be a rational transduction.

Both rational transductions and regulated rational transductions are closed
under composition. The following result is a restatement of relations concern-
ing rational power series in product monoids. (See [18].)

Theorem 4.7. A mapping τ : S〈〈Σ∗
1 〉〉 → S〈〈Σ∗

2 〉〉 is a rational transduction if
and only if there are a series r0 ∈ Srat〈〈Σ∗

2 〉〉 and a representation h : Σ∗
1 →

(Srat〈〈Σ∗
2 〉〉)m×m such that

τ(r) = (r, ε)r0 +
∑

w 
=ε

(r, w)
(
h(w)

)
1m

.

Observe that this theorem shows that every regulated rational transduc-
tion is a rational transduction. The following theorem tells explicitly the in-
terconnection between rational transductions and regulated rational trans-
ductions. The result may be proved with arguments similar as those used for
Theorem 4.4.
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Theorem 4.8. Every rational transduction can be expressed as the composi-
tion of a projection and a regulated rational transduction.

We conclude this section with the following Nivat’s theorem. The Hada-
mard product is denoted by �.

Theorem 4.9. A mapping τ : S〈〈Σ∗
1 〉〉 → S〈〈Σ∗

2 〉〉 is a rational transduction if
and only if, for some alphabet Σ3, projections g : Σ∗

3 → Σ∗
1 and h : Σ∗

3 → Σ∗
2 ,

and for some series r0 ∈ Srat〈〈Σ∗
3 〉〉, we have

τ(r) = h
(
g−1(r) � r0

)
.

Much of the fundamental work concerning algebraic transductions is due
to [15] and [6]. We have also used the above arguments from [18].

5 Pushdown Automata

This section introduces S〈〈Σ∗〉〉-pushdown automata and discusses on one
hand the interconnection with classical pushdown automata over finite al-
phabets (without weights) and on the other hand, the interconnection with
algebraic systems.

5.1 Pushdown Transition Matrices

Throughout this section, Σ = {x1, . . . , xk} will denote a finite alphabet and
S a commutative semiring. Also, Q will denote a finite non-empty set (of
states) and Γ a finite alphabet (of pushdown symbols), not necessarily distinct
from Σ.

Definition 5.1. A matrix M ∈ ((S〈〈Σ∗〉〉)Q×Q)Γ∗×Γ∗
is called an S〈〈Σ∗〉〉-

pushdown transition matrix if the following two conditions are satisfied:

(i) For any p ∈ Γ , there exist only finitely many π ∈ Γ ∗ such that Mp,π 
= 0.
(ii) For any π1, π2 ∈ Γ ∗,

Mπ1,π2 =

{
Mp,π, if π1 = pπ′, π2 = ππ′, for some π′ ∈ Γ ∗,

0, otherwise.

If all entries of M are in S〈Σ ∪ {ε}〉, then we call M an S〈Σ ∪ {ε}〉-
pushdown transition matrix.

It follows directly from the definition that any pushdown transition matrix
is finitely specified by the blocks Mp,π, with p ∈ Γ and π ∈ Γ ∗. In particular,
any such matrix is both row and column finite. Consequently, the product
of pushdown transition matrices and their arbitrary powers are well defined.
However, without special assumptions about either the semiring or the matrix
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itself, the star may not exist because infinite sums may arise. For instance,
if the semiring is complete, the infinite sums are well defined and the star
always exists. For a presentation of pushdown transition matrices and push-
down automata in the case of complete semirings, we refer to [11] and [3].
We give here a different presentation where the semiring is not assumed to be
complete, but rather the matrices are assumed to satisfy such properties as to
obtain a locally finite star matrix, thus avoiding infinite sums. This allows us,
e.g., to consider pushdown automata with multiplicities in N rather than N

∞,
which is a desirable feature from the point of view of weighted automata and
formal languages. In many essentials, we follow here the presentation in [12].

It is important to note that based on the semiring isomorphisms de-
scribed in Chap. 1 of this handbook a pushdown transition matrix may be
considered in ((S〈〈Σ∗〉〉)Q×Q)Γ∗×Γ∗

, but also in ((SQ×Q)〈〈Σ∗〉〉)Γ∗×Γ∗
, or in

(SQ×Q)Γ∗×Γ∗〈〈Σ∗〉〉. We will use also both of the latter semirings in our con-
siderations without risk of confusion. For example, when discussing the star of
a pushdown matrix, we will base our discussion on the semiring
(SQ×Q)Γ∗×Γ∗〈〈Σ∗〉〉, but the definition below of a proper pushdown transi-
tion matrix is based on ((SQ×Q)〈〈Σ∗〉〉)Γ∗×Γ∗

.

Definition 5.2. An S〈〈Σ∗〉〉-pushdown transition matrix is called proper if for
all p ∈ Γ and π ∈ Γ ∗, (Mp,π, ε) 
= 0 implies that |π| ≥ 2.

The next result shows that a proper pushdown transition matrix is C-cycle
free, and so based on Lemma 2.5, its star exists.

Theorem 5.3. Let M be an S〈〈Σ∗〉〉-pushdown transition matrix. If M is
proper, then it is C-cycle free. Moreover, (M∗)p,ε is quasi-regular for all p ∈ Γ .

Proof. We prove first that (Mn, ε)π1,π2 = 0, for all π1, π2 ∈ Γ ∗ and all n ≥ 0,
with |π2| ≤ |π1| + n − 1. We prove the claim by induction on n.

For n = 0, the claim holds vacuously. Also, in case |π1| = 0, the claim
follows directly from the definition of a pushdown transition matrix. Let n ≥ 1
and π1, π2 ∈ Γ ∗ such that |π2| ≤ |π1|+ n− 1. We may assume without loss of
generality that |π1| ≥ 1, i.e., π1 = pπ′

1, for some p ∈ Γ , π′
1 ∈ Γ ∗. Then

(
Mn, ε

)
pπ′

1,π2
=

∑

π∈Γ∗,|π|≥2

(M, ε)pπ′
1,ππ′

1

(
Mn−1, ε

)
ππ′

1,π2

=
∑

π∈Γ∗,|π|≥2

(M, ε)p,π

(
Mn−1, ε

)
ππ′

1,π2
.

Note now that |ππ′
1|+ (n − 1)− 1 ≥ |π′

1|+ n = |π1|+ n− 1 ≥ |π2|, and so by
the induction hypothesis, (Mn−1, ε)ππ′

1,π2 = 0, proving our claim.
To prove that M is C-cycle free, we have to show, by definition that

limC
n→∞(Mn, ε) = 0. This is equivalent with the following two conditions:

(i) For all π2 ∈Γ ∗, there exists a finite set I(π2)⊆Γ ∗ such that (Mn, ε)π1,π2=0,
for all π1 /∈ I(π2) and all n ≥ 0.
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(ii) For all π2 ∈ Γ ∗, there exists a non-negative integer n(π2) such that
(Mn, ε)π1,π2 = 0, for all n ≥ n(π2) and all π1 ∈ Γ ∗.

Part (i) follows from our claim for I(π2) = {π1 ∈ Γ ∗ | |π1| ≤ |π2|}. Part (ii)
follows from our claim for n(π2) = |π2| + 1.

Applying again our claim, this time for π1 = p ∈ Γ , π2 = ε, it follows that
(Mn, ε)p,ε = 0, for all n ≥ 0, i.e., (M∗)p,ε is quasi-regular. ��

The following two results will be useful in the next section when proving
the equivalence of algebraic systems and pushdown automata. For proofs, we
refer to [12], where the results are stated also for C-cycle free (and other types
of) pushdown transition matrices.

Theorem 5.4. Let M be a proper S〈〈Σ∗〉〉-pushdown transition matrix. Then
(M∗)π1π2,ε = (M∗)π1,ε(M∗)π2,ε, for all π1, π2 ∈ Γ ∗.

Theorem 5.5. Let M be a proper S〈〈Σ∗〉〉-pushdown transition matrix. For
any p ∈ Γ , let Sp ∈ (S〈〈Σ∗〉〉)Q×Q be quasi-regular. Also, let Sε be the Q × Q
unity matrix and Spπ = SpSπ, for all p ∈ Γ , π ∈ Γ ∗. If

Sp =
∑

π∈Γ∗

Mp,πSπ,

then Sπ = (M∗)π,ε, for all π ∈ Γ ∗.

5.2 S〈〈Σ∗〉〉-Pushdown Automata

We define in this section the notion of S〈〈Σ∗〉〉-pushdown automata and their
behavior.

Definition 5.6. An S〈〈Σ∗〉〉-pushdown automaton P is a structure

P = (Q, Γ, M, q0, p0, P ),

where:

(i) Q is a finite set of states.
(ii) Γ is a finite alphabet of pushdown symbols.
(iii) M is an S〈〈Σ∗〉〉-pushdown transition matrix.
(iv) q0 ∈ Q is an initial state.
(v) p0 ∈ Γ is an initial pushdown symbol.
(vi) P ∈ (S〈{ε}〉)Q×1 is a final state vector.

We say that P is an S〈Σ ∪ {ε}〉-pushdown automaton if M is an S〈Σ ∪ {ε}〉-
pushdown transition matrix. We also say that P is proper if M is a proper
pushdown transition matrix.

The behavior ‖P‖ ∈ S〈〈Σ∗〉〉 of P is defined by

‖P‖ = eq0(M
∗)p0,εP =

(
(M∗)p0,εP

)
q0

,
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provided that M∗ exists, where eq0∈(S〈{ε}〉)Q, with (eq0)q0=ε and (eq0)q=0,
for all q ∈ Q \ {q0}. We say that two pushdown automata P1 and P2 are
equivalent if ‖P1‖ = ‖P2‖.

Note that the behavior of a pushdown automaton is well defined if its
pushdown transition matrix is proper. Note also that, using standard ter-
minology of formal language theory, the mode of acceptance of a pushdown
automaton is defined here through reaching a final state, while emptying the
pushdown stack. Two other (equivalent) modes of acceptance are often con-
sidered: through emptying the pushdown stack (regardless of the state), or by
reaching a final state (regardless of the pushdown stack).

Example 5.7. Let Σ = {a, b} and consider the N〈Σ ∪ {ε}〉-pushdown automa-
ton P = (Q, Γ, M, q1, p0, P ), where Q = {q1, q2}, Γ = {p0, a, b}, Pq1 = 0,
Pq2 = ε and M ∈ ((N〈〈Σ∗〉〉)Q×Q)Γ∗×Γ∗

is defined as follows:

Mp0,a =
(

a 0
0 0

)

, Ma,aa =
(

a 0
0 0

)

, Ma,ε =
(

0 b
0 b

)

.

Clearly, M and by consequence P, are proper. Then M∗ exists and ‖P‖ =
((M∗)p0,ε)q1,q2 .

Based on the definition of M , we obtain that

(M∗)p0,ε = Mp0,a(M∗)a,ε =
(

a 0
0 0

)

(M∗)a,ε,

(M∗)a,ε = Ma,ε + Ma,aa(M∗)aa,ε =
(

0 b
0 b

)

+
(

a 0
0 0

)
(
(M∗)a,ε

)2
.

If

(M∗)a,ε =
(

p1 p2

p3 p4

)

,

with pi ∈ N〈〈Σ∗〉〉, 1 ≤ i ≤ 4, then it follows that p3 = 0, p4 = b, p1 = ap2
1,

and p2 = ap1p2 + ap2b + b. Consequently, p1 = 0 and p2 = ap2b + b. Then
p2 =

∑
n≥0 anbn+1, and so,

‖P‖ =
∑

n≥0

an+1bn+1.

Definition 5.8. An S〈〈Σ∗〉〉-pushdown automaton P = (Q, Γ, M, q0, p0, P ) is
called normalized if:

(i) (Mπ1,π2)q,q0 = 0, for all π1, π2 ∈ Γ ∗, q ∈ Q.
(ii) There is t ∈ Q \ {q0} such that Pt = ε, Pq = 0, for all q ∈ Q \ {t}, and

(Mπ1,π2)t,q = 0, for all π1, π2 ∈ Γ ∗, q ∈ Q.
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It is not difficult to see that for any S〈Σ ∪ {ε}〉-pushdown automaton, an
equivalent normalized one can be constructed. The construction is the one
often encountered in automata theory: one adds a new initial state and a new
final state, and extends the pushdown matrix in a suitable way so that no
transitions into the initial state and no transitions from the final state exist.
Moreover, the new pushdown automaton remains proper if the initial one was
so. We state the following result without proof, referring to [12] for a detailed
construction and proof.

Theorem 5.9. For any proper S〈Σ∪{ε}〉-pushdown automaton, an equivalent
normalized proper one exists.

We recall that a (classical) pushdown automaton over an alphabet is a
structure A = (Q, Γ, M, q0, p0, F ), where F ⊆ Q is a set of final states, M ∈
(P(Σ∪{ε})Q×Q)Γ∗×Γ∗

is a row and column finite pushdown transition matrix
and the significance of the other components is the same as in the case of an
S〈〈Σ∗〉〉-pushdown automaton. In particular, note that the matrix M may
be seen as an B〈Σ ∪ {ε}〉-pushdown transition matrix, and F may be seen
as a final state vector in (B〈{ε}〉)Q×1. Consequently, we may consider any
(classical) pushdown automaton A as an B〈Σ ∪ {ε}〉-pushdown automaton.
In this case M∗ always exists over B and ‖A‖ ∈ B〈〈Σ∗〉〉 is the characteristic
series of the language accepted by A. Similarly, if M is proper, A may also
be seen as an N〈Σ ∪{ε}〉-pushdown automaton. The correspondence between
the language L(A) accepted by A and its behavior ‖A‖ ∈ N〈〈Σ∗〉〉 is given in
the next result.

Theorem 5.10. For any (classical) proper pushdown automaton A over Σ
and any w ∈ Σ∗, (‖A‖, w) is the number of distinct successful computations
of A on input w, where the acceptance mode of A is with empty pushdown
stack and final state.

Proof. We prove the more general claim that for any π1, π2 ∈ Γ ∗, q1, q2 ∈ Q,
w ∈ Σ∗, n ≥ 0, (((Mn)π1,π2)q1,q2 , w) is equal to the number of distinct n-step
computations in A changing the state from q1 to q2 and the stack content from
π1 to π2 while reading the input w. Then the theorem follows with π1 = p0,
π2 = ε, q1 = q0, and q2 ∈ F .

For n = 0 and n = 1 the claim is trivial. For n > 0, assume the claim
holds up to n. Then any n + 1-step computation with input w, changing the
state from q1 to q2 and the stack from π1 to π2, can be decomposed into:

(i) An n-step computation with input u, changing the state from q1 to q and
the stack from π1 to π, and

(ii) A 1-step computation with input v, changing the state from q to q2 and
the stack from π to π2

where w = uv, q ∈ Q, and π ∈ Γ ∗. Thus, based on the induction hypothesis,
the number of such distinct (n + 1)-step computations is the following:
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∑

π∈Γ∗

∑

q∈Q

∑

u,v∈Σ∗
w=uv

(((
Mn

)
π1,π2

)
q1,q

, u
)(

(Mπ,π2)q,q2 , v
)

=
(((

Mn+1
)
π1,π2

)
q1,q2

, w
)
. ��

5.3 Equivalence with Algebraic Systems

We prove in this section that the algebraic systems and the pushdown au-
tomata are equivalent, in the sense that the set of behaviors of proper S〈Σ ∪
{ε}〉-pushdown automata is exactly Salg〈〈Σ∗〉〉. We prove first that any alge-
braic series is the behavior of a pushdown automaton.

Theorem 5.11. Let r be the first component of the strong solution of a proper
algebraic system. Then there exists a proper S〈Σ ∪{ε}〉-pushdown automaton
P such that ‖P‖ = r.

Proof. Let
yi = pi, i = 1, . . . , n, (1)

be a proper algebraic system with r as the first component of its strong solu-
tion, where pi ∈ S〈(Σ ∪ Y )∗〉, for all 1 ≤ i ≤ n. We consider the S〈Σ ∪ {ε}〉-
pushdown automaton

P =
(
{q}, Σ ∪ Y, M, q, y1, (ε)

)
,

where M is defined as follows:

Myi,yjγ = (pi, yjγ)ε +
∑

x∈Σ

(pi, xyjγ)x, for γ ∈ (Σ ∪ Y )∗, 1 ≤ i, j,≤ n,

Myi,xγ =
∑

x′∈Σ

(pi, x
′xγ)x′, for γ ∈ (Σ ∪ Y )∗, x ∈ Σ, 1 ≤ i ≤ n,

Myi,ε =
∑

x∈Σ

(pi, x)x, for 1 ≤ i ≤ n,

Mx,ε = x, for x ∈ Σ,

Mπ1,π2 = 0, in all other cases.

Note that M is a proper pushdown matrix. Indeed, if (Mq,π, ε) 
= 0, for
some q ∈ Γ , π ∈ Γ ∗, it implies that q = pi and (pi, π) 
= 0, for some 1 ≤ i ≤ n.
However, since the algebraic system is proper, it follows that |π| ≥ 2. Thus,
it follows by Theorem 5.3 that M∗ exists and (M∗)yi,ε is quasi-regular for all
1 ≤ i ≤ n.

We write the algebraic system (1) as follows:
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yi =
n∑

j=1

∑

γ∈(Σ∪Y )∗

(pi, yjγ)yjγ +
n∑

j=1

∑

γ∈(Σ∪Y )∗

∑

x∈Σ

(pi, xyjγ)xyjγ

+
∑

γ∈(Σ∪Y )∗

∑

x∈Σ

∑

x′∈Σ

(pi, x
′xγ)x′xγ +

∑

x∈Σ

(pi, x)x (2)

=
n∑

j=1

∑

γ∈(Σ∪Y )∗

Myi,yjγyjγ +
∑

x∈Σ

∑

γ∈(Σ∪Y )∗

Myi,xγxγ + Myi,ε.

We claim now that the system (1) is satisfied when substituting (M∗)yi,ε

for yi, for all 1 ≤ i ≤ n. Based on Theorem 5.4, that means that when checking
the equalities in (1), we will substitute (M∗)π,ε for all π ∈ (Σ ∪ Y )∗.

It is easy to see that Mn
x,ε = 0, for all x ∈ Σ and n ≥ 2 and so, (M∗)x,ε = x.

For (M∗)yi,ε, based on the definition of M , we obtain that

(M∗)yi,ε =
∑

π∈(Σ∪Y )∗

Myi,π(M∗)π,ε

=
n∑

j=1

∑

γ∈(Σ∪Y )∗

Myi,yjγ(M∗)yjγ,ε

+
∑

x∈Σ

∑

γ∈(Σ∪Y )∗

Myi,xγ(M∗)xγ,ε + Myi,ε,

for all 1 ≤ i ≤ n, i.e., the refined version (2) of system (1) is verified, proving
the claim.

Note now that based on Theorem 5.3, (M∗)yi,ε is a quasi-regular series.
Since a proper algebraic system has only one solution with all components
quasi-regular, see Theorem 3.2. It follows now that r = (M∗)y1,ε = ‖A‖,
concluding our proof. ��

Example 5.12. Consider the proper N-algebraic system

y = yy + x1yx2 + x1x2

of Example 3.5. Based on Theorem 5.11, we construct a pushdown automa-
ton P such that ‖P‖ is the strong solution of the system. We consider P =
({q}, {x1, x2, y}, M, q, y, (ε)), where the pushdown transition matrix M is de-
fined as follows: Mx1,ε = x1, Mx2,ε = x2, My,x2 = x1, My,x2y = x1, My,yx2 =
x1, My,yx2y = x1. It follows then by Theorem 5.11 that ‖P‖ = (M∗)y1,ε is the
strong solution of the algebraic system above.

We prove now the reverse transition, from a pushdown automaton to an
algebraic system.

Theorem 5.13. Let P be a proper S〈Σ ∪ {ε}〉-pushdown automaton. Then
there exists a proper S〈〈Σ∗〉〉-algebraic system with ‖P‖ as the first component
of its strong solution.
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Proof. By Theorem 5.9, we may assume without loss of generality that P =
(Q, Γ, M, q0, p0, P ) is a normalized proper S〈Σ ∪ {ε}〉-pushdown automaton.
Thus, ‖P‖ = ((M∗)p0,ε)q0,t, where t ∈ Q, Pt = ε (and it is the only non-zero
component of P ).

Consider the alphabet

Y =
{
yp

q1,q2

∣
∣ p ∈ Γ, q1, q2 ∈ Q

}
.

We consider the matrices Yp ∈ (S〈Y 〉)Q×Q, defined by (Yp)q1,q2 = yp
q1,q2

, for
all q1, q2 ∈ Q. We then extend our definition to Yπ ∈ (S〈Y 〉)Q×Q, for all
π ∈ Γ ∗ in the following way:

Yε = E, Ypπ = YpYπ,

for all π ∈ Γ ∗, where we denote by E the unity matrix (in this case a Q × Q
matrix).

Consider now the algebraic system written in the following matrix nota-
tion:

Yp =
∑

π∈Γ∗

Mp,πYπ, for all p ∈ Γ. (3)

Clearly, since M is proper, so is our algebraic system. Consequently, it follows
by Theorem 5.5 that the strong solution of (3) is given by (M∗)p,ε, p ∈ Γ (sub-
stituted for Yp in the system (3)). It follows in particular that the component
of the strong solution of (3) corresponding to yp0

q0,t is ((M∗)p0,ε)q0,t = ‖P‖.
��

One should observe that the variables yp
q1,q2

in the proof of Theorem 5.13
correspond to the well-known triple construction [q1, p, q2], used in the tran-
sition from (classical) pushdown automata to context-free grammars. The
construction and the transition are originally due to Evey [4].

Example 5.14. Let Σ = {a, b} and consider the proper N〈〈Σ ∪{ε}〉〉-pushdown
automaton in Example 5.7. We construct a proper algebraic system with ‖P‖
as a component of its strong solution as follows. Let

Y =
{
yp

q,q′

∣
∣ p ∈ {p0, a, b}, q, q′ ∈ {q1, q2}

}
.

Let also

Yp0 =
(

yp0
q1,q1

yp0
q1,q2

yp0
q2,q1

yp0
q2,q2

)

, Ya =
(

ya
q1,q1

ya
q1,q2

ya
q2,q1

ya
q2,q2

)

,

and consider the following algebraic system:
{

Yp0 = ( a 0
0 0 ) Ya,

Ya = ( a 0
0 0 ) Y 2

a +
(

0 b
0 b

)
.

(4)

A simple calculation shows that (4) implies that ya
q2,q1

= 0, ya
q2,q2

= b, ya
q1,q1

=
a(ya

q1,q1
)2, ya

q1,q2
= aya

q1,q1
ya

q1,q2
+ aya

q1,q2
b + b. However, this implies that any
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solution of (4) will have 0 on the component corresponding to ya
q1,q1

and so,
we obtain that in (4), we may replace the equation corresponding to ya

q1,q2

with the equation ya
q1,q2

= aya
q1,q2

b + b. A suitable change of notation leads to
the following proper algebraic system:

{
z1 = az2,

z2 = az2b + b,

where ‖P‖ is the first component of its strong solution.

As noted already earlier in this chapter, any (classical) proper pushdown
automaton may be seen as an B〈Σ∪{ε}〉- and as an N〈Σ∪{ε}〉-pushdown au-
tomaton. Based on this analogy and on Theorems 5.11 and 5.13, the following
result may be proved.

Theorem 5.15.

(i) An ε-free language is context-free if and only if it is the behavior of a
proper pushdown automaton.

(ii) For any epsilon-free context-free grammar G without chain rules, there
exists a proper pushdown automaton AG such that the ambiguity of any
word w ∈ Σ∗ in L(G) is (‖AG‖, w).

(iii) For any proper pushdown automaton A, there exists a context-free gram-
mar GA such that the ambiguity of any word w ∈ Σ∗ in L(GA) is
(‖A‖, w).

6 Other Topics

Several other topics may be considered in connection with algebraic systems
and pushdown automata. We mention here briefly two such topics. A result of
Gruska [5] on a characterization of context-free languages may be generalized
to a Kleene theorem for algebraic power series. One may prove (see [10] for a
presentation in terms of complete semirings) that the algebraic power series
coincide with the least equationally closed semiring containing all monomials.
One may also consider the algebraic power series over the free commutative
monoid Σ⊕ rather than Σ∗: this corresponds to the case where all variables
are commuting. As it is well known from the theory of formal languages, the
commuting case yields very different behavior; one example in this respect is
the theorem of Parikh [16]. In the case of formal power series, several interest-
ing decidability results may be given in the commutative case, based on tools
from mathematical analysis and algebraic geometry. We refer to [12] for more
details on the topic.

Acknowledgement. We thank the editors, in particular Werner Kuich, for a careful
reading of our original version of the chapter and for many useful suggestions. The
choice toward a more combinatorial, rather than a purely algebraic approach is ours.
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3. Z. Ésik and W. Kuich. Modern automata theory. http://www.gmd.
tuwien.ac.at/kuich/, 2007.

4. R.J. Evey. The theory and application of pushdown store machines. Math-
ematical Linguistics and Automatic Translation, Harvard Univ. Comput.
Lab. Rept. NSF-IO, 1963.

5. J. Gruska. A characterization of context-free languages. Journal of Com-
puter and System Sciences, 5:353–364, 1971.

6. G. Jacob. Représentations et substitutions matricielles dans la théorie
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1 Introduction

The theory of Lindenmayer systems studies free monoid morphisms, free
monoid substitutions and their iterations. In this chapter, we discuss simi-
lar ideas in a more general framework. Instead of a free monoid, we consider
the free semi-algebra S〈Σ∗〉 consisting of polynomials with non-commuting
variables in Σ and coefficients in a semiring S and we study the iteration of
endomorphisms of S〈Σ∗〉. We allow various modes of iteration and we con-
sider various classes of morphisms. Classical L systems are obtained as special
cases by taking S to be the Boolean semiring. Our approach also generalizes
the theory of algebraic series in non-commuting variables.

A brief outline of the contents of the chapter follows. In Sect. 2, we discuss
the connections between classical L systems and rational power series. This
topic is discussed in detail in [37, 30, 31]. Our discussion is brief and we
will mostly not repeat the material covered in these references. However, we
will recall the Berstel–Nielsen theorem stating that it is decidable whether
or not two given D0L systems are growth range equivalent and discuss the
applications of this result discovered by Ruohonen. In Sect. 3, we consider
L algebraic systems and series. This theory assumes its simplest form if the
basic semiring S is continuous. Here, in order to include also the cases where

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-01492-5 8, c© Springer-Verlag Berlin Heidelberg 2009
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the basic semiring is a ring, we will not assume that S is continuous. In Sects. 4
and 5, we discuss restricted classes of L algebraic systems which give the power
series versions of D0L systems, DT0L systems and other L systems studied
in the classical theory. Various aspects of L algebraic series are discussed in
detail in [3–20, 22–24, 26, 27].

Below we will use the customary notation concerning L systems, which
makes it very easy to say precisely what kind of iteration and what kind of
morphisms are intended. This notation was originally inspired by biological
applications. For us, the main motivation to study L systems comes from the
very basic mathematical ideas involved.

2 Iterated Morphisms and Rational Series

Let X and Y be finite alphabets. A mapping h : X∗ → Y ∗ is called a morphism
if

h(uv) = h(u)h(v)

whenever u, v ∈ X∗. If h : X∗ → Y ∗ is a morphism and ε is the empty word,
then h(ε) = ε.

An HDT0L system is a construct G = (X,Y, h1, . . . , hn, g, w), where X and
Y are finite alphabets, n is a positive integer, hi : X∗ → X∗ (i = 1, . . . , n)
and g : X∗ → Y ∗ are morphisms and w ∈ X∗ is a word. An HDT0L system
G = (X,Y, h1, . . . , hn, g, w) is called a DT0L system if X = Y and g is the
identity morphism. If G is a DT0L system, we write G = (X,h1, . . . , hn, w).
An HDT0L system G = (X,Y, h1, . . . , hn, g, w) is called an HD0L system if
n = 1. Finally, an HD0L system G = (X,Y, h, g, w) is called a D0L system
if X = Y and g is the identity morphism. In other words, a D0L system is a
triple G = (X,h,w), where X is a finite alphabet, h : X∗ → X∗ is a morphism
and w ∈ X∗ is a word.

Assume that G = (X,Y, h1, . . . , hn, g, w) is an HDT0L system. Let n =
{1, . . . , n} be an alphabet with n letters. Then the sequence S(G) of G is the
mapping S(G) : n∗ → Y ∗ defined by

S(G)(i1 . . . it) = ghit . . . hi1(w)

for t ≥ 0 and i1, . . . , it ∈ n. The language L(G) of G is the image of S(G). In
other words,

L(G) = {ghit . . . hi1(w) | t ≥ 0, i1, . . . , it ∈ n}.

The HDT0L systems G and H are sequence equivalent (resp. language equiv-
alent) if S(G) = S(H) (resp. L(G) = L(H)). Clearly, sequence equivalence
implies language equivalence but not vice versa.

In the special case of a D0L system G = (X,h,w), the sequence S(G) of
G consists of the words
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w, h(w), h2(w), h3(w), . . . .

Two D0L systems G = (X, g,w) and H = (X,h, v) are sequence equivalent if
and only if

gi(w) = hi(v) for all i ≥ 0.

We next establish the basic connection between iterated morphisms and
N-rational series.

Assume that G = (X,Y, h1, . . . , hn, g, w) is an HDT0L system. Then the
length series (or growth series) r(G) of G is defined by

r(G) =
∑

u∈n∗

|S(G)(u)|u.

If G = (X,Y, h, g, w) is an HD0L system, we consider the length sequence
(a(n))n≥0 of G defined by

a(n) =
∣
∣ghn(w)

∣
∣

for n ≥ 0.
To prove that length series of HDT0L systems are N-rational, let X =

{x1, . . . , xm}, Y = {y1, . . . , ys} and let h : X∗ → Y ∗ be a morphism. If w is a
word and z is a letter, then |w|z is the number of occurrences of z in w. The
Parikh mapping ψX : X∗ → N

m associated to X is defined by

ψX(w) = (|w|x1 , . . . , |w|xm) for w ∈ X∗.

The growth matrix of h is the m × s-matrix A defined by

Aij = |h(xi)|yj , i = 1, . . . ,m, j = 1, . . . , s.

Next, assume that w ∈ X∗. Then we have

ψY

(
h(w)

)
= ψX(w)A. (1)

To prove (1), it suffices to observe that

|h(w)|yj =
m∑

i=1

|w|xi |h(xi)|yj =
m∑

i=1

(
ψX(w)

)
i
Aij =

(
ψX(w)A

)
j

for j = 1, . . . , s. (Here, if v is a vector, then vj is the jth component of v.)
Let now G = (X,Y, h1, . . . , hn, g, w) be an HDT0L system. Let A1, . . . , An

and A be the growth matrices of h1, . . . , hn and g, respectively, and let η =
(1, . . . , 1) be the vector which has card(Y ) entries all equal to 1. Then it
follows by (1) that

|ghit . . . hi1(w)| = ψX(w)Ai1 . . . AitAηT

for t ≥ 0, i1, . . . , it ∈ n. This implies the first claim of the following result.
The second claim is a consequence of the definitions.
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Theorem 1. Let G be an HDT0L system. Then the length series r(G) of G is
N-rational. Conversely, if r is an N-rational series, then there is an HDT0L
system G such that r is the length series of G.

For the HD0L length sequences, we obtain a similar result. Recall that a
sequence (a(n))n≥0 is called N-rational if the series

∑
n≥0 a(n)zn ∈ A〈〈z∗〉〉 is

N-rational.

Theorem 2. Let G be an HD0L system. Then the length sequence of G is
N-rational. Conversely, if (a(n))n≥0 is an N-rational sequence, then there ex-
ists an HD0L system G such that (a(n))n≥0 is the length sequence of G.

The following theorem characterizes D0L length sequences among
N-rational sequences.

Theorem 3. Let (a(n))n≥0 be an N-rational sequence. Then (a(n))n≥0 is a
D0L length sequence if and only if there exists a positive integer C such that

a(n + 1) ≤ Ca(n)

holds for all n ≥ 0.

We refer to [37, 30] for the proof of Theorem 3 and for other characteri-
zations of D0L length sequences. For connections between DT0L systems and
rational series, see also [29].

We discuss next a remarkable result due to Berstel and Nielsen concerning
D0L length sequences [1]. We state the result in two ways.

Theorem 4. It is decidable, given D0L length sequences (s(n))n≥0 and
(t(n))n≥0 whether or not

{s(n) | n ≥ 0} = {t(n) | n ≥ 0}.

For the second version of the Berstel–Nielsen theorem, call a mapping
ϕ : Z → Z piecewise affine if there exist integers a ≥ 1 and uj ≥ 1, vj for
0 ≤ j < a such that

ϕ(an + j) = ujn + vj

whenever n ∈ Z and 0 ≤ j < a.

Theorem 5. Suppose (s(n))n≥0 and (t(n))n≥0 are D0L length sequences such
that {s(n) | n ≥ 0} and {t(n) | n ≥ 0} are infinite sets. If

{s(n) | n ≥ 0} = {t(n) | n ≥ 0},

then there is a piecewise affine mapping ϕ : Z → Z such that

s(n) = t
(
ϕ(n)

)

for almost all n ≥ 0.
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For generalizations of Theorem 5, see [36, 25].
Theorem 5 has been used in a very effective way by Ruohonen to obtain

deep decidability results concerning D0L systems and their generalizations. As
an example of Ruohonen’s method, we will consider the equivalence problem
between DF0L and D0L languages. By definition, a DF0L system is a construct
G = (Σ, h, F ), where Σ is an alphabet, h : Σ∗ → Σ∗ is a morphism and
F ⊆ Σ∗ is a finite nonempty set. The language L(G) of G is defined by

L(G) =
{
hi(w)

∣
∣ i ≥ 0, w ∈ F

}
.

Let now G = (X, g, {v0, . . . , vp−1}) be a DF0L system and let H =
(X,h, v) be a D0L system. We will assume that L(G) and L(H) are infinite
and each letter of X occurs in every word of L(G) and L(H). First, construct
a polynomial P of card(X) variables with non-negative integer coefficients
such that P induces an injective mapping P : N

card(X) → N. If card(X) = 2
we may choose the polynomial

P2(x, y) = (x + y)2 + 3x + y,

where 1
2P2 is the Cantor pairing polynomial. If Pn : N

n → N is injective, then
the polynomial

Pn+1(x1, . . . , xn+1) = P2

(
Pn(x1, . . . , xn), xn+1

)

induces an injective mapping from N
n+1 into N.

Second, define the sequence (s(n))n≥0 by

s(pi + j) = P
(
ψ

(
gi(vj)

))

for i ≥ 0, j = 0, 1, . . . , p − 1, and define the sequence (t(n))n≥0 by

t(n) = P
(
ψ

(
hn(v)

))

for n ≥ 0.
Now (s(n))n≥0 and (t(n))n≥0 are D0L length sequences (for details,

see [34]).
Next, decide whether or not {s(n) | n ≥ 0} = {t(n) | n ≥ 0}. If not, the

injectivity of P implies that

ψ
(
L(G)

)
	= ψ

(
L(H)

)

and hence also L(G) 	= L(H). Suppose that {s(n) | n ≥ 0} = {t(n) | n ≥ 0}.
Then Theorem 5 implies that there exists a piecewise affine mapping ϕ : Z →
Z and a non-negative integer n0 such that

s(n) = t
(
ϕ(n)

)

for n ≥ n0. It is clear that ϕ and n0 can be computed effectively. Again, the
injectivity of P implies that
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ψ
(
gi(vj)

)
= ψ

(
hϕ(pi+j)(v)

)

for all i ≥ 0, j = 0, 1, . . . , p − 1 such that pi + j ≥ n0. Because ψ is injective
on L(H), the equality L(G) = L(H) holds only if

gi(vj) = hϕ(pi+j)(v)

for all i ≥ 0, j = 0, 1, . . . , p−1 such that pi+j ≥ n0. Hence, using Theorem 5,
we have reduced the DF0L–D0L language equivalence problem to a finite
number of instances of the D0L sequence equivalence problem.

Ruohonen has actually proved the following stronger result (see [34]).

Theorem 6. The equivalence problem between F0L and D0L languages is de-
cidable.

Informally, F0L systems are obtained from DF0L systems by replacing the
underlying morphism by a finite substitution.

For various other important decidability results obtained by Ruohonen, see
[32, 33, 35]. Berstel–Nielsen theorem together with methods due to Ruohonen
have also been used to prove Theorem 20 below and the following result
from [21].

Theorem 7. It is decidable whether or not

L(H1) = L(H2),

if H1 and H2 are HD0L systems such that the length sequences of H1 and H2

are D0L length sequences.

3 Lindenmayerian Algebraic Series

In what follows S will always be a commutative semiring. Assume that Σ and
Δ are finite alphabets. A mapping h : S〈Σ∗〉 → S〈Δ∗〉 is called a semi-algebra
morphism if h(1) = 1 and

h(p1 + p2) = h(p1) + h(p2),
h(p1p2) = h(p1)h(p2),
h(ap1) = ah(p1),

for all p1, p2 ∈ S〈Σ∗〉 and a ∈ S. A semi-algebra morphism h : S〈Σ∗〉 →
S〈Δ∗〉 is called propagating if we have

ε /∈ supp
(
h(σ)

)

for all σ ∈ Σ. A semi-algebra morphism h : S〈Σ∗〉 → S〈Δ∗〉 is called a
monomial morphism if for each σ ∈ Σ there exist a non-zero a ∈ S and a
word w ∈ Δ∗ such that h(σ) = aw.
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If h : S〈Σ∗〉 → S〈Δ∗〉 is a propagating semi-algebra morphism, h can be
extended in a natural way to a mapping from S〈〈Σ∗〉〉 into S〈〈Δ∗〉〉.

Suppose Σ and Z = {z11, . . . , z1s, . . . , zn1, . . . , zns} are alphabets and Y =
{y1, . . . , yn} is an alphabet of variables. It is assumed that the sets Σ, Z and
Y are pairwise disjoint.

A Lindenmayerian algebraic system with variables in Y (briefly, an L al-
gebraic system) is a system of equations

yi = pi

(
y1, . . . , yn, h11(y1), . . . , h1s(y1), . . . , hn1(yn), . . . , hns(yn)

)
,

1 ≤ i ≤ n, (2)

where pi(y1, . . . , yn, z11, . . . , z1s, . . . , zn1, . . . , zns) is a polynomial in S〈(Σ ∪
Y ∪ Z)∗〉 and hαβ : S〈Σ∗〉 → S〈Σ∗〉 is a semi-algebra morphism for 1 ≤
i, α ≤ n, 1 ≤ β ≤ s. Here, we do not assume that each zαβ actually has an
occurrence in pi, 1 ≤ i, α ≤ n, 1 ≤ β ≤ s.

If there is no danger of confusion, we use a vectorial notation. We write y
for y1, . . . , yn, p for p1, . . . , pn, h for h11, . . . , h1s, . . . , hn1, . . . , hns, and z for
z11, . . . , z1s, . . . , zn1, . . . , zns. Moreover, we write h(y) for h11(y1), . . . , h1s(y1),
. . . , hn1(yn), . . . , hns(yn). By this vectorial notation, an L algebraic system as
defined above is now written as

y = p
(
y, h(y)

)
. (3)

Consider the L algebraic system y = p(y, h(y)) given by (3). The system is
called a propagating L algebraic system (briefly, a PL algebraic system) if hαβ

is propagating for all 1 ≤ α ≤ n, 1 ≤ β ≤ s. Similarly, the system is called
a deterministic L algebraic system (briefly, a DL algebraic system) if hαβ is
a monomial morphism for all 1 ≤ α ≤ n, 1 ≤ β ≤ s. L algebraic systems
with only one equation play an important role. We will call such systems LS
algebraic systems. Hence, the system given by (2) is an LS algebraic system
(or an LS system) if n = 1. PLS and DLS systems are now defined in the
natural way.

We also discuss L rational systems. By definition, the L algebraic system
y = p(y, h(y)) given by (3) is an L rational system if each pi is linear in Y ∪Z,
1 ≤ i ≤ n. PL rational, DL rational, LS rational, PLS rational and DLS
rational systems are defined in the natural way. Compared with the definition
of a rational series our definition appears to be too general. We will justify
the definition later.

Next, fix a convergence D in S and transfer D to S〈〈Σ∗〉〉 as explained in
[28]. Unless stated otherwise, we assume that D is the discrete convergence.

Consider the L algebraic system (3). The approximation sequence (rj)j≥0

associated to (3) is defined by

r0 = 0, rj+1 = p
(
rj , h

(
rj

))
, j ≥ 0.

Then if (rj) converges with respect to D,
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lim rj

is called the vector of series generated by (3).
Now, a series r ∈ S〈〈Σ∗〉〉 is called L algebraic if there exists an L algebraic

system y = p(y, h(y)) such that the associated approximation sequence (rj)
converges and r equals the first component of lim rj . The set of L algebraic
series as defined above is denoted by SLalg〈〈Σ∗〉〉. In what follows, Σ∞ is a
fixed countably infinite alphabet. We denote

SLalg{{Σ∗
∞}} =

⋃

Σ⊂Σ∞, Σ finite

SLalg〈〈Σ∗〉〉.

Next, the classes SPLalg〈〈Σ∗〉〉, SDLalg〈〈Σ∗〉〉, SLSalg〈〈Σ∗〉〉, SLrat〈〈Σ∗〉〉,
SLSrat〈〈Σ∗〉〉 and other similar classes are defined in the natural way. The
power series in these classes are called PL algebraic, DL algebraic, LS alge-
braic, L rational and LS rational, respectively. LS algebraic series are also
called LS series.

In the equations defining an L rational system, we can freely use words
of Σ∗. This differs from the situation with rational series. The next result
from [13] shows that our definition of L rational series is not too general.

Theorem 8. Suppose r ∈ S〈〈Σ∗〉〉 is an L rational series. Then there exists
an L rational system yi = pi(y, h(y)), 1 ≤ i ≤ n, generating r such that

supp(pi) ⊆ Σ∗
∞ ∪ Z

for 1 ≤ i ≤ n.

In the classical theory of Lindenmayer systems, the letter E, prefixed to
the name of a family of languages, denotes the set of all languages that can be
obtained by taking the languages of the family and intersecting them with Δ∗,
for some alphabet Δ. Here, we define analogously

SELalg{{Σ∗
∞}} =

{
r

∣
∣ r = s � char(Δ∗), s ∈ SLalg{{Σ∗

∞}}, Δ ⊂ Σ∞
}
.

The classes SELSalg{{Σ∗
∞}}, SELrat{{Σ∗

∞}} and SELSrat{{Σ∗
∞}} are defined

similarly. Power series in the classes SELalg{{Σ∗
∞}}, SELSalg{{Σ∗

∞}},
SELrat{{Σ∗

∞}} and SELSrat{{Σ∗
∞}} are called EL algebraic, ELS algebraic, EL

rational and ELS rational power series, respectively. ELS algebraic series are
also called ELS series.

Suppose r ∈ S〈〈Σ∗〉〉 and Δ ⊆ Σ. Define the semi-algebra morphism h :
S〈Σ∗〉 → S〈Σ∗〉 by h(σ) = σ if σ ∈ Δ and h(σ) = 0 if σ /∈ Δ. Then
r � char(Δ∗) = h(r). This observation implies the following theorem.

Theorem 9. SELalg{{Σ∗
∞}} = SLalg{{Σ∗

∞}}.

On the other hand, if we use the E-mechanism, then we can restrict at-
tention to L algebraic systems with only one equation.
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Theorem 10. Let r ∈ S〈〈Σ∗〉〉 be a proper L algebraic series. Then r is an
ELS series.

Proof. Let
yi = pi

(
y, h(y)

)
, 1 ≤ i ≤ n, (4)

be an L algebraic system such that the associated approximation sequence
(rj)j≥0 converges and

lim rj
1 = r.

We will give the proof with the assumption that rj
i is proper for all j ≥ 0 and

1 ≤ i ≤ n.
Let now Z = {zαβγ | 1 ≤ α, β ≤ n, 1 ≤ γ ≤ s} be an alphabet. Suppose

that
pi = pi(zi11, . . . , zi1s, . . . , zin1, . . . , zins),

for 1 ≤ i ≤ n and suppose that (4) is given by

yi = pi

(
hi11(y1), . . . , hi1s(y1), . . . , hin1(yn), . . . , hins(yn)

)
, 1 ≤ i ≤ n.

It is clear that the assumption that (4) has this form involves no loss of
generality.

Next, we assume that there exist disjoint alphabets Σ1,Σ2, . . . , Σn such
that

supp
(
rj
i

)
⊆ Σ∗

i

for 1 ≤ i ≤ n. Furthermore, each hαβγ maps each letter of
⋃

i �=β Σi to 0. If
these conditions do not hold initially, we proceed as follows. Let Σ1 = Σ and
let Σ2, . . . , Σn be new disjoint alphabets of the same cardinality as Σ and let
copyi : Σ∗ → Σ∗

i be an isomorphism for 1 ≤ i ≤ n. (We take copy1 to be
the identity mapping.) Then each pi, 2 ≤ i ≤ n, is replaced by copyi(pi) and
each hαβγ by the extension of copyα ◦ hαβγ ◦ copy−1

β mapping each letter of⋃
i �=β Σi to 0.

Consider now the LS system

y =
n∑

i=1

pi

(
hi11(y), . . . , hi1s(y), . . . , hin1(y), . . . , hins(y)

)
. (5)

Let (sj)j≥0 be the approximation sequence associated to (5). We claim that

sj = rj
1 + · · · + rj

n (6)

for j ≥ 0. Clearly, (6) holds if j = 0. If (6) holds for j ≥ 0, we have

sj+1 =
n∑

i=1

pi

(
hi11

(
sj

)
, . . . , hi1s

(
sj

)
, . . . , hin1

(
sj

)
, . . . , hins

(
sj

))

=
n∑

i=1

pi

(
hi11

(
rj
1 + · · · + rj

n

)
, . . . , hi1s

(
rj
1 + · · · + rj

n

)
,
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. . . , hin1

(
rj
1 + · · · + rj

n

)
, . . . , hins

(
rj
1 + · · · + rj

n

))

=
n∑

i=1

pi

(
hi11

(
rj
1

)
, . . . , hi1s

(
rj
1

)
, . . . , hin1

(
rj
n

)
, . . . , hins

(
rj
n

))

=
n∑

i=1

rj+1
i .

Here, the third equation follows because the series rj
i are proper. Hence, (6) is

true for all j ≥ 0. This implies that lim sj exists and

lim sj =
n∑

i=1

lim rj
i .

Therefore,
r = lim rj

1 =
(
lim sj

)
� char(Σ∗

1 )

is an ELS series. ��

It can be shown in a similar way that proper L rational series are ELS
rational series.

Next, we discuss briefly the fixed point properties of L algebraic series. (For
more details, see [24, 13].) Suppose that the L algebraic system (2) generates
the vector r = (r1, . . . , rn). Then r is called a fixed point of (2) if hαβ(rα)
exists for all 1 ≤ α ≤ n, 1 ≤ β ≤ s, and

ri = pi

(
r1, . . . , rn, h11(r1), . . . , hns(rn)

)

for 1 ≤ i ≤ n.

Theorem 11. Let S be a continuous semiring and use the natural convergence
in S. Let r be the vector generated by the L algebraic system (2). Then r is a
fixed point of (2).

Proof. The fixed point theorem given as Corollary 2.6 in Chap. 2 is applicable.
��

Theorem 12. Let (2) be a PL algebraic system generating the vector r. Then
r is a fixed point of (2).

We next consider the preservation of L algebraicness under various oper-
ations. Many results of this kind are obtained as corollaries of the next theo-
rem.

Suppose Σ = {σ1, . . . , σm} and consider an L algebraic system

yi = pi

(
σ1, . . . , σm, y1, . . . , yn, hi11(y1), . . . , hi1s(y1),

. . . , hin1(yn), . . . , hins(yn)
)
, 1 ≤ i ≤ n (7)
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where

pi = pi(σ1, . . . , σm, y1, . . . , yn, zi11, . . . , zi1s, . . . , zin1, . . . , zins)
∈ S〈(Σ ∪ Y ∪ Z)∗〉.

We say that (7) is a strong PL system if (7) is a PL system and for no i,
1 ≤ i ≤ n, supp(pi) contains a word in ε∪Y ∪Z. A series r ∈ A〈〈Σ∗〉〉 is called
a strong PL series if there is a strong PL system (7) such that r equals the
first component of the vector generated by (7).

Theorem 13. Suppose α : Σ∗ → SLalg〈〈Σ∗〉〉 is a mapping such that α(σ) is
proper for all σ ∈ Σ. If (7) is a strong PL system then there exist L algebraic
series q1, . . . , qn ∈ S〈〈Σ∗〉〉 such that

qi = pi

(
α(σ1), . . . , α(σm), q1, . . . , qn, hi11(q1), . . . , hi1s(q1),

. . . , hin1(qn), . . . , hins(qn)
)
, 1 ≤ i ≤ n

holds true.

Proof. Let (rt)t≥0 be the approximation sequence associated to (7). Let α(σj)
be the first component of the vector generated by the L algebraic system

yjk = pjk, 1 ≤ k ≤ nj , (8)

1 ≤ j ≤ m. Denote by (sjt)t≥0 the approximation sequence associated to (8).
We again assume that sjt

1 is proper for 1 ≤ j ≤ m, t ≥ 0.
We now construct a new L algebraic system

yi = pi

(
y11, . . . , ym1, y1, . . . , yn, hi11(y1), . . . , hi1s(y1),

. . . , hin1(yn), . . . , hins(yn)
)
, 1 ≤ i ≤ n,

y1k = p1k, 1 ≤ k ≤ n1,

...
ymk = pmk, 1 ≤ k ≤ nm,

with variables in {yi | 1 ≤ i ≤ n} ∪ {yij | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}. Let
the approximation sequence associated to this L algebraic system be (qt)t≥0

where qt has components

qt
1, . . . , q

t
n, qt

11, . . . , q
t
1n1

, . . . , qt
m1, . . . , q

t
mnm

.

By the definition of (qt), the sequences (qt
ij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, converge.

We claim that also (qt
i) converges if 1 ≤ i ≤ n. To prove this, it is enough to

show that there exists a sequence of integers (βt)t≥0 such that

(
qβ
i , w

)
=

(
qβt

i , w
)

for 1 ≤ i ≤ n, (9)
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whenever |w| ≤ t and β ≥ βt for t ≥ 0. For t = 0, we may choose β0 = 0
because qt

i is proper for 1 ≤ i ≤ n, t ≥ 0. Assume then that (9) holds for t ≥ 0
whenever |w| ≤ t and β ≥ βt. Because the sequences (qt

ij) converge, there is
a positive integer γ0 such that

(
qγ
ij , w

)
=

(
qγ0
ij , w

)
for 1 ≤ i ≤ m, 1 ≤ j ≤ ni

whenever |w| ≤ t + 1 and γ ≥ γ0. Because the system (7) is a strong PL
system, it follows from

qγ+1
i = pi

(
qγ
11, . . . , q

γ
m1, q

γ
1 , . . . , qγ

n, hi11

(
qγ
1

)
, . . . , hi1s

(
qγ
1

)
,

. . . , hin1

(
qγ
n

)
, . . . , hins

(
qγ
n

))
, (10)

that we may take
βt+1 = max{βt, γ0} + 1.

This proves the existence of βt for any t ≥ 0 and shows that (qt
i) converges

for 1 ≤ i ≤ n. Therefore, also (qt) converges. Denote

lim qt = (q1, . . . , qn, q11, . . . , q1n1 , . . . , qm1, . . . , qmnm).

Now, because we are working with the discrete convergence, (10) implies
that

qi = pi

(
q11, . . . , qm1, q1, . . . , qn, hi11(q1), . . . , hi1s(q1),

. . . , hin1(qn), . . . , hins(qn)
)

= pi

(
α(σ1), . . . , α(σm), q1, . . . , qn, hi11(q1), . . . , hi1s(q1),

. . . , hin1(qn), . . . , hins(qn)
)
, 1 ≤ i ≤ n,

where q1, . . . , qn are L algebraic series. This concludes the proof. ��

The following theorems are consequences of Theorem 13; see [13] for de-
tails.

Theorem 14. The classes SLalg〈〈Σ∗〉〉 and SPLalg〈〈Σ∗〉〉 are rationally closed
(i.e., closed under sum, product and quasi-inverse of a proper series).

Theorem 15. Suppose α : Σ∗ → SLalg〈〈Σ∗〉〉 is a morphism such that α(σ)
is proper for all σ ∈ Σ. If r ∈ Salg〈〈Σ∗〉〉 then α(r) ∈ SLalg〈〈Σ∗〉〉.

4 D0L Power Series

In this section, S will again be a commutative semiring.
The simplest class of L algebraic series consists of D0L power series. By

definition, a power series r ∈ S〈〈X∗〉〉 is a D0L power series if r is generated
by a deterministic LS system
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y = aw + h(y),

where a ∈ S is non-zero, w ∈ X∗ and h : S〈X∗〉 → S〈X∗〉 is a monomial
morphism. Hence, if r ∈ S〈〈X∗〉〉 is a D0L power series, there exist a non-zero
a ∈ S, a word w ∈ X∗ and a monomial morphism h : S〈X∗〉 → S〈X∗〉 such
that

r =
∞∑

n=0

ahn(w). (11)

To exclude trivial cases, we will require that in (11)

supp
(
ahi(w)

)
	= supp

(
ahj(w)

)

whenever 0 ≤ i < j.
Consider the series r given by (11) and denote

ahn(w) = cnwn,

where cn ∈ S and wn ∈ X∗ for n ≥ 0. Then we have

r =
∞∑

n=0

cnwn. (12)

In what follows, the right-hand side of (12) is called the normal form of r.
A sequence (cn)n≥0 of elements of S is called a D0L multiplicity sequence over
S if there exists a D0L power series r such that (12) is the normal form of r.

It is easy to see that the characteristic series of an infinite D0L language
is a D0L power series. Conversely, the support of a D0L power series is a D0L
language.

Next, we characterize D0L multiplicity sequences over commutative semi-
rings.

By definition, a sequence (an)n≥0 of non-negative integers is a modified
PD0L length sequence if there exists a non-negative integer t such that a0 =
a1 = · · · = at−1 = 0 and (an+t)n≥0 is a PD0L length sequence. A sequence
(an)n≥0 of non-negative integers is a modified PD0L length sequence if and
only if the sequence (an+1 − an)n≥0 is N-rational (see [30]).

If h : S〈X∗〉 → S〈Y ∗〉 is a monomial morphism, the underlying monoid
morphism g : X∗ → Y ∗ is defined by g(x) = supp(h(x)) for x ∈ X.

Theorem 16. A sequence (cn)n≥0 of non-zero elements of S is a D0L multi-
plicity sequence over S if and only if there exist a positive integer k, non-zero
a1, . . . , ak ∈ S and modified PD0L length sequences (sin)n≥0 for 1 ≤ i ≤ k
such that

cn =
k∏

i=1

asin
i (13)

for all n ≥ 0.
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Proof. Suppose first that r =
∑∞

n=0 ahn(w) is a D0L power series over S with
the normal form

r =
∞∑

n=0

cnwn.

Without loss of generality, we assume that a = c0 = 1. Let g : X∗ → X∗ be the
underlying monoid morphism of the monomial morphism h : S〈X∗〉 → S〈X∗〉.
Then we have gn(w0) = wn for all n ≥ 0. Let X = {x | x ∈ X} be a
new alphabet with the same cardinality as X. Define the monoid morphism
g1 : (X ∪ X)∗ → (X ∪ X)∗ by

g1(x) = xg(x), g1(x) = ε, x ∈ X.

For each x ∈ X, let ax ∈ S be such that h(x) = axg(x). Define the semi-
algebra morphism α : S〈(X ∪ X)∗〉 → S by

α(x) = 1, α(x) = ax, x ∈ X.

Then we have
h(u) = α

(
g1(u)

)
g(u) (14)

and
g1

(
g(u)

)
= g2

1(u) (15)

for any word u ∈ X∗. Equation (15) implies inductively that

g1

(
gn(u)

)
= gn+1

1 (u) (16)

for any n ≥ 1 and u ∈ X∗. We claim that

cn = α
(
w0g1(w0)g2

1(w0) . . . gn
1 (w0)

)
(17)

for all n ≥ 0.
The claim is trivially true for n = 0. If the claim holds for n = k, we have

by (14), (16), and (17)

hk+1(w0) = h(ckwk) = ckh(wk) = ckα
(
g1(wk)

)
g(wk)

= ckα
(
g1

(
gk(w0)

))
wk+1 = ckα

(
gk+1
1 (w0)

)
wk+1

= α
(
w0g1(w0)g2

1(w0) . . . gk+1
1 (w0)

)
wk+1,

which implies the claim for n = k + 1, and hence for all n ≥ 0.
Next, for each x ∈ X, define the sequence (s(x)n)n≥0 by

s(x)n =
∣
∣w0g1(w0)g2

1(w0) . . . gn
1 (w0)

∣
∣
x
.

Because
s(x)n+1 − s(x)n =

∣
∣gn+1

1 (w0)
∣
∣
x
,
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Theorem 2 implies that the sequence (s(x)n+1−s(x)n)n≥0 is N-rational for all
x ∈ X. Hence, the sequences (s(x)n)n≥0 are modified PD0L length sequences.
By (17), we have

cn =
∏

x∈X

as(x)n
x

for all n ≥ 0. This concludes the proof in one direction.
Suppose then that there exist a positive integer k, non-zero a1, . . . , ak ∈ S

and modified PD0L length sequences (sin)n≥0 for 1 ≤ i ≤ k such that (13)
holds for all n ≥ 0. We have to show that (cn)n≥0 is a D0L multiplicity
sequence over S. Because D0L multiplicity sequences over S are closed under
finite product provided that no term of the product sequence is zero, it suffices
to consider the case k = 1. Denote a = a1 and sn = s1n for n ≥ 0. Without
restriction, we suppose that (sn) is a PD0L length sequence. If the set {sn |
n ≥ 0} is finite, (cn)n≥0 is clearly a D0L multiplicity sequence over S. Suppose
therefore that {sn | n ≥ 0} is an infinite set and let G = (Σ, f, w0) be a PD0L
system generating the sequence S(G) = (wn)n≥0 with |wn| = sn for n ≥ 0.
Define the monomial morphism h : S〈Σ∗〉 → S〈Σ∗〉 by

h(σ) = a|f(σ)|−1f(σ)

for σ ∈ Σ. It follows inductively that

as0hn(w0) = asnwn

for n ≥ 0. Hence, the series r defined by

r =
∞∑

n=0

as0hn(w0)

is a D0L power series over S and the sequence (cn)n≥0 = (asn)n≥0 is a D0L
multiplicity sequence over S. ��

The following two results are consequences of Theorem 16. For details,
see [12].

Theorem 17. Suppose S is a field. A sequence (cn)n≥0 of elements of S is a
D0L multiplicity sequence over S if and only if there exist a positive integer k,
nonzero a1, . . . , ak ∈ S, and Z-rational sequences (sin)n≥0 for 1 ≤ i ≤ k such
that

cn =
k∏

i=1

asin
i

for all n ≥ 0.

Theorem 18. Suppose S is a field. A sequence (cn)n≥0 of non-zero elements
of S is a D0L multiplicity sequence over S if and only if there exist a positive
integer t and integers β1, . . . , βt such that
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cn+t = cβ1
n+t−1c

β2
n+t−2 . . . cβt

n (18)

for n ≥ 0.

Theorem 18 is used in [12] to prove the following result.

Theorem 19. Suppose S is a computable field. It is decidable whether or not
two given D0L power series over S are equal.

Theorem 19 has been extended for DF0L power series in [17]. By definition,
a power series r ∈ S〈〈X∗〉〉 is a DF0L power series over S if there exists a
polynomial a1v1 + · · ·+ akvk ∈ S〈X∗〉 where aj ∈ S, vj ∈ X∗, 1 ≤ j ≤ k, and
a monomial morphism h : S〈X∗〉 → S〈X∗〉 such that

r =
∞∑

n=0

hn(a1v1 + · · · + akvk)

and, furthermore, the series

rj =
∞∑

n=0

ajh
n(vj)

are D0L power series over S for 1 ≤ j ≤ k.

Theorem 20. Suppose S is a computable field. It is decidable whether or not
two given DF0L power series over S are equal.

The proof of Theorem 20 uses the Berstel–Nielsen theorem, methods devel-
oped by Ruohonen, elementary morphisms, and somewhat lengthy arguments
concerning periodicity properties of free monoid morphisms. Theorem 20 im-
plies that language equivalence is decidable for DF0L systems.

The following results are from [14, 10].

Theorem 21. It is decidable whether or not a given D0L power series over
Q is Q-rational.

Theorem 22. It is decidable whether or not a given D0L power series over
Q+ is Q+-algebraic.

No algorithm is known for deciding whether or not a given D0L power
series over Q is Q-algebraic. However, the problem is known to be decidable.
An algorithm is obtained if it is known for which values of k the series

Pk =
∞∑

n=1

xn
1xn

2 . . . xn
k

is Q-algebraic. (Here, x1, . . . , xk are distinct letters.)
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5 Other Power Series Generalizations of L Systems

In the previous section, we defined D0L power series. The framework of L alge-
braic series can be used in a similar way to define power series generalizations
of other L systems.

The definition of 0L power series results if we do not require determinism in
the definition of D0L power series. More specifically, a power series r ∈ S〈〈Σ∗〉〉
is a 0L power series if r is generated by an LS system

y = aw + h(y), (19)

where now a ∈ S, w ∈ Σ∗ and h : S〈Σ∗〉 → S〈Σ∗〉 is a semi-algebra morphism.
Proceeding in another direction, a series r ∈ S〈〈Σ∗〉〉 is a DT0L power

series if there exists a deterministic LS system

y = aw + h1(y) + · · · + hn(y) (20)

such that r is generated by (20). In (20), a ∈ S is non-zero, w ∈ Σ∗ and
h1, . . . , hn : S〈Σ∗〉 → S〈Σ∗〉 are monomial morphisms.

Similarly, a power series r ∈ S〈〈Σ∗〉〉 is a T0L power series if r is generated
by an LS system having the form (20), where now a ∈ S, w ∈ Σ∗ and
h1, . . . , hn : S〈Σ∗〉 → S〈Σ∗〉 are semi-algebra morphisms.

In the theory of L systems the letters C, E, F, H, and P are used in
a standard way denoting codings, intersection with terminal alphabets, finite
sets of axioms, homomorphisms, and propagating systems, respectively. These
definitions extend to power series in a natural way. The use of the letter P
simply means that the considered morphisms are assumed to be propagating.
If X ∈ {ε, D, T, DT}, a series r ∈ S〈〈Σ∗〉〉 is a CX0L power series (resp. an
HX0L power series) if there exist a X0L power series s ∈ S〈〈Δ∗〉〉 and a coding
(resp. monomial morphism) α : S〈Δ∗〉 → S〈Σ∗〉 such that r = α(s). Here,
a semi-algebra morphism α : S〈Δ∗〉 → S〈Σ∗〉 is called a coding if for each
x ∈ Δ there exist a non-zero a ∈ S and a letter σ ∈ Σ such that

α(x) = aσ.

Similarly, a series r ∈ S〈〈Σ∗〉〉 is an EX0L power series if there exist a X0L
power series s ∈ S〈〈Δ∗〉〉 and a subset Δ1 ⊆ Δ such that

r = s � char(Δ∗
1).

We next discuss some results concerning DT0L power series.
Suppose that the DT0L power series r is generated by (20). Then

r =
∑

u∈n∗

S(u)

where, if u = i1i2 . . . ik (iα ∈ n),
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S(u) = hi1hi2 . . . hik
(aw).

For u ∈ n∗, write
S(u) = c(u)s(u)

where c(u) ∈ S and s(u) ∈ Σ∗. The mapping c : n∗ → S is called the DT0L
multiplicity sequence of r. A mapping c : n∗ → S is called a DT0L multiplicity
sequence over S if there is a DT0L power series r over S such that c equals
the multiplicity sequence of r.

Theorem 16 has an analogue for DT0L multiplicity sequences.

Theorem 23. Suppose n ≥ 2. A mapping c : n∗ → Q is a DT0L multiplicity
sequence over Q if and only if there exist a positive integer k, positive primes
p1, . . . , pk and Z-rational series s0, s1, . . . , sk ∈ Z〈〈n∗〉〉 such that

c(u) = (−1)s0(u)
k∏

i=1

p
si(u)
i

for all u ∈ n∗.

The next result can be proved by using Theorem 23 (see [9]).

Theorem 24. Suppose B ⊆ N is a recursively enumerable set. Then there
exists a DT0L power series r over Q such that

Im(r) ∩ {x | x ≥ 1} =
{
2a

∣
∣ a ∈ B

}
.

The following result is a direct consequence of Theorem 24.

Theorem 25. It is undecidable whether or not a given DT0L power series
over Q has coefficient 1.

Next we discuss a power series generalization of the classical E0L = C0L
theorem (see [2, 30]). Suppose

r =
∞∑

n=0

agn(w) � char(Δ∗)

is an E0L power series, where g : S〈Σ∗〉 → S〈Σ∗〉 is a semi-algebra morphism,
a ∈ S, w ∈ Σ∗ and Δ ⊆ Σ. Then we say that r satisfies the ε-condition if

(
g(c), ε

)
=

(
gn(c), ε

)

for all n ≥ 1, c ∈ Σ.

Theorem 26. If r ∈ S〈〈Δ∗〉〉 is a proper E0L power series which satisfies the
ε-condition, then r is a C0L power series.
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The necessity of the ε-condition in the above theorem is an open problem.
The remaining part of the E0L = C0L theorem generalizes without additional
assumptions.

Theorem 27. If r ∈ S〈〈Δ∗〉〉 is a proper C0L power series, then r is an E0L
power series.

For the proofs of Theorems 26 and 27, we refer to [16].
Our final theorem shows that ET0L power series are very closely related

to L rational series.

Theorem 28. Suppose r ∈ S〈〈Σ∗〉〉 and choose a new letter # /∈ Σ. Then #r
is an ET0L power series if and only if #r is L rational.

For this result and other ways to define ET0L power series, see [13, 26, 23,
24].

Above we have indicated some open problems concerning L algebraic se-
ries and L systems. A very important open problem is the HD0L language
equivalence problem. A special case of the problem is solved by Theorem 7,
but the general case remains open.
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1 Introduction

Over the past four decades, the theory of finite state tree automata and tree
transducers has been developed intensively (cf. [68, 69, 29, 64] for a survey).
This classical theory deals with (formal) tree languages and with relations
over trees; it contains, e.g., characterizations of the class of recognizable tree
languages and composition results for certain classes of tree transformations.
Tree automata and tree transducers have also proved useful as formal models
for analyzing and transforming trees in applications like natural language
processing [85, 114, 72, 83, 84], syntax-directed semantics [79, 51, 64, 34],
picture generation [35], or the processing of semi-structured documents [136,
117, 126, 54, 111].

Now it is natural to generalize tree automata and tree transducers by
changing from the qualitative point of view to a quantitative one. For instance,
besides knowing that a pattern occurs in a tree, one might want to know also
the number of such occurrences. Another example is that we would like to
know the probability of the event that an output tree is the translation of
an input tree. Then a tree language becomes a mapping, called a tree series,
from the set of trees to a set S of quantities. Similarly, a tree transformation
is turned into a mapping, called a tree series transformation, from trees into
tree series over S. This extension results in the formal models of weighted tree
automaton and weighted tree transducer, respectively. In order to be able to
calculate with quantities, an algebraic structure is needed; and it has turned
out that semirings are the most appropriate ones for this purpose. Then for
an arbitrary run on an input tree, the weights of the involved transitions are
combined by using the semiring multiplication and, if there exist several runs
on a tree (which, in the case of transducers, lead to the same translation), then
the semiring addition is applied to the weights of all these runs. The classical
unweighted case is reobtained by considering the Boolean semiring B with
disjunction and conjunction as addition and multiplication, respectively. In
fact, for string automata the quantitative point of view has been investigated
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since the 1960s of the previous century and it led to the rich theory of formal
power series [45, 125, 96, 8, 87].

Weighted tree automata have been studied quite intensively by now. The
approaches in the studies differ in the class of semirings they employ, e.g.,
completely distributive lattices [78, 59], fields [7], commutative semirings [1],
and continuous semirings [88, 58]. Every such class has its own benefits: Us-
ing lattices, a bridge to fuzzy sets and concepts is built; taking fields, the
tools and results of linear algebra are available; using commutative semirings,
more general results can be proved; continuous semirings allow for the so-
lution of systems of linear equations which is a fundamental concept. Using
the semiring of real numbers (with the usual addition and multiplication),
probabilistic tree automata [100, 47] can be defined; such automata associate
with every transition a weight in the interval [0, 1], and the weights of all
possible transitions in a state on a symbol sum up to 1. The investigation into
weighted tree transducers was started in [91] and continued in [53, 65, 61, 66,
101, 104] and others. Results regarding composition, decomposition, and hier-
archies were lifted from the unweighted to the weighted case. As for weighted
tree automata, this lifting had to be done with much care because properties
of B (like idempotency, finiteness, commutativity), which are used quite of-
ten in the unweighted case, are now gone. In fact, this makes the weighted
case interesting. For a survey on some results on weighted tree automata and
weighted tree transducers, we refer to [88, 58].

In this chapter of the Handbook of Weighted Automata, we have collected
some important results for weighted tree automata and weighted tree trans-
ducers. We restrict ourselves to finite trees and we consider only ranked trees
(in contrast to unranked trees such as those used to model fully structured
XML-documents). In particular, we address closure properties of the class of
recognizable tree series, results on the support of such tree series, the de-
terminization of weighted tree automata, pumping lemmata and decidability
results, and finite algebraic characterizations of recognizable tree series. We
discuss the equivalence between recognizable tree series and equational, ra-
tional, and MSO-definable tree series, and we present a comparison of several
other models of recognizability. The part on weighted tree automata ends
with a list of further results which we will not discuss in detail. For weighted
tree transducers, we show composition and decomposition results, an inclu-
sion diagram of some fundamental classes of tree series transformations, and
hierarchies obtained by composing weighted tree transducers. We briefly dis-
cuss other models of weighted tree transducers. Finally, we give a short list
of further results on weighted tree transducers that are not addressed in our
main sections.

We have tried to produce a self-contained chapter; thus, the reader who
has some background in automata theory and formal languages can easily
follow the development. For many theorems, we have included sketches of their
proofs, and we have always indicated the original source where the reader can
sometimes find more details.
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The different topics which we address require different additional proper-
ties for the used semiring, e.g., commutativity, zero-divisor freeness, or that
the semiring is a semifield. In order to avoid repetitions of the respective list
of additional properties during the development of a topic, we adopt the fol-
lowing convention: We will place, if appropriate, at the beginning of a section
or subsection a general statement about the additional properties which we
assume to hold throughout that section or subsection, and we do not explicitly
mention these assumptions in the individual statements.

2 Preliminaries

2.1 General Notation

Let N denote the set {0, 1, 2, . . .} of natural numbers. For a set A, we denote
its set of subsets by P(A) and the set of strings over A by A∗. The empty
string is denoted by ε and the length of a string w by |w|. We denote the
cardinality of a finite set A by |A|.

Let H, I, and J be sets. An I × J matrix over H is a mapping
M : I × J → H; the set of all I × J matrices over H is denoted by HI×J .
We write an entry M(i, j) ∈ H as Mi,j . An I-vector v over H is defined
analogously; the set of all I-vectors over H is denoted by HI and an element
v(i) ∈ H of v is denoted by vi.

For two functions f : A→ B and g : B → C, we denote their composition
by g ◦ f where (g ◦ f)(a) = g(f(a)) for every a ∈ A.

2.2 Trees

A ranked alphabet is a tuple (Σ, rk) where Σ is a finite set and rk : Σ → N

is a mapping called rank mapping. For every k ≥ 0, we define Σ(k) = {σ ∈
Σ | rk(σ) = k}. Sometimes, we write σ(k) to mean that σ ∈ Σ(k). Moreover,
let H be a set disjoint with Σ. The set of Σ-terms over H, denoted by TΣ(H),
is the smallest set T such that (i) Σ(0) ∪H ⊆ T and (ii) if k ≥ 1, σ ∈ Σ(k),
and ξ1, . . . , ξk ∈ T , then σ(ξ1, . . . , ξk) ∈ T . We denote TΣ(∅) by TΣ ; obviously
TΣ 	= ∅ iff Σ(0) 	= ∅. If H is finite, then we will also view TΣ(H) as TΣ∪H where
(Σ∪H)(0) = Σ(0)∪H and (Σ∪H)(k) = Σ(k) for every k ≥ 1. Since terms can
be depicted in a very illustrative way as trees, i.e., particular graphs, it has
become a custom to call Σ-terms also Σ-trees. In this chapter, we follow this
custom. Every subset L ⊆ TΣ is called a Σ-tree language. Frequently, we will
consider a tree ξ ∈ TΣ which has the form ξ = σ(ξ1, . . . , ξk) for some k ≥ 0,
σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ . Whenever we use this notation, for k = 0, the
string σ(ξ1, . . . , ξk) stands for σ, rather than σ(). In order to avoid repetition
of the quantifications of k, σ, and ξ1, . . . , ξk, we henceforth only write that we
consider a ξ ∈ TΣ of the form ξ = σ(ξ1, . . . , ξk).
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In the rest of this chapter, Σ and Δ will denote arbitrary ranked al-
phabets if not specified otherwise. Moreover, we assume that Σ(0) 	= ∅
and Δ(0) 	= ∅.

We define the height, size, and set of positions of trees as the functions
height : TΣ → N, size : TΣ → N, and pos : TΣ → P(N∗), respectively, as
follows: (i) for every α ∈ Σ(0), we define height(α) = 0, size(α) = 1, and
pos(α) = {ε}, and (ii) for every ξ = σ(ξ1, . . . , ξk), where k ≥ 1, we define
height(ξ) = 1 + max{height(ξi) | 1 ≤ i ≤ k}, size(ξ) = 1 +

∑
1≤i≤k size(ξi),

and pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ξi)}.
Now let ξ, ζ ∈ TΣ and w ∈ pos(ξ). The label of ξ at w, denoted by ξ(w),

the subtree of ξ at w, denoted by ξ|w, and the replacement of the subtree
of ξ at w by ζ, denoted by ξ[ζ]w are defined as follows: (i) for every α ∈
Σ(0), we define α(ε) = α, α|ε = α, and α[ζ]ε = ζ, and (ii) for every ξ =
σ(ξ1, . . . , ξk) with k ≥ 1, we define ξ(ε) = σ, ξ|ε = ξ, and ξ[ζ]ε = ζ, and
for every 1 ≤ i ≤ k and v ∈ pos(ξi), we define ξ(iv) = ξi(v), ξ|iv = ξi|v,
and ξ[ζ]iv = σ(ξ1, . . . , ξi−1, ξi[ζ]v, ξi+1, . . . , ξk). For a subset Q ⊆ Σ, we define
posQ : TΣ → P(N∗) by posQ(ξ) = {w ∈ pos(ξ) | ξ(w) ∈ Q}.

We will often use the notion of variable. Let Z = {z1, z2, . . .} be a set of
variables, disjoint with Σ, and Zk = {z1, . . . , zk} for every k ≥ 0.

Next, we define tree substitution. Let H be a set disjoint with Σ. For
ξ ∈ TΣ(Z∪H), a finite set I ⊆ N, and a family (ξi | i ∈ I) with ξi ∈ TΣ(H), the
expression ξ(ξi | i ∈ I) denotes the result of substituting in ξ every occurrence
of zi by ξi for every i ∈ I. In case I = {1, . . . , n}, we write ξ(ξ1, . . . , ξn).
Moreover, if I = {1} and z = z1, then we write ξ ·z ξ1 instead of ξ(ξ1). The
operation ·z is associative in the sense that for every ξ′ ∈ TΣ(Z ∪H) we have
(ξ ·z ξ′) ·z ξ1 = ξ ·z (ξ′ ·z ξ1).

2.3 Algebraic Concepts

In this chapter, we will often denote an algebraic structure just by its
carrier set, if its operations are clear from the context.

Let (S, +, 0) be a commutative monoid. Then S is naturally ordered if the
binary relation � on S is a partial order on S, where � is defined by a � b iff
there is a c ∈ S such that a + c = b. A monoid S is locally finite if, for every
finite S′ ⊆ S, the sub-monoid of S generated by S′ is finite.

An infinitary sum operation
∑

associates with every countable index set
I and family (ai | i ∈ I) of elements ai ∈ S an element

∑
i∈I ai. If

∑

is commutative, associative, and extends +, then S is a
∑

-complete monoid
(cf., e.g., [76, 88, 40]); in particular,

∑
i∈∅ ai = 0. A

∑
-complete and naturally

ordered monoid S is
∑

-continuous if, for every I, family (ai | i ∈ I), and b ∈ S,
the following implication holds: if

∑
i∈E ai � b for every finite subset E of I,

then
∑

i∈I ai � b. We call a monoid complete (resp., continuous) if there is an
infinitary sum operation

∑
such that S is

∑
-complete (resp.,

∑
-continuous).
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A semiring (S, +, ·, 0, 1) is an algebra which consists of a commutative
monoid (S, +, 0), called the additive monoid of S, and a monoid (S, ·, 1), called
the multiplicative monoid of S, such that multiplication distributes (from left
and right) over addition, and moreover, 0 	= 1 and 0 is absorbing with respect
to · (also from left and right). We call S idempotent if a + a = a; zero-sum
free if a + b = 0 implies a = b = 0; commutative if its multiplicative monoid
is commutative; zero-divisor free if a · b = 0 implies a = 0 or b = 0 for every
a, b ∈ S; positive if it is zero-sum free and zero-divisor free. Finally, S is locally
finite if, for every finite S′ ⊆ S, the subsemiring of S generated by S′ is finite.

Let S be commutative and (ai | i ∈ I) be a finite family of elements ai ∈ S.
Then we denote the product of all the elements of the family by

∏
i∈I ai; in

particular, we have that
∏

i∈∅ ai = 1.
Let Q be a finite set and u, v ∈ SQ two Q-vectors over S. Then we define

the inner product of u and v as u · v =
∑

q∈Q uq · vq.

In the rest of this chapter, S will denote an arbitrary semiring (S, +, ·, 0, 1)
if not specified otherwise.

Among other semirings, we consider the following particular ones: the
Boolean semiring (B,∨,∧, 0, 1) where B = {0, 1}, the semiring Nat = (N, +,
·, 0, 1) of natural numbers, the arctic semiring Arct = (N ∪ {−∞}, max, +,
−∞, 0), the tropical semiring Trop = (N ∪ {∞}, min, +,∞, 0), and the semi-
ring of formal languages LangA = (P(A∗),∪, ·, ∅, {ε}) over any set A (where
L · L′ = {uv | u ∈ L, v ∈ L′} for languages L, L′).

Again, let
∑

be an infinitary sum operation. The semiring S is
∑

-complete
if its additive monoid is

∑
-complete and the following distributive laws hold:

c · (
∑

i∈I ai) =
∑

i∈I(c ·ai) and (
∑

i∈I ai) · c =
∑

i∈I(ai · c) for every c ∈ S and
family (ai | i ∈ I) with ai ∈ S. Moreover, S is naturally ordered if its additive
monoid is naturally ordered, and S is

∑
-continuous if it is

∑
-complete and

its additive monoid is
∑

-continuous.
We call S a ring (with unit) if (S, +, 0) is a group; the additive inverse of

a ∈ S is denoted by −a. A semiring which is not a ring is called proper. Thus,
every positive semiring is proper. We call S a semifield if (S \ {0}, ·, 1) is a
commutative group, i.e., every element a ∈ S \ {0} has an inverse, which we
denote by a−1. Moreover, S is a field if it is a ring and a semifield.

For a semiring S, an S-semimodule is a commutative monoid (V, +, 0)
equipped with a scalar multiplication ◦ : S × V → V satisfying the following
laws:

(a · a′) ◦ v = a ◦ (a′ ◦ v),
a ◦ (v + v′) = (a ◦ v) + (a ◦ v′),
(a + a′) ◦ v = (a ◦ v) + (a′ ◦ v),

1 ◦ v = v,

a ◦ 0 = 0 ◦ v = 0
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for every a, a′ ∈ S and v, v′ ∈ V (cf. [71], page 149). Note that the symbols
+ and 0 are overloaded because they denote operations over both S and V .
Also, at other places in this chapter, such overloading of symbols may occur.
However, it will always be clear from the context which operation is meant.
As usual, we drop ◦ from a ◦ v and just write av.

An S-semimodule (V, +, 0) with scalar multiplication ◦ is complete if the
monoid (V, +, 0) is complete, say, with the infinitary sum

∑
, and a◦

∑
i∈I vi =∑

i∈I(a ◦ vi) holds for every a ∈ S and family (vi | i ∈ I) with vi ∈ V .
Let V and V ′ be S-semimodules. A mapping f : V k → V ′ is multilinear if

f(v1, . . . , vi−1, au+bv, vi+1, . . . , vk) = af(v1, . . . , vi−1, u, vi+1, . . . , vk)+bf(v1,
. . . , vi−1, v, vi+1, . . . , vk) for every 1 ≤ i ≤ k, u, v, v1, . . . , vk ∈ V , and a, b ∈ S.
A multilinear unary mapping f : V → V ′ is called linear.

If S is a field and (V, +, 0) is a commutative group, then the S-semimodule
(V, +, 0) is an S-vector space. Later, we will consider the particular S-vector
space (SQ, +, 0) where Q is a finite set. The zero element 0 is the vector with
0q = 0 for every q ∈ Q. Moreover, for every u, v ∈ SQ, q ∈ Q, and a ∈ S, we
have that (u + v)q = uq + vq and (au)q = a · uq. We call a linear mapping
γ : V → S (where S is viewed as S-vector space) a linear form.

Let V be an S-vector space. The vectors v1, . . . , vm ∈ V are linearly in-
dependent if, for every a1, . . . , am ∈ S, the equality a1v1 + · · · + amvm = 0
implies that a1 = · · · = am = 0. A subset V ′ of V is linearly independent
if the vectors in every finite subset of V ′ are linearly independent. Moreover,
V ′ generates V if, for every v ∈ V , there are m ≥ 1, vi ∈ V ′ and ai ∈ S for
1 ≤ i ≤ m such that v = a1v1 + · · · + amvm. Finally, V ′ is a basis of V if
it is linearly independent and generates V . If V admits a basis consisting of
κ ∈ N elements, then it is called κ-dimensional; V is finite-dimensional if it is
κ-dimensional for some κ ∈ N. In a finite-dimensional vector space each basis
has the same number of elements.

A Σ-algebra (V, θ) consists of a nonempty set V (carrier set) and an
arity preserving interpretation θ of symbols from Σ as operations over V ,
i.e., θ(σ) : V k → V for every k ≥ 0 and σ ∈ Σ(k). The Σ-term alge-
bra (TΣ , top), defined by top(σ)(ξ1, . . . , ξk) = σ(ξ1, . . . , ξk), is initial in the
class of all Σ-algebras, i.e., for every Σ-algebra (V, θ), there is a unique
Σ-algebra homomorphism from TΣ to V , which we denote by hV (if not
specified otherwise). That means that for every σ(ξ1, . . . , ξk) ∈ TΣ we have
hV (σ(ξ1, . . . , ξk)) = θ(σ)(hV (ξ1), . . . , hV (ξk)). Now let (V, θ) be a Σ-algebra
and z a nullary symbol such that z /∈ Σ. For every v ∈ V , we define the
v-extension of (V, θ) to be the Σ ∪ {z}-algebra (V, θv) where θv(z) = v and
θv(σ) = θ(σ) for every k ≥ 0 and σ ∈ Σ(k). We denote the unique Σ ∪ {z}-
algebra homomorphism from TΣ∪{z} to V by hv

V . For more details, we refer
to [73, 70, 139].

An S-Σ-semimodule (V, +, 0, θ) consists of an S-semimodule (V, +, 0) and
a Σ-algebra (V, θ) where θ(σ) is multilinear for every σ ∈ Σ. If S is a field and
(V, +, 0) is an S-vector space, then we call (V, +, 0, θ) an S-Σ-vector space.
An S-Σ-semimodule (V, +, 0, θ) is complete if the S-semimodule (V, +, 0) is



320 Zoltán Fülöp and Heiko Vogler

complete and for every σ ∈ Σ, the operation θ(σ) preserves infinite sums in
each of its arguments, i.e.,

θ(σ)
(

. . . ,
∑

i∈I

vi, . . .

)

=
∑

i∈I

θ(σ)(. . . , vi, . . .).

Moreover, a complete S-Σ-semimodule (V, +, 0, θ) is continuous if (V, +, 0) is
continuous.

2.4 Tree Series

Let H be a set with Σ ∩H = ∅. A tree series over Σ, H, and S (or for short:
tree series) is a mapping r : TΣ(H) → S. For every ξ ∈ TΣ(H), the element
r(ξ) ∈ S is called the coefficient of ξ and it is denoted by (r, ξ). Moreover, the
tree series r is written as the formal sum

∑
ξ∈TΣ(H)(r, ξ).ξ.

The support of the tree series r is defined as the set supp(r) = {ξ ∈
TΣ(H) | (r, ξ) 	= 0}. Moreover, r is polynomial (resp., a monomial) if supp(r)
is finite (resp., a singleton). We will denote a polynomial r by a1.ξ1+· · ·+ak.ξk,
where supp(r) = {ξ1, . . . , ξk} and ai = (r, ξi) for 1 ≤ i ≤ k. The set of all
(resp., polynomial) tree series is denoted by S〈〈TΣ(H)〉〉 (resp., S〈TΣ(H)〉).

Let r ∈ S〈〈TΣ(H)〉〉 be a tree series. We call r Boolean if (r, ξ) ∈ {0, 1}
holds for every ξ ∈ TΣ(H). If there is an a ∈ S such that for every ξ ∈ TΣ(H),
we have (r, ξ) = a, then r is a constant and also denoted by ã. Note that the
constants 0̃ and 1̃ are Boolean.

For a set A and B ⊆ A, the characteristic function of B with respect to
S is the mapping 1(S,B) : A → S such that 1(S,B)(a) = 1 if a ∈ B, and
1(S,B)(a) = 0 otherwise for every a ∈ A. For a tree language L ⊆ TΣ , we
call the tree series 1(S,L) the characteristic tree series of L with respect to S.
Certainly, we have supp(1(S,L)) = L.

3 Weighted Tree Automata

3.1 Bottom-up Tree Automata

The theory of finite-state string automata and of recognizable string lan-
guages has been successfully generalized to trees. For instance, the class of
recognizable tree languages is characterized by solutions of linear equations
[116], rational expressions [135], monadic-second order logic [135, 33], congru-
ences of finite index [26, 100], and finitely generated congruences [63, 86]. An
excellent, detailed survey on recognizable tree languages and finite-state tree
automata can be found in [68, 69] (also cf. [29]). Let us recall here the concept
of a finite-state bottom-up tree automaton.

A (finite-state) bottom-up tree automaton is a tuple A = (Q, Σ, δ, F ),
where Q is a finite nonempty set (states), δ is a Σ-indexed family (δσ | σ ∈ Σ)
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where δσ ⊆ Qk × Q for σ ∈ Σ(k) (set of transitions at σ), and F ⊆ Q (final
states). We call Σ the input ranked alphabet, and an element ξ ∈ TΣ an input
tree. Here and in the rest of the chapter, we view Qk as the set of strings
over Q of length k. To define the semantics of A, we consider the Σ-algebra
(P(Q), δA) with δA(σ)(P1, . . . , Pk) = {q ∈ Q | ∃(q1 . . . qk, q) ∈ δσ : qi ∈ Pi for
every 1 ≤ i ≤ k} for every P1, . . . , Pk ∈ P(Q). The tree language recognized by
A is LA = {ξ ∈ TΣ | hP(Q)(ξ) ∩ F 	= ∅}. The class of all recognizable Σ-tree
languages is denoted by Rec(Σ).

It is well known that every bottom-up tree automaton can be transformed
into an equivalent deterministic one. A bottom-up tree automaton is (total)
deterministic if the relation δσ is a total function for every σ ∈ Σ. Then we
view hP(Q) as a mapping of type TΣ → Q and write hQ rather than hP(Q).

Example 3.1. Consider the ranked alphabet Σ = {σ(2), γ(1), α(0)} and the
pattern σ(z, α). We say that the pattern σ(z, α) occurs in a tree ξ ∈ TΣ if
there is a position w ∈ pos(ξ) and a tree ξ′ ∈ TΣ such that ξ = ξ[σ(ξ′, α)]w.
We construct a bottom-up tree automaton A such that LA is the set of all
Σ-trees in which σ(z, α) occurs at least once. The automaton performs a
nondeterministic guess-and-verify strategy; it selects nondeterministically an
occurrence of α and verifies whether it is a right child of a σ. For this, let A =
(Q, Σ, δ, F ) be defined by Q = {q, α, f}, F = {f}, and δα = {(ε, q), (ε, α)},
δγ = {(q, q), (f, f)}, and δσ = {(qq, q), (qf, f), (fq, f), (qα, f)}. Then for every
ξ ∈ TΣ , we have that f ∈ hP(Q)(ξ) iff the pattern σ(z, α) occurs in ξ.

3.2 Recognizable Tree Series

Bottom-up tree automata can be reformulated such that the reformulation
easily leads to the concept of weighted tree automata. The idea behind this
is to represent a tree language L ⊆ TΣ as a characteristic tree series 1(B,L) :
TΣ → B and then, in a second step, to replace the Boolean semiring B by S.

Consider now the system A = (Q, Σ, B, μ, ν), called a weighted tree au-
tomaton over B, where Q is as in Sect. 3.1, while μ is a family (μk : Σ(k) →
B

Qk×Q | k ≥ 0) of mappings and ν ∈ B
Q is a Q-vector over B. We define

the semantics of A as a mapping rA : TΣ → B in the following way. Let us
introduce the Σ-algebra (BQ, μA), where

μA(σ)(v1, . . . , vk)q =
∨

q1,...,qk∈Q

(v1)q1 ∧ · · · ∧ (vk)qk
∧ μk(σ)q1...qk,q,

for every k ≥ 0, σ ∈ Σ(k), and v1, . . . , vk ∈ B
Q. Now let

rA(ξ) = hμ(ξ) ∧ ν

for every ξ ∈ TΣ , where hμ is the unique Σ-homomorphism from the Σ-term
algebra TΣ to (BQ, μA). (Recall that, according to the notion of inner product
of Q-vectors over B from Sect. 2.3, hμ(ξ) ∧ ν =

∨
q∈Q hμ(ξ)q ∧ νq.)
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It should be clear that bottom-up tree automata and weighted tree au-
tomata over B are semantically equivalent: for every bottom-up tree au-
tomaton A = (Q, Σ, δ, F ) one can construct the weighted tree automaton
B = (Q, Σ, B, μ, ν), where μk(σ) = 1(B,δσ) and ν = 1(B,F ). Then rB = 1(B,LA).
Clearly, the construction can be reversed.

Now we observe that weighted tree automata over B can be generalized
to weighted tree automata over S in an obvious way: then S, +, and · take
over the role of B, ∨, and ∧, respectively. The semantics of a weighted tree
automaton A over S will be a tree series rA : TΣ → S. We expect that
weighted tree automata can compute tree series like:

• height : TΣ → N over Arct,
• sizeδ : TΣ → N and size : TΣ → N over Nat and also over Trop, where

sizeδ(ξ) = |pos{δ}(ξ)|,
• #σ(z,α) : TΣ → N over Nat, where #σ(z,α)(ξ) is the number of occurrences

of the pattern σ(z, α) in ξ,
• shortestα : TΣ → N over Trop, where shortestα(ξ) is the length of a shortest

path in ξ from its root to one of its leaves with label α,
• yield : TΣ → P(Σ∗) over LangΣ , where yield(ξ) is the concatenation of

the nullary symbols occurring in ξ from left to right,
• revpos : TΣ → P(N∗) over LangN, where revpos(ξ) is the set of reversals

of elements in pos(ξ),
• revposσ(z,α) : TΣ → P(N∗) over LangN, where revposσ(z,α)(ξ) is the set of

reversals of positions of ξ at which the pattern σ(z, α) occurs; note that
#σ(z,α)(ξ) is the cardinality of revposσ(z,α)(ξ).

Now let us start with the formal definition of weighted tree automata. We
follow the approach of [1], where this model was called an S-Σ-tree automaton.

Definition 3.2. A weighted tree automaton (over S) (for short: wta) is a
tuple A = (Q,Σ, S, μ, ν) where:

• Q is a finite nonempty set, the set of states.
• Σ is the ranked input alphabet.
• μ = (μk | k ∈ N) is a family of transition mappings3 μk : Σ(k) → SQk×Q.
• ν ∈ SQ is a Q-vector over S, the root weight vector.

For every transition (w, q) ∈ Qk ×Q, the element μk(σ)w,q ∈ S is the weight
of (w, q). We denote the set {μk(σ)w,q | k ≥ 0, σ ∈ Σ(k), w ∈ Qk, q ∈ Q}∪{νq |
q ∈ Q} of all weights which occur in A, by wts(A). Note that wts(A) ⊆ S.

For a wta A, we consider the Σ-algebra (SQ, μA) where, for every k ≥ 0
and σ ∈ Σ(k), the k-ary operation μA(σ) : SQ × · · · × SQ → SQ is defined by

μA(σ)(v1, . . . , vk)q =
∑

q1,...,qk∈Q

(v1)q1 · · · · · (vk)qk
· μk(σ)q1...qk,q

3 In the literature, μ is also called a tree representation.
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for every q ∈ Q and v1, . . . , vk ∈ SQ. Let us denote here the unique Σ-algebra
homomorphism from TΣ to SQ by hμ. The tree series rA ∈ S〈〈TΣ〉〉 recognized
by A is defined by

(rA, ξ) = hμ(ξ) · ν

for every ξ ∈ TΣ . (Again recall that, according to the notion of inner product
of Q-vectors over S from Sect. 2.3, hμ(ξ) · ν =

∑
q∈Q hμ(ξ)q · νq.) A tree series

r ∈ S〈〈TΣ〉〉 is recognizable if there is a wta A such that r = rA. The class of
all tree series over Σ and S which are recognizable is denoted by Rec(Σ,S).

Due to the definitions of μA and hμ, we can observe that

hμ

(
σ(ξ1, . . . , ξk)

)
q

=
∑

q1,...,qk∈Q

hμ(ξ1)q1 · · · · · hμ(ξk)qk
· μk(σ)q1...qk,q

for every σ(ξ1, . . . , ξk) ∈ TΣ and q ∈ Q.

Example 3.3. We construct a wta A = (Q, Σ,Arct, μ, ν) which recognizes the
tree series height. Let Q = {p1, p2}, Σ = {σ(2), α(0)}, and νp1 = 0 and νp2 =
−∞. Moreover, let

μ0(α)ε,p1 = μ0(α)ε,p2 = 0,

μ2(σ)p1p2,p1 = μ2(σ)p2p1,p1 = 1,

μ2(σ)p2p2,p2 = 0,

and for every other transition (q1q2, q) we have μ2(σ)q1q2,q = −∞. We consider
the tree ξ = σ(α, α) and compute hμ(ξ)p1 and hμ(ξ)p2 . Clearly, hμ(α)p1 =
μ0(α)ε,p1 = 0 and hμ(α)p2 = 0. Then

hμ(σ(α, α))p1 = max
q1,q2∈Q

{hμ(α)q1 + hμ(α)q2 + μ2(σ)q1q2,p1} = 1

(note that μ2(σ)p1p1,p1 = μ2(σ)p2p2,p1 = −∞ and −∞ is unit for max) and
similarly, hμ(σ(α, α))p2 = 0. In general, we can prove by structural induction
on ξ that hμ(ξ)p1 = height(ξ) and hμ(ξ)p2 = 0 for every ξ ∈ TΣ . Thus,
rA = height, and hence height ∈ Rec(Σ, Arct).

We have defined recognizable tree series in an initial algebra semantics
style [70]. An alternative way is to define the semantics of a wta by means of
its runs. A run of A on ξ ∈ TΣ is a mapping κ : pos(ξ) → Q; the set of all
runs of A on ξ is denoted by RA(ξ). For every κ ∈ RA(ξ) and w ∈ pos(ξ),
the run induced by κ at position w is the run κ|w ∈ RA(ξ|w) and defined for
every w′ ∈ pos(ξ|w) by κ|w(w′) = κ(ww′). For every ξ = σ(ξ1, . . . , ξk) ∈ TΣ ,
the weight wt(κ) of κ is wt(κ) = wt(κ|1) · · · · · wt(κ|k) · μk(σ)κ(1)...κ(k),κ(ε).
The run semantics of A is the tree series rrun

A ∈ S〈〈TΣ〉〉 such that

(
rrun
A , ξ

)
=

∑

κ∈RA(ξ)

wt(κ) · νκ(ε)
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for every ξ ∈ TΣ . In fact, for every wta A, the run semantics of A and
the tree series recognized by A are the same. More precisely, the equation
hμ(ξ)q =

∑
κ∈RA(ξ),κ(ε)=q wt(κ) holds for every ξ ∈ TΣ and q ∈ Q, which

easily implies rA = rrun
A .

Example 3.4. We construct a wta A′ which recognizes the tree series #σ(z,α) :
TΣ → N. This generalizes Example 3.1 in the sense that we not only consider
whether the pattern σ(z, α) occurs in ξ, but also compute the number of those
occurrences. For this, recall the bottom-up tree automaton A = (Q, Σ, δ, F ) of
Example 3.1 and construct A′ = (Q, Σ,Nat, μ, ν) such that μk(θ) = 1(Nat,δθ)

for every k ≥ 0, θ ∈ Σ(k); moreover, let ν = 1(Nat,F ).
Then for every ξ ∈ TΣ and run κ ∈ RA(ξ) with κ(ε) = f , the weight wt(κ)

is 1 iff at exactly one occurrence of σ the transition (qα, f) was applied (and
wt(κ) = 0 otherwise). Since the application of this transition indicates an
occurrence of the pattern σ(z, α), we have that (rrun

A , ξ) = #σ(z,α)(ξ). Thus,
#σ(z,α) ∈ Rec(Σ, Nat).

In fact, wta generalize in a natural way weighted finite automata as they
are presented, e.g., in Part I of this handbook. Here, we follow the formal
approach of [39], where a weighted finite automaton over a semiring S and
an (unranked) alphabet Γ is a tuple A = (Q, λ, μ, γ) and Q is a finite set of
states, μ : Γ → SQ×Q is the transition weight function, and λ, γ ∈ SQ are
weight functions for entering and leaving a state. The behavior ‖A‖ : Γ ∗ → S
of A associates with every word w = a1a2 . . . an ∈ Γ ∗ the value (‖A‖, w) =∑

p∈P (w) wt(p) where P (w) is the set of all paths with label w, and wt(p) is
the weight of p defined to be λq0 · μ(a1)q0,q1 · · · · · μ(an)qn−1,qn · γqn assuming
that p has the form q0

a1−→ q1
a2−→ · · · an−1−→ qn−1

an−→ qn. Let Recw(Γ, S) denote
the class of all behaviors of weighted finite automata, i.e., of all recognizable
formal power series over Γ and S.

By rotating a word w counterclockwise by 90◦, we obtain the tree tree(w).
Formally, let Γt be the ranked alphabet {a(1) | a ∈ Γ} ∪ {e0)}, and tree :
Γ ∗ → TΓt be defined by tree(ε) = e and tree(wa) = a(tree(w)) for every
a ∈ Γ and w ∈ Γ ∗. Clearly, tree is a bijection; moreover, L ⊆ Γ ∗ is a
recognizable language iff the tree language tree(L) is recognizable. Then, given
a weighted finite automaton A = (Q, λ, μ, γ), we can construct the wta At =
(Q, Γt, S, θ, γ) over S and Γt where θ0(e)ε,q = λq and θ1(a)q,p = μ(a)q,p for
every a ∈ Γ and q, p ∈ Q. It is obvious that ‖A‖ = rrun

At
◦ tree. Vice versa,

given a wta B over some ranked alphabet Γt which results from an (unranked)
alphabet Γ , the wta B can be viewed in an obvious way as a weighted finite
automaton B′ such that rrun

B = ‖B′‖ ◦ tree−1. By extending the mapping
tree in the usual way to languages and classes of languages, we obtain that
tree(Recw(Γ, S)) = Rec(Γt, S) for every alphabet Γ .

As first type of restriction on wta, we define deterministic wta. A wta
A = (Q,Σ, S, μ, ν) is:
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• bottom-up deterministic (for short: bu-deterministic) if for every k ≥ 0,
σ ∈ Σ(k), and w ∈ Qk there is at most one q ∈ Q such that μk(σ)w,q 	= 0,

• total bu-deterministic if for every k ≥ 0, σ ∈ Σ(k), and w ∈ Qk, there is
exactly one state q such that μk(σ)w,q 	= 0,

• top-down deterministic (for short: td-deterministic) if for every k ≥ 0,
σ ∈ Σ(k), and q ∈ Q there is at most one w ∈ Qk such that μk(σ)w,q 	= 0;
moreover, νq 	= 0 for at most one state q.

Note that, if the wta A is bu-deterministic, then for every input tree ξ ∈ TΣ ,
there is at most one q ∈ Q such that hμ(ξ)q 	= 0. In this case, the operation +
of S is not used for the computation of rA. Also in the td-deterministic case
+ is not used to compute rA.

We also note that, for every bu-deterministic wta A, there exists a total
bu-deterministic wta A′ such that rA = rA′ . This normal form can always be
achieved in a standard way by using an additional dummy state for which the
root weight vector ν yields 0.

Let g ∈ {bu, td}. Then a tree series r ∈ S〈〈TΣ〉〉 is g-deterministically
recognizable if there is a g-deterministic wta A such that r = rA. The cor-
responding classes of recognizable tree series are denoted by bud-Rec(Σ,S)
and tdd-Rec(Σ,S). In Sect. 3.5, we will deal with the question under which
conditions a wta can be determinized.

As second type of restriction on wta, we consider their root weights. A wta
A has Boolean root weights if {νq | q ∈ Q} ⊆ {0, 1}; in this case, we replace
ν by the set F = {q ∈ Q | νq = 1}. Then (rA, ξ) =

∑
q∈F hμ(ξ)q. In fact, the

wta of Examples 3.3 and 3.4 have Boolean root weights.
A tree series r ∈ S〈〈TΣ〉〉 is recognizable with Boolean root weights if there

is a wta A with Boolean root weights such that r = rA. The corresponding
classes of recognizable tree series are denoted by indexing the original class
with a capital B, e.g., bud-RecB(Σ,S) is the class of all tree series which are
bu-deterministically recognizable with Boolean root weights.

Example 3.5. The remaining tree series shown in the list on page 322 are also
recognizable as follows: sizeδ and size are in RecB(Σ, Nat)∩bud-RecB(Σ, Trop);
shortestα ∈ RecB(Σ, Trop); yield ∈ bud-RecB(Σ, LangΣ); revpos ∈ bud-RecB

(Σ, LangN); and revposσ(z,α) ∈ RecB(Σ, LangN), cf. [13].

In general, wta and wta with Boolean root weights are equally powerful.

Theorem 3.6 ([14], Theorems 6.1.6 and 6.2.2). Rec(Σ,S) = RecB(Σ,S)
and tdd-Rec(Σ,S) = tdd-RecB(Σ,S).

Proof. For a given wta A = (Q,Σ, S, μ, ν), we construct the wta A′ =
(Q′, Σ, S, μ′, {qf}) with Boolean root weights by defining Q′ = Q ∪ {qf} for
a new state qf . Moreover, for every σ ∈ Σ(k), w ∈ Qk, and q ∈ Q′, we define
μ′

k(σ)w,q = μk(σ)w,q if q ∈ Q, and μ′
k(σ)w,qf

=
∑

q∈Q μk(σ)w,q · νq; and for
every w ∈ (Q′)k \Qk and q ∈ Q′, we define μ′

k(σ)w,q = 0. We note that this
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construction preserves td-determinism but not bu-determinism. It is obvious
that hμ(ξ) · ν = hμ′(ξ)qf

and thus rA = rA′ . ��

In fact, the classes bud-Rec(Σ,S) and bud-RecB(Σ,S) may indeed differ.
More precisely, if Σ contains at least one non-nullary symbol σ, and there
is an element a ∈ S \ {0} which has no multiplicative right inverse, then
bud-Rec(Σ,S) \ bud-RecB(Σ,S) 	= ∅. A witness of this set is the polyno-
mial tree series r = a.α + 1.σ(α, . . . , α) (cf. [14], Lemma 6.1.3). However, for
semifields bu-deterministic wta and bu-deterministic wta with Boolean root
weights are equally powerful.

Theorem 3.7 ([14], Lemma 6.1.4). Let S be a semifield. Then bud-
Rec(Σ,S) = bud-RecB(Σ,S).

Proof. Let A = (Q,Σ, S, μ, ν) be a bu-deterministic wta. We construct the
bu-deterministic wta A′ = (Q, Σ, S, μ′, F ) with F = {q ∈ Q | νq 	= 0} and
μ′

k(σ)w,q = ν′(qk)−1 · · · · · ν′(q1)−1 · μk(σ)w,q · ν′(q) for every σ ∈ Σ(k),
w = q1 . . . qk ∈ Qk, and q ∈ Q; the auxiliary function ν′ : Q→ S is defined by
ν′(q) = νq if q ∈ F and ν′(q) = 1 otherwise. Then hμ′(ξ)q = hμ(ξ)q · ν′(q) for
every ξ ∈ TΣ and q ∈ Q. Finally, we have (rA, ξ) = hμ(ξ) · ν =

∑
q∈F hμ(ξ)q ·

νq =
∑

q∈F hμ(ξ)q · ν′(q) =
∑

q∈F hμ′(ξ)q = (rA′ , ξ). ��

3.3 Closure Properties

As for tree languages, one can define operations on tree series in S〈〈TΣ〉〉, e.g.,
the multiplication of a tree series with a semiring element, sum, Hadamard-
product, top-concatenation, OI-substitution, α-concatenation (i.e., Cauchy-
product), where α is a nullary symbol in Σ, α-Kleene star, and relabeling.
Let us define these operations and show the corresponding closure properties
of Rec(Σ,S).

Let a ∈ S and r ∈ S〈〈TΣ〉〉. Then the scalar multiplication of a and r is
the tree series ar ∈ S〈〈TΣ〉〉 defined by (ar, ξ) = a · (r, ξ) for every ξ ∈ TΣ .

Let r1, r2 ∈ S〈〈TΣ〉〉. The sum of r1 and r2 and the Hadamard product of r1

and r2 are the tree series r1 + r2 ∈ S〈〈TΣ〉〉 and r1� r2 ∈ S〈〈TΣ〉〉, respectively,
defined by (r1 + r2, ξ) = (r1, ξ) + (r2, ξ) and (r1 � r2, ξ) = (r1, ξ) · (r2, ξ)
for every ξ ∈ TΣ . We can also sum up over an infinite family of tree series
assuming that this family is locally finite. A family (ri | i ∈ I) of tree series
is locally finite if for every ξ ∈ TΣ , the set Iξ = {i ∈ I | (ri, ξ) 	= 0} is finite.
Then we define the sum

∑
i∈I ri ∈ S〈〈TΣ〉〉 by (

∑
i∈I ri, ξ) =

∑
i∈Iξ

(ri, ξ) for
every ξ ∈ TΣ .

For every σ ∈ Σ(k), the top-concatenation (with σ) topσ : S〈〈TΣ〉〉k →
S〈〈TΣ〉〉 is defined, for every r1, . . . , rk ∈ S〈〈TΣ〉〉 and ξ ∈ TΣ as follows: if
ξ = σ(ξ1, . . . , ξk), then (topσ(r1, . . . , rk), ξ) = (r1, ξ1) · · · · · (rk, ξk), otherwise
(topσ(r1, . . . , rk), ξ) = 0.

Next, we define the OI-substitution of tree series, which generalizes the OI-
substitution of tree languages [55, 56]. Let n ≥ 0, ᾱ = (α1, . . . , αn) ∈ (Σ(0))n,
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and r̄ = (r1, . . . , rn) ∈ S〈〈TΣ〉〉n. For every ξ ∈ TΣ , the tree series ξ ←OI,ᾱ r̄
(abbreviated by s in this definition) is defined inductively on the structure
of ξ: (i) if ξ = αi, then s = ri, and (ii) if ξ = σ(ξ1, . . . , ξk) and k ≥ 1 or k = 0
and σ /∈ {α1, . . . , αn}, then s = topσ(ξ1 ←OI,ᾱ r̄, . . . , ξk ←OI,ᾱ r̄). We note
that (s, ξ′) = 0 unless ξ′ can be obtained from ξ by substituting the αi’s with
suitable trees. Then the OI-substitution of r̄ into r ∈ S〈〈TΣ〉〉 at ᾱ is the tree
series r ←OI,ᾱ r̄ in S〈〈TΣ〉〉 which is defined to be

∑
ξ∈TΣ

(r, ξ)(ξ ←OI,ᾱ r̄).
Note that the family ((r, ξ)(ξ ←OI,ᾱ r̄) | ξ ∈ TΣ) of tree series is locally finite,
and thus the summation is well defined.

Let r1, r2 ∈ S〈〈TΣ〉〉 and α ∈ Σ(0). The α-concatenation of r1 and r2 is the
tree series r1 ←OI,(α) (r2), abbreviated by r1 ◦α r2.

Let r ∈ S〈〈TΣ〉〉 and α ∈ Σ(0). The nth α-iteration of r is the tree series
rn
α ∈ S〈〈TΣ〉〉 defined inductively as follows: r0

α = 0̃ and for every n ≥ 0,
rn+1
α = r ◦α rn

α + 1.α. A tree series r ∈ S〈〈TΣ〉〉 is α-proper if (r, α) = 0. For
every α-proper r ∈ S〈〈TΣ〉〉, ξ ∈ TΣ , and n ≥ height(ξ) + 1, we have that
(rn+1

α , ξ) = (rn
α, ξ) (cf. [41], Lemma 3.10). Then, for every r ∈ S〈〈TΣ〉〉, the

α-Kleene star of r is the tree series r∗α ∈ S〈〈TΣ〉〉 defined as follows. If r is
α-proper, then (r∗α, ξ) = (rheight(ξ)+1

α , ξ) for every ξ ∈ TΣ ; otherwise, r∗α = 0̃.
Next, let τ : Σ → P(Δ) be a relabeling (from Σ to Δ), i.e., a mapping such

that τ(σ) ⊆ Δ(k) for every k ≥ 0 and σ ∈ Σ(k). This mapping is extended
in a canonical way to a mapping τ : TΣ → P(TΔ), and then to a mapping
τ : S〈〈TΣ〉〉 → S〈〈TΔ〉〉 by defining (τ(r), ξ) =

∑
ζ∈TΣ ,ξ∈τ(ζ)(r, ζ) for every

r ∈ S〈〈TΣ〉〉 and ξ ∈ TΔ (note that the summation is finite).
In fact, recognizability of tree series is preserved under the aforementioned

operations. The proofs of these closure results are sometimes folklore and
sometimes straightforward generalizations of the corresponding results for for-
mal power series over strings or for recognizable tree languages (cf., e.g., [45,
125, 7, 96, 69, 21, 91]). In particular, in view of Theorem 3.6, we can use
results of [41] in which wta is defined with Boolean root weights.

Theorem 3.8. Let S be commutative. Then Rec(Σ,S) is closed under:

• scalar multiplication ([41], Lemma 6.3),
• sum ([41], Lemma 6.4),
• Hadamard-product ([12], Corollary 3.9, also cf. [7], Proposition 5.1 for a

field S),
• top-concatenation ([41], Lemmas 6.1 and 6.2),
• α-concatenation ([41], Lemma 6.5),
• α-Kleene star ([41], an easy adaptation of Lemma 6.7), and
• OI-substitution.

Moreover, if r ∈ Rec(Σ,S) and τ is a relabeling from Σ to Δ, then τ(r) ∈
Rec(Δ, S) ([43], Lemma 3.4, also cf. [87], Corollary 14 for continuous semi-
rings).

Proof. We prove the closure under OI-substitution. It has been proved for
so-called well ω-additive semirings in [21], Lemma 24. Now we show that it
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also holds for commutative semirings. For this, let n ≥ 0, ᾱ = (α1, . . . , αn) ∈
(Σ(0))n, r̄ = (r1, . . . , rn) ∈ S〈〈TΣ〉〉n, and r ∈ S〈〈TΣ〉〉. Then

r ←OI,ᾱ r̄ = τ ′
1

((
r ◦α1 τ1(r1)

)
←OI,(α2,...,αn) (r2, . . . , rn)

)

where τ1 : Σ → P(Σ1) is the relabeling with Σ1 = {σ1 | σ ∈ Σ} and
τ1(σ) = {σ1}; moreover, τ ′

1 : Σ ∪ Σ1 → P(Σ) is the relabeling with τ ′
1(σ) =

τ ′
1(σ1) = {σ}. This process can be repeated n−1 times where in the ith step we

use τi, τ ′
i , and Σi instead of τ1, τ ′

1, and Σ1, respectively. Since recognizability
is preserved under α-concatenation and also under relabeling, we obtain that
Rec(Σ,S) is closed under OI-substitution for commutative semirings. ��

Recognizability is also preserved under semiring homomorphisms. For-
mally, let S′ be another semiring and h : S → S′ a mapping; h extends
to the mapping h : S〈〈TΣ〉〉 → S′〈〈TΣ〉〉 by defining h(r) = h ◦ r for every
r ∈ S〈〈TΣ〉〉. If h is a semiring homomorphism, then the preservation of recog-
nizability is obtained by replacing every transition weight μk(σ)w,q and every
root weight νq of the wta over S by h(μk(σ)w,q) and h(νq), respectively.

Theorem 3.9 ([16], Lemma 3). Recognizability is preserved under semiring
homomorphisms, i.e., for every semiring homomorphism h : S → S′ and
r ∈ S〈〈TΣ〉〉, if r ∈ Rec(Σ,S), then h(r) ∈ Rec(Σ,S′).

3.4 Support of Recognizable Tree Series

It is straightforward to embed the class Rec(Σ) of recognizable tree languages
into the class bud-Rec(Σ,S) by using the support function. First, however,
we prove a useful technical lemma.

Lemma 3.10. Let (Q, θ) be a finite Σ-algebra and f : Q → S a mapping.
Then f ◦ hQ ∈ bud-Rec(Σ,S).

Proof. We construct the bu-deterministic wta A = (Q,Σ, S, μ, f) by defining
μk(σ) = 1(S,θ(σ)); note that f is an element of SQ. Clearly, hμ(ξ)q = 1 if
hQ(ξ) = q, and 0, otherwise. Then (rA, ξ) = hμ(ξ) · f = hμ(ξ)hQ(ξ) · f(hQ(ξ))
= f(hQ(ξ)) for every ξ ∈ TΣ . Hence, f ◦ hQ ∈ bud-Rec(Σ,S). ��

Lemma 3.11. If L ∈ Rec(Σ), then 1(S,L) ∈ bud-Rec(Σ,S). In particular,
Rec(Σ) ⊆ supp(bud-Rec(Σ,S)).

Proof. Let L ∈ Rec(Σ). Hence, there is a deterministic bottom-up tree au-
tomaton A = (Q, Σ, δ, F ) with L = LA. Then 1(S,L) = 1(S,F ) ◦ hQ, and by
Lemma 3.10 it follows that 1(S,L) ∈ bud-Rec(Σ,S). ��

In the Boolean case, wta computes exactly the class of recognizable tree
languages, i.e., supp(Rec(Σ, B)) = Rec(Σ). However, this equality also holds
for a larger class of semirings (also cf. [125], Corollary II.5.3 for formal power
series).
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Theorem 3.12. Let S be positive. Then supp(Rec(Σ,S)) = Rec(Σ).

Proof. Consider the particular mapping h : S → B defined by h(a) = 1 for
a 	= 0 and h(0) = 0. Since S is positive, h is a semiring homomorphism
from S to B. Moreover, supp(h(r)) = supp(r) for every r ∈ S〈〈TΣ〉〉. By
Theorem 3.9, we have h(r) ∈ Rec(Σ, B) for every r ∈ Rec(Σ,S), and thus
supp(r) = supp(h(r)) ∈ supp(Rec(Σ, B)) = Rec(Σ). The other inclusion
holds by Lemma 3.11. ��

On the other hand, there is a ranked alphabet Σ such that supp(RecB(Σ,
Z)) \ Rec(Σ) 	= ∅, where Z is the semiring of integers. This follows directly
from the fact that there is a weighted finite automaton A such that supp(‖A‖)
is not recognizable (cf. [124], Example 6.2 and [8], Example III.3.1) and that
weighted finite automata can be simulated by our wta in the way which we
described on page 324.

We note that Theorem 3.12 holds for formal power series over commutative
and (so-called) quasi-positive semirings, cf. [138], Corollary 5.2. Obviously,
Theorem 3.12 shows that also the inverse of the implication of Lemma 3.11
holds for positive semirings. This is even true for the larger class of proper
semirings.

Theorem 3.13. Let S be a commutative and proper semiring. Then L ∈
Rec(Σ) iff 1(S,L) ∈ Rec(Σ,S) for every Σ-tree language L.

Proof. Let 1(S,L) ∈ Rec(Σ,S). By [137], Theorem 2.1, the fact that S is not
a ring implies that there is a semiring homomorphism h : S → B. By The-
orem 3.9, we have h(1(S,L)) = 1(B,L) ∈ Rec(Σ, B). Thus L = supp(1(B,L)) ∈
supp(Rec(Σ, B)) = Rec(Σ). The inverse is proved in Lemma 3.11. ��

In the following we show that also the inverse of Lemma 3.10 holds pro-
vided that the semiring is locally finite. Then a tree series r ∈ Rec(Σ,S) can
be computed by a finite Σ-algebra. The construction in the next lemma is the
one of [12], Sect. 4 (also cf. [5], Theorem 2.1; [80], Sect. 3.1; [16], Theorem 9;
and [43], Lemma 6.1).

Lemma 3.14. Let S be locally finite and r ∈ Rec(Σ,S). Then there is a finite
Σ-algebra Q and a mapping f : Q→ S such that r = f ◦ hQ.

Proof. Let A = (P,Σ, S, μ, ν) be a wta such that rA = r. Let S′ be the
smallest subsemiring containing wts(A). Since S is locally finite, S′ is finite.
Now we consider the Σ-algebra (Q, μ′

A) where Q = (S′)P and μ′
A(σ) is the

restriction of μA(σ) to Qk for every k ≥ 0. Moreover, we define the mapping
f by f(v) = v · ν. Clearly, hμ(ξ) ∈ Q and hμ(ξ) = hQ(ξ) for every ξ ∈ TΣ ,
and thus we have (r, ξ) = hμ(ξ) · ν = hQ(ξ) · ν = f(hQ(ξ)). ��

Using Lemma 3.14, we can prove the following inverse image theorem.
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Theorem 3.15 ([19], Theorem 4). Let S be locally finite, E ⊆ S, and
r ∈ Rec(Σ,S). Then r−1(E) ∈ Rec(Σ).

Proof. By Lemma 3.14, there is a finite Σ-algebra (Q, θ) and a mapping
f : Q→ S such that r = f◦hQ. Now we construct the deterministic bottom-up
tree automatonA = (Q, Σ, δ, F ), where δσ = θ(σ) and F = {q ∈ Q | f(q) ∈ E}.
Then (r, ξ) ∈ E iff f(hQ(ξ)) ∈ E iff hQ(ξ) ∈ F iff ξ ∈ LA. ��

From the inverse image theorem, we can derive the following results for a
recognizable tree series r over a locally finite S. We can show that the sup-
port of r is recognizable. Also, assuming that (S,≤) is a partially ordered
set, all cut sets of r are recognizable; for every a ∈ S, the a-cut of r is the
set ra = {ξ ∈ TΣ | (r, ξ) ≥ a} (cf. [129]). Moreover, we can prove that r
is a recognizable step function, i.e., there are n ≥ 0, recognizable tree lan-
guages L1, . . . , Ln ⊆ TΣ , and a1, . . . , an ∈ S such that r =

∑n
i=1 ai1(S,Li).

(Clearly, a recognizable step function is a recognizable tree series provided S
is commutative, by Lemma 3.11 and Theorem 3.8.)

Corollary 3.16. Let S be locally finite and r ∈ Rec(Σ,S). Then

(A) supp(r) ∈ Rec(Σ).
(B) If (S,≤) is a partially ordered set, then ra ∈ Rec(Σ) for every a ∈ S ([16],

Theorem 9).
(C) r is a recognizable step function ([43], Lemma 6.1).

Proof. Since supp(r) = r−1(S \ {0}) and ra = r−1({b ∈ S | b ≥ a}),
(A) and (B) follow from Theorem 3.15. To prove (C), we observe that r =∑

a∈R a1(S,r−1(a)) where R = {(r, ξ) | ξ ∈ TΣ} is the range of r. Since R is
finite by Lemma 3.14 (because R ⊆ f(Q)) and r−1(a) ∈ Rec(Σ) by Theo-
rem 3.15, r is a recognizable step function. ��

3.5 Determinization of Weighted Tree Automata

It is well known that the usual power set construction for finite-state string
automata can be extended in a straightforward way to bottom-up tree au-
tomata [68, 69]. This means that bottom-up tree automata and deterministic
bottom-up tree automata accept the same class of tree languages. On the
other hand, there are recognizable tree languages which are not recognizable
by deterministic top-down tree automata.

If the power set construction is extended to a wta (by identifying P(Q)
with B

Q and then turning B into S), this might lead to a deterministic wta
with infinitely many states because its state set is the set of all reachable
Q-vectors over S. However, infinity can be avoided if the semiring S is lo-
cally finite. The following theorem generalizes [14], Theorem 6.3.3 and [12],
Theorem 4.8.

Theorem 3.17. Let S be locally finite, r ∈ Rec(Σ,S), and g : S → S. Then
g(r) ∈ bud-Rec(Σ,S). In particular, Rec(Σ,S) = bud-Rec(Σ,S).
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Proof. By Lemma 3.14, we have that r = f ◦ hQ for some finite Σ-algebra Q
and mapping f : Q→ S. Then g(r) = g ◦ (f ◦ hQ) = (g ◦ f) ◦ hQ, and thus by
Lemma 3.10, g(r) ∈ bud-Rec(Σ,S). ��

In fact, for S = B, the construction of Lemma 3.14 is exactly the usual
power set construction for bottom-up tree automata. Also we note that, in
general, the condition that S is locally finite cannot be dropped from Theo-
rem 3.17. For this, we consider the tree series r over the field (Q, +, ·, 0, 1) of
rational numbers such that (r, γn(α)) = 1 + 2n, where Σ = {γ(1), α(0)}. Then
r ∈ Rec(Σ, Q) by constructing a wta with two states q1 and q2 such that
hμ(ξ)q1 = 1 and hμ(ξ)q2 = 2n. Now assume that there is a bu-deterministic
wta A such that r = rA. Then we can derive a contradiction by using the
observation that, for every ξ ∈ TΣ , the coefficient (rA, ξ) is an element of
the carrier set of the smallest sub-monoid of (Q, ·, 1) containing wts(A); thus,
r /∈ bud-Rec(Σ, Q) (cf. [17], Lemma 6.3).

Finally we mention that, similarly to the unweighted case, the easy tree
series r = 1.σ(α, . . . , α, β) + 1.σ(β, α, . . . , α) separates the classes Rec(Σ,S)
and tdd-Rec(Σ,S).

Theorem 3.18 ([14], Theorem 6.3.5). Let S be commutative or zero-divi-
sor free. Moreover, let Σ contain at least two nullary symbols and at least one
symbol with rank ≥ 2. Then Rec(Σ,S) \ tdd-Rec(Σ,S) 	= ∅.

3.6 Pumping Lemmata and Decidability

For the class of recognizable tree languages, there is a well-known pumping
lemma (cf. [69], Proposition 5.2). Here, we will present pumping lemmata and
decidability results for recognizable tree series.

As a technical concept, we need contexts. The set CΣ of contexts is the
set of Σ-trees over {z} in which z occurs exactly once. In fact, CΣ is the
free monoid freely generated by the set C ′

Σ with operation ·z and z ∈ CΣ as
neutral element, cf. [7], Proposition 9.1; C ′

Σ ⊆ CΣ is the set of those contexts
in which the z occurs at a child of the root. For every ζ ∈ CΣ , we define
ζ0 = z and ζn+1 = ζn ·z ζ.

As additional technical preparation, we extend the homomorphism induced
by a wta to contexts. Formally, let A = (Q,Σ, S, μ, ν) be a wta and v ∈
SQ. Now we consider the v-extension (SQ, μv

A) of the Σ-algebra (SQ, μA) (as
defined in Sect. 2.3) and denote the unique Σ ∪ {z}-algebra homomorphism
from TΣ∪{z} to SQ by hv

μ. Then hμ(ζ ·z ξ) = h
hμ(ξ)
μ (ζ) for every ζ ∈ CΣ and

ξ ∈ TΣ . If v has the particular form that there is a q ∈ Q with vq = 1 and
vp = 0 for every p 	= q, then we abbreviate hv

μ by hq
μ.

The pumping lemma that we present first deals with recognizable tree
series over fields.

Theorem 3.19 ([7], Theorem 9.2). Let S be a field and r ∈ Rec(Σ,S).
There is an m ≥ 1 such that, for every ξ ∈ supp(r) with height(ξ) ≥ m,
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there are ζ, ζ ′ ∈ CΣ, and ξ′ ∈ TΣ such that ξ = ζ ′ ·z ζ ·z ξ′ and we have that
{ζ ′ ·z ζn ·z ξ′ | n ≥ 0} ∩ supp(r) is an infinite set.

The second pumping lemma concerns bu-deterministically recognizable
tree series over an arbitrary semiring.

Theorem 3.20 ([12], Theorem 5.6). Let r ∈ bud-Rec(Σ,S). There is an
m ≥ 1 such that, for every ξ ∈ supp(r) and position w = i1 . . . il ∈ pos(ξ)
with i1, . . . , il ∈ N and l ≥ m, there are indices j, k with 0 ≤ j < k ≤ l and
a, a′, b, b′, c ∈ S such that:

• l − j ≤ m and
• (r, ζ ′ ·z ζn ·z ξ′) = a′ · an · c · bn · b′ for every n ≥ 0 where

– ζ ′ = ξ[z]u with u = i1 . . . ij,
– ζ = (ξ|u)[z]v with v = ij+1 . . . ik, and
– ξ′ = ξ|uv.

If S is zero-divisor free, then ζ ′ ·z ζn ·z ξ′ ∈ supp(r) for every n ≥ 0.

We give a sketch of the proof. Assume that A = (Q,Σ, S, μ, ν) is a total
bu-deterministic wta which recognizes r and let m = |Q|. Now let ξ ∈ TΣ

be an input tree. Then there is a unique run κ on ξ for which all transitions
have nonzero weight, i.e., for every w ∈ pos(ξ), the condition μk(σ)q1...qk,q 	= 0
holds with σ(k) = ξ(w), q = κ(w), and qi = κ(wi) for 1 ≤ i ≤ k. Let us denote
the state κ(ε) by μ̃(ξ). Now assume there is a w ∈ pos(ξ) with |w| ≥ m, which
implies height(ξ) ≥ m. Then the standard pumping can be done because there
is a repetition of states along w, i.e., there are contexts ζ and ζ ′ and a tree ξ′

such that ξ = ζ ′ ·z ζ ·z ξ′ and μ̃(ζ ·z ξ′) = μ̃(ξ′). Let u (and v) be the position
of z in ζ ′ (and ζ, resp.). Then the element a of S is the product of the weights
of all the transitions which are performed (in κ) at positions v′ of ζ such
that v′ is lexicographically smaller than v and v′ is not a prefix of v; b is the
product of the weights of all the transitions (in κ) at the other positions of ζ
except v; in both cases the order of the factors is determined by the left-to-
right traversal over ζ. The elements a′ and b′ are defined similarly for u and
ζ ′ instead of v and ζ, except that b′ contains the root weight ν(μ̃(ξ)) as an
additional factor. Finally, c is the product of the weights of all the transitions
which are performed at positions of ξ′. Since S may contain zero-divisors,
even the unique run κ on ξ can have weight 0. However, if S is zero-divisor
free and ξ ∈ supp(r), then wt(κ) 	= 0, and thus also ζ ′ ·z ζn ·z ξ′ ∈ supp(r).

Using Theorem 3.20, it can, e.g., be proved that the tree series height is
not in bud-Rec(Σ, Arct) (cf. [12], Example 5.9). Also, this pumping lemma can
be used to prove decidability results which we discuss here for the question
whether a tree series is constant. We assume that the semiring S is effectively
given and also the considered tree series r is effectively given by a total bu-
deterministic wta A = (Q,Σ, S, μ, ν). Let P be the set of all those μ̃(ξ) ∈ Q,
where ξ ∈ TΣ with height(ξ) ≤ |Q| − 1 and there is ζ ∈ CΣ such that
height(ζ) ≤ 2 · |Q| − 2, and ζ ·z ξ ∈ supp(r). Intuitively, P is the set of states
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which are reachable by small trees ξ and there is a small context ζ such that
ζ ·z ξ is in the support of r. As the final preparation, we define the sets B1 and
B2. The set B1 is the set of weights of small contexts that can be pumped,
i.e.,

B1 =
{
hμ̃(ξ)

μ (ζ)μ̃(ξ)

∣
∣ ξ ∈ TΣ , ζ ∈ CΣ , height(ζ ·z ξ) ≤ |Q|,
μ̃(ξ) = μ̃(ζ ·z ξ) ∈ P

}
.

The set B2 is the set of weights of small trees, i.e.,

B2 = {(r, ξ) | ξ ∈ TΣ and height(ξ) ≤ |Q| − 1}.

The sets P , B1, and B2 are finite sets which can be constructed effectively.
Then the following key lemma can be shown, making essential use of Theo-
rem 3.20.

Lemma 3.21 ([12], Lemma 6.3). Let S be commutative and d ∈ S. More-
over, let r ∈ bud-Rec(Σ,S). Then (r, ξ) = d for every ξ ∈ supp(r) iff
(i) b · d ∈ {0, d} for every b ∈ B1 and (ii) B2 ⊆ {0, d}.

Theorem 3.22 ([12], Sect. 6). Let S be commutative and r ∈ bud-Rec(Σ,S).
Then the following problems are decidable:

(A) Constant-on-its-support problem, i.e., is there an a ∈ S such that (r, ξ) =
a for every ξ ∈ supp(r)?

(B) Constant tree series problem, i.e., is there an a ∈ S such that (r, ξ) = a
for every ξ ∈ TΣ?

(C) Emptiness problem, i.e., is r = 0̃ (or equivalently, is supp(r) = ∅)?
(D) Boolean tree series problem, i.e., is (r, ξ) ∈ {0, 1} for every ξ ∈ TΣ?

Proof. First, we prove (A). By Lemma 3.21, we know that r is constant on
its support iff there is a d ∈ S such that conditions (i) and (ii) hold for this d.
Now the decision procedure computes B2. If |B2| > 2 or |B2| = 2 and 0 /∈ B2,
then r is not constant on its support. If B2 = {0}, then (i) holds with d = 0,
hence r is constant on its support, in fact, r = 0̃. If B2 = {d} or B2 = {0, d}
for some d 	= 0, then check whether b · d ∈ {0, d} for every b ∈ B1. If yes, then
r is constant on its support with value d, if no, then it is not constant.

Proof of (B): This can be proved in a similar way to the first statement
by first proving the modification of Lemma 3.21 in which ξ ∈ supp(r) and
{0, d} are replaced by ξ ∈ TΣ and {d}, respectively. Proof of (C) and (D):
These statements follow directly from Lemma 3.21 with d = 0 and d = 1,
respectively. ��

For the decision of the finiteness of supp(r) we additionally require that
S is zero-divisor free. Then, by Theorem 3.20, if (r, ζ ′ ·z ζ ·z ξ′) 	= 0, then also
(r, ζ ′ ·z ζn ·z ξ′) 	= 0 for every n ≥ 0. Hence, supp(r) is finite iff height(ξ) ≤
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|Q|− 1 for every ξ ∈ supp(r). Thus, supp(r) is finite iff supp(r′) = ∅, where r′

is the tree series defined by (r′, ξ) = (r, ξ) if height(ξ) ≥ |Q|, and (r′, ξ) = 0
otherwise. It is not difficult to show that r′ is in bud-Rec(Σ,S), effectively (see
[12], Lemma 6.10). Thus, finiteness of r can be decided by Theorem 3.22(C):
the emptiness problem.

Theorem 3.23 ([12], Theorem 6.11). Let S be commutative and zero-
divisor free, and r ∈ bud-Rec(Σ,S) a recognizable tree series. Then the finite-
ness problem is decidable, i.e., it is decidable whether supp(r) is a finite set.

In [103], the emptiness problem has been considered for arbitrary tree se-
ries in r ∈ Rec(Σ,S). This result, which is reported in the next theorem,
is based on (i) a pumping lemma for deterministic wta over distributive Ω-
algebras (cf. [103], Theorem 4), (ii) a decidable property which characterizes
the emptiness of the tree series recognized by deterministic wta over zero-sum
free distributive Ω-algebras (cf. [103], Proposition 4), and (iii) the simulation
of a wta by a wta over a particular distributive Ω-algebra (cf. [103], Proposi-
tion 2).

Theorem 3.24 ([103], Corollary 3). Let S be commutative and zero-sum
free and r ∈ Rec(Σ,S). Then it is decidable whether r = 0̃.

The emptiness problem is also decidable if S is a field. The proof, given
in [127] on the base of [45], exploits some methods of linear algebra in an
elegant way. This is possible because now the Σ-algebra (SQ, μA) which is
associated to a wta A, is a finite-dimensional S-Σ-vector space; recall that
this means that (SQ, +, 0) is an S-vector space and the mappings μA(σ) are
multilinear. As preparation, we recall a well-known statement from linear
algebra.

Lemma 3.25. Let V be a finite-dimensional S-vector space and let V ′ ⊆ V
be a subspace of V . Then dim(V ′) ≤ dim(V ); moreover, if dim(V ′) = dim(V ),
then V ′ = V .

Theorem 3.26 ([127], Theorem 4.2; [18], Lemma 2). Let S be a field
and r ∈ Rec(Σ,S). Then it is decidable whether r = 0̃.

Proof. Let A = (Q,Σ, S, μ, ν) be a wta with rA = r. Assume that |Q| = n. It
suffices to prove that

rA = 0̃ iff (rA, ξ) = 0 for every ξ ∈ TΣ with height(ξ) ≤ n (1)

because the latter property is decidable.
Note that SQ is an n-dimensional S-vector space. For every m ≥ 0, we

define the subspace Vm = 〈{hμ(ξ) | ξ ∈ TΣ , height(ξ) ≤ m}〉 generated by
the vectors hμ(ξ) for trees ξ of height at most m. This forms the chain V0 ⊆
V1 ⊆ · · · ⊆ Vm ⊆ Vm+1 ⊆ · · · ⊆ SQ of subspaces. By Lemma 3.25, we
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have dim(Vm) ≤ dim(Vm+1) ≤ n for every m ≥ 0. Moreover, it is easy to
see that Vm+1 =

〈
{μA(σ)(v1, . . . , vk) | k ≥ 0, σ ∈ Σ(k), v1, . . . , vk ∈ Vm}

〉
.

This characterization of Vm+1 in terms of Vm proves (by a straightforward
induction on l) that if Vm = Vm+1 for some m ≥ 0, then Vm = Vm+l for every
l ≥ 1.

Moreover, there must be an m0 such that 0 ≤ m0 ≤ n and dim(Vm0) =
dim(Vm0+1). By Lemma 3.25, we obtain that Vm0 = Vm0+1, and thus Vm0 =
Vm0+l for every l ≥ 1. Hence, Vn =

⋃
m≥0 Vm = 〈{hμ(ξ) | ξ ∈ TΣ}〉.

Now we can verify equivalence (1) as follows: rA = 0̃ iff (rA, ξ) = 0 for
every ξ ∈ TΣ iff hμ(ξ) · ν = 0 for every ξ ∈ TΣ iff hμ(ξ) · ν = 0 for every
ξ ∈ TΣ with height(ξ) ≤ n iff (rA, ξ) = 0 for every ξ ∈ TΣ with height(ξ) ≤ n,
where we prove the “if” part of the last, but one equivalence in the following
way. Let ξ ∈ TΣ . Since hμ(ξ) ∈ Vn, it can be written as a linear combination
hμ(ξ) =

∑l
i=1 aihμ(ξi) for some l ≥ 1, a1, . . . , al ∈ S, and trees ξ1, . . . , ξl ∈ TΣ

of height at most n. Then by an easy calculation in SQ, we obtain hμ(ξ) · ν =
∑l

i=1 ai · (hμ(ξi) · ν). This proves equivalence (1), and thus the theorem. ��

As a corollary, we obtain that the equivalence problem of recognizable tree
series over a field is decidable.

Corollary 3.27 ([127], Theorem 4.2; [18], Lemma 2). Let S be a field
and r1, r2 ∈ Rec(Σ,S). Then it is decidable whether r1 = r2.

Proof. Let r1, r2 ∈ Rec(Σ,S) be effectively given. Then by Theorem 3.8,
which is effective, also r = r1 + (−1) · r2 is in Rec(Σ,S). Clearly, r1 = r2 iff
r = 0̃, which is decidable by Theorem 3.26. ��

For the particular semirings (R+, +, ·, 0, 1) (of non-negative reals) and Nat,
the decidability of the equivalence of recognizable tree series has been proved
in [20].

3.7 Finite Algebraic Characterizations of Recognizable Tree Series

The Myhill–Nerode theorem for recognizable string languages has been ex-
tended to recognizable tree languages [100, 130, 86, 69]. That is, a Σ-tree
language is recognizable if and only if its syntactic Σ-algebra is finite. In this
section, we discuss three similar characterizations of recognizable tree series
where the characterizations are based on fields (cf. Theorem 3.31), semifields
(cf. Theorem 3.35), and commutative and zero-divisor free semirings (cf. The-
orem 3.36), respectively.

In this section, we will again use the notations CΣ , hv
μ, and hq

μ introduced
for contexts in the beginning of Sect. 3.6.

For the development of these characterizations, we will use both the right
and the left quotient of a tree series. For every r ∈ S〈〈TΣ〉〉 and ζ ∈ CΣ , the
right quotient of r with respect to ζ is the tree series rζ−1 ∈ S〈〈TΣ〉〉, where
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(rζ−1, ξ) = (r, ζ ·z ξ) for every ξ ∈ TΣ . For the definition of the left quotient,
we need mappings of the type CΣ → S. Since they are very similar to tree
series, we can adapt the notions and operations from tree series to this setting.
We call a mapping of this type a context series and denote the class of all
context series by S〈〈CΣ〉〉. Then for every r ∈ S〈〈TΣ〉〉 and ξ ∈ TΣ , the left
quotient of r with respect to ξ is the context series ξ−1r ∈ S〈〈CΣ〉〉 defined by
(ξ−1r, ζ) = (r, ζ ·z ξ) for every ζ ∈ CΣ .

Characterizations for Fields

In this subsection, we assume that S is a field.

Since S is a field, both (S〈〈TΣ〉〉, +, 0̃) and (S〈〈CΣ〉〉, +, 0̃) are S-vector
spaces. For every r ∈ S〈〈TΣ〉〉, we denote by RQr the subspace of S〈〈TΣ〉〉
generated by all the right quotients rζ−1 for ζ ∈ CΣ , and by LQr the subspace
of S〈〈CΣ〉〉 generated by all the left quotients ξ−1r for ξ ∈ TΣ . Then we can
prove the following relation.

Lemma 3.28 ([24], Theorem 3.1). Let r ∈ S〈〈TΣ〉〉. Then RQr is finite-
dimensional iff LQr is finite-dimensional, and in this case dim(RQr) =
dim(LQr).

Proof. Assume LQr is n-dimensional and let ξ−1
1 r, . . . , ξ−1

n r be a basis of
LQr. Consider the mapping ψ : RQr → Sn, where ψ(rζ−1) = ((r, ζ ·z ξ1), . . . ,
(r, ζ ·z ξn)) for every context ζ ∈ CΣ , and then ψ is linearly extended to RQr.
We can prove that ψ is injective, which implies dim(RQr) ≤ n. To prove the
injectivity of ψ, we take an arbitrary element s = a1(rζ−1

1 ) + · · ·+ am(rζ−1
m )

of RQr and show that ψ(s) = 0n implies s = 0̃. In fact, ψ(s) = 0n means∑m
i=1 ai ·(r, ζi ·zξj) = 0 for j = 1, . . . , n. Now for every ξ ∈ TΣ , we have (s, ξ) =∑m
i=1 ai · (rζ−1

i , ξ) =
∑m

i=1 ai · (ξ−1r, ζi). By letting ξ−1r =
∑n

j=1 bj(ξ−1
j r)

and reordering the members of the sum appropriately, we obtain (s, ξ) = 0.
Analogously, by assuming that RQr is finite-dimensional, we can prove that
dim(LQr) ≤ dim(RQr). ��

For every recognizable tree series r, the S-vector space LQr is finite-
dimensional. In [24], Theorem 2.1 even the equivalence was proved, i.e., r ∈
Rec(Σ,S) iff LQr is finite-dimensional. However, since we will have a slightly
different proof of this equivalence (cf. Theorem 3.31), we now cite only the
mentioned implication.

Lemma 3.29 ([24], Theorem 2.1). Let r ∈ S〈〈TΣ〉〉. If r ∈ Rec(Σ,S), then
LQr is finite-dimensional.

Proof. Let A = (Q,Σ, S, μ, ν) be a wta such that rA = r. We define the
mapping ϕ : SQ → S〈〈CΣ〉〉 by (ϕ(v), ζ) = hv

μ(ζ) · ν for every v ∈ SQ and
ζ ∈ CΣ . The fact that all the mappings μv

A are multilinear implies that ϕ
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is a linear mapping between the two S-vector spaces SQ and S〈〈CΣ〉〉. Then
(ϕ(hμ(ξ)), ζ) = h

hμ(ξ)
μ (ζ) · ν = hμ(ζ ·z ξ) · ν = (r, ζ ·z ξ) = (ξ−1r, ζ), and thus

ϕ(hμ(ξ)) = ξ−1r. Hence LQr is a subspace of the range ran(ϕ) of ϕ, and thus
dim(LQr) ≤ dim(ran(ϕ)). Since, in general, for a linear mapping ϕ : V → V ′

between two S-vector spaces V and V ′ the dimension of ran(ϕ) cannot be
larger than dim(V ), we obtain that in our case dim(ran(ϕ)) ≤ dim(SQ) = |Q|.
Thus, LQr is finite-dimensional. ��

Next, we recall from [23, 18] the facts that the S-vector space LQr can
be enriched to an S-Σ-vector space and that LQr and the so-called syntactic
S-Σ-vector space of r are isomorphic.

The enrichment of the S-vector space (LQr, +, 0̃) with a Σ-algebraic struc-
ture is done in the following way. Since every S-vector space has a basis
(assuming Zorn’s lemma), also LQr has a basis, say B. Now for every σ ∈
Σ(k), we define the mapping θr(σ) : Bk → LQr by θr(σ)(η−1

1 r, . . . , η−1
k r) =

σ(η1, . . . , ηk)−1r for all base vectors η−1
1 r, . . . , η−1

k r ∈ B. Then we extend
θr(σ) to a k-ary multilinear mapping on LQr which we also denote by θr(σ).
Thus, we obtain the S-Σ-vector space (LQr, +, 0̃, θr).

For the definition of the syntactic S-Σ-vector space of r, we consider the
S-Σ-vector space (S〈TΣ〉, +, 0̃, top) of polynomials with top(σ) = topσ for
every σ ∈ Σ. This is the initial algebra in the class of all S-Σ-vector spaces.
Now let r ∈ S〈〈TΣ〉〉 be a tree series. For a polynomial s = a1.ξ1 + · · ·+ ak.ξk

in S〈TΣ〉, we define the left quotient of r with respect to s by letting s−1r =
a1(ξ−1

1 r) + · · · + ak(ξ−1
k r). Then we define the equivalence relation ∼r over

S〈TΣ〉 such that for every s1, s2 ∈ S〈TΣ〉 we have s1 ∼r s2 if and only if
s−1
1 r = s−1

2 r. It is not difficult to prove that ∼r is a congruence relation
over the S-Σ-vector space S〈TΣ〉. We call ∼r the syntactic congruence of r,
and we call the quotient space (S〈TΣ〉/∼r, +∼r , [0̃]∼r , top∼r

) the syntactic
S-Σ-vector space of r.

Next, we relate the two S-Σ-vector spaces S〈TΣ〉/∼r and LQr. For the
initial homomorphism Φr : S〈TΣ〉 → LQr, it is easy to prove that Φr(s) =
s−1r for every s ∈ S〈TΣ〉 and that Φr is surjective. Since the kernel of Φr is ∼r,
we immediately obtain the following result by applying the homomorphism
theorem of universal algebra ([73], Theorem 11.1).

Lemma 3.30 ([23], Proposition 3). For every r ∈ S〈〈TΣ〉〉, the S-Σ-vector
spaces S〈TΣ〉/∼r and LQr are isomorphic.

Now we can prove the first Myhill–Nerode-like theorem for recognizable
tree series. For this, let r ∈ S〈〈TΣ〉〉 and ∼ be a congruence on the S-Σ-vector
space S〈TΣ〉. We say that ∼ respects r if there is a linear form γ : S〈TΣ〉/∼
→ S such that (r, ξ) = γ([ξ]∼) for every ξ ∈ TΣ .

Theorem 3.31 ([24], Theorems 2.1 and 3.1; [23], Propositions 2
and 3). Let r ∈ S〈〈TΣ〉〉. Then the following five statements are equivalent:

(A) r ∈ Rec(Σ,S).



338 Zoltán Fülöp and Heiko Vogler

(B) There is a congruence ∼ on S〈TΣ〉 such that S〈TΣ〉/∼ is finite-dimensional
and ∼ respects r.

(C) The S-vector space S〈TΣ〉/∼r is finite-dimensional.
(D) The S-vector space RQr is finite-dimensional.
(E) The S-vector space LQr is finite-dimensional.

Proof. Statement (A) implies statement (E) by Lemma 3.29. Statements (C),
(D), and (E) are equivalent due to Lemmata 3.28 and 3.30. Next, we prove
that statement (C) implies statement (B). For this, let ∼=∼r and define the
linear form γ : S〈TΣ〉/∼→ S such that γ([s]∼) = (s−1r, z). Since (s−1r, z) =
a1 · (r, ξ1) + · · ·+ ak · (r, ξk) for every polynomial s = a1.ξ1 + · · ·+ ak.ξk, γ is
a linear form. Moreover, we have γ([ξ]∼) = (r, ξ).

Finally, we prove that statement (B) implies statement (A), where we
abbreviate an equivalence class [ξ]∼ by [ξ]. Let Q = {[ξ1], . . . , [ξn]}, where
ξ1, . . . , ξn ∈ TΣ , be a basis of S〈TΣ〉/∼ and construct the wta A = (Q, Σ, S,
μ, ν) in the following way. For every k ≥ 0, σ ∈ Σ(k), and 1 ≤ i, i1, . . . , ik ≤ n,
let μk(σ)[ξi1 ]...[ξik

],[ξi] = [σ(ξi1 , . . . , ξik
)][ξi], where the latter denotes the coeffi-

cient of [ξi] in the representation of [σ(ξi1 , . . . , ξik
)] as a linear combination of

the base vectors. Moreover, for every 1 ≤ i ≤ n, let ν[ξi] = γ([ξi]). Note that,
in general, A is nondeterministic. We can prove easily that hμ(ξ) = h∼(ξ)
for every ξ ∈ TΣ , where h∼ : S〈TΣ〉 → S〈TΣ〉/∼ is the canonical S-Σ-vector
space homomorphism and we identify the isomorphic vector spaces SQ and
S〈TΣ〉/ ∼. Now let ξ ∈ TΣ and assume that [ξ] = a1.[ξ1] + · · · + an.[ξn]
for some a1, . . . , an ∈ S. Then (rA, ξ) = hμ(ξ) · ν =

∑n
i=1[ξ][ξi] · γ([ξi]) =

γ(
∑n

i=1 ai · [ξi]) = γ([ξ]) = (r, ξ), which proves that A recognizes r. ��

Characterizations for Semifields

Now we show a second Myhill–Nerode-like theorem, which characterizes recog-
nizable tree series in terms of congruences of finite index over the term alge-
bra TΣ . However, this characterization holds only for bu-deterministically
recognizable tree series, while we can relax from fields to semifields (cf. The-
orem 3.35). Since some of the auxiliary results which we need and which are
interesting on their own hold even for arbitrary commutative and zero-divisor
free semirings (and every semifield is zero-divisor free), we do not immediately
require that S is a semifield, but we make the following assumption.

In this subsection, we assume that S is commutative and zero-divisor
free.

Now we define the Myhill–Nerode relation ≡r ⊆ TΣ × TΣ by ξ1 ≡r ξ2 iff
there are a, b ∈ S \{0} such that a(ξ−1

1 r) = b(ξ−1
2 r). In fact, the factors a and

b are needed, because if they were dropped then, e.g., ≡size would have infinite
index for S = Tropsf , where Tropsf is the tropical semifield of reals. However,
size ∈ bud-Rec(Σ, Tropsf) (cf. [11], Example 3), and thus recognizability would
not imply a finite index of the Myhill–Nerode relation. Note that for different
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semirings with the same carrier set S, a tree series r ∈ S〈〈TΣ〉〉 may yield
different ≡r relations with respect to those semirings.

It is straightforward to prove that ≡r is an equivalence relation (the zero-
divisor freeness guarantees transitivity) and is invariant under contexts, i.e.,
≡r is a congruence with respect to the Σ-term algebra (cf. [109], Lemma 2).

Next, let us prove that ≡r has finite index if r ∈ bud-Rec(Σ,S). As techni-
cal preparation, for a total bu-deterministic wta A = (Q,Σ, S, μ, ν), we define
the underlying deterministic bottom-up tree automaton B(A) = (Q, Σ, δ, F )
such that F = {q ∈ Q | νq 	= 0}, δ = (δσ|σ ∈ Σ) and δσ(q1, . . . , qk) = q, where
q is the unique state such that μk(σ)q1...qk,q 	= 0. Let ≡B(A) be the kernel
of the homomorphism hQ : TΣ → Q. By standard arguments, it follows that
≡B(A) is a congruence on TΣ which has finite index at most |Q|.

We note that, for a total bu-deterministic wtaA and every ζ ∈ CΣ , ξ ∈ TΣ ,
and q ∈ Q, we have that hμ(ζ ·z ξ)q = hp

μ(ζ)q · hμ(ξ)p where p = hQ(ξ). This
property will be used in the proof of the next lemma.

Lemma 3.32 ([109], Theorem 4). For every total bu-deterministic wta A,
the index of ≡rA is at most the number of states of A. In particular, ≡r has
finite index for every r ∈ bud-Rec(Σ,S).

Proof. Let A = (Q,Σ, S, μ, ν) be a total bu-deterministic wta. Since the index
of ≡B(A) is at most |Q|, it suffices to show that ≡B(A)⊆≡rA . To prove this
inclusion, let ξ1, ξ2 ∈ TΣ such that ξ1 ≡B(A) ξ2. Hence, hQ(ξ1) = hQ(ξ2), and
thus also hQ(ζ ·z ξ1) = hQ(ζ ·z ξ2) for every ζ ∈ CΣ . Let p abbreviate hQ(ξ1).
Now consider ζ ∈ CΣ and let q abbreviate hQ(ζ ·z ξ1). Then hμ(ξ2)p ·(r, ζ ·z ξ1)
= hμ(ξ2)p·hμ(ζ ·zξ1)q ·νq = hμ(ξ2)p·hp

μ(ζ)q ·hμ(ξ1)p·νq = hμ(ξ1)p·hμ(ζ ·zξ2)q ·νq

= hμ(ξ1)p · (r, ζ ·z ξ2). Hence, ξ1 ≡rA ξ2.
For the proof of the second claim, recall that for every r ∈ bud-Rec(Σ,S)

there is a total bu-deterministic wta A such that r = rA. Then the second
claim follows from the first one. ��

Next, we prove that ≡r has a particular property, called (MN). In the
definition of (MN), we will have to discard those trees ξ ∈ TΣ that cannot be
completed to a tree in supp(r). Formally, we define Lr = {ξ ∈ TΣ | ξ−1r = 0̃}.
Now let ≡ be an equivalence relation on TΣ . Then we say that ≡ satisfies
(MN) for r if there is a representation mapping ϕ for ≡, i.e., a mapping
ϕ : TΣ/≡ → TΣ such that ϕ([ξ]≡) ∈ [ξ]≡ for every ξ ∈ TΣ , and there is a
mapping aϕ : TΣ → S \ {0} such that:

(MN1) For every ξ ∈ TΣ , we have that (r, ξ) = aϕ(ξ) · (r, ϕ([ξ]≡)).
(MN2) For every ξ = σ(ξ1, . . . , ξk) ∈ TΣ \ Lr and ξ′ = σ(ξ′1, . . . , ξ

′
k) ∈ TΣ

with ξi ≡ ξ′i for every 1 ≤ i ≤ k, we have that

aϕ(ξ′k) · · · · · aϕ(ξ′1) · aϕ(ξ) = aϕ(ξk) · · · · · aϕ(ξ1) · aϕ(ξ′).

We note that, if S is a semifield, Condition (MN2) amounts to say that for
every ξ = σ(ξ1, . . . , ξk) ∈ TΣ \ Lr there is a b ∈ S \ {0} such that aϕ(ξ) =



340 Zoltán Fülöp and Heiko Vogler

b ·
∏k

i=1 aϕ(ξi). In the sequel, we will abbreviate [ξ]≡ by [ξ] and ϕ([ξ]≡) by ξ,
because ≡ and ϕ will be clear from the context.

Lemma 3.33. Let r ∈ S〈〈TΣ〉〉, where S is a semifield. Then ≡r satisfies
(MN) for r.

Proof. Take any representation mapping ϕ : TΣ/≡r→ TΣ . Since ξ ≡r ξ for
every ξ ∈ TΣ , there are a, b ∈ S \ {0} such that a(ξ−1r) = b(ξ

−1
r). Let us fix

some arbitrary such a and b, and call them aξ and bξ henceforth. Then for
every context ζ ∈ CΣ , we have aξ · (r, ζ ·z ξ) = bξ · (r, ζ ·z ξ). Now we define
the mapping aϕ : TΣ → S \ {0} by aϕ(ξ) = a−1

ξ · bξ and get

(r, ζ ·z ξ) = aϕ(ξ) ·
(
r, ζ ·z ξ

)
. (2)

In particular, with ζ = z, we obtain (r, ξ) = aϕ(ξ) · (r, ξ), which proves that
(MN1) holds.

Now let ξ1, . . . , ξk ∈ TΣ such that ξ = σ(ξ1, . . . , ξk) /∈ Lr. Thus, there is a
context ζ0 ∈ CΣ such that (r, ζ0 ·z ξ) 	= 0, hence by (2) also (r, ζ0 ·z ξ) 	= 0.

Let us compute as follows:

(r, ζ0 ·z ξ) =
(
r,
(
ζ0 ·z σ(z, ξ2, . . . , ξk)

)
·z ξ1

)

= aϕ(ξ1) ·
(
r,
(
ζ0 ·z σ(z, ξ2, . . . , ξk)

)
·z ξ1

)

= aϕ(ξ1) ·
(
r, ζ0 ·z σ

(
ξ1, ξ2, . . . , ξk

))
,

where at the second equation we applied (2) with ξ = ξ1. Clearly, this process
can be applied to all the ξi’s, thus we obtain

(r, ζ0 ·z ξ) =
k∏

i=1

aϕ(ξi) ·
(
r, ζ0 ·z σ

(
ξ1, . . . , ξk

))
. (3)

Using (2) with ζ = ζ0, the fact that the inverse of (r, ζ0 ·z ξ) exists, and (3),
we obtain that

∏k
i=1 aϕ(ξi)−1 · aϕ(ξ) = (r, ζ0 ·z σ(ξ1, . . . , ξk)) · (r, ζ0 ·z ξ)−1.

Now we consider ξ′1, . . . , ξ
′
k ∈ TΣ such that ξ′i ∈ [ξi] for every 1 ≤ i ≤ k, and

we denote σ(ξ′1, . . . , ξ
′
k) by ξ′. Thus, ξ′ ≡r ξ, because ≡r is a congruence. Since

(r, ζ0 ·zξ) 	= 0, also (r, ζ0 ·zξ′) 	= 0, and hence ξ′ /∈ Lr. Thus, we can prove (3) in
the same way as above for ξ′ instead of ξ, and obtain

∏k
i=1 aϕ(ξ′i)

−1 ·aϕ(ξ′) =
(r, ζ0 ·z σ(ξ′1, . . . , ξ

′
k)) · (r, ζ0 ·z ξ′)−1. Since ξi = ξ′i and ξ = ξ′, we obtain

eventually
∏k

i=1 aϕ(ξi)−1 · aϕ(ξ) =
∏k

i=1 aϕ(ξ′i)
−1 · aϕ(ξ′) which is the same

as (MN2) after multiplying with
∏k

i=1 aϕ(ξi) and
∏k

i=1 aϕ(ξ′i). ��

We will need the following auxiliary result.

Lemma 3.34. Let r ∈ S〈〈TΣ〉〉 and let ≡ be a congruence on TΣ which satis-
fies (MN) for r. Then ≡ saturates Lr, i.e., Lr is the union of some equivalence
classes.
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Proof. Let ϕ and aϕ be the mappings such that (MN) is satisfied for r. More-
over, let ξ, ξ′ ∈ TΣ such that ξ ≡ ξ′ and ξ ∈ Lr. Since ≡ is a congruence, we
have that [ζ ·zξ] = [ζ ·zξ′] for every context ζ ∈ CΣ , and thus ζ ·z ξ = ζ ·z ξ′. By
(MN1), we have that (r, ζ ·z ξ) = aϕ(ζ ·z ξ) ·(r, ζ ·z ξ) for every context ζ ∈ CΣ .
Since aϕ(ζ ·z ξ) 	= 0 and S is zero-divisor free, it follows that (r, ζ ·z ξ) = 0,
and thus (r, ζ ·z ξ′) = 0. Hence, (r, ζ ·z ξ′) = aϕ(ζ ·z ξ′) · (r, ζ ·z ξ′) = 0 again
by (MN1). Since this implication holds for every context ζ, we obtain that
ξ′ ∈ Lr. ��

Now we can prove a Myhill–Nerode-like theorem for bu-deterministically
recognizable tree series over semifields.

Theorem 3.35 ([14], Theorem 7.3.1). Let S be a semifield and r ∈
S〈〈TΣ〉〉. Then the following three statements are equivalent:

(A) r ∈ bud-Rec(Σ,S).
(B) There is a congruence ≡ on TΣ which has finite index and satisfies (MN)

for r.
(C) ≡r has finite index.

Proof. Statement (A) implies statement (C) by Lemma 3.32. By Lemma 3.33,
we have that statement (C) implies statement (B).

For the proof that statement (B) implies statement (A), let ϕ : TΣ/≡→
TΣ and aϕ : TΣ → S\{0} such that (MN1) and (MN2) hold. We construct the
bu-deterministic wta A = (Q,Σ, S, μ, ν) where Q = TΣ/≡, ν[ξ] = (r, ϕ([ξ]))
for every ξ ∈ TΣ , and for every k ≥ 0, σ ∈ Σ(k), and [ξ1], . . . , [ξk], [ξ] ∈ Q:

μk(σ)[ξ1]...[ξk],[ξ] =

{∏k
i=1 aϕ(ξi)−1 · aϕ(ξ) if [ξ] = [σ(ξ1, . . . , ξk)] and ξ /∈ Lr,

0 otherwise.

We note that μk(σ) is well defined. To see this, let [ξ′1] = [ξ1], . . . , [ξ′k] = [ξk]
and [ξ′] = [ξ]. Then [σ(ξ′1, . . . , ξ

′
k)] = [σ(ξ1, . . . , ξk)], hence [ξ] = [σ(ξ1, . . . , ξk)]

iff [ξ′] = [σ(ξ′1, . . . , ξ
′
k)]. Moreover, ξ /∈ Lr iff ξ′ /∈ Lr by Lemma 3.34. Finally,

the property (MN2) of ≡ assures that μk(σ)[ξ′
1]...[ξ

′
k],[ξ′] has the same value.

Next, it is straightforward to prove by induction on ξ ∈ TΣ that for every
[ξ′] ∈ Q we have

hμ(ξ)[ξ′] =

{
aϕ(ξ) if [ξ] = [ξ′] and ξ /∈ Lr,

0 otherwise.

In the proof, we have to use the fact that for every tree ξ = σ(ξ1, . . . , ξk), if
ξ /∈ Lr, then ξi /∈ Lr.

Finally, for every ξ ∈ TΣ , we obtain (rA, ξ) = hμ(ξ) · ν = hμ(ξ)[ξ] · ν[ξ]

because [ξ] 	= [ξ′] implies hμ(ξ)[ξ′] = 0. If in addition ξ /∈ Lr, then hμ(ξ)[ξ] ·
ν[ξ] = aϕ(ξ) · (r, ϕ([ξ])) = (r, ξ) by (MN1). If ξ ∈ Lr, and thus, in particular,
(r, ξ) = 0, then hμ(ξ)[ξ] · ν[ξ] = 0 · (r, ϕ([ξ])) = 0 = (r, ξ). ��
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To show the use of Theorem 3.35, let us consider the tree series size. By
an obvious automaton construction, we have that size ∈ bud-Rec(Σ, Tropsf),
and hence ≡size over Tropsf is of finite index, in fact, the index is 1. On the
other hand, we can prove that size /∈ bud-Rec(Σ, Q) if Σ contains at least
a binary symbol σ and a nullary symbol α and (Q, +, ·, 0, 1) is the field of
rational numbers (cf. [14], Example 7.3.2). For this, we prove that ξ1 ≡size ξ2

iff (size, ξ1) = (size, ξ2) which shows that ≡size has infinite index over Q.
Assume that (size, ξ1) = (size, ξ2). Then for every context ζ ∈ CΣ , we have
(size, ζ ·z ξ1) = (size, ζ ·z ξ2) and hence ξ1 ≡size ξ2. Now assume that ξ1 ≡size ξ2.
Hence, there is an a ∈ Q\{0} such that for every ζ ∈ CΣ we have (size, ζ·zξ1) =
a · (size, ζ ·z ξ2). Instantiating this equation twice, with ζ = z and ζ = σ(α, z),
we obtain: (size, ξ1) = a · (size, ξ2) and 2 + (size, ξ1) = a · (2 + (size, ξ2)),
respectively; this implies that a = 1, and hence (size, ξ1) = (size, ξ2).

Characterizations for Commutative, Zero-Divisor Free Semirings

Now let us recall the third Myhill–Nerode-like characterization which is due
to [109]. It shows, for the class of commutative and zero-divisor free semirings,
a characterization of bud-Rec(Σ,S) in terms of a slightly different property.
We say that a congruence ≡ on TΣ respects a tree series r ∈ S〈〈TΣ〉〉 if there
exists a mapping f : TΣ/≡ → S and a mapping c : TΣ → S \ {0} such that:

• (r, ξ) = c(ξ) · f([ξ]≡) for every ξ ∈ TΣ .
• For every k ≥ 0, σ ∈ Σ(k), there is a mapping bσ : (TΣ/≡)k → S such

that for every ξ1, . . . , ξk ∈ TΣ we have that c(σ(ξ1, . . . , ξk)) = c(ξ1) · · · · ·
c(ξk) · bσ([ξ1]≡, . . . , [ξk]≡).

Theorem 3.36 ([109], Theorem 19). Let S be a commutative and zero-
divisor free semiring. Moreover, let r ∈ S〈〈TΣ〉〉. Then the following two state-
ments are equivalent:

(A) r ∈ bud-Rec(Σ,S).
(B) There is a congruence ≡ on TΣ which has finite index and respects r.

We note that, for every semifield S, the second statements of Theorems 3.36
and 3.35 are equivalent.

3.8 Equational Tree Series

By definition, an equational subset of a Σ-algebra A is a component of the
least solution of some system of linear equations [116, 32, 69]. It was shown
in [116] that every equational subset of A is the homomorphic image of a
recognizable tree language and vice versa. In particular, the class of equational
subsets of TΣ is the class of recognizable Σ-tree languages. Here, we show how
these results are generalized to recognizable tree series [7, 88, 21, 58]. Since
the solutions of systems of linear equations are obtained by fixpoints, we refer
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the reader to [57] for an introduction to that part of the theory of fixpoints
that has applications to weighted automata.

A system of linear equations (for short: system) is a finite family E of
equations zi = si where 1 ≤ i ≤ n for some n ≥ 1, and Zn = {z1, . . . , zn} is
a set of variables, and si ∈ S〈TΣ(Zn)〉. The system E is proper if for every
1 ≤ i ≤ n, the tree series si is zj-proper, i.e., (si, zj) = 0, for every 1 ≤ j ≤ n.

We solve such systems in S-Σ-semimodules. For this, we generalize the con-
cept of OI-substitution as introduced in Sect. 3.3 as follows. Let (V, +, 0, θ) be
an S-Σ-semimodule and v̄ = (v1, . . . , vn) ∈ V n. Moreover, let s ∈
S〈TΣ(Zn)〉. The OI-substitution of v̄ into s is the element s ←OI v̄ in V
which is defined to be

∑
ζ∈supp(s)(s, ζ)(ζ ←OI v̄); the element ζ ←OI v̄ ∈ V

is defined in exactly the same way as ζ ←OI,z̄ v̄ (with z̄ = (z1, . . . , zn) and
v̄ ∈ S〈〈TΣ〉〉n) except that in case (ii) the symbol σ is not interpreted by topσ

but by θ(σ). Note that in the expression (s, ζ)(ζ ←OI v̄) the subexpressions
(s, ζ) and ζ ←OI v̄ are combined by means of the scalar multiplication of the
S-semimodule (V, +, 0).

Now let E be the system zi = si with 1 ≤ i ≤ n and (V, +, 0, θ) an S-Σ-
semimodule. A solution of E in V is a vector v̄ = (v1, . . . , vn) ∈ V n such that
vi = (si ←OI v̄) for every i. In other words, v̄ is a fixpoint of the mapping
ΦE : V n → V n defined by ΦE(ū) = (s1 ←OI ū, . . . , sn ←OI ū) for every
ū ∈ V n. Let additionally the monoid (V, +, 0) be naturally ordered by �; this
relation is extended componentwise to V n. An element v ∈ V is equational
(p-equational) if it is a component of the least solution of a system (resp.,
proper system), if it exists. The class of all equational elements (p-equational
elements) in the S-Σ-semimodule V is denoted by Eq(V ) (resp., Eqp(V )).

Solutions over the S-Σ-Semimodule of Tree Series

Before dealing with equational elements in general, we first solve proper sys-
tems in the particular S-Σ-semimodule (S〈〈TΣ〉〉, +, 0̃, top) where top(σ) =
topσ for every σ ∈ Σ. (Note that for the concept of solution we do not need
a partial order.)

Lemma 3.37 ([7], Proposition 6.1). Every proper system has a unique
solution in (S〈〈TΣ〉〉, +, 0̃, top).

Proof. Let E be a proper system zi = si with 1 ≤ i ≤ n. Moreover, let
r̄ = (r1, . . . , rn) be a vector of tree series in S〈〈TΣ〉〉, and assume that r̄ is
a solution of E. Hence, ri = (si ←OI r̄) =

∑
ζ∈supp(si)

(si, ζ)(ζ ←OI r̄). We
prove that this solution is the only solution.

Since E is proper, every ζ has the form ζ = δ(ζ1, . . . , ζk) for some k ≥ 0,
δ ∈ Σ(k), and ζ1, . . . , ζk ∈ TΣ(Zn), and either ζ ∈ TΣ or ζ ∈ TΣ(Zn) \ TΣ .
Hence, we can continue with

ri =
∑

ζ∈TΣ

(si, ζ).ζ +
∑

δ(ζ1,...,ζk)∈TΣ(Zn)\TΣ

(
si, δ(ζ1, . . . , ζk)

)
topδ(ζ

′
1, . . . , ζ

′
k)
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where ζ ′j = (ζj ←OI r̄). Then for every α ∈ Σ(0), we have that

(ri, α) = (si, α), (4)

and for every ξ = σ(ξ1, . . . , ξk) ∈ TΣ with k ≥ 1, we have that

(ri, ξ) = (si, ξ) +
∑

σ(ζ1,...,ζk)∈TΣ(Zn)\TΣ

(
si, σ(ζ1, . . . , ζk)

)
·

k∏

i=1

(ζ ′i, ξi). (5)

In the summation, we can restrict to those σ(ζ1, . . . , ζk) ∈ TΣ(Zn) \ TΣ such
that ξj ∈ supp(ζj ←OI r̄) for every 1 ≤ j ≤ k. Hence, (ζj ←OI r̄, ξj) is the
product of coefficients of the form (rj , ξ̂), where 1 ≤ j ≤ n and ξ̂ is a subtree
of ξj (equal to ξj if ζj ∈ Zn), and hence a strict subtree of ξ. All in all, the
value of (ri, ξ) is uniquely determined by si and by the values of the rj ’s on
strict subtrees of ξ. Hence, r̄ is uniquely determined.

On the other hand, (4) and (5) can be used as defining equations. Thus,
r̄ exists. ��

We note that the solution r̄ of E in Lemma 3.37 can be explicitly given
by (ri, ξ) = (Φm+1

E ((0̃, . . . , 0̃))i, ξ) where m = height(ξ) and Φm+1
E ((0̃, . . . , 0̃))i

denotes the ith component of Φm+1
E ((0̃, . . . , 0̃)).

Example 3.38. Consider Σ = {σ(2), γ(1), α(0)} and the tree series #σ(z,α) :
TΣ → N which maps every tree ξ to the number of occurrences of the pattern
σ(z, α) in ξ (cf. page 322). We consider the proper system E

z1 = γ(z1) + σ(z1, z2) + σ(z2, z1) + σ(z2, α),
z2 = α + γ(z2) + σ(z2, z2).

It is easy to see that (r1, r2) is a solution of E in the S-Σ-semimodule S〈〈TΣ〉〉
with r1 = #σ(z,α) and r2 = 1(Nat,TΣ).

There is a close relationship between wta with Boolean root weights and
particularly simple proper systems; it is based on the idea of identifying states
with variables. A proper system E is simple if its equations have the form
zi = si with supp(si) ⊆ {σ(zi1 , . . . , zik

) | k ≥ 0, σ ∈ Σ(k), zi1 , . . . , zik
∈ Zn}.

Then let A = (Q,Σ, S, μ, F ) be a wta with Boolean root weights such that F
is a singleton, and E a simple system zi = si with 1 ≤ i ≤ n. We call A and
E related if Q = Zn and

si =
∑

k≥0, σ∈Σ(k)

q1,...,qk∈Q

μk(σ)q1...qk,zi .σ(q1, . . . , qk).

If A and E are related, then r̄ = (rz1 , . . . , rzn) is a solution of E, where
rzi ∈ S〈〈TΣ〉〉 is defined by (rzi , ξ) = hμ(ξ)zi for every ξ ∈ TΣ . This can be
proved by a straightforward induction on ξ.
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Obviously, if A and E are related, then E has to be simple. But we can
extend this relationship to arbitrary proper systems, because every proper
system E can be simulated by a simple system Ẽ. For instance, the system
E of Example 3.38 is not simple, because the term σ(z2, α) on the right-hand
side of the z1-equation does not have the appropriate form. However, if we
define a new system Ẽ which is the same as E except that the disturbing α is
replaced by z3 and the equation z3 = α is added, then Ẽ is simple; moreover,
Ẽ is related to the wta of Example 3.4 (renaming f, q, α into z1, z2, z3, resp.).

In general, for two proper systems E1 and E2, we say that E1 is simulated
by E2 if every component of a solution of E1 is also a component of a solution
of E2. The construction of the simple system Ẽ is easy and it proceeds in
two steps: in the first step, a system E′ is constructed in which the height
of every tree ζ ∈ supp(si) where zi = si is an equation of E′, is not greater
than 1; this can be achieved by introducing appropriate auxiliary equations
which break down too high trees. In the second step, equations of the form
zi = si of E′ where supp(si) contains a tree of height 1 with nullary symbols
(e.g., zi = σ(α, zj)) are split up into appropriate equations (like zi = σ(y1, zj)
and y1 = α with a new variable y1).

Lemma 3.39 ([7], Lemma 6.3; [58], Corollary 3.6). For every proper
system E, there is a simple system Ẽ which simulates E.

Now we can show that the recognizable tree series in S〈〈TΣ〉〉 are exactly the
p-equational elements in (S〈〈TΣ〉〉, +, 0̃, θ) where we assume that S is naturally
ordered, i.e., � is a partial order; this partial order extends to the set S〈〈TΣ〉〉
by defining r � s iff (r, ξ) � (s, ξ) for every ξ ∈ TΣ , and to (S〈〈TΣ〉〉)n by
componentwise comparison. Hence, we can speak about equational elements
in (S〈〈TΣ〉〉, +, 0̃, θ).

Theorem 3.40 ([58], Corollary 3.6). Let S be naturally ordered. Then the
following two statements hold:

(A) Rec(Σ,S) = Eqp(S〈〈TΣ〉〉).
(B) If S is commutative and continuous, then Rec(Σ,S) = Eq(S〈〈TΣ〉〉).

Proof. For the proof of statement (A), let A be a wta. By the construction
in the proof of Theorem 3.6, we can assume that A is a wta (Q,Σ, S, μ, F )
with Boolean root weights and F = {qf}; note that (rA, ξ) = hμ(ξ)qf

for
every ξ ∈ TΣ . Now construct the proper system E with equations zq = sq

for q ∈ Q that is related to A. Then r̄ = (rq | q ∈ Q) is a solution of E
in S〈〈TΣ〉〉, where (rq, ξ) = hμ(ξ)q. Since E is proper, it follows from Lemma
3.37 that this solution is the unique solution in the S-Σ-semimodule S〈〈TΣ〉〉,
which then is also its least solution. Thus, rA is equational.

Conversely, let r ∈ Eqp(S〈〈TΣ〉〉). Then there is a proper system E of
equations zi = si with 1 ≤ i ≤ n such that r is the, say, first component of
the least solution r̄ = (r1, . . . , rn) of E. By Lemma 3.39, we can assume that
E is simple. Clearly, we can construct a wta A = (Zn, Σ, S, μ, {z1}) that is
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related to E. Note that (rA, ξ) = hμ(ξ)z1 for every ξ ∈ TΣ . Then rA = r1 and
r ∈ Rec(Σ,S).

For statement (B), it remains to show that every system E can be sim-
ulated by a proper system E′ (here simulation means that every component
of the least solution of E, if it exists, is a component of the solution of E′).
This has been proved in [88], Theorem 3.2 (also cf. [58], Theorem 3.2) for
commutative and continuous semirings. ��

Solutions over Arbitrary S-Σ-Semimodules

Now let us turn to equational elements in an arbitrary S-Σ-semimodule
(V, +, 0, θ). In order to guarantee the existence of least solutions, we require
that (V, +, 0) is a continuous monoid for the natural order �. Thus, by [88],
Theorem 2.3, (V,�) is a complete partially ordered set (for short: cpo). Since
� can be extended to V n (by componentwise comparison) and ΦE is contin-
uous on the cpo (V n,�) by [21], Theorem 8 (also cf. [58], Proposition 2.6),
i.e., preserves least upper bounds of ω-chains, it follows from Tarski’s fixpoint
theorem [139] that the least fixpoint of ΦE exists and is the least upper bound
of the ω-chain Φn

E(⊥) where ⊥= (0, . . . , 0) is the least element of V n.
Least solutions are preserved under homomorphisms. To see this, let (V ′,⊕,

0, θ′) be another S-Σ-semimodule. A mapping h : V → V ′ is an S-Σ-semi-
module homomorphism if h is both a monoid homomorphism from (V, +, 0) to
(V ′,⊕, 0) and a Σ-algebra homomorphism from (V, θ) to (V ′, θ′), and more-
over it satisfies the law h(av) = ah(v) for every a ∈ S and v ∈ V .

Lemma 3.41 ([21], Theorem 16). Let (V, +, 0, θ) and (V ′,⊕, 0, θ′) be two
continuous S-Σ-semimodules. Moreover, let h : V → V ′ be an S-Σ-semi-
module homomorphism. If E is a system zi = si with 1 ≤ i ≤ n and v̄ ∈ V n is
the least solution of E in V , then h(v̄) is the least solution of E in V ′ (where
h is extended to V n componentwise).

The following Mezei–Wright-like theorem is based on the idea that one
can compute equational elements of V by first calculating “symbolically” in
S〈〈TΣ〉〉 and then evaluating the resulting tree series by a homomorphism from
S〈〈TΣ〉〉 to V . Let S be continuous. Then the S-Σ-semimodule (S〈〈TΣ〉〉, +, 0̃,
top) is initial in the class of all continuous S-Σ-semimodules (V, +, 0, θ) (cf.
[21], Theorem 4). Hence, there is exactly one S-Σ-semimodule homomorphism
from S〈〈TΣ〉〉 to V ; this homomorphism we denote by hV .

Theorem 3.42 (Mezei–Wright-like Theorem, cf. [21]). Let S be com-
mutative and continuous. Moreover, let (V, +, 0, θ) be a continuous S-Σ-semi-
module. Then Eq(V ) = hV (Rec(Σ,S)).

Proof. By Theorem 3.40(B), we only have to prove that Eq(V ) = hV (Eq
(S〈〈TΣ〉〉)). By Lemma 3.41, the least solution of a system E in V is the
image under hV of its least solution in S〈〈TΣ〉〉. Hence, the same holds for the
components of these solutions. ��
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There is another way of defining equational tree series which is based on
so-called [IO]-substitution [25]; we note that in Sect. 4 we will define another
variant called IO-substitution. For s ∈ S〈TΣ(Zn)〉 and r̄ = (r1, . . . , rn) ∈
S〈〈TΣ〉〉n, the [IO]-substitution of r̄ into s is the tree series s←[IO] r̄ defined by
s←[IO] r̄ =

∑
ζ∈supp(s)(s, ζ)(ζ ←[IO] r̄) and ζ ←[IO] r̄ =

∑
ζ1,...,ζn∈TΣ

(ri1 , ζi1)·
· · · · (ril

, ζil
).ζ(ζ1, . . . , ζn) for every ζ ∈ TΣ(Zn) where zi1 , . . . , zil

, 1 ≤ i1 <
· · · < il ≤ n, are all the variables which occur in ζ. An [IO]-solution of a
system and the class [IO]-Eq(S〈〈TΣ〉〉) of [IO]-equational tree series are defined
in the same way as above except that OI-substitution is replaced by [IO]-
substitution.

Then [IO]-equational tree series can be characterized as the image of recog-
nizable tree series under nondeleting tree homomorphisms. For this, we con-
sider a family hΣ,Δ = (hσ | σ ∈ Σ) such that hσ ∈ TΔ(Zk) if σ has rank k.
The tree homomorphism induced by hΣ,Δ is the mapping h : TΣ → TΔ defined
inductively by h(σ(ξ1, . . . , ξk)) = hσ(h(ξ1), . . . , h(ξk)). A tree homomorphism
is nondeleting if zi occurs in hσ for every σ ∈ Σ(k) and 1 ≤ i ≤ k. Let Hnd

Σ,Δ

denote the class of all nondeleting tree homomorphisms induced by some fam-
ily hΣ,Δ.

We generalize a tree homomorphism h : TΣ → TΔ to a mapping h :
S〈〈TΣ〉〉 → S〈〈TΔ〉〉 by defining (h(r), ξ) =

∑
ξ′∈TΣ ,h(ξ′)=ξ(r, ξ

′). In order to
get the sum (which might have an infinite index set) well defined, we assume
that S is complete.

Theorem 3.43 ([25], Theorem 16). Let S be commutative and complete.
Then [IO]-Eq(S〈〈TΔ〉〉) = Hnd

Σ,Δ(Rec(Σ,S)).

3.9 Rational Tree Series

Kleene’s fundamental theorem on the equivalence between recognizable and
rational string languages [81] has been extended to trees [135] and to tree series
over commutative, complete, and continuous semirings [21, 88, 58], and over
commutative semirings [41, 119, 120]. In [1], a characterization of weighted
regular tree grammars in terms of rational tree series is sketched. We refer
to [124] for a survey on rational formal power series over strings.

In order to keep the technical overhead of this chapter small, we will only
show here some characteristic details of the equivalence proof along the ap-
proach of [41].

Throughout Sect. 3.9, we assume that S is commutative.

The set of rational tree series expressions over Σ and S, denoted by
RatExp(Σ,S), is the smallest set R which satisfies conditions (1)–(5). For
every η ∈ RatExp(Σ,S), we define [[η]] ∈ S〈〈TΣ〉〉 simultaneously.

1. For every k ≥ 0, σ ∈ Σ(k), and η1, . . . , ηk ∈ R, the expression σ(η1, . . . ,
ηk) ∈ R and [[σ(η1, . . . , ηk)]] = topσ([[η1]], . . . , [[ηk]]).
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2. For every η ∈ R and a ∈ S, the expression (aη) ∈ R and [[(aη)]] = a[[η]].
3. For every η1, η2 ∈ R, the expression (η1 + η2) ∈ R and [[(η1 + η2)]] =

[[η1]] + [[η2]].
4. For every η1, η2 ∈ R and α ∈ Σ(0), the expression (η1 ◦α η2) ∈ R and

[[(η1 ◦α η2)]] = [[η1]] ◦α [[η2]].
5. For every η ∈ R and α ∈ Σ(0), the expression (η∗

α) ∈ R and [[(η∗
α)]] = [[η]]∗α.

A tree series r ∈ S〈〈TΣ〉〉 is a rational tree series over Σ and S if there is an
η ∈ RatExp(Σ,S) such that r = [[η]]. The class of all rational tree series over
Σ and S is denoted by Rat(Σ,S). We say that a class C ⊆ S〈〈TΣ〉〉 is closed
under the rational operations if it is closed under top-concatenation topσ for
every σ ∈ Σ, multiplication with coefficients in S, sum, α-concatenation and
α-Kleene star for every α ∈ Σ(0).

Obviously, every polynomial is a rational tree series (note that 0̃ = [[0α]]
for any α ∈ Σ(0); recall that we required in general that Σ(0) 	= ∅). Thus,
Rat(Σ,S) is the smallest subclass of S〈〈TΣ〉〉 that contains S〈TΣ〉, and is
closed under the rational operations.

Example 3.44. Consider Σ = {σ(2), γ(1), α(0)} and again the tree series #σ(z,α)

from page 322. We fix a z 	∈ Σ and define the ranked alphabet Δ = Σ∪{z(0)}.
Then we define the rational expressions η, η1, η2 ∈ RatExp(Δ, Nat) by

η = η1 ◦z σ(z, α) ◦z η2,

η1 =
(
γ(z) + σ(η2, z) + σ(z, η2)

)∗
z
,

η2 =
(
γ(z) + σ(z, z)

)∗
z
◦z α.

It is obvious that [[η1]], [[η2]] ∈ Nat〈〈TΔ〉〉 with [[η1]] = 1(Nat,CΣ) and [[η2]] =
1(Nat,TΣ). Then [[η]] = #σ(z,α).

In Example 3.44, we did not distinguish between the two tree series [[η]] and
[[η]]|TΣ

. In general, we will not distinguish between a tree series r ∈ S〈〈TΣ〉〉
and a tree series r′ ∈ S〈〈TΣ(Q)〉〉 for which r = r′|TΣ

and supp(r′) ⊆ TΣ .
First, let us show why every recognizable tree series is rational. More

precisely, we consider the wta A = (Q,Σ, S, μ, F ) with Boolean root weights
and we will show that rA ∈ Rat(Σ∪Q, S) where the states are assumed to be
nullary symbols. (In fact, similar to the case of tree languages, we will need the
states as substitution symbols in q-concatenations and q-Kleene stars of tree
series for q ∈ Q.) The basic idea of the proof is the same as in Kleene’s proof
[81]: starting with the empty set, the set of permitted intermediate states is
enlarged until it reaches the set of all states; at every level of this process, a
tree series is defined as rational expression over the tree series of the previous
level.

Formally, for every P ⊆ Q and q ∈ Q, we define the tree series rA(P, q) ∈
S〈〈TΣ(Q)〉〉 such that for every ξ ∈ TΣ(Q),

(rA(P, q), ξ) =

{∑
κ∈RP

A(ξ,q) wt(κ) if ξ ∈ TΣ(Q) \Q,

0 if ξ ∈ Q
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where RP
A(ξ, q) is the set of all those runs κ ∈ RA(ξ) such that (i) κ(ε) = q,

(ii) κ(w) ∈ P for every w ∈ pos(ξ) \ (posQ(ξ) ∪ {ε}), and (iii) κ(w) = ξ(w)
for every w ∈ posQ(ξ). The next lemma shows what happens when one state
is added to the set P of inner states.

Lemma 3.45 ([41], Lemma 5.1). Let M = (Q,Σ, S, μ, F ) be a wta with
Boolean root weights. Let P ⊆ Q and q ∈ Q, and let p ∈ Q \ P . Then
rA(P ∪ {p}, q) = rA(P, q) ◦p rA(P, p)∗p.

In the sequel, we will denote
⋃

Q finite set Rat(Σ∪Q, S) by Rat(Σ∪Q∞, S);
similarly Rec(Σ ∪Q∞, S) is defined.

Theorem 3.46 ([41], Theorem 5.2). Rec(Σ,S) ⊆ Rat(Σ ∪Q∞, S).

Proof. Let r ∈ Rec(Σ,S). By Theorem 3.6, we can assume that there is a
wta A = (Q,Σ, S, μ, F ) with Boolean root weights such that rA = r. Let
Q = {q1, . . . , qn}. We prove that rA ∈ Rat(Σ ∪Q, S).

Since supp(rA(Q, q)) may contain trees in which states occur, whereas this
is not true for supp(rA), we filter out from the tree series rA(Q, q) trees in
TΣ(Q) \ TΣ . Obviously, rA =

∑
q∈F (. . . (rA(Q, q) ◦q1 0̃) ◦q2 0̃ . . .) ◦qn 0̃. Thus,

it remains to show that rA(Q, q) ∈ Rat(Σ ∪Q, S).
For this, we prove the following statement by induction on the number

of elements in P : for every P ⊆ Q and q ∈ Q, the tree series rA(P, q) is in
Rat(Σ ∪Q, S). For the induction base, i.e., P = ∅, we can easily observe that

rA(∅, q) =
∑

k≥0, σ∈Σ(k)

p1,...,pk∈Q

μk(σ)p1...pk,q.σ(p1, . . . , pk),

which is a polynomial, and hence rA(∅, q) is rational. For the induction step,
we assume that rA(P, q) is rational for every q ∈ Q. Now let p ∈ Q \ P . Then
it follows from Lemma 3.45 that also rA(P ∪ {p}, q) is rational because it is
built up from rational tree series by rational operations. ��

Second, the inclusion Rat(Σ,S) ⊆ Rec(Σ,S) follows from the fact that
Rec(Σ,S) contains every polynomial in S〈〈TΣ〉〉 and that Rec(Σ,S) is closed
under the rational operations (cf. Theorem 3.8). Thus, we obtain the following
Kleene theorem for recognizable tree series and commutative semirings.

Theorem 3.47 ([41], Theorem 7.1). Rec(Σ ∪Q∞, S) = Rat(Σ ∪Q∞, S).

3.10 MSO-Definable Tree Series

Büchi’s and Elgot’s fundamental theorem [28, 46] shows the equivalence of
recognizability and definability by means of formulas of monadic second order
logic (MSO-logic) for the class of string languages. This result was extended
to various other structures, including trees [135, 33] and unranked trees [117,
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98, 99]. Then weighted MSO-logic was introduced in [37, 38], see also [39], and
the equivalence between recognizability and definability of power series was
proved. Most recently, this equivalence on the quantitative level has been ex-
tended to finite and infinite strings with discounting [42], trees [43], unranked
trees [44], infinite trees [122], trace languages [115], picture languages [60],
and texts and nested words [112, 113]. Here, we will report on Büchi–Elgot’s
theorem for recognizable tree series [43, 44] and we follow the approach of [37,
38], see also [39].

The main idea of [37, 38] for defining weighted MSO-logic is to consider
formulas of MSO-logic in their negation normal form (i.e., all negation oper-
ators are moved down to the atoms) and then to allow elements of S to occur
additionally as atomic formulas. Formally, the set of all formulas of weighted
MSO-logic over Σ and S on trees, denoted by MSO(Σ,S), is defined to be
the smallest set G such that:

(i) G contains all the atomic formulas a, labelσ(x), edgei(x, y), (x � y), and
(x ∈ X), and the negations ¬labelσ(x), ¬edgei(x, y), ¬(x � y), and
¬(x ∈ X), and

(ii) if ϕ, ψ ∈ G, then also ϕ ∨ ψ, ϕ ∧ ψ, ∃x.ϕ, ∀x.ϕ, ∃X.ϕ, ∀X.ϕ ∈ G,

where a ∈ S, x, y are first order variables, σ ∈ Σ, 1 ≤ i ≤ max{rk(σ) | σ ∈ Σ}
and X is a second order variable.

Next, we define the semantics of a formula ϕ ∈ MSO(Σ,S). We denote the
set of free variables of ϕ by Free(ϕ). Let V be a finite set of variables containing
Free(ϕ) and ξ ∈ TΣ . A (V, ξ)-assignment is a function ρ that maps the first
order variables in V to elements of pos(ξ) and the second order variables
in V to subsets of pos(ξ). We call a (Free(ϕ), ξ)-assignment also simply an
assignment for (ϕ, ξ), or a (ϕ, ξ)-assignment. We let the V-semantics [[ϕ]]V of
ϕ be the function which maps each pair ζ = (ξ, ρ) with ξ ∈ TΣ and (V, ξ)-
assignment ρ to the value ([[ϕ]]V , ζ) ∈ S. We define this value inductively (over
the structure of ϕ) as follows, where ≤ξ denotes the linear order on pos(ξ)
induced by the postorder tree walk on ξ:

([[a]]V , ζ) = a,

([[labelσ(x)]]V , ζ) = 1 if ξ(ρ(x)) = σ, and 0 otherwise,
([[edgei(x, y)]]V , ζ) = 1 if ρ(y) = ρ(x) i, and 0 otherwise,

([[x � y]]V , ζ) = 1 if ρ(x) ≤ξ ρ(y), and 0 otherwise,
([[x ∈ X]]V , ζ) = 1 if ρ(x) ∈ ρ(X), and 0 otherwise,

([[¬ϕ]]V , ζ) = 1 if ([[ϕ]]V , ζ) = 0, and 0 if ([[ϕ]]V , ζ) = 1
(
where ϕ is of the form labelσ(x), edgei(x, y), x � y, or x ∈ X

)
,

([[ϕ ∨ ψ]]V , ζ) = ([[ϕ]]V , ζ) + ([[ψ]]V , ζ),
([[ϕ ∧ ψ]]V , ζ) = ([[ϕ]]V , ζ) · ([[ψ]]V , ζ),

([[∃x.ϕ]]V , ζ) =
∑

w∈pos(ζ)

([[ϕ]]V∪{x}, ζ[x→ w]),
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([[∀x.ϕ]]V , ζ) =
∏

w∈pos(ζ)

([[ϕ]]V∪{x}, ζ[x→ w]),

([[∃X.ϕ]]V , ζ) =
∑

I⊆pos(ζ)

([[ϕ]]V∪{X}, ζ[X → I]),

([[∀X.ϕ]]V , ζ) =
∏

I⊆pos(ζ)

([[ϕ]]V∪{X}, ζ[X → I]).

The factors in the product over pos(ζ) are ordered according to ≤ζ ; moreover,
for the product over subsets I of pos(ζ), we employ the lexicographical linear
order on the set {0, 1}pos(ζ), where the elements of pos(ζ) are ordered by ≤ζ .

We write [[ϕ]] for [[ϕ]]Free(ϕ). Now let Y ⊆ MSO(Σ,S). A tree series r ∈
S〈〈TΣ〉〉 is Y -definable if there is a sentence ϕ ∈ Y such that S = [[ϕ]]. By [135,
33], Rec(Σ) is the class of all MSO(Σ, B)-definable tree languages.

Example 3.48. We consider the ranked alphabet Σ = {σ(2), γ(1), α(0)} and the
formula ϕ = ∃x.labelσ(x) ∧ (∃y.edge2(x, y) ∧ labelα(y)) in MSO(Σ,S) for an
arbitrary S. Clearly, for S = B, the tree series [[ϕ]] maps ξ ∈ TΣ to 1 iff the
pattern σ(z, α) occurs at least once in ξ. For S = Nat, [[ϕ]] = #σ(z,α), i.e., it
computes the number of occurrences of σ(z, α) in a given tree ξ.

In order to obtain an equivalence between recognizability and definabil-
ity, we have to restrict either the MSO(Σ,S)-logic or the class of involved
semirings because, e.g., the tree series [[∀x.∀y.2]] over the semiring of natural
numbers is not recognizable. For the restriction of the logic, we first recall
the concept of unambiguous formulas (cf. [38], Definition 5.1). We denote by
MSO−(Σ,S) the fragment of MSO(Σ,S) obtained by not permitting atomic
subformulas of the form a, where a ∈ S. Such formulas can be viewed as
classical (unweighted) MSO-formulas over trees. Then roughly speaking, an
unambiguous formula is a formula of MSO−(Σ,S) in which the disjunction
ϕ∨ψ is allowed only if, for every ξ ∈ TΣ , there is no assignment ρ for (ϕ∨ψ, ξ)
such that (ξ, ρ) satisfies both ϕ and ψ, and finally, for every first order and
second order existential quantification ∃x.ϕ and ∃X.ϕ, respectively, and every
ξ ∈ TΣ , there is at most one variable assignment to x and X, respectively,
which fulfills ϕ. In fact, for every unambiguous formula ϕ, ξ ∈ TΣ , and (ϕ, ξ)-
assignment ρ, we have that ([[ϕ]], (ξ, ρ)) = 1 ∈ S if (ξ, ρ) satisfies ϕ, and
([[ϕ]], (ξ, ρ)) = 0 otherwise (cf. [38], Proposition 5.2).

Note that the definition of unambiguity is based on the semantics of the
formula. However, due to the algorithm in [39], Definition 4.3, for every ϕ ∈
MSO−(Σ,S), there is a purely syntactic definition of formulas ϕ+ and ϕ− in
MSO−(Σ,S) such that:

• The formulas ϕ+ and ϕ− are unambiguous and Free(ϕ+) = Free(ϕ−) =
Free(ϕ).

• For every ξ ∈ TΣ and (ϕ, ξ)-assignment ρ, (ξ, ρ) satisfies ϕ iff (ξ, ρ) satisfies
ϕ+ iff (ξ, ρ) does not satisfy ϕ−.
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We note that the atomic formula (x � y) is needed for this disambigua-
tion. Moreover, for any ϕ, ψ ∈ MSO−(Σ,S), we define the formulas ϕ

+→ ψ

and ϕ
+↔ ψ in MSO−(Σ,S) as follows: ϕ

+→ ψ = ϕ− ∨ (ϕ+ ∧ ψ+) and
ϕ

+↔ ψ = (ϕ+ ∧ ψ+) ∨ (ϕ− ∧ ψ−). Using this, we can define a formula to
be syntactically unambiguous if it is of the form ϕ+, ϕ−, ϕ

+→ ψ, or ϕ
+↔ ψ

for ϕ, ψ ∈ MSO−(Σ,S). Clearly, each syntactically unambiguous formula is
unambiguous.

The collection of almost unambiguous formulas is the smallest subset of
MSO(Σ,S) which contains a for every a ∈ S and all syntactically unambigu-
ous formulas, and which is closed under disjunction and conjunction. In fact,
for every almost unambiguous sentence ϕ, the tree series [[ϕ]] is a recognizable
step function and vice versa, each recognizable step function is definable by
some almost unambiguous sentence (cf. [44], Proposition 5.5).

Now we can define the fragment of MSO(Σ,S)-logic which characterizes
Rec(Σ,S). A formula ϕ ∈ MSO(Σ,S) is called syntactically restricted [39], if
it satisfies the following conditions:

1. Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula but not in the
scope of a universal first order quantifier, then each value of S occurring
in ψ commutes with each value of S occurring in ψ′.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a syntactically
unambiguous formula.

3. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is almost unambiguous.

We let srMSO(Σ,S) denote the set of all syntactically restricted formulas of
MSO(Σ,S).

Theorem 3.49. Let r ∈ S〈〈TΣ〉〉. Then the following statements hold:

(A) r ∈ Rec(Σ,S) if and only if r is srMSO(Σ,S)-definable ([44], Theo-
rem 7.2).

(B) Let S be commutative and locally finite. Then r ∈ Rec(Σ,S) if and only
if r is MSO(Σ,S)-definable ([43], Theorem 6.5).

We only indicate a sketch of the proof. For (A), given a wta A with r = rA,
we can use the structure of A to explicitly write down an srMSO(Σ,S)-
sentence ϕ with [[ϕ]] = rA. Conversely, given an srMSO(Σ,S)-sentence ψ,
we proceed by induction over the structure of ψ to construct a wta A such
that rA = [[ψ]]. For this, we encode pairs (ξ, ρ), where ξ ∈ TΣ and ρ is a (V, ξ)-
assignment, as trees over an extended alphabet ΣV = Σ×{0, 1}V (as it is done
also in the unweighted case). This enables us to view the function [[ϕ]]V , where
ϕ is an arbitrary srMSO(Σ,S)-formula, as a formal tree series over S and ΣV
and we show that it is recognizable. When dealing with conjunctions and uni-
versal quantifications, we need the assumptions (1) and (2)–(3), respectively,
on ϕ given above. For (B), there are alternative arguments exploiting that S
is locally finite.
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3.11 Other Models Related to Recognizable Tree Series

In the literature, several other concepts of recognizability of tree series were
investigated: recognizability (a) by S-Σ-tree automata [21] where S is a com-
mutative semiring, (b) by finite, polynomial tree automata over S [88, 58]
where S is a commutative and continuous semiring, (c) by multilinear repre-
sentations over fields [7], (d) by S-Σ-representations [19] where S is a field,
(e) by polynomially-weighted tree automata [128], and (f) by wta over distrib-
utive multioperator monoids [90, 103, 62, 132] (which were already mentioned
in Sect. 3.6). Here, we recall the models (a)–(d) and sketch how they are re-
lated to wta (for more details cf. [67]; for an informal comparison of model
(a) with wta cf. [12]). Finally, we briefly discuss the concepts (e) and (f).

S-Σ-Tree Automata

In this subsection, we assume that S is commutative.

In [21], the recognizability of tree series by S-Σ-tree automata was de-
fined. For the finite nonempty set Q = {q1, . . . , qκ}, we consider the S-semi-
module SQ. Now let k ≥ 0 and consider a mapping μ : Qk → SQ. A multilinear
extension of μ is a mapping μ : (SQ)k → SQ such that μ is multilinear and for
every p1, . . . , pk ∈ Q we have μ(1p1 , . . . , 1pk

) = μ(p1, . . . , pk) where 1pi is the
pi-unit vector in SQ. It can easily be seen that such a multilinear extension
of μ exists and is unique. In fact, it has the form

μ(v1, . . . , vk)q =
∑

p1,...,pk∈Q

(v1)p1 · · · · · (vk)pk
· μ(p1, . . . , pk)q.

Thus, we speak about the multilinear extension of μ. Since scalar factors can be
pulled out from arguments of μ in different order, the definition of multilinear
extension only makes sense if S is commutative.

The S-Σ-tree automaton [21] is the same as the wta of Definition 3.2
except that for every σ(k), μk(σ) is a function from Qk to SQ and μA(σ) is
the multilinear extension of μk(σ). Obviously, this leads to the same Σ-algebra
(SQ, μA). Thus, the S-Σ-tree automaton is just a reformulation of the wta.

Finite, Polynomial Tree Automata

In this subsection, we assume that S is commutative and continuous.

In [88] and [58], the following tree automaton model was defined. A finite
tree automaton (over S and Σ) (for short: fta) is a tuple A = (Q,M, I, F )
where Q is a finite nonempty set (of states), M = (Mk | k ≥ 1) is a family
of transition matrices Mk such that Mk ∈ S〈〈TΣ(Zk)〉〉Q×Qk

and for almost
every k it holds that every entry of Mk is 0̃ ∈ S〈〈TΣ(Zk)〉〉 (recall that Zk =
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{z1, . . . , zk}), I ∈ S〈〈TΣ(Z1)〉〉Q is the initial state vector, and F ∈ S〈〈TΣ〉〉Q
is the final state vector.

Intuitively, an fta A produces a tree series in a top-down fashion. It starts
with the tree series Iq for every q ∈ Q and then repeatedly “unfolds” transition
matrices; finally, it replaces the remaining occurrences of variables in Z by
elements of Fp for appropriate p ∈ Q.

The semantics of an fta A is defined by means of the fixpoint of a map-
ping ΦA, i.e., in a bottom-up fashion. As preparation, we define the substi-
tution of matrices over tree series. LetMk ∈ S〈〈TΣ(Zk)〉〉Q×Qk

be a transition
matrix and v1, . . . , vk ∈ S〈〈TΣ〉〉Q. Then we define the matrixMk(v1, . . . , vk) ∈
S〈〈TΣ〉〉Q of tree series for every q ∈ Q by

Mk(v1, . . . , vk)q =
∑

q1,...,qk∈Q

(Mk)q,q1...qk
←OI

(
(v1)q1 , . . . , (vk)qk

)
.

Since S is continuous with � as partial order, (S,�) is a cpo. By ex-
tending (S,�) to (S〈〈TΣ〉〉,�), and in its turn, extending (S〈〈TΣ〉〉,�) to
(S〈〈TΣ〉〉Q,�) componentwise, also (S〈〈TΣ〉〉Q,�) is a cpo. Moreover, the map-
ping ΦA : S〈〈TΣ〉〉Q → S〈〈TΣ〉〉Q defined for every v ∈ S〈〈TΣ〉〉Q by ΦA(v) =∑

k≥1Mk(v, . . . , v) + F is continuous (cf. [58], page 228). Thus, by Tarski’s
fixpoint theorem, ΦA has a least fixpoint fixΦA and this is the least upper
bound of the approximation sequence (Φn

A(⊥) | n ≥ 0) of M with ⊥q= 0̃ for
every q ∈ Q, i.e., fixΦA = sup{Φn

A(⊥) | n ≥ 0}. Then the tree series recognized
by M is

rA =
∑

q∈Q

(
Iq ←OI

(
(fix ΦA)q

))
.

In order to relate this notion of recognizability with the one induced by our
wta, we have to restrict the fta. We call an fta A = (Q,M, I, F ) polynomial
if for every k ≥ 1 all the entries ofMk are in S〈TΣ(Zk)〉; moreover, for every
q ∈ Q, there is an a ∈ S such that Iq = a.z1; and finally, for every q ∈ Q, the
entry Fq is in S〈TΣ〉. A tree series r ∈ S〈〈TΣ〉〉 is recognizable by a polynomial
fta over S if there is a polynomial fta A = (Q,M, I, F ) over S and Σ such
that r = rA. Note that rA =

∑
q∈Q(Iq, z1)(fix ΦA)q. The class of all tree series

recognizable by some polynomial fta over S is denoted by Rec-FPTA(Σ,S).
Now we will compare the concept of recognizability by polynomial fta with

that of wta. Since polynomial fta are close to systems of linear equations (as
discussed in Sect. 3.8), we will use the equivalence of recognizable and equa-
tional (cf. Theorem 3.40). For every polynomial fta A = (Q,M, I, F ) over Σ
and S, one easily associates the system E of equations zq = sq for every q ∈ Q,
with sq = Fq +

∑
k≥1,q1,...,qk∈Q(Mk)q,q1...qk

←OI (zq1 , . . . , zqk
). Obviously,

ΦE = ΦA. Thus, (fix ΦA)q is a recognizable tree series for every q ∈ Q (by The-
orem 3.40). Since recognizability is preserved under scalar multiplication and
summation (by Theorem 3.8), also rA is recognizable. For the other direction,
let A = (Q,Σ, S, μ, ν) be a wta. One can construct the polynomial fta B =
(Q,M, I, F ) by defining (Mk)q,q1...qk

=
∑

σ∈Σ(k) μk(σ)q1...qk,q.σ(z1, . . . , zk),
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Fq =
∑

α∈Σ(0) μ0(α)ε,q.α, and Iq = νq.z1 for every k ≥ 1 and q, q1, . . . ,
qk ∈ Q. Then for every ξ ∈ TΣ , q ∈ Q, n ≥ 0, if n ≥ height(ξ), then
((Φn+1

B (⊥))q, ξ) = hμ(ξ)q; this can be proved by induction on n. Then, using
the fact that ((Φn+1

B (⊥))q, ξ) = (fix (ΦB)q, ξ) for every n ≥ height(ξ), it follows
that rA = rB.

Theorem 3.50 ([58], Corollary 3.6). Rec(Σ,S) = Rec-FPTA(Σ,S).

Multilinear Representations

In this subsection, we assume that S is a field.

In [7], the recognizability of tree series was defined in terms of multilin-
ear mappings over finite-dimensional S-vector spaces in the following way.
A multilinear representation of TΣ is a tuple (V, μ, γ) where (V, +, 0, μ) is a
non-trivial S-Σ-vector space and γ : V → S is a linear form. Then (V, μ, γ)
defines the tree series r ∈ S〈〈TΣ〉〉, where (r, ξ) = γ(hV (ξ)) for every ξ ∈ TΣ .
A tree series r ∈ S〈〈TΣ〉〉 is recognizable by multilinear mappings over an S-
vector space if there is a multilinear representation (V, μ, γ) which defines r
such that V is finite-dimensional. We denote the class of all tree series over
Σ and S recognizable by multilinear mappings over an S-vector space by
Rec-ML(Σ,S).

Example 3.51 ([7], Example 4.1). We consider the tree series sizeδ as defined
on page 322. Then sizeδ is recognizable by multilinear mappings over the Q-
vector space (Q2, +, (0, 0)), where (Q, +, ·, 0, 1) is the field of rational numbers.
Let {e1, e2} be the basis of Q

2 with e1 = (1, 0) and e2 = (0, 1). We define the
multilinear representation (Q2, μ, γ) as follows. For every k ≥ 0, σ ∈ Σ(k),
and i1, . . . , ik ∈ {1, 2} let

μ(σ)(ei1 , . . . , eik
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1 + e2 if i1 = · · · = ik = 1 and σ = δ,
e1 if i1 = · · · = ik = 1 and σ 	= δ,
e2 if ij = 2 for exactly one 1 ≤ j ≤ k,
02 otherwise.

Since μ(σ) is multilinear, it suffices to define it on the base vectors. Finally,
let γ(e1) = 0 and γ(e2) = 1 (since γ is a linear form, this definition extends
to arbitrary vectors). Then we can prove by a straightforward induction that
hQ2(ξ) = e1 + (sizeδ, ξ)e2 for every ξ ∈ TΣ . Thus, we obtain γ(hQ2(ξ)) =
(sizeδ, ξ).

In fact, the concepts of recognizability by multilinear mappings over a
finite-dimensional S-vector space V and recognizability by a wta over the
field S coincide. This is based on the idea of viewing the state set Q of
the wta as a basis of V ; then V and SQ are isomorphic S-vector spaces.
Then roughly speaking, a multilinear representation (V, μ′, γ) of TΣ and a
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wta A = (Q,Σ, S, μ, ν) are related if μ is the restriction of μ′ to base vectors
(or, equivalently: μ′ is the multilinear extension of μ) and ν(q) = γ(1q) for
every q ∈ Q where 1q is the q-unit vector. Obviously, hV = hμ, and thus
(V, μ′, γ) defines the tree series rA. Since the relatedness implicitly contains a
construction for both directions, we obtain the following characterization.

Theorem 3.52 ([12]; [67], Theorem 4.6). Rec(Σ,S) = Rec-ML(Σ,S).

The question arises whether the concept of recognizability by multilinear
mappings generalizes recognizability by bottom-up tree automata, i.e., wheth-
er Rec(Σ) ⊆ supp(Rec-ML(Σ,S)) for every field S. The answer is yes, and
this follows from Lemma 3.11, the fact that bud-Rec(Σ,S) ⊆ Rec(Σ,S), and
Theorem 3.52. If we combine the involved two constructions, then we realize
that every deterministic bottom-up tree automaton can be straightforwardly
transformed into a multilinear representation. We note that the application of
this transformation to a nondeterministic bottom-up tree automaton would,
in general, lead to a semantically different multilinear representation. This
can be easily seen for the field Z2 = {0, 1} where two accepting runs cancel
each other because 1 + 1 = 0.

S-Σ-Representations

Also, in this subsection, we assume that S is a field.

Next, we compare recognizability by wta over fields with the concept of
representability [19]; this comparison is due to [23]. For this, let n ≥ 1 and
consider the dual monoid (CΣ , �z, z) of (CΣ , ·z, z), where ζ �z ζ ′ = ζ ′ ·z ζ for
every ζ, ζ ′ ∈ CΣ . Then an S-Σ-representation of dimension n is a triple R =
(ϕ, ψ, λ) where ϕ : CΣ → Sn×n is a morphism from the monoid (CΣ , �z, z)
to the monoid (Sn×n, ·, In) of n × n-matrices over S with the usual matrix
multiplication and the unit matrix In; moreover, ψ : Σ(0) → S1×n, and
λ ∈ Sn×1 such that the following consistency condition is true: ψ(α) · ϕ(ζ) =
ψ(α′) · ϕ(ζ ′) for every α, α′ ∈ Σ(0) and ζ, ζ ′ ∈ CΣ such that ζ ·z α = ζ ′ ·z α′.
The tree series rR represented by R is defined by (rR, ξ) = ψ(α) · ϕ(ζ) · λ for
every ξ ∈ TΣ , ζ ∈ CΣ , and α ∈ Σ(0) such that ξ = ζ ·z α. A tree series r is
S-Σ-representable if there is an S-Σ-representation R of some dimension n
such that r = rR. We denote the class of all S-Σ-representable tree series by
Rep(Σ,S).

Example 3.53. Let us again consider the tree series #σ(z,α) as defined in the
list of tree series on page 322, but now we use the field Q of rational numbers
as the underlying semiring rather than Nat, i.e., #σ(z,α) ∈ Q〈〈TΣ〉〉.

Now we consider the Q-Σ-representation R = (ϕ, ψ, λ) of dimension 3
where

ϕ(ζ) =

⎛

⎝
1 0 #σ(z,α)(ζ)
0 a(ζ) b(ζ)
0 0 1

⎞

⎠ , ψ(α) =
(
1 1 0

)
, λ =

⎛

⎝
0
0
1

⎞

⎠ ,
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and a(ζ) = 1 if ζ = z and 0 otherwise, and b(ζ) = 1 if z occurs at the second
child of a position of ζ and 0 otherwise. Here, we have generalized #σ(z,α) in
the obvious way such that it also works on contexts, e.g., #σ(z,α)(σ(z, α)) = 1.
Since for every ξ ∈ TΣ and ζ ∈ CΣ such that ξ = ζ ·z α, we have that
(rR, ξ) = #σ(z,α)(ζ) + b(ζ), we obtain that rR = #σ(z,α).

Theorem 3.54 ([23], Theorems 1 and 2). Rec(Σ,S) = Rep(Σ,S).

Proof. Let r ∈ Rec(Σ,S). By Lemma 3.29, the S-vector space LQr (as defined
on page 336) is finite-dimensional. Let {η−1

1 r, . . . , η−1
n r} be a basis of LQr for

some η1, . . . , ηn ∈ TΣ . Then we define the S-Σ-representation R = (ϕ, ψ, λ)
of dimension n, where ϕ : CΣ → Sn×n is defined for every ζ ∈ CΣ and 1 ≤
p, q ≤ n by ϕ(ζ)p,q = ((ζ ·z ηp)−1r)q (note that the vector (ζ ·z ηp)−1r of LQr

can be written as a linear combination of the base vectors; then ((ζ ·z ηp)−1r)q

is the coefficient of η−1
q r in this representation). Moreover, for every α ∈ Σ(0)

and 1 ≤ p ≤ n we define ψ(α)1,p = (α−1r)p and λp,1 = (r, ηp).
For the proof of the consistency condition, we consider an arbitrary ξ ∈

TΣ such that ξ = ζ ·z α for some ζ ∈ CΣ and α ∈ Σ(0). Then using the
concept of left quotient ζ−1s also for ζ ∈ CΣ and s ∈ S〈〈CΣ〉〉, it is easy
to compute that ξ−1r =

∑n
q=1(ψ(α) · ϕ(ζ))q(η−1

q r) (this follows from the
facts (1) (ζ ·z ξ)−1r = ζ−1(ξ−1r), and (2) the mapping s �→ ζ−1s is linear).
Since η−1

1 r, . . . , η−1
n r is a basis of LQr, the coefficients of η−1

q r are uniquely
determined; thus, if ξ = ζ ′ ·z α′ is another decomposition of ξ, then we obtain
that ψ(α) · ϕ(ζ) = ψ(α′) · ϕ(ζ ′). This proves the consistency condition. Using
the above equation for ξ−1r, it is straightforward to prove that r = rR. Thus,
r is S-Σ-representable.

Next, let R = (ϕ, ψ, λ) be an S-Σ-representation of dimension n. We
extend the mapping Rϕψ : TΣ → Sn defined by Rϕψ(ξ) = ψ(α) · ϕ(ζ) for
every ξ ∈ TΣ with ξ = ζ ·z α, linearly to the mapping Rϕψ : S〈TΣ〉 → Sn;
thus Rϕψ is an S-Σ-semimodule homomorphism. Moreover, we extend the
mapping ϕ : CΣ → Sn×n linearly to the mapping ϕ : S〈CΣ〉 → Sn×n.

In the sequel, we will use that Rϕψ(r′ ◦z r) = Rϕψ(r) · ϕ(r′) for every
r ∈ S〈TΣ〉 and r′ ∈ S〈CΣ〉, which can be seen as follows. First, for every
ζ ∈ CΣ and ξ ∈ TΣ , we can compute Rϕψ(ζ ·z ξ) = Rϕψ(ζ ·z ζ ′ ·z α), where
ξ = ζ ′ ·z α is an arbitrary decomposition. This is equal to ψ(α) · ϕ(ζ ·z ζ ′) =
ψ(α) ·ϕ(ζ ′) ·ϕ(ζ) because ϕ is a monoid homomorphism. Finally, this is equal
to Rϕψ(ζ ′ ·z α) ·ϕ(ζ) = Rϕψ(ξ) ·ϕ(ζ). Secondly, we can generalize the equation
proved in the first step by using the fact that Rϕψ and ϕ are linear.

Now we define the multilinear representation (V, μ, γ) where V = im(Rϕψ)
is the image of S〈TΣ〉 under Rϕψ. For every k ≥ 0, σ ∈ Σ(k), we de-
fine the mapping μ(σ) by μ(σ)(v1, . . . , vk) = Rϕψ(topσ(s1, . . . , sk)) for every
v1, . . . , vk ∈ im(Rϕψ), where si ∈ S〈TΣ〉 is a preimage of vi, i.e., Rϕψ(si) = vi;
in fact, one can prove the independence of this definition from the chosen
preimages by using the equation Rϕψ(r′ ◦z r) = Rϕψ(r) · ϕ(r′). Note that μ
is in fact multilinear because Rϕψ is a homomorphism. Moreover, we define
γ : im(Rϕψ)→ S by γ(v) = v · λ.
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We can see that Rϕψ : S〈TΣ〉 → im(Rϕψ) is a surjective S-Σ-semimodule
homomorphism. Since (S〈TΣ〉, +, 0̃, top) is initial, we obtain that Rϕψ = hV .
Then (rR, ξ) = Rϕψ(ξ) · λ = γ(hV (ξ)) for every ξ ∈ TΣ , and hence rR can be
recognized by multilinear mappings over an S-vector space. By Theorem 3.52,
it follows that r ∈ Rec(Σ,S). ��

We note that there is also a direct way to construct from a given wta
over a field S an S-Σ-representation. For instance, the Q -Σ-representation
R which we have considered in Example 3.53, can be obtained from the wta
A = (Q, Σ, Q, μ, ν) of Example 3.4 (with Nat already replaced by Q) by
identifying the states q, α, and f with the indices 1, 2, and 3, respectively,
and defining ϕ(ζ)p,q = hp

μ(ζ)q, ψ(α)q = hμ(α)q, and λq = ν(q) for every
ζ ∈ CΣ and p, q ∈ Q.

Theorem 3.54 provides a characterization of recognizable S-Σ-tree series
in terms of S-Σ-representations of finite dimension. This characterization can
now be used to prove that if Σ contains at least one binary symbol and N ⊆ S,
then height /∈ Rec(Σ,S) (at the same time, height ∈ Rec(Σ, Arct), cf. Exam-
ple 3.3). The proof of this non-membership is done by contradiction, and it
exploits the well-known Cayley–Hamilton theorem which states a property of
the characteristic polynomial χM of a matrix M. For every M ∈ Sn×n, this
polynomial is defined by χM(x) = det(M− xIn), where det(N ) is the deter-
minant of a matrix N . Clearly, the degree of χM (x) is n, and the coefficient
of xn is (−1)n.

Theorem 3.55 ([97], Chap. XIV, Theorem 3.1). Let n ≥ 1 and M ∈
Sn×n. Then χM(M) = 0.

Now assuming that height ∈ Rec(Σ,S), we know that there is an S-
Σ-representation R = (ϕ, ψ, λ) such that height = rR. In the next lemma,
we apply Theorem 3.55 to matrices of the form ϕ(ζ) where ζ ∈ CΣ . We
abbreviate ζ1 ·z ζn

2 (and ζ1 ·z ζn
2 ·z α) by ζ1ζ

n
2 (ζ1ζ

n
2 α, respectively) for all

contexts ζ1, ζ2 ∈ CΣ (for ζn see the beginning of Sect. 3.6).

Lemma 3.56 ([7], Proposition 9.3; [131]). Let R = (ϕ, ψ, λ) be an S-Σ-
representation of dimension n and ζ2 ∈ CΣ. Then there are a1, . . . , an ∈ S
such that for every ζ1 ∈ CΣ, α ∈ Σ(0) and i ≥ 0 we have that

(−1)n ·
(
rR, ζ1ζ

i+n
2 α

)
+ a1 ·

(
rR, ζ1ζ

i+n−1
2 α

)
+ · · ·+ an ·

(
rR, ζ1ζ

i
2α

)
= 0.

Proof. Let χϕ(ζ2)(x) = (−1)nxn + a1x
n−1 + · · ·+ an for some a1, . . . , an ∈ S.

By Theorem 3.55, we have χϕ(ζ2)(ϕ(ζ2)) = 0.
Now let ζ1 ∈ CΣ , α ∈ Σ(0), and i ≥ 0. Then, by multiplying both sides

of the equation χϕ(ζ2)(ϕ(ζ2)) = 0 with the vector ψ(α) · ϕ(ζ2)i from the left,
and with the matrix ϕ(ζ1) from the right, applying algebraic laws, and the
fact that ϕ is a monoid morphism, we obtain the equation
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n∑

l=0

an−l ·
(
ψ(α) · ϕ

(
ζ1ζ

i+l
2

))
= 0

where a0 = (−1)n. By multiplying the above equation with λ from the right
and taking into account that ψ(α) · ϕ(ζ1ζ

i+l
2 ) · λ = (rR, ζ1ζ

i+l
2 α), we obtain

the statement of this lemma. ��

Before continuing with the proof that height /∈ Rec(Σ,S), let us give an
example of a characteristic polynomial and the application of Lemma 3.56.

Example 3.57. Recall the Q -Σ-representation R = (ϕ, ψ, λ) of dimension 3
from Example 3.53 and the matrix

ϕ(ζ) =

⎛

⎝
1 0 #σ(z,α)(ζ)
0 a(ζ) b(ζ)
0 0 1

⎞

⎠

for any ζ ∈ CΣ . Since χϕ(ζ) does not depend on ϕ(ζ)q,f and ϕ(ζ)α,f, we obtain
that for every ζ ∈ CΣ :

• If ζ 	= z, then a(ζ) = 0 and χϕ(ζ)(x) = −x3 + 2x2 − x.
• If ζ = z, then a(ζ) = 1 and χϕ(ζ)(x) = −x3 + 3x2 − 3x + 1.

Thus, in particular, for every ζ 	= z, ζ ′ ∈ CΣ , and i ≥ 0, we obtain the
following recurrence equation by applying Lemma 3.56:

#σ(z,α)

(
ζ ′ζi+3α

)
= 2 ·#σ(z,α)

(
ζ ′ζi+2α

)
−#σ(z,α)(ζ ′ζi+1α).

Theorem 3.58 ([7], Example 9.2; [131]). If Σ contains at least one binary
symbol and N ⊆ S, then height /∈ Rec(Σ,S).

Proof. Assume that height ∈ Rec(Σ,S). Then by Theorem 3.54, there is an
S-Σ-representation R = (ϕ, ψ, λ) of some dimension n with height = rR.

Consider the tree ζ2 = σ(z, α) for some σ ∈ Σ(2). By Lemma 3.56, there
are a1, . . . , an ∈ S such that for every ζ1 ∈ CΣ and α ∈ Σ(0) and i ≥ 0 we
have that

(−1)n ·
(
height, ζ(i+n)

)
+a1 ·

(
height, ζ(i+n−1)

)
+ · · ·+an ·

(
height, ζ(i)

)
= 0
(6)

where ζ(l) abbreviates ζ1ζ
l
2α. Now let ξ ∈ TΣ be an arbitrary tree such that

(height, ξ) = n. Moreover, let ζ1 = σ(z, ξ). Then
(
height, ζ(j)

)
= 1 + max(j, n) (7)

for every j ≥ 0. Using (6) with i = 0, and (7) with j = n, . . . , 0 we obtain
that (−1)n · (1 + n) + a1 · (1 + n) + · · · + an · (1 + n) = 0. On the other
hand, using (6) with i = 1, and (7) with j = n + 1, . . . , 1, we obtain that
(−1)n · (1+(n+1))+a1 · (1+n)+ · · ·+an · (1+n) = 0. We obtain (−1)n = 0,
which is a contradiction. ��
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Polynomially-Weighted Tree Automata

In this subsection, we assume that S is commutative.

Let us now briefly discuss the concept (e) of recognizability (cf. the begin-
ning of this subsection). This is the recognizability by polynomially-weighted
tree automata, which were defined in [128]. Such a tree automaton uses a poly-
nomial over S to compute the weight of a transition at a node by applying
it to the weights of the subtrees of that node. In fact, polynomially-weighted
tree automata are strictly more powerful than wta, cf. [67], Theorem 7.2 and
Theorem 7.5. Moreover, it is decidable whether a polynomially-weighted tree
automaton A = (Q,Σ, S, μ, ν) is bounded, where S can be any of the arctic
semiring, the tropical semiring, and the semiring of finite subsets of N, i.e.,
whether there is an a ∈ S such that for every ξ ∈ TΣ and q ∈ Q we have that
hμ(ξ)q � a, cf. [128]. This result is generalized in [15] to finitely factorizing,
monotonic, and naturally ordered semirings.

Wta over Distributive Multioperator Monoids

Finally, we consider the concept (f) of recognizability. In [90], the semiring was
generalized to the distributive multioperator monoid (for short: DM-monoid)
and wta over DM-monoids were introduced. A DM-monoid (S, +, 0, Ω) con-
sists of a monoid (S, +, 0) which is equipped with an Ω-algebraic structure,
where the operations of Ω distribute over +. Such wta generalize polynomially-
weighted tree automata in the sense that the weight of a transition on σ ∈ Σ(k)

is a finite sum of Ω-polynomials; an Ω-polynomial is inductively built up
from variables z1, . . . , zk, elements of S, and operations of Ω. In other words,
the weight is taken from S〈TΩ(Zk)〉. In [103, 62, 132], simple wta over DM-
monoids have been investigated; there every transition is weighted by a single
k-ary operation taken from Ω. In fact, simple (and hence, also arbitrary) wta
over DM-monoids are strictly more powerful than polynomially-weighted tree
automata, cf. [67], Theorems 8.6 and 8.9.

3.12 Further Results

There are further results on recognizable tree series which we did not address
in the previous sections. Here, we list (some of) them in a very rough form.

In [62], Kleene’s theorem has been proved for simple wta over distributive
multioperator monoids and, as a consequence, for wta over arbitrary (i.e.,
not necessarily commutative) semirings. The latter result generalizes Theo-
rem 3.47. Moreover, in [92, 95], Kleene’s theorem has been proved for sorted
algebras. In [10], a general Kleene-type theorem has been proved which is
applicable to all grove theories that are Conway theories.

In [89], the concept of full abstract family of tree series, for short: AFT,
has been defined. This is a family of tree series which contains 0̃ and is closed
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under sum, top-concatenation, and least solution of equational systems, and
additionally under linear nondeleting recognizable tree transductions. In fact,
Rec(Σ,S) is an AFT if S is a commutative and continuous semiring, cf. [89],
Theorem 3.5.

In [36], it has been shown how aa-deterministically recognizable tree series
over a semifield can be learned by a minimal adequate teacher. The aa stands
for all accepting and means that the root weight vector of the used wta maps
every state to 1. A minimal adequate teacher [2] answers coefficient queries
and equivalence queries faithfully. In [108], this result has been extended to
arbitrary tree series in bud-Rec(Σ,S) where S is a commutative semifield. We
refer to [75] for an investigation about learning nondeterministic recognizable
tree series over a field.

In [77], forward and backward bisimulation minimization algorithms for
weighted tree automata have been investigated. For the origin of forward and
backward bisimulation on weighted string automata, we refer to [27].

In [59], fuzzy tree automata are investigated. Such automata can be con-
sidered as weighted tree automata over a completely distributive lattice. In
that paper, Kleene’s theorem and the equivalence between equational and ra-
tional fuzzy sets over an arbitrary algebra is proved by using the theory of
fixpoints and μ-clones of monotonic functions over a complete lattice.

In [9], recognizable tree series are studied in a coalgebraic way and several
representation theorems are proved.

There also exist weighted pushdown tree automata (for the string case cf.
[121]). In [94], algebraic tree series have been characterized by (weighted)
pushdown tree automata; this generalizes the result of [74] from the un-
weighted to the weighted case. In [22], algebraic (or: context-free) tree series
have been characterized as the closure of polynomials under second-order sub-
stitution of tree series and iteration; moreover, they have been compared with
recursive program schemes [30, 31]. In [93] Corollary 3.6, it is proved that the
class of algebraic tree series is closed under linear and nondeleting algebraic
tree transductions.

4 IO-Substitution and Tree Series Transformations

As a preparation for Sect. 5 on weighted tree transducers, we recall the concept
and the most important properties of the IO-substitution of tree series as well
as the concept of tree series transformation and their composition.

Besides Z, we use a further set X = {x1, x2, . . .} of variables and we define
Xk = {x1, . . . , xk} for every k ≥ 0. For a finite set Q and a set U ⊆ X, we
define Q(U) = {q(x) | q ∈ Q, x ∈ U}. We write just Q(U)∗ for (Q(U))∗.
For every w ∈ Q(X)∗ and x ∈ X, we denote by |w|x the number of occur-
rences of x in w; thus |w| =

∑
x∈X |w|x; e.g., |q(x1)p(x2)p(x1)|x1 = 2 and

|q(x1)p(x2)p(x1)| = 3. Hence, |w| coincides with the usual definition of the
length of a string w provided we consider Q(U) as an alphabet. We say that
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w ∈ Q(U)∗ is linear in U (resp., nondeleting in U), if every x ∈ U occurs at
most once (resp., at least once) in w. Moreover, we use the notation |ξ|z for
ξ ∈ TΔ(Z) and z ∈ Z, and the notions of linearity and nondeletion in U ⊆ Z
also for ξ ∈ TΔ(U), accordingly.

For r ∈ S〈〈TΔ(Z)〉〉, we define var(r) =
⋃

ξ∈supp(r) var(ξ), with var(ξ) =
{z ∈ Z | |ξ|z > 0}. A tree series r ∈ S〈〈TΔ(U)〉〉, with U ⊆ Z, is linear (resp.,
nondeleting) in U , if every ξ ∈ supp(r) is linear (resp., nondeleting) in U .

Next, we extend tree substitution (cf. the end of Sect. 2.2) to IO-substitu-
tion of polynomial tree series. Certain statements that we need concerning
this IO-substitution, e.g., property P5 below, only hold for commutative S.
Since we do not want to monitor all the time whether we need commutativity
or not and for the sake of succinctness, we make the following convention.

In the rest of Sect. 4, we assume that S is commutative.

Let r ∈ S〈TΔ(Z)〉, I ⊆ N finite, and (si | i ∈ I) a family of tree series
si ∈ S〈TΔ(H)〉 for some set H. The IO-substitution of tree series (si | i ∈ I)
into r, denoted by r ←IO (si | i ∈ I), is defined by

r ←IO (si | i ∈ I) =
∑

ξ∈TΔ(Z),
(∀i∈I):ζi∈TΔ(H)

(

(r, ξ) ·
∏

i∈I

(si, ζi)
)

.ξ(ζi | i ∈ I).

Note that the above sum is (locally) finite because there are finitely many
choices of ξ and ζi, i ∈ I, such that all coefficients (r, ξ) and (si, ζi), i ∈ I, are
not 0. In case I = {1, . . . , n}, we write r ←IO (s1, . . . , sn).

In the following, we summarize some properties of IO-substitution. The
notations r, I, and (si | i ∈ I) stand for the same as above.

P0 Empty substitution: If I = ∅, then we have r ←IO (si | i ∈ I) = r.
P1 Missing variables ([53], Observation 2.6a): If a variable zj with j ∈ I does

not occur in a tree ξ ∈ TΔ(Z), then the tree obtained by the substitution
ξ(ζi | i ∈ I) does not depend on ζj . Still, the value (sj , ζj) contributes to
the coefficient of ξ(ζi | i ∈ I) in the tree series r ←IO (si | i ∈ I) for every
choice of ζj , hence that coefficient is the result of an infinite summation
in S.

P2 Dropping an index ([104], Observation 3): For every j ∈ I such that zj /∈
var(r) and sj = 1.ζ for some ζ ∈ TΔ(H), we have r ←IO (si | i ∈ I) =
r ←IO (si | i ∈ I \ {j}).

P3 Zero propagation ([53], Observation 2.6b): If r = 0̃ or si = 0̃ for some
i ∈ I, then r ←IO (si | i ∈ I) = 0̃.

P4 Preserving polynomials ([53], Proposition 2.7): The tree series r ←IO (si |
i ∈ I) is polynomial.

P5 Linearity in coefficients ([53], Proposition 2.8): For every a ∈ S and family
(ai | i ∈ I) of elements of S, we have ar ←IO (aisi | i ∈ I) = (a ·∏

i∈I ai)
(
r ←IO (si | i ∈ I)

)
.
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P6 Linearity in variables: Let r ∈ S〈TΔ(Zn)〉 for some n ≥ 0 and r1, . . . , rn ∈
S〈TΔ(Z)〉 such that var(ri) ∩ var(rj) = ∅ for 1 ≤ i 	= j ≤ n. If r is
linear (and nondeleting) in Zn and every ri is linear (and nondeleting) in
var(ri), then the tree series r ←IO (r1, . . . , rn) is linear (and nondeleting)
in

⋃n
i=1 var(ri).

P7 Distributivity ([53], Proposition 2.9): Let J ⊆ N and Ji ⊆ N for every
i ∈ I be further finite sets, and furthermore (rj | j ∈ J) and (sji | ji ∈ Ji)
families of tree series in S〈TΔ(Z)〉 and S〈TΔ(H)〉, respectively. Then

(∑

j∈J

rj

)

←IO

( ∑

ji∈Ji

sji

∣
∣ i ∈ I

)

=
∑

j∈J,
∀i∈I:ji∈Ji

rj ←IO (sji | i ∈ I).

P8 Weak associativity ([104], Corollary 7): Let J ⊆ N be finite and assume
that var(r) ⊆ {zj | j ∈ J}. Moreover, let (rj | j ∈ J) be a family with
rj ∈ S〈TΔ(Z)〉 and (Ij | j ∈ J) be a partition of I such that var(rj) ⊆
{zij | ij ∈ Ij} for every j ∈ J . Then

(
r ←IO (rj | j ∈ J)

)
←IO (si | i ∈ I)

= r ←IO

(
rj ←IO (si | i ∈ Ij) | j ∈ J

)
.

A mapping τ : TΣ → Pfin(TΔ) is called a tree transformation, where
Pfin(TΔ) denotes the set of finite subsets of TΔ. The composition of the
tree transformations τ and τ ′ : TΔ → Pfin(TΓ ) is the tree transformation
τ ; τ ′ : TΣ → Pfin(TΓ ) defined by (τ ; τ ′)(ξ) =

⋃
η∈τ(ξ) τ ′(η). A mapping τ :

TΣ → S〈TΔ〉 is a (tree to) tree series transformation (over S). Then τ extends
to a mapping of type S〈TΣ〉 → S〈TΔ〉 by letting τ(r) =

∑
ξ∈TΣ

(r, ξ)τ(ξ) for
every r ∈ S〈TΣ〉. Also, for a finite set Q, a mapping τ : TΣ → S〈TΔ〉Q extends
to a mapping of type S〈TΣ〉 → S〈TΔ〉Q by letting τ(r)q =

∑
ξ∈TΣ

(r, ξ)τ(ξ)q

for every r ∈ S〈TΣ〉 and q ∈ Q. The composition of the tree series transfor-
mations τ : TΣ → S〈TΔ〉 and τ ′ : TΔ → S〈TΓ 〉 is the tree series trans-
formation τ ; τ ′ : TΣ → S〈TΓ 〉 defined by (τ ; τ ′)(ξ) = τ ′(τ(ξ)) for every
ξ ∈ TΣ . Then we extend composition to classes of tree series transforma-
tions in the following way. Let C(S) and D(S) be classes of polynomial tree
series transformations over S. The composition of C(S) and D(S) is the class
C(S); D(S) = {τ ; τ ′ | there are ranked alphabets Σ,Δ, and Γ such that τ :
TΣ → S〈TΔ〉, τ ′ : TΔ → S〈TΓ 〉, τ ∈ C(S), and τ ′ ∈ D(S)}.

A tree series transformation τ : TΣ → S〈TΣ〉 is called a weighted identity
if, for every ξ ∈ TΣ , we have τ(ξ) = a.ξ for some a ∈ S. The particular
weighted identity ι : TΣ → S〈TΣ〉, defined by ι(ξ) = 1.ξ for every ξ ∈ TΣ , is
called identity (tree series transformation). It should be clear that ι; τ = τ for
every τ : TΣ → S〈TΔ〉 and τ ; ι = τ for every τ : TΓ → S〈TΣ〉.
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5 Weighted Tree Transducers

5.1 Tree Transducers

Tree transducers generalize finite-state tree automata in the way that, besides
processing an input tree, they produce output trees. The classical generaliza-
tions are the bottom-up tree transducers [134, 48], the top-down tree transduc-
ers [123, 133, 48], and the top-down tree transducers with regular look-ahead
[49]; their names come from the direction in which they process the input
tree, where we assume that trees grow downward. Here, we recall their de-
finition, however, we start with the definition of generalized finite-state tree
transducers (for short: gfst) [48] which generalize all of the three classical tree
transducers.

A gfst is a systemM = (Q,Σ,Δ,R, F ), where Q is a finite set (of states)
with Q ∩ (Σ ∪ Δ) = ∅, R is a finite set of rules, and F ⊆ Q is a set of
distinguished states. We call Σ and Δ the input and the output ranked alphabet,
respectively. Each rule in R has the form (q, k, l, σ → ζ, ϕ), where q ∈ Q, k ≥ 0,
l ≥ 0, σ ∈ Σ(k), ζ ∈ TΔ(Zl), and ϕ : Zl → Q(Xk) such that if k = 0, then
l = 0. Such a rule can be visualized as

q
(
σ(x1, . . . , xk)

)
→ ζ, 〈q1(xi1) . . . ql(xil

)〉, (8)

where ϕ(zj) = qj(xij ) for every 1 ≤ j ≤ l, and it can be interpreted as follows.
A q-translation of a Σ-tree rooted by the k-ary symbol σ is a Δ-tree which
is computed in the way that a qj-translation of the ijth descendant of σ is
substituted for every 1 ≤ j ≤ l and for every occurrence of zj in ζ (if any).
Of course, there may be several q-translations of such a σ-rooted tree. For a
gfst M, we consider the Σ-algebra (Pfin(TΔ)Q, μM) where, for every k ≥ 0
and σ ∈ Σ(k), the k-ary operation μM(σ) : Pfin(TΔ)Q × · · · × Pfin(TΔ)Q →
Pfin(TΔ)Q is defined by

μM(σ)(v1, . . . , vk)q =
⋃

for every rule
of the form (8)

{ζ(ζ1, . . . , ζl) | ζj ∈ (vij )qj , 1 ≤ j ≤ l}.

Let us denote the unique Σ-algebra homomorphism from TΣ to Pfin(TΔ)Q

by hM. Then the tree transformation τM : TΣ → Pfin(TΔ) computed by M is
defined as

τM(ξ) =
⋃

q∈F

hM(ξ)q

for every ξ ∈ TΣ . Let GFST denote the class of all tree transformations
computed by gfst.

Top-down tree transducers, top-down tree transducers with regular look-
ahead, and bottom-up tree transducers can be derived from gfst as follows,
cf. [48, 49]. The gfst M is a top-down tree transducer (resp., with regu-
lar look-ahead) if, for every rule (8), the tree ζ is linear and nondeleting
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(resp., linear) in Zl. For the sake of simplicity, we consider only top-down
tree transducers. Then the rule (8) is written as q(σ(x1, . . . , xk))→ ζ, where
ζ = ζ(q1(xi1), . . . , ql(xil

)). Moreover, the gfst M is a bottom-up tree trans-
ducer if, for every rule (8), we have k = l and i1 = 1, . . . , ik = k. Then the
rule (8) is written as σ(q1(x1), . . . , qk(xk)) → q(ζ(x1, . . . , xk)). This allows
to consider both top-down and bottom-up tree transducers as special term
rewrite systems [82, 3] and to define their semantics, i.e., the computed tree
transformation, in terms of term rewriting in the standard way, cf. [123, 48,
49]. See [48] for the exact definition of the term rewrite semantics of top-down
and bottom-up tree transducers, and cf. [48], Lemmas 5.5 and 5.6 for the
equivalence of the initial algebra semantics (as defined above) and the term
rewrite semantics. We denote the classes of all tree transformations computed
by top-down tree transducers and bottom-up tree transducers by TOP and
BOT, respectively.

5.2 The Basic Model

Tree transducers can be generalized to weighted tree transducers over a semi-
ring in a similar way as bottom-up tree automata were generalized to wta
(cf. Sect. 3.2). The idea behind this is to represent a tree transformation
τ : TΣ → Pfin(TΔ) as a tree series transformation τ : TΣ → B〈TΔ〉 over the
Boolean semiring B and then to generalize from B to an arbitrary semiring S.

For the first step, consider the system M = (Q,Σ,Δ, B, μ, F ), called a
weighted tree transducer over B, where Q, Σ, Δ, and F are as for a gfst, while
μ = (μk | k ≥ 0) is a family of mappings

μk : Σ(k) → B〈TΔ(Z)〉Q(Xk)∗×Q

such that μk(σ)w,q 	= 0̃ only for finitely many (w, q) ∈ Q(Xk)∗×Q. Moreover,
μk(σ)w,q ∈ B〈TΔ(Zl)〉 with l = |w|, for every (w, q) ∈ Q(Xk)∗ ×Q. Then we
consider the Σ-algebra (B〈TΔ〉Q, μM) where for every k ≥ 0 and σ ∈ Σ(k),
the k-ary operation μM(σ) : B〈TΔ〉Q × · · · ×B〈TΔ〉Q → B〈TΔ〉Q is defined as
follows. For every q ∈ Q and v1, . . . , vk ∈ B〈TΔ〉Q, we have

μM(σ)(v1, . . . , vk)q =
∨

w∈Q(Xk)∗,
w=q1(xi1 )...ql(xil

)

μk(σ)w,q ←IO

(
(vi1)q1 , . . . , (vil

)ql

)
.

Let us denote the unique Σ-algebra homomorphism from TΣ to B〈TΔ〉Q by hμ.
Now the tree series transformation τM : TΣ → B〈TΔ〉 computed by M is
defined by

τM(ξ) =
∨

q∈F

hμ(ξ)q

for every ξ ∈ TΣ .
It should be clear that gfst and weighted tree transducers over B are se-

mantically equivalent in the sense that, for every gfst M, we can construct
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a weighted tree transducer N over B such that τM(ξ) = supp(τN (ξ)) for
every ξ ∈ TΣ , and vice versa. In fact, if M = (Q,Σ,Δ,R, F ) and N =
(Q,Σ,Δ, B, μ, F ), then the connection between them is the following: for
every k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and q ∈ Q, we have μk(σ)w,q =

∨
(1.ζ |

q(σ(x1, . . . , xk))→ ζ, 〈w〉 is in R).
For the second step, we observe that, as in the case of wta, weighted tree

transducers over B can easily be generalized to weighted tree transducers over
an arbitrary semiring S. For the same reason as in Sect. 4, we make the
following conventions.

In the rest of Sect. 5, we assume that S is commutative. Moreover,
←IO will be abbreviated by ←.

Definition 5.1. A weighted tree transducer (over S)4 (for short: wtt) is a
tuple M = (Q,Σ,Δ, S, μ, F ), where:

• Q is a finite nonempty set, the set of states, with Q ∩ (Σ ∪Δ) = ∅.
• Σ and Δ are the input and the output ranked alphabets, respectively.
• μ = (μk | k ∈ N) is a family of rule mappings

μk : Σ(k) → S〈TΔ(Z)〉Q(Xk)∗×Q

such that μk(σ)w,q 	= 0̃ only for finitely many (w, q) ∈ Q(Xk)∗ × Q, and
μk(σ)w,q ∈ S〈TΔ(Zl)〉 with l = |w|, for every (w, q) ∈ Q(Xk)∗ ×Q.

• F ⊆ Q is the set of designated states.

For such a wtt M we consider the Σ-algebra (S〈TΔ〉Q, μM) where, for
every k ≥ 0 and σ ∈ Σ(k), the k-ary operation μM(σ) : S〈TΔ〉Q × · · · ×
S〈TΔ〉Q → S〈TΔ〉Q is defined as follows. For every q ∈ Q and v1, . . . , vk ∈
S〈TΔ〉Q, we have

μM(σ)(v1, . . . , vk)q =
∑

w∈Q(Xk)∗,
w=q1(xi1 )...ql(xil

)

μk(σ)w,q ←
(
(vi1)q1 , . . . , (vil

)ql

)
.

Let us denote the unique Σ-algebra homomorphism from TΣ to S〈TΔ〉Q by hμ.
Then the tree series transformation τM : TΣ → S〈TΔ〉 computed by M is
defined as

τM(ξ) =
∑

q∈F

hμ(ξ)q

for every ξ ∈ TΣ . We denote by WTT(S) the class of all tree series transfor-
mations over S that are computable by a wtt.

An equivalent definition of τM can be given as follows. For every q ∈ Q,
we define the tree series transformation τM,q : TΣ → S〈TΔ〉 by induction: for
every ξ = σ(ξ1, . . . , ξk) ∈ TΣ , let
4 In the literature, a weighted tree transducer is also known as a (polynomial) tree
series transducer. Moreover, μ is also called a tree representation.



Weighted Tree Automata and Tree Transducers 367

τM,q(ξ) =
∑

w∈Q(Xk)∗,
w=q1(xi1 )...ql(xil

)

μk(σ)w,q ←
(
τM,q1(ξi1), . . . , τM,ql

(ξil
)
)
.

Then we can easily show that τM,q(ξ) = hμ(ξ)q, hence τM(ξ) =
∑

q∈F τM,q(ξ).

Example 5.2. As an example, we consider the wtt M = (Q,Σ,Δ, Trop, μ, F )
with Q = {q, q0, qα, qβ}, Σ = {δ(2), γ(1), α(0), β(0)}, Δ = {σ(2), γ

(1)
1 , γ

(1)
2 , α(0),

β(0)}, and F = {q0}. Moreover, we specify the rule mappings such that, for
every ξ ∈ TΣ and θ ∈ {α, β}, the following statements hold (where we have
dropped the parentheses in subtrees of the form γ(ζ)):

τM,qθ
(ξ) =

{
k.θ if ξ = γkθ for k ≥ 0,

∞̃ otherwise,

τM,q(ξ) =

{
minζ∈L(n,θ) |ζ|γ2 .ζ if ξ = γnθ for n ≥ 0,

∞̃ otherwise,

where L(n, θ) = {γi1 . . . γinθ | i1, . . . , in ∈ {1, 2}}, and

τM,q0(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minζ∈L(n,α)(|ζ|γ2 + k) . σ(ζ, ζ)
if ξ = δ(γnθ, γkα) for n, k ≥ 0,

minζ1,ζ2∈L(n,β)(|σ(ζ1, ζ2)|γ2 + k) . σ(ζ1, ζ2)
if ξ = δ(γnθ, γkβ) for n, k ≥ 0,

∞̃ otherwise.

For this purpose, we define μ such that, for every θ ∈ {α, β},

μ1(γ)qθ(x1),qθ
= 1.z1,

μ0(θ)ε,qθ
= 0.θ,

μ1(γ)q(x1),q = 0.γ1(z1) + 1.γ2(z1),
μ0(θ)ε,q = 0.θ,

μ2(δ)q(x1)qα(x2),q0 = 0.σ(z1, z1),
μ2(δ)q(x1)q(x1)qβ(x2),q0 = 0.σ(z1, z2),

and all the other not mentioned tuples (w, p) ∈ Q(Xk)∗ ×Q lead to ∞̃.
Now we consider the input tree ξ = δ(γnθ, γkβ). Assuming that τM,q(γnθ),

τM,qα(γkβ), and τM,qβ
(γkβ) have the desired form (as reported above), the

tree series transformation τM,q0 can be evaluated on ξ as follows (where we
abbreviate τM,p by τp for every p ∈ Q):

τq0

(
δ
(
γnθ, γkβ

))

= min
{
μ2(δ)q(x1)qα(x2),q0 ←

(
τq

(
γnθ

)
, τqα

(
γkβ

))
,

μ2(δ)q(x1)q(x1)qβ(x2),q0 ←
(
τq

(
γnθ

)
, τq

(
γnθ

)
, τqβ

(
γkβ

))}
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= min
{
0.σ(z1, z1)←

(
τq

(
γnθ

)
, ∞̃

)
,

0.σ(z1, z2)←
(
τq

(
γnθ

)
, τq

(
γnθ

)
, τqβ

(
γkβ

))}

(P3)
= min

{
∞̃, 0.σ(z1, z2)←

(
τq

(
γnθ

)
, τq

(
γnθ

)
, τqβ

(
γkβ

))}

= 0.σ(z1, z2)←
(
τq

(
γnθ

)
, τq

(
γnθ

)
, τqβ

(
γkβ

))

= min
ξ′∈TΔ(Z3)

ζ1,ζ2,ζ3∈TΔ

a. ξ′(ζ1, ζ2, ζ3)

(
where a =

(
0.σ(z1, z2), ξ′

)
+

(
τq

(
γnθ

)
, ζ1

)
+

(
τq

(
γnθ

)
, ζ2

)

+
(
τqβ

(
γkβ

)
, ζ3

))

= min
ζ1,ζ2∈TΔ

((
τq

(
γnθ

)
, ζ1

)
+

(
τq

(
γnθ

)
, ζ2

)
+ k

)
.σ(ζ1, ζ2)

(
choosing ξ′ = σ(z1, z2) and ζ3 = β

)

= min
ζ1,ζ2∈L(n,θ)

(
|σ(ζ1, ζ2)|γ2 + k

)
.σ(ζ1, ζ2).

We shortly discuss the copy and the deletion capabilities of weighted tree
transducers where ξ stands for an input tree and ξ′ is a subtree of ξ.
(T) A wtt can process several copies of ξ′; the weight of each processing of
ξ′ is included into that of ξ (even if some of the copies are processed in the
same way). For instance, in Example 5.2 for ξ = δ(ξ′, γkβ) and ξ′ = γnθ, we
have that

τM,q0(ξ) = 0.σ(z1, z2)←
(
τM,q(ξ′), τM,q(ξ′), . . .

)

due to the equation μ2(δ)q(x1)q(x1)qβ(x2),q0 = 0.σ(z1, z2). Then by the def-
inition of IO-substitution, two trees ζ1, ζ2 are chosen from the support of
τM,q(ξ′), and zi is replaced by ζi in σ(z1, z2); moreover, both values (τM,q(ξ′),
ζ1) and (τM,q(ξ′), ζ2) are included in τM,q0(ξ):

τM,q0(ξ) = min
ζ1,ζ2∈TΔ

((
τM,q(ξ′), ζ1

)
+

(
τM,q(ξ′), ζ2

)
+ · · ·

)
.σ(ζ1, ζ2).

We note that, for top-down tree transducers, this corresponds to the property
“(T) copying an input subtree followed by processing these copies nondeter-
ministically (and independently)” [48].
(B1) A wtt can process ξ′ and then copy the result of the processing; the
weight of the processing of ξ′ is included into that of ξ only once, no matter
how many times the result is copied. This happens, e.g., in Example 5.2 for ξ =
δ(ξ′, γkα) and ξ′ = γnθ: due to the equation μ2(δ)q(x1)qα(x2),q0 = 0.σ(z1, z1),
we have that

τM,q0(ξ) = 0.σ(z1, z1)←
(
τM,q(ξ′), . . .

)

and, by the definition of IO-substitution, a tree ζ in the support of τM,q(ξ′)
is chosen and then copied to both occurrences of z1 in σ(z1, z1), whereas its
weight (τM,q(ξ′), ζ) is included in τM,q(ξ) only once:
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τM,q0(ξ) = min
ζ∈TΔ

(
(τM,q(ξ′), ζ) + · · ·

)
.σ(ζ, ζ).

For bottom-up tree transducers, this corresponds to the property “(B1) non-
deterministically processing an input subtree followed by copying the result
of this process” [48].
(B2) A wtt can process ξ′ (and thereby check a property of ξ′) and then it can
delete the result of this processing. In this case, the weight of the processing
of ξ′ is included into that of ξ. This situation occurs, e.g., in Example 5.2 for
ξ1 = δ(ξ′, γkα) and ξ2 = δ(ξ′, γkβ) where ξ′ = γnθ. Then

τM,q0(ξ1) = 0.σ(z1, z1)←
(
. . . , τM,qα

(
γkα

))
,

τM,q0(ξ2) = 0.σ(z1, z2)←
(
. . . , . . . , τM,qβ

(
γkβ

))

due to the equations

μ2(δ)q(x1)qα(x2),q0 = 0.σ(z1, z1),
μ2(δ)q(x1)q(x1)qβ(x2),q0 = 0.σ(z1, z2),

resp., and by the definition of IO-substitution the value k is included in
τM,q0(ξ1) and τM,q0(ξ2):

τM,q0(ξ2) = min
ζ∈TΔ

(· · ·+ k).σ(ζ, ζ),

τM,q0(ξ1) = min
ζ1,ζ2∈TΔ

(· · ·+ · · ·+ k).σ(ζ1, ζ2).

For bottom-up tree transducers, this phenomenon is known as “(B2) checking
a property of an input subtree followed by deletion” [48].

In the literature (e.g., in [91, 53, 65, 102, 104]), wtt are often defined such
that a rule mapping has the type

μk : Σ(k) → S〈〈TΔ(Z)〉〉Q(Xk)∗×Q,

i.e., the tree series μk(σ)w,q is not necessarily polynomial, and there the wtt of
our Definition 5.1 is called polynomial. We would like to ask the reader to keep
this is mind, when we later on refer to statements proved in that literature for
the more general type of wtt. Clearly, we will only refer to statements which
hold for the polynomial restriction of that general type.

In some works, a wttM has, instead of designated states, a so-called root
output. This root output is specified by a mapping ν : Q→ S〈CΔ〉 [102, 104] or
more generally by ν : Q→ S〈TΔ(Z1)〉 [91] and the tree series transformation
computed byM is defined as τM(ξ) =

∑
q∈Q ν(q)← hμ(ξ)q for every ξ ∈ TΣ .

Certainly, the wtt with root output generalizes our wtt because the set F of
designated states can be simulated by the particular root output defined by
ν(q) = 1.z1 if q ∈ F and ν(q) = 0̃, otherwise for q ∈ Q. On the other hand,
our wtt and the wtt with root output are semantically equivalent, because for
every wtt M with root output one can construct a wtt M′ with τM = τM′ ,
see [104], Lemma 10.
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5.3 Restricted Models

We define three types of restrictions of wtt. The first of them is made con-
cerning the possible directions in which weighted tree transducers process the
input trees. We say that a wttM = (Q,Σ,Δ, S, μ, F ) is a:

• top-down wtt with regular look-ahead (resp., top-down wtt) if, for every
k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and q ∈ Q, the tree series μk(σ)w,q is linear
(resp., linear and nondeleting) in Z|w|,

• bottom-up wtt if, for every k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and q ∈ Q,
such that μk(σ)w,q 	= 0̃ we have that w = q1(x1) . . . qk(xk) for some
q1, . . . , qk ∈ Q.

The corresponding class of tree series transformations over S is denoted by
TOPR(S) (resp., TOP(S), BOT(S)). If M is a top-down wtt with regular
look-ahead or a top-down wtt (resp., bottom-up wtt), then F is called the set
of initial (resp., final states).

Example 5.3. If we drop from the wtt M of Example 5.2 the state qα (and
all the equations that involve qα), then we obtain a top-down wtt M′ with
regular look-ahead such that for every ξ ∈ TΣ and θ ∈ {α, β}

τM′,q0(ξ) =

⎧
⎪⎨

⎪⎩

minζ1,ζ2∈L(n,θ)(|σ(ζ1, ζ2)|γ2 + k) . σ(ζ1, ζ2)
if ξ = δ(γnθ, γkβ) for n, k ≥ 0,

∞̃ otherwise.

In fact, the state qβ can be called a look-ahead state.
If we replace in the rule mapping μ2 ofM′ the equation

μ2(δ)q(x1)q(x1)qβ(x2),q0 = 0.σ(z1, z2)

by
μ2(δ)q(x1)q(x1),q0 = 0.σ(z1, z2),

and we drop all the equations that involve qβ , then we obtain a top-down wtt
M′′ such that for every ξ ∈ TΣ

τM′′,q0(ξ) =

⎧
⎪⎨

⎪⎩

minζ1,ζ2∈L(n,θ) |σ(ζ1, ζ2)|γ2 . σ(ζ1, ζ2)
if ξ = δ(γnθ, ζ) for n ≥ 0 and ζ ∈ TΣ ,

∞̃ otherwise.

If we drop from the wttM of Example 5.2 the state qβ , then we obtain a
bottom-up wtt M′′′ such that for every ξ ∈ TΣ

τM′′′,q0(ξ) =

⎧
⎪⎨

⎪⎩

minζ∈L(n,θ)(|ζ|γ2 + k) . σ(ζ, ζ)
if ξ = δ(γnθ, γkα) for n, k ≥ 0,

∞̃ otherwise.
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γ(σ(σ(α, α), α)) γ(σ(σ(α, α), α))
⇒ γ(σ(σ(q(α), α), α)) ⇒ γ(σ(σ(q(α), α), α))
⇒ γ(σ(σ(q(α), α(α)), α)) ⇒ γ(σ(σ(q(α), q(α)), α))
⇒ γ(σ(f(α), α)) ⇒ γ(σ(q(σ(α, α)), α))
⇒ γ(σ(f(α), q(α))) ⇒ γ(σ(q(σ(α, α)), α(α)))
⇒ γ(f(σ(α, α))) ⇒ γ(f(σ(α, α)))
⇒ f(γ(σ(α, α))) ⇒ f(γ(σ(α, α)))

(a) (b)

Fig. 1. Two leftmost derivations of f(γ(σ(α, α))) from γ(σ(σ(α, α), α))

Example 5.4. Let us consider again Σ = {σ(2), γ(1), α(0)} and the pattern
σ(z, α). We construct a bottom-up tree transducer N whose domain is the
set of all Σ-trees in which σ(z, α) occurs at least once, i.e., the tree language
recognized by the bottom-up tree automaton A of Example 3.1. Given an
input tree ξ ∈ TΣ , the bottom-up tree transducer N nondeterministically
selects an occurrence of σ(z, α) in ξ, if any, then either leaves it unchanged or
deletes σ and α from it. If σ(z, α) does not occur in ξ, then N will not compute
any output tree for ξ. For this, let N = (Q,Σ,Σ,R, F ), where Q = {q, α, f},
F = {f}, and R is the set of the following rules:

α → q(α), α → α(α),

γ
(
q(x1)

)
→ q

(
γ(x1)

)
, γ

(
f(x1)

)
→ f

(
γ(x1)

)
,

σ
(
q(x1), q(x2)

)
→ q

(
σ(x1, x2)

)
, σ

(
q(x1), α(x2)

)
→ f

(
σ(x1, x2)

)
| f(x1),

σ
(
f(x1), q(x2)

)
→ f

(
σ(x1, x2)

)
, σ

(
q(x1), f(x2)

)
→ f

(
σ(x1, x2)

)
.

Let⇒N be the term rewrite relation induced by R. We consider the input tree
ξ = γ(σ(σ(α, α), α)) and show a derivation starting from ξ in Fig. 1(a) (where
we have dropped N from ⇒N ). Hence, we have γ(σ(α, α)) ∈ τN (γ(σ(σ(α, α),
α))). In fact, this derivation is a leftmost derivation [66] meaning that in
every step we applied a rule to the leftmost redex. Note that there is another
leftmost derivation starting also from ξ with the same result; see Fig. 1(b).

Now we view N as a bottom-up wtt over the semiring Nat. More exactly,
let M = (Q,Σ,Σ,Nat, μ, F ) be the bottom-up wtt, where μ is defined as
follows. For every k ∈ {0, 1, 2}, δ ∈ Σ(k), and q1, . . . , qk, p ∈ Q, we have

μk(δ)q1(x1)...qk(xk),p =
∑

δ(q1(x1),...,qk(xk))→p(ζ(x1,...,xk))∈R

1.ζ.

For instance, μ2(σ)q(x1)α(x2),f = 1.σ(z1, z2) + 1.z1. One can show that
(τM(ξ), η) is the number of leftmost derivations of f(η) from ξ using the
rewrite relation ⇒N , for every ξ ∈ TΣ and η ∈ TΔ, cf. [66], Example 5.6.

The second type of restriction concerns the state behavior: it can be total
and/or deterministic. Here, we will only impose these restrictions to top-down
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wtt and bottom-up wtt. Let M = (Q,Σ,Δ, S, μ, F ) be a top-down wtt or a
bottom-up wtt.

• The top-down wtt M is total (resp., deterministic) if, for every k ≥ 0,
σ ∈ Σ(k), and q ∈ Q, there is at least one (resp., at most one) w ∈ Q(Xk)∗

and ζ ∈ TΔ(Z), such that ζ ∈ supp(μk(σ)w,q). Moreover, in a deterministic
top-down wtt, we additionally require that the set F is a singleton.

• The bottom-up wtt M is total (resp., deterministic) if, for every k ≥ 0,
σ ∈ Σ(k), and w ∈ Q(Xk)∗, there is at least one (resp., at most one) q ∈ Q
and ζ ∈ TΔ(Z), such that ζ ∈ supp(μk(σ)w,q).

We note that if M is a deterministic top-down or a deterministic bottom-
up wtt, then the operation + of S is not used for the computation of τM.
Moreover, in the case that M is total we do not require F = Q.

The restrictions total and deterministic are abbreviated by t and d, re-
spectively. Any combination x over {t, d} can be applied to a top-down (resp.,
bottom-up) wtt, hence we obtain an x top-down (resp., bottom-up) wtt. The
class of tree series transformations computed by all so-obtained x top-down
wtt or x bottom-up wtt is denoted by prefixing with x the notation of the class
of tree series transformations computed by that kind of wtt. For example, the
class of tree series transformations over S computed by total and deterministic
top-down wtt is denoted by td-TOP(S). Moreover, a total and deterministic
top-down (resp., bottom-up) wtt M is called a homomorphism top-down wtt
(resp., homomorphism bottom-up wtt), provided Q = F = {q}. The class of
tree series transformations over S which are computable by homomorphism
top-down wtt (resp., homomorphism bottom-up wtt) is denoted by h-TOP(S)
(resp., h-BOT(S)).

Finally, the third type of restriction concerns the form of the polynomials
that may occur in the rule mappings. A wttM = (Q,Σ,Δ, S, μ, F ) is:

• Boolean, if for every k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and q ∈ Q, the tree
series μk(σ)w,q is Boolean,

• linear (resp., nondeleting), if for every k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and
q ∈ Q such that μk(σ)w,q 	= 0̃, both μk(σ)w,q is linear (resp., nondeleting)
in Z|w| and w is linear (resp., nondeleting) in Xk.

Moreover, ifM is a bottom-up wtt, thenM is:

• wta, if Σ = Δ and for every k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and q ∈ Q, we
have that μk(σ)w,q = a.σ(z1, . . . , zk) for some a ∈ S.

The first three restrictions are abbreviated by b, l, and n, respectively. Any
combination of {b, l, n} can be applied to any of the wtt classes defined above.
For example, the class of tree series transformations over S computed by linear
top-down wtt with regular look-ahead is denoted by l-TOPR(S), while the
class of tree series transformations over S computed by deterministic, linear,
and nondeleting bottom-up wtt is denoted by dln-BOT(S).
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Each wta bottom-up wtt computes a weighted identity. The class of all
weighted identities over S computed by wta bottom-up wtt is denoted by
WTA(S).

By two easy constructions, we can show that linear and nondeleting top-
down wtt have the same computation power as linear and nondeleting bottom-
up wtt and hereby generalize the corresponding result concerning tree trans-
ducers, cf. [48], Theorem 2.9.

Theorem 5.5 ([53], Theorem 5.24). ln-TOP(S) = ln-BOT(S) and
bln-TOP(S) = bln-BOT(S).

Although bottom-up homomorphism tree transducers compute the same
class of tree transformations as top-down homomorphism tree transducers
(cf. [48]), this equivalence does not hold for the corresponding classes of
tree series transformations, cf. [53], Proposition 3.14. However, bh-TOP(S) =
bh-BOT(S), therefore, we do not use different notations but denote this class
by b-HOM(S), cf. [53], Corollary 4.15. We note that the equation was proved
in [53] only for idempotent S. However, it is easy to see that idempotency is
not necessary because, as mentioned, + is not used for the computation of
the tree series transformation computed by any homomorphism wtt.

We also note that the identity tree series transformation ι can be computed
by any of the above kind of wtt.

Finally, we show that wtt over positive semirings have the same compu-
tational power as gfst. This relation has been discussed in [53], Sect. 4.1 for
Boolean wtt and gfst; and it has been proved in detail in [53], Sects. 4.2
and 4.3 for the case of bottom-up wtt and top-down wtt, respectively, over
idempotent semirings.

The heart of such a comparison is the concept of the relatedness of wtt and
gfst. We define a wtt M = (Q,Σ,Δ, S, μ, F ) and a gfst N = (Q,Σ,Δ,R, F )
as being related if the following holds:

q
(
σ(x1, . . . , xk)

)
→ ζ, 〈w〉 is in R iff ζ ∈ supp

(
μk(σ)w,q

)

for every q ∈ Q, k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, and ζ ∈ TΔ(Z|w|).
The same concept of relatedness can be defined for top-down tree trans-

ducers and top-down wtt, and for bottom-up tree transducers and bottom-up
wtt. Assuming that S is positive, it is easy to prove by induction on ξ that
hN (ξ)q = supp(hμ(ξ)q) for every ξ ∈ TΣ and q ∈ Q. The key equation in this
proof is that for ξ = σ(ξ1, . . . , ξk) and q ∈ Q,

⋃

for every rule
of the form (8)

{ζ(ζ1, . . . , ζl) | ζj ∈ hN (ξij )qj , 1 ≤ j ≤ l}

= supp
( ∑

w=q1(xi1 )...ql(xil
)∈Q(Xk)∗

μk(σ)w,q ←
(
hμ

(
ξi1

)
q1

, . . . , hμ(ξil
)ql

)
)

.
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To prove this, we need the following facts. If S is positive, then for all tree
series r1, r2 ∈ S〈TΔ〉, we have supp(r1 + r2) = supp(r1) ∪ supp(r2), and for
r ∈ S〈TΔ(Z)〉, finite I ⊆ N, and family (si | i ∈ I) with si ∈ S〈TΔ〉 we have
supp(r ← (si | i ∈ I)) = {ζ(ζi | i ∈ I) | ζ ∈ supp(r), ζi ∈ supp(si)}. Then the
equation follows from the induction hypothesis, the relatedness ofM and N ,
and the fact that S is positive.

In order to relate the semantics of a wttM with that of a gfst N we will
use a generalization of the mapping supp. For this, define the mapping

suppS,Σ,Δ : (TΣ → S〈TΔ〉)→
(
TΣ → Pfin(TΔ)

)

by (suppS,Σ,Δ(τ))(ξ) = supp(τ(ξ)) for every τ : TΣ → S〈TΔ〉 and ξ ∈ TΣ .
Let suppS denote the class of all mappings suppS,Σ,Δ.

Now it easily follows that τN = suppS,Σ,Δ(τM) if M and N are related
and S is positive. Since, for every given wtt M we can construct a gfst N
which is related to M, and vice versa, we obtain the following result.

Theorem 5.6 ([53], Theorem 4.13 and Theorem 4.6). Let S be positive.
Then:

(A) suppS(WTT(S)) = GFST.
(B) suppS(TOP(S)) = TOP.
(C) suppS(BOT(S)) = BOT.

The next theorem shows that the range of a wta bottom-up wtt is a recog-
nizable tree series and vice versa. For an arbitrary weighted identity τ : TΣ →
S〈TΣ〉, we define the tree series range(τ) ∈ S〈TΣ〉 by (range(τ), ξ) = (τ(ξ), ξ)
for every ξ ∈ TΣ . We let WTA(Σ,S) denote the class of all those weighted
identities in WTA(S) which have the type TΣ → S〈TΣ〉.

Theorem 5.7. Rec(Σ,S) = range(WTA(Σ,S)).

Proof. A wta A = (Q,Σ, S, μ, F ) with Boolean root weights and a wta
bottom-up wttM = (Q,Σ,Σ, S, ν, F ) are related if for every k ≥ 0, σ ∈ Σ(k),
q1, . . . , qk, q ∈ Q, and a ∈ S: μk(σ)q1...qk,q = a iff νk(σ)q1(x1)...qk(xk),q =
a.σ(z1, . . . , zk). Then it is straightforward to prove by induction that hμ(ξ)q.ξ
= hν(ξ)q for every ξ ∈ TΣ and q ∈ Q; this implies that (rA, ξ).ξ = τM(ξ), and
finally that rA = range(τM). Then the statement of the theorem is implied
by Theorem 3.6. ��

5.4 Composition and Decomposition

In this subsection, we will investigate composition and decomposition results
for WTT(S). A composition result has the form C(S);D(S) ⊆ E(S), where
C(S), D(S), and E(S) are subclasses of WTT(S). Clearly, the smaller the
class E(S) is (for fixed C(S) and D(S)) the stronger the composition result
is. If C(S) = E(S), then we say that E(S) is closed under right-composition
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with D(S), and if D(S) = E(S), then we say that E(S) is closed under left-
composition with C(S). If C(S) = D(S) = E(S), then C(S) is closed under
composition. The first composition results were obtained for gfst in [48] and
for top-down and bottom-up tree transducers in [48], [49], and [4].

Decomposition results have the form E(S) ⊆ C(S);D(S) where again C(S),
D(S), and E(S) are subclasses of WTT(S). Of course, a decomposition E(S)
⊆ C(S);D(S) makes sense only if C(S) and D(S) are subclasses of E(S). Such
decomposition results were first obtained for gfst, top-down, and bottom-up
tree transducers in [48] and [49]. In the rest of this section, we will generalize
some of the composition and decomposition results obtained in the above cited
papers.

5.4.1 Results Concerning wtt

First, we consider composition results of the form C(S);D(S) ⊆ E(S), where
C(S) ⊆ TOP(S) and D(S) ⊆ BOT(S). Thus, for every top-down wtt M1 of
type c and bottom-up wttM2 of type d, we have to construct a wttM of type
e such that τM1 ; τM2 = τM. There is a general approach to achieve this goal:
M is the syntactic composition ofM1 andM2, denoted byM1 ◦M2 (cf. [4],
pages 195 and 199). The wttM1◦M2 is obtained, roughly speaking, by letting
M2 work on the pieces of output produced byM1. However, since these pieces
of output may contain variables from Z, which M2 cannot process, we first
extend M2 appropriately, cf. [104], Definition 14.

To define this extension, let M = (Q,Σ,Δ, S, μ, F ) be a bottom-up wtt.
Let l ≥ 0 and q ∈ QJ for some J ⊆ Zl. We define the (Σ ∪ Zl)-algebra
(S〈TΔ(Zl)〉Q, μq

M) where every z ∈ Zl is a nullary symbol and we define
μq
M(z)()q = 1.z if z ∈ J and q = qz, and μq

M(z)()q = 0̃ otherwise; and
for every k ≥ 0 and σ ∈ Σ(k), the k-ary operation μq

M(σ) : S〈TΔ(Zl)〉Q ×
· · ·×S〈TΔ(Zl)〉Q → S〈TΔ(Zl)〉Q is defined in the same way as μM(σ). Let us
denote the unique (Σ∪Zl)-algebra homomorphism from TΣ∪Zl

to S〈TΔ(Zl)〉Q
by hq

μ, and let us denote its extension to a mapping of type S〈TΣ∪Zl
〉 →

S〈TΔ(Zl)〉Q (cf. page 363) also by hq
μ.

Now we define the concept of syntactic composition and, in fact, we com-
pose an arbitrary wtt with a bottom-up wtt; this will be useful for the re-
sults concerning bottom-up wtt. The syntactic composition (called simple
composition in [104]) of a wtt M1 = (Q1, Σ, Δ, S, μ1, F1) and a bottom-
up wtt M2 = (Q2, Δ, Γ, S, μ2, F2), see [104], Definition 22, is the wtt M1 ◦
M2 = (Q1 × Q2, Σ, Γ, S, μ, F1 × F2), such that for every k, l ≥ 0, σ ∈ Σ(k),
p, p1, . . . , pl ∈ Q1, q, q1, . . . , ql ∈ Q2, and 1 ≤ i1, . . . , il ≤ k, we have

μk(σ)(p1,q1)(xi1 )...(pl,ql)(xil
),(p,q) = hq

μ2

(
μ1

k(σ)p1(xi1 )...pl(xil
),p

)
q

where q ∈ QZl
2 with qzi

= qi for every zi ∈ Zl. We note that this com-
position generalizes the syntactic composition of bottom-up tree transducers
introduced in [4], page 199.
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Remark 5.8. If both M1 and M2 are (deterministic) bottom-up wtt, then
M1 ◦M2 is a (deterministic) bottom-up wtt. Moreover, if bothM1 andM2

are homomorphism bottom-up wtt and M2 is Boolean, then M1 ◦ M2 is
a homomorphism bottom-up wtt. If, in addition, M1 is Boolean too, then
M1 ◦M2 is a Boolean homomorphism bottom-up wtt.

IfM1 is a (linear) top-down wtt andM2 is a linear bottom-up wtt, then
M1 ◦ M2 is a (linear) top-down wtt with regular look-ahead. If M1 is a
(linear, nondeleting, or linear and nondeleting) top-down wtt and M2 is a
linear and nondeleting bottom-up wtt, thenM1◦M2 is a (linear, nondeleting,
or linear and nondeleting) top-down wtt. The proof needs property P6 of IO-
substitution.

Now we will show that, under certain conditions, M1 ◦ M2 computes
τM1 ; τM2 . For this, we formulate an important property of (certain restricted)
bottom-up wtt, namely, that hμ distributes over substitutions ξ(ξi | zi ∈
var(ξ)) for ξ ∈ TΣ(Z) and ξi ∈ TΣ .

Lemma 5.9 ([104], Proposition 18). Let M = (Q,Σ,Δ, S, μ, F ) be a
bottom-up wtt, q ∈ Q, l ≥ 0, ξ ∈ TΣ(Zl), and ξi ∈ TΣ for every zi ∈ var(ξ).
If (a) M is Boolean and deterministic or (b) ξ is linear in Zl, then

hμ

(
ξ
(
ξi

∣
∣ zi ∈ var(ξ)

))
q

=
∑

q∈Qvar(ξ)

hq
μ(ξ)q ←

(
hμ(ξi)qzi

∣
∣ zi ∈ var(ξ)

)
.

Proof. The proof is performed by induction on ξ. In the proof, properties P7
and P8 of IO-substitution are used. Moreover, for item (a), a version of P8
is used which also assures associativity of tree series substitution, cf. [104],
Lemma 8. ��

Next we show sufficient conditions which guarantee that M1 ◦M2 com-
putes τM1 ; τM2 . Note that the following lemma generalizes [4], Theorem 6.

Lemma 5.10 ([104], Lemma 23). Let M1 be a wtt and M2 a bottom-up
wtt. If (a)M1 is a bottom-up wtt andM2 is total, deterministic, and Boolean
or (b) M1 is a top-down wtt, then for every ξ ∈ TΣ, p ∈ Q1, and q ∈ Q2, we
have hμ2(hμ1(ξ)p)q = hμ(ξ)(p,q) and τM1◦M2 = τM1 ; τM2 .

Proof. The first equation is proved by induction on ξ. The proof needs items
(a) and (b) of Lemma 5.9 in the cases (a) and (b), respectively. Moreover, it
needs properties P2, P5, and P7 of IO-substitution of the tree series. Then
the second equation follows straightforwardly. ��

We are ready to prove the following composition results.

Lemma 5.11 ([102], Lemma 2). For every combination x over {l, n}:

(A) x-TOP(S); x-BOT(S) ⊆ x-WTT(S).
(B) x-TOP(S); xl-BOT(S) ⊆ x-TOPR(S).
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(C) x-TOP(S); ln-BOT(S) ⊆ x-TOP(S).

Proof. For the proof of (A), letM1 be a top-down wtt andM2 a bottom-up
wtt. By Lemma 5.10(b), we have τM1 ; τM2 = τM1◦M2 . The preservation of
properties x follows by Remark 5.8. Statements (B) and (C) are proved in the
same way as (A) by using once again Remark 5.8. ��

Now we turn to a decomposition result of WTT(S) that generalizes [48],
Lemma 5.8.

Lemma 5.12 ([102], Lemma 1). For every combination x over {b, l}:

(A) x-WTT(S) ⊆ xbn-HOM(S); x-BOT(S).
(B) x-TOPR(S) ⊆ xbn-HOM(S); xl-BOT(S).

Proof. First, we prove (A). LetM = (Q,Σ,Δ, S, μ, F ) be a wtt. We construct
a homomorphism top-down wttM1 and a bottom-up wttM2 such that τM =
τM1 ; τM2 . Note thatM2, being a bottom-up wtt, is allowed to make exactly
one computation on every subtree. The idea behind the decomposition is that
M1 copies the input subtrees so thatM2 can simulate different computations
of M on a subtree using different copies of that subtree. More exactly, let
mx = max({1} ∪ {|w|xi | 1 ≤ i ≤ k, σ ∈ Σ(k), (w, q) ∈ Q(Xk)∗ × Q, μk(σ)w,q

	= 0̃}), i.e., the maximal number of copies of a subtree taken by a rule, and
consider the ranked alphabet Γ = {σ(k·mx) | k ≥ 0, σ ∈ Σ(k)}. Note that
mx = 1 ifM is linear. Now we construct M1 = ({�}, Σ, Γ, S, μ1, {�}) with

μ1
k(σ) �(x1) . . . � (x1)

︸ ︷︷ ︸
mx times

. . . �(xk) . . . � (xk)
︸ ︷︷ ︸

mx times

, � = 1.σ(z1, . . . , zk·mx)

for every k ≥ 0 and σ ∈ Σ(k). Clearly, M1 is a Boolean and nondeleting ho-
momorphism top-down wtt; moreover,M1 is linear and computes the identity
ifM is linear.

Then let d /∈ Q be a new state and Q′ = Q ∪ {d}. For every k ≥ 0,
σ ∈ Σ(k), and w ∈ Q(Xk)∗ such that |w|xi ≤ mx for 1 ≤ i ≤ k, construct
the string w′ ∈ Q′(Xk·mx)∗ in two steps as follows. First, construct w̃ ∈
Q(Xk·mx)∗ by replacing, for every 1 ≤ i ≤ k, the jth occurrence of xi in w
by x(i−1)·mx+j . Note that w̃ is linear in Xk·mx. Then for every 1 ≤ j ≤ k ·mx
such that |w̃|xj = 0, append d(xj) to w̃. Certainly, the string w′ obtained in
this way is linear and nondeleting in Xk·mx. Then construct the wtt M′ =
(Q′, Γ, Δ, S, μ′, F ), where μ′ is defined as follows. For every k ≥ 0, σ ∈ Σ(k),
let μ′

k·mx(σ)d(x1)...d(xk·mx),d = 1.α, where α ∈ Δ(0) is arbitrary; and, for every
(w, q) ∈ Q(Xk)∗ × Q such that μk(σ)w,q 	= 0̃, let μ′

k·mx(σ)w′,q = μk(σ)w,q.
Every other entry of μ′

k·mx(σ) is 0̃. Note that M′ need not be a bottom-up
wtt because there may be μ′

l(σ)w,q 	= 0̃ with σ ∈ Γ (l) such that the order of
the variables in w is not x1, . . . , xl. However, by an appropriate reordering
of the symbols q(xi) in w and the corresponding substitution variables zj in
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μ′
l(σ)w,q, we can turn M′ into a bottom-up wtt M2 = (Q′, Γ, Δ, S, μ2, F )

such that τM′ = τM2 . The proof of τM = τM1 ; τM2 can be done as follows.
We define h : TΣ → TΓ for every Σ-tree ξ = σ(ξ1, . . . , ξk) by

h(ξ) = σ
(
h(ξ1), . . . , h(ξ1)
︸ ︷︷ ︸

mx times

, . . . , h(ξk), . . . , h(ξk)
︸ ︷︷ ︸

mx times

)
.

Clearly, τM1(ξ) = 1.h(ξ). Thus, it is sufficient to prove that hμ(ξ)q =
hμ2(h(ξ))q for every ξ ∈ TΣ and q ∈ Q. Moreover, it is obvious that M2

is Boolean (linear, resp.), whenever M is so. This finishes the proof of (A).
Finally, if M is a top-down wtt with regular look-ahead, then M′ is a lin-
ear top-down wtt with regular look-ahead, and consequently, M2 is a linear
bottom-up wtt, which proves (B). ��

Putting Lemmata 5.11 and 5.12 together, we obtain the following char-
acterizations of WTT(S) and TOPR(S), which generalize the corresponding
characterizations of gfst and top-down tree transducers with regular look-
ahead that were obtained in [48], Theorems 5.10 and 5.15.

Theorem 5.13 ([102], Theorem 3). For every combination x over {l}:
(A) x-WTT(S) = xb-HOM(S); x-BOT(S).
(B) x-TOPR(S) = xb-HOM(S); xl-BOT(S).

By definition, xl-WTT(S) = xl-TOPR(S) for every combination x over
{b, n}. Moreover, if the wttM in the proof of Lemma 5.12(A) is linear, then
the homomorphism top-down wttM1 computes the identity. Hence, we obtain
l-WTT(S) ⊆ l-BOT(S) and bl-WTT(S) ⊆ bl-BOT(S). These arguments ver-
ify the following characterization result, which generalizes [48], Theorem 5.13.

Theorem 5.14 ([102], Theorem 4). l-BOT(S) = l-TOPR(S) and
bl-BOT(S) = bl-TOPR(S).

5.4.2 Results Concerning Bottom-up wtt

Here, we investigate composition results of the form C(S);D(S) ⊆ E(S), where
C(S), D(S), and E(S) are subclasses of BOT(S). First, we prove that BOT(S)
is closed under right-composition with db-BOT(S). This generalizes the cor-
responding result for bottom-up tree transformations, cf. [48], Theorem 4.6
and [4], Theorem 6, and the result BOT(S); b-HOM(S) ⊆ BOT(S) obtained
in [53], Corollary 5.5.

Theorem 5.15 ([104], Theorem 24). For every combination x over {d, h,
l, n} we have x-BOT(S); xdb-BOT(S) ⊆ x-BOT(S).

Proof. The proof immediately follows from Remark 5.8 and Lemma 5.10(a)
because, by adding a dummy state, each bottom-up wtt can be turned into a
total one computing the same tree series transformation. ��



Weighted Tree Automata and Tree Transducers 379

Next, we show a characterization of bottom-up wtt which generalizes Ni-
vat’s characterization of finite-state sequential machines [118], also cf. [6].
Note that Nivat’s result was generalized for bottom-up tree transducers in
[48]. To this end, we define finite-state relabeling bottom-up wtt in the way
that we impose a further restriction on bottom-up wtt. A bottom-up wtt
M = (Q,Σ,Δ, S, μ, F ) is a finite-state relabeling bottom-up wtt if for every
k ≥ 0, σ ∈ Σ(k), w = q1(x1) . . . qk(xk) ∈ Q(Xk)∗, and q ∈ Q, we have
supp(μk(σ)w,q) ⊆ {δ(z1, . . . , zk) | δ ∈ Δ(k)}. We note that a wta bottom-up
wtt is a particular finite-state relabeling bottom-up wtt. The class of all tree
series transformations over S which are computable by finite-state relabeling
bottom-up wtt, is denoted by QREL(S). Note that QREL(S) ⊆ ln-BOT(S) =
ln-TOP(S), cf. Theorem 5.5.

Theorem 5.16 ([53], Theorem 5.7). For every combination x over {l, n}:
(A) x-BOT(S) = QREL(S); xb-HOM(S).
(B) x-BOT(S) = xl-BOT(S); xb-HOM(S).

Moreover:

(C) BOT(S) = l-TOP(S); b-HOM(S).

Proof. We first prove (A). By Theorem 5.15, the right-hand side of the equa-
tion is a subset of its left-hand side. In order to prove the other inclusion, let
M = (Q,Σ,Δ, S, μ, F ) be a bottom-up wtt. We will construct a finite-state
relabeling bottom-up wtt M1 and a Boolean homomorphism bottom-up wtt
M2, such that, up to renaming of states, M is the syntactic composition of
M1 and M2. For this, define the ranked alphabet Ω =

⋃
σ∈Σ Ωσ, where, for

every k ≥ 0, σ ∈ Σ(k), we let Ωσ = {[σ, w, q, ζ](k) | w ∈ Q(Xk)∗, q ∈ Q, ζ ∈
supp(μk(σ)w,q)}. Obviously, Ω is a finite set. Now letM1 = (Q, Σ, Ω, S, μ1, F )
be such that for every k ≥ 0, σ ∈ Σ(k), w ∈ Q(Xk)∗, q ∈ Q, and ζ ′ ∈ TΩ(Zk),

(
μ1

k(σ)w,q, ζ
′) =

{
(μk(σ)w,q, ζ) if ζ ′ = [σ, w, q, ζ](z1, . . . , zk),
0 otherwise.

Let M2 = ({�}, Ω, Δ, S, μ2, {�}) be such that for every k ≥ 0, [σ, w, q, ζ] ∈
Ω(k), and ζ ′ ∈ TΔ(Zk), we have

(
μ2

k([σ, w, q, ζ])�(x1)...�(xk),�, ζ
′) =

{
1 if ζ ′ = ζ,

0 otherwise.

IfM is nondeleting (resp., linear), then so isM2. Moreover, by identifying Q
and Q×{�}, the bottom-up wttM becomes the syntactic composition ofM1

and M2. Thus, by Lemma 5.10(a), we have τM = τM1 ; τM2 , which proves
that the left-hand side of the equation is a subset of its right-hand side.

Now the inclusion ⊆ for both (B) and (C) should be clear by (A) and the
note we made above this theorem. Finally, by Theorem 5.15, the inclusion ⊇
follows for (B), and by (B) and Theorem 5.14 the inclusion ⊇ follows for (C).

��
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Let us compare the equations of Theorem 5.13(B) and of Theorem 5.16(B)
for x being the empty combination. We see that the classes TOPR(S) and
BOT(S) can be characterized by the composition of the two classes l-BOT(S)
and b-HOM(S) and that the difference between them lies in the order of their
composition.

For further composition results on bottom-up wtt, we need another con-
cept of syntactic composition. Let us explain why. For this, we consider two
bottom-up wtt M1 = (Q1, Σ, Δ, S, μ1, F1) and M2 = (Q2, Δ, Γ, S, μ2, F2)
and their composition M1 ◦M2 = (Q1 ×Q2, Σ, Γ, S, μ, F1 × F2). We obtain
the entry μk(σ)(p1,q1)(x1)...(pk,qk)(xk),(p,q) by applying the homomorphism hq

μ2

to the entry μ1
k(σ)p1(x1)...pk(xk),p, where k ≥ 0, σ ∈ Σ(k), p, p1, . . . , pk ∈ Q1,

q ∈ Q2, and q ∈ QZk
2 with qi = qzi

for 1 ≤ i ≤ k, and then selecting the
q-component from the resulting Q-vector. As Lemma 5.10(a) states, the syn-
tactic composition yields equality on the level of the semantics also, provided
thatM2 is total, deterministic, and Boolean. However, the following problem
arises in the case when M2 does not have these properties. Let us suppose
that M1 translates a tree ξ ∈ TΣ into an output tree ζ ∈ TΔ with weight
a ∈ S and that, during the translation, it deletes the translation ζ ′ ∈ TΔ with
weight a′ ∈ S of a subtree ξ′ of ξ. Still, due to the definition of IO-substitution
of tree series, the weight a′ of ζ ′ contributes to the weight a of ζ, whereas ζ ′

does not contribute to ζ. Furthermore, let us suppose that M2 transforms
ζ into ζ̃ ∈ TΓ with weight b ∈ S and ζ ′ into ζ̃ ′ ∈ TΓ with weight b′ ∈ S.
Since the input of M2 is ζ, it does not process the deleted tree ζ ′, and thus
the weight b′ does not contribute to b. However, when M1 ◦ M2 processes
the input tree ξ, it transforms its subtree ξ′ into ζ ′ with weight a′ using the
family of rule mappings μ1, and immediately also transforms ζ ′ into ζ̃ ′ with
weight b′ using the family of rule mappings μ2. Then although M1 ◦ M2

deletes the translation ζ̃ ′ of ζ ′, both a′ and b′ still contribute to the weight of
the overall translation ζ̃, which contrasts the situation encountered whenM1

and M2 run separately. In the case that M2 is Boolean, the weight b′ can
only be 0 or 1, so that one just has to avoid the case that b′ = 0. This can be
achieved by requiring thatM2 is total and deterministic; see Lemma 5.10(a).
However, we do not want to restrict M2 and, therefore, following [104], we
propose another construction. Namely, we manipulateM2 such that it has a
state �, called a blind state, which is not a final state and which transforms
each input tree into an output tree α ∈ Δ(0) with weight 1. Then we compose
M1 and M2 by processing in state � the subtrees that M1 deletes. We note
that the concept of blind state was introduced in [48], Theorem 2.8 (called
e for erasing there) in order to construct a linear bottom-up tree transducer
from a linear top-down tree transducer; it occurred already in the proof of
Lemma 5.12.

A state � ∈ Q of a bottom-up wtt M = (Q,Σ,Δ, S, μ, F ) is a blind
state if � /∈ F , there is an α ∈ Δ(0) such that μk(σ)�(x1)...�(xk),� = 1.α, and
μk(σ)q1(x1)...qk(xk),� 	= 0̃ implies that qi = � for every 1 ≤ i ≤ k (for every
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k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk ∈ Q). It is easy to prove that hμ(ξ)� = 1.α for
every ξ ∈ TΣ . Moreover, for every bottom-up wttM = (Q,Σ,Δ, S, μ, F ), we
can construct a bottom-up wttM′ = (Q′, Σ, Δ, S, μ′, F ) with blind state such
that τM = τM′ in the following way. Let Q′ = Q ∪ {�}, for every k ≥ 0, σ ∈
Σ(k), and q, q1, . . . , qk ∈ Q, let μ′

k(σ)�(x1)...�(xk),� = 1.α, μ′
k(σ)q1(x1)...qk(xk),q =

μk(σ)q1(x1)...qk(xk),q, and let all remaining entries be 0̃.
Now we formalize this new concept of syntactic composition, called bottom-

up syntactic composition (cf. [104], Definition 17, where it was called just
composition). Let M1 = (Q1, Σ, Δ, S, μ1, F1) and M2 = (Q2, Δ, Γ, S, μ2, F2)
be bottom-up wtt such that � is a blind state ofM2. The bottom-up syntactic
composition of M1 and M2, denoted by M1 ◦bu M2 is the bottom-up wtt
(Q1 × Q2, Σ, Γ, S, μ, F ), where F = F1 × F2, and for every k ≥ 0, σ ∈ Σ(k),
p, p1, . . . , pk ∈ Q1, q ∈ Q2 \ {�}, and q, � ∈ QZk

2 with qzi
= qi and �zi = � for

1 ≤ i ≤ k, we have

μk(σ)(p1,q1)(x1)...(pk,qk)(xk),(p,q)

= hq
μ2

( ∑

ζ∈TΔ(Zk),
(∀1≤i≤k):zi /∈var(ζ)⇔qi=�

(
μ1

k(σ)p1(x1)...pk(xk),p, ζ
)
.ζ

)

q

and
μk(σ)(p1,�)(x1)...(pk,�)(xk),(p,�) = h�

μ2

(
μ1

k(σ)p1(x1)...pk(xk),p

)
�.

All the remaining entries in μ are 0̃.
It should be clear that M1 ◦bu M2 does not always compute τM1 ; τM2

because the class of tree transformations computed by bottom-up tree trans-
ducers, i.e., by bottom-up wtt over B is not closed under composition; see [48],
Theorem 2.5. However, the desired equality on the level of semantics holds for
a linearM1, and we obtain the following generalization of [4], Theorem 6.

Lemma 5.17 ([104], Lemma 19). Let M1 be a linear bottom-up wtt and
M2 a bottom-up wtt with blind state. Then for every ξ ∈ TΣ, p ∈ Q1, and
q ∈ Q2, we have hμ2(hμ1(ξ)p)q = hμ(ξ)(p,q) and τM1◦buM2 = τM1 ; τM2 .

Proof. Let � be the blind state of M2. The first equation can be proved by
induction and case analysis, where the two cases are q = � and q 	= �. In the
first case, the proof uses the fact that hμ2(ζ)� = 1.α for every ζ ∈ Δ, and
properties P5 and P7 of IO-substitution of tree series, while in the second case,
it additionally uses Lemma 5.9 and property P2. Then the second equation
follows straightforwardly from the first one. ��

Now we can show that BOT(S) is closed under left-composition with
l-BOT(S). This generalizes the corresponding result for bottom-up tree trans-
formations, cf. [48], Theorem 4.5 and [4], Theorem 6.

Theorem 5.18 ([104], Theorem 20). For every combination x over {l, n},
we have xl-BOT(S); x-BOT(S) ⊆ x-BOT(S).
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Proof. Let M1 and M2 be bottom-up wtt. We may assume without loss of
generality that M2 has a blind state. Moreover, if M1 and M2 are linear
(resp., nondeleting), then alsoM1 ◦buM2 is linear (resp., nondeleting). Then
the statement follows from Lemma 5.17. ��

5.4.3 Results Concerning Top-down wtt

First, we show that TOP(S) is closed under right-composition with ln-TOP(S).
This result generalizes [4], Theorem 1, in particular [4], Corollary 2(1).

Theorem 5.19 ([104], Theorem 26). For every combination x over {d, l, n},
we have x-TOP(S); xln-TOP(S) ⊆ x-TOP(S).

Proof. LetM1 be a top-down wtt andM2 a linear and nondeleting top-down
wtt. By Theorem 5.5, there is a linear and nondeleting bottom-up wtt M′

2

such that τM2 = τM′
2
. By Lemma 5.10(b), we have τM1 ; τM′

2
= τM1◦M′

2
. Since

M′
2 is linear and nondeleting,M1 ◦M′

2 is a top-down wtt, cf. Remark 5.8. If
M1 and M2 have property x, thenM1 ◦M′

2 has property x. ��

One would expect from [4], Theorem 1, in particular [4], Corollary 3(2),
that in the case x = d the linearity ofM2 can be dropped. However, as shown
in [53], Example 5.11, this is not the case.

The next result generalizes another case of [4], Theorem 1, viz. the case
thatM1 is total and deterministic, cf. [4], Corollary 2(4). However, linearity of
M2 is still needed (for the same reason), and moreover,M1 must be Boolean
as shown in [53], Example 5.12. It will be proved in Theorem 5.25 that M2

need not be linear if it is deterministic.

Theorem 5.20 ([104], Theorem 30). tdb-TOP(S); l-TOP(S) ⊆ TOP(S).

Proof. Let N1 = (Q1, Σ, Δ, S, μ1, {q1}) be a total, deterministic, and Boolean
top-down wtt andM = (Q,Δ, Γ, S, μ, F ) a linear top-down wtt. Let us apply
the proof of Lemma 5.12(B) to M. Since M is linear, the homomorphism
top-down wtt M1 of that proof computes the identity, and so we obtain a
linear bottom-up wtt M2 = (Q2, Δ, Γ, S, μ2, F ) such that τM = τM2 . Note
that Q2 = Q∪ {d} and d is a blind state. Now letM3 = (Q1×Q2, Σ, Γ, S, μ,
{q1}×F ) be the syntactic composition of N1 andM2, i.e.,M3 = N1◦M2. By
Lemma 5.10(b), we have τM3 = τN1 ; τM2 . Moreover, by Remark 5.8, M3 is
a top-down wtt with regular look-ahead. Since N1 is total, deterministic, and
Boolean, and sinceM2 is linear and d is a blind state ofM2, the wttM3 has
the following properties:

(i) There is an α ∈ Γ (0), such that hμ(ξ)(p,d) = 1.α for every ξ ∈ TΣ and
p ∈ Q1.

(ii) For every (p, q) ∈ Q1 × Q2, k ≥ 0, w = (p1, q1)(xi1) . . . (pn, qn)(xin) ∈
(Q1 × Q2)(Xk)∗, 1 ≤ j ≤ n, σ ∈ Σ(k), and ζ ∈ supp(μk(σ)w,(p,q)), we
have zj /∈ var(ζ) iff qj = d.
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This means that the look-ahead is trivial, and thus M3 can be transformed
into an equivalent top-down wtt M′

3 in the following way. For a tree ζ ∈
TΓ (Zn), which is linear in Zn, let us denote by normn(ζ) the linear and non-
deleting tree in TΓ (Zk) defined by normn(ζ) = ζ(ϕ(zi) | 1 ≤ i ≤ n), where
var(ζ) = {zi1 , . . . , zik

} with i1 < · · · < ik and ϕ is any mapping Zn → Zk such
that ϕ(zij ) = zj for all 1 ≤ j ≤ k. Moreover, for a string w ∈ (Q1×Q2)(Xk)∗,
let us denote by del(w) the string which is obtained from w by deleting all sym-
bols of the form (p, d)(xi) from w. NowM′

3 is obtained fromM3 by changing
μ to μ′ in the following way: for every k ≥ 0, σ ∈ Σ(k), w′ ∈ (Q1×Q2)(Xk)∗,
and (p, q) ∈ Q1 ×Q2,

μ′
k(σ)w′,(p,q) =

∑

w∈(Q1×Q2)(Xk)∗

del(w)=w′

( ∑

ζ∈TΓ (Z|w|)

(
μk(σ)w,(p,q), ζ

)
norm|w|(ζ)

)

.

Then we can prove that for every ξ ∈ TΣ and (p, q) ∈ Q1 × Q2 such that
q 	= d, we have hμ′(ξ)(p,q) = hμ(ξ)(p,q). The proof is performed by induction
on ξ, using properties (i) and (ii) of M3 and P2 of IO-substitution of tree
series. Thus, τM3 = τM′

3
follows, which finishes the proof. ��

Now we generalize [48], Theorem 3.6 and show that TOP(S) can be de-
composed into bn-HOM(S) and l-TOP(S).

Lemma 5.21 ([53], Lemma 5.9). For every combination x over {t, d}, we
have x-TOP(S) ⊆ bn-HOM(S); xl-TOP(S).

Proof. LetM = (Q,Σ,Δ, S, μ, F ) be a top-down wtt. We construct a Boolean
and nondeleting homomorphism top-down wtt M1 and a linear top-down
wtt M2 such that τM = τM1 ; τM2 . The proof is very similar to that of
Lemma 5.12. In fact,M1 is constructed in the same way as in that proof and
we constructM2 similarly toM′. The main difference is that we do not need
the extra state d because we do not need to forceM2 to be a bottom-up wtt.
Thus, the family of rule mappings underlying M2 slightly differs from that
ofM′. LetM2 = (Q,Γ,Δ, S, μ2, F ), and for every (w, q) ∈ Q(Xk)∗ ×Q such
that μk(σ)w,q 	= 0̃, let μ2

k·mx(σ)w̃,q = μk(σ)w,q, where the string w̃ is being
defined as in the proof of Lemma 5.12. Every other entry of μ2

k·mx(σ) is 0̃. It
should be clear thatM2 is a linear top-down wtt. The proof of τM = τM1 ; τM2

can be done in the same way as in the proof of Lemma 5.12. Moreover, it is
obvious thatM2 inherits the properties x fromM. ��

Next, we turn to further composition results for top-down wtt. For this, we
define the top-down syntactic composition of two top-down wttM1 andM2,
denoted byM1◦tdM2, thereby generalizing the corresponding concept defined
for top-down tree transducers in [4], page 195. The wttM1◦tdM2 is obtained,
as for wtt, by letting M2 work on the pieces of output produced by M1. In
order to avoid too complex formulas, we consider only the case that M1 is
deterministic, cf. [53], Definitions 5.13 and 5.14; [61], Definitions 5.2 and 5.3.
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The pieces of output produced byM1 may contain variables from Z, which
M2 cannot process. Therefore, just as in the case of the syntactic composition
of bottom-up wtt, we first extend a top-down wttM = (Q,Σ,Δ, S, μ, F ) such
that it can process input trees containing variables from Zn for some n ≥ 0.
We define the (Σ ∪ Zn)-algebra (S〈TΔ(Q(Zn))〉Q, μ

(n)
M ) where every zj ∈ Zn

is a nullary symbol and μ
(n)
M (zj)()q = 1.q(zj) for every q ∈ Q. For every

k ≥ 0 and σ ∈ Σ(k), the k-ary operation μ
(n)
M (σ) : S〈TΔ(Q(Zn))〉Q × · · · ×

S〈TΔ(Q(Zn))〉Q → S〈TΔ(Q(Zn))〉Q is defined in the same way as μM(σ).
Let us denote the unique (Σ ∪ Zn)-algebra homomorphism from TΣ∪Zn to
S〈TΔ(Q(Zn))〉Q by h

(n)
μ .

For the definition of the family of rule mappings μ of M1 ◦td M2, we
need two more technical concepts: (a) substitution of particular strings and
(b) linearization of a tree. For (a), let Q1 and Q2 be finite nonempty sets
(e.g., state sets of top-down wtt), k ≥ 0, w ∈ Q1(Xk)∗ with |w| = l, and let
u ∈ Q2(Zl)∗. Then u〈w〉 is the string in (Q1 × Q2)(Xk)∗ which is obtained
from u by replacing, for every q ∈ Q2 and zi ∈ Zl, the expression q(zi) by
(p, q)(xj) where p(xj) is the ith symbol of w.

Let us now turn to (b). For a ranked alphabet Γ , the set of all trees in
TΓ (Zm), m ≥ 0, which are both linear and nondeleting in Zm and in which
the order of the variables is z1, . . . , zm, is denoted by C

(m)
Γ . Let ξ ∈ TΓ (H),

where H is a set. The linearization of ξ with respect to H, denoted by linH(ξ),
is defined as the unique pair (ξ′, u) where ξ′ ∈ C

(m)
Γ and u = a1 . . . am ∈ H∗

such that ξ = ξ′(a1, . . . , am).
Now the top-down syntactic composition of a deterministic top-down wtt

M1 = (Q1, Σ, Δ, S, μ1, {q1}) and a top-down wtt M2 = (Q2, Δ, Γ, S, μ2, F2)
is the top-down wttM1 ◦tdM2 = (Q1 ×Q2, Σ, Γ, S, μ, {q1} × F2), where the
family of rule mappings μ is defined as shown in Fig. 2.

Using similar arguments as for the syntactic composition of a wtt with
a bottom-up wtt, we will show that, under certain conditions, M1 ◦td M2

computes τM1 ; τM2 . For this, we first formulate a property of top-down wtt,
namely, that hμ distributes over substitutions ξ(ξ1, . . . , ξl) for ξ ∈ TΔ(Zl) and
ξ1, . . . , ξl ∈ TΔ. Note that this property corresponds to the one of (restricted)
bottom-up wtt formulated in Lemma 5.9.

Lemma 5.22 ([61], Statement in the proof of Lemma 5.5). Let M =
(Q,Δ, Γ, S, μ, F ) be a top-down wtt and l ≥ 0. For every q ∈ Q, ξ ∈ TΔ(Zl),
and ξ1, . . . , ξl ∈ TΔ,

hμ

(
ξ(ξ1, . . . , ξl)

)
q

=
r∑

κ=1

aκζκ ←
(
hμ(ξiκ,1)qκ,1 , . . . , hμ(ξiκ,mκ

)qκ,mκ

)
,

where h
(l)
μ (ξ)q = a1.ζ̂1 + · · · + ar.ζ̂r for a1, . . . , ar ∈ S \ {0} and ζ̂1, . . . , ζ̂r ∈

TΓ (Q(Zl)), and linQ(Zl)(ζ̂κ) = (ζκ, qκ,1(ziκ,1) . . . qκ,mκ(ziκ,mκ
)), ζκ ∈ C

(mκ)
Γ

for every 1 ≤ κ ≤ r.
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For every σ ∈ Σ(k) with k ≥ 0,
for every (w, p) ∈ Q1(Xk)∗ × Q1 with l = |w|,

if μ1
k(σ)w,p = a.ζ for a ∈ S \ {0} and ζ ∈ TΔ(Zl),

then { for every q ∈ Q2,

if h
(l)

μ2(ζ)q = a1.ζ̂1 + · · · + ar.ζ̂r for a1, . . . , ar ∈ S \ {0}
and ζ̂1, . . . , ζ̂r ∈ TΓ (Q2(Zl))

(by P4 also h
(l)

μ2(ζ) is polynomial),

then define, for every 1 ≤ j ≤ r,
μk(σ)vj ,(p,q) =

∑
1≤i≤r,vi=vj

(a · ai).ζi,

where, for every 1 ≤ κ ≤ r,

linQ2(Zl)(ζ̂κ ) = (ζκ, uκ), ζκ ∈ C
(mκ)
Γ ,

uκ ∈ Q2(Zl)
∗, |uκ| = mκ and vκ = uκ〈w〉 }.

Moreover, for every σ ∈ Σ(k) with k ≥ 0, p ∈ Q1, q ∈ Q2 and
v ∈ (Q1 × Q2)(Xk)∗ not defined by the above conditions, let μk(σ)v,(p,q) = 0̃.

Fig. 2. Definition of μ

Proof. The proof is performed by induction on ξ and it needs properties P5,
P7, and a version of P8 which also assures associativity of tree series substi-
tution, cf. [61], Corollary 2.6. ��

The following sufficient conditions guarantee that M1 ◦td M2 computes
τM1 ; τM2 , cf. Lemma 5.10.

Lemma 5.23 ([61], Lemma 5.5; [53], Lemma 5.17). Let M1 be a total,
deterministic, and Boolean top-down wtt andM2 a top-down wtt. If (a) M1 is
a homomorphism top-down wtt or (b)M2 is deterministic, then for every ξ ∈
TΣ, p ∈ Q1, and q ∈ Q2, we have hμ2(hμ1(ξ)p)q = hμ(ξ)(p,q) and τM1◦tdM2 =
τM1 ; τM2 .

Proof. The first equation is proved by induction on ξ. The proof needs Lem-
ma 5.22 and properties P5, P7, and P8 of IO-substitution of tree series. Then
the second equation follows straightforwardly. ��

The following theorem generalizes [48], Theorem 3.7.

Theorem 5.24 ([53], Theorem 5.18). For every x over {t, d}, we have
x-TOP(S) = b-HOM(S); xl-TOP(S).

Proof. It follows from Lemma 5.21 and Lemma 5.23(a). ��

By comparing the above equation and Theorem 5.16(C) for x being the
empty combination, we observe that TOP(S) and BOT(S) can be character-
ized by the composition of the two classes b-HOM(S) and l-TOP(S). However,
the orders of the subclasses in the two compositions are different.

Next, we generalize [133], Lemma 6.9 and [4], Corollary 3(3) (note that in
that corollary the second PDT should be DT ).
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Theorem 5.25 ([53], Theorem 5.18). For every x over {t, l, n}, we have
xtdb-TOP(S); xd-TOP(S) ⊆ xd-TOP(S).

Proof. It immediately follows from Lemma 5.23(b) and the fact that the top-
down syntactic composition preserves the properties d, t, l, and n. ��

5.5 The Inclusion Diagram of Some Fundamental wtt Classes

By the inclusion diagram of certain classes, we mean their Hasse diagram
with respect to the partial order ⊆, cf. [64], Sect. 2.2. In this subsection, we
will be interested in the inclusion diagram of the classes WTT(S), TOPR(S),
TOP(S), and BOT(S) and their linear, and linear and nondeleting subclasses,
where S is a proper semiring (altogether 12 classes of tree series transforma-
tions). We note that in [105] the same inclusion diagram was obtained for
a positive semiring S. Moreover, by [107], the results of [105] can easily be
generalized to the more general case that S is a proper semiring.

We already know that l-WTT(S) = l-TOPR(S) and ln-WTT(S) =
ln-TOPR(S) = ln-TOP(S) by definition. Moreover, ln-TOP(S) = ln-BOT(S)
and l-BOT(S) = l-TOPR(S) by Theorems 5.5 and 5.14, respectively.

In Fig. 3, we visualize all the equalities and the inclusions among the in-
volved 12 classes. In the rest of this subsection, we show that all inclusions are
proper and that the unrelated classes are incomparable provided S is a proper
semiring. For this, it is sufficient to verify the following four inequalities:

TOP(S) \ BOT(S) 	= ∅, (9)
BOT(S) \ TOPR(S) 	= ∅, (10)
l-BOT(S) \ TOP(S) 	= ∅, (11)

l-TOP(S) \ ln-TOP(S) 	= ∅. (12)

First, we show that the above inequalities hold for S = B (and hence in
this particular case the diagram in Fig. 3 is an inclusion diagram). Since tree
transducers and wtt over B can be identified, cf. Sect. 5.2 and Theorem 5.6
for S = B, we refer to the corresponding results in the theory of tree transduc-
ers. In fact, (9) follows from [48], Theorem 2.3, while (10) follows from [49],
Corollary 2.4(1), and (11) from [48], Example 2.6. Finally, (12) is trivial: no
nondeleting top-down tree transducer can translate, e.g., σ(α, β) to α.

Now we will lift these inequalities to every semiring S that is proper.
For this, however, we need some preparation, cf. the end of Sect. 3.3. Let
S′ be another semiring and consider a mapping f : S → S′. For every tree
series transformation τ : TΣ → S〈TΔ〉, we define f(τ) : TΣ → S′〈TΔ〉 such
that for every ξ ∈ TΣ we have f(τ)(ξ) = f ◦ τ(ξ). Moreover, for every wtt
M = (Q,Σ,Δ, S, μ, F ), we define the wtt f(M) = (Q,Σ,Δ, S′, μ′, F ) over
S′ such that μ′

k(σ)w,q = f(μk(σ)w,q) for every k ≥ 0, σ ∈ Σ(k), and (w, q) ∈
Q(Xk)∗×Q. Then we can prove the following two statements, cf. Theorem 3.9.
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Fig. 3. The inclusion diagram of the classes WTT(S), TOPR(S), TOP(S), and
BOT(S) and their linear, and linear and nondeleting subclasses, provided S is a
proper semiring

Lemma 5.26 ([105], Lemma 2). Let M be a wtt of any of the types in
Fig. 3 and f : S → S′ be a mapping such that f(0) = 0.

(A) f(M) is of the same type as M.
(B) If f is a semiring homomorphism, then τf(M) = f(τM).

Proof. Statement (A) can be proved by a direct inspection of each case. For
statement (B), it can easily be shown by induction that for every ξ ∈ TΣ ,
η ∈ TΔ, and q ∈ Q, we have (hμ′(ξ)q, η) = f((hμ(ξ)q, η)). Then τf(M) =
f(τM) follows easily. ��

Now let f : S → S′ be a semiring homomorphism and C(S) any of the
tree series transformation classes in Fig. 3. By Lemma 5.26, f(C(S)) ⊆ C(S′),
where, of course, f(C(S)) denotes {f(τ) | τ ∈ C(S)}. Now we can prove the
following lemma.
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Lemma 5.27 ([105], Lemma 2). If f : S → S′ is a surjective semiring
homomorphism and C(S) is any of the classes in Fig. 3, then f(C(S)) =
C(S′).

Proof. Let M = (Q,Σ,Δ, S′, μ, F ) be a wtt of one of the types in Fig. 3.
Define a mapping g : S′ → S such that g(0) = 0 and for every a ∈ S′, we have
f(g(a)) = a, this is possible because f is surjective. Then by Lemma 5.26(A),
the wtt g(M) is over S and of the same type asM. Moreover, f(g(M)) and
M are syntactically the same, i.e., f(g(M)) =M. Thus, by Lemma 5.26(B),
we have f(τg(M)) = τf(g(M)) = τM. ��

An easy computation verifies that for tree series transformations τ : TΣ →
S〈TΔ〉 and τ ′ : TΔ → S〈TΓ 〉 and semiring homomorphism f : S → S′, we
have f(τ ; τ ′) = f(τ); f(τ ′) (cf. [105], Lemma 3), and hence, f(C(S); D(S)) =
f(C(S)); f(D(S)). Moreover, for n ≥ 1, we denote the n-fold composition
C(S); . . . ; C(S) by C(S)n. Thus, f(C(S)n) = f(C(S))n for every n ≥ 1.

Lemma 5.28. If S is a proper semiring, then for every two classes C(S) and
D(S) in Fig. 3 and m, n ≥ 1, the inequality C(B)m \ D(B)n 	= ∅ implies
C(S)m \D(S)n 	= ∅.

Proof. We use a proof by contraposition. Assume C(S)m ⊆ D(S)n. By [137],
Theorem 2.1, there is a (surjective) semiring homomorphism f : S → B. For
this f , we have f(C(S)m) ⊆ f(D(S)n). Furthermore, f(C(S)m) = f(C(S))m,
which equals C(B)m by Lemma 5.27. In the same way, we get f(D(S)n) =
D(B)n. This implies C(B)m ⊆ D(B)n. ��

Now we can state the main result of this subsection.

Theorem 5.29 ([105], Theorem 3). If S is a proper semiring, then the
diagram in Fig. 3 is the inclusion diagram of the depicted classes of tree series
transformations.

Proof. We saw that the inequalities (9)–(12) hold for S = B. Then by Lem-
ma 5.28, they also hold for every proper semiring S. ��

5.6 Hierarchies

A hierarchy is a family (Kn | n ≥ 1), where Kn is a class such that Kn ⊆ Kn+1

for every n ≥ 1. Recall that C(S)n denotes the n-fold composition of a tree
series transformation class C(S). Then for every class C(S) which we con-
sider in this chapter, (C(S)n | n ≥ 1) is a hierarchy because C(S) contains
the identity ι. In this subsection, we present the inclusion diagram consist-
ing of the hierarchies (TOP(S)n | n ≥ 1) and (BOT(S)n | n ≥ 1), where
S is a proper semiring. Hereby, we generalize the inclusion results concern-
ing the n-fold compositions of the classes of top-down tree transformations
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and of bottom-up tree transformations, called hierarchy results, cf. [4], The-
orem 13; [50], Theorem 3.14; and [68], Sect. 8. of Chap. IV. We note that
such a generalization was made in [61] for top-down and bottom-up wtt over
commutative, idempotent, and positive semirings, then it was shown in [105]
that the idempotency is not necessary. By [107], these results hold even for
proper semirings.

First, we show the generalization of [4], Theorem 13.

Lemma 5.30 ([61], Theorems 5.1 and 5.7). For every n ≥ 1, we have:

(A) TOP(S)n ⊆ BOT(S)n+1.
(B) BOT(S)n ⊆ TOP(S)n+1.

Proof. Let us write T, B, and H for TOP(S), BOT(S), and HOM(S) for the
sake of readability. Then using Theorems 5.24 and 5.16(C), we can compute
as follows.

Tn ⊆ l-T; Tn; b-H = l-T; (b-H; l-T)n; b-H
= (l-T; b-H)n+1 = Bn+1,

Bn ⊆ b-H; Bn; l-T = b-H; (l-T; b-H)n; l-T
= (b-H; l-T)n+1 = Tn+1. ��

In Fig. 4, we visualize the inclusions among the involved classes TOP(S)n

and BOT(S)n, n ≥ 1. In the rest of this subsection, we show that all inclusions
are proper and that the unrelated classes are incomparable provided S is a
proper semiring. For this, it suffices to verify the following two inequalities for
every n ≥ 1:

TOP(S)n \ BOT(S)n 	= ∅, (13)
BOT(S)n \ TOP(S)n 	= ∅. (14)

Lemma 5.31 ([52]). If TOP(S)n ⊂ TOP(S)n+1 for every n ≥ 1, then both
(13) and (14) hold.

Proof. We again use the abbreviations T, B, and H introduced above. We first
prove (13). For this, assume the opposite, i.e., that Tn ⊆ Bn. Then we obtain

Tn+2 = b-H; l-T; Tn; b-H; l-T ⊆ b-H; l-B; Bn; b-H; l-T
⊆ b-H; Bn; l-T = Tn+1,

which contradicts the assumption of the lemma. In the first three steps of
the computation, we used Theorem 5.24, Theorem 5.14, and Theorems 5.15
and 5.18, while the equality in the last step comes from the second computa-
tion in the proof of Lemma 5.30.
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Fig. 4. The inclusion diagram of the classes TOP(S)n and BOT(S)n, where n ≥ 1
and S is a proper semiring

To prove (14), assume that Bn ⊆ Tn. Then we get

Tn+1 = b-H; Bn; l-T ⊆ b-H; Tn; l-T
= b-H; (b-H; l-T)n; l-T ⊆ b-H; (b-H; l-B)n; l-B
= (b-H; l-B)n ⊆ l-B; (b-H; l-B)n; b-H
= (l-B; b-H)n+1 = Bn+1,

which contradicts (13). In the first, third, and fourth steps, we used again the
equality from Lemma 5.30, Theorem 5.24, and Theorem 5.14, respectively. In
the fifth step, we used that both b-H and l-B are closed under composition;
see Remark 5.8 and Lemma 5.10, and Theorem 5.18, respectively. Finally, the
last step follows from Theorem 5.16(B). ��

Now we can prove the main result of this subsection.

Theorem 5.32 ([105], Theorem 2). If S is a proper semiring, then the
diagram in Fig. 4 is the inclusion diagram of the depicted classes of tree series
transformations.
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Proof. Since top-down tree transducers and top-down wtt over B can be iden-
tified, cf. Sect. 5.2, we obtain that TOP(B)n ⊂ TOP(B)n+1 for every n ≥ 1,
by [50], Theorem 3.14. Thus, by Lemmata 5.28 and 5.31, the inequalities (13)
and (14) hold for every proper semiring S, which proves the theorem. ��

5.7 Further Models of Weighted Tree Transducers

In this subsection, we will discuss other models of weighted tree transducers
that occur in the literature. Actually, we would like to describe them as mod-
ifications of our wtt concept. However, an obstacle for this is that most of
them have rule mappings of the type

μk : Σ(k) → S〈〈TΔ(Z)〉〉Q(Xk)∗×Q,

i.e., μk(σ)w,q is not necessarily a polynomial. To remedy this problem, we first
extend our wtt to so-called infinite wtt (for short: inf-wtt) that are defined
exactly as wtt but the rule mapping μk has the above type. Moreover, we
require that S is complete in order to have IO-substitution well defined. The
tree transformation computed by an inf-wtt is defined in the same way as for
wtt except that we use the Σ-algebra (S〈〈TΔ〉〉Q, μM) and IO-substitution of
arbitrary tree series. An inf-wtt is polynomial (for short: p) if the rule mapping
μk maps into S〈TΔ(Z)〉Q(Xk)∗×Q, i.e., a polynomial inf-wtt is the same as our
wtt. The class of tree series transformations computed by certain restrictions
of inf-wtt is denoted in the same way as the classes for the corresponding wtt
except that we add ‘inf’ as index, like: l-TOP(S)inf .

Bottom-up Inf-wtt with OI-Substitution

In [91], so-called tree transducers were defined. Such a tree transducer is a
bottom-up inf-wtt M = (Q,Σ,Δ, S, μ, ν) over a commutative and contin-
uous semiring S with a root output ν : Q → S〈〈TΔ(Z1)〉〉. As with our
inf-wtt, a Σ-algebra is associated with M, however, the operation μM(σ)
is defined in terms of the OI-substitution ←OI for tree series (introduced in
Sect. 3.3). Then the tree series transformation computed by M is defined
as τM(ξ) =

∑
q∈Q ν(q) ←OI hμ(ξ)q for every ξ ∈ TΣ . In [91], it is shown

that the polynomial versions of such tree transducers over B and the so-
called nondeterministically simple top-down tree transducers are semantically
equivalent. The latter are special top-down tree transducers with rules of the
form q(σ(x1, . . . , xk)) → ζ(q1(x1), . . . , qk(xk)), where k ≥ 0 and σ ∈ Σ(k),
cf. [68], Exercise 4 in Chap. IV. A recognizable tree transducer is another re-
stricted version of the tree transducer of [91]; in this model the tree series
μk(σ)q1(x1)...qk(xk),q is in Rec(Δ ∪ Zk, S) for every k ≥ 0, σ ∈ Σ(k), and
q, q1, . . . , qk ∈ Q, and ν(q) has the form aq.z1 for every q ∈ Q. In [91], Corol-
lary 17, it is shown that, for every linear, nondeleting, and recognizable tree
transducer M and recognizable tree series r ∈ S〈〈TΣ〉〉, the tree series τM(r)
is also recognizable. Finally, we mention that in [53], top-down inf-wtt and
tree transducers of [91] are related.
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Inf-wtt with OI-Substitution

In [102], the idea of [91] was generalized and inf-wtt (rather than bottom-up
inf-wtt) with root output and OI-substitution over a complete semiring were
investigated. We denote the class of tree series transformations computed by
such inf-wtt by WTTOI(S)inf ; the restricted classes are denoted by applying
the same system as in Sect. 5.3. In [102], Lemmas 5 and 6 it was proved that
x-TOPR

OI(S)inf = x-TOPOI(S)inf for every combination x ∈ {t, d, h, p, b, l, n}
(where p stands for polynomial), and xp-TOPR

OI(S)inf = xp-WTTOI(S)inf for
every combination x ∈ {t, d, h, b, l, n}. Moreover, top-down wtt and polyno-
mial top-down inf-wtt with OI-substitution have the same computation power,
i.e., x-TOP(S) = xp-TOPOI(S)inf , for every combination x ∈ {t, d, h, b, l, n},
cf. [102], Theorem 7.

Top-down Inf-wtt and Bottom-up Inf-wtt with IOo-Substitution

It was observed already in [53] that top-down and bottom-up inf-wtt do not
generalize all fundamental properties of top-down and bottom-up tree trans-
ducers. For example, it was proved in [53], Proposition 3.14 that the compu-
tation power of homomorphism top-down wtt and of homomorphism bottom-
up wtt over the semiring Nat are incomparable, while they are equal in the
unweighted case, cf. [48], Lemma 3.2. Therefore, in [65], an alternative seman-
tics, based on the so-called IOo-substitution of tree series, of top-down and
bottom-up inf-wtt was suggested for consideration. Roughly speaking, the
IOo-substitution differs from the IO-substitution defined on page 362 in that
we take into account the number of occurrences of zi in ξ for every i ∈ I when
computing the coefficient of a tree ξ(ζi | i ∈ I). Formally, the IOo-substitution
of tree series (si | i ∈ I) into r is defined by

r ←IOo (si)i∈I =
∑

ξ∈TΔ(Z),
(∀i∈I):ζi∈supp(si)

(

(r, ξ) ·
∏

i∈I

(si, ζi)|ξ|zi

)

.ξ(ζi | i ∈ I).

We note that [IO]-substitution as defined on page 347 takes into account
whether zi occurs in ξ or not but does not use the number of occurrences.
Then top-down inf-wtt and bottom-up inf-wtt with IOo-substitution are de-
fined in the same way as in this chapter except that we use IOo-substitution
in the definition of μM(σ) instead of IO-substitution. The classes of tree
series transformations computed by top-down inf-wtt or bottom-up inf-wtt
with IOo-substitution are denoted by indexing the corresponding notation
with o, like: l-TOPo(S)inf . It turned out that the IOo-substitution does not
provide anything new for top-down inf-wtt because, for every combination x
over {t, d, h, p, b, l, n}, we have x-TOP(S)inf = x-TOPo(S)inf , cf. [65], The-
orem 5.2. However, for bottom-up inf-wtt it does because for every par-
tially ordered semiring S with 1 # 1 + 1 and x, y ∈ {td, d, h}, the classes
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x-BOT(S)inf and y-BOTo(S)inf are incomparable with respect to inclusion, cf.
[110], Theorem 5.10. Also, for every combination x over {t, d, h, p, b, l, n}, we
have xln-BOT(S)inf = xln-BOTo(S)inf and xpb-BOT(S)inf = xpb-BOTo(S)inf

provided S is idempotent, cf. [65], Theorems 5.5 and 5.8. Moreover, the follow-
ing results of [65] generalize the corresponding ones concerning tree transduc-
ers. By Theorem 5.12, we have xh-TOP(S)inf = xh-BOTo(S)inf for every zero-
divisor free semiring S. Moreover, xln-TOP(S)inf = xln-BOTo(S)inf , cf. The-
orem 5.5 and Proposition 5.30. Finally, for every combination x over {p, b},
we have xl-TOP(S)inf ⊆ xl-BOTo(S)inf , cf. Theorem 5.26.

Top-down and Bottom-up Inf-wtt with Term Rewrite Semantics

In this chapter, the semantics of top-down and bottom-up inf-wtt was de-
fined in an algebraic framework, more precisely, as an initial algebra seman-
tics. In [66] an alternative approach was suggested by introducing weighted
tree transducers of which the semantics is defined in an operational style.
A weighted tree transducer of [66] is a tree transducer in which each (term
rewriting) rule is associated with a weight taken from S. Along a successful
leftmost derivation, the weights of the involved rules are multiplied and, for
every pair of input tree and output tree, the weights of its successful leftmost
derivations are summed up. In [66], it is shown in a constructive way that the
two approaches, i.e., weighted tree transducers with initial algebra semantics
and weighted tree transducers with term rewrite semantics, are semantically
equivalent for both, the top-down and the bottom-up case, cf. Theorems 6.9
and 5.10.

Deterministic Bottom-up Inf-wtt over Multiplicative Monoids

In [101], the concept of a deterministic bottom-up weighted tree transducer (for
short: deterministic bu-w-tt) was defined in a similar way to our deterministic
bottom-up inf-wtt, except for the following. Since in case of a determinis-
tic bottom-up inf-wtt the “additive part” of S is needless, cf. [53], Proposi-
tion 3.12, the author defines deterministic bottom-up inf-wtt over a multi-
plicative monoid A with absorbing element 0. Every deterministic bottom-up
inf-wtt over S is a deterministic bu-w-tt over the monoid (S, ·, 1). However,
deterministic bu-w-tt are more general than our deterministic bottom-up inf-
wtt because there exists a monoid (A, ·, 1) with absorbing element 0 for which
there does not exist a semiring (A, +, ·, 0, 1) (cf. [101], Observation 2.2). Deter-
ministic bu-w-tt are defined with both IO-substitution and IOo-substitution
semantics and the restricted versions of both models are considered for every
combination x over {t, h, l, n}. In this way, there are 24 classes of tree se-
ries transformations computed by restricted deterministic bu-w-tt. Also, the
underlying monoid is restricted, namely a nonperiodic monoid; a periodic,
commutative and nonregular monoid; a periodic, commutative, and regular
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monoid; a commutative and idempotent monoid; and a periodic and commu-
tative group is considered as the underlying monoid. For each kind of under-
lying monoid, the inclusion diagram of the 24 classes is presented, cf. [101],
Theorems 4.8, 4.17, 4.20, 4.23, and 4.25, respectively.

Chapter 5 of [106] is a revised and extended version of [101]. The author
considers deterministic bottom-up inf-wtt and deterministic top-down inf-wtt
(over S). Thus, the bottom-up model is more restricted than the deterministic
bu-w-tt of [101]. On the other hand, it is more general because deterministic
bottom-up inf-wtt have final output tree series. Similarly, deterministic top-
down inf-wtt have initial output tree series. For these models, results similar
to those in [101] are obtained.

5.8 Further Results

It follows from Theorem 5.5 and Lemma 5.11(C) that the class ln-TOP(S) is
closed under composition. In [89], Theorem 2.4 and [93], Theorem 3.7 this has
been generalized to top-down inf-wtt in which the family of rule mappings
has the property that μk(σ)w,q is a recognizable tree series and algebraic tree
series, respectively.

In [103] it was shown that bottom-up inf-wtt can be simulated by weighted
tree automata over distributive multioperator monoids [90, 103, 62]. This
model has already been discussed as concept (f) on pages 353 and 360.
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10. S.L. Bloom and Z. Ésik. An extension theorem with an application to
formal tree series. Journal of Automata, Languages and Combinatorics,
8:145–185, 2003.

11. B. Borchardt. The Myhill–Nerode theorem for recognizable tree series.
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396 Zoltán Fülöp and Heiko Vogler

24. S. Bozapalidis and O. Louscou-Bozapalidou. The rank of a formal tree
power series. Theoretical Computer Science, 27:211–215, 1983.

25. S. Bozapalidis and G. Rahonis. On the closure of recognizable tree se-
ries under tree homomorphisms. Journal of Automata, Languages and
Combinatorics, 10:185–202, 2005.

26. W.S. Brainerd. The minimalization of tree automata. Information and
Control, 13:484–491, 1968.

27. P. Buchholz. Bisimulation relations for weighted automata. Theoretical
Computer Science, 393(1–3):109–123, 2008.
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1984.

69. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 3, pages 1–68.
Springer, Berlin, 1997.

70. J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial al-
gebra semantics and continuous algebras. Journal of the ACM, 24:68–95,
1977.

71. J.S. Golan. Semirings and Their Applications. Kluwer Academic, Dor-
drecht, 1999.

72. J. Graehl and K. Knight. Training tree transducers. In Human Lan-
guage Technology Conference/North American Chapter of the Associ-
ation for Computational Linguistics Annual Meeting (HLT–NAACL),
Boston, Massachusetts, USA, pages 105–112. Association for Computa-
tional Linguistics, Stroudsburg, 2004.

73. G. Grätzer. Universal Algebra. van Nostrand, Princeton, 1968.
74. I. Guessarian. Pushdown tree automata. Theory of Computing Systems,

16:237–263, 1983.
75. A. Habrard and J. Oncina. Learning multiplicity tree automata. In

Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, ed-
itors, Proceedings of the 8th International Colloquium on Grammatical
Inference: Algorithms and Applications (ICGI), volume 4201 of Lecture
Notes in Computer Science, pages 268–280. Springer, Berlin, 2006.

76. U. Hebisch and H.J. Weinert. Semirings—Algebraic Theory and Appli-
cations in Computer Science. World Scientific, Singapore, 1998.



Weighted Tree Automata and Tree Transducers 399
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itors, Proceedings of the 11th International Conference on Developments
in Language Theory (DLT), volume 4588 of Lecture Notes in Computer
Science, pages 229–241. Springer, Berlin, 2007.

78. Y. Inagaki and T. Fukumura. On the description of fuzzy meaning of
context-free languages. In L.A. Zadeh, editor, Fuzzy Sets and Their Ap-
plications to Cognitive and Decision Processes, pages 301–328. Academic
Press, New York, 1975.

79. E.T. Irons. A syntax directed compiler for ALGOL 60. Communications
of the ACM, 4(1):51–55, 1961.
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129. B. Šešelja and A. Tepavčević. Completion of ordered structures by cuts
of fuzzy sets, an overview. Fuzzy Sets and Systems, 136(1):1–19, 2003.

130. M. Steinby. A theory of tree language varieties. In M. Nivat and A. Podel-
ski, editors, Tree Automata and Languages, Studies in Computer Science
and Artificial Intelligence, North-Holland, Amsterdam, 1992.
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1 Introduction

Words and finite automata over words are central notions in computer science.
They model the sequential executions of systems. However, both the world
in its own and computer science have to cope with another phenomenon as
well: concurrency. Then not all events have to be ordered but some actions
may appear independently. Not surprisingly, automata modeling concurrency
are an important subject in theoretical computer science. On the other hand,
words can be seen as one-dimensional objects. But certainly, we have to handle
higher-dimensional objects like two-dimensional rectangles which we refer to
as pictures. These generalizations of words can be seen as certain classes of
partially ordered sets (short posets) or graphs. This chapter is concerned with
weighted automata running on those special graphs. Hence, the behaviors of
those automata will describe quantitative aspects of those posets or graphs
accepted by the system.

In Sect. 2, we start with weighted distributed systems which are modeled
as weighted asynchronous cellular automata (or wACA for short). Such an
automaton is a collection of finitely many sequential automata where some of
them depend on each other whereas others can proceed concurrently. When-
ever a wACA executes a certain action a, the local process associated with
a will change its state according to the states the dependent processes have
adopted beforehand. The dependence relation induces a certain class of posets,
called Mazurkiewicz traces or just traces. Traces stem originally from the be-
havior of certain Petri nets and have turned out to be one of the fundamental
models in concurrency theory. A wealth of results on traces can be found
in [12].

In this quantitative setting, a weight from a commutative semiring is af-
filiated with every transition of the automaton. Therefore, the concurrent
behavior of a wACA is a function mapping traces to elements of the under-
lying semiring. We will characterize the behavior of a wACA by three other
formalisms: presentations, logic formulas, and expressions. Here, presentations
can be seen as weighted word automata satisfying additional features (known
as diamond properties) due to the partial commutation of the actions. As logic
formulas, we consider a fragment of weighted monadic second-order logic. For
rational expressions, we have to restrict the application of iteration to mono-
alphabetic and connected subexpressions.

Branching automata provide another automaton model for concurrency;
see [47] for relevant results. They realize concurrency by branching a process
into several independent subprocesses which will be joined again in the future.
In a branching automaton, two subruns are either composed sequentially or in
parallel. Therefore, the partial order of the actions executed by the automaton
can be built from singletons by the use of a sequential and a parallel prod-
uct, giving rise to the class of series-parallel posets, or sp-posets for short.
For weighted branching automata, which we present in Sect. 3, sequential
and parallel composition are reflected in the weight structure by two different
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multiplications. Nondeterminism of the system is modeled by a third opera-
tion. Hence, the weight structure is not a semiring anymore but a bisemiring.
A bisemiring can be understood as two semirings with the same additive struc-
ture (for nondeterminism) where the second product has to be commutative
(due to the nature of commuting processes). The main result shown here will
provide an equivalent formalism by way of expressions for weighted branch-
ing automata of bounded depth, i.e., those where only a bounded number of
processes can be executed in parallel.

As suggested above, pictures (finite labeled grids) are another natural gen-
eralization of words; see [32] for an overview. Concerning pictures, in Sect. 4,
we present weighted picture automata which examine for an action a at a
certain position in the picture the states at the four poles of this position
(east, south, west, and north). Again, such a transition or rule is equipped
with a weight from a commutative semiring. We will characterize the behavior
of these weighted picture automata as projections of the semantics of ratio-
nal expressions and, moreover, as the semantics of a fragment of weighted
monadic second-order logic.

Traces, sp-posets, and pictures are important and well-explored instances
of posets and graphs. Other graph classes have been considered in the litera-
ture, likewise in a weighted setting. Related work as well as the history and
bibliography concerning traces, sp-posets, and pictures are discussed at length
at the end of the respective section.

2 Traces

Previous chapters of this handbook proved the equivalence of different for-
malisms for the description of functions f : Σ∗ → S into some semiring S.
The guiding idea was that a word w ∈ Σ∗ describes a sequence of actions to
be performed by some system and f(w) denotes the weight or cost associated
with this sequence of actions. Because of the linear nature of words over Σ,
this approach works fine for sequential systems. Here, we ask whether similar
results hold for concurrent systems.

Concurrency means commutation of some actions within the system.
Therefore, the respective weights have to commute, also. This is reflected
by the commutativity of the semiring multiplication. Hence, throughout this
section, we assume a fixed commutative semiring S.

2.1 Weighted Distributed Systems

Our model of a concurrent system will be that of an asynchronous cellular
automaton. Such an automaton consists of finitely many finite automata each
with its own alphabet. These finite automata reside in the nodes of a finite
graph (L, D) and proceed asynchronously. Whenever the finite automaton
present in a particular node executes an action, its subsequent state depends
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on the current one, the action performed, and on the states of those automata
that reside in neighboring nodes.

Weighted Asynchronous Cellular Automata

Note that the architecture of the system is given by the graph (L, D). We
therefore fix a nonempty and finite set L of locations and a symmetric and
reflexive dependence relation D ⊆ L × L. Its complement in L

2 is called
the independence relation I. A distributed alphabet is a tuple Σ = (Σ�)�∈L

of nonempty and mutually disjoint alphabets. For a ∈ Σ�, write lc(a) for the
unique location of a, i.e., lc(a) = �. Furthermore, we set (a, b) ∈ D for a, b ∈ Σ
if and only if (lc(a), lc(b)) ∈ D and (a, b) ∈ I if and only if (a, b) /∈ D.

Now we define our model of a concurrent system formally.

Definition 2.1. A weighted asynchronous cellular automaton or wACA for
short is a tuple A = (Σ, (Qm)m∈L, in, (c�)�∈L, out) where:

• Σ is a distributed alphabet.
• Qm is a finite set of local states for every m ∈ L.
• c� : (

∏
m∈D(�) Qm) × Σ� × Q� → S is a local weight function for every

� ∈ L where D(�) = {m ∈ L | (�, m) ∈ D}.
• in, out :

∏
m∈L

Qm → S are functions describing the cost for entering and
leaving the system.

Intuitively, the set of local states Qm and the local weight function cm

describe the behavior of the automaton in location m. Next, we present three
different behaviors of wACA.

Word Behavior of wACA

A configuration of A is an element of
∏

m∈L
Qm, i.e., a tuple of local states,

one for each location; Q denotes the set of configurations. The local weight
functions c� define a global weight function c : Q×Σ×Q→ S. For this, let a ∈
Σ� be some action and let p = (pm)m∈L and q = (qm)m∈L be configurations.
Then

c(p, a, q) =

{
c�((pm)m∈D(�), a, q�) if pm = qm for all m ∈ L \ {�},
0 otherwise.

The mapping c can be understood as a matrix A ∈ (SΣ)Q×Q setting Ap,q(a) =
c(p, a, q). This way, the weighted asynchronous cellular automaton A defines
a weighted finite automaton B = (Q, in, A, out) over the semiring S and the
alphabet

⋃
�∈L

Σ� (cf. [21]). Then the word behavior ‖A‖W : Σ+ → S of the
weighted asynchronous cellular automaton A is defined to be the restriction
of the behavior ‖B‖ =

∑
p,q∈Q in(p)(A∗)p,qout(q) : Σ∗ → S of B to the set of

nonempty words.
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Interleaving Behavior of wACA

Let a ∈ Σk and b ∈ Σ� with (k, �) ∈ I and let p, q, r ∈ Q be configurations
such that c(p, a, q) �= 0 and c(q, b, r) �= 0. Then one can check that c(p, a, q) =
c(q′, a, r) and c(q, b, r) = c(p, b, q′) with q′� = r� and q′m = pm for m �= �. Since
the semiring S is commutative, this implies ‖A‖W (uabv) = ‖A‖W (ubav), i.e.,
two words that only differ in the order of independent actions have the same
weight. This observation leads to the following definition of Mazurkiewicz
traces [55] (for more details, see [12]).

Let Σ = (Σ�)�∈L be a distributed alphabet. Then ∼ is the least congruence
relation on the free semigroup Σ+ with ab ∼ ba for all a, b ∈ Σ with (a, b) ∈ I.
The quotient M(Σ) = Σ+/∼ is the Mazurkiewicz trace semigroup generated
by Σ. Its elements are equivalence classes [u] of words. A language L ⊆ Σ+

is trace closed if u ∼ v and v ∈ L imply u ∈ L, i.e., L =
⋃

v∈L[v]. Simi-
larly, a function μ : Σ+ → X to some set X is trace closed if u ∼ v im-
plies μ(u) = μ(v). Since we only deal with commutative semirings, the word
behavior of every wACA A is trace closed. We can therefore define the inter-
leaving behavior ‖A‖I of A as ‖A‖I : M(Σ)→ S : [u] �→ ‖A‖W (u).

Concurrent Behavior of wACA

Recall that elements of the trace semigroup are ∼-equivalence classes of words
over Σ. These equivalence classes can be represented naturally as partial
orders as follows. A trace over Σ is a finite and nonempty labeled poset
t = (V,	, λ) with λ : V → Σ such that the following hold for all x, y ∈ V :

• If (λ(x), λ(y)) ∈ D, then x 	 y or y 	 x.
• If x � y and there is no node in between, then (λ(x), λ(y)) ∈ D.

The set of (isomorphism classes of) traces over Σ is denoted T(Σ). For a
trace t = (V,	, λ) and a node x ∈ V , let lc(x) = lc(λ(x)). Furthermore,
alph(t) = λ(V ) is the alphabet of t.

Let t = (V,	, λ) be a trace and � ∈ L a location. Then for every U ⊆ V
the set of nodes x ∈ U with lc(x) = � is linearly ordered by 	, hence (if not
empty) this set contains a largest element that we denote ∂�(U).

These notions lead to a truly concurrent definition of the behavior of the
wACA A = (Σ, (Qm)m∈L, in, (c�)�∈L, out): Let t = (V,	, λ) ∈ T(Σ) be a
trace. A function r : V →

⋃
�∈L

Q� is a run provided r(x) ∈ Qlc(x) for all
x ∈ V – the idea is that r(x) is the state of the finite automaton in loca-
tion lc(x) after executing the event x. Let ι ∈

∏
�∈L

Q� be a configuration
that the wACA starts from. Then r−m(ι, x) shall denote the state that the
finite automaton in location m is in before executing the event x. To define
this state formally, let ⇓x = {y ∈ V | y � x} and set r−m(ι, x) = r(∂m(⇓x)) if
∂m(⇓x) is defined, and r−m(ι, x) = ιm otherwise for x ∈ V and m ∈ L. Then the
wACA, when executing the event x in the run r started at ι, reads the states
r−m(ι, x) for m ∈ D(lc(x)) and moves into the local state r(x). At the end of
the run, the local automaton in location m is in state finalm(ι, r, t) defined
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Fig. 1. Different behaviors of wACA

by finalm(ι, r, t) = r(∂m(V )) if ∂m(V ) is defined, and finalm(ι, r, t) = ιm oth-
erwise. Finally, set final(ι, r, t) = (finalm(ι, r, t))m∈L. Then the running weight
of the run r starting in ι is the product of the weights of all the transitions
taken in this run, i.e.,

rwgt(ι, r, t) =
∏

x∈V

clc(x)

((
r−m(ι, x)

)
m∈D(lc(x))

, λ(x), r(x)
)
.

To obtain the total weight of the run r starting in ι, this quantity has to
be multiplied with the weight for entering the system in configuration ι and
leaving it in configuration final(ι, r, t), i.e.,

wgt(ι, r, t) = in(ι) · rwgt(ι, r, t) · out
(
final(ι, r, t)

)
.

Then the concurrent behavior ‖A‖C : T(Σ) → S associates, with every
trace t = (V,	, λ) ∈ T(Σ), the sum of the weights of all possible runs:

‖A‖C(t) =
∑(

wgt(ι, r, t)
∣
∣ ι ∈

∏

m∈L

Qm, r : V →
⋃

m∈L

Qm run
)

. (1)

Relations Between These Behaviors

The three notions of behavior of a wACA are closely related (cf. Fig. 1).
Let nat : Σ+ → M(Σ) denote the natural epimorphism defined by nat(u) =

[u] for all u ∈ Σ+. Then by the very definition of the word and the interleaving
behavior of the wACA A, we have ‖A‖I ◦ nat = ‖A‖W .

To relate the interleaving and the concurrent behavior of the wACA A,
we need a relation between the elements of M(Σ) and of T(Σ), i.e., between
∼-equivalence classes and traces. Let t = (V,	, λ) be a trace. A linear exten-
sion of t is a structure (V,�, λ) such that � is a linear order on the set V
extending the partial order 	. Such a linear extension can naturally be con-
sidered as a word over Σ, hence we define Lin(t) ⊆ Σ+ as the set of all linear
extensions of the trace t. Now a foundational result in trace theory asserts
that Lin maps T(Σ) bijectively onto the trace semigroup M(Σ) generated
by Σ (cf. [56, Theorem 1.4.8]). Then one obtains ‖A‖I ◦ Lin = ‖A‖C .
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Thus, the diagram in Fig. 1 commutes. In particular, ‖A‖C ◦ η = ‖A‖W

with η = Lin−1 ◦ nat. The trace η(w) can be described explicitly for w =
a1a2 . . . an ∈ Σ+: Set V = {1, 2, . . . , n} and λ : V → Σ : i �→ ai. Further-
more, 	 is the transitive closure of E = {(i, j) ∈ V 2 | i ≤ j, (ai, aj) ∈ D}.
Then η(w) = (V,	, λ).

The most interesting semantics of a wACA is the concurrent behavior
‖A‖C : M(Σ)→ S since it considers the wACA as a truly concurrent device.
Since Lin : T(Σ) → M(Σ) is a bijection, we consider the set of traces T(Σ)
as the underlying set of the trace semigroup M(Σ).

2.2 Other Formalisms: Presentations, Expressions, and Logics

This section introduces alternative formalisms for the description of functions
from the trace semigroup M(Σ) into the semiring S.

Presentations

Recall that nat : Σ+ → M(Σ) is the natural epimorphism. Hence, with a
function f : M(Σ) → S, we can associate a function g = f ◦ nat : Σ+ → S :
u �→ f([u]). Then g is recognizable as a formal power series [21], if it is the
behavior of a weighted finite automaton without ε-moves A = (Q,R,A, P )
where, in particular, Q is a finite set of states, R ∈ S1×Q is a row vector, P ∈
SQ×1 a column vector, and A ∈ (SΣ)Q×Q a matrix. Setting μ(a)p,q = Ap,q(a)
for a ∈ Σ and p, q ∈ Q, we obtain a mapping μ : Σ → SQ×Q whose extension
to a homomorphism Σ+ → (SQ×Q, ·) we denote by μ, also. Then one has
g(u) =

∑
p,q∈Q Rp·μ(u)p,q ·Pq for all u ∈ Σ+, i.e., the vectors R and P together

with the homomorphism μ represent the function g = f ◦ nat : Σ+ → S. This
justifies to call a quadruple (Σ,R, μ, P ) with R ∈ S1×n, μ : Σ+ → Sn×n, and
P ∈ Sn×1 satisfying f([u]) = R · μ(u) · P a word series presentation of f in
which case we write ‖(Σ,R, μ, P )‖ for the function f .

The idea of presentations is to replace the free semigroup by the trace
semigroup M(Σ), hereby following a more general concept of presentations of
series over arbitrary monoids, cf. [63].

Definition 2.2. An n-dimensional presentation (Σ,λ, μ, γ) comprises a dis-
tributed alphabet Σ, a row vector λ ∈ S1×n, a homomorphism μ : M(Σ) →
(Sn×n, ·) from the trace semigroup into the multiplicative semigroup of n×n-
matrices over S, and a column vector γ ∈ Sn×1.

The semantics of the presentation is the function f = ‖(Σ,λ, μ, γ)‖ :
M(Σ) → S defined by f(t) = λ · μ(t) · γ =

∑
1≤i,j≤n λi · μ(t)i,j · γj for every

t ∈ M(Σ).

Expressions

An expression is a term using the constants sa with s ∈ S and a ∈ Σ,
the unary function symbols + and (.)A for A ⊆ Σ, and the binary function
symbols + and · .
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The semantics �E� : M(Σ) → S of an expression E is defined inductively
as follows for any trace t ∈ M(Σ):

�sa�(t) =

{
s if t = [a],
0 otherwise,

�E + F �(t) = �E�(t) + �F �(t),

�E · F �(t) =
∑

t1,t2∈M(Σ)
t=t1t2

�E�(t1) · �F �(t2),

�
E+

�
(t) =

∑( ∏

1≤i≤n

�E�(ti)
∣
∣ n ∈ N, t1, . . . , tn ∈ M(Σ), t = t1t2 . . . tn

)

,

�(E)A�(t) =

{
�E�(t) if alph(t) = A,

0 otherwise,

where A ⊆ Σ is arbitrary. Note that the sum in the definition of �E+�(t)
is finite since there are only finitely many factorizations of the trace t. Fur-
thermore, note that these definitions straightforwardly extend the rational
operations on mappings Σ∗ → S (see [18]).

Logic

Recall that the logical formalism from [16] describes the behavior of a weighted
finite automaton. Here, we will use the same set of formulas but these formulas
will be evaluated over a trace (V,	, λ) and not over a word. So, let var and
VAR be disjoint infinite sets of individual and set variables and let Σ be some
distributed alphabet. Then the syntax of our weighted monadic second-order
logic wMSO is given by

ϕ ::= s | Pa(x) | P¬a(x) | x 	 y | x �	 y | x ∈ X | x /∈ X |
ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

where s ∈ S, x, y ∈ var, X ∈ VAR, and a ∈ Σ.
The semantics �ϕ� of a formula ϕ maps a trace t = (V,	, λ) together

with an evaluation σ to an element of the semiring. Here, an evaluation maps
individual variables from var to elements of V and set variables from VAR to
subsets of V . Inductively, we define:

�s�(t, σ) = s

�Pa(x)�(t, σ) =

{
1 if λ(σ(x)) = a

0 otherwise
�P¬a(x)�(t, σ) =

{
0 if λ(σ(x)) = a

1 otherwise

�x 	 y�(t, σ) =

{
1 if σ(x) 	 σ(y)
0 otherwise

�x �	 y�(t, σ) =

{
0 if σ(x) 	 σ(y)
1 otherwise
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Fig. 2. Overview

�x ∈ X�(t, σ) =

{
1 if σ(x) ∈ σ(X)
0 otherwise

�x /∈ X�(t, σ) =

{
0 if σ(x) ∈ σ(X)
1 otherwise

�ϕ ∨ ψ�(t, σ) = �ϕ�(t, σ) + �ψ�(t, σ) �ϕ ∧ ψ�(t, σ) = �ϕ�(t, σ) · �ψ�(t, σ)

To define the semantics of quantifiers, it is convenient to write σ ≡x τ in case
the valuations σ and τ differ at most in the value of the variable x. Then for
a variable x ∈ var ∪VAR, we set

�∃xϕ�(t, σ) =
∑

(�ϕ�(t, τ) | τ ≡x σ) ,

�∀xϕ�(t, σ) =
∏

(�ϕ�(t, τ) | τ ≡x σ) .

Since any trace has only finitely many nodes, these sums and products are fi-
nite. Since we consider only commutative semirings, the product in the seman-
tics of the universal quantifier is independent of the order of the factors and,
therefore, well defined. As usual, a formula where every variable is in the scope
of a quantifier is called a sentence. If ϕ is a sentence, then �ϕ�(t, σ) = �ϕ�(t, τ)
for all traces t and all evaluations σ and τ . Hence, we will understand �ϕ� for
a sentence ϕ as a function that maps traces to elements of the semiring.

2.3 Relating the Formalisms

In this section, we show that all the formalisms introduced coincide in expres-
sive power. As one can see from the plan of our proof in Fig. 2, the formalisms
are connected by not-yet-defined properties (T) and (Tlex). Thus, before we
can embark on the program of translating the formalisms into each other, we
have to introduce these technical properties.

Property (T)

Let Σ and Γ be distributed alphabets. A function π : Γ → Σ is location
preserving if lc(π(A)) = lc(A) for all A ∈ Γ . We denote the natural extension
of π to a semigroup homomorphism from Γ+ to Σ+ by π, also.

A function f : M(Σ)→ S satisfies property (T) if there exist a distributed
alphabet Γ , a location preserving function π : Γ → Σ, a homomorphism
c : Γ+ → (S, ·), and a language L ⊆ Γ+ such that:
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(T1) [L] = {V ∈ Γ+ | ∃U ∈ L : U ∼ V } is regular.
(T2) f([u]) =

∑
(c(U) | U ∈ L ∩ π−1([u])) for all u ∈ Σ+.

(T3)
∑

(c(U) | U ∈ [L]∩π−1(u)) =
∑

(c(V ) | V ∈ L∩π−1([u])) for all u ∈ Σ+.

The strengthening (Tlex) of property (T) needs linearly ordered distributed
alphabets. So, we will assume for every distributed alphabet Σ a linear order
�Σ on Σ. A function π : Γ → Σ is order preserving if A �Γ B implies
π(A) �Σ π(B) for all A, B ∈ Γ . For u ∈ Σ+, the lexicographic normal form
lnf(u) is the lexicographically minimal word from the equivalence class [u].
We let LNF(Σ) denote the set of all words lnf(u) with u ∈ Σ+.

Now a function f : M(Σ) → S satisfies property (Tlex ) if it satisfies
property (T) where, in addition, we assume π to be order-preserving and
the language L to consist of words in lexicographic normal form, only (i.e.,
L ⊆ LNF(Γ )).

2.3.1 wACA, (Word Series) Presentations, and Property (T)

From wACA to Presentations

Let A be a wACA and let Q be the set of configurations of A. Recall the
global cost function c : Q × Σ × Q → S that we used to define the word
behavior ‖A‖W . For a ∈ Σ and p, q ∈ Q, set μ([a])p,q = c(p, a, q). Then
μ([a]) · μ([b]) = μ([b]) · μ([a]) for (a, b) ∈ I. Since M(Σ) = Σ+/∼ and ∼
is the least congruence identifying ab and ba for (a, b) ∈ I, the mapping
μ can uniquely be extended to a homomorphism μ : M(Σ) → (SQ×Q, ·).
Understanding the mappings in, out : Q → S as row and column vector,
respectively, (Σ, in, μ, out) is a |Q|-dimensional presentation. The semantics
‖(Σ, in, μ, out)‖ of this presentation coincides with the concurrent behavior
‖A‖C of the wACA A we started with. Hence, we get the following theo-
rem.

Theorem 2.3 ([43, Proposition 4.5]). For every weighted asynchronous
cellular automaton A, there exists a presentation (Σ,λ, μ, γ) such that ‖A‖C =
‖(Σ,λ, μ, γ)‖.

From Presentations to Word Series Presentations

Now let (Σ,λ, μ, γ) be an n-dimensional presentation of f : M(Σ) → S. Then
μ ◦ nat : Σ+ → S is a homomorphism and (Σ,λ, μ ◦ nat, γ) is a word series
presentation of f since f([u]) = λμ([u])γ = λ(μ ◦ nat)(u)γ. Hence, we have
the following theorem.

Theorem 2.4. Let (Σ,λ, μ, γ) be a presentation. Then (Σ,λ, μ ◦ nat, γ) is a
word series presentation of ‖(Σ,λ, μ, γ)‖.
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From Word Series Presentations to Property (Tlex )

Now let (Σ,λ, μ, γ) be an n-dimensional word series presentation and set Q =
{1, . . . , n}. Using a normalization procedure (cf. [21]), we can assume λp, γp ∈
{0, 1} for all p ∈ Q. Then we define a distributed alphabet Γ setting Γ� =
Q×Σ� ×Q for � ∈ L. Now the mapping π : Γ → Σ : (p, a, q) �→ a is location
preserving. Define linear orders �Σ and �Γ on the distributed alphabets
Σ and Γ such that π is also order preserving. Let c : Γ+ → (S, ·) be the
homomorphism defined by c(p, a, q) = μ(a)p,q.

A path from p1 to pn+1 is a word U ∈ Γ+ of the form U = (pi, ai, pi+1)1≤i≤n

with μ(ai)pi,pi+1 �= 0 for all 1 ≤ i ≤ n. Let the language L ⊆ Γ+ consist of all
paths U ∈ LNF(Γ ) from some p ∈ Q with λp = 1 to some q ∈ Q with γq = 1.

The language L is regular since it is the intersection of the regular lan-
guage of all paths from some initial to some final state with the regular lan-
guage LNF(Γ ). By [60], [L] is regular since it is the ∼-closure of a regular
language of lexicographic normal forms; hence, (T1) holds. Since π is loca-
tion and order preserving, U ∈ LNF(Γ ) if and only if π(U) ∈ LNF(Σ) for
all U ∈ Γ+. Hence, for u ∈ Σ+, we have

‖(Σ,λ, μ, γ)‖([u]) = ‖(Σ,λ, μ, γ)‖
(
[lnf(u)]

)

=
∑

λp=1

∑

γq=1

(
μ
(
lnf(u)

))
p,q

=
∑

λp=1

∑

γq=1

∑(
c(U)

∣
∣ U path from p to q, π(U) = lnf(u)

)

=
∑(

c(U)
∣
∣ U ∈ L, π(U) = lnf(u)

)

=
∑(

c(U)
∣
∣ U ∈ L ∩ π−1([u])

)

proving (T2). Finally, to prove (T3), let u ∈ Σ+ be arbitrary. Then the
mapping h = lnf�[L]∩π−1(u) maps [L]∩π−1(u) to L∩π−1([u]) ⊆ LNF(Γ ) such
that c(U) = c(h(U)) since h(U) = lnf(U) is some reordering of the word U .

To verify injectivity of h, let U, V ∈ [L]∩ π−1(u) with h(U) = h(V ). Then
U ∼ h(U) = h(V ) ∼ V and π(U) = π(V ). Since the first letters of π(U)
and π(V ) are equal, the first letters of U and V belong to the same location;
hence, they are dependent. Now their equality follows from U ∼ V . The proof
then proceeds by induction.

To verify surjectivity of h, let V ∈ L ∩ π−1([u]). Then v = π(V ) ∼ u is
obtained from u by successively permuting adjacent and independent letters.
Since π is location preserving, these swaps can be simulated in V resulting
in a word U ∈ [V ] ∩ π−1(u) ⊆ [L] ∩ π−1(u). Hence, h is a bijection which
proves (T3) and, therefore, we have the following theorem.

Theorem 2.5. Let (Σ,λ, μ, γ) be a word series presentation. Then the func-
tion ‖(Σ,λ, μ, γ)‖ satisfies property Tlex .
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From Property (T) to wACA

Suppose the function f : M(Σ) → S satisfies property (T), i.e., there are
Γ , π, c, and L as required that satisfy (T1)–(T3). By (T1) and [67], the
language [L] can be accepted by some deterministic asynchronous cellular
automaton. Translated into our context, there is a wACA A = (Γ, (Qm)m∈L,
in, (c�)�∈L, out) whose word behavior ‖A‖W is the characteristic function
χ[L] : Γ+ → S of [L]. We now define another wACA A′ = (Σ, (Qm)m∈L, in,
(c′�)�∈L, out) setting

c′�
(
(pm)m∈D(�), a, q�

)
=

∑(
c(A) · c�

(
(pm)m∈D(�), A, q�

) ∣
∣ a ∈ π−1(A)

)

for a ∈ Σ�, pm ∈ Qm, and q� ∈ Q�. For u ∈ Σ+ we then have

‖A′‖C([u]) = ‖A′‖W (u) =
∑(

c(U) · ‖A‖W (U)
∣
∣ U ∈ π−1(u)

)

=
∑(

c(U)
∣
∣ U ∈ [L] ∩ π−1(u)

)

=
∑(

c(V )
∣
∣ V ∈ L ∩ π−1([u])

)
by (T3)

= f([u]) by (T2).

This proves

Theorem 2.6. If f : M(Σ) → S satisfies property (T), then it is the concur-
rent behavior of some wACA.

2.3.2 wACA, Logic, and Word Series Presentations

A Fragment of Weighted Monadic Second-Order Logic

Already in the setting of words, the full weighted monadic second-order logic
exceeds the class of behaviors of weighted automata. In [14, 16], Droste and
Gastin define two different fragments of wMSO that are both expressively
equivalent to weighted finite automata on words. Here, we adapt the approach
from [14] to our setting. To this end, a formula ϕ is a definable step formula if
there exist n ∈ N, si ∈ S, and wMSO-formulas βi over the Boolean semiring
B (for 1 ≤ i ≤ n) such that, for every trace t ∈ M(Σ) and every evaluation
σ, we have �ϕ�(t, σ) =

∑
1≤i≤n si�βi�(t, σ) (where we identify the elements

0 and 1 of the Boolean semiring B with the corresponding elements of the
semiring S).2

Now ϕ ∈ wMSO is restricted if ϕ does not contain any second-order univer-
sal quantification, and for every subformula ∀xψ of ϕ, the formula ψ is a defin-
able step formula. The class of all restricted formulas is denoted by wRMSO.
2 The formally correct statement would be �ϕ�(t, σ) =

∑
1≤i≤n sifi(t, σ) where fi

is the characteristic function of the support of �βi� (whose values belong to the
Boolean semiring). But fi takes values in the semiring S.
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The class wREMSO comprises the existential formulas of wRMSO, i.e., those
of the form ∃X1 . . .∃Xmψ where ψ ∈ wRMSO does not contain any second-
order quantification.

From wACA to Logic

It is generally known that the behavior of finite automata can be described by
sentences of existential monadic second-order logic. In the weighted setting,
we have to be careful in adapting this approach. Whereas on the one hand
the weights of the transitions have to be included, on the other hand formulas
describing only qualitative properties of the automaton have to preserve a
“Boolean” 0–1-semantics. Therefore, we introduce unambiguous formulas. All
atomic formulas apart from s for s ∈ S are unambiguous. Let ϕ and ψ be
unambiguous formulas. Then so are ϕ∧ψ, ∀xϕ, and ∀X ϕ. The formula ϕ∨ψ
is unambiguous if, for all traces t and all valuations σ, at most one of �ϕ�(t, σ)
and �ψ�(t, σ) is nonzero. Finally, the formula ∃z ϕ with z ∈ var ∪ VAR is
unambiguous if, for every trace t and every valuation σ, there is at most one
valuation τ with τ ≡z σ and �ϕ�(t, τ) �= 0. Then �ϕ�(t, τ) ∈ {0, 1} for any
unambiguous formula ϕ, any trace t, and any valuation τ .

In the setting of traces, we can find for every first-order formula ϕ over the
Boolean semiring an unambiguous one ϕ+ over the semiring S such that �ϕ�
and �ϕ+� have the same support, i.e., �ϕ�(t, σ) = 1 in the Boolean semiring
if and only if �ϕ+�(t, σ) = 1 in S for all t ∈ M(Σ) and all evaluations σ. This
is an easy exercise for quantifier-free formulas. With regard to ∃xϕ, we can
single out a unique node (if there is at least one) for x such that ϕ is satisfied.
This can be done as follows: fix a linear order � on Σ and define a strict linear
order on the nodes of any trace t by the unambiguous formula

ω(x, y) =
∨

(a,b)∈≺

(
Pa(x) ∧ Pb(y)

)
∨

∨

a∈Σ

(
Pa(x) ∧ Pa(y) ∧ x � y

)

and amend ϕ appropriately; cf. [59] for details.
The transitions of a wACA A = (Σ, (Qm)m∈L, in, (c�)�∈L, out) do not use

the partial order 	 but the node ∂m(⇓x) for a node x and m ∈ L. Take Pm(x)
as a shorthand for

∨
a∈Σm

Pa(x). Then y = ∂m(⇓x) if and only if x and y
satisfy the formula

β(x, y) = Pm(y) ∧ (y � x) ∧ ∀z
[(

y 	 z � x ∧ Pm(z)
)

=⇒ y = z
]
.

Note that β is in wRMSO. Now we follow the usual way (cf., e.g., [65]) of
transforming an automaton into a formula where a valuation of second-order
variables reflects an assignment of nodes to states (cf. [9] for more details in a
more general setting). Therefore, we introduce variables Xq for every q ∈ Q.
Then we build formulas with free variables Xq for the following statements:

• The sets {Xq | q ∈ Q} form a partition of the nodes of the trace.
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• The node x and its local neighborhood is matched by the transition
((pm)m∈D(�), a, q�) (here the formula β from above is used).

• The node x is the last node of a location m.

All these formulas describe qualitative statements and can be made unam-
biguous according to what was shown above. Finally, we add the appropriate
weights by conjunction to the particular formulas. Altogether, we obtain the
following theorem.

Theorem 2.7. For every wACA A, there is a sentence ϕ ∈ wREMSO such
that �ϕ� = ‖A‖C .

From Logic to Word Series Presentations

Consider a sentence ϕ ∈ wRMSO evaluated over traces from M(Σ). Our
strategy is to transform ϕ into ϕ̃ ∈ wRMSO evaluated over words. The
logic wRMSO over words is defined in the same way as for traces, but this
time with a linear order ≤ instead of the partial order 	 as used for traces
(cf. [16]).

We wish to construct ϕ̃ with �ϕ̃� = �ϕ� ◦ nat where nat : Σ+ → M(Σ) is
the natural epimorphism. For this, we replace every atomic formula x 	 y in
ϕ by an unambiguous version of the formula

∃x0, . . . , x|Σ| : x = x0 ∧
∧

i=0,...,|Σ|−1

(
xi ≤ xi+1 ∧ (xi, xi+1) ∈ D

)
∧ x|Σ| = y

where (xi, xi+1) ∈ D is a shorthand for
∨

(a,b)∈D(Pa(x)∧Pb(y)). Then �ϕ̃�(w) =
�ϕ�(nat(w)) = �ϕ� ◦nat(w) for all w ∈ Σ+. It turns out that ϕ̃ is in wRMSO.
In fact, we can also show the other direction (see [59] for details) and obtain
the following proposition.

Proposition 2.8. For f : M(Σ) → S the following are equivalent:

1. f is definable in wRMSO over traces.
2. f ◦ nat : Σ+ → S is definable in wRMSO over words.

Since �ϕ�◦nat is definable in wRMSO, it is the behavior of a weighted finite
automaton A with state set Q (see [16]). Then by what we saw on page 411,
A can be transformed into a word series presentation of �ϕ�. This proves the
following result.

Theorem 2.9. Let ϕ ∈ wRMSO be a sentence. Then �ϕ� admits a word series
presentation.
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2.3.3 Expressions and Property (T)

From Property (Tlex ) to Expressions

Suppose the function f : M(Σ) → S satisfies property (Tlex), i.e., there are
Γ , π, c, and L ⊆ LNF(Γ ) as required that satisfy (T1)–(T3). Since the lan-
guage [L] is regular, so is L = {lnf(U) | U ∈ [L]} = [L]∩LNF(Γ ). Hence, there
is a rational expression E whose language L(E) equals L. As for every ratio-
nal expression, we can assume (cf. [19]) that L(F ) is monoalphabetic for every
subexpression F+ of E (i.e., alph(U) = alph(V ) for all U, V ∈ L(F )). Since
L ⊆ LNF(Γ ), the language L(F ) is connected for every subexpression F+ of E
(i.e., alph(U) is a connected subgraph of (Γ, D) for every U ∈ L(F )) [60].

Now replace every appearance of a letter A ∈ Γ in E with c(A)π(A). This
results in an expression G. It can be checked that the function f is the seman-
tics �G� of the expression G (see [42, proof of Lemma 4.1]). Since E is a rational
expression, the expression G does not use the construct (.)A. Furthermore, by
what we saw above, if H+ is a subexpression of G, and �H�(t) �= 0 �= �H�(t′),
then alph(t) = alph(t′) is connected, i.e., the expression G is mc-rational as
defined in [13].

Theorem 2.10 ([42]). If f : M(Σ) → S satisfies property Tlex , then it is the
semantics of some mc-rational expression G.

From Expressions to Property (T)

We now aim at the converse, i.e., we want to show for each suitable expres-
sion E that �E� satisfies property (T). The starting idea is extremely simple:
To construct the language L, understand the constant sa in an expression E
as the letter (s, a) from some distributed alphabet Γ with Γ� ⊆ S×Σ�. In this
construction of L, we let (F )A denote the intersection of the language denoted
by F with the set of words U with π(alph(U)) = A (where π(s, a) = a). The
homomorphism c : M(Γ ) → (S, ·) is then given by c(s, a) = s.

To verify (T3), let u ∈ Σ+ and V ∈ L ∩ π−1([u]). Then π(V ) ∼ u implies
the existence of some word U with V ∼ U and π(U) = u and, therefore, U ∈
[L]∩ π−1(u). Hence, there is a function fu : L∩ π−1([u]) → [L]∩ π−1(u) with
fu(V ) ∼ V and, therefore, c(fu(V )) = c(V ). This function is even surjective:
if U ∈ [L] ∩ π−1(u), then there exists at least one word V ∈ L with U ∼ V .
Since π is location-preserving, this implies π(V ) ∼ π(U) = u. Hence, we have
fu(V ) ∼ V ∼ U and π(fu(V )) = u = π(U) which implies U = fu(V ). Since fu

is in general not injective, (T3) holds provided the semiring S is idempotent.
In this case, we can also verify (T2) inductively along the construction of the
expression E. Finally, consider (T1), i.e., the regularity of the closure of the
language L. From [60], we know that this is the case at least if, for every
subexpression F+ of E, the language denoted by F is connected (without this
assumption, the regularity of [L] is not guaranteed and even undecidable [62]).
We enforce this condition by the following syntactic restriction on E: whenever
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F+ is a subexpression of E, then F =
∑

(G)A for some expression G where
the sum extends over all sets A ⊆ Σ such that (A, D) is connected. Calling
these expressions c-rational (since iteration is applied to connected functions,
only), we therefore obtain the following theorem.

Theorem 2.11 ([42]). If E is a c-rational expression and the semiring S is
idempotent, then the semantics �E� of E satisfies property (T).

The expression (1a + 1b)+ is equivalent to a c-rational expression. Now
assume (a, b) ∈ I and consider the natural semiring (N, +, ·, 0, 1). Then the
function �(1a+1b)+� does not have a presentation (by [13, Example 39]) and,
therefore, violates property (T) by Theorems 2.6 and 2.3. Hence, idempotency
is necessary in the above theorem.

Recall that S was assumed idempotent since the function fu is surjective
but not necessarily injective. Here is an example: consider the expression E =
(1a + 1b) · (1a + 1b) and assume (a, b) ∈ I. Then the above proof yields
L = {A2, AB, BA, B2} = [L] where A = (1, a) and B = (1, b). With u = ab,
we then have [L] ∩ π−1(u) = {AB} and L ∩ π−1([u]) = {AB, BA}, i.e., there
cannot be a bijection between these two sets. The problem arises since the two
occurrences of a in E cannot be distinguished. If, in the construction of the
language L, we replace the two occurrences of a by distinct letters A1 and A2,
then this problem vanishes. But there is a related one: let E = (1a+1b)+. Then
as above, there cannot be a bijection between L∩π−1([ab]) and [L]∩π−1(ab)
although every letter appears only once in E. Here, we replace the expression
E with the equivalent one

(1a + 1b) +
(
(1a + 1b)(1a + 1b)

)+ +
(
(1a + 1b)(1a + 1b)

)+(1a + 1b)

and then replace the occurrences of 1a and 1b by mutually distinct letters
Ai and Bi for 1 ≤ i ≤ 6. But then (T1) will not hold since the middle term
gives rise to the language L = ({A2, B2} · {A3, B3})+ whose closure [L] is not
regular (since the word A2B3 is not connected). This latter problem cannot
arise if E is mc-rational. Restricting to these mc-rational expressions E, we
therefore obtain property (T) as follows: first, replace every subexpression F+

with F + (F · F )+ + (F · F )+ · F . In a second step, replace the constants sa
in the resulting expression with mutually distinct letters (s, a, i) for some
distributed alphabet Γ with Γ� ⊆ S × Σ� × N. Setting π(s, a, i) = a and
c(s, a, i) = s finishes the construction.

Theorem 2.12 ([42]). If E is an mc-rational expression, then the seman-
tics �E� of E satisfies property (T).

2.3.4 The Characterization Theorem

The last result completes the picture of Fig. 2 showing the equivalence of
wACA, presentations, logics, and expressions.
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Theorem 2.13 ([13, 59, 43]). Let Σ be a distributed alphabet, S a com-
mutative semiring, and f : M(Σ) → S a function. Then the following are
equivalent:

1. f is the concurrent behavior of some wACA.
2. f admits a presentation.
3. f is the semantics of some sentence from wRMSO.
4. f is the semantics of some mc-expression.

If the semiring is idempotent, any of the above statements is equivalent to

5. f is the semantics of some c-expression.

It can be checked that all our proofs are effective. This makes it possible
to intertranslate the different formalisms for describing functions from M(Σ)
to S.

2.4 History and Overview

Every arrow in Fig. 2 from formalism A to formalism B denotes that we
proved that formalism A can equivalently be transformed into formalism B;
thus, all these formalisms are equivalent. We call mappings M(Σ) → S that
can be presented in any of these formalisms recognizable trace series. An early
study of these series can be found in the work of Fliess [25, 26] who defined
recognizability by means of presentations. Most of his results turned out to
hold for arbitrary monoids (cf. [64, 63]) and are therefore beyond the scope
of this article.

Whereas Fliess’ work was motivated from combinatorics, traces attracted
growing interest as a model for the behavior of concurrent systems, especially
Petri nets. A comprehensive theory was developed; see [12]. In this light, the
study of recognizable series for partially commuting variables was revived by
Droste and Gastin [13] who showed that a trace series admits a presentation if
and only if it is mc-rational (if and only if it is c-rational in case the semiring
is idempotent), i.e., the equivalence of 2 and 4 (resp. 5) in Theorem 2.13.

Consider again the equivalent formalisms stated by the arrows in Fig. 2.
Using mc-rational expressions, it follows that the class of recognizable series is
closed under the rational operations (iteration is restricted to monoalphabetic
and connected functions)—this is directly shown in [13] in order to prove that
every mc-rational mapping has a presentation (for very special semirings,
closure under the Cauchy-product was known from [26]). Yet another proof
of this fact was given in [7] by Berstel and Reutenauer who used algebraic
means. A construction of equivalent expressions from a presentation was firstly
given in [13], the proof via property (Tlex) can be seen as a formalization
of this construction. The proof from [13] was extended by Mathissen [49]
allowing deflation parameters in the style of [20]. Every recognizable series f :
M(Σ) → S can be defined in wRMSO and wREMSO; Meinecke [59] derived
this result as a corollary to the corresponding result on formal power series
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f : Σ+ → S from [14]. The proof we present here is due to [9] where it can
be found for message sequence charts and certain dags. Our proof that every
function of the form �ϕ� satisfies property (Tlex) formalizes the construction of
a presentation from [59]. Also, the construction of a wACA from a presentation
via property (T) formalizes the original proof by Kuske [43]; a consequence
of that proof is that we can require presentations to have certain natural
properties (“I-consistency”) without restricting the expressive power.

This article did not consider aperiodic trace series, i.e., functions M(Σ)→
S that admit a presentation (Σ,λ, μ, γ) and an index n ∈ N such that
μ(tn) = μ(tn+1) for all traces t ∈ M(Σ). For idempotent semirings with
Burnside matrix monoids, Droste and Gastin [15] show the coincidence of
aperiodic trace series and trace series defined by starfree expressions. For com-
mutative, weakly bi-aperiodic semirings, Meinecke [59] lifts a result from [14]
and shows that first-order formulas define exactly the class of aperiodic trace
series. A characterization in terms of wACA is not known nor does it seem
likely that there is a property-(T )-like characterization since these trace series
are not closed under projections.

Concerning logics, some decidability issues arise [59, 14]. If the semiring S
is a computable field, then it is decidable whether a wMSO-formula ϕ is in
wRMSO. Moreover, satisfiability and equivalence can be decided. For a locally
finite semiring S, the semantics of every wMSO formula ϕ is recognizable.
Then universality and equivalence turn out to be decidable.

Traces appear naturally as heaps of pieces, i.e., monoids generated by solid
blocks in rectangular form as known from the Tetris game. The concatenation
is determined by piling up those pieces. This yields a nice graphical interpreta-
tion for traces. In [29], Gaubert and Mairesse described the timed behavior of
safe timed Petri nets by functions from the associated heap of pieces into the
(max,+)-semiring. It can be computed by a (max,+)-automaton. This cor-
respondence is exploited for performance evaluation [27, 29] and asymptotic
analysis [28] using spectral theory techniques.

The model checking of probabilistic systems also benefits from distributed
alphabets: [4, Definition 5.6] turns a Markov decision process into a proba-
bilistic presentation that allows to apply partial-order reductions to speed up
the model checking of LTL-properties.

Probabilistic asynchronous automata running on traces were introduced by
Jesi, Pighizzini, and Sabadini [37]. They showed that probabilistic asynchro-
nous automata and probabilistic presentations (which they call probabilistic
M -automata) define the same class of behaviors. However, they have to re-
strict themselves to distributed alphabets with an acyclic dependence relation.
It is open whether the techniques presented here can be used to derive the
general result.

Quantitative aspects are important for communication scenarios and dis-
tributed systems. However, the trace model has natural limitations. To de-
scribe the behavior of message passing systems the model of message sequence
charts, MSCs for short, is more appropriate. Bollig and Meinecke [9] proved an
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equivalence result between weighted asynchronous cellular automata and some
weighted MSO logic in this setting. A robust theory of weighted MSCs still
has to be developed. We would like to exploit techniques using trace theory
to obtain new results also for weighted systems over MSCs. Such techniques
were initiated by Arnold [3] and elaborated by several authors in different
settings [17, 45, 40, 30].

3 Series-Parallel Posets

In the previous section, the behavior of certain concurrent systems was de-
scribed by means of traces. However, the weights of transitions appearing
concurrently were handled in the same way as those of transitions executed
sequentially. In either case, the weights were multiplied within the given semi-
ring. This does not seem reasonable when considering the execution time for
example. Duration times should be added for events executed sequentially
whereas for parallel execution one would suggest taking the maximum of the
respective execution times. Here, we give an automaton model for such con-
current systems and provide a characterization of its behavior.

3.1 Series-Parallel Posets and Bisemirings

Series-Parallel Posets

We first define the class of series-parallel posets or sp-posets for short, which
will serve for the description of executions of the concurrent systems con-
sidered [35, 61]. Let Σ be a finite alphabet. Let t1 = (V1,≤1, l1) and t2 =
(V2,≤2, l2) be two Σ-labeled posets, i.e., li : Vi → Σ for i = 1, 2. Assume
V1∩V2 = ∅. Then define the sequential product t1·t2 = (V,≤, l) by V = V1∪V2,
≤ = ≤1 ∪ (V1 × V2) ∪ ≤2, and l = l1 ∪ l2. Similarly, the parallel product
t1 ‖ t2 = (V,≤, l) is defined by V = V1 ∪ V2, ≤ = ≤1 ∪ ≤2, and l = l1 ∪ l2.

The class of (finite and nonempty) sp-posets SP(Σ) is the small-
est class of Σ-labeled posets containing the singleton posets and
closed under sequential and parallel product. The sp-posets can
be characterized as the so-called N -free posets, i.e., those finite
posets in which the poset (N,≤N ) (on the left) cannot be embed-
ded; cf. [35]. The absence of a subposet isomorphic to (N,≤N )
prohibits a modeling of any kind of message passing by sp-posets.

The set of all sp-posets (SP(Σ), ·, ‖) together with sequential and parallel
product is the free sp-algebra. Note that both operations are associative and,
moreover, the parallel product is commutative. Any t ∈ SP(Σ) allows for a
unique maximal sequential decomposition t = t1 · · · · ·tm where every ti �= t′t′′

for any t′, t′′ ∈ SP(Σ). Similarly, t has a unique (up to commutativity) maxi-
mal parallel decomposition t = t1 ‖ · · · ‖ tn.
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Bisemirings

Usually, weights for finite automata stem from semirings. In our setting, we are
in need of an additional second multiplication to handle parallel composition.

Definition 3.1. A bisemiring (S,+, ·, �, 0, 1) is a set S together with three
binary operations called addition +, sequential multiplication ·, and parallel
multiplication �, and two constants 0 and 1 such that:

• (S, +, 0) is a commutative monoid, (S, ·, 1) is a monoid, and (S, �) is a
commutative semigroup.

• Both · and � distribute over +.
• 0 is absorbing for · and �, i.e., s · 0 = 0 · s = s � 0 = 0 for all s ∈ S.

Broadly speaking, a bisemiring S consists of two semirings with the same
basic set and the same additive structure where parallel multiplication has
to be commutative but may miss a unit. Next, we collect some examples of
bisemirings.

Example 3.2. The structure S = (N ∪ {+∞}, min, +, max, +∞, 0) is a bisemi-
ring. The number 0 is the unit for the sequential multiplication + and +∞ is
the absorbing zero. Let a ∈ Σ be some action with execution time time(a). If
a cannot be performed, put time(a) = +∞. Now we define time : SP(Σ) →
S inductively by time(t1 · t2) = time(t1) + time(t2) and time(t1 ‖ t2) =
max(time(t1), time(t2)). Then time is an sp-algebra homomorphism and gives
the execution time of the sp-poset t.

Example 3.3. S = (N ∪ {−∞, +∞}, max, min, +,−∞, +∞) where (−∞) +
(+∞) = −∞ is a bisemiring. By help of this bisemiring, we can model a
series-parallel channel system. The weights give the channel capacity. Along
a sequence of channels, the minimal capacity determines the overall capacity,
but for parallel channels we can add the capacities.

Example 3.4. Let M be a set and RM the set of binary relations on M . Let ◦
denote the usual relational product, i.e., for A, B ∈ RM

A ◦B =
{
(a, c) ∈ M2

∣
∣ ∃ b ∈ M : (a, b) ∈ A and (b, c) ∈ B

}
.

By Δ, we denote the diagonal relation: Δ = {(a, a) | a ∈ M}. Then (RM ,∪, ◦,
∩, ∅, Δ) is a bisemiring which can be interpreted as follows: Let Σ be a finite
set of atomic conditions and M an arbitrary set of ports. A condition a ∈ Σ
states which ports are connected via the relation link(a) ⊆ M × M . Now
some conditions may emerge sequentially and others at the same time. For
t = t1 · t2, we put link(t) = link(t1) ◦ link(t2). Hence, link(t) indicates the
connected ports after a sequence of conditions occurred. On the other hand, if
t = t1 ‖ t2, then link(t) = link(t1) ∩ link(t2), i.e., only those port connections
are still enabled that satisfy both conditions t1 and t2 simultaneously.
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Any semiring S′ can be understood as a bisemiring by defining a trivial par-
allel multiplication s � s′ = 0 for s, s′ ∈ S′. If S′ �= {0}, this is an example
of a bisemiring without unit for �. If S′ is commutative, i.e., multiplication
commutes, then also (S′, +, ·, ·, 0, 1) is a bisemiring. We refer to these latter
bisemirings as doubled semirings. One of this kind is the Boolean bisemi-
ring (B,∨,∧,∧, 0, 1).

3.2 Weighted Branching Automata

We fix a finite alphabet Σ and a bisemiring S. If Q is a set and m ∈ N, we
denote by

(
Q
m

)
the collection of all subsets of Q with cardinality m.

Definition 3.5. A weighted branching automaton over the alphabet Σ and
the bisemiring S, or a wBA for short, is a 6-tuple A = (Q, μseq, μfork, μjoin, λ, γ)
where:

• Q is a finite set of states.
• μseq : Q×Σ ×Q→ S is the sequential transition function.
• μfork = (μm

fork : Q ×
(

Q
m

)
→ S | m = 2, . . . , |Q|) is the family of fork

transition functions.
• μjoin = (μm

join :
(

Q
m

)
× Q → S | m = 2, . . . , |Q|) is the family of join

transition functions.
• λ, γ : Q → S are the initial and the final weight function, respectively.

We write p
a−→s q if μseq(p, a, q) = s �= 0 and call it a sequential transition from

p to q with action a and weight s. If we do not care about the weight s �= 0, then
we just state p

a−→ q. We also write p →s {p1, . . . , pm} and p → {p1, . . . , pm}
if μm

fork(p, {p1, . . . , pm}) = s �= 0. In the same way, {q1, . . . , qm} →s q and
{q1, . . . , qm} → q are to be understood as μm

join({q1, . . . , qm}, q) = s �= 0. In
these cases, we speak of a fork transition from p to {p1, . . . , pm} with weight s
and of a join transition from {q1, . . . , qm} to q with weight s, respectively. The
integer m is called the arity of the fork and the join transition, respectively.3

A state q ∈ Q is initial if λ(q) �= 0. Dually, q is a final state if γ(q) �= 0.
A weighted branching automaton A can be graphically represented simi-

larly to classical finite automata (cf. Fig. 3): sequential transitions are labeled
with actions and weights, fork and join transitions are depicted by directed
edges connected with a semicircle labeled with the weight of the transition
only. In Fig. 3, the states p and p3 are initial with entry weights of 1 and 2,
respectively, and r and q3 are final with weights 2 and 1. There are four se-
quential transitions, e.g., from p1 to q1 with label a and weight 1, one fork
transition p→1 {p1, p2, p3}, and one join transition {q1, q2, q3} →2 q.

To define the behavior of some wBA A, we have to clarify the notion
of a run. In classical finite automata, a run can be seen as a very special
3 Note that we fork into or join always different states, i.e., we fork into a set not a
multiset. This is just a technical trifle and actually no restriction of the model.
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Fig. 3. Graphical representation of wBA

graph obtained by concatenating matching basic graphs, i.e., the transitions.
Here, we consider a broader class of graphs. Let A = (Q, μseq, μfork, μjoin, λ, γ)
be a wBA. Then we consider finite directed graphs G which have a unique
source src(G) and a unique sink sk(G), whose nodes are Q-labeled, and whose
edges are partially Σ-labeled. We introduce two products for such graphs. The
sequential product G = G1G2 of G1 and G2 is defined if sk(G1) and src(G2)
are labeled with the same state, and then we take G as the disjoint union of
G1 and G2, but fuse sk(G1) and src(G2) to one node with the same label as
before. Now take graphs G1, . . . , Gm of our class. Let pi be the label of src(Gi)
and qi the label of sk(Gi). For p, q ∈ Q the p–q-parallel product of G1, . . . , Gm

is defined if p → {p1, . . . , pm} is a fork and {q1, . . . , qm} → q is a join. Then
G = ‖p,q(G1, . . . , Gm) is the disjoint union of G1, . . . , Gm supplemented by
two new nodes labeled with p and q, respectively. Moreover, from the p-node,
there is an unlabeled edge to src(Gi) for every i, and dually, an unlabeled
edge from every sk(Gi) to the q-node (cf. Fig. 4).

Now we are ready to define the runs ofA. If p
a−→ q is a sequential transition

of A, then p
a−→ q is an atomic run. The set of all runs R(A) is the smallest

set of graphs that contains all atomic runs and that is closed under sequential
product and all p–q-parallel products for p, q ∈ Q as defined above.

Next, we define the label lab(G) for any run G as an sp-poset over Σ and
the weight wgt(G) as an element of S inductively as follows: For an atomic
run G : p

a−→ q, we put lab(G) = a and wgt(G) = μseq(p, a, q). If G = G1G2,

Fig. 4. The p–q-parallel product of G1, . . . , Gm
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then lab(G) = lab(G1) · lab(G2) and wgt(G) = wgt(G1) · wgt(G2). Now let
G = ‖p,q(G1, . . . , Gn) (n ≥ 2) be the parallel decomposition of G where pi is
the state label of src(Gi) and qi is the state label of sk(Gi) for i = 1, . . . , n.
Then lab(G) = lab(G1) ‖ · · · ‖ lab(Gn) and wgt(G) equals

μn
fork(p, {p1, . . . , pn}) · [wgt(G1) � · · · � wgt(Gn)] · μn

join({q1, . . . , qn}, q) .

The weight of a parallel run can be interpreted as follows: Firstly, a weight for
branching the process emerges, then the weights for the n subprocesses, and
finally, the weight for joining the subprocesses. These weights for branching
and joining occur consecutively, and are multiplied sequentially. On the other
hand, the weights of the n subprocesses are multiplied in parallel.

If a run G has label t ∈ SP(Σ), then we say that G is a run on t. If
src(G) is labeled with p and sk(G) with q, then we write G : p

t−→ q. For
any t ∈ SP(Σ), there are only finitely many runs G of A on t. Now we put
wgt(p, t, q) =

∑
(wgt(G) | G ∈ R(A) & G : p

t−→ q) and

‖A‖(t) =
∑

p,q∈Q

λ(p) · wgt(p, t, q) · γ(q).

The function ‖A‖ : SP(Σ) → S is the behavior of the wBA A. If we assume
S = (N∪{+∞}, min, +, max, +∞, 0), then the wBA A from Fig. 3 on page 426
has the behavior ‖A‖(a) = 6, ‖A‖((a ‖ b ‖ a) c) = 11, and ‖A‖(t) = +∞
for t /∈ {a, (a ‖ b ‖ a) c}.

Remark 3.6. Note that parallel runs may differ in their branching structure.
In Fig. 3 on page 426, there is a run on a ‖ b ‖ a which forks into three
subprocesses immediately. On the other hand, two runs on a ‖ b ‖ c which
realize a ‖ b ‖ c by a branching in cascades are depicted in Fig. 6 on page 434.
One run forks into a and b ‖ c firstly before the subprocess executing b ‖ c
forks into b and c. The other run forks into a ‖ b and c firstly and only then
into a and b.

A bisemiring S is positive if it is zero-sum-free and zero-divisor-free for
both products, i.e., s ∗ s′ = 0 implies s = 0 or s′ = 0 for ∗ ∈ {+, ·, �}. Recall
that a run is composed of transitions with nonzero weight. Hence, for a wBA
A over a positive bisemiring, we have ‖A‖ = 0 if and only if there is no run
from an initial to a final state. Exploiting this property we get the following
theorem.

Theorem 3.7 ([57, Lemma 5.14]). Let S be a positive bisemiring. Then
for a wBA A, it is decidable whether there is a t ∈ SP(Σ) with ‖A‖(t) �= 0.

3.3 Rationality

In this section, we will characterize the behavior of wBA by means of rational
expressions.
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Rational Expressions

A rational expression over an alphabet Σ and a bisemiring S is a term using
the constants a with a ∈ Σ, the unary function symbols +, �, s·, and ·s for
s ∈ S, and the binary function symbols +, · and ‖. A series-rational expression
is a rational expression not using the function symbol �.

The semantics �E� : SP(Σ) → S of a rational expression E is defined
inductively. We put for every t ∈ SP(Σ):

�a�(t) =

{
1 if t = a,
0 otherwise,

�sE�(t) = s · �E�(t),
�Es�(t) = �E�(t) · s,

�E1 + E2�(t) = �E1�(t) + �E2�(t),

�E1 ·E2�(t) =
∑

t=t1·t2
t1,t2∈SP(Σ)

�E1�(t1) · �E2�(t2),

�E1 ‖ E2�(t) =
∑

t=t1‖t2
(t1,t2)∈SP(Σ)2

�E1�(t1) � �E2�(t2),

�
E+

�
(t) =

∑

t=t1· ··· ·tm
t1,...,tm∈SP(Σ)

�E�(t1) · · · · · �E�(tm),

�
E��

(t) =
∑

t=t1‖···‖tm
(t1,...,tm)∈SP(Σ)m

�E�(t1) � · · · � �E�(tm).

Note that the sums in the definition of �E+� and �E�� are finite since there are
only finitely many sequential and parallel decompositions of any sp-poset t.
In the definition of �E1 ‖ E2� the sum is taken over all pairs (t1, t2) ∈ SP(Σ)2,
i.e., for t1 �= t2 both �E1�(t1) � �E2�(t2) and �E1�(t2) � �E2�(t1) contribute to
the sum (similarly for �E��). In the sequel, we will use the function symbols of
expressions also as operations of functions f : SP(Σ) → S with the semantics
as defined above.

From Rational Expressions to Weighted Branching Automata

By standard constructions as in the case of words, we get the following propo-
sition.

Proposition 3.8. Let A and A′ be two wBA and s ∈ S. Then there are
wBA As·, A·s, and A+ with ‖As·‖ = s · ‖A‖, ‖A·s‖ = ‖A‖ · s, and ‖A+‖ =
‖A‖+ ‖A′‖, respectively.

The next goal is to construct wBA A‖ and A� with ‖A‖‖ = ‖A‖ ‖ ‖A′‖ and
‖A�‖ = ‖A‖�, respectively. For this purpose, we have to normalize A and
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Fig. 5. A problematic run in the classical product construction

A′ at first. A wBA A = (Q, μseq, μfork, μjoin, λ, γ) is normalized if there are
unique initial and final states pin and pout such that: λ(pin) = 1 and λ(p) = 0
for all p �= pin, γ(pout) = 1 and γ(p) = 0 for all p �= pout, and there are no
transitions entering pin, and no transitions leaving pout (neither sequential,
fork, nor join). Every wBA A can be normalized by adding the new initial
state pin and the new final state pout and by summarizing transitions from
old initial states to a new one starting in pin with appropriate weight, e.g.,
pin

a−→s q where s =
∑

p∈Q λ(p) ·μseq(p, a, q). Similarly, we proceed for the new
final state; see [44] for details.

Proposition 3.9. Let A and A′ be two wBA. There is a wBA A‖ with ‖A‖‖ =
‖A‖ ‖ ‖A′‖.

Proof. Assume A and A′ to be normalized with pin, pout and p′in, p′out the
respective unique initial and final states. Now A‖ is built by taking the dis-
joint union of A and A′, adding two new states rin and rout and, moreover,
a fork rin →1 {pin, p′in} and a join {pout, p

′
out} →1 rout. We put λ(rin) = 1

and γ(rout) = 1. All other initial and final weights are equal to 0. By distrib-
utivity of � over +, one can show that ‖A‖‖ = ‖A‖ ‖ ‖A′‖. ��

Using a similar construction, [57] proves the following result.

Proposition 3.10. Let A be a wBA. There is a wBA A� with ‖A�‖ = ‖A‖�.

Most difficulties arise from sequential product and iteration. It is tempt-
ing to use the construction as known for finite automata: normalize A and
A′ and “fuse” the unique final state of A and the unique initial one of A′.
But already for the Boolean bisemiring B, serious difficulties arise as noted
by Lodaya and Weil [47] firstly. Consider A which has just the following
transitions: a fork pin →1 {p1, p2} and two sequential transitions p1

a−→1 pout

and p2
a−→1 pout. Here, pin is initial and pout is final. On the other hand, A′

consists of two sequential transitions qin
a−→1 q1 and qin

a−→1 q2 and a join
{q1, q2} →1 qout with qin initial and qout final. Then for every t ∈ SP(Σ), we
have ‖A‖(t) = ‖A′‖(t) = 0 and, therefore, ‖A‖ · ‖A′‖(t) = 0. The classical
construction would suggest a wBA which would have the successful run de-
picted in Fig. 5, a contradiction. The problem is that in the usual construction
the new automaton can switch in parallel subruns from A to A′. Therefore,
we have to ensure that the switch from A to A′ can be done only on the most



430 Ina Fichtner, Dietrich Kuske, and Ingmar Meinecke

upper level of the computation, i.e., when all fork transitions of A are closed
again by matching joins from A.

Proposition 3.11. Let A and A′ be two wBA. There is a wBA A• such
that ‖A•‖ = ‖A‖ · ‖A′‖.

Proof. Given are the two wBA A = (Q, μseq, μfork, μjoin, λ, γ) and A′ =
(Q′, μ′

seq, μ
′
fork, μ

′
join, λ

′, γ′). The idea for the construction of A• is to send
a signal along the runs of A which is propagated to one branch only when
the run takes a fork. We are allowed to switch to A′ only if the signal is
present. Hence, we cannot switch to A′ in all parallel subruns simultaneously
and, therefore, parallel subruns have to terminate by a join in A firstly before
continuing the run in A′. Hence, the first step in our construction is to build
a wBA Ã with ‖Ã‖ = ‖A‖ which is done in the following way (see [44] for
details): We put Q̃ = Q×{0, 1}. We refer to the second component of a state
from Q̃ as a signal. Along sequential transitions the signal is propagated, i.e.,
μ̃seq((p, x), a, (q, y)) = μseq(p, a, q) if x = y and otherwise it equals 0. To handle
branching, we fix a linear order on the state set Q and transmit the signal (if
there is one) by a fork to the smallest state of the target states of the fork
transition. On the other hand, a join transition propagates a signal if there
is at least one signal in the different branches. Certainly, in initial and final
states, the signal has to be present. The appropriate weights of the transitions
carry over from A. Note that the construction of Ã preserves normalization.

Now we can apply to Ã and A′ the classical construction to obtain A•,
i.e., we take the disjoint union of Ã and A′ and fuse the unique final state
of Ã and the unique initial one of A′ to one state where the automaton
switches from Ã to A′. By the construction above, we can ensure that a
run in A• is the sequential product of a run in Ã and a run in A′. Hence,
‖A•‖ = ‖Ã‖ · ‖A′‖ = ‖A‖ · ‖A′‖. ��

For the sequential iteration, one has to be even more careful. Now it is not
sufficient to prevent the switching to an initial state of A in at least one of the
parallel subruns. This time we have to ensure this property for every parallel
subrun. This can be achieved by sending two signals which separate in a fork
transition and travel along different ways. Then we allow a jump from a final
to an initial state only in case both signals are present. This way we get the
following proposition.

Proposition 3.12 ([44]). For every wBA A, there is a wBA A+ satisfy-
ing ‖A+‖ = ‖A‖+.

Certainly, there is a wBA A with ‖A‖ = �a� for every a ∈ Σ. Then Proposi-
tions 3.8, 3.9, 3.10, 3.11, and 3.12 imply the following theorem.

Theorem 3.13 ([44]). For every rational expression E, there is a wBA A
such that �E� = ‖A‖.
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From Weighted Branching Automata to Expressions

In contrast to weighted automata over words, rational expressions are too
weak to describe the behavior of all wBA as already noted by Lodaya and
Weil [47] for the Boolean bisemiring.

Nevertheless, we will be able to characterize a subclass of wBA by series-
rational expressions. We specify this class in two different ways: firstly, by
purely syntactic restrictions of the wBA, and secondly by the bounded-width
property of the behavior.

In order to construct a series-rational expression from a wBA A, we have
to arrange the fork and join transitions in a certain hierarchy. Therefore, we
define a depth function dp : R(A) → N for every run of A inductively:

• Every atomic run G : p
a−→ q is of depth 0.

• If G = G1 · · · · ·Gm, then dp(G) = max{dp(Gi) | i = 1, . . . ,m}.
• If G = ‖p,q(G1, . . . , Gm), then dp(G) = 1 + max{dp(Gi) | i = 1, . . . , m}.

The depth of a run measures the nesting of branchings within this run.
A wBA A is of bounded depth if there is a d ∈ N such that dp(G) ≤ d for every
run G ∈ R(A). “Bounded depth” is a property of the runs of the automa-
ton. Here, the weights need not be considered. By analyzing the “unweighted”
transition relations of A, one can show the following theorem.

Theorem 3.14 ([57]). Let S be an arbitrary bisemiring. It is decidable wheth-
er a given wBA A is of bounded depth.

With this restriction, we can describe A by an expression.

Theorem 3.15 ([44]). Let A be a wBA of bounded depth. Then there is a
series-rational expression E with �E� = ‖A‖.

Proof. Let f be a fork and j a join transition of A. We say that (f, j) is a
matching pair if there is a run G of A that starts with fork f and ends with
join j. Then we say G is limited by (f, j). Let M be the set of all matching
pairs of A. We define a binary relation ≺ on M by (f, j) ≺ (f ′, j′) if there is
a run G′ ∈ R(A) limited by (f ′, j′) that contains a proper subrun (defined
in the obvious manner) G limited by (f, j). Due to bounded depth of A,
the relation ≺ is irreflexive. Obviously, ≺ is transitive. This implies that the
reflexive closure � is a partial order which can be extended to a linear one 	.

For J ⊆ M and p, q ∈ Q, let ‖A‖J
p,q : SP(Σ) → S denote the function

‖A‖J
p,q(t) =

∑
wgt(G) where t ∈ SP(Σ) and where the sum extends over all

runs G from p to q with label t such that only matching pairs from J are
used. We show that ‖A‖J

p,q can be defined by a series-rational expression EJ
p,q

for every initial segment J = {(f ′, j′) ∈ M | (f ′, j′) 	 (f, j)} with (f, j) ∈ M .
We proceed by induction on |J |.

If |J | = 0, then no forks or joins are used and ‖A‖∅p,q is defined by a series-
rational expression E∅

p,q using a classical result of Schützenberger; cf. [21].
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In fact, here we deal with words and the parallel product is not used at all.
Now let J = {(f ′, j′) | (f ′, j′) 	 (f, j)} with f : o →s {o1, . . . , om} and
j : {r1, . . . , rm} →s̄ r. Let ‖A‖(f,j) be such that for every t ∈ SP(Σ)

‖A‖(f,j)(t) =
∑

G:o
t→r

G limited by (f,j)

wgt(G).

Let G : o
t−→ r be limited by (f, j). Then G = ‖o,r(H1, . . . , Hm) with H1,

. . . , Hm containing only matching pairs from J ′ = J \ {(f, j)}. Hence, the
induction hypothesis can be applied to H1, . . . , Hm. Let Sm denote the sym-
metric group on {1, . . . ,m}. Then the series-rational expression

E(f,j) = s ·
( ∑

π∈Sm

[
EJ ′

o1,rπ(1)
‖ · · · ‖ EJ ′

om,rπ(m)

]
)

· s̄

has the semantics �E(f,j)� = ‖A‖(f,j). Now, also ‖A‖J
p,q can be described by a

series-rational expression. Unfortunately, one has to distinguish several cases.
Here we consider p �= o, r �= q, and o �= r only. In this case we put

EJ
p,q = EJ ′

p,q + EJ ′

p,o ·E(f,j) · EJ ′

r,q + EJ ′

p,o · E(f,j) ·
(
EJ ′

r,o · E(f,j)

)+ · EJ ′

r,q

and get �EJ
p,q� = ‖AJ

p,q‖. The first expression EJ ′

p,q of this sum covers all
runs that do not use (f, j) at the upper level. The second one covers all runs
G1 ·G2 ·G3 such that G2 is limited by (f, j), but neither in G1 nor in G3 (f, j)
appears as a matching pair. The third subexpression covers all runs where we
have more than one such subrun limited by (f, j).

Finally, we put E =
∑

p,q∈Q λ(p) · EM
p,q · γ(q) which is a series-rational

expression and satisfies �E� = ‖A‖. ��

Bounded Depth and Bounded Width

The notion of bounded depth is a property of the automaton not referring to
its behavior. Next, we define a semantic property of its behavior. For every
t ∈ SP(Σ), we define the width of t inductively as follows: for a ∈ Σ we
have wd(a) = 1, wd(t1 · t2) = max(wd(t1), wd(tm)), and finally wd(t1 ‖ t2) =
wd(t1)+wd(t2). In terms of computer science, wd(t) gives the minimal number
of processors it takes for t to be executed. Now let f : SP(Σ) → S be a
function. We put wd(f) = sup{wd(t) | f(t) �= 0}. Note that wd(f) may be
infinite. We say f is of bounded width if wd(f) is finite.

Let A be a wBA of bounded depth with dp(G) ≤ d for all runs G, and let
B be the highest arity of all fork and join transitions. Then it is easy to show
that wd(lab(G)) ≤ Bd for all G ∈ R(A). Hence, ‖A‖ is of bounded width.

Conversely, let A be a wBA such that ‖A‖ is of bounded width. The aim
is to construct a wBA A′ of bounded depth with ‖A′‖ = ‖A‖. At first glance,
one would try to implement a depth counter and to restrict the reachable
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depth by wd(‖A‖). But this approach works for certain bisemirings only. In
general, t ∈ SP(Σ) may be executed in A by runs of different depth. If S is not
zero-sum-free, i.e., there are s, s′ �= 0 with s+ s′ = 0, then the weights of runs
of different depth may sum up to zero. Hence, if we stop the computation at a
certain depth, we may make a mistake. An elaborated example of such a wBA
is given in [57]. Therefore, we have to refine the construction to overcome this
problem. The new wBA constructed will keep track of the width of the poset
computed so far. This is realized by a stack where the widths encountered
up to the last fork transition are stored. Hereby, we can limit the size of the
stack and the numbers stored therein to wd(‖A‖) whereby we stay within the
realm of finite-state systems. The involved construction can be found in [44,
57] and yields the following result.

Theorem 3.16. Let A be a wBA such that ‖A‖ is of bounded width. There
is a wBA A′ of bounded depth with ‖A′‖ = ‖A‖.

If A is of bounded depth, then ‖A‖ is of bounded width. If A is not
depth-bounded, we cannot be sure whether ‖A‖ is of unbounded width. But
for positive bisemirings, this is the case. Thus, we can prove by the help of
Theorem 3.14 the following theorem.

Theorem 3.17. Let S be a positive bisemiring. Then it is decidable whether
the behavior ‖A‖ of a wBA A is of bounded width.

The Characterization Theorem

Now all ingredients are allocated for the main theorem.

Theorem 3.18 ([44]). Let S be an arbitrary bisemiring and f : SP(Σ)→ S.
Then the following are equivalent:

1. f is of bounded width and the behavior of some wBA.
2. f is the behavior of some wBA of bounded depth.
3. f is the semantics of some series-rational expression.

Proof. If f = ‖A‖ for some wBA A and f is of bounded width, then there
is a wBA A′ of bounded depth with f = ‖A′‖ by Theorem 3.16. Due to
Theorem 3.15, we can construct from A′ a series-rational expression E with
�E� = ‖A′‖ = f . For every series-rational expression E, there is a wBA A
with �E� = ‖A‖ as stated by Theorem 3.13. Moreover, a simple inductive
argument shows that ‖A‖ = �E� is of bounded width. ��

3.4 The Hadamard Product

The Hadamard product f�g of two functions f, g : SP(Σ) → S is the pointwise
sequential product, i.e., (f � g)(t) = f(t) · g(t) for every t ∈ SP(Σ). If S is
the Boolean bisemiring B, it models the intersection of the supports of f
and g. Here, we raise the question whether the Hadamard product of the
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Fig. 6. Two wBA with same behavior but different branching structure

behaviors of two wBA A1 and A2 is again the behavior of a wBA A. For
weighted automata over words, this question can be affirmed by the usual
product automaton construction (see [63, Theorem 4.13]). But in our setting,
the situation turns out to be more challenging.

Consider the two wBA over the Boolean bisemiring B depicted in Fig. 6.
They have the same behavior but a different branching structure. In a prod-
uct automaton A of A1 and A2, there would be the following sequential
transitions: (p2, q4)

a−→ (p8, q6), (p4, q5)
b−→ (p6, q7), and (p5, q3)

c−→ (p7, q9).
How should we define the new fork transitions starting in (p1, q1)? From a
permissive point of view, we could allow (p1, q1) → {(p2, q2), (p3, q3)} and
(p1, q1) → {(p2, q3), (p3, q2)} in A. Similarly, there may exist forks (p3, q2) →
{(p4, q4), (p5, q5)} and (p3, q2) → {(p4, q5), (p5, q4)}. But even with these four
fork transitions, we cannot branch into the states (p2, q4) and (p5, q3) where
two of the three sequential transitions start. Therefore, ‖A‖ would map also
a ‖ b ‖ c to 0. Hence, ‖A‖ �= ‖A1‖ � ‖A2‖. To handle this problem, we will
disallow such a branching in cascades as it is done by A1 and A2. Therefore,
we turn these wBA into wBA which branch at once, i.e., there would be a
fork of arity 3 in our example.

Moreover, we have to impose heavy restrictions on the underlying bisemi-
ring S. We call S idempotent if the addition is idempotent, i.e., s + s =
s for all s ∈ S. Moreover, remember that for a doubled semiring the two
multiplications are equal and, therefore, commutative.

Theorem 3.19 ([58]). Let A1 and A2 be two wBA of bounded depth over an
idempotent doubled semiring S. Then there is a wBA A of bounded depth over
S with ‖A‖ = ‖A1‖ � ‖A2‖.

Proof. Firstly, we can transform A1 and A2 into wBA where the branching
within a run happens always at once, i.e., a fork transition is not immediately
followed by another fork. For this, we use Theorem 3.18, i.e., the wBA are
transferred to equivalent expressions. From the expressions, we can build wBA
with the required property. In doing so, we have to give another construction
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for the parallel product. We succeed by fusing fork and join transitions to such
of higher arity and multiply the affected weights (which is possible since S
is a doubled semiring); cf. [57, Proposition 7.5] and [58, Proposition 4.6]. For
those new wBA, one can apply a product automaton construction. However,
it is possible that some runs are duplicated. Here, the idempotency of S is
applied [58, Theorem 5.4]. Thus, we succeed in constructing a wBA A such
that ‖A‖ = ‖A1‖ � ‖A2‖. ��

Instances of idempotent doubled semirings are (N ∪ {+∞}, min, +, +, +∞, 0)
or the Boolean bisemiring. For bisemirings S with two different multiplica-
tions, one can find counter-examples to the statement of the last theorem
even when we endow S with rich properties [58, Example 5.3].

3.5 History and Overview

Series-parallel posets were proposed as a model for the behavior of concur-
rent processes by Grabowski [35], Pratt [61], and Gischer [34]. Lodaya and
Weil [47] introduced branching automata as a device for accepting languages
of sp-posets and characterized the behavior of these automata by expressions
and algebraically in the case of bounded width. This work was extended by
Kuske [41] who considered infinite sp-posets and gave a logical characteriza-
tion.

Bisemirings and weighted branching automata were proposed by Kuske
and Meinecke in [44] where the Kleene-type theorem was shown. Different
regularity concepts concerning the running modi of wBA are investigated
in [58, 57]. These results were used for the closure of behaviors of wBA under
Hadamard product. An open question is whether some results generalize to
sp-posets of unbounded width. For the Boolean bisemiring B, Lodaya and
Weil [48] gave a characterization of the behaviors of general wBA by exploiting
another concept of rationality using ζ-substitution and ζ-exponentiation. This
concept may carry over for doubled semirings, but it is by far not understood
how to handle general bisemirings.

Moreover, we miss a logical and an algebraic characterization of the be-
havior of wBA. Mathissen showed the equivalence of weighted automata and
logic in the setting of texts and sp-biposets [50] as well as of nested words [51].
But it is not clear whether this result can be transferred to sp-posets. For an
algebraic characterization along the lines of semimodules as stated in [6] (see
[21, 63]), we even miss an algebraic analogon to semimodules that can handle
two different products.

Infinite sp-posets have been explored so far only in the Boolean setting
[41, 5]. It would be of interest to define an appropriate weighted setting for
infinite sp-posets and to show the equivalence of different formalisms.
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4 Pictures

In this section, we extend one-dimensional words to two-dimensional struc-
tures called pictures. We will investigate picture series characterized in terms
of automata, rational expressions, and weighted logics. It provides an ex-
tension of both the case of formal power series on words and the theory of
two-dimensional languages.

Throughout this section, we assume a fixed commutative semiring S.

4.1 Pictures and Weighted Picture Automata

We set N1 := N \ {0} and [n] = {1, . . . , n} for n ∈ N1. Let m, n ∈ N1 and let
Σ be an alphabet. A picture of size (m, n) over Σ is an m×n-matrix over Σ,
i.e., a mapping p : [m]× [n]→ Σ. We write p(i, j) or pi,j for the component of
p at position (i, j). Furthermore, the height (or vertical length) and width (or
horizontal length) of p are lv(p) = m and lh(p) = n, respectively. We denote
by Σ++ the set of all pictures over Σ. The set Σm×n ⊆ Σ++ comprises all
pictures of size (m, n). A picture language is a set of pictures.

It is the aim of this section to consider quantitative properties of pic-
tures, i.e., functions from Σ++ into some commutative semiring S that we
call picture series. For motivation, we give two examples of such functions
r : Σ++ → R ∪ {∞} and t : Σ++ → N.

Example 4.1. Let D ⊂ [0, 1] be a finite set of rational values and let L ⊆ D++

be any picture language over D. Let furthermore r : D++ → R ∪ {∞} be
defined by r(p) =

∑
i,j pi,j for p ∈ L and ∞ for p ∈ Σ++ \ L. We could

interpret values in D as different levels of gray, then for each picture p in L,
the function r provides the total value r(p) of light of p.

Example 4.2. Let C be a finite set of colors and consider the function t :
C++ → N where t(p) is the largest area of a monochromatic rectangle in the
picture p.

One way of defining such functions is via weighted picture automata that
we present next. These devices were first introduced by Bozapalidis and Gram-
matikopoulou in [10] and named weighted quadrapolic picture automata (ex-
tending Wang systems by de Prophetis and Varricchio from [11]).

Definition 4.3 ([10]). A weighted picture automaton or wPA is a 6-tuple
A = (Q, R, Fw, Fn, Fe, Fs) consisting of a finite set Q of states, a finite set of
rules R ⊆ Σ×S×Q4 as well as four poles of acceptance Fw, Fn, Fe, Fs ⊆ Q.

Given a rule t = (a, s̄, qw, qn, qe, qs) ∈ R, let label(t) = a be its (input)
label, wgt(t) = s̄ its weight, σx(t) = qx for x ∈ {w, n, e, s} its four poles.
We extend the functions label and wgt to pictures by setting for a picture
c ∈ Rl×r over the set of rules: label(c) : [l]× [r] → Σ : (i, j) �→ label(ci,j) and
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wgt(c) =
∏

(i,j)∈[l]×[r] wgt(ci,j) ∈ S. We call label(c) ∈ Σl×r the label of c and
wgt(c) ∈ S the weight of c.

A picture c ∈ Rl×r is a run of A if σs(ci,j) = σn(ci+1,j) for all (i, j) ∈
[l − 1, r] and σe(ci,j) = σw(ci,j+1) for all (i, j) ∈ [l] × [r − 1]. It is successful
if it has its (outer) pole states in the respective poles of acceptance, i.e.,
σw(ci,1) ∈ Fw, σn(c1,j) ∈ Fn, σe(ci,r) ∈ Fe, and σs(cl,j) ∈ Fs for all i ∈ [l]
and j ∈ [r]. For every p ∈ Σ++, we denote the set of successful runs c with
label(c) = p by Succ(p).

Then the behavior of the weighted picture automaton A is the picture
series �A� : Σ++ → S with

�A�(p) =
∑(

wgt(c)
∣
∣ c ∈ Succ(p)

)

for all p ∈ Σ++. A picture series r : Σ++ → S is recognizable if it is the
behavior of some weighted picture automaton.

Let us consider again Examples 4.1 and 4.2. Assume the picture language
L ⊆ D++ in Example 4.1 to be recognizable (i.e., in our terminology, it
is the support of the behavior of some weighted picture automaton A over
the Boolean semiring B). If (a, 1, qw, qn, qe, qs) is a rule of the automaton A,
then let (a, a, qw, qn, qe, qs) be a rule of the weighted picture automaton B
over the tropical semiring T = (R+ ∪ {∞}, min, +,∞, 0). Then the behavior
of B equals the picture series r. The picture series t from Example 4.2 is
the behavior of a weighted picture automaton over the max-plus semiring
(N∪ {−∞}, max, +,−∞, 0). This automaton has one successful run for every
monochromatic rectangle q in p. We weight the rules that overlay q with 1.
Then the weight of this particular run is lv(q) · lh(q). Since we get the behavior
by adding (which, in our semiring, means taking the maximum) the weights
for successful runs reading p, the maximal size is extracted.

Recall that for a regular word language, the characteristic series over an
arbitrary semiring is recognizable. In contrast, the following example shows
that this is not the case for picture series. For this, consider the characteristic
series 1L of the set L of pictures containing two equal rows. Then:

1. There is a wPA over the Boolean semiring whose behavior equals 1L.
2. There is no wPA over the semiring (N, +, ·, 0, 1) whose behavior is 1L [2].

Weighted 2-Dimensional On-line Tessellation Automata

These are the weighted counterpart of on-line tessellation automata that were
introduced by Inoue and Nakamura in [36]. In our context, we can understand
them as a variant of wPA where:

1. For each rule (a, s̄, qw, qn, qe, qs), one has qe = qs.
2. The success of a run is determined as for wPA in the west and the north,

but concerning the south and the east, we only require the states at the
south-east corner to be accepting.
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In [23], it is shown that this automaton model creates the same behaviors as
wPA.

Weighted Tiling Systems

A tile is a square picture of dimension 2× 2 and a weighted tiling system is a
function that assigns weights to tiles. Then the weight of an arbitrary picture
is obtained by multiplying all the weights of 2 × 2-subpictures according to
the weighted tiling system (more precisely: one first adds a border marked #
and then considers the subpictures). Since weighted tiling systems lack states
that are present in wPA, their expressive power is strictly less than that of
wPA. But the projections of their behaviors coincide with the behaviors of
wPA [54].

4.2 Other Formalisms: Expressions and Logics

Rational Picture Series

Another way of specifying picture series is via rational expressions that we
introduce next: a rational expression is a term using the constants a for a ∈ Σ,
the unary function symbols s· for s ∈ S, �+

, and �+
, and the binary function

symbols +, �,  , and �.
Before we can define the semantics �E� : Σ++ → S of a rational expres-

sion E, we need the column and row concatenation of pictures. The column
concatenation p � q juxtaposes two pictures next to each other provided they
have the same height; the row concatenation p q places p on top of q provided
they have the same width:

p � q = p q and p q =
p

q

.

Now we set inductively

�a�(p) =

{
1 if p ∈ Σ1×1 and p1,1 = a,

0 otherwise,

�s · E�(p) = s · �E�(p),
�E + F �(p) = �E�(p) + �F �(p),
�E � F �(p) = �E�(p) · �F �(p),

�E � F �(p) =
∑

p1,p2∈Σ++

p=p1�p2

�E�(p1) · �F �(p2),

�E�+
�(p) =

∑( ∏

1≤i≤n

�E�(pi)
∣
∣
∣

n ∈ N, p1, . . . , pn ∈ Σ++,
p = p1 � · · ·� pn

)

,
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and the semantics of E F and E�+
are defined analogously. Then a picture

series f : Σ++ → S is called rational if there exists a rational expression E
with �E� = f .

Logic

We proceed similarly to the case of words (see [16]) and traces (page 412).
The only difference is the set of atomic formulas since we want to speak about
pictures and not about labeled (partial) orders. So, let var and VAR be disjoint
infinite sets of individual and set variables and let Σ be some alphabet. Then
the syntax of weighted monadic second-order logic (for short: wMSO) is given
by

ϕ ::= s | Pa(x) | P¬a(x) | xSvy | x�Svy | xShy | x �Shy | x = y | x �= y |
x ∈ X | x /∈ X | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ,

where s ∈ S, x, y ∈ var, X ∈ VAR, and a ∈ Σ.
The semantics �ϕ� of a formula ϕ maps a picture p ∈ Σm×n together

with an evaluation σ to an element of the semiring. Here, an evaluation maps
individual variables from var to elements of [m] × [n] and set variables from
VAR to subsets of [m] × [n]. Then the semantics is defined as in the case of
traces based on the following evaluation of atomic formulas (here x, y ∈ var,
X ∈ VAR, and a ∈ Σ) where in the semantics of xSvy and xShy we use Sv and
Sh also to denote the vertical and horizontal successor relations, respectively:
Sv is the set of pairs ((i, j), (i + 1, j)) and Sh that of pairs ((i, j), (i, j + 1)):

�Pa(x)�(p, σ) =

{
1 if p(σ(x)) = a

0 otherwise
�xSvy�(p, σ) =

{
1 if σ(x)Svσ(y)
0 otherwise

�xShy�(p, σ) =

{
1 if σ(x)Shσ(y)
0 otherwise

�x = y�(p, σ) =

{
1 if σ(x) = σ(y)
0 otherwise

In addition, if ϕ is the negated version of the atomic formula ψ, then the rôles
of 0 and 1 in the above definitions are interchanged:

�P¬a(x)�(p, σ) =

{
0 if p(σ(x)) = a

1 otherwise
�x�Svy�(p, σ) =

{
0 if σ(x)Svσ(y)
1 otherwise

�x�Shy�(p, σ) =

{
0 if σ(x)Shσ(y)
1 otherwise

�x �= y�(p, σ) =

{
0 if σ(x) = σ(y)
1 otherwise

It is easily shown that �ϕ�(p, σ) = �ϕ�(p, τ) provided σ and τ coincide
on those variables that occur freely in the formula ϕ ∈ wMSO. If, in the
extreme, ϕ ∈ wMSO is a sentence (i.e., does not have any free variables),
then it therefore defines a picture series f : Σ++ → S by f(p) = �ϕ�(p, σ) for
an arbitrary evaluation σ, and we denote this picture series by �ϕ�, also. Any
such picture series is called wMSO-definable; if L ⊆ wMSO and ϕ ∈ L is a
sentence, then the picture series �ϕ� is called L-definable.
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4.3 Relating the Formalisms

Here, we will prove that for any commutative semiring the family of behaviors
of wPA coincides with the class of projections of rational picture series (The-
orems 4.4 and 4.5) and equals the family of picture series defined in terms
of wRMSO and wREMSO logic (Theorems 4.6 and 4.10), respectively. This
indicates that the class of recognizable picture series is robust.

4.3.1 Recognizable and Rational Picture Series

For words (see [21, 63]), traces, and sp-posets (see earlier sections), the be-
havior of every automaton can be constructed using a fixed set of rational
operations. Marking another difference to picture series, this does not hold
in the current setting: the characteristic series of all square pictures (over
the Boolean semiring B) is recognizable, but not rational [54] (based on
results from [32, 10]). But, as we will show next, recognizable picture se-
ries are precisely the “projections” of rational picture series. Any such pro-
jection is given by a function π : Γ → Σ for two alphabets Γ and Σ.
Then π can naturally be extended to a function π′ : Γ++ → Σ++ setting
π′(pΓ ) = π◦pΓ for every pΓ ∈ Γ++. This function can then be lifted to a func-
tion π′′ : SΓ++ → SΣ++

by π′′(f)(pΣ) =
∑

(f(pΓ ) | pΓ ∈ Γ++, π′(pΓ ) = pΣ)
for any f : Γ++ → S and pΣ ∈ Σ++. To simplify the notation, we will denote
the derived functions π′ and π′′ also by π.

Weighted picture automata with behavior �a� are built easily. General-
izing the constructions from [21] from words to pictures, Bozapalidis and
Grammatikopoulou [10] showed that the class of recognizable picture series is
closed under the rational operations as well as under projections. This yields
the following theorem.

Theorem 4.4 ([10]). If f is the projection of a rational picture series, then
there is a wPA A with f = �A�.

To demonstrate the converse implication, let A = (Q, R, Fw, Fn, Fe, Fs)
be a weighted picture automaton. Then let Lh ⊆ R+ denote the set of words
r1r2 . . . rn over the alphabet of rules such that:

(i) σw(r1) ∈ Fw.
(ii) σe(ri) = σw(ri+1) for 1 ≤ i < n.
(iii) σe(rn) ∈ Fe.

In other words, Lh is the set of rows that can appear in successful runs
of A. Then define a function f : R+ → S by

f(r1r2 . . . rn) =

{∏
(wgt(ri) | 1 ≤ i ≤ n) if r1r2 . . . rn ∈ Lh,

0 otherwise.
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Understanding words over R as pictures from R1×n, the function f extends
naturally to a picture series rh : R++ → S that maps all pictures with at least
two rows to 0. Similarly, we can define the set Lv ∈ R+ that comprises all
columns that can appear in a successful run of A (just replace w by n and e by
s in (i), (ii), (iii) above). We then understand the words from Lv as columns
and let rv denote the characteristic series of Lv. Since the languages Lh and
Lv are regular, they are rational by Kleene’s theorem [39]. Hence, f : R+ → S
and the characteristic function g of Lv are rational formal power series. This
implies the rationality of rh and rv, i.e., there are rational expressions Eh and
Ev with �Eh� = rh and �Ev� = rv. Finally, note that the behavior of A equals
the projection under label : R → Σ of the rational picture series �E�+

h �E�+

v �.
This proves the converse implication of Theorem 4.4.

Theorem 4.5 ([54]). If A is a wPA, then �A� is the projection of some
rational picture series.

4.3.2 Recognizable Picture Series and Logics

For traces, we used the notion of a definable step formula. In the setting of pic-
tures, we need a further restriction to FO-definable step formulas: a formula ϕ
is a first-order definable step formula if there exist n ∈ N, s1, . . . , sn ∈ S, and
wMSO-formulas β1, . . . , βn over the Boolean semiring B without set quantifi-
cation such that, for every picture p ∈ Σ++ and every evaluation σ, we have
�ϕ�(p, σ) =

∑
1≤i≤n sifi(p, σ) where fi is the characteristic function (in the

semiring S) of the support of �βi�. Unambiguous formulas, the set wRMSO
of restricted formulas, and the set wREMSO of restricted existential formulas
are defined in the same way as for traces (cf. page 416 et seq.; here, ∀xα
is restricted if α is a FO-definable step formula). For every positive Boolean
combination ϕ of (negated) atomic formulas, one can easily find an equivalent
unambiguous formula ϕ+ (this does not extend to first-order formulas over
the Boolean semiring since one cannot handle the existential quantifier due
to the local nature of the relations Sv and Sh).

Now we follow the usual way (cf. [65]) of transforming an automaton into
a formula where an evaluation of second-order variables reflects an assignment
of positions to rules. Therefore, we introduce variables Xr for every r ∈ R and
build formulas for the following statements:

• The sets {Xr | r ∈ R} form a partition of the positions of the picture.
• If a position belongs to Xr, then its label equals that of the rule r, i.e.,
∀x

∧
r∈R(x /∈ Xr ∨ Plabel(r)(x)).

• Every position x and its local neighborhood satisfies the condition on a run,
e.g., ∀x∀y(x �Shy ∨

∨
r,r′∈R,σw(r)=σe(r′)(x ∈ Xr ∧ y ∈ Xr′)) in conjunction

with the analogous formula for the vertical direction.
• All positions on the left border have a state from Fw at their left pole, e.g.,
∀x(∃y(yShx)∨

∨
r∈R,σw(r)∈Fw

x ∈ Xr) and similarly for the other borders.
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All these formulas describe qualitative statements and we can write down
equivalent unambiguous formulas. Finally, we take the conjunction of all these
unambiguous formulas and the formula ∀x(

∨
r∈R wgt(r)∧ x ∈ Xr). This con-

struction proves the following theorem.

Theorem 4.6. For every wPA A, there is a sentence ϕ ∈ wREMSO such
that �ϕ� = �A�.

We now want to prove the converse implication. As in the case of words,
this is done by induction over the construction of a formula ϕ ∈ wRMSO.
Hence, we have to handle free variables, i.e., pictures p together with an
evaluation σ of the variables. To this aim, let V ⊆ var ∪ VAR be a finite
set of variables, p ∈ Σm×n, and σ a evaluation. Then ΣV = Σ × {0, 1}V is
an enriched alphabet where each letter is extended by one bit per variable
from V. We further define r = (p, σ)V ∈ Σm×n

V by ri,j = (pi,j , (bv)v∈V) with
bx = 1 if and only if σ(x) = (i, j) for x ∈ V ∩ var and bX = 1 if and only
if (i, j) ∈ σ(X) for X ∈ V ∩ VAR. Note that encodings r which we obtain
this way have the following property: for every x ∈ V ∩ var, there is a unique
position in [m]× [n] such that the bit bx at this position equals 1. Arbitrary
pictures over the enriched alphabet with this property are called valid.

Conversely, let r be a valid picture and p be its projection to Σ. Then
there exists an evaluation σ such that r is obtained from p and σ as above. If
now the free variables of the formula ϕ ∈ wMSO are contained in the set V,
we define a new picture series �ϕ�V : Σ++

V → S as follows: for r = (p, σ)V ,
set �ϕ�V(r) = �ϕ�(p, σ).4 Extend this to a total function by setting �ϕ�V(r) = 0
if r is not valid.

As mentioned above, we construct a wPA for �ϕ� by structural induction
over ϕ. The base case as well as disjunction, conjunction, and existential
quantification are first dealt with in the following lemma.

Lemma 4.7. Let ϕ, ψ ∈ wMSO and V be a finite set of variables containing
all the free variables of ϕ and ψ. Then the following hold:

1. If ϕ is an atomic formula (positive or negative), then �ϕ�V is recognizable.
2. If �ϕ�V and �ψ�V are recognizable, then so are �ϕ ∨ ψ�V and �ϕ ∧ ψ�V .
3. If z ∈ var ∪VAR and �ϕ�V is recognizable, then so is �∃zϕ�V\{z}.

Proof. (1) Weighted picture automata with the necessary behaviors can easily
be constructed explicitly.

(2) Recall that �ϕ∨ψ�V = �ϕ�V + �ψ�V and �ϕ∧ψ�V = �ϕ�V� �ψ�V . From
wPA for �ϕ�V and �ψ�V , wPA for these series have been constructed in [10].

(3) Since �∃z ϕ�V\{z} is the projection of �ϕ�V , a wPA for �∃z ϕ�V\{z} can
be constructed from one for �ϕ�V by [10]. ��
4 The valid picture r does not completely define the evaluation σ. Since the free
variables of ϕ all belong to V, any two evaluations σ and τ with r = (p, σ) = (p, τ)
satisfy �ϕ�(p, σ) = �ϕ�(p, τ) which proves that �ϕ�V is nevertheless well defined.
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As in the case of words, the most difficult step is universal quantification.
For this step, we need the following notion and result: a wPAA is unambiguous
if, for every picture p, there is at most one successful run of A on p.

Proposition 4.8 ([53]). Let ϕ ∈ wMSO be a first-order formula over the
Boolean semiring B with free variables in V. Then �ϕ�V is the behavior of
some unambiguous wPA.

Proof. By [33, Proposition 5], the support of �ϕ�V is a locally threshold
testable (LTT) picture language. Any such set of pictures is a finite disjoint
union of strictly LTT languages. These languages can be accepted by unam-
biguous picture automata in the sense of [33], i.e., in our terminology, their
characteristic function over B is the behavior of some unambiguous wPA.
Since the behaviors of unambiguous wPA are closed under addition (provided
the supports are disjoint), the result follows. ��

Lemma 4.9. Let ϕ ∈ wMSO be a FO-definable step formula with free vari-
ables in V and let x ∈ var. Then �∀xϕ�V\{x} is the behavior of some wPA.

Proof. Since ϕ is a FO-definable step formula, there are n ∈ N, s� ∈ S, and
wMSO-formulas β� without set variables over the Boolean semiring such that
�ϕ�(p, σ) =

∑
1≤�≤n s�f�(p, σ) where f� is the characteristic function (in the

semiring S) of the support L� of �β��. One can assume that the languages L�

form a partition.
Next, let L̃ denote the set of triples (p, ν, σ) with p ∈ Σ++ a picture, σ an

evaluation, and ν : Dom(p) → [n] such that

ν(i, j) = � ⇐⇒
(
p, σ[x → (i, j)]

)
∈ L�

where σ[x → (i, j)] denotes the evaluation τ with τ(x) = (i, j) that coincides
with σ on all the variables distinct from x. The pairs (p, ν) can naturally be
understood as pictures over the extended alphabet Σ̃ = Σ × [n].

From the formulas β�, one then builds a formula β without set vari-
ables over the Boolean semiring such that �β�V is the characteristic func-
tion of {((p, ν), σ)V | (p, ν, σ) ∈ L̃}. Then by Proposition 4.8, there is an
unambiguous wPA over B whose behavior equals �β�. Replacing all rules
((a, �, (bv)v∈V), 1, qw, qn, qe, qs) by ((a, (bv)v∈V\{x}), s�, qw, qn, qe, qs) yields a
wPA, and one can show that its behavior is �∀xϕ�V\{x}. ��

From Lemmas 4.7 and 4.9, we finally obtain the converse implication of
Theorem 4.6.

Theorem 4.10 ([53]). For every ϕ ∈ wRMSO, there exists a wPA A with
�ϕ� = �A�.

As in the case of words, the existential fragment of wMSO can express
behaviors that are beyond the abilities of wPA. An interesting problem is to
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find properties of the semiring that prohibit this. In the following, we sketch
one such example. A monoid M is called weakly aperiodic if for every x ∈ M
there exists mx ∈ N with xmx = xmx+1. A semiring S is weakly bi-aperiodic
if both (S, +, 0) and (S, ·, 1) are weakly aperiodic monoids. This condition
allows us to prove that every formula from wMSO without set quantification
is a FO-definable step formula. Hence, from Theorems 4.6 and 4.10, we obtain
the following theorem.

Theorem 4.11 ([22, Proposition 7.28]). Let S be weakly bi-aperiodic and
f : Σ++ → S. Then f is the behavior of some existential formula if and only
if it is the behavior of some wPA.

4.3.3 The Characterization Theorem

In summary, we obtain the equivalence of all the formalisms introduced. This
indicates that the class of recognizable picture series is robust.

Theorem 4.12 ([10, 23, 54]). Let S be a commutative semiring and f :
Σ++→S a picture series. Then the following are equivalent:

1. f is the behavior of some wPA.
2. f is the projection of a rational picture series.
3. f is the semantics of some sentence from wRMSO.

Proof. Equivalence of the first two statements follows from Theorems 4.4
and 4.5, that of the first and last statement from Theorems 4.6 and 4.10.

��

4.4 Decidability Issues

Recall the following result from the one-dimensional setting of words [14]: Let
S be a computable field. Then it is decidable whether a weighted formula ϕ
is restricted. In case ϕ is restricted, one can effectively compute a weighted
finite automaton for �ϕ�. Due to the two dimensions in pictures, this result
breaks down completely.

Proposition 4.13 ([22, Proposition 8.1]). It is undecidable whether a for-
mula ϕ from wMSO is restricted or not.

Proof. Let w = a1a2 . . . an ∈ Γ+ be a word and h : Γ+ → Δ+ a semigroup
homomorphism. The picture ph(w) over Γ ∪Δ∪{�} contains, in the top row,
the word h(w) and in the bottom row a word from w�∗. The intermediate
rows are used to construct inductively the words h(a1 . . . ai)ai+1 . . . an.

Now let (h, g) be an instance of Post’s correspondence problem PCP, i.e.,
two homomorphisms h, g : Γ+ → Δ+. Then we consider the set L of pictures
that are overlays of two pictures ph(w) and pg(w) that coincide in the top and
bottom rows. Hence, L encodes the solutions of the PCP-instance (h, g). Now
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consider the projection K of L to a unary alphabet Σ. Only in the trivial case
of K = ∅ we can express membership in K by a first-order formula. But this is
always possible in monadic second-order logic. Therefore, one can construct a
wMSO-formula ϕ such that �ϕ� is the characteristic function for K. It follows
that ∀xϕ is restricted if and only if ϕ is a FO-definable step formula if and
only if K = ∅ if and only if (h, g) has no solution. Since this is undecidable,
the result follows. ��

Note that the previous proposition holds for any commutative semiring.
With the same generality, using similar ideas, we get the following proposition.

Proposition 4.14 ([22, Corollary 8.3]). It is undecidable whether two given
wMSO-formulas ϕ and ψ satisfy �ϕ� = �ψ�. It is also undecidable whether the
behavior of a given wPA is the semantics of some FO-definable step formula.

Note that in a locally finite semiring, the image of the behavior of every
wPA is finite. Now let S not be locally finite. Using distributivity, one obtains
an element s of S that has infinite order in (S, ·, 1) or in (S, +, 0) (we consider
the first case, the second is dealt with similarly). With the notions from the
proof of Proposition 4.13, we have that (f, g) has a solution if and only if
(f, g) has infinitely many solutions if and only if K is infinite. In addition,
the picture series f with f(p) = smn for p ∈ K of dimension m× n and 0 for
p /∈ K is recognizable. Since s has infinite order in (S, ·, 1), this picture series
f has finite image if and only if K is empty which is undecidable. Thus, we
have proved the following proposition.

Proposition 4.15 ([22, Proposition 8.4]). Let S not be locally finite. Then
it is undecidable whether the behavior of a given wPA has finite image.

4.5 History and Overview

In the literature, one finds a wealth of proposals of formal models for recog-
nizing or generating two-dimensional arrays of symbols, e.g., three-way and
four-way machines as well as two-dimensional Turing machines or marker au-
tomata [8, 36, 46]. Finally, in [31, 32], Restivo and Giammarresi introduced
a new definition of finite-state recognizability for two-dimensional languages:
recognizable picture languages. This definition takes as starting point a well-
known characterization of recognizable string languages in terms of local lan-
guages and projections. Besides its conceptual simplicity, this device turned
out to be very robust since it admits also elegant connections with other
two-dimensional machine-based models and logical formalisms; more precisely,
recognizable picture languages correspond to EMSO logic, which for pictures
is strictly weaker than the full MSO logic (even more, the monadic second-
order quantifier alternation hierarchy over the class of pictures is strict [52]).

Bozapalidis and Grammatikopoulou [10] based their extension to a quan-
titative setting on this notion of recognizability for picture languages intro-
ducing the model of a weighted picture automaton. Their main result asserts
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that picture series computed by weighted picture automata are closed under
rational operations and projections.

Picture languages and picture series can be related via the notion of the
support of a series. If the semiring S is not a ring, then every recognizable
picture language is the support of some recognizable picture series over S.
Conversely, one considers so called cut languages: Let f : Σ++ → N and
let n ∈ N. Then the cut language Ln is the set of pictures whose value un-
der f exceeds n. Then every cut language of a recognizable picture series
is effectively recognizable—a result that holds for many more semirings [22,
Proposition 9.5].

Let us discuss some extensions. Surely, two dimensions are not the end
of the story: we could consider objects of higher dimension or other regular
structures. Probably some of the results presented in this section carry over
to higher dimensions.

An extension of picture series to series over infinite pictures is another in-
teresting problem to be considered. There are results and different automata
models to recognize languages of infinite pictures; see, e.g., [1, 24]. In partic-
ular, there is a hierarchy of acceptance conditions as known from the theory
of ω-languages together with many new combinatorial phenomena. Can we
extend these results and new proof techniques to series on infinite pictures?

Moreover, there is a well-established theory of probabilistic cellular au-
tomata working on (dynamic) pictures, e.g., [38]. Concentrating on their stable
configurations, we can comprehend their behavior on infinite (static) pictures
within some quantitative setting. Are there similarities between probabilistic
cellular automata seen on infinite pictures in this way and series on infinite
pictures?

All objects of this chapter are in some sense finite directed labeled graphs
having particular structure. What we would like to have is a general concept of
weighted graph devices covering the presented quantitative settings for these
structures. Thomas [66] introduced graph acceptors working on graphs of
bounded degree and revealed their relation to logical definability. This concept
at least covers the unweighted versions of the automata models considered in
this chapter and could therefore serve as a starting point for a general theory
(for a first attempt, see [22]).
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1 Introduction

Regular languages have a self-similar structure, given explicitly in their finite
automata descriptions. This fractal nature can be observed visually by using
a suitable interpretation of words of the language as addresses of black image
pixels.

Under a similar addressing scheme, weighted languages and automata de-
fine grayscale images: the weight of a word gives the intensity of the cor-
responding image pixel. It turns out that weighted finite automata (WFA)
are already powerful enough to describe both fractal-like and smooth images.
Simple inference algorithms exist for constructing WFA representations of
given images, and standard automata minimization techniques can be used
to minimize the number of states. This naturally leads to the idea of using
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such automata as compressed representations of images. This concept was
introduced in the early 1990s [7, 9–11], and it soon led to further improved
and generalized algorithms; see, e.g., [3, 4, 16, 21, 22, 25, 26]. See also [24]
for a tutorial and further examples. In this article, the basic concepts and
algorithms are presented.

We start in Sect. 2 by discussing our addressing scheme of pixels using
words over a four-letter alphabet. Infinite languages define infinitely sharp
images, so we next briefly discuss the concept of multi-resolution images.
A multi-resolution image is simply a formal power series, that is, a function
that assigns colors to words. In case the color set is a semiring, weighted finite
automata can be used to describe power series. This is the topic of Sect. 3.
Most of the time, the semiring used is R; the set of real numbers under nor-
mal addition and multiplication. In Sect. 4, we discuss how one can efficiently
draw the image specified by a given WFA. Next, we turn our attention to the
converse problem: Sect. 5 concentrates on the problem of inferring a WFA
that represents a given input image. We provide an efficient algorithm for
this task. The algorithm is guaranteed to produce the minimum state WFA.
In Sect. 6, we outline the ideas used to transform the theoretical inference
algorithm into a practical image compression technique. The details of these
ideas are skipped and the interested reader is referred to the more technical
descriptions [10, 23]. We compare our algorithm with the image compression
standard JPEG [31] that is based on the discrete cosine transform. Using sev-
eral test images, we show the difference in performance, and we demonstrate
that the WFA technique performs especially well on images with sharp edges.
Then in Sect. 7, we briefly discuss one nice aspect of the WFA representation
of images: several natural image transformations can be implemented directly
in the compressed form, without the need to decode the image first. We show
several examples of image operations that can be defined using weighted finite
transducers (WFT). Finally, we stress the fractal nature of WFA-concepts in
Sect. 8 by generalizing from WFA to higher-dimensional parametric weighted
finite automata, which can, e.g., simulate any iterated function system easily.

2 Image Types

A finite resolution image is a w × h rectangular array of pixels, each with its
own color. In the context of this work, squares of dimensions that are powers
of two come up naturally, so that

w = h = 2k for some k ∈ Z+.

Definition 2.1. The image is then just a function

{1, 2, . . . , w} × {1, 2, . . . , h} → S

that assigns to each pixel a color from a set S of possible colors. The color set
depends on the type of the image. It can be:
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Fig. 1. Pixels with addresses 2 and 2131 respectively

• S = B = {0, 1} on bi-level or binary images, where 0 and 1 represent white
and black, respectively.

• S = R, the set of reals, on grayscale images. The color value represents
the intensity of the pixel. Sometimes only non-negative real numbers S =
R+ are allowed, sometimes the values are restricted to an interval, e.g.,
S = [0, 1]. In digital images the intensity values are quantized in a finite
number of intensity levels. However, in this article, we always use S = R.

• S = R
3, vectors of three real numbers, on color images. Three values rep-

resent the intensities of three color components. Also, R
3
+ or [0, 1]3 may

be used.

Rather than addressing the pixels by their x- and y-coordinates, let us
address the pixels using words over the four-letter alphabet Σ = {0, 1, 2, 3}.
Pixels of a 2k × 2k image are addressed by words of length k as follows.

Definition 2.2. The image is first divided into four quadrants. The first letter
of the address of a pixel is determined by the quadrant that contains the pixel.

The rest of the address is defined recursively as the word of length k − 1,
that is, the address of the pixel in the quadrant when the quadrant is viewed
as a 2k−1 × 2k−1 image.

The only pixel of a 1 × 1 resolution “image” has the empty word ε as
address.

Example 2.3. Figure 1 shows the locations of the pixels addressed by 2 at
resolution 2 × 2 and 2131 at resolution 16 × 16, respectively.

Our addressing scheme thus defines a quadtree structure on the pixels of
the images. Quadtrees (also octtrees, etc.) can be embedded into bintrees in
a canonical way when encoding the alphabet symbols 0, 1, 2, 3 by their binary
number-representations 00, 01, 10, 11. For addresses of odd length, this opens
a possibility to address also images and sub-images of sizes 2k+1×2k. Bintrees
have been used successfully for fine-tuning the encoding algorithm presented
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in the section on practical image compression (see, e.g., [15]). For simplicity
of the arguments, we will stick to the common quadtree representations for
the following.

A 2k × 2k resolution image is now a function

rk : Σk → S

that assigns a color to each pixel.

Definition 2.4. A multi-resolution image is a function that assigns a color
to each pixel in resolutions 2k × 2k for all k ≥ 0. In other words, it is a
formal power series r ∈ S〈〈Σ∗〉〉 where Σ = {0, 1, 2, 3} and S is the color set.
Coefficient (r, w) is the color of pixel w.

A multi-resolution image can be viewed as a sequence r0, r1, r2, . . . of im-
ages where rk, the restriction of r to words of length k, is a 2k × 2k image.

Note that without any additional constraint on a multi-resolutions image r,
the images rk may be completely unrelated. However, one would like them
to represent approximations of the same image at different resolutions. This
constraint is captured into the concept of average preservation. Let us consider
grayscale images, i.e., the case S = R. A simple way to interpolate a 2k × 2k

resolution grayscale image into a 2k−1 × 2k−1 resolution image is to average
the intensity values on 2 × 2 blocks of pixels.

Definition 2.5. Let r be a multi-resolution grayscale image. If

(r, w) =
(r, w0) + (r, w1) + (r, w2) + (r, w3)

4
for every w ∈ Σ∗, then rk−1 is the interpolation of the next sharper image rk,
for every k = 1, 2, . . . . In this case, we say that r is average preserving, or ap
for short.

In the quadtree form, this property simply states that each node is the av-
erage of its four children. If r is average preserving, the images in the sequence
r0, r1, r2, . . . form sharper and sharper approximations of some infinitely sharp
grayscale image.

In image processing algorithms, we typically rely on efficient algorithms
of linear algebra. These are available because R〈〈Σ∗〉〉 is a linear space over
R under the usual pointwise sum and scalar product. Note that the set of
average preserving multi-resolution images is a linear subspace.

In an ideal situation, multi-resolution images are used. In practical ap-
plications in digital image processing, one only has finite resolution 2k × 2k

images available. They also form a linear space that is isomorphic to R
4k

.
Here, we can find an expression of a given finite resolution image rk as a lin-
ear combination of finite resolution images ψ1, . . . , ψn, if such an expression

rk = c1 · ψ1 + c2 · ψ2 + · · · + cn · ψn

with c1, c2, . . . , cn ∈ R exists.
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3 Weighted Finite Automata and Multi-resolution
Images

Suppose the color set S is a semiring. This is the case in all our examples where
S = B (bi-level image), S = R (grayscale image) or S = R

3 (color image).
Then multi-resolution images can be described using weighted automata.

Weighted finite automata (WFA) are finite automata whose transitions
are weighted by elements of the coloring semiring S, and whose states have
two associated weights called the initial and the final distribution values. In
our applications, the input alphabet is Σ = {0, 1, 2, 3}, and the semiring S is
B, R, or R

3.

Definition 3.1. A WFA is specified by:

• The finite state set Q
• Four transition matrices A0, A1, A2, A3 ∈ SQ×Q

• A final distribution vector F ∈ SQ×1

• An initial distribution vector I ∈ S1×Q

The WFA defines a multi-resolution image r as follows:

(r, a1a2 . . . ak) = IAa1Aa2 . . . Aak
F

for all a1a2 . . . ak ∈ Σ∗. Let us use the following shorthand notation: For every
w = a1a2 . . . ak ∈ Σ∗, let

Aw = Aa1Aa2 . . . Aak

be the product of the matrices corresponding to the letters of the word w. Then
(r, w) = IAwF .

Usually a WFA is drawn as a labeled, weighted directed graph. The vertex
set is the state set Q, and there is an edge from vertex i ∈ Q to vertex j ∈ Q
with label a ∈ Σ and weight s ∈ S iff (Aa)ij = s. Edges with weight 0 are
usually not drawn. The initial and final distribution values are marked inside
the vertices.

Example 3.2. Let S = B, |Q| = 2 and

I =
(
1 0

)
A0 =

(
0 1
0 1

)

A1 =
(

1 0
0 1

)

F =
(

1
1

)

A2 =
(

1 0
0 1

)

A3 =
(

0 0
0 1

)

.

Weighted finite automata over B are classical finite automata. The directed
graph representation of the sample automaton is
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Fig. 2. Finite resolution images defined by the finite automaton of Example 3.2

Here, all edges are with weight 1. A regular expression for the accepted lan-
guage is (1 + 2)∗ + (1 + 2)∗0Σ∗. Figure 2 shows the corresponding finite
resolution images at resolutions 2 × 2, 4 × 4, and 256 × 256.

Example 3.3. Let S = R, |Q| = 2 and

The weight of each edge is given in parentheses after the label.
The finite resolution images defined by this WFA at resolutions 2×2, 4×4,

and 256 × 256 are shown in Fig. 3. Here (and in all our grayscale examples),
value 0 is drawn black, value 1 in white, and intermediate values give different
shades of gray.

Fig. 3. Finite resolution images defined by the weighted finite automaton of Exam-
ple 3.3
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Fig. 4. High resolution images generated by the two state WFAs of Example 3.4

Let S = R. If

(A0 + A1 + A2 + A3) · F = 4F (1)

holds then

(r, w0) + (r, w1) + (r, w2) + (r, w3) = 4(r, w)

for all w ∈ Σ�. In other words, the multi-resolution image specified by the
automaton is then average preserving. Therefore, a WFA is called average
preserving if (1) is satisfied. Note that condition (1) states that number 4 is
an eigenvalue of the matrix A0 + A1 + A2 + A3, and F is a corresponding
eigenvector.

Given an n-state WFA A and an m-state WFA B that compute multi-
resolution functions r1 and r2, respectively, it is easy to construct:

• An (n + m)-state WFA that computes the sum r1 + r2

• An n-state WFA that computes the point-wise scalar multiple sr1 of r1 by
s ∈ R

• An nm-state WFA that computes the Hadamard product r1 � r2

Example 3.4. The 2-state WFAs

and

generate the linear functions of Fig. 4. From these and the constant function 1,
one can build a WFA for any polynomial.

4 Drawing WFA Images

In this section, we consider the following decoding problem: Given a WFA,
draw the corresponding image at some specified finite resolution 2k × 2k.
Decoding at resolution 2k × 2k involves forming the matrix products IAwF
for all w ∈ Σk. Note that the number of multiplications (and additions)
required by the trivial algorithm to compute the product of:
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• Two n × n matrices is n3

• An n × n matrix and an n-vector is n2

• Two n-vectors is n

Observe that it is naturally better to multiply vectors than matrices.

Decoding Algorithm #1

1. Form the products IAw for all non-empty words w ∈ Σ≤k in the order of
increasing length of w. Because IAua = IAuAa, we need one product of
a vector and a matrix for each word w = ua.

2. In the end, for every w ∈ Σk, multiply vectors IAw and F .

Let us analyze the complexity of the algorithm. Let N = 4k be the number
of pixels, and let n be the number of states. The number of non-empty words
of length ≤ k is

4 + 16 + · · · + 4k ≤ N

(

1 +
1
4

+
1
16

+ · · ·
)

=
4
3
N.

Step 1 of the algorithm requires then at most 4
3Nn2 multiplications. Step 2

requires Nn multiplications so the total number of multiplications is at most
Nn(1 + 4n

3 ). Let us consider then a more efficient alternative.

Decoding Algorithm #2

1. Use the first step of the decoding algorithm #1 to compute the products
IAu for words u of length k/2 and products AvF for words v of length
k/2. If k is odd, then we round the lengths so that u has length 	k/2
 and
v has length �k/2�.

2. Form all possible products (IAu)(AvF ) for all u, v ∈ Σk/2.

Step 1 requires at most 2 × 4
34k/2n2 = 8

3

√
Nn2 multiplications. Step 2

requires Nn multiplications. Now the total is Nn(1 + 8n
3
√

N
) multiplications.

This is considerably better than algorithm #1, especially when N , the number
of pixels, is very large.

5 An Encoding Algorithm

In this chapter, we assume that S = R. For r ∈ S〈〈Σ∗〉〉 and w ∈ Σ∗ we denote
by w−1r the left quotient of r by w. It is the power series defined as follows:

(
w−1r, u

)
= (r, wu)

for all u ∈ Σ∗. Intuitively speaking, w−1r is the image obtained from image
r by zooming into the sub-square whose address is w.



Digital Image Compression 461

In a WFA A, the transitions A0, A1, A2, and A3 and the final distribution
F define a multi-resolution image ψi for every state i: Image ψi is the multi-
resolution image computed by the WFA that is obtained from A by changing
the initial distribution so that the initial distribution value of state i is 1, and
all other states have initial distribution 0. In other words, for every w ∈ Σ∗,
we have

(ψi, w) = (AwF )i

where we use the notation that (AwF )i is the ith component of the vector
AwF . Multi-resolution ψi is called the image of state i. It is average preserving
if the WFA is.

The WFA gives a mutually recursive definition of the ψi multi-resolutions:

• (ψi, ε) = Fi, that is, the final distribution values are the average intensities
of the state images.

• For every a ∈ Σ,w ∈ Σ�

(
a−1ψi, w

)
= (ψi, aw) = (AawF )i = [Aa(AwF )]i =

n∑

j=1

(Aa)ij(AwF )j

= s1(ψ1, w) + s2(ψ2, w) + · · · + sn(ψn, w)

where sj = (Aa)ij is the weight of the transition from state i into state j
with label a. Since the coefficients sj = (Aa)ij are independent of w, we
have

a−1ψi = s1ψ1 + s2ψ2 + · · · + snψn

in the vector space of multi-resolution images. In other words, the ith row
of the transition matrix Aa tells how the quadrant a of the state image ψi

is expressed as a linear combination of state images ψ1, . . . , ψn. See Fig. 5
for an illustration.

• The initial distribution I tells how the multi-resolution image r computed
by the WFA is composed of state images ψ1, ψ2, . . . , ψn:

r = I1 · ψ1 + I2 · ψ2 + · · · + In · ψn.

The final distribution values and the transition matrices define state images
ψ1, . . . , ψn uniquely.

The following algorithm infers a minimum state WFA for a given multi-
resolution function r:

Encoding Algorithm for Grayscale Images

Input: multi-resolution image r

Variables: n : number of states so far
i : first non-processed state
ψj : Image of state j
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Fig. 5. The transitions from state i with label a specify how the quadrant a of the
state image ψi is expressed as a linear combination of the state images ψ1, . . . , ψn

1. n ← 1, i ← 1, ψ1 ← r
2. For quadrants a = 0, 1, 2, 3 do

(a) If ∃s1, . . . , sn ∈ R such that a−1ψi = s1ψ1 + · · ·+ snψn, then add the
transitions

for all j = 1, 2, . . . , n
(b) Else create a new state: Set n ← n + 1, ψn ← a−1ψi, and add the

transition

3. i ← i + 1. If i ≤ n, then goto 2
4. Initial distributi.on: I1 = 1, Ii = 0 for i = 2, 3, . . . , n

Final distribution: Fi = (ψi, ε) for i = 1, 2, . . . , n

Theorem 5.1 ([11]). Let r ∈ R〈〈Σ∗〉〉.

• Multi-resolution image r can be generated by a WFA if and only if the
multi-resolution images

u−1r, for all u ∈ Σ�,

generate a finite dimensional vector space. The dimension of the vector
space is the same as the smallest possible number of states in any WFA
that generates r.

• If r can be generated by a WFA, then the algorithm above produces a WFA
with the minimum number of states.
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• If r is average preserving then the algorithm produces an average preserving
WFA.

The setup of the encoding algorithm above is theoretical: the input r is
an infinite object but the input of a concrete algorithm should have a finite
presentation. In practice, the input to the algorithm is a finite resolution
image. When encoding a 2k×2k size image, the subtrees w−1r are only known
up to depth k − |w|. When forming linear combinations, the values deeper in
the tree are “do not care” nodes, that is, it is enough to express the known
part of each subtree as a linear combination of other trees and the do not
care nodes may get arbitrary values. Fortunately, as the process is done in
the breadth-first order, the sub-images are processed in the decreasing order
of size. This means that all previously created states have trees assigned to
them that are known at least to the depth of the current subtree. Hence, the
don’t care values of prior images only can affect the don’t care values of the
present image, and the linear expressions are precise at the known part of the
tree.

6 Practical Image Compression Using WFA

In the previous section we saw how we can find a minimum state WFA for
a given grayscale image. If the WFA is small in size, then the WFA can be
used as a compressed representation of the image. However, the encoding
algorithm of the previous section as such is ill suited for image compression
purposes. Even though the resulting WFA is minimal with respect to the
number of states, it may have a very large number of edges. The algorithm
also represents the image exactly, and the last details of the image often
require a very large increase in the size of the WFA. This is called lossless
image compression. More often one is interested in lossy compression where
small errors are allowed in the regenerated image, if this admits sufficient
decrease in the size of the compressed image file. In this section, we outline how
the encoding algorithm can be modified into a practical image compression
method. Note that the techniques are heuristic in nature and no guarantees of
optimality exist. We can only use compression experiments and comparisons
with other algorithms to show their usefulness.

Recall step 2 of the encoding algorithm from the previous section:

(a) If ∃s1, . . . , sn ∈ R such that a−1ψi = s1ψ1 + · · · + snψn, then for all
j = 1, 2, . . . , n add the transitions

(b) Else create a new state: Set n ← n+1, ψn ← a−1ψi, and add the transition
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It turns out that better results are obtained in practice if we try both alter-
natives (a) and (b), and choose the one that gives the smaller automaton. It
may namely happen that the linear combination in (a) contains so many coef-
ficients that it is better to create a new state in (b) and process its quadrants.

In order to make a fair comparison between (a) and (b), we need to process
the new state created in (b) completely before we can determine which choice
to make. Therefore, we change the order of processing the states from the
breadth-first order into the depth-first order: instead of processing all four
quadrants of ψi before advancing to the next state image, all new states
created by a quadrant are processed before advancing to the next quadrant.

Let us first measure the size of the automaton by the quantity

|E| + P · |V |

where P ∈ R+ is a given constant, |E| is the number of transitions, and |V | is
the number of states of the automaton. Constant P is a Lagrange multiplier
that formulates the relative cost of states vs. edges in the automaton. If we
want to minimize the number of edges, we set P = 0. The goal of the next
inference algorithm is to find for a given multi-resolution image ψ a small
WFA in the sense that the value |E| + P · |V | is small.

Because we now process the quadtree in the depth-first order, it is natural
to make the algorithm recursive. The new encoding algorithm consists of a
recursive routine make wfa(ψi,max) that adds new states and edges to the
WFA constructed so far, with the goal of representing the state image ψi

in such a way that the value ΔE + P · ΔV is small, where ΔE and ΔV are
the numbers of new transitions and states added by the recursive call. If
ΔE +P ·ΔS ≤ max then the routine returns the value ΔE +P ·ΔV , otherwise
it returns ∞ to indicate that no improvement over the target value max was
obtained.

Encoding Algorithm #2 [10]

Input: Multi-resolution image r and a positive real number P

Global variables used: n : number of states
ψj : image of state j

1. n ← 1, ψ1 ← r
2. make wfa(ψ1,∞)

make wfa(ψi,max) :

1. If max < 0 then return(∞)
2. Set cost ← 0
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3. For quadrants a = 0, 1, 2, 3 do
(a) If ∃s1, . . . , sn ∈ R such that a−1ψi = s1ψ1 + · · · + snψn then

cost1 ← number of non-zero coefficients sj

else
cost1 ← ∞

(b) Set n0 ← n, n ← n + 1, ψn ← a−1ψi and add the transition

(c) Set cost2 ← P + make wfa(ψn,min{max − cost − P, cost1 − P})
(d) If cost2 ≤ cost1 then

• cost ← cost + cost2
else
• cost ← cost + cost1
• remove all transitions from states n0 + 1, . . . , n, and set n ← n0

• remove the transition

• add transitions

for sj �= 0
4. If cost ≤ max then return(cost) else return(∞)

A few words to explain the algorithm: The main step is line 3 where we
try to find a WFA representation for each of the four quadrants of ψi. For
each quadrant, we try two alternatives: (a) to express the quadrant as a linear
combination of existing states, and (b) to create a new state whose state image
is the quadrant, and to recursively process the new state. In variable cost1,
we store the cost of alternative (a), i.e., the number of transitions created in
the automaton, and in cost2 we store the cost of alternative (b), i.e., the sum
of P (for the new state created) and the cost returned from the recursive call
to process the new state. In step 3(d), the algorithm chooses the better of the
two alternatives.

The algorithm above is still lossless. The WFA represents the input image
precisely, without any loss of detail. Much better compression is obtained
if we allow small errors in the regenerated image whenever that helps to
compress the image more. There is a trade-off between the amount of image
degradation and the size of the compressed image. Let us measure the amount
of degradation by the square difference metric d(·, ·). For two images ψ and φ
at resolution 2k × 2k, this metric defines the image difference value as
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d(ψ, φ) =
∑

w∈Σk

(
(ψ, w) − (φ,w)

)2
.

This is a reasonable measure for the reconstruction error. It is also convenient
for our linear combinations approach since it is the square of the normal
Euclidean distance.

We also introduce a new Lagrange multiplier G that controls the trade-off
between the image size and the reconstruction error. Parameter G is given as
an input by the user, and the algorithm will produce a WFA that generates
an image ψ′ such that the value of

d(ψ, ψ′) + G · S

is small, where ψ is the image to be compressed and S is the size of the WFA
constructed by the algorithm. We may continue using

S = |E| + P · |V |,

but in practical image compression it is better to define S as the actual num-
ber of bits required to store the WFA in a file. The WFA is stored using
suitable entropy coder, e.g., an arithmetic coder. See [23] for details on how
the different items such that states, transitions, and weights are stored using
arithmetic coding.

The Lagrange multiplier G is the parameter that the user can change to
adjust the file size and the image quality:

Small G ⇒ big automaton, small error
Large G ⇒ small automaton, big error

The following modifications to the algorithm were also made:

• Edges back to states that have not yet been completely processed are
problematic in lossy coding, as the actual image of those states is not yet
precisely known. Therefore, we opted to only allow edges to states already
completely processed. Note that this prevents the creation of any loops in
the WFA.

• In order to have at least one processed state to begin with, we introduce
an initial base: Before calling make wfa the first time, we set n ← N
with some fixed images ψ1, . . . , ψN . In our tests below, we used N = 6
base images that were linearly independent quadratic polynomials, i.e.,
functions 1, x, y, x2, y2, and xy.

With these modifications, we have a practical encoding algorithm that
compares favorably with other compression techniques. Let us compare WFA
compression with the JPEG image compression standard using the test image
of Fig. 6. This color image contains large smooth areas, and is therefore well
suited for JPEG compression. A color image consists of three color layers, each
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Fig. 6. A comparison of JPEG and the WFA compression at a low bitrate

of which is compressed as a grayscale image. However, only one automaton is
built, that is, different color components can refer to the sub-images of other
color layers.

In the compression experiment, the reconstruction errors are reported as
the peak signal-to-noise ratio (PSNR). The units of this measure are decibels
(dB). The PSNR value is directly obtained from the square difference d(·, ·)
as follows:

PSNR(·, ·) = 10 log10

(
A2

σ

)
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Fig. 7. The rate-distortion comparison of JPEG, WFA compression, and WFA
compression of the wavelet coefficients

where A is the maximum intensity value (A = 255 in our 8 bits-per-pixel
image) and

σ =
d(·, ·)

# of pixels

is the average square difference between the pixel values of the two images.
Notice that larger PSNR values mean better quality.

Our visual comparison in Fig. 6 is between compressed images at the very
low bitrate of 7.2 KBytes. The WFA compressed image is more than 4 dB
better than the JPEG compressed image at the same bitrate. As we increase
the bitrate, the JPEG algorithm catches up with WFA.

Very good compression performance is obtained if the WFA encoding al-
gorithm is applied to an image composed of wavelet coefficients instead of
the original image. The sub-bands obtained from the wavelet transformation
are arranged into a so-called Mallat pyramid, and this is compressed as an
image using the WFA encoding algorithm. The WFA algorithm is able to take
advantage of the self-similarity of different sub-bands in the wavelet transfor-
mation. The subdivision into quadrants used by our algorithm matches with
the organization of the sub-bands in the Mallat form. A result is provided in
Fig. 6 for visual comparison. In our tests, the Daubechies W6 wavelets are
used.

Figure 7 summarizes numerically the rate-distortion performances of
JPEG, WFA, and WFA with wavelets for the test image of Fig. 6. All three
algorithms were used at various bitrates, and the bitrate versus image quality
values were plotted. Note how JPEG surpasses WFA at 16 KByte compression
for this type of image characteristics.

WFA (without wavelets) compress very well images with sharp edges. As
a second experiment, let us compare WFA compression and JPEG on the test
image shown in Fig. 8. The difference between JPEG and WFA is clear even
at high quality setting, as seen in Fig. 8.
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Fig. 8. The second test image that contains sharp edges, and the compression results
using JPEG and WFA compression at 5 KBytes

Fig. 9. The rate-distortion comparison of JPEG and WFA compression on the
second test image

Numerical comparisons in Fig. 9 indicate that WFA compression remains
superior through all bitrates.

7 Weighted Finite Transducers (WFT)

A nice feature of WFA image representations is the property that one can
perform interesting and useful image operations directly in the WFA form.
Bi-level images and regular languages can be transformed using finite state
transducers. Analogously, grayscale images and WFA are transformed using
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finite state transducers with real weights. More details of the examples and
results in this section can be found in [8]. We assume throughout this chapter
that the semiring used is S = R.

A Weighted Finite Transducer (WFT) is obtained by introducing edge
weights and initial and final distribution values to an ordinary finite state
transducer. The transitions are labeled by pairs a/b where a, b ∈ Σ ∪ {ε}.

Definition 7.1. More precisely, a WFT is specified by:

• The finite state set Q
• Transition matrices Aa,b ∈ R

Q×Q for all a, b ∈ Σ ∪ {ε}
• Final distribution vector F ∈ R

Q×1

• Initial distribution vector I ∈ R
1×Q

The WFT is called ε-free if the weight matrices Aa,ε, Aε,b, and Aε,ε are zero
matrices for all a, b ∈ Σ. The WFT defines a function

ρ : Σ∗ × Σ∗ → R

called a weighted relation as follows: For every u, v ∈ Σ∗, we have

ρ(u, v) = IAu,vF

where
Au,v =

∑

a1...am=u
b1...bm=v

Aa1,b1 . . . Aam,bm

if the sum converges. The sum is over all decompositions of u and v into
symbols ai, bi ∈ Σ ∪ {ε}. Note that the sum is finite (and hence converges) if
the WFT does not contain any cycles that read ε/ε.

If the WFT is ε-free, then

ρ(a1 . . . ak, b1 . . . bk) = IAa1,b1 . . . Aak,bk
F

where all ai, bi ∈ Σ, and ρ(u, v) = 0 when |u| �= |v|.

Next, we define the action of a weighted relation ρ on a multi-resolution
image f . The result is a new multi-resolution function g = ρ(f), defined by

g(w) =
∑

u∈Σ∗

f(u)ρ(u,w), for all w ∈ Σ∗,

provided the sum converges. The sum is finite if the WFT is ε-free, or more
generally, if the weight matrices Aa,ε are zero, for all a ∈ Σ∪{ε}. In this case,
the sum is over all words u whose length is not greater than the length of w.

It is easy to see that the operator

ρ : R〈〈Σ∗〉〉 → R〈〈Σ∗〉〉
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Fig. 10. The output of transforming the test image using the WFT of Examples 7.2,
7.3, and 7.4

is linear, that is, for arbitrary multi-resolution functions f and g, and arbitrary
real numbers x and y we have

ρ(xf + yg) = xρ(f) + yρ(g).

Many interesting and natural linear image transformations can be imple-
mented as a WFT. In the following, we see several examples.

Example 7.2. Let w ∈ Σ∗ be a fixed word. The WFT

computes the weighted relation ρ(u,wu) = 1 for every u ∈ Σ∗, and ρ(u, v) = 0
if v �= wu. The effect is to shrink the input image and place it at the sub-
square addressed by w. For example, Fig. 10(a) shows the result of our test
image for w = 21.

Example 7.3. Consider then the WFT

It computes the weighted relation ρ(wu, u) = 1 for every u ∈ Σ∗, and ρ(v, u) =
0 if v �= wu. Now the effect is to zoom the sub-square of the input image whose
address is w. For example, with w = 30, our test image is mapped into the
image shown in Fig. 10(b).

Example 7.4. The WFT

rotates the image 90◦, as shown in Fig. 10(c).
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Fig. 11. The output of transforming the test image using an 11 state WFT

Also, fractal-like transformations can be defined. For example, 11 states
are enough to implement a transformation that produces Fig. 11.

Next, we define the action of WFTs on WFAs.

Definition 7.5. An application of an ε-free n-state WFT M to an m-state
WFA A is the mn state WFA M(A) whose states are the pairs (p, q) of states
of A and M , the initial and final distribution values are obtained by multiplying
the corresponding distributions of A and M , and the weight of the transition

(p, q) a−→ (s, t)

is ∑

x∈Σ

(Ax)p,s(Mx,a)q,t

where Ax and Mx,a are the weight matrices of A and M , respectively.

This is a straightforward generalization of the usual applications of a finite
letter-to-letter transducer on a finite automaton. It is easy to see that M(A)
generates the multi-resolution function ρ(f) where ρ is the weighted relation
of M and f is the multi-resolution determined by A.

Applying WFT M directly to a WFA A has the advantages that:

• It is fast if A and M are small. There is no need to decode the image into
the usual pixel form before applying the operation.

• The result is correct at every resolution.

A concept of average preservation can also defined for WFT; see [8] for
details and for more examples.

8 Parametric Weighted Finite Automata (PWFA)

We will generalize now the way input words can define pixel positions in WFA.
Instead of using a fixed binary (or k-ary) representation of addresses, we allow
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that the pixel positions are also computed by some WFA [1]. We call these
automata parametric weighted finite automata, because the input string acts
as a parameter binding the functions for different dimensions together. Instead
of computing single values for the input strings, in parametric weighted fini-
te automata, we get points of higher dimensional spaces. This requires only
one change in the definition for WFA, namely our initial distribution vector I
becomes an initial distribution matrix of size d × Q for some d > 0. For these
parametric WFA, we will only consider weights and vectors over S = R.

Definition 8.1. A Parametric Weighted Finite Automaton (PWFA) is thus
specified by:

• The finite state set Q
• The input alphabet Σ = {0, 1, . . . , m − 1}
• The weight matrices for transitions A = (A0, A1, . . . , Am−1), Ai ∈ R

Q×Q

• The final distribution F ∈ R
Q×1

• The initial distribution matrix I ∈ R
d×Q

In the transition diagrams for PWFAs now inside every node d, initial dis-
tribution values and one final distribution value are inserted. And computing
(r, w) with an initial distribution matrix I of size d × Q looks exactly as in
the case of WFA: (r, w) = IAwF.

Definition 8.2. For the given PWFA P over the alphabet Σ, let Rn(P ) de-
note the set of points computed by P on inputs of length n, and R≥n(P ) the
set of points computed on inputs of length at least n:

Rn(P ) =
{
(r, w)

∣
∣ w ∈ Σn

}
, R≥n(P ) =

∞⋃

i=n

Ri(P ).

Now a topologically closed set R(P ) can be associated with a PWFA P :

R(P ) =
∞⋂

n=0

R≥n(P )

where R≥n(P ) is the topological closure of R≥n(P ).

In other words, a point x ∈ R
d is in R(P ) if either (i) there exist infinitely

many words w such that (r, w) = x, or (ii) there exist points (r, w) �= x
arbitrarily close to x.

Multi-dimensional sets R(P ) given by a PWFA P can be interpreted as
relations or images in many different ways. If d = 2, it is natural to inter-
pret pairs (x, y) as points of the Euclidean plane, so R(P ) becomes a bi-level
image. In case d = 3, we might have a set of points (x, y, z) of a 3D object
or a description of pixel locations x, y and intensities z of a 2D image, or a
description of a moving 2D bi-level object where the third dimension is in-
terpreted as the time coordinate. Case d = 4 could be a description of a 3D
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Fig. 12. (left) Rotation by cos−1(0.8). (right) First 50 points of the circle

grayscale object, or a 2D grayscale video, etc. In all cases, PWFA-decoding
computes d-dimensional points, followed by their interpretation. This new
degree of freedom by separating the generation of real values from their in-
terpretation yields a high descriptional power. For example, PWFA are used
as representations of multi-dimensional wavelets [27], shapes of figures [30],
spline-curves, and textured 3D patches [2].

PWFA over Unary Alphabet

WFA over a unary alphabet do not define useful functions, but from PWFA
over a single input symbol 0 one can derive already interesting structures.

Example 8.3. Consider the following one-symbol, two-states PWFA C in
Fig. 12.

The corresponding weight matrix A0 defines a rotation of the plane R
2 by

the angle α = cos−1(0.8). The ratio of α to π is irrational. To see this, we
can use the following nice, short proof from [20]. We have cos α = 4

5 . Using
repeatedly the formula cos 2α = 2 cos2 α − 1, we easily obtain

cos 2kα =
ak

52k

for all k, where ak is an integer not divisible by 5. Hence, all cos 2kα are
distinct, so the set {cos iα | i ∈ Z} is infinite. This means that α/π is irrational.

The orbit of a point under the iterated rotation by an irrational angle
defines a dense subset of a circle, so

R(C) =
{
(x, y)

∣
∣ x2 + y2 = 1

}
=

{(
cos(t), sin(t)

) ∣
∣ t ∈ R

}
.

The unary alphabet PWFAs have been characterized by decidability re-
sults and closure properties [28, 19]. Furthermore, it is not hard to prove that
two symbols in Σ actually suffice. Please note, that on the other hand the
number of states gives rise to an infinite hierarchy, as can be concluded from
the facts about polynomials of degree m.
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Fig. 13. Simulating the IFS for the maple leaf

PWFA and Iterated Function Systems

Consider any Iterated Function System (IFS) with k contractive affine maps
of R

2 [5]. A PWFA simulating the IFS just needs k symbols. Each symbol t
corresponds to one affine transform represented by some 2 × 2 matrix T for
scaling and/or rotating the plane and a 2 × 1 translation vector T ′.

Two states are needed to represent the x- and y-coordinates and one state
for the constant 1. The weights for transitions between states are assigned for
each symbol t in a straightforward manner from the matrix- and vector-entries
of T and T ′.

Example 8.4. The fractal maple leaf is generated this way by a 3-state,
4-symbols PWFA (see Fig. 13):

PWFA and Polynomial Curves

If each of the d functions computed by a PWFA is a polynomial, we can
produce a very compact automaton for the corresponding polynomial curve
in R

d.

Example 8.5. Consider the 4-state, 2-symbols, 2-dimensional PWFA P as
given in Fig. 14. It has initial distributions (1,−1, 0, 0) and (0, 1,−1, 0), if
the states are numbered from left to right.

In the bintree representation of a WFA, the four states as such—from left
to right—would compute the functions t3, t2, t, and 1, respectively, over the
interval [0, 1). Let us interpret now the two dimensions of the PWFA P as the
x- and y-coordinates of points. Then the given PWFA computes the points of
the curve segment shown in the middle of Fig. 14. The second image is also
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Fig. 14. PWFA for {(t3 − t2, t2 − t) | 0 ≤ t ≤ 1}, curve and filling the interior

generated by some PWFA, which essentially holds two copies of the PWFA
P and three extra symbols plus two helper states. Then for any two points
on the curve of P, the line between those points is gradually filled with black
pixels in some random fashion. For the displayed picture, the computation
was stopped intentionally to leave some pixels of the interior unchanged.

We had mentioned already that any polynomial p(x) of degree m can be
computed by a standard one-dimensional WFA with m + 1 states, as shown
already in [6]. Therefore, any d-dimensional curve

{(
p1(t), p2(t), . . . , pd(t)

) ∣
∣ 0 ≤ t ≤ 1

}

with parametric representation using the polynomials p1(t), p2(t), . . . , pd(t) is
computable by a PWFA. Furthermore, if the highest degree of the polynomials
p1(t), p2(t), . . . , pd(t) is m, the PWFA will only need m + 1 states again. It is
worthwhile noting that these polynomial curves include, e.g., the square root
(t2, t), which can only be approximated by WFA, but is not computable with
arbitrary precision [14, 13]. For many practical purposes, these polynomial
curves are used to approximate figures in the plane like shapes of, e.g., font
letters. This has been studied for WFA and chain-code languages in [12] and
in [29, 30] for several types of splines and also for textured 3D Bezier-spline
surfaces [2].

9 Conclusions and Open Problems

For weighted finite automata and their extensions to, e.g., weighted finite
transducers or parametric WFA several attractive possibilities of image gen-
eration and image compression have been demonstrated. The WFA infer-
ence algorithm works very well, especially for the combination with wavelet-
transforms as preprocessing. This seems to indicate that there is still quite a
bit of potential to improve the WFA compression rates in hybrid WFA image
compression heuristics.
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WFT and PWFA have been explored up to now mostly with respect to
inclusion properties and decidability questions and a small number of interest-
ing “hand-made” examples have been provided. For practical applications, an
important question is whether the WFA inference algorithm can be extended
to WFT or PWFA, e.g., to PWFA-representation of 3D spline-patches.

For some of the published examples of PWFA, it seemed essential that irra-
tional weights can be employed. In a strict sense, it is arguable here, whether
the attribute “finite” is indeed justified for those PWFA, since we do not
generate the irrational number by some kind of finite state device. There are
results on language families and decidability questions for integer weighted fi-
nite automata by Halava and Harju [17, 18], but PWFA with rational weights
are still to be studied in detail.
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1 Introduction

Classical logic, as founded by the Greek philosopher Aristotle, is based on the
principle of bivalence which states that every proposition can be assigned ex-
actly one of the logical values true or false. However, Aristotle himself observed
that this principle cannot describe the status of all propositions especially the
ones which refer to future contingents. In his treatise On Interpretation 9, the
philosopher formulated the famous sentence “There will be a sea-battle to-
morrow”, which is actually neither true nor false. Clearly, (at least) a third
logical value is required in order to describe such situations. Actually this
third value spoils the principle of bivalence. Nevertheless, despite the efforts
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of philosophers and mathematicians in the Middle Ages, a three-valued propo-
sitional logic was successfully established by �Lukasiewicz and Post only in
1920 (see [48, 59]). However, it came up that even that three-valued logic
was not sufficient enough to describe the logical status of real world state-
ments. Therefore, the three-valued logic has been extended to multi-valued
(or many-valued) logic by considering (finitely or infinitely) many logical val-
ues. For textbooks on multi-valued logic, we refer the reader to [50, 64] (see
also [66] for historical details for the multi-valued logic’s progress and the
contribution of Gr. Moisil and A. Salomaa to this field).

On the other hand, Zadeh [78] introduced in 1965 the concept of fuzzy
sets. He was motivated by the real world where sentences like “the class
of real numbers that are much greater than 1” or “the class of beautiful
women” are naturally imprecise, and they do not determine sets in the usual
mathematical sense. In 1973, Zadeh founded his fuzzy logic as a multi-valued
logic over the interval [0, 1] ⊆ R, enriched with further fuzzy quantifiers like
most, few, many, and several. In the meantime, Wee [75] introduced the fuzzy
automaton as a model of learning systems. The fuzzy automaton model is
the natural fuzzification of the classical finite automaton and it is actually
a weighted automaton model (over the fuzzy semiring 〈[0, 1],max, min, 0, 1〉)
in the sense of [24]. Since then, fuzzy automata theory has been extended to
more general structures like lattices, residuated lattices, and �-monoids. How-
ever, in all these cases, the corresponding fuzzy automata act on semirings
induced by the original structures. Therefore, all the well-known results for
recognizable formal power series over semirings hold in particular for fuzzy
recognizable languages accepted by fuzzy automata. More specific results can
be obtained for fuzzy automata and their behaviors due to the special prop-
erties of their underlying semirings inherited by the original structures. For
instance, the determinization problem is effectively solved for fuzzy automata
and the equality is decidable for fuzzy recognizable languages over bounded
distributive lattices.

Fuzzy structures and fuzzy logic contribute to a wide range of real world
applications because they can effectively incorporate the impreciseness of prac-
tical problems. It is the purpose of this chapter, to present the theory of fuzzy
recognizable languages as a paradigm of recognizable formal power series. Our
fuzzy languages are defined over bounded distributive lattices. This is a more
general case than the very first definition of fuzzy languages over the inter-
val [0, 1], but still almost all the recognizability properties remain valid. In
our development, we refer only briefly to those results which are inherited
from the general theory of weighted automata and power series. Instead, we
focus on results which do not hold for power series over arbitrary semirings.
More precisely, our fuzzy recognizable languages are obtained as behaviors of
multi-valued automata. We show that for every such multi-valued automa-
ton we can effectively construct an equivalent trim deterministic one which
moreover has a minimum counterpart. Furthermore, the equivalence problem
for multi-valued automata is decidable and a pumping lemma holds for fuzzy
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recognizable languages. The equivalence problem turns out also to be decid-
able for multi-valued automata over infinite words. Our treatment of fuzzy
recognizable languages is based on automata-theoretic techniques. It is worth
noting that fuzzy recognizability over finite words, especially over the fuzzy
semiring, has been also defined by means of finite monoid representations,
syntactic congruences, syntactic monoids, and (left and right) derivatives (see
[8, 9, 36, 47, 54, 57]). On the other hand, several authors have fuzzified notions
like monoids [36], trees [22, 28], and algebras [46, 70–72, 74].

In the sequel, we briefly describe the contents of the chapter. First, we
introduce basic notions like (bounded distributive) lattices and the more par-
ticular class of De Morgan algebras. We show that the collection of De Morgan
algebras coincides with the family of semirings with complement function. We
define the concept of fuzzy languages as formal power series over bounded dis-
tributive lattices. Then we deal with fuzzy recognizable languages over finite
(resp. infinite) words obtained as behaviors of multi-valued (resp. multi-valued
Büchi and Muller) automata. An MSO logic characterization of fuzzy recog-
nizable languages is also provided. Next, we briefly investigate fuzzy languages
over bounded �-monoids and residuated lattices. These are the most general
classes of fuzzy languages, but still they are special cases of power series.
Finally, we refer to practical applications of fuzzy languages. The material
concerning multi-valued automata over infinite words, De Morgan algebras,
and the MSO logic is contained in [22].

For monographs presenting fuzzy logic, fuzzy languages, and fuzzy au-
tomata, we refer the reader to [32, 35, 54, 74]. Our list of references includes
only these ones which are connected with the context of the chapter. In [1, 35,
54], there are extended lists of references until 2002. Also, the journal Fuzzy
Sets and Systems publishes periodically an article entitled Recent Literature,
and it presents the latest developments in fuzzy theory (see for instance vol-
ume 159 (2008), pages 857–865).

2 Lattices and Fuzzy Languages

A partially ordered set (L,≤) is called a lattice if the supremum (called also
least upper bound or join) a ∨ b and the infimum (called also greatest lower
bound or meet) a ∧ b exist in L for every a, b ∈ L (see [21]). A lattice (L,≤)
(which is simply denoted by L if the order relation is understood) is distributive
if it satisfies the equation a∧ (b∨ c) = (a∧ b)∨ (a∧ c) (which in turn implies
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)) for every a, b, c ∈ L. The supremum (resp.
the infimum) of every A ⊆ L is denoted (if it exists in L) by ∨A (resp. ∧A).
If A = (ai | i ∈ I), then we also use the notation

∨
i∈I ai (resp.

∧
i∈I ai). A

lattice L is bounded if it contains two distinguished elements 0, 1 ∈ L such that
0 ≤ a ≤ 1 for every a ∈ L. Furthermore, a lattice L is called complete if ∨A
and ∧A exist for every A ⊆ L. Observe that a complete lattice is also bounded
with 0 = ∨∅ and 1 = ∧∅. It is well known that if L is any distributive lattice
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and A ⊆ L a finite subset, then the sub-lattice LA of L generated by A is finite.
In fact, if A′ = {∧B | B ⊆ A}, then we have LA = {∨C | C ⊆ A′} due to
the distributivity law. Obviously, every finite lattice L is complete. A bounded
distributive lattice L forms a semiring 〈L,∨,∧, 0, 1〉 whose operations are both
idempotent. An element a 
= 0 of a lattice L is called join-irreducible if a = b∨c
implies a = b or a = c for every b, c ∈ L. We denote by J(L) the set of all
join-irreducible elements of L. If the lattice L is finite, then

a = ∨{b ∈ J(L) | b ≤ a}

for every a ∈ L. Moreover, if L is distributive, then every join-irreducible
element a ∈ L is prime, i.e., whenever a ≤ b ∨ c with b, c ∈ L, then a ≤ b or
a ≤ c (cf. [6, 16]).

Let (L,≤) be a bounded distributive lattice and − : L → L be any function
with 0 = 1 and 1 = 0. Then we call − a (general) negation function and
(L,≤,− ) a bounded distributive lattice with negation function. Note that every
bounded distributive lattice L can be equipped with a negation function −

by letting for instance 0 = 1 and x = 0 for every x ∈ L \ {0}. De Morgan
algebras, Heyting algebras, and variants of pseudo-complemented lattices are
well-investigated classes of distributive lattices with negation function (see
[3, 16]). Recently, De Morgan algebras have been investigated intensively for
multi-valued model checking (see [13, 31, 39]). More precisely, a De Morgan
(or quasi-Boolean) algebra is a distributive lattice (L,≤,− ) with a complement
mapping − satisfying the involution a = a and De Morgan laws, i.e., a ∨ b =
a ∧ b and a ∧ b = a ∨ b for every a, b ∈ L. Then a ≤ b implies b ≤ a for
every a, b ∈ L. Furthermore, if L is bounded, then 0 = 1 and 1 = 0, i.e., the
function − is a negation function. Moreover, the mapping − : (L,≤) → (L,≥)
is an order-isomorphism. Hence, if (ai | i ∈ I) ⊆ L is a family of elements of
L for which

∨
i∈I ai exists, then

∨
i∈I ai =

∧
i∈I ai. For instance, the lattice

([0, 1],≤,− ) with ≤ the usual order of real numbers, and a = 1− a for every
a ∈ [0, 1] is a De Morgan algebra. The induced semiring 〈[0, 1],max, min, 0, 1〉 is
referred to as the fuzzy semiring. In the sequel, without any further notation,
for every De Morgan algebra (L,≤,− ), we require the lattice L to be bounded.
On the other hand, every bounded distributive lattice can be endowed with a
negation function, therefore, lattices with negation function constitute a much
larger class than De Morgan algebras. In particular, any bounded distributive
lattice which is not anti-isomorphic to itself, does not have a complement
operation, and thus cannot be structured to a De Morgan algebra.

Next, we investigate the relationship between De Morgan algebras and
semirings. Given a semiring 〈S, +, ·, 0, 1〉, a mapping f : S → S is called a
complement function, if it satisfies the following statements:

(i) f is an involution, i.e., f(f(a)) = a for every a ∈ S.
(ii) f is a monoid morphism from 〈S, +, 0〉 to 〈S, ·, 1〉, i.e., f(0) = 1 and

f(a + b) = f(a) · f(b) for every a, b ∈ S.
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It is easily seen that f(1) = 0 and f(a · b) = f(a) + f(b) for every a, b ∈ S,
hence f is a monoid isomorphism from 〈S, +, 0〉 to 〈S, ·, 1〉 and from 〈S, ·, 1〉 to
〈S, +, 0〉. Every De Morgan algebra (L,≤,− ) induces a semiring 〈L,∨,∧, 0, 1〉
with complement mapping −, therefore, the following result concludes that
De Morgan algebras and semirings with complement function coincide. This
indicates the relation between the MSO logic over De Morgan algebras (see
Sect. 3.3) and semirings (see [18, 23, 20]).

Proposition 2.1 ([22]). Let 〈S, +, ·, 0, 1〉 be a semiring with complement
function f . For every a, b ∈ S, we put a ≤ b iff a + b = b. Then (S,≤, f)
is a De Morgan algebra.

Proof. We have f(0) = 1, f is an involution, f(a + b) = f(a) · f(b) and
f(a · b) = f(a) + f(b). Hence, 0 · 0 = 0 implies 1 + 1 = 1, so 〈S, +, 0〉,
and hence also 〈S, ·, 1〉 are idempotent. Thus, ≤ is a partial order on S (see
Proposition 20.19 in [30]) and a+ b is the supremum of a and b in this partial
order. Moreover, 0 ≤ a for every a ∈ S, and a · 0 = 0 implies f(a) + 1 = 1, so
f(a) ≤ 1, showing also a ≤ 1 for every a ∈ S.

Next, observe that if a ≤ b, then by distributivity we have a · c ≤ b · c for
every a, b, c ∈ S. We show that a · b is the infimum of a and b in (S,≤) for
every a, b ∈ S. Since a ≤ 1, the previous remark implies a · b ≤ b and similarly
a · b ≤ a. Now if c ∈ S with c ≤ a and c ≤ b, then c = c · c ≤ a · c ≤ a · b,
proving that a·b = a∧b. Hence, (S,≤) is a distributive lattice with + being the
operation supremum and · being the infimum. Moreover, (S,≤) is bounded,
and f is a complement mapping satisfying De Morgan laws. Thus, the proof
is completed. �

The interested reader should find further characterizations of bounded
distributive lattices by means of semirings in Example 1.5 of [30].

Given two lattices (L,≤) and (L′,≤), a mapping f : L → L′ is a lattice
morphism if it preserves suprema and infima, i.e., for every a, b ∈ L

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).

Then a ≤ b implies f(a) ≤ f(b) for every a, b ∈ L. Furthermore, if (L,≤) and
(L′,≤) are bounded distributive lattices, then a lattice morphism f : L → L′

satisfying f(0) = 0 and f(1) = 1 is a semiring morphism from 〈L,∨,∧, 0, 1〉
to 〈L′,∨,∧, 0, 1〉.

Now we turn to fuzzy sets originally introduced by Zadeh in [78]. Given a
non-empty set X, a fuzzy set A in X (or a fuzzy subset A of X) is defined
by a membership function

fA : X → [0, 1].

A fuzzy subset of a free monoid is called a fuzzy language [40]. Thus, a fuzzy
language is nothing else but a formal power series over the fuzzy semiring
〈[0, 1],max, min, 0, 1〉. So far, the term fuzzy language has been also used for
power series over lattices, residuated lattices, and �-monoids (see Sect. 4).
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Here, we deal with fuzzy languages over bounded distributive lattices. More
precisely, let S be a set and L be a bounded distributive lattice. A formal power
series (over S and L) is a mapping r : S → L. Such a series is called (finitary)
fuzzy language (resp. infinitary fuzzy language) over some finite alphabet Σ if
S = Σ∗ (resp. S = Σω, i.e., the set of all infinite words over Σ). Subsequently,
we will only need the cases where S = Σ∗ or S = Σω. The support supp(r) of
a series r over S and L is defined as usually by supp(r) = {s ∈ S | (r, s) 
= 0},
and the image of r is the set {l ∈ L | ∃s ∈ S : (r, s) = l}. The collection
L〈〈S〉〉 of all power series over S and L is itself a bounded distributive lattice
(L〈〈S〉〉,≤); for r, r′ ∈ L〈〈S〉〉 the partial order ≤ is determined by r ≤ r′ iff
(r, s) ≤ (r′, s) for every s ∈ S. Then the supremum r ∨ r′ and the infimum
r ∧ r′ are defined elementwise by (r ∨ r′, s) = (r, s) ∨ (r′, s) and (r ∧ r′, s) =
(r, s)∧(r′, s) for every s ∈ S. Furthermore, for every k ∈ L, the scalar infimum
k ∧ r is determined by (k ∧ r, s) = k ∧ (r, s) for every s ∈ S. If (L,≤,− ) is
a bounded distributive lattice with negation function (resp. a De Morgan
algebra), then (L〈〈S〉〉,≤,− ) constitutes also a bounded distributive lattice
with negation function (resp. a De Morgan algebra); for every r ∈ L〈〈S〉〉 its
negation r ∈ L〈〈S〉〉 is defined by (r, s) = (r, s) for every s ∈ S.

Assume that (L,≤) and (L′,≤) are two distributive lattices, and let f :
L → L′ be any mapping. Then f is extended to a mapping f : L〈〈S〉〉 →
L′〈〈S〉〉 in the following way. For every r ∈ L〈〈S〉〉, the series f(r) ∈ L′〈〈S〉〉 is
determined by (f(r), s) = f((r, s)) for every s ∈ S.

3 Fuzzy Recognizability over Bounded Distributive
Lattices

We consider the concept of fuzzy recognizable languages obtained as beha-
viors of weighted automata over bounded distributive lattices. Such automata
are called multi-valued, and they have recently contributed to multi-valued
logics [22] and multi-valued model checking employing distributive lattices
[10, 39]. Several other names occur in the literature for automata over lattices,
like fuzzy automaton, max-min automaton, L-fuzzy automaton, and lattice
automaton depending on the properties of the underlying lattice (see, for
instance, [43, 54]).

First, we deal with fuzzy recognizable languages over finite words. For these
languages a Kleene–Schützenberger theorem is obtained as a special case of
the corresponding theorem for recognizable series over commutative semirings.
Then we show that fuzzy recognizable languages have an elegant character-
ization, namely they are written as fuzzy recognizable step languages. This
enables us to give short proofs for well-known results concerning multi-valued
automata. More precisely, we show that:

(i) For every multi-valued automaton, we can effectively construct an equiv-
alent minimum trim deterministic one.
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(ii) The equivalence problem for multi-valued automata is decidable.
(iii) A pumping lemma holds for fuzzy recognizable languages.
(iv) A fuzzy language is recognizable iff it has finite image and each of its

cut languages is recognizable.

It is worth noting that these results do not hold in general for weighted au-
tomata over arbitrary semirings. Next, we introduce Büchi and Muller multi-
valued automata working on infinite words. As in the finitary case, we show
that fuzzy Büchi recognizable languages can be written as fuzzy Büchi recog-
nizable step languages. Using this simple characterization, we give elegant
proofs for two important results. Namely, the classes of fuzzy Büchi and fuzzy
Muller recognizable languages coincide, and a Kleene theorem holds for them.
Moreover, we introduce a multi-valued MSO logic and we show the funda-
mental theorem of Büchi, i.e., fuzzy definable languages over infinite words
coincide with fuzzy Büchi recognizable languages. For the rest of this sec-
tion, Σ will denote an arbitrary finite alphabet and L an arbitrary bounded
distributive lattice.

3.1 Fuzzy Recognizability over Finite Words

We start with the concept of multi-valued automata.

Definition 3.1. A multi-valued automaton (MVA for short) over Σ and L is
a quadruple A = (Q, in, wt, out), where Q is the finite state set, in : Q → L is
the initial distribution, wt : Q×Σ×Q → L is the mapping assigning weights
to the transitions of the automaton, and out : Q → L is the final distribution.

Let w = a0 . . . an−1 ∈ Σ∗ where a0, . . . , an−1 ∈ Σ. A path of A over w
is a sequence Pw = (ti)0≤i≤n−1 of transitions, such that ti = (qi, ai, qi+1) ∈
Q × Σ × Q for every 0 ≤ i ≤ n − 1. The weight of Pw is defined by

weight(Pw) = in(q0) ∧
∧

0≤i≤n−1

wt(ti) ∧ out(qn).

We shall denote by LA the finite sub-lattice of L generated by {0, 1}∪{in(q) |
q ∈ Q}∪{out(q) | q ∈ Q}∪{wt(t) | t ∈ Q×Σ×Q}. Clearly weight(Pw) ∈ LA.
The behavior of A is the fuzzy language

‖A‖ : Σ∗ → L

which is defined by
(‖A‖, w) =

∨

Pw

weight(Pw)

for w ∈ Σ∗, where the supremum is taken over all paths Pw of A over w. It
should be clear that (‖A‖, ε) =

∨
q∈Q in(q)∧out(q). Again, (‖A‖, w) ∈ LA for

every w ∈ Σ∗.
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Two multi-valued automata A and A′ over Σ and L are called equivalent
if they have the same behavior, i.e., ‖A‖ = ‖A′‖.

A fuzzy language r ∈ L〈〈Σ∗〉〉 is said to be fuzzy recognizable over Σ and
L if there is an MVA A such that r = ‖A‖. We denote the family of all
fuzzy recognizable languages over Σ and L by Lrec〈〈Σ∗〉〉. The reader should
observe that an MVA over Σ and L is just a weighted automaton over Σ and
the semiring 〈L,∨,∧, 0, 1〉 in the sense of [24, 38, 67] (see also Theorems 2.2
and 3.6 in [27]). Thus, the class Lrec〈〈Σ∗〉〉 coincides with the collection of all
recognizable series over Σ and the semiring L. Therefore, as a consequence of
the general Kleene–Schützenberger theorem for series over arbitrary semirings
(see, for instance, [65]), we immediately obtain its reformulation for fuzzy
languages as follows. Let us first reconsider the rational operations of formal
power series in the setting of fuzzy languages. Let r, r′ ∈ L〈〈Σ∗〉〉. The Cauchy
product rr′ of r and r′ is a fuzzy language in L〈〈Σ∗〉〉 which is determined by
(rr′, w) =

∨
uu′=w(r, u)∧(r′, u′) for every w ∈ Σ∗. If r is proper, i.e., (r, ε) = 0,

then we define the star r∗ ∈ L〈〈Σ∗〉〉 of r by (r∗, w) = ∨{(r, u1)∧· · ·∧ (r, un) |
u1 . . . un = w, u1, . . . , un ∈ Σ∗} for every w ∈ Σ∗. The rational operations of
fuzzy languages in L〈〈Σ∗〉〉 are the supremum, the Cauchy product, and the
star. We denote by Lrat〈〈Σ∗〉〉 the least class of fuzzy languages from L〈〈Σ∗〉〉
which contains the polynomials, i.e., the fuzzy languages with finite support,
and is closed under the rational operations.

Theorem 3.2 (Kleene–Schützenberger). Let Σ be an alphabet and L be
a bounded distributive lattice. Then Lrec〈〈Σ∗〉〉 = Lrat〈〈Σ∗〉〉.

Let Σ,Δ be alphabets and h : Σ∗ → Δ∗ be any morphism. Then we can
define the mapping h−1 : L〈〈Δ∗〉〉 → L〈〈Σ∗〉〉 (see [21]); if L is a complete
lattice or h is non-deleting, then the mapping h : L〈〈Σ∗〉〉 → L〈〈Δ∗〉〉 is also
well defined.

Proposition 3.3 ([24]). Let Σ,Δ be two alphabets and h : Σ∗ → Δ∗ be any
morphism. Then:

(i) h−1 : L〈〈Δ∗〉〉 → L〈〈Σ∗〉〉 preserves fuzzy recognizability.
(ii) If h is non-deleting, then h : L〈〈Σ∗〉〉 → L〈〈Δ∗〉〉 preserves fuzzy recogniz-

ability.

Recall that for every language R ⊆ Σ∗, its characteristic series 1R ∈
L〈〈Σ∗〉〉 is defined by (1R, w) = 1 if w ∈ R, and 0 otherwise, for every w ∈ Σ∗.
Here, we call 1R the characteristic fuzzy language of R. Every unweighted
finite automaton with input alphabet Σ can be considered in the obvious
way, as an MVA over Σ and L with weights only 0 and 1. Therefore, for
every recognizable language R, its characteristic language 1R is fuzzy recog-
nizable. Assume now that R1, . . . , Rn ⊆ Σ∗ are recognizable languages and
k1, . . . , kn ∈ L. Clearly, the fuzzy language ki ∧ 1Ri is recognizable for every
1 ≤ i ≤ n. Then by Theorem 3.2, the fuzzy language
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r =
∨

1≤i≤n

ki ∧ 1Ri

is also recognizable. Such a language r is called a fuzzy recognizable step lan-
guage. The class of recognizable languages is closed under the Boolean opera-
tions; hence, for every fuzzy recognizable step language r =

∨
1≤i≤n ki ∧ 1Ri ,

we may assume that the family (Ri | 1 ≤ i ≤ n) forms a partition of Σ∗.
Next, we show that fuzzy recognizable languages and fuzzy recognizable step
languages coincide. This important result has been firstly proved in [19] for
power series over locally finite semirings. Therefore, it can be applied to the
class of fuzzy languages over bounded distributive lattices (recall that for
every bounded distributive lattice L, the semiring 〈L,∨,∧, 0, 1〉 is locally fi-
nite). However, here we give an alternative proof based on lattices. The same
proof has been also used in [22] for the corresponding result for infinitary
fuzzy languages (see Sect. 3.2). We shall need the following lemma which is
easily proved by a standard automata construction.

Lemma 3.4. Let (L,≤) and (L′,≤) be two bounded distributive lattices and
f : L → L′ be a lattice morphism. Then for every fuzzy recognizable language
r in L〈〈Σ∗〉〉, the fuzzy language f(r) ∈ L′〈〈Σ∗〉〉 is again recognizable.

Theorem 3.5. Let Σ be an alphabet and L be a bounded distributive lattice.
Then a fuzzy language r ∈ L〈〈Σ∗〉〉 is recognizable iff it is a fuzzy recognizable
step language.

Proof. Let r be fuzzy recognizable and A = (Q, in, wt, out) be an MVA over
Σ and L such that r = ‖A‖ and LA = {k1, . . . , kn}. We set Ri = {w ∈ Σ∗ |
(r, w) = ki} for every 1 ≤ i ≤ n. Then

r =
∨

1≤i≤n

ki ∧ 1Ri .

We shall show that the languages Ri (1 ≤ i ≤ n) are recognizable. Let
B = ({0, 1},≤) be the two-valued Boolean lattice. For every join-irreducible
element p of LA, we define a mapping fp : LA → {0, 1} by putting

fp(a) =

{
1 if p ≤ a,

0 otherwise

for every a ∈ L.
We claim that fp is a lattice morphism. Indeed, p 
= 0; hence, fp(0) = 0 and

fp(1) = 1. Next, note that if a, a′ ∈ LA and fp(a∨a′) = 1, then p ≤ a∨a′ which
implies p ≤ a or p ≤ a′ since p is prime, proving fp(a ∨ a′) = fp(a) ∨ fp(a′).
Clearly, fp(a∧a′) = fp(a)∧fp(a′). By Lemma 3.4, the fuzzy language fp(r) of
B〈〈Σ∗〉〉 is recognizable and, therefore, the language supp(fp(r)) = {w ∈ Σ∗ |
p ≤ (r, w)} is recognizable. Now let 1 ≤ i ≤ n. Since the element ki of LA is
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the supremum of the join-irreducible elements of LA below ki, the language
Ri is obtained as the intersection of the languages supp(fp(r)) (p ≤ ki and
join-irreducible) and of the complements of the languages supp(fp(r)) (p � ki

and join-irreducible). The class of recognizable languages is closed under the
Boolean operations. Therefore, we conclude that Ri is a recognizable language,
as required.

The converse is also true as already noted. �

Observe that the proof of the above theorem is effective. Indeed, starting
from the weights of the multi-valued automaton A, we compute the sub-lattice
LA in finitely many steps. Then following our proof, we obtain finite automata
for the languages Ri (1 ≤ i ≤ n).

Due to Theorem 3.5, in the sequel, we write every fuzzy recognizable lan-
guage as a fuzzy recognizable step language. This has very interesting conse-
quences. Firstly, generalizing Lemma 3.4, we show that fuzzy recognizability
is preserved even by arbitrary mappings between lattices.

Proposition 3.6. Let (L,≤) and (L′,≤) be two bounded distributive lattices
and f : L → L′ be any mapping. Then for every fuzzy recognizable language
r ∈ L〈〈Σ∗〉〉 the language f(r) ∈ L′〈〈Σ∗〉〉 is again fuzzy recognizable.

Proof. Let r =
∨

1≤i≤n ki ∧ 1Ri . Then f(r) =
∨

1≤i≤n f(ki) ∧ 1Ri and so f(r)
is fuzzy recognizable. �

Next, we get a classical result from fuzzy language theory. More precisely,
given a fuzzy language r ∈ L〈〈Σ∗〉〉 and l ∈ L, the l-cut of r is the language
r≥l = {w ∈ Σ∗ | (r, w) ≥ l}. Furthermore, for every l ∈ L, we let r=l =
r−1(l) = {w ∈ Σ∗ | (r, w) = l}.

Proposition 3.7 ([43]). For every fuzzy language r ∈ L〈〈Σ∗〉〉, the following
statements are equivalent:

(i) r is fuzzy recognizable.
(ii) r has finite image, and for every l ∈ L, r=l is a recognizable language.
(iii) r has finite image, and for every l ∈ L, r≥l is a recognizable language.

Proof. The equivalence of (i) and (ii) is immediate by Theorem 3.5. We show
the implication (i) ⇒ (iii). Let r =

∨
1≤i≤n ki ∧ 1Ri with pairwise disjoint

recognizable languages Ri. Consider an l ∈ L. If there is no i ∈ {1, . . . , n} such
that ki ≥ l, then r≥l = ∅. Otherwise, let ki1 , . . . , kim (1 ≤ i1 < · · · < im ≤ n)
be all the values of r with ki1 , . . . , kim ≥ l. Then r≥l = Ri1 ∪ · · · ∪Rim , hence
r≥l is recognizable. Finally, assume that statement (iii) is true. For every
l ∈ L, we have r=l = r≥l \

⋃
l′∈L,l<l′ r≥l′ , and thus r=l is recognizable which

concludes our proof. �

In the sequel, we deal with the determinization and minimization prob-
lems of multi-valued automata. These problems do not always have a so-
lution for weighted automata over arbitrary semirings (see [12, 34, 52]) or
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even over residuated lattices and �-monoids (see [33, 42]). However, due to
the local finiteness property of distributive lattices, we show that for every
multi-valued automaton we can effectively construct an equivalent trim deter-
ministic one. The determinization problem for fuzzy automata over ([0, 1],≤)
was first solved in [51]. Borchardt in [7] showed that weighted tree automata
over locally finite semirings can be effectively determinized (see [34] for the
word case). A reformulation of the same method is used in [42] for fuzzy au-
tomata over bounded �-monoids, and in [5, 43] (resp. in [33]) for the special
case of fuzzy automata over bounded distributive lattices (resp. over resid-
uated lattices). In all the aforementioned papers, the authors followed the
well-known subset construction (or even the accessible subset construction in
[33]) in the weighted setting. Here, we use the result of Theorem 3.5 and we
reduce the determinization of multi-valued automata to the determinization
of classical finite automata (as indicated in [19]). Then we minimize the trim
deterministic multi-valued automaton. For this minimization procedure, we
use the classical reduction algorithm (see [24]). In [4, 68] (resp. in [58]), the
size (number of states) of a non-deterministic fuzzy automaton (over the fuzzy
semiring) is reduced by means of equivalences (resp. congruences) on the set
of states.

A deterministic multi-valued automaton (DMVA for short) over Σ and L
is an MVA A = (Q, in, wt, out) such that the following two conditions hold:

(i) There is exactly one q0 ∈ Q such that in(q0) = 1 and for every p ∈ Q with
p 
= q0 we have in(p) = 0.

(ii) For every q ∈ Q and σ ∈ Σ, there is at most one state q′ ∈ Q such that
wt(q, σ, q′) = 1 and for every p ∈ Q with p 
= q′ we have wt(q, σ, p) = 0.

Clearly, for a DMVA A, the function wt can be equivalently expressed by a
(partial) function δ : Q×Σ → Q in the obvious way. Therefore, we will denote
in the sequel a DMVA by (Q, q0, δ, out) with q0 ∈ Q and δ : Q × Σ → Q as a
partial function. Thus, a DMVA A can be considered as a classical determin-
istic automaton with weights attached only to the final states. The DMVA
A = (Q, q0, δ, out) is called accessible if for every state q ∈ Q there exists a
word w ∈ Σ∗ such that δ(q0, w) = q. Furthermore, A is co-accessible if for
every q ∈ Q there exists w ∈ Σ∗ such that out(δ(q, w)) > 0. A DMVA is called
trim if it is accessible and co-accessible. Observe that in a DMVA A, for every
word w = a0 . . . an−1 ∈ Σ∗ and for every path Pw = (pi, ai, pi+1)0≤i≤n−1 of
A over w such that δ(pi, a) = pi+1, we have

weight(Pw) =

{
out(pn) if p0 = q0,

0 otherwise.

Theorem 3.8. Let Σ be an alphabet and L be a bounded distributive lattice.
For every MVA A = (Q, in, wt, out) over Σ and L, we can effectively construct
a trim DMVA A′ over Σ and L such that ‖A′‖ = ‖A‖.
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Proof. Let ‖A‖ =
∨

1≤i≤n ki ∧ 1Ri with pairwise disjoint recognizable lan-
guages Ri. Clearly, we may assume that ki 
= 0 for every 1 ≤ i ≤ n. Let
Ai = (Qi, Σ, q0i, δi, Fi) (1 ≤ i ≤ n) be a complete deterministic (i.e., δi is a
total mapping) finite automaton accepting Ri. Now we perform a classical con-
struction of an automaton accepting a union of languages. Consider the finite
automaton Ã = (Q̃, Σ, q0, δ̃, F̃ ) with Q̃ = Q1 × · · · × Qn, q0 = (q01, . . . , q0n),
and F̃ =

⋃
1≤i≤n Q1 ×· · ·×Qi−1 ×Fi ×Qi+1 ×· · ·×Qn. The (total) mapping

δ̃ : Q̃ × Σ → Q̃ is determined by δ̃((q1, . . . , qn), a) = (δ1(q1, a), . . . , δn(qn, a))
for every (q1, . . . , qn) ∈ Q̃, a ∈ Σ. Obviously, Ã is deterministic with be-
havior R1 ∪ · · · ∪ Rn. Now let A = (Q, Σ, q0, δ, F ) be the trim part of Ã
(see [24]). We consider the DMVA A′ = (Q, q0, δ, out) over Σ and L with
out((q1, . . . , qn)) =

∨
1≤i≤n outi(qi) where

outi(qi) =

{
ki if qi ∈ Fi,

0 otherwise.

The finite automaton A is accessible, and thus the DMVA A′ is also accessible.
Moreover, A′ is trim. Indeed, let (q1, . . . , qn) ∈ Q. Since A is co-accessible
there is a w ∈ Σ∗ such that δ((q1, . . . , qn), w) ∈ F, i.e., there is an index
1 ≤ i ≤ n such that δi(qi, w) ∈ Fi which in turn implies that outi(δi(qi, w)) =
ki. In fact, since the languages Ri are pairwise disjoint, there is exactly one
index i with this property, and for every other 1 ≤ j ≤ n with j 
= i, we have
δj(qj , w) ∈ Qj \ Fj . Hence, out(δ((q1, . . . , qn), w)) = ki > 0. Now for every
w ∈ Σ∗,

(‖A′‖, w) = out
(
δ(q0, w)

)
= out

((
δ1(q01, w), . . . , δn(q0n, w)

))

=
∨

1≤i≤n

outi

(
δi(q0i, w)

)
=

∨

1≤i≤n

(ki ∧ 1Ri , w)

i.e., ‖A′‖ = ‖A‖ as required. �

Let A = (Q, q0, δ, out) and A′ = (Q′, q′0, δ
′, out′) be two DMVA over Σ

and L, and let ϕ : Q → Q′ be a mapping such that:

(i) ϕ(q0) = q′0.
(ii) If δ(q, a) exists, then δ′(ϕ(q), a) exists and ϕ(δ(q, a)) = δ′(ϕ(q), a) for

every q ∈ Q, a ∈ Σ.

Then ϕ is called a homomorphism from A to A′ and is denoted by ϕ : A → A′.
If out′(ϕ(q)) = out(q) for every q ∈ Q, then ϕ is termed a strong homomor-
phism. A bijective strong homomorphism ϕ is an isomorphism.

Lemma 3.9. Let A = (Q, q0, δ, out) and A′ = (Q′, q′0, δ
′, out′) be two equiv-

alent trim DMVA. Then there is at most one homomorphism ϕ : A → A′.
Every such homomorphism is surjective and strong.
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Proof. Assume that there are two homomorphisms ϕ : A → A′ and ψ : A →
A′. For every q ∈ Q, there exists a word w ∈ Σ∗ such that δ(q0, w) = q.
Then ϕ(q) = ϕ(δ(q0, w)) = δ′(ϕ(q0), w) = δ′(q′0, w). Similarly, we show that
ψ(q) = δ′(q′0, w), and thus ϕ(q) = ψ(q), i.e., ϕ = ψ. Next, we show that ϕ,
whenever it exists, is surjective and strong. Consider q′ ∈ Q′. Since A′ is
accessible, there is w ∈ Σ∗ with q′ = δ′(q′0, w). Moreover, there exists w′ ∈ Σ∗

such that 0 < out′(δ′(q′, w′)) = (‖A′‖, ww′) = (‖A‖, ww′). So, there exists
q ∈ Q with q = δ(q0, w). Therefore, ϕ(q) = ϕ(δ(q0, w)) = δ′(ϕ(q0), w) =
δ′(q′0, w) = q′, showing that ϕ is surjective. Keeping the same notations, we
have out′(q′) = (‖A′‖, w) = (‖A‖, w) = out(q) yielding that ϕ is a strong
homomorphism. �

For every r ∈ Lrec〈〈Σ∗〉〉, let TR(r) be the collection of all trim DMVA
accepting r. We define a pre-order ≤ in TR(r); for every A,A′ ∈ TR(r),
we set A′ ≤ A iff there exists an homomorphism ϕ : A → A′. We show
that if A ≤ A′ and A′ ≤ A, then A and A′ are isomorphic. Indeed, A ≤
A′ and A′ ≤ A imply that there exist homomorphisms ϕ′ : A′ → A, ϕ :
A → A′. Then ϕ′ ◦ ϕ : A → A, ϕ ◦ ϕ′ : A′ → A′ are also homomorphisms
and by Lemma 3.9, ϕ′ ◦ ϕ = 1A and ϕ ◦ ϕ′ = 1A′ where 1A and 1A′ are
the identity isomorphisms of A and A′, respectively, and ϕ is strong. So, ϕ is
an isomorphism. We conclude that the collection of the isomorphism classes
of all trim DMVA accepting r forms a partial order. Clearly, the question of
the existence (up to an isomorphism) of a minimum trim DMVA accepting
r arises. Here, minimum refers to a trim DMVA in TR(r) which has as few
states as any other automaton in TR(r). In the following, we show that such
a minimum trim DMVA accepting r, always can be constructed and is unique
up to isomorphism.

Given a fuzzy language r ∈ L〈〈Σ∗〉〉, we define an equivalence relation ≡r

on Σ∗ as follows. For every w1, w2 ∈ Σ∗, w1 ≡r w2 iff (r, w1w) = (r, w2w) for
every w ∈ Σ∗. It is clear that ≡r is a right congruence.

Proposition 3.10. The fuzzy language r ∈ L〈〈Σ∗〉〉 is recognizable iff the right
congruence ≡r has finite index.

Proof. Assume first that r is accepted by a trim DMVA A = (Q, q0, δ, out).
We define an equivalence relation ≡A on Σ∗ as follows. For every w1, w2 ∈ Σ∗,
w1 ≡A w2 iff δ(q0, w1) = δ(q0, w2). Obviously, ≡A is a right congruence, i.e.,
w1 ≡A w2 implies w1w ≡A w2w for every w ∈ Σ∗, and thus (r, w1w) =
(r, w2w); therefore, ≡A ⊆ ≡r. Since Q is finite, ≡A has finite index, hence ≡r

has also finite index.
Conversely, assume that ≡r has finite index and let [w] denote the equiv-

alence class of w ∈ Σ∗. We construct the accessible DMVA A′ = (Q′, [ε], δr,
outr) with Q′ = {[w] | w ∈ Σ∗}. The function δr is determined by δr([w], a) =
[wa] for every [w] ∈ Q′, a ∈ Σ, and outr([w]) = (r, w) for every [w] ∈ Q′. Then
‖A′‖ = r and thus r is fuzzy recognizable. By letting Qr = {[w] ∈ Q′ | ∃u ∈
Σ∗ : (r, wu) > 0}, we get an equivalent trim DMVA Ar = (Qr, [ε], δr, outr).

�
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Keeping the notations of the previous proof, assume now that r ∈ Lrec〈〈Σ∗〉〉
and let A = (Q, q0, δ, out) be a trim DMVA accepting r. Then for every q ∈ Q
there exists wq ∈ Σ∗ such that q = δ(q0, wq). If w′

q is another word such
that q = δ(q0, w

′
q), then [wq] = [w′

q]. We define a mapping ϕr : Q → Qr by
ϕ(q) = [wq]. Then ϕr : A → Ar is a homomorphism. Indeed, δ(q0, ε) = q0,

and thus ϕr(q0) = [ε]. Furthermore, let q ∈ Q and w ∈ Σ∗ such that δ(q, w)
exists. Then ϕr(δ(q, w)) = ϕr(δ(δ(q0, wq), w)) = ϕr(δ(q0, wqw)) = [wqw] =
δ′([ε], wqw) = δ′([wq], w) = δ′(ϕr(q), w) proving our claim. Hence, we have
obtained the following result.

Theorem 3.11. Let Σ be an alphabet and L be a bounded distributive lattice.
For every fuzzy recognizable language r ∈ Lrec〈〈Σ∗〉〉, there exists a minimum
trim DMVA Ar with ‖Ar‖ = r.

Any trim DMVA A which is isomorphic to Ar will be also called a min-
imum automaton for r. Next, we show that for every fuzzy recognizable lan-
guage r ∈ Lrec〈〈Σ∗〉〉, we can effectively construct a minimum automaton
accepting r. Let us assume that A = (Q, q0, δ, out) is a trim DMVA with
behavior ‖A‖ = r. We define an equivalence relation ≡ on Q as follows: for
every q, q′ ∈ Q, q ≡ q′ iff out(δ(q, w)) = out(δ(q′, w)) for every w ∈ Σ∗. Then
A is called reduced if q ≡ q′ implies q = q′ for every q, q′ ∈ Q. It is easy to
see that A is reduced iff the strong homomorphism ϕr : A → Ar is injective.
Since ϕr is also surjective, we conclude the following proposition.

Proposition 3.12. A DMVA A accepting r ∈ Lrec〈〈Σ∗〉〉 is minimum iff it is
trim and reduced.

The previous proposition actually points out a way to construct a min-
imum DMVA accepting r: we start from a trim DMVA A = (Q, q0, δ, out)
with ‖A‖ = r and we merge its equivalent states. Therefore, we prove that
the equivalence q ≡ q′ is decidable for every pair of states q, q′ ∈ Q, and
we give an algorithm which uses at most card(Q) iterations. To this end, we
introduce the equivalence relations ≡n (n ≥ 0) on Q, given by q ≡n q′ iff
out(δ(q, w)) = out(δ(q′, w)) for every w ∈

⋃
0≤k≤n Σk. Obviously, ≡0 ⊇ ≡1 ⊇

· · · ⊇ ≡n ⊇ · · · hence ≡ =
⋂

n≥0 ≡n . We show that if there exists an n ≥ 0
such that ≡n = ≡n+1, then ≡n+1 = ≡n+l for every l ≥ 2. Indeed, assume
that ≡n = ≡n+1. Then for every q, q′ ∈ Q,

q ≡n+1 q′

⇐⇒ out
(
δ(q, w)

)
= out

(
δ(q′, w)

)
for every w ∈

⋃

0≤k≤n+1

Σk

⇐⇒ out
(
δ(q, au)

)
= out

(
δ(q′, au)

)
for every a ∈ Σ, u ∈

⋃

0≤k≤n

Σk
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⇐⇒ out
(
δ(δ(q, a), u)

)
= out

(
δ
(
δ(q′, a), u

))

for every a ∈ Σ, u ∈
⋃

0≤k≤n

Σk

⇐⇒ δ(q, a) ≡n δ(q′, a) for every a ∈ Σ

⇐⇒ δ(q, a) ≡n+1 δ(q′, a) for every a ∈ Σ (by hypothesis)

⇐⇒ out
(
δ
(
δ(q, a), u

))
= out

(
δ
(
δ(q′, a), u

))

for every a ∈ Σ, u ∈
⋃

0≤k≤n+1

Σk

⇐⇒ q ≡n+2 q′.

Therefore, by induction, we have ≡n+1 = ≡n+l for every l ≥ 2. Now we
let e0, e1, . . . denote the numbers of the equivalence classes of ≡0,≡1, . . . ,
respectively. Then e0 ≤ e1 ≤ · · · ≤ card(Q). Thus, there exists an n ≤ card(Q)
such that en = en+1, hence ≡n = ≡n+1 and so ≡ = ≡n. We conclude that
the equivalence q ≡ q′ is decidable in at most card(Q) iterations.

We complete this subsection with two further important consequences of
Theorem 3.5. First, a pumping lemma is valid within the class Lrec〈〈Σ∗〉〉.

Proposition 3.13. Let r ∈ Lrec〈〈Σ∗〉〉. There exists an integer m > 0 such
that for every w ∈ Σ∗ with |w| > m, the word w can be written as w = w1uw2

with |u| > 0 and |w1w2| < m, and (r, w1u
kw2) = (r, w) for every k ≥ 0.

Proof. Let r =
∨

1≤i≤n ki ∧ 1Ri . Then the pumping lemma holds for every
recognizable language Ri (1 ≤ i ≤ n), and let mi be the corresponding integer
for Ri. We conclude our proof by letting m = max{m1, . . . , mn}. �

A pumping lemma for fuzzy recognizable languages over the interval [0, 1],
has been proved in [8] by means of fuzzy monoid recognizability.

Now we show that the equivalence problem is decidable for multi-valued
automata over Σ and L. In fact, we prove the following stronger result.

Theorem 3.14. Let Σ be an alphabet and L be a bounded distributive lattice.
For every two fuzzy recognizable languages r, r′ ∈ Lrec〈〈Σ∗〉〉, the relations
r ≤ r′ and r = r′ are decidable.

Proof. Let r =
∨

1≤i≤n ki ∧ 1Ri with pairwise disjoint recognizable languages
Ri and r′ =

∨
1≤j≤m k′

j∧1R′
j

with pairwise disjoint recognizable languages R′
j .

Clearly, our decidability problems reduce to well-known decidability problems
for recognizable languages. For instance in case of equality, we check that
whenever Ri ∩ R′

j 
= ∅ then ki = k′
j . �

3.2 Fuzzy Recognizability over Infinite Words

In this subsection, we introduce Büchi and Muller multi-valued automata
consuming infinite words. We show that both models accept the same class
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of infinitary fuzzy languages, and a Kleene-type theorem holds for this class.
The material of the present and the next subsection is based on [22].

Definition 3.15.

(a) A multi-valued Muller automaton (MVMA for short) over Σ and L is a
quadruple A = (Q, in, wt,F), where Q is the finite state set, in : Q → L
is the initial distribution, wt : Q × Σ × Q → L is the mapping assigning
weights to the transitions of the automaton, and F ⊆ P(Q) is the family
of final state sets.

(b) An MVMA A is a multi-valued Büchi automaton (MVBA for short) if
there is a set F ⊆ Q such that F = {S ⊆ Q | S ∩ F 
= ∅}.

Let w = a0a1 . . . ∈ Σω. A path of A over w is an infinite sequence of
transitions Pw = (ti)i≥0, so that ti = (qi, ai, qi+1) ∈ Q × Σ × Q for every
i ≥ 0. The weight of Pw is defined by

weight(Pw) = in(q0) ∧
∧

i≥0

wt(ti).

Observe that weight(Pw) is well-defined since weight(Pw) ∈ LA, where LA is
the finite sub-lattice of L generated by {0, 1} ∪ {in(q) | q ∈ Q} ∪ {wt(t) | t ∈
Q × Σ × Q}. The path Pw is called successful if the set of states that appear
infinitely often along Pw constitutes a final state set. The behavior of A is the
infinitary fuzzy language

‖A‖ : Σω → L

which is defined by
(‖A‖, w) =

∨

Pw

weight(Pw)

for w ∈ Σω, where the supremum is taken over all successful paths Pw of
A over w. Since LA is finite, (‖A‖, w) exists and (‖A‖, w) ∈ LA for every
w ∈ Σω.

An infinitary fuzzy language r ∈ L〈〈Σω〉〉 is said to be fuzzy Muller recog-
nizable (resp. fuzzy Büchi recognizable or fuzzy ω-recognizable) if there is
an MVMA (resp. an MVBA) A so that r = ‖A‖. We denote the family
of all fuzzy Muller recognizable (resp. fuzzy ω-recognizable) languages over Σ
and L by LM-rec〈〈Σω〉〉 (resp. Lω-rec〈〈Σω〉〉). It should be clear that the class
LM-rec〈〈Σω〉〉 (resp. Lω-rec〈〈Σω〉〉) coincides with the class of Muller recogniz-
able (resp. ω-recognizable) series over Σ and the semiring 〈L,∨,∧, 0, 1〉 (see
[22, 23]). Clearly Lω-rec〈〈Σω〉〉 ⊆ LM-rec〈〈Σω〉〉. Later on, we shall prove that in
fact the two classes coincide.

Two multi-valued Muller (resp. Büchi) automata A and A′ over Σ and L
are called equivalent if ‖A‖ = ‖A′‖.

Given a language R ⊆ Σω, its characteristic infinitary fuzzy language 1R ∈
L〈〈Σω〉〉 is defined in a similar way as for finitary languages. Obviously, every
unweighted Büchi automaton with input alphabet Σ can be considered as an



Fuzzy Languages 497

MVBA over Σ and L with weights only 0 and 1. Therefore, we immediately
obtain the next proposition.

Proposition 3.16 ([23]). Let R ⊆ Σω be an ω-recognizable language. Then
the characteristic infinitary fuzzy language 1R ∈ L〈〈Σω〉〉 is ω-recognizable.

Assume now that R1, . . . , Rn ⊆ Σω are ω-recognizable languages, k1, . . . ,
kn ∈ L, and let

r =
∨

1≤i≤n

ki ∧ 1Ri .

Such a language r is called fuzzy ω-recognizable step language [23]. Actually
a fuzzy ω-recognizable step language is fuzzy ω-recognizable. Indeed, let us
assume that for every 1 ≤ i ≤ n we are given a Büchi automaton Ai =
(Qi, Ii, Δi,Fi) accepting Ri (see [56]). We fix an 1 ≤ i ≤ n. Then as already
noted above, Ai can be considered as an MVBA (Qi, ini, wti,Fi) over Σ and
L with behavior 1Ri . We consider the MVBA Ai = (Qi, ki ∧ ini, wti,Fi).
Obviously ‖Ai‖ = ki ∧ 1Ri . Now let A be the MVBA obtained as the disjoint
union of all Ai (1 ≤ i ≤ n). Clearly, ‖A‖ = r proving our claim.

Theorem 3.17 ([22]). Let Σ be an alphabet and L be a bounded distributive
lattice. Then the following statements are equivalent for every infinitary fuzzy
language r ∈ L〈〈Σω〉〉:

(i) r is fuzzy Muller recognizable.
(ii) r is fuzzy ω-recognizable.
(iii) r is a fuzzy ω-recognizable step language.

Proof. We show that (i) implies (iii). Let r ∈ LM-rec〈〈Σω〉〉 and A be an MVMA
accepting r. Then r =

∨
1≤i≤n ki ∧ 1Ri where LA = {k1, . . . , kn} and Ri =

{w ∈ Σω | (r, w) = ki} for every 1 ≤ i ≤ n. Following the proof of Theorem
3.5, we can show that the languages Ri (1 ≤ i ≤ n) are Muller recognizable,
and thus ω-recognizable, which in turn implies that r is a fuzzy ω-recognizable
step language.

The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are also true as already shown.
�

Observe that our proof above is effective (recall the discussion after The-
orem 3.5). In the sequel without any further notation, we write every fuzzy
ω-recognizable language r over Σ and L as r =

∨
1≤i≤n ki ∧ 1Ri .

Theorem 3.17 has very interesting consequences. Firstly, we can easily
obtain closure properties of fuzzy ω-recognizable languages.

Proposition 3.18. The class Lω-rec〈〈Σω〉〉 of fuzzy ω-recognizable languages
is closed under supremum, infimum, and scalar infimum.

Proof. Closure under supremum is immediate and closure under scalar infi-
mum is obtained by distributivity of L. Furthermore, for the closure under
infimum one has to recall that the class of ω-recognizable languages is closed
under intersection. �
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Consider now two alphabets Σ, Δ and a non-deleting homomorphism h :
Σ∗ → Δ∗. Then h can be extended to a mapping h : Σω → Δω by setting
h(a0a1 . . .) = h(a0)h(a1) . . . for every infinite word a0a1 . . . ∈ Σω. Let r ∈
L〈〈Σω〉〉 be an infinitary fuzzy language having finite image, and R ⊆ Σω. We
define the infinitary fuzzy language hR(r) ∈ L〈〈Δω〉〉 by

(
hR(r), u

)
=

∨

w∈h−1(u)∩R

(r, w)

for every u ∈ Δω. We denote the mapping hΣω simply by h. Furthermore, if
s ∈ L〈〈Δω〉〉, then the fuzzy language h−1(s) ∈ L〈〈Σω〉〉 is specified by

(
h−1(s), w

)
=

(
s, h(w)

)

for every w ∈ Σω.

Proposition 3.19.

(i) Let (L,≤) and (L′,≤) be two bounded distributive lattices and f : L →
L′ be any mapping. Then for every fuzzy ω-recognizable language r in
L〈〈Σω〉〉 the fuzzy language f(r) ∈ L′〈〈Σω〉〉 is again ω-recognizable.

(ii) Let h : Σω → Δω be a non-deleting homomorphism and R ⊆ Σω be an ω-
recognizable language. Then hR : L〈〈Σω〉〉 → L〈〈Δω〉〉 and h−1 : L〈〈Δω〉〉 →
L〈〈Σω〉〉 preserve the ω-recognizability property of fuzzy languages.

Proof. Statement (i) can be shown as Proposition 3.6, using Theorem 3.17.
Now let r ∈ Lω-rec〈〈Σω〉〉 with r =

∨
1≤i≤n ki ∧1Ri . For every u ∈ Δω, we have

(
hR(r), u

)
=

∨

w∈h−1(u)∩R

(r, w) =
∨

1≤i≤n

(

ki ∧
∨

w∈h−1(u)∩R

(1Ri , w)
)

which is equal to
∨

1≤i≤n ki ∧ (1h(Ri∩R), u). Hence,

hR(r) =
∨

1≤i≤n

ki ∧ 1h(Ri∩R).

Since the class of ω-recognizable languages is closed under non-deleting homo-
morphisms [56], we obtain that the fuzzy language hR(r) is ω-recognizable.

Finally, assume that s =
∨

1≤j≤m k′
j ∧ 1R′

j
. Then

h−1(s) =
∨

1≤j≤m

k′
j ∧ 1h−1(R′

j)
.

The class of ω-recognizable languages is closed under inverse non-deleting
homomorphisms [56], therefore, h−1(s) is fuzzy ω-recognizable and our proof
is completed. �
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As an immediate consequence of Proposition 3.19(i), we obtain the closure
of fuzzy ω-recognizable languages under negation functions.

Corollary 3.20. Let (L,≤,− ) be a bounded distributive lattice with negation
function, and r ∈ Lω-rec〈〈Σω〉〉. Then also r ∈ Lω-rec〈〈Σω〉〉.

By Theorem 3.17, we get the statements of Proposition 3.7 in the setting
of infinitary fuzzy languages. More precisely, for every r ∈ L〈〈Σω〉〉 and l ∈ L,
we consider the infinitary languages r≥l = {w ∈ Σω | (r, w) ≥ l} and r=l =
r−1(l) = {w ∈ Σω | (r, w) = l}.

Proposition 3.21. For every fuzzy language r ∈ L〈〈Σω〉〉, the following state-
ments are equivalent:

(i) r is fuzzy ω-recognizable.
(ii) r has finite image, and for every l ∈ L, r=l is an ω-recognizable language.
(iii) r has finite image, and for every l ∈ L, r≥l is an ω-recognizable language.

As a further consequence of Theorem 3.17, we prove that the equivalence
problem is decidable for multi-valued Muller (resp. Büchi) automata over Σ
and L. In fact, we get the subsequent stronger decidability result.

Theorem 3.22. Let Σ be an alphabet and L be a bounded distributive lattice.
For every two fuzzy ω-recognizable languages r, r′ ∈ Lω-rec〈〈Σω〉〉, the relations
r ≤ r′ and r = r′ are decidable.

Proof. See the proof of Theorem 3.14. �

Finally, we show that a Kleene theorem holds for fuzzy ω-recognizable
languages. We firstly recall the ω-rational operations of fuzzy languages (see
[37, 63, 27]). Let r ∈ L〈〈Σ∗〉〉 and r′ ∈ L〈〈Σω〉〉. Then the Cauchy prod-
uct rr′ ∈ L〈〈Σω〉〉 of r and r′ is defined by (rr′, w) = ∨{(r, u) ∧ (r′, u′) |
w = uu′, u ∈ Σ∗, u′ ∈ Σω} for every w ∈ Σω. Furthermore, whenever r is
proper, i.e., (r, ε) = 0, we define the ω-star rω ∈ L〈〈Σω〉〉 of r as follows:
(rω, w) = ∨{∧{(r, w1), (r, w2), . . .} | w = w1w2 . . . with w1, w2, . . . ∈ Σ∗} for
every w ∈ Σω. Now the class of fuzzy ω-rational languages over Σ and L,
denoted by Lω-rat〈〈Σω〉〉, is the least class of infinitary fuzzy languages gen-
erated by the finitary fuzzy languages (over Σ and L) with finite support,
applying finitely many times the operations of supremum, Cauchy product,
star, and ω-star. Every fuzzy ω-recognizable language r =

∨
1≤i≤n ki ∧ 1Ri

over Σ and L is ω-rational. Indeed, for every 1 ≤ i ≤ n the language Ri is
ω-rational and thus 1Ri is a fuzzy ω-rational language with values 0 and 1.
Then ki ∧ 1Ri is just the Cauchy product of the series kiε and 1Ri , where the
series kiε is defined by (kiε, w) = 1 if w = ε and (kiε, w) = 0 otherwise, for
every w ∈ Σ∗. Conversely, we claim that Lω-rat〈〈Σω〉〉 ⊆ Lω-rec〈〈Σω〉〉. For this,
it suffices to show that for every r ∈ Lrec〈〈Σ∗〉〉, r′ ∈ Lω-rec〈〈Σω〉〉 the fuzzy lan-
guage rr′ ∈ Lω-rec〈〈Σω〉〉, and for every proper fuzzy language r ∈ Lrec〈〈Σ∗〉〉,
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the ω-star rω ∈ Lω-rec〈〈Σω〉〉. Once again by using Theorems 3.5 and 3.17,
this is reduced to the well-known closure properties of recognizable languages
under the ω-rational operations (see, for instance, [56]). Therefore, we get the
subsequent Kleene theorem for infinitary fuzzy languages.

Theorem 3.23. Let Σ be an alphabet and L be a bounded distributive lattice.
Then Lω-rec〈〈Σω〉〉 = Lω-rat〈〈Σω〉〉.

For a Kleene theorem for infinitary formal power series over a larger
class of semirings than bounded distributive lattices, we refer the reader to
[25–27].

3.3 Multi-valued MSO Logic

Following [22], we introduce a multi-valued monadic second-order logic (multi-
valued MSO logic, for short) over infinite words, and we state a multi-valued
version of Büchi’s theorem [11] for fuzzy languages over bounded distributive
lattices with negation function. A corresponding theory for finite words has
been obtained as an application of weighted logics over locally finite semi-
rings (see [18, 20]). Throughout this subsection, we assume that (L,≤,− ) is
a bounded distributive lattice with negation function.

Every word w = a0a1 . . . ∈ Σω, with a0, a1, . . . ∈ Σ, is also written as
w = w(0)w(1) . . . with w(i) = ai for i ≥ 0. Then every w ∈ Σω is represented
by the structure (ω,≤, (Ra)a∈Σ) where Ra = {i | w(i) = a} for a ∈ Σ. Given
a finite set V of first- and second-order variables, a (w,V)-assignment σ is a
mapping assigning elements of ω to first-order variables from V, and subsets
of ω to second-order variables from V. If x is a first-order variable and i ∈ ω,
then σ[x → i] denotes the (w,V ∪ {x})-assignment which assigns i to x and
acts as σ on V \ {x}. For a second-order variable X and I ⊆ ω, the notation
σ[X → I] has a similar meaning.

By using the extended alphabet ΣV = Σ ×{0, 1}V , we encode pairs (w, σ)
for every w ∈ Σω and every (w,V)-assignment σ. Every word in Σω

V is con-
sidered as a pair (w, σ) where w is the projection over Σ, and σ is the projec-
tion over {0, 1}V . Then σ is a valid (w,V)-assignment if for every first-order
variable x ∈ V the x-row contains exactly one 1. In this case, we identify σ
with the (w,V)-assignment so that for every first-order variable x ∈ V, σ(x) is
the position of the 1 on the x-row, and for every second-order variable X ∈ V,
σ(X) is the set of positions labeled with 1 along the X-row. By standard
automata constructions, it can be shown that the language

NV =
{
(w, σ) ∈ Σω

V
∣
∣ σ is a valid (w,V)-assignment

}

is ω-recognizable.

Definition 3.24. The set of all MSO(L, Σ)-formulas of the multi-valued
MSO logic over Σ and L is defined to be the smallest set F such that:
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• F contains all atomic formulas k, Pa(x), x ≤ y, x ∈ X.
• If ϕ, ψ ∈ F , then also ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ∃x � ϕ,∃X � ϕ,∀x � ϕ,∀X � ϕ ∈ F

where k ∈ L, a ∈ Σ, x, y are first-order variables and X is a second-order
variable.

We represent the semantics of the formulas in MSO(L, Σ) as infinitary
fuzzy languages over the extended alphabet ΣV and the lattice L. Here, our
definition of semantics is more general that the one used in [18, 23, 20]. There,
the authors assigned to every atomic formula Pa(x), x ≤ y, or x ∈ X, respec-
tively, the characteristic series of its associated MSO-language. These series
take on only 0, 1. Here, we assume that there is a function f assigning to
every atomic formula ϕ of the form Pa(x), x ≤ y, or x ∈ X, respectively,
an infinitary fuzzy language f(ϕ) in L〈〈Σω

ϕ〉〉 (where Σϕ stands for ΣFree(ϕ)).
This generalization has been already used in other logics. For instance, in
many-valued predicate logic, every object variable is being assigned a value
from an L-structure M , where L is a BL-algebra (see Sect. 5 in [32]). In [39],
the atomic propositions of the multi-valued LTL take values from a subset
of the underlying De Morgan algebra. Our assignment f here is called ω-
recognizable if the fuzzy language f(ϕ) is ω-recognizable for every atomic
formula ϕ. Later on, we always require that f is an ω-recognizable assign-
ment. Thus, the language f(ϕ) will be taking on only finitely many values, for
every atomic formula ϕ. Therefore, we will call f a multi-valued atomic as-
signment over Σ, if f(ϕ) takes on only finitely many values, for every atomic
formula ϕ.

Definition 3.25. Let ϕ ∈ MSO(L, Σ), V be a finite set of variables containing
Free(ϕ), and f be a multi-valued atomic assignment over Σ. We define the
f -semantics of ϕ to be an infinitary fuzzy language ‖ϕ‖f

V ∈ L〈〈Σω
V 〉〉 in the

following way. Let (w, σ) ∈ Σω
V . If σ is not a valid (w,V)-assignment, then we

put (‖ϕ‖f
V , (w, σ)) = 0. Otherwise, we inductively define (‖ϕ‖f

V , (w, σ)) ∈ L as
follows:

• (‖k‖f
V , (w, σ)) = k

• (‖ϕ‖f
V , (w, σ)) = (f(ϕ), (w, σ|Free(ϕ))) if ϕ is an atomic formula of the

form Pa(x), x ≤ y, or x ∈ X

• (‖¬ϕ‖f
V , (w, σ)) = (‖ϕ‖f

V , (w, σ))
• (‖ϕ ∨ ψ‖f

V , (w, σ)) = (‖ϕ‖f
V , (w, σ)) ∨ (‖ψ‖f

V , (w, σ))
• (‖ϕ ∧ ψ‖f

V , (w, σ)) = (‖ϕ‖f
V , (w, σ)) ∧ (‖ψ‖f

V , (w, σ))
• (‖∃x � ϕ‖f

V , (w, σ)) =
∨

i∈ω(‖ϕ‖f
V∪{x}, (w, σ[x → i]))

• (‖∃X � ϕ‖f
V , (w, σ)) =

∨
I⊆ω(‖ϕ‖f

V∪{X}, (w, σ[X → I]))

• (‖∀x � ϕ‖f
V , (w, σ)) =

∧
i∈ω(‖ϕ‖f

V∪{x}, (w, σ[x → i]))

• (‖∀X � ϕ‖f
V , (w, σ)) =

∧
I⊆ω(‖ϕ‖f

V∪{X}, (w, σ[X → I])).
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It should be clear that in Definition 3.25 all the occurring infinite suprema
and infima exist in L (without any further completeness assumption). More
precisely, one can show by induction on the structure of formulas ϕ that ‖ϕ‖f

V
takes on only finitely many values. Indeed, for atomic formulas, this is clear
by assumption, and the property is preserved by negation, disjunction, and
conjunction. Since L is a lattice, the property is also preserved by infinite
suprema and infima, proving our claim.

If the multi-valued atomic assignment is well-known, then we omit the
superscript f from ‖ϕ‖f

V . Furthermore, we simply write ‖ϕ‖ for ‖ϕ‖Free(ϕ). If
ϕ has no free variables, i.e., if it is a sentence, then ‖ϕ‖ ∈ L〈〈Σω〉〉.

An infinitary fuzzy language r ∈ L〈〈Σω〉〉 is called MSO-f -definable if
there is a sentence ϕ ∈ MSO(L, Σ) such that r = ‖ϕ‖f . We let Lf-mso〈〈Σω〉〉
comprise all fuzzy languages from L〈〈Σω〉〉 which are f -definable by some
sentence in MSO(L, Σ). In the sequel, we show that the classes Lf-mso〈〈Σω〉〉
and Lω-rec〈〈Σω〉〉 coincide.

Let us first give an example of possible interpretations of multi-valued
MSO-formulas. The reader can find more examples in [18, 22, 23, 20].

Example 3.26 ([22]). We consider the bounded distributive lattice (N ∪ {∞},
≤,−) (where N is the set of natural numbers and − is an arbitrary negation
function). Let Σ = {a, b, c} and f be the multi-valued atomic assignment
over Σ, determined in the following way. For every w ∈ Σω and every valid
(w, {x})-assignment σ, we set:

• (f(Pa(x)), (w, σ)) = 0

• (f(Pb(x)), (w, σ)) =

{
1 if w(σ(x)) = b,

0 otherwise

• (f(Pc(x)), (w, σ)) =

{
2 if w(σ(x)) = c,

0 otherwise.

For every other atomic formula ϕ, f(ϕ) is the fuzzy language with image
{0}. Let ϕ = ∀x �(Pa(x)∨Pb(x)∨Pc(x)). In fact, ϕ is a sentence, and for every
word w ∈ Σω the semantics ‖ϕ‖f returns the value 0 if the letter a occurs at
least once in w, the value 1 if no a appears in w but b occurs at least once,
and it returns the value 2 if w = cω.

The reader should observe that the above definition of semantics is valid
for every formula ϕ ∈ MSO(L, Σ) and every finite set V of variables containing
Free(ϕ). The following proposition states that the f -semantics ‖ϕ‖f

V is in fact
independent of the set V; it depends only on Free(ϕ). For a proof, we refer
the reader to [18, 20].

Proposition 3.27. For every ϕ ∈ MSO(L, Σ), every finite set V of variables
with Free(ϕ) ⊆ V, and every multi-valued atomic assignment f over Σ, it
holds that
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(
‖ϕ‖f

V , (w, σ)
)

=
(
‖ϕ‖f , (w, σ|Free(ϕ))

)

for every (w, σ) ∈ Σω
V , where σ is a valid (w,V)-assignment. Furthermore,

the fuzzy language ‖ϕ‖f is ω-recognizable iff the fuzzy language ‖ϕ‖f
V is ω-

recognizable.

The next lemma states a further closure property of the class of fuzzy
ω-recognizable languages.

Lemma 3.28. Let h : Σω → Δω be a non-deleting homomorphism, R ⊆ Σω

be an ω-recognizable language, and r ∈ Lω-rec〈〈Σω〉〉 be a fuzzy ω-recognizable
language. Then the language

∧
h,R(r) ∈ L〈〈Δω〉〉 defined by (

∧
h,R(r), u) =∧

w∈h−1(u)∩R(r, w) is fuzzy ω-recognizable.

Proof. Let (Ld,≤d) = (L,≥) be the dual lattice of L, which is obtained by
interchanging suprema and infima. Since r takes on only finitely many values
and each value on an ω-recognizable language, r is also fuzzy ω-recognizable
over Ld. Consider the transformation hd

R : Ld〈〈Σω〉〉 → Ld〈〈Δω〉〉. By Propo-
sition 3.19(ii), we obtain hd

R(r) ∈ (Ld)ω-rec〈〈Δω〉〉 which in turn means that
hd

R(r) ∈ Lω-rec〈〈Δω〉〉. Since suprema in Ld equal infima in L, we have hd
R(r) =∧

h,R(r) and our proof is completed. �

Proposition 3.29. Let ϕ, ψ ∈ MSO(L, Σ) such that ‖ϕ‖f
V , ‖ψ‖f

V are fuzzy
ω-recognizable languages where f is a multi-valued atomic assignment, and V
is a finite set of variables with Free(ϕ) ∪ Free(ψ) ⊆ V. Then the languages
‖¬ϕ‖f

V , ‖ϕ∨ψ‖f
V , ‖ϕ∧ψ‖f

V , ‖∃x � ϕ‖f
V , ‖∃X � ϕ‖f

V , ‖∀x � ϕ‖f
V , and ‖∀X � ϕ‖f

V
are fuzzy ω-recognizable.

Proof. The f -semantics of the negation of ϕ is fuzzy ω-recognizable by Corol-
lary 3.20. The f -semantics of disjunction and conjunction of ϕ and ψ are fuzzy
ω-recognizable by Proposition 3.18. Next, we deal with existential and uni-
versal quantifiers. By assumption, ‖ϕ‖f

V is fuzzy ω-recognizable. Let ‖ϕ‖f
V =∨

1≤i≤n ki ∧ 1Ri , and

h : Σω
V∪{x} → Σω

V and h′ : Σω
V∪{X} → Σω

V

be the non-deleting homomorphisms erasing the x-row and the X-row, respec-
tively. Clearly,

‖∃x � ϕ‖f
V = h

(
‖ϕ‖f

V∪{x}
)

‖∃X � ϕ‖f
V = h′(‖ϕ‖f

V∪{X}
)

‖∀x � ϕ‖f
V =

∧

h,NV∪{x}

(
‖ϕ‖f

V∪{x}
)

‖∀X � ϕ‖f
V =

∧

h′,Σω
V∪{X}

(
‖ϕ‖f

V∪{X}
)
.

We conclude our proof by applying Proposition 3.19(ii) and Lemma 3.28. �

Proposition 3.30. Let f be any ω-recognizable multi-valued atomic assign-
ment. Then Lf-mso〈〈Σω〉〉 ⊆ Lω-rec〈〈Σω〉〉.
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Proof. We apply induction on the structure of MSO(L, Σ)-formulas using
Proposition 3.29. �

Next, we define the crisp atomic assignment cf for atomic formulas. More
precisely, let ϕ be an atomic formula of the form Pa(x), x ≤ y, or x ∈ X. Then
for every (w, σ) ∈ Σω

ϕ with σ a valid assignment, we set:

• (cf(Pa(x)), (w, σ)) =

{
1 if w(σ(x)) = a,

0 otherwise

• (cf(x ≤ y), (w, σ)) =

{
1 if σ(x) ≤ σ(y),
0 otherwise

• (cf(x ∈ X), (w, σ)) =

{
1 if σ(x) ∈ σ(X),
0 otherwise.

Note that if ϕ is an atomic formula of this form, then (‖¬ϕ‖cf , (w, σ)) =
(cf(ϕ), (w, σ)) for every (w, σ) ∈ Nϕ, and by the property of − that 1 = 0
and 0 = 1, the semantics of ¬ϕ coincides with the one given in [23, 20].
Furthermore, the crisp atomic assignment is ω-recognizable [23]. We denote
the class Lcf-mso〈〈Σω〉〉 simply by Lmso〈〈Σω〉〉.

Now we can state our Büchi-type characterization of the class Lω-rec〈〈Σω〉〉.

Theorem 3.31. Let Σ be an alphabet and L be a bounded distributive lattice
with any negation function. Then

Lω-rec〈〈Σω〉〉 =
⋃

f

Lf-mso〈〈Σω〉〉 = Lmso〈〈Σω〉〉

where the union is taken over all ω-recognizable multi-valued atomic assign-
ments.

Proof. Let r ∈ Lω-rec〈〈Σω〉〉 with r =
∨

1≤i≤n ki∧1Ri . We fix an 1 ≤ i ≤ n. By
Büchi’s theorem [11], Ri is definable by a classical MSO-sentence ϕi. Clearly,
ϕi can be considered as a multi-valued sentence over Σ and L. Then ‖ϕi‖ =
1Ri which in turn implies that ‖

∨
1≤i≤n ki ∧ ϕi‖ = r. Thus, Lω-rec〈〈Σω〉〉 ⊆

Lmso〈〈Σω〉〉. Now Proposition 3.30 completes our proof. �

This result shows that for every formula ϕ ∈ MSO(L, Σ), whose semantics
is defined with any ω-recognizable multi-valued atomic assignment, we can
construct an equivalent MSO(L, Σ)-formula with the crisp atomic assignment.
In case of De Morgan algebras, an alternative simpler syntax of formulas of
multi-valued MSO logic can be given by the grammar

ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x � ϕ | ∃X � ϕ.

We define the semantics ‖ϕ‖ of formulas ϕ of this syntax exactly as in De-
finition 3.25. Given a multi-valued atomic assignment f , let Ldm-f-mso〈〈Σω〉〉
be the collection of all infinitary fuzzy languages definable in this logic. Then
conjunction and universal quantifiers are determined by:
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• ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ)
• ∀x � ϕ = ¬(∃x � ¬ϕ)
• ∀X � ϕ = ¬(∃X � ¬ϕ)

for every ϕ, ψ ∈ MSO(L, Σ). By using the De Morgan laws, we have the
following equalities for every (w, σ) ∈ Σω

V where σ is a valid assignment:

• (‖ϕ ∧ ψ‖f
V , (w, σ)) = (‖ϕ‖f

V , (w, σ)) ∧ (‖ψ‖f
V , (w, σ))

• (‖∀x � ϕ‖f
V , (w, σ)) =

∧
i∈ω(‖ϕ‖f

V∪{x}, (w, σ[x → i]))

• (‖∀X � ϕ‖f
V , (w, σ)) =

∧
I⊆ω(‖ϕ‖f

V∪{X}, (w, σ[X → I])).

The crisp atomic assignment cf is also defined as before, and we denote
again the class Ldm-cf-mso〈〈Σω〉〉 simply by Ldm-mso〈〈Σω〉〉. Then the next result
is an immediate consequence of Theorem 3.31 and the above equalities.

Corollary 3.32. Let Σ be an alphabet and (L,≤,− ) be a De Morgan algebra.
Then

Lω-rec〈〈Σω〉〉 =
⋃

f

Ldm-f-mso〈〈Σω〉〉 = Ldm-mso〈〈Σω〉〉

where the union is taken over all ω-recognizable multi-valued atomic assign-
ments.

4 Fuzzy Languages: An Overview

In the previous section, we have focused on fuzzy languages over bounded dis-
tributive lattices. Several other concepts of fuzzy languages occur in the litera-
ture, and they mainly differ in their underlying structure. The most general
cases are covered by fuzzy languages over bounded �-monoids and residuated
lattices. Since every residuated lattice is a bounded �-monoid, fuzzy languages
over residuated lattices constitute a subclass of fuzzy languages over bounded
�-monoids. Fuzzy automata over these two concepts have been investigated
recently. Actually, they are weighted automata over the corresponding in-
duced semirings. Therefore, the properties of their behaviors mostly follow
from the general theory of recognizable formal power series. Further prop-
erties of fuzzy recognizable languages over residuated lattices and bounded
�-monoids require specific restrictions for their underlying structures. In this
section, we only highlight the most interesting results (without proofs) for
fuzzy recognizable languages over bounded �-monoids and residuated lattices.
We also succinctly refer to fuzzy automata with outputs, to families of fuzzy
languages, and to fuzzy tree languages. For the rest of this section, Σ will
denote an arbitrary finite alphabet.
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4.1 Fuzzy Languages over �-Monoids

A lattice-ordered monoid (or �-monoid for short) is a lattice (L,≤) equipped
with an operation · and a distinguished element e ∈ L such that the following
conditions hold:

(i) 〈L, ·, e〉 is a monoid
(ii) a · (b ∨ c) = a · b ∨ a · c and (a ∨ b) · c = a · c ∨ b · c

for every a, b, c ∈ L (see [6]). Note that then a ≤ b implies a · c ≤ b · c and
c · a ≤ c · b, for every a, b, c ∈ L.

The �-monoid defined above is denoted by (L,∨, ·), and is called bounded
if the lattice (L,≤) is bounded and

(iii) a · 0 = 0 · a = 0

for every a ∈ L. Furthermore, if (L,≤) is a complete lattice satisfying

(iv) a · (
∨

i∈I bi) =
∨

i∈I(a · bi) and (
∨

i∈I bi) · a =
∨

i∈I(bi · a)

for every a ∈ L and every countable family (bi | i ∈ I) ⊆ L of elements
of L, then (L,∨, ·) is called countably distributive. Every bounded distributive
lattice is a bounded �-monoid with · = ∧ and e = 1. A further example of a
bounded �-monoid with e = 1 is given by any residuated lattice L (see Sect. 4.2
below). Given a bounded �-monoid (L,∨, ·), the structure 〈L,∨, ·, 0, e〉 is a
semiring. An L-valued language r over Σ and (L,∨, ·) is a formal power se-
ries r ∈ L〈〈Σ∗〉〉. Automata over bounded �-monoids, called L-fuzzy automata,
were introduced in [42]. More precisely, an L-fuzzy automaton over Σ and
(L,∨, ·) is just a weighted automaton over Σ and the semiring 〈L,∨, ·, 0, e〉.
A Kleene theorem for L-valued recognizable languages is stated in [42] under
the assumption that the �-monoid (L,∨, ·) is countably distributive or e = 1.
In fact, this is actually an application of the Kleene–Schützenberger theorem
for recognizable series (see for instance [27, 65]). A deterministic L-fuzzy au-
tomaton over Σ and (L,∨, ·) is defined in the same way as the deterministic
multi-valued automaton (see Sect. 3.1). The subsequent theorem indicates
the requirements for the determinization of L-fuzzy automata over bounded
l-monoids.

Theorem 4.1 ([42]). Let (L,∨, ·) be a bounded �-monoid. Then for every L-
fuzzy automaton over (L,∨, ·), there exists an equivalent deterministic L-fuzzy
automaton over (L,∨, ·) iff the semiring 〈L,∨, ·, 0, e〉 is locally finite.

For the “if” part, we refer the reader also to [7, 19] where corresponding
statements for arbitrary locally finite semirings are shown. For the “only if”
part, we consider an arbitrary finite subset A of L, and we construct an L-
fuzzy automaton A having A as its set of weights and the submonoid LA of
〈L, ·, e〉 generated by A as the image of its behavior (see [42]). Since every
deterministic L-fuzzy automaton takes on only finitely many values and A
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can be determinized, LA is finite. Since the monoid 〈L,∨, 0〉 is clearly locally
finite, it follows that the semiring 〈L,∨, ·, 0, e〉 is locally finite.

If the semiring 〈L,∨, ·, 0, e〉 is locally finite, then by [19] we get that an
L-valued language r ∈ L〈〈Σ∗〉〉 is recognizable iff it is an L-valued recognizable
step language (in the sense of Sect. 3 and [19]). Then following our construc-
tions in Sect. 3.1, we get similar results as for fuzzy recognizable languages
over bounded distributive lattices. We collect these results in the subsequent
theorem.

Theorem 4.2. Let Σ be an alphabet and (L,∨, ·) be a bounded �-monoid such
that the semiring 〈L,∨, ·, 0, e〉 is locally finite. Then:

• For every L-valued recognizable language r ∈ L〈〈Σ∗〉〉 we can effectively
construct a minimum trim deterministic L-fuzzy automaton with behav-
ior r.

• An L-valued language r ∈ L〈〈Σ∗〉〉 is recognizable iff r has finite image and
each of its cut languages is recognizable.1

• A pumping lemma holds for L-valued recognizable languages in L〈〈Σ∗〉〉.
• The equivalence problem is decidable for L-fuzzy automata over Σ and

(L,∨, ·).

4.2 Fuzzy Languages over Residuated Lattices

Now we turn to residuated lattices. A residuated lattice is an algebra L =
〈L,∨,∧,⊗,→, 0, 1〉 where (L,≤) is a bounded lattice equipped with two op-
erations ⊗,→ such that the following conditions hold:

(i) 〈L,⊗, 1〉 is a commutative monoid
(ii) ⊗ and → form an adjoint pair, i.e., a ⊗ b ≤ c ⇔ a ≤ b → c

for every a, b, c ∈ L (see [73]).
If the lattice L is complete, then L is called a complete residuated lattice.

Examples of (complete) residuated lattices are provided by the fuzzy semiring
〈[0, 1],max, min, 0, 1〉 equipped with operations ⊗ and → defined, respectively,
as follows. For every a, b ∈ [0, 1], let:

• a ⊗ b = max(a + b − 1, 0), and a → b = min(1 − a + b, 1) (the �Lukasiewicz
structure)

• a ⊗ b = a · b, and a → b = 1 if a ≤ b and a → b = b/a (the usual quotient
of real numbers) otherwise (the product structure)

• a ⊗ b = min(a, b), and a → b = 1 if a ≤ b and a → b = b otherwise (the
Gödel structure).

Next, we claim that if (ai | i ∈ I) ⊆ L is a family of elements of L such
that

∨
i∈I ai exists, then for every a ∈ L we have

1 This statement has been also derived in [42].
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( ∨

i∈I

ai

)

⊗ a =
∨

i∈I

(ai ⊗ a).

Indeed, for every j ∈ I, we have

aj ≤
∨

i∈I

ai ≤
(

a →
(( ∨

i∈I

ai

)

⊗ a

))

,

so aj ⊗ a ≤ (
∨

i∈I ai) ⊗ a. Now let c ∈ L such that ai ⊗ a ≤ c for every i ∈ I,
hence ai ≤ a → c. Then we get

∨
i∈I ai ≤ a → c, and thus (

∨
i∈I ai) ⊗ a ≤ c

proving our claim.
By (ii), we obtain also 0 ⊗ a = 0 for every a ∈ L.
Clearly, for every residuated lattice L = 〈L,∨,∧,⊗,→, 0, 1〉, the triple

(L,∨,⊗) is a bounded �-monoid (with e = 1). Moreover, 〈L,∨,⊗, 0, 1〉 is a
commutative semiring which is called the semiring reduct of L and is denoted
by L∗. Obviously, the semiring reducts induced by �Lukasiewicz and Gödel
structures are locally finite, whereas this is not the case for the semiring
reduct induced by the product structure. A fuzzy language r over Σ and L
is a formal power series r ∈ L〈〈Σ∗〉〉. Then a fuzzy automaton over Σ and L
is a weighted automaton over Σ and the semiring reduct L∗ (see [60, 61]);2 it
is also an L-fuzzy automaton over Σ and (L,∨,⊗). Fuzzy automata over the
product structure occur in practical applications (see Sect. 5). As immediate
consequences of Theorems 4.1 and 4.2, we obtain the following corollaries.

Corollary 4.3 ([33]). Let L = 〈L,∨,∧,⊗,→, 0, 1〉 be a residuated lattice.
Then for every fuzzy automaton over L there exists an equivalent deterministic
fuzzy automaton over L iff the semiring reduct L∗ is locally finite.

Corollary 4.4. Let Σ be an alphabet and L = 〈L,∨,∧,⊗,→, 0, 1〉 be a resid-
uated lattice with locally finite semiring reduct L∗. Then:

• For every fuzzy recognizable language r ∈ L〈〈Σ∗〉〉, we can effectively con-
struct a minimum trim deterministic fuzzy automaton with behavior r.

• A fuzzy language r ∈ L〈〈Σ∗〉〉 is recognizable iff r has finite image and each
of its cut languages is recognizable.

• A pumping lemma holds for fuzzy recognizable languages in L〈〈Σ∗〉〉.
• The equivalence problem is decidable for fuzzy automata over Σ and L.

Recently in [15], it has been proved that for every (non-deterministic) fuzzy
automaton over a residuated lattice L, a size (number of states) reduction
algorithm exists, provided that L is a locally finite residuated lattice. The
authors constructed a fuzzy automaton over the product structure (which is

2 In [60, 61], the author considers also fuzzy automata over the semiring
〈L,∨,∧, 0, 1〉 and for this requires L to be complete. For such automata, a type
of pumping lemma is shown in [62]. The completeness axiom of L required in [15,
33, 60–62] is actually superfluous for fuzzy automata over the semiring reduct L∗.
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not locally finite) for which their reduction algorithm cannot be applied. The
minimization problem for (either deterministic or non-deterministic) fuzzy
automata over arbitrary residuated lattices remains open.

4.3 Fuzzy Automata with Outputs

Fuzzy automata with outputs have been mainly defined over the bounded
distributive lattice ([0, 1],≤) (see [54, 17]). They are special cases of weighted
transducers over the fuzzy semiring (for definitions on weighted transducers
see [53]).

In [14, 49, 58, 69], size reduction algorithms have been developed for non-
deterministic versions of fuzzy automata with outputs.

In [41], it is shown that a size reduction algorithm exists for complete
L-fuzzy automata with outputs over a finite �-monoid (L,∨, ·).

4.4 Fuzzy Abstract Families of Languages

In [2], a theory for full abstract families of fuzzy languages (full AFFLs)
is presented. The underlying structure is a bounded �-monoid (L,∨, ·) with
e = 1 and its operation · being commutative. Furthermore, the lattice (L,≤)
is complete satisfying

a ∧
( ∨

i∈I

bi

)

=
∨

i∈I

(a ∧ bi)

for every a ∈ L and every family (bi | i ∈ I) ⊆ L of elements of L.
Rational operations between fuzzy languages over (L,∨, ·) are defined as

the rational operations of formal power series over the semiring (L,∨, ·, 0, 1)
(see [27]). For every two alphabets Σ and Δ, every homomorphism h : Σ∗ →
Δ∗ induces a fuzzy homomorphism h : Σ∗ → L〈〈Δ∗〉〉 mapping every word w ∈
Σ∗ to a fuzzy language with support {h(w)}. Then a family of fuzzy languages
R is called a full abstract family of fuzzy languages (full AFFL) if it is closed
under the rational operations, fuzzy and inverse fuzzy homomorphisms, and
infimum with fuzzy recognizable languages. It is proved that the class of fuzzy
recognizable languages over the �-monoid (L,∨, ·) is a full AFFL. Furthermore,
the concept of a fuzzy substitution is introduced, and the closure property of
fuzzy recognizable languages under fuzzy substitutions is investigated.

4.5 Fuzzy Tree Languages

Recently, several authors have dealt with fuzzy tree languages. These are tree
series over (complete or bounded) distributive lattices (for definitions on tree
series, see [29]).
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In [28], the authors study fuzzy tree languages over completely distributive
lattices, i.e., complete lattices in which arbitrary suprema distribute over ar-
bitrary infima and vice versa. They show that fuzzy recognizable and fuzzy
rational tree languages coincide, i.e., a Kleene theorem, and moreover fuzzy
recognizable tree languages have an equational characterization.

In [22], a multi-valued MSO logic over infinite trees is introduced and a
Rabin-type theorem is proved for infinitary fuzzy tree languages over bounded
distributive lattices.

5 Applications

In this section, we present two applications of fuzzy languages, with an effect
to real world problems. First, we refer to an alternative method of syntactic
pattern recognition using fuzzy languages. Then we define fuzzy discrete event
systems which have successfully contributed to medicine.

A popular method for pattern recognition is the syntactic pattern recogni-
tion, where a pattern is classified by checking its syntax. Usually, patterns are
represented by finite words over a finite alphabet. The letters of the alphabet,
which are called primitives, are aimed to describe the features of the patterns.
A pattern class is a language of patterns. The method of syntactic pattern
recognition is the following. First, we construct finitely many regular gram-
mars (with their terminal alphabet to be the set of primitives) taking into
account the syntactic features according to which we wish to classify any pat-
tern. The languages generated by these grammars (pattern classes) should be
pairwise disjoint. Then for every constructed grammar, we consider the cor-
responding equivalent finite automaton. Now given a pattern to be classified,
we check from which automaton it is accepted, and we classify the pattern in
the pattern class represented by this automaton.

However, in many practical applications, the structural information of
the patterns is inherently vague, i.e., the patterns are distorted or imper-
fectly formed. For instance, consider the case of recognizing handwritten
characters, or determining the type of a geometrical pattern which is not
perfectly sketched. In such situations, we consider the pattern classes to be
fuzzy languages. Therefore, we define the pattern classes by using fuzzy gram-
mars. These are weighted right-linear grammars over the fuzzy semiring (see
[37, 27]). The corresponding equivalent weighted automata are actually multi-
valued automata over the fuzzy semiring. It should be noted that now the
supports of the fuzzy languages (pattern classes) are not required to be pair-
wise disjoint. Given a pattern to be classified, we compute its membership
value to every pattern class, by using the constructed multi-valued automata.
Then we look for the greatest value, and we classify the pattern into the cor-
responding class. Fuzzy syntactic pattern recognition has been applied in the
identification of the skeletal maturity of children by using X-ray images of
radius [55] (see also [35]). More precisely, the shapes of the radius of children
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were considered as patterns. Nine pattern classes were generated featuring
the maturity of the radius. Then the skeletal maturity of a child was being
identified by classifying an X-ray image of its radius.

Now we turn to fuzzy discrete event systems [44]. A fuzzy discrete event
system (FDES for short) is a system (A1, . . . ,An) (n > 0) of weighted au-
tomata over the semiring 〈[0, 1],max, ·, 0, 1〉 where · is the multiplication of
the real numbers. Such automata are usually called fuzzy automata and they
are actually [0, 1]-fuzzy automata over the �-monoid ([0, 1],max, ·). They can
also be considered as fuzzy automata over the product structure (see Sect. 4).
The input alphabet is not required to be the same for all the automata, thus
we consider every automaton Ai (1 ≤ i ≤ n) over an individual alphabet Σi.
For the purposes of FDES theory, fuzzy automata lack their final distribution,
i.e., they are of the form Ai = (Qi, ini, wti) for every 1 ≤ i ≤ n. The elements
of Σ1∪· · ·∪Σn are called events. The FDES can be considered as a composite
fuzzy automaton A = (Q, in, wt) over Σ1 ∪ · · · ∪ Σn and [0, 1]n, where:

• Q = Q1 × · · · × Qn

• in((q1, . . . , qn)) = (in1(q1), . . . , inn(qn))
• wt((q1, . . . , qn), a, (q′1, . . . , q

′
n)) = (r1, . . . , rn) where ri = wti(qi, a, q′i) for

every 1 ≤ i ≤ n with a ∈ Σi, and ri = 1 for every 1 ≤ i ≤ n with a /∈ Σi

provided that q′i = qi; in any other case, we let wt((q1, . . . , qn), a, (q′1, . . . ,
q′n)) = 0

for every (q1, . . . , qn), (q′1, . . . , q
′
n) ∈ Q, a ∈ Σ.

In the following, we describe an important application of FDES to the im-
plementation of a self-learning system for the selection of the suitable regimen
for the HIV/AIDS (see [45, 76, 77]). The HIV/AIDS is among the most com-
plex diseases to treat. One of the reasons for this complexity is that there is
no cure for it. A treatment can only suppress the HIV virus and boost the im-
mune system. Currently, there are only four classes of available anti-retroviral
drugs and a regimen consists of a combination of two or more classes. Un-
fortunately, the HIV virus can easily develop resistance to the drugs. Thus,
a decision for the suitable drug regimen for every particular patient turns to
be a difficult task and can be successfully done only by experts. A wrong
decision should be devastating since the patient may run out of options on
available drugs. According to the experts, the following parameters must be
considered for the choice of a suitable regimen:

• Potency of the regimen: Unlike other diseases, it is not reasonable to use
the most potent regimen in the first stage of HIV/AIDS. In fact, initiating
anti-retroviral therapy when the immune system is still intact does not
prolong survival. The term “intact immune system” is already vague and
this makes the HIV/AIDS treatment more complex than other diseases.

• Adherence of the patient to the regimen: This factor is very crucial un-
like other diseases. The probability that a patient will benefit from the
anti-retroviral therapy reduces dramatically if the patient skips even 5%



512 George Rahonis

of doses. Moreover, this increases the risk that the virus will easier develop
resistance to concrete drugs or even to a whole class of drugs. Unfortu-
nately, statistics for HIV/AIDS and other chronic diseases show that the
patients take only 50–70% of the required doses of long-term medications.

• Adverse events: These consist of side effects which may be mild to severe,
and toxicity. Side effects like abdominal discomfort, loss of appetite, etc.
are common especially in the first stages of HIV/AIDS treatment. On
the other hand, toxicity usually causes liver problems, pancreatitis, etc.
Unfortunately, in some cases, these problems turn out to be fatal.

• Future drug options: The HIV frequently develops resistance to the drugs.
Thus, it is critical for a doctor, before concluding to any regimen, to con-
sider the future drugs options after a potential occurrence of the resistance.

Clearly, the HIV/AIDS disease can be treated only by expert doctors. More-
over, the number of infected people increases all over the world. Actually,
the number of experts is too small, especially in poor countries. Therefore,
a computer program for the HIV/AIDS treatment regimen selection is desir-
able. Such a program has been built by using an FDES [45, 76, 77]. Here, we
will briefly describe the contribution of the FDES to the program. The FDES
is composed by four fuzzy automata A1, A2, A3, and A4 (over the semiring
〈[0, 1],max, ·, 0, 1〉), every one corresponding to one of the four aforementioned
factors, respectively. The input alphabet is the same for all the automata.
Every letter corresponds to a possible regimen which is a combination of two
or more classes of drugs. The fuzzy automaton A1 has three states “initial”,
“medium”, and “high” simulating the three instances of potency of a regimen.
The states of the fuzzy automaton A2 are “initial”, “challenging”, “moder-
ate”, and “easy” modeling the possible values of the adherence. The states
of A3 are “initial”, “medium”, “low”, and “very low” simulating the level of
the adverse events. Finally, the fuzzy automaton A4 has the states “initial”,
“medium”, and “high” modeling the several options of future regimens. The
initial distribution of every automaton assigns the value 1 to the “initial” state
of every automaton, and the value 0 to every other state. The values of the
weight assigning mappings for all the automata are determined by the expert
doctors according to statistics and clinical experiments. Assume now that we
have a particular patient and we ask the program to choose the optimal reg-
imen. Initially, the system using a set of generic algorithms determines four
vectors w1, w2, w3, and w4 with dimensions 3, 4, 4, and 3, respectively (these
are the numbers of states of the automata A1, A2, A3, and A4, respectively).
Then every one of the automata A1, A2, A3, and A4 takes as input a letter σ
(i.e., a possible regimen) and produces a vector assigning a value to every one
of its states. Let us denote these vectors by q1σ, q2σ, q3σ, and q4σ, respectively.
Then the system computes the performance index

J(σ) = wᵀ
1q1σ + wᵀ

2q2σ + wᵀ
3q3σ + wᵀ

4q4σ
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where wᵀ
i denotes the transpose of the vector wi (1 ≤ i ≤ 4). The optimal

treatment corresponds to the maximum J(σ) for all regimens σ. For a second
round treatment, the procedure is repeated. The vector states of the automata
are now q1σ, q2σ, q3σ, and q4σ, but the system will compute new vectors w
taking into account the current situation of the patient’s health. In clinical
experiments, this system matches the experts selection of regimen for 80% of
the patients (see [45]).

Acknowledgments. I am deeply grateful to the editors for inviting me to write this
chapter, and especially to Manfred Droste and Heiko Vogler for fruitful discussions
and valuable comments on several versions of the chapter. I should also like to
thank Symeon Bozapalidis for fruitful discussions. Peter Asveld, Andreas Maletti,
Eleni Mandrali, Witold Pedrycz, and Arto Salomaa read previous versions of the
chapter and made valuable remarks and suggestions. Andreas Maletti suggested the
treatment of fuzzy recognizable languages with the “recognizable step” characteri-
zation. I am deeply grateful to all of them. I thank Arto Salomaa for providing me
with reference [66] and indicating the seminal papers [48, 59]. I also thank Miroslav
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5. R. Bělohlávek. Determinism and fuzzy automata. Information Sciences,
143:205–209, 2002.

6. G. Birkhoff. Lattice Theory, revised edition, volume XXV of American
Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, 1961.

7. B. Borchardt. A pumping lemma and decidability problems for recogniz-
able tree series. Acta Cybernetica, 16:509–544, 2004.

8. S. Bozapalidis and O. Louscou-Bozapalidou. On the recognizability of
fuzzy languages I. Fuzzy Sets and Systems, 157:2394–2402, 2006.

9. S. Bozapalidis and O. Louscou-Bozapalidou. On the recognizability of
fuzzy languages II. Fuzzy Sets and Systems, 159:107–113, 2008.

10. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In
Proceedings of ICALP 2004, volume 3142 of Lecture Notes in Computer
Science, pages 281–293. Springer, Berlin, 2004.



514 George Rahonis
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32. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic, Dordrecht,
1998.
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57. T. Petković. Varietes of fuzzy languages. In Proceedings of the 1st Inter-

national Conference on Algebraic Informatics, pages 197–205. Aristotle
University of Thessaloniki, Thessaloniki, 2005.
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1 Introduction

This chapter is about the verification of Markov decision processes (MDPs)
which are one of the fundamental models for reasoning about probabilistic
phenomena of computer systems. MDPs have first been studied by Bellmann
[14] and Howard [54] in the 1950s. While this early work on MDPs was mo-
tivated by optimization problems that appear in the context of operations
research, nowadays MDPs are used in a variety of areas, including robotics,
stochastic planning, control theory, reinforcement learning, economics, manu-
facturing, and semantics of randomized protocols. In the context of finite-state
acceptors and transducers, MDPs served as basis for the introduction of prob-
abilistic automata [81, 73], which again interact with the theory of weighted
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automata by generalizing the concept of probabilities to weights in an arbi-
trary semiring.

In this chapter, Markov decision processes are used as an operational model
for “probabilistic systems”. Probabilism appears as a rather natural concept
when providing the semantics of randomized algorithms or multi-agent sys-
tems with unreliable hardware components. In randomized algorithms, coin-
tossing is used as an explicit probabilistic algorithmic concept. Examples for
sequential randomized algorithms are the prominent primality tests by Miller
and Rabin or by Solovay and Strassen or algorithms that operate with ran-
domized data structures such as skip lists or universal hashing. For distributed
systems, there is a wide range of coordination protocols to solve, e.g., mutual
exclusion or leader election problems that utilize coin-tossing actions for sym-
metry breaking (see [44, 68]). For systems that operate with faulty compo-
nents, such as communication channels that might corrupt or lose messages,
or sensors that deliver wrong values in rare cases, probabilities can be used
to specify the frequency of such exceptional behaviors. Probabilistic seman-
tic models also play a central role in reasoning about systems that interact
with an environment on which only partial information by means of stochastic
assumptions about the I/O-operations of its interface is available.

The most popular operational models that support reasoning about prob-
abilistic behaviors are Markovian models (Markov chains or Markov decision
processes) where discrete probabilities are attached to the transitions. They
enjoy the memoryless property stating that the future system evolution just
depends on the current system state, but not on the specific steps that have
been performed in the past. The memoryless property is inherent also in
most non-stochastic automata models, such as labeled transition systems or
weighted automata. In the stochastic setting, however, the memoryless prop-
erty asserts that not only the enabled actions and the successor states are
uniquely determined by the current state, but also the probabilities for the
transitions. Markov chains are purely probabilistic, i.e., the possible behavior
in each state is specified by a probabilistic distribution for the successor states.
They can serve to formalize the stepwise behavior of sequential randomized
algorithms. For modeling probabilistic parallel systems, Markov chains are not
expressive enough to provide an interleaving semantics, which relies on the
representation of concurrent (independent) actions α and β, executed by dif-
ferent processes, by a non-deterministic choice between the action sequences
αβ and βα. Thus, models where probabilism and non-determinism co-exist
are required to provide an operational semantics of randomized distributed
algorithms. Stochastic models with nondeterminism are also needed for ab-
straction purposes (e.g., in the context of data abstraction, data-dependent
conditional branching might be replaced with non-deterministic branching) or
to model the potential interactions with an unpredictable environment (e.g.,
a human user). The operational semantics of such systems with probabilis-
tic and non-deterministic behaviors can be described by a Markov decision
process which is a stochastic model where the behavior in each state s is given
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Fig. 1. MDP for a randomized mutual exclusion protocol

by a set of enabled actions which are augmented by distributions that specify
the probabilistic effect of the execution of the enabled actions in state s. The
idea is that when entering state s, first an enabled action α is chosen nonde-
terministically which is then executed and the associated distribution yields
the probability for the next state. A Markov chain arises as a special case of
an MDP where for each state the set of enabled actions is a singleton.

Example 1.1 (A randomized mutual exclusion protocol). We consider here a
simple randomized mutual exclusion protocol for two concurrent processes
P1 and P2. When process Pi is in its non-critical section (represented by
location ni), it can perform a request (via action reqi) and then move to a
waiting section (location wi). In the waiting section, the process waits for
permission given by an arbiter to enter its critical section (location ci) from
where it can release and move to its non-critical section again (action reli).
The arbiter that coordinates the access to the critical sections is randomized
and permits process Pi to enter its critical section if the other process is in
its non-critical section. If both processes request access to the critical section,
the arbiter tosses a fair coin to decide which of the two processes has to wait
and which process may enter the critical section. The composite behavior of
the two concurrent processes and the arbiter can be modeled by the MDP
depicted in Fig. 1. Note that the actions req, enter, and rel do not have a
proper probabilistic effect, and thus yield a unique successor (the transition
probabilities that equal 1 are omitted from the figure). Only in state 〈w1, w2〉
there is a proper probabilistic choice performed by the arbiter to select the
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next process to enter the critical section. In all other states of the MDP where
at least one of the processes is in its non-critical location, there is a non-
deterministic choice between the enabled actions of the processes P1 and P2.

One can think of an MDP as a directed graph where the edges are augmented
with action names and probabilities, i.e., positive real numbers ≤ 1, satis-
fying the side condition that for each state s and action name α either the
probabilities attached to the outgoing α-transitions of s sum up to 1 (which
ensures that they represent a probabilistic distribution) or s has no outgoing
α-transitions at all (in which case α is not enabled in s). Thus, an MDP can
be seen as a special instance of a weighted automaton where the weights are
elements of the interval ]0, 1]. Applying the classical approach of weighted au-
tomata (see Chap. 3 of this handbook [35]) to an MDP (where we deal with
the semiring [0, 1] with standard multiplication and where maximum serves
as plus-operation), the weight of a finite path π is obtained by the product
of the weights of the transitions on π and can be understood as the probabil-
ity for π. To reason about the probabilities for properties over infinite paths
(which are crucial for properties that impose conditions on the “long-run be-
haviors” such as liveness properties), the special interpretation of the weights
as probabilities permits us to apply standard techniques of measure and prob-
ability theory. More precisely, the standard approach to define probabilities
for events in an MDP relies on the sigma-algebra over infinite paths generated
by the cylinder sets spanned by finite paths, and the probability measure is
defined using Carathéodory’s measure extension theorem. A summary of the
relevant measure-theoretic concepts is presented in the appendix; see Sect. 8.
This is an alternative approach to the interpretation of infinite words over
weighted automata discussed in [35, 31] where special algebraic assumptions
on the underlying semiring are made in order to define the weights of infinite
paths and words. In particular, the semiring has to permit an infinite sum
as well as a countably infinite product operation satisfying several commu-
tativity, associativity, and distributivity laws. Another approach to interpret
infinite words over weighted automata uses discounting, which is a well-known
concept in mathematical economics as well as systems theory in which later
events get less value than earlier ones [32–34].

The typical task for verifying a probabilistic system modeled by an MDP
is to prove that certain temporal properties hold almost surely, i.e., with prob-
ability 1, or with some high probability, no matter how the non-determinism
is resolved. The notion qualitative property is used when a certain event is
required to hold almost surely (or dually with zero probability). Thus, quali-
tative properties assert that a certain path condition E holds for almost all or
almost no paths. Depending on the type of condition E, the concept of qual-
itative properties is different from reasoning by means of purely functional
properties that require a certain event E to hold for all paths or for no path.
For example, if B is a set of states, then the qualitative reachability property
asserting that “almost all paths will enter a state in B” is slightly weaker than
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the functional reachability property requiring that “all paths will enter a state
in B”. The notion quantitative property refers to a condition that requires a
lower or upper bound in the open interval ]0, 1[ for the probability of a certain
event or imposes some conditions on the mean value of a random function.
For instance, typical requirements for a randomized mutual exclusion protocol
are the qualitative property stating that “almost surely each waiting process
will eventually get the grant to enter its critical section” and the quantitative
property stating that “each waiting process has the chance of at least 99%
to enter its critical section after having announced its demand five times”. In
the case of a communication protocol with a lossy channel, a natural quanti-
tative requirement could be that “with probability ≥ 0.98, any message will
be delivered correctly after at most three attempts to send it”.

When speaking about probability bounds in the context of verification
methods for MDPs, we range over all possible resolutions of the non-determin-
ism. This corresponds to a worst-case analysis. Thus, if the given MDP is an
interleaving model for a probabilistic multi-processor system, then the worst-
case analysis ranges over all orders of concurrent actions and does not impose
any restrictions on the relative speed of the processors. In cases where some
non-deterministic choices in an MDP stand for the potential behaviors of
an unknown environment, the worst-case analysis takes all possible activities
of the environment into account. Similarly, when certain non-deterministic
branches result from abstractions, then the worst-case analysis covers all con-
crete behaviors. By requiring that the probabilities for a given event E are 1
or sufficiently close to 1, the event E is supposed to characterize the “good”
(desired) behaviors. Verification problems for MDPs can also be rephrased in
the opposite way: if E describes the “bad” (undesired) behaviors, then the
goal is to prove that E holds with probability 0 or some sufficiently small
probability.

The notion qualitative analysis is used if the goal is to show that a cer-
tain event E appears with probability 0 or 1, while the notion quantitative
analysis refers to the task of computing the maximal or minimal probabili-
ties for E, when ranging over all schedulers, i.e., instances that resolve the
non-determinism. Sometimes, some mild conditions on the resolution of non-
deterministic choices along infinite paths are imposed, such as fairness as-
sumptions. Other instances of a quantitative analysis are obtained when the
goal is to establish lower or upper bounds for certain mean values, e.g., the
average power consumption of a complex task or the expected number of
rounds required to find a leader when imposing a leader election protocol.
Such variants of the verification problem for MDPs will not be addressed in
this chapter. Instead, we will concentrate on the quantitative reasoning by
means of extremal probabilities under the full class of schedulers.

In the literature, many variants of classical temporal logics for non-probabi-
listic systems have been adapted to specify the requirements of a probabilistic
system. One prominent example is the probabilistic variant of computation
tree logic (PCTL) [47, 15, 12] which yields an elegant formalism to specify
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lower or upper probability bounds for reachability properties within a logical
framework. While PCTL is a representative for logics that are based on the
branching time view, one can also use purely path-based formalisms, such as
linear temporal logic (LTL) or automata over infinite words, to specify the de-
sired/good or undesired/bad event E, which is then the subject of a qualitative
or quantitative analysis [79, 90, 91, 23]. For finite-state MDPs, the quantitative
analysis against PCTL or LTL specifications mainly relies on a combination of
graph algorithms, automata-based constructions and (numerical) algorithms
for solving linear programs. Consequently, compared to the non-probabilistic
case, there is the additional difficulty to solve linear programs, and also the
required graph algorithms are more complex. This renders the state space ex-
plosion problem even more serious than in the non-probabilistic case and the
feasibility of algorithms for the quantitative analysis crucially depends on good
heuristics to increase efficiency. Among other features, the tool PRISM [61]
contains a PCTL model checker for MDPs which has been successfully applied
to, e.g., a series of randomized coordination algorithms, communication, and
security protocols. To tackle the state space explosion problem, PRISM uses
a tricky combination of data structures (multi-terminal binary decision dia-
grams and sparse matrices) for the internal representation of the MDP and the
numerical computations required for a quantitative analysis [72]. Motivated
by the success of the non-probabilistic model checker SPIN [51] where partial
order reduction techniques [74, 52, 87, 38] for the verification of interleaving
models are realized, the concept of partial order reduction has been adapted
for the quantitative analysis of MDPs against linear-time specifications [9, 26]
and implemented in the model checker LIQUOR [3, 5]. Several other tech-
niques that attempt to speed up the verification algorithms for MDPs and/or
to decrease the memory requirements have been proposed in the literature,
such as symmetry reduction [62], iterative abstraction-refinement algorithms
[25, 50], reduction techniques for linear programs [24, 5], and many others.
Most of these techniques are orthogonal to the symbolic approach of PRISM
and the partial order reduction approach of LIQUOR and can be applied in
combination with them.

Somehow dual to verification problems are controller synthesis problems
where one is typically interested in best-case scenarios (rather than the worst
case) and attempts to construct a scheduler where the probabilities for the
desired behaviors, say formalized by a linear-time property E, are maximal.
Assuming that all non-deterministic choices are controllable and that the con-
troller has complete knowledge of the computation leading to the current state,
then the methods for computing maximal probabilities for the event E can eas-
ily be extended for constructing a scheduler that maximizes the probabilities
for E. However, the assumption that complete knowledge about the history
is available is unrealistic for multi-agent systems when controllers for a single
agent or a coalition of agents are wanted. In this case, the adequate model
are partially observable MDPs [84, 70, 71] that extend ordinary MDPs by an
equivalence relation ∼ on the states. The idea is that equivalent states are not
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Fig. 2. Schema for the quantitative analysis

distinguishable by the controller and the task is to construct a controller (i.e.,
observation-based scheduler) for the partially observable MDP that maximizes
the probabilities for E, where “observation-based” means that the scheduler
can only observe the equivalence classes of the states that have been visited
in the past, but not the states themselves. In general, the controller synthesis
problem cannot be solved algorithmically as there is an undecidability result
for the qualitative controller synthesis problem that asks for the existence of
an observation-based scheduler where the probability to visit a certain set
of states infinitely often is positive [2]. However, for simpler properties (e.g.,
safety properties) and special patterns of liveness properties, the qualitative
controller synthesis problem is decidable.

About This Chapter

In the remaining sections of this chapter, we will present the main concepts
of Markov decision processes as an operational model for probabilistic sys-
tems and present the basic steps for the (qualitative or quantitative) analysis
against linear-time properties. Branching time properties will not be addressed
here. For the basic steps to verify PCTL-like specifications for MDPs and the
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symbolic MTBDD-based approach, we refer to [82] and Chap. 10 in [11], as
well as the literature mentioned there. We will start in Sect. 2 with the formal
definition of an MDP and related notions (paths, schedulers and their induced
probability measure) and illustrate the use of MDPs as an operational model
for probabilistic systems by means of a few examples. The core problem of
any quantitative analysis in an MDP is the problem of computing extremal
reachability probabilities by means of optimization techniques. This will be ex-
plained in Sect. 3. The general case of ω-regular properties will be addressed in
Sect. 4. We follow here the automata-based approach [90, 91, 23, 12] where we
are given a deterministic ω-automata representing a linear-time property E.
The maximal probability for E can be computed by a product construction
and a reduction to the probabilistic reachability problem (see Fig. 2). The
purpose of Sect. 5 is to explain the partial order reduction approach that
attempts to derive the maximal probabilities for E from a “small” fragment
of the MDP, thus avoiding the construction and analysis of the full MDP. In
Sect. 6, we introduce the model of partially observable MDPs and report on
results for special instances of the qualitative controller synthesis problem.
Some concluding remarks are given in Sect. 7. The chapter ends with an ap-
pendix (Sect. 8) that contains the definition of Markov chains and explains
the mathematical details of the stochastic process induced by a scheduler of
an MDP.

2 Markov Decision Processes

Throughout this chapter, we will use Markov decision processes (MDPs) as
an operational model for probabilistic systems. As in [80, 65, 27], the states
of an MDP might have several enabled actions. Each of the actions that are
enabled in state s is associated with a probability distribution which yields
the probabilities for the successor states. This corresponds to the so-called
reactive model in the classification of [89]. In addition, we assume here a
labeling function that attaches to any state s a set of atomic propositions
that are assumed to be fulfilled in state s. The atomic propositions will serve
as atoms in the formal specifications for properties. For instance, to formalize
deadlock freedom “processes P1 and P2 are never simultaneously in their
critical sections” or starvation freedom “whenever P1 is in his waiting section,
then P1 will eventually enter its critical section” for the randomized mutual
exclusion protocol in Fig. 1, we can deal with temporal formulas that use
the atomic propositions waiti, criti for i = 1, 2 which are attached to all states
where the local state of process Pi is wi or ci, respectively. We will now give the
formal definition of an MDP. For further basic definitions of, e.g., probability
distribution, or Markov chain, we refer to the appendix (Sect. 8).

Definition 2.1 ((State-labeled) Markov decision process (MDP)).
A Markov decision process is a tuple
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M = (S, Act, δ, μ,AP, L),

where:

• S is a finite non-empty set of states.
• Act is a finite non-empty set of actions.
• δ : S × Act × S → [0, 1] is a transition probability function such that for

each s ∈ S and α ∈ Act, either δ(s, α, .) is a probability distribution on S
or δ(s, α, .) is the null-function (i.e., δ(s, α, t) = 0 for any t ∈ S).

• μ is a probability distribution on S (called the initial distribution).
• AP is a finite set of atomic propositions.
• L : S → 2AP is a labeling function that labels a state s with those atomic

propositions in AP that are supposed to hold in s.

Act(s) = {α ∈ Act | ∃t ∈ S : δ(s, α, t) > 0} denotes the set of actions that are
enabled in state s. We require that Act(s) is non-empty for each state s ∈ S.

The intuitive operational behavior of an MDP is the following. If s is the
current state, then at first one of the actions α ∈ Act(s) is chosen non-
deterministically. Secondly, action α is executed leading to state t with prob-
ability δ(s, α, t).

Action α is called a probabilistic action if it has a random effect, i.e., if
there is at least one state s where α is enabled and that has two or more
α-successors (an α-successor of state s is a state t such that δ(s, α, t) > 0).
Otherwise, α is called non-probabilistic.

If all actions in Act are non-probabilistic and the initial distribution is a
Dirac distribution, i.e., a probabilistic distribution that assigns probability 1
to some particular state, then our notion of an MDP reduces to an ordinary
transition system with at most one outgoing α-transition per state and action
α and exactly one initial state.

Example 2.2 (The Monty Hall problem). Before we proceed, let us have a look
at a small example of an MDP. We consider here the Monty Hall problem:
“Suppose you are a contestant on a game show, and you are given the choice
of three doors: behind one door is a car, behind the others, goats. You choose
a door, but you do not open it. Then the host, who knows what is behind the
doors, has to open another door which has a goat behind it (if you initially
picked the door with the car behind it, the host randomly chooses one of the
other doors). He then asks whether you want to change your choice to the
other unopened door. After either sticking to your first choice or switching
to the other unopened door, you win what is behind the door that you have
finally chosen. Considering that your goal is to win the car, is it to your
advantage to switch your first choice?”

In Fig. 3, we depict an MDP for an abstraction of this problem where due
to symmetry the information which exact door reveals the car is neglected.
So, in the initial state s, the contestant chooses one of the three doors, each
with equal probability 1

3 . State t1 represents the case where the contestant has
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Fig. 3. The abstract “Monty Hall problem”

chosen the door with the car behind it, states t2 and t3 represent the other
cases where the contestant has chosen a door with a goat behind it. Thus,
state t1 is labeled with the atomic proposition car, whereas t2 and t3 are
labeled with ∅. After this first choice, the game show host opens a door which
has a goat behind it. Note that now there are exactly two closed doors, one
with a car behind it (represented by state u1 and the labeling {get car}) and
one door with a goat behind it (represented by state u2 and the labeling ∅).
Now the contestant has the alternative to either stick to her/his chosen door
or to switch to the other closed door. So, in states t1, t2, and t3, there is a
non-deterministic choice between the actions switch and keep, leading to u1

or u2. Note that the actions switch and keep are non-probabilistic as there are
exactly two closed doors. After choosing switch or keep, the game is over. To
complete the MDP, we added an idling self-loop to the states u1 and u2. For
the sake of readability, we depict the transitions of the switch-action a little
thicker and we omit the labeling of the actions of state t2.

Paths and Schedulers of an MDP

Definition 2.3 (Path and corresponding notations). An infinite path
of an MDP is an infinite sequence π = ((s0, α1), (s1, α2), . . .) ∈ (S × Act)ω

such that δ(si, αi+1, si+1) > 0 for i ∈ N≥0. We write paths in the form

π = s0
α1−→ s1

α2−→ s2
α3−→ · · ·
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A finite path is a finite prefix of an infinite path that ends in a state. We use
the notation last(π) for the last state of a finite path π and |π| for the length
(number of actions) of a finite path. We denote by PathMfin , resp. PathMinf , the
set of all finite, resp. infinite, paths of M.

In order to be able to talk about the probability, e.g., to get the car in
the Monty Hall problem, we need another concept of the theory of MDPs,
namely the concept of schedulers. Schedulers are a means to resolve the non-
determinism in the states, and thus yield a discrete Markov chain and a prob-
ability measure on the paths. Intuitively, a scheduler takes as input the “his-
tory” of a computation (formalized by a finite path π) and chooses the next
action (resp. a distribution on actions).

Definition 2.4 (Scheduler). For a given MDP M = (S, Act, δ, μ,AP, L),
a history dependent randomized scheduler is a function

U : PathMfin → Distr(Act),

such that supp(U(π)) ⊆ Act(last(π)) for each π ∈ PathMfin . Here, Distr(Act)
denotes the set of probability distributions on Act while supp(U(π)) denotes
the support of U(π), i.e., the set of actions α ∈ Act such that U(π)(α) > 0.

A scheduler U is called deterministic, if U(π) is a Dirac distribution for each
π ∈ Pathfin, i.e., U(π)(α) = 1 for some action α, while U(π)(β) = 0 for every
other action β �= α. Scheduler U is called memoryless, if U(π) = U(last(π)) for
each π ∈ Pathfin (note that last(π) is a path of length 0). We denote by Sched,
the set of all (history dependent, randomized) schedulers. We write SchedD to
denote the set of deterministic schedulers, SchedM for the set of memoryless
schedulers, and SchedMD for the set of memoryless deterministic schedulers.
Note that the following inclusions hold.

• SchedM ⊆ Sched and SchedD ⊆ Sched
• SchedMD ⊆ SchedM and SchedMD ⊆ SchedD

A (finite or infinite) path s0
α1−→ s1

α2−→ s2
α3−→ · · · is called a U-path, if

U(s0
α1−→ · · · αi−→ si)(αi+1) > 0 for every 0 ≤ i < |π|.

Given an MDP M and a scheduler U , the behavior of M under U can be
formalized by a (possibly infinite-state) discrete Markov chain. By PrM,U , we
denote the standard probability measure on the standard σ-algebra of the in-
finite paths of M. Given a state s of M, we denote by PrM,U

s the probability
measure that is obtained if M is equipped with the initial Dirac distribu-
tion μs, with μs(s) = 1. A detailed definition of M and PrM,U is provided
in the appendix (Sect. 8). We also fix the following notation for convenience.
Given an MDP M, a scheduler U , and a measurable path property E, we will
write

PrM,U (E) def= PrM,U({
π ∈ PathMinf

∣
∣ π satisfies E

})

for the probability that the property E holds in M under the scheduler U .
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Let us consider again the Monty Hall problem depicted in Fig. 3. It is easy
to see that under the scheduler U with1

U
(
s

choose−−−→ t1
)
(keep) = U

(
s

choose−−−→ t2
)
(switch) = U

(
s

choose−−−→ t3
)
(switch) = 1

the contestant will win the car with probability 1. This is, of course, an unre-
alistic scheduler as it uses the knowledge of whether the contestant has chosen
the door with the car behind it or not. If the door with the car was chosen
(state t1), then the scheduler decides to keep the door, if a door with a goat
was chosen (states t2, t3), then the scheduler decides to switch the door. As
the contestant does not know whether he has chosen the door with the car
behind it, the only realistic schedulers (that model a contestant’s choice) are
the two schedulers Us and Uk with

Us

(
s

choose−−−→ t1
)
(switch) = Us

(
s

choose−−−→ t2
)
(switch) = Us

(
s

choose−−−→ t3
)
(switch) = 1

and

Uk

(
s

choose−−−→ t1
)
(keep) = Uk

(
s

choose−−−→ t2
)
(keep) = Uk

(
s

choose−−−→ t3
)
(keep) = 1

where the contestant either decides to switch the door or to keep it. Simple
computations show that with M being the MDP of Fig. 3

PrM,Us(♦ get car) = PrM,Us
({

s
choose−−−→ t1

keep−−→ u1
idle−−→ · · · ,

s
choose−−−→ t2

switch−−−→ u1
idle−−→ · · · ,

s
choose−−−→ t3

switch−−−→ u1
idle−−→ · · ·

})

= 1 · 1
3 · 0 · 1 + 1 · 1

3 · 1 · 1 + 1 · 1
3 · 1 · 1

= 2
3

and similarly

PrM,Uk(♦ get car) =
1
3
.

This shows that it is an advantage to switch the door. Here, we used the
LTL-like notation ♦ get car to denote the reachability property stating that
eventually a state where get car holds will be reached. That is, given the
atomic proposition get car, a path π = s0

α1−→ s1
α2−→ · · · satisfies ♦ get car if

and only if there exists an index i ∈ N≥0 such that get car ∈ L(si).

Specifying Systems with an MDP-Semantics

In the literature, various modeling languages for probabilistic systems whose
stepwise behavior can be formalized by an MDP have been proposed. Such
languages can serve as a starting point for model checking tools that take as
1 Note that this completely determines the scheduler as there are no other paths
that end in a state with more than one enabled action.
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msg = ...; // the data to be sent

msg_sent = false;

do:: msg_sent == false ->

pif :0.9: -> msg_sent = true;

:0.1: -> skip

fip

od

Fig. 4. ProbMeLa-code for an unbounded retransmission protocol

input a description of the processes of a (parallel) system and a formalization
of the property to be checked. Semantic rules are used to construct the MDP
automatically. Then in further steps, model checking algorithms are applied.
An example for such a modeling language is ProbMeLa [4], which is the input
language of the model checker LIQUOR that supports the qualitative and
quantitative analysis of MDPs against linear-time properties. ProbMeLa is a
probabilistic version of the process meta-language ProMeLa which serves as
modeling language in connection with the prominent model checker SPIN for
non-probabilistic systems [51]. The core language of ProMeLa and ProbMeLa
relies on Dijkstra’s guarded commands guard -> cmd which can be used in
loops (do . . . od) and conditional commands (if . . . fi). One of the additional
probabilistic features of ProbMeLa is a probabilistic choice operator (pif . . .
fip) which can be seen as a probabilistic variant of conditional commands
as probabilities are assigned to the commands rather than Boolean guards.
Commands with the probabilistic choice operator have the form

pif :p1: -> cmd1;
...

:pn: -> cmdn

fip

where the pi’s are values in ]0, 1] that sum up to 1 and specify a probabilistic
distribution for the commands cmdi.

For instance, the ProbMeLa-code in Fig. 4 might be a fragment of an
unbounded retransmission protocol where some process sends data (variable
msg) over a faulty medium such as a wireless radio connection or an other-
wise noisy connection. This ProbMeLa-code specifies a process that iteratively
attempts to send the message until it has been delivered correctly, where in
each iteration of the loop the message will be delivered with probability 0.9
and will be lost with probability 0.1 (which is modeled here by the command
skip). Termination of this protocol is guaranteed with probability 1 which
means that almost surely the message will be delivered eventually. Note that
there is an infinite computation where the message is lost in all iterations, but
the probability for this to happen is 0. This simple example illustrates the
difference between the functional and qualitative properties: the functional
property requiring termination along all paths does not hold for the protocol,
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do

pif:0.5:-> first_fork = left; second_fork = right

:0.5:-> first_fork = right; second_fork = left

fip

if ::forks[first_fork]==false -> forks[first_fork]=true;

if

::forks[second_fork]==false -> forks[second_fork]=true;

// philosopher is eating

forks[second_fork]=false; forks[first_fork]=false

::forks[second_fork]==true -> forks[first_fork]=false

fi

::forks[first_fork]==true -> skip

fi

od

Fig. 5. ProbMeLa-code for each philosopher

while the qualitative property requiring termination along almost all paths
(i.e., with probability 1) holds. Furthermore, we can establish the quantita-
tive property stating that with probability 0.999 the message will be delivered
within the first three iterations.

In the context of distributed systems, such as mutual exclusion protocols,
leader election, or Byzantine agreement, coin tossing offers an elegant way
to design coordination algorithms that treat all processes equally, but avoid
deadlock situations since symmetry breaking is inherent in the random out-
comes of the coin tossing experiment. A prominent example is the randomized
solution of the dining philosophers problem suggested by Lehmann and Rabin
[66]. The philosophers are sitting at a round table and neighboring philoso-
phers have access to a shared resource (a fork). Each philosopher attempts
to alternate infinitely often between a thinking and an eating phase, where
the latter requires that the philosopher has picked up the fork to his left and
the fork to his right. The Lehmann–Rabin protocol works as follows. As soon
as a philosopher gets hungry, he decides to pick up his left or right fork by
tossing a fair coin. If the selected fork is available, then he picks up this fork
and checks whether the other fork is available, also. If so, then he takes it
and starts to eat. Otherwise, he returns the taken fork, and repeats the whole
procedure. This procedure can be described in ProbMeLa as shown in Fig. 5.
If all philosophers operate on the basis of this protocol, then deadlock free-
dom is ensured on all paths. Starvation freedom holds almost surely under all
schedulers, i.e., no matter how the steps of the philosophers are interleaved,
with probability 1 each philosopher gets to eat eventually, if he intends to
do so. Other classes of randomized algorithms, protocols, and scenarios are
modeled likewise.
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3 Maximal Reachability Probabilities

Computing maximal or minimal probabilities for reachability objectives is one
of the core problems for a quantitative analysis of MDPs. In this section, we
summarize the main concepts that rely on linear programming or an iterative
approach which is known under the key word value iteration. Further details
and other methods (e.g., policy iteration) can be found in any textbook on
Markov decision processes; see, e.g., [80].

The notion “reachability” refers to the directed graph structure that is
obtained from M by ignoring the labels of transitions and states. That is, a
set B of states is said to be reachable from a state s if there exists a finite path
in M that starts in state s and ends in some state s′ ∈ B. In what follows,
we will use the LTL-like notation ♦B to denote the property “eventually
reach B” where B is a set of states. That is, given a set B ⊆ S of states,
a path π = s0

α1−→ s1
α2−→ · · · satisfies ♦B if and only if there exists an index

i ∈ N≥0 such that si ∈ B. The quantitative analysis of an MDP M against a
reachability specification amounts to establishing the best upper and/or lower
probability bounds that can be guaranteed to reach a given set B of states,
when ranging over all schedulers. That is, the goal is to compute

sup
U∈Sched

PrM,U (♦B) and inf
U∈Sched

PrM,U (♦B),

where the supremum and the infimum are taken over all schedulers U for M.
If M is clear from the context, we will omit the system M in the superscript
of PrM,U .

For the rest of this chapter, we will restrict to the computation of the
supremum because the results for the infimum are analogous. It is well known
[80, 15] that the history of a scheduler is of no relevance when it comes to
maximizing the probability of reaching a certain set of states and also that
randomization in the schedulers is not needed. Thus, the supremum is attained
by some memoryless deterministic scheduler (note that there are only finitely
many such schedulers). Thus,

sup
U∈Sched

PrU (♦B) = sup
U∈SchedM

PrU (♦B) = max
U∈SchedMD

PrU (♦B).

Note that the above chain of equality does not hold for arbitrary measurable
path properties.

The standard method to compute these maxima is to compute PrUs (♦B)
for each state s in M via a recursive equation system. Formally, let an MDP
M = (S, Act, δ, μ,AP, L) and a set B ⊆ S of target states be given. The
obligation is to compute

Prmax
s (♦B) def= max

U∈Sched
PrUs (♦B) = max

U∈SchedMD

PrUs (♦B)

for each state s ∈ S. Let xs denote this maximum for s ∈ S, that is,
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xs
def= max

U∈SchedMD

PrUs (♦B).

Then if s /∈ B, it evidently holds that

xs = max

{∑

t∈S

δ(s, α, t) · xt

∣
∣ α ∈ Act(s)

}

.

Moreover, if s ∈ B, then obviously xs = 1, and if there is no path from
s to B, then xs = 0. The following theorem [22, 80, 15] states that these
characteristics are sufficient to specify the maximum values.

Theorem 3.1 (Equation system for maximal reachability probabili-
ties). Let M be an MDP with state space S and B ⊆ S. The vector (xs)s∈S

with xs = Prmax
s (♦B) is the unique solution of the following equation system:

• If s ∈ B, then xs = 1.
• If B is not reachable from s, then xs = 0.
• If s /∈ B and B is reachable from s, then

xs = max

{∑

t∈S

δ(s, α, t) · xt

∣
∣ α ∈ Act(s)

}

.

Obviously, xs = Prmax
s (♦B) is a solution of the above equation system. The

proof of its uniqueness is rather technical and omitted here.
Let us again consider the MDP of the Monty Hall problem depicted in

Fig. 3. So, we are interested in the set of target states B = {u1}. Then

xu1 = 1 xt1 = max{xu1 , xu2} xs = max
{

1
3 · xt1 + 1

3 · xt2 + 1
3 · xt3

}

xu2 = 0 xt2 = max{xu1 , xu2}
xt3 = max{xu1 , xu2}

and the unique solution is xu1 = xt1 = xt2 = xt3 = xs = 1 and xu2 = 0.
To actually compute the values Prmax

s (♦B) algorithmically, one can rewrite
the equation system in Theorem 3.1 into the following linear program [22]:

• If s ∈ B, then xs = 1.
• If B is not reachable from s, then xs = 0.
• If s /∈ B and B is reachable from s, then 0 ≤ xs ≤ 1 and for each action

α ∈ Act(s):
xs ≥

∑

t∈S

δ(s, α, t) · xt.

With the objective to
minimize

∑

s∈S

xs,

the vector (xs)s∈S with xs = Prmax
s (♦B) is the unique solution of this linear

program. Identifying the states s such that the value of xs is not fixed to 0
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or 1 by the first two items of the linear program as S? = { s ∈ S \ B | B is
reachable from s }, one can rewrite the third item into

(
1 − δ(s, α, s)

)
· xs −

∑

t∈S?\{ s }
δ(s, α, t) · xt ≥ δ(s, α,B)

where δ(s, α,B) =
∑

t∈B δ(s, α, t). Thus, the third item in the above theorem
can be read as a linear inequality A ·x ≥ b where x is the vector (xs)s∈S? and
A is a matrix with a row for each pair (s, α) with s ∈ S? and α ∈ Act(s), two
extra rows for each state s ∈ S? to represent the inequality 0 ≤ xs ≤ 1 and a
column for each state s ∈ S?. The precise values for Prmax

s (♦B) can thus be
computed by standard algorithms to solve linear programs, e.g., the simplex
algorithm or polytime methods [83].

Corollary 3.2 (Complexity of computing maximal reachability prob-
abilities). For an MDP M with state space S, B ⊆ S and s ∈ S, the values
Prmax

s (♦B) can be computed in time polynomial in the size of M.

This result, however, is more of theoretical interest than of practical rele-
vance. In practice, one often uses a different approach to calculate the values
Prmax

s (♦B), namely an iterative approximation technique called value itera-
tion (see, e.g., [80]) which is based on the following fact. The second item
in Theorem 3.1 could be omitted and replaced by the requirement that the
equations for xs in the third item holds for every state s ∈ S \B. However, the
uniqueness of the solution vector (xs)s∈S = (Prmax

s (♦B))s∈S is then no longer
guaranteed, but one can show that (xs)s∈S is the least solution in [0, 1]S . For
the value iteration, one fixes the value for s ∈ B to xs = 1 and starts with an
initial value of xs = 0 for all states s /∈ B. One then iteratively recalculates
the value according to item 3 of Theorem 3.1. That is,

xi
s = 1 for s ∈ B and i ∈ N≥0

x0
s = 0 for s /∈ B

xn+1
s = max

{∑

t∈S

δ(s, α, t) · xn
t

∣
∣ α ∈ Act(s)

}
for s /∈ B.

For the states s /∈ B, it can be shown that

lim
n→∞

xn
s = Prmax

s (♦B).

Note that x0
s ≤ x1

s ≤ x2
s ≤ · · · . Thus, the values Prmax

s (♦B) can be approxi-
mated by successively computing the vectors

(
x0

s

)
s∈S

,
(
x1

s

)
s∈S

,
(
x2

s

)
s∈S

, . . . ,

until maxs∈S |xn+1
s − xn

s | is below a termination threshold.
Let us once more consider the MDP of the Monty Hall problem depicted

in Fig. 3 and the target set B = {u1}. Thus, xi
u1

= 1 for every i ∈ N≥0. Note
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that xi
u2

= xi−1
u2

, so xi
u2

will equal 0 for every i ∈ N≥0. With xi
t1 = xi

t2 =
xi

t3 = max{1 · xi−1
u1

, 1 · xi−1
u2

} we get

x0
u2

= 0 x0
t1 = x0

t2 = x0
t3 = 0 x0

s = 0

x1
u2

= 0 x1
t1 = x1

t2 = x1
t3 = 1 x1

s = max
{

1
3 · x0

t1 + 1
3 · x0

t2 + 1
3 · x0

t3

}
= 0

x2
u2

= 0 x2
t1 = x2

t2 = x2
t3 = 1 x2

s = max
{

1
3 · x1

t1 + 1
3 · x1

t2 + 1
3 · x1

t3

}
= 1

x3
u2

= 0 x3
t1 = x3

t2 = x3
t3 = 1 x3

s = max
{

1
3 · x2

t1 + 1
3 · x2

t2 + 1
3 · x2

t3

}
= 1.

As all values did not change in the last iteration, we can conclude that the
fixed point is reached.

Implementation Issues

It is obvious that for the set of states from which B is not reachable, the value
iteration is not needed as Prmax

s (♦B) = 0 if and only if B is not reachable
from s. Thus, it is advisable to first compute the set

S0
def= {s ∈ S | B is not reachable from s}

with a standard backward reachability analysis and then set xi
s = 0 for all

states s ∈ S0 and i ∈ N≥0. Note that this reduces the number of variables for
which the value iteration has to be performed. Similarly, one can first compute
the set

S1
def=

{
s ∈ S

∣
∣ Prmax

s (♦B) = 1
}

of states s such that Prmax
s (♦B) = 1. For all states s ∈ S1, we set xi

s = 1 for
all i ∈ N≥0 thus reducing again the number of variables for which the value
iteration has to be performed. The computation of S1 can be done efficiently
by Algorithm 1 using a nested fixpoint computation.

In the formal description of the value iteration, each variable xs with s /∈ B
is updated in every iteration. This might of course lead to a great amount of
unnecessary updates (consider for instance a unidirectional, very long chain
where the last state forms the target set B). So, when implementing the value
iteration one seeks to omit updating a value xs if there is no successor t of s
such that the value xt has been changed during the last update of xs. This
idea is reflected in Algorithm 2 which iteratively propagates probabilities by
means of a backward traversal of the MDP from B. The algorithm maintains
a set T of states for which the xt value has been changed. It then successively
removes a state t from the set T and updates the value xs for every state s
that has t as a successor. If such a value xs becomes altered, the state s is
added to T .

There are several variants of Algorithm 2 that differ in the data structure
used for the organization of the set T . For instance, the set T can be realized as
a stack, a (priority) queue or using buckets to aggregate states. For the priority
queue and the bucket structure, the sorting criterion is the value Δ(s). For
more information on such implementation details and other heuristics, see [5].
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Algorithm 1 Computation of S1

R := S
done := false
while done = false do

R′ := B
done′ := false
while done′ = false do

R′′ := R′∪{s | ∃α ∈ Act(s) : supp(δ(s, α, .)) ⊆ R ∧ supp(δ(s, α, .))∩R′ 	= ∅}
if R′′ = R′ then

done′ := true
end if
R′ := R′′

end while
if R′ = R then

done := true
end if
R := R′

end while
return R

Algorithm 2 Backward value iteration
compute S0, S1 and S? = S \ (S0 ∪ S1)
set xs := 1 for all states s ∈ S1 and xs := 0 for all states s ∈ S0

for all states s ∈ S? do
xs := max{

∑
t∈S1

δ(s, α, t) | α ∈ Act(s)}
end for
T := {s ∈ S? | xs > 0}
repeat

if T 	= ∅ then
pick some state t ∈ T and remove t from T
for all states s such that ∃ action α ∈ Act(s) with δ(s, α, t) > 0 do

x′
s := max{

∑
u/∈S0

δ(s, α, u) · xu | α ∈ Act(s)}
if x′

s > xs then
Δ(s) := x′

s − xs and xs := x′
s and add s to T

end if
end for

end if
until T = ∅ or termination threshold is matched

It should be noticed that if one is just interested in a qualitative reach-
ability analysis (where the task is to check whether Prmax

s (♦B) is 0 or 1),
then the computation of the values xs = Prmax(♦B) is not necessary. In fact,
algorithms to compute the sets S0 and S1 are sufficient.
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4 Model Checking ω-Regular Properties

In the previous section, we have addressed the problem of computing ex-
tremal reachability probabilities in an MDP and have seen that this can be
represented as a recursive equation system or a linear program which can
be solved through fixpoint calculations or, e.g., the simplex algorithm. This
approach can easily be extended to constrained reachability properties (that
require to reach a certain target set B along finite paths that stay inside an-
other set C) or the general class of regular safety properties (which impose
conditions on the finite paths by means of a finite automaton). The quanti-
tative analysis against reachability probabilities is also the core problem for
quantitative reasoning about liveness properties or even arbitrary ω-regular
linear-time properties. In this section, we explain how extremal probabilities
for ω-regular properties represented by ω-automata can be calculated using a
graph-based algorithm and a reduction to the problem of computing maximal
reachability probabilities.

Before we proceed, we fix some notation on finite, resp. infinite words over
a given alphabet. Following the standard notation, given an alphabet Σ, we
write Σ+ for the set of all non-empty finite words over Σ, Σ∗ for the set of
all finite words over Σ (including the empty word ε) and Σω for the set of
all infinite words over Σ. Given a finite non-empty word ς = σ1σ2 . . . σn, the
length |ς| of ς equals n. For an infinite word ς, the length is equal to ∞. Given
a (non-empty finite or infinite) word ς = σ1σ2σ3 . . . ∈ Σ+ ∪ Σω and i ≤ |ς|,
we denote the ith letter of ς by ςi (i.e., ςi = σi).

Recall from Definition 2.1 that in our approach each state of an MDP is
labeled with a subset of a set AP of atomic propositions. Thus, each infinite
path of such an MDP produces a trace which is an infinite word over the
alphabet 2AP.

Definition 4.1 (Trace of a path). Given an MDP and an infinite path
π = s0

α1−→ s1
α2−→ s2

α3−→ · · · , we define the infinite word

trace(π) def= L(s0)L(s1)L(s2) . . . ∈
(
2AP

)ω

to be the trace of π.

Definition 4.2 (Linear-time property). A linear-time property (LT prop-
erty) over a given finite set AP of atomic propositions is a subset of (2AP)ω.

Given a state-labeled system, we say that a path π satisfies a given LT prop-
erty E, if and only if trace(π) ∈ E. LT properties are used to specify the infinite
behavior of a given system. For instance, the reachability property ♦ get car
is formally defined as the language

E =
{
ς ∈

(
2AP

)ω ∣
∣ ∃i : get car ∈ ςi

}
.

There are various formalisms (logics, automata, algebraic expressions) to spec-
ify LT properties. A very prominent logical formalism in model checking is
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the linear temporal logic (LTL) [78]. In this chapter, however, we will utilize
ω-automata to specify LT properties. While finite automata serve as accep-
tors for languages of finite words, the semantics of an ω-automaton refers to
a language over infinite words. The syntax and operational semantics of ω-
automata is roughly the same as for finite automata, except that the input
of an ω-automata is an infinite word and the acceptance condition imposes
constraints on infinite runs rather than on finite ones. As we assume that the
reader of this handbook is already familiar with the concept of ω-automata,
we just provide the definitions that are relevant for our purposes. For more
information on ω-automata, we refer to, e.g., [85, 40].

Definition 4.3 (Deterministic ω-automaton). We define a deterministic
ω-automaton as a tuple

A = (Q, Σ, δA, q0, Acc),

where:

• Q is a finite non-empty set of states.
• Σ is a finite non-empty input alphabet.
• δA : Q × Σ → Q is a transition function.
• q0 ∈ Q is the initial state.
• Acc is an acceptance condition.

In this chapter, we only consider acceptance conditions of the form

Acc = {(H1, K1), . . . , (Hn, Kn)}

and interpret them with a Rabin, resp. Streett semantics. Given a subset
T ⊆ Q of states, we call T :

• Rabin-accepting, if there exists 1 ≤ i ≤ n such that

T ∩ Hi = ∅ and T ∩ Ki �= ∅.

• Streett-accepting, if for every 1 ≤ i ≤ n

T ∩ Hi �= ∅ or T ∩ Ki = ∅.

Thus, Rabin and Streett acceptance are complementary to each other.
Given a deterministic ω-automaton A with an acceptance condition Acc =

{(H1, K1), . . . , (Hn, Kn)} and an infinite word ς = σ1σ2σ3 . . . over Σ, we
define the run for ς in A to be the infinite state sequence ρ = p0, p1, . . . such
that p0 = q0 and pi = δA(pi−1, σi) for every i ≥ 1. Given a run ρ, let

inf(ρ) =
{
p ∈ Q

∣
∣
∞
∃ i ∈ N≥0 : pi = p

}

denote the set of states that occur infinitely often in ρ. We call a run ρ Rabin-,
resp. Streett-accepting, if and only if inf(ρ) is Rabin-, resp. Streett-accepting.
The Z-accepted language of A is defined as
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Fig. 6. DSA for ♦ get car

LZ(A) def=
{
ς ∈ Σω

∣
∣ the run for ς in A is Z-accepting

}

for Z ∈ {Rabin, Streett}.
In order to argue more easily about the accepted language, we call the

combination of a deterministic ω-automaton and Rabin acceptance (resp.,
Streett acceptance) a deterministic Rabin automaton (DRA) (resp., deter-
ministic Streett automaton (DSA)). In the remainder of this section, we will
drop the Z from Z-accepting, Z-accepted language, and LZ(A), if it is clear
from the context.

To use deterministic Rabin, resp. Streett automata as a formalism for
representing LT properties, we will consider automata with the alphabet Σ =
2AP, where AP is the set of atomic propositions of the given system. For
example, the reachability property

E = ♦ get car =
{
ς ∈

(
2AP

)ω ∣
∣ ∃i : get car ∈ ςi

}

over the set AP = {get car} can be represented by the deterministic Streett
automaton A shown in Fig. 6 where the acceptance condition is Acc =
{({q1}, {q0, q1})}. It is easy to see that L(A) = E.

It is well known [85, 40] that the class of languages that are definable by
deterministic Rabin (or Streett) automata coincides with the class of ω-regular
languages and the class of MSO definable languages over infinite words. Thus,
DRA and DSA are powerful enough to express many interesting specifications
that arise in real-world scenarios. This includes simple temporal properties
like “eventually” (reachability properties), “always” (safety properties), and
liveness properties that result by combination of “eventually” and “always”,
such as “infinitely often” or “continuously from some moment on”. But also
more complex properties such as “each process will eventually enter its critical
section” or “between two eating phases of a dining philosopher there is always
a thinking phase” can be specified by DRA and DSA.

Natural requirements for MDPs and other types of probabilistic systems
attach lower or upper probability bounds on such LT properties. That is, the
typical task is to verify conditions such as “the probability that a waiting
process is never allowed to enter its critical section is less than 0.005” for a
randomized mutual exclusion protocol. But also qualitative properties play a
crucial role where the goal is to establish conditions such as “with probability 1
the repeated attempt to deliver a message will eventually be successful” for
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a communication protocol or “with probability 1 a leader will eventually be
elected” for a randomized leader election protocol.

In the remainder of this section, we explain the main steps for a quantita-
tive analysis of an MDP M against an ω-regular LT property, specified by a
DRA or DSA A (note that such properties are measurable). This requires us
to compute the maximal or minimal probabilities

Prmax
s (A) def= sup

U∈Sched
PrUs

(
L(A)

)
and Prmin

s (A) def= inf
U∈Sched

PrUs
(
L(A)

)

for the paths π of M that start in s and where π satisfies L(A), i.e., trace(π)
belongs to L(A). As for the quantitative reachability analysis, the supremum
and infimum are taken over all schedulers of the given MDP. In fact, there
exist schedulers that maximize or minimize the probabilities for paths with a
trace in L(A). Again, the supremum and infimum can be replaced with max-
imum and minimum. As in Sect. 3, we will focus here on explanations about
the computation of maximal probabilities, i.e., the computation of the values
Prmax

s (A). Analogous techniques are applicable to compute Prmin
s (A). How-

ever, since the class of ω-regular languages is closed under complementation,
algorithms to compute Prmax

s (A) are even sufficient to reason about minimal
probabilities. Given a deterministic ω-automaton A that specifies the desired
behaviors, we may switch to a deterministic ω-automaton B for the comple-
ment language L(A), i.e., B represents the undesired behaviors. (Here, we can
exploit the duality of Rabin and Streett acceptance. That is, if A is a DSA,
then we can use B = A, but treat B as a DRA, and vice versa.) We then
apply the techniques for computing the maximal probabilities Prmax

s (B) for
the “bad” event specified by B. The greatest lower bound for the probabili-
ties that can be guaranteed for the good behaviors is then obtained by the
following equation:

Prmin
s (A) = 1 − Prmax

s (B).

The key for the quantitative analysis of MDPs against ω-regular properties
lies in the concept of de Alfaro’s end components [27, 28]. They can be seen as
the MDP counterpart to terminal strongly connected components in Markov
chains. Intuitively, an end component of an MDP is a non-empty strongly
connected sub-MDP, that means an end component consists of a non-empty
state set T ⊆ S and a non-empty action set A(t) for each state t ∈ T such
that, once T is entered and only actions in A(t) are chosen, the set T will not
be left and any state of T can be reached from any other state in T .

Definition 4.4 (End components). Let M = (S, Act, δ, μ,AP, L) be an
MDP. Then an end component of M is a pair (T,A) where ∅ �= T ⊆ S
and A : T → 2Act is a function such that the following three conditions are
satisfied:

• ∅ �= A(s) ⊆ Act(s) for each state s ∈ T .
• If s ∈ T , t ∈ S and α ∈ A(s) such that δ(s, α, t) > 0 then t ∈ T .
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• The underlying directed graph (T,→A) of (T,A) is strongly connected.

Here, →A denotes the edge-relation induced by A, that is s →A t if and only
if δ(s, α, t) > 0 for some action α ∈ A(s).

The importance of end components is due to the following observation about
the limit behavior of paths that has been established by de Alfaro [27, 28].
Given an infinite path π = s0

α1−→ s1
α2−→ s2

α3−→ · · · we denote by Lim(π)
the pair (T,A) where T = inf(π) is the set of states in π that are visited
infinitely often and A : T → 2Act is the function that assigns to any state
t ∈ T the set of actions α ∈ Act such that (si = t) ∧ (αi+1 = α) for infinitely
many indices i. Given an MDP M and a (possibly history-dependent and
randomized) scheduler U , it holds that in the process induced by U , almost
all paths of M “end” in an end component, that is, their limit Lim(.) forms
an end component.

Lemma 4.5 (Limiting behavior of MDPs and end components). For
any MDP M and scheduler U ,

PrM,U({
π ∈ PathMinf

∣
∣ Lim(π) is an end component

})
= 1.

This fundamental property of MDPs is one of the main features for computing
Prmax

s (A) for a given DRA, resp. DSA A via a reduction to the problem of
maximal reachability probabilities. Another feature is the product construc-
tion of the MDP and the automaton A.

Definition 4.6 (Product-MDP). As before, let M = (S, Act, δ, μ,AP, L)
be an MDP and let A = (Q, 2AP, δA, q0, Acc) be a DSA or DRA. The product
of M and A is defined as the MDP

M⊗A = (S × Q,Act′, δ′, μ′, Q, L′)

where the transition function δ′, the initial distribution μ′, and the labeling
function L′ are defined as follows:

• Act′
def= Act

• δ′(〈s, q〉, α, 〈s′, q′〉) def=
{

δ(s, α, s′) if q′ = δA(q, L(s′))
0 otherwise

• μ′(〈s, q〉) def=
{

μ(s) if q = δA(q0, L(s))
0 otherwise

• L′(〈s, q〉) def= { q }

Note that this construction requires a deterministic ω-automaton A, as for
a non-deterministic ω-automaton there is no straightforward way to define
appropriate transition probabilities for the product. We may observe a one-
to-one correspondence between the path

π = s0
α1−−→ s1

α2−−→ s2
α3−−→ · · ·
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in the MDP M and the path

π+ = 〈s0, q1〉 α1−−→〈s1, q2〉 α2−−→〈s2, q3〉 α3−−→ · · ·

in M⊗A that starts in state 〈s0, q1〉 where q1 = δA(q0, L(s0)). Given a path
π+ in M⊗A, the corresponding path in M is simply obtained by omitting
all automata states qi. Vice versa, given a path π as above, the corresponding
path π+ is obtained by adding the automaton states qi+1 = δA(qi, L(si))
to π. Thus, π+ emanates from π and the unique run for trace(π) in A. Recall
that the acceptance of a run imposes a condition on the set of states in the
automaton that appear infinitely often in that run. Hence, whether or not
trace(π) belongs to L(A) depends on the projection of inf(π+) to the states
in A, i.e., the set {q ∈ Q | ∃s ∈ S : 〈s, q〉 ∈ inf(π+)}. Since almost all paths
in M ⊗ A constitute an end component (by Lemma 4.5), the algorithm to
compute Prmax

s (A) relies on an analysis of the end components of the product
where the acceptance condition of A holds.

Definition 4.7 (Accepting end components). Given an MDP M =
(S, Act, δ, μ, AP, L) and a DRA, resp. a DSA A = (Q, 2AP, δA, q0, Acc), we
call an end component (T,A) of M⊗A accepting if and only if the set

T |Q
def=

{
q ∈ Q | ∃s ∈ S : 〈s, q〉 ∈ T

}

is accepting in A.

In the sequel, let AEC be the union of (the state-component of) all accepting
end components in the product-MDP M ⊗ A. That is, AEC consists of all
states 〈s, q〉 ∈ S × Q such that 〈s, q〉 ∈ T for at least one accepting end
component (T,A) of M⊗A. The probability for the paths in M under some
scheduler U that have their trace in L(A) agrees with the probability for the
paths in M ⊗ A whose limits yield an accepting end component under the
corresponding scheduler U+ for the product. We use here the fact that each
scheduler U for M can be mimicked by a scheduler U+ for M⊗A. Formally,
U+’s decision for a finite path π+ agrees with U ’s decision for the path that
results from π+ by dropping the automaton component from the states. The
maximal probabilities in M⊗A for paths π+ where Lim(π+) is an accepting
end component agree with the maximal probability in M ⊗ A for reaching
eventually the set AEC. Note that there is a scheduler that ensures that once
AEC has been reached, the set AEC will never be left and almost surely the
limiting behavior will constitute an accepting end component. This is the key
property to provide a formal proof for the following theorem [27, 12].

Theorem 4.8 (Maximal probabilities for ω-regular properties). Let
M, A, and AEC be as above. Then for each state s ∈ S:

Prmax
s (A) = Prmax

〈s,δA(q0,L(s))〉(♦AEC).
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On the basis of this theorem, an algorithm to compute Prmax
s (A) can proceed

as follows. First, construct the product-MDP M⊗A, then compute the ac-
cepting end components and finally apply the techniques explained in Sect. 4
to compute the maximal reachability probabilities for the target set AEC in
the product. What remains is to explain the computation of the set AEC.
The notion of an accepting end component just depends on the topological
graph structure of the MDP M⊗A (the precise transition probabilities are
irrelevant). Therefore, purely graph-based methods are sufficient to compute
the set AEC. As the number of end components of an MDP M can grow
exponentially in the size of M, the naive approach that relies on an explicit
computation of all accepting end components is hopelessly inefficient. Instead,
one can use the concept of maximal end components to increase the efficiency.
An end component (T,A) of an MDP M′ is called maximal if there is no end
component (T ′, A′) of M′ such that (i) T ⊆ T ′, (ii) A(t) ⊆ A′(t) for every
t ∈ T , and (iii) (T,A) �= (T ′, A′). Obviously, the state sets of maximal end
components are pairwise disjoint and each end component is contained in
some maximal end component. In particular, the total number of maximal
end components is bounded by the number of states in M′. We will explain
first how the set of all maximal end components, which is denoted by MEC,
can be computed in polynomial time.

Computing the Set of Maximal end Components

Here, we address the problem of computing the set MEC of all maximal end
components in the product-MDP M⊗A. Recall that the states contained in
an end component (T,A) are strongly connected in the underlying directed
graph (T,→A) (see Definition 4.4). Furthermore, it is clear that a maximal
end component in M⊗A is contained in some strongly connected component
(SCC) of (S ×Q,→M⊗A), the underlying directed graph of M⊗A. Thus, an
algorithmic scheme for calculating the set MEC of all maximal end components
consists of the following steps [23, 27]:

1. In a first step, we compute a candidate set C of all possible maximal end
components as follows. Compute the SCCs and define

C = {(T,A) | T is an SCC and A(t) = Act(t) for t ∈ T}.

2. Pick and remove a candidate (T,A) from C.
3. For each state t ∈ T, remove all actions from A(t) that violate the second

condition of Definition 4.4, i.e., remove all α ∈ A(t) with
∑

u∈T (t, α, u) <
1 and call that modified candidate (T,A′).

4. Calculate all SCCs in the underlying directed graph (T,→A′) of (T,A′)
and insert them as new candidates into C (similar as in step 1, but with
action sets restricted to A′).

5. Repeat steps 2–4 until C reaches a fixpoint.
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When the fixpoint is reached, the set C equals the set MEC. Since during each
iteration for every candidate (T,A) ∈ C either there exist actions α in A(t)
that are removed, and thus causing a potential splitting of this candidate, or
a fixpoint is reached for C; the procedure obviously terminates. Furthermore,
the number of iterations is bounded by the total number of pairs (t, α) where
t is a state in M ⊗ A and α an action that is enabled in t. The costs per
iteration are dominated by the calculation of the SCCs in steps 1 and 4.
Thus, the complexity of the algorithm is polynomially bounded in the size of
M⊗A (i.e., the total number of states and transitions in M⊗A).

Remark 4.9. The algorithm to compute the maximal end components can also
be used to increase the efficiency of the algorithms for computing the extremal
probabilities for a reachability property ♦B. This is due to the fact that
whenever s and t are states that belong to the same maximal end component,
then Prmax

s (♦B) = Prmax
t (♦B). Hence, the given MDP can be simplified by

collapsing all states that belong to the same maximal end component into a
single state. This reduces the number of variables in the equation system or
linear program and can therefore lead to a major speed-up [5].

With the above algorithm for the computation of MEC, we can now explain
how the set AEC can be computed for the product-MDP of a given MDP M
and a given DRA, resp. DSA A.

Case 1: A Is a Deterministic Rabin Automaton

Let Acc = {(H1, K1), . . . , (Hn, Kn)} be the acceptance condition of A and let

H ′
i

def= {〈s, q〉 | s ∈ S, q ∈ Hi} and

K ′
i

def= {〈s, q〉 | s ∈ S, q ∈ Ki}.

Thus, an end component (T,A) is accepting, if there is an index 1 ≤ i ≤ n
such that

T ∩ H ′
i = ∅ and T ∩ K ′

i �= ∅.
Assume that (T,A) is accepting with respect to (H ′

i, K
′
i). Let M′

i be the MDP
that results from M⊗A by removing all states in H ′

i. Then (T,A) is obviously
an end component in M′

i, and moreover the maximal end component of M′
i

that contains (T,A) is also accepting with respect to (H ′
i, K

′
i). Hence, the set

AEC arises as the union of the sets AECi for 1 ≤ i ≤ n where AECi is the
union of (the state-components of) all maximal end components (T,A) in M′

i

where T ∩ K ′
i �= ∅.

Case 2: A Is a Deterministic Streett Automaton

In this case, an efficient way to realize the quantitative analysis on the basis
of Theorem 4.8 is obtained using the following lemma.
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Lemma 4.10. Given an MDP M′ with state space S′, a target set of states
B ⊆ S′, and a set X with B ⊆ X ⊆ {t ∈ S′ | Prmax

t (♦B) = 1}, then for every
state s ∈ M′:

Prmax
s (♦B) = Prmax

s (♦X).

Let M′ = M⊗A. We denote by AMEC the union of all maximal end com-
ponents that have an accepting sub-component, i.e.,

AMEC def=
{
t ∈ S × Q | there exists (T,A) ∈ MEC such that t ∈ T and
there is some accepting end component (T ′, A′) with T ′ ⊆ T

}
.

It should be noticed that the correct term for AMEC is not “accepting max-
imal end components” but “maximal end components that contain at least
one accepting sub-end component”. We now show that with B = AEC and
X = AMEC the condition of Lemma 4.10 holds, i.e.,

AEC ⊆ AMEC ⊆
{
t
∣
∣ Prmax

t (♦AEC) = 1
}
.

This can be seen as follows. Let t ∈ AMEC be included in the end component
(T,A) that has the accepting sub-component (T ′, A′). As (T,A) is an end
component, there is a scheduler U which ensures that starting in state t, almost
surely each state in T will be visited infinitely often. Since T ′ ⊆ T , the set
T ′ will be visited almost surely. As T ′ ⊆ AEC, we get that PrUt (♦AEC) = 1.
Using Lemma 4.10, we thus can reformulate Theorem 4.8 as the following
theorem.

Theorem 4.11 (Maximum probability for ω-regular properties,
part II). Let M be as before, A a DSA2, and AEC and AMEC be as above.
Then for every state s of M:

Prmax
s (A) = Prmax

〈s,δA(q0,L(s))〉(♦AEC) = Prmax
〈s,δA(q0,L(s))〉(♦AMEC).

This observation allows us to switch from AEC to the larger set AMEC that
arises by the union of certain maximal end components. In the following, we
will describe how the set AMEC can be computed efficiently for a given MDP
M and a given deterministic Streett automaton A.

Calculating the Set AMEC

To compute the set AMEC, it remains to check for each maximal end com-
ponent (T,A) ∈ MEC if it contains an accepting end component with respect
to the given Streett acceptance condition Acc. In the sequel, let AMEC be
the set of all maximal end components that contain an accepting end com-
ponent. (Hence, AMEC is the set of all states that are contained in some
(T,A) ∈ AMEC.) For simplicity, we suppose that Acc consists of a single
acceptance pair, say Acc = {(H,K)}. Let
2 Theorem 4.11 also holds if A is a DRA.
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H ′ def= {〈s, q〉 | s ∈ S, q ∈ H} and

K ′ def= {〈s, q〉 | s ∈ S, q ∈ K}.

Assume that a maximal end component (T,A) violates the given Streett ac-
ceptance condition. Then T ∩ H ′ = ∅ and no sub-component can satisfy the
acceptance condition by containing an H ′-state. Hence, a sub-component can
only satisfy the acceptance condition Acc if it does not contain a K ′-state.
These ideas lead to the following procedure. Consider a maximal end compo-
nent (T,A) ∈ MEC.

1. If T ∩ H ′ �= ∅ or T ∩ K ′ = ∅, then (T,A) ∈ AMEC.
2. Otherwise let T1 = T \ K ′ and A1 such that A1(t) = {α ∈ A(t) |∑

t∈T1
(s, α, t) = 1} for each state t ∈ T1.

3. If an end component can be found in (T1, A1), then (T,A) ∈ AMEC.
4. Otherwise, (T,A) /∈ AMEC.

5 Partial Order Reduction

In contrast to the previous sections, where advanced solution techniques for
the value iteration have been discussed, we now focus on the state space
explosion problem. There exist diverse methods for tackling the state space
explosion problem for non-probabilistic as well as probabilistic systems. This
includes symbolic model checking methods and various reduction techniques,
see, e.g., [21] for an overview. The symbolic methods are mainly based on
multi-terminal binary decision diagrams and focus on a compact internal rep-
resentation of the (full) system [17, 45, 45, 6, 16, 72, 49, 69, 61]. So, these
methods do not aim at avoiding the state space explosion, but at using a
very compact representation of the given model. For instance, the PCTL-
model checkers PRISM [60], ProbVERUS [48] and RAPTURE [56] are based
on a symbolic representation of the system to be analyzed. In addition, hy-
brid approaches that combine the compact model representation of symbolic
techniques with the good performance of numerical computations of explicit
techniques have been developed [61]. Somewhat orthogonal to this approach
are numerous reduction techniques, where the goal is to generate only a re-
duced sub-system which is “equivalent” (with respect to the properties to be
verified) to the original system. Then model checking is applied to the reduced
system, yielding the desired answer not only for the reduced system, but also
for the original one. A large class of reduction techniques are bi-simulation–
minimization techniques [55, 8, 77, 18, 58] that aim to aggregate bi-similar
states and to construct an “equivalent” quotient of the original model. For
models with non-trivial but interchangeable components, symmetry reduction
techniques have been developed that use the inherent internal symmetries to
reduce the state space.
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Another class of reduction techniques are partial order reduction methods
which have been thoroughly studied for non-probabilistic models [74, 52, 87,
38, 39, 76, 75] and have been extended to probabilistic systems in [9, 26, 7,
41, 42]. For partial order reduction, the starting point is usually a description
of an asynchronous parallel system by a representation of the sub-systems
that run in parallel, e.g., as in the language ProbMeLa that has been outlined
in Sect. 2. The rough idea behind partial order reduction is to construct a
reduced state graph by abolishing redundancies in the transition system that
originate from the interleaving of independent activities that are executed
in parallel. For independent actions α and β, the interleaving semantics rep-
resents their parallel execution by the nondeterministic choice between the
action sequences αβ and βα. If αβ and βα have the same effect to the control
and program variables, and thus lead to the same state, the investigation of
one order (αβ or βα) as a representative for both suffices under certain side
conditions. More general, instead of constructing the full system M, the goal
of partial order reduction is to generate an “equivalent” sub-system Mred of
the full transition system M. Here, “equivalence” is considered with respect
to the type of property to be verified. Of course, the algorithmic construction
and analysis of Mred should be more efficient than model checking the full
system M. We give a small example to illustrate these ideas. Consider two
processes P1 and P2 where P1 increments a variable x (action α) twice and
P2 increments a variable y (action β) twice. Assume that we are only inter-
ested in the value of y, that is, each state is labeled with its y value. Then
action α does not change the labeling, but action β does. Figure 7 shows the
two processes and their parallel execution, where the shade of a state node
represents its y value (the greater y is, the darker the node is). Now assume
that we want to check whether the property

“The value of y never decreases.”

holds on any path. For the system P1|||P2 of the parallel execution of P1 and
P2 in Fig. 7, this means

“The shades of the nodes never get lighter.”

along any path. Obviously, each path of the system satisfies this property.
Now this property has a remarkable feature. In order to decide whether a path
satisfies the property or not, it is only relevant what changes of the labeling
occur along the path, but not how often a certain labeling is repeated before
it changes. The property is so-called stutter invariant. It cannot distinguish
between two paths that follow the same pattern of changes in the labeling (but
may differ in the number of repetitions of a certain labeling). Such two paths
are called stutter equivalent. Now consider the reduced system (P1|||P2)red in
Fig. 7. As any path of P1|||P2 has a stutter equivalent path in (P1|||P2)red
and the property under consideration cannot distinguish between such paths,
it is sufficient to check whether all paths of the reduced system satisfy the
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Fig. 7. The idea of partial order reduction

property. If all paths of the reduced system satisfy the property, so do all
paths of the original system (and vice versa as the reduced system is a sub-
system of the original one). Thus, the reduced system is “equivalent” to the
original system with respect to the property.

The goal of partial order reduction is to give criteria with which an “equiv-
alent” reduced system can be generated. These criteria heavily depend on the
class of properties that one wants to preserve (e.g., LT properties, branch-
ing time properties) and on the kind of model. In the early 1990s, several
partial order reduction techniques have been developed for non-probabilistic
systems [86, 74, 87, 52, 38, 39, 75, 88, 76]. In the last few years, one instance
of partial order reduction techniques, the so-called ample set method has been
generalized to the probabilistic setting [9, 26, 7, 41, 42].

The interested reader might want to compare our notion of independent
actions with the independence relation used in Sect. 2.1 on weighted distrib-
uted systems in Chap. 10 in this handbook [36].

The Ample Set Method for MDPs and LT Properties

The rough idea of the ample set method is to assign to any reachable state
s of an MDP M an action-set ample(s) ⊆ Act(s) and to construct a re-
duced system Mred that results by using the action-sets ample(s) instead of
Act(s). That is, starting from the initial states of M, one builds up Mred

by only applying ample transitions. The reduced system should be equivalent
to the original system in the desired sense, e.g., simulation equivalent or bi-
simulation equivalent, etc. Depending on the desired equivalence, the defined
ample sets have to fulfill certain conditions to ensure the equivalence. These
equivalences typically identify those paths whose traces (i.e., words obtained
from the paths by projection on the state labels) agree up to stuttering. In
this context, stuttering refers to the repetition of the same state labels.

Definition 5.1 (Stutter equivalence). Two infinite words ς1 and ς2 over
the alphabet Σ are called stutter equivalent, denoted by
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ς1 ≡st ς2,

if and only if there is an infinite word a1a2 . . . over the alphabet Σ such that

ς1 = ak1
1 ak2

2 . . . and ς2 = an1
1 an2

2 . . . ,

where ki, ni ∈ N≥1. Two infinite paths π1 and π2 in a state-labeled MDP
are called stutter equivalent, denoted by π1 ≡st π2, if and only if their traces
trace(π1) and trace(π2) over 2AP are stutter equivalent.

An LT property over AP is called stutter invariant, if it cannot distinguish
between stutter equivalent paths.

Definition 5.2 (Stutter invariant LT properties). An LT property E
over AP is called stutter invariant if for all stutter equivalent words ς1, ς2 ∈
(2AP)ω we have that

ς1 ∈ E if and only if ς2 ∈ E.

We call two MDPs stutter equivalent if for each scheduler of one of the MDPs
there exists a scheduler of the other MDP such that the schedulers yield the
same probabilities for any stutter invariant LT property.

Definition 5.3 (Stutter equivalence for MDPs). Given two MDPs Mi =
(Si, Acti, δi, μi, APi, Li), with i = 1, 2, we call M1 and M2 stutter equivalent,
denoted by

M1 ≡st M2,

if and only if for each scheduler U1 of M1 there exists a scheduler U2 of M2

such that,
PrM1,U1(E) = PrM2,U2(E)

for each stutter invariant measurable LT property E ⊆ (2AP)ω, and vice versa.

Before explaining the ample set method, we briefly illustrate its impact on
probabilistic linear-time model checking. Assume that we are given two stutter
equivalent MDPs M1,M2 and a stutter invariant measurable LT property E.
Then

sup
U∈SchedM1

PrM1,U (E) = sup
U∈SchedM2

PrM2,U (E).

The corresponding equality with inf instead of sup certainly also holds. Hence,
two stutter equivalent MDPs M1 and M2 are equivalent with respect to
stutter invariant measurable linear-time specifications. A prominent class of
stutter invariant measurable LT properties is the LTL fragment that does not
use the “NextStep”-operator [90].

The following result (Theorem 5.8 below) has been established in [9]. It
requires ample sets ample(s) for s ∈ S that enjoy the properties (A0)–(A4)
shown in Fig. 9 (these will be explained later) and asserts the stutter equiv-
alence of the original MDP M and the reduced MDP Mred that arises from
M by removing all enabled actions of a state s that are not included in the
ample set of s. The precise definition of Mred is as follows.
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Definition 5.4 (The reduced MDP). Let M = (S, Act, δ, μ, AP, L) be an
MDP, and suppose that for each state s ∈ S, ample(s) is a non-empty subset
of Act(s). Then the reduced MDP Mred is the MDP (Sred, Act, δred, μ, AP, Lred)
where the state space of Mred is the smallest sub-set Sred of S such that:

• {s ∈ S | μ(s) > 0} ⊆ Sred.
• Whenever s ∈ Sred and α ∈ ample(s) then {s′ ∈ S | δ(s, α, s′) > 0} ⊆ Sred.

The transition probability function δred : Sred × Act × Sred → [0, 1] is given by

δred(s, α, s′) =
{

δ(s, α, s′) if α ∈ ample(s)
0 otherwise.

The labeling function Lred : Sred → 2AP is the restriction of M’s labeling
function to the state space of Mred, i.e., Lred(s) = L(s) for all s ∈ Sred.

Thus, Mred can be obtained by an on-the-fly algorithm which first generates
all initial states of M and then successively expands each generated state s
by considering all actions α ∈ ample(s) and generating the α-successors of s
that have not been generated before.

The following Theorem 5.8 [9, 43] ensures that given a deterministic ω-
automaton A that accepts a stutter invariant language, it suffices to model
check Mred against A instead of M, provided that the ample sets satisfy
the conditions (A0)–(A4) in Fig. 9. Before presenting the theorem, we define
stutter actions, resp. independent actions that are used in the condition (A1),
resp. (A2). Stutter actions are actions that have no effect on the state labels,
no matter in which state they are taken.

Definition 5.5 (Stutter action). Given an MDP M = (S, Act, δ, μ,AP, L),
we call an action α ∈ Act a stutter action if and only if for all states s, t ∈ S,

δ(s, α, t) > 0 implies L(s) = L(t).

The main ingredient of any partial order reduction technique in the proba-
bilistic or non-probabilistic setting is an adequate notion for independence of
actions. The rough idea is a formalization of actions belonging to different
processes that are executed in parallel and do not affect each other, e.g., as
they only refer to local variables and do not require any kind of synchroniza-
tion. In non-probabilistic systems, independence of two actions α and β means
that, for any state s where both α and β are enabled, the execution of α does
not affect the enabledness of β (i.e., the α-successor of s has an outgoing β-
transition), and vice versa, and in addition the action sequences αβ and βα
lead to the same state. In the probabilistic setting, it is additionally required
that αβ and βα have the same probabilistic effect.

Definition 5.6 (Independence of actions, cf. [9, 26]). Two actions α
and β with α �= β are called independent in an MDP M if and only if for
each state s ∈ S with {α, β} ⊆ Act(s) it holds that:
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Fig. 8. Examples of independent actions

1. δ(s, α, t) > 0 implies β ∈ Act(t).
2. δ(s, β, u) > 0 implies α ∈ Act(u).
3. For each state v ∈ S:

∑

t∈S

δ(s, α, t) · δ(t, β, v) =
∑

u∈S

δ(s, β, u) · δ(u, α, v).

Two different actions α and β are called dependent if and only if α and β are
not independent. If A ⊆ Act and α ∈ Act\A, then α is called independent from
A if and only if for each action β ∈ A, α and β are independent. Otherwise,
α is called dependent on A.

Example 5.7 (Independent actions). Figure 8 shows a fragment of an MDP
M1 representing the parallel execution of independent actions α and β. For
example, α might stand for the outcome of the experiment of tossing a “one”
with a dice, while β stands for tossing a fair coin. In general, whenever α
and β represent stochastic experiments that are independent in the classical
sense, then α and β viewed as actions of an MDP are independent. However,
there are also other situations where two actions can be independent that do
not have a fixed probabilistic branching pattern. For instance, actions α and
β in the MDP M2 in Fig. 8 are independent. To see this, first notice that
only in state s both α and β are enabled. The α-successors t, s of s have a
β-transition to state u, while the β-successor u has an α-transition to itself.
The probabilistic effect under the action sequences αβ and βα is the same as
in either case state u is reached with probability 1.

Theorem 5.8 (Ample set method for MDPs). Let M = (S, Act, δ,
μ,AP, L) be an MDP and ample : S → 2Act a function satisfying conditions
(A0)–(A4) in Fig. 9. Then

M ≡st Mred,

where Mred denotes the reduced MDP that emanates from the MDP M and
the ample sets defined by the function ample according to Definition 5.4.
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(A0) (Non-emptiness condition) For each state s ∈ S, it holds that
∅ 	= ample(s) ⊆ Act(s).

(A1) (Stutter condition) If s ∈ Sred and ample(s) 	= Act(s), then all actions
α ∈ ample(s) are stutter actions.

(A2) (Dependence condition) For each path π = s
α1−→ · · · αn−−→ sn

γ−→ · · ·
in M where s ∈ Sred and γ is dependent on ample(s) there exists an index
i ∈ {1, . . . , n} such that αi ∈ ample(s).

(A3) (End component condition) For each end component (T, A) in Mred

we have that: α ∈
⋂

t∈T A(t) implies α ∈
⋃

t∈T ample(t).

(A4) (Branching condition) If π = s
α1−→ s1

α2−→ · · · αn−−→ sn
α−→ · · · is a path

in M where s ∈ Sred, α1, . . . , αn, α /∈ ample(s) and α is probabilistic, then
|ample(s)| = 1.

Fig. 9. Conditions for the ample sets of MDPs

We now provide explanations why conditions (A0)–(A4) that have been pro-
posed in [9] ensure the stutter equivalence of M and Mred. Condition (A0)
simply assures that Mred is a sub-MDP of M (recall that in Definition 2.1 we
required that all states of an MDP are non-terminal). Thus, each scheduler
of Mred is also a scheduler of M. So, the interesting part is the transforma-
tion of a given scheduler U of M into an “equivalent” scheduler Ured of Mred

(where “equivalence” is understood with respect to the probabilities of stutter
invariant measurable LT properties). The details of the scheduler transforma-
tion U → Ured are rather technical and will not be explained here. The main
idea is an iterative approach where an infinite sequence U0 = U ,U1,U2, . . . of
schedulers for M is constructed such that:

• Ui,Ui+1,Ui+2, . . . agree on all finite paths of length at most i.
• All finite Ui-paths of length i are paths in Mred.
• PrM,Ui(E) = PrM,U (E) for all stutter invariant measurable LT proper-

ties E.

The scheduler Ured is then defined to be the limit of the schedulers Ui, that is,

Ured(π) = Ui+1(π)

if π is a path of length i in Mred.
The transformations Ui �→ Ui+1 all rely on the same schema. For simplicity,

we just give a very rough sketch of the idea for the case i = 0 and assume that
U0 = U is a deterministic scheduler. Suppose we are given a U-path starting
in state s that relies on the action sequence α1α2α3 . . . and α1 /∈ ample(s)
(otherwise, Ured just chooses α1 with probability 1). If at least one of these
actions belongs to ample(s), then we pick the smallest index i such that αi ∈
ample(s). Note that condition (A1) ensures that αi is a stutter action as α1 /∈
ample(s). Condition (A2) ensures that αi is independent from α1, . . . , αi−1.
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Hence, we can switch from the action sequence α1α2 . . . αi−1αi to the action
sequence αiα1α2 . . . αi−1. Both action sequences can be executed from state s
and yield the same distribution over the states that can be reached afterward.
In addition, the action sequences α1α2 . . . αi−1αi and αiα1α2 . . . αi−1 produce
stutter equivalent paths that end in the same state (recall that αi is a stutter
action). These ideas are sketched in the following picture.

Since αi ∈ ample(s), scheduler U1 will choose αi with some positive probability
(the probabilities for the chosen actions rely on a rather complex formula that
will not be discussed here). If the given U-path does not contain an action
in ample(s) then we pick an arbitrary action β ∈ ample(s) (this is possible
by (A0)) and replace the action sequence α0α1 . . . with βα0α1 . . . (this is
possible by (A2) as β is independent from each αi). The scheduler U1 will
then choose β with some positive probability. Note that this also yields some
path that is stutter equivalent to the given U-path. In summary, given a U-
path π starting in state s, the basic idea is to permute the first ample action
of s that occurs along π to the beginning of the action sequence of π. If no
such action exists, an arbitrary ample action of s is pre-pended to the action
sequence of π. This step is then repeated ad infinitum to yield a scheduler Ured

of Mred. However, we cannot immediately conclude that U and Ured yield the
same probabilities for stutter invariant measurable LT properties because the
generated Ured-paths might “delay” a certain action of a U-path ad infinity as
in the following example.

The state labeling is given by the shades of the states, thus β is a stutter
action, while α is not. For ample(s) = {β} and scheduler U where U(π) = α
for all paths π with last(π) = s, the construction sketched above (see [43] for
the details) yields

Ui(s
β−→ s

β−→ · · · β−→ s︸ ︷︷ ︸
length j

) =
{

β for j ≤ i − 1,
α for j = i.
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Fig. 10. Example to justify condition (A4)

Thus, scheduler Ured always schedules β in the state s. In fact, Ured is the only
scheduler for Mred as Mred consists only of state s with the β-loop. Under
U and each of the schedulers Ui, we obtain probability 1 to reach the gray
state t, while the probability to reach state t under Ured is 0. However, in this
example, conditions (A0), (A1), (A2), and (A4) hold, but the end component
(s, {β}) of Mred violates the end component condition (A3), which ensures
that in the scheduler transformation almost surely there is no action of M
that is postponed forever. Note that condition (A3) refers to end components
in the reduced MDP Mred rather than M (the definition of an end component
has been provided in Definition 4.4).

It is worth noting that conditions (A0)–(A3) suffice in the non-probabilistic
setting to ensure the equivalence between a transition system and its reduced
system with respect to stutter invariant LT properties [74, 75]. However, for
MDPs, we need the additional branching condition (A4). The intuitive reason
for this is that the experiments

“first toss a coin, then decide between action β and γ” and
“first decide between action β and γ, then toss a coin”

are different. This becomes obvious in the example shown in Fig. 10. Starting
in state s of M, if first the coin is tossed (action α) and then, depending on its
outcome, action β is chosen in state s1 and action γ is chosen in state s2, then
this yields that a “smiling” state is reached with probability one. If, however,
the choice between β and γ is resolved before the coin is tossed, that is the β-
transition or the γ-transition is taken in state s, then taking α in state u, resp.
state t, will not result in reaching the “smiling” states with probability one.
Note that if we choose ample(s) = {β, γ} for the MDP M shown in Fig. 10,
then conditions (A0)–(A3) are satisfied, whereas condition (A4) is violated.
So, a scheduler of M might schedule a probabilistic non-ample action of the
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starting state s. Depending on the outcome (moving to state s1 or s2), the
scheduler chooses different ample actions (of s). Thus, choosing α first, post-
pones the real non-deterministic decision between the ample actions β and γ.
The reduced system Mred is forced to decide immediately for a particular
ample action β or γ of s (more precisely a distribution over the ample actions
of s) in its first step before the outcome of α is known. This decision is fixed
from then on. It is exactly this behavior that one has to forbid to gain stutter
equivalence between the given system M and its reduced system. That means
that if the system can branch probabilistically with non-ample actions (with
respect to the starting state), then there should be only one ample action of
the starting state. The additional branching condition (A4) ensures exactly
this.

The above remarks only present rough explanations to justify conditions
(A0)–(A4). For a full proof of Theorem 5.8, see [43].

Remark 5.9. Theorem 5.8 ensures that, given a deterministic ω-automaton
that accepts a stutter invariant language, it suffices to model check Mred in-
stead of M. As Mred is in general smaller than M, this yields a possible
speed-up of the analysis. Of course, the algorithmic construction of appro-
priate ample sets together with the construction and the analysis of Mred

should be more efficient than model checking the full system M. Note that
even a reduction that eliminates only actions, but does not shrink the state
space, might yield a speed-up of the analysis as the probabilistic model check-
ing procedure relies on solving linear programs where the number of linear
inequalities for any state s is given by the number of outgoing actions of s.

Experimental Results

The partial order approach for MDPs has been implemented in the model
checker LIQUOR [3, 5] using heuristics for approximating the conditions (A2),
(A3) and (A4) given in Fig. 9. These heuristics use a superset of the depen-
dence relation and rely on a pre-analysis of the control flow graph induced by
programs given in the specification language ProbMeLa (Sect. 2). Several case
studies with LIQUOR have shown that the partial order reduction (POR) can
lead to a major speed-up and can also decrease the space requirements. To
give an impression on the dimension of the time and space requirements for
realistic systems, the following table summarizes the results for a randomized
leader election protocol (where variable N in the first column denotes the
number of parallel processes in the model):

Randomized leader election
without POR with POR

N states transitions time states transitions time
4 53621 156072 1.1 s 21063 78072 1.1 s
5 896231 3.2 · 106 34 s 299670 1.3 · 106 21 s
6 1.1 · 107 6.2 · 107 813 s 4.1 · 106 1.4 · 107 180 s
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In other cases, for instance in models of parallel processes that share common
synchronization points, the reduction can be even better. More results and
more detailed information about applied heuristics and techniques can be
found in [5].

6 Partially Observable MDPs

The analysis techniques of Sects. 3, 4, and 5 yield worst-case schedulers where
the probability for a certain undesired event is maximal, or dually, where
the probability for the desired behavior is minimal. To some extent, these
techniques are also applicable to controller synthesis problems where the goal
is to design a scheduler (i.e., a controller) that resolves the internal non-
determinism and optimizes the probabilities for a certain LT property. How-
ever, in this context, the general notion of a scheduler appears to be inadequate
since it relies on the complete knowledge of the system history. Consider again
the Monty Hall problem from Example 2.2 and the corresponding MDP M
in Fig. 3. We saw in Example 2.2 that

sup
U∈Sched

PrM,U (♦ get car) = 1,

where the supremum is attained by the scheduler U with

U
(
s

choose−−−→ t1
)
(keep) = 1

and
U

(
s

choose−−−→ t2
)
(switch) = U

(
s

choose−−−→ t3
)
(switch) = 1.

As already pointed out in the example, this scheduler U does not reflect a
realistic choice of the contestant, as the contestant does not know whether
she/he has chosen the door with the car behind it, or not. So, the only realistic
schedulers (that model a contestant’s choice) are schedulers that make the
same choice for each path that ends either in state t1, t2, or t3. In this case,
these are the two schedulers Us and Uk with

Us

(
s

choose−−−→ t1
)
(switch) = Us

(
s

choose−−−→ t2
)
(switch) = Us

(
s

choose−−−→ t3
)
(switch) = 1

and

Uk

(
s

choose−−−→ t1
)
(keep) = Uk

(
s

choose−−−→ t2
)
(keep) = Uk

(
s

choose−−−→ t3
)
(keep) = 1

where the contestant either decides to switch the door or to keep it. So, in
this scenario, we are actually interested in computing the supremum, resp.
infimum of PrM,U (♦ get car) under all “realistic” schedulers. A model that
allows us to express such requests is given by partially observable Markov
decision processes (POMDPs) [84, 70, 71, 67].
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Definition 6.1 (Partially observable Markov decision process). A par-
tially observable Markov decision process is a pair (M,∼), where:

• M = (S, Act, δ, μ, AP, L) is a Markov decision process.
• ∼ ⊆ S × S is an equivalence relation such that for all states s, t ∈ S with

s ∼ t we have Act(s) = Act(t).

If s ∈ S, then [s]∼ denotes the equivalence class of state s with respect to ∼.

Given a POMDP (M,∼), an observation-based scheduler U is a scheduler for
M that is consistent with ∼, i.e., U(s0

α1−→ · · · αn−→ sn) = U(t0
α1−→ · · · αn−→ tn)

if si ∼ ti for 0 ≤ i ≤ n. The set of observation-based schedulers is denoted by
Sched(M,∼).

If we equip the MDP M for the Monty Hall problem with the equivalence
relation ∼ given by [s]∼ = {s}, [u1]∼ = {u1}, [u2]∼ = {u2} and

[t1]∼ = [t2]∼ = [t3]∼ = {t1, t2, t3},

then the deterministic observation-based schedulers of the POMDP (M,∼)
are the “realistic” schedulers that actually model a contestant’s choice in the
game. Thus, in the Monty Hall scenario, we are interested in computing

sup
U∈Sched

(M,∼)
D

PrM,U (♦ get car),

resp. in computing the infimum. Here, Sched
(M,∼)
D denotes the set of determin-

istic observation-based schedulers of the POMDP (M,∼). Unfortunately, we
cannot expect to have algorithmic solutions for the task to compute extremal
reachability probabilities, when ranging over observation-based schedulers.
For a similar partial information model which uses distributed schedulers in-
stead of observation-based schedulers, it has been shown that there is no
algorithm that computes this supremum under all distributed schedulers. In
fact, the supremum is not even approximable [37]. For the model of POMDPs,
there even exist the following undecidability results for qualitative questions,
which have recently been shown in [2, 43].

In what follows, we use LTL-notations to denote LT properties. The symbol
♦ stands for “eventually”, � for “always”. Thus, the combination �♦ denotes
“infinitely often” and ♦� means “continuously from some moment on”.

Theorem 6.2 (Undecidability results for POMDPs). The following
problems are undecidable. Given a POMDP (M,∼) and a set B of states
in M, is there a deterministic observation-based scheduler U for (M,∼) such
that:

(a) PrM,U (�♦B) > 0?
(b) PrM,U (♦�B) = 1?
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Those results as well as the undecidability result mentioned above on quali-
tative reachability from [37] are remarkable since the corresponding questions
for (fully observable) MDPs are decidable in polynomial time (see Sect. 4).
However, some other variants of qualitative verification problems for POMDPs
have been shown to be decidable [29, 2, 43].

Theorem 6.3 (Decidable problems for POMDPs). The following prob-
lems are decidable. Given a POMDP (M,∼) and a set B of states in M, does
there exist U ∈ Sched(M,∼) such that:

(a) PrM,U (�B) > 0?
(b) PrM,U (♦B) > 0?
(c) PrM,U (�B) = 1?
(d) PrM,U (♦B) = 1?
(e) PrM,U (�♦B) = 1?
(f) PrM,U (♦�B) > 0?

In fact, in [2, 43], it has been shown that the problems (e) and (d) are reducible
to each other and that the latter one can be reduced to the similar question
for (fully observable) MDPs using an advanced powerset construction. The
proof of (f) (see [43]) uses the interreducibility of (d) and (e), and (a) which
has been shown in [29].

7 Conclusion

In this chapter, we have summarized the main features of Markov decision
processes as an operational model for parallel probabilistic systems and model
checking against ω-regular linear-time properties. We have supposed here that
the properties are given by deterministic ω-automata. Instead of automata
specifications, any logic that can be translated into automata can be used
to provide a formalization of the requirements such as linear temporal logic,
the mu-calculus, or monadic second-order logic. As quantitative reasoning
about probabilistic systems relies on a combination of graph-based and nu-
merical methods, heuristics that attack the state space explosion problem are
even more important than in the non-probabilistic case. In this chapter, we
have explained the partial order reduction approach. Several other reduction
techniques to reduce the time and space requirements such as abstraction
techniques, minimization with simulation-like relations, symmetry reduction,
and symbolic approaches with variants of binary decision diagrams have been
discussed in the literature and are topics of current research projects (see the
references given in Sects. 1 and 5).

One of the key features of model checking tools is the concept of coun-
terexamples that can be returned to the user if the checked property does not
hold for the system. In the probabilistic setting, counterexamples are more
complex, as single error traces are inadequate. First results on the generation
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of counterexamples for probabilistic systems and their use in abstraction-
refinement approaches are presented in the recent papers [1, 46, 50]. Another
current research trend is the investigation of alternating-time and game-based
approaches that deal with MDP-like models representing the activities of sev-
eral players. The concept of partially observable MDPs is one instance thereof
(see Sect. 6), another instance are stochastic 21

2 -player games (see, e.g., [20,
30, 19, 53]).

The classical model of Markov decision processes is adequate for the analy-
sis against safety and liveness properties and other conditions on the temporal
order of events, but not to reason about timing constraints within a dense
time domain. The treatment of continuous-time Markov decision processes
or other stochastic models where time-dependent distributions are attached
to the transitions (e.g., [10]) or probabilistic variants of timed automata are
examples for other very active research fields [64, 57, 63].

Many concepts for reasoning about MDPs viewed as acceptors for lan-
guages over finite words (Rabin’s probabilistic finite automata [81]) can be
generalized rather naturally for weighted automata. Such a generalization of
concepts for MDPs to weighted automata is, however, less clear for the case
of infinite words. It would also be interesting to see whether the measure-
theoretic concepts that yield the basis to define the probabilities for ω-regular
properties can be adapted to other classes of weighted automata to reason
about the weights for (measurable) sets of infinite paths. This could yield
an interesting alternative to the concept of discounting which is well known
for MDPs augmented with a reward function that assigns rewards to states
and/or actions (see, e.g., [80]) and has been discussed recently in [32–34] for
weighted automata and to the approaches investigated in Chaps. 3 and 5 that
enforce convergence of infinite series by imposing certain algebraic assump-
tions on the semiring of a weighted automaton.

8 Appendix

In this appendix, we give the formal definitions needed for the theory of MDPs
that is used in the previous sections.

Markov Chains

We first start with the definition of a probability distribution.

Definition 8.1 (Probability distribution). Let S be a countable set.
A probability distribution on S is a function

μ : S → [0, 1] such that
∑

s∈S

μ(s) = 1.

Given a probability distribution μ on S, supp(μ) denotes the support of μ, i.e.,
the set of states s ∈ S with μ(s) > 0. For each s ∈ S, μs denotes the unique
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Dirac distribution on S that satisfies μs(s) = 1. By Distr(S), we denote the
set of all probability distributions on S.

Next, we give the definition of a discrete Markov chain, which is basically a di-
rected graph where the edges are labeled with a probability in [0, 1], such that
in each state the probabilities of its outgoing edges sum up to one. Moreover,
there is an initial probability distribution on the vertices of the graph.

Definition 8.2 (Discrete Markov chain). A discrete Markov chain is a
tuple

M = (S, p, μ),

where:

• S is a countable non-empty set of states.
• p : S × S → [0, 1] is the so-called transition probability function such that

p(s, .) is a probability distribution on S for each s ∈ S.
• μ is a probability distribution on S (called the initial distribution).

Let T = {(s, t) | p(s, t) > 0, s, t ∈ S} be the set of transitions with posi-
tive probability. We refer to the directed graph (S, T ) as the underlying graph
of M. Note that (S, T ) has no terminal nodes. A discrete Markov chain in-
duces a stochastic process on the set S of its states in a natural way. The
probability that the process starts in a certain state (the 0th step) is deter-
mined by the starting distribution. Moreover, being in state s in the (n− 1)st
step, the probability that the process is in state t in the nth step is equal
to p(s, t). The fact that those probabilities do not depend on the previous
steps (history-independent or memoryless) is called the Markov property. For
a detailed discussion on Markov chains, see, e.g., [59]. Before we go on, we fix
some notation for paths of a discrete Markov chain.

Definition 8.3 (Path and corresponding notation). An (in)finite path
of a discrete Markov chain M is an (in)finite state sequence π = s0s1 . . . such
that p(si, si+1) > 0 for all i. Given a finite path π = s0s1 . . . sn, the length |π|
of π equals n. For an infinite path π, the length is equal to ∞. Given a path
π = s0s1 . . . and i ≤ |π|, we denote the ith state of π by πi (i.e., πi = si)
and the ith prefix by π↑i = s0, s1, . . . , si. We denote by Pathfin (resp. Pathinf)
the set of finite (resp. infinite) paths of a given discrete Markov chain and by
Pathfin(s) (resp. Pathinf(s)) the set of finite (resp. infinite) paths starting in
the state s. The empty path is denoted by ε.

If necessary, then we will index Path by the corresponding system, e.g., PathMinf .
We now define the probability space that formalizes the stochastic process
induced by a discrete Markov chain.

Definition 8.4 (Basic cylinder). Given a discrete Markov chain M, we
define, for every π ∈ PathMfin , the basic cylinder of π as

Δ(π) =
{
ρ ∈ PathMinf : ρ↑|π| = π

}
.
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Definition 8.5 (Probability space of a discrete Markov chain). Given
a discrete Markov chain M = (S, p, μ), we define a probability space

Ψ =
(
PathMinf , Δ, Pr

)
,

such that:

• Δ is the σ-algebra generated by the empty set and the set of basic cylinders
in PathMinf .

• Pr is the uniquely induced probability measure which satisfies the following:
Pr(Δ(ε)) = 1 and for every basic cylinder Δ(s0, s1, . . . , sn) over S:

Pr
(
Δ(s0, s1, . . . , sn)

)
= μ(s0) · p(s0, s1) · · · · · p(sn−1, sn).

Given a state s ∈ S, we denote by Prs the probability measure that is obtained
if M is equipped with the starting distribution μs, thus Prs(Δ(s)) = 1. We
call the a set P ⊆ Pathinf of infinite paths measurable if and only if P ∈ Δ.

The existence of the induced probability measure Pr follows from a well-known
theorem in measure theory, which is known as Carathéodory’s measure ex-
tension theorem. The uniqueness follows from the fact that the set of basic
cylinders is intersection-stable. For more information on measure theory, see,
e.g., [13].

Markov Decision Processes

We will now explain formally the probability space that emanates from a
Markov decision process and a given scheduler. Let

M = (S, Act, δ, μ,AP, L),

be an MDP and U a scheduler that resolves the nondeterminism in M (for
the definition of an MDP and a scheduler see Sect. 2 of this chapter). The
behavior of M under U can be formalized by an infinite-state discrete Markov
chain MU = (PathMfin , p, μ), where

p(π, π′) = U(π)(α) · δ
(
last(π), α, last(π′)

)
,

for π, π′ ∈ PathMfin with |π′| = |π| + 1, π′↑|π| = π and α is the last action on
the path π′, i.e.,

π
α−→ last(π′) = π′.

As the states of MU are finite paths of M, this notation is somewhat incon-
venient. Consider Ω = (PathMU

inf , ΔMU ) and Ω′ = (PathMinf , Δ
M), where ΔMU

(resp. ΔM) is the σ-algebra generated by the empty set and the set of basic
cylinders over MU (resp. M). We define

f : PathMU
inf → PathMinf
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as f(π0
α1−→ π1

α2−→ · · · ) = last(π0)
α1−→ last(π1)

α2−→ · · · (note that the πi’s
are finite paths of M). Then f is a measurable function and we define the
following probability measure on ΔM:

PrM,U (A′) = PrMU
(
f−1(A′)

)
, for A′ ∈ ΔM.

Then given a scheduler U for M, the probability measure PrM,U formalizes
the behavior of M under U , where we have the convenience to talk about
measures of sets of infinite paths of M. As for discrete Markov chains, given
a state s ∈ S, we denote by PrM,U

s the probability measure that is obtained
if M is equipped with the starting distribution μs. For a detailed discussion
on MDPs, see, e.g., [80].

We also fix the following notation for convenience. Given an MDP M,
a scheduler U , and a path property E, we will write

PrM,U (E) = PrM,U({
π ∈ PathMinf

∣
∣ π satisfies E

})

for the probability that the property E holds in M under the scheduler U .
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1 Background

Linguistics and automata theory were at one time tightly knit. Very early on,
finite-state processes were used by Markov [40, 30] to predict sequences of
vowels and consonants in novels by Pushkin. Shannon [53] extended this idea
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to predict letter sequences of English words using Markov processes. While
many theorems about finite-state acceptors (FSAs) and finite-state transduc-
ers (FSTs) were proven in the 1950s, Chomsky argued that such devices were
too simple to adequately describe natural language [6]. Chomsky employed
context-free grammars (CFGs) and then introduced the more powerful trans-
formational grammars (TGs), loosely defined in [7]. In attempting to formal-
ize TG, automata theorists like Rounds [51] and Thatcher [57] introduced the
theory of tree transducers. Computational linguistics also got going in earnest
with Woods’ use of augmented transition networks (ATNs) for automatic nat-
ural language parsing [59]. In the final paragraph of his 1973 tree automata
survey [58], Thatcher wrote:

The number one priority in the area [of tree automata] is a careful as-
sessment of the significant problems concerning natural language and
programming language semantics and translation. If such problems
can be found and formulated, I am convinced that the approach in-
formally surveyed here can provide a unifying framework within which
to study them.

At this point, however, mainstream work in automata theory, linguistics,
and computational linguistics drifted apart. Automata theorists pursued a
number of theory-driven generalizations [15, 20, 21], while linguists went the
other way and eschewed formalism. Computational linguistics focused for a
time on extensions to CFGs [11, 52], many of which were Turing equivalent.
In the 1970s, speech recognition researchers returned to capturing natural
language grammar with FSAs, this time employing transition weights that
could be trained on machine-readable text corpora [29, 28, 2]. These for-
mal devices had associated algorithms that were efficient enough for practical
computers of that time, and they were remarkably successful at distinguishing
correct from incorrect speech transcriptions. In the 1990s, this combination of
finite-state string formalisms and large training corpora became the dominant
paradigm in speech and text processing; generic software toolkits for weighted
finite-state acceptors and transducers (WFSAs and WFSTs) were developed
to support a wide variety of applications [23, 46].

The twenty-first century has seen a reawakened interest in tree automata
among computational linguists [34, 54, 25], particularly for problems like au-
tomatic language translation, where transformations are sensitive to syntactic
structure. Generic tree automata toolkits [42] have also been developed to sup-
port investigations. In the remainder of this chapter, we discuss how natural
language applications use both string and tree automata.

2 WFST Techniques for Natural Language Processing

In this section, we use two sample applications to highlight ways in which
finite-state transducers are used in natural language processing. The first
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application is transliteration of names and technical terms, and the second
application is translation of natural language sentences. We conclude with a
discussion of language modeling, an important part of both sample applica-
tions.

2.1 Example 1: Transliteration

Transliteration is the process by which names and technical terms are bor-
rowed from one language to another. For some language pairs, this is a very
simple or even trivial task—Bill Gates is written the same way in English and
Spanish newspapers, and while the English word conception is changed to con-
cepción in Spanish to preserve pronunciation; this is a regular and predictable
pattern. However, the task becomes significantly more challenging when the
language pairs employ different character sets and very different sound sys-
tems. For example, a Japanese newspaper may refer to , using a
sound-based character set called Katakana. If we know how Katakana encodes
Japanese sounds, then we can sound out as anjiranaito. The
transformation from anjiranaito to some English term is still quite difficult,
since among other constraints, Japanese words must end in vowels, and do
not distinguish between l and r as is done in English.

After some thought, and perhaps the use of surrounding context, a bilin-
gual speaker may realize anjiranaito was originally the English name Angela
Knight. Here are more input/output samples:

masutaazutoonamento
Masters Tournament

aisukuriimu
Ice Cream

nyuuyookutaimuzu
New York Times

Due to the large number of potential transliterations, this task is hard,
even for humans. We can address the combinatorial explosion through the
use of finite-state automata [33]. As a first attempt, we might contemplate a
single finite-state transducer that converts a string of Katakana symbols K
into strings of English letters from E , the language of all English letter strings,
with a corresponding probability of conversion for each English letter string
E of P (E|K), and chooses the most likely E in the language:

argmax
E∈E

P (E|K) (1)

The corresponding transducer design looks like this:
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Katakana ⇒ WFST ⇒ English

This would be a very complex transducer to design. For example, the
Japanese r sound may turn into the English letter R or the English letter
L (or some other letter sequence), and this decision depends on many other
decisions. We also want to guarantee that the English output phrase is well
formed. P (E|K) represents both of these probabilities in one complicated
step. By using Bayes’ law, we can separate the probability associated with
well-formed E from the probability of transformation between K and E:

argmax
E∈E

P (E|K) = argmax
E∈E

P (E)P (K|E)
P (K)

(2)

= argmax
E∈E

P (E)P (K|E) (3)

The corresponding transducer design now looks like this:

WFSA ⇒ English ⇒ WFST ⇒ Katakana

If we move from left to right, we can view this diagram as an explanation
for Katakana strings. These explanations are often called “generative sto-
ries.” According to this story, in order to produce a Katakana string, someone
first generates a well-formed English phrase with probability P (E) (accord-
ing to the WFSA), and then someone converts that phrase into Katakana
with probability P (K|E) (according to the WFST). As generative stories go,
this is actually a fairly realistic explanation of how Katakana words enter the
Japanese vocabulary.

By contrast, if we move from right to left in the same diagram, we can
convert a given Katakana string K into English by first sending it backward
through the WFST, which will produce a multiplicity of English phrases that
would transduce to K.1 We can then intersect our multiplicity of phrases with
the WFSA, in an effort to eliminate candidates that are not well formed.

This design, known as the noisy-channel model [53], has several advan-
tages. First, the WFST can be greatly simplified, because it only models
P (K|E), the transformation of short English letter sequences into short Kata-
kana sequences, and it does not need to pay attention to the global well
formedness of the English. For example, an English T may nondeterminis-
tically transduce to a Katakana to or ta. The WFSA takes up the slack by
enforcing global well formedness and assigns a P (E) for any English string E,
independent of any transformation. Also, we may have different resources for
constructing the two devices—for example, we may have a large English dic-
tionary to help us construct the WFSA.
1 These English phrases can be represented as a finite-state acceptor, since the
WFST preserves regularity in both directions.
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The single WFST that represents P (K|E) is still fairly complex. We would
like to model the transformation in a series of small, easy-to understand steps.
In this example, we break the initial transducer into a chain of three trans-
ducers, in the following design [33]:

WFSA A ⇒ English ⇒ WFST B ⇒ English sounds

⇒ WFST C ⇒ Japanese sounds ⇒ WFST D ⇒ Katakana

According to this design, Katakana strings enter Japanese via the following
path: (1) someone produces an English phrase, (2) that English phrase is con-
verted into English sounds, (3) that English sound sequence is converted into
Japanese sounds, and (4) those Japanese sounds are converted into Katakana
symbols.

We justify this design in our probability model by using the conditional
probability chain rule to break one probability distribution into a chain of
independent distributions:

P (K|E) =
∑

c∈C

P (K|c)P (c|E) (4)

where C is any newly introduced parameter space that we can sum over.
This division can be repeated arbitrarily until we have the appropriate

granularity of conditional probability, and hence WFST that we want for our
model.

The probability model equation then becomes

argmax
E∈E

P (E|K)

= argmax
E∈E

∑

es

∑

js

P (E) · P (es|E)

· P (js|es) · P (K|js)

(5)

where es and js range over English and Japanese sound sequences, respec-
tively.

Now that we have divided one complex automaton into a chain of au-
tomata, they are simple enough that we can build them—Fig. 1 shows frag-
ments. WFSA A (Fig. 1a) nondeterministically generates English word se-
quences. WFST B (Fig. 1b) sounds out English word sequences. Note that
this transducer can be used in either direction—given a sequence of words,
forward application will output a sequence of sounds, and given a sequence
of sounds, backward application will output a sequence of words. WFST C
(Fig. 1c) converts English sounds into Japanese sounds. This is a highly non-
deterministic process: an English consonant sound like T may produce a single
Japanese sound t, or it may produce two Japanese sounds, such as t o (as in
the case of Knight transducing into naito). It is nondeterministic in the re-
verse direction as well, since a Japanese r sound may transduce to an English
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Fig. 1. Four automata fragments that transliterate English to Japanese [33]

R or L. However, the WFST can make its substitutions largely independent of
context. Finally, WFST D (Fig. 1d) converts a Japanese sound sequence into
Katakana writing. This is fairly deterministic, but requires some linguistic
engineering to cover all the cases.

We can now translate a new Katakana string K by sending it backward
through WFST D, then sending the result (which itself can be represented by
a WFSA) backward through WFST C, and so on, finally intersecting it with
WFSA A. In practice, this yields millions of English outputs, most of which
consist of strange combinations of small (but legal) English words, e.g.,

Ann Gere Uh
Anne Jill Ahh
Angy Rugh
Ann Zillah

Here is where the probabilities from WFSA A and WFST C are important.
If these are set to reflect what happens in the world (i.e., which English phrases
are popular, and which sound substitutions are popular), then each potential
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English output also comes with a score, and we can ask for the top-scoring
ones (in order):

Angela Knight
Angela Nite
Andy Law Knight
Angela Nate

It turns out that passing our Katakana string through each transducer
sequentially is only one of many possible search strategies. Another approach
is to trivially transform A into a weighted transducer A’ that is the partial
weighted identity transducer with domain equal to the language accepted
by A. We then compose transducers A’, B, C, and D into a single weighted
transducer, offline, then determinize and/or minimize it for deployment [45];
see Chap. 6. A third approach is to employ lazy composition [50, 63], which
executes a parallel search through A’, B, C, D, and K’ (the identity transducer
formed from the trivial automaton that accepts only K) by moving tokens
from state to state in each. When the tokens all reach final states in their
respective machines, an answer is generated; multiple answers can be created
with backtracking or beam techniques.

What all of these strategies have in common is that they try to find the
English word sequence(s) of highest probability, according to (5). Each of the
factors in (5) is broken down further until we reach the probabilities actually
stored on the transitions of our WFSAs and WFSTs. For example, consider
P (js|es). In Fig. 1c, we can see that WFST C converts English sounds into
Japanese sounds via a one-to-many substitution process. Given an English
sound sequence es and a Japanese sound sequence js, our WFST can convert
es to js in several different ways, depending on how the individual English
sounds take responsibility for subsequences of js. Each way can be represented
by an alignment that specifies, for each Japanese sound, which English sound
produced it. For example, there are four ways to align the sound sequences
(L AE M P, r a n p u):

L AE M P

r a n p u

L AE M P

r a n p u

/* lamp */

L AE M P

r a n p u

L AE M P

r a n p u

Each alignment corresponds to a different transducing path through
WFST C. While we may prefer the first alignment, the others may exist with
some small probability. We therefore write the total probability of js given es
as:

P (js|es) =
∑

a

|es|∏

i=1

P (jseqesi
|esi) (6)
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where alignment a maps each English sound esi onto Japanese sound subse-
quence jseqesi

.
Where do transition probability values come from? It is hard for human

designers to produce these numbers, so we typically learn them from online
text corpora. In the case of WFSA A, we may gather English word frequencies
and normalize them. For example, if we see the word the 1,200 times in a
corpus of 12,000 words, we can assign P (the) = 0.1. In the case of WFST C, we
can collect probabilities from manually aligned sequence pairs. For example,
notice that the English sound M occurs twice in the following database:

L AE M P

r a n p u

S T IY M

s u t i i m u

From this, we may conclude that P (n|M) = 0.5 and P (mu|M) = 0.5.
Of course, it is important to have thousands of such pairs, in order to get
accurate probability estimates.

For both WFSA A and WFST C, what justifies this “count and divide”
strategy for estimating probabilities? Here, we have followed the maximum
likelihood principle [18], assigning those scores to our transitions that maxi-
mize the probability of the training corpus. This principle is especially handy
when our training corpus is incomplete. For example, we may only have access
to a plain (unaligned) bilingual dictionary:

L AE M P
r a n p u

S T IY M
s u t i i m u

and many other pairs.
Given any particular set of parameter values, such as P (n|M) = 0.32

(and so on), we can compute P (js|es) for each example pair and multiply
these together to get a corpus probability. Some sets of values will yield a
high corpus probability, and others a low one. The expectation–maximization
(EM) algorithm [12] can be used to search efficiently for a good set of values. In
this case, highly accurate alignments can be generated automatically without
human intervention. Other popular methods of parameter estimation include
maximum entropy [27] and minimum error-rate [13].

2.2 Example 2: Translation

We now turn to our second sample application, automatic translation of sen-
tences. This is more challenging for several reasons:

• There are hundreds of thousands of distinct words, versus dozens of distinct
linguistic sounds.

• Each word may have many context-dependent meanings or translations.
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• Translation often involves significant reordering. For example, in English,
the verb comes in the middle of the sentence, while in Japanese, it comes
at the end.

• Ensuring that our output is globally well formed requires capturing vast
amounts of knowledge about the syntax of the target language, in addition
to semantic understanding of how the world works.

While the automatic translation problem remains unsolved, substantial
progress has been made in recent years. Much of this progress is due to auto-
matic analysis of large manually-translated documents, such as are produced
each year by the United Nations and the European Union.

We might start with the following design for translation:

Spanish ⇒ WFST ⇒ English

This design is again problematic, because each word must be translated
in the context of all the other words. Therefore, we employ the noisy-channel
model approach from Sect. 2.1:

WFSA ⇒ English ⇒ WFST ⇒ Spanish

In this scheme, the WFST can operate in a largely context-independent
fashion. Sending a particular Spanish sentence backward through the WFST
might yield many target hypotheses, e.g.,

John is in the table
John is on the table
John on is the table

etc.

When we intersect this set with the English WFSA, grammatical hypothe-
ses can be rewarded. Note that the WFSA helps out with both word choice and
word ordering, and we can train this WFSA on vast amounts of monolingual
English text.

How about the WFST? Brown et al. [4] proposed a particular model for
P (s|e) which would assign a conditional probability to any pair of Spanish and
English strings. Knight and Al-Onaizan [32] cast this model as a sequence of
finite-state automata. Figure 2 depicts the operation of these automata, and
Fig. 3 shows automata fragments.

WFSA A (Fig. 3a) generates English word sequences according to some
probability distribution that (we hope) assigns high probability to grammat-
ical, sensible sequences. WFST B (Fig. 3b) decides, for each English word,
whether to drop it, copy it, duplicate it, triplicate it, etc. The decision is
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WFSA A
⇓

Mary did not slap the green witch
⇑

WFST B
⇓

Mary not slap slap slap the green witch
⇑

WFST C
⇓

Mary not slap slap slap NULL the green witch
⇑

WFST D
⇓

Mary no dió una bofetada a la verde bruja
⇑

WFST E
⇓

Mary no dió una bofetada a la bruja verde

Fig. 2. The generative model of [4] as a cascade of automata

based only on the word itself, with no context information. After each result-
ing word, WFST C (Fig. 3c) inserts a NULL token2 with probability 0.02.
WFST D (Fig. 3d) then translates each word, one for one, into Spanish. Fi-
nally, WFST E (Fig. 3e) reorders the resulting Spanish words. Each transducer
is simple enough to build; all of them are highly nondeterministic.

We do not use this transducer cascade in the forward direction, but rather
in the reverse direction, to translate Spanish into English. We begin by sending
our Spanish input backward through WFST E, to obtain various reorderings,
including what we hope will be an English-like ordering. Ultimately, the results
are intersected with WFSA A, which is designed to prefer well-formed English.
Because of the scale of this problem, translating like this requires pruning the
intermediate results. However, it is likely that we will accidentally prune out
a good hypothesis before the WFSA A has had a chance to reward it. In
practice, therefore, we must perform an integrated search in which all the
automata weigh in simultaneously during the incremental construction of the
English translation.

How are translation probabilities estimated? We first obtain quantities of
manually-translated documents and process them into sentence pairs that are
mutual translations. If we were provided with word alignments, e.g.,
2 The NULL word is designed to generate Spanish function words that have no
English equivalent.
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Fig. 3. Five automata fragments that translate Spanish to English. WFSA A pro-
duces an English phrase, and WFSTs B–E transform that phrase into Spanish

the green witch

la bruja verde

then we could estimate the parameters of WFSTs B, C, D, and E. For example,
out of 1,000 alignment links connected to the word “green,” perhaps 250 link
to “verde,” in which case P (verde|green) = 0.25. However, we are never
provided with such alignment links, so again, we use the EM algorithm to
guess both links and probability values.

The particular translation model of Fig. 3 was one of the first to be de-
signed, and empirical experiments have revealed many weaknesses. One is
that it translates word to word, instead of phrase to phrase. While it has the
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Fig. 4. WFSA for a 1-gram letter language model

capability for phrasal translation (as in slap ⇔ dio una bofetada), it does not
execute such substitutions in a single step. More recent models, taking ad-
vantage of more computational power, remedy this. Other problems are more
serious. For example, it is difficult to carry out large-scale reordering with
finite-state machines, and it is difficult to make these reorderings sensitive
to syntactic structure—e.g., the verb in English must somehow move to the
end of the sentence when we translate Japanese. Furthermore, it is difficult to
attain globally correct outputs, since the well formedness of English depends
to some extent on hierarchical, nesting structure of syntactic constituents. For
these reasons, some recent models of translation are appropriate for casting
in terms of tree automata rather than string automata [60, 1, 61, 22, 16, 43,
19], and we investigate such models later in this chapter.

2.3 Language Modeling

In the previous sections, we focused on the transducers specific to each ap-
plication. Here, we focus on language modeling, the problem of appropriately
representing P (E), a WFSA that models well-formed English sentences. Lan-
guage models are used in any natural language application concerned with
well-formed final output.

Shannon [53] observed that the generation of natural language text could
be approximated to a reasonable measure by a WFSA that uses states to
encode recently seen context. A simple example is a 1-gram language model
of characters, which simply encodes individual character frequencies. If in a
corpus of 1,000,000 English characters, the letter e occurs 127,000 times, we
estimate the probability P (e) as 127,000/1,000,000, or 0.127. This model can
be represented as a WFSA, as shown in Fig. 4.

A 2-gram model remembers the previous letter context—its WFSA has
a state for each letter in the vocabulary. The transition between state r and
state e outputs the letter e and has probability P (e|r). We can train n-gram
models in this way for any n. If we use such models to stochastically generate
letter sequences, we observe the following results:

1-gram: thdo cetusar ii c ibt deg irn toihytrsen ...
2-gram: rt wo s acinth gallann prof burgaca ...
3-gram: restiche elp numarin cons dies rem ...
4-gram: what the legal troduce inortemphase ...
5-gram: we has decide in secuadoption on a ...
6-gram: thern is able to the bosnia around ...
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While the 6-gram model generates more word-like items than the 1-gram
model does, it still lacks sufficient knowledge of English grammar. For noisy-
channel applications like translation and speech, a language model needs to
know much more, in order to make decisions involving word choice and word
order. Work in speech recognition in the 1970s and 1980s effectively trained
and used word n-gram models, where the probability of a word depends on the
previous n−1 words; since then, word n-gram models have been the dominant
form of language model used in practical systems. This is somewhat surprising,
given the work of Chomsky in the 1950s and 1960s which claimed that finite-
state string processes were unsuitable for representing human grammars [6, 7,
44]. The largest language model built to date is a 7-gram model, built from
one trillion words of English [3] and used for automatic language translation.

A language model should not assign zero probability to any string. For
example, a 3-gram language model should accept a string even if it contains a
word-triple that was never observed before in training. The process of smooth-
ing reassigns some of the probability from seen events to unseen events. One
simple technique is interpolation smoothing. For the 2-gram case, where we
are calculating the likelihood of seeing word y given that the last recognized
word was x, instead of estimating P (y|x) as count(xy)

count(x) , which might be zero,
we interpolate with the 1-gram probability of y:

P (y|x) = λ1 ·
count(xy)
count(x)

+ (1 − λ1) ·
count(y)

N
(7)

where N is the size of the training corpus. Likewise, P (z|x, y) can be estimated
as λ2

count(xyz)
count(xy) + (1 − λ2)P (z|y). Once the counts have been collected from

a training corpus, the λi values can be set to maximize the likelihood of a
smaller (held-out) smoothing corpus, via the EM algorithm. Language models
are often evaluated on the probability P they assign to a (further held-out)
blind test corpus, or on the perplexity, which is 2

−log(P )
N .

Interpolation smoothing is not the best smoothing method available, but it
can be implemented directly in a WFSA, as shown in Fig. 5. This formulation
is space efficient, requiring only one transition per observed n-gram, rather
than one transition per conceivable n-gram.

3 Applications of Weighted String Automata

In Sect. 2, we saw details of how WFSAs and WFSTs can be used to im-
plement noisy channel models for two applications. In this section, we review
recent work in other areas of natural language processing that uses similar
techniques. In most cases, the structures and designs, though described in
varied ways, are very similar and only differ in the data being modeled.
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Fig. 5. Fragment of a WFSA for a 2-gram letter language model. At each state {S,
T, H, E}, a decision is made to use 2-gram context by moving to states {S’, T’, H’,
E’}, respectively, or to use 1-gram context by moving to state U

3.1 Language Translation

We described a word-for-word model of language translation in Sect. 2. This
model was implemented in a WFST framework by [32]. A phrase-for-phrase
model was subsequently devised by [47] and implemented in a WFST frame-
work by [37]. Translations from this model are much more accurate, and by
using a WFST toolkit, Byrne et al. [37] are able to build a cascade of transduc-
ers and execute translations using generic finite-state procedures. The most
problematic transducer is the one responsible for reordering—such a general
transducer would be exceedingly large if built offline. In practice, given a
particular source-language sentence, we can encode it and all of its local re-
orderings online as a temporary WFSA, which is then sent through the rest
of the noisy-channel cascade.

3.2 Speech Recognition

Pereira et al. [49] apply the noisy-channel framework to the problem of speech
recognition, i.e., recovering the sequence of spoken words that generated a
given acoustic speech signal. A standard n-gram language model like that
described in Sect. 2.3 is used. The noisy channel transducer, which generates
P (E|S) for a received acoustic speech signal S, is described as a chain of
transducers as follows:

• For each word in S, a variety of phone sequences, i.e., individual units of
speech, may be observed that can be interpreted as the word, with varying
probabilities. For each word, a word-to-phone transducer is constructed,
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and the closure of these transducers over all words forms the complete
word-to-phone transducer.

• Similar to the word-to-phone model, each phone can be expressed as a
variety of audio signals. Again, the closure of phone-to-audio transducers
for each phone is taken as the complete phone-to-audio transducer.

Once defined, the chain of transducers and the final language model are
weighted with the method of maximum likelihood, directly observing proba-
bilities from available training data, and possibly smoothing. Composition and
decoding are handled entirely by generic automata operations as, for example,
implemented in the AT&T FSM Toolkit [46].

3.3 Lexical Processing

In most natural language applications, it is necessary to cut an information
stream into word units. This is especially hard in languages without white-
space, such as Chinese. Sproat et al. [56] show how to automatically break
Chinese into words by constructing a series of WFSTs. Word-internal units
must also be processed. We saw this in the case of transliteration (Sect. 2.1).
Another problem is morphological analysis, in which a word is analyzed into
morphemes, the smallest units of language that carry meaning. Languages
like Turkish and Finnish are written with very long words that must often
be broken into what would be equivalently represented by separate articles,
prepositions, and nouns in other languages. For many other languages, simply
finding the root form of an inflected word is a challenge. One of the most
successful early introductions of finite-state processing into natural language
processing was for morphology [31], and a weighted approach can be found
in [9].

3.4 Tagging

A wide variety of natural language problems can be cast as tagging problems,
in which each word of input is assigned a tag from some finite set. The classic
example is part-of-speech tagging, which seeks to disambiguate the syntactic
category of each word in a sentence. Given the sentence The flag waves in the
wind, the tagger must realize that flag and wind are nouns, even though both
can be verbs in other contexts (e.g., wind a watch). Finite-state methods are
often applied to this task [8]; within the noisy channel framework, we can build
an n-gram WFSA to model grammatical tag sequences, and a one-state WFST
to model substitutions of words by tags. Another common tagging problem is
to locate named entities (such as people, places, and organizations) in texts.
Here, each word is tagged as either B (word begins a new entity), I (word
is inside an entity), or O (word is outside an entity). This ternary tagging
scheme covers cases where two entities may be adjacent in text. A sequence
like Japan gave Russia the Kuriles would be tagged B O B B I.
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3.5 Summarization

Text summarization is the shrinking of a document or set of documents into
a short summary that contains a useful subset of the information. One appli-
cation of summarization, headline generation, drops unnecessary words from
an input text and performs limited transformation of the remaining words to
form an appropriate news headline. The noisy-channel framework is followed
to accomplish this task in [62], where the source is considered to be emit-
ting a series of compressed sentences in “headlinese” which are then passed
through a transducer that inserts extra words and transforms some words to
form grammatical expanded sentences. Zajic et al. [62] tweak their results by
introducing various penalties and feature weights onto the transducer arcs;
these can be modeled by modifying weights accordingly or by introducing
additional transducers that explicitly encode the transitions.

3.6 Optical Character Recognition

The automatic conversion of hard-copy printed material to electronic form
is useful for preserving documents created before the digital age, as well as
for digitizing writing that is still generated in a nondigital manner, e.g., con-
verting handwritten notes. Scanner technology has progressed considerably in
recent years thanks to probabilistic recognition techniques, which are repre-
sentable in the noisy channel framework. Here, the noise metaphor is readily
apparent; clear, uniformly represented characters are garbled by the noisiness
of the printed page, incorrectly struck typewriter keys, or the human hand’s
inconsistency. Kolak et al. [36] use this approach, and built their final system
with the AT&T FSM toolkit [46], thus using automata operations directly.
The chain of transducers in this case first segments the words into characters,
then groups the characters into subword sequences, and finally transforms the
sequences into noise-filled sequences.

4 Applications of Weighted Tree Automata

String WFSTs are a good fit for natural language problems that can be char-
acterized by left-to-right substitution. However, their expressiveness breaks
down for more complex problems, such as language translation, where there
is significant reordering of symbols, and where operations are sensitive to
syntactic structure.

The usefulness of hierarchical tree structure was noticed early in linguis-
tics, and automata theorists devised tree acceptors and transducers [51, 57]
with the aim of generalizing string automata. Recently, natural language re-
searchers have been constructing weighted syntax-based models for problems
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Fig. 6. Example of a syntax-based translation model [34]

such as language translation [61, 60, 1, 22, 16, 43], summarization [35], para-
phrasing [48], question answering [14], and language modeling [5]. It has there-
fore become important to understand whether these natural language models
can be captured by standard tree automata.

Figure 6 shows a syntax-based translation model that can be contrasted
with the string-based model depicted in Figs. 2 and 3. In the upper left of
the figure is an English tree, and in the lower right is a Japanese tree. In
between, we see a top-down model of transformation in which pieces of English
syntax are matched and replaced with pieces of Japanese syntax. Ultimately,
individual English words and phrases are replaced with Japanese ones. This
transformation can be carried out by a top-down tree transducer with ε-
transitions, as defined by [51, 57], a fragment of which is shown in Fig. 8.
This type of transducer is theoretically quite powerful, employing rules that
copy unbounded pieces of input (as in Rule 4) and rules that delete pieces of
input without processing them (as in Rule 34). It is well known that copying
and deleting complicate matters—for example, the class of transformations
induced by copying transducers is not closed under composition, which is a
significant departure from the string case.

Figure 7 shows some natural transformations that arise in translating one
human language to another. In the first example, an English noun-phrase
(NP1) must be moved after the verb when we translate to Arabic. A standard
noncopying tree transducer cannot handle this case, because it is necessary to
“grab and reorder” structures that are deep in the input tree (such as VB and
NP2), while the standard transducer can only get hold of the direct children
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Fig. 7. Examples of reordering made possible with a syntax-based translation model

of an input node. For this reason, [24] introduces a class of top-down tree
transducers whose rules have extended left-hand sides. An example of such a
rule is

q S(x0:NP VP(x1:VB x2:NP)) -> S(q x1, r x0, s x2)

In [19], Galley et al. give algorithms for acquiring such tree transducers
from bilingual data. The English side of this data must be automatically
parsed; this is typically done with statistical techniques such as in [10]. At
the time of this writing, the largest such transducer has 500 million rules,
and the empirical performance of the associated translation system compares
favorably with string-based methods. Currently, work at the intersection of
tree automata and natural language processing is active:

• On the empirical side, researchers aim to improve tree-based translation
by building better models of translation and better rule-extraction algo-
rithms. To further those goals, the availability of a toolkit for manipulat-
ing tree automata and tree transducers, such as [42], is important. Similar
toolkits for string automata and transducers [46, 23] have enabled better
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/* translate */

1. q.s S(x0, x1) →0.9 S(q.np x0, q.vp x1)
2. q.s S(x0, x1) →0.1 S(q.vp x1, q.np x0)
3. q.np x →0.1 r.np x
4. q.np x →0.8 NP(r.np x, i x)
5. q.np x →0.1 NP(i x, r.np x)
6. q.pro PRO(x0) →1.0 PRO(q x0)
7. q.nn NN(x0) →1.0 NN(q x0)
8. q.vp x →0.8 r.vp x
9. q.vp x →0.1 S(r.vp x, i x)
10. q.vp x →0.1 S(i x, r.vp x)
11. q.vbz x →0.4 r.vbz x
12. q.vbz x →0.5 VP(r.vbz x, i x)
13. q.vbz x →0.1 VP(i x, r.vbz x)
14. q.sbar x →0.3 r.sbar x
15. q.sbar x →0.6 SBAR(r.sbar x, i x)
16. q.sbar x →0.1 SBAR(i x, r.sbar x)
17. q.vbg VBG(x0) →1.0 VP(VB(q x0))
18. q.pp PP(x0, x1) →1.0 NP(q.np x1, q.p x0)
19. q.p P(x0) →1.0 PN(q x0)
20. q he →1.0 kare
21. q enjoys →0.1 daisuki
22. q listening →0.2 kiku
23. q to →0.1 o
24. q to →0.7 ni
25. q music →0.8 ongaku
26. r.vp VP(x0, x1) →0.9 S(q.vbz x0, q.np x1)
27. r.vp VP(x0, x1) →0.1 S(q.np x1, q.vbz x0)
28. r.sbar SBAR(x0, x1) →0.1 S(q.vbg x0, q.pp x1)
29. r.sbar SBAR(x0, x1) →0.9 S(q.pp x1, q.vbg x0)
30. r.np NP(x0) →0.1 q.pro x0
31. r.np NP(x0) →0.8 q.nn x0
32. r.np NP(x0) →0.1 q.sbar x0
33. r.vbz VBZ(x0) →0.7 VB(q x0)

/* insert */

34. i NP(x0) →0.3 PN(wa)
35. i NP(x0) →0.3 PN(ga)
36. i NP(x0) →0.2 PN(o)
37. i NP(x0) →0.1 PN(ni)
38. i SBAR(x0, x1) →0.7 PS(no)
39. i VBZ(x0) →0.2 PV(desu)

Fig. 8. Fragment of a top-down tree transducer with ε-transitions implementing a
syntax-based translation model [34]
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model development where the domain of strings is involved. Similarly, tree
automata toolkits allow the reenvisioning of previous models in a clean
transducer framework [25] as well as the rapid development of new models
[41].

• On the algorithms side, researchers create more efficient procedures and
data structures for executing tree-based inferences. For example, in [26],
Huang and Chiang present efficient algorithms for extracting the k most
probable trees from a context-free grammar, which is useful for extract-
ing the k-best translations from a large set of hypotheses encoded as a
grammar. In [24], Graehl and Knight give EM algorithms for training tree
transducers. In [41], May and Knight show improvements from determiniz-
ing weighted tree automata. In [38], Maletti gives an O(mn4) algorithm
for minimizing a weighted tree automaton with m rules and n states.

• On the theory side, researchers investigate which automata models both
(1) fit natural language phenomena, and (2) possess good theoretical prop-
erties. There is still much work to be done—for example, transformations
induced by extended left-hand side transducers are not closed under com-
position, even in the noncopying, nondeleting case. Researchers have also
been investigating connections between tree automata and synchronous
grammars [55]; the latter of which have been developed independently in
the natural language community.

Another area of promise is syntax-based language modeling [5]. Here, we
build a probability distribution over all English trees, rather than all English
strings.3 We hope to concentrate probability on objects that are grammatically
well formed. Returning to our noisy-channel framework, we can then envision
a language model represented by a regular tree grammar [20] and a channel
model consisting of a cascade of tree transducers.

4.1 Open Problems

Knight and Graehl, in [34], presented a list of open problems pertinent to the
use of weighted tree automata in natural language processing applications.
Although some of those problems have since been at least partially solved
(for example, in Tiburon [42] we have an instantiation of a useful, generic
tree transducer toolkit, and the properties of extended tree transducers were
studied in [39]) some still remain and new problems often arise, such as:

• Eppstein [17] presents an algorithm for finding the k best paths through
a WFSA which runs in O(m + n log n + k) time, while [26] present an
algorithm for finding the k best derivations of a weighted tree automaton
which runs in O(m+nk log k) time. It is unknown whether the separation
of k and n can be achieved in the tree case.

3 We can still get the probability of a string by summing over all the trees who have
that yield.
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• Is there an algorithm for minimizing deterministic weighted tree automata
that improves on the O(mn4) runtime of [38]?

• Is there an algorithm to determine whether two instances of a class of
weighted tree transducers may be composed to form a single instance of
that class that captures the same sequential transformation, even though
the class itself is known to be not closed under composition?

• Is there a class of weighted tree transducers that (a) is expressive enough
to capture natural language translation phenomena, (b) is closed under
composition, (c) allows for unbounded output, (d) admits an algorithm
for efficient weight training from input/output examples, and (e) preserves
regularity?

• Can we cast other existing NLP models in the language of tree machinery,
as was done in [25] for the model of [61], and can we extend these models
in interesting ways?

5 Conclusion

In this chapter, we have surveyed some of the natural language applications in
which weighted automata play a role. We expect the number of applications
to grow over the coming years as automata theorists, linguists, and engineers
collaborate to solve difficult problems, and as computational power grows to
support new research avenues. Thatcher’s vision, that we may use automata
to solve problems, model behavior, and make advances in the natural language
domain seems realized in current research efforts, and we have high hopes for
the future.
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complement function, 484
complementation, 232
complete metric space, 45
completion, 232
composition, 226

N -way, 231
composition identity, 34
concatenation, 224, 327
concurrency, 406, 407, 423
conjugacy, 132
connection, 216, 229, 232
context, 331
context series, 336
context-free grammar, 572

regular, 82
right linear, 82

convergence
discrete, 258

limit, 258, 259
matrices, 259
sequences, 258
simple, 111

corpora, 572, 578
cost of a state, 464
curve segment, 475
cut set, 330
cycle-free, 13

linear equation, 22
power series, 13

D
D0L multiplicity sequence, 303
D0L power series, 302
D0L system, 292
dagger operation, 33
Daubechies W6 wavelets, 468
De Morgan algebra, 484
decibel, 467
decidability, 162, 194, 474
decidability problems

Boolean tree series, 333
constant tree series, 333
constant-on-its-support, 333
emptiness, 333, 334
equivalence, 162, 335, 474
finiteness, 334

decoding algorithm, 460
decoding problem, 459
dependence relation, 408
depth function, 431
determinisation, 158
deterministic

bu-w-tt, 393
ω-automaton, 539
Rabin automaton, 540
Streett automaton, 540

determinization, 237, 330, 490
DF0L power series, 306
DF0L system, 295
diagonal identity, 34
difference, 231
dimension

of an automaton, 122
directed set, 31
discounting, 207
distance, 111

ultrametric, 111
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distributed alphabet, 408
DMVA, 491
double dagger identity, 34
DT0L power series, 307
DT0L system, 292
Dyck

language, 263
mapping, 263

E
echelon system, 160
eigenvalue, 459
eigenvector, 459
elimination

Gaussian –, 160
empty string (ε), 215
encoding algorithm, 460, 463

recursive, 464
end component, 541

accepting, 543
endofunction, 30
entropy coder, 466
epsilon-removal, 233

reverse, 236
Epsilon-Removal, 234
equational elements, 343
equivalence of finite automata, 72, 92
equivalent, 243
expectation–maximization, 578, 581,

583, 590
expression, 120, 411

c-rational, 420
mc-rational, 419, 420
rational, 428, 430, 438

constant term, 121
depth, 121
valid, 121

series-rational, 428, 431, 433
starfree, 422
weighted rational, 120

F
FDES, 511
feedback operation, 41
field, 318

skew, 157
final distribution, 457, 461, 470, 473
finite automaton, 71, 217

behavior of, 72

Büchi, 84

classical, 457

cycle-free, 72

nondeterministic, 79

normalized, over a semiring, 72

normalized S′, over a Conway
semiring, 77

normalized S′, over a quemiring, 92

over a semiring, 72

S′, over a Conway semiring, 77

S′, over a quemiring, 91

without ε-moves, 78

finite dimensional vector space, 462

finite linear system

cycle-free, 81

over a semiring, 81

right linear grammar corresponding
to, 82, 100

S′, over a quemiring, 99

S′, over a semiring, 83

finite resolution, 454

finite-state transducer, 215, 217, 469

finitely decomposable element, 109

fixed point, 30

equation, 30

parametric, 33

greatest, 31

identity, 34, 39

induction, 31, 42

least, 31

flowchart scheme, 41

formal power series, see power series

formula

almost unambiguous, 187

definable step, 416

existential, 188

first-order definable step, 441

restricted, 416, 441

syntactically restricted, 187

syntactically unambiguous, 186

syntactically weakly restricted, 195

unambiguous, 185, 417, 441

weakly existential, 197

weakly unambiguous, 195

f -semantics, 501

full abstract family of fuzzy languages,
509

full AFFL, 509
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function
affine, 54
base, 30
continuous, 7, 31
linear, 46
ω-continuous, 32
projection, 30

functorial dagger, 44
functorial omega, 59
functorial star, 50, 58
fuzzy

discrete event system, 511
homomorphism, 509
language, 485

characteristic, 488
tree, 509

ω-recognizable language, 496
step, 497

recognizable language, 488
Büchi, 496
Muller, 496
step, 489

set, 485

G
Galois connection, 32
Gaussian elimination, 35, 160
Gen-All-Pairs, 220
Gen-Single-Source, 223
generalized star operation, 90
generalized star quemiring, 91
generative story, 574
gfst, 364
Gödel structure, 507
gradation, 109
graph

of a finite automaton, 72
of a finite S′-automaton, 77

grayscale image, 467
group identity, 41

H
hv

V , 319
hμ, 323
HD0L system, 292
HDT0L system, 292
heap of pieces, 422
height, 317, 322, 323
hierarchy, 388

I
ideal of a semiring, 53
ι, 363
identity

product star, 116
sum star, 116

IFS
simulating, 475

image
bi-level, 455, 457
color, 457
finite resolution, 458
grayscale, 455–457, 461
multi-resolution, 456, 457, 461, 462
mutually recursive definition, 461

image of a state, 461
inclusion diagram, 386
independence of actions, 551
independence relation, 408
inference algorithm

WFA, 464
infinitary sum operation, 317
infinite product operation, 59
infinite word, 197
initial distribution, 457, 470, 475
initial distribution matrix, 473
initial solution, 43
inner product, 318
interpolation, 583
intersection, 231
inversion, 226
involution, 484
irrational ratio, 474
Iterated Function System, 475

J
join-irreducible, 484
JPEG, 468
JPEG image compression standard, 466

K
Katakana, 573
Kleene algebra, 52
Kleene-closure, see closure
Kleene-star, 327
Kleene’s Theorem, 127

L
L algebraic series, 298
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L algebraic system, 297

L-fuzzy automaton, 506

L rational system, 297

L-valued language, 506

Lagrange multiplier, 464, 466

LangA, 318

language

accepted by a finite automaton, 80

connected, 419

cut, 446

monoalphabetic, 419

picture, 436

lattice, 8, 483

bounded, 483

complete, 483

completely distributive, 510

distributive, 8, 483

morphism, 485

lattice-ordered monoid, 506

bounded, 506

countably distributive, 506

lazy composition, 577

left quotient, 337

length function, 109

lexicographic normal form, 414

Lindenmayerian algebraic system, 297

linear combination, 463, 465

of state images, 461

linear form, 319

linear function, 459

linear mapping, 319

linear program, 534

linear temporal logic, 539

linear-time property, 538

linearly independent, 319

LNF, 414

locally finite family, 326

logic

weighted first-order, 207, 422

weighted monadic second-order, 181,
349, 412

lossless encoding, 465

lossless image compression, 463

lossy image compression, 463

LQr, 336

LTL, 539

�Lukasiewicz language, 274

�Lukasiewicz structure, 507

M
μA(σ), 322
μk(σ)

of a wta, 322
of a wtt, 366

Mallat form, 468
Markov, 571
Markov chain, 561
Markov decision process, 520, 526, 571
matrix, 17

base, 47
block, 18
circulation, 136
functional, 47
nilpotent, 126
omega identity, 56
permutation, 47
proper, 116
pushdown, 279

proper, 280
star identity, 48, 76
transfer, 132
transition, 122
triangular, 126

maximum likelihood, 578, 585
MDP, 526
message sequence charts, 422
Mezei-Wright-like Theorem, 346
minimal, 243
minimization, 243
minimum number of states, 462
minimum state WFA, 461
mirror image, 215
monoid, 5, 107, 214

complete, 6, 317
continuous, 6, 317
equidivisible, 110
finitely decomposable element, 109
finitely generated, 109
graded, 109, 115
idempotent, 6
involutive, 271
locally finite, 11, 317
naturally ordered, 6, 317
ordered, 6
positively ordered, 6

morphism, 5, 11
base, 39
diagonal, 41
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ideal, 44
length-preserving, 16
non-deleting, 17
power ideal, 45

MSO-f -definable fuzzy language, 502
MSO-logic, 178, 350

MSO(Σ, S), 350
srMSO(Σ, S), 352
syntactically restricted, 188, 352
syntax, 178

multi-resolution, 456
multi-resolution image, 470
multi-valued automaton, 487

accessible, 491
Büchi, 496
co-accessible, 491
deterministic, 491
minimum, 493
Muller, 496
reduced, 494
trim, 491

multi-valued logic, 183
�Lukasiewicz, 183

multi-valued MSO logic, 500
multidimensional wavelets, 474
multilinear extension, 353
multilinear mapping, 319
multilinear representation, 355
multiplication

exterior, 108
MVA, 487
MVBA, 496
MVMA, 496
Myhill–Nerode congruence, 338

N
Nat, 318
natural language processing, 571–591

headline generation, 586
language modeling, 582, 583, 586
machine translation, 572, 578–582,

584, 586, 587
morphemes, 585
morphology, 585
n-grams, 582–584
named entity recognition, 585
optical character recognition, 586
paraphrasing, 587
parsing, 572

part-of-speech tagging, 585
question answering, 587
speech recognition, 572, 583–585
summarization, 586
transliteration, 573–578, 585

negation function, 484
noisy-channel model, 574, 579, 583, 584,

586

O
octtree, 455
omega, k operation

of a matrix, 89
omega

fixed point identity, 56
group identity, 56
operation, 55, 87

of a matrix, 89
pairing identity, 56
permutation identity, 56
transposition identity, 56

on-demand construction, 224
on-the-fly construction, 224
operation

binary, 226
closure, 218, 224
rational, 118, 223
unambiguous rational, 119
unary, 226

P
p-equational elements, 343
pairing identity, 35, 39
parameter identity, 34
parametric weighted finite automata,

473
partial order reduction, 547
partially observable MDP, 557, 558
partially ordered set

complete, 31
ω-complete, 32

path, 528
accepting, 216
delay, 246
successful, 216

peak signal-to-noise ratio, 467
performance index, 512
permutation identity, 35
perplexity, 583
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Petri net, 422
picture, 436

column concatenation, 438
row concatenation, 438
size, 436

picture series, 436
rational, 439
recognizable, 437
wMSO-definable, 439

pixel, 455
pixel positions, 472
point-wise scalar multiple, 459
polynomial, 12, 108, 459, 475
polynomial curve, 475, 476
polynomial finite tree automaton, 354
POMDP, 557
pos, 317
post-fixed point, 31

greatest, 31
power series, 12, 108

0L power series, 307
aperiodic, 207
characteristic, 119
constant term of, 115
cycle-free, 13, 117
denoted by an expression, 121
locally finite family, 13, 113
proper, 13, 115
proper part of, 116
quasiregular, 13
rank, 157
rational, 73, 118
summable family, 113
support of, 108

power set construction, 331
pre-fixed point, 31

least, 31, 32
prefix-closed subset, 119

border of, 119
presentation, 411, 414

word series, 411, 414, 415, 418
prime, 484
probability distribution, 560
product, 224

Cauchy, 12, 108, 421, 488, 499
Hadamard, 12, 167, 231, 326, 433,

459
Hurwitz, 14, 143
Kronecker, 21

MDP, 542
omega identity, 56, 86
scalar, 12, 147
shuffle, 14, 143
star identity, 10, 48, 49, 75
structure, 507
tensor, 21

projection, 226
input, 226
left, 226
output, 226
right, 226

proper contraction, 45
property (T) and (Tlex), 413–416, 419,

420
pumping lemma, 331, 332, 495
pushdown

automaton, 281
normalized, 282
proper, 281

matrix, 279
proper, 280

PWFA, 473

Q
QREL(S), 379
quadrant, 455, 464
quadtree, 455, 464
qualitative analysis, 523
quantitative analysis, 523
quemiring, 90
quotient

left, right, 335

R
(r, ξ), 320
rA, 322
randomized algorithms, 520
ranked alphabet, 316
rate-distortion comparison, 469
rational

expression, 120
operations, 73, 118

unambiguous, 119
power series, 118, 214
tree series expressions, 347

rationally additive semiring, 53
reachability set, 158
Rec(Σ, S), 323
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bud-RecB(Σ, S), 325
bud-Rec(Σ, S), 325
RecB(Σ, S), 325
tdd-RecB(Σ, S), 325
tdd-Rec(Σ, S), 325

recognizable
Büchi, 201
Muller, 201
ω-recognizable, 201
step function, 180, 330
tree series, 323

reconstruction error, 466
reduced system, 549
reduction (of representations)

joint –, 164
regular expression, 73, 458
regulated

algebraic transduction, 276
rational transduction, 278
representation, 275
semi-algebraic transduction, 275

relabeling, 327
representation

mapping, 339
reduced, 157
regulated, 275

residuated lattice, 507
complete, 507

reversal, 226
revpos, 322
re-weighting, 241
ring, 115, 117, 318

division, 157
rotation of the plane, 474
RQr, 336

S
S〈TΣ(H)〉, 320
S-Σ-tree automata, 353
S-Σ-representation, 356
S〈〈CΣ〉〉, 336
S〈〈TΣ(H)〉〉, 320
scalar

composition identity, 40
dagger operation, 40
double dagger identity, 40
multiplication, 326
pairing identity, 41
parameter identity, 40

scheduler, 529
observation-based, 558

self-similarity, 468
semifield, 318
semimodule, 85, 108, 318

complete, 319
continuous S-Σ-semimodule, 320
S-semimodule, 318
S-Σ-semimodule, 319

semiring, 7, 107, 214, 317
∗-semiring, 49

dual, 50
inductive, 51
symmetric inductive, 51

additively locally finite, 194
arctic, 7, 318
binary relations, 8
Boolean, 7, 214, 218, 318
cancellative, 238
centre, 141, 147
closed, 218
commutable subsemirings, 141
commutative, 143, 215, 407
complete, 9, 52, 107, 108, 197, 218,

318
complete star, 9
complete star–omega, 87
conditionally completely commuta-

tive, 198
continuous, 9, 52, 107, 198
Conway, 10, 49, 75, 117, 218, 220
divisible, 237
doubled, 425, 434
formal languages, 8
fuzzy, 484
idempotent, 7, 215, 318
iteration, 49
iterative, 54
k-closed, 10, 222
lattice, 219
locally closed, 10, 222
locally finite, 11, 166, 194, 318
log, 214, 219
�Lukasiewicz, 8
max-plus, 7
min-plus, 7
non-idempotent, 219
ordered, 9
positive, 165, 266, 318
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positively ordered, 9
probability, 214, 219
proper, 318
reduct, 508
star, 8
strong, 116
topological, 112
totally complete, 197
tropical, 7, 214, 218, 318
Viterbi, 7
weakly bi-aperiodic, 444
weakly divisible, 237
zero-divisor free, 318
zero-sum free, 318

semiring–semimodule pair, 86
bi-inductive, 61
complete, 59
Conway, 58, 86
iteration, 58
ordered, 61
star–omega, 86

sequence, 258
convergent, 258
limit, 258

series, see power series
series-parallel posets, 423
swRMSO, 195
Shannon, 571, 582
shortestα, 322
shortest-distance, 219

algorithm, 217
all-pairs, 219, 220
single-source, 222, 223

problem
all-pairs, 218, 219
single-source, 222

shuffle
of two automata, 144

simplified product star identity, 75
size, 317
sizeδ, 322
smoothing, 583
solution

canonical, 82
kth automata-theoretic, 99
to a finite linear system, 81
to a finite S′-linear system, 99

sp-posets, 423
spline-curves, 474

splines, 476
square difference metric, 465
sREMSO, 188
sRMSO, 188
star, 13

fixed point identity, 48, 75
group identity, 48
operation, 47, 49, 87

of a matrix, 76
of a power series, 76

permutation identity, 48
transposition identity, 48

starsemiring, 218
complete, 218

state, 122
final, 123, 215
initial, 123, 215
non-accessible, 216
non-coaccessible, 216
sibling, 240
twin, 240
useless, 216

stochastic, 242, 245
string

delay, 246
length of, 215
mirror image of, 215

strongly connected component, 221
decomposition into, 221

stutter
action, 551
equivalence, 548

for MDPs, 550
for words, 549

invariance, 548, 550
sub-bands, 468
substitution

[IO]-substitution, 347
IO-substitution, 362
IOo-substitution, 392
OI-substitution, 326, 343
tree substitution, 317

sum, 12, 224, 326
omega identity, 56, 86
star identity, 10, 48, 49, 75

support, 12, 320, 529, 560
synchronization, 246
Synchronization, 247
synchronous grammars, 590
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syntactic composition
of bottom-up wtt, 381
of top-down wtt, 384
of wtt and bottom-up wtt, 375

syntactic congruence of r, 337
system

algebraic, 261
of fixed point equations, 33
of linear equations, 343

proper, 343
solution, 343

proper, 261
solution, 261, 262

strong, 263
terminally balanced, 271

T
τM, 366
T0L power series, 307
target pairing of functions, 30
target tupling of functions, 30
theory

continuous, 43
Conway, 40
Conway matricial, 57
Conway matrix, 49
ideal, 44
iteration, 42
iterative, 45
matricial, 54
matricial iteration, 57
matrix, 47
matrix iteration, 49
Park, 43
pointed iterative, 46
rational, 43

tiling system, 438
toolkits, 572, 584, 586, 588
TOP(S), 370

h-TOP(S), 372
TOPR(S), 370

top concatenation, 326
topologically closed set, 473
topology

dense subset, 114
discrete, 111
product, 110

trace, 409, 538
alphabet, 409

closed, 409
linear extension, 410
semigroup, 409

trace series
aperiodic, 422
recognizable, 421

traced monoidal category, 41
training, 572, 578, 583, 590
transducer, see weighted transducer

letter-to-letter, 472
transduction

algebraic, 277
rational, 278
regulated algebraic, 276
regulated rational, 278
regulated semi-algebraic, 275

transfer matrix, 132
transformational grammars, 572
transformations

fractal-like, 472
transition

diagrams for PWFAs, 473
fork, 425
join, 425
matrices, 470
matrix, 122, 457
sequential, 425

translation, see natural language
processing

transposition, 226
transposition identity, 36
tree, 316

regular, 42
tree automata, 320, 572, 586–591
tree homomorphism, 347
tree series, 320

Boolean, 320
characteristic, 320
constant, 320
[IO]-equational tree series, 347
monomial, 320
MSO(Σ, S)-definable, 351
polynomial, 320
proper, 327
rational, 348
recognizable, 323
representable, 356
support, 320

tree series transformation, 363
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composition, 363
identity, 363

tree transducer, 364, 571
bottom-up, 364
generalized, 364
nondeterministically simple top-

down, 391
top-down, 364
with OI-substitution, 392

tree transformation, 363
composition, 363

trimming, 216, 229, 232
Trop, 318
Tropsf , 338
twins property, 240

U
unary alphabet, 474
union, 224
unique fixed point rule, 45
unweighted automaton, see finite

automaton
unweighted transducer, see finite-state

transducer

V
v-extension of (V, θ), 319
value iteration, 535
vector space, 319

finite-dimensional, 319
S-vector space, 319
S-Σ-vector space, 319
syntactic S-Σ-vector space, 337

Viterbi approximation, 214

W
wACA, 408, 414, 416, 418

concurrent behavior, 410
interleaving behavior, 409
word behavior, 408

wavelet transformation, 468
wBA, 425, 430, 433

bounded depth, 431, 433, 434
weight

final, 215
initial, 215, 216

weight function, see weight
weight matrices, 470, 473
weight of a path, 72

weight pushing, 241
weighted automaton, v, 3, 72, 122,

214–217
Büchi, 201
cycle-unambiguous, 240
deterministic, 237
determinizable, 239, 240
Muller, 201
polynomially ambiguous, 241
subsequentiable, 240
subsequential, 237

weighted finite automaton, v, 3, 72, 324,
457

weighted finite transducer, 469
weighted finite-state transducer, see

weighted transducer
weighted identity, 363
weighted logic, 181

first-order, 207
MSO, 181
semantics, 181
syntax, 181
temporal, 207
V-semantics, 182

weighted relation, 470, 472
weighted subset, 238
weighted transducer, 214, 215

complete, 232
deterministic, 216
determinizable, 236
double-tape unambiguous, 249
inverse, 216
regulated, 216
sequential, 217
synchronized, 246
trim, 216
unambiguous, 216

weighted tree automaton, 322
weighted tree transducer, 366

with operational semantics, 393
Weighted-Composition, 228
Weighted-Determinization, 238
WFA, 457
WFA with wavelets, 468
WFT, 470, 472
width, 432

bounded, 432, 433
wMSO, 412, 439

restricted, 416
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semantics, 412, 439
word, 538
worst-case analysis, 523
wPA, 436

behavior, 437
unambiguous, 443

wRMSO, 416, 418, 441
wREMSO, 417, 418, 441

wta, 322
bu-deterministic, 325
over multioperator monoid, 360
run, 323
td-deterministic, 325
total bu-deterministic, 325

wts(A), 322
wtt, 366

Boolean, 372
bottom-up, 370
deterministic bottom-up, 372
deterministic top-down, 372

finite-state relabeling bottom-up, 379
homomorphism bottom-up, 372
homomorphism top-down, 372
linear, 372
nondeleting, 372
top-down, 370
top-down wtt with regular look-

ahead, 370
total bottom-up, 372
total top-down, 372

WTT(S), 366
wUMSO, 195

Y
yield, 322

Z
zero omega identity, 56
zero star identity, 48
zoom, 471
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