
http://www.cambridge.org/9780521820493

This page intentionally left blank

Cambridge Tracts in Theoretical Computer Science 50
Process Algebra: Equational Theories of Communicating Processes

Process algebra is a widely accepted and much used technique in the specification and
verification of parallel and distributed software systems. This book sets the standard
for the field. It assembles the relevant results of most process algebras currently in use,
and presents them in a unified framework and notation.

The authors describe the theory underlying the development, realization and
maintenance of software that occurs in parallel or distributed systems. A system can be
specified in the syntax provided, and the axioms can be used to verify that a composed
system has the required external behavior. As examples, two protocols are completely
specified and verified in the text: the Alternating-Bit communication Protocol, and
Fischer’s Protocol of mutual exclusion.

The book serves as a reference text for researchers and graduate students in
computer science, offering a complete overview of the field and referring to further
literature where appropriate.

j . c . m. baeten is Professor of formal methods in the Division of Computer
Science at Eindhoven University of Technology, Netherlands.

t. basten is Professor of computational models in the Faculty of Electrical
Engineering at Eindhoven University of Technology, Netherlands, and Research
Fellow at the Embedded Systems Institute, Eindhoven.

m. a. reniers is Assistant Professor in the Division of Computer Science at
Eindhoven University of Technology, Netherlands.

Cambridge Tracts in Theoretical Computer Science 50

Editorial Board

S. Abramsky, Computer Laboratory, Oxford University
P. H. Aczel, Department of Computer Science, University of Manchester
J. W. de Bakker, Centrum voor Wiskunde en Informatica, Amsterdam
Y. Gurevich, Microsoft Research
J. V. Tucker, Department of Mathematics and Computer Science, University College of
Swansea

Titles in the series

A complete list of books in the series can be found at
http://www.cambridge.org/uk/series/sSeries.asp?code=CTTC.
Recent titles include the following:

21. D. A. Wolfram The Clausal Theory of Types
22. V. Stoltenberg-Hansen, Lindström & E. R. Griffor Mathematical Theory of

Domains
23. E.-R. Olderog Nets, Terms and Formulas
26. P. D. Mosses Action Semantics
27. W. H. Hesselink Programs, Recursion and Unbounded Choice
28. P. Padawitz Deductive and Declarative Programming
29. P. Gärdenfors (ed.) Belief Revision
30. M. Anthony & N. Biggs Computational Learning Theory
31. T. F. Melham Higher Order Logic and Hardware Verification
32. R. L. Carpenter The Logic of Typed Feature Structures
33. E. G. Manes Predicate Transformer Semantics
34. F. Nielson & H. R. Nielson Two-Level Functional Languages
35. L. M. G. Feijs & H. B. M. Jonkers Formal Specification and Design
36. S. Mauw & G. J. Veltink (eds.) Algebraic Specification of Communication

Protocols
37. V. Stavridou Formal Methods in Circuit Design
38. N. Shankar Metamathematics, Machines and Gödel’s Proof
39. J. B. Paris The Uncertain Reasoner’s Companion
40. J. Desel & J. Esparza Free Choice Petri Nets
41. J.-J. Ch. Meyer & W. van der Hoek Epistemic Logic for AI and Computer Science
42. J. R. Hindley Basic Simple Type Theory
43. A. S. Troelstra & H. Schwichtenberg Basic Proof Theory
44. J. Barwise & J. Seligman Information Flow
45. A. Asperti & S. Guerrini The Optimal Implementation of Functional

Programming Languages
46. R. M. Amadio & P.-L. Curien Domains and Lambda-Calculi
47. W.-P. de Roever & K. Engelhardt Data Refinement
48. H. Kleine Büning & T. Lettman Propositional Logic
49. L. Novak & A. Gibbons Hybrid Graph Theory and Network Analysis
51. H. Simmons Derivation and Computation
52. P. Blackburn, M. de Rijke & Y. Venema Modal Logic
53. W.-P. de Roever et al Concurrency Verification
54. Terese Term Rewriting Systems
55. A. Bundy et al Rippling: Meta-Level Guidance for Mathematical Reasoning

Process Algebra:
Equational Theories of Communicating

Processes

J. C. M. BAETEN

T. BASTEN

M. A. RENIERS
Eindhoven University of Technology, Netherlands

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-82049-3

ISBN-13 978-0-511-71234-0

© Cambridge University Press 2010

2010

Information on this title: www.cambridge.org/9780521820493

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521820493

Contents

Foreword by Tony Hoare page ix
Foreword by Robin Milner x
Foreword by Jan Bergstra xi
Preface xiii

1 Process algebra 1
1.1 Definition 1
1.2 Calculation 3
1.3 History 4

2 Preliminaries 11
2.1 Introduction 11
2.2 Equational theories 11
2.3 Algebras 21
2.4 Term rewriting systems 30
2.5 Bibliographical remarks 34

3 Transition systems 35
3.1 Transition-system spaces 35
3.2 Structural operational semantics 47
3.3 Bibliographical remarks 64

4 Basic process theory 67
4.1 Introduction 67
4.2 The process theory MPT 68
4.3 The term model 72
4.4 The empty process 81
4.5 Projection 92
4.6 Prefix iteration 102
4.7 Bibliographical remarks 107

5 Recursion 109
5.1 Introduction 109

v

vi Contents

5.2 Recursive specifications 110
5.3 Solutions of recursive specifications 113
5.4 The term model 119
5.5 Recursion principles 124
5.6 Describing a stack 146
5.7 Expressiveness and definability 148
5.8 Regular processes 154
5.9 Recursion and BSP∗(A) 157

5.10 The projective limit model 159
5.11 Bibliographical remarks 168

6 Sequential processes 171
6.1 Sequential composition 171
6.2 The process theory TSP 171
6.3 The term model 174
6.4 Projection in TSP(A) 177
6.5 Iteration 178
6.6 Recursion 182
6.7 Renaming, encapsulation, and skip operators 189
6.8 Bibliographical remarks 194

7 Parallel and communicating processes 195
7.1 Interleaving 195
7.2 An operational view 196
7.3 Standard communication 199
7.4 The process theory BCP 201
7.5 The term model 216
7.6 Recursion, buffers, and bags 218
7.7 The process theory TCP and further extensions 227
7.8 Specifying the Alternating-Bit Protocol 235
7.9 Bibliographical remarks 242

8 Abstraction 245
8.1 Introduction 245
8.2 Transition systems with silent steps 246
8.3 BSP with silent steps 256
8.4 The term model 258
8.5 Some extensions of BSPτ (A) 267
8.6 TCP with silent steps 276
8.7 Iteration and divergence 280
8.8 Recursion and fair abstraction 284
8.9 Verification of the ABP and queues revisited 295

8.10 Bibliographical remarks 298

Contents vii

9 Timing 301
9.1 Introduction 301
9.2 Timed transition systems 304
9.3 Discrete time, relative time 307
9.4 The term model 309
9.5 Time iteration and delayable actions 312
9.6 The relation between BSP(A) and BSPdrt∗(A) 317
9.7 The process theory TCPdrt∗(A, γ) 319
9.8 Fischer’s protocol 327
9.9 Bibliographical remarks 333
10 Data and states 335

10.1 Introduction 335
10.2 Guarded commands 336
10.3 The inaccessible process 345
10.4 Propositional signals 348
10.5 State operators 362
10.6 Choice quantification 366
10.7 Bibliographical remarks 374

11 Features 375
11.1 Priorities 375
11.2 Probabilities 381
11.3 Mobility 387
11.4 Parallel composition revisited 389
11.5 Bibliographical remarks 391

12 Semantics 393
12.1 Bisimilarity and trace semantics 393
12.2 Failures and readiness semantics 397
12.3 The linear time – branching time lattice 401
12.4 Partial-order semantics 407
12.5 Bibliographical remarks 410

Bibliography 411
Index of Symbols and Notations 421
Index of Authors 435
Index of Subjects 439

Forewords

Tony Hoare
Cambridge, United Kingdom, February 2009

Algebra is the simplest of all branches of mathematics. After the study of
numerical calculation and arithmetic, algebra is the first school subject which
gives the student an introduction to the generality and power of mathematical
abstraction, and a taste of mathematical proof by symbolic reasoning. Only the
simplest reasoning principle is required: the substitution of equals for equals.
(Even computers are now quite good at it.) Nevertheless, the search for al-
gebraic proof still presents a fascinating puzzle for the human mathematician,
and yields results of surprising brevity and pleasing elegance.

A more systematic study of algebra provides a family tree that unifies the
study of many of the other branches of mathematics. It identifies the basic
mathematical axioms that are common to a whole sub-family of branches. The
basic theorems that are proved from these axioms will be true in every branch
of mathematics which shares them. At each branching point in the tree, the
differences between the branches are succinctly highlighted by their choice
between a pair of mutually contradictory axioms. In this way, algebra is both
cumulative in its progress along the branches, and modular at its branching
points.

It is a surprise to many computer programmers that computer programs, with
all their astronomical complexity of structure and behavior, are as amenable to
the axioms of algebra as simple numbers were at school. Indeed, algebra scales
well from the small to the large. It applies to the large-scale behavior of sys-
tems evolving concurrently in parallel; and it underlies the manipulation of the
minute detail of the individual instructions of code. At the highest level, alge-
braic reasoning provides the essential basis for program transformations that
match the structure of a complete system to that of the available hardware con-
figuration; and at the lowest level, it provides the justification for optimization

ix

x Forewords

of the code of a program so as to achieve the full potential of the processor
instruction set.

This book exploits the power of algebra to explore the properties of con-
current programs, particularly those that control the behavior of distributed
systems, communicating with neighbors on identified channels. It starts with
the simplest theories at the base of the tree, and gradually extends them in
a modular way by additional axioms to deal with sequential programming as
well as concurrent, and with communication as well as assignment. In the later
chapters, it exploits the modularity of algebra to describe priorities, probabili-
ties, and mobility.

The technical approach of the book is grounded in Computer Science. It
emphasizes term models based on the syntax of the operators used in the al-
gebra, and it justifies the axioms by appeal to the execution of the terms as
programs. Its crowning achievement is to exploit the unifying power of alge-
bra to cover a range of historic theories, developed for various purposes up to
20 years ago. Earlier these theories were thought to be irreconcilable rivals;
but as a result of research by the authors of this book and others, the rivals are
now seen to be close family members, each superbly adapted to the particular
range of problems that it was designed to tackle.

Robin Milner
Cambridge, United Kingdom, February 2009

Nowadays, much of what is still called ‘computing’ involves the behavior of
composite systems whose members interact continually with their environ-
ment. A better word is ‘informatics’, because we are concerned not just with
calculation, but rather with autonomous agents that interact with – or inform –
one another. This interactivity bursts the bounds of the sequential calculation
that still dominates many programming languages. Does it enjoy a theory as
firm and complete as the theory of sequential computation? Not yet, but we
are getting there.

What is an informatic process? The answer must involve phenomena for-
eign to sequential calculation. For example can an informatic system, with
many interacting components, achieve deterministic behavior? If it can, that
is a special case; non-determinism is the norm, not the exception. Does a
probability distribution, perhaps based upon the uncertainty of timing, replace
determinism? Again, how exactly do these components interact; do they send
each other messages, like email, to be picked up when convenient? – or is each
interaction a kind of synchronized handshake?

Over the last few decades many models for interactive behavior have been

Forewords xi

proposed. This book is the fruit of 25 years of experience with an algebraic
approach, in which the constructors by which an informatic system is as-
sembled are characterized by their algebraic properties. The characteristics
are temporal, in the same way that sequential processes are temporal; they are
also spatial, describing how agents are interconnected. And their marriage is
complex.

The authors have teased out primitive elements of this structure. In doing
so they have applied strict mathematical criteria. For example, to what extent
can the dynamic characteristics of a set of process constructors be reflected,
soundly or completely, by a collection of algebraic axioms? And to what ex-
tent can the authors’ calculus ACP (Algebra of Communicating Processes)
be harmonized with other leading calculi, especially Hoare’s CSP (Communi-
cating Sequential Processes) and Milner’s CCS (Calculus of Communicating
Systems)? Consideration of these questions gives the book a firm and appre-
ciable structure. In particular, it shows up a shortcoming of what (for some 50
years) has been called automata theory: that theory never seriously attempted
to model the ways in which two automata might interact.

So it may seem that the book is mainly an account of the frontiers of research
into process theory. It is much more, and I hope that syllabus designers will
take note: the presentation is lucid and careful, enriched with exercises, to
the extent that many parts of it can be used as a basis for university courses,
both undergraduate and postgraduate. If in such courses we expose students to
theories that are still advancing, then they share the excitement of that progress.

Jan Bergstra
Amsterdam, the Netherlands, February 2009

This book about process algebra improves on its predecessor, written by Jos
Baeten and Peter Weijland almost 20 years ago, by being more comprehensive
and by providing far more mathematical detail. In addition the syntax of ACP
has been extended by a constant 1 for termination. This modification not only
makes the syntax more expressive, it also facilitates a uniform reconstruction
of key aspects of CCS, CSP as well as ACP, within a single framework.

After renaming the empty process (ε) into 1 and the inactive process (δ)
into 0, the axiom system ACP is redesigned as BCP. This change is both prag-
matically justified and conceptually convincing. By using a different acronym
instead of ACP, the latter can still be used as a reference to its original meaning,
which is both useful and consistent.

Curiously these notational changes may be considered marginal and signif-
icant at the same time. In terms of theorems and proofs, or in terms of case

xii Forewords

studies, protocol formalizations and the design of verification tools, the spe-
cific details of notation make no real difference at all. But by providing a
fairly definitive and uncompromising typescript a major impact is obtained on
what might be called ‘nonfunctional qualities’ of the notational framework.
I have no doubt that these nonfunctional qualities are positive and merit being
exploited in full detail as has been done by Baeten and his co-authors. Un-
avoidably, the notational evolution produces a change of perspective. While,
for instance, the empty process is merely an add on feature for ACP, it consti-
tutes a conceptual cornerstone for BCP.

Group theory provides different notational conventions (additive and multi-
plicative) for the same underlying structure, and in a similar fashion, the format
of this book might be viewed as a comprehensive and consistent notational
convention for a theory of process algebra. But the same theory might instead
be captured, when used in another context, with a different preferred notation.

Process algebra as presented here is equational logic of processes viewed
as a family of first order theories. Each theory is provided with its Tarski
semantics, making use of many-sorted algebras with total operations and non-
empty sorts. Although this may sound already quite technical and may be even
prohibitive for a dedicated computer scientist, these are the most stable and
clear-cut semantic principles that mathematical logic has developed thus far.
When developing axioms for process algebras the authors do not deviate from
that path for ad hoc reasons of any kind. Thus there is a very clear separation
between the logical metatheory, consisting of first order equational logic and
its model-theory on the one hand and the many design decisions concerning the
subject matter that is process theory on the other hand. A prominent method-
ological principle underlying the work is that the significant ramification of
design decisions concerning various process formalisms can be made system-
atic in a way comparable to the development of say ring theory in mathematics.

In addition to making use of first order logic, the equational form of most ax-
ioms allows a systematic exploitation of technical results from term rewriting.
This is not a matter of process theory per se but it is proving helpful throughout
the book.

One may ask why process algebra should be considered a topic in computer
science and not just in applied mathematics. While some parts of process
theory are now moving in the direction of systems biology, the process algebras
covered in this book may sooner or later show up in physics. Quantum process
algebras have not been covered here but various forms already exist and that
kind of development is likely to continue for many more years.

Just like its predecessor has been for many years, this book will definitely
be useful as a reference work for research in process theory.

Preface

What is this book about?

This book sets the standard for process algebra. It assembles the relevant re-
sults of most process algebras currently in use, and presents them in a unified
framework and notation. It addresses important extensions of the basic the-
ories, like timing, data parameters, probabilities, priorities, and mobility. It
systematically presents a hierarchy of algebras that are increasingly expres-
sive, proving the major properties each time.

For researchers and graduate students in computer science, the book will
serve as a reference, offering a complete overview of what is known to date,
and referring to further literature where appropriate.

Someone familiar with CCS, the Calculus of Communicating Systems, will
recognize the minimal process theory MPT as basic CCS, to which a constant
expressing successful termination is added, enabling sequential composition
as a basic operator, and will then find a more general parallel-composition
operator. Someone familiar with ACP, the Algebra of Communicating Pro-
cesses, will see that termination is made explicit, leading to a replacement of
action constants by action prefixing, but will recognize many other things. The
approaches to recursion of CCS and ACP are both explained and integrated.
Someone familiar with CSP, Communicating Sequential Processes, will have
to cope with more changes, but will see the familiar operators of internal and
external choice and parallel composition explained in the present setting.

The book is a complete revision of another (Baeten & Weijland, 1990).
Moreover, as the unification theme has become more important, it can also
be seen as a successor to (Milner, 1989) and (Hoare, 1985).

Process algebra has become a widely accepted and used technique in the
specification and verification of parallel and distributed software systems. A
system can be specified in the syntax provided, and the axioms can be used

xiii

xiv Preface

to verify that a composed system has the required external behavior. As ex-
amples, a couple of protocols are completely specified and verified in the text:
the Alternating-Bit communication Protocol, and Fischer’s protocol of mutual
exclusion. The book explains how such a task can be undertaken for any given
parallel or distributed system. As the system gets bigger though, tool support in
this endeavor, using for example the mCRL2 tool set, will become necessary.

Despite the breadth of the book, some aspects of process algebra are not
covered. Foremost, relationships with logic, important when discussing satis-
faction of requirements, are not addressed (except briefly in Chapter 10). This
was left out as it does not pertain directly to the algebraic treatment and would
make the book too voluminous. Readers interested in this subject may refer to
(Bradfield & Stirling, 2001). Some of the extensions (probabilities, priorities,
and mobility) are only briefly touched upon; references are given to literature
that provides a more in-depth treatment.

How to use this book?

The book can be used in teaching a course to students at advanced under-
graduate or graduate level in computer science or a related field. It contains
numerous exercises varying in difficulty. Such a course should cover at least
Chapters 1 through 8, together comprising a complete theory usable in appli-
cations. From the remaining chapters, different choices can be made, since the
chapters can be read independently. The text is also suitable for self-study.

Chapter 1 presents an introduction that delineates more precisely the field
of process algebra. It also gives a historic overview of the development of the
field. In Chapter 2, some notions are explained that are used in the remain-
der of the book. The material concerns equational theories, algebras, and term
rewriting systems. Chapter 3 covers the semantic domain of transition sys-
tems. The notion of bisimilarity is explained, and the concept of a structural
operational semantics, a standard way to assign transition systems to terms
in a language, is introduced. Some relevant theorems about structural opera-
tional semantics are presented and are used in the remainder of the book when
providing semantics to equational theories.

Chapter 4 starts with process algebra. A minimal process theory is pre-
sented, that illustrates the basic steps involved in establishing a set of laws and
a model for an equational theory. Then, two basic extensions are considered:
first, the extension with the successful-termination constant 1, and second, the
extension with projection operators. Differences between the two types of ex-
tensions are explained. As a prequel to the succeeding chapter, the extension

Preface xv

with the iteration operator is considered. By means of this operator, some
infinite processes can be defined.

Chapter 5 is devoted to recursion, which is the main means of specifying
non-terminating processes. It is shown how to define such processes, and how
to reason with them. The unbounded stack is considered as a first example.

Chapter 6 adds sequential composition. Furthermore, it looks at renaming
operators, and operators that can block or skip part of a process. Chapter 7
adds parallel composition and communication. Buffers and bags are consid-
ered as examples. As a larger example, the specification of the Alternating-Bit
Protocol is presented.

Chapter 8 considers abstraction, which enables one to hide some of the be-
havior of a system in order to focus on the rest. It is the central ingredient for
verification. As an example, a verification is presented of the Alternating-Bit
Protocol. The notions of divergence and fairness are explained and treated.

Chapter 9 gives a short introduction to the extension with explicit timing.
Fischer’s protocol is presented as an example. Chapter 10 considers the in-
terplay between data and processes, and at the same time takes a closer look
at the notion of a state, and what can be observed from it. Chapter 11 briefly
covers some extensions to and variants of the basic theories, namely priorities,
probabilities, mobility, and different forms of parallel composition. The book
concludes with Chapter 12, which considers other semantics, besides bisimu-
lation semantics, and their interrelations.

The book is supported through the website www.processalgebra.org. This
website contains supplementary material, such as solutions to selected ex-
ercises, slides presenting the book content, additional exercises and exam
problems, a tool to support algebraic reasoning, an up-to-date process algebra
bibliography, and much more. Lecturers, students, and researchers are invited
to have a look at the website, to get the most out of using the book.

Acknowledgements

A book like this can only be written thanks to the contributions and support
of many individuals. The authors wish to acknowledge Luca Aceto, Suzana
Andova, Jan Bergstra, Maarten Boote, Victor Bos, Beverley Clarke, Clare
Dennison, Henk Goeman, Jan Friso Groote, Evelien van der Heiden, Leszek
Holenderski, Abigail Jones, Hugo Jonker, Gerben de Keijzer, Uzma Khadim,
Fabian Kratz, Kim Larsen, Bas Luttik, Jasen Markovski, Sjouke Mauw,
Kees Middelburg, Mohammad Mousavi, Dennis van Opzeeland, Ralph Otten,
Alban Ponse, Isabelle Reymen, Maria van Rooijen, Eugen Schindler, Natalia

xvi Preface

Sidorova, David Tranah, Pieter Verduin, Jeroen Voeten, Marc Voorhoeve, Peter
Weijland, and Tim Willemse.

1

Process algebra

1.1 Definition

This book is about process algebra. The term ‘process algebra’ refers to a
loosely defined field of study, but it also has a more precise, technical meaning.
The latter is considered first, as a basis to delineate the field of process algebra.

Consider the word ‘process’. It refers to behavior of a system. A system is
anything showing behavior, in particular the execution of a software system,
the actions of a machine, or even the actions of a human being. Behavior is the
total of events or actions that a system can perform, the order in which they
can be executed and maybe other aspects of this execution such as timing or
probabilities. Always, the focus is on certain aspects of behavior, disregarding
other aspects, so an abstraction or idealization of the ‘real’ behavior is con-
sidered. Rather, it can be said that there is an observation of behavior, and an
action is the chosen unit of observation. Usually, the actions are thought to be
discrete: occurrence is at some moment in time, and different actions can be
distinguished in time. This is why a process is sometimes also called a discrete
event system.

The term ‘algebra’ refers to the fact that the approach taken to reason about
behavior is algebraic and axiomatic. That is, operations on processes are de-
fined, and their equational laws are investigated. In other words, methods
and techniques of universal algebra are used (see e.g., (MacLane & Birkhoff,
1967)). To allow for a comparison, consider the definition of a group in uni-
versal algebra.

Definition 1.1.1 (Group) A group is a structure (G, ∗,−1 , u), with G the uni-
verse of elements, binary operator ∗ on G, unary operator −1, and constant
u ∈ G. For any a, b, c ∈ G, the following laws, or axioms, hold:

• a ∗ (b ∗ c) = (a ∗ b) ∗ c;

1

2 Process algebra

• u ∗ a = a = a ∗ u;
• a ∗ a−1 = a−1 ∗ a = u.

So, a group is any mathematical structure consisting of a single universe of
elements, with operators on this universe of elements that satisfy the group
axioms. Stated differently, a group is any model of the equational theory of
groups. Likewise, it is possible to define operations on the universe of pro-
cesses. A process algebra is then any mathematical structure satisfying the
axioms given for the defined operators, and a process is then an element of
the universe of this process algebra. The axioms allow calculations with pro-
cesses, often referred to as equational reasoning.

Process algebra thus has its roots in universal algebra. The field of study
nowadays referred to as process algebra, however, often, goes beyond the strict
bounds of universal algebra. Sometimes the restriction to a single universe of
elements is relaxed and different types of elements, different sorts, are used,
and sometimes binding operators are considered. Also this book goes some-
times beyond the bounds of universal algebra.

The simplest model of system behavior is to see behavior as an input/output
function. A value or input is given at the beginning of a process, and at some
moment there is a(nother) value as outcome or output. This behavioral model
was used to advantage as the simplest model of the behavior of a computer
program in computer science, from the start of the subject in the middle of the
twentieth century. It was instrumental in the development of (finite-state) au-
tomata theory. In automata theory, a process is modeled as an automaton. An
automaton has a number of states and a number of transitions, going from state
to state. A transition denotes the execution of an (elementary) action, the basic
unit of behavior. Besides, an automaton has an initial state (sometimes, more
than one) and a number of final states. A behavior is a run, i.e., an execution
path of actions that lead from the initial state to a final state. Given this basic
behavioral abstraction, an important aspect is when to consider two automata
equal, expressed by a notion of equivalence, the semantic equivalence. On
automata, the basic notion of semantic equivalence is language equivalence:
an automaton is characterized by the set of runs, and two automata are equal
when they have the same set of runs. An algebra that allows equational rea-
soning about automata is the algebra of regular expressions (see e.g., (Linz,
2001)).

Later on, the automata model was found to be lacking in certain situations.
Basically, what is missing is the notion of interaction: during the execution
from initial state to final state, a system may interact with another system.
This is needed in order to describe parallel or distributed systems, or so-called

1.2 Calculation 3

reactive systems. When dealing with models of and reasoning about interact-
ing systems, the phrase concurrency theory is used. Concurrency theory is the
theory of interacting, parallel and/or distributed systems. Process algebra is
usually considered to be an approach to concurrency theory, so a process al-
gebra will usually (but not necessarily) have parallel composition as a basic
operator. In this context, automata are mostly called transition systems. The
notion of equivalence studied is usually not language equivalence. Prominent
among the equivalences studied is the notion of bisimilarity, which considers
two transition systems equal if and only if they can mimic each other’s behav-
ior in any state they may reach.

Thus, a usable definition of the field of process algebra is the field that stud-
ies the behavior of parallel or distributed systems by algebraic means. It of-
fers means to describe or specify such systems, and thus it has means to talk
about parallel composition. Besides this, it can usually also talk about alter-
native composition (choice between alternatives) and sequential composition
(sequencing). Moreover, it is possible to reason about such systems using al-
gebra, i.e., equational reasoning. By means of this equational reasoning, veri-
fication becomes possible, i.e., it can be established that a system satisfies a
certain property. Often, the study of transition systems, ways to define them,
and equivalences on them are also considered part of process algebra, even
when no equational theory is present.

1.2 Calculation

Systems with distributed or parallel, interacting components abound in modern
life: mobile phones, personal computers interacting across networks (like the
web), and machines with embedded software interacting with the environment
or users are but a few examples. In our mind, or with the use of natural lan-
guage, it is very difficult to describe these systems exactly, and to keep track
of all possible executions. A formalism to describe such systems precisely,
allowing reasoning about such systems, is very useful. Process algebra is such
a formalism.

It is already very useful to have a formalism to describe, to specify inter-
acting systems, e.g., to have a compact term specifying a communication pro-
tocol. It is even more useful to be able to reason about interacting systems,
to verify properties of such systems. Such verification is possible on transition
systems: there are automated methods, called model checking (see e.g., (Clarke
et al., 2000)), that traverse all states of a transition system and check that a cer-
tain property is true in each state. The drawback is that transition systems grow
very large very quickly, often even becoming infinite. For instance, a system

4 Process algebra

having 10 interacting components, each of which has 10 states, has a total
number of 10 000 000 000 states. It is said that model-checking techniques
suffer from the state-explosion problem. At the other end, reasoning can take
place in logic, using a form of deduction. Also here, progress is made, and
many theorem-proving tools exist (see e.g., (Bundy, 1999)). The drawback
here is that finding a proof needs user assistance, as the general problem is
undecidable, and this necessitates a lot of knowledge about the system.

Equational reasoning on the basis of an algebraic theory takes the middle
ground, in an attempt to combine the strengths of both model checking and the-
orem proving. Usually, the next step in the procedure is clear. In that sense, it
is more rewriting than equational reasoning. Consequently, automation, which
is the main strength of model checking, can be done straightforwardly. On the
other hand, representations are compact and allow the presence of parameters,
so that an infinite set of instances can be verified at the same time, which are
strong points of theorem proving.

As an example, Chapter 8 presents a complete verification of a simple com-
munication protocol: it is verified that the external behavior of the protocol
coincides with the behavior of a one-place buffer. This is the desired result,
because it proves that every message sent arrives at the receiving end.

1.3 History

Process algebra started in the 1970s. At that point, the only part of concurrency
theory that existed was the theory of Petri nets, conceived by Petri starting from
his thesis in 1962 (Petri, 1962). In 1970, three main styles of formal reasoning
about computer programs could be distinguished, focusing on giving semantics
(meaning) to programming languages.

(i) Operational semantics: A computer program is modeled as an execu-
tion of an abstract machine. A state of such a machine is a valuation
of variables; a transition between states is an elementary program in-
struction. The pioneer of this field is McCarthy (McCarthy, 1963).

(ii) Denotational semantics: In a denotational semantics, which is typi-
cally more abstract than an operational semantics, computer programs
are usually modeled by a function transforming input into output. The
most well-known pioneers are Scott and Strachey (Scott & Strachey,
1971).

(iii) Axiomatic semantics: An axiomatic semantics emphasizes proof
methods proving programs correct. Central notions are program as-
sertions, proof triples consisting of precondition, program statement,

1.3 History 5

and postcondition, and invariants. Pioneers are Floyd (Floyd, 1967)
and Hoare (Hoare, 1969).

Then, the question was raised how to give semantics to programs containing
a parallel-composition operator. It was found that this is difficult using the
methods of denotational, operational, or axiomatic semantics as they existed
at that time, although several attempts were made. (Later on, it became clear
how to extend the different types of semantics to parallel programming, see
e.g., (Owicki & Gries, 1976) or (Plotkin, 1976).) Process algebra developed as
an answer to this question.

There are two paradigm shifts that need to be made before a theory of par-
allel programs in terms of a process algebra can be developed. First of all,
the idea of a behavior as an input/output function needs to be abandoned. The
relation between input and output is more complicated and may involve non-
determinism. This is because the interactions a process has between input and
output may influence the outcome, disrupting functional behavior. A program
can still be modeled as an automaton, but the notion of language equivalence
is no longer appropriate. Secondly, the notion of global variables needs to be
overcome. Using global variables, a state of a modeling automaton is given as
a valuation of the program variables, that is, a state is determined by the val-
ues of the variables. The independent execution of parallel processes makes it
difficult or impossible to determine the values of global variables at any given
moment. It turns out to be simpler to let each process have its own local vari-
ables, and to denote exchange of information explicitly via message passing.

Bekič

One of the first people studying the semantics of parallel programs was Hans
Bekič. He was born in 1936, and died due to a mountain accident in 1982.
In the early seventies, he worked at the IBM lab in Vienna, Austria. The lab
was well-known in the sixties and seventies for its work on the definition and
semantics of programming languages, and Bekič played a part in this, working
on the denotational semantics of ALGOL and PL/I. Growing out of his work
on PL/I, the problem arose how to give a denotational semantics for parallel
composition. Bekič tackled this problem in (Bekič, 1971). This internal report,
and indeed all the work of Bekič, is made accessible through the book edited
by Cliff Jones (Bekič, 1984). The following remarks are based on this book.

In (Bekič, 1971), Bekič addresses the semantics of what he calls ‘quasi-
parallel execution of processes’. From the introduction:

6 Process algebra

Our plan to develop an algebra of processes may be viewed as a high-level
approach: we are interested in how to compose complex processes from sim-
pler (still arbitrarily complex) ones.

Bekič uses global variables, so a state is a valuation of variables, and a
program determines an action, which gives in a state (non-deterministically)
either null if and only if it is an end-state, or an elementary step, giving a new
state and rest-action. Further, Bekič has operators for alternative composition,
sequential composition, and (quasi-)parallel composition. He gives a law for
quasi-parallel composition, called the ‘unspecified merging’ of the elementary
steps of two processes. That law is definitely a precursor of what later would be
called the expansion law of process algebra. It also makes explicit that Bekič
has made the first paradigm shift: the next step in a merge is not determined,
so the idea of a program as a function has been abandoned.

Concluding, Bekič contributed a number of basic ingredients to the emer-
gence of process algebra, but he does not yet provide a coherent comprehensive
theory.

CCS

The central person in the history of process algebra without a doubt is Robin
Milner. A.J.R.G. Milner, born in 1934, developed his process theory CCS, the
Calculus of Communicating Systems, over the years 1973 to 1980, culminating
in the publication of the book (Milner, 1980) in 1980.

Milner’s oldest publications concerning the semantics of parallel composi-
tion are (Milner, 1973; Milner, 1975), formulated within the framework of de-
notational semantics, using so-called transducers. He considers the problems
caused by non-terminating programs, with side effects, and non-determinism.
He uses operators for sequential composition, for alternative composition, and
for parallel composition. He refers to (Bekič, 1971) as related work.

Next, in terms of the development of CCS, are the articles (Milner, 1979)
and (Milne & Milner, 1979). In that work, Milner introduces flow graphs, with
ports, where a named port synchronizes with the port with its co-name. Oper-
ators are parallel composition, restriction (to prevent certain specified actions),
and relabeling (for renaming ports). Some laws are stated for these operators.

The two papers that put in place most of CCS as it is known to date, (Milner,
1978a) and (Milner, 1978b), conceptually built upon this work, but appeared
in 1978. The operators prefixing and alternative composition are added and
provided with laws. Synchronization trees are used as a model. The prefix τ
occurs as a communication trace, i.e., what remains of a synchronization of
a name and a co-name. Such a remains is typically unobservable, and later,

1.3 History 7

τ developed into what is now usually called the silent step. The paradigm of
message passing, the second paradigm shift, is taken over from (Hoare, 1978).
Interleaving is introduced as the observation of a single observer of a commu-
nicating system, and the expansion law is stated. Sequential composition is
not a basic operator, but a derived one, using communication, abstraction, and
restriction.

The paper (Hennessy & Milner, 1980), with Matthew Hennessy, formu-
lates basic CCS, with two important semantic equivalence relations, observa-
tional equivalence and strong equivalence, defined inductively. Also, so-called
Hennessy-Milner logic is introduced, which provides a logical characterization
of process equivalence. Next, the book (Milner, 1980) was published, which is
by now a standard process algebra reference. For the first time in history, the
book presents a complete process algebra, with a set of equations and a seman-
tic model. In fact, Milner talks about process calculus everywhere in his work,
emphasizing the calculational aspect. He presents the equational laws as truths
about his chosen semantic domain, transition systems, rather than considering
the laws as primary, and investigating the range of models that they have. The
book (Milner, 1980) was later updated in (Milner, 1989).

CSP

A very important contributor to the development of process algebra is Tony
Hoare. C.A.R. Hoare, born in 1934, published his influential paper (Hoare,
1978) as a technical report in 1976. The important step is that he does away
completely with global variables, and adopts the message-passing paradigm
of communication, thus realizing the second paradigm shift. The language
CSP, Communicating Sequential Processes, described in (Hoare, 1978) has
synchronous communication and is a guarded-command language (based on
(Dijkstra, 1975)). No model or semantics is provided. This paper inspired
Milner to treat message passing in CCS in the same way.

A model for CSP was elaborated in (Hoare, 1980). This is a model based
on trace theory, i.e., on the sequences of actions a process can perform. Later
on, it was found that this model was lacking, for instance because deadlock
behavior is not preserved. For this reason, a new model based on so-called
failure pairs was presented in (Brookes et al., 1984), for the language that was
then called TCSP, Theoretical CSP. Later, TCSP was called CSP again. In
the language, due to the less discriminating semantics when compared to the
equivalence adopted by Milner and the presence of two alternative composition
operators, it is possible to do without a silent step like τ altogether. The book
(Hoare, 1985) gives a good overview of CSP.

8 Process algebra

Between CCS and CSP, there is some debate concerning the nature of al-
ternative composition. Some say the + of CCS is difficult to understand
(exemplified by the philosophical discussion on ‘the weather of Milner’), and
CSP proposes to distinguish between internal and external non-determinism,
using two separate operators; see also (Hennessy, 1988a).

Some other process theories

Around 1980, concurrency theory and in particular process theory is a vibrant
field with a lot of activity world wide. There is research on Petri nets, par-
tially ordered traces, and temporal logic, among others. Other process theories
are trace theory and the invariants calculus. In particular, there is the metric
approach by De Bakker and Zucker (De Bakker & Zucker, 1982a; De Bakker
& Zucker, 1982b). It has a notion of distance between processes: processes
that do not differ in behavior before the n-th step have a distance of at most
2−n . This turns the domain of processes into a metric space, that can be com-
pleted. Recursive equations allow to specify unbounded process behavior.
In the metric approach by De Bakker and Zucker, solutions to an important
class of recursive equations, so-called guarded recursive equations, exist by
application of Banach’s fixed point theorem. This result later influenced the
development of process algebra, in particular the development of ACP.

ACP

Jan Bergstra and Jan Willem Klop started to work in 1982 on a question of
De Bakker’s as to what can be said about solutions of unguarded recursive
equations. As a result, they wrote the paper (Bergstra & Klop, 1982). In
this paper, the phrase ‘process algebra’ is used for the first time, with exactly
the two meanings given in the first part of this chapter. The paper defines
a process algebra with alternative, sequential, and parallel composition, but
without communication. A model was established based on projective se-
quences, meaning that a process is given by a sequence of approximations
by finite terms, and in this model, it is established that all recursive equations,
both guarded and unguarded, have a solution. In adapted form, this paper was
later published as (Bergstra & Klop, 1992). In (Bergstra & Klop, 1984a), this
process algebra, called PA, for Process Algebra, was extended with commu-
nication to yield the theory ACP, the Algebra of Communicating Processes.
Textbooks on ACP are (Baeten & Weijland, 1990; Fokkink, 2000).

Comparing the three most well-known process algebras to date, CCS, CSP,
and ACP, it can be concluded that there is a considerable amount of work and

1.3 History 9

applications realized in all three of them. In that sense, there seem to be no
fundamental differences between the theories with respect to the range of ap-
plications. Historically, CCS was the first with a complete theory. Compared
to the other two, CSP has the least distinguishing equational theory. More than
the other two, ACP emphasizes the algebraic aspect: there is an equational
theory with a range of semantic models. Also, ACP has the most general com-
munication scheme: in CCS, communication is combined with abstraction,
and also CSP has a restricted communication scheme.

Further developments

The development of CCS, CSP, and ACP was followed by the development of
other process algebras, such as SCCS (Milner, 1983), CIRCAL (Milne, 1983),
MEIJE (Austry & Boudol, 1984), and the process algebra of Hennessy (Hen-
nessy, 1988a). Moreover, many process algebras were extended with extra
features, such as timing or probabilities. A number of these extensions are
also addressed in this book.

Over the years, many process algebras have been developed, each making
its own set of choices in the different possibilities. The reader may wonder
whether this is something to be lamented. In (Baeten et al., 1991), it is argued
that this is actually a good thing, as long as there is a good exchange of infor-
mation between the different research groups, as each different process algebra
has its own set of advantages and disadvantages. The theoretical framework
developed in this book is generic, in the sense that most features found in other
process algebras can be defined in it. Throughout the book, it is indicated how
this can be achieved.

This book

This book follows the ACP approach in its emphasis on algebra. The main
difference with the theory set out in (Bergstra & Klop, 1984a; Baeten & Weij-
land, 1990) is that successful termination is integrated in the theory almost
from the beginning. As set out in (Baeten, 2003), this leads to some other
changes in the theory. The basic theory starts with a prefixing operator as in
CCS and CSP, and adds the sequential-composition operator, which is a basic
operator in ACP, in a later chapter.

This book arose as a complete and thorough revision of the book (Baeten
& Weijland, 1990). Although many changes have occurred, the approach and
methodology remain the same. Also some parts of the text have remained
almost unchanged. The book has been updated in many places to reflect the

10 Process algebra

latest developments, making it the most complete and in-depth account of the
state-of-the-art in process algebra at the time of writing.

Bibliographical remark

The historic overview of this section first appeared in (Baeten, 2005).

2

Preliminaries

2.1 Introduction

This second chapter introduces the basic concepts and notations related to
equational theories, algebras, and term rewriting systems that are needed for
the remainder of the book. Throughout the book, standard mathematical no-
tations are used, in particular from set theory. Notation N = {0, 1, 2, . . .}
denotes the natural numbers.

2.2 Equational theories

A central notion of this book is the notion of an equational theory. An equa-
tional theory is a signature (defining a ‘language’) together with a set of
equations over this signature (the basic laws). Every process algebra in this
book is presented as a model of an equational theory, as outlined in the previ-
ous chapter.

Definition 2.2.1 (Signature) A signature � is a set of constant and function
symbols with their arities.

The objects in a signature are called constant and function symbols. The
reason for doing so is to distinguish between these purely formal objects and
the ‘real’ constants and functions they are meant to represent. In Section 2.3,
where interpretations of equational theories are discussed, this point is elabo-
rated further. Note that a constant symbol can also be seen as a function symbol
of arity zero.

Example 2.2.2 (Signature) As an example, consider the signature �1 con-
sisting of the constant symbol 0, the unary function symbol s, and the binary
function symbols a and m.

11

12 Preliminaries

Definition 2.2.3 (Terms) The set of all terms over a signature � and a set of
variables V , notation T (�, V), is the smallest set that satisfies the following:

(i) each variable in V is a term in T (�, V);
(ii) each constant in � is a term in T (�, V);

(iii) if f is an n-ary function symbol (n ≥ 1) and t1, . . . , tn are terms in
T (�, V), then f (t1, . . . , tn) is a term in T (�, V).

In this book, it is always assumed that there are as many variables as needed.
Therefore, often, the set of variables is omitted from the notation T (�, V),
yielding the notation T (�) for all the terms over signature �. As a shorthand,
terms over some signature � are also referred to as �-terms. A term that
does not contain variables is called a closed or ground term. The set of all
closed terms over signature � is denoted C(�). To emphasize that arbitrary
terms in T (�) may contain variables, they are often referred to as open terms.
Syntactical identity of terms is denoted by ≡.

Definition 2.2.4 (Equational theory) An equational theory is a tuple (�, E),
where� is a signature and E is a set of equations of the form s = t where s and
t are terms over this signature (s, t ∈ T (�)). The equations of an equational
theory are often referred to as axioms.

Example 2.2.5 (Equational theory) Table 2.1 gives equational theory T1 =
(�1, E1), where �1 is the signature of Example 2.2.2. The first entry of Table
2.1 lists the constant and function symbols in signature �1. The second entry
of the table introduces a number of variables and lists the equations in E1.
In this case, the equations of the equational theory contain variables x and
y. It is assumed that variables can always be distinguished from the symbols
of the signature. The equations have been given names to facilitate future
reference. The attentive reader might recognize that the equations conform to
the well-known axioms of Peano arithmetic, see e.g. (Van Heijenoort, 1967);
however, strictly speaking, the symbols in the signature and the equations are
still meaningless.

The objective of an equational theory is to describe which terms over the
signature of this equational theory are to be considered equal. As the example
equational theory shows, the equations of an equational theory often contain
variables. When trying to derive equalities from a theory, it is allowed to sub-
stitute arbitrary terms for these variables.

Definition 2.2.6 (Substitution) Let � be a signature and V a set of variables.
A substitution σ is a mapping from V to T (�, V). For any term t in T (�, V),

2.2 Equational theories 13

T1
constant: 0; unary: s; binary: a,m;
x, y;

a(x, 0) = x PA1
a(x, s(y)) = s(a(x, y)) PA2
m(x, 0) = 0 PA3
m(x, s(y)) = a(m(x, y), x) PA4

Table 2.1. The equational theory T1 = (�1, E1).

t[σ] denotes the term obtained by the simultaneous substitution of all variables
in t according to σ . That is,

(i) for each variable x in V , x[σ] = σ(x),
(ii) for each constant c in �, c[σ] = c, and

(iii) for any n-ary function symbol f (n ≥ 1) and terms t1, . . . , tn in
T (�, V), f (t1, . . . , tn)[σ] is the term f (t1[σ], . . . , tn[σ]).

Example 2.2.7 (Substitution) Consider the term t ≡ a(m(x, y), x) over the
signature�1 of Example 2.2.2. Let σ1 be the substitution mapping x to s(s(0))
and y to 0. Then, t[σ1] is the term a(m(s(s(0)), 0), s(s(0))). Let σ2 be the
substitution mapping x to s(s(y)) and y to x ; t[σ2] is the term a(m(s(s(y)), x),
s(s(y))).

There is a standard collection of proof rules for deriving equalities from an
equational theory. Together, these rules define the notion of derivability and
they are referred to as the rules of equational logic.

Definition 2.2.8 (Derivability) Let T = (�, E) be an equational theory; let
V be a set of variables and let s and t be terms in T (�, V). The equation s = t
is derivable from theory T , denoted T � s = t , if and only if it follows from
the following rules:

(Axiom rule) for any equation s = t ∈ E ,
T � s = t ;

(Substitution) for any terms s, t ∈ T (�, V) and any substitution σ : V →
T (�, V),

T � s = t implies that T � s[σ] = t[σ];
(Reflexivity) for any term t ∈ T (�, V),

T � t = t ;
(Symmetry) for any terms s, t ∈ T (�, V),

T � s = t implies that T � t = s;

14 Preliminaries

(Transitivity) for any terms s, t, u ∈ T (�, V),
T � s = t and T � t = u implies that T � s = u;

(Context rule) for any n-ary function symbol f ∈ � (n ≥ 1), any terms
s, t1, . . . , tn ∈ T (�, V), and any natural number i with 1 ≤ i ≤ n,

T � ti = s implies that
T � f (t1, . . . , tn) = f (t1, . . . , ti−1, s, ti+1, . . . , tn).

Example 2.2.9 (Derivability) Consider equational theory T1 = (�1, E1) of
Example 2.2.5. The following derivation shows that T1 � a(s(0), s(0)) =
s(s(0)). Let σ be the substitution that maps x to s(0) and y to 0.

1. T1 � a(x, s(y)) = s(a(x, y)) (Axiom PA2)
2. T1 � a(s(0), s(0)) = s(a(s(0), 0)) (line 1: substitution σ)
3. T1 � a(x, 0) = x (Axiom PA1)
4. T1 � a(s(0), 0) = s(0) (line 3: substitution σ)
5. T1 � s(a(s(0), 0)) = s(s(0)) (line 4: context rule)
6. T1 � a(s(0), s(0)) = s(s(0)) (lines 2 and 5: transitivity)

The derivation above is presented in a linear, line-based way. However,
derivations are often easier to read if presented as a tree. Figure 2.1 visualizes
the above tree as a so-called proof tree. In this case, the proof tree makes it
explicit that the end result depends on two independent initial applications of
basic axioms.

(Ax. PA2)

a(x, s(y)) = s(a(x, y))
(sub. σ)

a(s(0), s(0)) = s(a(s(0), 0))

(Ax. PA1)

a(x, 0) = x
(sub. σ)

a(s(0), 0) = s(0)
(cont. rule)

s(a(s(0), 0)) = s(s(0))
(trans.)

a(s(0), s(0)) = s(s(0))

Fig. 2.1. A proof tree.

Of course, independent of the precise representation, it is not always very
practical to give derivations with the level of detail as above. In the remain-
der, derivations are given in a more compact form. The above derivation, for
example, can be reduced as follows:

T1 � a(s(0), s(0)) = s(a(s(0), 0)) = s(s(0)).

Note the difference between syntactical identity, as introduced in Definition
2.2.3, and derivability. Based on the reflexivity of derivability, syntactical iden-
tity implies derivability. For example, s(0) ≡ s(0) and T1 � s(0) = s(0). The
converse is not true: T1 � a(0, 0) = 0 but not a(0, 0) ≡ 0.

2.2 Equational theories 15

Inductive proof techniques play an important role in the context of equa-
tional theories. They are often applicable for proving properties of (closed)
terms over the signature of a theory. The example equational theory T1 =
(�1, E1) of Table 2.1 can be used for demonstrating inductive proof tech-
niques. The notion of so-called basic terms plays an important role in the
examples that are given below. The reason why the terms are called basic
terms becomes clear further on.

Definition 2.2.10 (Basic �1-terms) Consider signature �1 of Example 2.2.2.
The set of basic �1-terms is the smallest set B(�1) such that (i) 0 ∈ B(�1)

and (ii) p ∈ B(�1) implies s(p) ∈ B(�1).
Note that this definition implies that the set of basic �1-terms contains pre-

cisely all closed �1-terms that can be written as sn(0) for some n ∈ N where

s0(0) = 0 and
sn+1(0) = s(sn(0)) (for n ∈ N).

(2.2.1)

The first inductive proof technique that is commonly used in the context of
equational theories is standard natural induction.

Example 2.2.11 (Natural induction) Consider the following property of
basic�1-terms in the context of equational theory T1 = (�1, E1) of Table 2.1.
It uses the notation for basic terms introduced in (2.2.1).

For any p, q ∈ B(�1) with p = sm(0) and q = sn(0),
T1 � a(p, q) = sm+n(0).

(2.2.2)

The proof of (2.2.2) goes via natural induction on the number of function sym-
bols in basic term q. In other words, the proof uses induction on n.

(Base case) Assume that n = 0, which means that q ≡ 0. From (2.2.1)
and Axiom PA1, it easily follows that for all m ∈ N

T1 � a(p, q) = a(sm(0), s0(0)) = a(sm(0), 0) = sm(0)
= sm+n(0).

(Inductive step) Assume that (2.2.2) holds for all n at most k (with k ∈ N). It
follows from (2.2.1) and Axiom PA2 that for all m ∈ N

T1 � a(p, q) = a(sm(0), sk+1(0)) = s(a(sm(0), sk(0)))
= s(sm+k(0)) = sm+k+1(0).

By induction, it may be concluded that (2.2.2) is true for all (m and) n in N.
It is possible to formulate a property for the m function symbol in signature

�1 that is very similar to property (2.2.2):

For any p, q ∈ B(�1) with p = sm(0) and q = sn(0),
T1 � m(p, q) = smn(0).

(2.2.3)

16 Preliminaries

The proof of property (2.2.3) also goes via induction on the number of function
symbols of term q; it is left as Exercise 2.2.4.

Another important inductive proof technique is structural induction. Struc-
tural induction is a variant of natural induction that is particularly well suited
for proving properties of closed terms over some signature.

Definition 2.2.12 (Structural induction) Let � be a signature. Let P(t) be
some property on terms over �. If,

(Base cases) for any constant symbol c in �,
P(c)

and
(Inductive steps) for any n-ary (n ≥ 1) function symbol f in � and closed

terms p1, . . . , pn in C(�),
the assumption that for all natural numbers i , with 1 ≤ i ≤ n,
P(pi) holds implies that P(f (p1, . . . , pn)),

then P(p) for any closed �-term p.

The following example illustrates structural induction in the context of equa-
tional theories.

Example 2.2.13 (Structural induction and elimination) Consider again the
equational theory T1 = (�1, E1) of Example 2.2.5. An interesting property
is the following so-called elimination property: any closed �1-term can be
written as a basic �1-term as introduced in Definition 2.2.10. Since any basic
term is a composition of s function symbols applied to the 0 constant symbol,
this implies that the a and m function symbols can be eliminated from any
closed term. At this point, it should be clear why the terms introduced in
Definition 2.2.10 are called basic terms.

For any p in C(�1), there is some p1 ∈ B(�1) such that
T1 � p = p1.

(2.2.4)

The proof uses structural induction on the structure of closed term p.

(Base case) Assume that p ≡ 0. Since 0 is a basic �1-term, the base
case is trivially satisfied.

(Inductive steps)
(i) Assume p ≡ s(q), for some closed term q ∈ C(�1). By induction,

it may be assumed that there is some basic term q1 ∈ B(�1) such
that T1 � q = q1. Thus,

T1 � p = s(q) = s(q1).

Clearly, because q1 is a basic �1-term, also s(q1) is a basic term.

2.2 Equational theories 17

(ii) Assume p ≡ a(q, r), for some q, r ∈ C(�1). Let q1, r1 ∈ B(�1)

be basic terms such that T1 � q = q1 and T1 � r = r1; further-
more, based on (2.2.1), assume that m, n ∈ N are natural numbers
such that q1 = sm(0) and r1 = sn(0). Using (2.2.2) of Example
2.2.11, it follows that

T1 � p = a(q, r) = a(sm(0), sn(0)) = sm+n(0),
which is a basic �1-term.

(iii) Assume p ≡ m(q, r), for some q, r ∈ C(�1). Let q1, r1 ∈ B(�1)

be basic terms such that T1 � q = q1 and T1 � r = r1; assume that
m, n ∈ N are natural numbers such that q1 = sm(0) and r1 = sn(0).
Using (2.2.3), it follows that

T1 � p = m(q, r) = m(sm(0), sn(0)) = smn(0).

Based on Definition 2.2.12, it is now valid to conclude that property (2.2.4) is
true for all closed �1-terms.

It is often necessary or useful to extend an equational theory with additional
constant and/or function symbols and/or axioms.

Definition 2.2.14 (Extension of an equational theory) Consider two equa-
tional theories T1 = (�1, E1) and T2 = (�2, E2). Theory T2 is an extension
of theory T1 if and only if �2 contains �1 and E2 contains E1.

Example 2.2.15 (Extension of an equational theory) Table 2.2 describes the
extension of equational theory T1 of Example 2.2.5 with an extra binary func-
tion symbol e. The first entry of Table 2.2 simply says that theory T2 extends
theory T1. The other two entries of Table 2.2 list the new constant and function
symbols in the signature of the extended theory, one symbol in this particular
example, and the new axioms.

T2
T1;
binary: e;
x, y;

e(x, 0) = s(0) PA5
e(x, s(y)) = m(e(x, y), x) PA6

Table 2.2. The equational theory T2 = (�2, E2).

It is often desirable that an extension of an equational theory such as the
one of Example 2.2.15 satisfies the property that it does not influence what

18 Preliminaries

equalities can be derived from the original theory. Observe that the require-
ment on the axioms in Definition 2.2.14 (Extension) already guarantees that
any equalities that are derivable in the original theory are also derivable in
the extended theory. However, the addition of new axioms may result in new
equalities between terms of the original syntax that could not be derived from
the original axioms. An extension that does not introduce any new equalities
between terms in the original syntax is said to be conservative.

Definition 2.2.16 (Conservative extension) Let T1 = (�1, E1) and T2 =
(�2, E2) be equational theories. Theory T2 is a conservative extension of the-
ory T1 if and only if

(i) T2 is an extension of T1 and,
(ii) for all �1-terms s and t , T2 � s = t implies T1 � s = t .

Proposition 2.2.17 (Conservative extension) Equational theory T2 of Table
2.2 is a conservative extension of theory T1 of Table 2.1.

The proof of Proposition 2.2.17 is deferred to Section 3.2, where it follows
naturally from the results introduced in Chapter 3. An alternative proof tech-
nique would be to use term rewriting, as introduced in Section 2.4.

Definition 2.2.16 requires that equalities between arbitrary open terms are
preserved. It is not always possible to achieve this. Sometimes, only a weaker
property can be established: only equalities between closed (or ground) terms
can be preserved. The following definitions adapt the notions of extension and
conservative extension.

Definition 2.2.18 (Ground-extension) Consider two equational theories T1 =
(�1, E1) and T2 = (�2, E2). Theory T2 is a ground-extension of theory T1 if
and only if �2 contains �1 and for all closed �1-terms p and q, T1 � p = q
implies T2 � p = q .

Definition 2.2.19 (Conservative ground-extension) Let T1 = (�1, E1) and
T2 = (�2, E2) be equational theories. Theory T2 is a conservative ground-
extension of theory T1 if and only if

(i) T2 is a ground-extension of T1 and,
(ii) for all closed �1-terms p and q , T2 � p = q implies T1 � p = q.

An interesting property of equational theory T2 is that any closed �2-term
can be written as a basic �1-term, as defined in Definition 2.2.10.

2.2 Equational theories 19

Proposition 2.2.20 (Elimination) Consider equational theory T2 of Table 2.2.
For any p ∈ C(�2), there is a basic �1-term p1 ∈ B(�1) such that

T2 � p = p1.

Proof Exercise 2.2.5.

Elimination properties such as (2.2.4) in Example 2.2.13 and Proposition
2.2.20 often substantially simplify structural-induction proofs. To prove prop-
erties for closed terms over the signatures of the example equational theories
T1 and T2, it now suffices to prove these properties for basic �1-terms.

Example 2.2.21 (Structural induction and elimination) Consider the equa-
tional theory T2 = (�2, E2) of Example 2.2.15. An interesting property of
closed �2-terms is the following commutativity property for the a symbol.

For any closed terms p, q ∈ C(�2),

T2 � a(p, q) = a(q, p).
(2.2.5)

Consider (2.2.5) formulated in terms of basic �1-terms:

For any basic terms p1, q1 ∈ B(�1),

T2 � a(p1, q1) = a(q1, p1).

(2.2.6)

Let p and q be some closed terms in C(�2). Proposition 2.2.20 (Elimination)
yields that there are basic terms p1, q1 ∈ B(�1) such that

T2 � p = p1 and T2 � q = q1.

Assuming that it is possible to prove (2.2.6), it follows that

T2 � a(p, q) = a(p1, q1) = a(q1, p1) = a(q, p),

which proves (2.2.5).
It remains to prove (2.2.6). It is straightforward to prove (2.2.6) using prop-

erty (2.2.2). However, the purpose of this example is to show a proof that goes
solely via induction on the structure of basic terms and does not use property
(2.2.2) which is proven via natural induction. Note that basic terms are (closed)
terms over a signature that is (usually) strictly smaller than the signature of the
equational theory under consideration. In the case of basic �1-terms, the re-
duced signature consists of the constant symbol 0 and the function symbol s,
whereas the signature of �2 contains the additional symbols a, m, and e. It is
clear that the fewer symbols a signature contains, the fewer cases need to be
considered in an induction proof.

The following auxiliary properties are needed.

For any closed term p ∈ C(�2),

T2 � a(0, p) = p
(2.2.7)

20 Preliminaries

and

For any closed terms p, q ∈ C(�2),

T2 � a(p, s(q)) = a(s(p), q).
(2.2.8)

Both these properties can be proven using Proposition 2.2.20 and structural
induction on basic terms (or (2.2.2)). Since the proofs are straightforward,
they are deferred to the exercises. The proof of the commutativity property
for basic terms is now as follows. Let p1, q1 ∈ B(�1). The proof goes via
induction on the structure of basic term q1.

(Base case) Assume that q1 ≡ 0. Using (2.2.7), it follows that
T2 � a(p1, 0) = p1 = a(0, p1).

(Inductive step) Assume that q1 ≡ s(q2) for some q2 ∈ B(�1). Assume that
the desired commutativity property holds for term q2, i.e., assume that
a(p1, q2) = a(q2, p1). Using (2.2.8), it follows that

T2 � a(p1, q1) = a(p1, s(q2)) = s(a(p1, q2)) = s(a(q2, p1))

= a(q2, s(p1)) = a(s(q2), p1) = a(q1, p1).

By induction, it may be concluded that (2.2.6) is true for all basic �1-terms.

In the remainder, to improve readability, the distinction between base cases
and inductive steps in structural-induction proofs is not always made explicit.

Exercises

2.2.1 Consider the equational theory T1 = (�1, E1) of Example 2.2.5.
Give a proof tree for the fact T1 � m(s(0), s(0)) = s(0).

2.2.2 Consider again equational theory T1 of Example 2.2.5. Is it true that
T1 � a(s(0), s(0)) = s(0)? Can you prove your answer via equational
logic (see Definition 2.2.8 (Derivability))? Motivate your answer.

2.2.3 Consider the following equational theory:
Fun

unary: F;
x;

F(F(F(x))) = x E1
F(F(F(F(F(x))))) = x E2

Show that for all (open) terms t , Fun � F(t) = t .
2.2.4 Prove property (2.2.3) in Example 2.2.11.

(Hint: use natural induction and property (2.2.2) in Example 2.2.11.)
2.2.5 Prove Proposition 2.2.20.

(Hint: see Examples 2.2.11 and 2.2.13, and Exercise 2.2.4.)

2.3 Algebras 21

2.2.6 Prove (2.2.7) and (2.2.8) using Proposition 2.2.20 and structural in-
duction on basic terms.
(Hint: see Example 2.2.21.)

2.2.7 Consider equational theory T2 of Table 2.2. Prove that, for any open
terms s, t ∈ T (�2) and closed term p ∈ C(�2),

T2 � a(s, a(t, p)) = a(a(s, t), p). (associativity)
(Hint: use Proposition 2.2.20 and structural induction on basic terms.)

2.2.8 Consider equational theory T2 of Table 2.2. Prove that, for any closed
terms p and q in C(�2),

T2 � m(p, q) = m(q, p). (commutativity)
(Hint: see Example 2.2.21.)

2.2.9 Consider again equational theory T2 of Table 2.2. Prove that, for any
p, q, and r in C(�2),

T2 � m(a(p, q), r) = a(m(p, r),m(q, r)). (right distributivity)
(Hint: use Proposition 2.2.20, property (2.2.5) of Example 2.2.21, and
Exercise 2.2.7.)

2.3 Algebras

So far, equational theories were meaningless. In this section, the meaning or
semantics of equational theories is considered. The meaning of an equational
theory is given by an algebra.

Definition 2.3.1 (Algebra) An algebra /A consists of a set of elements A to-
gether with constants in A and functions on A. The set of elements A of an
algebra /A is called the universe, domain, or carrier set of /A.

Example 2.3.2 (Algebra B) The structure B = (B,∧,¬, true) is the algebra
of the Booleans B = {true, false}, where true is a constant, ¬ is the unary
negation function on Booleans and ∧ is the binary conjunction function on
Booleans. Usually, these functions are defined by truth tables.

Example 2.3.3 (Algebra N) Structure N = (N,+,×, succ, 0) is the algebra
of the natural numbers N = {0, 1, 2, . . .} with the unary successor function
succ, the well-known binary functions + and ×, and constant 0.

Note that the notation for natural numbers introduced in this example is
consistent with the notation for natural numbers throughout this book, except
that the × function is usually not explicitly written.

22 Preliminaries

Definition 2.3.4 (�-algebra) Let � be a signature as defined in Definition
2.2.1. An algebra /A is called a �-algebra when there is a mapping from the
symbols of the signature � into the constants and functions of the algebra that
respects arities. Such a mapping is called an interpretation.

Example 2.3.5 (�-algebra) Recall from Example 2.2.2 that �1 is the signa-
ture containing constant 0, unary function s, and binary functions a and m. The
algebra N of Example 2.3.3 is a �1-algebra with the interpretation ι1 defined
by

0 	→ 0,
s 	→ succ,
a 	→ +, and
m 	→ ×.

Observe that also ι2 defined by

0 	→ 0,
s 	→ succ,
a 	→ ×, and
m 	→ +

is an interpretation that satisfies the requirement that arities are respected.

At this point, the emphasis on the distinction between constant and function
symbols, on the one hand, and real constants and functions, on the other hand,
becomes clear. A signature contains merely symbols without meaning; an
algebra contains real constants and functions. The symbols in a signature are
given a meaning by mapping them onto constants and functions in an algebra.
The above example shows that more than one mapping is often possible.

Recall that an equational theory consists of a signature plus a set of equa-
tions (see Definition 2.2.4). The idea is to give meaning to an equational theory
by interpreting the terms over the signature of the theory in an algebra, as de-
fined above. The question arises whether an arbitrary interpretation preserving
arities is suitable. The answer is, hopefully not very surprisingly, negative. An
extra requirement is that the equations of the theory are in some sense true in
the algebra. The following definition captures the notion of truth precisely.

Definition 2.3.6 (Validity) Let � be a signature, V a set of variables, and /A
a �-algebra with domain A. Let ι be an interpretation of � into /A.

A valuation α : V → A is a function that maps variables in V to elements
of the domain of the algebra /A. For any open term t in T (�, V), ια(t) is the
element of A obtained by replacing all constant and function symbols in t by
the corresponding constants and functions in /A according to ι and by replacing
all variables in t by elements of A according to α. That is,

2.3 Algebras 23

(i) for each variable x in V , ια(x) = α(x),
(ii) for each constant c in �, ια(c) = ι(c), and

(iii) for any n-ary function symbol f (n ≥ 1) and terms t1, . . . , tn in
T (�, V), ια(f (t1, . . . , tn)) is the term ι(f)(ια(t1), . . . , ια(tn)).

Let s and t be terms in T (�, V). Equation s = t is valid in the algebra /A
under interpretation ι, notation /A, ι |
 s = t , if and only if, for all valuations
α : V → A, ια(s) =A ια(t), where =A is the identity on domain A.

It is often clear from the context what interpretation from some given signa-
ture into some given algebra is meant; in such cases, the interpretation in the
above notation for validity is usually omitted.

Example 2.3.7 (Validity) Consider equational theory T1 of Example 2.2.5,
the algebra N = (N,+,×, succ, 0) of natural numbers, and the interpretations
ι1 and ι2 given in Example 2.3.5.

The equation a(x, y) = a(y, x) is valid in the algebra N under both inter-
pretations: N, ι1 |
 a(x, y) = a(y, x) and N, ι2 |
 a(x, y) = a(y, x) because
both m + n =N n + m and m × n =N n × m are true for all natural numbers
m, n ∈ N.

On the other hand, the equation a(x, 0) = x (Axiom PA1 of the theory)
is valid under interpretation ι1, because n + 0 =N n for all natural numbers
n ∈ N, but not valid under interpretation ι2, since n × 0 =N n is not true in N.

An algebra is said to be a model of an equational theory under some inter-
pretation if and only if all axioms of the theory are valid in the algebra under
that interpretation.

Definition 2.3.8 (Model) Let T = (�, E) be an equational theory, /A a �-
algebra, and ι an interpretation of � into /A. Algebra /A is a model of T with
respect to interpretation ι, notation /A, ι |
 T or /A, ι |
 E (depending on what
is most convenient), if and only if, for all equations s = t ∈ E , /A, ι |
 s = t .
If /A is a model of T it is also said that T is a sound axiomatization of /A.

Proposition 2.3.9 (Soundness) Let T = (�, E) be an equational theory with
model /A under some interpretation ι. For all �-terms s and t ,

T � s = t implies /A, ι |
 s = t .

Proof The property can be proven for derivations of arbitrary length
via natural induction on the number of steps in a derivation. The details follow
straightforwardly from Definitions 2.2.8 (Derivability) and 2.3.6 (Validity),
and are therefore omitted.

24 Preliminaries

Example 2.3.10 (Models) Consider again the equational theory T1 of Exam-
ple 2.2.5, the algebra N = (N,+,×, succ, 0) of natural numbers, and the
interpretations ι1 and ι2 given in Example 2.3.5. It is not difficult to verify
that N is a model of T1 under interpretation ι1. However, it is not a model of
T1 under interpretation ι2. Example 2.3.7 shows that Axiom PA1 is not valid
under ι2.

An equational theory usually has many models.

Example 2.3.11 (Models) Consider the following variant of the algebra of the
Booleans of Example 2.3.2: B1 = (B,∧,⊕,¬, false) where B, false, ¬, and
∧ are as in Example 2.3.2 and ⊕ is the binary exclusive or on Booleans. The
exclusive or of two Boolean values evaluates to true if and only if precisely one
of the two values equals true; that is, for b1, b2 ∈ B, b1 ⊕ b2 =B ¬(b1 ∧ b2)∧
¬(¬b1∧¬b2). Algebra B1 is a model of equational theory T1 of Example 2.2.5
under the following interpretation:

0 	→ false ,
s 	→ ¬ ,
a 	→ ⊕ , and
m 	→ ∧ .

In order to prove that B1 is a model of T1, it is necessary to show that Axioms
PA1 through PA4 are valid in B1 under the above interpretation. Possible
techniques are truth tables or Boolean algebra. The proof is left as Exercise
2.3.1.

It is also possible to obtain models of a theory by extending existing models.
Adding elements to the domain of a model of a theory results in another model
of the theory. This occurs, for example, in the context of extensions of an
equational theory, as introduced in Definition 2.2.14 (Extension). The follow-
ing corollary follows immediately from Definitions 2.2.14 and 2.3.8 (Model).

Corollary 2.3.12 (Extension) Let T1 and T2 be two equational theories such
that T2 is an extension of T1. Any model /A of T2 is also a model of T1, i.e.,
/A |
 T2 implies /A |
 T1.

Among all the models of an equational theory T = (�, E), there is one
special model, called the initial algebra, that validates precisely all equations
of closed terms that are derivable from E . The initial algebra of an equational
theory is an example of a so-called quotient algebra. To define the notion of a
quotient algebra, some auxiliary definitions are needed.

2.3 Algebras 25

Definition 2.3.13 (Equivalence) An equivalence relation on some universe of
elements is a binary relation that is reflexive, symmetric, and transitive.

Example 2.3.14 (Equivalence) Let T = (�, E) be some equational theory.
Derivability as defined in Definition 2.2.8 is an equivalence on terms over sig-
nature �.

Definition 2.3.15 (Equivalence classes) Let U be some universe of elements
and ∼ an equivalence relation on U . An equivalence class of an element is the
set of all elements equivalent to that element: that is, for any element u ∈ U ,
the equivalence class of u, denoted [u]∼ is the set {v ∈ U | u ∼ v}. Element u
is said to be a representative of the equivalence class.

Definition 2.3.16 (Congruence) Let /A be an algebra with universe of ele-
ments A. A binary relation ∼ on A is a congruence on /A if and only if it
satisfies the following requirements:

(i) ∼ is an equivalence relation on A and,
(ii) for every n-ary (n ≥ 1) function f of /A and any elements a1, . . . , an,

b1, . . . , bn ∈ A, a1 ∼ b1, . . . , an ∼ bn implies that f (a1, . . . , an) ∼
f (b1, . . . , bn).

Example 2.3.17 (Congruence) Let T = (�, E) be some equational theory.
The set of all �-terms T (�) forms an algebra with the constant and function
symbols of � as its constants and functions (and the syntactical-identity rela-
tion ≡ as the identity). It follows from the context rule in Definition 2.2.8 that
derivability is a congruence on this term algebra.

Informally, Definition 2.3.16 states that, given some congruence on some
algebra, equivalence classes of elements of the universe of the algebra can
be constructed via the functions of the algebra independently of the repre-
sentatives of the equivalence classes. This observation forms the basis of the
following definition.

Definition 2.3.18 (Quotient algebra) Let /A be an algebra and let ∼ be a con-
gruence on /A. The quotient algebra /A modulo∼, notation /A/∼, has a universe
consisting of the equivalence classes of /A under ∼ and it has the following
constants and functions:

(i) for each constant c of /A, [c]∼ is a constant of /A/∼;
(ii) for each n-ary function f of /A, f∼ is an n-ary function of /A/∼,

where, for all a1, . . . , an ∈ A,
f∼([a1]∼, . . . , [an]∼) = [f (a1, . . . , an)]∼.

26 Preliminaries

An important example of a quotient algebra is the initial algebra of some
given equational theory.

Definition 2.3.19 (Initial algebra) Let T = (�, E) be an equational theory.
Consider the algebra C(�) with the set C(�) of closed �-terms as its domain
and the constant and function symbols of � as its functions and constants.
Derivability is a congruence on the algebra C(�). The initial algebra of T ,
denoted I(�, E) is the quotient algebra C(�) modulo derivability.

Example 2.3.20 (Quotient/initial algebra) The elements in the domain of an
initial algebra of an equational theory are sets of closed terms that are derivably
equal. Consider, for example, equational theory T1 = (�1, E1) of Example
2.2.5. Examples of elements of the domain of I(�1, E1) are

[0]� = {0, a(0, 0),m(0, 0),m(s(0), 0), . . .},
[s(0)]� = {s(0), a(s(0), 0),m(s(0), s(0)), . . .},
[s(s(0))]� = {s(s(0)), a(s(0), s(0)),m(s(s(0)), s(0)), . . .},
et cetera.

Figure 2.2 visualizes the domain of I(�1, E1).

0
a(0, 0)
m(0, 0)

m(s(0), 0)
. . .

[0]�

s(0)
a(s(0), 0)

m(s(0), s(0))
. . .
. . .

[s(0)]�

s(s(0))
a(s(0), s(0))

m(s(s(0)), s(0))
. . .
. . .

[s(s(0))]�

Fig. 2.2. The domain of the initial algebra of Example 2.3.20.

The constants in an initial algebra of an equational theory are the equiva-
lence classes containing the constant symbols of the signature of the equational
theory. The initial algebra I(�1, E1), for example, has one constant, namely
[0]�.

The functions in an initial algebra are obtained by lifting the function sym-
bols in the signature of the equational theory to equivalence classes of derivably
equal closed terms. Initial algebra I(�1, E1) has three functions, one unary
function s� and two binary functions a� and m�, that are defined as follows:
for any closed �1-terms p and q , s�([p]�) = [s(p)]�, a�([p]�, [q]�) =
[a(p, q)]�, and m�([p]�, [q]�) = [m(p, q)]�.

2.3 Algebras 27

Proposition 2.3.21 (Soundness) Let T = (�, E) be an equational theory.
The initial algebra I(�, E) is a model of T under the interpretation that maps
any constant symbol c of � onto the equivalence class [c]� and any function
symbol f of � onto the corresponding function f � as defined in Definition
2.3.18 (Quotient algebra).

Proof The property follows in a straightforward way from Definitions
2.2.8 (Derivability), 2.3.8 (Model), and 2.3.19 (Initial algebra). The details are
illustrated by means of a concrete example.

Consider the equational theory T1 = (�1, E1). According to Definition
2.3.8 (Model), it must be shown that all axioms in E1 are valid in the initial
algebra I(�1, E1) under the interpretation ι defined above. Consider Axiom
PA1: a(x, 0) = x . To prove that PA1 is valid (see Definition 2.3.6 (Valid-
ity)), consider the valuation α that maps x to equivalence class [p]� for some
arbitrary closed �1-term p. It must be shown that ια(a(x, 0)) = ια(x).

The various definitions given so far imply that ια(a(x, 0)) = a�([p]�, [0]�)
= [a(p, 0)]� and ια(x) = [p]�. It follows from the axiom rule and the sub-
stitution rule in Definition 2.2.8 (Derivability) that T1 � a(p, 0) = p. Thus,
Definition 2.3.19 (Initial algebra) yields that [a(p, 0)]� = [p]�, proving the
desired property.

As already mentioned, the initial algebra of an equational theory is a par-
ticularly interesting model of the theory because it precisely validates all the
equations of closed terms that are derivable from the axioms of the theory.
This property is called ground-completeness. Since an equational theory has a
standard interpretation into its initial algebra (see Proposition 2.3.21), for con-
venience, this interpretation is often not explicitly mentioned and it is omitted
in the notations for validity and soundness.

Proposition 2.3.22 (Ground-completeness) Let T = (�, E) be an equational
theory. For all closed �-terms p and q ,

I(�, E) |
 p = q implies T � p = q .

Proof The property follows from Definitions 2.3.6 (Validity) and
2.3.19 (Initial algebra). Assume that I(�, E) |
 p = q, for closed �-terms p
and q. It follows that [p]� = [q]�, which implies that T � p = q.

Ground-completeness of a model of some theory is an interesting property
because it implies that the model does not validate any equations of closed
terms that are not also derivable from the theory. The initial algebra of an
equational theory is ground-complete for that theory by definition. However,

28 Preliminaries

ground-completeness is not necessarily restricted to the initial algebra of an
equational theory; other models of the theory may also satisfy this property.

Definition 2.3.23 (Ground-completeness) Let T = (�, E) be an equational
theory with model /A under some interpretation ι. Theory T is said to be a
ground-complete axiomatization of model /A if and only if, for all closed �-
terms p and q,

/A, ι |
 p = q implies T � p = q .
Alternatively, it is said that model /A is ground-complete for theory T .

The definition of ground-completeness is restricted to equations of closed
terms. Of course, the property may also hold for equations of arbitrary open
terms, in which case it is simply referred to as completeness.

Definition 2.3.24 (Completeness) Let T = (�, E) be an equational theory
with model /A under some interpretation ι. Theory T is said to be a complete
axiomatization of model /A if and only if, for all open �-terms s and t ,

/A, ι |
 s = t implies T � s = t .
It is also said that model /A is complete for theory T .

Unfortunately, general completeness often turns out to be much more dif-
ficult to achieve than ground-completeness. Therefore, this book focuses on
ground-completeness.

Example 2.3.25 (Completeness) Consider equational theory T1 = (�1, E1)

of Example 2.2.5 and its initial algebra I(�1, E1). It has already been shown
that the initial algebra is ground-complete. However, it is not complete for
open terms. Consider, for example, the equation a(x, y) = a(y, x) for vari-
ables x and y. This equation is valid in the initial algebra, I(�1, E1) |

a(x, y) = a(y, x), but it is not derivable; that is T1 � a(x, y) = a(y, x) is
not true. The proof of the former is left as Exercise 2.3.4. The latter can be
shown by giving a model that does not validate a(x, y) = a(y, x); if such a
model exists, it follows from Proposition 2.3.9 (Soundness) that the equation
cannot be derivable. Exercise 2.3.5 asks for a model of T1 that does not validate
a(x, y) = a(y, x).

The notions of ground-completeness and completeness refer to a specific
model of the theory under consideration. As a final remark concerning notions
of completeness, it is interesting to observe that it is also possible to define a
model-independent notion of completeness for equational theories. A theory
is said to be ω-complete if and only if it is a complete axiomatization of its

2.3 Algebras 29

initial algebra. Although this definition refers to a model, namely the initial al-
gebra, it can be considered model-independent because the initial algebra of an
equational theory is constructed in a standard way from the theory. An equiv-
alent formulation of ω-completeness is the following: an equational theory
is ω-complete if and only if an equation of arbitrary open terms is derivable
when all closed-term equations obtainable from it through substitutions are
derivable.

The property of ω-completeness implies that all relevant equations are fully
captured by derivability. Our example theory T1 is not ω-complete. This fol-
lows immediately from Example 2.3.25 that shows that it is not complete with
respect to its initial algebra. Despite the elegance implied by the property of ω-
completeness, it is not considered in the remainder of this book, and therefore
the definition is not stated formally. It is often not straightforward to obtain
ω-completeness.

So far, three models have been given for the example theory T1 = (�1, E1)

of Example 2.2.5, namely the algebra of the naturals of Example 2.3.10, the
algebra of the Booleans of Example 2.3.11, and the initial algebra of Example
2.3.20. This raises the question whether these models are really different.

Definition 2.3.26 (Isomorphism of algebras) Let /A1 and /A2 be two algebras
with domains A1 and A2, respectively. Algebras /A1 and /A2 are isomorphic if
and only if there exists a bijective function φ : A1 → A2 and another bijective
function ψ that maps the constants and functions of /A1 onto those of /A2 such
that

(i) for any constant c of /A1, φ(c) = ψ(c), and
(ii) for any n-ary (n ≥ 1) function f of /A1 and any elements a1, . . . ,

an ∈ A1, φ(f (a1, . . . , an)) = ψ(f)(φ(a1), . . . , φ(an)).

Example 2.3.27 (Isomorphism) Consider again theory T1 = (�1, E1) of Ex-
ample 2.2.5 and its models, namely the algebra N of Example 2.3.10, the
algebra B1 of Example 2.3.11, and the initial algebra I(�1, E1) of Example
2.3.20. The algebras N and I(�1, E1) are isomorphic (see Exercise 2.3.6).
Clearly, the algebra B1 is not isomorphic to the other two, because its domain
has only two elements whereas the domains of the other two algebras have
infinitely many elements.

Usually, algebras, and in particular models of equational theories, that are
isomorphic are not distinguished. Thus, the algebra of the naturals N of Ex-
ample 2.3.10 may be referred to as the initial algebra of the equational theory
T1 = (�1, E1) of Example 2.2.5.

30 Preliminaries

Exercises

2.3.1 Consider Example 2.3.11 (Models). Show that algebra B1 is a model
of theory T1.

2.3.2 Verify that B1 |
 s(m(x, y)) = a(a(s(x), s(y)),m(s(x), s(y))) for
algebra B1 of Example 2.3.11. Does this formula also hold in algebra
N of Example 2.3.10?

2.3.3 Consider the algebra of natural numbers (N,+,×, exp, succ, 0) that
extends the algebra of Example 2.3.3 with the exponentiation function
exp. Show that this algebra is a model of theory T2 of Example 2.2.15.

2.3.4 Consider equational theory T1 = (�1, E1) of Example 2.2.5 and its
initial algebra I(�1, E1) of Example 2.3.20. Show that I(�1, E1) |

a(x, y) = a(y, x), for variables x and y.
(Hint: use property (2.2.5) and Proposition 2.2.17 (Conservative ex-
tension).)

2.3.5 Consider again equational theory T1 = (�1, E1) of Example 2.2.5.
Give a model that does not validate the equation a(x, y) = a(y, x),
for variables x and y.
(Hint: consider an algebra where the domain consists of two elements
and map the a function symbol onto a projection function that gives
for each pair of elements the first element of the pair.)

2.3.6 Consider the algebras N of Example 2.3.10 and I(�1, E1) of Exam-
ple 2.3.20 (the initial algebra of theory T1 = (�1, E1) of Example
2.2.5). Show that the two algebras are isomorphic.

2.3.7 Show that the intersection of any number of congruences is again a
congruence.

2.3.8 Let T = (�, E) be an equational theory. Consider the algebra of
closed terms C(�) as introduced in Definition 2.3.19 (Initial algebra).
Let ∼ be the intersection of all congruence relations R on C(�) such
that C(�)/R |
 E . Show that ∼ coincides with derivability (which
implies that C(�)/∼ is isomorphic to the initial algebra I(�, E)).

2.4 Term rewriting systems

Although equality in an equational theory is a symmetric relation, often the
equations have an implied direction. This is already the case in primary school,
where 2 + 2 is to be replaced by 4, and not the other way around. Direction
in an equational theory is formalized by the notion of a term rewriting system.
Term rewriting systems can also be useful in proofs, as a proof technique.

2.4 Term rewriting systems 31

Definition 2.4.1 (Term rewriting system) A term rewriting system is a tuple
(�, R), where � is a signature and R is a set of rewrite rules. Let V be some
set of variables. A rewrite rule is a pair (t1, t2) of terms over the signature �
(t1, t2 ∈ T (�, V)) such that t1 is not just a variable in V and such that every
variable that occurs in t2 also occurs in t1. Usually, a rewrite rule (t1, t2) is
written t1 → t2.

Example 2.4.2 (Term rewriting system) Consider again Example 2.2.5 and
equational theory T1 of Table 2.1. Consider the following derivation (showing
that ‘2+2 = 4’):

a(s(s(0)), s(s(0))) =
s(a(s(s(0)), s(0))) =
s(s(a(s(s(0)), 0))) =
s(s(s(s(0)))).

As already mentioned, the equations of the equational theory in Table 2.1
appear to have a certain direction when applied in this derivation: when read
from left to right they simplify terms; they reduce them. Writing → instead of
=, the term rewriting system of Table 2.3 is obtained.

TRS1
constant: 0; unary: s; binary: a,m;
x, y;

a(x, 0) → x
a(x, s(y)) → s(a(x, y))
m(x, 0) → 0
m(x, s(y)) → a(m(x, y), x)

Table 2.3. The term rewriting system TRS1 = (�1, R1).

Definition 2.4.3 (One-step reduction relation) Let (�, R) be a term rewrit-
ing system and V some set of variables. The one-step reduction relation 	→ on
terms in T (�, V) is the smallest relation that satisfies the following:

(i) R ⊆ 	→,
(ii) for any terms s, t ∈ T (�, V) and substitution σ : V → T (�, V),

s 	→ t implies s[σ] 	→ t[σ], and
(iii) for any n-ary function symbol f ∈ �, terms s, t1, . . . , tn ∈ T (�, V),

and natural number i such that 1 ≤ i ≤ n, ti 	→ s implies f (t1, . . . ,
ti−1, ti , ti+1, . . . , tn) 	→ f (t1, . . . , ti−1, s, ti+1, . . . , tn).

32 Preliminaries

Definition 2.4.4 (Reduction relation) Let (�, R) be a term rewriting system.
The reduction relation� on �-terms is the reflexive and transitive closure of
the one-step reduction relation; that is,� is the smallest relation that satisfies:

(i) 	→ ⊆ �,
(ii) � is reflexive, and

(iii) � is transitive.

Note that the reduction relation of Definition 2.4.4 is very similar to deriv-
ability as defined in Definition 2.2.8. The only difference is that derivability is
symmetric whereas reduction is not. This means that an equational theory can
be interpreted as a term rewriting system by giving direction to the essentially
undirected equations of the theory.

Definition 2.4.5 (Normal form) Let � be a signature and let t be a �-term.
Term t is a normal form with respect to a term rewriting system (�, R) if and
only if there is no �-term s such that t 	→ s. Alternatively, such a term is said
to be in normal form.

Term t has a normal form if and only if there is a normal form s such that
t � s.

The goal of a term rewriting system is often to rewrite some term to obtain
a result that is as simple as possible. Thus, it is a desirable property of such a
term rewriting system that every term has a, preferably unique, normal form.
The term rewriting system TRS1 just presented has this property.

Definition 2.4.6 (Strong normalization) A term rewriting system (�, R) is
strongly normalizing if and only if no �-term t allows an infinite sequence of
reductions t 	→ t1 	→ t2 	→ · · · (with t1, t2, . . . ∈ T (�)).

Definition 2.4.7 (Confluence) A term rewriting system (�, R) is confluent if
and only if, for all�-terms t1, t2, and t3, if t1� t2 and t1� t3, then there exists
a �-term t4 such that t2 � t4 and t3 � t4.

The following theorem is a standard result in the theory of term rewriting
systems, see e.g., (Klop, 1987).

Theorem 2.4.8 (Unique normal forms) Let T = (�, R) be a term rewriting
system. If T is strongly normalizing and confluent, then every term has a
unique normal form.

A given term rewriting system can be turned into an equational theory by
replacing every → symbol in its set of rewrite rules by the = symbol. If the

Exercises 33

term rewriting system is strongly normalizing and confluent, the following is
a decision procedure to establish derivability between two terms. First, reduce
both terms to their normal forms. Since the term rewriting system is strongly
normalizing, this can be achieved. Then, if the resulting normal forms are
identical, the terms are derivably equal; if they are not, the terms are definitely
not derivably equal. This is guaranteed by the fact that the term rewriting
system has the property of unicity of normal forms.

Unfortunately, it is not possible to associate a strongly normalizing and con-
fluent term rewriting system with every equational theory. The reason for this
is that equality is not always decidable. This undecidability result is well-
known as Gödel’s incompleteness theorem. For more details, see e.g., (Van
Heijenoort, 1967).

In some cases, some of the equations of an equational theory can readily be
turned into rewrite rules, but others have no clear direction (such as axioms
expressing the commutativity or associativity of an operator). Then, it may
be useful to rewrite modulo these undirected equations, i.e., to rewrite not just
single terms, but equivalence classes of terms. The details are beyond the scope
of this book. The interested reader is referred to (Jouannaud & Muñoz, 1984).

Exercises

2.4.1 Prove for the term rewriting system in Table 2.3 that

m(s(s(s(0))), s(s(0)))� s(s(s(s(s(s(0)))))).

2.4.2 Prove that the closed normal forms for the term rewriting system in
Table 2.3 are the terms of the form sn(0) (with n ∈ N).

2.4.3 Consider the term rewriting system Cnf in Table 2.4. The reduction
rules are given in infix notation, leaving out many brackets. Reduce
the term ¬(x ∧¬y)∧ z to normal form. Notice that the normal forms
of this term rewriting system are known in propositional logic as con-
junctive normal forms.

2.4.4 Prove that the term rewriting system with the one rule

f (f (x))→ f (g(f (x)))

is strongly normalizing.
2.4.5 Is the term rewriting system with the one rule

f (g(x, y))→ g(g(f (f (x)), y), y)

strongly normalizing?

34 Preliminaries

Cnf
unary: ¬; binary: ∨,∧;
x, y, z;

¬¬x → x
¬(x ∨ y) → ¬x ∧ ¬y
¬(x ∧ y) → ¬x ∨ ¬y
x ∨ (y ∧ z) → (x ∨ y) ∧ (x ∨ z)
(x ∧ y) ∨ z → (x ∨ z) ∧ (y ∨ z)

Table 2.4. Conjunctive normal forms.

2.5 Bibliographical remarks

This chapter gives an introduction to equational theories and their models. This
is standard in universal algebra, see e.g., (Burris & Sankappanavar, 1981). The
present presentation stems from (Klop, 1987), and was successively adapted
in (Baeten, 1986) and (Baeten & Weijland, 1990).

In this book, it is made explicit when certain notions apply to ground terms
only: thus, an axiomatization is called ground-complete if and only if all equa-
tions that hold in the model between closed terms can be derived from the
axioms, and a conservative ground-extension preserves all equations between
closed terms only. The notion of ground-extension deviates in one impor-
tant aspect from the standard definition of an equational extension (Definition
2.2.14). Following (Mousavi & Reniers, 2005), it is not required that all
axioms of the base theory are contained in the extended theory. This relaxation
does not change the essence of the extension concept and the related conser-
vativity notion, but it is convenient when for example considering extensions
with time (Chapter 9). For further motivation and details, see (Mousavi &
Reniers, 2005; Baeten et al., 2005).

The section on term rewriting systems is mostly based on (Klop, 1987).

3

Transition systems

3.1 Transition-system spaces

This chapter introduces the semantic domain that is used throughout this book.
The goal is to model reactive systems; the most important feature of such sys-
tems is the interaction between a system and its environment. To describe
such systems, the well-known domain of transition systems, process graphs,
or automata is chosen. In fact, it is the domain of non-deterministic (finite)
automata known from formal language theory. An automaton models a sys-
tem in terms of its states and the transitions that lead from one state to another
state; transitions are labeled with the actions causing the state change. An au-
tomaton is said to describe the operational behavior of a system. An important
observation is that, since the subject of study is interacting systems, not just the
language generated by an automaton is important, but also the states traversed
during a run or execution of the automaton. The term ‘transition system’ is the
term most often used in reactive-systems modeling. Thus, also this book uses
that term.

The semantic domain serves as the basis for the remainder of the book.
The meaning of the various equational theories for reasoning about reactive
systems developed in the remaining chapters is defined in terms of the semantic
domain, in the way explained in the previous chapter. Technically, it turns out
to be useful to embed all transition systems that are of interest in one large set
of states and transitions, from which the individual transition systems can be
extracted. Such a large set of states and transitions is called a transition-system
space.

Definition 3.1.1 (Transition-system space) A transition-system space over a
set of labels L is a set S of states, equipped with one ternary relation → and
one subset ↓:

35

36 Transition systems

(i) →⊆ S × L × S is the set of transitions;
(ii) ↓⊆ S is the set of terminating or final states.

The notation s
a→ t is used for (s, a, t) ∈→. It is said that s has an a-step to

t . Notation s↓ is used for s ∈ ↓, and it is often said that s has a (successful)
termination option; s �∈ ↓ is denoted s �↓. The fact that for all states t ∈ S, it

holds that (s, a, t) �∈ →, is abbreviated as s
a�→. It is also said that s does not

have an a-step.

1 2

3

6 7

9 10

a

a a

b c

54

8

11

a

a

b

c

b

c b

a

b

Fig. 3.1. An example of a transition-system space.

Example 3.1.2 (Transition-system space) Consider Figure 3.1. It visualizes
a transition-system space with eleven states, depicted by circles. Terminating
states are marked with a small outgoing arrow. Transitions are visualized by
labeled arrows connecting two states.

In the remainder, assume that (S, L ,→,↓) is a transition-system space.
Each state s ∈ S can be identified with a transition system that consists of all
states and transitions reachable from s. The notion of reachability is defined by
generalizing the transition relation to sequences of labels, called words. The
set of all words consisting of symbols from some set A is denoted A∗.

Definition 3.1.3 (Reachability) The reachability relation →∗ ⊆ S × L∗ × S
is defined inductively by the following clauses:

3.1 Transition-system spaces 37

(i) s
ε→∗ s for each s ∈ S, where ε ∈ L∗ denotes the empty word;

(ii) for all s, t, u ∈ S, σ ∈ L∗, and a ∈ L , if s
σ→∗ t and t

a→ u, then
s
σa→∗ u, where σa is the word obtained by appending a at the end

of σ .

A state t ∈ S is said to be reachable from state s ∈ S if and only if there is a
word σ ∈ L∗ such that s

σ→∗ t .

Example 3.1.4 (Reachability) Consider the transition-system space of Figure
3.1. From states 1 and 2, all states except state 5 are reachable; from state 3,
states 3, 6, 7, 9, and 10 are reachable, et cetera.

Definition 3.1.5 (Transition system) For each state s ∈ S, the transition sys-
tem induced by s consists of all states reachable from s, and it has the transi-
tions and final states induced by the transition-system space. State s is called
the initial state or root of the transition system associated with s. Note that
often the terminology ‘transition system s’ is used to refer to the transition
system induced by s.

3

6 7

9 10

a a

b c

4

8

11 10

a

b c

Fig. 3.2. Examples of simple transition systems.

Example 3.1.6 (Transition systems) Consider again Figure 3.1. The transi-
tion system with root state 3 consists of states 3, 6, 7, 9, and 10. Taking state
4 as the root yields a transition system consisting of states 4, 8, 10, and 11.
Figure 3.2 visualizes these two transition systems; the root states are marked
with small incoming arrows. The states are rearranged slightly to emphasize
the similarity between the two transition systems.

38 Transition systems

It follows from the above definitions that the notion of a transition system
coincides with the classical notion of an automaton. The classical notion of
language equivalence on automata says that two automata are equivalent if and
only if they have the same runs from the initial state to a final state.

Definition 3.1.7 (Run, language equivalence) A word σ ∈ L∗ is a complete
execution or run of a transition system s ∈ S if and only if there is some t ∈ S
with s

σ→∗ t and t↓.
Two transition systems are language equivalent if and only if they have the

same set of runs.

Example 3.1.8 (Language equivalence) Consider once more the two transi-
tion systems depicted in Figure 3.2. Both transition systems have only one
run, namely ac. The two systems are thus language equivalent. Note that ab
is not a run of any of the two transition systems because states 9 and 11 are
non-terminating.

Language equivalence turns out to be insufficient for our purposes. Since
interaction of automata is considered, there is a need to consider all states of
an automaton, not just the complete runs. This can be illustrated with Frank
Stockton’s story ‘The Lady or the Tiger?’ (see (Smullyan, 1982)).

open open

eat marry

open

eat marry

Fig. 3.3. The lady or the tiger?

Example 3.1.9 (The lady or the tiger?) A prisoner is confronted with two
closed doors. Behind one of the doors is a dangerous tiger, and behind the
other there is a beautiful lady. If the prisoner opens the door hiding the tiger

3.1 Transition-system spaces 39

he will be eaten. On the other hand, if he opens the door hiding the beautiful
lady, the lady and he will get married and he will be free. Unfortunately, the
prisoner does not know what hides behind what door.

This situation can be described as a transition system using the following
actions:

(i) open representing the act of opening a door;
(ii) eat representing the act of (the tiger) eating the young man;

(iii) marry representing the act of the beautiful lady and the prisoner get-
ting married.

The situation described above can be modeled by the left transition system
depicted in Figure 3.3. This transition system models the fact that after a door
has been opened the prisoner is confronted with either the tiger or the beautiful
lady. He does not have the possibility to select his favorite, which conforms to
the description above. The observant reader might notice the similarity with
the left transition system of Figure 3.2. Note the subtle fact that transition
marry ends in a terminating state, whereas transition eat does not. This can be
interpreted to mean that the marry transition results in a successful termination
of the process, and that the eat transition results in unsuccessful termination. A
non-terminating state in which no actions are possible, such as the state result-
ing from the eat transition, is often called a deadlock state (see also Definition
3.1.14).

One might wonder whether the same process cannot be described by the
slightly simpler transition system on the right of Figure 3.3, which strongly
resembles the right transition system in Figure 3.2. However, there are good
reasons why the situation modeled by the right transition system of Figure 3.3
is different from the situation described by the other transition system in that
figure. In the right transition system, the choice between the tiger and the lady
is only made after opening a door. It either describes a situation with only one
door leading to both the tiger and the lady or a situation with two doors both
leading to both the tiger and the lady; in either case, the prisoner still has a
choice after opening a door. Clearly, these situations differ considerably from
the situation described above.

The above example illustrates that there are good reasons to distinguish the
two transition systems of Figure 3.2. Example 3.1.8 shows that these two tran-
sition systems are language equivalent, thus confirming the earlier remark that
language equivalence does not suit our purposes. It does not in all cases dis-
tinguish transition systems that clearly model different situations. Two aspects
are not sufficiently taken into account. First, two transition systems that are
language equivalent may have completely different sets of ‘runs’ that end in

40 Transition systems

a non-terminating state. As explained in the above example, terminating and
non-terminating states may be used to model successful and unsuccessful ter-
mination of a process, respectively. In such cases, it is desirable to distinguish
transition systems that have the same sets of runs ending in terminating states
but that differ in executions leading to non-terminating states. Second, lan-
guage equivalence does not distinguish transition systems that have the same
runs but that are different in the moments that choices are made. To illustrate
this, consider again the transition system on the right-hand side of Figure 3.2.
It has a state in which both b and c are possible as the following action (state
8), whereas the system on the left only has states where exactly one of the two
is possible (states 6 and 7). Thus, if for some reason action c is impossible, is
blocked, then the transition system on the left can become stuck after the exe-
cution of an a action, whereas the one on the right cannot. The choice whether
or not to execute b or c in the left transition system is made (implicitly) upon
execution of the a action in the initial state, whereas the same choice is made
only after execution of the initial a action in the right transition system. It is
said that the transition systems have different branching structure.

A choice between alternatives that are initially identical, as in state 3 of the
leftmost transition system of Figure 3.2, is called a non-deterministic choice.
Such choices are the subject of many investigations in the theory of concur-
rency. A detailed treatment of non-determinism is beyond the scope of this
book.

It is often desirable to be able to distinguish between transition systems with
the same runs that have different termination behavior or that have different
branching structure. In order to do this, a notion of equivalence is defined that
is finer than language equivalence, in the sense that it distinguishes transition
systems accepting the same language but with different termination behavior
or branching structure. This notion is called bisimilarity or bisimulation equiv-
alence.

Definition 3.1.10 (Bisimilarity) A binary relation R on the set of states S of
a transition-system space is a bisimulation relation if and only if the following
so-called transfer conditions hold:

(i) for all states s, t, s′ ∈ S, whenever (s, t) ∈ R and s
a→ s′ for some

a ∈ L , then there is a state t ′ such that t
a→ t ′ and (s′, t ′) ∈ R;

(ii) vice versa, for all states s, t, t ′ ∈ S, whenever (s, t) ∈ R and t
a→ t ′

for some a ∈ L , then there is a state s′ such that s
a→ s′ and (s′, t ′) ∈

R;
(iii) whenever (s, t) ∈ R and s↓ then t↓;
(iv) whenever (s, t) ∈ R and t↓ then s↓.

3.1 Transition-system spaces 41

The transfer conditions are illustrated in Figures 3.4 and 3.5. These figures
show the transition systems starting from s and t as consisting of disjoint sets
of states, but this is just done for clarity; it is possible that states are shared.

Two transition systems s, t ∈ S are bisimulation equivalent or bisimilar,
notation s↔t , if and only if there is a bisimulation relation R on S with
(s, t) ∈ R.

s

s′

a

t

t ′

a

R

R

Fig. 3.4. Transfer condition (i) of a bisimulation.

s t
R

Fig. 3.5. Transfer condition (iii) of a bisimulation.

One can think of the notion of bisimilarity in terms of a two-person game.
Suppose two players each have their own behavior, captured in the form of a
transition system. The game is played as follows. First, one of the players
makes a transition or move from the initial state of his or her transition system.
The role of the other player is to match this move precisely, also starting from
the initial state. Next, again one of the players makes a move. This does not
have to be the same player as the one that made the first move. The other must
try to match this move, and so on. If both players can play in such a way that
at each point in the game any move by one of the players can be matched by a
move of the other player, then the transition systems are bisimilar. Otherwise,
they are not.

42 Transition systems

Example 3.1.11 (Bisimilarity) In Figure 3.6, an example of a bisimulation
relation on transition systems is given. (Note that, technically, the two tran-
sition systems are embedded in one transition-system space.) Related states
are connected by a dashed line. Since the initial states of the two transition
systems are related, they are bisimilar.

a a

b b

a

b

Fig. 3.6. Example of a bisimulation.

Example 3.1.12 (Bisimilarity) Figure 3.7 recalls two by now well-known
transition systems. It should not come as a surprise that they are not bisim-
ilar. States that can possibly be related are connected by a dashed line. The
states where the behaviors of the two systems differ are indicated by dotted
lines labeled with a question mark. None of the two indicated pairs of states
satisfies the transfer conditions of Definition 3.1.10 (Bisimilarity).

So far, bisimilarity is just a relation on transition systems. However, it has
already been mentioned that it is meant to serve as a notion of equality. For
that purpose, it is necessary that bisimilarity is an equivalence relation. It is
not difficult to show that bisimilarity is indeed an equivalence relation.

Theorem 3.1.13 (Equivalence) Bisimilarity is an equivalence.

Proof Let S be the set of states of a transition-system space. Proving
that a relation is an equivalence means that it must be shown that it is reflexive,
symmetric, and transitive. First, it is not hard to see that the relation R =
{(s, s) | s ∈ S} is a bisimulation relation. This implies that s↔s for any
(transition system induced by) state s ∈ S. Second, assume that s↔t for states
s, t ∈ S. If R is a bisimulation relation such that (s, t) ∈ R, then the relation

3.1 Transition-system spaces 43

a a

b c

a

b c

?

?

Fig. 3.7. Two transition systems that are not bisimilar.

R′ = {(v, u) | (u, v) ∈ R} is a bisimulation relation as well. Moreover, as
(s, t) ∈ R, obviously (t, s) ∈ R′. Hence, t↔s, proving symmetry of ↔.
Finally, for transitivity of ↔, it must be shown that the relation composition of
two bisimulation relations results in a bisimulation relation again. Let s, t, and
u be states in S, and let R1 and R2 be bisimulation relations with (s, t) ∈ R1

and (t, u) ∈ R2. The relation composition R1 ◦ R2 is a bisimulation with
(s, u) ∈ R1 ◦ R2, implying transitivity of ↔. The detailed proof is left as an
exercise to the reader (Exercise 3.1.6).

The discussion leading from the notion of language equivalence to the in-
troduction of bisimilarity is illustrative for a more general problem. When
designing a semantic framework based on transition systems, one has to choose
a meaningful equivalence on transition systems. The question of what equiva-
lence is most suitable depends on the context and is often difficult to answer.
In fact, the question is considered so important that it has generated its own
field of research, called comparative concurrency semantics. In Chapter 12,
the problem of choosing an appropriate equivalence is investigated in more de-
tail. In the other chapters of this book, bisimilarity serves as the main semantic
equivalence.

To end this section, several relevant subclasses of transition systems are
defined.

Definition 3.1.14 (Deadlock) A state s of a transition system as defined in
Definition 3.1.5 (Transition system) is a deadlock state if and only if it does
not have any outgoing transitions and it does not allow successful termination,

44 Transition systems

i.e., if and only if for all a ∈ L , s
a�→, and s �∈ ↓. A transition system has a

deadlock if and only if it has a deadlock state; it is deadlock free if and only if
it does not have a deadlock.

An important property that has already been suggested when motivating the
notion of bisimilarity is that bisimilarity preserves deadlocks. Exercise 3.1.5
asks for a proof of this fact.

Definition 3.1.15 (Regular transition system) A transition system is regular
if and only if both its sets of states and of transitions are finite.

The reader familiar with automata theory will notice that a regular transition
system is simply a finite automaton. The fact that finite automata define the
class of regular languages explains the name ‘regular transition system’.

Definition 3.1.16 (Finitely branching transition system) A transition sys-
tem is finitely branching if and only if each of its states has only finitely many
outgoing transitions; if any of its states has infinitely many outgoing transi-
tions, the transition system is said to be infinitely branching.

Note that a regular transition system is by definition finitely branching.
So far, it has not been made precise what are the states in a transition-system

space. In the remainder, however, the states in a transition-system space con-
sist of terms from a particular equational theory, as introduced in the previous
chapter.

Exercises

3.1.1 Consider the transition-system space of Figure 3.1. Draw the transi-
tion system with root 5.

3.1.2 Are the following pairs of transition systems bisimilar? If so, give a
bisimulation between the two systems; otherwise, explain why they
are not bisimilar.

(a)

a a a

Exercises 45

(b)

a b

c c

a b

c

(c)

a a

b

a

b

(d)

a a

b

a

b

46 Transition systems

(e)

a

b

a b

a

b a b

a b

a b

3.1.3 Give a bisimulation between any two of the following six transition
systems.

a a

a

a

a

a

a

aa

a

a

a

a

a a

a a

a a

3.2 Structural operational semantics 47

3.1.4 Recall Definitions 3.1.14 (Deadlock), 3.1.15 (Regular transition sys-
tem), and 3.1.16 (Finitely branching transition system). Which of
the transition systems of Exercises 3.1.2 and 3.1.3 are deadlock free?
Which ones are regular? Which ones are finitely branching?

3.1.5 Recall Definition 3.1.14 (Deadlock). Let s and t be two bisimilar
transition systems in some transition-system space. Show that s has a
deadlock if and only if t has a deadlock.

3.1.6 Prove that the relation composition of two bisimulation relations is
again a bisimulation.

3.1.7 Formalize the game-theoretic characterization of bisimilarity using
concepts from game theory (see e.g. (Osborne & Rubinstein, 1994)).

3.1.8 Prove that the union of all possible bisimulation relations on a transi-
tion-system space is again a bisimulation relation. This is called the
maximal bisimulation relation.

3.1.9 Let a set C be given, the set of colors. A coloring of a transition-
system space (S, L ,→,↓) is a mapping from S to C , so each node
has a color. A colored trace starting from s ∈ S is a sequence
(c0, a1, c1, . . . , ak, ck) such that there are states s1, . . . , sk in S with
s

a1→ s1 . . .
ak→ sk , s has color c0 and si has color ci (1 ≤ i ≤ k).

A coloring is consistent if two nodes have the same color only if the
same colored traces start from them and if they are both terminating
or both non-terminating. Prove that two nodes are bisimilar exactly
when there is a consistent coloring in which both nodes have the same
color.

3.1.10 Recall Definition 2.3.26 (Isomorphism of algebras). On a transition-
system space, the notion of isomorphism can be defined as follows:
two transition systems s, t are isomorphic if and only if there is a
bijective function f between the set of states reachable from s and
the set of states reachable from t such that u

a→ v ⇔ f (u)
a→ f (v)

and u↓ ⇔ f (u)↓. Prove that isomorphism is an equivalence relation
on the transition-system space that is finer than bisimilarity, i.e., prove
that isomorphic transition systems are bisimilar and give an example
of two transition systems that are bisimilar but not isomorphic.

3.2 Structural operational semantics

In the previous section, the notion of a transition-system space was introduced.
In this section, this is expanded upon by turning the set of states into a set of

48 Transition systems

(closed) terms over some equational theory. Thus, it is shown how transition-
system spaces can be used to provide equational theories with operational
semantics.

Example 3.2.1 (Operational semantics) An illustration of what is involved
is given by considering the equational theory T1 = (�1, E1) of Example 2.2.5.
As shown in Example 2.2.11, each closed term over this theory is derivably
equal to a closed term of the form sm(0) for some natural number m. These
terms sm(0) can be transformed into a transition system as follows: the term 0
is a terminating state, and there is a transition from state sn+1(0) to state sn(0)
for each natural number n. For simplicity, just one label is considered here,
denoted 1. In this way, the state sm(0) is characterized by having a sequence
of exactly m transitions to a terminating state. Figure 3.8 shows the transition
system induced by closed term s2(0).

s2(0)

s(0)

0

1

1

Fig. 3.8. The transition system corresponding to closed �1-term s2(0).

The general idea is to define transition systems for all closed �1-terms of
theory T1 such that two closed terms, i.e., states, are bisimilar exactly when
these terms are derivably equal in the equational theory. The desired transition-
system space can be constructed in the following way: any transition for a
certain closed term led by a certain function symbol is derived from the tran-
sitions of the arguments of the function symbol. The same holds for the
termination predicate: whether or not a term is a terminating state is derived
from the termination of the arguments of the leading function symbol. In other
words, transitions and termination are determined based on the structure of
terms. Since the transition-systems framework has an operational flavor, the

3.2 Structural operational semantics 49

resulting semantics of the equational theory is often referred to as a structural
operational semantics. The rules defining all possible transitions and termi-
nating states in a transition-system space constructed in this way are called
deduction rules. The conditions on the arguments of the leading function sym-
bol are called the premises of the deduction rule. Deduction rules without
premises are often referred to as axioms.

For the example theory T1, first, there are two axioms, corresponding to the
two cases already described above: 0 is a terminating state, and each term
that starts with a successor function symbol can do a step. Formally, for any
�1-term x ,

0↓ s(x)
1→ x .

Note that the second axiom holds for arbitrary (open) �1-terms; however,
the transition-system space that will be derived from these rules is built from
closed terms only.

Second, the addition function symbol is given an operational semantics. As
mentioned, each closed�1-term is derivably equal to a closed term of the form
sm(0) for some natural number m. The aim to obtain a semantics such that
two derivably equal terms correspond to bisimilar transition systems can be
achieved by ensuring that each closed term that is derivably equal to a closed
term of the form sm(0) has a single path of exactly m transitions to a ter-
minating state. Deduction rules for the function symbol a can therefore be
formulated as follows. For any �1-terms x, x ′, y, y′,

y
1→ y′

a(x, y)
1→ a(x, y′)

x
1→ x ′, y↓

a(x, y)
1→ x ′

x↓, y↓
a(x, y)↓ .

The first rule says that whenever a term y has a transition to term y′, then
a(x, y) has a transition to a(x, y′) for any arbitrary term x . The second rule
states that whenever a term x can do a step to x ′ and term y cannot do a step,
the term a(x, y) can do a step to x ′. The idea of these two rules is that first
the second argument of a term with leading symbol a does all its steps; if the
second argument cannot do any further steps, then the first argument continues
with its steps. Of course, it is also possible to first let the first argument do its
steps and then the second. In principle, it is even possible to allow arbitrary
interleavings of the steps of the two arguments. However, the above rules
follow Axioms PA1 and PA2 given in Table 2.1. This choice simplifies the
proofs of certain properties that are given in the remainder. The third and last
rule given above says that a(x, y) is a terminating state if both x and y are
terminating states.

By repeatedly applying the deduction rules given so far, it can be established

50 Transition systems

that a(s(0), s(0)) has the expected sequence of two transitions to a terminating
state. From the leftmost axiom given above, for example, it is immediately

clear that 0↓. From the second axiom, it follows that s(0)
1→ 0. From these

two facts, using the first deduction rule for the addition function symbol, it is

obtained that a(s(0), 0)
1→ 0. Continuing in this way results in the transition

system given in Figure 3.9.

a(s(0), s(0))

a(s(0), 0)

0

1

1

Fig. 3.9. The transition system corresponding to a(s(0), s(0)).

In Example 2.2.9, it has already been shown that

T1 � a(s(0), s(0)) = s(s(0)).

From the two transition systems given in Figures 3.8 and 3.9, it immediately
follows that

a(s(0), s(0))↔ s(s(0)),

where, as explained before, closed terms are interpreted as states in a transition-
system space or initial states of a transition system. The above two results
conform to the aim that two closed �1-terms are bisimilar if and only if these
terms are derivably equal in the equational theory T1.

To complete the example, consider the following deduction rules that define
the transitions involving the function symbol m. For any �1-terms x, x ′, y,
and y′,

x
1→ x ′, y

1→ y′

m(x, y)
1→ a(m(x, y′), x ′)

x↓
m(x, y)↓

y↓
m(x, y)↓ .

The reader is urged to try to understand these rules. Also in this case the rules

3.2 Structural operational semantics 51

guarantee that each closed term has a transition system consisting of a single
path of transitions to a terminating state, where the length of the path is the
‘natural-number interpretation’ of the term.

The pair of a signature and a set of deduction rules for terms over this
signature is called a deduction system. The deduction system developed in
this example forms the basis for a transition-system space. The set of states of
the transition-system space is the set of closed �1-terms, C(�1) (see Defini-
tion 2.2.3 (Terms)); the set of action labels is the singleton {1}. The transition
relation is the smallest relation in C(�1)×{1}×C(�1) satisfying the deduction
rules given above. The requirement that it is the smallest relation guarantees
that no transitions are present that cannot be derived from the deduction rules.
Similarly, the set of terminating states is the smallest set of states satisfying the
deduction rules.

Unfortunately, the transition-system space given in this example is not an
algebra in the sense of Section 2.3, and it cannot be turned into a model for
theory T1 (see Definition 2.3.8 (Model)) without some additional work. In the
remainder, it is shown how the transition-system space of this example can be
turned into a model of T1; then, it is also possible to formally prove the claim
that two closed �1-terms are bisimilar if and only if they are derivably equal.

The following definitions precisely introduce the notions of a deduction sys-
tem and its induced transition-system space.

Definition 3.2.2 (Deduction system) A term deduction system, or simply a
deduction system, is a pair (�, R), where � is a signature as defined in Defi-
nition 2.2.1 (Signature), and where R is a set of rules. A rule is of the form

�

ψ
,

where ψ is a so-called formula (called the conclusion of the rule), and where
� is a set of formulas (called the premises of the rule). A formula is either
a transition s

a→ t or a termination t↓, for �-terms s, t and a label a taken
from some given set of labels L . The term s in a transition s

a→ t is called the
source of the transition; term t is called the target. The term in a termination is
referred to as the source of the termination. If the set of premises � is empty,
then a rule is called an axiom.

Definition 3.2.3 (Transition-system space induced by a deduction system)
Assume (�, R) is a term deduction system; furthermore, assume that L is
the set of labels occurring in the set of rules R. The transition-system space
induced by (�, R) is the quadruple (C(�), L ,→,↓) where →⊆ C(�)× L ×

52 Transition systems

C(�) and ↓⊆ C(�) contain a formula of (�, R) if and only if this formula is
a closed substitution instance of a conclusion of a rule in R of which all the
closed instances of the premises are also in → or ↓. In other words, a closed
formula φ (i.e., a formula containing only closed terms) is an element of →
or ↓ exactly when there is a rule �

ψ
and a substitution σ such that φ ≡ ψ[σ]

and the formulas χ [σ], for each χ ∈ �, are elements of → or ↓. (Recall the
notion of substitution from Definition 2.2.6; also recall that≡ denotes syntacti-
cal identity on terms. In the current definition, both substitution and syntactical
identity are overloaded to formulas, but that should not cause confusion.)

The example and the definitions given so far show that a deduction system
is a way to turn the set of closed terms over a signature into a transition-system
space and, thus, the individual closed terms into transition systems. The next
step is to show how such a transition-system space can be transformed into a
model of an equational theory over that signature, in the sense of Section 2.3.
The key idea is to find an equivalence relation on the transition-system space
that matches the notion of derivability in the equational theory, and to use this
equivalence to construct a quotient algebra as defined in Definition 2.3.18; this
quotient algebra is then a model of the equational theory. It should not come as
a surprise that for the example theory T1 bisimilarity is the equivalence notion
matching derivability.

Consider Definition 2.3.18 (Quotient algebra). It reveals two important as-
pects. First, the starting point of a quotient algebra is an algebra (see Definition
2.3.1 (Algebra)); second, the equivalence relation must be a congruence on this
algebra (see Definition 2.3.16 (Congruence)).

Concerning the first aspect, as already mentioned, a transition-system space
is not an algebra. However, if a transition-system space is constructed from
a term deduction system, as illustrated in Example 3.2.1, then it is straight-
forward to turn the space into an algebra of transition systems. Note that the
set of closed terms over any signature with the constants and function sym-
bols of the signature forms an algebra, often referred to as the term algebra.
According to Definition 3.1.5 (Transition system), the closed terms over the
signature of a term deduction system can be interpreted as transition systems
in the transition-system space induced by the deduction system, which means
that the algebra of these closed terms can be seen as an algebra of transition
systems.

Example 3.2.4 (Algebra of transition systems) Consider again the example
equational theory T1 = (�1, E1) of Example 2.2.5. Based on the transition-
system space introduced in Example 3.2.1, the set of closed �1-terms C(�1)

3.2 Structural operational semantics 53

with constant 0 and functions s, a, and m forms an algebra of transition sys-
tems, referred to as /A1.

Considering the second aspect mentioned above, it turns out that it is often
also not too difficult to show that bisimilarity is a congruence on an algebra of
transition systems constructed from a term deduction system. Theorem 3.1.13
implies that bisimilarity is an equivalence relation on transition systems. Thus,
if it is possible to prove the second condition in Definition 2.3.16 (Congru-
ence) for bisimilarity as well, it is possible to construct a quotient algebra from
an algebra of transition systems and bisimilarity. In general, proving that a
bisimilarity is a congruence on some algebra of transition systems can be quite
tedious. However, it turns out that if the rules of the term deduction system
used for constructing this algebra adhere to a certain simple format, then the
desired congruence result follows automatically. The following definition in-
troduces this format.

Definition 3.2.5 (Path format) Let (�, R) be a deduction system. Consider
the following restrictions on a deduction rule in R:

(i) any target of any transition in the premises is just a single variable;
(ii) the source of the conclusion is either a single variable or it is of the

form f (x1, . . . , xn), for some natural number n, with f ∈ � an n-ary
function symbol and the xi variables;

(iii) the variables in the targets of the transitions in the premises and the
variables in the source of the conclusion are all distinct, i.e., two tar-
gets of transitions in the premises are not the same variable and the
variables in the source of the conclusion are all different, and no target
of a premise occurs in the source of the conclusion.

If a rule satisfies these conditions, then it is said to be in path format. A deduc-
tion system is in path format if all its rules are.

Example 3.2.6 (Path format) It is easily seen that the deduction system for
equational theory T1 introduced in Example 3.2.1 is in path format.

The exercises at the end of this section contain some examples illustrating
that the restrictions in the above definition are necessary in order to ensure that
the desired congruence result holds. Almost all deduction systems given in this
book turn out to be in path format.

The following theorem is given without proof. The interested reader can
find a proof in (Baeten & Verhoef, 1993).

54 Transition systems

Theorem 3.2.7 (Congruence theorem) Consider a deduction system in path
format. Bisimilarity is a congruence on the induced algebra of transition sys-
tems.

Example 3.2.8 (Congruence, quotient algebra) Consider once again the
equational theory T1 = (�1, E1). It follows from the above congruence
theorem and the fact that the deduction system for T1 of Example 3.2.1 is in
path format (Example 3.2.6) that bisimilarity is a congruence on the algebra
/A1 of transition systems introduced in Example 3.2.4. Thus, at this point, it is
possible to construct a quotient algebra. Following Definition 2.3.18 (Quotient
algebra), let M1 be the quotient algebra /A1/↔ with domain [C(�1)]↔ , con-
stant [0]↔ and functions s↔, a↔, and m↔ . It turns out that this quotient
algebra is a model of theory T1, as defined in Definition 2.3.8; it can even be
shown that this model is ground-complete, as defined in Definition 2.3.23.

Recall that it is our goal to prove that two closed �1-terms are bisimilar
if and only if they are derivably equal in T1. The attentive reader might see
that this result follows from the soundness and ground-completeness of theory
T1 for model M1 of the above example. Thus, the following two theorems
formally prove these soundness and ground-completeness results. The proofs
themselves can be skipped on a first reading (or on any reading, for that matter).
They are included for the sake of completeness and to show the interested
reader what is involved in soundness and ground-completeness proofs.

Theorem 3.2.9 (Soundness of T1) Algebra M1 of Example 3.2.8 is a model
of theory T1 using the standard interpretation of constant 0 and functions s, a,
and m explained in Definition 2.3.18 (Quotient algebra).

Proof Definition 2.3.8 (Model) implies that for each axiom s = t of
theory T1 it must be shown that M1 |
 s = t . Only the proof for Axiom PA2
is given; the proofs for the other axioms are left as Exercise 3.2.7.

Recall the notations concerning quotient algebras introduced in Section
2.3. Let p and q be arbitrary closed �1-terms. Definition 2.3.6 (Validity)
states that the following equality must be proven: a↔([p]↔, s↔([q]↔)) =
s↔(a↔([p]↔, [q]↔)). It follows from Definition 2.3.18 (Quotient algebra)
that it therefore must be shown that [a(p, s(q))]↔ = [s(a(p, q))]↔ and, thus,
that a(p, s(q))↔s(a(p, q)).

To prove the desired bisimilarity, it suffices to give a bisimulation relation
that contains all the pairs (a(p, s(q)), s(a(p, q))) for arbitrary closed terms p
and q. Let R = {(a(p, s(q)), s(a(p, q))) | p, q ∈ C(T1)} ∪ {(p, p) | p ∈

3.2 Structural operational semantics 55

C(T1)}. It needs to be proven that all pairs in R satisfy the transfer condi-
tions of Definition 3.1.10 (Bisimilarity). These conditions trivially hold for all
pairs (p, p) with p a closed �1-term. This means that only elements of R
of the form (a(p, s(q)), s(a(p, q))) with p, q in C(T1) need to be considered.
Assume that (a(p, s(q)), s(a(p, q))) is such an element.

(i) Assume that a(p, s(q))
1→ r for some r ∈ C(T1). Inspection of the

deduction rules given in Example 3.2.1 and the fact that s(q)
1→ q

show that necessarily r ≡ a(p, q). Since also s(a(p, q))
1→ a(p, q),

the fact that (a(p, q), a(p, q)) ∈ R proves that the first transfer con-
dition is satisfied.

(ii) Assume that s(a(p, q))
1→ r for some r ∈ C(T1). It easily follows

from the deduction rules of Example 3.2.1 that r ≡ a(p, q). Since

also a(p, s(q))
1→ a(p, q) and (a(p, q), a(p, q)) ∈ R, also this trans-

fer condition is satisfied.
(iii) Assume that a(p, s(q))↓. Since s(q) cannot terminate, this yields a

contradiction. Thus, a(p, s(q)) cannot terminate, which means that
the third transfer condition is trivially satisfied.

(iv) Since also s(a(p, q)) cannot terminate, also the final transfer condi-
tion is satisfied, completing the proof.

Based on Proposition 2.3.9 (Soundness) and Definitions 2.3.15 (Equivalence
classes) and 2.3.18 (Quotient algebra), the above theorem has two immediate
corollaries. The second corollary shows that two closed �1-terms that are
derivably equal in theory T1 are bisimilar.

Corollary 3.2.10 (Soundness) Let s and t be �1-terms. If T1 � s = t , then
M1 |
 s = t .

Corollary 3.2.11 (Soundness) Let p and q be closed �1-terms. If T1 � p =
q, then p↔q.

As mentioned, it can be shown that the model M1 is ground-complete for
theory T1, and thus that two bisimilar closed �1-terms are derivably equal in
T1. The proof of this completeness result needs two auxiliary properties. The
first one states that a closed �1-term that corresponds to a termination state is
derivably equal to 0. The second one states that a closed �1-term p that can
make a step towards another closed term q is derivably equal to s(q). These
two results are crucial in the ground-completeness result because they allow a
reduction of the problem to basic �1-terms as defined in Definition 2.2.10.

56 Transition systems

Lemma 3.2.12 For any closed �1-term p, p↓ implies that T1 � p = 0.

Proof The proof goes via structural induction on p. Assume that p↓.

(i) Assume p ≡ 0. Obviously, T1 � p = 0, satisfying the property.
(ii) Assume p ≡ s(q) for some q ∈ C(T1). Since under this assumption

not p↓, the property follows trivially in this case.
(iii) Assume p ≡ a(q, r) for some q, r ∈ C(T1). From p↓ and the de-

duction rules in Example 3.2.1, it follows that q↓ and r↓. Induction
gives that T1 � q = 0 and T1 � r = 0. Hence, T1 � p = a(q, r) =
a(0, 0) PA1= 0, completing the proof in this case.

(iv) Assume p ≡ m(q, r) for some q, r ∈ C(T1). From p↓ and the
deduction rules of Example 3.2.1, it follows that (a) q↓ or (b) r↓.

(a) Induction gives that T1 � q = 0. Hence, using Exercise 2.2.8
and the conservativity result of Proposition 2.2.17, T1 � p =
m(q, r) = m(r, q) = m(r, 0) PA3= 0, completing this case.

(b) Induction gives that T1 � r = 0. Hence, T1 � p = m(q, r) =
m(q, 0) PA3= 0, completing also this final case.

Lemma 3.2.13 For any closed �1-terms p and p′, p
1→ p′ implies that T1 �

p = s(p′).

Proof The proof goes via structural induction on p. Assume that

p
1→ p′.

(i) Assume p ≡ 0. In this case p
1�→, so the property is satisfied.

(ii) Assume p ≡ s(q) for some q ∈ C(T1). Since s(q)
1→ q, it follows

that p′ ≡ q . Hence T1 � p = s(q) = s(p′), proving the property in
this case.

(iii) Assume p ≡ a(q, r) for some q, r ∈ C(T1). From p
1→ p′ and the

deduction rules in Example 3.2.1, it follows that (a) p′ ≡ a(q, r ′)
with r

1→ r ′ or (b) p′ ≡ q ′ with q
1→ q ′ and r↓.

(a) Induction gives that T1 � r = s(r ′). Hence, T1 � p = a(q, r) =
a(q, s(r ′)) PA2= s(a(q, r ′)) = s(p′), completing this case.

(b) Induction gives that T1 � q = s(q ′). Furthermore, Lemma 3.2.12

implies that T1 � r = 0. Hence, T1 � p = a(q, r) PA1= q =
s(q ′) = s(p′), completing also this case.

3.2 Structural operational semantics 57

(iv) Assume p ≡ m(q, r) for some q, r ∈ C(T1). From p
1→ p′ and the

deduction rules of Example 3.2.1, it follows that p′ ≡ a(m(q, r ′), q ′)
with q

1→ q ′ and r
1→ r ′. Induction yields that T1 � q = s(q ′)

and T1 � r = s(r ′). Hence, T1 � p = m(q, r) = m(q, s(r ′)) PA4=
a(m(q, r ′), q) = a(m(q, r ′), s(q ′)) PA2= s(a(m(q, r ′), q ′)) = s(p′),
completing the proof.

Theorem 3.2.14 (Ground-completeness of T1) Theory T1 is a ground-com-
plete axiomatization of the model M1, i.e., for any closed �1-terms p and q,
M1 |
 p = q implies T1 � p = q .

Proof Assume that M1 |
 p = q . It must be shown that T1 � p = q.
In Example 2.2.13, it has been shown that each closed �1-term can be written
as a basic �1-term, as defined in Definition 2.2.10. Thus, assume that p1 and
q1 are basic�1-terms such that T1 � p = p1 and T1 � q = q1. It follows from
Corollary 3.2.11 that p↔ p1 and q↔q1. Since M1 |
 p = q, also p↔q. The
fact that bisimilarity is an equivalence implies that p1↔q1. Assuming that it
can be shown that T1 � p1 = q1, it follows that T1 � p = p1 = q1 = q,
which is the desired result.
The proof that T1 � p1 = q1 under the assumption that p1↔q1 is a structural-
induction proof on the structure of p1. Since p1 is a basic term, only two cases
need to be considered.

(i) Assume p1 ≡ 0. It follows both that T1 � p1 = 0 and that p1↓. Since
p1↔q1, the third transfer condition of Definition 3.1.10 (Bisimilar-
ity) yields that q1↓. Lemma 3.2.12 yields that T1 � q1 = 0. Thus,
T1 � p1 = 0 = q1, proving the desired property in this case.

(ii) Assume p1 ≡ s(r) for some basic �1-term r . Then, p1
1→ r . Lemma

3.2.13 yields that T1 � p1 = s(r). Since p1↔q1, the first transfer

condition of Definition 3.1.10 (Bisimilarity) yields that q1
1→ s for

some s ∈ C(T1) such that r↔s. In fact, it follows from the structure
of basic terms that s must be a basic �1-term. Induction yields that

T1 � r = s. From q1
1→ s and Lemma 3.2.13, it follows that T1 �

q1 = s(s). Combining the results obtained so far gives T1 � p1 =
s(r) = s(s) = q1, proving the desired property also in this case.

The ground-completeness result has an immediate corollary that proves the
claim that two bisimilar closed �1-terms are derivably equal in T1.

58 Transition systems

Corollary 3.2.15 (Ground-completeness) Let p and q be closed �1-terms.
If p↔q, then T1 � p = q .

Consider again equational theory T1 of Example 2.2.5. In Example 2.2.15,
this theory has been extended with an extra binary function symbol e, yielding
theory T2. It has already been shown that this extension does not influence
what equalities between closed terms can be derived from the original the-
ory T1 (Proposition 2.2.17 (Conservative extension)). In the context of the
current section, which gives an operational semantics of T1 in terms of transi-
tion systems, it is interesting to investigate to what extent the soundness and
ground-completeness results for T1 can be used to obtain similar results for the
extended theory T2, hopefully reducing the amount of work needed to obtain a
ground-complete model for T2.

In Definitions 2.2.16 and 2.2.19, a notion of equational conservativity is
introduced. A similar notion can be defined for deduction systems, and it
turns out that such an operational conservativity notion is useful in obtain-
ing soundness and ground-completeness results for theories extending some
other theory. Note that a deduction system can be extended by extending the
signature and/or the deduction rules in question, but also by extending the set
of labels that are used in the transitions. Furthermore, observe from Defini-
tion 3.2.3 (Transition-system space induced by a deduction system) that only
transitions between closed terms over the signature of a deduction system are
of interest. Hence, it is not necessary to distinguish two notions of extension
and conservativity as in the equational context. Informally, a deduction sys-
tem conservatively extends another deduction system if and only if it does not
add any transitions or terminations with respect to closed terms of the original
system compared to those already present in that original system.

Definition 3.2.16 (Operational conservative extension) Let D1 = (�1, R1)

over a set of labels L1 and D2 = (�2, R2) over a set of labels L2 be deduction
systems as defined in Definition 3.2.2. Deduction system D2 is an operational
conservative extension of system D1 if and only if

(i) �2 contains �1, R2 contains R1 and L2 contains L1, and
(ii) a transition p

a→ q or termination p↓, with p a closed �1-term, a ∈
L2 and q a closed �2-term, is in the transition-system space induced
by D1 exactly when it is in the transition-system space induced by D2

(see Definition 3.2.3). This implies that if p is a �1-term and p
a→ q,

then necessarily a ∈ L1 and q is a �1-term.

In order to distinguish the notions of conservative extension for equational

3.2 Structural operational semantics 59

theories and deduction systems, a conservative extension of equational theories
is sometimes called an equational conservative extension.

The notion of an operational conservative extension can be used in ground-
completeness proofs for equational theories extending some base theory. The
conditions of the definition can be weakened in two ways, still achieving these
results, but the present definition suffices for most of the applications that are
considered in this book. First of all, it is not needed that all transitions are
preserved exactly, but only that the resulting transition systems are bisimilar
(since the results are used to establish facts about bisimulation models), and
secondly, in some restricted circumstances it can be allowed to add new tran-
sitions for some old terms.

Under certain assumptions it is possible to prove operational conservativity
in a straightforward way, as shown by the theorem given below. The theorem
uses the following notion of source-dependency. Informally, the meaning of
source-dependency can be explained as follows. The conclusion of a rule in a
deduction system defines a transition of its source term. The rule is said to be
source-dependent when all the variables in the rule originate from the source
of the conclusion.

Definition 3.2.17 (Source-dependency) Let (�, R) be a deduction system. It
is defined inductively when a variable in a rule in R is source-dependent:

(i) all variables in the source of the conclusion are source-dependent;
(ii) if s

a→ t is a premise of a rule, and all variables in s are source-
dependent, then all variables in t are source-dependent.

If all variables in a rule are source-dependent, then the rule is said to be source-
dependent.

Example 3.2.18 (Source-dependency) Consider the deduction system given
in Example 3.2.1. Any of the rules with a termination as its conclusion is
source-dependent based on item (i) of the above definition. The rule for s is
source-dependent because the target of the conclusion contains only variable
x which is introduced in the source. The first rule for the a function symbol
is source-dependent because variables x and y are introduced in the source of
the conclusion, implying that they are source-dependent, and variable y′ is the
target of a premise with only the source-dependent variable y in its source,
implying that also y′ is source-dependent. Similar reasoning shows that also
the other two rules in the deduction system are source-dependent.

60 Transition systems

As an example of a rule which is not source-dependent, consider the rule
x↓ / 0↓. The variable x appearing in the premise is not source-dependent, as
it does not appear in the (source of the) conclusion.

The following theorem is given without proof. The interested reader can
find a proof in (Verhoef, 1994).

Theorem 3.2.19 (Operational conservativity) Let D1 = (�1, R1) and D2 =
(�2, R2) be deduction systems such that �2 contains �1 and R2 contains R1.
Deduction system D2 is an operational conservative extension of system D1 if

(i) all rules in R1 are source-dependent, and
(ii) for each added rule r ∈ R2\R1, either the source of the conclusion

is not a �1-term, or the rule has a premise of the form s
a→ t with

s a �1-term such that all variables of s occur in the source of the
conclusion and either label a is new or t is not a �1-term.

The second clause in this definition ensures that each new rule is ‘fresh’,
i.e., cannot be applied to old terms. This means that new transitions cannot be
added to old terms. When this is done in Chapter 9, Section 9.6, nevertheless,
the present theory cannot be used any longer.

Example 3.2.20 (Operational conservativity) Consider theory T2 of Exam-
ple 2.2.15. It is possible to provide an operational semantics for this theory by
extending the deduction system for T1 given in Example 3.2.1 with deduction
rules for the e function symbol. For any �2-terms x, x ′, y, y′, and z,

x
1→ x ′, y

1→ y′, e(x, y′) 1→ z

e(x, y)
1→ a(m(e(x, y′), x ′), z)

and

x↓, y
1→ y′

e(x, y)↓
y↓

e(x, y)
1→ 0

.

In particular the first rule might be difficult to understand. It can be clari-
fied by a comparison to the algebra of natural numbers (N,+,×, exp, succ, 0),
which is an extension of the algebra of Example 2.3.3 with the exponentia-
tion function exp. (Note that it is straightforward to show that this algebra is
a model of theory T2; see Exercise 2.3.3.) Assume that for any n,m ∈ N,
exp(n,m) is written nm ; further assume that multiplication is not explicitly
written. In terms of the algebra of natural numbers, the first rule above could
be formulated as follows: if n = 1 + n′,m = 1 + m′, and nm′ = 1 + l, then
nm = 1+(nm′

n′ +l), for l, n, n′,m,m′ ∈ N. The following simple calculation

3.2 Structural operational semantics 61

shows that this is correct: nm = n1+m′ = nnm′ = (1+n′)nm′ = nm′ +n′nm′ =
1+ l + n′nm′ = 1+ (nm′

n′ + l). Note that the second and third rule can be in-
terpreted in a similar way: if n = 0 and m = 1+m′ (i.e., m �= 0), then nm = 0,
and if m = 0, then nm = 1 + 0 = 1 (n,m,m′ ∈ N). (At this point, it may be
interesting to have another look at the deduction rules in Example 3.2.1.)

The rules given in this example extend the deduction system given in Exam-
ple 3.2.1. Since all the deduction rules of Example 3.2.1 are source-dependent
(see Example 3.2.18) and since the source of the conclusion in all the extra
rules concerns the new function symbol e, it follows in a straightforward way
from Theorem 3.2.19 (Operational conservativity) that the extended deduction
system is an operational conservative extension of the deduction system of
Example 3.2.1.

There are close connections between extensions of deduction systems and
extensions of equational theories. Theorem 3.2.21 (Conservativity) formalizes
this relation and Theorem 3.2.26 (Ground-completeness) given below builds
on this result. The two theorems are used several times in the remainder of this
book.

The following theorem establishes conditions under which structural op-
erational semantics can be used to determine that one equational theory is a
conservative ground-extension of another one.

Theorem 3.2.21 (Conservativity) Let D1 = (�1, R1) and D2 = (�2, R2)

be deduction systems. Let T1 = (�1, E1) and T2 = (�2, E2) be equa-
tional theories over the same signatures with E1 a subset of E2. Then T2 is
an equational conservative ground-extension of T1 if the following conditions
are satisfied:

(i) D2 is an operational conservative extension of D1,
(ii) T1 is a ground-complete axiomatization of the bisimulation model

induced by D1, and
(iii) T2 is a sound axiomatization of the bisimulation model induced by

D2.

Example 3.2.22 (Conservativity) It is interesting to see how this theorem can
be applied to the two example theories T1 and T2. The aim is to show that T2 is
a conservative ground-extension of T1, as defined in Definition 2.2.19. In Ex-
amples 3.2.1 and 3.2.20, two deduction systems for T1 and T2 have been given.
Example 3.2.20 furthermore has shown that the deduction system for T2 is an
operational conservative extension of the deduction system for T1. Theorems
3.2.9 and 3.2.14 show that T1 is a sound and ground-complete axiomatization

62 Transition systems

of the algebra of transition systems induced by the term deduction system for
T1. Thus, only the third condition in the above theorem needs to be satisfied in
order to prove that T2 is an equational conservative extension of T1.

Example 3.2.23 (Model) Consider again theory T2 of Example 2.2.15 and its
deduction system of Examples 3.2.1 and 3.2.20. It is not difficult to verify
that this system is in path format, as defined in Definition 3.2.5. Thus, Theo-
rem 3.2.7 (Congruence theorem) implies that bisimilarity is a congruence on
the induced algebra of transition systems. This result, in turn, means that the
quotient algebra modulo bisimilarity is well-defined. Let M2 be this quotient
algebra. It turns out that this algebra is a model of T2.

Theorem 3.2.24 (Soundness of T2) Algebra M2 of the previous example is a
model of theory T2 using the standard interpretation of constant 0 and functions
s, a, m, and e explained in Definition 2.3.18 (Quotient algebra).

Proof According to Definition 2.3.8 (Model), it must be shown that,
for each axiom s = t of T2, M2 |
 s = t . The proof for the axioms already
present in T1 carries over directly from the proof of Theorem 3.2.9 (Soundness
of T1) and Exercise 3.2.7. The proof for Axioms PA5 and PA6 that are new in
T2 is based on the following two bisimulation relations:

{(e(p, 0), s(0)) | p ∈ C(T2)} ∪ {(0, 0)}
and

{(e(p, s(q)),m(e(p, q), p)) | p, q ∈ C(T2)} ∪ {(p, p) | p ∈ C(T2)}.
The proof that these two relations are indeed bisimulation relations as defined
in Definition 3.1.10 is left as Exercise 3.2.8.

Combining Theorem 3.2.24 with the observations made in Example 3.2.22
implies that all three conditions of Theorem 3.2.21 (Conservativity) are satis-
fied. Thus, the following proposition, which is a restatement of Proposition
2.2.17, follows immediately.

Proposition 3.2.25 (Conservativity) Theory T2 of Table 2.2 is an equational
conservative ground-extension of theory T1 of Table 2.1.

When the extension is of a particular kind, namely when newly introduced
syntax can be eliminated from closed terms, then ground-completeness of the
extended theory can be established incrementally. This is formulated in the
following theorem.

Exercises 63

Theorem 3.2.26 (Ground-completeness) Assume that D1 = (�1, R1) and
D2 = (�2, R2) are deduction systems. Let T1 = (�1, E1) and T2 = (�2, E2)

be equational theories over the same signatures with E1 a subset of E2. Then
T2 is a ground-complete axiomatization of the model induced by D2 if in
addition to the conditions of Theorem 3.2.21 (Conservativity) the following
condition is satisfied:

(iv) theory T2 has the elimination property with respect to T1, i.e., for each
closed �2-term p, there is a closed �1-term q such that T2 � p = q.

Let us return one more time to the running example of theories T1 of Table
2.1 and T2 of Table 2.2. It has already been argued that these two theories
with their deduction systems satisfy the conditions of Theorem 3.2.21 (Con-
servativity). Proposition 2.2.20 (Elimination) implies that theory T2 has the
elimination property with respect to T1. Thus, the following completeness re-
sult follows immediately from the above theorem.

Theorem 3.2.27 (Ground-completeness of T2) Theory T2 is a ground-com-
plete axiomatization of model M2, i.e., for any closed �2-terms p and q,
M2 |
 p = q implies T2 � p = q .

It goes without saying that a completeness result based on Theorem 3.2.26
(Ground-completeness), such as the one given for Theorem 3.2.27 (Ground-
completeness of T2), for example, is preferable over a completeness result
from scratch. Thus, the results given in this section motivate a modular setup
of equational theories, starting from some minimal theory and subsequently
defining interesting extensions.

Exercises

3.2.1 Add to the deduction system given in Example 3.2.1 the rule

p
1→ 0

s(p)
ok→ 0

.

Show that s(a(0, 0))↔s(0) but s(s(a(0, 0))) �↔ s(s(0)). Thus, bisim-
ilarity is not a congruence. Note that the added rule violates the first
clause in the definition of the path format.

3.2.2 Add to the deduction system given in Example 3.2.1 the axiom

m(x, x)
ok→ 0 .

64 Transition systems

Show that a(0, 0)↔0 but m(a(0, 0), 0) �↔ m(0, 0). Thus, bisimilarity
is not a congruence. Note that the added rule violates the second
clause in the definition of the path format.

3.2.3 Add to the deduction system given in Example 3.2.1 the axiom

a(x, a(y, z))
ok→ 0 .

Show that a(0, 0)↔0 but a(0, a(0, 0)) �↔ a(0, 0). Thus, bisimilarity is
not a congruence. Note that the added rule violates the second clause
in the definition of the path format.

3.2.4 Add to the deduction system given in Example 3.2.1 the rule

p
1→ x, q

1→ x

a(p, q)
ok→ 0

.

Show that s(a(0, 0))↔s(0) but a(s(0), s(a(0, 0))) �↔ a(s(0), s(0)).
Thus, bisimilarity is not a congruence. Note that the added rule vio-
lates the third clause in the definition of the path format.

3.2.5 Add to the deduction system given in Example 3.2.1 the rule

x
1→ y

m(x, y)
ok→ 0

.

Show that s(a(0, 0))↔s(0) but m(s(a(0, 0)), 0) �↔ m(s(0), 0). Thus,
bisimilarity is not a congruence. Note that the added rule violates the
third clause in the definition of the path format.

3.2.6 Add to the term deduction system with as only rule x↓ / 0↓ a new
constant 1. Show that this extension is not operationally conservative.

3.2.7 Complete the proof of Theorem 3.2.9 (Soundness of T1) by proving
the validity of Axioms PA1, PA3, and PA4.

3.2.8 Complete the proof of Theorem 3.2.24 (Soundness of T2) by showing
that the two relations given for Axioms PA5 and PA6 are bisimulation
relations as defined in Definition 3.1.10.

3.3 Bibliographical remarks

In the literature, the term transition system is used in two different meanings:
the meaning that is given here, and in the meaning of a transition-system space.
The notion of a transition system is closely related to an automaton in language
theory (see e.g. (Linz, 2001)), the notion of a synchronization tree in CCS (see
e.g. (Milner, 1980)), or the notion of a process graph (see e.g. (Bergstra &
Klop, 1985)). The notion of bisimulation as given here is from (Park, 1981),

3.3 Bibliographical remarks 65

and is closely related to the notion of strong equivalence from CCS (Hen-
nessy & Milner, 1980). For more information on a game characterization of
bisimulation, see (Oguztuzun, 1989). For further information on comparative
concurrency semantics, see (Van Glabbeek, 1990).

The notion of choice as given in transition systems will, as becomes more
clear further on, be subject to influence from outside, from the environment.
Non-deterministic choice is a means to show a choice that cannot be influ-
enced. Some theories, like CSP (Hoare, 1985), have two different constructs
for the two types of choice.

This chapter gives an introduction to the theory of structural operational
semantics (often abbreviated to SOS). This theory finds its origins in the article
(Plotkin, 1981), later reprinted in the special issue (Aceto & Fokkink, 2004),
where a lot more information on SOS theory can be found. A good overview
of SOS theory is (Aceto et al., 2001). The path format was introduced in
(Baeten & Verhoef, 1993). The material on conservative extensions originates
in (Verhoef, 1994). For some recent developments in this area, see (Mousavi
et al., 2007).

4

Basic process theory

4.1 Introduction

Chapter 3 has introduced the notion of transition systems both as an abstract
operational model of reactive systems and as a means to give operational se-
mantics to equational theories. The latter has been illustrated by giving an
operational interpretation of the equational theory of natural numbers. The
aim of this book, however, is to develop equational theories for reasoning about
reactive systems. This chapter provides the first simple examples of such theo-
ries. Not surprisingly, the semantics of these theories is defined in terms of the
operational framework of the previous chapter. For clarity, equational theories
tailored towards reasoning about reactive systems are referred to as process
theories. The objects being described by a process theory are referred to as
processes. The next two sections introduce a minimal process theory with
its semantics. This minimal theory is mainly illustrative from a conceptual
point of view. Sections 4.4 and 4.5 provide some elementary extensions of the
minimal theory, to illustrate the issues involved in extending process theories.
Incremental development of process theories is crucial in tailoring a process
theory to the specifics of a given design or analysis problem. The resulting
framework is flexible and it allows designers to include precisely those aspects
in a process theory that are relevant and useful for the problem at hand. Incre-
mental design also simplifies many of the proofs needed for the development
of a rich process theory. The remainder of this book builds upon the simple
theory introduced in Sections 4.2 through 4.4. Sections 4.5 and 4.6 present
extensions of this basic process theory that provide a basis for the next chap-
ter on recursion. Recursion is essential in any practically useful theory. The
final section of this chapter puts everything into the perspective of the relevant
literature, and provides pointers for further reading.

67

68 Basic process theory

4.2 The process theory MPT

This chapter starts from a very simple process theory MPT(A), where MPT is
an abbreviation for Minimal Process Theory and where A is a set of actions
(sometimes also referred to as atomic actions). The set of actions is a parameter
of the theory. The idea is that terms over the signature of theory MPT(A)
specify processes. The signature has one constant, one binary function, and a
set of unary functions. Note that it is common practice to refer to functions in
the signature of a process theory as operators.

(i) The constant in the signature of MPT(A) is the constant 0, denoting
inaction. Process 0 cannot execute any action; in other words, 0 can
only deadlock.

(ii) The signature also has a binary operator +, denoting alternative com-
position or choice. If x and y are terms over the signature of MPT(A),
the process corresponding to term x + y behaves either as x or as y,
but not as both. A choice is resolved upon execution of the first ac-
tion. The inaction constant 0 is the identity element (also called unit
element or neutral element) of alternative composition.

(iii) Finally, the signature of theory MPT(A) has, for each action a ∈ A, a
unary operator a. , denoting action prefix. If x is a term, the process
corresponding to a.x executes action a and then proceeds as x . Sub-
stituting the inaction constant 0 for x yields the basic process a.0 that
can execute an a and then deadlocks.

From these descriptions, it is already clear that the theory MPT(A) allows for
the specification of simple sequential processes with branching behavior. The
latter is obtained via the choice operator. It remains to give the axioms of the
equational theory MPT(A). The process theory is axiomatized by four axioms,
namely A1, A2, A3, and A6, given in Table 4.1. The naming is not consecutive
for historical reasons (see (Baeten & Weijland, 1990)). The table adheres to
the format introduced in Section 2.2. Notation (a.)a∈A in the signature of
theory MPT(A) means that MPT(A) has a function a. for every a ∈ A.

Axioms A1, A2, and A3 express properties of alternative composition. The
fact that a choice between x and y is the same as a choice between y and x
is reflected by Axiom A1. Axiom A2 expresses that a choice between x and
choosing between y and z is the same as a choice between choosing between x
and y, and z. In both cases, a choice is made between three alternatives. If one
has to choose between two identical alternatives, this is the same as not choos-
ing at all; this is expressed by Axiom A3. The three properties of alternative
composition reflected by Axioms A1, A2, and A3, are often referred to as com-
mutativity, associativity, and idempotency, respectively. Axiom A6 expresses

4.2 The process theory MPT 69

MPT(A)
constant: 0; unary: (a.)a∈A; binary: + ;
x, y, z;

x + y = y + x A1
(x + y)+ z = x + (y + z) A2
x + x = x A3
x + 0 = x A6

Table 4.1. The process theory MPT(A).

that in the context of a choice deadlock is avoided as long as possible. It is not
allowed to choose for inaction if there is still an alternative. Stated mathemat-
ically, the inaction constant is an identity element for alternative composition.

To improve readability, terms over the signature of some process theory T
are simply referred to as T -terms. Furthermore, binding priorities are intro-
duced. Action-prefix operators always bind stronger than other operators; the
binary + always binds weaker than other operators. Hence, the term a.x + y,
with x and y arbitrary MPT(A)-terms and a an action in A, is in fact the term
(a.x)+ y; similarly, a.a.x + a.y represents (a.(a.x))+ (a.y).

Using the axioms of the theory MPT(A) and the rules of equational logic
presented in Chapter 2, equalities between process terms can be derived.

Example 4.2.1 (Proofs in a process theory) The following derivation is a
compact proof of the equality a.x + (b.y + a.x) = a.x + b.y, where a and b
are actions in A and x and y are arbitrary MPT(A)-terms:

MPT(A) � a.x + (b.y + a.x) = a.x + (a.x + b.y)
= (a.x + a.x)+ b.y = a.x + b.y.

The above example shows how a process theory can be used to reason about
the equivalence of processes. This is one of the main objectives of a process
theory. Another major objective of a process theory is that it serves as a means
to specify processes.

Example 4.2.2 (The lady or the tiger?) Recall Example 3.1.9 from the pre-
vious chapter, describing a situation where a prisoner is confronted with two
closed doors, one hiding a dangerous tiger and the other hiding a beautiful
lady. The described situation can be modeled by a process term using the three
actions introduced in Example 3.1.9, namely the term

open.eat.0 + open.marry.0. (4.2.1)

This term describes that after opening a door the prisoner is confronted with

70 Basic process theory

either the tiger or the lady. He does not have a choice; in fact, the choice is
made as soon as he chooses a door to open, which is the desired situation. In
the previous chapter, such a choice was called a non-deterministic choice.

In Example 3.1.9, the described situation has been captured in the leftmost
transition system of Figure 3.3. Term (4.2.1) corresponds to this transition
system, except for the termination behavior. In Example 3.1.9, a distinc-
tion was made between successful and unsuccessful termination, expressed
through a terminating state and a deadlock state, respectively. The process
theory MPT(A) does not have the possibility to distinguish between these two
kinds of termination behavior. Termination is specified by the inaction con-
stant 0. In the next section, where a model of MPT(A) is given, it becomes
clear that 0 corresponds to unsuccessful termination. In Section 4.4, theory
MPT(A) is extended with a new constant that allows the specification of suc-
cessful termination.

In Example 3.1.9, a second transition system is discussed, namely the right-
most transition system of Figure 3.3. Except for the termination behavior, also
this transition system can be specified as an MPT(A)-term:

open.(eat.0 + marry.0). (4.2.2)

For the same reasons as those given in Example 3.1.9, terms (4.2.1) and
(4.2.2) describe different situations. Thus, it is desirable that the two terms are
not derivably equal.

Generalizing the last observation in the above example means that terms of
the form a.(x+ y) and a.x+a.y, where a is an action and x and y are arbitrary
but different terms, should not be derivably equal (unless x and y are derivably
equal). It turns out that the general equality a.(x + y) = a.x + a.y is indeed
not derivable from theory MPT(A) (see Exercise 4.3.7). In other words, action
prefix does not distribute over alternative composition.

In term a.x + a.y, the choice between the eventual execution of x or y is
made upon the execution of a, whereas in a.(x+y) this choice is made after the
execution of a. In the terminology of Section 3.1, the two terms specify pro-
cesses with different branching structure. Thus, (at least some) processes with
different branching structure cannot be proven equal in theory MPT(A). In
the next section, a model of MPT(A) is given in terms of the semantic domain
introduced in the previous chapter. It turns out that derivability in MPT(A)
coincides with bisimilarity in the semantic domain.

In Section 3.1, it has already been mentioned that it is not always necessary
to distinguish between processes that only differ in branching structure. In the
semantic domain, this translates to choosing another equivalence on transition
systems. In the framework of the process theory MPT(A), it is possible to add

Exercises 71

the distributivity of action prefix over choice as an axiom to the theory. In gen-
eral, one has to design a process theory in such a way that derivability in the
theory coincides with the desired semantic equivalence. In Chapter 3, bisim-
ilarity has been chosen as the basic semantic equivalence. As a consequence,
distributivity of action prefix over choice is not included as an axiom in theory
MPT(A). Note that this conforms to the goal of this section that aims at de-
veloping a minimal process theory. By omitting distributivity of action prefix
over choice from the minimal theory MPT(A), the freedom of adding it when
necessary or desirable is retained. Of course, doing so has consequences for
the semantic domain in the sense that a different equivalence on transition sys-
tems is needed in order to construct a model of the extended theory. Chapter
12 investigates a number of interesting axioms that lead to different semantic
equivalences when they are included in a process theory.

Exercises

4.2.1 Prove that the three axioms A1, A2, and A3 of MPT(A) are equivalent
to the following two axioms:

(x + y)+ z = (y + z)+ x A2′
x + x = x A3

(with x, y, z MPT(A)-terms).
(Hint: first show that commutativity (A1) is derivable from A2′ and
A3.)

4.2.2 Prove that the three axioms A1, A2, and A3 of MPT(A) are equivalent
to the following two axioms:

(x + y)+ z = y + (z + x) A2′′
x + x = x A3

(with x, y, z MPT(A)-terms).
(Hint: as in the previous exercise, show commutativity first. Use this
several times in order to show associativity.)

4.2.3 For any (open) MPT(A)-terms x and y, define x ≤ y if and only if
MPT(A) � x + y = y; if x ≤ y, it is said that x is a summand
of y. The idea is that summand x describes a (not necessarily strict)
subset of the alternatives of term y, and can thus be added to y without
essentially changing the process.

(a) Prove that x ≤ y, for terms x and y, if and only if there is a term z
such that MPT(A) � x + z = y.

(b) Prove that ≤ is a partial ordering, i.e., that

72 Basic process theory

1. ≤ is reflexive (for all terms x , x ≤ x),

2. ≤ is anti-symmetric (for all x, y, x ≤ y and y ≤ x implies
MPT(A) � x = y),

3. ≤ is transitive (for all x, y, z, x ≤ y and y ≤ z implies x ≤ z).

(c) Give an example of two closed MPT(A)-terms p and q such that
not p ≤ q and not q ≤ p.

(d) Prove that for any terms x, y, z, x ≤ y implies x + z ≤ y + z.

(e) Give an example of two closed MPT(A)-terms p and q such that
p ≤ q but not a.p ≤ a.q (with a ∈ A).

4.3 The term model

In the previous section, the process theory MPT(A), with A a set of actions,
has been introduced. This section presents a model of this equational theory,
following the concepts explained in Section 2.3. The model is built using the
semantic framework of Chapter 3.

The starting point of the construction of this model is a so-called term al-
gebra. The term algebra for the theory MPT(A) has as its universe the set of
all closed MPT(A)-terms. The constants and functions of the term algebra are
the constants and functions of MPT(A). The identity on the domain of the al-
gebra is the syntactical equivalence of terms (denoted ≡; see Definition 2.2.3
(Terms)). The term algebra itself is not a model of MPT(A). The reason is that
syntactical equivalence of terms does not coincide with derivability as defined
by the axioms of MPT(A). The term algebra can be turned into a model by
transforming its domain, the closed MPT(A)-terms, into a transition-system
space, as defined in Definition 3.1.1. As a consequence, bisimilarity, as de-
fined in Definition 3.1.10, becomes an equivalence relation on closed MPT(A)-
terms. As already suggested before, it turns out that bisimilarity is a suitable
equivalence that matches derivability in MPT(A). It is shown that bisimilarity
is a congruence on the term algebra. The term algebra modulo bisimilarity is
shown to be a model of MPT(A), referred to as the term model. Finally, it is
shown that the process theory MPT(A) is a ground-complete axiomatization
of the term model.

The remainder often uses the notation C(T) to denote the set of closed terms
over the signature of a process theory T . (Note that this slightly generalizes
the notation for closed terms introduced in Definition 2.2.3 (Terms).)

Definition 4.3.1 (Term algebra) The algebra P(MPT(A)) = (C(MPT(A)),
+, (a.)a∈A, 0) is called the term algebra for theory MPT(A). Recall from

4.3 The term model 73

Definition 2.2.3 (Terms) that syntactical equivalence, ≡, is the identity on the
domain C(MPT(A)) of this algebra.

The term algebra is not a model of the process theory MPT(A), assum-
ing the identity function as the interpretation of the signature of MPT(A) into
P(MPT(A)). The term algebra does not capture the equalities defined by
the axioms of MPT(A). This can be easily seen as follows. Consider the
equality a.0 + a.0 = a.0, with a ∈ A. Clearly, because of Axiom A3,
MPT(A) � a.0 + a.0 = a.0; however, a.0 + a.0 �≡ a.0. According to Defini-
tion 2.3.6 (Validity), this means that Axiom A3 is not valid in the term algebra
P(MPT(A)). As a direct consequence, the term algebra is not a model of
MPT(A) (see Definition 2.3.8 (Model)).

The second step in the construction of a model of the theory MPT(A) is
to turn the set of process terms C(MPT(A)) into a transition-system space as
defined in Definition 3.1.1. The sets of states and labels are the sets of closed
terms C(MPT(A)) and actions A, respectively. A direct consequence of this
choice is that closed MPT(A)-terms are turned into transition systems. The
termination predicate ↓ and the (ternary) transition relation → are defined
through a term deduction system. Recall that deduction systems are discussed
in Section 3.2. The transition relation is constructed from a family of binary
transition relations

a→ for each atomic action a ∈ A. If p and p′ are closed
terms in C(MPT(A)), intuitively, p

a→ p′ holds if and only if p can execute
an action a and thereby transforms into p′. The deduction system defining
the termination predicate and the transition relation is given in Table 4.2. The
tabular presentation of the deduction system is similar to the presentation of
equational theories as outlined in Chapter 2. The term deduction system corre-
sponding to an equational theory T is referred to as TDS(T). The first entry of
Table 4.2 gives the signature of the term deduction system. The second entry
contains the deduction rules. The termination predicate and the ternary tran-
sition relation of the transition-system space under construction are defined as
the smallest set and relation satisfying these deduction rules, as explained in
Definition 3.2.3 (Transition-system space induced by a deduction system).

The first deduction rule (which actually has an empty set of premises and
is therefore also called an axiom, as explained in Section 3.2) states that any
process term a.p, with a an action and p another process term, can execute
the atomic action a and thereby transforms into process term p. The other two
deduction rules explain that a process term p + q can execute either an action
from p or an action from q . As a consequence, the alternative disappears
and can no longer be executed. Since the term deduction system for theory
MPT(A) does not have any rules for termination, the termination predicate

74 Basic process theory

TDS(MPT(A))
constant: 0; unary: (a.)a∈A; binary: + ;
x, x ′, y, y′;

a.x
a→ x

x
a→ x ′

x + y
a→ x ′

y
a→ y′

x + y
a→ y′

Table 4.2. Term deduction system for MPT(A) (with a ∈ A).

becomes the empty set. This means that successful termination is not possible,
which corresponds to the intuitive explanations given earlier.

Example 4.3.2 (Transition systems for closed MPT(A)-terms) As an exam-
ple, Figure 4.1 shows the transition systems induced by the process terms a.b.0
and a.b.0+a.(b.0+b.0). Note that the two terms are derivably equal, whereas
the two transition systems are obviously not the same. However, it is straight-
forward to show that the two transition systems are bisimilar (see Section 3.1).
Notice that any transition system induced by a closed MPT(A)-term is a regular
transition system (see Definition 3.1.15), that does not contain any cycles (i.e.,
from any state, that state is not reachable by a non-empty sequence of steps).
The fact that closed MPT(A)-terms correspond to regular transition systems is
an immediate consequence of Theorem 5.8.2 proven in Section 5.8. The fact
that these transition systems cannot contain cycles follows from Theorem 4.5.4
proven later in this chapter.

a.b.0

b.0

0

a

b

a.b.0 + a.(b.0 + b.0)

b.0 b.0 + b.0

0

a a

b b

Fig. 4.1. Transition systems a.b.0 and a.b.0 + a.(b.0 + b.0).

At this point, the term algebra P(MPT(A)) of Definition 4.3.1 has been

4.3 The term model 75

turned into a transition-system space. In the remainder, a term algebra such
as P(MPT(A)) is also referred to as an algebra of transition systems. This
implicitly assumes that the term algebra is accompanied by a term deduction
system defining a transition-system space. It is always clear from the context
which term deduction system is meant.

A consequence of the fact that term algebra P(MPT(A)) has been turned
into a transition-system space is that bisimilarity is inherited as an equivalence
relation on closed terms. It has already been suggested a number of times that
derivability in MPT(A) captures the same notion of equivalence as bisimilar-
ity. At this point, it is possible to be more precise. It can be shown that two
closed terms are derivably equal if and only if the induced transition systems
are bisimilar. Let us examine the relation between bisimilarity and derivability
in some more detail.

Recall the context rule from Definition 2.2.8 (Derivability). This rule plays
a crucial role in equational derivations. It implies that terms can be replaced
by derivably equal terms in arbitrary contexts. If bisimilarity and derivability
are supposed to be the ‘same’ notion of equivalence, the context rule from
equational logic must in some sense also be valid for bisimilarity. It turns out
that the notion of a congruence relation, as defined in Definition 2.3.16, is the
desired equivalent of the context rule.

Theorem 4.3.3 (Congruence) Bisimilarity is a congruence on the algebra of
transition systems P(MPT(A)).

Proof Using Theorem 3.2.7 (Congruence theorem), the proof is trivial
because it is easy to see that the deduction system of Table 4.2 is in path format,
as defined in Definition 3.2.5.

Unfortunately, deduction systems are not always in path format, which
means that it sometimes may be necessary to prove a congruence result di-
rectly from the definition of a congruence relation, namely Definition 2.3.16.
To illustrate such a proof, it is given here as well. Definition 2.3.16 states two
requirements on a relation, bisimilarity in this case. The first requirement is
that bisimilarity is an equivalence. From Theorem 3.1.13, it is already known
that bisimilarity is an equivalence. Thus, in order to prove that bisimilarity is
a congruence on P(MPT(A)), it suffices to show that for each n-ary (n ≥ 1)
function f of P(MPT(A)) and for all p1, . . . , pn, q1, . . . , qn ∈ C(MPT(A)),
p1↔q1, · · · , pn↔qn implies that f (p1, . . . , pn)↔ f (q1, . . . , qn).

Consider the binary function +. Assume that p1↔q1 and p2↔q2, with
p1, p2, q1, q2 ∈ C(MPT(A)). By definition, this means that there exist bisim-
ulation relations R1 and R2 such that (p1, q1) ∈ R1 and (p2, q2) ∈ R2. Define

76 Basic process theory

relation R as follows: R = R1 ∪ R2 ∪ {(p1 + p2, q1 + q2)}. It can be shown
that relation R is a bisimulation relation. It needs to be shown that R satisfies
for each pair of process terms in the relation the transfer conditions of Defini-
tion 3.1.10 (Bisimilarity). The pairs of process terms in R that are elements
of R1 or R2 obviously satisfy the transfer conditions because R1 and R2 are
bisimulation relations that satisfy those conditions. Thus, it remains to prove
that the pair of process terms (p1 + p2, q1 + q2) satisfies the transfer condi-
tions. Only condition (i) is proven; condition (ii) follows from the symmetry in
Definition 3.1.10 (Bisimilarity). Since terms in C(MPT(A)) cannot terminate
successfully, transfer conditions (iii) and (iv) are trivially satisfied.

(i) Suppose that p1 + p2
a→ p′ for some a ∈ A and p′ ∈ C(MPT(A)). It

must be shown that there is a q ′ ∈ C(MPT(A)) such that q1 + q2
a→

q ′ and (p′, q ′) ∈ R. Inspection of the deduction rules in Table 4.2
reveals that p1 + p2

a→ p′ must follow from the fact that p1
a→ p′ or

p2
a→ p′. In the first case, the fact that R1 is a bisimulation relation

that relates the terms p1 and q1 yields the existence of a term q ′ ∈
C(MPT(A)) such that q1

a→ q ′ and (p′, q ′) ∈ R1; in the second case,
for similar reasons, q2

a→ q ′ for some q ′ such that (p′, q ′) ∈ R2.
Thus, in both cases, q1 + q2

a→ q ′ for some q ′ ∈ C(MPT(A)) such
that (p′, q ′) ∈ R.

The proof that bisimilarity is a congruence with respect to the action-prefix
operators is left as an exercise (Exercise 4.3.3).

The above theorem implies that bisimilarity on closed terms respects the
rules of equational logic. It provides the basis for the definition of the term
model of the process theory MPT(A) of the previous section. The term model
is in fact a quotient algebra, namely the term algebra modulo bisimilarity (see
Definition 2.3.18 (Quotient algebra)).

Definition 4.3.4 (Term model) The term model of process theory MPT(A) is
the quotient algebra P(MPT(A))/↔ , where P(MPT(A)) is the term algebra
defined in Definition 4.3.1.

The elements of the universe of the algebra P(MPT(A))/↔ are called pro-
cesses. In the term model, a process is an equivalence class of closed terms
under bisimilarity. It can be shown that there is a strong correspondence be-
tween bisimilarity and the equalities that can be obtained from the equations of
the process theory MPT(A): (1) any two derivably equal MPT(A)-terms fall
into the same equivalence class when interpreted in the term model, and (2) any
two closed MPT(A)-terms that are bisimilar are also derivably equal. In Chap-
ter 2, the first notion has been introduced as soundness (see Definition 2.3.8

4.3 The term model 77

(Model)), whereas the second property has been called ground-completeness
(Definition 2.3.23). In order to prove soundness and ground-completeness of
MPT(A) for the term model, an interpretation of constants and functions of
MPT(A) into those of the term model is needed. The construction of the model
allows a very straightforward interpretation. The constant 0 is mapped onto the
equivalence class [0]↔ , whereas each of the operators is mapped onto the cor-
responding function in P(MPT(A))/↔ following Definition 2.3.18 (Quotient
algebra). In the remainder, it is always assumed that this standard interpreta-
tion is used; thus, it is omitted in the various notations whenever possible.

Theorem 4.3.5 (Soundness) The process theory MPT(A) is a sound axioma-
tization of the algebra P(MPT(A))/↔ , i.e., P(MPT(A))/↔ |
 MPT(A).

Proof According to Definition 2.3.8 (Model), it must be shown that,
for each axiom s = t of MPT(A), P(MPT(A))/↔ |
 s = t . Below, the proof
is given for Axiom A6; the proofs for the other axioms are left as an exercise
(Exercise 4.3.4).

Recall the notations concerning quotient algebras introduced in Section 2.3.
Let p be a closed term in C(MPT(A)). It follows from Definition 2.3.6 (Va-
lidity) that it must be shown that [p]↔+↔[0]↔ = [p]↔ . Definition 2.3.18
(Quotient algebra) implies that it must be shown that [p + 0]↔ = [p]↔ and,
thus, that p + 0↔ p.

It suffices to give a bisimulation relation on process terms that contains
all the pairs (p + 0, p) for closed MPT(A)-term p. Let R = {(p + 0, p) |
p ∈ C(MPT(A))} ∪ {(p, p) | p ∈ C(MPT(A))}. It must be shown that all
elements of R satisfy the transfer conditions of Definition 3.1.10 (Bisimilarity).
The transfer conditions trivially hold for all pairs (p, p) with p a closed term.
Hence, only elements of R of the form (p + 0, p) with p ∈ C(MPT(A)) need
to be considered. Let (p + 0, p) be such an element. Transfer conditions (iii)
and (iv) are trivially satisfied because closed MPT(A)-terms cannot terminate
successfully.

(i) Suppose that p + 0
a→ p′ for some a ∈ A and p′ ∈ C(MPT(A)). By

inspection of the deduction rules in Table 4.2, it easily follows that
necessarily p

a→ p′. The fact that (p′, p′) ∈ R proves this case.
(ii) Suppose that p

a→ p′ for some a ∈ A and p′ ∈ C(MPT(A)). The
application of the bottom left deduction rule of Table 4.2 yields p +
0

a→ p′. As (p′, p′) ∈ R, also this transfer condition is satisfied.

The above theorem has two immediate corollaries.

78 Basic process theory

Corollary 4.3.6 (Soundness) Let s and t be MPT(A)-terms. If MPT(A) �
s = t , then P(MPT(A))/↔ |
 s = t .

Corollary 4.3.7 (Soundness) Let p and q be two closed MPT(A)-terms. If
MPT(A) � p = q , then p↔q .

This last corollary states that by using the process theory to reason about
closed terms only bisimilar terms can be proved equivalent. Under the assump-
tion that the model captures the appropriate intuitions about processes (such
as, for example, operational intuitions concerning the execution of actions),
this property guarantees that using the equational theory for deriving equalities
cannot lead to mistakes. The converse of this property, ground-completeness,
assures that the process theory is strong enough to derive all bisimilarities be-
tween closed terms. That is, assuming two closed MPT(A)-terms p and q
that are bisimilar, it can be shown that p and q are also derivably equal, i.e.,
MPT(A) � p = q . The idea behind the ground-completeness proof, given
below, is to show MPT(A) � p = q via the intermediate results MPT(A) �
p = p + q and MPT(A) � p + q = q . Clearly, these intermediate results
imply MPT(A) � p = p + q = q . To understand the intuition behind this
idea, recall the notion of summands as introduced in Exercise 4.2.3. The cru-
cial idea of the ground-completeness proof is that, if p and q are bisimilar, it
must be the case that every summand of p is a summand of q and vice versa.
This implies that p as a whole can be seen as a summand of q and q as a whole
as a summand of p, which corresponds to the above mentioned intermediate
results.

The following two lemmas are needed in the ground-completeness proof.

Lemma 4.3.8 (Towards completeness) Let p be a closed MPT(A)-term. If
p

a→ p′ for some closed term p′ and a ∈ A, then MPT(A) � p = a.p′ + p.

Proof The property is proven by induction on the structure of p.

(i) p ≡ 0. This case cannot occur as 0 � a→.
(ii) p ≡ b.p′′ for some b ∈ A and closed term p′′. The assumption that

p
a→ p′ implies that b ≡ a and p′′ ≡ p′. Thus, MPT(A) � p =

p + p = b.p′′ + p = a.p′ + p.
(iii) p ≡ p1 + p2 for some closed terms p1 and p2. From p

a→ p′, it
follows that p1

a→ p′ or p2
a→ p′. By induction, (1) p1

a→ p′ implies
MPT(A) � p1 = a.p′ + p1, and (2) p2

a→ p′ implies MPT(A) �
p2 = a.p′ + p2. If p1

a→ p′, then MPT(A) � p = p1 + p2 =
(a.p′ + p1)+ p2 = a.p′ + (p1 + p2) = a.p′ + p. If p2

a→ p′, then

4.3 The term model 79

MPT(A) � p = p1 + p2 = p1 + (a.p′ + p2) = a.p′ + (p1 + p2) =
a.p′ + p.

Lemma 4.3.9 Let p, q , and r be closed MPT(A)-terms. If (p + q) + r↔r ,
then p + r↔r and q + r↔r .

Proof See Exercise 4.3.5.

Theorem 4.3.10 (Ground-completeness) Theory MPT(A) is a ground-com-
plete axiomatization of the term model P(MPT(A))/↔ , i.e., for any closed
MPT(A)-terms p and q, P(MPT(A))/↔ |
 p = q implies MPT(A) � p = q.

Proof Suppose that P(MPT(A))/↔ |
 p = q, i.e., p↔q. It must
be shown that MPT(A) � p = q . It suffices to prove that, for all closed
MPT(A)-terms p and q ,

p + q↔q implies MPT(A) � p + q = q (4.3.1)

and that, for all closed MPT(A)-terms p and q ,

p↔ p + q implies MPT(A) � p = p + q. (4.3.2)

That these properties are sufficient to prove the theorem can be seen as follows.
Suppose that properties (4.3.1) and (4.3.2) hold. If p↔q, then, by the fact that
bisimilarity is reflexive (i.e., p↔ p and q↔q) and the fact that bisimilarity is a
congruence on P(MPT(A)), p+ p↔ p+q and p+q↔q +q. The soundness
of MPT(A) for P(MPT(A))/↔ , more in particular the validity of Axiom A3,
implies that p + p↔ p and q + q↔q . Using symmetry and transitivity of
bisimilarity, p↔ p+q and p+q↔q are obtained. Thus, properties (4.3.2) and
(4.3.1), respectively, yield that MPT(A) � p = p+q and MPT(A) � p+q =
q. These last results can be combined to show that MPT(A) � p = p+q = q.

Property (4.3.1), namely, for all closed MPT(A)-terms p and q, p + q↔q
implies MPT(A) � p + q = q , is proven by induction on the total number
of symbols (counting constants and action-prefix operators) in closed terms p
and q. The proof of property (4.3.2) is similar and therefore omitted.

The induction proof goes as follows. Assume p + q↔q for some closed
MPT(A)-terms p and q . The base case of the induction corresponds to the
case that the total number of symbols in p and q equals two, namely when p
and q are both equal to 0. Using Axiom A3, it trivially follows that MPT(A) �
0 + 0 = 0, proving the base case. The proof of the inductive step consists of a
case analysis based on the structure of term p.

80 Basic process theory

(i) Assume p ≡ 0. It follows directly from the axioms in Table 4.1 that
MPT(A) � p + q = 0 + q = q + 0 = q.

(ii) Assume p ≡ a.p′ for some a ∈ A and closed term p′. Then, p
a→ p′

and thus p + q
a→ p′. As p + q↔q, also q

a→ q ′ for some closed
term q ′ such that p′↔q ′. By Lemma 4.3.8 (Towards completeness),
MPT(A) � q = a.q ′+q . From p′↔q ′, as in the first part of the proof
of this theorem, it follows that p′+q ′↔q ′ and q ′+p′↔ p′ and, hence,
by induction, MPT(A) � p′ + q ′ = q ′ and MPT(A) � q ′ + p′ = p′.
Combining these last two results gives MPT(A) � p′ = q ′ + p′ =
p′ + q ′ = q ′. Finally, MPT(A) � p+ q = a.p′ + q = a.q ′ + q = q.

(iii) Assume p ≡ p1 + p2 for some closed terms p1 and p2. As (p1 +
p2)+ q↔q , by Lemma 4.3.9, p1 + q↔q and p2 + q↔q. Thus, by
induction, MPT(A) � p1 + q = q and MPT(A) � p2 + q = q.
Combining these results gives MPT(A) � p + q = (p1 + p2)+ q =
p1 + (p2 + q) = p1 + q = q , which completes the proof.

Corollary 4.3.11 (Ground-completeness) Let p and q be arbitrary closed
MPT(A)-terms. If p↔q , then MPT(A) � p = q.

An interesting observation at this point is that the term model constructed in
this section is isomorphic (as defined in Definition 2.3.26) to the initial algebra
of equational theory MPT(A) (as defined in Definition 2.3.19). Exercise 4.3.6
asks to prove this fact.

Exercises

4.3.1 Consider the terms a.(b.(c.0+d.0)), a.(b.c.0+b.d.0), and a.b.c.0+
a.b.d.0. Give the transition systems for these terms, following the
example of Figure 4.1.

4.3.2 Consider the terms a.c.0+b.d.0 and a.c.0+b.c.0. Give the transition
systems for these terms.

4.3.3 Prove that bisimilarity is a congruence with respect to the action-
prefix operators a. (a ∈ A) on the term algebra P(MPT(A)) defined
in Definition 4.3.1, i.e., complete the second proof of Theorem 4.3.3
(Congruence).

4.3.4 Complete the proof of Theorem 4.3.5 (Soundness) by proving the
validity of Axioms A1 through A3.

4.3.5 Prove Lemma 4.3.9.

4.4 The empty process 81

4.3.6 Give the initial algebra (see Definition 2.3.19) of the process theory
MPT(A). Show that this algebra is isomorphic to the term model
given in Definition 4.3.4.

4.3.7 Consider the process theory MPT(A) of Table 4.1. Show that not
MPT(A) � a.x + a.y = a.(x + y) (with a ∈ A and x, y terms).
(Hint: construct a model of theory MPT(A) that does not validate the
equality.)

4.3.8 Show that the transition systems of the terms a.(0 + 0) + a.0 and
a.0+ a.0 are not isomorphic (as defined in Exercise 3.1.10), whereas
a.(0 + 0) and a.0 are isomorphic. This implies that isomorphism is
not a congruence relation on algebra P(MPT(A)). Isomorphism can
be turned into a congruence relation by allowing that states from a
transition system are replaced by isomorphic states in the transition-
system space. Show that turning isomorphism into a congruence in
this way gives exactly bisimilarity, i.e., two transition systems are
bisimilar if and only if they become isomorphic by replacing some of
their reachable states by isomorphic states.

4.4 The empty process

The process theory MPT(A) is a minimal theory; not much can be expressed in
it. One aspect that cannot be addressed is successful termination. The semantic
framework of Chapter 3 distinguishes between terminating states and deadlock
states; this distinction cannot be made in MPT(A). This issue was already
addressed in Examples 3.1.9 and 4.2.2 (The lady or the tiger?), illustrating that
the distinction is meaningful from a specification point of view. The distinction
between successful and unsuccessful termination also turns out to be essential
when sequential composition is introduced in Chapter 6.

To ease the description of processes, it is quite common to take an existing
process theory and add a constant or an operator plus axioms. There are two
types of extensions. First, there are extensions that only allow to describe cer-
tain processes more conveniently than before. Second, extensions may allow
processes to be described that could not be described in the original theory.
In Section 4.5, an extension of the first type is discussed; in this section, an
extension of the second type is discussed, namely an extension that allows to
distinguish successful and unsuccessful termination.

In order to express successful termination, the new constant 1, referred to
as the empty process or the termination constant, is introduced. The extension
of the process theory MPT(A) with the empty process 1 results in process

82 Basic process theory

theory BSP(A), the theory of Basic Sequential Processes. This section gives
the equational theory as well as its term model.

Table 4.3 defines process theory BSP(A). The only difference between the
signature of MPT(A) and the signature of BSP(A) is the constant 1. The
axioms of BSP(A) are exactly the axioms of MPT(A), given in Table 4.1.
The layout of Table 4.3 follows the rules set out in Chapter 2. The first en-
try formally states that BSP(A) is an extension of MPT(A). The second entry
introduces the new constant, whereas the main part of the table gives additional
axioms, none in this case.

BSP(A)
MPT(A);
constant: 1;

−

Table 4.3. The process theory BSP(A).

The extension of the process theory MPT(A) with the empty process result-
ing in the process theory BSP(A) has enlarged the set of terms that can be used
to specify processes. The terms specifying processes are the closed terms in a
process theory. Clearly, the set of closed BSP(A)-terms is strictly larger than
the set of closed MPT(A)-terms. A question that needs answering is whether
this extension has really enlarged the set of processes that can be specified in
the process theory. If this is the case, the expressiveness of the process theory
has increased. If this is not the case, the same set of processes can be specified,
but in more syntactically different ways. The latter can thus be considered an
extension for convenience.

In this case, it is not difficult to see that the expressiveness has increased.
A term that contains an occurrence of 1 can never be equal to a term without
a 1; inspection of the axioms (of MPT(A)) shows this easily. Thus, any term
over the signature of BSP(A) that is not a term over the signature of MPT(A)
cannot be derivably equal to a term over the signature of MPT(A). Observe
that closed terms that are derivably equal must refer to the same process in
some given model of an equational theory. Closed terms that are not deriv-
ably equal may be used to specify different processes. In fact, it is always
possible to construct a model in which closed terms that are not derivably
equal specify different processes (e.g., the initial algebra as defined in Defi-
nition 2.3.19). Thus, since any closed MPT(A)-term is a closed BSP(A)-term
and since there are closed BSP(A)-terms that are not derivably equal to closed

4.4 The empty process 83

MPT(A)-terms, the expressiveness of BSP(A) is strictly larger than the ex-
pressiveness of MPT(A). This fact is confirmed below by the fact that the
term model of BSP(A) contains strictly more processes than the term model of
MPT(A) given in the previous section.

Recall the notion of elimination as introduced in Section 2.2 in Example
2.2.13 and Proposition 2.2.20. An immediate consequence of the above dis-
cussion is that process theory BSP(A) does not have the elimination property
for MPT(A); that is, it is not possible to eliminate the empty-process con-
stant from BSP(A)-terms to obtain MPT(A)-terms. Nevertheless, it can be
shown that the theory BSP(A) is a conservative ground-extension of the theory
MPT(A), as defined in Definition 2.2.19. This assures that the theory BSP(A)
can always be used to derive equalities between closed MPT(A)-terms.

Theorem 4.4.1 (Conservative ground-extension) Process theory BSP(A) is
a conservative ground-extension of process theory MPT(A).

Proof Recall Definition 2.2.19 that states two proof obligations. By
definition, the signature of BSP(A) includes the elements of the signature of
MPT(A), and the axioms of BSP(A) are the axioms of MPT(A). This proves
that BSP(A) is an extension of MPT(A), as defined in Definition 2.2.14, im-
plying that it is also a ground-extension as defined in Definition 2.2.18. This
satisfies the first proof obligation of Definition 2.2.19. Thus, it remains to be
shown that for all closed MPT(A)-terms p and q , BSP(A) � p = q implies
that MPT(A) � p = q . Suppose that a proof of BSP(A) � p = q is given.
Because neither p nor q contain any occurrences of 1 and because the axioms
of BSP(A) are such that any term with an occurrence of 1 can only be equal to
a term also containing an occurrence of 1, no term that occurs in the proof of
BSP(A) � p = q contains an occurrence of 1. In other words, all terms that
occur in the proof of BSP(A) � p = q are MPT(A)-terms. This means that
the proof of BSP(A) � p = q is also a proof of MPT(A) � p = q, completing
the proof.

Figure 4.2 visualizes the fact that theory BSP(A) is a conservative ground-
extension of MPT(A). At this point, the figure is very simple and may be
considered redundant. However, in the remainder, this figure is incrementally
extended to show the relationships between the various process theories intro-
duced in this book.

It remains to provide a model for BSP(A). In the same way as for the process
theory MPT(A), a term model can be defined. Starting from the term algebra,
the meaning of the constants and operators is defined using a term deduction

84 Basic process theory

MPT(A)⏐⏐⏐�
BSP(A)

Fig. 4.2. BSP(A) is a conservative ground-extension of MPT(A).

system. This term deduction system is an extension of the term deduction sys-
tem for MPT(A) given in Section 4.3. The term model is the quotient algebra
of the term algebra modulo bisimilarity. The first step is to define the term
algebra of closed BSP(A)-terms.

Definition 4.4.2 (Term algebra) The term algebra for BSP(A) is the algebra
P(BSP(A)) = (C(BSP(A)),+, (a.)a∈A, 0, 1).

The next step in the construction of a model is to turn the set of closed
terms into a transition-system space (see Definition 3.1.1). The sets of states
and labels are the sets of closed terms C(BSP(A)) and actions A, respectively.
Both the ternary transition relation →⊆ C(BSP(A)) × A × C(BSP(A)) and
the termination predicate ↓⊆ C(BSP(A)) are defined through the term deduc-
tion system in Table 4.4 that extends the term deduction system in Table 4.2.
In other words, the transition relation and the termination predicate are the
smallest relation and predicate satisfying the deduction rules in Tables 4.2 and
4.4. Note that the domain over which the variables range in Table 4.2 has
(implicitly) been extended from the closed MPT(A)-terms to the set of closed
BSP(A)-terms.

TDS(BSP(A))
TDS(MPT(A));
constant: 1;
x, y;

1 ↓ x ↓
(x + y) ↓

y ↓
(x + y) ↓

Table 4.4. Term deduction system for BSP(A).

The term deduction system for BSP(A) has three extra deduction rules when
compared to the term deduction system for MPT(A). The first rule is an ax-
iom: it says that 1 can terminate. The other two rules state that an alternative-

4.4 The empty process 85

composition term has a termination option, as soon as one of the components
has this option.

Example 4.4.3 (Transition systems of BSP(A)-terms) For any given closed
term, a transition system can be obtained from the deduction system in Table
4.4 in the same way as before. The transition systems associated with the
process terms a.1 + b.0 and a.(b.0 + 1) are given in Figure 4.3. Recall that
terminating states (such as the ones represented by the process terms 1 and
b.0 + 1) are labeled by a small outgoing arrow.

a.1 + b.0

1 0

a b

a.(b.0 + 1)

b.0 + 1

0

a

b

Fig. 4.3. Transition systems associated with a.1 + b.0 and a.(b.0 + 1).

Example 4.4.4 (Transition systems) In drawing transition systems, it is of-
ten natural or convenient to abstract from the precise terms corresponding to a
state. Usually, it is known from the context what terms are meant. Note that
transition systems with identical graph structure are no longer distinguishable
when terms are omitted from the nodes. For example, the transition systems
associated with the processes a.1, a.1+ 0, and a.1+ a.1 are indistinguishable
if the process terms are omitted, as illustrated in Figure 4.4. Note that transi-
tion systems with identical graph structure but different terms in the nodes are
always bisimilar.

As in Section 4.3, bisimilarity is a congruence on the term algebra. This
result forms the basis for the term model of BSP(A), which is the term al-
gebra modulo bisimilarity. Note that the definition of bisimilarity (Definition
3.1.10) takes into account the termination relation. It is not difficult to see that
transition systems that have termination options cannot be bisimilar to transi-
tion systems that do not have such options. Thus, transition systems with and

86 Basic process theory

a

a.1

1

a

a.1 + 0

1

a

a.1 + a.1

1

a

Fig. 4.4. Transition systems with identical graph structure.

without termination options end up in different equivalence classes in the term
algebra modulo bisimilarity, i.e., they form different processes. Since all pro-
cesses that can be specified in the theory MPT(A) of the previous section can
also be specified in BSP(A), and since MPT(A) cannot be used to specify pro-
cesses with termination options, the examples of Figure 4.3 confirm the earlier
observation that BSP(A) is more expressive than MPT(A).

Proposition 4.4.5 (Congruence) Bisimilarity is a congruence on the term
algebra P(BSP(A)).

Proof The property follows immediately from the format of the de-
duction rules in Tables 4.2 and 4.4 and Theorem 3.2.7 (Congruence theorem).

As mentioned, the resulting term model of BSP(A) is the term algebra of
Definition 4.4.2 modulo bisimilarity (see Definition 2.3.18 (Quotient algebra)).

Definition 4.4.6 (Term model of BSP(A)) The term model of BSP(A) is the
quotient algebra P(BSP(A))/↔ .

Theorem 4.4.7 (Soundness) The process theory BSP(A) is a sound axioma-
tization of the algebra P(BSP(A))/↔ , i.e., P(BSP(A))/↔ |
 BSP(A).

Proof The proof of this theorem follows the same lines as the proof of
the soundness of theory MPT(A) with respect to the algebra P(MPT(A))/↔
(Theorem 4.3.5). It must be shown that, for each axiom s = t of BSP(A),
P(BSP(A))/↔ |
 s = t . As the axioms of MPT(A) and the axioms of
BSP(A) are identical, it may seem that there is nothing new to prove. This
is not true, however, as deduction rules defining the termination predicate have

4.4 The empty process 87

been added to the term deduction system for MPT(A), and hence transfer con-
ditions (iii) and (iv) of Definition 3.1.10 (Bisimilarity) that were trivially true
in the proof of Theorem 4.3.5 are no longer satisfied trivially. The remain-
der gives the proof of Theorem 4.4.7 for Axiom A6; the proofs for the other
axioms are left as Exercise 4.4.4.
Recall that it suffices to give a bisimulation that relates all pairs of left-hand-
and right-hand sides of closed instantiations of Axiom A6. Let R = {(p +
0, p) | p ∈ C(BSP(A))}∪{(p, p) | p ∈ C(BSP(A))}. It must be shown that all
elements of R satisfy the transfer conditions of Definition 3.1.10 (Bisimilarity).
Since the transfer conditions trivially hold for all pairs (p, p) with p a closed
term, only elements of R of the form (p + 0, p) need to be considered. Let
(p + 0, p) be such an element. For transfer conditions (i) and (ii), the proofs
as given in Theorem 4.3.5 can be copied as no deduction rules involving the
transition relation have been added.

(iii) Suppose that (p+ 0) ↓. By inspection of the deduction rules in Table
4.4, it easily follows that necessarily p ↓, as it is impossible to derive
0 ↓. This immediately proves this case.

(iv) Suppose that p ↓. The application of the middle deduction rule of
Table 4.4 yields (p + 0) ↓, which proves also this case.

Corollary 4.4.8 (Soundness) Let s and t be two BSP(A)-terms. If BSP(A) �
s = t , then P(BSP(A))/↔ |
 s = t .

Corollary 4.4.9 (Soundness) Let p and q be two closed BSP(A)-terms. If
BSP(A) � p = q, then p↔q .

The soundness result shows that equational theory BSP(A) is a sound ax-
iomatization of the term model P(BSP(A))/↔ . It remains to see whether or
not the axiomatization is also ground-complete. It turns out that this is the
case. In order to prove this result, a similar approach is followed as the one
leading to the ground-completeness result for MPT(A). The following lemmas
provide steps towards the ground-completeness theorem.

Lemma 4.4.10 (Towards completeness) Let p be a closed BSP(A)-term. If
p

a→ p′ for some closed term p′ and a ∈ A, then BSP(A) � p = a.p′ + p. If
p ↓, then BSP(A) � p = 1 + p.

Proof The proof of the first property is similar to the proof of Lemma
4.3.8 (Towards completeness). There is one additional case in the induction.

88 Basic process theory

This is the case that p ≡ 1. As 1 � a→, for any a ∈ A, the property is trivially
satisfied in this case. The proofs of the other cases can be copied as no deduc-
tion rules involving the binary transition relations

a→ have been added to
the term deduction system.
The second property is proven by induction on the structure of p.

(i) p ≡ 0. The property is satisfied as 0�↓.
(ii) p ≡ 1. Using Axiom A3, obviously, BSP(A) � p = 1 = 1 + 1 =

1 + p, which completes this case.
(iii) p ≡ a.p′ for some a ∈ A and closed term p′. This case is satisfied as

a.p′ �↓.
(iv) p ≡ p1 + p2 for some closed terms p1 and p2. From (p1 + p2)↓,

it follows that p1↓ or p2↓. By induction, (1) p1↓ implies BSP(A) �
p1 = 1+p1, and (2) p2↓ implies BSP(A) � p2 = 1+p2. If p1↓, then
BSP(A) � p = p1+ p2 = (1+ p1)+ p2 = 1+(p1+ p2) = 1+ p. If
p2↓, then BSP(A) � p = p1+ p2 = p1+(1+ p2) = (p1+1)+ p2 =
(1 + p1)+ p2 = 1 + (p1 + p2) = 1 + p.

Lemma 4.4.11 Let p, q , and r be closed BSP(A)-terms. If (p + q) + r↔r ,
then p + r↔r and q + r↔r .

Proof See Exercise 4.4.5.

Theorem 4.4.12 (Ground-completeness) Theory BSP(A) is a ground-com-
plete axiomatization of the term model P(BSP(A))/↔ , i.e., for any closed
BSP(A)-terms p and q , P(BSP(A))/↔ |
 p = q implies BSP(A) � p = q.

Proof Suppose that P(BSP(A))/↔ |
 p = q, i.e., p↔q. It must
be shown that BSP(A) � p = q . Since bisimilarity is a congruence on
P(BSP(A)) (Proposition 4.4.5) and BSP(A) is sound for P(BSP(A))/↔ (The-
orem 4.4.7), as in the proof of Theorem 4.3.10, it suffices to prove that, for all
closed BSP(A)-terms p and q , p + q↔q implies BSP(A) � p + q = q and
p↔ p + q implies BSP(A) � p = p + q .
Only the first property is proven, by induction on the total number of symbols
in closed terms p and q . Assume p + q↔q for some closed BSP(A)-terms
p and q. Three of the four cases in the induction proving that BSP(A) �
p = p + q can be copied directly from the proof of Theorem 4.3.10. Thus,
only the remaining case, when p ≡ 1, is detailed. If p ≡ 1, p↓ and thus
(p + q)↓. As p + q↔q , also q↓. By Lemma 4.4.10 (Towards completeness),
BSP(A) � q = 1 + q . Hence, since p ≡ 1, BSP(A) � p + q = 1 + q = q.

4.4 The empty process 89

Corollary 4.4.13 (Ground-completeness) Let p and q be arbitrary closed
BSP(A)-terms. If p↔q , then BSP(A) � p = q .

Theory BSP(A) with alternative composition, prefixing and constants for
successful and unsuccessful termination as presented in this section is the basic
theory for the rest of this book. Almost all theories presented further on are
extensions of BSP(A). This chapter started out from a still simpler theory,
the theory MPT(A), in order to present a process theory that is as simple as
possible, and also to facilitate comparisons to the literature, in which often
only one termination constant is present.

The term model for BSP(A) constructed in this section is a quotient algebra,
namely the term algebra of Definition 4.4.2 modulo bisimilarity. In Chapter 3
also language equivalence was introduced as an equivalence relation on transi-
tion systems, see Definition 3.1.7. It is interesting to note that the term algebra
modulo language equivalence is also a model of theory BSP(A). However,
BSP(A) is not a ground-complete axiomatization of this model, because ac-
tion prefix does not distribute over choice (see the discussion in Section 4.2),
but also because language equivalence identifies all sequences of actions that
end in a non-terminating state (see Example 3.1.8 (Language equivalence)).
The axioms of BSP(A) do not capture these equivalences. Note that language
equivalence is not very meaningful in the context of theory MPT(A), because
it only has the inaction constant and not the empty process. This means that the
model of closed terms modulo language equivalence is a so-called one-point
model, which has only one process. Chapter 12 considers different semantic
equivalences in more detail.

To conclude this section, let us briefly reconsider the notion of deadlocks
in processes. In Chapter 3, Definition 3.1.14 (Deadlock), it has been defined
when a transition system has a deadlock, and when it is deadlock free. Since
theory BSP(A) allows to distinguish successful and unsuccessful termination,
it is possible to define when a process term is deadlock free and when it has a
deadlock.

Definition 4.4.14 (Deadlocks in BSP(A)-terms) Let p be a closed BSP(A)-
term. Term p is deadlock free if and only if there is a closed BSP(A)-term q
without an occurrence of the inaction constant 0 such that BSP(A) � p = q.
Term p has a deadlock if and only if it is not deadlock free.

It is possible to prove that the model-independent notion of deadlocks for
closed BSP(A)-terms introduced in the above definition is consistent with the
notion of deadlocks for such terms that can be derived from the term model of
theory BSP(A) of Definition 4.4.6. (Recall that the term model is based on an

90 Basic process theory

algebra of transition systems, namely the term algebra of Definition 4.4.2, in
which each closed BSP(A)-term induces a transition system.)

Proposition 4.4.15 (Deadlocks) Let p be some closed BSP(A)-term. The
transition system of p obtained from the deduction system in Table 4.4 is dead-
lock free if and only if p is deadlock free according to Definition 4.4.14.

Proof The proof goes via induction on the structure of p.

(i) p ≡ 0. It follows immediately from the deduction system in Table
4.4 and Definition 3.1.14 (Deadlock) that the transition system of p
consists of a single deadlock state, and, hence, is not deadlock free.
It remains to prove that p is not deadlock free according to Definition
4.4.14, i.e., that 0 is not derivably equal to a closed term without oc-
currence of 0. Assume towards a contradiction that there is a closed
term q without occurrence of 0 such that BSP(A) � 0 = q. It fol-
lows from Corollary 4.4.9 that 0↔q . Definition 3.1.10 (Bisimilarity)
and the fact that the transition system of 0 is a single deadlock state
then imply that also the transition system of q must be a single dead-
lock state. However, the only closed BSP(A)-terms resulting in such
a transition system are 0, 0 + 0, 0 + 0 + 0, et cetera, i.e., any sum-
mation of inaction constants. Clearly this means that q always has a
0 occurrence, which yields a contradiction, and thus proves that term
p is not deadlock free according to Definition 4.4.14.

(ii) p ≡ 1. It follows immediately from the deduction system in Table
4.4 that the transition system of p is deadlock free. Since p ≡ 1, also
BSP(A)� p = 1, which means that p is also deadlock free according
to Definition 4.4.14.

(iii) p ≡ a.p′ for some a ∈ A and closed term p′. The transition system of
p is deadlock free if and only if the transition system of p′ is deadlock
free. By induction, it follows that there is a 0-free closed term q such
that BSP(A) � p′ = q . Thus, a.q does not contain a 0 occurrence
and BSP(A) � p = a.p′ = a.q , which shows that p is deadlock free
according to Definition 4.4.14, completing also this case.

(iv) p ≡ p1 + p2 for some closed terms p1 and p2. The transition system
of p is deadlock free if and only if (a) the transition systems of both p1

and p2 are deadlock free or if (b) one of the two is deadlock free and
the other one is the transition system consisting of a single deadlock
state. Assume case (a). By induction, it follows that there are two 0-
free closed terms q1 and q2 such that BSP(A)�p1 = q1 and BSP(A)�

Exercises 91

p2 = q2. Hence, q1 + q2 is 0-free and BSP(A) � p = p1 + p2 =
q1 + q2, which shows that p is deadlock free according to Definition
4.4.14. Assume case (b), and assume without loss of generality that
the transition system of p1 is deadlock free. By induction, it follows
that there is a 0-free closed term q1 such that BSP(A) � p1 = q1.
Following the reasoning in the first item of this induction proof, it
furthermore follows that p2 is some arbitrary summation of inaction
constants. Thus, based on Axiom A6, it follows that BSP(A) � p =
p1 + p2 = q1, showing also in this final case that p is deadlock free
according to Definition 4.4.14.

The following corollary immediately follows from the above result and the
fact that both in Definition 3.1.14 (Deadlock) and in Definition 4.4.14 (Dead-
locks in BSP(A)-terms) the presence of deadlocks and deadlock freeness are
defined as opposites.

Corollary 4.4.16 (Deadlocks) Let p be some closed BSP(A)-term. The tran-
sition system of p obtained from the deduction system in Table 4.4 has a
deadlock if and only if p has a deadlock according to Definition 4.4.14.

Exercises

4.4.1 Draw transition systems for the following closed BSP(A)-terms:

(a) a.(1 + 0)
(b) a.1 + a.0
(c) 1 + a.1
(d) 1 + a.0

Show that there does not exist a bisimulation relation between any
pair of these transition systems.

4.4.2 Prove that the term algebra of BSP(A) of Definition 4.4.2 modulo
language equivalence, Definition 3.1.7, is a model of theory BSP(A).

4.4.3 Recall Definition 3.1.14 (Deadlock) and Definition 4.4.14 (Deadlocks
in BSP(A)-terms). Let p and q be closed BSP(A)-terms, and let a be
an action in A.

(a) Which of the terms of Exercise 4.4.1 has a deadlock?
(b) Show that, if p has a deadlock and BSP(A) � p = q, then q has a

deadlock.
(c) Show that, if p has a deadlock, then a.p has a deadlock.

92 Basic process theory

(d) Give an example showing that p + q may be deadlock free even if
one of the two terms p or q has a deadlock.

(e) Show that, if p has a deadlock, then a.p + q has a deadlock.
(f) Give an inductive definition defining when a closed BSP(A)-term

has a deadlock in a model-independent way, that is consistent with
the earlier two definitions concerning deadlocks (Definitions 3.1.14
and 4.4.14).

(g) Give an inductive definition defining deadlock freeness in a model-
independent way.

(h) Prove that a closed term has a deadlock according to the inductive
definition of item (f) if and only if it is not deadlock free according
to the inductive definition of item (g).

4.4.4 Complete the proof of Theorem 4.4.7 (Soundness) by proving the
validity of Axioms A1 through A3.

4.4.5 Prove Lemma 4.4.11.

4.5 Projection

This section considers an extension of the process theory BSP(A). Contrary to
the situation in the previous section, this extension does not allow to describe
more processes, but rather allows to describe already present processes in more
ways than before. Thus, it is an extension for convenience.

Theory BSP(A) can be extended with a family of so-called projection op-
erators πn , for each n ∈ N. There are several reasons for introducing such
operators. First, they are interesting in their own right. Second, they are a
good candidate to explain what concepts play a role in extending a process
theory with additional syntax and axioms. (Recall that the simple extension
of MPT(A) to BSP(A) discussed in the previous section does not introduce
any new axioms.) Third, the projection operators turn out to be useful in rea-
soning about iterative and recursive processes; a simple form of iteration is
introduced later in this chapter, and recursion is the topic of the next chapter.
A more general form of iteration is briefly discussed in Chapter 6.

Let x be some term in some process theory. Intuitively speaking, the term
πn(x), for some n ∈ N, corresponds to the behavior of x up to depth n,
where the depth is measured in terms of the number of actions that have been
executed. Table 4.5 gives process theory (BSP + PR)(A), the extension of
theory BSP(A) with projection operators.

Table 4.5 expresses that (BSP+PR)(A) is an extension of BSP(A), and gives
the additional syntax and axioms. Note that the five axioms are in fact axiom

4.5 Projection 93

(BSP + PR)(A)
BSP(A);
unary: (πn)n∈N;
x, y;

πn(1) = 1 PR1
πn(0) = 0 PR2
π0(a.x) = 0 PR3
πn+1(a.x) = a.πn(x) PR4
πn(x + y) = πn(x)+ πn(y) PR5

Table 4.5. The process theory (BSP + PR)(A) (with a ∈ A).

schemes. Consider PR1, PR2 and PR5, for example. There is one instance of
PR1, PR2 and PR5 for each of the projection operators πn , with n ∈ N. For
PR3, there is one instance for each action-prefix operator a. , with a ∈ A,
and PR4 has an instance for each combination of a projection operator and an
action-prefix operator. Despite the fact that PR1 through PR5 are in fact axiom
schemes, they are usually referred to as simply axioms.

An interesting observation is that the five axioms follow the structure of
BSP(A)-terms. This is often the case when extending a process theory for the
ease of specification; it guarantees that the extension, in this case projection, is
defined for all possible process terms in the theory that is being extended.

Axiom PR1 says that the behavior of the termination constant up to some
arbitrary depth n equals termination, or, in other words, the empty process;
this obviously corresponds to the fact that the empty process cannot execute
any actions. Likewise, Axiom PR2 says that the behavior of the inaction con-
stant up to arbitrary depth equals inaction. The third axiom, Axiom PR3, states
that the behavior of a process up to depth 0, i.e., the behavior corresponding
to the execution of no actions, simply equals inaction for processes that have
no immediate successful termination option. The fourth axiom is the most in-
teresting one; Axiom PR4 states that the behavior of a process with a unique
initial action up to some positive depth m equals the initial action of this pro-
cess followed by the behavior of the remainder up to depth m − 1. The final
axiom simply says that projection operators distribute over choice.

Example 4.5.1 (Projection) Let a, b, and c be actions in A. It is not difficult
to verify that (BSP + PR)(A) �

π0(a.b.1) = π0(a.b.0) = 0,
π1(a.b.1) = π1(a.b.0) = a.0,
πn(a.b.1) = a.b.1, if n ≥ 2,

94 Basic process theory

πn(a.b.0) = a.b.0, if n ≥ 2,
πn(a.0 + b.1) = a.0 + b.1, if n ≥ 1,
π0(a.0 + b.c.1) = 0,
π1(a.0 + b.c.1) = a.0 + b.0,
πn(a.0 + b.c.1) = a.0 + b.c.1, if n ≥ 2,
π1(a.(a.0 + b.c.1)) = a.0, and
π2(a.(a.0 + b.c.1)) = a.(a.0 + b.0).

As a note aside, observe that it is also possible to extend the theory MPT(A)
of Section 4.2 with projection operators, resulting in (MPT + PR)(A). This
extension follows the lines of the extension of BSP(A) with projection; the
only difference is that Axiom PR1 is omitted. As theory (MPT + PR)(A) is
not needed in the remainder, its elaboration is left as Exercise 4.5.7.

The extension of the process theory BSP(A) with the projection operators
to the process theory (BSP + PR)(A) has enlarged the set of closed terms that
can be used for specifying processes. The question whether this extension
has also enlarged the set of processes that can be specified in the process the-
ory still needs to be addressed; stated in other words, it must be investigated
whether the expressiveness of the process theory has increased. If this is not
the case, the same set of processes can be specified, but in more syntactically
different ways. This can thus be considered an extension for convenience. The
following elimination theorem expresses that every closed (BSP + PR)(A)-
term is derivably equal to a closed BSP(A)-term. The consequence of this
theorem is that the addition of the projection operators has not enlarged the
expressiveness of the process theory, which conforms to the claim made in the
introduction to this section. Example 4.5.1 shows that it is often straightfor-
ward to eliminate projection operators from (BSP+ PR)(A)-terms. Recall the
concept of elimination from Example 2.2.13 and Proposition 2.2.20. Note that
closed BSP(A)-terms play the role of basic terms. Proposition 2.2.20 has been
proven via induction (Exercise 2.2.5). Another way of proving an elimination
result is through rewrite theory. The proof given below is based on rewrite
theory because it provides the most insight in the working of equational theory
(BSP + PR)(A). However, it is also possible to prove Theorem 4.5.2 through
induction (Exercise 4.5.4).

Theorem 4.5.2 (Elimination) For every closed (BSP+PR)(A)-term p, there
exists a closed BSP(A)-term q such that (BSP + PR)(A) � p = q.

Proof Recall Definition 2.4.1 (Term rewriting system). The first step
of the proof is to turn equational theory (BSP+PR)(A) into a rewriting system.

4.5 Projection 95

The signature of the rewriting system equals the signature of (BSP + PR)(A).
The rewrite rules correspond to Axioms PR1–PR5 of Table 4.5 when read from
left to right; for any n ∈ N, a ∈ A, and (BSP + PR)(A)-terms x, y:

πn(1)→ 1
πn(0)→ 0
π0(a.x)→ 0
πn+1(a.x)→ a.πn(x)
πn(x + y)→ πn(x)+ πn(y)

The idea of the choice of rewrite rules is that for each rewrite rule s → t of the
term rewriting system, (BSP + PR)(A) � s = t . This means that each rewrite
step transforms a process term into a process term that is derivably equal.
The second step of the proof is to show that the above term rewriting system
is strongly normalizing, i.e., that no process term allows an infinite reduction
(see Definition 2.4.6). The details of this part of the proof are left as an exercise
(Exercise 4.5.3) because they are not essential to the understanding of the proof
of the elimination theorem. A consequence of the choice of the rewrite rules
and the resulting strong-normalization property is that every (BSP + PR)(A)-
term has a normal form that is derivably equal.
The last part of the proof is to show that no closed normal form of the above
term rewriting system contains a projection operator, i.e., the operators to be
eliminated. Note that it is sufficient to prove the property for normal forms that
are closed terms because the elimination theorem is formulated only for closed
terms. (It is an interesting exercise for the reader to explain why the closed-
term restriction is also necessary, implying that the elimination theorem cannot
be extended to arbitrary open terms.)
Let closed (BSP + PR)(A)-term u be a normal form of the above rewriting
system. Suppose that u contains projection operators, i.e., it is not a (closed)
BSP(A)-term. Thus, u must contain at least one subterm of the form πn(v),
for some natural number n and closed (BSP + PR)(A)-term v. Clearly, this
subterm can always be chosen to be minimal, such that v is a closed BSP(A)-
term containing no projection operators itself. It follows immediately from the
structure of BSP(A)-terms that precisely one of the rewrite rules of the above
term rewriting system can be applied to πn(v). As a consequence, u is not a
normal form. This contradiction implies that u must be a closed BSP(A)-term.
Summarizing all the above, it has been shown that each closed (BSP+PR)(A)-
term p has a derivably equal normal form q that is a closed BSP(A)-term, thus
completing the proof.

Now that it has been established that the additions to the basic process theory
have not increased expressiveness, it is time to consider conservativity. Besides

96 Basic process theory

the addition of operators to the signature of the process theory, also axioms
(involving these operators) have been added. Thus, the collection of proofs
in the process theory has grown. Nevertheless, it can be shown that theory
(BSP+PR)(A) is a conservative ground-extension of BSP(A). That is, it is not
possible to obtain new equalities between BSP(A)-terms despite the addition
of the extra axioms. Figure 4.5 extends Figure 4.2 to include this conserva-
tivity result; it also includes conservativity results for theory (MPT+ PR)(A),
which however are not explicitly formulated (see Exercise 4.5.7). Note that the
combined elimination and conservativity results imply that the term models of
BSP(A) and (BSP + PR)(A) have in fact the same number of processes.

MPT(A)
PR2-PR5−−−−−−→ (MPT + PR)(A)⏐⏐⏐�

⏐⏐⏐�PR1

BSP(A)
PR1-PR5−−−−−−→ (BSP + PR)(A)

Fig. 4.5. Conservativity results for (MPT + PR)(A) and (BSP + PR)(A).

x + x → x
x + 0 → x
πn(1)→ 1
πn(0)→ 0
π0(a.x)→ 0
πn+1(a.x)→ a.πn(x)
πn(x + y)→ πn(x)+ πn(y)

t

u

v

wp q

r

Fig. 4.6. Conservativity of the extension of BSP(A) with projection.

Theorem 4.5.3 (Conservative ground-extension) Theory (BSP+ PR)(A) is
a conservative ground-extension of process theory BSP(A).

Proof There are several ways to prove the above theorem. Two pos-
sibilities are outlined. The first possibility provides the most insight, whereas
the second possibility is often technically more convenient.
Consider Definition 2.2.19 (Conservative ground-extension). Since the signa-
ture and axioms of theory (BSP + PR)(A) contain the signature and axioms

4.5 Projection 97

of BSP(A), the ground-extension requirement is satisfied. Thus, it remains to
prove that, for closed BSP(A)-terms p and q , (BSP+PR)(A) � p = q implies
BSP(A) � p = q. Assume that (BSP + PR)(A) � p = q; it must be shown
that BSP(A) � p = q . In other words, a derivation in (BSP+PR)(A)must be
transformed into a derivation in BSP(A).
The idea of the proof is visualized in Figure 4.6. The left part of this figure
shows the rules of a term rewriting system, which correspond to the axioms
of theory (BSP + PR)(A) read from left to right, excluding Axioms A1 (com-
mutativity of choice) and A2 (associativity). The solid arrows in the right part
of the figure visualize a derivation showing that p equals q. A downward ar-
row corresponds to a part of the derivation in which axioms are applied in the
left-to-right direction, conform the rewrite rules in the left part of the figure,
whereas an upward arrow corresponds to the application of axioms in the right-
to-left direction. For the sake of simplicity, terms that differ only with respect
to commutativity and associativity of choice are considered equal. Clearly, any
derivation in (BSP + PR)(A) is of the form depicted in the figure.
Returning to the term rewriting system given in the figure, it can be shown that
it is both strongly normalizing (see Definition 2.4.6) and confluent (see Defi-
nition 2.4.7), for the latter assuming that terms that differ only with respect to
associativity and commutativity of choice may be considered equivalent. The
proof of the confluence property uses the theory of term rewriting modulo a
congruence relation. The reader interested in details is referred to (Dershowitz
& Jouannaud, 1990). The confluence of the term rewriting system has some
important consequences. Consider, for example, point t in Figure 4.6. It fol-
lows from the explanation of the meaning of the solid arrows given above that
it is possible to rewrite t both into p and into u. Thus, the confluence property
implies that it must be possible to rewrite both p and u into a single term r , as
depicted by the dashed arrows in the figure. The strong-normalization property
implies that r can be chosen to be a normal form. Next, consider term v. It
is clear that it can be rewritten into r via u; it can also be rewritten into w.
Thus, due to the confluence property, it must be possible to rewrite r and w
into a common term. Since r is a normal form, this common term must be r ,
which explains the dashed arrow from w to r . Using similar reasoning, it can
be shown that, in the end, also q can be rewritten into r .
It remains to show how this result can be used to turn the (BSP + PR)(A)
derivation from p to q into a BSP(A) derivation. An important observation
is that none of the rewrite rules introduces a projection operator and that both
p and q are BSP(A)-terms and thus do not contain projection operators. An
immediate consequence is that the dashed arrows from p to r and from q to
r correspond to BSP(A) derivations. Clearly, the two derivations can be com-

98 Basic process theory

bined into one derivation showing that BSP(A) � p = q and completing the
proof.
The second, technically more convenient way to prove the conservativity the-
orem builds upon the framework of Chapter 3. An interesting observation is
that this proof uses soundness and ground-completeness results with respect to
the term models for BSP(A) (see Section 4.3) and (BSP+PR)(A) (see below),
whereas the above proof is independent of any given model.
The desired conservativity result is a direct consequence of the application of
Theorem 3.2.21 (Conservativity). It uses the facts that BSP(A) is a ground-
complete axiomatization of the term model P(BSP(A))/↔ (Theorem 4.4.12),
that (BSP + PR)(A) is a sound axiomatization of the term model P((BSP +
PR)(A))/↔ (see Theorem 4.5.8 below), and that TDS((BSP + PR)(A)) (see
Table 4.6 below) is an operational conservative extension of TDS(BSP(A)),
as defined in Definition 3.2.16. This last fact follows immediately from the
format of the deduction rules in Tables 4.2, 4.4 and 4.6, and Theorem 3.2.19
(Operational conservative extension).

The following theorem shows an interesting application of projection oper-
ators. It proves that all closed (BSP + PR)(A)-terms have a finite depth, or in
other words, that processes specified by closed (BSP + PR)(A)-terms cannot
have unbounded executions. This implies among others that transition sys-
tems of closed (BSP + PR)(A)-terms cannot have cycles. Note that process
theories (BSP + PR)(A) and BSP(A) allow the same set of processes to be
specified (due to the elimination theorem), and that MPT(A) allows a subset of
those processes to be specified. As a result, also in MPT(A) and BSP(A) only
processes with bounded-depth executions can be specified.

Theorem 4.5.4 (Bounded depth) For each closed (BSP + PR)(A)-term p,
there exists a natural number n such that for all k ≥ n,

(BSP + PR)(A) � πk(p) = p.

Proof Using Theorem 4.5.2 (Elimination), it suffices to prove the
desired property for closed BSP(A)-terms; see also Chapter 2, Example 2.2.21.
Thus, it suffices to show that, for each closed BSP(A)-term p1, there exists a
natural number n such that for all k ≥ n, (BSP+ PR)(A) � πk(p1) = p1. The
property is proven by induction on the structure of closed BSP(A)-term p1.

(i) Assume p1 ≡ 1. Choose n = 0 and observe that (BSP + PR)(A) �
πk(1) = 1 for all k ≥ 0.

(ii) Assume p1 ≡ 0. Choose n = 0 and observe that (BSP + PR)(A) �
πk(0) = 0 for all k ≥ 0.

4.5 Projection 99

(iii) Assume p1 ≡ a.q , for some a ∈ A and closed BSP(A)-term q. By
induction, there exists an m ∈ N such that (BSP+PR)(A) � πl(q) =
q for all l ≥ m. Choose n = m + 1. It must be shown that (BSP +
PR)(A) � πk(p1) = p1 for all k ≥ n. Observe that n ≥ 1. Thus, for
all k − 1 ≥ m and, hence, for all k ≥ n, (BSP+ PR)(A) � πk(p1) =
πk(a.q) = a.πk−1(q) = a.q = p1.

(iv) Assume p1 ≡ q1 + q2 for some closed BSP(A)-terms q1 and q2.
By induction, there exist m1 and m2 such that (BSP + PR)(A) �
πl1(q1) = q1 and (BSP + PR)(A) � πl2(q2) = q2 for all l1 ≥ m1

and l2 ≥ m2. Choose n to be the maximum of m1 and m2: n =
max(m1,m2). Then, for all k ≥ max(m1,m2) = n, (BSP+PR)(A) �
πk(p) = πk(q1 + q2) = πk(q1)+ πk(q2) = q1 + q2 = p.

It remains to construct a model of theory (BSP+ PR)(A). The model given
in the remainder of this section is a term model, similar to the term model of
BSP(A) given in Section 4.4. The first step is to define the term algebra of
closed (BSP + PR)(A)-terms.

Definition 4.5.5 (Term algebra) The term algebra for (BSP + PR)(A) is the
algebra P((BSP+PR)(A)) = (C((BSP+PR)(A)),+, (πn)n∈N, (a.)a∈A, 0, 1).

The next step in the construction of a model is to turn the set of closed terms
C((BSP+PR)(A)) into a transition-system space. The sets of states and labels
are the sets of closed terms C((BSP + PR)(A)) and actions A, respectively.
The termination predicate and the ternary transition relation are defined via the
term deduction system in Table 4.6, which extends the term deduction systems
in Tables 4.2 and 4.4. In other words, the termination predicate and the transi-
tion relation are the smallest set and relation satisfying the deduction rules in
Tables 4.2, 4.4 and 4.6.

TDS((BSP + PR)(A))
TDS(BSP(A));
unary: (πn)n∈N;
x, x ′;

x↓
πn(x)↓

x
a→ x ′

πn+1(x)
a→ πn(x ′)

Table 4.6. Term deduction system for (BSP + PR)(A) (with a ∈ A).

The term deduction system for (BSP+PR)(A) has two extra deduction rules

100 Basic process theory

when compared to the term deduction system for BSP(A). The first rule im-
plies that any closed term πn(p) has a termination option exactly when closed
term p has. This expresses the fact that projection does not influence termina-
tion. The second rule assumes that some closed term p can execute an action a
thereby transforming into some other closed term p′ as a result. It then states
that the execution of an action by a closed term πm(p) with m ∈ N is allowed
if, and only if, the subscript of the projection operator m is not zero. Since the
execution of an action increases the actual depth of a process by one, the result
of the execution is term πm−1(p′), i.e., closed term p′ up to depth m minus
one. The resulting term model is the term algebra of Definition 4.5.5 modulo
bisimilarity.

Proposition 4.5.6 (Congruence) Bisimilarity is a congruence on term algebra
P((BSP + PR)(A)).

Proof The property follows immediately from the format of the de-
duction rules given in Tables 4.2, 4.4 and 4.6 (see Theorem 3.2.7 (Congruence
theorem)).

Definition 4.5.7 (Term model of (BSP + PR)(A)) The term model of (BSP+
PR)(A) is the quotient algebra P((BSP + PR)(A))/↔ .

Theorem 4.5.8 (Soundness) Theory (BSP + PR)(A) is a sound axiomatiza-
tion of the algebra P((BSP + PR)(A))/↔ , i.e., P((BSP + PR)(A))/↔ |

(BSP + PR)(A).

Proof According to Definition 2.3.8 (Model), it must be shown that,
for each axiom s = t of (BSP + PR)(A), P((BSP + PR)(A))/↔ |
 s = t .
The proof for the axioms of BSP(A) carries over directly from the proof of
Theorem 4.4.7 (Soundness of BSP(A)) and Exercise 4.4.4. The proof for the
axioms that are new in (BSP+ PR)(A) goes along the same lines and is left as
Exercise 4.5.5.

Having soundness, the question is addressed whether or not the axiomati-
zation is also ground-complete. It turns out that this is the case. Informally,
the ground-completeness of (BSP + PR)(A) follows from the fact that the
addition of the projection operators to the basic theory BSP(A) does not in-
crease the set of processes that can be expressed and the ground-completeness
of BSP(A). There are two straightforward ways for proving the result for-
mally. First, it is possible to apply Theorem 3.2.26 (Ground-completeness),
which is a meta-result applicable to models fitting the operational framework

Exercises 101

of Chapter 3. However, the ground-completeness result also follows in a fairly
straightforward way from the basic results developed in this chapter, namely
the elimination theorem (Theorem 4.5.2), the conservativity theorem (Theo-
rem 4.5.3), and the ground-completeness of BSP(A) (Theorem 4.4.12). For
illustration purposes, both proofs are given below.

Theorem 4.5.9 (Ground-completeness) The process theory (BSP + PR)(A)
is a ground-complete axiomatization of the term model P((BSP+PR)(A))/↔ ,
i.e., for any closed (BSP + PR)(A)-terms p and q , P((BSP + PR)(A))/↔ |

p = q implies (BSP + PR)(A) � p = q .

Proof The first way to prove the desired result is the application
of Theorem 3.2.26 (Ground-completeness). In the proof of Theorem 4.5.3
(Conservative ground-extension), it has already been established that the two
theories (BSP + PR)(A) and BSP(A) and their associated deduction systems
and models satisfy the conditions of Theorem 3.2.21 (Conservativity). Thus,
Theorem 4.5.2 (Elimination) immediately gives the desired result.

The second proof builds on the basic results for theories (BSP + PR)(A) and
BSP(A) directly, without resorting to the meta-results of Chapter 3. Let p and
q be closed (BSP + PR)(A)-terms. Suppose that P((BSP + PR)(A))/↔ |

p = q. Then, by definition, p↔q . By Theorem 4.5.2 (Elimination), there
exist closed BSP(A)-terms p1 and q1 such that (BSP + PR)(A) � p = p1

and (BSP + PR)(A) � q = q1. This implies p↔ p1 and q↔q1. Since bisim-
ilarity is an equivalence (Theorem 3.1.13), the fact that p↔q, p↔ p1, and
q↔q1 implies that p1↔q1. From the facts that p1 and q1 are closed BSP(A)-
terms and that BSP(A) is a ground-complete axiomatization of the term model
P(BSP(A))/↔ , it follows that BSP(A) � p1 = q1 (Corollary 4.4.13). Since
(BSP+PR)(A) is a conservative ground-extension of BSP(A) (Theorem 4.5.3)
and since p1 and q1 are closed BSP(A)-terms, it follows that (BSP+PR)(A) �
p1 = q1. Combining results yields that (BSP + PR)(A) � p = p1 = q1 = q,
completing the proof.

Exercises

4.5.1 Let p be the closed term a.(b.1+ c.d.0)+ a.b.1. Calculate πn(p) (as
a closed BSP(A)-term) for all n ≥ 0.

4.5.2 Prove that, for all closed (BSP+PR)(A)-terms p, it holds that (BSP+
PR)(A) � π0(p) = 1 if and only if (BSP+ PR)(A) � p = p + 1 and
that (BSP + PR)(A) � π0(p) = 0 otherwise.

102 Basic process theory

4.5.3 Prove that the term rewriting system that is given in the proof of
Theorem 4.5.2 (Elimination) is strongly normalizing.
(Hint: use induction on the total number of symbols that occur in the
term that is the operand of the projection operator.)

4.5.4 Give an inductive proof of Theorem 4.5.2 (Elimination).
(Hint: difficult.)

4.5.5 Complete the proof of Theorem 4.5.8 (Soundness) by proving the
validity of Axioms PR1 through PR5 of Table 4.5.

4.5.6 Prove by structural induction that for all closed BSP(A)-terms p and
all natural numbers n,m ≥ 0 the following holds:

(BSP + PR)(A) � πn(πm(p)) = πmin(n,m)(p).

4.5.7 Starting from theory MPT(A), develop the theory (MPT + PR)(A).
That is, define the equational theory (MPT+ PR)(A), prove an elim-
ination and a conservativity result, and give a term model proving
soundness and ground-completeness. Also, prove that theory (BSP+
PR)(A) is a conservative ground-extension of (MPT + PR)(A).

4.6 Prefix iteration

Recall Theorem 4.5.4 (Bounded depth). A consequence of that theorem is the
fact that none of the process theories considered so far allows us to specify
behavior with unbounded depth. Most example processes that will be consid-
ered in the following chapters have unbounded depth. Thus, it is interesting
to investigate extensions of basic process theory that remove this bounded-
ness restriction. This section extends the process theory BSP(A) with prefix
iteration. This will constitute a limited instantiation of much more general con-
structs to be discussed in the following chapter. For each action a ∈ A, a new
unary operator a∗ called a prefix-iteration operator is added to the signature
of BSP(A). The process a∗x can execute a any number of times before starting
the execution of x . Note that this construction indeed allows unbounded-depth
behavior; for instance, a∗0 will execute a an unbounded number of times.

The extension of BSP(A) with prefix-iteration operators is called BSP∗(A).
The axioms of BSP∗(A) are the axioms of BSP(A) plus Axioms PI1 and PI2
given in Table 4.7. These axioms, and their names, are taken from (Fokkink,
1994). The first axiom explains that a process a∗x has a choice between ex-
ecuting a and repeating itself, and executing x . The second axiom expresses
idempotency of prefix iteration, i.e., allowing two iterations before continuing
with x is the same as allowing only one iteration.

It is straightforward to extend the term model of theory BSP(A) to a model

4.6 Prefix iteration 103

BSP∗(A)
BSP(A);
unary: (a∗)a∈A;
x;

a.(a∗x)+ x = a∗x PI1
a∗(a∗x) = a∗x PI2

Table 4.7. The process theory BSP∗(A).

of BSP∗(A). The closed BSP∗(A)-terms with the signature of theory BSP∗(A)
form the term algebra P(BSP∗(A)). This term algebra can be turned into a term
model for BSP∗(A) via the deduction system given in Table 4.8. Compared to
the deduction system for theory BSP(A) (see Tables 4.2 and 4.4), it contains
three new deduction rules, all three for prefix-iteration operators. The first
prefix-iteration rule implies that a closed term a∗ p can execute action a an
arbitrary number of times. The other two rules state that closed term a∗ p can
mimic the behavior (action execution and termination) of closed term p.

TDS(BSP∗(A))
TDS(BSP(A));
unary: (a∗)a∈A;
x, x ′;

a∗x
a→ a∗x

x
b→ x ′

a∗x
b→ x ′

x↓
a∗x↓

Table 4.8. Term deduction system for BSP∗(A) (with a, b ∈ A).

Example 4.6.1 (Transition systems) The transition systems that can be asso-
ciated with terms a∗1, a∗0, and a∗(b.1) are given in Figure 4.7. Note that
transition systems induced by closed BSP∗(A)-terms are still regular, but now,
loops from a node to itself can occur. The relationship between (closed terms
in) equational theories and regular transition systems is addressed in more
detail in the next chapter. One of the results given in that chapter is an equa-
tional theory that precisely captures all regular transition systems.

Proposition 4.6.2 (Congruence) Bisimilarity is a congruence on term algebra
P(BSP∗(A)).

104 Basic process theory

a a a

b

Fig. 4.7. Transition systems of a∗1, a∗0, and a∗(b.1).

Proof Using Theorem 3.2.7 (Congruence theorem), the property fol-
lows immediately from the format of the deduction rules given in Tables 4.2,
4.4 and 4.8.

Theorem 4.6.3 (Soundness) The process theory BSP∗(A) is a sound axiom-
atization of the algebra P(BSP∗(A))/↔ .

Proof Exercise 4.6.2.

In contrast with the extension of the process theory BSP(A) with projection
operators, the extension with prefix iteration actually allows to define more
processes. It is not possible to prove an elimination result similar to Theo-
rem 4.5.2 (Elimination). It is possible though to prove a conservativity result,
which implies that in the extended theory BSP∗(A) it is not possible to prove
any equalities between closed BSP(A)-terms that cannot be proven in BSP(A).

Theorem 4.6.4 (Conservative ground-extension) Theory BSP∗(A) is a con-
servative ground-extension of process theory BSP(A).

Proof The result follows immediately from Theorem 3.2.21 (Con-
servativity) and the facts that BSP(A) is a ground-complete axiomatization of
the term model P(BSP(A))/↔ (Theorem 4.4.12), that BSP∗(A) is a sound
axiomatization of P(BSP∗(A))/↔ , and that TDS(BSP∗(A)) is an operational
conservative extension of TDS(BSP(A)) (Table 4.4). This last fact is a direct
consequence of the format of the deduction rules in Tables 4.2, 4.4 and 4.8,
and Theorem 3.2.19 (Operational conservative extension).

Figure 4.8 visualizes the conservativity result proven by Theorem 4.6.4. For
the sake of completeness, it also shows conservativity results regarding the

4.6 Prefix iteration 105

MPT(A)
PI1,PI2−−−−−→ MPT∗(A)⏐⏐⏐�

⏐⏐⏐�
BSP(A)

PI1,PI2−−−−−→ BSP∗(A)

Fig. 4.8. Conservativity results for MPT∗(A) and BSP∗(A).

theory MPT∗(A), the minimal process theory of Section 4.2 extended with
prefix iteration. The details of this theory and the conservativity results do not
play a role in the remainder and are therefore omitted.

It still remains to support the claim, made in the introduction to this sec-
tion, that the extension of BSP(A) with prefix iteration allows us to describe
unbounded processes. Consider the extension of theory BSP∗(A) with projec-
tion operators, i.e., the theory (BSP∗ + PR)(A). Details of this extension are
straightforward and left to the reader; see Exercise 4.6.3. The extension allows
us to introduce a notion of boundedness for process terms, following the idea
of Theorem 4.5.4 (Bounded depth).

Definition 4.6.5 (Bounded depth) Let p be a closed (BSP∗ + PR)(A)-term.
Term p has a bounded depth if and only if there exists a natural number n such
that for all k ≥ n,

(BSP∗ + PR)(A) � πk(p) = p.

Note that this definition introduces a notion of boundedness for all process
theories introduced so far, because theory (BSP∗ + PR)(A) contains all other
theories.

Notation 4.6.6 (n-fold action prefix) For any atomic action a ∈ A, any natu-
ral number n, and any term x , the term an x denotes the n-fold application of
the action-prefix operator a. to x . An inductive definition is as follows:

a0x = x, and, for all n ∈ N,
an+1x = a.an x .

Example 4.6.7 ((Un-)boundedness) Let a be an action in A. Consider the
process term a∗0. It can easily be established that, for all natural numbers
n ∈ N,

(BSP∗ + PR)(A) � πn(a
∗0) = an0. (4.6.1)

106 Basic process theory

The proof is left as an exercise (see Exercise 4.6.5).
Since all the finite projections of a∗0 are different, by Definition 4.6.5, it

cannot have bounded depth. To see this, assume that there is a natural number
n such that for all k ≥ n, (BSP∗ + PR)(A) � πk(a∗0) = a∗0. It then follows
from property (4.6.1) that, for all k ≥ n, (BSP∗+PR)(A) � ak0 = a∗0, which
in turn implies that for all k, l ≥ n with k �= l, (BSP∗ + PR)(A) � ak0 = al0.
This contradicts the fact ak0 and al0 correspond to different processes in the
term model P(BSP∗(A))/↔ . Hence, a∗0 has unbounded depth.

Note that by Theorem 4.5.4 (Bounded depth) all closed (BSP + PR)(A)-
terms are bounded according to Definition 4.6.5. Thus, this example illustrates
that the extension of BSP(A)with prefix iteration is a true extension that allows
to describe unbounded-depth processes, as already claimed informally in the
introduction to this section.

This section ends with a ground-completeness result.

Theorem 4.6.8 (Ground-completeness) Process theory BSP∗(A) is a ground-
complete axiomatization of the term model P(BSP∗(A))/↔ .

Proof The proof is a straightforward adaptation of the proof given in
(Fokkink, 1994) for a theory similar to BSP∗ but without empty process.

As a final remark, it is important to note that prefix iteration can be seen
as a simple form of recursion, as process a∗ p can be seen as the solution of
the recursive equation X = a.X + p. The next chapter is fully devoted to
recursion.

Exercises

4.6.1 Draw the transition system of the following closed BSP∗(A)-terms:

(a) a∗b∗1,

(b) a∗(b∗0 + c.1), and

(c) a∗b.c∗0

(with a, b, c ∈ A).

4.6.2 Prove Theorem 4.6.3 (Soundness).

4.6.3 Develop the theory (BSP∗+PR)(A). That is, define (BSP∗+PR)(A)
by extending BSP∗(A) with the projection operators and axioms of
Table 4.5, prove elimination and conservativity results, and give a
term model proving soundness and ground-completeness.

4.7 Bibliographical remarks 107

4.6.4 Define by induction a series of closed BSP(A)-terms (pn)n∈N such
that, for all n ∈ N, (BSP∗ + PR)(A) � πn(a∗1) = pn .

4.6.5 Recall Notation 4.6.6 (n-fold action prefix).

(a) Prove that, for all natural numbers n ∈ N, (BSP + PR)(A) �
πn(an+10) = an0.

(b) Prove that, for all natural numbers n ∈ N, (BSP∗ + PR)(A) �
πn(a∗0) = an0.

4.6.6 Consider the so-called proper iteration operators a⊕ , with a an ac-
tion in A. The process described by a⊕x , for some term x , is the
process that executes a a number of times, but at least once, and then
continues as the process described by x . Give deduction rules for the
transition relations

a→ and the termination predicate ↓ that spe-
cify the expected operational semantics of proper iteration. Give also
axioms for proper iteration without using prefix iteration. Finally, ex-
press proper iteration in terms of action prefix and prefix iteration,
and express prefix iteration in terms of proper iteration.
(Hint: difficult.)

4.7 Bibliographical remarks

Minimal Process Theory is the same as basic CCS, see e.g. (Hennessy & Mil-
ner, 1980). The inaction constant is denoted 0 or nil. The present formulation
of MPT is the theory MPA, minimal process algebra, from (Baeten, 2003). It
is a subtheory of the theory BPAδ , Basic Process Algebra with inaction, of
(Bergstra & Klop, 1984a). In both of these theories, the inaction constant is
denoted δ. The system was called FINTREE in (Aceto et al., 1994). The
summand relation of Exercise 4.2.3 can be found in (Bergstra & Klop, 1985).

The material of Section 4.3 is based on (Van Glabbeek, 1987). Section 4.4
again follows (Baeten, 2003). The addition of the empty process 1 in ACP-
style process algebra originates in (Koymans & Vrancken, 1985), and was
continued in (Vrancken, 1997), (Baeten & Van Glabbeek, 1987). In all of
these papers, the empty process is denoted ε. In CSP, the empty process is
written SKIP; see (Hoare, 1985).

The theory BPA (Basic Process Algebra) of Bergstra and Klop (Bergstra &
Klop, 1982) (later published as (Bergstra & Klop, 1992)), (Bergstra & Klop,
1984a; Bergstra & Klop, 1985) is related to BSP as follows: BPA has constants
a for each atomic action a, which in BSP would be represented as a.1; further-
more, BPA has general sequential composition, introduced in the framework
of this book in Chapter 6.

108 Basic process theory

The operational semantics of BSP has an action relation and a termination
predicate; there is no need for a mixed relation

a→ √
as in (Baeten & Weij-

land, 1990) or (Baeten & Verhoef, 1995).
The material on presence and absence of deadlocks is based on (Baeten &

Bergstra, 1988). Projection operators appear in many process algebras, see e.g.
(De Bakker & Zucker, 1982b; Bergstra & Klop, 1982). Conservativity of the
(ground-)extension is addressed e.g. in (Baeten & Verhoef, 1995).

Section 4.6 discusses an iteration operator. The origin of such an operator,
and the star notation, dates back to (Kleene, 1956). The article (Copi et al.,
1958) introduced a unary variant of Kleene’s operator, and later, (Bergstra
et al., 1994) went back to the binary variant (in the absence of the empty
process 1). With the constants 0 and 1, there is no finite ground-complete
axiomatization for iteration modulo bisimulation (Sewell, 1997), which led to
the consideration of restricted iteration operators like the prefix iteration intro-
duced in this chapter, see (Fokkink, 1994) and (Aceto et al., 1998). A general
(unary) iteration operator in the context of this book is discussed in Section
6.5. An overview of iteration concepts in a process-algebraic context is given
in (Bergstra et al., 2001).

5

Recursion

5.1 Introduction

Section 4.6 has introduced operators for describing unbounded processes. The
collection of unbounded processes that can be described using the syntax pre-
sented so far is, however, still very limited. For example, it is not possible
to describe the process given as a transition system in Figure 5.1: it executes
an action a followed by a b any number of times before continuing with the
execution of c. To extend the expressiveness of the algebraic framework devel-
oped up to this point, so that it is possible to describe more realistic processes,
this chapter investigates the notion of recursion.

b

a
c

Fig. 5.1. Transition system that cannot be described by a process term so far.

Example 5.1.1 (Coffee machine) Consider a simple coffee machine that op-
erates as follows: after the insertion of a quarter by a client, a cup of coffee
is dispensed. A description of such a coffee machine (called SCM) could be
given as follows:

SCM = quarter.coffee.1,

where the atomic action quarter represents the insertion of a quarter and the
atomic action coffee represents the handing out of coffee. An objection to

109

110 Recursion

this description is that after one cup of coffee has been dispensed no coffee is
handed out ever again. A better description therefore would be the following
equation:

SCM = quarter.coffee.SCM.

In this equation, the object to be described, namely the simple coffee machine,
is represented by a variable, namely SCM, that occurs not only as the left-hand
side of the equation but again in the right-hand side of the equation. Such an
equation is called a recursive equation and a variable such as SCM is called a
recursion variable.

A set of recursive equations (that satisfies some simple requirements to be
detailed below) is called a recursive specification. In the remainder of this
chapter, an extension of the process theory BSP(A) with recursive specifica-
tions is presented. Recursion is needed in any practical algebraic framework.
It turns out that with recursive specifications, in principle, any process can be
described.

5.2 Recursive specifications

Definition 5.2.1 (Recursive specification) Let � be a signature and let VR

be a set of recursion variables. A recursive equation over � and VR is an
equation of the form X = t where X is a recursion variable from VR and t
is a term over the signature � in which no other variables than those from VR

occur. A recursive specification E over� and VR is a set of recursive equations
that contains precisely one recursive equation X = t over � and VR for each
recursion variable X from VR . To denote the set of all recursion variables in
specification E notation VR(E) is used.

The reader familiar with fixed point equations may recognize that recursive
specifications are nothing but sets of fixed point equations. However, in the
context of process algebra, the terminology recursive specification is preferred.

Observe from the above definition that recursion variables can be used in
terms (see Definition 2.2.3) just like ordinary variables. However, recursion
variables are not the same as ordinary variables. Intuitively, a recursion vari-
able is meant to specify some specific process of interest, whereas ordinary
variables are meant to denote arbitrary processes. To emphasize the special
role of recursion variables, they are usually written with capitals. In the re-
mainder, the role of recursion variables is investigated in some more detail.
The signature and/or the set of recursion variables are often left implicit when
they are clear from the context.

5.2 Recursive specifications 111

Example 5.2.2 (Recursive specifications) Let A be the set of actions that in-
cludes a, b, c, and d . The following are examples of recursive specifications:

(i) E1 = {X = a.(b.1 + c.d.0)}. The only recursion variable is X .
Observe that X does not appear in the right-hand side of the recursive
equation. Nevertheless, although no recursion is present, the equation
still is a recursive equation according to Definition 5.2.1.

(ii) E2 = {X = a.(b.X + c.0)}. Again, X is the only recursion variable.
It does occur in the right-hand side of the recursive equation.

(iii) E3 = {X = a.Y, Y = b.X + a.Y }. This recursive specification has
two recursion variables, namely X and Y .

(iv) E4 = {X0 = a.X1, Xi+1 = a.Xi+2 + b.Xi | i ∈ N}. This recursive
specification has an infinite number of recursion variables, namely
X0, X1,

Example 5.2.3 (Recursive specifications) Intuitively, the transition system
of Figure 5.1 can be specified by recursion variable X of the recursive speci-
fication E = {X = a.Y + c.0,Y = b.X}. Alternatively, the process can be
specified by recursion variable Z in the recursive specification E ′ = {Z =
a.b.Z + c.0}. Of course, it remains to formalize the claims that these recursive
specifications represent the transition system of Figure 5.1. In other words, an
operational semantics for recursive specifications in terms of transition systems
is needed. Such a semantics is given in Section 5.4.

In deriving equalities between terms in a process theory with recursion,
it seems natural to use the equations of recursive specifications as ordinary
axioms. Actually, under certain assumptions, they are axioms. A recursive
specification can be seen as an extension of some given process theory. The re-
cursion variables should then be interpreted as constants in the signature of this
process theory. This corresponds to the intuition that a recursion variable spec-
ifies a specific process in a model of the theory. Recall that the construction
of a model of an equational theory from some algebra requires that constants
from the signature of the theory are mapped onto precisely one element in the
domain of the algebra (Definitions 2.3.6 (Validity) and 2.3.8 (Model)). Let E
be some recursive specification. Table 5.1 gives the process theory BSP(A)
extended with E .

Example 5.2.4 (Derivations) Consider the recursive specification E = {X =
a.Y, Y = b.X}. Theory (BSP + E)(A) can be used to derive equation X =
a.(b.X) as

(BSP + E)(A) � X = a.Y = a.(b.X).

112 Recursion

(BSP + E)(A)
BSP(A);
constant: (X)X∈VR(E);

(X = t)X=t∈E R

Table 5.1. The process theory (BSP + E)(A).

This result can, in turn, be used in for example the following derivation. For
readability, redundant parentheses are omitted.

(BSP + E)(A) � X = a.b.X = a.b.a.b.X.

Notation 5.2.5 (Recursion variables) Sometimes, it is desirable to empha-
size the fact that recursion variables should be interpreted as constants, or it
is necessary to explicitly provide the recursive specification in which a recur-
sion variable occurs. Notation µX.E denotes recursion variable X interpreted
as a constant as defined by recursive specification E .

Notation 5.2.6 (Process theories with recursion) Table 5.1 shows the exten-
sion of a process theory with a single recursive specification. It is convenient
to have a notation for a process theory extended with all recursive specifica-
tions of potential interest. In such a case, a subscript rec is used. For example,
process theory BSP(A) extended with arbitrary recursive specifications of in-
terest is denoted BSPrec(A). The set of all recursive specifications of interest
is denoted Rec.

Exercises

5.2.1 A man is playing a game of Russian roulette. After pulling the trigger
of the gun either a bang or a click follows. This game is repeated until
the man dies due to the occurrence of a bang. Describe the process
of playing this game with a recursive specification. Use the following
atomic actions in the description:

• t for pulling the trigger;
• b for hearing a bang;
• c for hearing a click;
• d for the act of dying.

In this description, you can assume that the man is alive when he starts
playing.

5.3 Solutions of recursive specifications 113

5.2.2 A more complicated vending machine than the one described in Ex-
ample 5.1.1 (Coffee machine) charges 25 cents for coffee and 20 cents
for hot chocolate. The machine accepts the following coins: 5 cents,
10 cents, and 20 cents. Give a recursive specification for this vending
machine. In order to do this, several questions must be answered. For
instance: Is it allowed to insert too much money? Can coins be in-
serted in arbitrary order? Can coins be inserted simultaneously? Can
the machine ever terminate? Pay attention to the moments at which
choices are made.

5.2.3 Consider a vending machine for refreshing drinks (coffee is not con-
sidered to be such a drink). This machine accepts 5 cent, 10 cent, and
20 cent coins only. The customer has to pay 25 cents for a refresh-
ment. When a wrong coin is inserted, it is rejected by the machine.
Sometimes the machine does not accept a good coin. Describe this
vending machine using the following atomic actions:

• 5 for inserting a 5 cent coin;
• 10 for inserting a 10 cent coin;
• 20 for inserting a 20 cent coin;
• re for rejecting a wrong coin;
• a for accepting a coin;
• na for not accepting a good coin;
• r for returning a refreshment.

5.3 Solutions of recursive specifications

An operational semantics for a process theory with recursive specifications
is, as before, based on a model built from transition systems. That is, it is an
algebra of transition systems modulo bisimilarity. The semantics of a recursive
specification in such a model is then a set of processes from the domain of this
model, one for each recursion variable in the specification, that validates the
equations in the specification when interpreted in the model. Such a set of
processes is called a solution of the recursive specification. Before turning to
the construction of a term model for BSP(A)with recursion in the next section,
the concept of solutions is investigated in some more detail.

Definition 5.3.1 (Solution) Let T be a process theory with signature �, let E
be a recursive specification over � and recursion variables VR , and let M be
a model of T with respect to interpretation ι. The signature consisting of �
and the variables in VR as additional constants is referred to as the extended

114 Recursion

signature. Let κ be an interpretation of this extended signature into algebra
M that is identical to ι for elements of �. Interpretation κ is a solution of
recursive specification E in M if and only if the equations from the recursive
specification are valid in the model under interpretation κ: M, κ |
 X = t for
any equation X = t ∈ E .

Most of the time, one of the recursion variables in E represents the process
of interest. In such cases, a process p in the domain of M is called a solution
of X if and only if there exists a solution κ of E such that κ(X) = p.

As an aside, recall that a recursive specification can be seen as a set of fixed
point equations. Consequently, solutions of recursive specifications are in fact
fixed points.

Example 5.3.2 (Solutions) Consider again recursive specification E ′ = {Z =
a.b.Z + c.0} of Example 5.2.3 (Recursive specifications). It has been men-
tioned that the transition system of Figure 5.1 is a solution for Z . Based on Def-
inition 5.3.1, it is only possible to talk about solutions in the context of some
basic equational theory and a model for this theory. Process theory BSP(A)
is our basic equational theory. For now, let us assume the existence of some
operational model for BSP(A) with as its domain equivalence classes of arbi-
trary transition systems (assuming bisimilarity as the equivalence). Under this
assumption, it is possible to prove the claim that the (equivalence class corre-
sponding to the) transition system of Figure 5.1 is a solution for Z by showing
that the transition system for the left-hand side of the equation Z = a.b.Z+c.0
equals (i.e., is bisimilar to) the transition system for the right-hand side of this
equation. The transition system for Z is the transition system of Figure 5.1;
the transition system for a.b.Z + c.0 can intuitively be constructed via the
semantics of BSP(A)-terms (see Section 4.4) and substitution of the transition
system for Z at the appropriate point, fusing the two deadlock states. The result
is shown in Figure 5.2. It is not difficult to see that the two transition systems
of Figures 5.1 and 5.2 are indeed bisimilar. The construction of a bisimulation
is left as Exercise 5.3.1.

At this point it is useful to consider the special role of recursion variables
in a bit more detail. It has already been mentioned that in the context of an
equational theory, they should be considered as constants. Nevertheless, they
are called recursion variables, and, intuitively, they also behave like variables
in some aspects. Considering the above definition of a solution sheds some
light on these two faces of recursion variables. Recall that validity (Definition
2.3.6) requires a fixed interpretation for the constants and operators of an equa-
tional theory in the model under consideration, and an arbitrary interpretation

5.3 Solutions of recursive specifications 115

a b

b

a

c c

Fig. 5.2. A transition system for a.b.Z + c.0 using the transition system of
Figure 5.1 for Z .

for all the normal variables in a term. Definition 5.3.1 (Solution) shows that
a recursion variable can be interpreted in any way that satisfies the recursive
specification defining the recursion variable. In that sense, recursion variables
are in fact constrained variables that behave like variables in the context of a
recursive specification but turn into constants when added to the signature of
an equational theory.

A question that arises from the introduction of recursion is how to deal with
equality between recursion variables, possibly from different recursive speci-
fications. That is, when do two recursion variables specify the same process?

Example 5.3.3 (Equivalence of recursion variables) Consider the recursive
specifications E1 = {X1 = a.X1} and E2 = {X2 = a.a.X2}. It can be shown
that any solution of X1 is also a solution of X2. Assume that BSP(A) is the
basic equational theory, and that M with domain M is a model of BSP(A)
with interpretation ι. Suppose that process p taken from M is a solution for
recursion variable X1, i.e., there exists an interpretation κ1 of the signature of
BSP(A) plus recursion variable X1 consistent with interpretation ι such that
κ1(X1) = p. According to Definitions 5.3.1 (Solution) and 2.3.6 (Validity), it
follows that p =M κ1(X1) =M κ1(a.)(κ1(X1)) =M κ1(a.)(p) =M ι(a.)(p),
i.e., p =M ι(a.)(p). Let κ2 be the interpretation of the signature of BSP(A)
consistent with ι and of recursion variable X2 with κ2(X2) = p. It can be
shown that κ2 specifies a solution of X2. Using the previous result and the as-
sumption, it follows that κ2(X2) =M p =M ι(a.)(p) =M ι(a.)(ι(a.)(p)) =M

κ2(a.)(κ2(a.)(κ2(X2))), i.e., M, κ2 |
 X2 = a.a.X2. This shows that κ2, and
thus p, is indeed a solution of X2. Since p was chosen as an arbitrary solution
of X1, this proves that any solution of X1 is also a solution of X2.

Using equational reasoning, the fact that any solution of recursion variable
X1 is a solution of X2 can be achieved by deriving the equation defining X2 in

116 Recursion

recursive specification E2 with all occurrences of X2 replaced by X1 from the
equation defining X1 in E1 in the equational theory (BSP + E1)(A):

(BSP + E1)(A) � X1 = a.X1 = a.a.X1.

Note that this derivation does not assume that recursive specification E2 is
part of the equational theory. It is therefore not allowed to use the equation of
E2 as an axiom in the derivation. Despite the fact that E2 is not a part of the
equational theory, the above derivation proves a property of recursion variable
X2 of E2, namely that any solution of X1 is also a solution of X2.

The results derived thus far in this example do not yet mean that X1 and X2

have the same solutions. It can still be the case that there are solutions of X2

that are not solutions of X1. In fact, an attempt to prove (BSP+E2)(A)�X2 =
a.X2, which would imply that any solution of X2 is also a solution of X1, will
not be successful.

As an aside, the above example shows that equational theory BSP(A) allows
the derivation of a so-called conditional equation. The reasoning proves that
BSP(A) � X = a.X ⇒ X = a.a.X , for any action a and (recursion) variable
X . Note that, from the validity point of view, variable X can be interpreted
as a normal variable in this conditional equation. The equation has to be valid
for any interpretation of X , which emphasizes the special role of recursion
variables. This book does not study equational theories with conditional equa-
tions and axioms in detail. The interested reader is referred to, e.g., (Hussman,
1985).

An important consequence of the reasoning in the above example is the fol-
lowing useful theorem, stating that two recursive specifications E1 and E2

specify the same solutions if and only if there is a one-to-one mapping between
the recursion variables from E1 and E2 such that both E1 can be rewritten into
E2 with its variables replaced by the corresponding ones in E1 and E2 can be
rewritten into E1 with its variables substituted by those in E2. The theorem
uses the notion of substitution of variables of Definition 2.2.6 (Substitution)
overloaded to recursion variables (which are strictly speaking constants in the
context of an equational theory).

Theorem 5.3.4 (Equivalence of recursive specifications) Let E1 and E2 be
two recursive specifications over the signature of theory BSP(A). These two
specifications define the same solutions in any model of BSP(A) if and only if
there is a bijective substitution σ : VR(E1)→ VR(E2) with inverse σ−1 such
that, for all X2 = t2 ∈ E2, (BSP + E1)(A) � σ−1(X2) = t2[σ−1] and for all
X1 = t1 ∈ E1, (BSP + E2)(A) � σ(X1) = t1[σ].

5.3 Solutions of recursive specifications 117

Example 5.3.3 (Equivalence of recursion variables) illustrates some of the
subtleties of recursive specifications and their solutions. The main idea is that
a recursive specification defines a process that cannot be expressed as a closed
term. (Recall that the major purpose of recursive specifications is to extend
the expressiveness of basic process theories.) That is, in principle, a recur-
sive specification is usually expected to have a single solution. However, the
definitions of recursive specifications and their solutions allow that a recursive
specification has no solutions at all in some model of the basic process the-
ory under consideration, or that it has two or more different solutions. This is
illustrated by the following examples.

Example 5.3.5 (No solutions) Consider the following recursive specification:
E = {X = a.X}. In the term model for process theory BSP(A) given in Sec-
tion 4.4, namely the algebra of transition systems P(BSP(A))/↔ , this recur-
sive specification has no solutions. This can be seen as follows.

Suppose that some process p from the domain of P(BSP(A))/↔ is a so-
lution of X . The construction of the term model as a quotient algebra (see
Definition 2.3.18) implies that there exists a closed BSP(A)-term t such that p
is the equivalence class of t under bisimilarity: p = [t]↔ . In other words, t is
a representative of the equivalence class p. From Definition 5.3.1 (Solution),
it follows that there must be an interpretation κ such that κ(X) = p. The con-
struction of the term model P(BSP(A))/↔ and the interpretation of recursion
variable X as a constant imply that X must be a representative of equivalence
class p, and thus that X and t are representatives of the same equivalence class.

Consider term t again. As any closed BSP(A)-term is also a closed (BSP+
PR)(A)-term, by Theorem 4.5.4 (Bounded depth), there exists a natural num-
ber n such that (BSP+PR)(A) � πk(t) = t for all k ≥ n. Thus, the soundness
result of Theorem 4.5.8 implies that πk(t)↔t for all k ≥ n.

Next, recall the n-fold action prefix of Notation 4.6.6. It is not hard to prove
that (BSP + PR + E)(A) � πm(X) = am0 for any natural number m. Since
term t and constant X are representatives of the same equivalence class under
bisimilarity in the term model P(BSP(A))/↔ , it follows that πm(t)↔am0 for
any natural number m.

Combining the facts derived in the last two paragraphs means that it must
be the case that for all natural numbers k, l ≥ n, ak0↔πk(t)↔t↔πl(t)↔al0.
However, it is easily shown that the process terms ak0 and al0 are not bisimilar
for the cases that k �= l. Hence, a contradiction results, which implies that
there cannot be a process p in the algebra P(BSP(A))/↔ that is a solution of
E . Thus, this example shows that the algebra P(BSP(A))/↔ cannot be turned
into a model for (BSP + E)(A).

118 Recursion

The observation made at the end of the above example relates solutions to
models, and can be generalized as follows.

Theorem 5.3.6 (Solutions vs. models) A model M of BSP(A) has a solution
for a recursive specification E if and only if M is also a model of the extended
theory (BSP + E)(A).

Proof Given the definition of theory (BSP + E)(A) in Table 5.1,
the result immediately follows from Definitions 5.3.1 (Solution) and 2.3.8
(Model).

Example 5.3.7 (Multiple solutions) Consider recursive specification {X =
X}. For any process theory and any model M of that theory, each element
p of the domain M of that model is a solution for X . If M has at least two
elements, the recursive specification has at least two different solutions. Thus,
it does not uniquely define a process.

The first of the above examples indicates that there are recursive specifica-
tions that in some models of some given basic process theory do not have a
solution at all. In some sense, this is a desirable result, as the goal of intro-
ducing recursion is to increase expressiveness. The second example indicates
that in any model with two or more elements there is more than one solution
for some recursive specifications. When constructing a model for a process
theory with recursion, it is necessary to take these intricacies into account. It
should also be investigated under what conditions a recursive specification pre-
cisely defines one unique process. Section 5.5 addresses these issues in more
detail. First, the next section presents a term model for BSP(A) with recursive
specifications.

Exercises

5.3.1 Give a bisimulation relation between the two transition systems of
Figures 5.1 and 5.2.

5.3.2 Consider Example 5.3.2 (Solutions). Along the lines of this example,
provide a solution for recursion variable SCM defined in the recursive
specification of Example 5.1.1 (Coffee machine), including a correct-
ness argument.

5.3.3 Find in the term model P(BSP(A))/↔ two different solutions of the
recursive equation X = X + a.0.

5.3.4 Does the term model P(BSP(A))/↔ have a solution of the recursive
equation X = a.X + X?

5.4 The term model 119

5.3.5 Show that any solution of X from {X = Y, Y = a.X} is also a solution
of Z from {Z = a.W,W = a.Z}.

5.4 The term model

This section presents a term model for BSP(A) with recursion. Recall Nota-
tions 5.2.5 (Recursion variables) and 5.2.6 (Process theories with recursion).
Since recursion variables are interpreted as constants in the process theory
BSP(A) with recursion, that is, BSPrec(A), note that C(BSPrec(A)) denotes all
closed terms over the BSP(A) signature extended with all recursion variables
of potential interest.

Definition 5.4.1 (Term algebra) The term algebra for BSPrec(A) is the al-
gebra P(BSPrec(A)) = (C(BSPrec(A)),+, (a.)a∈A, (µX.E)E∈Rec,X∈VR(E),

0, 1).

Notation 5.4.2 (Solutions of terms) Let E be a recursive specification over a
set of recursion variables VR . For convenience, the notation µX.E for some
variable X in VR is generalized to µt.E for some arbitrary term t in C((BSP+
E)(A)). An inductive definition of this notation is given by:

(i) µ1.E = 1;
(ii) µ0.E = 0;

(iii) for any recursion variable X ∈ VR , µ(µX.E).E = µX.E ;
(iv) for any a ∈ A and t ∈ C((BSP + E)(A)), µ(a.t).E = a.(µt.E);
(v) for any s, t ∈ C((BSP + E)(A)), µ(s + t).E = µs.E + µt.E .

The termination predicate and the ternary transition relation in the transition-
system space underlying the model under construction are defined via the term
deduction system in Table 5.2, which extends the term deduction systems in
Tables 4.2 and 4.4. Essentially, the new deduction rules express that a solution
for a recursion variable in a recursive specification behaves as the right-hand
side of its defining recursive equation.

Proposition 5.4.3 (Congruence) Bisimilarity is a congruence on term algebra
P(BSPrec(A)).

Proof The property follows immediately from the format of the de-
duction rules given in Tables 4.2, 4.4, and 5.2, and Theorem 3.2.7 (Congruence
theorem).

120 Recursion

TDS(BSPrec(A))
TDS(BSP(A));
constant: (µX.E)E∈Rec,X∈VR(E);
y;

µt.E↓
µX.E↓

µt.E
a→ y

µX.E
a→ y

Table 5.2. Deduction rules for recursion (with a ∈ A and X = t ∈ E).

Definition 5.4.4 (Term model of BSPrec(A)) The term model of BSPrec(A) is
the quotient algebra P(BSPrec(A))/↔ .

Theorem 5.4.5 (Soundness of BSPrec(A)) Theory BSPrec(A) is a sound
axiomatization of P(BSPrec(A))/↔ , i.e., P(BSPrec(A))/↔ |
 BSPrec(A).

Proof According to Definition 2.3.8 (Model), it must be shown that,
for each axiom s = t of BSPrec(A), P(BSPrec(A))/↔ |
 s = t . The proof for
the axioms of BSP(A) carries over directly from the proof of Theorem 4.4.7
(Soundness of BSP(A)) and Exercise 4.4.4. The proof for the axioms that are
new in BSPrec(A), i.e., all the recursive equations in all recursive specifications
of interest, follows in a straightforward way from the deduction rules in Table
5.2. If X = t is some recursive equation in recursive specification E , then
R = {(µX.E, µt.E)} ∪ {(p, p) | p ∈ C(BSPrec(A))} is the bisimulation
relation showing the desired result.

Example 5.4.6 (Solutions in term models) Solutions of recursive equations
over the BSP(A) signature in the term model of BSPrec(A) are equivalence
classes of closed BSPrec(A)-terms under bisimilarity. Consider again recur-
sive specification E = {X = a.Y + c.0,Y = b.X} of Example 5.2.3. The
solution of X in the term model of BSPrec(A) is [µX.E]↔ . The solution of
Z of recursive specification E ′ = {Z = a.b.Z + c.0} of the same example is
[µZ .E ′]↔ . It is easy to show that µX.E↔µZ .E ′. Figure 5.3 shows the tran-
sition systems for µX.E and µZ .E ′. Hence, [µX.E]↔ = [µZ .E ′]↔ , which
means that X and Z specify the same process in the term model of BSPrec(A).
These results confirm the claims made in Example 5.2.3.

For reasons of brevity, it is often said that a closed BSPrec(A)-term is a
solution of some recursive specification over the BSP(A) signature, meaning
that the corresponding equivalence class under bisimilarity is a solution.

5.4 The term model 121

µX.E µY.E

0

b

ac

µZ .E ′ b.µZ .E ′

0

b

ac

Fig. 5.3. Transition systems for µX.E and µZ .E ′ of Example 5.4.6.

It is interesting to observe that the term model P(BSPrec(A))/↔ defines
specific solutions for every recursive specification in the theory BSPrec(A),
even for the ones that have multiple solutions. Recall that, following Defi-
nition 2.3.18 (Quotient algebra), the standard interpretation of constants and
functions of theory BSPrec(A) in the term model P(BSPrec(A))/↔ maps all
constants, including the constants corresponding to recursion variables, onto
their equivalence classes under bisimilarity, and each operator onto the corre-
sponding function in the term model. For the recursive specification {X = X},
for example, which has all processes in P(BSPrec(A))/↔ as solutions, the
standard interpretation in the term model maps X onto (the equivalence class
of) 0, because the term deduction system of Table 5.2 does not allow the
derivation of any steps or the successful termination of X . This observation is
consistent with the fact that any model of a process theory, and therefore also
any model of BSPrec(A), is always accompanied with an interpretation that
maps every closed term, and hence every recursion variable in the signature
of BSPrec(A), to precisely one process in the model. These observations once
again emphasize the dual role of recursion variables, as constrained variables
when considering solutions in some given model of the basic theory under
consideration and as constants when considering a model of the basic theory
extended with recursion.

It is not possible to give a general ground-completeness result for BSPrec(A)
and the term model introduced in this section, because in general it is not
guaranteed that the recursive equations capture all equalities between recursion
variables that are valid in the term model. The following example illustrates
this fact.

Example 5.4.7 (Ground-completeness of BSPrec(A)) Consider again Exam-
ple 5.3.3 (Equivalence of recursion variables). Assume that the set of recursive
specifications Rec equals {E1, E2}. It has been mentioned in Example 5.3.3

122 Recursion

that it is not possible to prove that the two recursion variables X1 and X2 al-
ways have the same solutions. Thus, in particular, it is not possible to prove that
BSPrec(A)� X1 = X2. However, in the term model constructed in this section,
the equality X1 = X2 is valid, i.e., P(BSPrec(A))/↔ |
 X1 = X2. The bisim-
ulation relation proving this is the relation {(X1, X2), (X1, a.X2)}. This simple
example proves that theory BSPrec(A) is in general not ground-complete for
the term model. Note that for specific instances of the set of recursive specifi-
cations Rec it may still be possible to obtain a ground-completeness result.

Given the results obtained so far, it is possible to prove that the extension
of BSP(A) with recursion is conservative. In other words, using the extended
theory, it is not possible to derive any new equalities between closed BSP(A)-
terms. Note that it is not possible to prove an elimination result; that is, it is in
general not possible to eliminate recursion variables from closed BSPrec(A)-
terms resulting in BSP(A)-terms. This last observation should not be very
surprising given the fact that recursion has been introduced in order to extend
the expressiveness of the process theory BSP(A). It is also possible to show
that BSPrec(A) is a conservative ground-extension of theory MPTrec(A), i.e.,
the minimal theory MPT(A) of Section 4.2 extended with recursion.

Theorem 5.4.8 (Conservative ground-extension) The theory BSPrec(A) is a
conservative ground-extension of theories BSP(A) and MPTrec(A).

Proof The desired conservativity result for theory BSP(A) follows
immediately from Theorem 3.2.21 (Conservativity), the fact that BSP(A) is a
ground-complete axiomatization of the term model P(BSP(A))/↔ (Theorem
4.4.12), the fact that BSPrec(A) is a sound axiomatization of P(BSPrec(A))/↔ ,
and the fact that TDS(BSPrec(A)) is an operational conservative extension of
TDS(BSP(A)) (Table 4.4). This last fact is a direct consequence of the format
of the deduction rules in Tables 4.2, 4.4 and 5.2, and Theorem 3.2.19 (Opera-
tional conservative extension).

For theory MPTrec(A), it is not possible to give a similar proof, because the-
ory MPTrec(A) is not a ground-complete axiomatization of the underlying
term model (see Example 5.4.7 and Exercise 5.4.3). Instead, the proof goes
along the lines of Theorem 4.4.1. The signature and axioms of BSPrec(A)
include the signature and axioms of MPTrec(A), implying that BSPrec(A) is a
(ground-)extension of MPTrec(A). Furthermore, since no axioms of BSPrec(A)
can introduce a completely new or entirely eliminate a 1 constant, any deriva-
tion in BSPrec(A) showing the equality of two closed MPTrec(A)-terms is in

Exercises 123

fact a derivation in MPTrec(A), which yields the desired conservativity result.

MPT(A)
recursion−−−−−−→ MPTrec(A)⏐⏐⏐�

⏐⏐⏐�
BSP(A)

recursion−−−−−−→ BSPrec(A)

Fig. 5.4. Conservativity results for MPTrec(A) and BSPrec(A).

Figure 5.4 shows the conservativity results for theory BSPrec(A). It also
shows that MPTrec(A) is a conservative ground-extension of MPT(A). The
proof is left as an exercise.

Exercises

5.4.1 For each of the following terms, give the transition system associated
with it by means of the deduction rules presented in this section.

(a) µX.{X = a.Y, Y = b.X},
(b) µX.{X = 1 + a.Y, Y = b.X},
(c) µ(a.X).{X = a.b.X + b.Y + 0,Y = X + a.(Y + X)},
(d) µ(b.X + 1).{X = a.X + Y, Y = a.Y }.

5.4.2 Assume the standard interpretation of constants and functions of the-
ory BSPrec(A) in its term model P(BSPrec(A))/↔ , i.e., all constants
are mapped onto their equivalence classes under bisimilarity, and each
operator is mapped onto the corresponding function in the term model
following Definition 2.3.18 (Quotient algebra).
Check that P(BSPrec(A))/↔ |

(a) µX.{X = X} = 0,
(b) µX.{X = a.0} = a.0,
(c) µX.{X = a.X + Y, Y = a.Y } = µZ .{Z = a.Z},
(d) µX.{X = X + a.0} = a.0, and
(e) µX.{X = X + a.X} = µY.{Y = a.Y }.

5.4.3 Develop the theory MPTrec(A) by extending theory MPT(A) with
recursion. Define the equational theory MPTrec(A), provide a term
model, prove soundness, and prove a conservativity result. Argue that
there are no general elimination and ground-completeness results.

124 Recursion

5.5 Recursion principles

It is a common situation that there is a need to add recursion to some given
basic process theory without recursion. It is then interesting to know to what
extent it is possible to build upon existing models of that basic theory when
developing an operational semantics of the theory with recursion. The models
of interest are those in which recursive specifications have precisely one solu-
tion. However, Example 5.3.7 (Multiple solutions) shows that it is in general
impossible to find interesting models in which all recursive specifications have
precisely one solution. Furthermore, Example 5.3.5 (No solutions) gives a re-
cursive specification over the signature of theory BSP(A) that has no solutions
in the term model P(BSP(A))/↔ .

These examples illustrate that it is interesting to study which models of pro-
cess theories allow an easy extension of a theory with recursion. Example
5.3.7 (Multiple solutions) shows that the goal of precisely one solution for
each recursive specification cannot be achieved without at least some restric-
tions. Section 5.4 has already shown the construction of a term model for a
theory with recursion in such a way that every recursive specification has a
solution. However, this term model does not address the issue that some re-
cursive specifications have multiple solutions. To investigate these issues in a
generic setting, this section introduces a number of so-called recursion princi-
ples. A recursion principle specifies characteristics of models and/or recursive
specifications. A very elementary recursion principle is the Recursive Defini-
tion Principle (RDP), stating that, given a basic theory with some model, any
recursive specification over the syntax of that theory has at least one solution
in the given model.

Definition 5.5.1 (RDP) Assume some equational theory and some model of
this theory. The Recursive Definition Principle (RDP) is the following as-
sumption: every recursive specification over the signature of the theory has a
solution in the given model.

The notion of validity for ordinary equations (see Definition 2.3.6) carries
over to recursion principles. Given a model M of some equational theory and
some recursion principle R, M |
 R denotes that R is valid in model M.
Since a recursion principle must be valid in the algebra that is considered as a
potential model for the process theory at hand, the introduction of a principle
restricts the allowed models of the process theory.

It is interesting to consider the recursion principle RDP in a bit more detail in
the context of process theories BSP(A) and BSPrec(A) and their term models.

5.5 Recursion principles 125

An immediate consequence of Example 5.3.5 (No solutions) is that RDP is
not valid in the term model of theory BSP(A), i.e., the algebra P(BSP(A))/↔ .

Theorem 5.5.2 (Invalidity of RDP for P(BSP(A))/↔) Principle RDP is not
valid in the term model of BSP(A), i.e., P(BSP(A))/↔ �|
 RDP.

In the term model of theory BSPrec(A), however, which is also a model of
theory BSP(A), RDP is valid.

Theorem 5.5.3 (Validity of RDP in P(BSPrec(A))/↔) Recursion principle
RDP is valid in the term model of BSPrec(A), i.e., P(BSPrec(A))/↔ |
 RDP.

Proof The validity of RDP follows immediately from the construc-
tion of the model P(BSPrec(A))/↔ . For any recursive specification E and
recursion variable X in E , the equivalence class [µX.E]/↔ is a solution for
X . Hence, each recursive specification has a solution.

Theorem 5.5.3 is not really surprising. Theory BSPrec(A) and its model
P(BSPrec(A))/↔ have been constructed in such a way that every recursive
specification has at least one solution. In fact, given the construction of theory
BSPrec(A), this observation straightforwardly yields the following result.

Theorem 5.5.4 (BSPrec(A) and RDP) An arbitrary algebra M is a model of
BSPrec(A) if and only if it validates theory BSP(A) and recursion principle
RDP, i.e., M |
 BSPrec(A) if and only if M |
 BSP(A) and M |
 RDP.

As already mentioned before, the construction of theory BSPrec(A) does not
enforce that a recursive specification has only one solution; recursive specifi-
cations may have multiple solutions in some given model. One solution to this
problem would be to simply disallow all such models. However, as a direct
consequence of Example 5.3.7 (Multiple solutions), this only leaves models
in which all processes are equal, so-called one-point models. This is clearly
undesirable. Other solutions are to restrict the recursive specifications that are
allowed or considered relevant, or to select a unique default solution of a re-
cursive specification in case it has more than one. The latter is done in for
example CCS, where the notion of a least fixed point is used to select solutions
(Milner, 1980; Milner, 1989). Also the deduction rules for recursion underly-
ing a term model for a theory with recursion, as for example given in Table 5.2,
generate one particular solution, as explained in the previous section and fur-
ther illustrated by Exercise 5.4.2. However, choosing this generated solution
as the default solution does not allow the interpretation of recursion variables
as constrained variables, and is furthermore model-dependent. Therefore, a

126 Recursion

restriction of the set of the allowed recursive specifications is considered. This
can be done independent of any particular model. To this end, the notion of
guardedness of recursive specifications is introduced. The basic idea is that
guarded recursive specifications have precisely one solution.

Definition 5.5.5 (Guardedness, part 1) Let s be a BSPrec(A)-term. An oc-
currence of a (normal or recursion) variable x in term s is called guarded if
and only if it occurs in the operand of an action-prefix operator, i.e., s has a
subterm of the form a.t for some a ∈ A and BSPrec(A)-term t , and this x oc-
curs in t . Term s is called completely guarded if and only if all occurrences of
all variables in s are guarded. A recursive specification E is called completely
guarded if and only if all right-hand sides of all recursive equations of E are
completely guarded.

Example 5.5.6 (Guardedness)

(i) Let t1 ≡ a.X +Y + c.(b.0+ X). In this term, both occurrences of re-
cursion variable X are guarded: the first one because it is the operand
of the action-prefix operator a. ; the second one because it occurs in
the operand of the action-prefix operator c. . The occurrence of Y is
unguarded. Therefore, t1 is not completely guarded.

(ii) Let t2 ≡ a.X + Y + a.(b.0+ Y). In this term, the occurrence of X is
guarded and Y occurs both guarded and unguarded. As a result, t2 is
not completely guarded.

(iii) Let t3 ≡ a.(X + Y). The occurrences of X and Y are guarded and
hence t3 is completely guarded.

(iv) Recursive specification E1 = {X1 = a.X1, Y1 = a.X1} is completely
guarded.

(v) Recursive specification E2 = {X2 = a.X2, Y2 = X2} is not com-
pletely guarded because X2 occurs unguarded in equation Y2 = X2.

A closer look at the last two examples reveals that the notion of guarded-
ness presented in Definition 5.5.5 is too restrictive. Recursive specification
E1 is completely guarded. Recall that a guarded specification is supposed to
have a single solution in some appropriate model of the basic theory BSP(A).
Assuming that this is the case, recursion variables X1 and Y1 in E1 each de-
termine precisely one process in that model. However, recursive specification
E2 is not completely guarded, suggesting that recursion variables X2 and Y2

do not determine precisely one process each. It can be shown that the latter is
not true by proving that the two recursive specifications are equivalent in the
sense of Theorem 5.3.4 (Equivalence of recursive specifications), meaning that

5.5 Recursion principles 127

all solutions of X1 and Y1 in some model of BSP(A) are also solutions of X2

and Y2 and vice versa. In other words, the two recursive specifications specify
precisely the same processes.

Example 5.5.7 (Guardedness anomaly) Consider again recursive specifica-
tions E1 = {X1 = a.X1, Y1 = a.X1} and E2 = {X2 = a.X2, Y2 = X2}
of Example 5.5.6. In order to obtain that all solutions of X1 and Y1 are also
solutions of X2 and Y2 in some given model of BSP(A), it suffices to show that
the recursive equations from E2 with the occurrences of X2 and Y2 replaced by
X1 and Y1, respectively, are derivable from the process theory (BSP+ E1)(A)
(Theorem 5.3.4). This is easily achieved as follows:

(BSP + E1)(A) � X1 = a.X1

and

(BSP + E1)(A) � Y1 = a.X1 = X1.

Similarly, the fact that all solutions of X2 and Y2 are solutions of X1 and Y1,
can be seen as follows:

(BSP + E2)(A) � X2 = a.X2

and

(BSP + E2)(A) � Y2 = X2 = a.X2.

But this means that X1 and Y1 determine unique processes if and only if X2 and
Y2 determine unique processes, showing that the notion of guardedness intro-
duced in Definition 5.5.5 (Guardedness, part 1) is not suitable for the intended
purpose.

The reason for the anomaly observed in the above example is that the defi-
nition of guardedness is a purely syntactical one. It does not take into account
that syntactically different process terms can be semantically equivalent. In the
following definition, a notion of guardedness is defined that also includes E2

of the above example as a guarded recursive specification; the definition builds
upon the notion ‘completely guarded’ as defined in Definition 5.5.5 (Guarded-
ness, part 1).

Definition 5.5.8 (Guardedness, part 2) Let s be a BSPrec(A)-term. Term s
is guarded if and only if there exists a BSPrec(A)-term t that is completely
guarded and derivably equal to s, i.e., BSPrec(A) � s = t . A recursive spec-
ification E is guarded if and only if it can be rewritten into a completely
guarded recursive specification F , i.e., there exists a completely guarded re-
cursive specification F with VR(E) = VR(F) and for all X = t ∈ F ,
(BSP + E)(A) � X = t .

128 Recursion

Example 5.5.9 (Guarded recursive specifications) Consider again recursive
specification E2 = {X2 = a.X2, Y2 = X2}. Although this recursive specifica-
tion is not completely guarded, the derivations

(BSP + E2)(A) � X2 = a.X2

and

(BSP + E2)(A) � Y2 = X2 = a.X2

show that it can be rewritten into the completely guarded recursive specifica-
tion F = {X2 = a.X2, Y2 = a.X2}, indicating that it is guarded.

Note that, although the guardedness notions in the above definitions are de-
fined in the context of theory BSP(A), they can be generalized to arbitrary
process theories in a straightforward way.

The question remains whether the notion of guardedness defined in Defini-
tion 5.5.8 is satisfactory. To investigate this issue, a new recursion principle
is introduced that disallows models in which guarded recursive specifications
have more than one solution. This principle is called the Recursive Specifica-
tion Principle.

Definition 5.5.10 (RSP) Assume some equational theory and some model of
this theory. The Recursive Specification Principle (RSP) is the following as-
sumption: a guarded recursive specification over the signature of the theory
has at most one solution in the model.

In the context of process theory BSP(A) and its models P(BSP(A))/↔ and
P(BSPrec(A))/↔ , the following theorem holds.

Theorem 5.5.11 (Validity of RSP) Principle RSP is valid in both the term
model of BSP(A) and the term model of BSPrec(A), i.e., P(BSP(A))/↔ |

RSP and P(BSPrec(A))/↔ |
 RSP.

Proof The theorem is a consequence of Theorems 5.5.29 (Relation
between the recursion principles) and 5.5.23 (Validity of AIP−), proven later
in this section. Note that these theorems are only proven for theories with
projection operators. However, since extensions of BSP(A) and BSPrec(A)
with projection operators are ground-conservative, any element in the term
models of BSP(A) and BSPrec(A) is also an element of the term models of
(BSP+PR)(A) and (BSP+PR)rec(A). Hence, if a recursive specification over
the signature without projection operators has at most one solution in the term
models of the theories with projection, it has also at most one solution in the
term models of the theories without projection.

5.5 Recursion principles 129

Through the introduction of the recursion principles RSP and RDP, it has
been shown that, in the term model P(BSPrec(A))/↔ , every guarded recur-
sive specification over the signature of theory BSP(A) has at most one solution
and that every recursive specification over the BSP(A)-signature has at least
one solution. Together, this gives that every guarded recursive specification
has precisely one solution. Thus, the notion of guardedness introduced in Def-
inition 5.5.8 is meaningful indeed.

So how can recursion principles be used to reason about the equivalence of
recursive specifications? In general, recursion principles may affect the notion
of derivability, as defined in Definition 2.2.8. Thus, recursion principles may
be used to derive equations between terms of some process theory that cannot
be derived from the basic axioms of the theory, in particular equations involv-
ing recursion variables. Recursion principle RDP does not affect derivability.
However, RSP does have an effect. The detailed redefinition of derivability is
omitted, in this case and also in the remainder when other recursion principles
are introduced. The use of recursion principles in the derivation of equations
with recursion variables is illustrated through examples, as for instance Exam-
ple 5.5.12 that follows below.

To clarify that a recursion principle is assumed to hold in derivations, its
acronym is added to the name of the process theory being used. For example,
the notation (BSPrec + RSP)(A) indicates that the theory BSPrec(A) is being
used for derivations while assuming RSP to hold.

Example 5.5.12 (Recursion principle RSP) Consider again recursive speci-
fications E1 = {X1 = a.X1} and E2 = {X2 = a.a.X2} of Example 5.3.3
(Equivalence of recursion variables). On intuitive grounds, it is expected that
X1 and X2 define the same process. How can this (correct) intuition be cap-
tured in the equational theory? Observe that it is necessary to consider theory
(BSP + E1 + E2)(A), or an extension of this theory. Only when E1 and E2

are part of the equational theory, the theory has a means to reason about the
recursive specifications, and in particular about the equivalence of X1 and X2.
As already mentioned in Example 5.3.3, an attempt to prove the equivalence of
X1 and X2 using only the basic axioms of (BSP+E1+E2)(A)will not be suc-
cessful. However, assuming recursion principle RSP, the desired equivalence
can be proven.

First, it is shown that any solution of X1 is a solution of X2 by deriving the
equation for X2 with all occurrences of X2 replaced by occurrences of X1 from
the process theory (BSP + E1)(A) as shown before in Example 5.3.3:

(BSP + E1)(A) � X1 = a.X1 = a.a.X1.

130 Recursion

Second, assume the validity of principle RSP. This means that only models
of theory (BSP+E1+E2)(A) that satisfy this principle, such as the term mod-
els P((BSP + E1 + E2)(A))/↔ or P(BSPrec(A))/↔ , are considered. RSP,
the fact that both E1 and E2 are guarded, and the fact that every model of
(BSP+ E1 + E2)(A) contains solutions for E1 and E2 by definition (see The-
orem 5.3.6 (Solutions vs. models)) imply that both X1 and X2 have precisely
one solution in any model considered. Since any solution for X1 is a solution
for X2, the solutions for X1 and X2 must be the same. This shows that X1 and
X2 are derivably equivalent in the process theory (BSP+ E1+ E2+RSP)(A):

(BSP + E1 + E2 + RSP)(A) � X1 = X2.

Note that the reasoning leading to this conclusion is completely model-
independent. It illustrates how the recursion principle RSP can be used to
derive equations involving recursion variables.

Example 5.5.13 (Recursion principle RSP) Consider the two recursive spec-
ifications

E =
{

X0 = a.X1,

Xn+1 = a.Xn+2 + b.Xn

∣∣∣∣ n ∈ N
}

and

F =
{

Yi,0 = a.Yi,1,

Yi, j+1 = a.Yi, j+2 + b.Yi+1, j

∣∣∣∣ i, j ∈ N
}
.

These recursive specifications are guarded. Hence, each of them has precisely
one solution in the term model P(BSPrec(A))/↔ . Using the principle RSP, it
can be shown that (BSP + E + F + RSP)(A) � Xn = Yi,n for any natural
numbers i and n. This shows that the recursive specification F where variables
have a double index can be simplified to the recursive specification E where
variables have only one index.

One way to arrive at the desired result is to show that the equations of F are
derivable from the equations of E after replacing the occurrences of the Yi, j by
occurrences of X j . Hence, it has to be shown that (BSP+E)(A) � X0 = a.X1

and, for any j ∈ N, (BSP + E)(A) � X j+1 = a.X j+2 + b.X j . Obviously,
this is the case. This result implies that any solution of X j is also a solution of
Yi, j , for any i ∈ N. Furthermore, both E and F have precisely one solution in
any model of theory (BSP + E + F + RSP)(A), leading to the desired result
that (BSP + E + F + RSP)(A) � Xn = Yi,n for any i, n ∈ N.

A reasoning where the equations of E are shown to be derivable from the
equations of F also leads to the desired result. In this approach, the occur-
rences of variables Xn in E can be replaced by occurrences of Y0,n (or any
other Yi,n). Hence, it has to be shown that (BSP + F)(A) � Y0,0 = a.Y0,1

5.5 Recursion principles 131

and, for any n ∈ N, (BSP + F)(A) � Y0,n+1 = a.Y0,n+2 + b.Y0,n . This is
much more elaborate than the above proof as it requires additional proofs of
(BSP + F)(A) � Yi, j = Yi+1, j for any i, j ∈ N.

The above examples show that the principle RSP and the notion of guard-
edness are meaningful and useful. Guardedness of a recursive specification
over the signature of BSP(A) implies that it has a unique solution in the term
model P(BSPrec(A))/↔ , and RSP allows equational reasoning about guarded
recursive specifications. It turns out that guardedness is also exactly the no-
tion needed to characterize recursive specifications with unique solutions when
considering the theory BSPrec(A) and its term model P(BSPrec(A))/↔ . Ev-
ery unguarded recursive specification over the signature of BSP(A) with a
finite or infinite but countable number of equations has multiple solutions in
P(BSPrec(A))/↔ when A is not empty. The proof for finite unguarded recur-
sive specifications is as follows.

Proposition 5.5.14 (Guardedness) Every finite unguarded recursive specifi-
cation over the signature of theory BSP(A) has multiple solutions in the model
P(BSPrec(A))/↔ when A is not empty.

Proof Suppose E is an unguarded recursive specification over the sig-
nature of BSP(A) with a finite number of equations. As E is unguarded, then
either there is a variable X in VR(E) that occurs unguarded in the equation of
X or there is a number n ≥ 1 and a sequence of variables X0, . . . , Xn in VR(E)
such that Xi+1 occurs unguarded in the equation of Xi (i < n) and X0 occurs
unguarded in the equation of Xn (i.e., there is a ‘cycle of unguardedness’).
Consider the second case. The first case can be treated similarly.
Let p be an arbitrary closed BSP(A)-term. Consider the recursive specification
E p that is obtained from E by adding an extra summand p to each of the
equations of X0, . . . , Xn , so, if Xi = ti is the equation in E , then Xi = ti + p
becomes the equation in E p.
Let Xi = ti+p and Xi+1 = ti+1+p (for i < n) be equations in E p. Recall that
Xi+1 occurs unguarded in ti , which means that ti is derivably equal to a term
of the form s+Xi+1, for some term s. This implies that (BSP+E p)(A)�Xi =
ti + p = s+ Xi+1+ p = s+ Xi+1+ Xi+1+ p = ti + Xi+1+ p, i.e., Xi has an
Xi+1 summand. It follows that (BSP+E p)(A)�Xi = ti+ p = ti+Xi+1+ p =
ti+(ti+1+ p)+ p = ti+ti+1+ p = ti+Xi+1 = s+Xi+1+Xi+1 = s+Xi+1 =
ti , i.e., (BSP + E p)(A) � Xi = ti . In a similar way, it is possible to show that
(BSP + E p)(A) � Xn = tn . Thus, it follows that (BSP + E p)(A) � E , and
that any solution of E p is also a solution of E . When A is not empty there are

132 Recursion

infinitely many different instantiations that can be chosen for p (e.g., choosing
1, a.1, a.a.1, . . . for some a ∈ A).

Next, consider the deduction system of Table 5.2. It implies that every state
of the transition system defined by any recursion constant µX.E is a subterm
of one of the right-hand sides of the equations in E . As E has only finitely
many equations, there are finitely many such subterms. The deduction rules
imply that, as a consequence, the number of states of any transition system
of a recursion variable of a finite recursive specification is finite. Note that
the deduction system of Table 5.2 also shows that processes µXi .E p (i ≤ n)
among others allow the behavior of p. Only finitely many of these behaviors
can already be present in each of the µXi .E , as the corresponding transition
systems have only finitely many states. Since there are infinitely many choices
for p and any solution forµXi .E p is also a solution forµXi .E , infinitely many
different solutions are obtained for each of the µXi .E and thus for E .

The above property assumes that the action set is not empty. It is not difficult
to give an unguarded recursive specification over the signature of BSP(A) with
only one solution if the action set can be empty; see Exercise 5.5.3.

It seems that there are no general conditions independent of the basic process
theory and the precise model that guarantee that guarded recursive specifica-
tions are always precisely the recursive specifications with one solution. In
Chapter 10, the so-called inaccessible process is introduced. This process
can be used to construct unguarded recursive specifications with only a sin-
gle solution, even in the presence of actions (see Exercise 10.3.2). There are
also models in which guarded recursive specifications have multiple solutions.
In the initial algebra I(BSPrec(A)) of theory BSPrec(A), see Definition 2.3.19
(Initial algebra), in general many guarded recursive specifications have multi-
ple solutions. Consider for example the two guarded recursive specifications
E1 = {X = a.X} and E2 = {Y = a.Y }, for some a ∈ A. Because the-
ory BSPrec(A) – without assuming RSP – has no means to derive equalities
between X and Y , the initial algebra I(BSPrec(A)) contains two equivalence
classes [µX.E1]� and [µY.E2]� that are both solutions of both X and Y . Fur-
thermore, Example 4.5.2 in (Usenko, 2002) introduces an algebra that can be
used to construct models for theories including sequential composition, as pre-
sented later in this book, in which every guarded recursive specification with
at least one recursion variable in the right-hand side of one of its equations has
infinitely many solutions. However, these models capture no longer the intu-
itive semantics of process theories and their operators. They exploit the large
freedom in constructing models for equational theories, but have no meaning
in process specification and modeling. In conclusion, the discussed examples

5.5 Recursion principles 133

show that guardedness does not capture uniqueness of solutions of recursive
specifications under all possible circumstances. However, all the examples are
exceptional or counterintuitive cases. In practice, guardedness is an appropri-
ate and commonly used way to capture the uniqueness of solutions of recursive
specifications, in a model-independent way.

An interesting observation is that principle RDP is stronger than strictly nec-
essary for the purpose of capturing all recursive specifications with precisely
one solution: it suffices to assume that guarded recursive specifications have
a solution. This weaker principle is called the Restricted Recursive Definition
Principle.

Definition 5.5.15 (RDP−) Assume some equational theory and some model
of this theory. The Restricted Recursive Definition Principle (RDP−) is the
following assumption: every guarded recursive specification over the signature
of the theory has a solution in the model of that theory.

Theorem 5.5.16 ((In-)validity of RDP−) Assuming BSP(A) as the basic pro-
cess theory, principle RDP− is valid in P(BSPrec(A))/↔ but it is not valid
in P(BSP(A))/↔ , i.e., P(BSPrec(A))/↔ |
 RDP− and P(BSP(A))/↔ �|

RDP−.

Proof The validity of RDP− in term model P(BSPrec(A))/↔ is a
direct consequence of the facts that RDP is valid in P(BSPrec(A))/↔ (The-
orem 5.5.3) and that RDP implies RDP−. The invalidity of RDP− in model
P(BSP(A))/↔ follows from the same example that proved the invalidity of
the principle RDP for this term model (Example 5.3.5 (No solutions)).

Theorems 5.5.2 (Invalidity of RDP), 5.5.3 (Validity of RDP), and 5.5.16
((In-)validity of RDP−) show that both RDP and RDP− are invalid in the term
model P(BSP(A))/↔ and valid in the term model P(BSPrec(A))/↔ . It is
also possible to construct models for BSP(A) that satisfy RDP− but not RDP,
for example the term model P(BSP(A))/↔ extended with bisimilarity equiv-
alence classes for all constants µX.E for arbitrary recursion variables X and
guarded recursive specifications E .

The validity of the recursion principles RSP and RDP− in the term model
P(BSPrec(A))/↔ reconfirms that every guarded recursive specification over
the signature of BSP(A) has precisely one solution in P(BSPrec(A))/↔ .

Recall that the proof of Theorem 5.5.11, claiming the validity of principle
RSP in the term models of BSP(A) and BSPrec(A), was in effect postponed.
The given proof uses the validity of another recursion principle, namely the

134 Recursion

Restricted Approximation Induction Principle (AIP−). This recursion princi-
ple is based on the idea that a solution of a recursive specification, which is
a potentially infinite process, can be approximated by its series of finite pro-
jections, using the projection operators introduced in Section 4.5. Each such a
finite projection can be considered as an approximation of the solution itself.
In computing science and mathematics in general, and in process algebra in
particular, it is quite common to describe an infinite object in terms of a series
of approximations. The essence of AIP− is that two processes – for exam-
ple, but not necessarily, two solutions of some recursive specification(s) – can
be considered equal if all their finite projections are equal. However, as the
name already suggests, AIP− restricts this essential idea to some extent. It is
in fact a restricted version of a more general recursion principle that precisely
captures this idea, namely the Approximation Induction Principle (AIP). Note
that the principles AIP and AIP− explicitly refer to projections of processes.
Hence, it is required that the basic theory under consideration contains projec-
tion operators. Therefore, in the following, the basic theories considered are
(BSP + PR)(A) and (BSP + PR)rec(A) instead of BSP(A) and BSPrec(A).

Definition 5.5.17 (AIP) The Approximation Induction Principle (AIP) is the
following assumption: for arbitrary (BSP+PR)rec(A)-terms s and t , if (BSP+
PR)rec(A) � πn(s) = πn(t) for all natural numbers n ∈ N, then ((BSP +
PR)rec + AIP)(A) � s = t .

An equivalent formulation of AIP is obtained by also allowing the use of
the principle AIP in the derivation of πn(s) = πn(t), i.e., (BSP+ PR)rec(A) �
πn(s) = πn(t) can be replaced by ((BSP+PR)rec+AIP)(A) � πn(s) = πn(t).
Furthermore, note that the above definition is formulated in terms of the theory
(BSP+PR)rec(A). However, the principle can be defined for arbitrary process
theories that contain projection operators, also theories without recursion. In
the remainder, it is used without further notice for other theories as well.

Example 5.5.18 (AIP) Consider again recursive specifications {X1 = a.X1}
and {X2 = a.a.X2}. Using AIP, it can be shown that X1 and X2 denote the
same process, i.e., it can be shown that ((BSP+PR)rec+AIP)(A)� X1 = X2.

Recall Notation 4.6.6 (n-fold action prefix). Using natural induction, it is
not difficult to show that, for any natural number n ∈ N,

(BSP + PR)rec(A) � πn(X1) = an0

and

(BSP + PR)rec(A) � πn(X2) = an0.

5.5 Recursion principles 135

Thus, for any natural number n ∈ N,

(BSP + PR)rec(A) � πn(X1) = an0 = πn(X2).

Using AIP gives

((BSP + PR)rec + AIP)(A) � X1 = X2.

Unfortunately, the principle AIP is not valid in the term model of theory
(BSP+ PR)rec(A). It does hold in the term model of (BSP+ PR)(A), but that
model is not very interesting because not all recursive specifications have a
solution in that model. The proof of the following theorem uses a new notation,∑

, which generalizes the choice operator + to a choice between an arbitrary
number of processes.

Notation 5.5.19 (Generalized choice) Let I ⊂ N be some finite index set of
natural numbers, j ∈ N \ I a fresh index not in I , and ti , for all i ∈ I ∪ { j},
arbitrary terms in some process theory containing the choice operator +.∑

i∈∅
ti ≡ 0 and

∑
i∈I∪{ j}

ti ≡ t j +∑
i∈I

ti .

At this point, the above notation is simply an abbreviation. In Chapter 10, a
true choice quantifier, i.e., the quantifier corresponding to the binary operator
+ with 0 as its identity element, is added as an operator in process theories.

Theorem 5.5.20 ((In-)validity of AIP) Principle AIP is valid in P((BSP +
PR)(A))/↔ and it is not valid in P((BSP+PR)rec(A))/↔ . That is, P((BSP+
PR)(A))/↔ |
 AIP and P((BSP + PR)rec(A))/↔ �|
 AIP.

Proof First, it is proven that recursion principle AIP holds in the term
model P((BSP + PR)(A))/↔ .
Let p and q be closed (BSP + PR)(A)-terms such that πn(p)↔πn(q), for all
natural numbers n ∈ N. It has to be proven that p↔q. From Theorem 4.5.4
(Bounded depth), it follows that there exist natural numbers n1 and n2 such
that, for all k1 ≥ n1 and k2 ≥ n2, (BSP + PR)(A) � πk1(p) = p and
(BSP+PR)(A) � πk2(q) = q . Hence, for all k ≥ max(n1, n2), πk(p)↔ p and
πk(q)↔q. Recall the assumption that πn(p)↔πn(q) for all n ∈ N. Taking
an arbitrary n′ ≥ max(n1, n2), it follows that p↔πn′(p)↔πn′(q)↔q. Hence,
the principle AIP is valid in the model P((BSP + PR)(A))/↔ .
Second, it is shown that principle AIP is not valid in the term model P((BSP+
PR)rec(A))/↔ .
Consider the recursive specifications {Xn = an0 + Xn+1 | n ∈ N} and {Y =
a.Y }. As in Example 5.5.18 (AIP), it can be shown that (BSP + PR)rec(A) �

136 Recursion

πn(Y) = an0 for all n ∈ N. Furthermore, obviously (BSP + PR)(A) � an0 =
πn(an0) for all n ∈ N.
By induction, it can be shown that, for any natural number n ∈ N,

(BSP + PR)rec(A) � X0 =
n∑

i=0
ai 0 + Xn+1.

This results in

(BSP + PR)rec(A) � X0 = X0 + an0

as follows, using Axiom A3 in the second step:

(BSP + PR)rec(A) � X0 =
n∑

i=0
ai 0 + Xn+1

=
n∑

i=0
ai 0 + an0 + Xn+1

= X0 + an0.

Consequently, for any natural number n ∈ N,

(BSP + PR)rec(A) � πn(X0 + Y) = πn(X0)+ πn(Y)
= πn(X0)+ an0
= πn(X0)+ πn(an0)
= πn(X0 + an0)
= πn(X0).

Applying AIP then gives

((BSP + PR)rec + AIP)(A) � X0 + Y = X0.

Assume now that AIP is valid in model P((BSP+ PR)rec(A))/↔ . This yields
that X0 + Y↔X0. The term X0 + Y , however, exhibits an infinite path of a
executions as follows:

X0 + Y
a→ Y

a→ Y
a→ · · · a→ Y

a→ · · · .
On the other hand, the process term X0 only allows finite paths of a executions.
Each such path is of the form

X0
a→ an0

a→ an−10
a→ · · · a→ 0,

for some n ≥ 1. However, this means that X0 + Y and X0 cannot be bisimilar,
i.e.,

X0 + Y �↔ X0.

When playing the bisimulation game as explained in Chapter 3, it is clear that
the player playing with X0 can at some point no longer match the moves of the
infinite a sequence of process X0 + Y , no matter what execution path of X0 is
chosen in the initial state. This implies a contradiction, and, as a conclusion,
principle AIP is not valid in P((BSP + PR)rec(A))/↔ .

5.5 Recursion principles 137

The problem with the Approximation Induction Principle is that it is only
capable of discriminating processes that differ in a finite initial part of their
behavior. The two process terms X0 + Y and X0 in the above proof do not
differ in any finite initial part of their behaviors. Hence, AIP is too strong:
It is not valid in the standard term model of the basic process theory with
recursion. Principle AIP− restricts the applicability of AIP by requiring that
one of the process terms under consideration should be guarded, solving the
observed problem. This restricted version turns out to be valid in the standard
term model. It can also be used, as intended, to prove the validity of RSP in
the standard term model.

Definition 5.5.21 (AIP−) The Restricted Approximation Induction Principle
(AIP−) is the following assumption: for arbitrary (BSP + PR)rec(A)-terms s
and t such that s is guarded, if (BSP + PR)rec(A) � πn(s) = πn(t) for all
natural numbers n ∈ N, then ((BSP + PR)rec + AIP−)(A) � s = t .

As for AIP, also in this case, the hypothesis (BSP + PR)rec(A) � πn(s) =
πn(t) can be replaced by ((BSP+ PR)rec +AIP−)(A) � πn(s) = πn(t). Also
AIP− can be defined straightforwardly in the context of other process theories.

Example 5.5.22 (AIP−) Consider once more recursive specifications {X1 =
a.X1} and {X2 = a.a.X2}. As explained in Example 5.5.18 (AIP), (BSP +
PR)rec(A) � πn(X1) = an0 and (BSP + PR)rec(A) � πn(X2) = an0, and
hence (BSP + PR)rec(A) � πn(X1) = πn(X2), for all natural numbers n ∈ N.
As X1 and X2 are guarded, applying AIP− yields ((BSP+PR)rec+AIP−)(A) �
X1 = X2.

Theorem 5.5.23 (Validity of AIP−) The principle AIP− is valid in both term
model P((BSP+PR)(A))/↔ and term model P((BSP+PR)rec(A))/↔ . That
is, P((BSP + PR)(A))/↔ |
 AIP− and P((BSP + PR)rec(A))/↔ |
 AIP−.

Proof The fact that P((BSP+PR)(A))/↔ |
 AIP− follows immedi-
ately from the observation that AIP implies AIP− and the fact that P((BSP +
PR)(A))/↔ |
 AIP (Theorem 5.5.20).
The second part of the theorem is proven as follows. Let p, q ∈ C((BSP +
PR)rec(A)) be such that p is guarded and πn(p)↔πn(q) for all natural num-
bers n ∈ N. It has to be proven that p↔q . By definition of guardedness
there exists a completely guarded term p′ ∈ C((BSP + PR)rec(A)) such that
p↔ p′. It suffices to prove that p′↔q . Define the relation R on closed
(BSP + PR)rec(A)-terms as follows:

138 Recursion

R = {(u, v) ∈ (C((BSP + PR)rec(A)))2 |
πn(u)↔πn(v) for all n ∈ N and u is completely guarded}.

Clearly, (p′, q) ∈ R. It remains to prove that R is a bisimulation relation.
Consider an arbitrary pair (u, v) ∈ R. For technical reasons the parts of the
proof are presented in a different order than usual.

• Suppose that v
a→ v′ for some a ∈ A and closed term v′ ∈ C((BSP+

PR)rec(A)). It has to be proven that there exists a u′ ∈ C((BSP +
PR)rec(A)) such that u

a→ u′ and (u′, v′) ∈ R.
Define, for any natural number m ∈ N,

Sm = {u∗ ∈ C((BSP + PR)rec(A)) |
u

a→ u∗ and πm(u∗)↔πm(v
′)}.

The set Sm represents all processes that are reachable from u by per-
forming a once and that are bisimilar to v′ up to depth m.
Then, the following observations can be made:

(i) For any natural number i ∈ N, Si ⊇ Si+1. This follows from
the observation that, for any closed (BSP + PR)rec(A)-terms p
and q and natural number k ∈ N, πk+1(p)↔πk+1(q) implies that
πk(p)↔πk(q) (see Exercise 5.5.8).

(ii) For any natural number i ∈ N, Si �= ∅. To see this, let i ∈ N
be some natural number. From v

a→ v′ and the deduction rules
for projection operators in Table 4.6 in Section 4.5, it follows that
πi+1(v)

a→ πi (v
′) for any i ∈ N. From this, and the fact that

πi+1(u)↔πi+1(v) (assumption (u, v) ∈ R), it follows that there
exists a closed (BSP + PR)rec(A)-term u′ such that πi+1(u)

a→ u′
and u′↔πi (v

′). Inspection of the deduction rules for projection op-
erators reveals that necessarily u′ ≡ πi (u′′) for some closed (BSP+
PR)rec(A)-term u′′ such that u

a→ u′′. Hence, πi (u′′)↔πi (v
′) for

some u′′. Then, by definition of Si , u′′ ∈ Si . Hence Si �= ∅.

(iii) For any natural number i ∈ N, Si is finite. This follows immedi-
ately from the fact that u is completely guarded and the property
of the deduction rules that in one transition only a finite number of
terms can be reached from a completely guarded term (see Exercise
5.5.9).

From these observations, it can be concluded that
⋂

i∈N Si �= ∅. Take
some u′ ∈ ⋂

i∈N Si . Observe that by the definition of the sets Si

necessarily u
a→ u′. As u′ ∈ Si for all natural numbers i ∈ N, it

follows that πi (u′)↔πi (v
′) for all natural numbers i ∈ N. It follows

5.5 Recursion principles 139

from the definition of R that (u′, v′) ∈ R, which completes this case
of the proof.

• Suppose that u
a→ u′ for some action a ∈ A and closed term u′ ∈

C((BSP + PR)rec(A)). It has to be proven that there exists a v′ ∈
C((BSP + PR)rec(A)) such that v

a→ v′ and (u′, v′) ∈ R.

Define, similar to the previous case, for any natural number m ∈ N,

Tm = {v∗ ∈ C((BSP + PR)rec(A)) |
v

a→ v∗ and πm(u′)↔πm(v
∗)}.

Observe that the sequence (Ti)i∈N is decreasing and that all Ti are
non-empty. For each i ∈ N, pick a term vi ∈ Ti . Then, v

a→ vi

by definition. By the previous item, there are ui such that u
a→ ui

and (ui , vi) ∈ R for all i ∈ N. As before, since u is completely
guarded, it follows that only a finite number of terms can be reached
from u. Therefore, the sequence (ui)i∈N must contain at least one
element infinitely often. Let u∗ be a term that occurs infinitely often
in (ui)i∈N and k a natural number such that u∗ ≡ uk . It is claimed
that (u′, vk) ∈ R, thus finishing the proof. To see that this claim
indeed holds, one needs to prove that πn(u′)↔πn(vk) for all n ∈ N.
Let n be an arbitrary natural number. Let l be a natural number such
that l ≥ n and u∗ ≡ ul . Then πn(u′)↔πn(vl) follows from the facts
that vl ∈ Tl and Tl ⊆ Tn . Furthermore (u∗, vl) ∈ R and (u∗, vk) ∈
R are obtained from (ul , vl) ∈ R and u∗ ≡ ul , and (uk, vk) ∈ R
and u∗ ≡ uk . Therefore, πn(u′)↔πn(vl)↔πn(u∗)↔πn(vk). Thus,
πn(u′)↔πn(vk) for all n ∈ N and thus (u′, vk) ∈ R.

• Suppose that u↓. From the term deduction rules for projection op-
erators, see Table 4.6, it follows that πn(u)↓ for all n ∈ N. Since
πn(u)↔πn(v), it follows that πn(v)↓ for all n ∈ N. Suppose that v �↓.
Then, by the term deduction rules in Table 4.6, πn(v) �↓ for all n ∈ N.
This results in a contradiction and therefore v↓.

• Suppose that v↓. Using a reasoning similar to the previous case, it
can be shown that u↓, completing the proof.

At this point, five recursion principles have been discussed: RDP, RSP,
RDP−, AIP, and AIP−. It is interesting to consider the relations between these
principles. Obviously, by their definitions, RDP implies RDP− and AIP im-
plies AIP−. The most interesting relation is the one already hinted at earlier,
namely that validity of AIP− implies validity of RSP. The latter is only true
under the assumption that the equational theory under consideration has the

140 Recursion

so-called head-normal-form (HNF) property. This is usually the case. The re-
lations between the recursion principles are visualized in Figure 5.5, where an
arrow connecting two principles indicates a logical implication. To formally
prove these relations, the HNF property needs to be introduced, and some in-
termediate results are needed.

RDP AIP

RDP− AIP−

RSP

HNF property satisfied

Fig. 5.5. Relation between the recursion principles.

Definition 5.5.24 (Head normal form) Consider an equational theory T (A)
that extends BSP(A), as defined in Definition 2.2.14. The set of head normal
forms of theory T (A) is inductively defined as follows. The constants 0 and 1
are head normal forms; for any action a ∈ A and T (A)-term t , a.t is a head
normal form; for any head normal forms s and t , s + t is a head normal form.

Theory T (A) is said to satisfy the head-normal-form (HNF) property if and
only if every guarded T (A)-term can be rewritten into a head normal form,
i.e., for every guarded T (A)-term s, there is a head normal form t such that
T (A) � s = t .

Head normal forms can always be rewritten into a very specific form.

Proposition 5.5.25 (Head normal forms) Consider a theory T (A) that ex-
tends BSP(A). For any head normal form t of T (A), there is a natural number
n ∈ N such that, for any i < n, there are ai ∈ A and T (A)-terms ti such that

T (A) � t = ∑
i<n

ai .ti (+1),

where the
∑

notation is the generalized choice notation introduced in Notation
5.5.19 and the notation ‘(+s)’ for some term s denotes an optional s-summand
which may or may not be present.

Proof Straightforward via induction on the structure of head normal
form t .

5.5 Recursion principles 141

Proposition 5.5.26 (HNF property) Process theory (BSP + PR)rec(A) satis-
fies the HNF property.

Proof It needs to be proven that every guarded (BSP+PR)rec(A)-term
s can be rewritten into a head normal form. By Definition 5.5.8 (Guarded-
ness, part 2), it can be assumed without loss of generality that s is completely
guarded. The proof goes via induction on the structure of s.

• s ≡ 1 or s ≡ 0. Term s is a head normal form by definition.

• s ≡ a.s′ for some a ∈ A and (BSP + PR)rec(A)-term s′. Again, term
s is a head normal form by definition.

• s ≡ s′ + s′′ for some completely guarded process terms s′ and s′′. By
induction, there exist head normal forms t ′ and t ′′ such that

(BSP + PR)rec(A) � s′ = t ′
and

(BSP + PR)rec(A) � s′′ = t ′′.
Hence, t ′+t ′′ is a head normal form such that (BSP+PR)rec(A)�s =
s′ + s′′ = t ′ + t ′′, which proves this case.

• s ≡ πn(s′) for some natural number n ∈ N and some completely
guarded process term s′. By induction, there is a head normal form t
such that

(BSP + PR)rec(A) � s′ = t.
By Proposition 5.5.25 (Head normal forms), there exists a natural
number m ∈ N such that for any i < m, there are ai ∈ A and terms ti
such that

(BSP + PR)rec(A) � s′ = ∑
i<m

ai .ti (+1).

If m = 0, then either (BSP + PR)rec(A) � s = πn(s′) = 0 or
(BSP + PR)rec(A) � s = πn(s′) = 1. In both cases, s is therefore
derivably equal to a head normal form. Assume that m > 0.

(BSP + PR)rec(A) �
s = πn(s′) = πn(

∑
i<m

ai .ti (+1)) = ∑
i<m

πn(ai .ti)(+πn(1)).

If n = 0, then
(BSP + PR)rec(A) � s = ∑

i<m
πn(ai .ti)(+πn(1)) = 0(+1).

If n > 0,
(BSP + PR)rec(A) �

s = ∑
i<m

πn(ai .ti)(+πn(1)) = ∑
i<m

ai .πn−1(ti)(+1).

The last term in the last two derivations is in both cases a head normal
form, which completes the proof for this case.

142 Recursion

• s ≡ x for some (normal or recursion) variable x . Then s is not com-
pletely guarded, which means this case cannot occur.

The next proposition states that any projection of any solution of a recursion
variable specified by a guarded recursive specification can be rewritten into
an equivalent closed (BSP + PR)(A)-term, i.e., a term without any variables.
The intuition behind this result is that any guarded recursive specification can
be rewritten such that the recursion variables in the right-hand sides of the
equation in the specifications occur in the scope of any desirable number of
nested action-prefix operators, in particular a number larger than the depth of
the projection. Recall Definition 2.2.6 (Substitution). Let, for any term t over
some arbitrary signature and variable x , t/x denote the substitution that maps
x to t and all other variables onto themselves.

Proposition 5.5.27 (Projections of guarded recursive specifications) Let E
be a guarded recursive specification and X a recursion variable in VR(E). For
any natural number n, there is a closed (BSP + PR)(A)-term p, such that for
any (BSP + PR)rec(A)-term t satisfying the recursive specification of X , i.e.,
(BSP + PR)rec(A) � E[t/X], (BSP + PR)rec(A) � πn(t) = p.

Proof Assume without loss of generality that recursive specification
E is completely guarded.
Let X = tX be the recursive equation defining X in E . Since E is guarded,
based on Propositions 5.5.26 (HNF property) and 5.5.25 (Head normal forms),
it follows that

(BSP + PR)rec(A) � t = tX [t/X] = ∑
i<m

ai .ti [t/X](+1),

for some natural number m ∈ N and actions ai and terms ti for any i < m. It
follows immediately that

(BSP + PR)rec(A) � πn(t) = πn(
∑

i<m
ai .ti [t/X](+1)),

for any natural number n ∈ N.
Therefore, in the remainder, a slightly more general property is proven, namely
that, for any natural number n, and any head normal form

∑
i<l bi .si (+1)

with l ∈ N and, for any i < l, actions bi and (BSP + PR)rec(A)-terms si ,
such that the si contain only recursion variables in VR(E), there is a closed
(BSP + PR)(A)-term q , such that

(BSP + PR)rec(A) � πn(
∑
i<l

bi .si [t/X](+1)) = q.

5.5 Recursion principles 143

This generalized property can be proven via induction on n.
First, suppose n = 0. Then,

(BSP + PR)rec(A)�
π0(

∑
i<l

bi .si [t/X](+1)) = ∑
i<l
π0(bi .si [t/X])(+π0(1)) = 0(+1),

which satisfies the base case.
Second, suppose n > 0. Then,

(BSP + PR)rec(A)�
πn(

∑
i<l

bi .si [t/X](+1)) = ∑
i<l

bi .πn−1(si [t/X])(+1).

Recall that the si contain only recursion variables from VR(E) and no other
variables, and that E is completely guarded. It follows that all the si are
guarded because any unguarded variable occurrences in an si can be replaced
by the right-hand side of the defining equation of that variable. Therefore, by
Proposition 5.5.26 (HNF property), each si can be rewritten into a head nor-
mal form

∑
j<k b′j .s′j (+1) with k ∈ N and, for any j < k, actions b′j and

(BSP + PR)rec(A)-terms s′j , which contain no other variables than those from
VR(E). Induction yields that for each si , there is a closed (BSP+PR)(A)-term
qi , such that

(BSP + PR)rec(A)�
πn−1(si [t/X]) = πn−1(

∑
j<k

b′j .s′j [t/X](+1)) = qi .

Substituting this in the earlier result yields,

(BSP + PR)rec(A) � πn(
∑
i<l

bi .si [t/X](+1)) = ∑
i<l

bi .qi (+1),

which also completes this case.

The following theorem is now straightforward to derive. It implies the deriv-
able equality of all the finite projections of any two solutions of a guarded
recursive specification.

Theorem 5.5.28 (Projection Theorem) Let E be a guarded recursive specifi-
cation and X a recursion variable in VR(E). For any (BSP + PR)rec(A)-terms
s and t satisfying the recursive specification of X and any natural number n,
(BSP + PR)rec(A) � πn(s) = πn(t).

Proof From Proposition 5.5.27 above, it follows immediately that
for any natural number n, there is a closed (BSP + PR)(A)-term p such that
(BSP + PR)rec(A) � πn(s) = p = πn(t).

144 Recursion

Note that the Projection Theorem does not use any essential aspects of the
theory (BSP+PR)rec(A), other than the fact that it satisfies the HNF property.
It can be generalized to arbitrary process theories extending (BSP+PR)rec(A)
that satisfy this property.

Theorem 5.5.29 (Relation between the recursion principles) Let T (A) be
some equational theory without recursion extending (BSP + PR)(A). Let
Trec(A) be the corresponding theory with recursion.

(i) RDP implies RDP−;
(ii) AIP implies AIP−;

(iii) if Trec(A) satisfies the HNF property, then AIP− implies RSP.

Proof The first two implications follow immediately from the defini-
tions of the principles.
The third one is more involved. Let M with domain M be some model of
process theory Trec(A). Suppose that M |
 AIP−. It has to be proven that
M |
 RSP. Let E be an arbitrary guarded recursive specification and X a
recursion variable in VR(E). Suppose that s and t are two Trec(A)-terms sat-
isfying the recursive specification of X . Note that, since E is guarded, this
implies that both s and t are guarded. By the generalization of Theorem 5.5.28
(Projection Theorem) to Trec(A), which is allowed because Trec(A) satisfies
the HNF property, Trec(A) � πn(s) = πn(t), for all natural numbers n ∈ N.
Applying AIP− then gives Trec(A) � s = t . Suppose now that ι and κ are two
solutions of E . Since s and t can among others be arbitrary variables, without
loss of generality, assume that ι(X) = ια(s) and κ(X) = κα(t) for some vari-
able valuation α. Then, Trec(A) � s = t implies that M |
 s = t and hence
that ια(s) =M κα(t). Since E , X , s and t were all chosen arbitrarily, a guarded
recursive specification has therefore at most one solution, which means that
M |
 RSP.

Note that Theorem 5.5.11 (Validity of RSP), given earlier in this section, can
be derived in a straightforward way from this last result and Theorem 5.5.23
(Validity of AIP−), as explained in the proof of Theorem 5.5.11.

At the end of this section, it is interesting to consider whether the recursion
principles affect the equalities that can be derived between closed terms of the
basic theory (BSP + PR)(A). It turns out that this is not the case.

Theorem 5.5.30 (Conservative ground-extension) Theory (BSP+PR)rec(A)
extended with any combination of the five recursion principles considered in
this section is a conservative ground-extension of theory (BSP + PR)(A).

Exercises 145

Proof Along the lines of the proof of Theorem 5.4.8 (Conservative
ground-extension BSPrec(A)), it can be proven that (BSP + PR)rec(A) is a
conservative ground-extension of (BSP + PR)(A). Since RDP does not af-
fect derivability, the desired conservativity result follows immediately for any
extension of (BSP + PR)rec(A) with RDP. It follows from Theorem 4.5.4
(Bounded depth) that any two closed (BSP + PR)(A)-terms that satisfy the
condition of AIP are already derivably equal in the theory (BSP + PR)(A).
Hence, also any extension of (BSP+PR)rec(A) with principle AIP is a conser-
vative ground-extension of (BSP+PR)(A). Theorem 5.5.29 (Relation between
the recursion principles) completes the proof.

Note that the extension of (BSP+PR)rec(A) with any of the principles AIP,
AIP−, or RSP is not a conservative ground-extension of (BSP + PR)rec(A). It
is in fact the purpose of these recursion principles to derive equalities between
terms with recursion variables that cannot be derived in the basic theory (BSP+
PR)rec(A). The extension of (BSP+PR)rec(A) with RDP or RDP− is identical
to (BSP + PR)rec(A), and so these extensions are trivially conservative.

Exercises

5.5.1 Determine whether in the following terms the occurrences of the re-
cursion variable X are guarded, unguarded, or both: a.X , Y + b.X ,
b.(X + Y), a.Y + X .

5.5.2 Determine whether the following recursive specifications are guarded
or unguarded: {X = Y, Y = a.X}, {X = a.Y+Z , Y = b.Z+X, Z =
c.X + Y }.

5.5.3 Consider BSPrec(A) with its model P(BSPrec(A))/↔ , and assume
that A = ∅. Give an unguarded recursive specification with only one
solution.

5.5.4 Consider the recursive specification {X = a.X + b.c.X}. Calculate
π0(X), π1(X), and π2(X).

5.5.5 Consider the recursive specification E = {X = a.X}. Prove that
(BSP+ PR+ E)(A) � πn(X) = an0 for any natural number n ∈ N.

5.5.6 Consider the recursive specification {X = a.X + b.X}. Determine
πn(X) for every natural number n ∈ N.

5.5.7 Consider the recursive specifications E1 = {X = a.X + b.X} and
E2 = {Y = a.Y + b.Z , Z = a.Z + b.Y }. Prove that (BSP + E1 +
E2 + RSP)(A) � X = Y .

5.5.8 Prove that for any closed (BSP+PR)rec(A)-terms p and q and natural
number n ∈ N, πn+1(p)↔πn+1(q) implies that πn(p)↔πn(q).

146 Recursion

5.5.9 Consider the term deduction system underlying the standard term
model of (BSP + PR)rec(A). Given a guarded (BSP + PR)rec(A)-
term t , prove that in one transition only a finite number of terms can
be reached from t .
(Hint: use Proposition 5.5.26 (HNF property).)

5.6 Describing a stack

This section illustrates the use of recursion via an example of a specification
of a data stack using the process theory BSPrec(A). The stack example is used
at several points throughout the book to illustrate some of the concepts.

Consider an arbitrary, finite set of data elements D = {d1, d2, · · · , dn}, for
some natural number n ∈ N. Using recursion, a data stack with an unlimited
capacity can be described in a straightforward way. Such a stack consists of a
sequence of data elements from the set D. Elements from D can be added to
or removed from the stack at only one end of the sequence. Usually, this end
of the stack is called the top of the stack. The first element of the sequence
modeling the stack is considered the top. The operation of adding an element
d to the stack is modeled as the atomic action push(d). Removing an element
d from the stack is denoted pop(d). In the recursive specification of the stack
process, the following notations are used:

• The empty sequence of elements from D is denoted as ε.
• The set of all finite sequences of elements from D is denoted D∗.
• Concatenation of data elements and sequences into new sequences is

denoted by juxtaposition. For example, for an element d from D and
a sequence σ in D∗, the concatenation of d and σ is denoted dσ .

• The stack containing only one datum d, formally denoted by dε, is
written as d .

A stack can be described in BSPrec(A), with an infinite set of recursive equa-
tions.

Stack1 = Sε,
Sε = 1 + ∑

d∈D
push(d).Sd , and, for all d ∈ D, σ ∈ D∗,

Sdσ = pop(d).Sσ + ∑
e∈D

push(e).Sedσ .

Note that the stack process can terminate if it is empty. This is particularly
useful and meaningful if the stack is considered in the context of an environ-
ment. If the environment using the stack terminates after emptying the stack,
then also the stack can terminate with it. In a theory with parallel composition,
developed in Chapter 7, this can be made more precise; see Exercise 7.6.7.

Exercises 147

In theory BSPrec(A), it is not possible to specify a stack with a finite number
of recursive equations (see Exercise 5.8.1). In Chapter 6, a theory is introduced
that does allow a finite recursive specification of a stack.

Observe that the above recursive specification is not completely guarded. It
is guarded though, as it is derivably equal to the specification

Stack1 = 1 + ∑
d∈D

push(d).Sd ,

Sε = 1 + ∑
d∈D

push(d).Sd , and, for all d ∈ D, σ ∈ D∗,

Sdσ = pop(d).Sσ + ∑
e∈D

push(e).Sedσ ,

which is completely guarded. Note that each right-hand side in this recursive
specification consists of a sum of terms where each term is either an empty-
process constant or a prefix operator applied to a recursion variable. Such a
form is convenient, because guardedness immediately follows. This specific
form of recursive specification is called a linear recursive specification, and it
occurs often in equational verifications.

Figure 5.6 shows part of the stack’s transition system, for the case that D =
{0, 1}. For simplicity, push(d) and pop(d) are written d and d , respectively.

S00 S10 S01 S11

S0 S1

Stack1
0

0

1

1

0

0

1

1

0

0

1

1

Fig. 5.6. Visualization of (part of) the stack with D = {0, 1}.

Exercises

5.6.1 Calculate, for the stack process described in this section, π0(Stack1),
π1(Stack1), and π2(Stack1).

148 Recursion

5.6.2 Give a recursive specification describing a stack with capacity C , i.e.,
a stack that contains at most C elements. You can assume that C is a
given constant. Draw the transition system for the stack with capacity
C = 2 and data elements from D = {0, 1}.

5.6.3 Consider the recursive specification {C0 = 1 + plus.C1,Cn+1 =
minus.Cn + plus.Cn+2 | n ∈ N} that specifies a counter (that can
terminate at the count of zero). Using RSP, prove that the counter
(variable C0) and the stack (Stack1) with D = {0} are equal when
assuming that plus ≡ push(0) and minus ≡ pop(0).

5.6.4 Prove that the counter of the previous exercise and the stack with
D = {0} are equal when assuming that plus ≡ push(0) and minus ≡
pop(0) but now using AIP−.

5.7 Expressiveness and definability

At this point, it is interesting to consider the expressiveness of process theo-
ries in a bit more detail. In Chapter 4, expressiveness of a process theory was
introduced as the class of processes that can be described by the closed terms
over the signature of that process theory. It was shown for example that the
addition of the 1 constant to the minimal theory of Section 4.2 increases ex-
pressiveness, but that the addition of projection operators in general does not
increase expressiveness.

The extension of the basic process theory of the previous chapter with re-
cursion in the current chapter was motivated from the expressiveness point of
view. With the addition of recursion, however, and in particular given the spe-
cial role of recursion variables, it is necessary to carefully consider the notion
of expressiveness. Given that, in a process theory such as BSPrec(A), the re-
cursion variables are simply constants in the signature, one could consider to
define expressiveness of such a theory as the class of all processes in any model
of the theory that are the interpretation of any closed term over the signature of
that process theory. However, Example 5.3.7 (Multiple solutions) shows that
this definition does not make much sense, because any process in any model
can be the interpretation of constant µX.{X = X}. As an alternative, it is pos-
sible to consider the class of processes that can be specified via a closed term
in a theory with recursion for a specific model with a specific interpretation.
The standard term models and the operational framework of Chapter 3 are of
particular interest in this context.

The transition-system framework of Chapter 3 and the standard term mod-
els of process theories essentially introduce equivalence classes of transition
systems under bisimilarity as processes. Therefore, it is interesting to consider

5.7 Expressiveness and definability 149

the universe of all equivalence classes of transition systems as the semantic
context for studying the expressiveness of process theories. Given the standard
interpretation for term models of process theories, the question then is which
of these equivalence classes has a transition system corresponding to a closed
term over the signature of some given theory as a representative.

Only one assumption is made, namely that, given a transition system, its set
of states can be determined, and that given a state, its set of transitions and the
existence of a termination option can be determined. This is an assumption
that is not always fulfilled. Consider for example the following definition of
transition system p (using the inaction and empty-process constants 0 and 1):

p =
⎧⎨
⎩

0, if the decimal expansion of the number π contains a
sequence of nine consecutive 9s;

1, otherwise.

The definition of p implies that it has exactly one state, but it cannot be deter-
mined whether or not this state has a termination option. (It is not possible to
define an algorithm that can conclusively decide for any arbitrary sequence of
numbers whether or not the decimal expansion of π contains that sequence;
the part of the decimal expansion of π known to date does not contain a
sequence of nine consecutive 9s.) Transition system p is an example of a non-
computable transition system. In the remainder, only computable transition
systems are considered. The formal definition of a computable transition sys-
tem is omitted. The reader interested in a formal definition of computability is
referred to any textbook on automata theory, e.g., (Linz, 2001). Informally, the
definition of a computable transition system is that the behavior of the transi-
tion system can be determined by an algorithm. This corresponds to the above
assumption that the set of states of a transition system can be determined, and
that for each state the set of transitions and the existence of a termination op-
tion can be determined. Observe that the notion of computability is not limited
to transition systems, but carries over to other concepts such as for example
recursive specifications and processes, where a recursive specification is com-
putable if and only if its set of equations can be determined by an algorithm,
and a process is computable if and only if it is an equivalence class under
bisimilarity of computable transition systems.

One final important notion used in the remainder is that of a countable set.
A set is countable if and only if it has the same number of elements as some
subset of the natural numbers, i.e., if it can be indexed using the natural num-
bers. The definition given here also considers finite sets to be countable. A
countable set is also said to have countably many elements.

150 Recursion

Definition 5.7.1 ((Countable) computable process) A computable process is
an equivalence class under bisimilarity of computable transition systems. A
(computable) process is countable if and only if it has a countable transition
system as a representative (where a transition system is countable if and only
if it has countably many states and countably many transitions).

Note that there are computable processes that are not countable and vice
versa. The above example of a non-computable transition system leads to a
process that is not computable, but since it has only one state and no transitions,
it is countable. Also observe that the definition allows that a countable process
may have a representative with an uncountable number of states or transitions.
However, any such a transition system is bisimilar to a countable one, which
implies that the corresponding process essentially has countably many states
and transitions.

Definition 5.7.2 (Expressiveness) A computable process can be specified in
a process theory T if and only if it has a transition system corresponding to a
closed T -term as defined by the standard term model, as a representative.

The following two results show that in a context with all (computable) re-
cursive specifications, already the basic process theory is sufficient to specify
all countable computable processes.

Theorem 5.7.3 (Countable computable transition systems) Let the set of
recursive specifications contain all computable recursive specifications. A
transition system p is an element of the term algebra P(BSPrec(A)) if and
only if p is computable and countable.

Proof First, consider the implication from left to right. A general el-
ement p of P(BSPrec(A)) corresponds to an arbitrary closed BSPrec(A)-term.
Such a term is by definition finite and may contain a finite number of recursion
constants. Since also the right-hand side of the equation defining any recursion
constant µX.E is a finite term, by following the deduction rules of the term de-
duction system of Table 5.2, every transition and every state of the transition
system defined by p can be determined and counted. As a consequence, tran-
sition system p is computable and countable.
Second, consider the implication from right to left. Let p be a countable
computable transition system. Since p is countable, it has countably many
states and countably many transitions. Enumerate the states of p as si with
index i = 0, 1, Enumerate the transitions of each state si with index k,
k = 0, 1, Assume that transition k leaving state si has label aik , and that

5.7 Expressiveness and definability 151

it goes to state s j (i,k). Define a recursive specification E over variables Xik as
follows, where variable Xi0 corresponds to state si . For each variable Xik , E
contains equation

Xik = aik .X j (i,k)0 + Xi(k+1).

In case either the set of states or the set of transitions of a state is finite, just
put Xik = 0 for all remaining variables. If a state si has a termination option,
which can be determined because p is computable, then a 1 summand has to
be added to the equation of Xi0.
It is easy to see that the rules of the deduction system of Table 5.2 yield the
transition system p for the recursive specification E , which means p is an
element of the term algebra P(BSPrec(A)).

Corollary 5.7.4 (Expressiveness of BSPrec(A)) Theory BSPrec(A) with all
computable recursive specifications as the set of recursive specifications allows
to specify precisely all countable computable processes, i.e., the term model
P(BSPrec(A))/↔ contains precisely all countable computable processes.

Note that this corollary implies that the algebra P(BSPrec(A))/↔ can be
considered as an algebra of all countable computable processes, when the set
of recursive specifications is the set of all computable recursive specifications.
Given this observation, in the remainder, it is always assumed that the set of
recursive specifications of interest is the set of all computable recursive speci-
fications, or, when stated explicitly, a subset of those.

An important observation is that the notion of expressiveness introduced by
Definition 5.7.2 is model-dependent. It assumes the operational framework
of Chapter 3. Furthermore, it assumes the standard interpretation of process
terms in term models. This implies, among others, that all recursion vari-
ables are interpreted as one specific process, which is not really in line with
the interpretation of recursion variables as constrained variables. Recall that
in Section 5.5, guardedness was introduced as a model-independent way to
characterize uniqueness of solutions for recursive specifications, in line with
the interpretation of recursion variables as constrained variables. A guarded
recursive specification is supposed to define a process. Also observe that any
closed term in a process theory without recursion can be turned into an equiva-
lent (guarded) recursive specification in the theory extended with recursion by
taking that closed term as the right-hand side of an equation in a recursive spec-
ification with only that one equation (see, for example, recursive specification
E1 of Example 5.2.2 (Recursive specifications)). These considerations suggest
another notion of expressiveness, called definability, which is not depending
on any particular model, and is consistent with the interpretation of recursion

152 Recursion

variables as constrained variables. This latter notion of expressiveness orig-
inates from ACP-style process algebra, whereas the notion of expressiveness
defined in Definition 5.7.2 finds its origins in CCS-style process theory.

Definition 5.7.5 (Definability) Let T be a process theory without recursion.
A process in some model of theory T is definable (over T) if and only if it
is the unique solution of (some designated recursion variable of) a guarded
recursive specification over the signature of theory T . A process is finitely
definable if and only if it is the unique solution of a finite guarded recursive
specification over the signature of T , i.e., a guarded recursive specification
with a finite number of equations.

In the remainder, for simplicity, the recursion variable of the considered
recursive specification for which a process is a solution is sometimes left im-
plicit.

Finite definability is introduced because it is of particular interest whether
or not a process can be defined via a finite guarded recursive specification. In
the previous section, it was for example claimed that the stack process is not
finitely definable over BSP(A). The next section returns to the notion of finite
definability in some more detail.

Definition 5.7.5 (Definability) raises the question whether, when returning
to the algebra of countable computable processes P(BSPrec(A))/↔ , all these
processes are definable over BSP(A). It turns out that this is not the case.
Observe that the proof of Theorem 5.7.3 (Countable computable transition
systems) uses unguarded recursion. It can be shown that this use of unguarded
recursion is essential.

Recall Definition 3.1.16 (Finitely branching transition system).

Definition 5.7.6 (Finitely branching process) A finitely branching process is
an equivalence class of computable transition systems under bisimilarity con-
taining at least one finitely branching transition system as a representative.

Note that this definition allows that infinitely branching transition systems
are elements of the equivalence class defining a finitely branching process.
Since any such infinitely branching transition system is bisimilar to a finitely
branching one, the corresponding process essentially has finitely many out-
going transitions in each state. Also observe that a finitely branching process
is necessarily countable. This follows from the fact that a transition system
is defined as a reachable subspace of a transition-system space (see Defini-
tion 3.1.5). With finitely many outgoing transitions per state, only a countable
number of states can be reached.

5.7 Expressiveness and definability 153

Theorem 5.7.7 (Processes definable over BSP(A)) A computable process is
definable over BSP(A) if and only if it is finitely branching.

Proof First, consider the implication from left to right. Assume a
process p is the unique solution of a guarded recursive specification E over the
signature of BSP(A). By Exercise 5.5.9, the state corresponding to any µX.E
for some recursion variable X of E has only finitely many outgoing transitions.
As a consequence, the transition system corresponding to any µX.E is finitely
branching, which means that process p is finitely branching.

Second, consider the implication from right to left. If a process is finitely
branching, then it follows that the process has a finitely branching transition
system s as a representative, which has countably many states with finitely
many outgoing transitions per state. It is straightforward to define a guarded
recursive specification corresponding to transition system s. Enumerate the
states of s as si with index i = 0, 1, Enumerate the transitions of each
state si with index k, k = 0, 1, . . . , ni − 1, where ni is the number of outgoing
transitions of state si . Assume that transition k leaving state si has label aik ,
and that it goes to state s j (i,k). Define a linear recursive specification E over
variables Xi as follows, where variable Xi corresponds to state si . For each
variable Xi , E contains equation

Xi =
ni−1∑
k=0

aik .X j (i,k),

where the
∑

notation is the generalized choice notation of Notation 5.5.19. If
si has a termination option, then a 1 summand is added to the equation.

It is straightforward to see that the deduction system of Table 5.2 yields the
transition system s for the recursive specification E . Since E is guarded
and defined over the signature of theory BSP(A), and since the term model
P(BSPrec(A))/↔ satisfies RSP, the process represented by s is a unique solu-
tion for E and therefore definable over BSP(A).

As a final note, observe, in the context of the algebra of countable com-
putable processes P(BSPrec(A))/↔ , the subtle difference between the phrases
that ‘a process can be expressed’ or ‘specified’ and ‘that a process can be
defined’. The former means that there is a closed BSPrec(A)-term with that
process as its standard interpretation. The latter means that there is a guarded
recursive specification over BSP(A) with that process as a unique solution,
where this solution of course is the standard interpretation of this recursive
specification.

154 Recursion

Exercises

5.7.1 Consider the following recursive specifications. Recall the n-fold
action-prefix notation of Notation 4.6.6.

(a) E = {Xn = Xn+1 + anY | n ∈ N} ∪ {Y = 1};
(b) F = {Xn = Xn+1 + anY | n ∈ N} ∪ {Y = a.Y }.

These recursive specifications specify processes µX0.E and µX0.F
in the standard term model of BSPrec(A) (which means that both these
processes are expressible in theory BSPrec(A)). Which of these pro-
cesses are also finitely definable over theory BSP(A)? Either give a
guarded finite recursive specification to show that a process is defin-
able, or give an (informal) argument why such a specification does
not exist.

5.8 Regular processes

The previous section has introduced the notion of finite definability. A process
is finitely definable over some given theory if and only if it is the unique solu-
tion of a finite guarded recursive specification over the signature of that theory.
In Chapter 3, the notion of a regular transition system has been introduced, see
Definition 3.1.15, which captures precisely all finite transition systems. In light
of Theorem 5.7.7 (Processes definable over BSP(A)), note that the regular tran-
sition systems form a subset of the finitely branching transition systems, and
that finite definability is a restriction of definability. These observations sug-
gest that it is interesting to have a closer look at the relation between regular
transition systems and finite definability. It turns out that the regular transition
systems can be captured precisely by all finite guarded recursive specifications.

Definition 5.8.1 (Regular process) A regular process is an equivalence class
of computable transition systems under bisimilarity containing at least one reg-
ular transition system as a representative.

The definition allows non-regular transition systems as representatives of
regular processes, which is in line with the earlier definitions of countable and
finitely branching processes. Since any such non-regular transition system is
bisimilar to a regular one, the corresponding process has finitely many states
and transitions, which is the essence of regularity.

Theorem 5.8.2 (Regular processes) A computable process is regular if and
only if it is finitely definable over BSP(A).

5.8 Regular processes 155

Proof Consider the implication from left to right. A regular process
has a regular transition system s as a representative. Enumerate the states of
s as si with index i = 0, 1, . . . , n − 1, where n is the number of states of s.
Enumerate the transitions of each state si with index k, k = 0, 1, . . . , ni −
1, where ni is the number of outgoing transitions of state si . Assume that
transition k leaving state si has label aik and that it goes to state s j (i,k). Let
recursive specification E over variables Xi , where variable Xi corresponds to
state si , contain for each variable Xi , equation

Xi =
ni−1∑
k=0

aik .X j (i,k),

with an additional 1 summand if si has a termination option. The deduction
system of Table 5.2 yields transition system s for recursive specification E .
Since E is guarded, finite, and defined over the signature of BSP(A), and since
P(BSPrec(A))/↔ satisfies RSP, the process represented by s is a unique solu-
tion for E and therefore finitely definable over BSP(A).

Consider the implication from right to left. Assume a process p is the unique
solution of a finite guarded recursive specification E over the signature of
BSP(A). It follows from Theorem 5.7.7 (Processes definable over BSP(A))
that p is finitely branching. The deduction system of Table 5.2 implies that
every state of the transition system defined by E is a subterm of one of the
right-hand sides of the equations in E . As E has only finitely many equa-
tions, there are finitely many such subterms, and hence the transition system
has finitely many states. As a consequence, the transition system is regular,
which means that process p is regular.

Consider again the stack process of Section 5.6. Since the given recursive
specification is guarded, the stack is definable over BSP(A). However, it is
not finitely definable, as already claimed in Section 5.6 and shown in Exercise
5.8.1. This implies that a stack is not a regular process.

Given the importance of regular processes, let process theory BSPgfrec(A),
term algebra P(BSPgfrec(A)), and process algebra P(BSPgfrec(A))/↔ be the
theory, term algebra, and term model obtained by extending the basic theory
BSP(A) with constants only for guarded finite recursive specifications. The-
ory BSPgfrec(A) and its model P(BSPgfrec(A))/↔ can be considered as an
equational theory and an algebra of regular processes. Note that the proof of
Theorem 5.8.2 implies that all the processes in the algebra of regular processes
P(BSPgfrec(A))/↔ contain in fact only regular transition systems as represen-
tatives, leading to the following corollary.

156 Recursion

Corollary 5.8.3 (Regular transition systems) A transition system p is an
element of the term algebra P(BSPgfrec(A)) if and only if p is regular.

This corollary confirms the observation made in Example 4.3.2 (Transition
systems for closed MPT(A)-terms) that all transition systems corresponding
to closed MPT(A)-terms are regular, because all closed MPT(A)-terms are
closed BSPgfrec(A)-terms. Note that the algebra of countable computable pro-
cesses P(BSPrec(A))/↔ , obviously, contains all regular processes, but that in
P(BSPrec(A))/↔ , different from P(BSPgfrec(A))/↔ , regular processes may
contain non-regular transition systems as representatives.

Since regularity and (finite) definability are so closely related, it is inter-
esting to have a look at the validity of the recursion principles of Section 5.5
in the algebra of regular processes P(BSPgfrec(A))/↔ . Since principles AIP
and AIP− are only meaningful in a context with projection operators, consider
theory (BSP + PR)gfrec(A), basic process theory with projection and guarded
finite recursion, and its term model P((BSP + PR)gfrec(A))/↔ . The proof
of Theorem 5.8.2 (Regular processes) carries over to this setting, showing
that P((BSP + PR)gfrec(A))/↔ is isomorphic to the algebra of regular pro-
cesses P(BSPgfrec(A))/↔ . Obviously, P((BSP + PR)gfrec(A))/↔ is a model
of BSP(A). It does not satisfy RDP and RDP−, however, because the guarded
recursive specification given for the stack in Section 5.6 does not have a solu-
tion in P((BSP+PR)gfrec(A))/↔ (see Exercise 5.8.1). In fact, the observation
that the algebra of regular processes does not satisfy principles RDP− and RDP
corresponds to the observation that regular processes form a strict subclass of
the definable and countable computable processes, respectively. The algebra of
regular processes does satisfy AIP, AIP−, and RSP. Since any regular process
in P((BSP + PR)gfrec(A))/↔ can be specified via a (finite) guarded recursive
specification, Theorem 5.5.23, that shows the validity of recursion principle
AIP− in the term model P((BSP + PR)rec(A))/↔ , shows that the more gen-
eral principle AIP, formulated for all (BSP+ PR)gfrec(A)-terms, is valid in the
algebra P((BSP+PR)gfrec(A))/↔ . Theorem 5.5.29 (Relation between the re-
cursion principles) then implies that algebra P((BSP + PR)gfrec(A))/↔ also
satisfies AIP− and RSP.

Theorem 5.8.4 (Regular processes and the recursion principles) The alge-
bra of regular processes P((BSP + PR)gfrec(A))/↔ does not satisfy recursion
principles RDP and RDP− but it does satisfy AIP, AIP−, and RSP.

For readers familiar with automata theory (see e.g. (Linz, 2001)), the results
of this section can be rephrased as follows. Finite non-deterministic automata

5.9 Recursion and BSP∗(A) 157

under bisimulation equivalence correspond to right-linear grammars. This con-
firms that it is meaningful to speak of regular processes. Note that left-linear
grammars cannot be formulated in the present setting. When such a notion can
be formulated (in Chapter 6, Section 6.6), it turns out that it can be used to
specify also non-regular processes. Also, in Section 6.5, a notion of regular
expressions can be formulated. But then it turns out that not all regular pro-
cesses are equivalent to a regular expression under bisimulation equivalence.
The conclusion is that some results of automata theory remain valid in the cur-
rent algebraic setting, when language equivalence is replaced by bisimilarity,
but most do not.

It is also possible to consider equivalence classes of closed BSPgfrec(A)-
terms under language equivalence as a model of equational theory BSPgfrec(A).
As expected, this yields the usual algebra of finite automata with language
equivalence. In Section 6.5, the relation between regular processes as defined
in this section and finite automata is considered in a bit more detail.

Exercises

5.8.1 Prove that the stack process of Section 5.6 is not finitely definable
over BSP(A), which shows that the stack process is not regular.

5.9 Recursion and BSP∗(A)
In the introduction to this chapter, it was already indicated that prefix iteration
only allows for the description of a limited class of unbounded processes. To
solve this expressiveness problem, recursion has been introduced. In a setting
with recursive specifications, prefix-iteration operators are redundant in the
sense that every process described by a closed term from the process theory
BSP∗(A) can easily be described by recursion in the process theory BSPrec(A).
This is achieved by replacing all occurrences of a∗ p, for some action a ∈ A
and closed BSP∗(A)-term p, by a recursion variable X with recursive equation
X = a.X + p, resulting in a recursive specification.

Example 5.9.1 (Prefix iteration and recursion) The closed BSP∗(A)-term
a.(b∗(c.0)+1) defines the same process as the closed BSPrec(A)-term a.(X +
1) where X is defined by the recursive specification {X = b.X + c.0}.

The closed BSP∗(A)-term a∗(b.1+c∗0) can be represented by the recursion
variable X where X = a.X + b.1 + c∗0. In turn, c∗0 can be replaced by Y
with Y = c.Y + 0. As a result, a∗(b.1 + c∗0) defines the same process as X
with {X = a.X + b.1 + Y, Y = c.Y }.

158 Recursion

Although the expressiveness of the process theory BSP∗(A) is less than the
expressiveness of the process theory BSPrec(A), the latter is not a (conserva-
tive) extension of the former. The reason for this is the fact that the signature
of BSP∗(A) is not contained in the signature of BSPrec(A). It is interesting to
observe that in fact BSP∗(A) is not more expressive than the theory of regular
processes BSPgfrec(A) of the previous section. Using Axiom PI1 in Table 4.7,
every occurrence of a∗ p in some closed BSP∗(A)-term can first be rewritten
into a.(a∗ p) + p, after which the action-prefix occurrence can be replaced
by a recursion variable as sketched in the above example. Since any closed
BSP∗(A)-term can only contain a finite number of prefix-iteration operators,
this conversion results in a finite guarded recursive specification. Thus, theory
BSP∗(A) allows only specifications of regular processes, which confirms the
observation made in Example 4.6.1 (Transition systems of BSP∗(A)-terms). It
is in fact easy to see that BSP∗(A) is strictly less expressive than BSPgfrec(A);
the process in Figure 5.1 is regular but cannot be described in BSP∗(A).

If for whatever reason it is needed to have both prefix iteration and recur-
sion as means to describing unbounded processes, the addition of recursion to
the process theory BSP∗(A) goes along the same lines as for the process the-
ory BSP(A), resulting in theory BSP∗rec(A). The term model P(BSP∗(A))/↔
is not a model of theory BSP∗rec(A) if the set of recursive specifications is
sufficiently rich specifying processes that cannot be described by prefix iter-
ation. The extended term model P(BSP∗rec(A))/↔ does result in a model of
BSP∗rec(A). Furthermore, theory BSP∗rec(A) is a conservative ground-extension
of theory BSP∗(A). The notion of guardedness does not change: the occur-
rence of recursion variable X in a term a∗X cannot be considered guarded
because of the possibility that X starts executing immediately. In the extended
term model P(BSP∗rec(A))/↔ , the principles RSP, RDP, and RDP− are valid.
Principle AIP− is valid if also projection is included.

Example 5.9.2 (Prefix iteration and recursion) Consider again the closed
BSP∗(A)-term a.(b∗(c.0) + 1) and the recursive specification E1 = {X =
b.X + c.0}. It can be shown that

(BSP∗ + E1 + RSP)(A) � a.(b∗(c.0)+ 1) = a.(X + 1),

which confirms the claim made in Example 5.9.1 that the two terms in the
equality define the same process. To show this equality, it suffices to show that
(BSP∗ + E1 + RSP)(A) � X = b∗(c.0). It follows from Axiom PI1 in Table
4.7 that BSP∗(A) � b∗(c.0) = b.(b∗(c.0)) + c.0. This implies that b∗(c.0) is
a solution of X . Assuming RSP implies that (the process specified by) b∗(c.0)
is the only solution, showing that (BSP∗ + E1 + RSP)(A) � X = b∗(c.0).

5.10 The projective limit model 159

Consider now closed BSP∗(A)-term a∗(b.1 + c∗0) and recursive specifica-
tion E2 = {X = a.X + b.1 + Y, Y = c.Y }. It is not difficult to show that

(BSP∗ + E2 + RSP)(A) � a∗(b.1 + c∗0) = X,

which confirms also the second claim in Example 5.9.1.

Exercises

5.9.1 Show that P(BSP∗rec(A))/↔ |
 µX.{X = a.X} = a∗0.
5.9.2 Show that (BSP∗ + E2 + RSP)(A) � a∗(b.1+ c∗0) = X, with E2 as

specified in Example 5.9.2.
5.9.3 Find two different solutions of the recursive equation X = a∗X in the

term model P(BSP∗rec(A))/↔ .
5.9.4 Consider the proper-iteration operators of Exercise 4.6.6. Give an

argument that recursion variable X in term a⊕X can be considered
guarded. Show that recursive equation X = a⊕X has a unique so-
lution in the term model of theory BSP(A) with proper iteration and
recursion.

5.10 The projective limit model

An important motivation for equational reasoning is that it is model-indepen-
dent. That is, any derivation in an equational theory yields an equality that is
valid in any model of that theory. Recursion principles have been introduced
for similar reasons. They allow us to reason about certain meaningful classes
of models in the context of recursion, without limiting ourselves to specific
models.

So far, term models have been the most important models that were consid-
ered, but also the initial algebra (see Definition 2.3.19) has been mentioned.
Considering process theory (BSP + PR)(A) as the basic theory, an interesting
observation is that none of the term models P((BSP+PR)(A))/↔ , P((BSP+
PR)gfrec(A))/↔ and P((BSP+PR)rec(A))/↔ , and none of the initial algebras
of the various considered equational theories I((BSP + PR)(A)), I((BSP +
PR)gfrec(A)), and I((BSP + PR)rec(A)) validates both RDP and AIP, the two
strongest recursion principles (see Theorem 5.5.29).

Table 5.3 gives an overview of the validity of the recursion principles in
the various models. The results for the three term models have been proven
in Sections 5.5 and 5.8. Note that the inclusion of the projection operators in
the theories does not affect the results derived for principles RDP and RDP−.
The fact that the initial algebras I((BSP+PR)(A)) and I((BSP+PR)gfrec(A))

160 Recursion

do not satisfy RDP− and RDP follows from the same examples used to show
the invalidity of these principles in the corresponding term models. The fact
that I((BSP + PR)rec(A)) satisfies RDP and RDP− follows from the simple
observation that theory (BSP + PR)rec(A) contains a constant for each recur-
sion variable in each recursive specification. Initial algebra I((BSP+ PR)(A))
satisfies AIP (and therefore AIP− and RSP) because the model only con-
tains bounded-depth processes, whereas I((BSP+ PR)gfrec(A)) and I((BSP+
PR)rec(A)) do not satisfy RSP, AIP−, or AIP simply because without recursion
principles the equational theories (BSP + PR)gfrec(A) and (BSP + PR)rec(A)
do not have any generally applicable means to derive equalities between re-
cursion variables specified by different recursive specifications. As already
explained on Page 132, this implies that it is easy to construct guarded re-
cursive specifications with multiple solutions. Note that AIP and AIP− are
valid in the models I((BSP+PR)(A)) and P((BSP+PR)(A))/↔ for arbitrary
(BSP+PR)(A)-terms, i.e., terms of the basic theory without recursion. The re-
sults in Table 5.3 for the term models and initial algebras of (BSP+PR)gfrec(A)
and (BSP + PR)rec(A) refer to AIP and AIP− formulated for arbitrary closed
(BSP+ PR)gfrec(A)- and (BSP+ PR)rec(A)-terms, respectively, i.e., for terms
including recursion variables. An interesting observation is the fact that the
initial algebra I((BSP+ PR)gfrec(A)) does not satisfy any of the five recursion
principles.

RDP− RDP RSP AIP− AIP

I((BSP + PR)(A)) no no yes yes yes

P((BSP + PR)(A))/↔ no no yes yes yes

I((BSP + PR)gfrec(A)) no no no no no

P((BSP + PR)gfrec(A))/↔ no no yes yes yes

I((BSP + PR)rec(A)) yes yes no no no

P((BSP + PR)rec(A))/↔ yes yes yes yes no

I(((BSP + PR)rec + AIP)(A)) yes yes yes yes yes

I∞((BSP + PR)(A)) yes yes yes yes yes

Table 5.3. Validity of recursion principles in models for (BSP + PR)(A).

So, is it possible to create a model that satisfies all five recursion principles
introduced in Section 5.5? It is in fact relatively straightforward to do so. The

5.10 The projective limit model 161

initial algebra I(((BSP+ PR)rec +AIP)(A)) satisfies RDP and AIP by defini-
tion, and hence by Theorem 5.5.29 (Relation between the recursion principles)
also the other principles. However, it could be that this model is a one-point
model, which contains only one process and in which everything is equal. It
has already been mentioned before that these models are not very interesting.

This section introduces another model that satisfies all five recursion princi-
ples, namely the so-called projective limit model I∞((BSP + PR)(A)). This
model is not trivial in the sense that it contains many processes, and it provides
a meaningful and intuitive interpretation of process specifications. Since in the
initial algebra I(((BSP + PR)rec + AIP)(A)) the valid equalities are precisely
those that are derivably equal, any equality valid in this initial algebra must
be valid in any other model of (BSP + PR)rec(A) that satisfies AIP as well.
In particular, if I(((BSP + PR)rec + AIP)(A)) is a one-point model, any other
model of (BSP+ PR)rec(A) that satisfies AIP must be a one-point model. The
existence of the projective limit model therefore implies that also the initial
algebra I(((BSP+PR)rec +AIP)(A)) is not a trivial model. Note that for both
I(((BSP + PR)rec + AIP)(A)) and I∞((BSP + PR)(A)), AIP and AIP− are
valid for arbitrary (BSP + PR)rec(A)-terms, i.e., for terms including recursion
variables of arbitrary recursive specifications.

Besides the fact that the projective limit model is interesting from the point
of view of recursion, it is also an example of a model for process theories that
is constructed in an entirely different way than the term models and the initial
algebras seen so far. The basic idea behind the projective limit model is that
behavior is something that evolves over time. As there is no explicit notion of
time in the process theories and algebras considered so far, the abstract notion
of counting actions that have been executed is used to represent evolution. For
this purpose, the projection operators are very useful. In the projective limit
model, a process is an infinite sequence of finite projections. Two processes
are considered equal if and only if their sequences of projections are the same.

Definition 5.10.1 (Projective limit model) Recall Definition 2.3.19 (Initial
algebra). Consider the initial algebra I((BSP + PR)(A)) of the process theory
(BSP+ PR)(A). Let I denote the universe of the equivalence classes of closed
(BSP + PR)(A)-terms under derivability, and let +�, (πn�)n∈N, (a.�)a∈A, 0�,
and 1� denote the operators and constants of the algebra. An infinite sequence
(p0, p1, p2, . . .) of elements of I is called a projective sequence if and only if
it satisfies the following: πn�(pn+1) =I pn , for all natural numbers n ∈ N.

Define I∞((BSP + PR)(A)) as the algebra with as its universe I∞ the set
of projective sequences of elements of I. By definition, (p0, p1, p2, . . .) =I∞
(q0, q1, q2, . . .) if and only if pn =I qn for all n ∈ N.

162 Recursion

The operators +∞, π∞n (for each n ∈ N), and a.∞ (for each a ∈ A) are
defined as follows:

(p0, p1, . . .)+∞ (q0, q1, . . .) = (p0 +� q0, p1 +� q1, . . .),

π∞n (p0, p1, . . .) = (πn�(p0), πn�(p1), . . .), and

a.∞(p0, p1, . . .) = (0�, a.� p0, a.� p1, . . .).

The proof that these defining equations are sound, i.e., that the right-hand
sides are projective sequences, is left as Exercise 5.10.1.

Finally, the constants 0∞ and 1∞ are defined as the projective sequences
(0�, 0�, 0�, . . .) and (1�, 1�, 1�, . . .), respectively.

Algebra I∞((BSP+PR)(A)) = (I∞,+∞, (π∞n)n∈N, (a.∞)a∈A, 0∞, 1∞) is
called the projective limit model of theory (BSP + PR)(A).

The above definition defines the projective limit model for the basic theory
(BSP+PR)(A), but it can be defined in a similar way for any other theory with
projection operators. It turns out that the projective limit model of (BSP +
PR)(A) is in fact a model of (BSP + PR)rec(A) that satisfies all five recursion
principles.

As a first step, it is shown that I∞((BSP + PR)(A)) is a model of (BSP +
PR)(A). The expected interpretation of the signature of (BSP+PR)(A) into the
functions and constants of the algebra I∞((BSP+PR)(A)) is used, namely the
interpretation that maps every operator or constant symbol f in the signature
of (BSP+PR)(A) to the function or constant f ∞ of I∞((BSP+PR)(A)). Let
ι denote this interpretation.

The following proposition shows that the projective sequence of a closed
(BSP + PR)(A)-term can be calculated by deriving all its projections. Each
such a projection is the representative of one of the equivalence classes in the
projective sequence.

Proposition 5.10.2 (Projective sequences) Let p be a closed (BSP+PR)(A)-
term. Projective sequence ι(p) is equal to ([π0(p)]�, [π1(p)]�, [π2(p)]�, . . .).

Proof The proof is straightforward via induction on the structure of
closed (BSP + PR)(A)-term p.

• p ≡ 1. It follows from Axiom PR1 in Table 4.5 that (BSP+PR)(A)�
πn(1) = 1 for all n ∈ N. Hence, it is straightforward to show the de-
sired result: ι(1) = 1∞ = (1�, 1�, 1�, . . .) =I∞ ([π0(1)]�, [π1(1)]�,
[π2(1)]�, . . .).

• p ≡ 0. It follows from Axiom PR2 that (BSP+ PR)(A)� πn(0) = 0
for all n ∈ N, which makes the proof straightforward also in this case.

5.10 The projective limit model 163

• p ≡ a.q for some a ∈ A and closed (BSP + PR)(A)-term q. It fol-
lows that (BSP + PR)(A) � π0(p) = 0 and πn+1(p) = a.πn(q),
for all n ∈ N. It also follows that ι(p) = a.∞ι(q). By induction,
ι(q) = ([π0(q)]�, [π1(q)]�, [π2(q)]�, . . .). Hence, a.∞ι(q) =I∞
([0]�, [a.π0(q)]�, [a.π1(q)]�, . . .), which proves this case.

• p ≡ q + r for some closed (BSP + PR)(A)-terms q and r . (BSP +
PR)(A)�πn(p) = πn(q)+πn(r), for all n ∈ N. By induction, ι(q) =
([π0(q)]�, [π1(q)]�, [π2(q)]�, . . .) and ι(r) = ([π0(r)]�, [π1(r)]�,
[π2(r)]�, . . .). It follows that ι(p) = ι(q) +∞ ι(r) =I∞ ([π0(q) +
π0(r)]�, [π1(q)+π1(r)]�, [π2(q)+π2(r)]�, . . .) =I∞ ([π0(q+r)]�,
[π1(q + r)]�, [π2(q + r)]�, . . .).

• p ≡ πn(q) for natural number n ∈ N and closed (BSP+PR)(A)-term
q. It follows from Exercise 4.5.6 that (BSP + PR)(A) � πk(p) =
πk(q), for all natural numbers k < n, and (BSP+ PR)(A) � πl(p) =
πn(q), for all natural numbers l ≥ n. By induction, ι(q) = ([π0(q)]�,
[π1(q)]�, [π2(q)]�, . . .). Thus, again using the result of Exercise
4.5.6, it follows that ι(p) =I∞ ([πn(π0(q))]�, [πn(π1(q))]�, . . . ,
[πn(πn(q))]�, [πn(πn+1(q))]�, . . .) =I∞ ([π0(q)]�, [π1(q)]�, . . . ,
[πn(q)]�, [πn(q)]�, . . .), which completes also this last case.

Example 5.10.3 (Projective sequences) The projective sequence associated
to the (BSP+ PR)(A)-term p ≡ a.(b.0+ c.a.1) can be obtained in two ways,
namely directly via the definition of the projective limit model and the accom-
panying interpretation ι or via Proposition 5.10.2.

(i) Interpretation of the operators and constants:
ι(a.(b.0 + c.a.1))

= a.∞(b.∞0∞ +∞ c.∞a.∞1∞)
=I∞ a.∞(b.∞(0�, 0�, . . .)+∞ c.∞a.∞(1�, 1�, . . .))
=I∞ a.∞((0�, b.�0�, b.�0�, . . .)+∞

c.∞(0�, a.�1�, a.�1�, . . .))
=I∞ a.∞((0�, b.�0�, b.�0�, . . .)+∞

(0�, c.�0�, c.�a.�1�, c.�a.�1�, . . .))
=I∞ a.∞(0� +� 0�, b.�0� +� c.�0�, b.�0� +� c.�a.�1�,

b.�0� +� c.�a.�1�, . . .)
=I∞ a.∞([0]�, [b.0 + c.0]�, [b.0 + c.a.1]�, [b.0 + c.a.1]�, . . .)
=I∞ ([0]�, a.�[0]�, a.�[b.0 + c.0]�, a.�[b.0 + c.a.1]�,

a.�[b.0 + c.a.1]�, . . .)
=I∞ ([0]�, [a.0]�, [a.(b.0 + c.0)]�, [a.(b.0 + c.a.1)]�,

[a.(b.0 + c.a.1)]�, . . .).

164 Recursion

(ii) Via projections: it is straightforward to see that
(BSP + PR)(A) �

π0(p) = 0,
π1(p) = a.0,
π2(p) = a.π1(b.0 + c.a.1) = a.(π1(b.0)+ π1(c.a.1))

= a.(b.0 + c.0),
πn(p)= a.(b.0 + c.a.1) = p (for n ≥ 3).

Hence, the projective sequence ι(p) equals
([0]�, [a.0]�, [a.(b.0 + c.0)]�, [a.(b.0 + c.a.1)]�,

[a.(b.0 + c.a.1)]�, . . .),
which is the same result as derived in the previous case.

The example shows that the projective sequence corresponding to a bounded-
depth closed term (i.e., any closed (BSP + PR)(A)-term, see Theorem 4.5.4
(Bounded depth)) ‘converges’ in the sense that the projections at some point in
the sequence do not change anymore.

Theorem 5.10.4 (Soundness of (BSP + PR)(A) for I∞((BSP + PR)(A)))
Theory (BSP+PR)(A) is a sound axiomatization of the projective limit model
I∞((BSP + PR)(A)), i.e., I∞((BSP + PR)(A)) |
 (BSP + PR)(A).

Proof It must be shown that I∞((BSP+PR)(A)) validates all axioms
of (BSP + PR)(A).
Consider Axiom A1, x + y = y + x . Let pn, qn , for all n ∈ N, be closed
(BSP + PR)(A)-terms such that s1 = ([p0]�, [p1]�, [p2]�, . . .) and s2 =
([q0]�, [q1]�, [q2]�, . . .) are projective sequences. It needs to be shown that
s1 +∞ s2 =I∞ s2 +∞ s1. From the definitions of a projective sequence and an
initial algebra, it follows that

s1 +∞ s2

= ([p0]�, [p1]�, [p2]�, . . .)+∞ ([q0]�, [q1]�, [q2]�, . . .)
=I∞ ([p0]� +� [q0]�, [p1]� +� [q1]�, [p2]� +� [q2]�, . . .)
=I∞ ([p0 + q0]�, [p1 + q1]�, [p2 + q2]�, . . .).

Similarly, s2 +∞ s1 =I∞ ([q0 + p0]�, [q1 + p1]�, [q2 + p2]�, . . .). Obviously,
(BSP+PR)(A)� p+q = q+ p for any closed (BSP+PR)(A)-terms p and q.
This implies that for all n ∈ N, (BSP+PR)(A)� pn +qn = qn + pn , and thus
that [pn + qn]� =I [qn + pn]�. Hence, s1 +∞ s2 =I∞ s1 +∞ s2, completing
the proof for Axiom A1.
The other axioms are left as an exercise.

The next step is to show that the projective limit model of (BSP + PR)(A)
satisfies recursion principle RDP. For this purpose, it needs to be shown that
every recursive specification has a solution in this model. Proposition 5.5.27

5.10 The projective limit model 165

(Projections of guarded recursive specifications) implies that the projections
of recursion variables of guarded recursive specifications correspond to closed
(BSP + PR)(A) terms. Thus, a recursion variable of such a specification can
be interpreted as the projective sequence of these projections.

Example 5.10.5 (Interpretation of recursion constants) Consider the recur-
sion constant X defined by the guarded recursive specification E = {X =
a.X}. Then, (BSP + PR + E)(A) � π0(X) = 0, π1(X) = a.0, and π2(X) =
a.π1(X) = a.(a.0). In general, (BSP + PR + E)(A) � πn(X) = an0, where
an is the n-fold action prefix of Notation 4.6.6.

Let s = ([0]�, [a.0]�, [a.a.0]�, . . . , [an0]�, [an+10]�, . . .) be the projec-
tive sequence associated with X . To show that s is indeed a solution of X ,
it needs to be shown that s =I∞ a.∞s. This follows immediately from the
definition of a.∞, see Definition 5.10.1 (Projective limit model).

The construction of solutions for unguarded recursive specifications is more
involved. The details are beyond the scope of this book. The interested reader
is referred to (Bergstra & Klop, 1982). Given solutions for arbitrary recursive
specifications, the following theorem follows.

Theorem 5.10.6 (Validity of RDP) Assuming theory (BSP + PR)(A) as the
basic process theory, recursion principle RDP is valid in I∞((BSP+ PR)(A)),
i.e., I∞((BSP + PR)(A)) |
 RDP.

Proof See (Bergstra & Klop, 1982), where the result is proven for a
slightly different theory.

Theorem 5.5.4 (BSPrec(A) and RDP), which generalizes to process theory
(BSP + PR)rec(A), yields immediately the following corollary.

Corollary 5.10.7 (Soundness (BSP + PR)rec(A) for I∞((BSP + PR)(A)))
Theory (BSP + PR)rec(A) is a sound axiomatization of the projective limit
model I∞((BSP+ PR)(A)), i.e., I∞((BSP+ PR)(A)) |
 (BSP+ PR)rec(A).

The final step is to prove the validity of AIP.

Theorem 5.10.8 (Validity of AIP) Recursion principle AIP, as formulated in
Definition 5.5.17 for all (BSP+PR)rec(A)-terms, is valid in the projective limit
model of (BSP + PR)(A), i.e., I∞((BSP + PR)(A)) |
 AIP.

Proof Let s1 and s2 be projective sequences such that, for all n ∈ N,
π∞n (s1) =I∞ π∞n (s2). It needs to be shown that s1 =I∞ s2.

166 Recursion

Let pn, qn , for all n ∈ N, be equivalence classes of closed (BSP + PR)(A)-
terms such that s1 = (p0, p1, p2, . . .) and s2 = (q0, q1, q2, . . .). It follows
from the definition of the π∞n operators that π∞n (s1) =I∞ (πn�(p0), πn�(p1),

πn�(p2), . . .) and π∞n (s2) =I∞ (πn�(q0), πn�(q1), πn�(q2), . . .). It follows
from the definition of projective sequences that πn�(pn+1) =I pn and that
πn�(qn+1) =I qn . The assumption that π∞n (s1) =I∞ π∞n (s2) implies that
pn =I πn�(pn+1) =I πn�(qn+1) =I qn . Hence, for all n ∈ N, pn =I qn ,
which means that s1 =I∞ s2.

Since (BSP + PR)rec(A) satisfies the HNF property (Proposition 5.5.26),
Theorem 5.5.29 (Relation between the recursion principles) yields the follow-
ing corollary.

Corollary 5.10.9 (Recursion principles and the projective limit model)
Projective limit model I∞((BSP+PR)(A)) satisfies recursion principles RDP,
RDP−, AIP, AIP−, and RSP.

At the end of this section, it is interesting to once more consider the nature
of the projective limit model. Many facts about processes in this book (for
instance the notion of a regular process in Section 5.8) are stated in terms of
transition systems, and so do not directly apply to other models such as the pro-
jective limit model considered here. However, any model can be turned into
a transition-system space. The following definition illustrates this transforma-
tion for the projective limit model. The transition-system space can be turned
into a model for theory (BSP+ PR)rec(A), that is isomorphic to the projective
limit model, and therefore satisfies all five recursion principles. Note however
that the notion of equivalence on this transition-system space induced by the
identity in the projective limit model is not bisimilarity, but simply identity, be-
cause there is a one-to-one correspondence between projective sequences and
transition systems.

Definition 5.10.10 (Transition-system space of the projective limit model)
The projective limit model I∞((BSP + PR)(A)) with set of projective se-
quences I∞ induces the transition-system space (I∞, A, → ,↓) with, for
any projective sequences s, t ∈ I∞, s

a→ t if and only if s =I∞ a.∞t +∞ s and
s↓ if and only if s =I∞ 1∞ +∞ s.

This definition can be used to define a notion of regular processes in the
context of the projective limit model. Recall Definitions 3.1.15 (Regular tran-
sition system) and 5.8.1 (Regular process). The first definition is still valid
in the current setting. The second definition defines a regular process in the

Exercises 167

context of the standard operational framework with bisimulation equivalence
as an equivalence class of transition systems under bisimilarity that contains
at least one regular transition system as a representative. Adapting this defini-
tion to the current context with identity as the equivalence yields the following
straightforward definition of a regular projective sequence.

Definition 5.10.11 (Regular projective sequence) A projective sequence is
regular if and only if its corresponding transition system is regular.

Exercise 5.10.6 investigates the possibility to give a direct definition of regu-
larity of projective sequences, not using a transformation to a transition-system
space.

Exercises

5.10.1 Prove that for an arbitrary projective sequence s from the projective
limit model I∞((BSP + PR)(A)), the sequences a.∞s (for any a ∈
A) and π∞n (s) (for any natural number n ∈ N) are again projective
sequences. Also, prove that for any two projective sequences s1 and
s2, the sequence s1 +∞ s2 is a projective sequence.

5.10.2 Complete the proof of Theorem 5.10.4 (Soundness).
5.10.3 Consider the recursive specification {Xn = an0 + Xn+1 | n ∈ N},

used in the proof of Theorem 5.5.20 ((In-)validity of AIP). Show that
the solution for variable X0 in the projective limit model I∞((BSP +
PR)(A)) is the process ([0]�, [a.0]�, [a.0 + a20]�, . . .).

5.10.4 The algebra In(BSP(A)), for some n ∈ N, has as its domain
In = {πn�(p)|p ∈ I}, where I is the domain of the initial alge-
bra I((BSP + PR)(A)), operators +n, (a.n)a∈A defined by p +n q =
p +� q and a.n p = πn�(a.� p), and constants 0n = 0� and 1n = 1�.

(a) Show that In(BSP(A)) |
 BSP(A).
(b) Define projection operators on In , with algebra In((BSP+PR)(A))

as a result, such that In((BSP + PR)(A)) |
 (BSP + PR)(A).
(c) What process in In((BSP + PR)(A)) is a solution of X = a.X?
(d) Show that recursion principles AIP, RDP−, and RSP are valid in

In((BSP + PR)(A)).
(e) In what sense is I∞((BSP + PR)(A)) the limit of the algebras

In((BSP + PR)(A)), for all n ∈ N?

5.10.5 The so-called Limit Rule is the statement that all equations (contain-
ing variables) that are derivable from some given process theory when
closed terms are substituted for the variables, are derivable from that

168 Recursion

theory in general. Formulate this Limit Rule in a formal way and
show, by using AIP and Proposition 5.5.26 (HNF property), that it
holds for theory ((BSP + PR)rec + AIP)(A). (Note that this implies
that theory ((BSP + PR)rec + AIP)(A) is ω-complete, as defined in
Section 2.3; observe that the projective limit model introduced in this
section is a model of that theory, but that, due to the assumption of
AIP, the standard term model is not a model.)

5.10.6 Definition 5.10.11 (Regular projective sequence) shows how to de-
fine regularity of projective sequences via a transformation to a
transition-system space. Define regularity directly in terms of pro-
jective sequences and argue that your definition gives the same notion
of regularity as the one defined in Definition 5.10.11.
(Hint: the number of outgoing transitions of every state, the branching
degree, stabilizes.)

5.11 Bibliographical remarks

Recursion is an essential ingredient of every concurrency theory. There are
algebraic treatments in CCS (Milner, 1980), CSP (Hoare, 1985), ACP (Baeten
& Weijland, 1990), topological process theory (De Bakker & Zucker, 1982a)
and in other places. The present treatment owes most to (Bergstra & Klop,
1984b).

The notation µX.E is inspired by the notation for least fixed points, and
similar notations used in CCS and CSP. The CCS notation µX.t , where t is a
term (potentially) containing recursion variable X , is generalized in the current
notation to µX.{X = t}. Notation µX.E corresponds to the notation 〈X | E〉
in ACP-style process algebra, that originates from (Bergstra & Klop, 1988).

A closer look at recursion in process algebra is found in (Kranakis, 1987;
Usenko, 2002). The deduction rules in Table 5.2 are from (Van Glabbeek,
1987), and based on (Milner, 1980). The results in Section 5.4 are based on
(Van Glabbeek, 1987; Baeten & Verhoef, 1995). For Section 5.8, see (Bergstra
& Klop, 1984b) and (Mauw & Mulder, 1994). The dual role of recursion vari-
ables, as both constants and constrained variables, is also discussed in (Baeten
& Bravetti, 2006); see also (Baeten & Bravetti, 2005).

The notion of guardedness is found in (Milner, 1980; Milne, 1982), but is
derived from older ideas. In the present setting, guardedness comes down to
having a right-linear grammar, see e.g. (Linz, 2001).

The principle RSP was formulated in (Bergstra & Klop, 1986c). Principles
RDP, RDP−, AIP, and AIP−, as well as the proof of Theorem 5.5.23, are
from (Baeten et al., 1987b). A slightly less restrictive form of AIP−, using the

5.11 Bibliographical remarks 169

notion of bounded non-determinism, can be found in (Van Glabbeek, 1987).
Proposition 5.5.26 (HNF property) is from (Baeten & Van Glabbeek, 1987).
The Projection Theorem is from (Baeten et al., 1987a).

For the material on the projective limit model, see (Bergstra & Klop, 1982;
De Bakker & Zucker, 1982a). For the Limit Rule, see (Baeten & Bergstra,
1988).

6

Sequential processes

6.1 Sequential composition

In the process theory BSP(A) discussed in Chapter 4, the only way of combin-
ing two processes is by means of alternative composition. For the specification
of more complex systems, additional composition mechanisms are useful. This
chapter treats the extension with a sequential-composition operator. Given two
process terms x and y, the term x · y denotes the sequential composition of x
and y. The intuition of this operation is that upon the successful termination
of process x , process y is started. If process x ends in a deadlock, also the
sequential composition x · y deadlocks. Thus, a pre-requisite for a meaningful
introduction of a sequential-composition operator is that successful and unsuc-
cessful termination can be distinguished. As already explained in Chapter 4,
this is not possible in the theory MPT(A) as all processes end in deadlock.
Thus, as before, as a starting point the theory BSP(A) of Chapter 4 is used.
This theory is extended with sequential composition to obtain the Theory of
Sequential Processes TSP(A). It turns out that the empty process is an identity
element for sequential composition: x · 1 = 1 · x = x .

6.2 The process theory TSP

This section introduces the process theory TSP, the Theory of Sequential Pro-
cesses. The theory has, as before, a set of actions A as its parameter. The
signature of the process theory TSP(A) is the signature of the process theory
BSP(A) extended with the sequential-composition operator.

To obtain the axioms of TSP(A), the axioms from Table 6.1 are added to the
axioms of the process theory BSP(A) from Table 4.3. Axiom A5 states that
sequential composition is associative. As mentioned before, and now formally
captured in Axioms A8 and A9, the empty process is an identity element with

171

172 Sequential processes

respect to sequential composition. Axiom A7 states that after a deadlock has
been reached no continuation is possible. Note that the theory does not contain
the axiom x ·0 = 0; so the inaction constant 0 is not a ‘true’ zero for sequential
composition. Axiom A4 describes the distribution of sequential composition
over alternative composition from the right. The other distributivity property is
not desired as it does not respect the moment of choice (recall Example 4.2.2
(The lady or the tiger?)). Finally, Axiom A10 describes the relation between
sequential composition and action prefixes. The unary action-prefix operators
bind stronger than the binary sequential composition.

TSP(A)
BSP(A)
binary: · ;
x, y, z;

(x + y) · z = x · z + y · z A4 0 · x = 0 A7
(x · y) · z = x · (y · z) A5 x · 1 = x A8
a.x · y = a.(x · y) A10 1 · x = x A9

Table 6.1. The process theory TSP(A) (with a ∈ A).

Axiom A5 (associativity of sequential composition) is redundant in the sense
that for closed TSP(A)-terms, it can be proven from the other axioms (see
Exercise 6.2.8). This means that the axiom is not necessary to obtain a ground-
complete axiomatization of the standard term model for TSP(A). This could be
a reason not to include the axiom in the theory. However, as soon as recursion
comes into play, it is needed to allow all derivations of interest.

The addition of the sequential-composition operator to the process syntax
has been motivated from a user’s perspective. From the expressiveness point
of view, with respect to the description of processes by means of closed process
terms (see Definition 5.7.2 (Expressiveness)), the addition of this operator is
not needed. This is shown in the following elimination theorem. It states that
for any closed term described using sequential composition, there is also an
equivalent description in which sequential composition is not used.

Theorem 6.2.1 (Elimination) For any closed TSP(A)-term p, there exists a
closed BSP(A)-term q such that TSP(A) � p = q.

Proof The property is proven by providing a term rewriting system
with the same signature as TSP(A) such that

Exercises 173

(i) each rewrite step transforms a process term into a process term that is
derivably equal,

(ii) the term rewriting system is strongly normalizing, and
(iii) no closed normal form of the term rewriting system contains a se-

quential-composition operator.

Consider the term rewriting system that has the following rewrite rules, ob-
tained directly from the axioms of TSP(A) (Table 6.1) by replacing = by →;
for any a ∈ A, and TSP(A)-terms x, y, z:

(x + y) · z → x · z + y · z,
(x · y) · z → x · (y · z),
0 · x → 0,
x · 1 → x,
1 · x → x,
a.x · y → a.(x · y).

A consequence of the construction of the rules from the axioms of TSP(A) is
that each rewrite step transforms a term into a term that is derivably equal.
The second step of the proof, the strong normalization of the term rewriting
system, is left to the reader, as an exercise (Exercise 6.2.4).
The last part of the proof is to show that no closed normal form of the term
rewriting system contains a sequential-composition operator. Thereto, let u be
a normal form of the above term rewriting system. Suppose that u contains
at least one sequential-composition operator. Then, u must contain a subterm
of the form v · w for some closed TSP(A)-terms v and w. This subterm can
always be chosen in such a way that v is a closed BSP(A)-term. It follows
immediately from the structure of closed BSP(A)-terms that one of the above
rewrite rules can be applied to v ·w. As a consequence, u is not a normal form.
This contradiction implies that u must be a closed BSP(A)-term.

Exercises

6.2.1 Give a derivably equivalent closed BSP(A)-term for each of the fol-
lowing TSP(A)-terms:

(a) a.1 · b.1;
(b) (a.1 + b.1) · (a.1 + b.1);
(c) (a.1 + b.1) · (a.1 + b.1) · (a.1 + b.1).

6.2.2 From Theorem 6.2.1 (Elimination), it follows immediately that for
any two closed BSP(A)-terms p and q , there exists a closed BSP(A)-
term r such that TSP(A) � p · q = r . Prove this result, without using
the elimination theorem.

174 Sequential processes

6.2.3 Define the n-fold sequential composition n as an operator in TSP(A),
by induction on n, in a similar way as in Notation 4.6.6 (n-fold action
prefix). Show that (a.1)n = an1 for any a ∈ A, where an is the
n-fold action prefix.

6.2.4 Prove that the term rewriting system used in the proof of the elimina-
tion theorem (Theorem 6.2.1) is strongly normalizing.
(Hint: try induction on the weighted number of symbols in a term,
where symbols in the left operand of a sequential composition opera-
tor have a higher weight than other symbols.)

6.2.5 Prove Theorem 6.2.1 (Elimination) by induction on the structure of
closed TSP(A)-term p.

6.2.6 Show that in TSP(A), the axiom x + x = x (A3) is equivalent to the
equation 1 + 1 = 1. More precisely, show that TSP(A) � 1 + 1 = 1
and that A1,A2, 1 + 1 = 1,A4 − A10 � x + x = x .

6.2.7 Show that in TSP(A) the axiom x + 0 = x (A6) is equivalent to the
equation 1 + 0 = 1. More precisely, show that TSP(A) � 1 + 0 = 1
and that A1 − A5, 1 + 0 = 1,A7 − A10 � x + 0 = x .

6.2.8 Prove that, for closed TSP(A)-terms p, q, and r , the associativity of
sequential composition, i.e., (p · q) · r = p · (q · r), is derivable from
the other axioms of TSP(A).

6.3 The term model

The term model for the process theory TSP(A) is obtained in a similar way
as earlier term models have been obtained. Starting from the term algebra
P(TSP(A)), first the term deduction system for TSP(A) is defined, and then
the quotient algebra P(TSP(A))/↔ is obtained. It is shown that the process
theory TSP(A) is indeed a sound and complete axiomatization of the term
model P(TSP(A))/↔ .

Definition 6.3.1 (Term algebra) The term algebra for theory TSP(A) is the
algebra P(TSP(A)) = (C(TSP(A)),+, ·, (a.)a∈A, 0, 1).

The term algebra is not a model of the process theory TSP(A). The set of
closed terms C(TSP(A)) is turned into a transition-system space by means of a
term deduction system. The term deduction system for TSP(A), given in Ta-
ble 6.2, is obtained by extending the term deduction system for BSP(A) of
Table 4.4 with deduction rules for the sequential-composition operator.

The first of these rules describes that the sequential composition of two pro-
cesses p and q in the transition-system space has an option to terminate if both

6.3 The term model 175

TDS(TSP(A))
TDS(BSP(A));
binary: · ;
x, x ′, y, y′;

x↓ y↓
(x · y)↓

x
a→ x ′

x · y
a→ x ′ · y

x↓ y
a→ y′

x · y
a→ y′

Table 6.2. Term deduction system for TSP(A) (with a ∈ A).

p and q have this option; the second deduction rule states that actions from p
can be executed; and the third deduction rule explains that actions from q can
be executed in case p has an option to terminate.

Proposition 6.3.2 (Congruence) Bisimilarity is a congruence on P(TSP(A)).

Proof The property follows immediately from the format of the de-
duction rules in Tables 4.2, 4.4, and 6.2 by application of Theorem 3.2.7 (Con-
gruence theorem).

Definition 6.3.3 (Term model of TSP(A)) The term model of theory TSP(A)
is the quotient algebra P(TSP(A))/↔ , see Definition 2.3.18 (Quotient alge-
bra), where P(TSP(A)) is the term algebra defined in Definition 6.3.1.

Theorem 6.3.4 (Soundness) The process theory TSP(A) is a sound axioma-
tization of the algebra P(TSP(A))/↔ , i.e., P(TSP(A))/↔ |
 TSP(A).

Proof The proof of this statement follows the same lines as the proof
of soundness of BSP(A) with respect to P(BSP(A))/↔ (Theorem 4.4.7). It
must be shown that, for each axiom s = t of TSP(A), P(TSP(A))/↔ |

s = t . The axioms of BSP(A) form a subset of the axioms of TSP(A) and
no deduction rules have been added for the operators from the signature of
BSP(A). Therefore, the validity proof of the BSP(A) axioms remains valid.
Hence, only the validity of the additional axioms A4, A5, and A7–A10 has to
be proven. This is left as an exercise (Exercise 6.3.3).

The above theorem has two immediate corollaries.

Corollary 6.3.5 (Soundness) Let s and t be two TSP(A)-terms. If TSP(A) �
s = t , then P(TSP(A))/↔ |
 s = t .

176 Sequential processes

Corollary 6.3.6 (Soundness) Let p and q be two closed TSP(A)-terms. If
TSP(A) � p = q , then p↔q .

Theorem 6.3.7 (Conservative ground-extension) Process theory TSP(A) is
a conservative ground-extension of process theory BSP(A).

Proof See Exercise 6.3.2.

Theory TSP(A) is a conservative ground-extension of BSP(A). This is
visualized in Figure 6.1. Obviously, by Theorem 4.4.1, TSP(A) is also a con-
servative ground-extension of MPT(A).

MPT(A)⏐⏐⏐�
BSP(A)

A4,A5

⏐⏐⏐�A7-A10

TSP(A)

Fig. 6.1. TSP(A) is a conservative ground-extension of BSP(A).

Corollary 6.3.8 (Conservative ground-extension) Theory TSP(A) is a con-
servative ground-extension of theory MPT(A).

Theorem 6.3.9 (Ground-completeness) Process theory TSP(A) is a ground-
complete axiomatization of the term model P(TSP(A))/↔ , i.e., for any closed
TSP(A)-terms p and q , P(TSP(A))/↔ |
 p = q implies TSP(A) � p = q.

Proof Using Theorem 3.2.19 (Operational conservativity), obviously
TDS(TSP(A)) is an operational conservative extension of TDS(BSP(A)). As
additionally BSP(A) is a ground-complete axiomatization of the model in-
duced by TDS(BSP(A)) (Theorem 4.4.12), TSP(A) is a sound axiomatization
of the model induced by TDS(TSP(A)) (Theorem 6.3.4), and TSP(A) has the
elimination property with respect to BSP(A) (Theorem 6.2.1), from Theorem
3.2.26 (Ground-completeness), the desired result follows immediately.

Corollary 6.3.10 (Ground-completeness) Let p and q be arbitrary closed
TSP(A)-terms. If p↔q , then TSP(A) � p = q.

6.4 Projection in TSP(A) 177

Exercises

6.3.1 Draw the transition system of the following TSP(A)-terms:

(a) (a.1 + 1) · 0;
(b) (a.1 + 1) · 1;
(c) (a.1 + 1) · (a.1 + 1).

6.3.2 Prove Theorem 6.3.7 (Conservative ground-extension).
6.3.3 Finish the proof of soundness of theory TSP(A) for the term model

P(TSP(A))/↔ (Theorem 6.3.4), i.e., prove that P(TSP(A))/↔ |

A4, A5, A7–A10.

6.4 Projection in TSP(A)

In Chapter 4, the process theory BSP(A) has been extended with projection
operators to obtain (BSP + PR)(A). In this section, the extension of pro-
cess theory TSP(A) along these lines is discussed. This extension of TSP(A)
with the family of projection operators (πn)n∈N is called (TSP + PR)(A). The
process theory (TSP + PR)(A) is obtained by extending the process theory
TSP(A) with Axioms PR1 through PR5 of Table 4.5, or by extending (BSP +
PR)(A) with the axioms of Table 6.1. In both cases, the same process theory
results. Due to Theorem 6.2.1 (Elimination), no additional axioms are needed
for the projection operators in combination with sequential composition. Given
two closed TSP(A)-terms p and q , the projection πn(p ·q) can be computed by
first reducing p · q to a closed BSP(A)-term and then applying the axioms for
projection from the process theory (BSP + PR)(A). This observation implies
several elimination results.

Theorem 6.4.1 (Elimination) For any closed (TSP + PR)(A)-term p, there
exists a closed TSP(A)-term q such that TSP(A) � p = q.

Proof Exercise 6.4.1

In addition, (TSP + PR)(A) has the elimination property with respect to
theories BSP(A) and (BSP + PR)(A), i.e., closed (TSP + PR)(A)-terms can
be reduced to BSP(A)- and (BSP + PR)(A)-terms, respectively.

The term deduction system underlying the standard term model of theory
(TSP + PR)(A) consists of the deduction rules from the term deduction sys-
tem for TSP(A) and the deduction rules from the term deduction system for
(BSP + PR)(A). Furthermore, bisimilarity is a congruence on the term alge-
bra of closed (TSP + PR)(A)-terms. The process theory (TSP + PR)(A) is a
sound and ground-complete axiomatization of the corresponding term model

178 Sequential processes

P((TSP + PR)(A))/↔ . Finally, (TSP + PR)(A) is a conservative ground-
extension of both TSP(A) and (BSP + PR)(A), and hence also of theories
BSP(A), MPT(A) and (MPT + PR)(A), as illustrated below.

MPT(A)
PR2-PR5−−−−−−→ (MPT + PR)(A)⏐⏐� ⏐⏐�PR1

BSP(A)
PR1-PR5−−−−−−→ (BSP + PR)(A)

A4,A5
⏐⏐�A7-A10 A4,A5

⏐⏐�A7-A10

TSP(A)
PR1-PR5−−−−−−→ (TSP + PR)(A)

Exercises

6.4.1 Prove Theorem 6.4.1 (Elimination). Thereto provide a term rewriting
system such that

(a) each rewrite step transforms a process term into a process term that
is derivably equal,

(b) the term rewriting system is strongly normalizing, and

(c) no closed normal form of the term rewriting system contains a pro-
jection operator.

(Hint: have a look at the proofs of Theorems 4.5.2 and 6.2.1.)

6.4.2 Prove by structural induction that for all closed TSP(A)-terms p and
q and n ≥ 0,

(TSP + PR)(A) � πn(p · q) = πn(πn(p) · πn(q)).

6.5 Iteration

6.5.1 Prefix iteration

Another extension of basic process theories that has been discussed before is
the introduction of a family of prefix-iteration operators (a∗)a∈A. Analogous
to the extension discussed in the previous section, it is possible to extend the
process theory TSP(A) with these operators. The resulting theory is abbrevi-
ated TSP∗(A). The axioms of TSP∗(A) are the axioms of the process theory
TSP(A), with additionally the prefix-iteration axioms PI1 and PI2 of Table 4.7
and Axiom PI3 given in Table 6.3. The unary prefix-iteration operators bind
stronger than the binary sequential-composition operator.

6.5 Iteration 179

TSP∗(A)
TSP(A),BSP∗(A);
-
x, y;

a∗(x · y) = a∗x · y PI3

Table 6.3. The process theory TSP∗(A) (with a ∈ A).

The process theory TSP∗(A) does not have the elimination property for
TSP(A), but it has the elimination property for BSP∗(A).

The term deduction system underlying the term model for TSP∗(A) consists
of the rules of the term deduction systems for TSP(A) and BSP∗(A). Bisim-
ilarity is a congruence on the term algebra of closed TSP∗(A)-terms. Theory
TSP∗(A) is a sound and ground-complete axiomatization of the term model
P(TSP∗(A))/↔ . TSP∗(A) is a conservative ground-extension of both TSP(A)
and BSP∗(A).

MPT(A)
PI1,PI2−−−−−→ MPT∗(A)⏐⏐� ⏐⏐�

BSP(A)
PI1,PI2−−−−−→ BSP∗(A)

A4,A5
⏐⏐�A7-A10 PI3

⏐⏐�A4,A5,A7-A10

TSP(A)
PI1-PI3−−−−−→ TSP∗(A)

6.5.2 General iteration

The sequential-composition operator can be considered as a generalization of
the action-prefix operators, allowing to prefix a process with an arbitrary pro-
cess. Similarly, the prefix-iteration operator can be generalized to a general
iteration operator. Thus, the theory (TSP + IT)(A), the Theory of Sequential
Processes with Iteration, is introduced. The signature of (TSP + IT)(A) is the
signature of the process theory TSP(A) extended with the unary iteration op-
erator ∗. The axioms of (TSP + IT)(A) are obtained by adding the axioms
of Table 6.4 to the axioms of the process theory TSP(A) of Table 6.1. As
before, the unary iteration operator binds stronger than the binary sequential-
composition operator.

Axiom IT1 can be compared to Axiom PI1 for prefix iteration: it states
that x∗ can execute its body at least once (followed by the iterated process

180 Sequential processes

(TSP + IT)(A)
TSP(A);
unary: ∗;
x, y;

x∗ = x · x∗ + 1 IT1
(x + 1)∗ = x∗ IT2
(x + y)∗ = x∗ · (y · (x + y)∗ + 1) IT3

Table 6.4. The process theory (TSP + IT)(A).

again), or terminate immediately. Axiom IT2 states that a 1 summand inside
an iteration does not make a difference, as this is not something that can be
executed and, by IT1, any iteration term can terminate already. Finally, Axiom
IT3 is a difficult axiom due to Troeger (Troeger, 1993), that is not discussed
here any further.

The axioms of (TSP + IT)(A) do not state anything explicitly about itera-
tions of the basic inaction and empty processes. From IT1, however, it can
easily be derived that (TSP + IT)(A) � 0∗ = 1. Using IT2, it can then be
inferred that (TSP + IT)(A)� 1∗ = 1. Both results are as intuitively expected.

The iteration operator cannot be eliminated from closed terms in all circum-
stances, so there is no elimination theorem. This becomes more clear when the
term model is considered.

A term deduction system for (TSP + IT)(A) is constructed by extending
the term deduction system for TSP(A) of Table 6.2 with deduction rules for the
iteration operator. Table 6.5 gives the term deduction system. The additional
deduction rules should not come as a surprise.

TDS((TSP + IT)(A))
TDS(TSP(A));
unary: ∗;
x, x ′;

x∗↓ x
a→ x ′

x∗ a→ x ′ · x∗

Table 6.5. Term deduction system for (TSP + IT)(A) (with a ∈ A).

Based on the term deduction system, the term model P((TSP + IT)(A))/↔
can be constructed, because, as before, bisimilarity is a congruence on the
term algebra by the format of the deduction rules. Theory (TSP + IT)(A) is

Exercises 181

a sound axiomatization of the term model, and the theory is a conservative
ground-extension of TSP(A), but it is not a ground-complete axiomatization
of the term model (see (Sewell, 1997)).

The theory (TSP + IT)(A) is more expressive than the theory TSP∗(A). In
the term model of TSP∗(A), a loop can only occur from a certain state to itself.
Or in other words, a loop can only consist of one action. On the other hand,
in the term model of (TSP + IT)(A), processes can have loops consisting of
multiple actions and states. Consider for example the process (a.b.1)∗, which
has a cycle consisting of two states (see Exercise 6.5.2).

An interesting observation is that equational theory (TSP + IT)(A) can be
viewed as a theory of regular expressions. When eliminating the action-prefix
operators a. in favor of action constants a.1, (TSP + IT)(A) has the same con-
stants and operators as the algebra of regular expressions known from automata
theory (see e.g. (Linz, 2001)). The model of closed (TSP + IT)(A)-terms mod-
ulo language equivalence known from automata theory (see Definition 3.1.7) is
in fact the algebra of finite automata. In this book, theory (TSP + IT)(A), how-
ever, builds upon bisimulation equivalence instead of language equivalence.
In automata theory, every finite automaton (regular process in the context of
this book, see Section 5.8) can be expressed as a regular expression (closed
(TSP + IT)(A)-term). In the current context, it is not possible to represent all
regular processes as closed (TSP + IT)(A)-terms. Figure 6.2 shows a transition
system for which it can be shown that there is no closed (TSP + IT)(A)-term
with a transition system in the term algebra P((TSP + IT)(A)) that is bisimi-
lar to this transition system. The proof of this fact is beyond the scope of this
text; the interested reader is referred to e.g. (Bergstra et al., 2001). This ex-
ample also shows that the theory (TSP + IT)(A) is less expressive than theory
BSPgfrec(A) of Section 5.8. In other words, iteration is less expressive than
general guarded finite recursion, which is not very surprising. It is interesting
to observe that theories (TSP + IT)(A) and BSPgfrec(A) are equally expressive
when language equivalence is the basic semantic equivalence. It follows from
the results in Section 5.8 and language theory that both equational theories cap-
ture precisely all finite automata (regular transition systems in the terminology
of this book).

Exercises

6.5.1 Prove that (TSP + IT)(A) � 0∗ = 1 = 1∗.

6.5.2 Draw the transition system of the following (TSP + IT)(A)-terms:
(a.b.1)∗, (a.0)∗, (a.b.1)∗ · 0, (a.1 + b.1)∗.

182 Sequential processes

a

b

Fig. 6.2. A transition system that is not bisimilar to the transition system of
any closed (TSP + IT)(A)-term.

6.6 Recursion

In Section 6.2, it has been shown that from each closed TSP(A)-term all
occurrences of the sequential-composition operator can be eliminated (thus
obtaining a closed BSP(A)-term). This, however, does not mean that the ad-
dition of sequential composition is without consequences. In a setting with
recursion, the elimination property for sequential composition does not hold
anymore. This section discusses the extension of TSP(A) with recursion.

6.6.1 The theory

The theory TSPrec(A), the Theory of Sequential Processes with Recursion, is
obtained by extending the signature of theory TSP(A) with constants corre-
sponding to all recursion variables in all recursive specifications of interest,
and by adding all the recursive equations of these specifications as axioms to
the theory, along the lines of Section 5.2. The term model P(TSPrec(A))/↔ of
TSPrec(A) is based on the term deduction system TDS(TSPrec(A)), obtained by
combining the term deduction systems of Tables 6.2 (Term deduction system
of TSP(A)) and 5.2 (Term deduction system of BSPrec(A)). It is straightfor-
ward to prove that TSPrec(A) is a sound axiomatization of P(TSPrec(A))/↔ .

There is no ground-completeness result, because in general the recursive
equations do not capture all equalities between recursion variables that are
valid in the term model. It is in general also not possible to eliminate re-
cursion variables, and as a consequence, sequential-composition occurrences,
from closed TSPrec(A)-terms. However, the extension of TSP(A) with recur-
sion is conservative, i.e., theory TSPrec(A) is a conservative ground-extension
of process theory TSP(A). Intuitively, TSPrec(A) should also be a conser-
vative ground-extension of BSPrec(A). However, none of the standard proof
techniques, via term rewriting or the theory of structural operational seman-
tics, can be applied to prove this result. Figure 6.3 shows the conservativity
result and conjecture for theory TSPrec(A), extending Figures 5.4 and 6.1.

Recursion principles are needed to allow meaningful equational reasoning

6.6 Recursion 183

MPT(A)
recursion−−−−−−→ MPTrec(A)⏐⏐⏐�

⏐⏐⏐�
BSP(A)

recursion−−−−−−→ BSPrec(A)

A4,A5

⏐⏐⏐�A7-A10

⏐⏐⏐�?

TSP(A)
recursion−−−−−−→ TSPrec(A)

Fig. 6.3. Conservativity results for TSPrec(A).

in a context with recursion. Recall that principles AIP and AIP− are only
meaningful in a context with projection operators. Note that the definition of
guardedness, Definition 5.5.8, carries over to (TSP + PR)rec(A)-terms.

Theorem 6.6.1 (Recursion principles) Recursion principles RDP, RDP−,
RSP, and AIP− are valid in the term model P((TSP + PR)rec(A))/↔ . Prin-
ciple AIP is not valid in this model. RDP, RDP−, and RSP are also valid in
model P(TSPrec(A))/↔ .

The validity of principle RDP, and hence RDP−, in both mentioned models
follows immediately from the construction of the process theories and their
term models. The proof of Theorem 5.5.23 (Validity of AIP− in P((BSP +
PR)rec(A))/↔) carries over to the context of theory (TSP + PR)rec(A), show-
ing the validity of principle AIP− in P((TSP + PR)rec(A))/↔ . The invalidity
of AIP in P((TSP + PR)rec(A))/↔ follows from the same example as used to
show the invalidity of AIP in model P((BSP + PR)rec(A))/↔ (see Theorem
5.5.20). Assuming the validity of RSP in model P((TSP + PR)rec(A))/↔ , its
validity in P(TSPrec(A))/↔ follows from the fact that (TSP + PR)rec(A) is
a ground-conservative extension of TSPrec(A), following the reasoning in the
proof of Theorem 5.5.11 (Validity of RSP in BSPrec(A)). Finally, the validity
of RSP in P(TSPrec(A))/↔ follows from Theorem 5.5.29 (Relation between
the recursion principles) and the following proposition.

Proposition 6.6.2 (HNF property) Process theory (TSP + PR)rec(A) satis-
fies the HNF property, as defined in Definition 5.5.24 (Head normal form).

Proof The proof goes via induction on the structure of a completely
guarded (TSP + PR)rec(A)-term s, similar to the proof of Proposition 5.5.26
(HNF property for (BSP + PR)rec(A)). Five out of six cases in the current

184 Sequential processes

proof are straightforward adaptations of the corresponding cases in the proof
of Proposition 5.5.26. The sixth case is the case that s ≡ s′ · s′′, for two
completely guarded (TSP + PR)rec(A)-terms s′ and s′′. It then follows by in-
duction that both s′ and s′′ can be rewritten into head normal forms, say t ′ and
t ′′, respectively. Proposition 5.5.25 (Head normal forms) implies that there ex-
ists a natural number n ∈ N such that, for any i < n, there are ai ∈ A and
(TSP + PR)rec(A)-terms ti such that

(TSP + PR)rec(A) � t ′ = ∑
i<n

ai .ti (+1).

Then, applying the axioms of (TSP + PR)rec(A),
(TSP + PR)rec(A) � s = t ′ · t ′′ =

(
∑
i<n

ai .ti (+1)) · t ′′ = ∑
i<n
(ai .ti) · t ′′(+1 · t ′′) = ∑

i<n
ai .(ti · t ′′)(+t ′′).

The last term in this derivation is a head normal form, which completes the
proof.

6.6.2 The stack revisited

In Section 5.6, a stack has been specified using BSP(A) with recursion. For
this purpose, an infinite number of recursive equations was needed, even if the
set D of data is finite. Using the additional syntax presented in this chapter,
alternative specifications of a stack can be given and proven equal to the orig-
inal one. These specifications are finite as long as the set D from which the
elements in the stack are taken is finite, showing the usefulness of sequential
composition.

Recall from Definition 5.5.19 (Generalized choice) that the use of the
∑

-
notation is only allowed for finite index sets. Using the syntax of TSPrec(A)
and given a finite data set D, a recursive specification E for the stack can be
given as follows:

Stack2 = 1 + ∑
d∈D

push(d).Stack2 · pop(d).Stack2.

Notice that this specification is guarded. In the equation, when an element
d is pushed on the stack, a return is made to Stack2, which can push additional
elements on the stack or terminate immediately. Eventually, d can be popped
from the stack, and then the stack is empty, after which it can terminate or start
over. Notice that, using the iteration operator of Section 6.5.2, this specifica-
tion can also be given as follows:

Stack2 = (
∑

d∈D
push(d).Stack2 · pop(d).1)∗.

The two descriptions of the stack given in Section 5.6 and above are deriv-
ably equivalent.

6.6 Recursion 185

Proposition 6.6.3 (Stacks) (TSPrec + RSP)(A) � Stack1 = Stack2.

To prove this proposition, introduce the following notation: for any d ∈ D
and arbitrary sequence σ ∈ D∗,

Xε ≡ Stack2,
Xdσ ≡ Stack2 · pop(d).Xσ .

Inspired by the transition systems of Stack1 and Stack2, it is proven that Xε
is a solution for Stack1 and Xσ is a solution for Sσ for all σ . Thereto, the
following equations have to be proven:

(TSP + E)(A) � Xε = Xε,
(TSP + E)(A) � Xε = 1 + ∑

d∈D
push(d).Xd ,

(TSP + E)(A) � Xdσ = pop(d).Xσ + ∑
e∈D

push(e).Xedσ .

The first equation is trivial. The derivations for the second and third equation
are as follows.

(TSP + E)(A) �
Xε = Stack2

= 1 + ∑
d∈D

push(d).Stack2 · pop(d).Stack2

= 1 + ∑
d∈D

push(d).(Stack2 · pop(d).Xε)

= 1 + ∑
d∈D

push(d).Xd

and

(TSP + E)(A) �
Xdσ = Stack2 · pop(d).Xσ

=
(

1 + ∑
e∈D

push(e).Stack2 · pop(e).Stack2

)
· pop(d).Xσ

= 1 · pop(d).Xσ +(∑
e∈D

push(e).Stack2 · pop(e).Stack2

)
· pop(d).Xσ

= pop(d).Xσ +∑
e∈D

(push(e).Stack2 · pop(e).Stack2) · pop(d).Xσ

= pop(d).Xσ +∑
e∈D

push(e).Stack2 · (pop(e).Stack2 · pop(d).Xσ)

= pop(d).Xσ +∑
e∈D

push(e).Stack2 · pop(e).(Stack2 · pop(d).Xσ)

186 Sequential processes

= pop(d).Xσ + ∑
e∈D

push(e).Stack2 · pop(e).Xdσ

= pop(d).Xσ + ∑
e∈D

push(e).(Stack2 · pop(e).Xdσ)

= pop(d).Xσ + ∑
e∈D

push(e).Xedσ .

At this point, it has been shown that any solution for Stack2 is also a solution
for Stack1. As both recursive specifications involved are guarded, using RSP,
each of them has precisely one solution in the model P(TSPrec(A))/↔ . Conse-
quently, (TSPrec+RSP)(A)�Stack1 = Stack2, proving the above proposition.

Observe that the above derivations use associativity of sequential composi-
tion on terms containing recursion variables. This cannot be avoided, showing
that, in a context with recursion, associativity axiom A5 is meaningful, whereas
it could be omitted from the basic theory TSP(A) without many consequences,
as explained in Section 6.2.

6.6.3 Some expressiveness aspects

In Section 5.8, the theory BSPgfrec(A) was introduced, and it was shown that
guarded finite recursion in the context of BSP(A) coincides with regular pro-
cesses. The stack process is not finitely definable over BSP(A) (see Definition
5.7.5 (Definability)). It cannot be specified as a closed BSPgfrec(A)-term, and
it is not regular. The guarded finite recursive specification for Stack2 in this
section therefore shows that TSP with guarded finite recursion is more expres-
sive than BSPgfrec(A). In fact, the specification for Stack2 shows that finite
guarded recursive specifications over TSP(A) allow the specification of non-
regular processes, or, in other words, that non-regular processes are finitely
definable over TSP(A). It is interesting to look a bit closer into these expres-
siveness aspects, particularly in relation with guardedness (which is required
by the definition of definability).

Note that the general theories BSPrec(A) and TSPrec(A) allowing arbitrary
recursion are equally expressive, as defined in Definition 5.7.2 (Expressive-
ness). Process theory BSPrec(A) is already sufficiently powerful to specify all
countable computable processes, see Section 5.7. The extension with sequen-
tial composition does not affect the expressiveness of the theory, because of
the fundamental restriction that computable recursive specifications can only
specify countable processes. Recall furthermore Theorem 5.7.7 (Processes de-
finable over BSP(A)) that states that a process is definable over BSP(A) if
and only if it is finitely branching. Also this result carries over to the context
with sequential composition, i.e., a process is definable over TSP(A) if and
only if it is finitely branching. However, when allowing unguarded recursive

6.6 Recursion 187

specifications, already a finite specification is sufficient to specify an infinitely
branching process.

Consider the recursive specification

{X = X · (a.1)+ a.1}.
Using the deduction rules for recursion constants of Table 5.2, for any natural
number n, the following transition can be derived:

X
a→ (a.1)n,

where n is the n-fold sequential composition of Exercise 6.2.3. This can be
proven by induction on the natural number n as follows:

(i) n = 0. Since a.1
a→ 1, also X ·(a.1)+a.1

a→ 1 and X
a→ 1 ≡ (a.1)0.

(ii) n > 0. By induction, X
a→ (a.1)n−1. Then, X · (a.1) a→ (a.1)n−1 ·

(a.1), i.e., X · (a.1) a→ (a.1)n . This means that X · (a.1) + a.1
a→

(a.1)n and therefore also X
a→ (a.1)n .

As for different natural numbers m and n, process terms (a.1)m and (a.1)n are
not bisimilar, it must be concluded that the transition system associated with X
has an infinite number of different successor states for the state associated with
X . Hence, the process specified by recursion variable X is infinitely branching,
showing that finite unguarded recursion can describe infinitely branching pro-
cesses. (Note that the recursive specification does not define the process that
X specifies via the default interpretation in the term model; since the recursive
specification is unguarded, it has many other solutions as well (see Exercise
6.6.8).)

Another interesting observation is based on the following specification taken
from (Bosscher, 1997):

{X = a.(Y · a.1),Y = a.(Y · Z)+ a.1, Z = a.1 + 1}.
This finite guarded recursive specification over the signature of TSP(A) de-
fines, as argued above, a finitely branching process, but interestingly there is
no bound on the number of outgoing transitions that any single state of the pro-
cess might have; the process exhibits so-called unbounded branching. This can
be verified by drawing the transition system for recursion variable X , see Exer-
cise 6.6.6. Thus, this example shows that unbounded branching processes are
finitely definable over TSP(A). As shown in (Bosscher, 1997), it is not possi-
ble to finitely define processes with unbounded branching over theory BSP(A).

Finally, it is interesting to consider the expressiveness results in this sub-
section in the context of automata theory. Observe that recursive specification
E = {X = X · (a.1)+ a.1} discussed above corresponds to a left-linear gram-
mar in the automata-theoretic context. In that context, left-linear grammars,

188 Sequential processes

right-linear grammars, finite automata, and regular languages are all equivalent
notions. However, in the current context, the process specified by specification
E is infinitely branching, and thus non-regular.

Exercises

6.6.1 Prove, using AIP−, that any solution of X = a.X ·b.1 is also a solution
of X = a.X .

6.6.2 Prove that ((TSP + PR)rec + AIP−)(A) � µX.{X = a.X} · µY.{Y =
b.Y } = µX.{X = a.X}.

6.6.3 Given the syntax of TSPrec(A) and a finite data set D, a recursive
specification for the stack using three equations can be given as fol-
lows:

Stack3 = 1 + T · Stack3,
T = ∑

d∈D
push(d).(U · pop(d).1),

U = 1 + T ·U.

In this set of equations, Stack3 is specified as an iteration of T , which
represents a terminating stack. In the specification of T , U · pop(d)
can be seen as a stack element d , where U may or may not put new
elements on top of the element, and where pop(d) removes the ele-
ment from the stack. Show that this recursive specification is guarded.
Prove that (TSPrec + RSP)(A) � Stack2 = Stack3.

6.6.4 Consider yet another recursive specification for the stack, consisting
of |D| + 2 equations, for data set D:

Stack4 = 1 + T · Stack4,
T = ∑

d∈D
push(d).Td , and, for all d ∈ D,

Td = pop(d).1 + T · Td .

Show that this recursive specification is guarded. Prove that (TSPrec+
RSP)(A) � Stack2 = Stack4.

6.6.5 A specification of a counter can be obtained by considering a stack
that can only contain elements from a data set with one element.
When, additionally, the atomic actions representing putting this ele-
ment on the stack and taking it from the stack are represented by plus
and minus, respectively, the following specification can be derived
from the specification for Stack4 of the previous exercise:

Counter = 1 + T · Counter,
T = plus.T ′,
T ′ = minus.1 + T · T ′.

6.7 Renaming, encapsulation, and skip operators 189

Give a transition system for the process Counter. Show that this
counter specification is derivably equivalent to the counter specifi-
cation of Exercises 5.6.3 and 5.6.4.

6.6.6 Consider the recursive specification {X = a.(Y ·a.1),Y = a.(Y ·Z)+
a.1, Z = a.1+ 1}. Draw the transition system of X (and observe that
it is a transition system with unbounded branching).

6.6.7 Find two non-bisimilar transition systems that are both solutions of
the (unguarded!) recursive equation X = X · a.1 + X · b.1.

6.6.8 Consider again recursive specification {X = X · a.1 + a.1} of the
last subsection. Give a different solution for this recursive specifica-
tion than the one already given. Give a plausible argument why any
solution of this recursive specification must be infinitely branching.

6.6.9 Prove or disprove that TSPrec(A) is a conservative ground-extension
of BSPrec(A). (Please inform the authors of any solution to this exer-
cise.)

6.7 Renaming, encapsulation, and skip operators

In Exercises 5.6.3, 5.6.4 and 6.6.5, a counter was considered that can also be
specified as a stack over a trivial singleton data type. However, for the stack,
different action names are used (push, pop) than for the counter (plus,minus).
In the exercises, the names were just changed without any further considera-
tion. Often, it is desirable to have such a renaming inside the theory, in order
to be able to deal with this in a more formal and precise way. This is not
difficult to do. This section briefly presents the extension of the basic theory
BSP(A) with renaming and two related families of operators, namely encap-
sulation and skip operators. The extension of TSP(A) with renaming is left as
Exercise 6.7.7.

Suppose f is a renaming function, i.e., f is a function on atomic actions,
f : A → A. Then, a renaming operator ρ f can be defined on process terms.
Table 6.6 shows the extension of BSP(A) with renaming operators.

It is straightforward to obtain an elimination theorem and a conservativity
theorem. Also the operational rules are not difficult; see Table 6.7. Again, it is
a useful exercise to show that the resulting term model admits a soundness and
a ground-completeness theorem.

The remainder of this section covers two other operators that turn out to be
very useful: an operator that can block a certain action, and an operator that
can skip a certain action. The former can be considered a renaming into 0, the
latter a renaming into 1. Suppose H is a set of atomic actions, i.e., H ⊆ A.
The operator ∂H blocks execution of actions from H , and leaves other actions

190 Sequential processes

(BSP + RN)(A)
BSP(A);
unary:

(
ρ f
)

f :A→A ;
x, y;

ρ f (1) = 1 RN1
ρ f (0) = 0 RN2
ρ f (a.x) = f (a).ρ f (x) RN3
ρ f (x + y) = ρ f (x)+ ρ f (y) RN4

Table 6.6. BSP(A) with renaming (with a ∈ A and f : A → A).

TDS((BSP + RN)(A))
TDS(BSP(A));
unary:

(
ρ f
)

f :A→A ;
x, x ′;

x↓
ρ f (x)↓

x
a→ x ′

ρ f (x)
f (a)→ ρ f (x

′)

Table 6.7. Term deduction system for BSP(A) with renaming (with a ∈ A
and f : A → A).

unchanged. For reasons that become clear in the next chapter, this operator is
called the encapsulation operator. Axioms are presented in Table 6.8.

(BSP + DH)(A)
BSP(A);
unary: (∂H)H⊆A ;
x, y;

∂H (1) = 1 D1
∂H (0) = 0 D2
∂H (a.x) = 0 if a ∈ H D3
∂H (a.x) = a.∂H (x) otherwise D4
∂H (x + y) = ∂H (x)+ ∂H (y) D5

Table 6.8. BSP(A) plus encapsulation (with a ∈ A, H ⊆ A).

Example 6.7.1 (Encapsulation) As an example, consider, on the one hand,
the behavior of a machine performing process a.(b.1 + c.1), that, for some
reason, is unable to execute the atomic action c. Then, after having performed
a, it will continue with b, as it does not have any other choice available.

6.7 Renaming, encapsulation, and skip operators 191

On the other hand, consider a similar machine performing a.b.1 + a.c.1.
Assuming again that c cannot be executed, this second machine will perform
an a-step and next it will either perform b, or it will be in the position that it
can only continue with the blocked c, which means it will end in a deadlock.

Using the encapsulation operator, this example can be modeled by blocking
c in the above two specifications; thus, H = {c}. As a consequence,

(BSP + DH)(A) �
∂H (a.(b.1 + c.1)) = a.∂H (b.1 + c.1) = a.(∂H (b.1)+ ∂H (c.1))

= a.(b.∂H (1)+ 0) = a.b.1,

and, on the other hand,

(BSP + DH)(A) �
∂H (a.b.1 + a.c.1) = ∂H (a.b.1)+ ∂H (a.c.1)

= a.∂H (b.1)+ a.∂H (c.1) = a.b.1 + a.0.

Notice that process a.b.1 + a.0 has a deadlock, whereas a.b.1 does not (see
Definition 4.4.14).

Next, suppose I is a set of atomic actions, I ⊆ A. The operator εI skips the
execution of actions from I , and leaves other actions unchanged. It is therefore
called a skip operator. Axioms are presented in Table 6.9.

(BSP + EI)(A)
BSP(A);
unary: (εI)I⊆A ;
x, y;

εI (1) = 1 E1
εI (0) = 0 E2
εI (a.x) = εI (x) if a ∈ I E3
εI (a.x) = a.εI (x) otherwise E4
εI (x + y) = εI (x)+ εI (y) E5

Table 6.9. BSP(A) with skip operators (with a ∈ A, I ⊆ A).

Also for the extensions with encapsulation and skip operators standard re-
sults can be established. Without further comment, Table 6.10 presents the
operational rules for encapsulation. The rules for the skip operators are given
in Table 6.11. The two rules in the bottom row of the table may need some
explanation. As usual, the steps and the termination option for term εI (p) are
derived from the steps and termination option of p. The bottom left rule states
that εI (p)may terminate if p can do an a-step that is skipped and p′, the result
of executing a in p, can terminate after skipping all actions in I in p′. The last

192 Sequential processes

provision is necessary because skipping actions can create extra termination
options. The bottom right rule states that εI (p) may do a b-step if p can do
some a-step that is skipped followed by a b-step that is not skipped. Thus, the
rules look ahead at the behavior of the p process after skipping the a action to
determine the behavior of εI (p).

TDS((BSP + DH)(A))
TDS(BSP(A));
unary: (∂H)H⊆A ;
x, x ′;

x↓
∂H (x)↓

x
a→ x ′ a �∈ H

∂H (x)
a→ ∂H (x

′)

Table 6.10. Term deduction system for encapsulation (with a ∈ A, H ⊆ A).

TDS((BSP + EI)(A))
TDS(BSP(A));
unary: (εI)I⊆A ;
x, x ′, y;

x↓
εI (x)↓

x
a→ x ′ a �∈ I

εI (x)
a→ εI (x

′)

x
a→ x ′ a ∈ I εI (x

′)↓
εI (x)↓

x
a→ x ′ a ∈ I εI (x

′) b→ y

εI (x)
b→ y

Table 6.11. The term deduction system for skip operators (with a, b ∈ A and
I ⊆ A).

As a final remark, the extensions of TSP(A) with encapsulation and skip
operators, (TSP + DH)(A) and (TSP + EI)(A), respectively, are obtained by
simply combining the signatures and axiom sets of TSP(A) with those of
(BSP + DH)(A) and (BSP + EI)(A), respectively. All standard results can
be obtained as expected.

Exercises

6.7.1 Generalizing Definition 4.4.14 (Deadlock in BSP(A)-terms), a closed
(BSP + DH)(A)-term is deadlock free if and only if it is derivably
equal to a closed BSP(A)-term without 0 occurrence.

Exercises 193

Simplify ∂{a}(a.0+ b.1). Note that the process a.0+ b.1 has a dead-
lock, but ∂{a}(a.0+b.1) does not. Hence, encapsulation can cause the
loss of deadlock possibilities. Conversely, it is easy to find a closed
BSP(A)-term p such that p is without deadlock, whereas ∂{a}(p) is
not. Give such an example.

6.7.2 Give an example of a closed BSP(A)-term p such that p has a dead-
lock and εI (p) for some appropriate I does no longer have a deadlock
(assuming a generalization of Definition 4.4.14 (Deadlock in BSP(A)-
terms) to closed (BSP + EI)(A)-terms).

6.7.3 Consider the behavior of the vending machine of Exercise 5.2.2 under
the assumption that due to some mechanical defect it is impossible to
insert any 10 cent coins. Does this machine have any deadlock?

6.7.4 Let id be the identity function on A and let ◦ denote function com-
position. Show that for all closed BSP(A)-terms p and renaming
functions f, g : A → A,

(a) (BSP + RN)(A) � ρid(p) = p,

(b) (BSP + RN)(A) � ρ f (ρg(p)) = ρ f ◦g(p).

6.7.5 Consider theory (BSP + EI)(A) with recursion.

(a) Given the equation X = ε{a}(a.X), show that in the term model
P((BSP + EI)rec(A))/↔ |
 X = 0.

(b) Find two different solutions of the equation X = ε{a}(a.X) in the
term model of (BSP + EI)(A) with recursion.

(c) Find two different solutions of the equation X = a.ε{a}(X) in the
term model of (BSP + EI)(A) with recursion.

(d) Can you formulate a notion of guardedness in the presence of skip
operators?

6.7.6 Consider the extensions of theory TSP(A) with encapsulation and
skip operators, (TSP+DH)(A) and (TSP+EI)(A). Show by structural
induction that for all closed TSP(A)-terms p, q and H, I ⊆ A,

(a) (TSP + DH)(A) � ∂H (p · q) = ∂H (p) · ∂H (q),

(b) (TSP + EI)(A) � εI (p · q) = εI (p) · εI (q).

6.7.7 Develop the theory (TSP + RN)(A), TSP with renaming, i.e., the
equational theory obtained by extending (BSP + RN)(A) with the
sequential-composition operator and the axioms of Table 6.1. Prove
elimination and conservativity results, and give a term model proving
soundness and ground-completeness.

194 Sequential processes

6.8 Bibliographical remarks

Taking the equational theory TSP(A), replacing processes a.1 by constants a,
and subsequently removing action prefixing and the constants 0 and 1, results
in the theory BPA(A) of (Bergstra & Klop, 1984a). The present treatment
is from (Baeten, 2003), which in turn is based on (Koymans & Vrancken,
1985; Vrancken, 1997). The term deduction system of theory TSP(A) is due
to (Baeten & Van Glabbeek, 1987).

Section 6.5 is based on (Bergstra et al., 2001). Further work can be found in
(Baeten et al., 2007).

The specification of the stack in one equation is new here. The specifica-
tion of the stack in three equations of Exercise 6.6.3 is due to (Koymans &
Vrancken, 1985). The (earlier) one in |D| + 2 equations, where D is the data
set, given in Exercise 6.6.4 is from (Bergstra & Klop, 1986a). The specifi-
cation in one equation is possible due to the termination option of the empty
stack. The specifications of (Koymans & Vrancken, 1985) and (Bergstra &
Klop, 1986a) do not have such an initial termination option, and the specifica-
tions given in the current chapter have been adapted to include this termination
option.

Section 6.7 is based on (Baeten & Bergstra, 1988). Renaming operators
occur in most concurrency theories, see e.g. (Milner, 1980; Hoare, 1985).
Encapsulation, and the notation ∂H , is from (Bergstra & Klop, 1984a). For
skipping, see (Baeten & Weijland, 1990).

7

Parallel and communicating processes

7.1 Interleaving

So far, the focus has been on sequential processes: actions can be executed,
or alternatives can be explored, starting from a single point of control. In
this chapter, the step is taken towards the treatment of parallel or distributed
systems: it is allowed that activities exist in parallel. Just allowing separate
activity of different components is not enough. A genuine treatment of par-
allel activity requires in addition a description of interaction between parallel
activities.

Suppose there are two sequential processes x and y that can execute actions,
and choose alternatives, independently. The merge operator‖denotes parallel
composition. Thus, the parallel composition of x and y is denoted x ‖ y. To
illustrate the intuition behind the algebraic treatment of parallel composition,
consider an external observer O that observes process x ‖ y. Observations
can be made of executions of actions. Assume that these observations are
instantaneous. Then, it can be seen that the observations of actions of x and
actions of y will be merged or interleaved in time.

Consider the example a.0 ‖ b.0. This process involves the execution of two
actions, one from each component. Observer O might see the execution of a
first, and then the execution of b. After this, no further activity is possible. On
the other hand, observer O might see the execution of b first, then the execution
of a followed by inaction. Finally, the observer might observe the two actions
simultaneously.

The simultaneous observation of two actions is reserved for the interaction
between the two processes, i.e., processes achieve interaction through synchro-
nization; the occurrence of interaction between two processes is the result of
the simultaneous execution of matching actions. By a judicious choice of

195

196 Parallel and communicating processes

atomic actions, communication can be achieved with synchronization, i.e., a
message can be passed from one process to another.

Returning to the simple example, assume the interaction that is achieved by
the simultaneous execution of a and b is denoted by c. Summarizing the above
discussions, the execution of a.0 ‖ b.0 has three possibilities: first a and then
b, first b and then a, or c (denoting a and b together). In terms of an equation,
this can be stated as follows. The merge operator‖binds stronger than choice
and weaker than action prefix.

a.0 ‖ b.0 = a.b.0 + b.a.0 + c.0.

The sketched approach to parallel composition is called arbitrary inter-
leaving or shuffle in the literature. Note that the observations of the action
executions are interleaved, not necessarily the actions themselves. So, the ac-
tions themselves can have duration (and will have duration in practice). It is
also not necessarily the case that the first action has finished when the second
action starts. If necessary, it can be made explicit that actions can overlap in
time, by allowing observations of the beginning and the ending of an action:

begina .enda .0 ‖ beginb.endb.0.

This process has begina .beginb.enda .endb.0 as one of its possible execution
sequences.

This chapter expands the theories BSP and TSP of the earlier chapters with
the interleaving merge operator, presenting equational theories and the under-
lying models for communicating parallel processes.

7.2 An operational view

Before turning to an equational theory, parallel processing and communication
is first studied from an operational point of view, to provide insight in some of
the aspects involved.

Considering parallel processing without interaction or communication, the
basic idea is that a component in a parallel composition can execute an action
by itself, independent of other components. This can be described in a straight-
forward way by the following deduction rules (as defined in the context of term
deduction systems), where x, x ′, y, and y′ are arbitrary process terms and a is
an action:

x
a→ x ′

x ‖ y
a→ x ′ ‖ y

and
y

a→ y′

x ‖ y
a→ x ‖ y′

.

Interaction is more involved. As mentioned, interaction is the simultaneous
execution of actions that match in some sense. An example of communication

7.2 An operational view 197

through synchronization has already been given in the previous section where
the synchronized execution of actions a and b resulted in an action c. More
concretely, one could consider a process that can perform a send action, and
that is executing in parallel with another process that can perform a receive
action. If it is assumed that these actions match, then the simultaneous execu-
tions of these two actions could be defined to result in a communicate action,
thus achieving communication between parallel processes.

Communication resulting from the simultaneous execution of matching ac-
tions is synchronous, as opposed to asynchronous communication in which a
message might be sent at one point in time and received at a different, later
point in time. Synchronous communication is the basic form of communica-
tion in this book. Asynchronous communication can be achieved by explicitly
specifying buffers or communication channels.

In elementary synchronous communication, every communication has two
parts. Actions that may communicate can be specified through a communi-
cation function γ , that takes a pair of communicating actions and returns the
result of the communication, which is also an action. Suppose an atomic action
communicate(5) represents the communication of a data value 5. Intuitively,
when communication is reliable, this communication action should be the re-
sult of the synchronized execution of a send(5) action and a receive(5) action;
that is, the data value that is received should match the value that is sent. This
can be defined as follows:

γ (send(5), receive(5)) = communicate(5).

If two actions do not communicate, e.g., continuing the example, when the sent
and received values do not match, then their communication is not defined. For
example,

γ (send(5), receive(6)) is not defined.

Not every function is a meaningful communication function. For example,
γ (send(5), receive(5)) and γ (receive(5), send(5)) are typically expected to
give the same result. These ideas lead to the following definition of a com-
munication function.

Definition 7.2.1 (Communication function) As always, set A is the set of
atomic actions. A communication function on A is a partial, binary function
γ : A × A → A satisfying the following conditions:

(i) for all a, b ∈ A: γ (a, b) = γ (b, a), i.e., communication is commuta-
tive;

(ii) for all a, b, c ∈ A: γ (γ (a, b), c) = γ (a, γ (b, c)), i.e., communica-
tion is associative.

198 Parallel and communicating processes

Note that equations as above for partial functions imply that one side of the
equation is defined exactly when the other side is. If γ (a, b) for certain a, b ∈
A is not defined, it is said that a and b do not communicate. An action c ∈ A
such that c = γ (a, b) for certain a, b is called a communication action. A
communication γ (a, b) is called a binary communication.

A communication function in principle specifies communication between
two actions, the binary communications. The result of such a communication
can itself be allowed to communicate with other actions, which means that
it is possible to specify communication among more than two actions. The
associativity property in the definition of a communication function implies
that the result of such communications is always the same, independent of the
order in which the binary communications among pairs of actions are resolved.
In fact, it follows from the commutativity and associativity requirements that it
is possible to simplify expressions like γ (a, γ (γ (b, c), d)), and simply write
γ (a, b, c, d).

Having introduced the notion of a communication function, interaction be-
tween two components in a parallel composition can be described by the
following deduction rule, where x, x ′, y, and y′ are arbitrary process terms,
γ is a communication function, and a, b, and c are actions:

x
a→ x ′ y

b→ y′ γ (a, b) = c

x ‖ y
c→ x ′ ‖ y′

.

Sometimes, one would like to express that communication is restricted. For
example, it could be the case that only binary communications, i.e., communi-
cations involving only two actions, are possible. An action γ (a, b, c) involves
three actions, and is therefore called a ternary communication. It is an example
of so-called higher-order communication. In many applications, higher-order
communication is not possible and only binary communication occurs. This is
called handshaking and can be expressed as follows.

Definition 7.2.2 (Handshaking communication) Let γ : A × A → A be a
communication function. If for all a, b, c ∈ A, γ (a, b, c) is not defined, then
γ is said to be a handshaking communication function.

In some applications, there is no communication whatsoever between the
components. In such cases, no two atomic actions a, b ∈ A communicate, i.e.,
γ (a, b) is undefined for all a, b ∈ A. This is indicated by writing ∅ for γ , thus
referring to the characterization of γ as the set {(a, b, c) ∈ A3 | γ (a, b) = c}.

These two examples illustrate that the concept of a communication function
is rather flexible. The deduction rule for communication does not change when

7.3 Standard communication 199

restricting the allowed communication functions beyond Definition 7.2.1 as in
the above two examples. Note however, that the deduction rule for communi-
cation does not allow the derivation of any communication actions if γ = ∅,
and is therefore redundant in that case, which is the expected result.

Finally, it is necessary to consider termination. Assume some parallel com-
position x ‖ y, with x and y process terms. Successful termination of the
composition can be observed when both x and y are able to terminate. If one
component still needs to execute actions, or cannot terminate successfully, then
the composite process cannot terminate, and, for example, cannot pass control
to a process following x ‖ y (composed sequentially). This can be captured in
the following deduction rule, with x and y arbitrary process terms:

x↓ y↓
x ‖ y↓ .

The next section presents a simple example illustrating the concepts intro-
duced so far in this chapter. Section 7.4 then follows with the development of
a basic equational theory for communicating processes.

Exercises

7.2.1 On the basis of the intuition given in this section, try to reason which
of the following identities are correct. Assume there is no communi-
cation, i.e., γ = ∅.

(a) a.1 ‖ b.1 = a.b.1 + b.a.1.
(b) a.b.1 ‖ c.1 = a.b.c.1 + a.c.b.1 + c.a.b.1.
(c) a.b.1 ‖ c.1 = a.(b.c.1 + c.b.1)+ c.a.b.1.
(d) (a.1 + b.1) ‖ c.1 = a.c.1 + b.c.1 + c.(a.1 + b.1).
(e) a.1 ‖ 0 = a.0.
(f) a.1 ‖ 0 = a.1.

7.2.2 Formally describe the situation where only binary and ternary com-
munication are possible, and none of higher order.

7.2.3 Is it possible to describe the situation where only ternary communica-
tion is possible, and not binary?

7.3 Standard communication

Many examples of communication involve the transmission of data at ports. It
turns out to be useful to have some standardized notation for so-called standard
communication.

200 Parallel and communicating processes

Assume a number of locations, that are interconnected by ports or chan-
nels. Figure 7.1 gives an example. The system in the example has locations
A, B, and C and ports ia, ab, ac, and co. Locations correspond to processes
(represented by a closed term or a guarded recursive specification). Standard
communication allows only binary communication, i.e., handshaking is as-
sumed. Ports that connect two locations are called internal, ports attached to
one location only are external. External ports can be used for communica-
tion between the system of processes and its environment. In the example of
Figure 7.1, ports ab and ac are internal, and ia and co are external. The com-
munication aspects of systems like those in Figure 7.1 can be captured via the
following definition.

Definition 7.3.1 (Standard communication) Let D be a set of data elements;
let P be a set of port names. Assume, for each port p ∈ P and each d ∈ D,
the presence of the following atomic actions in the set of actions A:

- p!d (send data element d at port p);
- p?d (receive d at p);
- p!?d (communicate d at p).

The standard communication function γS : A × A → A is given by the fol-
lowing equation:

γS(p!d, p?d) = γS(p?d, p!d) = p!?d,

for any p ∈ P and d ∈ D; γS is not defined otherwise.

A

B

C

ab

ac

ia

co

Fig. 7.1. A network of communicating processes.

Consider again the example of Figure 7.1. Using the actions predefined
in Definition 7.3.1, process A might for example be specified by the term
ia?d.(ab!d.1 ‖ ac!d.1), for some data element d. Processes B and C might
be defined as ab?d.1 and ac?d.co!d.1, respectively.

The system of Figure 7.1 as a whole can be described as a parallel compo-
sition of the processes involved:

7.4 The process theory BCP 201

ia?d.(ab!d.1 ‖ ac!d.1) ‖ ab?d.1 ‖ ac?d.co!d.1.

Following the intuition of the merge operator and its operational description
discussed in the previous sections, this parallel composition allows arbitrary
interleavings of the actions of the constituent processes, including communi-
cation actions of synchronizing processes. However, communication is not
enforced. It could be desirable to enforce communication over the internal
ports ab and ac. This can be done using the encapsulation operator of Section
6.7 by blocking isolated send and receive actions over these internal ports, see
Exercise 7.3.1:

∂{p?d,p!d|p∈{ab,ac},d∈D}
(ia?d.(ab!d.1 ‖ ac!d.1) ‖ ab?d.1 ‖ ac?d.co!d.1).

Exercises

7.3.1 Assume that a complete execution sequence of a system is a sequence
of actions that can be performed by the system and that leads to suc-
cessful termination. Provide three complete execution sequences of
the example system discussed in this section when it is not assumed
that any form of communication is enforced. Provide a complete exe-
cution sequence when assuming that communication over the internal
ports ab and ac is enforced.

7.3.2 Provide a recursive specification for a stack with input port i and
output port o using the actions of Definition 7.3.1 (Standard com-
munication).

7.4 The process theory BCP

Coming up with a set of axioms that fully captures the intuition of communi-
cating parallel processes given in the previous sections is no easy matter. In
fact, Moller proved in (Moller, 1989) that no finite direct axiomatization ex-
ists. This means that there is no finite ground-complete axiomatization in the
signature of the basic theory BSP(A) of Section 4.4 extended with the merge
operator only of the standard term model based on bisimilarity obtained from
the deduction rules of Section 7.2. In order to give a finite axiomatization
nonetheless, an artifice is needed in the form of auxiliary operators.

First, consider the four deduction rules given in Section 7.2. The first rule
says that x ‖ y can start by executing a step from x , and the second rule says
that x ‖ y can start by executing a step from y. The last two rules concern
joint activity. Either x and y execute an interaction, or they join in termination.

202 Parallel and communicating processes

Thus, it can be seen that parallel composition is broken up into three alterna-
tives, namely the part where the first step comes from x , the part where the
first step comes from y, and the part where x and y execute together. Two new
operators are introduced in order to express these options: x ‖ y denotes the
parallel composition of x and y with the restriction that the first step comes
from x ; x | y denotes the parallel composition of x and y starting with a joint
activity. Using this so-called left-merge operator‖ and communication-merge
operator | , the alternatives of parallel composition can be presented as follows.
It is assumed that‖ and | have the same binding priority as ‖ , i.e., they bind
stronger than choice and weaker than action prefix.

x ‖ y = x ‖ y + y‖ x + x | y.

Implicitly, it is assumed here that the operators ‖ and | will be commutative,
so that the order in which the components are presented is not relevant. Using
the above equality, the problem of axiomatizing the ‖ operator is replaced by
the problem of axiomatizing the ‖ and | operators. Surprisingly, the latter
problem is relatively straightforward.

First, the left-merge operator is considered. A case analysis following the
structure of the left-hand argument provides the desired axioms. Let x, y, z be
processes, and a ∈ A an action.

First of all, the case of the prefix operators is not difficult:

a.x ‖ y = a.(x ‖ y).

In words, in a parallel composition of processes a.x and y where the first step is
from a.x , this first step must be an a. What remains is the parallel composition
of x and y (without restriction).

Second, alternative composition is also straightforward.

(x + y)‖ z = x ‖ z + y‖ z.

It is crucial to notice that the moment of choice on both sides is the same: the
choice is made by the execution of the first action. This is in contrast to the
situation with the ‖ operator where (x + y) ‖ z is not equal to x ‖ z + y ‖ z,
as the first step might be a step from z which means that the choice in the left
argument of (x + y) ‖ z is not decided whereas the choice in x ‖ z + y ‖ z is
decided.

Finally, what remains is the behavior of the left merge with respect to the
termination constants 0 and 1. The termination behavior of a parallel composi-
tion is coded into the communication-merge operator, because termination and
communication both require some form of synchronization, which means they
fit naturally together. Therefore, termination behavior is of no concern for the
left merge. The following axioms follow the intuition that a (successfully or

7.4 The process theory BCP 203

unsuccessfully) terminated process cannot perform a step, which implies that
these constants as the left operand of a left merge lead to inaction.

0‖ x = 0 and 1‖ x = 0.

Next, the communication-merge operator is considered. A case analysis fol-
lowing the structure of the two arguments of the communication merge yields
the axioms. Let x, y, z be processes, and a, b, c ∈ A actions.

As the communication merge involves activity from both sides, it distributes
over choice:

(x + y) | z = x | z + y | z and x | (y + z) = x | y + x | z.

Obviously, an inaction constant 0 on one side of a communication merge al-
lows no joint activity whatsoever:

0 | x = 0 and x | 0 = 0.

What remains are the cases where both sides are action-prefix terms or empty
processes 1. Successful termination, i.e., both sides of the communication
merge are 1, is simple:

1 | 1 = 1.

If both sides are action prefixes, the result is based on the communication
function γ . If γ is defined for the involved actions, then the communicat-
ing process can actually perform the defined communication action, and then
proceed as an unconstrained parallel composition of the remaining behaviors
of both operands of the communication merge; if γ is undefined, the commu-
nicating process cannot perform any action at all.

a.x | b.y = c.(x ‖ y) if γ (a, b) = c
a.x | b.y = 0 if γ (a, b) is not defined.

Finally, communication-merge expressions combining an action prefix and an
empty process lead to inaction, because both a joint action and synchronized
successful termination are impossible:

a.x | 1 = 0 and 1 | a.x = 0.

Note that the axiom system presented below contains an axiom stipulating the
commutativity of the communication merge. This allows to save on the num-
ber of axioms required for the communication-merge operator. From the three
cases with symmetric axioms discussed above, only one axiom for each case is
needed. Assuming commutativity of the communication merge does not influ-
ence the equalities that can be derived for closed terms in the theory presented
below. However, it does allow the derivation of equalities between open terms
that cannot be derived from the theory without this axiom (and containing all
six axioms for the above three symmetric cases).

204 Parallel and communicating processes

The formal definition of process theory BCP, the theory of Basic Commu-
nicating Processes, is given in Table 7.1. It extends theory (BSP + DH)(A)
of Table 6.8. The theory thus includes the encapsulation operator because this
operator is essential in describing communication between processes, as illus-
trated by the example in Section 7.3. As before, the theory has as a parameter
the set of actions A. Besides this, it has as a second parameter a communication
function γ : A × A → A satisfying the conditions of Definition 7.2.1 (Com-
munication function). The signature of process theory BCP(A, γ) extends the
signature of the process theory (BSP + DH)(A) with the merge operator ‖ ,
the left-merge operator‖ and the communication-merge operator | . The three
new operators bind stronger than choice but weaker than action prefix. The ax-
ioms of BCP(A, γ) are the axioms in Table 7.1 added to the axioms of theory
(BSP+DH)(A) of Table 6.8. Note that Axioms LM3 and CM4–6 are actually
axiom schemes: there is such an axiom for each combination of atomic actions
a, b, c ∈ A occurring in them.

BCP(A, γ)
(BSP + DH)(A);
binary: ‖ , ‖ , | ;
x, y, z;
x ‖ y = x‖ y + y‖ x + x | y M x | y = y | x SC1

0‖ x = 0 LM1
1‖ x = 0 LM2 x ‖ 1 = x SC2
a.x‖ y = a.(x ‖ y) LM3 1 | x + 1 = 1 SC3
(x + y)‖ z = x‖ z + y‖ z LM4

0 | x = 0 CM1 (x ‖ y) ‖ z = x ‖ (y ‖ z) SC4
(x + y) | z = x | z + y | z CM2 (x | y) | z = x | (y | z) SC5
1 | 1 = 1 CM3 (x‖ y)‖ z = x‖ (y ‖ z) SC6
a.x | 1 = 0 CM4 (x | y)‖ z = x | (y‖ z) SC7

a.x | b.y = c.(x ‖ y) if γ (a, b) = c CM5
a.x | b.y = 0 if γ (a, b) is not defined CM6

Table 7.1. The process theory BCP(A, γ) (with a, b, c ∈ A).

Axioms M, LM1–4, and CM1–6 of BCP(A, γ) have been discussed above.
They serve to rewrite each closed term involving parallel composition opera-
tors into a closed BSP(A)-term (see the elimination theorem below). Besides
these axioms, the theory BCP(A, γ) contains seven additional axioms de-
noting properties of parallel composition, the so-called Axioms of Standard
Concurrency. These properties are often convenient.

The commutativity and associativity of the merge operator, and the fact that

7.4 The process theory BCP 205

1 is an identity element, are the most important properties. Commutativity of
the merge follows from SC1 and the commutativity of the choice operator (see
Exercise 7.4.3). Associativity is posed as Axiom SC4. The fact that 1 is an
identity element is stated by SC2. SC3 captures the fact that a communication
with the empty process either results in inaction or successful termination and
that no actions are possible, see Proposition 7.4.2 (Communication with the
empty process) below. This axiom illustrates that the communication merge is
used to capture the termination options of a parallel composition. The other
axioms of standard concurrency are variants of SC4 involving the left-merge
and communication-merge operators.

Example 7.4.1 (Communication) Consider a relay race with two runners,
Alice and Bob. First, Alice runs some distance, then she passes the baton
to Bob. Bob first takes the baton, and next runs some more. The processes
executed can be given via closed BCP(A, γ)-terms as follows:

A = runA.give.1 and B = take.runB.1.

The only defined communication is γ (give, take) = pass (and its commutative
variant, of course). Applying the axioms of BCP(A, γ) gives the following
result:

BCP(A, γ)�
A ‖ B = runA.(give.take.runB.1 + pass.runB.1

+ take.(give.runB.1 + runB.give.1)
)+

take. (runB.runA.give.1
+ runA.(give.runB.1 + runB.give.1)

).

Obviously, many unwanted action sequences occur in this term, where ‘halves’
of communication actions occur by themselves. Communication can be en-
forced by the encapsulation operator, as already illustrated in Section 7.3.
Defining H = {give, take}, it can be shown that

BCP(A, γ) � ∂H (A ‖ B) = runA.pass.runB.1.

Thus, by blocking the separate components of communication actions, only
the successful communications remain. This use of the encapsulation operator
in fact explains its name: the operator prevents actions within its scope to
communicate with actions outside.

Axiom SC3 of BCP(A, γ) may need some clarification. Recall the notion
of summands introduced in Exercise 4.2.3. The following can be derived, for
any process term x : BCP(A, γ) � x = x ‖ 1 = x‖ 1+ 1‖ x + x | 1 = x‖ 1+

206 Parallel and communicating processes

1 | x . In other words, any process x breaks down into two parts, namely x ‖ 1,
being all of x except a possibly occurring 1 summand (see Axioms LM1–4, in
particular LM2), and 1 | x , capturing this possibly occurring 1 summand. As a
consequence, 1 | x is either equal to 1 (if x has a 1 summand) or 0 (otherwise).
This is what Axiom SC3 expresses: 1 | x is a summand of 1, so it is either 1 or
0. Formally, the following can be derived.

Proposition 7.4.2 (Communication with the empty process) For any term
x , if BCP(A, γ)� x = x +1, then BCP(A, γ)�1 | x = 1; if BCP(A, γ)� x =
x ‖ 1, then BCP(A, γ) � 1 | x = 0.

Proof The two properties can be proven via straightforward equa-
tional reasoning, see Exercise 7.4.5.

Thus, when a process contains a 1 summand, it can be derived from the
axioms of BCP(A, γ) that BCP(A, γ) � 1 |x = 1. However, the general result
that 1|x is equal to 0 if x does not have a 1 summand cannot be derived from the
axioms of BCP(A, γ) for general open BCP(A, γ)-terms. It is only possible
to derive the above conditional property (the second property in Proposition
7.4.2) and an instance of it for guarded terms (see Proposition 7.6.3, in Section
7.6 which covers recursion).

The next theorem shows that the newly introduced operators can be elim-
inated from closed BCP(A, γ)-terms. This means that the introduction of
parallel composition does not increase expressiveness; the same set of pro-
cesses can be specified as in the theory BSP(A), but in more different, often
more intuitive and more compact, ways. In fact, the number of symbols in a
term can increase exponentially when rewriting a BCP(A, γ)-term to an equiv-
alent BSP(A)-term, see Exercise 7.4.11.

Theorem 7.4.3 (Elimination) For any closed BCP(A, γ)-term p, there exists
a closed BSP(A)-term q such that BCP(A, γ) � p = q.

Proof Axioms M, LM1–4, and CM1–6 in Table 7.1 can be ordered
from left to right as a term rewriting system. It is necessary to add rewrite rules
corresponding to CM1, CM2, and CM4 where the arguments of the communi-
cation merge are swapped. This is harmless due to Axiom SC1. Furthermore,
rewrite rules corresponding to the axioms of encapsulation (see Table 6.8) need
to be added. Then, this proof follows the same pattern as earlier proofs of elim-
ination theorems. Details are left for Exercise 7.4.6.

The Axioms of Standard Concurrency SC1 through SC7 of BCP(A, γ) are

7.4 The process theory BCP 207

basic axioms of the theory of parallel processes, and they cannot be derived
from the other axioms. However, except for SC1, they can be derived for all
closed terms. (If the counterparts of CM1, CM2, and CM4 are added to the
theory as in the proof of Theorem 7.4.3, then also SC1 can be derived for
closed terms.)

Theorem 7.4.4 (Standard concurrency) For closed BCP(A, γ)-terms, the
Axioms of Standard Concurrency SC2–7 are derivable from the other axioms
of BCP(A, γ).

Proof The property for Axiom SC2 is proven by structural induction.
In view of Theorem 7.4.3 (Elimination), assume that p is a closed BSP(A)-
term.

(i) Assume p ≡ 0. Consequently, BCP(A, γ) � p ‖ 1 = 0‖ 1+ 1‖ 0+
0 | 1 = 0 + 0 + 0 = 0 = p.

(ii) Assume p ≡ 1. BCP(A, γ) � p‖1 = 1‖ 1+1‖ 1+1|1 = 0+0+1 =
1 = p.

(iii) Assume p ≡ a.q , for some a ∈ A and closed BSP(A)-term q. It
follows that BCP(A, γ) � p ‖ 1 = a.q ‖ 1 + 1‖ a.q + a.q | 1 =
a.(q ‖ 1)+ 0 + 0 = a.q = p.

(iv) Assume p ≡ p1 + p2, for some closed BSP(A)-terms p1 and p2.
Then, BCP(A, γ) � p ‖ 1 = p‖ 1+ 1‖ p+ p | 1 = p1‖ 1+ p2‖ 1+
0+ p1 |1+ p2 |1 = p1‖ 1+ p2‖ 1+1‖ p1+1‖ p2+ p1 |1+ p2 |1 =
p1 ‖ 1 + p2 ‖ 1 = p1 + p2 = p.

The proof for Axiom SC3 is equally straightforward. Assume again that p is a
closed BSP(A)-term.

(i) Assume p ≡ 0. Consequently, BCP(A, γ) � 1 | p + 1 = 1 | 0+ 1 =
0 | 1 + 1 = 0 + 1 = 1.

(ii) Assume p ≡ 1. BCP(A, γ) � 1 | p + 1 = 1 | 1 + 1 = 1 + 1 = 1.
(iii) Assume p ≡ a.q , for some action a ∈ A and closed BSP(A)-term q.

BCP(A, γ) � 1 | p + 1 = 1 | a.q + 1 = a.q | 1 + 1 = 0 + 1 = 1.
(iv) Assume p ≡ p1 + p2, for some closed BSP(A)-terms p1 and p2. It

then follows that BCP(A, γ) � 1 | p + 1 = 1 | (p1 + p2) + 1 =
1 | p1 + 1 | p2 + 1 = 1 | p1 + 1 + 1 | p2 + 1 = 1 + 1 = 1.

For the other four axioms, the theorem is proved simultaneously by natural
induction on the total number of symbols in closed BCP(A, γ)-terms p, q,
and r . Assume that this number of symbols is k. Based on Theorem 7.4.3
(Elimination), assume again that p, q , and r are BSP(A)-terms.
The base case of the proof, where the number of symbols is three, and thus

208 Parallel and communicating processes

all three terms are 1 or 0, is left to the reader. In the induction step, it can be
assumed that all four equalities hold for all triples of closed terms containing
in total fewer than k symbols, for some natural number k. As p is a closed
BSP(A)-term, it follows from Proposition 5.5.25 (HNF property) that it may
be assumed that p can be written as follows:

p ≡ ∑
i<n

ai .pi (+1),

for a certain natural number n ≥ 0, atomic actions ai and closed terms pi with
fewer symbols than p, and a 1 summand which may or may not be present.
For Axiom SC6, consider the following derivation, using induction (with re-
spect to Axiom SC4) in the fifth step:

BCP(A, γ) � (p‖ q)‖ r =
((∑

i<n
ai .pi (+1)

)
‖ q

)
‖ r

=
(∑

i<n
ai .pi ‖ q (+1‖ q)

)
‖ r

= ∑
i<n

ai .(pi ‖ q)‖ r

= ∑
i<n

ai .((pi ‖ q) ‖ r)

= ∑
i<n

ai .(pi ‖ (q ‖ r))

= ∑
i<n

ai .pi ‖ (q ‖ r)

= ∑
i<n

ai .pi ‖ (q ‖ r)(+1‖ (q ‖ r))

= (
∑
i<n

ai .pi (+1))‖ (q ‖ r)

= p‖ (q ‖ r).

For Axiom SC7, besides p also q is written in sum notation:

q ≡ ∑
j<m

b j .q j (+1),

for natural number m ≥ 0, actions b j ∈ A, and simpler closed terms q j . The
following derivation uses the induction hypothesis in the sixth step. Note that a
communication merge has only a termination option (a 1 summand) if both its
arguments have a termination option. Therefore, in the one-but-last step of the
derivation, the optional 1 summands can be added because the resulting right
argument of the communication-merge operator does not have a termination
option due to the occurrence of the left-merge operator.

BCP(A, γ) � (p | q)‖ r

=
(
(
∑
i<n

ai .pi (+1)) | (∑
j<m

b j .q j (+1))

)
‖ r

7.4 The process theory BCP 209

=
(∑

i<n

∑
j<m

ai .pi | b j .q j

)
‖ r (+1‖ r)

=
(∑

i, j with γ (ai , b j) defined
γ (ai , b j).(pi ‖ q j)

)
‖ r

= ∑
i, j with γ (ai , b j) defined

γ (ai , b j).(pi ‖ q j)‖ r

= ∑
i, j with γ (ai , b j) defined

γ (ai , b j).((pi ‖ q j) ‖ r)

= ∑
i, j with γ (ai , b j) defined

γ (ai , b j).(pi ‖ (q j ‖ r))

= (
∑
i<n

ai .pi) | (∑
j<m

b j .(q j ‖ r))

= (
∑
i<n

ai .pi) | (∑
j<m

b j .q j ‖ r)

= (
∑
i<n

ai .pi (+1)) | (∑
j<m

(b j .q j (+1))‖ r)

= p | (q‖ r).

For Axiom SC5, all three terms are written in sum notation, so in addition to
the earlier assumptions,

r ≡ ∑
k<l

ck .rk (+1),

for natural number l ≥ 0, ck ∈ A, and simpler closed terms rk . Notice that
terms of the form (p | q) | r and p | (q | r) only contain a 1 summand if all
three of p, q, and r contain a 1 summand. The following derivation uses in the
fourth step the induction hypothesis and the associativity of the communication
function.

BCP(A, γ) � (p | q) | r

=
(∑

i<n
ai .pi (+1) | ∑

j<m
b j .q j (+1)

)
| r

=
(∑

i, j with γ (ai , b j) defined
γ (ai , b j).(pi ‖ q j) (+1)

)
| r

= ∑
i, j, k with γ (ai , b j , ck) defined

γ (γ (ai , b j), ck).((pi ‖ q j) ‖ rk) (+1)

= ∑
i, j, k with γ (ai , b j , ck) defined

γ (ai , γ (b j , ck)).(pi ‖ (q j ‖ rk)) (+1)

= (
∑
i<n

ai .pi (+1)) |
(∑

j, k with γ (b j , ck) defined
γ (b j , ck).(q j ‖ rk) (+1)

)

= p | (q | r).

Thus, SC5–7 are proved for all triples of closed terms with total number of
symbols k. This fact is now used in the following derivation, proving the the-
orem for SC4 for all triples of closed terms with total number of symbols k:

210 Parallel and communicating processes

BCP(A, γ) � (p ‖ q) ‖ r
= (p ‖ q)‖ r + r ‖ (p ‖ q)+ (p ‖ q) | r
= (p‖ q + q‖ p + p | q)‖ r + r ‖ (p ‖ q)+ r | (p ‖ q)
= (p‖ q)‖ r + (q‖ p)‖ r + (p | q)‖ r + r ‖ (p ‖ q)

+ r | (p‖ q)+ r | (q‖ p)+ r | (p | q)
= p‖ (q ‖ r)+ q‖ (p ‖ r)+ p | (q‖ r)+ r ‖ (q ‖ p)

+ (r | p)‖ q + (r | q)‖ p + (p | q) | r
= p‖ (q ‖ r)+ q‖ (r ‖ p)+ p | (q‖ r)+ (r ‖ q)‖ p

+ (p | r)‖ q + (q | r)‖ p + p | (q | r)
= p‖ (q ‖ r)+ (q‖ r)‖ p + p | (q‖ r)+ (r ‖ q)‖ p

+ p | (r ‖ q)+ (q | r)‖ p + p | (q | r)
= p‖ (q ‖ r)+ (q ‖ r)‖ p + p | (q ‖ r)
= p ‖ (q ‖ r).

Induction then proves the theorem for SC4–7 for all closed BCP(A, γ)-terms.

Because of Axiom SC4, it is not necessary to write parentheses in expres-
sions like x ‖ y ‖ z. Therefore, a notation for generalized parallel composition
is introduced, similar to Notation 5.5.19 (Generalized choice). Considering
Axiom SC2, the parallel composition of an empty set of process terms results
in the empty process.

Notation 7.4.5 (Generalized merge) Let I ⊂ N be some finite index set of
natural numbers, j ∈ N \ I a fresh index not in I , and ti , for all i ∈ I ∪ { j},
arbitrary terms in some process theory containing the merge operator ‖ .

‖
i∈∅

ti ≡ 1 and ‖
i∈I∪{ j}

ti ≡ t j ‖ ‖
i∈I

ti .

Similarly, based on Axiom SC5, a generalized notation for the commu-
nication merge can be introduced, where it is important to observe that the
communication merge does not have an identity element (which implies that
the notation cannot be defined for an empty index set).

Notation 7.4.6 (Generalized communication merge) Let I ⊂ N be some fi-
nite, non-empty index set of natural numbers, j ∈ N \ I a fresh index not in
I , and ti , for all i ∈ I ∪ { j}, arbitrary terms in some process theory containing
the communication merge operator | .

|
i∈{ j}

ti ≡ t j and |
i∈I∪{ j}

ti ≡ t j | |
i∈I

ti .

Using these notations, the following expansion theorem can be formulated.

7.4 The process theory BCP 211

This theorem is the main tool in breaking down the parallel composition of a
number of processes, and it is often used in the remainder.

Theorem 7.4.7 (Expansion theorem) Let I ⊂ N be some finite, non-empty
index set of natural numbers, and ti , for all i ∈ I , arbitrary BCP(A, γ)-terms.

BCP(A, γ) � ‖
i∈I

ti = ∑
∅�=J⊂I

(|
j∈J

t j)‖ (‖
i∈I\J

ti)+ |
i∈I

ti .

Proof The proof is by induction on the cardinality of index set I . In
the base case where the cardinality is 1, say the index set is singleton {0}, the
theorem reduces to a trivial equality: BCP(A, γ) � t0 ‖ 1 = t0 = 0 + t0. For
the induction step, assume that the theorem is proven for all index sets of car-
dinality k, with k ≥ 1, and assume that index set I of cardinality k + 1 is equal
to K ∪ {k} with K = {0, 1, . . . , k − 1}. The following derivation inductively
applies the expansion theorem in the third step. The first four summands in the
expression after the fourth step correspond to the cases where the set of indices
(1) is a non-empty, strict subset of K , (2) equals K , (3) equals singleton {k},
and (4) contains index k and some non-empty, strict subset of K . Together,
these four cases cover all non-empty, strict subsets of I (= K ∪ {k}). These
observations clarify the last two steps of the derivation.

BCP(A, γ) �
‖

i∈I
ti = (‖

i∈K
ti) ‖ tk

= (‖
i∈K

ti)‖ tk + tk ‖ (‖
i∈K

ti)+ (‖
i∈K

ti) | tk

=
(∑
∅�=J⊂K

(|
j∈J

t j)‖ (‖
i∈K\J

ti)+ |
i∈K

ti

)
‖ tk

+ tk ‖ (‖
i∈K

ti)

+
(∑
∅�=J⊂K

(|
j∈J

t j)‖ (‖
i∈K\J

ti)+ |
i∈K

ti

)
| tk

= ∑
∅�=J⊂K

(|
j∈J

t j)‖ ((‖
i∈K\J

ti) ‖ tk)

+ (|
i∈K

ti)‖ tk

+ tk ‖ (‖
i∈K

ti)

+ ∑
∅�=J⊂K

((|
j∈J

t j) | tk)‖ (‖
i∈K\J

ti)

+ (|
i∈K

ti) | tk

212 Parallel and communicating processes

= ∑
∅�=J⊂K

(|
j∈J

t j)‖ (‖
i∈I\J

ti)

+ ∑
J=K

(|
j∈J

t j)‖ (‖
i∈I\J

ti)

+ ∑
J={k}

(|
j∈J

t j)‖ (‖
i∈I\J

ti)

+ ∑
{k}⊂J⊂I

(|
j∈J

t j)‖ (‖
i∈I\J

ti)

+ |
i∈I

ti

= ∑
∅�=J⊂I

(|
j∈J

t j)‖ (‖
i∈I\J

ti)+ |
i∈I

ti .

The desired result now follows by induction.

The expansion theorem is an important means to rewrite a parallel compo-
sition into sequential behaviors. Therefore, it is important to understand what
it says. In the proof of the theorem, it was already noted that for an index set
of size one, it is a trivial statement. For an index set of cardinality two, the
expansion theorem reduces exactly to Axiom M of theory BCP(A, γ). For an
index set of size three, it can be written out as follows:

BCP(A, γ) �
x ‖ y ‖ z = x ‖ (y ‖ z)+ y‖ (x ‖ z)+ z‖ (y ‖ z)

+ (x | y)‖ z + (x | z)‖ y + (y | z)‖ x
+ x | y | z.

In words, in a parallel composition of three processes, the first step is a step
from one of the three processes (the first three summands of the right-hand
term) or a communication step between two of the three processes (the next
three summands) or a synchronization between all processes (the last sum-
mand).

The remainder of this section briefly considers two special cases of par-
allel processes, the case when communication is absent and the case when
only handshaking communication (see Definition 7.2.2 (Handshaking com-
munication)) is allowed. These special cases lead to additional axioms in the
equational theory to capture the appropriate restrictions on communication,
and to specialized versions of the expansion theorem.

First, consider the case without interaction between processes. This can be
captured by assuming that the communication function is nowhere defined,
i.e., γ = ∅. Parallel composition without interaction between processes is
often called a free merge. In this case, Axiom SC3 of theory BCP(A, γ) can
be strengthened to the Free-Merge Axiom, given in Table 7.2. The axiom states
that the synchronization of two processes either results in inaction (0) or in
successful termination (1). Thus, communication actions are indeed no longer

7.4 The process theory BCP 213

possible. The role of the communication merge in the resulting equational
theory reduces to capturing the termination options of parallel processes.

(BCP + FMA)(A,∅)
BCP(A,∅);
-
x, y;

x | y + 1 = 1 FMA

Table 7.2. Basic communicating processes with a free merge.

For closed terms, the Free-Merge Axiom is derivable from the axioms of the
equational theory BCP(A,∅).

Proposition 7.4.8 (Free-Merge Axiom) For closed BCP(A,∅)-terms p and
q, BCP(A,∅) � p | q + 1 = 1.

Proof Exercise 7.4.7.

In the presence of the Free-Merge Axiom, the expansion theorem of Theo-
rem 7.4.7 can be simplified. All terms containing both a communication merge
and a left merge can be omitted, because they result in inaction. The summand
in the expansion corresponding to the communication merge of all terms in
the parallel composition only denotes a possible termination option, i.e., this
summand is either 1 or 0.

Theorem 7.4.9 (Expansion theorem for free merge) Let I ⊂ N be some fi-
nite, non-empty index set of natural numbers, and ti , for all i ∈ I , arbitrary
(BCP + FMA)(A,∅)-terms.

(BCP + FMA)(A,∅) � ‖
i∈I

ti = ∑
i∈I

ti ‖ (‖
j∈I\{i}

t j)+ |
i∈I

ti .

Proof The desired result follows directly from the general expan-
sion theorem, Theorem 7.4.7, by observing that Axiom FMA implies that
(BCP + FMA)(A,∅)� (x | y)‖ z = 0 for arbitrary terms x , y, and z (Exercise
7.4.8).

The second special case that is considered is the case where there is only
binary communication, called handshaking before, i.e., the communication
function γ satisfies that γ (a, b, c) is not defined, for any atomic actions a, b, c
(see Definition 7.2.2 (Handshaking communication)). This case can also be
formulated in terms of an extra axiom, called the Handshaking Axiom, given

214 Parallel and communicating processes

in Table 7.3. The axiom states that any communication involving three (or
more) processes results either in inaction or in successful termination.

(BCP + HA)(A, γ)
BCP(A, γ);
-
x, y, z;

x | y | z + 1 = 1 HA

Table 7.3. Basic communicating processes with handshaking communica-
tion (with γ a handshaking communication function).

The Handshaking Axiom is derivable for all closed terms when assuming a
handshaking communication function. Furthermore, the following expansion
theorem is obtained.

Theorem 7.4.10 (Expansion theorem, handshaking communication) Let
I ⊂ N be some finite, non-empty index set of natural numbers, and ti , for
all i ∈ I , arbitrary (BCP + HA)(A, γ)-terms.

(BCP + HA)(A, γ) � ‖
i∈I

ti =∑
i∈I

ti ‖ (‖
j∈I\{i}

t j)+ ∑
i, j∈I,i �= j

(ti | t j)‖ (‖
k∈I\{i, j}

tk)+ |
i∈I

ti .

Proof The result follows from the expansion theorem of Theorem
7.4.7 and the observation that Axiom HA implies that (BCP + HA)(A, γ) �
(x | y | z)‖ w = 0 for terms x , y, z, and w.

Exercises

7.4.1 Use the axioms of BCP(A, γ) to write the following terms without
parallelism and encapsulation operators (i.e., eliminate ‖ ,‖ , | and
∂H). The only defined communication is γ (a, b) = c and H = {a, b}.

(a) a.a.1 ‖ b.b.1;
(b) ∂H (a.a.1 ‖ b.b.1);
(c) (a.1 + b.1) ‖ (a.1 + b.1);
(d) ∂H ((a.1 + b.1) ‖ (a.1 + b.1));
(e) a.a.a.1 ‖ a.a.a.1.

7.4.2 Let γ (a, b) = c be the only defined communication and let H =
{a, b}. Show that ∂H (c.(a.1 + b.1) ‖ b.1) is deadlock free, where

Exercises 215

a closed BCP(A, γ)-term is deadlock free if and only if it is deriv-
ably equal to a closed BSP(A)-term without 0 occurrence. Show that
∂H ((c.a.1+ c.b.1) ‖ b.1) does have a deadlock. This again illustrates
the difference between terms like c.a.1 + c.b.1 and c.(a.1 + b.1).

7.4.3 Prove that BCP(A, γ) � x ‖ y = y ‖ x .

7.4.4 Prove that, for each atomic action a ∈ A and natural numbers m, n ∈
N, BCP(A, γ) � am1 ‖ an1 = am+n1, where ak for any k ∈ N is the
k-fold action prefix of Notation 4.6.6.

7.4.5 Prove Proposition 7.4.2 (Communication with the empty process).

7.4.6 Complete the proof of Theorem 7.4.3 (Elimination).

7.4.7 Prove Proposition 7.4.8 (Free-Merge Axiom).

7.4.8 Prove that the following identities follow from (BCP + FMA)(A,∅),
for arbitrary terms x , y, and z:

(a) (x | y)‖ z = 0;

(b) if x = x + 1 and y = y + 1, then x | y = 1;

(c) if x = x ‖ 1 or y = y‖ 1, then x | y = 0;

(d) 1 | x = 1 | x + 1 | x | y.

7.4.9 In (BCP + FMA)(A,∅), prove the following identities for all closed
terms p and q , and action a.

(a) a.p | q = 0;

(b) 1 | p = 1 | p | p;

(c) p + p | q = p;

(d) p | p | q = p | q;

(e) p + p ‖ (1 | q)+ p ‖ 0 = p + p ‖ 0.

7.4.10 Write out the proofs of Theorems 7.4.9 (Expansion theorem for free
merge) and 7.4.10 (Expansion theorem for handshaking communica-
tion) in full detail.

7.4.11 Consider Theorem 7.4.3 (Elimination). Argue that the elimination of
parallelism operators from a closed BCP(A, γ)-term may result in a
BSP(A)-term with a length that is exponential in the number of sym-
bols of the original term. Write a computer program that implements
the rewriting system used in the proof of Theorem 7.4.3. Use this pro-
gram to eliminate the parallelism operators from term a31‖b31‖c31,
where dn for action d and natural number n is the n-fold action prefix
of Notation 4.6.6. For simplicity, assume there is no communication
(take γ = ∅).

216 Parallel and communicating processes

7.4.12 Give an axiomatization of the theory BCP(A,∅)without communica-
tion-merge operator, where the termination behavior is coded into the
left-merge operator.

7.5 The term model

In the previous section, the process theory BCP(A, γ), with A a set of actions
and γ a communication function on A, has been introduced. This section
considers a model of this equational theory, using a set of operational rules
as in the earlier chapters. The basis is the term algebra P(BCP(A, γ)) =
(C(BCP(A, γ)),+, ‖ ,‖ , | , (a.)a∈A, (∂H)H⊆A, 0, 1).

The term deduction system for BCP(A, γ) is obtained by extending the term
deduction system for (BSP+DH)(A) with deduction rules for the parallelism
operators merge, left merge, communication merge, and is given in Table 7.4.
The rules for the parallelism operators were already informally introduced in
Section 7.2. The rules for left merge and communication merge each show a
different part of the behavior of the merge operator.

TDS(BCP(A, γ))
TDS((BSP + DH)(A));
binary: ‖ , ‖ , | ;
x, x ′, y, y′;

x↓ y↓
x ‖ y↓

x↓ y↓
x | y↓

x
a→ x ′

x ‖ y
a→ x ′ ‖ y

y
a→ y′

x ‖ y
a→ x ‖ y′

x
a→ x ′

x‖ y
a→ x ′ ‖ y

x
a→ x ′ y

b→ y′ γ (a, b) = c

x ‖ y
c→ x ′ ‖ y′

x
a→ x ′ y

b→ y′ γ (a, b) = c

x | y
c→ x ′ ‖ y′

Table 7.4. Term deduction system for BCP(A, γ) (with a, b, c ∈ A).

Given the equational theory and the term deduction system, the develop-
ment of the model and soundness, conservativity, and completeness results
goes along the same lines as earlier. Figure 7.2 visualizes the conservativity
results, introducing the Minimal Theory of Communicating Processes, MTCP
(see Exercise 7.5.9).

Proposition 7.5.1 (Congruence) Bisimilarity is a congruence on term algebra
P(BCP(A, γ)).

Exercises 217

Proof The result follows immediately from the format of the deduc-
tion rules in Tables 4.2, 4.4, 6.10, and 7.4, and Theorem 3.2.7 (Congruence
theorem).

Definition 7.5.2 (Term model of BCP(A, γ)) The term model of BCP(A, γ)
is the quotient algebra P(BCP(A, γ))/↔ .

Theorem 7.5.3 (Soundness) Theory BCP(A, γ) is a sound axiomatization of
the algebra P(BCP(A, γ))/↔ , i.e., P(BCP(A, γ))/↔ |
 BCP(A, γ).

Proof Exercise 7.5.6.

Theorem 7.5.4 (Conservative ground-extension) Process theory BCP(A, γ)
is a conservative ground-extension of process theory BSP(A).

Proof Exercise 7.5.7.

Theorem 7.5.5 (Ground-completeness) The process theory BCP(A, γ) is a
ground-complete axiomatization of the term model P(BCP(A, γ))/↔ , i.e., for
any two closed BCP(A, γ)-terms p and q , P(BCP(A, γ))/↔ |
 p = q im-
plies BCP(A, γ) � p = q .

Proof Exercise 7.5.8.

MPT(A)
M,LM1,3,4,CM1,2,5,6,SC1,4–7,D2–5−−−−−−−−−−−−−−−−−−−−−−−→ MTCP(A, γ)⏐⏐⏐� LM2,CM3,4

⏐⏐⏐�SC2,3, D1

BSP(A)
M,LM1–4,CM1–6,SC1–7,D1–5−−−−−−−−−−−−−−−−−−−−−−−→ BCP(A, γ)

Fig. 7.2. Conservativity results for BCP(A, γ).

Exercises

7.5.1 Draw the transition system of the following BCP(A, γ)-terms, using
the operational rules of Tables 4.2, 4.4, 6.10 and 7.4. Assume that
γ (a, b) = c is the only defined communication and that H = {a, b}.

(a) a.a.1 ‖ b.b.1;
(b) ∂H (a.a.1 ‖ b.b.1);

218 Parallel and communicating processes

(c) (a.1 + b.1) ‖ (a.1 + b.1);
(d) ∂H ((a.1 + b.1) ‖ (a.1 + b.1));
(e) a.a.a.1 ‖ a.a.a.1.

7.5.2 Use the definition of bisimilarity and the operational rules of the term
deduction system of BCP(A, γ) to show that a.1‖ p↔ a.p, for any
action a ∈ A and closed BCP(A, γ)-term p.

7.5.3 Let x, y, and z be arbitrary process terms. Give an example to show
that equation (x+y)‖z = x‖z+y‖z is not valid in P(BCP(A,∅))/↔ .
Note that the communication function is assumed to be empty, i.e.,
communication is not allowed.

7.5.4 Let x and y be process terms. Give an example to show that ∂H (x ‖
y) = ∂H (x)‖∂H (y) is not valid in P(BCP(A, γ))/↔ . Is this equation
valid if γ = ∅?

7.5.5 Define the n-fold parallel-composition operator ‖n in the process the-
ory BCP(A,∅), with n ∈ N, inductively as follows:

x‖0 = 1 and, for all n ∈ N,
x‖n+1 = x‖n ‖ x .

Prove that for any action a ∈ A, BCP(A,∅) � (a.1)‖n = an1, for all
n ∈ N, with an the n-fold action prefix of Notation 4.6.6. Show that
BCP(A,∅) �� (a.b.1)‖n = anbn1.

7.5.6 Prove Theorem 7.5.3 (Soundness of BCP(A, γ)).
7.5.7 Prove Theorem 7.5.4 (Conservative ground-extension).
7.5.8 Prove Theorem 7.5.5 (Ground-completeness of BCP(A, γ)).
7.5.9 Develop the process theory MTCP(A, γ). That is, define the equa-

tional theory, prove an elimination and a conservativity result, and
give a term model proving both soundness and ground-completeness.
Also, prove that theory BCP(A, γ) is a conservative ground-extension
of MTCP(A, γ).

7.6 Recursion, buffers, and bags

The fact that all occurrences of the parallel-composition operators can be elim-
inated from each closed BCP(A, γ)-term does not imply that the addition of
parallel composition is without consequences in a context with recursion. In
fact, using parallel composition (even without communication), it is possible
to give a finite guarded recursive specification over the signature of the theory
BCP(A, γ) of a process that is not finitely definable over any of the earlier
theories.

To extend BCP(A, γ) with recursion, the theory is extended with constants

7.6 Recursion, buffers, and bags 219

µX.E for any recursion variable X in a recursive specification E , and with
axioms corresponding to the equations in all the recursive specifications of
interest. The resulting theory is theory BCPrec(A, γ). The term deduction
system TDS(BCPrec(A, γ)) is obtained by merging the term deduction systems
TDS(BSPrec(A)) of Table 5.2 and TDS(BCP(A, γ)) of Table 7.4. The resulting
term model is P(BCPrec(A, γ))/↔ . There are no elimination and ground-
completeness results, but the extension with recursion is conservative.

Recursion principles are needed to allow for meaningful equational reason-
ing in a context with recursion. The development goes along the lines of
Section 6.6, which discusses the extension of TSP(A) with recursion. The
extension of BCP(A, γ) and BCPrec(A, γ) with projection, needed for AIP
and AIP−, is straightforward. Definition 5.5.8 (Guardedness) carries over to
the current context. The reasoning leading to Theorem 7.6.2 (Recursion princi-
ples) uses the following generalization of Proposition 5.5.26 (HNF property),
which shows that every guarded (BCP + PR)rec(A, γ)-term can be rewritten
into a head normal form (see Definition 5.5.24).

Proposition 7.6.1 (HNF property) Process theory (BCP + PR)rec(A, γ) sat-
isfies the HNF property.

Proof It needs to be shown that every guarded (BCP + PR)rec(A, γ)-
term can be rewritten into a head normal form. It may be assumed that this
term, say s, is completely guarded. The proof is by induction on the structure
of s. Compared to Proposition 5.5.26, there are four extra cases to consider:

• s ≡ ∂H (s′), for some completely guarded (BCP + PR)rec(A, γ)-term
s′ and subset of actions H ⊆ A;

• s ≡ s′ ‖ s′′, for completely guarded (BCP + PR)rec(A, γ)-terms s′
and s′′;

• s ≡ s′ |s′′, for completely guarded (BCP + PR)rec(A, γ)-terms s′ and
s′′;

• s ≡ s′ ‖ s′′, for completely guarded (BCP + PR)rec(A, γ)-terms s′
and s′′.

These cases are not difficult. See Exercise 7.6.1.

Theorem 7.6.2 (Recursion principles) The principles RDP, RDP−, RSP, and
AIP− are valid in the term model P((BCP + PR)rec(A, γ))/↔ . Principle AIP
is not valid in this model. RDP, RDP−, and RSP are also valid in model
P(BCPrec(A, γ))/↔ .

220 Parallel and communicating processes

A few results derived earlier deserve attention in a context with recursion.
First, recall Proposition 7.4.2 (Communication with the empty process). It
shows under what conditions a communication with the empty process results
in successful or unsuccessful termination. If a process has a 1 summand, then it
can be derived that the communication of that process with the empty process
results in the empty process, i.e., in successful termination. It cannot in general
be derived that the absence of a 1 summand in the process results in inaction.
However, the second part of Proposition 7.4.2, concerning the absence of a 1
summand, holds for guarded terms.

Proposition 7.6.3 (Communication with the empty process) Assume that s
is a guarded BCPrec(A, γ)-term. If term s does not contain a 1 summand, then
BCPrec(A, γ) � 1 | s = 0.

Proof Based on Proposition 7.6.1 (HNF property), let t be a head
normal form such that BCPrec(A, γ) � s = t . It follows from Proposition
5.5.25 (Head normal forms) and the fact that s does not have a 1 summand,
that there is a natural number n, and that there are, for any i < n, ai ∈ A and
BCP(A, γ)-terms ti such that BCPrec(A, γ)� t =∑

i<n ai .ti . It is now possi-
ble to prove that s satisfies the condition in the second property in Proposition
7.4.2. However, it also follows directly that BCPrec(A, γ) � 1 | s = 1 | t =
1 | ∑i<n ai .ti =∑

i<n 1 | ai .ti =∑
i<n 0 = 0.

Second, recall Proposition 7.4.8 (Free-Merge Axiom), stating that the Free-
Merge Axiom can be derived from the axioms of theory BCP(A,∅) for all
closed BCP(A,∅)-terms. This proposition can be generalized to all guarded
BCPrec(A,∅)-terms in the current context with recursion. Also the Handshak-
ing Axiom (see Table 7.3) is derivable for all guarded BCPrec(A, γ)-terms
when γ is a handshaking communication function.

As an example of calculations with recursive specifications in BCPrec(A, γ),
let us consider buffers of finite capacity. Recall Definition 7.3.1 (Standard
communication). Assume that the set of data elements D is the set of bits
{0, 1}. In the minimal theory MPT(A) with recursion, a one-bit buffer with
input port i and output port o can be specified as follows:

Buf 1 = 1 + i?0.o!0.Buf 1 + i?1.o!1.Buf 1.

Note that in this specification, an empty buffer has an option to terminate. The
reason to include this option is that an environment using the buffer can decide
to terminate. Absence of this initial termination option would prevent such
termination; see Exercise 7.6.7.

In general, a one-place buffer over a finite data set D is given as follows:

7.6 Recursion, buffers, and bags 221

Buf 1 = 1 + ∑
d∈D

i?d.o!d.Buf 1.

To describe a buffer with capacity two, a specification with two equations is
needed (one parameterized with a data element, meaning that the actual num-
ber of equations in the recursive specification equals the cardinality of D plus
one):

Buf 2 = 1 + ∑
d∈D

i?d.Bd and, for all d ∈ D,

Bd = o!d.Buf 2 + ∑
e∈D

i?e.o!d.Be.

Buf 1il Buf 1lo
li o

Fig. 7.3. A sequence of two one-place buffers.

Consider now a communication network consisting of two buffers of capac-
ity one, Buf 1il with input port i and output port l (short for link), and Buf 1lo

with input port l and output port o; see Figure 7.3. The two components are
specified as above:

Buf 1il = 1 + ∑
d∈D

i?d.l!d.Buf 1il and

Buf 1lo = 1 + ∑
d∈D

l?d.o!d.Buf 1lo.

It is interesting to consider the parallel composition of the two processes
Buf 1il and Buf 1lo. Assume communication is specified by the standard com-
munication function γS of Definition 7.3.1. To enforce communication in
the parallel composition, encapsulation of halves of internal communication
actions is required. Thus, put H = {l?d, l!d | d ∈ D} and consider the
process ∂H (Buf 1il ‖ Buf 1lo). This process can be interpreted as a two-place
buffer, with an internal communication port l. Values from D are passed along
this port, using the synchronous communication mechanism of the theory.
A guarded recursive specification can be derived for this process. Let X =
∂H (Buf 1il ‖ Buf 1lo) and, for each d ∈ D, let Xd = ∂H (Buf 1il ‖ o!d.Buf 1lo).

BCPrec(A, γS) �
X = ∂H

(
Buf 1il‖ Buf 1lo

)+ ∂H
(
Buf 1lo‖ Buf 1il

)
+ ∂H (Buf 1il | Buf 1lo)

= ∂H

(∑
d∈D

i?d.(l!d.Buf 1il ‖ Buf 1lo)

)
+ 0 + 1

222 Parallel and communicating processes

= 1 + ∑
d∈D

i?d.∂H (l!d.Buf 1il‖ Buf 1lo

+ Buf 1lo‖ l!d.Buf 1il

+ l!d.Buf 1il | Buf 1lo

)

= 1 + ∑
d∈D

i?d.(0 + 0 + l!?d.∂H (Buf 1il ‖ o!d.Buf 1lo))

= 1 + ∑
d∈D

i?d.l!?d.Xd

and

BCPrec(A, γS) � Xd

= ∂H
(
Buf 1il‖ o!d.Buf 1lo

)+ ∂H
(
o!d.Buf 1lo‖ Buf 1il

)
+ ∂H (Buf 1il | o!d.Buf 1lo)

= ∑
e∈D

i?e.∂H (l!e.Buf 1il ‖ o!d.Buf 1lo)

+ o!d.∂H (Buf 1il ‖ Buf 1lo)+ 0
= ∑

e∈D
i?e.(0 + o!d.∂H (l!e.Buf 1il ‖ Buf 1lo)+ 0)+ o!d.X

= ∑
e∈D

i?e.o!d.(0 + 0 + l!?e.∂H (Buf 1il ‖ o!e.Buf 1lo))+ o!d.X

= ∑
e∈D

i?e.o!d.l!?e.Xe + o!d.X.

Thus, a system of two connected one-place buffers is given by recursive
specification:

X = 1 + ∑
d∈D

i?d.l!?d.Xd and, for all d ∈ D,

Xd = o!d.X + ∑
e∈D

i?e.o!d.l!?e.Xe.

Recall from Section 6.7 the concept of skip operators. It can be seen that
skipping the internal communication actions in this specification gives the two-
place buffer between ports i and o, i.e., with I = {l!?d | d ∈ D},

((BCP + EI)rec + RSP)(A, γS) �
εI (∂H (Buf 1il ‖ Buf 1lo)) = Buf 2.

The next chapter introduces a notion of abstraction, which can be used to ob-
tain a similar result (in a conceptually more elegant way); see Exercise 8.8.1.

This example once more shows the general form of a system describing
a communication network: a number of component processes, in the scope
of an encapsulation operator that blocks isolated send and receive actions on
internal ports. This allows only communication actions on these internal ports
and blocks interaction with the environment over these ports.

The following considers an example of a recursive specification of a process
in BCPrec(A,∅), i.e., the theory with a free merge where communication is
not possible. Notwithstanding, standard notation for inputs and outputs (send
and receive actions) established earlier is used. The process bag of unbounded

7.6 Recursion, buffers, and bags 223

capacity is able to input arbitrary elements of a finite data set D at port i and
output elements that have been input previously in any order, at port o. Thus,
input order is not important, but the number of specific elements present has to
be kept track of. To keep things simple, first consider only bits, so D = {0, 1}.
This means there are input actions i?0 and i?1, and output actions o!0 and o!1.

An (infinite) recursive specification over the signature of the minimal theory
MPT(A) has variables Bn,m that denote the state of the bag with n zeroes and
m ones. The following equations exist for all n,m ≥ 0, and together form the
(linear) recursive specification E .

B0,0 = 1 + i?0.B1,0 + i?1.B0,1,

B0,m+1 = o!1.B0,m + i?0.B1,m+1 + i?1.B0,m+2,

Bn+1,0 = o!0.Bn,0 + i?0.Bn+2,0 + i?1.Bn+1,1,

Bn+1,m+1 = o!0.Bn,m+1 + o!1.Bn+1,m+
+ i?0.Bn+2,m+1 + i?1.Bn+1,m+2.

?0

!0

?1!1

?0

!0

?1!1

?0

!0

?1!1

?0

!0

?1!1

?0

!0

?1!1 ?1!1

?0

!0

?0

!0

?0

!0

?0

!0
?1!1 ?1!1 ?1!1

Fig. 7.4. The transition system of a bag of bits.

Figure 7.4 visualizes the transition system of the above specification of the
bag of bits, using obvious abbreviations for input and output actions.

The following gives a finite recursive specification F of a bag, in BCP(A,∅)
with recursion. This specification has just one variable, Bag.

Bag = 1 + i?0.(Bag ‖ o!0.1)+ i?1.(Bag ‖ o!1.1).

It can be seen immediately that this is a guarded recursive specification.

Proposition 7.6.4 (Bags)

(BCP + FMA + E + F + RSP)(A,∅) � Bag = B0,0.

224 Parallel and communicating processes

Proof Define the processes Dn,m , for n,m ≥ 0, as follows:

Dn,m = Bag ‖ (o!0)n1 ‖ (o!1)m1,

where as before an for action a is the n-fold action prefix of Notation 4.6.6.
The first steps in the first derivation below show that (BCP+FMA+F)(A,∅)�
D0,0 = Bag. Therefore, to prove the theorem, it is sufficient to show that the
processes Dn,m form a solution of E . Consider the equations one by one. First,

(BCP + FMA + F)(A,∅)�
D0,0 = Bag ‖ (o!0)01 ‖ (o!1)01

= Bag ‖ 1 ‖ 1
= Bag
= 1 + i?0.(Bag ‖ o!0.1)+ i?1.(Bag ‖ o!1.1)
= 1 + i?0.(Bag ‖ (o!0)11 ‖ 1)+ i?1.(Bag ‖ 1 ‖ (o!1)11)
= 1 + i?0.D1,0 + i?1.D0,1.

The second derivation uses Axiom M. Since communication is not possible
and one of the terms does not contain a 1 summand, the communication-merge
term is skipped. This derivation also uses laws of standard concurrency and the
fact that, for each atomic action a ∈ A and natural number k ∈ N, the equality
ak1 ‖ a.1 = ak+11 is derivable (see Exercise 7.4.4).

(BCP + FMA + F)(A,∅)�
D0,m+1 = Bag ‖ 1 ‖ (o!1)m+11

= Bag ‖ (o!1)m+11
= Bag‖ (o!1)m+11 + (o!1)m+11‖ Bag
= (1 + i?0.D1,0 + i?1.D0,1)‖ (o!1)m+11

+ (o!1)m+11‖ Bag
= i?0.(D1,0 ‖ (o!1)m+11)+ i?1.(D0,1 ‖ (o!1)m+11)

+ o!1.((o!1)m1 ‖ Bag)
= i?0.D1,m+1 + i?1.D0,m+2 + o!1.D0,m .

The third derivation, for Dn+1,0, is left as an exercise to the reader, because it
is similar to the previous one.
Finally, the last derivation starts with an application of the expansion theorem
for the free merge (Theorem 7.4.9). Again, the communication-merge term is
skipped, as no termination is possible.

(BCP + FMA + F)(A,∅) � Dn+1,m+1

= Bag ‖ (o!0)n+11 ‖ (o!1)m+11
= Bag‖ ((o!0)n+11 ‖ (o!1)m+11)

+ (o!0)n+11‖ (Bag ‖ (o!1)m+11)
+ (o!1)m+11‖ (Bag ‖ (o!0)n+11)

7.6 Recursion, buffers, and bags 225

= (1 + i?0.D1,0 + i?1.D0,1)‖ ((o!0)n+11 ‖ (o!1)m+11)
+ (o!0)n+11‖ (Bag ‖ (o!1)m+11)
+ (o!1)m+11‖ (Bag ‖ (o!0)n+11)

= i?0.(D1,0 ‖ (o!0)n+11 ‖ (o!1)m+11)
+ i?1.(D0,1 ‖ (o!0)n+11 ‖ (o!1)m+11)
+ o!0.((o!0)n1 ‖ Bag ‖ (o!1)m+11)
+ o!1.((o!1)m1 ‖ Bag ‖ (o!0)n+11)

= i?0.Dn+2,m+1 + i?1.Dn+1,m+2 + o!0.Dn,m+1 + o!1.Dn+1,m .

The above derivations show that processes Dn,m form a solution of specifica-
tion E . Hence, by RSP, it follows that (BCP+FMA+ E + F +RSP)(A,∅)�
Dn,m = Bn,m , and in particular that (BCP + FMA + E + F + RSP)(A,∅) �
Bag = B0,0.

The above proposition shows that there is a specification for a bag over a
data set of two elements in the theory BCPrec(A,∅) using just one guarded
recursive equation. Such a finite guarded recursive specification does not exist
in the theory TSPrec(A). For a proof of this fact, the interested reader is re-
ferred to (Bergstra & Klop, 1984b). Recall Definition 5.7.5 (Definability). An
interesting consequence of these observations is that the parallel composition
does add expressive power, even in the absence of communication. It is pos-
sible to finitely define a process that cannot be finitely defined when parallel
composition is absent, not even when sequential composition is present. More
precisely, when A contains at least four actions, there are processes that are
finitely definable over BCP(A,∅) that are not finitely definable over TSP(A);
the requirement on A is necessary because the mentioned proof in (Bergstra &
Klop, 1984b) essentially uses the fact that the specification of the bag with two
data elements uses four actions.

The expressive power of finite guarded recursive specifications over the sig-
natures of theories BCP(A, γ) and TSP(A) is probably incomparable. To show
this, it remains to give a finite guarded recursive specification over the sig-
nature of TSP(A) that defines a process that cannot be finitely defined over
BCP(A, γ); see Exercise 7.6.10. Note that the theories with general recursion,
BCPrec(A, γ) and TSPrec(A), are equally expressive (as defined in Definition
5.7.2 (Expressiveness)). Already in the basic theory BSPrec(A), it is possi-
ble to specify all countable computable processes; this does not change with
the extensions with sequential composition or parallel composition. Without
recursion, BCP(A, γ) and TSP(A) are also equally expressive. Both theories
extend the basic theory BSP(A) and all closed BCP(A, γ)- and TSP(A)-terms
can be rewritten into equivalent BSP(A)-terms, which makes these three theo-
ries equally expressive.

226 Parallel and communicating processes

In case the data set D is a finite set, not necessarily containing only two
elements, the generalized-choice notation can be used to obtain an even more
compact equation for the specification of a bag over D:

Bag = 1 + ∑
d∈D

i?d.(Bag ‖ o!d.1).

The equation for a bag can be specialized to the case where the data type
contains exactly one element, say d . The bag in this case is just a counter,
which can be specified as follows when assuming that i?d ≡ plus and o!d ≡
minus:

Counter2 = 1 + plus.(Counter2 ‖ minus.1).

Recall that Exercise 6.6.5 also introduced a specification of a counter, using
sequential composition. In order to reason about the relation between these
two counter specifications, a theory is needed where both sequential compo-
sition and parallel composition are present. This theory, TCP, the Theory of
Communicating Processes, is treated in the following section.

Exercises

7.6.1 Prove Proposition 7.6.1 (HNF property).

7.6.2 Let n ≥ 1. Give a specification of an n-place buffer Buf n.

7.6.3 Describe a biscuit-tin (with unbounded capacity) with two kinds of
biscuits by means of a guarded recursive specification over theory
BCP(A,∅) with recursion.

7.6.4 Consider the extension of BCP(A, γ) with projection. For the pro-
cess Bag defined above (for an arbitrary finite data set D), calculate
π1(Bag), π2(Bag), and π3(Bag).

7.6.5 Sketch the transition system of a bag over data set D = {0, 1, 2}.
7.6.6 Verify that

((BCP + EI)rec + RSP)(A, γS) �
εI (∂H (Buf 1il ‖ Buf 1lo)) = Buf 2,

using among others the axioms of Table 6.9.

7.6.7 Consider two users that communicate via the one-place buffer Buf 1
specified in this section. One user sends two data items 0 over port
i and one receives these two data items over port o. Both users ter-
minate successfully after sending resp. receiving their data. Specify
this system, and prove that it can terminate successfully. Show that it
cannot terminate successfully if the termination option in the defining

7.7 The process theory TCP and further extensions 227

equation for Buf 1 is omitted. Argue that the system even with the ini-
tial termination option of the buffer cannot terminate when the buffer
is not empty.

7.6.8 Consider again the communication network of Figure 7.3, but now
with the processes S and R instead of Buf 1il and Buf 1lo, given by the
equations:

S = 1 + ∑
d∈D

i?d.l!d.l?ack.S,

R = 1 + ∑
d∈D

l?d.o!d.l!ack.R.

In these equations, ack �∈ D is a special element denoting an acknow-
ledgement. Let H = {l!d, l?d | d ∈ D ∪ {ack}}. Find a recursive
equation for process ∂H (S ‖ R).

7.6.9 Let p be a closed BCP(A,∅)-term. The replication of p, in the
literature on process algebra often denoted !p, is the process term
p ‖ p ‖ p ‖ This process cannot be defined (in the sense of Def-
inition 5.7.5 (Definability)) by equation X = p ‖ X with X some
recursion variable, as this equation is unguarded, and has infinitely
many solutions in the term model of theory BCPrec(A,∅). However,
the equation X = p‖ X + p | 1 can be used for the intended purpose
(in the theory without communication). Argue that this equation is
guarded, and yields the replication of p.

7.6.10 Recall Definition 5.7.5 (Definability). Give a finite guarded recur-
sive specification over the signature of theory TSP(A) that defines a
process that cannot be finitely defined over theory BCP(A, γ), or, al-
ternatively, prove that TSP(A) allows to finitely define strictly fewer
processes than BCP(A, γ). Inform the authors about your answer.

7.7 The process theory TCP and further extensions

It is often useful to have both sequential composition and parallel composition
present in the same theory. The process theory TCP, the Theory of Commu-
nicating Processes, is the union of the process theories BCP and TSP; see Ta-
ble 7.5. The axioms of TCP(A, γ) are the axioms of BCP(A, γ) and TSP(A),
see Tables 7.1 and 6.1, with one additional Axiom of Standard Concurrency.

It is straightforward to obtain elimination and conservativity results with
respect to theory BSP(A). Figure 7.5 visualizes the conservativity results for
the basic theories with parallel composition. As before, the extra Axiom of
Standard Concurrency is derivable for closed terms.

228 Parallel and communicating processes

TCP(A, γ)
TSP(A),BCP(A, γ);
-
x;

x‖ 0 = x · 0 SC8

Table 7.5. The process theory TCP(A, γ).

MPT(A)
M,LM1,3,4,CM1,2,5,6,SC1,4–7,D2–5−−−−−−−−−−−−−−−−−−−−−−−→ MTCP(A, γ)⏐⏐⏐� LM2,CM3,4

⏐⏐⏐�SC2,3, D1

BSP(A)
M,LM1–4,CM1–6,SC1–7,D1–5−−−−−−−−−−−−−−−−−−−−−−−→ BCP(A, γ)

A4,5,7–10

⏐⏐⏐� A4,5,7–10

⏐⏐⏐�SC8

TSP(A)
M,LM1–4,CM1–6,SC1–8,D1–5−−−−−−−−−−−−−−−−−−−−−−−→ TCP(A, γ)

Fig. 7.5. Conservativity results for TCP(A, γ).

Theorem 7.7.1 (Standard concurrency) For closed TCP(A, γ)-terms, Ax-
iom SC8 is derivable from the other axioms of TCP(A, γ).

Proof By structural induction. See Exercise 7.7.2.

The term deduction system underlying the term model of theory TCP(A, γ)
is just the union of the two term deduction systems for TSP(A) and BCP(A, γ).
It is a useful exercise to show that the resulting term model admits a soundness
and a ground-completeness theorem.

Extension of TCP(A, γ) with other features does not present difficulties.
For instance, it is straightforward to extend the theory with projection operators
πn for all n ∈ N, resulting in the theory (TCP + PR)(A, γ), or with renaming
(see Section 6.7), resulting in (TCP + RN)(A, γ).

Example 7.7.2 (CSP parallel composition and communication) As an ex-
ample of a definition in the theory (TCP + RN)(A, γ), consider the parallel
composition operator of CSP, see (Hoare, 1985). For a given set of action
names S, the actions in S must synchronize as much as possible, where differ-
ent actions with the same name may synchronize, resulting in one occurrence
of the same action. The difficulty is to ensure that these actions do not oc-
cur by themselves when they should synchronize. In order to achieve this,

7.7 The process theory TCP and further extensions 229

assume that the set of actions A is divided into two parts: a set of names N
and a set of communications Nc such that for each n ∈ N there is exactly one
nc ∈ Nc. Now take the communication function γ that has γ (n, n) = nc and
is not defined otherwise, and the renaming function f with f (nc) = n. Then,
CSP-style parallel composition ‖CSP

S , with S ⊆ N , can be defined by axiom

x ‖CSP
S y = ρ f (∂S∪(Nc\Sc)(x ‖ y)),

where Sc = {nc | n ∈ S}. As an example, if S = {a} and a, b, c ∈ N , then it
can be derived that

b.a.b.a.1 ‖CSP
S a.c.1 = b.a.(b.c.0 + c.b.0).

Also the extension with recursion follows the standard steps. To illustrate
reasoning in TCP(A, γ), consider the counter specifications given in the pre-
vious section and in Exercise 6.6.5. Since there is no communication and the
counter specifications use recursion, and because the equational reasoning uses
projection operators, the precise context is the theory (TCP + PR)rec(A,∅). In
the previous section, the following recursive equation for a counter was given:

Counter2 = 1 + plus.(Counter2 ‖ minus.1).

In Exercise 6.6.5, a different specification was given, namely,

Counter = 1 + T · Counter,
T = plus.T ′,
T ′ = minus.1 + T · T ′.

It can be shown that these two specifications are equal. Recall that also
Exercise 5.6.3 gives a(n infinite) recursive specification of a counter. One way
to prove the equality of the above two specifications is by showing that the
two processes both satisfy this infinite specification and to apply RSP, which
is essentially the technique applied most often so far. To illustrate a different
proof technique, the desired equality can also be proven via AIP−.

Proposition 7.7.3 (Counters) ((TCP + PR)rec + AIP−)(A,∅) � Counter =
Counter2.

Proof The proof shows that

((TCP + PR)rec + AIP−)(A,∅) �
(T ′)k · Counter = Counter2 ‖ minusk1,

for every natural number k ∈ N, where xk for any term x is the k-fold sequen-
tial composition of Exercise 6.2.3. Note that this equation reduces to

((TCP + PR)rec + AIP−)(A,∅) � Counter = Counter2,

230 Parallel and communicating processes

if k equals zero. By AIP−, it is sufficient to show that all finite projections
of the processes in the desired equations are derivably equal. This can be
proven by induction. Observe that the recursive specification of Counter can
be rewritten as follows:

(TCP + PR)rec(A,∅) �
Counter = 1 + plus.T ′ · Counter,
T ′ = minus.1 + plus.(T ′)2.

The basis of the induction considers projections of depth 0. First, assume
k = 0. Then,

(TCP + PR)rec(A,∅) �
π0(Counter) = π0(1 + plus.T ′ · Counter) = 1

and

(TCP + PR)rec(A,∅) �
π0(Counter2) = π0(1 + plus.(Counter2 ‖ minus.1)) = 1.

Similarly, if k > 0, then

(TCP + PR)rec(A,∅) �
π0((T ′)k · Counter) = 0 = π0(Counter2 ‖ minusk1).

For the inductive step, assume that the desired result holds for some n ∈ N.
Then, the following derivation can be made for n + 1 if k equals 0:

(TCP + PR)rec(A,∅) �
πn+1(Counter) = πn+1(1 + plus.T ′ · Counter)

= 1 + plus.πn(T ′ · Counter)
= 1 + plus.πn(Counter2 ‖ minus.1)
= πn+1(1 + plus.(Counter2 ‖ minus.1))
= πn+1(Counter2).

The final part of the proof uses the equality proven in Exercise 7.4.4. If k =
l + 1 > 0 for some natural number l ∈ N,

(TCP + PR)rec(A,∅) � πn+1((T ′)l+1 · Counter)
= πn+1(minus.(T ′)l · Counter + plus.(T ′)l+2 · Counter)
= minus.πn((T ′)l · Counter)+ plus.πn((T ′)l+2 · Counter
= minus.πn(Counter2 ‖ minusl1)

+ plus.πn(Counter2 ‖ minusl+21)
= πn+1(minus.(Counter2 ‖ minusl1)

+ plus.(Counter2 ‖ minusl+21))
= πn+1(minusl+11‖ Counter2

+ plus.((Counter2 ‖ minus.1) ‖ minusl+11))

7.7 The process theory TCP and further extensions 231

= πn+1(minusl+11‖ Counter2
+ plus.(Counter2 ‖ minus.1)‖ minusl+11)

= πn+1(minusl+11‖ Counter2 + Counter2‖ minusl+11)
= πn+1(Counter2 ‖ minusl+11).

At this point, it is interesting to consider some expressiveness aspects. The
results of (Bergstra & Klop, 1984b) imply that there are processes that can
be defined by a finite guarded recursive specification over the signature of
theory TCP(A, γ), for a certain γ , but that cannot be defined by a finite
guarded recursive specification over the signature of TCP(A,∅). Also an un-
bounded FIFO (First-In-First-Out) queue is an example of a process that is
finitely definable over TCP(A, γ) when general communication is allowed but
not over TCP(A,∅). The queue example is discussed in more detail below;
in particular, Exercise 7.7.10 gives a finite guarded recursive specification
over the signature of theory TCP(A, γ). These observations imply that fi-
nite guarded recursive specifications over the signature of theory TCP(A, γ)
for a general communication function have more expressive power than those
over the signature of TCP(A,∅). This illustrates the added value of commu-
nication when compared to parallel composition without communication. As
before, when general recursion is allowed, the two variants TCPrec(A, γ) and
TCPrec(A,∅) with and without communication are equally expressive in the
sense of Definition 5.7.2 (Expressiveness); they both allow the specification of
all countable computable processes. Also TCP(A, γ) and TCP(A,∅), i.e., the
theories without recursion, are equally expressive in the sense of this definition,
because, independent of the definition of γ , the set of closed TCP(A, γ)-terms
contains all closed BSP(A)-terms, and, again independent of the definition of
γ , all closed TCP(A, γ)-terms can always be rewritten into a closed BSP(A)-
term. Hence, both the generic theory TCP(A, γ) and the variant with the free
merge are equally expressive as BSP(A) (and therefore equally expressive as
theories such as TSP(A) and BCP(A, γ)).

As already suggested, an interesting example in the current context is the
FIFO queue. Consider such a queue with unbounded capacity, with input port i
and output port o. An infinite guarded recursive specification over the signature
of the minimal theory MPT(A) is not hard to give. Suppose D is a finite data
set, and notation of sequences over D is as before (see Section 5.6). The
following recursive specification has a variable for each sequence over D.

Queue1 = Qε,

Qε = 1 + ∑
d∈D

i?d.Qd , and, for all d ∈ D, σ ∈ D∗,

Qσd = o!d.Qσ + ∑
e∈D

i?e.Qeσd .

232 Parallel and communicating processes

The last equation gives the behavior of the non-empty queue. Comparing
the present specification with the one of the stack in Section 5.6 shows obvi-
ous similarity. In Section 6.6.2, it has been shown that theory TSP(A) allows a
finite guarded recursive specification of the stack. Therefore, it may come as a
surprise that there is no finite guarded recursive specification for the queue over
the signature of theory TCP(A, γ) when communication is restricted to hand-
shaking communication, which is an extension of the signature of TSP(A).
The proof of this fact is outside the scope of this text. The interested reader is
referred to (Baeten & Bergstra, 1988). Exercise 7.7.10 shows that the queue is
finitely definable over TCP(A, γ) when arbitrary communication is allowed,
showing that the restriction to handshaking in the above is essential.

Another interesting aspect is that some extensions of theory TCP(A, γ) are
more expressive than the basic theory TCP(A, γ) itself when considering fi-
nite guarded recursion. It turns out that there is a finite guarded recursive
specification for the queue in the basic theory BCPrec(A, γ) with handshaking
communication extended with renaming operators (see Section 6.7), as the fol-
lowing shows. That is, the queue is finitely definable over theory (BCP+HA+
RN)(A, γ). The specification assumes the standard communication function
γS of Definition 7.3.1.

Consider two renaming functions f, g : A → A. For all data elements
d ∈ D, f (o!d) = l!d, and f leaves all other atomic actions unchanged;
g(l!?d) = o!d , for each d ∈ D, and g leaves all other atomic actions un-
changed. Consider the following recursive specification with variables Queue2
and Z , with H = {l!d, l?d | d ∈ D}:

Queue2 = 1 + ∑
d∈D

i?d.ρg(∂H (ρ f (Queue2) ‖ o!d.Z)),

Z = 1 + ∑
d∈D

l?d.Z .

The proposition below proves that ((BCP+HA+RN)rec +RSP)(A, γS)�
Queue1 = Queue2. In order to gain some more intuition about the specifica-
tion of Queue2, consider the following. An unbounded queue can be imagined
as a one-element buffer connected to an unbounded (sub)queue. Although this
may seem strange at a first glance, it does work. The fact that the queue is un-
bounded is crucial. The first element put into the queue (through an i?d action)
is put into the one-place buffer; all following elements are put into the sub-
queue. The output port of the subqueue is some internal port l (which explains
the renaming via function f of the recursive occurrence of Queue2 in the spec-
ification). This port is watched over by a guard Z , that becomes activated only
if the one-element buffer is emptied (through an o!d action). By encapsulating
isolated communication actions over the internal port l and renaming success-

7.7 The process theory TCP and further extensions 233

ful communications over this internal port to o!d actions, this guard makes
sure that the elements of the subqueue are forwarded to the outside world over
port o as o!d actions in the right order. Of course, the subqueue is itself again
built from a one-element buffer and a subqueue . . . , see Figure 7.6.

i

Queue2

Queue2
l

Z

o

Fig. 7.6. The intuition behind the specification of Queue2.

Proposition 7.7.4 (Queues)

((BCP + HA + RN)rec + RSP)(A, γS) � Queue1 = Queue2.

Proof By RSP, it is enough to show that process Queue2 is a solution
of the recursive specification of Queue1. In order to do so, it is necessary to
find an expression in terms of Queue2 for each variable Qσ (with σ ∈ D∗)
in the specification of Queue1. These expressions are defined inductively as
follows.
Expressions Rn

σ , for each n ∈ N and each σ ∈ D∗, are defined by induction on
n. So, first of all, the expressions R0

σ are defined, by induction on σ :

R0
ε = Queue2, and, for all σ ∈ D∗, d ∈ D,

R0
σd = ρg(∂H (ρ f (R0

σ) ‖ o!d.Z)).

Next, given the expressions Rn
σ , for all n ∈ N and σ ∈ D∗, expressions Rn+1

σ

are defined as follows:

Rn+1
σ = ρg(∂H (ρ f (Rn

σ) ‖ Z)).

Using the equations in the specification for Queue2, the following can be de-
rived, for each n ∈ N and each d ∈ D, σ ∈ D∗:

(BCP + HA + RN)rec(A, γS) �
Rn
ε = 1 + ∑

d∈D
i?d.Rn

d ,

Rn
σd = o!d.Rn+1

σ + ∑
e∈D

i?e.Rn
eσd .

Following the reasoning in Example 5.5.13 (Recursion principle RSP), it can
be inferred that ((BCP + HA + RN)rec + RSP)(A, γS) � Rn

σ = Qσ for all

234 Parallel and communicating processes

n ∈ N, σ ∈ D∗, and so in particular ((BCP + HA + RN)rec + RSP)(A, γS) �
Queue2 = R0

ε = Qε = Queue1.

Exercises

7.7.1 Develop theory TCP(A, γ). That is, prove elimination and conserva-
tivity results, and give a term model proving soundness and ground-
completeness.

7.7.2 Prove Theorem 7.7.1 (Standard concurrency).
7.7.3 Prove that the following identities can be derived from TCP(A, γ):

(a) x ‖ 0 = x · 0;
(b) x ‖ y · 0 = x · 0‖ y = (x ‖ y) · 0;
(c) x ‖ y · 0 = x · 0 ‖ y = (x ‖ y) · 0.

7.7.4 Prove that, for all closed TCP(A,∅)-terms p and actions a ∈ A,
TCP(A,∅) � p · a.1 ‖ a.1 = (p ‖ a.1) · a.1.
(Note that this equality expresses a property about the free merge (i.e.,
without communication) and its interaction with sequential composi-
tion. It cannot be derived from the other axioms of TCP(A,∅) for
arbitrary open terms, not even in the presence of the Free-Merge Ax-
iom FMA of Table 7.2. This is similar to the earlier results obtained
for the Axioms of Standard Concurrency. A consequence of this re-
sult is that (TCP + FMA)(A,∅) is not ω-complete (see Section 2.3).)

7.7.5 Consider Example 7.7.2 (CSP parallel composition and communica-
tion). Show that the given equality b.a.b.a.1‖CSP

S a.c.1 = b.a.(b.c.0+
c.b.0) can be derived from the theory (TCP + RN)(A, γ) extended
with the defining axiom for CSP parallel composition.

7.7.6 Consider the so-called laws of CSP in (Hoare, 1985). Which of the
laws concerning parallel composition can be derived in the theory
(TCP + RN)(A, γ) extended with the defining axiom for CSP par-
allel composition in Example 7.7.2 (CSP parallel composition and
communication)?

7.7.7 Consider a vending machine K , where coffee costs 35 cents. Three
coins, of 20, 10, and 5 cents, need to be inserted (in arbitrary order)
and then coffee is dispensed. Describe K by means of a recursive
equation, using the merge operator without communication.

7.7.8 Sketch the transition system of the queue for the case D = {0, 1}.
7.7.9 Derive the recursive specification for the expressions Rn

σ given in the
proof of Proposition 7.7.4 (Queues) from the equations of the specifi-
cation for Queue2.

7.8 Specifying the Alternating-Bit Protocol 235

7.7.10 The queue is finitely definable over theory BCP(A, γ) when non-
binary communication is allowed. Suppose there are actions k(d),
m(d) ∈ A (for d ∈ D) such that γ (o!d, k(d)) = m(d) and γ (m(d),
k(d)) = o!d; let H = {o!d,m(d) | d ∈ D} and K = {m(d), k(d) |
d ∈ D}. Show that the queue can be defined by the following recur-
sive specification:

Queue3 = 1 + ∑
d∈D

i?d.∂K (Z ‖ ∂H (Queue3 ‖ m(d).Z)),

Z = 1 + ∑
d∈D

k(d).Z .

7.8 Specifying the Alternating-Bit Protocol

This section presents a more elaborate example of an algebraic specification,
namely the specification of a communication protocol. This protocol is often
referred to as the Alternating-Bit Protocol in the literature. It concerns the
transmission of data through an unreliable channel in such a way that – despite
the unreliability – no information will get lost. The communication network
used in the example is shown in Figure 7.7.

S R
K

L

i
sk kr o

rlls

Fig. 7.7. The Alternating-Bit Protocol: communication network.

The following describes the components of this network. In Figure 7.7, S is
the sender, sending data elements d ∈ D, with D a finite data domain, to the
receiver R via the unreliable channel K . After having received a certain data
element, R will send an acknowledgement to S via channel L which is unreli-
able as well. (In practice, K and L are usually physically the same medium.)
The problem now is to define processes S and R such that no information will
get lost; that is, the behavior of the entire process, apart from the communica-
tions at the internal ports sk, kr, rl, and ls, satisfies the equation

Buf 1io = 1 +
∑
d∈D

i?d.o!d.Buf 1io,

i.e., the process behaves externally as a one-place buffer with input port i and
output port o (see Section 7.6).

A solution can be formulated as follows. The sender S reads a datum d at
port i and passes on a sequence d0, d0, d0, . . . of copies of this datum with an
appended bit 0 to K until an acknowledgement 0 is received at port ls. Then,

236 Parallel and communicating processes

the next datum is read, and sent on together with a bit 1; the acknowledgement
then is the reception of a 1. The following data element has, in turn, 0 as
an appended bit. Thus, 0 and 1 form the alternating bit. A datum with an
appended bit is called a frame.

The process K denotes the data transmission channel, passing on frames of
the form d0 and d1. K may corrupt data, however, passing on⊥ (an error mes-
sage; thus, it is assumed that the incorrect transmission of d can be recognized,
for instance, using a checksum).

Receiver R gets frames d0, d1 from K , sending on d to port o (if this was
not already done earlier), and sending the acknowledgement 0 resp. 1 to L .

The process L is the acknowledgement transmission channel, and passes
bits 0 or 1, received from R, on to S. L is also unreliable, and may send on ⊥
instead of 0 or 1.

The processes S, K , R, and L can be specified by means of recursive specifi-
cations. Let D be a finite data set, and define the set of frames by F = {d0, d1 |
d ∈ D}. The following specification uses the standard communication func-
tion γS of Definition 7.3.1 (Standard communication), with F ∪ {0, 1,⊥} as
the set of data elements.

Let t be some atomic action. The channels K and L are given by the follow-
ing equations.

K = 1 + ∑
x∈F

sk?x .(t.kr!x .K + t.kr!⊥.K),
L = 1 + ∑

n∈{0,1}
rl?n.(t.ls!n.L + t.ls!⊥.L).

The actions t serve to make the choices non-deterministic: the decision
whether or not the frame will be corrupted is internal to the channels, and
cannot be influenced by the environment. The protocol to be specified is still
functioning correctly, nonetheless, if the occurrences of internal action t are
removed. Exercise 7.8.2 addresses this point in more detail.

The sender S and the receiver R are given by the following recursive spec-
ifications, for all n ∈ {0, 1} and d ∈ D. Intuitively, Sn specifies the (possibly
repeated) attempt to transmit a datum with appended bit n; Rn corresponds to
the situation that the last properly received frame contained bit n, which means
that the expected frame contains bit 1 − n. The sender S iteratively executes
behaviors S0 and S1, and the receiver R repeats R1 followed by R0.

S = 1 + S0 · S1 · S,
Sn = 1 + ∑

d∈D
i?d.Snd ,

Snd = sk!dn.T nd ,

T nd = ls?(1 − n).Snd + ls?⊥.Snd + ls?n.1,

7.8 Specifying the Alternating-Bit Protocol 237

and

R = 1 + R1 · R0 · R,
Rn = 1 + kr?⊥.rl!n.Rn + ∑

d∈D
kr?dn.rl!n.Rn

+ ∑
d∈D

kr?d(1 − n).o!d.rl!(1 − n).1.

The composition of the four processes of the Alternating-Bit Protocol, en-
forcing communication, is represented by

∂H (S ‖ K ‖ L ‖ R),

where H = {p?x, p!x | x ∈ F ∪ {0, 1,⊥}, p ∈ {sk, kr, rl, ls}}.
The next step is to derive a recursive specification for this process. Consider

the following recursive specification, using variables X, X1d , X2d , Y, Y 1d ,

and Y 2d (for each d ∈ D).

X = 1 + ∑
d∈D

i?d.X1d ,

X1d = sk!?d0. (t.kr!?⊥.rl!?1.(t.ls!?⊥.X1d + t.ls!?1.X1d)

+ t.kr!?d0.o!d.X2d) ,

X2d = rl!?0. (t.ls!?⊥.sk!?d0.(t.kr!?⊥.X2d + t.kr!?d0.X2d)+ t.ls!?0.Y) ,
Y = 1 + ∑

d∈D
i?d.Y 1d ,

Y 1d = sk!?d1. (t.kr!?⊥.rl!?0.(t.ls!?⊥.Y 1d + t.ls!?0.Y 1d)

+ t.kr!?d1.o!d.Y 2d) ,

Y 2d = rl!?1. (t.ls!?⊥.sk!?d1.(t.kr!?⊥.Y 2d + t.kr!?d1.Y 2d)+ t.ls!?1.X) .

It can be proved that process ∂H (S ‖ K ‖ L ‖ R) is a solution of this recur-
sive specification, i.e., that it satisfies the equation for X . The following list
shows the processes that should be substituted for the variables in the above
specification.

X = ∂H (S ‖ K ‖ L ‖ R),
X1d = ∂H (S0d · S1 · S ‖ K ‖ L ‖ R),
X2d = ∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R),
Y = ∂H (S1 · S ‖ K ‖ L ‖ R0 · R),
Y 1d = ∂H (S1d · S ‖ K ‖ L ‖ R0 · R),
Y 2d = ∂H (T 1d · S ‖ K ‖ L ‖ rl!1.R).

The expansion theorem for handshaking communication, Theorem 7.4.10,
can be used to show that these processes form a solution. Part of the calcula-
tions are given in the following. In fact, these calculations show how the above
specification and the process expressions to be substituted for the variables are
derived. It is not necessary to ‘invent’ them beforehand.

The transition system for X is depicted in Figure 7.8. Here, the sum over
different data elements in the nodes of X and Y is not shown, but just one,

238 Parallel and communicating processes

X X1d

X2d

YY 1e

Y 2e

i?d

i?e

sk!?d0

sk!?e1

kr!?d0

kr!?e1

o!d

o!
e

rl!?0

rl
!?1

ls!?0

ls
!?1

kr
!?⊥

kr
!?⊥

rl!?1

rl!?0

ls!?1

ls!?0

ls!?
⊥

ls!?
⊥

ls!?⊥
ls!?⊥

sk
!?d

0

sk
!?e

1

kr
!?d

0

kr!?e1

kr!?⊥

kr
!?⊥

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

Fig. 7.8. Alternating-Bit Protocol.

arbitrary element is shown (d resp. e). To help the reader, variable names are
given inside states.

For the first equation in the above list, observe that

(TCP + HA)rec(A, γS) �
∂H (S ‖ K ‖ L ‖ R) = 1 + ∑

d∈D
i?d.∂H (S0d · S1 · S ‖ K ‖ L ‖ R)

= 1 + ∑
d∈D

i?d.X1d .

Note that the Handshaking Axiom is strictly speaking not necessary to arrive
at the desired result. However, it is convenient in the derivation, because it
allows to use the expansion theorem for handshaking, Theorem 7.4.10.

For the second equation, assume d ∈ D. In the following, two abbreviations
are used, for x ∈ F and n ∈ {0, 1}:

7.8 Specifying the Alternating-Bit Protocol 239

K ′
x = t.kr!x .K + t.kr!⊥.K ,

L ′n = t.ls!n.L + t.ls!⊥.L .
Consider

(TCP + HA)rec(A, γS) �
∂H (S0d · S1 · S ‖ K ‖ L ‖ R)

= sk!?d0.∂H (T 0d · S1 · S ‖ K ′
d0 ‖ L ‖ R)

= sk!?d0.(t.∂H (T 0d · S1 · S ‖ kr!d0.K ‖ L ‖ R)
+ t.∂H (T 0d · S1 · S ‖ kr!⊥.K ‖ L ‖ R))

= sk!?d0.(t.kr!?d0.∂H (T 0d · S1 · S ‖ K ‖ L ‖ o!d.rl!0.R0 · R)
+ t.kr!?⊥.∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!1.R1 · R0 · R))

= sk!?d0.(t.kr!?d0.o!d.∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R)
+ t.kr!?⊥.rl!?1.∂H (T 0d · S1 · S ‖ K ‖ L ′1 ‖ R))

= sk!?d0.(t.kr!?d0.o!d.∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R)
+ t.kr!?⊥.rl!?1.(t.∂H (T 0d · S1 · S ‖ K ‖ ls!1.L ‖ R)

+ t.∂H (T 0d · S1 · S ‖ K ‖ ls!⊥.L ‖ R)))
= sk!?d0.(t.kr!?d0.o!d.∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R)

+ t.kr!?⊥.rl!?1.(t.ls!?1.∂H (S0d · S1 · S ‖ K ‖ L ‖ R)
+ t.ls!?⊥.∂H (S0d · S1 · S ‖ K ‖ L ‖ R))).

The appropriate substitutions yield the second equation. Continuing with
the third, assume again d ∈ D.

(TCP + HA)rec(A, γS) �
∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R)

= rl!?0.∂H (T 0d · S1 · S ‖ K ‖ L ′0 ‖ R0 · R)
= rl!?0.(t.∂H (T 0d · S1 · S ‖ K ‖ ls!0.L ‖ R0 · R)

+ t.∂H (T 0d · S1 · S ‖ K ‖ ls!⊥.L ‖ R0 · R))
= rl!?0.(t.ls!?0.∂H (S1 · S ‖ K ‖ L ‖ R0 · R)

+ t.ls!?⊥.∂H (S0d · S1 · S ‖ K ‖ L ‖ R0 · R))
= rl!?0.(t.ls!?0.∂H (S1 · S ‖ K ‖ L ‖ R0 · R)

+ t.ls!?⊥.sk!?d0.∂H (T 0d · S1 · S ‖ K ′
do ‖ L ‖ R0 · R))

= rl!?0.(t.ls!?0.∂H (S1 · S ‖ K ‖ L ‖ R0 · R)
+ t.ls!?⊥.sk!?d0.

(t.∂H (T 0d · S1 · S ‖ kr!d0.K ‖ L ‖ R0 · R)
+ t.∂H (T 0d · S1 · S ‖ kr!⊥.K ‖ L ‖ R0 · R)))

= rl!?0.(t.ls!?0.∂H (S1 · S ‖ K ‖ L ‖ R0 · R)
+ t.ls!?⊥.sk!?d0.

(t.kr!?d0.∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R)
+ t.kr!?⊥.∂H (T 0d · S1 · S ‖ K ‖ L ‖ rl!0.R0 · R))).

In this way, the first three equations have been obtained. The remaining
three equations are dealt with in the same way.

240 Parallel and communicating processes

X X1d

X2d

YY 1e

Y 2e

i?d

i?e

o!d

o!
e

Fig. 7.9. Clustering of states in the Alternating-Bit Protocol.

Next, as indicated in the beginning of this section, it remains to be shown
that process ∂H (S‖K ‖L ‖R), after abstraction of internal actions, satisfies the
specification of the one-place buffer Buf 1io. The set of internal steps is I =
{p!?x | x ∈ F ∪ {0, 1,⊥}, p ∈ {sk, kr, rl, ls}} ∪ {t}, i.e., all communications
over internal ports and the internal actions t ; only the actions i?d and o!d , for
any d ∈ D, that occur at external ports and are meant to communicate with the
environment, are external. Thus, there is need of an abstraction operator τI ,
making internal steps in the parameter set I invisible, such that

τI (∂H (S ‖ K ‖ L ‖ R)) = Buf 1io

is derivable from the theory extended with abstraction. Such a parameterized
class of abstraction operators is defined in the following chapter. For now, a
plausibility argument is given by means of a picture showing that, after ab-
straction, ∂H (S ‖ K ‖ L ‖ R) shows the intended behavior. In Figure 7.9, the
shaded areas of the graph represent clusters, containing sets of internal states
that are equivalent from the point of view of the environment.

Exercises 241

Exercises

7.8.1 In this exercise, a simple communication protocol is considered. Data
(from some finite data set D) are to be transmitted from a sender S to
a receiver R through some unreliable channel K (see Figure 7.10).

S RK
i s r o

Fig. 7.10. A simple communication network.

The channel may forward the data correctly, or it may completely
destroy data. The sender will send a data element until an acknowl-
edgement ack is received. Consider the following specifications for
S, K , and R:

S = 1 + ∑
d∈D

i?d.Sd , with for all d ∈ D,

Sd = s!d.Sd + s?ack.S,
R = 1 + ∑

d∈D
r?d.o!d.R + r !ack.R,

K = 1 + ∑
d∈D

s?d.(t.K + t.r !d.L),

L = r?ack.(t.L + t.s!ack.K).

In this specification, t is some internal action. Assume standard com-
munication, and let H = {s!x, s?x, r !x, r?x | x ∈ D ∪ {ack}}.

(a) Derive a recursive specification for the process ∂H (S ‖ K ‖ R), and
draw the transition system.

(b) Does this communication protocol behave correctly?

7.8.2 Consider, in the Alternating-Bit Protocol, alternative channel specifi-
cations without the internal t-steps:

Ka = 1 + ∑
x∈F

sk?x .(kr!x .Ka + kr!⊥.Ka),

La = 1 + ∑
n∈{0,1}

rl?n.(ls!n.La + ls!⊥.La).

Show that the receiver can force channel Ka to behave correctly, by
refusing to accept errors, i.e., consider

Ra = ∂{kr?⊥}(R)

and similarly

Sa = ∂{ls?⊥}(S)

242 Parallel and communicating processes

and show that in the process ∂H (Sa ‖Ka ‖ La ‖ Ra) (with H = {p?x,
p!x | x ∈ F ∪ {0, 1,⊥}, p ∈ {sk, kr, rl, ls}} as above), errors kr!?⊥
and ls!?⊥ never occur, and that the protocol behaves correctly.
On the other hand, show that with the t actions, an occurrence of an
error with the alternative sender and receiver specifications Sa and Ra
results in deadlock, i.e., process ∂H (Sa ‖ K ‖ L ‖ Ra) has a deadlock
(see Definition 4.4.14, adapted to the current setting).

7.9 Bibliographical remarks

The formulation of the theory TCP(A, γ) first appeared in (Baeten et al.,
2005). Earlier versions of TCP(A, γ) appear in (Baeten, 2003; Baeten &
Reniers, 2004; Baeten & Bravetti, 2005); for older versions of similar theo-
ries with different names, see (Koymans & Vrancken, 1985; Vrancken, 1997;
Baeten & Van Glabbeek, 1987). Replacing processes a.1 by constants a and re-
moving action prefixing and the constant 1 yields the theory PA(A) of (Bergstra
& Klop, 1982) when assuming a free merge (i.e., absence of communication,
γ = ∅) and the theory ACP(A, γ) of (Bergstra & Klop, 1984a) for general
communication functions. The theory MTCP(A, γ) corresponds to the theory
of Basic Parallel Processes introduced in (Christensen, 1993) when the com-
munication function γ is empty.

Communication and interaction occur in all concurrency theories. In (Hen-
nessy, 1981), there is a communication function that has an identity element.
Communication in CCS assumes both the presence of a so-called silent action
τ (see the next chapter) and that all actions a have a so-called conjugate action
ā. CCS communication is a special kind of handshaking with γ (a, ā) = τ

for all a (see (Milner, 1980)). Since silent actions are related to abstraction;
CCS communication combines these two concepts to some extent. In the cur-
rent framework, communication and abstraction are separated, as discussed in
more detail in the next chapter. CSP enforces communication of actions of the
same name (see (Hoare, 1985)), a form of communication that is close to pure
synchronization. Example 7.7.2 originates from (Baeten & Bravetti, 2006). In
(Winskel, 1982), various communication formats are discussed.

The auxiliary operator ‖ is from (Bergstra & Klop, 1982) (although some-
thing similar can be found in (Bekič, 1984)); the auxiliary operator | was
introduced in (Bergstra & Klop, 1984a). In (Hennessy, 1988b), a single auxil-
iary operator is used for an axiomatization of parallel composition.

The standard communication function is from (Bergstra & Klop, 1986c),
here in a notation inspired by CSP. Example 7.4.1 (Communication) is from
(Baeten & Weijland, 1990). The earliest version of the Axioms of Standard

7.9 Bibliographical remarks 243

Concurrency, the Handshaking Axiom and the expansion theorem can be found
in (Bergstra & Tucker, 1984). The specification of the bag in one equation, and
the proof that the bag has no finite guarded recursive specification over the sig-
nature of TSP(A), can be found in (Bergstra & Klop, 1984b). The specification
of the queue in Section 7.7 is from (Baeten & Bergstra, 1988). It is owed to
earlier work in (Bergstra & Tiuryn, 1987). For further work on queues, see
(Van Glabbeek & Vaandrager, 1989; Denvir et al., 1985; Broy, 1987; Hoare,
1985; Pratt, 1982). The Alternating-Bit Protocol of (Bartlett et al., 1969) was
verified in ACP-style process algebra in (Bergstra & Klop, 1986c). For further
information, see (Koymans & Mulder, 1990; Van Glabbeek & Vaandrager,
1989; Larsen & Milner, 1987; Milner, 1989; Halpern & Zuck, 1987).

8

Abstraction

8.1 Introduction

In the previous chapter, Sections 7.6 and 7.8, the need arose to abstract from
certain actions. Assume that the actions that need to be abstracted from are
defined by a set I ⊆ A. Using skip operators εI (see Section 6.7) in some cases
yields the desired result. With skipping, abstraction from an action b in the
process described by a.b.c.1 is denoted as ε{b}(a.b.c.1). Using the previously
given axioms (see Table 6.9), the result of this form of abstraction for this
example is

ε{b}(a.b.c.1) = a.c.1.

It does not always work out well to use a skip operator εI for the purpose of
abstraction. This can be illustrated as follows. Consider the process described
by the process term a.1 + b.0. Abstraction from the action b through the
application of ε{b} to this process term results in

ε{b}(a.1 + b.0) = a.1 + 0 = a.1.

The problem with this form of abstraction is that, before abstraction, it was
evident that the process described has a deadlock whereas after abstraction the
potential deadlock has disappeared. For practical use of the process theories
in this book, a form of abstraction needs to be defined that does not lose so
much information while abstracting from unimportant activity. This means
that the abstraction mechanism should allow for the hiding of certain actions
but it should not hide the consequences of the execution of those. An example
of such a consequence is a potential deadlock.

This motivates the introduction of the silent step τ in this chapter. The silent
step cannot be observed explicitly by an observer that is observing the behavior
of a process. A silent step can be removed in some cases, but in other cases
it cannot. In the process theories to be introduced, the silent step appears as

245

246 Abstraction

an action-prefix operator τ. . Abstraction, through abstraction operators τI

(for I ⊆ A), then means the renaming of each occurrence of an action-prefix
operation a. with a ∈ I into a silent-step prefix operation.

The abstractions intended in the above examples can then be formulated as

τ{b}(a.b.c.1) = a.τ.c.1

and

τ{b}(a.1 + b.0) = a.1 + τ.0.
The occurrence of the silent step in the first example can be removed, be-

cause it cannot be observed by an external observer in any way, but in the
second example it cannot be removed, because it can implicitly be observed
via the deadlock resulting from its execution:

τ{b}(a.b.c.1) = a.τ.c.1 = a.c.1

and

τ{b}(a.1 + b.0) = a.1 + τ.0 �= a.1 + 0 = a.1.

This chapter formally introduces abstraction and abstraction operators in the
process-algebraic framework, and it is investigated when occurrences of silent
steps are redundant and can hence be removed.

8.2 Transition systems with silent steps

The introduction of silent steps implies that it is necessary to reconsider the
semantic framework used throughout this book. This section considers transi-
tion systems in which silent steps may occur. The resulting framework is an
extension of the operational framework of Chapter 3. In the remainder, assume
that (S, L ,→,↓) is a transition-system space, as defined in Definition 3.1.1.
It is assumed that τ is a label, i.e., τ ∈ L . Based on the observations in the in-
troduction to this chapter, the following intuition can be formulated: if during
the execution of a process a τ transition can be taken without discarding any
of the options that were present before that transition, then this τ transition is
redundant and can be removed. Figure 8.1 illustrates this situation. Observe
that, assuming silent transitions are not externally visible, the process sketched
on the left cannot be distinguished from the process on the right. After execu-
tion of the a action, the process on the left has the possibility of performing a
step from x , or, after a silent step, a step from x or y. Assuming that an exter-
nal observer cannot directly ‘see’ the silent step, this is equivalent to a process
simply choosing between x and y as depicted on the right.

From the above discussion and examples, it should be clear that silent ac-
tions differ from other actions. This different behavior could potentially be

8.2 Transition systems with silent steps 247

a

τ

x

x y

a

x y

Fig. 8.1. Discarding silent steps.

realized by extra rules in a term deduction system that is used in the construc-
tion of a term model for some given process theory. However, a more generic
and more elegant solution is to change the notion of equivalence on transition
systems. The semantic equivalence in this chapter is no longer bisimilarity
as considered before, but instead, (rooted) branching bisimilarity. In order to
distinguish the various semantic equivalences, bisimilarity as considered up to
this point, is sometimes called strong bisimilarity from now on.

To define branching bisimilarity, two auxiliary notions are needed. The fol-
lowing definition introduces the concept of reachability via silent steps.

Definition 8.2.1 (Reachable with τ -steps) The binary relation � on the
states S of a transition-system space, denoting reachability via silent steps,
is the smallest relation satisfying, for all states s, t, u ∈ S,

(i) s � s;
(ii) whenever s

τ→ t , then s � t ;
(iii) whenever s � t and t � u, then s � u.

Stated differently, relation� is the reflexive and transitive closure of the rela-
tion

τ→.

248 Abstraction

s

s′

a

t

t ′

t ′′

a

s

s′

τ

t

t ′

Fig. 8.2. Visualization of transfer condition (i) of a branching bisimulation.

s t

t ′

Fig. 8.3. Visualization of transfer condition (iii) of a branching bisimulation.

The following notational abbreviation is introduced to allow shorter formu-
lations.

Notation 8.2.2 Let for any states s, t ∈ S of a transition-system space and

action a ∈ L , notation s
(a)→ t be an abbreviation of s

a→ t , or a = τ and s = t .

That is, s
(τ)→ t means that either one or zero τ -steps are performed; s

(a)→ t with
a �= τ means that a single a-step is performed.

Definition 8.2.3 (Branching bisimilarity) A binary relation R on the set of
states S of a transition-system space is a branching bisimulation relation if and
only if the following so-called transfer conditions hold:

(i) for all states s, t, s′ ∈ S, whenever (s, t) ∈ R and s
a→ s′ for some

a ∈ L , then there are states t ′ and t ′′ in S such that t � t ′ and t ′ (a)→ t ′′
and both (s, t ′) ∈ R and (s′, t ′′) ∈ R;

(ii) vice versa, for all states s, t, t ′ ∈ S, whenever (s, t) ∈ R and t
a→ t ′

for some a ∈ L , then there are states s′ and s′′ in S such that s � s′

and s′ (a)→ s′′ and both (s′, t) ∈ R and (s′′, t ′) ∈ R;

8.2 Transition systems with silent steps 249

(iii) whenever (s, t) ∈ R and s↓, then there is a state t ′ ∈ S such that
t � t ′, t ′↓, and (s, t ′) ∈ R;

(iv) whenever (s, t) ∈ R and t↓, then there is a state s′ ∈ S such that
s � s′, s′↓, and (s′, t) ∈ R.

The first and third conditions are visualized in Figures 8.2 and 8.3. The
branching bisimulation relations are indicated by the dashed lines connecting
the states.

Two transition systems s, t ∈ S are branching bisimulation equivalent or
branching bisimilar, notation s ↔b t , if and only if there is a branching bisim-
ulation relation R on S with (s, t) ∈ R.

Example 8.2.4 (Branching bisimilarity) In Figure 8.4, two pairs of branch-
ing bisimilar transition systems are depicted.

τ

a

a τ

a

aτ

a

Fig. 8.4. Examples of branching bisimilar transition systems.

Theorem 8.2.5 (Equivalence) Branching bisimilarity is an equivalence.

Proof Let S be the set of states of a transition-system space. First, the
relation R = {(s, s) | s ∈ S} is obviously a branching bisimulation relation.
This proves that s ↔b s for any transition system induced by any state s ∈ S,
showing reflexivity of branching bisimilarity. Second, assume that s ↔b t for
states s, t ∈ S. If R is a branching bisimulation relation witnessing s ↔b

t , then the relation R′ = {(v, u) | (u, v) ∈ R} is a branching bisimulation
relation as well. This implies that t ↔b s, showing symmetry of branching
bisimilarity. Third, assume that s ↔b t and t ↔b u for states s, t, u ∈ S. Let

250 Abstraction

R1 and R2 be branching bisimulation relations witnessing s ↔b t and t ↔b u,
respectively. Then the relation composition R1◦R2 is a branching bisimulation
relation witnessing s↔b u, showing transitivity and completing the proof. The
interested reader is referred to (Basten, 1998) for a more detailed proof.

In order to define a process theory for a semantic equivalence, it is important
that such an equivalence is a congruence with respect to the operators that are
in the signature of that equational theory. (In other words, the equivalence
should be a congruence on the term algebra.) This also applies to branching
bisimilarity. So, to define a process theory with silent actions that extends the
process theory BSP(A), it is required that the equivalence to be axiomatized is
a congruence for the action-prefix operators and alternative composition.

It turns out that the notion of branching bisimilarity is lacking in this respect,
as it is not a congruence with respect to alternative composition, assuming that
the deduction rules for the alternative-composition operator remain as they are
(see Table 4.2). Consider the process terms a.1 and τ.a.1. To these process
terms, the transition systems from Figure 8.5 can be associated. A branching

a.1

1

a

τ.a.1

a.1

1

τ

a

Fig. 8.5. Transition systems a.1 and τ.a.1.

bisimulation relation on the states is drawn in the figure as well. Hence, the
states represented by these two process terms are branching bisimilar. (Note
the correspondence between the transition systems of Figure 8.5 and the two
leftmost transition systems in Figure 8.4.) Now consider the transition sys-
tems associated to the process terms a.1 + b.1 and τ.a.1 + b.1 in Figure 8.6.
If branching bisimilarity would be a congruence with respect to alternative
composition, then the states represented by these two process terms would
be branching bisimilar as well. This is not the case. By definition, the two

8.2 Transition systems with silent steps 251

a.1 + b.1

1

a b

τ.a.1 + b.1

a.1

1

τ

a

b

(1)

(2)

Fig. 8.6. Transition systems a.1 + b.1 and τ.a.1 + b.1.

initial states of the transition systems should be related (1). As the right initial
state has a τ transition to the state a.1, necessarily (by transfer condition (ii)
of Definition 8.2.3 (Branching bisimilarity)) this state must be related to the
initial state of the left transition system (2). But, this cannot be, as the one only
allows an a transition, whereas the other one also allows a b transition.

Thus, the notion of branching bisimilarity turns out not to be a congruence
with respect to the alternative composition and it will be necessary to define
an extra condition, by which a notion that is a congruence can be formulated.
The extra condition should ensure that processes a.1 and τ.a.1 are considered
different.

It is possible to give an intuitive explanation as to why pairs of processes
like a.1 and τ.a.1 should be considered different. Assume that a machine per-
forming atomic actions is observed and that the beginning of an atomic step
is observable. With this interpretation, the silent step can be interpreted as
some action of which also the beginning cannot be observed. It follows from
this intuition that the processes a.1 and τ.a.1 are not equivalent, whereas they
are branching bisimilar. The one process will immediately start by perform-
ing a whereas the other process will wait some time before showing its first
observable action.

The extra condition that is formulated next amounts to saying that the pair of
initial states should be treated differently, when relating them by a branching
bisimulation: the initial step of a process cannot be matched by a step of the
other process that has preceding silent steps, and the relation is therefore like
a strong bisimulation initially.

252 Abstraction

Definition 8.2.6 (Rooted branching bisimilarity) Two transition systems s
and t in S are rooted branching bisimulation equivalent or rooted branching
bisimilar, notation s ↔rb t , if and only if there is a branching bisimulation
relation R on S with (s, t) ∈ R such that

(i) for all states s′ ∈ S, whenever s
a→ s′ for some a ∈ L , then there is a

state t ′ such that t
a→ t ′ and (s′, t ′) ∈ R;

(ii) vice versa, for all states t ′ ∈ S, whenever t
a→ t ′ for some a ∈ L ,

then there is a state s′ such that s
a→ s′ and (s′, t ′) ∈ R;

(iii) whenever s↓, then t↓;
(iv) whenever t↓, then s↓.

Usually, a branching bisimulation relation that satisfies the above so-called
root conditions with respect to the states s and t is called a rooted branching
bisimulation relation for s and t .

Example 8.2.7 (Rooted branching bisimilarity) The two transition systems
of Figure 8.5 are not rooted branching bisimilar; in particular, the branching
bisimulation given in Figure 8.5 is not a rooted branching bisimulation.

Figure 8.7 depicts two pairs of rooted branching bisimilar transition sys-
tems. The rooted branching bisimulation relations are as usual indicated by
the dashed lines. In Figure 8.8, a rooted branching bisimulation relation is
drawn for two slightly more complex transition systems.

a

τ

a a

b

a

τ

b

Fig. 8.7. Examples of rooted branching bisimilar transition systems.

Before, it was shown that branching bisimilarity is not a congruence with
respect to alternative composition by means of a counterexample. For rooted
branching bisimilarity, this is not a counterexample since the transition systems
from Figure 8.5 are not rooted branching bisimilar.

8.2 Transition systems with silent steps 253

a

τ

τ

b τ

b

a

a

Fig. 8.8. Another example of rooted branching bisimilar transition systems.

Rooted branching bisimilarity turns out to be an equivalence relation.

Theorem 8.2.8 (Equivalence) Rooted branching bisimilarity is an equivalence
relation.

Proof The relations that prove that branching bisimilarity is an equiv-
alence also prove that rooted branching bisimilarity is an equivalence.

Theorem 8.2.9 (Relation between bisimilarity notions) The following rela-
tions hold between the three semantic equivalences introduced so far in Chap-
ter 3 and this chapter:

↔ ⊆↔rb ⊆ ↔b.

Proof Suppose that p↔q , i.e., p and q are strongly bisimilar. By
definition this means that there exists a strong bisimulation relation R such

that (p, q) ∈ R. Using the facts that s
a→ t implies s

(a)→ t and that t � t al-
ways holds, every strong bisimulation relation is also a branching bisimulation
relation. Equally obvious is that every strong bisimulation relation R satisfies
the root conditions for each of its elements. Therefore, the strong bisimulation
relation R witnessing the bisimilarity of p and q is also a rooted branching
bisimulation relation for p and q . This proves ↔ ⊆↔rb.
Suppose that p ↔rb q , i.e., p and q are rooted branching bisimilar. Then,
by definition, there is a rooted branching bisimulation relation R such that
(p, q) ∈ R. Since R is also a branching bisimulation, p and q are branching
bisimilar: p ↔b q. This proves that ↔rb ⊆ ↔b.

254 Abstraction

The theorem cannot in general be strengthened. For transition-system spaces
without silent steps, the three semantic equivalences are equal, so none of the
subset relations in the theorem is strict in general. However, the examples in-
volving silent steps given so far show that the three semantic equivalences are
in general all different, in the sense that they relate different transition systems
for most non-trivial transition-system spaces with silent actions, so none of the
subset relations in the theorem are equalities in general.

Exercises

8.2.1 Are the following transition systems branching bisimilar? If so, give a
branching bisimulation relation between the two systems; otherwise,
explain why they are not branching bisimilar.

a

b τ

c

a a

b

τ

c

8.2.2 Are the following pairs of transition systems rooted branching bisim-
ilar? If so, give a rooted branching bisimulation relation between the
two systems; otherwise, explain why they are not rooted branching
bisimilar.

(a)

a

τ τ

a

(b)

τ

a

τ

a

a

Exercises 255

(c)

a

τ

b

c

c

a

b c

8.2.3 Starting from Exercise 3.1.9, try to develop a notion of coloring for
branching bisimilarity. That is, develop the concepts of abstract col-
ored traces and coloring schemes that precisely capture branching
bisimilarity and rooted branching bisimilarity.

8.2.4 A binary relation R on the set of states S of a transition-system space
is called a weak bisimulation relation if and only if the following con-
ditions hold:

(a) for all states s, t, s′ ∈ S, whenever (s, t) ∈ R and s
a→ s′ for some

a ∈ L , then there are states t1, t2, t ′ in S such that t � t1, t1
(a)→ t2

and t2 � t ′, such that (s′, t ′) ∈ R;

(b) vice versa, for all states s, t, t ′ ∈ S, whenever (s, t) ∈ R and t
a→ t ′

for some a ∈ L , then there are states s1, s2, s′ in S such that s � s1,

s1
(a)→ s2 and s2 � s′ such that (s′, t ′) ∈ R;

(c) whenever (s, t) ∈ R and s↓, then there is a state t ′ ∈ S such that
t � t ′ and t ′↓;

(d) whenever (s, t) ∈ R and t↓, then there is a state s′ ∈ S such that
s � s′ and s′↓.

Prove that weak bisimilarity is an equivalence relation on the set of
states S. Prove that, whenever two states are branching bisimilar, they
are also weakly bisimilar. Give an example of two transition systems
that are weakly bisimilar but not branching bisimilar.

8.2.5 Two transition systems s and t in S are rooted weak bisimulation
equivalent or rooted weakly bisimilar if and only if there is a weak
bisimulation relation R on S with (s, t) ∈ R such that

256 Abstraction

(a) for all states s′ ∈ S, whenever s
a→ s′ for some a ∈ L , a �= τ , then

there is a state t ′ such that t
a→ t ′ and (s′, t ′) ∈ R;

(b) vice versa, for all states t ′ ∈ S, whenever t
a→ t ′ for some a ∈

L , a �= τ , then there is a state s′ such that s
a→ s′ and (s′, t ′) ∈ R;

(c) whenever s↓, then t↓;
(d) whenever t↓, then s↓.

Prove that rooted weak bisimilarity is an equivalence relation on S.
Prove that, whenever two states are rooted branching bisimilar, they
are also rooted weakly bisimilar. Give an example of two transition
systems that are rooted weakly bisimilar but not branching bisimilar.

8.3 BSP with silent steps

This section introduces the process theory BSPτ (A). This theory is the ex-
tension of BSP(A) with the previously mentioned τ -prefix operator τ. . The
axioms of the process theory BSPτ (A) are the axioms of the process theory
BSP(A) (given in Table 4.3) and the axiom given in Table 8.1. All atomic ac-
tions a that occur in the axioms are from now on assumed to be from the set
Aτ = A ∪ {τ }, unless explicitly stated otherwise.

BSPτ (A)
BSP(A);
unary: τ. ;
x, y;

a.(τ.(x + y)+ x) = a.(x + y) B

Table 8.1. The process theory BSPτ (A) (with a ∈ Aτ).

The one and only new axiom in BSPτ (A) is Axiom B, the so-called Branch-
ing Axiom. It captures precisely which occurrences of the silent step are with-
out consequences and can therefore be omitted. This is illustrated by means
of the schematic representation of the Branching Axiom in Figure 8.9. The
execution of the internal step τ only adds alternatives. In other words, the al-
ternatives that could have been chosen instead of executing the internal step,
are still alternatives once this internal step has been executed.

Example 8.3.1 (A derivation) A derivation of

BSPτ (A) � c.(τ.(b.1 + a.1)+ τ.(a.1 + b.1)) = c.(a.1 + b.1)

using Axiom B can be given as follows:

Exercises 257

a

τ

x

x y

a

x y

Fig. 8.9. Schematic representation of the Branching Axiom.

BSPτ (A) � c.(τ.(b.1 + a.1)+ τ.(a.1 + b.1))
= c.(τ.(a.1 + b.1)+ τ.(a.1 + b.1))
= c.(τ.(a.1 + b.1)) = c.(τ.(0 + a.1 + b.1)+ 0)
= c.(0 + a.1 + b.1) = c.(a.1 + b.1).

For obvious reasons, it is impossible to obtain an elimination theorem, i.e.,
it is impossible to reduce an arbitrary closed BSPτ (A)-term to a BSP(A)-term.
Nevertheless, it can be shown that BSPτ (A) is a conservative ground-extension
of BSP(A).

Theorem 8.3.2 (Conservative ground-extension) Process theory BSPτ (A) is
a conservative ground-extension of process theory BSP(A).

Proof Exercise 8.3.4.

Exercises

8.3.1 Prove that BSPτ (A) � a.(τ.b.1 + b.1) = a.τ.(τ.b.1 + τ.τ.b.1).
8.3.2 Prove that BSPτ (A) � a.τ.x = a.x for all a ∈ Aτ .

8.3.3 Prove that BSPτ (A) � a.(τ.x + x) = a.x for all a ∈ Aτ .

8.3.4 Prove Theorem 8.3.2 (Conservative ground-extension).

258 Abstraction

(Hint: construct a proof based on a term rewriting system, as illus-
trated in the proof of Theorem 4.5.3 (Conservative ground-extension
of projection). The term rewriting system needs three variants of
Axiom B. A proof via the results developed in Section 3.2 is not pos-
sible since this meta-theory assumes strong bisimilarity as a semantic
equivalence, and therefore does not apply to the current setting with
(rooted) branching bisimilarity as the equivalence notion.)

8.4 The term model

A term model for the process theory BSPτ (A) can be developed along the same
lines as in earlier chapters. First, the term algebra P(BSPτ (A)) is defined.

Definition 8.4.1 (Term algebra) The term algebra for BSPτ (A) is the algebra
P(BSPτ (A)) = (C(BSPτ (A)),+, (a.)a∈A, τ. , 0, 1).

The term deduction system for BSPτ (A) consists of the same deduction
rules as the deduction rules for BSP(A) of Tables 4.2 and 4.4 with the only
difference that now a ∈ Aτ .

As already mentioned in Section 8.2, rooted branching bisimilarity is an
equivalence. It is not hard to prove that it is also a congruence on the term
algebra for BSPτ (A). Recall that branching bisimilarity is not a congruence
with respect to alternative composition. Note that it is not possible to prove
the desired result via Theorem 3.2.7 (Congruence theorem), because that only
applies to strong bisimilarity and not to rooted branching bisimilarity.

Theorem 8.4.2 (Congruence) Rooted branching bisimilarity is a congruence
on the term algebra P(BSPτ (A)).

Proof To prove that rooted branching bisimilarity is a congruence
on P(BSPτ (A)), it is necessary to show that for each n-ary (n ≥ 1) function
f of P(BSPτ (A)) and for all p1, . . . , pn, q1, . . . , qn ∈ C(BSPτ (A)), p1 ↔rb

q1, · · · , pn ↔rb qn implies that f (p1, . . . , pn)↔rb f (q1, . . . , qn).

(i) Alternative composition. Suppose that p1 ↔rb q1 and p2 ↔rb q2. By
definition, this means that there exist branching bisimulation relations
R1 and R2 such that the pairs (p1, q1) ∈ R1 and (p2, q2) ∈ R2 satisfy
the root conditions of Definition 8.2.6 (Rooted branching bisimilar-
ity). It needs to be shown that p1 + p2 ↔rb q1 + q2.

Define R = R1 ∪ R2 ∪ {(p1 + p2, q1 + q2)}. The pairs in R that are

8.4 The term model 259

also in R1 or in R2 trivially satisfy the transfer conditions of Defini-
tion 8.2.3 (Branching bisimilarity). Thus, it remains to check whether
the pair (p1 + p2, q1 + q2) ∈ R satisfies the transfer conditions of
Definition 8.2.3 and the root conditions of Definition 8.2.6 (Rooted
branching bisimilarity). Since the root conditions imply the transfer
conditions, in effect, this means that only the root conditions have to
be checked.
First, consider root condition (i) of Definition 8.2.6. Suppose that
p1 + p2

a→ r1 for some a ∈ Aτ and r1 ∈ C(BSPτ (A)). Then, by the
deduction rules of Table 4.2, p1

a→ r1 or p2
a→ r1. The two cases are

similar; hence only the first case is elaborated. From the assumptions
that p1↔rb q1 and that this rooted branching bisimilarity relationship
is witnessed by the relation R1, it follows that q1

a→ s1 for some s1

in C(BSPτ (A)) such that (r1, s1) ∈ R1. Using the deduction rules
of Table 4.2 then also q1 + q2

a→ s1. Furthermore, as R1 ⊆ R,
(r1, s1) ∈ R, this completes the proof for condition (i).
The proof for root condition (ii) is omitted as it is similar to the proof
for condition (i).
Consider root condition (iii). Suppose that (p1+ p2) ↓. Then p1 ↓ or
p2 ↓. From the assumption that p1 ↔rb q1 and p2 ↔rb q2, it follows
that q1 ↓ or q2 ↓. Thus, in either case (q1 + q2) ↓.
The proof for root condition (iv) is again omitted as it is similar to the
previous proof.

(ii) Action prefix. Suppose that p ↔rb q is witnessed by the rooted
branching bisimulation relation R. Define R′ = R ∪ {(a.p, a.q)}.
It has to be shown that R′ is a branching bisimulation and that the
pair (a.p, a.q) satisfies the root conditions.
As R is assumed to be a branching bisimulation, all pairs in R′ that are
also in R satisfy the transfer conditions. Hence, it remains to check
whether the pair (a.p, a.q) satisfies the transfer conditions. Since in
addition for (a.p, a.q) the root conditions must be satisfied, it suffices
to establish only the root conditions. Both a.p and a.q cannot termi-
nate: (a.p)�↓ and (a.q) �↓. Each of these process terms can perform an
a transition only: a.p

a→ p and a.q
a→ q . It must be shown that the

resulting states (process terms, i.e., p and q) are related by R′. As R
is a (rooted) branching bisimulation relation witnessing p ↔rb q, by
definition (p, q) ∈ R. As R ⊆ R′, then also (p, q) ∈ R′.

(iii) τ -prefix. Suppose that p ↔rb q is witnessed by the rooted branching
bisimulation relation R. Define R′ = R ∪ {(τ.p, τ.q)}. It has to be
shown that R′ is a branching bisimulation relation and that (τ.p, τ.q)

260 Abstraction

satisfies the root conditions. Again, proving that (τ.p, τ.q) satisfies
the root conditions suffices. This part is trivial and therefore omitted.

The term model of BSPτ (A) is obtained in the standard way by considering
the rooted branching bisimilarity quotient of the term algebra. It can be shown
that BSPτ (A) is indeed a sound axiomatization of rooted branching bisimilar-
ity on closed process terms. It turns out that it is also ground-complete.

Definition 8.4.3 (Term model of BSPτ (A)) The term model of process the-
ory BSPτ (A) is the quotient algebra P(BSPτ (A))/↔rb , with P(BSPτ (A)) the
term algebra of Definition 8.4.1.

Theorem 8.4.4 (Soundness) Theory BSPτ (A) is a sound axiomatization of
algebra P(BSPτ (A))/↔rb , i.e., P(BSPτ (A))/↔rb |
 BSPτ (A).

Proof It must be shown that, for each axiom s = t of BSPτ (A),
P(BSPτ (A))/↔rb |
 s = t . Hence, for each axiom s = t it must be shown
that p ↔rb q for any closed instantiation p = q of s = t .

For each axiom s = t of BSPτ (A) that is also an axiom of BSP(A), it has
already been shown that p↔q for any closed instantiation p = q of s = t ; see
the proofs of Theorems 4.3.5 (Soundness of MPT(A)) and 4.4.7 (Soundness
of BSP(A)). Note that these proofs carry over to the current setting where
closed terms may contain τ -prefix operators. As↔ ⊆↔rb (see Theorem 8.2.9
(Relation between bisimilarity notions)), it follows immediately that p ↔rb q
for any closed instantiation p = q of any axiom s = t of BSPτ (A) that is also
an axiom of BSP(A). Hence, P(BSPτ (A))/↔rb |
 s = t for all these axioms.

For the soundness of Axiom B, it has to be shown that a.(τ.(p + q)+ p)↔rb

a.(p+q) for any action a ∈ Aτ and closed terms p, q ∈ C(BSPτ (A)). Let R =
{(a.(τ.(p+q)+ p), a.(p+q)), (τ.(p+q)+ p, p+q), (p, p) | a ∈ Aτ , p, q ∈
C(BSPτ (A))}. It must be shown that all elements of R satisfy the transfer
conditions for branching bisimulation relations of Definition 8.2.3 (Branching
bisimilarity) and that the pair (a.(τ.(p+q)+ p), a.(p+q)) in addition satisfies
the root conditions of Definition 8.2.6 (Rooted branching bisimilarity). For all
pairs (p, p) the transfer conditions are satisfied trivially. Next, consider the
pairs in R of the form (τ.(p + q)+ p, p + q).

(i) Suppose that τ.(p + q) + p
a→ p′ for some a ∈ Aτ and p′ ∈

C(BSPτ (A)). By inspection of the deduction rules, it easily follows
that necessarily (1) p

a→ p′ or (2) a ≡ τ and p′ ≡ p + q. In

8.4 The term model 261

the first case, then also p + q � p + q and p + q
(a)→ p′, and

(τ.(p + q)+ p, p + q) ∈ R and (p′, p′) ∈ R. Visually,

τ.(p + q)+ p
a→ p′

p + q � p + q
(a)→ p′

In the second case, obviously, p + q � p + q, p + q
(τ)→ p + q,

(τ.(p + q)+ p, p + q) ∈ R and (p + q, p + q) ∈ R. Visually,

τ.(p + q)+ p
τ→ p′

p + q � p + q
(τ)→ p′

(ii) Suppose that p + q
a→ q ′ for some a ∈ Aτ and q ′ ∈ C(BSPτ (A)).

From the deduction rules, it follows that τ.(p + q) + p
τ→ p + q.

Therefore, τ.(p + q)+ p � p + q . Also, p + q
(a)→ q ′ follows from

p+q
a→ q ′. This means that this case is proven since (p+q, p+q) ∈

R and (q ′, q ′) ∈ R.

p + q
a→ q ′

τ.(p + q)+ p � p + q
(a)→ q ′

(iii) Suppose that (τ.(p + q)+ p)↓. Then, necessarily, p↓. Then also,
p+q � p+q and (p + q)↓. Note that (τ.(p+q)+ p, p+q) ∈ R,
which proves this case.

(iv) Suppose that (p + q)↓. By the deduction rules, τ.(p + q) + p
τ→

p+ q. Therefore, τ.(p+ q)+ p � p+ q . Combined with (p + q)↓
and (p + q, p + q) ∈ R this case is also proven.

Finally, consider the pairs of the form (a.(τ.(p+ q)+ p), a.(p+ q)). As both
(a.(τ.(p + q)+ p)) �↓ and (a.(p + q)) �↓, obviously the root conditions regard-
ing termination are satisfied. The root conditions for transitions are satisfied
as the only possible transitions are a.(τ.(p + q) + p)

a→ τ.(p + q) + p and
a.(p + q)

a→ p + q and (τ.(p + q)+ p, p + q) ∈ R. Visually,

a.(τ.(p + q)+ p)
a→ τ.(p + q)+ p

a.(p + q)
a→ p + q

Theorem 8.4.5 (Ground-completeness) Theory BSPτ (A) is a ground-com-
plete axiomatization of the term model P(BSPτ (A))/↔rb , i.e., for any closed

262 Abstraction

BSPτ (A)-terms p and q , P(BSPτ (A))/↔rb |
 p = q implies that BSPτ (A) �
p = q.

The proof of this ground-completeness result needs an alternative character-
ization of the notion of rooted branching bisimilarity, based on colorings, in
line with the characterization of strong bisimilarity given in Exercise 3.1.9.

Definition 8.4.6 (Coloring) A coloring of a transition-system space is a map-
ping from the states of the space to a set of colors. A coloring is canonical if
two states have the same color if and only if they can be related by a rooted
branching bisimulation. A transition system is in transition-system normal
form if and only if there exists a canonical coloring such that each state of the
transition system has a different color and the transition system has no τ -loop
s
τ→ s for any of its states s.

The following property is useful for the proof of Theorem 8.4.5. Two tran-
sition systems are isomorphic if and only if there is a one-to-one mapping
between their states that preserves transitions and termination options. Let ∼=
denote isomorphism of transition systems. Recall that transition systems are
named by their initial states.

Lemma 8.4.7 For transition systems g and h that are in transition-system nor-
mal form, g ↔rb h if and only if g ∼= h.

Proof The implication from right to left is trivial as the bijection that
witnesses the isomorphism is also a rooted branching bisimulation relation. In
the other direction, the rooted branching bisimulation relation that proves that
g and h are rooted branching bisimilar, is a bijection. It is surjective since
any branching bisimulation between two transition systems relates every state
of any of the two transition systems to some state in the other transition sys-
tem. It is injective since every state is related with at most one other state. If
two different states in g (h) are related to the same state in h (g), then these
two states are rooted branching bisimilar. But then these states have the same
color in a canonical coloring, which contradicts the assumption that g (h) is in
transition-system normal form.

Recall the notions of regular transition systems (Definition 3.1.15), regu-
lar processes (Definition 5.8.1), and bounded-depth processes (Section 4.5). In
line with the reasoning in Sections 4.5, 4.6, and 5.8, it can be shown that closed
BSPτ (A)-terms can be used to precisely specify all bounded-depth regular pro-
cesses. As a consequence, it is sufficient to consider only regular transition

8.4 The term model 263

systems without any cycles in the remainder of this section. Under this as-
sumption, it is possible to define a rewriting system on transition systems that
has the following properties:

(i) normal forms with respect to the rewriting system are transition-sys-
tem normal forms;

(ii) every rewrite step preserves rooted branching bisimilarity;
(iii) every rewrite step corresponds to a proof in the equational theory

BSPτ (A).

Definition 8.4.8 (Double states, manifestly inert transitions) Two states s
and t in a transition system are called double states if and only if s �= t ,
s↓ if and only if t↓, and for all states u and labels a, s

a→ u if and only if
t

a→ u. A transition s
τ→ t is manifestly inert if and only if s is not the root of

the transition system, if s↓, then t↓, and for all states u and labels a such that
a �= τ or u �= t , if s

a→ u, then t
a→ u.

Definition 8.4.9 (Rewriting system) The rewriting system consists of the fol-
lowing one-step reductions. Let g and h be transition systems.

(i) Contracting a pair of double states s and t in g: Transition system
h is obtained from g by replacing all transitions that lead to s by
transitions that lead to t and removing s and all its outgoing transitions
from the transition system. Since g and h are both embedded in the
underlying transition-system space, this means that g and h both have
their own set of states but that there is a bijection between the states
of g excluding s and the states of h that preserves transitions and
termination options when considering states s and t in g as identical.

(ii) Contracting a manifestly inert transition s
τ→ t in g: Transition sys-

tem h is obtained from g by replacing all transitions that lead to s by
transitions that lead to t and removing s and all its outgoing transi-
tions from the transition system. As in the previous case, this implies
a bijection between the states of g excluding s and the states of h pre-
serving transitions and termination options when considering s and t
as identical.

In line with Definitions 2.4.3 (One-step reduction) and 2.4.4 (Reduction re-
lation), a rewrite step is denoted with 	→ and sequences of rewrites are captured
by the reduction relation denoted�.

Definition 8.4.10 (Term of a transition system) A function 〈 〉 is defined that
associates with a transition system a closed BSPτ (A)-term as follows. Let r
be (the root state of) a transition system.

264 Abstraction

〈r〉 =

⎧⎪⎨
⎪⎩
∑

r
a→s

a.〈s〉 if r �↓,

∑
r

a→s

a.〈s〉 + 1 if r↓.

Note that this definition is only well-defined for acyclic, regular transition
systems. From the definition, it follows immediately that the closed terms
associated to isomorphic transition systems are identical and hence derivably
equal in BSPτ (A).

Corollary 8.4.11 For transition systems g and h, if g ∼= h, then BSPτ (A) �
〈g〉 = 〈h〉.

The rewriting system on transition systems of Definition 8.4.9 has the fol-
lowing properties:

(i) Normal forms of the rewriting system are transition-system normal
forms.

It can be shown that any acyclic regular transition system with branch-
ing bisimilar states has at least one pair of states that either form a pair
of double states or a manifestly inert τ -transition. Any two bisimilar
states closest to (successful or unsuccessful) termination are a pair of
double states or a manifestly inert transition. Hence, such a transition
system is not a normal form of the rewriting system. Furthermore, any
acyclic transition system remains acyclic during rewriting. Therefore,
any normal form of the rewriting system has no branching bisimilar
states and no τ -loops, which implies that it is in transition-system
normal form.

(ii) Every rewrite step preserves rooted branching bisimilarity. That is,
for any transition systems g and h,

if g 	→ h, then g ↔rb h. (8.4.1)

From g 	→ h, it follows that there exist states s and t such that s and
t are double states or such that there is a manifestly inert transition
s

τ→ t and h is the result of replacing all incoming transitions of
s by incoming transitions of t and the subsequent removal of s and
all associated transitions from g. Let R be the bijection between the
states of g minus s and the states of h mentioned in Definition 8.4.9
(Rewriting system). Then, the relation {(s, R(t))} ∪ R is obviously
a rooted branching bisimulation relation between g and h. Hence,
g ↔rb h.

8.4 The term model 265

(iii) Each transition system has a unique normal form (up to isomorphism)
with respect to the rewriting system.

Suppose that a transition system g has two normal forms with respect
to the rewriting system, say h and h′. Then, by item (i) above this
means that h and h′ are transition-system normal forms. From prop-
erty (8.4.1), it follows that g ↔rb h and g ↔rb h′. Therefore, also
h ↔rb h′. Thus, by Lemma 8.4.7, h ∼= h′.

Now, the following property can be proven.

Lemma 8.4.12 Every rewrite step corresponds to a proof in the theory. For
any transition systems g and h,

if g 	→ h, then BSPτ (A) � 〈g〉 = 〈h〉.

Proof The rewriting of g into h is due to either the contraction of
double states or the contraction of a manifestly inert transition. Suppose that
the states involved are s and t . Transition system h is obtained from g by
moving all incoming transitions of s to t and by removing s. Let R be the
bijection between the states of g minus s and the states of h mentioned in
Definition 8.4.9 (Rewriting system). It can be shown that BSPτ (A) � a.〈s〉 =
a.〈t〉 = a.〈R(t)〉 for any a ∈ Aτ . This is trivial for the case that s and t
are a pair of double states since the outgoing transitions of s and t have the
same label and target states, also R(t) has the same outgoing transitions up to
isomorphism of states, and s, t , and R(t) have the same termination options.
For the case that s

τ→ t is a manifestly inert transition, all outgoing transitions
of s are also outgoing transitions of t . Then, BSPτ (A)� a.〈s〉 = a.(τ.〈t〉 + p)
and BSPτ (A) � 〈t〉 = p + q , where p is the result of applying 〈〉 to s without
this manifestly inert transition and where q represents the outgoing transitions
of t . Then, BSPτ (A)�a.〈s〉 = a.(τ.〈t〉+ p) = a.(τ.(p+q)+ p) = a.(p+q) =
a.〈t〉. Since R(t) is isomorphic to t , also in this case, it follows by Corollary
8.4.11 that BSPτ (A) � a.〈s〉 = a.〈t〉 = a.〈R(t)〉 for any a ∈ Aτ .

For states v that are not in between the root state g and state s, obviously 〈v〉 ≡
〈R(v)〉, i.e., the terms are syntactically equal (and hence derivably equal). For
any other state v (excluding s), by induction on the distance from state s, it can
be proven that BSPτ (A) � 〈v〉 = 〈R(v)〉.

• The distance between v and s is one. Assume, [w↓] denotes 1 if w is
a terminating state, and 0, otherwise. Then,

266 Abstraction

BSPτ (A) �
〈v〉 = ∑

v
a→s

a.〈s〉 + ∑
v

a→v′,v′ �=s

a.〈v′〉 + [v↓]

= ∑
v

a→s

a.〈t〉 + ∑
v

a→v′,v′ �=s

a.〈v′〉 + [v↓]

= ∑
R(v)

a→R(t)

a.〈R(t)〉 +
∑

R(v)
a→R(v′),v′ �=t

a.〈R(v′)〉 + [R(v)↓]

= 〈R(v)〉.
• The distance between v and s is more than one. By induction, for all

states w such that v
a→ w for some a, BSPτ (A) � 〈w〉 = 〈R(w)〉.

Then,

BSPτ (A) � 〈v〉 = ∑
v

a→w

a.〈w〉 + [v↓]

= ∑
v

a→w

a.〈R(w)〉 + [v↓]

= ∑
R(v)

a→R(w)

a.〈R(w)〉 + [R(v)↓]

= 〈R(v)〉.
This last result implies that also BSPτ (A) � 〈g〉 = 〈R(g)〉 = 〈h〉, completing
the proof.

So far in this book, closed terms have been used both to refer to syntacti-
cal objects in an equational theory and to the transition systems obtained from
them in an operational semantics. In the remainder of this section, it is desir-
able to distinguish these two meanings of a closed term. Therefore, let [[p]]
denote the transition system obtained from closed BSPτ (A)-term p via the
term deduction system of BSPτ (A) defined earlier in this section.

Lemma 8.4.13 For closed BSPτ (A)-term p, BSPτ (A) � 〈[[p]]〉 = p.

Proof Via induction on the structure of term p; see Exercise 8.4.4.

Finally, it is possible to establish the desired ground-completeness result.

Proof (of Theorem 8.4.5 (Ground-completeness)).
Let p and q be closed BSPτ (A)-terms. Assume that P(BSPτ (A))/↔rb |
 p =
q. Then, by definition, [[p]] ↔rb [[q]]. Let g and h be the unique normal forms
with respect to the rewriting system of Definition 8.4.9 (Rewriting system) of
the transition systems [[p]] and [[q]], respectively:

8.5 Some extensions of BSPτ (A) 267

[[p]]� g and [[q]]� h.

Then, as a direct consequence of Property (8.4.1), [[p]] ↔rb g and [[q]] ↔rb h.
Since [[p]] ↔rb [[q]], the properties of ↔rb imply that g ↔rb h.
Since g and h are in normal form with respect to the rewriting system and since
they are also rooted branching bisimilar, it follows (by Lemma 8.4.7) that g and
h are isomorphic: g ∼= h. Therefore, by Corollary 8.4.11, BSPτ (A) � 〈g〉 =
〈h〉.
Using Lemma 8.4.12, from [[p]]� g and [[q]]� h, it follows that BSPτ (A) �
〈[[p]]〉 = 〈g〉 and BSPτ (A) � 〈[[q]]〉 = 〈h〉. Then,

BSPτ (A) � p = 〈[[p]]〉 = 〈g〉 = 〈h〉 = 〈[[q]]〉 = q,

where the first and last equalities are due to Lemma 8.4.13.

Exercises

8.4.1 Draw the transition systems associated with the following pairs of
process terms and construct a rooted branching bisimulation between
each of the pairs of transition systems.

(a) a.(τ.b.1 + b.1) and a.b.1;
(b) a.(τ.(b.1 + c.1)+ b.1) and a.(b.1 + c.1);
(c) a.τ.(τ.b.1 + τ.τ.b.1) and a.b.1.

8.4.2 Consider rooted weak bisimilarity as introduced in Exercise 8.2.5.
Prove that rooted weak bisimilarity is a congruence on the term alge-
bra P(BSPτ (A)).

8.4.3 Building upon the previous exercise, prove the following, for all
closed BSPτ (A)-terms p, q:

(a) τ.p + p is rooted weakly bisimilar to τ.p;
(b) a.(τ.p + q) is rooted weakly bisimilar to a.p + a.(τ.p + q).

Are these pairs of terms also rooted branching bisimilar? Motivate
your answer.

8.4.4 Prove Lemma 8.4.13.

8.5 Some extensions of BSPτ (A)

This section presents extensions of BSPτ (A) with useful operators for abstrac-
tion, encapsulation, and projection. Moreover, the choice operators of the
process algebra CSP are considered. The treatment is concise, as such exten-
sions follow the same lines as before. However, to prove the various results for

268 Abstraction

these extended theories, the results of Section 3.2 cannot be used, because these
assume strong bisimilarity as the underlying semantic equivalence. Therefore,
in the next subsection, all the relevant propositions and theorems are listed,
and proofs are asked in the form of exercises. The interested reader is advised
to consult the proofs given in Chapter 4 that do not use the framework of Sec-
tion 3.2. The proofs expected for the results in this section go along the same
lines. In Sections 8.5.2, 8.5.3, and 8.5.4, the main results are summarized but
for reasons of brevity not explicitly listed.

8.5.1 Abstraction

Recall the calculations for a two-place buffer from Section 7.6. The derivations
show that a two-place buffer can be seen as a composition of two one-place
buffers, as illustrated in Figure 7.3. The final step of the derivations used a
skip operator to skip the execution of internal actions. However, as already
explained in the introduction to this chapter, it is more elegant to rename in-
ternal actions into unobservable silent actions. Such a renaming, in contrast to
the skipping of internal actions, preserves moments of choice. This subsection
introduces such a renaming into silent actions, called abstraction or hiding.

The process theory (BSPτ +ABS)(A) is the extension of the process theory
BSPτ (A) with a family of abstraction or hiding operators τI for each I ⊆ A.
The set I contains the atomic actions that need to be abstracted from. The
axioms in Table 8.2 closely reflect the operational intuition that all occurrences
of prefix operators a. for which the atomic action is to be hidden (a ∈ I) are
replaced by τ -prefix operators.

(BSPτ + ABS)(A)
BSPτ (A);
unary: (τI)I⊆A ;
x, y;

τI (1) = 1 TI1
τI (0) = 0 TI2
τI (a.x) = a.τI (x) if a �∈ I TI3
τI (a.x) = τ.τI (x) if a ∈ I TI4
τI (x + y) = τI (x)+ τI (y) TI5

Table 8.2. Axioms for abstraction (a ∈ Aτ , I ⊆ A).

From the observation that the axioms in Table 8.2 closely follow the struc-
ture of BSPτ (A) terms, it follows easily that all occurrences of the abstraction
operators can be eliminated.

8.5 Some extensions of BSPτ (A) 269

Theorem 8.5.1 (Elimination) For every (BSPτ +ABS)(A)-term p, there is a
closed BSPτ (A)-term q such that (BSPτ + ABS)(A) � p = q.

Proof Exercise 8.5.5.

The theory also allows the expected conservativity result.

Theorem 8.5.2 (Conservative ground-extension) Theory (BSPτ+ABS)(A)
is a conservative ground-extension of process theory BSPτ (A).

Proof Exercise 8.5.6.

The term model is based on the term algebra for theory (BSPτ + ABS)(A),
P((BSPτ +ABS)(A)) = (C((BSPτ +ABS)(A)),+, (a.)a∈A, τ. , (τI)I⊆A, 0,
1). The term deduction system for (BSPτ +ABS)(A) is obtained by extending
the term deduction system for BSPτ (A)with deduction rules for the abstraction
operators as defined in Table 8.3. The first deduction rule means that applying
abstraction to a process does not alter its termination behavior. The second
deduction rule simply states that all behavior that is not abstracted from is still
present. The third deduction rule states that all action names that occur in the
set I are made unobservable by replacing them by the silent step.

TDS((BSPτ + ABS)(A))
TDS(BSPτ (A));
unary: (τI)I⊆A ;
x, x ′;

x↓
τI (x)↓

x
a→ x ′ a �∈ I

τI (x)
a→ τI (x

′)
x

a→ x ′ a ∈ I

τI (x)
τ→ τI (x

′)

Table 8.3. Term deduction system for (BSPτ + ABS)(A) (with a ∈ Aτ ,
I ⊆ A).

Proposition 8.5.3 (Congruence) Rooted branching bisimilarity is a congru-
ence on P((BSPτ + ABS)(A)).

Proof Exercise 8.5.7.

Definition 8.5.4 (Term model of (BSPτ + ABS)(A)) The term model of the-
ory (BSPτ + ABS)(A) is the quotient algebra P((BSPτ + ABS)(A))/↔rb .

270 Abstraction

Theorem 8.5.5 (Soundness) Theory (BSPτ + ABS)(A) is a sound axioma-
tization of P((BSPτ + ABS)(A))/↔rb , i.e., P((BSPτ + ABS)(A))/↔rb |

(BSPτ + ABS)(A).

Proof Exercise 8.5.8.

Theorem 8.5.6 (Ground-completeness) Theory (BSPτ + ABS)(A) is a
ground-complete axiomatization of the term model P((BSPτ+ABS)(A))/↔rb ,
i.e., for any closed (BSPτ + ABS)(A)-terms p and q, P((BSPτ +
ABS)(A))/↔rb |
 p = q implies (BSPτ + ABS)(A) � p = q.

Proof Exercise 8.5.9.

8.5.2 Encapsulation

In Chapter 6, encapsulation operators have been introduced in order to block
certain actions from being executed. In Chapter 7, this operator has been used
to force certain actions to communicate. In this section, the extension of the
process theory BSPτ (A) with such encapsulation operators is discussed. The
only relevant difference between the process theories BSP(A) and BSPτ (A) is
the τ -prefix operator. Before, it was assumed that H ⊆ A. Now, it should be
decided whether it is also allowed to block internal actions, i.e., whether H
should be allowed to include τ .

Example 8.5.7 (Encapsulation and silent steps) Assume that it is allowed to
block internal actions. Consider the process term ∂{τ }(a.τ.1). If it is allowed
to block silent actions, then the following equality can be established by using
the axioms for encapsulation from Table 6.8:

∂{τ }(a.τ.1) = a.0.

However, it is also possible to derive

∂{τ }(a.τ.1) = ∂{τ }(a.1) = a.1,

by applying (a derivative of) the Branching Axiom of Table 8.1 first. Thus,
allowing the encapsulation of internal steps leads to the identity

a.0 = a.1.

Consequently, allowing encapsulation of internal actions results in a process
theory that equates successful and unsuccessful termination, and is therefore
not a conservative (ground-)extension of BSPτ (A).

8.5 Some extensions of BSPτ (A) 271

As indicated by the example, it is not desirable to allow the encapsulation
of internal steps. Therefore, the set of action names to be blocked must still
be a subset of A: H ⊆ A. Theory (BSPτ + DH)(A) is precisely the union of
(BSP + DH)(A) from Table 6.8 (but assuming a ∈ Aτ) and theory BSPτ (A)
from Table 8.1.

Encapsulation operators can be eliminated from closed (BSPτ + DH)(A)-
terms to yield a derivably equal closed BSPτ (A)-term. Process theory (BSPτ+
DH)(A) is furthermore a conservative ground-extension of BSPτ (A). The term
deduction system for (BSPτ +DH)(A) is the union of the term deduction sys-
tems for (BSP + DH)(A) (Table 6.10) and BSPτ (A), with a ∈ Aτ . Theory
(BSPτ + DH)(A) is a sound and ground-complete axiomatization of the re-
sulting term model P((BSPτ + DH)(A))/↔rb .

8.5.3 Projection

Process theory (BSPτ + PR)(A) is the extension of BSPτ (A) with the family
of projection operators πn (for each natural number n). In order to obtain
(BSPτ + PR)(A) as a conservative ground-extension of BSPτ (A), it is not
possible to simply adopt the axioms of (BSP + PR)(A) of Table 4.5 with a ∈
Aτ . This can be illustrated as follows. Consider the following derivations,
applying the axioms of (BSP + PR)(A) on BSPτ (A)-terms:

π1(a.τ.1) = a.π0(τ.1) = a.0

and

π1(a.τ.1) = π1(a.1) = a.π0(1) = a.1.

Hence, as in Example 8.5.7 (Encapsulation and silent steps), it can be de-
rived that a.0 = a.1. As this is an identity between closed BSPτ (A)-terms
that is not derivable in BSPτ (A), (BSPτ + PR)(A) cannot have the axiom
π0(τ.x) = 0. For similar reasons, the axiom πn+1(τ.x) = τ.πn(x) is not
acceptable.

The axioms of (BSPτ + PR)(A) are the axioms of BSPτ (A) with a ∈ Aτ ,
the axioms of (BSP+PR)(A) with a ∈ A, and in addition the axiom presented
in Table 8.4.

Theory (BSPτ + PR)(A) allows an elimination result, stating that projec-
tion operators can be eliminated from closed (BSPτ + PR)(A)-terms. Theory
(BSPτ + PR)(A) is also a conservative ground-extension of BSPτ (A).

The term deduction system for (BSPτ + PR)(A) consists of the deduction
rules of the term deduction system for BSPτ (A) with a ∈ Aτ , the deduc-
tion rules for (BSP + PR)(A) with a ∈ A (Table 4.6), and in addition the

272 Abstraction

(BSPτ + PR)(A)
BSPτ (A), (BSP + PR)(A);
-
x;

πn(τ.x) = τ.πn(x) PR6

Table 8.4. BSPτ (A) with projection (n ∈ N).

deduction rule given in Table 8.5. Theory (BSPτ + PR)(A) is a sound and
ground-complete axiomatization of the term model P((BSPτ + PR)(A))/↔rb .

TDS((BSPτ + PR)(A))
TDS(BSPτ (A)), TDS((BSP + PR)(A));
-
x, x ′;

x
τ→ x ′

πn(x)
τ→ πn(x ′)

Table 8.5. Term deduction system for (BSPτ + PR)(A) (with n ∈ N).

Note that, in the presence of projection operators, one can consider a projec-
tive limit model for (BSPτ + PR)(A), similar to the model for theory (BSP +
PR)(A) presented in Section 5.10. It turns out that the notion of projective se-
quences and the derived model can be adapted to the current setting with silent
steps. However, such a model is not possible in a setting with abstraction oper-
ators, because abstraction operators cannot be defined on projective sequences.
Exercise 8.5.12 investigates this further.

8.5.4 Non-determinism in CSP

In the CSP framework of (Hoare, 1985), bisimilarity is not the preferred notion
of equivalence, but rather failures equivalence, to be considered in Section
12.2. As a consequence, the law a.x + a.y = a.(τ.x + τ.y) holds in CSP,
which means all non-determinism can be reduced to silent non-determinism
(non-deterministic choices between silent steps).

CSP has two choice operators: denoting non-deterministic or internal
choice, and � denoting external choice. The internal-choice operator denotes
a non-deterministic choice that cannot be influenced by the environment (other

8.5 Some extensions of BSPτ (A) 273

processes in parallel) and can simply be defined in the present setting by the
defining axiom

x y = τ.x + τ.y.
The definition of � in the current context with rooted branching bisimilarity

as the semantic equivalence is more subtle. It denotes a choice that can be
influenced by the environment. If the arguments of the operator have initial
silent non-determinism, then these silent steps can be executed without making
the choice, and the choice will be made as soon as a visible action occurs. This
intuition leads to the operational rules in the two middle rows of Table 8.6,
which defines the term deduction system for theory (BSPτ �)(A), BSPτ (A)
extended with CSP choice operators, introduced below.

TDS((BSPτ �)(A))
TDS(BSPτ (A))
-
x, y, x ′, y′;

x y
τ→ x x y

τ→ y

x↓
x � y↓

x
a→ x ′

x � y
a→ x ′

y
a→ y′

x � y
a→ y′

y↓
x � y↓

x
τ→ x ′

x � y
τ→ x ′ � y

y
τ→ y′

x � y
τ→ x � y′

x↓
x � y↓

x
a→ x ′

x � y
a→ x ′

x
τ→ x ′

x � y
τ→ x ′ � y

Table 8.6. Term deduction system for (BSPτ �)(A) (with a ∈ A).

An axiomatization of the external-choice operator is not straightforward:
similar to the situation with the parallel-composition operator, an auxiliary
operator is needed. Let � denote the so-called left-external-choice operator.
It satisfies the operational rules for the external choice that apply to the left
operand of the external choice, but not those that apply to the right operand, as
can be seen in the bottom row of Table 8.6.

Table 8.7 shows the theory (BSPτ �)(A). It contains besides the defining
axiom for the non-deterministic choice, an axiomatization of the CSP external-
choice operator, using the left-external-choice operator.

The term deduction system of Table 8.6 can be used to provide a standard
term model for theory (BSPτ �)(A) based on rooted branching bisimilar-
ity. Based on the axiomatization of Table 8.7, commutativity and associativity

274 Abstraction

(BSPτ �)(A)
BSPτ (A);
binary: , � , � ;
x, y, z;

x y = τ.x + τ.y x � y = x � y + y � x

0 � x = 0 x � 0 = x
1 � x = 1 (x � y) � z = x � (y � z)
a.x � y = a.x
τ.x � y = τ.(x � y)
(x + y) � z = x � z + y � z

Table 8.7. BSPτ (A) extended with CSP choice operators (with a ∈ A).

of the external-choice operator can be easily derived. Also, 0 is an identity
element of external choice. However, external choice is not idempotent. The
internal-choice operator is commutative, but not associative or idempotent. It
does not have an identity element.

The axiomatization of the CSP choice operators in the present setting based
on bisimilarity uses silent actions. An interesting observation is that the extra
τ -identities that are valid in failures semantics, together with the presence of
two choice operators allows the elimination of all τ -occurrences from every
expression, see (Bergstra et al., 1987), which means that CSP can do without
the silent step altogether.

Exercises

8.5.1 Give a derivably equal closed BSPτ (A)-term, eliminating silent steps
whenever possible, for each of the following process terms:

(a) τ{d}(a.(d.(b.d.0 + c.d.0)+ b.d.0));
(b) τ{d}(a.(d.(b.0 + c.0)+ b.1));
(c) τ{b,c}(a.b.0 + a.c.b.1);
(d) τ{a}(b.a.0 + a.c.b.1);
(e) τ{d}(a.(d.b.c.1 + b.c.0)).

8.5.2 Prove that (BSPτ +ABS)(A) � τI (τJ (p)) = τI∪J (p) for any closed
(BSPτ + ABS)(A)-term p and any I, J ⊆ A.

8.5.3 Prove that (BSPτ+DH)(A) � ∂G(∂H (p)) = ∂G∪H (p) for any closed
(BSPτ + DH)(A)-term p and any G, H ⊆ A.

8.5.4 Give an example to show that (BSPτ+ABS+PR)(A) �� πn(τI (x)) =
τI (πn(x)), for n ∈ N, I ⊆ A, and term x .

Exercises 275

8.5.5 Prove Theorem 8.5.1 (Elimination of abstraction operators).

8.5.6 Prove Theorem 8.5.2 (Conservativity of (BSPτ + ABS)(A)).

8.5.7 Prove Proposition 8.5.3 (Congruence).

8.5.8 Prove Theorem 8.5.5 (Soundness of (BSPτ + ABS)(A)).

8.5.9 Prove Theorem 8.5.6 (Ground-completeness of (BSPτ + ABS)(A)).

8.5.10 Develop theory (BSPτ + DH)(A). That is, prove elimination and
conservativity results, and give a term model proving soundness and
ground-completeness.

8.5.11 Develop theory (BSPτ + PR)(A), proving elimination and conserva-
tivity results, as well as soundness and ground-completeness results
for the standard term model.

8.5.12 Develop a projective limit model for theory (BSPτ +PR)(A), follow-
ing the developments in Section 5.10. Investigate also the validity of
recursion principles. Argue that it is not possible to define abstraction
operators on projective sequences.

8.5.13 Develop theory (BSPτ �)(A), proving elimination and conservativ-
ity results, as well as soundness and ground-completeness results for
the standard term model based on rooted branching bisimilarity.

8.5.14 Show that theory (BSPτ �)(A) is a sound axiomatization of the
standard term model based on strong bisimilarity, when τ is treated
as a normal action. (Note that any identity valid in a term model based
on strong bisimilarity is also valid in a term model based on (rooted)
branching bisimilarity.)

8.5.15 Derive the following equations from (BSPτ �)(A):

(a) x y = y x ;

(b) x � y = y � x ;

(c) x � (y � z) = (x � y)� z;

(d) x � 0 = x .

Provide counterexamples to show that the following equations are not
derivable:

(a) x x = x ;

(b) x (y z) = (x y) z;

(c) x � x = x ;

(d) x � (y z) = (x � y) (x � z);

(e) x (y � z) = (x y)� (x z).

276 Abstraction

8.6 TCP with silent steps

The basic theory BSPτ (A) developed in this chapter can be extended with the
various features introduced so far throughout this book. This section intro-
duces process theory TCPτ (A, γ), which extends BSPτ (A) with sequential
composition, parallel composition, encapsulation, and abstraction, providing a
rich process theory, called the Theory of Communicating Processes with silent
steps, that includes many useful ingredients for specifying and reasoning about
processes. The axioms of theory TCPτ (A, γ) are the axioms of process the-
ory TCP(A, γ) of Chapter 7 with a ∈ Aτ and H ⊆ A, the axioms of theory
(BSPτ +ABS)(A) of the previous section, and two additional Axioms of Stan-
dard Concurrency SC9 and SC10. For readability, Table 8.8 gives a complete
overview of the signature and the axioms of process theory TCPτ (A, γ). Com-
munications involving the silent step τ are always assumed to be undefined.
This is captured axiomatically by Axiom SC10. (Exercise 8.6.8 illustrates why
this assumption is necessary.) Axiom SC9 is a counterpart of the Branching
Axiom B for the auxiliary left-merge operator. From Axiom SC9, the equality
x ‖ (τ.(y + z)+ y) = x ‖ (y + z) can be proven (see Exercise 8.6.4).

The extensions of TCPτ (A, γ) with respect to theory BSPτ (A) allow for
the convenient specification of communicating processes but do not add to the
expressiveness of the theory.

Theorem 8.6.1 (Elimination) For any closed TCPτ (A, γ)-term p, there is a
closed BSPτ (A)-term q such that TCPτ (A, γ) � p = q.

Proof Exercise 8.6.9.

Theorem 8.6.2 (Conservative ground-extension) Theory TCPτ (A, γ) is a
conservative ground-extension of theory BSPτ (A).

Proof Exercise 8.6.10.

Theorem 8.6.3 (Standard concurrency) For closed TCPτ (A, γ)-terms, the
Axioms of Standard Concurrency SC2–SC10 are derivable from the other ax-
ioms of TCPτ (A, γ).

Proof For Axioms SC2–SC8, the proofs of Theorems 7.4.4 and 7.7.1
(Standard concurrency in BCP(A, γ) and TCP(A, γ)) carry over to the current
setting. The proof for the two new axioms goes via structural induction. First,
the result for SC10 is proven, and then this can be used in the proof of SC9.
See Exercise 8.6.3.

8.6 TCP with silent steps 277

TCPτ (A, γ)
constant: 0, 1;
unary: (a.)a∈Aτ , (∂H)H⊆A , (τI)I⊆A ;
binary: + , · , ‖ , ‖ , | ;
x, y, z;

x + y = y + x A1 x + 0 = x A6
(x + y)+ z = x + (y + z) A2 0 · x = 0 A7
x + x = x A3 x · 1 = x A8
(x + y) · z = x · z + y · z A4 1 · x = x A9
(x · y) · z = x · (y · z) A5 a.x · y = a.(x · y) A10

a.(τ.(x + y)+ x) = a.(x + y) B

∂H (1) = 1 D1 τI (1) = 1 TI1
∂H (0) = 0 D2 τI (0) = 0 TI2
∂H (a.x) = 0 if a ∈ H
∂H (a.x) = a.∂H (x) if a �∈ H

D3
D4

τI (a.x) = a.τI (x) if a �∈ I
τI (a.x) = τ.τI (x) if a ∈ I

TI3
TI4

∂H (x + y) = ∂H (x)+ ∂H (y) D5 τI (x + y) = τI (x)+ τI (y) TI5

x ‖ y = x‖ y + y‖ x + x | y M x | y = y | x SC1
x ‖ 1 = x SC2

0‖ x = 0 LM1 1 | x + 1 = 1 SC3
1‖ x = 0 LM2 (x ‖ y) ‖ z = x ‖ (y ‖ z) SC4
a.x‖ y = a.(x ‖ y) LM3 (x | y) | z = x | (y | z) SC5
(x + y)‖ z = x‖ z + y‖ z LM4 (x‖ y)‖ z = x‖ (y ‖ z) SC6
0 | x = 0 CM1 (x | y)‖ z = x | (y‖ z) SC7
(x + y) | z = x | z + y | z CM2 x‖ 0 = x · 0 SC8
1 | 1 = 1 CM3 x‖ τ.y = x‖ y SC9
a.x | 1 = 0 CM4 x | τ.y = 0 SC10
a.x | b.y = c.(x ‖ y) if γ (a, b) = c CM5
a.x | b.y = 0 if γ (a, b) is not defined CM6

Table 8.8. The process theory TCPτ (A, γ) (with a, b, c ∈ Aτ , H, I ⊆ A).

As in Section 7.4, an expansion theorem can be proven that allows reasoning
about parallel compositions.

Theorem 8.6.4 (Expansion theorem) Let set I ⊂ N be a finite, non-empty
set of natural numbers, and ti , for all i ∈ I , arbitrary TCPτ (A, γ)-terms.

TCPτ (A, γ) � ‖
i∈I

ti = ∑
∅�=J⊂I

(|
j∈J

t j)‖ (‖
i∈I\J

ti)+ |
i∈I

ti .

Proof The proof is similar to the proof of the expansion theorem in
the previous chapter. See Exercise 8.6.11.

Also in line with the development of theory BCP(A, γ) of the previous

278 Abstraction

chapter, it is possible to add the Free-Merge and Handshaking Axioms to the
theory, resulting in theories (TCPτ + FMA)(A,∅) and (TCPτ + HA)(A, γ),
respectively. Each of these two theories has its own variant of the expansion
theorem.

Theorem 8.6.5 (Expansion theorem for free merge) Let set I ⊂ N be some
finite, non-empty index set of natural numbers, and ti , for all i ∈ I , arbitrary
(TCPτ + FMA)(A,∅)-terms.

(TCPτ + FMA)(A,∅) � ‖
i∈I

ti = ∑
i∈I

ti ‖ (‖
j∈I\{i}

t j)+ |
i∈I

ti .

Proof Exercise 8.6.12.

Theorem 8.6.6 (Expansion theorem for handshaking communication) Let
I ⊂ N be some finite, non-empty index set of natural numbers, and ti , for all
i ∈ I , arbitrary (TCPτ + HA)(A, γ)-terms.

(TCPτ + HA)(A, γ) � ‖
i∈I

ti =∑
i∈I

ti ‖ (‖
j∈I\{i}

t j)+ ∑
i, j∈I,i �= j

(ti | t j)‖ (‖
k∈I\{i, j}

tk)+ |
i∈I

ti .

Proof Exercise 8.6.13.

The development of the standard term model for TCPτ (A, γ) follows the
usual pattern. The relevant definitions and results are summarized for the sake
of completeness.

The term algebra is the algebra P(TCPτ (A, γ)) = (C(TCPτ (A, γ)),+, · ,‖ ,
‖ , | , (a.)a∈A, τ. , (∂H)H⊆A, (τI)I⊆A, 0, 1). The term deduction system for
TCPτ (A, γ) is the union of the term deduction systems for TCP(A, γ) and
(BSPτ + ABS)(A).

Proposition 8.6.7 (Congruence) Rooted branching bisimilarity is a congru-
ence on the algebra P(TCPτ (A, γ)).

Proof Exercise 8.6.14.

Definition 8.6.8 (Term model) The term model of TCPτ (A, γ) is the quo-
tient algebra P(TCPτ (A, γ))/↔rb .

Theorem 8.6.9 (Soundness) Theory TCPτ (A, γ) is a sound axiomatization
of the algebra P(TCPτ (A, γ))/↔rb , i.e., P(TCPτ (A, γ))/↔rb |
 TCPτ (A, γ).

Exercises 279

Proof Exercise 8.6.15.

Theorem 8.6.10 (Ground-completeness) Theory TCPτ (A, γ) is a ground-
complete axiomatization of model P(TCPτ (A, γ))/↔rb , i.e., for any closed
TCPτ (A, γ)-terms p and q , P(TCPτ (A, γ))/↔rb |
 p = q implies TCPτ (A,
γ) � p = q.

Proof Exercise 8.6.16.

Exercises

8.6.1 Let A = {a, b, c} with γ (a, b) = c be the only defined communica-
tion. Eliminate all occurrences of the communication operators‖ ,‖ ,
and | , and as many τ -prefix operator occurrences as possible from
the process term τ.a.b.1 ‖ τ.(τ.a.1 + τ.b.1).

8.6.2 Prove the following equalities, for a ∈ Aτ and TCPτ (A, γ)-terms
x, y:

(a) TCPτ (A, γ) � a.(τ.1 ‖ x) = a.x ;
(b) TCPτ (A, γ) � a.(τ.x ‖ y) = a.(x ‖ y).

8.6.3 Prove Theorem 8.6.3 (Standard concurrency) for Axioms SC9 and
SC10.

8.6.4 Prove the following equalities, for TCPτ (A, γ)-terms x, y, z:

(a) TCPτ (A, γ) � x ‖ τ.y = τ.(x ‖ y)+ x ‖ y;
(b) TCPτ (A, γ) � x ‖ (τ.y + y) = x ‖ y;
(c) TCPτ (A, γ) � x ‖ (τ.(y + z)+ y) = x ‖ (y + z).

8.6.5 Assume that I ⊆ A and that no element of I can communicate, i.e.,
γ (i, a) and γ (a, i) are undefined for any a ∈ A and i ∈ I . Prove that
for all closed TCPτ (A, γ)-terms p and q:

TCPτ (A, γ) � τI (p ‖ q) = τI (τI (p) ‖ τI (q)).

Assume, in addition, that none of the elements in I is the result of a
communication, i.e., γ (a, b) �∈ I for any a, b ∈ A. Prove that for all
closed TCPτ (A, γ)-terms p and q:

TCPτ (A, γ) � τI (p ‖ q) = τI (p) ‖ τI (q).

8.6.6 Prove, for arbitrary TCPτ (A, γ)-terms x and y, closed TCPτ (A, γ)-
term p, and action a ∈ Aτ that TCPτ (A, γ)�a.p · (τ.(x + y)+ x) =
a.p · (x + y). As a generalization, prove, for arbitrary TCPτ (A, γ)-
terms x and y, that TCPτ (A, γ) � p · (τ.(x + y)+ x) = p · (x + y)

280 Abstraction

for any closed TCPτ (A, γ)-term p of the form p =∑
i<n ai .pi with

ai ∈ Aτ and pi a closed TCPτ (A, γ)-term for some n ∈ N.
8.6.7 Let x, y, z be TCPτ (A, γ)-terms. Prove that Axiom B can be derived

from x ‖ (τ.(y + z) + y) = x ‖ (y + z) and the other axioms of
TCPτ (A, γ).

8.6.8 Consider the assumption that communication with τ is always unde-
fined. Show that without this assumption Axiom SC10 is not valid in
the standard term model. Consider theory TCPτ (A, γ) without Ax-
iom SC10 and without the assumption that communication with τ is
impossible. Where does the standard development of this theory go
wrong?

8.6.9 Prove Theorem 8.6.1 (Elimination).
8.6.10 Prove Theorem 8.6.2 (Conservative ground-extension).
8.6.11 Prove Theorem 8.6.4 (Expansion theorem).
8.6.12 Prove Theorem 8.6.5 (Expansion theorem for free merge).
8.6.13 Prove Theorem 8.6.6 (Expansion theorem for handshaking commu-

nication).
8.6.14 Prove Proposition 8.6.7 (Congruence).
8.6.15 Prove Theorem 8.6.9 (Soundness).
8.6.16 Prove Theorem 8.6.10 (Ground-completeness).
8.6.17 Specialize the set of actions A into a set of names N , a set of co-

names N̄ , and a set of communications C such that for each n ∈ N ,
there is exactly one n̄ ∈ N̄ and exactly one nc ∈ C . The commu-
nication function γ has γ (n, n̄) = γ (n̄, n) = nc and is not defined
otherwise. Now define the CCS parallel composition operator ‖CCS

by the following defining axiom, with x and y arbitrary terms:

x ‖CCS y = τC (x ‖ y).

Derive the CCS expansion law (see (Milner, 1980; Milner, 1989))
from the theory TCPτ (A, γ) extended with this defining axiom, and
where A and γ are defined as in this exercise.

8.7 Iteration and divergence

In Section 4.6, prefix iteration a∗x for action a and term x has been consid-
ered. The introduction of the silent step τ implies an additional action-prefix
operator τ. ; so, it is natural to also have a look at τ -prefix iteration τ ∗ , some-
times called divergence, capturing the fact that it allows an infinite sequence
of τ actions to occur. The theory BSP∗τ (A) is the union of theories BSP∗(A) of
Section 4.6 and BSPτ (A), extended with the τ -prefix iteration; see Table 8.9.

8.7 Iteration and divergence 281

The term deduction system for BSP∗τ (A) is simply the term deduction system
of BSP∗(A) but with a ∈ Aτ .

BSP∗τ (A)
BSP∗(A),BSPτ (A)
unary: τ∗ ;

−

Table 8.9. The process theory BSP∗τ (A).

τ

Fig. 8.10. τ∗1.

However, more can be said about τ -prefix iteration. Consider the pro-
cess τ ∗1, depicted in Figure 8.10. This process is branching bisimilar to
the process 1 (but not rooted branching bisimilar!). This suggests that τ -
loops can be removed. Since the standard term model is based on rooted
branching bisimilarity, in the term model, only τ -loops not at the root can
be removed entirely; τ -loops at the root can be reduced to a single τ -step.
This fact can be captured as the Fair-Iteration Axiom; see Table 8.10. It
can be shown, see Exercise 8.7.1, that the Fair-Iteration Axiom implies that
(BSP∗τ + FI)(A) � a.p · τ ∗x = a.p · x for all (BSP∗τ + FI)(A)-terms x and
closed (BSP∗τ + FI)(A)-terms p. The Fair-Iteration Axiom expresses that τ -
prefix iteration behaves fairly, in the sense that no infinite sequence of τ -steps
occurs, or in other words that divergence does not occur. However, it needs to
be stressed that the Fair-Iteration Axiom happens to hold in the standard term
model of BSP∗τ (A) with rooted branching bisimilarity as the underlying equiv-
alence, which means that this model is also a model of (BSP∗τ + FI)(A). Other
models of BSP∗τ (A) exist where fair iteration does not hold, which means that
these models are not models of (BSP∗τ + FI)(A).

It is interesting to consider a model that does not allow to remove τ -loops.
Abstracting from τ -loops implies that processes without divergence are equiv-
alent to processes with divergence. This is not always desirable. A model for
BSP∗τ that does not abstract from divergence can be constructed in the same
way as the standard term model, but using a different semantic equivalence at
the basis.

282 Abstraction

(BSP∗τ + FI)(A)
BSP∗τ (A)
-
x;

τ.τ∗x = τ.x FI

Table 8.10. Fair iteration.

Definition 8.7.1 (Branching bisimilarity with explicit divergence) A binary
relation R on the set of states S of a transition-system space is a branching
bisimulation relation with explicit divergence if and only if R is a branching
bisimulation relation on S and in addition the following conditions hold:

(i) for all states s, t ∈ S, whenever (s, t) ∈ R and s
τ→ s0

τ→ s1 · · · is an
infinite τ -path such that (si , t) ∈ R for all i ∈ N, then there are states
t0, t1, . . . such that t

τ→ t0
τ→ t1 · · · and (si , t j) ∈ R for all i, j ∈ N;

(ii) vice versa, for all states s, t ∈ S, whenever (s, t) ∈ R and t
τ→ t0

τ→
t1 · · · is an infinite τ -path such that (s, ti) ∈ R for all i ∈ N, then there
are states s0, s1, . . . such that s

τ→ s0
τ→ s1 · · · and (s j , ti) ∈ R for all

i, j ∈ N.

This definition might seem very restrictive, but this is not really the case.
As before, it is possible to define a rootedness condition for this notion, so
that rooted branching bisimilarity with explicit divergence becomes a congru-
ence relation on the term algebra. As a consequence, a model of BSP∗τ (A) is
obtained where the Fair-Iteration Axiom does not hold; divergence cannot be
abstracted away.

It is also possible to proceed in another way, by treating divergence as chaos.
This is an extreme standpoint that states that, as soon as divergent behavior
is possible, nothing more can be said about the process, no observation is
possible. This means that any process with divergence is identified with the
completely arbitrary process that can only do internal actions, called the chaos
process. This situation is characterized by the axiom given in Table 8.11.

Proposition 8.7.2 (Chaos) The following equalities are derivable from theory
(BSP∗τ + CH)(A), for any (BSP∗τ + CH)(A)-terms x and y.

(i) τ ∗x = x + τ ∗0;
(ii) τ ∗x + y = τ ∗0.

Exercises 283

(BSP∗τ + CH)(A)
BSP∗τ (A)
-
x;

τ∗x = τ∗0 CH

Table 8.11. Catastrophic divergence.

Proof The derivations are as follows, where the second derivation
uses the first identity in the second step. (BSP∗τ + CH)(A) �

(i) τ ∗x = x + τ.τ ∗x = x + x + τ.τ ∗x = x + τ ∗x = x + τ ∗0;
(ii) τ ∗x + y = τ ∗0 + y = τ ∗y = τ ∗0.

This proposition, in particular the second identity, characterizes process τ ∗x
as chaos, that makes any determination of the subsequent or alternative process
behavior impossible. The standard term model of BSP∗τ (A) does not validate
the Chaos Axiom CH, but it is possible to find a model for the theory BSP∗τ (A)
that does satisfy this axiom, and which is therefore a model of (BSP∗τ+CH)(A)
(see Exercise 8.7.6).

Exercises

8.7.1 Show that the Fair-Iteration Axiom can be used to prove that (BSP∗τ +
FI)(A)�a.p ·τ ∗x = a.p ·x for all (BSP∗τ+FI)(A)-terms x and closed
(BSP∗τ + FI)(A)-terms p. As a generalization, prove that (BSP∗τ +
FI)(A) � p · τ ∗x = p · x for all (BSP∗τ + FI)(A)-terms x and closed
terms p of the form

∑
i<n ai .pi with ai ∈ Aτ and closed terms pi for

some n ∈ N.
8.7.2 In a transition system, a divergent state is a state from which an infi-

nite series of τ -steps is possible. Find two transition systems that are
branching bisimilar, by a branching bisimulation that relates divergent
states to divergent states only, but such that the transition systems are
not branching bisimilar with explicit divergence.

8.7.3 Verify that rooted branching bisimilarity with explicit divergence is
a congruence relation on the term algebra for BSP∗τ (A). Verify that
the resulting quotient algebra is a model for BSP∗τ (A), but that this
algebra does not validate the Fair-Iteration Axiom FI (and is hence
not a model of (BSP∗τ + FI)(A)).

8.7.4 A weaker version of the Fair-Iteration Axiom is the equation

284 Abstraction

τ ∗τ.x = τ.x

that only removes so-called unstable divergence (i.e., divergence can
only be escaped by means of a process that starts with a silent step).
Show that the Fair-Iteration Axiom implies this equation. On the
other hand, try to come up with a model for BSP∗τ that satisfies this
equation but not the Fair-Iteration Axiom.

8.7.5 Prove that (BSP∗τ + CH)(A) �
(a) τ ∗(x + y) = τ ∗x + τ ∗y;
(b) τ ∗x + y = τ ∗x .

8.7.6 Construct a model for (BSP∗τ + CH)(A).

8.8 Recursion and fair abstraction

The previous section illustrates that recursive and silent behavior form an in-
teresting combination. This section investigates the extension of the general
theory TCPτ (A, γ) with general recursion.

A crucial concept in any context with recursion is the concept of guarded-
ness. In Chapter 5, an occurrence of a recursion variable in a term has been
defined to be guarded if it occurs in a subterm of the form a.s for some action
a ∈ A and term s. Now that a prefix operator τ. has been added, it should be
discussed whether this operator can also act as a guard of a recursion variable.

To this end, consider the recursive equation X = τ.X . Considering the term
model of TCPτ (A, γ) of Section 8.6, all processes [τ.p]↔rb are solutions for
X , for any closed TCPτ (A, γ)-term p, since τ.p ↔rb τ.τ.p. Hence, the silent
step cannot be considered a guard for an occurrence of a recursion variable.

Also, the abstraction operator, as introduced in Section 8.5.1, can cause
problems when considering recursion, and guardedness in particular.

Example 8.8.1 (Direct abstraction from a guard) Consider the recursive
specification E = {X = τI (i.X)} where i ∈ I . With the definition of guard-
edness as given before, this recursive specification is guarded. Nevertheless,
this equation has many different solutions: for all distinct actions a and b not
in I , processes [τ.a.1]↔rb and [τ.b.1]↔rb are solutions for X . The reason for
this problem is the occurrence of the abstraction operator, which is problematic
because it abstracts from an atomic action that acts as a guard for a recursion
variable.

Example 8.8.2 (Indirect abstraction from a guard) Consider the recursive
specification E = {X = i.τI (X)} where i ∈ I . Although initially, the action i

8.8 Recursion and fair abstraction 285

acts as a guard for the occurrence of X on the right-hand side, all subsequent
occurrences of i are abstracted away, as the recursive call to X is in the scope
of the abstraction operator. Also this recursive specification has many solu-
tions. For example, for different a and b not in I , the processes [i.a.1]↔rb and
[i.b.1]↔rb are solutions for X .

These difficulties make it necessary to restrict the notion of guardedness. A
recursive specification will only be said to be guarded if it can be brought into a
form (by applying the equations and axioms of the theory) where all variables
on the right-hand side are guarded by an atomic action different from τ and
in which no abstraction operator occurs. The following definition replaces the
corresponding part of Definition 5.5.5 (Guardedness, part 1). The other parts
of Definitions 5.5.5 and 5.5.8 (Guardedness, parts 1 and 2) carry over to the
current context without change.

Definition 8.8.3 (Guardedness in TCPτ,rec(A, γ)) An occurrence of a vari-
able x in a TCPτ,rec(A, γ)-term s is guarded if and only if the abstraction
operator does not occur in s and x occurs in a subterm of the form a.t for some
action a ∈ A (so not equal to τ) and TCPτ,rec(A, γ)-term t .

With this restricted definition of guardedness, the familiar results can be
established. The term model of the theory extended with recursion constants
is defined as before. Proofs are left to the reader. They go along the lines of
similar proofs given earlier in this book and proofs in (Baeten et al., 1987b).

Theorem 8.8.4 (Validity of RDP) Recursion principle RDP is not valid in the
standard term model but it is valid in the term model for the theory extended
with recursion constants: P(TCPτ (A, γ))/↔rb �|
 RDP and P(TCPτ,rec(A,
γ))/↔rb |
 RDP.

Theorem 8.8.5 (Validity of RDP−) The principle RDP− is not valid in the
standard term model but it is valid in the term model with recursion constants:
P(TCPτ (A, γ))/↔rb �|
 RDP− and P(TCPτ,rec(A, γ))/↔rb |
 RDP−.

Theorem 8.8.6 (Validity of RSP) Recursion principle RSP is valid in both the
term models with and without recursion constants: P(TCPτ (A, γ))/↔rb |

RSP and P(TCPτ,rec(A, γ))/↔rb |
 RSP.

The extension of theory TCPτ,rec(A, γ) with projection operators, needed
for the formulation of the recursion principles AIP and AIP−, can be obtained
as outlined in Section 8.5.3.

286 Abstraction

Theorem 8.8.7 (Validity of AIP) Recursion principle AIP is valid in the stan-
dard term model but it is not valid in the term model with recursion constants:
P((TCPτ + PR)(A, γ))/↔rb |
 AIP and P((TCPτ + PR)rec(A, γ))/↔rb �|

AIP.

Theorem 8.8.8 (Validity of AIP−) Principle AIP− is valid in both the term
models with and without recursion constants: P((TCPτ + PR)(A, γ))/↔rb |

AIP− and P((TCPτ + PR)rec(A, γ))/↔rb |
 AIP−.

Recall that AIP− requires that at least one of the two considered terms is
guarded. In the course of establishing the validity of AIP−, the following the-
orem is needed. It characterizes a solution of a guarded recursive specification,
or, in other words, a definable process (see Definition 5.7.5). As such, it re-
places Theorem 5.7.7 (Processes definable over BSP(A)) in theories with silent
steps, and it provides the properties of the process specified by the guarded
term in the AIP− formulation. A transition system is called divergence free if
and only if from no state of the system, an infinite series of consecutive τ -steps
can be taken. An equivalence class of transition systems under rooted branch-
ing bisimilarity, i.e., a process in the current context, is divergence free if and
only if at least one element is.

Theorem 8.8.9 (Processes definable over TCPτ (A, γ)) A process in the al-
gebra of processes P(TCPτ,rec(A, γ))/↔rb is definable over TCPτ (A, γ) if
and only if it contains a transition system as an element that is both finitely
branching and divergence free.

The proof of this result can be found in (Baeten et al., 1987b). It should
be stressed that this theorem states that a transition system is needed that has
both properties at the same time. It is not so that a process is definable if
and only if it is finitely branching and divergence free. The latter would al-
low that some transition systems in the equivalence class are finitely branching
and some divergence free but that no single transition system is both finitely
branching and divergence free. Consider for example the unguarded recursive
specification, using the k-fold action prefix of Notation 4.6.6, that has equa-
tions Xn = τ.Xn+1 +∑

0≤i≤n ai 1 for each natural number n. The transition
system for X0 obtained by the operational rules is finitely branching but not
divergence free, while after removing all τ -steps after the initial one a rooted
branching bisimilar transition system is obtained that is divergence free but
not finitely branching. The process containing among others these two tran-
sition systems is therefore finitely branching and divergence free but it is not
definable over TCPτ (A, γ).

8.8 Recursion and fair abstraction 287

Let us take a closer look at transition systems with divergence that cannot be
removed under (rooted) branching bisimilarity. As an example, consider the
unguarded recursive specification E = {Xn = τ.Xn+1 + an1 | n ∈ N}. The
transition system corresponding to recursion variable X0 has divergence, and
none of the τ -steps can be removed under branching bisimilarity, all states be-
ing different. Nevertheless, the process containing the transition system of X0

is expressible in BSPτ,rec(A) (and hence in TCPτ,rec(A, γ)), as defined in Def-
inition 5.7.2 (Expressiveness). This is demonstrated by recursive specification
E . However, the process is not definable over BSPτ (A) or TCPτ (A, γ), as this
would contradict Theorem 8.8.9 above. This means that it is not the solution of
a guarded recursive specification over the corresponding signature (see again
(Baeten et al., 1987b)). What can be done however is the following. Consider
the guarded recursive specification F = {Yn = i.Xn+1 + an1 | n ∈ N}, where
i ∈ A is some atomic action. This recursive specification is guarded, so vari-
able Y0 has a unique solution, in the form of a definable process. Now process
µX0.E can be obtained as τ{i}(µY0.F), i.e., the process specified by unguarded
specification E can be obtained as an abstraction applied to a definable pro-
cess. It turns out that abstraction applied to definable processes is a powerful
concept. Abstraction applied to finitely definable processes already allows to
define all countable computable processes. Note that, when assuming that
τ is an allowed transition label, the definition of a (countable) computable
process as defined in Definition 5.7.1 carries over to the current setting. A pro-
cess in the current context is an equivalence class of transition systems under
rooted branching bisimilarity, but this results in the same set of (countable)
computable processes. Based on Theorem 5.7.3 (Countable computable tran-
sition systems), this implies that all countable computable processes can be
specified by means of BSPτ,rec(A)-terms. The following theorem states the
universality of theory TCPτ (A, γ), meaning that every countable computable
process can be defined via a finite expression over the signature of that theory
with finite guarded recursion. A proof of the theorem is omitted. The interested
reader is referred to (Baeten et al., 1987b).

Theorem 8.8.10 (Universality of TCPτ (A, γ)) Let p be a countable com-
putable process, and BSPτ,rec(A)-term t the term specifying p. Then, there is a
(finite) set of actions I ⊆ A and a finite guarded recursive specification E over
TCPτ (A, γ) with recursion variable X , such that (TCPτ,rec + RSP)(A, γ) �
τI (µX.E) = t .

Recall from the previous section that divergence is tightly coupled to the
notion of fairness. The Fair-Iteration Axiom given in the previous section

288 Abstraction

expresses the assumption that τ -prefix iteration behaves fairly and divergence
does not occur. It is therefore interesting to consider fairness in the current
context with general recursion. Consider the following example.

Example 8.8.11 (Tossing a coin) Suppose a statistician carries out an experi-
ment: he tosses a coin until head comes up. Assuming that the probability of
tossing heads is between 0 and 1 (so, not equal to 0 or to 1), this process can
be described by the following recursive equation.

S = toss.(τ.tail.S + τ.head.1).

In this specification, a non-deterministic choice is used to indicate that the
choice cannot be influenced by another process (for instance, by blocking one
alternative, or only offering a synchronization with one alternative). It is un-
clear at what point the outcome is determined: presumably after the moment
the coin is thrown into the air, but before the moment the outcome is observed.
The moment of choice itself cannot be observed, and this is why silent steps
are used. In Section 11.2, a theory with probabilities is discussed that allows
for a better description of examples in which probabilities play a role.

Assume now that the experiment is carried out in a closed room. Stand-
ing outside, an observer cannot observe anything occurring. However, if head
comes up, the statistician yells: ‘Head!’, which means that the outside observer
can ‘observe’ the head action, whereas actions from I = {toss, tail} are still
hidden from the observer. Thus, the observer observes the process τI (S). Be-
cause the coin is fair, after a number of tails (zero or more), head will come
up. So, following this intuition, one would expect the following equality:

τI (S) = τ.head.1,

saying that after some internal activity head is observed. Figure 8.11 shows
that the transition system associated with S where all actions from I are re-
placed by the silent step and the transition system associated with τ.head.1 are
indeed rooted branching bisimilar.

The question now arises whether the expected equality can also be derived
from the axioms of the equational theories considered so far. The Fair-Iteration
Axiom of the previous section only considers a τ -loop consisting of a single τ
action, and not a cycle consisting of more than one τ -step. This axiom cannot
be applied to prove the above equality. In fact, none of the axioms considered
so far allows the derivation of the equality. Still, it is preferable to be able to
derive this identity equationally.

The Fair-Iteration Axiom can be rephrased in a setting with recursion in the
form of the following conditional axiom (see also Section 5.3). The axiom is

8.8 Recursion and fair abstraction 289

τ

τ
τ

τ

head

↔rb

τ
τ

head

Fig. 8.11. Statistician.

given as a deduction rule, with x and y process terms, i ∈ A an action, and
I ⊆ A some set of actions.

x = i.x + y, i ∈ I

τ.τI (x) = τ.τI (y)
(KFARb

1).

Notice that in the equation x = i.x + y, the occurrence of recursion variable
x is guarded, so the process x is uniquely defined and it makes sense to write
τI (x).

In general, when there is a cycle of internal steps ik of length n, conditional
axioms, one for each n, can be formulated as follows.

x1 = i1.x2 + y1

x2 = i2.x3 + y2
...

xn−1 = in−1.xn + yn−1

xn = in .x1 + yn

i1, i2, · · · , in ∈ I ∪ {τ },with at least one ik �≡ τ

τ.τI (x1) = τ.(τI (y1)+ τI (y2)+ · · · + τI (yn))

(KFARb
n).

The ik actions in the equations for xk form a cycle; the yk specify the be-
haviors that leave the cycle. Figure 8.12 illustrates KFARb

4. Note that some
of the ik may be equal to τ , but not all of them, since that would make the
specification of the xk unguarded.

The given deduction rules are collectively called Koomen’s Fair Abstrac-
tion Rules, abbreviated as KFARb. The ‘b’ in this name indicates that this

290 Abstraction

τ

τ τ

ττ

τI (y1)

τI (y2)

τI (y3)

τI (y4)

τ

τI (y1)+· · ·
+τI (y4)

Fig. 8.12. An illustration of KFARb.

formulation holds in the context of (rooted) branching bisimilarity. The origi-
nal formulation of Koomen’s Fair Abstraction Rules only works in the context
of another semantic equivalence called weak bisimulation (see (Baeten et al.,
1987b)). KFARb says that, in abstracting from a set of internal actions, even-
tually (i.e., after performing a number of internal steps) an external step will
be chosen (unless no such steps exist).

Theorem 8.8.12 (Validity of KFARb) Principle KFARb is valid in both the
term models with and without recursion constants: P(TCPτ (A, γ))/↔rb |

KFARb and P(TCPτ,rec(A, γ))/↔rb |
 KFARb.

The proof of this result is straightforward and left to the reader. The theorem
states that the collective set of KFARb deduction rules is valid in the standard
term models. However, it is interesting to observe that the individual rules
are independent. For any n, there is a model for TCPτ,rec(A, γ) that validates
KFARb

n+1 but not KFARb
n . A proof of this fact is outside the scope of this text,

but can be found in (Baeten & Weijland, 1990).

Example 8.8.13 (Tossing a coin) Consider the following description of the
statistician tossing a coin until head comes up, that is equivalent to the one
used in Example 8.8.11:

8.8 Recursion and fair abstraction 291

S = toss.S′ + 0,
S′ = τ.S′′ + τ.head.1,
S′′ = tail.S + 0.

Recall that I = {toss, tail}. Then, using KFARb, the following derivation can
be obtained. Note that communication does not play a role, so γ can be chosen
arbitrarily.

(TCPτ,rec + KFARb)(A, γ) �
τ.τI (S′) = τ.(τI (τ.head.1)+ τI (0)+ τI (0))

= τ.τ.head.1
= τ.head.1.

It then follows easily that

(TCPτ,rec + KFARb)(A, γ) �
τI (S) = τI (toss.S′) = τ.τI (S′) = τ.τ.head.1 = τ.head.1,

which proves the desired result.

Example 8.8.14 (Throwing a die) The statistician of Example 8.8.11 now de-
cides to throw a die until six comes up. This is described by

S2 = throw.(τ.one.S2 + τ.two.S2 + τ.three.S2

+ τ.four.S2 + τ.five.S2 + τ.six.1).

Again, the experiment is carried out in a room, and the observer outside can
only hear the yell ‘Six!’. Abstracting from actions I = {throw, one, two, three,
four, five}, one would expect that the identity τI (S2) = τ.six.1 is derivable
from the equational theory. However, the proof principle KFARb cannot be
used directly to prove this expected result. (Try it.)

The reason that KFARb cannot be applied in the above example is that the
structure of the recursive equation does not lead to a simple cycle, as illustrated
in Figure 8.13. Using a trick, based on renaming of actions (see Section 6.7),
it is possible to apply KFARb nonetheless, see Exercise 8.8.5. This trick can
be used in some cases to extend the applicability of the proof principle, but
also fails for more complicated structures of transition systems (although even
then, with a more general theory of renaming, KFARb is sufficient (Baeten &
Weijland, 1990; Vaandrager, 1986)). Therefore, it is useful to have a version
of KFARb that is applicable to arbitrary so-called clusters of internal steps: the
Cluster Fair Abstraction Rule CFARb.

Definition 8.8.15 (Cluster) Let E be a recursive specification, and let I ⊆ A.
A subset C of variables from E is called a cluster of I in µX.E if variable
X of E is in C and if the following condition holds: for all Z ∈ C , there

292 Abstraction

throw

τ

six

τ

one

τ

four

τ

five

Fig. 8.13. The statistician throwing dice.

exist actions i1, · · · , im ∈ I ∪ {τ }, recursion variables X1, · · · , Xm ∈ C , and
recursion variables Y1, · · · , Yn �∈ C for some m ≥ 1 and n ≥ 0 such that the
equation for Z in E is of the form

Z =
m∑

k=1

ik .Xk +
n∑

j=1

Y j .

The variables Y j in this equation are called the exits of Z and denoted U (Z).
Furthermore, the exit set of the cluster C is U (C) =⋃

Z∈C U (Z). A cluster is
called conservative if every exit Y ∈ U (C) is accessible from every variable in
the cluster by doing a number of steps from I ∪ {τ } to a cluster-variable which
has exit Y .

Example 8.8.16 (Cluster) Reconsider process S2 of Example 8.8.14. This
process can be defined by the following guarded recursive specification E :

S2 = throw.X0 + 0
X0 = τ.X1 + τ.X2 + τ.X3 + τ.X4 + τ.X5 + X6

X1 = one.S2 + 0
X2 = two.S2 + 0
X3 = three.S2 + 0
X4 = four.S2 + 0

Exercises 293

X5 = five.S2 + 0
X6 = τ.six.1.

Then, C = {S2, X0, X1, X2, X3, X4, X5} is a conservative cluster of I =
{throw, one, two, three, four, five} with exit X6 in any of the processes µX.E
with X in C . Note that the 0 summands in the equations correspond to empty
summations. They are included to illustrate how the equations fit Definition
8.8.15.

Definition 8.8.17 (CFARb) Let E be a guarded recursive specification in
which the recursion variable X occurs and let I ⊆ A. Let C be a finite con-
servative cluster of I in µX.E and let U be the set of exits from the cluster C .
Then, the following identity is derivable.

τ.τI (X) = τ.

(∑
Y∈U

τI (Y)

)
(CFARb).

Note that CFARb is, like KFARb, a conditional axiom. It is valid for the
standard term model of theory TCPτ,rec(A, γ) (Baeten & Weijland, 1990;
Vaandrager, 1986).

Example 8.8.18 (Application of CFARb) Return to Example 8.8.16. The
given cluster C is finite. Consider the process specified by X0. By CFARb,
it follows that

(TCPτ,rec + CFARb)(A, γ) � τ.τI (X0) = τ.τI (X6) = τ.six.1.

This result easily leads to the result that

(TCPτ,rec + CFARb)(A, γ) � τI (S2) = τ.six.1,

which is the desired result, as explained in Example 8.8.14.

Exercises

8.8.1 Recall the specification and calculations for a two-place buffer from
Section 7.6. A two-place buffer with input channel i and output chan-
nel o is given by the following equations:

Buf 2 = 1 + ∑
d∈D

i?d.Bd and, for all d ∈ D,

Bd = o!d.Buf 2 + ∑
e∈D

i?e.o!d.Be.

Assuming that Buf 1pq is a one-place buffer with input port p and
output port q , i.e.,

Buf 1pq = 1 + ∑
d∈D

p?d.q!d.Buf 1pq ,

294 Abstraction

and assuming the standard communication function γS (see Definition
7.3.1), prove that

(TCPτ,rec + RSP)(A, γS) �
Buf 2 = τI (∂H (Buf 1il ‖ Buf 1lo)),

where H = {l!d, l?d | d ∈ D} and I = {l!?d | d ∈ D}.
8.8.2 Prove that the recursive specification {X = i.τ{ j}(Y), Y = j.τ{i}(X)}

has more than one solution in the standard term model of theory
TCPτ,rec(A, γ) based on rooted branching bisimilarity.

8.8.3 Try to define the notion of guardedness for recursive specifications
that, in contrast to what is allowed by Definition 8.8.3 (Guardedness
in TCPτ,rec(A, γ)), may contain abstraction operators. As usual, the
definition should guarantee that every guarded recursive specification
has a unique solution in the standard term model, based on rooted
branching bisimilarity in the current context. Consider only finite
specifications.

8.8.4 Show that the conclusion of the KFARb
n deduction rule can equiva-

lently be formulated as follows:

τI (x1) = τI (y1)+ τ.(τI (y1)+ · · · + τI (yn)).

8.8.5 Let I ⊆ A be some set of actions, and let t ∈ A be some action.
Define a renaming function (see Section 6.7) f by f (a) = t , if a ∈ I ,
and f (a) = a, otherwise. The renaming operator ρ f is denoted tI and
called the pre-abstraction operator. Prove for all closed TCPτ (A, γ)-
terms p that

TCPτ (A, γ) � τI (p) = τ{t}(tI (p)),

whenever t does not occur in p.
Assume this equation also holds for recursively defined processes and
reconsider Example 8.8.14 (Throwing a die). Use this equation to
derive τI (S2) = τ.six.1, using only the axioms of TCPτ,rec(A, γ) and
KFARb.

8.8.6 Show that KFARb can be derived from CFARb.
8.8.7 Suppose someone starts a random walk in the lower left-hand corner

of the 3 × 3 grid shown below. When arriving in the upper right-
hand corner, the person stops walking. The process P describing this
random walk has actions begin, north,west, south, east, end. Give
a recursive specification for P . Let I = {north,west, south, east}
and calculate τI (P) using CFARb. Does this result conform to your
intuition?

8.9 Verification of the ABP and queues revisited 295

begin

end
north

south

west east

8.8.8 Formulate a variant of the KFARb principle that is suitable for the
abstraction of unstable divergence, as treated in Exercise 8.7.4. Use
the resulting rule to establish the identity desired in Example 8.8.11
(Tossing a coin).

8.9 Verification of the ABP and queues revisited

Consider again the Alternating-Bit Protocol from Section 7.8. In that section,
it was already mentioned that the process ∂H (S ‖ K ‖ L ‖ R) after abstraction
of internal actions, satisfies the specification of the one-place buffer Buf 1io. In
this chapter, these claims are backed with a formal derivation of the following
theorem.

Theorem 8.9.1 (Alternating-Bit Protocol) The Alternating-Bit Protocol is a
correct communication protocol, i.e.,

((TCPτ + HA)rec + CFARb + RSP)(A, γS) �
τI (∂H (S ‖ K ‖ L ‖ R)) = Buf 1io,

where H = {p?x, p!x | x ∈ F ∪{0, 1,⊥}, p ∈ {sk, kr, rl, ls}} and I = {p!?x |
x ∈ F ∪ {0, 1,⊥}, p ∈ {sk, kr, rl, ls}} ∪ {t}.

Proof In Section 7.8, the following recursive specification has been
derived for the process ∂H (S‖K ‖L ‖R), using among others the Handshaking
Axiom HA. The specification uses the recursion variables X , X1d , X2d , Y ,
Y 1d , and Y 2d (for each d ∈ D), with process X equal to ∂H (S ‖ K ‖ L ‖ R):

X = 1 + ∑
d∈D

i?d.X1d ,

X1d = sk!?d0. (t.kr!?⊥.rl!?1.(t.ls!?⊥.X1d + t.ls!?1.X1d)

+ t.kr!?d0.o!d.X2d) ,

X2d = rl!?0. (t.ls!?⊥.sk!?d0.(t.kr!?⊥.X2d + t.kr!?d0.X2d)+ t.ls!?0.Y) ,
Y = 1 + ∑

d∈D
i?d.Y 1d ,

Y 1d = sk!?d1. (t.kr!?⊥.rl!?0.(t.ls!?⊥.Y 1d + t.ls!?0.Y 1d)

+ t.kr!?d1.o!d.Y 2d) ,

Y 2d = rl!?1. (t.ls!?⊥.sk!?d1.(t.kr!?⊥.Y 2d + t.kr!?d1.Y 2d)+ t.ls!?1.X) .

296 Abstraction

As the next step, for the process X1d , an alternative recursive specification is
given using additional recursion variables Z1, · · · , Z6. The reason for doing
so is that the above recursive specification does not fit well with the format
required for applying CFARb. The equivalence of the two recursive specifica-
tions can be shown in a straightforward way.

X1d = sk!?d0.Z1,

Z1 = t.Z2 + t.kr!?d0.o!d.X2d ,

Z2 = kr!?⊥.Z3,

Z3 = rl!?1.Z4,

Z4 = t.Z5 + t.Z6,

Z5 = ls!?1.X1d ,

Z6 = ls!?⊥.X1d .

Then, {X1d , Z1, Z2, Z3, Z4, Z5, Z6} is a finite conservative cluster of I , with
exit t.kr!?d0.o!d.X2d . (Note that, when strictly following Definition 8.8.15
(Cluster), the exit should have been defined using an additional recursion vari-
able.) From CFARb, it then follows that

(TCPτ,rec + CFARb)(A, γS) �
τI (X1d) = τ.τI (t.kr!?d0.o!d.X2d) = τ.o!d.τI (X2d).

So, the first cluster of internal steps, as visualized in Figure 7.9, has disap-
peared. The same procedure is followed for the cluster around X2d . The
alternative recursive specification is the following:

X2d = rl!?0.Z1,

Z1 = t.Z2 + t.ls!?0.Y,
Z2 = ls!?⊥.Z3,

Z3 = sk!?d0.Z4,

Z4 = t.Z5 + t.Z6,

Z5 = kr!?d0.X2d ,

Z6 = kr!?⊥.X2d .

Again, from the fact that {X2d , Z1, Z2, Z3, Z4, Z5, Z6} is a finite conservative
cluster of I , it follows that:

(TCPτ,rec + CFARb)(A, γS) �
τI (X2d) = τ.τI (t.ls!?d0.Y) = τ.τI (Y).

Combining these results leads to

8.9 Verification of the ABP and queues revisited 297

(TCPτ,rec + CFARb)(A, γS) �
τI (X) = 1 + ∑

d∈D
i?d.τI (X1d)

= 1 + ∑
d∈D

i?d.τ.o!d.τI (X2d)

= 1 + ∑
d∈D

i?d.o!d.τ.τI (Y)

= 1 + ∑
d∈D

i?d.o!d.τI (Y).

In the same way, one can derive

(TCPτ,rec + CFARb)(A, γS) �
τI (Y) = 1 + ∑

d∈D
i?d.o!d.τI (X).

Now, consider the guarded recursive specification:

W1 = 1 + ∑
d∈D

i?d.o!d.W2,

W2 = 1 + ∑
d∈D

i?d.o!d.W1.

It is straightforward that the equations for W1 and W2 can be derived from
(TCPτ,rec + CFARb)(A, γS) for both the following substitutions for W1 and
W2:

W1 	→ τI (X),
W2 	→ τI (Y),

and
W1 	→ Buf 1io,

W2 	→ Buf 1io.

Using RSP, it follows that

(TCPτ,rec + CFARb + RSP)(A, γS) � τI (X) = Buf 1io.

Observe that the use of CFARb in the verification of the Alternating-Bit
Protocol means in fact that the choice made by the channels is fair. Doing this,
the possibility that any of the channels is completely defective is excluded.

To finish this section, consider again the two specifications of the process
queue proven equal in Proposition 7.7.4 (Queues). Here, another specification
of the unbounded FIFO queue is given, that uses abstraction in an essential
way. The idea behind the following specification is that two queues chained
together in sequence behave exactly like one single queue, as long as the inter-
nal communications are hidden. The idea is illustrated in Figure 8.14. Here,
Q pq stands for the queue with input port p and output port q.

Define Hp = {p?d, p!d | d ∈ D} and Ip = {p!?d | d ∈ D} for p = i, l, o.
Consider the following recursive specification of Qio. This specification has
six variables Qpq, for each pair of distinct values from {i, l, o}, and Qpq uses
auxiliary port r , such that {p, q, r} = {i, l, o}.

298 Abstraction

i

Qio

Qil Qlo
l o

Fig. 8.14. Queue with abstraction.

Qio = 1 + ∑
d∈D

i?d.τIl (∂Hl (Q
il ‖ l!d.Qlo)),

Qil = 1 + ∑
d∈D

i?d.τIo(∂Ho(Q
io ‖ l!d.Qol)),

Qlo = 1 + ∑
d∈D

l?d.τIi (∂Hi (Q
li ‖ o!d.Qio)),

Qol = 1 + ∑
d∈D

o?d.τIi (∂Hi (Q
oi ‖ l!d.Qil)),

Qli = 1 + ∑
d∈D

l?d.τIo(∂Ho(Q
lo ‖ i!d.Qoi)),

Qoi = 1 + ∑
d∈D

o?d.τIl (∂Hl (Q
ol ‖ i!d.Qli)).

Note that this is not a guarded recursive specification. Nevertheless, it has a
unique solution in the term model that coincides with the solution of the spec-
ification Queue1 from Proposition 7.7.4 (Queues). This result is not proven
here. The reader interested in a proof is referred to (Van Glabbeek & Vaan-
drager, 1993). The proof in (Van Glabbeek & Vaandrager, 1993) uses auxil-
iary operators. It is unknown whether a direct proof using only the framework
developed in this chapter exists.

Exercises

8.9.1 Let the processes S, K , and R, and the set of blocked actions H
be defined as in Exercise 7.8.1. Derive a recursive equation for the
process τI (∂H (S‖K ‖R)), where I = {s!?x, r !?x | x ∈ D∪{ack}}∪{t}.
Is this communication protocol correct?

8.10 Bibliographical remarks

The silent step τ was introduced in CCS, see (Milner, 1980), to abstract from
unobservable behavior. Notation τ is used in that work to stand for the residual
trace of a communication. As a semantic equivalence, originally, the notion of
(rooted) weak bisimilarity was used both in CCS-style (Milner, 1989) and in
ACP-style process algebras (Bergstra & Klop, 1985).

The present treatment is based on the semantic equivalence of (rooted)

8.10 Bibliographical remarks 299

branching bisimilarity from (Van Glabbeek & Weijland, 1996; Van Glabbeek
& Weijland, 1989). Note that the definition presented here differs from the
original definition. The current definition, leading to the same equivalence,
was called semi-branching bisimilarity earlier, and makes the proof of Theo-
rem 8.2.5 (Equivalence) easier (Basten, 1996). A comparison between branch-
ing and weak bisimilarity can be found in (Van Glabbeek, 1994). Branching
bisimilarity was also used in (Baeten & Weijland, 1990).

The abstraction operator τI was introduced in (Bergstra & Klop, 1985). The
axiomatization of CSP’s external choice is new here. Earlier axiomatizations
can be found in (Brookes, 1983; D’Argenio, 1995; Van Glabbeek, 1997). For a
definition in the absence of the empty process, see (Baeten & Bravetti, 2006).

The material on divergence is based on (Bergstra et al., 1987), see also
(Baeten & Weijland, 1990). Other references covering divergence are (Aceto
& Hennessy, 1992; Walker, 1990). A reference to fair iteration is (Bergstra
et al., 2001). For bisimilarity with explicit divergence, see (Van Glabbeek,
1993), and further work in (Van Glabbeek et al., 2008). The notion of catas-
trophic divergence is due to (Brookes et al., 1984).

The material on recursion is based on (Baeten et al., 1987b). Koomen’s
Fair Abstraction Rule was first applied by C.J. Koomen in a formula manip-
ulation package based on CCS (see (Koomen, 1985)) and first formulated as
a conditional equation in (Bergstra & Klop, 1986a). The present formulation
of KFARb and CFARb for branching bisimilarity is from (Baeten & Weijland,
1990). The generalization of KFAR to CFAR is from (Vaandrager, 1986).
Other references concerning fairness are (Francez, 1986; Parrow, 1985).

The verification of the Alternating-Bit Protocol is from (Bergstra & Klop,
1986c). For further information on algebraic verification, see (Groote & Re-
niers, 2001). The specification of the queue is from (Bergstra & Klop, 1986b),
see also (Van Glabbeek & Vaandrager, 1993).

9

Timing

9.1 Introduction

The process theories introduced so far describe the main features of imperative
concurrent programming without the explicit mention of time. Implicitly, time
is present in the interpretation of many of the operators introduced before. In
the process a.x , the action a must be executed before the execution of process
x . The process theories introduced so far allow for the description of the or-
dering of actions relative to each other. This way of describing the execution
of actions through time is called qualitative time. Many systems though rely
on time in a more quantitative way.

Consider for example the following caller process. A caller takes a phone
off the hook. If she hears a certain tone, she dials some number. It does not
matter which one. If she does not hear the tone, she puts the phone back on the
hook. After dialing the number, the caller waits some time for the other side to
pick up the phone. After some conversation, the caller puts the phone back on
the hook. In case the call is not answered within some given time, the caller
gives up and also puts the phone back on the hook.

To be able to describe such systems in process theory in the same frame-
work as untimed systems, many process theories have been extended with a
quantitative notion of timing. In extending the untimed process theories with
timing a number of fundamental choices have to be made with respect to the
nature of the time domain, the way time appears syntactically in the equational
theory, and the way time is incorporated semantically.

Linear time versus branching time Different time domains that are
used in modeling real-life applications are the natural numbers and the non-
negative real numbers. These time domains have in common that any two
moments in time can be compared using some total ordering ≤ on that time

301

302 Timing

domain. Time domains for which such an ordering is given (and used in com-
paring moments in time) are called linear time domains. In principle, one
could also consider a time domain where only some of the moments in time
can be compared, e.g., to express the lack of a globally synchronized clock, or
to model relativistic space/time. These are the branching time domains. The
time domains that appear in the process algebra literature, but also in almost
any case study, are of the first type. In this chapter, therefore, a linear-time
process theory is developed.

Discrete versus dense time A difference between the naturals and
the non-negative reals is that in the latter between any two reals another one
can be found, whereas for the naturals this is not possible. The naturals form an
instance of a so-called discrete time domain; the non-negative reals are called a
dense time domain. In this chapter, a discrete-time process theory is developed.
A reason for selecting this type of time domain is that the relation with the
untimed theory is easier to establish. In a discrete time domain, time is divided
in so-called time slices: actions take place within a certain time slice, and
within a certain time slice, ordering of actions is only qualitative. In moving
to the next time slice, a special ‘tick’ event takes place, resembling the notion
of a clock tick.

As a remark aside, note that the use of an uncountable, dense time domain
such as the non-negative reals would provide means to specify uncountable
processes, which is not possible with any of the techniques worked out in detail
in this book; for more details, see the discussion and results in Section 5.7.

Absolute versus relative time Depending on the type of applica-
tions one wishes to describe using the timed process theory, either the passage
of time is described relatively to a global clock, or relative to the previous ac-
tion. The first way of describing time is called absolute time, the latter relative
time. Process theories where both paradigms are combined also exist in the
literature; these are called parametric-time process theories. In this chapter, a
relative-time process theory is developed.

Timed action execution In the untimed process theory, it has been
assumed that actions occur instantaneously. In developing a timed process the-
ory, one has to decide whether actions have a duration or are still considered to
occur instantaneously. In this chapter, the execution of an action in the timed
process theory is assumed to be instantaneous, or maybe it is better to say
that the observation of action execution is instantaneous. Thus, the interleav-
ing approach to parallel composition can still be followed, and simultaneous

9.1 Introduction 303

occurrence of actions is reserved for the description of communication. In a
discrete-time theory, action execution within a certain time slice can be dealt
with as in untimed process algebra, but in a dense-time theory, a closer look has
to be given to simultaneous execution of actions, as actions in unrelated parts
of a system might occur at the same moment of time. Then, the usual choice
in process algebra is to allow actions to execute consecutively at the same mo-
ment of time, rather than the alternative of using so-called multi-actions for
such an occurrence.

Time-stamped versus two-phase description Capturing the timing
aspects of a process can essentially be done in two ways. One way is to attach
to each action a moment in time, or a time slice. This way of describing time
is called time-stamping. The other way is to denote the passage of time itself
in between actions explicitly. This way of describing time is paraphrased as
the two-phase description of time. To stay as close as possible to the untimed
transition systems and the syntax of the process theories in the previous chap-
ters, in this chapter, a two-phase approach is used at the syntactical level of
description. On the other hand, semantically, a time-stamped treatment is fol-
lowed. The latter allows a better treatment of time determinism (to be treated
next), and allows easier extensions.

Time determinism versus time non-determinism In the previous
chapters, the execution of an action resulted in resolving a possible choice
between alternatives. Thus, in a term a.1 + b.1, it is possible to execute a and
thereby not do b, or to execute b and thereby not do a. As long as neither action
has occurred, the choice is not determined. Now it can be the case that a and
b are constrained in time; for example, it might happen that a can only occur
in the following time slice (after one ‘tick’ event has occurred), and that b can
only occur in the time slice thereafter (after two ticks). Then, when the first
tick occurs, no choice is made, as both actions are still possible. This is called
time determinism: it is not possible that time evolves in different ways. Thus,
the tick event is different from an action in this respect. Most timed process
algebras adopt the principle of time determinism, but there are exceptions.

Continuing the example, after the first tick, the action a can be executed,
thereby disabling b. In this book, it is also allowed that a second tick event oc-
curs, thereby moving to the following time slice, in which the choice for b can
be effectuated. The occurrence of the second tick disables the occurrence of a,
as the time slice in which it should occur has passed. Thus, the passage of time
can disable a choice. This is called weak time determinism. When the principle
of strong time determinism is adopted, on the other hand, then the second tick

304 Timing

cannot be executed, and in this example, necessarily a must occur, and action
execution has priority over passage of time. Adopting weak time determinism
as is done here adheres to the intuition of alternative composition. Moreover,
it makes it easier to describe timeouts.

Interpretation of untimed processes A crucial point in the devel-
opment of the timed process theory in this chapter is the relation between the
untimed process theories of the previous chapters and the timed process theory
of this chapter. The view adopted in this book is that the timed process the-
ory should be an equationally conservative ground-extension of the untimed
process theory. As a consequence, every untimed process term should be in-
terpreted in the timed setting in a consistent and meaningful way, especially,
taking care to respect the identities between untimed processes. Basically,
there are two ways of interpreting an untimed process. The first one is to as-
sume all action execution to take place in one and the same time slice. The
second one is to assume all action execution to take place arbitrarily dispersed
over time though still respecting the ordering of actions as described in the
untimed process term. This last interpretation fits better with an engineering
discipline where first an untimed model is given, and after verification of the
functional behavior, timing information is added to perform some timeliness
verification. Hence, in this chapter, a timed process theory is developed that is
a conservative ground-extension of the untimed theory under the interpretation
that untimed actions can take place at an arbitrary moment in time.

9.2 Timed transition systems

Definition 9.2.1 (Timed transition-system space) In order to extend a
transition-system space to take timing into account, both action execution and
termination are extended with an extra parameter, a natural number that indi-
cates after how many ticks the action or termination takes place. Moreover,
there is an extra predicate� that indicates how many ticks are possible from
a given state.

A timed transition-system space over a set of labels L is a set S of states,
equipped with one quaternary relation → and two binary relations ↓ and� :

(i) →⊆ S × N × L × S is the set of transitions;
(ii) ↓ ⊆ S × N is the set of terminating states;

(iii) � ⊆ S × N is the set of possible delays.

The notation s n
a→ t is used for (s, n, a, t) ∈ → , and means intuitively

that from state s, after n ticks, action a can be executed resulting in state t ;

9.2 Timed transition systems 305

next, s↓n is used for (s, n) ∈ ↓, and means that from state s, after n ticks,
termination is possible; finally, s �n , notation for (s, n) ∈ � , means that
n ticks are possible from state s. The following implication is assumed to
hold: whenever s n

a→ t or s↓n , then s �n . Note that a state may satisfy
other�n predicates in addition to those that are implied by the transitions and
termination options. These can be used to specify timing behavior independent
of actions or termination.

In the rest of this chapter, assume that (S, L ,→,↓,�) is a timed transition-
system space. Each state s ∈ S can be identified with a timed transition system
that consists of all states and transitions reachable from s. The notion of reach-
ability is defined by generalizing the transition relations.

Definition 9.2.2 (Reachability) The reachability relation →∗ ⊆ S × S is
defined inductively as follows:

(i) s →∗ s for each s ∈ S;
(ii) for all s, t, u ∈ S, n ∈ N, and a ∈ L , if s →∗ t and t n

a→ u, then
s →∗ u.

A state t ∈ S is said to be reachable from state s ∈ S if and only if s →∗ t .

Definition 9.2.3 (Timed transition system) For each state s ∈ S, the timed
transition system associated with s consists of all states reachable from s,
and has the transitions and terminating states induced by the timed transition-
system space. State s is called the initial state or root of the timed transition-
system associated with s. Usually, ‘timed transition system s’ is used to refer
to the timed transition system associated with s.

The graphical representation of timed transition systems is similar to the
graphical representation of transition systems in the previous chapters. The
arrows and terminations have a natural number as an additional label. The�
predicates are omitted if these are implied by other arrows or terminations, and
are denoted with dotted arrows annotated with natural numbers otherwise.

Example 9.2.4 (Timed transition system of the caller process) The timed
transition system in Figure 9.1 represents the caller process described in the
introduction to this chapter. From state 0, there is a transition for every n ∈ N;
state 4 has a transition for every m ∈ N.

Example 9.2.5 (Timed transition system) Figure 9.2 shows another exam-
ple of a timed transition system. In the initial state, it has among others an

306 Timing

0

1 2 3

4

offhook

n

on
ho

ok

1

enabled

0

dial

0

co
nn

ec
te

d

0
co

nn
ec

te
d

1
co

nn
ec

te
d

2

onhook
3

onhook

m

Fig. 9.1. An example of a timed transition system: the caller process.

option to allow the passage of time for two time units, after which time cannot
progress any further, the process cannot terminate successfully, and it can no
longer continue anymore with any action (i.e., it deadlocks).

a

1

b

1 1
2

Fig. 9.2. Another example of a timed transition system.

Definition 9.2.6 (Timed bisimilarity) A binary relation R on the set of states
S of a timed transition-system space is a timed bisimulation relation if and only
if the following transfer conditions hold:

(i) for all states s, t, s′ ∈ S, whenever (s, t) ∈ R and s n
a→ s′ for some

a ∈ L and n ∈ N, then there is a state t ′ such that t n
a→ t ′ and

(s′, t ′) ∈ R;
(ii) vice versa, for all states s, t, t ′ ∈ S, whenever (s, t) ∈ R and t n

a→ t ′
for some a ∈ L and n ∈ N, then there is a state s′ such that s n

a→ s′
and (s′, t ′) ∈ R;

(iii) whenever (s, t) ∈ R and s↓n for some n ∈ N, then t↓n ;
(iv) vice versa, whenever (s, t) ∈ R and t↓n for some n ∈ N, then s↓n ;
(v) whenever (s, t) ∈ R and s �n for some n ∈ N, then t �n ;

(vi) vice versa, whenever (s, t) ∈ R and t �n for some n ∈ N, then s �n .

Two transition systems s, t ∈ S are timed-bisimulation equivalent or timed
bisimilar, notation s ↔t t , if and only if there is a timed bisimulation relation
R on S with (s, t) ∈ R.

Theorem 9.2.7 (Equivalence) Timed bisimilarity is an equivalence.

9.3 Discrete time, relative time 307

Proof The proof that bisimilarity is an equivalence can be followed
exactly, in order to show that timed bisimilarity is an equivalence.

9.3 Discrete time, relative time

This section presents theory BSPdrt(A), which is a variant of BSP(A) with dis-
crete, relative time. It is formally not an extension of BSP(A) as defined in
Definition 2.2.14, because the signature of BSP(A) is not included in the sig-
nature of BSPdrt(A). Although earlier it was argued that the ‘any-time-slice’
interpretation of the untimed atomic actions is more interesting, this section
first presents an elementary theory with actions that take place in the current
time slice. The signature of theory BSPdrt(A) contains, besides the alternative-
composition operator +, a current-time-slice action-prefix operator a. , for
any a ∈ A, and the constants current-time-slice time stop 0 and current-time-
slice termination 1. The process a.x executes the action a in the current time
slice and continues as the process x . The constant 0 expresses that time can-
not progress beyond the current time slice, and no termination can take place.
The current-time-slice time-stop constant is the identity element for alterna-
tive composition. The constant 1 expresses that time cannot progress beyond
the current time slice, and that termination takes place. The current-time-slice
termination constant is the identity element for sequential composition (to be
added in Section 9.7). As all the atomic actions take place in the current time
slice, the signature of the process theory contains the time-prefix operator σ.
to describe the passage to the next time slice explicitly. The process σ.x passes
to the next time slice and then executes x . In order to be able to distinguish
between action execution and passage of time, it is assumed that σ �∈ A.

As an example, the process term σ.(a.1 + σ.b.1) specifies the process that
can execute an a action in the second time slice followed by termination in
that second time slice, or a b action followed by termination in the third time
slice. This process term conforms to the example used in the introduction of
this chapter to illustrate time determinism.

The axioms of BSPdrt(A) are given in Table 9.1. They capture the properties
of the operators mentioned before. Axiom DRTF, for Discrete Relative Time
Factorization, captures the intuition that the passage of time by itself does
not determine a choice, i.e., the already mentioned (weak) time determinism.
Mathematically, DRTF can be paraphrased as the distribution of time prefix
over alternative composition.

Example 9.3.1 (Derivation) The process terms (σ.a.1 + σ.b.1) + σ.0 and
σ.(a.1 + b.1) are equal in BSPdrt(A), as can be seen as follows:

308 Timing

BSPdrt(A)
constant: 0, 1; unary: (a.)a∈A, σ. ; binary: + ;
x, y, z;

x + y = y + x A1
(x + y)+ z = x + (y + z) A2
x + x = x A3
x + 0 = x A6DR
σ.(x + y) = σ.x + σ.y DRTF

Table 9.1. The process theory BSPdrt(A) (with a ∈ A).

BSPdrt(A)� (σ.a.1 + σ.b.1)+ σ.0 = σ.(a.1 + b.1)+ σ.0
= σ.((a.1 + b.1)+ 0) = σ.(a.1 + b.1).

The process theory BSPdrt(A) is not an equational conservative ground-
extension of the process theory BSP(A), since the signature of BSP(A) is not
included in the signature of BSPdrt(A). Nevertheless, there is a strong rela-
tion between these process theories. If one interprets the operators 0, 1, and
a. of BSP(A) as the current-time-slice variants 0, 1 and a. of BSPdrt(A), re-
spectively, then it turns out that all equalities of BSP(A) are also equalities of
BSPdrt(A). This kind of relation between two process theories is also called an
embedding. The intuition of the embedding described above is the previously
mentioned embedding of untimed process theory into timed process theory
where all activities take place in the first time slice.

Further on, there is a need to consider closed BSPdrt(A)-terms in a particular
form, called basic terms, in line with the notion of basic terms as already used
in Chapter 2. In the following definition, analogous to Notation 4.6.6 (n-fold
action prefix), notation σ n x is used for the n-fold time prefix.

Definition 9.3.2 (Basic BSPdrt(A)-terms) The set of basic terms over the sig-
nature of BSPdrt(A) is defined inductively as follows:

(i) terms σ n0 and σ n1 are basic terms, for each n ∈ N;
(ii) for each basic term p, action a ∈ A, and n ∈ N, σ na.p is a basic

term;
(iii) if p, q are basic terms, then p + q is a basic term.

The following is a kind of elimination theorem: a time prefix occurring
before a choice is eliminated.

Proposition 9.3.3 (Reduction to basic terms) Let p be a closed BSPdrt(A)-
term. Then there is a basic BSPdrt(A)-term q such that BSPdrt(A) � p = q.

9.4 The term model 309

Proof Straightforward, by using Axiom DRTF as a rewrite rule from
left to right.

Exercises

9.3.1 Complete the proof of Proposition 9.3.3 (Reduction to basic terms).

9.4 The term model

In this section, a model is constructed for BSPdrt(A), by associating a timed
transition system with each closed process term and then considering timed-
bisimilarity equivalence classes of these timed transition systems.

Definition 9.4.1 (Term algebra) Algebra P(BSPdrt(A)) = (C(BSPdrt(A)),
+, (a.)a∈A, σ. , 0, 1) is the term algebra for theory BSPdrt(A).

A timed transition system is associated with each process term by means of
the term deduction system presented in Table 9.2.

TDS(BSPdrt(A))
constant: 0, 1; unary: (a.)a∈A, σ. ; binary: + ;
x, x ′, y, y′;

x �0 1↓0 a.x 0
a→ x

x �n

σ.x �n+1

x↓n
σ.x↓n+1

x n
a→ x ′

σ.x n+1
a→ x ′

x �n

x + y �n

x↓n
(x + y)↓n

y↓n
(x + y)↓n

y �n

x + y �n

x n
a→ x ′

x + y n
a→ x ′

y n
a→ y′

x + y n
a→ y′

Table 9.2. Term deduction system for BSPdrt(A) (with a ∈ A, n ∈ N).

Example 9.4.2 (Timed transition system of a BSPdrt(A)-term) The timed
transition system of Figure 9.2 is the transition system associated to the process
term σ.(a.σ.b.σ.1 + σ.0).

310 Timing

The first axiom of the term deduction system of Table 9.2 says that every
process in the present theory satisfies the predicate �0, i.e., every process
allows zero time ticks to occur. In some theories with timing, processes occur
that denote an inconsistency, e.g., a timing inconsistency in an absolute-time
theory. Such inconsistencies can be operationally characterized by the absence
of the predicate�0.

As already mentioned, the predicates�n can in general be used to specify
timing behavior independent of actions and termination. In the present con-
text, they are needed to distinguish processes that only differ in their timing
behavior. To give an example, the processes specified by terms 0 and σ.0 are
only distinguished by the predicate�1.

With the given term deduction system, the construction of a term model goes
along the lines as before.

Theorem 9.4.3 (Congruence) Timed bisimilarity is a congruence on the al-
gebra P(BSPdrt(A)).

Proof The results presented in Chapter 3 do not apply directly to
prove the desired congruence result, because the notion of transition systems
used in the current chapter is different. However, (Baeten & Verhoef, 1995)
shows that the meta-theory of Chapter 3 generalizes to transition-system spaces
with multiple types of transitions and multiple predicates on states. The timed
transition systems of the present setting fit into the framework of (Baeten &
Verhoef, 1995), and the congruence result follows from the path format, as
defined in (Baeten & Verhoef, 1995) for the general setting, of the deduction
rules of Table 9.2.

Definition 9.4.4 (Term model of BSPdrt(A)) The term model of process the-
ory BSPdrt(A) is the quotient algebra P(BSPdrt(A))/↔t .

Theorem 9.4.5 (Soundness) Theory BSPdrt(A) is a sound axiomatization of
the algebra P(BSPdrt(A))/↔t , i.e., P(BSPdrt(A))/↔t |
 BSPdrt(A).

Proof See Exercise 9.4.1.

Next, it is shown that BSPdrt(A) is a ground-complete axiomatization of
the term model P(BSPdrt(A))/↔t . Thereto, the following two lemmas are
introduced. Note the correspondence with the Lemmas 4.4.10 (Towards com-
pleteness) and 4.4.11 used in obtaining the ground-completeness of BSP(A)
(Theorem 4.4.12).

9.4 The term model 311

Lemma 9.4.6 (Towards completeness) For arbitrary closed BSPdrt(A)-terms
p and p′ and arbitrary a ∈ A, n ∈ N:

(i) if p �n , then BSPdrt(A) � p = σ n0 + p;
(ii) if p↓n , then BSPdrt(A) � p = σ n1 + p;

(iii) if p n
a→ p′, then BSPdrt(A) � p = σ na.p′ + p.

Proof These three properties are proven by induction on n. In the
inductive step, induction on the structure of closed BSPdrt(A)-term p is used.
Details are left as an exercise to the reader (Exercise 9.4.2).

Lemma 9.4.7 Let p, q , and r be closed BSPdrt(A)-terms. If (p+q)+ r ↔t r ,
then p + r ↔t r and q + r ↔t r .

Proof See Exercise 9.4.3.

Theorem 9.4.8 (Ground-completeness) Equational theory BSPdrt(A) is a
ground-complete axiomatization of the term model P(BSPdrt(A))/↔t , i.e., for
any closed BSPdrt(A)-terms p and q , P(BSPdrt(A))/↔t |
 p = q implies
BSPdrt(A) � p = q.

Proof Due to Proposition 9.3.3 (Reduction to basic terms) and the
soundness of the axioms of BSPdrt(A) (Theorem 9.4.5), it suffices to prove
this theorem for basic BSPdrt(A)-terms.
Let p and q be basic terms. Suppose that P(BSPdrt(A))/↔t |
 p = q, i.e.,
p ↔t q. It must be shown that BSPdrt(A) � p = q. Since bisimilarity is
a congruence on P(BSPdrt(A)) (Theorem 9.4.3) and BSPdrt(A) is sound for
P(BSPdrt(A))/↔t (Theorem 9.4.5), in line with the reasoning in the proof of
Theorem 4.3.10 (Ground-completeness of MPT(A)), it suffices to prove that,
for all basic BSPdrt(A)-terms p and q ,

p + q ↔t q implies BSPdrt(A) � p + q = q (9.4.1)

and

p ↔t p + q implies BSPdrt(A) � p = p + q. (9.4.2)

Property (9.4.1) is proven by induction on the total number of symbols in
terms p and q. The proof of property (9.4.2) is similar and therefore omitted.
Assume p + q ↔t q for basic terms p and q . The base case of the induction
corresponds to the case that the total number of symbols in p and q equals
two, namely when p and q are both equal to 0 or 1. In the case that p ≡ 0,
using Axiom A6DR, it trivially follows that BSPdrt(A) � p + q = q. In

312 Timing

the case that p ≡ 1, p↓0 and thus (p + q)↓0. As p + q ↔t q, also q↓0.
By Lemma 9.4.6 (Towards completeness), BSPdrt(A) � q = 1 + q. Hence,
BSPdrt(A) � p + q = 1+ q = q . The proof of the inductive step consists of a
case analysis based on the structure of term p.

(i) Assume p ≡ σ n0 for some n ∈ N. By Table 9.2, it follows that
p �n , and so also p + q �n . As p + q ↔t q, also q �n . By
Lemma 9.4.6 (Towards completeness), BSPdrt(A) � q = σ n0 + q.
Then, BSPdrt(A) � p + q = σ n0 + q = q.

(ii) Assume p ≡ σ n1 for some n ∈ N. It follows from Table 9.2 that
p↓n , and therefore also (p + q)↓n . As p + q ↔t q, also q↓n . By
Lemma 9.4.6 (Towards completeness), BSPdrt(A) � q = σ n1 + q.
Thus, BSPdrt(A) � p + q = σ n1 + q = q.

(iii) Assume p ≡ σ na.p′ for some a ∈ A, n ∈ N and basic term p′.
Then, p n

a→ p′ and thus p + q n
a→ p′. As p + q ↔t q, also

q n
a→ q ′ for some basic term q ′ such that p′ ↔t q ′. By Lemma 9.4.6

(Towards completeness), BSPdrt(A) � q = σ na.q ′ + q. From p′ ↔t

q ′, following the reasoning in the first part of the proof of Theorem
4.3.10 (Ground-completeness of MPT(A)), it follows that p′+q ′↔tq ′
and q ′ + p′↔t p′ and, hence, by induction, BSPdrt(A) � p′ +q ′ = q ′
and BSPdrt(A) � q ′+ p′ = p′. Combining these last two results gives
BSPdrt(A) � p′ = q ′ + p′ = p′ + q ′ = q ′. Finally, BSPdrt(A) �
p + q = σ na.p′ + q = σ na.q ′ + q = q.

(iv) Assume p ≡ p1+p2 for basic terms p1 and p2. As (p1+p2)+q↔tq,
by Lemma 9.4.7, p1 + q ↔t q and p2 + q ↔t q. Thus, by induction,
BSPdrt(A) � p1 + q = q and BSPdrt(A) � p2 + q = q. Combining
these results gives BSPdrt(A) � p+q = (p1+ p2)+q = p1+ (p2+
q) = p1 + q = q , which completes the proof.

Exercises

9.4.1 Prove Theorem 9.4.5 (Soundness of BSPdrt(A)).
9.4.2 Prove Lemma 9.4.6 (Towards completeness).
9.4.3 Prove Lemma 9.4.7.

9.5 Time iteration and delayable actions

In this section, the timed process algebra BSPdrt(A) from the previous two
sections is extended with the constants any-time-slice deadlock 0 and any-time-
slice termination 1, the any-time-slice action-prefix operators a. (for a ∈ A)

9.5 Time iteration and delayable actions 313

and the auxiliary time-iteration prefix operator σ ∗ to obtain the process theory
BSPdrt∗(A). The constants 0 and 1 are delayable versions of 0 and 1 which
can take effect in any time slice (present or future). Similarly, a.p denotes the
execution of a in an arbitrary time slice followed by execution of p, and σ ∗ p
denotes that the execution of p can be started in any time slice. Note that the
intuitions of 0, 1 and a. are in line with the ‘any-time-slice’ interpretation of
the untimed constants and action-prefix operators.

BSPdrt∗(A)
BSPdrt(A)

constant: 0, 1; unary: (a.)a∈A, σ
∗ ;

x, y;
0 = σ∗0 DD
1 = σ∗1 DT
a.x = σ∗a.x DA

σ∗x = x + σ.σ∗x ATS
σ∗x + σ∗y = σ∗(x + y) DRTIF
σ∗σ.x = σ.σ∗x DRTA
σ∗σ∗x = σ∗x TITI

Table 9.3. The process theory BSPdrt∗(A) (with a ∈ A).

The axioms of theory BSPdrt∗(A) are given in Table 9.3. Axioms DD (De-
layable Deadlock), DT (Delayable Termination) and DA (Delayable Actions)
define the any-time-slice constants and action-prefix operators in terms of their
current-time-slice counterparts and time iteration. Axiom DA illustrates that
the any-time-slice action prefix can be interpreted as a delayable action. Ax-
iom ATS (Any Time Slice) recursively defines time iteration. Axiom DRTIF
(Discrete Relative Time Iteration Factorization) expresses that time factoriza-
tion, i.e., the equational equivalent of (weak) time determinism, also applies
to time iteration. Axiom DRTA (Discrete Relative Time Axiom) explains that
also for time iteration time is measured relative to the previous action execu-
tion. Axiom TITI (Time Iteration Time Iteration) says that two consecutive
time iterations are equivalent to only one time iteration. As a consequence,
any number of consecutive time iterations is considered to be equivalent to a
single one.

It is not the case that the newly introduced operators can all be eliminated.
Nevertheless, the newly introduced syntax has some redundancy in the sense
that either the time-iteration operator or the other newly introduced opera-
tors can be eliminated from closed terms. Definition 9.3.2 (Basic BSPdrt(A)-
terms) is extended in order to incorporate the delayable constants and actions.
Note that it uses the n-fold time prefix notation introduced just before Defini-
tion 9.3.2.

314 Timing

Definition 9.5.1 (Basic BSPdrt∗(A)-terms) The set of basic terms over the
signature of theory BSPdrt∗(A) is defined inductively as follows:

(i) terms σ n0, σ n0, σ n1, and σ n1 are basic terms, for each n ∈ N;
(ii) for each basic term p, action a ∈ A, and n ∈ N, σ na.p and σ na.p

are basic terms;
(iii) if p, q are basic terms, then p + q is a basic term.

Again, a closed term can be reduced to a basic term, thereby eliminating the
time-iteration operator.

Proposition 9.5.2 (Reduction to basic terms) Let p be a closed BSPdrt∗(A)-
term. There is a basic BSPdrt∗(A)-term q such that BSPdrt∗(A) � p = q.

Proof See Exercise 9.5.2.

Theorem 9.5.3 (Conservative ground-extension) Theory BSPdrt∗(A) is a
conservative ground-extension of theory BSPdrt(A).

Proof The theorem follows from meta-results in the style of the
results of Chapter 3, in particular Theorem 3.2.21 (Conservativity), for the gen-
eralized operational framework with transition systems with multiple types of
transitions and/or state predicates as treated in (Baeten & Verhoef, 1995). The
proof is based on the term model given below (although the result is model
independent).

A model is constructed for theory BSPdrt∗(A) by associating a timed tran-
sition system with each closed term and then considering timed-bisimilarity
equivalence classes of these timed transition systems. The term algebra for the-
ory BSPdrt∗(A) is the algebra P(BSPdrt∗(A)) = (C(BSPdrt∗(A)),+, (a.)a∈A,

(a.)a∈A, σ. , 0, 0, 1, 1). The term deduction system of Table 9.4 gives a timed
transition system for each term in this algebra.

Proposition 9.5.4 (Congruence) Timed bisimilarity is a congruence on alge-
bra P(BSPdrt∗(A)).

Proof As before, it follows from the format of the deduction rules;
see also the proof of Theorem 9.4.3.

The term model of BSPdrt∗(A) is the quotient algebra P(BSPdrt∗(A))/↔t .

Theorem 9.5.5 (Soundness) Theory BSPdrt∗(A) is a sound axiomatization of
the algebra P(BSPdrt∗(A))/↔t , i.e., P(BSPdrt∗(A))/↔t |
 BSPdrt∗(A).

9.5 Time iteration and delayable actions 315

TDS(BSPdrt∗(A))
TDS(BSPdrt(A))

constant: 0, 1; unary: (a.)a∈A, σ
∗ ;

x, x ′;
1↓n 1�n 0�n

a.x n
a→ x a.x �n

σ∗x �n
x↓n

σ∗x↓n+m

x n
a→ x ′

σ∗x n+m
a→ x ′

Table 9.4. Term deduction system for BSPdrt∗(A) (a ∈ A, n,m ∈ N).

Proof See Exercise 9.5.3.

Also ground-completeness can be shown as before. The following lemma is
in line with the lemmas for earlier ground-completeness proofs.

Lemma 9.5.6 (Towards completeness) For any closed BSPdrt∗(A)-terms p
and p′ and arbitrary a ∈ A, n ∈ N:

(i) if p �n , then BSPdrt∗(A) � p = σ n0 + p;
(ii) if for all m ≥ n, p �m , then BSPdrt∗(A) � p = σ n0 + p;

(iii) if p↓n , then BSPdrt∗(A) � p = σ n1 + p;
(iv) if for all m ≥ n, p↓m , then BSPdrt∗(A) � p = σ n1 + p;

(v) if p n
a→ p′, then BSPdrt∗(A) � p = σ na.p′ + p;

(vi) if for all m ≥ n, p m
a→ p′, then BSPdrt∗(A) � p = σ na.p′ + p.

Proof As in the proof of Lemma 9.4.6, these properties are proven
via induction on n, using structural induction in the inductive step. Based on
Proposition 9.5.2 (Reduction to basic terms) and Theorem 9.5.5 (Soundness of
BSPdrt∗(A)), it is sufficient to prove the properties for basic terms. The proofs
need the following fact: if p is a basic BSPdrt∗(A)-term and p n

a→ p′ for
some a ∈ A, n ∈ N, then also p′ is a basic BSPdrt∗(A)-term. This can easily
be established by induction on the depth of the derivation of the transition.

Lemma 9.5.7 Let p, q , and r be closed BSPdrt∗(A)-terms. If (p+q)+r↔t r ,
then p + r ↔t r and q + r ↔t r .

Proof See Exercise 9.5.4.

316 Timing

Theorem 9.5.8 (Ground-completeness) Theory BSPdrt∗(A) is a ground-
complete axiomatization of the term model P(BSPdrt∗(A))/↔t , i.e., for any
closed BSPdrt∗(A)-terms p and q , P(BSPdrt∗(A))/↔t |
 p = q implies
BSPdrt∗(A) � p = q .

Proof Due to Proposition 9.5.2 (Reduction to basic terms) and the
soundness of the axioms of BSPdrt∗(A) (Theorem 9.5.5), it suffices to prove
this theorem for basic terms. Let p and q be basic BSPdrt∗(A)-terms. Sup-
pose that P(BSPdrt∗(A))/↔t |
 p = q , i.e., p ↔t q. It must be shown that
BSPdrt∗(A) � p = q . Since bisimilarity is a congruence on P(BSPdrt∗(A))
(Proposition 9.5.4) and BSPdrt∗(A) is sound for P(BSPdrt∗(A))/↔t (Theorem
9.5.5), it suffices to prove that, for all basic terms p and q,

p + q ↔t q implies BSPdrt∗(A) � p + q = q (9.5.1)

and

p ↔t p + q implies BSPdrt∗(A) � p = p + q. (9.5.2)

Property (9.5.1) is proven by induction on the total number of symbols in
basic terms p and q . The proof of property (9.5.2) is similar and therefore
omitted. Assume p + q ↔t q for some basic terms p and q. The base case
of the induction corresponds to the case that the total number of symbols in p
and q equals two, namely when p and q are both equal to 0, 0, 1, or 1.

(i) Assume p ≡ 0. Using Axioms A6DR and A1, it trivially follows that
BSPdrt∗(A) � p + q = 0 + q = q + 0 = q.

(ii) Assume p ≡ 0. By Table 9.4, p �n for all n ∈ N. By Table 9.2 also
p + q �n for all n ∈ N. Therefore, as p + q ↔t q, also q �n for all
n ∈ N. Following Lemma 9.5.6 (ii), BSPdrt∗(A) � q = 0 + q. Then,
BSPdrt∗(A) � p + q = 0 + q = q .

(iii) Assume p ≡ 1. Then, p↓0 and thus (p + q)↓0. As p + q ↔t q,
also q↓0. By Lemma 9.5.6 (iii), BSPdrt∗(A) � q = 1 + q. Hence,
BSPdrt∗(A) � p + q = 1 + q = q .

(iv) Assume p ≡ 1. By Table 9.4, p↓n for all n ∈ N. By Table 9.2 also
(p + q)↓n for all n ∈ N. Therefore, as p + q ↔t q, also q↓n for all
n ∈ N. Following Lemma 9.5.6 (iv), BSPdrt∗(A) � q = 1+ q. Then,
BSPdrt∗(A) � p + q = 1 + q = q .

The proof of the inductive step consists of a case analysis based on the structure
of term p. Using Lemmas 9.5.6 and 9.5.7, this proceeds as in the proof of
Theorem 9.4.8 (Ground-completeness BSPdrt(A)).

9.6 The relation between BSP(A) and BSPdrt∗(A) 317

Exercises

9.5.1 Prove the following for all BSPdrt∗(A)-terms x and y, and all a ∈ A:

(a) BSPdrt∗(A) � a.x + 0 = a.x ;
(b) BSPdrt∗(A) � σ.x + σ ∗y = y + σ.(x + σ ∗y);
(c) BSPdrt∗(A) � a.x + a.x = a.x ;
(d) BSPdrt∗(A) � σ.x + σ ∗x = σ ∗x .

9.5.2 Prove Proposition 9.5.2 (Reduction to basic terms).
9.5.3 Prove Theorem 9.5.5 (Soundness).
9.5.4 Prove Lemmas 9.5.6 (Towards completeness) and 9.5.7.

9.6 The relation between BSP(A) and BSPdrt∗(A)
This section discusses the relation between the untimed process theory BSP(A)
and the timed theory BSPdrt∗(A) in some detail. Usually, when extending a
theory, one adds constants and/or operators to the signature, extends the set
of axioms, and extends the original deduction system in such a way that with
respect to the old signature nothing changes.

Comparing the signatures of BSP(A) and BSPdrt∗(A), it can be observed
that indeed the latter is an extension of the former. The extension consists
of the constants 0 and 1, current-time-slice action-prefix operators a. , the
time-prefix operator σ. , and the time-iteration prefix operator σ ∗ . How-
ever, theory BSPdrt∗(A) is not an extension of BSP(A) as defined in Definition
2.2.14, because Axiom A6 of BSP(A) is not included in BSPdrt∗(A). It can
be shown though that theory BSPdrt∗(A) is a ground-extension, as defined in
Definition 2.2.18, see Exercise 9.6.1. Furthermore, as explained below, it turns
out that BSPdrt∗(A) is a conservative ground-extension of BSP(A).

In the operational framework, instead of the transitions and terminations
present in the untimed setting, the timed setting has natural numbers indicating
the time slice as extra parameters, and the possible delays as extra predicates.
Nevertheless, any two closed BSP(A)-terms that are timed bisimilar in the
timed setting are also bisimilar in the untimed setting, and vice versa.

Proposition 9.6.1 (Timed vs. strong bisimilarity) For closed BSP(A)-terms
p and q, p ↔t q if and only if p↔q .

Proof Suppose that p ↔t q . Assume that this timed bisimilarity is
witnessed by the relation R on closed BSPdrt∗(A)-terms, i.e., R is a timed
bisimulation and (p, q) ∈ R. Notice that if p n

a→ p′, then p′ is a subterm of
p, so if p is a BSP(A)-term, then also p′ is a BSP(A)-term. If follows that the

318 Timing

transition system of a BSP(A)-term in the timed model has the same states as
in the untimed model. Moreover, p

a→ p′ holds in the untimed model exactly
when p n

a→ p′ holds in the timed model (for all n ∈ N), and, similarly, p↓
holds in the untimed model exactly when p↓n holds in the timed model (for all
n ∈ N). Thus, the relation R is also a bisimulation relation on the term algebra
of BSP(A), showing that p↔q . The other implication follows from a similar
reasoning.

Using among others this proposition, it can be shown that BSPdrt∗(A) is a
conservative ground-extension of BSP(A).

Theorem 9.6.2 (Conservative ground-extension) Theory BSPdrt∗(A) is a
conservative ground-extension of theory BSP(A).

Proof According to Definitions 2.2.18 (Ground-extension) and 2.2.19
(Conservative ground-extension), it needs to be shown that, for all closed
BSP(A)-terms p and q , BSP(A) � p = q if and only if BSPdrt∗(A) � p =
q. The implication from left to right, showing that BSPdrt∗(A) is a ground-
extension of BSP(A), follows from the observation that all axioms of BSP(A)
with the exception of Axiom A6 are also axioms of BSPdrt∗(A) and the first
part of Exercise 9.6.1. The other implication, showing conservativity, can be
shown as follows. If BSPdrt∗(A) � p = q for closed BSP(A)-terms p and q,
it follows from the soundness of BSPdrt∗(A) that p ↔t q. Proposition 9.6.1
(Timed vs. strong bisimilarity) shows that then also p↔q. Since BSP(A) is
ground-complete, Theorem 4.4.12, it follows that BSP(A)� p = q, completing
the proof. As an alternative, it is possible to prove the result via meta-results
in the style of Chapter 3. The interested reader is referred to (Baeten et al.,
2005).

The process algebra ACP (Bergstra & Klop, 1984a; Baeten & Weijland,
1990) has action constants instead of action prefixing. At this point, a draw-
back of the ACP approach can be appreciated. For, an action constant a in
ACP satisfies the law a · 1 = a, and it has the operational rule a

a→ 1. This
means, interpreted in a timed theory, that after a number of time steps, a is ex-
ecuted, necessarily followed by the option to execute any number of time steps
followed by termination. This means that processes like a.1 or a.0 cannot be
expressed in a conservative timed extension of ACP. If, as is common in ACP
process algebra, the process 1 does not exist, this problem nevertheless resur-
faces when silent actions are added, for then the law a · τ = a holds, leading to
a

a→ τ , and again in a timed setting necessarily any number of time steps are

9.7 The process theory TCPdrt∗(A, γ) 319

allowed to be executed after execution of a. For a more elaborate discussion
on this issue, the interested reader is referred to (Baeten & Reniers, 2007).

Exercises

9.6.1 Prove that BSPdrt∗(A) � p + 0 = p for closed BSP(A)-terms p.
Also, give a counterexample for BSPdrt∗(A) � p + 0 = p for closed
BSPdrt∗(A)-terms p.

9.7 The process theory TCPdrt∗(A, γ)
In this section, the process theory BSPdrt∗(A) is extended to the process the-
ory TCPdrt∗(A, γ). This extension is obtained by extending the signature of
BSPdrt∗(A) with the sequential-composition operator · , the current-time-
slice timeout operator ν, the encapsulation operators ∂H (for H ⊆ A), and the
parallel-composition operators ‖ , ‖ , and | .

The axioms of the process theory are given in Table 9.5. Sequential com-
position is as before, but here the role of identity that was played by 1 in
the untimed theory, is taken over by the current-time-slice termination con-
stant 1 (see Axioms A8DR and A9DR). In this setting, it can be derived that
1 · x = σ ∗x instead. The sequential-composition operator has two left-zero el-
ements: both undelayable inaction (see Axiom A7DR) and delayable inaction
act as such. The axiom 0 · x = 0 (A7) has disappeared since it is derivable
from the remaining axioms. The axiom a.x · y = a.(x · y) (A10) from the
untimed theory is now also derivable. Axioms A10DRb and A10DRc express
that the passage of time is measured relative to the previous action and thus
has no consequences for the future actions: the timing of y is relative to the
last action of x , regardless of the time-prefix or time-iteration operator.

The current-time-slice timeout operator, with Axioms RTO1–5 (from Rela-
tive TimeOut), disallows all initial passage of time. It extracts the part of the
behavior that executes an action or performs termination in the current time
slice. Notice that the equation ν(σ ∗x) = ν(x) can be derived from the axioms
given. The encapsulation operator is as defined before: encapsulation disal-
lows the actions that occur in the set H and allows all other behavior including
passage of time.

Before continuing with the other operators and axioms in the theory, the fol-
lowing proposition summarizes some simple identities concerning sequential
composition, encapsulation, and the current-time-slice timeout operator that
can be derived from the theory.

320 Timing

TCPdrt∗(A, γ)
BSPdrt∗(A);
unary: ν, (∂H)H⊆A; binary: · , ‖ , ‖ , | ;
x, y, z;
(x + y) · z = x · z + y · z A4 ν(1) = 1 RTO1
(x · y) · z = x · (y · z) A5 ν(0) = 0 RTO2
0 · x = 0 A7DR ν(a.x) = a.x RTO3
x · 1 = x A8DR ν(x + y) = ν(x)+ ν(y) RTO4
1 · x = x A9DR ν(σ.x) = 0 RTO5
a.x · y = a.(x · y) A10DRa
(σ.x) · y = σ.(x · y) A10DRb
σ∗x · y = σ∗(x · y) A10DRc

∂H (1) = 1 D1DR ∂H (x + y) = ∂H (x)+ ∂H (y) D5
∂H (0) = 0 D2DR ∂H (σ.x) = σ.∂H (x) D6DR
∂H (a.x) = 0 if a ∈ H D3DR ∂H (σ

∗x) = σ∗∂H (x) D7DR
∂H (a.x) = a.∂H (x) D4DR

otherwise

x ‖ y = x‖ y + y‖ x + x | y M

0‖ x = 0 LM1DR
1‖ x = 0 LM2DR
a.x‖ y = a.(x ‖ y) LM3DR
(x + y)‖ z = x‖ z + y‖ z LM4
σ.x‖ ν(y) = 0 LM5DR
σ.x‖ (ν(y)+ σ.z) = σ.(x‖ z) LM6DR
σ∗x‖ σ∗ν(y) = σ∗(x‖ σ∗ν(y)) LM7DR

x | y = y | x SC1 (x ‖ y) ‖ z = x ‖ (y ‖ z) SC4
x ‖ 1 = x SC2 (x | y) | z = x | (y | z) SC5
1 | x + 1 = 1 SC3DR (x‖ y)‖ z = x‖ (y ‖ z) SC6
x · 1‖ 0 = x · 0 SC8DR (x | y)‖ z = x | (y‖ z) SC7

0 | x = 0 CM1DR
(x + y) | z = x | z + y | z CM2
1 | 1 = 1 CM3DR
a.x | 1 = 0 CM4DR
a.x | b.y = c.(x ‖ y) if γ (a, b) = c CM5DR
a.x | b.y = 0 if γ (a, b) not defined CM6DR
σ.x | ν(y) = 0 CM7DR
σ.x | σ.y = σ.(x | y) CM8DR
σ∗x | σ∗y = σ∗(x | σ∗y + σ∗x | y) CM9DR

Table 9.5. The process theory TCPdrt∗(A, γ) (with a, b, c ∈ A).

Proposition 9.7.1 (Identities in TCPdrt∗(A, γ)) For any TCPdrt∗(A, γ)-terms
x , y, action a ∈ A, and H ⊆ A,

(i) TCPdrt∗(A, γ) � ν(0) = 0;

9.7 The process theory TCPdrt∗(A, γ) 321

(ii) TCPdrt∗(A, γ) � ν(1) = 1;
(iii) TCPdrt∗(A, γ) � ν(a.x) = a.x ;
(iv) TCPdrt∗(A, γ) � ν(σ ∗x) = ν(x);
(v) TCPdrt∗(A, γ) � ∂H (0) = 0;

(vi) TCPdrt∗(A, γ) � ∂H (1) = 1;
(vii) for a ∈ H , TCPdrt∗(A, γ) � ∂H (a.x) = 0;

(viii) for a �∈ H , TCPdrt∗(A, γ) � ∂H (a.x) = a.∂H (x);
(ix) TCPdrt∗(A, γ) � 0 · x = 0;
(x) TCPdrt∗(A, γ) � 1 · x = σ ∗x ;

(xi) TCPdrt∗(A, γ) � a.x · y = a.(x · y);
(xii) TCPdrt∗(A, γ) � σ ∗x + 0 = σ ∗x .

Proof See Exercise 9.7.1.

The axioms for parallel composition and the auxiliary parallel-composition
operators are such that parallel processes can only delay if both components
allow this delay. Within each time slice, parallel processes interleave their ac-
tions or communicate. To stay as closely as possible to the interpretation of the
axioms in the untimed setting, it is necessary for both left merge and commu-
nication merge to synchronize passage of time as well (Axioms LM6DR and
CM8DR). The empty process 1 is still the identity element of parallel compo-
sition (Axiom SC2). Some axioms of the untimed theory are no longer valid
in full generality, e.g., 0‖ x = 0 (LM1) is not valid for all processes x (take
e.g. 0 for x), but only for processes that allow an initial arbitrary delay, i.e.,
delayable processes in the sense of Axioms DD, DT, and DA of Table 9.3. De-
layable processes are processes that can be written in the form σ ∗ν(y). Axiom
ATS implies that the progress of time does not affect a delayable process. The
following proposition gives some identities concerning parallel-composition
operators that can be derived from TCPdrt∗(A, γ). Most of these identities are
directly derived from axioms of the untimed theory TCP(A, γ). Some of them
are in fact identical to axioms from this theory, whereas others are axioms
reformulated for delayable processes only.

Proposition 9.7.2 (Identities in TCPdrt∗(A, γ)) For arbitrary TCPdrt∗(A, γ)-
terms x , y and actions a, b, c ∈ A,

(i) TCPdrt∗(A, γ) � σ.x ‖ σ.y = σ.(x ‖ y);
(ii) TCPdrt∗(A, γ) � 0‖ σ ∗ν(x) = 0;

(iii) TCPdrt∗(A, γ) � 1‖ σ ∗ν(x) = 0;
(iv) TCPdrt∗(A, γ) � a.x ‖ σ ∗ν(y) = a.(x ‖ σ ∗ν(y));
(v) TCPdrt∗(A, γ) � 0 | σ ∗ν(x) = 0;

322 Timing

(vi) TCPdrt∗(A, γ) � 1 | 1 = 1;
(vii) TCPdrt∗(A, γ) � 1 ‖ 1 = 1;

(viii) TCPdrt∗(A, γ) � a.x | 1 = 0;
(ix) TCPdrt∗(A, γ) � a.x | b.y = c.(x ‖ y) if γ (a, b) = c;
(x) TCPdrt∗(A, γ) � a.x | b.y = 0 if γ (a, b) is not defined;

(xi) TCPdrt∗(A, γ) � 1 | σ ∗ν(x)+ 1 = 1.

Proof See Exercise 9.7.2.

The first property of the next proposition shows that terms over the signature
of the untimed process theory TCP(A, γ) of Section 7.7 are delayable. For
untimed processes, delayability can be expressed in several different means,
as illustrated by this property. The second property in the proposition shows
that an untimed process also allows arbitrary passage of time at the end. In
combination with the previous two propositions, Proposition 9.7.3 implies that
the axioms of the untimed theory are in the timed setting still valid for terms
of the untimed theory (Exercise 9.7.4).

Proposition 9.7.3 (Delayability of untimed processes) For any arbitrary
closed TCP(A, γ)-term p,

TCPdrt∗(A, γ) � p = 1 · p = σ ∗ p = σ ∗ν(p)
and

TCPdrt∗(A, γ) � p = p · 1.

Proof See Exercise 9.7.3.

As expected, the operators that are new in TCPdrt∗(A, γ) when compared to
BSPdrt∗(A) can be eliminated.

Theorem 9.7.4 (Elimination) For any closed TCPdrt∗(A, γ)-term p, there is
a closed BSPdrt∗(A)-term q such that TCPdrt∗(A, γ) � p = q.

Proof It suffices to prove that for any closed TCPdrt∗(A, γ)-term p,
there is a basic BSPdrt∗(A)-term q (see Definition 9.5.1) such that TCPdrt∗(A,
γ)� p = q. The proof does not use rewriting, as the axioms of TCPdrt∗(A, γ)
are not in a convenient form for such a proof. Instead, the proof uses induc-
tion. (Note that also Exercise 4.5.4 requests an induction-based proof of an
elimination theorem.) The following properties are needed:

(i) for any basic BSPdrt∗(A)-term p, there exists a basic BSPdrt∗(A)-term
q such that TCPdrt∗(A, γ) � ν(p) = q;

9.7 The process theory TCPdrt∗(A, γ) 323

(ii) for any basic BSPdrt∗(A)-term p and any H ⊆ A, there exists a basic
term q such that TCPdrt∗(A, γ) � ∂H (p) = q;

(iii) for any basic terms p and p′, there exists a basic term q such that
TCPdrt∗(A, γ) � p · p′ = q;

(iv) for any basic terms p and p′, there exists a basic term q such that
TCPdrt∗(A, γ) � p‖ p′ = q;

(v) for any basic terms p and p′, there exists a basic term q such that
TCPdrt∗(A, γ) � p | p′ = q;

(vi) for any basic terms p and p′, there exists a basic term q such that
TCPdrt∗(A, γ) � p ‖ p′ = q .

The first three properties are proven by induction on the structure of basic
term p. For the third, it is necessary to consider the form of p′ in case p
is of the form σ n1, and use the tenth item of Proposition 9.7.1 (Identities in
TCPdrt∗(A, γ)) together with the axioms of time iteration.

The last three properties are proven simultaneously by induction on the number
of symbols of p and p′. For the first of these three cases, if p′ is an alternative
composition, it is necessary to consider several subcases.

The proof can now be completed by applying properties (i)–(vi) to eliminate all
the six operators that are new in TCPdrt∗(A, γ) when compared to BSPdrt∗(A),
starting with the smallest subterm(s) containing any of the new operators and
gradually working outwards. The details of the proof are left for Exercise
9.7.13.

A term model can be constructed along the same lines as before, except
that it is necessary to introduce a class of auxiliary operators. It is not known
whether a term deduction system for TCPdrt∗(A, γ) exists without such aux-
iliary operators. Although not strictly necessary, the auxiliary operators are
introduced in the equational theory first. For each natural number n, the shift
operator n ! shifts a process in time by n time slices. Applying the n !
operator to a process results in the behavior that remains after n units of time
have passed. Table 9.6 presents theory TCPdrt∗! (A, γ), TCPdrt∗(A, γ) with
shift operators.

As an example of a derivation in TCPdrt∗! (A, γ), consider the following:
TCPdrt∗!(A, γ)�(n+1)! σ ∗(a.1+σ.0) = (n+1)! σ ∗ν(a.1)+(n+1)!
σ ∗σ.0 = σ ∗ν(a.1)+ (n+1)! σ.σ ∗0 = σ ∗a.1+n ! σ ∗0 = σ ∗a.1+σ ∗0 =
σ ∗(a.1 + 0) = σ ∗a.1 = a.1.

At this point, a term model for the extended theory TCPdrt∗!(A, γ) can be
constructed in the standard way. The resulting model is also a model for theory
TCPdrt∗(A, γ). The term deduction system TDS(TCPdrt∗!(A, γ)) consists of

324 Timing

TCPdrt∗!(A, γ)
TCPdrt∗(A, γ);
unary: (n !)n∈N;
x, y;

0 ! x = x SH1
n ! 0 = 0 SH2
(n + 1)! 1 = 0 SH3
(n + 1)! a.x = 0 SH4
n ! (x + y) = n ! x + n ! y SH5
(n + 1)! σ.x = n ! x SH6
n ! σ∗ν(x) = σ∗ν(x) SH7

Table 9.6. Axioms for TCPdrt∗(A, γ) shift operators (a ∈ A, n ∈ N).

the deduction rules from TDS(BSPdrt∗(A)) and additionally the deduction rules
given in Table 9.7.

The rules for sequential composition and encapsulation are straightforward.
The ‘now’ operator ν only allows activity in the current time slice, so with
time-stamp 0. For parallel composition, in order for termination or commu-
nication to occur, both components have to allow this in the same time slice.
If a component executes an action itself, the other component must be able to
reach the time slice in which the action occurs; after this action, the other com-
ponent must be updated to that time slice. This is achieved via a shift operator.
Operational rules for this operator are straightforward.

The algebra P(TCPdrt∗ ! (A, γ)) = (C(TCPdrt∗ ! (A, γ)),+, ·, ‖,‖ , | ,
(n !)n∈N, (a.)a∈A, σ. , (a.)a∈A, σ

∗, ν, (∂H)H⊆A, 0, 1, 0, 1) is the term al-
gebra for theory TCPdrt∗!(A, γ).

Proposition 9.7.5 (Congruence) Timed bisimilarity is a congruence on the
term algebra P(TCPdrt∗!(A, γ)).

Proof The term deduction system is in path format, so congruence
follows immediately; see the proof of Theorem 9.4.3 for additional explana-
tion.

Definition 9.7.6 (Term model of TCPdrt∗!(A, γ)) The term model of the-
ory TCPdrt∗!(A, γ) is the quotient algebra P(TCPdrt∗!(A, γ))/↔t .

Theorem 9.7.7 (Soundness) Theory TCPdrt∗!(A, γ) is a sound axiomatiza-
tion of P(TCPdrt∗! (A, γ))/↔t , i.e., P(TCPdrt∗! (A, γ))/↔t |
 TCPdrt∗!
(A, γ).

9.7 The process theory TCPdrt∗(A, γ) 325

TDS(TCPdrt∗!(A, γ))
TDS(BSPdrt∗(A));
unary: ν, (∂H)H⊆A, (n !)n∈N; binary: · , ‖ , ‖ , | ;
x, x ′, y, y′;

x ↓n y ↓m

x · y ↓n+m

x n
a→ x ′

x · y n
a→ x ′ · y

x ↓n y m
a→ y′

x · y n+m
a→ y′

x �n

x · y �n

x ↓n y �m

x · y �n+m

x ↓0

ν(x) ↓0

x 0
a→ x ′

ν(x) 0
a→ x ′

x ↓n

∂H (x) ↓n

x n
a→ x ′ a �∈ H

∂H (x) n
a→ x ′

x �n

∂H (x)�n

x ↓n y ↓n

x ‖ y ↓n

x ↓n y ↓n

x | y ↓n

x n
a→ x ′ y �n

x ‖ y n
a→ x ′ ‖ (n ! y)

x �n y n
a→ y′

x ‖ y n
a→ (n ! x) ‖ y′

x n
a→ x ′ y �n

x‖ y
a→ x ′ ‖ (n ! y)

x n
a→ x ′ y n

b→ y′ γ (a, b) = c

x ‖ y n
c→ x ′ ‖ y′

x n
a→ x ′ y n

b→ y′ γ (a, b) = c

x | y
c→ x ′ ‖ y′

x �n y �n

x ‖ y �n

x �n y �n

x‖ y �n

x �n y �n

x | y �n

x n+m
a→ x ′

n ! x m
a→ x ′

x ↓n+m

n ! x ↓m

x �n+m

n ! x �m

Table 9.7. Term deduction system for TCPdrt∗ ! (A, γ) (with a, b, c ∈ A,
n,m ∈ N, and H ⊆ A).

Proof See Exercise 9.7.14.

Theorem 9.7.8 (Ground-completeness) Theory TCPdrt∗ ! (A, γ) is a com-
plete axiomatization of the term model P(TCPdrt∗! (A, γ))/↔t , i.e., for any
closed TCPdrt∗ ! (A, γ)-terms p and q , P(TCPdrt∗ ! (A, γ))/↔t |
 p = q
implies TCPdrt∗!(A, γ) � p = q .

326 Timing

Proof The proof goes along the usual lines, see e.g., Theorem
6.3.9 (Ground-completeness of TSP(A)), but using the generalized operational
framework with transition systems with multiple types of transitions and/or
state predicates of (Baeten & Verhoef, 1995).

To end this section, it is interesting to observe that the process theory devel-
oped in this section is a conservative ground-extension with respect to earlier
timed and untimed theories.

Theorem 9.7.9 (Conservative ground-extension) Theory TCPdrt∗ ! (A, γ)
is a conservative ground-extension of theory BSPdrt∗(A).

Proof The theorem follows from results for the generalized oper-
ational framework with transition systems with multiple types of transitions
and/or state predicates of (Baeten & Verhoef, 1995).

Theorem 9.7.10 (Conservative ground-extension) Theory TCPdrt∗!(A, γ)
is a conservative ground-extension of theory TCP(A, γ).

Proof The proof uses a generalization of Proposition 9.6.1 (Timed vs.
strong bisimilarity) to closed TCP(A, γ)-terms, and then goes along the same
lines as Theorem 9.6.2 (Conservative ground-extension). Alternative proofs
use the meta-theory of (Baeten et al., 2005) or the result of Exercise 9.7.4.

Exercises

9.7.1 Prove Proposition 9.7.1 (Identities in TCPdrt∗(A, γ)).
9.7.2 Prove Proposition 9.7.2 (Identities in TCPdrt∗(A, γ)).
9.7.3 Prove Proposition 9.7.3 (Delayability of untimed processes).
9.7.4 Prove that, for all closed TCP(A, γ)-terms, all axioms of the un-

timed process theory TCP(A, γ) are derivable from the axioms of
TCPdrt∗(A, γ).

9.7.5 Prove that

TCPdrt∗(A, γ) � ν(∂H (p)) = ∂H (ν(p)),

for all H ⊆ A and all closed TCPdrt∗(A, γ)-terms p.
9.7.6 Prove that

TCPdrt∗(A, γ) � 1 | p = ν(∂A(p)),

for all closed TCPdrt∗(A, γ)-terms p.

9.8 Fischer’s protocol 327

9.7.7 Prove that in the process theory obtained from TCPdrt∗(A, γ) by re-
moving axioms 1 | 1 = 1 and a.x | 1 = 0, and adding axiom
1 | x = ν(∂A(x)) the removed identities are derivable.

9.7.8 Prove that

TCPdrt∗(A, γ) � 1 | p = ∂A(p),

for all closed TCPdrt∗(A, γ)-terms p.
9.7.9 Prove that the following identities are derivable from TCPdrt∗(A, γ)

for all TCPdrt∗(A, γ)-terms x, y:

(a) 1 · 1 = 1;
(b) 1 · σ.x = σ.1 · x ;
(c) 1 · (x + y) = 1 · x + 1 · y.

9.7.10 Establish whether the following identities are derivable from theory
TCPdrt∗(A, γ); if so, give a derivation, if not, give a counterexample.

(a) σ ∗x ‖ σ ∗y = σ ∗(σ ∗x ‖ σ ∗y);
(b) σ ∗x | σ ∗y = σ ∗(σ ∗x | σ ∗y);
(c) σ ∗x ‖ σ ∗y = σ ∗(σ ∗x ‖ σ ∗y).

9.7.11 Establish whether the following identities are derivable from theory
TCPdrt∗(A, γ) for closed terms p and q; if so, give a proof, if not,
give a counterexample.

(a) σ ∗ p‖ ν(q) = ν(p)‖ ν(q);
(b) σ ∗ p | ν(q) = ν(p) | ν(q);
(c) σ ∗ p‖ σ ∗q = σ ∗(p‖ σ ∗q);
(d) σ ∗ν(p) | σ ∗ν(q) = σ ∗(ν(p) | ν(q)).

9.7.12 Prove that the identity

σ ∗(x | y) = σ ∗x | σ ∗y

is not derivable from the axioms of TCPdrt∗(A, γ).
9.7.13 Prove Theorem 9.7.4 (Elimination).
9.7.14 Prove Theorem 9.7.7 (Soundness).

9.8 Fischer’s protocol

Fischer’s protocol (Lamport, 1987) is a well known mutual-exclusion proto-
col for timed processes. This section describes the protocol using the theory
TCPdrt∗(A, γ) extended with recursion. The protocol is linearized, i.e., written
in the form of a linear recursive specification, and the timed transition system
corresponding to the protocol is given. Recursion has not been introduced for-
mally in the previous sections of this chapter. Recursion can be added similarly

328 Timing

as in the untimed theory, be it that the time-prefix operator σ. should also be
considered as a guard for recursion variables. On the other hand, time iteration
cannot be considered a guard.

Mutual exclusion is relevant in a context where processes have so-called
critical sections. The goal of a mutual-exclusion protocol is to guarantee that
at any time at most one of the processes, called protocol entities from now to
distinguish them from other processes, is in a critical section, in combination
with the requirement that at least one of the protocol entities is able to proceed
at each moment in time.

The protocol entities that use Fischer’s protocol to guarantee mutual exclu-
sion make use of a shared variable to exchange information. A protocol entity
that wants to enter its critical section, checks if the value of the shared variable
is 0, which represents that no entity is trying to enter the critical section. Then,
it assigns its unique identifier to the shared variable. In case the variable still
has this value after some time, it decides to enter the critical section. Other-
wise, it will try again later. The delay that is introduced before an entity enters
a critical section causes the protocol entity to wait sufficiently long so that
other protocol entities that concurrently assigned their unique identifiers have
had time enough to do so. This is necessary to guarantee the mutual-exclusion
property.

In the variant of Fischer’s protocol that is described in this section, only two
protocol entities are considered for which the unique identifiers 1 and 2 are
used. The protocol entities can perform two actions with respect to the shared
variable x . The first action is inspection of the value of the variable; the second
is the assignment of a value to the variable. For the description in this section,
it is assumed that both the assignment of a value to the shared variable and
the testing of the shared variable for a specific value take no time, i.e., occur
instantaneously.

In TCPdrt∗(A, γ), the shared variable x is modeled by a set of recursion
variables Xv , where v denotes the value of x . The actions of the two enti-
ties with respect to the shared variable are modeled by communication. The
shared-variable process is at all times willing to send its value to the environ-
ment with the action !(x = v). Of course this has no effect on the value of the
variable. On the other hand, the shared-variable process receives assignments
to the variable by means of the action ?(x := w), where w is some value. Of
course the value of the variable is adapted accordingly. Finally, the variable
may terminate at any time. This behavior is described by the following recur-
sive equation:

Xv = 1 + !(x = v).Xv + ∑
w∈{0,1,2}

?(x := w).Xw.

9.8 Fischer’s protocol 329

An equivalent, but from the viewpoint of manipulation by means of the ax-
ioms more convenient specification of the variable is the following, where the
any-time-slice termination and the any-time-slice action prefixes are removed
and all initial time passage is combined into one summand:

Xv = 1 + !(x = v).Xv + ∑
w∈{0,1,2}

?(x := w).Xw + σ.Xv.

The two protocol entities that play a role in the version of Fischer’s protocol
that is described in this section have similar behavior. The only difference
is that they have different identities, 1 and 2 respectively. The delay period
between setting the value of the shared variable and testing the shared variable
for this same value, is taken to be one time unit, which is sufficient given
the assumption that writing a value to the shared variable is instantaneous.
Furthermore, once a protocol entity has entered its critical section, it can stay
there for any amount of time. The recursive specifications for the protocol
entities are as follows. Recursion variable A describes protocol entity 1 and
recursion variable B describes protocol entity 2.

A = 1 + ?(x = 0).!(x := 1).σ.
(?(x = 0).A
+ ?(x = 1).enterCS1.leaveCS1.!(x := 0).A
+ ?(x = 2).A
) ,

B = 1 + ?(x = 0).!(x := 2).σ.
(?(x = 0).B
+ ?(x = 1).B
+ ?(x = 2).enterCS2.leaveCS2.!(x := 0).B
) .

The whole system is given by the recursion variable FP with the following
recursive specification:

FP = ∂H (A ‖ X0 ‖ B),

where for all α ∈ {x = i, x := i | i ∈ {0, 1, 2}}
γ (!α, ?α) = γ (?α, !α) = !?α

and γ is undefined otherwise, and where

H = {!α, ?α | α ∈ {x = i, x := i | i ∈ {0, 1, 2}}}.
Using the axioms, a linear version of Fischer’s protocol is obtained easily.

First, linear versions of the protocol entities themselves are presented. The
recursion variables Ai describe protocol entity 1 and the recursion variables Bi

330 Timing

describe protocol entity 2. It can be proven that (TCPdrt∗
rec +RSP)(A, γ)� A =

A0 and (TCPdrt∗
rec + RSP)(A, γ) � B = B0.

A0 = 1 + ?(x = 0).A1 + σ.A0

A1 = !(x := 1).A2

A2 = σ.A3

A3 = ?(x = 0).A0 + ?(x = 1).A4 + ?(x = 2).A0

A4 = enterCS1.A5

A5 = leaveCS1.A6 + σ.A5

A6 = !(x := 0).A0

B0 = 1 + ?(x = 0).B1 + σ.B0

B1 = !(x := 2).B2

B2 = σ.B3

B3 = ?(x = 0).B0 + ?(x = 1).B0 + ?(x = 2).B4

B4 = enterCS2.B5

B5 = leaveCS2.B6 + σ.B5

B6 = !(x := 0).B0

Linearizing process FP, which is derivably equal to ∂H (A0 ‖ X0 ‖ B0), re-
sults in the following 32 recursive equations. The recursion variable Sijk cor-
responds to the process term ∂H (Ai ‖ X j ‖ Bk), which means that FP ≡ S000.

S000 = ∂H (A0 ‖ X0 ‖ B0)

= 1 + !?(x = 0).∂H (A1 ‖ X0 ‖ B0)

+ !?(x = 0).∂H (A0 ‖ X0 ‖ B1)+ σ.∂H (A0 ‖ X0 ‖ B0)

= 1 + !?(x = 0).S100 + !?(x = 0).S001 + σ.S000

S100 = ∂H (A1 ‖ X0 ‖ B0)

= !?(x := 1).∂H (A2 ‖ X1 ‖ B0)+ !?(x = 0).∂H (A1 ‖ X0 ‖ B1)

= !?(x := 1).S210 + !?(x = 0).S101

S001 = ∂H (A0 ‖ X0 ‖ B1)

= !?(x = 0).∂H (A1 ‖ X0 ‖ B1)+ !?(x := 2).∂H (A0 ‖ X2 ‖ B2)

= !?(x = 0).S101 + !?(x := 2).S022

S210 = ∂H (A2 ‖ X1 ‖ B0)

= σ.∂H (A3 ‖ X1 ‖ B0)

= σ.S310

S101 = ∂H (A1 ‖ X0 ‖ B1)

= !?(x := 1).∂H (A2 ‖ X1 ‖ B1)+ !?(x := 2).∂H (A1 ‖ X2 ‖ B2)

= !?(x := 1).S211 + !?(x := 2).S122

9.8 Fischer’s protocol 331

S022 = ∂H (A0 ‖ X2 ‖ B2)

= σ.∂H (A0 ‖ X2 ‖ B3)

= σ.S023

S310 = ∂H (A3 ‖ X1 ‖ B0)

= !?(x = 1).∂H (A4 ‖ X1 ‖ B0)

= !?(x = 1).S410

S211 = ∂H (A2 ‖ X1 ‖ B1)

= !?(x := 2).∂H (A2 ‖ X2 ‖ B2)

= !?(x := 2).S222

S122 = ∂H (A1 ‖ X2 ‖ B2)

= !?(x := 1).∂H (A2 ‖ X1 ‖ B2)

= !?(x := 1).S212

S023 = ∂H (A0 ‖ X2 ‖ B3)

= !?(x = 2).∂H (A0 ‖ X2 ‖ B4)

= !?(x = 2).S024

S410 = ∂H (A4 ‖ X1 ‖ B0)

= enterCS1.∂H (A5 ‖ X1 ‖ B0)

= enterCS1.S510

S222 = ∂H (A2 ‖ X2 ‖ B2)

= σ.∂H (A3 ‖ X2 ‖ B3)

= σ.S323

S212 = ∂H (A2 ‖ X1 ‖ B2)

= σ.∂H (A3 ‖ X1 ‖ B3)

= σ.S313

S024 = ∂H (A0 ‖ X2 ‖ B4)

= enterCS2.∂H (A0 ‖ X2 ‖ B5)

= enterCS2.S025

S510 = ∂H (A5 ‖ X1 ‖ B0)

= leaveCS1.∂H (A6 ‖ X1 ‖ B0)+ σ.∂H (A5 ‖ X1 ‖ B0)

= leaveCS1.S610 + σ.S510

S323 = ∂H (A3 ‖ X2 ‖ B3)

= !?(x = 2).S023 + !?(x = 2).S324

S313 = ∂H (A3 ‖ X1 ‖ B3)

= !?(x = 1).S413 + !?(x = 1).S310

332 Timing

S025 = ∂H (A0 ‖ X2 ‖ B5)

= leaveCS2.S026 + σ.S025

S610 = ∂H (A6 ‖ X1 ‖ B0)

= !?(x := 0).S000

S324 = ∂H (A3 ‖ X2 ‖ B4)

= !?(x = 2).S024 + enterCS2.S325

S413 = ∂H (A4 ‖ X1 ‖ B3)

= enterCS1.S513 + !?(x = 1).S410

S026 = ∂H (A0 ‖ X2 ‖ B6)

= !?(x := 0).S000

S325 = ∂H (A3 ‖ X2 ‖ B5)

= !?(x = 2).S025 + leaveCS2.S326

S513 = ∂H (A5 ‖ X1 ‖ B3)

= leaveCS1.S613 + !?(x = 1).S510

S326 = ∂H (A3 ‖ X2 ‖ B6)

= !?(x = 2).S026 + !?(x := 0).S300

S613 = ∂H (A6 ‖ X1 ‖ B3)

= !?(x := 0).S003 + !?(x = 1).S610

S300 = ∂H (A3 ‖ X0 ‖ B0)

= !?(x = 0).S000 + !?(x = 0).S301

S003 = ∂H (A0 ‖ X0 ‖ B3)

= !?(x = 0).S103 + !?(x = 0).S000

S301 = ∂H (A3 ‖ X0 ‖ B1)

= !?(x = 0).S001 + !?(x := 2).S322

S103 = ∂H (A1 ‖ X0 ‖ B3)

= !?(x := 1).S213 + !?(x = 0).S100

S322 = ∂H (A3 ‖ X2 ‖ B2)

= !?(x = 0).S022

S213 = ∂H (A2 ‖ X1 ‖ B3)

= !?(x = 1).S210

Figure 9.3 gives the timed transition system corresponding to the process
term FP. The !? symbol is omitted from the labels. Also the enter and leave
labels are simplified. Whenever a transition has a natural number n as a label,

9.9 Bibliographical remarks 333

this means that there is a transition for every natural number. By careful in-
spection of the timed transition system, it can easily be established that indeed
there is no possibility to enter a critical section in case the other critical section
has already been entered and not yet left.

x=
0

n

x=0
n

x:
=1 0

x=0
0

x=
0

0

x:=2
0

x:=1
0

x:
=2 0

x=
1

1

x:=2
0

x:
=1 0
x=

2

1

enter1

0

en
te

r 2 0

leave1
n

x=
2

1
x=

2
0

x=
2

1

x=1

1

x=1
1

x=1
0

le
av

e 2
n

x:=0

0

x=2
0

en
te

r 2
0

enter1

0

x=
1

0

x:
=0

0

x=2
0

le
av

e 2
0

leave1

0

x=
1

0

x=2
0

x:=0
0

x:
=0 0

x=
1

0

x=
0

0

x=0
0

x=
0

0

x=0
0

x=
0

0

x:=2
0

x:
=1 0

x=0
0

x=
0

0

x=0
0

Fig. 9.3. Timed transition system for Fischer’s protocol.

9.9 Bibliographical remarks

This chapter finds its origin in (Baeten & Bergstra, 1996). Further development
took place in (Baeten, 2003; Baeten & Middelburg, 2002; Baeten & Reniers,
2004; Baeten et al., 2005). Notation follows these references, except that this
book uses single underlining instead of double underlining for relative-time
theories.

The operational semantics as it is given in this chapter is based on (Baeten

334 Timing

& Reniers, 2004). The treatment of parallel composition is from (Baeten &
Reniers, 2007).

The notion of embedding mentioned in Section 9.3 for the relation between
the untimed process theory BSP(A)and the timed process theory BSPdrt(A) is
formally defined in (Baeten & Middelburg, 2001).

Essentially, the presentation of Fischer’s protocol in Section 9.8 is taken
from (Vereijken, 1997). The only difference is that here the protocol entities
can stay in their critical sections an arbitrary amount of time, whereas in (Ver-
eijken, 1997) a critical section is left in the same time slice as it was entered.

Closest in syntax elements to the present timed process theory is the work
on timed extensions of CSP, see (Reed & Roscoe, 1988; Schneider, 2000). For
timed extensions of CCS, see e.g., (Moller & Tofts, 1990; Yi, 1991; Hennessy
& Regan, 1995). A comparison is made in (Corradini et al., 1999). Other
related timed process theories are ATP, see (Nicollin & Sifakis, 1994), and
timed LOTOS, see for example (Quemada et al., 1993).

10

Data and states

10.1 Introduction

In the previous chapters, data types have been handled in an informal way.
An alternative composition parameterized by a finite data type D, written as∑

d∈D t with t some process term possibly containing d, was introduced as an
abbreviation of a finite expression, and the d occurring in term t was not treated
as a (bound) variable. This chapter takes a closer look at data expressions.
Such expressions are considered in a more formal way, and the interplay be-
tween data and processes is studied. All issues involved can be illustrated by
considering just two concrete data types, namely the (finite) data type of the
Booleans and the (infinite) data type of the natural numbers. The data type
of the natural numbers was also used in the previous chapter to denote time
behavior. Considering an uncountable data type as the reals causes additional
problems that are avoided in the present text. The use of an uncountable data
type in a parameterized alternative composition would, just like the use of an
uncountable time domain, provide a means to specify uncountable processes,
which is not possible with any of the theories developed in this book.

Notation 10.1.1 (Booleans, propositional logic) Recall from Example 2.3.2
the algebra of the Booleans B = (B,∧,¬, true). In addition to the constant
true and the operators∧ and¬, the binary operators∨ (or) and⊃ (implication),
and the constant false are also used in the remainder. The not so common
symbol ⊃ is used for implication in order to avoid the use of too many arrows
in notations.

Let P = {P1, . . . , Pn} for some natural number n be a set of so-called propo-
sitional variables. Later on, specific instances of these variables are given.
Starting from the propositional variables, the Boolean constants and the oper-
ators on the Booleans introduced above, it is possible to build terms along the
lines of Definition 2.2.3 (Terms). These terms are referred to as propositional

335

336 Data and states

terms or propositional logic formulas, and this set of formulas is denoted FB.
Examples of propositional formulas are P1 ∧ true and ¬(P1 ∨ P2). Given spe-
cific (Boolean) values for P1 and P2, these formulas evaluate either to true or
to false.

Besides a more detailed consideration of data types, this chapter also takes a
closer look at the notion of a state. In process algebra, a common assumption is
that states are not observable, and the notion of bisimilarity considers unnamed
states. Nevertheless, in some cases it is desirable to have certain aspects of a
state to be observable. The chapter describes mechanisms in order to realize
this. Observable aspects of a state can typically be expressed by means of a
propositional logic formula, which links the two main concepts investigated in
this chapter, data types and states.

10.2 Guarded commands

The most straightforward connection between data and processes is the use of
conditionals. A conditional can be introduced as a constant, or as a unary or
binary operator on process terms. In each case, the operator is parameterized
by a propositional term. The presentation in this section considers conditionals
as unary operators, called the guarded-command operators. Given a proposi-
tional formula φ, the guarded command corresponding to φ applied to term x
is written as φ :→ x , with the intuitive meaning ‘if φ then x’. The extension of
basic process theory BSP(A) with guarded commands, called (BSP+GC)(A),
is given in Table 10.1. Axioms GC1–6 are mostly self-explanatory.

(BSP + GC)(A)
BSP(A);
unary: (φ :→)φ∈FB;
x, y;

true :→ x = x GC1
false :→ x = 0 GC2
φ :→ 0 = 0 GC3
φ :→ (x + y) = (φ :→ x)+ (φ :→ y) GC4
(φ ∨ ψ) :→ x = (φ :→ x)+ (ψ :→ x) GC5
φ :→ (ψ :→ x) = (φ ∧ ψ) :→ x GC6

Table 10.1. Process theory (BSP + GC)(A) (with φ,ψ ∈ FB).

In the remainder, assume, as before, that the unary guarded-command oper-
ators bind stronger than binary operators; assume that they bind weaker than
other unary operators.

10.2 Guarded commands 337

A guarded-command operator blocks further progress if the guard evaluates
to false, and does nothing (skips) if the guard evaluates to true. An expression
of the form if φ then x else y, for propositional formula φ and process terms x
and y, can be represented by the term φ :→ x + ¬φ :→ y. Guarded com-
mands are similar to encapsulation operators (progress is blocked based on
the identity of actions) and projection operators (progress is blocked based
on the number of actions that have been executed). However, there are two
important differences with these types of operators. First of all, the guarded
command applies only to the first action; it disappears as soon as one action is
executed. In fact, the absence of an axiom for action-prefix operators in Table
10.1 implies that an action in the context of a guarded command can never
be executed without resolving the guard. Second, a guarded command can
also block termination (false :→ 1 = 0), whereas encapsulation or projection
cannot prevent termination.

An interesting observation is that Axiom GC5, in combination with Axioms
GC1 and GC2, causes Axioms A3 and A6 of the basic theory BSP(A) to be
derivable (see Exercise 10.2.1).

In line with the above discussion, an expression as P :→ a.0, with P a
propositional variable and a an action, cannot be simplified unless the truth
value of P is known. As a consequence, there is no elimination theorem as
long as there are (unknown) propositional variables.

Related to this last observation is the fact that axioms concerning guarded
commands, such as Axioms GC4 and GC5, are in derivations typically used
from right to left. In this way, the scope of a conditional is enlarged as much
as possible, so that the terms within the scope and/or the signals are amenable
to simplification. As a very simple example, consider the following derivation,
with x a process term, a ∈ A, and φ ∈ FB:

(BSP + GC)(A) �
a.(φ :→ x +¬φ :→ x) = a.((φ ∨ ¬φ) :→ x) =

a.(true :→ x) = a.x .

In order to give an operational semantics, it is important to note that it is
needed to know the values of the propositional variables in order to decide on
possible transitions. In realistic processes, furthermore, values of propositional
variables can change during the execution of a process. For instance, it can be
the case that the value of a propositional variable P is true if and only if exactly
two actions have been executed. To capture the values of propositional vari-
ables in the operational framework of transition-system spaces, it is necessary
to associate valuations of the propositional variables, that is, functions v from
P to B = {true, false} to the states of such a space. The set of these valuations

338 Data and states

is denoted BV . Note that every valuation can easily be extended to a func-
tion from propositional formulas in FB to B. Upon executing an action a in
a state with valuation v, a state with a possibly different valuation v′ results.
The resulting valuation v′ is called the effect of the execution of action a in a
state with valuation v. The effect of action execution can be captured by the
following function:

effect : A × BV → BV.

The effect function is a parameter of the operational semantics of a process
theory with guarded commands. As in the previous chapter, the notion of
a transition-system space needs to be redefined. In the current context, it is
needed to integrate valuations of propositional variables as explained above.
A transition-system space over a set of states is equipped with the following
predicates and relations:

• Predicates 〈 , v〉↓ for each v ∈ BV;
• Relations 〈 , v〉 a→ 〈 , effect(a, v)〉 for each v ∈ BV, a ∈ A.

The above notation emphasizes that termination predicates and action rela-
tions are defined for the combinations of states and valuations. An alternative
notation that is in use attaches valuations to the predicate and transition ar-
rows, leading for example to s

v,a,v′→ s′ instead of 〈s, v〉 a→ 〈s′, v′〉 (with s and
s′ states and v′ = effect(a, v)). This last notation suggests that any valuation-
action-effect triple can be seen as a (structured) action itself.

Table 10.2 gives the term deduction system underlying the standard term
model for theory (BSP + GC)(A). Several interesting observations can be
made with respect to this term deduction system. First, as already mentioned,
the effect function effect is a parameter of the term deduction system, which
means that the transition systems associated to terms depend on this function.
Second, as usual, only (BSP+GC)(A)-terms are considered that do not contain
process variables. However, process terms may have propositional variables
in guards, because the deduction rules for the guarded-command operators
evaluate the guards. (BSP+GC)(A)-terms thus do not need to be closed with
respect to propositional variables, but only with respect to process variables.
This implies that, for a given effect function, the transition system associated to
a (BSP+GC)(A)-term that is closed with respect to process variables captures
the behavior for all possible valuations of the propositional variables at any
point during the execution of the process.

Example 10.2.1 (Transition systems of (BSP + GC)(A)-terms) Let P be a
propositional variable, and assume for simplicity that it is the only proposi-
tional variable. This means that there are two valuations, vt with vt (P) = true

10.2 Guarded commands 339

TDS((BSP + GC)(A), effect)
constant: 0, 1; unary: (a.)a∈A, (φ :→)φ∈FB; binary: + ;
x, x ′, y, y′;

〈a.x, v〉 a→ 〈x, effect(a, v)〉 〈1, v〉↓

〈x, v〉 a→ 〈x ′, v′〉
〈x + y, v〉 a→ 〈x ′, v′〉

〈y, v〉 a→ 〈y′, v′〉
〈x + y, v〉 a→ 〈y′, v′〉

〈x, v〉↓
〈x + y, v〉↓

〈y, v〉↓
〈x + y, v〉↓

〈x, v〉 a→ 〈x ′, v′〉 v(φ) = true

〈φ :→ x, v〉 a→ 〈x ′, v′〉
〈x, v〉 ↓ v(φ) = true

〈φ :→ x, v〉 ↓

Table 10.2. Term deduction system for (BSP+GC)(A) (with φ ∈ FB, a ∈ A,
v, v′ ∈ BV).

t.a.1

a.1

1

〈v f 〉〈vt 〉

〈vt 〉

〈vt 〉

〈v f 〉

〈v f 〉

tt

a a

Fig. 10.1. The transition system corresponding to t.a.1.

and v f with v f (P) = false. Thus, BV = {vt , v f }. Let t be an action in A such
that for both valuations v ∈ BV , effect(t, v) = vt . Assume that action a does
not change a valuation, i.e., effect(a, v) = v for both v ∈ BV .

Consider term t.a.1. Figure 10.1 shows the transition system corresponding
to this term. The figure visualizes that transitions and termination depend on
the valuation of propositional variables.

Figure 10.1 shows that the transition system of a term captures the behavior
for all possible valuations for the propositional variables. By assuming an

340 Data and states

initial valuation, a concrete transition system for that situation can be obtained.
For example, when assuming vt as the initial valuation, term t.a.1 results in
a transition system of three states with only two transitions. When v f is the
initial valuation, the transition system also has three states and two transitions.
The first transition of this transition system changes the valuation from v f

to vt .
One could wonder whether it is relevant to capture transition 〈a.1, v f 〉 a→

〈1, v f 〉 in the transition system. It is clear that this transition can never occur,
irrespective of the valuation of the propositional variable P in the initial state.
Nevertheless, it is important to capture also this behavior, as becomes clear
later on when considering equivalence of processes. As already mentioned, a
transition system in the current framework captures the behavior for all possi-
ble valuations of the propositional variables in all states that may occur during
the execution of the process.

Another aspect that is worth illustrating is the impact of the effect function
on state transitions. Assume, for example, that also action t has no effect on
the valuation of propositional variable P . This would result in a change of
transition 〈t.a.1, v f 〉 a→ 〈a.1, vt 〉 into 〈t.a.1, v f 〉 a→ 〈a.1, v f 〉.

Finally, consider the term t.(P :→ a.1), assuming the original definition for
the effect function. Despite the fact that this term has a propositional variable,
the term deduction system of Table 10.2 associates a transition system with it.
The transition system, shown in Figure 10.2, is very similar to the transition
system of Figure 10.1. It has different terms associated with the top two states,
and the rightmost transition between the bottom two states does not exist, i.e.,

〈P :→ a.1, v f 〉
a�→. It is interesting to observe that, irrespective of the initial

valuation of the propositional variable, the observable transitions of the two
transition systems in Figures 10.1 and 10.2 are identical.

The introduction of propositional variables and valuations of those variables
has led to an adapted notion of transition-system spaces. It is also necessary to
reconsider the notion of bisimilarity. The following example illustrates that it
is important to require that two processes can only be bisimilar if they behave
the same in all states for all possible valuations of the propositional variables
in those states.

Example 10.2.2 (Guarded commands and equivalence of processes)
Consider again terms t.a.1 and t.(P :→ a.1) of Example 10.2.1, and their
transition systems given in Figures 10.1 and 10.2. As already explained, when
considering any given specific initial valuation of the propositional variable P ,
these transition systems behave the same. Nevertheless, t.a.1 = t.(P :→ a.1)

10.2 Guarded commands 341

t.(P :→ a.1)

P :→ a.1

1

〈v f 〉〈vt 〉

〈vt 〉

〈vt 〉

tt

a

Fig. 10.2. The transition system corresponding to t.(P :→ a.1).

cannot be derived from theory (BSP + GC)(A), for the simple reason that
the theory does not have any axioms to reason in general about processes
with propositional variables. As a consequence, the guarded command in the
right-hand term cannot be resolved, and it cannot be eliminated.

This apparent mismatch is intentional. The mentioned pair of terms and the
processes they define should not be identified. The reason for this becomes
clear when considering the extension with parallel composition. Consider
again term t.(P :→ a.1). After execution of t , propositional variable P is
true, but by activity in a parallel component it might be that P has turned
false again when action a is attempted, effectively blocking the execution of
a. The a action cannot be blocked in the process specified by term t.a.1. As
an example, assume the mentioned processes are running in parallel with the
process f.1, where f is an action in A such that for all valuations v ∈ BV ,
effect(f, v) = v f (with v f the valuation defined in Example 10.2.1 that sets P
to false). The resulting processes t.a.1 ‖ f.1 and t.(P :→ a.1) ‖ f.1 are not
equivalent (see Exercise 10.2.3).

By defining an appropriate notion of bisimilarity on the transition systems
generated by the operational semantics, it can be ensured that pairs of terms
as the one discussed in this example are not bisimilar. The essential point is
that all possible valuations of propositional variables should be considered in
all states of a process.

Definition 10.2.3 (Bisimilarity) Assume a transition-system space with states
S over the set of labels A. A binary relation R on the set of states S is a
bisimulation relation if and only if the following transfer conditions hold:

342 Data and states

(i) for all states s, t, s′ ∈ S, whenever (s, t) ∈ R and 〈s, v〉 a→ 〈s′, v′〉
for some a ∈ A and v ∈ BV (implying v′ = effect(a, v)), then there
is a state t ′ such that 〈t, v〉 a→ 〈t ′, v′〉 and (s′, t ′) ∈ R;

(ii) vice versa, for all states s, t, t ′ ∈ S, whenever (s, t) ∈ R and 〈t, v〉 a→
〈t ′, v′〉 for some a ∈ A and v ∈ BV , then there is a state s′ such that
〈s, v〉 a→ 〈s′, v′〉 and (s′, t ′) ∈ R;

(iii) whenever (s, t) ∈ R and 〈s, v〉↓ for some v ∈ BV , then 〈t, v〉↓;
(iv) whenever (s, t) ∈ R and 〈t, v〉↓ for some v ∈ BV , then 〈s, v〉↓.

Two transition systems s, t ∈ S are bisimilar, denoted by the standard notation
as s↔t , if and only if there is a bisimulation relation R on S with (s, t) ∈ R.

At this point, it is possible to define a term model for theory (BSP+GC)(A)
along the usual lines. The term algebra consists of the set of (BSP + GC)(A)-
terms that are closed with respect to process variables, but not necessarily with
respect to propositional variables. The latter is consistent with the fact that
the terms define processes whose behavior may depend on the value of propo-
sitional variables, of which the value is determined by the initial valuation
and the effect of action execution on this valuation. Bisimilarity as defined
above is a congruence relation on the resulting algebra of transition systems
induced by the term deduction system in Table 10.2. Theory (BSP + GC)(A)
is a sound and ground-complete axiomatization of the term model obtained
as the quotient algebra of this algebra of transition systems. Note that this
model is parameterized with the effect function. The soundness and ground-
completeness results hold for any effect function and all terms that are closed
with respect to process variables. The theory thus allows to prove the equiva-
lence of processes when they behave the same for all possible effect functions,
all possible initial valuations of propositional variables, and all possible valu-
ations of those variables in any intermediate state. It is not possible to reason
about the equivalence of processes for specific effect functions and initial val-
uations. Section 10.5 introduces a family of operators that makes it possible to
reason about processes for specific effect functions and initial valuations.

Theory (BSP + GC)(A) is a conservative ground-extension of the basic
theory BSP(A). One way to prove this is along the lines of the proof of the con-
servativity result given in Section 9.6, Theorem 9.6.2. This proof uses the fact
that two closed BSP(A)-terms are bisimilar in the current setting if and only if
they are strongly bisimilar as defined in the standard framework of Chapter 3.
This last result follows from the observations that, in the underlying transition-
system space as introduced in this section, successful termination for a closed
BSP(A)-term is independent of the particular valuation of the propositional

10.2 Guarded commands 343

variables and that all transitions with the same action label originating from a
given state in the transition-system space end up in the same state.

Extension of theory (BSP + GC)(A) to larger theories, including the ex-
tension with recursion, does not present problems. Table 10.3 gives theory
(TCP + GC)(A, γ), which extends earlier theories (conservatively with re-
spect to closed terms) with axioms concerning the interplay between guarded
commands on the one hand, and sequential composition, encapsulation, or
parallel-composition operators on the other hand. In combination with Axiom
SC1, Axiom GC9, read from right to left, states that communication can only
occur if conditions guarding any of the communicating processes are satisfied.

Consideration should be given to the description of communication. If
γ (a, b) = c, then effect(c, v) should somehow denote the joint effect of the
execution of a and b given some valuation v. If the effects of a and b are
contradictory, then they should not be able to communicate, and so c cannot
be executed. In line with the earlier observation that theory (BSP + GC)(A)
can only be used to reason about the equivalence of processes that are equiv-
alent for all valuations of propositional variables in all states of the process,
it is necessary to require that a communication between actions a and b can
only occur if the effects of these two actions are consistent for all valua-
tions. Formally, for any pair of actions a and b, γ (a, b) is defined only if
effect(b, effect(a, v)) = effect(a, effect(b, v)) = effect(γ (a, b), v) for all val-
uations v ∈ BV . Table 10.4 shows the deduction rules of the operational
semantics of (TCP+GC)(A, γ) that are related to communication. For further
details, see Exercise 10.2.5.

(TCP + GC)(A, γ)
(BSP + GC)(A),TCP(A, γ);
-
x, y;

φ :→ (x · y) = (φ :→ x) · y GC7
φ :→ (x‖ y) = (φ :→ x)‖ y GC8
φ :→ (x | y) = (φ :→ x) | y GC9
φ :→ ∂H (x) = ∂H (φ :→ x) GC10

Table 10.3. The process theory (TCP + GC)(A, γ) (with φ ∈ FB, H ⊆ A).

Example 10.2.4 (Guarded commands) Consider a description of the behav-
ior of a spring. There are actions pull, release and break, and propositional
variables extended and malfunction. Action pull takes the variable extended
from false to true, and action release takes this value back from true to false.

344 Data and states

TDS((TCP + GC)(A, γ), effect)
TDS((BSP + GC)(A), effect);
unary: (∂H)H⊆A; binary: · , ‖ , ‖ , | ;
x, x ′, y, y′;

〈x, v〉 a→ 〈x ′, v′〉 〈y, v〉 b→ 〈y′, v′′〉 γ (a, b) = c

〈x ‖ y, v〉 c→ 〈x ′ ‖ y′, effect(c, v)〉

〈x, v〉 a→ 〈x ′, v′〉 〈y, v〉 b→ 〈y′, v′′〉 γ (a, b) = c

〈x | y, v〉 c→ 〈x ′ ‖ y′, effect(c, v)〉

· · ·

Table 10.4. Some operational rules from the term deduction system for
(TCP + GC)(A, γ) (with a, b, c ∈ A, v, v′, v′′ ∈ BV).

Action break can only occur when the spring is extended, and causes a mal-
function, changing the value of malfunction from false to true. The spring
can only be pulled again, if it has not yet malfunctioned. The spring pro-
cess can terminate successfully if the spring is not extended or broken. The
following recursive specification defines the process Spring with the use of a
recursion variable X . There is no communication in this example.

X = 1 + pull.release.(¬malfunction :→ X)

Spring = X ‖ (1 + extended :→ break.1).

When assuming the initial valuation that sets propositional variables extended
and malfunction to false, process Spring has the expected operational behavior
(see Exercise 10.2.4).

Exercises

10.2.1 Derive Axioms A3 and A6 from the other axioms of (BSP+GC)(A).
10.2.2 Draw the transition system for term t.(P :→ a.1 + ¬P :→ b.0).

Assume that P , t , and a are as defined in Example 10.2.1 (Transi-
tion systems of (BSP + GC)(A)-terms), and assume that b has no
effect on the value of propositional variable P . Establish, using Defi-
nition 10.2.3 (Bisimilarity), that the transition system is not bisimilar
to the transition system of term t.a.1, illustrated in Figure 10.1.

10.2.3 Consider the terms t.a.1‖ f.1 and t.(P :→ a.1)‖ f.1 discussed in Ex-
ample 10.2.2 (Guarded commands and equivalence of processes), and

10.3 The inaccessible process 345

assume that there is no communication. Draw the transition systems
for these two terms, and establish that they are not bisimilar.

10.2.4 Draw the transition system of the spring in Example 10.2.4 (Guarded
commands) for the concrete initial valuation that sets both variables
extended and malfunction to false. Give for each state the variables
that are true in that state.

10.2.5 Complete the term deduction system given in Table 10.4 for theory
(TCP+GC)(A, γ). Prove a soundness and ground-completeness re-
sult. Prove that all operators new in (TCP + GC)(A, γ) compared to
(BSP+GC)(A) can be eliminated and show that (TCP+GC)(A, γ)
is a conservative ground-extension of (BSP + GC)(A).

10.3 The inaccessible process

In the course of the explorations performed in the remainder of this chapter,
inconsistency of a state can be encountered. This section therefore introduces a
new constant⊥ that denotes an inaccessible state, a state that cannot be entered
by the execution of an action. Intuitively, this process denotes a state where
false holds. As false can never hold, this is a state that a process can never get
into. Sometimes, this process is called (rather contradictorily) the non-existent
process. Here, the name inaccessible process is used. The theory BSP⊥(A)
extends the theory BSP(A) with the extra constant ⊥ and adds two axioms.
Table 10.5 gives theory BSP⊥(A), BSP(A) with the inaccessible process. Ax-
iom IP1 explains that in an inaccessible state, it does not matter which extra
options are available, as the state will remain inaccessible; Axiom IP2 states
that an inaccessible state cannot be entered by executing an action, as the ac-
tion will be blocked in this case. BSP⊥(A) is a conservative ground-extension
of BSP(A); the inaccessible process cannot be eliminated.

BSP⊥(A)
BSP(A);
constant: ⊥;
x;

x +⊥ = ⊥ IP1
a.⊥ = 0 IP2

Table 10.5. The process theory BSP⊥(A) (with a ∈ A).

The term model for the basic process theory BSP⊥(A) is omitted. Instead,

346 Data and states

an operational semantics is given for an equational theory combining the inac-
cessible process and guarded commands.

Theory (BSP⊥ + GC)(A), the theory of basic sequential processes with the
inaccessible process and guarded commands, simply combines the signature
and axioms of theories (BSP + GC)(A) of Table 10.1 and BSP⊥(A) given
above. To give an operational semantics for (BSP⊥ + GC)(A), it is not only
necessary to consider valuations of propositional variables, as in the previous
section, but it is also necessary to take into account the consistency of states.
To do so, a transition-system space as introduced in the previous section is
equipped with the following additional set of predicates:

• A predicate 〈 , v〉 ↘ for each v ∈ BV , denoting the consistency of
the operand state for the given valuation.

In the transition-system space that underlies an operational semantics for a
process theory with the inaccessible process ⊥, predicates 〈 , v〉 ↘ are needed
to distinguish ⊥ from other processes. In the current context, consistency of
states does not depend on the valuation of propositional variables. All these
predicates hold for all processes that do not reduce to ⊥. Later in this chapter,
consistency does depend on the valuations.

Table 10.6 gives the term deduction system underlying the standard term
model for theory (BSP⊥ + GC)(A). Compared to the term deduction system
given for (BSP+GC)(A) in Table 10.2, Table 10.6 contains extra rules defining
the consistency predicates; furthermore, the deduction rules for the termination
predicates and the transition relations contain extra consistency requirements
in the premises, conforming to the intuition behind the inaccessible process.
For example, the rule defining the transition relation for action-prefix opera-
tors requires that the process resulting after performing the action should be
consistent, in line with Axiom IP2.

Because of the introduction of the consistency predicates, it is necessary to
reconsider the notion of bisimilarity.

Definition 10.3.1 (Bisimilarity) Assume a transition-system space with states
S over the set of labels A. A binary relation R on the set of states S is a bisim-
ulation relation if and only if it satisfies the transfer conditions of Definition
10.2.3 and the following additional conditions:

(v) whenever (s, t) ∈ R and 〈s, v〉 ↘ for some v ∈ BV , then 〈t, v〉 ↘;
(vi) whenever (s, t) ∈ R and 〈t, v〉 ↘ for some v ∈ BV , then 〈s, v〉 ↘.

As before, two transition systems s, t ∈ S are bisimilar, again denoted s↔t , if
and only if there is a bisimulation relation R on S with (s, t) ∈ R.

Exercises 347

TDS((BSP⊥ + GC)(A), effect)
constant: 0, 1,⊥; unary: (a.)a∈A, (φ :→)φ∈FB; binary: + ;
x, x ′, y, y′;

〈0, v〉 ↘ 〈1, v〉 ↘ 〈1, v〉↓

〈x, v′〉 ↘ v′ = effect(a, v)

〈a.x, v〉 a→ 〈x, v′〉 〈a.x, v〉 ↘

〈x, v〉 a→ 〈x ′, v′〉 〈y, v〉 ↘
〈x + y, v〉 a→ 〈x ′, v′〉

〈y, v〉 a→ 〈y′, v′〉 〈x, v〉 ↘
〈x + y, v〉 a→ 〈y′, v′〉

〈x, v〉↓ 〈y, v〉 ↘
〈x + y, v〉↓

〈y, v〉↓ 〈x, v〉 ↘
〈x + y, v〉↓

〈x, v〉 ↘ 〈y, v〉 ↘
〈x + y, v〉 ↘

〈x, v〉 ↘ v(φ) = true

〈φ :→ x, v〉 ↘
〈x, v〉 ↓ v(φ) = true

〈φ :→ x, v〉 ↓

〈x, v〉 a→ 〈x ′, v′〉 v(φ) = true

〈φ :→ x, v〉 a→ 〈x ′, v′〉
v(φ) = false

〈φ :→ x, v〉 ↘

Table 10.6. Term deduction system for (BSP⊥ + GC)(A) (with φ ∈ FB,
a ∈ A, v, v′ ∈ BV).

At this point, a term model of (BSP⊥+GC)(A) can be constructed along the
usual lines, for which (BSP⊥ +GC)(A) is a ground-complete axiomatization.
As in the previous section, the effect function is a parameter of this model.
Theory (BSP⊥ + GC)(A) does not allow any elimination results, but it is a
conservative ground-extension of theories BSP⊥(A) and (BSP + GC)(A).

Theory (BSP⊥ + GC)(A) can be extended to larger theories as usual. Table
10.7 gives theory (TCP⊥ + GC)(A, γ). As in the previous section, the com-
munication and effect functions should be defined in a consistent way. Further
details are left to the reader.

Exercises

10.3.1 Give an operational semantics for theory BSP⊥(A), based on a tran-
sition-system space without valuation predicates but with a (single)
consistency predicate.

10.3.2 Recall Proposition 5.5.14 (Guardedness). Consider theory BSP⊥(A)
with recursion. Prove that the unguarded recursive specification {X =
⊥+ X} has only one solution, for any action set A.

348 Data and states

(TCP⊥ + GC)(A, γ)
(TCP + GC)(A, γ),BSP⊥(A);
-
x;

⊥ · x = ⊥ IP3
⊥‖ x = ⊥ IP4
x‖ ⊥ = ⊥ IP5
⊥ | x = ⊥ IP6
∂H (⊥) = ⊥ IP7

Table 10.7. Theory (TCP⊥ + GC)(A, γ) (with H ⊆ A).

10.3.3 The inaccessible process ⊥ resembles to some extent the chaos pro-
cess τ ∗0 discussed in Section 8.7, that led to theory (BSP∗τ +CH)(A)
of Table 8.11 with a non-standard model developed in Exercise 8.7.6.
Compare the inaccessible process and the chaos process, by investi-
gating typical laws satisfied by these two processes.

10.4 Propositional signals

Building upon the concepts of conditionals and the inaccessible process of the
previous sections, this section describes a mechanism that allows to observe
aspects of the current state of a process in the equational theory. The central
assumption is that the visible part of the state of a process is a proposition,
an expression in propositional logic as defined in Notation 10.1.1. Such a
proposition representing the visible aspects of a process state is called a signal.
Conditionals are used to observe signals.

The introduction of the root-signal emission operator ∧� is done in Table
10.8. A term of the form φ∧�x represents the process x , that shows the signal
φ in its initial state.

Axiom RSE1 states that any process emits a true signal. A process emitting
a signal denotes that this signal holds in the initial state of the process. Fal-
sity never holds, so a state emitting false cannot occur, is inaccessible. This
explains RSE2, and shows the usefulness of the inaccessible process. (Tech-
nically, the inclusion of the inaccessible process in the theory is not strictly
necessary because its role can be taken over by a term such as false∧�0.) Ax-
iom RSE3 states that the inaccessible process does not emit any signals. Note
that Axiom RSE3 is derivable from the other axioms of (BSP⊥+RSE)(A) (see
Exercise 10.4.1).

Axiom RSE4 in Table 10.8 shows that the signals of a summand in an

10.4 Propositional signals 349

(BSP⊥ + RSE)(A)
(BSP⊥ + GC)(A);
unary: (φ∧�)φ∈FB;
x, y;

true∧�x = x RSE1
false∧�x = ⊥ RSE2
φ∧�⊥ = ⊥ RSE3
(φ∧�x)+ y = φ∧�(x + y) RSE4
φ∧�(ψ∧�x) = (φ ∧ ψ)∧�x RSE5
φ :→ (ψ∧�x) = (φ ⊃ ψ)∧�(φ :→ x) RSE6
φ∧�(φ :→ x) = φ∧�x RSE7

Table 10.8. The process theory (BSP⊥ + RSE)(A) (with φ,ψ ∈ FB).

alternative composition carry over to the whole process. It can be given in
a more symmetric form as follows:

(φ∧�x)+ (ψ ∧�y) = (φ ∧ ψ) ∧�(x + y) .

This identity depends on the fact that the roots of two processes in an alterna-
tive composition are identified. Therefore, signals must be combined. Exercise
10.4.2 shows that this generalized version of Axiom RSE4 is derivable from
the theory. It is straightforward to show that the general identity implies Ax-
iom RSE4 as given in Table 10.8. Also notice that Axiom IP1, given in Table
10.5, is derivable from RSE4.

Axiom RSE5 expresses the fact that there is no sequential order in the pre-
sentation of signals. The combination of the signals is taking both of them.

As an example, consider the following derivation:

(BSP⊥ + RSE)(A) �
a.((φ∧�x)+ (¬φ∧�x)) = a.((φ ∧ ¬φ)∧�x) =

a.(false∧�x) = a.⊥ = 0.

Axiom RSE6 expresses how to take a signal outside of a conditional: signal
ψ is only emitted if condition φ is true. The last axiom, RSE7, is the signal
inspection rule. It says that a conditional can be removed if the state emits a
signal that validates the conditional. In other words, if a signal φ is emitted,
then φ holds in the current state and a conditional with guard φ can be removed.
Note that RSE7 can be generalized as follows:

(BSP⊥ + RSE)(A) �
φ∧�((φ ∧ ψ) :→ x) = φ∧�(φ :→ (ψ :→ x)) = φ ∧�(ψ :→ x) .

An interesting identity that follows from the theory is the following:

350 Data and states

Proposition 10.4.1 (Signals) (BSP⊥ + RSE)(A) � φ∧�x = (φ∧�0)+ x .

Proof Exercise 10.4.2.

The equation in Proposition 10.4.1 is very useful for writing process speci-
fications because it allows to a large extent to work with algebraic expressions
that are not cluttered with signal emissions. It provides the basis for a notion of
basic terms, as introduced before in Chapters 2 and 9. Only the inaction con-
stant emits a signal in basic terms. As conditions, only propositional formulas
different from false are allowed. This guarantees that all actions and termina-
tions occurring in a term can actually be executed at some point. Signal false
is allowed as a signal emitted by the 0 constant. By doing so, it is possible to
represent ⊥ as false∧�0.

Definition 10.4.2 (Basic (BSP⊥ + RSE)(A)-terms) The set of basic (BSP⊥+
RSE)(A)-terms is defined inductively:

(i) if φ ∈ FB, then φ∧�0 is a basic term;
(ii) if φ is not equivalent to false, then φ :→ 1 is a basic term;

(iii) if φ is not equivalent to false, if a ∈ A and if t is a basic (BSP⊥ +
RSE)(A)-term, then φ :→ a.t is a basic term;

(iv) if s, t are basic terms, then s + t is a basic term.

Each basic term can be written in the form

χ ∧�0 +
n∑

i=1

φi :→ ai .ti + (ψ :→ 1),

where n ≥ 0, where χ ∈ FB is an arbitrary propositional formula, conditions
φi and ψ are formulas all different from false, where all ai ∈ A and all ti are
basic terms, and where the termination term may or may not occur (as denoted
via the parentheses).

As before, an elimination result can be proven. The proof uses Proposition
10.4.1 (Signals) and the lemma given below. Note that it is not possible to
eliminate signals entirely. Theory (BSP⊥ +RSE)(A) does in general not have
any means to remove signals that do not resolve to true or false.

Proposition 10.4.3 (Reduction to basic terms) For any closed (BSP⊥ +
RSE)(A)-term p, there exists a basic (BSP⊥ + RSE)(A)-term q such that
(BSP⊥ + RSE)(A) � p = q .

Proof Exercise 10.4.3.

10.4 Propositional signals 351

Lemma 10.4.4 (BSP⊥ + RSE)(A) � φ :→⊥ = ¬φ∧�0.

Proof

(BSP⊥ + RSE)(A) �
φ :→⊥ = φ :→ (false∧�0) = (φ ⊃ false)∧�(φ :→ 0) =

¬φ ∧�0 .

(BSP⊥+RSE)(A) is a conservative ground-extension of (BSP⊥+GC)(A).
The next step is to look at an operational semantics. Table 10.9 presents

the term deduction system for (BSP⊥ +RSE)(A), which builds upon the term
deduction system of (BSP⊥ + GC)(A) that is given in Table 10.6. It has an
effect function as a parameter, and besides transition and termination predi-
cates, it contains a consistency predicate, as explained in the previous section.
The rules are straightforward: in order to execute an action, terminate or be
consistent in a certain state, the signal emitted in that state must evaluate to
true. The development of a term model for which (BSP⊥ + RSE)(A) is a
ground-complete axiomatization goes along the usual lines.

TDS((BSP⊥ + RSE)(A), effect)
TDS((BSP⊥ + GC)(A), effect);
unary: (φ∧�)φ∈FB;
x, x ′;

〈x, v〉 a→ 〈x ′, v′〉 v(φ) = true

〈φ∧�x, v〉 a→ 〈x ′, v′〉
〈x, v〉↓ v(φ) = true

〈φ∧�x, v〉↓
〈x, v〉 ↘ v(φ) = true

〈φ∧�x, v〉 ↘

Table 10.9. Term deduction system for (BSP⊥ + RSE)(A) (with φ ∈ FB,
a ∈ A, v, v′ ∈ BV).

Extensions follow the usual pattern. The next example shows a stack speci-
fication, using (BSP⊥ + RSE)(A) extended with recursion.

Example 10.4.5 (Stack) The specification of the stack from Section 5.6 can
be modified with signals empty and ontop(d) for all d ∈ D that show the top
of the stack.

Stack1 = Sε,
Sε = empty ∧�1 + ∑

d∈D
push(d).Sd , and, for all d ∈ D, σ ∈ D∗,

Sdσ = ontop(d) ∧�pop(d).Sσ + ∑
e∈D

push(e).Sedσ .

352 Data and states

The extension of (BSP⊥ + RSE)(A) with sequential composition also does
not present difficulties. Axioms are presented in Table 10.10, and operational
rules in Table 10.11. The operational rules reflect that, if x may terminate
immediately, also y must be considered in order to establish consistency of
x · y. The format of the operational deduction rules used in this book up to
this point is left in the term deduction system for (TSP⊥ + RSE)(A): the last
rule shows a so-called negative premise; the negation of a predicate is used.
Nevertheless, by an extension of the theory in Chapter 3, it can be established
that these rules determine a unique transition system for each closed term. The
details of creating a model for which equational theory (TSP⊥ + RSE)(A)
is ground-complete, are not treated here. The interested reader is referred to
(Baeten & Bergstra, 1997), where such a model is developed in a slightly dif-
ferent operational context. For the development of meta-theory in the style of
Chapter 3 that allows to establish a standard term model for which the theory
is ground-complete, see (Verhoef, 1994).

(TSP⊥ + RSE)(A)
(BSP⊥ + RSE)(A),TSP(A);
-
x, y;

⊥ · x = ⊥ IP3
φ :→ (x · y) = (φ :→ x) · y GC7
φ∧�(x · y) = (φ∧�x) · y RSE8

Table 10.10. The process theory (TSP⊥ + RSE)(A) (with φ ∈ FB).

TDS((TSP⊥ + RSE)(A), effect)
TDS((BSP⊥ + RSE)(A), effect);
binary: · ;
x, x ′, y, y′ :

〈x, v〉 a→ 〈x ′, v′〉 〈x ′ · y, v′〉 ↘
〈x · y, v〉 a→ 〈x ′ · y, v′〉

〈x, v〉↓ 〈y, v〉 a→ 〈y′, v′〉
〈x · y, v〉 a→ 〈y′, v′〉

〈x, v〉↓ 〈y, v〉↓
〈x · y, v〉↓

〈x, v〉↓ 〈y, v〉 ↘
〈x · y, v〉 ↘

〈x, v〉 ↘ 〈x, v〉�↓
〈x · y, v〉 ↘

Table 10.11. Term deduction system for (TSP⊥ + RSE)(A) (with a ∈ A,
v, v′ ∈ BV).

In line with before, occurrences of the sequential-composition operator can

10.4 Propositional signals 353

be eliminated from closed (TSP⊥+RSE)(A)-terms, yielding (basic) (BSP⊥+
RSE)(A)-terms. The ground-extension is conservative.

With the addition of parallel composition, the mechanism of signal obser-
vation can be discussed. A process can synchronize with a process running
in parallel by using conditionals that test signals emitted by the other process.
This provides a new synchronization mechanism, besides the already known
communication mechanism. Additional axioms are presented in Table 10.12
and explained below. As earlier in this chapter, the communication function γ
needs to be defined in a way that is consistent with the effect function that is a
parameter in the operational semantics.

(BCP⊥ + RSE)(A, γ)
(BSP⊥ + RSE)(A),BCP(A, γ);
unary: rs;
x, y;

(φ :→ x)‖ y = φ :→ (x‖ y) GC8
(φ :→ x) | y = rs(y)+ φ :→ (x | y) GC9S
∂H (φ :→ x) = φ :→ ∂H (x) GC10

(φ∧�x)‖ y = φ∧�(x‖ y) RSE9
(φ∧�x) | y = φ∧�(x | y) RSE10
∂H (φ∧�x) = φ∧�∂H (x) RSE11

rs(⊥) = ⊥ RS1
rs(1) = 0 RS2
rs(0) = 0 RS3
rs(a.x) = 0 RS4
rs(x + y) = rs(x)+ rs(y) RS5
rs(φ :→ x) = φ :→ rs(x) RS6
rs(φ∧�x) = φ∧�rs(x) RS7

Table 10.12. The process theory (BCP⊥ + RSE)(A) (with a ∈ A, H ⊆ A,
φ ∈ FB).

Besides the three usual parallel-composition operators and encapsulation
operators needed to enforce communication, theory (BCP⊥ + RSE)(A) has
one additional auxiliary operator, the root-signal operator rs, that essentially
reduces a term to the signal it emits. It allows to reduce any closed term to a
term of the form φ∧�0 for some propositional formula φ.

The additional RSE axioms in (BCP⊥+RSE)(A) are self-explanatory. Note
that Axiom RSE10 states that a signal emitted by one process of a pair of com-
municating processes is also emitted by the pair of communicating processes
as a whole.

354 Data and states

Two of the three guarded-command axioms appear in Table 10.3 in a con-
text without signals as well (although here these axioms are presented with
their left- and right-hand sides exchanged when compared to Table 10.3). Ax-
iom GC9S replaces Axiom GC9 from Table 10.3 in a context with signals.
Axiom GC9 states that a communication can only occur if conditions guard-
ing any of the communicating processes are satisfied. Axiom GC9S states in
addition that the signals emitted by any of the communicating processes re-
main visible at all times, even when a condition of one of the communicating
processes is false (which effectively prevents communication).

Example 10.4.6 (Signal observation) A simple example of signal observa-
tion is the following. A process executing an action a that changes the value
of a propositional variable P from true to false, and emitting this fact, can be
specified as follows:

P ∧�a .(¬P ∧�1).

A process in parallel can observe these signals, and make progress dependent
on them. Consider the following process, to be executed in parallel with the
above process.

P :→ b.(¬P :→ 1).

If in the parallel composition a is executed first, then deadlock will ensue. If
b is executed first, then termination can be reached. Assume a and b cannot
communicate.

(BCP⊥ + RSE)(A) �
P ∧�a .(¬P ∧�1) ‖ P :→ b.(¬P :→ 1)

= P ∧�a .(¬P ∧�1)‖ P :→ b.(¬P :→ 1)
+ P :→ b.(¬P :→ 1)‖ P ∧�a .(¬P ∧�1)
+ P ∧�a .(¬P ∧�1) | P :→ b.(¬P :→ 1)

= P ∧�(a.(¬P ∧�1)‖ P :→ b.(¬P :→ 1))
+ P :→ (b.(¬P :→ 1)‖ P ∧�a .(¬P ∧�1))
+ P ∧�0

= P ∧�a .(¬P ∧�1 ‖P :→ b.(¬P :→ 1))
+ P ∧�P :→ b .(¬P :→ 1 ‖ P ∧�a .(¬P ∧�1))

= P ∧�a .(¬P ∧�0 +P :→ b.(¬P :→ 1 ‖ ¬P ∧�1)+¬P ∧�0)
+ P ∧�b .(¬P :→ (1‖ P ∧�a .(¬P ∧�1))

+ P ∧�a .(¬P ∧�1 ‖¬P :→ 1)+ P ∧�0)
= P ∧�a .(¬P ∧�P :→ b .(¬P :→ 1 ‖ ¬P ∧�1))

+ P ∧�b .(¬P :→ 0
+ P ∧�a .(¬P ∧�0 +¬P :→ 0 +¬P ∧�¬P :→ 1))

= P ∧�a .(¬P ∧�0)+ b.(P ∧�a .(¬P ∧�1)).

10.4 Propositional signals 355

Note that this example illustrates that signal observation provides an asyn-
chronous communication and synchronization mechanism, as opposed to the
synchronous mechanism provided via the communication merge and commu-
nication function.

Theory (BCP⊥ + RSE)(A, γ) admits an elimination result. Closed terms
can be rewritten into (basic) (BSP⊥ + RSE)(A)-terms. The ground-extension
is furthermore conservative.

Using the elimination result, it is possible to determine the root signal of
arbitrary closed (BCP⊥ + RSE)(A, γ)-terms. The root signal of a basic term
as defined in Definition 10.4.2 (Basic (BSP⊥ + RSE)(A)-terms) is the signal
χ in the format given in that definition. Applying the root-signal operator
to such a basic term results in term χ ∧�0. Exercise 10.4.8 illustrates several
identities that can be derived for the root-signal operator. As a note aside, it
is interesting to observe that there is no such simple identity for sequential
composition (when that operator is added to the theory), see Exercise 10.4.10.
The root signal emitted by a sequential composition is the signal emitted by
the first operand of the composition, unless this term can terminate, in which
case the root signal of the composition is the conjunct of the signals emitted
by the two operands.

Some of the additional operational rules underlying the term model for pro-
cess theory (BCP⊥ + RSE)(A, γ) are presented in Table 10.13, namely the
rules for the merge and root-signal operators. Note that only one rule is nec-
essary for the root-signal operator, which defines the consistency predicate.
The absence of any other rules illustrates that a ‘root-signal process’ cannot
perform any actions nor terminate successfully.

Example 10.4.7 (Signal observation: a traffic light) A more realistic exam-
ple of signal observation than the example given in Example 10.4.6 is a traffic
light, or, more precisely, the interaction between a car driver and a traffic light.
Assume a set of propositional variables {red, yellow, green}. The following
specification defines a (Dutch) traffic light, as it is observed by a passing car
driver. The latter explains the termination options in the specification, signify-
ing the option to stop observing the traffic light.

TLr = (red ∧ ¬yellow ∧ ¬green)∧�(1 + change.TLg),

TLy = (¬red ∧ yellow ∧ ¬green)∧�(1 + change.TLr),

TLg = (¬red ∧ ¬yellow ∧ green) ∧�(1 + change.TLy) .

The following specifies a careful car driver that (initially) stops not only at a
red light, but also at a yellow light.

356 Data and states

TDS((BCP⊥ + RSE)(A, γ), effect)
TDS((BSP⊥ + RSE)(A), effect);
unary: rs, (∂H)H⊆A; binary: ‖ , ‖ , | ;
x, x ′, y, y′;

〈x, v〉 a→ 〈x ′, v′〉 〈y, v〉 ↘ 〈y, v′〉 ↘
〈x ‖ y, v〉 a→ 〈x ′ ‖ y, v′〉

〈x, v〉 a→ 〈x ′, v′〉 〈y, v〉 b→ 〈y′, v′′〉 γ (a, b) = c
〈x ′ ‖ y′, effect(c, v)〉 ↘

〈x ‖ y, v〉 c→ 〈x ′ ‖ y′, effect(c, v)〉

〈x, v〉↓ 〈y, v〉↓
〈x ‖ y, v〉↓

〈x, v〉 ↘ 〈y, v〉 ↘
〈x ‖ y, v〉 ↘

· · ·

〈x, v〉 ↘
〈rs(x), v〉 ↘

· · ·

Table 10.13. Term deduction system for (BCP⊥ + RSE)(A, γ) (with
a, b, c ∈ A, v, v′, v′′ ∈ BV).

CD = approach.(green :→ drive.1
+¬green :→ stop.(green :→ start.(¬red :→ drive.1))).

Expression TLr ‖ CD now describes the expected interaction between an ini-
tially red traffic light and an approaching driver. There is no communication.
The transition system is shown in Figure 10.3. States are aligned in rows, ac-
cording to the color of the traffic light. The colors are of course red, yellow,
and green, reading from top to bottom. Signals are not shown. Action change
changes the values of the propositional values as expected. Other actions do
not affect these values.

Example 10.4.8 (Communication and signal observation) For a slightly
more elaborate example, that illustrates the trade-off between (synchronous)
communication and (asynchronous) signal observation, reconsider the com-
municating buffers of Section 7.6, illustrated in Figure 7.3. The original
specification describes two one-place buffers communicating over ports i and
l, and l and o, respectively. The parallel composition gives a two-place buffer

10.4 Propositional signals 357

approach

approach

approach

stop

stop

drive

start

drive

drive

change

change

change

change

change

change

change

change

change

change

change

change

change

change

change

Fig. 10.3. The interaction between a traffic light and a car driver.

with ports i and o, when enforcing communication over the internal port l.
The following specification adds signals that show the contents of the two one-
place buffers at their respective output ports.

BSil = showl∅∧�(1 + ∑
d∈D

i?d.(showld∧�l!d.BSil)),

BSlo = showo∅ ∧�(1 + ∑
d∈D

l?d.(showod∧�o!d.BSlo)) .

It is now possible to repeat the derivations for the two-place buffer of Sec-
tion 7.6, with the only difference that the content of the buffers is visible over
ports l and o.

Signals as used in the above specification allow moving the parameter d
in the actions and communications to a signal observation. Define the action
set as {p?, p!, p!? | p ∈ {i, l, o}}. Assume there is only one communication,
namely γ (l?, l!) = l!?. Consider the following specification.

BS2il = showl∅∧�(1 + ∑
d∈D

showi d :→ i?.(showld ∧�l! .BS2il)),

BS2lo = showo∅ ∧�(1 + ∑
d∈D

showld :→ l?.(showod ∧�o! .BS2lo)) .

Assume furthermore that all of the basic signals are exclusive, i.e., the follow-
ing signal is an invariant in the above processes:∧

p∈{i,l,o}((showp∅ ⊃∧
d∈D ¬showpd)

∧∧d∈D(showpd ⊃ (¬showp∅ ∧∧e∈D\{d} ¬showpe))).

Note that this can be achieved by adding the signal as a conjunct to all of the
signals shown in the specifications. The invariant is omitted from the specifi-
cations for readability.

358 Data and states

The process ∂H (BS2il‖BS2lo), with H = {l?, l!}, now again specifies a two-
place buffer. Note that this two-place buffer can only perform input actions
under the condition that showi d is satisfied. This condition makes explicit that
the environment is expected to provide data to the buffer.

In order to get rid of the last remaining communication, intuitively two
extra signals per port are needed, because the original communication is
synchronous, whereas signal observations are asynchronous. The rdy (ready)
signals in the following specifications indicate that a buffer is ready to receive
a value over its input port; the flg (flag) signals indicate that a buffer is ready
to provide an output over the indicated port. The specifications use actions
in and out for obtaining input and providing output. These actions modify
the ready and flag signals as appropriate. Reset actions are included in the
specifications to reset signals to their original settings after an output has been
acknowledged by the environment. None of the actions can communicate.
Observe that the specifications do not allow simultaneous inputs and outputs.
Specification BS3lo, for example, requires ¬flgl to hold before it can perform
an outo.

BS3il = (rdyi ∧ showl∅ ∧ ¬flgl)
∧�(

1 + ∑
d∈D (flgi ∧ showi d) :→ ini .

(¬rdyi ∧ showld ∧ flgl)
∧�(rdyl ∧ ¬flgi) :→ outl .

(¬rdyi ∧ showld ∧ flgl)
∧�(¬rdyl :→ resetl .BS3il)),

BS3lo = (rdyl ∧ showo∅ ∧ ¬flgo)
∧�(

1 + ∑
d∈D (flgl ∧ showld) :→ inl .

(¬rdyl ∧ showod ∧ flgo)
∧�(rdyo ∧ ¬flgl) :→ outo .

(¬rdyl ∧ showod ∧ flgo)
∧�(¬rdyo :→ reseto.BS3lo)).

Assuming as before the invariant mentioned above, it can again be shown that
the parallel composition behaves as a two-place buffer.

As a final observation, note that the flag and ready signals in the above speci-
fications are technically redundant. It is possible to encode the synchronization
behavior with the existing show signals; see Exercise 10.4.14.

Observe from the various examples given so far that synchronization be-
tween signals is enforced via the signal names. In a more general setting, one
could consider a signal communication function that relates signals that are ex-
pected to match. In the buffers example, for example, it would then be possible
to connect buffers with arbitrary ports, stating that port p is connected to port
q for arbitrary p and q . Furthermore, note that in the above buffers example,
communications over internal ports are visible. To abstract from those internal
actions, the present theory needs to be extended with abstraction as considered

Exercises 359

in Chapter 8. Both extensions do not present problems, and are not treated
here.

It is also desirable to have a means to abstract from signals at internal ports,
to hide those typically meaningless signals from an external observer. This
section is concluded by describing a mechanism for signal hiding. Notation
P�x denotes that propositional variable P is hidden in process expression x .

Table 10.14 gives axioms for signal hiding, leading to theory (BSP⊥ +
SHD)(A). The essential idea is that a propositional variable that is hidden
is replaced by both true and false, which are the two values that it can possi-
bly take. Axioms SHD2–5 follow the structure of basic terms (see Definition
10.4.2), with additional signal emissions in Axioms SHD2–4, for which the
reason is explained below. Axiom SHD1 states the effect of signal hiding on
the inaccessible process. Since ⊥ is derivably equal to false∧�0, Axiom SHD1
is derivable from the other axioms of the theory using Axiom SHD2.

The crucial axiom in theory (BSP⊥ + SHD)(A) is Axiom SHD5. It states
that signal hiding distributes over choice when preserving the root signal of
the two alternatives. This is in line with the fact that signals emitted by al-
ternatives of a process carry over to the process as a whole. Axiom SHD5
is the reason that it is necessary to include the root-signal operator of the-
ory (BCP⊥ + RSE)(A, γ) in the current theory, with the same axioms. The
presence of the root-signal terms in Axiom SHD5 is also the reason why it
is necessary to explicitly add signals in the left-hand sides of Axioms SHD2–
4. Without those signals, it would not be possible to eliminate signal-hiding
operators from (closed) terms involving choices.

As a final remark, note that after an action is executed, both options to re-
place a propositional variable by true or false must be included again, as signals
are not persistent.

The following is a simple example of a calculation.

(BSP⊥ + SHD)(A) � P�(a.(P ∧�1)+ a.(¬P ∧�1))
= a.(true∧�true :→ 1)+ a.(true∧�true :→ 1) = a.1.

The term deduction system in Table 10.15 reflects that the value of a propo-
sitional variable in a state does not matter when it is hidden.

Exercises

10.4.1 Show that Axioms IP1, x + ⊥ = ⊥, and RSE3, φ∧�⊥ = ⊥, are
derivable from the other axioms of theory (BSP⊥ + RSE)(A).

10.4.2 Show that the following identities are derivable from theory (BSP⊥+
RSE)(A):

360 Data and states

(BSP⊥ + SHD)(A)
(BSP⊥ + RSE)(A);
unary: rs, (P�)P∈P;
x, y;

P�⊥ = ⊥ SHD1
P�(φ∧�0) = (φ[true/P] ∨ φ[false/P])∧�0 SHD2
P�(φ∧�ψ :→ 1) = (φ[true/P] ∨ φ[false/P])∧� SHD3
((φ ∧ ψ)[true/P] :→ 1 + (φ ∧ ψ)[false/P] :→ 1)

P�(φ∧�ψ :→ a.x) = (φ[true/P] ∨ φ[false/P])∧� SHD4
((φ ∧ ψ)[true/P] :→ a.(P�x)
+(φ ∧ ψ)[false/P] :→ a.(P�x))

P�(x + y) = P�(rs(y)+ x)+ P�(rs(x)+ y) SHD5

rs(⊥) = ⊥ RS1
rs(1) = 0 RS2
rs(0) = 0 RS3
rs(a.x) = 0 RS4
rs(x + y) = rs(x)+ rs(y) RS5
rs(φ :→ x) = φ :→ rs(x) RS6
rs(φ∧�x) = φ∧�rs(x) RS7

Table 10.14. The process theory BSP(A) with signal hiding (with φ,ψ ∈ FB
and P ∈ P a propositional variable).

(a) φ∧�x = (φ∧�0)+ x ;

(b) (φ∧�x)+ (ψ ∧�y) = (φ ∧ ψ)∧�(x + y).

10.4.3 Prove Proposition 10.4.3 (Reduction to basic terms).

10.4.4 Prove that theory (BSP⊥ + RSE)(A) is a conservative ground-
extension of theory (BSP⊥ + GC)(A).

10.4.5 Modify the specification of the stack in Example 10.4.5 (Stack) so
that the top element is only shown when an action top is executed.
Executing actions top and pop(d) on an empty stack will cause an
error signal to be emitted. Give different variants of the stack, where
an error leads to deadlock, or to a state of underflow from which re-
covery is possible by execution of a push action.

10.4.6 Show that equation ⊥ ‖ x = ⊥ is derivable from theory (BCP⊥ +
RSE)(A, γ).

10.4.7 Show that equation φ∧�x‖y = φ∧�(x ‖ y) is not derivable from theory
(BCP⊥ + RSE)(A, γ).

10.4.8 Prove that, for any closed (BCP⊥ + RSE)(A, γ)-terms p and q and
any H ⊆ A, the following identities for the root-signal operator are
derivable from theory (BCP⊥ + RSE)(A, γ):

Exercises 361

TDS((BSP⊥ + SHD)(A), effect)
TDS((BSP⊥ + RSE)(A), effect);
unary: rs, (P�)P∈P;
x, x ′;

〈x, v[true/P]〉 a→ 〈x ′, v′〉
〈P�x, v〉 a→ 〈P�x ′, effect(a, v)〉

〈x, v[false/P]〉 a→ 〈x ′, v′〉
〈P�x, v〉 a→ 〈P�x ′, effect(a, v)〉

〈x, v[true/P]〉↓
〈P�x, v〉↓

〈x, v[false/P]〉↓
〈P�x, v〉↓

〈x, v[true/P]〉 ↘
〈P�x, v〉 ↘

〈x, v[false/P]〉 ↘
〈P�x, v〉 ↘

〈x, v〉 ↘
〈rs(x), v〉 ↘

Table 10.15. Term deduction system for (BSP⊥ + SHD)(A) (with a ∈ A,
v, v′ ∈ BV , and P ∈ P).

(a) rs(p | q) = rs(q)+ rs(q);
(b) rs(p‖ q) = rs(p);
(c) rs(p ‖ q) = rs(p)+ rs(q);
(d) rs(∂H (p)) = rs(p).

10.4.9 Prove that, for any closed (BCP⊥ + RSE)(A, γ)-term p, (BCP⊥ +
RSE)(A, γ) � rs(p) = φ∧�0, for some φ ∈ FB.

10.4.10 Show that both rs(x · y) = rs(x) + rs(y) and rs(x · y) = rs(x)
are not derivable from theory (TCP⊥ + RSE)(A, γ) (i.e., (BCP⊥ +
RSE)(A, γ) extended with sequential composition), not even for
closed terms.

10.4.11 Give details for the construction of term models for the various equa-
tional theories introduced in this section. Investigate elimination,
soundness, ground-completeness, and conservativity.

10.4.12 Derive a recursive specification in (BCP⊥ + RSE)(A, γ) for the pro-
cess TLr ‖ CD of Example 10.4.7 (Signal observation: traffic light).
Also make the effect function specifying the effect of actions on val-
uations of propositional variables explicit.

10.4.13 Derive recursive specifications in (BCP⊥ + RSE)(A, γ) for the three
buffer processes ∂H (BSil ‖ BSlo) (with H = {l?d, l!d | d ∈ D}),
∂H (BS2il ‖ BS2lo) (with H = {l?, l!}) and BS3il ‖ BS3lo of Exam-
ple 10.4.8 (Communication and signal observation). Make the effect
function specifying the effect of actions on valuations of propositional
variables explicit, and draw a transition system for each of the three

362 Data and states

processes. Finally, apply signal hiding, to hide all signals in the re-
sulting specifications.

10.4.14 Give an alternative specification for the buffer processes BS3il and
BS3lo of Example 10.4.8 (Communication and signal observation)
that does not use communication or any of the flag or ready signals.
That is, encode all the required synchronization in the show signals.
Show that the alternative specifications when put in parallel yield the
same result as BS3il ‖ BS3lo.

10.5 State operators

So far in this chapter, the state a process is in is not visible completely, is not
directly accessible in the equational theory. The state is only visible through
validity of propositional formulas, the emitted signals. In the operational se-
mantics, the state is modeled by means of a valuation, that gives the value of
all data variables. In this section, process states are modeled more explicitly
in the equational theory, by means of a parameter attached to a unary operator,
resulting in the class of so-called state operators.

First of all, suppose that a state space S is given. This set is left unspec-
ified, but could consist of valuations of variables. Let us assume there is a
special state ⊥ ∈ S that denotes the inaccessible state. Further, there are three
functions:

(i) A signal function sig : S → FB, that denotes the signal that is emitted
in the state. Always, it is required that sig(⊥) = false. If it is not
necessary to use signals in a particular setting, sig(s) = true can be
stipulated for all s ∈ S \ {⊥}.

(ii) A function effect : A×S → S, that denotes the resulting state if a ∈ A
is executed in state s ∈ S. If effect(a, s) = ⊥, then a is blocked,
cannot be executed in state s; effect(a,⊥) = ⊥, for all a ∈ A.

(iii) A function action : A × S → A, which is a generalization of a
renaming function. It denotes the action that can be observed if a ∈ A
is executed in state s ∈ S. Usually, this function can be taken to be
trivial, i.e., action(a, s) = a can be defined for all a ∈ A, s ∈ S.

In some applications, it is useful to use more than one state operator in
a specification. For this reason, a state operator takes a second parameter.
Process λm

s (x) denotes that machine m executes program x and is currently
in state s, where the machine m is a 4-tuple of the state set and the functions
introduced above. That is, m = (S, sig, effect, action). Let M be the set of all

10.5 State operators 363

machines (for the given action set A). The equational theory for state operators
is presented in Table 10.16.

(BSP + SO)(A)
(BSP⊥ + RSE)(A);
unary: (λm

s)m=(S,sig,effect,action)∈M,s∈S;
x, y;

λm
s (⊥) = ⊥ SO1
λm⊥(x) = ⊥ SO2
λm

s (0) = sig(s)∧�0 SO3
λm

s (1) = sig(s)∧�1 SO4
λm

s (a.x) = sig(s) ∧�action(a, s) .λm
effect(a,s)(x) SO5

λm
s (x + y) = λm

s (x)+ λm
s (y) SO6

λm
s (φ :→ x) = sig(s)∧�φ :→ λm

s (x) SO7
λm

s (φ
∧�x) = φ∧�λm

s (x) SO8

Table 10.16. The process theory (BSP + SO)(A) (with a ∈ A, φ ∈ FB and
s ∈ S \ {⊥}).

Operational rules are presented in Table 10.17. Observe that the effect func-
tion is no longer a parameter of the operational semantics, because it is part of
the equational theory. The development of a term model for which the equa-
tional theory is sound and ground-complete goes as before. Also extensions
go along the usual lines. The machine superscript is omitted when it is clear
from the context.

TDS((BSP + SO)(A))
TDS((BSP⊥ + RSE)(A), effect);
unary: (λm

s)m=(S,sig,effect,action)∈M,s∈S;
x, x ′;

〈sig(s)∧�x, v〉 a→ 〈x ′, v′〉
b = action(a, s) s′ = effect(a, s) v′(sig(s′)) = true

〈λm
s (x), v〉 b→ 〈λm

s′ (x
′), v′〉

〈sig(s)∧�x, v〉↓
〈λm

s (x), v〉↓
〈sig(x)∧�x, v〉 ↘
〈λm

s (x), v〉 ↘

Table 10.17. Term deduction system for (BSP + SO)(A) (with a, b ∈ A,
s′ ∈ S, v, v′ ∈ BV).

364 Data and states

Example 10.5.1 (Stack) As an example, another specification is presented of
the stack of Section 5.6. The state space consists of the possible contents of the
stack, so sequences in D∗, with D the set of data elements. The signal function
sig should at least show whether or not the stack is empty, but can also show
the top element of the stack (as in Example 10.4.5 (Stack)); the action function
is trivial and does not rename any actions, and the effect function is given by:

effect(push(d), σ) = σd , for all σ ∈ D∗, d ∈ D;
effect(pop, ε) = ⊥;
effect(pop, σd) = σ , for all σ ∈ D∗, d ∈ D.

The specification of the stack is now given by:

Stack = λε(X),
X = empty :→ 1 + pop.X + ∑

d∈D
push(d).X.

This section is concluded with a more involved example, that is difficult to
describe without the use of state operators.

Example 10.5.2 (Buffers) In this example, two buffers A and B with data
from the finite set D are maintained. Both buffers have capacity k > 1. The
process to be defined allows to read data into both buffers in a concurrent
mode. For both buffers A and B, there are two propositional variables: emptyA

indicates that A is empty (likewise for B), and openA indicates that there is still
room in A (likewise for B). When both buffers have been loaded, the process
C compares the contents of the buffers. The comparison will output value
true if the buffers were equal and false otherwise. Thereafter, the buffers are
made empty again and the process restarts. The system is described in a top-
down fashion, first explaining the overall architecture and then completing the
details.

SYS = λ〈ε,ε〉(A ‖ B ‖ C).

The state consists of the contents of the pair of buffers A and B. Initially, both
are empty. The signals produced by a state 〈α, β〉 are given by the following
signal function. Let |σ | denote the length of a sequence σ .

sig(〈α, β〉) = emptyA ∧ openA ∧ emptyB ∧ openB ,
if |α| = 0 = |β|;

sig(〈α, β〉) = emptyA ∧ openA ∧ ¬emptyB ∧ openB ,
if |α| = 0 and 0 < |β| < k;

sig(〈α, β〉) = ¬emptyA ∧ openA ∧ emptyB ∧ openB ,
if 0 < |α| < k and |β| = 0;

Exercises 365

sig(〈α, β〉) = ¬emptyA ∧ openA ∧ ¬emptyB ∧ openB,

if 0 < |α| < k and 0 < |β| < k;
sig(〈α, β〉) = emptyA ∧ openA ∧ ¬emptyB ∧ ¬openB ,

if |α| = 0 and |β| = k;
sig(〈α, β〉) = ¬emptyA ∧ ¬openA ∧ emptyB ∧ openB ,

if |α| = k and |β| = 0;
sig(〈α, β〉) = ¬emptyA ∧ openA ∧ ¬emptyB ∧ ¬openB ,

if 0 < |α| < k and |β| = k;
sig(〈α, β〉) = ¬emptyA ∧ ¬openA ∧ ¬emptyB ∧ openB ,

if |α| = k and 0 < |β| < k;
sig(〈α, β〉) = ¬emptyA ∧ ¬openA ∧ ¬emptyB ∧ ¬openB ,

if |α| = k and |β| = k.

The processes A, B, and C are defined as follows. Processes A and B use
receive actions over ports a and b, and C uses a compare action, as expected.

A = emptyA :→ 1 + openA :→ ∑
d∈D

a?d.A,

B = emptyB :→ 1 + openB :→ ∑
d∈D

b?d.B,

C = 1 +¬openA ∧ ¬openB :→ compare.C.

The action function is trivial except in the following cases, where !true and
!false are actions to communicate the result of a compare action.

action(compare, 〈α, β〉) = !true, if α = β;
action(compare, 〈α, β〉) = !false, otherwise.

Finally, the last step is to explain the effect function:

effect(a?d, 〈α, β〉) = 〈αd, β〉;
effect(b?d, 〈α, β〉) = 〈α, βd〉;
effect(compare, 〈α, β〉) = 〈ε, ε〉.

The use of the state operator in this example is hard to avoid because of the
parallel reading of data that must be used simultaneously later on. It is left as
an exercise to compute a (linear) recursive specification of the system that does
not use state operators.

Exercises

10.5.1 Derive a recursive specification over the signature of theory (BSP⊥+
RSE)(A) for the stack given in Example 10.5.1 (Stack). In other
words, eliminate the state operator from the given specification.

10.5.2 Derive a recursive specification without state operators for the process
SYS of Example 10.5.2 (Buffers).

366 Data and states

10.5.3 Consider a pair of serial switches controlling a lamp. Each switch
has just one action, switch, and the parallel composition of the two
switches should show the signal on only when the lamp is on. Give a
specification for this system.

10.5.4 Recall Exercise 8.8.7. In this exercise, consider two processes doing
a random walk on a three by three grid. Each process has actions
begin, north,west, south, east, end. The processes start in the lower
left and upper right corners, respectively. The processes may not oc-
cupy the same square. Specify these two processes. What are the
possible states after two moves?

10.5.5 Consider a simple sequential programming language. Can state oper-
ators be used to give a semantics of this programming language?

10.5.6 As an illustration of the defining power of state operators, consider
the following guarded finite recursive specification of the queue over
BSP(A) extended with state operators. Only an empty signal is used.
The state space is S = D ∪ {0, 1,⊥}, with D a set of data items. The
action and effect functions are trivial except in the following cases,
with d, e ∈ D:

effect(out, 0) = ⊥;
action(out, d) = o!d, effect(out, d) = 1;
action(o!d, e) = o!e, effect(o!d, e) = d.

Now define the process Queue4 as follows:

Queue4 = λ0(X),
X = empty :→ 1 + ∑

d∈D
i?d.λd(X)+ out.X.

Define the sig function explicitly. Prove that Queue4, after signal
hiding (see Table 10.14), is equal to process Queue1 of Section 7.7.

10.6 Choice quantification

The previous sections introduced the data type of the Booleans in a process-
algebraic setting, ultimately leading to signals and the ability to reason about
process states in an equational setting. This section adds a second data type.
For simplicity, a single, well-known, data type is selected, the data type of the
natural numbers. It is stressed, however, that also other data types could be
used, including user-defined ones.

Notation 10.6.1 (Naturals) Recall the algebra of the natural numbers N =
(N,+,×, succ, 0) of Example 2.3.3 (Algebra N), that defines the following

10.6 Choice quantification 367

signature on the naturals: the binary operators + and ×, a unary operator succ,
and a constant 0; variables are in the remainder typically denoted n,m, n′,
n′′, ni , This gives a set of terms over natural numbers denoted FN. Char-
acters ν, µ are used to range over FN. Valuations for the natural-number
variables are functions mapping each variable to a natural number. The set of
these valuations is denoted NV . Obviously, such a valuation can be extended
to a function from FN to N.

In the introduction, a set of Boolean formulas, the set of propositional logic
formulas, was introduced starting from a set of propositional variables. In this
section, a specific instantiation of this set with atomic propositions is given, as
a basis for a specific instance of the set of Boolean formulas.

Notation 10.6.2 (Booleans) Recall Notation 10.1.1 (Booleans). An instance
of the set P of propositional variables is constructed from FN by means of the
operators =,<,≤,>, and ≥. For each ν, µ ∈ FN, the following are atomic
propositions in P: ν = µ, ν < µ, ν ≤ µ, ν > µ, and ν ≥ µ. Given a
valuation of the natural-number variables occurring in these expressions, their
truth value can be determined. As such, expressions of this form are Boolean
formulas in FB, that can for example occur in conditionals as described in the
previous section.

The set of Boolean formulas FB is, as in Notation 10.1.1 (Booleans), built
from the propositional variables, the Boolean constants, and the Boolean op-
erators. However, in this section, also quantification over natural-number
variables is allowed. For any Boolean formula φ ∈ FB,

• ∃nφ is a Boolean formula in FB, stating that there is a natural number
n ∈ N such that φ holds;

• ∀nφ is a Boolean formula in FB, stating that for all n ∈ N, φ holds.

Note that the addition of quantification turns FB into a predicate calculus.

The Boolean and natural-number data types introduced in the above two no-
tations are used in this section both in the considered equational theory and
in the standard term model. It is assumed that all Boolean formulas that are
encountered can be decided to be true or false, given some natural-number
valuation in NV . The equational theory of the data types is left implicit. An al-
ternative approach, taken for example in the language µCRL (Groote & Ponse,
1995), would be to make the equational theory of data types explicit, and re-
quire that both processes and the data types used by these processes are defined
explicitly in the equational framework.

368 Data and states

In the equational theory developed in this section, natural-number expres-
sions from FN are used to parameterize actions and recursion variables. For
any ν ∈ FN,

• a(ν) is an action in A, for any action name a, and

• recursion variable X (ν) defines a process parameterized with ν, for
any X .

For simplicity, the theory (BSP+GC)(A) of Section 10.2 is taken as a start-
ing point in this section. The concepts developed in this section can however
also be combined with any of the other theories presented in this chapter.

The basic idea of parameterized actions is that expressions occurring in an
atomic action should in the term model be evaluated by the valuation of the
natural-number variables in the current state of a process. This means that
the deduction rule for action prefix in Table 10.2 is replaced by the rule given
in Table 10.18. Note that the valuations in a process state are now natural-
number valuations, as opposed to the Boolean valuations used earlier. The
effect function takes a natural-number valuation as its second argument, and
results in a natural-number valuation. A parameter ν in an action can be seen
as a function that, given values for the variables occurring in ν, results in the
value for ν. Executed actions in the term model always have a concrete value
as a parameter.

x;
v(ν) = p

〈a(ν).x, v〉 a(p)→ 〈x, effect(a(p), v)〉

Table 10.18. Term deduction rule for action-prefix operators with parameter-
ized actions (with a(ν) ∈ A, v ∈ NV , p ∈ N).

The parameterization of recursion variables has a different intention. A re-
cursive specification may contain equations of the form X (n) = t , where n
is a variable ranging over natural numbers and t some process term typically
containing n. Such an equation is interpreted as the specification of infinitely
many processes X (0), X (1), . . ., one for each natural number. If p ∈ N,
then the defining equation of process X (p) is obtained by substituting p for
n everywhere in the right-hand side t . A parameterized recursion variable can
thus be seen as a function from natural numbers to recursion variables. By
substituting arbitrary natural-number expressions ν ∈ FN for n, it is possi-
ble to obtain defining equations for any recursion variable X (ν). This allows

10.6 Choice quantification 369

equational reasoning for recursion variables X (ν) for general expressions ν
in FN. The parameterization of recursion variables requires two extra deduc-
tion rules for recursion underlying the standard term model, in addition to the
rules given in Table 5.2. Table 10.19 gives the additional rules, that state that a
recursion variable parameterized with an expression inherits actions and termi-
nation options from the concrete process instance corresponding to the current
valuation.

y;
〈µX (p).E, v〉↓ v(ν) = p

〈µX (ν).E, v〉↓
〈µX (p).E, v〉 a(q)→ 〈y, v′〉 v(ν) = p

〈µX (ν).E, v〉 a(q)→ 〈y, v′〉

Table 10.19. Extra term deduction rules for parameterized recursion vari-
ables (with ν ∈ FN, p, q ∈ N, a(q) ∈ A, v, v′ ∈ NV , X (n) = t ∈ E).

The following examples illustrate the use of parameterized actions and re-
cursion.

Example 10.6.3 (Parameterized actions and recursion variables) Assume
that a(ν) ∈ A for any ν ∈ FN, and let X and Y be the names of parameterized
recursion variables; assume n is a variable ranging over the natural numbers.

(i) Define a guarded recursive specification consisting of the parameter-
ized equation X (n) = a(n + n).X (succ(n)). The process X (0) is
found by substituting 0 for n. Thus, X (0) = a(0).X (1). Continuing
in this way, a possible derivation is X (0) = a(0).a(2).a(4).X (3).

(ii) Define a guarded recursive specification by Y (n) = n < 2 :→
(a(n).Y (n + 1)). It is possible to derive Y (0) = a(0).a(1).0.

The crucial step in developing an equational theory to exploit and reason
about parameterized actions and parameterized recursive processes is now to
allow choices over natural numbers. This is a generalization of alternative
composition, that goes beyond a purely algebraic approach to process theory,
as this involves binding of variables. A family of unary operators

∑
n , for each

natural-number variable n, is introduced. These operators are called choice
quantifiers.

Among others for providing an axiomatization of choice quantifiers, it is
important to know when a variable is free or bound in a term.

Definition 10.6.4 (Free variables) The free occurrence of natural-number
variables in process terms is defined by structural induction. Variable n

370 Data and states

• is free in any natural-number expression ν ∈ FN if and only if it
occurs in ν;

• is not free in Boolean formulas true and false;
• is free in proposition ν ∼ µ for any natural-number formulas ν, µ ∈

FN and any ∼ ∈ {=,<,≤,>,≥} if and only if it is free in ν or µ;
• is free in ¬φ for any Boolean formula φ ∈ FB if and only if it is free

in φ;
• is free in φ ⊗ ψ for any Boolean formulas φ,ψ ∈ FB and any ⊗ ∈
{∨,∧,⊃} if and only if it is free in φ or ψ ;

• is free in ∃mφ or ∀mφ, for any Boolean formula φ ∈ FB, if and only
if it is free in φ and n �= m;

• is not free in the constant process terms 1, 0;
• is free in action prefix a(ν).x if and only if it is free in process term x

or in natural-number formula ν;
• is free in choice x + y if and only if it is free in x or free in y;
• is free in guarded command φ :→ x if and only if it is free in process

term x or in Boolean formula φ;
• is free in choice quantification

∑
m x if and only if it is free in x and

n �= m.

With the addition of a class of binding operators, the notion of derivability
of Definition 2.2.8 (Derivability) has to be adapted. In line with earlier, for any
natural-number formula ν ∈ FN, ν/n is the substitution that replaces n with ν
and leaves all other variables unaffected.

Definition 10.6.5 (Derivability) Let T be an equational theory extending the-
ory (BSP + CQ)(A) of Table 10.20; let s and t be T -terms. Equation s = t is
derivable from theory T , as before denoted T � s = t , if and only if it follows
from the following rules:

(Axiom rule) as before in Definition 2.2.8 (Derivability);
(Substitution) for any T -terms s, t and any substitution σ of process variables

and free natural-number variables, T � s = t implies that
T � s[σ] = t[σ];

(Equivalence) i.e., reflexivity, symmetry, and transitivity, as before;
(Context rule) as before; note that the context rule also covers the newly in-

troduced choice quantifiers;
(Tautology) if for all natural-number variable valuations φ is true if and

only if ψ is true, then
T � φ :→ x = ψ :→ x ;

10.6 Choice quantification 371

(Alpha conversion) for any T -term t in which m does not occur free,
T �∑n t =∑

m t[m/n].

(BSP + CQ)(A)
(BSP + GC)(A);
unary: (

∑
n)n∈N;

x, y;∑
n x = x if n not free in x CQ1∑
n x = x +∑n x CQ2∑
n(x + y) =∑

n x +∑n y CQ3∑
n φ :→ x = φ :→∑

n x if n not free in φ CQ4∑
n φ :→ x = ∃nφ :→ x if n not free in x CQ5∑
n (n = ν) :→ x =∑

n (n = ν) :→ x[ν/n] CQ6

Table 10.20. The process theory (BSP + CQ)(A) (with ν ∈ FN, φ ∈ FB).

The axioms for choice quantification are given in Table 10.20. This table
presents the theory of basic sequential processes with choice quantification,
that extends BSP(A) with guarded commands. Choice quantification binds
weaker than other unary operators and stronger than binary operators. The
first axiom, CQ1, considers the case where the variable does not occur free in
the term x . In that case, all summands are equal and by idempotency, the sum
is equal to one term. The second axiom, CQ2, deals with separating out one
summand. Given Axiom CQ1, the interesting case is when n occurs free in x .
Then, considering the (adapted) substitution rule in the definition of derivabil-
ity above, any expression over natural numbers (also containing bound or free
variables) can be substituted for n in the x summand of the right-hand side of
CQ2. Axiom CQ3 states that choice quantification distributes over alternative
composition. Axiom CQ4 gives distribution over guarded commands, under
the condition that the bound variable does not occur free in the guarded com-
mand. The other law concerning the interplay with guarded commands, CQ5,
necessitates the extension of the set of expressions of our Boolean algebra
FB to allow quantification over natural-number variables, as done in Notation
10.6.2 (Booleans). Axiom CQ5 states that a choice quantification over a con-
ditional reduces to a Boolean existential quantification in the conditional if the
bound variable does not occur in the guarded term. Finally, CQ6 allows to
substitute for a variable any expression it is equal to.

Example 10.6.6 (Derivations with choice quantifiers) An example shows
the kind of calculations that can be done with the theory of Table 10.20.

372 Data and states

(BSP + CQ)(A) �∑
n n < 2 :→ a(n).0

= ∑
n (n = 0 ∨ n = 1) :→ a(n).0

= ∑
n(n = 0 :→ a(n).0 + n = 1 :→ a(n).0)

= ∑
n n = 0 :→ a(n).0 +∑n n = 1 :→ a(n).0

= ∑
n n = 0 :→ a(0).0 +∑n n = 1 :→ a(1).0

= ∃n(n = 0) :→ a(0).0 + ∃n(n = 1) :→ a(1).0
= true :→ a(0).0 + true :→ a(1).0
= a(0).0 + a(1).0.

Giving operational rules for choice quantification and a term model for the-
ory (BSP + CQ)(A) actually turns out to be pretty straightforward. The term
deduction system for theory (BSP + CQ)(A) is presented in Table 10.21. As-
sume that TDS((BSP + GC)(A), effect)par is the term deduction system for
theory (BSP + GC)(A) with parameterized actions, i.e., the term deduction
system obtained from TDS((BSP + GC)(A), effect) of Table 10.2 with the de-
duction rule for action prefix replaced by the rule in Table 10.18.

TDS((BSP + CQ)(A), effect)
TDS((BSP + GC)(A), effect)par;
unary: (

∑
n)n∈N;

x, x ′;

〈x[p/n], v〉 a(q)→ 〈x ′, v′〉
〈∑n x, v〉 a(q)→ 〈x ′, v′〉

〈x[p/n], v〉↓
〈∑n x, v〉↓

Table 10.21. Term deduction system for (BSP + CQ)(A) (with p, q ∈ N,
a(q) ∈ A, v, v′ ∈ NV).

The term deduction system of Table 10.21 can be turned into a term model in
the usual way. It is not too difficult to prove soundness. Ground-completeness
however is more involved, because one has to account for decidability and/or
completeness of the theory for reasoning about data types. Details are beyond
the scope of this book. The interested reader is referred to (Luttik, 2002).
Choice quantifiers cannot be eliminated, but (BSP + CQ)(A) is a conserva-
tive ground-extension of (BSP + GC)(A) (when assuming the set of Boolean
formulas of the present section).

Example 10.6.7 (Program semantics) The process theory of this section,
with the usual extensions such as sequential composition, can be used to cap-
ture the semantics of imperative programs. This is illustrated by means of an

10.6 Choice quantification 373

example. Consider the following simple program for computing the factorial
of a value provided by the user of the program.

program factorial;

var n : Nat;
fac : Nat;

begin
read(n);
fac := 1;
while n <> 1 do fac := fac * n; n := n-1 od;
print(fac);

end.

The program is composed of some typical constructs offered by imperative
programming languages.

The statement read(n) assigns a value provided by the user of the pro-
gram to the variable n. To capture this in the process-algebraic semantics
of the program, a choice quantification and a parameterized read action are
needed to describe all possibilities of receiving an input value. The effect func-
tion codes that the received value is assigned to the program variable n. The
assignments in the program are captured in the semantics by actions. The ef-
fect on the value of program variables is again described in the effect function.
For the while-loop, a recursion variable is used in combination with a condi-
tional that decides whether the recursion should stop. This yields the following
recursive specification:

Factorial = ∑
n read(n).init.1 · Loop · print(fac).1

Loop = n > 1 :→ multiply(n).decrease.Loop
+ n = 1 :→ 1.

The effect function defines the effect of actions on the valuations of variables
n and fac and is given as follows. For any d ∈ N and valuation v ∈ NV ,

effect(read(d), v)(n) = d,
effect(read(d), v)(fac) = v(fac),
effect(init, v)(n) = v(n),
effect(init, v)(fac) = 1,
effect(print(d), v)(n) = v(n),
effect(print(d), v)(fac) = v(fac),
effect(multiply(d), v)(n) = v(n),
effect(multiply(d), v)(fac) = v(fac)× d,
effect(decrease, v)(n) = v(n)− 1,
effect(decrease, v)(fac) = v(fac).

374 Data and states

Exercises

10.6.1 Extend the process theory presented in this section with sequential
composition and with parallel composition. Provide term models.

10.6.2 Consider the calculations for the Alternating-Bit Protocol in Section
7.8. Replace the data set D employed in that section by the set of
natural numbers N, and redo the calculations, using the axioms intro-
duced in the present section.

10.6.3 Consider the Fibonacci sequence defined by F(0) = 0, F(1) = 1,
and for all n ∈ N, F(n + 2) = F(n + 1) + F(n). Give a simple
imperative program to compute the n-th Fibonacci number F(n), for
n ∈ N, and provide it with a semantics in line with Example 10.6.7
(Program semantics).

10.7 Bibliographical remarks

Most of this chapter is based on (Baeten & Bergstra, 1997). Guarded com-
mands originate from (Dijkstra, 1976). They were first treated in a process-
algebraic context in (Ponse, 1992). The treatment of choice quantification in
this chapter is based on (Luttik, 2002). State operators were first introduced in
(Baeten & Bergstra, 1988).

Parameterizing processes and actions with data is an essential feature of
specification languages. Many process specifications are written in the lan-
guage PSF, see (Mauw & Veltink, 1993). The language µCRL (Groote &
Ponse, 1995) with its accompanying toolkit has been used extensively in the
specification and verification of systems by means of process algebra. Re-
cently, the language and toolkit are superseded by mCRL2, see (Groote et al.,
2006). This chapter also provides the basis for the hybrid process algebra of
(Bergstra & Middelburg, 2005), and further work in (Khadim, 2008).

11

Features

The various chapters so far have introduced the basics of process-algebraic
reasoning, including essential concepts such as recursion, parallel composi-
tion, and abstraction, and several extensions of this basic framework with time,
data, and state. This one-but-last chapter introduces two more extensions, to
reason about priorities and probabilities, and elaborates briefly on mobility and
variants of parallel composition in Sections 11.3 and 11.4.

11.1 Priorities

In order to specify certain applications, it is useful to be able to restrict the
non-determinism in process descriptions, by allowing certain actions to have
priority over others in a choice context. A priority mechanism has proved itself
useful in the following circumstances:

(i) when describing interrupts and disrupts, where the normal execution
of a system is pre-empted by an event that has priority;

(ii) when giving semantics to certain features of programming languages
such as interrupt or error handling mechanisms;

(iii) when timing is involved, when some events may not happen pre-
maturely and other events may need to happen as soon as possible
(maximal progress);

(iv) when describing scheduling algorithms.

This section introduces a priority mechanism in the equational and opera-
tional frameworks introduced in earlier chapters. Assume that certain actions
have priority over other actions. This is expressed by assuming there is some
(irreflexive) partial ordering ≺ on the set of actions A. For simplicity, consider
this partial ordering to be fixed. This means the priority is static. Alternatively,
it is possible to specify that, given a certain partial ordering, executing a certain

375

376 Features

action leads to another partial ordering (dynamic priority). This possibility is
not considered here, but can be developed using concepts such as the effect
function from the previous chapter.

Thus, assume a partial ordering ≺ on the set of actions A. This means the
following properties are satisfied:

(i) for all a, b ∈ A, at most one of a ≺ b, b ≺ a, a = b is the case;

(ii) relation ≺ is transitive, i.e., for all a, b, c ∈ A, a ≺ b and b ≺ c
implies a ≺ c.

When a ≺ b, then b has priority over a. Priority relation ≺ is a parameter of
the process theory to be defined, BSPθ(A,≺), BSP(A) with priorities.

The idea is to define an operator θ that enforces priorities, i.e., if a ≺ b and
a ≺ c and b and c are not related by the priority relation, then the following
identities are expected to hold, for any processes x and y, θ(a.x + b.y) =
b.θ(y), θ(a.x + c.y) = c.θ(y) but θ(b.x + c.y) = b.θ(x) + c.θ(y). When
the priority operator is applied to a system of communicating processes, it
can be assumed to describe global priorities; when it is applied to separate
components of a communication network, it describes local priorities.

It is not straightforward to come up with an axiomatization of the prior-
ity operator θ . As in the case of the parallel-composition operator, there is a
need for an auxiliary operator. This auxiliary operator is obtained by turning
the priority operator into a binary operator. To understand the intuition be-
hind the binary priority operator, observe the two roles of x in a term θ(x).
Term x specifies both the high-priority behavior and the low-priority behavior
pre-empted by the high-priority behavior. The binary priority operator, ϑ ,
separates these two roles. Intuitively, in xϑy, term y specifies which behav-
iors have high priority, filtering all summands of x that are prioritized by a
summand of y, turning those low-priority summands of x into 0. The axioma-
tization of the binary priority operator is straightforward. Table 11.1 presents
theory BSPθ(A,≺).

The term deduction system for theory BSPθ(A,≺) is given in Table 11.2.
The operational rules in Table 11.2 capture the intuitive behavior of priorities
and are not difficult to understand: an action a can be executed when no action
with priority can be executed. Notice that this term deduction system contains
negative premises.

The equational theory given in Table 11.1 is sound and ground-complete for
the term model induced by the term deduction system of Table 11.2. Meta-
theory in the style of Chapter 3 that can cope with negative premises and that
allows to establish the ground-completeness result is developed in (Verhoef,

11.1 Priorities 377

BSPθ(A,≺)
BSP(A)
unary: θ; binary: ϑ ;
x, y, z;

θ(x) = xϑx PRI0 a.xϑ1 = a.θ(x) PRI4
a.xϑb.y = 0 if a ≺ b PRI5

0ϑx = 0 PRI1 a.xϑb.y = a.θ(x) if a �≺ b PRI6
1ϑx = 1 PRI2 (x + y)ϑz = xϑz + yϑz PRI7
a.xϑ0 = a.θ(x) PRI3 xϑ(y + z) = (xϑy)ϑz PRI8

Table 11.1. The process theory BSPθ(A,≺) (with a, b ∈ A).

TDS(BSPθ(A,≺))
TDS(BSP(A));
unary: θ; binary: ϑ ;
x, x ′, y;

x↓
θ(x)↓

x
a→ x ′ for all b ∈ A with a ≺ b, x � b→

θ(x)
a→ θ(x ′)

x ↓
xϑy↓

x
a→ x ′ for all b ∈ A with a ≺ b, y � b→

xϑy
a→ θ(x ′)

Table 11.2. Term deduction system for BSPθ(A,≺) (with a ∈ A).

1994). A ground-completeness proof in a slightly different setting can be found
in (Baeten et al., 1986).

Occurrences of the two priority operators can be eliminated from closed
BSPθ(A,≺)-terms, resulting in closed BSP(A)-terms. BSPθ(A,≺) is a con-
servative ground-extension of BSP(A).

The following two propositions list some expected identities for the unary
priority operator θ that are derivable from the defining axiom for θ and the ax-
ioms for the binary priority operator of theory BSPθ(A,≺), either for arbitrary
terms or for closed terms.

Proposition 11.1.1 (Identities) The following equations are derivable from
BSPθ(A,≺):

(i) θ(0) = 0;
(ii) θ(1) = 1;

(iii) θ(a.x) = a.θ(x);
(iv) θ(x + y) = θ(x)ϑy + θ(y)ϑx ;

378 Features

(v) θ(x + y)ϑx = θ(x + y).

Proof See exercises.

Proposition 11.1.2 (Closed-term identities) The following two identities are
derivable from BSPθ(A,≺), for all closed terms p, q:

(i) θ(θ(p)) = θ(p);
(ii) p + pϑq = p.

Proof See exercises.

The standard extension of the basic theory with communication and recur-
sion turns out to cause a problem in the development of a standard term model.

Example 11.1.3 (Priority anomaly) Suppose the term deduction system for
BSPθ(A,≺) of Table 11.2 is extended with the usual rules for parallel compo-
sition, encapsulation, and recursion. Assume actions a, b, c ∈ A with priority
ordering b ≺ c and communication function γ (a, b) = c. Consider the fol-
lowing (unguarded) recursive equation:

X = a.1 ‖ ∂{c}(θ(b.1 + X)).

Then, it can be inferred that X
c→ 1 ‖ 1 if and only if X � c→. This is a contra-

diction.

The contradiction illustrated in the above example ensues from the combina-
tion of communication, priorities, and unguarded recursion. It shows that the
standard term deduction system for theory TCPθ rec(A,≺, γ), TCP with prior-
ities and recursion, does not define a transition system for all the closed terms
in the theory. The problem can be avoided by restricting the set of recursive
equations to guarded recursive equations, or in other words, by considering
only processes that are definable over theory TCPθ(A,≺, γ), TCP with prior-
ities, as defined in Definition 5.7.5 (Definability). TCPθgrec(A,≺, γ) denotes
theory TCP with priorities and guarded recursion. The standard term model
for this theory based on the usual deduction rules for communication and re-
cursion is well-defined (in the sense that a proof of the existence of a transition
in the transition-system space, based on Definition 3.2.3 (Transition-system
space induced by a deduction system), is finite; in terms of the meta-theoretical
framework of (Verhoef, 1994), it can be shown that a stratification for the de-
duction rules exists). The following two examples are formulated in theory
TCPθgrec(A,≺, γ).

11.1 Priorities 379

Example 11.1.4 (Interrupts) A printer P has to print a sequence of data 〈d0,

d1, . . .〉, where di ∈ D (for some given finite data set D), but can be interrupted
by a keyboard K . There is a (nameless) communication port between P and K .
The standard communication function is used. Assume the following atomic
actions:

(i) key(break), !break, key(start), !start (actions of K);
(ii) ?break, ?start, and print(d) for d ∈ D (actions of P).

Consider the following guarded recursive specification.

K = 1 + key(break).!break.K + key(start).!start.K
P = W0

Wi = 1 + ?start.Pi + ?break.Wi (i ∈ N)
Pi = print(di).Pi+1 + ?start.Pi + ?break.Wi (i ∈ N).

In this specification, Pi is the state of the printer after d0, . . . , di−1 have been
printed and it is ready to print di , and Wi is the state of the printer after
d0, . . . , di−1 have been printed and it is waiting for a start signal. The en-
capsulation set is

H = {?break, !break, ?start, !start}.
Now it has to be enforced that commands from the keyboard are accepted by
the printer right away, and that no further print actions take place. Priorities
are used to enforce this. The priority partial ordering on the set of action is
given by

print(d) ≺ !?break, print(d) ≺ !?start,

for each d ∈ D.
For the composed system θ(∂H (K ‖ P)), the following recursive specifica-

tion can be derived:

Xi = 1 + key(break).!?break.Xi + key(start).!?start.Yi

Yi = print(di).Yi+1 + key(break).!?break.Xi + key(start).!?start.Yi ,

for each i ∈ N. Expressions θ(∂H (K ‖ Wi)) are a solution for the Xi , and
expressions θ(∂H (K ‖ Pi)) are a solution for the Yi .

Example 11.1.5 (Error handling) A file F contains a sequence of data 〈d0,

d1, . . .〉, with di ∈ D for some given finite data set D, that has to be printed out
by printer P , unless a file crash occurs. If a file crash occurs, an error message
should be printed. There is a communication port between processes F and P .
Standard communication is used. Consider the following actions:

(i) get(d), !d (for d ∈ D), and crash (actions of F);

380 Features

(ii) ?d, print(d) (for d ∈ D), observe(crash), and print(crash) (actions
of P).

Consider the following guarded recursive specifications.

F = F0

Fi = 1 + get(di).!di .Fi+1 + crash.1 (i ∈ N)
P = 1 + ∑

d∈D
?d.print(d).P + observe(crash).print(crash).1.

In this specification, Fi is the state of the file after d0, . . . , di−1 have been sent.
The encapsulation set is

H = {?d, !d | d ∈ D}.
To enforce that the observation of the file crash only occurs when the file has
actually crashed, priorities are used. The priority partial ordering is given by

observe(crash) ≺ get(d), observe(crash) ≺ !?d,

for each d ∈ D.
For the composed system θ(∂H (F ‖ P)), the following recursive specifica-

tion can be derived,

Xi = 1 + get(di).!?di .Yi + crash.observe(crash).print(crash).1
Yi = print(di).Xi+1 + get(di+1).print(di).!?di+1.Yi+1

+ crash.print(di).observe(crash).print(crash).1,

for each i ∈ N. Expressions θ(∂H (Fi ‖ P)) are a solution for the Xi , and
expressions θ(∂H (Fi+1 ‖ print(di).P)) are a solution for the Yi .

This specification can be simplified further by assuming extra priorities:
define

print(e) ≺ get(d), print(e) ≺ !?d,

for each d, e ∈ D. This expresses somehow that the ‘internal’ actions get(d)
and !?d are executed much faster than the external actions print(e), and there-
fore have priority. The specification becomes:

X = 1 + get(d0).!?d0.Y0 + crash.observe(crash).print(crash).1
Yi = get(di+1).print(di).!?di+1.Yi+1

+ crash.print(di).observe(crash).print(crash).1,

for each i ∈ N.

An extension of the current theory with the silent action and abstraction
is not straightforward. Consider the following example. Suppose there are
atomic actions a, b, c with priority relation τ ≺ c and c ≺ b. By the branching
law, Axiom B from Table 8.1, it holds that a.(τ.(b.1+ c.1)+ c.1) = a.(b.1+
c.1). But then

11.2 Probabilities 381

a.c.1 = θ(a.(τ.(b.1 + c.1)+ c.1)) = θ(a.(b.1 + c.1)) = a.b.1,

which is an unwanted equality. It is necessary either to require that τ always
has maximal priority, or to use an even finer equivalence notion than branching
bisimilarity, so-called orthogonal bisimilarity (Bergstra et al., 2003).

Exercises

11.1.1 Prove Proposition 11.1.1 (Identities).
11.1.2 Prove Proposition 11.1.2 (Closed-term identities).
11.1.3 Consider the following generalization of Proposition 11.1.1(iv):

θ(x + y + z) = θ(x)ϑ(y + z)+ θ(y)ϑ(x + z)+ θ(z)ϑ(x + y).
Prove that this identity is derivable from BSPθ(A,≺).

11.1.4 Verify the problem with the operational semantics of priorities that is
mentioned in Example 11.1.3 (Priority anomaly).

11.1.5 Give the derivation of the recursive specification in Example 11.1.4
(Interrupts) and draw the transition system of the printer process X0.
Since the specification of X0 is a specification over the signature of
theory BSP(A), abstraction can be applied. Consider τI (X0), with
I = {key(break), !?break, key(start), !?start}. Derive a specification
for τI (X0) using KFARb, and interpret your answer.

11.1.6 Give the derivation concerning the first recursive specification given
in Example 11.1.5 (Error handling) and draw the transition system of
X0. Consider process τI (X0), with I = {!?d, get(d) | d ∈ D}∪{crash,
observe(crash)}. Derive a specification for τI (X0), and interpret your
answer. Do the same for the final recursive specification in Exam-
ple 11.1.5, considering τI (X).

11.2 Probabilities

In Section 7.8, an unreliable communication channel was specified as follows.
Recall that F is the set of frames possibly carried by the channel.

K = 1 + ∑
x∈F

sk?x .(t.kr!x .K + t.kr!⊥.K).
The specification uses a special internal action t and a non-deterministic

choice in order to model the uncertainty, whether or not the frame will be
forwarded correctly (denoting a corrupted frame as ⊥). In the verification of
Section 8.9, a notion of fairness was needed in order to conclude that, eventu-
ally, a message will be forwarded correctly.

In practice, there is often a bound on the occurrence of failure, e.g., it is
known that the channel fails at most 10 % of the time. Based on such a bound,

382 Features

it becomes possible to address the performance of an unreliable channel or
the performance of a protocol. In such cases, it is advantageous to replace the
non-deterministic choice by a probabilistic choice. The present section gives a
brief introduction to some of the issues involved when probabilistic choice is
added to a process algebraic theory.

Assume a class of binary operators +−−−+p, called probabilistic choice opera-
tors, where parameter p is a number between 0 and 1, i.e., p ∈ (0, 1). Process
x +−−−+p y is either x or it is y: it is x with probability p and it is y with probabil-
ity 1− p. Notice that, different from the choice in x + y, a probabilistic choice
is a choice that cannot be influenced by the environment. A process x +−−−+.9 y
can be determined by an experiment: if it is executed a large number of times,
say 1000, x will be found in some 900 cases, and y in some 100 cases. Using
a probabilistic choice operator, the specification of an unreliable channel with
a failure rate of 10 % can be given as follows:

K = 1 + ∑
x∈F

sk?x .(kr!x .K +−−−+.9 kr!⊥.K).
Note that probabilistic choice can be used to replace the non-deterministic

choice in the forwarding of a frame in the channel, but not the choice in the
message to be received at port sk, leading to the choice quantification over
the set of frames F . So, probabilistic choice can be used to replace some uses
of alternative composition, but not all. In particular, use of alternative compo-
sition in receipt of data, but also alternative composition used in the expansion
of parallel composition (denoting interleaving) cannot be replaced. Thus, in
this section an existing process theory with the choice operator, BSP(A) of
Section 4.4, is extended with probabilistic choice.

It turns out that the axioms of BSP(A) cannot be maintained in full in the
presence of probabilistic choice. This is because, in x+x , when x has the form
of a probabilistic choice, in fact two separate experiments are going on at the
same time, and the outcome on the left may be different from the outcome on
the right. This point is further elaborated below.

Table 11.3 presents theory BSPprb(A), BSP(A) with probabilistic choice.
Axiom A3 of BSP(A) is replaced by two new axioms, Axioms AA3 and EA3.
Since Axiom A6 implies that 0+ 0 = 0, it is possible to prove idempotency of
alternative composition for all closed BSP(A)-terms (see the exercises).

Since not all axioms of BSP(A) are maintained in BSPprb(A), the latter
is, technically, not an extension of the former, as defined in Definition 2.2.14.
However, it is a conservative ground-extension (see Definition 2.2.19).

Consider the new axioms, PRB1–4. PRB1 is a kind of commutativity for
probabilistic choice: when the positions of x and y are switched, the com-
plement of the probability is taken. PRB3, the idempotency of probabilistic

11.2 Probabilities 383

BSPprb(A)
constant: 0, 1; unary: (a.)a∈A; binary: + , (+−−−+p)p∈(0,1);
x, y, z;

x + y = y + x A1
(x + y)+ z = x + (y + z) A2
a.x + a.x = a.x AA3
1 + 1 = 1 EA3
x + 0 = x A6

x +−−−+p y = y +−−−+1−px PRB1
x +−−−+p(y +−−−+r z) = (x +−−−+p/(p+r−pr)y)+−−−+p+r−pr z PRB2
x +−−−+px = x PRB3
(x +−−−+p y)+ z = (x + z)+−−−+p(y + z) PRB4

Table 11.3. The process theory BSPprb(A).

choice, is obvious as the outcome of the experiment is x in every case, and
PRB4 serves to distribute alternative composition over probabilistic choice. Fi-
nally, consider the associativity law PRB2, which requires some explanation.
In x +−−−+p(y+−−−+r z), the probability of x is p, the probability of y is (1− p)r and
the probability of z is (1− p)(1− r). Taking the complement of the last prob-
ability gives p + r − pr , which explains the second number on the right-hand
side of PRB2. Of this last probability p+ r − pr , x should get a fraction equal
to p and y the rest, which is obtained by the choice for the first probability in
the right-hand side of PRB2, because p = (p/(p + r − pr))(p + r − pr).

Example 11.2.1 (Probabilistic choice) Using Axiom PRB4 of BSPprb(A),
the following derivation can be made:

BSPprb(A)�
(1 +−−−+1/20)+ (1 +−−−+1/20)

= (1 + (1 +−−−+1/20))+−−−+1/2(0 + (1 +−−−+1/20))

= ((1 + 1)+−−−+1/2(1 + 0))+−−−+1/2(1 +−−−+1/20)

= (1 +−−−+1/21)+−−−+1/2(1 +−−−+1/20)

= 1 +−−−+1/2(1 +−−−+1/20)

= (1 +−−−+2/31)+−−−+3/40

= 1 +−−−+3/40.

This example shows that idempotency of alternative composition does not hold
for processes with probabilistic choice as the main operator.

384 Features

In order to give transition systems for the closed terms of theory BSPprb(A),
it is needed to consider two kinds of transitions: besides the action transitions
as usual, there is a need for probabilistic transitions. In the operational rules
of the term deduction system, just the existence of a probabilistic transition is
determined; the actual value of the probability will be determined separately.
This is because, in a term a.1 +−−−+1/2b.1, the probabilistic transition to a.1 has
probability 1/2, but in term a.1+−−−+1/2a.1, the probability is 1, and this is diffi-
cult to achieve in operational rules.

The set of closed BSPprb(A)-terms can be divided into two parts: the prob-
abilistic terms and the dynamic terms. The probabilistic terms are the terms
that have a probabilistic choice as the main operator, or they are an alternative
composition of subterms of which at least one has a probabilistic choice as the
main operator. These terms will have only outgoing probabilistic transitions to
dynamic terms. All closed terms that are not probabilistic are called dynamic:
they can be written in the form

∑
i<n ai .qi (+1) for some natural number n,

atomic actions ai , subterms qi and possibly occurring termination constant.
Dynamic terms do not have any outgoing probabilistic transitions, but only ac-
tion transitions and a termination predicate. The dynamic terms are the terms
satisfying idempotence of alternative composition (x + x = x).

Thus, in the operational rules in Table 11.4, an extra binary relation � is
defined denoting a probabilistic transition, such that,

• if x � x ′, then x is a probabilistic term and x ′ is a dynamic term;

• if x is a dynamic term, then x ��, i.e., it does not have a probabilistic
transition.

A probability distribution function µ is defined in order to assign probabili-
ties to the probabilistic transitions.

Definition 11.2.2 (Probability distribution function) The probability distri-
bution function µ gives the probability of a transition between any two closed
BSPprb(A)-terms. For each pair of closed BSPprb(A)-terms, it has a value in
the closed interval [0, 1], and it is defined structurally by the following clauses.
Let p ∈ (0, 1) and let q, r, q ′, r ′, and s be closed BSPprb(A)-terms.

• µ(a.q, a.q) = 1,
• µ(0, 0) = 1,
• µ(1, 1) = 1,
• µ(q + r, q ′ + r ′) = µ(q, q ′) · µ(r, r ′),
• µ(q +−−−+pr, s) = p · µ(q, s)+ (1 − p) · µ(r, s), and
• µ(q, r) = 0, in all other cases.

11.2 Probabilities 385

TDS(BSPprb(A))
constant: 0; 1; unary: (a.)a∈A; binary: + ; (+−−−+p)p∈(0,1);
x, x ′, y, y′;

a.x
a→ x 1↓

x � x ′ y � y′
x + y � x ′ + y′

x � x ′ y ��
x + y � x ′ + y

y � y′ x ��
x + y � x + y′

x
a→ x ′ y ��

x + y
a→ x ′

y
a→ y′ x ��

x + y
a→ y′

x ↓ y ��
(x + y) ↓

y ↓ x ��
(x + y) ↓

x � x ′
x +−−−+p y � x ′

y � y′
x +−−−+p y � y′

x ��
x +−−−+p y � x

y ��
x +−−−+p y � y

Table 11.4. Term deduction system for BSPprb(A) (with a ∈ A).

This function can be generalized to give the total probability to pass to a set
M of closed BSPprb(A)-terms, by the following clause:

µ(q,M) = ∑
q ′∈M

µ(q, q ′).

Observe that it can be derived from the operational rules that, for any pair
p, q of closed BSPprb(A)-terms, p � q exactly when µ(p, q) > 0.

Next, the notion of (strong) bisimilarity is adapted as follows.

Definition 11.2.3 (Probabilistic bisimilarity) Let B be an equivalence rela-
tion on closed BSPprb(A)-terms. Denote the equivalence class of a term p
by [p]B . Then B is a (probabilistic) bisimulation if and only if for all closed
BSPprb(A)-terms p, p′, q, q ′,

• if B(p, q) and p � p′, then either

– there is a closed BSPprb(A)-term q ′ such that q � q ′ and B(p′, q ′)
and µ(p, [p′]B) = µ(q, [q ′]B) or

– B(p′, q) and µ(p, [p′]B) = 1;

• if B(p, q) and p
a→ p′ for some action a, then there is a closed

BSPprb(A)-term q ′ such that q
a→ q ′ and B(p′, q ′);

• if B(p, q) and p↓, then q↓.

If there is a probabilistic bisimulation relating closed BSPprb(A)-terms p, q,
then p, q are probabilistically bisimilar, notation p↔q.

386 Features

The first clause in the previous definition necessitates to presuppose that
any probabilistic bisimulation is an equivalence relation. The resulting sym-
metry implies that symmetric clauses as in earlier bisimilarity definitions are
not necessary here. To see why it is needed to formulate the definition of a
probabilistic bisimulation in this way, consider the transition systems gener-
ated by the rules of Table 4.6 for terms 1 +−−−+1/20 and (1 +−−−+1/3(1 + 1))+−−−+1/20
(Exercise 11.2.4).

Now it can be established that probabilistic bisimilarity is a congruence re-
lation on the term algebra of BSPprb(A), and that the axioms of BSPprb(A)
are sound and ground-complete for the term model.

Exercises

11.2.1 Prove that, for all closed BSP(A)-terms p, BSPprb(A) � p + p = p.

11.2.2 Prove that BSPprb(A) is a conservative ground-extension of BSP(A).

11.2.3 Argue that the toss of a fair coin can be modeled by the process
flip.(heads.1 +−−−+1/2 tails.1). Draw the transition system generated by
the operational rules of Table 4.6, and put in the values of the proba-
bilities involved.

11.2.4 Draw the transition systems generated by the operational rules of Ta-
ble 4.6 for terms 1 +−−−+1/20 and (1 +−−−+1/3(1 + 1)) +−−−+1/20, and put in
the values of the probabilities involved. Argue why a probabilistic
bisimulation needs to be an equivalence relation.

11.2.5 Prove for all closed BSPprb(A)-terms p and q that p � q if and only
if µ(p, q) > 0.

11.2.6 Consider the recursive equation X = 1 +−−−+1/2 X . Now X = 1 cannot
be derived, but argue that the probability that X equals 1 is 1.

11.2.7 Consider the extension of the present theory with sequential compo-
sition. Give an example to show that the distributive law A4 ((x +
y) · z = x · z + y · z) is not valid in general. Argue that the law
(a.x + y) · z = a.x · z + y · z is valid, and show that, using this
law, it can be derived that the distributive law holds for all closed
BSPprb(A)-terms p, q that do not contain a 1 summand.

11.2.8 Consider the extension of the present theory with parallel composi-
tion. The duplication of variables in the merge axiom M leads to
difficulties. The identity can only be maintained for dynamic pro-
cesses; probabilities have to be resolved before interleaving can be
enacted. Develop operational rules and an axiomatization for parallel
composition.

11.3 Mobility 387

11.3 Mobility

Mobile processes are processes that move around in space, and that can change
their communication links when doing so. Also, names of communication
ports can be communicated. Some simple examples of process mobility are
presented next.

Example 11.3.1 (Mobile buffers) Recall the definition of a one-place buffer
with input port i and output port o from Section 7.6:

Buf 1io = 1 + ∑
d∈D

i?d.o!d.Buf 1io.

If there is a set of communication ports P (with P ∩ D = ∅), and a number
of these one-place buffers are connected in sequence, then termination of the
whole system can only take place when all the buffers are empty.

Consider instead a situation, where a buffer that is empty and that has a left
neighbor that is full, can cut itself out of the sequence, passing its output port
to its left neighbor, and die. This can be described by the following equations.

Buf 1mobio = i!o.1 + ∑
d∈D

i?d.Buf 1mobd
io and, for all d ∈ D,

Buf 1mobd
io = o!d.Buf 1mobio + ∑

p∈P
o?p.Buf 1mobd

ip.

The mobile buffer Buf 1mobio can, when it is empty, send its output port o to
the left via its input port i and terminate, or it can receive an input from the left
via its input port i , and become full. When it is full, containing data d, it can
either send its contents to the right via port o in the normal way, or receive a
new output port p from the right via its original output port o; it then changes
its output port to p, while remaining full and maintaining the original data d.
Exercise 11.3.1 asks for some calculations.

Example 11.3.2 (A car in a communication network) Consider a car that is
moving in a communication network, consisting of a number of base stations
Stationn (with n ∈ N). Each base station has a port no that can be connected
to a car and a port ni that is connected to a control process. The car receives
messages m ∈ M from base stations, and sends back messages with its location
� ∈ L . The base station forwards this information to the control process that
takes the location information, and based on it determines whether or not a
handover should take place. Assume that � denotes the base station that is
closest to a given location �.

Figure 11.1 visualizes the situation with two base stations, n = 1, 2. Ini-
tially, the car is connected to base station Station1, and its location � has this
base station as the closest station, � = 1. The car process is denoted Car�,1,

388 Features

Station1

Car�,1

Control1

Station2

Car�′,2

Control2

1o

1i

2i1i

2i

2o

o o

Fig. 11.1. A car in a communication network.

the indices denoting the location and the base station id the car is connected
to. The process describing the movement of the car and the accompanying net-
work management starts by the control process inputting a message at a port o
that synchronizes the control process with the environment. The control pro-
cess is denoted by Control1, the index representing the base station to which
the car is currently connected. The message received over o is forwarded to the
car via base station 1, and the car sends back a reply and its current location �′.
If the location matches the current connection, this is maintained; otherwise
the control will switch by sending the number of the new base station along
base station 1. The total system is given by term

∂H (Car�,1 ‖ Station1 ‖ Station2 ‖ Control1),

where � = 1 and all sends and receives at ports 1o, 2o, 1i, 2i are encapsulated
via H . The processes in the parallel composition are specified as follows,
where it is not specified how a response is generated and a new location is
determined when the car receives a message. Let m′ ∈ M, n′ ∈ N . For all
n ∈ N ,

Controln = ∑
m∈M

o?m.ni!m.
∑

m∈M,�∈L
ni?(m, �).o!(m, �).

((� = n) :→ Controln
+(� �= n) :→ ni!�.Control�
),

Car�,n = ∑
m∈M

no?m.no!(m′, �′).Car�′,n + ∑
n′∈N

no?n′.Car�′,n′ ,

Stationn = ∑
m∈M

ni?m.no!m.
∑

m′∈M,�′∈L
no?(m′, �′).ni!(m′, �′).Stationn

+ ∑
n′∈N

ni?n′.no!n′.Stationn .

11.4 Parallel composition revisited 389

The equations use the guarded command of Section 10.2. When some of the
sum operators are not considered as abbreviations, the theory of Section 10.6
must be used, involving the choice-quantification operator that binds variables.
The π -calculus of (Milner, 1999; Sangiorgi & Walker, 2001) that treats mobil-
ity in depth has even more variable binding operators. The interested reader is
referred to these publications.

Exercise 11.3.2 below asks for the calculations that show a handover.

Exercises

11.3.1 Consider the buffers of Example 11.3.1 (Mobile buffers). Calculate
the behavior of the system

∂H (Buf 1mobil ‖ Buf 1moblo),

where H is such that all sends and receives on port l are encapsulated.
11.3.2 Consider the car of Example 11.3.2 (A car in a communication net-

work). In the system

∂H (Car�,1 ‖ Station1 ‖ Station2 ‖ Control1),

all sends and receives at ports 1o, 2o, 1i, 2i are encapsulated via H .
Assume � = 1 and �′ = 2. Calculate a number of steps until the
handover is achieved.

11.4 Parallel composition revisited

This section takes a closer look at parallel composition and some of its
variations. Parallel composition as it has been considered up to this point
has asynchronous cooperation (processes can proceed to execute actions
independently) and synchronous communication (interaction between pro-
cesses occurs by means of synchronization). Moreover, communication is
symmetric: there is no basic difference between sender and receiver. (Only
in modeling value passing, see for example the communicating buffers of Sec-
tion 7.6, Figure 7.3, asymmetry is involved.) This section briefly considers
other mechanisms.

First of all, consider asynchronous communication. This form of commu-
nication occurs when a process can output a message without waiting for a
synchronization with a receiving process. This can be modeled by putting
a channel process in the middle (like in the description of the Alternating-Bit
Protocol in Section 7.8), but can also be done directly by using the state opera-
tors of Section 10.5. In the latter case, the set or the sequence of messages that

390 Features

are sent but not yet received, is kept in the state of the state operators. Note
that a difference can be made by treating outstanding messages as a sequence
(the channel is queue-like) or as a set (the channel is bag-like). For each com-
munication channel c, a separate set of state operators λc can be used.

Another option is to consider synchronous cooperation. In this case, parallel
components proceed in lock-step, as for instance in an integrated circuit. It can
be said that parallel composition reduces to the communication merge in this
case, and all left-merge terms reduce to 0. But then, communication, or in fact
synchronization, should be defined for all pairs of atomic actions, preserving
their identity. Thus, these are a kind of multi-actions, bags of atomic actions.

Next, consider asymmetric variants of communication. The standard com-
munication function γS is symmetric, where both send and receive actions are
encapsulated if communication is to be enforced. The send actions can be re-
placed by a put action, when the sender process outputs a message at a port,
no matter whether the receiver is able to receive or not. Still, put actions syn-
chronize with receive actions to yield communication actions, but only receive
actions are encapsulated, and put actions are given lower priority than commu-
nication actions. Thus, the priority operator of Section 11.1 is used.

The reverse case, where the receive action is replaced by a get action, is
somewhat similar. In addition to get actions along a port parameterized by
a data element, also a get action with an error parameter is needed, in case
no send action is offered. Get actions synchronize with send actions to yield
communication actions, and all regular get actions and all send actions are
encapsulated. The error get action is given lower priority than communication
actions.

Exercises

11.4.1 Work out the case of asynchronous communication via state opera-
tors, by giving atomic actions involved, and specifying action and
effect functions of the state operators.

11.4.2 Define a parallel composition operator that is based on synchronous
cooperation on top of the theory BSP(A). It may be useful to consider
vector notation for multi-actions. Elaborate an axiomatization and
operational rules.

11.4.3 Work out the case of asymmetric communication. Is it possible to
generalize the put mechanism to a broadcast mechanism, involving
multiple receivers?

11.5 Bibliographical remarks 391

11.5 Bibliographical remarks

Section 11.1 is based on (Baeten et al., 1986), but the axiomatization comes
from (Aceto et al., 1994). For more on priorities, see (Cleaveland et al., 2001).
For orthogonal bisimilarity, see (Bergstra et al., 2003). Section 11.2 is based
on (Andova, 2002). The operational semantics presented is new here, and
does not yield a strictly alternating model in which probabilistic and action
transitions always alternate. The first definition of a notion of bisimulation for
probabilistic processes can be found in (Larsen & Skou, 1991), which shows
the need for the requirement that a probabilistic bisimulation relation is an
equivalence relation. For more on probabilities, see (Jonsson et al., 2001) and
(Markovski, 2008).

The section on mobility uses two examples taken from (Milner, 1999). This
section briefly describes a mechanism of mobility. Much more about mobility
can be found in the π -calculus, see e.g. (Milner, 1999; Sangiorgi & Walker,
2001).

Background material on asynchronous communication can be found in
(Baeten & Weijland, 1990), which in turn is based on (Bergstra et al., 1985).
For synchronous cooperation, see (Weijland, 1989), partly based on (Bergstra
& Klop, 1984a). For a version of CCS with synchronous cooperation, see
(Milner, 1983). Finally, for asymmetric communication, the best reference is
(Baeten & Weijland, 1990).

12

Semantics

So far, strong bisimilarity and several of its variants have been chosen as
the semantic equivalence for processes. This chapter takes another look at
the semantic domain. In Chapter 3, the domain of a transition-system space
was introduced, and the equivalence relations language equivalence and strong
bisimilarity were introduced. Bisimilarity was chosen as the preferred notion
of equivalence, because it allows to distinguish between processes with differ-
ent moments of choice, different branching structures. This chapter discusses
other equivalences, and axiom systems that are ground-complete with respect
to these other equivalences. For the most part, discussion is restricted to the
process theory BSP(A). The addition of the silent action τ leads to many in-
teresting observations, and a vastly increased complexity. In order to focus on
a few key issues, this extension is not considered here.

12.1 Bisimilarity and trace semantics

Theorems 4.4.7 (Soundness of BSP(A)) and 4.4.12 (Ground-completeness of
BSP(A)) from Section 4.4 are repeated here, to start off the discussion.

Theorem 12.1.1 (Soundness and ground-completeness) Theory BSP(A) is
a sound and ground-complete axiomatization of the standard term model
P(BSP(A))/↔ , i.e., for any closed BSP(A)-terms p and q, BSP(A) � p = q
if and only if P(BSP(A))/↔ |
 p = q .

It is the intention to also state and prove similar results for other notions of
semantic equivalence in this chapter. First of all, consider the notion of lan-
guage equivalence introduced in Definition 3.1.7 (Run, language equivalence).
This equivalence identifies two transition systems if and only if they have the
same set of complete executions, called runs in the referred definition. Thus,

393

394 Semantics

any executions that terminate unsuccessfully are ignored; in particular, pro-
cesses a.0 and b.0 are identified, because both have an empty set of runs. This
chapter considers only process equivalences that distinguish a process that is
able to do an a-step from a process that is able to do a b-step. Language equiv-
alence does not satisfy this restriction. However, the notion can be adapted so
that also unsuccessfully terminating runs are taken into account.

Definition 12.1.2 (Traces and trace equivalence) Let s be a state in the set
of states S of a transition-system space over the set of labels L . A sequence
σ ∈ L∗ is a trace of s if and only if there is a state t ∈ S with s

σ→∗ t (as
defined in Definition 3.1.3 (Reachability)). A sequence σ↓ (with σ ∈ L∗) is
an accepting trace of s if and only if there is a state t ∈ S with s

σ→∗ t and t↓.
The trace set of a state s is its set of traces and accepting traces. The trace set

of a transition system is the trace set of its initial state. Two transition systems
are trace equivalent if and only if they have the same trace sets.

Note that the trace set Z of a transition system has the following property.
For all sequences σ, ρ ∈ L∗,

σρ ∈ Z ⇒ σ ∈ Z .

It is said that the set Z is prefix closed. Moreover, observe that a trace set
of a transition system is non-empty (because it always has at least the empty
sequence as an element).

It can be shown, see Exercise 12.1.7, that BSP(A) is a sound axiomatization
of the term model obtained from the algebra of transition systems P(BSP(A))
of Definition 4.4.2 (Term algebra) modulo trace equivalence. Interestingly,
it is also possible to consider the set of non-empty prefix-closed trace sets,
independently of any specific transition-system space. If T(A) is the set of
non-empty prefix-closed trace sets given some set of actions A that serve as
the labels, then Z ∈ T(A) consists of sequences of actions, perhaps ending in
↓, such that each prefix of a sequence in Z is also in Z . In line with before,
ε denotes the empty trace. As each trace set is non-empty and prefix closed,
ε ∈ Z always holds. T(A) can be turned into a model of BSP(A) by defining
an interpretation tr from the signature of BSP(A) into T(A).

Definition 12.1.3 (Trace set of a closed BSP(A)-term) The function tr pro-
vides an interpretation of closed terms over the signature of BSP(A) into the
set of non-empty prefix-closed trace sets T(A).

(i) tr(0) = {ε};
(ii) tr(1) = {ε,↓};

12.1 Bisimilarity and trace semantics 395

(iii) tr(a.p) = {ε} ∪ {aσ | σ ∈ tr(p)}, for all actions a ∈ A and closed
BSP(A)-terms p;

(iv) tr(p + q) = tr(p) ∪ tr(q), for all closed BSP(A)-terms p, q.

With this interpretation, the non-empty prefix-closed trace sets T(A) form a
model of BSP(A), i.e., for any closed BSP(A)-terms p and q, BSP(A)� p = q
implies tr(p) = tr(q).

However, theory BSP(A) is not a ground-complete axiomatization of the
model. Consider the extra axiom in Table 12.1. This axiom is called the Trace
Axiom. Theory BSPtr(A) is also referred to as the basic equational theory of
traces, or simply trace theory.

BSPtr(A)
BSP(A);
-
x, y;

a.(x + y) = a.x + a.y TR

Table 12.1. The process theory BSPtr(A) (with a ∈ A).

Theorem 12.1.4 (Soundness, ground-completeness of trace theory) Equa-
tional theory BSPtr(A) is a sound and ground-complete axiomatization of the
model T(A), i.e., for any closed BSP(A)-terms p and q, BSPtr(A) � p = q if
and only if tr(p) = tr(q).

Proof First, consider soundness. Validity of Axioms A1–3 of Table
4.1 follows directly from the interpretation of alternative composition as set
union in Definition 12.1.3 above. Axiom A6 follows as each non-empty prefix
closed-trace set contains the empty trace. Finally, consider Axiom TR. Then,
for all actions a ∈ A and closed BSP(A)-terms p and q, tr(a.(p + q)) =
{ε} ∪ {aσ | σ ∈ tr(p + q)} = {ε} ∪ {aσ | σ ∈ tr(p) ∪ tr(q)} = {ε} ∪ {aσ |
σ ∈ tr(p)} ∪ {aσ | σ ∈ tr(q)} = tr(a.p + a.q). This proves soundness.
Second, the outline of the ground-completeness proof is as follows. Consider
two closed BSP(A)-terms p, q with the same trace set. Using Axioms TR and
A2, all parentheses in p and q can be removed. Next, by A3, all duplicate
occurrences of summands can be removed. In this way, normal forms p′ and
q ′ are obtained from which the trace sets can be immediately read off. Thus,
p′ and q ′ are identical except for the order of the summands. This means that
they can be proved equal by use of Axiom A1.

396 Semantics

Thus, a very simple model of BSP(A) is obtained. However, this model is
not suitable to describe deadlock behavior, since terms with a deadlock are
always identified with terms that have no deadlock possibility: in BSPtr(A),
the following derivation can be made:

a.1 = a.(1 + 0) = a.1 + a.0.

To put this differently, trace semantics does not preserve deadlock behavior,
and so trace semantics cannot be used in applications in which deadlock behav-
ior of processes is relevant. For this reason, other semantics were suggested,
identifying more processes than bisimulation semantics, but fewer than trace
semantics, so that deadlock behavior can be modeled. In the next section, some
of these semantics are considered.

For now, note that also deadlock information can be added explicitly to
traces, e.g., by marking which traces are deadlock traces. In a transition-
system space, this notion can be defined as follows: if s is a state in the set
of states S of a transition-system space over the set of labels L , then σ ∈ L∗
is a deadlock trace of s if and only if there is a state t ∈ S with s

σ→∗ t
and t is a deadlock state (i.e., a state without outgoing transitions and with-
out successful-termination option, as defined in Definition 3.1.14 (Deadlock)).
The completed-trace set of s is its set of traces, accepting traces, and dead-
lock traces. The completed trace set allows a finer notion of equivalence than
trace semantics, the so-called completed-trace semantics: two transition sys-
tems are equivalent if and only if they have the same traces, the same accepting
traces, and the same deadlock traces. Section 12.3 considers completed-trace
equivalence in a bit more detail.

Exercises

12.1.1 Consider an extension of trace theory with recursion. Give the trace
sets of the following recursively defined processes:

(a) the solution of X = a.X ;
(b) the solution of X = a.X + 1.

12.1.2 The process defined by a closed BSP(A)-term p is deterministic if and
only if for all the states q of the transition system of p generated by
the operational rules of the standard term model, it holds that, for any
action a and states s and t , q

a→ s and q
a→ t implies s = t . Show

that for deterministic processes the deadlock behavior, as defined in
Definition 3.1.14, can be derived from the trace set.

12.1.3 Prove that completed-trace equivalence preserves deadlock behavior
of transition systems, as defined in Definition 3.1.14 (Deadlock).

12.2 Failures and readiness semantics 397

12.1.4 Prove that completed-trace equivalence is a congruence relation on
closed BSP(A)-terms. Investigate a sound and ground-complete ax-
iomatization.

12.1.5 Extend the interpretation tr of closed BSP(A)-terms of Definition
12.1.3 into trace sets to sequential composition. Consider the extra
axiom x · (y + z) = x · y + x · z. Show that the extension of theory
TSP(A) of Table 6.1 with this extra axiom and Trace Axiom TR leads
to a sound and ground-complete axiomatization of the model of trace
sets T(A).

12.1.6 Extend the interpretation of closed BSP(A)-terms of Definition 12.1.3
into trace sets to parallel composition. Develop a sound and ground-
complete axiomatization of T(A) based on process theory BCP(A, γ)
of Table 7.1. Note that, for trace sets, equality (x+y)‖z = x‖z+y‖z
holds. Can you develop an alternative sound and ground-complete
axiomatization that does not use the auxiliary left-merge and commu-
nication-merge operators?

12.1.7 Show that trace theory, BSPtr(A), is a sound and ground-complete
axiomatization of the term algebra P(BSP(A)) modulo trace equiva-
lence, i.e., for any closed BSP(A)-terms p and q, BSPtr(A) � p = q
if and only if their trace sets are equal.

12.1.8 Consider the silent action τ in trace semantics. Should it be possible
to distinguish τ.1 from 1?

12.2 Failures and readiness semantics

It turned out that deadlock behavior is not preserved in standard trace seman-
tics. It is preserved by completed-trace equivalence that adds deadlock infor-
mation to traces. This section defines another semantics, failures semantics,
that also adds extra information about deadlock behavior to the trace set of
a process, and that therefore also preserves deadlock behavior. In the course
of defining failures semantics, also a variant is considered, called readiness
semantics. Both readiness semantics and failures semantics are used in con-
currency theory. Again, the point of departure is a transition-system space, but
also a more direct representation is considered.

Definition 12.2.1 (Ready pair, failure pair) Let s be a state in the set of states
S of a transition-system space over the set of labels L . Let σ ∈ L∗ be a trace
from s to a state t ∈ S. Let menu(t) ⊆ L ∪ {↓} be the menu of t , i.e., its
set of outgoing transitions, including ↓ if t has a termination option. The pair
(σ,menu(t)) is called a ready pair of s, and for each X ⊆ (L ∪ {↓})\menu(t),

398 Semantics

pair [σ, X] is called a failure pair of s. Thus, there is a failure pair for each
subset of the complement of the second argument of a ready pair.

The ready set of s is the set of all ready pairs of s; the failure set of s is the
set of all failure pairs of s. Two transition systems s and t are ready equivalent
if and only if they have the same ready set, and failures equivalent if and only
if they have the same failure set.

Example 12.2.2 (Readiness and failures equivalence) Consider the transi-
tion-system space generated by the term deduction system for BSP(A). The
ready set of 1 is {(ε, {↓})} and its failure set {[ε, X] | X ⊆ A}. The ready set
of 0 is {(ε,∅)} and its failure set {[ε, X] | X ⊆ A ∪ {↓}}. The two terms a.1
and a.1 + a.0 are distinguished by the ready pair (a,∅) and the failure pairs
[a, X] with ↓∈ X . Thus, it can be seen that in readiness and failures semantics,
deadlock behavior is recorded.

Proposition 12.2.3 (Congruence) Readiness equivalence and failures equiva-
lence are congruence relations on the algebra of transition systems for BSP(A)
(Definition 4.4.2 (Term algebra)).

Proof See Exercise 12.2.3.

Theorem 12.2.4 (Semantic relationships) Let s, t be two transition systems
in some given transition-system space that contains at least all the transition
systems induced by closed BSP(A)-terms in the standard term model, with A
containing at least two actions.

(i) If s↔t , then s and t are ready equivalent, but not conversely;
(ii) if s and t are ready equivalent, then they are failures equivalent, but

not conversely;
(iii) if s and t are failures equivalent, then they are (completed-)trace

equivalent, but not conversely.

Proof See Exercise 12.2.4. The following are counterexamples show-
ing that the converse properties are not true:

(i) a.b.1 + a.(b.0 + 1) and a.b.0 + a.(b.1 + 1);
(ii) a.b.0 + a.1 and a.b.0 + a.1 + a.(b.0 + 1);

(iii) a.b.0 + a.a.0 and a.(b.0 + a.0).

By the first part of Theorem 12.2.4, the term model generated by the algebra
of transition systems for BSP(A) modulo ready equivalence becomes a model

12.2 Failures and readiness semantics 399

of BSP(A). But, more can be proved. Consider the theory in Table 12.2, which
extends BSP(A) with an extra axiom, called the Ready Axiom.

BSPre(A)
BSP(A);
-
x, y, u, v;

a.(b.x + u)+ a.(b.y + v) =
a.(b.x + b.y + u)+ a.(b.x + b.y + v) RE

Table 12.2. The process theory BSPre(A) (with a, b ∈ A).

Theorem 12.2.5 (Soundness, ground-completeness of readiness theory)
Theory BSPre(A) is a sound and ground-complete axiomatization of the
term algebra P(BSP(A)) modulo ready equivalence, i.e., for any closed
BSP(A)-terms p and q, BSPre(A) � p = q if and only if their ready sets are
equal.

Proof See Exercise 12.2.5.

Also the term model generated by the term deduction system for BSP(A)
modulo failures equivalence is a model of BSP(A). But again, more can be
proved. Consider the extra axiom in Table 12.3, called the Failures Axiom.
Adding this axiom to the readiness theory BSPre(A) yields a sound and ground-
complete axiomatization of failures equivalence.

BSPfa(A)
BSPre(A);
-
x, y, z;

a.x + a.(y + z) = a.x + a.(x + y)+ a.(y + z) FA

Table 12.3. The process theory BSPfa(A) (with a ∈ A).

Theorem 12.2.6 (Soundness, ground-completeness of failures theory)
Theory BSPfa(A) is a sound and ground-complete axiomatization of the
term algebra P(BSP(A)) modulo failures equivalence, i.e., for any closed
BSP(A)-terms p and q , BSPfa(A) � p = q if and only if their failure sets are
equal.

400 Semantics

Proof See Exercise 12.2.6.

So far, ready equivalence and failures equivalence have been considered on a
transition-system space. However, it is also possible to consider these notions
directly, independent of transition systems. The definitions necessary in the
case of ready equivalence are presented to conclude this section.

Definition 12.2.7 (Readiness semantics) A ready set R is a set of pairs (σ, X)
with σ ∈ A∗ and X ⊆ A ∪ {↓}, satisfying the following conditions.

(i) Set R has exactly one ready pair (ε, X) with as first component the
empty sequence. The set X is the menu of R, denoted menu(R) in the
remainder.

(ii) For each a ∈ A, there is a set X with (σa, X) ∈ R if and only if there
is a set Y with (σ,Y ∪ {a}) ∈ R.

The set of ready sets can be turned into a model for BSPre(A), see Exercise
12.2.7, by providing the following interpretation:

(i) the ready set of 0 is {(ε, ∅)};
(ii) the ready set of 1 is {(ε, {↓})};

(iii) if R is a ready set, then, for any a ∈ A, a.R is the ready set {(ε, {a})}∪
{(aσ, X) | (σ, X) ∈ R};

(iv) if R, S are ready sets, then R + S is the ready set {(ε,menu(R) ∪
menu(S))} ∪ (R \ {(ε,menu(R))}) ∪ (S \ {(ε,menu(S))}).

Failures semantics has a special place among the different notions of equiv-
alence that are considered in this chapter. It is the semantics that identifies
the most processes while still preserving deadlock behavior, and that allows
the definition of a parallel-composition operator (as used in the process alge-
bra CSP) (Bergstra et al., 1987). However, as shown in the next section, the
priority operator (see Section 11.1) cannot be defined in failures semantics.

Exercises

12.2.1 Determine the failure sets and the ready sets of the transition systems
of the following terms:

(a) a.1 + a.0;
(b) a.b.1 + a.1;
(c) a.(b.0 + c.0);
(d) a.(b.1 + c.1);
(e) a.b.0 + a.b.0;
(f) a.b.0 + a.b.0 + a.(b.0 + c.0).

12.3 The linear time – branching time lattice 401

12.2.2 Prove that the Ready Axiom of Table 12.2 implies that the identity
a.b.x+a.b.y = a.(b.x+b.y), for arbitrary terms x and y and actions
a and b, is derivable. Thus, failures and readiness semantics allow to
reduce non-determinism.

12.2.3 Prove Proposition 12.2.3 (Congruence).
12.2.4 Complete the proof of Theorem 12.2.4 (Semantic relationships).

Show that Properties (i) and (ii) are still valid if A contains only one
action, but that (iii) is then no longer valid.

12.2.5 Prove Theorem 12.2.5 (Soundness, ground-completeness of readiness
theory).

12.2.6 Prove Theorem 12.2.6 (Soundness, ground-completeness of failures
theory).

12.2.7 Show that the set of ready sets as defined in Definition 12.2.7 (Readi-
ness semantics) is a model of theory BSPre(A).

12.2.8 Give an explicit presentation of a failures model for the theory
BSPfa(A), similar to the presentation in Definition 12.2.7 (Readiness
semantics).

12.2.9 Prove that failures semantics preserves deadlock behavior of transi-
tion systems, as defined in Definition 3.1.14 (Deadlock).

12.2.10 Recall Definition 12.2.1 (Ready pair, failure pair). Define, for any
state s in a transition-system space over labels L , trace σ ∈ L∗, and
set X ⊆ (L ∪ {↓}), s after σ MUST X if and only if whenever s

σ→∗ t
then menu(t) ∩ X �= ∅. Show that state s is failures equivalent with
state t if and only if for all σ, X it holds that s after σ MUST X ⇔
t after σ MUST X .

12.2.11 A pair [σ, X] is called a singleton-failure pair of state s in a transition-
system space if and only if it is a failure pair of s and set X
is a singleton. Two states are singleton-failures equivalent if and
only if they have the same set of singleton-failure pairs. Find two
processes that are singleton-failures equivalent, but not failures equiv-
alent. Find two processes that are singleton-failures equivalent but not
completed-trace equivalent, and two processes that are completed-
trace equivalent but not singleton-failures equivalent. Show also that
sequential composition of processes cannot be defined in a meaning-
ful way in singleton-failures semantics.

12.3 The linear time – branching time lattice

Trace semantics abstracts from all information concerning the branching
structure of processes, all moments of choice are hidden. On the other hand,

402 Semantics

bisimulation semantics keeps all information about the branching structure.
For this reason, trace semantics is said to be a linear time semantics, and
bisimulation semantics a branching time semantics. These semantics are at
the opposite ends of the so-called linear time – branching time spectrum. This
section gives an overview of other semantics that can be defined on the basis
of a transition-system space. When considering the number of processes dif-
ferentiated by a semantics, the semantics discussed in this section are all in
between trace semantics, that identifies the largest number of transition sys-
tems thus distinguishing the smallest number of processes, and bisimulation
semantics, that distinguishes the largest number of processes. All discussed
semantics abstract from branching structure to a certain degree. To conclude
the section, the so-called semantic lattice is presented, giving an overview of
the relationship between the different semantics.

As a first observation, it is noted that readiness and failures semantics, in-
troduced in the previous section, do not allow the definition of the priority
operator of Section 11.1.

Proposition 12.3.1 (Priorities in failures and readiness semantics) The pri-
ority operator θ cannot be added in a meaningful way to failures or readiness
semantics.

Proof Suppose A contains atomic actions a, b, c, d, e, f with prior-
ities f ≺ b ≺ d . Consider the process expressions p = a.(b.c.0 + d.0) +
a.(b.e.0 + f.0) and q = a.(b.e.0 + d.0) + a.(b.c.0 + f.0). Then, the transi-
tion systems induced by p and q are ready equivalent; so, by Theorem 12.2.4
(Semantic relationships), they are also failures equivalent. However, theory
BSPθ(A,≺) of Section 11.1 allows to derive the intuitively expected result
that θ(p) = a.d.0 + a.b.e.0 and θ(q) = a.d.0 + a.b.c.0. Since the axioms of
BSPθ(A,≺) are sound with respect to bisimilarity, by again Theorem 12.2.4
(Semantic relationships), it is expected that θ(p) and θ(q) are ready and fail-
ures equivalent. However, θ(p) and θ(q) do not even have the same trace sets,
which by Theorem 12.2.4 shows that θ(p) and θ(q) cannot be ready or failures
equivalent.

The semantic notions of ready-trace and failure-trace equivalence, to be de-
fined next, do allow the definition of the priority operator, as shown in Exercise
12.3.1.

Definition 12.3.2 (Ready-trace and failure-trace equivalence) Let s be a
state in the set of states S of a transition-system space over the set of labels
L . A ready trace of s is a trace σ ∈ L∗ of s, together with, for every state t that

12.3 The linear time – branching time lattice 403

σ passes through, the menu menu(t) ⊆ L∪{↓}, as defined in Definition 12.2.1
(Ready pair, failure pair). A failure trace is a trace σ ∈ L∗ of s, together with,
for every state t that σ passes through, a set X ⊆ L ∪ {↓} disjoint from the
menu, i.e., X ∩ menu(t) = ∅. Thus, the menu, respectively a failure, is given
for every state that is traversed in the trace.

The ready-trace set of s is the set of all ready traces of s; the failure-trace
set of s is the set of all failure traces of s. Two transition systems s and t are
ready-trace equivalent if and only if they have the same ready-trace set, and
failure-trace equivalent if and only if they have the same failure-trace set.

Next, consideration is given to notions that are based on the notion of a sim-
ulation: a simulation is a one-way bisimulation, and processes are simulation
equivalent if and only if there are two simulations, back and forth between the
two processes.

Definition 12.3.3 (Simulation) Consider a transition-system space with set of
states S. A binary relation R on S is a simulation relation if and only if, when-
ever (s, t) ∈ R for two states s, t ∈ S, the following transfer conditions hold:

(i) whenever s
a→ s′ for some label a and state s′, there is a state t ′ such

that t
a→ t ′ and (s′, t ′) ∈ R;

(ii) whenever s↓, then t↓.

Two transition systems s, t ∈ S are simulation equivalent if and only if there
is a simulation relation R with (s, t) ∈ R and there is also a simulation relation
R′ with (t, s) ∈ R′.

The important difference with bisimilarity is that different simulation rela-
tions can be used in the two directions. To give an example, the processes
a.(b.1 + 1) and a.(b.1 + 1)+ a.1 are simulation equivalent but not bisimilar.

Finally, consider two extra additions to simulation equivalence.

Definition 12.3.4 (Completed simulation, ready simulation) Consider a
transition-system space over labels L with set of states S. A binary relation
R on S is a completed-simulation relation if and only if it is a simulation re-
lation and, moreover, whenever (s, t) ∈ R for two states s, t ∈ S, then s is a
deadlock state if and only if t is a deadlock state. A binary relation R on S is
a ready-simulation relation if and only if it is a simulation relation and, more-
over, whenever (s, t) ∈ R for two states s, t ∈ S, then menu(s) = menu(t).

Two transition systems s, t ∈ S are completed-simulation equivalent if
and only if there is a completed-simulation relation R with (s, t) ∈ R and
there is also a completed-simulation relation R′ with (t, s) ∈ R′. Transition

404 Semantics

systems s, t ∈ S are ready-simulation equivalent if and only if there is a ready-
simulation relation R with (s, t) ∈ R and there is also a ready-simulation
relation R′ with (t, s) ∈ R′.

In all, ten semantic notions have been defined. All notions define different
semantic equivalence relations on the transition-system space induced by the
term algebra of BSP(A). They are related as shown in Figure 12.1.

bisimilarity

ready-simulation

ready-trace

completed-simulation failure-trace readiness

simulation failures

completed-trace

trace

Fig. 12.1. Semantic lattice.

Whenever there is a sequence of arrows in Figure 12.1 from one semantic
notion to another semantic notion, that means that any pair of transition sys-
tems equivalent in the former notion is also equivalent in the latter notion (but
not conversely). When such a path of arrows does not exist, the notions are
independent: there is a pair of transition systems related under one notion but
not the other, and conversely.

The axioms needed for ground-complete axiomatizations of the new seman-
tic notions not axiomatized so far are presented in Table 12.4. The last two
axioms are conditional axioms with a condition expressing that the menu of

12.3 The linear time – branching time lattice 405

two processes is the same. The first projection π1 from the signature of theory
(BSP + PR)(A) is used for this; that is, π1(x) = π1(y) is used to express that
the menu of x (the set of initial steps of x) is equal to the menu of y.

x, y, z, u, v;
a.(x + y) = a.(x + y)+ a.y S
a.(b.x + u)+ a.(c.y + v) = a.(b.x + c.y + u + v) CT1
a.(b.x + u)+ a.1 = a.(b.x + u + 1) CT2
a.(x + b.y + z) = a.(x + b.y + z)+ a.(b.y + z) CS1
a.(x + 1) = a.(x + 1)+ a.1 CS2
a.x + a.y = a.x + a.(x + y)+ a.y FT
π1(x) = π1(y) ⇒ a.x + a.y = a.(x + y) RT
π1(x) = π1(y) ⇒ a.(x + y) = a.(x + y)+ a.y RS

Table 12.4. Axioms needed for the axiomatization of the equivalences in the
semantic lattice (assuming the signature of (BSP+PR)(A), with a, b, c ∈ A).

Theorem 12.3.5 (Soundness, ground-completeness)

(i) Theory (BSP+S)(A) is a sound and ground-complete axiomatization
of the term algebra of BSP(A) modulo simulation equivalence, i.e.,
for any closed BSP(A)-terms p and q , (BSP + S)(A) � p = q if and
only if p and q are simulation equivalent.

(ii) Theory (BSP+CT1,2)(A) is a sound and ground-complete axiomati-
zation of the term algebra of BSP(A) modulo completed-trace equiva-
lence, i.e., for any closed BSP(A)-terms p and q, (BSP+CT1,2)(A)�
p = q if and only if p and q have the same completed-trace sets.

(iii) Theory (BSP + CS1,2)(A) is a sound and ground-complete axioma-
tization of the term algebra of BSP(A) modulo completed-simulation
equivalence, i.e., for any closed BSP(A)-terms p and q, (BSP +
CS1,2)(A) � p = q if and only if p and q are completed-simulation
equivalent.

(iv) Theory (BSP + PR + RT + FT)(A) is a sound and ground-complete
axiomatization of the term algebra of (BSP+PR)(A) modulo failure-
trace equivalence, i.e., for any closed (BSP+ PR)(A)-terms p and q,
(BSP + PR + RT + FT)(A) � p = q if and only if p and q have the
same failure-trace sets.

(v) Theory (BSP + PR + RT)(A) is a sound and ground-complete ax-
iomatization of the term algebra of (BSP + PR)(A) modulo ready-

406 Semantics

trace equivalence, i.e., for any closed (BSP+ PR)(A)-terms p and q,
(BSP + PR + RT)(A) � p = q if and only if p and q have the same
ready-trace set.

(vi) Theory (BSP + PR + RS)(A) is a sound and ground-complete ax-
iomatization of the term algebra of (BSP + PR)(A) modulo ready-
simulation equivalence, i.e., for any closed (BSP + PR)(A)-terms p
and q, (BSP + PR + RS)(A) � p = q if and only if p and q are
ready-simulation equivalent.

Exercises

12.3.1 Show that the priority operator can be defined in a meaningful way in
failure-trace semantics.

12.3.2 Show that, if two transition systems are failure-trace equivalent, then
they are also failures equivalent, but not conversely. For the coun-
terexample, use the processes in the proof of Proposition 12.3.1
(Priorities in failures and readiness semantics).

12.3.3 Show that, if two transition systems are ready-trace equivalent, then
they are also failure-trace equivalent, but not conversely. For the
counterexample, use the same pair of processes as in the second part
of the proof of Theorem 12.2.4 (Semantic relationships).

12.3.4 Show that readiness semantics and failure-trace semantics are inde-
pendent: there is a pair of processes that is ready equivalent but not
failure-trace equivalent, and vice versa. Use the examples of the pre-
vious two exercises.

12.3.5 Show that, if two transition systems are simulation equivalent, then
they are also trace equivalent, but not conversely. On the other
hand, show that simulation equivalence and completed-trace equiv-
alence are independent, and that simulation equivalence and ready-
trace equivalence are independent.

12.3.6 Show that, if two transition systems are ready-simulation equivalent,
then they are also ready-trace equivalent, but not conversely.

12.3.7 Show that completed-simulation equivalence is independent of ready-
trace equivalence and independent of failures equivalence.

12.3.8 Prove Theorem 12.3.5 (Soundness, ground-completeness).

12.3.9 Consider a transition-system space with set of states S. A pair 〈σ, X〉
is called a possible future of state s ∈ S if and only if there is a state
t ∈ S with s

σ→∗ t and trace set X . Two transition systems are possible-
futures equivalent if and only if their initial states have the same set

12.4 Partial-order semantics 407

of possible futures. Show that if two transition systems are possible-
futures equivalent, then they are ready equivalent. On the other hand,
show that possible-futures equivalence and ready-simulation equiv-
alence are independent, and that possible-futures equivalence and
failure-trace equivalence are independent.

12.3.10 A relation on the set of states S of a transition-system space is a 2-
nested-simulation relation if and only if it is a simulation relation that
only relates states that are simulation equivalent. Two transition sys-
tems s, t ∈ S are 2-nested-simulation equivalent if and only if there is
a 2-nested simulation relating s to t and a 2-nested simulation relating
t to s. Show that if two states are 2-nested-simulation equivalent, then
they are ready-simulation equivalent and also possible-futures equiv-
alent, but not conversely. Show that if two states are bisimilar, then
they are also 2-nested-simulation equivalent, but not conversely.

12.3.11 State s in a transition-system space is a possible world of state t
if s is deterministic (as defined in Exercise 12.1.2) and there is a
ready simulation relating s to t . Two transition systems are possible-
worlds equivalent if and only if their initial states have the same set
of possible worlds. Show that if two transition systems are ready-
simulation equivalent, then they are possible worlds equivalent, but
not conversely. Show that if two states are possible worlds equivalent,
then they are ready-trace equivalent, but not conversely. Show that
a ground-complete axiomatization of possible worlds equivalence is
achieved by adding axiom a.(b.x+b.y+z) = a.(b.x+z)+a.(b.y+z),
for actions a and b and process terms x , y, and z, to BSP(A).

12.3.12 Investigate which semantics presented in this chapter allows a consis-
tent definition of the renaming operator.

12.3.13 Investigate which semantics presented in this chapter allows a consis-
tent definition of the priority operator.

12.4 Partial-order semantics

So far in this chapter, the discussion centered on the linear time – branching
time spectrum. Other dimensions can be considered. One such dimension is
the treatment of the silent step τ . Another is the treatment of infinity. Both
of these are not considered here. This section contains just a brief discussion
on another dichotomy: the distinction between total-order and partial-order
process theories. So far in this book, only total-order theories have been con-
sidered. This means that every execution of a process is the execution of a
number of actions that are totally ordered in time. At each moment of time,

408 Semantics

at most one action is executed. This is a simplifying assumption that eases
calculations considerably, and is also appropriate in the applications that have
been considered. Partial-order semantics allows that action executions are only
partially ordered in time.

The issue can be illustrated by considering the process a.1 ‖ b.1, assuming
no communication. In process algebra as considered up to this point, this term
equals a.b.1 + b.a.1. This depends on the total-order assumption. Rejecting
this assumption, it can be argued that in a.1 ‖ b.1, actions a and b can happen
concurrently, can have overlapping executions, whereas in a.b.1 + b.a.1, the
second action can only start if the first has finished.

One approach to obtain a partial-order theory is to extend the communi-
cation function γ to include multi-actions, bags of concurrently executing
actions. Suppose the existence of a set CA ⊂ A of core atomic actions. From
this set, the set A can be generated as the set consisting of all bags (or multi-
sets) of elements of CA. This turns an action-prefix operation a.x into an
operation that executes a bag of elements a, and then proceeds as x . Two bi-
nary relations are considered on the set CA. First, there is the conflict relation.
If two core actions are in conflict, then they cannot be executed at the same
time, and this is enforced by keeping γ (a, b) undefined when the bag a con-
tains a core action that is in conflict with a core action of b. Second, there
is the communication relation. When an element of a communicates with an
element of b, then in γ (a, b) they are both taken out, and replaced by their
communication. Apart from this, γ behaves as multi-set union.

When this approach is applied to theory BCP(A, γ) as introduced in Section
7.4, the resulting theory is a partial-order theory that axiomatizes a semantics
called step bisimulation. In each step, a multi-set of core actions is executed.

The advantage of the approach that extends the communication function is
that the expansion theorem, Theorem 7.4.7, still holds. A process theory that
admits an expansion theorem, i.e., that allows to reduce a parallel composition
to a set of alternatives, is called an interleaving theory. Thus, this first approach
to develop an equational theory for a partial-order semantics results in a the-
ory that still is an interleaving theory. Other approaches to build partial-order
theories do not have this advantage.

Another approach to develop a partial-order theory is to consider actions
that have duration. Each action is split into two core actions: its beginning and
its ending. Denoting the beginning of a as a+, the ending as a−, the deduction
rule a.x

a→ x in the term deduction system of MPT(A) underlying all theories
developed in this book, is replaced by the two rules

a.x
a+→ a−.x and a−.x a−→ x .

12.4 Partial-order semantics 409

Define that two standard terms (i.e., those not including any occurrences of
beginnings a+ or endings a−, for example, BSP(A)-terms) are split-bisimula-
tion equivalent if and only if they are bisimilar in the term model generated
by this modified set of operational rules. Different from the first approach,
the standard axioms for, for example, parallel composition are no longer valid
in split-bisimulation semantics. Exercise 12.4.1 asks to develop a sound and
ground-complete axiomatization for split-bisimulation semantics. As a re-
mark, note that it is also possible to consider some actions as durational, but
others not.

If this second approach is applied to a theory with communication, the com-
munication function needs to be extended. If two actions communicate, then
also their beginnings and endings should communicate. For example, consider
standard communication, given by γ (?, !) = γ (!, ?) = !?. Then, it should be
also defined that

γ (?+, !+) = γ (!+, ?+) = !?+ and γ (?−, !−) = γ (!−, ?−) = !?−.
A drawback of split semantics is that it is not always clear which ending

matches a certain beginning. The problem can be illustrated with the following
example, which uses the aforementioned standard communication. Consider
the term

!.1 ‖ !.!.1 ‖ ?.?.1 ‖ ?.1.

The following execution can be started, first starting a communication between
the first and third component, and then starting a communication between the
second and fourth component:

!.1 ‖ !.!.1 ‖ ?.?.1 ‖ ?.1
!?+→ !−.1 ‖ !.!.1 ‖ ?−.?.1 ‖ ?.1
!?+→ !−.1 ‖ !−.!.1 ‖ ?−.?.1 ‖ ?−.1.

Now, another !?+ should only occur after two !?− have occurred, but this is not
the case: the communications can be ‘criss-crossed’ as follows:

!−.1 ‖ !−.!.1 ‖ ?−.?.1 ‖ ?−.1 !?−→ !−.1 ‖ !.1 ‖ ?.1 ‖ ?−.1
!?+→ !−.1 ‖ !−.1 ‖ ?−.1 ‖ ?−.1.

For this reason, a mechanism should be provided that matches an ending to
the correct beginning. A so-called history pointer can be used, a counter that
tells how many actions back of the current one the corresponding beginning
took place. In each step of a component in a parallel composition, the history
pointers in the other components should be increased by one. If this is done,
the resulting equivalence relation is called ST bisimulation equivalence. The
notion of history counters also allows the development of an equational theory
for ST bisimulation semantics.

410 Semantics

Exercises

12.4.1 Develop an equational theory that is a sound and ground-complete
axiomatization for a standard term model based on split bisimulation
equivalence.

12.4.2 Extend the basic theory BSP(A) with the history-pointer operator.
Use this operator to develop an equational theory that provides a
sound and ground-complete axiomatization for a standard term model
based on ST bisimulation equivalence.

12.5 Bibliographical remarks

Sections 12.1 and 12.2 are adapted from (Baeten & Weijland, 1990). The ma-
terial in Section 12.3 is from (Van Glabbeek, 2001). Concerning Section 12.4,
background material for step semantics can be found in (Baeten & Basten,
2001). For split and ST bisimulation, references are (Van Glabbeek & Vaan-
drager, 1987; Hennessy, 1988b; Gorrieri & Laneve, 1995). The example of the
drawback of split semantics is taken from (Baeten & Bergstra, 1998).

Bibliography

Aceto, L., Bloom, B., & Vaandrager, F.W. (1994). Turning SOS Rules into Equations.
Information and Computation, 111(1), 1–52.

Aceto, L., & Fokkink, W.J. (2004). Guest Editors’ Introduction: Special Issue on
Structural Operational Semantics. Journal of Logic and Algebraic Programming,
60–61, 1–2.

Aceto, L., Fokkink, W.J., & Ingólfsdóttir, A. (1998). A Cook’s Tour of Equational
Axiomatization for Prefix Iteration. Pages 20–34 of: Nivat, M. (ed), Foundations
of Software Science and Computation Structures, FoSSaCS 1998, Proceedings.
Lecture Notes in Computer Science, no. 1387. Springer, Berlin, Germany.

Aceto, L., Fokkink, W.J., & Verhoef, C. (2001). Structural Operational Semantics.
Pages 197–292 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of
Process Algebra. Elsevier Science, Amsterdam, the Netherlands.

Aceto, L., & Hennessy, M. (1992). Termination, Deadlock, and Divergence. Journal
of the ACM, 39(1), 147–187.

Andova, S. (2002). Probabilistic Process Algebra. Ph.D. thesis, Eindhoven University
of Technology, Department of Mathematics and Computer Science, Eindhoven,
the Netherlands.

Austry, D., & Boudol, G. (1984). Algèbre de Processus et Synchronisation.
Theoretical Computer Science, 30(1), 91–131. In French.

Baeten, J.C.M. (1986). Procesalgebra. Programmatuurkunde. Kluwer, Deventer, the
Netherlands. In Dutch.

Baeten, J.C.M. (2003). Embedding Untimed into Timed Process Algebra: The Case
for Explicit Termination. Mathematical Structures in Computer Science, 13(4),
589–618.

Baeten, J.C.M. (2005). A Brief History of Process Algebra. Theoretical Computer
Science, 335(2/3), 131–146.

Baeten, J.C.M., & Basten, T. (2001). Partial-Order Process Algebra (and its Relation
to Petri Nets). Pages 769–872 of: Bergstra, J.A., Ponse, A., & Smolka, S.A.
(eds), Handbook of Process Algebra. Elsevier Science, Amsterdam, the
Netherlands.

Baeten, J.C.M., & Bergstra, J.A. (1988). Global Renaming Operators in Concrete
Process Algebra. Information and Computation, 78(3), 205–245.

Baeten, J.C.M., & Bergstra, J.A. (1996). Discrete Time Process Algebra. Formal
Aspects of Computing, 8(2), 188–208.

Baeten, J.C.M., & Bergstra, J.A. (1997). Process Algebra with Propositional Signals.
Theoretical Computer Science, 177(2), 381–406.

411

412 Bibliography

Baeten, J.C.M., & Bergstra, J.A. (1998). Deadlock Behaviour in Split and ST
Bisimulation Semantics. Electronic Notes in Theoretical Computer Science,
16(2), 101–114. Proceedings Expressiveness in Concurrency, 5th International
Workshop, EXPRESS 1998.

Baeten, J.C.M., Bergstra, J.A., Hoare, C.A.R., Milner, R., Parrow, J., & de Simone, R.
(1991). The Variety of Process Algebra. Deliverable ESPRIT Basic Research
Action 3006, CONCUR. University of Edinburgh, Edinburgh, UK.

Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1986). Syntax and Defining Equations
for an Interrupt Mechanism in Process Algebra. Fundamenta Informaticae,
IX(2), 127–168.

Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1987a). Conditional Axioms and
α/β-Calculus in Process Algebra. Pages 77–103 of: Wirsing, M. (ed), Formal
Description of Programming Concepts - III, IFIP Conference, Proceedings.
Elsevier Science, Amsterdam, the Netherlands.

Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1987b). On the Consistency of
Koomen’s Fair Abstraction Rule. Theoretical Computer Science, 51(1/2),
129–176.

Baeten, J.C.M., & Bravetti, M. (2005). A Ground-Complete Axiomatization of Finite
State Processes in Process Algebra. Pages 248–262 of: Abadi, M., & de Alfaro,
L. (eds), CONCUR 2005 - Concurrency Theory, 16th International Conference,
Proceedings. Lecture Notes in Computer Science, no. 3653. Springer, Berlin,
Germany.

Baeten, J.C.M., & Bravetti, M. (2006). A Generic Process Algebra. Electronic Notes
in Theoretical Computer Science, 162, 65–71. Proceedings Essays on Algebraic
Process Calculi, Workshop, APC 25.

Baeten, J.C.M., Corradini, F., & Grabmayer, C.A. (2007). A Characterization of
Regular Expressions under Bisimulation. Journal of the ACM, 54(2), 6.1–28.

Baeten, J.C.M., & Glabbeek, R.J. van. (1987). Merge and Termination in Process
Algebra. Pages 153–172 of: Nori, K.V. (ed), Foundations of Software
Technology and Theoretical Computer Science, 7th Conference, FST&TCS 1987,
Proceedings. Lecture Notes in Computer Science, no. 287. Springer, Berlin,
Germany.

Baeten, J.C.M., & Middelburg, C.A. (2001). Process Algebra with Timing: Real Time
and Discrete Time. Pages 627–684 of: Bergstra, J.A., Ponse, A., & Smolka, S.A.
(eds), Handbook of Process Algebra. Elsevier Science, Amsterdam, the
Netherlands.

Baeten, J.C.M., & Middelburg, C.A. (2002). Process Algebra with Timing.
Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Berlin, Germany.

Baeten, J.C.M., Mousavi, M.R., & Reniers, M.A. (2005). Timing the Untimed:
Terminating Successfully while Being Conservative. Pages 251–279 of:
Middeldorp, A., Oostrom, V. van, Raamsdonk, F. van, & Vrijer, R. de (eds),
Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to
Jan Willem Klop on the Occasion of his 60th Birthday. Lecture Notes in
Computer Science, no. 3838. Springer, Berlin, Germany.

Baeten, J.C.M., & Reniers, M.A. (2004). Timed Process Algebra (With a Focus on
Explicit Termination and Relative-Timing). Pages 59–97 of: Bernardo, M., &
Corradini, F. (eds), Formal Methods for the Design of Real-Time Systems.
Lecture Notes in Computer Science, no. 3185. Springer, Berlin, Germany.

Baeten, J.C.M., & Reniers, M.A. (2007). Duplication of Constants in Process Algebra.
Journal of Logic and Algebraic Programming, 70(2), 151–171.

Bibliography 413

Baeten, J.C.M., & Verhoef, C. (1993). A Congruence Theorem for Structured
Operational Semantics with Predicates. Pages 477–492 of: Best, E. (ed),
Concurrency Theory, 4th International Conference, CONCUR 1993,
Proceedings. Lecture Notes in Computer Science, no. 715. Springer, Berlin,
Germany.

Baeten, J.C.M., & Verhoef, C. (1995). Concrete Process Algebra. Pages 149–269 of:
Abramsky, S., Gabbay, D.M., & Maibaum, T.S.E. (eds), Handbook of Logic in
Computer Science, vol. 4. Oxford University Press, Oxford, UK.

Baeten, J.C.M., & Weijland, W.P. (1990). Process Algebra. Cambridge Tracts in
Theoretical Computer Science, no. 18. Cambridge University Press, Cambridge,
UK.

Bakker, J.W. de, & Zucker, J.I. (1982a). Denotational Semantics of Concurrency.
Pages 153–158 of: Theory of Computing, 14th Annual ACM Symposium,
Proceedings. ACM, New York, NY, USA.

Bakker, J.W. de, & Zucker, J.I. (1982b). Processes and the Denotational Semantics of
Concurrency. Information and Control, 54(1/2), 70–120.

Bartlett, K.A., Scantlebury, R.A., & Wilkinson, P.T. (1969). A Note on Reliable
Full-Duplex Transmission over Half-Duplex Lines. Communications of the ACM,
12(5), 260–261.

Basten, T. (1996). Branching Bisimilarity is an Equivalence Indeed! Information
Processing Letters, 58(3), 141–147.

Basten, T. (1998). In Terms of Nets: System Design with Petri Nets and Process
Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of
Mathematics and Computing Science, Eindhoven, the Netherlands.

Bekič, H. (1971). Towards a Mathematical Theory of Processes. Tech. rept. TR
25.125. IBM Laboratory Vienna, Vienna, Austria.

Bekič, H. (1984). Programming Languages and Their Definition, H. Bekič
(1936-1982), Selected Papers edited by C.B. Jones. Lecture Notes in Computer
Science, no. 177. Springer, Berlin, Germany.

Bergstra, J.A., Bethke, I., & Ponse, A. (1994). Process Algebra with Iteration and
Nesting. The Computer Journal, 37(4), 243–258.

Bergstra, J.A., Fokkink, W.J., & Ponse, A. (2001). Process Algebra with Recursive
Operations. Pages 333–389 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds),
Handbook of Process Algebra. Elsevier Science, Amsterdam, the Netherlands.

Bergstra, J.A., & Klop, J.W. (1982). Fixed Point Semantics in Process Algebra. Tech.
rept. IW 208. Mathematical Centre, Amsterdam, the Netherlands.

Bergstra, J.A., & Klop, J.W. (1984a). Process Algebra for Synchronous
Communication. Information and Control, 60(1/3), 109–137.

Bergstra, J.A., & Klop, J.W. (1984b). The Algebra of Recursively Defined Processes
and the Algebra of Regular Processes. Pages 82–95 of: Paredaens, J. (ed),
Automata, Languages and Programming, 11th Colloquium, ICALP 1984,
Proceedings. Lecture Notes in Computer Science, no. 172. Springer, Berlin,
Germany.

Bergstra, J.A., & Klop, J.W. (1985). Algebra of Communicating Processes with
Abstraction. Theoretical Computer Science, 37(1), 77–121.

Bergstra, J.A., & Klop, J.W. (1986a). Algebra of Communicating Processes. Pages
89–138 of: Bakker, J.W. de, Hazewinkel, M., & Lenstra, J.K. (eds), Mathematics
and Computer Science I, CWI Symposium, Proceedings. CWI Monographs, no.
1. Elsevier Science, Amsterdam, the Netherlands.

Bergstra, J.A., & Klop, J.W. (1986b). Process Algebra: Specification and Verification
in Bisimulation Semantics. Pages 61–94 of: Hazewinkel, M., Lenstra, J.K., &

414 Bibliography

Meertens, L.G.L.T. (eds), Mathematics and Computer Science II, CWI
Symposium, Proceedings. CWI Monographs, no. 4. Elsevier Science,
Amsterdam, the Netherlands.

Bergstra, J.A., & Klop, J.W. (1986c). Verification of an Alternating Bit Protocol by
Means of Process Algebra. Pages 9–23 of: Bibel, W., & Jantke, K.P. (eds),
Mathematical Methods of Specification and Synthesis of Software Systems 1985,
International Spring School, Proceedings. Lecture Notes in Computer Science,
no. 215. Springer, Berlin, Germany.

Bergstra, J.A., & Klop, J.W. (1988). A Complete Inference System for Regular
Processes with Silent Moves. Pages 21–81 of: Drake, F.R., & Truss, J.K. (eds),
Logic Colloquium, Proceedings. Elsevier Science, Amsterdam, the Netherlands.

Bergstra, J.A., & Klop, J.W. (1992). A Convergence Theorem in Process Algebra.
Pages 164–195 of: Bakker, J.W. de, & Rutten, J.J.M.M. (eds), Ten Years of
Concurrency Semantics. World Scientific, Singapore.

Bergstra, J.A., Klop, J.W., & Olderog, E.-R. (1987). Failures without Chaos: A new
Process Semantics for Fair Abstraction. Pages 77–103 of: Wirsing, M. (ed),
Formal Description of Programming Concepts - III, IFIP Conference,
Proceedings. Elsevier Science, Amsterdam, the Netherlands.

Bergstra, J.A., Klop, J.W., & Tucker, J.V. (1985). Process Algebra with Asynchronous
Communication Mechanisms. Pages 76–95 of: Brookes, S.D., Roscoe, A.W., &
Winskel, G. (eds), Seminar on Concurrency, Proceedings. Lecture Notes in
Computer Science, no. 197. Springer, Berlin, Germany.

Bergstra, J.A., & Middelburg, C.A. (2005). Process Algebra for Hybrid Systems.
Theoretical Computer Science, 335(2/3), 215–280.

Bergstra, J.A., Ponse, A., & Zwaag, M.B. van der (2003). Branching Time and
Orthogonal Bisimulation Equivalence. Theoretical Computer Science, 309(1–3),
313–355.

Bergstra, J.A., & Tiuryn, J. (1987). Process Algebra Semantics for Queues.
Fundamenta Informaticae, X, 213–224.

Bergstra, J.A., & Tucker, J.V. (1984). Top Down Design and the Algebra of
Communicating Processes. Science of Computer Programming, 5(2), 171–199.

Bosscher, D.J.B. (1997). Grammars Modulo Bisimulation. Ph.D. thesis, University of
Amsterdam, Amsterdam, the Netherlands.

Bradfield, J.C., & Stirling, C. (2001). Modal Logics and Mu-Calculi: An Introduction.
Pages 293–330 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of
Process Algebra. Elsevier Science, Amsterdam, the Netherlands.

Brookes, S.D. (1983). On the Relationship of CCS and CSP. Pages 83–96 of: Diaz, J.
(ed), Automata, Languages and Programming, 10th Colloquium, ICALP 1983,
Proceedings. Lecture Notes in Computer Science, no. 154. Springer, Berlin,
Germany.

Brookes, S.D., Hoare, C.A.R., & Roscoe, A.W. (1984). A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3), 560–599.

Broy, M. (1987). Views on Queues. Science of Computer Programming, 11(1), 65–86.
Bundy, A. (1999). A Survey of Automated Deduction. Pages 153–174 of:

Wooldridge, M.J., & Veloso, M. (eds), Artificial Intelligence Today: Recent
Trends and Developments. Lecture Notes in Computer Science, vol. 1600.
Springer, Berlin, Germany.

Burris, S., & Sankappanavar, H.P. (1981). A Course in Universal Algebra. Graduate
Texts in Mathematics. Springer, Berlin, Germany.

Christensen, S. (1993). Decidability and Decomposition in Process Algebras. Ph.D.
thesis, University of Edinburgh, Department of Computer Science, Edinburgh, UK.

Bibliography 415

Clarke, E.M., Grumberg, O., & Peled, D.A. (2000). Model Checking. The MIT Press,
Cambridge, MA, USA.

Cleaveland, R., Lüttgen, G., & Natarajan, V. (2001). Priority in Process Algebra.
Pages 711–765 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of
Process Algebra. Elsevier Science, Amsterdam, the Netherlands.

Copi, I.M., Elgot, C.C., & Wright, J.B. (1958). Realization of Events by Logical Nets.
Journal of the ACM, 5(2), 181–196.

Corradini, F., D’Ortenzio, D., & Inverardi, P. (1999). On the Relationships among
Four Timed Process Algebras. Fundamenta Informaticae, 38(4), 377–395.

D’Argenio, P.R. (1995). τ -Angelic Choice for Process Algebras (Revised Edition).
Tech. rept., Universidad Nacional de La Plata, LIFIA, Depto. de Informática, Fac.
de Cs. Exactas, La Plata, Buenos Aires, Argentina.

Denvir, B.T., Harwood, W.T., Jackson, M.I., & Ray, M.J. (eds). (1985). The Analysis
of Concurrent Systems, Proceedings. Lecture Notes in Computer Science, no.
207. Springer, Berlin, Germany.

Dershowitz, N., & Jouannaud, J.-P. (1990). Rewrite Systems. Pages 243–320 of:
Leeuwen, J. van (ed), Handbook of Theoretical Computer Science, vol. B: Formal
Models and Semantics. Elsevier Science, Amsterdam, the Netherlands.

Dijkstra, E.W. (1975). Guarded Commands, Nondeterminacy, and Formal Derivation
of Programs. Communications of the ACM, 18(8), 453–457.

Dijkstra, E.W. (1976). A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, USA.

Floyd, R.W. (1967). Assigning Meanings to Programs. Pages 19–32 of: Schwartz,
J.T. (ed), Symposium in Applied Mathematics, XIX, Proceedings. Mathematical
Aspects of Computer Science. American Mathematical Society, Providence, RI,
USA.

Fokkink, W.J. (1994). A Complete Equational Axiomatisation for Prefix Iteration.
Information Processing Letters, 52(6), 333–337.

Fokkink, W.J. (2000). Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Berlin, Germany.

Francez, N. (1986). Fairness. Springer, Berlin, Germany.
Glabbeek, R.J. van. (1987). Bounded Nondeterminism and the Approximation

Induction Principle in Process Algebra. Pages 336–247 of: Brandenburg, F.J.,
Vidal-Naquet, G., & Wirsing, M. (eds), Theoretical Aspects of Computer Science,
4th Annual Symposium, STACS 1987, Proceedings. Lecture Notes in Computer
Science, no. 247. Springer, Berlin, Germany.

Glabbeek, R.J. van. (1990). Comparative Concurrency Semantics, with Refinement of
Actions. Ph.D. thesis, Vrije Universiteit, Amsterdam, the Netherlands.

Glabbeek, R.J. van. (1993). The Linear Time – Branching Time Spectrum II: The
Semantics of Sequential Systems with Silent Moves (Extended Abstract). Pages
66–81 of: Best, E. (ed), Concurrency Theory, 4th International Conference,
CONCUR 1993, Proceedings. Lecture Notes in Computer Science, vol. 715.
Springer, Berlin, Germany.

Glabbeek, R.J. van. (1994). What is Branching Time Semantics and Why to Use it?
Bulletin of the EATCS, 53, 190–198.

Glabbeek, R.J. van. (1997). Notes on the Methodology of CCS and CSP. Theoretical
Computer Science, 177(2), 329–350.

Glabbeek, R.J. van. (2001). The Linear Time – Branching Time Spectrum I: The
Semantics of Concrete, Sequential Processes. Pages 3–100 of: Bergstra, J.A.,
Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra. Elsevier
Science, Amsterdam, the Netherlands.

416 Bibliography

Glabbeek, R.J. van, Luttik, S.P., & Trčka, N. (2008). Branching Bisimilarity with
Explicit Divergence. Tech. rept. CS-R-08-25. Eindhoven University of
Technology, Department of Mathematics and Computer Science, Eindhoven, the
Netherlands.

Glabbeek, R.J. van, & Vaandrager, F.W. (1987). Petri Net Models for Algebraic
Theories of Concurrency. Pages 224–242 of: Bakker, J.W. de, Nijman, A.J., &
Treleaven, P.C. (eds), Parallel Architectures and Languages Europe, PARLE
1987, Proceedings, Volume II. Lecture Notes in Computer Science, no. 259.
Springer, Berlin, Germany.

Glabbeek, R.J. van, & Vaandrager, F.W. (1989). Modular Specifications in Process
Algebra — With Curious Queues. Pages 465–506 of: Wirsing, M., & Bergstra,
J.A. (eds), Algebraic Methods: Theory, Tools and Applications. Lecture Notes in
Computer Science, no. 394. Springer, Berlin, Germany.

Glabbeek, R.J. van, & Vaandrager, F.W. (1993). Modular Specification of Process
Algebras. Theoretical Computer Science, 113(2), 293–348.

Glabbeek, R.J. van, & Weijland, W.P. (1989). Branching Time and Abstraction in
Bisimulation Semantics (extended abstract). Pages 613–618 of: Ritter, G.X.
(ed), Information Processing 89, 11th IFIP World Computer Congress,
Proceedings. Elsevier Science Publishers B.V., North-Holland, Amsterdam, the
Netherlands. Full version appeared as (Van Glabbeek & Weijland, 1996).

Glabbeek, R.J. van, & Weijland, W.P. (1996). Branching Time and Abstraction in
Bisimulation Semantics. Journal of the ACM, 43(3), 555–600.

Gorrieri, R., & Laneve, C. (1995). Split and ST Bisimulation Semantics. Information
and Computation, 118(2), 272–288.

Groote, J.F., Matthijssen, A., Weerdenburg, M. van, & Usenko, Y.S. (2006). From
µCRL to mCRL2: Motivation and Outline. Electronic Notes in Theoretical
Computer Science, 162, 191–196. Proceedings Essays on Algebraic Process
Calculi, Workshop, APC 25.

Groote, J.F., & Ponse, A. (1995). The Syntax and Semantics of µCRL. Pages 26–62
of: Ponse, A., Verhoef, C., & Vlijmen, S.F.M. van (eds), Algebra of
Communicating Processes, ACP 1994, Proceedings. Workshops in Computing
Series. Springer, Berlin, Germany.

Groote, J.F., & Reniers, M.A. (2001). Algebraic Process Verification. Pages
1151–1208 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of
Process Algebra. Elsevier Science, Amsterdam, the Netherlands.

Halpern, J.Y., & Zuck, L.D. (1987). A Little Knowledge Goes a Long Way: Simple
Knowledge-Based Derivations and Correctness Proofs for a Family of Protocols
(Extended Abstract). Pages 269–280 of: Principles of Distributed Computing,
6th Annual ACM Symposium, PODC 1987, Proc. ACM, New York, NY, USA.

Heijenoort, J. van. (1967). From Frege to Gödel: A Sourcebook in Mathematical
Logic, 1879-1931. Harvard University Press, Cambridge, MA, USA.

Hennessy, M. (1981). A Term Model for Synchronous Processes. Information and
Control, 51(1), 58–75.

Hennessy, M. (1988a). Algebraic Theory of Processes. MIT Press, Cambridge, MA,
USA.

Hennessy, M. (1988b). Axiomatising Finite Concurrent Processes. SIAM Journal on
Computing, 17(5), 997–1017.

Hennessy, M., & Milner, R. (1980). On Observing Nondeterminism and Concurrency.
Pages 299–309 of: Bakker, J.W. de, & Leeuwen, J. van (eds), Automata,
Languages and Programming, 7th Colloquium, ICALP 1980, Proceedings.
Lecture Notes in Computer Science, no. 85. Springer, Berlin, Germany.

Bibliography 417

Hennessy, M., & Regan, T. (1995). A Process Algebra for Timed Systems.
Information and Computation, 117(2), 221–239.

Hoare, C.A.R. (1969). An Axiomatic Basis for Computer Programming.
Communications of the ACM, 12(10), 576–580.

Hoare, C.A.R. (1978). Communicating Sequential Processes. Communications of the
ACM, 21(8), 666–677.

Hoare, C.A.R. (1980). A Model for Communicating Sequential Processes. Pages
229–254 of: McKeag, R.M., & Macnaghten, A.M. (eds), On the Construction of
Programs. Cambridge University Press, Cambridge, UK.

Hoare, C.A.R. (1985). Communicating Sequential Processes. Prentice Hall,
Englewood Cliffs, NJ, USA.

Hussman, H. (1985). Unification in Conditional-Equational Theories. Pages 543–553
of: Caviness, B.F. (ed), European Conference on Computer Algebra, 10th
International Conference, EUROCAL 1985, Proceedings Vol. 2: Research
Contributions. Lecture Notes in Computer Science, no. 204. Springer, Berlin,
Germany.

Jonsson, B., Yi, Wang, & Larsen, K.G. (2001). Probabilistic Extensions of Process
Algebras. Pages 685–710 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds),
Handbook of Process Algebra. Elsevier Science, Amsterdam, the Netherlands.

Jouannaud, J.-P., & Muñoz, M. (1984). Termination of a Set of Rules Modulo a Set of
Equations. Pages 175–193 of: Shostak, R.E. (ed), Automated Deduction, 7th
International Conference, Proceedings. Lecture Notes in Computer Science, no.
170. Springer, Berlin, Germany.

Khadim, U. (2008). Process Algebra for Hybrid Systems: Comparison and
Development. Ph.D. thesis, Eindhoven University of Technology, Department of
Mathematics and Computer Science, Eindhoven, the Netherlands.

Kleene, S.C. (1956). Representation of Events in Nerve Nets and Finite Automata.
Pages 3–41 of: Shannon, C.E., & McCarthy, J. (eds), Automata Studies.
Princeton University Press, Princeton, NJ, USA.

Klop, J.W. (1987). Term Rewriting Systems: A Tutorial. Bulletin of the EATCS, 32,
143–182.

Koomen, C.J. (1985). Algebraic Specification and Verification of Communication
Protocols. Science of Computer Programming, 5(1), 1–36.

Koymans, C.P.J., & Mulder, J.C. (1990). A Modular Approach to Protocol Verification
Using Process Algebra. Pages 261–306 of: Baeten, J.C.M. (ed), Applications of
Process Algebra. Cambridge University Press, Cambridge, UK.

Koymans, C.P.J., & Vrancken, J.L.M. (1985). Extending Process Algebra with the
Empty Process ε. Logic Group Preprint Series 1. Utrecht University, Philosophy
Department, Utrecht, the Netherlands.

Kranakis, E. (1987). Fixed Point Equations with Parameters in the Projective Model.
Information and Computation, 75(3), 264–288.

Lamport, L. (1987). A Fast Mutual Exclusion Algorithm. ACM Transactions on
Computer Systems, 5(1), 1–11.

Larsen, K.G., & Milner, R. (1987). Verifying a Protocol Using Relativized
Bisimulation. Pages 126–135 of: Ottmann, Th. (ed), Automata, Languages and
Programming, 14th International Colloquium, ICALP 1987, Proceedings.
Lecture Notes in Computer Science, no. 267. Springer, Berlin, Germany.

Larsen, K.G., & Skou, A. (1991). Bisimulation through Probabilistic Testing.
Information and Computation, 94(1), 1–28.

Linz, P. (2001). An Introduction to Formal Languages and Automata. Jones and
Bartlett, Sudbury, MA, USA.

418 Bibliography

Luttik, S.P. (2002). Choice Quantification in Process Algebra. Ph.D. thesis, University
of Amsterdam, Department of Computer Science, Amsterdam, the Netherlands.

MacLane, S., & Birkhoff, G. (1967). Algebra. Macmillan, London, UK.
Markovski, J. (2008). Real and Stochastic Time in Process Algebras for Performance

Evaluation. Ph.D. thesis, Eindhoven University of Technology, Department of
Mathematics and Computer Science, Eindhoven, the Netherlands.

Mauw, S., & Mulder, J.C. (1994). Regularity of BPA-Systems is Decidable. Pages
34–47 of: Jonsson, B., & Parrow, J. (eds), Concurrency Theory, 5th International
Conference, CONCUR 1994, Proceedings. Lecture Notes in Computer Science,
no. 836. Springer, Berlin, Germany.

Mauw, S., & Veltink, G.J. (eds). (1993). Algebraic Specification of Communication
Protocols. Cambridge Tracts in Theoretical Computer Science, no. 36.
Cambridge University Press, Cambridge, UK.

McCarthy, J. (1963). A Basis for a Mathematical Theory of Computation. Pages
33–70 of: Braffort, P., & Hirshberg, D. (eds), Computer Programming and
Formal Systems. North-Holland, Amsterdam, the Netherlands.

Milne, G.J. (1982). Abstraction and Nondeterminism in Concurrent Systems. Pages
358–364 of: Distributed Computing Systems, 3rd International Conference,
ICDCS 1982, Proceedings. IEEE Computer Society Press, Los Alamitos, CA,
USA.

Milne, G.J. (1983). CIRCAL: A Calculus for Circuit Description. Integration, the
VLSI Journal, 1(2–3), 121–160.

Milne, G.J., & Milner, R. (1979). Concurrent Processes and Their Syntax. Journal of
the ACM, 26(2), 302–321.

Milner, R. (1973). An Approach to the Semantics of Parallel Programs. Pages
285–301 of: Convegno di Informatica Teoretica, Proceedings. Instituto di
Elaborazione della Informazione, Pisa, Italy.

Milner, R. (1975). Processes: A Mathematical Model of Computing Agents. Pages
157–174 of: Rose, H.E., & Shepherdson, J.C. (eds), Logic Colloquium,
Proceedings. North-Holland, Amsterdam, the Netherlands.

Milner, R. (1978a). Algebras for Communicating Systems. In AFCET/SMF Joint
Colloquium in Applied Mathematics, Proceedings. Paris, France. Also available
as Tech. rept. CSR-25-78, University of Edinburgh, Computer Science
Department, Edinburgh, UK, 1978.

Milner, R. (1978b). Synthesis of Communicating Behaviour. Pages 71–83 of:
Winkowski, J. (ed), Mathematical Foundations of Computer Science, 7th
Symposium, MFCS 1978, Proceedings. Lecture Notes in Computer Science, no.
64. Springer, Berlin, Germany.

Milner, R. (1979). Flowgraphs and Flow Algebras. Journal of the ACM, 26(4),
794–818.

Milner, R. (1980). A Calculus of Communicating Systems. Lecture Notes in Computer
Science, no. 92. Springer, Berlin, Germany.

Milner, R. (1983). Calculi for Synchrony and Asynchrony. Theoretical Computer
Science, 25(3), 267–310.

Milner, R. (1989). Communication and Concurrency. Prentice Hall, Englewood
Cliffs, NJ, USA.

Milner, R. (1999). Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, Cambridge, UK.

Moller, F. (1989). Axioms for Concurrency. Ph.D. thesis, University of Edinburgh,
Computer Science Department, Edinburgh, UK.

Moller, F., & Tofts, C. (1990). A Temporal Calculus of Communicating Systems.

Bibliography 419

Pages 401–415 of: Baeten, J.C.M., & Klop, J.W. (eds), Theories of Concurrency:
Unification and Extension, CONCUR 1990, Proceedings. Lecture Notes in
Computer Science, no. 458. Springer, Berlin, Germany.

Mousavi, M.R., & Reniers, M.A. (2005). Orthogonal Extensions in Structural
Operational Semantics. Pages 1214–1225 of: Automata, Languages and
Programming, 32nd International Colloquium, ICALP 2005, Proceedings.
Lecture Notes in Computer Science, no. 3580. Springer, Berlin, Germany.

Mousavi, M.R., Reniers, M.A., & Groote, J.F. (2007). SOS Formats and Meta-Theory:
20 Years After. Theoretical Computer Science, 373(3), 238–272.

Nicollin, X., & Sifakis, J. (1994). The Algebra of Timed Processes ATP: Theory and
Application. Information and Computation, 114(1), 131–178.

Oguztuzun, H.M. (1989). A Game Characterization of the Observational Equivalence
of Processes. Pages 195–196 of: Algebraic Methodology and Software
Technology, 1st Conference, AMAST 1989, Proceedings. Iowa City, IA, USA.

Osborne, M., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press,
Cambridge, MA, USA.

Owicki, S., & Gries, D. (1976). Verifying Properties of Parallel Programs: An
Axiomatic Approach. Communications of the ACM, 19(5), 279–285.

Park, D.M.R. (1981). Concurrency and Automata on Infinite Sequences. Pages
167–183 of: Deussen, P. (ed), Theoretical Computer Science, 5th GI Conference,
Proc. Lecture Notes in Computer Science, no. 104. Springer, Berlin, Germany.

Parrow, J. (1985). Fairness Properties in Process Algebra — With Applications in
Communication Protocol Verification. Ph.D. thesis, Uppsala University,
Department of Computer Systems, Uppsala, Sweden.

Petri, C.A. (1962). Kommunikation mit Automaten. Ph.D. thesis, Institut fuer
Instrumentelle Mathematik, Bonn, Germany. In German.

Plotkin, G.D. (1976). A Powerdomain Construction. SIAM Journal of Computing,
5(3), 452–487.

Plotkin, G.D. (1981). A Structural Approach to Operational Semantics. Tech. rept.
DAIMI FN-19. Aarhus University, Aarhus, Denmark.

Ponse, A. (1992). Process Algebras with Data. Ph.D. thesis, University of
Amsterdam, Department of Computer Science, Amsterdam, the Netherlands.

Pratt, V.R. (1982). On the Composition of Processes. Pages 213–223 of: Principles of
Programming Languages, 9th ACM SIGPLAN-SIGACT Symposium, POPL 1982,
Proceedings. ACM, New York, NY, USA.

Quemada, J., de Frutos, D., & Azcorra, A. (1993). TIC: A Timed Calculus. Formal
Aspects of Computing, 5(3), 224–252.

Reed, G.M., & Roscoe, A.W. (1988). A Timed Model for Communicating Sequential
Processes. Theoretical Computer Science, 58(1–3), 249–261.

Sangiorgi, D., & Walker, D.J. (2001). The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge, UK.

Schneider, S.A. (2000). Concurrent and Real-Time Systems (the CSP Approach). John
Wiley & Sons, Chichester, UK.

Scott, D.S., & Strachey, C. (1971). Towards a Mathematical Semantics for Computer
Languages. Pages 19–46 of: Fox, J. (ed), Computers and Automata, Symposium,
Proceedings. Polytechnic Institute of Brooklyn Press, New York, NY, USA.

Sewell, P. (1997). Nonaxiomatisability of Equivalences over Finite State Processes.
Annals of Pure and Applied Logic, 90(1–3), 163–191.

Smullyan, R. (1982). The Lady or the Tiger? And Other Logic Puzzles Including a
Mathematical Novel that Features Gödel’s Great Discovery. Alfred A. Knopf,
Inc., New York, NY, USA.

420 Bibliography

Troeger, D.R. (1993). Step Bisimulation is Pomset Equivalence on a Parallel
Language Without Explicit Internal Choice. Mathematical Structures in
Computer Science, 3(1), 25–62.

Usenko, Y.S. (2002). Linearization in muCRL. Ph.D. thesis, Eindhoven University of
Technology, Department of Mathematics and Computer Science, Eindhoven, the
Netherlands.

Vaandrager, F.W. (1986). Verification of Two Communication Protocols by Means of
Process Algebra. Tech. rept. CS-R8608. CWI, Amsterdam, the Netherlands.

Vereijken, J.J. (1997). Discrete-Time Process Algebra. Ph.D. thesis, Eindhoven
University of Technology, Department of Mathematics and Computer Science,
Eindhoven, the Netherlands.

Verhoef, C. (1994). A General Conservative Extension Theorem in Process Algebra.
Pages 149–168 of: Olderog, E.-R. (ed), Programming Concepts, Methods and
Calculi, IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference, PROCOMET
1994, Proceedings. IFIP Transactions, vol. A-56. North-Holland, Amsterdam,
the Netherlands.

Vrancken, J.L.M. (1997). The Algebra of Communicating Processes with Empty
Process. Theoretical Computer Science, 177(2), 287–328.

Walker, D.J. (1990). Bisimulation and Divergence. Information and Computation,
85(2), 202–241.

Weijland, W.P. (1989). The Algebra of Synchronous Processes. Fundamenta
Informaticae, XII, 139–162.

Winskel, G. (1982). Event Structure Semantics for CCS and Related Languages.
Pages 561–576 of: Nielsen, M., & Schmidt, E.M. (eds), Automata, Languages
and Programming, 9th Colloquium, ICALP 1982, Proceedings. Lecture Notes in
Computer Science, no. 140. Springer, Berlin, Germany.

Yi, Wang (1991). CCS + Time = An Interleaving Model for Real Time Systems.
Pages 217–228 of: Leach Albert, J., Monien, B., & Rodrı́guez Artalejo, M. (eds),
Automata, Languages and Programming, 18th International Colloquium, ICALP
1991, Proceedings. Lecture Notes in Computer Science, no. 510. Springer,
Berlin, Germany.

Index of Symbols and Notations

This index is subdivided into several, mostly self-explanatory, categories.
Acronyms of process theories covered in this book are classified under
Acronyms. Category Process theories contains other entries related to the theo-
ries of this book; general process-algebraic notations and acronyms are indexed
under Process algebra. Page numbers in italics refer to defining entries.

General notations
◦, function, relation composition
(a.)a∈A 68
a, b, c, actions
A∗, words, seq. over A 36
c, constant
ε, empty word, sequence 37
f , function
i, j, k, indices, natural numbers
ia, ab, ac, co, ports 200
k, l,m, n, n′, ni , natural numbers
p, p′, pi , q, q ′, qi , r, r ′, ri , closed

terms, basic terms
R, R′, Ri , relations
t/x , substitution 142
σ , substitution, sequence
s, t, ti , u, (open) terms
x, y, z, variables, open terms

Acronyms
BCP(A, γ)

Basic Comm. Proc. 201, 204,
205–207, 211–218, 224–
228, 235, 353, 397, 408

BCP(A,∅)
BCP without interaction 213,

216, 218, 223, 225–227
((BCP + EI)rec + RSP)(A, γS) 222,

226
(BCP + FMA)(A,∅)

BCP w. Free-Merge Ax. 213,
215

(BCP + HA)(A, γ)
BCP w. Handshaking Ax. 214

(BCP + HA + RN)(A, γ) 232
((BCP + HA + RN)rec

+ RSP)(A, γS) 233
(BCP + PR)rec(A, γ) 219
(BCP⊥ + RSE)(A, γ) 353,

354–356, 360, 361
BCPrec(A, γ)

BCP(A, γ) w. recursion 219,
220, 221, 225, 232

BCPrec(A,∅) 220, 222, 225, 227
BSP(A)

Basic Sequential Processes 82,
83–94, 96, 98, 100, 102,
104–107, 114–118, 120,

421

422 Index of Symbols and Notations

122–133, 140, 152–157,
167, 171, 172, 176–179,
182, 183, 186, 187, 201,
206, 215, 217, 225, 228,
231, 250, 257, 286, 308,
317, 318, 334, 337, 342,
345, 377, 382, 386, 393–
399, 404, 407

(BSP + CS1,2)(A) 405
(BSP + CT1,2)(A) 405
(BSP + CQ)(A)

BSP(A) w. choice quantification
370, 371, 372

(BSP + DH)(A)
BSP(A) w. encapsulation 190,

192, 204, 271
(BSP + E)(A)

BSP(A) w. rec. spec. E 112,
118, 119

(BSP + EI)(A)
BSP(A) w. skip operators 191,

192, 193
(BSP + EI)rec(A)

(BSP+EI)(A) w. recursion 193
(BSP + GC)(A)

BSP(A) w. guarded commands
336, 337–347, 371, 372

(BSP + PR)(A)
BSP(A) w. projection 93, 94–

102, 107, 135, 137, 142,
144, 159–167, 177, 178,
272, 405, 406

(BSP + PR + RS)(A) 406
(BSP + PR + RT)(A) 405
(BSP + PR + RT + FT)(A) 405
(BSP + PR)gfrec(A) 156, 159, 160
(BSP+PR)rec(A) 134–137, 141–146,

159–162, 165, 166
((BSP + PR)rec + AIP)(A) 134,

135, 161, 168

((BSP + PR)rec + AIP−)(A) 137
(BSP + RN)(A)

BSP(A) w. renaming 190, 193
(BSP + S)(A) 405
(BSP + SO)(A)

BSP(A) w. state operators 363
BSP⊥(A)

BSP(A) w. the inaccessible proc.
345, 347, 348

(BSP⊥ + GC)(A) 346, 347, 349,
351, 360

(BSP⊥ + RSE)(A) 348, 349, 350–
353, 355, 359, 360, 363,
365

(BSP⊥ + SHD)(A) 359, 360
BSP∗(A)

BSP(A) w. prefix iteration 102,
103, 104–106, 157–159,
179, 281

(BSP∗ + PR)(A)
BSP∗(A) w. projection 105,

106, 107
BSPdrt(A)

BSP(A) w. discr. rel. time 307,
308, 309–314, 334

BSPdrt∗(A) 313, 314–320, 322, 326
BSPfa(A) 399, 401
BSPgfrec(A)

BSP(A) w. guard. fin. rec. 155,
156–158, 181, 186

BSPre(A)
BSP(A) w. Ready Axiom 399,

400, 401
BSPrec(A)

BSP(A) w. recursion 112,
119–133, 145–148, 150–
154, 156–158, 182, 183,
186, 189

(BSPrec + RSP)(A) 129

Index of Symbols and Notations 423

BSP∗rec(A)
BSPrec(A) w. prefix iteration

158, 159
(BSPτ �)(A)

BSPτ (A) w. CSP choice ops
273, 274, 275

BSPτ (A)
BSP(A) w. silent steps 256,

257, 258, 260–262, 267–
274, 276, 281, 287

(BSPτ + ABS)(A)
BSPτ (A) w. abstraction 268,

269, 270, 274, 276
(BSPτ + ABS + PR)(A) 274
(BSPτ + DH)(A)

BSPτ (A) w. encapsulation 271,
274, 275

(BSPτ + PR)(A)
BSPτ (A) w. projection 271,

272, 275
BSP∗τ (A)

BSPτ (A)w. prefix iteration 280,
281–284

(BSP∗τ + CH)(A) 282, 283, 284, 348
(BSP∗τ + FI)(A) 282, 283
BSPτ,rec(A)

BSPτ (A) w. recursion 287
BSPtr(A)

trace theory 395, 396, 397
(BSPθ)(A,≺)

BSP(A) w. priorities 376, 377,
378, 381, 402

BSPprb(A)
BSP(A) w. probabilistic choice

382, 383, 384–386
MPT(A)

Minimal Process Theory xi, 68,
69, 70–84, 86, 89, 96, 98,
105, 107, 123, 156, 171,

176, 178, 179, 183, 217,
220, 223, 228, 231, 408

(MPT + PR)(A)
MPT(A) w. projection 94, 96,

102, 178
MPT∗(A)

MPT(A) w. prefix iteration 105,
179

MPTrec(A)
MPT(A) w. recursion 122, 123,

183
MTCP(A, γ)

Min. Th. of Comm. Proc. 216,
217, 218, 228, 242

TCP(A, γ)
Th. of Comm. Processes 227,

228, 229, 231, 232, 234,
242, 276, 321, 322, 326,
343

TCP(A,∅)
TCP without interaction 231,

234
(TCP + FMA)(A,∅)

TCP w. Free-Merge Ax. 234
(TCP + GC)(A, γ)

TCP(A, γ) w. guarded comm.
343, 344, 345, 348

(TCP + HA)rec(A, γS) 238, 239
(TCP + PR)(A, γ)

TCP(A, γ) w. projection 228
(TCP + PR)rec(A,∅) 229
((TCP + PR)rec + AIP−)(A,∅) 229
(TCP + RN)(A, γ)

TCP(A, γ) w. renaming 228,
234

(TCP⊥ + GC)(A, γ) 347, 348
(TCP⊥ + RSE)(A, γ) 361
TCPdrt∗(A, γ) 319, 320, 321–327
TCPdrt∗!(A, γ) 323, 324, 325, 326

424 Index of Symbols and Notations

TCPrec(A,∅)
TCPrec(A, γ) without interact.

231
TCPrec(A, γ)

TCP(A, γ) w. recursion 231
(TCPdrt∗

rec + RSP)(A, γ) 330
TCPτ (A, γ)

TCP(A, γ) w. silent steps 276,
277, 278–280, 284–287,
290, 294

(TCPτ + FMA)(A,∅) 278
(TCPτ + HA)(A, γ) 278
((TCPτ + HA)rec + CFARb

+ RSP)(A, γS) 295
(TCPτ + PR)(A, γ)

TCPτ (A, γ) w. projection 286
(TCPτ + PR)rec(A, γ) 286
TCPτ,rec(A, γ)

TCPτ (A, γ) w. recursion 285–
287, 290, 293, 294

(TCPτ,rec + CFARb)(A, γ) 293
(TCPτ,rec + KFARb)(A, γ) 291
(TCPτ,rec + RSP)(A, γ) 287
(TCPτ,rec + RSP)(A, γS) 294
TCPθ(A,≺, γ)

TCP(A, γ) w. priorities 378
TCPθgrec(A,≺, γ) 378
TCPθ rec(A,≺, γ) 378
TSP(A)

Th. of Sequential Processes
171, 172, 173–183, 186–

189, 192–194, 225, 227,
228, 231, 232, 243, 352,
397

(TSP + DH)(A)
TSP(A) w. encapsulation 192,

193
(TSP + EI)(A)

TSP(A) w. skip operators 192,
193

(TSP + IT)(A)
TSP(A) w. iteration 179, 180,

181
(TSP + PR)(A)

TSP(A) w. projection 177, 178
(TSP + PR)rec(A) 183
((TSP + PR)rec + AIP−)(A) 188
(TSP + RN)(A)

TSP(A) w. renaming 193
(TSP⊥ + RSE)(A) 352, 353
TSP∗(A)

TSP(A) w. prefix iteration 179
TSPrec(A)

TSP(A) w. recursion 182,
183–189, 225

(TSPrec + RSP)(A) 185, 186, 188

Algebras
General notations

0, zero 21
0�, I((BSP + PR)(A)) const.

161
0∞, I∞((BSP+PR)(A)) const.

162
[0]�, I(�1, E1) constant 26
[0]↔ , M1 constant 54
1�, I((BSP + PR)(A)) const.

161
1∞, I∞((BSP+PR)(A)) const.

162
¬, Boolean negation 21, 34,

335
+, addition 21
+�, I((BSP + PR)(A)) func.

161
+∞, I∞((BSP+PR)(A)) func.

162, 167
∧, Boolean conjunction 21,

34, 335

Index of Symbols and Notations 425

∨, Boolean disjunction 34,
335

⊕, Boolean exclusive or 24
⊃, Boolean implication 335
×, multiplication 21
∼, equivalence 25
|
, validity 23
=A, identity on A 23
=N, identity on N 23
α, valuation 22
a.�, I((BSP + PR)(A)) func.

161
a.∞, I∞((BSP + PR)(A))

function 162, 167
a�, I(�1, E1) function 26
a↔ , M1 function 54
A, universe of /A 21
/A, algebra 21
/A/∼, quotient algebra 25
/A1,/A2, algebras 29
B, Booleans 21, 335
B, algebra of Booleans 21,

335
B1, algebra of Booleans 24,

29, 30
[c]∼, quotient alg. constant 25
C(�)/∼ 30
exp, exponentiation func. 30,

60
f∼, quotient alg. function 25
false, Boolean 21, 335
ι, ιi , κ , interpretations 22
ια 22
I, I((BSP + PR)(A)) universe

161
I∞, projective sequences 161
m�, I(�1, E1) function 26
m↔ , M1 function 54
M, model 113
M1 = /A1/↔ 54, 55, 57

M2, model of T2 62, 63
N, natural numbers 11, 21,

366
N, alg. of nat. numbers 21,

22–24, 29, 30, 366
πn�, I((BSP + PR)(A)) func.

161
π∞n , I∞((BSP + PR)(A))

function 162, 167
(p0, p1, p2, . . .), projective

sequence 161
�-algebra 22
s�, I(�1, E1) function 26
s↔ , M1 function 54
succ, successor function 21
T(A), trace sets 394
tr, trace interpretation 394,

397
true, Boolean 21, 335
U , universe 25
[u]∼, ∼ equiv. class of u 25

Initial algebras
I((BSP + PR)(A)) 159–161
I((BSP + PR)gfrec(A)) 159,

160
I((BSP + PR)rec(A)) 159, 160
I(((BSP + PR)rec + AIP)(A))

160, 161
I(BSPrec(A)) 132
I(�, E), initial algebra 26,

27, 30
I(�1, E1) 26, 28–30

Process algebras
I∞((BSP + PR)(A)) 160, 161,

164–167
In(BSP(A)) 167
In((BSP + PR)(A)) 167
P(BCP(A,∅))/↔ 218

426 Index of Symbols and Notations

P(BCP(A, γ))/↔ 217, 218
P((BCP + PR)rec(A, γ))/↔

219
P(BCPrec(A, γ))/↔ 219
P(BSP(A))/↔ 86, 87, 88, 117,

118, 125, 128, 133, 393
P((BSP+E1+E2)(A))/↔ 130
P((BSP + EI)rec(A))/↔ 193
P((BSP + PR)(A))/↔ 100,

101, 135, 137, 159, 160
P((BSP+PR)gfrec(A))/↔ 156,

159, 160
P((BSP + PR)rec(A))/↔ 135,

137, 159, 160
P(BSP∗(A))/↔ 104, 106, 158
P(BSPdrt(A))/↔t 310, 311
P(BSPdrt∗(A))/↔t 314, 316
P(BSPgfrec(A))/↔ 155, 156
P(BSPrec(∅))/↔ 145
P(BSPrec(A))/↔ 120, 121,

123, 125, 128–131, 133,
151–153, 156

P(BSP∗rec(A))/↔ 158, 159
P(BSPτ (A))/↔rb 260, 261
P((BSPτ+ABS)(A))/↔rb 269,

270
P((BSPτ + DH)(A))/↔rb 271
P((BSPτ + PR)(A))/↔rb 272
P(MPT(A))/↔ 76, 77–79
P(TCPdrt∗!(A, γ))/↔t 324,

325
P(TCPτ (A, γ))/↔rb 278, 279,

285, 290
P((TCPτ + PR)(A, γ))/↔rb

286
P((TCPτ + PR)rec(A, γ))/↔rb

286
P(TCPτ,rec(A, γ))/↔rb 285,

290
P(TSP(A))/↔ 175, 176

P((TSP + IT)(A))/↔ 180
P((TSP + PR)(A))/↔ 177
P((TSP + PR)rec(A))/↔ 183
P(TSP∗(A))/↔ 179
P(TSPrec(A))/↔ 182, 183

Term algebras
/A1 53, 54
C(�), closed terms over� 26,

30
P(BCP(A, γ)) 216
P(BSP(A)) 84, 86, 394, 397,

399
P((BSP + PR)(A)) 99, 100
P(BSP∗(A)) 103
P(BSPdrt(A)) 309
P(BSPdrt∗(A)) 314
P(BSPgfrec(A)) 155
P(BSPrec(A)) 119, 150
P(BSPτ (A)) 258, 267
P((BSPτ + ABS)(A)) 269
P(MPT(A)) 72, 75
P(TCPdrt∗!(A, γ)) 324
P(TCP(A, γ)) 278
P(TSP(A)) 174, 175
P((TSP + IT)(A)) 181
T (�), terms over � 25

Axioms
A1, comm. + 68, 69, 71, 277, 308,

383
A2, assoc. + 68, 69, 71, 277, 308,

383
A2′, 71
A2′′, 71
A3, idempot. + 68, 69, 71, 174,

277, 308, 337, 344, 382
A4, right distr. · over + 172, 277,

320, 386

Index of Symbols and Notations 427

A5, associativity · 172, 186, 277,
320

A6, identity of + 69, 174, 277,
337, 344, 383

A6DR, A6 discr. rel. time 308
A7, ‘zero’ element of · 172, 277,

319
A7DR, A7 discr. rel. time 320
A8,9, identity of · 172, 277
A8DR, A8 discr. rel. time 320
A9DR, A9 discr. rel. time 320
A10, act. pref., seq. comp. 172,

277, 319
A10DRa–c, A10 discr. rel. time 320
AA3, idempot. +, prob. 383
AIP, Approx. Ind. Principle 134,

135, 137, 140, 144, 145,
156, 159–161, 165–168,
183, 219, 286

AIP−, Restricted AIP 137, 140,
144, 145, 148, 156, 158,
160, 166, 168, 183, 188,
219, 229, 286

ATS, Any Time Slice 313
B, Branching Axiom 256, 277,

280, 380
CFARb

Cluster Fair Abstr. Rule 291,
293, 294–297, 299

CH, Chaos Axiom 283
CM1–6, comm. merge | 204, 207,

277
CM1,3–9DR, | , DR time 320
CM2, distr. | over + 320
CQ1–6, choice quant.

∑
n 371

CS1,2, Comp.-Sim. Axioms 405
CT1,2, Comp.-Trace Axioms 405
D1–4,6,7DR, enc., DR time 320
D1–5, encapsulation ∂H 190, 277
D5, distribution ∂H over + 320

DA, Delayable Actions 313
DD, Delayable Deadlock 313
DRTA, Discr. Rel. Time Axiom 313
DRTF, Discr. Rel. Time Fact. 308
DRTIF, DR Time Iter. Fact. 313
DT, Delayable Termination 313
E1–5, skipping εI 191
EA3, idempot. 1, prob. 383
FA, Failures Axiom 399
FI, Fair Iteration 282, 283
FMA, Free-Merge Axiom 213,

224, 234
FT, Failure-Trace Axiom 405
GC1–6, guarded cmds φ :→ 336
GC7–10, guarded cmds φ :→ 343
GC7, guard. cmd, seq. comp. 352
GC8, guard. cmd, left m. 353
GC9S, GC9 with signals 353
GC10, guard. cmd, enc. 353
HA, Handshaking Axiom 214
IP1, 2, inaccessible proc. ⊥ 345
IP3–7, inaccessible proc. ⊥ 348
IP3, inac. proc., seq. comp. 352
IT1–3, iteration ∗ 180
KFARb

Koomen’s Fair Abstr. Rules 289,
290–295, 299, 381

KFARb
1 289

KFARb
n 289, 290, 294

LM1–3,5–7DR, left m., DR time 320
LM1–4, left merge‖ 204, 277
LM4, right distr.‖ over + 320
M, merge axiom 204, 212, 277,

320, 386
PA1–4, Peano axioms 13, 49
PA5, 6, Peano axioms 17
PI1, 2, prefix iteration a∗ 103, 178
PI3, prefix iteration a∗ 179
PR1–5, projection πn 93, 177
PR6, projection, abstraction 272

428 Index of Symbols and Notations

PRB1–4, probabilities +−−−+p 383
PRI1–8, priorities θ 377
R, recursion 112
RDP, Rec. Def. Principle 124,

125, 129, 133, 140, 144,
145, 156, 158–161, 164–
166, 168, 183, 219, 285

RDP−, Restricted RDP 133, 140,
144, 145, 156, 158–160,
166–168, 183, 219, 285

RE, Ready Axiom 399
RN1–4, renaming ρ f 190
RS, Ready-Simulation Axiom 405
RS1–7, root signal rs 353, 360
RSE1–7, root sign. em. φ∧� 349
RSE8, rt sign. em., seq. comp. 352,

353
RSE9–11, root sign. em. φ∧� 353
RSP, Rec. Spec. Principle 128,

129–133, 140, 144, 145,
148, 156, 158–160, 166–
168, 183, 185, 186, 188,
219, 222, 224, 226, 233,
285, 287, 294, 295, 330

RT, Ready-Trace Axiom 405
RTO1–5, relative timeout ν 320
S, Simulation Axiom 405
SC1, comm. | 204, 206, 277, 320
SC2, identity of ‖ 204, 206, 276,

277, 320
SC3, stand. conc. 204, 205, 206,

212, 276, 277
SC3DR, SC3 discr. rel. time 320
SC4, assoc. ‖ 204, 206, 276, 277,

320
SC5, assoc. | 204, 206, 276, 277,

320
SC6, 7, stand. conc. 204, 206, 276,

277, 320
SC8, stand. conc. 228, 276, 277

SC8DR, SC8 discr. rel. time 320
SC9, 10, stand. conc., abstr. 276,

277, 279, 280
SH1–7, shift operators n ! 324
SHD1–5, signal hiding P� 360
SO1–8, state operator λm

s 363
TI1–5, abstraction τI 268, 277
TITI, Time Iter. Time Iter. 313
TR, Trace Axiom 395, 397

Equational theories
�, derivability 13, 14
≡, syntact. identity on terms 12, 14
0, constant symbol 11, 13, 17, 31,

49
a, binary symbol 11, 13, 31, 49
B(�1), basic �1-terms 15
C(�), closed �-terms 12
C(T), closed T -terms 72
e, binary symbol 17, 60
E , set of equations 12
Fun, eq. theory 20
m, binary symbol 11, 13, 17, 31,

50
P(t), property on terms 16
σ , substitution 12
s, unary symbol 11, 13, 17, 31, 49
sn(0), basic �1-terms 15
(�, E), equational theory 12
�, signature 11, 12, 22, 31
�-term, term over � 12
�1, signature 11, 12, 15, 22
t[σ], substitution 13
T = (�, E), eq. theory 13, 26–28
T -term, term of theory T 69
T (�), terms over � 12, 25
T (�, V), terms over V and � 12

Index of Symbols and Notations 429

T1 = (�1, E1), eq. theory 12, 13,
17, 18, 20, 24, 26, 30, 31,
48, 52–58, 61, 62

T2 = (�2, E2), eq. theory 17, 18,
19, 21, 30, 58, 60–63

V , set of variables 12

Process algebra
ā, conjugate action 242
ACP xi, 8, 9, 107, 152, 168, 242,

298, 318
ATP 334
BPA 107, 194
BPAδ 107
CCS xi, 6, 7–9, 64, 65, 107, 125,

152, 168, 242, 280, 298,
299, 334, 391

CIRCAL 9
CSP xi, 7, 9, 65, 107, 168,

228, 229, 234, 242, 272–
274, 299, 334, 400

δ, inaction 107
ε, empty process 107
LOTOS 334
µCRL 367, 374
mCRL2 xii, 374
MEIJE 9
MPA 107
nil, inaction 107
PA 8, 242
SCCS 9
SKIP, empty process 107
τ , silent action 6, 242, 245
TCSP 7

Process theories
General notations

(+s), opt. s-summand 140
⊥, error message 236

⊥, inaccessible state in S 362
∅, empty comm. func. 198,

199, 213
≺ ⊆ A2, priority ordering

376
≤, summand rel. 71
|

i∈I
ti , gen. comm. merge 210

‖
i∈I

ti , gen. merge 210

∀nφ, universal quant. 367
a, b, c, actions in A
A, set of actions 68, 408
Aτ = A ∪ {τ } 256
action : A × S → S,

action function 362
a(ν), param. action 368
Bag 223, 226
Buf 1 220, 221
Buf 1io 235
Buf 1mobio 387
Buf 2 221, 222, 226, 293
γ : A × A → A,

communication function
197, 198, 203, 204, 205,

214, 216, 228, 229, 277,
320, 324, 325, 343, 344,
348, 353, 356, 408, 409

γS : A × A → A,
standard comm. func. 200,
221

C , cluster 291
CA, core actions 408
Counter 188, 229
Counter2 226, 229
d , data element (d ∈ D) 146
d0, d1, frames 236
D = {d1, d2, · · · , dn}, data

elements 146
∃nφ, existential quant. 367
E , recursive specification 110

430 Index of Symbols and Notations

effect : A × S → S,
effect function 362

φ,ψ , prop. formulas in FB
f : A → A, renaming func.

189
F = {d0, d1 | d ∈ D}, frames

236
FB, propositional formulas

336, 367
FN, nat.-num. formulas 367
H ⊆ A, encapsulated actions

189, 271
ik , internal action 289
I ⊆ A, hidden/skipped actions

191, 268
K , L , channels 235
µt.E 119
µX.E 112, 168
µX.t 168
m, machine in M
M , set of machines 362
ν, µ, nat.-num. formulas in FN

367
P, P1, P2, . . ., prop. vars in P
P, propositional variables 335,

367
p?d, receive d at p 200
p!d , send d at p 200
p!?d, communicate d at p 200
Queue1 231, 233, 298, 366
Queue2 232, 233, 234
Queue3 235
Queue4 366
R, receiver 235
Rec, recursive specs 112
s, state in S∑
i∈I

ti , gen. choice 135

S, sender 235
S, state space 362

sig : S → FB, state signal 362
Spring 344
Stack 364
Stack1 146, 148, 185, 351
Stack2 184, 185, 188
Stack3 188
Stack4 188
t , internal action 236, 240,

241
U (C), cluster exits 292
VR , recursion variables 110
VR(E), rec. vars in E 110
X, Xi , Y, Z , rec. vars 110
〈X | E〉 168
X = t , recursive equation 110
X (ν), param. rec. var. 368

Constants
⊥, inaccessible process 345,

347, 348, 349, 352, 353,
360, 363

0, any-time-slice deadlock
313, 315, 319, 320

0, inaction, deadlock 68,
69, 74, 93, 107, 172, 190,
191, 204, 228, 268, 274,
277, 283, 336, 339, 345,
347, 353, 360, 363, 377,
383, 385

0, current-time-slice time stop
308, 309, 313, 320, 324

1, any-time-slice termination
313, 315, 320, 327

1, empty process 81,
82, 84, 93, 107, 172, 180,
190, 191, 204, 213, 214,
268, 274, 277, 339, 347,
353, 360, 363, 377, 383,
385, 405

Index of Symbols and Notations 431

1, current-time-slice term.
308, 309, 313, 320, 324,

327
X , recursion constants 112,

120

Unary operators
∗, iteration 180, 184
n , n-fold seq. comp. 174
‖n , n-fold par. comp. 218
! , replication 227
a. , action prefix (a ∈ A) 68,

69, 74, 93, 172, 190, 191,
204, 256, 268, 274, 277,
339, 345, 347, 353, 360,
363, 377, 383, 385, 395,
399, 405

a. , any-time-slice action pre-
fix (a ∈ A) 313,
315

a. , current-time-slice action
prefix (a ∈ A) 308, 309,
313, 320, 324

a∗ , prefix iteration (a ∈ A)
103, 179

a⊕ , proper iter. (a ∈ A) 107,
159

an , n-fold act. pref. (a ∈ A)
105, 107

∂H , encapsulation (H ⊆ A)
190, 192, 193, 194, 201,

204, 205, 214, 218, 270,
274, 277, 320, 325, 326,
327, 343, 348, 353, 356

εI , skip operators (I ⊆ A)
191, 192, 193, 245

θ , priority operator 377, 381
φ :→ , guarded command

(φ ∈ FB) 336, 339, 341,

343, 344, 347, 349, 352,
353, 360, 363, 371

φ∧� , root-signal emission
(φ ∈ FB) 349, 351, 352,
353, 360, 363

λm
s , state operators (m ∈ M,

s ∈ S) 363, 364
ν, current-time-slice timeout

320, 324, 325, 326, 327
n ! , shift operators (n ∈ N)

324, 325
πn , projection (n ∈ N) 93, 99,

101, 134, 145, 177, 178,
226, 271, 272, 274, 405

P� , signal hiding (P ∈ P)
360, 361

ρ f , renaming (f : A → A)
190, 193

rs, root-signal operator 353,
356, 360, 361

σ. , time prefix 308, 309,
313, 320, 324, 327

σ ∗ , time-iteration prefix 313,
315, 317, 320, 324, 327

σ n , n-fold time prefix 308∑
n , choice quantification
(n ∈ N) 369, 371, 372

τ. , τ -prefix 246, 256, 274,
277, 279, 282

τI , abstraction (I ⊆ A) 240,
246, 268, 269, 272, 274,
277, 279, 287–289, 294,
295, 298, 299, 381

τ ∗ , τ -prefix iteration, diver-
gence 281,
282–284

Binary operators
+, alt. comp., choice 8, 68, 69,

74, 84, 93, 103, 172, 180,

432 Index of Symbols and Notations

190, 191, 204, 213, 214,
256, 268, 274, 277, 308,
309, 313, 320, 324, 336,
339, 345, 347, 349, 353,
360, 363, 371, 377, 383,
385, 395, 399, 405

· , sequential comp. 171, 172,
175, 179, 180, 228, 234,
277, 320, 325, 327, 343,
348, 352

‖ , merge 195–199, 201, 202,
204, 205, 214, 215, 216,
218, 234, 277, 279, 320,
325, 327, 341, 344, 356,
360

‖CCS, CCS par. comp. 280
‖CSP

S , CSP par. comp. 229,
234

‖ , left merge 202, 204, 214,
216, 218, 228, 234, 242,
277, 279, 320, 325, 327,
343, 348, 353, 356

| , communication merge 202,
203, 204, 213, 214, 216,
242, 277, 279, 320, 325,
327, 343, 344, 348, 353,
356

 , internal choice (CSP) 272–
274

� , external choice (CSP)
272–274

� , left-external choice (CSP)
273, 274

+−−−+p, probabilistic choice
(p ∈ (0, 1)) 383, 385

ϑ , priority operator 377, 381

Rewriting
	→, one-step reduction 31

�, reduction relation 32
Cnf 33
R, rewrite rules 31
(�, R), term rewr. syst. 31, 32
(t1, t2), rewrite rule 31
t1 → t2, rewrite rule 31
TRS1 = (�1, R1) 31, 32

Transition systems
General notations

[[]], trans. sys. of a term 266
〈 〉, term of a trans. syst. 263
〈 , v〉 ↘, consistency 346
〈 , v〉↓, termination 338
↓, termination, final states 35,

49
�↓, no termination option 36
↓n , timed termination 305
�, possible delays 304, 305
�, probabilistic transition 384
�n , time ticks 305
→, set of transitions 35
→∗, reachability 36, 305
�, reach. w. τ -steps 247
∼=, isomorphism 262
↔, bisimilarity 41, 253, 342,

346
↔, prob. bisimilarity 385
↔b, branch. bisim. 249, 253
↔rb, rooted branch. bisim.

252, 253
↔t, timed bisimilarity 306
1→, transition, 1-step 49
a→, transition, a-step 36
a→√

108
a�→, no a-step 36
(a)→ 248

n
a→, timed a-step 304

Index of Symbols and Notations 433

σ→∗, reachable with σ 37
v,a,v′→ , action-effect step 338
〈 , v〉 a→ 〈 , v′〉,

action-effect step 338
[0]↔ , M1 constant 54
1, label 48
a-step 36
a↔ , M1 function 54
/A1, algebra of trans. syst. 53,

54
BV , set of Bool. valuations

338
C , set of colors 47
Di = (�i , Ri), ded. syst. 58
effect : A × BV → BV ,

effect function 338
�, premises 51
L , set of labels 35, 246
µ, prob. distr. func. 384
m↔ , M1 function 54
M1 = /A1/↔ 54, 55, 57
M2, model of T2 62, 63
NV , set of nat.-num. valuations

367
ψ , formula, conclusion 51
R, (general) relation
R, bisimulation 40
R, branching bisim. 248
R, deduction rules 51
σ , trace 394
σ↓, accepting trace 394
(σ,menu(t)), ready pair 397
[σ, X], failure pair 398
s↔ , M1 function 54
(�, R), deduction syst. 51
(S, L ,→,↓), trans.-sys. space

36
(S, L ,→,↓,�),

timed trans.-sys. space 305

S, set of states 35
τ , silent step 246, 298
v, v′ : P → B, valuation 337

Deduction systems
TDS(BCP(A, γ)) 216
TDS((BCP⊥ + RSE)(A, γ),

effect) 356
TDS(BCPrec(A, γ)) 219
TDS(BSP(A)) 84
TDS((BSP + CQ)(A), effect)

372
TDS((BSP + DH)(A)) 192
TDS((BSP + EI)(A)) 192
TDS((BSP + GC)(A), effect)

339
TDS((BSP + GC)(A), effect)par

372
TDS((BSP + PR)(A)) 99
TDS(BSP + RN(A)) 190
TDS((BSP + SO)(A), effect)

363
TDS((BSP⊥ + GC)(A), effect)

347
TDS((BSP⊥ + RSE)(A), effect)

351
TDS((BSP⊥ + SHD)(A), effect)

361
TDS(BSP∗(A)) 103
TDS(BSPdrt(A)) 309
TDS(BSPdrt∗(A)) 315
TDS(BSPrec(A)) 120
TDS((BSPτ �)(A)) 273
TDS((BSPτ + ABS)(A)) 269
TDS((BSPτ + PR)(A)) 272
TDS(BSPθ(A,≺)) 377
TDS(BSPprb(A)) 385
TDS(MPT(A)) 74
TDS(T), ded. syst. for T 73

434 Index of Symbols and Notations

TDS((TCP + GC)(A, γ), effect)
344

TDS(TCPdrt∗!(A, γ)) 325
TDS(TSP(A)) 175
TDS((TSP + IT)(A)) 180
TDS((TSP⊥ + RSE)(A), effect)

352
TDS(TSPrec(A)) 182

Index of Authors

A
Aceto, L. 65, 107, 108, 299, 391
Andova, S. 391
Austry, D. 9
Azcorra, A. 334

B
Baeten, J.C.M. xi, 8–10, 34, 53,

65, 68, 107, 108, 168, 169,
194, 232, 242, 243, 285–
287, 290, 291, 293, 299,
310, 314, 318, 319, 326,
333, 334, 352, 374, 377,
391, 410

Bakker, J.W. de 8, 108, 168, 169
Bartlett, K.A. 243
Basten, T. 250, 299, 410
Bekič, H. 5, 6, 242
Bergstra, J.A. 8,

9, 64, 107, 108, 165, 168,
169, 181, 194, 225, 231,
232, 242, 243, 274, 285–
287, 290, 298, 299, 318,
333, 352, 374, 377, 381,
391, 400, 410

Bethke, I. 108
Birkhoff, G. 1
Bloom, B. 107, 391
Bosscher, D.J.B. 187

Boudol, G. 9
Bradfield, J.C. xii
Bravetti, M. 168, 242, 299
Brookes, S.D. 7, 299
Broy, M. 243
Burris, S. 34

C
Christensen, S. 242
Cleaveland, R. 391
Copi, I.M. 108
Corradini, F. 194, 334

D
D’Argenio, P.R. 299
D’Ortenzio, D. 334
de Frutos, D. 334
de Simone, R. 9
Denvir, B.T. 243
Dershowitz, N. 97
Dijkstra, E.W. 7, 374

E
Elgot, C.C. 108

F
Floyd, R.W. 5

435

436 Index of Authors

Fokkink, W.J. 8, 65, 102, 106, 108,
181, 194, 299

Francez, N. 299

G
Glabbeek, R.J. van 65, 107, 168,

169, 194, 242, 243, 298,
299, 410

Gödel, K. 33
Gorrieri, R. 410
Grabmayer, C.A. 194
Gries, D. 5
Groote, J.F. 65, 299, 367, 374

H
Halpern, J.Y. 243
Harwood, W.T. 243
Heijenoort, J. van 12, 33
Hennessy, M. 7–9, 65, 107, 242, 299,

334, 410
Hoare, C.A.R. xi, 5, 7,

9, 65, 107, 168, 194, 228,
234, 242, 243, 272, 299

Hussman, H. 116

I
Ingólfsdóttir, A. 108
Inverardi, P. 334

J
Jackson, M.I. 243
Jones, C. 5, 242
Jonsson, B. 391
Jouannaud, J.-P. 33, 97

K
Khadim, U. 374

Kleene, S.C. 108
Klop, J.W. 8, 9, 32, 34, 64, 107, 108,

165, 168, 169, 194, 225,
231, 242, 243, 274, 285–
287, 290, 298, 299, 318,
377, 391, 400

Koomen, C.J 299
Koymans, C.P.J. 107, 194, 242, 243
Kranakis, E. 168

L
Lamport, L. 327
Laneve, C. 410
Larsen, K.G. 243, 391
Linz, P. 2, 64, 149, 156, 168, 181
Lüttgen, G. 391
Luttik, S.P. 299, 372, 374

M
MacLane, S. 1
Markovski, J. 391
Matthijssen, A. 374
Mauw, S. 168, 374
McCarthy, J. 4
Middelburg, C.A. 333, 374
Milne, G.J. 6, 9, 168
Milner, R. xi, 6–9, 64, 65, 107, 125,

168, 194, 242, 243, 280,
298, 389, 391

Moller, F. 201, 334
Mousavi, M.R. 34, 65, 242, 318, 326,

333
Mulder, J.C. 168, 243
Muñoz, M. 33

N
Natarajan, V. 391
Nicollin, X. 334

Index of Authors 437

O
Oguztuzun, H.M. 65
Olderog, E.-R. 274, 299, 400
Osborne, M. 47
Owicki, S. 5

P
Park, D.M.R. 65
Parrow, J. 9, 299
Peano, G. 12
Plotkin, G.D. 5, 65
Ponse, A. 108, 181, 194, 299, 367,

374, 381, 391
Pratt, V.R. 243

Q
Quemada, J. 334

R
Ray, M.J. 243
Reed, G.M. 334
Regan, T. 334
Reniers, M.A. 34, 65, 242, 299, 318,

319, 326, 333, 334
Roscoe, A.W. 7, 299, 334
Rubinstein, A. 47

S
Sangiorgi, D. 389, 391
Sankappanavar, H.P. 34
Scantlebury, R.A. 243
Schneider, S.A. 334
Scott, D.S. 4
Sewell, P. 108, 181
Sifakis, J. 334
Skou, A. 391
Smullyan, R. 38
Stirling, C. xii

Stockton, F. 38
Strachey, C. 4

T
Tiuryn, J. 243
Tofts, C. 334
Trčka, N. 299
Troeger, D.R. 180
Tucker, J.V. 243, 391

U
Usenko, Y.S. 132, 168, 374

V
Vaandrager, F.W. 107, 243, 291, 293,

298, 299, 391, 410
Veltink, G.J. 374
Vereijken, J.J. 334
Verhoef, C. 53, 60, 65, 108, 168, 310,

314, 326, 352, 377, 378
Vrancken, J.L.M. 107, 194, 242

W
Walker, D.J. 299, 389, 391
Weerdenburg, M. van 374
Weijland, W.P. xi, 8, 9, 34, 68, 108,

168, 194, 242, 290, 291,
293, 299, 318, 391, 410

Wilkinson, P.T. 243
Winskel, G. 242
Wright, J.B. 108

Y
Yi, Wang 334, 391

Z
Zuck, L.D. 243
Zucker, J.I. 8, 108, 168, 169
Zwaag, M.B. van der 381, 391

Index of Subjects

Page numbers in italics refer to defining entries.

A
abstraction 1, 240, 242, 245, 246,

268, 272, 275, 276, 285,
294, 295, 297, 299, 358,
380, 381

applied to a definable proc. 287
applied to a fin. def. proc. 287
fair 284
from a guard 284
of unstable divergence 295
pre- 294

ACP see Symbol Index
action 1, 35

atomic 68
beginning/ending of 196, 408
communicating -s 197
communication 198, 200
conjugate 242
core 408
delayable 312, 313
discrete 1
durational 409
get 390
interleaved -s 195
internal 236, 240, 282, 295
multi- 303, 390, 408
observable 251

parameterized 368, 369, 372,
373

put 390

receive 200, 390

send 200, 390

set of -s 68

silent, see silent action

structured 338

untimed 304, 307

action constant 107, 318

action execution 195, 302, 304, 342

action function 362, 365

action ordering 301

action prefix 68, 69, 172, 196, 246,
313, 337

current-time-slice 307

n-fold 105

algebra 1, 21, 22

�- 22

initial, see initial algebra

of countable computable
processes 151–153, 156

of finite automata 157, 181

of regular expressions 181

of regular processes 155, 156

of transition systems 52–54, 75

439

440 Index of Subjects

of transition systems P(BSP(A))
394, 398, 399

process, see process algebra
quotient, see quotient algebra
term, see term algebra
universal 1, 34

Algebra of Communicating Processes
xi

ALGOL 5
Alice 205
alpha conversion 371
Alternating-Bit Protocol 235, 241,

243, 295, 299, 374
alternative composition 8, 68, 69,

250, 349, 369, 382
identity element of 68, 307
parameterized 335

approximation 134
Approximation Induction Principle

(AIP) 134, see also Symbol
Index

associativity 68
of seq. comp. 172, 174, 186

ATP 334
automata theory 2, 44, 156, 181, 187
automaton 35, 38, 64

finite 44, 157, 181, 188
finite non-deterministic 157

axiom 12, 49, 51, 111
conditional 288, 293, 404

axiom rule 13, 370
axiom scheme 93, 204
axiomatization

complete 28
finite ground-complete - for iter.

108
ground-complete 28, 34
of BCP(A,∅) 216
of communicating processes 201
of completed-sim. equiv. 405

of completed-trace equiv. 397,
405

of failure-trace equiv. 405
of parallel composition 242
of possible-worlds equiv. 407
of ready-sim. equivalence 406
of ready-trace equiv. 405
of simulation equivalence 405
of split-bisimulation equiv. 409
of ST-bisimulation equiv. 410
of T(A) 397
of trace equivalence 397
sound 23

Axioms of Standard Concurrency
204, 207, 227, 243, 276

B
bag 222, 223, 225, 226, 243, 408
Basic Process Algebra 107

with inaction 107
behavior 1

branching 68
deadlock 396, 398, 400, 401
high-priority 376
low-priority 376
operational 35
pre-empted 376
sequential 212
termination 40, 70, 202
timing 310
unbounded-depth 102

binding 369, 389
biscuit-tin 226
bisimilarity 3, 40, 41–47, 52–

54, 75, 81, 157, 201, 218,
336, 341, 344, 346, 393,
398, 403, 404, 407, 409

branching, see branching
bisimilarity

Index of Subjects 441

orthogonal 381, 391
probabilistic 385, 386
relation between - notions 253
rooted weak 256, 267, 298
strong 247, 258, 275, 317, 342
timed 306, 317
weak 255, 298

bisimulation 40, 42, 44–47, 64, 91,
118, 341, 346

branching 248, 250, 251, 254
game characterization of 65
maximal - relation 47
probabilistic 385, 386, 391
rooted branching 252, 254
rooted weak 255
split 409, 410
ST 409, 410
step 408
strong 251
timed 306
weak 255

bisimulation equivalence 40
blocking 189

send/receive actions 201
blocking termination 337
Bob 205
Booleans 21, 335, 367
boundedness 105
Branching Axiom 256
branching bisimilarity 247, 248, 249–

251, 254, 255, 283, 299,
381

rooted 247, 251, 253–256, 258,
262, 273, 299

rooted - with explicit divergence
282, 283

semi- 299
with explicit divergence 282,

283, 299
branching degree 168

branching structure 40, 70, 401
broadcast 390
buffer 197, 220, 356, 361, 362

mobile 387, 389
n-place 226
one-bit 220
one-place 220, 226, 232, 235,

295, 357, 387
termination of 226
two-place 221, 222, 293, 358

buffers 358, 364, 365

C
calculation 3
Calculus of Communicating Systems

xi, 6
car 387, 389
carrier set 21
CCS see Symbol Index

basic xi, 7, 107
expansion law of 280
parallel composition 280
timed extension of 334

channel 200, 389
chaos 282, 283, 348
Chaos Axiom 283
choice 65, 68, 69, 196, 303, 307, 375

see also alternative composition
CSP - operators 272
external 272–274, 299
fair 297
generalized 135
internal 272
left-external 273
moment of 40, 113, 172, 202,

288, 401
non-deterministic 40, 65, 70,

236, 272, 288, 382
over natural numbers 369

442 Index of Subjects

probabilistic 382–384
choice quantification 366, 371, 373,

374, 382
choice quantifier 369
CIRCAL 9
clock 302
closed term 12, 52, 72, 266
cluster 291, 292, 293

conservative 292, 293
finite conservative 293

Cluster Fair Abstraction Rule 291
co-name 6
coffee machine 109
color 47
coloring 47, 255, 262

canonical 262
consistent 47

Communicating Sequential Processes
xi, 7

communication 9, 196–198, 200–
202, 205, 231, 242, 324,
353, 356, 361, 362, 378,
409

associative 197
asymmetric 390, 391
asynchronous 197, 355,

389–391
binary 198, 199, 213
commutative 197
enforced 201, 205
handshaking 198
higher-order 198, 199
identity element of 242
in CCS 242
in CSP 242
residual trace of 298
standard 200
symmetric 389
synchronous 197, 221, 358, 389
ternary 198, 199

with a silent step 276, 280
with guarded commands 343
with the empty process 205,

206, 220
communication channel 197
communication function 197, 198,

203, 347, 353, 355, 408,
409

signal 358
standard 200, 221, 242, 390

communication link 387
communication merge 202, 203, 213,

321, 355, 390
commutativity of 203
generalized 210
identity element of 210

communication network 200, 227,
241, 387

Alternating-Bit Protocol 235
communication protocol 235, 241,

295, 298
communication relation 408
communication trace 6
commutativity 68
comparative concurrency semantics

43, 65
completed-trace set 396
completeness 28

ω- 28
ω- - of ((BSP+PR)rec+AIP)(A)

168
ω- - of (TCP + FMA)(A,∅)

234
ground-, see ground-complete-

ness
of the theory for data types 372

computability 149
conclusion 51, 53
concurrency theory 3, 4, 40, 168, 397

Index of Subjects 443

conditional 336, 348, 349, 353, 367,
see also guarded command

conflict relation 408
confluence 32
congruence 25, 30, 53, 54, 75, 250

for alternative composition 250
result for BCP(A, γ) 216
result for BSP(A) 86
result for (BSP + GC)(A) 342
result for (BSP + PR)(A) 100
result for BSP∗(A) 103
result for BSPdrt(A) 310
result for BSPdrt∗(A) 314
result for BSPrec(A) 119
result for BSPτ (A) 258
result for (BSPτ + ABS)(A)

269, 275
result for BSP∗τ (A) 283
result for BSPprb(A) 386
result for failures equivalence

398
result for MPT(A) 75, 81
result for readiness equivalence

398
result for TCPdrt∗!(A, γ) 324
result for TCPτ (A, γ) 278, 280
result for TSP(A) 175
result for (TSP + IT)(A) 180
result for (TSP + PR)(A) 177
result for TSP∗(A) 179

congruence theorem 54, 62, 258
conjecture 182
conservative extension 18

equational 59
operational 58, 59–61, 98

conservative ground-extension 18,
34, 61

conservativity 34, 61, 63, 65, 108
conjecture for TSPrec(A) 182,

189

equational 58
of a timed process theory 304
of BCP(A, γ) 217, 218
of (BCP⊥ + RSE)(A, γ) 355
of BCPrec(A, γ) 219
of BSP(A) 83
of (BSP + CQ)(A) 372
of (BSP + GC)(A) 342
of (BSP + PR)(A) 96
of (BSP + PR)rec(A) with rec.

principles 144, 145
of (BSP + RN)(A) 189
of BSP⊥(A) 345
of (BSP⊥ + GC)(A) 347
of (BSP⊥ + RSE)(A) 351, 360
of BSP∗(A) 104
of (BSP∗ + PR)(A) 106
of BSPdrt(A) 308
of BSPdrt∗(A) 314, 318
of BSPrec(A) 122
of BSP∗rec(A) 158
of BSPτ (A) 257, 258
of (BSPτ �)(A) 275
of (BSPτ + ABS)(A) 269, 275
of (BSPτ + DH)(A) 271, 275
of (BSPτ + PR)(A) 271, 275
of BSPθ(A,≺) 377
of BSPprb(A) 382
of MPT∗(A) 105
of (MPT + PR)(A) 96, 102
of MPTrec(A) 123
of MTCP(A, γ) 218
of T2 18, 61, 62
of TCP(A, γ) 227, 234
of (TCP + GC)(A, γ) 345
of TCPdrt∗!(A, γ) 326
of TCPτ (A, γ) 276, 280
of TSP(A) 176
of (TSP + IT)(A) 181
of (TSP + PR)(A) 178

444 Index of Subjects

of (TSP + RN)(A) 193
of (TSP⊥ + RSE)(A) 353
of TSP∗(A) 179
of TSPrec(A) 182
operational 58–60, 64

consistency predicate 346, 347
constant 11, 22, 111
context rule 14, 25, 370
cooperation

asynchronous 389
synchronous 390, 391

countable set 149
counter 148, 188, 226
critical section 328, 333
CSP see Symbol Index

choice operator 272, 299
parallel composition 228, 400
Theoretical 7
timed extension of 334

cycle 74, 98, 181, 288, 289, 291

D
data 335, 374
data type 335, 336, 366, 372

Boolean 367
equational theory of 367
finite 335
infinite 335
natural-number 367
uncountable 335

deadlock 7, 43, 47, 69, 89–92, 108,
191, 214, 242, 245, 246,
360, 396, 398, 400, 401

any-time-slice 312
in BSP(A) 89, 90–92
in (BSP + DH)(A) 193
in (BSP + EI)(A) 193

decidability 33, 372
deduction rule 49, 51, 53

for action prefix 408
for parameterized actions 368
for parameterized recursion 369
for recursion 168
format of 352
source-dependent 59, 60

deduction system 51, 52–54, 58–60,
63, 64, 73, 352

for BCP(A, γ) 216, 218
for (BCP⊥ + RSE)(A, γ) 356
for BCPrec(A, γ) 219
for BSP(A) 84
for (BSP + CQ)(A) 372
for (BSP + DH)(A) 192
for (BSP + EI)(A) 192
for (BSP + GC)(A) 338, 339,

340
for (BSP + PR)(A) 99
for (BSP + PR)rec(A) 146
for (BSP + RN)(A) 190
for (BSP + SO)(A) 363
for (BSP⊥ + GC)(A) 346, 347
for (BSP⊥ + RSE)(A) 351
for (BSP⊥ + SHD)(A) 361
for BSP∗(A) 103
for BSPdrt(A) 309
for BSPdrt∗(A) 315
for BSPrec(A) 120
for BSPτ (A) 258, 266
for (BSPτ �)(A) 273
for (BSPτ + ABS)(A) 269
for (BSPτ + DH)(A) 271
for (BSPτ + PR)(A) 272
for BSP∗τ (A) 281
for BSPθ(A,≺) 377, 378
for BSPprb(A) 385
for MPT(A) 74, 408
for T1 49
for T2 60
for TCP(A, γ) 228

Index of Subjects 445

for (TCP + GC)(A, γ) 344,
345

for TCPdrt∗(A, γ) 323
for TCPdrt∗!(A, γ) 325
for TCPτ (A, γ) 278
for TCPθ rec(A,≺, γ) 378
for TSP(A) 175, 194
for (TSP + IT)(A) 180
for (TSP + PR)(A) 177
for (TSP⊥ + RSE)(A) 352
for TSP∗(A) 179
for TSPrec(A) 182

definability 148, 151, 152, 156, 186,
225, 227

finite 154, 156
finite - of the queue 235
finite - of the stack 186
finite - over BCP(A,∅) 225
finite - over BCP(A, γ) 225,

227, 235
finite - over (BCP + HA +

RN)(A, γ) 232
finite - over TCP(A,∅) 231
finite - over TCP(A, γ) 231,

232
finite - over TSP(A) 186, 187,

225, 227
over TCPτ (A, γ) 286

delayability 312, 322
Delayable Actions 313
Delayable Deadlock 313
Delayable Termination 313
depth 92, 100

bounded 98, 105, 106
finite 98
unbounded 106

derivability 13, 14, 20, 25, 30–33,
52, 75, 129

with binding operators 370
derivation 14, 31, 256

with choice quantifiers 371
with guarded commands 337
with probabilistic choice 383
with recursion 111
with shift operators 323
with signals 349
with time 307

dichotomy 407
discrete event system 1
Discrete Relative Time Factorization

307
disrupt 375
distribution

of act. pref. over choice 70, 81,
89

of seq. comp. over choice 172,
386

divergence 280–282, 286, 287, 299
catastrophic 283, 299
unstable 284, 295

domain 21
duration 196, 408

E
effect function 338, 339–

343, 347, 351, 353, 361–
365, 368, 373, 376

elimination 16, 19, 63
for BCP(A, γ) 206, 215
for (BCP⊥ + RSE)(A, γ) 355
for BCPrec(A, γ) 219
for BSP(A) 83
for (BSP + CQ)(A) 372
for (BSP + GC)(A) 337
for (BSP + PR)(A) 94, 102
for (BSP + RN)(A) 189
for BSP⊥(A) 345
for (BSP⊥ + GC)(A) 347
for (BSP⊥ + RSE)(A) 350

446 Index of Subjects

for BSP∗(A) 104
for (BSP∗ + PR)(A) 106
for BSPdrt(A) 308
for BSPdrt∗(A) 314
for BSPrec(A) 122
for BSPτ (A) 257
for (BSPτ �)(A) 275
for (BSPτ + ABS)(A) 269, 275
for (BSPτ + DH)(A) 271, 275
for (BSPτ + PR)(A) 271, 275
for BSPθ(A,≺) 377
for (MPT + PR)(A) 102
for MPTrec(A) 123
for MTCP(A, γ) 218
for T2 19
for TCP(A, γ) 227, 234
for (TCP + GC)(A, γ) 345
for TCPdrt∗(A, γ) 322
for TCPτ (A, γ) 276, 280
for TSP(A) 172, 182
for (TSP + IT)(A) 180
for (TSP + PR)(A) 177, 178
for (TSP + RN)(A) 193
for (TSP⊥ + RSE)(A) 353
for TSP∗(A) 179
for TSPrec(A) 182
of choice quantifiers 372
of projection operators 94
of signals 350
of silent actions 274
of state operators 365

embedding 308, 334
encapsulation 189–194, 201, 205,

270, 276, 319, 337, 378
of silent steps 270

environment 146, 200, 236, 240, 273,
382

equation
conditional 116
defining 368

fixed point 110
parameterized 369
recursive, see recursive equation

equational logic 13, 20, 69
equational reasoning 4
equational theory 12, 17, 32, 33, 48,

52
of groups 2
of regular expressions 181
of traces 395

equivalence 24, 370
2-nested simulation 407
bisimulation, see bisimilarity
completed-simulation 403,

404–406
completed-trace 396–398, 401,

404–406
failure-trace 402, 404–407
failures 272, 398, 401, 404, 406
language, see language

equivalence
observational 7
possible-futures 406, 407
possible-worlds 407
readiness 398, 404, 406, 407
ready-simulation 404, 406, 407
ready-trace 402, 404, 406, 407
semantic 2, 43, 71, 247, 250,

253, 281, 393, 404
simulation 403, 404–407
singleton-failures 401
split-bisimulation 409
ST-bisimulation 409
step-bisimulation 408
strong 7, 65
trace 394, 398, 404, 406
with guarded commands 340

equivalence class 25
representative of 25

error handling 375, 379, 381

Index of Subjects 447

execution
bounded-depth 98
complete 38
unbounded 98

exit 292, 293
expansion 6, 7, 382

CCS 280
expansion theorem 211–213, 243,

277, 280, 408
for free merge 213, 278, 280
for handshaking comm. 214,

237, 278, 280
expressiveness 82, 109, 118, 148,

150, 186
model-dependent 151
of BCP(A, γ) 206, 225
of BCPrec(A, γ) 225
of BSP(A) 83, 86
of (BSP + PR)(A) 94
of BSP∗(A) 158
of BSPgfrec(A) 181, 186
of BSPrec(A) 151, 186
of communication 231
of guarded finite recursion 181
of handshaking 232
of iteration 181
of MPT(A) 83, 86
of parallel composition 225
of TCP(A,∅) 231
of TCP(A, γ) 231
of TCPrec(A,∅) 231
of TCPrec(A, γ) 231
of TCPτ (A, γ) 276
of TSP(A) 172, 225
of (TSP + IT)(A) 181
of TSP∗(A) 181
of TSPgfrec(A) 186
of TSPrec(A) 186, 225

extension 17, 24, 34, 58, 61, 81, 82,
92, 317

conservative 65
conservative ground-, see con-

servative ground-extension
conservative timed 318
conservative, see conservative

extension
for convenience 94
for ease of specification 93
ground- 18, 34, 317
of a deduction system 58, 61
of an equational theory 61
timed 318

F
factorial 373
failure 403
failure pair 7, 398

singleton- 401
failure rate 382
failure set 398, 400
failure trace 403
failure-trace set 403
Failures Axiom 399
Fair-Iteration Axiom 281, 282–284,

288
fairness 288, 299
Fibonacci sequence 374
FINTREE 107
Fischer’s protocol 327, 334
fixed point 114

least 125, 168
flow graph 6
formula 51

Boolean 367
closed 52
propositional logic 336, 367

frame 236
free merge 212, 215, 222, 231, 234

448 Index of Subjects

Free-Merge Axiom 212, 213, 220,
234, 278

function 11, 22
renaming 189

G
game 41
game theory 47
Gödel’s incompleteness theorem 33
grammar

left-linear 157, 187
right-linear 157, 168, 188

ground-completeness 27, 28, 34, 58,
59, 63, 77, 78

of BCP(A, γ) 217
of BCPrec(A, γ) 219
of BSP(A) 87–89, 393
of (BSP + CS1,2)(A) 405
of (BSP + CT1,2)(A) 405
of (BSP + CQ)(A) 372
of (BSP + GC)(A) 342
of (BSP + PR)(A) 100, 101
of (BSP + PR + RS)(A) 406
of (BSP + PR + RT)(A) 405
of (BSP + PR + RT + FT)(A)

405
of (BSP + RN)(A) 189
of (BSP + S)(A) 405
of (BSP + SO)(A) 363
of (BSP⊥ + GC)(A) 347
of (BSP⊥ + RSE)(A) 351
of BSP∗(A) 106
of (BSP∗ + PR)(A) 106
of BSPdrt(A) 310, 311
of BSPdrt∗(A) 315, 316
of BSPfa(A) 399
of BSPre(A) 399
of BSPrec(A) 121
of BSPτ (A) 261, 266

of (BSPτ �)(A) 275
of (BSPτ + ABS)(A) 270, 275
of (BSPτ + DH)(A) 271, 275
of (BSPτ + PR)(A) 272, 275
of BSPtr(A) 395
of BSPθ(A,≺) 376
of BSPprb(A) 386
of failures theory 399
of MPT(A) 78–80
of (MPT + PR)(A) 102
of MPTrec(A) 123
of MTCP(A, γ) 218
of readiness theory 399
of T1 55–58
of T2 63
of TCP(A, γ) 228, 234
of (TCP + GC)(A, γ) 345
of TCPdrt∗!(A, γ) 325
of TCPτ (A, γ) 279, 280
of the initial algebra 27
of trace theory 395
of TSP(A) 172, 176
of (TSP + IT)(A) 181
of (TSP + PR)(A) 177
of (TSP + RN)(A) 193
of (TSP⊥ + RSE)(A) 352
of TSP∗(A) 179
of TSPrec(A) 182

group 1
guard 284, 338

in a timed theory 328
guarded command 336–338,

341, 343, 371, 374, see also
conditional

guarded recursive specification 127,
128, 129, 132, 133, 142,
143, 145, 152

defining a process 151
finite 152, 154, 155

Index of Subjects 449

guardedness 126, 127, 129, 131, 133,
151, 158, 159, 168, 186,
219, 284, 285

in a timed theory 328
in TCPτ,rec(A, γ) 285, 294
with skip operators 193

guardedness anomaly 127

H
handshaking 198, 200, 213, 220, 242

expressiveness of 232
Handshaking Axiom 213, 214, 220,

238, 243, 278
head normal form 140
hiding 245, 268

signal, see signal hiding
history pointer 409, 410
HNF property 140, 141, 144, 168,

169, 183, 219

I
idempotency 68

of alternative composition 382,
383

of prefix iteration 102
identity 68

syntactical 12, 14, 52, 72
inaction 68, 107, 172

delayable 313, 319
undelayable 319

induction
natural, see natural induction
structural, see structural

induction
infinity 407
initial algebra 24, 26, 27, 82, 159,

161
of MPT(A) 80

interaction 2, 35, 38, 198, 242

interleaving 7, 195, 196, 201, 321,
408

interpretation 22, 23, 114
into ready sets 400
standard 77, 121, 123, 149, 151,

153
interrupt 375, 379, 381
isomorphism

of algebras 29
of transition systems 47, 81, 262

iteration 108, 179, 181
fair 281, 299
general 179
operator 179
prefix, see prefix iteration
proper 107, 159
time 312, 313
unary 108

K
Koomen’s Fair Abstraction Rules

289, 299

L
label 35
lady 38, 69
lamp 366
language 35

regular 44, 188
language equivalence 2, 38, 39, 40,

89, 157, 181, 393
language theory 35, 64
lattice 401
law 11

of CSP 234
left merge 202, 321, 390
lifting 26
Limit Rule 167, 169
location 200

450 Index of Subjects

lock-step 390
logic xii

Hennessy-Milner 7
propositional, see propositional

logic
loop

τ - 262, 281
while- 373

LOTOS
timed 334

M
machine 362
maximal progress 375
mCRL2 xii, 374
MEIJE 9
menu 397, 400, 403, 404
merge 195, 196, 201, see also

parallel composition
associativity of 205
communication see communi-

cation merge
commutativity of 205
free see free merge
generalized 210
identity element of 205
left see left merge

message passing 5, 7
metric space 8
Minimal Process Theory 68, 107
mobility 387, 389, 391
model 2, 23, 24, 52, 118

failures 401
of BSP(A) 83, 89, 91, 395, 396,

399
of (BSP + E)(A) 117
of (BSP + PR)(A) 160
of BSPfa(A) 401
of BSPre(A) 400, 401

of BSPrec(A) 125
of BSP∗τ (A) 282–284
of (BSP∗τ + CH)(A) 283, 284
of (BSP∗τ + FI)(A) 281, 283
of MPT(A) 72
of ready sets 400, 401
of T1 24, 30, 54
of T2 30, 62
of TCPdrt∗(A, γ) 323
of TCPτ,rec(A, γ) 290
one-point 89, 125, 161
projective limit, see projective

limit model
strictly alternating 391
T(A) 395, 397
term, see term model

model checking 3
mutual exclusion 327

N
natural induction 15, 20, 174
natural numbers 21, 335, 366
neutral element 68
non-determinism 5, 40, 375, 401

bounded 169
external 8
in CSP 272
initial silent 273
internal 8
silent 272

normal form 32
conjunctive 33
transition-system 262
unique 32

O
observation 1, 196

of action execution 195, 302
observer 195, 245, 246, 288

Index of Subjects 451

one-step reduction 31
operational rule see deduction rule
operational semantics 4, 48

of a theory with guarded com-
mands 338

of a theory with recursion 124
of BSP⊥(A) 347

operator 68
auxiliary 201, 242, 273, 323,

353, 376
binary 336
binding 370, 389
unary 336

P
π -calculus 389, 391
parallel composition 3, 195, 196,

198, 201, 202, 211, 212,
218, 242, 276, 321, 324,
334, 341, 353, 378, 382,
389, 390, 400, 409

generalized 210
identity element of 321
of CCS 280
of CSP 228, 234
termination of 205
with probabilities 386
without interaction 212

parameterization 368, 374
path format 53, 54, 63–65, 310
Peano arithmetic 12
performance 382
Petri net 4
PL/I 5
port 200, 387
possible future 406
possible world 407
pre-abstraction 294
predicate calculus 367

prefix
action, see action prefix
n-fold time 308
silent-step 246
τ - 246
time 307
time-iteration 313

prefix iteration 102, 108, 157, 178
premise 49, 51, 53

negative 352, 376
printer 379, 381
priority 375, 378–380, 390, 391, 400,

402, 406, 407
binding 69, 202
dynamic 376
global 376
local 376
of τ 381
static 375

priority anomaly 378, 381
priority operator 376
priority relation 376
prisoner 38, 69
probabilistic choice 382–384
probability 381, 391
probability distribution function 384
process 67, 68, 76, 78, 117, 148, 287,

402
bounded-depth 98
bounded-depth regular 262
chaos 282, 348
communicating 195, 200, 353
computable 150
countable 150
countable computable 150–152,

156, 287
definable 152, 156
definable over BSP(A) 153
definable over BSPτ (A) 287

452 Index of Subjects

definable over TCPτ (A, γ) 286,
287

definable over
TCPθ rec(A,≺, γ) 378

defined 153
delayable 321, 322
delayable empty 313
delayable untimed 322
deterministic 396
divergence free 286
empty 81, 107, 171
equality of -s 134, 161
expressible 153, 154
finitely branching 152, 286
finitely definable 152, 154, 157,

218
finitely definable over

BCP(A,∅) 225
finitely definable over

BCP(A, γ) 225, 227, 235
finitely definable over (BCP +

HA + RN)(A, γ) 232
finitely definable over BSP(A)

154
finitely definable over

TCP(A,∅) 231
finitely definable over

TCP(A, γ) 231, 232
finitely definable over TSP(A)

186, 187, 225, 227
inaccessible 132, 345, 346, 348
infinite 134
infinitely branching 187, 188
mobile 387
non-existent 345
non-regular 186, 188
regular 154, 155–157, 166, 181
sequential 68, 195
specified 153
timed 327

unbounded 105, 109
unbounded branching 187
unbounded-depth 102, 106
uncountable 302, 335
untimed 304, 322
with critical sections 328

Process Algebra 8
process algebra xi, 1–3, 4, 7, 8, 110,

336
hybrid 374

process calculus 7
process graph 35, 64
process theory 67, 69, 78, 148, 250,

369
BSP⊥(A) w. recursion 347
discrete-time 302
interleaving 408
linear-time 302
minimal 71
parametric-time 302
partial-order 407
relative-time 302
timed 304, 308, 317, 334
topological 168
total-order 407
untimed 304, 308, 317, 322,

326, 334
with recursion 112

program 372, 374
programming language 366, 373, 375
projection 92, 98, 100, 108, 161,

219, 226, 228, 271, 337
finite 134, 161
first 405
in TSP(A) 177
of a guarded rec. spec. 142, 143,

145
with silent steps 271

Projection Theorem 143, 169

Index of Subjects 453

projective limit model 161, 162,
164–169

for (BSPτ + PR)(A) 272, 275
projective sequence 161, 162–164,

166, 272, 275
regular 167, 168

proof 69
of a conservativity theorem 96
of a ground-completeness th. 78,

101
of an elimination theorem 94

proof rule 13
proof tree 14, 20
proper iteration 107, 159
proposition 367
propositional logic 33, 335
propositional signal 348
protocol entity 328
PSF 374

Q
quantification 367

choice, see choice quantification
queue 231, 232, 235, 243, 297, 299,

366
finite definability of 235
unbounded 232

quotient algebra 25, 26, 52

R
random walk 294, 366
reachability 36, 37

with τ -steps 247
reactive system 3, 35
Ready Axiom 399, 401
ready pair 397
ready set 398, 400
ready trace 402
ready-trace set 403

recursion 106, 109, 112, 148, 157,
168, 218, 229, 284, 327,
378

finite unguarded 187
guarded finite 181
in TSP(A) 172
in TSP(A) 182
unguarded 152, 187, 378

recursion principle 124, 129, 139,
144, 156, 159, 160, 162,
165–167, 183, 219, 275,
285, 286

AIP,AIP−,RDP,RDP−,RSP
see Symbol Index

relation between -s 140, 144
recursion variable 110, 111–116,

119, 148, 151
dual role of 121, 168
equivalence of -s 115, 129, 145
guarded 126, 145
parameterized 368, 369
two faces of 114

Recursive Definition Principle
(RDP) 124, see also Symbol

Index
recursive equation 8, 106, 110, 111

guarded 8
unguarded 8

recursive specification 110, 111–113,
117, 118

completely guarded 126
computable 149, 150
equivalence of -s 116, 127, 129,

130
guarded see guarded recursive

specification
linear 147, 327
semantics of 113
solution of see solution
unguarded 131, 132, 187

454 Index of Subjects

Recursive Specification Principle

(RSP) 128, see also Symbol
Index

reduction 32

one-step 31

reflexivity 13

regular expression 157, 181

algebra of -s 181

relay 205

renaming 189, 193, 194, 228, 232,
246, 291, 294, 407

into silent actions 268

renaming function 362

replication 227

representative 25

Restricted Approximation Induction

Principle (AIP−) 134, 137, see
also Symbol Index

Restricted Recursive Definition

Principle (RDP−) 133, see also
Symbol Index

rewrite rule 31

rewriting 30

modulo equations 33

rewriting system see also term
rewriting system

on transition systems 263

root 37, 305, 349, 355

root condition 252

root-signal emission 348

root-signal operator 353, 355

rule 51

deduction, see deduction rule

rewrite, see rewrite rule

source-dependent 59, 60

run 38, 39, 393

Russian roulette 112

S
scheduling 375
semantic domain 35, 393
semantic lattice 402, 404, 405
semantic relationships 398, 401, 402
semantics 21, 393

axiomatic 4
bisimulation 402
branching time 402
completed-trace 396
denotational 4
failures 397, 400–402
linear time 402
of parallel composition 5, 6
of parallel programs 5
operational, see operational

semantics
partial-order 407
process-algebraic 373
program 372, 374
readiness 397, 400, 401, 402
singleton-failures 401
split 409, 410
split-bisimulation 409
step 410
trace 393, 401

sequential composition 171, 172,
174, 178, 179, 182, 184,
319, 355

identity element of 171, 307,
319

in singleton-failures sem. 401
left-zero element of 319
n-fold 174
with probabilities 386

set
countable 149
finite 149
multi- 408

shift 323

Index of Subjects 455

shuffle 196
signal 348, 349, 353–358, 360, 362

root 355
signal function 362, 364
signal hiding 359, 362
signal inspection rule 349
signal observation 353–356, 361, 362

asynchronous 358
signature 11, 22, 52, TB

extended 114
silent action 242, 250, 380, 393

in trace semantics 397
silent step 7, 245, 246, 251, 256, 272,

274, 284, 288, 298
simulation 403

2-nested 407
completed 403
ready 403, 407

SKIP 107
skip operator 189, 191, 192
skipping 189, 191, 194, 222, 245
solution 113, 114–119, 132, 134, 294

default 125
in term models 120, 121, 123
in the projective limit model

165, 167
infinitely branching 189
of a guarded rec. spec. 142, 143
of a term 119
unique 125, 131, 152, 153
uniqueness of -s 133, 151

SOS 65
soundness 23, 58, 76

of BCP(A, γ) 217
of BSP(A) 86, 87, 393, 394
of (BSP + CS1,2)(A) 405
of (BSP + CT1,2)(A) 405
of (BSP + CQ)(A) 372
of (BSP + GC)(A) 342
of (BSP + PR)(A) 100, 164

of (BSP + PR + RS)(A) 406
of (BSP + PR + RT)(A) 405
of (BSP + PR + RT + FT)(A)

405
of (BSP + PR)rec(A) 165
of (BSP + RN)(A) 189
of (BSP + S)(A) 405
of (BSP + SO)(A) 363
of BSP∗(A) 104
of (BSP∗ + PR)(A) 106
of BSPdrt(A) 310
of BSPdrt∗(A) 314
of BSPfa(A) 399
of BSPre(A) 399
of BSPrec(A) 120
of BSPτ (A) 260
of (BSPτ �)(A) 275
of (BSPτ + ABS)(A) 270, 275
of (BSPτ + DH)(A) 271, 275
of (BSPτ + PR)(A) 272, 275
of BSPtr(A) 395
of BSPθ(A,≺) 376
of BSPprb(A) 386
of failures theory 399
of MPT(A) 77, 78
of (MPT + PR)(A) 102
of MPTrec(A) 123
of MTCP(A, γ) 218
of readiness theory 399
of T1 54, 55
of T2 62
of TCP(A, γ) 228, 234
of (TCP + GC)(A, γ) 345
of TCPdrt∗!(A, γ) 324
of TCPτ (A, γ) 278, 280
of the initial algebra 27
of trace theory 395
of TSP(A) 175, 176
of (TSP + IT)(A) 181
of (TSP + PR)(A) 177

456 Index of Subjects

of (TSP + RN)(A) 193
of TSP∗(A) 179
of TSPrec(A) 182

source 51, 53
source-dependency 59, 60
specification language 374
spring 343, 345
stack 146–148, 152, 155–157, 184,

188, 194, 201, 232, 351,
360, 364, 365

finite definability of 186
transition system of 147
with limited capacity 148

standard concurrency 207, 228, 234,
276, 279

state 2, 35, 36, 149, 336, 341, 348,
362

consistent 346
deadlock 39, 43
divergent 283
double 263
final 35
inaccessible 345
initial 37, 42, 251, 305, 348
non-terminating 39, 40
observable 336
reachable 37, 305
set of terminating -s 36, 51
terminating 35, 36, 40

state explosion 4
state operator 362, 365, 366, 374,

390
statistician 288–291
step 6

a- 36
inductive 15, 16
initial 251
internal 256
silent, see silent step

stratification 378

strong normalization 32, 33, 102, 174
structural induction 16, 19, 21, 102,

174, 178, 193
structural operational semantics 47,

49, 61, 65
substitution 12, 13, 52, 116, 142, 370
summand 71, 78, 107

1 206, 220
optional 140

symbol 11, 22
symmetry 13
synchronization 195, 197, 202, 242,

353, 358, 362, 390
synchronization tree 6, 64
system 1

deduction, see deduction system
discrete event 1
distributed 195
parallel 195
reactive, see reactive system
term rewriting, see term

rewriting system
transition, see transition system

T
target 51, 53
tautology 370
term 12, 68

basic 19
basic (BSP⊥ + RSE)(A)- 350
basic BSPdrt(A)- 308
basic BSPdrt∗(A)- 313
basic �1- 15, 16, 19, 55
(BSP + GC)(A)- 338
closed BSP(A)- 317
closed BSPprb(A)- 384
closed, see closed term
closed �1- 16, 48, 51, 52
completely guarded 126

Index of Subjects 457

delayable 322
dynamic 384
ground 12, 34
guarded 127, 137, 140, 146
guarded BCPrec(A,∅) 220
guarded BCPrec(A, γ) 220
natural-number 367
open 12
probabilistic 384
process 69, 369
propositional 336
T - 69

term algebra 25, 52, 72, 250, see also
Symbol Index

modulo language equiv. 89, 91,
181

of BSP(A) 405
of (BSP + GC)(A) 342
of (BSP + PR)(A) 405
of BSP∗τ (A) 283
of BSPprb(A) 386
of closed (TSP + IT)(A)-terms

180
of closed (TSP + PR)(A)-terms

177
of closed TSP∗(A)-terms 179

term deduction system,
see deduction system

term model 159, 161, see also
Symbol Index

of BCP(A, γ) 217
of (BCP⊥ + RSE)(A, γ) 355
of BCPrec(A, γ) 219
of BSP(A) 83, 86, 96
of (BSP + CQ)(A) 372
of (BSP + GC)(A) 338, 342
of (BSP + PR)(A) 96, 99, 100
of (BSP + RN)(A) 189
of (BSP + SO)(A) 363
of BSP⊥(A) 345

of (BSP⊥ + GC)(A) 347
of (BSP⊥ + RSE)(A) 351
of BSP∗(A) 103
of (BSP∗ + PR)(A) 106
of BSPdrt(A) 310
of BSPrec(A) 119, 120
of BSPτ (A) 258, 260
of (BSPτ �)(A) 273, 275
of (BSPτ + ABS)(A) 269
of (BSPτ + DH)(A) 275
of (BSPτ + PR)(A) 275
of BSPθ(A,≺) 376
of BSPprb(A) 386
of MPT(A) 72, 76, 80
of (MPT + PR)(A) 102
of MPTrec(A) 123
of MTCP(A, γ) 218
of TCP(A, γ) 228, 234
of TCPdrt∗(A, γ) 323
of TCPdrt∗!(A, γ) 323, 324
of TCPτ (A, γ) 278, 284
of TCPτ,rec(A, γ) 285
of TCPθgrec(A,≺, γ) 378
of TSP(A) 174, 175
of (TSP + RN)(A) 193
of (TSP⊥ + RSE)(A) 352
of TSPrec(A) 182
P(BSP(A)) mod. failures eq.

399
P(BSP(A))mod. ready eq. 398,

399
P(BSP(A)) mod. trace eq. 394
standard 148, 150, 168, 201,

290
standard - of BSP∗τ (A) 283
standard - of TCPτ,rec(A, γ)

293, 294
standard - of TSP(A) 172
with parameterized actions 368

458 Index of Subjects

with parameterized recursion
369

term rewriting 30
modulo equations 33

term rewriting system 31, 32–34
for BCP(A, γ) 206, 215
for (BSP + PR)(A) 95, 97, 102
for BSPτ (A) 258
for TSP(A) 173, 174
for (TSP + PR)(A) 178

termination 36, 48, 51, 149, 171,
202, 339

any-time-slice 312
current-time-slice 307
in MPT(A) 74, 81
of parallel composition 199
successful 36, 39, 40
unsuccessful 39, 40
when skipping actions 192

termination constant 81
theorem proving 4
theory

acronyms, see Symbol Index
concurrency, see concurrency

theory
equational, see equational

theory
process, see process theory

tick 302, 304
tiger 38, 69
time 161, 301, 407

absolute 302, 310
branching 301, 401
dense 302, 303
discrete 302, 303, 307
discrete, relative 307
linear 301, 401
parametric 302
qualitative 301
quantitative 301

relative 302, 307, 333
relativistic 302
two-phase - description 303

time determinism 303, 307, 313
strong 303
weak 303, 307, 313

time domain 301
uncountable, dense 302

time factorization 313
time passage 303, 307, 319, 322

initial 329
synchronized 321

time slice 302
current 307

time-stamping 303
time stop

current-time-slice 307
timeliness 304
timeout 304, 319
timing inconsistency 310
total-order assumption 408
trace 394

abstract colored 255
accepting 394
colored 47
deadlock 396

Trace Axiom 395, 397
trace set 394, 396

of a closed BSP(A)-term 394
of parallel composition 397
of sequential composition 397
prefix-closed 394

trace theory 7, 395
with recursion 396

traffic light 355, 361
transducer 6
transfer condition 40, 42, 248, 306,

341, 346, 403
transition 2, 35, 36, 48, 51, 149, 339

τ 246

Index of Subjects 459

manifestly inert 263
probabilistic 384
redundant τ 246
silent 246

transition relation 51
transition system 3, 35, 37, 38–48,

64, 85, 148, 149
bisimilar 47
branching bisimilar 249, 250,

254
computable 149
countable 150
countable computable 150
deadlock free 44, 47, 90
divergence free 286
finitely branching 44, 47, 152,

286
for a recursion variable 114,

120, 123, 189
induced by s 37
isomorphic 47, 262, 264
of a bag 223, 226
of a closed BCP(A, γ)-term

217
of a closed BSP(A)-term 85, 91
of a closed

(BSP+GC)(A)-term 338,
344

of a closed
(BSP + PR)(A)-term 98

of a closed BSP∗(A)-term 103,
106

of a closed BSPτ (A)-term
267

of a closed BSPprb(A)-term
386

of a closed MPT(A)-term 74,
80, 156

of a closed TSP(A)-term 177

of a closed (TSP + IT)(A)-term
181

of a communication protocol
241

of a counter 189
of a queue 234
of a stack 147
of the Alternating-Bit Protocol

238, 240
regular 44, 47, 103, 154, 156
rooted branching bisimilar 252,

254
statistician 289
timed 304, 305, 306
timed - of Fischer’s protocol 333
timed - of a BSPdrt(A)-term 309
unbounded branching 189
with divergence 287
with silent steps 246

transition-system normal form 262
transition-system space 35,

36, 40, 44, 47–52, 64, 166,
247, 338, 394, 397, 398,
402, 404

for BSP(A) 84
for (BSP + PR)(A) 99
for MPT(A) 73
for TSP(A) 174
induced by a deduction syst. 51,

52
of the projective limit model

166
timed 304

transitivity 14

U
unbounded branching 187, 189
unboundedness 105
undecidability 33

460 Index of Subjects

underflow 360
underlining 333
unit element 68
universality of TCPτ (A, γ) 287
universe 21

V
validity 22, 23, 114

of recursion principles 124
valuation 27, 337–342, 367, 368

initial 340, 342
variable 12

bound 335, 369
constrained 115, 121, 151
free 369

global 5
guarded 126, 159
guarded - in a

TCPτ,rec(A, γ)-term 285
natural-number 367, 369
process 338
propositional 335, 337–342, 359
recursion, see recursion variable
shared 328
source-dependent 59

verification 3

W
word 36

empty 37
www.processalgebra.org xiii

	Half-title
	Series-title
	Title
	Copyright
	Contents
	Forewords
	Tony Hoare
	Robin Milner
	Jan Bergstra

	Preface
	What is this book about?
	How to use this book?
	Acknowledgements

	1 Process algebra
	1.1 Definition
	1.2 Calculation
	1.3 History
	Bekic
	CCS
	CSP
	Some other process theories
	ACP
	Further developments
	This book
	Bibliographical remark

	2 Preliminaries
	2.1 Introduction
	2.2 Equational theories
	2.3 Algebras
	2.4 Term rewriting systems
	2.5 Bibliographical remarks

	3 Transition systems
	3.1 Transition-system spaces
	3.2 Structural operational semantics
	3.3 Bibliographical remarks

	4 Basic process theory
	4.1 Introduction
	4.2 The process theory MPT
	4.3 The term model
	4.4 The empty process
	4.5 Projection
	4.6 Prefix iteration
	4.7 Bibliographical remarks

	5 Recursion
	5.1 Introduction
	5.2 Recursive specifications
	5.3 Solutions of recursive specifications
	5.4 The term model
	5.5 Recursion principles
	5.6 Describing a stack
	5.7 Expressiveness and definability
	5.8 Regular processes
	5.9 Recursion and BSP*(A)

	5.10 The projective limit model
	5.11 Bibliographical remarks

	6 Sequential processes
	6.1 Sequential composition
	6.2 The process theory TSP
	6.3 The term model
	6.4 Projection in TSP(A)
	6.5 Iteration
	6.5.1 Prefix iteration
	6.5.2 General iteration

	6.6 Recursion
	6.6.1 The theory
	6.6.2 The stack revisited
	6.6.3 Some expressiveness aspects

	6.7 Renaming, encapsulation, and skip operators
	6.8 Bibliographical remarks

	7 Parallel and communicating processes
	7.1 Interleaving
	7.2 An operational view
	7.3 Standard communication
	7.4 The process theory BCP
	7.5 The term model
	7.6 Recursion, buffers, and bags
	7.7 The process theory TCP and further extensions
	7.8 Specifying the Alternating-Bit Protocol
	7.9 Bibliographical remarks

	8 Abstraction
	8.1 Introduction
	8.2 Transition systems with silent steps
	8.3 BSP with silent steps
	8.4 The term model
	8.5 Some extensions of BSPτ(A)
	8.5.1 Abstraction
	8.5.2 Encapsulation
	8.5.3 Projection
	8.5.4 Non-determinism in CSP

	8.6 TCP with silent steps
	8.7 Iteration and divergence
	8.8 Recursion and fair abstraction
	8.9 Verification of the ABP and queues revisited
	8.10 Bibliographical remarks

	9 Timing
	9.1 Introduction
	9.2 Timed transition systems
	9.3 Discrete time, relative time
	9.4 The term model
	9.5 Time iteration and delayable actions
	9.6 The relation between BSP(A) and BSPdrt*(A)
	9.7 The process theory TCPdrt*(A, γ)
	9.8 Fischer's protocol
	9.9 Bibliographical remarks

	10 Data and states
	10.1 Introduction
	10.2 Guarded commands
	10.3 The inaccessible process
	10.4 Propositional signals
	10.5 State operators
	10.6 Choice quantification
	10.7 Bibliographical remarks

	11 Features
	11.1 Priorities
	11.2 Probabilities
	11.3 Mobility
	11.4 Parallel composition revisited
	11.5 Bibliographical remarks

	12 Semantics
	12.1 Bisimilarity and trace semantics
	12.2 Failures and readiness semantics
	12.3 The linear time – branching time lattice
	12.4 Partial-order semantics
	12.5 Bibliographical remarks

	Bibliography
	Index of Symbols and Notations
	Index of Authors
	Index of Subjects

