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Foreword

Stephen J. Mellor

THE  CHALLENGES  OF  DEVELOPING  HIGH-PERFORMANCE ,  HIGH-RELIABILITY , and high-quality
software systems are too much for ad hoc and informal engineering techniques that might
have worked in the past on less demanding systems. The complexity of our systems has risen
to the point where we can no longer cope without developing and maintaining a single
overarching architecture that ties the system into a coherent whole and avoids piecemeal
implementation, which causes testing and integration failures.

But building an architecture is a complex task. Examples are hard to come by, due to either
proprietary concerns or the opposite, a need to “sell” a particular architectural style into a wide
range of environments, some of which are inappropriate. And architectures are big, which
makes them difficult to capture and describe without overwhelming the reader.

Yet beautiful architectures exhibit a few universal principles, some of which I outline here:

One fact in one place
Duplication leads to error, so it should be avoided. Each fact must be a single,
nondecomposable unit, and each fact must be independent of all other facts. When change
occurs, as it inevitably does, only one place need be modified. This principle is well known
to database designers, and it has been formalized under the name of normalization. The
principle also applies less formally to behavior, under the name factoring, such that
common functionality is factored out into separate modules.
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Beautiful architectures find ways to localize information and behavior. At runtime, this
manifests as layering, the notion that a system may be factored into layers, each
representing a layer of abstraction or domain.

Automatic propagation
One fact in one place sounds good, but for efficiency’s sake, some data or behavior is often
duplicated. To maintain consistency and correctness, propagation of these facts must be
carried out automatically at construction time.

Beautiful architectures are supported by construction tools that effect meta-
programming, propagating one fact in one place into many places where they may be used
efficiently.

Architecture includes construction
An architecture must include not only the runtime system, but also how it is constructed.
A focus solely on the runtime code is a recipe for deterioration of the architecture over
time.

Beautiful architectures are reflective. Not only are they beautiful at runtime, but they are
also beautiful at construction time, using the same data, functions, and techniques to build
the system as those that are used at runtime.

Minimize mechanisms
The best way to implement a given function varies case by case, but a beautiful architecture
will not strive for “the best.” There are, for example, many ways of storing data and
searching it, but if the system can meet its performance requirements using one
mechanism, there is less code to write, verify, maintain, and occupy memory.

Beautiful architectures employ a minimal set of mechanisms that satisfy the requirements
of the whole. Finding “the best” in each case leads to proliferation of error-prone
mechanisms, whereas adding mechanisms parsimoniously leads to smaller, faster, and
more robust systems.

Construct engines
If you wish to build brittle systems, follow Ivar Jacobson’s advice and base your
architecture on use cases and one function at a time (i.e., use “controller” objects).
Extensible systems, on the other hand, rely on the construction of virtual machines—
engines that are “programmed” by data provided by higher layers, and that implement
multiple application functions at a time.

This principle appears in many guises. “Layering” of virtual machines goes back to Edsger
Dijkstra. “Data-driven systems” provide engines that rely on coding invariants in the
system, letting the data define the specific functionality in a particular case. These engines
are highly reusable—and beautiful.
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O(G), the order of growth
Back in the day, we thought about the “order” of algorithms, analyzing the performance
of sorting, say, in terms of the time it takes to sort a set of a certain number of elements.
Whole books have been written on the subject.

The same applies for architecture. Polling, for example, works well for a small number of
elements, but is a response-time disaster as the number of items increases. Organizing
everything around interrupts or events works well until they all go off at once. Beautiful
architectures consider the direction of likely growth and account for it.

Resist entropy
Beautiful architectures establish a path of least resistance for maintenance that preserves
the architecture over time and so slows the effects of the Law of System Entropy, which
states that systems become more disorganized over time. Maintainers must internalize the
architecture so that changes will be consistent with it and not increase system entropy.

One approach is the Agile concept of the Metaphor, which is a simple way to represent
what the architecture is “like.” Another is extensive documentation and threats of
unemployment, though that seldom works for long. Usually, however, it generally means
tools, especially for generating the system. A beautiful architecture must remain beautiful.

These principles are highly interrelated. One fact in one place can work only if you have
automatic propagation, which in turn is effective when the architecture takes construction into
account. Similarly, constructing engines and minimizing mechanisms support one fact in one
place. Resisting entropy is a requirement for maintaining an architecture over time, and it relies
on the architecture including construction and support for propagation. Moreover, a failure to
consider the way in which a system will likely grow will cause the architecture to become
unstable, and eventually fail under extreme but predictable circumstances. And combining
minimal mechanisms with the notion of constructing engines means that beautiful
architectures usually feature a limited set of patterns that enable construction of arbitrary
system extensions, a kind of “expansion by pattern.”

In short, beautiful architectures do more with less.

As you read this book, ably assembled and introduced by Diomidis Spinellis and Georgios
Gousios, you might look for these principles and consider their implications, using the specific
examples presented in each chapter. You might also look for violations of these principles and
ask whether the architecture is thus ugly or whether some higher principle is involved.

During the development of this Foreword, your authors asked me if I might say a few words
about how someone becomes a good architect. I laughed. If we only knew that.... But then I
recalled from my own experience that there is a powerful, if nonanalytic, way of becoming a
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beautiful architect. That way* is never to believe that the last system you built is the only way
to build systems, and to seek out many examples of different ways of solving the same type of
problem. The example beautiful architectures presented in this book are a step forward in
helping you meet that goal.

* Or exercise more and eat less.
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Preface

THE  IDEA  FOR  THE  BOOK  YOU’RE  READING  WAS  CONCEIVED  IN  2007 as a successor to the award-
winning, best-selling Beautiful Code: a collection of essays about innovative and sometimes
surprising solutions to programming problems. In Beautiful Architecture, the scope and
purpose is different, but similarly focused: to get leading software designers and architects to
describe a software architecture of their choice, peeling back the layers of their creations to
show how they developed software that is functional, reliable, usable, efficient, maintainable,
portable, and, yes, elegant.

To put together this book, we contacted leading architects of well-known or less-well-known
but highly innovative software projects. Many of them replied promptly and came back to us
with thought-provoking ideas. Some of the contributors even caught us by surprise by
proposing not to write about a specific system, but instead investigating the depth and the
extent of architectural aspects in software engineering.

All chapter authors were glad to hear that the work they put in their chapters is also helping
a good cause, as the royalties of this book are donated to Medécins Sans Frontières (Doctors
Without Borders), an international humanitarian aid organization that provides emergency
medical assistance to suffering people.

xiii



How This Book Is Organized
We have organized the contents of this book around five thematic areas: overviews, enterprise
applications, systems, end-user applications, and programming languages. There is an obvious,
but not deliberate, lack of chapters on desktop software architectures. Having approached more
than 50 software architects, this result was another surprise for us. Are there really no shining
examples of beautiful desktop software architectures? Or are talented architects shying away
from an area often driven by a quest to continuously pile ever more features on an application?
We are really looking forward to hearing from you on these issues.

Part I: On Architecture

Part I of this book examines the breadth and scope of software architecture and its implications
for software development and evolution.

Chapter 1, What Is Architecture?, by John Klein and David Weiss, defines software architecture
by examining the subject through the perspectives of quality concerns and architectural
structures.

Chapter 2, A Tale of Two Systems: A Modern-Day Software Fable, by Pete Goodliffe, provides
an allegory on how software architectures can affect system evolution and developer
engagement with a project.

Part II: Enterprise Application Architecture

Enterprise systems, the IT backbone of many organizations, are large and often tailor-made
conglomerates of software usually built from diverse components. They serve large,
transactional workloads and must scale along with the enterprise they support, readily
adapting to changing business realities. Scalability, correctness, stability, and extensibility are
the most important concerns when architecting such systems. Part II of this book includes some
exemplar cases of enterprise software architectures.

Chapter 3, Architecting for Scale, by Jim Waldo, demonstrates the architectural prowess
required to build servers for massive multiplayer online games.

Chapter 4, Making Memories, by Michael Nygard, goes through the architecture of a
multistage, multisite data processing system and presents the compromises that must be made
to make it work.

Chapter 5, Resource-Oriented Architectures: Being “In the Web”, by Brian Sletten, discusses
the power of resource mapping when constructing data-driven applications and provides an
elegant example of a purely resource-oriented architecture.
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Chapter 6, Data Grows Up: The Architecture of the Facebook Platform, by Dave Fetterman,
advocates data-centric systems, explaining how a good architecture can create and support an
application ecosystem.

Part III: Systems Architecture

Systems software is arguably the most demanding type of software to design, partly because
efficient use of hardware is a black art mastered by a selected few, and partly because many
consider systems software as infrastructure that is “simply there.” Seldom are great systems
architectures designed on a blank sheet; most systems that we use today are based on ideas
first conceived in the 1960s. The chapters in Part III walk you through four innovative systems
software architectures, discussing the complexities behind the architectural decisions that
made them beautiful.

Chapter 7, Xen and the Beauty of Virtualization, by Derek Murray and Keir Fraser, gives an
example of how a well-thought-out architecture can change the way operating systems evolve.

Chapter 8, Guardian: A Fault-Tolerant Operating System Environment, by Greg Lehey,
presents a retrospective on the architectural choices and building blocks (both software and
hardware) that made Tandem the platform of choice in high-availability environments for
nearly two decades.

Chapter 9, JPC: An x86 PC Emulator in Pure Java, by Rhys Newman and Christopher Dennis,
describes how carefully designed software and a good understanding of domain requirements
can overcome the perceived deficiencies of a programming system.

Chapter 10, The Strength of Metacircular Virtual Machines: Jikes RVM, by Ian Rogers and Dave
Grove, walks us through the architectural choices required for creating a self-optimizable, self-
hosting runtime for a high-level language.

Part IV: End-User Application Architectures

End-user applications are those that we interact with in our everyday computing lives, and the
software that our CPUs burn the most cycles to execute. This kind of software normally does
not need to carefully manage resources or serve large transaction volumes. However, it does
need to be usable, secure, customizable, and extensible. These properties can lead to popularity
and widespread use and, in the case of free and open source software, to an army of volunteers
willing to improve it. In Part IV, the authors dissect the architectures and the community
processes required to evolve two very popular desktop software packages.

Chapter 11, GNU Emacs: Creeping Featurism Is a Strength, by Jim Blandy, explains how a set
of very simple components and an extension language can turn the humble text editor into
an operating system* the Swiss army knife of a programmer’s toolchest.

* As some die-hard users say, “Emacs is my operating system; Linux just provides the device drivers.”
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Chapter 12, When the Bazaar Sets Out to Build Cathedrals, by Till Adam and Mirko Boehm,
demonstrates how community processes such as sprints and peer-reviews can help software
architectures evolve from rough sketches into beautiful systems.

Part V: Languages and Architecture

As many people have pointed out in their works, the programming language we use affects
the way we solve a problem. But can a programming language also affect a system’s
architecture and, if so, how? In the architecture of buildings, new materials and the adoption
of CAD systems allowed the expression of more sophisticated and sometimes strikingly
beautiful designs; does the same also apply to computer programs? Part V, which contains the
last two chapters, investigates the relationship between the tools we use and the designs we
produce.

Chapter 13, Software Architecture: Object-Oriented Versus Functional, by Bertrand Meyer,
compares the affordances of object-oriented and functional architectural styles.

Chapter 14, Rereading the Classics, by Panagiotis Louridas, surveys the architectural choices
behind the building blocks of modern and classical object-oriented software languages.

Finally, in the thought-provoking Afterword, William J. Mitchell, an MIT Professor of
Architecture and Media Arts and Sciences, ties the concept of beauty between the building
architectures we encounter in the real world and the software architectures residing on silicon.

Principles, Properties, and Structures
Late in this book’s review process, one of the reviewers asked us to provide our personal
opinion, in the form of commentary, on what a reader could learn from each chapter. The idea
was intriguing, but we did not like the fact that we would have to second-guess the chapter
authors. Asking the authors themselves to provide a meta-analysis of their writings would lead
to a Babel tower of definitions, terms, and architectural constructs guaranteed to confuse
readers. What was needed was a common vocabulary of architectural terms; thankfully, we
realized we already had that in our hands.

In the Foreword, Stephen Mellor discusses seven principles upon which all beautiful
architectures are based. In Chapter 1, John Klein and David Weiss present four architecture
building blocks and six properties that beautiful architectures exhibit. A careful reader will
notice that Mellor’s principles and Klein’s and Weiss’s properties are not independent of each
other. In fact, they mostly coincide; this happens because great minds think alike. All three,
being very experienced architects, have seen many times in action the importance of the
concepts they describe.
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We merged Mellor’s architectural principles with the definitions of Klein and Weiss into two
lists: one containing principles and properties (Table P-1), and one containing structures
(Table P-2). We then asked the chapter authors to mark the terms they thought applied to their
chapters, and produced a corresponding legend for each chapter. In these tables, you can see
the definition of each principle, property, or architectural construct that appears in the chapter
legend. We hope the legends will guide your reading of this book by giving you a clean
overview of the contents of each chapter, but we urge you to delve into a chapter’s text rather
than simply stay with the legend.

TABLE P-1. Architectural principles and properties

Principle or property The ability of an architecture to...

Versatility ...offer “good enough” mechanisms to address a variety of problems with an economy of

expression.

Conceptual integrity ...offer a single, optimal, nonredundant way for expressing the solution of a set of similar

problems.

Independently
changeable

...keep its elements isolated so as to minimize the number of changes required to

accommodate changes.

Automatic propagation ...maintain consistency and correctness, by propagating changes in data or behavior across

modules.

Buildability ...guide the software’s consistent and correct construction.

Growth accommodation ...cater for likely growth.

Entropy resistance ...maintain order by accommodating, constraining, and isolating the effects of changes.

TABLE P-2. Architectural structures

Structure A structure that...

Module ...hides design or implementation decisions behind a stable interface.

Dependency ...organizes components along the way where one uses functionality of another.

Process ...encapsulates and isolates the runtime state of a module.

Data access ...compartmentalizes data, setting access rights to it.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width

Used for program listings, as well as within paragraphs to refer to program elements such
as variable or function names, databases, data types, environment variables, statements,
and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by
context.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Beautiful Architecture, edited by Diomidis Spinellis and
Georgios Gousios. Copyright 2009 O’Reilly Media, Inc., 978-0-596-51798-4.”

If you feel your use of code examples falls outside fair use or the permission given here, feel
free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at http://safari
.oreilly.com
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O’Reilly Media, Inc.
1005 Gravenstein Highway North
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707-829-0515 (international or local)
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596517984

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
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C H A P T E R  O N E

What Is Architecture?

John Klein
David Weiss

Introduction
BUILDERS ,  MUSICIANS ,  WRITERS ,  COMPUTER  DESIGNERS ,  NETWORK  DESIGNERS , and software
developers all use the term architecture, as do others (ever hear of a food architect?), yet each
produces different results. A building is very different from a symphony, but both have
architectures. Further, all architects talk about beauty in their work and its results. A building
architect might say that a building should provide an environment suitable for working or
living, and that it should be beautiful to behold; a musician that the music should be playable,
with a discernible theme, and that it should be beautiful to the ear; a software architect that
the system should be friendly and responsive to the user, maintainable, free of critical errors,
easy to install, reliable, that it should communicate in standard ways with other systems, and
that it, too, should be beautiful.

This book provides you with detailed examples of beautiful architectures drawn from the fields
of computerized systems, a relatively young discipline. Because we are young, we have fewer
examples to emulate than fields such as building, music, or writing, and therefore we need
them even more. This book intends to help fill that need.

3



Before you proceed to the examples, we would like you to consider what an architecture is
and what the attributes of a beautiful architecture might be. As you will see from the different
definitions of architecture in this chapter, each discipline has its own definition, so we will first
explore what is common among architectures in different disciplines and what problems one
tries to solve with an architecture. Particularly, an architecture can help assure that the system
satisfies the concerns of its stakeholders, and it can help deal with the complexity of conceiving,
planning, building, and maintaining the system.

We then proceed to a definition of architecture and show how we can apply that definition to
software architecture, since software is central to many of the later examples. Key to the
definition is that an architecture consists of a set of structures designed to let the architects,
builders, and other stakeholders see how their concerns are satisfied.

We end this chapter with a discussion of the attributes of beautiful architectures and cite a few
examples. Central to beauty is conceptual integrity—that is, a set of abstractions and the rules
for using them throughout the system as simply as possible.

In our discussion we will use “architecture” as a noun to denote a set of artifacts, including
documentation such as blueprints and building specifications that describe the object to be
built, wherein the object is viewed as a set of structures. The term is also used by some as a
verb to describe the process of creating the artifacts, including the resulting work. As Jim Waldo
and others have pointed out, however, there is no process that you can learn that guarantees
you will produce a good system architecture, let alone a beautiful one (Waldo 2006), so we
will focus more on artifacts than process.

Architecture: “The art or science of building; esp. the art or

practice of designing and building edifices for human use, taking

both aesthetic and practical factors into account.”

—The Shorter Oxford English Dictionary, Fifth Edition, 2002

In all disciplines, architecture provides a means for solving a common problem: assuring that
a building, or bridge, or composition, or book, or computer, or network, or system has certain
properties and behaviors when it has been built. Put another way, the architecture is both a
plan for the system so that the result can have the desired properties and a description of the
built system. Wikipedia says: “According to the earliest surviving work on the subject,
Vitruvius’ ‘On Architecture,’ good building should have Beauty (Venustas), Firmness
(Firmitas), and Utility (Utilitas); architecture can be said to be a balance and coordination
among these three elements, with no one overpowering the others.”

We speak of the “architecture” of a symphony, and call

architecture, in its turn, “frozen music.”

—Deryck Cooke, The Language of Music
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A good system architecture exhibits conceptual integrity; that is, it comes equipped with a set
of design rules that aid in reducing complexity and that can be used as guidance in detailed
design and in system verification. Design rules may incorporate certain abstractions that are
always used in the same way, such as virtual devices. The rules may be represented as a pattern,
such as pipes and filters. In the best case there are verifiable rules, such as “any virtual device
of the same type may replace any other virtual device of the same type in the event of device
failure,” or “all processes contending for the same resource must have the same scheduling
priority.”

A contemporary architect might say that the object or system under construction must have
the following characteristics.

• It has the functionality required by the customer.

• It is safely buildable on the required schedule.

• It performs adequately.

• It is reliable.

• It is usable and safe to use.

• It is secure.

• It is affordable.

• It conforms to legal standards.

• It will outlast its predecessors and its competitors.

The architecture of a computer system we define as the minimal
set of properties that determine what programs will run and what

results they will produce.

—Gerrit Blaauw & Frederick Brooks, Computer Architecture

We’ve never seen a complex system that perfectly satisfies all of the preceding characteristics.
Architecture is a game of trade-offs—a decision that improves one of these characteristics often
diminishes another. The architect must determine what is sufficient to satisfy, by discovering
the important concerns for a particular system and the conditions for satisfying them
sufficiently.

Common among the notions of architecture is the idea of structures, each defined by
components of various sorts and their relations: how they fit together, invoke each other,
communicate, synchronize, and otherwise interact. Components could be support beams or
internal rooms in a building, individual instruments or melodies in a symphony, book chapters
or characters in a story, CPUs and memory chips in a computer, layers in a communications
stack or processors connected to a network, cooperating sequential processes, objects,
collections of compile-time macros, or build-time scripts. Each discipline has its own sets of
components and its own relationships among them.
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In wider use, the term “architecture” always means “unchanging

deep structure.”

—Stewart Brand, How Buildings Learn

In the face of increasing complexity of systems and their interactions, both internally and with
each other, an architecture comprising a set of structures provides the primary means for
dealing with complexity in order to ensure that the resulting system has the required
properties. Structures provide ways to understand the system as sets of interacting components.

Each structure is intended to help the architect understand how to satisfy particular concerns,
such as changeability or performance. The job of demonstrating that particular concerns are
satisfied may fall to others, but the architect must be able to demonstrate that all concerns have
been met.

Network architecture: the communication equipment, protocols,

and transmission links that constitute a network, and the

methods by which they are arranged.

—http://www.wtcs.org/snmp4tpc/jton.htm

The Role of Architect

When buildings are designed, constructed, or renovated, we designate key designers as
“architects” and give them a broad range of responsibilities. An architect prepares initial
sketches of the building, showing both external appearance and internal layout, and discusses
these sketches with clients until all concerned have agreed that what is shown is what they
want. The sketches are abstractions: they focus attention on the pertinent details of a particular
aspect of the building, omitting other concerns.

After the clients and architects agree on these abstractions, the architects prepare, or supervise
the preparation of, much more detailed drawings, as well as associated textual specifications.
These drawings and specifications describe many “nitty-gritty” details of a building, such as
plumbing, siding materials, window glazing, and electrical wiring.

On rare occasions, an architect simply hands the detailed plans to a builder who completes the
project in accordance with the plans. For more important projects, the architect remains
involved, regularly inspects the work, and may propose changes or accept suggestions for
change from both the builder and customer. When the architect supervises the project, it is
not considered complete until he certifies that it is in substantial compliance with the plans
and specifications.

We employ an architect to assure that the design (1) meets the needs of the client, including
the characteristics previously noted; (2) has conceptual integrity by using the same design rules
throughout; and (3) meets legal and safety requirements. An important part of the architect’s
role is to ensure that the design concepts are consistently realized during the implementation.
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Sometimes the architect also acts as a mediator between builder and client. There is often some
disagreement about which decisions are in the realm of the architect and which are left to
others, but it is always clear that the architect makes the major decisions, including all that can
affect the usability, safety, and maintainability of the structure.

MUSIC COMPOSITION AND SOFTWARE ARCHITECTURE
Whereas building architecture is often used as an analogy for software architecture, music
composition may be a better analogy. A building architect creates a static description (blueprints
and other drawings) of a relatively static structure (the architecture must account for movement of
people and services within the building as well as the load-bearing structure). In music composition
and software design, the composer (software architect) creates a static description of a piece of
music (architecture description and code) that is later performed (executed) many times. In both
music and software the design can account for many components interacting to produce the desired
result, and the result varies depending on the performers, the environment in which it is performed,
and the interpretation imposed by the performers.

The Role of the Software Architect

Software development projects need people who play the same role for software construction
that traditional architects play when buildings are constructed or renovated. For software
systems, however, it has never been clear exactly which decisions are the purview of the
architect and which can be left to the implementers. The definition of what an architect does
in a software project is more difficult than the analogous definition for building architects
because of three factors: lack of tradition, the intangible nature of the product, and the
complexity of the system. (See Grinter [1999] for a portrayal of how a software architect carries
out her role within a large software development organization.)

In particular:

• Building architects can look back at thousands of years of history to see what architects
have done in the past; they can visit and study buildings that have been standing for
hundreds, and sometimes a thousand years or more, and that are still in use. In software
we have only a few decades of history and our designs are often not public. Furthermore,
building architects have and use standards for describing the drawings and specifications
that the architects produce, allowing present architects to take advantage of the recorded
history of architecture.

• Buildings are physical products; there is a clear distinction between the plans produced by
the architects and the building produced by the workers.
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ARCHITECTURAL REUSE
The Hagia Sophia (top), built in Istanbul in the sixth century, pioneered the use of structures called
pendentives to support its enormous dome, and is an example of beauty in Byzantine architecture.
Christopher Wren, 1,100 years later, used the same design for the dome of St. Paul’s cathedral
(bottom), a London landmark. Both still stand and are used today.

On major software projects, there are often many architects. Some architects are quite
specialized in disciplines, such as databases and networks, and usually work as part of a team,
but for now we will write as if there were only one.

What Constitutes a Software Architecture?

It is a mistake to think of “an architecture” as if it were a simple entity that could be described
by a single document or drawing. Architects must make many design decisions. To be useful,
these decisions must be documented so that they can be reviewed, discussed, modified, and
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approved, and then serve to constrain subsequent decision making and construction. For
software systems, these design decisions are behavioral and structural.

External behavioral descriptions show how the product will interface with its users, other
systems, and external devices, and should take the form of requirements. Structural
descriptions show how the product is divided into parts and the relations between those parts.
Internal behavioral descriptions are needed to describe the interfaces between components.
Structural descriptions often show several distinct views of the same part because it is
impossible to put all the information in one drawing or document in a meaningful way. A
component in one view may be a part of a component in another.

Software architectures are often presented as layered hierarchies that tend to commingle
several different structures in one diagram. In the 1970s Parnas pointed out that the term
“hierarchy” had become a buzzword, and then precisely defined the term and gave several
different examples of structures used for different purposes in the design of different systems
(Parnas 1974). Describing the structures of an architecture as a set of views, each of which
addresses different concerns, is now accepted as a standard architecture practice (Clements et
al. 2003; IEEE 2000). We will use the word “architecture” to refer to a set of annotated diagrams
and functional descriptions that specify the structures used to design and construct a system.
In the software development community there are many different forms used, and proposed,
for such diagrams and descriptions. See Hoffman and Weiss (2000, chaps. 14 and 16) for some
examples.

The software architecture of a program or computing system is

the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.

“Externally visible” properties are those assumptions other

elements can make of an element, such as its provided services,

performance characteristics, fault handling, shared resource

usage, and so on.

—Len Bass, Paul Clements, and Rick Kazman, Software Architecture
in Practice, Second Edition

Architecture Versus Design

Architecture is a part of the design of the system; it highlights some details by abstracting away
from others. Architecture is thus a subset of design. A developer focused on implementing a
component of the system may not be very aware of how all the components fit together, but
rather is primarily concerned with the design and development of a small number of
component(s), including the architectural constraints that they must obey and the rules they
can use. As such, the developer is working on a different aspect of the system design than the
architect.
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If architecture is concerned with the relationships among components and the externally
visible properties of system components, then design will additionally be concerned with the
internal structure of those components. For example, if one set of components consists of
information-hiding modules, then the externally visible properties form the interfaces to those
components, and the internal structure is concerned with the data structures and flow of
control within a module (Hoffman and Weiss 2000, chaps. 7 and 16).

Creating a Software Architecture
So far, we have considered architecture in general and looked at how software architecture is
both similar to and different from architecture in other domains. We now turn our attention
to the “how” of software architecture. Where should the architect focus her attention when
she is creating the architecture for a software system?

The first concern of a software architect is not the functionality of the system.

That’s right—the first concern of a software architect is not the functionality of the system.

For example, if we offer to hire you to develop the architecture for a “web-based application,”
would you start by asking us about page layouts and navigation trees, or would you ask us
questions such as:

• Who will host it? Are there technology restrictions in the hosting environment?

• Do you want to run on a Windows Server or on a LAMP stack?

• How many simultaneous users do you want to support?

• How secure does the application need to be? Is there data that we need to protect? Will
the application be used on the public Internet or a private intranet?

• Can you prioritize these answers for me? For example, is number of users more important
than response time?

Depending on our answers to these and a few other questions, you can begin sketching out an
architecture for the system. And we still haven’t talked about the functionality of the
application.

Now, admittedly, we cheated a bit here because we asked for a “web-based application,” which
is a well-understood domain, so you already knew what decisions would have the most
influence on your architecture. Similarly, if we had asked for a telecommunications system or
an avionics system, an architect experienced in one of those domains would have some notion
of required functionality in mind. But still, you were able to begin creating the architecture
without worrying too much about the functionality. You did this by focusing on quality
concerns that needed to be satisfied.

Quality concerns specify the way in which the functionality must be delivered in order to be
acceptable to the system’s stakeholders, the people with a vested interest in the outcome of
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the system. Stakeholders have certain concerns that the architect must address. Later, we will
discuss concerns that are typically raised when trying to assure that the system has the required
qualities. As we said earlier, one role of the architect is to ensure that the design of the system
will meet the needs of the client, and we use quality concerns to help us understand those
needs.

This example highlights two key practices of successful architects: stakeholder involvement
and a focus on both quality concerns and functionality. As the architect, you began by asking
us what we wanted from the system, and in what priority. In a real project, you would have
sought out other stakeholders. Typical stakeholders and their concerns include:

• Funders, who want to know if the project can be completed within resource and schedule
constraints

• Architects, developers, and testers, who are first concerned with initial construction and
later with maintenance and evolution

• Project managers, who need to organize teams and plan iterations

• Marketers, who may want to use quality concerns to differentiate the system from
competitors

• Users, including end users, system administrators, and the people who do installation,
deployment, provisioning, and configuration

• Technical support staff, who are concerned with the number and complexity of Help Desk
calls

Every system has its own set of quality concerns. Some, such as performance, security, and
scalability, may be well-specified, but other, often equally important concerns, such as
changeability, maintainability, and usability, may not be defined with enough detail to be
useful. Odd, isn’t it, that stakeholders want to put functions in software and not hardware so
that they can be easily and quickly modified, and then often give short shrift to changeability
when stating their quality concerns? Architecture decisions will have an impact on what kinds
of changes can be done easily and quickly and what changes will take time and be hard to do.
So shouldn’t an architect understand his stakeholders’ expectations for qualities such as
“changeability” as well as he understands the functional requirements?

Once the architect understands the stakeholders’ quality concerns, what does she do next?
Consider the trade-offs. For example, encrypting messages improves security but hurts
performance. Using configuration files may increase changeability but could decrease usability
unless we can verify that the configuration is valid. Should we use a standard representation
for these files, such as XML, or invent our own? Creating the architecture for a system involves
making many such difficult trade-offs.

The first task of the architect, then, is to work with stakeholders to understand and prioritize
quality concerns and constraints. Why not start with functional requirements? Because there
are usually many possible system decompositions. For example, starting with a data model
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would lead to one architecture, whereas starting with a business process model might lead to
a different architecture. In the extreme case, there is no decomposition, and the system is
developed as a monolithic block of software. This might satisfy all functional requirements, but
it probably will not satisfy quality concerns such as changeability, maintainability, or scalability.
Architects often must do architecture-level refactoring of a system, for example to move from
simplex to distributed deployment, or from single-threaded to multithreaded in order to meet
scalability or performance requirements, or hardcoded parameters to external configuration
files because parameters that were never going to change now need to be modified.

Although there are many architectures that can meet functional requirements, only a subset
of these will also satisfy quality requirements. Let’s go back to the web application example.
Think of the many ways to serve up web pages—Apache with static pages, CGI, servlets, JSP,
JSF, PHP, Ruby on Rails, or ASP.NET, to name just a few. Choosing one of these technologies
is an architecture decision that will have significant impact on your ability to meet certain
quality requirements. For example, an approach such as Ruby on Rails might provide the fast
time-to-market benefit, but could be harder to maintain as both the Ruby language and the
Rails framework continue to evolve rapidly. Or perhaps our application is a web-based
telephone and we need to make the phone “ring.” If you need to send true asynchronous
events from the server to the web page to satisfy performance requirements, an architecture
based on servlets might be more testable and modifiable.

In real-world projects, satisfying stakeholder concerns requires many more decisions than
simply selecting a web framework. Do you really need an “architecture,” and do you need an
“architect” to make the decisions? Who should make them? Is it the coder, who may make
many of them unintentionally and implicitly, or is it the architect, who makes them explicitly
with a view in mind of the entire system, its stakeholders, and its evolution? Either way, you
will have an architecture. Should it be explicitly developed and documented, or should it be
implicit and require reading of the code to discover?

Often, of course, the choice is not so stark. As the size of the system, its complexity, and the
number of people who work on it increase, however, those early decisions and the way that
they are documented will have greater and greater impact.

We hope you understand by now that architecture decisions are important if your system is
going to meet its quality requirements, and that you want to pay attention to the architecture
and make these decisions intentionally rather than just “letting the architecture emerge.”

What happens when the system is very large? One of the reasons that we apply architecture
principles such as “divide and conquer” is to reduce complexity and enable work to proceed
in parallel. This allows us to create larger and larger systems. Can the architecture itself be
decomposed into parts, and those parts worked on by different people in parallel? In
considering computer architecture, Gerrit Blaauw and Fred Brooks asserted:

...if, after all techniques to make the task manageable by a single mind have been applied, the

architectural task is still so large and complex that it cannot be done in that way, the product
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conceived is too complex to be usable and should not be built. In other words, the mind of a

single user must comprehend a computer architecture. If a planned architecture cannot be

designed by a single mind, it cannot be comprehended by one. (1997)

Do you need to understand all aspects of an architecture in order to use it? An architecture
separates concerns so, for the most part, the developer or tester using the architecture to build
or maintain a system does not need to deal with the entire architecture at once, but can interact
with only the necessary parts to perform a given function. This allows us to create systems
larger than a single mind can comprehend. But, before we completely ignore the advice of the
people who built the IBM System/360, one of the longest-lived computer architectures, let’s
look at what prompted them to make this statement.

Fred Brooks said that conceptual integrity is the most important attribute of an architecture:
“It is better to have a system...reflect one set of design ideas, than to have one that contains
many good but independent and uncoordinated ideas” (1995). It is this conceptual integrity
that allows a developer who already knows about one part of a system to quickly understand
another part. Conceptual integrity comes from consistency in things such as decomposition
criteria, application of design patterns, and data formats. This allows a developer to apply
experience gained working in one part of the system to developing and maintaining other parts
of the system. The same rules apply throughout the system. As we move from system to
“system-of-systems,” the conceptual integrity must also be maintained in the architecture that
integrates the systems, for example by selecting an architecture style such as publish/subscribe
message bus and then applying this style uniformly to all system integrations in the system-
of-systems.

The challenge for an architecture team is to maintain a single-mindedness and a single
philosophy as they go about creating the architecture. Keep the team as small as possible, work
in a highly collaborative environment with frequent communication, and have one or two
“chiefs” act as benevolent dictators with the final say on all decisions. This organizational
pattern is commonly seen in successful systems, whether corporate or open source, and results
in the conceptual integrity that is one of the attributes of a beautiful architecture.

Good architects are often formed by having better architects mentor them (Waldo 2006). One
reason may be that there are certain concerns that are common to nearly all projects. We have
already alluded to some of them, but here is a more complete list, with each concern phrased
as a question that the architect may need to consider during the course of a project. Of course,
individual systems will have additional critical concerns.

Functionality
What functionality does the product offer to its users?

Changeability
What changes may be needed in the software in the future, and what changes are unlikely
and need not be especially easy to make in the future?
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Performance
What will the performance of the product be?

Capacity
How many users will use the system simultaneously? How much data will the system need
to store for its users?

Ecosystem
What interactions will the system have with other systems in the ecosystem in which it
will be deployed?

Modularity
How is the task of writing the software organized into work assignments (modules),
particularly modules that can be developed independently and that suit each other’s needs
precisely and easily?

Buildability
How can the software be built as a set of components that can be independently
implemented and verified? What components should be reused from other products and
which should be acquired from external suppliers?

Producibility
If the product will exist in several variations, how can it be developed as a product line,
taking advantage of the commonality among the versions, and what are the steps by which
the products in the product line can be developed (Weiss and Lai 1999)? What investment
should be made in creating a software product line? What is the expected return from
creating the options to develop different members of the product line?

In particular, is it possible to develop the smallest minimally useful product first and then
develop additional members of the product line by adding (and subtracting) components
without having to change the code that was written previously?

Security
If the product requires authorization for its use or must restrict access to data, how can
security of data be ensured? How can “denial of service” and other attacks be withstood?

Finally, a good architect realizes that the architecture affects the organization. Conway noted
that the structure of a system reflects the structure of the organization that built it (1968). The
architect may realize that Conway’s Law can be used in reverse. In other words, a good
architecture may influence an organization to change so as to be more efficient in building
systems derived from the architecture.

Architectural Structures
How, then, does a good architect deal with these concerns? We have already mentioned the
need to organize the system into structures, each defining specific relationships among certain
types of components. The architect’s chief focus is to organize the system so that each structure
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helps answer the defining questions for one of the concerns. Key structural decisions divide
the product into components and define the relationships among those components (Bass,
Clements, and Kazman 2003; Booch, Rumbaugh, and Jacobson 1999; IEEE 2000; Garlan and
Perry 1995). For any given product, there are many structures that need to be designed. Each
must be designed separately so that it is viewed as a separate concern. In the next few sections
we discuss some structures that you can use to address the concerns on our list. For example,
the Information Hiding Structures show how the system is organized into work assignments.
They can also be used as a roadmap for change, showing for proposed changes which modules
accommodate those changes. For each structure we describe the components and the relations
among them that define the structure. Given the concerns on our list, we consider the following
structures to be of primary importance.

The Information Hiding Structures

COMPONENTS  AND  RELATIONS: The primary components are Information Hiding Modules,
where each module is a work assignment for a group of developers, and each module embodies
a design decision. We say that a design decision is the secret of a module if the decision can be
changed without affecting any other module (Hoffman and Weiss 2000, chaps. 7 and 16). The
most basic relation between the modules is “part of.” Information Hiding Module A is part of
Information Hiding Module B if A’s secret is a part of B’s secret. Note that it must be possible
to change A’s secret without changing any other part of B; otherwise, A is not a submodule
according to our definition. For example, many architectures have virtual device modules,
whose secret is how to communicate with certain physical devices. If virtual devices are
organized into types, then each type might form a submodule of the virtual device module,
where the secret of each virtual device type would be how to communicate with devices of
that type.

Each module is a work assignment that includes a set of programs to be written. Depending
on language, platform, and environment, a “program” could be a method, a procedure, a
function, a subroutine, a script, a macro, or other sequence of instructions that can be made
to execute on a computer. A second Information Hiding Module Structure is based on the
relation “contained in” between programs and modules. A program P is contained in a module
M if part of the work assignment M is to write P. Note that every program is contained in a
module because every program must be part of some developer’s work assignment.

Some of these programs are accessible on the module’s interface, whereas others are internal.
Modules may also be related through interfaces. A module’s interface is a set of assumptions
that programs outside of the module may make about the module and the set of assumptions
that the module’s programs make about programs and data structures of other modules. A is
said to “depend on” B’s interface if a change to B’s interface might require a change in A.

The “part of” structure is a hierarchy. At the leaf nodes of the hierarchy are modules that
contain no identified submodules. The “contained in” structure is also a hierarchy, since each
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program is contained in only one module. The “depends on” relation does not necessarily
define a hierarchy, as two modules may depend on each other either directly or through a
longer loop in the “depends on” relation. Note that “depends on” should not be confused with
“uses” as defined in a later section.

Information Hiding Structures are the foundation of the object-oriented design paradigm. If
an Information Hiding Module is implemented as a class, the public methods of the class belong
to the interface for the module.

CONCERNS  SATISFIED: The Information Hiding Structures should be designed so that they satisfy
changeability, modularity, and buildability.

The Uses Structures

COMPONENTS  AND  RELATION: As defined previously, Information Hiding Modules contain one
or more programs (as defined in the previous section). Two programs are included in the same
module if and only if they share a secret. The components of the Uses Structure are programs
that may be independently invoked. Note that programs may be invoked by each other or by
the hardware (for example, by an interrupt routine), and the invocation may come from a
program in a different namespace, such as an operating system routine or a remote procedure.
Furthermore, the time at which an invocation may occur could be any time from compile time
through runtime.

We will consider forming a Uses Structure only among programs that operate at the same
binding time. It is probably easiest first just to think about programs that operate at runtime.
Later, we may also think about the uses relation among programs that operate at compile time
or load time.

We say that program A uses program B if B must be present and satisfy its specification for A
to satisfy its specification. In other words, B must be present and operate correctly for A to
operate correctly. The Uses Relation is sometimes known as “requires the presence of a correct
version of.” For a further explanation and example, see Chapter 14 of Hoffman and Weiss
(2000).

The Uses Structure determines what working subsets can be built and tested. A desirable
property in the Uses Relation for a software system is that it defines a hierarchy, meaning that
there are no loops in it. When there is a loop in the Uses Relation, all programs in the loop
must be present and working in the system for any of them to work. Since it may not be possible
to construct a completely loop-free Uses Relation, an architect may treat all of the programs
in a Uses loop as a single program for the purpose of creating subsets. A subset must include
either the whole program or none of it.

When there are no loops in the Uses Relation, a levels structure is imposed on the software.
At the bottom level, level 0, are all programs that use no other programs. Level n consists of
all programs that use programs in level n–1 or below. The levels are often depicted as a series
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of layers, with each layer representing one or several levels in the Uses Relation. Grouping
adjacent levels in Uses helps to simplify the representation and allows for cases where there
are small loops in the relation. One guideline in performing such a grouping is that programs
at one layer should execute approximately 10 times as quickly and 10 times as often as
programs in the next layer above it (Courtois 1977).

A system that has a hierarchical Uses Structure can be built one or a few layers at a time. These
layers are sometimes known as “levels of abstraction,” but this is a misnomer. Because the
components are individual programs, not whole modules, they do not necessarily abstract from
(hide) anything.

Often a large software system has too many programs to make the description of the Uses
Relation among programs easily understandable. In such cases, the Uses Relation may be
formed on aggregations of programs, such as modules, classes, or packages. Such aggregated
descriptions lose important information but help to present the “big picture.” For example, one
can sometimes form a Uses Relation on Information Hiding Modules, but unless all programs
in a module are on the same level of the programmatic Uses hierarchy, important information
is lost.

In some projects, the Uses Relation for a system is not fully determined until the system is
implemented, because the developers determine what programs they will use as the
implementation proceeds. The architects of the system may, however, create an “Allowed-to-
Use” Relation at design time that constrains the developers’ choices. Henceforth, we will not
distinguish between “Uses” and “Allowed-to-Use.”

A well-defined Uses Structure will create proper subsets of the system and can be used to drive
iterative or incremental development cycles.

CONCERNS  SATISFIED: Producibility and ecosystem.

The Process Structures

COMPONENTS  AND  RELATION: The Information Hiding Module Structures and the Uses
Structures are static structures that exist at design and code time. We now turn to a runtime
structure. The components that participate in the Process Structure are Processes. Processes
are runtime sequences of events that are controlled by programs (Dijkstra 1968). Each program
executes as part of one or many Processes. The sequence of events in one Process proceed
independently of the sequence of events in another Process, except where the Processes
synchronize with each other, such as when one Process waits for a signal or a message from
the other. Processes are allocated resources, including memory and processor time, by support
systems. A system may contain a fixed number of Processes, or it may create and destroy
Processes while running. Note that threads implemented in operating systems such as Linux
and Windows fall under this definition of Processes. Processes are the components of several
distinct relations. Some examples follow.

W H A T  I S  A R C H I T E C T U R E ?  17



Process gives work to

One Process may create work that must be completed by other Processes. This structure is
essential in determining whether a system can get into a deadlock.

CONCERNS  SATISFIED: Performance and capacity.

Process gets resources from

In systems with dynamic resource allocation, one Process may control the resources used by
another, where the second must request and return those resources. Because a requesting
Process may request resources from several controllers, each resource may have a distinct
controlling Process.

CONCERNS  SATISFIED: Performance and capacity.

Process shares resources with

Two Processes may share resources such as printers, memory, or ports. If two Processes share
a resource, synchronization is necessary to prevent usage conflicts. There may be distinct
relations for each resource.

CONCERNS  SATISFIED: Performance and capacity.

Process contained in module

Every Process is controlled by a program and, as noted earlier, every program is contained in
a module. Consequently, we can consider each Process to be contained in a module.

CONCERNS  SATISFIED: Changeability.

Access Structures

The data in a system may be divided into segments with the property so that if a program has
access to any data in a segment, it has access to all data in that segment. Note that to simplify
the description, the decomposition should use maximally sized segments by adding the
condition that if two segments are accessed by the same set of programs, those two segments
should be combined. The data access structure has two kinds of components, programs and
segments. This relation is entitled “has access to,” and is a relation between programs and
segments. A system is thought to be more secure if this structure minimizes the access rights
of programs and is tightly enforced.

CONCERNS  SATISFIED: Security.
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Summary of Structures

Table 1-1 summarizes the preceding software structures, how they are defined, and the
concerns that they satisfy.

TABLE 1-1. Structure summary

Structure Components Relations Concerns

Information Hiding Information Hiding Modules Is a part of

Is contained in

Changeability

Modularity

Buildability

Uses Programs Uses Producibility

Ecosystem

Process Processes (tasks, threads) Gives work to

Gets resources from

Shares resources with

Contained in

...

Performance

Changeability

Capacity

Data Access Programs and Segments Has access to Security

Ecosystem

Good Architectures
Recall that architects play a game of trade-offs. For a given set of functional and quality
requirements, there is no single correct architecture and no single “right answer.” We know
from experience that we should evaluate an architecture to determine whether it will meet its
requirements before spending money to build, test, and deploy the system. Evaluation attempts
to answer one or more of the concerns discussed in previous sections, or concerns specific to
a particular system.

There are two common approaches to architecture evaluation (Clements, Kazman, and Klein
2002). The first class of evaluation methods determines properties of the architecture, often by
modeling or simulation of one or more aspects of the system. For example, performance
modeling is carried out to assess throughput and scalability, and fault tree models can be used
to estimate reliability and availability. Other types of models include using complexity and
coupling metrics to assess changeability and maintainability.

The second, and broadest, class of evaluation methods is based on questioning the architects
to assess the architecture. There are many structured questioning methods. For example, the
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Software Architecture Review Board (SARB) process developed at Bell Labs uses experts from
within the organization and leverages their deep domain expertise in telecommunications and
related applications (Maranzano et al. 2005).

Another variation of the questioning approach is the Architecture Trade-off Analysis Method
(ATAM) (Clements, Kazman, and Klein 2002), which looks for risks that the architecture will
not satisfy quality concerns. ATAM uses scenarios, each describing a particular stakeholder’s
quality concern for the system. The architects then explain how the architecture supports each
of the scenarios.

Active reviews are another type of questioning approach that turns the process on its head,
requiring the architects to provide the reviewers with the questions that the architects think
are important to answer (Hoffman and Weiss 2000, chap. 17). The reviewers then use the
existing architecture documents and descriptions to answer the questions. Finally, searching
the Web for “software architecture review checklist” returns dozens of checklists, some very
general and some specific to an application domain or technology framework.

Beautiful Architectures
All of the preceding methods help to evaluate whether an architecture is “good enough”—that
is, whether it is likely to guide the developer and testers to produce a system that will satisfy
the functional and quality concerns of the system’s stakeholders. There are many good
architectures in systems that we use every day.

But what about architectures that are more than good enough? What if there were a “Software
Architecture Hall of Fame”? Which architectures would line the walls of that gallery? The idea
is not as far-fetched as you might think—in the field of software product lines, just such a Hall
of Fame exists.* The criteria for induction into the Software Product Line Hall of Fame include
commercial success, influence on other product line architectures (others have “borrowed,
copied, or stolen” from the architecture), and sufficient documentation that others can
understand the architecture “without resorting to hearsay.”

What criteria would we add to these for nominees for a more general “Architecture Hall of
Fame,” or perhaps a “Gallery of Beautiful Architectures”?

First, we should recognize that this is a gallery of software systems, not art, and our systems
are built to be used. So, perhaps we should begin by looking at the Utility of the architecture:
it should be used every day by many people.

But before an architecture can be used, it must be built, and so we should look at the
Buildability of the architecture. We would look for architectures with a well-defined Uses
Structure that would support incremental construction, so that at each iteration of construction
we would have a useful, testable system. We would also look for architectures that have

* See http://www.sei.cmu.edu/productlines/plp_hof.html.
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well-defined module interfaces and that are inherently testable, so that the construction
progress is transparent and visible.

Next, we want architectures that demonstrate Persistence—that is, architectures that have
stood the test of time. We work in an era when the technical environment is changing at an
ever-increasing rate. A beautiful architecture should anticipate the need for change, and allow
expected changes to be made easily and efficiently. We want to find architectures that have
avoided the “aging horizon” (Klein 2005) beyond which maintenance becomes prohibitively
expensive.

Finally, we would want to include architectures that have features that delight the developers
and testers who use the architecture and build it and maintain it, as well as the users of the
system(s) built from it. Why delight developers? It makes their job easier and is more likely to
result in a high-quality system. Why delight testers? They are the ones who have to attempt
to emulate what the users will do as part of the testing process. If they are delighted, it is likely
that the users will be, too. Think of the chef who is unhappy with his culinary creations. His
customers, who consume those creations, are likely to be unhappy, too.

Different systems and application domains offer opportunities for architectures to exhibit
specific delightful features, but Conceptual Integrity is a feature that cuts across all domains
and that always delights. A consistent architecture is easier and faster to learn, and once you
know a little, you can begin to predict the rest. Without the need to remember and handle
special cases, code is cleaner and test sets are smaller. A consistent architecture does not offer
two (or more) ways to do the same thing, forcing the user to waste time choosing. As Ludwig
Mies van der Rohe said of good design, “Less is more,” and Albert Einstein might say that
beautiful architectures are as simple as possible, but no simpler.

Given these criteria, we propose some initial candidates for our “Gallery of Beautiful
Architectures.”

The first entry is the architecture for the A-7E Onboard Flight Processor (OFP), developed at
the Naval Research Laboratory (NRL) in the late 1970s, and described in Bass, Clements, and
Kazman (2003). Although this particular system never went into production, it meets every
other criterion for inclusion. This architecture has had tremendous influence on the practice
of software architecture by demonstrating in a real-world system the separation of a design-
time Information Hiding Module and Uses structures from the runtime Process Structures. It
showed that information hiding could be used as a primary decomposition principle for a
complex system. Since the U.S. government funded and developed the architecture, all project
documentation is available in the public domain.† The architecture had a well-defined Uses
structure that facilitated incremental construction of the system. Finally, the Information
Hiding Module structure provided clear and consistent criteria for decomposing the system,

† See, for example, Chapters 6, 15, and 16 in Hoffman and Weiss (2000), or conduct a search for “A-7E”
in the NRL Digital Archives (http://torpedo.nrl.navy.mil/tu/ps).
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resulting in strong Conceptual Integrity. As an exemplar of embedded system software
architecture, the A-7E OFP certainly belongs in our gallery.

Another architecture that we would want to include in our gallery is the software architecture
for the Lucent 5ESS telephone switch (Carney et al. 1985). The 5ESS has been a global
commercial success, providing core telephone network switching for networks in countries
around the world. It has set the standard for performance and availability, with each unit
capable of handling over one million call connections per hour with less than 10 seconds of
unplanned downtime per year (Alcatel-Lucent 1999). The architecture’s unifying concepts,
such as the “half call model” for managing telephone connections, have become standard
patterns in the domains of telephony and network protocols (Hanmer 2001). In addition to
keeping the number of call types that must be handled to 2n, where n is the number of call
protocols, the half call pattern links the operating system concept of process to the telephony
concept of call type, thereby providing a simple design rule and introducing a beautiful
Conceptual Integrity. A development team of up to 3,000 people has evolved and enhanced
the system over the past 25 years. Based on success, persistence, and influence, the 5ESS
architecture is a fine addition to our gallery.

Another system to consider for inclusion in our Gallery of Beautiful Architectures is the
architecture of the World Wide Web (WWW), created by Tim Berners-Lee at CERN, and
described in Bass, Clements, and Kazman (2003). The WWW has certainly been commercially
successful, transforming the way that people use the Internet. The architecture has remained
intact, even as new applications are created and new capabilities introduced. The overall
simplicity of the architecture contributes to its Conceptual Integrity, but decisions such as using
a single library for both clients and servers and creating a layered architecture to separate
concerns have ensured that the integrity of the architecture remains intact. The persistence of
the core WWW architecture and its ability to continue to support new extensions and features
certainly qualify it for inclusion in our gallery.

Our last example is the Unix system, which exhibits conceptual integrity, is widely used, and
has had great influence. The pipe and filters design is a lovely abstraction that permits rapid
construction of new applications.

WHAT’S AN ARCHITECT?
A stranger is traveling down a road on a hot summer day. As he progresses, he comes upon a man
working by the side of the road breaking rocks.

“What are you doing?” he asks the man.

The man looks up at him. “I’m breaking rocks. What does it look like I’m doing? Now get out of my
way and let me get back to it.”

The stranger continues down the road and soon comes upon a second man breaking rocks in the
hot sun. The man is working hard and sweating freely.
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“What are you doing?” asks the stranger.

The man looks up and smiles.

“I’m working for a living,” he says. “But it’s hard work. Maybe you have a better job for me?”

The stranger shakes his head and moves on. Pretty soon he comes on a third man breaking rocks.
The sun is at its zenith now, the man is straining, and sweat is pouring off him.

“What are you doing?” asks the stranger. The man pauses, takes a drink of water, smiles, and raises
his arms to the sky.

“I’m building a cathedral,” he breathes.

The stranger looks at him for a moment and says, “We’re starting a new company. How would you
like to be our chief architect?”

We have gone to considerable length to describe architectures, the role of architects, and
considerations that go into creating architectures, and we have offered several brief examples
of beautiful architectures. We invite you now to read more detailed examples from
accomplished architects in the following chapters as they describe the beautiful architectures
that they have created and used.

Acknowledgments
David Parnas defined many of the structures we described in several papers, including his
“Buzzword” paper (Parnas 1974). Jon Bentley was an inspiration in this work and he, Deborah
Hill, and Mark Klein made many useful suggestions on earlier drafts.

References
Alcatel-Lucent. 1999. “Lucent’s record-breaking reliability continues to lead the industry
according to latest quality report.” Alcatel-Lucent Press Releases. June 2. http://www.alcatel
-lucent.com/wps/portal/NewsReleases/DetailLucent?LMSG_CABINET=Docs_and_Resource
_Ctr&LMSG_CONTENT_FILE=News_Releases_LU_1999/LU_News_Article_007318.xml
(accessed May 15, 2008).

Bass, L., P. Clements, and R. Kazman. 2003. Software Architecture in Practice, Second Edition.
Boston, MA: Addison-Wesley.

Blaauw, G., and F. Brooks. 1997. Computer Architecture: Concepts and Evolution. Boston,
MA: Addison-Wesley.

Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The UML Modeling Language User Guide.
Boston, MA: Addison-Wesley.

W H A T  I S  A R C H I T E C T U R E ?  23

http://www.alcatel-lucent.com/wps/portal/NewsReleases/DetailLucent?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_LU_1999/LU_News_Article_007318.xml
http://www.alcatel-lucent.com/wps/portal/NewsReleases/DetailLucent?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_LU_1999/LU_News_Article_007318.xml
http://www.alcatel-lucent.com/wps/portal/NewsReleases/DetailLucent?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_LU_1999/LU_News_Article_007318.xml


Brooks, F. 1995. The Mythical Man-Month. Boston, MA: Addison-Wesley.

Carney, D. L., et al. 1985. “The 5ESS switching system: Architectural overview.” AT&T
Technical Journal, vol. 64, no. 6, p. 1339.

Clements, P., et al. 2003. Documenting Software Architectures: Views and Beyond. Boston,
MA: Addison-Wesley.

Clements, P., R. Kazman, and M. Klein. 2002. Evaluating Software Architectures. Boston:
Addison-Wesley.

Conway, M. 1968. “How do committees invent.” Datamation, vol. 14, no. 4.

Courtois, P. J. 1977. Decomposability: Queuing and Computer Systems. New York, NY:
Academic Press.

Dijkstra, E. W. 1968. “Co-operating sequential processes.” Programming Languages. Ed. F.
Genuys. New York, NY: Academic Press.

Garlan, D., and D. Perry. 1995. “Introduction to the special issue on software architecture.”
IEEE Transactions on Software Engineering, vol. 21, no. 4.

Grinter, R. E. 1999. “Systems architecture: Product designing and social engineering.”
Proceedings of ACM Conference on Work Activities Coordination and Collaboration
(WACC ’99). 11–18. San Francisco, CA.

Hanmer, R. 2001. “Call processing.” Pattern Languages of Programming (PLoP). Monticello,
IL. http://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/rhanmer0/PLoP2001
_rhanmer0_1.pdf.

Hoffman, D., and D. Weiss. 2000. Software Fundamentals: Collected Papers by David L.
Parnas. Boston, MA: Addison-Wesley.

IEEE. 2000. “Recommended practice for architectural description of software intensive
systems.” Std 1471. Los Alamitos, CA: IEEE.

Klein, John. 2005. “How does the architect’s role change as the software ages?” Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA). Washington,
DC: IEEE Computer Society.

Maranzano, J., et al. 2005. “Architecture reviews: Practice and experience.” IEEE Software,
March/April 2005.

Parnas, David L. 1974. “On a buzzword: Hierarchical structure.” Proceedings of IFIP
Congress. Amsterdam, North Holland. [Reprinted as Chapter 9 in Hoffman and Weiss (2000).]

Waldo, J. 2006. “On system design.” OOPLSA ’06. October 22–26. Portland, OR.

Weiss, D., and C. T. R. Lai. 1999. Software Product Line Engineering. Boston, MA: Addison-
Wesley.

24  C H A P T E R  O N E

http://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/rhanmer0/PLoP2001_rhanmer0_1.pdf
http://hillside.net/plop/plop2001/accepted_submissions/PLoP2001/rhanmer0/PLoP2001_rhanmer0_1.pdf


C H A P T E R  T W O

A Tale of Two Systems: A Modern-Day
Software Fable

Pete Goodliffe

Architecture is the art of how to waste space.

—Philip Johnson

A software system is like a city—an intricate network of highways and hostelries, of back roads
and buildings. There’s a lot going on in a busy city; flows of control are continually being born,
weaving their life through it, and dying. A wealth of data is amassed, stored, and destroyed.
There are a range of buildings: some tall and beautiful, some squat and functional, others
dilapidated and falling into disrepair. As data flows around them there are traffic jams and
tailbacks, rush hours and road works. The quality of your software city is directly related to
how much town planning went into it.

Some software systems are lucky, created through thoughtful design from experienced
architects. They are structured with a sense of elegance and balance. They are well-mapped
and easy to navigate. Others are not so lucky, and are essentially software settlements that
grew up around the accidental gathering of some code. The transport infrastructure is
inadequate, and the buildings are drab and uninspiring. Placed in the middle of it, you’d get
completely lost trying to find a route out.

Where would your code rather live? What kind of software city would you rather construct?

 

25



In this chapter, I tell the story of two such software cities. It’s a true story and, like all good
stories, this one has a moral at the end. They say experience is a great teacher, but other people’s
experience is even better—if you can learn from these projects’ mistakes and successes, you
might save yourself (and your software) a lot of pain.

The two systems in this chapter are particularly interesting because they turned out very
differently, despite being superficially very similar:

• They were of similar size (around 500,000 lines of code).

• They were both “embedded” consumer audio appliances.

• Each software ecosystem was mature and had gone through many product releases.

• Both solutions were Linux-based.

• The code was written in C++.

• They were both developed by “experienced” programmers (who, in some cases, should
have known better).

• The programmers themselves were the architects.

In this story, names have been changed to protect the innocent (and the guilty).

The Messy Metropolis
Build up, build up, prepare the road! Remove the obstacles out

of the way of my people.

—Isaiah 57:14

The first software system we’ll look at is known as the Messy Metropolis. It’s one I look back
on fondly—not because it was good or because it was enjoyable to work with, but because it
taught me a valuable lesson about software development when I first came across it.

My first contact with the Messy Metropolis was when I joined the company that created it. It
initially looked like a promising job. I was to join a team working on a Linux-based, “modern”
C++ codebase that had been in development for a number of years. Exciting stuff, if you have
the same peculiar fetishes as me.

The work wasn’t smooth sailing at first, but you never expect an easy ride when you start to
work in a new team on a new codebase. However, it didn’t get any better as the days (and
weeks) rolled by. The code took a fantastically long time to learn, and there were no obvious
routes into the system. That was a warning sign. At the microlevel, looking at individual lines,
methods, and components, the code was messy and badly put together. There was no
consistency, no style, and no unifying concepts drawing the separate parts together. That was
another warning sign. Control flew around the system in unfathomable and unpredictable
ways. That was yet another warning sign. There were so many bad “code smells” (Fowler 1999)
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that the codebase was not just putrid, it was a pungent landfill site on a hot summer’s day. A
clear warning sign. The data was rarely kept near where it was used. Often extra baroque
caching layers were introduced to try to persuade it to hang around in more convenient places.
Again, a warning sign.

As I tried to build a mental picture of the Metropolis, no one was able to explain the structure;
no one knew all of its layers, tendrils, and dark, secluded corners. In fact, no one actually knew
how any of it really worked (it was actually by a combination of luck and heroic maintenance
programmers). People knew the small areas they had worked on, but no one had an overall
comprehension of the system. And, naturally, there was no documentation. That was a
warning sign. What I needed was a map.

This was the sad story I had become a part of: the Metropolis was a town planning disaster.
Before you can improve a mess, you need to understand that mess, so with much effort and
perseverance we pulled together a map of the “architecture.” We charted every highway, all
the arterial roads, the uncharted back roads, and all of the dimly lit side passages, and placed
them on one master diagram. For the first time we could see what the software looked like.
Not a pretty sight. It was a tangle of blobs and lines. In an effort to make it more
comprehensible, we color-coded the control paths to signify their type. Then we stood back.

It was stunning. It was psychedelic. It was as if a drunk spider had stumbled into a few pots of
poster paint and then spun a chromatic web across a piece of paper. It looked something like
Figure 2-1 (it’s a simplified version, with details changed to protect the guilty). Then it became
clear. We had all but drawn a map of the London Underground. It even had the circle line.

FIGURE 2-1. The Messy Metropolis “architecture”
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This was the kind of system that would vex a traveling salesman. In fact, the architectural
similarity to the London Underground was remarkable: there were many routes to get from
one end of the system to the other, and it was rarely obvious how best to do so. Often a
destination was geographically nearby but not accessible, and you wished you could bore a
new tunnel between two points. Sometimes it would have actually have been better to get out
and take a bus. Or walk.

That’s not a “good” architecture by any metric. The Metropolis’s problems went beyond the
design, right up to the development process and company culture. These problems had actually
caused a lot of the architectural rot. The code had grown “organically” over a period of years,
which is a polite way to say that no one had performed any architectural design of note, and
that various bits had been bolted on over time without much thought. No one had ever stopped
to impose a sane structure on the code. It had grown by accretion, and was a classic example
of a system that had received absolutely no architectural design. But a codebase never has
no architecture. This just had a very poor one.

The Metropolis’s state of affairs was understandable (but not condonable) when you looked
at the history of the company that built it: it was a startup with heavy pressure to get many
new releases out rapidly. Delays were not tolerable—they would spell financial ruin. The
software engineers were driven to get code shipping as quickly as humanly possible (if not
sooner). And so the code had been thrown together in a series of mad dashes.

N O T E
Poor company structure and unhealthy development processes will be reflected in a poor
software architecture.

Down the Tubes

The Metropolis’s lack of town planning had many consequences, which we’ll see here. These
ramifications were severe and went far beyond what you might naïvely expect of a bad design.
The underground train had turned into a roller coaster, headed rapidly downward.

Incomprehensibility

As you can already see, the Metropolis’s architecture and its lack of imposed structure had led
to a software system that was remarkably tricky to comprehend, and practically impossible to
modify. New recruits coming into the project (like myself) were stunned by the complexity
and unable to come to grips with what was going on.

The bad design actually encouraged further bad design to be bolted onto it—in fact, it literally
forced you to do so—as there was no way to extend the design in a sane way. The path of least
resistance for the job in hand was always taken; there was no obvious way to fix the structural
problems, and so new functionality was thrown in wherever it would cause less hassle.
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N O T E
It’s important to maintain the quality of a software design. Bad architectural design leads to
further bad architectural design.

Lack of cohesion

The system’s components were not at all cohesive. Where each one should have had a single,
well-defined role, instead each component contained a grab bag of functionality that wasn’t
necessarily related. This made it hard to determine why a component existed at all, and hard
to work out where a particular piece of functionality had been implemented in the system.

Naturally, this made bug fixing a nightmare, which seriously affected the quality and reliability
of the software.

Both functionality and data were located in the wrong place in the system. Many things you’d
consider “core services” were not implemented in the hub of the system, but were simulated
by the outlying modules (at great pain and expense).

Further software archaeology showed why: there had been personality struggles in the original
team, and so a few key programmers had begun to build their own little software empires.
They’d grab the functionality they thought was cool and plonk it into their module, even if it
didn’t belong there. To deal with this, they would then make ever more baroque
communication mechanisms to stitch the control back to the correct place.

N O T E
The health of the working relationships in your development team will feed directly into the
software design. Unhealthy relationships and inflated egos lead to unhealthy software.

COHESION AND COUPLING
Key qualities of software design are cohesion and coupling. These are not newfangled “object-
oriented” concepts; developers have been talking about them for many years, since the emergence
of structured design in the early 1970s. We aim to design systems with components that have:

Strong cohesion
Cohesion is a measure of how related functionality is gathered together and how well the parts
inside a module work as a whole. Cohesion is the glue holding a module together.

Weakly cohesive modules are a sign of bad decomposition. Each module must have a clearly
defined role, and not be a grab bag of unrelated functionality.

Low coupling
Coupling is a measure of the interdependency between modules—the amount of wiring to and
from them. In the simplest designs, modules have little coupling and so are less reliant on one
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another. Obviously, modules can’t be totally decoupled, or they wouldn’t be working together
at all!

Modules interconnect in many ways, some direct, some indirect. A module can call functions
on other modules or be called by other modules. It may use web services or facilities published
by another module. It may use another module’s data types or share some data (perhaps
variables or files).

Good software design limits the lines of communication to only those that are absolutely
necessary. These communication lines are part of what determines the architecture.

Unnecessary coupling

The Metropolis had no clear layering. Dependencies between modules were not unidirectional,
and coupling was often bidirectional. Component A would hackily reach into the innards of
component B to get its work done for one task. Elsewhere, component B had hardcoded calls
onto component A. There was no bottom layer or central hub to the system. It was one
monolithic blob of software.

This meant that the individual parts of the system were so tightly coupled that you couldn’t
bring up a skeletal system without creating every single component. Any change in a single
component rippled out, requiring changes in many dependent components. The code
components did not make sense in isolation.

This made low-level testing impossible. Not only were code-level unit tests impossible to write,
but component-level integration tests could not be constructed, as every component depended
on almost every other component. Of course, testing had never been a particularly high priority
in the company (we didn’t have anywhere near enough time to do that), so this “wasn’t a
problem.” Needless to say, the software was not very reliable.

N O T E
Good design takes into account connection mechanisms and the number (and nature) of
inter-component connections. The individual parts of a system should be able to stand alone.
Tight coupling leads to untestable code.

Code problems

The problems with bad top-level design had wormed their way down to the code level.
Problems beget problems (see the discussion of broken windows in Hunt and Davis [1999]).
Since there was no common design and no overall project “style,” no one bothered with
common coding standards, using common libraries, or employing common idioms. There were
no naming conventions for components, classes, or files. There was not even a common build
system; duct tape, shell scripts, and Perl glue nestled alongside makefiles and Visual Studio
project files. Compiling this monster was considered a rite of passage!
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One of the most subtle yet serious Metropolis problems was duplication. Without a clear design
and a clear place for functionality to live, wheels had been reinvented across the entire
codebase. Simple things like common algorithms and data structures were repeated across
many modules, each implementation with its own set of obscure bugs and quirky behavioral
traits. Larger-scale concerns such as external communication and data caching were also
implemented multiple times.

More software archaeology showed why: the Metropolis started out as a series of separate
prototypes that got tacked together when they should have been thrown away. The Metropolis
was actually an accidental conurbation. When stitched together, the code components had
never really fit together properly. Over time, the careless stitches began to tear, so the
components pulled against one another and caused friction in the codebase, rather than
working in harmony.

N O T E
A lax and fuzzy architecture leads to individual code components that are badly written and
don’t fit well together. It also leads to duplication of code and effort.

Problems outside the code

The problems within the Metropolis spilled out from the codebase to cause havoc elsewhere
in the company. There were problems in the development team, but the architectural rot also
affected the people supporting and using the product.

The development team
New recruits coming into the project (like myself) were stunned by the complexity and
were unable to come to grips with what was going on. This partially explains why very
few new recruits stayed at the company for any length of time—staff turnover was very
high.

Those who remained had to work very hard, and stress levels on the project were high.
Planning new features instilled a dread fear.

Slow development cycle
Since maintaining the Metropolis was a frightful task, even simple changes or “small” bug
fixes took an unpredictable length of time. Managing the software development cycle was
difficult, timescales were hard to plan, and the release cycle was cumbersome and slow.
Customers were left waiting for important features, and management got increasingly
frustrated at the development team’s inability to meet business requirements.

Support engineers
The product support engineers had an awful time trying to support a flaky product while
working out the intricate behavioral differences between relatively minor software
releases.
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Third-party support
An external control protocol had been developed, enabling other devices to control the
Metropolis remotely. Since it was a thin veneer over the guts of the software, it reflected
the Metropolis’s architecture, which means that it was baroque, hard to understand, prone
to fail randomly, and impossible to use. Third-party engineers’ lives were also made
miserable by the poor structure of the Metropolis.

Intra-company politics
The development problems led to friction between different “tribes” in the company. The
development team had strained relations with the marketing and sales guys, and the
manufacturing department was permanently stressed every time a release loomed on the
horizon. The managers despaired.

N O T E
The consequence of a bad architecture is not constrained within the code. It spills outside to
affect people, teams, processes, and timescales.

Clear requirements

Software archaeology highlighted an important reason that the Messy Metropolis turned out
so messy: at the very beginning of the project the team did not know what it was building.

The parent startup company had an idea of which market it wanted to capture, but didn’t know
which kind of product to capture it with. So they hedged their bets and asked for a software
platform that could do many things. Oh, and we wanted it yesterday. So the programmers
rushed to create a hopelessly general infrastructure that could potentially do many things
(badly), rather than craft an architecture that supported one thing well and could be extended
to do more in the future.

N O T E
It’s important to know what you’re designing before you start designing it. If you don’t know
what it is and what it’s supposed to do, don’t design it yet. Only design what you know you
need.

At the earliest stages of Metropolis planning there were far too many architects. With woolly
requirements, they all took a disjoint piece of the puzzle and tried to work on it individually.
They didn’t keep the entire project in sight as they worked, so when they tried to put the puzzle
pieces back together, they simply didn’t fit. Without time to work on the architecture further,
the parts of the software design were left overlapping slightly, and thus began the Metropolis
town planning disaster.
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Where Is It Now?

The Metropolis’s design was almost completely irredeemable—believe me, over time we tried
to fix it. The amount of effort required to rework, refactor, and correct the problems with the
code structure had become prohibitive. A rewrite wasn’t a cheap option, as support for the old,
baroque control protocol was a requirement.

As you can see, the consequence of the Metropolis’s “design” was a diabolical situation that
was inexorably getting worse. It was so hard to add new features that people were just applying
more kludges, Band-Aids, and calculated fudges. No one enjoyed working with the code, and
the project was heading in a downward spiral. The lack of design had led to bad code, which
led to bad team morale and increasingly lengthy development cycles. This eventually led to
severe financial problems for the company.

Eventually, management acknowledged that the Messy Metropolis had become uneconomical,
and it was thrown away. This is a brave step for any organization, especially one that is
constantly running 10 paces ahead of itself while trying to tread water. With all of the C++ and
Linux experience the team had gained form the previous version, the system was rewritten in
C# on Windows. Go figure.

A Postcard from the Metropolis

So what have we learned? Bad architecture can have a profound effect and severe
repercussions. The lack of foresight and architectural design in the Messy Metropolis led to:

• A low-quality product with infrequent releases

• An inflexible system that couldn’t accommodate change or the addition of new
functionality

• Pervasive code problems

• Staffing problems (stress, low morale, turnover, etc.)

• A lot of messy internal company politics

• Lack of success for the company

• Many painful headaches and late nights working on the code

Design Town
Form ever follows function.

—Louis Henry Sullivan

The Design Town software project was superficially very similar to the Messy Metropolis. It
too was a consumer audio product written in C++, running on a Linux operating system.
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However, it was built in a very different way, and so the internal structure worked out very
differently.

I was involved with the Design Town project from the very start. A brand-new team of capable
developers had been assembled to build it from scratch. The team was small (initially four
programmers) and, like the Metropolis, the team structure was flat. Fortunately, there was
none of the interpersonal rivalry apparent in the Metropolis project, or any vying for positions
of power in the team. The members didn’t know each other well beforehand and didn’t know
how well we’d work together, but we were all enthused about the project and relished the
challenge.

So far, so good.

Linux and C++ were early decisions for the project, and that shaped the team that had been
assembled. From the outset the project had clearly defined goals: a particular first product and
a roadmap of future functionality that the codebase had to accommodate. This was to be a
general-purpose codebase that would be applied in a number of product configurations.

The development process employed was eXtreme Programming (or XP) (Beck and Andres
2004), which many believe eschews design: code from the hip, and don’t think too far
ahead. In fact, some observers were shocked at our choice and predicted that it would all end
in tears, just like the Metropolis. But this is a common misconception. XP does not discourage
design; it discourages work that isn’t necessary (this is the YAGNI, or You Aren’t Going To
Need It, principle). However, where upfront design is required, XP requires you to do that. It
also encourages rapid prototypes (known as spikes) to flesh out and prove the validity of
designs. Both of these were very useful and contributed greatly to the final software design.

First Steps into Design Town

Early in the design process, we established the main areas of functionality (these included the
core audio path, content management, and user control/interface). We considered where they
each fit in the system, and an initial architecture was fleshed out, including the core threading
models that were necessary to achieve performance requirements.

The relative positions of the separate parts of the system was established in a conventional
layer diagram, a simplified part of which is shown in Figure 2-2. Notice that this was not a big
upfront design. It was an intentionally simple conceptual model of the Design Town: just some
blobs on a diagram, a basic system design that could grow easily as pieces of functionality were
added. Although basic, this initial architecture proved a solid basis for growth. Whereas the
Metropolis had no overall picture and saw functionality grafted (or bodged) in wherever was
“convenient,” this system had a clear model of what belonged where.

Extra design time was spent on the heart of the system: the audio path. It was essentially an
internal subarchitecture of the entire system. To define this, we considered the flow of data
through a series of components and arrived at a filter-and-pipeline audio architecture, similar
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to Figure 2-3. The products involved a number of these pipelines, depending on their physical
configuration. Again, at first this pipeline was nothing more than a concept—more blobs on a
diagram. We hadn’t decided how it would all be stitched together.

User Interface

Control Components

Audio Path

OS/Audio Codecs

FIGURE 2-2. The Design Town initial architecture

A B C D E F

Audio hardwareAudio file

FIGURE 2-3. The Design Town audio pipeline

We also made an early choice of supporting libraries the project would employ (for example,
the Boost C++ libraries available at http://www.boost.org and a set of database libraries).
Decisions about some of the basic concerns were made at this point to ensure that the code
would grow easily and cohesively, including:

• The top-level file structure

• How we would name things

• A “house” presentation style

• Common coding idioms

• The choice of unit test framework

• The supporting infrastructure (e.g., source control, a suitable build system, and continuous
integration)

These “fine detail” factors were very important: they allied closely with the software
architecture and, in turn, influenced many later design decisions.
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The Story Unfolds

Once the initial design had been established by the team, the Design Town project proceeded
following the XP process. Design and code construction was either done in pairs or carefully
reviewed to ensure that work was correct.

The design and the code developed and matured over time, and as the story of Design Town
unfolded, there were the following consequences.

Locating functionality

With a clear overview of the system structure in place from the very beginning, new units of
functionality were consistently added to the correct functional areas of the codebase. There
was never a question about where code belonged. It was also easy to find the implementation
of existing functionality in order to extend it or to fix problems.

Now, sometimes putting new code in the “right” place was harder than simply bodging it into
a more convenient, but less tasteful, place. So the existence of an architectural plan sometimes
made the developers work harder. The payoff for this extra effort was a much easier life later
on, when maintaining or extending the system—there was very little cruft to trip over.

N O T E
An architecture helps you to locate functionality: to add it, to modify it, or to fix it. It provides
a template for you to slot work into and a map to navigate the system.

Consistency

The entire system was consistent. Every decision at every level was taken in the context of the
whole design. The developers did this intentionally from the outset so all the code produced
matched the design fully, and matched all the other code written.

Over the project’s history, despite many changes ranging across the entire scope of the
codebase—from individual lines of code to the system structure—everything followed the
original design template.

N O T E
A clear architectural design leads to a consistent system. All decisions should be made in the
context of the architectural design.

The good taste and elegance of the top-level design naturally fed down to the lower levels.
Even at the lowest levels, the code was uniform and neat. A clearly defined software design
ensured that there was no duplication, that familiar design patterns were used throughout,
familiar interface idioms were adopted, and that there were no unusual object lifetimes or odd
resource management issues. Lines of code were written in the context of the town plan.
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N O T E
Clear architecture helps reduce duplication of functionality.

Growing the architecture

Some entirely new functional areas appeared in the “big picture” design—storage management
and an external control facility, for example. In the Metropolis project, this was a crushing
blow and incredibly hard to do. But in Design Town, things worked differently.

The system design, like the code, was considered malleable and refactorable. One of the
development team’s core principles was to stay nimble—that nothing should be set in stone—
and so the architecture could be changed when necessary. This encouraged us to keep our
designs simple and easy to change. Consequently, the code could grow rapidly and maintain
a good internal structure. Accommodating new functional blocks was not a problem.

N O T E
Software architecture is not set in stone. Change it if you need to. To be changeable, the
architecture must remain simple. Resist changes that compromise simplicity.

Deferring design decisions

One of the XP principles that really enhanced the quality of the Design Town architecture was
YAGNI (don’t do anything if you aren’t going to need it). It encouraged us to design only the
important stuff early on, and to defer all remaining decisions until later, when we had a clearer
picture of the actual requirements and how best to fit them into the system. This is an
immensely powerful design approach, and quite liberating.

• One of the worst things you can do is design something you don’t yet understand. YAGNI
forces you to wait until you know what the problem really is and how it should be
accommodated by the design. It eliminates guesswork and ensures the design will be
correct.

• It is dangerous to add everything you might need (including the kitchen sink) to a software
design when you first create it. Most of your design work will be wasted effort, and produce
extra baggage that you’ll need to support over the entire changing life of the software. It
costs more at first, and continues to cost over the life of the project.

N O T E
Defer design decisions until you have to make them. Don’t make architectural decisions
when you don’t know the requirements yet. Don’t guess.

Maintaining quality

From the outset, the Design Town project put a number of quality control processes in place:

• Pair programming
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• Code/design reviews for anything not pair-programmed

• Unit tests for every piece of code

These processes ensured that the system never had an incorrect, badly fitting change applied.
Anything that didn’t mesh with the software design was rejected. This might sound draconian,
but they were processes that the developers bought into.

This buy-in highlights an important attitude: the developers believed in the design, and
considered it important enough to protect. They took ownership of, and personal responsibility
for, the design.

N O T E
Architectural quality must be maintained. This can happen only when the developers are
given and take responsibility for it.

Managing technical debt

Despite these quality control measures, Design Town development was fairly pragmatic. As
deadlines approached, a number of corners were cut to allow projects to ship on time. Small
code “sins” or design warts were allowed to enter the codebase, either to get functionality
working quickly or to avoid high-risk changes near a release.

However, unlike the Messy Metropolis project, these fudges were marked as technical debt
and scheduled for later revision. These warts stood out clearly, and the developers were not
happy about them until they were dealt with. Again, we see the developers taking
responsibility for the quality of the design.

Unit tests shape design

One of the core decisions about the codebase (which is also mandated by XP development)
was that everything should be unit tested. Unit testing brings many advantages, one of which
is the ability to change sections of the software without worrying about destroying everything
else in the process. Some areas of the Design Town internal structure received quite radical
rework, and the unit tests gave us confidence that the rest of the system had not been broken.
For example, the thread model and interconnection interface of the audio pipeline was
changed fundamentally. This was a serious design change relatively late in the development
of that subsystem, but the rest of the code interfacing with the audio path continued executing
perfectly. The unit tests enabled us to change the design.

This kind of “major” design change slowed down as Design Town matured. After an amount
of design rework, things settled down, and subsequently there were only minor design
changes. The system developed quickly, in an iterative manner, with each step improving the
design, until it reached a relatively stable plateau.
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N O T E
Having a good set of automated tests for your system allows you to make fundamental
architectural changes with minimal risk. It gives you space in which to work.

Another major benefit of the unit tests was their remarkable shaping of the code design: they
practically enforced good structure. Each small code component was crafted as a well-defined
entity that could stand alone, as it had to be constructible in a unit test without requiring the
rest of the system to be built up around it. Writing unit tests ensured that each module of code
was internally cohesive and loosely coupled from the rest of the system. The unit tests forced
careful thought about each unit’s interface, and ensured that the unit’s API was meaningful
and internally consistent.

N O T E
Unit testing your code leads to better software designs, so design for testability.

Time for design

One of the contributing factors to Design Town’s success was the allotted development
timescale, which was neither too long nor too short (just like Goldilocks’s porridge). A project
needs a conducive environment in which to thrive.

Given too much time, programmers often want to create their magnum opus (the kind of thing
that will always be almost ready, but never quite materializes). A little pressure is a wonderful
thing, and a sense of urgency helps to get things done. However, given too little time, it simply
isn’t possible to achieve any worthwhile design, and you’ll get only a half-baked solution
rushed out—just like the Metropolis.

N O T E
Good project planning leads to superior designs. Allot sufficient time to create an
architectural masterpiece—they don’t appear instantly.

Working with the design

Although the codebase was large, it was coherent and easily understood. New programmers
could pick it up and work with it relatively easily. There were no unnecessarily complex
interconnections to understand, or weird legacy code to work around.

Since the code has generated relatively few problems and is still enjoyable to work with, there
has been very, very low turnover of team members. This is due in part to the developers taking
ownership of the design and continually wanting to improve it.

It was interesting to observe how the development team dynamics followed the architecture.
Design Town project principles mandated that no one “owned” any area of the design, meaning
that any developer could work anywhere in the system. Everyone was expected to write
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high-quality code. Whereas the Metropolis was a sprawling mess created by many
uncoordinated, fighting programmers, Design Town was clean and cohesive, closely
cooperating software components created by closely cooperating colleagues. In many ways,
Conway’s Law* worked in reverse, and the team gelled together as the software did.

N O T E
A team’s organization has an inevitable affect on the code it produces. Over time, the
architecture also affects how well the team works together. When teams separate, the code
interacts clumsily. When they work together, the architecture integrates well.

Where Is It Now?

After some time, the Design Town architecture looked like Figure 2-4. That is, it was
remarkably similar to the original design, with a few notable changes—and a lot more
experience to prove the design was right. A healthy development process, a smaller, more
thoughtful development team, and an appropriate focus on ensuring consistency led to an
incredibly simple, clear, and consistent design. This simplicity worked to the advantage of the
Design Town, leading to malleable code and rapidly developed products.

Storage
management

Control

User Interface

External
controllers

OS/Audio codecs

Audio pathAudioA o patho h

E
c
E

p

FIGURE 2-4. The Design Town final architecture

At the time of this writing, the Design Town project has been alive for three years. The codebase
is still in production use and has spawned a number of successful products. It is still being
developed, still growing, still being extended, and still being changed daily. Its design next
month might be quite different from how it looks this month, but it probably won’t.

Let me make this clear: the code is by no means perfect. It has areas of technical debt that need
work, but they stick out against the backdrop of neatness and will be addressed in the future.
Nothing is set in stone, and thanks to the adaptable architecture and flexible code structure,

* Conway’s Law states that code structure follows team structure. Simply stated, it says, “If you have four
groups working on a compiler, you’ll get a four-pass compiler.”
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these things can be fixed. Almost everything is in the right place, because the architecture is
sound.

So What?
When perfection comes, the imperfect disappears.

—1 Corinthians 13:10

This simple story about two software systems is certainly not an exhaustive treatise on software
architecture, but I have shown how architecture profoundly affects a software project. An
architecture influences almost everything that comes into contact with it, determining the
health of the codebase and also the health of the surrounding areas. Just as a thriving city can
bring prosperity and renown to its local area, a good software architecture will help its project
to flourish and bring success to those depending on it.

Good architecture is the product of many factors, including (but not limited to):

• Actually doing intentional upfront design. (Many projects fail in this way before they even
start.)

• The quality and experience of the designers. (It helps to have made a few mistakes
beforehand to point you in the right direction next time! The Metropolis project certainly
taught me a thing or two.)

• Keeping the design clearly in view as development progresses.

• The team being given and taking responsibility for the overall design of the software.

• Never being afraid of changing the design: nothing is set in stone.

• Having the right people on the team, including designers, programmers, and managers,
and ensuring the development team is the right size. Ensure they have healthy working
relationships, as these relationship will inevitably feed into the structure of the code.

• Making design decisions at the appropriate time, when you know all the information
necessary to make them. Defer design decisions you cannot yet make.

• Good project management, with the right kind of deadlines.

Your Turn
Never lose a holy curiosity.

—Albert Einstein

You are reading this book right now because you care about software architecture, and you
care about improving your own software. So here’s an excellent opportunity. Consider these
simple questions about your software experience to date:
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1. What’s the best system architecture you’ve ever seen?

• How did you recognize it as good?

• What were the consequences of this architecture, both inside and outside the codebase?

• What have you learned from it?

2. What’s the worst architecture system you’ve ever seen?

• How did you recognize it as bad?

• What were the consequences of this architecture, both inside and outside the codebase?

• What have you learned from it?
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Architecting for Scale

Jim Waldo

Introduction
ONE  OF  THE  MORE  INTERESTING  PROBLEMS  IN  DESIGNING  AN  ARCHITECTURE for a system is
ensuring flexibility in the scale of that system. Scaling is becoming increasingly important, as
more of our systems are run on networks or are available on the Web. For such systems, the
idea of capacity planning is absurd if you want a margin of error that is under a couple of orders
of magnitude. If you put up a site and it becomes popular, you might suddenly find that there
are millions of users accessing your site. Just as easily (and just as much of a disaster), you can
put up a site and find that no one is particularly interested, and all of the equipment in which
you invested now lies idle, soaking up money in energy costs and administrative effort. In the
networked world, a site can transition from one of these states to the other in a matter of
minutes.

The scaling problem is faced by anyone who attaches a system to a network, but it is particularly
interesting in the case of massively multiplayer online games (MMOs) and virtual worlds.
These systems must be capable of scaling to large numbers of users. Unlike web servers,
however, where the users are requesting fairly static information and are not interacting with
each other, players in an MMO or residents in a virtual world are there to interact with both
the world (changing the underlying information in the world) and each other. These interplays
complicate the scaling of the infrastructures for such systems, as the user interactions with the

 Principles and properties  Structures
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 Independently changeable  Process

 Automatic propagation ✓ Data access
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✓ Growth accommodation   

 Entropy resistance   
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system are mostly independent (except when they aren’t) and don’t change much state in the
world. Given any two participants in such a world, the likelihood that they are interacting at
any given time is vanishingly small. But nearly every player will be interacting with someone
nearly all the time. The result is a kind of system that is embarrassingly parallel but
interdependent in a small number of interactions.

Scaling of MMOs and virtual worlds is further complicated by the culture that has grown up
around these systems. Both MMOs and virtual worlds trace their descent from the production
of video games. This is a design culture that grew up in the PC and console game tradition, a
tradition in which the programmer could assume that the game ran on a standalone machine
or game console. In such an environment, all of the resources of the machine are at the
command of the game program, and problems with the program are confined to the single
user playing the game (and, in fact, bugs or odd behavior could often be taken as part of the
logic of the game itself).

These games, and the companies that write, produce, and enhance them, are part of the
entertainment industry. Teams writing a game are led by a producer, and there are scripts and
back stories. The goal of a game is to be immersive, persuasive, and most of all, fun. Reliability
is nice, but hardly required. Extensibility is a property of the game, allowing new plot lines and
themes to be released as upgrades to the game, rather than a property of the code that allows
the code to be used in new and different ways.

The rise of online games and virtual worlds brings this culture into an environment where the
requirements are much more like those that are faced by the enterprise developer. With
multiple players interacting on a server over the network, the crash of a server brought about
by the unexpected actions of a player will affect many other players. As these worlds develop
economies (some of which interact with the economy of the real world), the stability and
consistency of the online world becomes more than just a game. And as the number of players
or inhabitants in these worlds reaches the millions, the ability to scale becomes a primary
requirement of any architecture.

Project Darkstar (referred to in the rest of this chapter as simply Darkstar) is a response to these
changing needs of the builders of games and virtual worlds. The project, undertaken by a
research group inside of Sun Microsystems Laboratories, is an ongoing exploration in the
architecture of scale. What makes the project particularly interesting is that it is targeted to the
MMO and virtual-world builder, a group of programmers who have very different needs from
those that we (as system designers) have been used to. The resulting architecture has much
that seems familiar until you look at it closely, at which point you can see why it differs from
what your experience told you it must be. The result is an architecture with its own sort of
beauty, and an object lesson in how different requirements can change the way you have to
think about building a system.
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Context
Like the physical architecture of a building or a city, the architecture of a system has to be
adapted to the context in which the artifact built using the architecture will reside. In physical
architecture, this context includes the historical surroundings of the work, the climate in which
it will exist, the ability of the local artisans and the available building materials, and the
intended use of the building. For a software architecture, the context includes not only the
applications that will use the architecture, but also the programmers who will build within that
architecture and the constraints on the systems that will result.

In building the Darkstar architecture, the first thing we* realized is that any architecture for
scaling would need to involve multiple machines. It is not clear that even the largest of
mainframes could scale to meet the demands of some of today’s online games (World of
Warcraft, for example, is reported to have five million current subscribers, with hundreds of
thousands of them active at any one time). Even if there were a single machine that could
handle this load, it would be economically impossible to assume that a game would be so
successful that it would require such a hardware investment at the beginning. This kind of
application needs to be able to start small and then increase capacity as the user base increases,
and then decrease capacity as interest in the game wanes. This maps well to a distributed
system, where (reasonably small) machines can be added as demand increases and taken away
when demand decreases. Thus we knew at the beginning that the overall architecture would
need to be a distributed system.

We also knew that the system would need to exploit the current trends in chip architectures.
MMOs and (to a lesser extent) virtual worlds have historically exploited Moore’s law for
scaling. As a processor doubles in speed, the world that can be created doubles in complexity,
richness, and interactivity. No other area of computing has exploited the benefits of increased
processor speed in quite the way the game world has. Personal computers designed for games
are always pushing the limits of CPU speed, memory, and graphics capabilities. Game consoles
push these limits even more aggressively, containing graphics systems far beyond those found
in high-end workstations and building the entire machine around the specialized needs of the
game player.

The recent change in chip evolution, from the constant increase in clock speeds to the
construction of multicore processors, has changed the dynamic of what can be done in games.
Rather than doing one thing faster, new chips are being designed to do multiple things at the
same time. The introduction of concurrent execution at the chip level will give better total
performance if the tasks being run by the chip can in fact be executed at the same time. Without

* In talking about the development of the Project Darkstar architecture, I will generally refer to what “we”
did rather than speak about what “I” did. This is more than the use of the editorial “we.” The design of
the architecture was very much a collaborative project, started by Jeffrey Kesselman, Seth Proctor, and
James Megquier, and put into its current form by Seth, James, Tim Blackman, Ann Wollrath, Jane
Loizeaux, and me.
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a change in clock speed, a chip with four cores ought to be able to do four times as much as a
chip with a single core. In fact, the speed-up will not be quite linear, as there are other parts
of the system that are not made concurrent in the same way. But increases in the overall
performance of the system can be obtained by the use of concurrency, and building chips for
such concurrent use is far simpler than building chips in which the clock speed is increased.

On the face of it, MMOs and virtual worlds ought to be reasonable candidates for multicore
chips and distributed systems. Most of what goes on in an MMO or virtual world, like most of
what goes on in the real world, is independent of the other things that are happening in that
world. Players go on their own quests or decorate their own rooms. They battle monsters or
design clothes. Even when they are engaged with another player or occupant of the world,
they are interacting with only a very small percentage of the occupants of the world. This is
the characterization of an embarrassingly parallel computational task, and that is just the sort
of thing that multiple cores and multiple machines ought to be good at doing.

Although the tasks in these systems may be embarrassingly parallel, the programmers who
work on such systems are not trained or experienced in the techniques of either distributed
computing or concurrent programming. These are exceptionally subtle fields, difficult even for
those who have been trained in them and who have considerable experience in using these
techniques. To ask most game programmers to develop a highly concurrent, distributed game
server would be asking them to go well outside of their area of expertise or experience.

The First Goal

This context gave us our first goal for the architecture. The requirements for scaling dictated
that the system be distributed and concurrent, but we needed to present a much simpler
programming model to the game developer. The simple statement of the goal is that the game
developer should see the system as a single machine running a single thread, and all of the
mechanisms that would allow deployment on multiple threads and multiple machines should
be taken care of by the Project Darkstar infrastructure.

In the general case, hiding either distribution or concurrency from the application is not
possible. But MMOs and virtual worlds are not the general case. The kind of hiding that we
are trying to accomplish comes at the price of requiring a very specific and restricted
programming model. Fortunately, it is just the sort of model that lends itself to the kind of
programming already used in the server-side components of games and virtual worlds.

The general programming model that Project Darkstar requires is a reactive one, in which the
server side of the game is written as a listener for events generated by the clients (that is, the
machines being used by the game players, generally either a PC or a game console). When an
event is detected, the game server should generate a task, which is a short-lived sequence of
computations that includes manipulation of information in the virtual world and
communication with the client that generated the original event and possibly with other
clients. Tasks can also be generated by the game server itself, either as a response to some
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internal change or on a periodic, timed basis. In this way, the game server can generate
characters in the game or world that aren’t controlled by some outside player.

This sort of programming model fits well with games and virtual worlds, but is also used in a
number of enterprise-level architectures, such as J2EE and web services. The need to build an
architecture different from those enterprise mechanisms was dictated by the very different
environment in which MMOs and virtual worlds exist. This environment is nearly a mirror
image of the classic enterprise environments, which means that if you have been trained in
the enterprise environment, almost everything you know is going to be wrong in this new
world.

The classic enterprise environment is envisioned as a thin client connected to a thick server
(which is itself often connected to an even thicker database server). The server will hold most
of the information needed by the clients, and will act as a filter to the backend database. Very
little state is held at the client; in the best case, the client has very little memory, no disk of its
own, and is a highly competent display device for the server, which is where most of the real
work occurs.

The Game World

The MMO and virtual world environment starts with a very thick client—typically a top-of-
the-line PC with the most powerful CPU available, lots of memory, and a graphics card that is
itself computationally excellent, or a game console that is specially designed for graphics-
intensive, highly interactive tasks. As much as possible, data is pushed out to these clients,
especially data that is unchanging, such as geographic information, texture maps, and rule sets.
The server is kept as simple as possible, generally holding a very abstract representation of the
world and the entities within that world. Further, the server is designed to do as little
computation as possible. Most of the computation goes on at the client. The real job of the
server is to hold the shared truth of the state of the world, ensuring that any variation in the
view of the world held at the various clients can be corrected as needed. The truth needs to be
held by the server, since those who control the clients have a vested interest in maximizing
their own performance, and thus might be tempted to change the shared truth (if they could)
in their favor. Put more directly, players will cheat if they can, so the server must be the ultimate
source of shared truth.

The data access patterns of MMOs and virtual worlds are also quite different from those that
are seen in enterprise situations. The usual rule of thumb within the enterprise is that 90% of
data accesses will be read-only, and most tasks read a large amount of data before altering a
small amount. In the MMO and virtual world environment, most tasks access only a very small
amount of the state on the server, but of the data that they access, about half of it will be altered.
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Latency Is the Enemy

But the biggest difference in the two environments traces back to the differences in what the
users are doing. In an enterprise environment, the goal is to conduct business, and some lags
in processing are acceptable if the overall throughput is improved. In the MMO and virtual
world environment, the goal is to have fun, and latency is the enemy of fun. So the
infrastructure for an MMO or virtual world needs to be designed around the requirement of
bounding latency whenever possible, even at the cost of throughput.

Online games and virtual worlds have clearly found ways to scale to large numbers of users.
The current mechanisms fall into two groups. The first of these is geographic in nature. The
game is designed as a group of different areas, with each area designed to be run on a single
server. It might be an island or room in a virtual world or a town or valley in an online game.
The design of the game tries to make each geographic area independent, and scale the
geographic area in such a way that the server will not be overwhelmed by too many users
occupying the area. In practice, such areas are often self-limiting, as when the server is being
overwhelmed, the play becomes less responsive and less interesting. As a result, players leave
for more interesting areas, which makes the formerly overwhelmed area less occupied and
improves response time.

The problem with scaling by assigning geographic areas to different servers is that the decision
of what areas scale to a server must be made when the game is being written. Although new
areas might be able to be added to a game or world fairly easily, changing the area that is
assigned to a server is something that requires changing the code. The decision of what areas
are the unit of scale has to be made as part of development.

A second way of dealing with areas that are overcrowded in a game or world is known as
sharding. A shard is a copy of the area, run on its own server and independent of other shards,
that presents the same portion of the game as the original area. Thus, a shard might present a
different copy of a particular room or village, allowing twice as many players to occupy that
part of the world. The drawback of shards is that they do not allow players in different shards
to interact with each other. As games and worlds become more social experiences than simple
game play, this disadvantage can be major. The goal of players is not only to be in the virtual
world, but to occupy it with their (real or virtual) friends. Sharding interferes with that goal.

Thus, another major goal of the Darkstar architecture is to allow on-the-fly scaling in a way
that does not require the game logic to become involved in the scaling. The infrastructure
should allow the game to dynamically react to the load rather than make such reaction part
of the design of the game.
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The Architecture
Darkstar is built as a set of separate services available in the address space of the server side of
a game or virtual world. Each service is defined by a small programming interface. Although
not the original intention, the basic services provided by Project Darkstar are much like those
of a classic operating system, allowing the server side of the game or virtual world to access
persistent storage, schedule and run tasks, and perform communication with the client side of
the game or virtual world.

Structuring the system as an interconnected set of services is an obvious way to begin the
process of divide and conquer that is basic to the design of any large computer system. Each
service can be characterized by an interface that protects those using the service from changes
in the underlying implementation, and allows those implementations to be undertaken
independently. Changes in the implementation of one service ought not affect the
implementation of another, even if that other service makes use of the implementation being
changed (assuming the interface and the semantics of the interface don’t change).

We had other reasons to adopt the service decomposition approach. From the very beginning,
Project Darkstar was envisioned as an open source project, with the hope that we could
leverage the work of the core team by allowing other members of the community to build
additional services that could enrich the functionality of the core. Running an open source
community is complicated under any circumstance, and we believed that having the greatest
level of isolation between the services that make up the infrastructure would allow a higher
level of isolation between different service implementation levels. Additionally, it was not clear
that there was a single set of services that would be just right for all MMOs and virtual worlds.
By structuring the infrastructure as a set of independent services, different sets of those services
could be used in different circumstances dictated by the needs of the particular project using
the infrastructure. The services included in any particular Darkstar stack can be set by a
configuration file.

The Macro Structure

Figure 3-1 shows the basic structure of a game or virtual world based on the Project Darkstar
infrastructure. There will be some number of servers that form the backend of the game or
virtual world. Each of these servers runs a copy of the selected set of services (labeled the
Darkstar stack) and a copy of the game logic. Clients will connect to one of these servers to
interact with the abstract representation of the world held by the server.
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FIGURE 3-1. Project Darkstar high-level architecture

Unlike most replication schemes, the different copies of the game logic are not meant to process
the same events. Instead, each copy can independently interact with the clients. Replication
in this design is used primarily to allow scale rather than to ensure fault tolerance (although,
as we will see later, fault tolerance is also achieved). Further, the game logic itself does not
know or need to know that there are other copies of the server operating on other machines.
The code written by the game programmer runs as if it were on a single machine, with
coordination of the different copies done by the Project Darkstar infrastructure. Indeed, it is
possible to run a Darkstar-based game on a single server if that is all the capacity the game
needs.

Clients connect to the game logic using communication mechanisms that are part of the
infrastructure. These mechanisms allow either direct client-to-server communication or a form
of publish-subscribe channel, where any message sent on a channel is delivered to all of those
subscribed to the channel.

The Darkstar stacks are coordinated by a set of meta-services—network-accessible services that
are hidden from the game or virtual world programmer. These meta-services allow the various
copies of the stack to coordinate the overall operation of the game. These meta-services will,
for example, make sure that all of the separate copies continue to run and initiate failure
recovery if some copy fails; keep track of the load on the copies and redistribute that load when
needed; or allow new servers to be added at any time to increase the capacity of the whole.
Since these services are completely hidden from the users of Project Darkstar, they can be
changed or removed, or new ones can be added at any time without changing the code of the
game or virtual world.
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For the programmer building a game or virtual world in the Project Darkstar environment, the
visible architecture is the set of services contained in the stack. The overall set of services is
both changeable and configurable, but four basic services will always be present and form the
core of the operating environment, as shown in Figure 3-2.

Other Services

Channel Service

Client Session Service

Task Service
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FIGURE 3-2. Darkstar stack

The Basic Services

The most basic of these stack-level services is the Data Service, which is used to store, retrieve,
and manipulate all persistent data in the game or virtual world. The notion of persistence here
is somewhat broader than might be found in other systems. In games or virtual worlds written
in the Project Darkstar environment, any data that lasts longer than a single task is considered
persistent and must be stored in the Data Service. Remember that we assume (and require) a
programming model in which tasks are short-lived, so almost all of the data used to represent
the server-side representation of the game or world will be persistent. The Data Service also
knits together the separate copies of the game or world that are running on different servers,
as all of these copies will share a single (conceptual) instance of the Data Service. All of the
copies will have access to the same data, and all of the copies can read or change data stored
in that service as needed.

Although the Data Store looks like a natural place for using a database, the requirements on
the store are in fact very different from those that usually condition standard databases. There
are very few static relations between the objects in the store, and there is no requirement within
the game for any type of complex queries over the contents of the store. Instead, a simple
naming scheme suffices, along with program-language-level references to the objects. The Data
Store also has to be optimized for latency rather than throughput. The number of objects
accessed by any particular task tends to be small (our preliminary measurements based on
some prototype games and worlds suggest about a dozen objects per task), and about half of
those objects that are accessed by any task are altered in the course of the task.
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The second stack-level service is the Task Service, which is used to schedule and perform the
tasks that are generated either in response to some event received from the clients or by the
internal logic of the game or world server itself. Most tasks are one-time affairs, generated
because of some action on the client, that read some data from the Data Service, manipulate
that data, perhaps perform some communication, and then end. Tasks can also generate other
tasks, or they can be generated as periodic tasks that will be run at particular times or intervals.
All tasks must be short-lived; the maximal time for a task is a configured value, but the default
is 100 milliseconds.

The game or world programmer sees a single task being generated either by an event or by the
server logic itself, but under the covers the Darkstar infrastructure is scheduling as many
simultaneous tasks as it can. In particular, tasks generated by the server logic will run in parallel
with tasks generated in response to a client-initiated event, as will events generated in response
to different clients.

Such concurrent execution leads to the possibility of data contention. To deal with such
contention requires that the Task Service and the Data Service conspire. Under the covers and
invisible to the server programmer, each task scheduled by the Task Service is wrapped in a
transaction. This transaction ensures that either all of the operations in the task complete or
none of them do. In addition, any attempts to alter values of objects held in the Data Service
are mediated by that service. If more than one task attempts to alter the same data object, all
but one of those tasks will be aborted and rescheduled to be performed later. The remaining
task will run to completion. Once the running task has been completed, the other tasks can be
run. Although it is possible for the server programmer to indicate that the data being accessed
will be modified, this is not required. If a data object is simply read and then later modified,
the modification will be detected by the Data Service before the task is committed. Indicating
that modification is intended at the time of read is an optimization that allows early detection
of conflicts, but the failure to indicate the intent to modify does not affect the correctness of a
program.

Wrapping the tasks in a transaction means that the communication mechanisms must also be
transactional, with messages sent only when the transaction wrapping the task that sends the
messages commits. This is accomplished through the two remaining core services of the
Darkstar stack.

Communication Services

The first of these is the Session Service, which mediates communication between a client and
the game or world server. Upon login and authentication, a session is established between the
client and the server. Servers listen for messages sent by the client on the session, parsing the
contents of the message to determine what task to generate in response to the message. Clients
listen on the channel to receive any responses from the server. These sessions mask the actual
endpoints to both the client and the server, a factor that is important in the multimachine
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scaling strategy of Darkstar. The session is also responsible for ensuring that the order of
messages is maintained. A message from a given client will not be delivered if the tasks that
resulted from previous message deliveries have not completed. Having the session service order
tasks in this way significantly simplifies the Task Service, which can assume that all of the tasks
that it has at any time are essentially concurrent. The ordering of messages from a particular
client is the only message-ordering guarantee made within the Darkstar framework; external
observers might see an ordering of messages from multiple clients that is very different from
that seen within the game or virtual world.

The second communication service that is always available in the Darkstar stack is the Channel
Service. Channels are a form of one-to-many communication. Conceptually, channels can be
joined by any number of clients, and any message that is sent on the channel will be delivered
to all of the clients that have been associated with the channel. This might seem to be a perfect
place to utilize peer-to-peer technologies, allowing clients to directly communicate with other
clients without adding any load to the server. However, these sorts of communications need
to be monitored by some code that is trusted to ensure that neither inappropriate messages
nor cheating can take place by utilizing different client implementations. Since the client is
assumed to be under the control of the user or player, the code that is on that client cannot be
trusted, because it is easy to swap out the original client code for some other, “customized”
version of the client. So, in fact, all channel messages have to go through the server, after being
(possibly) vetted by the server logic.

One of the complexities of both Sessions and Channels is that they must obey the transactional
semantics of tasks. Thus the actual transmission of a message on either a Session link or a
Channel cannot happen when the call is made to the appropriate send() method; it can happen
only when the task in which that method occurs commits.

Supplying these communication mechanisms gives us some of the pieces that are needed for
the second part of our scaling mechanism. Since all communication must go through the
Darkstar Session or Channel abstractions, and since those abstractions do not reveal the actual
endpoints of the communication to the client or the server, there is a layer of abstraction
between the entities communicating and the actual locations that are the start and end to that
communication. This means that we can move the endpoint of the server communication from
one machine in the Darkstar system to another without changing the way the client views the
communication. From the client’s point of view, all communication happens on a particular
session or channel. From the point of view of the game or virtual world logic, communication
is also through a single session or channel. But the underlying infrastructure can move the
session or channel from one machine to another as needed to balance load as that load changes
over time.
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Task Portability

The core of the ability to balance load is that, given the programming model we require and
the basic stack services that must be used, tasks that are performed in response to a client-
generated or game-internal event are portable from any of the machines running a copy of the
game or world logic on a Darkstar stack to any other machine running such a copy. The tasks
themselves are written in Java,† which means that they can be run on any of the other
machines as long as those (physical) machines have the same Java Virtual Machine as part of
the runtime stack. All data read and manipulated by the task must be obtained from the Data
Service, which is shared by all of the instances of the game or virtual world and the Darkstar
stack on all of the machines. Communication is mediated by the Session Service or by
Channels, which abstract the actual endpoints of the communication and allow any particular
session or channel to be moved from one server to another. Thus, any task can be run on any
of the instances of the game server without changing the semantics of the task.

This makes the basic scaling mechanism of Darkstar seemingly simple. If there is a machine
that is being overloaded, simply move some of the tasks from that machine to one that is less
loaded. If all of the machines are being overloaded, add a new machine to the group running
a copy of the game or virtual world server logic on top of a Darkstar stack, and the underlying
load-balancing software will start distributing load to that new machine.

The monitoring of the load on the individual machines and the redistribution of the load when
needed is the job of the meta-services. These are network-level services that are not visible to
the game or virtual world programmer, but are seen by and can themselves observe the services
in the Darkstar stack. These meta-services observe, for example, which machines are currently
running (and if any of those machines fail), what users are associated with the tasks on a
particular machine, and the current load on the different machines. Since the meta-services
are not visible to the game or virtual world programmer, they can be changed at any time
without having an impact on the correctness of the game logic. This allows us to experiment
with different strategies and approaches to dynamically load balance the system, and allows
us to enrich the set of meta-services as required by the infrastructure.

The same mechanism that we have used for scaling over multiple machines is used to obtain
a high degree of fault-tolerance in the system. Given the machine-independent nature of the
data that is used by a task and the communication mechanisms, it may be clear that it is possible
to move a task from one machine to another. But if a machine fails, how can we recover the
tasks that were on that machine? The answer is that the tasks themselves are persistent objects,
stored in the Data Service for the overall system. Thus, if a machine fails, any of the tasks that
were being performed by that machine will be treated as aborted transactions, and will be

† More precisely, all of the tasks consist of sequences of bytecodes that can be executed on the Java Virtual
Machine. We don’t care what the source-level language is; all we care about is that the compiled form
of that source language can be run on any of the environments that make up the distributed set of
machines running the game or virtual world.
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rescheduled on different machines. Although the latency of such rescheduling may be greater
than the rescheduling of an aborted transaction that stays on the same machine, the correctness
of the system will be the same. At most, the user of the system (the game player or virtual
world inhabitant) will notice a momentary lag in response time. Such a lag may be irritating,
but it is far less extreme than the current impact of a server crash in game or virtual world
environments, where the crash at least results in logging out the player, with the possibility of
losing a considerable amount of game play state.

Thoughts on the Architecture
Perhaps the first question anyone asks of an architecture and its implementation is how well
it performs. Although optimizing an architecture prematurely is the source of a multitude of
sins, it is also possible to design an architecture that cannot be implemented in a way that
performs well. Due to one of the basic choices in the Darkstar architecture, this worry is quite
real. And because of the nature of the game industry, determining the performance of a server
infrastructure is difficult to do.

The difficulty in determining the performance of a game or world server infrastructure is an
outgrowth of the simple fact that there are no benchmarks or commonly accepted examples
for a large-scale MMO or virtual world. The lack of benchmarks is not surprising, given that
the server components of most games or virtual worlds are built from the ground up for a
particular instance of the game or virtual world. There are only a few general infrastructures
that are offered as reusable building blocks, and these are generally extracted from a particular
game or world after the fact and offered to others who are building similar games. Whether it
is the relative youth of the game industry or an accident of the historical emergence of the
technology from the entertainment industry, no commonly accepted benchmarks are available
to test a new infrastructure or to allow the comparison of different infrastructures.

There is also little or no information available concerning the expected computation, data
manipulation, and communication loads for a game or virtual world server that would allow
for the construction of benchmarks or performance tests. This is partly an outgrowth of the
custom nature of the servers that have been produced. Each of these is built for a particular
game or virtual world and thus is specialized for the particular workload characteristics of that
game or world. Even more, it is an outgrowth of the intensely secretive nature of the game
industry, in which any information about a game in development is jealously guarded, and
information about the way in which a released game was implemented is both tightly guarded
and, to many in the industry, considered uninteresting. Much more thought and discussion is
given to the artwork, the storyline, or the player interaction patterns that make a new game
interesting or fun than is given to the way in which the server for the game was designed or
to the mechanisms used to scale the game to its current population of players (a statistic that
is also closely guarded). So just getting information about the kinds of loads that current games
or virtual worlds place on a server is difficult.
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In our experience, even when we can get developers to talk about the loads placed on the
server by their game or virtual world, they are often incorrect in their reports. This is not
because they are attempting to maintain some commercial advantage by misreporting what
their server actually does, but because they genuinely don’t know themselves. There is very
little instrumentation placed in game servers that would allow them to gather information on
how the server is actually performing or what it is doing. The analysis of such servers is
generally experiential at best. Programmers work on the server until it allows game play to be
fun, which is achieved in an iterative manner rather than by doing careful measurements of
the code itself. There is far more craft than science in these systems.

This is not to say that the servers backing such games and virtual worlds are shoddily
constructed pieces of code or that they are badly built. Indeed, many of them are marvels of
efficiency that demonstrate clever programming techniques and the advantages of one-time,
special-purpose servers for highly demanding applications. However, the custom of building a
new server for each game or world means that little knowledge of what is needed for those
servers has developed, and there is no commonly accepted mechanism for comparing one
infrastructure to another.

Parallelism and Latency

This lack of information about what is needed for acceptable performance in the server is of
particular concern to the Darkstar team, as some of the core decisions that we have made fly
in the face of the lore that has developed around how to get good performance from a game
or virtual world server. Perhaps the most radical difference between the Darkstar architecture
and common practice is the refusal in the Darkstar architecture to keep any significant
information in the main memory of the server machine. The requirement that all data that
lasts longer than a particular task be stored persistently in the Data Store is central to the
functionality of the Darkstar infrastructure. It allows the infrastructure to detect concurrency
problems, which in turn allows the system to hide those problems from the programmer while
still allowing the server to exploit multicore architectures. It is also a key component to the
overall scaling story, as it allows tasks to be moved from one machine to another to balance
the load over a set of machines.

Storing the game state persistently at all times is heresy in the world of game and virtual world
servers, where the worry over latency is paramount. The received wisdom when writing such
servers is that only by keeping all of the information in main memory will the latency be kept
small enough to allow the required response times. Snapshots of that state may be taken on
occasion, but the need for interactive speeds means that such long-term operations must be
done rarely and in the background. So it appears on the face of it that we have based our
architecture on a premise that will keep that architecture from ever performing well enough
to serve the needs of its intended audience.
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Although it is certainly true that requiring data to be persistent is a major difference in the
architecture, and that accessing data through the Data Store will introduce considerable
latencies into the architecture, we believe that the approach we have taken will be more than
competitive for a number of reasons. First, we believe that we can make the difference between
accessing data in main memory and accessing it through the data store much smaller than is
generally believed. Although conceptually every object that lasts longer than a single task needs
to be read from and written to persistent storage, the implementation of such a store can utilize
the years of research in database caching and coherence to minimize the data access latencies
incurred by the approach.

This is especially true if we can localize the access to particular sets of objects on a particular
server. If the only tasks that are making use of a particular set of objects are run on a single
server, then the cache on that server can be used to give near main-memory access and write
times for the objects (subject to whatever durability constraints need to be met). Tasks can be
identified with particular players or users in the virtual world. And here we can utilize the
requirement that data access and communications go through services provided by the
infrastructure to gather information about the data access patterns and the communication
patterns taking place in the game or world at a particular time. Given this information, we
believe that we can make very accurate estimations of which players should be co-located with
other players. Since we can move players to any server that we wish, we can maximize the
co-location of players in an active fashion, based upon the runtime behavior that we observe.
This should allow us to make use of standard caching techniques that are well-known in the
database world to minimize the latencies of accessing and storing the persistent information.

This sounds very much like the geographic decomposition that is currently used in large-scale
games and virtual worlds to allow scaling. There, the server developers decompose the world
into areas that are assigned to servers, and the various areas act as localization devices for the
players. Players in the same area are more likely to interact than those in other areas, and so
co-location on a server is enhanced. The difference is that current geographic decompositions
occur as part of the development of the game and are reified in the source code to the server.
Our co-location is based on runtime information, and can be dynamically tuned to the actual
patterns of play or interaction that are occurring at the time of placement. This is analogous to
the difference between compile-time optimization and just-in-time optimization. The former
seeks to optimize for all possible runs of a program, whereas the latter attempts to optimize for
the current run.

We don’t believe that we can make the difference between main-memory access and persistent
access disappear, but we also don’t think that this is necessary in order to end up with
performance that is better than that of infrastructures that make use of main memory.
Remember that by making all of the data persistent, we are enabling the use of multiple threads
(and therefore the multiple cores) within the server. Although we don’t believe that the
concurrency will be perfect (that is, that for each additional core we will get complete use of
that core), we do believe (and preliminary results encourage this belief) that there is a
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significant amount of parallelism that can be exploited in games and virtual worlds. If the
amount of concurrency that we can exploit is greater than the amount of latency that we might
introduce, the overall performance of the game or virtual world will be better.

Betting on the Future

Our reliance on multithreading from multiple cores is essentially a bet on the way processors
will evolve in the future. Currently servers are built with processors offering between 2 and
32 cores; we believe that the future of chip design will center around even more cores rather
than on making any existing core run at a higher clock rate. When we began this project some
years ago, this bet seemed far more speculative than it now appears. At that time, we often
presented our designs as an exercise in “what if,” saying that we were experimenting with an
architecture that would be viable if the performance of chips became more a function of the
number of threads supported than the clock speed of a single thread. This is one of the
advantages of doing such a project in a research lab, where it is acceptable to take a much
higher risk in your approach to a design as a way of exploring an area that might turn out to
be commercially viable. Current trends in chip design make the decision to build an
architecture centered on multithreading look far more prescient than it appeared at the time
the decision was made.‡

Even if we can get only 50% of perfect concurrency, we could hit a performance break-even
point if we can reduce the penalty of using persistent storage to between 2 and 16 times that
of main memory. We believe we can do better in both the dimension of concurrency and in
the dimension of reducing the difference between accessing the persistent state and keeping
everything in memory. But much will depend on the usage patterns of those building upon
the infrastructure (which, as we noted earlier, are difficult to discover).

Nor should we think of minimizing latency as the only goal of the infrastructure. By keeping
all the server game or world objects in the Data Store, we minimize the amount of data that
would be lost in the event of a server failure. Indeed, in most cases a server failure will be
noticed only as a short increase in latency as the tasks (which are themselves persistent objects)
are moved from the server that failed to an alternate server; no data should be lost. Some
caching schemes might result in the loss of a few seconds of play, but even this case is far better
than the current schemes used by online games and virtual worlds, where occasional snapshots
are the main form of persistence. In such infrastructures, hours of game play might be lost if
a server crashes at just the wrong time. As long as latencies are acceptable, the greater reliability
of the persistence mechanism used by Darkstar can be an advantage for both the developers
of the system built on the infrastructure and the users of that system.

‡ Showing, once again, that very little is as important as luck in the early stages of a design.
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Simplifying the Programmer’s Job

Indeed, if minimizing latency while allowing scale were the only goal of the server developer,
that developer would be best served by writing his own distributed and multithreaded
infrastructure customized for the particular game. But this would require that the server
developer deal with the complexities of distributed and concurrent programming. Before
getting too obsessed with the need for speed, we should remember that a second, but equally
important, goal of Darkstar is to allow the production of multithreaded, distributed games
while providing the programmer a model of writing on a single machine in a single thread.

To a considerable extent, we have succeeded in this goal. By wrapping all tasks in transactions
and detecting data conflicts within the Data Service, programmers get the benefits of multiple
threads without needing to introduce locking protocols, synchronization, or semaphores into
their code. Programmers do not have to worry about how to move a player from one server
to another, since Darkstar handles the load balancing transparently for them. The
programming model, although stylized and restrictive, has been found by early members of
the community to be natural for the kinds of games and virtual worlds that they are building.

Unfortunately, we have found that we can’t hide everything from the programmer. This
became apparent when the very first game to be written on top of Darkstar showed very little
parallelism (and exceptionally poor performance). On examination of the source code, it did
not take us long to find the explanation. The data structures in the game had been written in
such a way that any change of state in the game involved a single object, which was used as a
coordinator for everything. The use of this single object effectively serialized all of the actions
within the game, making it impossible for the infrastructure to find or exploit any concurrency.

Once we saw this, we had a long discussion with the game developers about the need to design
their objects with concurrent access in mind. An audit of the data objects in the game showed
a number of similar cases where concurrency was (unintentionally) precluded by choices made
in the data design. Once these objects were redesigned, the performance of the overall system
increased by multiple orders of magnitude.

This taught us that it is not possible for the developers using Darkstar to be completely ignorant
of the underlying concurrent and distributed nature of the system. However, their knowledge
of these properties of the system need not include the usual problems of concurrency control,
locking, and dealing with communication between the distributed parts of the system. Instead,
they are confined to the design activity of ensuring that their data objects are defined in such
a way that concurrency can be maximized. Such design usually takes the more general form
of ensuring that the objects defined are self-contained and do not depend on the state of other
objects for their own operations, which is not a bad design principle in any system.
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There is still much about the Darkstar architecture that we have not tested or that we don’t
fully understand. Although we have produced a system that allows multiple machines to run
a game or virtual world utilizing multiple threads in a way that is (mostly) transparent to the
server programmer, we have not yet tested the ability of the architecture to add other services
beyond the core. Given the transactional nature of Darkstar tasks, this may turn out to be more
complex than we first imagined, and our hope is that the additional services will not need to
be participants in the core service transactions. We have also just begun to experiment with
various ways of gathering information about the load on the system and balancing that load.
Fortunately, since the mechanisms that do this balancing are completely hidden from the
programmers using the system, we can pull out old approaches and introduce new ones
without affecting those using Darkstar.

As an architecture, Darkstar presents a number of novel approaches that make it interesting.
It is one of the few attempts to build a game or virtual world infrastructure with the same
reliability and dependability properties as enterprise software while also meeting the latency,
communication, and scaling requirements of the game industry. By trying to gain efficiency
by using more machines and more threads, we hope to offset the increases in latency we
introduce by the use of a persistent storage mechanism. Finally, the very different world of
games and virtual environments, in which the clients are thick and the servers are thin,
presents a contrast to the usual environment in which highly concurrent, distributed systems
are generally built. It is too early to tell whether the architecture is going to be successful, but
we believe that it is already interesting.
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Making Memories

Michael Nygard

SINCE  THE  EARLIEST  TINTYPES  AND  DAGUERREOTYPES , we have always seen photographs as
special, sometimes even magical. A photograph captures a fleeting moment in time, in a way
that our fallible memories cannot. But the best portraits do more than just preserve a moment;
they illuminate it. They catch a certain glance or expression, a characteristic pose that lets the
subject’s personality shine through.

If you’ve had children in a U.S. school, you probably already know the name Lifetouch.
Lifetouch photographs most elementary school, middle school, and high school students in the
United States every single year. What you may not know is that Lifetouch also runs high-
quality portrait studios. Lifetouch Portrait Studios (LPS) operates in major retail stores across
the country, along with the “Flash!” chain of studios in shopping malls. In these studios, LPS’s
photographers take portraits that last a lifetime.

Digital photography has transformed the entire photography industry, and LPS is no exception.
Giant rolls of film and frame-mounted cameras are disappearing, replaced with professional-
grade DSLRs and flash memory cards. Unfettered photographers can move around, try
different angles, and get closer than ever to their subjects. In short, they have more freedom
to take those great portraits. The photographer works with the camera to turn photons into
electrons, but somehow, somewhere, some system has to turn those electrons into atoms of
ink and paper.

 Principles and properties  Structures

 Versatility ✓ Module

✓ Conceptual integrity ✓ Dependency

✓ Independently changeable  Process

✓ Automatic propagation  Data access

✓ Buildability   

 Growth accommodation   

 Entropy resistance   
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In 2005, my colleagues and I from Advanced Technologies Integration (ATI) in Minneapolis
worked together with developers from LPS to roll out a new system to do exactly that.

Capabilities and Constraints
Two dynamics drive a system’s architecture: What must it do? What boundaries must it work
within? These define the problem space.

We create, and simultaneously explore, the solution space by resolving these forces, navigating
the positive pole of required behavior and the negative one of limitations. Sometimes we can
create elegance, and even beauty, when the answers to individual constraints mesh together
into a coherent whole. I’m happy to say that the Creation Center project did just that.

On this project, we faced several incontrovertible facts. Some are just the nature of the business;
others could change, but not within our scope. Either way, we regarded these as immutable.
These facts make up the left column in Figure 4-1.

Support Product Family

UI and UI Model

Modules and Launcher

Kiosk-Style GUI

Database Migrations

Ubiquitous GUIDs

Immutable Data

Render Farm

Interchangeable
Workstations

Decentralize Rollout

Apply Conway’s Law

Scale Production Horizontally

Minimize Training Need

Minimize Risk of Downtime

Minimize Cost of Support

Minimize Cost of Deployments

Facts FacetsForces

Several Brands

Networks Are Fallible

Customers Expect Own Products

Production Throughput Is Important

Studios Are Remote

Production Is Centralized

Associates Are Photographers,
Not Graphic Artists

FIGURE 4-1. Facts, forces, and facets of Creation Center’s architecture

Several brands
LPS supports multiple brands today and could add more in the future. At a minimum,
Creation Center would have two visually distinct skins, and adding skins should not
require extensive effort.
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Associates are photographers, not graphic artists
Photographers are trained to use the camera, not Photoshop. When an inexperienced user
sits down at Photoshop, the most likely result is a lousy image. It’s a power tool for power
users, and there should be no need for a photographer in a portrait studio to get up the
Photoshop learning curve. Photoshop and its cousins would also slow down studio
workflow. Instead, studio associates need to create beautiful images rapidly.

Studios are remote
Studios are geographically dispersed, with little to no local technical support. Hardware
deliveries or replacements require shipping components back and forth.

Networks are fallible
Some studios have no network connections. Even for the ones that do, it’s not acceptable
to halt the studio if the connection goes down.

Customers expect their own products
Customers should receive their photos with their designs and text.

Production is centralized
High-quality photographic printers are becoming more common, but making products
that can last for decades requires much more expensive equipment.

Production throughput is important
The same printers are also the constraint in the production process. Therefore, every other
step in the process must be subordinated to the constraint.

These facts lead to several forces that we must balance. It’s common to perceive the forces as
fundamental, but they aren’t. Instead, they emerge from the context in which the system
exists. If the context changes, then the forces might be nullified or even negated.

We chose a handful of constructs to resolve these forces. The rightmost column of Figure 4-1
shows these facets of the architecture. Of course, these aren’t the only Creation Center features
worth discussing, but these facets of the architecture are of general interest. I also think they
simultaneously illustrate a nice separation of concerns and mutually supporting structures.

Before digging into the specific features, we need to fill in one more piece of context: the
system’s workflow.

Workflow
The typical studio has two to four camera rooms, stocked with professional lighting, backdrops,
and props. The photographers take pictures—each picture is called a “pose”—in the camera
room. Outside of the camera room, photographers also handle customer service, scheduling,
and customer pickups.

When the photographer finishes taking the pictures for a session, she sits down at any of several
workstations to load the photographs from the camera’s memory card.
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After loading a session, the photographer deletes any obviously bad photographs: ones with
closed eyes, sour expressions, babies looking away, and so on. After deleting the bad ones, the
rest become “base images.” She then creates a number of enhancements from those base
images. Enhancements range from simple tonal applications, such as black and white or sepia,
to elaborate compositions of multiple photos. For example, a photographer might take a group
portrait of three children and embed it in a design with three “slots” for individual portraits of
the children.

After creating these enhancements, the photographer helps the customer order various sizes
and combinations of prints. These include everything from 8” × 10” portraits to “sheets” of
smaller sizes: 5” × 7”, 3” × 5”, or wallet sizes. Then there are the large formats. Customers can
order portraits in sizes up to 24” × 30”, made for framing and hanging on the wall.

After completing the customer’s order, the photographer moves on to the next session.

At the end of each day, the studio manager creates a DVD of the day’s orders, which she sends
to the printing facility.

In the printing facility, hundreds of DVDs arrive each day. (I’ll talk about the contents of the
DVDs later.) The DVDs contain orders and photographs that need to be printed and shipped
back to the studio, so the customer can pick them up. Before they can be printed, however,
the final print-resolution photographs must be rendered as images. These print-ready images
are immense. A 24” × 30” portrait rendered for high-quality printing, has over 100 million
pixels, each in 32-bit color. Every single pixel is composited according to the design the
photographer created in the studio. Depending on the composition, the rendering pipeline can
be anywhere from 6 to 10 steps long. A simple rendering takes two to five minutes, but complex
compositions for large formats churn for ten minutes or more.

At the same time, the printers spit out several finished prints per minute. Keeping the printers
busy is the duty of the Production Control System (PCS), a complex system that handles job
scheduling and orchestrates the render farm, manages image storage, and feeds the print
queues.

When the finished order reaches the studio, the manager lets the customer know that she can
come in to pick it up.

This workflow partly came from LPS’s business context and partly from our choices about how
to partition the system. Now let’s look at the different facets from Figure 4-1.

Architecture Facets
Reducing the structure of a multidimensional, dynamic system into a linear narrative form is
always a challenge, whether we are communicating our vision of a system that doesn’t exist
or trying to explain the interacting parts of one that we’ve already built. Hypertext might make
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it easier to approach the elephant from several perspectives, but paper doesn’t yet support
hyperlinks very well.

As we look at each of these facets, keep in mind that they are different ways of looking at the
overall system. For instance, we used a modular architecture to support different deployment
scenarios. At the same time, each module is built in a layered architecture. These are orthogonal
but intersecting concerns. Each set of modules follows the same layering, and each layer is
found across all the modules.

Indeed, we all felt deeply gratified that we were able to keep these concerns separated while
still making them mutually supportive.

Modules and Launcher

All along, we were thinking “product family” rather than “application” because we had to
support several different deployment scenarios with the same underlying code. In particular,
we knew from the beginning that we would have the following configurations:

Studio Client
A studio has between two and four of these workstations. The photographers use them
for the entire workflow, from loading images through to creating the orders.

Studio Server
The central server inside each studio runs MySQL for structured data such as customers
and orders. The server also has much more robust storage than the workstations, using
RAID for resiliency. The studio server also burns the day’s orders to DVD.

Render Engine
Once in production, we decided to build our own render engine. By using the same code
for rendering to the screen in the studio and to the print-ready images in production, we
could be absolutely certain that the customer would get what they expected.

At first, we thought these different deployment configurations would just be different
collections of .jar files. We created a handful of top-level directories to hold the code for each
deployment, plus one “Common” folder. Each top-level folder has its own source, test, and
bin directories.

It didn’t take long for us to become frustrated with this structure. For one thing, we had one
giant /lib directory that started to accumulate a mixture of build-time and runtime libraries.
We also struggled with where to put noncode assets, such as images, color profiles, Hibernate
configurations, test images, and so on. Several of us also felt a nagging itch over the fact that
we had to manage .jar file dependencies by hand. In those early days, it was common to find
entire packages in the wrong directory. At runtime, though, some class would fail to load
because it depended on classes packaged into a different .jar file.
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The breaking point came when we introduced Spring* about three iterations into the project.
We were following an “agile architecture” approach: keep it minimal and commit to new
architecture features only when the cost of avoiding them exceeds the cost of implementing
them. That’s what Lean Software Development calls “the last responsible moment.” Early on,
we had only a casual knowledge of Spring, so we chose not to depend on it, though we all
expected to need it later.

When we added Spring, the .jar file dependency problems were multiplied by configuration
file problems. Each deployment configuration needs its own beans.xml file, but well over half
of the beans would be duplicated between files—a clear violation of the “don’t repeat yourself”
principle†—and a sure-fire source of defects. Nobody should have to manually synchronize
bean definitions in thousand-line XML files. And, besides, isn’t a multi-thousand-line XML file
a code smell in its own right?

We needed a solution that would let us modularize Spring beans files, manage .jar file
dependencies, keep libraries close to the code that uses them, and manage the classpath at
build time and at runtime.

ApplicationContext

Learning Spring is like exploring a vast, unfamiliar territory. It’s the NetHack of frameworks;
they thought of everything. Wandering through the javadoc often yields great rewards, and in
this case we hit pay dirt when I stumbled across the “application context” class.

The heart of any Spring application is a “bean factory.” A bean factory allows objects to be
looked up by name, creates them as needed, and injects configurations and references to other
beans. In short, it manages Java objects and their configurations. The most commonly used
bean factory implementation reads XML files.

An application context extends the bean factory with the crucial ability to make a chain of
nested contexts, as in the “Chain of Responsibility” pattern from Design Patterns (Gamma et
al. 1994).

The ApplicationContext object gave us exactly what we needed: a way to break up our beans
into multiple files, loading each file into its own application context.

Then we needed a way to set up a chain of application contexts, preferably without using some
giant shell script.

* http://www.springframework.org/

† See The Pragmatic Programmer by Andrew Hunt and David Thomas (Addison-Wesley Professional).
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Module dependencies

Thinking of each top-level directory as a module, I thought it would be natural to have each
module contain its own metadata. That way the module could just declare the classpath and
configuration files it contributes, along with a declaration of which other modules it needs.

I gave each module its own manifest file. For example, here is the manifest file for the
StudioClient module:

Required-Components: Common StudioCommon
Class-Path: bin/classes/ lib/StudioClient.jar
Spring-Config: config/beans.xml config/screens.xml config/forms.xml
        config/navigation.xml
Purpose: Selling station. Workflow. User Interface. Load images. Burn DVDs.

This format clearly derives from .jar file manifests. I found it useful to align the mental function
“manifest file” with a familiar format.

Notice that this module uses four separate bean files. Separating the bean definitions by
function was an added bonus. It reduced churn and contention on the main configuration files,
and it provided a nice separation of concerns.

Our team strongly favored automatic documentation, so we built several reporting steps into
the build process. With all the module dependencies explicitly written in the manifest files, it
was trivial to add a reporting step to our automated build. Just a bit of text parsing and a quick
feed to Graphviz generated the dependency diagram in Figure 4-2.

ProductionToolbox
Utilities needed in

production.

DvdLoader
Load order DVDs

into PCS.

PcsInterface
Adapter to PCS

stored procedures.

StudioClient
Selling station.

Workflow.
User Interface.
Load images.

Burn DVDs.

Common
Domain Layer.
UI Framework.

Rendering Core.
Persistence.

XML Framework.

StudioServer
Image file server.
Extract high-res

JPEGs.

RenderEngine
Poll PCS for render jobs.
Invoke RenderInterface.

RenderInterface
Render for print.

StudioCommon
Shared code. 

FIGURE 4-2. Modules and dependencies
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With these manifest files, we just needed a way to parse them and do something useful. I wrote
a launcher program, imaginatively called “Launcher,” to do just that.

Launcher

I’ve seen many desktop Java applications that come with huge shell or batch scripts to locate
the JRE, set up environment variables, build the classpath, and so on. Ugh.

Given a module name, Launcher parses the manifest files, building the transitive closure of
that module’s dependencies. Launcher is careful not to add a module twice, and it resolves the
set of partial orderings into a complete ordering. Figure 4-3 shows the fully resolved
dependencies for StudioClient. StudioClient declares both StudioCommon and Common as
dependencies, but Launcher gives it only one copy of each.

StudioClient

Classpath
bin/classes
lib/StudioClient.jar

Configpath
config/beans.xml
config/screens.xml
config/forms.xml
config/navigation.xml

Common

Classpath
bin/classes
lib/Common.jar
lib/cglib-full-2.0.jar
lib/commons-collections.jar
---
lib/hibemate2.jar
lib/spring-1.1.5.jar

Configpath
config/beans.xml
config/studio.xml

StudioCommon

Classpath

Configpath
config/beans.xml

FIGURE 4-3. Resolved dependencies for StudioClient

To avoid classpath “pollution” from the host environment—ANT on a build box, or the JRE
classpath on a workstation—Launcher builds its own class loader from the combined
classpaths. All application classes get loaded inside that class loader, so Launcher uses that class
loader to instantiate an initializer. Launcher passes the configuration path into the initializer,
which creates all the application context objects. Once the application contexts are constructed,
we’re up and running.

Throughout the project, we refactored the module structure several times. The manifest files
and Launcher held up with only minor changes throughout. We eventually arrived at six very
different deployment configurations, all supported by the same structure.

The modules all share a similar structure, but they don’t have to be identical. That was one of
the side benefits of this approach. Each module can squirrel away stuff that other modules
don’t care about.
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WHAT ABOUT OSGI?
When we started this project in late 2004, the OSGi framework was just beginning to gain broader
visibility—thanks largely to Eclipse’s adoption of it. We looked at it briefly, but were put off by the
lack of widely available knowledge, expertise, and guidance.

OSGi’s purpose, though, is a perfect fit for the problems we faced. Supporting multiple deployment
configurations with a common codebase, managing the dependencies among modules, activating
them in the correct sequence...clearly solving the same problem.

I suppose the fact that we didn’t use OSGi was partly a quirk of timing and partly our own reluctance
to take on what we perceived as more technical risk. I usually come down on the side of “acquire
and integrate” rather than “roll your own,” but there seems to be a tipping point: lightly supported
open source projects with weak communities are more of a risk than well-understood, widely
adopted ones. Likewise, I tend to avoid quasi-open frameworks that are actually vendor consortia.
The community they serve is usually the community of vendors, not the community of users.

It wasn’t clear to us which camp OSGi would fall into. If we were doing the project today, I think we
probably would use OSGi instead of rolling our own.

Kiosk-Style GUI

Studio associates are hired for their ability to work well with the camera and the families,
especially children, not for their computer skills. At home, they might be Photoshop gurus, but
in the studio, nobody expects them to become power users. In fact, during the busy season, a
studio might bring on a number of seasonal associates. Consequently, fast ramp-up is critical.

One of the architects also served as our UI designer. He always had a clear vision of the
interface, even if we didn’t always agree on how much was feasible to implement. He wanted
the user interface to be friendly and visible. There would be no menus. Users would interact
with images through direct manipulation. Large, candy-coated buttons made all options visible.
In short, the workstation should look like a kiosk.

That left the decision about what technology to use for the display itself.

One of our team made a survey of the Java rich UI technologies available, mainstream and
fringe. We hoped to find a good declarative UI framework, something to help us avoid an
endless slog through Swing tweaks. The results shocked us all.

In 2005, even after a decade of Java, two basic choices dominated the mainstream: XML hell
or GUI builder spaghetti. The XML variants map more or less directly from Swing components
to XML entities and attributes. This made no sense to us. GUI changes require a code release,
whether the changes are implemented in straight Java code or in XML files. Why keep two
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languages in your head—Java plus the XML schema—instead of just Java? Besides, XML makes
a clumsy programming language.

GUI builders had burned all of us before. Nobody wanted to end up with business logic woven
into action listeners embedded in JPanels.

Reluctantly, we settled on a pure Swing GUI, but with some ground rules. Over a series of
lunches at our local Applebee’s, we hashed out a novel way of using Swing without getting
mired in it.

UI and UI Model

The typical layered architecture goes “Presentation,” “Domain,” and “Persistence.” In practice,
the balance of code ends up in the presentation layer, the domain layer turns into anemic data
containers, and the persistence layer devolves to calls into a framework.

At the same time, though, some important information gets duplicated up and down the layers.
For instance, the maximum length of a last name will show up as a column width in the
database, possibly a validation rule in the domain, and as a property setting on a JTextField in
the UI.

At the same time, the presentation embeds logic such as “if this checkbox is selected, then
enable these four other text fields.” It sounds like a statement about the UI, but it really captures
a bit of business logic: when the customer is a member of the Portrait Club, the application
needs to capture their club number and expiration date.

So within the typical three-layer architecture, one type of information is spread out across
layers, whereas another type of important information is stuck inside GUI control logic.

Ultimately, the answer is to invert the GUI’s normal relationship to the domain layer. We put
the domain in charge by separating the visual appearance of a screen from the logical
manipulation of its values and properties.

Forms

In this model, a form object presents one or more domain objects’ attributes as typed properties.
The form manages the domain objects’ lifecycles as well as calling down to the facades for
transactions and persistence. Each form represents a complete screen full of interacting objects,
though there are some limited cases where we use subforms.

The trick, though, is that a form is completely nonvisual. It doesn’t deal with UI widgetry, only
with objects, properties, and interactions among those properties. The UI can bind a Boolean
property to any kind of UI representation and control gesture: checkbox, toggle button, text
entry, or toggle switch. The form doesn’t care. All it knows is that it has a property that can
take a true/false value.
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Forms never directly call screens. In fact, most of them don’t even know the concrete class of
their screens. All communication between forms and screens happens via properties and
bindings.

Properties

Unlike typical form-based applications, the properties that a Form exposes are not just Java
primitives or basic types like java.lang.Integer. Instead, a Property contains a value together
with metadata about the value. A Property can answer whether it is single-valued or
multivalued, whether it allows null values, and whether it is enabled. It also allows listeners
to register for changes.

The combination of Forms and their Property objects gave us a clean model of the user interface
without yet dealing with the actual GUI widgetry. We called this layer the “UI Model” layer,
as shown in Figure 4-4.

Application facade

Startup beans

Swing

Screens

Bindings

Properties

Forms

Domain objects

Hibernate

DisplayServer

Navigation

UI

UI Model

Facade

Domain Model

MySQL

FIGURE 4-4. Layered architecture

Each subclass of Property works for a different type of value. Concrete subclasses have their
own methods for accessing the value. For instance, StringProperty has getStringValue() and
setStringValue(String). Property values are always object types, not Java primitives, because
primitives do not allow null values.

It might seem that property classes could proliferate endlessly. They certainly would if we
created a property class for each domain object class. Most of the time, instead of exposing the
domain object directly, the Form would expose multiple properties representing different
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aspects of the domain object. For example, the customer form exposes StringProperty objects
for the customer’s first name, last name, street address, city, and zip code. It exposes a
DateProperty for the customer’s club membership expiration date.

Some domain objects would be awkward to expose this way. Connecting a slider that controls
dilation of the image or embedded image in a design to the underlying geometry would have
required more than half a dozen properties. Having the Form juggle this many properties just
to drag a slider seemed like a pretty clear code smell. On the other hand, adding another type
of property seemed like the path to wild type proliferation.

Instead, we compromised and introduced an object property to hold arbitrary Java objects. The
animated discussion before that class appeared included the phrases “slippery slope” and
“dumping ground.” Fortunately, we kept that impulse in check—one of the perils of a type-
checked language, I suppose.

We handled actions by creating a “command property,” which encapsulates command objects
but also indicates enablement. Therefore, we can bind command property objects to GUI
buttons, using changes in the property’s enablement to enable or disable the button.

The UI Model allowed us to keep Swing contained within the UI layer itself. It also provided
huge benefits in unit testing. Our unit tests could drive the UI Model through its properties
and make assertions about the property changes resulting from those actions.

So, forms are not visual themselves, but they expose named, strongly typed properties.
Somewhere, those properties must get connected to visible controls. That’s the job of the
bindings layer.

Bindings

Whereas properties are specific to the types of their values, bindings are specific to individual
Swing components. Screens create their own components, and then register bindings to
connect those components to the properties of the underlying Form objects. An individual
screen does not know the concrete type of form it works with, any more than a form knows
the concrete type of the screen that attaches to it.

Most of our bindings would update their properties on every GUI change. Text fields would
update on each keystroke, for instance. We used that for on-the-fly validation to provide
constant, subtle feedback, rather than letting the user enter a bunch of bad data and then
yelling at them with a dialog box.

Bindings also handle conversion from the property’s object type to a sensible visual
representation for their widgets. So, the text field binding knows how to convert integers,
Booleans, and dates into text (and back again). Not every binding can handle every value type,
though. There’s no sensible conversion from an image property to a text field, for example.
We made sure that any mismatch would be caught at application startup time.
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An interesting wrinkle developed after we had built the first iteration of this property-binding
framework. The first screen we tried it out on was the customer registration form. Customer
registration is fairly straightforward, just a bunch of text fields, one checkbox, and a few
buttons. The second screen, the album screen, is much more visual and interactive. It uses
numerous GUI widgets: two proof sheets, a large image editor, a slider, and several command
buttons. Even here, the form makes all the real decisions about selections, visibility, and
enablement entirely through its properties. So the album form knows that the proof sheets’
selections affect the central image editor, but the screen is oblivious. Keeping the screens
“dumb” helped us eliminate GUI synchronization bugs and enabled much stronger unit testing.

IS ONE ENOUGH?
On some screens, proof sheets allow multiple selections; on others, only single selection. Worse yet,
some actions are allowed only when exactly one thumbnail is selected. What component would
decide which selection model to apply or when to enable other commands based on the selection?
That’s clearly logic about the UI, so it belongs in the UI Model layer. That is, it belongs in a form. The
UI Model should never import a Swing class, so how can forms express their intentions about
selection models without getting tangled up in Swing code?

We decided that there was no reason to restrict a GUI component to just one binding. In other words,
we could make bindings that were specific to an aspect of the component, and those bindings could
attach to different form properties.

For instance, we often had separate bindings to represent the content of a widget versus its selection
state. The selection bindings would configure the widget for single- or multiselect, depending on
the cardinality of its bound property.

Although it takes a long time to explain the property-binding architecture, I still regard it as
one of the most elegant parts of Creation Center. By its nature, Creation Center is a highly
visual application with rich user interaction. It’s all about creating and manipulating
photographs, so this is no gray, forms-based business application! Yet, from a small set of
straightforward objects, each defined by a single behavior, we composed a very dynamic
interface.

The client application eventually supported drag-and-drop, subselections inside an image, on-
the-fly resizing, master-detail lists, tables, and double-click activation. And we never had to
break out of the property-binding architecture.
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Application facade

There’s a classic pitfall in building a strong domain model. The presentation layer—or in this
case, the UI Model—often gets too intimate with the domain model. If the presentation
traverses relationships in the domain, then it becomes difficult to change the domain model.
Like any agile team, we needed to stay flexible, and there was no way we would make design
choices that would lead to less flexibility over time.

Martin Fowler’s “Application Facade” pattern fit the bill (see the “References” section at the
end of this chapter). An application facade presents only a portion of the domain model to the
presentation layer. Instead of walking through graphs of domain objects, the presentation asks
the application facade to assist with traversal, life cycle, activation, and so on.

Each form defined a corresponding facade interface. In fact, following the dictum that
consumers—rather than their providers—should define interfaces we put the facade interface
in the form’s package. The form asks the facade to look up domain objects, relate them, and
persist them. In fact, the facades managed all database transactions, so the forms were never
aware of transaction boundaries.

The interfaces at this boundary, between forms and facades, also became an ideal place to
isolate objects for unit testing. To test a particular form, the unit test creates a mock object that
implements the facade’s interface. The test trains the mock object to feed the form with some
set of expected results, including error conditions that would be very difficult to reproduce
with the real facade. I think we all regarded mock objects as a two-sided compromise: although
they made unit tests possible, something still felt wrong about tying the tests so closely to the
forms’ implementations. For example, mock objects have to be trained with the exact sequence
of method calls to expect, and the exact parameters. (Newer mock object frameworks are more
flexible.) As a result, changes in the internal structure of the forms would cause tests to fail,
even though no externally visible behavior changed. To a certain extent, this is just the price
you pay for using mock objects.

All the Creation Center applications, both in the studio and in the printing facility, used the
same stack of layers. Removing the GUI from the driver’s seat kept the team from spending
endless cycles in Swing tweaking. This inversion of control also provided a uniform structure
that every application, and every pair, could follow. Even though we created more than the
usual “three-layer cake,” our stack was quite effective at separating concerns: Swing was
limited to the UI, domain interaction in the forms, and persistence in the facades.

Interchangeable Workstations

When a photographer finishes a session, she grabs any open workstation. Depending on how
busy the studio is, she’ll usually finish with the customer at that time. It’s common, though,
for customers to come back later, maybe even on a different day. It would be ridiculous to
permanently attach a customer to a single workstation—not just unworkable for scheduling,
but also risky. Workstations break!
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So any workstation in the studio must be interchangeable, but “interchangeable” presents
some problems. The images for a single session can consume close to a gigabyte.

We briefly contemplated building the workstations as a peer-to-peer network with distributed
replication. Ultimately, we opted for a more traditional client-server model, as shown in
Figure 4-5.

StudioServer

StudioClient

StudioClient

Image
Storage

MySQL

FIGURE 4-5. Studio deployment

The server is equipped with larger disks than the clients, and they are RAIDed for resilience.
The server runs a MySQL database to hold structured data about customers, sessions, and
orders. Most of the space, however, is devoted to storing the customers’ photographs.

Because the studios are remote and the associates are not technically adept, we knew it would
be important to make the “plumbing” invisible. Associates should never have to look at
filesystems, investigate failures, or restart jobs. They should certainly never log into the
database server! At worst, if a network cable should be bumped loose, once it is plugged back
in, everything should work as normal and also should automatically recover from that
temporary problem.

With that end in mind, we approached the system and application architecture.

Image repositories

To make the workstations interchangeable, the most essential feature would be automatic
transfer of images, both from the workstation where the photographer loaded them to the
server and from the server to another workstation.

The studio client and studio server both use a central component called an image repository.
It deals with all aspects of storing, loading, and recording images, including their metadata. On
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the client side, we built a local, caching, write-behind proxy. When a caller asks for an image,
this client image repository either returns it directly from local cache or downloads the file into
local cache, and then returns it. Either way, callers remain blissfully ignorant.

Likewise, when adding images on the client, the client image repository uploads it to the server.
We use a pool of threads to run background transfers so the user doesn’t have to wait on
uploads.

Both the client and server repositories are heavily multithreaded. We created a system of
locking called “reservations.” Reservations are a soft form of collaborative locking. When a
client wants to add an image to the repository, it must first request and hold a “write
reservation.” This way, we can be sure that no other thread is reading the image file when we
issue the reservation. Readers have to acquire a “read reservation,” naturally.

Although we did not implement distributed transactions or two-phase commit, in practice
there is only a small window between when the client image repository grants a write
reservation and when the server side grants a corresponding write reservation. When that
second reservation is granted, we can be confident that we will avoid file corruption.

In practice, even lock contention is rare. It requires two photographers at two different
workstations to access exactly the same customer’s session. Still, there are several workstations
in every studio, and each workstation has many threads, so it pays to be careful.

NIO image transfer

Obviously, that leaves the problem of getting the images from the client to the server. One
option we considered and rejected early was CIFS—Windows shared drives. Our main concern
here was fault-tolerance, but transfer speed also worried us. These machines needed to move
a lot of data back and forth, while photographers and customers were sitting around waiting.

In our matrix of off-the-shelf options, nothing had the right mix of speed, parallelism, fault-
tolerance, and information hiding. Reluctantly, we decided to build our own file transfer
protocol, which led us into one of the most complex areas of Creation Center. Image transfer
became a severe trial, but we emerged, at last, with one of the most robust features of the
whole system.

I had some prior experience with Java NIO, so I knew we could use it to build a blazing-fast
image transfer mechanism. Building the NIO data transfer itself wasn’t particularly difficult.
We used the common leader-follower pattern to provide concurrency while still keeping NIO
selector operations on a single thread.

Although the protocol wasn’t difficult to implement, there were a number of nuances to deal
with:

• Either end can close a socket, particularly if the client crashes. Sample code never deals
with this properly.
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• While handling an IO event, the SelectionKey will still signal that it’s ready. This can result
in multiple threads calling into the same handler if you don’t clear that operation from
the key’s interest set.

• The leader must perform all changes to a SelectionKey’s interest set or else you get race
conditions with the Selector, so we had to build a queue of pending SelectionKey changes
that the leader thread would execute before calling select.

Handling these tricky details led to quite a bit more coupling between the various objects than
I initially expected. If we had been building a framework, this whole area would have needed
much more attention to loose coupling. For an application, however, we felt it was acceptable
to regard the collection of collaborating objects in the server as a cohesive unit.

One particularly interesting effect showed up only when we ran a packet sniffer to see if we
were really getting the maximum possible throughput. We weren’t. At first, when the reactor
read from a socket that had data available, it would read one buffer full and then return. We
figured that it wouldn’t take very long to get back around the loop if more than 8,192 bytes
were available. It turns out that the studio network is fast enough to fill the server’s TCP
window before the next thread could get back into the handler, so virtually every transfer
would stall for about half of the total transfer time. We added a loop inside the reactor, so it
would keep reading until the buffer was drained. That cut the transfer time by nearly half, and
reduced the amount of overhead in threading and dispatching. I found this particularly
interesting because it works only for fast networks with low latency and only if the total
number of clients is small. With higher network latency or more clients, looping that way
would risk starving some clients. Again, it was a trade-off that made sense in our context.

UNIT TESTING AND CODE REVIEW
This NIO file server was the one time that I found it helpful to do a large group review, even on an
agile project with complete pairing.

My pair and I worked on the threading, locking, and NIO mechanisms over most of an iteration. We
unit tested what we could, but between the threading and low-level socket IO, we found it difficult
to gain confidence in the code. So we did the next best thing: we got more eyes on it. I’d call that a
special case, though. We were compensating for our inability to write sufficient unit tests.

In general, having two sets of eyes on the code all the time provides all the benefits of a code review.
Combine that with automatic formatting and style checking, and there’s just not enough remaining
advantage of a code review to offset its cost. And if you can get the benefits without the cost, then
why bother with the code review?

We kept a projector in our lab, connected to two machines through an A/B switch. Whenever we had
a technique to illustrate or a design pattern to share, we’d take a few minutes after lunch to fire up
the projector and walk through some code. This was particularly handy during the early stages, when
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the architecture and design were more fluid, and we were learning how to deal with Spring and
Hibernate. It helped homogenize Eclipse practices and tricks, too.

The projector was also handy for iteration demos. We could have all the stakeholders in the room,
without crowding around a single screen.

(Not to mention how helpful it was for projecting funny YouTube clips up on the wall.)

I knew it wouldn’t be hard at all to build something fast but fragile. The real challenge would
be making it robust, especially when the whole network would exist in a studio hundreds of
miles away. One with no ability to log in remotely to debug problems or clean up after failures.
One with small children, distracted parents, and servers sitting at toddlers’ eye level. Talk about
a hostile environment! Moving bits across the wire would not be enough; we needed atomic
file transfer with guaranteed delivery.

The first layer of defense was the protocol itself. For a “put” operation—uploading a file from
client to server—the first packet of the request includes the file’s MD5 checksum. Once the
client sends the last packet, it waits for a response from the server. The server responds with
one of several codes: OK, TIMEOUT, FAILED_CHECKSUM, or UNKNOWN_ERROR. On anything but an OK, the
client resends the entire file in what we call a “fast retry.” The client gets three fast retries before
the transfer fails.

Problems with file transfer will come in two varieties. One type is the “fast transient,” a quick
problem that will clear itself up, such as network errors. The other type requires human
intervention. That means problems will either be cleared up in a few milliseconds, or they will
take minutes to hours to correct. There’s no point in retrying a fast file transfer over and over
again. If it didn’t work after the first few attempts, it’s not likely to work for quite a while.

Therefore, if the client exhausts all the fast retries, it puts the file transfer job in a queue. A
background job wakes up every 20 minutes looking for pending file transfer jobs. It tries each
job again, and if it fails again, it goes right back into the queue. Using Spring’s scheduling
support made this “slow retry” almost trivial to implement.

This mix of fast and slow retries lets us decouple maintenance and support on the server from
the clients. There’s no need to “cold boot” an entire studio for upgrades or replacements.

Fast and robust

The local and remote image repository and their associated file transfer mechanics became a
seriously tough slog. Once it was done, though, the whole thing could upload images to the
server faster than they could be read from the memory card. Downloading them on another
machine was fast enough that users never perceived any activity at all. The client would
download all the thumbnails for an album during the transition from one screen to the next.
Downloading the screen-sized images for full-size display could be done during a mouse click.
This speed let us avoid the user frustration of “loading” dialogs.
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Database Migrations

Imagine operating 600 remote database servers across four time zones. They might as well be
on a desert island, and digitally speaking, they are. If a database administrator needed to apply
changes by hand, he would have to travel to hundreds of locations.

In such circumstances, one option would be to get the database design exactly right before the
first release, and then never change it again. There may still be a few people who think that’s
possible, but certainly none of them were on my team. We expected and even counted on
change at every level, including the database.

Another option would be to send release notes out to the field. The studio managers always
called the service desk for a verbal walkthrough when they executed the installs. Perhaps we
could include SQL scripts in documents on the release CDs for them to type in or copy-and-
paste. The prospect of dictating any command that starts with, “Now type mysqladmin –u root
–p...” gives me cold sweats.

Instead, we decided to automate database updates. Ruby on Rails calls these “database
migrations,” but in 2005 it wasn’t a common technique.

Updates as objects

The studio server defines a bean called a database updater. It keeps a list of database update
objects, each representing an atomic change to the database. Each database update knows its
own version and how to apply itself to the database.

At startup time, the database updater checks a table for the current version of the database. If
it doesn’t find the table, it assumes that no updates exist or have been applied. Accordingly,
the very first update bootstraps the version table and populates it with one row. That single
row contains a version number and a lock field. To avoid concurrent updates, the database
updater first updates this row to set the lock field. If it cannot, then it assumes some other
machine on the network is already applying updates.

We used this migration ability to apply some simple changes and some sophisticated ones. One
of the simple ones just added indexes to a couple of columns that were affecting performance.
One of the updates that made us really nervous changed all the table types from MyISAM to
InnoDB. (MyISAM, the default MySQL table type, does not support transactions or referential
integrity. InnoDB does. If we had known that before our first release, we could have just used
InnoDB in the first place.) Given that we had deployed databases with production data, we
had to use a sequence of “alter table” statements. It worked beautifully.

After a few releases had gone out to the field, we had about 10 updates. None of them failed.

Regular exercise

Every time we run a build, we reset the local development database to version zero and roll
forward. That means we exercise the update mechanism dozens of times every day.
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We also unit test every database update. Each test case makes some assertions about the state
of the database prior to the update. It applies the update and then makes some assertions about
the resulting state.

Still, these tests all work with “well-behaved” data. Weird things happen out in the field,
though, and real data is always messier than any test data set. Our updates create tables, add
indices, populate rows, and create new columns. Some of these changes can break badly if the
data isn’t what we expect. We worried about the risky time during the updates and looked for
ways to make the process more resilient.

Safety features

Suppose something goes wrong with one of the updates. A studio could be shut down until
Operations found a way to restore the database, and if the update really goes wrong, it might
leave the database corrupted or in some intermediate state. Then the studio wouldn’t even be
able to roll back to the previous version of the application. To avoid that disaster scenario, the
database updater makes a backup copy of the database before it starts applying the updates. If
it can’t make the backup copy, then it halts the update process.

If errors occur during the updates, the updater automatically attempts to reload from that
backup copy. If even that step fails, well, at least there’s a copy onsite so a support technician
can talk the studio manager through a manual restore.

In fact, in the absolute worst case, the printing facility always has a copy of the database that’s
no more than one day old. We used some of the extra space on the daily DVD to send a complete
copy of the database every day. There’s something to be said for a small database and a lot of
storage space.

Field results

The time we invested in automated database updates paid off in several ways. First, we
improved performance and reliability through some early updates. Feedback from the user
community was immediate and positive after that release. Second, the operations group greatly
appreciated the easy deployment of new releases. Previous systems had required the studios
to ship removable hard drives back and forth, with all the attendant logistics problems. Finally,
having the update mechanism allowed us to focus on “just sufficient” database design. We did
not peer into the crystal ball or overengineer the database schema. Instead, we just designed
enough of the schema to support the current iteration.

Immutable Data and Ubiquitous GUIDs

In working with customers, the studio associate creates some compositions that use multiple
photographs, inset into a design. These designs come from a design group at company
headquarters. Some designs are perennial, others are seasonal. Christmas cards in a wide
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variety of designs are a big seller, at least in the weeks before Christmas. Not surprisingly,
demand drops precipitously after that.

A particular design includes some imagery for the background and a description of how many
openings there are for base images, and the geometry of those openings. The associate can be
very creative in filling those openings with photographs and with other compositions.

We found some interesting challenges dealing with these designs and the base images that go
in them. For instance, what happens when a customer places an order, but then a new version
of the design gets rolled out to the studio? At a smaller scale, what do you do if the associate
nested one design within another—such as a sepia-tinted photograph inside a border—and
then changes or deletes the original design?

At first, this looked like a nightmare of reference counting and hidden linkages. Every scheme
we considered created a web of object references that could lead to gaps, missing images, or
surprising changes. As a team, we all believed in “The Rule of Least Surprise,” so hidden
linkages causing changes to ripple from one product to another just wasn’t going to work.

When our lead visionary came up with a simple, clear answer, it didn’t take more than 30
seconds to sell the rest of us on it. The solution incorporated two rules:

1. Don’t change anything after creating it. Designs and compositions would be immutable.

2. Copy, don’t reference, the original.

Taken together, this means that selecting a design actually copies that design into the working
space. If the associate adds the resulting composition to the album, it’s actually a complete and
self-contained copy of the design that gets added. Likewise, nesting one enhanced image into
another makes a copy of the original and grafts it into the new composition. From the moment
that graft happens, the original composition and the new one are completely independent of
each other.

These copies are not just a trick of object references in memory. The actual XML description
of the composition contains a complete copy of the design or the embedded compositions. This
description lives in the studio’s database, and it’s the same description that gets sent on the
DVD. When the studio manager burns the day’s orders to DVD, the StudioServer packs in
everything needed to create the final render: source images, backgrounds, alpha masks, and
the instructions about how to combine them into the final image.

Having the complete description of the whole composition—including the design itself—on
DVD became a huge advantage for production.

Previous systems kept the designs in a library, and orders just referenced them by ID. That
meant the designers had to coordinate design IDs between the studios and the centralized
printing facility. Therefore, designs had to be “registered” in production before they could be
rolled out to the field. Should the IDs get out of sync, as sometimes happened, the wrong design
would be produced and customers would not get the products they expected. Likewise,
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whenever the designers updated a design, there would be a few days’ worth of DVDs in the
pipeline made with the old version of the design. Sometimes it would come out OK, and
sometimes it wouldn’t.

Under the new system, designs never have to be registered. Whatever comes through in the
XML is what gets produced, which frees the designers to make much more frequent changes
and roll them out however they want. New revisions of designs don’t affect orders in the
pipeline, because each order is self-contained. Once the new revision gets out to the studios,
then it starts showing up in the order stream.

The only parts that weren’t copied were the image files themselves. They’re too large to copy,
and so instead we assign every image—whether part of a design or taken in the studio—its
own GUID. As a rule, once something gets a GUID, it is officially immutable. When it’s getting
ready to burn orders to DVD, the StudioServer walks through the orders collecting GUIDs
(using the controversial Visitor pattern). It adds every image it finds to the DVD, including both
the customers’ photographs and the design backgrounds.

Render Farm

The StudioClient helps associates create enhanced portraits from the basic images. Those
enhanced portraits can be as simple as a sepia or black and white effect to make the portrait
look more dramatic, or they can be as complex as a multilayered structure with alpha-
composited backgrounds, text, and soft focus. Whatever the effect, the workstations in the
studio do not produce the final rendered image. The printing facility has a variety of printers,
supporting different sizes and resolutions. They’re free to change printers or move jobs between
printers at any time. The studios just don’t know enough to produce the print-ready images.

When those daily DVDs arrive, they get loaded into the production control system (PCS). PCS
makes all the decisions about when to render the images for an order, when to print them,
and what printers to send them to. A separate team, in a separate location and in a separate
time zone, develops PCS. Previous projects had run into tremendous friction when trying to
integrate too closely with PCS. All parties worked with good intentions, but the communication
difficulty slowed both teams down. We needed to avoid that friction, and so we decided to
apply Conway’s Law (defined in the next section) proactively, by explicitly creating an
interface in the software where we knew the team boundary would be.

Conway’s Law, applied

Conway’s Law is often invoked after the fact, to explain what might otherwise appear to be
arbitrary divisions within a product. It speaks to a fundamental truth about development
teams: anywhere there is a team boundary, you will find a software boundary. This emerges
from the need to communicate about interfaces.

We felt it was important enough to keep the DVD format and layout under complete control
of Creation Center that we added a program to our own scope: the DvdLoader. DvdLoader
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runs in the production facility, reading DVDs and calling various stored procedures within PCS
to add orders, compositions, and images. PCS treats the composition instructions as an opaque
string, and we were careful to avoid any decisions that would have PCS “opening up” the XML
in that string. That sometimes means we duplicate information, such as dependencies on the
base images themselves, but that is an acceptable trade-off for maintaining a clear boundary.

Similarly, we defined an interface that let the RenderEngine pull render jobs from PCS while
keeping the XML description of the rendering itself under Creation Center’s control.

We worked out written specifications of those interfaces, and then used FIT running on our
development server to “nail down” the precise meaning. In effect, we used FIT as an executable
specification of the interfaces. That turned out to be vital because even the people who
negotiated the interface still found discrepancies between what they thought they agreed to
and what they actually built. FIT let us eliminate those discrepancies during development
rather than during integration testing, or worse, in production.

INCREMENTAL ARCHITECTURE
One of the recurring questions in the agile community is, “How much architecture should you create
up front?” Some of the leading agile thinkers will tell you, “None. Refactor mercilessly and the
architecture will emerge.” I’ve never been in that camp.

Refactoring improves the design of code without changing its functionality. But, to refactor your way
to better design, you must first be able to recognize good and bad design. We have a good catalog
of “code smells” to guide us there, but I don’t know of any equivalent for “architecture smells.”
Second, it must be possible to change things continuously even across interface boundaries. This
has always led me to believe that a system’s fundamental architecture must be in place at the start
of development.

Now, after the Creation Center project, I’m much less confident in that answer. We added major
pieces of the architecture relatively late in the project. Here are some examples:

• Hibernate: Added after two or three iterations. We didn’t need the database before this.

• Spring: Added nearly one-third of the way to release 1.0. It quickly became central to our
architecture. I don’t remember how we got along without it, but we did.

• FIT: Added halfway to release 1.0.

• DVD-burning software: Purchased and added near the end of initial development.

• Support for windowed UIs: Added in the final two iterations before launch.
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In each case, we took the approach of exploring options thoroughly before making decisions. We
would make a decision at the “last responsible moment,” that point where the cost of not deciding
outweighed the cost of implementing the feature. Although there were a few things that we might
have done differently if Spring had been there from the start, we were not harmed by adding it later.
In those early iterations, we focused on uncovering what the application wanted to be rather than
how Spring wants us to build applications.

DVD loading

The DvdLoader program, which runs in the printing facility, is really a batch processor that reads
orders from DVDs and loads them into PCS. As with everything else, we focused on robustness.
DvdLoader reads an entire order, verifying that the DVD includes all the constituent elements,
before it adds the order to PCS. That way it doesn’t leave partial or corrupted orders in the
database.

Because images can appear on many DVDs, the loader checks to see whether there’s already
an image loaded with that GUID. If not, the loader adds it. Orders can therefore be resent from
the studio whenever necessary, even if PCS has already purged the order and its underlying
images. This also means that the background images used in a design get loaded the first time
an order for that design arrives.

The DVDs are therefore self-contained and idempotent.

Render pipeline

For the render engine itself, we drew on the classic pipes and filters architecture. “Pipeline” is
a natural metaphor for rendering images, and separating the complex sequence of actions into
discrete steps also made unit testing simple.

On pulling a job from PCS, the render engine creates a RenderRequest. It passes the
RenderRequest into the rendering pipeline, where each stage operates on the request itself. One
of the final stages in the pipeline saves the rendered image to the path specified by PCS. By the
time the request exits the pipeline, it holds only a result object with a success indicator and an
optional collection of problems.

Each step in the pipeline has its own opportunity to report problems by adding an error message
to the result. If any step reports errors, the pipeline aborts and the engine reports the problem
back to PCS.

Fail fast

Every system has failure modes; the only question is whether you design them in or just let
them happen. We took care to design in “safe” failures, particularly in the production process.
There was no way we wanted our software to be responsible for stopping the production line.
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There’s another aspect, too. When the customer picks up his order, it should be the right one!
That is, the product we deliver really needs to match the product the customer ordered. It
seems like a trivial statement, but it is very important to render the production scale images in
the same way that the on-screen image was rendered. We worked hard to ensure that exactly
the same rendering code would be used in production as in the studio. We also made sure that
the rendering engine would use the same fonts and backgrounds in production.

In our render engine, we adopted a philosophy of “Fail Fast, Fail Loudly.” As soon as the render
engine pulls a job from PCS, it checks through all the instructions, validating that all the
resources the job requires are actually available. If the job includes text, the render engine
loads the font right away. If the job includes some background images or an alpha mask, the
render engine loads the underlying images right away. If anything is missing, it immediately
notifies PCS of the error and aborts that job. Out of the 16 steps in the rendering pipeline, the
first 5 all deal with validation.

After several months in production, we finally found one error that the render engine didn’t
detect early: it didn’t reserve disk space for the rendered image up front. One day when PCS
filled its storage volumes, render jobs started to fail late instead of failing early. In all the
preceding time, there were no remakes due to bad renders.

Scale out

Each render engine operates independently. PCS doesn’t keep a roster of the render engines
that exist; each engine just pulls jobs from PCS. In fact, engines can be added or removed as
needed. Because each engine looks for a new job as soon as it finishes the previous one, we
automatically get load balancing, scaled to the horsepower of the individual engines. Faster
render engines just consume jobs at a higher rate. Heterogeneous render engines are no
problem.

The only bottleneck would be PCS itself. Because the render engines call stored procedures to
pull jobs and update status, each render engine generates two transactions every three to five
minutes. PCS runs on a decent-sized cluster of Microsoft SQL Server hosts, so it is in no danger
of limiting throughput anytime soon.

User Response
Our first release was installed at two local studios, both within easy “drive-and-debug” distance.
The associates’ feedback was immediate and very positive. One studio manager estimated that
the new system was so much faster and easier to use that she would be able to handle 50%
more customers during the holiday season. One customer was reported to ask where she could
buy a copy of the software. We commonly heard reports of customers taking the mouse directly
and making their own enhancements. You can imagine that customers are much more likely
to order products they’ve created themselves.
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We had a few kinks in the production process, but those were corrected very quickly. Thanks
to the resilience we built into the loader and render farm, the printing facility has been able to
scale up to handle the volume from many more studios than originally expected, while also
enjoying higher production quality.

Conclusion
I could spend much more time and space with fond descriptions of every class, interaction, or
design decision, with the devotion of a new parent describing his infant’s every burp and
wobble. Instead, this chapter condenses a year’s worth of effort, exploration, blood, and sweat.
It illustrates how the structure and dynamics of the Creation Center architecture emerged from
fundamental forces about the business and its context. By keeping concerns well separated and
guiding the incremental design and development, Creation Center balanced those forces in a
pleasing way.
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Resource-Oriented Architectures:
Being “In the Web”

Brian Sletten

Architecture is inhabited sculpture.

—Constantin Brâncusi

IN  THIS  CHAPTER ,  WE  WILL  OBSERVE  THAT  AN  INFORMATION-FOCUSED  ARCHITECTURE in the
Enterprise demonstrates some of the same positive properties as the Web: scalability, flexibility,
architectural migration strategies, information-driven access control, and so on. In the process,
it empowers the business side of the house to make capital investment and software
development decisions based on business needs, not simply because fragile technology choices
require them to pay for flux.

Introduction
It is with great shame that we as an IT industry must acknowledge this embarrassing fact: it is
easier for most organizations to find information on the Web than it is to find information in
their own systems. Think about that for a moment. It is easier for them to locate data, through
third parties, on a global information system than to do so within environments in which they
have complete control and visibility. There are many reasons for this travesty, but the biggest
problem is that we tend to use the wrong abstractions internally, overemphasizing our software

 Principles and properties  Structures

 Versatility  Module

✓ Conceptual integrity  Dependency

 Independently changeable  Process

 Automatic propagation ✓ Data access

 Buildability   

✓ Growth accommodation   

✓ Entropy resistance   
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and services and underemphasizing our data. This wrong-headed approach is a big part of why
our business units are so perturbed with our IT departments. We forget that companies do not
care about software except for the features and functionality it enables. What the business
really wants are easier ways to manage the data they have collected, build upon it, and reuse
it to support their customers and core functions.

How is it that organizational information management is so radically different from the Web?
Unfortunately, the answer has as much to do with corporate politics as it does technology
choices. We have legacy systems that complicate modern interaction idioms. We attempt to
leverage solutions from vendors whose interests are not always aligned with our own. We
want silver bullets that will solve all of our problems (even though Dr. Brooks disabused us of
that notion years ago*). Even if you somehow happen to land in an organization with a
perfectly matched technology infrastructure, data stewards and data consumers are often in
territorial land grab battles that discourage information sharing. This is one of the reasons
companies do not function as cleanly as the Web: there does not seem to be suitable incentive
to share, even though there is clearly a need to do so. The take-home message is that not all
problems are technical. To some extent, Web techniques will help us route around political
problems, too, because you do not always need special permission to expose links to
information that is available to you in other forms.

The good news is that we can look to the Web for guidance on what makes it such a splendid
environment for finding information. Applying these concepts within an organization can help
solve this problem and allow similar benefits, such as low-cost data management, strategies for
architectural migration, information-driven access control, and support for regulatory
compliance. The Web’s success is largely due to the fact that it has raised the possibilities for
information sharing while also lowering the bar. We have created tools and protocols that
simultaneously support knowledge transfer between the leading scientific minds of the world
as well as allowing our grandmothers to connect to their families and find content and
communities that interest them. This is no small feat, and we would do well to consider the
confluence of ideas that led to these realities. We have to live within the architectures we build,
so we should build architectures that simultaneously satisfy and inspire us.

Conventional Web Services
Before we begin looking at a new architecture for our information-driven environments, we
should take a brief look at how we have been building similar systems recently and see what
might be done better. We have been pitched a dominant vision for Enterprise Architecture for
the last (nearly) 10 years that is built around the notion of reusable business services. We need
to remind ourselves that Web Services were intended to be a business strategy, a way to enable
functionality to be defined in a handful of places, accessed anywhere, from any language,

* http://en.wikipedia.org/wiki/No_Silver_Bullet
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asynchronously. We wanted to be able to upgrade a service without affecting the clients that
use it. Unfortunately, the unending and ever-changing technology stack associated with this
goal has confused people and not solved the problems we face in real architectures for real
organizations. Our goal in this new vision is not simply to be different, but to add value and
improve the status of the Service-Oriented Aggravation we have seen.

We have a collection of technologies that comprises our basic understanding of Web Services:
SOAP for service invocation, WSDL for contract description, and UDDI for service metadata
publishing and discovery. SOAP grew out of different traditions including the remote
procedure call (RPC) model and the asynchronous XML messaging model (doc/lit). The first
approach is brittle, does not scale, and did not really work out all that well under its previous
names of DCOM, RMI, and CORBA. The problems are neither caused nor solved by angle
brackets; we simply tend to build systems in this manner at the wrong level of granularity and
prematurely bind ourselves to a contract that clearly will not remain static. The second
advances the art and is a fine implementation strategy, but does not quite live up to the
interoperability hype that has hounded it from the beginning. It complicates even simple
interactions because its processes are influenced by the goal of solving larger interaction
problems.

The doc/lit style allows us to define a request in a structured package that can be forwarded
on, amended, processed, and reprocessed by the loosely coupled participants in a workflow.
Like an itinerant pearl, this message accretes elements and attributes as it is handled by
intermediaries and endpoints in a potentially asynchronous style. We achieve horizontal
scalability by throwing ever more message handlers at a tier. We can standardize interaction
styles across partner and industry boundaries and business processes that cannot be contained
by a single context. It represents a decontextualized request capable of solving very difficult
interaction patterns.

When strict service decomposition and description alone (i.e., SOAP and WSDL) proved
insufficient to solving our interaction needs, we moved up the stack and introduced new
business processing and orchestration layers. A proliferation of standards and tools has thus
complicated an already untenable situation. When we cross domain and organizational
boundaries we run into conflicting terms, business rules, access policies, and a very real Tower
of WS-Babel. Even if we commit to this vision, we have no real migration strategies and have
fundamentally been lied to about the potential for interoperability. Clay Shirky has famously
categorized Web Services interoperability as “turtles all the way up.”†

The problem is, when most people want to invoke reusable functionality in a language- and
platform-independent way, these technologies are overkill, they are too complicated, and they
leak implementation details. In order to invoke this functionality, you have to speak SOAP.
That is a fine implementation choice, but in this world of loosely coupled systems, we do not
always like to advertise or require our clients to know these details for simple interaction styles.

† http://en.wikipedia.org/wiki/Turtles_all_the_way_down

R E S O U R C E - O R I E N T E D  A R C H I T E C T U R E S :  B E I N G  “ I N  T H E  W E B ”  91

http://en.wikipedia.org/wiki/Turtles_all_the_way_down


The big picture idea for SOAP involves decontextualized requests that maintain transactional
integrity in an asynchronous environment. In the business realities of real systems, however,
the context has to be put back into the request. First, we must associate identity with the
request, and then credentials, and then sign the message and encrypt sensitive information,
and on and on. The “simple” burden of issuing SOAP requests gets encumbered by the
interaction style and our business needs. If someone in an organization wants to retrieve some
information, why can’t they just ask for it? And, once these questions have been answered
once, why do 10 (or 100 or 1,000) people asking the same question have to put the same
burden on the backend systems every time they issue the same query?

These questions highlight some of the abstraction problems that exist with the conventional
Web Services technology stack and offer at least a partial explanation for the WS-Dissatisfaction
that pervades the halls of IT departments around the world. These technologies are
implementation techniques for decomposing our invocation of behavior into orchestrated
workflows of services, but we cannot express the full vocabulary of an organization’s needs
with only the notion of services. We lose the ability to identify and structure information out
of the context in which it is used in a particular invocation. We lose the ability to simply ask
for information without having to understand the technologies that are used to retrieve it.
When we tie ourselves to contract-bound requests running on a particular port of a particular
machine, we lose loose-coupling and asynchronous interaction patterns as well as the ability
to embrace changing views of our data. Without the ability to uniquely identify the data that
passes through our services, we lose the ability to apply access control at an information level.
This complicates our already untenable problem of protecting access to sensitive, valuable, and
private information in an increasingly networked world.

SOAP and WSDL are not the problems here, but neither are they complete solutions. We will
very likely use SOAP in the doc/lit style in the resource-oriented architectures I am about to
describe; we just do not have to accept them as the only solution. Nor will we always need to
advertise that we are using them behind the scenes if there is no need to do so. In order to take
this next step, we need to look at the Web and why it has been so successful as a scalable,
flexible, evolvable information-sharing platform. Implementation details are often not relevant
to our information consumers.

The Web
The prevailing mental model for the Web is document-centric. In particular, when we think
about the Web, we think about consuming documents in web browsers because that is how
we experience it. The real magic, however, is the explicit linkage between publicly available
information, what that linkage represents, and the ease with which we can create windows
into this underlying content. There is no starting point, and there is no end in sight. As long
as we know what to ask for, we can usually get to it. Several technologies have emerged to
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help us know what to ask for, either through search engines or some manner of
recommendation system.

We like giving names to things because we are fundamentally name-oriented beings; we use
names to disambiguate “that thing” from “that other thing.” One of our earliest communication
acts as children is to name and point to the subjects that interest us and to ask for them. In
many ways, the Web is the application of this childlike wonder to our collective wisdom and
folly. As creatures with insatiable knowledge appetites, we simply decide what we are
interested in and begin to ask for it. There is no central coordination, and we are free to
document our wandering by republishing our stories, thoughts, and journeys as we go. We
think of the Web as a series of one-way links between documents (see Figure 5-1).

link

link

link

link
link

link

link link

link

link

FIGURE 5-1. Conventional notion of the Web

Linked documents are only part of the picture, however. The vision for the Web always
included the idea of linked data as well. This content can be consumed through a rendered
view or directly referenced and manipulated in preferred forms in different contexts. You can
imagine a middle-tier layer asking for information as an XML document while the presentation
tier prefers a JSON object via an AJAX call. The same name refers to the same data in different
forms. By allowing the data to be addressed like this, it is easy to build layered applications that
have consistent views, even if they are asking for different levels of detail or wish to have the
data styled in a particular way. Applications and environments that produce and consume data
in this loosely linked style are no longer simply “on the Web,” they are “in the Web.” We are
moving toward a Web of Data that connects people, documents, data, services, and concepts,
as in Figure 5-2.
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FIGURE 5-2. Web of Data

The basic interaction in this environment is a logical client-server request. We have an address
for information of interest. The name, a Uniform Resource Locator (URL), is a type of identifier
that not only disambiguates a reference in a global address space, but also tells us how to resolve
the request. At no point during the process are we required to understand the technologies in
place to satisfy the request. This keeps the process simple and resilient in the face of backend
changes. As our favorite sites migrate from static to dynamic data production or change
application server vendors, these facts are hidden from us. Although many sites do not
effectively handle content negotiation in the process, we at least have the potential to receive
different representations for the same named entity. We may wish to get something back in a
different format, depending on whether we are making the request on a computer or a phone.
Later in this discussion we will also see how to take advantage of this property to control the
level of detail for access control and regulatory compliance.

The naming schemes used on the Web allow us to identify our documents, our data, our
services, and now, even our concepts. We have historically had a difficult time differentiating
between a reference to, say, Abraham Lincoln and a document about him. For example, the
site http://someserver/abrahamlincoln could be either. The W3C Technical Architecture Group
(TAG) has produced a recommendation‡ that non-network addressable resources (i.e., things

‡ http://lists.w3.org/Archives/Public/www-tag/2005Jun/0039
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that do not actually live on the Web but are still interesting to us) can be indicated by the use
of a 303 response code rather than the usual 200. This is a hint to a client that, “Yes, the thing
you asked for is legitimate and of interest, but does not actually live on the Web. You can find
more information here....”

Web addresses begin with a reference to the HTTP protocol followed by the name of the server
that will respond to the request. After that, there is a hierarchical scheme that should reflect
a path through an information space. This is a logical name describing something about the
structure of the data. Multiple paths might resolve to the same resource but will have value in
different scenarios. http://server/order/open might return a list of open orders at a particular
point in time, and http://server/order/customer/112345 might reflect all open orders for a
particular customer. Clearly, there would be overlap between the results returned from either
of these logical requests. When we do not know what specifically to ask for, we might go the
more general route. When we want to inquire as to the status of a specific customer, we would
go the more direct route. We retrieve these logical URL references either from some other part
of the system or generate them based on input from the client entering data through a user
interface.

The separation of concerns here is among the key abstractions of the interaction style. We
isolate the things we are interested in discussing, the actions by which we manipulate those
things, and the forms we choose to send and receive them in. This is demonstrated in
Figure 5-3 drawn from the discussion at RESTWiki.§ In the REpresentational State Transfer
(REST)‖ architectural style, we refer to the resources (nouns), the verbs, and the representation
of the response. The resources can be anything we can address (including concepts!). The verbs
are GET (retrieve), POST/PUT (create/update), and DELETE (remove). GETs are constrained
to have no consequences. This is called an idempotent request. The semantics of this interaction
will contribute to the potential for caching. POSTs are generally used when there is no central
authority to respond to the request (e.g., submitting news articles to a Usenet community) or
we do not yet have the means of addressing our resource. We cannot identify an order before
we create it, because the server application is responsible for creating order IDs. Therefore, we
tend to POST these requests to a bit of functionality (e.g., a servlet) that accepts the request on
our behalf and generates an ID in the process. PUTs are used to update and overwrite the
existing state of a named resource. DELETE has no great use on the public Web (thankfully!),
but in the context of an internally controlled, resource-oriented environment, indicating that
we no longer need or care about particular resources is an important part of managing their
life cycles. The REST style fundamentally works by separating the concerns of logically naming
the resources we care about, the means by which we manipulate them, and the formats in
which we choose to represent them, as shown in Figure 5-3.

§ http://rest.blueoxen.net/cgi-bin/wiki.pl?RestTriangle

‖ http://en.wikipedia.org/wiki/REST
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FIGURE 5-3. REST separation of concerns

This separation contrasts sharply with the contractual nature of a SOAP service invocation,
where the structure of the request, the behavior being invoked, and the form of the return
type are often bound to a contract through the Web Services Definition Language (WSDL).
Contracts are not bad things; they are useful until we want to get out of them. One of the
primary goals of the Web Services technology stack was to reduce coupling and introduce an
asynchronous processing model where the handler of a message could be updated to reflect
new business logic without affecting the client. The WSDL-binding approach took note of this
goal and did precisely the opposite. We usually cannot change the backend binding on the
same port without affecting the client (which is what we were explicitly trying to avoid!).

The resource-oriented approach allows us to enforce contracts if and when we want to, but it
does not require us to do so. By separating out the name of the thing from the structure of the
form we accept, we can reuse the same logical name to support multiple types of interaction.
We can upgrade the back-end without necessarily breaking existing clients. If we move from
a model where all existing clients POST messages to a URL with the version 1 of the message
schema, we can add support on the backend for version 2 of the schema while allowing
business to proceed as usual if it makes sense to do so. If we ever want to reject an older schema,
we can, but again we can choose when to do so. This flexibility is one of the reasons resource-
oriented architectures help put the business back in control: backend system changes do not
necessarily force frontend updates. If we wrap a legacy system with a RESTful interface, we
can continue to use it until there is a compelling business reason to change it. Certainly other
technologies allow us to wrap legacy systems in this way. It is the general approach to using
the logical names that gives us a greater opportunity for avoiding middleware flux that makes
the difference here.

In an effort to promote horizontal scalability, the RESTful style requires that requests be
stateless. This means that any information that is needed to respond to a request comes in as
part of the request. This allows us to use load balancers to bounce the request handling among
any number of backend servers. In the face of increased load, more hardware can be thrown
at the problem, and any of the servers can pick up and handle the request. Although scalability
was the goal of this architectural constraint, another important consequence emerges from the
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application of stateless requests to the semantics of the GET request: we can start to imagine
the potential to cache the results from arbitrary requests. The address of the responder (the
main portion of the URL) plus the full state of the request (URL hierarchy plus query
parameters) becomes a compound hash key into a result set (e.g., database query, applying a
transformation to another piece of data, etc.). You will not get these caching benefits for free,
but environments that leverage the potential suddenly become easily imaginable. One of the
many compelling features of the NetKernel resource-oriented environment# is that it deeply
and fully takes advantage of this potential to enable a form of architectural memoization,* with
almost no effort on your part. We will see more about this later in the “Applied Resource-
Oriented Architecture” section.

With a common naming scheme for all the items that interest us and a logical request process
that allows the form of the thing to change over time or in a different context, we almost have
the infrastructure necessary to turn our organizational information management on its head.
The final tool we need is the ability to express metadata about the things we are addressing.
This is where the Resource Description Framework (RDF) comes in. This W3C
Recommendation uses a graph model to allow open-ended expressions of information about
our named entities. Who created it? When was it created? What is it about? What is it related
to? The ability for us to name and address existing data stored in relational databases allows
us to describe any data we like without having to convert it into a new form. This is a common
expectation and complaint about RDF that does not hold up in practice. We will usually leave
the data where it is and integrate at a level that makes sense.

In the following listing, we see an N3 expression of some RDF to describe the creator, title,
copyright date, and license associated with a particular resource. The example shows the use
of three terms from the Dublin Core Metadata Initiative† and one term from the Creative
Commons‡ community. We are free to reuse terms from whatever vocabularies exist, or to
create new ones where we need to describe new terms:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix cc: <http://creativecommons.org/ns/> .
<http://bosatsu.net/team/brian/index.html> dc:creator 
        <http://purl.org/people/briansletten> .
<http://bosatsu.net/team/brian/index.html> dc:title 
        "Brian Sletten's Homepage" .
<http://bosatsu.net/team/brian/index.html> dc:dateCopyrighted 
        "2008-04-26T14:22Z" .
<http://bosatsu.net/team/brian/index.html> cc:license 
        <http://creativecommons.org/licenses/by-nc/3.0/> .

# http://1060.org

* http://en.wikipedia.org/wiki/Memoization

† http://dublincore.org

‡ http://creativecommons.org/ns
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Not only do we now have the ability to use whatever terms we would like to, we can add new
terms and relationships at any point in the future without affecting the existing relationships.
This schemaless approach is tremendously appealing to anyone who has ever modified an XML
or RDBMS schema. It also represents a data model that not only survives in the face of
inevitable social, procedural, and technological changes, but also embraces them.

This RDF would be stored in a triplestore or other database, where it could be queried through
SPARQL or a similar language. Most semantically enabled containers support storing and
querying RDF in this way now. Examples include the Mulgara Semantic Store,§ the Sesame
Engine,‖ the Talis Platform,# and even Oracle 10g and beyond. Nodes in the graph can be
selected based on pattern-matching criteria, so we could ask questions of our resources such
as “Who created this URL?”, “Show me everything that Brian has created,” or “Identify any
Creative Commons–licensed material produced in the last six months.” The terms that mean
“created by,” “has license,” etc. are expressed in the relevant vocabularies, but are easily
translated into our stated goals. The flexibility of the data model coupled with the
expressiveness of the query language makes describing, finding, and invoking RESTful services
reasonably straightforward. It is certainly more pleasant than trying to find and invoke services
through lobotomized and high-impedance technologies such as UDDI.

With the ability to address and resolve arbitrary resources, the ability to retrieve them in
different forms and the ability to describe them in Open World and mixed-vocabulary ways,
we are now ready to apply these ideas in the Enterprise. We will describe an information-
driven architecture that supports “surfing” webs of data like you might “surf” the Web of
documents.

Resource-Oriented Architectures
The resource-oriented style is marked by a process of issuing logical requests for named
resources. These requests are interpreted by some kind of engine and turned into a physical
representation of the resource (e.g., HTML page, XML form, JSON object, etc.). See Figure 5-4.

The basic interaction style in a resource-oriented architecture (ROA) is demonstrated in this
figure. A logical request is named, resolved, and transferred back to the requestor in some form
by a resource-oriented engine. The named resource is likely to resolve to a database query or
some bit of functionality that manages information (e.g., a RESTful service). What responds
to the request, which is largely irrelevant to the person interested in the information, is
potentially a servlet, a Restlet,* a NetKernel module, or some other bit of addressable

§ http://mulgara.org

‖ http://openrdf.org

# http://talis.com

* http://restlet.org
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functionality that will interpret the request. This logical step hides a whole world of possibilities
and technology choices, and simply does not leak unnecessary details to the client. It does not
support all interaction styles, but you may be surprised at how much can fit comfortably behind
a URL.

Logical Request

Physical Representation

Resource-Oriented
Engine

FIGURE 5-4. Resource-oriented architectures

Consider the address http://server/getemployees&type=salaried. Many people who think they
are doing REST create URLs that look like this. Unfortunately, it is not a good REST service
name (most Restafarians would argue it isn’t REST at all!), because it conflates the nouns and
verbs. That is what I like to call “addressing behavior through URLs” or “RPC through URLs.”
There is nothing magic about the REST way of separating nouns from verbs; it just allows us
to identify the thing we care about. The aforementioned URL cannot be reused to update the
employee list, because POSTing an employee record to “/getemployees” does not make any
sense. If the URL were, instead, http://server/employee/salaried, then issuing a GET request
to it will result in the same information, but this becomes a longer-lived address for the business
concept of “salaried employees,” just as http://server/employee/hourly can refer to employees
who are paid by the hour. We may not choose to update these information resources, as they
represent queries into whatever our backing store is. However, it is consistent within
the /employee information space, which we may choose to navigate in other ways. http://
server/employee/12345678 represents an employee with a particular ID, and http://server/
employee might represent all employees. POSTing a record to this latter URL could represent
hiring someone. PUTing a record to the specific employee ID URL could represent updating an
employee record after a move, a raise, a promotion, etc. DELETEing the same address could
indicate that the named resource is no longer of interest in the organization (i.e., either they
quit or were fired).
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This highlights one of the main distinctions between REST and SOAP that causes confusion
when people conflate the intent of the two styles. SOAP is a fine technology for invoking
behavior, but it falls down as a means of managing information. REST is about managing
information, not necessarily invoking arbitrary behavior through URLs. When people start
scratching their heads and wondering if four verbs are enough to do what they want to do,
they are probably not thinking about information; they are thinking about invoking behavior.
If you are doing RPC through URLs, you might as well use SOAP. If you are treating important
business concepts as addressable information resources that can be manipulated and
represented in different forms in different contexts, you are taking advantage of REST and are
likely to see some of the same benefits we see on the Web. Even if your backend systems use
SOAP to satisfy a request, you can imagine benefiting from a RESTful interface. Not only does
providing that kind of an address allow users to “surf for data,” you also potentially introduce
the ability to cache results and eliminate some of the pain of a changed WSDL contract. The
clients would go through a logical coupling that gets translated into a SOAP message and
response being generated. The content of the response could be stripped out of what we get
back. We simply do not need to advertise that fact, and can gain architectural migration
strategies in the process.

As we see in Figure 5-5, the same named resource might be returned in different physical forms
in different contexts while retaining the same identity. We can imagine some type of company
report organized into an information space that can be traversed through a time facet (e.g.,
year and then month). As long as there is only one type of report, http://server/report/2008/
02 is a reasonably good, long-lived name. At no point in the future will we change the fact
that we had a report for February 2008. We may wish to access the data as XML in one scenario,
as an Excel spreadsheet in another, or as a rendered JPEG image for inclusion in a summary
report. We do not want different names for each of the scenarios, so we leverage content
negotiation to specify our preference. The resource-oriented engine needs to know how to
respond to a request type, but that is easy enough to enable. Some future data format might
emerge that no current clients support. The clients will not need to be modified simply because
we add support on the server and some other client takes advantage of it. This resilience in the
face of change was designed into the Web and is something that we will want to take advantage
of in the Enterprise as well. The client and server can negotiate a particular form for a named
resource during the resolution process. This allows the same named resource to be structured
differently in different contexts (e.g., XML during the middle tier, JSON in the browser, etc.).
The structured forms can be cached by the server if it chooses to in each form.
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FIGURE 5-5. Negotiating content in a resource-oriented environment

In addition to picking the physical representation within the context of resolving a request, we
might also enable the server to decide how much of the referenced data set to return based on
the identity of the user, the application being used, etc. We can imagine a scenario where a
call center agent using a relevant application needs to access sensitive information to resolve
an issue. This could include Social Security numbers, credit card numbers (or hopefully only
the last four digits), home addresses, etc. There is a specific business need to justify the agent
accessing this information, so we could have a declarative policy in place that lets it happen.
The same employee using a different application in a different context (perhaps a marketing
analysis package) is unlikely to have a business need to access that sensitive information,
although we may still want to resolve a reference to the same customer to access her
demographics and purchase history. In this case, the context would not support access to the
sensitive data, and we could enforce an automatic filtering process to remove or encrypt the
sensitive information. The decision of which approach to take would depend upon where the
data needed to go next. Encrypted data requires access to keys, which becomes another
management burden. It is just as easy to remove the sensitive data but include it in a different
resolution context when it is needed.

Managing single-point access control might not be a big problem for conventional Enterprise
architectures. However, given the increased presence of workflows, explicitly modeled
business processes, and the like, we have plenty of opportunities to consider a user of one
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application needing to invoke a capability or service in more than one context. If we are passing
actual data between systems, the application developers become responsible for knowing about
the access control issues when crossing application boundaries. If we instead pass a reference
to the data, the initial application is no longer responsible, and we can keep the information-
driven centralized access control working for us. Many existing SOA systems restrict access to
services based on identity or role, but they rarely support restrictions to the specific data that
passes through these services. This limitation is part of what makes conventional web services
simultaneously confusing and insufficiently secure. Access policies should be applied to
behavior and data within a context, but without being able to name the data and contain the
context, that becomes very difficult.

When people first begin exploring resource-oriented architectures, they get concerned about
exposing sensitive information through links. Somehow, returning blobs of data behind
opaque queries seems more secure. They have difficulty separating the act of identifying and
resolving something from the context in which it is done. That context contains sufficient
information to decide whether or not to produce the information for a particular user. It is
orthogonal to the request itself and will be met by the extant authentication and authorization
systems in place for an organization. Anything from HTTP Basic Auth, to IBM’s Tivoli Access
Manager, to OpenID or other federated identity systems can be leveraged to protect the data.
We can audit who had access to what and encrypt the transport with one- or two-way SSL to
prevent eavesdropping. Addressability does not equal vulnerability. In fact, passing references
around instead of data is a safer, more scalable strategy. The resource-oriented style is not less
secure because it has fewer complicating security features (e.g., XML Encryption, XML
Signature, XKMS, XACML, WS-Security, WS-Trust, XrML, etc.), but is arguably more secure
because people can actually understand the threat model and how the protection strategies
are applied.

These ideas become phenomenally important when we are faced with the daunting and very
serious realities of demonstrating regulatory compliance. Credit card companies, health care
watchdog organizations, corporate governance auditors, and the like can bring real teeth to a
corporate audit demanding proof that only employees whose job function requires access to
sensitive information can get to it. Even if your organization is in compliance, if it is difficult
to demonstrate this (“First, look in this log on this system and then trace the message flowing
through these intermediaries, where it is picked up and processed into a query, as you can see
in this other log...”), it can be an expensive process. Employing declarative access control
policies against the resolution of logical references makes it explicit (and simple to follow) who
knew what, and when.

Data-Driven Applications
Once an organization has gone to the trouble of making its data addressable, there are
additional benefits beyond enabling the backend systems to cache results and migrate to new
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technologies in unobtrusive ways. Specifically, we can introduce entirely new classes of data-
driven applications and integration strategies. When we can name our data and ask for it in
application-friendly ways, we facilitate a level of exploration, business intelligence, and
knowledge management that will make most analysts drool when they see it. The Simile
Project,† a joint effort between the W3C and the MIT CSAIL group, has produced a tremendous
body of work demonstrating these ideas and how much drool can actually be produced.

Consider the scenario of tracking the efficacy of various marketing strategies on website traffic
and sales. We might need to pull information in from a spreadsheet, a database, and several
log files or reports from web analytics software. Although tying these things together now is
not exactly rocket science, it does require a nontrivial level of effort to find, request, convert,
and republish the results. If we simply produce a spreadsheet summary and email it around,
we effectively lose the ability to retrieve the results at some future point without searching our
already clogged inboxes. Adopting a CMS or other document management system that we can
link to will increase the amount of time necessary to produce the result. Whatever the
frequency is for generating these reports, we will have to repeat the process every time.

In a resource-oriented architecture, we could simply address the source of each of the data
elements and ask for them as JSON files so they could be easily consumed in a browser-based
environment. The Exhibit project‡ from Simile with a Timeline view§ almost gives us this
ability. Throw in a little bit of work to convert Excel spreadsheets to JSON objects, and we have
a reusable environment that, when in place, would allow us to assemble and republish these
marketing reports in a matter of seconds. Now consider that the same infrastructure could
enable the ability to bring other forms of data together as easily for different types of analysis
and reporting, and you begin to realize the value of a web of addressable data. These kinds of
environments are emerging in the Enterprise; if your organization cannot tie its data together
this easily, it should be able to do so.

Applied Resource-Oriented Architecture
Recently, I built a resource-oriented system on the rearchitecture work my company did for
the Persistent URL (PURL) system. The original PURL‖ implementation was done close to 15
years ago. It was a forked version of Apache 1.0, written in C and reflecting the state of the art
at the time.# It has been a steady piece of Internet infrastructure since then, but it was showing
its age and needed modernization, particularly to support the W3C TAG’s 303 recommendation
and higher volumes of use. Most of the data was accessible through web pages or ad hoc CGI-

† http://simile.mit.edu

‡ http://simile.mit.edu/exhibit

§ http://simile.mit.edu/timeline

‖ http://purl.org

# This codebase formed the basis of the very successful TinyURL (http://tinyurl.com) service.
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bin scripts because at the time, the browser seemed like the only real client to serve. As we
started to realize the applicability of persistent, unambiguous identifiers for use in the Semantic
Web, life sciences, publication, and similar communities, we knew that it was time to rethink
the architecture to be more useful for both people and software.

The PURL system was designed to mediate the tension between good names and resolvable
names. Anyone who has been publishing content on the Web over time knows that links break
when content gets moved around. The notion of a Persistent URL is one that has a good, logical
name that maps to a resolvable location. For example, a PURL could be defined that points
from http://purl.org/people/briansletten to http://bosatsu.net/foaf/brian.rdf and returns a 303
to indicate a “see also” response. I am not a network-addressable resource, but my Friend-of-
a-Friend (FOAF) file* is a place to find more information about me. I could pass that PURL
around to anyone who wants to link to my FOAF file. If I ever move to some other company,
I could update the PURL to point to a new location for my FOAF file. All existing links will
remain valid; they will just 303 to the new location. This process is described in Figure 5-6.
The PURL Server implements the W3C Technical Architecture Group (TAG) guidance that 303
response codes can be used to provide more information about non-network addressable
resources.

ClientClient

Server

Cache

Cache

1

2

<foaf>
<foaf>

PURL Server

Content
Server

<foaf>
<foaf>

303
Redirect

FIGURE 5-6. PURL “See Also” redirect

In addition to supporting the PURL redirection, we wanted to treat each major piece of data
in the PURL system as an addressable information resource. Not only does this simplify the
interaction with the user interface, it allows for unintended potential reuse of the data beyond
what we originally planned. Manipulation of the resource requires ownership credentials, but

* http://foaf-project.org
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anyone is allowed to fetch the definition of a PURL. There is the direct resolution process of
hitting a PURL such as http://purl.org/employee/briansletten (which will result in the 303
redirect), as well as the indirect RESTful address of the PURL resource http://purl.org/admin/
purl/employee/briansletten, which will return a definition of the PURL that currently looks
something like the following:

<purl status="1">
    <id>/employee/briansletten</id>
    <type>303</type>
    <maintainers>
       <uid>brian</uid>
    </maintainers>
    <seealso>
       <url>http://bosatsu.net/foaf/brian.rdf</url>
    </seealso>
</purl>

Clients of the PURL server can “surf” to the data definition as a means of finding information
about a PURL resource without actually resolving it. No code needs to be written to retrieve
this information. We can view it in a browser or capture it on the command line with curl. As
such, we can imagine writing shell scripts that use data from our information resources to
check whether a PURL points to something valid and is returning reasonable results. If not,
we could find the owner of the PURL and fire off a message to the email address associated
with the account. Addressable, accessible data finds its way into all manner of unintended
orchestrations, scripts, applications, and desktop widgets because it is so easy and useful to do
so.

In the interest of full disclosure, we failed to support JSON as a request format in the initial
release, which complicated the AJAX user interface. JavaScript XML handling leaves a lot to
be desired. Even though we use the XML form internally, we should have gone to the trouble
of exposing the JSON form for parsing in the browser. You can be sure we are fixing this
oversight soon, but I thought it was important to highlight the benefits we could have taken
advantage of if we had gotten it right in the first place. You do not need to support all data
formats up front, but these days supporting both XML and JSON is a good start.

As an interesting side note, we could have chosen several containers and tools to expose this
architecture as expressed so far. Anything that responds to HTTP requests could have acted as
our PURL server. This represents a shallow but useful notion of RESTful interfaces and
resource-oriented architecture, as demonstrated in Figure 5-7. Any web server or application
server can act as a shallow resource-oriented engine. The logical HTTP requests are interpreted
as requests into servlets, Restlets, and similar addressable functionality.
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FIGURE 5-7. Shallow resource-oriented architectures

We chose to use NetKernel as the foundation for this architecture because it is the embodiment
of resource-oriented architectures and has a dual license, allowing its use with both open
source and commercial projects. The idea of a logical coupling between layers with different
representations is baked into the software architecture and offers similar benefits of flexibility,
scalability, and simplicity. The linkage between the layers is through asynchronously resolved,
logical names. This deeper notion of resource-oriented architectures looks something like
Figure 5-8. NetKernel is an interesting software infrastructure because it takes the idea of
logically connected resources inside so that HTTP logical requests can be turned into other
logical requests. This architecture reflects the properties of the Web in a runtime software
environment.
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FIGURE 5-8. Deep resource-oriented architectures

The external URL http://purl.org/employee/briansletten gets mapped through a rewrite to a
piece of functionality called an accessor.† Accessors live in modules that export public URI
definitions representing an address space they will respond to. The convenience here is that it
is possible to radically change the implementation technologies in a newer version of a module
and simply update the rewrite rules to point to the new implementation. The client needs to

† http://docs.1060.org/docs/3.3.0/book/gettingstarted/doc_intro_code_accessor.html
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be none the wiser as long as we return compatible responses. We can approximate this
flexibility in modern object-oriented languages through the use of interfaces, but that still
constrains us to a “physical” coupling to the interface definition. With the logical-only binding,
we still need to support expectations from existing clients, but beyond that we are not coupled
to any particular implementation detail. This is the same value we see communicating through
URIs on the Web, but in locally running software!

Internally, we use the Command Pattern‡ associated with the method type of the request to
implement the accessor. An HTTP GET method is mapped to a GetResourceCommand that
maintains no state. When the request comes in, we pull the command out of a map and issue
the request to it. The REST stateless style ensures that all information needed to answer the
request is contained in the request, so we do not need to maintain state in the command
instance. We can access that request state through the context instance in the following code.
This code looks relatively straightforward to Java developers. We are calling methods on Java
objects, catching exceptions, the works. An important thing to note is the use of the IURAspect
interface. We are essentially saying that we do not care what form the resource is in. It could
be a DOM instance, a JDOM instance, a string, or a byte array; for our purposes it does not
matter. The infrastructure will convert it into a bytestream tagged with metadata before
responding to the request. If we had wanted it in a particular form supported by the
infrastructure, we could have simply asked for it in that form. This declarative, resource-
oriented approach helps radically reduce the amount of code that is necessary to manipulate
data and allows us to use the right tool for the right job:

if(resStorage.resourceExists(context, uriResolver)) {
    IURAspect asp = resStorage.getResource(context, uriResolver);

    // Filter the response if we have a filter
    if (filter!=null) {
        asp = filter.filter(context, asp);
    }

    // Default response code of 200 is fine
    IURRepresentation rep = NKHelper.setResponseCode(context, asp, 200);
    rep = NKHelper.attachGoldenThread(context, "gt:" + path , rep);
    retValue = context.createResponseFrom(rep);
    retValue.setCacheable();
    retValue.setMimeType(NKHelper.MIME_XML);
} else {
    IURRepresentation rep = NKHelper.setResponseCode(context, 
            new StringAspect("No such resource: " 
                  + uriResolver.getDisplayName(path)), 404);
    retValue = context.createResponseFrom(rep);
    retValue.setMimeType(NKHelper.MIME_TEXT);
}

‡ http://en.wikipedia.org/wiki/Command_pattern
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Most of the information resources will return a 200 when a GET request is issued. Obviously,
PURLs override that behavior to return 302, 303, 307, 404, etc. The interesting resource-
oriented tidbit is revealed when we inspect the PURL-oriented implementation of the
resStorage.getResource() method:

INKFRequest req = context.createSubRequest("active:purl-storage-query-purl");
req.addArgument("uri", uri);
IURRepresentation res = context.issueSubRequest(req);
return context.transrept(res, IAspectXDA.class);

In essence, we are issuing a logical request through the active:purl-storage-query-purl URI
with an argument of ffcpl:/purl/employee/briansletten. Ignore the unusual URI scheme; it is
simply used to represent an internal request in NetKernel. We do not know what code is
actually going to be invoked to retrieve the PURL in the requested form, nor do we actually
care. In a resource-oriented environment, we simply are saying, “The thing that responds to
this URI will generate a response for me.” We are now free to get things going quickly by
serving static files to clients of the module while we design and build something like a
Hibernate-based mapping to our relational database. We can make this transition by rewriting
what responds to the active:purl-storage-query-purl URI. The client code never needs to know
the difference. If we change the PURL resolution away from a local persistence layer to a remote
fetch, the client code can still not care. These are the benefits we have discussed in the larger
notion of resource-oriented Enterprise computing made concrete in a powerful software
environment.

Not only are our layers loosely coupled like this, but we get the benefit of an idempotent,
stateless request in this environment as well. The earlier code snippet that fetches the PURL
definition gets flattened internally to an asynchronously scheduled request to the URI
active:purl-storage-query-purl+uri@ffcpl:/purl/employee/briansletten. As we discussed earlier,
this becomes a compound hash key representing the result of querying our persistence layer
for the generated result. Even though we know nothing about the code that gets invoked,
NetKernel is able to cache the result nonetheless. This is the architectural memoization that I
mentioned before. The actual process is slightly more nuanced, but in spirit, this is what is
going on. If someone else tries to resolve the same PURL either internally or through the HTTP
RESTful interface, we could pull the result from the cache. Though this may not impress
anyone who has built caching into their web pages, it is actually a far more compelling result
when you dig deeper. Any potential URI request is cacheable in this way, whether we are
reading files in from disk, fetching them via HTTP, transforming an XML document through
an XSLT file, or calculating pi to 10,000 digits. Each of these invocations is done through a
logical, stateless, asynchronous result, and each has the potential to be cached. This resource-
oriented architectural style gives us software that scales, is efficient, is cacheable, and works
through uniform, logical interfaces. This results in substantially less brittle, more flexible
architectures that scale, just like the Web and for the same reasons.
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Conclusion
The resource-oriented architecture approach walks a series of fine lines. On the one hand, to
initiates of convention, the approaches might seem a little strange and untried. People
concerned about their resumes want to stick with tried and true approaches. On the other
hand, to those who have studied the Web and its fundamental building blocks, it makes perfect
sense and represents the largest, most successful network software architecture ever imagined
and implemented. In one light, it requires a radically different way of thinking. In another
light, it allows a powerful mechanism for wrapping and reusing existing code, services, and
infrastructure with logically named interfaces that do not leak implementation details for many
forms of interaction. We have the freedom to be resilient in what we accept on the server
without breaking existing clients. We can support new structural forms for the same data over
time. We are able to migrate backend implementations without necessarily affecting our
clients. Additionally, important properties such as scalability, caching, information-driven
access control, and low-ceremony regulatory compliance fall out of these design choices.

Software developers do not usually care about data; they care about algorithms, objects,
services, and other constructs such as this. We have some fairly specific recommended
blueprints and technologies for our J2EE, .NET, and SOAP-based architectures. Unfortunately,
most of these blueprints ignore information as a first-class citizen. They tie us into specific
bindings that make it hard to make changes without breaking existing clients. This is the flux
treadmill we have been on for years, and the business units are tired of paying for it. Web
Services were supposed to be an exit strategy, but inappropriate levels of abstraction and overly
complicated edge-case use cases have made the whole process an entirely WS-Unsatisfying
experience. It is time to take a step away from software-centric architectures and start to focus
on information and how it flows. We will still write our software using the tools we know and
purport to love; it will just not be the focus of our architectural bindings.

The resource-oriented approach offers compelling bridges between business units and the
technology departments that support them. There are real efficiencies and business value
propositions offered by an information-centric view on how our systems are connected. Rather
than starting from scratch with each new Big Idea from our vendors, we can learn valuable
lessons from the Web on how its architectural style elicits important properties. Architecture
is inhabited sculpture; we are forced to endure the choices that we make for quite some time.
We should take the opportunity to imbue our architecture with functionality, beauty, and a
resilience to change to make our time in it more useful and pleasant.
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Data Grows Up: The Architecture of the
Facebook Platform

Dave Fetterman

Show me your flowcharts and conceal your tables, and I shall

continue to be mystified. Show me your tables, and I won’t

usually need your flowcharts; they’ll be obvious.

—Fred Brooks, The Mythical Man-Month

Introduction
MOST  CURRENT  STUDENTS  OF  COMPUTER  SCIENCE  INTERPRET that Fred Brooks quote to mean
“show me your code and conceal your data structures....” Information architects have a solid
understanding that data rather than algorithms sit at the center of most systems. And with the
rise of the Web, data that the user produces and consumes motivates the use of information
technologies more than ever. Glibly, web users don’t navigate to QuickSort. They visit a
storehouse of data.

This data may be universal, like a phone directory; proprietary, like an online store; personal,
like a blog; open, like local weather conditions; or tightly guarded, like online bank records. In
any case, the user-facing functionality of almost any web presence boils down to delivering an
interface to a set of site-specific core data. This information forms the core value of most any

 Principles and properties  Structures
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website, whether generated by a top-notch research team on staff or contributed by users
around the world. Data motivates the product that users enjoy, so architects build the rest of
the traditional “n-tier” software stack (the logic and display) around it.

This is the story of Facebook’s data and how it has evolved with the creation of the Facebook
Platform.

Facebook (http://facebook.com) stands as an example of an architecture built around data of
great utility, including user-submitted personal relationship mappings, biographical
information, and text or other media content. Facebook’s engineers built the rest of the site’s
architecture with an eye to displaying and manipulating this social data. Most of the site’s
business logic closely depends on this social data, such as the flow and access patterns of various
pages, implementation of search, surfacing of News Feed content, and application of visibility
rules to content. To the user, the value of the site springs directly from the value of the data
he and his social connections have contributed to the system.

“Facebook the social website” is conceptually a standard n-tier stack, where a user’s request
fetches data from Facebook’s internal libraries, which is then transformed through Facebook’s
logic, to be output through Facebook’s display. Facebook’s engineers then recognized the
usefulness of this data beyond the confines of its container. The creation of the Facebook
Platform markedly changed the gestalt of Facebook’s data access system, accommodating a
vision much broader than the isolated functionality of the n-tier stack, to integrate outside
systems in the form of applications. With the user’s social data at the center of the architecture,
the Platform has developed into an array of web services (Facebook Platform Application
Programming Interface, or Facebook API), a query language (Facebook Query Language, or
FQL), and a data-driven markup language (Facebook Markup Language, or FBML) to wed
application developers’ systems with Facebook’s.

As given sets of data become more widely available and users demand unified use of their data
across multiple web and desktop products, the architect reading this chapter will likely find
herself either a consumer of such a platform or the producer of a similar platform surrounding
her own site’s data. This chapter takes the reader on the journey of opening up Facebook’s
data to outside stacks in a controlled way, the architectural choices that follow from each step
of the data evolution, and the process of reconciling this with the unique privacy requirements
that permeate social systems. It includes:

• Motivating scenarios for these types of integrations

• Moving data functions from an internal stack call to an externally visible web service (the
Facebook API)

• Authorizing access to this web service with an eye to maintaining the privacy of the social
system

• Creating a data query language to ease the burden of new clients of this web service
(Facebook FQL)
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• Creating a data-driven markup language to both integrate application display back into
Facebook and enable use of otherwise inaccessible data (Facebook FBML)

And once we’ve evolved the architecture of an application significantly from a separate stack:

• Building technologies that bridge the gap between the Facebook experience and the
external application’s experience

For the data platform consumer, this chapter illustrates the design decisions made and the
rationale behind them. Notions such as user sessions and authentication, web services, and the
various ways of handling the application’s logic will constantly appear as themes in these types
of platforms all over the Web. Understanding the thought behind them provides a great
exercise in data architecture, and proves relevant when thinking about the kinds of features
and forms these platform producers will likely create in the future.

The data platform producer is encouraged to keep in mind his own data set, and learn from
the ways Facebook has opened its data model. Some of the design choices and reconciliations
remain specific to Facebook, or at least to handling social data guarded by privacy, and may
not be wholly applicable to a given data set. Nonetheless, at each step we present a product
problem, a data-driven solution, and the solution’s high-level implementation. With each new
solution, we are essentially creating a new product or platform, so at all points we must
reconcile this new product with the expectations of users. In turn, we create new technologies
to accompany each step of the evolution, and sometimes change the web architecture
surrounding the application itself.

An open source version of the Facebook Platform is available at http://developers.facebook
.com/. Like much of that release, the code in this chapter is written in PHP. Feel free to follow
along, noting that the samples here are abbreviated for clarity.

We start with the motivation for these types of integrations with an example of “external”
application logic and data (a book store), Facebook’s social data (user information and “friend”
relationships), and the case for integrating the two.

Some Application Core Data

Web applications, even those that do not produce or consume a data platform of any sort, are
still motivated largely by their internal data. As an example, take http://fettermansbooks
.com, a hypothetical website that provides information on books (and likely, the ability to
purchase these titles if the mood struck). The site’s features may include a searchable index of
inventory, basic information about each of the products, and even user-contributed reviews
about each title. Access to this specific information forms the core of the application and
motivates the rest of the architecture. The site may employ Flash and AJAX, be accessible
through mobile devices, and provide an award-winning user interface. However, http://
fettermansbooks.com exists essentially to provide visitors some kind access to core mappings
like those in Example 6-1.
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EXAMPLE 6-1. Example book data mappings

book_get_info : isbn -> {title, author, publisher, price, cover picture}
book_get_reviews: isbn -> set(review_ids)
bookuser_get_reviews: books_user_id -> set(review_ids)
review_get_info: review_id -> {isbn, books_user_id, rating, commentary}

All of these are ultimately implemented as something very similar to simple sets and fetches
from an indexed data table. Any such book site worth its salt would likely implement other
functions that are not so simple, such as the simple “search” in Example 6-2.

EXAMPLE 6-2. A simple search mapping

search_title_string: title_string -> set({isbn, relevance score})

Each key in the domain of these functions generally would justify at least one web page on
http://fettermansbooks.com—a unique set of logic surrounding the range data, rendered
through a unique display path. For instance, to see a selection of reviewer X’s submissions, a
http://fettermansbooks.com user would likely be directed to visit a page like fettermansbooks
.com/reviews.php?books_user_id=X, or to see all info about a particular book with ISBN Y
(including hops to individual review pages), he would visit http://fettermansbooks.com/book
.php?isbn=Y.

A notable property of sites such as http://fettermansbooks.com is that nearly every piece of
data is available to every user. It generates all the content in, say, the book_get_info mapping
to aid users in discovering as much information about a book as possible. This may be optimal
in the case of a site trying to sell books, but visibility restrictions govern much of the
architectural considerations of the data access layer in the following example using social data.

Some Facebook Core Data

With the rise in popularity of the network of technologies called Web 2.0, the centrality of data
within systems has only grown more obvious. The central themes of Web 2.0 presences are
that they are data-driven, and that users themselves provide the majority of that data.
Facebook, like http://fettermansbooks.com, primarily comprises a set of core data mappings
that motivate the feel and functionality of its website. An extremely stripped-down set of these
Facebook mappings could look like the set in Example 6-3.

EXAMPLE 6-3. Example social data mappings

user_get_friends: uid -> set(uids)
user_get_info: uid -> {name, pic, books, current_location,...}
can_see: {uid_viewer, uid_viewee, table_name, field_name} -> 0 or 1

uid here refers to a (numeric) Facebook user identifier, and the info returned from
user_get_info refers to a user’s profile content (see users.getInfo in Facebook’s developer
documentation), including perhaps titles of the user’s favorite books as they are entered on
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http://facebook.com. This system differs little from http://fettermansbooks.com at its core,
except that the epicenter of the data, and hence site functionality, revolves around users’
connection to other users (“friends”), users’ content (“profile information”), and visibility rules
for that content (“can_see”).

This can_see data set is special. Facebook has a very central notion of privacy around user-
generated data—business rules for user X’s view of user Y’s information. Never directly
viewable by itself, this data motivates very important considerations that will emerge again
and again when we see examples of integrating external logic and data with Facebook’s. By
itself, Facebook’s pervasive use of this data set differentiates it from a website like http://
fettermansbooks.com.

The Facebook Platform and other social platforms are a recognition that these types of social
mappings are useful, both within a site like http://facebook.com, and when integrated with
the functionality of a site such as http://fettermansbooks.com.

Facebook’s Application Platform

For a user of both http://fettermansbooks.com and http://facebook.com, the picture of Internet
applications at this point looks something like Figure 6-1.

In the usual n-tier architecture, an application maps input (for the Web, the union of GET,
POST, and cookie information) to requests for raw data likely residing in a database. These are
translated to in-memory data and passed to some business logic for intelligent processing. The
output module translates these data objects for display, into HTML, JavaScript, CSS, and so on.
Here, on the top of the figure, is an application’s n-tier stack running on its infrastructure.
Before the advent of applications in its Platform, Facebook operated wholly under the same
architecture. Importantly, in both architectures, the business logic (including Facebook’s
privacy) is effectively executed according to rules established in some data component of the
system.

More voluminous and relevant data means the business logic may deliver more personally
tailored content, so the experience of browsing books to review, read, or purchase on http://
fettermansbooks.com (or any such application) would be powerfully augmented by a user’s
social data from Facebook. Specifically, showing friends’ book reviews, wish lists, and
purchases could aid a user in making her own purchasing decisions, discovering new titles, or
strengthening connections to other users. If Facebook’s internal mapping user_get_friends
were accessible to other external applications such as http://fettermansbooks.com, this would
add powerful social context to these otherwise separate applications, and eliminate the
application’s need to create its own social network. Applications of all sorts could do well to
integrate this data, since developers can apply these core Facebook mappings to countless other
web presences where users produce or consume content.
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FIGURE 6-1. Separate Facebook and n-tier application stacks

The technologies of the Facebook Platform accomplish this through a number of evolutions in
social web and data architecture:

• Applications can access useful social data through the Facebook Platform data services,
adding social context to external web applications, desktop OS applications, and
alternative device applications.

• Applications can publish their display using a data-driven markup language called FBML
to integrate their application experience on the pages of http://facebook.com.

• With the change in architecture that FBML requires, developers can use Facebook
Platform cookies and Facebook JavaScript (FBJS) to minimize the changes needed to add
an application presence to http://facebook.com.

• And finally, applications can have these capabilities without sacrificing the privacy and
expectations about user experience that Facebook has built around its user data and
display.

The last point is the most interesting. The architecture of the Facebook Platform is not always
beautiful—it is largely considered a first-mover in the social platform universe. Most of the
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architectural decisions made to create universally available social context are shaped by this
yin and yang: data availability and user privacy.

Creating a Social Web Service
Looking back on an example as simple as http://fettermansbooks.com, it becomes clear that
most Internet applications would benefit from added social context for the data they present.
However, we run into a product problem: the availability of that data.

PRODUCT  PROBLEM: Applications could make use of a user’s social data on Facebook, but this
data is inaccessible.

DATA  SOLUTION: Make Facebook data available through an externally accessible web service
(Figure 6-2).

The addition of the Facebook API to Facebook’s architecture begins the relationship between
external applications and Facebook through the Facebook Platform, essentially adding
Facebook’s data to the external application’s stack. For a Facebook user, this integration begins
when he explicitly authorizes the outside application to obtain social data on his behalf.

App Infrastructure

FB Infrastructure

App Logic App Display Browser
$_REQUEST (obj)

HTML, JS,
CSS

App Data

FB API

FB Service

FB Data

Privacy

SQL Objects

FIGURE 6-2. The application stack consumes Facebook data as web service
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Example 6-4 shows what the code behind the landing page of http://fettermansbooks.com
might look like without any Facebook integration.

EXAMPLE 6-4. Example book site logic

$books_user_id = establish_booksite_userid($_REQUEST);
$book_infos = user_get_likely_books($books_user_id);
display_books($book_infos);

This user_get_likely_books function operates entirely from the data that the book application
controls, possibly using clever relevance techniques to guess at a user’s interests.

However, imagine Facebook makes available two simple remote-procedure call (RPC) methods
for users on sites outside its walls:

• friends.get()

• users.getInfo($users, $fields)

With these, and a mapping from http://fettermansbooks.com’s user identifiers to Facebook’s,
we can add social context to any content on http://fettermansbooks.com. Consider this new
flow for Facebook users in Example 6-5.

EXAMPLE 6-5. Book site logic with social context

$books_user_id = establish_booksite_userid($_REQUEST);
$facebook_client = establish_facebook_session($_REQUEST,$books_user_id);

if ($facebook_client) {
  $facebook_friend_uids = $facebook_client->api_client->friends_get();
  foreach($facebook_friend_uids as $facebook_friend) {
    $book_site_friends[$facebook_friend] 
        = books_user_id_from_facebook_id ($facebook_friend);   
  }
  $book_site_friend_names = $facebook->api_client->
      users_getInfo($facebook_friend_uids, 'name');

  foreach($book_site_friends as $fb_id => $booksite_id) {
    $friend_books = user_get_reviewed_books($booksite_id);
    print "<hr>" . $book_site_friend_names[$fb_id] . "'s likely picks: <br>";
    display_books($friend_books);  
  }
}

The bolded parts of this example are where the book application harnesses the data of the
Facebook Platform. If we could figure out the code behind the function
establish_facebook_session, this architecture would make available much more data in order
to turn this book-aware application into a fully user-aware application.

Let’s examine how Facebook’s API enables this. First, we’ll check out a simple technical
walkthrough of the web service wrapping Facebook data, created through use of appropriate
metadata by a flexible code generator called Thrift. Developers can use these techniques
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outlined in the next section to effectively build web services of any kind, regardless of whether
the data in the developer’s storehouse is public or private.

But note that Facebook users do not consider their Facebook data to be fully public. So after
our technical overview, we’ll look at maintaining Facebook-level privacy through the main
authentication means in the Platform API: user sessions.

Data: Creating an XML Web Service

In order to add basic social context to an example application, we’ve established the existence
of two remote method calls, friends.get and users.getInfo. The internal functions accessing
this data are likely sitting in a library somewhere in the Facebook code tree, serving similar
requests on the Facebook site. Example 6-6 shows some examples.

EXAMPLE 6-6. Example social data mappings

function friends_get($session_user) { ... }
function users_getInfo($session_user, $input_users, $input_fields) { ... }

We now build a simple web service, transforming GET and POST input over HTTP to internal
stack calls, and outputting the results as XML. In the Facebook Platform’s case, the name of
the destination method and its arguments are passed in the HTTP request, as well as some
credentials specific to the calling application (an assigned “api key”), specific to a user-
application pair (a “user session key”), and specific to the request instance itself (a request
“signature”). We’ll address the session key later in “A Simple Web Service Authentication
Handshake.” The high-level sequence for servicing a request to http://api.facebook.com is
then:

1. Examine passed credentials (“A Simple Web Service Authentication Handshake”) to verify
the invoking application’s identity, user’s current authorization of the application, and
authenticity of the request.

2. Interpret the incoming GET/POST as a method call with reasonable arguments.

3. Dispatch a single call to internal method and collect the result as in-memory data
structures.

4. Transform these structures into a known output form (e.g., XML or JSON) and return.

The main points of difficulty in constructing interfaces consumed externally usually arise in
steps 2 and 4. Consistently maintaining, synchronizing, and documenting the data interfaces
for an external consumer is important, and constructing the skeleton code to ensure this
consistency by hand is a thankless and time-consuming job. Additionally, we may need to
make this data available to internal services written in many languages, or communicate results
to an external developer in different web protocols such as XML, JSON, or SOAP.

Here, then, the beautiful solution is the use of metadata to encapsulate the types and signatures
describing the APIs. Engineers at Facebook have created an open source cross-language
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inter-process communication (IPC) system called Thrift (http://developers.facebook.com/
thrift) that accomplishes this cleanly.

Diving right in, Example 6-7 shows an example “dot thrift” file for our sample API version 1.0,
which the Thrift package turns into much of the machinery of the API.

EXAMPLE 6-7. Web service definition through Thrift

xsd_namespace http://api.facebook.com/1.0/
/***
* Definition of types available in api.facebook.com version 1.0
*/
typedef i32 uid
typedef string uid_list
typedef string field_list

struct location {
 1: string street xsd_optional,
 2: string city,
 3: string state,
 4: string country,
 5: string zip xsd_optional
}

struct user {
 1: uid uid,
 2: string name,
 3: string books,
 4: string pics,
 5: location current_location
}

service FacebookApi10 {

 list<uid> friends_get()
  throws (1:FacebookApiException error_response),

 list<user> users_getInfo(1:uid_list uids, 2:field_list fields)
  throws (1:FacebookApiException error_response),
}

Each type in this example is a primitive (string), a structure (location, user), or a generic-style
collection (list<uid>). Because each method declaration has a well-typed signature, code
defining the reused types can be directly generated in any language. Example 6-8 shows part
of the generated output for PHP.

EXAMPLE 6-8. Thrift-generated service code

class api10_user {

public $uid = null;
public $name = null;
public $books = null;
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public $pic = null;
public $current_location = null;

public function __construct($vals=null) {
  if (is_array($vals)) {
    if (isset($vals['uid])) {
       $this->uid = $vals['uid'];
     }
     if (isset($vals['name'])) {
       $this->name = $vals['name'];
     }
     if (isset($vals['books'])) {
       $this->books = $vals['books'];
     }
     if (isset($vals['pic'])) {
       $this->pic = $vals['pic'];
     }
     if (isset($vals['current_location'])) {
       $this->current_location = $vals['current_location'];
    }
   // ...
  }
 // ...
}

All internal methods returning the type user (such as the internal implementation of
users_getInfo) create all needed fields and end with something like the line in Example 6-9.

EXAMPLE 6-9. Consistent use of generated type

return new api_10_user($field_vals);

For example, if the current_location is present in this user object, then
$field_vals['current_location'] is set to new api_10_location(...) somewhere before
Example 6-9 is executed.

The names of the fields and types themselves actually generate the schema for the XML output,
as well as the accompanying XML Schema Document (XSD). Example 6-10 shows an example
of the actual XML output of the whole RPC flow.

EXAMPLE 6-10. XML output from web service call

<users_getInfo_response list="true">
 <users type="list">
  <user>
   <name>Dave Fetterman</name>
   <books>Zen and the Art, The Brothers K, Roald Dahl</books>
   <pic></pic>
   <current_location>
    <city>San Francisco</city>
    <state>CA</state>
    <zip>94110</zip>
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   </current_location>
  </user>
 </users>
</users_getInfo_response>

Thrift generates similar code for declaring RPC function calls, serializing into known output
structures, and turning internal exceptions into external error codes. Other toolsets such as
XML-RPC and SOAP provide some of these benefits as well, perhaps with a greater CPU and
bandwidth cost.

Employing a beautiful tool like Thrift provides recurring benefits:

Automatic type synchronization
Adding 'favorite_records' to the user type or turning uid into an i64 needs to happen
across all methods consuming or generating these types.

Automatic binding generation
All the messy work of reading and writing types is gone, and translating function calls into
XML-generating RPC methods requires the function declaration, type checking, and error
handling that Thrift does automatically.

Automatic documentation
Thrift generates a public XML Schema Document, which serves as unambiguous
documentation to the outside world, usually much better than what one finds in “the
manual.” This document can also be used directly by some external tools to generate
bindings on the client side.

Cross-language synchronization
This service can be consumed externally by both XML and JSON clients, and internally
over a socket by daemons in all types of languages (PHP, Java, C++, Python, Ruby, C#,
etc.). This requires metadata-based code generation so the service designer isn’t spending
her time updating each of these with every small change.

We now have the data component of a social web service. Next we’ll figure out how to establish
these session keys to enforce the privacy model users expect on any extension of Facebook.

A Simple Web Service Authentication Handshake

A simple authentication scheme makes this data accessible within the Facebook user’s notion
of privacy. A user has a certain view into the data of the Facebook system, based on who the
user is, his privacy settings, and the privacy settings of those connected to him. Users may
authorize individual applications to inherit this view. What is externally visible to a user
through an application is a significant portion of (but no more than) what the user could see
on the Facebook site itself.

In the architecture for a separate application site (Figure 6-1), user authentication often takes
the form of cookies sent from a browser, originally assigned to the user after a verifying action
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taken on the site. However, cookies normally part of Facebook usage are not available to
Facebook anymore in Figure 6-2—the outside application requests information from the
platform without the help of a user’s browser. To fix this, we establish on Facebook a session
key mapping, as shown in Example 6-11.

EXAMPLE 6-11. A session key mapping

get_session: {user_id, application_id} -> session_key

The client of the web service simply sends the session_key along with every request, to let the
web service know on which viewer’s behalf the request executes. If the user (or Facebook)
disables this application or has never used this application, this fails the security checks,
returning an error. Otherwise, the outside application site will carry this session key around
with its own user records or in a cookie for that user.

But how does one obtain this key in the first place? The example function
establish_facebook_session in the http://fettermansbooks.com application code (Example 6-5)
is a placeholder for this flow. Every application has its own unique “application key” (also
called an api_key) that begins the application authorization flow (Figure 6-3):

1. The user is redirected to the Facebook login with a known api_key.

2. The user enters her credentials on Facebook to authorize the application.

3. The user is redirected to a known application landing site with the session key and user ID.

4. The application is now authorized to make calls to the API endpoint on the user’s behalf
(until the session expiration or deletion).

To help the user initiate this flow, a link or button could be rendered:

<a href="http://www.facebook.com/login.php?api_key=abc123">

with that application key (say, “abc123”). If a user agrees to authorize this application using the
password form on Facebook (note that the password is the last piece of data Facebook would
export), the user is directed back to this application site with a valid session_key and his
Facebook user ID. This session key is quite private, so for further verification, each call made
by the application is accompanied by a hash generated from a shared secret.

Assuming the developer has stashed his api_key and application secret,
establish_facebook_session can be written quite simply from the flow in Figure 6-3. Though
the details between these kinds of handshake systems can vary, it is important that no user
can be authorized unless he enters his password in the crucial step on Facebook. Interestingly
enough, some early applications simply used this authorization handshake as their own
password system, not employing any Facebook data at all.
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FIGURE 6-3. Authorizing access to the Facebook Platform API

However, some applications do not easily lend themselves to this second “redirect” step.
“Desktop”-style applications or applications based on a device such as a mobile phone or built
into a browser can be quite useful as well. In this case, we employ a slightly different scheme
using a secondary authorization token. A token is requested by an application through the API,
passed to Facebook on the first login, and then exchanged by the application for a session key
and a per-session secret after on-site user authentication.

Creating a Social Data Query Service
We have expanded our internal libraries to the outside world by creating a web service with
a user-controlled authentication handshake. With this simple change, Facebook’s social data
now drives any other application stack its users choose to authorize, creating new relations
within that application’s data through a universally interesting social context.

As seamless as this data exchange becomes in the mind of the user, the developer consuming
these platform APIs knows the data sets are very distinct. The pattern the developer uses to
access his own data is quite different than the one used to get Facebook’s. For one, Facebook’s
data lives on the other side of an HTTP request, and making these method calls across many
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HTTP connections adds latency and overhead to the developer’s own pages. His own database
also offers a higher granularity of access than do the few dozen methods in the Facebook
Platform API. Using his own data and a familiar query language such as SQL allows him to
select only certain fields of a table, sort or limit results, match on alternative indices, or nest
queries. If the platform’s API does not offer the developer the ability to do intelligent processing
on the platform’s server, the developer must often import a superset of the relevant data and
then do these standard logical transforms on his own servers after receiving it. This can be a
significant burden.

PRODUCT  PROBLEM: Obtaining data from the Facebook Platform APIs incurs much more cost
than obtaining internal data.

As more traffic or usage starts to flow through an application consuming an outside data
platform, factors such as bandwidth consumption, CPU load, and request latency can start to
add up quickly. Surely this problem must have at least a partial solution. After all, haven’t we
optimized this in the data layer of our own single application stack? Isn’t there a technology
that enables fetching multiple sets of data in one call? How about doing selection, limiting, and
sorting in the data layer itself?

DATA  SOLUTION: Implement external data access patterns using the same one employed for
internal data: a query service.

Facebook’s solution is called FQL, detailed later in the section “FQL.” FQL bears a great deal of
resemblance to SQL, but casts platform data as fields and tables rather than simply loosely
defined objects in our XML schema. This gives developers the ability to use standard data query
semantics on Facebook’s data, which is probably the same way they get to their own data. At
the same time, the benefit of pushing computation to the platform side mirrors the benefits of
pushing operations to the data layer in SQL. In both cases, the developer consciously avoids
paying the price in his application logic.

FQL represents yet another improved data architecture based on Facebook’s internal data, and
is the next step after standard black-box web services. But first, we mention an easy and
obvious way for a platform developer to eliminate the round-trip load of many data requests,
and show why this is ultimately insufficient.

Method Call Batching

The simplest solution to load problems is something akin to Facebook’s batch.run API. This
eliminates the round-trip latency of multiple calls to http://api.facebook.com over the HTTP
stack by accepting input for multiple methods in one batch, and returning the outputted XML
trees in one response. On the client side, this flow translates to something like the code in
Example 6-12.
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EXAMPLE 6-12. Batching method calls

$facebook->api_client->begin_batch();
$friends = &$facebook->api_client->friends_get();
$notifications = &$facebook->api_client->notifications_get();
$facebook->api_client->end_batch();

In Facebook Platform’s PHP5 client library, end_batch effectively initiates the request to the
platform server, obtains all results, and updates the reference variables used for each result.
Here we are getting data for the user in a batch from a single user session. Commonly, the
batch query mechanism is used to group together many setting operations, such as mass
Facebook profile updates or large user notification bursts.

The fact that these set operations are most effective here reveals the main problem with this
batching style. Problematically, each call must be independent of the results of the other. Set
operations for many different users usually enjoy this property, but a common case remains
unaddressed: using the results of one call as inputs to the next. Example 6-13 features a
common scenario that would not work with the batch system.

EXAMPLE 6-13. Improper use of batching

$fields = array('uid, 'name', 'books', 'pic', 'current_location');
$facebook->api_client->begin_batch();
$friends = &$facebook->api_client->friends_get();
$user_info = &$facebook->api_client->users_getInfo($friends, $fields); // NO!
$facebook->api_client->end_batch();

The content of $friends clearly does not exist at the time the client sends the users_getInfo
request. The FQL model solves this and other problems elegantly.

FQL

FQL is a simple query language wrapper around Facebook’s internal data. The output generally
shares the same format as the Facebook Platform API, but the input graduates from a simple
RPC library model to a query model reminiscent of SQL: named tables and fields with a known
relationship. Like SQL, this technology adds the abilities to select on instances or ranges, select
a subset of fields from a data row, and nest queries to push a greater amount of work to the
data server, eliminating the need for multiple calls over the RPC stack.

An as example, if the desired output were the fields named 'uid', 'name', 'books', 'pic', and
'current_location' for all users who are my friends, in our pure-API model, we would run a
procedure like that in Example 6-14.
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EXAMPLE 6-14. Chaining method calls client-side

$fields = array('uid', 'name', 'books', 'pic', 'current_location');
$friend_uids = $facebook->api_client->friends_get();
$user_infos = users_getInfo($friend_uids, $fields);

This results in more calls to the data server (here, two calls), greater latency, and more points
of possible failure. Instead, for viewing user number 8055 (yours truly), we render this in FQL
syntax as the single call in Example 6-15.

EXAMPLE 6-15. Chaining method calls server-side with FQL

$fql = "SELECT uid, name, books, pic, current_location FROM profile
        WHERE uid IN (SELECT uid2 from friends where uid1 = 8055)";
$user_infos = $facebook->api_client->fql_query($fql);

We conceptually treat the data referred to by users_getInfo as a table with a number of
selectable fields, based on an index (uid). If augmented appropriately, this new grammar
enables a number of new data access capabilities:

• Range queries (for example, event times)

• Nested queries (SELECT fields_1 FROM table WHERE field IN (SELECT fields_2 FROM .... ))

• Result limits and ordering

Architecture of FQL

Developers invoke FQL through the API call fql_query. The crux of the problem involves
unifying the named “objects” and “properties” of the external API with named “tables” and
“fields” in FQL. We still inherit the flow of the standard API: fetching the data through our
internal methods, applying the rules normally associated with API calls on this method, and
transforming the output according to the Thrift system from the earlier section “Data: Creating
an XML Web Service.” For every data-reading API method there exists a corresponding “table”
in FQL that abstracts the data behind that query. For instance, the API method users_getInfo,
which makes the name, pic, books, and current_location fields available for a given user ID is
represented in FQL as the user table with those corresponding fields. The external output of
fql_query actually conforms to the output of the standard API as well (if the XSD is modified
to allow for omitted fields in an object), so a call to fql_query on the user table returns output
identical to an appropriate call to users_getInfo. In fact, often calls such as user_getInfo are
implemented at Facebook on the server side as FQL calls!

N O T E
At the time of this writing, FQL supports only SELECT rather than INSERT, UPDATE, REPLACE,
DELETE, or others, so only read methods can be implemented using FQL. Most Facebook
Platform API methods operating on this type of data are read-only at this point anyway.
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Let’s start with this user table as an example and build the FQL system to support queries on
it. Underneath all the layers of data abstraction through the Platform (the internal calls, the
users_getInfo external API call, and the new user table of FQL), imagine Facebook had a table
named 'user' in its own database (Example 6-16).

EXAMPLE 6-16. Example Facebook data table

> describe user;
+--------------+--------------+-----+
| Field        | Type         | Key |
+--------------+--------------+-----+
| uid          | bigint(20)   | PRI |
| name         | varchar(255) |     |
| pic          | varchar(255) |     |
| books        | varchar(255) |     |
| loc_city     | varchar(255) |     |
| loc_state    | varchar(255) |     |
| loc_country  | varchar(255) |     |
| loc_zip      | int(5)       |     |
+--------------+--------------+-----+

Within the Facebook stack, suppose our method for accessing this table is:

function user_get_info($uid)

which returns an object in the language of our choice (PHP), usually used before applying
privacy logic and rendering on http://facebook.com. Our web service implementation did
much the same, transforming the GET/POST content of a web request to such a call, obtaining
a similar stack object, applying privacy, and then using Thrift to render this as an XML response
(Figure 6-2).

We can wrap user_get_info within FQL to programmatically apply this model, with tables,
fields, internal functions, and privacy all fitting together in a logical, repeatable form.

Following are some key objects created in the FQL call in Example 6-15 and the methods that
describe how they relate. Discussion of the entire string parsing, grammar implementation,
alternative indexing, intersecting queries, and implementing the many different combining
expressions (comparisons, “in” statements, conjunction, and disjunction) are beyond the scope
of this chapter. Instead, we’ll just focus on the data-facing pieces: the high-level specification
of the data’s corresponding field and table objects within FQL, and transforming the input
statement to queries to each field’s can_see and evaluate functions (Example 6-17).

EXAMPLE 6-17. Example FQL fields and tables

class FQLField {
  // e.g. table="user", name="current_location"
  public function __construct($user, $app_id, $table, $name) { ... }

  // mapping: "index" id -> {0,1} (visible or invisible)
  public function can_see($id) { ... }
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  // mapping: "index" id -> Thrift-compatible data object
  public function evaluate($id) { ... }
}

class FQLTable {
  // a static list of contained fields:
  // mapping: () -> ('books' => 'FQLUserBooks', 'pic' ->'FQLUserPic', ...)
  public function get_fields() { ... }
}

The FQLField and FQLTable objects constitute this new method for accessing data. FQLField
contains the data-specific logic transforming the index of the “row” (e.g., user ID) plus the
viewer information (user and app_id) into our internal stack data calls. On top of that, we ensure
privacy evaluation is built right in with the required can_see method. When processing a
request, we create in memory one such FQLTable object for each named table ('user') and one
FQLField object for each named field (one for 'books', one for 'pic', etc.). Each FQLField object
mapped to by one FQLTable tends to use the same data accessor underneath (in the following
case, user_get_info), though it is not necessary—it’s just a convenient interface.
Example 6-18 shows an example of the typical string field for the user table.

EXAMPLE 6-18. Mapping a core data library to an FQL field definition

// base object for any simple FQL field in the user table.
class FQLStringUserField extends FQLField {

  public function __construct($user, $app_id, $table, $name) { ... }

  public function evaluate($id) {
    // call into internal function
    $info = user_get_info($id);
    if ($info && isset($info[$this->name])) {
      return $info[$this->name];
    }
    return null;
  }

  public function can_see($id) {
    // call into internal function
    return can_see($id, $user, $table, $name);
  }
}

// simple string data field
class FQLUserBooks extends FQLStringUserField { }

// simple string data field
class FQLUserPic extends FQLStringUserField { }
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FQLUserPic and FQLUserBooks differ only in their internal property $this->name, set by their
constructor during processing. Note that underneath, we call user_get_info for every evaluation
we need in the expression; this performs well only if the system caches these results in process
memory. Facebook’s implementation does just that, and the whole query executes in time on
the order of a standard platform API call.

Here is a more complex field representing current_location, which takes the same input and
exhibits the same usage pattern, but outputs a struct-type object we’ve seen earlier
(Example 6-19).

EXAMPLE 6-19. A more complex FQL field mapping

// complex object data field
class FQLUserCurrentLocation extends FQLStringUserField {
  public function evaluate($id) {
    $info = user_get_info($id);
    if ($info && isset($info['current_location'])) {
      $location = new api10_location($info['current_location']);
    } else {
      $location = new api10_location();
    }
    return $location;
  }
}

Objects such as api10_location are the generated types from “Data: Creating an XML Web
Service,” which Thrift and the Facebook data service know how to return as well-typed XML.
Now we’re seeing why even with a new input style, FQL’s output does not need to be
incompatible with that of the Facebook API.

The main evaluation loop of FQLStatement in the following example provides a high-level idea
of FQL’s implementation. Throughout this code we reference FQLExpressions, but in a simple
query, we’re mostly talking about FQLFieldExpressions, which wrap internal calls to the
FQLField’s own evaluate and can_see methods, as in Example 6-20.

EXAMPLE 6-20. A simple FQL expression class

class FQLFieldExpression {

  // instantiated with an FQLField in the "field" property
  public function evaluate($id) {
    if ($this->field->can_see($id))
      return $this->field->evaluate($id);
    else
      return new FQLCantSee(); // becomes an error message or omitted field
  }

  public function get_name() {
    return $this->field_name;
  }
}
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To initiate the whole flow, the SQL-like string input is transformed via lex and yacc into the
main FQLStatement’s $select expression array and the $where expression. FQLStatement’s
evaluate() function returns the objects we’ve requested. The main statement evaluation loop
in Example 6-21 goes through the following steps in this simple high-level sequence:

1. Get all constraints on indexes of the rows we wish to return. For example, when selecting
on the user table, these would be the UIDs we want to query. If we were looking at an
events table indexed by time, say, these would be the boundary times.

2. Translate these to the canonical IDs of the table. The user table is also queryable by field
name; if an FQL expression used name, this function would use an internal
user_name ->user_id lookup function.

3. For each candidate ID, see if it matches the RHS expression clause (Boolean logic,
comparisons, “IN” operations, etc.). If not, toss it out.

4. Evaluate each expression (in our case, fields in the SELECT clause), and create an XML
element of the form <COL_NAME>COL_VALUE</COL_NAME>, where COL_NAME is the name of the
field in the FQLTable, and COL_VALUE is the result of the evaluation of the field through its
corresponding FQLField’s evaluate function.

EXAMPLE 6-21. The FQL’s main evaluation flow

class FQLStatement {

  // contains the following members:
  // $select: array of FQLExpressions from the SELECT clause of the query
  //  corresponding to, say, "books", "pic", and "name"
  // $from: FQLTable object for the source table
  // $where: FQLExpression containing the constraints for the query.
  // $user, $app_id: calling user and app_id

  public function __construct($select, $from, $where, $user, $app_id) { ... }

  // A listing of all known tables in the FQL system.
  public static $tables = array(
    'user'        => 'FQLUserTable',
    'friend'      => 'FQLFriendTable',
  );

  // returns XML elements to be translated to service output
  public function evaluate() {

    // based on the WHERE clause, we first get a set of query expressions that
    // represent the constraints on values for the indexable columns contained
    // in the WHERE clause

    // Get all "right hand side" (RHS) constants matching ids (e.g. X, in 'uid = X')
    $queries = $this->where->get_queries();
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    // Match to the row's index. If we were using 'name' as an alternative index
    // to the user table, we would transform it here to the uid.
    $index_ids = $this->from_table->get_ids_for_queries($queries);

    // filter the set of ids by the WHERE clause and LIMIT params
    $result_ids = array();
    
    foreach ($ids as $id) {
      $where_result = $this->where->evaluate($id);

        // see if this row passes the 'WHERE' constraints
        // is not restricted by privacy
        if ($where_result && !($where_result instanceof FQLCantSee))
          $result_ids []= $id;
    }

    $result = array();
    $row_name = $this->from_table->get_name(); // e.g. "user"

    // fill in the result array with the requested data
    foreach ($result_ids as $id) {
      foreach ($this->select as $str => $expression) { // e.g. "books" or "pic"
        $name = $expression->get_name();
        $col = $expression->evaluate($id); // returns the value
        if ($col instanceof FQLCantSee)
          $col = null;

        $row->value[] = new xml_element($name, $col);
      }
      
      $result[] = $row;
    }
    return $result;
}

FQL has some other subtleties, but this general flow illustrates the union of existing internal
data access and privacy implementations with a whole new query model. This allows the
developer to process his request more quickly and access data in a more granular way than the
APIs, while still retaining the familiarity of SQL syntax.

As many of our APIs internally wrap corresponding FQL methods, our overall architecture has
evolved to the state shown in Figure 6-4.
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FIGURE 6-4. The application stack consumes Facebook data as web and query service

Creating a Social Web Portal: FBML
The services discussed earlier provide outside application stacks the ability to incorporate the
social platform’s data into their systems, which is a powerful step. These data architectures
realize the promise of making the social platform’s data more available: users in common
between the external application (e.g., http://fettermansbooks.com) and the data platform
(e.g., http://facebook.com) can share their social information between them, eliminating the
need for a new social network with every new social application. However, even with these
new capabilities, these applications don’t yet enjoy the full power of a social utility like
Facebook. The applications still need to be discovered by many users to become valuable. At
the same time, not all of the internal data supporting the social platform can be made available
to these external stacks. The platform creator needs to solve each of these problems, which we
take in turn.
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PRODUCT  PROBLEM: For social applications to gain compelling critical mass, users on the
supporting social graph must be made aware of other users’ interactions with these
applications. This suggests deeper integration of the application into the social site.

This problem has existed since the dawn of software: the difficulty of getting our data, product,
or system out into general use. The lack of users becomes a particularly notable difficulty in
the space of Web 2.0 because without users to consume and (especially) generate our content,
how useful can our system ever become?

Facebook supports a large number of users who are interested in sharing information along
social connections, and it can feature content from applications just as well as its own content.
Giving external applications a presence on the Facebook site would make applications built by
both large and small developers more discoverable, helping them gain the critical mass needed
to support good social functionality.

Whatever solution we create, the applications need a distinct display presence on the Facebook
site. The Facebook Platform makes this available to our application, reserving the URL path
http://apps.facebook.com/fettermansbooks/... for that application’s content rendered on
Facebook. We’ll see how the platform integrates the application’s data, logic, and display
shortly.

The second problem is another outgrowth of our data services built into the “Data: Creating
an XML Web Service” and “FQL” sections, and is just as tricky.

PRODUCT  PROBLEM: External applications cannot use certain core data elements that Facebook
does not expose through its web services.

Facebook makes a great deal of data available to its users when producing the content of its
website (http://facebook.com), but it chooses not to make every bit of this available through
the external data services. Privacy information itself (the can_see mapping from “Some
Facebook Core Data”) is a good example—not explicitly visible to users on the Facebook site,
the can_see mapping remains invisible to the data services as well. Yet enforcing the use of the
privacy preferences users maintain on Facebook is the hallmark of a well-integrated
application, and one that upholds the expectations of users on the social system. How are
developers able to harness this data, which Facebook, to maintain the privacy of its users, has
not released through its data services?

The most elegant solution to these problems will incorporate Facebook data with the external
application’s data, logic, and display, while still operating under a trusted environment for the
user.

DATA  SOLUTION: Developers create application content for execution and display on the social
site itself through a data-driven markup language, interpreted by Facebook.

Applications using only the Facebook Platform elements of the “Data: Creating an XML Web
Service” and “FQL” sections create a social experience external to Facebook, augmented by the
use of Facebook’s social data services. With the data and web architecture described in this
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section, applications themselves become a data service of a sort, supplying the content for
Facebook to display under http://apps.facebook.com. A URL such as http://apps.facebook.com/
fettermansbooks/... would no longer map to Facebook-generated data, logic, and display, but
would query the service at http://fettermansbooks.com to generate the application’s content.

We must simultaneously keep in mind our assets and our constraints. On one hand, we have
a highly trafficked social system for users to discover external content, and a great deal of social
data to augment such social applications. On the other hand, requests need to originate on the
social site (Facebook), consume the application as a service, and render content such as HTML,
JavaScript, and CSS, all without violating the privacy or expectations of users on Facebook.

First, we show some incorrect ways to attempt this.

Applications on Facebook: Directly Rendering HTML, CSS, and JS

Imagine an external application’s configuration now include two new fields named
application_name and callback_url. By entering in a name like “fettermansbooks” and a URL
like http://fettermansbooks.com/fbapp/ respectively, http://fettermanbooks.com declares that
it will service user requests to URLs like http://apps.facebook.com/fettermansbooks/PATH
?QUERY_STRING on its own servers, at http://fettermansbooks.com/fbapp/PATH?QUERY
_STRING.

A request to http://apps.facebook.com/fettermansbooks/... then simply fetches the HTML, JS,
and CSS contents on the application servers and displays this as the main content of the page
on Facebook. This renders the external site as essentially an HTML web service.

This changes the n-tier model of an application significantly. Earlier, a stack consuming
Facebook’s content as a data service served direct requests to http://fettermansbooks.com.
Now, the application maintains a tree under its web root that itself provides an HTML service.
Facebook obtains content from an online request to this new application service (which may,
in turn, consume Facebook’s data services), wraps it in the usual Facebook site navigation
elements, and displays it to the user.

However, if Facebook renders an application’s HTML, JavaScript, or CSS directly in its pages,
this allows the application to completely violate the user’s expectation of the more controlled
experience on http://facebook.com, and opens the site and its users up to all kinds of nasty
security attacks. Allowing direct customization of markup and script from outside users is
almost never a good idea. In fact, code or script injection is usually the goal of attackers, so it’s
not much of a feature.

Plus: no new data! Although this forms the basis of how an application’s stack changes, this
solution solves neither of our product problems fully.
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Applications on Facebook: iframes

An obvious first stab for more safely displaying the content of one application in the visual
context and flow of another site relies on a technology already incorporated into the browser
itself: the iframe.

To reuse the mappings from the previous section, a request to http://apps.facebook.com/
fettermansbooks/PATH?QUERY_STRING would result in HTML output like this:

<iframe src="http://fettermansbooks.com/fbapp/PATH?GET_STRING"></iframe>

The content of this URL would display in a frame inside the Facebook page, and in its own
sandboxed environment could contain any type of web technology: HTML, JS, AJAX, Flash,
and others.

This essentially results in the browser becoming the request broker rather than Facebook. An
improvement on the model from the previous section, the browser also maintains the safety
of the rest of the elements on the resulting page, so developers can create whatever experience
they want inside this frame.

For applications whose developers want to invest minimal effort in moving their code from
their site’s logic to the Platform, the iframe still makes sense. In fact, Facebook continues to
support the iframe model of full page generation. Although this solves the first product goal,
incorporation into a social site, the second remains an open question. Even with the safety of
the iframe-based request flow, these developers do not benefit from any new data beyond that
exposed by the API service.

Applications on Facebook: FBML As Data-Driven Execution Markup

The straw-man solutions in the previous two sections each have their charm. The HTML
solution takes the intuitive step of reframing applications themselves as web services, bringing
contact back for display on the Facebook domain. The iframe model incorporates the benefit
of running developer content in a separable (and safe) execution sandbox. The best solution
would retain the application-as-service model and the safety and trust of the iframe, while
enabling developers to use more social data.

The problem is that in order to provide the unique experience of their social application,
developers must provide the data, logic, and display from their own stack. However, this output
must be generated with user data that cannot leave the Facebook domain.

The solution? Send back not HTML but specific markup that defines sufficient amounts of the
application’s logic and display, plus requests for protected data, and let Facebook render it
entirely in its trusted server environment! This is the premise of FBML (Figure 6-5).
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FIGURE 6-5. Applications as FBML services

In this flow, a request to http://apps.facebook.com is again transformed to an application
request, and again, the application’s stack consumes the Facebook data services. However,
rather than returning HTML, the developer rewrites the application to return FBML, which
incorporates many HTML elements but adds special Facebook-defined tags. When this request
has returned its contents, Facebook’s FBML interpreter transforms this markup into instances
of its own data, execution, and display while rendering the application page. The user then
receives a page composed of the usual web elements of Facebook pages, but infused with the
data, logic, and feel of the application. No matter the FBML returned, FBML enables Facebook
to enforce its notions of privacy and elements of good user experience technologically.

FBML is a specific instantiation of XML with many familiar tags from HTML, augmented with
platform-specific tags for display on Facebook. FBML shares the high-level pattern of FQL:
modifying a known standard (HTML, or in FQL’s case, SQL) to defer execution and decisions
to the Facebook Platform server. As shown in Figure 6-5, the FBML interpreter allows the
developer himself to control the logic and display executed on the Facebook server through
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this FBML data. This is a great example of data at the center of execution: FBML is simply
declarative execution rather than imperative flow (as is the case in C, PHP, etc.).

Now on to the specifics. FBML is an instantiation of XML, so it is composed of tags, attributes,
and content. Tags fall into the following broad conceptual categories.

Direct HTML tags

If an FBML service returns the tag <p/>, Facebook would render this simply as <p/> on the
output page. As the bedrock of web display, most HTML tags are supported, with the exception
of a few that violate Facebook-level trust or design expectations.

So the FBML string <h2>Hello, welcome to <i>Fetterman’s books!</i></h2> would be left
essentially intact when rendered into HTML.

Data-display tags

Here’s where some of the power of data comes in. Imagine that profile pictures were not
transferred off-site. By specifying <fb:profile-pic uid="8055">, the developer can display more
data to the Facebook user as part of their application, without requiring the user to fully trust
this information to that developer.

For example:

<fb:profile-pic uid="8055" linked="true" />

translates to the FBML:

<a href="http://www.facebook.com/profile.php?id=8055"
 onclick="(new Image()).src = '/ajax/ct.php?app_id=...">
  <img uid="8055" linked="true" src="..." alt="Dave Fetterman" title="Dave Fetterman" />
</a>

N O T E
The complicated onclick attribute is generated to restrict JavaScript while displayed in a
Facebook page.

Note that even if information were protected, this content is never returned to the application
stack, but only displayed to the user. Execution on the container side makes this data available
to the viewer, without requiring that it pass through the hands of the application!

Data-execution tags

As an even better example of using hidden data, the user privacy restrictions accessible only
through the internal can_see method (Example 6-3) are an important part of application
experience, yet not accessible externally through data services. With the <fb:-if-can-see> tag
and others like it, an application can specify a target user in the attributes such that the child
elements are rendered only if the viewer can see that target user’s specific content. Thus, the
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privacy values themselves are not exposed to the application, yet it allows an application to
enforce privacy.

In this sense, FBML is a trusted declarative execution environment, in contrast to an imperative
execution environment such as C or PHP. In a strict sense, FBML is not “Turing-complete” like
these languages (for instance, no looping constructs are available). Much like HTML itself, no
state can be saved during the execution except that implied by the tree traversal; for instance,
<fb:tab-item> makes sense only within <fb:tabs>. However, FBML enables a great deal of the
functionality that most developers want to provide to their users, through making data
available to the user within the trusted system.

FBML effectively helps define the logic and display of the executing application, while still
allowing the unique content of the application to begin on application servers.

Design-only tags

Facebook has been praised for its design ethic, so many developers choose to maintain the
“look and feel” of Facebook through reusing Facebook design elements in some way. Often,
they accomplish this by lifting JavaScript and CSS from http://facebook.com, but FBML brings
with it something like a “design macro” library that meets the same need in a more controlled
way.

For example, Facebook applies known CSS classes that render input such as <fb:tabs>...</
fb:tabs> into a specific tab structure at the top of the developer’s page. These design elements
can incorporate execution semantics as well; for example, <fb:narrow>...</fb:narrow> will
render its children’s contents in FBML only if this execution shows up in the narrow column
of a user’s profile box.

Example 6-22 shows some FBML that uses design-only tags.

EXAMPLE 6-22. Example display-oriented FBML

<fb:tabs>
<fb:tab-item href="http://apps.facebook.com/fettermansbooks/mybooks.php"
 title='My Books' selected='true'/>
<fb:tab-item href="http://apps.facebook.com/fettermansbooks/recent.php"
 title='Recent Reviews' />
</fb:tabs>

This would be rendered as a set of visual tabs linking to the specified content, using Facebook’s
own HTML, CSS, and JavaScript packages.

Replacement HTML tags

HTML engenders little trust risk and no data exposure, so replacement tags in FBML are just
for modifying or restricting a certain set of parameters, such as Flash autoplay. This is not strictly
required by any display platform; they simply enforce that applications conform to the default
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display behavior of the container site. Still, these kinds of modifications become important as
the ecosystem of applications grows to mirror the look and feel of the container site.

Consider this FBML example:

<fb:flv src=http://fettermansbooks.com/newtitles.flv height="400” 
  width="400” title="New Releases">

This translates to quite a long string of JavaScript, rendering a video play module; this element
is controlled by Facebook, intentionally disallowing such behaviors as autoplay.

“Functionality package” tags

Some Facebook FBML tags encompass entire suites of common Facebook application
functionality. <fb:friend-selector> creates a type-ahead friend selector package common to
many Facebook pages, incorporating Facebook data (friends, primary networks), CSS styling,
and JavaScript for keypress actions. Tags such as this enable the container site to encourage
certain design patterns and elements of commonality among applications, as well as enable
developers to quickly implement the behavior they would like.

FBML: A small example

Recall the improvements we were able to make to our hypothetical external website with the
introduction of the friends.get and users.getInfo APIs to the original http://fettermansbooks
.com code. Now we’ll show an example of how FBML can combine the social data, privacy
business logic, and feel of a fully integrated application.

If we were able to obtain the reviews of a book using a database call
book_get_all_reviews($isbn), we could combine friend data, privacy, and the “wall” feature to
display reviews of the book using FBML on the container site through the code in
Example 6-23.

EXAMPLE 6-23. Creating an application using FBML

// Wall-style social book reviews on Facebook
// FBML Tags used: <fb:profile-pic>, <fb:name>, <fb:if-can-see>, <fb:wall>

// from section 1.3
$facebook_friend_uids = $facebook_client->api_client->friends_get();
foreach($facebook_friend_uids as $facebook_friend) {
  if ($books_user_id = books_user_id_from_facebook_id($facebook_friend))
    $book_site_friends[] = $books_user_id;

}

// a hypothesized mapping, returning
// books_uid -> book_review object
$all_reviewers = get_all_book_reviews($isbn);

$friend_reviewers = array_intersect($book_site_friends, array_keys($all_reviewers));
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echo 'Friends' reviews:<br/>';
echo '<fb:wall>';

// put friends up top.
foreach ($friend_reviewers as $book_uid => $review) {
  echo '<fb:wallpost uid="'.$book_uid.'">';
  echo '(' . $review['score'] . ')' . $review['commentary'];
  echo '</fb:wallpost>';
  unset($all_reviewers[$book_uid]); // don't include in nonfriends below.
}

echo 'Other reviews:<br/>';

// only nonfriends remain.
foreach ($all_reviewers as $book_uid => $review) {
  echo '<fb:if-can-see uid="'.$book_uid.'">'; // defaults to 'search' visibility
  echo '<fb:wallpost uid="'.$book_uid.'">';
  echo '(' . $review['score'] . ')' . $review['commentary'];
  echo '</fb:wallpost>';
  echo '</fb:if-can-see>';
}

echo '</fb:wall>';

Even though this takes the form of a service outputting FBML instead of a web call outputting
HTML, the usual flow remains intact. Here, Facebook data enables the application to show
more relevant book reviews (friends’ reviews) before less relevant ones, and uses FBML to
display the result using appropriate privacy logic and design elements on Facebook.

FBML Architecture

Transforming FBML provided by developers into the HTML shown on http://facebook.com
requires a number of technologies and concepts working together: parsing the input string into
a syntax tree, interpreting tags in this tree as internal method calls, applying the rules of FBML
syntax, and maintaining the constraints of the container site. Like FQL, here we again focus
primarily on the interaction of FBML with the platform’s data, and detail only in broad strokes
the other pieces of the technology puzzle. FBML handles a complex problem, and the full
implementation details of FBML are quite voluminous—these include omitted topics such as
FBML’s error logging, the ability to pre-cache content for later rendering, signing the results
of form submission for security, and so forth.

First, to the low-level issue of parsing FBML. In inheriting some of the roles of the browser,
the Facebook platform also inherits some of its problems. For developer convenience, we do
not require input to arrive as schema-verifiable or even well-formed XML—unclosed HTML
tags, like <p> (as opposed to XHTML, like <p/>) break the assumption that the input could be
parsed as true XML. Because of this, we need a way to first transform an input stream of FBML
into a well-formed syntax tree with tags, attributes, and content.
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For this we employ some open source from a browser codebase. This chapter takes this part of
the process as a black box, so let’s now assume that after receiving the FBML and sending it
through this flow, we will have a tree-like structure called FBMLNode, which gives us the ability
to query the tag, attribute key-value pairs, and raw content at any node in the generated syntax
tree, and recursively query child elements.

Jumping to the highest level, note that FBML appears all over the Facebook site: application
“canvas” pages, the content of News Feed stories, and the content of profile boxes, to name a
few places. Each of these contexts or “flavors” of FBML defines constraints on the input; for
instance, canvas pages allow iframes, whereas profile boxes do not. And naturally, because
FBML maintains privacy of data in a way similar to the API, the execution context must include
both the viewing user and the application ID of the application generating the content.

So before we actually engage with the payload of FBML, we start with the rules of our
environment, encompassed in the FBMLFlavor class in Example 6-24.

EXAMPLE 6-24. The FBMLFlavor class

abstract class FBMLFlavor { 

// constructor takes array containing user and application_id
  public function FBMLFlavor ($environment_array) { ... }
  public function check($category) {
    $method_name = 'allows_' . $category;
    if (method_exists($this,$method_name)) {
      $category_allowed = $this->$method_name();
    } else {
      $category_allowed = $this->_default();
    }
    if (!$category_allowed))
      throw new FBMLException('Forbidden tag category '.$category.' in this flavor.');
  }
  protected abstract function _default();
}

The flow instantiates a child of this abstract flavor class that corresponds to the page or element
rendering the FBML. Example 6-25 shows an example.

EXAMPLE 6-25. An instantiation of the FBMLFlavor class

class ProfileBoxFBMLFlavor extends FBMLFlavor {
  protected function _default() { return true; }
  public function allows_redirect() { return false; }
  public function allows_iframes() { return false; }
  public allows_visible_to() { return $this->_default(); }
 // ...
}

The flavor’s design is simple: it contains the privacy context (user and application) and
implements the check method, setting up the rules for the meaty logic contained in the
FBMLImplementation class shown later. Much like the Platform API’s implementation layer, the
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implementation class serves as the actual logic and data access portion of the service, with the
rest of the code delivering access to these methods. Each Facebook-specific tag, such as
<fb:TAG-NAME>, will have a corresponding implementation method fb_TAG_NAME (e.g., the class
method fb_profile_pic will implement the logic for the <fb:profile-pic> tag). Each standard
HTML tag has a corresponding handler as well, named tag_TAG_NAME. These HTML handlers
often let the data go through untouched, but often, FBML needs to make checks and do
transforms even on “normal” HTML elements.

Let’s jump into the implementation of some of these tags, and then glue it all together. Each
of these implementation methods accepts an FBMLNode returned from the FBML parser and
returns some output HTML as a string. Here are example implementations for some direct
HTML, data-display, and data-execution tags. Note that these listings use some functions not
fully detailed here.

Implementing direct HTML tags in FBML

Example 6-26 contains the internal FBML implementation of the <img> tag. The image tag’s
implementation has some more logic, sometimes rewriting the image source URL to the URL
of that image cached on Facebook’s servers. This demonstrates the power of FBML: an
application stack can return markup very similar to the HTML used to support its own site, yet
Facebook can enforce the behavior required by the Platform through purely technical means.

EXAMPLE 6-26. Implementation of the fb:img tag

class FBMLImplementation {
  public function __construct($flavor) {... }

  // <img>: example of direct HTML tag (section 4.3.1)
  public function tag_img($node) {

    // images are not allowed in some FBML contexts -
    // for example, the titles of feed stories
    $this->_flavor->check('images');

    // strip of transform attribute key-value pairs according to
    // rules in FBML
    $safe_attrs = $this->_html_rewriter->node_get_safe_attrs($node);
    if (isset($safe_attrs['src'])) {
      // may here rewrite image source to one on a Facebook CDN
      $safe_attrs['src'] = $this->safe_image_url($safe_attrs['src']);
    }
    return $this->_html_rewriter->render_html_singleton_tag($node->
    get_tag_name(), $safe_attrs);
  }
}
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Implementing data-display tags in FBML

Example 6-27 shows examples of using Facebook data through FBML. <fb:profile-pic> takes
uid, size, and title attributes and combines these to produce output HTML based on internal
data and according to Facebook’s standard. In this case, the output is a profile picture with the
specified user’s name, linked to that user’s profile page, shown only if that content is visible to
the viewing user. This function lives within the FBMLImplementation class as well.

EXAMPLE 6-27. Implementation of the fb:profile-pic tag

// <fb:profile-pic>: example of data-display tag
public function fb_profile_pic($node) {
  // profile-pic is certainly disallowed if images are disallowed
  $this->check('images');

  $viewing_user = $this->get_env('user');
  $uid = $node->attr_int('uid', 0, true);
  if (!is_user_id($uid))
    throw new FBMLRenderException('Invalid uid for fb:profile_pic ('.$uid .')');

  $size = $node->attr('size', "thumb");
  $size = $this->validate_image_size($size);

  if (can_see($viewing_user, $uid, 'user', 'pic')) {
    // this wraps user_get_info, which consumes the user's 'pic' data field
    $img_src = get_profile_image_src($uid, $size);
  } else {
    return '';
  }
  $attrs['src'] = $img_src;
  if (!isset($attrs['title'])) {
    // we can include the user name information here too.
    // again, this function would wrap internal user_get_info
    $attrs['title'] = id_get_name($id);
  }

  return $this->_html_renderer->render_html_singleton_tag('img', $attrs);
}

Data-execution tags in FBML

The recursive nature of FBML parsing makes possible the <fb:if-can-see> tag, an example of
FBML actually controlling execution, like an if statement in standard imperative control flow.
Another method within the FBMLImplementation class, it is detailed in Example 6-28.

EXAMPLE 6-28. Implementation of the fb:if-can-see tag

// <fb:if-can-see>: example of data-execution tag
public function fb_if_can_see($node) {
  global $legal_what_values; // the legal attr values (profile, friends, wall, etc.)
  $uid = $node->attr_int('uid', 0, true);
  $what = $node->attr_raw('what', 'search'); // default is 'search' visibility
  if (!isset($legal_what_values[$what]))
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    return ''; // unknown value? not visible

  $viewer = $this->get_env('user');
  $predicate = can_see($viewer, $uid, 'user', $what);
  return $this->render_if($node, $predicate); // handles the else case for us
}

// helper for the fb_if family of functions
protected function render_if($node, $predicate) {
  if ($predicate) {
    return $this->render_children($node);
  } else {
    return $this->render_else($node);
  }
}

protected function render_else($node) {
  $html = '';
  foreach ($node->get_children() as $child) {
    if ($child->get_tag_name() == 'fb:else') {
      $html .= $child->render_children($this);
    }
  }

  return $html;
}

public function fb_else($ignored_node) { return ''; }

If the can_see check passes for the specified viewer-object pair, the engine renders the children
of the <fb:if-can-see> node recursively. Otherwise, the content below any optional <fb:else>
children is rendered. Notice how fb_if_can_see directly accesses the <fb:else> children; if
<fb:else> appears outside one of these “if-style” FBML tags, the tag and its children return no
content at all. So FBML is not just a simple swap routine; it is aware of the structure of the
document, and thus can incorporate elements of conditional flow.

Putting it all together

Each of the functions just discussed needs to be registered as a callback that is used while parsing
the input FBML. At Facebook (and in the open source Platform implementation), this “black
box” parser is written in C as an extension to PHP, and each of these callbacks lives in the PHP
tree itself. To complete the high-level flow, we must declare these tags to the FBML parsing
engine. As elsewhere, Example 6-29 is highly edited for simplicity.

EXAMPLE 6-29. The FBML main evaluation flow

// As input to this flow:
// $fbml_impl – the implementation instantiated above
// $fbml_from_callback – the raw FBML string created by the external application

// a list of "Direct HTML" tags
$html_special = $fbml_impl->get_special_html_tags();
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 // a list of FBML-specific tags (<fb:FOO>)
$fbml_tags = $fbml_impl->get_all_fb_tag_names();

// attributes of all tags to rewrite specially
$rewrite_attrs = array('onfocus', 'onclick', /* ... */);

// this defines the tag groups passed to flavor's check() function
// (e.g. 'images', 'bold', 'flash', 'forms', etc.)
$fbml_schema = schema_get_schema();

// Send the constraints and callback method names along
// to the internal C FBML parser.
fbml_complex_expand_tag_list_11($fbml_tags, $fbml_attrs,
  $html_special,$rewrite_attrs, $fbml_schema);

$parse_tree = fbml_parse_opaque_11($fbml_from_callback);
$fbml_tree = new FBMLNode($parse_tree['root']);

$html = $fbml_tree->render_html($fbml_impl);

FBML augments browser parse technology with callbacks wrapping the data, execution, and
display macros created and managed by Facebook. This simple idea allows full integration of
applications, enabling use of data intentionally exposed through the API while maintaining
the safety of the user experience. Almost a programming language in itself, FBML is data fully
grown up: externally provided declarative execution safely controlling data, execution, and
display on Facebook.

Supporting Functionality for the System
At this point, developer-created software is running on the Facebook services, incorporated as
not just widgets but as full applications. Along the way, we’ve created a very different notion
of a social web application. We started with the standard setup of isolated data, logic, and
display of a typical web application, bereft of any social data except what users could be
convinced to contribute. We’ve now fully progressed to an application consuming Facebook
social data services while becoming itself an FBML service for full integration into the container
site.

Facebook data has progressed a long way from the internal libraries discussed in the first section
of this chapter. However, there are still a few important, common web scenarios and
technologies that, up to this point, the Platform still does not support. In casting the application
as a service returning FBML, instead of an HTML/CSS/JS endpoint consumed directly by a
browser, we’ve stepped on the toes of some important assumptions about modern web
applications. Let’s see how the Facebook Platform has rectified some of these problems.
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Platform Cookies

The new web architecture of applications cuts out some technologies built into the browser,
upon which many web stacks rely. Perhaps most importantly, browser cookies used to store
information about a user’s interaction with the application stack are no longer available, since
the consumer of the application’s endpoint is not a browser but the Facebook Platform.

At first glance, sending cookies from the browser along with the request to the application stack
might appear to be a good solution. However, the domain of these cookies is then “http://
facebook.com”, when, in fact, the cookie information pertains to the experience provided by
the application domain.

The solution? Endow Facebook with the role of the browser, by duplicating this cookie
functionality within Facebook’s own stores. If an application’s FBML service sends back
headers attempting to set a browser cookie, Facebook simply stores this cookie information
keyed on the (user, application_id) pair. Facebook then “recreates” these cookies as a browser
would when sending subsequent requests to this application stack by this user.

This solution is simple and requires the developer to change very little of his assumptions when
moving his HTML stack over to the FBML service role. Note that this information cannot be
used when a user decides to navigate to an HTML stack that this application may provide. On
the other hand, it can be useful to separate a user’s application experience on Facebook from
her experience on the application’s HTML site.

FBJS

When the application stack is consumed as an FBML service rather than directly by the user’s
browser, Facebook has no opportunity to execute the browser-side script. Directly returning
this developer content untouched (an insufficient solution, as presented at the beginning of
the FBML section) could solve this, yet it violates the Facebook-imposed constraints on the
display experience. For instance, Facebook does not want onload events shooting out pop-up
windows when a user’s profile page loads. However, restricting all JavaScript precludes much
useful functionality, such as Ajax or dynamically manipulating page content without
reloading.

Instead, FBML interprets the contents of developer-provided <script> trees and other page
elements with these constraints in mind. On top of that, Facebook provides JavaScript libraries
to make common scenarios easy yet controlled. Together, these modifications constitute
Facebook’s Platform JavaScript emulation suite, called FBJS, which makes applications
dynamic yet safe by:

• Rewriting FBML attributes to enforce virtual document scope

• Deferring active script content until a user initiates action on the page or element

• Providing Facebook libraries to implement common script scenarios in a controlled way
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Clearly, not all container sites implementing their own platforms need these modifications, but
FBJS demonstrates the kinds of solutions needed to work around a new web architecture like
this. We present only the solutions as general ideas here; much of FBJS involves incremental
improvements incorporated into FBML and extensive proprietary JavaScript libraries.

First, JavaScript generally has access to the entire Document Object Model (DOM) tree of the
document that contains it. Yet in a platform canvas page, Facebook includes many of its own
elements, which developers are not allowed to change. The solution? Prefix developer-
provided HTML elements and JavaScript symbols with the ID of the app itself (e.g.,
app1234567). In this way, attempting to call this disallowed alert() in developer JavaScript will
call the undefined function app1234567_alert, and only portions of the document’s HTML that
the developer provided himself can be accessed by something such as JavaScript’s
document.getElementById.

As an example of the kinds of transforms FBJS needs to make on provided FBML (including
<script> elements), we create a simple FBML page implementing AJAX functionality in
Example 6-30.

EXAMPLE 6-30. An FBML page using FBJS

These links demonstrate the Ajax object:
<br /><a href="#" onclick="do_ajax(Ajax.RAW); return false;">AJAX Time!</a><br />
<div>
<span id="ajax1"></span>
</div>

<script>
function do_ajax(type) {
  var ajax = new Ajax(); // FBJS Ajax library.
  ajax.responseType = type;
  switch (type) {
  <!-- note FBJS's Ajax object also implements AJAX.JSON and AJAX.FBML, omitted 
  for brevity -->
    case Ajax.RAW: ajax.ondone = function(data) {
      document.getElementById('ajax1').setTextValue(data);
    };
    break;
  };

 ajax.post('http://www.fettermansbooks.com/testajax.php?t='+type);

}
</script>

FBML with our FBJS modifications transforms this input to the HTML in Example 6-31. The
NOTE comments in this example refer to each kind of transform required, and are not part of
the actual output.
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EXAMPLE 6-31. Example HTML and JavaScript output

<!-- NOTE 1-->
<script type="text/javascript" src="http://static.ak.fbcdn.net/
.../js/fbml.js"></script>

<!-- Application's HTML -->
These links demonstrate the Ajax object:
<br>
<!-- NOTE 2 -->
<a href="#" onclick="fbjs_sandbox.instances.a1234567.bootstrap();
 return fbjs_dom.eventHandler.call(
[fbjs_dom.get_instance(this,1234567),function(a1234567_event) {
a1234567_do_ajax(a1234567_Ajax.RAW);
return false;
}
,1234567],new fbjs_event(event));return true">
AJAX Time!</a>
<br>

<div>

<span id="app1234567_ajax1" fbcontext="b7f9b437d9f7"></span><!-- NOTE 3 -->
</div>

<!-- Facebook-generated FBJS bootstrapping -->
<script type="text/javascript">
var app=new fbjs_sandbox(1234567);
app.validation_vars={ <!—- Omitted for clarity -->};
app.context='b7f9b437d9f7';
app.contextd=<!-- Omitted for clarity -->;
app.data={"user":8055,"installed":false,"loggedin":true};
app.bootstrap();
</script>

<!-- Application's script -->

<script type="text/javascript">
function a1234567_do_ajax(a1234567_type) { <!-- NOTE 3 -->

var a1234567_ajax = new a1234567_Ajax();<!-- NOTE 3 -->
 a1234567_ajax.responseType = a1234567_type;
 switch (a1234567_type) {
  case a1234567_Ajax.RAW:
a1234567_ajax.ondone = function(a1234567_data) {
a1234567_document.getElementById('ajax1').setTextValue(a1234567_data);
};
break;
};

<!-- NOTE 4 -->
a1234567_ajax.post('http://www.fettermansbooks.com/testajax.php?t='+a1234567_type);
}
</script>
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The following are explanations of the NOTEs in the code:

NOTE 1
Facebook needs to include its own specialized JavaScript, including the definition of
fbjs_sandbox, in order to render developer script.

NOTE 2
Remember the $rewrite_attrs element from the earlier FBML initialization flow? FBML
rewrites attributes in this list to Facebook-specific functionality; this is really part of FBJS.
So onclick here would activate other elements in the page that would be inactive until a
user action took place.

NOTE 3
Notice how elements within both the HTML and the script are prefixed with the
application ID of the application. This means a developer call to alert() would become a
call to app1234567_alert(). If Facebook’s backend JavaScript allowed this method in this
context, this would be routed ultimately to alert(). If not, this would be an undefined call.
Similarly, this prefixing effectively namespaces the DOM tree, so changes to parts of the
document are limited to those parts defined by the developer. Similar sandboxing
techniques allow developers to contribute limited-scope CSS as well.

NOTE 4
Facebook provides specialized JavaScript objects such as Ajax and Dialog, designed to
enable (and often improve) common scenarios. For example, requests made through the
Ajax() object are actually able to obtain FBML as results, so they are redirected through a
proxy on the Facebook domain, where Facebook does online FBML-to-HTML
transformation.

Enabling FBJS requires changes to FBML, specialized JavaScript, and server-side elements such
as the AJAX proxy to work around the limitations of the application web architecture, but the
results are powerful. Developers then enjoy most of the capabilities of JavaScript (and even
improved capabilities, such as FBML-enabled AJAX), and the Platform enforces the application
content to deliver the controlled experiences users expect on Facebook, through entirely
technical means.

Service Improvement Summary

Solving some of the remaining problems created by our new conception of the social n-tier,
we’ve again improved our service architecture with the newly added COOKIE and FBJS items
in Figure 6-6.
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FIGURE 6-6. Facebook Platform services

With developers’ social applications becoming more of an integrated service consumed by
Facebook rather than an external site consumed by a browser, we’ve had to recreate or
reengineer some of the functionality of that browser (through Platform Cookies, FBJS, etc.).
These are two examples of the significant modifications required when trying to change or
reinvent the idea of an “application.” The Facebook Platform includes additional architectural
tweaks along this line that are not detailed here, including the Data Store API and the browser-
side web service client.

Summation
Facebook’s user-contributed social information effectively motivates the utility of most any
page on http://facebook.com. However, this data is so universal that some of its best uses appear
when it is integrated with the stacks of outside developers’ applications, made possible through
data technologies such as Facebook Platform’s web services, data query services, and FBML.
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Starting from simple internal APIs that get a user’s friends or profile information, the whole
range of improvements we’ve detailed in this chapter show how to reconcile continually
expanding methods of data access with the expectations of the container site, especially the
requirements of data privacy and site experience integrity. Each new change to the data
architecture presents new problems in the web architecture, which are resolved through even
more powerful improvements to the data access pattern.

Though we’ve focused entirely on the potentials and constraints of applications built using
Facebook’s social data platform, new data services like these need not be limited to social
information. As users contribute and consume more information that is useful across many
container sites (data such as collections, reviews, location information, personal scheduling,
collaboration, etc.), platform providers of all kinds can benefit from applying the ideas behind
the unique data and web architecture of the Facebook Platform.
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C H A P T E R  S E V E N

Xen and the Beauty of Virtualization

Derek Murray
Keir Fraser

Introduction
XEN  IS  A  VIRTUALIZATION  PLATFORM  THAT  HAS  GROWN  FROM  AN  ACADEMIC research effort to
become a major open source project. It enables its users to run several operating systems on a
single physical machine, with particular emphasis on performance, isolation, and security.

The Xen project has had great impact in a variety of fields: from software to hardware, academic
research to commercial development. A large part of its success is due to it being released as
open source, under the GNU General Public License (GPL). However, the developers did not
simply sit down one day and decide to write an open source hypervisor. It began as part of a
larger—and even more ambitious—research project called Xenoservers. This project provided
the motivation for developing Xen, so we’ll use it here to explain the need for virtualization.

Making Xen open source not only made it available to a vast range of users, but also allowed
it to enjoy a symbiotic relationship with other open source projects. The unique thing about
Xen is that, when it was first released, it employed paravirtualization to run commodity
operating systems such as Linux. Paravirtualization involves making changes to the operating
systems that run on top of Xen, which both improves performance and simplifies Xen itself.
However, paravirtualization only goes so far, and it is only with hardware support from
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processor vendors that Xen can run unmodified operating systems, such as Microsoft Windows.
One of the new frontiers in processor development is the addition of new features to support
virtual machines and remove some of the performance penalties.

The architecture of Xen is slowly evolving as new features are added and new hardware
becomes available. However, the same basic structure has persisted from the original prototype
through to the present version. In this chapter, we trace how Xen’s architecture has matured
from its early days as a research project, through three major versions, and to the present day.

Xenoservers
Work on Xen began at the University of Cambridge in April 2002. It was initially developed as
part of the Xenoservers project, which aimed to create a “global distributed computing
infrastructure.”

Around the same time, grid computing was being advanced as the best way to make use of
computing resources that are scattered throughout the world. The original grid proposal cast
computer time as a utility, like electricity, which could be obtained from a grid—or network
—of collaborating computers. However, subsequent implementations concentrated on virtual
organizations: groups of companies and institutions that established possibly complicated
relationships of trust, which are enforced by heavyweight public-key cryptography for
authentication and authorization.

Xenoservers approached the problem from the opposite direction. Instead of forging trust
relationships with service providers, the customer chooses a resource on the open market
through a broker known as a XenoCorp. The XenoCorp stores a list of xenoservers—computers
offered for lease by third parties—and matches customers with servers, collecting and passing
on payment for the utility. Crucially, there is mutual distrust between the customer and the
provider: the customer cannot harm the provider’s machine, and the provider cannot tamper
with the customer’s job.

TRUST
It might sound counterintuitive that distrust is a useful architectural feature. However, the main goal
of security in this context is to prevent other individuals from accessing or interfering with your
sensitive data. A trusted system, then, is one that is allowed access to your data. When distrust is
built into the architecture, the number of trusted components is minimized, and this therefore
provides security by default.
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Enter virtualization. Instead of giving the customer an account on the server, the provider gives
him a fresh virtual machine to use as he pleases. The customer then can run any operating
system and any applications (see Figure 7-1). Virtualization software ensures that these are
isolated from the rest of the machine (which may be leased out to more customers). The
hypervisor, on which the virtual machines run, contains two main parts: a reference
monitor, which makes sure that no virtual machine can access another virtual machine’s
resources (especially its data), and a scheduler, which ensures that each virtual machine gets
a fair share of the CPU.

Operating 
System 1

Operating 
System 2

Hypervisor

Hardware

App
A

App
C

App
B

Service
X

FIGURE 7-1. Virtual machine architecture

COULDN’T YOU JUST USE AN OPERATING SYSTEM?
Time-sharing operating systems have existed since the early 1960s, and enable several mutually
distrusting users to run processes at the same time. Would it not be sufficient to give each user an
account on, say, a Unix-based machine?

This would certainly let users share the computational resources. However, it is unsatisfactory
because the user has much less flexibility and performance isolation.

In terms of flexibility, the user could only run software that is compatible with the machine’s operating
system; there is no way to run a different operating system, or to change the operating system. Indeed,
it would be impossible for the user (without administrative support) to install software that requires
root permissions.
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As for performance isolation, it is difficult for an operating system kernel, which is an extremely
complicated piece of software, to account for all the resources that are being used by a particular
user. An example is the fork bomb, where a user starts an exponentially growing number of processes.
This rapidly consumes all of the processor’s resources and causes denial of service to other users.
Hence multiuser systems typically require some amount of trust or etiquette between users, so that
attacks like these are not carried out.

In Figure 7-1 we see two virtual machines running on top of a hypervisor. The first virtual
machine runs Operating System 1 (e.g., Microsoft Windows) and two applications; the second
virtual machine runs Operating System 2 (e.g., Linux), an application, and a service.

It turns out that virtualization is useful for other things as well. For example, in many data
centers, a dedicated server is used for each application, such as a database or a web server, but
each server uses only a fraction of its processor, memory, and bandwidth resources. Obviously,
it would be better if these were consolidated onto fewer physical machines, saving power,
space, and component maintenance. However, simply running the applications on the same
operating system can give poor results. The various applications, when run together, might
cause unpredictable poor performance. Worse, there is a risk of correlated failures, which occur
when one application crashes and causes the others to crash as well. By placing each application
in a virtual machine and then running them on top of a hypervisor, the hypervisor can protect
the applications and ensure that each gets a fair share of the server’s resources.

The idea of using virtualization for utility computing has gained currency in recent years. One
of the best-known utility computing services is Amazon’s EC2, which allows customers to
create virtual machines that run on servers in Amazon’s data centers. The customer is then
charged for the processor time and network bandwidth that his virtual machine uses. In fact,
the servers run Xen as their virtualization software, making it even closer to the Xenoservers
vision (although it admits only a single service provider).

Virtualization has also had an influence on grid computing. Globus, the de facto standard
middleware for grid computing, now supports virtual workspaces, which marry virtual
machines with existing grid security and resource management protocols. An added benefit is
that a virtual workspace—like any virtual machine—can be migrated to another physical
location if conditions change.

The key advantage of virtual machines in the Xenoservers model is that they can be used to
run popular commodity operating systems and existing applications. In practice, this means
running on the dominant x86 architecture, which presents the hypervisor developer with
several challenges.
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The Challenges of Virtualization
At a high level, operating system virtualization is used to multiplex several virtual machines
onto a single physical machine. The virtual machines run operating systems; the physical
machine can run operating systems. So what is the difference between a virtual machine and
the physical machine?

Hardware is the most obvious difference. On a physical machine, the operating system has
direct control of all attached hardware: network cards, hard drives, the graphics card, the
mouse and keyboard. However, the virtual machines cannot have direct access to this
hardware, or else they will undermine the isolation between each virtual machine. For
example, a virtual machine (or VM) might not want other VMs to see what it stores in its
secondary storage, or to read its network packets. Moreover, it would be difficult to ensure fair
use in this scheme. You could have one device of each type for each virtual machine, but this
would negate the cost and power savings of virtualization. The solution is to give each virtual
machine a set of virtual hardware, which provides the same functionality as real hardware,
but which is then multiplexed on the physical devices.

A more subtle difference arises when an operating system runs in a virtual machine.
Traditionally, the operating system kernel is the most privileged software running on a
computer, which allows it to execute certain instructions that user programs cannot. Under
virtualization, the hypervisor is most privileged, and operating system kernels run at a lower
privilege level. If the operating system now tries to execute these instructions, they will fail,
but the way in which they fail is crucial. If they cause an error, which the hypervisor then
traps, the hypervisor can correctly emulate the instruction and return control to the virtual
machine. On the x86, however, there are some instructions that behave differently in lower
privilege levels—for example, by failing silently without a trap to the hypervisor. This is bad
news for virtualization because it stops operating systems from working properly in virtual
machines. Obviously it is necessary to change these instructions, and the prevailing technique
(at least, before Xen) was to scan the operating system code at runtime, looking for certain
instructions and replacing them with code that calls the hypervisor directly.

Indeed, before Xen, most virtualization software aimed to make virtual hardware look exactly
like physical hardware. So the virtual devices behaved like physical devices, emulating the
same protocols, while the code rewriting ensured that the operating system would run without
modifications. Although this gives perfect compatibility, it comes at a heavy cost in
performance. When Xen was released it showed that by abandoning perfect compatibility,
performance increased dramatically.

Paravirtualization
The idea of paravirtualization is to remove all the features of an architecture (such as the x86)
that are difficult or expensive to virtualize, and to replace these with paravirtual operations
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that communicate directly with the virtualization layer. The technique was first used in Denali,
a virtual machine monitor that hosts the specially written Ilwaco guest operating system. Xen
went one step further by running paravirtualized versions of commodity operating systems.*

Paravirtualizing an operating system involves rewriting all of its code that is incompatible with
the paravirtualized architecture. Performance improves because the changes are made in
advance, by developers, rather than at runtime. To demonstrate the power of
paravirtualization, the Xen team first required an operating system that they could change.
Fortunately, Linux was available, open source, and widely used. Only 2,995 lines in the Linux
kernel were modified or added to make it run on Xen: this represents less than 2% of the x86
Linux codebase. With paravirtualization (as with virtualization), all of the existing user
applications can continue to be used without modification, so the overall modifications are not
too invasive.

To achieve paravirtualization, you must either write the operating system yourself (the Denali
approach), modify an existing open source operating system (such as Linux or BSD), or
convince the developers of a proprietary operating system that paravirtualizing their code is
worthwhile. The original research version of Xen achieved impressive, near-native
performance on a number of benchmarks running on the modified version of Linux. This
performance, and the fact that Xen was released as open source software, has brought us to a
point where proprietary operating system developers are paravirtualizing parts of their code,
so that they will run more efficiently on hypervisors such as Xen. Even more encouragingly,
the paravirtual operations developed for Xen and other hypervisors have been standardized in
the latest version of the Linux kernel. By incorporating Xen (and other hypervisor) support in
the standard kernel, the uptake of virtualization becomes even easier.

How does paravirtualization work? The full details are too involved to cover here, but the
“Further Reading” section at the end of this chapter includes papers that cover the techniques
in depth. Here, we’ll look at two examples of paravirtualization: for virtual memory and for
virtual devices.

The first step in paravirtualizing an operating system is to make it aware that it is not the most
privileged software running on the computer; that distinction is awarded to the hypervisor.
Most processors have at least two modes: supervisor and user mode. Normally, the operating
system kernel would run in supervisor mode, but this is reserved for Xen, so it must be modified
to run in user mode.† However, when running in user mode, several operations are illegal.

* Of course, it could be argued that VM/370—IBM’s operating system from the 1960s and the progenitor
of virtualization—was the first paravirtualized operating system. However, since IBM designed the
instruction set, operating system, and virtual machine monitor, this approach faced different challenges
to modern paravirtualization.

† The x86 architecture has four privilege levels, or rings, with 0 being the most privileged and 3 the least
privileged. In its 32-bit incarnation, Xen ran in ring 0, paravirtualized kernels ran in ring 1, and user
applications ran, as normal, in ring 3. However, on the 64-bit version, paravirtualized kernels run in ring
3, due to a difference in the memory segmentation hardware.
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This is crucial for protecting processes from one another in a regular operating system.
Therefore the kernel must ask the hypervisor to carry out these operations on its behalf, using
a mechanism called a hypercall. A hypercall is similar to a system call (from a user process to
the kernel), except that it is used for communication between a kernel and the hypervisor, and
it typically implements lower-level operations.

Virtual memory is used to ensure that processes cannot interfere with the data or code of other
processes. Each process is given a virtual address space, which ensures that that process can
access only its allocated memory. The kernel is responsible for creating the virtual address
space, by maintaining page tables, which map virtual addresses to the physical addresses that
identify the actual location of data on the memory chips. When it is running in a virtual
machine, the kernel does not have carte blanche to manage these tables, as it could conceivably
make a mapping to memory that belongs to another virtual machine. Therefore, Xen must
validate all updates to the page tables, and the kernel must inform the hypervisor when it
wants to change any page table. This could be very inefficient if the hypervisor were involved
in every page table update (for example, when a new process starts and its page tables are first
built). However, it turns out that these cases are relatively rare, and Xen can amortize the cost
of going to the hypervisor by batching the update requests or “unhooking” the page table while
it is being updated.

Look at Figure 7-2. Each virtual machine has a share of the total physical memory.‡ However,
it might not be contiguous, and, in most cases, it will not start at physical address zero.
Therefore, each virtual machine kernel deals with two types of addresses: physical (or
machine) and pseudophysical. The physical addresses correspond to the actual location of data
on the memory chips, whereas the pseudophysical addresses provide the virtual machine with
the illusion of a contiguous physical address space that starts at zero. Pseudophysical addresses
may be useful for certain algorithms and subsystems that rely on this assumption and would
otherwise need to be paravirtualized.

To be of any practical use, it must be possible to interact with a virtual machine. At a bare
minimum, the virtual machine needs a disk (more properly known as a block device), and a
network card.§ Since most operating systems include support for at least one block device and
network card, it might seem tempting for the hypervisor to emulate these devices so that the
original drivers could be used. However, the software implementation would struggle to
emulate the performance of the real devices, and the emulated device models may have to go
through contortions (such as implementing hardware protocols) that are unnecessary and
inefficient when providing a device’s function in software.

‡ Note that Xen does not support overcommitting physical memory, so there is no swapping of virtual
machines. However, the memory footprint of a virtual machine can be altered using a process called
ballooning.

§ You might think that a mouse, keyboard, and video output would be necessary for interactivity, but these
can be provided by a remote desktop client such as VNC. Nevertheless, recent versions of Xen have
included support for these virtual devices.
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FIGURE 7-2. Virtual machine memory layout

HOW ELSE COULD YOU DO IT?
The standard means of virtualizing virtual memory (when you cannot change the operating system)
is to use shadow page tables. With these, the guest deals with pseudophysical addresses (i.e.,
contiguous and beginning at 0) in place of physical addresses.

The guest maintains its own page tables against this address space. However, they cannot be used
by the hardware, because they don’t correspond to real physical addresses. Therefore, the
hypervisor monitors updates to these guest page tables, and uses them to construct a shadow page
table, which translates virtual addresses to real physical addresses.

This method clearly incurs some overhead, but it is necessary when you cannot modify the operating
system. Xen uses a variant of this method for hardware virtualized guests, as described later in this
chapter.

Since Xen is not constrained by having to support unmodified operating systems, it is free to
introduce virtual block and network drivers. Both operate in a similar manner: they comprise
a frontend driver in the guest virtual machine and a backend driver in the virtualization
software. The two devices communicate using a ring buffer, which is a high-performance
mechanism for transferring large volumes of data between virtual machines. This results in a
flexible layered architecture (Figure 7-3): the frontend implements the operating system’s
network or block device interface so that it appears to the operating system as a regular
hardware device, and the backend connects the virtual device to real hardware. A virtual block
device might be connected to a file containing a disk image or a real disk partition; a virtual
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network device might be attached to a software network bridge, which is itself attached to a
real network card. The ring buffer abstraction ensures that the frontend and backend are totally
decoupled. One backend can support frontends from Linux, BSD, or Windows, whereas the
same frontend can be used with various backends, so features such as copy-on-write,
encryption, and compression can be added transparently to the guest. Like the Internet
Protocol, the Xen split device model can operate on a vast array of hardware, and it supports
a multitude of higher-level clients, as shown in Figure 7-3.
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Backend

Copy-on-write Checkpointing CompressionEncryption

SATA IDE
SAN
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ext2 XFSext3

Solaris
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FIGURE 7-3. Hourglass architecture of a split block device

Paravirtualization encompasses far more than these examples. For example, the meaning of
time changes when an operating system can be switched out from the CPU, and Xen introduces
a virtual time concept to ensure that operating systems still behave as expected. There are many
more virtual devices, and the paravirtualization of memory makes use of many more
optimizations to ensure efficient performance. For more details on these, see the “Further
Reading” section at the end of the chapter.

The Changing Shape of Xen
The traditional representation of a Xen-based system shows several virtual machines (known
in Xen as domains) sitting on top of the hypervisor, which itself sits directly on the hardware
(Figure 7-4). When it boots up, the hypervisor launches a special domain, known as domain
zero. Domain zero has special privileges that allow it to manage the rest of the system, and it
is analogous to a root or administrator process in a regular operating system. Figure 7-4 shows
a typical Xen-based system, with domain zero and several guest domains (known as DomUs
in Xen jargon) running on top of the Xen hypervisor.
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HOSTED VIRTUALIZATION
Xen is an example of native virtualization (also known as Type 1 virtualization). The alternative
approach is to run a hypervisor on top of a host operating system. In this case, each virtual machine
effectively becomes a process in the host operating system. The host operating system is responsible
for the management functions that domain zero performs on Xen. The hosted hypervisor and
management software are like a regular application, which sits on top of (and might plug into) a
commodity operating system; see Figure 7-5.

Hosted hypervisors are commonly used in the “workstation” versions of other virtualization
products, such as VMWare Workstation, Parallels Workstation, and Microsoft Virtual PC. The main
advantage of this approach is that installing a hosted hypervisor is as simple as installing a new
application, whereas installing a native hypervisor such as Xen is more akin to installing a new
operating system. Therefore hosted virtualization is better suited for nonexpert users.

On the other hand, the advantage of a native hypervisor is that it can achieve better performance,
because the native hypervisor is a far thinner layer of software than the combined host operating
system and hypervisor. Hosted virtual machines are scheduled at the mercy of the host operating
system, which can lead to performance degradation if other applications are running alongside the
hypervisor. By contrast, because domain zero is scheduled like a regular virtual machine,
applications running there do not have an impact on the performance of the other virtual machines.
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Hosted virtual machines are typically used for desktop virtualization: they allow a user running, say,
Mac OS X to run Linux in a window on her desktop. This is useful for running applications that are
not available for the host operating system, and the performance hit is less noticeable when using
interactive applications. Native virtualization is more suited to a server setting, where both raw
performance and predictability are critical.

Commodity OS

Hardware

Hypervisor and management software

Guest OS

ServiceApp Apps

Guest OS Guest OS

FIGURE 7-5. Hosted virtualization system architecture

When designing the Xen architecture, a primary concern was separating policy from
mechanism wherever this was feasible. The hypervisor was designed to be a thin layer that
managed the low-level hardware, acting as the reference monitor and scheduler and
multiplexing access to hardware devices. However, since the hypervisor runs at the highest
privilege level (and a bug here could compromise the whole system), the higher-level
management is delegated to domain zero.

For example, when creating a new virtual machine, the bulk of the work is done in domain
zero. From the hypervisor’s point of view, a new domain is allocated, along with a portion of
physical memory, some of that memory is mapped (in order to load the operating system), and
the domain is unpaused. Domain zero takes care of admission control, setting up virtual
devices, and building the memory image for the new domain. This split was particularly useful
in the development process, as it is much easier to debug the management software in domain
zero than the hypervisor. Moreover, it allows support for different operating systems to be
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added in domain zero rather than in the hypervisor, where additional complexity is generally
undesirable.

Earlier we noted how Xen benefited from the availability of an open source operating system,
which provided a testbed for paravirtualization. A second benefit of using Linux is its vast range
of support for different hardware devices. Xen is able to support almost any device for which
a Linux driver exists, as it reuses the Linux driver code. Xen has always reused Linux drivers
in order to support a variety of hardware. However, between versions 1.0 and 2.0, the nature
of this reuse changed significantly.

In Xen 1.0, all virtual machines (including domain zero) accessed hardware through the virtual
devices, as described in the previous section. The hypervisor was responsible for multiplexing
these accesses onto real hardware, and therefore it contained ported versions of the Linux
hardware drivers and the virtual driver backends. Although this simplified the virtual
machines, it placed a lot of complexity in the hypervisor and put the burden of supporting new
drivers on the Xen development team.

Figure 7-6 shows changes to the device architecture between Xen 1.0 and 2.0. In version 1.0,
the virtual backends were implemented inside the hypervisor: all domains, including domain
zero, accessed the hardware through these devices. In version 2.0, the hypervisor was slimmed
down, and domain zero was given access to the hardware with native drivers. Therefore, the
backend drivers moved to domain zero.
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FIGURE 7-6. Changes to the device architecture between Xen 1.0 and 2.0

In the development of Xen 2.0, the device architecture was completely redesigned: the native
device drivers and virtual backends were moved out of the hypervisor and into domain
zero.‖ The frontend and backend drivers now communicate using device channels, which

‖ In fact, the architecture allows any authorized virtual machine to access the hardware, and therefore act
as a driver domain.
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enable efficient and secure communication between domains. Thanks to device channels,
Xen’s virtual devices achieve near-native performance. Their performance rests on two design
principles: copyless transfer and asynchronous notification.

Look at Figure 7-7. This diagram shows how a split device is used. The guest provides the
frontend driver with a page of memory, either containing data to be written or to hold data
that is read in (1). The frontend driver places a request in the next available slot in the shared
ring-buffer, which contains a reference to the provided page (2), and tells the hypervisor to
notify the driver domain that a request is pending (3). The backend wakes up and maps the
provided page into its address space (4) so that the hardware can interact with it using DMA
(5). Finally, the backend notifies the frontend that the request has completed (6), and the
frontend notifies the guest application (7).

Hypervisor

Driver domain

7

3

2

4

5

6

1

Guest domain

FrontendBackend

FIGURE 7-7. Anatomy of a split device

Copying data using the CPU is expensive, which is why techniques such as Direct Memory
Access (DMA) have been developed to transfer device data directly to and from memory
without CPU involvement. However, when the data has to move between address spaces, Xen
must take special measures to avoid the copy. Xen supports a shared memory mechanism called
grant tables, whereby each virtual machine maintains a table that defines which of its pages
can be accessed by other virtual machines. An index in this table is called a grant reference,
which, when given to another virtual machine, acts as a capability. The hypervisor ensures
that only the intended recipient can map the grant reference, which in turn maintains memory
isolation. The device channel itself is used to send grant references, which are then used to
map buffers for sending or receiving data.

When a new request or response is made, the sender must notify the receiver. This would
traditionally use a synchronous notification—akin to a function call—whereby the sender
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waits until it knows that the notification was received. As Figure 7-8 shows, this mode of
operation leads to poor performance, especially when only a single processor is available. Xen
instead uses event channels to send asynchronous notifications. Event channels implement
virtual interrupts, but a virtual interrupt is serviced only when the target domain is next
scheduled. Therefore, the requestor can generate multiple requests, raising the event channel
each time, before the target domain is scheduled to act upon them. Then, when the target
domain is scheduled, it can process several requests and send responses, again asynchronously.

Look at Figure 7-8. With synchronous notification, the frontend has to wait for the backend
to complete its work before it can make the next request. This means waiting for the backend
domain to be scheduled, and then for the frontend domain to be rescheduled. By contrast,
with asynchronous notification the frontend can send as many requests as possible while it is
scheduled, and the backend can send as many responses as possible. This leads to much-
improved throughput.

Frontend

Backend

Time

Synchronous
Notification

Frontend

Backend

Asynchronous
Notification

Time

FIGURE 7-8. The advantages of asynchronous notification

Of course, if you move too much functionality into domain zero, it becomes a single point of
failure. This is especially true of device failures, which can bring down the whole operating
system (and with it, the entire virtualized system). Hence Xen allows for driver domains, to
which domain zero can delegate the control of one or more devices. These are simply
implemented by placing the backend driver in the driver domain and granting some I/O
privileges to the domain. Then, if a driver should fail, the failure would be isolated within the
driver domain, which can be restarted without harming the system or the client domain.
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This model has been applied to other parts of domain zero. The latest versions of Xen include
stub domains, which provide device support for “hardware virtualized” domains (described in
the following section). Moving this code into isolated domains allows better performance
isolation, improves robustness, and—somewhat surprisingly—improves raw performance. As
development continues, more features may be moved out of domain zero, especially where
doing so might improve security.

Changing Hardware, Changing Xen
Up to this point, our discussion has concentrated on paravirtualization. However, between Xen
versions 2.0 and 3.0, Intel and AMD introduced distinct but similar support in their processors
for hardware virtual machines. It became possible to run unmodified operating systems,
including Microsoft Windows or native Linux, in virtual machines. So did this spell the end
for paravirtualization?

First of all, let’s look at how hardware virtual machines are implemented. Both Intel and AMD
introduced a new mode (nonroot mode on Intel and guest mode on AMD) in which attempting
to execute a privileged operation, even at the highest (virtual) privilege level, generates an
exception that notifies the hypervisor. Therefore it is no longer necessary to scan the code and
replace these instructions (either at runtime or in advance through paravirtualization). The
hypervisor can use shadow page tables to provide the virtual machine with an illusion of
contiguous memory, and it can trap I/O operations in order to emulate physical devices.

Xen added support for hardware virtual machines in version 3.0. The transition was aided
greatly by open source development. Since Xen is an open source project, it was possible for
developers from Intel and AMD to contribute low-level code that supports the new processors.
Furthermore, thanks to its GPL status, Xen could incorporate code from other open source
projects. For example, the new hardware virtual machines required an emulated BIOS and
emulated hardware devices; implementing either of these would require a huge development
effort. Fortunately, Xen could call on the open source BIOS from the Bochs project and
emulated devices from QEMU.

EMULATION VERSUS VIRTUALIZATION
The latest version of Xen includes code from Bochs and QEMU, which are both emulators. What is
the difference between emulation and virtualization, and how can the two combine?

Bochs provides an open source implementation, in software, of the x86 family of processors, as well
as the supporting hardware. QEMU emulates several architectures, including the x86. Both can be
used to run unmodified x86 operating systems and applications. Moreover, because they include a
full implementation of the hardware—including the CPU—they can run on hardware that uses an
incompatible instruction set.
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Virtualized and emulated systems differ in how each instruction is executed. In a virtualized system,
applications and most of the operating system run directly on the processor, whereas in an emulated
system, the emulator must simulate or translate each instruction in order to execute it. Therefore,
an emulator introduces more overhead than a virtual machine monitor for the same platform.#

However, even though they use parts of Bochs and QEMU, Xen’s hardware virtual machines are
virtualized and not emulated. The Bochs code provides the BIOS, which supports the boot process,
and QEMU provides emulated drivers for a range of common devices. However, these pieces of code
are only invoked at startup and when an I/O operation is attempted. The majority of other instructions
run directly on the CPU.

At this point, you might wonder what happened to the much-vaunted advantages of
paravirtualization. Surely all these emulated devices, shadow page tables, and additional
exceptions would lead to poor performance? It’s often true that a naïvely hardware-virtualized
operating system performs worse than a paravirtualized operating system, but there are two
mitigating factors.

First, the processor vendors are continually developing new features that optimize
virtualization. Just as a memory management unit (MMU) lets programmers deal with virtual
rather than physical addresses, an IOMMU does the same for input and output devices. An
IOMMU can be used to give a virtual machine (whether hardware-virtualized or
paravirtualized) safe, direct access to a piece of hardware (Figure 7-9). The normal problem
with giving a virtual machine direct access to hardware is that many devices can perform DMA,
and therefore without an IOMMU, it can read or overwrite other virtual machines’ memory.
The IOMMU can be used to ensure that while a particular virtual machine is in control, only
memory belonging to that virtual machine is available for DMA.

Figure 7-9 illustrates a simplified DMA request from a virtual machine (DomIO) using an
IOMMU. The hardware driver uses pseudophysical (virtual machine–specific) addresses when
communicating with the device (1). The device makes DMA requests using these addresses
(2), and the IOMMU (using I/O page tables, which are configured by the hypervisor) converts
these to use physical addresses (3). The IOMMU also stops any attempts by the virtual machine
to access memory that it does not own.

# KQEMU is a Linux kernel module that enables user-mode code—and some kernel-mode code—to
run directly on the CPU. Where the host and target platforms are the same, this provides a huge
speed-up. The result is a hybrid of emulation and virtualization.
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FIGURE 7-9. Direct device access using an IOMMU

Enhancing the memory management hardware can also remove the need for shadow page
tables.* Both AMD and Intel have technology (respectively, Rapid Virtualization Indexing and
Enhanced Page Tables) which perform the translation between pseudophysical addresses and
physical addresses. Therefore there is no need for the hypervisor to create shadow page tables,
as the whole translation occurs in hardware.

Of course, a far cheaper solution is to take the lessons learned from paravirtualization and apply
them to unmodified guest operating systems. Although it is not possible to change core parts
of the operating system, we can add device drivers, and moreover, Xen can modify the virtual
hardware on which the operating system runs. To this end, the emulated hardware provides
a Xen platform device, which appears as a PCI device to unmodified guest operating systems
and provides access to the virtual platform. It is then possible to write frontend devices for the
unmodified operating systems, which operate in the same way as frontends in paravirtualized
operating systems. By doing this, we achieve I/O performance in hardware virtual machines
that is comparable to the paravirtualized case.

When we introduced paravirtualization earlier in this chapter, we said that the only ways to
get a commodity operating system running as a paravirtualized guest would be by doing it
ourselves or by convincing the developers of a proprietary operating system that they should
do it. As a testament to the success of paravirtualization, Microsoft has included
enlightenments in Windows Server 2008, which improve the performance of memory
management when running in a virtual machine. These enlightenments are equivalent to
paravirtualized operations, as they rely on hypercalls to inform the hypervisor of the current
operation.

* It should be noted that Xen’s shadow page table implementation is highly optimized, and achieves
competitive performance, but still has some overhead when compared with paravirtualized page tables.
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Lessons Learned
Looking back, there are two main lessons that can be drawn from Xen: the importance of
paravirtualization, and the benefits of open source development.

Paravirtualization

Foremost is the success of paravirtualization. A famous quote reminds us:

Any problem in computer science can be solved with another

layer of indirection. But that usually will create another problem.

—David Wheeler

Virtualization is simply a form of indirection, and even though modern computers have
hardware support for virtualization, naïve reliance on this support leads to poor performance.
The same problems arise when you make naïve use of any type of virtualization.

For example, virtual memory uses a hard disk to provide the illusion of a vast amount of
available memory. However, if you write a program that tries to use all of it as if it were real,
physical memory, the performance will be atrocious. In this case you could imagine
“paravirtualizing” that program to make it aware of the physical limits, changing the algorithms
and data structures used to make it run efficiently in combination with the virtual memory
system.

In the context of operating systems, Xen has shown that paravirtualization—whether it be
adding a virtual driver, changing the operating system wholesale, or adding enlightenments
to improve performance in select areas—is an important technique for improving performance
when running in a virtual environment.

Open Source Development

Perhaps the boldest decision taken during Xen’s development was choosing to make it available
as open source software when other hypervisors were available only as proprietary software.

This decision has definitely benefited Xen because of the sheer amount of software that it has
been able to harness: from the Linux kernel and the QEMU machine emulator, down to the
tiny program that draws the Xen logo at boot time.† Without this software, the Xen project
would have involved a huge amount of reimplementation. By including software from these
other projects, Xen benefits when the software is updated, and the other projects benefit from
patches submitted by Xen developers.

Xen, which started out as the part-time project of a single research student at the University
of Cambridge, has grown to include over 100 contributors from around the world. Some of

† Figlet: http://www.figlet.org
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the largest contributions have come from Intel and AMD, who provided much of the code to
support hardware virtual machines. This enabled Xen to be one of the first hypervisors to
support these processor extensions.

What’s more, because Xen is freely available, several other projects have adopted it. Major
Linux distributions such as Debian, Red Hat, SUSE, and Ubuntu now include Xen packages
and have contributed code back into the project, along with useful tools for using Xen. Some
contributors have taken on the effort of porting Xen to other architectures and porting other
operating systems to run directly on the hypervisor. Xen has been used to run paravirtualized
OpenSolaris, FreeBSD, and NetBSD, among others. Xen now runs on the Itanium architecture,
and work is underway to port it to the ARM processor. The latter is particularly exciting because
it will enable Xen to run on “nontraditional” devices, such as mobile phones.

As we look to the future, some of the most interesting uses of Xen are in the research
community. Xen appeared at the Symposium on Operating Systems Principles (SOSP) in 2003,
and has formed the basis of a variety of research, both within and outside of its original research
group. One of the earliest papers written about Xen was from Clarkson University, where a
group of researchers repeated the results in the SOSP paper. The authors remarked that open
source software improves computer science because it enables repeated research and, in turn,
strengthens any claims made about performance or other characteristics. More recent research
work has led directly to interesting new features in Xen. One particular example is live
migration, which enables a virtual machine to be moved between physical computers with
only a negligible period of downtime. This was detailed in a paper in 2005, and was added to
Xen in version 2.0.

Further Reading
This chapter could only scratch the surface of the Xen project, and the relevant research papers
are the best source of further details.

These first two papers describe the architecture of Xen 1.0 and 2.0, respectively:

Barham, Paul, et al. “Xen and the art of virtualization,” Proceedings of the 19th ACM
Symposium on Operating System Principles, October, 2003.

Fraser, Keir, et al. “Safe hardware access with the Xen virtual machine monitor,”
Proceedings of the 1st OASIS Workshop, October, 2004.

The following papers describe some of the new chipset and processor technology that has been
developed to aid virtualization:

Ben-Yehuda, Muli, et al. “Using IOMMUs for virtualization in Linux and Xen,”
Proceedings of the 2006 Ottawa Linux Symposium, July, 2006.

Dong, Yaozu, et al. “Extending Xen with Intel virtualization technology,” Intel®
Technology Journal, August, 2006.
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Finally, Xen is under active development and continually evolving. The best way to keep
abreast of new developments is to download the source code and participate in the mailing
lists. Both can be found at http://www.xen.org/.
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C H A P T E R  E I G H T

Guardian: A Fault-Tolerant Operating
System Environment

Greg Lehey

ARCHITECTURE  IS  NOTHING  NEW. REAL  BUILDING  ARCHITECTURE has been around for
thousands of years, and some of the most beautiful examples of building architecture are also
thousands of years old. Computers haven’t been around that long, of course, but here too there
have been many examples of beautiful architectures in the past. As with buildings, the style
doesn’t always persist, and in this chapter I describe one such architecture and consider why
it had so little impact.

Guardian is the operating system for Tandem’s fault-tolerant “NonStop” series of computers.
It was designed in parallel with the hardware to provide fault tolerance with minimal overhead
cost.

This chapter describes the original Tandem machine, designed between 1974 and 1976 and
shipped between 1976 and 1982. It was originally called “Tandem/16,” but after the
introduction of its successor, “NonStop II,” it was retrospectively renamed “NonStop I.”
Tandem frequently used the term “T/16” both for the system and later for the architecture.

I worked with Tandem hardware full-time from 1977 until 1991. Working with the Tandem
machine was both exhilarating and unusual. In this chapter, I’d like to bring back to life some
of the feeling that programmers had about the machine. The T/16 was a fault-tolerant machine,
but that wasn’t its only characteristic, and in this discussion I mention many aspects that don’t

 Principles and properties  Structures

✓ Versatility ✓ Module

✓ Conceptual integrity ✓ Dependency

✓ Independently changeable ✓ Process

✓ Automatic propagation ✓ Data access

 Buildability   

✓ Growth accommodation   

✓ Entropy resistance   
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directly contribute to fault tolerance—in fact, a couple detract from it! So prepare for a voyage
into the past, back to about 1980, starting with one of Tandem’s marketing slogans.

Tandem/16: Some Day All Computers Will Be Built Like This
Tandem describes the machines as single computers with multiple processors, but from the
perspective of the 21st century, they’re more like a network of computers operating as a single
machine. In particular, each processor works almost completely independently from the
others, and the system can recover from the failure of any single component, including
processors. The biggest difference from conventional networked processors is that the entire
system runs from a single kernel image.

Hardware
Tandem’s hardware is designed to have no potential for a “single point of failure”: any one
component of the system, hardware or software, can fail without causing the entire system to
fail. Beyond this, it is designed for graceful degradation. In most cases, the system as a whole
can continue running despite multiple failures, though this depends greatly on the nature of
the individual failure.

The first implication of this architecture is that there must be at least two of each component
in case one should fail. In particular, this means that the system requires at least two CPUs.

But how should the CPUs be connected? The traditional method, then as now, is for the CPUs
to communicate via shared memory. At Tandem we call this tightly coupled multiprocessors.
But if the processors share memory, that memory could be a single point of failure.

Theoretically, it is possible to duplicate memory (a later Tandem architecture actually did that),
but it’s very expensive, and it creates significant timing problems. Instead, at the hardware
level, Tandem chose a pair of high-speed parallel buses, the “interprocessor bus” or IPB,
sometimes also referred to as Dynabus, which transfer data between the individual CPUs. This
architecture is sometimes called loosely coupled multiprocessors.

There’s more to a computer than the CPU, of course. In particular, the I/O system and data
storage are of great importance. The basic approach here is also duplication of hardware; we’ll
look at it further down.

The resultant architecture looks something like Figure 8-1, the so-called Mackie diagram,
named after Dave Mackie, a vice president of Tandem.

176  C H A P T E R  E I G H T



Interprocessor bus (IPB)

Controller

Disk controller

Disk controller

CPU 1CPU 0

$SYSTEM $DATA

I/O
bus

I/O
bus

FIGURE 8-1. Mackie diagram

This could easily have led to at least doubling the cost of a system, as is the case with “hot
standby” systems, where one component is only present in order to wait for the failure of its
partner. Tandem chose a different approach for the more expensive components, such as CPUs.
In the T/16, each CPU is active, and instead the operating system processes provide the hot
standby function.

Diagnosis

The operating system needs to find out when a component fails. In many cases, there’s not
much doubt: if it fails catastrophically, it stops responding altogether. But in many cases, a
failed component continues to run but generates incorrect results.

Tandem’s solution to this problem is neither particularly elegant nor efficient. The software is
designed to be paranoid, and at the first suggestion that something has gone wrong, the
operating system stops the CPU—there’s another to take over the load. If a disk controller
returns an invalid status, it is taken offline—there’s another to continue processing without
interruption. But if the failure is subtle, it could go undetected, and on rare occasions this results
in data corruption.
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It’s not enough for a CPU to fail, of course; other CPUs have to find out that it has failed. The
solution here is a watchdog. Each CPU broadcasts a message, the so-called “I’m alive” message,
over both buses every 1.2 seconds. If a CPU misses two consecutive “I’m alive” messages from
another CPU, it assumes that that CPU had failed. If the CPUs share resources (processes or
I/O), the CPU that detects the failure then takes over the resources.

Repair

It’s not enough to take a defective component offline; to maintain both fault tolerance and
performance, it needs to be brought back online (“up”) as quickly as possible, and of course
without taking any other components offline (“down”).

How this happens depends on the component and the nature of the failure. If the operating
system has crashed in one CPU (possibly deliberately), it can be rebooted (“reloaded”) online.
The standard way to boot a system is to first boot one processor from disk and then boot all
other processors across the IPB. Failed processors are also rebooted via the IPB.

If, on the other hand, the hardware is defective, it needs to be replaced. All system components
are hot-pluggable: they can be removed and replaced in a running system with power up. If a
CPU fails because of a hardware problem, the appropriate board is replaced, and then the CPU
is rebooted across the bus as before.

Mechanical Layout
The system is designed to have as few boards as possible, so all boards are very large, about 50
cm square. All boards use low power Schottky TTL logic.

The CPU consists of two boards, the processor and the MEMPPU. The MEMPPU contains the
interface to memory, including virtual memory logic, and the interface to the I/O bus. The
T/16 can have up to 512 kW (1 MB) of semiconductor memory or 256 kW of core memory.
Memory boards come in three sizes: 32 kW core, and 96 kW and 192 kW semiconductor
memory. This means that there is no way of getting exactly 1 MB of semiconductor memory
with fully populated boards. Core memory has word parity protection, whereas semiconductor
memory has ECC protection, which can correct a single-bit error and detect a double-bit error.

Processor cabinets are about 6 feet high and house four CPUs with semiconductor memory or
four CPUs with core memory. The processors are located at the top of the cabinet, with the I/
O controllers located in a second rack directly below. Below that are fans, and at the bottom
of the cabinet there are batteries to maintain memory contents during power failures.

Most configurations have a second cabinet with a tape drive. The disk drives are freestanding
14-inch units. There is also a system console, a DEC LA-36 printing terminal.
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Processor Architecture
The CPU is a custom TTL design that shows significant similarities to the Hewlett-Packard 3000.
It has virtual memory with a 2 kB page size, a stack-based instruction set, and fixed-width 16-
bit instructions. Raw processor speed is about 0.8 MIPS per processor, giving 13 MIPS in a fully
equipped 16-processor system.

Memory Addressing

The T/16 is a 16-bit machine, and the address space is limited to 16 bits in width. Even in the
late 1970s, this was beginning to become a problem, and Tandem addressed it by providing a
total of four address spaces at any one time:

User code
This address space contains the executable code. It is read-only and shared between all
processes that use it. Due to the architecture (separate memory for each CPU), the code
can be shared only on a specific CPU.

User data
The data space for user processes.

System code
The code for the kernel.

System data
The kernel data space.

With one exception, only one data space and one code space is accessible at any one time. They
are specified in the Environment Register, which contains a number of flags describing the
current CPU state, as shown in Figure 8-2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E register

Allow privileged operations and memory access
Run in system data space

Run in system code space
Enable traps (notably arithmetic overflow)

Carry from arithmetic op
Arithmetic op overflowed

Negative result of arithmetic op
Zero result of arithmetic op

Register stack pointer

priv SD SC trap K V N Z RP

FIGURE 8-2. E register

The SD bit determines the data space, and the SC bit determines the code space. The SG-relative
addressing mode is an exception to this rule: it always addresses system data.
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In keeping with the aim of reliability and data integrity, the trap bit in the E register enables,
among other things, traps on arithmetic overflow. There are “logical” equivalents of the
arithmetic instructions that do not set the condition codes.

The CPU has a hardware stack addressed by two registers, the S register or stack pointer, and
the L register, which points to the current stack frame. The L register is a relatively new idea:
it points to the base of the current frame. Unlike the S register, it does not change during the
execution of a procedure.* The stack is limited by addressing considerations to the first 32 kB
of the current data space, and unlike some other machines, it grows upward.†

In addition to the hardware stack, there is a register stack of eight 16-bit words. The registers
are numbered R0 to R7, but the instruction set uses them as a circular stack, where the top of
stack is defined by the RP bits of the E register. In the following example, RP is set to 3, making
R3 the top of stack, referred to as the A register; see Figure 8-3.

RP

011ER7 E

R6 F

R5 G

R4 H

R3 A

R2 B

R1 C

R0 D

FIGURE 8-3. Register stack

Assuming that the register stack is “empty” at the beginning, a typical instruction sequence
might be:

    LOAD    var^a           -- push var^a on stack (R0)
    LOAD    var^b           -- push var^b on stack (R1)
    ADD                     -- add A and B (R1 and R0), storing result in R0 (A)
    STOR    var^c           -- save A to var^c      

Instructions are all 16 bits wide, which does not leave much space for an address field: it is only
9 bits wide. To work around this problem, Tandem bases addressing on offsets from a series of
registers; see Figure 8-4.

* This is the same thing as the base pointer register used in most 21st-century processors.

† Stacks were quite a new idea in the 1970s. Like its predecessor, the HP 3000, Tandem’s support for stacks
went significantly beyond that of systems such as DEC’s PDP-11, the most significant other stack-based
machine of the time.
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S

User data
%77777

%377

%0

%77

%0

Unused stack

stack frame

Local data

Call parameters

calling procedures

global data

System data

System data

L

G

SG

FIGURE 8-4. Memory addressing

Only the following memory areas can be addressed directly (in other words, without indirect
addressing):

• The first 256 words of the current data space, referred to as “G” (global ) mode. These are
frequently used for indirect pointers.

• The first 128 words of positive offset from the L register, called L+. These are the local
variables of the current procedure invocation, which would be called automatic variables
in C.

• The first 64 words of system data (“SG+” mode). System calls run in user data space, so the
CPU needs some means for privileged procedures to access system data. They are not
accessible, even read-only, to unprivileged procedures.

• The first 32 words below the current value of the L register. This includes the caller stack
frame (3 words) and up to 29 words of parameters passed to the procedure.

• The first 32 words below the top of the stack (S- addressing). These are used for
subprocedures, procedures defined inside another procedure, which are called without
leaving a stack frame. This address mode thus handles both the local variables and the
parameters for a subprocedure.
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These address modes are encoded in the first few bits of the address field of the instruction; see
Figure 8-5.

0 offset Global (0:%377)

L+ (0:%177)

SG (0:%77)

L– (–%37:0)

S– (–%37:0)

offset

offset

offset

offset

1  0

1  1  0

1  1  1  0

1  1  1  1

FIGURE 8-5. Address format

The % symbol represents octal numbers, like %377 (decimal 255, or hexadecimal 7F). Tandem
does not use hexadecimal.

The instruction format also provides single-level indirection: if the I bit is set in the instruction,
the retrieved data word is taken as the address of the final operand, which has to be in the
same address space. The address space and the data word are both 16 bits wide, so there is no
possibility for multilevel indirection.

One problem with this implementation is that the unit of data is a 16-bit word, not a byte. The
instruction set also provides “byte instructions” with a different addressing method: the low-
order bit of the address specifies the byte in the word, and the remainder of the address are
the low-order 15 bits of the word address. For data accesses, this limits byte addressability to
the first 32 kB of the data space; for code access, it limits the access to the same half of the
address space as the current instruction. This has given rise to the restriction that a procedure
cannot span the 32 kB boundary in the code space.

There are also two instructions, LWP (load word from program) and LBP (load byte from
program), that can access data in the current code space.

Procedure Calls

Tandem’s programming model owes much to the Algol and Pascal world, so it reserves the
word function for functions that return a value, and uses the word procedure for those that
do not. Two instructions are provided to call a procedure: PCAL for procedures in the current
code space, and SCAL for procedures in the system code space. SCAL fulfills the function of a
system call in other architectures.
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All calls are indirect via a Procedure Entry Point Table, or PEP, which occupies up to the first
512 words of each code space. The last 9 bits of the PCAL or SCAL instruction are an index in this
table.

This approach has dangers and advantages: the kernel uses exactly the same function call
methods as user code, which simplifies coding conventions and allows code to be moved
between kernel and user space. On the other hand, at least in theory, the SCAL instruction
enables any user program to call any kernel function.

The system protects access to sensitive procedures based on the priv bit in the E register. It
distinguishes between three kinds of procedures:

• Nonprivileged procedures, which can be called from any procedure, regardless of whether
they are privileged.

• Privileged procedures, which can be called only from other privileged procedures.

• Callable procedures, which can be called from any procedure, but which set the priv bit
once called. They provide the link between the privileged and the nonprivileged
procedures.

The distinction between privileged, nonprivileged, and callable procedures is dependent on
their position in the PEP. Thus it is possible to have nonprivileged library procedures in the
system PEP, sometimes called the SEP. The table has the structure shown in Figure 8-6.

Privileged
procedures

Callable
procedures

Nonprivileged
procedures

First priv

First callable

2

1

0

FIGURE 8-6. Procedure entry point table
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Action of the PCAL and SCAL Instructions

The PCAL instruction performs the following actions:

• If the priv bit in the E register is not set (meaning that the calling procedure is
nonprivileged), check the “first priv” value (word 1 of the code space). If the offset in the
instruction is greater or equal, the procedure is trying to call a privileged procedure.
Generate a protection trap.

• If the priv bit in the E register is not set, check the “first callable” value (word 0 of the code
space). If the offset in the instruction is greater or equal, set the priv bit in the E register.

• Push the current value of the P register (program counter) onto the stack.

• Push the old value of the E register onto the stack.

• Push the current L register value onto the stack.

• Copy the S register (stack pointer) to the L register.

• Set the RP field of the E register to 7 (empty).

• Load the contents of the PEP word addressed by the instruction into the P register.

The SCAL instruction works in exactly the same way, except that it also sets the SC bit in the E
register, thus ensuring that execution continues in kernel space. The data space does not
change.

The PCAL and SCAL instructions are very similar, and the programmer normally does not need
to distinguish between them. That is done by the system at execution time. Thus library
procedures can be moved between user code and system code with no recompilation.

The Interprocessor Bus
All communication between CPUs goes via the interprocessor bus, or IPB. There are in fact two
buses, called X and Y (see Figure 8-1), in case one fails. Unlike other components, both buses
are used in parallel when they’re up.

Data is passed across the bus in fixed-length packets of 16 words. The bus is fast enough to
saturate memory on both CPUs, so the client CPU performs it synchronously in the
dispatcher (scheduler) using the SEND instruction. The destination (server) CPU reserves buffer
space for a single transfer at boot time. On completion of the transfer, the destination CPU
receives a bus receive interrupt and handles the packet.

Input/Output
Each processor has a single I/O bus with up to 32 controllers. All controllers are dual-ported
and connected to two different CPUs. At any one time, only one CPU has access to any specific
controller. This relationship between CPU and controller is called ownership: the controlling
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CPU “owns” the controller. The backup path is not used until the primary path fails or the
system operator manually switches to it (a so-called primary switch).

Disks are a particularly sensitive issue because many components could fail. It could be a disk
itself, the physical connection (cable) to the disk, the disk controller, the I/O bus, or the CPU
to which it is connected. As a result, in addition to the dual-ported controllers, each disk is
physically duplicated—at least in theory—and it is also dual-ported and connected to two
different controllers, both connected to the same two CPUs The restriction remains that only
one CPU can access each controller at any one time, but it is possible for one of the CPUs to
own one of the controllers and the other CPU to own the other controller. This is also desirable
from a performance point of view.

Figure 8-1 shows a typical configuration: as the gray highlighted paths indicate, the I/O process
for the system disk $SYSTEM accesses it via CPU 0 and the first disk controller, while the I/O
process for another disk $DATA, connected to the same two controllers, accesses the disk via CPU
1 and the second disk controller. CPU 0 “owns” the first controller, while CPU 1 “owns” the
second controller. If CPU 0 were to fail, the backup I/O process for $SYSTEM in CPU 1 would
take over and take ownership of the controller, and then continue processing. If the second
disk controller were to fail, the I/O process for $DATA would not be able to use the first disk
controller, since it is owned by CPU 0, so the I/O process would first do a primary switch, after
which the primary I/O process would be running in CPU 0. It would then access $DATA by the
same path as $SYSTEM.

That’s the theory, anyway. In practice, disks and drives are expensive, and many people run
at least some of their disks in degraded mode, without duplicating the drive hardware. This
works as well as you would expect, but of course there is no longer any further fault tolerance:
effectively, one of the disks has already failed.

Process Structure
Guardian is a microkernel system: apart from the low-level interrupt handlers (a single
procedure, IOINTERRUPT) and some very low-level code, all the system services are performed
by system processes which run in system code and data space.

The more important processes are:

• The system monitor, PID 0 in each CPU, which is responsible for starting and stopping
other processes and for miscellaneous tasks such as returning status information,
generating hardware error messages, and maintaining the time of day.

• The memory manager, PID 1 in each CPU, which is responsible for I/O for the virtual
memory system.

• The I/O processes, which are responsible for controlling I/O devices. All access to I/O
devices from anywhere in the system goes via its dedicated I/O process. The I/O controllers
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are connected to two CPUs, so each device is controlled by a pair of I/O processes running
in those CPUs: a primary process that performs the work and a backup process that tracks
the state of the primary process and waits to fail or hand over control to it voluntarily
(“primary switch”).

The main issue in the choice of primary CPU is the CPU load, which needs to be balanced
manually. For example, if you have six devices connected between CPUs 2 and 3, you
would probably put the primary process of three of them in CPU 2, and the primary process
of the other three in CPU 3.

Process Pairs

The concept of process pairs is not limited to I/O processes. It is one of the cornerstones of the
fault-tolerant approach. To understand the way they work, we need to understand the way
messages are passed in the system.

Message System
As we’ve seen, the biggest difference between the T/16 and conventional computers is the lack
of any single required component. Any one part of the system can fail without bringing down
the system. This makes it more like a network than a conventional shared memory
multiprocessor machine.

This has far-reaching implications for the operating system design. A disk could be connected
to any 2 of 16 CPUs. How do the others access it? Modern networks use file systems such as
NFS or CIFS, which run on top of the network protocols, to handle this special case. But on
the T/16 it isn’t a special case; it is the norm.

File systems aren’t the only thing that require this kind of communication: interprocess
communication of all kinds requires it, too.

Tandem’s solution to this issue is the message system, which runs at a very low level in the
operating system. It is not directly accessible to user programs.

The message system transmits data between processes, and in many ways it resembles the later
TCP or UDP. The initiator of the message is called the requestor, and the object is called the
server.‡

All communication between processes, even on the same CPU, goes via the message system.
The following data structures implement the communication:

• Each message is associated with two Link Control Blocks, or LCBs, one for the requestor
and one for the server. These small data objects are designed to fit in a single IPB packet.
If more data is needed than would fit in the LCB, a separate buffer is attached.

‡ These names correspond closely in function to the modern terms client and server.
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• To initiate a transfer, the requestor calls the procedure link. This procedure sends the
message to the server process and queues the LCB on its message queue. At this point the
server process has not been involved, but the dispatcher awakes the process with an
LREQ (link request) event.

On the requestor side, the call to link returns immediately with information to identify
the request; the requestor does not need to wait for the server to process the request.

• At some time the server process sees the LREQ event and calls listen, which removes the
first LCB from the message queue.

• If a buffer is associated with the LCB and includes data to be passed to the server, the server
calls readlink to read in the data.

• The server then performs whatever processing is necessary, and next calls writelink to
reply to the message, again possibly with a data buffer. This wakes the requestor on LDONE.

• The requestor sees the LDONE event, examines the results, and terminates the exchange by
calling breaklink, which frees the associated resources.

Only other parts of the kernel use the message system directly; the file system uses it to
communicate with the I/O devices and other processes. Interprocess communication is handled
almost identically to I/O, and it also is used for maintaining fault-tolerant process pairs.

This approach is inherently asynchronous and multithreaded: after calling link, the requestor
continues its operations. Many requestors can send requests to the same server, even when
it’s not actively processing requests. The server does not need to respond to the link request
immediately. When it replies, the requestor does not need to acknowledge the reply
immediately. Instead, in each case the process is woken on an event that it can process when
it is ready.

Process Pairs, Revisited

One of the requirements of fault tolerance is that a single failure must not bring the system
down. We’ve seen that the I/O processes solve this by using process pairs, and it’s clear that
this is a general way to handle the failure of a CPU. Guardian therefore provides for creation
of user-level process pairs.

All process pairs run as a primary and a backup process. The primary process performs the
processing, while the backup process is in a “hot standby” state. From time to time the primary
process updates the memory image of the backup process, a process called checkpointing. If
the primary fails or voluntarily gives up control, the backup process continues from the state
of the last checkpoint. A number of procedures implement checkpointing, which is performed
by the message system:

• The backup process calls checkmonitor to wait for checkpoint messages from the primary
process. It stays in checkmonitor until the primary process goes away or relinquishes control.
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During this time, the only use of the CPU is message system traffic to update its data space
and calls to open and close to update file information,

• The primary process calls checkpoint to copy portions of its data space and file information
to the backup process. It is up to the programmer to decide which data and files to
checkpoint, and when.

• The primary process calls checkopen to checkpoint information about file opens. This
effectively results in a call to open from the backup process. The I/O process recognizes that
this is a backup open and treats it as equivalent to the primary open.

• The primary process calls checkclose to checkpoint information about file closes. This
effectively results in a call to close from the backup process.

• The primary process may call checkswitch to voluntarily release control of the process pair.
When this happens, the primary and backup processes reverse their roles.

When the backup process returns from checkmonitor, it has become the new primary process.
It returns to the location of the old primary’s last call to checkpoint, not to the location from
which it was called. It then carries on processing from this point.

In general, the life of a process pair can look like Table 8-1.

TABLE 8-1. Life of a process pair

Primary Backup

Perform initialization  

call newprocess to create backup process  

 Perform initialization

 call checkmonitor to receive checkpoint data

call checkpoint Wait in checkmonitor

call checkopen call open from checkmonitor

Processing Wait in checkmonitor

call checkpoint Wait in checkmonitor

Processing Wait in checkmonitor

Voluntary switch: call checkswitch Take over

call checkmonitor to receive checkpoint data Processing

Wait in checkmonitor call checkpoint

Wait in checkmonitor Processing

Wait in checkmonitor call checkpoint

Wait in checkmonitor CPU fails

Take over (gone)

Processing  
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Synchronization

This approach proves very reliable, and it can deliver reliability superior to that of a pure
lockstep approach. In some classes of program error, notably race conditions, a process that is
running in lock-step will run into exactly the same program error and crash as well. A more
loosely coupled approach can often avoid the exact same situation and continue functioning.

A couple of issues are not immediately obvious:

• Checkpointing is CPU-intensive. How often should a process checkpoint? What data
should be checkpointed? This decision is left to the programmer. If he does it wrong and
forgets to checkpoint important data, or does it at the wrong time, the memory image in
the backup process will be inconsistent, and it may malfunction.

• If the primary process performs externally visible actions, such as I/O, after performing a
checkpoint but before failing, the backup process will repeat them after takeover. This
could result in data corruption.

In practice, the issue of incorrect checkpointing has not proved to be a problem, but duplicate
I/O most certainly is a problem. The system solves this problem by associating a sequence
number called a sync ID with each I/O request. The I/O process keeps track of the requests,
and if it receives a duplicate request, it simply returns the completion status of the first call to
the request.

Networking: EXPAND and FOX

The message system of the T/16 is effectively a self-contained network. That puts Guardian in
a good position to provide wide-area networking by effectively extending the message system
to the whole world. The implementation is called EXPAND.

From a programmer’s point of view, EXPAND is almost completely seamless. Up to 255 systems
can be connected.

System names

Each system has a name starting with a backslash, such as \ESSG or \FOXII, along with a node
number. The node numbers are much less obvious than modern IP addresses: from the
programmer’s perspective, they are necessary almost only for encoding file names, which we’ll
see later.

EXPAND is an extension of the message system, so most of the details are hidden from the
programmer. The only issues are the difference in speed and access requirements.

FOX

Considering purely practical constraints, it is difficult to build a system with more than 16 CPUs;
in particular, hardware constraints limit the length of the interprocessor bus to a few meters,
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so a realistic limit is 16 CPUs. Beyond that, Tandem supplies a fast fiber-optic connection
capable of connecting up to 14 systems together in a kind of local area cluster. In most respects
it is a higher-speed version of EXPAND.

File System
Tandem uses the term file system to mean the access to system resources that can supply data
(“read”) or accept it (“write”). Apart from disk files, the file system also handles devices, such
as terminals, printers, and tape units, and processes (interprocess communication).

File Naming

There is a common naming convention for devices, disk files, and processes, but unfortunately
it is complicated by many exceptions. Processes can have names, but only I/O processes and
paired processes must have a name. In all cases, the file “name” is 24 characters long and
consists of three 8-byte components. Only the first component is required; the other two are
used only for disk files and named processes.

Unnamed processes use only the first 8 bytes of the name. Unpaired system processes, such as
the monitor or memory manager, have the format shown in Figure 8-7.

0 1 2 3

0

4 5

0 0 0 0 0

6

CPU PIN

7

FIGURE 8-7. Name format for unpaired system processes

Unpaired user processes have the format shown in Figure 8-8.

0

10

1 2 3

t           i           m           e           s           t           a           m           p

4 5 6

CPU PIN

7

FIGURE 8-8. Name format for unpaired user processes

The combination CPU and PIN together forms the process ID, or PID. The PIN is the process
identification number within the CPU. This limits each CPU to 256 processes.

Real names start with a $ sign. Devices use only the first 8 bytes, and disk files use all three
components. The individual components look like the names of the disk, the directory, and
the file, though in fact there is only one directory per disk volume. Processes can also use the
other two components for passing information to the process.

Typical names are shown in Table 8-2.
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TABLE 8-2. Typical file names

$TAPE Tape drive

$LP Printer

$SPLS Spooler process

$TERM15 Terminal device

$SYSTEM System disk

$SYSTEM SYSTEM LOGFILE System log file on disk $SYSTEM

$SPLS #DEFAULT Default spooler print queue

$RECEIVE Incoming message queue, for interprocess communication

If a component is less than 8 bytes long, it is padded with ASCII spaces. Externally, names are
represented in ASCII with periods, for example, $SYSTEM.SYSTEM.LOGFILE and $SPLS.#DEFAULT.

There are still further quirks in the naming. Process subnames must start with a hash mark
(#), and user process names (but not device names, which are really I/O process names) have
the PID at the end of the first component; see Figure 8-9.

0 1 2 3 4 5 6

$ S P L S CPU PIN

7

FIGURE 8-9. Name format for named user processes

The PID in this example is the PID of the primary process. It limits the length of user process
names to six characters, including the initial $.

As if that wasn’t enough, there is a separate set of names for designating processes, disk files,
or devices on remote systems. In this case, the initial $ sign is replaced by a \ symbol, and the
second byte of the name is the system number, shifting the rest of the name one byte to the
right. This limits the length of process names to five characters if they are to be network-visible.
So from another system, the spooler process we saw earlier might have the external name
\ESSG.$SPLS and have the internal format shown in Figure 8-10.

0 1 2 3 4 5

S

6

\ 173 S P L CPU PIN

7

FIGURE 8-10. Name format for network-visible processes

The number 173 is the node number of system \ESSG.
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Asynchronous I/O

One of the important features of the file system interface is the strong emphasis on
asynchronous I/O. We’ve seen that the message system is intrinsically asynchronous in nature,
so this is relatively simple to implement.

Processes can choose synchronous or asynchronous (“no wait”) I/O at the time they open a
file. When a file is opened no-wait, an I/O request will return immediately, and only errors
that are immediately apparent will be reported—for example, if the file descriptor isn’t open.
At a later time the user calls awaitio to check the status of the request. This gives rise to a
programming style where a process issues a number of no-wait requests, then goes into a
central loop to call awaitio and handle the completion of the requests, typically issuing a new
request.

Interprocess Communication

At a file system level, interprocess communication is a relatively direct interface to the message
system. This causes a problem: the message system is asymmetrical. The requestor sends a
message and may receive a reply. There’s nothing that corresponds to a file system read
command. On the server side, the server reads a message and replies to it; there’s nothing that
corresponds to a write command.

The file system provides read and write procedures, but read only works with I/O processes,
which map them to message system requests. read doesn’t work for the interprocess
communication level, and in practice write also is not used much. Instead, the requestor uses
a procedure called writeread to first write a message to the server and then get a reply from it.
Either the message or the reply can be null (zero length).

These messages find their way to the server’s message queue. At a file system level, the message
queue is a pseudofile called $RECEIVE. The server opens $RECEIVE and normally uses the
procedure readupdate to read a message. At a later point it can reply with the procedure reply.

System Messages

The system uses $RECEIVE to pass messages to processes. One of the most important is the startup
message, which passes parameters to a newly started process. The following example is written
in TAL, Tandem’s low-level system programming language (though the name stands for
“Tandem Application Language”). TAL is derived from HP’s SPL, and it is similar to Pascal and
Algol. One of the more unusual characteristics is the use of the caret (^) character in identifiers;
the underscore ( _ ) character is not allowed. This example should be close enough to C to be
intelligible. It shows a process that starts a child server process and then communicates with it.

The first piece shows the parent process (requestor):

call newprocess (program^file^name,,,,,, process^name); -- start the server process
call open (process^name, process^fd);             -- open process
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call writeread (process^fd, startup^message, 66); -- write startup message
while 1 do
  begin
  read data from terminal
  call writeread (process^fd,
                  data, data^length,              -- write data
                  reply, max^reply,               -- read data back
                  @reply^length);                 -- return real reply length
  if reply^length > 0
    write data back to terminal
  end;

The following shows the child process (server):

call open (receive, receive^fd);
do
  call read (receive^fd, startup^message, 66);
until startup^message = -1;             -- first word of startup message is -1.
while 1 do
  begin
  call readupdate (receive^fd, message, read^count, count^read);
  process message received, replacing buffer contents
  call reply (message, reply^length);
  end;

The first messages that the child receives are system messages: the parent open of the child sends
an open message to the child, and then the first call to writeread sends the startup message. The
child process handles these messages and replies to them. It can use the open message to keep
track of requestors or receive information passed in the last 16 bytes of the file name. Only
then does the process receive the normal message traffic from the parent. At this point, other
processes can also communicate with the child. Similarly, when a requestor closes the server,
the server receives a close system message.

Device I/O

It’s important to remember that device I/O, including disk file I/O, is handled by I/O processes,
so “opening a device” is really opening the I/O process. Still, I/O to devices and files is
implemented in a slightly different manner, though the file system procedures are the same.
In particular, the typical procedures used to access files are the more conventional read and
write, and normally disk I/O is not no-wait.

Security

In keeping with the time, the T/16 is not an overly secure system. In practice, this hasn’t caused
any serious problems, but one issue is worth mentioning: the transition from nonprivileged to
privileged procedures is based on the position of the procedure entry point in the PEP table
and the value of the priv bit in the E register. Early on, exploits became apparent. If you could
get a privileged procedure to return a value via a pointer and get it to overwrite the saved E
register on the stack in such a way that the priv bit was set, the process would remain privileged
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on return from that procedure. It is the responsibility of callable procedures to check their
pointer parameters to ensure that they don’t have any addressing exceptions, and that they
return values only to the user environment. A bug in the procedure setlooptimer, which sets
a watchdog timer and optionally returns the old value, made it possible to become the
SUPER.SUPER (the root user, with ID 255,255, or –1):

proc make^me^super main;
begin
int .TOS = 'S';                          -- top of stack address

call setlooptimer (%2017);               -- set a timer value
call setlooptimer (0, @TOS [4]);         -- reset, return old value to saved E reg
pcb [mypid.<8:15>].pcbprocaid := -1;     -- dick in my PCB and make me super
end;    

The second call to setlooptimer returns the old value %2017 to the saved E register contents on
stack, in particular setting the priv bit, which leaves the process in privileged state. Theoretically
this value could have been decremented to %2016, but this would not make any difference (this
is the saved RP field, which is not restored). The program then uses SG-relative addressing to
modify the user information in its own process control block (PCB). mypid is a function
returning the current process’s PID, and the last 8 bits (<8:15>) were the PIN, which is used as
an index in the PCB table.

This bug was quickly fixed, of course, but it showed a weakness in the approach: it is up to the
programmer to check the parameters passed to callable procedures. Throughout the life of the
architecture, such problems have reoccurred.

File Access Security

Tandem’s approach to file access security is similar to that of Unix, but users can belong only
to a single group, which is part of the username. Thus my username, SUPPORT.GREG, also written
numerically as 20,102, indicates that I belong to the SUPPORT group (20) only, and that within
that group my user ID is 102. Each of these fields is 8 bits long, so the complete user ID fits in
a word. If I wanted to be a member of another group, I would need another user ID, possibly
with a different number—for example, SUPER.GREG with user ID 255,17.

Each file has a number of bits describing what access the owner, the group, or all users have
to the file. Unlike Unix, however, the bits are organized differently: the four permissions are
read, write, execute, and purge. Purge is the Tandem name for delete, and it’s necessary
because directories don’t have their own security settings.

For each of these access modes, there is a choice of who is allowed to use them:

• Owner means only the owner of the file.

• Group means anybody in the same group.

• All means anybody.
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All of these relate only to the same system as the one in which the file is located. A second set
of modes was introduced with networking to regulate access from users on other systems:

• User means only a user with the same user and group number as the owner of the file.

• Class means anybody with the same group number as the owner of the file.

• Network means anybody, anywhere.

There is no security whatsoever for devices, and user processes have to roll their own. The
former is a particular disadvantage in a networked environment. At a security seminar in early
1989, I was able to demonstrate stealing the SUPER.SUPER (root) password on system \TSII, which
was in the middle of the management area in Cupertino, simply by putting a fake prompt on
the system console. I was in Düsseldorf (Germany) at the time.

Folklore
Coming back into the present, early 21st century, it’s easy to forget the sheer fun of working
with the computer. Tandem was a fun company, and it looked after its employees. One Friday
in late 1974, early in the development of the system, the founders finally got the software to
work on the hardware; up to this point the software had been developed on simulators. You
can imagine the excitement. The story goes that one of the VPs went out and brought in a crate
of beer, and they all sat around the crate, celebrating the event and discussing the future. One
thing they decided was that the crate of beer should be a weekly event, and the Tandem Beer
Bust was born. It really did continue into the 1990s, during which time it became increasingly
politically incorrect and was finally canceled.

Tandem gave rise to lots of slogans and word plays, of course—the name “Tandem” itself was
one. In those days we had T-shirts with slogans such as “So nice, so nice, we do it twice,”
“There’s no stopping us,” and “Tandem users do it with mirrors.” And, of course, the standard
answer when anybody came up with an excess of just about anything: “It’s there in case one
fails.”

This last slogan was more than just wordplay. It sat deep in our thought processes. In May
1977, on returning from five weeks of initial Tandem training, I was faced with the sad
discovery that our cat had run away. After establishing that she wasn’t going to return, we
went out and got…two new cats. It wasn’t until much later that I realized that this was the
result of successful brainwashing. Even today I have a phobia of rebooting a computer unless
it’s absolutely unavoidable.

The Downside
The T/16 was a remarkably successful machine for its intended purpose—at one time over 80%
of all ATMs in the U.S. were controlled by Tandem systems—but of course there were
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disadvantages as well. Some, like the higher cost in comparison with conventional systems,
are inevitable. Others were not so obvious to the designers.

Performance

Tandem was justifiably proud of the near-linear scaling of performance when hardware was
added. Horst and Chou (1985), which refers to a later system, the TXP, shows how a FOX
cluster can scale linearly from 2 to 32 processors.

Bartlett (1982) shows the downside: the performance of the message system limited the speed
even of small systems. A single message with no attached data takes over 2 ms to transmit, and
messages with 2,000 bytes of data in each direction take between 4.6 ms (same CPU) and 7.0
ms (different CPUs). This is the overhead for a single I/O operation, and even in its day it was
slow. The delay between sequential I/O requests to a disk file was long enough that they would
not occur until the data had passed the disk head, meaning that only one request could be
satisfied per disk revolution. A program that sequentially reads 2 kB from disk and processes
it (for example, the equivalent of grep) would get a throughput of only 120 kB/s. Smaller I/O
sizes, such as 512 bytes, could limit the throughput to floppy disk speeds.

Hardware Limitations

As the name “Tandem/16” suggests, the designers had a 16-bit mindset. That is fairly typical
for the mid-1970s, but the writing was already on the wall that “real” computers had a 32-bit
word. In the course of time, successor machines addressed a number of the issues. In 1981,
Tandem introduced the NonStop II system with an upward-compatible instruction set and
fewer hardware limitations. Over the next 10 years, a number of compatible but faster
machines were introduced. None were extremely fast, but they were fast enough for online
transaction processing. In addition, the operating system was rewritten to address the more
immediate problems, and over the course of time additional improvements were made. The
changes included:

• Introduction of a 31-bit address mode to give user processes “unlimited” memory space.
This mode used byte addresses, but it didn’t remove the limitations on stack size and code
spanning the 32 kB boundary, since the old instruction formats remained.

• Increase in the number of hardware virtual memory maps. The T/16 had only four, for
the code and data spaces. The TNS/II, as it was called, had a total of 16 memory maps,
which meant that the processor could directly address up to 2 MB without involving the
memory manager. One of these maps was used as a kind of translation lookaside buffer
to handle the 31-bit extended addresses.

• Guardian II, the new version of Guardian that came with the TNS/II, also featured system
library and user library spaces, which increased the total space available to processes to
384 kB. Still later, the number of library spaces was increased from 2 (system and user)
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to up to 62 (31 each for system and user) by segment switching. Only a single user library
and system library map could be active at any one time.

• Message queue size proved to be a problem. The monitor processes sent status messages
at regular intervals to every process that wanted them. If the process didn’t read the
messages, large numbers of resources (LCBs and message buffers) could be used for
duplicate messages. To address this problem, Guardian II introduced a messenger process
that kept a single copy of these status messages and sent them to a process when it called
listen.

Missed Opportunities

The T/16 was a revolutionary machine, but it also offered an environment that few other
machines of the day had. Ultimately, though, it was the small things that got in the way. For
example, device independence is one of the most enduring aims of operating systems, and
Tandem went a long way toward this goal. Ultimately, though, they missed their full potential
because of naming issues and almost gratuitous incompatibilities. Why was it not possible to
use read in interprocess communication? Why did process names have to differ in format from
device names? Why did they need a # character in the ninth byte?

Split Brain

A more serious issue was with the basic way of detecting errors. It worked fine as long as only
one component failed, and usually quite well if two failed. But what if both interprocessor
buses failed? Even in a two-CPU system, the results could be catastrophic. Each CPU would
assume that the other had failed and take over the I/O devices—not once, but continually.
Such circumstances did occur, fortunately very rarely, and they often resulted in complete
corruptions of the data on disks shared between the two CPUs.

Posterity
From 1990 on, a number of factors contributed to a decline in Tandem’s sales:

• Computer hardware in general was becoming more reliable, which narrowed Tandem’s
edge.

• Computer hardware was becoming much faster, highlighting some of the basic
performance limitations of the architecture.

In the 1990s, the T/16 processor architecture was replaced by a MIPS-based solution, though
much of the remaining architecture remained in place. On the other hand, the difference in
performance was big enough that as late as 2000, Tandem was still using the MIPS processors
to emulate the T/16 instructions. One of the reasons was that most Tandem system-level
software was still written in TAL, which was closely coupled to the T/16 architecture. Moves
to migrate the codebase to C were rejected because of the cost involved.
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For such a revolutionary system, the Tandem/16 has made a surprisingly small impression on
the industry and design of modern machines. Much of the functionality is now more readily
available—mirrored disks, network file systems, the client-server model, or hot-pluggable
hardware—but it’s difficult to see anything that suggests that they happened by following
Tandem’s lead. This may be because the T/16 was so different from most systems, and of course
the purely commercial environment in which it was developed didn’t help either.

Further Reading
Hewlett-Packard has a number of papers on its website; start looking at the Tandem Technical
reports at http://www.hpl.hp.com/techreports/tandem/. In particular:

Bartlett, Joel. “A NonStop Kernel,” June 1981. http://www.hpl.hp.com/techreports/
tandem/TR-81.4.html?jumpid=reg_R1002_USEN. (Gives more information about the
operating system environment.)

Bartlett, Joel, et al. “Fault tolerance in Tandem computer systems,” May 1990. http://www
.hpl.hp.com/techreports/tandem/TR-90.5.html. (Describes the hardware in more detail.)

Gray, Jim. “The cost of messages,” March 1988. http://www.hpl.hp.com/techreports/
tandem/TR-88.4.html. (Describes some of the performance issues from a theoretical point
of view.)

Horst, Robert, and Tim Chou. “The hardware architecture and linear expansion of Tandem
nonstop systems,” April 1985. http://www.hpl.hp.com/techreports/tandem/TR-85.3
.html.
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C H A P T E R  N I N E

JPC: An x86 PC Emulator in Pure Java

Rhys Newman
Christopher Dennis

“EMULATORS  ARE  SLOW  AND  JAVA  IS  SLOW; THUS  THE  COMBINATION could only mean
computation at a snail’s pace.” As this conventional wisdom would suggest, the first JPC
prototype ran 10,000 times slower than a real machine.

Nevertheless, a pure Java x86 PC emulator is a compelling idea—imagine booting Linux and
Windows inside a secure Java Sandbox while remaining fast enough to be practical. Not that
this task was ever likely to be easy, as it required replicating the internals of one of the most
complex pieces of machinery humankind has produced. Navigating the task of reproducing
the physical x86 PC design, layered on top of the Java Virtual Machine, and then fitting the
result inside the security restrictions of the Java Applet sandbox has been an often difficult
journey of discovery.

On the way we have experienced computing challenges seldom encountered by modern
software engineers, but which offer timely reminders of the fundamentals usually taken for
granted. Now we have a beautiful architecture that shows that pure Java emulation of x86
hardware is possible, and also fast enough to be practical after all.

 Principles and properties  Structures

 Versatility ✓ Module

 Conceptual integrity  Dependency

 Independently changeable ✓ Process

✓ Automatic propagation  Data access

 Buildability   

✓ Growth accommodation   

✓ Entropy resistance   
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Introduction
With the increasing processor speed and network performance enjoyed by even domestic
computer users, more and more things that would have been considered impractical only a
few years ago are becoming commonplace. A decade ago when a small technology company
called VMWare started up in California, the idea of running a completely virtual computer as
software within a physical computer was viewed as rather esoteric. After all, if you have a
computer, why slow it down by adding a virtualization layer only to run what you’d be running
anyway? The software you used needed the full power of the hardware to run, and as you
could simply buy more machines to do more work if needed, what would be the point?

A decade later we all see the benefits of virtual machines. Hardware is so fast that modern
machines can run many virtual machines without a major impact on overall performance, and
the importance of software services is so significant that the security and reliability benefits of
isolating them completely in virtual machines are clear.

However, pure virtualization has its problems, as it relies on some degree of hardware
support* to function and is therefore exposed to instabilities caused by such close links to the
physical machine. Emulators, by contrast, are virtual computers built entirely in software, and
therefore have no specific requirements on the underlying hardware. This means the emulated
machine is completely separated from the real hardware. Its presence on the system neither
suffers nor causes any additional instabilities than the normal application software would. As
running application software is the raison d’être of a computer in the first place, an emulator
will always be the most stable and secure means to create virtual machines.

As with virtualization a decade ago, current critiques of emulation focus on the speed penalty
incurred, which is often significant. However, history shows that speed issues are resolved by
technological progress, but given the ever increasing complexity of modern hardware and
software stacks, ever more difficult issues arise from subtle interactions between hardware,
operating systems, and application software. Separating systems at a very low level in a very
robust and secure way while still sharing the physical resource will therefore become
increasingly necessary but increasingly difficult. Emulation offers the required degree of
robustness, security, and flexibility, and so will become an increasingly compelling option.

There are a number of emulators currently available, and the most notable examples for
emulating an x86 PC are Bochs and QEMU. Both have been developed over a number of years
and are sufficiently accurate to boot modern operating systems and run application software.
However, both are written in native code (C/C++) and need recompilation if they are to run
on a new underlying hardware architecture/OS stack (i.e., a new type of host system).
Furthermore, for very high-security applications, there is always the concern that the emulator
has been tampered with for nefarious purposes, or to let guest code do nefarious things, or that

* At a bare minimum you need hardware that is the same as that being “virtualized.” Thus products such
as Xen and VMWare enable virtual x86 PCs to be created on x86 hardware only.
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it contains a bug that permits either of these. For example, QEMU uses dynamic binary
translation to achieve acceptable speed, and if this process were compromised or a fault were
exploited, the software could become unstable or breach security safeguards.

If users will accept the speed penalty of emulation when security can be absolutely guaranteed,
then why not build an emulator on the most widely deployed and secure virtual machine, the
Java VM (JVM)? The JVM has been tested for over 10 years as a secure means of running code,
and users are often content to let unvetted code downloaded from the Internet execute within
the Applet Sandbox, the security container supplied by the JVM. This is because the JVM
guards against fundamental programmatic errors, such as accessing arrays in memory beyond
their valid size and reading data from unallocated memory. Further, a JVM with a security
manager installed to enforce a sandbox can veto any sensitive operation attempted by guest
software.

JPC is just this: an x86 PC emulator written entirely in Java. There is no native code in JPC; it
emulates all the standard hardware components of an x86 PC while remaining entirely inside
the Java Applet Sandbox. Thus within these security restrictions the x86 operating systems
and software running inside JPC are totally isolated from the underlying hardware, even to
the point that said hardware does not need to be an x86 PC.† From the host’s point of view,
JPC represents just another Java application/applet, and thus the host can be confident that
the code (whatever it may be) is safe to run. JPC can boot DOS and modern Linux, giving the
guest software and OS complete unfettered access to all the hardware of the virtual machine,
including root/admin access, all while staying inside the Java sandbox.

To break out of JPC, an attacker would have to find a bug in JPC’s code coinciding with a bug
in the JVM, which could enable a sensitive action on the host computer that was also within
the powers of the user running the JVM. This represents a breach of three completely
independent layers of security. Each layer is typically built by completely different companies,
and because each layer is needed in so many different circumstances, their security is under
constant independent testing and review. Note also the coincidence requirement in breaking
the layers. It is not sufficient to find a bug in JPC and then move on to the task of breaking out
of the JVM; the hacker needs to find a bug in JPC that directly (and already) connects to a
suitable security bug within the JVM being used. As JPC is open source, it is a relatively simple
task to review the code and build a “clean” version, and in high security applications a security-
hardened JVM could be used. JPC thus presents an impregnable barrier to malicious x86 code,
and indeed provides the most secure, convenient, and safe way to examine malicious x86 code
in action.

Like virtualization, as hardware speed increases, the applications of emulation can expand from
the security area to mission-critical systems that need to ensure robustness. No matter how
the emulated machine crashes (or how hard), the host machine is unaffected and can continue

† JPC has been adapted to run inside a J2ME environment and can then boot original and unmodified
DOS on an ARM11-based mobile phone!
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running other emulated instances. This technique avoids possible issues with even the most
carefully thought through features available in modern hardware to support virtualization.‡

In the rest of this chapter, we describe the process used to prototype and develop JPC, and we
show how a number of incremental improvements to design resulted in the JPC available
today. We then outline more applications and implications of the unique combination of
technologies that JPC represents.

Proof of Concept
The x86 PC has been around for over 30 years and has evolved through many different
generations of hardware. At each stage, backward-compatibility has been maintained so that
even today, an original 8086 program is likely to run on a new PC. Although this has had
undoubted benefits and has contributed to the unparalleled success of the platform, it does
mean the architecture is packed with extra complexity as new technologies are incorporated,
in order to avoid breaking existing code. If a PC were built today from scratch, many aspects
of the hardware would be substantially different, and almost certainly a lot simpler.

Nevertheless, this x86 platform is ubiquitous, with over 1 billion in the world today and over
200 million more being manufactured each year. Consequently, the most widely useful
emulator will be one that targets the x86 PC architecture.

However, this is not an easy task. Just some of the hardware components that must be
emulated in software include the x86 processor, hard disk (and its controller), keyboard and
mouse drivers, VGA graphics card, DMA controller, PCI bus, PCI host bridge, interval timer,
real-time clock, interrupt controller, and PCI ISA bridge. Each device has its own specification
sheet, which must be read and translated into software. The x86 processor manual runs to
1,500 pages, and in all there are approximately 2,000 pages of technical manuals. The x86
instruction set is large, with up to 65,000 possible instructions that could be issued in a
program’s code, four different protection levels to set on memory pages, four different
processor “modes,” and in each mode the instructions can (and do) have different effects.

So before embarking on this mammoth task, it is important to assess whether the outcome will
be worth it. Both the Bochs and QEMU projects have achieved this feat, and some reassurance
can be gained by examining how they approached the problems. However, these projects are
C/C++ programs and therefore give only limited assistance, as JPC has to stay within the pure
Java environment with the extra design restrictions and performance considerations that
implies.

Some simplification is possible by selecting a simple set of hardware to emulate. As the
processor emulation will be the major bottleneck in the system, there is little point in emulating

‡ For example, the hardware-supported x86 CPU virtualization (Intel VT, AMD Pacifica) has security
vulnerabilities due to the shared L1/L2 cache of multicore chips.
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a complex but fast hard disk controller (or drive). A simple and reliable hard disk emulation
will easily suffice, and the same holds true for all other hardware components. Even when
looking at the processor, you can choose a Pentium II as the target, and there is no need to
emulate instruction set extensions that are present in the latest chips. Because modern
software, including operating systems, typically work perfectly well without such instructions
to ensure backward compatibility, this decision is not significantly limiting.

Nevertheless, emulation speed remains the major challenge. The obvious way to get the best
performance is to use some form of dynamic binary translation to move from a laborious step-
by-step software emulation to a compiled mode where the raw speed of the underlying
hardware is more efficiently exploited. This technique is used in many different guises; the
modern x86 processor breaks the x86 instructions on first use into smaller microcodes, which
it then caches for quick repeated execution. Just-In-Time-compiled Java environments
similarly compile blocks of bytecodes into native code to improve the speed of execution for
code that is repeated many times. The effectiveness of such techniques is due to the fact that
in almost all software, 10% of the code represents 90% of the execution time.§ Finding simple
ways of improving the speed of repeating this 10% of “hot” code can increase the overall speed
dramatically. Also note that applying this technique does not imply compiling all the code;
rather, selective optimization can result in a massive performance gain without the
unacceptable delay that would ensue if all code were optimized.

The fact that virtually all software, whether compiled into native x86 from C/C++ or Java
bytecode, is subjected to various amounts of dynamic binary translation by modern computers
prior to execution shows the power and effectiveness of this technique. Thus, when
approaching the task of creating JPC, there is hope for reasonable speed if similar techniques
can be applied.

By gaining reassurance from existing emulators that this work is plausible, and by selecting a
simple PC architecture as the initial target, we reduced the original scope to an achievable level.
We then needed to assess the potential of dynamic binary translation to improve speed and
ensure that a realistic performance could be achieved, even in principle. If the best outcome
for JPC with all programming tricks applied was to run at 1%, then the project would not have
been worth it.

Potential Processor Performance Tests

In order to evaluate the potential performance level achievable using various emulation tactics,
a “Toy” processor was invented as a simple model. The Toy processor has 13 instructions,

§ This apocryphal rule of thumb was actually verified using JPC during the boot sequence of DOS and
when playing numerous DOS games. With the total control of an emulator, it is easy to compile such
statistics on program execution. See also Donald E. Knuth’s “An empirical study of FORTRAN programs.”
(Software Practice and Experience, 1: 105-133. Wiley, 1971.)
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2 registers, and 128 bytes of RAM. A simple program equivalent to the following C code was
written in Toy assembly language for speed tests:

      for (int i = 0; i < 10; i++)
          for (int j = 0; j < 50; j++)
              memory[51 + j] += 4;
    

The memory is initially all zero, and the output of the program is the memory state at the end
(the first 50 bytes of memory are reserved for the program code).

A Java emulation of the Toy architecture was built, and 100,000 sequential runs of this
program on the Sun HotSpot VM took 8000 ms. On the same hardware, a GCC-compiled C
program took 86 ms (compiled with all static optimizations). Not surprisingly, naive emulation
suffered a performance penalty of two orders of magnitude. But this simple emulation was
indeed very simple, reading the next assembly instruction each time from memory, selecting
the operation to carry out via a switch statement, and looping around until complete.

A better version would be to eliminate this lookup-dispatch process. This represents the
commonplace trick of inlining; a C compiler inlines often-used code at compile time and the
HotSpot VM does this at runtime in response to real execution telemetry. This done, the
emulator then took 800 ms, a 10 times speed improvement.

Now, when using lookup-dispatch, the instruction pointer must be updated after each
instruction so that the processor knows where to fetch the next one. However, with the code
inlined, the instruction pointer needs to be updated only when the whole inline block has been
executed. Removing these interleaved increments also helps HotSpot optimize the code; it can
focus on the key operations without worrying about the need to keep this instruction pointer
register always consistent with progress. With the instruction pointer updates shifted to the
end of the inlined program sections, the execution speed reduced to 250 ms, an additional
improvement of 3.2 times.

Nevertheless, the assembly code, translated by a simplistic automatic algorithm, resulted in
many unnecessary movements of data between memory and registers. In several places a result
was stored into the byte array of memory and then immediately read out again. A simple flow
control analysis meant that these inefficiencies can be detected automatically and removed,
resulting in a execution speed of 80 ms. This is as fast as the optimized native program!

Thus, with suitable runtime compilation, not much of it particularly complicated, a Java
emulator can run this Toy native code at 100% native hardware speed. Clearly, expecting
100% when the vastly more complex hardware of the x86 PC is examined would be unrealistic,
but these tests did suggest that practically useful speed might be attainable.

So, despite what might have been initial skepticism for the whole concept of a pure Java x86
emulator, there was actually sufficient evidence that such technology could be built. The next
sections detail how the architectural aspects of the x86 PC hardware design were exploited and
mapped onto the JVM to make an efficient emulation. A number of critically important
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software design decisions, based purely on how the JVM behaves, are also outlined where they
had a significant performance benefit.

The PC Architecture
The modern PC is a very complicated beast. Its hardware has been optimized and iterated over
many times to produce a highly effective and generalized computing platform. However, it also
carries with it legacy components and functionality designed to maintain its backward
compatibility. In some ways this is a blessing. The basic architecture of an IA-32 machine has
not changed since its advent in 1985 with the 386. In fact, in terms of system architecture, the
386 itself was not much of a departure from its x86 predecessors.

Although Figure 9-1 is in some ways grossly simplified, with some text changes and some
duplication of boxes, this could easily pass as an architectural diagram for JPC itself.

Memory Bus

I/O Bus

Complex
Peripheral
Complex

Peripheralriphe

RAM ROM

Simple
Peripheral

Processor
Complex

Peripheral

FIGURE 9-1. Basic architecture of a modern PC

Designing the bulk of JPC was a relatively simple matter of systems analysis, and mapping from
the original system to JPC for the bulk of the emulation is almost a 1:1 correspondence between
the hardware specs and the Java class. For example, a serial port in JPC for example is
represented by a single class, SerialPort, that implements HardwareComponent and
IOPortCapable. This simplistic approach gives rise to a design that is easy to understand and
navigate, and on the whole, objects within the architecture are loosely coupled to each other.
This gives JPC the benefit of being very flexible, so just as in a real machine, virtual devices
can be “plugged in” to the PCI bus, and components can be interchanged to build virtual
machines of wide-ranging specifications.

The only reason to depart from this path is when clarity of design and modularity are in direct
competition with performance. This occurs in two key places in JPC: once at the concentration
of computation (the processor) and once at the concentration of bandwidth (the memory
system). These hot spots have two effects on the project:
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• The codebase becomes lopsided. Simple hardware devices such as the IDE interface are
simple translations of the specification documents, and correspond to two classes:
IDEChannel and PIIX3IDEInterface. The processor, a more complicated device,
comparatively has a huge amount of code related to it. In total, it is represented by eight
distinct packages and over 50 classes.

• As developers, we find that we need to become as schizophrenic as the codebase is. Crudely
speaking, when you are working on hardware emulation outside the memory or processor
systems, you are aiming for ultimate code clarity and modular design. When working
within the processor or memory system, you are aiming for ultimate performance.

The hard hat that must be worn while working in the sensitive parts of the architecture is one
of pessimistic inventiveness. In order to gain as much performance as possible, we continually
have to be prepared to experiment. But even small changes to the codebase must be viewed
with suspicion until they have been proven to have, at a minimum, no detrimental effect on
performance.

The requirement for maximum performance at the bottlenecks of the emulation is what makes
JPC an interesting project to work on and with. The remainder of this chapter concentrates on
how we achieved what we believe is a maintainable and logical design, without compromising
the performance of the system.

Java Performance Tips
The First Rule of Optimization: Don’t do it.

The Second Rule of Optimization (for experts only): Don’t do it

yet.

—Michael A. Jackson

Like all performance tips, the following are guidelines and not rules. Code that is well designed
and cleanly coded is almost always infinitely preferable to “optimized” code. Invoke these
guidelines only when either a positive effect will be seen on the design or that last drop of
performance is really necessary.

Tip #1: Object creation is bad
Excessive object instantiation (especially of short-lived objects) will cause poor
performance. This is because object churn causes frequent young generation garbage
collections, and young generation garbage-collection algorithms are mostly of the “stop-
the-world” type.

Tip #2: Static is good
If a method can be made static, then make it so. Static methods are not virtual, and so are
not dispatched dynamically. Advanced VMs can inline such methods much more easily
and readily than instance methods.
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Tip #3: Table switch good, lookup switch bad
Switch statements whose labels are a reasonably compact set are faster than those whose
values are more disparate. This is because Java has two bytecodes for switches:
tableswitch and lookupswitch. Table switches are performed using an indirect call, with the
switch value providing the offset into a function table. Lookup switches are much slower
because they perform a map lookup to find a matching value:function pair.

Tip #4: Small methods are good methods
Small chunks of code are nice, as just-in-time environments generally see code on a
method granularity. A large method that contains a “hot” area, may be compiled in its
entirety. The resultant larger native code may cause more code-cache misses, which is bad
for performance.

Tip #5: Exceptions are exceptional
Exceptions should be used for exceptional conditions, not just for errors. Using exceptions
for flow control in unusual circumstances provides a hint to the VM to optimize for the
nonexception path, giving you optimal performance.

Tip #6: Use decorator patterns with care
The decorator pattern is nice from a design point of view, but the extra indirection can be
costly. Remember that it is permitted to remove decorators as well as add them. This
removal may be considered an “exceptional occurrence” and can be implemented with a
specialized exception throw.

Tip #7: instanceof is faster on classes
Performing instanceof on a class is far quicker than performing it on an interface. Java’s
single inheritance model means that on a class, instanceof is simply one subtraction and
one array lookup; on an interface, it is an array search.

Tip #8: Use synchronized minimally
Keep synchronized blocks to a minimum; they can cause unnecessary overhead. Consider
replacing them with either atomic or volatile references if possible.

Tip #9: Beware external libraries
Avoid using external libraries that are overkill for your purposes. If the task is simple and
critical, then seriously consider coding it internally; a tailor-made solution is likely to be
better suited to the task, resulting in better performance and fewer external dependencies.

Four in Four: It Just Won’t Go
Many of the problems that we have come across while developing and designing JPC have
been those associated with overhead. When trying to emulate a full computing environment
inside itself, the only things that prevent you from extracting 100% of the native performance
are the overheads of the emulation. Some of these overheads are time related such as in the
processor emulation, whereas others are space related.
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The most obvious place where spatial overheads cause a problem is in the address space: the
4 GB memory space (32-bit addresses) of a virtual computer won’t fit inside the 4 GB (or less)
available in real (host) hardware. Even with large amounts of host memory, we can’t just
declare byte[] memory = new byte[4 * 1024 * 1024 * 1024];. Somehow we must shrink our
emulated address space to fit inside a single process on the host machine, and ideally with
plenty of room to spare!

To save space, we first observe that the 4 GB address space is invariably not full. The typical
machine will not exceed 2 GB of physical RAM, and we can get away with significantly less
than this in most circumstances. So we can crush our 4 GB down quite quickly by observing
that not all of it will be occupied by physical RAM.

The first step in designing our emulated physical address space has its origin in a little peek at
the future. If we look up the road we will see that one of the features of the IA-32 memory
management unit will help guide our structure for the address space. In protected mode, the
memory management unit of the CPU carves the address space into indivisible chunks that are
4 KB wide (known as pages). So the obvious thing to do is to chunk our memory on the same
scale.

Splitting our address space into 4 KB chunks means our address space no longer stores the data
directly. Instead, the data is stored in atomic memory units, which are represented as various
subclasses of Memory. The address space then holds references to these objects. The resultant
structure and memory accesses are shown in Figure 9-2.

N O T E
To optimize instanceof lookups, we design the inheritance chain for Memory objects without
using interfaces.

220 blocks

212 bytes = 4kbaddress >>> 12

address & Oxfff

data byte

FIGURE 9-2. Physical address space block structure

This structure has a set of 220 blocks, and each block will require a 32-bit reference to hold it.
If we hold these in an array (the most obvious choice), we have a memory overhead of 4 MB,
which is not significant for most instances.
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TIP #7: INSTANCEOF IS FASTER ON CLASSES
Performing instanceof on a class is far quicker than performing it on an interface. Java’s single
inheritance model means that on a class, instanceof is simply one subtraction and one array lookup;
on an interface, it is an array search.

Where this overhead is a problem, we can make further optimizations. Observe that memory
in the physical address space falls into three distinct categories:

RAM
Physical RAM is mapped from the zero address upward. It is frequently accessed and low
latency.

ROM
ROM chips can exist at any address. They are infrequently accessed and low latency.

I/O
Memory-mapped I/O can exist at any address. It is fairly frequently accessed, but is
generally higher latency than RAM.

For addresses that fall within the RAM of the real machine, we use a one-stage lookup. This
ensures that accesses to RAM are as low latency as possible. For accesses to other addresses,
those occupied by ROM chips and memory-mapped I/O, we use a two-stage lookup, as in
Figure 9-3.

210 arrays

210 blocks

212 bytes = 4Kb

address >>> 22

address >>> 12
& Ox3ff

address
& Oxfff

data byte

dd

FIGURE 9-3. Physical address space with a two-stage lookup
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Now a memory “get” from RAM has three stages:

return addressSpace.get(address);
    return blocks[i >>> 12].get(address & 0xfff);
        return memory[address];

And one from a higher address has four:

return addressSpace.get(address);
    return blocks[i >>> 22][(i >>> 12) & 0x3ff].get(address & 0xfff);
        return memory[address];

This two-layer optimization has saved us memory while avoiding the production of a
bottleneck in every RAM memory access. Each call and layer of indirection in a memory “get”
performs a function. This is indirection the way it should be used—not for the sake of
interfacing, but to achieve the finest balance of performance and footprint.

Lazy initialization is also used in JPC wherever there is chance of storage never being used.
Thus a new JPC instance has a physical address space with mappings to Memory objects that
occupy no space. When a 4 KB section of RAM is read from or written to for the first time, the
object is fully initialized, as in Example 9-1.

EXAMPLE 9-1. Lazy initialization

public byte getByte(int offset)
{
    try {
        return buffer[offset];
    } catch (NullPointerException e) {
        buffer = new byte[size];
        return buffer[offset];
    }
}

The Perils of Protected Mode
The arrival of protected mode brings a whole new system of memory management into play,
with another layer of complexity added on top of the physical address space. In protected mode,
paging can be enabled, which allows the rearrangement of the constituent 4 KB blocks of the
physical address space. This rearrangement is controlled by a sequence of tables held in memory
that can be dynamically modified by the code running on the machine. Figure 9-4 shows the
path followed on a complete page translation.

In principle, every memory access on the machine will require a full lookup sequence through
this paging structure to find the physical address that the given linear address maps to. As this
process is so convoluted and costly, a real machine will cache the result of these lookups in
translation look-aside buffers (TLBs). In addition to these added layers of indirection, there are
extra protection features with memory paging. Each mapped page can be given a user or
supervisor and a read or read/write status. Code that attempts to access pages without sufficient
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privileges, or tries to access pages that simply do not exist, results in the raising of a processor
exception in a manner analogous to a software interrupt.

31 22 21 1112 0

Page Table

4Kb Page

Linear Address

Table Entry

Directory Entry

Physical Address

Page Directory (1024 Entries)

(1024 Entries)

Page Directory
Base Register

FIGURE 9-4. Paging mechanism of the IA32 architecture (4 KB pages only)

To optimize such a structure, it is clear that our first tactic should be to adopt the approach of
the real processor; in other words, we need to have some form of lookup caching. To devise
this, we make two key observations:

• The remapping of paging occurs on a granularity of 4 KB. Conveniently, and not by
coincidence, this is also the granularity we chose for our physical address space.

• When a protected mode process accesses the memory for read or write, it merely sees a
remapping of these 4 KB blocks (while some of the blocks cause processor exceptions).
The physical address space is just one possible ordering of the original Memory objects (where
all the objects are by coincidence in address order) but is otherwise no more significant
than any other ordering.

From these observations we see that the most natural form for our cache (i.e., our TLBs) is a
duplication of the physical address space structure. The memory pages are mapped according
to a new ordering as determined by the page table lookups. On the first request for an address
within a given page, a full traversal of the table structure is performed in order to find the
matching physical address space memory object. A reference to this object is then deposited at
the correct location within the linear address space, and from then on it is cached until we
choose to clear it.

To solve the problem of read/write and user/supervisor, we make a tactical decision to sacrifice
some memory overhead for speed. We produce a linear address space for each combination:
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read-user, read-supervisor, write-user, and write-supervisor. Memory “gets” use the read
indices and “sets” use the write indices. Thus, a switch between user mode and supervisor
mode just requires changing two references in the memory system, as shown in Figure 9-5.

Supervisor Mode

Write
Mappings

Read
Mappings

User Mode

Write
Mappings

Read
Mappings

FIGURE 9-5. Protection level switching in the linear address space

N O T E
This fits in nicely with the Linux kernel’s approach to paging. In Linux, every user-mode
process has the kernel pages mapped in its linear address space. In hardware this prevents a
context switch on transferring to kernel code for routine maintenance operations or system
calls. Our switches to kernel space are just the flipping of array references, which is also a
low-cost process.

This still leaves us with the problem of page faults and protection violations. Our attitude
toward dealing with these conditions is, in some ways, an indication of an acceptance of the
true nature of exceptions, both in the low-level processor sense and in the Java language. This
attitude can be summed up as follows:

An Exception is an exception, and an Error is an error.

More verbosely: an Exception should represent rare or exceptional conditions, but not
necessarily fatal ones; an Error should represent fatal or certainly seriously undesirable
situations.

Considering the extent to which exception handling is implemented in the Java language, it
is in some ways curious that many programmers are reluctant to use the exception-handling
mechanism to their advantage. Exceptions represent the most efficient and cleanest way for
software to handle rare but correctable conditions. Throwing an exception will bias the
execution cost by effectively optimizing for the common path, and concurrently will increase
the cost involved in the inevitable exceptional situation. It is obvious from this discussion that
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the throwing of a page fault or protection violation is an exceptional but normal occurrence
that should be mapped to an instance of Exception.

TIP #5: EXCEPTIONS ARE EXCEPTIONAL
Exceptions should be used for exceptional conditions, not just for errors. Using exceptions for flow
control in unusual circumstances provides a hint to the VM to optimize for the nonexception path,
giving you optimal performance.

In handling page faults and exceptions, we have been slightly cavalier in throwing out two of
the usual conventions on the use of exceptions:

• ProcessorException, which is the class that represents all Intel processor exception types,
extends RuntimeException.

• Page faults, and to a lesser extent protection violations, are exceptional conditions, but
they are common enough that in order to refrain from sacrificing performance, we throw
them using static exception instances.

Both of these decisions were made for good reasons, but were born in large part out of the
peculiarities of the JPC project.

Choosing to extend RuntimeException was mainly a code beautification decision. Traditionally,
runtime exceptions are reserved for exceptions that cannot or should not be handled. Most
texts recommend that if thrown, they are allowed to propagate up and cause the termination
of the throwing thread. We know that the distinction between runtime and checked exceptions
is source “candy” in the same vein as generics, autoboxing, or the for-each loop. Not that we
mean to denigrate these constructs, but by observing that the classification of an exception has
no effect on the compiled code, we can safely choose the most convenient classification without
risking any performance penalty. In our case, ProcessorException is a runtime exception in order
to avoid having to declare throws ProcessorException on a multitude of methods.

Throwing statically initialized exception instances (effectively singleton exceptions) for page
faults and protection violations yields benefits at both ends of the exception-handling chain.
First, we save ourselves the cost of instantiating a new object every time we want to throw.
This is avoids the cost of reconstructing the stack trace of the calling thread (far from trivial in
a modern JVM). Second, we save ourselves the cost of determining the nature of the thrown
type, as with a limited set of static exceptions determining the thrown type, we only need to
perform a sequence of reference comparisons.
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Fighting A Losing Battle
Nowhere in the IA-32 architecture does its enduring popularity show more than in the
instruction set. What was once a simple accumulator-based architecture in the days of the 8080
has grown through the years into a vast and complicated array of instructions. IA-32 has
become a RISC-like chip with numerous bolt-on extras and a bewildering array of addressing
modes.

When approaching such a landscape as a Java developer, it is very tempting to revert to type
and start writing classes as if the more structure you code, the simpler the problem will get.
This approach would be fine, if not ideal, were we developing a disassembler. In such a system
with so much object creation, there is also inevitably a large amount of garbage collection.

This results in a double speed penalty. Not only do we suffer the overhead of large amounts of
object allocation, but we also suffer from frequent garbage collections. In a modern
generational garbage-collected environment (of which the Sun JVMs are an example), small,
short-lived objects are created in the young generation and almost all young-generation
collection algorithms are stop-the-world. So a decoder with large amounts of object churn will
suffer poor performance not only from unnecessary object allocation, but also from a large
number of very short GC pauses while the collector cleans up all the object churn.

For this reason it was quite important to reduce object churn within the decoder that drives
the interpreted execution. In the real mode decoder, this minimalist approach results in a
6,500-line class with just 42 instances of the “new” keyword:

• 4 × new boolean[] at class load time (static final)

• 3 × new Operation() for a rotating buffer

• 2 × new int[] for the expanding buffer in Operation

• 33 × new IllegalStateException() on exception paths

Once an instance of the decoder is created, the only necessary object construction is for
expansion of the int[] buffers in Operation. Once the buffers have expanded, there is no object
construction and no garbage collection, and therefore there is pause-less decoding.

The design of the decoder illustrates what we consider one of the important tenets of
programming (and in this case, of Java):

Just because you can, it doesn’t mean you should.

In this case, just because a JVM can do automated garbage collection, it doesn’t mean you are
forced to exercise it. In a performance-critical section of code, approach object instantiation
with caution. Beware of silent object instantiation done on your behalf with classes such as
Iterator, String, and varargs calls.
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TIP #1: OBJECT CREATION IS BAD
Excessive object instantiation (especially of short-lived objects) will cause poor performance. This
is because object churn causes frequent young generation garbage collections, and young generation
garbage-collection algorithms are mostly of the “stop-the-world” type.

Microcoding: Less Is More or More Is Less

So now we have a GC-less decoder for parsing the IA-32 instruction stream, but we have not
discussed what such a decoder should decode to. The IA-32 architecture is not a fixed-length
instruction system; instructions range in length from a single byte to a maximum of 15 bytes.
Much of the complexity in the set is down to the plethora of memory-addressing modes that
can be used for any given operand of an instruction.

The initial highest level of factorization splits each operation into four stages:

Input operands
Loading the operation’s data from registers or memory.

Operation
Data processing on the input operands.

Output operands
Saving the operation’s results out to registers or memory.

Flag operations
Adjusting the flag register bits to represent the result of the operation.

This factorization into operands and operations allows us to separate the simplicity of the
operation from the complexity of its operands. An operation such as add eax,[es:ecx*4+ebx
+8] is initially factorized into five operations:

load eax
load [es:ecx*4+ebx+8]
add
store eax
updateflags

It is immediately clear that load [es:ecx*4+ebx+8] is a far from simple operation, and easily could
be factorized into a number of smaller elements. In fact, for this addressing format alone there
are:

• Six possible memory segments

• Eight possible index registers

• Eight possible base registers
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This results in 384 possible combinations for this subset of the addressing modes alone.
Evidently some more factorizing is required on these address calculations. This type of memory
access is therefore broken down further, until we get:

load eax
memoryreset
load segment es
inc address ecx*4
inc address ebx
inc address imm 8
load [segment:address]
add
store eax
updateflags

To produce an emulated instruction set that performs acceptably, we have had to balance two
sets of priorities:

• First, we must balance decode time against execution time in order to optimize overall
execution speed. We must remember that in the interpreted processor, our main target is
low-latency initial execution. Commonly executed code should get handed on to later
optimization stages. Our initial aim here is to get the code out the door without blocking
the whole emulation. Later optimizations can be done asynchronously, and time spent
here holds up everything. So we are looking for a relatively simple set that can be decoded
quickly.

• Second, we have to balance instruction set size against “compiled” code length. A small
set will naturally produce verbose code, and a larger set should be more compact. We say
“should” because a large set can still require longer sections if it is badly chosen. An
interpreter for a smaller set will be smaller in code and footprint, and therefore will execute
each of its operations much faster, but conversely it has a larger set to execute. So we are
looking for a reasonable balance of set size against code length in order to get a near-
optimal performance out of the interpreter.

In finding the optimal point for both of these trade-offs, it is important to keep Hoare’s
Dictum‖ in the back of your mind:

Premature optimization is the root of all evil.

—C. A. R. Hoare

The precise sweet spot for lots of these optimizations will be system-dependent. In a Java
environment, the system includes not only the physical hardware but also the JVM. With the
added factor that the Java component of the environment is invariably just-in-time compiled,
small scoped performance benchmarks are notoriously unreliable. To this end we refrained
from overusing such benchmarks to guide our coding choices, and instead relied on first

‖ http://en.wikiquote.org/wiki/C._A._R._Hoare

216  C H A P T E R  N I N E

http://en.wikiquote.org/wiki/C._A._R._Hoare


principles and trusted benchmarks only when large shifts in performance occurred. In a just-
in-time compiled environment, small changes in these micro benchmarks are, at best, not
repeatable on a separate system. At worst, they are so highly dependent on the benchmarked
scenario that they are not even reliably repeatable on the same system.

N O T E
One important feature of the microcode set is that the integer values to which the constants
are set are sequential. The core of the interpreter is a switch statement on this set of constants,
and we need to ensure that this switch runs as fast as possible.

With these factors in mind, we concluded after several experiments that a set with 750 or so
codes for complete integer and floating-point emulation represented a good trade-off. This
gives us an approximate factor of 10 conversion from x86 operation to microcodes. Although
this set may seem large, it decodes quickly and the operations are reasonably atomic. This
makes them good candidates to feed into the later optimizing stages.

TIP #3: TABLE SWITCH GOOD, LOOKUP SWITCH BAD
Switch statements whose labels are a reasonably compact set are faster than those whose values
are more disparate. This is because Java has two bytecodes for switches: tableswitch and
lookupswitch. Table switches are performed using an indirect call, with the switch value providing
the offset into a function table. Lookup switches are much slower because they perform a map lookup
to find a matching value:function pair.

Hijacking the JVM
The refrain of “Java is slow” haunts Java developers to this day. The bulk of this comment
derives from the experiences of non-Java developers with early JVMs back in the mid-to-late
1990s. Since that time those of us who work with Java know that it has moved in leaps and
bounds. The driving force behind this improvement is also the key to speeding up JPC: the
environment of a conventional Java process can be partitioned very simply between program
regions and data regions.

In Figure 9-6 we can see that the data region is then further split between static data, which
can be known at compile time, and dynamic data, which cannot. The bulk of the static data in
a Java environment are the class bytes loaded from the classpath. Although the class bytes are
loaded as data, it is clear that they actually represent code, and they will get interpreted by the
JVM at runtime. So it is obvious that we would like to maneuver these class bytes onto the
other side of the diagram.
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FIGURE 9-6. Program and data regions in a Java process

In a “Just-In-Time” compiled environment such as Sun HotSpot, the commonly used sections
of bytecode are translated or dynamically compiled into the native instruction set of the host
machine. This moves the class bytes from the data region into the code region. These classes
then execute as native code that accelerate the program to native speed. See Figure 9-7.
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FIGURE 9-7. Just-In-Time compilation in a Java environment

In JPC we take advantage of the fact that not all class data has to be known at JVM startup. In
fact, in Java-speak, “static data” would be better referred to as “final data.” When a class is
loaded, its class bytes are fixed and cannot be changed (let’s ignore the JVM TI# for the sake
of convenience). This allows us to define new classes at runtime, a concept that will be
immediately familiar to those who work with plug-in architectures, applets, or J2EE web
containers.

# For those of us that like mucking around with the naughty bits of the JVM, the Tool Interface (http://
java.sun.com/javase/6/docs/technotes/guides/jvmti/) can do some very interesting things, including
class file redefinition.
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We then repeat the just-in-time compilation trick performed by the JVM, but do so at the JPC
level. So for JPC we have a second-tier program-data information divide within the confines
of the Java Runtime Environment. Our compilation now has two stages:

1. IA-32 machine code is compiled into bytecode on demand within JPC. These x86 blocks
thus become valid Java class files that can be loaded as such by the JVM.

2. Classes are compiled by the JVM into native code. As the JVM does not distinguish
between the original “static” classes that comprise the handwritten code and the dynamic
classes built automatically, both types are optimized to get the best native performance
possible.

After these two stages of compilation, our original IA-32 machine code will have been
translated into the host machine’s architecture (see Figure 9-8). With a nice dollop of good
fortune, the new instruction count will not be significantly larger than the original, which
means performance will not be significantly slower than native.

JPC compiler

javac

HotSpot

JIA-32 machine
code

JPC java
Source

dynamic
classes

JPC Classes

static
classes

Host
architecture

machine code

FIGURE 9-8. The three compilers in the JPC architecture

So now we know how to get more speed out of our emulator, but we have slightly glossed
over the details. These details (our new problems) now fall into two distinct areas: how do we
perform this compilation, and how should we load the resultant classes?

Compiling: How to Reinvent the Wheel

The compiler we describe here is not the most optimal example, but we are in a slightly unusual
situation. Both javac and the JPC compiler are only first-stage compilers, meaning they simply
feed their output into a second stage, be this a bytecode interpreter or a just-in-time compiler.
We know that javac does very little to optimize its output; bytecodes output by javac are simply
a translation of the input Java code. See Example 9-2.
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EXAMPLE 9-2. Javac’s nonoptimal compiling

public int function()        public int function();
{                               0:   iconst_1
    boolean a = true;           1:   istore_1
    if (a)                      2:   iload_1
        return 1;               3:   ifeq    8
    else                        6:   iconst_1
        return 0;               7:   ireturn
}                               8:   iconst_0
                                9:   ireturn

This minimal optimization is easily justified because most of the optimization work is being left
as an exercise for the latter stages of compilation. In JPC not only do we have this reasoning,
but we also have the burden of extra time pressure:

• We want minimal overhead compiling in order to avoid stealing CPU cycles from the other
emulation threads.

• We want minimal latency compiling so that the interpreted class is replaced as soon as
possible. A high-latency compiler may find that the code is no longer needed by the time
it has finished the compile.

Simple code generation

The compiling task in JPC is now a simple matter of translating the microcodes of a single
interpreted basic block into a set of Java bytecodes. In the first approximation we will assume
that the basic block cannot throw exceptions. This means that a basic block is a strictly defined
basic block and has exactly one entry point and one exit point. Each variable modified by a
given basic block can now be expressed as a function of the set of input registers and memory
state. Internally in JPC, we collectively represent these functions as a single directed acyclic
graph.

Graph source
Sources represent input data in the form of register values or instruction immediates.

Graph sink
Sinks represent output data in the form of register values and memory or I/O port writes.
For each state variable that the block affects, there will be one sink.

Graph edge
Edges represent variable value propagation within the graph.

Graph node
Nodes represent operations performed on incoming edges whose results propagate along
outgoing edges. In JPC, the operations are a single-state modification component of an
interpreted microcode. Hence one microcode may map to multiple graph nodes if it affects
multiple variables.
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Converting this graph representation of the interpreted basic blocks into Java bytecode is a
simple depth-first traversal of the graph from each sink in turn. Each node in the graph takes
the topmost elements of the stack as input and then leaves its result at the top, ready for
processing by any child nodes. See Figure 9-9.

N O T E
Classically optimal traversal order for the graph requires that at each node, the ascendants
should be evaluated in depth order. The node with the longest path to the farthest source is
evaluated first, and that with the shortest path last. On a register-based target, this will
produce the shortest code because it eliminates the majority of the register juggling. On a
stack-based machine such as the JVM, the same decision-making process will give rise to
code with a minimal stack depth. In JPC we neglect such niceties and rely on the JVM to
iron out the difference, the extra complication of tracking all the node depths is simply not
worth the effort.
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<empty>
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FIGURE 9-9. Representing x86 operations as a directed acyclic graph

This sink-by-sink depth-first parsing causes natural optimization of the graph, as shown in
Figure 9-10. Orphaned sections of the graph that correspond to unused code cannot be accessed
via the sinks and so will be automatically removed, as the parse will never reach them. Reused
code sections will find themselves evaluated multiple times in one parse of the graph. We can
cache their result in a local variable and simply load the result on subsequent visits to the node,
thus saving any code duplication.

The code associated with the node in a tree is then represented by a single static function
compiled from source as part of the JPC codebase. The code we generate is then just a sequence
of pushes of processor variables and immediates onto the stack, followed by a sequence of
invokestatic calls for each node, and finally a sequence of pops back into the processor object.
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TIP #2: STATIC IS GOOD
If a method can be made static, then make it so. Static methods are not virtual, and so are not
dispatched dynamically. Advanced VMs can inline such methods much more easily and readily than
instance methods.

Handling exceptions

Now that we can handle the compilation of basic blocks, we must restore some of the ugliness
to the situation. As we discussed previously, exceptions are not always errors. Page faults and
protection violations are thrown with abandon as a matter of course. When an exception is
thrown, the processor state must be consistent up to the last successful execution of an
operation. This obviously has rather severe implications for the compiler. Having mapped
exceptions in IA-32 to Java exceptions, we know that the only practical solution to this problem
is to catch the exception and, once inside the exception handler, ensure that the state is
consistent with the last successful operation.

The behavior of an exception path within any given basic block is just like that of the basic
block itself. It has one entry point and one exit point, and the only difference from the main
path is the exit point. As the exception path is not so very different from the basic block itself,
the most natural way to represent it is with its own directed acyclic graph. The graph for the
exception path will share the same node set as the basic block, but will have a distinct set of
sinks mapped to its own distinct exit point.
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The code for the exception handler is then produced by traversing the chosen paths graph. The
nodes shared in common with the main path are reset back to their state at the exact point
mid main path traversal when the exception is thrown. This means that all cached and
calculated values from the main path can be reused in the exception handler, thus avoiding
repeating any work.

Bytecode manipulation

Converting our compiled sections of bytecode into loadable classes is something for which there
are a number of established and well-engineered solutions. Apache’s Byte Code Engineering
Library (BCEL) considers itself to conveniently “analyze, create, and manipulate (binary) Java
class files.”* ASM is an “all purpose Java bytecode manipulation and analysis framework.”†

Unfortunately, all we want to do is modify a single method (always the same one) in a single
skeleton class. We can only generate a small subset of the possible set of bytecode sequences,
and we don’t need to provide any analysis tools. It would appear then that both BCEL and
ASM are overkill for our needs. Instead, we developed a custom bytecode manipulation library
with very limited capabilities that exactly matched what we needed. For example, our stack-
depth algorithm is tuned to rapidly assess the maximum stack depth of our methods (so that
they can pass verification). Although this algorithm does not work for general class compiling,
it is sufficient and more efficient for our purposes.

TIP #9: BEWARE EXTERNAL LIBRARIES
Avoid using external libraries that are overkill for your purposes. If the task is simple and critical,
then seriously consider coding it internally; a tailor-made solution is likely to be better suited to the
task, resulting in better performance and less external dependencies.

Class Loading and Unloading, but on a Big Scale

So now we have classes, and they need to be loaded. The obvious first question is, “How
many?” Figure 9-11 gives an illustration of the scale of the problem. Loading 100,000 classes
into a single JVM can prove to be a slight challenge.

* http://jakarta.apache.org/bcel

† http://asm.objectweb.org/
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FIGURE 9-11. Class count during a modern GNU/Linux boot

So we need to find the space for all these classes. Class file storage in the JVM occurs in a special
memory area outside the normal object heap known as the “Permanent Generation” space. In
a typical Sun JVM, the permanent generation starts out at 16 MB and can grow to at most 64
MB. Obviously 100,000 classes are not going to fit into a 64 MB heap. There are two ways we
can solve this problem.

The first is with the command java -XX:MaxPermSize=128m. Clearly, solution one is to increase
the size of the permanent generation. Crude though this may be, it does help to solve the
problem. Unfortunately, it’s no solution on its own, because all we have done is delay the
inevitable. Eventually we will load enough classes to fill the new space, and we can’t just keep
adding more room.

The second half of the solution involves reducing the number of loaded classes. In fact,
shouldn’t the garbage collector be clearing away all the unused classes? Classes are really no
different from heap objects as far as garbage collection goes. A class can be garbage collected
(unloaded) only if no live references to the class are held. Of course every instance of a class
holds a strong reference to the Class object of its type. So for a class to be collected, there must
first be no live instances of the class, and then no additional references to the class. Therefore,
perhaps we can solve the problem if we define our custom classloader as shown in Example 9-3.

EXAMPLE 9-3. Simple no-holding ClassLoader

public class CustomClassLoader extends Classloader
{
    public Class createClass(String name, byte[] classBytes)
    {
        return defineClass(name, classBytes, 0, classBytes.length);
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    }

    @Override
    protected Class findClass(String name) throws ClassNotFoundException
    {
        throw new ClassNotFoundException(name);
    }
}

The ClassLoader in Example 9-3 holds no references to the classes it defines. Each class is a
singleton with no relations, and so findClass is safe to throw ClassNotFoundException and all is
right with the world. Once the singleton instance of each class becomes a GC candidate, so will
the class itself, and both can be collected. This works great, and the classes all get loaded.
However, something goes wrong. For some unknown reason, no classes get unloaded, ever. It
appears that some object somewhere is holding onto references to our classes.

Let’s look down the list of calls on defining a new class:

java.lang.ClassLoader: defineClass(...)
java.lang.ClassLoader: defineClass1(...)
ClassLoader.c: Java_java_lang_ClassLoader_defineClass1(...)
vm/prims/jvm.cpp: JVM_DefineClassWithSource(...)
vm/prims/jvm.cpp: jvm_define_class_common(...)
vm/memory/systemDictionary.cpp: SystemDictionary::resolve_from_stream(...)
vm/memory/systemDictionary.cpp: SystemDictionary::define_instance_class(...)

This is what happens when you’re not satisfied with the answer “because it does.” We get down
this far into the guts of the JVM, and we find this little snippet of code:

// Register class just loaded with class loader (placed in Vector)
// Note we do this before updating the dictionary, as this can
// fail with an OutOfMemoryError (if it does, we will *not* put this
// class in the dictionary and will not update the class hierarchy).
if (k->class_loader() != NULL) {
  methodHandle m(THREAD, Universe::loader_addClass_method());
  JavaValue result(T_VOID);
  JavaCallArguments args(class_loader_h);
  args.push_oop(Handle(THREAD, k->java_mirror()));
  JavaCalls::call(&result, m, &args, CHECK);
}

which is a call back up to the Java level into the classloader instance that is doing the loading:

// The classes loaded by this class loader.  The only purpose of this table
// is to keep the classes from being GC'ed until the loader is GC'ed.
private Vector classes = new Vector();

// Invoked by the VM to record every loaded class with this loader.
void addClass(Class c) {
    classes.addElement(c);
}

So now we know which naughty little object is holding a reference to all of our classes and
keeping them from being garbage collected. Unfortunately, there is little we can do about this.
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Well, little that we can do without violating one of the absolute maxims and declaring a class
in the java.lang package. So we now know that our superclass is going to helpfully hold
references for us. What does this mean for the class unloading?

n x Classes

Class

ref:
ClassLoader

n x CodeBlocks

CodeBlock

ref:
Class

GC Root

ClassLoader
ref:

Vector<Class>

FIGURE 9-12. The GC root path for classes

In the GC root path in Figure 9-12, we can see that until all the instances of all the classes
loaded by a classloader are GC candidates, all the classes will remain loaded. So one active
codeblock can stop n classes from being unloaded. That’s no good at all.

There is one simple way to mitigate this problem. No one said that we had to let n rise
uncontrollably. If we limit the number of classes loaded by any one loader, then we decrease
the chances of classes being held hostage. In JPC we have a custom classloader that will only
load up to 10 classes by default. Loading the 10th class triggers the construction of a new loader,
which will be used for the next 10, and so on. This method means that any one class can only
hold up to 10 others hostage; see Example 9-4.

EXAMPLE 9-4. ClassLoader implementation in JPC

private static void newClassLoader()
{
    currentClassLoader = new CustomClassLoader();
}

private static class CustomClassLoader extends ClassLoader
{
    private int classesCount;

    public CustomClassLoader()
    {
        super(CustomClassLoader.class.getClassLoader());
    }
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    public Class createClass(String name, byte[] b)
    {
        if (++classesCount == CLASSES_PER_LOADER)
            newClassLoader();

        return defineClass(name, b, 0, b.length);
    }

    protected Class findClass(String name) throws ClassNotFoundException
    {
        throw new ClassNotFoundException(name);
    }    
}

HOTSPOT CODE CACHE
In JPC, when running complex jobs that load such large numbers of classes, there is another memory
limit that will get hit. In Sun HotSpot JVMs, the just-in-time compiled code is stored in a nonheap
area called the code cache. Not only does JPC produce a large number of classes, it is also unusual
in that a high fraction of these are candidates for HotSpot. This means that the HotSpot caches get
filled rapidly. This just means that any boost to the permanent generation size normally is also
accompanied by an increase in the size of the code cache.

Codeblock replacement

We now have a compiled, loaded, and instantiated custom code block instance. Somehow we
have to get this block in place where it’s needed. How this is done is also closely related to how
the blocks are initially scheduled for execution; see Example 9-5.

EXAMPLE 9-5. Decorator pattern for compilation scheduling

public class CodeBlockDecorator implements CodeBlock
{
    private CodeBlock target;

    public int execute()
    {
        makeSchedulingDecision();
        target.execute();
    }

    public void replaceTarget(CodeBlock replacement)
    {
        target = replacement;
    }
}
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Example 9-5 shows how the code block decorator intercepts calls for execution and is then
able to make a decision as to whether to queue the block for compilation. In addition to this,
we also have a method that can replace the decorator’s target with a different block instance.
Once the block has been compiled, the decorator is useless, and so ideally we would like to
replace it. This replacement is actually achieved quite easily. By replacing the original
interpreted block with a block like Example 9-6, we can propagate the notice about the new
block back up the call stack. Once the exception reaches the right level, we can replace the
reference to the decorator with a direct reference to the compiled block.

EXAMPLE 9-6. Block replacing CodeBlock

public class CodeBlockReplacer implements CodeBlock
{
    private CodeBlock target;

    public int execute()
    {
        throw new CodeBlockReplacementException(target);
    }

    static class CodeBlockReplacementException extends RuntimeException
    {
        private CodeBlock replacement;

        public CodeBlockReplacementException(CodeBlock compiled)
        {
            replacement = compiled;
        }

        public CodeBlock getReplacementBlock()
        {
            return replacement;
        }
    }
}

TIP #6: USE DECORATOR PATTERNS WITH CARE
The decorator pattern is nice from a design point of view, but the extra indirection can be costly.
Remember that it is permitted to remove decorators as well as add them. This removal may be
considered an “exceptional occurrence” and can be implemented with a specialized exception
throw.
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Ultimate Flexibility
Armed with all of this trickery, we now have a highly optimized emulation system that can be
improved and extended without the need for major architectural revision. A better compiler
can be plugged into the backend of the system, and other components can be adapted and
replaced with different implementations to suit a wide range of purposes. For example:

• The data that forms the virtual hard disk could actually be served (on demand) by any
server anywhere in the world.

• The user interaction of the emulated system (virtual screen, keyboard, and mouse) could
be via a remote system.

• JPC can run x86 software on any standard Java 2 virtual machine, and thus the underlying
hardware can be chosen independently from the choice of operating system and software.
In addition, the complete state of the virtual machine can be saved and the emulated
machine “frozen” in time. It can then be resumed at a later date or on a different physical
machine without any of the hosted software being aware of any change.

Flexible Data Anywhere

With JPC, your disk image can be carried with you on a memory stick, together with a complete
JVM and JPC code. You can then plug this into any computer and “boot” your machine up to
do all your private email and other work, and when you finish and unplug, you’ve left nothing
on the host hardware.

Alternatively, your hard disk image could reside on a server on the Internet, and you could
access your own machine from anywhere in the world simply by loading a local JPC and
pointing it to your server. Together with suitable authentication and transport security, this
becomes a powerful tool for the mobile workforce. JPC’s natural fit in the Java space means
that almost any device can be used as the end portal for remote access, from Java-enabled
browsers to mobile devices.

For sensitive work in a highly secure environment, data security and integrity can be enforced
at the most basic hardware level by working on local JPC instances whose hard drives are
located on a secure server close by. Each worker gets full control of the virtual hardware they’re
working on, thus enabling them to work effectively. However, there is no way for them to
extract data from the system, even if they try to hack the physical security of the computer in
front of them: the local machine knows practically nothing of the application running inside
the JVM, inside JPC, inside the guest operating system, and so on.

Even when employee trust is not an issue, working on virtual machines, especially one as
flexible as JPC, means the physical hardware becomes completely replaceable at a moment’s
notice. Thus for disaster recovery and ultimate backups, where the entire state of the machine
is backed up, not just the hard disk data, emulators such as JPC offer powerful advantages
where instant failover is important (even over the WAN).
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Because of JPC’s hardware agnosticism, these stories apply equally well to non-x86 hardware,
the ideal solution for thin clients, and users get their favorite x86 environment in all cases.

Flexible Auditing and Support

The screen, keyboard, and mouse of a running JPC instance could be viewed and overridden
remotely by a suitably authorized system. Fraud could be effectively monitored by remotely
collecting keystrokes and screenshots taken of suspicious activity to form an evidence base.
Given the low-level hardware access made possible by JPC, this feature cannot be subverted
by the technically able person who attempts to detect and remove monitoring software from
within the emulated operating system. Even a user given administrator rights (on the guest
system) would not be able to escape the monitoring, no matter how knowledgeable.

An auditing JPC system could simply record activity, scanning and flagging actions in real time,
or go one step further and prevent certain actions. For example, in collaboration with suitable
server software, a monitored instance could scan the video output for inappropriate images
and then obscure them (or replace them with other content) at the virtual video card level.
Such low-level monitoring means users could not subvert content protection systems by
installing alternative viewing software.

Remote assistance could be far more effective if a help desk could literally see exactly what the
entire screen was doing, and directly interact with the keyboard and mouse at the virtual
hardware level. This would be possible even when JPC ran operating systems for which remote
access was never implemented—for example, DOS, whose use is ongoing in many industries
and countries around the world.

Flexible Computing Anywhere

Rather than run the main emulation on a local resource and merely import data from remote
resources as necessary, the core emulation could be carried out on a central “JPC” server.
Because JPC needs only a standard JVM to operate, this central JPC server could be based on
hardware that is completely different from a normal x86 PC. There are some candidates already
that could achieve this, and JPC has already been demonstrated on a 96 core Azul compute
appliance. Other possibilities include Sun’s Niagara-based servers and systems built from
mobile phone technology (JPC has already booted DOS on a Nokia N95, an ARM11-based
system).

But why centralize a server to run all these JPC instances? Presumably any resource on the
Internet could run a JPC instance on behalf of anyone else, with the screen output and user
input being piped via the network to the virtual machine owner. In this way of working, the
world is viewed as “N” users with “M” machines, and there is no fixed mapping of hardware
ownership relationships between users in the former group and machines in the latter. If a
machine is idle, any one of the users can use it, remotely launching a JPC instance to work on
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their personal disk image data. If the idle machine is suddenly needed for other purposes, the
JPC instance can be “frozen” and the state moved to another idle physical resource.

Although this latter modus operandi is perhaps more difficult to imagine for interactive users,
for whom the freezing and resuming would take too long over the Internet to be convenient,
it makes a lot of sense for users who want to run many simultaneous virtual machines in
parallel and without much interaction. This is the experience of users who currently use large
“batch” farms to run massively parallel tasks, such as rendering frames of an animated movie,
searching for drugs via molecular simulation, optimizing engineering design problems, and
pricing complex financial instruments.

Ultimate Security
Allowing unvetted code to run on your machine is fraught with danger, and this danger is
getting worse. There is a rapidly growing list of malicious software (“malware”) on the Internet,
variously known as “trojans,” “keyloggers,” “hostageware,” “spamware,” and “viruses.” You
could fall victim to data loss, identity theft, and fraud, and worst of all, might become implicated
in a criminal offense if you did not exercise caution when running software downloaded from
an unknown or unverified source.

For every security hole patched by the makers of the popular operating systems and Internet
browsers, it seems two more grow in its place. Knowing this, how can you ever run code that
might genuinely enhance your browsing experience or provide useful services?

Java code, when run in the Java Applet Sandbox, has provided this level of reassurance for
over a decade. Add the extra independent layer of security represented by JPC and you have
a double-insulated sandbox in which to run unvetted code. The JPC website (http://www-jpc
.physics.ox.ac.uk) demonstrates how JPC can boot DOS and run a number of classic games
inside a standard applet as part of a web page; in other words, they show an unvetted x86
(DOS) executable running in a completely secure container on any machine.

There is one major downside to running JPC within an applet sandbox: the security restrictions
do not allow JPC to create classloaders, and therefore the dynamic compilation that gives JPC
much of its speed is disabled. The good news is that by using the inherent flexibility of the JPC
design, this can be circumvented without compromising security.

Java code in an applet sandbox can load classes from the network on demand as long as they
come from the same server as the applet code originally did. Exploiting this, we have built a
remote compiler that compiles classes on demand from JPC instances running in applets,
sending them back to these instances when asked by the JVMs responsible for running them.
The local JVM merely regards these classes as static resources that just happen to be needed
rather later than the rest of the classes inside JPC, whereas in fact these classes have been
compiled as needed by the JPC applet instances.
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In this way, we get the speed of compiled classes even within the standard Java Applet
Sandbox, and so users can be reassured that no matter what JPC is running, the JVM is
enforcing the basic restrictions on executing code that make the activity safe in a dangerous
world.

A nice side effect of the remote compiler is that as time goes on and many JPC instances make
use of it, it builds up a library of compiled classes that it can share among the JPC instances.
Thus the compiler server rapidly becomes a simple web server for previously compiled classes.
Moreover, by counting the number of times each compiled class is requested, the server knows
which classes are most used, and therefore which code to spend more time optimizing.
Although this latter feature has not yet been implemented, we believe such focused
optimization could offset the execution speed penalty suffered by JPC applet clients introduced
by the network delay in loading classes. Thus, JPC applet clients might perform as well as
normal JPC application clients where compilation is carried out locally.‡

It Feels Better the Second Time Around
Everybody knows that it is always possible to do a thing better

the second time.

—Henry Ford, My Life and Work

Developing in an academic environment comes with its own challenges, which are somewhat
different from those in a commercial setting. In an academic environment, performance targets
are mostly self imposed, which is both a blessing and a curse. Discipline is required on the part
of the developers to keep the project on track and to prevent its focus from shifting. However,
a free environment also allows ideas to be rapidly developed and tested to confirm or disprove
their benefits. For the most creative and ambitious projects, this type of atmosphere is critical
to eventual success.

The fact that the architecture of JPC has progressed as far as it has with such a small team of
developers§ is the result of an overriding attitude toward coding. As Figure 9-13 shows, in the
life of the project over 500,000 lines of code have been written. Of this, only 85,000 survive
to this day. There have been numerous rewrites of various sections of the emulation, including
one complete purge and rewrite from scratch.

‡ Indeed, when the compiler server and JPC Applet are connected via a decent 100 MBit LAN, there is
virtually no perceived performance penalty due to network issues. The advantage of having compilation
carried out elsewhere frees up CPU resources locally, and this seems to balance the network delay.

§ The average team size during the major 30-month development phase was 2.5 programmers, not all Java
experts.
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FIGURE 9-13. Accumulated code in JPC

A continuous cycle of purge, rewrite, and refine is difficult to achieve, although it is easier in
an academic environment. Provided you don’t get too emotionally attached to your code, the
process of code deletion can be cathartic, not only for the codebase, but also for the developer’s
attitude toward it. Henry Ford was right: almost invariably your second attempt will be better.
As long as this series of iterative improvements has a termination condition, all will be well.

So, the road to a “Beautiful Architecture” would be a four-step plan:

1. Take a large and complex problem in its entirety, and find a set of credible simpler stages
that would enable a complete end-to-end prototype system to be built. Each stage
represents a system simpler and less capable than the final goal, but each stage can be
tested within its design limitations as part of a complete system prototype rather than as
individual prototypes of small parts of the final design (i.e., a more traditional unit test).

2. Before building each part of each stage, be clear what aspect is being developed and why.
Ideally, the bottlenecks in each stage can be easily identified and improvements to these
will be the main targets for the next stage or stages. Look hard to find ways to prove the
methodology in principle before embarking on large chunks of work—even for each part
of each stage.
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3. Code each stage to completion and system test the whole prototype, resisting the
temptation to push too quickly beyond the stage design parameters. Make sure to get full
system tests of each stage to inform the design of the next.

4. Iterate the design and return to step 2. At no stage should you be afraid to rewrite complete
components from scratch.

In an academic environment, where commercial pressure is practically absent, it is easy to
apply the knife to the code in stage 4. It takes bravery to be as cruel as necessary in commercial
settings, but we contend that lack of nerve at this type of juncture is a major underlying, and
often misidentified, cause of project failure, especially for the most innovative and challenging
ones.

To get a beautiful architecture with truly unexpected benefits, stay true to your beliefs and
have no fear.
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C H A P T E R  T E N

The Strength of Metacircular Virtual
Machines: Jikes RVM

Ian Rogers
Dave Grove

RUNNING  CODE  IN  A  MANAGED  RUNTIME  ENVIRONMENT  IS  THE  PREVALENT  CHOICE for today’s
developers. In fact, a large fraction of all developed code is for a managed runtime environment.
However, although runtime environments are increasingly popular, the majority are written
in a different language than the one the runtime environment supports. In the case of Java
Virtual Machines, which act as a runtime environment for Java applications, the programming
languages C and C++ are most commonly used to implement the runtime environment itself.

In this chapter, we present an overview of a mature virtual machine called Jikes RVM, which
is written in Java to run Java applications. Not only is the runtime system written in Java, but
all other components of the architecture are written in Java. These components include
adaptive and optimizing compilation systems, threading, exception handling, and garbage
collection. We present an overview of these systems here, and will explain why having a
singular vision of language, runtime, and implementation leads to systems that are inherently
more compelling and potentially more optimal.

 Principles and properties  Structures

 Versatility ✓ Module

 Conceptual integrity  Dependency

✓ Independently changeable ✓ Process

 Automatic propagation  Data access

✓ Buildability   

 Growth accommodation   

 Entropy resistance   
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Background
The issue of how to develop a new programming language is a staple of computer science that
has formalisms such as the T-Diagram (Aho 1986). Figure 10-1 shows a T-Diagram that depicts
using a C compiler, which runs and creates PowerPC machine code, to compile a Pascal
compiler written in C that creates PowerPC machine code, producing a compiler that runs with
PowerPC machine code, creating PowerPC machine code.

Pascal to PowerPC Machine Code
Compiler written in C

Created Compiler

Existing C Compiler

PowerPC
 Machine

 Code

PowerPC
 Machine

 Code

PowerPC
 Machine

 Code
PowerPC
 Machine

 Code

PowerPC
 Machine

 Code

Pascal Pascal

C C

FIGURE 10-1. A T-Diagram showing the creation of a Pascal-to-PowerPC machine-code compiler

Unlike traditional programming languages, which compile down to the machine code for the
computer upon which the program was intended to run, most modern languages can be
compiled to an architecture-neutral machine code. In the case of Java, this is known as Java
bytecode. A neutral machine code allows applications to be ported to any environment where
the runtime is present. So, Java can be run anywhere a Java virtual machine is present.

Modern languages aim to help the programmer by designing out potential programming
language pitfalls. The most prevalent feature is to have memory safety, by limiting what a
programmer may do with data types and allowing only automatic garbage collection to release
memory. Another feature is the ability to throw exceptions.

Self-hosting is seen as an important principle for programming languages. Self-hosting means
that the programming language should allow enough expression that the programming
language can be written in its own programming language. For example, a Pascal compiler
written in Pascal is self-hosting, whereas a Pascal compiler written in C is not. Self-hosting
allows the programming language developer to use the features of the programming language
for which they are responsible. Critically, self-hosting creates a virtuous cycle in which
language implementers desire to utilize advanced and/or expressive language features in
performance-critical parts of the language implementation, and therefore often discover
innovative ways to efficiently implement said language features.

Although making the compiler self-hosting is seen as important, many runtime environments
are not written in the language in which they typically run. For example, a runtime written
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in C or C++ may run Java applications. If the runtime were to have a bug relating to memory
safety, it could crash the Java application, even though the Java application itself has memory
safety. Removing bugs is an important reason to have a self-hosting runtime.

As computer systems are better understood and evolve, the requirements of a programming
language change. For example, the programming languages of C and C++ have no standard
library for utilizing multiple processors using threading (although popular extensions such as
POSIX threads and OpenMP do exist). Modern languages will have such features designed into
the language and standard library. Allowing the runtime to take advantage of better libraries
and abstractions is another important reason to have a self-hosting runtime.

Finally, whenever a runtime and the application it is running must communicate with each
other, there is a layer for the communication. One job of this communication layer can be to
marshal objects, changing the format in one programming language to that of the other. In the
case of objects, the communication layer also needs to remember not to garbage collect any
objects that may be in use from outside of the managed runtime. Such communication layers
are not necessary, or at least not necessary in as many situations, when the runtime is self-
hosting.

We hope we’ve provided compelling reasons for making a self-hosting runtime. In this chapter,
we present an overview of such a runtime, Jikes RVM, which is written in Java and runs Java
applications. Self-hosting runtime environments are known as metacircular (Abelson et al.
1985). Jikes RVM is not unique in being metacircular, and indeed it draws inspiration from
similar runtime systems, such as Lisp (McCarthy et al. 1962) and the Squeak virtual machine
for Smalltalk (Ingalls et al. 1997). Being a metacircular virtual machine written in Java allows
the use of excellent tools, development environments, and libraries. As Java lacks credibility
in certain communities, we will first address some of the myths that may lead people to believe
that a metacircular Java runtime has inherent flaws.

Myths Surrounding Runtime Environments
There is still much active debate on how best to create applications for different environments.
Factors such as the resources available where the application will be run, the productivity of
the developers challenged with creating the application, and the maturity of the development
environment come into play. If the application is implemented in the same way, performance
and memory requirements are a feature of the development environment. Next, we look to
overturn the most common myths about managed environments.

As Runtime Compilers Must Be Fast, They Must Be Simple

A misconception about runtime environments is that they are interested purely in just-in-
time (JIT) compilation. JIT compilation must create code quickly because it will be put to use
as soon as it is ready. Although this simple execution model was used in many early JVMs and
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in prototype runtime environments, most modern production virtual machines rely on some
form of selective optimization. In selective optimization, online profiling is used to identify a
subset of the executing methods to compile with an aggressive optimizing compiler; the
remainder of the methods are either interpreted or compiled by a very fast nonoptimizing
compiler immediately before execution. It is this selectivity that enables the use of sophisticated
optimizing compilers at runtime.

Unlimited Analysis in a Static Compiler Must Mean Better Performance

As runtime environments will be heavily used by many applications, optimizing them to
extract greater performance across all applications makes sense. However, a range of
optimizations cannot be performed if the runtime is not created as part of a dynamic
environment:

Online profiling
Aspects of the runtime vary at runtime—for example, the average size of pieces of data,
or particular coding styles that may be based on differing design patterns. Online profiling
allows timely use of this information to reduce overheads, such as branch prediction, and
also allow more advanced optimizations, such as value speculation. An example from Java
of value speculation could be to predict that the majority of stream output operations may
be occurring to the java.lang.System.out file stream. Value speculation is an extension to
partial evaluation, which we will consider further in the later section “Partial evaluation.”

Variance in the underlying system
The range of systems an application runs on is increasingly becoming more varied. The
abilities of different processors, the amount of memory, the number of different
processors, the power requirements, and the load of the system that the runtime is
executing upon are all important in knowing how the runtime should best adapt.

Intraprocedural analysis
Intraprocedural analysis is an important tool for an optimizing compiler, allowing
optimization across method boundaries. Although off-line analysis can be unlimited, often
this can result in so much data that the compiler cannot determine which data is
important. As runtime feedback is more timely, it can better guide intraprocedural and
other compiler optimizations.

Runtime Analysis Uses a Lot of Resources

Having a runtime environment has an overhead for the memory required by the environment.
Similar requirements exist for the standard libraries that conventional applications use. On top
of these, the runtime environment must keep information that can help guide its future
compilation and execution. These memory requirements are modest, and through timely and
memory-efficient sampling, the runtime environment can gain the most benefit with little cost.
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Dynamic Class Loading Inhibits Performance

Many modern runtime environments, including Java, have the ability to be extended
dynamically. This can be useful in an environment where the user wants to plug together
different parts of a system; in the case of Java, the components may be downloaded from the
Internet. Although useful, this technique can mean the compiler cannot make certain
assumptions that it otherwise could if all information about an application were available to
it. For example, if a method of an object were being called and there was only one possible
class for that object, it would be preferable to avoid doing dynamic method dispatch and directly
call the method. There are specific optimizations to deal with this situation in optimizing
runtime environments, and we describe them later in “On-stack replacement.”

Garbage Collection Is Slower Than Explicit Memory Management

Automatic garbage collection is an advanced area of computer science research. Memory is
requested and reclaimed when no longer needed. Explicit memory management requests and
then reclaims memory using explicit commands to the runtime environment. Although
explicit memory management is error-prone, it is often argued that it is needed for
performance. However, this is overlooking the many complications caused by explicit memory
management. With explicit memory management, it is necessary to track what blocks of
memory are in use and maintain lists for those that are not. When this is combined with many
threads concurrently requesting memory, the problem of memory fragmentation, and the fact
that merging smaller regions can yield larger regions of memory to be allocated, the job of an
explicit memory manager can become complex. The explicit memory manager also cannot
move things around in memory—for example, to reduce fragmentation.

The requirements of a memory manager are application-specific, and in the context of a
metacircular runtime, a simple JIT compiler doesn’t need to perform much memory allocation,
so either explicit or automatic garbage collection schemes would work well. For a more
sophisticated optimizing compiler, the picture isn’t as clear, other than the fact that garbage
collection reduces the potential for bugs. For other parts of the runtime system there are further
complications, which we describe later in “Magic, Annotations, and Making Things Go
Smoothly.” Although we haven’t been able to refute the claim that garbage collection may be
slower than explicit memory management, one thing it definitely improves is the “hack-
ability” of the system.

Summary

As development tools are themselves applications, our original question of how best to develop
an application becomes self-referential. Managed languages design out faults and improve the
productivity of the developer. Simplifying the development model, exposing more
opportunities to optimize the application and the runtime, and doing this in a metacircular
way allow the developer to gain from the features they introduce without encountering
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barriers between application, runtime, and compiler views of the system. In the next sections
we look at Jikes RVM, a runtime that puts these principles together.

A Brief History of Jikes RVM
Jikes RVM stems from an IBM project called Jalapeño. The Jalapeño project was started in
November of 1997 with the goal of developing a flexible research infrastructure to explore
ideas in high-performance virtual machine design. By early 1998, an initial functional
prototype was bootstrapped and capable of running small Java programs. In the spring of 1998,
work was begun on the optimizing compiler, and the project rapidly grew in size. By early
2000, project members had published several academic papers describing aspects of Jalapeño,
and university researchers began to express interest in getting access to the system to use as
the basis for their own research efforts.

By the time the system went open source in October of 2001, there were already 16 universities
using Jikes RVM under license from IBM. This community rapidly expanded and now includes
hundreds of researchers at well over 100 institutions. Jikes RVM has been the basis for over
188 papers that have appeared in peer-reviewed publications, and it has formed a foundation
for at least 36 university dissertations.

Version 2 was the original open source Jikes RVM and had support for both the Intel and
PowerPC architectures. A range of different garbage collection algorithms were available,
including reference counting, mark-sweep, and semi-space. A year later, version 2.2 of Jikes
RVM was released. One of the main enhancements was a completely new implementation of
the memory management subsystem, called the Memory Management Toolkit (MMTk).
MMTk has become a very widely used framework in the garbage collection research
community, and has been ported to other runtimes besides Jikes RVM. We discuss MMTk and
garbage collection techniques further in “Garbage Collection.” The optimizing compiler and
adaptive optimization system also had significant improvements, and the development of the
runtime was simplified by a switch to the open source GNU Classpath standard class libraries.
In April 2003, Jikes RVM 2.2.1 was one of the first open source Java runtimes capable of
running significant portions of the Eclipse IDE.

In the almost four years between versions 2.2 and 2.4.6, a number of significant improvements
in both functionality and performance were made, but with a source structure and architecture
that were mostly unchanged.

Jikes RVM 3.0 was released in August 2008 and represents almost two years of concerted
community effort to modernize and improve the system. Java 5.0 language features were
adopted across the codebase, the build system switched to using Apache Ant, and a greatly
improved testing infrastructure was developed to increase system stability and performance.
In addition, a number of functional and performance improvements were made, resulting in
performance for many programs that is competitive with that achieved by modern production
JVMs (implemented in traditional runtime system languages such as C/C++).
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There are too many contributions to Jikes RVM to mention, but we thank the Jikes RVM
development community for all their work. Just under 100 people have contributed code to
Jikes RVM, and 19 people have served as members of the Jikes RVM core team. For a list of
full credits, it is worth going to the Jikes RVM website. More details about the early history of
Jikes RVM and the growth of its open source community can be found in a 2005 IBM System
Journal paper (Alpern et al. 2005).

Bootstrapping a Self-Hosting Runtime
Compared to the bootstrap of a traditional compiler (Figure 10-1), the bootstrap of a
metacircular runtime involves a few more tricks. Figure 10-2 shows a T-diagram depicting the
process.
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FIGURE 10-2. A T-Diagram showing the bootstrapping of Jikes RVM on an existing JVM written in C

The boot image contains several files that represent memory when the system is hosting itself
(the rightmost T in Figure 10-2). The contents of the boot image are code and data, similar to
what is found in a regular compiler’s object file. An extra section in Jikes RVM’s boot image
contains the root map, which is created by the garbage collector. We describe the root map
later in “Garbage Collection.” The boot image writer is a program that uses Jikes RVM’s
compilers to create the boot image files, executing on a bootstrap JVM. A loader is responsible
for loading the boot image into the correct area of memory, and in Jikes RVM, the loader is
known as the boot image runner.

Object Layout

The boot image writer must lay out the objects on disk as they will be used in the running Jikes
RVM. The object model in Jikes RVM is configurable, allowing different design alternatives to
be evaluated while keeping the rest of the system fixed. An example of a design alternative is
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whether to provide more bits per object for the hashing of objects or more bits per object for
implementing fast locking for synchronization. An overview of the Jikes RVM object layout is
shown in Figure 10-3.
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static int bar ( ) {.....}

int boo ( ) {.....}

int a ;

foo b ;

FIGURE 10-3. The layout of objects in Jikes RVM

The default 32-bit object model in Jikes RVM currently uses two words for the object header:
the first references the Type Information Block (TIB), and the second holds status information
for the object on locking, hashing, and garbage collection. After the object header comes the
fields of the object. For an array, the first field is the array length and the remainder are the
array elements. To avoid a displacement for accesses to an array, the size of which would be
the size of the object header and the array length field, all references to objects actually
reference a location three words into the object. This allows element zero of an array to be at
offset zero within the object, but it also means the object header is always three words behind
an object’s reference and that the first field of an object is always at a negative offset from the
object’s reference.

The TIB is responsible for holding the data that is common to every object of a particular type.
This data is primarily used for virtual and interface method dispatch. Method dispatch is the
process of identifying the method that is associated with and should be called for a particular
object. Methods within classes are allocated locations within the TIB, in order to enable fast
and efficient method dispatch. The TIB also holds values that allow fast runtime type
information to be determined, which speeds Java’s instanceof and checkcast operations. It also
holds special methods to process an object during garbage collection.
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As well as objects, static data belonging to classes must be tracked. Static data is held in a
location called the Java Table Of Contents (JTOC). The JTOC is organized in two directions:
positive offsets in the JTOC hold the contents of static fields that contain references and
reference literals. A literal value in Java is something like a string literal, something that the
bytecode can directly reference but that doesn’t have a field location. Negative addresses in the
JTOC are responsible for holding primitive values. Splitting the values in this way allows the
garbage collector to easily consider which references from static fields should prevent an object
from being considered garbage.

Runtime Memory Layout

The boot image writer is responsible for laying out the memory of the virtual machine when
it first boots. All of the objects needed in the boot image are there because they are referenced
by code that will start the Java application. Figure 10-4 gives an overview of the regions of
memory that are in use when Jikes RVM executes.

A number of key items can be seen in Figure 10-4:

Boot image runner
The boot image runner and its stack comprise the loader responsible for loading the boot
image.

Native libraries
Memory is required for native libraries that are used by the class library. This is described
further in the later section “Native Interface.”

MMTk spaces
These are the different garbage-collected heaps in use by MMTk to support the running
application.

Root map
Information for the garbage collector on fields that may be reachable from the boot image.
More information is given later in “Garbage Collection.”

Code image
The executable code for static and virtual methods that are reachable directly from the
JTOC or from TIBs, respectively. Code is written to a separate region of the boot image to
provide support for memory protection.

Data image
The data image is created by first writing the boot record and the JTOC and then
performing a traversal of the objects reachable from the JTOC. The objects are traversed
in the bootstrap JVM using Java’s reflection API. The order in which objects are traversed
can impact locality, and thereby performance, so the traversal mechanism is configurable
(Rogers et al. 2008).
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JTOC
As described earlier in “Object Layout,” the JTOC is responsible for holding literal and
static field values. Traversing the JTOC produces the boot image.

Boot record
A table at the beginning of the data image that contains data shared between the boot
image runner and Jikes RVM. These values typically cannot be determined during the
bootstrap.

Boot Image Runner

Data Image

Code Image

Root Map

Boot Image

MMTk  Spaces

Native Libraries

Stack for Boot Image Runner

0x00000000

0xFFFFFFFF

...
Code Array
Code Array

...
Object
Object

JTOC
Boot Record

FIGURE 10-4. The runtime memory layout of Jikes RVM

Compiling the Primordials and Filling in the JTOC

The primordials are a collection of classes that must be built into the boot image for it to run.
The most important primordial is org.jikesrvm.VM, which is responsible for starting the virtual
machine. If something isn’t part of the boot image, and therefore isn’t a primordial, then it is
referenced. When a referenced object is accessed at runtime, it causes the class loader to load
and link the referenced class.

244  C H A P T E R  T E N



The list of primordial classes is produced during the bootstrap by searching directories and from
reading an explicit list of classes to compile. The explicit list is particularly important for array
types. It would be possible to produce the list of primordial classes by repeated compilation and
growing the set of classes included into the boot image, but this would significantly increase
the time it takes to build Jikes RVM. A proposed alternative is to use Java annotations to mark
which classes are primordials.

Before traversing the object graph and writing the boot image, the boot image writer compiles
the primordials. Compiling a primordial involves loading its class with Jikes RVM’s class loader,
which will automatically allocate space in the JTOC and the TIB as necessary, and then iterating
over all the methods and compiling them with one of Jikes RVM’s compilers. As this is all pure
Java code, the boot image writer takes advantage of Java’s concurrency API to perform this
task in parallel if possible.

Once compilation of the core set of the primoridal classes is complete, the object graph in the
host JVM’s heap represents sufficient functionality for Jikes RVM to bootstrap itself, allocate
additional objects, and start loading and executing user classes. To complete the bootstrap
process, this core object graph is traversed and written out to disk in Jikes RVM’s object model
using the capabilities of the Java reflection API provided by the host JVM.

The Boot Image Runner and VM.boot

As mentioned in “Bootstrapping a Self-Hosting Runtime,” the boot image runner is responsible
for loading the compiled images into memory. The exact details of this vary depending on the
operating system, but the images are set up to be demand-paged into memory. Demand paging
means that pages from the boot image remain on disk until they are required.

Once in memory, the boot image runner initializes the boot record and then loads the machine
registers to transfer execution over to the Jikes RVM method org.jikesrvm.VM.boot (or
VM.boot for short). Jikes RVM is responsible for all memory layout, enabling efficient garbage-
collection techniques and a stack organization that is efficient at dealing with Java exceptions
(see the later section “Exception Model”). Once the VM.boot method is entered, special wrappers
are needed to transfer between native code in the boot image runner and C libraries (these are
described further in the upcoming section “Native Interface”).

The job of VM.boot is to ensure that the VM is in a ready state to execute a program. It does this
by initializing the components of the RVM that couldn’t be initialized when the boot image
was written. Some components must be started explicitly—for example, the garbage collector.
The remaining components are a small subset of the primordial classes that were not fully
written into the boot image because of inconsistencies in the bootstrap and Jikes RVM class
files. To initialize these classes, the static initializer of the class must be run.
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Initializing the threading system is an important part of the VM.boot method. It creates the
necessary garbage-collection threads, a thread for running object finalizer methods, and
threads responsible for the adaptive optimization system. A debugger thread is also created,
but is scheduled for execution only if a signal is sent to Jikes RVM from the operating system.
The final thread to be created and to start execution is the main thread, which is responsible
for running the Java application.

Runtime Components
The previous section described getting Jikes RVM to a point where it is ready for execution. In
this section, we look at the main runtime components of Jikes RVM, beginning with those
directly responsible for executing Java bytecode, and then look at some of the other virtual
machine subsystems that support this execution.

Basic Execution Model

Jikes RVM does not include an interpreter; all bytecodes must first be translated by one of Jikes
RVM’s compilers into native machine code. The unit of compilation is the method, and
methods are compiled lazily when they are first invoked by the program. This initial
compilation is done by Jikes RVM’s baseline compiler, a simple nonoptimzing compiler that
generates low-quality code very quickly. As execution continues, Jikes RVM’s adaptive
system monitors program execution to detect program hot spots and selectively recompiles
them with Jikes RVM’s optimizing compiler. This is a significantly more sophisticated compiler
that generates higher-quality code, but at a significantly larger cost in compile time and
compiler memory footprint than the baseline compiler.

This selective optimization model is not unique to Jikes RVM. All modern production JVMs
rely on some variant of selective optimization to target optimizing compilation resources to the
subset of the program’s methods where they will yield the most benefit. As discussed earlier,
selective optimization is the key to enabling the deployment of sophisticated optimizing
compilers as dynamic compilers.

Adaptive Optimization System

Architecturally, the Adaptive Optimization System is implemented as a collection of loosely
synchronized entities. Because it is implemented in Java, we are able to utilize built-in language
features such as threads and monitors to structure the code.

As the program executes, timer-based samples are accumulated by the running Java threads
into sampling buffers. Two types of profile data are collected: samples of the currently executing
method (to guide identification of candidate methods for optimizing compilation) and call-
stack samples (to identify important call graph edges for profile-directed inlining). When a
sampling buffer is full, the low-level profiling agent signals a higher-level Organizer
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(implemented as separate Java threads) to summarize and record the raw profile data.
Periodically, a Controller thread analyzes the current profile data and uses an analytic model
to determine which, if any, methods should be scheduled for optimizing compilation. These
decisions are made using a standard 2-competitive solution to the “ski rental” problem* from
online algorithms. A method is not selected for optimization until the expected benefit
(speedup in future invocations) from optimizing it exceeds the expected cost (compile time).
These cost-benefit calculations are made by combining the online profile data (how often has
the candidate method been sampled in the current execution?) with (offline) empirically
derived constants that describe the expected relative speedup and compilation costs of each
optimization level of the optimizing compiler (known as the compiler’s DNA).

Optimizing Compilation

As a metacircular runtime, Jikes RVM compiles itself instead of relying on another compiler
to ensure good performance. Metacircularity creates a virtuous cycle: our strong desire to write
clean, elegant, and efficient Java code in the virtual machine implementation has driven us to
develop innovative compiler optimizations and runtime implementation techniques. In this
section, we present the optimizing compiler, which is composed of many phases that are
organized into three main stages:

1. High-level Intermediate Representation (HIR)

2. Low-level Intermediate Representation (LIR)

3. Machine-level Intermediate Representation (MIR)

All of the stages operate on a control-flow graph composed of basic blocks, which are composed
of a list of instructions, as shown in Figure 10-5. An instruction is composed of operands and
an operator. As the operator gradually becomes more machine-specific, the operator can be
changed (mutated) during the lifetime of the instruction. The operands are organized into
those that are defined and those that are used. The main kinds of operands are constant
operands and operands that encode a register. A basic block is a list of instructions where branch
instructions may only occur at the end of the list. Special instructions mark the beginning and
end of the basic block. The control-flow graph connects the different regions of code by edges.
Exceptions are treated specially and are described later in “Factored control flow graph.”
Because each of the three main stages of compilation use the same basic intermediate
representation, a number of optimizations are applied in more than one of the stages. We
describe the main tasks of the three compiler stages next.

* See http://en.wikipedia.org/wiki/Ski_rental_problem for more information.
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FIGURE 10-5. Overview of the optimizing compiler’s intermediate representation

HIR

The High-level Intermediate Representation (HIR) is generated by a compiler phase, called
BC2IR, that takes bytecode as input. This initial phase performs propagation based on the
bytecode operand stack. Rather than generate separate operations, the stack is simulated and
bytecodes are folded together to produce HIR instructions. The operators at the HIR level are
equivalent to operations performed in bytecode but using an unbounded number of symbolic
registers instead of an expression stack.

Once instructions are formed, they are reduced to simpler operations (if simpler operations
exist). Following this, remaining call instructions are considered for inlining. The main part of
the BC2IR phase is written recursively, so inlining performs a recursive use of the BC2IR phase.

Local optimizations are performed in the HIR phase. A local optimization is one that considers
reducing the complexity of a basic block. As just a basic block is considered, the dependencies
within the basic block are considered. This simplifies the compiler phase from having to
consider the effect of branches and loops, which can introduce different kinds of data
dependencies. Local optimizations include:

Constant propagation
Propagating constant values avoids their placement in registers.

Copy propagation
Replacing copies of registers with uses of the original register.

Simplification
Reducing operations to less complex operations based on their operands.

Expression folding
Folding trees of operations together. For example, “x=y+1; z=x+1” can have the expression
“y+1” folded into “z=x+1”, producing “x=y+1; z = y+2”.
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Common subexpression elimination
Finding instructions that perform the same operation on the same operands and removing
the latter with a copy of the former’s result.

Dead code elimination
If a register is defined and then redefined without an intervening use, then the instruction
performing the original definition is dead code and can be removed.

Branch optimizations consider improving the control-flow graph so that the most likely paths
are laid out in a manner that is optimal for the target of the compiler. Other branch
optimizations look to remove redundant tests and unroll loops.

Escape analysis looks at whether objects can be accessed within just the context of the code
being compiled and also whether an object that isn’t just accessed in the local context can be
shared among threads. If an object is just accessed locally, the requirement to allocate memory
for it can be removed and the object’s fields moved into registers. If an object is accessed in just
one thread, then synchronization operations upon it can be removed.

A number of optimizations that use extra information added to the intermediate form are
described later in “Scalar and extended array SSA forms.”

LIR

The Low-level Intermediate Representation (LIR) converts the previous bytecode-like
operations into more machine-like operations. Operations upon fields are changed into load
and store operations; operators such as new and checkcast are expanded into calls into runtime
services that provide those operations and are possibly inlined. Most of the optimizations
applicable to HIR are also applicable to LIR, but optimizations such as escape analysis are not.
Due to the kind of operations supported, there are some small differences between LIR for
different architectures. As with HIR instructions, an unbounded number of symbolic registers
can be used in LIR instructions.

MIR

Creating the final Machine-level Intermediate Representation (MIR) involves the three
interdependent yet competing transformations of a compiler backend. The transformations are
said to compete because their order can determine the performance of the generated machine
code. In Jikes RVM, the first transformation is instruction selection. Instruction selection is the
process whereby the RISC-like LIR instructions are converted to instructions that exist on the
actual machine. Sometimes more than one instruction is required to perform an LIR
instruction; for example, an LIR long addition requires two instructions on 32-bit architectures.
At other times, the tree pattern-matching instruction selector, known as a Bottom Up Rewrite
System (BURS), merges several instructions into one instruction. Figure 10-6 shows an
example of pattern matching. Two patterns are found for Intel’s IA32 architecture: one that
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creates three instructions with a cost of 41, and another that encodes the load and store into
a memory operand of a single instruction and costs just 17. The cheapest pattern is selected.

Java

BURS

HIR
...
t3 = getstatic foo.x
t3 = int_add +3, L0
          putstatic +3, text.X

LIR
...
t1 = int_load text.x
t2 = int_add +1, L0
          int_store (int_add(Int-load,)
...

Class foo {

 static int x ;
 static void bar (int y) {
 x += y ;

register L0
holds the 
parameter y

int-load

int-add

int-store

LQ

int_load         ia 32_mov
int_add         ia 32_add
int_store          ia32_mov
         cost : 41

int_store (int_add(Int-load,) ia 32_add
   cost : 17

...

FIGURE 10-6. BURS instruction selection

After instruction selection, the unlimited number of registers need to be mapped onto the finite
number of registers provided by a real machine. This process is known as register allocation.
When there are not enough registers, values can be held in memory on the stack; swapping
an actual register for a value on the stack is known as spilling and filling. A register allocator
needs to minimize spills and fills, as well as taking into account any architectural
requirements—for example, ones that multiply and divide must occur using certain registers.

Jikes RVM has a linear scan register allocator that performs quick register allocation, but with
the possibility of generating extra copy and memory operations. This is a greater problem when
the number of registers available on the machine is small. With increases in the number of
registers and improvements to the linear scan algorithm, for certain code it is less clear that it
would be beneficial to perform a more expensive register allocation.

The final part of MIR instruction creation is instruction scheduling. Scheduling separates
instructions in order to allow the processor to exploit instruction-level parallelism.

At the level of MIR, few optimizations are performed. Because of the large number of side
effects associated with machine instructions, it is difficult to reason and therefore optimize the
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instruction’s behavior. The other compiler phases at the MIR level are concerned with ensuring
that calling, exception, and other conventions are adhered to.

Factored control flow graph

Java programs create runtime exceptions if a null pointer is used to access memory or if an
array index is out-of-bounds. These runtime exceptions control the flow of code and so should
end basic blocks. This results in small basic blocks with less scope for local optimizations
(described earlier in “HIR”). To increase the size of basic blocks, the control-flow dependence
of runtime exceptions is turned into an artificial data dependence at the HIR and LIR levels.
This dependence ensures that operations are ordered correctly for exception semantics, and
therefore the basic block may be left during mid-execution to handle a runtime exception.
When the intermediate form has exceptional exit points in the middle of blocks, the control
flow graph is said to be factored (Choi et al. 1999).

Instructions are created that explicitly test the runtime exceptions and generate synthetic guard
results. Instructions that then require ordering make use of the guard. An instruction that can
generate an exception is known as a Potentially Exceptioning Instruction (PEI). All PEIs
generate a synthetic guard value, as do instructions that can be used to remove PEIs if they are
redundant. For example, a branch that tests for null makes null pointer tests on the same value
redundant. The guard from the branch is used in place of the guard from the null pointer tests
to ensure that instructions cannot be reordered to before the branch.

Figure 10-7 shows a single array assignment having its constituent runtime exceptions turned
into PEIs and the guard dependencies that ensure the code is executed in the correct order.

Java : A [i]    = 10

HIR : t4 (Guard)    = null-check   I1

t5 (Guard)     = bounds-check  I1, 10, t4

 int - a store 10, I1, 10, t5

FIGURE 10-7. An example of instructions in a factored control flow graph

Scalar and extended array SSA forms

Static Single Assignment (SSA) form reduces the dependencies that compiler optimizations
need to be concerned about. The form ensures that any registers (more commonly known as
variables; in the HIR and LIR phases of Jikes RVM, all variables will be held in registers) are
written to at most once. A compiler transformation must handle three kinds of dependence:

True dependence
Where a register is written and then read.
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Output-dependence
Where a register is written and then written to again (the second write must occur after
the first following any transformation).

Anti-dependence
Where a register is read and then written to (the write must occur after the read following
any transformation).

Knowing a register is written once means output-dependence and anti-dependence don’t
occur. This property means that our previous local optimizations can be applied globally. To
handle loops and other branches, special phi instructions encode the merge of particular values
from a different place on the control-flow graph.

Array SSA form is an extension to SSA form in which loads and stores are considered to be
defining a special variable called a heap. Modeling memory accesses in this way allows the
compiler to reason that if two reads occur from the same array location with a heap with the
same name, the second read can be replaced with a copy of the first. Redundant stores are
handled in a similar way. It also allows accesses to nonrelated heaps to be reorganized—for
example, with floating-point and integer operations. Array SSA form was originally devised
for FORTRAN; extended array SSA form adds to the form factors, such as Java’s fields being
unable to alias with one another (Fink et al. 2000).

Also in the SSA form, Jikes RVM constructs pi instructions, placed after a branch uses an
operand. The pi instruction uses the same operand as the branch and gives it a new name to
be used in place of the operand in subsequent instructions. Using pi instructions, the compiler
can reason that a branch performs a test, such as a null test, and that any null tests using the
register result of the pi instruction are redundant. Similarly, array bound checks can be
removed (Bodik et al. 2000).

The loop versioning optimization in the HIR SSA form also removes possible exceptions. Loop
versioning moves exception-checking code out of loops and explicitly tests whether the
exceptions can occur before the loop is entered. If an exception can occur, then a version of
the loop with exception-generating code is executed. If an exception cannot occur, then a loop
version without exceptions is executed.

Partial evaluation

The HIR optimizations, including the SSA optimizations, are able to reduce the complexity of
a region of code, but this can be limited by what constant values are available. Often a value
cannot be determined to be constant when it comes from an array, which in Java can always
have their values altered. The most common occurrence of this is with strings. Jikes RVM
introduces the pure annotation as an extension to Java that enables a method with constant
arguments to be evaluated, using reflection, at compile time. Leveraging annotations and
reflection for this purpose is straightforward in a metacircular runtime.
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Partial evaluation has the ability to totally remove some overheads, such as a runtime security
check. A security check typically walks the stack to determine what called a restricted method
and then checks to see whether that method had permissions to call the restricted method. As
the method on the stack at the point of the call can be determined within the compiler, if it is
on the stack as a result of inlining, the precise method is provided by simplification. By
evaluating the code of the security check or, if the check is pure, performing a reflective call,
the result of the security check can be ascertained and removed if it will always pass.

On-stack replacement

On-Stack Replacement (OSR) is the process of swapping executing code while it is executing
on the stack. For example, if a long running loop were being executed by code created by the
JIT baseline compiler, it would be beneficial to swap that code for optimized code when the
optimizing compiler produced it. Another example of its use is in invalidating an executing
method if it had unsafely assumed properties of the class hierarchy, such as a class having no
subclasses, which can allow improvements in inlining.

OSR works by introducing new bytecodes (in the case of the JIT baseline compiler) or new
instructions (in the case of the optimizing compiler) that save the live state of execution of a
method. Once the execution state is saved, the code can be swapped for newly compiled code,
and the execution can continue by loading in the saved state.

Summary

This section has given brief descriptions of many of the advanced components of Jikes RVM’s
optimizing compiler. Writing these components in Java has provided a number of inherent
benefits to these systems. Threading is available, allowing all of the components of the system
to be threaded. The systems are designed to be thread-safe, allowing, for example, multiple
compiler threads to run concurrently. Another advantage has come from Java’s generic
collections, which provide easy-to-understand libraries that have simplified development and
allow the components of the system to concentrate on their role, rather than underlying data
structure management.

Exception Model

Are exceptions things that are exceptional? Although many programmers program with the
belief that they are, virtual machines have had to optimize for a use-case that is common in
benchmarks. The use-case in question is to read from an input stream and then throw an
exception when a sought pattern occurs. This pattern occurs in both the SPECjvm98† jack
benchmark and the DaCapo 2006‡ lusearch benchmark.

† http://www.spec.org/jvm98/

‡ http://dacapobench.org/
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Let’s first consider what’s needed for an exception. Every exception needs to create a list of
methods that are on the stack at the point of the exception (known as the stack trace) and to
pass control to a catch-block that handles the exception. Null pointer exceptions are efficiently
handled by allowing memory protection failures to occur—for example, by reading or writing
to a page of memory that doesn’t exist. When a fault is generated, the address of the faulting
instruction is provided to a handler. From this, the stack trace and handler information must
be determined.

A VM that is written in C may try to use the C calling conventions for the Java JIT compiled
code. A problem here is that the C calling conventions don’t record what code is running. To
solve this problem, a C VM can try to use the return address to compute what method is
running. Every method within the VM must be searched to see whether its corresponding
compiled code contains a given return address. This must be repeated for every method that
is on the stack.

As Jikes RVM controls its memory layout, the stack is laid out to contain extra information to
handle exceptions quickly. In particular, Jikes RVM places an identifier on the stack that is just
a simple lookup away from providing method information. To determine the bytecode where
the exception occurred and the handler locations, a computation is made using the return
address or faulting instruction address. This means handling an exception’s speed is
proportional to the depth of the stack, and not dependent on the number of methods inside
the VM.

In common with other VMs, Jikes RVM will optimize away exceptions when possible, in the
best case reducing them to branches. It will also inline many methods into one method, so
placing an identifier on the stack occurs infrequently, only when going between noninlined
methods.

Magic, Annotations, and Making Things Go Smoothly

The code generated by the compiler has instructions that directly access memory. On other
occasions memory needs to be accessed directly—for example, to implement garbage collection
routines or access the object header for locking. To allow strongly typed memory accesses, Jikes
RVM uses a library called VM Magic, which has been taken as a standard interface and used
in other JVM projects. VM Magic defines classes that are either compiler pragma annotations,
which extend the Java language, or unboxed types, which represent access to the underlying
memory system. The unboxed type Address is used to directly access memory.

The VM magic unboxed types are handled specially within Jikes RVM’s compilers. All the
method calls upon an unboxed type are treated as manipulating a word-sized value directly.
For example, the plus method is treated as an addition of the underlying word size of the
machine, and directly acts upon what would normally be the this pointer of the object. As the
value being manipulated isn’t an object reference, the compiler records that the places in which
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unboxed types are held are of the same interest to the garbage collector as a memory location
that holds a primitive field, such as an int.

Having strongly typed access to memory isn’t quite enough to allow Jikes RVM to run without
issue. Some special methods are required that indicate to the compilers that either something
intrinsic is occurring or they should shortcut some parts of Java’s strong type semantics. These
special methods exist in org.jikesrvm.runtime.Magic. An example of an intrinsic operation is the
square root method, for which Java provides no bytecode but many computer architectures
have an instruction, or the routines that directly access fields for reflection. An example of
working around Java’s strong semantics is to avoid casts during thread scheduling, as a runtime
exception wouldn’t be permissible at certain key points.

All magic operations are compiled differently than regular methods, and they can’t be compiled
as standalone methods. Methods exist in their place, but if these were ever executed, they’d
fail with an exception. Instead, the compiler determines from the method which magic
operation is being performed, and then it looks up what operations the compiler must provide
for that. During boot image creation, replacements for some of the unboxed magic types and
methods are provided. For example, addresses that are in the boot image are unknown until
objects are laid out. The boot image unboxed types keep track of identifiers and which objects
they map to. During boot image creation, these identifiers are linked to the object they
reference.

Although magic operations and unboxed types allow Java code in Jikes RVM the access to
memory that a pointer would have in C or C++, the pointers are strongly typed and cannot be
used in place of references. Strong typing allows programmer errors to be detected at compile
time, good IDE integration, and support from bug finding tools, all of which have aided the
development of Jikes RVM.

Thread Model

Java has integral threading support. In 1998, operating system support for threading was not
well-suited for many Java applications. In particular, typical operating-system threading
implementations did not scale to support hundreds of threads in a single process, and locking
operations (required to implement Java synchronized methods) were prohibitively expensive.
To avoid this overhead, some JVMs implemented threading themselves, using a mode of
operation called green threading. In green threading, threads are implemented by having the
JVM itself manage the process of multiplexing multiple Java threads onto a smaller number
of operating system threads (often one, or one per CPU in a multiprocessor system). The
primary advantage of green threading is that it allows the implementations of locking and
thread scheduling that are specialized to Java semantics and that can be made highly scalable.
The primary disadvantage is that the operating system is not aware of what the JVM is doing,
which can lead to a number of performance pathologies, especially if the Java application is
interacting heavily with native code (which may itself be making assumptions about the
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threading model). However, green-threaded JVMs have provided the starting point for a
number of Java operating system projects that could be able to avoid some of the performance
pathologies of green threading on top of a standard operating system.

As processor performance and operating system implementations have improved, the
advantage of managing threads in the JVM has diminished—although it is still advantageous
to manage uncontended locking operations within the JVM.

Using Java, a clean threading API has been created that allows Jikes RVM to have different
underlying threading models, such as those provided by different operating systems. In the
future, having a flexible interface between the language and operating system threads can
allow Jikes RVM to adapt to new programmer behaviors (for example, by supporting thousands
of threads).

Native Interface

Unfortunately, staying in Java code isn’t always possible for Jikes RVM. Accessing operating
system routines is necessary to allocate pages of memory. The class library interfaces Java code
with existing libraries, such as those for windowing. Jikes RVM provides two means of
accessing native code:

Java Native Interface (JNI)
JNI is a standard that allows Java applications to integrate with native applications typically
written in C. A feature of JNI is that Java objects can be handled, and Java methods can
be called. To do the bookkeeping, a list of objects accessed in native code is required to
prevent these objects from being garbage collected. This introduces an overhead when
using JNI for native methods.

SysCalls
These are similar to native methods in their declaration, except they have an extra
annotation. They allow a more efficient transition in and out of native code, with the
restriction that the native code is not able to call back into the VM via the JNI interfaces.
Jikes RVM implements a SysCall as a simple procedure call to a native method using the
default operating-system calling conventions.

Class Loaders and Reflection

The class loader is responsible for loading classes into Jikes RVM and interfacing this process
with the object model. Reflection allows an application to query the types of objects and even
perform method calls on objects whose types were not known at static compile time. Reflection
occurs through applications using objects such as java.lang.Class or those in the package
java.lang.reflect, which are API wrappers to routines within Jikes RVM’s runtime.
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As some optimizations rely on the class hierarchy, important runtime hooks exist in the class
loader that can trigger recompilation if previously held assumptions are now incorrect. We
described this in more detail in the earlier section “On-stack replacement.”

Garbage Collection

The Memory Management Toolkit (MMTk) is a framework for building high-performance
Memory Management implementations (Blackburn et al., May 2004). Over the last five years,
MMTk has become a heavily used piece of core infrastructure for the garbage collection
research community. Its highly portable and configurable architecture has been the key to its
success. In addition to serving as the memory management system for Jikes RVM, it has also
been ported to other language runtimes, such as Rotor. In this section, we will just touch on
some of the key design concepts of MMTk. For general information on garbage collection
algorithms and concepts, the best reference is the book Garbage Collection: Algorithms for
Automatic Dynamic Memory Management (Jones and Lins 1996).

An underlying meta-principle of MMTk is shared with Jikes RVM as a whole: by relying on an
aggressive optimizing compiler, high-performance code can be written in a high-level,
extensible, and object-oriented style. This principle is most developed in MMTk, where even
the most performance-critical operations, such as fast path object allocation and write barriers,
are cleanly expressed as well-structured, object-oriented Java code. On the surface, this style
appears to be completely incompatible with high-performance (to allocate a single object, there
are dozens of source-level virtual calls and quite a bit of complex numeric computation).
However, when the allocation sequence is recursively inlined and optimized by the optimizing
compiler, it yields tight inline code sequences (on the order of 10 machine instructions to
allocate an object and initialize its header) that are identical to those that can be achieved by
handcoding the fast path sequence in assembly code or hard-wiring it into the compilers.

MMTk organizes memory into Spaces, which are (possibly discontiguous) regions of virtual
memory. There are a number of different implementations of Space provided by MMTk, each
embodying a specific primitive mechanism for allocating and reclaiming chunks of the virtual
memory being managed by the Space. For example, the CopySpace utilizes bump pointer
allocation and is collected by copying out all live objects to another Space; the MarkSweepSpace
organizes memory by using free lists to chain together free chunks of memory and supports
collection by “sweeping” unmarked (dead) objects and relinking them to the appropriate free
list.

A Plan is MMTk’s terminology for what one typically thinks of as a garbage-collection
algorithm. Plans are defined by composing one or more Space instances together in different
ways. For example, MMTk’s GenMS Plan implements the fairly standard generational mark-
sweep algorithm, composing a CopySpace to implement the nursery and a MarkSweep space
to implement the mature space. In addition to the Spaces used to manage the user-level Java
heap, all MMTk Plans also include several spaces used for virtual-machine-level memory. In
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particular, special Spaces are used to allocate JIT-generated code, the Jikes RVM Bootimage,
and low-level VM implementation objects such as TIBs. There are 15 Plans (i.e., 15 different
GC algorithms) predefined and distributed in MMTk version 3.0. Furthermore, a number of
other Plans have been developed and described in the academic literature by the MMTk
research community.

MMTk and its hosting runtime system interact through two narrowly defined interfaces that
specify what API MMTk exposes to the host virtual machine and what virtual machine services
MMTk expects the host to provide. To maintain MMTk’s portability to multiple host virtual
machines, the build process strictly enforces these interfaces by separately compiling MMTk
against a stub implementation of the VM interface. Perhaps the most complex bit of these
interfaces is the portion that is used to allow MMTk and Jikes RVM to collaboratively identify
the roots to be used for a garbage collection. Most of MMTk’s Plans represent tracing collectors.
In a tracing collector, the garbage collector starts from a set of root objects (typically the
program’s global variables and references on thread stack frames) and does a transitive closure
of their reference fields to find all reachable objects. Reachable objects are considered live and
as such are not collected. Any objects that are not reached in the transitive closure are dead;
these may be safely reclaimed by the collector and used to satisfy future memory allocation
requests. In Jikes RVM, the roots for garbage collection come from registers, the stack, the
JTOC, and the boot image. The references in the boot image are determined from the root map,
and the root map compresses all of the offsets in the boot image that contain references. To
determine the references on the stack and in registers, the method and the location within it
are determined in the same manner as is used for the exception model (see the earlier section
“Exception Model”). From the method the compiler is determined, and it can give an iterator
to MMTk that processes the registers and stack returning the references.

Jikes RVM integration

Jikes RVM integrates with MMTk during the initial creation of object representations,
providing iterators to process references, object allocation, and barrier implementations. Object
allocation and barriers can influence performance; as MMTk is written in Java, the associated
code can be directly linked into the code being compiled for efficiency. Barriers are necessary
in garbage collection schemes for a variety of reasons. For example, read barriers are necessary
to catch the use of objects that are possibly being copied by a concurrent garbage collector, and
write barriers are used in generational collectors where a write to an old object means the old
object needs to be considered as a root for collection of the young generation.

Summary

MMTk provides a powerful and popular set of precise garbage collectors. The ease of being able
to link together different modules of Jikes RVM and MMTk eases development and reduces
overhead, with Jikes RVM inlining parts of MMTk for performance reasons. Writing garbage-
collection algorithms in Java allows the garbage collector implementor to ignore what occurs
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inside the compilers. Java’s inherent threading has meant all garbage collectors are parallel and
integrate with the runtime model. Java’s libraries provide inspiration for the interfaces of the
collector, which means that writing new garbage collectors is significantly simplified in MMTk.

Lessons Learned
Jikes RVM is a successful research virtual machine, providing performance close to the state-
of-the-art in a flexible and easy-to-extend manner. Being written in the language supported
by the runtime allows close integration and reuse of components. The use of Java allows a
simple-to-understand codebase, good modularity, and the use of high-quality tools, such as
IDEs.

The Java language and the implementations of JVMs are developing, and Jikes RVM has and
will continue to develop along with these changes. One interesting development is the X10
programming language, which tackles the issue of how programmers will develop applications
for many core systems by providing thread-safety guarantees, just as garbage collection
provides memory-safety guarantees in Java. Jikes RVM’s codebase already provides an
excellent test bed for development ideas with X10. As JVM implementations create new
optimizations, such as new garbage-collection techniques or object inlining, the ability to slot
these optimizations into a framework such as Jikes RVM means the runtime, compilers, and
codebase also improve and demonstrate the strength of metacircularity.

The extensibility of a metacircular environment make Jikes RVM an excellent platform for
multilanguage virtual machine research. This extension would also allow aspects of Jikes RVM
to be written in different programming languages.

There are many other exciting extensions to Jikes RVM and related projects, including support
for languages such as C and C++ through binary translation, extensions to provide aspect-
oriented programming within the virtual machine, and making the entire virtual machine into
an operating system to remove barriers to runtime optimization. Although initially
controversial, garbage collection and adaptive and link-time optimization are now desired by
developers. Jikes RVM shows how this can be achieved through one common metacircular
environment that will help develop, and adapt to, these features. Jikes RVM supports a large
research community and achieves high-performance. By having a beautiful architecture, Jikes
RVM can continue to provide a platform for future runtime environments.

References
Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1985. Structure and Interpretation
of Computer Programs. Cambridge, MA: MIT Press.

Aho, Alfred, Ravi Sethi, and Jeffrey Ullman. 1986. Compilers, Principles, Techniques, and
Tools. Boston, MA: Addison-Wesley.

T H E  S T R E N G T H  O F  M E T A C I R C U L A R  V I R T U A L  M A C H I N E S :  J I K E S  R V M  259



Alpern, Bowen, et al. 2005. “The Jikes Research Virtual Machine project: Building an open-
source research community.” IBM Systems Journal, vol. 44, issue 2.

Blackburn, Steve, Perry Cheng, and Kathryn McKinley. 2004. Oil and water? High
performance garbage collection in Java with MMTk (pp. 137–146). International Conference
on Software Engineering, Edinburgh, Scotland. ACM, May ’04.

Bodik, Rastislav, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD: eliminating array-bounds checks
on demand. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2000), Vancouver, British Columbia, Canada. ACM ’00.

Choi, Jong-Deok, et al. 1999. Efficient and Precise Modeling of Exceptions for the Analysis of
Java Programs. ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE ’99), Toulouse, France: ACM, Sept. ’99.

Fink, Stephen, Kathleen Knobe, and Vivek Sarkar. 2000. Unified Analysis of Array and Object
References in Strongly Typed Languages. Static Analysis Symposium (SAS 2000), Santa
Barbara, CA: Springer Verlag.

Ingalls, Daniel, et al. 1997. “Back to the future: the story of Squeak, a practical Smalltalk written
in itself.” ACM SIGPLAN Notices, vol. 13, issue 10: 318–326.

Jones, Richard and Rafael Lins. 1996. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Hoboken, NJ: John Wiley and Sons.

McCarthy, John, et al. 1962. LISP 1.5 Programmer’s Manual. Cambridge, MA: MIT Press.

Piumarta, Ian, and Fabio Riccardi. 1998. “Optimizing direct threaded code by selective
inlining.” ACM SIGPLAN Notices, vol. 33, issue 5: 291–300.

Rogers, Ian, Jisheng Zhao, and Ian Watson. 2008. Boot Image Layout For Jikes RVM.
Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems (ICOOOLPS ’08), Paphos, Cyprus. July ’08.

260  C H A P T E R  T E N



P A R T  I V

End-User Application Architectures

Chapter 11, GNU Emacs: Creeping Featurism Is a Strength
Chapter 12, When the Bazaar Sets Out to Build Cathedrals





C H A P T E R  E L E V E N

GNU Emacs: Creeping
Featurism Is a Strength

Jim Blandy

I use Emacs, which might be thought of as a thermonuclear word

processor. It was created by Richard Stallman; enough said. It is

written in Lisp, which is the only computer language that is

beautiful. It is colossal, and yet it only edits straight ASCII text

files, which is to say, no fonts, no boldface, no underlining…. If

you are a professional writer—i.e., if someone else is getting

paid to worry about how your words are formatted and printed

—Emacs outshines all other editing software in approximately

the same way that the noonday sun does the stars. It is not just

bigger and brighter; it simply makes everything else vanish.

—Neal Stephenson

THE  GNU EMACS  TEXT  EDITOR  IS  UNMATCHED  IN  ITS  NOTORIETY. Its proponents swear nothing
else comes close, and are oddly resistant to the charms of more modern alternatives. Its
detractors call it obscure, complex, and outdated compared to more widely used development
environments, such as Microsoft’s Visual Studio. Even its fans blame their wrist injuries on its
contorted keyboard command set.

 Principles and properties  Structures

✓ Versatility ✓ Module

 Conceptual integrity  Dependency

✓ Independently changeable  Process

 Automatic propagation  Data access

 Buildability   

✓ Growth accommodation   

✓ Entropy resistance   
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Emacs provokes such strong reactions partly because there’s so much of Emacs to react to. The
current Emacs sources include 1.1 million lines of code written in Emacs’s own programming
language, Emacs Lisp. This corpus includes code to help you edit programs in C, Python, and
other languages, as you might expect from a programmer’s text editor. But it also includes code
to help you debug running programs, collaborate with other programmers, read electronic mail
and news, browse and search directories, and solve symbolic algebra problems.

Looking under the hood, the story gets stranger. Emacs Lisp has no object system, its module
system is just a naming convention, all the fundamental text editing operations use implicit
global arguments, and even local variables aren’t quite local. Almost every software
engineering principle that has become generally accepted as useful and valuable, Emacs flouts.
The code is 24 years old, huge, and written by hundreds of different people. By rights, the
whole thing should blow up.

But it works—and works rather well. Its bazaar of features grows; the user interface acquires
addictive new behavior; and the project survives broad changes to its fundamental architecture,
infrequent releases, leadership conflicts, and forks. What is the source of this vigor? What are
its limitations?

And finally, what can other software learn from Emacs? When we encounter a new
architecture that shares some goal with Emacs, what question can we ask to gauge its success?
Over the course of this chapter, I’ll pose three questions that I think capture the most valuable
characteristics of Emacs’s architecture.

Emacs in Use
Before discussing its architecture, let’s look briefly at what Emacs is. It’s a text editor that you
can use much like any other. When you invoke Emacs on a file, a window appears, displaying
the file’s contents. You can make your changes, save the revised contents, and exit. However,
Emacs is not very effective when used this way: it is slower to start than other popular text
editors, and its strengths don’t come to bear. When I need to work in this fashion, I don’t use
Emacs.

Emacs is meant to be started once, when you begin work, and then left running. You can edit
as many files as you like within one Emacs session, saving changes as you go. Emacs can keep
files in memory without displaying them, so what you see reflects what you’re working on at
present, but your other tasks are ready to be called up just as you left them. The experienced
Emacs user closes files only if the computer seems to be running low on memory, so a long-
running Emacs session may have hundreds of files open. The screenshot in Figure 11-1 shows
an Emacs session with two frames open. The left frame is split into three windows, showing
the Emacs splash screen, a browsable directory listing, and a Lisp interaction buffer. The right
frame has a single window, displaying a buffer of source code.

264  C H A P T E R  E L E V E N



FIGURE 11-1. Emacs in use

There are three essential kinds of objects involved here: frames, windows, and buffers.

Frames are what Emacs calls the windows of your computer’s graphical user interface. The
screenshot shows two frames side by side. If you use Emacs in a text terminal, perhaps via a
telnet or ssh connection, that terminal is also an Emacs frame. Emacs can manage any number
of graphical frames and terminal frames simultaneously.

Windows are subdivisions of frames.* New windows are created only by dividing existing
windows in two, and deleting a window returns its space to the adjacent windows; as a
consequence, a frame’s windows (or window) always fill its space completely. There is always
a currently selected window, to which keyboard commands apply. Windows are lightweight;
in typical use, they tend to come and go frequently.

Finally, buffers hold editable text. Emacs holds each open file’s text in a buffer, but a buffer
need not be associated with a file: it might contain the results of a search, online
documentation, or simply text entered by hand and not yet saved to any file. Each window
displays the contents of some buffer, and a buffer may appear in zero, one, or more windows.

It’s important to understand that, aside from the mode line at the bottom of each window and
other similar decorations, the only way Emacs ever displays text to users is by placing it in a
buffer and then displaying that buffer in some window. Help messages, search results, directory

* Note that what most graphical user interfaces call a window, Emacs calls a frame, since Emacs uses the
term “window” as described earlier. This is unfortunate, but Emacs’s terminology was established well
before the widespread use of graphical user interfaces, and Emacs’s maintainers seem uninclined to
change it.
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listings, and the like all go into buffers with appropriately chosen names. This may seem like
a cheap implementation trick—it does simplify Emacs internally—but it’s actually quite
valuable because it means that these different kinds of content are all ordinary editable text:
you can use the same commands to navigate, search, organize, trim, and sort this data that are
available to you in any other text buffer. Any command’s output can serve as any another
command’s input. This is in contrast with environments such as Microsoft Visual Studio, where
the results of, say, a search can only be used in the ways the implementors anticipated would
be useful. But Visual Studio is not alone in this; most programs with graphical user interfaces
have the same shortcoming.

For example, in the screenshot, the middle window of the frame on the left shows a directory
listing. Like most directory browsers, this window provides terse keyboard commands for
copying, deleting, renaming, and comparing files, selecting groups of files with globbing
patterns or regular expressions, and (of course) visiting the files in Emacs. But unlike most
directory browsers, the listing itself is plain text, held in a buffer. All the usual Emacs search
facilities (including the excellent incremental search commands) apply. I can readily cut and
paste the listing into a temporary buffer, delete the metadata on the left to get a plain list of
names, use a regular expression search to winnow out the files I’m not interested in, and end
up with a list of filenames to pass to some new operation. Once you’ve gotten used to working
this way, using ordinary directory browsers becomes annoying: the information displayed feels
out of reach, and the commands feel constrained. In some cases, even composing commands
in the shell can feel like working in the dark because it’s not as easy to see the intermediate
results of your commands as you go.

This suggests the first question of the three I promised at the beginning of this chapter, a
question we can ask of any user interface we encounter: how easy is it to use the results of one
command as input to another? Do the interface’s commands compose with each other? Or
have the results reached a dead end once they’ve been displayed? I would argue that one of
the reasons many programmers have been so loyal to the Unix shell environment, despite its
gratuitous inconsistencies, anorexic data model, and other weaknesses, is that nearly
everything can be coaxed into being part of some larger script. It’s almost easier to write a
program that is readily scriptable than not, so dead ends are rare. Emacs achieves this same
goal, although it takes a radically different route.

Emacs’s Architecture
Emacs’s architecture follows the widely used Model-View-Controller pattern for interactive
applications, as shown in Figure 11-2. In this pattern, the Model is the underlying
representation of the data being manipulated; the View presents that data to the user; and the
Controller takes the user’s interactions with the View (keystrokes, mouse gestures, menu
selections, and so on) and manipulates the Model accordingly. Throughout this chapter, I’ll
capitalize Model, View, and Controller when I’m referring to elements of this pattern. In Emacs,
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the Controller is almost entirely Emacs Lisp code. Lisp primitives manipulate buffer contents
(the Model) and the window layout. Redisplay code (the View) updates the display without
explicit guidance from the Lisp code. Neither the buffer’s implementation nor the redisplay
code can be customized by Lisp code.

Keyboard input
Mouse gestures

ControllerView

lisp interpreter
lisp code,

lisp objects

lisp-level
events

buffer access
primitives

buffer content
rendering

Menu selections

incremental display
update logic

window
manipulation

primitives

frames, windows

Display

buffers, text properties,
markers, overlays

Model

FIGURE 11-2. The Model-View-Controller pattern in Emacs

The Model: Buffers

Emacs edits text files, so the heart of Emacs’s Model is the buffer type, which holds text. A
buffer is simply a flat string, where newline characters mark line endings; it is not a list of lines,
nor is it a tree of nodes, like the document object model that web browsers use to represent
HTML documents. Emacs Lisp has primitive operations on buffers that insert and delete text,
extract portions of buffer text as strings, and search for matches of exact strings or regular
expressions. A buffer can hold characters from a wide variety of character sets, including those
needed to write most Asian and European scripts.

Each buffer has a mode, which specializes the buffer’s behavior for editing a given kind of text.
Emacs includes modes for editing C code, XML text, and hundreds of other kinds of content.
At the Lisp level, modes use buffer-local key bindings to make mode-specific commands
available to the user, and use buffer-local variables to maintain state specific to that buffer.
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Used together, these features make a buffer’s mode closely analogous to an object’s class: the
mode determines which commands are available and provides the variables upon which those
commands’ Lisp implementations depend.

For each buffer, the text-editing primitives maintain an “undo” log, which holds enough
information to revert their effects. The undo log remembers the boundaries between user
commands, so a user command that carries out many primitive operations can be undone as
a unit.

When Emacs Lisp code operates on a buffer, it can use integers to specify character positions
within a buffer’s text. This is a simple approach, but insertions and deletions before a given
piece of text cause its numeric position to change from one moment to the next. To track
positions within a buffer as its contents are modified, Lisp code can create marker objects, which
float with the text they’re next to. Any primitive operation that accepts integers as buffer
positions also accepts markers.

Lisp code can attach text properties to the characters in a buffer. A text property has a name
and a value, and both can be arbitrary Lisp objects. Logically, each character’s properties are
independent, but Emacs’s representation of text properties stores a run of consecutive
characters with identical text properties efficiently, and Emacs Lisp includes primitives to
quickly find positions where text properties change, so in effect, text properties mark ranges
of text. Text properties can specify how Emacs should display the text, and also how Emacs
should respond to mouse gestures applied to it. Text properties can even specify special
keyboard commands available to the user only when the cursor is on that text. A buffer’s undo
log records changes to its text properties, in addition to the changes to the text itself. Emacs
Lisp strings can have text properties, too: extracting text from a buffer as a string and inserting
that string into a buffer elsewhere carries the text properties along.

An overlay represents a contiguous stretch of text in a buffer. The start and end of an overlay
float with the text around them, as markers would. Like text properties, overlays can affect
the display and mouse sensitivity of the text they cover, but unlike text properties, overlays
are not considered part of the text: strings cannot have overlays, and the undo log doesn’t
record changes to overlay endpoints.

The View: Emacs’s Redisplay Engine

As the user edits text and manipulates windows, Emacs’s redisplay engine takes care of keeping
the display up to date. Emacs redisplay has two important characteristics:

Emacs updates the display automatically
Lisp code need not specify how to update the display. Rather, it is free to manipulate buffer
text, properties, overlays, and window configurations as needed, without regard for which
portions of the display will become out of date. When the time comes, Emacs’s redisplay
code looks over the accumulated changes and finds an efficient set of drawing operations
that will bring the display into line with the new state of the Model. By relieving Lisp code
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of responsibility for managing the display, Emacs greatly simplifies the task of writing
correct extensions.

Emacs updates the display only when waiting for user input
A single command may apply any number of buffer manipulation primitives, affecting
arbitrary portions of the buffer—or perhaps of many different buffers. Similarly, the user
may invoke a keyboard macro that carries out a long series of prerecorded commands. In
cases like these, rather than showing the intermediate states of the buffer flickering by as
it works, Emacs puts off updating the display until it needs to pause for user input, and
refreshes the display in a single step at that point. This relieves Lisp programmers from the
temptation to optimize or arrange their uses of buffer and window primitives to get
smoother display behavior. The simplest code will display well.

By updating the display to reflect the effects of editing primitives automatically and efficiently,
Emacs drastically simplifies the work of Lisp authors. Some other systems have picked up on
this behavior: most notably, JavaScript programs embedded in web pages can edit the page’s
contents, and the browser will update the display accordingly. However, a surprising number
of systems that invite extensions require careful cooperation between the extension code and
the display update code, laying this burden on the extension author’s back.

When Emacs was first written, its audience used computers via standalone terminals connected
to the computer over serial lines or modems. These connections often were not terribly fast,
so a text editor’s ability to find the optimal series of drawing operations sufficient to update
the screen could have a big impact on the editor’s usability. Emacs went to a great deal of
trouble to do well here, having a hierarchy of update strategies ranging from the quick-but-
limited to the more-work-but-exhaustive. The latter used the same dynamic programming
techniques employed by file comparison programs such as diff to find the smallest set of
operations sufficient to transform the old screen into the new screen. In modern times,
although Emacs still uses these algorithms to minimize update work, most of this effort is
wasted, as faster processors and faster links between the computer and the display allow
simpler algorithms to perform perfectly well.

The Controller: Emacs Lisp

The heart of Emacs is its implementation of its own dialect of Lisp. In Emacs’s realization of
the Model-View-Controller pattern, Lisp code dominates the Controller: almost every
command you invoke, whether from the keyboard, a menu, or by name, is a Lisp function.
Emacs Lisp is the key to Emacs’s ability to successfully accommodate the wide range of
functionality that Emacs has grown to offer.
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THE FIVE-MINUTE LISP TUTORIAL
People new to Lisp often find the language hard to read. This is mostly because Lisp has fewer
syntactic constructs than most languages, but works those constructs harder to get an even richer
vocabulary of features. To give you a reader’s intuition, consider the following rules for converting
code from Python to Lisp:

1. Write control constructs as if they were function calls. That is, while x*y < z: q() becomes
while (x*y < z, q()). This is just a change in notation; it’s still a while loop.

2. Write uses of infix operators as if they were also function calls, where the functions have odd-
looking names. The expression x*y < z would become <(*(x, y), z). Now any parentheses
present only for grouping (as opposed to those that surround function arguments) are
redundant; remove them.

3. Now everything looks like a function call, including control constructs and primitive operations.
Move the opening parenthesis of every “call” from after the function name to before the function
name, and drop the commas. For example, f(x, y, z) becomes (f x y z). To continue the
previous example, <(*(x, y), z) becomes (< (* x y) z).

Taking all three rules together, the Python code while x*y < z: q() becomes the Lisp code (while
(< (* x y) z) (q)). This is a proper Emacs Lisp expression, with the same meaning as the original
Python statement.

There’s more, obviously, but this is the essence of Lisp’s syntax. The bulk of Lisp is simply a vocabulary
of functions (such as < and *) and control structures (such as while), all used as shown here.

Here is the definition of an interactive Emacs command to count words in the currently selected
region of text. If I explain that "\\<" is an Emacs regular expression matching the beginning of a
word, you can probably read through it:

(defun count-region-words (start end)
  "Count the words in the selected region of text."
  (interactive "r")
  (save-excursion
    (let ((count 0))
      (goto-char start)
      (while (re-search-forward "\\<" end t)
        (setq count (+ count 1))
        (forward-char 1))
      (message "Region has %d words." count))))

There’s an argument to be made that Lisp gives its human readers too few visual cues as to what’s
really going on in the code, and that it should abandon this bland syntax in favor of one that makes
more apparent distinctions between primitive operations, function calls, control structures, and the
like. However, some of Lisp’s most important features (which I can’t go into here) depend
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fundamentally on this syntactic uniformity; the many attempts that have been made to leave it behind
generally haven’t fared well. With experience, many Lisp programmers come to feel that the syntax
is a reasonable price to pay for the language’s power and flexibility.

In Emacs, a command is simply an Emacs Lisp function that the programmer has marked (with
a brief annotation at the top of the definition) as suitable for interactive use. The name of the
command that the user types after Meta +x  is the name of the Lisp function. Keymaps bind
key sequences, mouse clicks, and menu selections to commands. Core Emacs code takes care
of looking up the user’s keys and mouse gestures in the appropriate keymaps and dispatching
control to the indicated command. Along with the automatic display management provided
by Emacs’s View, the keymap dispatching process means that Lisp code is almost never
responsible for handling events from an event loop, a welcome relief for many user interface
programmers.

Emacs and its Lisp have some critical characteristics:

• Emacs Lisp is light on bureaucracy. Small customizations and extensions are easy: one-
line expressions placed in the .emacs file in your home directory, which Emacs loads
automatically when it starts, can load existing packages of Lisp code, set variables that
affect Emacs’s behavior, redefine key sequences, and so on. You can write a useful
command in under a dozen lines, including its online documentation. (See the “The Five-
Minute Lisp Tutorial” sidebar for the complete definition of a useful Emacs command.)

• Emacs Lisp is interactive. You can enter definitions and expressions into an Emacs buffer
and evaluate them immediately. Revising a definition and reevaluating it puts your
changes in place; there is no need to recompile or restart Emacs. Emacs is, in effect, an
integrated development environment for Emacs Lisp programs.

• The Emacs Lisp programs you write yourself are first-class citizens. Every nontrivial editing
feature of Emacs itself is written in Lisp, so all the primitive functions and libraries Emacs
itself needs are equally available for use in your own Lisp code. Buffers, windows, and
other editing-related objects appear as ordinary values in Lisp code. You can pass them to
and return them from functions, store them in data structures, and so on. Although
Emacs’s Model and View components are hardcoded, Emacs arrogates no special privileges
to itself within the Controller.

• Emacs Lisp is a full programming language. It is comfortable to write reasonably large
programs (hundreds of thousands of lines) in Emacs Lisp.

• Emacs Lisp is safe. Buggy Lisp code may cause an error to be reported, but it can’t crash
Emacs. The damage a bug can do is contained in other ways as well: for example, buffers’
built-in undo logging lets you revert many unintended effects. This makes Lisp
development more pleasant and encourages experimentation.
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• Emacs Lisp code is easy to document. A function’s definition can include a docstring (for
“documentation string”), text explaining the function’s purpose and use. Almost every
function provided with Emacs has a docstring, meaning that help on a given facility is
never more than a command away. And when Emacs displays a function’s docstring, it
includes a hyperlink to the function’s source code, making Lisp code easy to browse as
well. (Naturally, docstrings aren’t adequate for large Lisp packages, so those usually
include a more traditionally structured manual as well.)

• Emacs Lisp has no module system. Instead, established naming conventions help
unrelated packages avoid interfering with each other when loaded into the same Emacs
session, so users can share packages of Emacs Lisp code with each other without the
coordination or approval of Emacs’s developers. It also means that every function in a
package is visible to other packages. If a function is valuable enough, many other packages
may come to use it and depend on the details of its behavior.

Oddly, this is not nearly as much of a problem as one might expect. One might hypothesize
that Emacs Lisp packages are mostly independent, but of the roughly 1,100 Lisp files
included in the standard Emacs distribution, 500 of them have functions used by some
other package. My guess is that the maintainers of the packages that are distributed along
with Emacs only take care to remain compatible with other such packages, and that those
developers form a sufficiently tightly knit group that it’s practical to negotiate incompatible
changes as you make them. Packages not included with Emacs probably just break—
creating an incentive for developers to get their packages included and join the cabal.

Creeping Featurism
Emacs’s creeping featurism is a direct consequence of its architecture. Here’s the life cycle of a
typical feature:

1. When you first notice a feature that would be nice to have, it’s easy to try implementing
it; Emacs’s lack of bureaucracy makes the barrier to entry extremely low. Emacs provides
a pleasant, interactive environment for Lisp development. The simple buffer Model and
automatic display update let you focus on the task at hand.

2. Once you have a command definition that works, you can put it in your .emacs file to
make it available permanently. If you use it frequently, you can include code there to bind
it to a key.

3. Eventually, what began life as a single command may grow into a suite of commands that
work together, at which point you can gather them up in a package to share with your
friends.

4. Finally, as the most popular packages come to be included in the stock Emacs distribution,
its standard feature set expands.
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Similar processes are at work within the established codebase. Experience writing your own
commands makes the code of Emacs itself that much more comprehensible, so when you
notice a potential improvement to an existing command, you might bring up the command’s
source code (linked to from its help text, as mentioned earlier) and try to implement your
improvement. You can redefine Emacs Lisp functions on the fly, making it easy to experiment.
If your idea works out, you can put your redefinition in your .emacs file for your own use, and
post a patch for inclusion in the official sources for everyone else.

Of course, truly original ideas are rare. For long-time users it’s a common experience to think
of an improvement to Emacs, look through the documentation, and find that someone else
has already implemented it. Since the Lisp-friendly cohort of Emacs’s user base has been
adjusting and adapting Emacs for almost 20 years now, it’s usually a given that many people
have already been wherever you are now, and someone may have done something about it.

But whether Emacs grows by acquiring new packages or by incorporating patches its users
contribute, the growth is a grass-roots process, reflecting its users’ interests: the features exist,
from the obvious to the strange, simply because someone wrote them and others found them
useful. The role of Emacs’s maintainers, beyond fixing bugs, accepting patches, and adding
useful new primitives, is essentially to select the most popular, well-developed packages that
the community is already using for inclusion in the official sources.

If this were the whole story, creeping featurism wouldn’t be much of a problem. However, it
usually has two unpleasant side effects: the program’s user interface becomes too complex to
understand, and the program itself becomes difficult to maintain. Emacs manages to ameliorate
the former with mixed success, but it escapes the latter rather effectively.

Creeping Featurism and User Interface Complexity

There are two dimensions along which one can assess the complexity of an application’s user
interface: the complexity of the Model being manipulated, and the complexity of the command
set that operates on that Model.

How complex is the Model?

How much does the user need to learn before he can be confident that he’s put the application’s
Model in the state he wants? Is there hidden or obscure state that affects the Model’s meaning?

Microsoft Word documents have a complex model. For example, Word has the ability to
automatically number the sections and subsections of a document, keep the numbering current
as pieces come and go, and update references to particular sections in the text. However,
making this feature work as expected requires a solid understanding of Word style sheets. It is
easy to make a mistake that has no visible effect on the document’s contents, but that prevents
renumbering from working properly. (For another example, ask a help desk staffer about
“automatically updating styles” in the 2003 edition of Word.)
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Emacs avoids this kind of problem by taking the easy way out: it doesn’t support style sheets,
automatically numbered sections, headers or footers, tables, or any number of other features
expected from modern word processors. It’s purely a text editor, and an Emacs buffer is just a
string of characters. In almost every circumstance, all the buffer state that matters is readily
apparent. As a result, one is rarely confused over what Emacs has done to the contents of one’s
files.

How complex is the command set?

How easy is it to discover the actions that are relevant and useful at any given point? How easy
is it to discover features one hasn’t used yet? In this sense, Emacs’s user interface is quite
complex. A freshly started Emacs session without customization recognizes around 2,400
commands and 700 key bindings, and will usually load many more as the session goes on.

Fortunately, a new user need not confront this horde all at once, any more than a Unix user
needs to learn every shell command. It’s perfectly possible for a new user to treat Emacs like
any other editor with a graphical user interface, selecting text with the mouse, moving the
cursor with the arrow keys, and loading and saving files with menu commands. Commands
left unused don’t impinge on the visibility of essential functionality.

However, using Emacs in this fashion isn’t much better than using any other editor. Becoming
a proficient Emacs user entails reading the manual and the online documentation, and learning
to search through these resources effectively. Features such as grep and compilation buffers,
interactive debugging, and source code indexing are what distinguish Emacs from its peers,
but they don’t reveal themselves unless you explicitly request them—which you wouldn’t do
unless you already knew they existed.

To make this kind of exploration a little easier, Emacs also includes the apropos family of
commands, which prompt for a string or regular expression, and then list commands and
customization variables with matching names or documentation strings. Although they’re no
substitute for reading the manual, the apropos commands are effective when you have a
general idea what you’re looking for.

In terms of this kind of complexity, the Emacs user interface has many of the characteristics
common to command-line interfaces: it’s possible to have many commands available, the user
need not know all of them (or even many of them), and it takes deliberate effort to discover
new functionality.

Fortunately, the Emacs community has been effective at establishing conventions that
commands should follow, so there’s a good deal of consistency from one package to the next.
For example, almost all Emacs commands are modeless: the standard commands for moving,
searching, switching buffers, rearranging windows, and so on are always available, so you
needn’t worry about how to “exit” a command. As another example, most commands use
standard Emacs facilities to prompt the user for parameters, making prompting behavior
consistent from one package to the next.
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Creeping Featurism and Maintainability

Obviously, the more code you have, the more effort it takes to maintain it. When a developer’s
Lisp package is selected for inclusion in the standard Emacs distribution, the lead maintainers
invite that package’s author to continue maintaining it, so as the number of packages expands,
the number of maintainers expands to match. If someone relinquishes responsibility for a
package (perhaps because she’s too busy or no longer interested), then the lead maintainers
must either find a new volunteer or remove the package.

The key to this solution is that Emacs is a collection of packages, not a unified whole. In a sense,
the dynamics of Emacs maintenance more closely resemble those of a platform (such as an
operating system) than a single application. Instead of a single design team choosing priorities
and allocating effort, there is a community of self-directed developers, each pursuing his own
ends, and then a process of selection and consolidation that brings their efforts into a single
release. In the end, no single person bears the weight of maintaining the entire system.

In this process, the Lisp language acts as an important abstraction boundary. Like most popular
interpreted languages, Emacs Lisp largely insulates code from the details of the Lisp interpreter
and the underlying processor architecture. Likewise, the editing primitives available to Lisp
conceal the implementations of buffers, text properties, and other editing objects; the
characteristics visible to Lisp are, for the most part, restricted to those the developers are willing
to commit to supporting in the long term. This gives Emacs’s core of C code a good deal of
freedom to improve and expand, without the risk of breaking compatibility with the existing
body of Lisp packages. For example, Emacs buffers have acquired support for text properties,
overlays, and multiple character sets while remaining largely compatible with code written
before those features existed.

Two Other Architectures
Many applications allow user extensions. Extension interfaces appear in everything from
collaborative software development website systems (such as Trac plugins) to word processing
software (Open Office’s Universal Network Objects) to version control software (Mercurial’s
extensions). Here I compare Emacs with two architectures that support user extensions.

Eclipse

Although most people know Eclipse as a popular open source integrated development
environment for Java and C++, Eclipse proper includes almost no functionality. Rather, it is a
framework for plug-ins, allowing components that support specific aspects of development—
writing Java code, debugging a running program, or using version control software—to
communicate easily with each other. Eclipse’s architecture allows programmers with a solid
solution to one part of the problem to join their work with others’ in order to produce a unified
and full-featured development environment.
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As a development environment, Eclipse provides valuable features that Emacs lacks. For
example, the Java Development Tools plug-ins provide extensive support for refactoring and
code analysis. In comparison, Emacs has only a limited understanding of the semantic structure
of the programs it edits, and can’t offer comparable support.

Eclipse’s architecture is nothing if not open-ended, as plug-ins provide nearly all significant
functionality. There are no second-class citizens: the popular plug-ins are built on the same
interfaces available to others. And because Eclipse gives each plug-in relatively low-level
control over its input and display, the plug-in is free to choose whatever Model, View, and
Controller best suits its purpose.

However, this approach has a number of drawbacks:

• Eclipse plug-in development is not safe, in the sense attributed to Emacs Lisp code. A buggy
plug-in can easily cause Eclipse to crash or lock up. In Emacs, the Lisp interpreter ensures
that the user can interrupt runaway Lisp code, and the strong boundary between Lisp code
and the Model implementation protects the user’s data from the more insidious forms of
corruption.

• Because the interfaces that Eclipse plug-ins offer each other are relatively complex, writing
an Eclipse plug-in is more like adding a module to a sophisticated application than writing
a script. Certainly, these interfaces are what have made Eclipse’s features possible, but
plug-in authors must pay that price for both ambitious and simple-minded projects.

• A plug-in requires enough boilerplate code that Eclipse includes a plug-in to help people
write plug-ins. The Eclipse Plug-in Development Environment can generate code
skeletons, write default XML configuration files and manifest files, and create and tear
down test environments. Providing a “wizard” to generate boilerplate code automatically
can help get a plug-in developer started, but it doesn’t reduce the complexity of the
underlying interfaces.

The overall effect is to leave Eclipse plug-ins as a rather coarse-grained extension facility. Plug-
ins are not suited for quick-and-dirty automation tasks, and they’re not especially friendly to
casual user-interface experimentation.

This suggests the second question of the three I promised at the beginning of the chapter, one
we can ask of any plug-in facility: what sort of interfaces are available for plug-ins to use? Are
they simple enough to allow the kind of rapid development associated with scripting
languages? Can a plug-in developer work at a high level of abstraction, close to the problem
domain? And how is the application’s data protected from buggy plug-in code?

Firefox

The current generation of sophisticated web applications (Google Mail, Facebook, and so on)
makes heavy use of techniques such as dynamic HTML and AJAX to provide a smooth user
experience. These applications’ web pages contain JavaScript code that responds to the user’s
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input locally, and then communicates with the underlying servers as needed. The JavaScript
code uses a standard interface, the Document Object Model, to navigate and modify the web
page’s contents, and further standards dictate the page’s visual appearance. All modern web
browsers implement these standards to some degree.

Although a web browser is not a text editor, there are some striking resemblances between
Emacs’s architecture and that of a browser:

• Although Emacs Lisp and JavaScript don’t resemble each other much at the syntactic level,
their semantics have many essential traits in common: like Emacs Lisp, JavaScript is
interpreted, highly dynamic, and safe. Both are garbage-collected languages.

• As with Emacs Lisp, it’s very practical to begin with a small fragment of JavaScript on a
page to improve some minor aspect of its behavior, and then grow that incrementally into
something more sophisticated. The barrier to entry is low, but the language scales up to
larger problems.

• As in Emacs, display management is automatic. JavaScript code simply edits the tree of
nodes representing the web page, and the browser takes care of bringing the display up
to date as needed.

• As in Emacs, the process of dispatching input events to JavaScript code is managed by the
browser. Firefox takes care of deciding which element of the web page an event was
directed at, finds an appropriate handler, and invokes it.

However, Firefox takes the ideas behind these modern web applications a bit further: Firefox’s
own user interface is implemented using the same underlying code that displays web pages
and handles their interactions. A set of packages known as chrome describe the interface’s
structure and style, and include JavaScript code to bring it to life.† This architecture allows
third-party developers to write add-ons that extend Firefox’s user interface with new chrome
packages. Taking the same techniques even further, developers can replace the standard
Firefox chrome altogether and radically reshape the entire user interface—to adapt it for use
on mobile devices, for example.

Like Eclipse plug-ins, Firefox chrome packages include a significant amount of metadata. And,
resembling Eclipse’s Plug-in Development Environment plug-in, there is a Firefox extension
to help people write Firefox extensions. So there is still a significant amount of work required
up front before one can extend or fix Firefox. However, Firefox’s automatic display
management and simplified event handling mean that the effort required is still not as high as
that needed to write an Eclipse plug-in.

† Naturally, JavaScript code used in chrome can read and write preference files, bookmark tables, and
ordinary user files—privileges that would never be granted to code downloaded from a web page.
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Firefox’s developers are working to improve the performance of its JavaScript implementation.
Although this obviously helps users visiting JavaScript-heavy websites, it also allows the
Firefox developers to migrate more and more of the browser itself from C++ to JavaScript, a
much more comfortable and flexible language for the problem. In this sense, Firefox’s
architecture is evolving to look more like that of Emacs, with its all-Lisp Controller.

This suggests the third and final question, one we can ask of any extension language we
encounter: is the extension language the preferred way to implement most new features for
the application? If not, what restrictions discourage its use? Is the language itself weak? Is its
interface to the Model cumbersome? Whatever the case, these same weaknesses probably
affect extension developers in similar ways, leaving extensions as second-class citizens. (One
could ask the analogous question of plug-in interfaces as well.) Like Emacs, Firefox places its
extension language at the heart of its architecture, a strong argument that the language’s
relationship with the application has been designed properly.

As an avid Emacs user, but one concerned about its future, I’m especially interested in Firefox
because it seems so close to Emacs in many ways: a View that provides automatic display
management, a Controller based on an interpreted, dynamic language, and a Model that does
everything Emacs’s does, and much more. If one were willing to leave behind the accumulated
corpus of Emacs Lisp code, a few days’ worth of chrome programming could produce a text
editor with an architecture very similar to Emacs’s, but with a much richer model and a much
stronger connection to the current frontiers of technology. The most valuable lessons Emacs’s
architecture has to teach need not be forgotten.
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C H A P T E R  T W E L V E

When the Bazaar Sets Out to
Build Cathedrals

How ThreadWeaver and Akonadi were shaped by the KDE
community and how they shape it in turn

Till Adam
Mirko Boehm

Introduction
THE  KDE PROJECT  IS  ONE  OF  THE  BIGGEST  FREE  SOFTWARE* EFFORTS  IN  THE  WORLD. Over the
course of 10 years, its very diverse community of contributors—students, seasoned
professionals, hobbyists, companies, government agencies, and others—has produced a vast
amount of software addressing a wide variety of issues and tasks, ranging from a complete
desktop environment with a web browser, groupware suite, file manager, word processor,
spreadsheet, and presentation tools, to highly specialized applications, such as a planetarium
tool. The basis of these applications is provided by a collection of shared libraries that are
maintained by the project collectively. Beyond their primary intended use by the members of

 Principles and properties  Structures

 Versatility ✓ Module

✓ Conceptual integrity ✓ Dependency

✓ Independently changeable ✓ Process

 Automatic propagation  Data access

✓ Buildability   

✓ Growth accommodation   

✓ Entropy resistance   

* Also referred to as open source software.
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the KDE developer community itself, they are also used by many third-party developers, both
commercial and noncommercial, to produce thousands of additional applications and
components.

Although the initial focus of the KDE project was to provide an integrated desktop environment
for free Unix operating systems, notably GNU/Linux, the scope of KDE has broadened
considerably, and much of its software is now available on not just various flavors of Unix, but
also on Microsoft Windows and Mac OS X, as well as embedded platforms. This implies that
the code written for the KDE libraries has to work with many different tool chains, cope with
the various platform peculiarities, integrate with system services flexibly and in extensible
ways, and make judicious and careful use of hardware resources. The broad target audience
of the libraries also means that they have to provide an API that is understandable, usable, and
adaptable by programmers with diverse backgrounds. Someone accustomed to dealing with
Microsoft technologies on Windows will have different preconceptions, biases, habits, and tools
from an embedded programmer with a Java background or an experienced Mac developer.
The goal is to make all programmers able to work comfortably and productively, to allow them
to solve the problems at hand, but also (and some say more importantly) to benefit from their
contributions should they choose to give back their suggestions, improvements, and
extensions.

This is a very agile, very diverse, and very competitive ecosystem, one in which most active
contributors are interested in collaborating to improve their software and their skills by
constantly reviewing each other’s work. Opinions are freely given, and debates can become
quite heated. There are always better ways to do one thing or another, and the code is under
constant scrutiny by impressively smart people. Computer science students analyze
implementations in college classes. Companies hunt down bugs and publish security advisories.
New contributors try to demonstrate their skills by improving existing pieces of code. Hardware
manufacturers take the desktop and squeeze it onto a mobile phone. People feel passionately
about what they do and how they think things should be done, and one is, in many ways,
reminded of the proverbial bazaar.† Yet this wild and unruly bunch is faced with many of the
same challenges that those in more traditional organizations who are tasked with maintaining
a large number of libraries and applications must overcome.

Some of these challenges are technical. Software has to deal with ever-increasing amounts of
data, and that data becomes more complex, as do the workflows individuals and organizations
require. The necessity to interoperate with other software (Free and proprietary) used in
corporations or government administrations means that industry paradigm shifts, such as the
move towards service-oriented architecture (SOA), have to be accommodated. Government
and corporate mission-critical uses pose stringent security requirements, and large
deployments need good automation. Novice users, children, or the elderly have different needs

† http://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
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entirely, yet all of those concerns are valid and of equal importance.‡ Much like the rest of the
industry, Free Software in general and KDE in particular are coming to terms with pervasive
concurrency and increasingly distributed processing. Users rightfully demand easier-to-use,
cleaner, and more beautiful interfaces; responsive, well-thought-out, and not overly complex
interactions with software; and high reliability, stability, and data safety. Developers expect
language-neutral extension points, well-maintained APIs, binary and source compatibility,
clean migration paths, and functionality on par with the commercial offerings they are
frequently accustomed to from their day jobs.

But even more daunting are the social and coordinative aspects of a larger Free Software
project. Communication is key, and it is hampered by time zones, cultural barriers, more or
less reflected preferences and prejudices, and also simply by physical distance. Discussions that
can be finished in 15 minutes in a stand-up office meeting may take days of arguing on mailing
lists to allow the opinions of team members from the other hemisphere to be heard. The process
of reaching consensus often is at least as important as the resulting decision itself, to keep the
cohesion of the group intact. Naturally, more patience, understanding, and rhetoric wit is
necessary to gain a favorable consensus. This is much to ask from people who aced math and
physics classes without flinching, but avoid getting a haircut because they do not like the talking
to nonprogrammers that such an activity entails. With this in mind, the amicable spirit of the
annual Akademy conferences is a wonderful experience (see the next section). We have never
seen such a massively diverse group of old and young people from all over the globe, from
rivaling countries, countless nations, seemingly different worlds even, and with all shades of
skin set aside differences to argue—heatedly, but rationally—about arcane C++ subtleties.

And then, aside from technical and personal aspects, there is a third major influence on how
a Free Software project fares: structure. In some ways, structure is inevitable for Free Software
groups. Larger and better-known software projects especially need to hold trademarks, receive
donations, and organize conferences. The time when this is possible solely through the good
will of spouses and weekend trips is usually already over when a project is mentioned publicly
for the first time. In some respects, structure (or the lack thereof) determines the fate of the
community. An important decision has to be made—whether to go corporately dull or geekily
chaotic. The answer is not trivial, because multiple trade-offs are involved: funding versus
freedom from external influence; stability of the development process versus attracting the
most brilliant cave dwellers;§ visibility and mind-share versus focus on impressive technical
results. Beyond the point where structure is a bare necessity, there are options for the levels
of bureaucracy. Some projects do not even have a board of directors, whereas some have

‡ This is fundamentally different from software that is entirely produced for a market. Free Software can
cater to the needs of the blind, for example, without having to justify the considerable effort needed for
that with corresponding sales figures and expected returns on the investment. That is one of the reasons
why KDE is available in so many more languages than proprietary competitors, for example.

§ We use that term with a lot of affection. It cannot be denied, though, that many of our dearest friends
could do with a tad more exposure to sunlight and healthy food, overall.
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dictators who claim to be benevolent. There are examples for successful and unsuccessful
communities on both ends of this continuum.

Before we look in detail at two concrete examples of how the technical, social, and structural
issues were approached and dealt with by groups within KDE, it seems useful to provide some
background on the history of the KDE project in these three areas. The following section will
thus describe what KDE is today and how the community arrived at that point.

History and Structure of the KDE Project
KDE, or the K Desktop Environment, was originally conceived out of despair. At a time when
FVWM was considered a desktop, Xeyes was a stock inventory item on the screen, and Motif
was the toolkit competing with XForms for the higher body count of developer’s brain cells
and for lack of sexiness, KDE was founded to achieve a revolutionary goal: to marry the raw
power of Unix with a slick, eye-candied user experience. This goal was now considered
achievable because the Norwegian startup Trolltech was about to release the first version of its
groundbreaking object-oriented GUI toolkit for C++, Qt. Qt set out to allow GUI programming
the way it was meant to be: systematic, object-oriented, elegant, easy to learn, well-
documented, and efficient. In 1996 Matthias Ettrich, at the time a student at Tuebingen
University, first emphasized the potential offered by using Qt to develop a complete desktop
environment. The idea quickly attracted a team of about 30 developers, and that group has
been growing steadily ever since.

Version 1.0 of KDE was released in 1998. Although nimble in its functionality from today’s
point of view, it needs to be measured in relation to the competition: Windows 3.1 did not
have memory protection at the time, Apple was struggling to find a new kernel, and Sun swept
the sorry remnants of CDE into the gutter. Also, this was before the first Linux hype, and the
momentum of Free Software was not yet understood by all in the software industry.

Even in the process of finishing KDE 1, the developers had already redesigned it for 2.0. Some
major elements where missing: the component model, the network abstraction layer, the
desktop communication protocol, the UI style API, and more. KDE 2 was the first release that
was architected, designed, and implemented in a reasonably rational process. Corba was
considered for the component model and rejected. This was also the first time the contributor
group fluctuated. Interestingly, although some early core developers left, the size of the active
KDE development team slowly but steadily grew. KDE e.V., the organization of the KDE
contributors, was founded in 1996 and grew to represent the vast majority of the KDE
committers by 1998. From the beginning, the organization was meant to support the
contributors, but not to influence the technical direction of KDE. The course of development
is supposed to be the result of the work of the active developers, not a management team. This
idea proved to be one of the most important factors, if not the most important, toward making
KDE one of the very few major Free Software projects that are not massively influenced by
funding corporate bodies. External funding is not regarded as problematic in KDE, but many
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other projects that relied too much on it ceased to exist when the major funding sponsor keeled
over or lost interest. Because of that, KDE survived many trends and hypes in the Free Software
world and continuously maintained its development momentum.

In April 2002, KDE 3 was ready. Since KDE 2 was considered well-designed, version 3 was
more evolutionary and matured closer and closer to perfection over five major releases and six
years. Important applications that became standard on free desktops have been developed
based on the KDE 3 technologies: K3B, the disk burning program; Amarok, one of the slickest
music players in general; Kontact, a full personal communication suite. Most interestingly, for
the first time these applications use KDE not only as one target desktop, but also as the platform
on top of which end-user applications are built. With version 3, KDE started to separate into
two things: the desktop and the environment, usually called the platform. But since KDE was
still confined to X11, this split was not easily recognized by users. That was the next step.

In 2004, one of the toughest calls in its history had to be made by the KDE team. Trolltech was
about to release version 4.0 of Qt, and it was very advanced and very different compared to
both previous releases and any other toolkit on the market. Because of the massive changes
in the toolkit, going from Qt 3 to Qt 4 was not an adaptation, but a port. The question was
whether KDE 4 was going to be a straight port of KDE 3 from Qt 3 to Qt 4 or a major redesign
in the process of porting. Both options had many supporters, and it was clear to the vast
majority of those involved that, either way, an immense amount of work had to be done. The
decision was made in favor of a complete redesign of KDE. Even if it is now accepted that this
was the right choice, it was a very risky one, because it meant providing KDE 3 as the main
line for an extended period of time in parallel until completing the huge porting effort.

One major new feature of Qt 4 needs particular emphasis. The GPL and Commercial dual
licensing scheme Trolltech was using already for the X11 version was now extended to all target
platforms Qt supports, most notably to Windows, Mac OS X, and embedded platforms. KDE 4
thus had the potential to become something relevant beyond the Unix world. Although the
Unix desktop remains its home turf, applications developed for KDE can now run on Windows
and Mac OS X computers. This possibility was received controversially. One argument against
it was that the Free Software community would provide neat applications for those proprietary
desktops, thus reducing the incentive to switch away from them to free alternatives. Another
one was, “What do we care?” or more politely, “Why should we invest scarce development
time in supporting nonfree target systems?” Proponents argued that providing the same
applications everywhere would ease the transition for users from proprietary to free operating
systems and allow gradual replacements of key applications. In the end the trend was set
according to KDE’s long-term mantra of “those who do the work decide.” There was enough
interest in the new target platforms to gain the attention of sufficient contributors, so in the
end, there was no reason to deprive the KDE users of a capability many obviously longed for.

To become platform-independent, KDE 4 was rearchitected and separated into an application
development platform, the desktop built on top of it, and the surrounding applications. Of
course the dividing lines are blurry at times.
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Given this history, let us look at some of the ways in which a project like KDE tries to deal with
issues that go beyond what a single developer, however talented, can solve. How can
knowledge and experience be retained and used to maximum effect? Incorporating strategic
thinking, how can a large, diverse group make difficult decisions and agree on steering toward
the overall destination without jeopardizing the sense of fun? How can we incorporate the
idea that decisions are made on equal footing among peers and the other aspects that have
made KDE and other Free Software projects so successful? In other words, how to build a
cathedral when everyone involved has a tendency to consider themselves, rightfully or not,
an architect, and how to fill the role of architect without wearing a funny-looking hat. We start
with looking at the contributors because we are convinced that Free Software communities
are first and foremost social structures as opposed to technical ones. People are the most scarce
and valuable resource we have.

There are different roles to fill for every project, and there is no authority that decides in the
recruiting process. Every Free Software project needs a number of poster girls and boys and a
large bunch of motivated, skilled, down-to-earth hackers, artists, administrators, writers,
translators, and more. The one thing that seems to be a common denominator among all of
these trades is that they all require a great deal of self-motivation, skill, and self-guidance. To
be able to contribute seems to attract many extraordinary individuals of all ages, from high
school students to retirees. What makes them join the project is the fascination of being part
of a group that creates tomorrow’s technologies, to meet other people interested in and driving
these technologies, and often to do something with a reason, instead of writing throw-away
college papers.

A well-functioning Free Software community is about the most competitive environment to
be in. Most commercial engineering teams we have encountered are way more regulated, and
policies protect the investment employees have made in their position. Not so for Free Software
developers. The only criteria for a certain code contribution’s inclusion in the software is its
quality and if it is being maintained. For a short while, a mediocre piece of code made by a
respected developer may stay in the source code, but in the long term, it will get replaced. The
code is out in the open, constantly scrutinized. Even if a certain implementation is of good
quality but not close enough to perfection in a few people’s perception, a group of coders will
take it on and improve it. Since creation is what motivates most, Free Software developers
constantly need to be aware that their creation is made obsolete by the next one. This explains
why code written in Free Software projects is often of higher quality than what can be found
in commercial projects—there is no reason to hope the embarrassing bits will not be discovered.

Surprisingly, few coders want exterior motivation in the form of recognition from users or the
media. Often, they turn away from some piece of work shortly before it is finally released. As
with marathon runners, it seems their satisfaction is internal—the knowledge of having
reached the finishing line. Sometimes, this is misunderstood as shying away from the public,
but on the contrary, it only underlines the disinterest in praise. Because of this set of personal
values, in software projects that are really free, it is almost impossible to assign priorities to
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development goals. Code artists are intrinsically motivated and choose and decide their own
individual priorities. Software still gets finished because the most challenging elements attract
the highest attention. This coordination from within favors the journey instead of the goal and
still leads to results. The chosen path is often different from the one a well-managed commercial
software project would have taken, and usually it also incurs fewer compromises of quality
versus deadlines. If such compromises are accepted on a regular basis, it is generally a good
sign that a Free Software project is in the process of turning into a commercial, or “less Free,”
one. Typically, this happens when either a major group of developers spin a company off the
project, a funding partner asserts control over major contributors, or the project itself stops
innovating and goes into maintenance mode.

Most kinds of structure and organization imposed on a Free Software project are met with
resistance. Contributors join KDE for many reasons, but enjoying the bureaucracy of the
project is not one of them. People who join a Free Software project usually are very aware of
using and protecting their own freedom of choice. At the same time, the necessity of a
minimum amount of formal organization is recognized. Although almost all technical
challenges are no match for a good team, formal structure is where centrifugal forces are most
effective. Many Free Software projects have dissolved because decisions of political scope were
forced through by influential team members. Finding a formal structure that solves the
problems the project faces once it becomes significant but at the same time does not hinder the
further technical development is one of the most (or the single most) important steps KDE had
to take in its history. The fact that a very stable and accepted structure was found surely
contributed significantly to the long-term stability of the KDE community.

In 1996, KDE founded KDE e.V. as the representation of the KDE contributors. An e.V., or
“eingetragener Verein,” is the classical not-for-profit organization in Germany, where most of
the KDE contributors were based at the time and where the contributors met. The main force
leading to its creation was that a legally capable body representing the project was needed to
enter into the Free Qt Foundation. The Free Qt Foundation was an agreement between
Trolltech, the makers of Qt, and KDE with the purpose of ensuring that KDE always had access
to Qt as a free toolkit. It guaranteed (and still does) that, should Trolltech stop to develop and
publish the free version of Qt, the latest released free version can be continued without
Trolltech. This agreement was even more important when the free version of Qt was not
licensed under the GPL. Today it is, and the foundation is now dealing mostly with resolving
copyright subtleties, developer rights, and other similar issues. It was important because many
contributors would have hesitated to spend their time on a project that ran the risk of being
commercialized, but it also served as an example that KDE as a project must be able to carry
legal rights. Later on, the KDE trademark was registered and is held by KDE e.V., which
assumed many other responsibilities such as serving as the host of the large annual KDE
conference.

Regarding the architecture and design of KDE, the organization is still rather influential, even
if it is not supposed to manage the development. Since it is assumed that most of the
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“accomplished” KDE contributors are members, the KDE e.V.’s opinion weights rather heavy.
Also, it is the host of the annual Akademy conference, which for most contributors is the only
chance to meet and discuss things in person. It also raises funds, mostly donations and
membership fees of sponsors, and thus has the ability to fund (or not fund, in very rare cases)
developer activities such as sprints or targeted meetings. Still, the budget the organization
spends annually is surprisingly small compared to the effects created by it. The developer
meetings are where most of the coordination takes place, which does give the membership a
lever. Still, the initiative of groups of contributors gets most things done, not a statement at
the general assembly.

Akademy has become an institution that is well-known even outside the KDE community. It
is where most of the coordination that really requires in-person meetings takes place. Since
neither human resources nor funds can be directly assigned to any development activity, many
discussions of broader scope are saved for the conference. It has become a routine to use this
annual gathering for decision-making and to only loosely coordinate in the meantime. The
conference takes place quite reliably around summer, and contributors to other Free Software
projects use that opportunity to coordinate with KDE. One of the decisions made during the
2007 conference was to switch to six-month release cycles, which was suggested and
championed by Marc Shuttleworth of Ubuntu.

Akademy is the only global conference KDE organizes. In addition to this large meeting, many
small gatherings of subgroups and sprints take place. These meetings are usually more frequent,
more local, and more focused, so whereas architectural issues are debated at Akademy, design
issues for certain modules or applications are discussed here. Some subgroups, such as the
KOffice or Akonadi developers, usually meet at three-month intervals.

This reiterative process of coordinated high- and medium-level reviews has proven to be quite
effective and also provides a good understanding of the goals and next actions among the
developers. Most attendees express that the annual conference gives them a boost in
motivation and in the effectiveness of their development work.

The organization and structure KDE shows today is not the brain child of a group of executives
who asked themselves how a Free Software project should be organized. It is the result of an
iterative process of trying to find a suitable structure for the main nontechnical goals—to
remain free and to ensure the longevity of the project and sustainable growth of the
community. Freedom is used here not only in the sense of being able to provide the software
for free and as Free Software, but also to be free of dominating influences from third parties.
External parties such as companies or governmental groups are regularly present at the
conferences, and the project is interested in their findings, experiences, and contributions.
However, these stakeholders must be prevented from investing enough resources to be able to
determine the outcome of votes in the community. This may seem paranoid, but it actually
happened to other projects, and the KDE community is aware of that. So staying active and
healthy as a Free Software project is directly related to protecting the freedom of the project
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itself. The main technical goal, to support the developers and other contributors with funds,
materials, organizations, and other resources, are comparatively simple to achieve.

The result is a living, active, vibrant community with an established development process, a
stable and healthy fluctuation of contributors, and a lot of fun on the way. And this in turn
helps to attract and secure the most important resource for such an environment: new
contributors. KDE has succeeded in preventing the typical tendency to create larger and larger
formal structures and positions and also does not have any dictators, as benevolent as they
might be. KDE is an archetypal Free Software community.

In order to understand how this community functions in practice, how architectural decisions
are arrived at, and how the peculiar process influences the outcomes technologically, we will
look at two examples in some detail: Akonadi, the personal information management
infrastructure layer for KDE 4, and ThreadWeaver, a small library for high-level concurrency
management.

Akonadi
The KDE 4 platform, both as a development platform and as a runtime environment for the
execution of integrated applications, rests on a number of so-called “pillars.” These key pieces
of infrastructure provide the central services that applications expect to have easy and
ubiquitous access to on a modern desktop. There is the Solid hardware interaction layer, which
is responsible for providing the desktop with information about and notification from the
hardware, such as a USB stick becoming available or the network going down. Phonon provides
an easy-to-program multimedia layer for playback of various media types and user interface
elements for their control. Plasma is a library for rich, dynamic, scalable (SVG-based) user
interfaces that go beyond the standard office look.

The personal information of the user—her email, appointments, tasks, journal entries, blog
posts and feeds, bookmarks, chat transcripts, address book entries, etc.—contains not only a
large amount of primary information (the content of the data). It also weaves a rich contextual
fabric from which much about the user’s preferences, social interactions, and work contexts
can be learned, and it can be used to make the interaction experience of many applications on
the desktop more valuable and interesting, provided that it is readily, pervasively, and reliably
accessible. The Akonadi framework aims to provide access to the user’s personal information,
the associated metadata, and the relationships between all that data, as well as services that
operate on them. It aggregates information from a variety of sources, such as email and
groupware servers, web and grid services, or local applications that feed into it, caches that
information, and provides access to it. Akonadi thus serves as another pillar of the KDE 4
desktop but, as we shall see, aims to go beyond that.

In the following sections, we will explore the history of this large and powerful framework,
the social, technical, and organizational struggles that were and are involved in making it
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happen, and the vision the authors have for its future. On the way, we will provide some detail
on the technical solutions that were found and the reasons why they were chosen.

Background

From the earliest conversations of the initial group of KDE developers about which applications
would need to be included in order for a desktop offering to be considered complete by users,
email handling, calendering, task list management, and an address book were always
considered obvious and important user needs. Consequently, KMail, KAddressbook, and
KOrganizer (applications to handle email, contacts, and events and tasks, respectively) were
among the first projects to be taken on, and the first usable versions emerged quite quickly.
User needs were comparatively simple then, and the standard modes of receiving email were
through local mail spools or from POP-3 servers. Mail volume was low, and mail folders were
generally stored in the mbox format (one continuous plain text file per folder). HTML content
in emails was overwhelmingly frowned upon by the user community that KDE was targeting,
multimedia content of any kind was very rare, and encryption and digital signatures were
equally exotic. Along similar lines, the custom formats used for address and calendaring data
were text-based, and the overall volume of the information to be stored was easily manageable.
It was thus relatively straightforward to write basic applications that were already powerful
enough to be quickly adopted by other KDE developers and, after the first releases of KDE,
also by the user community.

The early and continuous success of the personal information management (PIM)
applications would prove to be a double-edged sword in the years to follow. As the Internet
and computer use in general skyrocketed, the PIM problem space started to become a lot more
complex. New forms of access to email, such as IMAP, and storage of email, such as the maildir
format, had to be integrated. Workgroups were starting to share calendars and address books
via so-called groupware servers, or store them locally in new standard formats such as vcal/
ical or vcard. Company and university directories hosted on LDAP servers grew to tens of
thousands of entries. Yet users still expected to use the KDE applications they had come to
appreciate under those changed circumstances and get access to new features quickly. As a
result, and given the fact that only a few people were actively contributing to the PIM
applications, their architectural foundations could not be rethought and regularly cleaned up
and updated as new features added, and the overall complexity of the code increased.
Fundamental assumptions—that access to the email storage layer would be synchronous and
never concurrent, that reading the whole address book into memory would be reasonably
possible, that the user would not go back and forth between timezones—had to be upheld and
worked around at times, because the cost of changing them would have been prohibitive given
the tight time and resource constraints. This is especially true for the email application, KMail,
whose codebase subsequently evolved into something rather unpleasant, hard-to-understand,
hard-to-extend and maintain, large, and ever more featureful. Additionally, it was a stylistically
diverse collection of work by a series of authors, none of whom dared to change things too

288  C H A P T E R  T W E L V E



much internally, for fear of bringing the wrath of their fellow developers upon them should
they break their ability to read and write email.

As PIM applications became more and more widely and diversely used, working on these
applications became something that was mainly continued by those who had been involved
with it for a while out of a sense of dedication and loyalty, rather than an attractor for new
contributors. Simply put, there were other places in KDE and Free Software where those
wishing to enter the community could do so with a more shallow learning curve and with less
likelihood of bloodying their nose by, for example, inadvertently breaking some enterprise
encryption feature they would have no way of testing themselves, even if they knew about it.
In addition to (and maybe at least partially because of) the technical unattractiveness, the social
atmosphere (especially around KMail) was seen as unsavory. Discussions were often
conducted rudely, ad hominem attacks were not infrequent, and those who attempted to join
the team seldom felt welcome. Individuals worked on the various applications mostly in
isolation. In the case of KMail there was even a rather unpleasant dispute over maintainership.
All of this was highly unusual within the KDE community, and the internal reputation of this
group was thus less than stellar.

As the need for more integration between the individual applications grew, though, and as
users were increasingly expecting to be able to use the email and calendaring components from
a common shell application, the individuals working on these components had to make some
changes. They had to start interacting more, agree on interfaces, communicate their plans and
schedules, and think about aspects such as branding of their offerings under the umbrella of
the Kontact groupware suite and consistent naming in their areas of responsibility. At the same
time, because of commercial interest in the KDEPIM applications and Kontact, outside
stakeholders were pushing for a more holistic approach and for the KDEPIM community to
speak with one voice, so they could interact with it reliably and professionally. These
developments catalyzed a process that would lead the PIM group toward becoming one of the
tightest knit, friendliest, and most productive teams within KDE. Their regular meetings have
become a model for other groups, and many contributors have become friends and colleagues.
Personal differences and past grudges were put aside, and the attitude toward newcomers
drastically changed. Today most communication and development talk happens on a combined
mailing list (kde-pim@kde.org), the developers use a common IRC channel (#kontact), and
when asked what they are working on will answer “KDEPIM,” not “KMail” or
“KAddressBook.”

Personal information management is pivotal in an enterprise context. Widespread adoption of
the KDE applications in large organizations has led to a steady demand for professional services,
code fixes, extensions, packaging (as part of distributions and specifically for individual use
cases and deployments), and the like, which in turn has resulted in an ecosystem of companies
offering these services. They have quite naturally hired those people most qualified to do such
work—namely the KDEPIM developers. For this reason, the majority of the active code
contributors in KDEPIM are now doing it as part of their day jobs. And among those who are
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not directly paid for their KDE work, there are many who work as C++ and Qt developers full-
time. There are still volunteers, especially among the newer contributors, but the core group
consists of professionals.‖

Because of the universal importance of PIM infrastructure for most computer users, be it in a
personal or business context, the guiding principle of the technical decision-making process in
KDEPIM has become practicability. If an idea cannot be made to work reliably and in a
reasonable timeframe, it is dropped. Changes are always scrutinized for their potential impact
on the core functionality, which must be maintained in a working state at all times. There is
very little room for experimentation or risky decisions. In this, the project is very similar to
most commercial and proprietary product teams and somewhat dissimilar from other parts of
KDE and Free Software in general. As noted in the introduction, this is not always purely
positive, as it has the potential to stifle innovation and creativity.

The Evolution of Akonadi

The KDEPIM community meets quite regularly in person, at conferences and other larger
developer gatherings, as well as for small hacking sprints where groups of 5 to 10 developers
get together to focus on a particular issue for a few days of intensive discussion and
programming. These meetings provide an excellent opportunity to discuss any major issues
that are on people’s minds in person, to make big decisions, and to agree on roadmaps and
priorities. It is during such meetings that the architecture of a big concerted effort such as
Akonadi first emerges and later solidifies. The remainder of this section will trace some of the
important decision points of this project, starting from the meeting that brought the
fundamental ideas forward for the first time.

When the group met for its traditional winter meeting in January 2005, parts of the underlying
infrastructure of KDEPIM were already showing signs of strain. The abstraction used to support
multiple backend implementations for contact and calendaring information, KResources, and
the storage layer of the email application KMail were built around a few basic assumptions
that were starting to no longer hold. Specifically, it was assumed that:

• There would be only a very limited number of applications interested in loading the
address book or the calendar: namely the primary applications serving that purpose,
KAddressbook and KOrganizer. Similarly, there was the assumption that only KMail
would need to access the email message store. Consequently there was no, or very limited,
support for change notification or concurrent access, and thus no proper locking.

‖ This might be surprising, since it goes against the intuitive idea of Free Software being produced largely
by students with too much time on their hands, but lately there have been substantiated claims that by
now the majority of successful Free Software is in fact written and maintained by professional software
engineers. See for example Karim Lakhani, Bob Wolf, Jeff Bates, and Chris DiBona’s Hacker Survey
v0.73 at http://freesoftware.mit.edu/papers/lakhaniwolf.pdf (24.6.2002, Boston Consulting Group).
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• There would be only a very limited amount of data. After all, how many contacts would
users typically have to manage, and how many appointments or tasks? The assumption
was that this would be in the order of magnitude of “a few hundred.”

• That access would be required only by C++ and Qt libraries and KDE applications.

• That the various backend implementations would work “online,” accessing the data stored
on a server without duplicating a lot of that data locally.

• That read and write access to the data would be synchronous and fast enough not to block
the caller for a noticeable length of time in the user interface.

There was little disagreement among those present at the 2005 meeting that the requirements
imposed by real-world usage scenarios of the current user base, and even more so the probable
requirements of future use cases, could not be met by the current design of the three major
subsystems. The ever-increasing amounts of data, the need for concurrent access of multiple
clients, and more complicated error scenarios leading to a more pressing need for robust,
reliable, transactional storage layers cleanly separated from the user interface were clearly
apparent. The use of the KDEPIM libraries on mobile devices, transferring data over low-
bandwidth, high-latency, and often unreliable links, and the ability to access the user’s data
not just from within the applications traditionally dealing with such data, but pervasively
throughout the desktop were identified as desirable. This would include the need to provide
access via other mechanisms than C++ and Qt, such as scripting languages, interprocess
communication, and possibly using web and grid service technologies.

Although those high-level issues and goals were largely undisputed, the pain of the individual
teams was much more concrete and had a different intensity for everyone, which led to
disagreement about how to solve the immediate challenges. One such issue was the fact that
in order to retrieve information about a contact in the address book, the whole address book
needed to be loaded into memory, which could be slow and take up a lot of memory if the
address book is big and contains many photos and other attachments. Since access was by way
of a library, with a singleton address book instance per initialization of the library and thus per
process, a normal KDE desktop running the email, address book, and calendaring applications
along with helpers such as the appointment reminder daemon could easily have the address
book in memory four or more times.

To remedy the immediate problem of multiple in-memory instances of the address book, the
maintainer of that application proposed a client/server-based approach. In a nutshell, there
would be only one process holding the actual data in memory. After loading it from disk once,
all access to the data would be via IPC mechanisms, notably DCOP, KDE’s remote procedure
call infrastructure at the time. This would also isolate the communication with contact data
backends (such as groupware servers) in one place, another concern with the old architecture.
Lengthy discussion revealed, though, that while the memory footprint issue might be solved
by this approach, several major problems would remain. Most notably, locking, conflict
resolution, and change notification would still need to be implemented on top of the server
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somehow. It was also felt that the heavily polymorphic (thus pointer-based) APIs in use for
calendaring in particular would make it very hard to serialize the data, which would be needed
for the transfer over DCOP. Transferring the data through an IPC interface all the time might
also end up being slow, and this was raised as a concern as well, especially if the server was
also going to be used for access to email, which had been suggested as an option.

The conclusion of the meeting was that the memory footprint problem might be better solved
through a more clever sharing mechanism for both the on-disk cache and the in-memory
representation, possibly through the use of memory mapped files. The complexity of changing
to a client/server-based architecture was deemed too challenging, and it was felt that the
benefits that would come from it were not enough to justify the risk of breaking an essentially
working (albeit not satisfactorily) system. As a possible alternative, the Evolution Data Server
(EDS) as used by the Evolution team, a competing PIM suite associated with the GNOME
project and written in C using the glib and GTK library stack, was agreed to be worth
investigating.

The proponents of the data server idea left the meeting somewhat disappointed, and in the
following months not much progress was made one way or the other. A short foray into EDS’s
codebase with the aim of adding support for the libraries used by KDE for the address book
ended quickly and abruptly when those involved realized that bridging the C and C++ worlds,
and especially mindsets and API styles, to arrive at a working solution would be inelegant at
best and unreliable and incomplete at worst. EDS’s use of CORBA, a technology initially
adopted by KDE and then replaced with DCOP for a variety of reasons, was not very appealing
either. It should be noted, in all fairness, that the rejection of EDS as the basis for KDE’s new
PIM data infrastructure was based on technical judgement as well as personal bias against C,
a dislike of the implementation and its perceived maintainability, along with a certain amount
of “not invented here” syndrome.

Toward the end of 2005, the problems discussed at the beginning of the year had only become
more pressing. Email was not easily accessibly to applications such as desktop search agents or
to semantic tagging and linking frameworks. The mail handling application, including its user
interface, had to be started in order to access an attachment in a message found in a search
index and to open it for editing. These and similar usability and performance issues were adding
to the unhappiness with the existing infrastructure.

At a conference in Bangalore, India, where a significant part of the team of developers working
on Evolution was located at the time, we had the opportunity to discuss some of these issues
with them and ask them about their experiences with EDS. In these meetings it became quickly
apparent that they were facing many of the same issues the KDEPIM team had identified, that
they were considering similar solutions, and that they did not feel that extending EDS to
support mail or porting it away from CORBA were feasible options. The general message from
the Evolution team was that if the KDEPIM developers were to build a new infrastructure for
PIM data access, they would be interested in sharing it at least in concept, and possibly also in
implementation, provided that it wasn’t available solely as a C++ and KDE library.
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The possibility to share such a crucial piece of infrastructure across the whole Free desktop in
the future, plus the fact that if done right this would be useful to and appreciated by the wider
development community beyond KDEPIM, gave new weight to the idea of a client/server
design. It would provide an integration point in the form of a protocol or IPC mechanism rather
than a library that would need to be linked against, thus opening the door to other toolkits,
languages, and paradigms. This scenario of a shared PIM server between KDE and GNOME
also seemed more and more realistic in light of the emergence of the DBUS stack as a cross-
desktop and cross-platform IPC and desktop bus system, which was at the time actively being
adopted by both desktop projects and shared via the Freedesktop.org coordination site.

In an additional interesting instance of cross-project pollination, some developers from the
PostgreSQL database project were also present at the conference that year and happened to
participate in some of the discussions around this topic. They were interested in it from the
perspective of the efficient management of, access to, and ability to query into a large amount
of data with a lot of structure, such as the user’s email, events, and contacts. They felt that their
expertise and the software they were building could become an important part of such a
system. They brought up many interesting aspects related to handling searches efficiently and
designing the system with type extensibility in mind, but also related to more operational
concerns, such as how to back up such a system and how to ensure its data integrity and
robustness.

A few months later, at the annual meeting in Osnabrueck, Germany, the concept of a PIM data
server was brought forward again, this time with some additional backing by those working
on email. This group had been among those who were more skeptical of the idea the year
before and most conscious of the possible performance impact and added complexity.# The
added perspective beyond the KDE project, the fact that the alternative solutions suggested the
year before had not been realised or even tried, and the ever-increasing pressure on the team
to address the skeletons in their closet eventually prompted the opponents to rethink their
position and seriously consider this disruptive change.

This was helped considerably by a nontechnical aspect that had crystallized through many
conversations among the developers over the course of the previous year. It had become clear
to the group that their biggest problem was the lack of new developers coming into the project,
and that that was largely due to the unwieldy and not-very-pleasant-to-work-on libraries and
applications that made up the project. There was quite some fear that the current developers
would not be able to contribute forever, and that they would not be able to pass on what they
had learned to the next generation and keep the project alive. The solution, it was felt, was to
focus as much attention and energy as possible on encoding the combined experience and
knowledge of those currently working on KDEPIM into something that would be the basis for
the next generation of contributors and upon which others in the KDE project and beyond
could build better PIM tools. The goal would be to produce something in the process that would

# http://pim.kde.org/development/meetings/osnabrueck4/overview.php
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be fun to work on, better documented, less arcane, and more modern. It was hoped that this
would attract new contributors and allow creative work in the PIM space again by limiting the
unpleasantness and complexity involved to those who wished to make use of the infrastructure
form. The client/server approach seemed to facilitate this.

It should be noted that this fundamental decision to rework the whole data storage
infrastructure for KDEPIM in a very disruptive way essentially entailed completely rewriting
large parts of the system. We quite consciously accepted the fact that this would mean a lot
less resources would be available to focus on maintaining the current codebase, keeping it
stable and working, and also making it available as part of the KDE 4.0 release somehow, since
that would almost certainly happen before such a major refactoring could possibly be finished.
As it would turn out, this meant that KDE 4.0 was in fact released without KDEPIM, a
somewhat harsh but probably necessary sacrifice in retrospect.

Once the group had agreed on the general direction, they produced the following mission
statement:

We intend to design an extensible cross-desktop storage service for PIM data and meta data

providing concurrent read, write, and query access. It will provide unique desktop-wide object

identification and retrieval.

The Akonadi Architecture

Some key aspects that would remain in the later iterations of the architecture were already
present in the first draft of the design produced in the meeting. Chief among those was the
decision to not use DBUS, the obvious choice for the IPC mechanism in Akonadi, for the
transport of the actual payload data. Instead, a separate transport channel and protocol would
be used to handle bulk transfers, namely IMAP. Some reasons for this were that it could control
traffic out of band with respect to the data, thus allowing lengthy data transfers to be canceled,
for example, since the data pipe would never block the control pipe. Data transfers would have
a lot less overhead with IMAP compared to pushing them through an IPC mechanism, since
the protocol is designed for fast, streaming delivery of large amounts of data. This was a reaction
to concerns about the performance characteristics of DBUS in particular, which explicitly
mentioned in its documentation that it was not designed for such usage patterns. It would
allow existing IMAP library code to be reused, saving effort when implementing the protocol,
both for the KDEPIM team itself and for any future third-party adopters wishing to integrate
with Akonadi. It would retain the ability to access the contents of the mail store with generic,
non-Akonadi-specific tools, such as the command-line email applications, pine or mutt. This
would counter the subjective fear users have of entrusting their data to a system that would
lock them in by preventing access to their data by other means. Since IMAP only knows about
email, the protocol would need to be extended to support other mime types, but that seemed
doable while retaining basic protocol compatibility. An alternative protocol option that was
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discussed was to use http/webdav for the transport, possibly reusing an existing http server
implementation such as Apache, but this approach did not get much support.

A central notion in Akonadi is that it constitutes the one central cache of all PIM data on the
system and the associated metadata. Whereas the old framework assumed online access to the
storage backends to be the normal case, Akonadi embraces the local copy that has to be made
as soon as the data needs to be displayed to the user, for example, and tries to retain as much
of the information it has already retrieved as possible, in order to avoid unnecessary
redownloads. Applications are expected to retrieve only those things into memory that are
actually needed for display (in the case of an email application, the header information of those
few email messages that are currently visible in the currently shown folder, for example) and
to not keep any on disk caches of their own. This allows the caches to be shared, keeps them
consistent, reduces the memory footprint of the applications, and allows data not immediately
visible to the user to be lazy-loaded, among other optimizations. Since the cache is always
present, albeit potentially incomplete, offline usage is possible, at least in many cases. This
greatly increases the robustness against problems with unreliable, low-bandwidth, and high-
latency links.

To allow concurrent access that does not block, the server is designed to keep an execution
context (thread) for each connection, and all layers take a potentially large number of
concurring contexts into account. This implies transactional semantics of the operations on the
state, proper locking, the ability to detect interleavings of operations that would lead to
inconsistent state, and much more. It also puts a key constraint on the choice of technology
for managing the on-disk persistence of the contents of the system, namely that it supports
heavily concurrent access for both reads and writes. Since state might be changed at any time
by other ongoing sessions (connections), the notification mechanism that informs all
connected endpoints of such changes needs to be reliable, complete, and fast. This is yet another
reason to separate the low-latency, low-bandwidth, but high-relevance control information
from the higher-bandwidth, higher-latency (due to potential server roundtrips), and less time-
critical bulk data transfer in order to prevent notifications from being stuck behind a large email
attachment being pushed to the application, for example. This becomes a lot more relevant if
the application is concurrently able to process out-of-band notifications while doing data
transfer at the same time. Although this might not be the case for the majority of applications
that currently exist for potential users of Akonadi, it can be reasonably assumed that future
applications will be a lot more concurrency-aware, not least because of the availability of tools
such as ThreadWeaver, which is discussed in the next section of this chapter. The high-level
convenience classes that are part of the KDE-specific Akonadi access library already make use
of this facility.

Another fundamental aspect of Akonadi already present in this first iteration of the design is
the fact that the components providing access to a certain kind of storage backend, such as a
groupware server, run as separate processes. This has several benefits. The potentially error-
prone, slow, or unreliable communication with the server cannot jeopardize the stability of
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the overall system. Agents* can crash without taking down the whole server. If synchronous
interaction with the server is more convenient or maybe even the only possible way to get data
from the other end, it can block without blocking any other interaction with Akonadi. They
can link against third-party libraries without imposing dependencies on the core system, and
they can be separately licensed, which is important for those cases where access libraries do
not exist as Free Software. They are also isolated from the address space of the Akonadi server
proper and thus less of a potential security problem. They can more easily be written by third
parties and deployed and tested easily against a running system, using whatever programming
language seems suitable, as long as support for DBUS and IMAP is available. The downside, of
course, is the impact of having to serialize the data on the way into the Akonadi store, which
is crossing process boundaries. This is less of a concern in practice, though, for two reasons.
First, it happens in the background, from the user’s perspective, without interrupting anything
at the UI level. Second, the data will either be already available locally, in the cache, when the
user asks for it, or it will be coming from a network socket that can pass the data onto the
Akonadi server socket unparsed, in many cases, and potentially even without copying it. The
case where the user asks to see data is one of the few that need to be as fast as possible, to avoid
noticeable waiting times. In most cases the interaction between agents and the store is not
performance-critical.

From a concurrency point of view, Akonadi has two layers. At the multiprocessing level, each
user of Akonadi, generally an application or agent, has a separate address space and resource
acquisition context (files, network sockets, etc.). Each of these processes can open one or more
connections to the server, and each is represented internally by a thread. The trade-off between
the benefits of using threads versus processes is thus side-stepped by using both: processes
where the robustness, resource, and security isolation is important, and threads where the
shared address space is needed for performance reasons and where the code is controlled by
the Akonadi server implementation itself (and thus assumed to be less likely to cause stability
problems).

The ability to add support for new types of data to the system with reasonable effort was among
one of the first desired properties identified. Ideally, the data management layer should be
completely type agnostic, and knowledge about the contents and makeup of the data should
be centralized in one place for each kind of data (emails, events, and contacts initially, but later
notes, RSS feeds, IM conversations, bookmarks, and possibly many more). Although the desire
to achieve this was clear from the start, how to get there was not. Several iterations of the
design of the core system itself and the access library API were needed until the goal was
reached. We describe the end result a bit further on in this section.

During the initial architecture discussions, the group approached the big picture in a pretty
traditional way, separating concerns as layers from the bottom up. As the diagram of the white

* Entities interacting with the Akonadi server and reading and writing its data are referred to as agents. A
general example would be a data mining agent. Agents that deal specifically with synchronizing data
between the local cache and a remote server are called resources.
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board drawing from that discussion in Figure 12-1 shows, there would be a storage
(persistence) layer at the bottom, with logic to access it on top, a transport and access protocol
layer above that, on up to application space.

Storage Access Protocol

Storage Access Logic

Storage

(IMAP, HTTP, D-BUS,...)

(Database, Filesystem,...)

KDE

libakonadi

mail calendar contacts
control

(Qt - only)

KMail KOrganizer IMAP EDS

... ...

...

...OXKolab

FIGURE 12-1. Initial draft of the layers in the Akonadi framework

While debating what the API for the applications’ access to the store would look like (as
opposed to that used by agent or resources delivering into the system), some were suspicious
that there would need to be only one access API, used by all entities interacting with the store,
whether their primary focus was providing data or working with the data from a user’s point
of view. It quickly emerged that that option is indeed preferable, as it makes things simpler
and more symmetric. Any operation by an agent on the data triggers notifications of the
changes, which are picked up by all other agents monitoring that part of the system. Whatever
the resources need in addition to the needs of the applications—for example, the ability to
deliver a lot of data into the store without generating a storm of notifications—is generic
enough and useful enough to be worthwhile in one unified API. Keeping the API simple for
both application access and resource needs is required anyhow, in order to make it realistically
possible for third parties to provide additional groupware server backends and to get application
developers to embrace Akonadi. Any necessary special cases for performance or error recovery
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reasons should be handled under the hood as much as possible. The example of avoiding
notification storms is taken care of by a configurable notification compression and update
monitoring system, which users of the system can subscribe to with some granularity.

The next version of the high-level architecture diagram that was drawn, shown in
Figure 12-2, thus reflects this notion by portraying the layers of the system as concentric rings
or parts of rings.

St
orage Access Protocol

Storage

Resources

Akonadi - PIM Storage Service

O
X

Groupw
ise

IMAP
POP

GNOME API
KDE API

EDS

Evolution Kontact

KOffice

ICalendar
File

FIGURE 12-2. Inside out, not bottom up

Given the requirements outlined so far, it was fairly obvious that a relational database would
make implementation of the lowest (or innermost) layer much easier. At least for the
metadata around the actual PIM items, such as retrieval time, local tags, and per folder policies,
just to name a few, which are typed, structured, and benefit from fast, indexed random access
and efficient querying, no other solution was seriously considered. For the payload data itself,
the email messages, contacts, and so on, and their on-disk storage, the decision was less clear
cut. Since the store is supposed to be type-independent, a database table holding the data would
not be able to make any assumptions about the structure of the data, thus basically forcing it
to be stored as BLOB fields. When dealing with unstructured (from the point of view of the
database) data, only some of the benefits of using a database can be leveraged. Efficient
indexing is basically impossible, as that would require the contents of the data fields to be
parsed. Consequently querying into such fields would not perform well. The expected access
patterns also do not favor a database; a mechanism that handles continuous streaming of data
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with a lot of locality of reference might well be preferable. Not using a database for the data
items would mean that transactional semantics on the operations on the store would have to
be implemented manually. A proposed solution for this was the extension of the principles
employed by the maildir standard, which essentially allows lock-free ACID access by relying
on atomic rename operations on the filesystem.† For the first pass implementation, it was
decided that the database would store both data and metadata, with the intent of optimizing
this at a later point, when the requirements of searching in particular would be more well
defined.

Given that the Akonadi store serves as the authoritative cache for the user’s personal
information, it can effectively offer and enforce advanced cache lifetime management. Through
the concept of cache policies, very fine-grained control over which items are retained and for
how long can be exposed to users to allow a wide variety of usage patterns. On one end of the
spectrum—for example, on an embedded device with a bad link and very limited storage—it
might make sense to develop a policy to never store anything but header information, which
is pretty lightweight, and only download a full item when it needs to be displayed, but to keep
already downloaded items in RAM until the connection is severed or power to the memory is
shut down. A laptop, which often has no or only unreliable connectivity but a lot more disk
space available, might proactively cache as much as possible on disk to enable working offline
productively and only purge some folders at regular intervals of days, weeks, or even months.
On the other hand, on a desktop workstation, with an always-on, broadband Internet
connection or local area network access to the groupware server, fast online access to the data
on the server can be assumed. This means that unless the user wants to keep a local copy for
reasons of backup or to save network bandwidth, the caching can be more passive, perhaps
only retaining already downloaded attachments for local indexing and referencing. These
cache policies can be set on a per-folder, per-account, or backend basis and are enforced by a
component running in its own thread in the server with lower priority, regularly inspecting
the database for data that can be purged according to all policies applicable to it.

Among the major missing puzzle pieces that were identified in the architecture at the 2007
meeting was how to approach searching and semantic linking. The KDE 4 platform was gaining
powerful solutions for pervasive indexing, rich metadata handling, and semantic webs with
the Strigi and Nepomuk projects, which could yield very interesting possibilities when
integrated with Akonadi. It was unclear whether a component feeding data into Strigi for full
indexing could be implemented as an agent, a separate process operating on the notifications
from the core, or would need to be integrated into the server application itself for performance
reasons. Since at least the full text index information would be stored outside of Akonadi, a
related question was how search queries would be split up, how and where results from Strigi
and Akonadi itself would be aggregated, and how queries could be passed through to backend
server systems capable of online searching, such as an LDAP server. Similarly, the strategy for
how to divide responsibilities with Nepomuk—for example, whether tagging should be entirely

† http://pim.kde.org/development/meetings/osnabrueck4/icaldir.php
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delegated to it—was to be discussed. To some extent, these discussions are still going on, as the
technologies involved are evolving along with Akonadi, and the current approaches have yet
to be validated in production use. At the time of this writing, there are agents feeding into
Nepomuk and Strigi; these are separate processes that use the same API to the store as all other
clients and resources. Incoming search queries are expressed in either XESAM or SPARQL, the
respective query languages of Strigi and Nepomuk, which are also implemented by other search
engines (such as Beagle, for example) and forwarded to them via DBUS. This forwarding
happens inside the Akonadi server process. The results come in via DBUS in the form of lists
of identifiers, which Akonadi can then use to present the results as actual items from the store
to the user. The store does not do any searching or content indexing itself at the moment.

The API for the KDE-specific C++ access library took a while to mature, mostly because it was
not clear from the start how type-independent the server would end up being and how much
type information would be exposed in the library. By April 2007, it was clear that the way to
extend the access library to support new types would be to provide so-called serializer plug-
ins. These are runtime-loadable libraries capable of converting data in a certain format,
identified by a mime type, into a binary representation for storage as a blob in the server and
conversely, capable of restoring the in-memory representation from the serialized data. This is
orthogonal to adding support for a new storage backend, for example, and the data formats
used by it, which happens by implementing a new resource process (an agent). The
responsibility of the resource lies in converting what the server sends down the wire into a
typed, in-memory representation that it knows how to deal with, and then using a serializer
plug-in to convert it into a binary datastream that can be pushed into the Akonadi store and
converted back on retrieval by the access library. The plug-in can also split the data into
multiple parts to allow partial access (to only the message body or only the attachments, for
example). The central class of that library is called Akonadi::Item and represents a single item
in the store. It has a unique ID, which allows it to be identified globally on the user’s desktop
and associated with other entities as part of semantic linking (for example, a remote identifier).
This maps it to a source storage location, attributes, a data payload, and some other useful
infrastructure, such as flags or a revision counter. Attributes and payload are strongly typed,
and the methods to set and get them are templatized. Akonadi::Item instances themselves are
values, and they are easily copiable and lightweight. Item is parameterized with the type of the
payload and attributes without having to be a template class itself. The template magic to enable
that is somewhat involved, but the resulting API is very simple to use. The payload is assumed
to be a value type, to avoid unclear ownership semantics. In cases where the payload needs to
be polymorphic and thus a pointer, or when there is already a pointer-based library to deal
with a certain type of data (as is the case for libkcal, the library used for events and tasks
management in KDE), shared pointers such as boost::shared_ptr can be used to provide value
semantics. An attempt to set a raw pointer payload is detected with the help of template
specialization and leads to runtime assertions.

The following example shows how easy it is to add support for a new type to Akonadi, provided
there is already a library to deal with data in that format, as is frequently the case. It shows the
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complete source code of the serializer plug-in for contacts, or KABC::Addressee objects as the
KDE library calls them:

bool SerializerPluginAddressee::deserialize( Item& item,
                                             const QByteArray& label,
                                             QIODevice& data,
                                             int version )
{
    if ( label != Item::FullPayload || version != 1 )
        return false;

    KABC::Addressee a = m_converter.parseVCard( data.readAll() );
    if ( !a.isEmpty() ) {
        item.setPayload<KABC::Addressee>( a );
    } else {
        kWarning() << "Empty addressee object!";
    }
    return true;
}

void SerializerPluginAddressee::serialize( const Item& item,
                                           const QByteArray& label,
                                           QIODevice& data,
                                           int &version )
{

    if ( label != Item::FullPayload
      || !item.hasPayload<KABC::Addressee>() )
        return;
    const KABC::Addressee a = item.payload<KABC::Addressee>();
    data.write( m_converter.createVCard( a ) );
    version = 1;
}                         

The typed payload, setPayload, and hasPayload methods of the Item class allow developers to
use the native types of their data type libraries directly and easily. Interactions with the store
are generally expressed as jobs, an application of the command pattern. These jobs track the
lifetime of an operation, provide a cancelation point and access to error contexts, and allow
progress to be tracked. The Monitor class allows a client to watch for changes to the store in the
scope it is interested in, such as per mime type or per collection, or even only for certain parts
of particular items. The following example from an email notification applet illustrates these
concepts. In this case the payload type is a polymorphic one, encapsulated in a shared pointer:

Monitor *monitor = new Monitor( this );
monitor->setMimeTypeMonitored( "message/rfc822" );
monitor->itemFetchScope().fetchPayloadPart( MessagePart::Envelope );
connect( monitor, SIGNAL(itemAdded(Akonadi::Item,Akonadi::Collection)),
         SLOT(itemAdded(Akonadi::Item)) );
connect( monitor, SIGNAL(itemChanged(Akonadi::Item,QSet<QByteArray>)),
         SLOT(itemChanged(Akonadi::Item)) );

// start an initial message download for the first message to show
ItemFetchJob *fetch = new ItemFetchJob( Collection( myCollection ), this );
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fetch->fetchScope().fetchPayloadPart( MessagePart::Envelope );
connect( fetch, SIGNAL(result(KJob*)), SLOT(fetchDone(KJob*)) );

...

typedef boost::shared_ptr<KMime::Message> MessagePtr;

void MyMessageModel::itemAdded(const Akonadi::Item & item)
{
    if ( !item.hasPayload<MessagePtr>() )
       return;
    MessagePtr msg = item.payload<MessagePtr>();
    doSomethingWith( msg->subject() );
    ...
}                            

The First Release and Beyond

When the group congregated in reliably cold and rainy Osnabrueck once more, in January
2008, the first application uses of Akonadi could be presented by their developers, who had
been invited to attend. The authors of Mailody, a competitor to the default email application
in KDE, had decided some time before that Akonadi could help them build a better application,
and they had become the first to try out its facilities and APIs. Their feedback proved very
valuable in finding out what was still too complicated, where additional detail was needed,
and where concepts were not yet well documented or not well implemented. Another early
adopter of Akonadi present at the meeting was Kevin Krammer, who had taken up the
interesting task of trying to allow users of the legacy libraries for PIM data in KDE to access
Akonadi (as well as the other way around, to access the data stored with the old infrastructure
through Akonadi) by providing compatibility agents and resources for both frameworks. The
issues he encountered while doing that exposed some holes in the API and validated that at
least all of the existing functionality would be possible with the new tools.

A notable outcome of this meeting was the decision to drop backward compatibility with IMAP
in the protocol. It had evolved so far away from the original email-only standard that
maintaining the ability of the Akonadi server to act as a standard conforming IMAP server for
email access was a burden that outweighed the benefits of that feature. The IMAP protocol had
served as a great starting point, and many of its concepts remain in the Akonadi access protocol,
but it can no longer justifiably be called IMAP. It is possible that this mechanism will return in
later versions of the server, probably implemented as a compatibility proxy server.

With the KDE 4.1 release rapidly approaching, the team met again in March 2008 to do a full
review of the API before its first public release, which would commit them to keep it stable
and binary compatible for the foreseeable future. Over the course of two days, an amazing
number of small and large inconsistencies, missing pieces of documentation, implementational
quirks, and unhappy namings were identified, and they were rectified in the weeks that
followed.
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At the time of this writing, the KDE 4.1 release is imminent, and the Akonadi team is excitedly
looking forward to the reaction of the many application and library developers in the wider
KDE community who comprise its target audience. Interest in writing access resources for
various storage backends is increasing, and people have started work on support for Facebook
address books, Delicious bookmarks, the MS Exchange email and groupware server via the
OpenChange library, RSS blog feeds, and others. It will be fascinating to see what the
community will be able to create when data from all of these sources and many others will be
available easily, pervasively, and reliably; when it will be efficiently queryable; when it will be
possible to annotate the data, link items to each other, and create meaning and context among
them; and when they can exploit that richness to make users do more with their software and
enjoy using it more.

Two related ideas for optimization remain unimplemented so far. The first is to avoid storing
the payload data in blobs in the database by keeping only a filesystem URL in the table and
storing the data itself directly on the filesystem, as mentioned earlier. Building on that, it should
be possible to avoid copying the data from the filesystem into memory, transferring it through
a socket for delivery to the client (which is another process), thus creating a second in-memory
copy of it only to release the first copy. This could be achieved by passing a file handle to the
application, allowing it to memory map the file itself for access. Whether that can be done
without violating the robustness, consistency, security, and API constraints that make the
architecture work remains to be seen. An alternative for the first part is to make use of an
extension to MySQL for blob streaming, which promises to retain most of the benefits of going
through the relation database API while maintaining most of the performance of raw file
system access.

Although the server and KDE client libraries will be released for the first time with KDE 4.1,
the intent is still to share it with as much of the Free Software world as possible. To this end,
a project on Freedesktop.org has been created, and the server will be moved there as soon as
that process is finished. The DBUS interfaces have all been named in a desktop-neutral fashion;
the only dependency of the server is the Qt library in version 4, which is part of the Linux
Standard Base specification and available under the GNU GPL for Linux, Windows, OS X, and
embedded systems, including Windows CE. A next major step would be to implement a second
access library—in Python, for example, which comes with a lot of infrastructure that should
make that possible with reasonable effort, or maybe using Java, where the same is true.

ThreadWeaver
ThreadWeaver is now one of the KDE 4 core libraries. It is discussed here because its genesis
contrasts in many ways with that of the Akonadi project, and thus serves as an interesting
comparison. ThreadWeaver schedules parallel operations. It was conceived at a time when it
was technically pretty much impossible to implement it with the libraries used by KDE, namely
Qt. The need for it was seen by a number of developers, but it took until the release of Qt 4
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for it to mature and become mainstream. Today, it is used in major applications such as KOffice
and KDevelop. It is typically applied in larger-scale, more complex software systems, where
the need for concurrency and out-of-band processing becomes more pressing.

ThreadWeaver is a job scheduler for concurrency. Its purpose is to manage and arbitrate
resource usage in multi-threaded software systems. Its second goal is to provide application
developers with a tool to implement parallelism that is similar in its approach to the way they
develop their GUI applications. These goals are high-level, and there are secondary ones at a
smaller scale: to avoid brute-force synchronization and offer means for cooperative
serialization of access to data; to make use of the features of modern C++ libraries, such as
thread-safe, implicit sharing, and signal-slot-connections across threads; to integrate with the
application’s graphical user interface by separating the processing elements from the delegates
that represent them in the UI; to allow it to dynamically throttle the work queue at runtime
to adapt to the current system load; to be simplistic; and many more.

The ThreadWeaver library was developed to satisfy the needs of developers of event-driven
GUI programs, but it turned out to be more generic. Because GUI programs are driven by a
central event loop, they cannot process time-consuming operations in their main thread. Doing
so would freeze the user interface until the operation is finished. In some windowing
environments, the user interface can be drawn only from the main thread, or the windowing
system itself is single-threaded. So a natural way of implementing responsive cross-platform
GUI applications is to perform all processing in worker threads and update the user interface
from the main thread when necessary. Surprisingly, the need for concurrency in user interfaces
is rarely ever as obvious as it should be, although it has been emphasized for OS/2, Windows
NT, and Solaris eons ago. Multithreaded programming is more complicated and requires a
better understanding of how the written code actually functions. Multithreadings also seems
to be a topic well understood by software architects and designers, and badly disseminated to
software maintainers and less-experienced programmers. Also, some developers seem to think
that most operations are fast enough to be executed synchronously, even reading from
mounted filesystems, which is a couple of orders of magnitude slower than anything processed
in the CPU. Such mistakes surface only under extraordinary circumstances, such as when the
system is under heavy I/O load or, more commonly, a mounted filesystem has been put to
sleep to save power or—heavens!—when, all of a sudden, the filesystem happens to be on the
network.

The following section will describe the architecture of the library along with its underlying
concepts. At the end of the chapter, we will explore how it found its way into KDE 4.

Introduction to ThreadWeaver: Or, How Complicated Can It Be to Load a File?

To convince programmers to make use of concurrency, it needs to be conveniently available.
Here is a typical example for an operation performed in a GUI program—loading a file into a
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memory buffer to process it and display the results. In an imperative program, where all
individual operations are blocking, it is of little complexity:

1. Check whether the file exists and is readable.

2. Open the file for reading.

3. Read the file contents into memory.

4. Process them.

5. Display the results.

To be user-friendly, it is sufficient to print a progress message to the command line after every
step (if the user requested verbose mode).

In a GUI program, things appear in a different light because during all of these steps, it is
necessary to be able to update the screen, and users expect a way to cancel the operation.
Although it sounds unbelievable, even recent documentation for GUI toolkits mentions the
“check for events occasionally” approach. The idea is to periodically check for events while
processing the aforementioned steps in chunks and update or abort if necessary. A lot of care
needs to be applied in this situation because the application state can change in unexpected
ways. For example, the user might decide to close the program, unaware that the program
checks for an event in the midst of a call stack of an operation. To put it shortly, this approach
of polling has never worked very well and is generally out of fashion.

A better approach is to use a thread (of course). But without a framework to help, this often
leads to weird implementations as well. Since GUI programs are event-based, every step just
listed starts with an event, and an event notifies its completion. In the C++ world, signals are
often used for the notification. Some programs look like this:

1. The user requests to load the file, which triggers a handler method by a signal or event.

2. The operation to open and load the file is started and connected to a second method for
notification about its completion.

3. In this method, processing the data is started, connected to a third method.

4. The last method finally displays the results.

This cascade of handler methods does not track the state of the operation very well and is
usually error-prone. It also shows a lack of separation of operations and the view. Nevertheless,
it is found in many GUI applications.

This is exactly where ThreadWeaver is there to help. Using jobs, the implementation will look
like this:

1. The user requests to load the file, which triggers a handler method by a signal or event.

2. In the handler method, the user creates a sequence of jobs (a sequence is a job container
that executes its jobs in the order they were added). He adds a job to load the file and one
to process its contents. The sequence object is a job itself and sends a signal when all its
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contained jobs are completed. Up to this point, no processing has taken place; the
programmer only declared what needs to be done in what order. Once the whole sequence
is set up, the user queues it into the application-global job queue (a lazy initialized
singleton). The sequence is automatically executed by worker threads.

3. When the done() signal of the sequence is received, the data is ready to be displayed.

Two aspects are apparent. First, the individual steps are all declared in one go and then
executed. This alone is a major relief to GUI programmers because it is a nonexpensive
operation and can easily be performed in an event handler. Second, the usual issues of
synchronization can largely be avoided by the simple convention that the queuing thread only
touches the job data after it has been prepared. Since no worker thread will access the job data
anymore, access to the data is serialized, but in a cooperative fashion. If the programmer wants
to display progress to the user, the sequence emits signals after the processing of every
individual job (signals in Qt can be sent across threads). The GUI remains responsive and is
able to dequeue the jobs or request cancellation of processing.

Since it is much easier to implement I/O operations this way, ThreadWeaver was quickly
adopted by programmers. It solved a problem in a nice, convenient way.

Core Concepts and Features

In the previous example, job sequences have been mentioned. Let us look at what other
constructs are provided in the library.

Sequences are a specialized form of job collections. Job collections are containers that queue
a set of jobs in an atomic operation and notify the program about the whole set. Job collections
are composites, in the way that they are implemented as job classes themselves. There is only
one queuing operation in ThreadWeaver: it takes a Job pointer. Composite jobs help keep the
queue API minimal.

Job sequences use dependencies to make sure the contained jobs are executed in the correct
order. If a dependency is declared between two jobs, it means that the depending job can be
executed only after its dependency has finished processing. Since dependencies can be declared
in an m:n fashion, pretty much all imaginable control flows of depending operations (which
are all directed graphs, since repetition of jobs is not allowed) can be modeled in the same
declarative fashion. As long as the execution graph remains directed, jobs may even queue
other jobs while being processed. A typical example is that of rendering a web page, where the
anchored elements are discovered only once the text of the HTML document itself is processed.
Jobs can then be added to retrieve and prepare all linked elements, and a final job that depends
on all these preparatory jobs renders the page for display. Still, no mutex necessary.
Dependencies are what distinguish a scheduling system like ThreadWeaver from mere tools
for parallel processing. They relieve the programmer of thinking how to best distribute the
individual suboperations to threads. Even with modern concepts such as futures, usually the
programmer still needs to decide on the order of operations. With ThreadWeaver, the worker
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threads eagerly execute all possible jobs that have no unresolved dependencies. Since the
execution of concurrent flow graphs is inherently undeterministic, it is very unlikely that a
manually defined order is flexible enough to be the most efficient. A scheduler can adapt much
better here. Computer scientists tend to disagree with this thesis, whereas economists, who are
more used to analyzing stochastic systems, often support it.

Priorities can be used to influence the order of execution as well. The priority system used is
quite simple: of all integer priorities assigned to jobs in the queue, the highest ones are first
handed to an available worker thread. Since the job base class is implemented in a way that
allows writing decorators, changing a job’s priority externally can be done by writing a
decorator that bumps the priority without touching the job’s implementation. The combination
of priorities and dependencies can lead to interesting results, as will be shown later.

Instead of relying on direct implementations of queueing behavior, ThreadWeaver uses queue
policies. Queue policies do not immediately affect when and how a particular job is executed.
Instead, they influence the order in which jobs are taken from the queue by the worker threads.
Two standard implementations come with ThreadWeaver. One is the dependencies discussed
earlier. The other is resource restrictions. Using resource restrictions, it can be declared that of
a certain subset of all created jobs (for example, local filesystem I/O-expensive ones), only a
certain amount can be executed at the same time. Without such a tool, it regularly happens
that some subsystems get overloaded. Resource restrictions act much like semaphores in
traditional threading, except that they do not block a calling thread, and instead simply mark
a job as not yet executable. The thread that checked whether the job can be executed is then
able to try to get another job to execute.

Queue policies are assigned to jobs, and the same policy object can be assigned to many. As
such, they are composed, and every job can be managed by any combination of the available
policies. Inheriting specialized policy-driven job base classes would not have provided such
flexibility. Also, this way, job objects that do not need any extra policies are in no way affected
by a possible performance hit of evaluating the policies.

Declarative Concurrency: A Thumbnail Viewer Example

Another example explains how these different ThreadWeaver concepts play together. It uses
jobs, job composites, resource restrictions, priorities, and dependencies, all to render wee little
thumbnail images in a GUI program. Let us first look at what operations are required to
implement this function, how they depend, and how the user expects to be presented with the
results. The example is part of the ThreadWeaver source code.

In this example, it is assumed that loading the thumbnail preview for a digital photo involves
three operations: to load the raw file data from disk, to convert the raw data into an image
representation without changing its size, and then to scale to the required size of the thumbnail.
It is possible to argue that the second and third steps could be merged into one, but that is (a)
not the point of the exercise (just like streamed loading of the image data) and (b) would
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impose the restriction that only image formats can be used where the drivers support scaling
during load. It is also assumed that the files are present on the hard disk. Since the processing
of each file does not influence or depend on the processing of any other, all files can be
processed in parallel. The individual three steps to process one file need to be performed in
sequence.

But that is not all. Since this is an example with a graphical user interface, the expectations of
the user have to be kept in mind. It is assumed that the user is interested in visual feedback,
which also gives him the impression of progress. Image previews should be shown as soon as
they are available, and progress information in the form of a reliable progress bar would be
nice. The user also expects that the program will not grind his computer to a halt, for example
by excessive I/O operations.

Different ThreadWeaver tools can be applied to this problem. First of all, processing an
individual file is a sequence of three job implementations. The jobs are quite generic and can
be part of a toolbox of premade job classes available to the application. The jobs are (the class
names match the ones in the example source code):

• A FileLoaderJob, which loads a file on the file system into an in memory byte array

• A QImageLoaderJob to convert the image’s raw data into the typical representation of an in-
memory image in Qt applications (providing the application access to all available image
decoders in the framework or registered by the application)

• A ComputeThumbNailJob, which simply scales the image to the wanted size of the preview

All of those are added to a JobSequence, and each of these sequences is added to a
JobCollection. The composite implementation of the collection classes allow for
implementations that represent the original problem very closely and therefore feel somewhat
natural and canonical to the programmer.

This solves part one of the problem, the parallel processing of the different images. It could
easily lead to other problems, though. With the given declaration of the problem to the
ThreadWeaver queue, there is nothing that prevents it from loading all files at once and only
then starting to process images. Although this is unlikely, we haven’t told the system otherwise
yet. To make sure that only so many file loaders are started at the same time, a resource
restriction is used. The code for it looks like this:

#include "ResourceRestrictionPolicy.h"

...

static QueuePolicy* resourceRestriction()
{
    static ResourceRestrictionPolicy policy( 4 );
    return &policy;
}
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File loaders simply apply the policy in their constructor or, if generic classes are used, when
they are created:

fileloader->assignQueuePolicy( resourceRestriction() );

But that still does not completely arrange the order of the execution of the jobs exactly as
wanted. The queue might now start only four file loaders at once, but it still might load all the
files and then calculate the previews (again, this is a very unlikely behavior). It needs one more
tool, and a bit of thinking against the grain, to solve the problem, and this is where priorities
come into play. The problem, translated into ThreadWeaver lingo, is that file loader jobs have
lowest priority but need to be executed first; image loader jobs have precedence over file
loaders, but a file loader must have finished first before an image loader can be started; and
finally, thumbnail computer jobs have highest priority, even if they depend on the other two
phases of processing. Since the three jobs are already in a sequence, which will make sure they
are executed in the right order for every image, assigning priority one to file loaders, two to
image loaders, and three to thumbnail computers finally solves the problem. Basically, the
queue will now complete one thumbnail as soon as possible, but will not stop to load the images
if slots for file loading become available. Since the problem is mostly I/O bound, this means
that the total time until the thumbnails for all images are shown is a little more than the time
it takes to load them from the hard disk (other factors aside, such as extremely high-resolution
RAW images). In any sequential solution, the behavior would likely be much worse.

The description of the solution might have felt complex, so lightening it up with a bit of code
is probably in order. This is how the jobs are generated after the user has selected a couple of
hundred images for processing:

m_weaver->suspend();
for (int index = 0; index < files.size(); ++index)
{
    SMIVItem *item = new SMIVItem ( m_weaver, files.at(index ), this );
    connect ( item,  SIGNAL( thumbReady(SMIVItem* ) ),
              SLOT ( slotThumbReady( SMIVItem* ) ) );
}
m_startTime.start();
m_weaver->resume();

To give correct progress feedback, processing is suspended before the jobs are added. Whenever
a sequence is completed, the item object emits a signal to update the view. For every selected
file, a specialized item is created, which in turn creates the job objects for processing one file:

m_fileloader = new FileLoaderJob ( fi.absoluteFilePath(),  this );
m_fileloader->assignQueuePolicy( resourceRestriction() );
m_imageloader = new QImageLoaderJob ( m_fileloader,  this );
m_thumb = new ComputeThumbNailJob ( m_imageloader,  this );
m_sequence->addJob ( m_fileloader );
m_sequence->addJob ( m_imageloader );
m_sequence->addJob ( m_thumb );
weaver->enqueue ( m_sequence );
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The priorities are virtual properties of the job objects and are set there. It is important to keep
in mind that all these objects are set to not process until they are queued, and in this case, until
the processing is explicitly resumed. So the whole operation to create all these sequences and
jobs really takes only a very short time, and the program returns to the user immediately, for
all practical matters. The view updates as soon as a preview image is available.

From Concurrency to Scheduling: How to Implement Expected Behavior
Systematically

The previous examples have shown how analyzing the problem completely really helps to
solve it (I hope this does not come as a surprise). To make sure concurrency is used to write
better programs, it is not enough to provide a tool to move stuff to threads. The difference is
scheduling: to be able to tell the program what operations have to be performed and in what
order. The approach is remotely reminiscent of PROLOG programming lessons, and sometimes
requires a similar way of thinking. Once the minds involved are sufficiently assimilated, the
results can be very rewarding.

One design decision of the central Weaver class has not been discussed yet. There are two very
disjunct groups of users of the Weaver classes API. The internal Thread objects access it to retrieve
their jobs to process, whereas programmers use it to manage their parallel operations. To make
sure the public API is minimal, a combination of decorator and facade has been applied that
limits the publicly exposed API to the functions that are intended to be used by application
programmers. Further decoupling of the internal implementation and the API has been
achieved by using the PIMPL idiom, which is generally applied to all KDE APIs.

A Crazy Idea

It has been mentioned earlier that at the time ThreadWeaver started to be developed, it was
not really possible to implement all its ideas. One major obstacle was, in fact, a prohibitive one:
the use of advanced implicit sharing features, which included reference counting, in the Qt
library. Since this implicit sharing was not thread-safe, the passing of every simple Plain Old
Data object (POD) was a synchronization point. The author assumed this to be impractical for
users and therefore recommended against using the prototype developed with Qt 3 for any
production environments. The developers of the KDEPIM suite (the same people who now
develop Akonadi) thought they really knew better and immediately imported a preliminary
ThreadWeaver version into KMail, where it is used to this day. Having run into many of the
problems ThreadWeaver promised to solve, the KMail developers eagerly embraced it, willing
to live with the shortcomings pointed out by its author, even against his express wishes.
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The fact that an imperfect version of the library was in active use in KDE served as a motivating
factor for quickly porting it to Qt4 when that became usable in beta versions. Thus it was
available rather early in the KDE 4 development cycle, if only in a secondary module and not
yet as part of KDELibs. Over the course of two years, the author gave a number of presentations
on the library, presenting an ever-easier and more complete API as he kept improving it. It
was, one could say, a solution looking for a problem. The majority of developers working on
KDE needed time to realize that this library was not only academic, but could improve their
software significantly given that they make the investment in taking a step back and rethinking
some of their architectural structures. There was no concrete need by a group of developers
driving the library’s progress; it was progressed by an individual because of his belief in the
growing relevance of the problem and the importance of making available a good solution for
the KDE 4 platform. Especially following the 2005 Akademy conference in Malaga, Spain, more
programs started to use ThreadWeaver, including KOffice and KDevelop, which created
enough momentum for it to be integrated into the main KDE 4 set of libraries.

ThreadWeaver represents the case of an alternative solution to a problem that once it had
matured to critical point and once the author and the prospective user community agreed that
the time had come for it to be adopted by developers in their projects, it was quickly promoted
to a cornerstone of KDE 4. After that, the attitudes of community members changed from mild
amusement to appreciation and recognition of the effort that had gone into it. This is an
example of how efficient this community can be at making technical decisions and adapting
its stance when an approach proves itself in practice. There can be no doubt that ThreadWeaver
is a much better library now than it would have been if it not taken three to four years of
rubbing up against the KDE project until its inclusion. And this includes the rogue premature
adoption by the KMail developers. There is also little doubt that applications written for KDE
4 can deal with concurrency a lot better and thus provide a better experience to their users,
because it succeeded in the end.

ThreadWeaver will be extended mostly by adding GUI components to visually represent queue
activity, and by including more predefined job classes. Another idea is the integration with
operating system IPC mechanisms (to allow for host-global resource restrictions, for example),
but those are hindered by the requirement to be cross-platform. The approaches taken by the
different operating systems are very diverse. With the public availability of the KDE 4 line, it
became visible to a large audience. Since ThreadWeaver is not really KDE-specific, the question
of where to go next (Freedesktop.org?) is in the air. For now, the focus remains to provide
developers of applications and the desktop with a reliable scheduler for concurrency.
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C H A P T E R  T H I R T E E N

Software Architecture: Object-Oriented
Versus Functional

Bertrand Meyer

ONE  OF  THE  ARGUMENTS  FOR  FUNCTIONAL  PROGRAMMING  IS  BETTER  MODULAR  DESIGN. By
analyzing publications advocating this approach, in particular through the example of a
framework for financial contracts, we access its strengths and weaknesses, and compare it with
object-oriented design. The overall conclusion is that object-oriented design, especially in a
modern form supporting high-level routine objects or “agents,” subsumes the functional
approach, retaining its benefits while providing higher-level abstractions more supportive of
extension and reuse.

Overview
“Beauty,” as a slogan for a software architecture, is not strictly for the beholder to judge. Clear
objective criteria exist (Meyer 1997):

Reliability
Does the architecture help establish the correctness and robustness of the software?

Extendibility
How easy is it to accommodate changes?
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Reusability
Is the solution general, or better yet, can we turn it into a component to be plugged in
directly, off-the-shelf, into a new application?

The success of object technology has largely followed from the marked improvements it
brings—if applied properly as a method, not just through the use of an object-oriented
programming language—to the reliability, extendibility, and reusability of the resulting
programs.

The functional programming approach predates object-oriented thinking, going back to the
Lisp language available for almost 50 years. To those fortunate enough to have learned it early,
functional programming will always remain like the memory of a first kiss: sweet, and the
foretaste of even better experiences. Functional programming has made a comeback in recent
years, with the introduction of new languages such as Scheme, Haskell, OCaml and F#,
sophisticated type systems, and advanced language mechanisms such as monads. Functional
programming even seems at times to be presented as an improvement over object-oriented
techniques. The present discussion compares the two approaches, using the cited software
architecture criteria. It finds that the relationship is the other way around: object-oriented
architecture, particularly if enriched with recent developments such as agents in Eiffel
terminology (“closures” or “delegates” in other languages), subsumes functional programming,
retaining its architectural advantages while correcting its limitations.

To qualify this finding, it is important to note both the study’s limitations and arguments to
mitigate some of them. The limitations include:

Few data points
The analysis is primarily based on two examples of functional design. This could cast
doubts on the generality of the lessons drawn.

Lack of detail
The source of the examples consists of an article (Peyton Jones et al. 2000) and a
PowerPoint presentation (Eber et al. 2001)—referred to from now on as “the article” and
“the presentation”—complemented in the section “Assessing the Modularity of Functional
Solutions,” later in this chapter, by ideas from a classic functional programming paper
(Hughes 1989). Uses of the presentation may miss some details and nuances that would
be present in a more discursive document.

Specific focus
We only consider the issue of modularity. The case for functional programming also relies
on other criteria, such as the elegance of a declarative approach.

Experimenter bias
The author of the present chapter is a long-time contributor to and exponent of object
technology.
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The following observations counterbalance some of this possible criticism:

• The functional examples come from industrial practice; specifically, a company whose
business appears to rest on the application of functional programming techniques. The
principal example—specifying sophisticated financial instruments—addresses complex
problems faced by the financial industry, which current tools do not address well according
to the presentation’s author, an expert in that industry. This suggests that it is
representative of the state of the art. (The first example—specifying puddings—is
academic, intended only as a pedagogical stepping stone.)

• One of the authors of the article (S. Peyton Jones), also acknowledged in the presentation
as coauthor of the underlying theoretical work, is the lead designer of the Haskell language
and one of the most notable figures in functional programming, bringing considerable
credibility. The paper used as a subsidiary example in the later section “Assessing the
Modularity of Functional Solutions” has been extremely influential and was written by
another leading member of the functional programming community (J. Hughes).

• In spite of the reservations expressed below, the solutions described in these documents
are elegant and clearly the result of considerable reflection.

• The examples do not exercise the notion of changeable state, which would favor an
imperative object-oriented programming style.

We must also note that mechanisms such as agents, which provide essential ingredients of the
full object-oriented solution, were openly inspired by functional programming ideas. So the
conclusion will not be a dismissal of the functional school’s contribution, simply the
observation that the object-oriented (OO) style is more suited for defining the overall
architecture of reliable, extendible, and reusable software, while the building blocks may
involve a combination of OO and functional techniques.

Further observations about the following discussion:

• Object technology as used here takes the form of Eiffel. We have not attempted to analyze
what remains if one removes mechanisms such as multiple inheritance (absent in Java
and C#), genericity (absent in earlier versions of these languages), contracts (absent
outside of Eiffel except in JML and Spec#), or agent-style facilities (absent in Java), or if
one adds mechanisms such as overloading and static functions, which threaten the solidity
of the OO edifice.

• The discussion is about architecture and design. In spite of its name, functional
programming is (like object technology) relevant to these tasks and not just to
“programming” in the restricted sense of implementation. The Eiffel approach explicitly
introduces a continuum from specification to design and implementation through the
concept of seamless development. Implementation-oriented properties of either approach,
while important in practice, will not be considered in any detail.
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• Also relevant in practice are issues of expressiveness and notation. They are taken into
account to the extent that they affect the key criteria of architecture and design. For the
most part, however, the discussion considers semantics rather than syntax.

Two more preliminary notes. First, terminology: by default, the term “contract” refers to
financial contracts, relevant to the application domain of the article and presentation, and not
to be confused with the software notion of Design by Contract* (the idea [Meyer 1997] of
including elements of specification such as preconditions, postconditions, or invariants). In
case of possible ambiguity, the terms used here will be financial contracts and software
contracts.

Second, a semi-apology: when the discussion moves to OO territory in its second half, it
includes more references to and repetitions from the author’s previous publications than
discretion would command. The reason is that the wide spread of object technology has been
accompanied by the loss of some of its more subtle but (in our opinion) critical principles, such
as command-query separation (see “State Intervention” later in this chapter); this makes some
brief reminders necessary. For the full rationale behind these ideas, see the cited references.

The Functional Examples
The overall goal of the article and presentation is to propose a convenient mechanism for
describing and handling financial contracts, especially modern financial instruments that can
be very complicated, as in this example from the presentation (in whose numerical values one
can hear the nostalgic echo of a time when major currencies enjoyed a different relationship):

“Against the promise to pay USD 2.00 on December 27 (the price of the option), the holder has

the right, on December 4, to choose between:

• Receiving USD 1.95 on December 29, or

• Having the right, on December 11, to choose between:

• Receiving EUR 2.20 on December 28, or

• Having the right, on December 18, to choose between:

• Receiving GBP 1.20 on December 30, or

• Paying immediately one more EUR and receiving EUR 3.20 on December 29”

(Throughout this section, extracts in quotes are direct citations from the presentation or the
article. Elements not in quotes are our interpretations and comments.)

As a pedagogical device to illustrate the issues, the presentation starts with a toy example:
puddings rather than contracts. From the precise description of a pudding, it should be possible

* Design by Contract is a trademark of Eiffel Software.
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to “compute the sugar content,” “estimate the time to make” the pudding, and obtain
“instructions to make it.” A “bad approach” would be to:

• “List all puddings (Trifle, lemon upside-down pudding, Dutch apple cake, Christmas
pudding)

• For each pudding, write down sugar content, time to make, instructions, etc.”

Although the presentation does not state why the approach is bad, we can easily surmise the
reasons: as a collection of ad hoc descriptions, it has no reusability, since it does not take
advantage of the property that different kinds of pudding may share the same basic parts; it
has no extendibility, since any modification of a pudding part will require reworking all the
puddings that rely on that part.

The pudding is a metaphor for the examples of real interest, contracts, but since it is easily
understandable without a specialized knowledge domain, we continue with it. A “good
approach” is to:

• “Define a small set of ‘pudding combinators.’

• Define all puddings in terms of these combinators.

• Calculate sugar content from these combinators too.”

A combinator is an operator that produces a composite object from similar objects. The tree
shown in Figure 13-1, from the presentation, illustrates what the combinators may be in this
example.

On top of

Whipped

OptionalChopped

Mixture

OrangesApples

Cream1 pint

63

Take

Take

Take

FIGURE 13-1. Ingredients and combinators describing a pudding recipe

S O F T W A R E  A R C H I T E C T U R E :  O B J E C T - O R I E N T E D  V E R S U S  F U N C T I O N A L  319



N O T E
We share the reader’s alarm at the unappetizing nature of the example, especially coming
from a Paris-based author. The sympathetic explanation is that the presentation was directed
to a foreign audience of which it assumed, along with unfamiliarity with the metric system,
barbaric culinary habits. The present discussion relies on the assumption that bad taste in
desserts is not a sufficient predictor of bad taste in language and architecture paradigms.

The nonleaf nodes of the tree represent combinators, applied to the subtrees. For example,
“Take” is a combinator that assumes two arguments, a pudding part (“Cream” on the left,
“Oranges” on the right) and a quantity (“1 pint” and “6”); the result of the application,
represented by the tree node, is a pudding part or a pudding made of the given quantity of the
given part.

It is also possible to write out such a structure textually, using a mini-“domain-specific
language” (DSL) “for describing puddings” (boldface is added for operators):

"salad      = on_top_of topping main_part"      -- Changed from
        "OnTopOf" for consistency
"topping    = whipped (take pint cream)
main_part   = mixture apple_part orange_part
apple_part  = chopped (take 3 apples)
orange_part = optional (take 6 oranges)"

This uses an anonymous but typical—the proper term might be “vanilla”—variant of functional
programming notation, where function application is simply written as function args (for
example, plus a b for the application of plus to a and b) and parentheses serve only for grouping.

With this basis, it becomes a piece of cake to define an operation such as sugar content (S) by
case analysis on the combinators (similar to defining a mathematical function on recursively
defined objects by using a definition that follows the same recursive structure):

"S  (on_top_of p1 p2)   = S (p1) + S (p2)
S   (whipped p)         = S (p)
S   (take q i)          = q * S(i)
etc."

Not clear (to us) from the “etc.” is how operators such as S deal with the optional combinator;
there has to be some way of specifying whether a particular concoction has the optional part
or not. This issue aside, the approach brings the benefits that the presentation claims for it:

• “When we define a new recipe, we can calculate its sugar content with no further work.

• Only if we add new combinators or new ingredients would we need to enhance S.”

The real goal, of course, is not pudding but contracts. Here the presentation contains a sketch
of the approach but the article is more detailed. It relies on the same ideas, applied to a more
interesting set of elements, combinators, and operations.

The elements are financial contracts, dates, and observables (such as a certain exchange rate
on a certain date). Examples of basic contracts include zero (can be acquired at any time, no
rights, no obligations) and one (c) for a currency c (immediately pays the holder one unit of c).
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Examples of combinators on contracts include: or, such that acquiring the contract (or c1
c2) means acquiring either of c1 and c2, and expiring when both have expired; anytime, such
that (anytime c) can be acquired at any time before the expiration of c, and expiring whenever
c expires; truncate, such that (truncate t c) is like c except that it expires at the earlier of t and
the expiry of t; and get, so that acquiring (get c) means acquiring c at its expiry date. The paper
lists about a dozen such basic combinators on contracts, and others on observables and dates.
They make it possible to define advanced financial instruments such as a “European option”
in a simple way:

european t u   = get (truncate t (or u zero))

Operations include the expiry date of a contract and—the most important practical benefit
expected from all this modeling effort—its value process, a time-indexed sequence of expected
values. As with the sugar content of a pudding, the functions are defined by case analysis on
the basic constructors. Here are the cases involving the preceding basic elements and
combinators for the operation H, which denotes the expiry date or “horizon”:

H (zero)         =  ∞   -- Where ∞ is a special value with the 
        expected properties
H (or c1 c2)     =  max (H (c1), H (c2))
H (anytime c)    =  H (c)
H (truncate t c) =  min (t, H (c))
H (get c)        =  H (c)

The rules yielding value processes follow a similar structure, although the righthand sides are
more sophisticated, involving financial and numerical computations. For more examples of
applying combinators and functional programming ideas to financial applications, see Frankau
(2008).

Assessing the Modularity of Functional Solutions
The preceding presentation, while leaving aside many contributions of the presentation and
especially the article, suffices as a basis for discussing architectural features of the functional
approach and comparing them with the OO view. We will freely alternate between the pudding
example (which makes the ideas immediately understandable) and financial contracts
(representative of real applications).

Extendibility Criteria

As pointed out by the presentation, the immediate architectural benefit is that it is easy to add
a new combinator: “When we define a new recipe, we can calculate its sugar content with no
further work.” This property, however, is hardly a consequence of using a functional
programming approach. The insight was to introduce the notion of a combinator, which creates
pudding and pudding parts—or contracts—from components that can either be atomic or
themselves result from applying combinators to more elementary components.
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The article and presentation suggest that this is a new idea for financial contracts. If so, the
insights should be beneficial to financial software. But as a general software design idea, they
are not new. Transposed to the area of GUI design, the “bad approach” rejected at the beginning
of the presentation (list all pudding types, for each of them compute sugar content, etc.) would
mean devising every screen of an interactive application in its own specific way and writing
the corresponding operations—display, move, resize, hide—separately in each case. No one
ever does this. Any GUI design environment provides atomic elements, such as buttons and
menu entries, and operations to combine them recursively into windows, menus, and other
containers to make up a complete interface. Just as the pudding combinators define the sugar
content and calorie count of a pudding from those of its ingredients, and contract combinators
define the horizon and value sequence of a complex contract from those of its constituents,
the display, move, resize, and hide operations on a composite figure apply these operations
recursively on the components. The EiffelVision library (see the EiffelVision documentation at
http://eiffel.com) is an example application of this compositional method, systematic but
hardly unique. The article’s contribution here is to apply the approach to a new application
area, financial contracts. The approach itself, however, does not assume functional
programming; any framework with a routine mechanism and recursion will do.

Interesting modularity issues arise not when existing combinators are applied to components
of existing types, but when the combinators and component types change. The presentation
indeed states: “Only if we add new combinators or new ingredients would we need to enhance
S” (the sugar combinator). The interesting question is how disruptive such changes will be to
the architecture.

The set of relevant changes is actually larger than suggested:

• Along with atomic types and combinators, we should consider changes in operations:
adding a calorie count function for puddings, a delay operation for contracts, and a rotate
operation for graphical objects.

• Besides such additions, we should include changes and removal, although for simplicity
this discussion will continue to consider additions only.

Assessing the Functional Approach

The structure of the programs as given is simple—a set of definitions of the form:

O (a)             = ba,O                   [1]
O (c (x, y, ...)  = fc,O (x, y, ...)       [2]

for every operation O, atomic type a, and basic combinator c. The righthand sides involve
appropriate constants b and functions f. Again for simplicity, we may view the atomic types
such as a as 0-ary combinators, so that we only need to consider form [2]. With t basic
combinators (on_top_of, hipped…) and f operations (sugar content, calories), we need t × f
definitions.
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Regardless of the approach, these t × f elements will have to be accommodated. The
architectural problem is how we group them into modules to facilitate extension and reuse.
This issue is not discussed in the article and presentation. Of course, the matter is not critical
for small t and f; then all the definitions can be packed into a single module. This takes care
of extendibility in a simple way:

• To add a basic combinator c, add f definitions of the above form, one for each existing
operation.

• To add an operation O, add t definitions, one for each existing combinator.

This approach does not scale well; for larger developments, it will be necessary to divide the
system into modules; the extendibility problem then becomes how to make sure that such
modifications affect as few modules as possible.

Even with fairly small t and f, the one-module solution does not support reusability: if another
program only needs a subset of the operations and combinators, it would suffer the usual
dilemma of primitive modularization techniques:

Charybdis
Copy-paste the relevant parts, but then risk forgetting to update the derived modules when
something changes in the original (possibly for such a prosaic reason as a bug fix).

Scylla
Use a module inclusion facility, as provided by many languages, to make the contents of
an existing module available to a new one; but you end up loaded with a bigger baggage
than necessary, which complicates updates and may cause conflicts (assuming the derived
module defines a new combinator or function and a later version of the original module
introduces a clashing definition).

These observations remind us in passing that reusability is closely connected to extendibility.
An online critique of the OCaml functional language (Steingold 2007) takes a concrete
example:†

You cannot easily modify the behavior of a module outside of it. Suppose you use a Time module

defining Time.date_of_string, which parses ISO8601 basic format (“YYYYMMDD”), but want to

recognize ISO8601 extended format (“YYYY-MM-DD”). Tough luck: you have to get the module

maintainer to edit the original function—you cannot redefine the function yourself in your

module.

As software grows and changes, another aspect of reuse becomes critical: reuse of common
properties. Along with European options, the article introduces “American options.” Described
as combinators, they have different signatures (Date → Contract → Contract and (Date, Date) →
Contract → Contract). One suspects, however, that the two kinds of option have a number of

† This citation is slightly abridged. Inclusion of the citation does not imply endorsement of other criticism
on that page.
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properties and operations in common, in the same way that puddings can be grouped into
categories. Such groupings would help model and modularize the software, with the added
benefit—if enough commonalities emerge—of reducing the number of required definitions.
This requires, however, taking a new look at the problem domain: we must discover, beyond
functions, the essential types.

Such a view will be at a higher level of abstraction. One can argue in particular with the fixation
on functions and their signatures. According to the article (italics retained), “An American
option offers more flexibility than a European option. Typically, an American option confers
the right to acquire an underlying contract at any time between two dates, or not to do so at
all.” This suggests a definition by variation: either American options are a special case of
European option, or they are both variants of a more general notion of option. Defining them
as combinators immediately sets them apart from each other because of the extra Date in the
signature. This is akin to defining a concept by its implementation—a mathematical rather than
computer implementation, but still implying loss of abstraction and generality. Using types as
the basic modularization mechanism, as in object-oriented design, will elevate the level of
abstraction.

Levels of Modularity

Assessing functional programming against criteria of modularity is legitimate since better
modularization is one of the main arguments for the approach. We have seen the presentation’s
comments on this issue, but here is a more general statement from one of the foundational
papers of functional programming, by Hughes (1989), stating that with this approach:

[Programs] can be modularized in new ways, and thereby greatly simplified. This is the key to

functional programming’s power—it allows greatly improved modularization. It is also the goal

for which functional programmers must strive—smaller and simpler and more general modules,

glued together with the new glues we shall describe.

The “new glues” described in Hughes’s paper are the ones we have seen at work for the two
examples covered—systematic use of stateless functions, including high-level functions
(combinators) that act on other functions—plus the extensive use of lists and other recursively
defined types, and the concept of lazy evaluation.

These are attractive techniques, but they address fine-grain modularization. Hughes develops
a functional version of the Newton-Raphson computation of the square root of a number N
with tolerance eps and initial approximation a0:

sqrt a0 eps N = within eps (repeat (next N) a0)

with appropriate combinators within, repeat, and next, and compares this version with a
FORTRAN program involving goto instructions. Even ignoring the cheap shot (at the time of
the paper’s original publication, FORTRAN was already old hat and gotos despised), it is
understandable why some people prefer such a solution, based on small functions glued
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through combinators, to the loop version. Then again, others prefer loops, and because we are
talking about the fine-grain structure of programs rather than large-scale modularization, the
issue hardly matters for software engineering; it is a question of style and taste. The more
fundamental question of demonstrating correctness has essentially the same difficulty in both
approaches; note, for example, that the definition of within in Hughes’s paper, yielding the first
element of a sequence that differs from the previous one by less than eps:

within eps ([a:b:rest])  =  if abs (a - b) <= eps then b
else within eps [b:rest]

seems to assume that the distances between adjacent elements are decreasing, and definitely
assumes that one of these differences is no greater than eps.‡ Stating this property would imply
some Design by Contract-like mechanism to associate preconditions with functions (there is
no such mechanism in common functional approaches); the proof that it guarantees
termination of eps would be essentially the same as a proof of termination for the corresponding
loop in the imperative style.

There seems to be no contribution to large-grain modularity or software architecture in this
and earlier examples. In particular, the stateless nature of functional programming does not
seem (positively or negatively) to affect the issue.

The Functional Advantage

There remains four significant advantages for the functional approach as illustrated in examples
so far.

The first is notational. No doubt some of the attraction of functional programming languages
comes from the terseness of definitions such as the above. This needs less syntactical baggage
than routine declarations in common imperative languages. Several qualifications limit this
advantage:

• In considering design issues, as in the present discussion, the notational issue is less critical.
One could, for example, use a functional approach for design and then target an imperative
language.

• Many modern functional languages such as Haskell and OCaml are strongly typed,
implying the notation will be a little more verbose; for example, unless the designer wants
to rely on type inference (not a good idea at the design stage), within needs the type
declaration Double → [Double] → Double.

• Not everyone may be comfortable with the common practice of replacing multiargument
functions by functions returning functions (known in the medical literature as RCS, for
“Rabid Currying Syndrome,” and illustrated by such signatures as (a → b → c) → Obs a →
Obs b → Obs c in the financial article). This is a matter of style rather than a fundamental

‡ In citing examples from Hughes’s paper we have, with his agreement, used modern (Haskell) notation
for lists, as in [a:b:rest], more readable than the original’s cons notation, as in cons a (cons b rest).
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property of the approach, which does not require it, but it is pervasive in these and many
other publications.

Still, notation conciseness is a virtue even at the design and architecture level, and functional
programming languages may have some lessons here for other design notations.

The second advantage (emphasized by Simon Peyton Jones and Diomidis Spinellis in
comments on an earlier version of this chapter), also involving notation, is the elegance of
combinator expressions for defining objects. In an imperative object-oriented language, the
equivalent of a combinator expression, such as:

on_top_of topping main_part

would be a creation instruction:

create pudding .make_top (topping, main_part)

with a creation procedure (constructor) make_top that initializes attributes base and top from
the given arguments. The combinator form is descriptive rather than imperative. In practice,
however, it is easy and indeed common to use a variant of the combinator form in object-
oriented programming, using “factory methods” rather than explicit creation instructions.

The other two advantages are of a more fundamental nature. One is the ability to manipulate
operations as “first-order citizens”—the conventional phrase, although we can simply say “as
objects of the program” or just “as data.” Lisp first showed that this could be done effectively;
a number of mainstream languages offered a way to pass routines as arguments to other
routines, but this was not considered a fundamental design technique, and was in fact
sometimes viewed with suspicion as reminiscent of self-modifying code with all the associated
uncertainties. Modern functional languages showed the benefit of accepting higher-order
functionals as regular program objects, and developed the associated type systems. This is the
part of functional programming that has had the most direct effect on the development of
mainstream approaches to programming; as will be seen below, the notion of agent, directly
derived from these functional programming concepts, is a welcome addition to the original
object-oriented framework.

The fourth significant attraction of functional programming is lazy evaluation: the ability, in
some functional languages such as Haskell, to describe a computation that is potentially
infinite, with the understanding that any concrete execution of that computation will be finite.
The earlier definition of within assumes laziness; this is even more clear in the definition of
repeat:

repeat f a  = [a : repeat f (f a)]

which produces (in ordinary function application notation) the infinite sequence a, f (a), f (f
(a)).... With next N x defined as (x + N / x) / 2, the definition of within as used by sqrt will
stop evaluating that sequence after a finite number of elements.

This is an elegant idea. Its general application in software design calls for two observations.
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First, there is the issue of correctness. The ease of writing potentially infinite programs may
mask the difficulty of ensuring that they will always terminate. We have seen that within
assumes a precondition, not stated in its presentation; this precondition, requiring that
elements decrease to below eps, cannot be finitely evaluated on an infinite sequence (it is semi-
decidable). These are tricky techniques for designers to use, as illustrated by the problem of
how many lazy functional programmers it takes to change a light bulb. (It is hard to know in
advance. If there are any lazy functional programmers left, ask one to change the bulb. If she
fails, try the others.)

Second and last, lazy manipulation of infinite structures is possible in a nonfunctional design
environment, without any special language support. The abstract data type approach (also
known as object-oriented design) provides the appropriate solution. Finite sequences and lists
in Eiffel libraries are available through an API relying on a notion of “cursor” (see Figure 13-2).

index

item

1
Before

Start Cursor Finish
Forth

After

count

FIGURE 13-2. Cursors in Eiffel lists

Commands to move the cursor are start (go to first item), forth (move to next item), and
finish. Boolean queries before and after tell if the cursor is before the first element or after the
last. If neither holds, item returns the element at cursor position, and index its index.

It is easy to adapt this specification to cover infinite sequences: just remove finish and after
(as well as count, the number of items). This is the specification of the deferred (abstract) class
COUNTABLE in the Eiffel library. Some of its descendants include PRIMES, FIBONACCI, and RANDOM;
each provides its implementations of start, forth, and item (plus, in the last case, a way to set
the seed for the pseudo-random number generator). To obtain successive elements of one of
these infinite sequences, it suffices to apply start and then query for item after any finite
number of applications of forth.

Any infinite sequential structure requiring finite evaluation can be modeled in this style.
Although this does not cover all applications of lazy evaluation, the advantage is to make the
infinite structure explicit, so that it is easier to establish the correctness of a lazy computation.

State Intervention

The functional approach seeks to rely directly on the properties of mathematical functions by
rejecting the assumption, present but implicit in imperative approaches, that computing
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operations can, in addition to delivering a result (as a mathematical function does), modify the
state of the computation: either a global state or, in a more modular approach, some part of
that state (for example, the contents of a specific object).

Although prominent in all presentations of functional programming, this property is not visible
in the examples discussed here, perhaps because they follow from an initial problem analysis
that already whisked the state away in favor of functional constructs. It is possible, for example,
that a nonfunctional model of the notion of valuation of a financial contract would have used,
instead of a function that yields a sequence (the value process), an operation that transforms
the state to update the value.

It is nevertheless possible to make general comments on this fundamental decision of
functional approaches. The notion of state is hard to avoid in any model of a system,
computerized or not. One might even argue that it is the central notion of computation. (It has
been argued [Peyton Jones 2007] that stateless programming helps address issues of concurrent
programming, but there is not enough evidence yet to draw a general conclusion.) The world
does not clone itself as a result of each significant event. Neither does the memory of our
computers: it just overwrites its cells. It is always possible to model such state changes by
positing a sequence of values instead, but this can be rather artificial (as suggested by the
alternative answer to the earlier riddle: functional programmers never change a bulb, they buy
a new lamp with a new cable, a new socket, and a new bulb).

Recognizing the impossibility of ignoring the state for such operations as input and output, and
the clumsiness of earlier attempts (Peyton Jones and Wadler 1993), modern functional
languages, in particular Haskell, have introduced the notion of monad (Wadler 1995). Monads
embed the original functions in higher-order functions with more complex signatures; the
added signature components can serve to record state information, as well as any extra
elements such as an error status (to model exception handling) or input-output results.

Using monads to integrate the state proceeds from the same general idea—used in the reverse
direction—as the technique described in the last section for obtaining lazy behavior by
modeling infinite sequences as an abstract data type: to emulate in a framework A a technique
T that is implicit in a framework B, program in A an explicit version of T or of the key
mechanism making T possible. T is infinite lists in the first case (the “key mechanism” is infinite
lists evaluated finitely), and the state in the second case.

The concept of monad is elegant and obviously useful for semantic descriptions of
programming languages (especially for the denotational semantics style). One may wonder,
however, whether it is the appropriate solution as a mechanism to be used directly by
programmers. Here we must be careful to consider the right arguments. The obvious objection
to monads—that they are difficult to teach to ordinary programmers—is irrelevant; innovative
ideas considered hard at the time of their introduction can fuse into the mainstream as
educators develop ways to explain them. (Both recursion and object-oriented programming
were once considered beyond the reach of “Joe the Programmer.”) The important question is
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whether this is worth the trouble. Making the state available to functional programmers
through monads is akin to telling your followers, after you convinced them to embrace chastity,
that having children is actually good, if with you.

Is it really necessary to exclude the state in the first place? Two observations are enough to
raise doubts:

• Elementary state-changing operations, such as assignment of simple values, have a clear
mathematical model (Hoare rules, based on substitution). This diminishes the main benefit
expected of stateless programming: to facilitate mathematical reasoning about programs.

• For the more difficult aspects of establishing the correctness of a design or implementation,
the advantage of the functional approach is not so clear. For example, proving that a
recursive definition has specific properties and terminates requires the equivalent of a loop
invariant and variant. It is also unlikely that efficient functional programs can afford to
renounce programmer-visible linked data structures, with all the resulting problems such
as aliasing, which are challenging regardless of the underlying programming model.

If functional programming fails to bring a significant simplification to the task of establishing
correctness, there remains a major practical argument: referential transparency. This is the
notion of substitutivity of equals for equals: in mathematics, f (a) always means the same thing
for given values of f and a. This is also true in a pure functional approach. In a programming
language where functions can have side effects, f (a) can return different results in successive
invocations. Renouncing such possibilities makes it much easier to understand program texts
by retaining the usual modes of reasoning from mathematics; for example, we are all used to
accepting that g + g and 2 × g have the same meaning, but this ceases to be guaranteed if g is a
side effect-producing function. The difficulty here is not so much for automatic verification
tools (which can detect that a function produces side effects) as for human readers.

Maintaining referential transparency in expressions is a highly desirable goal. It does not,
however, justify removing the notion of state from the computational model. It is important
to recall here the rule defined in the Eiffel method: command-query separation principle
(Meyer 1997). In this approach the features (operations) of a class are clearly divided into two
groups: commands, which can change the target objects and hence the state; and queries,
which provide information about an object. Commands do not return a result; queries may
not change the state—in other words, they satisfy referential transparency. In the above list
example, commands are start, forth, and (in the finite case) finish; queries are item, index,
count, before, and (finite case) after. This rule excludes the all-too-common scheme of calling
a function to obtain a result and modify the state, which we guess is the real source of
dissatisfaction with imperative programming, far more disturbing than the case of explicitly
requesting a change through a command and then requesting information through a (side
effect-free) query. The principle can also be stated as, “Asking a question should not change
the answer.” It implies, for example, that a typical input operation will read:

io.read_character
Result:= io.last_character
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Here read_character is a command, consuming a character from the input; last_character is a
query, returning the last character read (both features are from the basic I/O library). A
contiguous sequence of calls to last_character would be guaranteed to return the same result
repeatedly. For both theoretical and practical reasons detailed elsewhere (Meyer 1997), the
command-query separation principle is a methodological rule, not a language feature, but all
serious software developed in Eiffel observes it scrupulously, to the benefit of referential
transparency. Although other schools of object-oriented programming do not apply it
(continuing instead the C style of calling functions rather than procedures to achieve changes),
it is in our view a key element of the object-oriented approach. It seems like a viable way to
obtain the referential transparency goal of functional programming—since expressions, which
only involve queries, will not change the state, and hence can be understood as in traditional
mathematics or a functional language—while acknowledging, through the notion of
command, the fundamental role of the concept of state in modeling systems and computations.

An Object-Oriented View
We now consider how to devise an object-oriented architecture for the designs discussed in
the presentation and article.

Combinators Are Good, Types Are Better

So far we have dealt with operations and combinators. Operations will remain; the key step is
to discard combinators and replace them with types (or classes—the distinction only arises with
genericity as discussed below). This brings a considerable elevation of the level of abstraction:

• A combinator describes a specific way of building a new mechanism from existing ones.
The combination is defined in a rigid way: a take combination (as in take 3 apples)
associates one quantity element and one food element. As noted earlier, this is the
mathematical equivalent of defining a structure by its implementation.

• A class defines a type of objects by listing the applicable features (operations). It provides
abstraction in the sense of abstract data types: the rest of the world knows the
corresponding objects solely through the applicable operations, not from how they were
constructed. We may capture these principles of data abstraction and object-oriented
design by noting that the approach means knowing objects not from what they are but
through what they have (their public features and the associated contracts). This also
opens the way to taxonomies of types, or inheritance, to keep the complexity of the model
under control and take advantage of commonalities.

By moving from the first approach to the second one, we do not lose anything, since classes
trivially include combinators as a special case. It suffices to provide features giving the
constituents, and an associated creation procedure (constructor) to build the corresponding
objects. In the take example:
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class REPETITION create
      make
feature
      base: FOOD
      quantity: REAL
      make (b: FOOD; q: REAL)
        -- Produce this food element from quantity units of base.
           ensure
                base = b
                quantity = q
           end
  ... Other features ...
end

This makes it possible to obtain an object of this type through create apple_salad.make (6.0,
apple), equivalent to an expression using the combinator. It is possible, as mentioned, to bring
the notation closer to combinators by using factory methods.

Using Software Contracts and Genericity

Since we are concentrating on design, the effect of make has been expressed in the form of a
postcondition, but it really would not be a problem to include the implementation clause (do
base := b; quantity := q). It is one of the consequences of well-understood OO design to abate
the distance between implementation and design (and specification). In all this we are freely
using state-changing assignment instructions and still have (we thank the reader for inquiring)
most of our teeth and hair.

Unlike the combinator, however, the class is not limited to these features. For example, it may
have other creation procedures. One can usually mix two repetitions of the same thing:

 make (r1, r2: REPETITION)
        -- Produce this food element by combining r1 and r2.
      require
           r1.base = r2.base
      ensure
           base = r1.base
           quantity = q

The precondition expresses that the quantities being mixed are from the same basic food types.
This requirement can also be made static through the type system; genericity (also available in
typed functional languages, under the curious if impressive-sounding name of “parametric
polymorphism”) leads to defining the class as:

class REPETITION  [FOOD] create
        ... As before ...
feature
      make (r1, r2: REPETITION [FOOD])
        ... No precondition necessary here ...
        ... The rest as before ...
end
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Not only can classes have different creation procedures, they will generally have many more
features. Specifically, the operations of our previous versions become features of the
appropriate classes. (The reader may now have guessed that the variable name t stood for
type and f for feature.) The pudding classes (including classes describing food variants such as
REPETITION) have features such as sugar and calorie_content; the contract classes have features
such as horizon and value. Two notes are in order:

• Since we started from a purely functional model, all the features mentioned so far are
either creation procedures or queries. Although it is possible to keep this functional style
in an object-oriented framework, the development might also introduce commands, for
example, to change a contract in response to a certain event such as renegotiation. This
issue—state, or not?—is largely irrelevant to the discussion of modularization.

• In the original, the value function yielded an infinite sequence. We can keep this signature
by using a result of type COUNTABLE, permitting the equivalent of lazy computation; or we
can give value an integer argument so that value (i) returns the i-th value.

The Modularization Policy

The modularization achieved so far illustrates the fundamental idea of object technology (at
least the one we find fundamental [Meyer 1997]): merging the concepts of type and module.
In its simplest expression, object-oriented analysis, design, and implementation means that we
base every module of a system on a type of objects manipulated by the system. This is a more
restrictive discipline than the modular facilities offered by other approaches: a module is no
longer just an association of software elements—operations, types, variables—that the designer
chooses to keep together based on any suitable criterion; it is the collection of properties and
operations applicable to instances of a type.

The class is the result of this type-module merge. In OO languages such as Smalltalk, Eiffel,
and C# (but not, for example, in C++ or Java), the merge is bidirectional: not only does a class
define a type (or a type template if genericity is involved) but, the other way around, any type,
including basic types such as integer, is formally defined as a class.

It is possible to retain classes in their type role only, separate from the modular structure. This
is in particular the case with functional languages such as OCaml that offer both a traditional
module structure and a type mechanism taken from object-oriented programming. (Haskell is
similar, with a more restricted concept of class.) Conversely, it is possible to remove the
requirement that all types be defined by classes, as with C++ and Java where basic types such
as Int are not classes. The view of object technology taken here assumes a full merge, with the
understanding that a higher-level of class grouping (packages as in Java or .NET, clusters in
Eiffel) may be necessary, but as an organizational facility rather than a fundamental construct.

This approach implies the primacy of types over functions when it comes to defining the
software architecture. Types provide the modularization criterion: every operation (function)
gets attached to a class, not the other way around. Functions, however, take their revenge
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through the application of abstract data type principles: a class is defined, and known to the
rest of the world, through an abstract interface (API) listing the applicable operations and their
formal semantic properties (contracts: preconditions, postconditions, and, for the class as a
whole, invariant).

The rationale for this modularization policy is that it yields better modularity, including
extendibility, reusability, and (through the use of contracts) reliability. We must, however,
examine these promises concretely on the examples at hand.

Inheritance

An essential contribution of the object-oriented method to modularity goals is inheritance. As
we expect the reader to be familiar with this technique, we will only recall some basic ideas
and sketch their possible application to the examples.

Inheritance organizes classes in taxonomies, roughly representing the “is-a” relation, to be
contrasted with the other basic relation between classes, client, which represents usage of a
class through its API (operations, signatures, contracts). Inheritance typically does not have to
observe information hiding, as this is incompatible with the “is-a” view. While some authors
restrict inheritance to pure subtyping, there is in fact nothing wrong with applying it to support
a standard module inclusion mechanism. Eiffel actually has a “nonconforming inheritance”
mechanism (Ecma International 2006), which disallows polymorphism but retains all other
properties of inheritance. This dual role of inheritance is in line with the dual role of classes as
types and modules.

In both capacities, inheritance captures commonalities. Elements of a tentative taxonomy for
puddings might be as described by the inheritance graph shown in Figure 13-3.

Client of

PUDDING

PUDDING_PART
Pudding

inheritance

   Inherits

* Deferred

REPETITION
LIST

COMPOSITE_PART

FRUIT_SALAD

COMPOSITE_PUDDING

CREAM

*

*

CREAMY_FRUIT_SALAD

FIGURE 13-3. A class diagram of pudding ingredients
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It is important to note the distribution of roles between inheritance and the client relation. A
fruit salad is a pudding and is also a repetition in the earlier sense (we ignore generic
parameters). A repetition is a special case not of pudding but of “pudding part,” describing food
ingredients. Some pudding parts (such as “composite puddings”), but not all, are also puddings.
A fruit salad is a pudding and also a repetition (of fruit parts). A “creamy fruit salad,” on the
other hand, is not a fruit salad, if we take this notion to mean a pudding made of fruits only.
It has a fruit salad and cream, as represented by the corresponding client links. It is a composite
pudding, since this notion indeed represents concoctions that are made of several parts, like
the more general notion of COMPOSITE_PART, and are also puddings. Here the parts, reflected in
the client links, are a fruit salad and cream.

A similar approach can be applied to the contract example, based on a classification of contract
types into such categories as “zero-coupon bonds,” “options,” and others to be obtained from
careful analysis with the help of experts from that problem domain.

Multiple inheritance is essential to this object-oriented form of modeling. Note in particular
the definition of a composite part, applying a common pattern for describing such composite
structures (see Meyer 1997, 5.1, “Composite figures”):

class COMPOSITE_PART inherit
       PUDDING_PART
       LIST[PUDDING_PART]
feature
  ...
end

where square brackets introduce generic parameters. A composite part is both a pudding part,
with all the applicable properties and operations (sugar content, etc.), and a list of pudding
parts, again with all the applicable list operations: cursor movements such as start and forth,
queries such as item and index, and commands to insert and remove elements. The elements
of the list may be pudding parts of any of the available kinds, including—recursively—
composite parts. This makes it possible to apply techniques of polymorphism and dynamic
binding, as discussed next. Note the usefulness of having both genericity and inheritance; also,
multiple inheritance should be the full mechanism for classes, not the form limited to interfaces
(Java- and .NET-style) which would not work here.

Polymorphism, Polymorphic Containers, and Dynamic Binding

The contribution of inheritance and genericity to extendibility and extendibility comes in part
from the techniques of polymorphism and dynamic binding, illustrated here by the version of
sugar_content for class COMPOSITE_PART (see Figure 13-4):

sugar_content: REAL
      do
           from start until after loop
                Result := Result + item.sugar_content
                forth
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      end

index

item

1
Before

Start Cursor Finish
Forth

After

count

FIGURE 13-4. A polymorphic list with cursors

This applies the operations of class LIST directly to a COMPOSITE_PART, since the latter class inherits
from the former. The result of item can be of any of the descendant types of PUDDING; since it
may as a consequence denote objects of several types, it is known as a polymorphic variable
(more precisely in this case, a polymorphic query). An entire COMPOSITE_PART structure,
containing items of different types, is known as a polymorphic container. Polymorphic
containers are made possible by the combination of polymorphism, itself resulting from
inheritance, and genericity. (As these are two very different mechanisms, the functional
programming term “parametric polymorphism” for genericity can cause confusion.)

The polymorphism of item implies that successive executions of the call item.sugar_content will
typically apply to objects of different types; the corresponding classes may have different
versions of the query sugar_content. Dynamic binding is here the guarantee that such calls will
in each case apply the appropriate version, based on the type of the object actually attached to
item. In the case of a part that is itself composite, this will be the above version, applied
recursively; but it could be any other—for example, the version for CREAM.

Here as in most current approaches to OO design, polymorphism is controlled by the type
system. The type of item’s value is variable, but only within descendants of PUDDING as specified
by the generic parameter of COMPOSITE_PART. This is part of a development that has affected both
the functional programming world and the object-oriented world: using increasingly
sophisticated type systems (still based on a small number of simple concepts such as
inheritance, genericity, and polymorphism) to embody a growing part of the intelligence about
a system’s architecture into its type structure.

Deferred Classes and Features

Classes PUDDING and PUDDING_PART are marked as “deferred” (with an asterisk in the BON object-
oriented modeling notation [Walden and Nerson 1994]) in the earlier diagram of the class
structure. This means they are not completely implemented; another term is “abstract class.”
A deferred class will generally have deferred features, possessing a signature and (importantly)
a contract, but no implementation. Implementations appear in nondeferred (“effective”)
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descendant classes, adapted to the choice that each effective class has made for implementing
the general concept defined by the deferred class. In the example, both classes PUDDING and
PUDDING_PART have deferred features sugar_content and calories; descendants will “effect”
(implement) it, for example, in COMPOSITE_PART, by defining the sugar content as the sum of the
content of the parts, as shown earlier. In COMPOSITE_PUDDING, which inherits this version from
COMPOSITE_PART and the deferred version from PUDDING, the effective version takes over, giving
its implementation.

N O T E
The rule is that inheriting two features with the same name causes a name clash, which must
be resolved through renaming, except if one of the features is deferred and the other effective,
in which case they just yield a single feature with the available implementation. It is for this
kind of sound application of the inheritance mechanism that name overloading brings
intractable complexity, suggesting that this mechanism should not appear in object-oriented
languages.

Deferred classes are more sophisticated than the Java and .NET notion of “interface” mentioned
earlier, since they can be equipped with contracts that constrain future effectings, and also
because they can contain effective features as well, offering the full spectrum between a fully
deferred class, describing a pure implementation, and an effective one, defining a complete
implementation. Being able to describe partial implementations is essential to the use of object-
oriented techniques for architecture and design.

In the financial contract example, CONTRACT and OPTION would be natural deferred class
candidates, although again they do not need to be fully deferred.

Assessing and Improving OO Modularity
The preceding section summarized the application of object-oriented architectural techniques
to the examples at hand. We must now examine the sketched result in light of the modularity
criteria stated at the beginning of this discussion. The contribution to reliability follows from
the type system and contracts; we concentrate on reusability and extendibility.

Reusing Operations

One of the principal consequences of using inheritance is that common features can be moved
to the highest applicable level; then descendants do not need to repeat them: they simply
inherit them “as is.” If they do need to change the implementation while retaining the
functionality, they simply redefine (or “override”) the inherited version. “Retaining the
functionality” means here that, as noted, the original contracts still apply, whether the version
being overridden was already effective or still deferred. This goes well with dynamic binding:
a client can use the operation at the higher level—for example, my_pudding.sugar_content, or
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my_contract.value—without knowing what version of the routine is used, in what class, and
whether it is specific to that class or inherited.

Thanks to commonalities captured by inheritance, the number of feature definitions may be
significantly smaller than the maximum t × f. Any reduction here is valuable: it is a general
rule of software design that repetition is always potentially harmful, as it implies future trouble
in configuration management, maintenance, and debugging (if a fault found its way into the
original, it must also be corrected in the copies). Copy-paste, as David Parnas has noted, is the
software engineer’s enemy.

The actual reduction clearly depends on the quality of the inheritance structure. We note here
that abstract data type principles are the appropriate guidance here: since the key to defining
types for object-oriented design is to analyze the applicable operations, a properly designed
inheritance hierarchy will ensure that classes that collect features applicable to many variants
appear toward the top.

There seems to be no equivalent to these techniques in a functional model. With combinators,
it is necessary to define the variant of every operation for every combinator, repeating any
common ones.

Extendibility: Adding Types

How well does the object-oriented form of architecture support extendibility? One of the most
frequent forms of extension to a system will be the addition of new types: a new kind of
pudding, pudding part, or financial contract. This is where object technology shines in its full
glory. Just find the place in the inheritance structure where the new variant best fits—in the
sense of having the most operations in common—and write a new class that inherits some
features, redefines or effects those for which it provides its own variants, and add any new
features and invariant clauses applicable to the new notion.

Dynamic binding is again essential here; the benefit of the OO approach is to remove the need
for client classes to perform multibranch discriminations to perform operations, as in: “if this
is a fruit salad, then compute in this way, else if it is a flan, then compute in that way, else ...,”
which must be repeated for every operation and, worse, must be updated, for every single
client and every single operation, any time a type is added or changed. Such structures,
requiring client classes to maintain intricate knowledge of the variant structure of the supplier
concepts on which they rely, are a prime source of architecture degradation and obsolescence
in pre-OO techniques. Dynamic binding removes the issue; a client application can ask for
my_pudding.calories or my_contract.value and let the built-in machinery select the appropriate
version, not having to know what the variants are.

No other software architecture technique comes close to the beauty of this solution, combining
the best of what the object-oriented approach has to offer.
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Extendibility: Adding Operations

The argument for object technology’s support for extendibility comes in part (in addition to
mechanisms such as information hiding and genericity, as well as the central role of contracts)
from the assumption that the most significant changes in the life of a system are of the kind
just discussed: introducing a type that shares some operations with existing types and may
require new operations. Experience indeed suggests that this is the most frequent source of
nontrivial change in practical systems, where object-oriented techniques show their advantage
over others. But what of the other case: adding operations to existing types? Some client
application relying on the notion of pudding might, for example, want to determine the cost
of making various puddings, even though pudding classes do not have a cost feature.

Functional programming performs neither better nor worse for the addition of an operation
than for the addition of a type: it’s a matter of adding 1 to f rather than t. The object-oriented
solution, however, does not enjoy this neutrality. The basic solution is to add a feature at the
right level of the hierarchy. But this has two potential drawbacks:

• Because inheritance is a rather strong binding (“is-a”) between classes, all existing
descendants are affected. In general, adding a feature to a class at a high position in the
inheritance structure can be a delicate matter.

• This solution is not available if the author of the client system is not permitted to modify
the original classes, or simply does not have access to their text—a frequent case in practice
since these classes may have been grouped into a library, for example, a financial contract
library. It would make no sense to let authors of every application using the library modify
it.

Basic object-oriented techniques (e.g., Meyer 1997) do not suffice here. The standard OO
solution, widely used, is the visitor pattern (Gamma et al. 1994). The following sketch,
although not quite the standard presentation, should suffice to summarize the idea. (It is
summarized from Meyer’s Touch of Class: An Introduction to Programming Well [2008], a
first-semester introductory programming textbook—suggesting how fundamental these
concepts have become.) Figure 13-5 lists the actors involved in the pattern.

CLIENT

t.accept (v) t f

F_VISITORT_TARGET
v. T_visit (Current)

Client (knows about)

Visitor
participants

Client (calls)

FIGURE 13-5. Actors of the Visitor pattern
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The pattern turns the pas de deux between the application (classes such as CLIENT) and the
existing types (such as T_TARGET for a particular type T, which could be PUDDING or CONTRACT in
our examples) into a ménage à trois by introducing a visitor class F_VISITOR for every applicable
operation F, for example, COST_VISITOR. Application classes such as CLIENT call an operation on
the target, passing the appropriate visitor as an argument; for example:

my_fruit_salad.accept (cost_visitor)

The command accept (v: VISITOR) performs the operation by calling on its argument v—
cost_visitor in this example—a feature such as FRUIT_SALAD_visit, whose name identifies the
target type. This feature is part of the class describing such a target class, here FRUIT_SALAD; it is
applied to an object of the corresponding type (here a fruit salad object), which it passes as
argument to the T_visit feature. Current is the Eiffel notation for the current object (also
known as “this” or “self”). The target of the call, v on the figure, identifies the operation by
using an object of the corresponding visitor type, such as COST_VISITOR.

The key question in software architecture when assessing extendibility is always distribution
of knowledge; a method can only achieve extendibility by limiting the amount of knowledge
that modules must possess about each other (so that one can add or change modules with
minimum impact on the existing structure). To understand the delicate choreography of the
visitor pattern, it is useful to see what each actor needs and does not need to know:

• The target class knows about a specific type, and also (since, for example, FRUIT_SALAD
inherits from COMPOSITE_PUDDING and COMPOSITE_PUDDING from PUDDING) its context in a type
hierarchy. It does not know about new operations requested from the outside, such as
obtaining the cost of making a pudding.

• The visitor class knows all about a certain operation, such as cost, and provides the
appropriate variants for a range of relevant types, denoting the corresponding objects
through arguments: this is where we will find routines such as fruit_salad_cost, flan_cost,
tart_cost, and such.

• The client class needs to apply a given operation to objects of specified types, so it must
know these types (only their existence, not their other properties) and the operation (only
its existence and applicability to the given types, not the specific algorithms in each case).

Some of the needed operations, such as accept and the T_visit features, must come from
ancestors. Figure 13-6 is the overall diagram showing inheritance (FRUIT_SALAD abbreviated to
SALAD).
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FIGURE 13-6. Putting it all together: an architecture for constructing puddings

Such an architecture is commonly used to provide new operations on an existing structure
with many inheritance variants, without having to change that structure for every such
operation. A common application is in language processing—for compilers and other tools in
an Interactive Development Environment—where the underlying structure is an Abstract
Syntax Tree (AST): it would be disastrous to have to update the AST class each time a new tool
needs, for its own purposes, to perform a traversal operation on the tree, applying to each node
an operation of the tool’s choosing. (This is known as “visiting” the nodes, explaining the
“visitor” terminology and the T_visit feature names.)

For this architecture to work at all, the clients must be able to perform t.accept (v) on any t
of any target type. This assumes that all target types descend from a common class—here,
PUDDING—where the feature accept will have to be declared, in deferred form. This is a delicate
requirement since the goal of the whole exercise was precisely to avoid modifying existing
target classes. Designers using the Visitor pattern generally consider the requirement to be
acceptable, as it implies ensuring that the classes of interest have a common ancestor—which
is often the case already if they represent variants of a common concept, such as PUDDING or
CONTRACT—and adding just one deferred feature, accept, to that ancestor.

The Visitor pattern is widely used. The reader is the judge of how “beautiful” it is. In our view
it is not the last word. Criticisms include:

• The need for a common ancestor with a special accept feature, in domain-specific classes
that should not have to be encumbered with such concepts irrelevant to their application
domain, whether puddings, financial contracts, or anything else.
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• More worryingly, the class explosion, with numerous miniature F_VISITOR classes
embodying a very specific kind of knowledge (a special operation on a set of special types).
For the overall software architecture, this is just pollution.

Depollution requires adding a major new concept to the basic object-oriented framework:
agents.

Agents: Wrapping Operations into Objects
The basic ideas of agents (added to the basic object-oriented framework of Eiffel in 1997; see
also C# “delegates”) can be expressed in words familiar in the functional programming
literature: we treat operations (functions in functional programming, features in object-
oriented programming) as “first-class citizens.” In the OO context, the only first-class citizens
are, at runtime, objects, corresponding in the static structure to classes.

The Agent Mechanism

An agent is an object representing a feature of a certain class, ready to be called. A feature call
x.f(u, ...) is entirely defined by the feature name f, the target object denoted by x, and the
arguments u, ...; an agent expression specifies f, and may specify none, some, or all of the
target and arguments, said to be closed. Any others, not provided in the agent’s definition, are
open. The expression denotes an object; the object represents the feature with the closed
arguments set to the given values. One of the operations that can be performed on the agent
object is call, representing a call to f; if the agent has any open arguments, the corresponding
values must be passed as arguments to call (for the closed arguments, the values used are those
specified in the agent’s definition).

The simplest example of agent expression is agent f. Here all the arguments are open, but the
target is closed. So if a is this agent expression—as a result of the assignment a := agent f, or
of a call p (agent f) where the formal argument of p is a—then a call a.call ([u, v]) has the
same effect as f (u, v). The difference, of course, is that f (u, v) directly names the feature
(although dynamic binding means it could be a variant of a known feature), whereas in the
form with agents, a is just a name, which may have been obtained from another program unit.
So at this point of the program, nothing is known about the feature except for its signature
and, on request, its contract. Because call is a general-purpose library routine, it needs a single
kind of argument. The solution is to use a tuple, here the two-element tuple [u, v]. In this
form, agent f, the target is closed (it is the current object) and both arguments are open.

A variant is agent x.f. Here, too, the arguments are open and the target is closed: that target is
x rather than the current object. To make the target open, use agent {T}.f, where T is the type
of x. Then a call needs a three-argument tuple: a.call ([x, u, v]). To keep some arguments
open, you can use the same notation, as in agent x.f ({U}, v) (typical call a.call ([u])), but
since the type U of u is clear from the context, you do not need to specify it explicitly; a question
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mark suffices, as in agent x.f (?, v). This also indicates that the original forms with all
arguments open, agent f and agent x.f, are abbreviations for agent f (?, ?) and agent x.f (?, ?).

The call mechanism applies dynamic binding: the version of f to be applied will, as in non-
agent calls, depend on the dynamic type of the target.

If f represents a query rather than a command, you can get from the corresponding agent the
result of a call to f by using item instead of call, as in a.item ([x, u, v]) (which performs a
call and returns the value of its result); or you can call call and then access a.last_result,
which, in accordance with the command-query separation principle, will return the same
value, with no further call, in successive invocations.

For more advanced uses, rather than basing an agent on an existing feature f, it is also possible
to write agents inline, as in editor_window.set_mouse_enter_action (agent do text.highlight
end), illustrating a typical use for graphical user interfaces, the basic style for event-driven
programming in EiffelVision library. Inline agents provide the same mechanism as lambda
expressions in functional languages: to write operations and make them directly available to
the software as values to be manipulated like any other “first-class citizens.”

More generally, agents enable the object-oriented framework to define higher-level
functionals just as in functional languages, with the same power of expression.

Scope of Agents

Agents have turned out to be an essential and natural complement to the basic object-oriented
mechanisms. They are widely used in particular for:

• Iteration: applying a variable operation, naturally represented as an agent, to all elements
in a container structure.

• GUI programming, as just noted.

• Mathematical computations, as in the example of integrating a certain function,
represented by an agent, over a certain interval.

• Reflection, where an agent provides properties of features (not just the ability to call them
through call and item) and, beyond them, classes.

Agents have proved essential to our investigation of how to replace design patterns by reusable
components (Arnout 2004; Arnout and Meyer 2006; Meyer 2004; Meyer and Arnout 2006).
The incentive is that while the designer of any application needing a pattern must learn it in
detail—including architecture and implementation—and build it from scratch into the
application, a reusable component can be used directly through its API. Success stories include
the Observer design pattern (Meyer 2004; Meyer 2008), which no one having seen the agent-
based solution will ever be tempted to use again, Factory (Arnout and Meyer 2006), and Visitor,
as will be discussed next.
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An Agent-Based Library to Make the Visitor Pattern Unnecessary

The agent mechanism permits a much better solution to the problem addressed somewhat
clumsily by the Visitor pattern: adding operations to existing types, without changing the
supporting classes. The solution is detailed in Meyer and Arnout (2006) and available through
an open source library available on the download site of the ETH Chair of Software Engineering
(ETH Zurich, Chair of Software Engineering, at http://se.ethz.ch).

The resulting client interface is particularly simple. No change is necessary to the target classes
(PUDDING, CONTRACT, and such): there is no more accept feature. One can reuse the classes exactly
as they are, and accept their successive versions: there is no more explosion of visitor classes,
but a single VISITOR library class, with only two features to learn for basic usage, register and
visit. The client designer does not need to understand the internals of that class or to worry
about implementing the Visitor pattern, but only needs to apply the basic scheme for using the
API:

1. Declare a variable representing a visitor object, specifying the top target type through the
generic parameter of VISITOR, and create the corresponding object:

pudding_visitor: VISITOR [PUDDING]

create pudding_visitor

2. For every operation to be executed on objects of a specific type in the target structure,
register the corresponding agent with the visitor:

pudding_visitor.register (agent fruit_salad_cost)

3. To perform the operation on a particular object—typically as part of a traversal—simply
use the feature visit from the library class VISITOR, as in:

pudding_visitor.visit (my_pudding)

That is all there is to the interface: a single visitor object, registration of applicable operations,
and a single visit operation. Three properties explain this simplicity:

• The operations to be applied, such as fruit_salad_cost, would have to be written regardless
of the architecture choice. Often they will already be available as routines, making the
notation agent fruit_salad_cost possible; if not—especially if they are very simple
operations—the client can avoid introducing a routine by using inline agents. In either
case, there is no need for the spurious T_visit routines.

• It seems strange at first that a single VISITOR class, with a single register routine to add a
visitor, should suffice. In the Visitor pattern solution the calls t.accept (v), the target t
identified the target type (a particular kind of pudding), but here register does not specify
any such information. How can the mechanism find the right operation variant to apply
(the cost of a fruit salad, the cost of a flan)? The answer is a consequence of the reflective
properties of the agent mechanism: an agent object embodies all the information about
the associated feature, including its signature. So agent fruit_salad_cost includes the
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information that this is a routine applicable to fruit salads (from the signature
fruit_salad_cost (fs: FRUIT_SALAD), also available, in the case of an inline agent, from its
text). This makes it possible to organize the internal data structures of VISITOR so that in a
visiting call, such as pudding_visitor.visit (my_pudding), the routine visit will find the right
routine or routines to apply based on the dynamic type of the target, here pudding_visitor:
VISITOR [P] for a specific pudding type P—also matching, as enforced statically by the type
system, the type of the object dynamically associated with the argument, here the
polymorphic my_pudding.

• This technique also enjoys the reuse benefits of inheritance and dynamic binding: if a
routine is registered for a general pudding type (say, COMPOSITE_PUDDING) and no other has
been registered for a more specific type (for example, the cost might be computed in the
same way for all composite puddings), visit uses the best match.

The mechanism as described provides the complement to traditional OO techniques. When
the problem is to add types providing variants of existing operations, inheritance and dynamic
binding work like a charm. For the dual problem of adding operations to existing types without
modifying these types, the solution described here will apply.

Applying the previous modularity criterion of distribution of knowledge—who must know
what?—we see that in this approach:

• Target classes only know about fundamental operations, such as sugar_content,
characterizing the corresponding types.

• An application only needs to know the interface of the target classes it uses, and the two
essential features, register and visit, of the VISITOR library class. If it needs new operations
on the target types, not foreseen in the design of the target classes, such as cost in our
example, it need only provide the operation variants that it needs for the target types of
interest, with the understanding that in the absence of overriding registration, the more
general operations will be used for more specific types.

• The library class VISITOR does not know anything about specific target types or specific
applications.

It seems impossible to go any further in minimizing the amount of knowledge required of the
various parts of the system. The only question that remains open, in our opinion, is whether
such a fundamental mechanism should remain available through a library or should somehow
yield a language construct.

Assessment

The introduction of agents originally raised the concern that they might cause redundancy and
hence confusion by offering alternative solutions in cases also amenable to standard OO
mechanisms. (Such concerns are particularly strong in Eiffel, whose language design follows
the principle of providing “one good way to do anything.”) This has not happened: agents
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found right away their proper place in the object-oriented arsenal; designers have no trouble
deciding when they are applicable and when not.

In practice, all nontrivial uses of agents—in particular, the cited pattern replacements—also
rely on genericity, inheritance, polymorphism, dynamic binding, and other advanced OO
mechanisms. This reinforces the conviction that the mechanism is a necessary component of
successful object technology.

N O T E
For a differing opinion, see the Sun white paper explaining why Java does not need an agent-
or delegate-like facility (Sun Microsystems 1997). It shows how to emulate the mechanism
using Java’s “inner classes.” Although interesting and well-argued, it mostly succeeds, in our
view, at demonstrating the contrary of its thesis. Inner classes do manage to do the job, but
one can readily see, as in the elimination of the Visitor pattern with its proliferation of puny
classes, the improvement in simplicity, elegance, and modularity brought by an agent-based
solution.

Agents, it was noted above, allow object-oriented design to provide the same expressive power
of functional programming through a general mechanism for defining higher-order functionals
(operations that can use operations—themselves recursively enjoying the same property—as
their inputs and outputs). Even lambda expressions find their counterpart in inline agents.
These mechanisms were openly influenced by functional programming and should in principle
attract the enthusiasm of its proponents, although one fears that some will view this debt
acknowledgment as an homage that vice pays to virtue (La Rochefoucauld 1665).

Setting aside issues of syntax, the only major difference is that agents can wrap not only pure
functions (queries without side effects) but commands. Ensuring full purity does not, however,
seem particularly relevant to discussions of architecture, at least as long as we enforce the
command-query separation principle, retaining the principal practical benefit of purity—
referential transparency of expressions—without forcing a stateful model into the artificial
stranglehold of stateless models.

Agents bring the final touch to object technology’s contribution to modularity, but they are
only one of its elements, together with those sketched in this discussion and a few more. The
combination of these elements, going beyond what the functional approach can offer, makes
object-oriented design the best available approach to ensure beautiful architecture.
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C H A P T E R  F O U R T E E N

Rereading the Classics

Panagiotis Louridas

IT  SEEMS  THAT  IN  ALL  SCIENTIFIC  FIELDS  THERE  ARE  WORKS  AND  PEOPLE that one cannot avoid
mentioning. The current living champion is probably Noam Chomsky. According to an April
1992 article in the MIT Tech Talk, Chomsky was one of the most cited individuals in works
published in the previous 20 years. The full top 10 roster of the Arts & Humanities Citation
Index included Marx, Lenin, Shakespeare, Aristotle, the Bible, Plato, Freud, Chomsky, Hegel,
and Cicero. In the Science Citation Index, he was cited 1,619 times in the period from 1972 to
1992.

In software engineering, oak leaf clusters must probably go to Design Patterns: Elements of
Reusable Object-Oriented Software (a.k.a. the “Gang of Four” book [Gamma et al. 1994]). A
Google search on the exact book title returns about 173,000 results (in spring 2008). If we turn
our attention to a more academic context, a search in the ACM Digital Library returns 1,572
results. The design patterns community has been one of the most vibrant communities in
software engineering in the last 20 years. It is difficult to think of a software engineer plying
her trade today who would not be familiar with this important body of work.

The present contribution happily pays its dues where it should by adding one to each of those
citation counts.

The Gang of Four book can be credited with bringing design patterns to the masses. It can also
be credited with not only providing a starting point for the design patterns movement, but a
returning point as well: the material related to design patterns is extensive, yet most discussions
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on the subject revolve around the design patterns presented in that book. Without dismissing
the others, it is the 32 patterns presented there that certainly deserve to be called classics.

A fascinating part of that book, however, is not the design patterns themselves but the
introductory chapter, which provides the rationale behind many of them and a common thread
for linking them together. There we find principles of reusable object-oriented design. The
second such principle is to favor object composition (“has”) over class inheritance (“is-a”). (The
first principle is “to program to an interface, not an implementation,” which should be clear
to anybody who has seen any advice on encapsulation in the last 40 years.)

To programmers who have not followed the arrival of object-oriented programming to center
stage in the 1980s and 1990s, this rule might not seem overly important. But if one recalls that
time, one of the defining concepts in object-oriented programming was inheritance. Take, for
instance, Bjarne Stroustrup’s description of C++ in The C++ Programming Language (1985).
We find there (p. 21) that:

C++ is a general purpose programming language with a bias toward systems programming that:

• Is a better C

• Supports data abstraction

• Supports object-oriented programming

• Supports generic programming

If we then turn to see exactly what “supports object-oriented programming” entails (p. 39),
we find:

The programming paradigm is:

• Decide which classes you want

• Provide a full set of operations for each class

• Make commonality explicit by using inheritance

Now consider by contrast yet another classic, Joshua Bloch’s Effective Java (2008). We find
there no less than three injunctions against inheritance:

• Favor Composition Over Inheritance

• Design and Document Inheritance or Else Prohibit It

• Prefer Interfaces to Abstract Classes

Is then inheritance to be avoided? That is not an academic point. Programming Microsoft
Windows can be very frustrating, even when approached by way of a very pleasant book
(Charles Petzold’s Programming Windows [1999]). When the first frameworks for Windows
programming came out (from Borland and Microsoft), they felt like a breath of fresh air. Before
then, creating a single window was nowhere near simple: programmers were interested to
learn that to program in Microsoft Windows they had to work with something called a window
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class, which had nothing to do with a C++ class. With the new frameworks, you needed only
to create a subclass of a class provided by the framework, and that was that. We were happy
to be suddenly freed from all the drudgery (or almost all), and also happy that we suddenly
found such a neat application of object orientation.

Programming Microsoft Windows is just an example; the enthusiasm with object orientation
and inheritance was pervasive. It is strange to learn now that we may have been wrong, but
perhaps we were not that wrong. Inheritance may not be essentially bad. Like all technology,
it can be put to good and bad uses, and the bad uses of inheritance have been documented in
many places (the Gang of Four book being a good start). Here we will give an example of a
beautifully crafted software system that has inheritance as its foundation. That system is
Smalltalk.

Smalltalk is a pure object-oriented language, and although it never actually made it to the
mainstream, it influenced language evolution in many ways. Perhaps the other language that
exerted so much influence on later computer languages was Algol-60—another example that
was more influential than actually used.

This is not a presentation of the Smalltalk programming language and its environment (these
two really go together), but a presentation of basic architectural ideas and where they may
lead us in our programming tasks. To borrow a term from the psychology of design, this is a
discussion on basic design principles and the affordances they give the programmer. Donald
Norman, in The Psychology of Everyday Things (1988), lucidly (and entertainingly) explains
the notion of affordances. Simply put, an object by its appearance allows us, and even invites
us, to do certain things. A hanging rope invites us to reach for it and pull it; a horizontal handle
bar invites us to push it; and a door-handle invites us to reach for it and turn it. In the same
way, the way a programming language looks to the programmer invites her to do certain things
with it, and warns her against doing other things. A beautiful crafted language has a beautiful
architecture, and that will show through the programs we make with it.

A strong expression of this is the Shapir-Whorf Hypothesis (SWH), which states that language
determines thought. The hypothesis has excited linguists and language designers for many
years. The preface to the first edition of The C++ Programming Language starts with SWH, and
the 1980 Turing Award lecture by K. E. Iverson (of APL fame) was devoted to the importance
of notation for expressing our thoughts. The SWH is controversial—after all, everybody has
had the experience of not being able to find the words for something, so we are able to think
of more than we can say—but in computer code the link between languages and programs is
clear. We know that computer languages are Turing complete, but we also know that for some
things some languages fit better than others.

But apart from influencing program architecture, a language’s architecture is interesting in its
own right. We will take a glimpse at Smalltalk’s own architecture—implementation choices,
design concepts, and patterns. We see many of them today in more recent programming
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languages; some of those that we do not see give us reason to pause and reflect on the reasons
why.

We do not assume any prior knowledge of Smalltalk here, although we will cover a significant
part of Smallktalk by the time we reach the end of this chapter. We will highlight design
principles by using small code snippets to illustrate them. One of the strengths of strong design
principles is that there are few things to learn, and once you grasp them, the whole
infrastructure flows from them. The Smalltalk system we will be referring to is Squeak (http:
//www.squeak.org), an open source implementation. Some code examples may be difficult to
understand at first reading, since we introduce concepts somewhat informally, but they are
illustrated in subsequent examples, so it is prudent to make an effort to go through to the end
and then return to any offending parts. At the same time, we do not insult the reader’s
intelligence.

Exploring Smalltalk will show language features that are not necessarily available in your
preferred language. That should not be a problem. It is a time-tested maxim in software
development that it is not necessary for the language you are using to natively support a feature
in order to program with it; with some diligence, you can find an elegant way to find an
alternative for it in your language of choice. According to Steve McConnell’s Code Complete
(2004), this is called programming into a language (p. 69):

Understanding the distinction between programming in a language and programming into one

is critical.... Most of the important programming principles depend not on specific languages but

on the way you use them. If your language lacks constructs that you want to use or is prone to

other kinds of problems, try to compensate for them. Invent your own coding conventions,

standards, class libraries, and other augmentations.

Indeed, in a reversal of the SWH that is an homage to programmer creativity (or stubbornness),
the author remembers, when object orientation had become de rigueur in 1990, coming upon
a book at the local technical bookstore treating the subject of object-oriented assembly
language. More recently, Randall Hide’s High Level Assembler (HLA) has combined assembly
with classes, inheritance, and other trappings.

We will approach a programming language as we would approach a classic book. Before we
go on in earnest, let us begin with a few suggested definitions from Italo Calvino’s essay “Why
Read the Classics” (1986):

The classics are the books of which we usually hear people say, “I am rereading...” and never “I

am reading....”

We use the word “classics” for books that are treasured by those who have read and loved them;

but they are treasured no less by those who have the luck to read them for the first time in the

best conditions to enjoy them.
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The classics are books that exert a peculiar influence, both when they refuse to be eradicated

from the mind and when they conceal themselves in the folds of memory, camouflaging

themselves as the collective or individual unconscious.

Every rereading of a classic is as much a voyage of discovery as the first reading.

A classic is a book that has never finished saying what it has to say.

The classics are the books that come down to us bearing the traces of readings previous to ours,

and bringing in their wake the traces they themselves have left on the culture or cultures they

have passed through (or, more simply, on language and customs).

A classic does not necessarily teach us anything we did not know before. In a classic we

sometimes discover something we have always known (or thought we knew), but without

knowing that this author said it first, or at least is associated with it in a special way. And this,

too, is a surprise that gives much pleasure, such as we always gain from the discovery of an

origin, a relationship, an affinity.

The classics are books which, upon reading, we find even fresher, more unexpected, and more

marvelous than we had thought from hearing about them.

A classic is a book that comes before other classics; but anyone who has read the others first,

and then reads this one, instantly recognizes its place in the family tree.

Books are not computer languages, of course, and yet these definitions may also apply to our
task.

Everything Is an Object
Today’s popular object-oriented computer languages (C++, Java, and C#) are not purely object-
oriented. Not everything is an object. Some types are primitive. Hence, for example, we cannot
subclass an integer. Arithmetic is performed the usual way on pure numbers, not by invoking
methods on objects. This brings performance benefits, and it may make things easier for people
coming to object orientation from a procedural language background.

But if we do decide to have everything as an object, then the situation changes drastically. In
Smalltalk, integers up to 31 bits long are instances of the SmallInteger class (in fact, there is an
abstract Integer class and its subclasses SmallInteger, LargePositiveInteger, and
LargeNegativeInteger, with conversions carried out automatically by the system as necessary).
We can perform ordinary arithmetic on them, but we can also do more. The SmallInteger class
offers no less than 670 methods (or selectors, in Smalltalk parlance), as we can easily find out
with the following code snippet:

SmallInteger allSelectors size
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It is instructive to examine how this code works. allSelectors is a class selector that does what
its name suggests. It returns all the selectors of a class in a Set (in fact, an IdentitySet, but this
does not make any difference to us here). The Set is itself a first-class object with its own
selectors; one of them, size, tells us the number of elements it contains.

Among the SmallInteger selectors we find the expected arithmetic operators. We also find
trigonometric and logarithmic functions, functions to compute factorials, greatest common
divisor, and least common multiple. There are functions for bit manipulation, and many others.

What we meet as integer primitives in other languages are actually SmallInteger instances in
Smalltalk. This explains why:

2 raisedTo: 5

works, and more intriguingly, why the following works as well:

(7 + 3) timesRepeat: [ Transcript show: 'Hello, World'; cr ]

Selectors that take arguments have a colon (:) appended to them before each argument.
Selectors standing for arithmetic and logical operators, such as + just shown, are exempt from
that rule. Transcript is a class representing something similar to the system console. cr stands
for carriage return, and a semicolon (;) cascades messages, so cr is sent to Transcript. We can
evaluate this code in an interpreter window (usually called a workspace in Smalltalk) and see
directly what happens.

Of course, not all 670 SmallInteger methods are defined in SmallInteger. SmallInteger is part of
an inheritance hierarchy, shown in Figure 14-1, where we also see the number of selectors for
each of the SmallInteger ancestors. Most of the selectors are inherited by Object, and
understanding what Object offers explains a great deal of Smalltalk architecture (in Squeak,
the actual root of the hierarchy is ProtoObject, but this is a minor detail).

Instances of Object have at their disposal comparison selectors (both equality, denoted by =,
and identity, denoted by ==); selectors for making copies (both deep, by invoking deepCopy, and
shallow, by invoking shallowCopy); and selectors for printing on streams, error handling,
debugging, message handing, and others. Only a few of the hundreds of Object methods are of
use for everyday programming. Methods in Smalltalk are organized in groups called
protocols, and checking the protocol descriptions makes finding methods easier.

Methods themselves are first-class objects in Smalltalk. To see what this means in terms of the
overall architecture, take the code:

aRectangle intersects: anotherRectangle

where aRectangle and anotherRectangle are instances of class Rectangle. When aRectangle, the
receiver (as objects that receive a message are called in Smalltalk) receives the intersects:
message, the Smalltalk interpreter will do the following (Conroy and Pelegri-Llopart 1983):
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ProtoObject 35

Object 469

Magnitude 477

Number 575

Integer 662

SmallInteger 670

FIGURE 14-1. SmallInteger hierarchy

1. Determine the class of the receiver.

2. Search for the message selector in the class and the class ancestors.

3. Retrieve the method associated with the message selector at the class where it was found.

Not only are things like numbers objects in Smalltalk, classes are objects in Smalltalk too.
Hence, SmallInteger, Object, Rectangle, etc. are all objects. When the interpreter searches for
the message selector in a class (step 2 in the list), it searches for it in the contents of the
corresponding class object. To be more precise, it looks it up in its method dictionary. An
instance of the Dictionary class associates key with values; a method dictionary associates each
selector with an instance of the corresponding CompiledMethod.

As an aside, intersects: can be implemented elegantly in Smalltalk as:

(origin max: aRectangle origin) < (corner min: aRectangle corner)

To see why this works, you need to know that the origin selector returns the upper-left point
of a rectangle (an instance of class Point), the corner selector returns the bottom-right point of
a rectangle, max: returns the lower-right corner of the rectangle uniquely defined by the
receiver and the argument, and min: returns the upper-left corner of the rectangle uniquely
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defined by the receiver and the argument. Although pithy, this is not the most optimal solution;
Squeak provides an alternative one:

intersects: aRectangle
    "Answer whether aRectangle intersects the receiver anywhere."
    "Optimized; old code answered:
          (origin max: aRectangle origin) < (corner min: aRectangle corner)"

    | rOrigin rCorner |
    rOrigin := aRectangle origin.
    rCorner := aRectangle corner.
    rCorner x <= origin x ifTrue: [^ false].
    rCorner y <= origin y ifTrue: [^ false].
    rOrigin x >= corner x ifTrue: [^ false].
    rOrigin y >= corner y ifTrue: [^ false].
    ^ true

Faster, but less beautiful. It gives us the opportunity, though, to introduce some Smalltalk
syntax. Variables local to a method are declared inside | |. The assignment operator is :=, ^ is
the equivalent of return in C++ and Java, and the period (.) separates statements. The code
inside square brackets ([ ]) is called a block, a key concept in the Smalltalk architecture. A
block is a closure—that is, a piece of code that can access the variables defined in its surrounding
scope. Blocks in Smalltalk are represented by the class BlockContext. The contents of a block
are executed when the block object receives the message value, and in most cases (like here),
the message is sent implicitly. Comments in Smalltalk are inside double quotes; single quotes
are used for strings.

A BlockContext shares the receiver, the arguments, the temporary variables, and the sender of
the context that creates it. There is a similar class, MethodContext, representing all the dynamic
state associated with the execution of a method (which, as we saw, is represented by
CompiledMethod, an array of bytecodes). As we would expect from an object-oriented language,
both BlockContext and MethodContext are subclasses of class ContextPart. The ContextPart class
adds execution semantics to its superclass, InstructionStream. On its part, InstructionStream is
the class whose instances can interpret Smalltalk code. The superclass of InstructionStream is
Object, where the chain ends.

Apart from the value selector, blocks also have the fork selector, which implements
concurrency in the language. As everything in Smalltalk is an object, processes are instances
of the Process class. The Delay class allows us to suspend an execution of a process for a specified
period of time; a Delay object will suspend the current executing process when it is sent the
wait message. Combining all this together, a trivial clock can be implemented with the
following code (Goldberg and Robson 1989, p. 266):

[[true] whileTrue:
    [Time now printString displayAt: 100@100.
    (Delay forSeconds: 1) wait]] fork

The whileTrue: selector will execute its block argument as long as its own receiver block is true.
The @ character is a selector of class Number that constructs instances of class Point.
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Blocks also give us a basic error-handling functionality, the idea being that we specify blocks
to be executed when something goes wrong. For instance, in a Collection object (a container
of objects) the method remove: will try to remove the specified element from the collection.
The method remove:ifAbsent: will try to remove the specified element from the collection, and
if the element does not exist, it will execute the block passed as argument in ifAbsent:. In a
nice example of minimizing code, the first is implemented in terms of the second:

remove: oldObject
    "Remove oldObject from the receiver's elements. Answer oldObject
    unless no element is equal to oldObject, in which case, raise an error.
    ArrayedCollections cannot respond to this message."

    ^ self remove: oldObject ifAbsent: [self errorNotFound: oldObject]

remove: oldObject ifAbsent: anExceptionBlock
    "Remove oldObject from the receiver's elements. If several of the
    elements are equal to oldObject, only one is removed. If no element is
    equal to oldObject, answer the result of evaluating anExceptionBlock.
    Otherwise, answer the argument, oldObject. ArrayedCollections cannot
    respond to this message."

    self subclassResponsibility

self is a reference to the current object (equivalent to this in C++ and Java); it is a reserved
name, a pseudovariable with fixed semantics. There are some more pseudovariables: super is
a reference to the superclass (equivalent to super in Java); nil, true, and false have the expected
meanings; and finally there is also thisContext, which we see in action in the definition of the
subclassResponsibility method. This selector is defined in Object and is simply an indicator that
the subclass must override it:

subclassResponsibility
    "This message sets up a framework for the behavior of the class's subclasses.
    Announce that the subclass should have implemented this message."

    self error: 'My subclass should have overridden ', thisContext
 sender selector printString

The thisContext pseudovariable is a reference to the current executing context—that is, the
current executing method or block—so it is an instance of the current executing instance of
MethodContext or BlockContext. The sender selector returns the context that sent the message;
selector gives the selector of the method. All these are objects.

Handling code as objects is not new; a strength of Lisp is its similar handling of code and data.
It allows us to program using reflection—that is, to do metaprogramming.

Metaprogramming is an idea whose importance has been increasing with time. In statically
typed compiled languages such as C or C++, support for metaprogramming is meager. An effort
to put metaprogramming to work in C++ (Forman and Danforth 1999), seems to have been
more influential in Python than in C++ itself (see PEP 253, “Subtyping Built-in Types,” at
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http://www.python.org/dev/peps/pep-0253/). Template metaprogramming in C++ is a rather
different approach: we use the fact that the C++ compiler will generate template code at
compile time to carry out computation right then (Abrahams and Gurtovoy 2005). It is a
technique with exciting possibilities that calls, however, for esoteric programming skills. In
Java, metaprogramming, via reflection, is an integral part of the language, although Java code
that uses reflection tends to be cumbersome.

A related issue is highlighted when we are faced with the problem of constructing a menu at
runtime. A menu associates items with handlers that are invoked when the user selects the
associated label. If we are able to refer to handlers by name, then we can construct a menu
dynamically using code such as this:

CustomMenu new addList: #(
    #('red' #redHandler)
    #('green' #greenHandler)
    #('blue' #blueHandler)); startUpWithCaption:'Colors'.

In Smalltalk the delimiters #( ) enclose arrays. We create a new menu with its items and
handlers given by a list that contains label-handler pairs. The handlers are selectors (in real
code, we would need to give the implementation for them). The handlers are prefixed by the
character #, which denotes symbols in Smalltalk. We can think of symbols like strings. Symbols
are typically used for class and method names.

Reflection allows us to implement the Abstract Factory design pattern in a succinct way (Alpert
et al. 1998, pp. 43–44). If we want a factory class that instantiates objects of classes specified
at runtime by the user, we can do the following:

makeCar: manufacturersName
    "manufacturersName is a Symbol, such as #Ford, #Toyota, or #Porsche."
    | carClass |
    carClass := Smalltalk
                     at: (manufacturersName, #Car) asSymbol
                     ifAbsent: [^ nil].
    ^ carClass new

After the user has given a manufacturer’s name, we create the name of the class by appending
the word Car to it. For #Ford, the class name will be #FordCar, for #Toyota it will be #ToyotaCar,
and so on. Concatenation in Smalltalk is denoted by comma (,), and we want the resulting
concatenated string to be made a symbol again, so we call its asSymbol method. All class names
in Smalltalk are stored in the Smallktalk dictionary, the unique instance of the
SystemDictionary class. Once we find the required class name, we return an instance of the class.

We have seen several examples of Smalltalk code, but not a class definition. In Smalltalk, classes
are constructed in the same way as anything else: by sending the necessary message to the
appropriate receiver. We start by completing the following template in the Smalltalk
environment:

NameOfSuperclass subclass: #NameOfSubclass
    instanceVariableNames: ''
    classVariableNames: ''
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    poolDictionaries: ''
    category: 'Unknown'

We substitute the actual names for NameOfSuperclass and NameOfSubclass. In
instanceVariableNames, we list the instance variables, in classVariableNames the class variables,
and in category, we mark the category our class falls under (classes are grouped in categories
in Smalltalk, similar to the namespaces or packages in other languages). The
poolDictionaries slot lists the dictionaries that we are sharing with other classes; this is a
mechanism for sharing variables in Smalltalk. When the details of the template are filled in,
they are passed to the subclass selector of class Class:

subclass: t instanceVariableNames: f classVariableNames: d
poolDictionaries: s category: cat
    "This is the standard initialization message for creating a new class as a
    subclass of an existing class (the receiver)."
    ^(ClassBuilder new)
          superclass: self
          subclass: t
          instanceVariableNames: f
          classVariableNames: d
          poolDictionaries: s
          category: cat

The subclass selector creates an instance of class ClassBuilder, which creates new classes or
modifies existing ones. We send the required information to the ClassBuilder instance so that
the new class can be created according to what we have entered in the class template.

Doing everything on objects by sending messages gives us an economy of concepts that we
have to grasp. It also allows us to limit the number of syntactic constructs in the language.
Minimalism in programming languages goes a long way back. In the first paper on Lisp
(McCarthy 1960), we find that Lisp comprised two classes of expressions: s-expressions (or
syntactic expressions), which were expressions built from lists, and m-expressions (or meta-
expressions), which were expressions using s-expressions as data. In the end, programmers
opted for using s-expressions all the way, and hence Lisp became what we know today: a
language with almost no syntax, as everything, program and data, is a list. Depending on where
you stand on Lisp, this is proof that one single idea is enough for expressing the most
complicated constructs (or that humans can be coerced into accepting anything).

Smalltalk does not limit itself to one syntactic element, but still, Smalltalk programs are
composed of six building blocks:

1. Keywords, or pseudovariables, of which there are only six (self, super, nil, true, false,
and thisContext)

2. Constants

3. Variable declarations

4. Assignments
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5. Blocks

6. Messages

What we do not see included in this list is perhaps more interesting than what is included: we
do not see any elements for expressing control flow, no conditionals or loops. They are not
needed, as they are implemented in terms of messages, objects, and blocks (which are objects).
The following method implements the factorial function in class Integer:

factorial
    "Answer the factorial of the receiver."

    self = 0 ifTrue: [^ 1].
    self > 0 ifTrue: [^ self * (self - 1) factorial].
    self error: 'Not valid for negative integers'

Operators = and > are message selectors returning objects of abstract class Boolean, which has
two subclasses, True and False. If the receiver of selector ifTrue: is an instance of True, then its
argument is executed. The argument is the block delimited by [ ]. There is a symmetrical
selector ifFalse: with the opposite semantics. In general it is a good idea to use loops instead
of recursion, so here is a loop implementation of the factorial function:

factorial
    "Implement factorial function using a loop"

    | returnVal |
    returnVal := 1.
    self >= 0
          ifTrue: [2
                     to: self
                     do: [:n | returnVal := returnVal * n]]
          ifFalse: [self error: 'Not valid for negative integers'].
    ^ returnVal

The bulk of the job is carried out inside two blocks. The first block is executed for positive values
starting at 2 until the value of the receiver. Each iterated value is passed to the inner block,
where we calculate the result. Block arguments are prefixed by a colon (:) and separated from
the body of the block with a vertical bar (|). There may be more than one block argument, as
in the following definition of factorial (Black et al. 2007, p. 212):

factorial := [:n | (1 to: n) inject: 1 into: [:product :each | product * each ] ].

The to: selector returns an instance of class Interval, which effectively enumerates the values
from 1 to 10. For a number n, the factorial block will do the following. First, it will set the
product argument of the inner block to 1. Then, it will call the inner block for each value from
1 to n, calculating the product of each iterated number and the current product, and storing
the result to product. To evaluate the factorial of 10, we need to write factorial value: 10. To
borrow Herbert Simon’s quotation of early Dutch physicist Simon Stevin in The Sciences of
the Artificial (1996):

Wonder, en is gheen wonder. That is to say: “Wonderful, but not incomprehensible.”
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Types Are Defined Implicitly
Although everything in Smalltalk, even classes, is an object, classes do not correspond to types
in the way they do in languages such as C++ and Java. Types are defined implicitly by what
they do, and by their interfaces. This is described by names such as latent typing or duck typing.

Latent typing is the only typing mechanism in Smalltalk (and also in some other dynamically
typed languages), but that does not mean it is of no importance to strongly typed languages.
In C++, for instance, latent typing is the basis of generic programming via templates. It makes
sense to see it first in that language. Take a look at the following introductory example of
C++ templates (Vandervoorde and Josuttis 2002, 2.4):

// maximum of two int values
inline int const& max (int const& a, int const& b)
{
    return  a < b ? b : a;
}

// maximum of two values of any type
template <typename T>
inline T const& max (T const& a, T const& b)
{
    return  a < b ? b : a;
}

// maximum of three values of any type
template <typename T>
inline T const& max (T const& a, T const& b, T const& c)
{
    return ::max (::max(a,b), c);
}

int main()
{
    ::max(7, 42, 68);     // calls the template for three arguments
    ::max(7.0, 42.0);     // calls max<double> (by argument deduction)
    ::max('a', 'b');      // calls max<char> (by argument deduction)
    ::max(7, 42);         // calls the nontemplate for two ints
    ::max<>(7, 42);       // calls max<int> (by argument deduction)
    ::max<double>(7, 42); // calls max<double> (no argument deduction)
    ::max('a', 42.7);     // calls the nontemplate for two ints
}

As we see in main(), the function ::max will work for any type that implements the comparison
operator. In C++, that type may be a primitive, or it may be user-defined. There are no
restrictions that it should inherit from a specific class. It can be of any type, as long as it obeys
the basic requirement on comparison. The implicit type definition is: anything for which
operator < makes sense.

In school we learned that there are two ways to define a set. One is explicit, by enumerating
its elements. This is called extensional definition. The set of natural numbers we know is

R E R E A D I N G  T H E  C L A S S I C S  361



{1, 2, 3, ...}. The other way to define a set is by describing what the members of the set have
in common. This is called intentional definition. The intensional definition of the set of even
natural numbers is “whole numbers greater than zero.” When we declare an object in C++,
we are effectively using an extensional definition: we say that the object belongs to the given
type. When we use templates, however, we are effectively using an intensional definition: we
say that the set of objects for which this code is applicable is the set of objects that have the
given properties (that is, they offer the required operations).

The situation is unfortunately muddled in Java. Java offers generics, but they bear only a
surface syntactic resemblance to C++ templates. An eloquent explanation of the problem has
been given by Bruce Eckel (see http://www.mindview.net/WebLog/log-0050). In a language
such as Python, which supports latent typing, we can do this:

class Dog:
    def talk(self):  print "Arf!"
    def reproduce(self): pass

class Robot:
    def talk(self): print "Click!"
    def oilChange(self): pass

a = Dog()
b = Robot()
speak(a)
speak(b)

The two invocations of speak() will work without caring for the type of its argument. We can
do the same with C++:

class Dog {
public:
    void talk() { }
    void reproduce() { }
};

class Robot {
public:
    void talk() { }
    void oilChange() { }
};

template<class T> void speak(T speaker) {
    speaker.talk();
}

int main() {
    Dog d;
    Robot r;
    speak(d);
    speak(r);
}
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We cannot do the same in Java, as the following will not compile:

public class Communicate  {
    public <T> void speak(T speaker) {
        speaker.talk();
    }
}

Confusingly, this does compile, as under the hood, generic types are converted to instances of
Object in Java (this is called erasure):

public class Communicate  {
    public <T> void speak(T speaker) {
      speaker.toString(); // Object methods work!
    }
}

So, we have to do something like this:

interface Speaks { void speak(); }

public class Communicate  {
    public <T extends Speaks> void speak(T speaker) {
      speaker.speak();
    }
}

But this pretty much defeats the advantages of generics, as we are defining a type via the
Speak interface. The lack of generality also shows in that Java primitive types cannot be used
with the generics mechanism. As a workaround, Java offers wrapper classes, true object classes
that correspond to primitive types. Converting between primitives and wrappers used to be a
chore in Java programming. In recent versions of the language it is less so, thanks to the auto-
boxing feature that performs automatic conversions in certain circumstances. Be that as it may,
we can write List<Integer>, but not List<int>.

Latent typing has been popularized recently thanks to its widespread adoption in the Ruby
programming language. The term “duck typing” is a tongue-in-cheek reference to inductive
reasoning, attributed to James Whitcomb Riley, which goes:

If it walks like a duck and quacks like a duck, I would call it a duck.

To see the importance of duck typing, take an essential feature of object-oriented
programming, polymorphism. Polymorphism stands for the use of different types in the same
context. One way to achieve polymorphism is through inheritance. A subclass can be used
(more precisely, should be used, because programmers can be careless) wherever a superclass
can be used. Duck typing offers an additional way to achieve polymorphism: a type can be used
anywhere it offers methods fitting the context. In the pet and robot example shown earlier in
Python and C++, Dog and Robot do not share a superclass.

Of course it is possible to program your way around duck typing only the inheritance type of
polymorphism. A programmer, however, is wealthier if she has more tools at her disposal for
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solving the problem she faces. As long as the plurality of tools does not get into the way, she
can choose among them as best fits the situation. This has been expressed very elegantly by
Bjarne Stroustrup in The Design and Evolution of C++ (1994, p. 23):

My interest in computers and programming languages is fundamentally pragmatic.

I feel most at home with the empiricists rather than with the idealists.... That is, I tend to prefer

Aristotle to Plato, Hume to Descartes, and shake my head sadly over Pascal. I find comprehensive

“systems” like those of Plato and Kant fascinating, yet fundamentally unsatisfying in that they

appear to me dangerously remote from everyday experiences and the essential peculiarities of

individuals.

I find Kierkegaard’s almost fanatical concern for the individual and keen psychological insights

much more appealing than the grandiose schemes and concern for humanity in the abstract of

Hegel or Marx. Respect for groups that doesn’t include respect for individuals of those groups

isn’t respect at all. Many C++ design decisions have their roots in my dislike for forcing people

to do things in some particular way. In history, some of the worst disasters have been caused by

idealists trying to force people into “doing what is good for them.” Such idealism not only leads

to suffering among its innocent victims, but also to delusion and corruption of the idealists

applying the force. I also find idealists prone to ignore experience and experiment that

inconveniently clashes with dogma or theory. Where ideals clash and sometimes even when

pundits seem to agree, I prefer to provide support that gives the programmer a choice.

Going back to Smalltalk, consider the problem of going over a collection of objects, applying a
function on each one of them, and collecting the results. This is implemented as follows:

collect: aBlock
    "Evaluate aBlock with each of the receiver's elements as the argument.
    Collect the resulting values into a collection like the receiver. Answer
    the new collection."

    | newCollection |
    newCollection := self species new.
    self do: [:each | newCollection add: (aBlock value: each)].
    ^ newCollection

To understand this method, it is enough to know that the species method returns either the
class of the receiver or a class similar to it—the difference is too subtle to make a difference to
us here. What is interesting is that to construct the new collection we only need something
that has a selector called value, which we call. Blocks do have a selector called value, so any
block can be used. But the fact that we are talking about blocks is incidental: anything that
implements value will do.

Anything that returns a value has turned out to be important enough in programming that it
has earned a name: it is now called a function object, and is a fundamental constituent of
C++ STL algorithms. Traditionally, it is a staple of functional programming, usually called a
map function. It is of course available in Lisp. It is also offered in Python, allowing us to do
things like:
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def negate(x): return -x
map(negate, range(1, 10))

whereas in Perl we would write:

map { -$_ } (1..10)

and the C++ STL allows us to do the equivalent (Josuttis 1999, 9.6.2):

vector<int> coll1;
list<int> coll2;

// initialize coll1

//negate all elements in coll1
transform(coll1.begin(), coll1.end(),           //source range
          back_inserter(coll2),                 //destination range
          negate<int>());                       //operation

It is perhaps a tragedy of our times that many C++ programmers will write the code just shown
using loops over arrays.

Duck typing can create controversy—and it indeed it has. In statically typed languages, such
as C++, the compiler will check that the object used in an expression involving a latent type
does offer the required interface. In a dynamically typed language such as Smalltalk, this will
be discovered at runtime when it produces an error.

This cannot be dismissed out of hand. Strongly typed languages prevent programmers from
oversight; they are particularly helpful in big projects, where a good structure aids
maintenance. The most important change from traditional Unix C to ANSI C in the 1980s was
the introduction of a stronger type system: C got proper function prototypes and function
arguments would from now on be checked at compile time. We now frown upon cavalier
conversions between types. In short, we exchanged some freedom for some discipline—or,
alternatively, chaos for some order.

In Smalltalk, it is generally assumed that chaos should not result, as we should be writing small
code fragments while testing them at the same time. Testing is easy in Smalltalk. Because there
is no distinct compile and build cycle, we can write small code fragments in a workspace and
see directly how our code behaves. Unit testing is also easy; we can write unit tests before our
code without worrying about compiler messages referring to undeclared types or methods. It
may not be accidental that the community that brought us JUnit shares a lot with the Smalltalk
community. We can achieve much of the same in Java by using Java scripting, with BeanShell
or Groovy for instance. In fact, strongly typed languages can give us a false sense of security:

If a program compiles in a strong, statically typed language, it just means that it has passed some

tests. It means that the syntax is guaranteed to be correct.... But there’s no guarantee of

correctness just because the compiler passes your code. If your code seems to run, that’s also no

guarantee of correctness.
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The only guarantee of correctness, regardless of whether your language is strongly or weakly

typed, is whether it passes all the tests that define the correctness of your program. (http://www

.mindview.net/WebLog/log-0025)

Sometimes it pays to be cautious, though. We may be adding objects to some collection and
expecting these objects to obey a certain interface; we would be loath to discover at runtime
that some of these objects in fact do not. We can guard against such mishaps by using Smalltalk
metaprogramming facilities.

Metaprogramming complements latent typing by allowing us to check that the specified
interface is really offered, and giving us the opportunity to react if it is not—for instance, by
delegating nonimplemented calls to delegates that we know they implement them, or by
simply handling failure gracefully and avoiding crashes. So in the pickaxe book (Thomas et al.
2005, pp. 370–371), we find the following Ruby example, where we try to add song
information to a string:

def append_song(result, song)
  # test we're given the right parameters
  unless result.kind_of?(String)
    fail TypeError.new("String expected")
  end
  unless song.kind_of?(Song)
    fail TypeError.new("Song expected")
  end
  result << song.title << " (" << song.artist << ")"
  end

This is what we would do if we adopted a Java or C# programming style. In Ruby-style duck
typing, it would simply be:

def append_song(result, song)
  result << song.title << " (" << song.artist << ")"
end

This code will work with any object that appends using <<; for those objects that do not, we
will get an exception. If we really want to be defensive, we can do so by checking the object’s
capabilities and not its type:

def append_song(result, song)
  # test we're given the right parameters
  unless result.respond_to?(:<<)
    fail TypeError.new("'result' needs `<<' capability")
  end
  unless song.respond_to?(:artist) && song.respond_to?(:title)
    fail TypeError.new("'song' needs 'artist' and 'title'")
  end
  result << song.title << " (" << song.artist << ")"
end

Smalltalk offers the respondsTo: method, defined in Object, which we can use to see in runtime
whether a given receiver has a given selector.
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respondsTo: aSymbol
    "Answer whether the method dictionary of the receiver's class contains
    aSymbol as a message selector."

    ^self class canUnderstand: aSymbol

The implementation is trivial, delegating the check to selector canUnderstand: defined in
Behavior:

canUnderstand: selector
    "Answer whether the receiver can respond to the message whose selector
    is the argument. The selector can be in the method dictionary of the
    receiver's class or any of its superclasses."

    (self includesSelector: selector) ifTrue: [^true].
    superclass == nil ifTrue: [^false].
    ^superclass canUnderstand: selector

Finally, includesSelector: is also defined in Behavior, where it boils down to checking the
method dictionary of the class:

includesSelector: aSymbol
    "Answer whether the message whose selector is the argument is in the
    method dictionary of the receiver's class."

    ^ self methodDict includesKey: aSymbol

When a receiver gets a message it does not understand, its standard response is sending the
doesNotUnderstand: message to the system. If we would rather try to remedy the situation
ourselves, we only need to override the message, doing something like the following:

doesNotUnderstand: aMessage
    "Handles messages not being understood by attempting to
    proxy to a target"
    target perform: aMessage selector withArguments: aMessage arguments].

We assume that target refers to the proxy object that we hope will be able to handle the
misdirected message.

Latent typing is not an excuse for sloppy programming. We duck types, not responsibilities.

Problems
Public inheritance means “is-a.” That requires careful thinking from the part of the
programmer to come up with class hierarchies that really fit this pattern. If you have a class
with a method and a subclass where you realize that method makes no sense, it is beyond the
scope of public inheritance, and it should be a sign of bad design. Languages, however, prove
accommodating.

In C++, you can get away with it by making the nonsensical method either return an error or
throw an exception. The prototypical example concerns birds (Meyers 2005, item 32):
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class Bird {
public:
    virtual void fly();   // birds can fly
    // ...
};

class Penguin: public Bird {    // penguins are birds
public:
    virtual void fly() { error("Attempt to make a penguin fly!"); }
    // ...
};

C++ programmers may alternatively hide the offending method:

class Base {
public:
    virtual void f()=0;
};

class Derived: public Base {
private:
    virtual void f() {
    }
};

So, Derived is no longer an abstract class, but it still does not have an f() function that can be
of any use. Such shenanigans are to be avoided.

In Java, you can get away with it again by returning an error or throwing an exception; you
can also making the nonsensical method abstract in the subclass, thus making the class
hierarchy abstract from that point downward until you remake the method concrete. Again,
such shenanigans are to be avoided.

The usual way to design around the problem of inapplicable or irrelevant methods in a class
hierarchy is to redesign that hierarchy. A class hierarchy that would better reflect the
peculiarities of the avian world would introduce a FlyingBird subclass of Birds, for those birds
who do fly, and make Penguin a direct subclass of Bird, and not of a FlyingBird.

In Squeak we find a mere 45 methods that send the shouldNotImplement message, which is used
when a method inherited by a superclass is not applicable in the current class. This is a very
small proportion of the total number of methods and objects in Smalltalk, so the language is
not fraught with badly designed class hierarchies. However, even the shouldNotImplement
message is actually an implementation. This hints at a deeper issue in Smalltalk, which is that
we do not have real abstract classes or methods. Methods are abstract by convention; there are
no methods that have no implementation at all.

Instead of using the shouldNotImplement message, we could specify that a given method is the
responsibility of a subclass, which we have seen is what the subclassResponsibility message is
for. The class from which we send subclassResponsibility is then by convention abstract. For
instance, the Collection class gives a generic interface for adding and removing objects, but
does not provide implementation, as the implementation varies depending on the subclass we
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are dealing with (it could be a dictionary, an array, a list...). Method add: is to be implemented
in the subclasses:

add: newObject
    "Include newObject as one of the receiver's elements. Answer newObject.
    ArrayedCollections cannot respond to this message."

    self subclassResponsibility

This “abstract” definition of add: even allows us to define in the Collection methods that use
it, such as add:withOccurrences:, which is:

add: newObject withOccurrences: anInteger
    "Add newObject anInteger times to the receiver. Answer newObject."

    anInteger timesRepeat: [self add: newObject].
    ^ newObject

We can even do without defining add: at all; add:withOccurrences: would still be defined as just
shown, and Smallktalk will not balk as long as at runtime the receiving object has add: defined.
(By the way, add:WithOccurrences: is a nice little implementation of the Strategy pattern.) At
the same time, the comment in add: points out that some subclasses of Collection, those rooted
at its ArrayedCollection subclass, should not implement the message at all. This, again, is
enforced only at runtime, by using shouldNotImplement:

add: newObject
    self shouldNotImplement

There is nothing inherently wrong in using conventions in programming; part of the art is
mastering conventions. What can be problematic, however, is depending solely on collections
to obtain the required result. Smallktalk will not warn us if we forget not to implement add:
in ArrayedCollection. We will only fail miserably at runtime.

We saw earlier how easy it is to implement a proxy class in Smalltalk. The truth is, though,
that if we actually want a proxy class that stands as a proxy for only a small number of methods,
things get more complicated. The reason has to do with the absence of real abstract classes. A
proxy class may be a subclass of the class we want to proxy, in which case it will inherit all the
methods of the proxied class, and not just those methods that we want to proxy. Alternatively,
we may employ latent typing and define in the proxy class only the proxied methods; the
problem is that, since everything is an object, the proxy class will inherit all the methods of
the Object class. Ideally, we would like a class that proxies two methods to have these two
methods only, but it is not obvious how we can achieve that. The class will have all the methods
inherited by its ancestors. We can resort to tricks to minimize the number of inherited methods;
for example, in some Smalltalk dialects it is possible to make a class a subclass of nil instead of
Object. In this way nothing is inherited, but we need to copy and paste some necessary methods
from Object (Alpert et al. 1998, p. 215). In Squeak, we can make it a subclass of ProtoObject
instead of Object.
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When we start looking into what really gets inherited from where, things become intricate. As
everything in Smalltalk is an object, including classes, we may wonder what kind of instances
classes are. It turns out that classes are instances of metaclasses; a class’s metaclass is named
after the class name with the word “class” after it. For example, the metaclass of Object is Object
class. This is a sensible convention, but it does not really answer the question, as we may
wonder what kind of instances metaclasses are. It turns out that metaclasses are instances of
class Metaclass (no class suffix here). And Metaclass is an instance of another class, called
Metaclass class (class suffix included), which again must be an instance of something, so it
was made an instance of Metaclass. (Readers should be forgiven here for thinking they are
reading part of the script of Terry Gilliam’s Twelve Monkeys.) Things get even more intricate
if we take into account the inheritance relationships as well (we have been talking only about
instances until now). There we find that Object class is a subclass of Class, which is an instance
of Class class; Class is a subclass of ClassDescription, and that of Behavior, and that of Object,
and in Squeak we also have ProtoObject at the apex of the hierarchy. The situation is presented
graphically in Figure 14-2. Note that we do not include any class below Object here. The reader
can try and combine Figure 14-1 and Figure 14-2 (don’t forget to add the metaclasses, starting
from SmallInteger class and working your way up). It may be that we cannot have too much
of a good thing; it is nice to have everything an object, but following the axiom to all its
consequences does not necessarily lead to an easily accessible structure. Fortunately, most
Smalltalk programmers do not need to be concerned with such matters.

There are other consequences of the “everything is an object” and “everything is carried out
by messages” dicta that do concern everyday programmers. Any programmer with a minimum
of programming experience would expect that:

3 + 5 * 7 == 38

would be true, but alas, in Smalltalk the following is true:

3 + 5 * 7 == 56

The reason is that the binary arithmetic operators are in fact nothing but selectors of the
number classes. They are therefore parsed as any other message, and there is nothing dictating
that one binary message should have precedence over another. True, it makes sense once you
are familiar with the rules of the game. But it still makes one wonder. It is easy to check
arithmetic calculations in a workspace in a Smalltalk environment, but it might be better if the
programmer never really had to think about such issues.

The Smalltalk environment itself is one of the great innovations of Smallktalk. Back in the
1980s, when graphical displays were a rarity and most programming was done on
monochrome text terminals, Smalltalk implemented a graphical user interface (GUI) for a
language built on top of a virtual machine. That might have been ahead of its time. Virtual
machines had to wait another decade for Java to bring them into mainstream programming.
GUIs won the battle, but only when hardware prices came down. In the meantime, an
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environment with these requirements was deemed (and perhaps it was) unsuitable for most
purposes at the time. But there might also be something subtler going on.

The Smallktalk environment is really an ecosystem of classes with which you not only can
work, but with which you have to work. The only reasonable way to create a new class in
Smalltalk is to use the appropriate browser to find the class you want, from which you will
subclass it. You may be used to your favorite editor and your well-honed skills with build
command-line tools in several languages, but Smalltalk is different. You may love the class
libraries that Smalltalk designers thoughtfully provided for you, but if you think otherwise,
there is not much you can do. It is nice when you are inside, but you do have to move inside
to do anything with it. This may not be what programmers are prepared to do. It is possible
that, after reading the first few pages here, you rushed to download and install a Smalltalk
installation to see for yourself, and that you threw your hands up in despair when you realized
how different and unfamiliar everything is.

Behavior

Object class

Class

ClassDescription

Behavior classObject

Metaclass

Class class

Metaclass class

ClassDescription class

FIGURE 14-2. Spaghetti à la Smalltalk

Which hints at why Smallktalk never really made it to the mainstream. Smalltalk is an adamant
language; it did not make compromises. It defined a new programming model, used concepts

R E R E A D I N G  T H E  C L A S S I C S  371



that were later adopted by many other languages, set in many ways an example, and was
imitated. This is not very different from the world of architecture.

Brick and Mortar Architecture
Among architectural wonders, the most celebrated house in America must be Fallingwater,
designed by Frank Lloyd Wright in 1935, “probably the most frequently illustrated house of
the twentieth century” (Nuttgens 1997, p. 264). Fallingwater is built above a waterfall in a
ravine called Bear Run. The house was designed for Edgar Kaufmann, Sr., a millionaire
Pittsburgh businessman. It was used as the Kaufmanns’ weekend home from 1937 to 1963,
when it was donated to the Western Pennsylvania Conservancy, and opened to the public as
a museum in 1964.

Even photographs of the building (see Figure 14-3) evoke serenity and partake of the beauty
of the house and its surroundings. Wright strove to integrate nature and architecture, to make
art and nature reflect each other; in Fallingwater nature is drawn inside the building, and the
building becomes a part of it. This is a masterpiece of modern architecture that still invites us
to contemplate the meanings that the architect wanted to put into his art.

But a house is not only an object to behold, but something to live in. We cannot live in
Fallingwater—at best we can only visit it—but perhaps we can imagine how living in it would
be.

It is very likely that we would be wrong. In Steward Brand’s How Buildings Learn (1995, p.
58), we learn that:

Wright’s late-in-life triumph, Fallingwater in Pennsylvania, celebrated by that AIA poll as the

“best all-time work of American architecture,” lives up to its name with a plague of leaks; they

have marred the windows and stone walls and deteriorated the structural concrete. To its original

owner, Fallingwater was known as “Rising Mildew,” a “seven-bucket building.” It is indeed a

gorgeous and influential house, but unlivable. (Quoted from Judith Donahue, “Fixing

Fallingwater’s Flaws,” Architecture, Nov. 1989, p. 100.)

This judgment may have been too harsh. Edgar Kaufmann, Jr., who did live in Fallingwater,
expressed the situation a bit differently:

Mistakes have plagued Fallingwater, yet the extraordinary beauty of the house and the delight

it brought to the life of its inhabitants form the context in which its construction should be

evaluated. Life at Fallingwater did include flaws and the efforts to overcome them. (Kaufmann

1986, p. 49)

This judgment should again be taken with a pinch of salt. Edgar Kaufmann, Jr. was not a
disinterested party. He entered Wright’s Taliesin Fellowship in 1934. (Twenty-three
apprentices came to live and learn in 1932 at Taliesin, in Spring Green, Wisconsin, thus starting
what still exists as “The Frank Lloyd Wright School of Architecture”; the school now has two
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campuses, Taliesin and Taliesin West in Arizona.) He introduced the architect to his parents,
and he was often the intermediary between Wright and his parents during the building’s design
and construction.

FIGURE 14-3. Fallingwater

Another architectural wonder, perhaps the most influential house of the 20th century
(influential in the sense that its style defined the morphology of modern cities the world over),
is the Villa Savoye, at Poissy, outside Paris, designed by the Swiss architect Charles-Édouard
Jeanneret-Gris, a.k.a. Le Corbusier (see Figure 14-4). Villa Savoye, like Fallingwater, was
designed as a weekend house. It was constructed between 1928 and 1931.
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FIGURE 14-4. The Villa Savoye

Wright had strong views on the role of architecture; Le Corbusier was also strong-willed, but
had a rather different set of ideals. Whereas Wright worked on the relationship between art
and nature:

Le Corbusier invented a proportional system—the “Modulor,” which drew together the Golden

Section, a six-foot human figure, and harmonic proportions in an elaborate Corbusian theorem

supposedly reconciling mechanization and “natural order.” (Curtis 1996, p. 412)

The Villa Savoye has provoked awe on architects:

Like any work of a high order, the Villa Savoye evades facile categorization. It is simple and

complex, cerebral and sensuous. Laden with ideas, it still expresses these directly through shapes,

volumes, and spaces “in a certain relationship.” A “classic” moment of modern architecture, it

also has affinities with the architecture of the past. It was a central concern of Le Corbusier’s

philosophy that a vision of contemporary life be given expression in architectural forms of

perennial value, and in the Villa Savoye one recognizes echoes of old classical themes: repose,

proportion, clarity, simple trabeation. (Curtis 1996, p. 284)

People may disagree on matters of state, and for some the Villa Savoye may look like a white
box ready for lift-off; after all, de gustibus et coloris non est diputandum. It is on a different set
of considerations, that of its practical value as house, that we may pass more unequivocal
judgement. Here Le Corbusier’s clients took a rather different view:
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In spite of initial protests from the Savoyes, Le Corbusier insisted—supposedly on technical and

economic grounds alone—that a flat roof would be preferable to a pitched one. It would, he

assured his clients, be cheaper to construct, easier to maintain and cooler in summer, and

Madame Savoye would be able to do her gymnastic exercises on it without being bothered by

damp vapours emanating from the ground floor. But only a week after the family moved in, the

roof sprang a leak over Roger’s [the Savoyes’ son] bedroom, letting in so much water that the

boy contracted a chest infection, which turned into pneumonia, which eventually required him

to spend a year recuperating in a sanatorium in Chamonix. (De Botton 2006, p. 65)

This reads like a practical joke from the architect on his clients, but it seems that the architect
had a narrow escape himself:

In September 1936, six years after the villa’s official completion, Madame Savoye compressed

her feelings about the performance of the flat roof into a (rain-splattered) letter: ‘It’s raining in

the hall, it’s raining on the ramp, and the wall of the garage is absolutely soaked. What’s more,

it’s still raining in my bathroom, which floods in bad weather, as the water comes in through

the skylight.’ Le Corbusier promised that the problem would be fixed straightaway, then took

the opportunity to remind his client of how enthusiastically his flat-roofed design had been

received by architectural critics worldwide: ‘You should place a book on the table in the

downstairs hall and ask all your visitors to inscribe their names and addresses in it. You’ll see

how many fine autographs you will collect’. But this invitation to philography was of little

comfort to the rheumatic Savoye family. ‘After innumerable demands on my part, you have

finally accepted that this house which you built in 1929 is uninhabitable,’ admonished Madame

Savoye in the autumn of 1937. ‘Your responsibility is at stake and I have no need to foot the

bill. Please render it habitable immediately. I sincerely hope that I will not have to take recourse

to legal action.’ Only the outbreak of the Second World War and the Savoye family’s consequent

flight from Paris saved Le Corbusier from having to answer in a courtroom for the design of his

largely uninhabitable, if extraordinarily beautiful, machine-for-living. (De Botton 2006, pp. 65–

66)

Another figurehead of modern architecture, Ludwig Mies van der Rohe, used a minimalistic
formal system based on I-beams. He “kept full scale I-beam details by his desk to get the
proportions just so. He thought [the I-beam] was the modern equivalent of the Doric Column”
(Jencks 2006, p. 13).

Mies van der Rohe is more famous for his use of “less is more,” by which he wanted to bring
architecture back to the main essentials: no ornament, decoration, or superfluous elements,
unless they served a functional purpose. I-beams are part of the essentials of a building.

Or so it would seem to be. One of Mies van der Rohe’s major works is the Seagram building
in New York City, completed in 1958 (see Figure 14-5). There the architect faced a conundrum:
much as he wanted the I-beams to show through the construction, that was impossible under
American construction regulations, which demanded that metal supports should be enclosed
in fireproof material, for example, concrete. But strangely, a close look at the Seagram building
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shows I-beams on its surface. These are not the real supporting I-beams. Mies van der Rohe
added fake I-beams on the surface so that they would “reveal” the structure underneath.
Moreover, so that the visual impression of the building would not be jeopardized, the window
shades could stand in only three positions: open, closed, and half-way—probably not the best
arrangement to protect against sun glare (Wolfe 1982, pp. 75–76).

FIGURE 14-5. Seagram building

The leading modern architect Louis Sullivan (one of the creators of the high-rise building, the
skyscraper, and mentor to Wright, among other things) famously wrote:

Whether it be the sweeping eagle in his flight, or the open apple-blossom, the toiling work-horse,

the blithe swan, the branching oak, the winding stream at its base, the drifting clouds, over all

the coursing sun, form ever follows function, and this is the law. Where function does not change
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form does not change. The granite rocks, the ever-brooding hills, remain for ages; the lightning

lives, comes into shape, and dies in a twinkling.

It is the pervading law of all things organic and inorganic, of all things physical and metaphysical,

of all things human and all things superhuman, of all true manifestations of the head, of the

heart, of the soul, that the life is recognizable in its expression, that form ever follows function.

This is the law. (Sullivan 1896)

Mies van der Rohe then seems to be putting “form follows function” on its head. Or it may be
that such aphorisms are more useful to provoke, rather than to describe what is actually
happening. Paul Rand was arguably the leading graphic American designer. He was responsible
for the IBM, ABC, and the original UPS logos; he collaborated with Steve Jobs in NeXT
Computer; he wrote influential books exposing his theory of design. He commented:

That the separation of form and function, of concept and execution, is not likely to produce

objects of aesthetic value has been repeatedly demonstrated. Similarly any system that sees

aesthetics as irrelevant, that separates the artist from his product, that fragments the artist from

his product, that fragments the work of the individual, or create by committee, or makes

mincemeat of the creative process will in the long run diminish not only the product but the

maker as well. (Rand 1985, p. 3)

It is easy to pour opprobrium on modern architecture, especially since the work of Mies van
der Rohe and Le Corbusier has been imitated badly the world over, and held responsible for
many ugly neighborhoods, crime-infested worker housing, and soulless business centers. It is
more interesting to look deeper into the criticism of the masters themselves. There we see that
Wright, Le Corbusier, and Mies van der Rohe are all criticized because they were unyielding;
they were criticized for being adamant, for their lack of compromise. Their strident views gave
us beautiful buildings, but not buildings that would provide us with material comfort.

Being adamant is not necessarily a flaw. In an interview in Doctor Dobb’s Journal in April
1996, Donald Knuth was asked his opinion on Edsger Dijkstra. “His great strength,” he replied,
“is that he is uncompromising. It would make him physically ill to think of programming in
C++.” Uncompromising to the point of not touching a computer for years, and writing “his
really terrific essay on the Humble Programmer discussing this.” Dijkstra was one of the most
influential computer scientists; his writings are still alive with valuable advice, and they make
a salutary reading when attacked by the latest fashion or silver bullet in programming. His
adamant stance made his work all the more precious to those programmers who do have to
write programs that run on computers in the real world.

This may be the key to understand the role that Smalltalk, like Algol before it, has to play in
our professional lives. There are some architects who blaze new paths and create monuments
for the generations to come, and it may be the nature of these buildings to be more manifestos
than actual houses or offices. Nobody disputes Fallingwater’s power to move the visitor and to
inspire young architects, even if we may argue about it being a home, or we may clamor after
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“form follows function” and let ornament in through the back door. There are software systems
that, similarly, have been more successful at influencing code than writing it.

If we want to write code then, for business or for pleasure, we need inspiration from beautiful
architecture, but we may not be able to work with it. Our work will have to exemplify beautiful
architecture, but it has to be practical. The purest and most beautiful of intellectual edifices is
the world of pure mathematics; we have a lot to learn from it, but we cannot program in it.
We have to make something work, and this is where things start getting messy. Sometimes it
is easy to get lost in design methodology, forgetting that our aim is different. Christopher
Alexander, the architect father of design patterns had this to say:

A whole academic field has grown up around the idea of “design methods”—and I have been

hailed as one of the leading exponents of these so-called design methods. I am very sorry that

this has happened, and want to state, publicly, that I reject the whole idea of design methods as

a subject of study, since I think it is absurd to separate the study of designing from the practice

of design. In fact, people who study design methods without also practicing design are almost

always frustrated designers who have no sap in them, who have lost, or never had, the urge to

shape things. (Alexander 1971)

As programmers, we must make things that work, not simply things that look beautiful. These
two are not necessarily incompatible. Figure 14-6 shows the Salginatobel Bridge designed by
Robert Maillart and completed in 1930. Maillart, a Swiss, studied engineering, but his works,
his bridges especially, are exemplars of architectural beauty. Crucially, they are not just
beautiful. Maillart built his bridges by winning contracts in competitive tenders, and for
Salginatobel Bridge, he won the contract by outbidding 19 other competing designs.
Construction of the bridge and the road cost only 700,000 Swiss Francs at that time, less than
$4 million today. The bridge is no minnow. It has a span of 90 meters and it vaults 80 meters
above the ravine of the Salgina brook (Billington 2000). The slenderness and lightness of the
structure is exactly what makes it economical. This bridge is economical thanks to its elegance.

It could be that Maillart’s chief virtue was his pragmatism. He arrived at his designs by a form
of creative intuition. He eschewed decoration and ornaments, as well as imitation of traditional
architectural styles. The structures he designed could not be analyzed with the mathematical
tools of the time (and the lack of computers), so they could not be proven to be sound. He
evaluated the feasibility of his designs using a simplified graphical analysis. If Maillart had to
wait for rigorous validations of his designs, none of them would be constructed (he died in
1940). Maillart “found that innovation, especially in bridge design, came not from laboratory
work and mathematical theories, but from design offices and construction sites. Numbers play
an essential role in engineering. But innovation in bridge design was the product of visual-
geometric imagination, not the outcome of abstract numerical studies or deduction from
general theories” (Billington 1997, pp. 1–2).
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FIGURE 14-6. Salginatobel Bridge

Programming, like architecture, is a story of practice. We had better avoid being dogmatic, and
instead focus on what works:

Architecture is a hazardous mixture of omnipotence and impotence. Ostensibly involved in

“shaping” the world, for their thoughts to be mobilized architects depend on the provocations

of others—clients, individual or institutional. Therefore, incoherence, or more precisely,

randomness, is the underlying structure of all architects’ careers: they are confronted with an

arbitrary sequence of demands, with parameters they did not establish, in countries they hardly

know, about issues they are only dimly aware of, expected to deal with problems that have

proved intractable to brains vastly superior to their own. Architecture is by definition a chaotic

adventure. (Koolhas et al. 1998, p. xix)

Architecture is a chaotic adventure because beautiful architecture alone is not enough; not
only beauty, but also usefulness, is the law for architecture and programming alike.
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Afterword

Building Beautifully

William J. Mitchell

LOOSE  ANALOGIES  ARE  OFTEN  MADE  BETWEEN  SOFTWARE  SYSTEMS and works of architecture.
But the structural similarity between these different sorts of systems is actually closer, and more
rigorously specifiable, than it might seem.

The code comprising software systems consists of one-dimensional strings of symbols, put
together from well-defined vocabularies in accordance with precise syntactic rules, and
intended to produce useful results when run on appropriate machines.

Works of architecture obviously aren’t one-dimensional, but otherwise they are very much
like code. They are three-dimensional assemblies of discrete physical components, put together
from fairly well-defined component vocabularies in accordance with reasonably rigorous
syntactic rules, and intended to serve useful purposes. (Architects do, in practice, have a little
more latitude with vocabulary and syntax than programmers.)

In both cases we can write formal grammars to establish the rules of the game. In general,
formal grammars tell you how to put things together. More precisely, according to the standard
definition used in linguistics and computer science, a formal grammar consists of: a finite set
N of nonterminal things; a finite set T of terminal things; a finite set R of replacement rules;
and an initial thing S. A replacement rule has an assembly of things on its left side, an arrow
in the middle, and another assembly on its right side. It specifies that you can replace the
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assembly on the left side with the assembly on the right side. Complete, correctly structured
assemblies are derived by recursively applying the replacement rules R to the initial thing S.
The language specified by the grammar consists of all the assemblies of terminal things that
can be derived in this fashion.

Formal grammars commonly apply to vocabularies of words and tell you how to put together
complete and correct sentences, but they are not limited to this. They can apply to many
different sorts of things and tell you how to put together useful assemblies of them.

In the case of a grammar for a programming language, the things to be put together are
recognizable symbols, the replacement rules have one-dimensional strings of symbols on their
left and right sides, and these rules derive complete and correct expressions in that language.
In the case of a two-dimensional shape grammar, the things to be put together are two-
dimensional shapes, the replacement rules have two-dimensional assemblies of shapes on their
left and right sides, and they derive complete and correct graphic designs. In the case of three-
dimensional architectural grammars, the nonterminal things to be put together are
construction lines and the like, the terminal things to be put together within skeletons of
nonterminals are actual architectural components, and the replacement rules derive complete
and correct compositions of these components—in other words, designs in the architectural
language that the grammar specifies.

Decades ago, for example, George Stiny and I published a formal grammar, in this format, for
the famously beautiful villas of the great Italian Renaissance architect Andrea Palladio.* It
derives all of the known villa designs by Palladio, together with large numbers of convincing
fake Palladian villas. (Or, you might say, it derives all the villas that Palladio might have
designed if he had lived longer and had more clients.) Furthermore, it provides a cogent
explanation of the underlying principles of Palladio’s villa architecture. Since then, numerous
architectural grammars have been written for other bodies of design work.

One of the most important functions of an architectural grammar is to capture the principles
or modularity and hierarchical organization that characterize works in some particular
architectural style. In the precisely defined and widely used language of classical architecture,
for example, a column has a base, a shaft, and a capital. The capital decomposes further into a
hierarchy of components—different for Doric, Ionic, and Corinthian—and so on. Moving up
the hierarchy of subassemblies, regularly spaced columns form colonnades. Then columns,
entablatures, and pediments form porticos. Eventually, all the components and subassemblies
fit nicely together to constitute complete, grammatical, classical compositions. These
compositions can, like sentences, be parsed into named parts.

From a geometric or CAD system perspective, the components and subassemblies of a building
are discrete shapes that can be transformed and assembled to produce larger spatial
compositions. From a supply chain and construction perspective, they are material elements

* George Stiny and William J. Mitchell, “The Palladian Grammar,” Environment and Planning B, vol. 5,
no. 1, 5–18 (1978).
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that are fabricated (often in a lengthy sequence of steps, each one of which adds value),
acquired, transported to the required location, and finally fixed into place within an assembly.
From a building maintenance perspective, they are replaceable parts. And from a functional
perspective, they are modules that perform identifiable tasks within a building, and that can
be composed with other modules to create subsystems that perform higher-level tasks. When
modules are composed in this way, they not only have spatial relationships that may delight
the eye, they also transfer something—structural loads, for example—across their interfaces
by virtue of these relationships.

Similarly, programming languages provide ways of breaking code down into modules, and
hierarchically assembling modules to produce higher-level modules and eventually complete
software systems. As all programmers know, good code isn’t a mess; it has a clear, logical
structure of modules and hierarchies, implemented using the language’s abstraction and
organization constructs. The organizational clarity of classical architecture provides an
excellent model for this.

With occasional exceptions, works of architecture follow additional principles of internal order
as well. Columns lined up in a row, for example, are normally regularly spaced. If you want
to write code to generate a CAD model of a colonnade, then you don’t specify the location of
each column individually. You employ iteration, with a location parameter that is incremented
at each step. In other words, you express the principles of the architecture in a more concise
and elegant way, and one that provides the reader of the code with more insight.

What if you want to generate a regular column grid? You employ nested iteration. First you
iterate a column to generate a regularly spaced row of columns, and then you iterate the row
of columns as many times as you want to create the grid.

What if you want to make the corner columns different from the internal columns? (Architects
often do this in response to the different structural and other conditions that exist at the corners
of buildings.) You use a conditional: if it’s a corner condition, then substitute the alternative
column design. If you want to vary the spacing of columns at the center to mark the importance
of the central axis, distinguish external columns from internal columns, and so on, you just
introduce additional conditionals.

Modularity, hierarchy, and regular repetition are by no means the only ordering principles
commonly employed by architects. If you analyze architectural compositions carefully, you
can often find regularities in dimensions and proportions, symmetries (and artfully broken
symmetries), nested self-similar shapes as in fractals, and parametrically varied motifs. I leave
it as an exercise for the reader to imagine the expression of these principles in code.

Sometimes, though, internal order seems to be lacking. An architect might, for some reason,
scatter columns randomly. What then? It turns out that the most concise way to describe this
sort of configuration is to specify the location of each column individually. There is no shorter,
more economical description.
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As these simple examples suggest, good architects don’t construct their designs by ad-hoc, brute
force means, and they certainly try to avoid clumsy hacks. In response to the complex demands
of site and context, climate, the activities to be accommodated, supply chains of materials and
components, construction processes, and budgets, they design commensurately varied and
complex buildings. But they try to do this with conceptual elegance—following principles of
economy of means, and rigorously applying their own version of Occam’s Razor. Underlying
the apparent variety and complexity of beautiful works of architecture, then, you can usually
discover some simple, elegant principles of functional organization and formal order.
Discovering these principles takes intellectual engagement—which is a crucial part of the
experience and pleasure of architecture.

If you can figure out these principles, you can construct models of these works with a few
equally elegant lines of code in some standard programming language, or (in a less traditional
programming environment) a few shape rewriting rules. You might even be able to generalize,
and write code that produces designs, following the same principles, that respond appropriately
to ranges of varied conditions and requirements. But if you can’t figure out these principles,
then you are condemned to write lengthier, less insightful code.

The evident complexity of a building derives from the complexity of the requirements to which
the architect has responded, and it is measured by the length of its brute force, point-by-point
description. The principles that the architect followed to produce that response can usually be
captured in a much shorter sequence of code that executes to generate all that complexity. To
a pretty good approximation, the lower the ratio of this short description to the long
description, the more beautiful the building.

Architects, then, admire the beauty of buildings that employ a few simple, elegant principles
to accomplish many complex things. Similarly, software architects and programmers admire
the beauty of code that cleanly and concisely (without sacrificing readability or maintainability)
performs many complex tasks. And scientists admire the beauty and explanatory power of
simple laws that describe widely varied phenomena. These are all particular cases of a beautiful
general principle.
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