
 



Guru’s Guide to Transact-SQL 

The Guru's Guide to Transact-SQL 
An imprint of Addison Wesley Longman, Inc. 
Reading, Massachusetts • Harlow, England • Menlo Park, California 
Berkeley, California • Don Mills, Ontario • Sydney 
Bonn • Amsterdam • Tokyo • Mexico City 
Copyright Information 
Copyright © 2000 by Addison-Wesley 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without the prior consent of the publisher. Printed in the United States of America. Published 
simultaneously in Canada. 
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a 
trademark claim, the designations have been printed in initial caps or all caps. 
Warning and Disclaimer 
The author and publisher have taken care in the preparation of this book but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is 
assumed for incidental or consequential damages in connection with or arising out of the use of the 
information or programs contained herein. 
The publisher offers discounts on this book when ordered in quantity for special sales. For more 
information, please contact: 
Corporate, Government, and Special Sales Group 
Addison Wesley Longman, Inc. 
One Jacob Way 
Reading, Massachusetts 01867 
(781) 944-3700 
Visit AW on the Web: http://www.awl.com  
Library of Congress Cataloging-in-Publication Data 
Henderson, Kenneth W.The guru's guide to Transact-SQL / Kenneth W. Henderson.p. cm.Includes 
bibliographical references and index. 
1. SQL (Computer program language) I. Title. 
QA76.73.S67 H47 2000 
005.7596—dc21 
99-057209Copyright © 2000 by Addison-Wesley 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without the prior consent of the publisher. Printed in the United States of America. Published 
simultaneously in Canada. 
Text printed on recycled and acid-free paper. 
1 2 3 4 5 6 7 8 9 10—MA—03 02 01 00 
1st Printing, June 2000 
For H  



Foreword 

i 

Foreword 
What Ken Henderson wanted to do is to write the best possible book on real, practical programming in 
Transact-SQL available, bar none. He succeeded. Ken had most of these tricks in his head when he started 
this book. When you work for a living, you tend to pick things up. If you are smart, you save them, study them, 
and figure out why they worked and something else did not work. If you are a nice person, you write a book so 
someone else can benefit from your knowledge. It is very hard for a person new to a language to walk into a 
project knowing only the syntax and a few rules and write a complex program. Ever try to get along in a 
foreign country with only a dictionary and a pocket grammar book? 
Okay, we now have a goal for this book. The next step is how to write so that someone can use it. Writing in 
the age of the Internet is really different from the days when Victor Hugo would stand by a writing desk and 
write great novels on one continuous strip of paper with a quill pen. Today, within the week that a book hits 
hardcopy, the author can expect some compulsive geek with an email connection to read it and find 
everything that the author left out or got wrong and every punctuation mark that the proofreader or typesetter 
missed. In short, you can be humiliated at the speed of light. 
But this can work both ways. When you are writing your book, you can exploit this vast horde of people who 
have nothing better to do with their time than be your unpaid research staff! 
Since I have a reputation for expertise in SQL standards and programming, I was one of the people he 
emailed and asked to look over the manuscript. Neat stuff and some tricks I had not seen before! Suddenly, 
we are swapping ideas and I am stealing—er, researching—my next book, too. Well, communication is a two 
way street, you know. 
I think you will find this book to be an easy read with a lot of good ideas and code samples. While this is 
specifically a Transact-SQL book, you will find that many of the approaches and techniques will work with any 
SQL product. Enjoy! 
—Joe Celko 





Preface 

iii 

Preface 
This is a coder's book. It's intended to help developers build applications that make use of Transact-SQL. It's 
not about database administration or design. It's not about end-user or GUI application development. It's not 
even about server or database performance tuning. It's about developing the best Transact-SQL code 
possible, regardless of the application. 
When I began writing this book, I had these design goals in mind: 

• Be very generous with code samples—don't just tell readers how to do something, show them. 
• Include complete code samples within the chapter texts so that the book can be read through without 

requiring a computer or CD-ROM. 
• Use modern coding techniques, with specific emphases on ANSI compliance and current version 

features and enhancements. 
• Construct chapters so that they're self-contained—so that they rely as little as possible on objects 

created in other chapters. 
• Provide real-world code samples that have intrinsic value apart from thebook. 
• Avoid rehashing what's already covered extensively in the SQL Server Books Online. 
• Highlight aspects of Transact-SQL that differentiate it from other SQL dialects; don't just write another 

ANSI SQL book. 
• Avoid excessive screenshots and other types of filler mechanisms often seen in computer books. 
• Proceed from the simple to the complex within each chapter and throughout the book. 
• Provide an easygoing, relaxed commentary with a de-emphasis on formality. Be the reader's 

indulgent, amiable tutor. Attempt to communicate in writing the way that people speak. 

You'll have to judge for yourself whether these goals have been met, but my hope is that, regardless of the 
degree of success, the effort will at least be evident. 

About the Sample Databases 

This book uses SQL Server's Northwind and pubs sample databases extensively. You'll nearly always be able 
to determine which database a particular example uses from the surrounding commentary or from the code 
itself. The pubs database is used more often than Northwind, so, when it's not otherwise specified or when in 
doubt, use pubs. 
Usually, modifications to these databases are made within transactions so that they can be reversed; however, 
for safety's sake, you should probably drop and recreate them after each chapter in which they're modified. 
The scripts to rebuild them (instnwnd.sql and instpubs.sql) can be found in the \Install subdirectory under the 
root SQL Server folder. 

Results Abridged 

If I have a pet peeve about computer books, it's the shameless use of space-filling devices to lengthen them—
the dirty little secret of the computer publishing industry. Many technical books these days overflow with 
gratuitous helpings of screenshots, charts, diagrams, outlines, sidebars, icons, line art, etc. There are people 
who assign more value to a book that's heavy, and many authors and publishers have been all too happy to 
accommodate them. They seem to take the old saying that "a picture is worth a thousand words" literally—in 
some cases turning out books that are little more than picture books. 
I think there's a point at which comprehensiveness gives way to corpulence, a time when exhaustiveness 
becomes exhausting. In this book, I've tried to strike a balance between being thorough and being space-
efficient. To that end, I've often truncated or clipped query result sets, especially those too wide to fit on a 
page and those of excessive length (I always point this out). On occasion I also list them using reduced font 
sizes. I don't include screenshots unless doing so benefits the discussion at hand materially (only one chapter 
contains any screenshots). This is in keeping with my design goal of being complete without being 
overwrought. Nearly 600SQL scripts are used in this book, and they are all included in the chapters that 
reference them. Hopefully none of the abridgements will detract from the book's overall usefulness or value. 

On Formality 



Guru’s Guide to Transact-SQL 

iv 

Another of my pet peeves is formality for the sake of formality. An artist once observed that "it's harder to draw 
a good curved line than a straight one." What he meant was that it's in some ways more difficult to do 
something well for which there is no exact or stringent standard than to do something that's governed by 
explicit rules and stuffy precedents. All you have to do to draw a straight line is pick up a straightedge. The 
rules that govern formal writing, particularly that of the academic variety, make writing certain kinds of books 
easier because they convert much of the subjective nature of writing into something more objective. They're 
like training wheels on the would-be author's bicycle. Writing goes from being a creative process to a 
mechanical one. Cross all the T's, dot all the I's, and you're halfway there. Obviously, this relieves the author 
of many of the decisions that shape creative writing. It also turns otherwise good pieces of work into dreary, 
textbook-like dissertations that are about as interesting as the telephone book White Pages. 
So, I reject the notion that formal writing is better writing, that it is a higher standard and is the ideal for which 
all technical writers should strive. Instead, I come from the Mark Twain school of thought—I "eschew 
surplusage"—and I believe that, so long as common methods of speech do not become overly banal (a 
subjective distinction, I freely admit), the ultimate goal of the technical writer should be to write the way that 
readers speak. It is the way people—even technical people—are most accustomed to communicating and the 
way they are the most able to learn and share ideas. I did not invent this way of thinking; it's simply the way 
most of my favorite authors—Mark Twain, Dean Koontz, Joe Celko, Ernest Hemingway, Robert Heinlein, 
Andrew Miller, Oscar Wilde, P.J. O'Rourke, Patricia O'Connor—write. Though it is far more difficult to structure 
and write a narrative that flows naturally and reads easily, it's worth the effort if the ideas the writer seeks to 
convey are understood as they were intended. 
So, throughout this book, you'll see a number of the rules and pseudo rules of formal writing stretched, skirted, 
bent, and sometimes outright broken. This is intentional. Sometimes I split infinitives, begin sentences with 
conjunctions, and end them with prepositions.[1] Sometimes record is used interchangeably with row; 
sometimes field takes the place of column; and I never, ever treat data as a plural word. I saw some software 
recently that displayed a message to the effect "the data are being loaded," and I literally laughed out loud. 
The distinction between the plural data and its obscure singular form datum is not maintained in spoken 
language and hasn't really ever been (except, perhaps, in ancient Rome). It has also been deprecated by 
numerous writing guides [2] and many authors[3] You will have to look very hard for an author who treats 
dataas a plural word (I can think of only one off the top of my head, the irascible Ted Codd). The tendency for 
technical communication to become self-important or ostentatious has always bafed me: why stoop to 
pretension? Why trade the uid conveyance of ideas between people for nonsense that confuses some and 
reads like petty one-upmanship to others? 

[1] According to Patricia T. O'Connor's excellent book, Words Fail Me (Harcourt Brace & Company, 1999), a number of these 
rules are not really rules at all. The commonly cited prohibitions against split infinitives, beginning sentences with 
conjunctions, using contractions, and ending sentences with prepositions are all pseudo rules—they are not, nor have ever 
been, true English grammatical rules. They originate from dubious attmepts to force Latin grammar on the English language 
and have been broken and regularly ignored by writers since the 1300s. 

[2] See, for example, The Microsoft Manual of Style for Technical Publications (Microsoft Press, 1995), p.48. 

[3] See, for example, Joe Celko's Data and Databases: Concepts in Practice (Morgan-Kaufmann Publishers, 1999), p.3, 
where Joe refers to data in the singular as he does throughout the book. 

Acknowledgments 

I'd like to thank my wife, who not only makes it possible for me to write books but also makes it worthwhile. 
The book you see before you is as much hers as it is mine. I'd like to thank Neil Coy, who made a real 
programmer of me many years ago. Under Neil's tutelage, I learned software craftsmanship from a master. 
Joe Celko, the dean of the SQL language, has been a good friend and a valuable source of information 
throughout this project. Kudos to John Sarapata and Thomas Holaday for helping me come up with a title for 
the book (I'll keep Sybase for Dummies in mind for future use, John). Thanks to the book's technical reviewers, 
particularly Wayne Snyder, Gianluca Hotz, Paul Olivieri, and Ron Talmage. Heartfelt thanks to John 
Gmuender, Joe Gallagher, Mike Massing, and Danny Thorpe for their equanimity and for keeping me sane 
through the recent storm. Congratulations and genuine appreciation to the superb team at Addison-Wesley—
Michael Slaughter, Marisa Meltzer, J. Carter Shanklin, and others too numerous to list. Special thanks to 
Nancy Cara-Sager, a friend, technical reviewer, and copyeditor who's been with me through several books 
and a couple of publishers now. Her tireless attention to detail has saved me from embarrassing myself more 
times than I can count.



Contents 

v 

Contents 
 
 
Foreword............................................................................................................................................i 
Preface............................................................................................................................................ iii 

About the Sample Databases ................................................................................................. iii 
Results Abridged ....................................................................................................................... iii 
On Formality............................................................................................................................... iii 
Acknowledgments ......................................................................................................................iv 

Contents..........................................................................................................................................v 
Chapter 1. Introductory Transact-SQL.........................................................................................1 

Choosing a SQL Editor...............................................................................................................1 
Creating a Database ...................................................................................................................2 
Creating Tables ...........................................................................................................................3 
Inserting Data...............................................................................................................................4 
Updating Data ..............................................................................................................................5 
Deleting Data ...............................................................................................................................5 
Querying Data..............................................................................................................................6 
Filtering Data................................................................................................................................9 
Grouping Data ...........................................................................................................................14 
Ordering Data ............................................................................................................................16 
Column Aliases..........................................................................................................................16 
Table Aliases..............................................................................................................................17 
Managing Transactions ............................................................................................................17 
Summary ....................................................................................................................................18 

Chapter 2. Transact-SQL Data Type Nuances ........................................................................19 
Dates ...........................................................................................................................................19 
Strings .........................................................................................................................................28 
Numerics.....................................................................................................................................46 
BLOBs .........................................................................................................................................50 
Bits ...............................................................................................................................................55 
UNIQUEIDENTIFIER................................................................................................................57 
Cursor Variables........................................................................................................................58 
Timestamps................................................................................................................................62 
Summary ....................................................................................................................................64 

Chapter 3. Missing Values ...........................................................................................................65 
NULL and Functions .................................................................................................................66 
NULL and ANSI SQL ................................................................................................................67 
NULL and Stored Procedures .................................................................................................68 
NULL if you Must .......................................................................................................................69 

Chapter 4. DDL Insights ...............................................................................................................71 
CREATE TABLE........................................................................................................................71 
Dropping Objects.......................................................................................................................74 
CREATE INDEX ........................................................................................................................75 
TEMPORARY OBJECTS.........................................................................................................76 
Object Naming and Dependencies.........................................................................................77 
Summary ....................................................................................................................................78 

Chapter 5. DML Insights ..............................................................................................................81 



Guru’s Guide to Transact-SQL 

vi 

INSERT .......................................................................................................................................81 
UPDATE .....................................................................................................................................91 
DELETE ....................................................................................................................................100 
Detecting DML Errors .............................................................................................................103 
Summary ..................................................................................................................................103 

Chapter 6. The Mighty SELECT Statement ............................................................................105 
Simple SELECTs.....................................................................................................................105 
Computational and Derived Fields .......................................................................................105 
SELECT TOP...........................................................................................................................106 
Derived Tables.........................................................................................................................108 
Joins ..........................................................................................................................................111 
Predicates.................................................................................................................................113 
Subqueries ...............................................................................................................................123 
Aggregate Functions...............................................................................................................129 
GROUP BY and HAVING ......................................................................................................131 
UNION.......................................................................................................................................137 
ORDER BY...............................................................................................................................139 
Summary ..................................................................................................................................141 

Chapter 7. Views .........................................................................................................................143 
Restrictions...............................................................................................................................143 
ANSI SQL Schema VIEWs ....................................................................................................144 
Getting a VIEW's Source Code.............................................................................................145 
Updatable VIEWs ....................................................................................................................146 
WITH CHECK OPTION..........................................................................................................146 
Derived Tables.........................................................................................................................146 
Dynamic VIEWs.......................................................................................................................147 
Partitioning Data Using Views ...............................................................................................148 
Summary ..................................................................................................................................150 

Chapter 8. Statistical Functions ................................................................................................151 
The Case for CASE ................................................................................................................151 
Efficiency Concerns ................................................................................................................152 
Variance and Standard Deviation .........................................................................................153 
Medians ....................................................................................................................................153 
Clipping .....................................................................................................................................160 
Returning the Top n Rows .....................................................................................................161 
Rankings ...................................................................................................................................164 
Modes........................................................................................................................................166 
Histograms ...............................................................................................................................167 
Cumulative and Sliding Aggregates .....................................................................................168 
Extremes...................................................................................................................................170 
Summary ..................................................................................................................................172 

Chapter 9. Runs and Sequences .............................................................................................173 
Sequences ...............................................................................................................................173 
Runs ..........................................................................................................................................178 
Intervals ....................................................................................................................................180 
Summary ..................................................................................................................................182 

Chapter 10. Arrays ......................................................................................................................185 
Arrays as Big Strings ..............................................................................................................185 
Arrays as Tables......................................................................................................................190 
Summary ..................................................................................................................................198 



Contents 

vii 

Chapter 11. Sets .........................................................................................................................199 
Unions .......................................................................................................................................199 
Differences ...............................................................................................................................201 
Intersections .............................................................................................................................202 
Subsets .....................................................................................................................................204 
Summary ..................................................................................................................................207 

Chapter 12. Hierarchies .............................................................................................................209 
Simple Hierarchies ..................................................................................................................209 
Multilevel Hierarchies..............................................................................................................210 
Indented lists ............................................................................................................................215 
Summary ..................................................................................................................................216 

Chapter 13. Cursors ...................................................................................................................217 
On Cursors and ISAMs ..........................................................................................................217 
Types of Cursors .....................................................................................................................218 
Appropriate Cursor Use .........................................................................................................222 
T-SQL Cursor Syntax .............................................................................................................226 
Configuring Cursors ................................................................................................................234 
Updating Cursors ....................................................................................................................238 
Cursor Variables......................................................................................................................239 
Cursor Stored Procedures .....................................................................................................240 
Optimizing Cursor Performance............................................................................................240 
Summary ..................................................................................................................................242 

Chapter 14. Transactions...........................................................................................................243 
Transactions Defined..............................................................................................................243 
How SQL Server Transactions Work ...................................................................................244 
Types of Transactions ............................................................................................................244 
Avoiding Transactions Altogether .........................................................................................246 
Automatic Transaction Management ...................................................................................246 
Transaction Isolation Levels ..................................................................................................248 
Transaction Commands and Syntax ....................................................................................251 
Debugging Transactions ........................................................................................................256 
Optimizing Transactional Code .............................................................................................257 
Summary ..................................................................................................................................258 

Chapter 15. Stored Procedures and Triggers.........................................................................259 
Stored Procedure Advantages ..............................................................................................260 
Internals ....................................................................................................................................260 
Creating Stored Procedures ..................................................................................................261 
Executing Stored Procedures ...............................................................................................269 
Environmental Concerns........................................................................................................270 
Parameters ...............................................................................................................................272 
Important Automatic Variables ..............................................................................................275 
Flow Control Language ..........................................................................................................276 
Errors.........................................................................................................................................277 
Nesting ......................................................................................................................................279 
Recursion..................................................................................................................................280 
Autostart Procedures ..............................................................................................................281 
Encryption.................................................................................................................................281 
Triggers .....................................................................................................................................281 
Debugging Procedures...........................................................................................................284 
Summary ..................................................................................................................................285 



Guru’s Guide to Transact-SQL 

viii 

Chapter 16. Transact-SQL Performance Tuning ...................................................................287 
General Performance Guidelines .........................................................................................287 
Database Design Performance Tips ....................................................................................287 
Index Performance Tips .........................................................................................................288 
SELECT Performance Tips ...................................................................................................290 
INSERT Performance Tips ....................................................................................................291 
Bulk Copy Performance Tips.................................................................................................291 
DELETE and UPDATE Performance Tips ..........................................................................292 
Cursor Performance Tips .......................................................................................................292 
Stored Procedure Performance Tips ...................................................................................293 
SARGs ......................................................................................................................................296 
Denormalization.......................................................................................................................311 
The Query Optimizer ..............................................................................................................325 
The Index Tuning Wizard .......................................................................................................333 
Profiler .......................................................................................................................................334 
Perfmon ....................................................................................................................................335 
Summary ..................................................................................................................................337 

Chapter 17. Administrative Transact-SQL ..............................................................................339 
GUI Administration ..................................................................................................................339 
System Stored Procedures....................................................................................................339 
Administrative Transact-SQL Commands ...........................................................................339 
Administrative System Functions .........................................................................................339 
Administrative Automatic Variables......................................................................................340 
Where's the Beef?...................................................................................................................341 
Summary ..................................................................................................................................392 

Chapter 18. Full-Text Search ....................................................................................................395 
Full-Text Predicates ................................................................................................................399 
Rowset Functions....................................................................................................................402 
Summary ..................................................................................................................................405 

Chapter 19. Ole Automation ......................................................................................................407 
sp-exporttable ..........................................................................................................................407 
sp-importtable ..........................................................................................................................411 
sp-getsQLregistry ....................................................................................................................415 
Summary ..................................................................................................................................417 

Chapter 20. Undocumented T-SQL .........................................................................................419 
Defining Undocumented.........................................................................................................419 
Undocumented DBCC Commands ......................................................................................419 
Undocumented Functions and Variables ............................................................................430 
Undocumented Trace Flags ..................................................................................................433 
Undocumented Procedures ...................................................................................................434 
Summary ..................................................................................................................................438 

Chapter 21. Potpourri .................................................................................................................439 
Obscure Functions ..................................................................................................................439 
Data Scrubbing ........................................................................................................................448 
Iteration Tables ........................................................................................................................451 
Summary ..................................................................................................................................452 

Appendix A. Suggested Resources .........................................................................................453 
Books ........................................................................................................................................453 
Internet Resources..................................................................................................................453 

 



Chapter 1. Introductory Transact-SQL 

1 

Chapter 1. Introductory Transact-SQL 
The single biggest challenge to learning SQL programming is unlearning procedural 
programming.  

—Joe Celko 

SQL is the lingua franca of the database world. Most modern DBMSs use some type of SQL dialect as their 
primary query language, including SQL Server. You can use SQL to create or destroy objects on the database 
server such as tables and to do things with those objects, such as put data into them or query them for that 
data. No single vendor owns SQL, and each is free to tailor the language to better satisfy its own customer 
base. Despite this latitude, there is a multilateral agreement against which each implementation is measured. 
It's commonly referred to as the ANSI/ISO SQL standard and is governed by the National Committee on 
Information Technology Standards (NCITSH2). This standard is actually several standards—each named 
after the year in which it was adopted. Each standard builds on the ones before it, introducing new features, 
refining language syntax, and so on. The 1992 version of the standard—commonly referred to as SQL-92—is 
probably the most popular of these and is definitely the most widely adopted by DBMS vendors. As with other 
languages, vendor implementations of SQL are rated according to their level of compliance with the ANSI/ISO 
standard. Most vendors are compliant with at least the entry-level SQL-92 specification, though some go 
further. 
Transact-SQL is Microsoft SQL Server's implementation of the language. It is largely SQL-92 compliant, so if 
you're familiar with another vendor's flavor of SQL, you'll probably feel right at home with Transact-SQL. Since 
helping you to become fluent in Transact-SQL is the primary focus of this book and an important step in 
becoming a skilled SQL Server practitioner, it's instructive to begin with a brief tour of language fundamentals. 
Much of the difficulty typically associated with learning SQL is due to the way it's presented in books and 
courseware. Frequently, the would-be SQL practitioner is forced to run a gauntlet of syntax sinkholes and 
query quicksand while lugging a ten-volume set on database design and performance and tuning on her back. 
It's easy to get disoriented in such a situation, to become inundated with nonessential information—to get 
bogged down in the details. Add to this the obligatory dose of relational database theory, and the SQL 
neophyte is ready to leave summer camp early. 
As with the rest of this book, this chapter attempts to keep things simple. It takes you through the process of 
creating tables, adding data to them, and querying those tables, one step at a time. This chapter focuses 
\exclusively on the practical details of getting real work done with SQL—it illuminates the bare necessities of 
Transact-SQL as quickly and as concisely as possible. 

NOTE 

In this chapter, I assume you have little or no prior knowledge of Transact-SQL. If you already have 
a basic working knowledge of the language, you can safely skip to the next chapter. 

 

Like most computer languages, Transact-SQL is best learned by experience. The view from the trenches is 
usually better than the one from the tower. 

Choosing a SQL Editor 

The first step on the road to Transact-SQL fluency is to pick a SQL entry and editing tool. You'll use this 
facility to enter SQL commands, execute them, and view their results. The tool you pick will be your constant 
companion throughout the rest of this book, so choose wisely. 
The Query Analyzer tool that's included with SQL Server is a respectable SQL entry facility. It's certainly 
capable of allowing you to work through the examples in this book. Those familiar with previous versions of 
SQL Server will remember this tool as ISQL/W. The new version resembles its predecessor in many ways but 
sports a slightly more modern interface. The name change reflects the fact that the new version is more than 



Guru’s Guide to Transact-SQL 

2 

a mere SQL entry facility. In addition to basic query entry and execution facilities, it provides a wealth of 
analysis and tuning info (see Chapter 16, "Transact-SQL Performance Tuning," for more information). 
The first order of business when you start Query Analyzer is to connect to the server, so make sure your 
server is running. Enter your username and password when prompted (if your server is newly installed, 
username sa defaults to an empty password) and select your server name. If Query Analyzer and SQL Server 
are running on the same machine, you can use"." (a period—with no quotes) or (local) (don't forget the 
parentheses) for the server name. The user interface of the tool is self-explanatory: You key T-SQL queries 
into the top pane of the window and view results in the bottom one. 
The databases currently defined on your server are displayed in a combo-box on each window's toolbar. You 
can select one from the list to make it the active database for the queries you run in that window. Pressing 
Ctrl-E, F5, or Alt-X runs your query, while Ctrl-F5 checks it for syntax errors. 

TIP 

Hot Tip If you execute a query while a selection is active in the edit window, Query Analyzer will 
execute the selection rather than the entire query. This is handy for executing queries in steps and 
for quickly executing another command without opening a new window. 

 

One of the features sorely missed in Query Analyzer is the Alt-F1 object help facility. In ISQL/W, you could 
select an object name in the edit window and press Alt-F1 to get help on it. For tables and views, this 
presented an abbreviated sp_help report. It was quite handy and saved many a trip to a new query window 
merely to list an object's columns. 

If you're a command-line devotee, you may prefer the OSQL utility to Query Analyzer. OSQL is an ODBC-
based command-line utility that ships with SQL Server. Like Query Analyzer, OSQL can be used to enter 
Transact-SQL statements and stored procedures to execute. Once you've entered a query, hit return to drop 
to a new line, then type GO and hit return again to run it (GO must be leftmost on the line). To exit OSQL, type 
EXIT and hit return. 

OSQL has a wealth of command-line and runtime options that are too lengthy to go into here. See the SQL 
Books Online for more info. 

A third option is to use the Sequin SQL editor included on the CD with this book. Sequin sports many of Query 
Analyzer's facilities without abandoning the worthwhile features of its predecessors. 

Creating a Database 

You might already have a database in which you can create some temporary tables for the purpose of 
working through the examples in this book. If you don't, creating one is easy enough. In Transact-SQL, you 
create databases using the CREATE DATABASE command. The complete syntax can be quite complex, but 
here's the simplest form: 
     
CREATE DATABASE GG_TS 
 
    
Run this command in Query Analyzer to create a scratch database for working through the examples in this 
book. Behind the scenes, SQL Server creates two operating system files to house the new database: 
GG_TS.MDF and GG_TS_Log.LDF. Data resides in the first file; transaction log information lives in the 
second. A database's transaction log is the area where the server first carries out changes made to the data. 
Once those changes succeed, they're applied atomically—in one piece—to the actual data. It's advantageous 
for both recoverability and performance to separate user data from transaction log data, so SQL Server 



Chapter 1. Introductory Transact-SQL 

3 

defaults to working this way. If you don't specifically indicate a transaction log location (as in the example 
above), SQL Server selects one for you (the default location is the data directory that was selected during 
installation). 
Notice that we didn't specify a size for the database or for either of the les. Our new database is set up so that 
it automatically expands as data is inserted into it. Again, this is SQL Server's default mode of operation. This 
one feature alone—database files that automatically expand as needed—greatly reduces the database 
administrator's (DBA's) workload by alleviating the need to monitor databases constantly to ensure that they 
don't run out of space. A full transaction log prevents additional changes to the database, and a full data 
segment prevents additional data from being inserted. 

Creating Tables 

Once the database is created, you're ready to begin adding objects to it. Let's begin by creating some tables 
using SQL's CREATE TABLE statement. To ensure that those tables are created in the new database, be 
sure to change the current database focus to GG_TS before issuing any of these commands. You can do this 
two ways: You can execute a USE command—USE GG_TS— in the query edit window prior to executing any 
other commands, or (assuming you're using Query Analyzer) you can select the new database from the DB: 
combo-box on the edit window's toolbar (select <Refresh> from this list if your new database is not visible at 
rst). The DB: combo-box reflects the currently selected database, so be sure it points to GG_TS before 
proceeding. 
Execute the following command to create the customers table: 
     
USE GG_TS    — Change the current database context to GG_TS 
GO 
CREATE TABLE customers 
( 
CustomerNumber int      NOT NULL, 
LastName       char(30) NOT NULL, 
FirstName      char(30) NOT NULL, 
StreetAddress  char(30) NOT NULL, 
City           char(20) NOT NULL, 
State          char(2)  NOT NULL, 
Zip            char(10) NOT NULL 
) 
    
Once the customers table is built, create the orders table using similar syntax: 
     
CREATE TABLE orders 
( 
OrderNumber    int          NOT NULL, 
OrderDate      datetime     NOT NULL, 
CustomerNumber int          NOT NULL, 
ItemNumber     int          NOT NULL, 
Amount         numeric(9,2) NOT NULL 
) 
    
Most SQL concepts can be demonstrated using three or fewer tables, so we'll create a third table. Create the 
items table using this command: 
     
CREATE TABLE items 
( 
ItemNumber  int          NOT NULL, 
Description char(30)     NOT NULL, 
Price       numeric(9,2) NOT NULL 
) 
    
These commands are fairly self-explanatory. The only element that might look a little strange if you're new to 
SQL Server is the NOT NULL specification. The SQL NULL keyword is a special syntax token that's used to 
represent unknown or nonexistent values. It is not the same as zero for integers or blanks for character string 
columns. NULL indicates that a value is not known or completely missing from the column—that it's not there 



Guru’s Guide to Transact-SQL 

4 

at all. The difference between NULL and zero is the difference between having a zero account balance and 
not having an account at all. (See Chapter 3, "Missing Values," for more information on NULLs.) The 
NULL/NOT NULL specification is used to control whether a column can store SQL's NULL token. This is 
formally referred to as column nullability. It dictates whether the column can be truly empty. So, you could 
read NULL/NOT NULL as NOT REQUIRED/REQUIRED, respectively. If a field can't contain NULL, it can't be 
truly empty and is therefore required to have some other value. 
Note that you don't have to specify column nullability when you create a table—SQL Server will supply a 
default setting if it's omitted. The rules governing default column nullability go like this: 

• If you explicitly specify either NULL or NOT NULL, it will be used (if valid—see below). 
• If a column is based on a user-dened data type, that data type's nullability specification is used. 
• If a column has only one nullability option, that option is used. Timestamp columns always require 

values, and bit columns can require them as well, depending on the server compatibility setting 
(specified via the sp_dbcmptlevel system stored procedure). 

• If the session setting ANSI_NULL_DFLT_ON is set to true (it defaults to the setting specified in the 
database), column nullability defaults to true. ANSI SQL species that columns are nullable by default. 
Connecting to SQL Server via ODBC or OLEDB (which is the normal way applications connect) sets 
ANSI_ NULL_DFLT_ON to true by default, though this can be changed in ODBC data sources or by 
the calling application. 

• If the database setting ANSI null default is set to true (it defaults to false), column nullability is set 
totrue. 

• If none of these conditions species an ANSI NULL setting, column nullability defaults to false so that 
columns don't allow NULL values. 

Inserting Data 

Use the Transact-SQL INSERT statement to add data to a table, one row at a time. Let's explore this by 
adding some test data to the customers table. Enter the following SQL commands to add three rows to 
customers: 
     
INSERT INTO customers 
VALUES(1,'Doe','John','123 Joshua Tree','Plano','TX','75025') 
INSERT INTO customers 
VALUES(2,'Doe','Jane','123 Joshua Tree','Plano','TX','75025') 
INSERT INTO customers 
VALUES(3,'Citizen','John','57 Riverside','Reo','CA','90120') 
 
    
Now, add four rows to the orders table using the same syntax: 
     
INSERT INTO orders 
VALUES(101,'10/18/90',1,1001,123.45) 
 
INSERT INTO orders 
VALUES(102,'02/27/92',2,1002,678.90) 
 
INSERT INTO orders 
VALUES(103,'05/20/95',3,1003,86753.09) 
 
INSERT INTO orders 
VALUES(104,'11/21/97',1,1002,678.90) 
    
Finally, insert three rows into the items table like so: 
     
INSERT INTO items 
VALUES(1001,'WIDGET A',123.45) 
 
INSERT INTO items 
VALUES(1002,'WIDGET B',678.90) 



Chapter 1. Introductory Transact-SQL 

5 

 
INSERT INTO items 
VALUES(1003,'WIDGET C',86753.09) 
    
Notice that none of these INSERTs species a list of fields, only a list of values. The INSERT command 
defaults to inserting a value for all columns in order, though you could have specified a column list for each 
INSERT using syntax like this: 
     
INSERT INTO items (ItemNumber, Price) 
VALUES(1001,123.45) 
    
Also note that it's unnecessary to follow the table's column order in a column list; however, the order of values 
you supply must match the order of the column list. Here's an example: 
     
INSERT INTO items (Price, ItemNumber) 
VALUES(123.45, 1001) 
    
One final note: The INTO keyword is optional in Transact-SQL. This deviates from the ANSI SQL standard 
and from most other SQL dialects. The syntax below is equivalent to the previous query: 
     
INSERT items (Price, ItemNumber) 
VALUES(123.45, 1001) 

Updating Data 

Most people eventually want to change the data they've loaded into a database. The SQL UPDATE command 
is the means by which this happens. Here's an example: 
     
UPDATE customers 
SET Zip='86753-0900' 
WHERE City='Reo' 
    
Depending on the data, the WHERE clause in this query might limit the UPDATE to a single row or to many 
rows. You can update all the rows in a table by omitting the WHERE clause: 
     
UPDATE customers 
SET State='CA' 
    
You can also update a column using columns in the same table, including the column itself, like so: 
     
UPDATE orders 
SET Amount=Amount+(Amount*.07) 
    
Transact-SQL provides a nice extension, the SQL UPDATE command, that allows you to update the values in 
one table with those from another. Here's an example: 
     
UPDATE o 
SET Amount=Price 
FROM orders o JOIN items i ON (o.ItemNumber=i.ItemNumber) 

Deleting Data 

The SQL DELETE command is used to remove data from tables. To delete all the rows in a table at once, use 
this syntax: 
     
DELETE FROM customers 
 
    



Guru’s Guide to Transact-SQL 

6 

Similarly to INSERT, the FROM keyword is optional. Like UPDATE, DELETE can optionally include a WHERE 
clause to qualify the rows it removes. Here's an example: 
     
DELETE FROM customers 
WHERE LastName<>'Doe' 
    
SQL Server provides a quicker, more brute-force command for quickly emptying a table. It's similar to the 
dBASE ZAP command and looks like this: 
     
TRUNCATE TABLE customers 
    
TRUNCATE TABLE empties a table without logging row deletions in the transaction log. It can't be used with 
tables referenced by FOREIGN KEY constraints, and it invalidates the transaction log for the entire database. 
Once the transaction log has been invalidated, it can't be backed up until the next full database backup. 
TRUNCATE TABLE also circumvents the triggers defined on a table, so DELETE triggers don't re, even 
though, technically speaking, rows are being deleted from the table. (See Chapter4, "DDL Insights," for more 
information.) 

Querying Data 

The SELECT command is used to query tables and views for data. You specify what you want via a SELECT 
statement, and the server "serves" it to you via a result set—a collection of rows containing the data you 
requested. SELECT is the Swiss Army knife of basic SQL. It can join tables, retrieve data you request, assign 
local variables, and even create other tables. It's a fair guess that you'll use the SELECT statement more than 
any other single command in Transact-SQL. 
We'll begin exploring SELECT by listing the contents of the tables you just built. Execute 
    SELECT * FROM tablename 
    
    
in Query Analyzer, replacing tablename with the name of each of the three tables. You should find that the 
CUSTOMER and items tables have three rows each, while orders has four. 
    SELECT * FROM customers 
    
(Results abridged) 
     
CustomerNumber LastName FirstName StreetAddress 
-------------- -------- --------- ------------- 
1              Doe      John      123 Joshua Tree 
2              Doe      Jane      123 Joshua Tree 
3              Citizen  John      57 Riverside 
 
SELECT * FROM orders 
 
OrderNumber OrderDate               CustomerNumber ItemNumber Amount 
----------- ----------------------- -------------- ---------- -------- 
101         1990-10-18 00:00:00.000 1              1001       123.45 
102         1992-02-27 00:00:00.000 2              1002       678.90 
103         1995-05-20 00:00:00.000 3              1003       86753.09 
104         1997-11-21 00:00:00.000 1              1002       678.90 
 
SELECT * FROM items 
 
ItemNumber Description Price 
---------- ----------- -------- 
1001       WIDGET A    123.45 
1002       WIDGET B    678.90 
1003       WIDGET C    86753.09 
    



Chapter 1. Introductory Transact-SQL 

7 

Column Lists 

SELECT * returns all the columns in a table. To return a subset of a table's columns, use a comma-delimited 
field list, like so: 
      
SELECT CustomerNumber, LastName, State FROM customers 
 
CustomerNumber LastName State 
-------------- -------- ----- 
1              Doe      TX 
2              Doe      TX 
3              Citizen  CA 
     
A SELECT's column can include column references, local variables, absolute values, functions, and 
expressions involving any combinations of these elements. 

SELECTing Variables and Expressions 

Unlike most SQL dialects, the FROM clause is optional in Transact-SQL when not querying database objects. 
You can issue SELECT statements that return variables (automatic or local), functions, constants, and 
computations without using a FROM clause. For example, 
     SELECT GETDATE() 
     
returns the system date on the computer hosting SQL Server, and 
     SELECT CAST(10+1 AS 
CHAR(2))+'/'+CAST(POWER(2,5)-5 AS CHAR(2))+'/19'+CAST(30+31 AS  
 

CHAR(2)) 
     
returns a simple string. Unlike Oracle and many other DBMSs, SQL Server doesn't force the inclusion of a 
FROM clause if it makes no sense to do so. Here's an example that returns an automatic variable: 
     SELECT @@VERSION 
     
And here's one that returns the current user name: 
     SELECT SUSER_SNAME() 
     
@@VERSION is an automatic variable that's predefined by SQL Server and read-only. The SQL Server 
Books Online now refers to these variables as functions, but they aren't functions in the true sense of the 
word—they're predefined constants or automatic variables (e.g., they can be used as parameters to stored 
procedures, but true functions cannot). I like variable better than constant because the values they return can 
change throughout a session—they aren't really constant, they're just read-only as far as the user is 
concerned. You'll see the term automatic variable used throughout this book. 

Functions 

Functions can be used to modify a column value in transit. Transact-SQL provides a bevy of functions that 
can be roughly divided into six major groups: string functions, numeric functions, date functions, aggregate 
function, system functions, and meta-data functions. Here's a Transact-SQL function in action: 
      
SELECT UPPER(LastName), FirstName 
FROM customers 
 
               FirstName 
-------------- --------- 
DOE            John 
DOE            Jane 
CITIZEN        John 
     



Guru’s Guide to Transact-SQL 

8 

Here, the UPPER() function is used to uppercase the LastName column as it's returned in the result set. This 
affects only the result set—the underlying data is unchanged. 

Converting Data Types 

Converting data between types is equally simple. You can use either the CAST() or CONVERT() function to 
convert one data type to another, but CAST() is the SQL-92–compliant method. Here's a SELECT that 
converts the Amount column in the orders table to a character string: 
      
 
SELECT CAST(Amount AS varchar) FROM orders 
 
-------- 
123.45 
678.90 
86753.09 
678.90 
     
Here's an example that illustrates how to convert a datetime value to a character string using a specific format: 
      
SELECT CONVERT(char(8), GETDATE(),112) 
-------- 
19690720 
     
This example highlights one situation in which CONVERT() offers superior functionality to CAST(). 
CONVERT() supports a style parameter (the third argument above) that species the exact format to use when 
converting a datetime value to a character string. You can find the table of supported styles in the Books 
Online, but styles102 and 112 are probably the most common. 

CASE 

In the examples throughout this book, you'll find copious use of the CASE function. CASE has two basic forms. 
In the simpler form, you specify result values for each member of a series of expressions that are compared to 
a determinant or key expression, like so: 
      
SELECT CASE sex 
WHEN 0 THEN 'Unknown' 
WHEN 1 THEN 'Male' 
WHEN 2 THEN 'Female' 
ELSE 'Not applicable' 
END 
     
In the more complex form, known as a "searched" CASE, you specify individual result values for multiple, 
possibly distinct, logical expressions, like this: 
      
SELECT CASE 
WHEN DATEDIFF(dd,RentDueDate,GETDATE())>15 THEN Desposit 
WHEN DATEDIFF(dd,RentDueDate,GETDATE())>5 THEN DailyPenalty*  
 

DATEDIFF(dd,RentDueDate,GETDATE()) 
ELSE 0 
END 
     
A searched CASE is similar to an embedded IF...ELSE, with each WHEN performing the function of a new 
ELSE clause. 
Personally, I've never liked the CASE syntax. I like the idea of a CASE function, but I find the syntax unwieldy. 
It behaves like a function in that it can be nested within other expressions, but syntactically, it looks more like 
a flow-control statement. In some languages, "CASE" is a flow-control keyword that's analogous to the 
C/C++switch statement. In Transact-SQL, CASE is used similarly to an inline or "immediate" IF—it returns a 



Chapter 1. Introductory Transact-SQL 

9 

value based on if-then-else logic. Frankly, I think it would make a lot more sense for the syntax to read 
something like this: 
      
CASE(sex, 0, 'Unknown', 1, 'Male', 2, 'Female', 'Unknown') 
 
     
or 
      
CASE(DATEDIFF(dd,RentDueDate,GETDATE())>15, Deposit, 
DATEDIFF(dd,RentDueDate,GETDATE())>5, DailyPenalty* 
DATEDIFF(dd,RentDueDate,GETDATE()),0) 
 
     
This is the way that the Oracle DECODE() function works. It's more compact and much easier to look at than 
the cumbersome ANSI CASE syntax. 

Aggregate Columns 

Aggregate columns consist of special functions that perform some calculation on a set of data. Examples of 
aggregates include the COUNT(), SUM(), AVG(), MIN(), STDDEV(), VAR(), and MAX() functions. They're best 
understood by example. Here's a command that returns the total number of customer records on file: 
      
SELECT COUNT(*) FROM customers 
 
     
Here's one that returns the dollar amount of the largest order on file: 
      
SELECT MAX(Amount) FROM orders 
 
     
And here's one that returns the total dollar amount of all orders: 
      
SELECT SUM(Amount) FROM orders 
 
     
Aggregate functions are often used in tandem with SELECT's GROUP BY clause (covered below) to produce 
grouped or partitioned aggregates. They can be employed in other uses as well (e.g., to "hide" normally 
invalid syntax), as the chapters on statistical computations illustrate. 

Filtering Data 

You use the SQL WHERE clause to qualify the data a SELECT statement returns. It can also be used to limit 
the rows affected by an UPDATE or DELETE statement. Here are some queries that use WHERE to filter the 
data they return: 
     
SELECT UPPER(LastName), FirstName 
FROM customers 
WHERE State='TX' 
 
    FirstName 
--- --------- 
DOE John 
DOE Jane 
    
The following code restricts the customers returned to those whose address contains the word "Joshua."  
     
SELECT LastName, FirstName, StreetAddress FROM customers 
WHERE StreetAddress LIKE '%Joshua%' 
 



Guru’s Guide to Transact-SQL 

10 

LastName FirstName StreetAddress 
-------- --------- --------------- 
Doe      John      123 Joshua Tree 
Doe      Jane      123 Joshua Tree 
 
    
Note the use of "%" as a wildcard. The SQL wildcard % (percent sign) matches zero or more instances of any 
character, while _ (underscore) matches exactly one. 
Here's a query that returns the orders exceeding $500: 
     
SELECT OrderNumber, OrderDate, Amount 
FROM orders 
WHERE Amount > 500 
 
OrderNumber OrderDate               Amount 
----------- ----------------------- -------- 
102         1992-02-27 00:00:00.000 678.90 
103         1995-05-20 00:00:00.000 86753.09 
104         1997-11-21 00:00:00.000 678.90 
    
The following example uses the BETWEEN operator to return orders occurring between October1990 and 
May1995, inclusively. I've included the time with the second of the two dates because, without it, the time 
would default to midnight (SQL Server datetime columns always store both the date and time; an omitted time 
defaults to midnight), making the query noninclusive. Without specification of the time portion, the query would 
return only orders placed up through the first millisecond of May31. 
     
SELECT OrderNumber, OrderDate, Amount FROM orders 
WHERE OrderDate BETWEEN '10/01/90' AND '05/31/95 23:59:59.999' 
 
OrderNumber OrderDate               Amount 
----------- ----------------------- -------- 
101         1990-10-18 00:00:00.000 123.45 
102         1992-02-27 00:00:00.000 678.90 
103         1995-05-20 00:00:00.000 86753.09 
    

Joins 

A query that can access all the data it needs in a single table is a pretty rare one. John Donne said "no man is 
an island," and, in relational databases, no table is, either. Usually, a query will have to go to two or more 
tables to find all the information it requires. This is the way of things with relational databases. Data is 
intentionally spread out to keep it as modular as possible. There are lots of good reasons for this 
modularization (formally known as normalization) that I won't go into here, but one of its downsides is that 
what might be a single conceptual entity (an invoice, for example) is often split into multiple physical entities 
when constructed in a relational database. 
Dealing with this fragmentation is where joins come in. A join consolidates the data in two tables into a single 
result set. The tables aren't actually merged; they just appear to be in the rows returned by the query. Multiple 
joins can consolidate multiple tables—it's quite common to see joins that are multiple levels deep involving 
scads of tables. 
A join between two tables is established by linking a column or columns in one table with those in another 
(CROSS JOINs are an exception, but more on them later). The expression used to join the two tables 
constitutes the join condition or join criterion. When the join is successful, data in the second table is 
combined with the first to form a composite result set—a set of rows containing data from both tables. In short, 
the two tables have a baby, albeit an evanescent one. 
There are two basic types of joins, inner joins and outer joins. The key difference between them is that outer 
joins include rows in the result set even when the join condition isn't met, while an inner join doesn't. How is 
this? What data ends up in the result set when the join condition fails? When the join criteria in an outer join 
aren't met, columns in the first table are returned normally, but columns from the second table are returned 
with no value—as NULLs. This is handy for finding missing values and broken links between tables. 



Chapter 1. Introductory Transact-SQL 

11 

There are two families of syntax for constructing joins—legacy and ANSI/ISO SQL-92 compliant. The legacy 
syntax dates back to SQL Server's days as a joint venture between Sybase and Microsoft. It's more succinct 
than the ANSI syntax and looks like this: 
      
SELECT customers.CustomerNumber, orders.Amount 
FROM customers, orders 
WHERE customers.CustomerNumber=orders.CustomerNumber 
 
CustomerNumber Amount 
-------------- -------- 
1              123.45 
2              678.90 
3              86753.09 
1              678.90 
     
Note the use of the WHERE clause to join the customers and orders tables together. This is an inner join. If 
an order doesn't exist for a given customer, that customer is omitted completely from the list. Here's the ANSI 
version of the same query: 
      
SELECT customers.CustomerNumber, orders.Amount 
FROM customers JOIN orders ON (customers.CustomerNumber=orders.CustomerNumber) 
     
This one's a bit loquacious, but the end result is the same: customers and orders are merged using their 
respective CustomerNumber columns. 
As I mentioned earlier, it's common for queries to construct multilevel joins. Here's an example of a multilevel 
join that uses the legacy syntax: 
      
SELECT customers.CustomerNumber, orders.Amount, items.Description 
FROM customers, orders, items 
WHERE customers.CustomerNumber=orders.CustomerNumber 
AND orders.ItemNumber=items.ItemNumber 
 
CustomerNumber Amount   Description 
-------------- -------- ----------- 
1              123.45   WIDGET A 
2              678.90   WIDGET B 
3              86753.09 WIDGET C 
1              678.90   WIDGET B 
     
This query joins the composite of the customers table and the orders table with the items table. Note that the 
exact ordering of the WHERE clause is unimportant. In order to allow servers to fully optimize queries, SQL 
requires that the ordering of the predicates in a WHERE clause must not affect the result set. They must be 
associative—the query must return the same result regardless of the order in which they're processed. 
As with the two-table join, the ANSI syntax for multitable inner joins is similar to the legacy syntax. Here's the 
ANSI syntax for the multitable join above: 
      
SELECT customers.CustomerNumber, orders.Amount, items.Description 
FROM customers JOIN orders ON (customers.CustomerNumber=orders.CustomerNumber)  
JOIN items ON (orders.ItemNumber=items.ItemNumber) 
     
Again, it's a bit wordier, but it performs the same function. 

Outer Joins 

Thus far, there hasn't been a stark contrast between the ANSI and legacy join syntaxes. Though not 
syntactically identical, they seem to be functionally equivalent. 
This all changes with outer joins. The ANSI outer join syntax addresses ambiguities inherent in using the 
WHERE clause—whose terms are by definition associative—to perform table joins. Here's an example of the 
legacy syntax that contains such ambiguities: 
      



Guru’s Guide to Transact-SQL 

12 

-- Bad SQL - Don't run 
SELECT customers.CustomerNumber, orders.Amount, items.Description 
FROM customers, orders, items 
WHERE customers.CustomerNumber*=orders.CustomerNumber 
AND orders.ItemNumber*=items.ItemNumber 
     
Don't bother trying to run this—SQL Server won't allow it. Why? Because WHERE clause terms are required 
to be associative, but these aren't. If customers and orders are joined first, those rows where a customer 
exists but has no orders will be impossible to join with the items table since their ItemNumber column will be 
NULL. On the other hand, if orders and items are joined first, the result set will include ITEM records it likely 
would have otherwise missed. So the order of the terms in the WHERE clause is significant when constructing 
multilevel joins using the legacy syntax. 
It's precisely because of this ambiguity—whether the ordering of WHERE clause predicates is significant—
that the SQL-92 standard moved join construction to the FROM clause. Here's the above query rewritten 
using valid ANSI join syntax: 
      
SELECT customers.CustomerNumber, orders.Amount, items.Description 
FROM customers LEFT OUTER JOIN orders ON 
(customers.CustomerNumber=orders.CustomerNumber)  
LEFT OUTER JOIN items ON (orders.ItemNumber=items.ItemNumber) 
 
CustomerNumber Amount   Description 
-------------- -------- ----------- 
1              123.45   WIDGET A 
1              678.90   WIDGET B 
2              678.90   WIDGET B 
3              86753.09 WIDGET C 
     
Here, the ambiguities are gone, and it's clear that the query is first supposed to join the customers and orders 
tables, then join the result with the items table. (Note that the OUTER keyword is optional.) 
To understand how this shortcoming in the legacy syntax can affect query results, consider the following 
query. We'll set it up initially so that the outer join works as expected: 
      
SELECT customers.CustomerNumber, orders.Amount 
FROM customers, orders 
WHERE customers.CustomerNumber*=orders.CustomerNumber 
AND orders.Amount>600 
 
CustomerNumber Amount 
-------------- -------- 
1              678.90 
2              678.90 
3              86753.09 
     
Since every row in customers finds a match in orders, the problem isn't obvious. Now let's change the query 
so that there are a few mismatches between the tables, like so: 
      
SELECT customers.CustomerNumber+2, orders.Amount 
FROM customers, orders 
WHERE customers.CustomerNumber+2*=orders.CustomerNumber 
AND orders.Amount>600 
     
This version simply adds 2 to CustomerNumber to ensure that at least a few of the joins will fail and the 
columns in orders will be returned as NULLs. Here's the result set: 
      
CustomerNumber Amount 
-------------- -------- 
3              86753.09 
4              NULL 
5              NULL 
     



Chapter 1. Introductory Transact-SQL 

13 

See the problem? Those last two rows shouldn't be there. Amount is NULL in those rows (because there are 
no orders for customers4 and5), and whether it exceeds $600 is unknown. The query is supposed to return 
only those rows whose Amount column is known to exceed $600, but that's not the case. Here's the ANSI 
version of the same query: 
      
SELECT customers.CustomerNumber+2, orders.Amount 
FROM customers LEFT OUTER JOIN orders ON  
 

(customers.CustomerNumber+2=orders.CustomerNumber)  
WHERE orders.Amount>600 
CustomerNumber Amount 
-------------- -------- 
3              86753.09 
     
The SQL-92 syntax correctly omits the rows with a NULL Amount. The reason the legacy query fails here is 
that the predicates in its WHERE clause are evaluated together. When Amount is checked against the >600 
predicate, it has not yet been returned as NULL, so it's erroneously included in the result set. By the time it's 
set to NULL, it's already in the result set, effectively negating the >600 predicate. 
Though the inner join syntax you choose is largely a matter a preference, you should still use the SQL-92 
syntax whenever possible. It's hard enough keeping up with a single way of joining tables, let alone two 
different ways. And, as we've seen, there are some real problems with the legacy outer join syntax. Moreover, 
Microsoft strongly recommends the use of the ANSI syntax and has publicly stated that the legacy outer join 
syntax will be dropped in a future release of the product. Jumping on the ANSI/ISO bandwagon also makes 
sense from another perspective: interoperability. Given the way in which the DBMS world—like the real 
world—is shrinking, it's not unusual for an application to communicate with or rely upon more than one 
vendor's DBMS. Heterogeneous joins, passthrough queries, and vendor-to-vendor replication are now 
commonplace. Knowing this, it makes sense to abandon proprietary syntax elements in favor of those that 
play well with others. 

Other Types of Joins 

Thus far, we've explored only left joins—both inner and outer. There are a few others that are worth 
mentioning as well. Transact-SQL also supports RIGHT OUTER JOINs, CROSS JOINs, and FULL OUTER 
JOINs. 
A RIGHT OUTER JOIN isn't really that different from a LEFT OUTER JOIN. In fact, it's really just a LEFT 
OUTER JOIN with the tables reversed. It's very easy to restate a LEFT OUTER JOIN as a RIGHT OUTER 
JOIN. Here's the earlier LEFT OUTER JOIN query restated: 
      
SELECT customers.CustomerNumber+2, orders.Amount 
FROM orders RIGHT OUTER JOIN customers ON 
(customers.CustomerNumber+2=orders.CustomerNumber) 
 
Amount 
------ -------- 
3      86753.09 
4      NULL 
5      NULL 
 
     
A RIGHT JOIN returns the columns in the first table as NULLs when the join condition fails. Since you decide 
which table is the first table and which one's the second, whether you use a LEFT JOIN or a RIGHT JOIN is 
largely a matter a preference. 
A CROSS JOIN, by contrast, is an intentional Cartesian product. The size of a Cartesian product is the 
number of rows in one table multiplied by those in the other. So for two tables with three rows each, their 
CROSS JOIN or Cartesian product would consist of nine rows. By definition, CROSS JOINs don't need or 
support the use of the ON clause that other joins require. Here's a CROSS JOIN of the customers and orders 
tables: 
      
SELECT customers.CustomerNumber, orders.Amount 
FROM orders CROSS JOIN customers 



Guru’s Guide to Transact-SQL 

14 

 
CustomerNumber Amount 
-------------- -------- 
1              123.45 
1              678.90 
1              86753.09 
1              678.90 
2              123.45 
2              678.90 
2              86753.09 
2              678.90 
3              123.45 
3              678.90 
3              86753.09 
3              678.90 
 
(12 row(s) affected) 
     
A FULL OUTER JOIN returns rows from both tables regardless of whether the join condition succeeds. When 
a join column in the first table fails to find a match in the second, the values from the second table are 
returned as NULL, just as they are with a LEFT OUTER JOIN. When the join column in the second table fails 
to find a matching value in the first table, columns in the first table are returned as NULL, as they are in a 
RIGHT OUTER JOIN. You can think of a FULL OUTER JOIN as the combination of a LEFT JOIN and a 
RIGHT JOIN. Here's the earlier LEFT OUTER JOIN restated as a FULL OUTERJOIN: 
      
SELECT customers.CustomerNumber+2, orders.Amount 
FROM customers FULL OUTER JOIN orders ON  
 

(customers.CustomerNumber+2=orders.CustomerNumber) 
 
Amount 
------ -------- 
3      86753.09 
4      NULL 
5      NULL 
NULL   123.45 
NULL   678.90 
NULL   678.90 
     

Subqueries 

A SELECT statement that's enclosed in parentheses and embedded within another query (usually in its 
WHERE clause) is called a subquery. A subquery is normally used to return a list of items that is then 
compared against a column in the main query. Here's an example: 
      
SELECT * FROM customers 
WHERE CustomerNumber IN (SELECT CustomerNumber FROM orders) 
     
Of course, you could accomplish the same thing with an inner join. In fact, the SQL Server optimizer turns this 
query into an inner join internally. However, you get the idea—a subquery returns an item or set of items that 
you may then use to filter a query or return a column value. 

Grouping Data 

Since SQL is a set-oriented query language, statements that group or summarize data are its bread and 
butter. In conjunction with aggregate functions, they are the means by which the real work of SQL queries is 
performed. Developers familiar with DBMS products that lean more toward single-record handling find this 
peculiar because they are accustomed to working with data one row at a time. Generating summary 



Chapter 1. Introductory Transact-SQL 

15 

information by looping through a table is a common technique in older database products—but not in SQL 
Server. A single SQL statement can perform tasks that used to require an entire COBOL program to complete. 
This magic is performed using SELECT's GROUP BY clause and Transact-SQL aggregate functions. Here's 
an example: 
     
SELECT customers.CustomerNumber, SUM(orders.Amount) AS TotalOrders 
FROM customers JOIN orders ON customers.CustomerNumber=orders.CustomerNumber 
GROUP BY customers.CustomerNumber 
    
This query returns a list of all customers and the total amount of each customer's orders. 
How do you know which fields to include in the GROUP BY clause? You must include all the items in the 
SELECT statement's column list that are not aggregate functions or absolute values. Take the following 
SELECT statement: 
     
-- Bad SQL - don't do this 
SELECT customers.CustomerNumber, customers.LastName, SUM(orders.Amount) AS 
TotalOrders 
FROM customers JOIN orders ON customers.CustomerNumber=orders.CustomerNumber 
GROUP BY customers.CustomerNumber 
    
This query won't execute because it's missing a column in the GROUP BY clause. Instead, it should read: 
    GROUP BY customers.CustomerNumber, 
customers.LastName 
    
Note that the addition of the LastName column doesn't really affect the results since CustomerNumber is a 
unique key. That is, including LastName as a GROUP BY column won't cause any additional grouping levels 
to be produced since there is only one LastName for each CustomerNumber. 

HAVING 

The HAVING clause is used to limit the rows returned by a SELECT with GROUP BY. Its relationship to 
GROUP BY is similar to the relationship between the WHERE clause and the SELECT itself. Like the WHERE 
clause, it restricts the rows returned by a SELECT statement. Unlike WHERE, it operates on the rows in the 
result set rather than the rows in the query's tables. Here's the previous query modified to include a HAVING 
clause: 
      
SELECT customers.CustomerNumber, customers.LastName, SUM(orders.Amount) AS 
TotalOrders 
FROM customers JOIN orders ON customers.CustomerNumber=orders.CustomerNumber 
GROUP BY customers.CustomerNumber, customers.LastName 
HAVING SUM(orders.Amount) > 700 
 
CustomerNumber LastName TotalOrders 
-------------- -------- ----------- 
3              Citizen  86753.09 
1              Doe      802.35 
     
There is often a better way of qualifying a query than by using a HAVING clause. In general, HAVING is less 
efficient than WHERE because it qualifies the result set after it's been organized into groups; WHERE does so 
beforehand. Here's an example that improperly uses the HAVING clause: 
      
-- Bad SQL - don't do this 
SELECT customers.LastName, COUNT(*) AS NumberWithName 
FROM customers 
GROUP BY customers.LastName 
HAVING customers.LastName<>'Citizen' 
     
Properly written, this query's filter criteria should be in its WHERE clause, like so: 
      
SELECT customers.LastName, COUNT(*) AS NumberWithName 



Guru’s Guide to Transact-SQL 

16 

FROM customers 
WHERE customers.LastName<> 'Citizen' 
GROUP BY customers.LastName 
     
In fact, SQL Server recognizes this type of HAVING misuse and translates HAVING into WHERE during query 
execution. Regardless of whether SQL Server catches errors like these, it's always better to write optimal 
code in the rst place. 

Ordering Data 

The ORDER BY clause is used to order the rows returned by a query. It follows the WHERE and GROUP BY 
clauses (if they exist) and sorts the result set just prior to returning it. Here's an example: 
     
SELECT LastName, State 
FROM customers 
ORDER BY State 
    
Here's another example: 
     
SELECT FirstName, LastName 
FROM customers 
ORDER BY LastName DESC 
    
Note the use of the DESC keyword to sort the rows in descending order. If not directed otherwise, ORDER BY 
always sorts in ascending order. 

Column Aliases 

You might have noticed that some of the earlier queries in this chapter use logical column names for 
aggregate functions such as COUNT() and SUM(). Labels such as these are known as column aliases and 
make the query and its result set more readable. As with joins, Transact-SQL provides two separate syntaxes 
for establishing column aliases: legacy or classical and ANSI standard. In the classical syntax, the column 
alias immediately precedes the column and the two are separated with an equal sign, like so: 
     
SELECT TodaysDate=GETDATE() 
 
    
ANSI syntax, by contrast, places a column alias immediately to the rightof its corresponding column and 
optionally separates the two with the AS keyword, like so: 
     
SELECT GETDATE() AS TodaysDate 
 
    
or 
    SELECT GETDATE() TodaysDate 
    
Unlike joins, the column alias syntax you choose won't affect query result sets. This is largely a matter of 
preference, though it's always advisable to use the ANSI syntax when you can if for no other reason than 
compatibility with other products. 
You can use column aliases for any item in a result set, not just aggregate functions. For example, the 
following example substitutes the column alias LName for the LastName column in the result set: 
     
SELECT customers.LastName AS LName, COUNT(*) AS NumberWithName 
FROM customers 
GROUP BY customers.LastName 
    
Note, however, that you cannot use column aliases in other parts of the query except in the ORDER BY 
clause. In the WHERE, GROUP BY, and HAVING clauses, you must use the actual column name or value. In 



Chapter 1. Introductory Transact-SQL 

17 

addition to supporting column aliases, ORDER BY supports a variation on this in which you can specify a sort 
column by its ordinal position in the SELECT list, like so: 
     
SELECT FirstName, LastName 
FROM customers 
ORDER BY 2 
    
This syntax has been deprecated and is less clear than simply using a column name or alias. 
Delivered for Nenad Apostoloski 
Swap Option Available: 2/24/2002 

Last updated on 9/12/2001
The Guru's Guide to Transact-SQL, © 2002 Addison Wesley

Table Aliases 

Similar to column aliases, you can use table aliasesto avoid having to refer to a table's full name. You specify 
table aliases in the FROM clause of queries. Place the alias to the right of the actual table name (optionally 
separated with the AS keyword), as illustrated here: 
     
SELECT c.LastName, COUNT(*) AS NumberWithName 
FROM customers AS c 
GROUP BY c.LastName 
    
Notice that the alias can be used in the field list of the SELECT list before it is even syntactically defined. This 
is possible because a query's references to database objects are resolved before the query is executed. 

Managing Transactions 

Transaction management is really outside the scope of introductory T-SQL. Nevertheless, transactions are at 
the heart of database applications development and a basic understanding of them is key to writing good SQL 
(see Chapter14, "Transactions," for in-depth coverage of transactions). 
The term transaction refers to a group of changes to a database. Transactions provide for change atomicity—
which means that either all the changes within the group occur or none of them do. SQL Server applications 
use transactions to ensure data integrity and to avoid leaving the database in an interim state if an operation 
fails. 
The COMMIT command writes a transaction permanently to disk (technically speaking, if nested transactions 
are present, this is true only of the outermost COMMIT, but that's an advanced topic). Think of it as a 
database save command. ROLLBACK, by contrast, throws away the changes a transaction would have made 
to the database; it functions like a database undo command. Both of these commands affect only the changes 
made since the last COMMIT; you cannot roll back changes that have already been committed. 
Unless the IMPLICIT_TRANSACTIONS session variable has been enabled, you must explicitly start a 
transaction in order to commit or roll it back. Transactions can be nested, and you can check the current 
nesting level by querying the @@TRANCOUNT automatic variable, like so: 
SELECT @@TRANCOUNT AS TranNestingLevel 
Here's an example of some Transact-SQL code that uses transactions to undo changes to the database: 
     
BEGIN TRAN 
DELETE customers 
GO 
ROLLBACK 
SELECT * FROM customers 
CustomerNumber     LastName     FirstName     StreetAddress     City     State     
Zip 
--------------     --------     ---------     ---------------   -----    -----     
----- 
1                  Doe          John          123 Joshua Tree   Plano    TX        
75025 
2                  Doe          Jane          123 Joshua Tree   Plano    TX        
75025 
3                  Citizen      John          57 Riverside      Reo      CA        
90120 



Guru’s Guide to Transact-SQL 

18 

    
As you can see, ROLLBACK reverses the row removals carried out by the DELETE statement. 

CAUTION 

Be sure to match BEGIN TRAN with either COMMIT or ROLLBACK. Orphaned transactions can 
cause serious performance and management problems on the server. 

Summary 

This concludes Introductory Transact-SQL. You should now be able to create a database, build tables, and 
populate those tables with data. You should also be familiar with the basic syntax required for querying tables 
and for making rudimentary changes to them. Be sure you have a good grasp of basic Transact-SQL before 
proceeding with the rest of the book. 



Chapter 2. Transact-SQL Data Type Nuances  

19 

Chapter 2. Transact-SQL Data Type Nuances 
Don't fix it if it ain't broke presupposes that you can't improve something that works 
reasonably well already. If the world's inventors had believed this, we'd still be driving Model 
A Fords and using outhouses.  

—H. W. Kenton 

SQL Server includes a wide variety of built-in data types—more, in fact, than most other major DBMSs. It 
supports a wealth of character, numeric, datetime, BLOB, and miscellaneous data types. It offers narrow 
types for small data and open-ended ones for large data. SQL Server character strings can range up to 8000 
bytes, while its BLOB types can store up to 2GB. Numeric values range from single-byte unsigned integers up 
to signed floating point values with a precision of 53 places. All except one of these data types (the cursor 
data type) are scalar types—they represent exactly one value at a time. There is an abundance of nuances, 
caveats, and pitfalls to watch out for as you use many of these types. This chapter will delve into a few of 
them. 

Dates 

SQL Server dates come in two varieties: datetime types and smalldatetime types. There is no separate time 
data type—dates and times are always stored together in SQL Server data. Datetime columns require eight 
bytes of storage and can store dates ranging from January 1, 1753, to December 31, 9999. Smalldatetime 
columns require four bytes and can handle dates from January 1, 1900, through June 6, 2079. Datetime 
columns store dates and times to the nearest three-hundredths of a second (3.33 milliseconds), while 
smalldatetime columns are limited to storing times to the nearest minute—they don't store seconds or 
milliseconds at all. 
If you wish to store a date without a time, simply omit the time portion of the column or variable—it will default 
to 00:00:00.000 (midnight). If you need a time without a date, omit the date portion—it will default to January 1, 
1900. Dates default to January 1, 1900 because it's SQL Server's reference date—all SQL Server dates are 
stored as the number of days before or since January 1,1900. 
The date portion of a datetime variable occupies its first four bytes, and the time portion occupies the last four. 
The time portion of a datetime or smalldatetime column represents the number of milliseconds since midnight. 
That's why it defaults to midnight if omitted. 
One oddity regarding datetime columns of which you should be aware is the way in which milliseconds are 
stored. Since accuracy is limited to 3.33 milliseconds, milliseconds are always rounded to the nearest three-
hundredths of a second. This means that the millisecond portion of a datetime column will always end in 0, 3, 
or 7. So, "19000101 12:00:00.564" is rounded to "19000101 12:00:00.563" and "19000101 12:00:00.565" is 
rounded to "19000101 12:00:00.567."  

Y2K and Other Date Problems 

With the arrival of year 2000, it's appropriate to discuss the impact the Y2K problem on SQL Server apps and 
some ways of handling it. A lot of hysteria seems to surround the whole Year 2000 issue—on the part of 
technical and nontechnical people alike—so it seems worthwhile to take a moment and address the way in 
which the Y2K problem affects SQL Server and applications basedonit. 
First, due to the fact that SQL Server sports a datetime data type, many of the problems plaguing older 
applications and DBMSs simply don't apply here. Dates are stored as numeric quantities rather than character 
strings, so no assumptions need be made regarding the century, a given datetime variable, or column 
references. 
Second, given that even a lowly smalldatetime can store dates up to 2079, there's no capacity issue, either. 
Since four bytes are reserved for the date portion of a datetime column, a quantity of up to 2,147,483,647 
days (including a sign bit) can be stored, even though there are only 3,012,153 days between January 1, 1753 
and December 31, 9999. 
Despite all this, there are still a number of subtle ways the Y2K and other date problems can affect SQL 
Server applications. Most of them have to do with assumptions about date formatting in T-SQL code. 
Consider the following: 
      



Guru’s Guide to Transact-SQL 

20 

SELECT CAST('01-01-39' AS datetime) AS DadsBirthDate 
 
     
What date will be returned? Though it's not obvious from the code, the date January 1, 2039 is the answer. 
Why? Because SQL Server has an internal century "window" that controls how two-digit years are interpreted. 
You can configure this with Enterprise Manager (right click your server, select Properties, then click Server 
Settings) or with sp_configure (via the two digit year cutoff setting). By default, two-digit years are interpreted 
by SQL Server as falling between 1950 and 2049. So, T-SQL code that uses the SELECT above and 
assumes it references 1939 may not work correctly. (Assuming 2039 for Dad's birth year would mean that he 
hasn't been born yet!) 
The simplest answer, of course, is to use four-digit years. This disambiguates dates and removes the 
possibility that changing the two-digit year cutoff setting might break existing code. Note that I'm not 
recommending that you require four-digit dates in the user interfaces you build—I refer only to the T-SQL 
code you write. What you require of users is another matter. 
Another subtle way that Y2K can affect SQL Server apps is through date-based identifiers. It's not uncommon 
for older systems (and some newer ones) to use a year-in-century approach to number sequential items. For 
example, a purchase order system I rewrote in the eighties used the format YY-SequenceNumber to identify 
POs uniquely. These numbers were used as unique identifiers in a relational database system. Each time a 
new PO was added, a routine in the front-end application would search a table for the largest 
SequenceNumber and increment it by one. About five years before I became associated with the project, the 
company had merged with another company that had the same numbering scheme. In order to avoid 
duplicate keys, the programmer merging the two companies' data simply added 10 to the year prefixes of the 
second company's purchase orders. This, of course, amounted to installing a time bomb that would explode in 
ten years when the new keys generated for the first company's data began to conflict with the second 
company's original keys. Fortunately, we foresaw this situation and remedied it before it occurred. We 
remerged the two databases, this time adding to the SequenceNumber portion of the PO number, rather than 
its year prefix. We added a number to the second company's sequence numbers that was sufficient to place 
them after all those of the first company, thus eliminating the possibility of future key conflicts. 
This situation was not so much Y2K related as it was an imprudent use of date-based keys; however, 
consider the situation where the keys start with the year 1999. A two-digit scheme could not handle the 
rollover to 2000 because it could no longer retrieve the maximum sequence value from the database and 
increment it. 
A common thread runs through all these scenarios: omitting the century portion of dates is problematic. Don't 
do it unless you like problems. 

Date Functions 

SQL Server includes a number of functions to manipulate and work with datetime columns. These functions 
permit you to extract portions of dates, to add a quantity of date parts to an existing date, to retrieve the 
current date and time, and so on. Let's explore a few of these by way of some interesting date problems. 
Consider the classic problem of determining for company employees the hire date anniversaries that fall 
within the next thirty days. The problem is more subtle than it appears—there are a number of false solutions. 
For example, you might be tempted to do something like this: 
      
SELECT fname, lname, hire_date 
FROM EMPLOYEE 
WHERE MONTH(hire_date)=MONTH(GETDATE()) 
 
     
But this fails to account for the possibility that a thirty-day time period may span two or even three months. 
Another false solution can be found in attempting to synthesize a date using the current year and the hire date 
month and day, like this: 
      
SELECT fname, lname, hire_date 
FROM EMPLOYEE 
WHERE CAST(CAST(YEAR(GETDATE()) AS varchar(4))+ 
SUBSTRING(CONVERT(char(8), hire_date,112),5,4) AS datetime) BETWEEN GETDATE() 
AND GETDATE()+30 
 
     



Chapter 2. Transact-SQL Data Type Nuances  

21 

This solution fails to allow for the possibility that the synthesized date might not be valid. How? If the 
employee was hired in a leap year and the current year isn't also a leap year, you'll have a problem if her hire 
date was February 29. A rare possibility, yes, but one a good solution should take into account. 
The best solution doesn't know or care about the exact date of the anniversary. It makes use of the SQL 
Server DATEDIFF() function to make the actual anniversary date itself irrelevant. DATEDIFF() returns the 
difference in time between two dates using the date or time unit you specify. The function takes three 
parameters: the date part or unit of time in which you want the difference returned (e.g., days, months, 
minutes, hours) and the two dates between which you wish to calculate the amount of elapsed time. You can 
supply any date part you want, including q or qq for calendar quarters, as well as h, mi, ss, and ms for time 
parts. Here's the code: 
      
SELECT fname, lname, hire_date 
FROM EMPLOYEE 
WHERE DATEDIFF(yy, hire_date,GETDATE()+30) > DATEDIFF(yy, hire_date,GETDATE()) 
 
     
This code basically says, "If the number of years between the hire date and today's date plus thirty days 
exceeds the number of years between the hire date and today's date, a hire date anniversary must have 
occurred within those thirty days, regardless of the actual date."  
Note the use of simple arithmetic to add days to a datetime variable (in this case, the return value of the 
GETDATE() function). You can add or subtract days from datetime and smalldatetime variables and fields via 
simple arithmetic. Also note the use of the GETDATE() function. This does what its name suggests—it returns 
the current date and time. 
Similar to DATEDIFF(), DATEADD() adds a given number of units of time to a date- time variable or column. 
You can add (and subtract, using negative numbers) all the normal date components, as well as quarters and 
time portions. In the case of whole days, it's syntactically more compact to use simple date arithmetic than to 
call DATEDIFF(), but the results are the same. 
DATEPART() and the YEAR(), MONTH(), and DAY() functions extract portions of a given date. In addition to 
the date parts already mentioned, DATEPART() can return the day of the week, the week of the year, and the 
day of the year as integers. 

Dates and Simple Arithmetic 

Beyond being able to add or subtract a given number of days from date via simple arithmetic, you can also 
subtract one date from another to determine the number of days between them, but you must be careful. SQL 
Server will return the number of days between the two dates, but if either of them contains a time portion, the 
server will also be forced to include fractional days in its computation. Since we are converting the result to an 
integer (without the cast, subtracting one SQL Server date from another yields a third date—not terribly 
useful), a time portion of twelve hours or more will be considered a full day. This is somewhat counterintuitive. 
For example, consider this code: 
      
SELECT CAST(GETDATE()-'19940101' AS int) 
 
     
If GETDATE() equals 1999-01-17 20:47:40, SQL Server returns: 
However, DATEDIFF(dd, GETDATE(),'19940101') returns: 
Why the discrepancy? Because DATEDIFF() looks at whole days only, whereas SQL Server's simple date 
arithmetic considers fractional days as well. The problem is more evident if we cast to a floating point value 
instead of an integer, like so: 
      
SELECT CAST(GETDATE()-'19940101' As float) 
1842.8664351851851 
 
     
So, there are 1842.87 days between January 1, 1994 and January 17, 1999 20:47:40, or, rounded to the 
nearest integer, 1843. 
To get the two methods to return the same result, we could adjust the first date's time to something before 
noon, like so: 
      
SELECT CAST(CAST('1999-01-17 11:47:40' AS datetime)- '19940101' AS int) 



Guru’s Guide to Transact-SQL 

22 

 
     
Although this would work, your users may not appreciate having their data changed to accommodate schlocky 
code. It would be kind of like performing heart surgery to fix a broken stethoscope. Far better simply to 
remove the time from the computation since we don't care about it: 
      
SELECT CAST(CAST(CONVERT(char(8),GETDATE(),112) AS datetime)-'19940101' AS int) 
     
This technique converts the date to an eight-byte character string and then back to a date again in order to 
remove its time portion. The time then defaults to '00:00:00.000' for both dates, alleviating the possibility of a 
partial day skewing the results. 

Determining Time Gaps 

A common problem with dates is determining the gaps between them, especially when a table of dates or 
times is involved. Consider the following scenario: Per company policy, employees at a given factory must 
clock in and out each time they enter or leave the assembly line. The line supervisor wants to know how much 
time each of her employees spends away from the factory floor. Here's a script that sets up their timecard 
records: 
      
CREATE TABLE timeclock 
(Employee varchar(30), 
TimeIn smalldatetime, 
TimeOut smalldatetime 
) 
INSERT timeclock VALUES('Pythia','07:31:34','12:04:01') 
INSERT timeclock VALUES('Pythia','12:45:10','17:32:49') 
INSERT timeclock VALUES('Dionysus','9:31:29','10:46:55') 
INSERT timeclock VALUES('Dionysus','10:59:32','11:39:12') 
INSERT timeclock VALUES('Dionysus','13:05:16','14:07:41') 
INSERT timeclock VALUES('Dionysus','14:11:49','14:57:02') 
INSERT timeclock VALUES('Dionysus','15:04:12','15:08:38') 
INSERT timeclock VALUES('Dionysus','15:10:31','16:13:58') 
INSERT timeclock VALUES('Dionysus','16:18:24','16:58:01') 
 
     
Pythia seems to be a dutiful employee, while Dionysus appears to be playing hooky quite a bit. A query to 
determine the number of minutes each employee spends away on break might look something like this: 
      
SELECT t1.Employee, 
  DATEADD(mi,1,t1.TimeOut) AS StartOfLoafing, 
  DATEADD(mi,-1,t2.TimeIn) AS EndOfLoafing, 
  DATEDIFF(mi,t1.TimeOut,t2.TimeIn) AS LengthOfLoafing 
FROM timeclock t1 JOIN timeclock t2 ON t1.Employee=t2.Employee) 
WHERE (DATEADD(mi,1,t1.TimeOut) <= DATEADD(mi,-1,t2.TimeIn)) 
 
Employee    StartOfLoafing         EndOfLoafing           LengthOfLoafing 
----------- ---------------------- ---------------------- -------------- 
Pythia      1900-01-01 12:05:00    1900-01-01 12:44:00    41 
Dionysus    1900-01-01 10:48:00    1900-01-01 10:59:00    13 
Dionysus    1900-01-01 10:48:00    1900-01-01 13:04:00    138 
Dionysus    1900-01-01 11:40:00    1900-01-01 13:04:00    86 
Dionysus    1900-01-01 10:48:00    1900-01-01 14:11:00    205 
Dionysus    1900-01-01 11:40:00    1900-01-01 14:11:00    153 
Dionysus    1900-01-01 14:09:00    1900-01-01 14:11:00    4 
Dionysus    1900-01-01 10:48:00    1900-01-01 15:03:00    257 
Dionysus    1900-01-01 11:40:00    1900-01-01 15:03:00    205 
Dionysus    1900-01-01 14:09:00    1900-01-01 15:03:00    56 
Dionysus    1900-01-01 14:58:00    1900-01-01 15:03:00    7 
Dionysus    1900-01-01 10:48:00    1900-01-01 15:10:00    264 



Chapter 2. Transact-SQL Data Type Nuances  

23 

Dionysus    1900-01-01 11:40:00    1900-01-01 15:10:00    212 
Dionysus    1900-01-01 14:09:00    1900-01-01 15:10:00    63 
Dionysus    1900-01-01 14:58:00    1900-01-01 15:10:00    14 
Dionysus    1900-01-01 15:10:00    1900-01-01 15:10:00    2 
Dionysus    1900-01-01 10:48:00    1900-01-01 16:17:00    331 
Dionysus    1900-01-01 11:40:00    1900-01-01 16:17:00    279 
Dionysus    1900-01-01 14:09:00    1900-01-01 16:17:00    130 
Dionysus    1900-01-01 14:58:00    1900-01-01 16:17:00    81 
Dionysus    1900-01-01 15:10:00    1900-01-01 16:17:00    69 
Dionysus    1900-01-01 16:15:00    1900-01-01 16:17:00    4 
 
     
Obviously, there are too many breaks—even Dionysus couldn't have had more breaks than work periods. The 
deceptive thing about this is that the first row looks correct—Pythia appears to have taken a forty-one minute 
lunch. But problems begin to arise as soon as there are more than two TimeIn/TimeOut pairs for a given 
employee. In addition to correctly computing the time between Dionysus' work periods, the query computes 
the difference in minutes between clock-outs and clock-ins that don't correspond to one another. What we 
should be doing instead is computing each break based on the most recent clock-out, like so: 
      
SELECT t1.Employee, 
  DATEADD(mi,1,t1.TimeOut) AS StartOfLoafing, 
  DATEADD(mi,-1,t2.TimeIn) AS EndOfLoafing, 
  DATEDIFF(mi,t1.TimeOut,t2.TimeIn) AS LengthOfLoafing 
FROM timeclock T1 JOIN timeclock T2 ON (t1.Employee=t2.Employee) 
WHERE (DATEADD(mi,1,t1.TimeOut)= 
  (SELECT MAX(DATEADD(mi,1,t3.TimeOut)) 
  FROM timeclock T3 
  WHERE (t3.Employee=t1.Employee) 
  AND (DATEADD(mi,1,t3.TimeOut) <= DATEADD(mi,-1,t2.TimeIn)))) 
 
Employee    StartOfLoafing         EndOfLoafing           LengthOfLoafing 
----------- ---------------------- ---------------------- -------------- 
Pythia      1900-01-01 12:05:00    1900-01-01 12:44:00    41 
Dionysus    1900-01-01 10:48:00    1900-01-01 10:59:00    13 
Dionysus    1900-01-01 11:40:00    1900-01-01 13:04:00    86 
Dionysus    1900-01-01 14:09:00    1900-01-01 14:11:00    4 
Dionysus    1900-01-01 14:58:00    1900-01-01 15:03:00    7 
Dionysus    1900-01-01 15:10:00    1900-01-01 15:10:00    2 
Dionysus    1900-01-01 16:15:00    1900-01-01 16:17:00    4 
 
     
Notice the use of a correlated subquery to determine the most recent clock-out. It's correlated in that it both 
restricts and is restricted by data in the outer query. As each row in T1 is iterated through, the value in its 
Employee column is supplied to the subquery as a parameter and the subquery is reexecuted. The row itself 
is then included or excluded from the result set based on whether its TimeOut value is greater than the one 
returned by the subquery. In this way, correlated subqueries and their hosts have a mutual dependence upon 
one another—a correlation between them. 
The result set is about a third of the size of the one returned by the first query. Now Dionysus' breaks seem a 
bit more believable, if not more reasonable. 
You could easily extend this query to generate subtotals for each employee through Transact-SQL's 
COMPUTE extension, like so: 
      
SELECT t1.Employee, 
  DATEADD(mi,1,t1.TimeOut) AS StartOfLoafing, 
  DATEADD(mi,-1,t2.TimeIn) AS EndOfLoafing, 
  DATEDIFF(mi,t1.TimeOut,t2.TimeIn) AS LengthOfLoafing 
FROM timeclock T1 JOIN timeclock T2 ON (t1.Employee=t2.Employee) 
WHERE (DATEADD(mi,1,t1.TimeOut)= 
  (SELECT MAX(DATEADD(mi,1,t3.TimeOut)) 
  FROM timeclock T3 
  WHERE (t3.Employee=t1.Employee) 



Guru’s Guide to Transact-SQL 

24 

  AND (DATEADD(mi,1,t3.TimeOut) <= DATEADD(mi,-1,t2.TimeIn)))) 
ORDER BY t1.Employee 
COMPUTE SUM(DATEDIFF(mi,t1.TimeOut,t2.TimeIn)) BY t1.Employee 
 
Employee    StartOfLoafing         EndOfLoafing           LengthOfLoafing 
----------- ---------------------- ---------------------- -------------- 
Dionysus    1900-01-01 10:48:00    1900-01-01 11:01:00    13 
Dionysus    1900-01-01 11:40:00    1900-01-01 13:06:00    86 
Dionysus    1900-01-01 14:09:00    1900-01-01 14:13:00    4 
Dionysus    1900-01-01 14:58:00    1900-01-01 15:05:00    7 
Dionysus    1900-01-01 15:10:00    1900-01-01 15:12:00    2 
Dionysus    1900-01-01 16:15:00    1900-01-01 16:19:00    4 
 
                                                          sum 
                                                          ========== 
                                                          116 
 
Pythia      1900-01-01 12:05:00    1900-01-01 12:46:00    41 
 
                                                          sum 
                                                          ========== 
                                                          41 
 
     
Note the addition of an ORDER BY clause—a requirement of COMPUTE BY. COMPUTE allows us to 
generate rudimentary totals for a result set. COMPUTE BY is a COMPUTE variation that allows grouping 
columns to be specified. It's quite flexible in that it can generate aggregates that are absent from the SELECT 
list and group on columns not present in the GROUP BY clause. Its one downside—and it's a big one—is the 
generation of multiple results for a single query—one for each group and one for each set of group totals. 
Most front-end applications don't know how to deal with COMPUTE totals. That's why Microsoft has 
deprecated its use in recent years and recommends that you use the ROLLUP extension of the GROUP BY 
clause instead. Here's the COMPUTE query rewritten to use ROLLUP: 
      
SELECT ISNULL(t1.Employee,'Total') AS Employee, 
  DATEADD(mi,1,t1.TimeOut) AS StartOfLoafing, 
  DATEADD(mi,-1,t2.TimeIn) AS EndOfLoafing, 
  SUM(DATEDIFF(mi,t1.TimeOut,t2.TimeIn)) AS LengthOfLoafing 
FROM timeclock T1 JOIN timeclock T2 ON (t1.Employee=t2.Employee) 
WHERE (DATEADD(mi,1,t1.TimeOut)= 
  (SELECT MAX(DATEADD(mi,1,t3.TimeOut)) 
  FROM timeclock T3 
  WHERE (t3.Employee=t1.Employee) 
  AND (DATEADD(mi,1,t3.TimeOut) <= DATEADD(mi,-1,t2.TimeIn)))) 
GROUP BY t1.Employee, 
  DATEADD(mi,1,t1.TimeOut), 
  DATEADD(mi,-1,t2.TimeIn), 
  DATEDIFF(mi,t1.TimeOut,t2.TimeIn) WITH ROLLUP 
HAVING ((GROUPING(DATEADD(mi,-1,t2.TimeIn))=0) 
OR (GROUPING(DATEADD(mi,1,t1.TimeOut))+GROUPING(DATEADD(mi,-1,t2.TimeIn))=2)) 
 
Employee    StartOfLoafing         EndOfLoafing           LengthOfLoafing 
----------- ---------------------- ---------------------- -------------- 
Dionysus    1900-01-01 10:48:00    1900-01-01 10:59:00    13 
Dionysus    1900-01-01 10:48:00    1900-01-01 10:59:00    13 
Dionysus    1900-01-01 11:40:00    1900-01-01 13:04:00    86 
Dionysus    1900-01-01 11:40:00    1900-01-01 13:04:00    86 
Dionysus    1900-01-01 14:09:00    1900-01-01 14:11:00    4 
Dionysus    1900-01-01 14:09:00    1900-01-01 14:11:00    4 
Dionysus    1900-01-01 14:58:00    1900-01-01 15:03:00    7 
Dionysus    1900-01-01 14:58:00    1900-01-01 15:03:00    7 
Dionysus    1900-01-01 15:10:00    1900-01-01 15:10:00    2 



Chapter 2. Transact-SQL Data Type Nuances  

25 

Dionysus    1900-01-01 15:10:00    1900-01-01 15:10:00    2 
Dionysus    1900-01-01 16:15:00    1900-01-01 16:17:00    4 
Dionysus    1900-01-01 16:15:00    1900-01-01 16:17:00    4 
Dionysus    NULL                   NULL                   116 
Pythia      1900-01-01 12:05:00    1900-01-01 12:44:00    41 
Pythia      1900-01-01 12:05:00    1900-01-01 12:44:00    41 
Pythia      NULL                   NULL                   41 
***Total*** NULL                   NULL                   157 
 
     
As you can see, the query is much longer. Improved runtime efficiency sometimes comes at the cost of 
syntactical compactness. 
WITH ROLLUP causes extra rows to be added to the result set containing subtotals for each of the columns 
specified in the GROUP BY clause. Unlike COMPUTE, it returns only one result set. We're not interested in all 
the totals generated, so we use a HAVING clause to eliminate all total rows except employee subtotals and 
the report grand total. The first set of NULL values in the result set corresponds to the employee subtotal for 
Dionysus. The second set marks Pythia's subtotals. The third set denotes grand totals for the result set. 
Note the use of the GROUPING() function to generate a custom string for the report totals line and to restrict 
the rows that appear in the result set. GROUPING() returns 1 when the specified column is being grouped 
within a particular result set row and 0 when it isn't. Grouped columns are returned as NULL in the result set. 
If your data itself is free of NULLs, you can use ISNULL() in much the same way as GROUPING() since only 
grouped columns will be NULL. 

Building Calendars 

Another common use of datetime fields is to build calendars and schedules. Consider the following problem: A 
library needs to compute the exact day a borrower must return a book in order to avoid a fine. Normally, this 
would be fourteen calendar days from the time the book was checked out, but since the library is closed on 
weekends and holidays, the problem is more complex than that. Let's start by building a simple table listing 
the library's holidays. A table with two columns, HolidayName and HolidayDate, would be sufficient. We'll fill it 
with the name and date of each holiday the library is closed. Here's some code to build the table: 
      
USE tempdb 
DROP TABLE HOLIDAYS 
GO 
CREATE TABLE HOLIDAYS (HolidayName varchar(30), HolidayDate smalldatetime) 
INSERT HOLIDAYS VALUES("New Year's Day","19990101") 
INSERT HOLIDAYS VALUES("Valentine's Day","19990214") 
INSERT HOLIDAYS VALUES("St. Patrick's Day","19990317") 
INSERT HOLIDAYS VALUES("Memorial Day","19990530") 
INSERT HOLIDAYS VALUES("Independence Day","19990704") 
INSERT HOLIDAYS VALUES("Labor Day","19990906") 
INSERT HOLIDAYS VALUES("Indigenous Peoples Day","19991011") 
INSERT HOLIDAYS VALUES("Halloween","19991031") 
INSERT HOLIDAYS VALUES("Thanksgiving Day","19991125") 
INSERT HOLIDAYS VALUES("Day After Thanksgiving","19991126") 
INSERT HOLIDAYS VALUES("Christmas Day","19991225") 
INSERT HOLIDAYS VALUES("New Year's Eve","19991231") 
 
SELECT * FROM HOLIDAYS 
 
HolidayName            HolidayDate 
---------------------- ------------------- 
New Year's Day         1999-01-01 00:00:00 
Valentine's Day        1999-02-14 00:00:00 
St. Patrick's Day      1999-03-17 00:00:00 
Memorial Day           1999-05-30 00:00:00 
Independence Day       1999-07-04 00:00:00 
Labor Day              1999-09-06 00:00:00 
Indigenous Peoples Day 1999-10-11 00:00:00 



Guru’s Guide to Transact-SQL 

26 

Halloween              1999-10-31 00:00:00 
Thanksgiving Day       1999-11-25 00:00:00 
Day After Thanksgiving 1999-11-26 00:00:00 
Christmas Day          1999-12-25 00:00:00 
New Year's Eve         1999-12-31 00:00:00 
 
     
Next, we'll build a table of check-out/check-in dates for the entire year. It will consist of two columns as well, 
CheckOutDate and DueDate. To build the table, we'll start by populating CheckOutDate with every date in the 
year and DueDate with each date plus fourteen calendar days. Stored procedures— compiled SQL programs 
that resemble 3GL procedures or subroutines—work nicely for this because local variables and flow-control 
statements (e.g., looping constructs) are right at home in them. You can use local variables and control-flow 
statements outside stored procedures, but they can be a bit unwieldy and you lose much of the power of the 
language in doing so. Here's a procedure that builds and populates the DUEDATES table: 
      
USE tempdb 
GO 
DROP TABLE DUEDATES 
GO 
CREATE TABLE DUEDATES (CheckOutDate smalldatetime, DueDate smalldatetime) 
GO 
DROP PROC popduedates 
GO 
CREATE PROCEDURE popduedates AS 
  SET NOCOUNT ON 
  DECLARE @year integer, @insertday datetime 
   
  SELECT @year=YEAR(GETDATE()), @insertday=CAST(@year AS char(4))+'0101' 
  TRUNCATE TABLE DUEDATES -- In case ran more than once (run only from tempdb) 
  WHILE YEAR(@insertday)=@year BEGIN 
    -- Don't insert weekend or holiday CheckOut dates -- library is closed 
    IF ((SELECT DATEPART(dw,@insertday)) NOT IN (1,7)) 
    AND NOT EXISTS (SELECT * FROM HOLIDAYS WHERE HolidayDate=@insertday) 
      INSERT DUEDATES VALUES (@insertday, @insertday+14) 
    SET @insertday=@insertday+1 
 END 
GO 
EXEC popduedates 
 
     
Now that we've constructed the table, we need to adjust each due date that falls on a holiday or weekend to 
the next valid date. The problem is greatly simplified by the fact that the table starts off with no weekend or 
holiday check-out dates. Since check-ins and check-outs are normally separated by fourteen calendar days, 
the only way to have a weekend due date occur once the table is set up initially is by changing a holiday due 
date to a weekend due date—that is, by introducing it ourselves. 
One approach to solving the problem would be to execute three UPDATE statements: one to move due dates 
that fall on holidays to the next day, one to move Saturdays to Mondays, and one to move Sundays to 
Mondays. We would need to keep executing these three statements until they ceased to affect any rows. 
Here's an example: 
      
CREATE PROCEDURE fixduedates AS 
SET NOCOUNT ON 
DECLARE @keepgoing integer 
SET @keepgoing=1 
WHILE (@keepgoing<>0) BEGIN 
  UPDATE #DUEDATES SET DateDue=DateDue+1 
  WHERE DateDue IN (SELECT HolidayDate FROM HOLIDAYS)  
  SET @keepgoing=@@ROWCOUNT 
 
  UPDATE #DUEDATES SET DateDue=DateDue+2 
  WHERE DATEPART(dw,DateDue)=7 



Chapter 2. Transact-SQL Data Type Nuances  

27 

  SET @keepgoing=@keepgoing+@@ROWCOUNT 
   
  UPDATE #DUEDATES SET DateDue=DateDue+1 
  WHERE DATEPART(dw,DateDue)=1 
 
  SET @keepgoing=@keepgoing+@@ROWCOUNT 
END 
 
     
This technique uses a join to HOLIDAYS to adjust holiday due dates and the DATEPART() function to adjust 
weekend due dates. Once the procedure executes, you're left with a table of check-out dates and 
corresponding due dates. Notice the use of @@ROWCOUNT in the stored procedure to determine the 
number of rows affected by each UPDATE statement. This allows us to determine when to end the loop—
when none of the three UPDATEs registers a hit against the table. The necessity of the @keepgoing variable 
illustrates the need in Transact-SQL for a DO...UNTIL or REPEAT...UNTIL looping construct. If the language 
supported a looping syntax that checked its control condition at the end of the loop rather than at the 
beginning, we might be able to eliminate @keepgoing. 
Given enough thought, we can usually come up with a better solution to an iterative problem like this than the 
first one that comes to mind, and this one is no exception. Here's a solution to the problem that uses just one 
UPDATE statement. 
      
CREATE PROCEDURE fixduedates2 AS 
SET NOCOUNT ON 
SELECT 'Fixing DUEDATES' -- Seed @@ROWCOUNT 
WHILE (@@ROWCOUNT<>0) BEGIN 
  UPDATE DUEDATES 
     SET DueDate=DueDate+CASE WHEN DATEPART(dw,DueDate)=6 THEN 3 ELSE 1 END 
  WHERE DueDate IN (SELECT HolidayDate FROM HOLIDAYS) 
END 
 
     
This technique takes advantage of the fact that the table starts off with no weekend due dates and simply 
avoids creating any when it adjusts due dates that fall on holidays. It pulls this off via the CASE function. If the 
holiday due date we're about to adjust is already on a Friday, we don't simply add a single day to it and expect 
later UPDATE statements to adjust it further—we add enough days to move it to the following Monday. Of 
course, this doesn't account for two holidays that occur back to back on a Thursday and Friday, so we're 
forced to repeat the process. 
The procedure uses an interesting technique of returning a message string to "seed" the @@ROWCOUNT 
automatic variable. In addition to notifying the user of what the procedure is up to, returning the string sets the 
initial value of @@ROWCOUNT to 1 (because it returns one "row"), permitting entrance into the loop. Once 
inside, the success or failure of the UPDATE statement sets @@ROWCOUNT. Taking this approach 
eliminates the need for a second counter variable like @@keepgoing. Again, an end-condition looping 
construct would be really handy here. 
Just when we think we have the best solution possible, further reflection on a problem often reveals an even 
better way of doing things. Tuning SQL queries is an iterative process that requires lots of patience. You have 
to learn to balance the gains you achieve with the pain they cost. Trimming a couple of seconds from a query 
that runs once a day is probably not worth your time, but trimming a few from one that runs thousands of 
times may well be. Deciding what to tune, what not to, and how far to go is a skill that's gradually honed over 
many years. 
Here's a refinement of the earlier techniques that eliminates the need for a loop altogether. It makes a couple 
of reasonable assumptions in order to pull this off. It assumes that no more than two holidays will occur on 
consecutive days (or that a single holiday will never span more than two days) and that no two holidays will be 
separated by less than three days. Here's the code: 
      
CREATE PROCEDURE fixduedates3 AS 
SET NOCOUNT ON 
UPDATE DUEDATES SET DueDate=DueDate+ 
  CASE WHEN (DATEPART(dw,DueDate)=6) THEN 3 
  WHEN (DATEPART(dw,DueDate)=5) AND 
  EXISTS 
  (SELECT HolidayDate FROM HOLIDAYS WHERE HolidayDate=DueDate+1) THEN 4 



Guru’s Guide to Transact-SQL 

28 

  ELSE 1 
  END  
FROM HOLIDAYS WHERE DueDate = HolidayDate 
 
     
This solution takes Thursday-Friday holidays into account via its CASE statement. If it encounters a due date 
that falls on a Thursday holiday, it checks to see whether the following Friday is also a holiday. If so, it adjusts 
the due date by enough days to move it to the following Monday. If not, it adjusts the due date by a single day 
just as it would a holiday falling on any other day of the week. 
The procedure also eliminates the subquery used by the earlier techniques. Transact-SQL supports the 
FROM extension to the ANSI/ISO UPDATE statement, which allows one table to be updated based on data in 
another. Here, we establish a simple inner join between DUEDATES and HOLIDAYS in order to limit the rows 
updated to those with due dates found in HOLIDAYS. 

Strings 

SQL Server string variables and fields are of the basic garden-variety type. Variable-length and fixed-length 
types are supported, with each limited to a maximum of 8000bytes. Like other types of variables, string 
variables are established via the DECLARE command: 
     
DECLARE @Vocalist char(20)  
DECLARE @Song varchar(30) 
 
    
String variables are initialized to NULL when declared and can be assigned a value using either SET or 
SELECT, likeso: 
     
SET @Vocalist='Paul Rodgers' 
SELECT @Song='All Right Now' 
    

Concatenation 

You can concatenate string fields and variables using the 1 operator, like this: 
      
SELECT @Vocalist+' sang the classic '+@Song+' for the band Free' 
 
     

Char vs. Varchar 

Whether you should choose to create character or variable character fields depends on your needs. If the 
data you're storing is of a relatively fixed length and varies very little from row to row, fixed character fields 
make more sense. Each variable character field carries with it the overhead associated with storing a field's 
length in addition to its data. If the length of the data it stores doesn't vary much, a fixed-length character field 
will not only be more efficiently stored, it will also be faster to access. On the other hand, if the data length 
varies considerably from row to row, a variable-length field is more appropriate.fi Variable character fields can 
also be more efficient in terms of SQL syntax. Consider the previous example: 
      
SELECT @Vocalist+' sang the classic '+@Song+' for the band Free' 
 
     
Because @Vocalist is a fixed character variable, the concatenation doesn't work as we might expect. Unlike 
variable-length @Song, @Vocalist is right-padded with spaces to its maximum length, which produces this 
output: 
      
Paul Rodgers         sang the classic All Right Now for the band Free 
     



Chapter 2. Transact-SQL Data Type Nuances  

29 

Of course, we could use the RTRIM() function to remove those extra spaces, but it would be more efficient 
just to declare @Vocalist as a varchar in the first place. 
One thing to watch out for with varchar concatenation is character movement. Concatenating two varchar 
strings can yield a third string where a key character (e.g., the last character or the first character of the 
second string) shifts within the new string due to blanks being trimmed. Here's an example: 
      
SELECT au_fname+' '+au_lname 
FROM authors 
(Results abridged) 
-------------------------------------------------- 
Abraham Bennet 
Reginald Blotchet-Halls 
Cheryl Carson 
Michel DeFrance 
Innes del Castillo 
Ann Dull 
Marjorie Green 
Morningstar Greene 
Burt Gringlesby 
 
     
Due to character movement and because at least one of the names contains multiple spaces, there's no easy 
way to extract the authors' first and last names once they've been combined in this way. Since au_fname is a 
20-character field, the first character of au_lname is logical character21 in the concatenated name. However, 
that character has moved due to au_lname's concatenation with a varchar (nonpadded) string.fi It is now in a 
different position for each author, making extricating the original names next to impossible. This may not be 
an issue—it may be what you intend—but it's something of which you should be aware. 

SET ANSI_PADDING 

By default, SQL Server doesn't trim trailing blanks and zeros from varchar or varbinary values when they're 
inserted into a table. This is in accordance with the ANSI SQL-92 standard. If you want to change this, use 
SET ANSI_PADDING (or SET ANSI_DEFAULTS). When ANSI_PADDING is OFF, field values are trimmed 
as they're inserted. This can introduce some subtle problems. Here's an example: 
      
SET NOCOUNT ON 
CREATE TABLE #testpad (c1 char(30))  
 
SET ANSI_PADDING OFF 
 
DECLARE @robertplant   char(20),  
        @jimmypage     char(20), 
        @johnbonham    char(20), 
        @johnpauljones char(20)  
 
SET @robertplant=   'ROBERT PLANT   ' 
SET @jimmypage=     'JIMMY PAGE     ' 
SET @johnbonham=    'JOHN BONHAM    ' 
SET @johnpauljones= 'JOHN PAUL JONES' 
 
INSERT #testpad VALUES (@robertplant)  
INSERT #testpad VALUES (@jimmypage) 
INSERT #testpad VALUES (@johnbonham) 
INSERT #testpad VALUES (@johnpauljones)  
 
SELECT DATALENGTH(c1) as LENGTH; 
FROM #testpad 
 
SELECT * 
FROM #testpad 



Guru’s Guide to Transact-SQL 

30 

WHERE c1 LIKE @johnbonham 
 
GO 
DROP TABLE #testpad 
 
LENGTH 
----------- 
12 
10 
11 
15 
 
c1 
----------------------------- 
 
     
Because ANSI_PADDING has been turned OFF, no rows are returned by the second query even though 
we're searching for a value we just inserted. Since ANSI_PADDING was disabled when @johnbonham was 
inserted, its trailing blanks were removed. That's why the listed data lengths of the inserted values differ from 
row to row even though the ones we supplied were all the same length. When the second query attempts to 
locate a record using one of the inserted values, it fails because the value it's using hasn't been trimmed. The 
salient point here is that disabling ANSI_PADDING affects only the way values are stored—it doesn't change 
the way that variables and constant values are handled. Since these are often used in comparison operations 
with stored values, a mismatch results—one value with trailing blanks and one without. That's where subtle 
problems come in. As they say, the devil is in the details. Here's what the result set would look like with 
ANSI_PADDING in effect: 
      
LENGTH 
----------- 
15 
15 
15 
15 
 
c1 
------------------------------ 
JOHN BONHAM 
 
     

String Functions 

There are a number of SQL Server string functions. You can check the Books Online for specifics. I'll take you 
through some of the more interesting ones. 

CHARINDEX() 

The CHARINDEX() function returns the position of one string within another. Here's an example: 
       
SELECT CHARINDEX('Now',@Song) 
 
      
You can optionally specify a starting position, likeso: 
       
SELECT CHARINDEX('h','They call me the hunter',17) 
 
      

SOUNDEX() 



Chapter 2. Transact-SQL Data Type Nuances  

31 

The SOUNDEX() function returns a string representing the sound of a character string. Like most soundex 
codes, Transact-SQL SOUNDEX() strings consist of a single character followed by three numeric digits. 
SOUNDEX() is most often used to alleviate the problems introduced by misspellings and typing mistakes in 
the database. Here's an example of its use: 
       
SELECT SOUNDEX('Terry'), SOUNDEX('Terri') 
 
      
Both of these expressions return a soundex of T600. 
Transact-SQL's implementation of SOUNDEX() isn't terribly sophisticated, and it's easy to fool it. Here's an 
example: 
       
SELECT SOUNDEX('Rodgers'), SOUNDEX('Rogers') 
 
      
You might think that these two surnames would have the same soundex, but that's not the case. Usually, 
SOUNDEX() is used to implement limited fuzzy searches, to build mnemonic keys or codes, and the like. 
Because of its limitations, it's pretty rare in real-life applications. 

A Better SOUNDEX() 

It's easy enough to write a better phonetic matching routine than the one provided by SQL Server. Transact-
SQL's SOUNDEX() function is based on the original soundex algorithm patented by Margaret O'Dell and 
Robert Russell in 1918. To begin improving upon the stock function, let's first rewrite it as a stored procedure. 
Here's a stored procedure based on the O'Dell-Russell algorithm: 
        
USE master 
go 
IF OBJECT_ID('sp_soundex') IS NOT NULL 
  DROP PROC sp_soundex 
go 
CREATE PROCEDURE sp_soundex @instring varchar(50), @soundex varchar(50)=NULL 
OUTPUT 
 
/* 
 
Object: sp_soundex 
Description: Returns the soundex of a string 
 
Usage: sp_soundex @instring=string to translate, @soundex OUTPUT=string in which 
to 
return soundex 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example: sp_soundex "Rodgers" 
 
Created: 1998-05-15. Last changed: 1998-05-16. 
 
Notes: Based on the soundex algorithm published by Robert Russell and Margaret 
O'Dell 
in 1918. 
 
Translation to Transact-SQL by Ken Henderson. 
 
*/ 



Guru’s Guide to Transact-SQL 

32 

AS 
IF (@instring='/?') GOTO Help 
 
DECLARE @workstr varchar(10) 
 
SET @instring=UPPER(@instring)  
SET @soundex=RIGHT(@instring,LEN(@instring)-1) -- Put all but the first char in a 
work 
buffer (we always return the first char)  
 
SET @workstr='AEHIOUWY' -- Remove these from the string 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
/* 
 
Translate characters to numbers per the following table: 
 
Char            Number 
B,F,P,V         1 
C,G,J,K,Q,S,X,Z 2 
D,T             3 
L               4 
M,N             5 
R               6 
 
*/ 
 
SET @workstr='BFPV' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'1') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @workstr='CGJKQSXZ' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'2') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @workstr='DT' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'3') 
SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @soundex=REPLACE(@soundex,'L','4') 
 
SET @workstr='MN' 
WHILE (@workstr<><>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'5') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @soundex=REPLACE(@soundex,'R','6') 
 
-- Now replace repeating digits (e.g., '11' or '22') with single digits 
DECLARE @c int 
SET @c=1 



Chapter 2. Transact-SQL Data Type Nuances  

33 

WHILE (@c<10) BEGIN 
   SET @soundex=REPLACE(@soundex,CONVERT(char(2),@c*11),CONVERT(char(1),@c)) -- 
Multiply 
   by 11 to produce repeating digits 
   SET @c=@c+1 
END 
SET @soundex=REPLACE(@soundex,'00','0') -- Get rid of double zeros 
 
SET @soundex=LEFT(@soundex,3)  
WHILE (LEN(@soundex)<3) SET @soundex=@soundex+'0' -- Pad with zero 
 
SET @soundex=LEFT(@instring,1)+@soundex -- Prefix first char and return 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_soundex', @desc='Returns the soundex of a string', 
@parameters='@instring=string to translate, @soundex OUTPUT=string in which to 
return  
 

soundex', 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19980515', @datelastchanged='19980516', 
@version='7', @revision='0',  
@example='sp_soundex "Rodgers"' 
RETURN -1 
 
       
Create this procedure, then test your new procedure using code like the following: 
        
DECLARE @mysx varchar(4) 
EXEC sp_soundex 'Rogers',@mysx OUTPUT 
SELECT @mysx,SOUNDEX('Rogers') 
 
       
Your new procedure and the stock SOUNDEX() function should return the same code. Now let's improve a bit 
on the original procedure by incorporating an optimization to the original algorithm introduced by Russell. 
Rather than merely removing the letters A, E, H, I, O, U, W, and Y, we'll translate them to nines, remove 
repeating digits from the string, then remove the remaining nines from the string. Removing the nines after 
we've removed repeating digits reintroduces the possibility of repeating digits into the string and makes for 
finer granularity. This routine will perform better with a larger number of strings than the original routine. 
Here's the revised routine: 
        
USE master 
go 
IF OBJECT_ID('sp_soundex_russell') IS NOT NULL 
  DROP PROC sp_soundex_russell 
go 
CREATE PROCEDURE sp_soundex_russell @instring varchar(50), @soundex varchar(50) 
=NULL OUTPUT 
 
/* 
 
Object: sp_soundex_russell 
Description: Returns the soundex of a string (Russell optimization)  
 
Usage: sp_soundex_russell @instring=string to translate, @soundex OUTPUT=string 
in which to return soundex 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 



Guru’s Guide to Transact-SQL 

34 

 
Version: 7.0 
 
Example: sp_soundex_russell "Rodgers" 
 
Created: 1998-05-15. Last changed: 1998-05-16. 
 
Notes:  
Based on the soundex algorithm published by Robert Russell and Margaret O'Dell 
in 1918, extended to incorporate Russell's optimizations for finer granularity.  
 
*/ 
AS 
 
IF (@instring='/?') GOTO Help 
DECLARE @workstr varchar(10)  
 
SET @instring=UPPER(@instring) 
 
SET @soundex=RIGHT(@instring,LEN(@instring)-1) -- Put all but the first char in 
a work buffer (we always return the first char) 
 
/* 
 
Translate characters to numbers per the following table: 
 
Char            Number 
B,F,P,V         1 
C,G,J,K,Q,S,X,Z 2 
D,T             3 
L               4 
M,N             5 
R               6 
A,E,H,I,O,U,W,Y 9 
*/ 
 
SET @workstr='BFPV' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'1') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @workstr='CGJKQSXZ' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'2') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @workstr='DT' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'3') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
SET @soundex=replace(@soundex,'L','4') 
 
SET @workstr='MN' 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'5') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 



Chapter 2. Transact-SQL Data Type Nuances  

35 

 
set @soundex=replace(@soundex,'R','6') 
 
SET @workstr='AEHIOUWY' 
WHILE (@workstr<>") BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'9') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
-- Now replace repeating digits (e.g., '11' or '22') with single digits 
DECLARE @c int 
SET @c=1 
WHILE (@c<10) BEGIN 
  -- Multiply by 11 to produce repeating digits 
  SET @soundex=REPLACE(@soundex,CONVERT(char(2),@c*11),CONVERT(char(1),@c)) 
  SET @c=@c+1 
END 
SET @soundex=REPLACE(@soundex,'00','0') -- Get rid of double zeros 
 
SET @soundex=REPLACE(@soundex,'9',") -- Get rid of 9's 
 
SET @soundex=LEFT(@soundex,3)  
WHILE (LEN(@soundex)<3) SET @soundex=@soundex+'0' -- Pad with zero 
 
SET @soundex=LEFT(@instring,1)+@soundex -- Prefix first char and return 
RETURN 0 
 
Help:  
EXEC sp_usage @objectname='sp_soundex_russell', @desc='Returns the soundex of a 
string (Russell optimization)', 
@parameters='@instring=string to translate, @soundex OUTPUT=string in which to 
return soundex', 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19980515', @datelastchanged='19980516', 
@version='7', @revision='0', 
@example='sp_soundex_russell "Rodgers"' 
RETURN -1 
 
       
Like the original routine, this routine has a rather limited set of possible return codes—26 possible initial letters 
followed by three numerals, representing a maximum of 26* 103, or 26,000 possible soundex codes. If we 
change the last three numerals to letters, we increase the number of possible return codes dramatically to 264 
or 456,976. Here's a soundex procedure that takes this approach: 
        
USE master 
GO 
IF OBJECT_ID('sp_soundex_alpha') IS NOT NULL 
  DROP PROC sp_soundex_alpha 
GO 
CREATE PROCEDURE sp_soundex_alpha @instring varchar(50), @soundex 
varchar(50)=NULL 
OUTPUT 
 
/* 
 
Object: sp_soundex_alpha 
Description: Returns the soundex of a string 
Usage: sp_soundex_alpha @instring=string to translate, @soundex OUTPUT=string in 
which to return soundex 
 
Returns: (None) 



Guru’s Guide to Transact-SQL 

36 

 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example: sp_soundex_alpha "Rodgers" 
 
Created: 1998-05-15. Last changed: 1998-05-16. 
 
Notes: Original source unknown. 
 
Translation to Transact-SQL by Ken Henderson. 
 
*/ 
 
AS 
IF (@instring='/?') GOTO Help 
DECLARE @workstr varchar(10)  
 
SET @instring=UPPER(@instring)  
SET @soundex=RIGHT(@instring,LEN(@instring)-1) -- Put all but the first char in 
a work buffer (we always return the first char)  
 
SET @workstr='EIOUY' -- Replace vowels with A 
WHILE (@workstr<>'') BEGIN 
   SET @soundex=REPLACE(@soundex,LEFT(@workstr,1),'A') 
   SET @workstr=RIGHT(@workstr,LEN(@workstr)-1) 
END 
 
/* 
 
Translate word prefixes using this table 
 
From To 
MAC  MCC 
KN   NN 
K    C 
PF   FF 
SCH  SSS 
PH   FF 
 
*/ 
 
-- Re-affix first char 
SET @soundex=LEFT(@instring,1)+@soundex 
 
IF (LEFT(@soundex,3)='MAC') SET @soundex='MCC'+RIGHT(@soundex,LEN(@soundex)-3)  
IF (LEFT(@soundex,2)='KN') SET @soundex='NN'+RIGHT(@soundex,LEN(@soundex)-2) 
IF (LEFT(@soundex,1)='K') SET @soundex='C'+RIGHT(@soundex,LEN(@soundex)-1) 
IF (LEFT(@soundex,2)='PF') SET @soundex='FF'+RIGHT(@soundex,LEN(@soundex)-2) 
IF (LEFT(@soundex,3)='SCH') SET @soundex='SSS'+RIGHT(@soundex,LEN(@soundex)-3) 
IF (LEFT(@soundex,2)='PH') SET @soundex='FF'+RIGHT(@soundex,LEN(@soundex)-2) 
 
--Remove first char 
SET @instring=@soundex 
SET @soundex=RIGHT(@soundex,LEN(@soundex)-1)  
 
/* 
 
Translate phonetic prefixes (those following the first char) using this table: 
 



Chapter 2. Transact-SQL Data Type Nuances  

37 

From To 
DG   GG 
CAAN TAAN 
D    T 
NST  NSS 
AV   AF 
Q    G 
Z    S 
M    N 
KN   NN 
K    C 
H    A (unless part of AHA) 
AW   A 
PH   FF 
SCH  SSS 
 
*/ 
 
SET @soundex=REPLACE(@soundex,'DG','GG')  
SET @soundex=REPLACE(@soundex,'CAAN','TAAN') 
SET @soundex=REPLACE(@soundex,'D','T') 
SET @soundex=REPLACE(@soundex,'NST','NSS') 
SET @soundex=REPLACE(@soundex,'AV','AF') 
SET @soundex=REPLACE(@soundex,'Q','G') 
SET @soundex=REPLACE(@soundex,'Z','S') 
SET @soundex=REPLACE(@soundex,'M','N') 
SET @soundex=REPLACE(@soundex,'KN','NN') 
SET @soundex=REPLACE(@soundex,'K','C')  
 
-- Translate H to A unless it's part of "AHA" 
SET @soundex=REPLACE(@soundex,'AHA','~~~') 
SET @soundex=REPLACE(@soundex,'H','A') 
SET @soundex=REPLACE(@soundex,'~~~','AHA')  
 
SET @soundex=REPLACE(@soundex,'AW','A')  
SET @soundex=REPLACE(@soundex,'PH','FF') 
SET @soundex=REPLACE(@soundex,'SCH','SSS')  
 
-- Truncate ending A or S 
IF (RIGHT(@soundex,1)='A' or RIGHT(@soundex,1)='S') SET 
@soundex=LEFT(@soundex,LEN(@soundex)-1)  
 
-- Translate ending "NT" to "TT" 
IF (RIGHT(@soundex,2)='NT') SET @soundex=LEFT(@soundex,LEN(@soundex)-2)+'TT' 
 
-- Remove all As 
SET @soundex=REPLACE(@soundex,'A','')  
 
-- Re-affix first char 
SET @soundex=LEFT(@instring,1)+@soundex 
 
-- Remove repeating characters 
DECLARE @c int 
SET @c=65 
WHILE (@c<91) BEGIN 
  WHILE (CHARINDEX(char(@c)+CHAR(@c),@soundex)<>0) 
    SET @soundex=REPLACE(@soundex,CHAR(@c)+CHAR(@c),CHAR(@c)) 
  SET @c=@c+1 
end 
 
SET @soundex=LEFT(@soundex,4)  



Guru’s Guide to Transact-SQL 

38 

IF (LEN(@soundex)<4) SET @soundex=@soundex+SPACE(4-LEN(@soundex)) -- Pad with 
spaces 
 
RETURN 0 
 
Help:  
EXEC sp_usage @objectname='sp_soundex_alpha', @desc='Returns the soundex of a 
string', 
@parameters='@instring=string to translate, @soundex OUTPUT=string in which to 
return soundex', 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19980515', @datelastchanged='19980516', 
@version='7', @revision='0', 
@example='sp_soundex_alpha "Rodgers"' 
RETURN -1 
 
       
To see the advantages of this procedure over the more primitive implementation, try the following query: 
        
DECLARE @mysx1 varchar(4), @mysx2 varchar(4)  
EXEC sp_soundex_alpha 'Schuller',@mysx1 OUTPUT 
EXEC sp_soundex_alpha 'Shuller',@mysx2 OUTPUT 
SELECT @mysx1,@mysx2,SOUNDEX('Schuller'),SOUNDEX('Shuller') 
 
       
Thanks to its superior handling of common phonetic equivalents such as "SCH" and "SH," sp_soundex_alpha 
correctly returns the same soundex code for Schuller and Shuller, while SOUNDEX() returns different codes 
for each spelling. Beyond the obvious use of identifying alternate spellings for the same name, the real reason 
we need a more complex routine like sp_soundex_alpha is to render more codes, not less of them. Consider 
the following test script: 
        
DECLARE @mysx1 varchar(4), @mysx2 varchar(4)  
EXEC sp_soundex_alpha 'Poknime', @mysx1 OUTPUT 
EXEC sp_soundex_alpha 'Poknimeister',@mysx2 OUTPUT 
SELECT @mysx1,@mysx2,soundex('Poknime'),soundex('Poknimeister') 
 
       
In this script, sp_soundex_alpha correctly distinguishes between the two names, while SOUNDEX() isn't able 
to. Why? Because sp_soundex_alpha reduces the combination "KN" to "N," thereby allowing it to consider the 
"S" at the end of "Poknimeister." SOUNDEX(), by contrast, isn't quite so capable. Since it leaves "KN" 
unaltered, the string it ends up translating for both names is PKNM, thus returning the same soundex code for 
each of them. 

DIFFERENCE() 

A companion to SOUNDEX(), DIFFERENCE() returns an integer indicating the difference between the 
soundex values of two character strings. The value returned ranges from 0 to 4, with 4 indicating that the 
strings are identical. So, using the earlier example: 
       
SELECT DIFFERENCE('Terry', 'Terri') 
 
      
returns 4, while 
       
SELECT DIFFERENCE('Rodgers', 'Rogers') 
 
      
returns 3. 
Constructing a stored procedure to return the difference between two soundex codes is straightforward. 
Here's an example: 



Chapter 2. Transact-SQL Data Type Nuances  

39 

       
USE master 
      
       
GO 
IF OBJECT_ID('sp_soundex_difference') IS NOT NULL 
  DROP PROC sp_soundex_difference 
GO 
CREATE PROCEDURE sp_soundex_difference @string1 varchar(50), @string2 
varchar(50)=NULL, @difference int=NULL OUTPUT 
 
/* 
 
Object: sp_soundex_difference 
 
Description: Returns the difference between the soundex codes of two strings 
 
Usage: sp_soundex_difference @string1=first string to translate, @string2=second 
string to translate, @difference OUTPUT=difference between the two as an integer 
 
Returns: An integer representing the degree of similarity -- 4=identical, 
0=completely different 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example: sp_soundex_difference "Rodgers", "Rogers" 
 
Created: 1998-05-15. Last changed: 1998-05-16. 
 
*/ 
AS 
IF (@string1='/?') GOTO Help 
 
DECLARE @sx1 varchar(5), @sx2 varchar(5) 
EXEC sp_soundex_alpha @string1, @sx1 OUTPUT 
EXEC sp_soundex_alpha @string2, @sx2 OUTPUT 
RETURN CASE 
  WHEN @sx1=@sx2 THEN 4 
  WHEN LEFT(@sx1,3)=LEFT(@sx2,3) THEN 3 
  WHEN LEFT(@sx1,2)=LEFT(@sx2,2) THEN 2 
  WHEN LEFT(@sx1,1)=LEFT(@sx2,1) THEN 1 
  ELSE 0 
  END 
 
Help: 
EXEC sp_usage @objectname='sp_soundex_difference', @desc='Returns the difference 
between the soundex codes of two strings', 
@parameters='@string1=first string to translate, @string2=second string to 
translate,  
 

@difference OUTPUT=difference between the two as an integer', 
@returns='An integer representing the degree of similarity -- 4=identical, 
0=completely  
 

different', 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19980515', @datelastchanged='19980516', 
@version='7', @revision='0', 
@example='sp_soundex_difference "Rodgers", "Rogers"' 



Guru’s Guide to Transact-SQL 

40 

RETURN -1 
      

Xp_sprintf 

Similar to a regular stored procedure, an extended procedure is accessed as though it was a compiled SQL 
program. In actuality, extended procedures aren't written in Transact-SQL— they reside in DLLs (Dynamic 
Link Libraries) external to the server. They make use of the SQL Server ODS (Open Data Services) API using 
a language tool capable of producing DLLs such as C11 or Delphi. 
As you might have guessed, the xp_sprintf extended stored procedure works similarly to the C sprintf() 
function. You can pass it a variable, a format string, and a list of arguments in order to construct a string 
variable. Currently, only string arguments are supported, so you can't pass integers or other data types 
directly— but you can use them indirectly by converting them to strings first. Here's an example illustrating the 
use of xp_sprintf: 
      
DECLARE @Line varchar(80), @Title varchar(30), @Artist varchar(30)  
SET @Title='Butterflies and Zebras' 
SET @Artist='Jimi Hendrix' 
EXEC xp_sprintf @Line output,'%s sang %s',@Artist,@Title 
SELECT @Line 
     
Here's an example showing how to cast other types of variables and fields to strings in order to use them as 
arguments to xp_sprintf: 
      
DECLARE @TotalMsg varchar(80), @Items varchar(20)  
SELECT @Items=CAST(count(*) as varchar(20)) FROM ITEMS 
EXEC master..xp_sprintf @TotalMsg output,'There were %s items on file',@Items 
PRINT @TotalMsg 
     

Xp_sscanf 

Xp_sscanf is the inverse of xp_sprintf. Rather than putting variables into a string, xp_sscanf extracts values 
from a string and places them into user variables, similar to the C sscanf() function. Here's an example: 
      
DECLARE @s1 varchar(20),@s2 varchar(20),@s3 varchar(20),@s4 varchar(20),  
  @s5 varchar(20),@s6 varchar(20),@s7 varchar(20),@s8 varchar(20), 
  @s9 varchar(20),@s10 varchar(20),@s11 varchar(20),@s12 varchar(20) 
EXEC master..xp_sscanf 
'He Meditated for a Moment, Then Kneeling Over and Across the Ogre , King Arthur 
Looked Up and Proclaimed His Wish : Now, Miserable Beasts That Hack The Secret 
of the Ancient Code And Run the Gauntlet, Today I Bid You Farewell', 'He %stated 
for a Moment, Then Kneeling %cver and A%cross the Og%s , King Arthur Looked %cp 
and Proclaimed His %s : Now, %s Beasts That %s The Secret %s the %cncient %s And 
%cun the Gauntlet, Today I Bid Your Farewell', @s1 OUT, @s2 OUT, 
@s3 OUT, @s4 OUT, @s5 OUT, @s6 OUT, @s7 OUT, @s8 OUT, @s9 OUT, @s10 OUT, @s11 
OUT, @s12 OUT 
 
SELECT @s1+@s2+@s3+@s4+'? '+@s5+' '+@s6+', '+@s5+' '+@s7+' '+@s8+' '+@s9+ 
' '+@s10+' '+@s11+@s12 
     
Using the %s and %c sscanf() format specifiers laid out in the second string, this example parses the first 
string argument for the specified character strings arguments. The %s specifier extracts a string, while %c 
maps to a single character. As each string or character is extracted, it's placed in the output variable 
corresponding to it sequentially. A maximum of 50output variables may be passed into xp_sscanf. You can 
run the query above (like the other queries in this chapter, it's also on the accompanying CD) to see how 
xp_sscanf works. 
If you've used C's sscanf() function before, you'll be disappointed by the lack of functionality in the Transact-
SQL version. Many of the format parameters normally supported by sscanf( )— including width specifiers— 



Chapter 2. Transact-SQL Data Type Nuances  

41 

aren't supported, nor are data types other than strings. Nevertheless, for certain types of parsing, xp_sscanf 
can be very handy. 

Masks 

Using the PATINDEX() function, you can search string fields and variables using wildcards. Here's an 
example: 
      
DECLARE @Song varchar(80)  
SET @Song='Being For The Benefit Of Mr.Kite!' 
SELECT PATINDEX('%Kit%',@Song) 
     
As used below, PATINDEX() works very similarly to the LIKE predicate of the WHERE clause. The primary 
difference is that PATINDEX() is more than a simple predicate— it returns the offset of the located pattern as 
well— LIKE doesn't. To see how similar PATINDEX() and LIKE are, check out these examples: 
      
SELECT * FROM authors WHERE PATINDEX('Green%',au_lname)<>0 
     
could be rewritten as 
      
SELECT * FROM authors WHERE au_lname LIKE 'Green%' 
     
Similarly, 
      
SELECT title FROM titles WHERE PATINDEX('%database%',notes)<>0 
     
can be reworked to use LIKE instead: 
      
SELECT title FROM titles WHERE notes LIKE '%database%' 
     
PATINDEX() really comes in handy when you need to filter rows not only by the presence of a mask but also 
by its position. Here's an example: 
      
SET NOCOUNT ON 
CREATE TABLE #testblob (c1 text DEFAULT ' ') 
INSERT #testblob VALUES ('Golf is a good walk spoiled') 
INSERT #testblob VALUES ('Now is the time for all good men') 
INSERT #testblob VALUES ('Good Golly, Miss Molly!')  
 
SELECT * 
FROM #testblob 
WHERE c1 LIKE '%good%' 
 
SELECT * 
FROM #testblob 
WHERE PATINDEX('%good%',c1)>15 
GO 
DROP TABLE #testblob 
 
c1 
-------------------------------------------------------------------------------- 
-Golf is a good walk spoiled 
Now is the time for all good men 
Good Golly, Miss Molly! 
  
c1 
-------------------------------------------------------------------------------- 
-Now is the time for all good men 
     



Guru’s Guide to Transact-SQL 

42 

Here, the first query returns all the rows in the table because LIKE can't distinguish one occurrence of the 
pattern from another (of course, you could work around this by enclosing the column reference within 
SUBSTRING() to prevent hits within its first fifteen characters). PATINDEX(), by contrast, allows us to filter the 
result set based on the position of the pattern, not just its presence. 

Executing Strings 

The Transact-SQL EXEC() function and the sp_executesql stored procedure allow you to execute a string 
variable as a SQL command. This powerful ability allows you to build and exe- cute a query based on runtime 
conditions within a stored procedure or Transact-SQL batch. Here's an example of a cross-tab query that's 
constructed at runtime based on the rows in the pubs..authors table: 
      
USE pubs 
GO 
IF OBJECT_ID('author_crosstab') IS NOT NULL 
  DROP PROC author_crosstab 
GO 
CREATE PROCEDURE author_crosstab 
AS 
SET NOCOUNT ON 
DECLARE @execsql nvarchar(4000), @AuthorName varchar(80)  
 
-- Initialize the create script string 
SET @execsql='CREATE TABLE FIautxtab (Title varchar(80)' 
SELECT @execsql=@execsql+',['+au_fname+' '+au_lname+'] char(1) NULL DEFAULT ""' 
FROM authors 
EXEC(@execsql+')') 
DECLARE InsertScript CURSOR FOR 
SELECT execsql='INSERT ##autxtab (Title,'+'['+a.au_fname+' '+a.au_lname+']) 
VALUES  
 

("'+t.title+'", "X")' 
FROM titles t JOIN titleauthor ta ON (t.title_id=ta.title_id) 
JOIN authors a ON (ta.au_id=a.au_id) 
ORDER BY t.title 
 
OPEN InsertScript 
FETCH InsertScript INTO @execsql 
WHILE (@@FETCH_STATUS=0) BEGIN 
  EXEC sp_executesql @execsql 
  FETCH InsertScript INTO @execsql 
END 
CLOSE InsertScript 
DEALLOCATE InsertScript 
 
SELECT * FROM ##autxtab 
DROP TABLE ##autxtab 
 
GO 
 
EXEC author_crosstab 
GO 
     
(Result set abridged) 
      
Title                                                               Abraham 
Bennet  
 

Reginald Blotchet-H 



Chapter 2. Transact-SQL Data Type Nuances  

43 

---------------------------------------------------------------     -------------
-  
 

------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
Fifty Years in Buckingham Palace Kitchens                                          
X 
Is Anger the Enemy? 
Is Anger the Enemy? 
Life Without Fear 
Net Etiquette 
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 
Prolonged Data Deprivation: Four Case Studies 
Secrets of Silicon Valley 
Secrets of Silicon Valley 
Silicon Valley Gastronomic Treats 
Straight Talk About Computers 
Sushi, Anyone? 
Sushi, Anyone? 
Sushi, Anyone? 
The Busy Executive's Database Guide 
The Busy Executive's Database Guide                                 X 
The Gourmet Microwave 
The Gourmet Microwave 
You Can Combat Computer Stress! 
     
The cross-tab that this query builds consists of one column for the book title and one for each author. An "X" 
denotes each title-author intersection. Since the author list could change from time to time, there's no way to 
know in advance what columns the table will have. That's why we have to use dynamic SQL to buildit. 
This code illustrates several interesting techniques. First, note the shortcut the code uses to build the first 
rendition of the @execsql string variable: 
      
SET @execsql='CREATE TABLE ##autxtab (Title varchar(80)' 
SELECT @execsql=@execsql+',['+au_fname+' '+au_lname+'] char(1) NULL DEFAULT ""' 
FROM authors 
     
The cross-tab that's returned by the query is first constructed in a temporary table. @execsql is used to build 
and populate that table. The code builds @execsql by initializing it to a stub CREATE TABLE command, then 
appending a new column definition to it for each row in authors. Building @execsql in this manner is quick and 
avoids the use of a cursor— a mechanism for processing tables a row at a time. Compared with set-oriented 
commands, cursors are relatively inefficient, and you should avoid them when possible (see Chapter13, 
"Cursors," for more information). When the SELECT completes its iteration through the authors table, 
@execsql looks like this: 
      
CREATE TABLE ##autxtab (Title varchar(80),  
[Abraham Bennet] char(1) NULL DEFAULT "", 
[Reginald Blotchet-Halls] char(1) NULL DEFAULT "", 
[Cheryl Carson] char(1) NULL DEFAULT "", 
[Michel DeFrance] char(1) NULL DEFAULT "", 
...  
[Akiko Yokomoto] char(1) NULL DEFAULT "" 
     
All that's missing is a closing parenthesis, which is supplied when EXEC() is called to create the table: 
      
EXEC(@execsql+')') 
     



Guru’s Guide to Transact-SQL 

44 

Either EXEC() or sp_executesql could have been called here to execute @execsql. Generally speaking, 
sp_executesql is faster and more feature laden than EXEC(). When you need to execute a dynamically 
generated SQL string multiple times in succession (with only query parameters changing between executions), 
sp_executesql should be your tool of choice. This is because it easily facilitates the reuse of the execution 
plan 
generated by the query optimizer the first time the query executes. It's more efficient than EXEC() because 
the query string is built only once, and each parameter is specified in its native data format, not first converted 
to a string, as EXEC() requires. 
Sp_executesql allows you to embed parameters within its query string using standard variable names as 
placeholders, likeso: 
      
sp_executesql N'SELECT * FROM authors WHERE au_lname LIKE @au_lname',  
N'@au_lname varchar(40)',@au_lname='Green%' 
     
Here, @au_lname is a placeholder. Though the query may be executed several times in succession, the only 
thing that varies between executions is the value of @au_lname. This makes it highly likely that the query 
optimizer will be able to avoid recreating the execution plan with each queryrun. 
Note the use of the "N" prefix to define the literal strings passed to the procedure as Unicode strings. Unicode 
is covered in more detail later in this chapter, but it's important to note that sp_executesql requires Unicode 
strings to be passed into it. That's why @execsql was defined using nvarchar.  
In this particular case, EXEC() is a better choice than sp_executesql for two reasons: It's not called within a 
loop or numerous times in succession, and it allows simple string concatenation within its parameter list; 
sp_executesql, like all stored procedures, doesn't. 
The second half of the procedure illustrates a more complex use of dynamic SQL. In order tofi markfi eachfi 
title-authorfi intersectionfi withfi anfi "X,"fi thefi queryfi mustfi dynamicallyfi buildfi anfi INSERT statement for 
each title-author pair. The title becomes an inserted value, and the author becomes a column name, with "X" 
as its value. 
Unlike the earlier example, sp_executesql is used to execute the dynamically generated INSERT statement 
because it's called several times in succession and, thanks to the concatenation within the cursor definition, 
doesn't need to concatenate any of its parameters. 
Since sp_executesql allows parameters to be embedded in its query string, you may be wondering why we 
don't use this facility to pass it the columns from authors. After all, they would seem to be fine examples of 
query parameters that vary between executions— why perform all the concatenation in the cursor? The 
reason for this is that sp_executesql limits the types of replaceable parameters it supports to true query 
parameters— you can't replace portions of the query string indiscriminately. You can position replaceable 
parameters anywhere a regular variable could be placed if the query were run normally (outside 
sp_executesql), but you can't replace keywords, object names, or column names with placeholders—
sp_executesql won't make the substitution when it executes the query. 
One final point worth mentioning is the reason for the use of the global temporary table. A global temporary 
table is a transient table that's prefixed with "##" instead of "#" and is visible to all connections, not just the 
one that created it. As with local temporary tables, it is dropped when no longer in use (when the last 
connection referencing itends). 
It's necessary here because we use dynamic Transact-SQL to create the cross-tab table, and local temporary 
tables created dynamically are visible only to the EXEC() or sp_executesql that created them. In fact, they're 
deleted as soon as the dynamic SQL that created them ends. So, we use a global temporary table instead, 
and it remains visible until explicitly dropped by the query or the connection closes. 
The biggest disadvantage to using global temporary tables over local ones is the possibility of name collisions. 
Unlike their local brethren, global temporary table names aren't unique across connections— that's what 
makes them globally accessible. Regardless of how many connections reference it, ##autxtab refers to 
exactly the same object in tempdb. If a connection attempts to create a global temporary table that another 
connection has already built, the create willfail. 
We accepted this limitation in order to be able to create the table dynamically, but there are a couple of other 
options. First, the body of the procedure could have been written and executed as one big dynamic query, 
making local tables created early in the query visible to the rest of it. Second, we could create the table itself 
in the main query, then use dynamic T-SQL to execute ALTER TABLE statements to add the columns for 
each author in piecemeal fashion. Here's a variation on the earlier procedure that does just that: 
      
CREATE PROCEDURE author_crosstab2 
AS 
SET NOCOUNT ON 



Chapter 2. Transact-SQL Data Type Nuances  

45 

DECLARE @execsql nvarchar(4000), @AuthorName varchar(80)  
 
CREATE TABLE #autxtab (Title varchar(80)) 
 
DECLARE AlterScript CURSOR FOR 
SELECT 'ALTER TABLE #autxtab ADD ['+au_fname+' '+au_lname+'] char(1) NULL DEFAULT 
""' 
FROM authors 
FOR READ ONLY 
 
OPEN AlterScript 
FETCH AlterScript INTO @execsql 
WHILE (@@FETCH_STATUS=0) BEGIN 
  EXEC sp_executesql @execsql 
  FETCH AlterScript INTO @execsql 
END 
CLOSE AlterScript 
DEALLOCATE AlterScript 
 
DECLARE InsertScript CURSOR FOR 
SELECT execsql='INSERT #autxtab (Title,'+'['+a.au_fname+' '+a.au_lname+']) VALUES  
 

("'+t.title+'", "X")' 
FROM titles t JOIN titleauthor ta ON (t.title_id=ta.title_id) 
JOIN authors a ON (ta.au_id=a.au_id) 
ORDER BY t.title 
 
OPEN InsertScript 
FETCH InsertScript INTO @execsql 
WHILE (@@FETCH_STATUS=0) BEGIN 
  EXEC sp_executesql @execsql 
  FETCH InsertScript INTO @execsql 
END 
CLOSE InsertScript 
DEALLOCATE InsertScript 
 
SELECT * FROM #autxtab 
DROP TABLE #autxtab 
 
     
Note the use of the AlterScript cursor to supply sp_executesql with ALTER TABLE queries. Since the table 
itself is created in the main query and since the temporary objects created in a query are visible to its dynamic 
queries, we're able to get by with a local temporary table and eliminate the possibility of name collisions. 
Though this solution requires more code than the initial one, it's also much safer. 
Note that this object visibility doesn't carry over to local variables. Variables defined by the calling routine are 
not visible to EXEC() or sp_executesql. Also, variables defined within an EXEC() or call to sp_executesql go 
out of scope when they return to the caller. Basically, the only way to pass variables between them is via 
sp_executesql's parameter list or via concatenation within the EXECcall. 

Unicode 

In the past, character string data was limited to characters from sets of 256 characters. Each character was 
composed of a single byte and a byte can store just 256 (28) different characters. Prior to the adoption of the 
Unicode standard, all character sets were composed of single-byte characters. 
Unicode expands the number of possible characters to 216, or 65,536, by using two bytes instead of one. This 
increased capacity facilitates the inclusion of the alphabets and symbols found in most of the world's 
languages, including all of those from the single-byte character sets used previously. 
Transact-SQL's regular string types (char, varchar, and text) are constructed of characters from a particular 
single-byte character set. This character set is selected during installation and can't be changed afterward 
without recreating databases and reloading data. Unicode strings, by contrast, can store any character 



Guru’s Guide to Transact-SQL 

46 

defined by the Unicode standard. Since Unicode strings take twice as much storage space as regular strings, 
they can be only half as long (4000characters). 
SQL Server defines special Unicode-specific data types for storing Unicode strings: nchar, nvarchar, and ntext. 
You can use these data types for columns that need to store characters from multiple character sets. As with 
regular character string fields, you should use nvarchar when a column's data varies 
in length from row to row and nchar when it doesn't. Use ntext when you need to store more than 
4000characters. 
SQLfi Server'sfi Unicodefi stringfi typesfi arefi basedfi onfi SQL-92'sfi Nationalfi Characterfi datafi types.fi Asfi 
with SQL-92, Transact-SQL uses the prefix character N to distinguish Unicode data types and values, like so: 
      
SELECT DATALENGTH(N'The Firm')  
 
----------- 
16 
 
     
This query returns "16" because the uppercase N makes 'The Firm' a Unicode string. 

Numerics 

Transact-SQL supports four general classes of numeric data types: float and real, numeric and decimal, 
money and smallmoney, and the integer types (int, smallint, and tinyint). Float and real are floating point 
types— as such, they're approximate, not exact types— and some values within their ranges (-1.79E + 1 308 
to 1.79E + 1 308 and -3.40E + 1 38 to 3.40E + 1 38, respectively) can't be represented precisely. Numeric and 
decimal are fixed-point numeric types with a user-specified, fixed precision and scale and a range of 21 038 + 
21 to 11 038 + 21. Money and smallmoney represent monetary quantities and can range from -263 to +263 -1 
and 231 to +231 -1 with a scale of four (-214,748.3648 to +1214,748.3647), respectively. 
Integer types represent whole numbers. The int data type requires four bytes of storage and can represent 
integers between -231 and +2231 -1. Smallint requires two bytes and can represent integers between -215 and 
+215 -1. Tinyint uses just one byte and stores integers between 0 and255. 

Floating Point Fun 

The first thing you discover when doing any real floating point work with SQL Server is that Transact-SQL 
does not correct for floating point rounding errors. This allows the same numeric problem, stated in different 
ways, to return different results—heresy in the world of mathematics. Languages that don't properly handle 
floating point rounding errors are particularly susceptible to errors due to differences in the ordering of terms. 
Here's an example that generates a random list of floating point numbers, then arranges them in various 
orders and totals them: 
      
SET NOCOUNT ON 
CREATE TABLE #rand 
(k1 int identity,  
c1 float DEFAULT ( 
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END)*(CONVERT(int, 
RAND() * 100000) % 10000)*RAND() 
) 
)  
 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 



Chapter 2. Transact-SQL Data Type Nuances  

47 

 
SELECT * FROM #rand 
 
SELECT SUM(c1) FROM #rand 
 
SELECT * INTO #rand2 FROM #rand ORDER BY c1 
 
SELECT SUM(c1) FROM #rand2 
 
SELECT * INTO #rand3 FROM #rand2 ORDER BY ABS(c1) 
 
SELECT SUM(c1) FROM #rand3 
 
GO 
DROP TABLE #rand, #rand2, #rand3 
 
k1          c1 
----------- --------------------------------------- 
1           2337.1234806786265 
2           6133.8947556398543 
3           4661.8483968063565 
4           -487.1674384075381 
5           -5402.6488177346673 
6           8548.8042443202648 
7           1151.1290584163344 
8           1983.5178142724058 
9           -48.855436548423761 
10          865.11748910633833 
--------------------------------------------------- 
19742.763546549555 
 
--------------------------------------------------- 
19742.763546549551 
 
--------------------------------------------------- 
19742.763546549551 
 
     
Since the numbers being totaled are the same in all three cases, the results should be the same, but they 
aren't. Increasing SQL Server's floating point precision (via the /p server command line option) helps but 
doesn't solve the problem — floating point rounding errors aren't handled properly, regardless of the precision 
of the float. This causes grave problems for applications that depend on floating point accuracy and is the 
main reason you'll often see the complex floating point computations in SQL Server applications residing in 
3GL routines. 
The one foolproof answer here is to use fixed-point rather than floating point types. The decimal and numeric 
data types do not suffer from floating point rounding errors because they aren't floating point types. As such, 
they also can't use the processor's FPU, so computations will probably be slower than with real floating point 
types. This slowness may be compen- sated for in other areas, so this is not as bad as it may seem. The 
moral of the story is this: SQL Server doesn't correct floating point errors, so be careful if you decide to use 
the float or real data types. 
Here's the query rewritten to use a fixed-point data type with a precision of 10 and a scaleof4: 
      
SET NOCOUNT ON 
CREATE TABLE #rand 
(k1 int identity, 
c1 decimal(10,4) DEFAULT ( 
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END)*(CONVERT(int, 
RAND() * 100000) % 10000)*RAND() 
) 
)  
 



Guru’s Guide to Transact-SQL 

48 

INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
 
SELECT * FROM #rand 
 
SELECT SUM(c1) FROM #rand 
 
SELECT * INTO #rand2 FROM #rand ORDER BY c1 
 
SELECT SUM(c1) FROM #rand2 
 
SELECT * INTO #rand3 FROM #rand2 ORDER BY ABS(c1) 
 
SELECT SUM(c1) FROM #rand3 
 
GO 
DROP TABLE #rand, #rand2, #rand3 
 
k1          c1 
----------- --------------------------------------- 
1           2450.3156 
2           2248.7416 
3           2014.1533 
4           823.7021 
5           -501.3661 
6           -261.9785 
7           1389.4180 
8           -1608.7563 
9           -850.2965 
10          -3709.9473 
--------------------------------------------------- 
1993.9859 
 
--------------------------------------------------- 
1993.9859 
 
--------------------------------------------------- 
1993.9859 
     

Division by Zero 

Prior to release 7.0 of SQL Server, dividing a numeric quantity by zero returned a NULL result. By default, 
that's no longer the case. Dividing a number by zero now results in a divide by zero exception: 
      
SELECT 1/0 
 
Server: Msg 8134, Level 16, State 1, Line 1 
Divide by zero error encountered. 
     



Chapter 2. Transact-SQL Data Type Nuances  

49 

You can disable this behavior via the ANSI_WARNINGS and ARITHIGNORE session settings. By default, 
ANSI warnings are enabled when you connect to the server using ODBC or OLEDB, and ARITHIGNORE is 
disabled. Here's the query modified to return NULL when a divide by zero occurs: 
      
SET ANSI_WARNINGS OFF 
SET ARITHIGNORE ON 
 
SELECT 1/0 
 
--------------------------------------------------- 
NULL 
     
(If you're executing this query from Query Analyzer, you'll need to disable ANSI warnings in the Current 
Connection Options dialog in order for this towork.) 

Funny Money 

There's an inconsistency between the monetary types—money and smallmoney—and the other numeric data 
types. All numerics except for money and smallmoney implicitly convert from character strings during 
INSERTs and UPDATEs. Money and smallmoney, for some reason, have problems with this. For example, 
the following query generates an error message: 
      
CREATE TABLE #test (c1 money)  
 
-- Don't do this -- bad SQL 
INSERT #test VALUES('1232')  
 
SELECT * 
FROM #test 
GO 
DROP TABLE #test 
     
You can change c1's data type to any other numeric type—from tinyint to float—and the query will execute as 
you expect. The monetary types, for some reason, are more finicky. They require an explicit cast, likeso: 
      
CREATE TABLE #test (c1 money)  
 
INSERT #test SELECT CAST('1232' AS money) 
 
SELECT * 
FROM #test 
GO 
DROP TABLE #test 
 
c1 
--------------------- 
1232.0000 
     

Formatting Numeric Data 

In addition to using CAST() and CONVERT() to format numeric data types as strings, you can use the STR() 
function. STR() is better than the generic CAST() and CONVERT() because it provides for right justification 
and allows the number of decimal places to be specified. Here are some examples: 
      
SELECT STR(123,10) AS Str,  
   CAST(123 AS char(10)) AS Cast 
Str Cast 
--- ----------------- 



Guru’s Guide to Transact-SQL 

50 

123 123 
     
and 
      
SELECT STR(PI(),7,4) AS Str,  
     CAST(PI() AS char(7)) AS Cast 
Str    Cast 
------ -------------- 
3.1416 3.14159 

BLOBs 

SQL Server provides support for BLOB (binary large object) fields via its image and text (and ntext) data types. 
These data types permit the storage and retrieval of fields up to 2GB in size. With the advent of 8000-byte 
character strings, much of the need for these has gone away, but with more and more nontraditional data 
types being stored in SQL Server databases everyday, BLOB fields are definitely here to stay. 

Caveats 

As implemented by SQL Server, BLOB fields are somewhat ponderous, and you should think twice before 
including one in a table definition. BLOB fields are stored in a separate page chain from the row in which they 
reside. All that's stored in the BLOB column itself is a sixteen-byte pointer to the first page of the column's 
page chain. BLOBs aren't stored like other data types, and you can't treat them as though they were. You 
can't, for example, declare text or image local variables. Attempting to do so generates a syntax error. You 
can pass a text or image value as a parameter to a stored procedure, which you can then use in a DML 
statement, but you can't reassign the variable or do much else with it. Here's a procedure that illustrates: 
      
CREATE PROCEDURE inserttext @instext text 
AS 
SET NOCOUNT ON 
 
SELECT @instext AS 'Inserting' 
 
CREATE TABLE #testnotes (k1 int identity, notes text) 
 
INSERT #testnotes (notes) VALUES (@instext) 
 
SELECT DATALENGTH(notes), * 
FROM #testnotes 
 
DROP TABLE #testnotes 
 
GO 
 
EXEC inserttext 'TEST' 
 
Inserting 
--------------------------------------------------- 
TEST 
           k1         notes 
---------- ---------- ---------------------------------------------------------- 
4          1          TEST 
 
     
Here, @instext is a text parameter that the stored procedure inserts into the text column notes. Since you 
can't define local text variables, @instext can't be assigned to another text variable (though it can be assigned 
to a regular char or varchar variable) and can't have a different value assigned to it. For the most part, it's 
limited to being used in place of a text value in a DML (Data Management Language) command. 



Chapter 2. Transact-SQL Data Type Nuances  

51 

You also can't refer to BLOB columns in the WHERE clause using the equal sign—the LIKE predicate, 
PATINDEX(), or DATALENGTH() is required instead. Here's an example: 
      
CREATE TABLE #testnotes (k1 int identity, notes text)  
 
INSERT #testnotes (notes) VALUES ('test') 
 
GO 
-- Don't run this -- doesn't work 
SELECT * 
FROM #testnotes 
WHERE notes='test' 
GO 
DROP TABLE #testnotes 
GO 
     
Even though the INSERT statement has just supplied the 'test' value, the SELECT can't query for it using the 
traditional means of doing so. You have to do something like this instead: 
      
SELECT * 
FROM #testnotes 
WHERE notes LIKE 'test' 
     
The normal rules governing data types and column access simply don't apply with BLOB columns, and you 
should bear that in mind if you elect to make use ofthem. 

Retrieving BLOB Data 

Unlike smaller BLOBs, it's not practical to return large BLOB data via a simple SELECT statement.fi Though 
you can use SET TEXTSIZE to control the amount of text returned by a SELECT, your front end may not be 
able to deal with large amounts of BLOB data properly. Moreover, since you can't declare local text or image 
variables, you can't use SELECT to assign a large BLOB to a variable for further parsing. Instead, you should 
use the READTEXT command to access it in pieces. READTEXT works with image as well as text columns. It 
takes four parameters: the column to read, a valid pointer to its underlying text, the offset at which to begin 
reading, and the size of the chunk to read. Use the TEXTPTR() function to retrieve a pointer to a BLOB 
column's underlying data. This pointer is a binary(16) value that references the first page of the BLOB data. 
You can check its validity via the TEXTVALID() function. Here's an example illustrating the use of TEXTPTR() 
and READTEXT: 
      
DECLARE @textptr binary(16)  
 
BEGIN TRAN 
SELECT @textptr=TEXTPTR(pr_info) 
FROM pub_info (HOLDLOCK) 
WHERE pub_id='1389' 
 
READTEXT pub_info.pr_info @textptr 29 20 
COMMIT TRAN 
 
pr_info 
-------------------------------------------------------------------------------- 
Algodata Infosystems 
     
Notice the use of a transaction and the HOLDLOCK keyword to ensure the veracity of the text pointer from the 
time it's first retrieved through its use by READTEXT. Since other users could modify the BLOB column while 
we're accessing it, the pointer returned by TEXTPTR() could become invalid between its initial read and the 
call to READTEXT. We use a transaction to ensure that this doesn't happen. People tend to think of 
transactions as being limited to data modification management, but, as you can see, they're also useful for 
ensuring read repeatability. 



Guru’s Guide to Transact-SQL 

52 

Rather than specifying a fixed offset and read length, it's more common to use PATINDEX() to locate a 
substring within a BLOB field and extricate it, likeso: 
      
DECLARE @textptr binary(16), @patindex int, @patlength int 
 
BEGIN TRAN 
SELECT @textptr=TEXTPTR(pr_info), @patindex=PATINDEX('%Algodata 
Infosystems%',pr_info)-1, 
@patlength=DATALENGTH('Algodata Infosystems') 
FROM pub_info (HOLDLOCK) 
WHERE PATINDEX('%Algodata Infosystems%',pr_info)<>0 
 
READTEXT pub_info.pr_info @textptr @patindex @patlength 
COMMIT TRAN 
pr_info 
-------------------------------------------------------------------------------- 
Algodata Infosystems 
     
Note the use of PATINDEX() to both qualify the query and set the @patindex variable. The query must 
subtract one from the return value of PATINDEX() because PATINDEX() is one-based, while READTEXT is 
zero-based. As mentioned earlier, PATINDEX() works similarly to LIKE except that it can also return the offset 
of the located pattern or string. 
Handling larger segments requires looping through the BLOB with READTEXT, reading it a chunk at a time. 
Here's an example: 
      
DECLARE @textptr binary(16), @blobsize int, @chunkindex int, @chunksize int 
SET TEXTSIZE 64 -- Set extremely small for illustration purposes only 
BEGIN TRAN 
SELECT @textptr=TEXTPTR(pr_info), @blobsize=DATALENGTH(pr_info), @chunkindex=0, 
@chunksize=CASE WHEN @@TEXTSIZE < @blobsize THEN @@TEXTSIZE ELSE @blobsize END 
FROM pub_info (HOLDLOCK) 
WHERE PATINDEX('%Algodata Infosystems%',pr_info)<>0 
 
IF (@textptr IS NOT NULL) AND (@chunksize > 0)  
WHILE (@chunkindex < @blobsize) AND (@@ERROR=0) BEGIN 
  READTEXT pub_info.pr_info @textptr @chunkindex @chunksize 
  SELECT @chunkindex=@chunkindex+@chunksize, 
    @chunksize=CASE WHEN (@chunkindex+@chunksize) > @blobsize THEN @blobsize- 
    @chunkindex ELSE @chunksize END 
END 
COMMIT TRAN 
SET TEXTSIZE 0 -- Return to its default value (4096) 
     
(Results abridged) 
      
pr_info 
-------------------------------------------------------------------------------- 
This is sample text data for Algodata Infosystems, publisher 138 
 
pr_info 
-------------------------------------------------------------------------------- 
9 in the pubs database. Algodata Infosystems is located in Berke 
 
pr_info 
-------------------------------------------------------------------------------- 
ley, California. 
     
The trickiest part of this query is the fact that READTEXT doesn't allow reading past the end of the BLOB. 
That is, if the BLOB is 100characters long, you can't specify a starting point of 90 and a chunk size of 30 and 
expect to get the last 10characters of the BLOB—READTEXT will return an error instead. So, the query is 



Chapter 2. Transact-SQL Data Type Nuances  

53 

forced to do READTEXT's work for it—it computes the exact size of the remainder of the BLOB and is careful 
not to exceed it. 
This query uses the fact that SQL Server evaluates expressions left to right to keep the code as small as 
possible. In the initial SELECT, the @blobsize variable is used later in the SELECT list immediately after 
being set by the same statement. Because SQL Server evaluates the list left to right, this works. The SELECT 
statement within the loop employs the same technique. @chunkindex is used elsewhere within the SELECT 
statement that also sets its value. This behavior isn't guaranteed to remain the same in future releases of the 
product, so you should use it with caution. 
In the examples thus far, we've used HOLDLOCK to ensure that a text pointer we re- trieve early in the query 
is still valid later— to ensure read repeatability. HOLDLOCK causes the read lock initiated by the SELECT to 
remain in effect until the end of the transaction. Depending on the current transaction isolation level, 
HOLDLOCK may not even be necessary because we're reading the entirety of the segment we're after and 
have no intention of rereading it (see Chapter 14, "Transactions," for more information). An alternative 
would be to use SET TRANSACTION ISOLATION LEVEL to force the server itself to ensure repeatable reads, 
likeso: 
      
DECLARE @textptr binary(16), @blobsize int, @chunkindex int, @chunksize int 
SET TEXTSIZE 64     -- Set extremely small for illustration purposes only 
 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 
BEGIN TRAN 
SELECT @textptr=TEXTPTR(pr_info), @blobsize=DATALENGTH(pr_info), @chunkindex=0, 
@chunksize=CASE WHEN @@TEXTSIZE < @blobsize THEN @@TEXTSIZE ELSE @blobsize END 
FROM pub_info 
WHERE PATINDEX('%Algodata Infosystems%',pr_info)<>0 
 
IF (@textptr IS NOT NULL) AND (@chunksize > 0)  
WHILE (@chunkindex < @blobsize) AND (@@ERROR=0) BEGIN 
  READTEXT pub_info.pr_info @textptr @chunkindex @chunksize 
  SELECT @chunkindex=@chunkindex+@chunksize, 
    @chunksize=CASE WHEN (@chunkindex+@chunksize) > @blobsize THEN 
@blobsize-@chunkindex ELSE @chunksize END 
END 
COMMIT TRAN 
SET TEXTSIZE 0 -- Return to its default value (4096) 
GO 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- Back to its default (in a 
separate batch) 
     
By telling the server to ensure the reads we perform are repeatable within the same transaction, we block 
other users from making changes to pr_info while we're perusing it, which is exactly what HOLDLOCK does. 

Updating BLOB Data 

Supplying BLOB columns with text or image data that's less than or equal to 8000bytes in size is as 
straightforward as updating any other type of column. You can use INSERT, UPDATE, and DEFAULT 
constraints to supply these values, just as you can other types of data. Here's an example: 
      
CREATE TABLE #testnotes (k1 int identity, notes text DEFAULT SPACE(10))  
 
INSERT #testnotes DEFAULT VALUES 
 
INSERT #testnotes (notes) VALUES (REPLICATE('X',20)) 
 
UPDATE #testnotes SET notes=REPLICATE('Y',10) WHERE k1=1 
 
SELECT * FROM #testnotes 
DROP TABLE #testnotes 
 
k1         notes 



Guru’s Guide to Transact-SQL 

54 

---------- --------------------------------------------------------------------- 
1          YYYYYYYYYY 
2          XXXXXXXXXXXXXXXXXXXX 
     
Writing values larger than 8000 bytes via Transact-SQL requires the use of the UPDATETEXT or 
WRITETEXT command. UPDATETEXT can modify a portion of a BLOB field, while WRITETEXT rewrites its 
entire contents. Generally speaking, UPDATETEXT is more flexible than WRITETEXT and should be your tool 
of choice for writing large amounts of text or image data to a BLOB field. Here's an example: 
      
CREATE TABLE #testnotes (k1 int identity, notes text DEFAULT REPLICATE('X',20))  
 
BEGIN TRAN 
INSERT #testnotes DEFAULT VALUES 
 
DECLARE @textptr binary(16) 
 
SELECT @textptr=TEXTPTR(notes)  
FROM #testnotes (UPDLOCK)  
 
UPDATETEXT #testnotes.notes @textptr 0 0 'ZZZ ' 
 
SELECT * FROM #testnotes 
COMMIT TRAN 
 
GO 
DROP TABLE #testnotes 
 
k1         notes 
---------- --------------------------------------------------------------------- 
1          ZZZ XXXXXXXXXXXXXXXXXXXX 
     
UPDATETEXT takes five parameters: the column to be updated, a valid text pointer to it, the offset at which 
the update is to occur, the number of characters to delete from the offset location, and the update text. 
Despite its name, UPDATETEXT deletes, then inserts the updated text. It works similarly to the Transact-SQL 
STUFF() function, whose purpose is to remove a segment of a string and replace it with another. Since we 
specified an offset and delete length of zero, the string we specified is simply inserted at the front of the text 
field. 
As with READTEXT, valid text pointers can be acquired via the TEXTPTR() function. Transactions help 
ensure that a text pointer acquired via a SELECT is valid when UPDATETEXT is called. We use UPDLOCK 
rather than HOLDLOCK because we're updating the data rather than merely reading it. 
The real power of UPDATETEXT shows when you need to update a segment of a BLOB rather than prefix it 
with a new string or replace it altogether. Here's an example: 
      
CREATE TABLE #testnotes (k1 int identity, notes text DEFAULT ' ')  
 
BEGIN TRAN 
INSERT #testnotes DEFAULT VALUES 
 
UPDATE #testnotes SET notes='Women and Babies First' 
 
DECLARE @textptr binary(16), @patindex int, @patlength int 
 
SELECT @textptr=TEXTPTR(notes), @patindex=PATINDEX('%Babies%',notes)-1,  
@patlength=DATALENGTH('Babies') 
FROM #testnotes (UPDLOCK) 
WHERE PATINDEX('%Babies%',notes)<>0 
 
UPDATETEXT #testnotes.notes @textptr @patindex @patlength 'Children' 
 
SELECT * FROM #testnotes 
 



Chapter 2. Transact-SQL Data Type Nuances  

55 

COMMIT TRAN 
 
GO 
DROP TABLE #testnotes 
 
k1         notes 
---------- --------------------------------------------------------------------- 
1          Women and Children First 
     
Here, we use PATINDEX() to locate an offset within a text field, then we use UPDATETEXT to change the 
string at that location. 
WRITETEXT works similarly to UPDATETEXT. Since it writes the entire field, it doesn't require an offset or 
length parameter. Here's an example: 
      
CREATE TABLE #testnotes (k1 int identity, notes text DEFAULT ' ') 
 
BEGIN TRAN 
INSERT #testnotes DEFAULT VALUES 
 
DECLARE @textptr binary(16) 
 
SELECT @textptr=TEXTPTR(notes)  
FROM #testnotes (UPDLOCK)  
 
WRITETEXT #testnotes.notes @textptr 'ZZZ ' 
 
SELECT * FROM #testnotes 
 
COMMIT TRAN 
 
GO 
DROP TABLE #testnotes 
 
k1         notes 
---------- --------------------------------------------------------------------- 
1          ZZZ 
     
Note the use of a constraint to supply a default value to the BLOB column. Since both UPDATETEXT and 
WRITETEXT require a valid text pointer, you can't use them to write data to a BLOB field that's NULL. This 
makes adding text to a newly inserted row more difficult than it should be. The best way to deal with this is to 
set up a DEFAULT constraint for the BLOB column; then, when a row is added to the table, the column will 
receive a valid value which you can then access via a separate TEXTPTR() query. Once you have a valid text 
pointer in hand, you can call UPDATETEXT or WRITETEXT to place real data into the BLOB column. 

BLOB Updates and the Transaction Log 

Both UPDATETEXT and WRITETEXT support a WITH LOG option that determines whether the changes they 
make are recorded in the transaction log. The default is for BLOB updates not to be logged. Unfortunately, 
this invalidates the transaction log (forcing full database backups) and requires that select into/bulk copy be 
enabled for the database (via sp_dboption). It's always preferable to log operations when you can. This 
preserves your ability to use the transaction log as it was intended and protects the integrity of your databases. 
Of course, there are exceptions to this rule—you may be adding a large amount of BLOB data at once and 
wish to disable logging temporarily. If so, leave off the WITH LOG option, and only the database's extent 
allocations will be recorded in the transaction log. 

Bits 

Bit columns and variables can have one of three values: 0, 1, or NULL. Bits are stored in groups of eight as 
bytes, so if there are fewer than eight of them, they require just one byte of storage. 



Guru’s Guide to Transact-SQL 

56 

Bits are not allowed to serve as index keys, and for good reason. A column that's limited to three possible 
values would make a very poor index key because it couldn't possibly be very selective. That is, it wouldn't be 
of much help identifying individual rows in a large group of them (an index's selectivity indicates the number of 
rows that are typically identified by one of its key values). In a table with a bit column and 9000rows and an 
even distribution of bit's possible values, the best selectivity a bit index could hope for would be one third of 
the total rows, or 3000 rows per key value. This means a query that used the index would have to wade 
through 3000 rows to find a particular record—not an optimal situation. 
SQL Server provides a number of operators for working with bits, bit masks, and bitmaps. A bitmap is a 
column or variable of a type other than bit—usually an integer or image—that stores an array of bit switches—
a map of them. A bit mask is a collection of bits—usually in the form of an integer—that's used to extract or 
manipulate the bit switches in a bitmap. Here's an example: 
     
SELECT LEFT(name,30) AS DB,  
  SUBSTRING(CASE status & 1 WHEN 0 THEN '' ELSE ',autoclose' END+ 
  CASE status & 4 WHEN 0 THEN '' ELSE ',select into/bulk copy' END+ 
  CASE status & 8 WHEN 0 THEN '' ELSE ',trunc. log on chkpt' END+ 
  CASE status & 16 WHEN 0 THEN '' ELSE ',torn page detection' END+ 
  CASE status & 32 WHEN 0 THEN '' ELSE ',loading' END+ 
  CASE status & 64 WHEN 0 THEN '' ELSE ',pre-recovery' END+ 
  CASE status & 128 WHEN 0 THEN '' ELSE ',recovering' END+ 
  CASE status & 256 WHEN 0 THEN '' ELSE ',not recovered' END+ 
  CASE status & 512 WHEN 0 THEN '' ELSE ',offline' END+ 
  CASE status & 1024 WHEN 0 THEN '' ELSE ',read only' END+ 
  CASE status & 2048 WHEN 0 THEN '' ELSE ',dbo use only' END+ 
  CASE status & 4096 WHEN 0 THEN '' ELSE ',single user' END+ 
  CASE status & 32768 WHEN 0 THEN '' ELSE ',emergency mode' END+ 
  CASE status & 4194304 WHEN 0 THEN '' ELSE ',autoshrink' END+ 
  CASE status & 1073741824 WHEN 0 THEN '' ELSE ',cleanly shutdown' END+ 
  CASE status2 & 16384 WHEN 0 THEN '' ELSE ',ANSI NULL default' END+ 
  CASE status2 & 65536 WHEN 0 THEN '' ELSE ',concat NULL yields NULL' END+ 
  CASE status2 & 131072 WHEN 0 THEN '' ELSE ',recursive triggers' END+ 
  CASE status2 & 1048576 WHEN 0 THEN '' ELSE ',default to local cursor' END+ 
  CASE status2 & 8388608 WHEN 0 THEN '' ELSE ',quoted identifier' END+ 
  CASE status2 & 33554432 WHEN 0 THEN '' ELSE ',cursor close on commit' END+ 
  CASE status2 & 67108864 WHEN 0 THEN '' ELSE ',ANSI NULLs' END+ 
  CASE status2 & 268435456 WHEN 0 THEN '' ELSE ',ANSI warnings' END+ 
  CASE status2 & 536870912 WHEN 0 THEN '' ELSE ',full text enabled' END, 
2,8000) AS Description 
FROM master..sysdatabases 
 
DB         Description 
----------  
 

---------------------------------------------------------------------------------
-------- 
CM         select into/bulk copy,torn page detection,autoshrink 
master     trunc. log on chkpt 
model      select into/bulk copy,trunc. log on chkpt,torn page 
detection,autoshrink 
msdb       select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly shutdown 
Northwind  select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly shutdown 
Northwind2 autoclose,select into/bulk copy,trunc. log on chkpt,torn page  
 

detection,autoshrink,cleanl 
PM         autoclose,select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly 
shutdown 
PO         autoclose,select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly 
shutdown 
pubs       select into/bulk copy,trunc. log on chkpt,autoshrink 
SCW_TS     autoclose,select into/bulk copy,trunc. log on chkpt,torn page  
 



Chapter 2. Transact-SQL Data Type Nuances  

57 

detection,autoshrink 
tempdb     select into/bulk copy,trunc. log on chkpt,ANSI NULL default 
    
Here, we query the sysdatabases table in the master database to decode the two status columns (status and 
status2) for each database. The literal numbers specified in each CASE expression are bit masks; the status 
columns are bitmaps. Each of the possible status flags that a database can have is represented by a bit or 
bits in one of these two columns. We use the bitwise and operator & to match the status columns with the 
switch values corresponding to each flag. 

NOTE 

Note As mentioned throughout this book, querying the system tables directly is now discouraged. 
When possible, you should query the INFORMATION_SCHEMA views or call the catalog stored 
procedures to access system-level information. 

 

Internally, SQL Server makes extensive use of bitmaps and bit masks because they're an efficient way to 
store and track status flags. For example, the sysindexes table contains a column named statblob that's used 
to track index statistics. It's an image column that doesn't actually store an image—it stores a bitmap 
representing index key distribution information. 

UNIQUEIDENTIFIER 

The uniqueidentifer data type stores GUIDs (global unique identifiers). A GUID is a 16-byte binary number 
that is guaranteed to be unique across all networked computers in the world. Windows COM interfaces use 
GUIDs to identify themselves. Since these are unique across all networked computers in the world, this 
provides a universal numbering scheme for COM interfaces. 
The T-SQL NEWID() function generates new GUIDs on demand. It can be used as a column default, like so: 
     
SET NOCOUNT ON 
CREATE TABLE #guids (c1 uniqueidentifier DEFAULT NEWID()) 
INSERT #guids DEFAULT VALUES 
INSERT #guids DEFAULT VALUES 
INSERT #guids DEFAULT VALUES 
INSERT #guids DEFAULT VALUES 
 
SELECT * FROM #guids 
GO 
DROP TABLE #guids 
 
c1 
------------------------------------ 
07A7DEFF-367F-11D3-92AC-005004044A19 
07A7DF00-367F-11D3-92AC-005004044A19 
07A7DF01-367F-11D3-92AC-005004044A19 
07A7DF02-367F-11D3-92AC-005004044A19 
    
Each table can have as many uniqueidentifier columns as you wish and can identify a single uniqueidentifier 
column as its ROWGUIDCOL column. The ROWGUIDCOL can be used to reference its corresponding 
uniqueidentifier column indirectly without actually naming it (analogously to IDENTITYCOL). Here's an 
example: 
     
SET NOCOUNT ON 
CREATE TABLE #guids (c1 uniqueidentifier DEFAULT NEWID() ROWGUIDCOL)  
 
INSERT #guids DEFAULT VALUES 



Guru’s Guide to Transact-SQL 

58 

INSERT #guids DEFAULT VALUES 
INSERT #guids DEFAULT VALUES 
INSERT #guids DEFAULT VALUES 
 
SELECT ROWGUIDCOL FROM #guids 
GO 
DROP TABLE #guids 
 
c1 
------------------------------------ 
07A7DF1D-367F-11D3-92AC-005004044A19 
07A7DF1E-367F-11D3-92AC-005004044A19 
07A7DF1F-367F-11D3-92AC-005004044A19 
07A7DF20-367F-11D3-92AC-005004044A19 
    
Uniqueidentifiers have a number of disadvantages. Among them: 

• Their values are unwieldy and cryptic. They're random and don't fit or match any sort of mnemonic 
pattern. 

• The uniqueidentifier data type is four times as large as the four-byte int type that's typically used for 
row identifiers. This makes accessing them slower in general, including building and accessing 
indexes overthem. 

• The sequence in which a set of uniqueidentifier values were generated is not discernable from the 
values themselves—you can't tell which values came first and which ones came later by looking only 
at the data. Among other things, this means that they make poor ORDER BY columns. 

Cursor Variables 

A cursor variable stores a reference to a cursor definition. Cursors defined via variables are by definition local 
cursors (since you can't declare global variables) and can be used in place of direct cursor references in 
commands such as OPEN, FETCH, CLOSE, and DEALLOCATE. They support the full Transact-SQL cursor 
syntax and can be used to define read-only as well as updatable cursors. Cursor variables and the cursor 
data type can be used most places ordinary variables and data types can with three exceptions: 

• You can't define a table column of type cursor. 
• You can't define stored procedure input parameters as cursors (but you can define cursor output 

parameters). 
• You can't assign a cursor variable with a SELECT statement. (They must be assigned using the SET 

command.) 

Here's an example of a simple cursor variable definition: 
     
DECLARE @cursor CURSOR 
 
SET @cursor=CURSOR FOR SELECT * FROM authors 
 
OPEN @cursor 
FETCH @cursor 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
   FETCH @cursor 
END 
 
CLOSE @cursor 
DEALLOCATE @cursor 
    
In this example, we define the cursor using the SET assignment statement. Cursor variables can also be 
assigned from existing cursors, like so: 
     



Chapter 2. Transact-SQL Data Type Nuances  

59 

DECLARE @cursor CURSOR 
DECLARE c CURSOR FOR SELECT * FROM authors 
SET @cursor=c 
 
OPEN @cursor 
FETCH @cursor 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
   FETCH @cursor 
END 
 
CLOSE @cursor 
DEALLOCATE @cursor 
DEALLOCATE c 
    
Here, we first define the cursor using the traditional DECLARE CURSOR syntax; then we assign it by name to 
the cursor variable. Note the separate deallocation of the cursor variable and the cursor. Deallocating the 
cursor alone isn't enough; it remains in memory until it's explicitly deallocated or the last variable referencing it 
goes out of scope, whichever comes last. For example, consider this variation on the code: 
     
DECLARE @cursor CURSOR 
DECLARE c CURSOR FOR SELECT * FROM authors 
 
SET @cursor=c 
 
DEALLOCATE c 
 
OPEN @cursor 
FETCH @cursor 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
   FETCH @cursor 
END 
 
CLOSE @cursor 
DEALLOCATE @cursor 
    
Once you've assigned a regular cursor to a cursor variable, you can reference the cursor using either the 
original name or the variable— they're almost synonymous. So, for example, once you've opened the cursor 
via the cursor variable, as in the last example, you can't reopen it using the original cursor name without 
closing it first—it's already open. Likewise, closing the cursor variable closes the original cursor, too—they 
refer to the same internal structure. As a rule, they're interchangeable. The lone exception is the 
DEALLOCATE command. 
As you can see from the example code, deallocating the original cursor doesn't prevent you from continuing to 
access it via the cursor variable. Even though the code deallocates it immediately after assigning it to the 
cursor variable, it doesn't actually go away. Deallocating a cursor reference other than the final one merely 
removes your ability to access the cursor via that reference—the cursor itself hangs around until the last 
variable referencing it is deallocated or goes out of scope. 
You can define more than one cursor variable that references a particular cursor, and you can assign cursor 
variables to one another. Here's an example: 
     
DECLARE @cursor1 CURSOR, @cursor2 CURSOR 
DECLARE c CURSOR FOR SELECT * FROM authors 
SET @cursor1=c 
SET @cursor2=@cursor1 
 
OPEN @cursor2 
FETCH @cursor2 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  FETCH @cursor1 



Guru’s Guide to Transact-SQL 

60 

END 
 
CLOSE @cursor1 
DEALLOCATE @cursor1 
DEALLOCATE @cursor2 
DEALLOCATE c 
    
One handy feature of Transact-SQL cursor variables is support for cursor output parameters. In the past, 
returning a cursor from a stored procedure meant either displaying it immediately or trapping it in a table via 
INSERT...EXEC. Cursor variables give you more control over when and whether to display a procedure's 
result set. You can call FETCH to return the result set a row at a time or place it into a variable, or you can 
simply close and deallocate the cursor—it's up to you. 
Several of the system procedures that relate to cursors return cursor output parameters. Sp_describe_cursor, 
for example, returns a cursor that points to a single-row result set containing a report on the cursor you 
specify. This necessitates setting up a cursor variable and passing it into the procedure as an OUTPUT 
parameter, like so: 
     
DECLARE @cursor CURSOR 
DECLARE c CURSOR GLOBAL FOR SELECT * FROM authors 
OPEN c 
 
EXEC sp_describe_cursor @cursor_return=@cursor OUTPUT,  
@cursor_source=N'global', 
@cursor_identity=N'c' 
 
FETCH @cursor 
 
FETCH c 
WHILE (@@FETCH_STATUS=0) BEGIN 
  FETCH c 
END 
 
CLOSE @cursor 
CLOSE c 
DEALLOCATE @cursor 
DEALLOCATE c 
    
(Result set abridged) 
     
reference_name cursor_name cursor_scope status model concurrency scrollable 
open_status  
 

cursor_rows 
-------------- ----------- ------------ ------ ----- ----------- ---------- -----
------  
 

----------- 
c              c           2            1      3     3           0          1           
-1 
    
Once it processes the cursor, the code closes and deallocates the cursor along with its own global cursor. In 
this case, it can get away with making a single call to FETCH to return sp_describe_cursor's one row. If the 
cursor returned by the stored procedure referenced a multirow result set, the code would need to loop through 
it, fetching each row separately. This call to sp_cursor_list illustrates: 
     
DECLARE @authorcursor CURSOR, @authorcursor2 CURSOR, @cursorlist CURSOR 
DECLARE AuthorsList CURSOR GLOBAL FOR SELECT * FROM authors 
 
SET @authorcursor=AuthorsList 
SET @authorcursor2=AuthorsList 
 



Chapter 2. Transact-SQL Data Type Nuances  

61 

OPEN AuthorsList 
 
EXEC sp_cursor_list @cursor_return=@cursorlist OUTPUT,  
@cursor_scope=3 
 
FETCH @cursorlist 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  FETCH @cursorlist 
END 
 
CLOSE @cursorlist 
CLOSE AuthorsList 
 
DEALLOCATE @cursorlist 
DEALLOCATE AuthorsList 
DEALLOCATE @authorcursor 
DEALLOCATE @authorcursor2 
    
(Results abridged) 
     
reference_name cursor_name              cursor_scope status model concurrency 
scrollable 
-------------- ------------------------ ------------ ------ ----- ----------- ---
------- 
@cursorlist    _MICROSOFT_SS_0532422748 1            -1     3     1           1 
reference_name cursor_name              cursor_scope status model concurrency 
scrollable 
-------------- ------------------------ ------------ ------ ----- ----------- ---
------- 
@authorcursor2 AuthorsList              1            1      3     3           0 
reference_name cursor_name              cursor_scope status model concurrency 
scrollable 
-------------- ------------------------ ------------ ------ ----- ----------- ---
------- 
@authorcursor  AuthorsList              1            1      3     3           0 
reference_name cursor_name              cursor_scope status model concurrency 
scrollable 
-------------- ------------------------ ------------ ------ ----- ----------- ---
------- 
AuthorsList    AuthorsList              2            1      3     3           0 
 
    
Sp_cursor_list provides the same basic info as sp_describe_cursor but lists info for more than one cursor (all 
global cursors, all local cursors, or all cursors of either type). The cursor it returns via @cursorlist is fetched a 
row at a time until it's fully retrieved; then the cursor is closed and deallocated as before. 
Note that the prohibition against cursor input parameters means that a cursor output parameter may not have 
a cursor allocated to it prior to passing it to a procedure. If SQL Server permitted this, it would allow the input 
parameter restriction to be circumvented since an output parameter can be inspected and used just like any 
other stored procedure parameter. Here's an example: 
     
-- DON'T DO THIS -- BAD T-SQL 
USE pubs 
GO 
IF (OBJECT_ID('inputcursorparm') IS NOT NULL) 
  DROP PROC inputcursorparm 
GO 
CREATE PROC inputcursorparm @cursor_input cursor VARYING OUT 
AS 
FETCH @cursor_input 
 



Guru’s Guide to Transact-SQL 

62 

WHILE (@@FETCH_STATUS=0) BEGIN 
   FETCH @cursor_input 
END 
 
CLOSE @cursor_input 
DEALLOCATE @cursor_input 
GO 
 
DECLARE @c CURSOR 
SET @c=CURSOR FOR SELECT * FROM authors 
 
-- An error is generated when the procedure is called 
-- because @c references an existing cursor 
EXEC inputcursorparm @c OUT 
 
Server: Msg 16951, Level 16, State 1, Line 7 
The variable '@c' cannot be used as a parameter because a CURSOR OUTPUT parameter 
must not have a cursor allocated to it before execution of the procedure. 

Timestamps 

Despite the name, timestamp columns have nothing to do with the time or date. A timestamp is a special 
binary(8) value that's guaranteed to be unique across a database. A timestamp column is updated each time 
the data in a row changes. In SQL Server's infancy, timestamp columns were used to effect a simplistic 
optimistic locking strategy that's best explained by an example. If Juliet updates a row after Romeo reads it 
but before he posts his own changes, Romeo's update attempt will fail because it will use the original 
timestamp value to try to locate the row. Romeo's UPDATE statement will include the timestamp column in its 
WHERE clause but won't be able to locate the original record because the timestamp value has changed due 
to Juliet's update. This prevents Romeo from overwriting Juliet's changes and provides a means for his 
application to detect that another user modified the row he was editing. 
The TSEQUAL() function can be used to compare timestamp values. If the timestamps aren't equal, 
TSEQUAL() raises an error and aborts the current command batch. 
A table is limited to a single timestamp column. A common convention is to name the column timestamp, but 
that's not required by the server. Here's a code sample that shows how to use the timestamp datatype: 
     
SET NOCOUNT ON 
CREATE TABLE #testts (c1 int identity, c2 int DEFAULT 0, changelog timestamp)  
 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
 
SELECT * FROM #testts 
 
UPDATE #testts SET c2=c1 
 
SELECT * FROM #testts 
 
GO 
DROP TABLE #testts 
 
c1          c2          changelog 
----------- ----------- ------------------ 
1           0           0x0000000000000085 
2           0           0x0000000000000086 
3           0           0x0000000000000087 
4           0           0x0000000000000088 
5           0           0x0000000000000089 



Chapter 2. Transact-SQL Data Type Nuances  

63 

c1          c2          changelog 
----------- ----------- ------------------ 
1           1           0x000000000000008A 
2           2           0x000000000000008B 
3           3           0x000000000000008C 
4           4           0x000000000000008D 
5           5           0x000000000000008E 
 
    
Note the different values for each row's timestamp column before and after the UPDATE. 
You can access the last generated timestamp value for a database via the @@DBTS automatic variable. 
Each database maintains its own counter, so be sure you're in the correct database before querying 
@@DBTS. Here's an example: 
     
USE tempdb 
GO 
SET NOCOUNT ON 
CREATE TABLE #testts (c1 int identity, c2 int DEFAULT 0, changelog timestamp)  
 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
INSERT #testts DEFAULT VALUES 
 
SELECT * FROM #testts 
SELECT @@DBTS AS 'Last timestamp' 
 
UPDATE #testts SET c2=c1 
 
SELECT * FROM #testts 
SELECT @@DBTS AS 'Last timestamp' 
GO 
DROP TABLE #testts 
 
c1          c2          changelog 
----------- ----------- ------------------ 
1           0           0x00000000000000B7 
2           0           0x00000000000000B8 
3           0           0x00000000000000B9 
4           0           0x00000000000000BA 
5           0           0x00000000000000BB 
Last timestamp 
------------------ 
0x00000000000000BB 
c1          c2          changelog 
----------- ----------- ------------------ 
1           1           0x00000000000000BC 
2           2           0x00000000000000BD 
3           3           0x00000000000000BE 
4           4           0x00000000000000BF 
5           5           0x00000000000000C0 
Last timestamp 
------------------ 
0x00000000000000C0 
 
    
Note the USE tempdb at the first of the script. Since temporary tables reside in tempdb, we have to change 
the current database focus to tempdb in order for @@DBTS to work properly. @@DBTS always returns the 
last timestamp value generated for a database, so you can use it to acquire the timestamp of an update 
you've just performed, similar to the @@IDEN- TITY automatic variable. One big difference between 



Guru’s Guide to Transact-SQL 

64 

@@DBTS and @@IDENTITY is that @@IDENTITY is connection specific whereas @@DBTS is database 
specific. The value returned by @@IDENTITY will rarely be the same for multiple users, but @@DBTS will 
often be identical for all users connected to a given database. 

Summary 

In this chapter you've explored SQL Server's wealth of data types. You've learned about date, numeric, string, 
bit, and BLOB data types, as well as fringe types such as timestamps and uniqueidentifiers. Designing sound 
databases and writing robust Transact-SQL code require intimate familiarity with the wide variety of data types 
SQL Server provides. Knowing them well is the first step in writing optimal code to access them. 



Chapter 3. Missing Values 

65 

Chapter 3. Missing Values 
Of the thirty-six alternatives, running away is best.  

—Chinese Proverb 

Missing values and the proper handling of them is a very delicate subject within the database community. The 
debate centers on how (or whether) missing values should be stored in relational databases and how many 
and what types of tokens should be used to represent them in SQL. 
There are at least three different schools of thought regarding how to handle missing values. The inventor of 
the relational database, Dr. E.F. Codd, advocates two separate missing value tokens: one for values that 
should be there but aren't (e.g., the gender of a person) and one for values that shouldn't be there at all 
because they are inapplicable (e.g., the gender of a corporation). Chris Date, noted database author and 
lecturer, takes the minimalist position. He believes that SQL is better off without a missing value token of any 
kind. ANSI/ISO SQL-92 splits the difference and provides one general-purpose missing value token: NULL. 
At the risk of stating the obvious, missing values and empty values are two different things. An integer whose 
value is missing is not the same as an integer whose value is zero. A null string is not the same as a zero-
length string or one containing only blanks. This distinction is important because comparisons between empty 
values and missing values always fail. In fact, NULL values aren't even equal to one another in such 
comparisons. 
The possibility of missing values in relational data indicates that there are three possible outcomes for any 
comparison: True, False, and Unknown. Of course, this necessitates the use of three-valued logic. The truth 
tables in Figure 3.1 illustrate. 

Figure 3.1. Three-valued logic truth tables. 

 
Note that I use NULL and Unknown interchangeably, even though, technically speaking, they aren't. NULL is 
a data value, while Unknown represents a logical value. The distinction is a bit abstruse—especially for 
veteran software developers—and is the reason you must use ...WHERE column IS NULL rather 
than ...WHERE column = NULL if you want your SQL to behave sensibly. (Transact-SQL doesn't forbid the 
latter syntax, but since one NULL never equals another—or even itself—it never returns True. See the section 
below on Transact-SQL's ANSI NULL compliance.) As much fun as it would be, I have no desire to enter the 
philosophical debate over NULLs and their proper use. So, for simplicity's sake, since our purpose is to view 
the world of data and databases through the eyes of Transact-SQL, I'll stick with treating NULL and Unknown 
identically throughout the book. 



Guru’s Guide to Transact-SQL 

66 

NULL and Functions 

As with simple expressions, most functions involving NULL values return NULL, so SELECT SIGN(NULL) 
returns NULL, as do SELECT ABS(NULL) and SELECT LTRIM(NULL). The exceptions to this are functions 
designed to work with NULL in the first place. In addition to aggregates, functions intended to be used with 
NULLs include ISNULL() and COALESCE(). 
ISNULL() translates a NULL value into a non-NULL value. For example, 
     
SELECT ISNULL(c1,0) FROM #nulltest 
 
    
translates all NULL values found in c1 to0. Caution should be exercised when doing this, though, since 
translating NULLs to other values can have unexpected side effects. For example, the AVG query from the 
example above can't ignore translated NULLs: 
     
SELECT AVG(ISNULL(c1,0)) FROM #nulltest 
 
    
The value zero is figured into the average, significantly lowering it. 
Note that ISNULL()'s parameters aren't limited to constants. Consider this example: 
     
DECLARE @x int,@y int 
SET @x=5 
SET @y=2 
SELECT ISNULL(CASE WHEN @x>=1 THEN NULL ELSE @x END, 
  CASE WHEN @y<5 THEN @x*@y ELSE 10 END, 
 
    
Here, both arguments consist of expressions, including the one returned by the function. ISNULL() can even 
handle SELECT statements as parameters, as in this example: 
     
DECLARE @x int,@y int 
SET @x=5 
SET @y=2 
SELECT ISNULL(CASE WHEN @x>=1 THEN NULL ELSE @x END, 
  (SELECT COUNT(*) FROM authors)) 
 
    
The NULLIF() function is a rough inverse of ISNULL(). Though it doesn't handle NULL values being passed 
into it any better than any other function, it was designed to return a NULL value in the right circumstances. It 
takes two parameters and returns NULL if they're equal; otherwise it returns the first parameter. For example, 
     
DECLARE @x int,@y int 
SET @x=5 
SET @y=2 
SELECT NULLIF(@x,@y+3 
 
    
returns NULL, while 
     
SELECT NULLIF(@x, @y) 
 
    
returns 5. 
COALESCE() returns the first non-NULL value from a horizontal list. For example, 
     
SELECT COALESCE(@x / NULL, @x * NULL, @x+NULL, NULL, @y*2, @x, 
  (SELECT COUNT(*) FROM authors)) 
 
    



Chapter 3. Missing Values 

67 

returns @y*2, or 4. As with ISNULL(), parameters passed to COALESCE() can be expressions and 
subqueries as well as constants, as the code sample illustrates. 

NULL and ANSI SQL 

With each successive version, SQL Server's ANSI/ISO compliance has steadily improved. Using a variety of 
configuration switches and modern command syntax, you can write Transact-SQL code that's portable to 
other ANSI-compliant DBMSs. 
NULLs represent one area in which ANSI compliance improved substantially in version7.0. A number of new 
configuration settings and syntax options were added to enhance SQL Server's ANSI compliance in terms of 
NULL values. Many of these are discussed below. 
Regarding the handling of NULL values in expressions, the ANSI/ISO SQL specification correctly separates 
aggregation from basic expression evaluation (this is contrary to what a couple of otherwise fine SQL books 
have said). This means, as far as the standard is concerned, that adding a NULL value to a number is not the 
same as aggregating a column that contains both NULL and non-NULL values. In the former case, the end 
result is always a NULL value. In the latter, the NULL values are ignored and the aggregation is performed. 
Per the ANSI spec, the only way to return a NULL result from an aggregate function is to start with an empty 
table or have nothing but NULL values in the aggregated column (COUNT() is an exception—see below). 
Since Transact-SQL follows the standard in this regard, these statements apply to it as well. For example, 
consider the following table from earlier: 
     
CREATE TABLE #nulltest 
(c1 int NULL) 
 
    
and the following data: 
     
INSERT #nulltest VALUES (1) 
INSERT #nulltest VALUES (NULL) 
INSERT #nulltest VALUES (3) 
 
    
The query: 
     
SELECT AVG(c1) FROM #nulltest 
 
    
doesn't return NULL, even though one of the values it considers is indeed NULL. Instead, it ignores NULL 
when it computes the average, which is exactly what you'd want. This is also true for the SUM(), MIN(), and 
MAX() functions but not for COUNT(*). For example, 
     
SELECT COUNT(*) FROM #nulltest 
 
    
returns "3," so SELECT SUM(c1)/COUNT(*) is not the same as SELECT AVG(c1). COUNT(*) counts rows, 
regardless of missing values. It includes the table's second row, even though the table has just one column 
and the value of that one column in row 2 is NULL. If you want COUNT() behavior that's consistent with SQL 
Server's other aggregate functions, specify a column in the underlying table rather than using "*" (e.g., 
COUNT). This syntax properly ignores NULL values, so that SELECT SUM(c1)/COUNT(c1) returns the same 
value as SELECT AVG(c1). 
This subtle distinction between COUNT(*) and COUNT(c1) is an important one since they return different 
results when NULLs enter the picture. Generally, it's preferable to use COUNT(*) and let the optimizer choose 
the best method of returning a row count rather than forcing it to count a specific column. If you need the 
"special" behavior of COUNT(c1), it's probably wise to note what you're doing via comments in your code. 
By default, SQL Server's ANSI_WARNINGS switch is set if you connect to the server via ODBC or OLEDB. 
This means that the server generates a warning message for any query where a missing value is ignored by 
an aggregate. This is nothing to worry about if you know about your missing values and intend them to be 
ignored but could possibly alert you to data problems otherwise. 



Guru’s Guide to Transact-SQL 

68 

ANSI_WARNINGS can be set globally for a given database via sp_dboption or per session using the SET 
ANSI_WARNINGS command. As with all database options, session-level settings override database option 
settings. 
Other important ANSI NULL-related settings include SET ANSI_NULL_DFLT_ON/ _OFF, SET ANSI_NULLS, 
and SET CONCAT_NULL_YIELDS_NULL. 
SET ANSI_NULL_DFLT_ON/_OFF determines whether columns in newly created tables can contain NULL 
values by default. You can query this setting via the GETANSINULL() system function. 
SET ANSI_NULLS controls how equality comparisons with NULL work. The ANSI SQL standard stipulates 
that any expression involving comparison operators ("=," "<>," "=," and so forth—"theta" operators in Codd 
parlance) and NULL returns NULL. Turning this setting off (it's on by default when you connect via ODBC or 
OLEDB) enables equality comparisons with NULL to succeed if the column or variable in question contains a 
NULL value. 
SET CONCAT_NULL_YIELDS_NULL determines whether string concatenation involving NULL values returns 
a NULL value. Normally, SELECT "Rush Limbaugh's IQ="+NULL yields NULL, but you can disable this by 
way of Transact-SQL's SET CONCAT_ NULL_YIELDS_NULL command. Note that this setting has no effect 
on other types of values. Adding a NULL to a numeric value always returns NULL, regardless of 
CONCAT_NULL_ YIELDS_NULL. 
I should pause for a moment and mention a peculiarity in the SQL standard that has always seemed 
contradictory to me. I find the fact that the standard allows you to assign column values using "= NULL" but 
does not allow you to search for them using the same syntax a bit incongruous. For example, 
     
UPDATE authors SET state=NULL WHERE state='CA' 
 
    
followed by: 
     
SELECT * FROM authors WHERE state=NULL 
 
    
doesn't work as you might expect. The SELECT statement returns no rows, even when a number of them 
were just set to NULL. Having NULLs not equal one another is not as difficult to swallow as the obvious 
syntactical inconsistency. In my opinion, the standard would be more symmetrical if it required something like 
this instead: 
     
UPDATE authors SET state TO NULL WHERE state='CA' 
 
    
If this were allowed, the prohibition against "=NULL" would make more sense, but, alas, that's not the case. 

NULL and Stored Procedures 

Stored procedures are one area where it's particularly handy to be able to control Transact-SQL's ANSI-
compliant behavior. Consider the following stored procedure: 
     
CREATE PROCEDURE ListIdsByValue @val int 
AS 
CREATE TABLE #values (k1 int identity, c1 int NULL) 
INSERT #values (c1) VALUES (1) 
INSERT #values (c1) VALUES (1) 
INSERT #values (c1) VALUES (NULL) 
INSERT #values (c1) VALUES (9) 
SELECT * FROM #values WHERE c1=@val 
DROP TABLE #values 
 
    
Despite the fact that the temporary table includes a row whose c1 column is set to NULL, passing NULL as 
the procedure's lone parameter will not return any rows since one NULL never equals another. Of course, the 
stored procedure could provide special handling for NULL values, but this approach becomes untenable very 
quickly as procedures with large numbers of parameters are considered. For example, a procedure with just 
two nullable parameters would require a nested IF that's four levels deep and would multiply the amount of 



Chapter 3. Missing Values 

69 

code necessary to perform the query. However, thanks to SET ANSI_NULLS, this behavior can be overridden 
like so: 
     
SET ANSI_NULLS OFF  
GO 
CREATE PROCEDURE ListIdsByValue @val int 
AS 
CREATE TABLE #values (k1 int identity, c1 int NULL) 
INSERT #values (c1) VALUES (1) 
INSERT #values (c1) VALUES (1) 
INSERT #values (c1) VALUES (NULL) 
INSERT #values (c1) VALUES (9) 
SELECT * FROM #values WHERE c1=@val 
DROP TABLE #values 
GO 
SET ANSI_NULLS ON 
GO 
 
    
This changes the viability of Transact-SQL's "5NULL" extension for the duration of the procedure. By "viability" 
I mean that, beyond not generating an error, the syntax actually works as you expect. Though the syntax is 
technically valid regardless of SET ANSI_NULLS, it never returns True when ANSI compatibility is enabled. 
As you might guess from the example code, this extension greatly simplifies the handling of nullable stored 
procedure parameters, which is the main reason it was added to the language. 
This technique works because the status of ANSI_NULLS is recorded at the time each stored procedure is 
compiled. This provides a virtual snapshot of the environment in which the procedure was built, allowing you 
to manage the setting so that it doesn't affect anything else. The corollary to this is that regardless of the 
current state of ANSI_NULLS when a procedure is executed, it will behave as though ANSI_NULLS matched 
its setting at the time the procedure was compiled, so be careful. For example: 
     
SET ANSI_NULLS OFF 
GO 
EXEC ListIdsByValue @val=NULL 
GO 
SET ANSI_NULLS ON 
GO 
 
    
won't produce any rows if ANSI_NULLS wasn't set OFF when the procedure was compiled. 
Note that SET ANSI_NULLS also affects the viability of the IN (value, value, NULL) syntax. This means that a 
query like: 
     
SELECT * from #values where (c1 in (1, NULL)) 
 
    
won't return rows with NULL values unless ANSI_NULLS is disabled. If you think of the IN predicate as 
shorthand for a series of equality comparisons joined by ORs, this makes perfect sense. 

NOTE 

Note I should point out here that I don't encourage needless departure from the ANSI/ISO SQL 
specification. It's always better to write code that complies with the standard, regardless of the 
syntactical offerings of your particular SQL dialect. ANSI/ISO-compliant code is more portable and, 
generally speaking, more readable by more people. As with using NULL values themselves, you 
should carefully consider the wisdom of writing deviant code in the first place, especially when 
working in multi-DBMS environments. 

NULL if you Must 



Guru’s Guide to Transact-SQL 

70 

As I mentioned earlier, I don't intend to get drawn into the debate on the proper use of NULLs. However, it's 
worth mentioning that, as a practical matter, NULL values in relational databases can be a royal pain. This is 
best illustrated by a couple of examples. Assuming we start with the following table and data: 
     
CREATE TABLE #values (k1 int identity, c1 int NULL) 
INSERT #values (c1) VALUES (1) 
INSERT #values (c1) VALUES (1) 
INSERT #values (c1) VALUES (NULL) 
INSERT #values (c1) VALUES (9) 
 
    
one might think that this query: 
     
SELECT * FROM #values WHERE c1=1 
 
    
followed by this one: 
     
SELECT * FROM #values WHERE c1<>1 
 
    
would return all the rows in the #values table, but that's not the case. Remember that SQL is based on three-
value logic. To return all rows, we have to allow for NULL values, so something like this is necessary: 
     
SELECT * FROM #values WHERE c1=1 OR c1 IS NULL 
 
    
This makes perfect sense if you consider that the NULL in row2 is really just a placeholder. Actually, the value 
of the c1column in row2 is not known, so we can't positively say whether it does or does not equal1, hence the 
exclusion from both queries. Unfortunately, this sort of reasoning is very foreign to many developers. To most 
coders, either something is or it isn't—there is no middle ground. For this reason alone, NULLs are the bane 
of many a new SQL developer. They continually perplex and frustrate the unwary. 
Another problem with NULLs is the inability of most host languages to represent them properly. The 
increasing use of OLE data types is changing this, but it's not unusual for host languages to use some 
predefined constant to simulate NULL values if they support them at all. An unassigned variable is not the 
same thing as one containing NULL, and assuming it is will lead to spurious results. Also, few database 
servers, let alone traditional programming languages, implement ANSI SQL NULL behavior completely or 
uniformly, and differences in the way that NULLs are handled between an application's various components 
can introduce layered obfuscation. 
Behind the scenes, SQL Server tracks which columns in a table are NULLable via a bitmap column in the 
sysobjects system table. Obviously, this carries with it a certain amount of overhead. Every aggregate function 
must take into account the fact that a column allows NULLs and take special precautions so that NULL values 
in the column don't skew results. Basically, NULLs are nasty little beasties that require special handling by 
anything that works with them. 
To be fair, NULLs are a necessary evil in many cases. Accurate calculations involving quantities quickly 
become overly complex when there is no direct support for missing values. The difference between zero and 
an unknown value is the same as that between any other known value and an unknown one—it's a 
conceptual chasm. It's the difference between a zero checking account balance and not having a checking 
account at all. Datetime columns often require NULL values as well because dates are frequently expressed 
in relative rather than absolute terms. 
One accepted method for avoiding the use of NULL is to use dummy values to signify missing data. For 
example, the string 'N/A' or 'NV' can be used to supplant NULLs in character string columns. –1 can be used 
to indicate a missing value in many integer columns, '1900-01-01' can be used for dates, and so forth. In these 
instances, the NULLIF() function comes in handy, especially when working with aggregate functions. For 
example, to get SUM() to ignore numeric columns containing –1, you could use something like SELECT 
SUM(NULLIF(c1, -1)) because SUM() ignores NULLs. You could code similar expressions to handle other 
types of dummy NULL values. 
The moral of the story is this: NULL is the kryptonite of the database world—it sucks the life out of anything 
that gets near it. Use it if you must, but avoid it when you can. 



Chapter 4. DDL Insights 

71 

Chapter 4. DDL Insights 
If the auto industry had done what the computer industry has done in the last thirty years, a 
Rolls Royce would cost $2.50 and get two million miles per gallon.  

—Herb Grosch 

But it would be the size of a Dinky toy and crash every three days. Beware of false analogy.  

—Joe Celko 

The chapter is not intended to cover Transact-SQL DDL (Data Definition Language) comprehensively—the 
Books Online (BOL) do that well enough already. It is not a syntax guide and makes no attempt to cover every 
T-SQL DDL command thoroughly, or even to cover every command. 
Instead, it's a loose collection of tips, pointers, and advice regarding a variety of DDL-related topics. It's 
intended to supplement the Books Online, not replace them. The goal of this chapter is to fill in some of the 
gaps left by the BOL and to highlight DDL topics that could use further emphasis. 
One of the challenges of writing a book like this is in trying to avoid replicating what's already covered in the 
vendor documentation while remaining thorough enough to be truly useful to readers and to assure them that 
their money was well spent. SQL Server's online documentation has long been one of its strong points. I 
prefer it hands-down to the online documentation of the other DBMS vendors I regularly work with. That said, 
the exhaustiveness of its coverage makes writing about relatively mundane topics such as DDL challenging 
for the author who would aspire to fresh, original work. In short, many subjects are already covered quite well 
by the Books Online, and rather than rehash what comes in the box with the product, I'd rather spend the 
limited number of pages in this book covering those that aren't. 
As opposed to querying database objects, DDL commands are concerned with creating and managing them. 
They include Transact-SQL commands such as CREATE TABLE, CREATE INDEX, ALTER TABLE, and 
CREATE PROCEDURE. These commands have a number of nuances and idiosyncrasies that one has to 
explore to appreciate fully. 

CREATE TABLE 

Aside from the obvious function of constructing tables, CREATE TABLE is used to establish declarative 
referential integrity between tables. It's also used to set up default column values and to establish primary and 
unique key constraints. 

Some Thoughts on Referential Integrity 

Generally speaking, declarative RI (referential integrity) is preferable to triggers, and triggers are preferable to 
stored procedures, but there's a place for each. Declarative RI usually gets the nod over triggers and stored 
procedures because it's easy to use and because it alleviates the possibility of a bug in a trigger or stored 
procedure compromising data integrity. Declarative “RI is also typically faster than a comparable trigger 
because it is enforced before the pending change is made. Triggers, by contrast, execute just after a change 
has been recorded in the transaction log but before it's been written to the database. This is what permits 
them to work with the before and after images of the changed data. This notwithstanding, sometimes triggers 
are a better choice due to their increased power and flexibility. 
And there's nothing wrong with stored procedures that pull double duty and carry out DML (Data Management 
Language) requests as well as ensure data integrity. In fact, some shops work exclusively in this mode, 
creating INSERT, UPDATE, and DELETE procedures for every table in a database. This isn't taboo and has 
its place in the complex world that is database application development. 
One way in which stored procedures are better than triggers for ensuring RI is in their ability to enforce data 
integrity even when constraints are present. If you use a stored procedure, say, to perform deletes on a given 
table, that stored procedure can ensure that no foreign key references will be broken prior to the delete and 
display the appropriate error message if necessary. All the while, a declarative foreign key constraint on the 
table can serve as a safety net by providing airtight protection against inappropriate deletions. That's not 
possible with a delete trigger. Since declarative constraints have precedence over triggers, a deletion that 
would violate referential integrity will be nabbed first by the constraint, and your app may have no control over 



Guru’s Guide to Transact-SQL 

72 

what message, if any, is displayed for the user. In the case of deletes that violate foreign key references, the 
delete trigger will never even get to process the delete because it will be rolled back by the constraint before 
the trigger ever sees it. 
It's not as though you can use only one of these methods to ensure referential integrity in the database apps 
you build—most shops have a mix. It's not unusual to see declarative RI make up the lion's share of an RI 
scheme, with triggers and stored procedures supplementing where necessary. 

Foreign Keys 

A foreign key constraint establishes a relationship between two tables. It ensures that a key value inserted or 
updated in the referencing table exists in the referenced table and that a key value in the referenced table 
cannot be deleted as long as rows in the referencing table depend on it. 

ANSI Referential Actions 

The ANSI SQL-92 specification defines four possible actions that can occur when a data modification is 
attempted: NO ACTION, SET NULL, SET DEFAULT, and CASCADE. Of these, only the first one, NO 
ACTION, is supported directly by SQL Server. For example, if you attempt an update or deletion that would 
break a foreign key reference, SQL Server rejects the change and aborts the command—the end result of 
your modification is NO ACTION. 
Though SQL Server doesn't directly support the other three referential actions, you can still implement them in 
stored procedures and triggers. Triggers, for example, are quite handy for implementing cascading deletes 
and updates. Stored procedures are the tool of choice for implementing the SET NULL and SET DEFAULT 
actions since a trigger cannot directly modify a row about to be modified. 

The NULL Exception 

SQL Server strictly enforces foreign key relationships with one notable exception. If the column in the 
referencing table allows NULL values, NULLs are allowed regardless of whether the referenced table contains 
a NULL entry. In this sense, NULLs circumvent SQL Server's declarative RI mechanism. This makes more 
sense if you think of NULL as a value that's missing rather than an actual column value. 

Unique Index Requirement 

The target of the foreign key reference must have a unique index on the columns referenced by the 
dependent table. This index can exist in the form of a primary or unique key constraint or a garden-variety 
unique key index. Regardless of how it's constructed, SQL Server's declarative RI mechanism requires the 
presence of a unique index on the appropriate columns in the referenced table. 

No TRUNCATE TABLE 

The presence of foreign key constraints on a table precludes the use of TRUNCATE TABLE. This is true 
regardless of whether deleting the rows would break a foreign key relationship. Rows deleted by TRUNCATE 
TABLE aren't recorded in the transaction log, so no row-oriented operations (such as checking foreign key 
constraints) are possible. It's precisely because TRUNCATE TABLE deals with whole pages rather than 
individual rows that it's so much faster than DELETE. 

Default Constraints 

Default constraints establish default column values. These can be more than mere constant values—they can 
consist of CASE expressions, functions, and other types of scalar expressions (but not subqueries). Here's an 
example: 
      
CREATE TABLE #testdc (c1 int DEFAULT CASE WHEN SUSER_SNAME()='JOE' THEN 1 ELSE 0 
END) 
 
INSERT #testdc DEFAULT VALUES 



Chapter 4. DDL Insights 

73 

 
SELECT * FROM #testdc 
c1 
-------- 
0 
 
     
Even though they can't contain subqueries, default constraints can be quite complex. Here's an example that 
defines a default constraint that supplies a random number default value: 
      
CREATE TABLE #rand  
(k1 int identity, 
c1 float DEFAULT ( 
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END)*(CAST(RAND() * 
100000 AS int) % 10000)*RAND() 
) 
) 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
INSERT #rand DEFAULT VALUES 
 
SELECT * FROM #rand 
 
k1          c1  
----------- ----------------------------------------- 
1           -121.89758452446999 
2           -425.61113508053933 
3           3918.1554683876675 
4           9335.2668286173412 
5           54.463890640027664 
6           -5.0169085346410522 
7           -5430.63417246276 
8           915.9835973796487 
9           28.109161998753301 
10          741.79452047043048 
 
     
The (CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END) expression randomizes the sign 
of the generated number, allowing for both positive and negative numbers, while the (CAST(RAND() * 100000 
AS int) % 10000)*RAND() expression generates an integer between 0 and 9999. 
These exotic expressions aren't limited to numeric columns. You can specify intricate default expressions for 
other types of columns as well. Here's an example that supplies a random number for a numeric column and a 
random character string for a varchar column: 
      
CREATE TABLE #rand 
(k1 int identity, 
c1 float DEFAULT ( 
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END)*(CAST(RAND() * 
100000 AS  
 

int) % 10000)*RAND() 
), 
c2 varchar(30) DEFAULT REPLICATE( 
     CHAR((CAST(RAND() * 1000 AS int) % 26) + 97) 



Guru’s Guide to Transact-SQL 

74 

     +CHAR((CAST(RAND() * 1000 AS int) % 26) + 97) 
     +CHAR((CAST(RAND() * 1000 AS int) % 26) + 97) 
     +CHAR((CAST(RAND() * 1000 AS int) % 26) + 97) 
     +CHAR((CAST(RAND() * 1000 AS int) % 26) + 97), 
     (CAST(RAND() * 100 AS int) % 6)+1) 
) 
 
k1          c1                            c2 
----------- ----------------------------- ------------------------------ 
1           643.18693338310379            mhbxmmhbxm 
2           4836.4599252204198            yagrfyagrf 
3           5720.9159041469775            hxqnphxqnphxqnphxqnp 
4           370.00067169272609            fldbmfldbm 
5           3952.0816961988294            gpmcn 
6           5106.5869548550918            iekyhiekyhiekyhiekyh 
7           -3909.4806439394761           asgdw 
8           1416.8140454855652            pweudpweudpweudpweud 
9           -3440.4833748335254           xtojg 
10          44.783535689721887            yiymb 
 
     
The technique used to build the varchar default is worth discussing. It begins by creating a string of five 
random lowercase characters (the %26 operation returns a number between 0 and 25; since 97 is the ASCII 
value of a, incrementing the number by 97 and converting it to a character value produces a character 
between a and z). It then replicates that five-character string between 1 and 6 times (the %6 operation returns 
a number between 0 and 5, which we then increment by1) to create a string with a maximum length of 
30characters—the defined width of the column. 

Dropping Objects 

Though it's not documented, you can drop multiple objects off a given type simultaneously using the 
appropriate DROP command. For example, to drop multiple tables, you can issue a single DROP TABLE 
followed by a comma-separated list of the tables to drop. This also applies to stored procedures, views, and 
other types of objects. Here's an example: 
     
USE tempdb 
GO 
CREATE PROC #test1 as 
SELECT 1 
GO 
CREATE PROC #test2 as 
SELECT 2 
GO 
CREATE PROC #test3 as 
SELECT 3 
GO 
 
DROP PROC #test1, #test2, #test3 
GO 
CREATE VIEW test1 as 
SELECT 1 '1' 
GO 
CREATE VIEW test2 as 
SELECT 2 '2' 
GO 
CREATE VIEW test3 as 
SELECT 3 '3' 
GO 
 
DROP VIEW test1, test2, test3 



Chapter 4. DDL Insights 

75 

GO 

CREATE INDEX 

There are a number of restrictions related to SQL Server indexes that bear mentioning. These are sensible 
limitations, but they're ones of which you should be aware as you design databases. 

No Bit or BLOB Indexes 

First, you can't create indexes on bit, text, ntext, or image columns. With the exception of bit, these are all 
BLOB data types, so it's logical that you can't create standard indexes on them. (For information on creating 
BLOB indexes, see Chapter 18, "Full-Text Search.") The reasoning behind not allowing bit indexes is 
also pretty sound. The purpose of an index is to locate a row within a table. SQL Server builds balanced trees 
(B-trees) using the distinct values in the index's underlying data. If a column has only two distinct values, it's 
virtually useless as an aid in locating a row. A tree representing it would have exactly two branches, though 
there could be millions of rows in the table. SQL Server would always choose to read the data sequentially 
rather than deal with an index branch with only two distinct values, so creating such an index would be a 
waste of time. That's why the server doesn't allow it—there would be no point in building a bit index—it would 
never be used. 
To grasp why a column with just two distinct values is so useless as an index key, imagine being a private 
investigator with the task of locating a missing person and having no information to go on other than the 
person's sex. Half the world's population would match your description. That's a lot of missing people! 

No Computed Column Indexes 

Another limitation of SQL Server indexing is the inability to create indexes on computed columns. SQL Server 
doesn't allow indexes on computed columns because computed columns do not actually exist in the 
database—they don't store any real data. A computed column in a table is just like one in a view—they're both 
rendered when queried, but they do not otherwise exist. Since there's no permanent data to index, indexes on 
computed columns simply aren't allowed. 

PAD_INDEX 

When used in conjunction with FILLFACTOR, CREATE INDEX's PAD_INDEX option causes the intermediate 
pages in an index to assume the same fill percentage as that specified by FILLFACTOR for the leaf nodes. 
Here's an example: 
      
IF INDEXPROPERTY(OBJECT_ID('titles'),'typeind','IsClustered') IS NOT NULL 
     DROP INDEX titles.typeind 
GO 
CREATE INDEX typeind ON titles (type) WITH PAD_INDEX, FILLFACTOR = 10 
 
     
PAD_INDEX is useful when you know in advance that you're about to load a sizable portion of new data that 
will cause page splits and row relocation in an index's intermediate pages if sufficient space isn't set aside up 
front for the newdata. 

DROP_EXISTING 

As of SQL Server 7.0, CREATE INDEX's SORTED_DATA and SORTED_DATA_REORG options are no 
longer supported. In their place is the new DROP_EXISTING option. DROP_EXISTING allows you to drop 
and recreate an index in one step. DROP_EXISTING offers special performance enhancements for clustered 
indexes in that it rebuilds dependent nonclustered indexes only once and only when the clustered key values 
change. If the data is already sorted in the correct order, DROP_EXISTING doesn't resort the data but does 
compact it using the current FILLFACTOR value (providing the same basic functionality as the old 
SORTED_DATA_REORG option). 



Guru’s Guide to Transact-SQL 

76 

Because the recreation of a clustered index and its dependent nonclustered indexes using DROP_EXISTING 
is carried out in one step, it's inherently atomic—either all the indexes will be created, or none of them will be. 
For a comparable set of DROP INDEX/CREATE INDEX statements to have this same atomicity, the whole 
operation would have to be encapsulated in a transaction. 

TEMPORARY OBJECTS 

SQL Server supports two types of temporary objects—local temporary objects and global temporary objects. 
Locals are prefixed with one pound sign (#); globals are prefixed with two (##). 

No More Unusable Temporary Objects 

As of SQL Server 7.0, the CREATE VIEW, CREATE DEFAULT, and CREATE RULE commands no longer 
support creating temporary objects. Prior to version 7.0, you could create these objects, but you couldn't do 
anything with them—not terribly useful. That behavior has now been rectified, so in order to create a view, 
default, or rule that resides in tempdb, you must first change the current database context to tempdb, then 
issue the appropriate CREATE command. 

Can't Create Objects in Other Databases 

On a related note, these three CREATE statements don't permit you to use qualified object names—the name 
you specify must be an unqualified, one-part object identifier. If you want to create an object in tempdb, you 
must first switch the database context. Of course, changing to tempdb to create an object means that you 
must fully qualify objects it references that reside elsewhere. This limitation does not apply to CREATE TABLE, 
which directly supports creating objects in other databases. 

Temporary Stored Procedures 

As with tables, you can create temporary stored procedures by prefixing the procedure name with a pound 
sign(#). You can create global temporary procedures by prefixing the name with a double pound sign (##). 
These stored procedures can then be executed just like any other stored procedure. In the case of global 
temporary procedures, they can even be executed by other connections. 

Increased Temporary Table Name Length 

Prior to 7.0, SQL Server reported an error if you attempted to specify a local temporary table name that was 
longer than 20characters. This has been fixed, and local temporary table names may now be up to 116 
characters long. 

Global Temporary Status Tables 

Global temporary tables (those prefixed with ##) are visible to all users and, as such, are not uniquely named 
for each connection. That's what distinguishes them from local temporary tables. This global visibility makes 
them ideal for status tables for long running reports and jobs. Since the table is globally accessible, the report 
or job can place in it status messages that can be viewed from other connections. Here's an example: 
      
SET NOCOUNT ON 
DECLARE @statusid int 
 
CREATE TABLE ##jobstatus 
(statusid int identity, 
start datetime, 
finish datetime NULL, 
description varchar(50), 
complete bit DEFAULT 0)  
 



Chapter 4. DDL Insights 

77 

INSERT ##jobstatus VALUES (GETDATE(),NULL,'Updating index stats for pubs',0) 
SET @statusid=@@IDENTITY 
PRINT '' 
SELECT description AS 'JOB CURRENTLY EXECUTING' FROM ##jobstatus WHERE 
statusid=@statusid 
EXEC pubs..sp_updatestats 
UPDATE ##jobstatus SET finish=GETDATE(), complete=1 
WHERE statusid=@statusid 
 
INSERT ##jobstatus VALUES (GETDATE(),NULL,'Updating index stats for northwind',0) 
SET @statusid=@@IDENTITY 
PRINT '' 
SELECT description AS 'JOB CURRENTLY EXECUTING' FROM ##jobstatus WHERE 
statusid=@statusid 
EXEC northwind..sp_updatestats 
UPDATE ##jobstatus SET finish=GETDATE(), complete=1 
WHERE statusid=@statusid 
 
SELECT * FROM ##jobstatus 
GO 
DROP TABLE ##jobstatus 
 
     
(Results abridged) 
      
JOB CURRENTLY EXECUTING 
-------------------------------------------- 
Updating index stats for pubs 
 
Updating dbo.authors 
Updating dbo.publishers 
Updating dbo.titles 
Updating dbo.employee 
 
Statistics for all tables have been updated. 
 
JOB CURRENTLY EXECUTING 
-------------------------------------------- 
Updating index stats for northwind 
 
Updating dbo.employees 
Updating dbo.categories 
Updating dbo.customers 
 
Statistics for all tables have been updated. 
sid start               finish              description                        
complete 
--- ------------------- ------------------- ---------------------------------- --
------ 
1   1999-07-24 16:26:40 1999-07-24 16:26:49 Updating index stats for pubs      1 
2   1999-07-24 16:26:41 1999-07-24 16:26:49 Updating index stats for northwind 1 

Object Naming and Dependencies 

Unqualified object names are resolved using the following process: 

1. SQL Server checks to see whether you own an object with the specified name in the current database. 
2. It then checks to see whether the DBO owns a table with the specified name in the current database. 
3. If the object name you specified is prefixed with a pound sign (#), the server checks to see whether 

you own a local temporary table or procedure with that name. 



Guru’s Guide to Transact-SQL 

78 

4. If the object name you specified is prefixed with two pound signs (##), the server checks to see 
whether a global temporary table or procedure with that name exists. 

5. If the object name is prefixed with "sp_" and you are using it in a valid context for a stored procedure, 
the server first checks the current database and then the master database to see whether you or the 
DBO owns an object with the specified name. 

6. If not one of these conditions is met, the object is not found, and an error condition results. 

Changing the Database Context Temporarily 

You can temporarily change the database context in which a system stored procedure will run by prefixing it 
with the name of the database in which you want it to execute. That is, even though the procedure resides in 
the master database, you can treat it as though it resides in a different database, like so: 
      
EXEC pubs..sp_spaceused 
 
     
Regardless of your current database at the time of execution, the stored procedure will run as though you 
were in the specified database when you ran it. 

Temporary Table Indexes 

Thanks to SQL Server 7.0's deferred name resolution, you can now refer to a temporary table's indexes by 
name within the stored procedure that creates it. In version 6.5 and earlier, you were forced to reference them 
by number. Since object names aren't translated into their underlying identifiers in SQL Server 7.0 until the 
procedure runs, you're now able to reference temporary table indexes by name in the same manner as 
indexes on permanent tables. 

Be Wary of Unusable Views 

There's a bit of a quirk in SQL Server's CREATE VIEW command that allows you to create views on tables to 
which you have no access. No message is generated and the CREATE VIEW operation appears to work fine. 
However, an error is returned if you attempt to access the view, making it basically useless. Since no compile-
time message is generated, it pays to verify that proper rights have been granted on the objects referenced by 
a view before putting it into production. 

Object Dependencies 

SQL Server's object dependency mechanism (which uses the sp_depends stored procedure) is inherently 
deficient and you shouldn't rely on it to provide accurate dependency information. The original idea behind 
sp_depends was for object dependency relationships to be stored in the sysdepends table in every database 
to ensure that dependency info was complete and readily accessible. Unfortunately, it didn't quite work out 
that way. The mechanism has a bevy of fundamental flaws. Among them: 

1. Objects outside the current database are not reported. 
2. If an object with dependents is dropped, its dependency information is dropped with it. 
3. Recreating an object that has dependents doesn't restore or recreate its dependency information. 
4. Thanks to SQL Server's deferred name resolution, you will see dependency information only for those 

objects that actually exist when an object is created. 
5. By design, the only way the information contained in sysdepends can be kept up to date is to drop 

and recreate all the objects in the database periodically in order of dependence. 

Personally, the facility has always felt rather perfunctory—like it was an afterthought that someone squeezed 
into production right before shipping without thinking it through very well. The best thing you can do with 
sp_depends is to avoid using it. That goes for the object dependency report in Enterprise Manager, as well. 
It's just as unreliable as sp_depends. 

Summary 



Chapter 4. DDL Insights 

79 

This chapter provides a number of DDL-related tips, tricks, and pointers. Some of the information and 
techniques presented here are more common; some of them are more obscure. You should see the Books 
Online for exhaustive coverage of Transact-SQL DDL. 





Chapter 5. DML Insights 

81 

Chapter 5. DML Insights 
At some point you have to decide whether you're going to be a politician or an engineer. You 
cannot be both. To be a politician is to champion perception over reality. To be an engineer is 
to make perception subservient to reality. They are opposites. You can't do both 
simultaneously.  

—H. W. Kenton 

As I said in the previous chapter, the goal of this book is not to rehash SQL Server's online documentation. 
Instead, I assume you'll refer frequently to the Books Online (BOL), as do most people who work regularly 
with the product. 
With this in mind, this chapter doesn't attempt to cover Transact-SQL DML (Data Manipulation Language) 
commands exhaustively. Instead, the goal here is to get beyond the obvious and provide DML tips, tricks, and 
techniques that go beyond the BOL. I would rather spend the limited pages in this book covering material with 
at least a modicum of originality— and hopefully even transcendence occasionally— than merely paraphrase 
what is only a couple of mouse clicks away for you anyway. 
DML statements manipulate data— they delete it, update it, add to it, and list it. Transact-SQL DML syntax 
includes the INSERT, UPDATE, and DELETE commands. Technically, SELECT is also a DML command, but 
it's so all-encompassing and so ubiquitous in mainstream Transact-SQL development that it's been allotted its 
own chapter (see Chapter6, "The Mighty SELECT Statement"). 

INSERT 

There are four basic forms of the Transact-SQL INSERT statement; each has its own nuances. Here's the first 
and simplest form: 
     
INSERT [INTO] targettable [(targetcolumn1 [,targetcolumn2])] 
VALUES (value1 [,value2...]) 
 
    
As with the other forms of the command, the INTO keyword is optional. Unless you're only supplying values 
for specific columns, the target column list is also optional. Items in the VALUES clause can range from 
constant values to subqueries. Here's a simple INSERT example: 
     
CREATE TABLE #famousjaycees 
 (jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator', 
-0045,'Took the Roman early retirement program') 
INSERT #famousjaycees VALUES ('Jesus Christ','Founded Christianity', 
0001,'Birth featured tellurian, ruminative, and tutelary visitors') 
INSERT #famousjaycees VALUES ('John Calhoun','Congressman', 
1825,'Served as VP under two U.S. presidents') 
INSERT #famousjaycees VALUES ('Joan Crawford','Actress', 
1923,'Appeared in everything from Grand Hotel to Trog') 
INSERT #famousjaycees VALUES ('James Cagney','Actor', 
1931,'This prototypical gangster made a dandy Yankee') 
INSERT #famousjaycees VALUES ('Jim Croce','Singer/songwriter', 
1972,'Would that time were in a bottle because you left us way too soon') 
INSERT #famousjaycees VALUES ('Joe Celko','Author/lecturer', 
1987,'Counts eating and living indoors among his favorite hobbies') 
 
SELECT * FROM #famousjaycees 
 



Guru’s Guide to Transact-SQL 

82 

jc             occupation                   becamefamous     notes 
-------------  ------------------------     ------------      
 

--------------------------------- 
Julius Caesar  Military leader/dictator     -45              Took the Roman early  
 

retirement 
                                                             program 
Jesus Christ   Founded Christianity         1                Birth featured 
tellurian, 
                                                             ruminative, and 
tutelary  
 

visitors 
John Calhoun   Congressman                  1825             Served as VP under 
two U.S. 
                                                             presidents 
Joan Crawford  Actress                      1923             Appeared in 
everything from  
 

Grand 
                                                             Hotel to Trog 
James Cagney   Actor                        1931             This prototypical 
gangster  
 

made a 
                                                             dandy Yankee 
Jim Croce      Singer/songwriter            1972             Would that time were 
in a  
 

bottle 
                                                             because you left us 
way too  
 

soon 
Joe Celko      Author/lecturer              1987             Counts eating and 
living  
 

indoors 
                                                             among his favorite 
hobbies 
 
    

DEFAULT and NULL 

To insert a default value for columns with default constraints, attached default objects, those that allow NULL 
values, or timestamp columns, use the DEFAULT keyword in place of an actual value. DEFAULT causes 
columns with associated default constraints to receive their default values during the INSERT. When 
DEFAULT is specified with a NULLable column that doesn't otherwise have a default value, the column is set 
to NULL. Timestamp columns get the database's next timestamp value. 
To specify explicitly a NULL value for a column that allows NULLs, use the NULL keyword. If you specify 
NULL for a column that doesn't allow NULLs (or DEFAULT for a NOT NULL column without a default), your 
INSERT will fail. Here's an example that illustrates DEFAULT and NULL: 
      
INSERT #famousjaycees 
VALUES ('Julius Caesar','Military leader/dictator',DEFAULT,NULL) 
SELECT * FROM #famousjaycees 
 
     



Chapter 5. DML Insights 

83 

(Results abridged) 
      
jc            occupation               becamefamous  notes 
------------- ------------------------ ------------  --------------------------- 
Julius Caesar Military leader/dictator 0             NULL 
 
     

SET IDENTITY_INSERT 

Note that, contrary to the Books Online, you're not always required to supply a value for every column in the 
target column list (or every column in the table if the INSERT doesn't have a column list). Identity columns 
may be safely omitted from any INSERT statement— even those with target column lists. This is true 
regardless of where the identity column appears in the table. Here's an example: 
      
CREATE TABLE #famousjaycees 
(jcid int identity,    -- Here, we've added an identity column 
jc varchar(15), 
occupation varchar(25), 
becamefamous int DEFAULT 0, 
notes text NULL 
) 
-- Notice that we omit it from list of values 
INSERT #famousjaycees VALUES ('Julius Caesar','Military 
leader/dictator',DEFAULT,NULL) 
SELECT * FROM #famousjaycees 
 
    (Results abridged) 
 
jcid        jc            occupation               becamefamous notes 
----------- ------------- ------------------------ ------------ ---------------- 
1           Julius Caesar Military leader/dictator 0            NULL 
 
     
Not only are identity columns optional, but you are not allowed to specify them unless the SET 
IDENTITY_INSERT option has been enabled for the table. SET IDENTITY_INSERT allows values to be 
specified for identity columns. It's handiest when loading data into a table that has dependent foreign keys 
referencing its identity column. 
Unlike timestamp columns and columns with defaults, you may not specify a default value for an identity 
column using the DEFAULT keyword. You can't include a value of any type for an identity column unless SET 
IDENTITY_INSERT has been enabled. Here's an example that features SET IDENTITY_INSERT: 
      
SET IDENTITY_INSERT #famousjaycees ON 
INSERT #famousjaycees (jcid,jc,occupation,becamefamous,notes) 
VALUES (1,'Julius Caesar','Military leader/dictator',DEFAULT,NULL) 
SET IDENTITY_INSERT #famousjaycees OFF 
 
SELECT * FROM #famousjaycees 
 
jcid        jc            occupation               becamefamous notes 
----------- ------------- ------------------------ ------------ ---------------- 
1           Julius Caesar Military leader/dictator 0            NULL 
 
     
Note the inclusion of a target column list— it's required when you specify a value for an identity column. 

INSERT...DEFAULT VALUES 



Guru’s Guide to Transact-SQL 

84 

The second form of the command allows default values to be specified for all columns at once. It looks like 
this: 
      
INSERT [INTO] targettable DEFAULT VALUES 
     
Here's a simple example: 
      
CREATE TABLE #famousjaycees 
 (jc varchar(15) DEFAULT '', 
 occupation varchar(25) DEFAULT 'Rock star', 
 becamefamous int DEFAULT 0, 
 notes text NULL 
 ) 
 
INSERT #famousjaycees DEFAULT VALUES 
SELECT * FROM #famousjaycees 
 
jc           occupation  becamefamous  notes 
-----------  ----------  ------------  ----------------------------------------- 
             Rock star  0            NULL 
     
Here, default values are specified for all the table's columns at once. As with the first form, if you use 
DEFAULT VALUES with columns that do not have defaults of some type defined, your INSERT will fail. Note 
that a target column list is illegal with DEFAULT VALUES. If you supply one (even if it includes all the columns 
in the table), your INSERT will fail. 
As with the DEFAULT value keyword, DEFAULT VALUES supplies NULLs for NULLable fields without 
defaults. And no special handling is required to use it with identity columns— it works as you would expect. 

INSERT...SELECT 

The third form of the INSERT command retrieves values for the table from a SELECT statement. Here's the 
syntax: 
      
INSERT [INTO] targettable [(targetcolumn1 [,targetcolumn2])] 
 
     
      
SELECT sourcecolumn1 [,sourcecolumn2] 
 
     
      
 [FROM sourcetable...] 
 
     
Since Transact-SQL's SELECT statement doesn't require that you include a FROM clause, the data may or 
may not come from another table. Here's an example: 
      
CREATE TABLE #famousjaycees2 
(jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
INSERT #famousjaycees2 
SELECT * FROM #famousjaycees 
UNION ALL 
SELECT 'Johnny Carson','Talk show host',1962,'Began career as The Great Carsoni' 
 
SELECT * FROM #famousjaycees2 
 



Chapter 5. DML Insights 

85 

jc                occupation                   becamefamous     notes 
-------------     ------------------------     ------------     ---------------- 
Julius Caesar     Military leader/dictator     -45              Took the Roman 
early  
 

retirement 
                                                                program 
Jesus Christ      Founded Christianity         1                Birth featured 
tellurian,  
 

                
                                                                ruminative, and 
tutelary  
 

visitors 
John Calhoun      Congressman                  1825             Served as VP 
under two  
 

U.S.                 
                                                                presidents 
Joan Crawford     Actress                      1923             Appeared in 
everything  
 

from Grand                 
                                                                Hotel to Trog 
James Cagney      Actor                        1931             This prototypical  
 

gangster made a                 
                                                                dandy Yankee 
Jim Croce         Singer/songwriter            1972             Would that time 
were in a  
 

bottle                 
                                                                because you left 
us way  
 

too soon 
Joe Celko         Author/lecturer              1987             Counts eating and 
living  
 

indoors                 
                                                                among his 
favorite hobbies 
Johnny Carson     Talk show host               1962             Began career as 
The Great  
 

Carsoni 
 
     
This example uses a UNION to add a row to those already in the source table. 

INSERT...EXEC 

The fourth form of the INSERT command allows the result set returned by a stored procedure or a SQL 
statement to be "trapped" in a table. Here's its syntax: 
      
INSERT [INTO] targettable [(targetcolumn1 [,targetcolumn2])] 
EXEC sourceprocedurename 
EXEC('SQL statement') 
 



Guru’s Guide to Transact-SQL 

86 

     
And here's an example of how to use it: 
      
CREATE TABLE     #sp_who 
(spid            int, 
 status          varchar(30), 
 loginame        sysname, 
 hostname        sysname, 
 blk             int, 
 dbname          sysname, 
 cmd             varchar(16)) 
INSERT #sp_who 
EXEC sp_who 
 
SELECT * FROM #sp_who 
 
     
(Results abridged) 
      
spid        status     loginame hostname blk dbname cmd 
----------- ---------- -------- -------- --- ------ ---------------- 
1           sleeping   sa                0   master SIGNAL HANDLER 
2           background sa                0   master LOCK MONITOR 
3           background sa                0   master LAZY WRITER 
4           sleeping   sa                0   master LOG WRITER 
5           sleeping   sa                0   master CHECKPOINT SLEEP 
6           background sa                0   master AWAITING COMMAND 
 
     
The ability to load the results of a SQL command into a table affords a tremendous amount of power and 
flexibility in terms of formatting the result set, scanning it for a particular row, or performing other tasks based 
on it. 

Extended Procedures 

This facility also supports loading the results of extended procedures into tables, though only output from the 
main thread of the extended procedure is inserted. Here's an example using an extended procedure: 
       
USE master 
IF OBJECT_ID('sp_listfile') IS NOT NULL 
 DROP PROC sp_listfile 
GO 
CREATE PROCEDURE sp_listfile @filename sysname 
AS 
IF (@filename IS NULL) RETURN(-1) 
 
DECLARE @execstr varchar(8000) 
 
SET @execstr='TYPE '+@filename 
 
CREATE TABLE #filecontents 
 
(output             varchar(8000)) 
 
INSERT #filecontents 
EXEC master..xp_cmdshell @execstr 
 
SELECT * FROM #filecontents 
DROP TABLE #filecontents 
GO 



Chapter 5. DML Insights 

87 

 
      
(Results abridged) 
       
EXEC sp_listfile 'D:\MSSQL7\INSTALL\README.TXT' 
output 
-------------------------------------------------------------------------------- 
**************************************************************** 
SQL SERVER 7.0 README.TXT 
*************************************************************** 
This file contains important information that you should read 
prior to installing Microsoft(R) SQL Server(TM) version 7.0. 
It also contains information about the following SQL Server 
topics that does not appear in SQL Server Books Online: 
      

INSERT and Errors 

One interesting characteristic of the INSERT command is its imperviousness to fatal command batch errors. 
An INSERT that fails due to a constraint or invalid duplicate value will not cause the command batch to fail. If 
a group of INSERTs are executed within a command batch and one of them fails, the other INSERTs will not 
be affected. This is as it should be; otherwise, loading large amounts of data using INSERT statements would 
be greatly complicated. 
If you want the whole command batch to fail when an INSERT fails, check the ROR automatic variable after 
each INSERT and respond accordingly. Here's an example: 
      
CREATE TABLE #famousjaycees 
(jc varchar(15) UNIQUE,   -- Define a UNIQUE constraint 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator', 
-0045,'Took the Roman early retirement program') 
IF (@@ERROR <>0) GOTO LIST 
-- Now attempt to insert a duplicate value 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator', 
-0045,'Took the Roman early retirement program') 
IF (ROR <>0) GOTO LIST 
INSERT #famousjaycees VALUES ('Jesus Christ','Founded Christianity', 
0001,'Birth featured tellurian, ruminative, and tutelary visitors') 
IF (@@ERROR <>0) GOTO LIST 
INSERT #famousjaycees VALUES ('John Calhoun','Congressman', 
1825,'Served as VP under two U.S. presidents') 
IF (@@ERROR <>0) GOTO LIST 
INSERT #famousjaycees VALUES ('Joan Crawford','Actress', 
1923,'Appeared in everything from Grand Hotel to Trog') 
IF (@@ERROR <>0) GOTO LIST 
INSERT #famousjaycees VALUES ('James Cagney','Actor', 
1931,'This prototypical gangster made a dandy Yankee') 
IF (@@ERROR <>0) GOTO LIST 
INSERT #famousjaycees VALUES ('Jim Croce','Singer/songwriter', 
1972,'Would that time were in a bottle because you left us way too soon') 
IF (@@ERROR <>0) GOTO LIST 
INSERT #famousjaycees VALUES ('Joe Celko','Author/lecturer', 
1987,'Counts eating and living indoors among his favorite hobbies') 
 
LIST: 
SELECT * FROM #famousjaycees 
Server: Msg 2627, Level 14, State 2, Line 0 



Guru’s Guide to Transact-SQL 

88 

Violation of UNIQUE KEY constraint 'UQ__#famousjaycees__160F4887'. Cannot insert 
duplicate key in object 
'#famousjaycees_________________________________________________________________ 
_____________________________________00000000002E'. 
The statement has been terminated. 
 
jc            occupation               becamefamous notes 
------------- ------------------------ ------------ -------------------- 
Julius Caesar Military leader/dictator -45          Took the Roman early 
                                                    retirement program 
 
     

Using INSERT to Remove Duplicate Rows 

On a related note, another interesting aspect of the INSERT command is its ability to remove duplicate rows 
by way of a unique index with the IGNORE_DUP_KEY option set. That is, if you insert a set of rows into a 
table with an IGNORE_DUP_KEY index, rows that violate the index's unique constraint will be rejected 
without causing the other inserts to fail. So, in order to remove duplicate rows from a table, you can create a 
work table that's identical in structure to it, then build an IGNORE_DUP_KEY index over the second table that 
includes all the first table's candidate keys and insert the table's rows into it. Here's an example: 
      
CREATE TABLE #famousjaycees 
(jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator', 
-0045,'Took the Roman early retirement program') 
-- Include a duplicate value for the sake of illustration 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator', 
-0045,'Took the Roman early retirement program') 
INSERT #famousjaycees VALUES ('Jesus Christ','Founded Christianity', 
0001,'Birth featured tellurian, ruminative, and tutelary visitors') 
INSERT #famousjaycees VALUES ('John Calhoun','Congressman', 
1825,'Served as VP under two U.S. presidents') 
INSERT #famousjaycees VALUES ('Joan Crawford','Actress', 
1923,'Appeared in everything from Grand Hotel to Trog') 
INSERT #famousjaycees VALUES ('James Cagney','Actor', 
1931,'This prototypical gangster made a dandy Yankee') 
INSERT #famousjaycees VALUES ('Jim Croce','Singer/songwriter', 
1972,'Would that time were in a bottle because you left us way too soon') 
INSERT #famousjaycees VALUES ('Joe Celko','Author/lecturer', 
1987,'Counts eating and living indoors among his favorite hobbies') 
 
CREATE TABLE #famousjaycees2 
(jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
CREATE UNIQUE INDEX removedups ON #famousjaycees2 (jc,occupation,becamefamous) 
WITH IGNORE_DUP_KEY 
INSERT #famousjaycees2 
SELECT * FROM #famousjaycees 
SELECT * FROM #famousjaycees2 
 
Server: Msg 3604, Level 16, State 1, Line 0 
Duplicate key was ignored. 



Chapter 5. DML Insights 

89 

jc            occupation               becamefamous notes 
------------- ------------------------ ------------ ---------------------------- 
Julius Caesar Military leader/dictator -45          Took the Roman early 
retirement 
                                                    program 
Jesus Christ  Founded Christianity     1            Birth featured tellurian, 
                                                    ruminative, and tutelary 
visitors 
John Calhoun  Congressman              1825         Served as VP under two U.S. 
                                                    presidents 
Joan Crawford Actress                  1923         Appeared in everything from 
Grand 
                                                    Hotel to Trog 
James Cagney  Actor                    1931         This prototypical gangster 
made a 
                                                    dandy Yankee 
Jim Croce     Singer/songwriter        1972         Would that time were in a 
bottle 
                                                    because you left us way too 
soon 
Joe Celko     Author/lecturer          1987         Counts eating and living 
indoors 
                                                    among his favorite hobbies 
 
     
Notice that we can't include the notes column in the index because, as a text column, it's not a valid index key 
candidate. This notwithstanding, the inclusion of the other columns still provides a reasonable assurance 
against duplicates. 

INSERT and Clustered Indexes 

A table without a clustered index is known as a heap table. Rows inserted into a heap table are inserted 
wherever there's room in the table. If there's no room on any of the table's existing pages, a new page is 
created and the rows are inserted onto it. This can create a hotspot at the end of the table (meaning that 
users attempting simultaneous INSERTs on the table will vie for the same resources). To alleviate the 
possibility of this happening, you should always establish clustered indexes for the tables you build. Consider 
using a unique key that distributes new rows evenly across the table. Avoid automatic, sequential, clustered 
index keys as they can cause hotspots, too. Going from a heap table to a clustered index with a monotonically 
increasing key is not much of an improvement. Also avoid nonunique clustered index keys. Prior to SQL 
Server 7.0, they caused the creation of overflow pages as new rows with duplicate keys were inserted, 
slowing the operation and fragmenting the table. Beginning with version 7.0, a "uniqueifier" (a four-byte 
sequence number) is appended to each duplicate clustered index key in order to force it to be unique. 
Naturally, this takes some processing time and is unnecessary if you use unique keys in the first place. As 
with all indexing, try to use keys that balance your need to access the data with your need to modify it. 

BULK INSERT 

In addition to standard INSERTs, Transact-SQL supports bulk data loading via the BULK INSERT command. 
BULK INSERT uses the BCP (Bulk Copy Program) facility that's been available in SQL Server for many years. 
Prior to its addition to Transact-SQL, developers called the external bcp utility using xp_cmdshell or accessed 
the Distributed Management Objects (DMO) API in order to bulk load data from within Transact-SQL. With the 
addition of the BULK INSERT command to the language itself, this is now largely unnecessary. Here's an 
example: 
      
CREATE TABLE famousjaycees 
(jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 



Guru’s Guide to Transact-SQL 

90 

 
-- Assume the file was previously created 
BULK INSERT famousjaycees FROM 'D:\GG_TS\famousjaycees.bcp' 
 
SELECT * FROM famousjaycees 
 
jc              occupation                   becamefamous     notes 
-------------   ------------------------     ------------      
 

--------------------------------- 
Julius Caesar   Military leader/dictator     -45              Took the Roman 
early  
 

retirement 
                                                              program 
Jesus Christ    Founded Christianity         1                Birth featured 
tellurian, 
                                                              ruminative, and 
tutelary  
 

visitors 
John Calhoun    Congressman                  1825             Served as VP under 
two U.S. 
                                                              presidents 
Joan Crawford   Actress                      1923             Appeared in 
everything from  
 

Grand 
                                                              Hotel to Trog 
James Cagney    Actor                        1931             This prototypical 
gangster  
 

made a 
                                                              dandy Yankee 
Jim Croce       Singer/songwriter            1972             Would that time 
were in a  
 

bottle 
                                                              because you left us 
way too  
 

soon 
Joe Celko       Author/lecturer              1987             Counts eating and 
living  
 

indoors 
                                                              among his favorite 
hobbies 
 
     

BULK INSERT and Triggers 

BULK INSERT circumvents SQL Server's trigger mechanism. When you insert rows via BULK INSERT, 
INSERT triggers do not fire. This is because SQL Server's BCP facility avoids logging inserted rows in the 
transaction log if possible. This means that there's simply no opportunity for triggers to fire. There is, however, 
a workaround that involves using a faux update to force them to fire. See the section "Using UPDATE to 
Check Constraints" later in the chapter for more information. 

BULK INSERT and Constraints 



Chapter 5. DML Insights 

91 

Declarative constraints, by contrast, can be enforced via the inclusion of BULK INSERT's 
CHECK_CONSTRAINTS option. By default, except for UNIQUE constraints, the target table's declarative 
constraints are ignored, so include this option if you want them enforced during the bulk load operation. Note 
that this can slow down the operation considerably. 

BULK INSERT and Identity Columns 

Another salient point regarding BULK INSERT is the fact that, by default, it causes identity column values to 
be regenerated as data is loaded. Obviously, if you're loading data into a table with dependent foreign key 
references, this could be catastrophic. To override this behavior, include BULK INSERT's KEEPIDENTITY 
keyword. 

UPDATE 

UPDATE has two basic forms. One is used to update a table using static values, the other to update it using 
values from another table. Here's an example of the first form: 
     
UPDATE #famousjaycees 
SET jc='Johnny Cash', 
   occupation='Singer/songwriter', 
   becamefamous=1955, 
   notes='Began career selling appliances door-to-door' 
WHERE jc='John Calhoun' 
 
SELECT * FROM #famousjaycees 
 
jc              occupation                becamefamous     notes 
-------------   ------------------------  ------------      
 

--------------------------------- 
Julius Caesar   Military leader/dictator  -45              Took the Roman early 
retirement 
                                                           program 
Jesus Christ    Founded Christianity      1                Birth featured 
tellurian, 
                                                           ruminative, and 
tutelary  
 

visitors 
Johnny Cash     Singer/songwriter         1955             Began career selling 
appliances 
                                                           door-to-door 
Joan Crawford   Actress                   1923             Appeared in everything 
from  
 

Grand 
                                                           Hotel to Trog 
James Cagney    Actor                     1931             This prototypical 
gangster  
 

made a 
                                                           dandy Yankee 
Jim Croce       Singer/songwriter         1972             Would that time were 
in a  
 

bottle 
                                                           because you left us 
way too  
 

soon 



Guru’s Guide to Transact-SQL 

92 

Joe Celko       Author/lecturer           1987             Counts eating and 
living  
 

indoors 
                                                           among his favorite 
hobbies 
 
    
And here's one of the second: 
     
CREATE TABLE #semifamousjaycees 
(jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
INSERT #semifamousjaycees VALUES ('John Candy','Actor', 
1981,'Your melliferous life was all-too brief') 
INSERT #semifamousjaycees VALUES ('John Cusack','Actor', 
1984,'Uttered, "Go that way, very fast"') 
INSERT #semifamousjaycees VALUES ('Joan Cusack','Actress', 
1987,'Uncle Fester"s avaricious femme fatale') 
 
UPDATE f 
SET jc=s.jc, 
  occupation=s.occupation, 
  becamefamous=s.becamefamous, 
  notes=s.notes 
FROM #famousjaycees f 
JOIN #semifamousjaycees s ON (f.becamefamous=s.becamefamous) 
SELECT * FROM #famousjaycees 
 
jc             occupation                   becamefamous     notes 
-------------  ------------------------     ------------      
 

--------------------------------- 
Julius Caesar  Military leader/dictator     -45              Took the Roman early  
 

retirement 
                                                             program 
Jesus Christ   Founded Christianity         1                Birth featured 
tellurian, 
                                                             ruminative, and 
tutelary  
 

visitors 
John Calhoun   Congressman                  1825             Served as VP under 
two U.S. 
                                                             presidents 
Joan Crawford  Actress                      1923             Appeared in 
everything from  
 

Grand 
                                                             Hotel to Trog 
James Cagney   Actor                        1931             This prototypical 
gangster  
 

made a 
                                                             dandy Yankee 
Jim Croce      Singer/songwriter            1972             Would that time were 
in a  



Chapter 5. DML Insights 

93 

 
bottle 
                                                             because you left us 
way too  
 

soon 
Joan Cusack    Actress                      1987             Uncle Fester's 
avaricious  
 

femme 
                                                             fatale 
 
    
Notice the use of an alias to reference the target of the UPDATE. The actual table is named in the FROM 
clause. Also note the join between the two tables. It's constructed using normal ANSI SQL-92 join syntax and 
allows values to be easily located in the UPDATE's source table. 

The Halloween Problem 

The situation where an updated row moves within the list of rows being updated during the update, and is 
therefore changed erroneously multiple times, is known as the Halloween Problem. In the early days of 
DBMSs, this was a common occurrence because vendors usually performed a group of updates one row at a 
time. If the update changed the key column on which the rows were sorted, it was likely that a row would 
move elsewhere in the group of rows, perhaps to a location further down in the group, where it would be 
changed yet again. For example, consider this code: 
      
UPDATE sales 
SET qty=qty*1.5 
 
     
Provided that the server didn't otherwise handle it and provided that the result set was sorted in descending 
order on the qty column, each update could cause the row to move further down in the result set, resulting in 
it being updated repeatedly as the UPDATE traversed the table— a classic case of the Halloween Problem. 
Fortunately, SQL Server recognizes situations where the Halloween Problem can occur and automatically 
handles them. The Row Operations Manager ascertains when encountering row movement problems and 
other types of transient errors such as the Halloween Problem is likely (updates to primary keys and foreign 
keys are examples) and takes steps to avoid them. 

NOTE 

Note Note that deferred updates, the approach SQL Server took to deal with row movement 
problems prior to version7.0, are no longer used. In many cases, these were more trouble than 
they were worth, and many SQL Server practitioners are glad to see them go. 

 

It might seem likely that the combination of a primary key update and an update trigger would increase the 
likelihood of the Halloween Problem occurring. After all, the trigger would see the data as it's being changed, 
right? Wrong. SQL Server triggers fire once per statement, not per row, and have access only to the before 
and after picture of the data, not to any of the interim stages it might have gone through during the update. 

This may seem counterintuitive since triggers appear to execute in conjunction with the DML statement that 
fires them, but that's not the case. A trigger's code is not compiled into the execution plan for the INSERT, 
UPDATE, or DELETE that fires it. Rather, it's compiled and cached separately so that it's available for reuse 
regardless of what causes it to fire. The execution plan for a DML statement branches to any triggers it fires 
just before it terminates, after its work is otherwise complete. 



Guru’s Guide to Transact-SQL 

94 

Note that this isn't true of constraints. Steps are added directly to the DML execution plan for each of a table's 
constraints. 

UPDATE and CASE 

You can use a CASE expression to code some fairly sophisticated changes to a table via UPDATE. Using 
CASE allows you to embed program logic in the UPDATE statement that would otherwise require arcane 
function expressions or separate UPDATEs and flow-control syntax. Here's an example: 
      
SELECT title_id, type, price FROM titles 
 
title_id type         price 
-------- ------------ --------------------- 
BU1032   business     19.9900 
BU1111   business     11.9500 
BU2075   business     2.9900 
BU7832   business     19.9900 
MC2222   mod_cook     19.9900 
MC3021   mod_cook     2.9900 
MC3026   UNDECIDED    NULL 
PC1035   popular_comp 22.9500 
PC8888   popular_comp 20.0000 
PC9999   popular_comp NULL 
PS1372   psychology   21.5900 
PS2091   psychology   10.9500 
PS2106   psychology   7.0000 
PS3333   psychology   19.9900 
PS7777   psychology   7.9900 
TC3218   trad_cook   20.9500 
TC4203   trad_cook   11.9500 
TC7777   trad_cook   14.9900 
 
UPDATE titles 
SET price=price*CASE title WHEN 'business' THEN 1.5 
                           WHEN 'mod_cook' THEN .8 
                           WHEN 'trad_cook' THEN .6 
                           WHEN 'psychology' THEN .5 
                           WHEN 'popular_comp' THEN 1.75 ELSE .75 
    END 
 
     
      
SELECT title_id, type, price FROM titles 
 
title_id type         price 
-------- ------------ --------------------- 
BU1032   business     14.9925 
BU1111   business     8.9625 
BU2075   business     2.2425 
BU7832   business     14.9925 
MC2222   mod_cook     14.9925 
MC3021   mod_cook     2.2425 
MC3026   UNDECIDED    NULL 
PC1035   popular_comp 17.2125 
PC8888   popular_comp 15.0000 
PC9999   popular_comp NULL 
PS1372   psychology   16.1925 
PS2091   psychology   8.2125 
PS2106   psychology   5.2500 



Chapter 5. DML Insights 

95 

PS3333   psychology   14.9925 
PS7777   psychology   5.9925 
TC3218   trad_cook    15.7125 
TC4203   trad_cook    8.9625 
TC7777   trad_cook    11.2425 
 
     

Using UPDATE to Check Constraints 

If you use BULK INSERT or any of the other bulk load facilities that SQL Server provides to append data to a 
table that has an associated INSERT trigger, you'll notice that the trigger does not fire. Also, even though 
BULK INSERT can be made to respect declarative constraints, you may find that this slows the operation 
down to a relative crawl. It will probably be significantly faster to ignore the table's constraints during the load. 
One option here is to check constraints and triggers manually after the operation. This requires separate code 
for each constraint and trigger and a lot of effort not to make any mistakes. Another, and perhaps better, way 
is to issue a bogus update against the table in question once the operation completes. This fake update 
simply sets each column's value to itself. This causes triggers to fire and constraints to be checked. If any of 
the rows contain bad data, the UPDATE will fail. Here's an example: 
      
CREATE TABLE famousjaycees 
(jc varchar(15) CHECK (LEFT(jc,3)<>'Joe'),    -- Establish a check constraint 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
-- Assume the file was previously created 
BULK INSERT famousjaycees FROM 'D:\GG_TS\famousjaycees.bcp' 
 
-- Check that the miscreant is in place 
SELECT * FROM famousjaycees 
 
-- Now do the faux update 
UPDATE famousjaycees 
SET jc=jc, occupation=occupation, becamefamous=becamefamous, notes=notes 
     
      
jc             occupation                becamefamous  notes 
-------------  ------------------------  ------------  --------------------------
------- 
Julius Caesar  Military leader/dictator  -45           Took the Roman early 
retirement 
                                                       program 
Jesus Christ   Founded Christianity      1             Birth featured tellurian,  
                                                       ruminative, and tutelary 
visitors 
John Calhoun   Congressman               1825          Served as VP under two U.S. 
                                                       presidents 
Joan Crawford  Actress                   1923          Appeared in everything 
from Grand 
                                                       Hotel to Trog 
James Cagney   Actor                     1931          This prototypical gangster 
made a 
                                                       dandy Yankee 
Jim Croce      Singer/songwriter         1972          Would that time were in a 
bottle 
                                                       because you left us way 
too soon 
Joe Celko      Author/lecturer           1987          Counts eating and living 
indoors 



Guru’s Guide to Transact-SQL 

96 

                                                       among his favorite hobbies 
 
Server: Msg 547, Level 16, State 1, Line 1 
UPDATE statement conflicted with COLUMN CHECK constraint 'CK__famousjaycee__ 
jc__5E8A0973'. The conflict occurred in database 'tempdb', table 'famousjaycees', 
column 'jc'. 
The statement has been terminated. 
     
As you can see, the error message indicates the database, table, and column in which the bad data resides, 
so you have some basic information to begin locating the invalid data. 

Limiting the Number of Rows Affected by an UPDATE 

You can use the TOP n option of the SELECT command to limit the number of rows affected by an UPDATE. 
This SELECT is embedded as a derived table in the UPDATE's FROM clause and joined with the target table, 
like so: 
      
-- Establish what the table looks like before the update (limit to 10 for brevity) 
SELECT TOP 10 au_lname, au_fname, contract FROM authors ORDER BY au_id 
 
UPDATE a 
SET a.contract=0 
FROM authors a JOIN (SELECT TOP 5 au_id FROM authors ORDER BY au_id) u ON 
(a.au_id=u.au_id) 
 
-- Now show the table afterward (limit to 10 for brevity) 
SELECT TOP 10 au_lname, au_fname, contract FROM authors ORDER BY au_id 
 
au_lname                                 au_fname             contract 
---------------------------------------- -------------------- -------- 
White                                    Johnson              1 
Green                                    Marjorie             1 
Carson                                   Cheryl               1 
O'Leary                                  Michael              1 
Straight                                 Dean                 1 
Smith                                    Meander              0 
Bennet                                   Abraham              1 
Dull                                     Ann                  1 
Gringlesby                               Burt                 1 
Locksley                                 Charlene             1 
 
     
      
au_lname                                 au_fname             contract 
---------------------------------------- -------------------- -------- 
White                                    Johnson              0 
Green                                    Marjorie             0 
Carson                                   Cheryl               0 
O'Leary                                  Michael              0 
Straight                                 Dean                 0 
Smith                                    Meander              0 
Bennet                                   Abraham              1 
Dull                                     Ann                  1 
Gringlesby                               Burt                 1 
Locksley                                 Charlene             1 
 
     

Swapping Column Values with UPDATE 



Chapter 5. DML Insights 

97 

A nifty side effect of the fact that UPDATE can set local variables at the same time it sets column values is 
that you can use this variable in the update itself. Since Transact-SQL is processed left to right, you can set 
the variable early in the SET list, then reuse it later in the same update to supply a column value. For example, 
you could use it to swap the values of two columns, like so: 
      
CREATE TABLE #samples 
(k1    int identity, 
 samp1 float DEFAULT (rand()*1000), 
 samp2 float DEFAULT (rand()*1000) 
) 
 
INSERT #samples DEFAULT VALUES 
INSERT #samples DEFAULT VALUES 
INSERT #samples DEFAULT VALUES 
INSERT #samples DEFAULT VALUES 
INSERT #samples DEFAULT VALUES 
INSERT #samples DEFAULT VALUES 
INSERT #samples DEFAULT VALUES 
 
SELECT * FROM #samples 
 
DECLARE @swap float 
 
UPDATE #samples 
SET @swap=samp1, 
  samp1=samp2, 
  samp2=@swap 
SELECT * FROM #samples 
 
k1          samp1                                       samp2 
----------- ------------------------------------------- ------------------------ 
1           696.54331299037415                          985.40886709404242 
2           632.62866718204532                          312.32844166524393 
3           85.737145980088201                          997.17767926283261 
4           198.09202551602621                          398.36384650194992 
5           117.03223448722392                          240.39329824544191 
6           853.0948352692468                           373.61420498632617 
7           597.28655124120712                          606.33492026963836 
 
     
      
k1          samp1                                       samp2 
----------- ------------------------------------------- ------------------------ 
1           985.40886709404242                          696.54331299037415 
2           312.32844166524393                          632.62866718204532 
3           997.17767926283261                          85.737145980088201 
4           398.36384650194992                          198.09202551602621 
5           240.39329824544191                          117.03223448722392 
6           373.61420498632617                          853.0948352692468 
7           606.33492026963836                          597.28655124120712 
 
     
This trick is cool enough, but because column values referenced by an UPDATE statement always reflect 
their values before the operation, you don't need an intermediate variable in order to swap them. You can just 
simply assign the columns to one another, like this: 
      
 
UPDATE #samples 
SET samp1=samp2, 
  samp2=samp1 
 



Guru’s Guide to Transact-SQL 

98 

k1          samp1                                       samp2 
----------- ------------------------------------------- ------------------------ 
1           696.54331299037415                          985.40886709404242 
2           632.62866718204532                          312.32844166524393 
3           85.737145980088201                          997.17767926283261 
4           198.09202551602621                          398.36384650194992 
5           117.03223448722392                          240.39329824544191 
6           853.0948352692468                           373.61420498632617 
7           597.28655124120712                          606.33492026963836 
 
k1          samp1                                       samp2 
----------- ------------------------------------------- ------------------------ 
1           985.40886709404242                          696.54331299037415 
2           312.32844166524393                          632.62866718204532 
3           997.17767926283261                          85.737145980088201 
4           398.36384650194992                          198.09202551602621 
5           240.39329824544191                          117.03223448722392 
6           373.61420498632617                          853.0948352692468 
7           606.33492026963836                          597.28655124120712 
 
     

UPDATE and Cursors 

You can use the UPDATE command to modify rows returned by updatable cursors. This is facilitated via 
UPDATE's WHERE CURRENT OF clause. Here's an example: 
      
CREATE TABLE #famousjaycees 
 (jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator', 
-0045,'Took the Roman early retirement program') 
INSERT #famousjaycees VALUES ('Jesus Christ','Founded Christianity',0001,'Birth 
featured tellurian, ruminative, and tutelary visitors') 
INSERT #famousjaycees VALUES ('John Calhoun','Congressman',1825,'Served as VP 
under two U.S. presidents') 
INSERT #famousjaycees VALUES ('Joan Crawford','Actress',1923,'Appeared in 
everything from Grand Hotel to Trog') 
INSERT #famousjaycees VALUES ('James Cagney','Actor',1931,'This prototypical 
gangster made a dandy Yankee') 
INSERT #famousjaycees VALUES ('Jim Croce','Singer/songwriter',1972,'Would that 
time were in a bottle because you left us way too soon') 
INSERT #famousjaycees VALUES ('Joe Celko','Author/lecturer',1987,'Counts eating 
and living indoors among his favorite hobbies') 
 
DECLARE jcs CURSOR DYNAMIC FOR SELECT * FROM #famousjaycees FOR UPDATE 
OPEN jcs 
 
FETCH RELATIVE 3 FROM jcs 
 
UPDATE #famousjaycees 
SET jc='Johnny Cash', 
   occupation='Singer/songwriter', 
   becamefamous=1955, 
   notes='Began career selling appliances door-to-door' 
WHERE CURRENT OF jcs 
 



Chapter 5. DML Insights 

99 

CLOSE jcs 
DEALLOCATE jcs 
 
SELECT * FROM #famousjaycees 
 
jc                occupation                   becamefamous     notes 
-------------     ------------------------     ------------      
 

--------------------------------- 
John Calhoun      Congressman                  1825             Served as VP 
under two  
 

U.S. 
                                                                presidents 
 
jc                occupation                   becamefamous     notes 
-------------     ------------------------     ------------      
 

--------------------------------- 
Julius Caesar     Military leader/dictator     -45              Took the Roman 
early  
 

retirement 
                                                                program 
Jesus Christ      Founded Christianity         1                Birth featured 
tellurian, 
                                                                ruminative, and 
tutelary  
 

visitors 
Johnny Cash       Singer/songwriter            1955             Began career 
selling  
 

appliances 
                                                                door-to-door 
Joan Crawford     Actress                      1923             Appeared in 
everything  
 

from Grand 
                                                                Hotel to Trog 
James Cagney      Actor                        1931             This prototypical  
 

gangster made a 
                                                                dandy Yankee 
Jim Croce         Singer/songwriter            1972             Would that time 
were in a  
 

bottle 
                                                                because you left 
us way  
 

too soon 
Joe Celko         Author/lecturer              1987             Counts eating and 
living  
 

indoors 
                                                                among his 
favorite hobbies 
 



Guru’s Guide to Transact-SQL 

100 

DELETE 

Like its INSERT counterpart, the DELETE command has a number of forms. I won't go into all of them here— 
they correspond closely enough with their INSERT and UPDATE siblings that their use should be obvious. 
There are, however, a couple of aspects of the command that bear discussion. First, in addition to limiting the 
rows removed by a DELETE through the use of constants and variables in its WHERE clause, you can 
reference other tables. Below is a DELETE that's based on a join to another table. It deletes customers in the 
Northwind Customers table that have no orders in the Orders table: 
     
SET NOCOUNT ON 
USE Northwind 
GO 
BEGIN TRAN 
 
SELECT COUNT(*) AS TotalCustomersBefore FROM Customers 
 
DELETE c 
FROM Customers c LEFT OUTER JOIN Orders o ON (c.CustomerID=o.CustomerID) 
WHERE o.OrderID IS NULL 
 
SELECT COUNT(*) AS TotalCustomersAfter FROM Customers 
 
GO 
ROLLBACK TRAN 
 
TotalCustomersBefore 
-------------------- 
91 
 
TotalCustomersAfter 
------------------- 
89 
 
    
As with the UPDATE command, the number of rows affected by DELETE can be restricted via the SELECT 
TOP n extension. Here's an example: 
     
SELECT TOP 10 ord_num AS Before FROM sales ORDER BY ord_num 
 
DELETE s 
FROM sales s JOIN (SELECT TOP 5 ord_num FROM sales ORDER BY ord_num) a 
ON (s.ord_num=a.ord_num) 
 
SELECT TOP 10 ord_num AS After FROM sales ORDER BY ord_num 
 
Before 
-------------------- 
423LL922 
423LL930 
6871 
722a 
A2976 
D4482 
D4482 
D4492 
N914008 
N914014 
 
    
     



Chapter 5. DML Insights 

101 

After 
-------------------- 
D4482 
D4482 
D4492 
N914008 
N914014 
P2121 
P2121 
P2121 
P3087a 
P3087a 
 
    

DELETE and Cursors 

You can use the DELETE command to delete rows returned by updatable cursors. Similarly to UPDATE, this 
is facilitated via the command's WHERE CURRENT OF clause. Here's an example: 
      
CREATE TABLE #famousjaycees 
(jc varchar(15), 
 occupation varchar(25), 
 becamefamous int DEFAULT 0, 
 notes text NULL) 
INSERT #famousjaycees VALUES ('Julius Caesar','Military leader/dictator',-
0045,'Took the 
Roman early retirement program') 
INSERT #famousjaycees VALUES ('Jesus Christ','Founded Christianity',0001,'Birth 
featured 
tellurian, ruminative, and tutelary visitors') 
INSERT #famousjaycees VALUES ('John Calhoun','Congressman',1825,'Served as VP 
under two 
U.S. presidents') 
INSERT #famousjaycees VALUES ('Joan Crawford','Actress',1923,'Appeared in 
everything 
from Grand Hotel to Trog') 
INSERT #famousjaycees VALUES ('James Cagney','Actor',1931,'This prototypical 
gangster 
made a dandy Yankee') 
INSERT #famousjaycees VALUES ('Jim Croce','Singer/songwriter',1972,'Would that 
time were 
in a bottle because you left us way too soon') 
INSERT #famousjaycees VALUES ('Joe Celko','Author/lecturer',1987,'Counts eating 
and 
living indoors among his favorite hobbies') 
 
DECLARE jcs CURSOR DYNAMIC FOR SELECT * FROM #famousjaycees FOR UPDATE 
OPEN jcs 
 
FETCH RELATIVE 3 FROM jcs 
 
DELETE #famousjaycees 
WHERE CURRENT OF jcs 
 
CLOSE jcs 
DEALLOCATE jcs 
 
SELECT * FROM #famousjaycees 
 



Guru’s Guide to Transact-SQL 

102 

jc                occupation                   becamefamous     notes 
-------------     ------------------------     ------------      
 

--------------------------------- 
John Calhoun      Congressman                  1825             Served as VP 
under two  
 

U.S. 
                                                                presidents 
 
     
      
jc                occupation                   becamefamous     notes 
-------------     ------------------------     ------------      
 

--------------------------------- 
Julius Caesar     Military leader/dictator     -45              Took the Roman 
early  
 

retirement 
                                                                program 
Jesus Christ      Founded Christianity         1                Birth featured 
tellurian, 
                                                                ruminative, and 
tutelary  
 

visitors 
Joan Crawford     Actress                      1923             Appeared in 
everything  
 

from Grand 
                                                                Hotel to Trog 
James Cagney      Actor                        1931             This prototypical  
 

gangster made a 
                                                                dandy Yankee 
Jim Croce         Singer/songwriter            1972             Would that time 
were in a  
 

bottle 
                                                                because you left 
us way  
 

too soon 
Joe Celko         Author/lecturer              1987             Counts eating and 
living  
 

indoors 
                                                                among his 
favorite hobbies 
 
     

TRUNCATE TABLE 

Analogous to BULK INSERT, the TRUNCATE TABLE command provides a way of deleting the rows in a table 
with a minimum of logging. That no logging occurs at all is a common misconception. The page deallocations 
are logged— they have to be. If they weren't, you couldn't execute the command from within a transaction and 
couldn't reverse its effects on the database. Here's an example: 
      



Chapter 5. DML Insights 

103 

USE pubs 
BEGIN TRAN 
 
SELECT COUNT(*) AS CountBefore FROM sales 
 
TRUNCATE TABLE sales 
 
SELECT COUNT(*) AS CountAfter FROM sales 
 
GO 
ROLLBACK TRAN 
 
SELECT COUNT(*) AS CountAfterRollback FROM sales 
 
CountBefore 
----------- 
25 
 
CountAfter 
------------------ 
0 
 
CountAfterRollback 
------------------ 
25 
 
     
What's not logged with TRUNCATE TABLE is the process of deleting individual rows. That's because no row 
deletions actually occur— all that really happens is the deallocation of the pages that make up the table. Since 
row deletions don't occur, they aren't logged and can't fire DELETE triggers. 
You'll find that TRUNCATE TABLE is many times faster than an unqualified DELETE tablename statement; in 
fact, it's often instantaneous with small to medium-sized tables. There are a couple of limitations, though. You 
can't use TRUNCATE TABLE on a table that's referenced by a foreign key constraint, even if the truncation 
would not break any foreign key relationships (e.g., when the dependent table is empty). You also can't use 
TRUNCATE TABLE on a table that's been published for replication. This is because replication relies on the 
transaction log to synchronize publishers and subscribers, and TRUNCATE TABLE, as I've said, does not 
generate row deletion log records. 

Detecting DML Errors 

Normally, you can detect DML runtime errors by inspecting the @@ERROR automatic variable. However, if a 
DML statement doesn't affect any rows, @@ERROR won't be set because that's technically not an error 
condition. You'll have to check @@ROWCOUNT instead. In other words, if your code needs to consider the 
fact that a DML statement fails to affect (or find) any rows as an error, check @@ROWCOUNT after the 
statement and respond accordingly. 

Summary 

In this chapter, you became acquainted with some of the more prominent aspects of Transact-SQL DML. You 
learned about the INSERT, UPDATE, and DELETE commands and how they're used in real queries. You also 
learned about speedy variations of them and the limitations that accompany them. 





Chapter 6. The Mighty SELECT Statement 

105 

Chapter 6. The Mighty SELECT Statement 
The fantasy element that explains the appeal of dungeon-clearing games to many 
programmers is neither the fire-breathing monsters nor the milky-skinned, semi-clad sirens; it 
is the experience of carrying out a task from start to finish without user requirements changing.  

—Thomas L. Holaday 

As I said in Chapter 1, the SELECT statement is the workhorse of the Transact-SQL language. It does 
everything from assign variables to return result sets to create tables. Across all versions of SQL, SELECT is 
the Ginsu knife of the language. There was even a time when it was used to clear certain server error 
conditions in Sybase's version of SQL Server (using a function called LCT_ADMIN()). 
While it's handy to be able to perform 75% of your work using a single tool, that tool has to be complex in 
order to offer all that functionality. A tool with so many features can be a bit unwieldy—you have to be careful 
lest you take off a finger. 

Simple SELECTs 

As was also pointed out in Chapter 1, SELECT statements need not be complex. Here are a few simple 
ones to prime the discussion: 
     
USE pubs 
SELECT * FROM authors 
 
   (Results abridged) 
 
au_id       au_lname                           au_fname             phone 
----------- ---------------------------------- -------------------- ------------ 
172-32-1176 White                              Johnson              408 496-7223 
213-46-8915 Green                              Marjorie             415 986-7020 
 
SELECT title_id, title FROM titles 
 
     (Results abridged) 
 
title_id title 
-------- ----------------------------------------------------------------------- 
PC1035   But Is It User Friendly? 
PS1372   Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
 
SELECT 'One' 
---- 
 
    
One 

Computational and Derived Fields 

In addition to garden-variety fields, you can specify functions, computations, and derived fields in the column 
list of a SELECT statement (commonly referred to as its "SELECT list"). Here are some examples: 
     
SELECT PI(), CAST(21.99115 / 7 AS decimal(7,6)) AS RoughPi 
 
SSPi                                                  RoughPi 
----------------------------------------------------- --------- 
3.1415926535897931                                    3.141593 
 
    



Guru’s Guide to Transact-SQL 

106 

You can include parameter-less functions like PI() and functions that require parameters like CAST(). You can 
use expressions that reference fields and expressions that don't. You can perform basic computations in the 
SELECT list and can include subqueries that return single values. Here's an example: 
     
SELECT pub_name, (SELECT COUNT(*) FROM titles t WHERE t.pub_id=p.pub_id) AS 
NumPublished 
FROM publishers p 
 
pub_name                                 NumPublished 
---------------------------------------- ------------ 
New Moon Books                           5 
Binnet & Hardley                     7 
Algodata Infosystems                     6 
Five Lakes Publishing                    0 
Ramona Publishers                        0 
GGG&G                                0 
Scootney Books                           0 
Lucerne Publishing                       0 
 
    
A derived column consists of a subquery that returns a single value. This subquery can be related to the outer 
query (correlated) or unrelated, but it must return a result set that is exactly one column by one row in size. 
We'll cover correlated subqueries in more detail in a moment. 
I've built the query using a derived field for illustration purposes only. It would be better written using a join, 
like so: 
     
SELECT pub_name, COUNT(t.title_id) AS NumPublished 
FROM publishers p LEFT JOIN titles t ON (p.pub_id = t.pub_id) 
GROUP BY pub_name 
 
    
This is frequently the case with subqueries— very often they can be restated as joins. These joins are 
sometimes more efficient because they avoid executing the secondary query for every row in the main table. 

SELECT TOP 

Prior to SQL Server 7.0, restricting the number of rows returned by a query required the use of the SET 
ROWCOUNT command. SET ROWCOUNT is still available, but there's now a better way. SELECT TOP n is 
the number or percentage of rows you wish to return is an efficient way to truncate query results. Here's an 
example: 
     
SELECT TOP 10 t.title, SUM(s.qty) AS TotalSales 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
GROUP BY t.title 
ORDER BY TotalSales DESC 
 
title                                                                 TotalSales 
--------------------------------------------------------------------- ---------- 
Is Anger the Enemy?                                                   191 
Secrets of Silicon Valley                                             50 
The Busy Executive's Database Guide                                   45 
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean       40 
The Gourmet Microwave                                                 40 
You Can Combat Computer Stress!                                       35 
But Is It User Friendly?                                              30 
The Psychology of Computer Cooking                                    30 
Cooking with Computers: Surreptitious Balance Sheets                  25 
Emotional Security: A New Algorithm                                   25 
 
    



Chapter 6. The Mighty SELECT Statement 

107 

As you would expect, including the optional PERCENT keyword limits the rows returned to a percentage of 
the total number of rows. 
Add the WITH TIES clause if you want to include ties—duplicate values—in the result set. Unless you're 
merely trimming the result set to a particular size, TOP n logically implies ORDER BY. Although ORDER BY is 
optional with basic TOP n, the WITH TIES option requires it so that ties can be logically resolved. Here's an 
example: 
     
SELECT TOP 4 WITH TIES t.title, SUM(s.qty) AS TotalSales 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
GROUP BY t.title 
ORDER BY TotalSale 
 
title                                                                 TotalSales 
--------------------------------------------------------------------- ---------- 
Is Anger the Enemy?                                                   191 
Secrets of Silicon Valley                                             50 
The Busy Executive's Database Guide                                   45 
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean       40 
The Gourmet Microwave                                                 40 
 
    
Even though TOP 4 is specified, five rows are returned because there's a tie at position four. Note that this 
special tie handling works only for ties that occur at the end of the result set. That is, using the TOP4 example, 
a tie at positions two and three will not cause more than four rows to be returned—only a tie at position four 
has this effect. This is counterintuitive and means that the following queries return the same result set as the 
TOP4 query: 
     
SELECT TOP 5 t.title, SUM(s.qty) AS TotalSales 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
GROUP BY t.title 
ORDER BY TotalSales DESC 
 
and 
 
SELECT TOP 5 WITH TIES t.title, SUM(s.qty) AS TotalSales 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
GROUP BY t.title 
ORDER BY TotalSales DESC 
 
    
Another deficiency in TOP n is the fact that it can't return grouped top segments in conjunction with a query's 
GROUP BY clause. This means that a query like the one below can't be modified to return the top store in 
each state using TOPn: 
     
SELECT t.state, t.stor_name, SUM(s.qty) AS TotalSales 
FROM sales s JOIN stores t ON (s.stor_id=t.stor_id) 
GROUP BY t.state, t.stor_name 
ORDER BY TotalSales DESC, t.state, t.stor_name 
 
state stor_name                               TotalSales 
----- --------------------------------------- ----------- 
OR    Bookbeat                                140 
WA    Doc-U-Mat: Quality Laundry and Books    130 
CA    Barnum's                                125 
WA Eric the Read Books                        91 
CA News & Brews                           90 
CA     Fricative Bookshop                     60 
 
    
Though the syntax is supported, it doesn't do what we might like: 
     



Guru’s Guide to Transact-SQL 

108 

-- BAD SQL -- doesn't work as we'd like 
SELECT TOP 1 t.state, t.stor_name, SUM(s.qty) AS TotalSales 
FROM sales s JOIN stores t ON (s.stor_id=t.stor_id) 
GROUP BY t.state, t.stor_name 
ORDER BY TotalSales DESC, t.state, t.stor_name 
 
state stor_name                               TotalSales 
----- --------------------------------------- ----------- 
OR    Bookbeat                                140 
 
    
As you can see, this query returns just one row. "TOP n " refers to the result set, not the rows in the original 
table or the groups into which they've been categorized. See the "Derived Tables" section below for an 
alternative to TOP n that returns grouped top subsets. 

Derived Tables 

Besides direct references to tables and views, you can also construct logical tables on the fly in the FROM 
clause of a SELECT statement. These are called derived tables. A derived table is a subquery that's used in 
place of a table or view. It can be queried and joined just like any other table or view. Here's a very basic 
example: 
     
SELECT au_lname, au_fname 
FROM (SELECT * FROM authors) A 
 
   (Results abridged) 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Bennet                                   Abraham 
Blotchet-Halls                           Reginald 
Carson                                   Cheryl 
DeFrance                                 Michel 
del Castillo                             Innes 
 
    
The derived table in this query is constructed via the SELECT * FROM authors syntax. Any valid query could 
be inserted here and can contain derived tables of its own. Notice the inclusion of a table alias. This is a 
requirement of Transact-SQL derived tables—you must include it regardless of whether the query references 
other objects. 
Since Transact-SQL supports nontabular SELECT statements, you can also use derived tables to construct 
logical tables from scratch without referencing any other database objects. Here's an example: 
     
SELECT * 
FROM 
(SELECT 'flyweight' AS WeightClass, 0 AS LowBound, 112 AS HighBound 
 UNION ALL 
 SELECT 'bantamweight' AS WeightClass, 113 AS LowerBound, 118 AS HighBound 
 UNION ALL 
 SELECT 'featherweight' AS WeightClass, 119 AS LowerBound, 126 AS HighBound 
 UNION ALL 
 SELECT 'lightweight' AS WeightClass, 127 AS LowerBound, 135 AS HighBound 
 UNION ALL 
 SELECT 'welterweight' AS WeightClass, 136 AS LowerBound, 147 AS HighBound 
 UNION ALL 
 SELECT 'middleweight' AS WeightClass, 148 AS LowerBound, 160 AS HighBound 
 UNION ALL 
 SELECT 'light heavyweight' AS WeightClass, 161 AS LowerBound, 175 AS HighBound 
 UNION ALL 
 SELECT 'heavyweight' AS WeightClass, 195 AS LowerBound, 1000 AS HighBound) W 



Chapter 6. The Mighty SELECT Statement 

109 

ORDER BY W.LowBound 
 
WeightClass       LowBound HighBound 
----------------- -------- --------- 
flyweight         0        112 
bantamweight      113      118 
featherweight     119      126 
lightweight       127      135 
welterweight      136      147 
middleweight      148      160 
light heavyweight 161      175 
heavyweight       195      1000 
 
    
Here, we "construct" a derived table containing three columns and eight rows. Each SELECT represents a 
single row in this virtual table. The rows in the table are glued together using a series of UNIONs. 
The table doesn't actually exist anywhere—it's a logical construct only. You can think of a derived table as a 
temporary VIEW object—it exists for the duration of the query then goes away quietly afterward. That a 
SELECT statement can be treated as a table is sensible given that, by definition, the result of a SQL query is 
itself a table—the result table. Here's a query that joins a regular table with a derived table: 
     
CREATE TABLE #boxers 
(Name varchar(30), 
Weight float) 
INSERT #boxers VALUES ('Glass Joe', 112) 
INSERT #boxers VALUES ('Piston Hurricane', 176) 
INSERT #boxers VALUES ('Bald Bull', 298) 
INSERT #boxers VALUES ('Sugar Ray Ali', 151) 
INSERT #boxers VALUES ('Leon Holmes', 119) 
INSERT #boxers VALUES ('George Liston', 139) 
INSERT #boxers VALUES ('Larry Leonard', 115) 
INSERT #boxers VALUES ('Mike Mooncalf', 134) 
 
SELECT B.Name, B.Weight, W.WeightClass 
FROM #boxers B, 
(SELECT 'flyweight' AS WeightClass, 0 AS LowBound, 112 AS HighBound 
 UNION ALL 
 SELECT 'bantamweight' AS WeightClass, 113 AS LowerBound, 118 AS HighBound 
 UNION ALL 
 SELECT 'featherweight' AS WeightClass, 119 AS LowerBound, 126 AS HighBound 
 UNION ALL 
 SELECT 'lightweight' AS WeightClass, 127 AS LowerBound, 135 AS HighBound 
 UNION ALL 
 SELECT 'welterweight' AS WeightClass, 136 AS LowerBound, 147 AS HighBound 
 UNION ALL 
 SELECT 'middleweight' AS WeightClass, 148 AS LowerBound, 160 AS HighBound 
 UNION ALL 
 SELECT 'light heavyweight' AS WeightClass, 161 AS LowerBound, 175 AS HighBound 
 UNION ALL 
 SELECT 'heavyweight' AS WeightClass, 195 AS LowerBound, 1000 AS HighBound) W 
WHERE B.Weight BETWEEN W.LowBound and W.HighBound 
ORDER BY W.LowBound 
 
Name                           Weight                          WeightClass 
------------------------------ ------------------------------- ----------------- 
Glass Joe                      112.0                           flyweight 
Larry Leonard                  115.0                           bantamweight 
Leon Holmes                    119.0                           featherweight 
Mike Mooncalf                  134.0                           lightweight 
George Liston                  139.0                           welterweight 
Sugar Ray Ali                  151.0                           middleweight 



Guru’s Guide to Transact-SQL 

110 

Bald Bull                      298.0                           heavyweight 
 
    
This query first constructs a table containing a list of fictional boxers and each boxer's fighting weight (our 
"regular" table). Next, it joins this table with the derived table introduced in the previous example to partition 
the list of boxers by weight class. Note that one of the boxers is omitted from the result because he doesn't fall 
into any of the weight classes established by the derived table. 
Of course, this query could have been greatly simplified using CASE statements, but the point of the exercise 
was to show the power of derived tables. Here, we "created" a multirow table via UNION and some simple 
SELECTs without requiring a real table. 
This example illustrates some of the unique abilities of derived tables. Here's an example that illustrates their 
necessity: 
     
SELECT s.state, st.stor_name,s.totalsales,rank=COUNT(*) 
FROM (SELECT t.state, t.stor_id, SUM(s.qty) AS TotalSales 
  FROM sales s JOIN stores t ON (s.stor_id=t.stor_id) 
  GROUP BY t.state, t.stor_id) s JOIN 
  (SELECT t.state, t.stor_id, SUM(s.qty) AS TotalSales 
  FROM sales s JOIN stores t ON (s.stor_id=t.stor_id) 
  GROUP BY t.state, t.stor_id) t ON (s.state=t.state) 
  JOIN stores st ON (s.stor_id=st.stor_id) 
WHERE s.totalsales <= t.totalsales 
GROUP BY s.state,st.stor_name,s.totalsales 
HAVING COUNT(*) <=1 
ORDER BY s.state, rank 
 
state stor_name                                          totalsales  rank 
----- -------------------------------------------------- ----------- ----------- 
CA    Barnum's                                           125         1 
OR    Bookbeat                                           140         1 
WA    Doc-U-Mat: Quality Laundry and Books               130         1 
 
    
This query returns the store with the top sales in each state. As pointed out in the discussion of SELECT TOP 
n, it accomplishes what the TOP n extension is unable to—it returns a grouped top n resultset. 
In this case, a derived table is required in order to materialize the sales for each store without resorting to a 
VIEW object. Again, derived tables function much like inline views. Once each store's sales have been 
aggregated from the sales table, the derived table is joined with itself using its state column to determine the 
number of other stores within each store's home state that have fewer sales than it does. (Actually, we 
perform the inverse of this in order to give stores with more sales lower numbers, i.e., higher rankings.) This 
number is used to rank each store against the others in its state. The HAVING clause then uses this ranking 
to filter out all but the top store in each state. You could easily change the constant in the HAVING clause to 
include the top two stores, the top three, and so forth. The query is straightforward enough but was worth 
delving into in order to understand better the role derived tables play in real queries. 
Of course, it would be more efficient to construct a static view to aggregate the sales for each store in 
advance. The query itself would be shorter and the optimizer would be more likely to be able to reuse the 
query plan it generates to service each aggregation: 
     
CREATE VIEW SalesByState AS 
SELECT s.stor_id, SUM(s.qty) AS TotalSales, t.state 
FROM sales s JOIN stores t ON (s.stor_id=t.stor_id) 
GROUP BY t.state, s.stor_id 
 
SELECT s.state, st.stor_name,s.totalsales,Rank=COUNT(*) 
FROM SalesByState s JOIN SalesByState t ON (s.state=t.state) 
  JOIN stores st ON (s.stor_id=st.stor_id) 
WHERE s.totalsales <= t.totalsales 
GROUP BY s.state,st.stor_name,s.totalsales 
HAVING COUNT(*) <=1 
ORDER BY s.state, rank 
 



Chapter 6. The Mighty SELECT Statement 

111 

    
Nevertheless, there are situations where constructing a view in advance isn't an option. If that's the case, a 
derived table may be your best option. 

Joins 

Chapter 1 covers the different types of joins supported by Transact-SQL in some depth, so here I'll focus on 
join nuances not covered there. Review Chapter 1 if you're unsure of how joins work or need a refresher on 
join basics. 

Outer Joins and Join Order 

The ordering of the clauses in an inner join doesn't affect the result set. If A5B, then certainly B5A. Inner join 
clauses are associative. That's not true for outer joins. The order in which tables are joined directly affects 
which rows are included in the result set and which values they have. That's why using the ANSI outer join 
syntax is so important—the legacy syntax can generate erroneous or ambiguous result sets because 
specifying join conditions in the WHERE clause precludes specifically ordering them. 
To understand fully the effect join order has on OUTER JOINs, let's explore the effect it has on the result set a 
query generates. Here's a query that totals items in the Orders table of the Northwind sample database: 
      
SELECT SUM(d.UnitPrice*d.Quantity) AS TotalOrdered 
FROM Orders o LEFT OUTER JOIN [Order Details] d ON (o.OrderID+10=d.OrderID) 
LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID) 
 
TotalOrdered 
--------------------- 
1339743.1900 
 
     
I've intentionally introduced join condition failures into the query by incrementing o.OrderId by ten so that we 
can observe the effects of clause ordering and join failures on the result set. Now let's reorder the tables in the 
FROM clause and compute the same aggregate: 
      
SELECT SUM(d.UnitPrice * d.Quantity) AS TotalOrdered 
FROM [Order Details] d LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID) 
LEFT OUTER JOIN Orders o ON (o.OrderID+10=d.OrderID) 
 
TotalOrdered 
--------------------- 
1354458.5900 
 
     
See the discrepancy? The total changes based on the order of the tables. Why? Because the first query 
introduces mismatches between the Orders and Order Details tables before the UnitPrice and Quantity 
columns are totaled; the second query does so afterward. In the case of the second query, we get a total of all 
items listed in the Order Details table regardless of whether there's a match between it and the Orders table; 
in the first query, we don't. To understand this better, consider the data on which the two totals are based: 
      
SELECT o.OrderDate, d.UnitPrice, d.Quantity 
FROM Orders o LEFT OUTER JOIN [Order Details] d ON (o.OrderID+10=d.OrderID) 
LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID) 
WHERE o.OrderDate IS NULL 
OR d.UnitPrice IS NULL 
 
OrderDate                   UnitPrice             Quantity 
--------------------------- --------------------- -------- 
1998-05-04 00:00:00.000     NULL                  NULL 
1998-05-04 00:00:00.000     NULL                  NULL 
1998-05-05 00:00:00.000     NULL                  NULL 



Guru’s Guide to Transact-SQL 

112 

1998-05-05 00:00:00.000     NULL                  NULL 
1998-05-05 00:00:00.000     NULL                  NULL 
1998-05-05 00:00:00.000     NULL                  NULL 
1998-05-06 00:00:00.000     NULL                  NULL 
1998-05-06 00:00:00.000     NULL                  NULL 
1998-05-06 00:00:00.000     NULL                  NULL 
1998-05-06 00:00:00.000     NULL                  NULL 
 
     
I've included a WHERE clause to pare the result set down to just those rows affected by the intentional join 
mismatch. Since we increment OrderNo by ten and the order numbers are sequential, ten of the OrderNo 
values in Orders fail to find matches in the Order Details table and, consequently, have NULL UnitPrice and 
Quantity fields. Here's a snapshot of the underlying data for the second query (again with a restrictive WHERE 
clause): 
      
SELECT o.OrderDate, d.UnitPrice, d.Quantity 
FROM [Order Details] d LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID) 
LEFT OUTER JOIN Orders o ON (o.OrderID+10=d.OrderID) 
WHERE o.OrderDate IS NULL 
OR d.UnitPrice IS NULL 
 
OrderDate                   UnitPrice             Quantity 
--------------------------- --------------------- -------- 
NULL                        14.0000               12 
NULL                        9.8000                10 
NULL                        34.8000               5 
NULL                        18.6000               9 
NULL                        42.4000               40 
NULL                        7.7000                10 
NULL                        42.4000               35 
NULL                        16.8000               15 
NULL                        16.8000               6 
NULL                        15.6000               15 
NULL                        16.8000               20 
NULL                        64.8000               40 
NULL                        2.0000                25 
NULL                        27.2000               40 
NULL                        10.0000               20 
NULL                        14.4000               42 
NULL                        16.0000               40 
NULL                        3.6000                15 
NULL                        19.2000               21 
NULL                        8.0000                21 
NULL                        15.2000               20 
NULL                        13.9000               35 
NULL                        15.2000               25 
NULL                        44.0000               30 
NULL                        26.2000               15 
NULL                        10.4000               12 
NULL                        35.1000               25 
NULL                        14.4000               6 
NULL                        10.4000               15 
 
     
Notice that this set is much longer—nineteen rows longer, to be exact. Why? Because twenty-nine rows were 
omitted from the result set of the first query due to the join mismatch, though this wasn't immediately obvious. 
For each broken order number link, a given number of Order Detail rows were omitted because there was a 
one-to-many relationship between the Orders and Order Details tables. This, of course, skewed the total 
reported by the query. 
So the moral of the story is this: Be careful with outer join ordering, especially when the possibility of join 
mismatches exists. 



Chapter 6. The Mighty SELECT Statement 

113 

Predicates 

By definition, a predicate is an expression that returns TRUE or NOT TRUE (I'm not using "FALSE" because 
of the issues related to three-valued logic—sometimes we don't know whether an expression is FALSE, all we 
know is that it is not certainlyTRUE). 
Predicates are usually found in a query's WHERE or HAVING clauses, though they can be located elsewhere 
(e.g., in CASE expressions). Predicates can be simple logical expressions or can be composed of functions 
that return TRUE or NOT TRUE. Though technically any function can be included in a predicate expression, 
Transact-SQL defines a number of predicate functions that are specifically geared toward filtering queries and 
result sets. The sections that follow detail each of them. 

BETWEEN 

The BETWEEN predicate is probably the most often used of the Transact-SQL predicates. It indicates 
whether a given value falls between two other values, inclusively. Here's an example: 
     SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname BETWEEN 'S' AND 'ZZ' 
ORDER BY au_lname 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Smith                                    Meander 
Straight                                 Dean 
Stringer                                 Dirk 
White                                    Johnson 
Yokomoto                                 Akiko 
 
     
BETWEEN works with scalar ranges, so it can handle dates, numerics, and other scalar data types. It 
combines what would normally require two terms in the WHERE clause: a greater-than-or-equal-to expression, 
followed by a less-than-or-equal-to expression. WHERE au_lname BETWEEN 'S' AND 'ZZ' is shorthand for 
WHERE au_lname >= 'S' AND au_lname <='ZZ'.  
In addition to simple constant arguments, BETWEEN accepts subquery, variable, and expression arguments. 
Here's an example: 
      
DECLARE @au_id id 
SELECT @au_id=(SELECT MAX(au_id) FROM titleauthor) 
 
SELECT au_lname, au_fname 
FROM authors 
WHERE au_id BETWEEN (SELECT MIN(au_id) FROM titleauthor) AND 
ISNULL(@au_id,'ZZZZZZZZZZZ') 
ORDER BY au_lname 
 
    (Results abridged) 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Bennet                                   Abraham 
Blotchet-Halls                           Reginald 
Carson                                   Cheryl 
DeFrance                                 Michel 
del Castillo                             Innes 
(...) 
White                                    Johnson 
Yokomoto                                 Akiko 
 
     



Guru’s Guide to Transact-SQL 

114 

Since the primary purpose of the predicate is to determine whether a value lies within a given range, it's 
common to see BETWEEN used to determine whether one event occurs between two others. Locating 
overlapping events is more difficult than it first appears and its elusiveness gives rise to many false solutions. 
This is best explored by way of example. Let's say we have a list of soldiers, and we need to determine which 
of them could have participated in the major military engagements of a given war. We'd need at least two 
tables—one listing the soldiers and their tours of duty and one listing each major engagement of the war with 
its beginning and ending dates. The idea then would be to return a result set that cross-references the soldier 
list with the engagement list, taking into account each time a soldier's tour of duty began or ended during a 
major engagement, as well as when it encompassed a major engagement. Assume we start with these tables: 
      
CREATE TABLE #engagements 
(Engagement varchar(30), 
 EngagementStart      smalldatetime, 
 EngagementEnd smalldatetime) 
 
INSERT #engagements VALUES('Gulf of Tonkin','19640802','19640804') 
INSERT #engagements VALUES('Da Nang','19650301','19650331') 
INSERT #engagements VALUES('Tet Offensive','19680131','19680930') 
INSERT #engagements VALUES('Bombing of Cambodia','19690301','19700331') 
INSERT #engagements VALUES('Invasion of Cambodia','19700401','19700430') 
INSERT #engagements VALUES('Fall of Saigon','19750430','19750430') 
 
CREATE TABLE #soldier_tours 
(Soldier  varchar(30), 
 TourStartsmalldatetime, 
 TourEnd  smalldatetime) 
 
INSERT #soldier_tours VALUES('Henderson, Robert Lee','19700126','19700615') 
INSERT #soldier_tours VALUES('Henderson, Kayle Dean','19690110','19690706') 
INSERT #soldier_tours VALUES('Henderson, Isaac Lee','19680529','19680722') 
INSERT #soldier_tours VALUES('Henderson, James D.','19660509','19670201') 
INSERT #soldier_tours VALUES('Henderson, Robert Knapp','19700218','19700619') 
INSERT #soldier_tours VALUES('Henderson, Rufus Q.','19670909','19680320') 
INSERT #soldier_tours VALUES('Henderson, Robert Michael','19680107','19680131') 
INSERT #soldier_tours VALUES('Henderson, Stephen Carl','19690102','19690914') 
INSERT #soldier_tours VALUES('Henderson, Tommy Ray','19700713','19710303') 
INSERT #soldier_tours VALUES('Henderson, Greg Neal','19701022','19710410') 
INSERT #soldier_tours VALUES('Henderson, Charles E.','19661001','19750430') 
 
     
Here's a preliminary solution: 
      
SELECT Soldier+' served during the '+Engagement 
FROM #soldier_tours, #engagements 
WHERE (TourStart BETWEEN EngagementStart AND EngagementEnd) 
OR (TourEnd BETWEEN EngagementStart AND EngagementEnd) 
OR (EngagementStart BETWEEN TourStart AND TourEnd) 
 
-------------------------------------------------------------------------------- 
Henderson, Isaac Lee served during the Tet Offensive 
Henderson, Rufus Q. served during the Tet Offensive 
Henderson, Robert Michael served during the Tet Offensive 
Henderson, Charles E. served during the Tet Offensive 
Henderson, Robert Lee served during the Bombing of Cambodia 
Henderson, Kayle Dean served during the Bombing of Cambodia 
Henderson, Robert Knapp served during the Bombing of Cambodia 
Henderson, Stephen Carl served during the Bombing of Cambodia 
Henderson, Charles E. served during the Bombing of Cambodia 
Henderson, Robert Lee served during the Invasion of Cambodia 
Henderson, Robert Knapp served during the Invasion of Cambodia 
Henderson, Charles E. served during the Invasion of Cambodia 



Chapter 6. The Mighty SELECT Statement 

115 

Henderson, Charles E. served during the Fall of Saigon 
 
     
Once the tables are created and populated, the query includes rows in the result set using three separate 
BETWEEN predicates: A soldier's tour began during an engagement, his tour ended during an engagement, 
or an engagement started during his tour. Why do we need this last check? Why do we care whether an 
engagement started during a soldier's tour—this would be the same as asking whether a soldier's tour ended 
during the engagement, wouldn't it? No, not quite. Without the third predicate expression, we aren't allowing 
for the possibility that an engagement could begin and end within a tour of duty. 
Though this query works, there is a better solution. It requires considering the inverse of the problem. Rather 
than determining when tours of duty and major engagements overlap one another, let's determine when they 
don't. For a tour of duty and a major engagement not to coincide, one of two things must be true: Either the 
tour of duty ended before the engagement started, or it began after the engagement ended. Knowing this, we 
can greatly simplify the query and remove the BETWEEN predicates altogether, like so: 
      
SELECT Soldier+' served during the '+Engagement 
FROM #soldier_tours, #engagements 
WHERE NOT ((TourEnd < EngagementStart) OR (TourStart > EngagementEnd)) 
-------------------------------------------------------------------------------- 
Henderson, Isaac Lee served during the Tet Offensive 
Henderson, Rufus Q. served during the Tet Offensive 
Henderson, Robert Michael served during the Tet Offensive 
Henderson, Charles E. served during the Tet Offensive 
Henderson, Robert Lee served during the Bombing of Cambodia 
Henderson, Kayle Dean served during the Bombing of Cambodia 
Henderson, Robert Knapp served during the Bombing of Cambodia 
Henderson, Stephen Carl served during the Bombing of Cambodia 
Henderson, Charles E. served during the Bombing of Cambodia 
Henderson, Robert Lee served during the Invasion of Cambodia 
Henderson, Robert Knapp served during the Invasion of Cambodia 
Henderson, Charles E. served during the Invasion of Cambodia 
Henderson, Charles E. served during the Fall of Saigon 
 
     

LIKE 

LIKE tests a value for a match against a string pattern: 
      
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Green' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Green                                    Marjorie 
 
     
ANSI SQL specifies two pattern wildcard characters: the % (percent) character and the _ (underscore) 
character; % matches any number of characters, while _ matches exactly one. Here's an example: 
      
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'G%' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Green                                    Marjorie 
Greene                                   Morningstar 
Gringlesby                               Burt 



Guru’s Guide to Transact-SQL 

116 

 
     
Beyond those supported by ANSI SQL, Transact-SQL also supports regular expression wildcards. These 
wildcards allow you to test a character for membership within a set of characters. Here's an example: 
      
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Str[ai]%' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Straight                                 Dean 
Stringer                                 Dirk 
 
     
In the example above, [ai] is a regular expression wildcard that matches any string with either a or i in the 
fourth position. To exclude strings using a regular expression, prefix its characters with a caret, like so: 
      
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Gr[^e]%' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Gringlesby                               Burt 
 
     
Here, we request authors whose last names begin with "Gr" and contain a character other than e in the third 
position. 
There are some subtle differences between the _ and %wildcards. The _wildcard requires at least one 
character; %requires none. The difference this makes is best explained by example. First, consider this query: 
      
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Green%' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Green                                    Marjorie 
Greene                                   Morningstar 
 
     
Now consider this one: 
      
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Green_' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Greene                                   Morningstar 
 
     
See the difference? Since _ requires at least one character, "Green_" doesn't match "Green."  
Another point worth mentioning is that it's possible for a string to survive an equality test but fail a LIKE test. 
This is counterintuitive since LIKE would seem to be less restrictive than a plain equality test. The reason this 
is possible is that ANSI SQL padding rules require that two strings compared for equality be padded to the 
same length prior to the comparison. That's not true for LIKE. If one term is padded with blanks and the other 
isn't, the comparison will probably fail. Here's an example: 
      
SELECT au_lname, au_fname 



Chapter 6. The Mighty SELECT Statement 

117 

FROM authors 
WHERE au_lname = 'Green ' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Green                                    Marjorie 
 
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Green ' 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
 
     
Notice that the second query doesn't return any rows due to the padding of the string constant, even though 
the equality test works fine. 

EXISTS 

EXISTS is a predicate function that takes a subquery as its lone parameter. It works very simply —if the 
subquery returns a result set—any result set—EXISTS returns True; otherwise it returns False. 
Though EXISTS isn't defined to require parentheses per se, it does. This is necessary to avoid confusing the 
Transact-SQL query parser. 
The subquery passed to EXISTS is usually a correlated subquery. By correlated, I mean that it references a 
column in the outer query in its WHERE or HAVING clause—it's joined at the hip with it. Of course, this isn't 
true when EXISTS is used with control-of-flow language statements such as IF and WHILE—it applies only to 
SELECT statements. 
As a rule, you should use SELECT * in the subqueries you pass EXISTS. This allows the optimizer to select 
the column to use and should generally perform better. 
Here's an example of a simple EXISTS predicate: 
      
SELECT title 
FROM titles t 
WHERE EXISTS(SELECT * FROM sales s WHERE s.title_id=t.title_id) 
 
     
(Results abridged) 
      
title 
-------------------------------------------------------------------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
 
     
This query returns all titles for which sales exist in the sales table. Of course, this could also be written as an 
inner join, but more on that later. 
Prefixing EXISTS with NOT negates the expression. Here's an example: 
      
SELECT title 
FROM titles t 
WHERE NOT EXISTS(SELECT * FROM sales s WHERE s.title_id=t.title_id) 
 
title 
-------------------------------------------------------------------------------- 
Net Etiquette 
 
     



Guru’s Guide to Transact-SQL 

118 

This makes sense because there are no rows in the sales table for the Net Etiquette title. 

NULLs 

NULLs affect EXISTS in some interesting ways. Let's explore what happens when we introduce a NULL into 
the sales table: 
       
SELECT title 
FROM titles t 
WHERE EXISTS(SELECT * FROM 
   (SELECT * FROM sales -- Not actually needed–for illustration only 
   UNION ALL 
   SELECT NULL, NULL, NULL, 90, NULL, NULL) s 
   WHERE s.title_id=t.title_id AND s.qty>>75) 
 
title 
-------------------------------------------------------------------------------- 
 
      
The query uses a UNION to introduce a row consisting mostly of NULL values into the sales table on the fly. 
Every field except qty is set to NULL. Even though the underlying columns in the sales table don't allow 
NULLs, the subquery references the result of the sales-NULL values union (ensconced in a derived table), 
not the table itself. Using UNION to add a "virtual" row in this manner saves us from having to modify sales in 
order to explore the effects of NULLs on EXISTS. 
Even though we've introduced a row containing a qty with a value greater than 75, the result set is empty 
because that row's NULL title_id doesn't correlate with any in the titles table. Because the value of title_id 
isn't known in the NULL row, you might think that it would correlate with every row in titles, but that's not the 
case. Even if titles contained a NULL title_id, the two still wouldn't correlate since one NULL never equals 
another (this can be changed with the SET ANSI NULLS command—see Chapter3, "Missing Values," for 
details). This may seem a bit odd or counterintuitive, but it's the way SQL was intended to work. 
Negating the EXISTS expression produces some odd effects as well. Here's an example: 
       
SELECT title 
FROM titles t 
WHERE NOT EXISTS(SELECT * FROM (SELECT * FROM sales 
     UNION ALL 
     SELECT NULL, NULL, NULL, NULL, NULL, NULL) s 
     WHERE s.title_id=t.title_id) 
 
title 
-------------------------------------------------------------------------------- 
Net Etiquette 
 
      
Since the server can't know whether the title_id for Net Etiquette matches the NULL introduced by the union, 
you might think that no result would be returned. With NULLs in the mix, we can't positively know that Net 
Etiquette's title_id doesn't exist; nevertheless, the query returns Net Etiquette anyway. The apparent 
discrepancy here comes about because of the way in which the expression is evaluated. First, SQL Server 
determines whether the value exists, then negates the expression with NOT. We are evaluating the negation 
of a positive predicate, not a negative predicate. The expression is NOT EXISTS (note the space between the 
keywords), not NOTEXISTS(). So, when the query gets to the title_id for Net Etiquette, it begins by 
determining whether it can establish for certain that the title_id exists in the UNIONed table. It can't, of course, 
because the ID isn't there. Therefore, the EXISTS check returns False, which satisfies the NOT negation, so 
the row is included in the result set, even though the fact that it does not exist in the subquery table has not 
been nor can be established. 

EXISTS and IN 

Converting an IN predicate to EXISTS has a few peculiarities of its own. For example, the first EXISTS query 
could be rewritten to use IN like this: 



Chapter 6. The Mighty SELECT Statement 

119 

       
SELECT title 
FROM titles t 
WHERE t.title_id IN (SELECT title_id FROM sales) 
 
      
(Results abridged) 
       
title 
-------------------------------------------------------------------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
 
      
And here's the inverse: 
       
SELECT title 
FROM titles t 
WHERE t.title_id NOT IN (SELECT title_id FROM sales) 
 
title 
-------------------------------------------------------------------------------- 
Net Etiquette 
 
      
But look at what happens when NULLs figure into the equation: 
       
SELECT title 
FROM titles t 
WHERE t.title_id NOT IN (SELECT title_id FROM sales UNION SELECT NULL) 
 
title 
-------------------------------------------------------------------------------- 
 
      
The IN predicate provides a shorthand method of comparing a scalar value with a series of values. In this 
case, the subquery provides the series. Per ANSI/ISO SQL guidelines, an expression that compares a value 
for equality to NULL always returns NULL, so the Net Etiquette row fails the test. The other rows fail the test 
because they can be positively identified as being in the list and are therefore excluded by the NOT. 
This behavior is different from the NOT EXISTS behavior we observed earlier and is the chief reason that 
converting between EXISTS and IN can be tricky when NULLs are involved. 
Note that Transact-SQL's SET ANSI_NULLS command can be used to alter this behavior. When 
ANSI_NULLS behavior is disabled, equality comparisons to NULL are allowed, and NULL values equal one 
another. Since IN is shorthand for an equality comparison, it's directly affected by this setting. Here's an 
example: 
       
SET ANSI_NULLS OFF 
SELECT title 
FROM titles t 
WHERE t.title_id NOT IN (SELECT title_id FROM sales UNION SELECT NULL) 
GO 
SET ANSI_NULLS ON -- Be sure to re-enable ANSI_NULLS 
 
title 
-------------------------------------------------------------------------------- 
Net Etiquette 
 
      



Guru’s Guide to Transact-SQL 

120 

Now that Net Etiquette's title_id can be safely compared to the NULL produced by the UNION, the IN 
predicate can ascertain whether it exists in the list. Since it doesn't, Net Etiquette makes it into the result set. 

Joins 

As I said earlier, many correlated subqueries used with EXISTS can be restated as simple inner joins. Not 
only are these joins easier to read, they will also tend to be faster. Furthermore, using a join instead of 
EXISTS allows the query to reference fields from both tables. Here's the earlier EXISTS query flattened into a 
join: 
       
SELECT DISTINCT title 
FROM titles t JOIN sales s ON (t.title_id = s.title_id) 
 
      
(Results abridged) 
       
title 
-------------------------------------------------------------------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
 
      
We're forced to use DISTINCT here because there's a one-to-many relationship between titles and sales. 

Result Set Emptiness 

Another common use of EXISTS is to check a result set for rows. The optimizer knows that finding even a 
single row satisfies the expression, so this is often quite fast. Here's an example: 
       
IF EXISTS(SELECT * FROM myworktable) DELETE myworktable 
 
      
Since the query isn't qualified by a WHERE or HAVING clause, we're effectively checking the table for rows. 
This is much quicker than something like IF (SELECT COUNT(*) FROM myworktable)>0 and provides a 
speedy means of determining whether a table is empty without having to inspect system objects. 

EXISTS Outside WHERE and HAVING 

EXISTS, like all predicates, can do more than just restrict the rows returned by a query. EXISTS can also be 
used in the SELECT list within CASE expressions and in the FROM clause via derived table definitions. 
Here's an example: 
       
SELECT CASE WHEN EXISTS(SELECT * FROM titleauthor where au_id=a.au_id) THEN 
'True' ELSE 'False' END 
FROM authors a 
 
----- 
True 
True 
True 
True 
True 
True 
True 
False 
True 
True 



Chapter 6. The Mighty SELECT Statement 

121 

True 
True 
True 
False 
True 
True 
True 
True 
False 
True 
False 
True 
True 
 
      
Since predicates don't return values that you can use directly, your options here are more limited than they 
should be. That is, you can't simply SELECT the result of a predicate—it must be accessed instead via an 
expression or function that can handle logical values—i.e., CASE. CASE translates the logical value returned 
by the predicate into something the query can return. 

IN 

As mentioned earlier, the IN predicate provides a shorthand method of comparing a value to each member of 
a list. You can think of it as a series of equality comparisons between the left-side value and each of the 
values in the list, joined by OR. Though ANSI SQL-92 allows row values to be used with IN, Transact-SQL 
does not—you can specify scalar values only. The series of values searched by IN can be specified as a 
comma-delimited list or returned by a subquery. Here are a couple of simple examples that use IN: 
      
SELECT title 
FROM titles WHERE title_id IN (SELECT title_id FROM sales) 
 
    (Results abridged.) 
 
title 
-------------------------------------------------------------------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
 
SELECT title 
FROM titles WHERE title_id NOT IN (SELECT title_id FROM sales) 
title 
-------------------------------------------------------------------------------- 
Net Etiquette 
 
     
Note that the individual values specified aren't limited to constants—you can use expressions and subqueries, 
too. Here's an example: 
      
SELECT titleFROM titles WHERE title_id IN     ((SELECT title_id FROM sales WHERE 
qty>=75), 
                                       (SELECT title_id FROM sales WHERE qty=5), 
                                               'PC'+REPLICATE('8',4)) 
 
title 
-------------------------------------------------------------------------------- 
Is Anger the Enemy? 
Secrets of Silicon Valley 
The Busy Executive's Database Guide 



Guru’s Guide to Transact-SQL 

122 

 
     

Optimizing IN 

Though it's natural to order the terms in the value list alphabetically or numerically, it's preferable to order 
them instead based on frequency of occurrence since the predicate will return as soon as a single match is 
found. One way to do this with a subquery is to sort the subquery result set with ORDER BY. Here's an 
example: 
       
SELECT title 
FROM titles WHERE title_id IN (SELECT title_id FROM 
   (SELECT TOP 999999 title_id, COUNT(*) AS NumOccur FROM sales GROUP BY 
title_id ORDER BY NumOccur DESC) s) 
 
      
(Results abridged) 
       
title 
-------------------------------------------------------------------------------- 
Is Anger the Enemy? 
The Busy Executive's Database Guide 
The Gourmet Microwave 
Cooking with Computers: Surreptitious Balance Sheets 
 
      
This query uses a derived table in order to sort the sales table before handing it to the subquery. We need a 
derived table because we need two values—the title_id column and a count of the number of times it occurs, 
but only the EXISTS predicate permits a subquery to return more than one column. We sort in descending 
order so that title_ids with a higher degree of frequency appear first. The TOP n extension is required since 
ORDER BY isn't allowed in subqueries, derived tables, or views without it. 

NOTE 

Note It's likely that using IN without ordering the sales table would be more efficient in this 
particular example because the tables are so small. The point of the example is to show that 
specifically ordering a subquery result set considered by IN is sometimes more efficient than 
leaving it in its natural order. A sizable amount of data has to be considered before you overcome 
the obvious overhead associated with grouping and sorting the table. 

 

Since a SELECT without an ORDER BY isn't guaranteed to produce rows in a particular order, a valid point 
that we can't trust the order of the rows in the subquery could be made. The fact that the derived table is 
ordered doesn't mean the subquery will be. In practice, it appears that this works as we want. To verify it, we 
can extract the subquery and run it separately from the main query, like so: 

       
SELECT title_id 
FROM (SELECT TOP 999999 title_id, COUNT(*) AS NumOccur 
FROM sales GROUP BY title_id ORDER BY NumOccur DESC) s 
 
   (Results abridged) 
 
title_id NumOccur 
-------- -------- 
PS2091   6 



Chapter 6. The Mighty SELECT Statement 

123 

BU1032   3 
MC3021   2 
BU1111   1 
BU2075   1 
BU7832   1 
 
      
Though highly unlikely, it's still possible that the query optimizer could choose a different sort order for the 
subquery than the one returned by the derived table, but this is the best we can do. 

ANY and ALL 

The ANY and ALL predicates work exclusively with subqueries. ANY (and its synonym SOME) works similarly 
to IN. Here's a query expressed first using IN, then using ANY: 
      
SELECT title 
FROM titles WHERE title_id IN (SELECT title_id FROM sales) 
 
   (Results abridged) 
 
title 
-------------------------------------------------------------------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
 
SELECT title 
FROM titles WHERE title_id=ANY(SELECT title_id FROM sales) 
    
   (Results abridged) 
 
title 
-------------------------------------------------------------------------------- 
But Is It User Friendly? 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 
Cooking with Computers: Surreptitious Balance Sheets 
Emotional Security: A New Algorithm 
 
     
Since IN and =ANY are functionally equivalent, you might tend to think that NOT IN and <>ANY are equivalent 
as well, but that's not the case. Instead, <>ALL is the equivalent of NOT IN. If you think about it, this makes 
perfect sense. <>ANY will always return True as long as more than one value is returned by the subquery. 
When two or more distinct values are returned by the subquery, there will always be one that doesn't match 
the scalar value. By contrast, <>ALL works just like NOT IN. It returns True only when the scalar value is not 
equal to each and every one of the values returned by the subquery. 
This brings up the interesting point that ALL is more often used with the not equal operator (<>) than with the 
equal operator (=). Testing a scalar value to see whether it matches every value in a list has a very limited use. 
The test will fail unless all the values are identical. If they're identical, why perform the test? 

Subqueries 

You've already been introduced to the subquery (or subselect) elsewhere in this book, particularly in the 
sections on predicates earlier in this chapter, but it's still instructive to delve into them a bit deeper. 
Subqueries are a potent tool in the Transact-SQL arsenal; they allow us to accomplish tasks that otherwise 
would be very difficult if not impossible. They provide a means of basing one query on another—of nesting 
queries—that can be both logical and speedy. 



Guru’s Guide to Transact-SQL 

124 

Many joins can be restated as subqueries, though this can be difficult (or even impossible) when the subquery 
is not used with IN or EXISTS or when it performs aggregation. As a rule, a join will be more efficient than a 
subquery, but this is not always the case. 
Subqueries aren't limited to restricting the rows in a result set. They can be used any place in a SQL 
statement where an expression is valid. They can be used to provide column values, within CASE 
expressions, and within derived tables. (A column whose value is derived from a subquery is called a derived 
column, as we discussed earlier.) They're not limited to SELECT statements, either. Subqueries can be used 
with UPDATE, INSERT, and DELETE, as well. 

WHERE and Subqueries 

The most common use of the subquery is in the SELECT statement's WHERE clause. Here's an example: 
      
SELECT SUM(qty) AS TotalSales 
FROM sales 
WHERE title_id=(SELECT MAX(title_id) FROM titles) 
 
TotalSales 
----------- 
20 
 
     
Here, we return the total sales for the last title_id in the titles table. Note the use of MAX function to ensure 
that the subquery returns only one row. Subqueries used with the equality operators (=,<>,>= and <=) may 
return one value only. An equality subquery that returns more than one value doesn't generate a syntax error, 
so be careful—you won't know about it until runtime. One way to avoid returning more than one value is to use 
an aggregate function, as the previous example does. Another way is to use SELECT's TOP n extension, like 
so: 
      
SELECT SUM(qty) AS TotalSales 
FROM sales 
WHERE title_id=(SELECT TOP 1 title_id FROM titles ORDER BY title_id DESC) 
 
TotalSales 
----------- 
20 
 
     
Here, we use TOP 1 to ensure that only one row is returned by the subquery. Just to keep the result set in line 
with the previous one, we sort the subquery's result set in descending order on the title_id column, then 
return the first (actually the last) one. 
Make sure that subqueries used in equality comparisons return no more than one row. Code that doesn't 
protect against multiple subquery values is a bug waiting to happen. It can crash merely because of minor 
data changes in the tables it references—not a good thing. 

Correlated Subqueries 

A correlated subquery is a subselect that is restricted by, and very often restricts, a table in the outer query. It 
usually references this table via the table's alias as specified in the outer query. 
In a sense, correlated subqueries behave like traditional looping constructs. For each row in the outer table, 
the subquery is reexecuted with a new set of parameters. On the other hand, a correlated subquery is much 
more efficient than the equivalent Transact-SQL looping code. It's far more efficient to iterate through a table 
using a correlated subquery than with, say, a WHILE loop. 
Here's an example of a basic correlated subquery: 
      
SELECT title 
FROM titles t 
WHERE (SELECT SUM(qty) AS TotalSales FROM sales WHERE title_id=t.title_id) > 30 
 



Chapter 6. The Mighty SELECT Statement 

125 

title 
-------------------------------------------------------------------------------- 
Is Anger the Enemy? 
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 
Secrets of Silicon Valley 
The Busy Executive's Database Guide 
The Gourmet Microwave 
You Can Combat Computer Stress! 
 
     
In this query, the subquery is executed for each row in titles. As it's executed each time, it's qualified by the 
title_id column in the outer table. This means that the SUM it returns will correspond to the current title_id of 
the outer query. This total, in turn, is used to limit the titles returned to those with sales in excess of 30 units. 
Of course, this query could easily be restated as a join, but the point of the exercise is to show the way in 
which subqueries and their hosts can be correlated. 
Note that correlated subqueries need not be restricted to the WHERE clause. Here's an example showing a 
correlated subquery in the SELECT list: 
      
SELECT title, 
(SELECT SUM(qty) FROM sales WHERE title_id=t.title_id) AS TotalSales 
FROM titles t 
 
   (Results abridged) 
 
title                                                                 TotalSales 
--------------------------------------------------------------------- ---------- 
But Is It User Friendly?                                              30 
Computer Phobic AND Non-Phobic Individuals: Behavior Variations       20 
Cooking with Computers: Surreptitious Balance Sheets                  25 
Emotional Security: A New Algorithm                                   25 
 
     
In this example, the subquery is restricted by the outer query, but it does not affect which rows are returned by 
the query. The outer query depends upon the subquery in the sense that it renders one of its column values 
but not to the degree that it affects which rows are included in the result set. 
As covered in the section on predicates, a scalar value can be compared with the result set of a subquery 
using special predicate functions such as IN, EXISTS, ANY, and ALL. Here's an example: 
      
SELECT title 
FROM titles t 
WHERE title_id IN (SELECT s.title_id 
                FROM sales s 
                WHERE (t.ytd_sales+((SELECT SUM(s1.qty) FROM sales s1 
                                     WHERE s1.title_id=t.title_id)*t.price)) 
                > 5000) 
 
title 
-------------------------------------------------------------------------------- 
You Can Combat Computer Stress! 
The Gourmet Microwave 
But Is It User Friendly? 
Secrets of Silicon Valley 
Fifty Years in Buckingham Palace Kitchens 
 
     
In this example, subqueries reference two separate fields from the outer query—ytd_sales and pric—in order 
to compute the total sales to date for each title. There are two subqueries here, one nested within the other, 
and both are correlated with the main query. The innermost subquery computes the total unit sales for a given 
title. It's necessary because sales is likely to contain multiple rows per title since it lists individual purchases. 
The outer subquery takes this total, multiplies it by the book unit price, and adds the title's year-to-date sales 



Guru’s Guide to Transact-SQL 

126 

in order to produce a sales-to-date total for each title. Those titles with sales in excess of $5000 are then 
returned by the subquery and tested by the IN predicate. 
As I've said, joins are often preferable to subqueries because they tend to run more efficiently. Here's the 
previous query rewritten as a join: 
      
SELECT t.title 
FROM titles t JOIN sales s ON (t.title_id=s.title_id) 
GROUP BY t.title_id, t.title, t.ytd_sales, t.price 
HAVING (t.ytd_sales+(SUM(s.qty)*t.price)) > 5000 
 
title 
-------------------------------------------------------------------------------- 
You Can Combat Computer Stress! 
The Gourmet Microwave 
But Is It User Friendly? 
Secrets of Silicon Valley 
Fifty Years in Buckingham Palace Kitchens 
 
     
Though joins are often preferable to subqueries, there are other times when a correlated subquery is the 
better solution. For example, consider the case of locating duplicate values among the rows in a table. Let's 
say that you have a list of Web domains and name servers and you want to locate each domain with the same 
name servers as some other domain. A domain can have no more than two name servers, so your table has 
three columns (ignore for the moment that these are unnormalized, repeating values). You could code this 
using a correlated subquery or as a self-join, but the subquery solution is better. To understand why, let's 
explore both methods. First, here's the self-join approach: 
      
CREATE TABLE #nameservers (domain varchar(30), ns1 varchar(15), ns2 varchar(15)) 
 
INSERT #nameservers VALUES ('foolsrus.com','24.99.0.9','24.99.0.8') 
INSERT #nameservers VALUES ('wewanturbuks.gov','127.0.0.2','127.0.0.3') 
INSERT #nameservers VALUES ('sayhitomom.edu','127.0.0.4','24.99.0.8') 
INSERT #nameservers VALUES ('knickstink.org','192.168.0.254','192.168.0.255') 
INSERT #nameservers VALUES ('nukemnut.com','24.99.0.6','24.99.0.7') 
INSERT #nameservers VALUES ('wedigdiablo.org','24.99.0.9','24.99.0.8') 
INSERT #nameservers VALUES ('gospamurself.edu','192.168.0.255','192.168.0.254') 
INSERT #nameservers VALUES ('ou812.com','100.10.0.100','100.10.0.101') 
INSERT #nameservers VALUES ('rothrulz.org','100.10.0.102','24.99.0.8') 
 
SELECT n.domain, n.ns1, n.ns2 
FROM #nameservers n JOIN #nameservers a ON 
   (n.domain<>a.domain AND ((n.ns1=a.ns1 AND n.ns2=a.ns2) OR (n.ns1=a.ns2 AND 
n.ns2=a.ns1))) 
ORDER BY 2,3,1 
 
domain                         ns1             ns2 
------------------------------ --------------- --------------- 
knickstink.org                 192.168.0.254   192.168.0.255 
gospamurself.edu               192.168.0.255   192.168.0.254 
foolsrus.com                   24.99.0.9       24.99.0.8 
wedigdiablo.org                24.99.0.9       24.99.0.8 
 
     
We join with a second instance of the name server table and set up the entirety of the conditions on which 
we're joining in the ON clause of the JOIN. For each row in the first instance of the table, we scan the second 
instance for rows where a) the domain is different and b) the pair of name servers is the same. We're careful 
to look for domains where the name servers have been reversed as well as those that match exactly. 
Now, here's the same query expressed using a subquery: 
      
SELECT n.domain, n.ns1, n.ns2 
FROM #nameservers n 



Chapter 6. The Mighty SELECT Statement 

127 

WHERE EXISTS(SELECT a.ns1, a.ns2 FROM #nameservers a 
  WHERE (a.domain<>n.domain) AND ((a.ns1=n.ns1 AND a.ns2=n.ns2) OR (a.ns1=n.ns2 
  AND a.ns2=n.ns1))) 
ORDER BY 2,3,1 
 
domain                         ns1             ns2 
------------------------------ --------------- --------------- 
knickstink.org                 192.168.0.254   192.168.0.255 
gospamurself.edu               192.168.0.255   192.168.0.254 
foolsrus.com                   24.99.0.9       24.99.0.8 
wedigdiablo.org                24.99.0.9       24.99.0.8 
 
     
Why is this better than the self-join? Because the EXISTS predicate returns as soon as it finds a single match, 
regardless of how many matches there may be. The performance advantage of the subquery over the self-join 
will grow linearly as more duplicate name server pairs are added to the table. 
As with the self-join, this approach includes rows where the name servers have been reversed. If we didn't 
want to consider those rows duplicates, we could streamline the query even further, like this: 
      
SELECT n.domain, n.ns1, n.ns2 
FROM #nameservers n 
WHERE EXISTS(SELECT a.ns1, a.ns2 FROM #nameservers a 
  WHERE ((a.ns1=n.ns1 AND a.ns2=n.ns2) OR (a.ns1=n.ns2 AND 
  a.ns2=n.ns1)) 
  GROUP BY a.ns1, a.ns2 
  HAVING COUNT(*)>1) 
ORDER BY 2,3,1 
 
domain                         ns1             ns2 
------------------------------ --------------- --------------- 
foolsrus.com                   24.99.0.9       24.99.0.8 
wedigdiablo.org                24.99.0.9       24.99.0.8 
 
     
This query groups its results on the ns1 and ns2 columns and returns only pairs with more than one 
occurrence. Every pair will have one occurrence—itself. Those with two or more are duplicates of at least one 
other pair. 

Relational Division 

An area in which correlated subqueries are indispensable is relational division. In his seminal treatise on 
relational database theory,[1] Dr. E.F. Codd defined a relational algebra with eight basic operations: union, 
intersection, set difference, containment, selection, projection, join, and relational division. The last of these, 
relational division, is the means by which we satisfy such requests as: "Show me the students who have taken 
every chemistry course" or "List the customers who have purchased at least one of every item in the catalog." 
In relational division, you divide a dividend table by a divisor table to produce a quotient table. As you might 
guess, the quotient is what we're after—it's the result table of the query. 

[1] Codd E. F. 1970. "A Relational Model of Data for Large Shared Data Banks." Communications of the ACM. New York: 
Association for Computing Machinery. 

This isn't as abstruse as it might seem. Suppose we want to solve the latter of the two requests put forth 
above—to list the customers who have ordered at least one of every item in the sales catalog. Let's say we 
begin with two tables: a table listing customer orders and a catalog table. To solve the problem, we can 
relationally divide the customer orders table by the catalog table to return a quotient of those customers 
who've purchased every catalog item. And, as in regular algebraic multiplication, we can multiply the divisor 
table by the quotient table (using a CROSS JOIN) to produce a subset of the dividend table. 
This is best explored by way of example. Below is a sample query that performs a relational divide. It makes 
use of the customers, orders, and items tables first introduced in Chapter1. If you still have those tables 



Guru’s Guide to Transact-SQL 

128 

(they should have been constructed in the GG_TS database), you'll only need to add three rows to orders 
before proceeding: 
       
INSERT orders 
VALUES(105,'19991111',3,1001,123.45) 
 
INSERT orders 
VALUES(106,'19991127',3,1002,678.90) 
 
INSERT orders 
VALUES(107,'19990101',1,1003,86753.09) 
 
      
See Chapter 1 if you need the full table definitions and the rest of the data. 
Once the tables and data are in place, the following query will relationally divide the customers and orders 
tables to produce a quotient of the customers who've ordered at least one of every item. 
       
SELECT c.LastName,c.FirstName 
FROM customers c 
WHERE NOT EXISTS (SELECT * 
  FROM items i 
  WHERE NOT EXISTS 
  (SELECT * 
  FROM items t JOIN orders o ON (t.ItemNumber=o.ItemNumber) 
  WHERE t.ItemNumber=i.ItemNumber AND 
    o.CustomerNumber=c.CustomerNumber)) 
 
LastName                       FirstName 
------------------------------ ------------------------------ 
Doe                            John 
Citizen                        John 
 
      
This may seem a bit obscure, but it's not as bad as it first appears. Let's examine the query, piece by piece. 
These kinds of queries are usually best explored from the inside out, so let's start with the innermost subquery. 
It's correlated with both the items table and the customers table. The number of times it's executed is equal 
to the number of rows in the items table multiplied by the number of rows in the customers table. The items 
query iterates through the items table, using the subquery to find items that a) have the same item number as 
the current row in items andb) are included in orders made by the current customer in the customers table. 
Any rows meeting these criteria are discarded (via NOT EXISTS). This leaves only those rows that appear in 
the items table but not in the orders table. In other words, these are items that the customer has not yet 
ordered. The outer query—the SELECT of the customers table—then excludes any customer whose items 
subquery returns rows—that is, any customer with unordered items. The result is a quotient consisting of the 
customers who've ordered at least one of everything. 
If we cheat a little and compare the count of the distinct items ordered by each customer with the total number 
of items, there are a number of other solutions to the problem. Here's one of them: 
       
SELECT c.LastName, c.FirstName 
FROM customers c JOIN 
(SELECT CustomerNumber, COUNT(DISTINCT ItemNumber) AS NumOfItems 
   FROM orders 
   GROUP BY CustomerNumber) o 
ON (c.CustomerNumber=o.CustomerNumber) 
WHERE o.NumOfItems=(SELECT COUNT(*) FROM items) 
 
LastName                       FirstName 
------------------------------ ------------------------------ 
Doe                            John 
Citizen                        John 
 
      



Chapter 6. The Mighty SELECT Statement 

129 

This approach joins the customers table with a derived table that returns each customer number and the 
number of distinct items ordered. This number is then compared via a subquery on the items table with the 
total number of items on file. Those customers with the same number of ordered items as exists in the items 
table are included in the list. 
Here's another rendition of the same query: 
       
SELECT c.LastName, c.FirstName 
FROM customers c 
WHERE CustomerNumber IN (SELECT CustomerNumber FROM orders 
  GROUP BY CustomerNumber 
  HAVING COUNT(DISTINCT ItemNumber)= 
    (SELECT COUNT(*) FROM items)) 
 
LastName                       FirstName 
------------------------------ ------------------------------ 
Doe                            John 
Citizen                        John 
 
      
This one uses a subquery to form a list of customers whose total number of distinct ordered items is equal to 
the number of items in the items table—those that have ordered at least one of every item. It makes clever 
use of GROUP BY to coalesce the customer numbers in orders to remove duplicates and enable the use of 
the COUNT() aggregate in the HAVING clause. Note that even though the subquery uses GROUP BY, it 
doesn't compute any aggregate values. This is legal, both from an ANSI standpoint and, obviously, from a 
Transact-SQL perspective. The primary purpose of the GROUP BY is to allow the use of the COUNT() 
aggregate to filter the rows returned by the subquery. HAVING permits direct references to aggregate 
functions; WHERE doesn't. 
Here's an approach that uses a simple join to get the job done: 
       
SELECT c.LastName, c.FirstName 
FROM customers c JOIN orders o ON (c.CustomerNumber=o.CustomerNumber) 
JOIN items i ON (o.ItemNumber=i.ItemNumber) 
GROUP BY c.LastName, c.FirstName 
HAVING COUNT(DISTINCT o.ItemNumber)=(SELECT COUNT(*) FROM items) 
 
LastName                       FirstName 
------------------------------ ------------------------------ 
Citizen                        John 
Doe                            John 
 
      
This approach joins the customers and orders tables using their CustomerNumber columns, then pares the 
result set down to just those customers for whom the total number of distinct ordered items equals the number 
of rows in the items table. Again, this amounts to returning the customers who've ordered at least one of every 
item in the items table. 

Aggregate Functions 

Aggregate functions summarize the data in a column into a single value. They can summarize all the data for 
a column or they can reflect a grouped total for that data. Aggregates that summarize based on grouping 
columns are known as vector aggregates. 
SQL Server currently supports eight aggregate functions: COUNT(), SUM(), MIN(), MAX(), STDDEV() 
(standard deviation), STDDEVP() (population standard deviation), VAR() (variance), and VARP() (population 
variance). All of these except COUNT() automatically ignore NULL values. When passed a specific column 
name, COUNT() ignores NULLs as well. Here's an example: 
     
CREATE TABLE #testnull (c1 int null) 
 
INSERT #testnull DEFAULT VALUES 
INSERT #testnull DEFAULT VALUES 



Guru’s Guide to Transact-SQL 

130 

 
SELECT COUNT(*), COUNT(c1) FROM #testnull 
----------- ----------- 
2           0 
 
Warning: Null value eliminated from aggregate. 
 
    
Each aggregate function can be passed two parameters: either the ALL or DISTINCT keyword specifying 
whether all values or only unique ones are to be considered (this parameter is optional and defaults to ALL) 
and the name of the column to aggregate. Here are some examples: 
     
SELECT COUNT(DISTINCT title_id) AS TotalTitles 
FROM sales 
TotalTitles 
----------- 
17 
 
SELECT stor_id, title_id, SUM(qty) AS TotalSold 
FROM sales 
GROUP BY stor_id, title_id 
ORDER BY stor_id, title_id 
 
    
(Results abridged) 
     
stor_id title_id TotalSold 
------- -------- ----------- 
6380    BU1032   5 
6380    PS2091   86 
7066    PC8888   50 
7066    PS2091   75 
7067    PS2091   10 
 
    
In the first example, the DISTINCT keyword is included in order to yield a count of the unique title_ids within 
the table. Since the rows in the sales table are representative of individual sales, duplicate title_id values will 
definitely exist. Including the DISTINCT keyword ignores them for the purpose of counting the values in the 
column. Note that DISTINCT aggregates aren't available when using the CUBE or ROLLUP operators. 
The second example produces a vector aggregate using the stor_id and title_id columns. In other words, the 
SUM() reported in each row of the result set reflects the total for a specific stor_id/title_id combination. Since 
neither ALL nor DISTINCT was specified with the aggregate, all rows within each group are considered during 
the aggregation. 
Thanks to subqueries, aggregate functions can appear almost anywhere in a SELECT statement and can also 
be used with INSERT, UPDATE, and DELETE. Here's an example that shows aggregate functions being used 
in the WHERE clause of a SELECT to restrict the rows it returns: 
     
SELECT t.title 
FROM titles t 
WHERE (SELECT COUNT(s.title_id) FROM sales s WHERE s.title_id=t.title_id)>1 
 
title 
-------------------------------------------------------------------------------- 
Is Anger the Enemy? 
The Busy Executive's Database Guide 
The Gourmet Microwave 
 
    
An aggregate can be referenced in the SELECT list of a query either directly via a column reference (as the 
earlier examples have shown) or indirectly via a subquery. Here's an example of both types of references: 
     



Chapter 6. The Mighty SELECT Statement 

131 

SELECT stor_id, COUNT(DISTINCT title_id) AS titles_sold, 
100*CAST(COUNT(DISTINCT title_id) AS float) / (SELECT COUNT(*) FROM titles) AS  
 

percent_of_total 
FROM sales 
GROUP BY stor_id 
 
stor_id titles_sold TotalSold 
------- ----------- -------------------------------------------- 
6380    2           11.111111111111111 
7066    2           11.111111111111111 
7067    4           22.222222222222221 
7131    6           33.333333333333336 
7896    3           16.666666666666668 
8042    5           27.777777777777779 
 
    
Here, COUNT(DISTINCT title_id) is a direct reference, while SELECT COUNT(*) is an indirect one. As with 
several of the other examples, the first aggregate returns a count of the number of unique titles referenced in 
the sales table. The second aggregate is embedded in a noncorrelated subquery. It returns the total number 
of titles in the titles table so that the query can compute the percentage of the total available titles that each 
store sells. Naturally, it would be more efficient to store this total in a local variable and reference the variable 
instead—I've used the subquery here for illustration only. 
Aggregates can also appear in the HAVING clause of a query. When a query has a HAVING clause, it's quite 
common for it to contain aggregates. Here's an example: 
     
SELECT stor_id, COUNT(DISTINCT title_id) AS titles_sold, 
100*CAST(COUNT(DISTINCT title_id) AS float) / (SELECT COUNT(*) FROM titles) AS  
 

percent_of_total 
FROM sales 
GROUP BY stor_id 
HAVING COUNT(DISTINCT title_id) > 2 
 
stor_id titles_sold TotalSold 
------- ----------- -------------------------------------------- 
7067    4           22.222222222222221 
7131    6           33.333333333333336 
7896    3           16.666666666666668 
8042    5           27.777777777777779 
 
    
This is just a rehash of the previous query, with a HAVING clause appended to it. HAVING filters the result set 
in the same way that WHERE filters the SELECT itself. It's common to reference an aggregate value in the 
HAVING clause since that value was not yet computed or available when WHERE was processed. 

GROUP BY and HAVING 

Closely related to the aggregate functions are the GROUP BY and HAVING clauses. GROUP BY divides a 
table into groups, and each group can have its own aggregate values. As I said earlier, HAVING limits the 
groups returned by GROUPBY. 
With the exception of bit, text, ntext, and image columns, any column can participate in the GROUP BY clause. 
To create groups within groups, simply list more than one column. Here's a simple GROUP BY example: 
     
SELECT st.stor_name, t.type, SUM(s.qty) AS TotalSold 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
JOIN stores st ON (s.stor_id=st.stor_id) 
GROUP BY st.stor_name, t.type 
ORDER BY st.stor_name, t.type 
 



Guru’s Guide to Transact-SQL 

132 

stor_name                                type         TotalSold 
---------------------------------------- ------------ ----------- 
Barnum's                                 popular_comp 50 
Barnum's                                 psychology   75 
Bookbeat                                 business     65 
Bookbeat                                 mod_cook     15 
Bookbeat                                 popular_comp 30 
Bookbeat                                 UNDECIDED    30 
Doc-U-Mat: Quality Laundry and Books     mod_cook     25 
Doc-U-Mat: Quality Laundry and Books     psychology   105 
Eric the Read Books                      business     5 
Eric the Read Books                      psychology   86 
Fricative Bookshop                       business     50 
Fricative Bookshop                       mod_cook     10 
News & Brews                         psychology   10 
News & Brews                         trad_cook    80 
 
    
GROUP BY ALL generates all possible groups—even those that do not meet the query's search criteria. 
Aggregate values in groups that fail the search criteria are returned as NULL. Here's an example: 
     
SELECT st.stor_name, t.type, SUM(s.qty) AS TotalSold 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
JOIN stores st ON (s.stor_id=st.stor_id) 
WHERE t.type='business' 
GROUP BY ALL st.stor_name, t.type 
ORDER BY st.stor_name, t.type 
 
stor_name                                type         TotalSold 
---------------------------------------- ------------ ----------- 
Barnum's                                 popular_comp NULL 
Barnum's                                 psychology   NULL 
Bookbeat                                 business     65 
Bookbeat                                 mod_cook     NULL 
Bookbeat                                 popular_comp NULL 
Bookbeat                                 UNDECIDED    NULL 
Doc-U-Mat: Quality Laundry and Books     mod_cook     NULL 
Doc-U-Mat: Quality Laundry and Books     psychology   NULL 
Eric the Read Books                      business     5 
Eric the Read Books                      psychology   NULL 
Fricative Bookshop                       business     50 
Fricative Bookshop                       mod_cook     NULL 
News & Brews                         psychology   NULL 
News & Brews                         trad_cook    NULL 
 
    
GROUP BY ALL is incompatible with the ROLLUP and CUBE operators and with remote tables. It's also 
overridden by HAVING, as you might expect, in the same sense that a plain GROUP BY is overridden by it—
HAVING filters what GROUP BY returns. 
Notice the ORDER BY clause in the previous example. You can no longer assume that the groups returned 
by GROUP BY will be sorted in a particular order. This behavior differs from that of SQL Server6.5 and earlier, 
so it's something to watch out for. If you require a specific order, use ORDER BY to ensureit. 
Though normally used in conjunction with aggregates, GROUP BY and HAVING don't require them. Using 
GROUP BY without aggregates has the effect of removing duplicates from the data. It has the same effect as 
prefixing the grouping columns with DISTINCT in the SELECT list, and, in fact, SQL Server treats GROUP BY 
queries without aggregates and plain SELECTs with DISTINCT identically. This means that the same 
execution plan will be generated for these two queries: 
     
SELECT s.title_id 
FROM sales s 
GROUP BY s.title_id 



Chapter 6. The Mighty SELECT Statement 

133 

 
SELECT DISTINCT s.title_id 
FROM sales s 
 
    
(To view execution plans in Query Analyzer, press Ctrl-K or select Show Execution Plan from the Query menu 
before running your query.) 
As we discovered in the earlier section on relational division, GROUP BY clauses without aggregate functions 
have a purpose beyond simulating SELECT DISTINCT queries. Including a GROUP BY clause, even one 
without aggregates, allows a result set to be filtered based on a direct reference to an aggregate. Unlike the 
WHERE clause, the HAVING clause can reference an aggregate without encapsulating it in a subquery. One 
of the relational division examples above uses this fact to qualify the rows returned by a subquery using an 
aggregate in its HAVING clause. 

Pivot Tables 

It's pretty common to need to reshape vertically oriented data into horizontally oriented tables suitable for 
reports and user interfaces. These tables are known as pivot tables or cross-tabulations (cross-tabs) and are 
an essential feature of any OLAP (Online Analytical Processing), EIS (Executive Information System), or DSS 
(Decision Support System) application. 
SQL Server includes a bevy of OLAP support tools that are outside the scope of this book. Install the OLAP 
Services from your SQL Server CD, and view the product documentation for more information. 
That said, the task of reshaping vertical data is well within the scope of this book and is fairly straightforward 
in Transact-SQL. Let's assume we start with this table of quarterly sales figures: 
      
CREATE TABLE #crosstab (yr int, qtr int, sales money) 
 
INSERT #crosstab VALUES (1999, 1, 44) 
INSERT #crosstab VALUES (1999, 2, 50) 
INSERT #crosstab VALUES (1999, 3, 52) 
INSERT #crosstab VALUES (1999, 4, 49) 
INSERT #crosstab VALUES (2000, 1, 50) 
INSERT #crosstab VALUES (2000, 2, 51) 
INSERT #crosstab VALUES (2000, 3, 48) 
INSERT #crosstab VALUES (2000, 4, 45) 
INSERT #crosstab VALUES (2001, 1, 46) 
INSERT #crosstab VALUES (2001, 2, 53) 
INSERT #crosstab VALUES (2001, 3, 54) 
INSERT #crosstab VALUES (2001, 4, 47) 
 
     
And let's say that we want to produce a cross-tab consisting of six columns: the year, a column for each 
quarter, and the total sales for the year. Here's a query to do the job: 
      
SELECT 
yr AS 'Year', 
SUM(CASE qtr WHEN 1 THEN sales ELSE NULL END) AS Q1, 
SUM(CASE qtr WHEN 2 THEN sales ELSE NULL END) AS Q2, 
SUM(CASE qtr WHEN 3 THEN sales ELSE NULL END) AS Q3, 
SUM(CASE qtr WHEN 4 THEN sales ELSE NULL END) AS Q4, 
SUM(sales) AS Total 
FROM #crosstab 
GROUP BY yr 
 
Year        Q1        Q2        Q3        Q4        Total 
----------- --------- --------- --------- --------- ---------- 
1999        44.0000   50.0000   52.0000   49.0000   195.0000 
2000        50.0000   51.0000   48.0000   45.0000   194.0000 
2001        46.0000   53.0000   54.0000   47.0000   200.0000 
 



Guru’s Guide to Transact-SQL 

134 

     
Note that it isn't necessary to total the Qn columns to produce the annual total. The query is already grouping 
on the yrcolumn; all it has to do to summarize the annual sales is include a simple aggregate. There's no need 
for a subquery, derived table, or any other exotic construct, unless, of course, there are sales records that fall 
outside quarters 1–4, which shouldn't be possible. 
The qtr column in the sample data made constructing the query fairly easy—almost too easy. In practice, it's 
pretty rare for time series data to include a quarter column—it's far more common to start with a date for each 
series member and compute the required temporal dimensions. Here's an example that uses the Orders table 
in the Northwind database to do just that. It translates the OrderDate column for each order into the 
appropriate temporal boundary: 
      
SELECT 
DATEPART(yy,OrderDate) AS 'Year', 
COUNT(CASE DATEPART(qq,OrderDate) WHEN 1 THEN 1 ELSE NULL END) AS Q1, 
COUNT(CASE DATEPART(qq,OrderDate) WHEN 2 THEN 1 ELSE NULL END) AS Q2, 
COUNT(CASE DATEPART(qq,OrderDate) WHEN 3 THEN 1 ELSE NULL END) AS Q3, 
COUNT(CASE DATEPART(qq,OrderDate) WHEN 4 THEN 1 ELSE NULL END) AS Q4, 
COUNT(*) AS TotalNumberOfSales 
FROM Orders 
GROUP BY DATEPART(yy,OrderDate) 
ORDER BY 1 
 
Year        Q1        Q2        Q3        Q4        TotalNumberOfSales 
----------- --------- --------- --------- --------- ------------------ 
1996        0         0         70        82        152 
1997        92        93        103       120       408 
1998        182       88        0         0         270 
 
     
This query returns a count of the orders for each quarter as well as for each year. It uses the DATEPART() 
function to extract each date element as necessary. As the query iterates through the Orders table, the CASE 
functions evaluate each OrderDate to determine the quarter "bucket" into which it should go, then return either 
"1"—the order is counted against that particular quarter—or NULL—the order is ignored. 

CUBE and ROLLUP 

The GROUP BY clause's CUBE and ROLLUP operators add summary rows to result sets. CUBE produces a 
multidimensional cube whose dimensions are defined by the columns specified in the GROUP BY clause. 
This cube is an explosion of the underlying table data and is presented using every possible combination of 
dimensions. 
ROLLUP, by contrast, presents a hierarchical summation of the underlying data. Summary rows are added to 
the result set based on the hierarchy of grouped columns, from left to right. 
Here's an example that uses the ROLLUP operator to generate subtotal and total rows: 
      
SELECT CASE GROUPING(st.stor_name) WHEN 0 THEN st.stor_name ELSE 'ALL' END AS 
Store, 
CASE GROUPING(t.type) WHEN 0 THEN t.type ELSE 'ALL TYPES' END AS Type, 
SUM(s.qty) AS TotalSold 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
JOIN stores st ON (s.stor_id=st.stor_id) 
GROUP BY st.stor_name, t.type WITH ROLLUP 
 
Store                                   Type         TotalSold 
--------------------------------------- ------------ ----------- 
Barnum's                                popular_comp 50 
Barnum's                                psychology   75 
Barnum's                                ALL TYPES    125 
Bookbeat                                business     65 
Bookbeat                                mod_cook     15 
Bookbeat                                popular_comp 30 



Chapter 6. The Mighty SELECT Statement 

135 

Bookbeat                                UNDECIDED    30 
Bookbeat                                ALL TYPES    140 
Doc-U-Mat: Quality Laundry and Books    mod_cook     25 
Doc-U-Mat: Quality Laundry and Books    psychology   105 
Doc-U-Mat: Quality Laundry and Books    ALL TYPES    130 
Eric the Read Books                     business     5 
Eric the Read Books                     psychology   86 
Eric the Read Books                     ALL TYPES    91 
Fricative Bookshop                      business     50 
Fricative Bookshop                      mod_cook     10 
Fricative Bookshop                      ALL TYPES    60 
News & Brews                        psychology   10 
News & Brews                        trad_cook    80 
News & Brews                        ALL TYPES    90 
ALL                                     ALL TYPES    636 
 
     
This query has several noteworthy features. First, note the extra rows that ROLLUP inserted into the result set. 
Since the query groups on the stor_name and type columns, ROLLUP produces summary rows first for each 
stor_name group (ALL TYPES), then for the entire result set. 
The GROUPING() function is used to translate the label assigned to each grouping column. Normally, 
grouping columns are returned as NULLs. By making use of GROUPING(), the query is able to translate 
those NULLs to something more meaningful. 
Here's that same query again, this time using CUBE: 
      
SELECT CASE GROUPING(st.stor_name) WHEN 0 THEN st.stor_name ELSE 'ALL' END AS 
Store, 
CASE GROUPING(t.type) WHEN 0 THEN t.type ELSE 'ALL TYPES' END AS Type, 
SUM(s.qty) AS TotalSold 
FROM sales s JOIN titles t ON (s.title_id=t.title_id) 
JOIN stores st ON (s.stor_id=st.stor_id) 
GROUP BY st.stor_name, t.type WITH CUBE 
 
Store                                   Type         TotalSold 
--------------------------------------- ------------ ----------- 
Barnum's                                popular_comp 50 
Barnum's                                psychology   75 
Barnum's                                ALL TYPES    125 
Bookbeat                                business     65 
Bookbeat                                mod_cook     15 
Bookbeat                                popular_comp 30 
Bookbeat                                UNDECIDED    30 
Bookbeat                                ALL TYPES    140 
Doc-U-Mat: Quality Laundry and Books    mod_cook     25 
Doc-U-Mat: Quality Laundry and Books    psychology   105 
Doc-U-Mat: Quality Laundry and Books    ALL TYPES    130 
Eric the Read Books                     business     5 
Eric the Read Books                     psychology   86 
Eric the Read Books                     ALL TYPES    91 
Fricative Bookshop                      business     50 
Fricative Bookshop                      mod_cook     10 
Fricative Bookshop                      ALL TYPES    60 
News & Brews                        psychology   10 
News & Brews                        trad_cook    80 
News & Brews                        ALL TYPES    90 
ALL                                     ALL TYPES    636 
ALL                                     business     120 
ALL                                     mod_cook     50 
ALL                                     popular_comp 80 
ALL                                     psychology   276 
ALL                                     trad_cook    80 



Guru’s Guide to Transact-SQL 

136 

ALL                                     UNDECIDED    30 
 
     
Note the additional rows at the end of the result set. In addition to the summary rows generated by ROLLUP, 
CUBE creates subtotals for each type of book as well. 
Without detailed knowledge of your data, it's nearly impossible to know how many rows will be returned by 
CUBE. However, computing the upper limit of the number of possible rows is trivial. It's the cross product of 
the number of unique values 11 for each grouping column. The "+1" is for the ALL summary record generated 
for each attribute. In this case, there are six distinct stores and six distinct book types in the sales table. This 
means that a maximum of forty-nine rows will be returned in the CUBEd result set (6+1*6+1). Here, there are 
fewer than forty-nine rows because not every store has sold every type of book. 
On a related note, you'll notice that CUBE doesn't generate zero subtotals for book types that a particular 
store hasn't sold. It might be useful to have these totals so that we can see what the store is and isn't selling. 
Having the full cube creates a result set that is dimensioned more uniformly, making it easier to create reports 
and charts over it. Here's a full-cube version of the last query: 
      
SELECT 
CASE GROUPING(st.stor_name) WHEN 0 THEN st.stor_name ELSE 'ALL' END AS Store, 
CASE GROUPING(s.type) WHEN 0 THEN s.type ELSE 'ALL TYPES' END AS Type, 
SUM(s.qty) AS TotalSold 
FROM 
   (SELECT DISTINCT st.stor_id, t.type, 0 AS qty 
   FROM stores st CROSS JOIN titles t 
   UNION ALL 
   SELECT s.stor_id, t.type, s.qty FROM sales s JOIN titles t 
   ON s.title_id=t.title_id) s 
JOIN stores st ON (s.stor_id=st.stor_id) 
GROUP BY st.stor_name, s.type WITH CUBE 
 
Store                                   Type         TotalSold 
--------------------------------------- ------------ ----------- 
Barnum's                                business     0 
Barnum's                                mod_cook     0 
Barnum's                                popular_comp 50 
Barnum's                                psychology   75 
Barnum's                                trad_cook    0 
Barnum's                                UNDECIDED    0 
Barnum's                                ALL TYPES    125 
Bookbeat                                business     65 
Bookbeat                                mod_cook     15 
Bookbeat                                popular_comp 30 
Bookbeat                                psychology   0 
Bookbeat                                trad_cook    0 
Bookbeat                                UNDECIDED    30 
Bookbeat                                ALL TYPES    140 
Doc-U-Mat: Quality Laundry and Books    business     0 
Doc-U-Mat: Quality Laundry and Books    mod_cook     25 
Doc-U-Mat: Quality Laundry and Books    popular_comp 0 
Doc-U-Mat: Quality Laundry and Books    psychology   105 
Doc-U-Mat: Quality Laundry and Books    trad_cook    0 
Doc-U-Mat: Quality Laundry and Books    UNDECIDED    0 
Doc-U-Mat: Quality Laundry and Books    ALL TYPES    130 
Eric the Read Books                     business     5 
Eric the Read Books                     mod_cook     0 
Eric the Read Books                     popular_comp 0 
Eric the Read Books                     psychology   86 
Eric the Read Books                     trad_cook    0 
Eric the Read Books                     UNDECIDED    0 
Eric the Read Books                     ALL TYPES    91 
Fricative Bookshop                      business     50 
Fricative Bookshop                      mod_cook     10 



Chapter 6. The Mighty SELECT Statement 

137 

Fricative Bookshop                      popular_comp 0 
Fricative Bookshop                      psychology   0 
Fricative Bookshop                      trad_cook    0 
Fricative Bookshop                      UNDECIDED    0 
Fricative Bookshop                      ALL TYPES    60 
News & Brews                        business     0 
News & Brews                        mod_cook     0 
News & Brews                        popular_comp 0 
News & Brews                        psychology   10 
News & Brews                        trad_cook    80 
News & Brews                        UNDECIDED    0 
News & Brews                        ALL TYPES    90 
ALL                                     ALL TYPES    636 
ALL                                     business     120 
ALL                                     mod_cook     50 
ALL                                     popular_comp 80 
ALL                                     psychology   276 
ALL                                     trad_cook    80 
ALL                                     UNDECIDED    30 
 
     
This query begins by creating a zero-value table of stores and book types by multiplying the stores in the 
stores table by the book types in the titles table using a CROSS JOIN. It then UNIONs this set with the sales 
table to produce a composite that includes the sales records for each store, as well as a zero value for each 
store–book type combo. This is then fed into the outer grouping query as a derived table. The outer query 
then groups and summarizes as necessary to produce the result set. Note that there are forty-nine rows in the 
final result set—exactly the number we predicted earlier. 
There are a few caveats and limitations related to CUBE and ROLLUP of which you should be aware: 

• Both operators are limited to ten dimensions. 
• Both preclude the generation of DISTINCT aggregates. 
• CUBE can produce huge result sets. These can take a long time to generate and can cause problems 

with application programs not designed to handle them. 

HAVING 

As I said earlier, HAVING restricts the rows returned by GROUP BY similarly to the way that WHERE restricts 
those returned by SELECT. It is processed after the rows are collected from the underlying table(s) and is 
therefore less efficient for garden-variety row selection than WHERE. In fact, behind the scenes, SQL Server 
implicitly converts a HAVING that would be more efficiently stated as a WHERE automatically. This means 
that the execution plans generated for the following queries are identical: 
      
SELECT title_id 
FROM titles 
WHERE type='business' 
GROUP BY title_id, type 
 
SELECT title_id 
FROM titles 
GROUP BY title_id, type 
HAVING type='business' 
 
     
In the second query, HAVING doesn't do anything that WHERE couldn't do, so SQL Server converts it to a 
WHERE during query execution so that the number of rows processed by GROUP BY is as small as possible. 

UNION 



Guru’s Guide to Transact-SQL 

138 

The UNION operator allows you to combine the results of two queries into a single result set. We've used 
UNION throughout this chapter to combine the results of various queries. UNIONs aren't complicated, but 
there are a few simple rules you should keep in mind when using them: 

• Each query listed as a UNION term must have the same number of columns and must list them in the 
same order as the other queries. 

• The columns returned by each SELECT must be assignment compatible or be explicitly converted to 
a data type that's assignment compatible with their corresponding columns in the other SELECTs. 

• Combining columns that are assignment compatible but of different types produces a column with the 
higher type precedence of the two (e.g., combining a smallint and a float results in a float result 
column). 

• The column names returned by the UNION are derived from those of the first SELECT. 
• UNION ALL is faster than UNION because it doesn't remove duplicates before returning. Removing 

duplicates may force the server to sort the data, an expensive proposition, especially with large tables. 
If you aren't concerned about duplicates, use UNION ALL instead of UNION. 

Here's an example of a simple UNION: 
     
SELECT title_id, type 
FROM titles 
WHERE type='business' 
UNION ALL 
SELECT title_id, type 
FROM titles 
WHERE type='mod_cook' 
 
title_id type 
-------- ------------ 
BU1032   business 
BU1111   business 
BU2075   business 
BU7832   business 
MC2222   mod_cook 
MC3021   mod_cook 
 
    
This query UNIONs two separate segments of the titles table based on the type field. Since the query used 
UNION ALL, no sorting of the elements occurs. 
As illustrated earlier in the chapter, one of the niftier features of UNION is the ability to use derived tables to 
create a virtual table on the fly during a query. This is handy for creating lookup tables and other types of 
tabular constructs that don't merit permanent storage. Here's an example: 
     
SELECT title_id AS Title_ID, t.type AS Type, b.typecode AS TypeCode 
FROM titles t JOIN 
(SELECT 'business' AS type, 0 AS typecode 
UNION ALL 
SELECT 'mod_cook' AS type, 1 AS typecode 
UNION ALL 
SELECT 'popular_comp' AS type, 2 AS typecode 
UNION ALL 
SELECT 'psychology' AS type, 3 AS typecode 
UNION ALL 
SELECT 'trad_cook' AS type, 4 AS typecode 
UNION ALL 
SELECT 'UNDECIDED' AS type, 5 AS typecode) b 
ON (t.type = b.type) 
ORDER BY TypeCode, Title_ID 
 
Title_ID Type         TypeCode 
-------- ------------ ---------------------------------------------------------- 



Chapter 6. The Mighty SELECT Statement 

139 

BU1032   business     0 
BU1111   business     0 
BU2075   business     0 
BU7832   business     0 
MC2222   mod_cook     1 
MC3021   mod_cook     1 
PC1035   popular_comp 2 
PC8888   popular_comp 2 
PC9999   popular_comp 2 
PS1372   psychology   3 
PS2091   psychology   3 
PS2106   psychology   3 
PS3333   psychology   3 
PS7777   psychology   3 
TC3218   trad_cook    4 
TC4203   trad_cook    4 
TC7777   trad_cook    4 
MC3026   UNDECIDED    5 
 
    
The query uses Transact-SQL's ability to produce a result set without referencing a database object to 
construct a virtual table from a series of UNIONed SELECT statements. In this case, we use it to translate the 
type field in the titles table into a code. Of course, a CASE statement would be much more efficient here—
we've taken the virtual table approach for purposes of illustration only. 

ORDER BY 

The ORDER BY clause is used to sort the data in a result set. When possible, the query optimizer will use an 
index to service the sort request. When this is impossible or deemed suboptimal by the optimizer, a work table 
is constructed to perform the sort. With large tables, this can take a while and can run tempdb out of space if 
it's not sized sufficiently large. This is why you shouldn't order result sets unless you actually need a specific 
row order—doing so wastes server resources. On the other hand, if you need a fixed sort order, be sure to 
include an ORDER BY clause. You can no longer rely on clauses such as GROUP BY and UNION to produce 
useful row ordering. This represents a departure from previous releases of SQL Server (6.5 and earlier), so 
watch out for it. Queries that rely on a specific row ordering without using ORDER BY may not work as 
expected. 
Columns can be referenced in an ORDER BY clause in one of three ways: by name, by column alias, or by 
result set column number. Here's an example: 
     
SELECT stor_id AS store, title_id AS title, qty AS sales FROM sales s 
ORDER BY stor_id, 2, sales 
 
store title  sales 
----- ------ ------ 
6380  BU1032 5 
6380  PS2091 3 
6380  PS2091 30 
6380  PS2091 53 
7066  PC8888 50 
7066  PS2091 75 
7067  PS2091 10 
7067  TC3218 40 
7067  TC4203 20 
7067  TC7777 20 
7131  MC3021 25 
7131  PS1372 20 
7131  PS2091 20 
7131  PS2106 25 
7131  PS3333 15 
7131  PS7777 25 



Guru’s Guide to Transact-SQL 

140 

7896  BU2075 35 
7896  BU7832 15 
7896  MC2222 10 
8042  BU1032 10 
8042  BU1032 30 
8042  BU1111 25 
8042  MC3021 15 
8042  MC3026 30 
8042  PC1035 30 
 
    
This query orders the result set using all three methods, which is probably not a good idea within a single 
query. As with a lot of multiflavored coding techniques, there's nothing wrong with it syntactically, but doing 
something three different ways when one will do, needlessly obfuscates your code. Remember the law of 
parsimony (a.k.a. Ockham's razor)—one should neither assume nor promote the existence of more elements 
than are logically necessary to solve a problem. 
This doesn't mean that you might not use each of these techniques at different times. The ability to reference 
result set columns by number is a nice shorthand way of doing so. (That said, ordering by column numbers 
has been deprecated in recent years, so it's advisable to name your columns and sort using column aliases 
instead.) Being able to use column aliases alleviates the need to repeat complex expressions in the ORDER 
BY clause, and referencing table columns directly allows you to order by items not in the SELECT list. 
You can also include subqueries and constants in the ORDER BY clause, though this is pretty rare. 
Subqueries contained in the ORDER BY clause can be correlated or stand-alone. 
Each column in the ORDER BY list can be optionally followed by the DESC or ASC keyword in order to sort in 
descending or ascending (the default) order. Here's an example: 
     
SELECT st.stor_name AS Store, t.type AS Type, SUM(qty) AS Sales 
FROM stores st JOIN sales s ON (st.stor_id=s.stor_id) 
JOIN titles t ON (s.title_id=t.title_id) 
GROUP BY st.stor_name, t.type 
ORDER BY Store DESC, Type ASC 
 
Store                                   Type         Sales 
--------------------------------------- ------------ ----------- 
News & Brews                        psychology   10 
News & Brews                        trad_cook    80 
Fricative Bookshop                      business     50 
Fricative Bookshop                      mod_cook     10 
Eric the Read Books                     business     5 
Eric the Read Books                     psychology   86 
Doc-U-Mat: Quality Laundry and Books    mod_cook     25 
Doc-U-Mat: Quality Laundry and Books    psychology   105 
Bookbeat                                business     65 
Bookbeat                                mod_cook     15 
Bookbeat                                popular_comp 30 
Bookbeat                                UNDECIDED    30 
Barnum's                                popular_comp 50 
Barnum's                                psychology   75 
 
    
A few things to keep in mind regarding ORDER BY: 

• You can't use ORDER BY in views, derived tables, or subqueries without also using the TOP n 
extension (see the section on TOP n earlier in this chapter for more information). A technique for 
working around this is to include a TOP n clause that specifies more rows than exist in the underlying 
table(s). 

• You can't sort on text, ntext, or image columns. 
• If your query is a SELECT DISTINCT or combines result sets via UNION, the columns listed in the 

ORDER BY clause must appear in the SELECTlist. 



Chapter 6. The Mighty SELECT Statement 

141 

• If the SELECT includes the UNION operator, the column names and aliases you can use are limited 
to those of the first table in the UNION. 

Summary 

In this chapter, you explored the ubiquitous, omnipotent Transact-SQL SELECT statement. Mastering it is 
essential to becoming an adroit Transact-SQL programmer. SELECT is powerful, but that power comes at a 
price: complexity. While SELECT statements can be very brief and concise, they are often extremely intricate 
in real applications. 





Chapter 7. Views 

143 

Chapter 7. Views 
Where is the information?  

Lost in the data.  

Where is the data?  

Lost in the #@%!& database!  

——Joe Celko 

VIEWs are static queries that you can use as though they were tables. A VIEW consists of a SELECT 
statement compiled ahead of time using SQL's CREATE VIEW command and referenced in the same manner 
as a table. VIEW columns can consist of table columns, aggregates, constants, and expressions (computed 
columns). Some VIEWs are updatable; some aren't. Whether a VIEW is updatable depends largely on 
whether SQL Server can resolve an update to one of its rows to a single row in an underlying base table. All 
VIEWs must eventually reference a base table or nontabular expression (an expression that doesn't require a 
table—GETDATE(), for example), though VIEWs can be "nested"—meaning that a VIEW can reference other 
VIEWs as long as the dependence tree eventually resolves to base tables or nontabular expressions. 

Restrictions 

Transact-SQL doesn't support temporary VIEWs, though you can create static VIEWs in tempdb and achieve 
a similar effect. Also, VIEWs aren't allowed to reference temporary tables—only references to other VIEWs or 
permanent base tables are permitted. 
As a rule, ORDER BY is not allowed in VIEWs, so the following syntax is not valid: 
     
-- _Not_ valid Transact-SQL syntax 
CREATE VIEW myauthors AS 
SELECT * FROM authors 
ORDER BY au_lname 
 
    
There is, however, a workaround. If you know the maximum number of rows the query might return in 
advance, you can use Transact-SQL's TOP n extension to allow ORDER BY in VIEWs, like this: 
     
CREATE VIEW myauthors AS 
SELECT TOP 50 * 
FROM authors 
ORDER BY au_lname 
 
    
Specify a number large enough to exceed the number of possible rows in the table if you're unsure of the 
exact count. TOP n allows the use of ORDER BY within a VIEW by permitting you to request more top rows 
than actually exist in the table, resulting in all rows being returned. The query below shows that the ORDER 
BY is in effect when we query the view: 
     
SELECT au_id, au_lname, au_fname 
FROM myauthors 
 
au_id       au_lname                                 au_fname 
----------- ---------------------------------------- -------------------- 
409-56-7008 Bennet                                   Abraham 
648-92-1872 Blotchet-Halls                           Reginald 
238-95-7766 Carson                                   Cheryl 
722-51-5454 DeFrance                                 Michel 
712-45-1867 del Castillo                             Innes 



Guru’s Guide to Transact-SQL 

144 

427-17-2319 Dull                                     Ann 
213-46-8915 Green                                    Marjorie 
527-72-3246 Greene                                   Morningstar 
472-27-2349 Gringlesby                               Burt 
846-92-7186 Hunter                                   Sheryl 
756-30-7391 Karsen                                   Livia 
486-29-1786 Locksley                                 Charlene 
724-80-9391 MacFeather                               Stearns 
893-72-1158 McBadden                                 Heather 
267-41-2394 O'Leary                                  Michael 
807-91-6654 Panteley                                 Sylvia 
998-72-3567 Ringer                                   Albert 
899-46-2035 Ringer                                   Anne 
341-22-1782 Smith                                    Meander 
274-80-9391 Straight                                 Dean 
724-08-9931 Stringer                                 Dirk 
172-32-1176 White                                    Johnson 
672-71-3249 Yokomoto                                 Akiko 
 
    
As with stored procedures, the status of SET QUOTED_IDENTIFIER and SET ANSI_ NULLS is saved with 
each VIEW. This means that individual session settings for these options are ignored by the VIEW when it's 
queried. It also means that you can localize special quoted identifier or NULL handling to a particular VIEW 
without affecting anything else. 

DML Restrictions 

An UPDATE to a VIEW is not allowed to affect more than one underlying base table at a time. If the VIEW 
joins two or more tables together, an UPDATE to it may alter only one of them. Likewise, an INSERT must 
modify only one table at a time in a multitable VIEW. This means that values can be supplied for only one 
table—the columns in the other table(s) must have DEFAULT constraints, allow NULLs, or otherwise be 
optional. DELETE can be used only with single-table VIEWs—it can't be used with multitable VIEWs of any 
kind. 

ANSI SQL Schema VIEWs 

Out of the box, SQL Server provides a number of VIEWs for accessing the system catalogs. These objects 
provide an ANSI SQL-92–compliant means of retrieving meta-data and otherwise querying the server for 
system-level information. You should use these rather than querying system catalog tables directly for two 
reasons: 1) the ANSI SQL-92 specification defines these VIEWs—so they should work similarly between 
different DBMS platforms, and 2) you can depend on them to work the same way between different releases 
of SQL Server, even though their underlying system tables may change from release to release. Table 7.1 
lists the SQL-92–compliant VIEWs that SQL Server provides: 

Table 7.1. SQL Server's ANSI SQL-92 schema VIEWs. 
VIEW Name  

CHECK_CONSTRAINTS 
COLUMN_DOMAIN_USAGE 
COLUMN_PRIVILEGES 
COLUMNS 
CONSTRAINT_COLUMN_USAGE 
CONSTRAINT_TABLE_USAGE 
DOMAIN_CONSTRAINTS 
DOMAINS 
KEY_COLUMN_USAGE 
REFERENTIAL_CONSTRAINTS 
SCHEMATA 



Chapter 7. Views 

145 

TABLE_CONSTRAINTS 
TABLES 
VIEW_COLUMN_USAGE 
VIEW_TABLE_USAGE 
VIEWS 
Note that you must refer to these objects using the INFORMATION_SCHEMA database schema. In SQL 
Server parlance, a schema and an owner are synonymous. This means that you must use: 
     
SELECT * FROM INFORMATION_SCHEMA.TABLES 
 
    
rather than: 
     
SELECT * FROM TABLES 

Getting a VIEW's Source Code 

Unless a VIEW was created using the WITH ENCRYPTION option, you can use sp_helptext to retrieve its 
source code. You can also inspect and modify VIEW source code in Enterprise Manager, as well as many 
SQL-DMO–enabled administration tools. Here's some sample code that returns the source of the syslogins 
system VIEW: 
     
USE master 
exec sp_helptext syslogins 
 
Text 
-------------------------------------------------------------------------------- 
CREATE VIEW syslogins AS SELECT 
  suid = convert(smallint, suser_id(name)), 
  sid = convert(varbinary(85), sid), 
  status = convert(smallint, 8 + 
       CASE WHEN (xstatus & 2)=0 THEN 1 ELSE 2 END), 
     createdate = convert(datetime, xdate1), 
     updatedate = convert(datetime, xdate2), 
  accdate = convert(datetime, xdate1), 
  totcpu = convert(int, 0), 
  totio = convert(int, 0), 
  spacelimit = convert(int, 0), 
  timelimit = convert(int, 0), 
  resultlimit = convert(int, 0), 
  name = convert(varchar(30), CASE WHEN (xstatus&4)=0 THEN name 
       ELSE suser_name(suser_id(name)) END), 
  dbname = convert(sysname, db_name(dbid)), 
  password = convert(sysname, password), 
  language = convert(sysname, language), 
  denylogin = convert(int, CASE WHEN (xstatus&1)=1 THEN 1 ELSE 0 END), 
  hasaccess = convert(int, CASE WHEN (xstatus&2)=2 THEN 1 ELSE 0 END),  
  isntname = convert(int, CASE WHEN (xstatus&4)=4 THEN 1 ELSE 0 END),  
  isntgroup = convert(int, CASE WHEN (xstatus&12)=4 THEN 1 ELSE 0 END), 
  isntuser = convert(int, CASE WHEN (xstatus&12)=12 THEN 1 ELSE 0 END), 
  sysadmin = convert(int, CASE WHEN (xstatus&16)=16 THEN 1 ELSE 0 END), 
  securityadmin = convert(int, CASE WHEN (xstatus&32)=32 THEN 1 ELSE 0 END), 
  serveradmin = convert(int, CASE WHEN (xstatus&64)=64 THEN 1 ELSE 0 END), 
  setupadmin = convert(int, CASE WHEN (xstatus&128)=128 THEN 1 ELSE 0 END), 
  processadmin = convert(int, CASE WHEN (xstatus&256)=256 THEN 1 ELSE 0 END), 
  diskadmin = convert(int, CASE WHEN (xstatus&512)=512 THEN 1 ELSE 0 END), 
  dbcreator = convert(int, CASE WHEN (xstatus&1024)=1024 THEN 1 ELSE 0 END), 
  loginname = convert(sysname, name) 
FROM sysxlogins WHERE srvid IS NULL 



Guru’s Guide to Transact-SQL 

146 

Updatable VIEWs 

As mentioned earlier, there are a number of factors affecting whether a VIEW is updatable. For a VIEW to 
allow updates, the following criteria must be met: 

• Aggregate functions, the TOP, GROUP BY, UNION, or DISTINCT clauses or keywords are not 
allowed. 

• Derived columns (columns constructed from complex expressions) are not updatable. 
• SELECT lists consisting entirely of nontabular expressions are not allowed. 

Again, the bottom line is that the server must be able to translate an update to a row in the VIEW into an 
update to a row in a base table. If it can't do this, you can't update the VIEW. 

WITH CHECK OPTION 

An updatable VIEW can be created so that it checks updates for compliance with its WHERE clause, if it has 
one. This prevents rows added via the VIEW from "vanishing" when the VIEW is requeried since they don't 
meet its selection criteria. To set up a VIEW this way, use the WITH CHECK OPTION clause when you create 
it, like so: 
     
CREATE VIEW CALIFORNIA_AUTHORS AS 
SELECT * 
FROM authors 
WHERE State='CA' 
WITH CHECK OPTION 
 
    
This particular example ensures that any author that's added via the VIEW resides in California. For example, 
this statement fails because of WITH CHECK OPTION: 
     
INSERT CALIFORNIA_AUTHORS 
VALUES ('867-53-09EI','Henderson','Ken',  
'972 555-1212','57 Riverside','Dallas','TX','75080',1)  
 
Server: Msg 550, Level 16, State 1, Line 1 
The attempted insert or update failed because the target VIEW either specifies 
WITH CHECK OPTION or spans a VIEW that specifies WITH CHECK OPTION and one or 
more 
rows resulting from the operation did not qualify under the CHECK OPTION 
constraint.  
The statement has been terminated. 
 
    
This also applies to updates. If an update you make through a VIEW that has WITH CHECK OPTION enabled 
would cause the row to fail the VIEW's WHERE criteria, the update will be rejected. 

Derived Tables 

As mentioned in Chapter 6, derived tables are SELECT statements that you embed within the FROM clause 
of other SELECTs in place of table references. I include coverage of them here for completeness and 
because they resemble implicit or automatic VIEWs. Derived tables make possible certain types of queries 
that previously required separate VIEW objects. Here's an example: 
     
CREATE TABLE #1996_POP_ESTIMATE (Region char(7), State char(2), Population int) 
 
INSERT #1996_POP_ESTIMATE VALUES ('West',   'CA',31878234) 
INSERT #1996_POP_ESTIMATE VALUES ('South',  'TX',19128261)  
INSERT #1996_POP_ESTIMATE VALUES ('North',  'NY',18184774) 



Chapter 7. Views 

147 

INSERT #1996_POP_ESTIMATE VALUES ('South',  'FL',14399985) 
INSERT #1996_POP_ESTIMATE VALUES ('North',  'NJ', 7987933) 
INSERT #1996_POP_ESTIMATE VALUES ('East',   'NC', 7322870) 
INSERT #1996_POP_ESTIMATE VALUES ('West',   'WA', 5532939) 
INSERT #1996_POP_ESTIMATE VALUES ('Central','MO', 5358692) 
INSERT #1996_POP_ESTIMATE VALUES ('East',   'MD', 5071604) 
INSERT #1996_POP_ESTIMATE VALUES ('Central','OK', 3300902) 
 
SELECT * FROM (SELECT TOP 5 WITH TIES State,  
  Region, Population=Population/1000000 
  FROM #1996_POP_ESTIMATE 
  ORDER BY Population/1000000) p 
ORDER BY Population DESC 
 
State Region  Population 
----- ------- ----------- 
NJ    North   7 
NC    East    7 
WA    West    5 
MO    Central 5 
MD    East    5 
OK    Central 3 
 
    
This query uses a derived table to return the five states with the lowest population among those listed in the 
table. It then uses an ORDER BY in the outer SELECT to sort these in descending order. Were it not for 
derived table support, this approach would require a separate stand-alone VIEW or a temporary table. 
One subtlety worth mentioning here is the requirement for a table alias when using derived tables. Note the 
inclusion of the table alias in the code sample above even though it's not used. This is a requirement of 
derived tables, regardless of whether your code actually uses the alias. 

Dynamic VIEWs 

When you access a VIEW, a query plan is constructed by combining the original SELECT statement that was 
used to create the VIEW with the one you're using to query it. The selection criteria you specified when you 
built the VIEW are combined with any specified by your query and the composite is passed on to the server 
engine for further processing. 
Most VIEWs that include selection criteria impose static criteria—the selection logic that's combined with the 
SELECT accessing the VIEW never changes regardless of how many times the VIEW is queried. The 
dynamic portion of the composite query usually comes from the user-supplied SELECT, not the VIEW. With 
the exception of VIEWs that use joins to link other VIEWs and tables, the criteria the VIEW supplies to filter 
the result set remains the same from use to use. Most of the time this is adequate, but there are times when 
it's handy to be able to make use of a dynamic VIEW—a VIEW whose selection criteria varies based on 
factors external to it. 
A dynamic VIEW is simply one whose selection criteria can change based on the evaluation of the 
expressions in its WHERE or HAVING clauses. This is an easy concept that can come in quite handy. Rather 
than evaluating to constants, these expressions return different values based on environmental or session 
elements. The best example of such a VIEW is one that returns a result set based on a nontabular expression. 
Here's one that lists the sales for the current date, using the nontabular GETDATE() function: 
     
CREATE VIEW DAILY_SALES AS 
SELECT * 
FROM sales 
WHERE ord_date BETWEEN CONVERT(char(8),GETDATE(),112) AND 
CONVERT(char(8),GETDATE(),112)+' 23:59:59.999' 
 
    
You can add some rows to sales to see how this works: 
     
INSERT sales 



Guru’s Guide to Transact-SQL 

148 

VALUES ('8042','QA879.1',GETDATE(),30,'Net 30','BU1032')  
INSERT sales 
VALUES ('6380','D4482',GETDATE(),11,'Net 60','PS2091') 
INSERT sales 
VALUES ('6380','D4492',GETDATE()+1,53,'Net 30','PS2091')  
 
SELECT * FROM DAILY_SALES 
 
stor_id ord_num          ord_date                    qty    payterms    title_id 
------- ---------------- --------------------------- ------ ----------- -------- 
6380    D4482            1999-06-24 19:14:33.657     30     Net 60      PS2091 
6380    D4482            1999-06-24 19:14:33.657     30     Net 60      PS2091 
8042    QA879.1          1999-06-24 19:13:26.230     30     Net 30      BU1032 
 
    
This VIEW uses GETDATE() to limit the sales returned to those whose ord_date is today. The criteria actually 
processed by the server will vary based on the current date. Today, its WHERE clause will be expanded to 
today's date, and the first two rows that were inserted will show up. Tomorrow, it will evaluate to tomorrow's 
date, and the third row will show up. That's the nature of dynamic VIEWs—the criteria that are actually 
processed by the server change from use to use based on external factors. 
Here's another example that uses CASE to make the VIEW even more dynamic. This code improves on the 
previous example by making it aware of weekends. Since no sales occur on weekends, this code returns the 
sales for either the previous Friday or the upcoming Monday when the current date falls on a weekend: 
     
CREATE VIEW DAILY_SALES AS 
SELECT * 
FROM sales 
WHERE ord_date BETWEEN 
   (CASE DATEPART(DW,CONVERT(char(8),GETDATE(),112)) 
  WHEN 1 THEN CONVERT(char(8),GETDATE()+1,112) 
  WHEN 7 THEN CONVERT(char(8),GETDATE()-1,112) 
  ELSE CONVERT(char(8),GETDATE(),112) 
  END) 
AND (CASE DATEPART(DW,CONVERT(char(8),GETDATE(),112)) 
  WHEN 1 THEN CONVERT(char(8),GETDATE()+1,112) 
  WHEN 7 THEN CONVERT(char(8),GETDATE()-1,112) 
  ELSE CONVERT(char(8),GETDATE(),112) 
  END+' 23:59:59.999') 
 
    
You can use other nontabular functions to create similar sliding or dynamic VIEWs. For example, 
SUSER_SNAME() could be used to limit the rows returned according to user name. HOST_NAME() could be 
used to filter based on machine name. Whatever the case, the SELECT used to query the VIEW doesn't 
change (in the examples above, it's always a simple SELECT*); only the criteria that the VIEW provides to 
filter the result set do. 

Partitioning Data Using Views 

Views are a handy mechanism for partitioning data into subsets. This partitioning can be either horizontal or 
vertical in nature or both. It can hide columns from inspection by unauthorized users and can group rows 
logically based on some predetermined criteria. Here's an example of a vertically partitioned table: 
     
USE Northwind 
GO 
IF (OBJECT_ID('EMP_VIEW') IS NOT NULL) 
  DROP VIEW EMP_VIEW 
GO 
CREATE VIEW EMP_VIEW AS 
SELECT LastName, 
       FirstName, 



Chapter 7. Views 

149 

       Title, 
       Extension 
FROM employees 
GO 
 
SELECT * FROM EMP_VIEW 
 
LastName             FirstName  Title                        Extension 
-------------------- ---------- ---------------------------- --------- 
Davolio              Nancy      Sales Representative         5467 
Fuller               Andrew     Vice President, Sales        3457 
Leverling            Janet      Sales Representative         3355 
Peacock              Margaret   Sales Representative         5176 
Buchanan             Steven     Sales Manager                3453 
Suyama               Michael    Sales Representative         428 
King                 Robert     Sales Representative         465 
Callahan             Laura      Inside Sales Coordinator     2344 
Dodsworth            Anne       Sales Representative         452 
 
    
In this example, personal information such as the employee's home phone number and birth date is omitted 
from the view in order to provide a basic employee listing. Here's an example of horizontal partitioning: 
     
USE Northwind 
GO 
IF (OBJECT_ID('USA_ORDERS') IS NOT NULL) 
  DROP VIEW USA_ORDERS 
GO 
IF (OBJECT_ID('UK_ORDERS') IS NOT NULL) 
  DROP VIEW UK_ORDERS 
GO 
IF (OBJECT_ID('FRENCH_ORDERS') IS NOT NULL) 
  DROP VIEW FRENCH_ORDERS 
GO 
CREATE VIEW USA_ORDERS AS 
SELECT TOP 10 EmployeeID, COUNT(*) AS NumOrdered 
FROM orders 
WHERE ShipCountry='USA' 
GROUP BY EmployeeID 
ORDER BY NumOrdered DESC 
GO 
CREATE VIEW UK_ORDERS AS 
SELECT TOP 10 EmployeeID, COUNT(*) AS NumOrdered 
FROM orders 
WHERE ShipCountry='UK' 
GROUP BY EmployeeID 
ORDER BY NumOrdered DESC 
GO 
CREATE VIEW FRENCH_ORDERS AS 
SELECT TOP 10 EmployeeID, COUNT(*) AS NumOrdered 
FROM orders 
WHERE ShipCountry='France' 
GROUP BY EmployeeID 
ORDER BY NumOrdered DESC 
GO 
 
PRINT 'USA ORDERS' 
SELECT * FROM USA_ORDERS 
GO 
PRINT 'UK ORDERS' 
SELECT * FROM UK_ORDERS 



Guru’s Guide to Transact-SQL 

150 

GO 
PRINT 'FRENCH ORDERS' 
SELECT * FROM FRENCH_ORDERS 
GO 
 
USA ORDERS 
EmployeeID  NumOrdered 
----------- ----------- 
4           22 
1           21 
3           21 
8           19 
6           14 
2           9 
7           7 
5           6 
9           3 
 
UK ORDERS 
EmployeeID  NumOrdered 
----------- ----------- 
4           12 
1           9 
3           8 
8           6 
2           5 
6           5 
7           5 
9           4 
5           2 
 
FRENCH ORDERS 
EmployeeID  NumOrdered 
----------- ----------- 
4           14 
3           13 
2           11 
1           9 
6           9 
8           8 
5           5 
7           5 
9           3 

Summary 

You learned about VIEW objects in this chapter. VIEWs offer a powerful means of presenting data in formats 
that differ from the way in which it's stored in the database. They also offer an alternative to constraints and 
triggers for controlling data insertions and updates. SQL Server itself uses views extensively, and it's likely 
that you will as well if you build sophisticated applications using Transact-SQL. 



Chapter 8. Statistical Functions 

151 

Chapter 8. Statistical Functions 
Statistics are like a bikini. What they reveal is suggestive, but what they conceal is vital.  

—Aaron Levenstein 

There's a common misconception by many developers—advanced and beginner alike—that SQL Server is 
unsuitable for performing complex computations. The perception is that it's really just a data retrieval facility—
it's superb at storing and querying data, but any heavy calculation work must be performed in a 3GL of some 
sort. Though data management and retrieval are certainly its strong suit, SQL Server can perform complex 
calculations as well, including statistical calculations. If you know what you're doing, there are very few 
statistical computations beyond the reach of basic Transact-SQL. 
Capabilities notwithstanding, on the surface, SQL Server may seem like an odd tool to use to compute 
complex statistical numbers. Just because a tool is capable of performing a task doesn't mean that it's the 
best choice for doing so. After all, SQL Server is a database server, right? It's an inferior choice for performing 
high-level mathematical operations and complex expression evaluation, right? Wrong. Transact-SQL's built-in 
support for statistical functions together with its orientation toward sets makes it quite adept at performing 
statistical computations over data stored in SQL Server databases. These two things—statistical functions 
and set orientation—give Transact-SQL an edge over many 3GL programming languages. Statistics need 
data, so what better place to extrapolate statistics from raw data than from the server storing it? If the 
supermarket has all the items you need at the right price, why drive all over town to get them? 
Notice that I didn't mention anything about calling external functions written in traditional programming 
languages such as C++. You shouldn't have to resort to external functions to calculate most statistics. What 
Transact-SQL lacks as a programming language, it compensates for as a data language. Its orientation 
toward sets and its ease of working with them yield a surprising amount of computational power with a 
minimum of effort, as the examples later in the chapter illustrate. 
Another item I've left out of the discussion is the use of stored procedures to perform complex calculations. If 
you ask most SQL developers how to calculate the statistical median of a column in a SQL Server table, 
they'll tell you that you need a stored procedure. This procedure would likely open a cursor of some sort to 
locate the column's middle value. While this would certainly work, it isn't necessary. As this chapter will show, 
you don't need stored procedures to compute most statistical values, normal SELECTs will do just fine. 
Iterating through tables using traditional looping techniques is an "un-SQL" approach to problem solving and is 
something you should avoid when possible (See Chapter13, "Cursors," for more information). Use Transact-
SQL's strengths to make your life easier, don't try to make it something it isn't. Attempting to make Transact-
SQL behave like a 3GL is a mistake—it's not a3GL. Doing this would be just as dubious and fraught with 
difficulty as trying to make a3GL behave like a data language. Forcing one type of tool to behave like another 
is like forcing the proverbial square peg into a round hole—it probably won't work and will probably lead to 
little more than an acute case of frustration. 
One thing to keep in mind when performing complex mathematical calculations with Transact-SQL is that SQL, 
as a language, does not handle floating point rounding errors. Naturally, this affects the numbers produced by 
queries. It can make the same query return different results based solely on the order of the data. The answer 
is to use fixed point types such as decimal and numeric rather than floating point types such as float and real. 
See the section "Floating Point Fun" in Chapter2 for more information. 

The Case for CASE 

Its clunky language syntax notwithstanding, CASE is an extremely powerful weapon in the Transact-SQL 
arsenal. It allows us to perform complex calculations during SELECT statements that previously were the 
exclusive domain of arcane functions and stored procedures. Some of these solutions rely on a somewhat 
esoteric technique of coding Transact-SQL expressions such that the number of passes through a table is 
greatly reduced. This, in turn, yields better performance and code that is usually more compact than traditional 
coding techniques. This is best explained by way of example. Let's look at a function-based solution that 
creates a cross-tabulation or "pivot" table. 
Assuming we have this table and data to begin with: 
     
CREATE TABLE #YEARLY_SALES 
(SalesYear smalldatetime,  
 Sales money) 



Guru’s Guide to Transact-SQL 

152 

INSERT #YEARLY_SALES VALUES ('19990101',86753.09)  
INSERT #YEARLY_SALES VALUES ('20000101',34231.12) 
INSERT #YEARLY_SALES VALUES ('20010101',67983.56) 
    
here's what a function-based pivot query would look like: 
      
SELECT 
   "1999"=SUM(Sales*(1-ABS(SIGN(YEAR(SalesYear)-1999)))),  
   "2000"=SUM(Sales*(1-ABS(SIGN(YEAR(SalesYear)-2000)))), 
   "2001"=SUM(Sales*(1-ABS(SIGN(YEAR(SalesYear)-2001)))) 
FROM #YEARLY_SALES 
1999                   2000                  2001 
--------------------- --------------------- --------------------- 
86753.0900            34231.1200            67983.5600 
    
Note the inclusion of the rarely used ABS() and SIGN() functions. This is typical of function-based solutions 
and is what makes them so abstruse. The term "characteristic function" was first developed by David 
Rozenshtein, Anatoly Abramovich, and Eugene Birger in a series of articles for the SQL Forum publication 
several years ago to describe such solutions. The characteristic function above is considered a "point 
characteristic function" for the SalesYear column. Each instance of it returns a one when the year portion of 
SalesYear equals the desired year and a zero otherwise. This one or zero is then multiplied by the Sales 
value in each row to produce either the sales figure for that year or zero. The end result is that each column 
includes just the sales number for the year mentioned in the expression—exactly what we want. 
Understanding how a characteristic function works within the context of a particular query requires mentally 
translating characteristic formulae to their logical equivalents. When characteristic functions were first 
"discovered," tables were published to help SQL developers through the onerous task of doing this. This 
translation is necessary because the problems being solved rarely lend themselves intuitively to the solutions 
being used. That is, pivoting a table has nothing to do with the ABS() and SIGN() functions. This is where 
CASE comes in. 
With the advent of SQL-92 and CASE, the need for odd expressions like these to build complex inline logic 
has all but vanished. Instead, you should use CASE whenever possible in place of characteristic functions. 
CASE is easier to read, is easier to extend, and requires no mental translation to and from arcane expression 
tables. For example, here's the pivot query rewritten to use CASE: 
     
SELECT 
  "1999"=SUM(CASE WHEN YEAR(SalesYear)=1999 THEN Sales ELSE NULL END), 
  "2000"=SUM(CASE WHEN YEAR(SalesYear)=2000 THEN Sales ELSE NULL END), 
  "2001"=SUM(CASE WHEN YEAR(SalesYear)=2001 THEN Sales ELSE NULL END) 
FROM #YEARLY_SALES 
 
1999                   2000                 2001 
--------------------- --------------------- --------------------- 
86753.0900            34231.1200         67983.5600 
    
It's vastly clearer and easier to understand than the earlier method involving SIGN() and ABS(). I also find it 
easier to read than: 
     
SELECT 
  "1999"=SUM(CASE YEAR(SalesYear) WHEN 1999 THEN Sales ELSE NULL END), 
  "2000"=SUM(CASE YEAR(SalesYear) WHEN 2000 THEN Sales ELSE NULL END), 
                  "2001"=SUM(CASE YEAR(SalesYear) WHEN 2001 THEN Sales ELSE NULL 
END) 
FROM #YEARLY_SALES 
    
Though this solution still represents a vast improvement over the SIGN()/ABS() approach, I prefer the 
searched CASE approach simply because the relationship between "1999" and YEAR(SalesYear) is more 
explicit in the searched CASE syntax, though I'd concede that this is really a matter of preference. 

Efficiency Concerns 



Chapter 8. Statistical Functions 

153 

You'll notice the liberal use of self-joins in the examples in this chapter. Techniques that involve self-joins over 
large tables should be viewed with a certain amount of skepticism because they can lead to serious runtime 
performance problems. This is also true of queries that make use of Cartesian products or cross-joins. I 
mention this only to forewarn you to be on the lookout for techniques that may be syntactically compact but 
extremely inefficient in terms of runtime performance. The key to successful SQL development is to strike a 
balance between the two. 

Variance and Standard Deviation 

Transact-SQL sports nine different aggregate functions, all of which are useful for computing statistics. 
Beyond the "standard" aggregate functions you see in most SQL DBMS products—SUM(), MIN(), MAX(), 
COUNT(), and AVG()—SQL Server provides four that are specifically related to financial and statistical 
calculations: STDDEV(), STDDEVP(), VAR(), VARP(). The STDDEV functions compute sample standard 
deviation and population standard deviation, respectively, while the VAR functions compute sample variance 
and population variance. These functions work just like the other aggregate functions—they ignore NULLs, 
can be used with GROUP BY to create vector aggregates, and so forth. Here's an example that uses 
Transact-SQL's built-in aggregate functions to compute some basic statistics: 
     
CREATE TABLE #1996_POP_ESTIMATE (Region char(7), State char(2), Population int) 
INSERT #1996_POP_ESTIMATE VALUES ('West',   'CA',31878234)  
INSERT #1996_POP_ESTIMATE VALUES ('South',  'TX',19128261) 
INSERT #1996_POP_ESTIMATE VALUES ('North',  'NY',18184774) 
INSERT #1996_POP_ESTIMATE VALUES ('South',  'FL',14399985)  
INSERT #1996_POP_ESTIMATE VALUES ('North',  'NJ', 7987933) 
INSERT #1996_POP_ESTIMATE VALUES ('East',   'NC', 7322870) 
INSERT #1996_POP_ESTIMATE VALUES ('West',   'WA', 5532939) 
INSERT #1996_POP_ESTIMATE VALUES ('Central','MO', 5358692) 
INSERT #1996_POP_ESTIMATE VALUES ('East',   'MD', 5071604) 
INSERT #1996_POP_ESTIMATE VALUES ('Central','OK', 3300902) 
 
SELECT Region, MIN(Population) AS Minimum, MAX(Population) AS Maximum, 
AVG(Population) AS  
 

Average, VAR(Population) AS Variance, VARP(Population) AS VarianceP, 
STDEV(Population) AS  
 

StandardDeviation, STDEVP(Population) AS StandardDeviationP 
FROM #1996_POP_ESTIMATE 
GROUP BY Region 
ORDER BY Maximum DESC 
    
(Results abridged) 
     
Region  Minimum     Maximum     Average     Variance 
------- ----------- ----------- ----------  --------------------------------- 
West    5532939     31878234    18705586    347037284318512.5 
South   14399985    19128261    16764123    11178296966088.0 
North   7987933     18184774    13086353    51987783189640.5 
East    5071604     7322870     6197237     2534099301378.0 
Central 3300902     5358692     4329797     2117249842050.0 

Medians 

Row-positioning problems—i.e., locating rows based on their physical position within a distribution— have 
historically been a bit of challenge in SQL. Locating a row by value is easy with a set-oriented language; 
locating one based on position is another matter. Medians are row-positioning problems. If there is an odd 
number of values in the distribution, the median value is the middle value, above and below which exist equal 
numbers of items. If there is an even number of values, the median is either the average of the two middle 
values (for financial medians) or the lesser of them (for statistical medians). 



Guru’s Guide to Transact-SQL 

154 

The Identity Column Technique 

Row-positioning problems are greatly simplified when a unique, sequential integer key has been established 
for a table. When this is the case, the key becomes a virtual record number, allowing ready access to any row 
position in the table similarly to an array. This can allow medians to be computed almost instantly, even over 
distribution sets with millions of values. Here's an example: 
      
SET NOCOUNT ON 
USE GG_TS 
IF (OBJECT_ID('financial_median') IS NOT NULL) 
     DROP TABLE financial_median 
GO 
DECLARE @starttime datetime 
 
SET @starttime=GETDATE() 
 
CREATE TABLE financial_median 
( 
c1 float DEFAULT ( 
   (CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END)*(CAST(RAND() * 
   100000 AS int) % 10000)*RAND()), 
c2 int DEFAULT 0 
) 
 
-- Seed the table with 10 rows 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
INSERT financial_median DEFAULT VALUES 
 
-- Create a distribution of a million values 
WHILE (SELECT TOP 1 rows FROM sysindexes WHERE id=OBJECT_ID('financial_median') 
ORDER BY indid)< 1000000 BEGIN 
  INSERT financial_median (c2) SELECT TOP 344640 c2 FROM financial_median 
END 
SELECT 'It took '+CAST(DATEDIFF(ss,@starttime,GETDATE()) AS varchar)+' seconds 
to create and populate the table' 
 
SET @starttime=GETDATE() 
-- Sort the distribution 
CREATE CLUSTERED INDEX c1 ON financial_median (c1) 
ALTER TABLE financial_median ADD k1 int identity 
DROP INDEX financial_median.c1 
CREATE CLUSTERED INDEX k1 ON financial_median (k1)  
 
SELECT 'It took '+CAST(DATEDIFF(ss,@starttime,GETDATE()) AS varchar)+' seconds 
to sort the table' 
GO 
 
-- Compute the financial median 
DECLARE @starttime datetime, @rows int 
SET @starttime=GETDATE() 
SET STATISTICS TIME ON 
SELECT TOP 1 @rows=rows FROM sysindexes WHERE id=OBJECT_ID('financial_median') 
ORDER BY  



Chapter 8. Statistical Functions 

155 

 
indid 
 
SELECT 'There are '+CAST(@rows AS varchar)+' rows' 
 
SELECT AVG(c1) AS "The financial median is" FROM financial_median 
WHERE k1 BETWEEN @rows / 2 AND (@rows / 2)+SIGN(@rows+1 % 2)  
SET STATISTICS TIME OFF 
SELECT 'It took '+CAST(DATEDIFF(ms,@starttime,GETDATE()) AS varchar)+' ms to 
compute the  
 

financial median' 
 
-------------------------------------------------------------------------------- 
It took 73 seconds to create and populate the table 
 
The clustered index has been dropped.  
-------------------------------------------------------------- 
It took 148 seconds to sort the table 
 
-------------------------------------------- 
There are 1000000 rows 
 
The financial median is 
---------------------------------------------------- 
-1596.1257544255732 
 
SQL Server Execution Times:  
  CPU time = 0 ms, elapsed time = 287 ms.  
 
----------------------------------------------------------------------- 
It took 290 ms to compute the financial median 
     
This query does several interesting things. It begins by constructing a table to hold the distribution and adding 
a million rows to it. Each iteration of the loop fills the c1column with a new random number (all the rows 
inserted by a single operation get the same random number). The table effectively doubles in size with each 
pass through the loop. The top 344,640rows are taken with each iteration in order to ensure that the set 
doesn't exceed a million values. The 344,640 limitation isn't significant until the final pass through the loop—
until then it grabs every row in financial_median and reinserts it back into the table (after the next-to-last 
iteration of the loop, the table contains 655,360rows; 344,640 = 1,000,000-655,360). Though this doesn't 
produce a random number in every row, it minimizes the time necessary to build the distribution so we can get 
to the real work of calculating its median. 
Next, the query creates a clustered index on the table's c1column in order to sort the values in the distribution 
(a required step in computing its edian). It then adds an identity column to the table and switches the table's 
clustered index to reference it. Since the values are already sequenced when the identity column is added, 
they end up being numbered sequentially by it. 
The final step is where the median is actually computed. The query looks up the total number of rows (so that 
it can determine the middle value) and returns the average of the two middle values if there's an even number 
of distribution values or the middle value if there's an odd number. 
In a real-world scenario, it's likely that only the last step would be required to calculate the median. The 
distribution would already exist and be sorted using a clustered index in a typical production setup. Since the 
number of values in the distribution might not be known in advance, I've included a step that looks up the 
number of rows in the table using a small query on sysindexes. This is just for completeness— the row count 
is already known in this case because we're building the distribution and determining the median in the same 
query. You could just as easily use a MAX(k1) query to compute the number of values since you can safely 
assume that the k1 identity column is seeded at one and has been incremented sequentially throughout the 
table. Here's an example: 
      
DECLARE @starttime datetime, @rows int 
SET @starttime=GETDATE() 
SET STATISTICS TIME ON 



Guru’s Guide to Transact-SQL 

156 

SELECT @rows=MAX(k1) FROM financial_median 
 
SELECT 'There are '+CAST(@rows AS varchar)+' rows' 
 
SELECT AVG(c1) AS "The financial median is" FROM financial_median 
WHERE k1 BETWEEN @rows / 2 AND (@rows / 2)+SIGN(@rows+1 % 2)  
SET STATISTICS TIME OFF 
SELECT 'It took '+CAST(DATEDIFF(ms,@starttime,GETDATE()) AS varchar)+' ms to 
compute the  
 

financial median' 
     
Note the use of the SIGN() function in the median computation to facilitate handling an even or odd number of 
values using a single BETWEEN clause. The idea here is to add 1 to the index of the middle value for an even 
number of values and 0 for an odd number. This means that an even number of values will cause the average 
of the two middle values to be taken, while an odd number will cause the average of the lone middle value to 
be taken—the value itself. This approach allows us to use the same code for even and odd numbers of values. 
Specifically, here's how this works: the SIGN() expression adds one to the number of values in the distribution 
set in order to switch it from odd to even or vice versa, then computes the modulus of this number and2 (to 
determine whether we have an even or odd number) and returns either 1 or0, based on its sign. So, for 
1,000,000rows, we add 1, giving us 1,000,001, then take the modulus of2, which is1. Next, we take the SIGN() 
of the number, which is1, and add it to the number of rows (divided by2) in order to compute the k1value of 
the second middle row. This allows us to compute the AVG() of these two values in order to return the 
financial median. For an odd number of values, the modulus ends up being0, resulting in a SIGN() of0, so that 
both terms of the BETWEEN clause refer to the same value—the set's middle value. 
The net effect of all this is that the median is computed almost instantaneously. Once the table is set up 
properly, the median takes less than a second to compute on the relatively scrawny 166MHz laptop on which 
I'm writing this book. Considering that we're dealing with a distribution of a million rows, that's no small feat. 
This is a classic example of SQL Server being able to outperform a traditional programming language 
because of its native access to the data. For a 3GL to compute the median value of a 1,000,000-value 
distribution, it would probably load the items into an array from disk and sort them. Once it had sorted the list, 
it could retrieve the middle one(s). This last process— that of indexing into the array— is usually quite fast. It's 
the loading of the data into the array in the first place that takes so long, and it's this step that SQL Server 
doesn't have to worry about since it can access the data natively. Moreover, if the 3GL approach loads more 
items than will fit in memory, some of them will be swapped to disk (virtual memory), obviously slowing down 
the population process and the computation of the median. 
For example, consider this scenario: A 3GL function needs to compute the financial median of a distribution 
set. It begins by loading the entire set from a SQL Server database into an array or linked list and sorting it. 
Once the array is loaded and sorted, the function knows how many rows it has and indexes into or scans for 
the middle one(s). Foolishly, it treats the database like a flat file system. It ignores the fact that it could ask 
SQL Server to sort the items before returning them. It also ignores the fact that it could query the server for 
the number of rows before retrieving all of them, thus alleviating the need to load the entire distribution into 
memory just to count the number of values it contains and compute its median. These two optimizations 
alone— allowing the server to sort the data and asking it for the number of items in advance— are capable of 
reducing the memory requirements and the time needed to fill the array or list by at least half. 
But SQL Server itself can do even better than this. Since the distribution is stored in a database with which the 
server can work directly, it doesn't need to load anything into an array or similar structure. This alone means 
that it could be orders of magnitude faster than the traditional 3GL approach. Since the data's already 
"loaded," all SQL Server has to concern itself with is locating the median value, and, as I've pointed out, 
having a sequential row identifier makes this a simple task. 
To understand why the Transact-SQL approach is faster and better than the typical 3GL approach, think of 
SQL Server's storage mechanisms (B-trees, pages, extents, etc.) as a linked list—a very, very smart linked 
list—a linked list that's capable of keeping track of its total number of items automatically, one that tracks the 
distribution of values within it, and one that continuously maintains a number of high-speed access paths to its 
values. It's a list that moves itself in and out of physical memory via a very sophisticated caching facility that 
constantly balances its distribution of values and that's always synchronized with a permanent disk version so 
there's never a reason to load or store it explicitly. It's a list that can be shared by multiple users and to which 
access is streamlined automatically by a built-in query optimizer. It's a list than can be transparently queried 
by multiple threads and processors simultaneously—that, by design, takes advantage of multiple Win32 
operating system threads and multiple processors. 



Chapter 8. Statistical Functions 

157 

From a conceptual standpoint, SQL Server's storage/retrieval mechanisms and a large virtual memory–based 
3GL array or linked list are not that different; it's just that SQL Server's facilities are a couple orders of 
magnitude more sophisticated and refined than the typical 3GL construct. Not all storage/retrieval 
mechanisms are created equal. SQL Server has been tuned, retuned, worked, and reworked for over ten 
years now. It's had plenty of time to grow up—to mature. It's benefited from fierce worldwide competition on a 
number of fronts throughout its entire life cycle. It has some of the best programmers in the world working 
year-round to enhance and speed it up. Thus it provides better data storage and retrieval facilities than 95% of 
the 3GL developers out there could ever build. It makes no sense to build an inferior, hackneyed version of 
something you get free in the SQL Server box while steadfastly and inexplicably using only a small portion of 
the product itself. 
One thing we might consider is what to do if the distribution changes fairly often. What happens if new rows 
are added to it hourly, for example? The k1 identity column will cease to identify distribution values 
sequentially, so how could we compute the median using the identity column technique? The solution would 
be to drop the clustered index on k1 followed by the column itself and repeat the sort portion of the earlier 
query, like so: 
      
DROP INDEX financial_median.k1 
ALTER TABLE financial_median DROP COLUMN k1 
CREATE CLUSTERED INDEX c1 ON financial_median (c1) 
ALTER TABLE financial_median ADD k1 int identity 
DROP INDEX financial_median.c1 
CREATE CLUSTERED INDEX k1 ON financial_median (k1) 
     
Obviously, this technique is impractical for large distributions that are volatile in nature. Each time the 
distribution is updated, it must be resorted. Large distributions updated more than, say, once a day are simply 
too much trouble for this approach. Instead, you should use one of the other median techniques listed below. 
Note that it's actually faster overall to omit the last two steps in the sorting phase. If the clustered index on c1 
is left in place, computing the median takes noticeably longer (1–2seconds on the aforementioned laptop), but 
the overall process of populating, sorting, and querying the set is reduced by about 15%. I've included the 
steps because the most common production scenario would have the data loaded and sorted on a fairly 
infrequent basis— say once a day or less— while the median might be computed thousands of times daily. 

The CASE Technique 

Computing a median using CASE is also relatively simple. Assume we start with this table and data: 
      
CREATE TABLE #dist (c1 int)  
INSERT #dist VALUES (2)  
INSERT #dist VALUES (3) 
INSERT #dist VALUES (1)  
INSERT #dist VALUES (4)  
INSERT #dist VALUES (8) 
     
This query returns the median value: 
      
SELECT Median=d.c1 
FROM #dist d CROSS JOIN #dist i 
GROUP BY d.c1 
HAVING COUNT(CASE WHEN i.c1 <= d.c1 THEN 1 ELSE NULL END)=(COUNT(*)+1)/2 
 
Median 
----------- 
3 
 
     
Here, we generate a cross-join of the #dist table with itself, then use a HAVING clause to filter out all but the 
median value. The CASE function allows us to count the number of i values that are less than or equal to 
each d value, then HAVING restricts the rows returned to the d value where this is exactly half the number of 
values in the set. 



Guru’s Guide to Transact-SQL 

158 

The number returned is the statistical median of the set of values. The statistical median of a set of values 
must be one of the values in the set. Given an odd number of values, this will always be the middle value. 
Given an even number, this will be the lesser of the two middle values. Note that it's trivial to change the 
example code to return the greater of the two middle values, if that's desirable: 
      
CREATE TABLE #dist (c1 int)  
INSERT #dist VALUES (2)  
INSERT #dist VALUES (3) 
INSERT #dist VALUES (1) 
INSERT #dist VALUES (4) 
INSERT #dist VALUES (8) 
INSERT #dist VALUES (9) -- Insert an even number of values 
 
SELECT Median=d.c1 
FROM #dist d CROSS JOIN #dist i 
GROUP BY d.c1 
HAVING COUNT(CASE WHEN i.c1 <= d.c1 THEN 1 ELSE NULL END)=COUNT(*)/2+1 
 
Median 
----------- 
4 
 
     
A financial median, on the other hand, does not have to be one of the values of the set. In the case of an even 
number of values, the financial median is the average of the two middle values. Assuming this data: 
      
CREATE TABLE #dist (c1 int)  
INSERT INTO #dist VALUES (2)  
INSERT INTO #dist VALUES (3)  
INSERT INTO #dist VALUES (1)  
INSERT INTO #dist VALUES (4) 
INSERT INTO #dist VALUES (8)  
INSERT INTO #dist VALUES (9) 
 
     
here's a Transact-SQL query that computes a financial median: 
      
SELECT Median=CASE COUNT(*)%2 
  WHEN 0 THEN -- Even number of VALUES 
     (d.c1+MIN(CASE WHEN i.c1>d.c1 THEN i.c1 ELSE NULL END))/2.0 
  ELSE d.c1 END -- Odd number 
FROM #dist d CROSS JOIN #dist i 
GROUP BY d.c1 
HAVING COUNT(CASE WHEN i.c1 <= d.c1 THEN 1 ELSE NULL END)=(COUNT(*)+1)/2 
 
Median 
------------------- 
3.500000 
     
The middle values of this distribution are 3 and 4, so the query above returns 3.5 as the financial median of 
the distribution. 

Vector Medians 

Since Transact-SQL doesn't include a MEDIAN() aggregate function, computing vector or partitioned medians 
must be done using something other than the usual GROUP BY technique. Assuming this table and data: 
      
CREATE TABLE #dist (k1 int, c1 int)  
INSERT #dist VALUES (1,2)  
INSERT #dist VALUES (2,3) 



Chapter 8. Statistical Functions 

159 

INSERT #dist VALUES (2,1) 
INSERT #dist VALUES (2,5) 
INSERT #dist VALUES (5,4) 
INSERT #dist VALUES (7,8)  
INSERT #dist VALUES (7,9) 
     
here's a modification of the first example to return a vector median: 
      
SELECT d.k1, d.c1 
FROM #dist d CROSS JOIN #dist i 
WHERE d.k1=i.k1 
GROUP BY d.k1, d.c1 
HAVING COUNT(CASE WHEN i.c1<=d.c1 THEN 1 ELSE NULL END)=(COUNT(*)+1)/2 
ORDER BY d.k1 
 
k1           c1 
------------ ------------ 
1            2 
2            3 
5            4 
7            8 
     
"K1" is the vectoring or partitioning column in this example. If Transact-SQL had a MEDIAN() aggregate 
function, "k1" would be the lone item in the GROUP BY list. 

Duplicate Values 

A situation that none of the median queries presented thus far handles very well is the presence of duplicate 
values in the distribution set. In fact, in all of the examples thus far, a duplicate value near the median will 
cause the query to return NULL or omit the corresponding partition. The problem is that these queries group 
by the c1column in the first instance of the work table. Grouping automatically combines duplicate values so 
that a query cannot distinguish between multiple instances of the same value. Properly handling duplicate 
values requires the HAVING clause to be reworked. Assuming we start with this table and data: 
      
CREATE TABLE #dist (c1 int)  
INSERT #dist VALUES (2)  
INSERT #dist VALUES (3) 
INSERT #dist VALUES (1) 
INSERT #dist VALUES (3) -- Duplicate value 
INSERT #dist VALUES (8) 
INSERT #dist VALUES (9) 
     
here's a modification of the statistical median query that handles duplicate values: 
       
SELECT d.c1 
FROM #dist d CROSS JOIN #dist i 
GROUP BY d.c1 
HAVING (COUNT(CASE WHEN i.c1 <= d.c1 THEN 1 ELSE NULL END)>=(COUNT(*)+1)/2) 
AND (COUNT(CASE WHEN i.c1 >=d.c1 THEN 1 ELSE NULL END) >= COUNT(*)/2+1)  
 
c1 
----------- 
3 
     
Likewise, here's the financial median query modified to handle duplicate values: 
      
CREATE TABLE #dist (c1 int) 
INSERT #dist VALUES (2)  
INSERT #dist VALUES (2) 
INSERT #dist VALUES (1) 



Guru’s Guide to Transact-SQL 

160 

INSERT #dist VALUES (5) 
INSERT #dist VALUES (5) 
INSERT #dist VALUES (9)  
 
SELECT Median=ISNULL((CASE WHEN COUNT(CASE WHEN i.c1<=d.c1 THEN 1 ELSE NULL END) 
> (COUNT(*)+1)/2 THEN 1.0*d.c1 ELSE NULL END)+COUNT(*)%2,  
  (d.c1+MIN((CASE WHEN i.c1>d.c1 THEN i.c1 ELSE NULL END)))/2.0) 
FROM #dist d CROSS JOIN #dist i 
GROUP BY d.c1 
HAVING (COUNT(CASE WHEN i.c1 <= d.c1 THEN 1 ELSE NULL END)>=(COUNT(*)+1)/2)  
AND (COUNT(CASE WHEN i.c1 >=d.c1 THEN 1 ELSE NULL END) >= COUNT(*)/2+1)  
 
Median 
---------------- 
3.5 
     
As you can see, things start to get a bit complex when duplicate values enter the picture. Here's a variation of 
the financial median query that makes use of a key column (k1) and handles duplicates as well: 
      
CREATE TABLE #dist (k1 int, c1 int)  
INSERT #dist VALUES (1,2)  
INSERT #dist VALUES (2,2) 
INSERT #dist VALUES (3,1) 
INSERT #dist VALUES (4,4) 
INSERT #dist VALUES (5,5) 
INSERT #dist VALUES (6,7) 
INSERT #dist VALUES (7,8) 
INSERT #dist VALUES (8,9)  
 
SELECT Median=AVG(DISTINCT 1.0*c1)  
FROM (SELECT d1.c1 
 FROM #dist d1 CROSS JOIN #dist d2 
 GROUP BY d1.k1, d1.c1 
 HAVING SUM(CASE WHEN d2.c1 = d1.c1 THEN 1 ELSE 0 END) >= 
 ABS(SUM(CASE WHEN d2.c1 < d1.c1 THEN 1 WHEN d2.c1 > d1.c1 THEN -1 ELSE 0 END))) 
d 
 
Median 
---------------------------------------- 
4.500000 

Clipping 

Clipping is the removal from a set of values a prefix and suffix of some predetermined size. As with medians, 
figuring out which values to remove is a row-positioning problem— the rows that end up being removed 
depend on their position in the set. Here's some sample code that illustrates how easy it is to clip values from 
a set: 
     
CREATE TABLE #valueset (c1 int)  
INSERT #valueset VALUES (2)  
INSERT #valueset VALUES (3) 
INSERT #valueset VALUES (1) 
INSERT #valueset VALUES (4) 
INSERT #valueset VALUES (8) 
INSERT #valueset VALUES (9)  
 
SELECT v.c1 
FROM #valueset v CROSS JOIN #valueset a 
GROUP BY v.c1 
HAVING v.c1 > MIN(a.c1) AND v.c1 < MAX(a.c1)  



Chapter 8. Statistical Functions 

161 

 
c1 
----------- 
2 
3 
4 
8 
 
    
This code uses a cross-join and a simple HAVING clause to exclude the minimum and maximum values from 
the set, but what if we wanted to exclude multiple rows from the beginning or end of the set? We couldn't 
simply change >MAX(a.c1) to >MAX(c.c1)+1 because we don't know whether the values are sequential (in 
fact, they aren't, in this case). Accommodating prefix/suffix sizes of more than a single row requires the 
HAVING clause to be reworked. Here's a new query that clips prefixes and suffixes of any size: 
     
SELECT v.c1 
FROM #valueset v CROSS JOIN #valueset a 
GROUP BY v.c1 
HAVING COUNT(CASE WHEN a.c1 <=v.c1 THEN 1 ELSE NULL END) > 2 
AND COUNT(CASE WHEN a.c1 >= v.c1 THEN 1 ELSE NULL END) >2 
 
c1 
----------- 
3 
4 
 
    
Note that this code is flexible enough to allow a prefix and a suffix of different sizes. The first predicate in the 
HAVING clause clips the prefix, and the second clause handles the suffix. The ">2" comparison construct 
controls the size of the clipped region. To clip more than two rows, increase the number; to clip less, decrease 
it. 

Returning the Top n Rows 

In SQL Server 7.0 and later, the SELECT statement's TOP n extension is the most direct way to return a 
given number of rows from the top or bottom of a result set. TOP n does just what it sounds like—it restricts 
the rows returned to a specified number. Since you can sort the result set in descending order, TOP n can 
also return the bottommost rows from a result set. It works similarly to SET ROWCOUNT but can also handle 
ties and percentages. See the section "SELECT TOP" in Chapter 6 for more information. 
If you're using SQL Server 6.5 or earlier or if you need more flexibility than SELECT TOP n provides, the code 
from the previous clipping example can be extended to perform a number of useful functions, including 
returning the topmost or bottommost rows in a result set. One obvious application is to invert it to return a 
prefix or suffix of a predetermined size. Here's some sample code that does just that: 
     
SELECT v.c1 
FROM #valueset v CROSS JOIN #valueset a 
GROUP BY v.c1 
HAVING COUNT(CASE WHEN a.c1 >=v.c1 THEN 1 ELSE NULL END) > COUNT(a.c1)-2 
 
c1 
----------- 
1 
2 
 
    
This code returns the top two rows. As with the previous example, you can modify "-2" to return any number of 
rows you like. Here's the same query modified to return the bottom three rows: 
     
SELECT v.c1 
FROM #valueset v CROSS JOIN #valueset a 



Guru’s Guide to Transact-SQL 

162 

GROUP BY v.c1 
HAVING COUNT(CASE WHEN a.c1 <=v.c1 THEN 1 ELSE NULL END) > COUNT(a.c1)-3 
 
c1 
----------- 
4 
8 
9 
 
    
This technique works but has one inherent flaw—it doesn't handle duplicates. There are a number of solutions 
to this problem. Here's one that uses a derived table and a correlated sub-query to get the job done: 
     
CREATE TABLE #valueset (c1 int)  
INSERT #valueset VALUES (2)  
INSERT #valueset VALUES (2) -- Duplicate value 
INSERT #valueset VALUES (1) 
INSERT #valueset VALUES (3) 
INSERT #valueset VALUES (4) 
INSERT #valueset VALUES (4) -- Duplicate value 
INSERT #valueset VALUES (10) 
INSERT #valueset VALUES (11) 
INSERT #valueset VALUES (13)  
 
SELECT l.c1 
FROM (SELECT ranking=(SELECT COUNT(DISTINCT a.c1) FROM #valueset a 
        WHERE v.c1 >= a.c1), 
     v.c1 
  FROM #valueset v) l 
WHERE l.ranking <=3 
ORDER BY l.ranking 
 
c1 
----------- 
1 
2 
2 
3 
    
This technique uses a derived table and a correlated subquery rather than a cross-join to compare #valueset 
with itself. This, in turn, allows us to get rid of the GROUP BY clause, which caused problems with duplicates. 
As mentioned earlier, GROUP BY can't distinguish between multiple instances of the same value. When 
duplicate values exist within its grouping column(s), it combines them. The key, then, is to return all the rows 
in #valueset filtered by criteria that restrict them based on their rank among the other values. 
The above code uses a derived table to yield a list of rankings for the values in #valueset. This derived table 
uses a correlated subquery to rank each value according to the number of other values in the table that are 
less than or equal to it. The subquery is "correlated" because it relates to (in this case, is filtered by) values in 
the outer table. (Note the use of valias in the SELECT COUNT(DISTINCT query.) Those with a rank of three 
or better make the cut. 
Note that you can easily alter this query to return the bottommost rows in the set rather than the topmost. 
Here's the query modified to return the bottom four rows from the table: 
     
CREATE TABLE #valueset (cl int) 
INSERT #valueset VALUES (2) 
INSERT #valueset VALUES (2) -- Duplicate value 
INSERT #valueset VALUES (1) 
INSERT #valueset VALUES (3) 
INSERT #valueset VALUES (4) 
INSERT #valueset VALUES (4) -- Duplicate value 
INSERT #valueset VALUES (11) 
INSERT #valueset VALUES (11) -- Duplicate value 



Chapter 8. Statistical Functions 

163 

INSERT #valueset VALUES (13) 
 
SELECT l.c1 
FROM (SELECT ranking=(SELECT COUNT(DISTINCT a.c1) FROM #valueset a 
       WHERE v.c1 <= a.c1), 
     v.c1 
  FROM #valueset v) l 
WHERE l.ranking <=4 
ORDER BY l.ranking 
 
c1 
----------- 
13 
11 
11 
4 
4 
3 
 
    
Note that both of these queries allow ties in the result set, so you may get back more rows than you request. If 
this is undesirable, you can use SELECT TOP or SET ROWCOUNT to limit the actual number of rows 
returned, as the examples that follow illustrate. 

SET ROWCOUNT 

Another alternative to SELECT's TOP n extension is the SET ROWCOUNT command. It limits the number of 
rows returned by a query, so you could do something like this in order to return the topmost rows from a 
resultset: 
      
SET ROWCOUNT 3 
SELECT * FROM #valueset ORDER BY c1 
SET ROWCOUNT 0 -- Reset to normal 
 
c1 
----------- 
1 
2 
2 
 
     
Returning the Bottom n Rows is equally simple. To return the bottommost rows instead of the topmost, 
change the ORDER BY to sort in descending order. 
While this solution is certainly straightforward, it can't handle duplicates very flexibly. You get exactly three 
rows, no more, no less. Ties caused by duplicate values are not handled differently from any other value. If 
you request three rows and there's a tie for second place, you won't actually see the real third place row—
you'll see the row that tied for second place in the third slot instead. This may be what you want, but if it isn't, 
there is a variation of this query that deals sensibly with ties. It take advantage of the fact that assigning a 
variable using a query that returns more than one row assigns the value from the last row to the variable. This 
is a rarely used trick, and you should probably comment your code to indicate that it's actually what you 
intended to do. Here's the code: 
      
CREATE TABLE #valueset (c1 int) 
INSERT #valueset VALUES (2) 
INSERT #valueset VALUES (2) -- Duplicate value 
INSERT #valueset VALUES (1) 
INSERT #valueset VALUES (3) 
INSERT #valueset VALUES (4) 
INSERT #valueset VALUES (4) -- Duplicate value 
INSERT #valueset VALUES (11) 



Guru’s Guide to Transact-SQL 

164 

INSERT #valueset VALUES (11) -- Duplicate value 
INSERT #valueset VALUES (13) 
 
DECLARE @endc1 int 
-- Get third distinct value 
SELECT DISTINCT TOP 3 @endc1=c1 FROM #valueset ORDER BY c1 
SELECT * FROM #valueset WHERE c1 <= @endc1 ORDER BY c1 
 
c1 
----------- 
1 
2 
2 
3 
     
This query uses DISTINCT to avoid being fooled by duplicates. Without it, the query wouldn't handle 
duplicates any better than its predecessor. What we want to do here is assign the value of the third distinct 
value to our control variable so that we can then limit the rows returned by the ensuing SELECT to those with 
values less than or equal to it. So, if there are duplicates in the top three values, we'll get them. If there aren't, 
no harm done—the query still works as expected. 

Rankings 

Closely related to the Top n Rows problem is that of producing rankings for a set of data. In fact, you'll note 
that one of the Top n Rows solutions used a ranking column to qualify the rows it returned. Here's that query 
again with the ranking column included in the SELECTlist: 
     
CREATE TABLE #valueset (c1 int) 
INSERT #valueset VALUES (2) 
INSERT #valueset VALUES (2) -- Duplicate value 
INSERT #valueset VALUES (1) 
INSERT #valueset VALUES (3) 
INSERT #valueset VALUES (4) 
INSERT #valueset VALUES (4) -- Duplicate value 
INSERT #valueset VALUES (11) 
INSERT #valueset VALUES (11) -- Duplicate value 
INSERT #valueset VALUES (13) 
 
SELECT l.ranking, l.c1 
FROM (SELECT ranking=(SELECT COUNT(DISTINCT a.c1) FROM #valueset a 
       WHERE v.c1 <= a.c1), 
    v.c1 
  FROM #valueset v) l 
ORDER BY l.ranking 
 
ranking     c1 
----------- ----------- 
1           13 
2           11 
2           11 
3           4 
3           4 
4           3 
5           2 
5           2 
6           1 
    
This query isn't as efficient as it might be since the correlated subquery is executed for every row in #valueset. 
Here's a more efficient query that yields the same result: 
     



Chapter 8. Statistical Functions 

165 

SELECT Ranking=IDENTITY(int), c1 
INTO #rankings 
FROM #valueset 
WHERE 1=2 -- Create an empty table 
 
INSERT #rankings (c1) 
SELECT c1 
FROM #valueset 
ORDER BY c1 DESC 
 
SELECT * FROM #rankings ORDER BY Ranking 
DROP TABLE #rankings 
 
Ranking     c1 
----------- ----------- 
1           13 
2           11 
3           11 
4           4 
5           4 
6           3 
7           2 
8           2 
9           1 
 
    
Note the use of SELECT…INTO to create the temporary working table. It uses the IDENTITY() function to 
create the table en passant rather than explicitly via CREATE TABLE. Though CREATE TABLE would have 
been syntactically more compact in this case, I think it's instructive to see how easily SELECT...INTO allows 
us to create work tables. 
The SELECT…INTO is immediately followed by an INSERT that populates it with data. Why not perform the 
two operations in one pass? That is, why doesn't the SELECT...INTO move the data into the #rankings table 
at the same time that it creates it? There are two reasons. First, SELECT...INTO is a special nonlogged 
operation that locks system tables while it runs, so initiating one that could conceivably run for an extended 
period of time is a bad idea. In the case of tempdb, you'll block other users creating temporary tables, possibly 
prompting them to tar and feather you. Second, SQL Server doesn't work as expected here— it hands out 
identity values based on the natural order of the #valueset table rather than according to the query's ORDER 
BY clause. So, even if locking the system tables wasn't a concern, this anomaly in SQL Server's row ordering 
would prevent us from combining the two steps anyway. 
This query doesn't handle ties as you might expect. Since the items in the #rankings table are numbered 
sequentially, values that are actually duplicates (and hence tied) are listed in sequence as though no tie 
existed. If you restrict the rows returned to a given segment of the top of the list and ties are present, you 
won't get the results you may be expecting. For example, if you ask for four rows and there was a tie for 
second, you'll only see the row in first place followed by the two that tied for second and the one that placed 
third. You won't actually see the fourth place row. Since there's no way to know how many ties you might have, 
returning the top four rankings from the set is more involved than it probably should be, but modifying the 
query to rank the rows more sensibly is fairly easy. Here's an example: 
     
SELECT Ranking=IDENTITY(int), c1 
INTO #rankings 
FROM #valueset 
WHERE 1=2  -- Create an empty table 
 
INSERT #rankings (c1) 
SELECT c1 
FROM #valueset 
ORDER BY c1 DESC 
SELECT a.Ranking, r.c1 
FROM 
  (SELECT Ranking=MIN(n.Ranking), n.c1 FROM #rankings n GROUP BY n.c1) a, 
     #rankings r 



Guru’s Guide to Transact-SQL 

166 

WHERE r.c1=a.c1 
ORDER BY a.ranking 
DROP TABLE #rankings 
 
Ranking     c1 
----------- ----------- 
1           13 
2           11 
2           11 
4            4 
4            4 
6            3 
7            2 
7            2 
9            1 
    
In this query, ties are indicated by identical rankings. In the case of our earlier example, the two rows tied for 
second place would be ranked second, followed by the third row, which would be ranked fourth. This is the 
way that ties are often handled in official rankings; it keeps the number of values above a particular ranking 
manageable. 
One piece of information that's missing from the above query is an indication of which rows are ties and how 
many ties exist for each value. Here's a modification of the query that includes this information as well: 
     
SELECT a.Ranking, Ties=CAST(LEFT(CAST(a.NumWithValue AS varchar)+'-Way tie', 
NULLIF(a.NumWithValue,1)*11) AS CHAR(11)), r.c1 
FROM 
   (SELECT Ranking=MIN(n.Ranking), NumWithValue=COUNT(*), n.c1 FROM #rankings n 
GROUP BY n.c1) a, 
   #rankings r 
WHERE r.c1=a.c1 
ORDER BY a.ranking 
DROP TABLE #rankings 
 
Ranking     Ties         c1 
----------- ----------- ----------- 
1           NULL         13 
2           2-Way tie    11 
2           2-Way tie    11 
4           2-Way tie     4 
4           2-Way tie     4 
6           NULL          3 
7           2-Way tie     2 
7           2-Way tie     2 
9           NULL          1 

Modes 

There are three basic ways to reflect a middle or typical value for a distribution of values: medians, means 
(averages), and modes. We've already covered medians and averages, so let's explore how to compute the 
mode of a set of values. A distribution's mode is its most common value, regardless of where the value 
physically appears in the set. If you have this set of values: 
    10, 10, 9, 10, 10 
    
the mode is 10, the median is 9, and the mean is9.8. The mode is 10 because it's obviously the most common 
value in the set. Here's a Transact-SQL query that computes the mode for a more complex set of values: 
    INSERT #valueset VALUES (2) 
INSERT #valueset VALUES (2) 
INSERT #valueset VALUES (1) 
INSERT #valueset VALUES (3) 
INSERT #valueset VALUES (4) 



Chapter 8. Statistical Functions 

167 

INSERT #valueset VALUES (4) 
INSERT #valueset VALUES (10) 
INSERT #valueset VALUES (11) 
INSERT #valueset VALUES (13) 
 
SELECT TOP 1 WITH TIES c1, COUNT(*) AS NumInstances 
FROM #valueset 
GROUP BY c1 
ORDER BY NumInstances DESC 
 
c1           NumInstances 
-----------  ------------ 
2            2       
4            2 
    
Since a set may have more than one value with the same number of occurrences, it's possible that there may 
be multiple values that qualify as the set's mode. That's where SELECT's TOP n extension comes in handy. 
Its WITH TIES option can handle situations like this without requiring additional coding. 

Histograms 

The CASE function makes computing certain types of histograms quite easy, especially horizontal histograms. 
Using a technique similar to that in the pivoting example earlier in the chapter, we can build horizontal 
histogram tables with a trivial amount of Transact-SQL code. Here's an example that references the sales 
table in the pubs database: 
    SELECT 
"Less than 10"=COUNT(CASE WHEN s.sales >=0 AND s.sales <10 THEN 1 ELSE NULL END), 
"10-19"=COUNT(CASE WHEN s.sales >=10 AND s.sales <20 THEN 1 ELSE NULL END), 
"20-29"=COUNT(CASE WHEN s.sales >=20 AND s.sales <30 THEN 1 ELSE NULL END), 
"30-39"=COUNT(CASE WHEN s.sales >=30 AND s.sales <40 THEN 1 ELSE NULL END), 
"40-49"=COUNT(CASE WHEN s.sales >=40 AND s.sales <50 THEN 1 ELSE NULL END), 
"50 or more"=COUNT(CASE WHEN s.sales >=50 THEN 1 ELSE NULL END) 
FROM (SELECT t.title_id, sales=ISNULL(SUM(s.qty),0) FROM titles t LEFT OUTER JOIN 
sales s  
 

ON (t.title_id=s.title_id) GROUP BY t.title_id) s 
 
Less than 10 10-19       20-29       30-39     40-49     50 or more   
------------ ----------- ----------- ----------- ----------- ----------- 
1            4           6           3           2           2 
    
The query computes the titles that fall into each group based on their sales. Note the use of a derived table to 
compute the sales for each title. This is necessary because the COUNT() expressions in the SELECTs 
column list cannot reference other aggregates. Once the sales for each title are computed, this number is 
compared against the range for each group to determine its proper placement. 
Histograms have a tendency to make obscure trends more obvious. This particular one illustrates that most 
titles have sold between ten and thirty copies. 

Stratified Histograms 

Beyond simple histograms, stratified histograms are crucial to comparative statistical analysis. They allow 
data to be compared in multiple dimensions—both horizontally and vertically. Here's a modification of the first 
histogram example to include a stratification column: 
     SELECT 
PayTerms=isnull(s.payterms,'NA'), 
"Less than 10"=COUNT(CASE WHEN s.sales >=0 AND s.sales <10 THEN 1 ELSE NULL END), 
"10-19"=COUNT(CASE WHEN s.sales >=10 AND s.sales <20 THEN 1 ELSE NULL END), 
"20-29"=COUNT(CASE WHEN s.sales >=20 AND s.sales <30 THEN 1 ELSE NULL END), 
"30-39"=COUNT(CASE WHEN s.sales >=30 AND s.sales <40 THEN 1 ELSE NULL END), 



Guru’s Guide to Transact-SQL 

168 

"40-49"=COUNT(CASE WHEN s.sales >=40 AND s.sales <50 THEN 1 ELSE NULL END), 
"50 or more"=COUNT(CASE WHEN s.sales >=50 THEN 1 ELSE NULL END) 
FROM (SELECT t.title_id, s.payterms, sales=ISNULL(SUM(s.qty),0) FROM titles t 
LEFT OUTER  
 

JOIN sales s ON (t.title_id=s.title_id) GROUP BY t.title_id, payterms) s 
GROUP BY s.payterms 
 
PayTerms     Less than 10 10-19       20-29       30-39       40-49     50 or   
more 
------------ ------------ ----------- ----------- ----------- --------- -------- 
NA           1            0           0           0           0         0 
Net 30       0            0           5           2           1         1 
Net 60       1            4           3           0           0         0 
ON invoice   0            2           0           1           0         1  
     
Histograms, pivot tables, and other types of OLAP constructs can also be built using SQL Server's OLAP 
Services module. Coverage of this suite of tools is outside the scope of this book, so you should consult the 
Books Online for further information. 

Cumulative and Sliding Aggregates 

Computing running totals in Transact-SQL is relatively straightforward. As in many of the other examples in 
this chapter, the technique presented here makes use of a cross-join between two copies of the source table. 
Here's the code: 
    CREATE TABLE #valueset (k1 int identity, c1 int) 
INSERT #valueset (c1) VALUES (20) 
INSERT #valueset (c1) VALUES (30) 
INSERT #valueset (c1) VALUES (40) 
INSERT #valueset (c1) VALUES (21) 
INSERT #valueset (c1) VALUES (31) 
INSERT #valueset (c1) VALUES (41) 
INSERT #valueset (c1) VALUES (22) 
INSERT #valueset (c1) VALUES (32) 
INSERT #valueset (c1) VALUES (42) 
 
SELECT v.c1, RunningTotal=SUM(a.c1) 
FROM #valueset v CROSS JOIN #valueset a 
WHERE (a.k1<=v.k1) 
GROUP BY v.k1,v.c1 
ORDER BY v.k1,v.c1 
c1           RunningTotal 
------------ ------------ 
20           20 
30           50 
40           90 
21           111 
31           142 
41           183 
22           205 
32           237 
42           279 
 
    
Note the inclusion of the ORDER BY clause. It's required because the GROUP BY clause does not implicitly 
order the result set as it did in earlier releases of SQL Server. 
Other types of running aggregates can be computed by replacing SUM()with another aggregate function. For 
example, to compute a running AVG(), try this: 
     
SELECT v.c1,RunningAverage=AVG(a.c1) 



Chapter 8. Statistical Functions 

169 

FROM #valueset v CROSS JOIN #valueset a 
WHERE (a.k1<=v.k1) 
GROUP BY v.k1,v.c1 
ORDER BY v.k1,v.c1 
 
c1           RunningAverage 
------------ -------------- 
20            20 
30            25 
40            30 
21            27 
31            28 
41            30 
22            29 
32            29 
42            31 
 
SELECT RowNumber=COUNT(*), v.c1 
FROM #valueset v CROSS JOIN #valueset a 
WHERE (a.k1<=v.k1) 
GROUP BY v.k1,v.c1 
ORDER BY v.k1,v.c1 
 
RowNumber     c1 
------------ ------------ 
1            20 
2            30 
3            40 
4            21 
5            31 
6            41 
7            22 
8            32 
9            42 
 
    

Sliding Aggregates 

A sliding aggregate differs from a cumulative aggregate in that it reflects an aggregation of a sequence of 
values around each value in a set. This subset "moves" or "slides" with each value, hence the term. So, for 
example, a sliding average might compute the average of the current value and its preceding four siblings, like 
so: 
      
CREATE TABLE #valueset (k1 int identity, c1 int) 
INSERT #valueset (c1) VALUES (20) 
INSERT #valueset (c1) VALUES (30) 
INSERT #valueset (c1) VALUES (40) 
INSERT #valueset (c1) VALUES (21) 
INSERT #valueset (c1) VALUES (31) 
INSERT #valueset (c1) VALUES (41) 
INSERT #valueset (c1) VALUES (22) 
INSERT #valueset (c1) VALUES (32) 
INSERT #valueset (c1) VALUES (42)  
 
SELECT v.k1, SlidingAverage=AVG(1.0*a.c1) 
FROM #valueset v CROSS JOIN #valueset a 
WHERE (a.k1 BETWEEN v.k1-4 AND v.k1) 
GROUP BY v.k1 
 



Guru’s Guide to Transact-SQL 

170 

k1            SlidingAverage 
------------ -------------- 
1             20.000000 
2             25.000000 
3             30.000000 
4             27.750000 
5             28.400000 
6             32.600000 
7             31.000000 
8             29.400000 
9             33.600000 
     
Note that the sliding averages for the first four values are returned as running averages since they don't have 
the required number of preceding values. Beginning with the fifth value, though, SlidingAverage reflects the 
mean of the current value and the four immediately before it. As with the running totals example, you can 
replace AVG() with different aggregate functions to compute other types of sliding aggregates. 

Extremes 

An extreme, as defined here, is the largest value among two or more columns in a given table. You can think 
of it as a horizontal aggregate. Oracle has functions (GREATEST() and LEAST()) to return horizontal 
extremes; Transact-SQL doesn't. However, retrieving a horizontal extreme value for two columns is as simple 
as using CASE to select between them, like so: 
     
CREATE TABLE #tempsamp 
(SampDate datetime,  
 Temp6am int, 
 Temp6pm int) 
 
INSERT #tempsamp VALUES ('19990101',44,32) 
INSERT #tempsamp VALUES ('19990201',41,39) 
INSERT #tempsamp VALUES ('19990301',48,56) 
INSERT #tempsamp VALUES ('19990401',65,72) 
INSERT #tempsamp VALUES ('19990501',59,82) 
INSERT #tempsamp VALUES ('19990601',47,84) 
INSERT #tempsamp VALUES ('19990701',61,92) 
INSERT #tempsamp VALUES ('19990801',56,101) 
INSERT #tempsamp VALUES ('19990901',59,78) 
INSERT #tempsamp VALUES ('19991001',54,74) 
INSERT #tempsamp VALUES ('19991101',47,67) 
INSERT #tempsamp VALUES ('19991201',32,41) 
SELECT HiTemp=CASE WHEN Temp6am > Temp6pm THEN Temp6am ELSE Temp6pm END 
FROM #tempsamp 
 
HiTemp 
----------- 
44 
41 
56 
72 
82 
84 
92 
101 
78 
74 
67 
41 
 
    



Chapter 8. Statistical Functions 

171 

You can nest CASE functions within one another if there are more than two horizontal values to consider. 
Note that you can also order result sets using extreme values. All that's necessary is to reference the CASE 
function's column alias in the ORDER BY clause like this: 
     
SELECT HiTemp=CASE WHEN Temp6am > Temp6pm THEN Temp6am ELSE Temp6pm END 
FROM #tempsamp 
ORDER BY HiTemp 
 
HiTemp 
----------- 
41 
41 
44 
56 
67 
72 
74 
78 
82 
84 
92 
101 
 
    
If you wish to order by the extreme without actually selecting it, simply move the CASE expression from the 
SELECT list to the ORDER BY clause. Here's a query that returns the samples sorted by the lowest 
temperature on each sample date: 
     
SELECT * 
FROM #tempsamp 
ORDER BY CASE WHEN Temp6am < Temp6pm THEN Temp6am ELSE Temp6pm END 
 
SampDate                    Temp6am     Temp6pm 
--------------------------- ----------- ----------- 
1999-01-01 00:00:00.000     44          32 
1999-12-01 00:00:00.000     32          41 
1999-02-01 00:00:00.000     41          39 
1999-06-01 00:00:00.000     47          84 
1999-11-01 00:00:00.000     47          67 
1999-03-01 00:00:00.000     48          56 
1999-10-01 00:00:00.000     54          74 
1999-08-01 00:00:00.000     56          101 
1999-05-01 00:00:00.000     59          82 
1999-09-01 00:00:00.000     59          78 
1999-07-01 00:00:00.000     61          92 
1999-04-01 00:00:00.000     65          72 
 
    

Determining Extreme Attributes 

Beyond returning horizontal extreme values, a query might need to indicate which attribute actually contains 
the extreme value. Here's a query that does that: 
      
SELECT Month=DATENAME(mm,SampDate), 
     HighestTemp=CASE WHEN Temp6am > Temp6pm THEN 'Morning' ELSE 'Evening' END 
FROM #tempsamp 
 
Month                       HighestTemp 
--------------------------- ----------- 



Guru’s Guide to Transact-SQL 

172 

January                     Morning 
February                    Morning 
March                       Evening 
April                       Evening 
May                         Evening 
June                        Evening 
July                        Evening 
August                      Evening 
September                   Evening 
October                     Evening 
November                    Evening 
December                    Evening 
 
     
Once you've computed a horizontal extreme, you may wish to find all the rows in the table with the same 
extreme value. You can do this using CASE in conjunction with a subquery. Here's an example: 
      
SELECT * 
FROM #tempsamp 
WHERE (CASE WHEN Temp6am < Temp6pm THEN Temp6am ELSE Temp6pm END)= 
 (SELECT MIN(CASE WHEN Temp6am < Temp6pm THEN Temp6am ELSE Temp6pm END) 
 FROM #tempsamp) 
SampDate                   Temp6am      Temp6pm 
--------------------------- ----------- ----------- 
1999-01-01 00:00:00.000    44           32 
1999-12-01 00:00:00.000    32           41 

Summary 

In this chapter, you learned about computing statistical information using Transact-SQL. You learned about 
the built-in statistical functions as well as how to build your own. Thanks to SQL Server's set orientation and 
statistical functions, it's a very capable statistics calculation engine—more so, in fact, than many 3GL tools. 



Chapter 9. Runs and Sequences 

173 

Chapter 9. Runs and Sequences 
I like to remind my team that ultimately we ship products, not specs and design documents, 
so we need to remember the end game.  

—Ron Soukup 

Runs, regions, sequences, and series are related data constructs that usually include a minimum of two 
columns: a key column that is more or less sequential and a value column that contains the information in 
which we're interested. The key column of a sequence (or series) is sequential, with no gaps between 
identifiers. Examples of sequences include time series, invoice numbers, account numbers, and so on. A run's 
key column is also sequential, though there may or may not be gaps between identifiers. Examples of runs 
include those of regular sequences (with gaps, of course) as well as house numbers, version numbers, and 
the like. A region is a subsequence whose members all meet the same criteria. The simplest example of a 
region is a subsequence whose members all have the same value. An interval is the product of dividing a 
sequence or run into multiple, evenly sized subsequences or subsets. 
Queries to process these constructs are often quite similar to one another, and the techniques to process one 
type of ordered list may overlap those of another. So, the query that finds relationships between the members 
of a run may also work with time series data—it just depends on what you're doing. 

Sequences 

Time series are probably the most ubiquitous examples of sequences. A common need with time series is to 
find areas or periods within a series where values have a particular relationship to one another. You might 
want to know, for example, the range of time when a stock issue was steadily increasing in price, when prices 
were within a certain percentage of one another, and so on. Here's a query that demonstrates how to do this 
in Transact-SQL: 
     
CREATE TABLE #valueset (k1 smalldatetime, c1 int) 
INSERT #valueset (k1, c1) VALUES ('19990901',28) 
INSERT #valueset (k1, c1) VALUES ('19991001',25) 
INSERT #valueset (k1, c1) VALUES ('19991101',13) 
INSERT #valueset (k1, c1) VALUES ('19991201',15) 
INSERT #valueset (k1, c1) VALUES ('20000101',35) 
INSERT #valueset (k1, c1) VALUES ('20000201',38) 
INSERT #valueset (k1, c1) VALUES ('20000301',16) 
 
SELECT v.k1, v.c1 
FROM #valueset v JOIN #valueset a 
ON ((a.c1 >= v.c1) AND (a.k1 = DATEADD(mm,1,v.k1))) 
OR ((a.c1 <= v.c1) AND (a.k1 = DATEADD(mm,-1,v.k1))) 
GROUP BY v.k1, v.c1 
 
k1                          c1 
--------------------------- ----------- 
1999-11-01 00:00:00         13 
1999-12-01 00:00:00         15 
2000-01-01 00:00:00         35 
2000-02-01 00:00:00         38 
 
    
This query identifies regions within the series where values increase in succession. It uses a self-join to 
compare the work table with itself, then removes duplicates from the result set via a GROUP BY clause. Note 
the use of the DATEADD() function to refer to each data point's next and previous months. 

Time Series Fluctuation 



Guru’s Guide to Transact-SQL 

174 

Another common need with time series is to compute the change from one value to the next. You can use this 
measurement to gauge volatility from point to point within the series and to identify outlying values. Here's an 
example: 
      
SELECT 
StartTime=CAST(v.k1 AS char(12)), EndTime=CAST(a.k1 AS char(12)), 
StartVal=v.c1, EndVal=a.c1, 
Change=SUBSTRING('- +',SIGN(a.c1-v.c1)+2,1)+CAST(ABS(a.c1-v.c1) AS varchar) 
FROM 
   (SELECT k1, c1, ranking=(SELECT COUNT(DISTINCT k1) FROM #valueset u 
   WHERE u.k1 <= l.k1) 
   FROM #valueset l) v LEFT OUTER JOIN 
   (SELECT k1, c1, ranking=(SELECT COUNT(DISTINCT k1) FROM #valueset u 
   WHERE u.k1 <= l.k1) 
   FROM #valueset l) a 
   ON (a.ranking=v.ranking+1) 
WHERE a.k1 IS NOT NULL 
 
StartTime   EndTime     StartVal    EndVal      Change 
----------- ----------- ----------- ----------- ---------------------- 
Sep 1 1999  Oct 1 1999  28          25          -3 
Oct 1 1999  Nov 1 1999  25          13          -12 
Nov 1 1999  Dec 1 1999  13          15          +2 
Dec 1 1999  Jan 1 2000  15          35          +20 
Jan 1 2000  Feb 1 2000  35          38          +3 
Feb 1 2000  Mar 1 2000  38          16          -22 
 
     
There are several interesting elements here worth mentioning. First, note the use of derived tables to rank the 
values in the series against one another. Though it would be syntactically more compact to move these to a 
view, this approach demonstrates the viability of a single SELECT to get at the data we want. 
Next, note the use of a subquery within each derived table to compute the ranking itself. It does this via a 
COUNT(DISTINCT) of the other values in the work table that are less than or equal to each value. Finally, 
note the use of the SIGN() and SUBSTRING() functions to produce a sign prefix for each change. While 
simply displaying a.c1-v.c1 would have indicated negative changes via the standard "2" prefix, positive 
changes would have remained unsigned. 

Sampling Every nth Value 

Performing calculations or computing statistics on everynth value is another common sequence-related task. 
Because the query above materializes the rankings of each item in the time series, this is relatively trivial to do. 
Here's the earlier query modified to sample every third value: 
      
SELECT 
StartTime=CAST(v.k1 AS char(12)), EndTime=CAST(a.k1 AS char(12)), 
StartVal=v.c1, EndVal=a.c1, 
Change=SUBSTRING('- +',SIGN(a.c1-v.c1)+2,1)+CAST(ABS(a.c1-v.c1) AS varchar) 
FROM 
   (SELECT k1, c1, ranking=(SELECT COUNT(DISTINCT k1) FROM #valueset u 
    WHERE u.k1 <= l.k1) 
    FROM #valueset l) v LEFT OUTER JOIN 
   (SELECT k1, c1, ranking=(SELECT COUNT(DISTINCT k1) FROM #valueset u 
    WHERE u.k1 <= l.k1) 
    FROM #valueset l) a 
    ON (a.ranking=v.ranking+1) 
WHERE a.k1 IS NOT NULL AND v.ranking%3=0 
 
StartTime   EndTime     StartVal    EndVal      Change 
----------- ----------- ----------- ----------- ---------------------- 
Nov 1 1999  Dec 1 1999  13          15          +2 



Chapter 9. Runs and Sequences 

175 

Feb 1 2000  Mar 1 2000  38          16          -22 
 
     
The only real change here is the use of modulus 3 to qualify the rows the query returns. Since only third rows 
will satisfy v.ranking%3, we get the result we're after. 

Regions 

The most common region-related task is identifying the regions in the first place. Unlike sequences and runs, 
where the presence of the construct itself is implicit, a region is defined by its values. Members of a particular 
region are sequential, and all meet the same membership criteria. These criteria may stipulate that all 
members of the region have the same absolute value, that each value has the same relationship to the 
previous value, or that each value qualifies in some other way. Here's a technique for identifying regions 
within a sequence: 
      
CREATE TABLE #valueset (k1 int identity, c1 int) 
INSERT #valueset (c1) VALUES (20) 
INSERT #valueset (c1) VALUES (30) 
INSERT #valueset (c1) VALUES (0) 
INSERT #valueset (c1) VALUES (0) 
INSERT #valueset (c1) VALUES (0) 
INSERT #valueset (c1) VALUES (41) 
INSERT #valueset (c1) VALUES (0) 
INSERT #valueset (c1) VALUES (32) 
INSERT #valueset (c1) VALUES (42) 
 
SELECT v.k1 
FROM #valueset v JOIN #valueset a 
ON (v.c1=0) AND (a.c1=0) AND (ABS(a.k1-v.k1)=1) 
GROUP BY v.k1 
 
k1 
----------- 
3 
4 
5 
 
     
As illustrated here, the region consists of items in the sequence whose value is zero. The query's magic is 
performed via a self-join that's filtered for duplicates via the GROUP BY clause. The ON clause limits the 
values considered to 1)those whose value is zero and 2)those with an adjacent value of zero. Adjacency is 
determined by subtracting the value of the key column in v from that ofa. An absolute value of one indicates 
that the key is either just before or just after the one in v.  

Relative Condition Regions 

In addition to absolute values, relative conditions are a popular criterion for establishing region membership. A 
relative condition identifies some relationship between the values in the sequence. Finding regions whose 
values increase sequentially is an example of finding a region based on a relative condition. Here's some 
Transact-SQL code that identifies a region whose values increase monotonically: 
       
CREATE TABLE #valueset (k1 int, c1 int) 
INSERT #valueset (k1, c1) VALUES (300,15) 
INSERT #valueset (k1, c1) VALUES (340,25) 
INSERT #valueset (k1, c1) VALUES (344,13) 
INSERT #valueset (k1, c1) VALUES (345,14) 
INSERT #valueset (k1, c1) VALUES (346,15) 
INSERT #valueset (k1, c1) VALUES (347,38) 
INSERT #valueset (k1, c1) VALUES (348,16) 
 



Guru’s Guide to Transact-SQL 

176 

SELECT v.k1, v.c1 
FROM #valueset v JOIN #valueset a 
ON ((a.c1 = v.c1+1) AND (a.k1 = v.k1+1)) 
OR ((a.c1 = v.c1-1) AND (a.k1 = v.k1-1)) 
GROUP BY v.k1, v.c1 
 
k1          c1 
----------- ----------- 
344         13 
345         14 
346         15 
 
      
Again, we use a self-join to compare the work table with itself. The two join criteria established by the ON 
clause are 1)each key value in the region must be one less or one more than the value under consideration 
and 2)each value must be correspondingly sequential with its adjacent values. 
Note that it's not difficult to modify this query to look for values that merely increase from point to point in the 
series—that is, ones that aren't necessarily contiguous. Here's an example: 
       
SELECT v.k1, v.c1 
FROM #valueset v JOIN #valueset a 
ON ((a.c1 >= v.c1) AND (a.k1 = v.k1+1)) 
OR ((a.c1 <= v.c1) AND (a.k1 = v.k1-1)) 
GROUP BY v.k1, v.c1 
 
k1          c1 
----------- ----------- 
344         13 
345         14 
346         15 
347         38 
 
      

Constraining Region Sizes 

Once we've identified a region, it may be desirable to qualify it further based on size. We may not want to see 
within a sequence every region whose members have an absolute value or have a specific relationship to one 
another—we may want to limit the regions we consider to those of a particular size or larger. Here's some 
Transact-SQL code that illustrates how to constrain regions based on size: 
       
CREATE TABLE #valueset(k1 int identity, c1 int) 
INSERT #valueset(c1) VALUES (20) 
INSERT #valueset(c1) VALUES (30) 
INSERT #valueset(c1) VALUES (32) 
INSERT #valueset(c1) VALUES (34) 
INSERT #valueset(c1) VALUES (36) 
INSERT #valueset(c1) VALUES (0) 
INSERT #valueset(c1) VALUES (0) 
INSERT #valueset(c1) VALUES (41) 
INSERT #valueset(c1) VALUES (0) 
INSERT #valueset(c1) VALUES (0) 
INSERT #valueset(c1) VALUES (0) 
INSERT #valueset(c1) VALUES (42) 
 
SELECT v.k1 
FROM #valueset v JOIN #valueset a ON (v.c1=0) 
GROUP BY v.k1 
HAVING 
  ISNULL(MIN(CASE WHEN a.k1 > v.k1 AND a.c1 !=0 THEN a.k1 ELSE null END)-1, 



Chapter 9. Runs and Sequences 

177 

    MAX(CASE WHEN a.k1 > v.k1 THEN a.k1 ELSE v.k1 END)) 
- 
   ISNULL(MAX(CASE WHEN a.k1 < v.k1 AND a.c1 !=0 THEN a.k1 ELSE null END)+1, 
     MIN(CASE WHEN a.k1 < v.k1 THEN a.k1 ELSE v.k1 END)))+1 
>=3 -- Desired region size 
 
k1 
---------- 
9 
10 
11 
 
      
The ">=3" above constrains the size of the regions listed to those of three or more elements, as the code 
comment indicates. Note how the first region (consisting of two zero values) in the series is ignored by the 
query since it's too small. Only the second one, which has the required number of members, is returned. 
Beyond the use of JOIN and GROUP BY to compare the table with itself, the real work of the query is 
performed by the HAVING clause. Consider the first ISNULL() expression. It uses CASE to find either 1)the 
first key in a that is both less than the current key in v and whose value is nonzero or 2)the last key in a that is 
greater than the current key inv. If a key that meets the first criterion isn't found, it will always be the last key in 
the table. The idea is to find the nearest nonzero value following the current key inv. What we are attempting 
to do is identify the key value of the region's lower boundary— its terminator. 
The second ISNULL() expression is essentially a mirror image of the first. Its purpose is to establish the 
identity of the first key in the region. Once the boundary keys have been identified, the upper boundary is 
subtracted from the lower boundary to yield the region size. This is then compared to "=3" to filter out regions 
smaller than three members in size. 
Though this technique works and is relatively compact from a coding standpoint, I'd be the first to concede 
that, at least on the surface, it appears to be a bit convoluted. For example, CASE is used to "throw" a NULL 
back to ISNULL— which forces ISNULL() to evaluate its second argument— forming a crude nested if-then-
else expression. Written a bit more clearly, the first ISNULL() expression might look like this: 
       
CASE 
  WHEN a.k1 > v.k1 AND a.c1 !=0 THEN MIN(a.k1)-1 
  ELSE MAX(CASE WHEN a.k1 > v.k1 THEN a.k1 ELSE v.k1 END) 
END 
 
      
The problem with this is that the plain references to a.k1 and a.c1 aren't allowed in the HAVING clause 
because they aren't contained in either an aggregate or the GROUP BY clause. This is an ANSI SQL 
restriction and is normally a good thing— except when you're attempting complex queries with single 
SELECTs like this one. We can't do much about the fact that they aren't in the GROUP BY clause— we need 
to leave it as is to consolidate our self-join. However, we cannest both of these values within aggregate 
functions so that they conform to ANSI SQL's HAVING clause restrictions. And this is exactly what the query 
does— it "hides" CASE function logic within aggregates to get past limitations imposed by HAVING— and it's 
the main reason the logic appears somewhat tangled at first. 

Region Boundaries 

It's sometimes desirable to return region boundaries rather than the regions themselves. The query above 
used boundaries to compute region sizes in order to constrain the ones returned. Here's a variation of that 
query that returns the boundaries of each region it finds: 
       
SELECT RegionStart=v.k1,RegionEnd=ISNULL(MIN(CASE WHEN a.k1>v.k1 AND a.c1 !=0 
THEN a.k1 ELSE null END)-1, 
     MAX(CASE WHEN a.k1 > v.k1 THEN a.k1 ELSE v.k1 END)) 
FROM #valueset v JOIN #valueset a ON (v.c1=0) 
GROUP BY v.k1 
HAVING 
  ISNULL(MIN(CASE WHEN a.k1>v.k1 AND a.c1 !=0 THEN a.k1 ELSE null END)-1, 
    MAX(CASE WHEN a.k1 > v.k1 THEN a.k1 ELSE v.k1 END)) > v.k1 



Guru’s Guide to Transact-SQL 

178 

AND 
  ISNULL(MAX(CASE WHEN a.k1<v.k1 AND a.c1 !=0 THEN a.k1 ELSE null END)+1, 
    MIN(CASE WHEN a.k1 < v.k1 THEN a.k1 ELSE v.k1 END)) = v.k1  
 
RegionStart RegionEnd 
----------- ----------- 
6           7 
9           11 
 

Runs 

Like their contiguous sequence cousins, runs include a minimum of two columns: a key column and a value 
column. The key column is always sequential, though its values may not be contiguous. 
As with sequences, the existence of a run is implicit. Examples of runs include time series with irregular entry 
points and numbering systems with gaps (e.g., invoice numbers, credit card numbers, house numbers). 

Regions 

By contrast, regions within runs are not implicit. As described earlier, regions exist based on membership. The 
Transact-SQL code required to locate regions within a run is not unlike that used to find them within 
sequences. Here's an example: 
      
CREATE TABLE #valueset (k1 int, c1 int) 
INSERT #valueset VALUES (2,0) 
INSERT #valueset VALUES (3,30) 
INSERT #valueset VALUES (5,0) 
INSERT #valueset VALUES (9,0) 
INSERT #valueset VALUES (10,0) 
INSERT #valueset VALUES (11,40) 
INSERT #valueset VALUES (13,0) 
INSERT #valueset VALUES (14,0) 
INSERT #valueset VALUES (15,42) 
 
SELECT v.k1 
FROM #valueset v JOIN #valueset a ON (v.c1=0) 
GROUP BY v.k1 
HAVING (MIN(CASE WHEN a.k1 > v.k1 THEN (2*(a.k1-v.k1))+CASE WHEN a.c1<>0 THEN 1 
ELSE 0 END ELSE null END)%2=0) 
OR (MIN(CASE WHEN a.k1 < v.k1 THEN (2*(v.k1-a.k1))+CASE WHEN a.c1<>0 THEN 1 ELSE 
0 END ELSE null END)%2=0) 
 
k1 
----------- 
5 
9 
10 
13 
14 
 
     
As with many of the other queries, this query uses a self-join/GROUP BY combo to compare the work table 
with itself. Note the use of nested CASE expressions to effect some fairly complex logic. Also note the way in 
which this logic is wrapped within aggregate functions so that it complies with ANSI SQL's restrictions on the 
HAVING clause. 

Region Boundaries 



Chapter 9. Runs and Sequences 

179 

As we did with sequences, let's explore how to return the outer boundaries of run regions rather than the 
regions themselves. Here's some code that returns the boundaries of the regions it encounters within a run: 
       
CREATE TABLE #valueset (k1 int, c1 int) 
INSERT #valueset VALUES (2,20) 
INSERT #valueset VALUES (3,30) 
INSERT #valueset VALUES (5,0) 
INSERT #valueset VALUES (9,0) 
INSERT #valueset VALUES (10,0) 
INSERT #valueset VALUES (11,40) 
INSERT #valueset VALUES (13,0) 
INSERT #valueset VALUES (15,0) 
INSERT #valueset VALUES (16,42) 
 
SELECT StartRun=v.k1, EndRun=a.k1 
FROM #valueset v JOIN #valueset a ON (v.k1 < a.k1) CROSS JOIN #valueset l 
GROUP BY v.k1, a.k1 
HAVING 
  (SUM(ABS(l.c1)*(CASE WHEN v.k1 <=l.k1 AND l.k1 <= a.k1 THEN 1 ELSE 0 END))=0) 
  AND (ISNULL(MIN(CASE WHEN l.k1 > a.k1 
    THEN (2*(l.k1-a.k1))+(CASE WHEN l.c1<>0 THEN 1 ELSE 0 END) 
    ELSE null END),1)%2 != 0) 
  AND (ISNULL(MIN(CASE WHEN l.k1 < v.k1 
  THEN (2*(v.k1-l.k1))+(CASE WHEN l.c1<>0 THEN 1 ELSE 0 END) 
  ELSE null END),1) 
  %2 != 0) 
 
StartRun    EndRun 
----------- ----------- 
5           10 
6           15 
 
      
As with the previous query, this example embeds much of its work within aggregate functions in the HAVING 
clause. Some of this is counterintuitive. Note, for example, the HAVING clause expression: 
       
(SUM(ABS(l.c1)*(CASE WHEN v.k1 <=l.k1 AND l.k1 <= a.k1 THEN 1 ELSE 0 END) 50) 
 
      
Written more legibly, it might read: 
       
((CASE WHEN v.k1 <=l.k1 AND l.k1 <= a.k1 THEN SUM(ABS(l.c1)) ELSE 0 END)50) 
 
      
However, as mentioned before, v.k1 and l.k1 must either also appear in the GROUP BY clause or be wrapped 
in an aggregate function in order to be used in the HAVING clause, so this syntax won't work. Instead, we 
return either one or zero from the CASE expression and then multiply SUM(ABS(l.c1)) by it, achieving the 
same result. 
Another interesting characteristic of this query is the use of three instances of the work table. The fact that the 
run's key values may not be sequential causes some additional work that requires a third instance of the table 
to be performed, even though no columns are returned from it by the query. 

Constrained Regions 

As mentioned in the sequence examples, the need to constrain regions based on size is a common one. 
Here's a Transact-SQL query that scans a run for regions consisting of three or more members with values 
less than10: 
       
CREATE TABLE #valueset (k1 int, c1 int) 
INSERT #valueset VALUES (2,20) 



Guru’s Guide to Transact-SQL 

180 

INSERT #valueset VALUES (3,30) 
INSERT #valueset VALUES (5,0) 
INSERT #valueset VALUES (9,4) 
INSERT #valueset VALUES (10,8) 
INSERT #valueset VALUES (11,40) 
INSERT #valueset VALUES (13,0) 
INSERT #valueset VALUES (15,12) 
INSERT #valueset VALUES (16,42) 
 
SELECT 
   StartRun=v.k1, 
   StartRunV=v.c1, 
   EndRun=a.k1, 
   EndRunV=a.c1, 
   RunSize=COUNT(CASE WHEN v.k1 <= l.k1 AND l.k1 <= a.k1 THEN 1 ELSE null END), 
   RunAvg=AVG(CASE WHEN v.k1 <= l.k1 AND l.k1 <= a.k1 THEN l.c1 ELSE null END) 
FROM #valueset v JOIN #valueset a ON (v.k1 < a.k1) CROSS JOIN #valueset l 
GROUP BY v.k1, v.c1, a.k1, a.c1 
HAVING (COUNT(CASE WHEN v.k1 <= l.k1 AND l.k1 <= a.k1 THEN 1 ELSE NULL END)>=3) -
- 3 =  
 

Desired Run size 
AND (COUNT((CASE WHEN l.c1 >=10 THEN 1 ELSE NULL END)*(CASE WHEN v.k1 <= l.k1 AND 
l.k1 <=  
 

a.k1 THEN 1 ELSE NULL END))=0) 
AND (ISNULL(MIN((CASE WHEN l.k1 > a.k1 THEN (2*(l.k1-a.k1))+(CASE WHEN l.c1>=10 
THEN 1  
 

ELSE 0 END) ELSE null END)),1)%2 != 0) 
AND (ISNULL(MIN((CASE WHEN l.k1 < v.k1 THEN (2*(v.k1-l.k1))+(CASE WHEN l.c1>=10 
THEN 1  
 

ELSE 0 END) ELSE null END)),1)%2 != 0) 
 
StartRun    StartRunV   EndRun      EndRunV     RunSize     RunAvg 
----------- ----------- ----------- ----------- ----------- ----------- 
5           0           10          8           3           4 
 
      
This query also requires three instances of the work table to get the job done. It self-joins the first two, then 
cross-joins the third and removes the resulting duplicates using a GROUP BY clause. Beyond that, most of 
the logic controlling which rows make it into the result set is contained in the HAVING clause. As in many of 
the examples presented thus far, much of the selection logic is embedded in aggregate functions so that it 
conforms to the restrictions imposed by HAVING. 

Intervals 

An interval is an ordered subsequence of values of a particular size. The ability to split a sequence into a 
given number of equally sized intervals has lots of business applications— everything from stratifying 
customer lists to breaking sample sequences into more manageable chunks. Assuming we start with the 
following table: 
     
CREATE TABLE #valueset (c1 int) 
INSERT #valueset VALUES (20) 
INSERT #valueset VALUES (30) 
INSERT #valueset VALUES (40) 
INSERT #valueset VALUES (21) 
INSERT #valueset VALUES (31) 
INSERT #valueset VALUES (41) 



Chapter 9. Runs and Sequences 

181 

INSERT #valueset VALUES (22) 
INSERT #valueset VALUES (32) 
INSERT #valueset VALUES (42) 
 
    
here's a Transact-SQL SELECT statement that breaks the sequence into three intervals, returning the end 
point of each one: 
     
SELECT v.c1 
FROM #valueset v CROSS JOIN #valueset a 
GROUP BY v.c1 
HAVING COUNT (CASE WHEN a.c1 <= v.c1 THEN 1 ELSE null END)%(COUNT(*)/3)=0 
 
c1 
----------- 
22 
32 
42 
 
    
Here again we use the JOIN/GROUP BY combo to compare the table with itself. And, again, the query's 
selection logic is embedded in its HAVING clause. The "/3" in the HAVING clause indicates the interval size 
we seek. The HAVING clause works by counting the number of items ina that are less than or equal to the 
current item inv, then checking that number modulus the total number of rows divided by the desired interval 
size. If the modulus is zero, we have an interval end point that will be returned by the query. 
Note that it's trivial to return the position of each end point as well. Here's the code: 
     
SELECT 
IntervalEnd=v.c1, 
IntervalPos=COUNT(CASE WHEN a.c1 <= v.c1 THEN 1 ELSE null END) 
FROM #valueset v CROSS JOIN #valueset a 
GROUP BY v.c1 
HAVING COUNT(CASE WHEN a.c1 <= v.c1 THEN 1 ELSE null END)%(COUNT(*)/3)=0 
 
IntervalEnd IntervalPos 
----------- ----------- 
22          3 
32          6 
42          9 
 
    
To get the start points rather than the end points of each interval, change the modulus check to "1," like this: 
     
SELECT v.c1 
FROM #valueset v CROSS JOIN #valueset a 
GROUP BY v.c1 
HAVING COUNT (CASE WHEN a.c1 <= v.c1 THEN 1 ELSE null END)%(COUNT(*)/3)=1 
 
c1 
----------- 
20 
30 
40 
 
    

Partitioned Intervals 

Rather than computing intervals over an entire sequence, it's often desirable to compute them in a sectioned 
or partitioned fashion. That is, instead of seeing all the partitions across an en- tire table, we might want to see 



Guru’s Guide to Transact-SQL 

182 

them grouped based on a particular column— a GROUP BY column (or columns), if you will. Since Transact-
SQL has no INTERVAL_BEGIN()- or INTERVAL_END()-type aggregate functions, performing a vector 
computation such as this requires a nontraditional approach. As with most of the solutions presented in this 
chapter, the technique presented here uses the Cartesian product of two instances of the work table, together 
with GROUP BY and HAVING to return the data we seek. Here's a Transact-SQL routine that returns a 
partitioned listing of interval information: 
      
CREATE TABLE #valueset (k1 int, c1 int) 
INSERT #valueset VALUES (1,20) 
INSERT #valueset VALUES (1,21) 
INSERT #valueset VALUES (1,22) 
INSERT #valueset VALUES (1,24) 
INSERT #valueset VALUES (1,28) 
INSERT #valueset VALUES (2,31) 
INSERT #valueset VALUES (2,32) 
INSERT #valueset VALUES (2,40) 
INSERT #valueset VALUES (2,41) 
INSERT #valueset VALUES (3,52) 
INSERT #valueset VALUES (3,53) 
INSERT #valueset VALUES (3,56) 
INSERT #valueset VALUES (3,58) 
INSERT #valueset VALUES (3,59) 
INSERT #valueset VALUES (4,60) 
INSERT #valueset VALUES (4,61) 
INSERT #valueset VALUES (4,62) 
 
SELECT v.k1, v.c1 
FROM #valueset v JOIN #valueset a ON (v.k1=a.k1) 
GROUP BY v.k1, v.c1 
HAVING 
  COUNT(CASE WHEN a.c1 <= v.c1 THEN 1 ELSE null END) 
  BETWEEN (COUNT(*)/4) AND (COUNT(*)/4)*2 
 
k1          c1 
----------- ----------- 
1           20 
1           21 
2           31 
2           32 
3           52 
3           53 
 
     
This code partitions, or groups, the rows in the table using the k1 column into intervals of four. It then returns 
the top two values from each interval. This would be useful, for example, if you needed to return the top n 
salespeople from each region or the top n students within each class, but you wanted to constrain the list to 
intervals of a particular size to filter out to sales people in regions with no competition or students in classes 
with few other students. 

Summary 

Sequences, series, runs, and regions are similar data constructs that typically include at least two columns: a 
sequential (though not necessarily contiguous) key column and a value column. Sequences and series are 
synonymous. A sequence's key column values are sequential, with no gaps between them. A run's key 
column values are also sequential, though they may not be contiguous. A region is a portion of a sequence or 
run whose members meet a given set of criteria. Intervals are produced by dividing a sequence or run into 
multiple, evenly sized subsequences or subsets. 
In this chapter, you learned how to use self-joins and cross-joins to identify complex data trends and data 
relationships within tables. Using the example code included in this chapter, you should be able to solve most 



Chapter 9. Runs and Sequences 

183 

types of run-and sequence-related problems without resorting to control-of-flow language statements such as 
loops. 





Chapter 10. Arrays 

185 

Chapter 10. Arrays 
Init, Use, Destroy. Three procedure calls, six possible sequences, five of them wrong. I am 
quietly impressed that any nontrivial applications ever work.  

—Thomas L. Holaday 

Because there's no built-in array data type, there's really no direct way to store or work with true arrays in 
Transact-SQL. There are a couple of alternatives that are fairly array-like, but since they really aren't arrays in 
the 3GL sense of the word, they're less than ideal. 
The two most obvious ways to simulate an array in Transact-SQL are setting up a table that mimics an array 
(with columns simulating dimensions) and using a single column to store multiple values (with special indexing 
routines to flatten or compose the array elements). The first approach has the advantage of being more 
relational and extensible. Adding a dimension is as simple as adding a column. The second approach has the 
advantage of simplicity and intuitiveness. Having a column that stores multiple values is not far removed from 
having one that can store an array—it's largely a question of semantics and syntax. 
Note that arrays, by their very nature, violate the basic rules of normalization. For a table to be even first 
normal form compliant, it must be free of repeating values. Repeating values can take the form of multiple 
columns used to store instances of the same type of value or multiple values within a single column. These 
repeating values must be removed if a table is to be considered normalized. Storing arrays—even "virtual" 
arrays like the ones discussed in this chapter—is a form of denormalization that you should undertake only in 
special circumstances. 

Arrays as Big Strings 

Storing arrays as large character strings is not a new concept. In fact, in the 1980s, the Advanced Revelation 
DBMS garnered quite a following through its support of "multivalued" columns—essentially string fields with 
multiple values and special routines to manipulate them. Even today, many DBMSs that support array 
columns store them internally as simple buffers and provide SQL extensions that insulate the developer from 
having to know or deal with this. Here's a sample query that demonstrates the multivalued column approach in 
Transact-SQL: 
     
CREATE TABLE #array (k1 int identity, arraycol varchar(8000)) 
 
INSERT #array (arraycol) VALUES ('LES PAUL       '+ 
                                 'BUDDY GUY      '+ 
                                 'JEFF BECK      ') 
INSERT #array (arraycol) VALUES ('STEVE MILLER   '+ 
                                 'EDDIE VAN HALEN'+ 
                                 'TOM SCHOLZ     ') 
INSERT #array (arraycol) VALUES ('STEVE VAI      '+ 
                                 'ERIC CLAPTON   '+ 
                                 'SLASH          ') 
SELECT Element1=SUBSTRING(arraycol,(0*15)+1,15), 
   Element2=SUBSTRING(arraycol,(1*15)+1,15), 
   Element3=SUBSTRING(arraycol,(2*15)+1,15) 
FROM #array a 
 
Element1        Element2        Element3 
--------------- --------------- --------------- 
LES PAUL        BUDDY GUY       JEFF BECK 
STEVE MILLER    EDDIE VAN HALEN TOM SCHOLZ 
STEVE VAI ERIC  CLAPTON         SLASH 
 
    
This technique stores multiple values in the work table's arraycol column. These values emulate a single-
dimensional array, which is the easiest type to work with using this approach. Multidimensional arrays are 
feasible as well, but they're exponentially more complex to deal with. Rather than building multidimensional 



Guru’s Guide to Transact-SQL 

186 

arrays into a single row, another way to accomplish the same thing is to spread the dimensions of the array 
over the entire table, with each record representing just one row in that array. 
Note the use of varchar(8000) to define the array column. With the advent of SQL Server's large character 
data types, we can now store a reasonably sized array using this approach. In the case of an array whose 
elements are fifteen bytes long, we can store up to 533 items in each array column, in each row. That's plenty 
for most applications. 
Also note that virtually any type of data can be stored in this type of virtual array, not just strings. Of course, 
anything stored in a character column must be converted to a string first, but that's a minor concern. The only 
prerequisite is that each item must be uniformly sized, regardless of its original datatype. 
The INSERT statements used to populate the table are intentionally split over multiple lines to mimic filling an 
array. Though it's unnecessary, you should consider doing this as well if you decide to use this approach. It's 
more readable and also helps with keeping each element sized appropriately—an essential for the technique 
to work correctly. 
Note the use of the expression (n*s)+1 to calculate each array element's index. Here, n represents the 
element number (assuming a base of zero) you wish to access, and s represents the element size. Though it 
would be easier to code 
     
SUBSTRING(arraycol,1,15) 
 
    
using the expression establishes the relationship between the element you seek and the string stored in the 
varchar column. It makes accessing any element as trivial as supplying its array index. 
This technique does not require that the number of elements be uniform between rows in the table. Here's an 
example that shows how to implement "jagged" or unevenly sized arrays: 
     
CREATE TABLE #array (k1 int identity, arraycol varchar(8000)) 
INSERT #array (arraycol) VALUES ('LES PAUL       '+ 
                                 'BUDDY GUY      '+ 
                                 'JEFF BECK      '+ 
                                 'JOE SATRIANI   ') 
INSERT #array (arraycol) VALUES ('STEVE MILLER   '+ 
                                 'EDDIE VAN HALEN'+ 
                                 'TOM SCHOLZ     ') 
INSERT #array (arraycol) VALUES ('STEVE VAI      '+ 
                                 'ERIC CLAPTON   '+ 
                                 'SLASH          '+ 
                                 'JIMI HENDRIX   '+ 
                                 'JASON BECKER   '+ 
                                 'MICHAEL HARTMAN') 
SELECT 
   Element1=SUBSTRING(arraycol,(0*15)+1,15), 
   Element2=SUBSTRING(arraycol,(1*15)+1,15), 
   Element3=SUBSTRING(arraycol,(2*15)+1,15), 
   Element4=SUBSTRING(arraycol,(3*15)+1,15), 
   Element5=SUBSTRING(arraycol,(4*15)+1,15), 
   Element6=SUBSTRING(arraycol,(5*15)+1,15) 
FROM #array a 
 
Element1        Element2        Element3        Element4        Element5        
Element6 
--------------- --------------- --------------- --------------- ---------------  
 

--------------- 
LES PAUL        BUDDY GUY       JEFF BECK        JOE SATRIANI 
STEVE MILLER    EDDIE VAN HALEN TOM SCHOLZ 
STEVE VAI       ERIC CLAPTON    SLASH            JIMI HENDRIX JASON BECKER      
MICHAEL  
 

HARTMAN 
 
    



Chapter 10. Arrays 

187 

The only thing that's really different here is the data. Since SUBSTRING() returns an empty string when 
passed an invalid starting point, we don't need special handling for arrays with fewer than six elements. 
The example above is limited to arrays with six or fewer elements. What if we want to support arrays of sixty 
elements? What if we need arrays with hundreds of elements? Are we forced to include a separate column in 
the result set for each one? The technique would be rather limited if we had to set up a separate result set 
column for every element. That would get cumbersome in a hurry. Here's some code that demonstrates how 
to handle arrays of any size without coding static result set columns for each element: 
     
DECLARE @arrayvar varchar(8000) 
DECLARE @i int, @l int 
DECLARE c CURSOR FOR SELECT arraycol FROM #array 
 
OPEN c 
FETCH c INTO @arrayvar 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  SET @i=0 
  SET @l=DATALENGTH(@arrayvar)/15 
   
  WHILE (@i<@l) BEGIN 
    SELECT 'Guitarist'=SUBSTRING(@arrayvar,(@i*15)+1,15) 
    SET @i=@i+1 
  END 
  FETCH c INTO @arrayvar 
END 
 
CLOSE c 
DEALLOCATE c 
 
Guitarist 
--------------- 
LES PAUL 
 
Guitarist 
--------------- 
BUDDY GUY 
 
Guitarist 
--------------- 
JEFF BECK 
 
Guitarist 
--------------- 
JOE SATRIANI 
 
Guitarist 
--------------- 
STEVE MILLER 
 
Guitarist 
--------------- 
EDDIE VAN HALEN 
 
Guitarist 
--------------- 
TOM SCHOLZ 
 
Guitarist 
--------------- 
STEVE VAI 
 



Guru’s Guide to Transact-SQL 

188 

Guitarist 
--------------- 
ERIC CLAPTON 
 
Guitarist 
--------------- 
SLASH 
 
Guitarist 
--------------- 
JIMI HENDRIX 
 
Guitarist 
--------------- 
JASON BECKER 
 
Guitarist 
--------------- 
MICHAEL HARTMAN 
 
    
This code opens a cursor on the work table, then iterates through the array in each row. It uses the 
DATALENGTH() function to determine the length of each array and a loop to SELECT each element from the 
array using the indexing expression introduced in the previous query. 
Though this technique is flexible in that it allows us to process as many array elements as we want with a 
minimum of code, it suffers from one fundamental flaw: It returns multiple result sets. Many front ends don't 
know how to handle multiple result sets and will balk at query output such as this. There are a couple of ways 
around this. Here's one approach: 
     
CREATE TABLE #results (Guitarist varchar(15)) 
 
DECLARE @arrayvar varchar(8000) 
DECLARE @i int, @l int 
DECLARE c CURSOR FOR SELECT arraycol FROM #array 
 
OPEN c 
FETCH c INTO @arrayvar 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  SET @i=0 
  SET @l=DATALENGTH(@arrayvar)/15 
  WHILE (@i<@l) BEGIN 
     INSERT #results SELECT SUBSTRING(@arrayvar,(@i*15)+1,15) 
     SET @i=@i+1 
  END 
  FETCH c INTO @arrayvar 
END 
CLOSE c 
DEALLOCATE c 
 
SELECT * FROM #results 
DROP TABLE #results 
 
Guitarist 
--------------- 
LES PAUL 
BUDDY GUY 
JEFF BECK 
JOE SATRIANI 
STEVE MILLER 
EDDIE VAN HALEN 



Chapter 10. Arrays 

189 

TOM SCHOLZ 
STEVE VAI 
ERIC CLAPTON 
SLASH 
JIMI HENDRIX 
JASON BECKER 
MICHAEL HARTMAN 
 
    
Here, we use a temporary table to store each array element as it's processed by the query. Once processing 
completes, the contents of the table are returned as a single result set and the temporary table is dropped. A 
variation on this would be to move the code to a stored procedure and return a pointer to the cursor via an 
output parameter. Then the caller could process the array at its convenience. 
Another, though slightly more limited, way to process the array is to generate a SELECT statement as the 
array is processed and execute it afterward. Here's an example: 
     
DECLARE @arrayvar varchar(8000), @select_stmnt varchar(8000) 
DECLARE @k int, @i int, @l int, @c int 
DECLARE c CURSOR FOR SELECT * FROM #array 
 
SET @select_stmnt='SELECT ' 
SET @c=0 
 
OPEN c 
FETCH c INTO @k, @arrayvar 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
   SET @i=0 
   SET @l=DATALENGTH(@arrayvar)/15 
   WHILE (@i<@l) BEGIN 
      SELECT @select_stmnt=@select_stmnt+'Guitarist'+CAST(@c as 
      varchar)+'='+QUOTENAME(RTRIM(SUBSTRING(@arrayvar,(@i*15)+1,15)),'"')+',' 
      SET @i=@i+1 
      SET @c=@c+1 
   END 
   FETCH c INTO @k, @arrayvar 
END 
CLOSE c 
DEALLOCATE c 
 
SELECT @select_stmnt=LEFT(@select_stmnt,DATALENGTH(@select_stmnt)-1) 
 
EXEC(@select_stmnt) 
 
    
(Results abridged) 
     
Guitarist0 Guitarist1 Guitarist2 Guitarist3   Guitarist4   Guitarist5 
---------- ---------- ---------- ------------ ------------ --------------- 
LES PAUL   BUDDY GUY  JEFF BECK  JOE SATRIANI STEVE MILLER EDDIE VAN HALEN 
 
    
Note the use of the QUOTENAME() function to surround each array value with quotes so that it can be 
returned by the SELECT statement. The default quote delimiters are '[' and ']' but, as the example shows, you 
can specify others. 
This routine is more limited than the temporary table solution because it's restricted by the maximum size of 
varchar. That is, since the SELECT statement that we build is stored in a variable of type varchar, it can't 
exceed 8000bytes. While the other techniques allot 8000bytes for each row's array, this one limits the sum 
length of the arrays in all records to just 8000bytes. Given that this string must also store a column name for 
each element (most front ends have trouble processing unnamed columns), this is a significant limitation. 



Guru’s Guide to Transact-SQL 

190 

Nevertheless, the fact that this approach builds SQL that it then executes is interesting in and of itself. You 
can probably think of other applications for this technique such as variably sized cross-tabs, run and 
sequence flattening, and so on. 

Modifying Array Elements 

One inherent weakness of storing arrays as strings is revealed when we attempt to make modifications to 
element values. Unless you're making the most basic kind of change, updating either a single value or an 
entire dimension is not a straightforward process. Clearing the array in a given row is simple— we just do 
something like this: 
      
UPDATE #array SET arraycol = '' WHERE k1=1 
 
     
If you think of the array in each record as a row in a larger array (which spans the entire table), you can think 
of this as clearing a single row. 
What if we wanted to clear just the second element in each record's array? We'd need something like this: 
      
UPDATE #array 
SET arraycol = 
LEFT(arraycol,1*15)+SPACE(1*15)+RIGHT(arraycol,DATALENGTH(arraycol)-(2*15)) 
 
     
(Results abridged) 
      
Element1        Element2        Element3        Element4        Element5 
--------------- --------------- --------------- --------------- --------------- 
LES PAUL                        JEFF BECK       JOE SATRIANI 
STEVE MILLER                    TOM SCHOLZ 
STEVE VAI                       SLASH           JIMI HENDRIX    JASON BECKER 
 
     
This involves a few somewhat abstruse computations that depend on the element size to work correctly. As 
with the earlier queries, this code multiplies an array index by the element size in order to access the array. 
Though it's certainly more compact to use SPACE(15) rather than SPACE(1*15), using the expression is more 
flexible in that it's easily reusable with other elements. 
Note that we could use this technique to setthe value of a particular dimension rather than simply clearing it. 
For example, to fill the third element in each row's array with a specific value, we would use code like this: 
      
UPDATE #array 
SET arraycol = 
LEFT(arraycol,(2*15))+'MUDDY WATERS '+RIGHT(arraycol,DATALENGTH(arraycol)-(3*15)) 
 
     
To limit the change to a particular record, include a WHERE clause that restricts the UPDATE, like this: 
      
UPDATE #array 
SET arraycol = 
LEFT(arraycol,(3*15))+'MUDDY WATERS   '+ 
RIGHT(arraycol,CASE WHEN (DATALENGTH(arraycol)-(4*15))<0 THEN 0 ELSE 
DATALENGTH(arraycol)-(4*15) END) 
WHERE k1=2 
 
     
As you can see, things can get pretty convoluted considering all we want to do is change an array element. 
Naturally, things would be much simpler if Transact-SQL supported arrays directly. 

Arrays as Tables 



Chapter 10. Arrays 

191 

Implementing a virtual array using a simple table is also a viable alternative to native array support. This 
technique uses one or more columns as array indexes. If the array is single-dimensional, there's just one 
index column. If it's multidimensional, there may be several. Here's an example: 
     
CREATE TABLE #array (k1 int identity (0,1), guitarist varchar(15)) 
 
INSERT #array (guitarist) VALUES('LES PAUL'); 
INSERT #array (guitarist) VALUES('BUDDY GUY'); 
INSERT #array (guitarist) VALUES('JEFF BECK'); 
INSERT #array (guitarist) VALUES('JOE SATRIANI'); 
INSERT #array (guitarist) VALUES('STEVE MILLER'); 
INSERT #array (guitarist) VALUES('EDDIE VAN HALEN'); 
INSERT #array (guitarist) VALUES('TOM SCHOLZ'); 
INSERT #array (guitarist) VALUES('STEVE VAI'); 
INSERT #array (guitarist) VALUES('ERIC CLAPTON'); 
INSERT #array (guitarist) VALUES('SLASH'); 
INSERT #array (guitarist) VALUES('JIMI HENDRIX'); 
INSERT #array (guitarist) VALUES('JASON BECKER'); 
INSERT #array (guitarist) VALUES('MICHAEL HARTMAN'); 
 
-- To set the third element in the array 
UPDATE #array 
SET guitarist='JOHN GMUENDER' 
WHERE k1=2 
 
SELECT guitarist 
FROM #array 
 
guitarist 
--------------- 
LES PAUL 
BUDDY GUY 
JOHN GMUENDER 
JOE SATRIANI 
STEVE MILLER 
EDDIE VAN HALEN 
TOM SCHOLZ 
STEVE VAI 
ERIC CLAPTON 
SLASH 
JIMI HENDRIX 
JASON BECKER 
MICHAEL HARTMAN 
 
    
This code illustrates a simple way to emulate a single-dimensional array using a table. Note the use of a seed 
value for the identity column in order to construct a zero-based array, as we did in the string array examples. 
Transact-SQL requires that you also specify an increment value whenever you specify a seed value, so we 
specified an increment of one. 
This code changes the value of the third element (which has an index value of two). Removing the WHERE 
clause would allow the entire virtual array to be set or cleared. 

Sorting 

Unlike the varchar array technique, sorting a virtual table array is as simple as supplying an ORDER BY 
clause. Deleting elements is simple, too—all you need is a DELETE statement qualified by a WHERE clause. 
Inserting a new element (as opposed to appending one) is more difficult since we're using an identity column 
as the array index. However, it's still doable— either via SET IDENTITY_INSERT or by changing the index 
column to a nonidentity type. 
Adding a dimension is as straightforward as adding a column. Here's an example: 



Guru’s Guide to Transact-SQL 

192 

      
CREATE TABLE #array (band int, single int, title varchar(50)) 
 
INSERT #array VALUES(0,0,'LITTLE BIT O'' LOVE'); 
INSERT #array VALUES(0,1,'FIRE AND WATER'); 
INSERT #array VALUES(0,2,'THE FARMER HAD A DAUGHTER'); 
INSERT #array VALUES(0,3,'ALL RIGHT NOW'); 
INSERT #array VALUES(1,0,'BAD COMPANY'); 
INSERT #array VALUES(1,1,'SHOOTING STAR'); 
INSERT #array VALUES(1,2,'FEEL LIKE MAKIN'' LOVE'); 
INSERT #array VALUES(1,3,'ROCK AND ROLL FANTASY'); 
INSERT #array VALUES(2,0,'SATISFACTION GUARANTEED'); 
INSERT #array VALUES(2,1,'RADIOACTIVE'); 
INSERT #array VALUES(2,2,'MONEY CAN''T BUY'); 
INSERT #array VALUES(2,3,'TOGETHER'); 
INSERT #array VALUES(3,0,'GOOD MORNING LITTLE SCHOOLGIRL'); 
INSERT #array VALUES(3,1,'HOOCHIE-COOCHIE MAN'); 
INSERT #array VALUES(3,2,'MUDDY WATER BLUES'); 
INSERT #array VALUES(3,3,'THE HUNTER'); 
 
-- To set the third element in the fourth row of the array 
UPDATE #array 
SET title='BORN UNDER A BAD SIGN' 
WHERE band=3 AND single=2 
 
     
SELECT title 
      
FROM #array 
 
title 
-------------------------------------------------- 
LITTLE BIT O' LOVE 
FIRE AND WATER 
THE FARMER HAD A DAUGHTER 
ALL RIGHT NOW 
BAD COMPANY 
SHOOTING STAR 
FEEL LIKE MAKIN' LOVE 
ROCK AND ROLL FANTASY 
SATISFACTION GUARANTEED 
RADIOACTIVE 
MONEY CAN'T BUY 
TOGETHER 
GOOD MORNING LITTLE SCHOOLGIRL 
HOOCHIE-COOCHIE MAN 
BORN UNDER A BAD SIGN 
THE HUNTER 
 
     
This code sets up a two-dimensional array, then changes the third element in its fourth row. Because its 
indexes are simple integer columns, the SQL necessary to manipulate the array is much more intuitive. For 
example, clearing a given dimension in the array is trivial: 
      
UPDATE #array 
SET title='' 
WHERE band=2 
 
SELECT * 
FROM #array 
 



Chapter 10. Arrays 

193 

band        single      title 
----------- ----------- -------------------------------------------------------- 
0           0           LITTLE BIT O' LOVE 
0           1           FIRE AND WATER 
0           2           THE FARMER HAD A DAUGHTER 
0           3           ALL RIGHT NOW 
1           0           BAD COMPANY 
1           1           SHOOTING STAR 
1           2           FEEL LIKE MAKIN' LOVE 
1           3           ROCK AND ROLL FANTASY 
2           0 
2           1 
2           2 
2           3 
3           0           GOOD MORNING LITTLE SCHOOLGIRL 
3           1           HOOCHIE-COOCHIE MAN 
3           2           MUDDY WATER BLUES 
3           3           THE HUNTER 
 
     
This code uses a simple UPDATE statement qualified by a WHERE clause to clear the array's third dimension. 
Another nifty feature of this approach is that row and column totals are easy to produce using basic aggregate 
functions and the GROUP BY clause. Here's a query that performs a variety of aggregations using the array's 
indexes as grouping columns: 
      
CREATE TABLE #array (band int, single int, title varchar(50)) 
 
INSERT #array VALUES(0,0,'LITTLE BIT O'' LOVE'); 
INSERT #array VALUES(0,1,'FIRE AND WATER'); 
INSERT #array VALUES(0,2,'ALL RIGHT NOW'); 
INSERT #array VALUES(1,0,'BAD COMPANY'); 
INSERT #array VALUES(1,1,'SHOOTING STAR'); 
INSERT #array VALUES(1,2,'FEEL LIKE MAKIN'' LOVE'); 
INSERT #array VALUES(1,3,'ROCK AND ROLL FANTASY'); 
INSERT #array VALUES(1,4,'BURNING SKY'); 
INSERT #array VALUES(2,0,'SATISFACTION GUARANTEED'); 
INSERT #array VALUES(2,1,'RADIOACTIVE'); 
INSERT #array VALUES(2,2,'MONEY CAN''T BUY'); 
INSERT #array VALUES(2,3,'TOGETHER'); 
INSERT #array VALUES(3,0,'GOOD MORNING LITTLE SCHOOLGIRL'); 
INSERT #array VALUES(3,1,'HOOCHIE-COOCHIE MAN'); 
INSERT #array VALUES(3,2,'MUDDY WATER BLUES'); 
INSERT #array VALUES(3,3,'THE HUNTER'); 
 
SELECT Band, NumberOfSongsPerBand=COUNT(single) 
FROM #array 
GROUP BY Band 
 
SELECT Band, "Last Song (Alphabetically)"=MAX(title) 
FROM #array 
GROUP BY Band 
ORDER BY 2 
 
SELECT Single, NumberOfBandsPerSingle=COUNT(Band) 
FROM #array 
GROUP BY Single 
 
Band        NumberOfSongsPerBand 
----------- -------------------- 
0           3 
1           5 



Guru’s Guide to Transact-SQL 

194 

2           4 
3           4 
 
Band        Last Song (Alphabetically) 
----------- --------------------------------------------- 
0           LITTLE BIT O' LOVE 
1           SHOOTING STAR 
3           THE HUNTER 
2           TOGETHER 
 
Single      NumberOfBandsPerSingle 
----------- --------------------------------------------- 
0           4 
1           4 
2           4 
3           3 
4           1 
 
     
Keep in mind that the index columns used with this approach can be data types other than integers since we 
access them via the WHERE clause. Datetime types, GUIDs, and bit types are popular indexes as well. Also, 
these indexes can be accessed via more complex expressions than the diminutive "=i " where i is an array 
index. The LIKE, BETWEEN, IN, and EXISTS predicates, as well as subqueries, can also be used to traverse 
the array. 

Transposing Dimensions 

Swapping array dimensions is also relatively trivial with this approach. For example, assume we have a two-
dimensional array, and we want to swap its rows and columns. How would we do it? With the varchar array 
approach, this could get quite involved. However, it's fairly straightforward using the table array approach and 
a feature of the UPDATE statement. Here's the code: 
      
DECLARE @i int 
 
UPDATE #array SET @i=Band, Band=Single, Single=@i 
 
SELECT * 
FROM #array 
ORDER BY Band, Single 
 
band        single      title 
----------- ----------- -------------------------------------------------------- 
0           0           LITTLE BIT O' LOVE 
0           1           BAD COMPANY 
0           2           SATISFACTION GUARANTEED 
0           3           GOOD MORNING LITTLE SCHOOLGIRL 
1           0           FIRE AND WATER 
1           1           SHOOTING STAR 
1           2           RADIOACTIVE 
1           3           HOOCHIE-COOCHIE MAN 
2           0           ALL RIGHT NOW 
2           1           FEEL LIKE MAKIN' LOVE 
2           2           MONEY CAN'T BUY 
2           3           MUDDY WATER BLUES 
3           1           ROCK AND ROLL FANTASY 
3           2           TOGETHER 
3           3           THE HUNTER 
4           1           BURNING SKY 
 
     



Chapter 10. Arrays 

195 

Since Transact-SQL is processed left to right, we're able to set @i to store the value of band so that we may 
swap band and single. The ability to set a local variable via UPDATE was originally intended as a 
performance enhancement to shorten the time locks were held. It was designed to combine the functionality of 
performing an UPDATE, then immediately SELECTing a value from the same table into a local variable for 
further processing. In our case, we're using this feature, along with Transact-SQL's left-to-right execution, to 
swap one column with another. 
It's possible that Transact-SQL's ability to reuse variables set by an UPDATE within the UPDATE itself might 
change someday since it's not specifically documented. As with all undocumented features, you should use it 
only when necessary and with due caution. It might not be supported in a future release, so be wary of 
becoming too dependent upon it. 
Note that if you only want to swap the dimensions in the result set (rather than changing the array itself), that's 
easy enough to do: 
      
SELECT Band=single, Single=Band, Title 
FROM #array 
ORDER BY 1, 2 
 
Band        Single      Title 
----------- ----------- -------------------------------------------------------- 
0           0           LITTLE BIT O' LOVE 
0           1           BAD COMPANY 
0           2           SATISFACTION GUARANTEED 
0           3           GOOD MORNING LITTLE SCHOOLGIRL 
1           0           FIRE AND WATER 
1           1           SHOOTING STAR 
1           2           RADIOACTIVE 
1           3           HOOCHIE-COOCHIE MAN 
2           0           ALL RIGHT NOW 
2           1           FEEL LIKE MAKIN' LOVE 
2           2           MONEY CAN'T BUY 
2           3           MUDDY WATER BLUES 
3           1           ROCK AND ROLL FANTASY 
3           2           TOGETHER 
3           3           THE HUNTER 
4           1           BURNING SKY 
 
     
We get the same results as the previous query, but the array itself remains unmodified. A VIEW object is ideal 
in this situation if you need to swap an array's dimensions on a regular basis. 

Ensuring Array Integrity 

There are a couple of nifty ways to ensure the veracity of the array index values you store. One is to create 
unique constraints on them. You can do this via PRIMARY KEY or UNIQUE KEY constraints on the 
appropriate columns. For example, we might modify the CREATE TABLE statement above like so: 
      
CREATE TABLE #array (band int, single int, title varchar(50) 
PRIMARY KEY (band, single)) 
 
     
This ensures that no duplicate indexes are allowed into the table, which is what you want. It also creates an 
index over the array indexes—which will probably benefit performance. 

Reshaping the Array 

Many of the techniques that were used to reshape or flatten the varchar array work with table arrays as well. 
The most flexible of those presented is the technique that reshapes the array by populating a temporary table 
with values. However, table arrays give us another option that requires far less code and is much easier to 
follow: 



Guru’s Guide to Transact-SQL 

196 

      
SELECT Free=MAX(CASE band WHEN 0 THEN title ELSE NULL END), 
   BadCompany=MAX(CASE band WHEN 1 THEN title ELSE NULL END), 
   TheFirm=MAX(CASE band WHEN 2 THEN title ELSE NULL END), 
   Solo=MAX(CASE band WHEN 3 THEN title ELSE NULL END) 
FROM #array a 
GROUP BY a.single 
Free               BadCompany            TheFirm                 Solo 
------------------ --------------------- -----------------------  
 

------------------------------ 
LITTLE BIT O' LOVE BAD COMPANY           SATISFACTION GUARANTEED GOOD MORNING 
LITTLE  
 

SCHOOLGIRL 
FIRE AND WATER     SHOOTING STAR         RADIOACTIVE             HOOCHIE-COOCHIE 
MAN 
ALL RIGHT NOW      FEEL LIKE MAKIN' LOVE MONEY CAN'T BUY         MUDDY WATER 
BLUES 
NULL               ROCK AND ROLL FANTASY TOGETHER                THE HUNTER 
NULL               BURNING SKY           NULL                    NULL 
 
     
This technique uses an aggregate to "hide" the selection of the title column for each band so that it can use 
GROUP BY to flatten the result set. It groups on the single column because single provides the type of 
unique identifier we need to coalesce the array elements. To understand this, it's instructive to view what the 
result set would look like without the MAX()/ GROUP BY combo: 
      
SELECT Free=(CASE band WHEN 0 THEN title ELSE NULL END), 
   BadCompany=(CASE band WHEN 1 THEN title ELSE NULL END), 
   TheFirm=(CASE band WHEN 2 THEN title ELSE NULL END), 
   Solo=(CASE band WHEN 3 THEN title ELSE NULL END) 
FROM #array 
 
Free               BadCompany            TheFirm                 Solo 
------------------ --------------------- -----------------------  
 

------------------------------ 
LITTLE BIT O' LOVE NULL                  NULL                    NULL 
FIRE AND WATER     NULL                  NULL                    NULL 
ALL RIGHT NOW      NULL                  NULL                    NULL 
NULL               BAD COMPANY           NULL                    NULL 
NULL               SHOOTING STAR         NULL                    NULL 
NULL               FEEL LIKE MAKIN' LOVE NULL                    NULL 
NULL               ROCK AND ROLL FANTASY NULL                    NULL 
NULL               BURNING SKY           NULL                    NULL 
NULL               NULL                  SATISFACTION GUARANTEED NULL 
NULL               NULL                  RADIOACTIVE             NULL 
NULL               NULL                  MONEY CAN'T BUY         NULL 
NULL               NULL                  TOGETHER                NULL 
NULL               NULL                  NULL                    GOOD MORNING 
LITTLE  
 

SCHOOLGIRL 
NULL               NULL                  NULL                    HOOCHIE-COOCHIE 
MAN 
NULL               NULL                  NULL                    MUDDY WATER 
BLUES 
NULL               NULL                  NULL                    THE HUNTER 
 
     



Chapter 10. Arrays 

197 

As the query traverses the table, it can fill only one column of our flattened array (actually just a simple cross-
tab) at a time. Each column's CASE expression establishes that. This means that for each row in the initial 
result set, every column will be NULL except one. This is where the MAX()/GROUP BY duo comes to the 
rescue. Grouping on single allows us to coalesce the values in each column so that these extraneous NULLs 
are removed. Using MAX() allows us to select each column while grouping (all nongrouping columns in the 
SELECT list must either be aggregates or constants when GROUP BY is present). Note that MIN() would 
have worked equally well. All we really need is an aggregate that can return the title column—the aggregate 
merely serves to support the use of GROUP BY—which is the opposite of how we usually think of the 
aggregate–GROUP BY relationship. Since MIN() and MAX() are the only two aggregates capable of returning 
character fields, we're limited to using one of them. 

Comparing Arrays 

It's sometimes desirable to compare two arrays or two subsets of the same array with one another. This can 
be tricky because comparing arrays involves ordering the elements, whereas comparing plain sets does not. 
Here's a modification of the previous code sample that checks elements of the table array against one another 
for equality: 
      
CREATE TABLE #array (band int, single int, title varchar(30)) 
 
INSERT #array VALUES(0,0,'LITTLE BIT O'' LOVE'); 
INSERT #array VALUES(0,1,'FIRE AND WATER'); 
INSERT #array VALUES(0,2,'ALL RIGHT NOW'); 
INSERT #array VALUES(0,3,'THE HUNTER'); 
INSERT #array VALUES(1,0,'BAD COMPANY'); 
INSERT #array VALUES(1,1,'SHOOTING STAR'); 
INSERT #array VALUES(1,2,'FEEL LIKE MAKIN'' LOVE'); 
INSERT #array VALUES(1,3,'ROCK AND ROLL FANTASY'); 
INSERT #array VALUES(1,4,'BURNING SKY'); 
INSERT #array VALUES(2,0,'SATISFACTION GUARANTEED'); 
INSERT #array VALUES(2,1,'RADIOACTIVE'); 
INSERT #array VALUES(2,2,'MONEY CAN''T BUY'); 
INSERT #array VALUES(2,3,'TOGETHER'); 
INSERT #array VALUES(3,0,'GOOD MORNING LITTLE SCHOOLGIRL'); 
INSERT #array VALUES(3,1,'HOOCHIE-COOCHIE MAN'); 
INSERT #array VALUES(3,2,'MUDDY WATER BLUES'); 
INSERT #array VALUES(3,3,'THE HUNTER'); 
 
SELECT * FROM 
(SELECT Free=MAX(CASE band WHEN 0 THEN title ELSE NULL END), 
   BadCompany=MAX(CASE band WHEN 1 THEN title ELSE NULL END), 
   TheFirm=MAX(CASE band WHEN 2 THEN title ELSE NULL END), 
   Solo=MAX(CASE band WHEN 3 THEN title ELSE NULL END) 
   FROM #array 
   GROUP BY single) a 
WHERE Free=BadCompany 
OR Free=TheFirm 
OR Free=Solo 
OR BadCompany=TheFirm 
OR BadCompany=Solo 
OR TheFirm=Solo 
 
Free               BadCompany            TheFirm               Solo 
------------------ --------------------- --------------------- ----------------- 
THE HUNTER         ROCK AND ROLL FANTASY TOGETHER              THE HUNTER 
 
     
This technique turns the earlier array flattening query into a derived table, which it then qualifies with a 
WHERE clause. (As mentioned in Chapter 7, you can think of a derived table as an implicit or inline VIEW.) It 
then returns all rows where the title of one band's single is identical to that of another. 



Guru’s Guide to Transact-SQL 

198 

One problem with this approach is that it returns data we don't need. The entries in the middle two columns 
are extraneous—all we really care about is that bands zero and three have singles with the same title. This 
could mean that one plagiarized the other, that the songwriters for one of the bands weren't terribly original, or, 
perhaps, that the same lead singer sang for both. 
Efficiency is another problem with this technique. The derived table selects every row in the #array table 
before handing it back to the outer query to pare down. Though the query optimizer will look at combining the 
two queries into one, the way that CASE is used here would probably confuse it. It would likely be more 
efficient to filter the rows returned as they're selected rather than afterward. Here's a code refinement that 
does that: 
      
SELECT 
Free=MAX(CASE a.band WHEN 0 THEN a.title ELSE NULL END), 
BadCompany=MAX(CASE a.band WHEN 1 THEN a.title ELSE NULL END), 
TheFirm=MAX(CASE a.band WHEN 2 THEN a.title ELSE NULL END), 
Solo=MAX(CASE a.band WHEN 3 THEN a.title ELSE NULL END) 
FROM #array a LEFT JOIN #array b ON (a.title=b.title) 
   WHERE NOT (a.band=b.band AND a.single=b.single) 
   GROUP BY a.single 
 
Free               BadCompany            TheFirm               Solo 
------------------ --------------------- --------------------- ----------------- 
THE HUNTER         NULL                  NULL                  THE HUNTER 
 
     
The technique joins the array table with itself to locate duplicate elements. The query's WHERE clause 
ensures that it doesn't make the mistake of matching an element with itself. Since this approach filters the 
rows it returns as it processes them, it should be more efficient than the derived table approach. However, the 
introduction of a self-join may cancel out any performance gains achieved. Whether this technique is more 
efficient than the first one in a particular situation depends on the exact circumstances and data involved. 
Note that this approach has the side effect of removing the extraneous values from the middle columns. Doing 
that with the derived table approach would be much more involved since it would basically amount to 
encoding the search criteria in two places: in the WHERE clause as well as in the SELECT list (via CASE 
expressions). 

Summary 

Since Transact-SQL doesn't directly support arrays, they must be simulated using other constructs. The two 
most popular means of emulating arrays are to store them as large character fields and to set up table 
columns that mimic array dimensions. Using large strings for arrays is practical for single-dimensional 
constructs, but the table column approach is better for multidimensional arrays. Whatever type of faux array 
you elect to use, keep in mind that storing repeating values in a table row is a form a denormalization. Be sure 
that's what you intend before you begin redesigning your database. 
In this chapter, you learned to manipulate both types of pseudoarrays. You learned to add elements, to delete 
them, and to add and clear whole dimensions. You learned how to flatten simulated arrays into cross-tabs and 
to return array elements as result sets. 



Chapter 11. Sets 

199 

Chapter 11. Sets 
Servile flattery—the kind made mostly of lies— will endear a lot of different kinds of people to 
you. Sycophancy wins friends and influences people. But I've never known anyone—and 
certainly none of the people I call "hero"—who chased after an elusive dream—one that 
required sacrifice, courage, resolve, or just plain mettle—and seized it through unctuous 
flattery. Edison, Jefferson, Lincoln, Einstein, Twain, Socrates, Confucius, Poe, Da Vinci, 
King—none of them fawned his way into history. Instead, they waged war against the toadies 
and trucklers of the world. They left indelible handprints on the past because they had the 
audacity to be honest and because they knew the difference between loyalty and servility.  

—Trace Ambraise 

Given that the relational model is based on sets of tuples, it should come as no surprise that SQL Server 
provides a rich suite of tools for working with sets of rows. The set is the focal point of work in SQL Server—
the server resolves the queries you pass it by returning sets—result sets. It stores sets of rows together in 
tables (or bags) and relates sets to one another via Declarative Referential Integrity and joins. That it provides 
such comprehensive set support is to be expected—sets are the life's blood of relational databases. 
The ANSI SQL-92 set operation keywords—UNION, EXCEPT, and INTERCEPT—are used to determine set 
union, difference, and intersection, respectively (sets are assumed to be collections of rows). Though 
Transact-SQL supports only one of these directly—UNION— it's straightforward to perform the other 
operations using simple coding techniques. SQL is a set-oriented language; working with sets of records is 
what it does best. 

Unions 

Performing a set union is trivial in Transact-SQL thanks to the inclusion of the UNION keyword. Here's some 
sample code that combines two sets using the UNION operator: 
      
CREATE TABLE #set1 (col1 int, col2 int) 
CREATE TABLE #set2 (col3 int, col4 int) 
 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (2,2) 
INSERT #set1 VALUES (3,3) 
INSERT #set1 VALUES (4,4) 
INSERT #set1 VALUES (5,5) 
 
INSERT #set2 VALUES (1,1) 
INSERT #set2 VALUES (2,2) 
INSERT #set2 VALUES (5,5) 
 
SELECT * FROM #set1 
UNION 
SELECT * FROM #set2 
 
col1        col2 
----------- ----------- 
3           3 
2           2 
1           1 
5           5 
4           4 
 
    
Note that the column names of the two tables differ in this example. All that's required of SELECT statements 
joined via UNION is that they have the same number of columns and that each column's data type either 
matches its counterpart or is capable of being implicitly converted to it. The SELECT statements themselves 



Guru’s Guide to Transact-SQL 

200 

can be as complex as necessary, though they may not include COMPUTE, ORDER BY, or FOR BROWSE. 
You can use COMPUTE and ORDER BY with the result set returned by the UNION operation but not with any 
of its individual SELECT statements. Conversely, GROUP BY and HAVING can be used by individual 
SELECT statements but not by the entire result set. This is a pretty serious limitation, but fortunately there's a 
workaround. Here's some code that shows a way of using GROUP BY and HAVING with result sets created 
by UNION: 
      
SELECT col1, Num=COUNT(*) 
FROM (SELECT * FROM #set1 
  UNION ALL 
  SELECT * FROM #set2) s 
GROUP BY col1 
HAVING (COUNT(*) > 1) 
 
col1        Num 
----------- ----------- 
1           2 
2           2 
5           2 
 
    
This approach uses a derived table to wrap the UNION result set, then groups and qualifies it using GROUP 
BY and HAVING. An alternative would be to encapsulate the UNION operation in a view, but the illustrated 
approach is more expedient since it doesn't involve the creation of a separate object. 
Note the use of UNION ALL in the example code. Normally, UNION removes duplicates from its result set by 
sorting or hashing them. Obviously, this can take time. If you know your result set is already free of duplicates 
or if you don't care whether it contains duplicates, UNION ALL can be a much faster way of combining tables. 
It simply combines the results of its component SELECTs and returns them—there's no sorting or duplicate 
elimination. It's needed by the query above because we want to apply a HAVING clause that filters the result 
set according to the number of instances of each col1 value. Obviously, we can't do that if UNION removes all 
duplicates, effectively restricting the number of instances of each value to just one. So, we use UNION ALL 
within the derived table, then remove duplicates and aggregate our results using the GROUP BY of the outer 
SELECT. 

CAUTION 

Caution Avoid mixing UNION and UNION ALL if you can. If duplicates are removed in some cases 
but not in others, you may end up with a result set that is difficult to interpret. The individual 
SELECT statements composing a compound UNION operation cease to be associative when 
UNION and UNION ALL are mixed. This means, by extension, that Transact-SQL's left-to-right 
order of execution will affect the result set. 

 

Transact-SQL provides a nifty enhancement to SQL's standard UNION syntax that allows a table to be 
created en passant. To do this, you include an INTO tablename clause in the first SELECT statement of those 
included in the UNION operation, like so: 

      
SELECT * INTO #tempset FROM #set1 
UNION ALL 
SELECT * FROM #set2 
 
SELECT col1, Num=COUNT(*) FROM #tempset 
GROUP BY col1 
HAVING (COUNT(*) > 1) 
 



Chapter 11. Sets 

201 

col1        Num 
----------- ----------- 
1           2 
2           2 
5           2 
 
    
This code first creates a table via the UNION construct, then queries it via a separate SELECT statement. 
This technique is better than the derived table approach if you need to process the UNION result set further 
following the operation. 

Differences 

ANSI SQL-92 defines the EXCEPT keyword for returning a result set consisting of the difference between two 
sets. Most SQL vendors, including Microsoft, have yet to implement this keyword (Oracle has the MINUS 
synonym), but since Transact-SQL is a set-oriented language at heart, determining the difference between 
two sets isn't a difficult task. 
The most obvious way to determine the rows that exist in one set but not in another is via the EXISTS 
predicate. Here's a code sample that returns the rows in one table that do not exist in another: 
      
CREATE TABLE #set1 (col1 int, col2 int) 
CREATE TABLE #set2 (col1 int, col2 int) 
 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (2,2) 
INSERT #set1 VALUES (3,3) 
INSERT #set1 VALUES (4,4) 
INSERT #set1 VALUES (5,5) 
 
INSERT #set2 VALUES (1,1) 
INSERT #set2 VALUES (2,2) 
INSERT #set2 VALUES (5,5) 
 
SELECT * FROM #set1 s1 
WHERE NOT EXISTS(SELECT * FROM #set2 s2 WHERE s2.col1=s1.col1 AND 
        s2.col2=s1.col1) 
 
col1        col2 
----------- ----------- 
3           3 
4           4 
 
    
This method uses a correlated subquery to find the rows in #set1 that do not exist in #set2. Note that this 
method requires each column in each table to be matched up individually. This can quickly become very 
cumbersome when dealing with tables with lots of columns. 
Unlike the ANSI SQL EXCEPT construct, this solution returns duplicate rows if they exist in the first table. To 
remedy this, insert the DISTINCT keyword in the outer SELECT. 
A more efficient way to return the difference between two sets is to use a simple OUTER join. This alleviates 
the need for a correlated subquery, so it's not only faster but also easier to read: 
      
SELECT s1.* 
FROM #set1 s1 LEFT OUTER JOIN #set2 s2 
   ON (s1.col1=s2.col1 AND s1.col2=s2.col2) 
WHERE s2.col1 IS NULL 
 
col1        col2 
----------- ----------- 
3           3 
4           4 



Guru’s Guide to Transact-SQL 

202 

    
The approach works by virtue of the fact that a left outer join returns columns from the rightmost table as 
NULL when the join condition fails. The query simply limits the rows it returns to those where this occurs. In 
other words, it restricts the rows returned from the leftmost table to those that don't exist in the right-side table. 
As in the previous example, this technique requires that every column in the first set be compared with its 
counterpart in the second set, which gets tedious with lots of columns. 
One type of set that neither of these approaches handles very well is one containing duplicates. Codd's 
relational model and basic set theory prohibit duplicate set elements, but ANSI/ ISO SQL permits them and so 
does Transact-SQL. That's why tables are sometimes referred to as "multisets"—they may contain multiple 
sets that individually contain unique elements. 
The issues that arise when duplicates are present in a set are many and varied. If the first set contains two 
instances of a given row, but the second contains just one, what should we do? A result set that shows the 
difference between the two sets should include from the first set duplicate rows that have no matches in the 
second set. It shouldn't exclude the row from the result set simply because there's a match for an earlier 
duplicate in the second set. 
Unfortunately, neither of the techniques presented thus far can handle this situation. Regardless of how many 
times a given row appears in the first set, if it occurs even once in the second set, it's not included in the 
difference set. Here's a query that ensures that each set has at least as many copies of a given row as the 
other set before a match is assumed (I've altered the sets to include duplicate rows): 
      
CREATE TABLE #set1 (col1 int, col2 int) 
CREATE TABLE #set2 (col1 int, col2 int) 
 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (2,2) 
INSERT #set1 VALUES (3,3) 
INSERT #set1 VALUES (4,4) 
INSERT #set1 VALUES (5,5) 
 
INSERT #set2 VALUES (1,1) 
INSERT #set2 VALUES (2,2) 
INSERT #set2 VALUES (5,5) 
INSERT #set2 VALUES (5,5) 
 
SELECT col1, col2 
FROM (SELECT col1, 
     col2, 
     Num1=COUNT(*), 
     Num2=(SELECT COUNT(*) FROM #set2 ss2 WHERE col1=ss1.col1 AND col2=ss1.col2) 
   FROM #set1 ss1 
GROUP BY col1, col2) s1 
GROUP BY col1, col2 
HAVING (ABS(SUM(Num1)-SUM(Num2))>0) 
 
col1        col2 
----------- ----------- 
1           1 
3           3 
4           4 
5           5 
 
    
Even though row (1,1) appears in both sets, this query returns the row in the difference set because it appears 
more times in the first set than in the second. Similarly, even though (5,5) appears in both sets, it appears 
more times in the second set than in the first, so it's included in the resultset. 

Intersections 



Chapter 11. Sets 

203 

As with set differences, returning simple set intersections is easy using the EXISTS predicate. Here's an 
example: 
      
CREATE TABLE #set1 (col1 int, col2 int) 
CREATE TABLE #set2 (col1 int, col2 int) 
 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (2,2) 
INSERT #set1 VALUES (3,3) 
INSERT #set1 VALUES (4,4) 
INSERT #set1 VALUES (5,5) 
 
INSERT #set2 VALUES (1,1) 
INSERT #set2 VALUES (2,2) 
INSERT #set2 VALUES (5,5) 
 
SELECT * FROM #set1 s1 
WHERE EXISTS(SELECT * FROM #set2 s2 WHERE s2.col1=s1.col1 AND s2.col2=s1.col1) 
 
col1        col2 
----------- ----------- 
1            1 
2            2 
5            5 
 
    
Like the initial set difference query, this one requires that each field in the first set be compared with its 
counterpart in the second. Each row in the first set whose columns match those of the second is then returned 
by the query. The result is the intersection of the two sets—those rows contained in both sets. 
A more efficient way to return the intersection of two sets is simply to join them. An inner join works nicely for 
this since it omits rows without matches. Here's an example: 
      
SELECT s1.* 
FROM #set1 s1 INNER JOIN #set2 s2 
   ON (s1.col1=s2.col1 AND s1.col2=s2.col2) 
 
col1        col2 
----------- ----------- 
1           1 
2           2 
5           5 
    
It's syntactically more compact and faster and is the most common way that set intersections are returned in 
SQL. 
As with the set difference techniques, both of these techniques are unable to handle duplicates correctly. A 
single row in the second set may match up to two or more rows in the first set—there's no provision for 
ensuring that a row appears the same number of times in each set before a match is assumed. Here's a query 
that addresses this: 
      
CREATE TABLE #set1 (col1 int, col2 int) 
CREATE TABLE #set2 (col1 int, col2 int) 
 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (1,1) 
INSERT #set1 VALUES (2,2) 
INSERT #set1 VALUES (3,3) 
INSERT #set1 VALUES (4,4) 
INSERT #set1 VALUES (5,5) 
 
INSERT #set2 VALUES (1,1) 
INSERT #set2 VALUES (2,2) 



Guru’s Guide to Transact-SQL 

204 

INSERT #set2 VALUES (5,5) 
 
SELECT col1, col2 
FROM (SELECT col1, 
     col2, 
     Num1=COUNT(*), 
     Num2=(SELECT COUNT(*) FROM #set2 ss2 WHERE col1=ss1.col1 AND col2=ss1.col2) 
  FROM #set1 ss1 
  GROUP BY col1, col2) s1 
GROUP BY col1, col2 
HAVING SUM(Num1)=SUM(Num2) 
 
col1        col2 
----------- ----------- 
4           4 
5           5 
 
    
This approach uses a derived table and a subquery to count the number of rows that appear in each set for 
each pair of values. It then restricts the rows it returns to those that appear the same number of times in each 
set. In this case, (1,1) is excluded because it appears twice in the first set but only once in the second. 
Likewise, (2,2) is excluded because it appears twice in the second set but only once in the first. 
Determining set intersection based on the number of times a row appears may amount to nothing more than 
an academic exercise in many cases. You may not care that the counts are different—you may want to know 
only when the two sets share a common value. If that's the case, the first two techniques presented will 
accomplish the task with a minimum of code. 

Subsets 

Of course, the easiest way to locate a portion of a set—a subset—is with a SELECT statement and a WHERE 
clause. That's the most direct route and the one most often traveled. 
Beyond that, though, what if you need something that, at least on the surface, appears to be too difficult for 
the WHERE clause? Take the problem of returning the top n rows in a set. What's the best way to do this? 
There are a number of approaches to this problem. Some of them are presented elsewhere in this book (e.g., 
see the section "Returning the Top n Rows" in Chapter8), so I won't bother going into them here. Though it's 
also covered adequately elsewhere in the book, the TOP n extension to the SELECT command is worth 
mentioning here in the context of sets and subsets. By far the most straightforward way to return the top 
portion of a set is via the TOP n clause, like this: 
      
CREATE TABLE #1996_POP_ESTIMATE (Region char(7), State char(2), Population int) 
 
INSERT #1996_POP_ESTIMATE VALUES ('West',   'CA',31878234) 
INSERT #1996_POP_ESTIMATE VALUES ('South',  'TX',19128261) 
INSERT #1996_POP_ESTIMATE VALUES ('North',  'NY',18184774) 
INSERT #1996_POP_ESTIMATE VALUES ('South',  'FL',14399985) 
INSERT #1996_POP_ESTIMATE VALUES ('North',  'NJ', 7987933) 
INSERT #1996_POP_ESTIMATE VALUES ('East',   'NC', 7322870) 
INSERT #1996_POP_ESTIMATE VALUES ('West',   'WA', 5532939) 
INSERT #1996_POP_ESTIMATE VALUES ('Central','MO', 5358692) 
INSERT #1996_POP_ESTIMATE VALUES ('East',   'MD', 5071604) 
INSERT #1996_POP_ESTIMATE VALUES ('Central','OK', 3300902) 
 
SELECT TOP 3 State, Region, Population 
FROM #1996_POP_ESTIMATE 
ORDER BY Population DESC 
 
State  Region  Population 
----- ------- ----------- 
CA     West    31878234 
TX     South   19128261 



Chapter 11. Sets 

205 

NY     North   18184774 
    
SET ROWCOUNT also works nicely for this, though, at least for SELECTs, TOP n is preferable because it 
doesn't require a separate SQL statement. Here's a version of the previous query that uses SET ROWCOUNT: 
      
SET ROWCOUNT 3 
 
SELECT State, Region, Population 
FROM #1996_POP_ESTIMATE 
ORDER BY Population DESC 
SET ROWCOUNT 0 -- Reset ROWCOUNT 
    
One distinct advantage the TOP n approach has over SET ROWCOUNT is in its ability to handle ties. The 
WITH TIES clause allows TOP n to include ties in the result set when an ORDER BY clause is used. Consider 
this variation on the earlier query: 
      
SELECT TOP 5 State, Region, Population=Population/1000000 
FROM #1996_POP_ESTIMATE 
ORDER BY Population/1000000 DESC 
 
State  Region  Population 
----- ------- ----------- 
CA     West    31 
TX     South   19 
NY     North   18 
FL     South   14 
NJ     North   7 
    
It lists the top five states in population based on millions of people. Only whole millions are considered—
fractional parts are truncated. Without the TIES option, the query can't recognize the fact that there's actually 
a tie for fifth place. New Jersey and North Carolina each had a population in excess of 7million people in 1996. 
Here's the query with the TIES option in place, along with its resultset: 
      
SELECT TOP 5 WITH TIES State, Region, Population=Population/1000000 
FROM #1996_POP_ESTIMATE 
ORDER BY Population/1000000 DESC 
 
State Region  Population 
----- ------- ----------- 
CA    West    31 
TX    South   19 
NY    North   18 
FL    South   14 
NJ    North   7 
NC    East    7 
    
Because ORDER BY supports both ascending and descending sorts, TOP n can be used to retrieve the 
bottommost rows from a set as well, like so: 
      
SELECT TOP 5 WITH TIES State, Region, Population=Population/1000000 
FROM #1996_POP_ESTIMATE 
ORDER BY Population/1000000 
 
State     Region     Population 
-----     -------    ----------- 
OK        Central     3 
WA        West        5 
MO        Central     5 
MD        East        5 
NJ        North       7 
NC        East        7 



Guru’s Guide to Transact-SQL 

206 

    
If you wish to order the result set returned by TOP n differently (let's say you'd like the result set above in 
descending order, for example), you can easily embed it within a derived table and sort it using a separate 
ORDER BY clause, like so: 
      
SELECT * FROM (SELECT TOP 5 WITH TIES State, 
   Region, Population=Population/1000000 
   FROM #1996_POP_ESTIMATE 
   ORDER BY Population/1000000) p 
ORDER BY Population DESC 
 
State     Region     Population 
-----     -------    ----------- 
NJ        North      7 
NC        East       7 
WA        West       5 
MO        Central    5 
MD        East       5 
OK        Central    3 
    

Returning Every nth Row 

Beyond lopping off the rows at the extremities of a set, you may wish to extract them based on position. For 
example, you may wish to pull the odd- or even-numbered items from a set or, perhaps, every third item or 
every fifth and so on. This is the same basic problem as returning an interval from a sequence or run. The 
examples in Chapter9, "Runs and Sequences," illustrate how to return intervals that are larger than one row 
in size and that can have other complex criteria attached to them. For the time being, here's a query that 
illustrates how to return all the even-numbered items in a set: 
       
CREATE TABLE #set1 (k1 int identity) 
 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
INSERT #set1 DEFAULT VALUES 
 
SELECT s1.k1 
FROM #set1 s1 JOIN #set1 s2 ON (s1.k1 >= s2.k1) 
GROUP BY s1.k1 
HAVING (COUNT(*) % 2) = 0 
 
k1 
----------- 
2 
4 
6 
8 
10 
 
     
This approach uses the familiar self-JOIN/GROUP BY technique, introduced earlier in this book, to compare 
the table with itself. It then uses the modulus operator (%) to restrict the rows it returns to even-numbered 
ones. Of course, you could change the =0 to =1 in order to return the odd-numbered rows, like so: 



Chapter 11. Sets 

207 

       
SELECT s1.k1 
FROM #set1 s1 JOIN #set1 s2 ON (s1.k1 >= s2.k1) 
GROUP BY s1.k1 
HAVING (COUNT(*) % 2) = 1 
 
k1 
----------- 
1 
3 
5 
7 
9 

Summary 

Transact-SQL is a set-oriented language. This is one of its strengths as a query tool and one of the chief 
advantages it holds over traditional programming languages. It was designed from the start to work with data 
in sets. Even though only one set-oriented operator is supported directly by Transact-SQL, finding the union, 
difference, or intersection between two sets is trivial compared to 3GL-based solutions. The relational model 
on which SQL Server is based makes these kinds of tasks quite straightforward. 





Chapter 12. Hierarchies 

209 

Chapter 12. Hierarchies 
If you think education is expensive, try ignorance.  

—Derek Bok, former president of Harvard 

A hierarchy is special kind of data structure made up of nodes connected to one another via one-way 
relationships known as edges. These nodes exist at multiple levels and roughly resemble a tree— in fact, 
you'll often hear the terms "hierarchy" and "tree" used interchangeably. Out of the box, Transact-SQL provides 
only meager support for hierarchies and trees. Other products such as Oracle have decent tree support, but 
Transact-SQL is strangely lacking here. This isn't the limitation that it might seem, though, because there are 
a number of straightforward techniques that make displaying and manipulating hierarchies fairly simple in 
Transact-SQL. 
There are a number of common programming problems that have to do with traversing and manipulating trees. 
The one that comes immediately to mind is the task of displaying an organizational chart based on a 
personnel table. Each employee occupies one row in the table and each row contains a pointer to the 
employee's manager, which can itself be another row in the table. These types of hierarchies are usually 
established using just one database table. 
By contrast, the Bill of Materials problem (which involves determining all the individual parts that make up an 
item) is usually a two-table problem. This is because, unlike an organizational chart, the node or leaf level 
members of a parts explosion can appear multiple times in a tree. For example, a given widget may be a 
component of several items within a BOM schematic. Using a second table keeps the database normalized 
and allows a part to appear more than once in the hierarchy. 

Simple Hierarchies 

If you're interested only in one-level-deep hierarchies, the SQL needed to produce them is fairly 
straightforward. Here's some code that lists a single-level organizational chart: 
     
CREATE TABLE staff (employee int PRIMARY KEY, employee_name varchar(10), 
supervisor int NULL REFERENCES staff (employee)) 
 
INSERT staff VALUES (1,'GROUCHO',1) 
INSERT staff VALUES (2,'CHICO',1) 
INSERT staff VALUES (3,'HARPO',2) 
INSERT staff VALUES (4,'ZEPPO',2) 
INSERT staff VALUES (5,'MOE',1) 
INSERT staff VALUES (6,'LARRY',5) 
INSERT staff VALUES (7,'CURLY',5) 
INSERT staff VALUES (8,'SHEMP',5) 
INSERT staff VALUES (9,'JOE',8) 
INSERT staff VALUES (10,'CURLY JOE',9) 
 
SELECT t.employee_name, supervises='supervises', s.employee_name 
FROM staff s INNER JOIN staff t ON (s.supervisor=t.employee) 
WHERE s.supervisor<>s.employee 
ORDER BY s.employee, s.supervisor 
 
employee_name supervises employee_name 
------------- ---------- ------------- 
GROUCHO       supervises CHICO 
CHICO         supervises HARPO 
CHICO         supervises ZEPPO 
GROUCHO       supervises MOE 
MOE           supervises LARRY 
MOE           supervises CURLY 
MOE           supervises SHEMP 
SHEMP         supervises JOE 



Guru’s Guide to Transact-SQL 

210 

JOE           supervises CURLY JOE 
 
    
You could order these results a number of ways; the code above takes advantage of the fact that the rows 
were entered in the desired display order to sort them aesthetically. 

Multilevel Hierarchies 

A tree that's only one level deep isn't really a hierarchy at all. After all, the head pointy-haired boss at a 
company lords his authority over the entire staff, not just those who immediately report to him. A company's 
organizational chart is normally several levels deep for a reason— everyone technically reports to everyone 
above her in the chart, not just to her immediate supervisor. Getting at this chain of command requires a more 
sophisticated approach than the simple one presented above. What we need to do is somehow iterate 
through the base table, collecting not only each employee's boss but also his boss's boss, and her boss's 
boss, and so on, all the way up to the CEO. Here's a query that does just that: 
     
SELECT chartdepth=1, employee=o2.employee, supervisor=o1.employee 
INTO #org_chart 
FROM staff o1 INNER JOIN staff o2 ON (o1.employee=o2.supervisor) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
INSERT INTO #org_chart 
SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
 
SELECT s.employee_name, supervises='supervises', e.employee_name 
FROM #org_chart o INNER JOIN staff s ON (o.supervisor=s.employee) 
INNER JOIN staff e ON (o.employee=e.employee) 
WHERE o.supervisor<>o.employee 
GROUP BY o.supervisor, o.employee, s.employee_name, e.employee_name 



Chapter 12. Hierarchies 

211 

ORDER BY o.supervisor, o.employee, s.employee_name, e.employee_name 
 
employee_name supervises employee_name 
------------- ---------- ------------- 
GROUCHO       supervises CHICO 
GROUCHO       supervises HARPO 
GROUCHO       supervises ZEPPO 
GROUCHO       supervises MOE 
GROUCHO       supervises LARRY 
GROUCHO       supervises CURLY 
GROUCHO       supervises SHEMP 
GROUCHO       supervises JOE 
GROUCHO       supervises CURLY JOE 
CHICO         supervises HARPO 
CHICO         supervises ZEPPO 
MOE           supervises LARRY 
MOE           supervises CURLY 
MOE           supervises SHEMP 
MOE           supervises JOE 
MOE           supervises CURLY JOE 
SHEMP         supervises JOE 
SHEMP         supervises CURLY JOE 
JOE           supervises CURLY JOE 
 
    
This query constructs a temporary table containing the path between every supervisor and every employee 
under him or her. It does this by requiring that you execute a separate INSERT statement for each level you 
want to include. Naturally, this requires that you know how many levels your hierarchy has in advance—not an 
optimal solution. Here's a better one: 
     
SELECT chartdepth=1, employee=o2.employee, supervisor=o1.employee 
INTO #org_chart 
FROM staff o1 INNER JOIN staff o2 ON (o1.employee=o2.supervisor) 
 
WHILE (@@rowcount > 0) BEGIN 
  INSERT #org_chart (chartdepth, employee, supervisor) 
  SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
  FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
  WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
  AND o1.supervisor<>o1.employee 
END 
 
SELECT s.employee_name, supervises='supervises', e.employee_name 
FROM #org_chart o INNER JOIN staff s ON (o.supervisor=s.employee) 
INNER JOIN staff e ON (o.employee=e.employee) 
WHERE o.supervisor<>o.employee 
GROUP BY o.supervisor, o.employee, s.employee_name, e.employee_name 
ORDER BY o.supervisor, o.employee, s.employee_name, e.employee_name 
 
employee_name supervises employee_name 
------------- ---------- ------------- 
GROUCHO       supervises CHICO 
GROUCHO       supervises HARPO 
GROUCHO       supervises ZEPPO 
GROUCHO       supervises MOE 
GROUCHO       supervises LARRY 
GROUCHO       supervises CURLY 
GROUCHO       supervises SHEMP 
GROUCHO       supervises JOE 
GROUCHO       supervises CURLY JOE 
CHICO         supervises HARPO 



Guru’s Guide to Transact-SQL 

212 

CHICO         supervises ZEPPO 
MOE           supervises LARRY 
MOE           supervises CURLY 
MOE           supervises SHEMP 
MOE           supervises JOE 
MOE           supervises CURLY JOE 
SHEMP         supervises JOE 
SHEMP         supervises CURLY JOE 
JOE           supervises CURLY JOE 
 
    
This approach uses a WHILE loop to repeat the INSERT as many times as necessary to process all levels. It 
works for any number of levels and doesn't require that you know how many you have in advance. 
Like the first query, this approach uses the fact that the employee records were inserted in the desired order 
to sort them logically. This might not always be possible. The CEO may be employee number 340—obviously 
you can't depend on employees being added to the database in order of job level. Here's a variation on the 
preceding routine that doesn't make any assumptions about the initial row insertion order: 
     
SELECT seq=IDENTITY(int), chartdepth=1, employee=o2.employee, 
supervisor=o1.employee 
INTO #org_chart 
FROM staff o1 INNER JOIN staff o2 ON (o1.employee=o2.supervisor) 
 
WHILE (@@rowcount > 0) BEGIN 
   INSERT #org_chart (chartdepth, employee, supervisor) 
   SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
   FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
   WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
   AND o1.supervisor<>o1.employee 
END 
 
SELECT s.employee_name, supervises='supervises', e.employee_name 
FROM #org_chart o INNER JOIN staff s ON (o.supervisor=s.employee) 
INNER JOIN staff e ON (o.employee=e.employee) 
WHERE o.supervisor<>o.employee 
ORDER BY seq 
 
employee_name supervises employee_name 
------------- ---------- ------------- 
GROUCHO       supervises CHICO 
CHICO         supervises HARPO 
CHICO         supervises ZEPPO 
GROUCHO       supervises MOE 
MOE           supervises LARRY 
MOE           supervises CURLY 
MOE           supervises SHEMP 
SHEMP         supervises JOE 
JOE           supervises CURLY JOE 
GROUCHO       supervises HARPO 
GROUCHO       supervises ZEPPO 
GROUCHO       supervises LARRY 
GROUCHO       supervises CURLY 
GROUCHO       supervises SHEMP 
MOE           supervises JOE 
SHEMP         supervises CURLY JOE 
GROUCHO       supervises JOE 
GROUCHO       supervises CURLY JOE 
MOE           supervises CURLY JOE 
GROUCHO       supervises CURLY JOE 
 
    



Chapter 12. Hierarchies 

213 

This approach uses the IDENTITY() function with SELECT...INTO to add an identity column to the work table. 
It then uses this column to sort the result set when returning it. 

Indenting a Hierarchy 

A common need with hierarchies is to indent them according to level. Since the previous routine already 
tracks the chart level of each row, indenting the result set is simple. Here's a variation of the earlier query that 
indents the result set by level: 
      
SELECT seq=IDENTITY(int), 
chartdepth=CASE WHEN o2.employee=o2.supervisor THEN 0 ELSE 1 END, 
  employee=o2.employee, 
  supervisor=o1.employee 
INTO #org_chart 
FROM staff o1 INNER JOIN staff o2 ON (o1.employee=o2.supervisor) 
 
WHILE (@@rowcount > 0) BEGIN 
  INSERT #org_chart (chartdepth, employee, supervisor) 
  SELECT DISTINCT o1.chartdepth+1, o2.employee, o1.supervisor 
  FROM #org_chart o1 INNER JOIN #org_chart o2 ON (o1.employee=o2.supervisor) 
  WHERE o1.chartdepth=(SELECT MAX(chartdepth) FROM #org_chart) 
  AND o1.employee<>o1.supervisor 
END 
 
SELECT OrgChart=REPLICATE(CHAR(9),chartdepth)+s.employee_name 
FROM (SELECT 
  employee, 
  seq=MIN(seq), 
  chartdepth=MAX(chartdepth) 
  FROM #org_chart 
  GROUP BY employee) o INNER JOIN staff s ON (o.employee=s.employee) 
ORDER BY o.seq 
 
OrgChart 
-------------------------------------------------------------------------------- 
GROUCHO 
  CHICO 
    HARPO 
    ZEPPO 
  MOE 
    LARRY 
    CURLY 
    SHEMP 
      JOE 
        CURLY JOE 
 
     
This technique uses the REPLICATE() function to generate a string of tab characters corresponding to the 
chartdepth of each row. It also uses a derived table and some aggregate tricks to remove duplicates from the 
result set before returning it. The derived table is necessary because we don't want to have to encapsulate the 
references to the employee_name and chartdepth columns in aggregate functions in order to GROUP BY 
the employee column. We need to GROUP BY employee or employee_name in order to remove duplicates 
from the result set. If we include chartdepth in the GROUP BY clause, some of the duplicates remain, 
differentiated only by chartdepth. 

Another Approach 

As they say, there's more than one way to skin a cat, and there's certainly more than one way to expand a 
tree in Transact-SQL. Another way of doing so is to loop through the base table, processing each node 



Guru’s Guide to Transact-SQL 

214 

separately and using a temporary table to track which nodes have been processed. Here's a code sample that 
uses this technique to display a multilevel hierarchy: 
      
CREATE TABLE DINOSAURS (OrderNo int PRIMARY KEY, OrderName varchar(30), 
PredecessorNo int NULL REFERENCES DINOSAURS (OrderNo)) 
 
INSERT DINOSAURS VALUES (1,'Amphibia',1) 
INSERT DINOSAURS VALUES (2,'Cotylosauri',1) 
INSERT DINOSAURS VALUES (3,'Pelycosauria',2) 
INSERT DINOSAURS VALUES (4,'Therapsida',2) 
INSERT DINOSAURS VALUES (5,'Chelonia',3) 
INSERT DINOSAURS VALUES (6,'Sauropterygia',3) 
INSERT DINOSAURS VALUES (7,'Ichthyosauria',3) 
INSERT DINOSAURS VALUES (8,'Squamata',3) 
INSERT DINOSAURS VALUES (9,'Thecodontia',3) 
INSERT DINOSAURS VALUES (10,'Crocodilia',9) 
INSERT DINOSAURS VALUES (11,'Pterosauria',9) 
INSERT DINOSAURS VALUES (12,'Saurichia',9) 
INSERT DINOSAURS VALUES (13,'Ornithischia',9) 
 
CREATE TABLE #work (lvl int, OrderNo int) 
CREATE TABLE #DINOSAURS (seq int identity, lvl int, OrderNo int) 
 
DECLARE @lvl int, @curr int 
SELECT TOP 1 @lvl=1, @curr=OrderNo FROM DINOSAURS WHERE OrderNo=PredecessorNo 
 
INSERT INTO #work (lvl, OrderNo) VALUES (@lvl, @curr) 
WHILE (@lvl > 0) BEGIN 
  IF EXISTS(SELECT * FROM #work WHERE lvl=@lvl) BEGIN 
     SELECT TOP 1 @curr=OrderNo FROM #work 
     WHERE lvl=@lvl 
 
     INSERT #DINOSAURS (lvl, OrderNo) VALUES (@lvl, @curr) 
 
     DELETE #work 
     WHERE lvl=@lvl and OrderNo=@curr 
 
     INSERT #work 
     SELECT @lvl+1, OrderNo 
     FROM DINOSAURS 
     WHERE PredecessorNo=@curr 
     AND PredecessorNo <> OrderNo 
 
     IF (@@ROWCOUNT > 0) SET @lvl=@lvl+1 
  END ELSE 
     SET @lvl=@lvl-1 
END 
 
SELECT 'Dinosaur Orders'= 
REPLICATE(CHAR(9),lvl)+i.OrderName 
FROM #DINOSAURS d JOIN DINOSAURS i ON (d.OrderNo=i.OrderNo) 
ORDER BY seq 
 
Dinosaur Orders: 
-------------------------------------------------------------------------------- 
  Amphibia 
     Cotylosauri 
       Pelycosauria 
          Chelonia 
          Sauropterygia 
          Ichthyosauria 



Chapter 12. Hierarchies 

215 

          Squamata 
          Thecodontia 
             Crocodilia 
             Pterosauria 
             Saurichia 
             Ornithischia 
       Therapsida 
 
     
This technique loops through the rows in the base table, placing each node it encounters into one temporary 
table and the children of that node into another. When the loop cycles, the first child in this work table is 
checked to see whether it has children of its own, and the process repeats itself. Each node is removed from 
the work table once it's processed. This iteration continues until all nodes have been expanded. 
As with the earlier queries, this routine uses an identity column to sequence itself. It also makes use of 
REPLICATE(CHAR(9)) to format its result set. 
I don't like this approach as much as those earlier in the chapter because, if for no other reason, it requires 
significantly more code. However, it may be more efficient since it doesn't require a GROUP BY clause. The 
base table would have to be much larger than it is in these examples for there to be an appreciable difference 
in performance between any of the approaches presented here. 

Listing Leaf Nodes 

Rather than returning an entire hierarchy, you may wish to list its leaf nodes only. A node is a leaf node if it 
has no children. Given that all you have to do is find the nodes that aren't listed as the parent of any of the 
other nodes, locating leaf nodes is easy enough. Here's an example: 
      
SELECT Grunts=s.employee_name 
FROM staff s 
WHERE NOT EXISTS 
  (SELECT * FROM staff t WHERE t.supervisor=s.employee) 
 
Grunts 
---------- 
HARPO 
ZEPPO 
LARRY      
CURLY 
CURLY JOE 

Indented lists 

Though not quite the same thing as a tree or hierarchy, an indented list provides a pseudohierarchy via its 
formatting. Though its uses are mostly simplistic, understanding the tools available to you for result set 
formatting is always handy, regardless of whether you end up using all of them. Here's a code sample that 
returns an indented list of first and last names from the authors table in the pubs sample database: 
     
SELECT authors= 
   CASE WHEN au_fname=(SELECT MIN(au_fname) FROM authors WHERE 
au_lname=a.au_lname) 
        THEN au_lname 
     ELSE " 
     END+CHAR(13)+CHAR(9)+au_fname 
FROM authors a 
 
authors 
-------------------------------------------------------------- 
Bennet 
  Abraham 
Blotchet-Halls 



Guru’s Guide to Transact-SQL 

216 

  Reginald 
Carson 
  Cheryl 
DeFrance 
  Michel 
del Castillo 
  Innes 
Dull 
  Ann 
Green 
  Marjorie 
Greene 
  Morningstar 
Gringlesby 
  Burt 
Hunter 
  Sheryl 
Karsen 
  Livia 
Locksley 
  Charlene 
MacFeather 
  Stearns 
McBadden 
  Heather 
O'Leary 
  Michael 
Panteley 
  Sylvia 
Ringer 
  Albert 
  Anne 
Smith 
  Meander 
Straight 
  Dean 
Stringer 
  Dirk 
White 
  Johnson 
Yokomoto 
  Akiko 
 
    
Note the use of the CASE function to limit the inclusion of each last name to one occurrence. For example, 
the Ringer surname has two corresponding authors—Albert and Anne—but the surname itself is listed just 
once. Also note the use of both CHAR(13) (carriage return) and CHAR(9) (tab) to create new lines and indent 
the result set. You can use CHAR() to great effect when formatting result sets. By coupling it with CASE, you 
can perform the same type of basic formatting that was previously the exclusive domain of report writers and 
external development tools. 

Summary 

Though Transact-SQL provides no direct support for hierarchies, you can still produce hierarchical result sets 
with a minimum of code. Self-joins and creative use of the CHAR() and REPLICATE() functions provide ample 
means of generating basic hierarchical listings. 



Chapter 13. Cursors 

217 

Chapter 13. Cursors 
Bandwagon jumpers make choices based not on merit or value but on brand names, slogans, 
and tag lines. As long as there are people willing to part with their hard-earned cash for 
gimmickry, the world will continue to be a place where marketing is more important than 
what's marketed.  

—H. W. Kenton 

A cursor is a mechanism for accessing the rows in a table or result set on a piecemeal basis— one at a time. 
They run counter to SQL Server's normal way of doing things by parceling result sets into individual rows; 
fetching a row from a cursor is analogous to returning a single row via a SELECT statement. Unlike a 
traditional result set, a cursor keeps track of its position automatically and provides a wealth of facilities for 
scrolling around in the underlying result set. Cursors also provide a handy means of updating the underlying 
result set in a positional fashion and of returning result set pointers via variables. 
The advice I usually give people who are thinking about using cursors is not to. If you can solve a problem 
using Transact-SQL's many set-oriented tools, do so. It's rare (but not impossible) for a cursor-based solution 
to outperform a set-based approach. SQL Server's standard result sets (also known as "firehose" cursors) 
have been used to solve a myriad of distinct kinds of computing problems for years—there aren't many 
conventional database challenges that actually require a cursor, though some are certainly more suited to 
cursors than to set handling. 

On Cursors and ISAMs 

People porting ISAM or local database applications to SQL Server are often tempted to perform shallow 
ports—to make no more changes than absolutely necessary to get the app working on the new DBMS. This 
usually involves shortcuts like replacing ISAM record navigation (e.g., xBase SKIP) with Transact-SQL cursor 
loops. ISAM records and SQL Server cursors aren't synonymous, and any effort to treat a relational DBMS 
like an ISAM product is likely to go down in flames. 
Some time ago, I had the misfortune of assuming the task of porting an ISAM database application to a full-
blown SQL Server app. I was trying to get the company to move to client/ server RDBMS technology, and, 
after months of ambivalence, they finally decided that they wanted to convert their flagship application from an 
ISAM product to SQL Server as a kind of proof of concept. Since, in spite of my best efforts, the intrinsic 
benefits of RDBMSs weren't apparent to them, I was inclined to accept the challenge in order to prove the 
viability of the technology. This was despite the fact that I would much rather have started with a new app than 
with an existing, vitally important product. 
With my guardian angel in silent verbal assault and without having investigated the code much, I accepted the 
task, naively believing that the developers had built the app in a reasonably relational and logical manner. 
Having nothing to suggest otherwise, I assumed that they were processing records in sets where possible in 
order to save time and code, because even the puny local DBMS on which the app was built supported a fair 
amount of set-oriented access (including its own basic SQL dialect). Of course, I didn't expect the code to be 
perfect, but I guess I assumed they'd used their tools more or less as they were intended to be used. In talking 
with the app's authors, that's certainly the impression they gave me, and I quickly rushed in where angels fear 
to tread. 
After two to three weeks of wading through some of the worst application code I'd ever seen, of having the 
application block itself from server resources due to its dreadful design, and of having one bowling ball after 
another roll out of the top of the proverbial closet and hit me in the head, I finally pulled the plug on the SQL 
Server conversion. 
The app broke virtually every basic tenet of sensible database application design. It used application code to 
loop through tables rather than processing rows in sets. What minimal relational and data integrity it had was 
implemented in a hodgepodge of application code and database constraints and was far from airtight. It used 
a fatuous table versioning scheme that had never been finished or used and gave no thought to consistent 
naming conventions or name casing, so database objects had arcane names that were impossible to 
remember and incongruous with one another. The same attribute in multiple tables often had different names, 
and different attributes among multiple tables often had the same name. Tables were denormalized 
throughout the database, not for performance but because the developers didn't know any better. There'd 
been no attempt to provide for concurrency, and the app was by design (or by the lack of it) strictly a single-
user contrivance. In short, it was a complete disaster from an architectural standpoint, and the fact that it had 



Guru’s Guide to Transact-SQL 

218 

ever worked at all, even on the ISAM product, was more a testament to the developers' tenacity than to the 
robustness of the app. 
So, shortly after this joyous experience, I began rewriting the application. Of course, I could have taken the 
"easy" way out and merely performed a shallow port of the app to SQL Server, essentially turning the server 
into a glorified ISAM database server. I could have reused as much of the existing code as possible, 
regardless of how poorly designed it was. Every row-by-row access in the app could have been translated to 
an equivalent cursor operation on SQL Server. I could have used SQL Server in ways it was never intended to 
be used, and I could have refrained from fixing the many relational and other problems in the app, madly 
bolting the various disparate pieces together into a misshapen, software-borne Frankenstein. I could have 
done that—it certainly would have been faster in the short run and would have made management happier—
but I just couldn't bring myself to. It's been my experience that there's usually an optimal way to build 
software—and all my instincts, training, and knowledge told me that this wasn't it. 
Instead, it was apparent to me that the app would have to be redesigned from the ground up if it was to have 
a prayer of working properly on SQL Server or on any other RDBMS. The acute need for a rewrite was as 
much due to the radical differences between ISAM products and RDBMSs as it was to poor design and 
coding in the application to begin with. The fact that software appears to work properly doesn't mean that it's 
been constructed properly any more than the fact that a house appears to be sound means that it won't fall 
into the ground the first time you try to build on to it. There is more to application design than whether the app 
meets immediate customer requirements. Making customers happy is paramount, but it should not come 
completely at the expense of long-term concerns such as extensibility, interoperability, performance, 
scalability, concurrency, and supportability. 
These may seem like technology-centric concerns, but customers care about these things, too, whether they 
know it or not. They're certainly affected by them indirectly—if not directly. A feature request that might seem 
trivial to the typical user—converting a single-user app to a multiuser app, for example—can be difficult if not 
impossible if the app was designed incorrectly to begin with. If the app's designer gave no thought to 
concurrency when she was building it, the app will likely have to be rewritten in order to accommodate 
multiple users. This rewrite translates into delayed releases and users having to wait for the features they 
need. Application design affects real people in real ways. Beauty is not in the eye of the beholder—it's in the 
eye of the designer. 
The really ironic thing about the whole experience was that many of the problem application's design 
decisions didn't make any more sense on the ISAM database platform than they would have on SQL Server. 
It's just that SQL Server would have exposed many of these defects to the light of day. It would have forced 
the app to clean up its act or go elsewhere. Because of their emphasis on robustness and performance, 
relational DBMSs tend to be less forgiving of application misbehavior than ISAM products. I don't lament 
this—I think it's a good thing. Developers shouldn't build shoddy applications regardless of the back end. 
Porting ISAM applications to SQL Server is not a menial task, even for properly designed applications. Quickly 
performing a shallow port by doing things like replacing ISAM access with SQL Server cursors is almost never 
the right approach. It takes a good amount of moral fortitude and a stiff spine to say, "This port is going to take 
some work; the app will have to be redesigned or rewritten," but that's often the best approach. Reinventing 
the wheel is fine—even necessary—if the wheel you're "reinventing" was a square one to begin with. Do deep 
ports when moving applications to SQL Server—think of it as the foundation on which your applications 
should stand, not as just another service they use. Shallow ports are for those who, as Ron Soukup says, 
"believe that there's never time to do the port right but there's always time to do it over."  

Types of Cursors 

There are four types of cursors supported by Transact-SQL: FORWARD_ONLY, DYNAMIC, STATIC, and 
KEYSET. The primary difference between these types is in the ability to detect changes to their underlying 
data while the cursor is being traversed and in the resources (locks, tempdb space, etc.) they use. 
Depending on the type of cursor you create, changes made to its underlying data may or may not be shown 
while traversing the cursor. In addition to new column values, these changes can affect which rows are 
returned by the cursor (membership), as well as the ordering of those rows. Also, opening the cursor may 
cause the entirety of its result set (or their keys) to be placed in a temporary table, possibly causing resource 
contention problems in tempdb. Table13.1 summarizes the different cursor types and their attributes. 

Table 13.1. The types of cursors Transact-SQL supports and their attributes. 
Type  Scrollable  Membership/Order  Column Values  

FORWARD_ONLY (default) No Dynamic Dynamic 
DYNAMIC/SENSITIVE Yes Dynamic Dynamic 



Chapter 13. Cursors 

219 

STATIC / INSENSITIVE Yes Fixed Fixed 
KEYSET Yes Fixed Dynamic 

Forward-Only Cursors 

A forward-only cursor (the default) returns rows sequentially from the database. It does not require space in 
tempdb, and changes made to the underlying data are visible as soon as they're reached. Here's an example: 
      
CREATE TABLE #temp (k1 int identity, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE c CURSOR FORWARD_ONLY 
FOR SELECT k1, c1 FROM #temp 
 
OPEN c 
 
FETCH c 
 
UPDATE #temp 
SET c1=2 
WHERE k1=3 
 
FETCH c 
FETCH c 
 
SELECT * FROM #temp 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #temp 
k1          c1 
----------- ----------- 
1           NULL 
 
k1          c1 
----------- ----------- 
2           NULL 
 
k1          c1 
----------- ----------- 
3           2 
 
k1          c1 
----------- ----------- 
1           NULL 
2           NULL 
3           2 
4           NULL 
     

Dynamic Cursors 

As with forward-only cursors, dynamic cursors reflect changes to their underlying rows as those rows are 
reached. No extra tempdb space is required. Unlike forward-only cursors, dynamic cursors are inherently 



Guru’s Guide to Transact-SQL 

220 

scrollable—you aren't limited to accessing their rows sequentially. They're sometimes referred to as sensitive 
cursors because of their sensitivity to source data changes. Here's an example: 
      
CREATE TABLE #temp (k1 int identity, c1 int NULL) 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE c CURSOR DYNAMIC 
FOR SELECT k1, c1 FROM #temp 
 
OPEN c 
 
FETCH c 
 
UPDATE #temp 
SET c1=2 
WHERE k1=1 
 
FETCH c 
FETCH PRIOR FROM c 
 
SELECT * FROM #temp 
 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #temp 
k1          c1 
----------- ----------- 
1           NULL 
 
k1          c1 
----------- ----------- 
2           NULL 
 
k1          c1 
----------- ----------- 
1           2 
 
k1          c1 
----------- ----------- 
1           2 
2           NULL 
3           NULL 
4           NULL 
     
Here, we fetch a row, then update it, fetch another, and then refetch the first row. When we fetch the first row 
for the second time, we see the change made via the UPDATE, even though the UPDATE didn't use the 
cursor to make its change. 

Static Cursors 

A static cursor returns a read-only result set that's impervious to changes to the underlying data. It's the 
opposite of a dynamic cursor, though it's still completely scrollable. Once a static cursor is opened, changes 
made to its source data are not reflected by the cursor. This is because the entirety of its result set is copied 
to tempdb when it's first opened. Static cursors are sometimes called snapshot or insensitive cursors because 
they aren't sensitive to changes made to their source data. Here's an example: 
      



Chapter 13. Cursors 

221 

CREATE TABLE #temp (k1 int identity, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
DECLARE c CURSOR STATIC 
 
FOR SELECT k1, c1 FROM #temp 
 
OPEN c -- The entire result set is copied to tempdb 
 
UPDATE #temp 
SET c1=2 
WHERE k1=1 
 
FETCH c -- This doesn't reflect the change made by the UPDATE 
 
SELECT * FROM #temp -- But the change is indeed there 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE  #temp 
 
k1          c1 
----------- ----------- 
1           NULL 
 
k1          c1 
----------- ----------- 
1           2 
2           NULL 
3           NULL 
4           NULL 
 
     
Here, we open the cursor and immediately make a change to the first row in its underlying table. This change 
isn't reflected when we fetch that row from the cursor because the row is actually coming from tempdb. A 
subsequent SELECT from the underlying table shows the change to be intact even though it's not reflected by 
the cursor. 

Keyset Cursors 

Opening a keyset cursor returns a fully scrollable result set whose membership and order are fixed. As with 
forward-only and static cursors, changes to the values in its underlying data (except for keyset columns) are 
reflected when they're accessed; however, new row insertions are not reflected by the cursor. As with a static 
cursor, the set of unique key values for the cursor's rows are copied to a table in tempdb (hence the term 
keyset) when the cursor is opened. That's why membership in the cursor is fixed. If the underlying table 
doesn't have a primary or unique key, the entire set of candidate key columns is copied to the keyset table. 
Since changes to keyset columns aren't reflected by the cursor, failing to define a unique key of some type for 
the underlying data results in a keyset that doesn't reflect changes to any of its candidate key columns. Here's 
a simple keyset example: 
      
CREATE TABLE #temp (k1 int identity PRIMARY KEY, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 



Guru’s Guide to Transact-SQL 

222 

DECLARE c CURSOR KEYSET 
FOR SELECT k1, c1 FROM #temp 
 
OPEN c -- The keyset is copied to tempdb 
UPDATE #temp 
SET c1=2 
WHERE k1=1 
 
INSERT #temp VALUES (3) -- won't be visible to cursor (can safely omit identity 
column) 
FETCH c -- Change is visible 
FETCH LAST FROM c -- New row isn't 
 
SELECT * FROM #temp 
 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #temp 
k1          c1 
----------- ----------- 
1           2 
 
k1          c1 
----------- ----------- 
4           NULL 
 
k1          c1 
----------- ----------- 
1           2 
2           NULL 
3           NULL 
4           NULL 
5           3 
 
     
Here, once the keyset cursor is opened, a change is made to its first row before the row is fetched from the 
cursor. Another row is then inserted into the underlying table. Once the routine begins fetching rows from the 
cursor, the first change we made shows up, but the new row doesn't. This is because membership in a keyset 
cursor doesn't change once it's opened. 
Note the inclusion of a PRIMARY KEY constraint in the work table. Without it, changes to the table's c1 
column aren't visible to the cursor, even though the cursor has an identity column. Why? Because, in and of 
themselves, identity columns aren't guaranteed to be unique. You could always use SET IDENTITY_INSERT 
to add duplicate identity values or reset the identity seed to have the server add them for you. To ensure 
uniqueness, a PRIMARY or UNIQUE KEY constraint is required. Without a unique key, the server copies the 
entirety of the candidate keys for each row to the keyset cursor's temporary table. 

Appropriate Cursor Use 

A word of advice: Use cursors only when you have to. That may seem a little simplistic or overly broad, but I 
think most seasoned Transact-SQL developers would agree that using cursors should be near the bottom of 
your list of coding techniques. Instead, try to find a solution that leverages Transact-SQL's ability to work with 
sets of data to solve your problems. That's what it was designed to do; that's what it does best. Though 
cursors are an easy concept for beginners to grasp, cursor overuse/misuse is a major source of performance 
problems with most relational DBMSs, including SQL Server. 
This isn't to say that cursor use is taboo or that all cursor users are headed for a fiery afterlife. If you program 
long enough in Transact-SQL, you'll use cursors sooner or later. Some kinds of development require them 
extensively. As in many things, your degree of success will depend largely on your mindset. Use cursors 
when it makes sense—just be careful not to misuse them. 



Chapter 13. Cursors 

223 

Some examples of situations where cursor use is appropriate are dynamic queries, row-oriented operations, 
and scrollable forms. Dynamic queries build and execute Transact-SQL code at runtime. Row-oriented 
operations are multistatement routines that are too complex or otherwise unsuitable for single statement 
operations such as SELECT or UPDATE. Scrollable forms typically feature a facility (sometimes listing 
multiple rows) that allows users to navigate within a result set. Scrollable cursors make setting up this 
functionality as straightforward as possible for the developer. 

Dynamic Queries 

Cursors come in handy with dynamic queries because they allow you to construct executable Transact-SQL 
code based on a result set. For example, suppose we want to construct a cross-tab (pivot table) over a series 
of values. Let's assume that there are three columns in the series —a key, a subkey, and the value column 
itself. We want a cross-tab featuring the keys on its x-axis and the subkeys on its y-axis, with the values listed 
at each intersection. Each key may have a different number of subkeys, and these subkeys may or may not 
be consecutive. Here's an approach that uses a cursor to construct dynamic T-SQL to render the cross-tab: 
      
CREATE TABLE #series 
(key1 int, 
 key2 int, 
 value1 decimal(6,2) DEFAULT ( 
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END)*(CONVERT(int,  RAND() 
*  
 

100000) % 10000)*RAND() 
) 
) 
 
INSERT #series (key1, key2) VALUES (1,1) 
INSERT #series (key1, key2) VALUES (1,2) 
INSERT #series (key1, key2) VALUES (1,3) 
INSERT #series (key1, key2) VALUES (1,4) 
INSERT #series (key1, key2) VALUES (1,5) 
INSERT #series (key1, key2) VALUES (1,6) 
INSERT #series (key1, key2) VALUES (2,1) 
INSERT #series (key1, key2) VALUES (2,2) 
INSERT #series (key1, key2) VALUES (2,3) 
INSERT #series (key1, key2) VALUES (2,4) 
INSERT #series (key1, key2) VALUES (2,5) 
INSERT #series (key1, key2) VALUES (2,6) 
INSERT #series (key1, key2) VALUES (2,7) 
INSERT #series (key1, key2) VALUES (3,1) 
INSERT #series (key1, key2) VALUES (3,2) 
INSERT #series (key1, key2) VALUES (3,3) 
DECLARE s CURSOR 
FOR 
SELECT DISTINCT key2 FROM #series ORDER BY key2 
 
DECLARE @key2 int, @key2str varchar(10), @sql varchar(8000) 
 
OPEN s 
FETCH s INTO @key2 
SET @sql='' 
WHILE (@@FETCH_STATUS=0) BEGIN 
   SET @key2str=CAST(@key2 AS varchar) 
   SET @sql=@sql+',SUM(CASE WHEN key2='+@key2str+' THEN value1 ELSE NULL END) 
   ['+@key2str+']' 
   FETCH s INTO @key2 
END 
 
SET @sql='SELECT key1'+@sql+' FROM #series GROUP BY key1' 



Guru’s Guide to Transact-SQL 

224 

EXEC(@sql) 
 
CLOSE s 
DEALLOCATE s 
DROP TABLE #series 
 
key1 1        2        3        4      5        6        7 
---- -------- -------- -------- ------ -------- -------- ------- 
1    212.74   -1608.59 1825.29  690.48 1863.44  5302.54  NULL 
2    -7531.42 1848.63  -3746.60 -54.37 -2263.63 -1013.01 5453.57 
3    126.13   -10.41   205.35   NULL   NULL     NULL     NULL 
 
     
To best understand how this works, it's instructive to examine the dynamic query itself. Here's what @sql 
looks like just prior to execution: 
      
SELECT key1,SUM(CASE WHEN key2=1 THEN value1 ELSE NULL END) [1], 
SUM(CASE WHEN key2=2 THEN value1 ELSE NULL END) [2], 
SUM(CASE WHEN key2=3 THEN value1 ELSE NULL END) [3], 
SUM(CASE WHEN key2=4 THEN value1 ELSE NULL END) [4], 
SUM(CASE WHEN key2=5 THEN value1 ELSE NULL END) [5], 
SUM(CASE WHEN key2=6 THEN value1 ELSE NULL END) [6], 
SUM(CASE WHEN key2=7 THEN value1 ELSE NULL END) [7] 
FROM #series GROUP BY key1 
 
     
The cursor returns a row for each unique subkey in the series. Regardless of the key that contains it, if a 
subkey appears in the table, the cursor's SELECT DISTINCT returns an instance of it. The CASE statement 
that's constructed for each cross-tab column returns the value1 column when the subkey matches up with its 
column and NULL otherwise. The GROUP BY flattens the rows returned by the query such that each key 
appears exactly once. To understand this better, let's look at the cross-tab without the GROUPBY: 
      
key1        1        2        3        4        5        6        7 
----------- -------- -------- -------- -------- -------- -------- -------- 
1           212.74   NULL     NULL     NULL     NULL     NULL     NULL 
1           NULL     -1608.59 NULL     NULL     NULL     NULL     NULL 
1           NULL     NULL     1825.29  NULL     NULL     NULL     NULL 
1           NULL     NULL     NULL     690.48   NULL     NULL     NULL 
1           NULL     NULL     NULL     NULL     5302.54  NULL     NULL 
1           NULL     NULL     NULL     NULL     NULL     5302.54  NULL 
2           -7531.42 NULL     NULL     NULL     NULL     NULL     NULL 
2           NULL     1848.63  NULL     NULL     NULL     NULL     NULL 
2           NULL     NULL     -3746.60 NULL     NULL     NULL     NULL 
2           NULL     NULL     NULL     -54.37   NULL     NULL     NULL 
2           NULL     NULL     NULL     NULL     -2263.63 NULL     NULL 
2           NULL     NULL     NULL     NULL     NULL     -1013.01 NULL 
2           NULL     NULL     NULL     NULL     NULL     NULL     5453.57 
3           126.13   NULL     NULL     NULL     NULL     NULL     NULL 
3           NULL     -10.41   NULL     NULL     NULL     NULL     NULL 
3           NULL     NULL     205.35   NULL     NULL     NULL     NULL 
 
     
Due to the characteristics of the original series data, only one subkey column in each key row has a value. 
The rest of the columns are set to NULL by their respective CASE expressions. The GROUP BY clause 
minimizes these NULLs, summarizing the pivot table such that each series value appears in its respective 
subkey column when present. 

Row-Oriented Operations 



Chapter 13. Cursors 

225 

Another good use of cursors is in row-oriented operations. A row-oriented operation is one that exceeds the 
capabilities of single-statement processing (e.g., SELECT). Some characteristic of it requires more power or 
more flexibility than a single-statement solution can provide. Here's an example of a row-oriented operation 
that lists the source code for the triggers attached to each table in a database: 
      
USE pubs 
DECLARE objects CURSOR 
FOR 
SELECT name, deltrig, instrig, updtrig 
FROM sysobjects WHERE type='U' AND deltrig+instrig+updtrig>0 
 
DECLARE @objname sysname, @deltrig int, @instrig int, @updtrig int, 
  @deltrigname sysname, @instrigname sysname, @updtrigname sysname 
 
OPEN objects 
FETCH objects INTO @objname, @deltrig, @instrig, @updtrig 
WHILE (@@FETCH_STATUS=0) BEGIN 
  PRINT 'Triggers for object: '+@objname 
  SELECT @deltrigname=OBJECT_NAME(@deltrig), @instrigname=OBJECT_NAME(@instrig), 
       @updtrigname=OBJECT_NAME(@updtrig) 
  IF @deltrigname IS NOT NULL BEGIN 
     PRINT 'Table: '+@objname+' Delete Trigger: '+@deltrigname 
     EXEC sp_helptext @deltrigname 
  END 
  IF @instrigname IS NOT NULL BEGIN 
     PRINT 'Table: '+@objname+' Insert Trigger: '+@instrigname 
     EXEC sp_helptext @instrigname 
  END 
  IF @updtrigname IS NOT NULL BEGIN 
     PRINT 'Table: '+@objname+' Update Trigger: '+@updtrigname 
     EXEC sp_helptext @updtrigname 
  END 
  FETCH objects INTO @objname, @deltrig, @instrig, @updtrig 
END 
 
CLOSE objects 
DEALLOCATE objects 
 
Triggers for object: employee 
Table: employee Insert Trigger: employee_insupd 
Text 
-------------------------------------------------------------------------------- 
CREATE TRIGGER employee_insupd 
ON employee 
FOR insert, UPDATE 
AS 
-- Get the range of level for this job type from the jobs table. 
declare @min_lvl tinyint, 
  @max_lvl tinyint, 
  @emp_lvl tinyint, 
  @job_id smallint 
select @min_lvl = min_lvl, 
  @max_lvl = max_lvl, 
  @emp_lvl = i.job_lvl, 
  @job_id = i.job_id 
from employee e, jobs j, inserted i 
where e.emp_id = i.emp_id AND i.job_id = j.job_id 
IF (@job_id = 1) and (@emp_lvl <> 10) 
begin 
  raiserror ('Job id 1 expects the default level of 10.',16,1) 
  ROLLBACK TRANSACTION 



Guru’s Guide to Transact-SQL 

226 

end 
ELSE 
IF NOT (@emp_lvl BETWEEN @min_lvl AND @max_lvl) 
begin 
  raiserror ('The level for job_id:%d should be between %d and %d.', 
    16, 1, @job_id, @min_lvl, @max_lvl) 
  ROLLBACK TRANSACTION 
end 
 
Table: employee Update Trigger: employee_insupd 
Text 
-------------------------------------------------------------------------------- 
CREATE TRIGGER employee_insupd 
ON employee 
FOR insert, UPDATE 
AS 
-- Get the range of level for this job type from the jobs table. 
declare @min_lvl tinyint, 
  @max_lvl tinyint, 
  @emp_lvl tinyint, 
  @job_id smallint 
select @min_lvl = min_lvl, 
  @max_lvl = max_lvl, 
  @emp_lvl = i.job_lvl, 
  @job_id = i.job_id 
from employee e, jobs j, inserted i 
where e.emp_id = i.emp_id AND i.job_id = j.job_id 
IF (@job_id = 1) and (@emp_lvl <> 10) 
begin 
  raiserror ('Job id 1 expects the default level of 10.',16,1) 
  ROLLBACK TRANSACTION 
end 
ELSE 
IF NOT (@emp_lvl BETWEEN @min_lvl AND @max_lvl) 
begin 
  raiserror ('The level for job_id:%d should be between %d and %d.', 
    16, 1, @job_id, @min_lvl, @max_lvl) 
  ROLLBACK TRANSACTION 
end 
 
     
Of course, we could query the syscomments table directly and join it with the sysobjects table to render the 
same information, but the result set wouldn't be formatted suitably. By iterating through the table one row at a 
time, we can format the output for each table and its triggers however we like. 

Scrollable Forms 

Whether you should use a cursor to service a scrollable form depends largely on how much data the form 
might require. Since Transact-SQL cursors reside on the server and return only fetched rows, they can save 
lots of time and resources when dealing with large result sets. You wouldn't want to return 100,000rows over a 
network to a client application. On the other hand, cursors are unnecessary with smaller result sets and 
probably not worth the trouble. Other factors to consider when determining whether a cursor is appropriate for 
a scrollable form are whether the form is updatable and whether you want changes by other users to show up 
immediately. If the form is read-only or you're not concerned with showing changes by other users, you may 
be able to avoid using a cursor. 

T-SQL Cursor Syntax 

There are a number of commands and functions that relate to cursors. Table13.2 summarizes them. 



Chapter 13. Cursors 

227 

The following sections cover these commands in more detail. 
Table 13.2. Transact-SQL cursor syntax. 

Command or Function  Purpose  
DECLARE CURSOR Defines a cursor 
OPEN Opens a cursor so that data may be retrieved from it 
FETCH Fetches a single row from the cursor 
CLOSE Closes the cursor, leaving intact the internal structures that service it 
DEALLOCATE Frees the cursor's internal structures 
@@CURSOR_ROWS Returns the number of rows exposed by the cursor 
@@FETCH_STATUS Indicates the success or failure of the last FETCH 
CURSOR_STATUS() Reports status info for cursors and cursor variables 

Declare Cursor 

DECLARE CURSOR defines cursors. There are two basic versions of the DECLARE CURSOR command—
the ANSI/ISO SQL 92–compliant syntax and Transact-SQL's extended syntax. The ANSI/ISO syntax looks 
like this: 
      
DECLARE name [INSENSITIVE][SCROLL] CURSOR 
FOR select 
[FOR {READ ONLY | UPDATE [OF column [,...n]]}] 
 
     
Transact-SQL's extended syntax follows this form: 
      
DECLARE name CURSOR 
[LOCAL | GLOBAL] 
[FORWARD_ONLY | SCROLL] 
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD] 
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC] 
[TYPE_WARNING] 
FOR select 
[FOR {READ ONLY | UPDATE [OF column [,…n]]}] 
 
     
The select component of the command is a standard SELECT statement that defines what data the cursor 
returns. It is not permitted to contain the keyword COMPUTE [BY], FOR BROWSE, or INTO. The select 
component affects whether a cursor is read-only. For example, if you include the FOR UPDATE clause but 
specify a select that inherently prohibits updates (e.g., one that includes GROUP BY or DISTINCT), your 
cursor will be implicitly converted to a read-only (or static) cursor. The server converts cursors to static cursors 
that, by their very nature, cannot be updated. These types of automatic conversions are known as implicit 
cursor conversions. There are a number of criteria that affect implicit cursor conversions; see the Books 
Online for more information. 
The corollary to this is that you don't have to specify FOR UPDATE in order to update a cursor if its SELECT 
statement is inherently updatable. Again, unless specified otherwise, the characteristics of the SELECT 
statement determine whether the cursor is updatable. Here's an example: 
      
CREATE TABLE #temp (k1 int identity, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE c CURSOR 
FOR SELECT k1, c1 FROM #temp 
OPEN c 



Guru’s Guide to Transact-SQL 

228 

FETCH c 
UPDATE #temp 
SET c1=2 
 
WHERE CURRENT OF c 
SELECT * FROM #temp 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #temp 
 
k1          c1 
----------- ----------- 
1           NULL 
 
k1          c1 
----------- ----------- 
1           2 
2           NULL 
3           NULL 
4           NULL 
 
     
Even though this cursor isn't specifically defined as an updatable cursor, it's updatable by virtue of the fact that 
its SELECT statement is updatable—that is, the server can readily translate an update to the cursor into an 
update to a specific row in the underlying table. 
If you specify the FOR UPDATE clause and include a column list, the column(s) you update must appear in 
that list. If you attempt to update a column not in the list using UPDATE's WHERE CURRENT OF clause, SQL 
Server will reject the change and generate an error message. Here's an example: 
      
CREATE TABLE #temp (k1 int identity, c1 int NULL, c2 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE c CURSOR 
FOR SELECT k1, c1, c2 FROM #temp 
FOR UPDATE OF c1 
OPEN c 
FETCH c 
 
-- BAD T-SQL -- This UPDATE attempts to change a column not in the FOR UPDATE 
OF -- list 
UPDATE #temp 
SET c2=2 
WHERE CURRENT OF c 
 
k1          c1           c2 
----------- ----------- ----------- 
1           NULL        NULL 
 
Server: Msg 16932, Level 16, State 1, Line 18 
The cursor has a FOR UPDATE list and the requested column to be updated is not 
in this list. 
The statement has been terminated. 
 
     
If select references a variable, the variable is resolved when the cursor is declared, not when it's opened. This 
is significant in that you must assign values to variables before you declare a cursor that uses them. You can't 



Chapter 13. Cursors 

229 

declare a cursor first, then assign a value to a variable that it depends on and expect the cursor to work 
properly. Here's an example: 
      
-- In case these remain from the previous example 
DEALLOCATE c 
DROP TABLE #temp 
GO 
 
CREATE TABLE #temp (k1 int identity, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE @k1 int 
DECLARE c CURSOR 
 
FOR SELECT k1, c1 FROM #temp WHERE k1<@k1 -- Won't work -- @k1 is NULL here 
 
SET @k1=3 -- Need to move this before the DECLARE CURSOR 
OPEN c 
FETCH c 
 
UPDATE #temp 
SET c1=2 
WHERE CURRENT OF c 
 
SELECT * FROM #temp 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #temp 
 
k1          c1 
----------- ----------- 
 
Server: Msg 16930, Level 16, State 1, Line 18 
The requested row is not in the fetch buffer. 
The statement has been terminated. 
k1          c1 
----------- ----------- 
1           NULL 
2           NULL 
3           NULL 
4           NULL 
 
     

Global vs. Local Cursors 

A global cursor is visible outside the batch, stored procedure, or trigger that created it and persists until it's 
explicitly deallocated or until its host connection disconnects. A local cursor is visible only within the code 
module that created it unless it's returned via an output parameter. Local cursors are implicitly deallocated 
when they go out of scope. 
For compatibility with earlier releases, SQL Server creates global cursors by default, but you can override the 
default behavior by explicitly specifying the GLOBAL or LOCAL keyword when you declare a cursor. Note that 
you can have global and local cursors with identical names, though this is a rather dubious coding practice. 
For example, this code runs without error: 
       



Guru’s Guide to Transact-SQL 

230 

DECLARE Darryl CURSOR      -- My brother Darryl 
LOCAL 
FOR SELECT stor_id, title_id, qty FROM sales 
 
DECLARE Darryl CURSOR      -- My other brother Darryl 
GLOBAL 
FOR SELECT au_lname, au_fname FROM authors 
 
OPEN GLOBAL Darryl 
OPEN Darryl 
 
FETCH GLOBAL Darryl 
FETCH Darryl 
 
CLOSE GLOBAL Darryl 
CLOSE Darryl 
 
DEALLOCATE GLOBAL Darryl 
DEALLOCATE Darryl 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
White                                    Johnson 
 
stor_id title_id qty 
------- -------- ------ 
6380    BU1032   5 
 
      
You can change whether SQL Server creates global cursors when the scope is unspecified via the 
sp_dboption system procedure (see the following section "Configuring Cursors" for more information). 

OPEN 

OPEN makes a cursor's rows accessible via FETCH. If the cursor is an INSENSITIVE or STATIC cursor, 
OPEN copies the entirety of its result set to a temporary table. If it's a KEYSET cursor, OPEN copies its set of 
unique key values (or the entirety of all candidate key columns if no unique key exists) to a temporary table. 
OPEN can indicate the scope of the cursor by including the optional GLOBAL keyword. If there are both a 
local and a global cursor with the same name (something you should avoid when possible), use GLOBAL to 
indicate the one you want to open. (The default to local cursor database option determines whether you get 
a global or local cursor when neither is explicitly specified. See the following section on configuring cursors for 
more information.) 
Use the @@CURSOR_ROWS automatic variable to determine how many rows are in the cursor. Here's a 
simple OPEN example: 
      
CREATE TABLE #temp (k1 int identity PRIMARY KEY, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE GlobalCursor CURSOR STATIC -- Declare a GLOBAL cursor 
GLOBAL 
FOR SELECT k1, c1 FROM #temp 
 
DECLARE LocalCursor CURSOR STATIC -- Declare a LOCAL cursor 
LOCAL 
FOR SELECT k1, c1 FROM #temp WHERE k1<4 -- Only returns three rows 
 



Chapter 13. Cursors 

231 

OPEN GLOBAL GlobalCursor 
SELECT @@CURSOR_ROWS AS NumberOfGLOBALCursorRows 
 
OPEN LocalCursor 
SELECT @@CURSOR_ROWS AS NumberOfLOCALCursorRows 
CLOSE GLOBAL GlobalCursor 
DEALLOCATE GLOBAL GlobalCursor 
CLOSE LocalCursor 
DEALLOCATE LocalCursor 
GO 
DROP TABLE #temp 
 
NumberOfGLOBALCursorRows 
------------------------ 
4 
 
NumberOfLOCALCursorRows 
----------------------- 
3 
 
     
For dynamic cursors, @@CURSOR_ROWS returns –1 since new row additions could change the number of 
rows returned by the cursor at any time. If the cursor is being populated asynchronously (see the "Configuring 
Cursors" section), @@CURSOR_ROWS returns a negative number whose absolute value indicates the 
number of rows currently in the cursor. 

FETCH 

FETCH is the means by which you retrieve data from a cursor. Think of it as a special SELECT that returns 
just one row from a predetermined result set. Typically, FETCH is called within a loop that uses 
@@FETCH_STATUS as its control variable, with each successive FETCH returning the cursor's nextrow. 
Scrollable cursors (DYNAMIC, STATIC, and KEYSET cursors, or those declared using the SCROLL option) 
allow FETCH to retrieve rows other than the cursor's next row. In addition to retrieving the next row, scrollable 
cursors allow FETCH to retrieve a cursor's previous row, its first row, its last row, an absolute row number, 
and a row relative to the current row. Here's a simple example: 
      
SET NOCOUNT ON 
CREATE TABLE #cursortest (k1 int identity) 
 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
 
DECLARE c CURSOR SCROLL 
FOR SELECT * FROM #cursortest 
 
OPEN c 
 
FETCH c -- Gets the first row 
FETCH ABSOLUTE 4 FROM c -- Gets the 4th row 
FETCH RELATIVE -1 FROM c -- Gets the 3rd row 
FETCH LAST FROM c -- Gets the last row 
FETCH FIRST FROM c -- Gets the first row 



Guru’s Guide to Transact-SQL 

232 

 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #cursortest 
 
k1 
----------- 
1 
 
k1 
----------- 
4 
 
k1 
----------- 
3 
 
k1 
----------- 
10 
 
k1 
----------- 
1 
 
     
FETCH can be used to return a result set of its own, but usually it's used to fill local variables with table data. 
FETCH's INTO clause allows retrieved values to be assigned to local variables. Here's an example: 
      
SET NOCOUNT ON 
CREATE TABLE #cursortest (k1 int identity) 
 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
INSERT #cursortest DEFAULT VALUES 
 
DECLARE c CURSOR SCROLL 
FOR SELECT * FROM #cursortest 
 
DECLARE @k int 
 
OPEN c 
FETCH c INTO @k 
WHILE (@@FETCH_STATUS=0) BEGIN 
  SELECT @k 
  FETCH c INTO @k 
END 
 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #cursortest 
----------- 



Chapter 13. Cursors 

233 

1 
 
----------- 
2 
 
----------- 
3 
 
----------- 
4 
 
----------- 
5 
 
----------- 
6 
 
----------- 
7 
 
----------- 
8 
 
----------- 
9 
 
----------- 
10 
 
     
NEXT is the default fetch operation, so if you don't specify what type of fetch you want, you'll retrieve the 
cursor's next row. For fetch operations other than NEXT, the FROM keyword is required. 
FETCH RELATIVE 0 can be used to refresh the current record. This allows you to accommodate changes 
made to the current row while the cursor is being traversed. Here's an example: 
      
USE pubs 
SET CURSOR_CLOSE_ON_COMMIT OFF -- In case it's been turned on previously 
SET NOCOUNT ON 
 
DECLARE c CURSOR SCROLL 
FOR SELECT title_id, qty FROM sales ORDER BY qty 
 
OPEN c 
 
BEGIN TRAN -- So that we can undo the changes we make 
 
PRINT 'Before image' 
 
FETCH c 
 
UPDATE sales 
SET qty=4 
WHERE qty=3 -- We happen to know that only one row qualifies, the first one 
 
PRINT 'After image' 
FETCH RELATIVE 0 FROM c 
ROLLBACK TRAN -- Reverse the UPDATE 
CLOSE c 
DEALLOCATE c 
 
Before image 



Guru’s Guide to Transact-SQL 

234 

title_id qty 
-------- ------ 
PS2091   3 
 
After image 
title_id qty 
-------- ------ 
PS2091   4 
     

CLOSE 

CLOSE frees the current cursor result set and releases any locks being held by the cursor. (Prior to version 
7.0, SQL Server retained all locks until the current transaction completed, including cursor locks. With 7.0 and 
later, cursor locks are handled independently of other kinds of locks.) The cursor's data structures themselves 
are left in place so that the cursor may be reopened if necessary. Specify the GLOBAL keyword to indicate 
that you're closing a GLOBAL cursor. 

Deallocate 

When you're finished with a cursor, you should always deallocate it. A cursor takes up space in the procedure 
cache that can be used for other things if you get rid of it when it's no longer needed. Even though 
deallocating a cursor automatically closes it, it's considered poor form to deallocate a cursor without first 
closing it with the CLOSE command. 

Configuring Cursors 

In addition to configuring cursors through declaration options, Transact-SQL provides commands and 
configuration options that can modify cursor behavior as well. The procedures sp_configure and 
sp_dboption and the SET command can be used to configure how cursors are created and the way that they 
behave once created. 

Asynchronous Cursors 

By default, SQL Server generates all keysets synchronously—that is, the call to OPEN doesn't return until the 
cursor's result set has been fully materialized. This may not be optimal for large data sets, and you can 
change it via the sp_configure 'cursor threshold' configuration option (cursor threshold is an advanced 
option; enable advanced options via sp_configure 'show advanced options' in order to access it). Here's an 
example that illustrates the difference rendering a cursor asynchronously can make: 
      
-- Turn on advanced options so that 'cursor threshold' can be configured 
EXEC sp_configure 'show advanced options',1 
RECONFIGURE WITH OVERRIDE 
USE northwind 
 
DECLARE c CURSOR STATIC -- Force rows to be copied to tempdb 
FOR SELECT OrderID, ProductID FROM [Order Details] 
 
DECLARE @start datetime 
SET @start=getdate() 
 
-- First try it with a synchronous cursor 
OPEN c 
 
PRINT CHAR(13) -- Pretty up the display 
SELECT DATEDIFF(ms,@start,getdate()) AS [Milliseconds elapsed for Synchronous 
cursor] 
 



Chapter 13. Cursors 

235 

SELECT @@CURSOR_ROWS AS [Number of rows in Synchronous cursor] 
 
CLOSE c 
 
-- Now reconfigure 'cursor threshold' and force an asynch cursor 
EXEC sp_configure 'cursor threshold', 1000 -- Asynchronous for cursors > 1000 
rows 
RECONFIGURE WITH OVERRIDE 
PRINT CHAR(13) -- Pretty up the display 
 
SET @start=getdate() 
OPEN c -- Opens an asynch cursor since there are over 1000 rows in the table 
 
-- OPEN comes back immediately because the cursor is being populated 
asynchronously 
SELECT DATEDIFF(ms,@start,getdate()) AS [Milliseconds elapsed for Asynchronous 
cursor] 
 
SELECT @@CURSOR_ROWS AS [Number of rows in Asynchronous cursor] 
 
CLOSE c 
 
DEALLOCATE c 
GO 
EXEC sp_configure 'cursor threshold', -1 -- Back to synchronous 
RECONFIGURE WITH OVERRIDE 
 
DBCC execution completed. If DBCC printed error messages, contact your system  
 

administrator. 
Configuration option changed. Run the RECONFIGURE statement to install. 
 
Milliseconds elapsed for Synchronous cursor 
------------------------------------------- 
70 
 
Number of rows in Synchronous cursor 
------------------------------------ 
 
2155 
 
DBCC execution completed. If DBCC printed error messages, contact your system  
 

administrator. 
Configuration option changed. Run the RECONFIGURE statement to install. 
 
Milliseconds elapsed for Asynchronous cursor 
-------------------------------------------- 
0 
 
Number of rows in Asynchronous cursor 
------------------------------------- 
-1 
 
DBCC execution completed. If DBCC printed error messages, contact your system  
 

administrator. 
Configuration option changed. Run the RECONFIGURE statement to install. 
     

ANSI/ISO Automatic Cursor Closing 



Guru’s Guide to Transact-SQL 

236 

The ANSI/ISO SQL-92 specification calls for cursors to be closed automatically when a transaction is 
committed. This doesn't make a lot of sense for the types of apps where cursors would most often be used 
(those with scrollable forms, for example), so SQL Server doesn't comply with the standard out of the box. By 
default, a SQL Server cursor remains open until explicitly closed or until the connection that created it 
disconnects. To force SQL Server to close cursors when a transaction is committed, use the SET 
CURSOR_CLOSE_ON_COMMIT command. Here's an example: 
      
CREATE TABLE #temp (k1 int identity PRIMARY KEY, c1 int NULL) 
 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
INSERT #temp DEFAULT VALUES 
 
DECLARE c CURSOR DYNAMIC 
FOR SELECT k1, c1 FROM #temp 
 
OPEN c 
SET CURSOR_CLOSE_ON_COMMIT ON 
BEGIN TRAN 
 
UPDATE #temp 
SET c1=2 
WHERE k1=1 
 
COMMIT TRAN 
 
-- These FETCHes will fail because the cursor was closed by the COMMIT 
FETCH c 
FETCH LAST FROM c 
 
-- This CLOSE will fail because the cursor was closed by the COMMIT 
CLOSE c 
DEALLOCATE c 
GO 
DROP TABLE #temp 
SET CURSOR_CLOSE_ON_COMMIT OFF 
 
Server: Msg 16917, Level 16, State 2, Line 0 
Cursor is not open. 
Server: Msg 16917, Level 16, State 2, Line 26 
Cursor is not open. 
Server: Msg 16917, Level 16, State 1, Line 29 
Cursor is not open. 
 
     
Contrary to the Books Online, rolling back a transaction does not close updatable cursors when 
CLOSE_CURSOR_ON_COMMIT is disabled. The actual behavior following a ROLLBACK differs significantly 
from the documentation and more closely follows what happens when a transaction is committed. Basically, 
ROLLBACK doesn't close cursors unless CLOSE_CURSOR_ON_COMMIT has been enabled. Here's an 
example: 
      
USE pubs 
SET CURSOR_CLOSE_ON_COMMIT ON 
BEGIN TRAN 
 
DECLARE c CURSOR DYNAMIC 
FOR SELECT qty FROM sales 
 
OPEN c 
 



Chapter 13. Cursors 

237 

FETCH c 
 
UPDATE sales 
SET qty=qty+1 
WHERE CURRENT OF c 
 
ROLLBACK TRAN 
 
-- These FETCHes will fail because the cursor was closed by the ROLLBACK 
FETCH c 
FETCH LAST FROM c 
 
-- This CLOSE will fail because the cursor was closed by the ROLLBACK 
CLOSE c 
DEALLOCATE c 
GO 
SET CURSOR_CLOSE_ON_COMMIT OFF 
 
qty 
------ 
5 
 
Server: Msg 16917, Level 16, State 2, Line 21 
Cursor is not open. 
Server: Msg 16917, Level 16, State 2, Line 22 
Cursor is not open. 
Server: Msg 16917, Level 16, State 1, Line 25 
Cursor is not open. 
 
     
Now let's disable CURSOR_CLOSE_ON_COMMIT and run the query again: 
      
SET CURSOR_CLOSE_ON_COMMIT OFF 
BEGIN TRAN 
 
DECLARE c CURSOR DYNAMIC 
FOR SELECT qty FROM sales 
 
OPEN c 
FETCH c 
 
UPDATE sales 
SET qty=qty+1 
WHERE CURRENT OF c 
 
ROLLBACK TRAN 
-- These FETCHes will succeed because the cursor was left open in spite of the 
-- ROLLBACK 
FETCH c 
FETCH LAST FROM c 
 
-- This CLOSE will succeed because the cursor was left open in spite of the 
-- ROLLBACK 
CLOSE c 
DEALLOCATE c 
 
qty 
------ 
5 
 
qty 



Guru’s Guide to Transact-SQL 

238 

------ 
3 
 
qty 
------ 
30 
 
     
Despite the fact that a transaction is rolled back while our dynamic cursor is open, the cursor is unaffected. 
This contradicts the way the server is documented to behave. 

Defaulting to Global or Local Cursors 

Out of the box, SQL Server creates global cursors by default. This is in keeping with previous versions of the 
server that did not support local cursors. If you'd like to change this, set the default to local cursor database 
option to true using sp_dboption. 

Updating Cursors 

The WHERE CURRENT OF clause of the UPDATE and DELETE commands allows you to update and delete 
rows via a cursor. An update or delete performed via a cursor is known as a positioned modification. Here's an 
example: 
     
USE pubs 
SET CURSOR_CLOSE_ON_COMMIT OFF 
 
SET NOCOUNT ON 
DECLARE C CURSOR DYNAMIC 
FOR SELECT * FROM sales 
 
OPEN c 
 
FETCH c 
 
BEGIN TRAN -- Start a transaction so that we can reverse our changes 
-- A positioned UPDATE 
UPDATE sales SET qty=qty+1 WHERE CURRENT OF c 
FETCH RELATIVE 0 FROM c 
 
FETCH c 
 
-- A positioned DELETE 
DELETE sales WHERE CURRENT OF c 
 
SELECT * FROM sales WHERE qty=3 
 
ROLLBACK TRAN -- Throw away our changes 
 
SELECT * FROM sales WHERE qty=3 -- The deleted row comes back 
 
CLOSE c 
DEALLOCATE c 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
6380    6871             1994-09-14 00:00:00.000    5      Net 60       BU1032 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
6380    6871             1994-09-14 00:00:00.000    6      Net 60       BU1032 



Chapter 13. Cursors 

239 

 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
6380    722a             1994-09-13 00:00:00.000    3      Net 60       PS2091 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
6380    722a             1994-09-13 00:00:00.000    3      Net 60       PS2091 
 

Cursor Variables 

Transact-SQL allows you to define variables that contain pointers to cursors via its cursor data type. The 
OPEN, FETCH, CLOSE, and DEALLOCATE commands can reference cursor variables as well as cursor 
names. You can set up variables within stored procedures that store cursor definitions, and you can return a 
cursor created by a stored procedure via an output parameter. Several of SQL Server's own procedures use 
this capability to return results to their callers in an efficient, modular fashion (e.g., sp_cursor_list, 
sp_describe_cursor, sp_fulltext_tables_cursor). Note that you can't pass a cursor via an input parameter into 
a procedure—you can return cursors only via output parameters. You also cannot define table columns using 
the cursor data type—only variables are allowed—nor can you assign a cursor variable using the SELECT 
statement (as with scalar variables)—you must use SET. 
Cursor output parameters represent an improvement over the traditional result set approach in that they give 
the caller more control over how to deal with the rows a procedure returns. You can process the cursor 
immediately if you want—treating it just like a traditional result set—or you can retain it for later use. Before 
the advent of cursor variables, the only way to achieve this 
same degree of flexibility was to trap the stored procedure's result set in a table, then process the table as 
needed. This worked okay for simple, small result sets but could be problematic with larger ones. 
You can use the CURSOR_STATUS() function to check a cursor output parameter to see whether it 
references an open cursor and to determine the number of rows it exposes. Here's an example that features 
cursor variables, output parameters, and the CURSOR_STATUS() function: 
     
CREATE PROC listsales_cur @title_id tid, @salescursor cursor varying OUT 
AS 
-- Declare a LOCAL cursor so it's automatically freed when it 
-- goes out of scope 
DECLARE c CURSOR DYNAMIC 
LOCAL  
FOR SELECT * FROM sales WHERE title_id LIKE @title_id 
 
DECLARE @sc cursor         -- A local cursor variable 
SET @sc=c            -- Now we have two references to the cursor 
 
OPEN c 
 
FETCH @sc 
 
SET @salescursor=@sc       -- Return the cursor via the output parm 
RETURN 0 
GO 
SET NOCOUNT ON 
-- Define a local cursor variable to receive the output parm 
DECLARE @mycursor cursor 
 
EXEC listsales_cur 'BU1032', @mycursor OUT -- Call the procedure 
-- Make sure the returned cursor is open and has at least one row 
IF (CURSOR_STATUS('variable','@mycursor')=1) BEGIN 
   FETCH @mycursor 



Guru’s Guide to Transact-SQL 

240 

   WHILE (@@FETCH_STATUS=0) BEGIN 
     FETCH @mycursor 
   END 
END 
 
CLOSE @mycursor 
DEALLOCATE @mycursor 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
6380    6871             1994-09-14 00:00:00.000    5      Net 60       BU1032 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
8042    423LL930         1994-09-14 00:00:00.000    10     ON invoice    BU1032 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
8042    QA879.1          1999-06-24 19:13:26.230    30     Net 30       BU1032 
 
stor_id ord_num          ord_date                   qty    payterms     title_id 
------- ---------------- -------------------------- ------ ------------ -------- 
 
    
Notice the way example code references the cursor using three different variables as well as its original name. 
For every command except DEALLOCATE, referencing a cursor variable is synonymous with referencing the 
cursor by name. If you OPEN the cursor, regardless of whether you reference it using a cursor variable or the 
cursor name itself, the cursor is opened, and you can FETCH rows using any variable that references it. 
DEALLOCATE differs in that it doesn't actually deallocate the cursor unless it's the last reference to it. It does, 
however, prevent future access using the specified cursor identifier. So if you have a cursor named foo and a 
cursor variable named foovar to which foo has been assigned, deallocating foo will do nothing except 
prohibit access to the cursor via foo—foovar remains intact. 

Cursor Stored Procedures 

SQL Server provides a number of cursor-related stored procedures with which you should familiarize yourself 
if you expect to work with cursors much. Table13.3 provides a brief list of them, along with a description of 
each. 
Each of these returns its result via a cursor output parameter, so you'll need to supply a local cursor variable 
in order to process them. 

Optimizing Cursor Performance 

The best performance improvement technique for cursors is not to use them at all if you can avoid it. As I've 
said, SQL Server works much better with sets of data than with individual rows. It's a relational database, and 
single-row access has never been the strong suit of relational DBMSs. That said, there are times when using 
a cursor is unavoidable, so here are a few tips for optimizing them: 

• Don't use static/insensitive cursors unless you need them. Opening a static cursor causes all of its 
rows to be copied to a temporary table. That's why it's insensitive to changes—it's actually referencing 
a copy of the table in tempdb. Naturally, the larger the result set, the more likely declaring a static 
cursor over it will cause resource contention issues in tempdb. 

Table 13.3. Stored procedures that relate to cursors. 
Procedure  Function  

sp_cursor_list Returns a list of the cursors and their attributes that have been opened by a 
connection 



Chapter 13. Cursors 

241 

sp_describe_cursor Lists the attributes of an individual cursor 
sp_describe_cursor_columns Lists the columns (and their attributes) returned by a cursor 
sp_describe_cursor_tables Returns a list of the tables referenced by a cursor 

• Don't use keyset cursors unless you really need them. As with static cursors, opening a keyset cursor 
creates a temporary table. Though this table contains only key values from the underlying table 
(unless no unique key exists), it can still be quite substantial when dealing with large resultsets. 

• Use the FAST_FORWARD cursor option in lieu of FORWARD_ONLY when working with 
unidirectional, read-only result sets. Using FAST_FORWARD defines a FORWARD_ONLY, 
READ_ONLY cursor with a number of internal performance optimizations. 

• Define read-only cursors using the READ_ONLY keyword. This prevents you from making accidental 
changes and lets the server know that the cursor will not alter the rows it traverses. 

• Be careful with modifying large numbers of rows via a cursor loop that's contained within a transaction. 
Depending on the transaction isolation level, those rows may remain locked until the transaction is 
committed or rolled back, possibly causing resource contention on the server. 

• Be careful with updating dynamic cursors, especially those constructed over tables with nonunique 
clustered index keys, because they can cause the "Halloween Problem"—repetitive, erroneous 
updates of the same row or rows. Because SQL Server forces nonunique clustered index keys to be 
unique internally by suffixing them with a sequence number, it's possible that you could update a 
row's key to a value that already exists and force the server to append a suffix that would move it later 
in the result set. As you fetched through the remainder of the result set, you'd encounter the row again, 
and the process would repeat itself, resulting in an infinite loop. Here's an example that illustrates this 
problem: 

•        
• -- This code creates a cursor that exhibits the Halloween Problem. 
• -- Don't run it unless you find infinite loops intriguing. 
• SET NOCOUNT ON 
• CREATE TABLE #temp (k1 int identity, c1 int NULL) 
• CREATE CLUSTERED INDEX c1 ON #temp(c1) 
•  
• INSERT #temp VALUES (8) 
• INSERT #temp VALUES (6) 
• INSERT #temp VALUES (7) 
• INSERT #temp VALUES (5) 
• INSERT #temp VALUES (3) 
• INSERT #temp VALUES (0) 
• INSERT #temp VALUES (9) 
•  
• DECLARE c CURSOR DYNAMIC 
• FOR SELECT k1, c1 FROM #temp 
•  
• OPEN c 
• FETCH c 
•  
• WHILE (@@FETCH_STATUS=0) BEGIN 
•   UPDATE #temp 
•   SET c1=c1+1 
•   WHERE CURRENT OF c 
•   FETCH c 
•   SELECT * FROM #temp ORDER BY k1 
• END 
•  
• CLOSE c 
• DEALLOCATE c 



Guru’s Guide to Transact-SQL 

242 

• GO 
• DROP TABLE #temp 
•  

      

• Consider using asynchronous cursors with large result sets in order to return control to the caller as 
quickly as possible. Asynchronous cursors are especially useful when returning a sizable result set to 
a scrollable form because they allow the application to begin displaying rows almost immediately. 

Summary 

In this chapter, you learned about the different types of cursors that Transact-SQL supports and how to create 
and manage them and about some potential pitfalls and performance optimizations to be aware of as you use 
them. Cursors are not the recommended way to solve most problems, and they can cause serious 
performance headaches when used improperly. 



Chapter 14. Transactions 

243 

Chapter 14. Transactions 
I think I am motivated mostly by dread, by fear of a miserable life. Certainly I am troubled by 
worries of obsolescence, of incompetence, of unemployability. I would probably be happier if I 
were motivated by positives, by goals to be attained and rewards to be enjoyed.  

—Thomas L. Holaday 

An in-depth discussion of transaction management is outside the scope of this book. There are a number of 
books out there that cover the internals of SQL Server transaction management in detail. The Books Online is 
also a good source of information for exploring the mechanics of SQL Server transactions. 

Transactions Defined 

SQL Server's transaction management facilities help ensure the integrity and recoverability of the data stored 
in its databases. A transaction is a set of one or more database operations that are treated as a single unit—
either they all occur or none of them do. As such, a transaction is a database's basic operational metric—its 
fundamental unit of work. 
SQL Server transactions ensure data recoverability and consistency in spite of any hardware, operating 
system, application, or SQL Server errors that may occur. They ensure that multiple commands performed 
within a transaction are performed either completely or not at all and that a single command that alters 
multiple rows changes either all of them or none of them. 

The ACID Test 

SQL Server transactions are often described as having the ACID properties or "passing the ACID test," where 
ACID is an acronym for atomic, consistent, isolated, and durable. Transactional adherence to the ACID tenets 
is commonplace in modern DBMSs and is a prerequisite for ensuring the safety and reliability of data. 

Atomicity 

A transaction is atomic if it's an all-or-nothing proposition. When the transaction succeeds, all of its changes 
are stored permanently; when it fails, they're completely reversed. So, for example, if a transaction includes 
ten DELETE commands and the last one fails, rolling back the transaction will reverse the previous nine. 
Likewise, if a single command attempts ten row deletions and one of them fails, the entire operation fails. 

Consistency 

A transaction is consistent if it ensures that its underlying data never appears in an interim or illogical state—
that is, if it never appears to be inconsistent. So, the data affected by an UPDATE command that changes ten 
rows will never appear to the outside world in an intermediate state—all rows will appear in either their initial 
state or their final state. This prevents one user from inadvertently interfering with another user's work in 
progress. Consistency is usually implied by the other ACID properties. 

Isolation 

A transaction is isolated if it is not affected by, nor affects, other concurrent transactions on the same data. 
The extent to which a transaction is isolated from other transactions is controlled by its transaction isolation 
level (specified via the SET TRANSACTION ISOLATION LEVEL command). These TILs range from no 
isolation at all—during which transactions can read uncommitted data and cannot exclusively lock 
resources—to serializable isolation—which locks the entire data set and prevents users from modifying it in 
any way until the transaction completes. (See the following section, "Transaction Isolation Levels," for more 
information.) The trade-off with each isolation level is one of concurrency (concurrent access and modification 
of a data set by multiple users) vs. consistency. The more airtight the isolation, the higher the degree of data 
consistency. The higher the consistency, the lower the concurrency. This is because SQL Server locks 



Guru’s Guide to Transact-SQL 

244 

resources to ensure data consistency. More locks means fewer simultaneous data modifications and reduced 
accessibility overall. 
Isolation prevents a transaction from retrieving illogical or incomplete snapshots of data currently under 
modification by another transaction. For example, if a transaction is inserting a number of rows into a table, 
isolation prevents other transactions from seeing those rows until the transaction is committed. SQL Server's 
TILs allow you to balance your data accessibility needs with your data integrity requirements. 

Durability 

A transaction is considered durable if it can complete despite a system failure or, in the case of uncommitted 
transactions, if it can be completely reversed following a system failure. SQL Server's write-ahead logging and 
the database recovery process ensure that transactions committed but not yet stored in the database are 
written to the database following a system failure (rolled forward) and that transactions in progress are 
reversed (rolled back). 

How SQL Server Transactions Work 

SQL Server transactions are similar to command batches in that they usually consist of multiple Transact-SQL 
statements that are executed as a group. They differ in that a command batch is a client-side concept—it's a 
mechanism for sending groups of commands to the server—while a transaction is a server-side concept—it 
controls what SQL Server considers completed and in-progress work. 
There's a many-to-many relationship between command batches and transactions. Command batches can 
contain multiple transactions, and a single transaction can span multiple batches. As a rule, you want to avoid 
transactions that span lengthy command batches because of the concurrency and performance problems that 
such transactions can cause. 
Any time a data modification occurs, SQL Server writes a record of the change to the transaction log. This 
occurs before the change itself is performed and is the reason SQL Server is described as having a "write-
ahead" log—log records are written ahead of their corresponding data changes. Failing to do this could result 
in data changes that would not be rolled back if the server failed before the log record was written. 
Modifications are never made directly to disk. Instead, SQL Server reads data pages into a buffer area as 
they're needed and changes them in memory. Before it changes a page in memory, the server ensures that 
the change is recorded in the transaction log. Since the transaction log is also cached, these changes are 
initially made in memory as well. Write-ahead logging ensures that the lazywriter process does not write 
modified data pages ("dirty" pages) to disk before their corresponding log records. 
No permanent changes are made to a database until a transaction is committed. The exact timing of this 
varies based on the type of transaction. Once a transaction is committed, its changes are written to the 
database and cannot be rolled back. 

Transactions and Nonlogged Operations 

Regardless of whether an operation is logged or nonlogged, terminating it before it's been committed results 
in the operation being rolled back completely. This is possible with nonlogged operations because page 
allocations are recorded in the transaction log. 

Transaction and Triggers 

Triggers behave as though they were nested one level deep. If a transaction that contains a trigger is rolled 
back, so is the trigger. If the trigger is rolled back, so is any transaction that encompasses it. 

Types of Transactions 

SQL Server supports four basic types of transactions: automatic, implicit, user-defined, and distributed. Each 
has its own nuances, so I'll discuss each one separately. 

Automatic Transactions 



Chapter 14. Transactions 

245 

By default, each Transact-SQL command is its own transaction. These are known as automatic (or 
autocommit) transactions. They are begun and committed by the server automatically. A DML command that's 
executed outside a transaction (and while implicit transactions are disabled) is an example of an automatic 
transaction. You can think of an automatic transaction as a Transact-SQL statement that's ensconced 
between a BEGIN TRAN and a COMMIT TRAN. If the statement succeeds, it's committed. If not, it's rolled 
back. 

Implicit Transactions 

Implicit transactions are ANSI SQL-92–compliant automatic transactions. They're initiated automatically when 
any of numerous DDL or DML commands is executed. They continue until explicitly committed by the user. To 
toggle implicit transaction support, use the SET IMPLICIT_TRANSACTIONS command. By default, OLEDB 
and ODBC connections enable the ANSI_DEFAULTS switch, which, in turn, enables implicit transactions. 
However, they then immediately disable implicit transactions because of the grief mismanaged transactions 
can cause applications. Enabling implicit transactions is like rigging your car doors to lock automatically every 
time you shut them. It costs more time than it saves, and, sooner or later, you're going to leave your keys in 
the ignition. 

User-Defined Transactions 

User-defined transactions are the chief means of managing transactions in SQL Server applications. A user-
defined transaction is user-defined in that you control when it begins and when it ends. The BEGIN TRAN, 
COMMIT TRAN, and ROLLBACK TRAN commands are used to control user-defined transactions. Here's an 
example: 
      
SELECT TOP 5 title_id, stor_id FROM sales ORDER BY title_id, stor_id 
BEGIN TRAN 
DELETE sales 
SELECT TOP 5 title_id, stor_id FROM sales ORDER BY title_id, stor_id 
GO 
ROLLBACK TRAN 
SELECT TOP 5 title_id, stor_id FROM sales ORDER BY title_id, stor_id 
 
title_id stor_id 
-------- ------- 
BU1032   6380 
BU1032   8042 
BU1032   8042 
BU1111   8042 
BU2075   7896 
 
(5 row(s) affected) 
 
(25 row(s) affected) 
 
title_id stor_id 
-------- ------- 
 
(0 row(s) affected) 
 
title_id stor_id 
-------- ------- 
BU1032   6380 
BU1032   8042 
BU1032   8042 
BU1111   8042 
BU2075   7896 
 
(5 row(s) affected) 



Guru’s Guide to Transact-SQL 

246 

 
     

Distributed Transactions 

Transactions that span multiple servers are known as distributed transactions. These transactions are 
administered by a central manager application that coordinates the activities of the involved servers. SQL 
Server can participate in distributed transactions coordinated by manager applications that support the 
X/Open XA specification for Distributed Transaction Processing, such as the Microsoft Distributed Transaction 
Coordinator (DTC). You can initiate a distributed transaction in Transact-SQL using the BEGIN DISTRIBUTED 
TRANSACTION command. 

Avoiding Transactions Altogether 

Other than avoiding making database modifications, there's really no way to disable transaction logging 
completely. Some operations generate a minimum of log information, but there's no configuration option that 
turns off logging altogether. 

Commands That Minimize Logging 

The BULK INSERT, TRUNCATE TABLE, SELECT…INTO, and WRITETEXT/ UPDATETEXT commands 
minimize transaction logging by causing only page operations to be logged (BULK INSERT can, depending on 
the circumstances, create regular detail log records). Contrary to a popular misconception, these operations 
are logged—it's just that they don't generate detail transaction log information. That's why the Books Online 
refers to them as nonlogged operations—they're nonlogged in that they don't generate row-level log records. 
Nonlogged operations tend to be much faster than fully logged operations. And since they generate page 
allocation log records, they can be rolled back (but not forward) just like other operations. The price you pay 
for using them is transaction log recovery. Once you've executed a nonlogged command in a database, you 
can no longer back up the database's transaction log—you must perform a full or differential database backup 
instead. 

Read-Only and Single-User Databases 

One obvious way of avoiding logging as well as resource blocks and deadlocks in a database is by making 
the database read-only. Naturally, if the database can't be changed, there's no need for transaction logging or 
resource blocks. Making the database single-user even alleviates the need for read locks, avoiding the 
possibility of an application blocking itself. 
Though reducing a database's accessibility in order to minimize transaction management issues might sound 
a little like not driving your car in order to keep it from breaking down, you sometimes see this in real 
applications. For example, it's fairly common for DSS (Decision Support System) applications to make use of 
read-only databases. These databases can be updated off-hours (e.g., overnight or on weekends), then 
returned to read-only status for use during normal working hours. Obviously, transaction management issues 
are greatly simplified when a database is modifiable only by one user at a time, is changed only en masse, or 
can't be changed at all. 
Read-only databases can also be very functional as members of partitioned data banks. Sometimes an 
application can be spread across multiple databases—one containing static data that doesn't change much 
(and can therefore be set to read-only) and one containing more dynamic data that must submit to at least 
nominal transaction management. 

Automatic Transaction Management 

SQL Server provides a number of facilities for automating transaction management. The most prominent 
example of these is the automatic transaction (autocommit) facility. As mentioned earlier, an automatic 
transaction is begun and committed or rolled back implicitly by the server. There's no need for explicit BEGIN 
TRAN or COMMIT/ ROLLBACK TRAN statements. The server initiates a transaction when a modification 
command begins and, depending on the command's success, commits or rolls it back afterward. Automatic 



Chapter 14. Transactions 

247 

transaction mode is SQL Server's default mode but is disabled when implicit or user-defined transactions are 
enabled. 
Implicit transactions offer another type of automated transaction management. When- ever certain commands 
(ALTER TABLE, FETCH, REVOKE, CREATE, GRANT, SELECT, DELETE, INSERT, TRUNCATE TABLE, 
DROP, OPEN, UPDATE) are executed, a transaction is automatically started. In a sense, implicit transactions 
offer an automated alternative to explicit transactions—a facility falling somewhere between autocommit 
transactions and user-defined transactions in terms of functionality. These transactions are only 
semiautomated, though, since an explicit ROLLBACK TRAN or COMMIT TRAN is required to close them. 
Only the first part of the process is automated—the initiation of the transaction. Its termination must still be 
performed explicitly. Transact-SQL's SET IMPLICIT_TRANSACTIONS command is used to toggle implicit 
transaction mode. 
SET XACT_ABORT toggles whether a transaction is aborted when a command raises a runtime error. The 
error can be a system-generated error condition or a user-generated one. It's essentially equivalent to 
checking @@ERROR after every statement and rolling back the transaction if an error is detected. Note that 
the command is a bit of misnomer. When XACT_ABORT is enabled and a runtime error occurs, not only is the 
current transaction aborted, but the entire batch is as well. For example, consider this code: 
     
SET XACT_ABORT ON 
SELECT TOP 5 au_lname, au_fname FROM authors ORDER BY au_lname, au_fname 
BEGIN TRAN 
DELETE authors 
DELETE sales 
SELECT TOP 5 au_lname, au_fname FROM authors ORDER BY au_lname, au_fname 
ROLLBACK TRAN 
PRINT 'End of batch -- never makes it here' 
GO 
SELECT TOP 5 au_lname, au_fname FROM authors ORDER BY au_lname, au_fname 
SET XACT_ABORT ON 
 
au_lname                                 au_fname 
---------------------------------------- -------- 
Bennet                                   Abraham 
Blotchet-Halls                           Reginald 
Carson                                   Cheryl 
DeFrance                                 Michel 
del Castillo                             Innes 
 
(5 row(s) affected) 
 
Server: Msg 547, Level 16, State 1, Line 1 
DELETE statement conflicted with COLUMN REFERENCE constraint 
'FK__titleauth__au_id__164452B1'. The conflict occurred in database 'pubs', 
table 'titleauthor', column 'au_id'. 
 
au_lname                                 au_fname 
---------------------------------------- -------------------- 
Bennet                                   Abraham 
Blotchet-Halls                           Reginald 
Carson                                   Cheryl 
DeFrance                                 Michel 
del Castillo                             Innes 
 
(5 row(s) affected) 
 
    
Execution never reaches the PRINT statement because the constraint violation generated by attempting to 
empty the authors table aborts the entire command batch (the statements before the GO). This is in spite of 
the fact that a ROLLBACK TRAN immediately precedes the PRINT. 
The fact that the entire command batch is aborted is what makes checking @@ERROR after each data 
modification preferable to enabling SET XACT_ABORT. This is particularly true when calling a stored 



Guru’s Guide to Transact-SQL 

248 

procedure within a transaction. If the procedure causes a runtime error, the statements following it in the 
command batch are aborted, affording no opportunity to handle the error condition. 

Transaction Isolation Levels 

SQL Server supports four transaction isolation levels. As mentioned earlier, a transaction's isolation level 
controls how it affects, and is affected by, other transactions. The trade-off is always one of data consistency 
vs. concurrency. Selecting a more restrictive TIL increases data consistency at the expense of accessibility. 
Selecting a less restrictive TIL increases concurrency at the expense of data consistency. The trick is to 
balance these opposing interests so that the needs of your application are met. 
Use the SET TRANSACTION ISOLATION LEVEL command to set a transaction's isolation level. Valid TILs 
include READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE. 

READ UNCOMMITTED 

Specifying READ UNCOMMITTED is essentially the same as using the NOLOCK hint with every table 
referenced in a transaction. It is the least restrictive of SQL Server's four TILs. It permits dirty reads (reads of 
uncommitted changes by other transactions) and nonrepeatable reads (data that changes between reads 
during a transaction). To see how READ UNCOMMITTED permits dirty and nonrepeatable reads, run the 
following queries simultaneously: 
      
-- Query 1 
SELECT TOP 5 title_id, qty FROM sales ORDER BY title_id, stor_id 
BEGIN TRAN 
UPDATE sales SET qty=0 
SELECT TOP 5 title_id, qty FROM sales ORDER BY title_id, stor_id 
WAITFOR DELAY '00:00:05' 
ROLLBACK TRAN 
SELECT TOP 5 title_id, qty FROM sales ORDER BY title_id, stor_id 
 
Query 2 
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 
PRINT 'Now you see it…' 
SELECT TOP 5 title_id, qty FROM sales 
WHERE qty=0 
ORDER BY title_id, stor_id 
IF @@ROWCOUNT>0 BEGIN 
  WAITFOR DELAY '00:00:05' 
      
  PRINT '…now you don''t' 
  SELECT TOP 5 title_id, qty FROM sales 
  WHERE qty=0 
  ORDER BY title_id, stor_id 
END 
 
Now you see it… 
title_id qty 
-------- ------ 
BU1032   0 
BU1032   0 
BU1032   0 
BU1111   0 
BU2075   0 
 
(5 row(s) affected) 
 
…now you don't 
title_id qty 
-------- ------ 



Chapter 14. Transactions 

249 

(0 row(s) affected) 
 
     
While the first query is running (you have five seconds), fire off the second one, and you'll see that it's able to 
access the uncommitted data modifications of the first query. It then waits for the first transaction to finish and 
attempts to read the same data again. Since the modifications were rolled back, the data has vanished, 
leaving the second query with a nonrepeatable read. 

READ COMMITTED 

READ COMMITTED is SQL Server's default TIL, so if you don't specify otherwise, you'll get READ 
COMMITTED. READ COMMITTED avoids dirty reads by initiating share locks on accessed data but permits 
changes to underlying data during the transaction, possibly resulting in nonrepeatable reads and/or phantom 
data. To see how this works, run the following queries simultaneously: 
      
-- Query 1 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
BEGIN TRAN 
PRINT 'Now you see it…' 
SELECT TOP 5 title_id, qty FROM sales ORDER BY title_id, stor_id 
WAITFOR DELAY '00:00:05' 
PRINT '…now you don''t' 
SELECT TOP 5 title_id, qty FROM sales ORDER BY title_id, stor_id 
GO 
ROLLBACK TRAN 
 
-- Query 2 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
UPDATE sales SET qty=6 WHERE qty=5 
Now you see it… 
title_id qty 
-------- ------ 
BU1032   5 
BU1032   10 
BU1032   30 
BU1111   25 
BU2075   35 
 
…now you don't 
title_id qty 
-------- ------ 
BU1032   6 
BU1032   10 
BU1032   30 
BU1111   25 
BU2075   35 
 
     
As in the previous example, start the first query, then quickly run the second one simultaneously (you have 
seconds). 
In this example, the value of the qty column in the first row of the sales table changes between reads during 
the first query—a classic nonrepeatable read. 

REPEATABLE READ 

REPEATABLE READ initiates locks to prevent other users from changing the data a transaction accesses but 
doesn't prevent new rows from being inserted, possibly resulting in phantom rows appearing between reads 
during the transaction. Here's an example (as with the other examples, start the first query; then run the 
second one simultaneously—you have five seconds to start the second query): 



Guru’s Guide to Transact-SQL 

250 

      
-- Query 1 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 
BEGIN TRAN 
PRINT 'Nothing up my sleeve…' 
SELECT TOP 5 title_id, qty FROM sales ORDER BY qty 
WAITFOR DELAY '00:00:05' 
PRINT '…except this rabbit' 
SELECT TOP 5 title_id, qty FROM sales ORDER BY qty 
GO 
ROLLBACK TRAN 
 
-- Query 2 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 
INSERT sales VALUES (6380,9999999,GETDATE(),2,'USG-Whenever','PS2091') 
 
Nothing up my sleeve… 
title_id qty 
-------- ------ 
PS2091   3 
BU1032   5 
PS2091   10 
MC2222   10 
BU1032   10 
 
…except this rabbit 
title_id qty 
-------- ------ 
PS2091   2 
PS2091   3 
BU1032   5 
PS2091   10 
 
     
As you can see, a new row appears between the first and second reads of the sales table, even though 
REPEATABLE READ has been specified. Though REPEATABLE READ prevents changes to data it has 
already accessed, it doesn't prevent the addition of new data, thus introducing the possibility of phantom rows. 

SERIALIZABLE 

SERIALIZABLE prevents dirty reads and phantom rows by placing a range lock on the data it accesses. It is 
the most restrictive of SQL Server's four TILs. It's equivalent to using the HOLDLOCK hint with every table a 
transaction references. Here's an example (delete the row you added in the previous example before running 
this code): 
      
-- Query 1 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 
BEGIN TRAN 
PRINT 'Nothing up my sleeve…' 
SELECT TOP 5 title_id, qty FROM sales ORDER BY qty 
WAITFOR DELAY '00:00:05' 
PRINT '…or in my hat' 
SELECT TOP 5 title_id, qty FROM sales ORDER BY qty 
ROLLBACK TRAN 
 
-- Query 2 
BEGIN TRAN 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 
-- This INSERT will be delayed until the first transaction completes 
INSERT sales VALUES (6380,9999999,GETDATE(),2,'USG-Whenever','PS2091') 



Chapter 14. Transactions 

251 

ROLLBACK TRAN 
 
Nothing up my sleeve… 
title_id qty 
-------- ------ 
PS2091   3 
BU1032   5 
PS2091   10 
MC2222   10 
BU1032   10 
…or in my hat 
 
title_id qty 
-------- ------ 
PS2091   3 
BU1032   5 
PS2091   10 
MC2222   10 
BU1032   10 
 
     
In this example, the locks initiated by the SERIALIZABLE isolation level prevent the second query from 
running until after the first one finishes. While this provides airtight data consistency, it does so at a cost of 
greatly reduced concurrency. 

Transaction Commands and Syntax 

As I said earlier, the BEGIN TRAN, COMMIT TRAN, and ROLLBACK TRAN commands are used to manage 
transactions in Transact-SQL (the sp_xxxx_xact system stored procedures are legacy code that was used in 
the past with DB-Library two-phase commit applications, and you should not use them). The exact syntax 
used to begin a transaction is: 
     
BEGIN TRAN[SACTION] [name|@TranNameVar] 
    
To commit a transaction, use: 
     
COMMIT TRAN[SACTION] [name|@TranNameVar] 
 
    
And to roll back a transaction, use: 
     
ROLLBACK TRAN[SACTION] [name|@TranNameVar] 
 
    
You can also use the COMMIT WORK and ROLLBACK WORK commands in lieu of COMMIT 
TRANSACTION and ROLLBACK TRANSACTION, though you cannot use transaction names with them. 

Nested Transactions 

Transact-SQL allows you to nest transaction operations by issuing nested BEGIN TRAN commands. The 
@@TRANCOUNT automatic variable can be queried to determine the level of nesting—0 indicates no nesting, 
1 indicates nesting one level deep, and so forth. Batches and stored procedures that are nesting sensitive 
should query @@TRANCOUNT when first executed and respond accordingly. 
Though on the surface it appears otherwise, SQL Server doesn't support truly nested transactions. A 
COMMIT issued against any transaction except the outermost one doesn't commit any changes to disk—it 
merely decrements the @@TRANCOUNT automatic variable. A ROLLBACK, on the other hand, works 
regardless of the level at which it is issued but rolls back all transactions, regardless of the nesting level. 
Though this is counterintuitive, there's a very good reason for it. If a nested COMMIT actually wrote changes 
permanently to disk, an outer ROLLBACK wouldn't be able to reverse those changes since they would already 



Guru’s Guide to Transact-SQL 

252 

be recorded permanently. Likewise, if ROLLBACK didn't reverse all changes at all levels, calling it from within 
stored procedures and triggers would be vastly more complicated since the caller would have to check return 
values and the transaction nesting level when the routine returned in order to determine whether it needed to 
roll back pending transactions. Here's an example that illustrates some of the nuances of nested transactions: 
      
SELECT 'Before BEGIN TRAN',@@TRANCOUNT 
BEGIN TRAN 
   SELECT 'After BEGIN TRAN',@@TRANCOUNT 
   DELETE sales 
   BEGIN TRAN nested 
      SELECT 'After BEGIN TRAN nested',@@TRANCOUNT 
      DELETE titleauthor 
   COMMIT TRAN nested -- Does nothing except decrement @@TRANCOUNT 
   SELECT 'After COMMIT TRAN nested',@@TRANCOUNT 
GO -- When possible, it's a good idea to place ROLLBACK TRAN in a separate batch 
  -- to prevent batch errors from leaving open transactions 
ROLLBACK TRAN 
SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
SELECT TOP 5 au_id FROM titleauthor 
 
----------------- ---------- 
Before BEGIN TRAN 0 
 
---------------- ---------- 
After BEGIN TRAN 1 
 
----------------------- ---------- 
After BEGIN TRAN nested 2 
 
------------------------ ---------- 
After COMMIT TRAN nested 1 
 
------------------- ---------- 
After ROLLBACK TRAN 0 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
     
In this example, we see that despite the nested COMMIT TRAN, the outer ROLLBACK still reverses the 
effects of the DELETE titleauthor command. Here's another nested transaction example: 
      
SELECT 'Before BEGIN TRAN',@@TRANCOUNT 
BEGIN TRAN 
   SELECT 'After BEGIN TRAN',@@TRANCOUNT 
   DELETE sales 
   BEGIN TRAN nested 
      SELECT 'After BEGIN TRAN nested',@@TRANCOUNT 
      DELETE titleauthor 
   ROLLBACK TRAN 
   SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
IF @@TRANCOUNT>0 BEGIN 
   COMMIT TRAN -- Never makes it here because of the ROLLBACK 
   SELECT 'After COMMIT TRAN',@@TRANCOUNT 
END 
 



Chapter 14. Transactions 

253 

SELECT TOP 5 au_id FROM titleauthor 
----------------- ---------- 
Before BEGIN TRAN 0 
 
---------------- ---------- 
After BEGIN TRAN 1 
 
----------------------- ---------- 
After BEGIN TRAN nested 2 
 
------------------- ---------- 
After ROLLBACK TRAN 0 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
     
In this example, execution never reaches the outer COMMIT TRAN because the ROLLBACK TRAN reverses 
all transactions currently in progress and sets @@TRANCOUNT to zero. 
Note that we can't ROLLBACK the nested transaction. ROLLBACK can reverse a a named transaction only 
when it's the outermost transaction. Attempting to roll back our nested transaction yields the message: 
      
Server: Msg 6401, Level 16, State 1, Line 10 
Cannot roll back nested. No transaction or savepoint of that name was found. 
 
     
The error message notwithstanding, the problem isn't that no transaction exists with the specified name. It's 
that ROLLBACK can reference a transaction by name only when it is also the outermost transaction. Here's 
an example that illustrates using ROLLBACK TRAN with transaction names: 
      
SELECT 'Before BEGIN TRAN main',@@TRANCOUNT 
BEGIN TRAN main 
   SELECT 'After BEGIN TRAN main',@@TRANCOUNT 
   DELETE sales 
   BEGIN TRAN nested 
      SELECT 'After BEGIN TRAN nested',@@TRANCOUNT 
      DELETE titleauthor 
   ROLLBACK TRAN main 
   SELECT 'After ROLLBACK TRAN main',@@TRANCOUNT 
IF @@TRANCOUNT>0 BEGIN 
  ROLLBACK TRAN     -- Never makes it here because of the earlier ROLLBACK 
  SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
END 
 
SELECT TOP 5 au_id FROM titleauthor 
 
---------------------- ---------- 
Before BEGIN TRAN main 0 
 
--------------------- ---------- 
After BEGIN TRAN main 1 
 
----------------------- ---------- 
After BEGIN TRAN nested 2 
------------------------ ---------- 
 



Guru’s Guide to Transact-SQL 

254 

After ROLLBACK TRAN main 0 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
     
Here, we named the outermost transaction "main" and then referenced it by name with ROLLBACK TRAN. 
Note that a transaction name is never required by ROLLBACK TRAN, regardless of whether the transaction is 
initiated with a name. For this reason, many developers avoid using transaction names with ROLLBACK 
altogether, since they serve no real purpose. This is largely a matter of personal choice and works acceptably 
well either way as long as you understand it. Unless called with a save point (see below), ROLLBACK TRAN 
always rolls back all transactions and sets @@TRANCOUNT to zero, regardless of the context in which it's 
called. 

SAVE TRAN and Save Points 

You can control how much work ROLLBACK reverses via the SAVE TRAN command. SAVE TRAN creates a 
save point to which you can roll back if you wish. Syntactically, you just pass the name of the save point to the 
ROLLBACK TRAN command. Here's an example: 
      
SELECT 'Before BEGIN TRAN main',@@TRANCOUNT 
BEGIN TRAN main 
   SELECT 'After BEGIN TRAN main',@@TRANCOUNT 
   DELETE sales 
   SAVE TRAN sales   -- Mark a save point 
   SELECT 'After SAVE TRAN sales',@@TRANCOUNT -- @@TRANCOUNT is unchanged 
   BEGIN TRAN nested 
      SELECT 'After BEGIN TRAN nested',@@TRANCOUNT 
      DELETE titleauthor 
      SAVE TRAN titleauthor -- Mark a save point 
      SELECT 'After SAVE TRAN titleauthor',@@TRANCOUNT -- @@TRANCOUNT is 
unchanged 
   ROLLBACK TRAN sales 
   SELECT 'After ROLLBACK TRAN sales',@@TRANCOUNT -- @@TRANCOUNT is unchanged 
   SELECT TOP 5 au_id FROM titleauthor 
IF @@TRANCOUNT>0 BEGIN 
   ROLLBACK TRAN  
   SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
END 
 
SELECT TOP 5 au_id FROM titleauthor 
 
---------------------- ---------- 
Before BEGIN TRAN main 0 
 
--------------------- ---------- 
After BEGIN TRAN main 1 
 
--------------------- ---------- 
After SAVE TRAN sales 1 
 
----------------------- ---------- 
After BEGIN TRAN nested 2 
 
--------------------------- ---------- 



Chapter 14. Transactions 

255 

After SAVE TRAN titleauthor 2 
 
------------------------- ---------- 
After ROLLBACK TRAN sales 2 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
------------------- ---------- 
After ROLLBACK TRAN 0 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
     
As with version 6.5, SQL Server 7.0 allows you to reuse a save point name if you wish, but if you do so, only 
the last save point is retained. Rolling back using the save point name will roll the transaction back to the save 
point's last reference. 

Avoid Accidental ROLLBACKs 

Since ROLLBACK TRAN reverses all transactions in progress, it's important not to inadvertently nest calls to it. 
Once it's been called a single time, there's no need (nor are you allowed) to call it again until a new 
transaction is initiated. For example, consider this code: 
      
SELECT 'Before BEGIN TRAN',@@TRANCOUNT 
BEGIN TRAN 
   SELECT 'After BEGIN TRAN',@@TRANCOUNT 
   DELETE sales 
     BEGIN TRAN nested 
        SELECT 'After BEGIN TRAN nested',@@TRANCOUNT 
        DELETE titleauthor 
   IF @@ROWCOUNT > 1000 
        COMMIT TRAN nested 
   ELSE BEGIN 
        ROLLBACK TRAN -- Completely rolls back both transactions 
        SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
   END 
   SELECT TOP 5 au_id FROM titleauthor 
ROLLBACK TRAN -- This is an error -- there's no transaction to rollback 
SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
 
SELECT TOP 5 au_id FROM titleauthor 
 
----------------- ---------- 
Before BEGIN TRAN 0 
 
---------------- ---------- 
After BEGIN TRAN 1 
 



Guru’s Guide to Transact-SQL 

256 

----------------------- ---------- 
After BEGIN TRAN nested 2 
 
------------------- ---------- 
After ROLLBACK TRAN 0 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
Server: Msg 3903, Level 16, State 1, Line 17 
The ROLLBACK TRANSACTION request has no corresponding BEGIN TRANSACTION. 
 
------------------- ---------- 
After ROLLBACK TRAN 0 
 
au_id 
----------- 
213-46-8915 
409-56-7008 
267-41-2394 
724-80-9391 
213-46-8915 
 
     
Note the error message that's generated by the second ROLLBACK TRAN. Since the first ROLLBACK TRAN 
reverses both transactions, there's no transaction for the second to reverse. This situation is best handled by 
querying @@TRANCOUNT first, like this: 
      
IF @@TRANCOUNT>0 BEGIN 
   ROLLBACK TRAN 
   SELECT 'After ROLLBACK TRAN',@@TRANCOUNT 
END 
 
     

Invalid T-SQL Syntax in Transactions 

Some normally valid Transact-SQL syntax is prohibited while a transaction is active. For example, you can't 
use sp_dboption to change database options or call any other stored procedure that modifies the master 
database from within a transaction. Also, a number of Transact-SQL commands are illegal inside transactions: 
ALTER DATABASE, DROP DATABASE, RECONFIGURE, BACKUP LOG, DUMP TRANSACTION, 
RESTORE DATABASE, CREATE DATABASE, LOAD DATABASE, RESTORE LOG, DISK INIT, LOAD 
TRANSACTION, and UPDATE STATISTICS. 

Debugging Transactions 

Two DBCC (database consistency checker) commands come in very handy when debugging transaction-
related problems. The first is DBCC OPENTRAN(). It allows you to retrieve the oldest active transaction in a 
database. Since only the inactive portion of a log is backed up and truncated, a malevolent or zombie 
transaction can cause the log to fill prematurely. You can use DBCC OPENTRAN()to identify the offending 
process so that it may be terminated if necessary. Here's an example: 
     
DBCC OPENTRAN(pubs) 
Transaction information for database 'pubs' 



Chapter 14. Transactions 

257 

 
Oldest active transaction: 
   SPID (server process ID) : 15 
   UID (user ID) : 1 
   Name          : user_transaction 
   LSN           : (57:376:596) 
   Start time    : Aug 5 1999 5:54:46:713AM 
 
    
Another handy command for tracking down transaction-related problems is the DBCC LOG command. DBCC 
LOG lists the database transaction log. You can use it to look under the hood and see what operations are 
being carried out on your data. Here's an example: 
     
CREATE TABLE #logrecs 
(CurrentLSN varchar(30), 
 Operation varchar(20), 
 Context varchar(20), 
 TransactionID varchar(20)) 
 
INSERT #logrecs 
EXEC('DBCC LOG(''pubs'')') 
 
SELECT * FROM #logrecs 
GO 
DROP TABLE #logrecs 
 
    
(Results abridged) 
     
CurrentLSN                Operation       Context              TransactionID 
------------------------- --------------  -------------------- --------------- 
00000035:00000144:0001    LOP_BEGIN_CKPT  LCX_NULL             0000:00000000 
00000035:00000145:0001    LOP_END_CKPT    LCX_NULL             0000:00000000 
00000035:00000146:0001    LOP_MODIFY_ROW  LCX_SCHEMA_VERSION   0000:00000000 
00000035:00000146:0002    LOP_BEGIN_XACT  LCX_NULL             0000:000020e0 
00000035:00000146:0003    LOP_MARK_DDL    LCX_NULL             0000:000020e0 
00000035:00000146:0004    LOP_COMMIT_XACT LCX_NULL             0000:000020e0 
00000035:00000147:0001    LOP_MODIFY_ROW  LCX_SCHEMA_VERSION   0000:00000000 
00000035:00000147:0002    LOP_BEGIN_XACT  LCX_NULL             0000:000020e1 
00000035:00000147:0003    LOP_MARK_DDL    LCX_NULL             0000:000020e1 
 
    
No discussion of SQL Server transaction debugging would be complete without mentioning the 
@@TRANCOUNT automatic variable. Though we've already covered it elsewhere in this chapter, 
@@TRANCOUNT is a frequent target of PRINT statements and debugger watches because it reports the 
current transaction nesting level. When debugging complex nested transactions, it's common to insert 
SELECT or PRINT statements throughout the code to determine the current nesting level at various 
procedural junctures. 
Finally, don't forget about the Windows NT Performance Monitor. It sports numerous objects and counters 
related to transaction management and performance. In particular, the SQL Server:Databases object 
provides a wealth of transaction- and transaction log–related counters. 

Optimizing Transactional Code 

There are a number of general guidelines for writing efficient transaction-oriented T-SQL. Here are a few of 
them: 

• Keep transactions as short as possible. Once you've determined what data modifications need to be 
made, initiate your transaction, perform those modifications, and then end the transaction as soon as 
possible. Try not to initiate transactions prematurely. 



Guru’s Guide to Transact-SQL 

258 

• Limit transactions to data modification statements when practical. Don't initiate a transaction while 
scanning data if you can avoid it. Though transactions certainly affect reading data as well as writing it 
(e.g., dirty and nonrepeatable reads, phantom rows, etc.), it's often possible to limit them to just those 
statements that modify data, especially if you do not need to reread data within a transaction. 

• Don't require user input during a transaction. Doing so could allow a slow user to tie up server 
resources indefinitely. It could also cause the transaction log to fill prematurely since active 
transactions cannot be cleared from it. 

• Try to use optimistic concurrency control when possible. That is, rather than explicitly locking every 
object your application may change, allow the server to determine when a row has been changed by 
another user. You may find that this occurs so little in practice (perhaps the app is naturally partitioned, 
or, once entered, rows are rarely updated, etc.) as to be worth the risk in order to improve 
concurrency. 

• Use nonlogged operations wisely. As I've pointed out, nonlogged operations preclude normal 
transaction log backups. This may or may not be a showstopper, but, when allowable, nonlogged 
operations can turbocharge an application. They can often reduce processing time for large amounts 
of data by orders of magnitude and virtually eliminate a number of common transaction management 
headaches. Keep in mind that this increase in performance sometimes comes at a cost. 
SELECT…INTO, for example, locks system tables until it completes. 

• Try to use lower (less restrictive) TILs when possible. READ COMMITTED, the default, is suitable for 
most applications and will provide better concurrency than REPEATABLE READ or SERIALIZABLE. 

• Attempt to keep the amount of data you change within a transaction to a minimum. Don't 
indiscriminately attempt to change millions of rows in a table and expect concurrency and resource 
utilization to take care of themselves magically. Database modifications require resources and locks, 
and these locks by definition affect other users. Unless your app is a single-user app, it pays to be 
mindful of operations that could negatively affect concurrency. 

• Don't use implicit transactions unless you really need them, and, even then, watch them very closely. 
Because implicit transactions are initiated by nearly any primary Transact-SQL command (including 
SELECT), they can be started when you least expect them, potentially lowering concurrency and 
causing transaction log problems. It's nearly always better to manage transactions explicitly with 
BEGIN TRAN, COMMIT TRAN, and ROLLBACK TRAN than to use implicit transactions. When you 
manage transactions yourself, you know exactly when they're started and stopped—you have full 
control over what happens. 

Summary 

Transactions are SQL Server's basic unit of work. They ensure that a data modification operation is carried 
out either completely or not at all. Atomicity, consistency, isolation, and durability —the so-called ACID 
properties—characterize SQL Server transactions and help guard your data against incomplete or lost 
updates. 
The current transaction isolation level (TIL) governs transaction isolation. You set the TIL via the SET 
TRANSACTION ISOLATION LEVEL command. Each TIL represents a trade-off between concurrency and 
consistency. 
In this chapter, you became acquainted with SQL Server transactions and explored the various Transact-SQL 
commands that relate to transaction management. You learned about auto-commit and implicit transactions, 
as well as user-defined and distributed transactions. You also explored some common transaction-related 
pitfalls, and you learned methods for avoiding them. 



Chapter 15. Stored Procedures and Triggers 

259 

Chapter 15. Stored Procedures and Triggers 
Programming without an overall architecture or design in mind is like exploring a cave with 
only a flashlight: You don't know where you've been, you don't know where you're going, and 
you don't know quite where you are.  

—Danny Thorpe 

A stored procedure is a batch of SQL that's stored permanently on the server and compiled when used. It's 
not compiled in the sense of being translated to machine code or even Java byte codes—it's pseudocompiled 
to speed execution. You create stored procedures using the Transact-SQL CREATE PROCEDURE command. 
All that really happens when you create a procedure is the insertion of its source code into the syscomments 
system table. The procedure isn't compiled until it's executed for the first time (and in certain other 
circumstances— see the following section, "Internals," for more information). Despite the name, syscomments 
stores far more than comments—it's the repository for the source code for stored procedures, views, triggers, 
rules, and defaults. If you delete the source code for an object from syscomments, the object will no longer be 
accessible. 
You can list the source code to a procedure, view, trigger, rule, or default using the sp_helptext system 
procedure. If the object is not encrypted, sp_helptext will list its source, formatted similarly to the way you 
entered it. Here's an example: 
    EXEC sp_helptext 'sp_hexstring' 
Text 
-------------------------------------------------------------------------------- 
CREATE PROC dbo.sp_hexstring @int varchar(10)=NULL, @hexstring varchar(30)=NULL 
OUT 
/* 
  
Object: sp_hexstring 
Description: Return an integer as a hexadecimal string 
 
Usage: sp_hexstring @int=Integer to convert, @hexstring=OUTPUT parm to receive 
hex string 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 1.0 
 
Example: sp_hexstring 23, @myhex OUT 
 
Created: 1999-08-02. Last changed: 1999-08-15. 
*/ 
AS 
IF (@int IS NULL) OR (@int = '/?') GOTO Help 
DECLARE @i int, @vb varbinary(30) 
SELECT @i=CAST(@int as int), @vb=CAST(@i as varbinary) 
EXEC master..xp_varbintohexstr @vb, @hexstring OUT 
RETURN 0 
Help: 
EXEC sp_usage @objectname='sp_hexstring', 
   @desc='Return an integer as a hexadecimal string', 
   @parameters='@int=Integer to convert, @hexstring=OUTPUT parm to receive hex 
string', 
   @example='sp_hexstring "23", @myhex OUT', 
   @author='Ken Henderson', 
   @email='khen@khen.com', 
   @version='1', @revision='0', 
   @datecreated='19990802', @datelastchanged='19990815' 



Guru’s Guide to Transact-SQL 

260 

RETURN -1 

Stored Procedure Advantages 

There are several advantages to using stored procedures; here are a few of them: 

• They allow business rules and policies to be encapsulated and changed in one place. 
• They allow sharing of application logic by different applications. 
• They can facilitate data modification, ensuring that all applications update data consistently. 
• They can simplify parameterized queries, easily facilitating running the same query repetitively with 

different sets of parameters. 
• Autostart procedures can automate startup routines, executing each time the server is cycled. 
• They can modularize an application, organizing it into manageable pieces. 
• They can provide security mechanisms, allowing users controlled access to database objects they 

could not otherwise use. 
• They can reduce network bandwidth use by greatly lessening the amount of Transact-SQL code that 

must traverse the network in order to accomplish tasks. 
• Since their execution plans are retained by the server for reuse, they can improve application 

performance considerably. 

Internals 

There are four major steps involved with using stored procedures: 

1. Creation—where you initially create the procedure with CREATEPROC 
2. User execution—where you execute it with EXEC 
3. Compilation—where the server compiles and optimizes the procedure during an EXEC 
4. Server execution—where the server runs its compiled execution plan during an EXEC 

Creation 

The creation step is where you use the CREATE PROCEDURE command to construct the procedure on the 
server. Each time you successfully create a new procedure, its name and other vital information are recorded 
in sysobjects, and its source code is stored in syscomments. Objects referenced by the procedure are not 
resolved until you execute it. 

User Execution 

The first time you execute a newly created procedure (or the server recompiles it), it's read from syscomments, 
and its object references are resolved. During this process, the command processor constructs what's known 
as a sequence tree or query tree that will be passed to the query optimizer for compilation and optimization. 

Compilation 

Once the query tree has been successfully created, the SQL Server query optimizer compiles the entire batch, 
optimizes it, and checks access privileges. 
During the optimization phase, the optimizer scans the query tree and develops what it believes is the optimal 
plan for accessing the data the procedure is after. The following criteria are considered during this step: 

• The presence of the GROUP BY, ORDER BY, and UNION clauses 
• The amount of data the procedure will retrieve 
• The use of joins to link tables together 
• The characteristics of the indexes built over referenced tables 
• The degree of data distribution in each index's key columns 
• The use of comparison operators and values in WHERE and HAVING clauses within the procedure 



Chapter 15. Stored Procedures and Triggers 

261 

An execution plan is the result of this process, and it's placed in the procedure cache when the optimizer 
finishes building it. This execution plan consists of the following: 

• The steps required to carry out the work of the stored procedure 
• The steps necessary to enforce constraints 
• The steps needed to branch to any triggers red by the stored procedure 

Execution plans in SQL Server 7.0 and later are reentrant and read-only. This differs from previous releases, 
where each connection received its own copy of the execution plan for a given procedure. 

Server Execution 

The execution phase is where the execution plan is processed sequentially and each step is dispatched to an 
appropriate internal manager process. There are a number of internal managers— the DDL and DML 
managers, the transaction manager, the ODSOLE manager (for processing the OLE automation procedures 
such as sp_OAcreate), the stored procedure manager, the utility manager, the T-SQL manager, etc. These 
managers are called repeatedly until all steps in the execution plan have been processed. 
Execution plans are never stored on disk. The only portion of the stored procedure that's stored permanently 
is its source code (in syscomments). Since they're kept in memory, cycling the server disposes of all current 
execution plans (as does the undocumented DBCC FREEPROCCACHE() command). 
SQL Server will automatically recreate a procedure's execution plan when: 

• The procedure's execution environment differs significantly from its creation environment (see the 
following section, "Environmental Concerns," for more information). 

• The sysobjects schema_ver column changes for any of the objects the procedure references. The 
schema_ver and base_schema_ver columns are updated any time the schema information for a 
table changes. This includes column additions and deletions, data type changes, constraint additions 
and deletions, as well as rule and default bindings. 

• The statistics have changed for any of the objects the procedure references. 
• An index that was referenced by the procedure's execution plan is dropped. 
• A copy of the procedure's execution plan is not available in the cache. Execution plans are removed 

from the cache to make room for new plans using an LRU (least recently used) algorithm. 

Additionally, you can force a procedure's execution plan to be recompiled using these three methods: 

1. Creating the procedure using the WITH RECOMPILE option (and then executing it) 
2. Executing the procedure using the WITH RECOMPILE option 
3. Flagging any of the tables the procedure references with the sp_recompile procedure (sp_recompile 

merely updates sysobjects' schema_ver column) and then executing it 

A nifty way to load execution plans into the cache at system startup is to execute them via an autostart 
procedure. Rather than execute each procedure itself as an autostart routine, you should call the procedures 
you want to load into the cache from a single autostart procedure in order to conserve execution threads 
(each autostart routine gets its own thread). 
Once an execution plan is in the cache, subsequent calls to the procedure can reuse the plan without 
rebuilding the query tree or recompiling the plan. This eliminates two of the three steps that occur when you 
execute a stored procedure and is the chief performance advantage stored procedures give you over plain 
SQL batches. 

Creating Stored Procedures 

You create stored procedures using the CREATE PROCEDURE command; you alter them with ALTER 
PROCEDURE. The advantage to using ALTER PROC rather than CREATE PROC to change a stored 
procedure is that it preserves access permissions, whereas CREATE PROC doesn't. A key difference 
between them is that ALTER PROC requires the use of the same encryption and recompile options as the 
original CREATE PROC. Other than that, the semantics of using the two commands are exactly the same. 



Guru’s Guide to Transact-SQL 

262 

A procedure can contain any valid Transact-SQL command except these: CREATE DEFAULT, CREATE 
PROC, CREATE RULE, CREATE SCHEMA, CREATE TRIGGER, and CREATE VIEW. Procedures can 
create databases, tables, and indexes but not other procedures, defaults, rules, schemas, triggers, or views. 

NOTE 

Note GO is not a Transact-SQL command. It's a command batch terminator, which is to say, it tells 
tools like Query Analyzer and OSQL where one batch of SQL ends and another begins. As such, 
it's never allowed within a stored procedure— attempting this simply terminates the procedure. One 
rather odd aspect of the fact that GO is not a Transact-SQL command comes into play with 
comments. You can't comment out GO using the /**/comments. If GO is the leftmost item on its line, 
it will terminate the command batch regardless of the comment markers. Since this will prevent the 
closing comment marker from being reached, you'll get an error message about a missing end 
comment marker. The solution? Use the comment style, delete the GO altogether, or remove 
its"G."  

 

To execute CREATE PROC you must be a member of the sysadmin role, the db_owner role, or the 
db_ddladmin_role. You can also execute CREATE PROC if you've been explicitly granted permission by a 
member of either the sysadmin or db_owner role. 

The maximum stored procedure size is the lesser of 65,536 * the network packet size (which defaults to 4096 
bytes) and 250 megabytes. The maximum number of parameters a procedure may receive is 1024. 

Creation Tips 

• Include a comment header with each procedure that identifies its author, purpose, creation date and 
revision history, the parameters it receives, and so on. You can place this comment block after the 
CREATE PROC statement itself (but before the rest of the procedure) in order to ensure that it's 
stored in syscomments and is visible from tools like Enterprise Manager that can access stored 
procedure source code directly via syscomments. Here's a system procedure that generates 
comment headers for you: 

      
USE master 
GO 
IF OBJECT_ID('dbo.sp_object_script_comments') IS NOT NULL 
     DROP PROC dbo.sp_object_script_comments 
GO 
CREATE PROCEDURE dbo.sp_object_script_comments 
    -- Required parameters 
    @objectname sysname=NULL, 
    @desc sysname=NULL,  
 
    -- Optional parameters 
    @parameters varchar(8000)=NULL, 
    @example varchar(8000)=NULL, 
    @author sysname=NULL, 
    @email sysname='(none)', 
    @version sysname=NULL, 
    @revision sysname='0', 
    @datecreated smalldatetime=NULL, 
    @datelastchanged smalldatetime=NULL 
/* 



Chapter 15. Stored Procedures and Triggers 

263 

 
Object: sp_object_script_comments 
Description: Generates comment headers for object-creation SQL scripts 
 
Usage: sp_object_script_comments @objectname="ObjectName", @desc="Description 
of object",@parameters="param1[,param2…]" 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 3.1 
 
Example usage: sp_object_script_comments @objectname="sp_who", @desc="Returns 
a list of currently running jobs", @parameters=[@loginname] 
 
Created: 1992-04-03. Last changed: 1999-07-01 01:13:00. 
*/ 
AS 
 
IF (@objectname+@desc) IS NULL GOTO Help 
 
PRINT '/*' 
PRINT CHAR(13) 
EXEC sp_usage @objectname=@objectname, 
  @desc=@desc, 
  @parameters=@parameters, 
  @example=@example, 
  @author=@author, 
  @email=@email, 
  @version=@version, @revision=@revision, 
  @datecreated=@datecreated, @datelastchanged=@datelastchanged 
PRINT CHAR(13)+'*/' 
 
RETURN 0 
 
Help:  
EXEC sp_usage @objectname='sp_object_script_comments', 
  @desc='Generates comment headers for SQL scripts', 
  @parameters='@objectname="ObjectName", @desc="Description of 
  object",@parameters="param1[,param2…]"', 
  @example='sp_object_script_comments @objectname="sp_who", 
  @desc="Returns 
  a list of currently running jobs", @parameters=[@loginname]', 
  @author='Ken Henderson', 
  @email='khen@khen.com', 
  @version='3', @revision='1', 
  @datecreated='19920403', @datelastchanged='19990701' 
RETURN -1y 
     
This procedure generates comment header information for a stored procedure by calling the sp_usage 
procedure detailed below. It can be executed from any database by any procedure. 

• Allow an optional single parameter to be passed into every procedure that tells the caller how to use 
the procedure (e.g., '/?'). You can place this usage information at the end of the procedure in order to 
keep it from crowding your display and to locate it consistently from procedure to procedure. The best 
way to do this is to set up and call a separate procedure whose whole purpose is to report usage 
information. Here's a script that creates the sp_usage procedure that's used throughout this book for 
that very purpose: 

      
USE master 



Guru’s Guide to Transact-SQL 

264 

GO 
IF OBJECT_ID('dbo.sp_usage') IS NOT NULL 
  DROP PROC dbo.sp_usage 
GO 
CREATE PROCEDURE dbo.sp_usage 
     -- Required parameters 
     @objectname sysname=NULL, 
     @desc sysname=NULL,  
     -- Optional parameters 
     @parameters varchar(8000)=NULL, 
     @returns varchar(8000)='(None)', 
     @example varchar(8000)=NULL, 
     @author sysname=NULL, 
     @email sysname='(none)', 
     @version sysname=NULL, 
     @revision sysname='0', 
     @datecreated smalldatetime=NULL, 
     @datelastchanged smalldatetime=NULL 
/* 
 
Object: sp_usage 
Description: Provides usage information for stored procedures and descriptions of 
other types of objects 
 
Usage: sp_usage @objectname="ObjectName", @desc="Description of object" 
     [, @parameters="param1,param2…"] 
     [, @example="Example of usage"] 
     [, @author="Object author"] 
     [, @email="Author email"] 
     [, @version="Version number or info"] 
     [, @revision="Revision number or info"] 
     [, @datecreated="Date created"] 
     [, @datelastchanged="Date last changed"] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 3.1 
 
Example: sp_usage @objectname="sp_who", @desc="Returns 
a list of currently running jobs", @parameters=[@loginname] 
 
Created: 1992-04-03. Last changed: 1999-07-01. 
 
*/ 
AS 
SET NOCOUNT ON 
IF (@objectname+@desc IS NULL) GOTO Help 
 
PRINT 'Object: '+@objectname 
PRINT 'Description: '+@desc 
 
IF (OBJECTPROPERTY(OBJECT_ID(@objectname),'IsProcedure')=1) 
OR (OBJECTPROPERTY(OBJECT_ID(@objectname),'IsExtendedProc')=1) 
OR (OBJECTPROPERTY(OBJECT_ID(@objectname),'IsReplProc')=1) 
OR (LOWER(LEFT(@objectname,3))='sp_') BEGIN -- Special handling for system 
procedures 
  PRINT CHAR(13)+'Usage: '+@objectname+' '+@parameters 
  PRINT CHAR(13)+'Returns: '+@returns 
END 



Chapter 15. Stored Procedures and Triggers 

265 

IF (@author IS NOT NULL) 
   PRINT CHAR(13)+'Created by: '+@author+'. Email: '+@email 
IF (@version IS NOT NULL) 
   PRINT CHAR(13)+'Version: '+@version+'.'+@revision 
IF (@example IS NOT NULL) 
  PRINT CHAR(13)+'Example: '+@example 
IF (@datecreated IS NOT NULL) BEGIN -- Crop time if it's midnight 
  DECLARE @datefmt varchar(8000), @dc varchar(30), @lc varchar(30) 
  SET @dc=CONVERT(varchar(30), @datecreated, 120) 
  SET @lc=CONVERT(varchar(30), @datelastchanged, 120) 
  PRINT CHAR(13)+'Created: '+CASE 
DATEDIFF(ss,CONVERT(char(8),@datecreated,108),'00:00:00') WHEN 0 THEN 
LEFT(@dc,10) ELSE @dc END 
+'. Last changed: '+CASE 
DATEDIFF(ss,CONVERT(char(8),@datelastchanged,108),'00:00:00') WHEN 0 THEN 
LEFT(@lc,10) ELSE @lc END+'.' 
END 
 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_usage',           -- Recursive call 
  @desc='Provides usage information for stored procedures and descriptions of 
  other types of objects', 
  @parameters='@objectname="ObjectName", @desc="Description of object" 
     [, @parameters="param1,param2…"] 
     [, @example="Example of usage"] 
     [, @author="Object author"] 
     [, @email="Author email"] 
     [, @version="Version number or info"] 
     [, @revision="Revision number or info"] 
     [, @datecreated="Date created"] 
     [, @datelastchanged="Date last changed"]', 
  @example='sp_usage @objectname="sp_who", @desc="Returns a list of currently 
  running jobs", @parameters=[@loginname]', 
  @author='Ken Henderson', 
  @email='khen@khen.com', 
  @version='3', @revision='1', 
  @datecreated='4/3/92', @datelastchanged='7/1/99' 
RETURN -1 
     
You can call sp_usage to report usage info for any procedure. In fact, sp_usage calls itself to do just that. 
(That's the source of the message "Cannot add rows to sysdepends for the current stored procedure because 
it depends on the missing object 'sp_usage'." The stored procedure will still be created.) Note the use of a 
GOTO label to place the usage info at the end of the procedure. Since Transact-SQL doesn't support 
subroutines, this is unfortunately necessary. It allows code at the start of the procedure to check for invalid 
parameter values and quickly jump to the usage routine if necessary. 

• Set any environment options (QUOTED_IDENTIFIER, ANSI_DEFAULTS, etc.) that materially affect 
the procedure early in it. It's a good practice to set them 

• immediately on entrance to the procedure so that their presence is obvious to other developers. 
• Avoid situations where the owner of a stored procedure and the owner of its referenced tables differ. 

The best way to do this is by specifying the dbo user as the owner of every object you create. Having 
multiple objects with the same name but different owners adds a layer of obfuscation to the database 
that nobody needs. While perhaps plausible during development, it's definitely something to avoid on 
production servers. Allow database users besides dbo to own objects only in very special 
circumstances. 

• Don't use the sp_ prex for anything but system procedures that reside in the master database. Don't 
create procedures in user databases with the sp_ prex, and don't create nonsystem procedures in 
master. 



Guru’s Guide to Transact-SQL 

266 

• For procedures that must be created in a specific database (e.g., system procedures), include USE 
dbname, where dbname is the name of the target database, at the top of the script that creates the 
procedure. This ensures that the procedure winds up where you want it and alleviates having to 
remember to change the current database in your query tool before executing the script. 

• Keep stored procedures as simple and modular as possible. Each stored procedure should 
accomplish a single task or a small group of closely related tasks. 

• Use SET NOCOUNT ON to minimize network traffic from stored procedures. As a rule, it should be 
the first statement in every stored procedure you create. (Note that SET NOCOUNT ON can cause 
problems with some applications—e.g., some versions of Microsoft Access.) 

• Create a procedure using the WITH ENCRYPTION option if you want to hide its source code from 
users. Don't delete it from syscomments—doing so will render the procedure unable to execute, and 
you'll have to drop and recreate it. 

Temporary Procedures 

Temporary procedures are created the same way temporary tables are created—a prex of one pound sign (#) 
creates a local temporary procedure that's visible only to the current connection, while a prex of two pound 
signs (##) creates a global temporary procedure that's visible to all connections. 

System Procedures 

System procedures are procedures that reside in the master database and are prefixed with sp_. System 
procedures are executable from any database. When executed from a database other than master, the 
system procedure assumes the context of the database in which it's running. So, for example, if it references 
the sysobjects table, which exists in every database, it will access the one in the database that's current when 
it's executed, not the master. Here's an example of a simple system procedure: 
      
USE master 
IF OBJECT_ID('dbo.sp_created') IS NOT NULL 
 DROP PROC dbo.sp_created 
GO 
CREATE PROC dbo.sp_created @objname sysname=NULL 
/* 
Object: sp_created 
Description: Lists the creation date(s) for the specified object(s)  
 
Usage: sp_created @objname="Object name or mask you want to display" 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 1.0 
 
Example: sp_created @objname="myprocs%" 
 
Created: 1999-08-01. Last changed: 1999-08-15. 
*/ 
AS 
IF (@objname IS NULL) or (@objname='/?') GOTO Help 
SELECT name, crdate FROM sysobjects 
WHERE name like @objname 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_created', 
     @desc='Lists the creation date(s) for the specified object(s)', 
     @parameters='@objname="Object name or mask you want to display"', 
     @example='sp_created @objname="myprocs%"', 



Chapter 15. Stored Procedures and Triggers 

267 

     @author='Ken Henderson', 
     @email='khen@khen.com', 
     @version='1', @revision='0', 
     @datecreated='19990801', @datelastchanged='19990815' 
RETURN -1 
 
USE pubs 
EXEC sp_created '%author%' 
 
name                         crdate 
---------------------------- --------------------------- 
authors                      1998-11-13 03:10:48.470 
CK__authors__au_id__08EA5793 1998-11-13 03:10:48.657 
CK__authors__zip__0AD2A005   1998-11-13 03:10:48.657 
DF__authors__phone__09DE7BCC 1998-11-13 03:10:48.657 
titleauthor                  1998-11-13 03:10:49.220 
     
This procedure lists the names and creation dates of the objects that match a mask. 
Here's an example that uses one of SQL Server's own system stored procedures. Like the procedure above, it 
can be run from any database to retrieve info on that database: 
      
USE pubs 
EXEC sp_spaceused 
database_name   database_size      unallocated space 
--------------- ------------------ ------------------ 
pubs            4.13 MB            2.30 MB 
 
reserved        data                 index_size       unused 
--------------- ------------------ ------------------ ------------------ 
1864 KB         816 KB             696 KB             352 KB 
 
     
Sp_spaceused queries various system tables to create the report it returns. Even though it resides in the 
master database, it automatically reflects the context of the current database because it's a system procedure. 
Note that you can trick system procedures into running in the context of any database (regardless of the 
current database) by prefixing them with the target database as though they resided in that database. Here's 
an example: 
      
USE pubs 
EXEC northwind..sp_spaceused 
 
database_name    database_size      unallocated space 
---------------  ------------------ ------------------ 
Northwind        23.88 MB           21.01 MB 
 
reserved            data               index_size         unused 
------------------- ------------------ ------------------ ------------------ 
2936 KB             1240 KB            1336 KB            360 KB 
     
Here, even though sp_spaceused resides in master, and despite the fact that the current database is pubs, 
sp_spaceused reports space utilization info for the Northwind database because we've prefixed its name with 
Northwind. Even though sp_spaceused doesn't reside in Northwind, SQL Server correctly locates it in master 
and runs it within the Northwind database context. 
A system procedure that's created by a user is listed as a user object in Enterprise Manager. This is because 
the system bit of its status column in sysobjects (0xC0000000) isn't set by default. You can change this by 
calling the undocumented procedure sp_MS_marksystemobject. The procedure takes one argument—the 
name of the object whose system bit you want to set. Several undocumented functions and DBCC command 
verbs do not work properly unless called from a system object (see Chapter 20, "Undocumented T-SQL," 
for more information). You can determine whether an object's system bit has been set via the 
OBJECTPROPERTY() function's IsMSShipped property. 



Guru’s Guide to Transact-SQL 

268 

Extended Procedures 

Extended procedures are routines that reside in DLLs (Dynamic Link Libraries) that look and work like regular 
stored procedures. They receive parameters and return results via the Open Data Services framework and 
are normally written in C or C++. They reside in the master database (you cannot create them elsewhere) and 
run within the SQL Server process space. 
Note that there's nothing about extended procedures that requires them to be written in C or C++, but if you 
intend to write them in another language, you'll first have to complete the formidable task of translating the 
Microsoft-provided ODS header files into that language. I've personally written extended procedures using 
Delphi and a couple of other tools, so this can be done, but it's not for the timid. 
Another possibility for calling routines written in languages besides C/C++ is to create "wrapper" routines 
using a C++ compiler and the ODS headers and call your routines (which reside in some other DLL) from 
them. Then you get the best of both worlds—you create procedures in the language you prefer, and you're not 
forced to translate a bevy of constants, function declarations, and the like to another language. 
Note that, unlike SQL Server 6.5 and earlier, extended procedure names are not case sensitive. Prior to 
version 7.0, extended procedure calls had to match the case of the underlying routine as it existed in its DLL, 
regardless of the case-sensitivity setting on the server. With version 7.0 and later, the server will find the 
underlying routine regardless of the case used. 
Calls to extended procedures do not work like system procedures. They aren't automatically located in master 
when referenced from other databases, and they don't assume the context of the current database when run. 
If you want to execute an extended procedure from a database other than master, you'll have to qualify the 
reference (e.g., EXEC master..xp_cmdshell 'dir') fully. 
A common technique of making extended procedures a bit handier is to wrap them in system stored 
procedures. This allows them to be called from any database without requiring the "master.." prefix. You see 
this in a number of SQL Server's own routines—many undocumented extended procedures are wrapped 
within system stored procedures. Here's an example of a wrapped call to an extended procedure: 
      
USE master 
IF (OBJECT_ID('dbo.sp_hexstring') IS NOT NULL) 
   DROP PROC dbo.sp_hexstring 
GO 
CREATE PROC dbo.sp_hexstring @int varchar(10)=NULL, @hexstring varchar(30)=NULL 
OUT 
/* 
Object: sp_hexstring 
Description: Return an integer as a hexadecimal string 
 
Usage: sp_hexstring @int=Integer to convert, @hexstring=OUTPUT parm to receive 
hex 
string 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 1.0 
 
Example: sp_hexstring 23, @myhex OUT 
 
Created: 1999-08-02. Last changed: 1999-08-15. 
*/ 
AS 
IF (@int IS NULL) OR (@int = '/?') GOTO Help 
DECLARE @i int, @vb varbinary(30) 
SELECT @i=CAST(@int as int), @vb=CAST(@i as varbinary) 
EXEC master..xp_varbintohexstr @vb, @hexstring OUT 
RETURN 0 
Help: 
EXEC sp_usage @objectname='sp_hexstring', 
  @desc='Return an integer as a hexadecimal string', 



Chapter 15. Stored Procedures and Triggers 

269 

  @parameters='@int=Integer to convert, @hexstring=OUTPUT parm to receive hex 
string', 
  @example='sp_hexstring "23", @myhex OUT', 
  @author='Ken Henderson', 
  @email='khen@khen.com', 
  @version='1', @revision='0', 
  @datecreated='19990802', @datelastchanged='19990815' 
RETURN -1 
 
GO 
 
DECLARE @hex varchar(30) 
EXEC sp_hexstring 10, @hex OUT 
SELECT @hex 
 
------------------------------ 
0x0000000A 
     
All this procedure really does is clean up the parameters to be passed to the extended procedure 
xp_varbintohexstr before calling it. Because it's a system procedure, it can be called from any database 
without referencing the extended procedure directly. 

Faux Procedures 

There are a number of system-supplied stored procedures that are neither true system procedures nor 
extended procedures—they're implemented internally by the server itself. Examples of these include 
sp_executesql, sp_prepare, most of the sp_cursorXXXX routines, sp_reset_connection, etc. These routines 
have stubs in master..sysobjects, and are listed as extended procedures but are, in fact, implemented 
internally by the server, not within an external ODS-based DLL. You can't list their source code because it's 
part of the server itself, and you can't trace into them with a T-SQL debugger because they're not written in 
Transact-SQL. 

Executing Stored Procedures 

Executing a stored procedure can be as easy as listing it on a line by itself in a T-SQL batch, like this: 
     
sp_who 
    
You should make a habit of prefixing all stored procedure calls with the EXEC keyword. Stored procedures 
without EXEC must be the first command in a command batch. Even if that were the case initially, inserting 
additional lines before the procedure call at some later date would break your code. 
You can specify the WITH RECOMPILE option when calling a stored procedure (with or without EXEC) in 
order to force the recreation of its execution plan. This is handy when you know that factors related to the 
execution plan creation have changed enough that performance would benefit from rebuilding the plan. 

INSERT and EXEC 

The INSERT command supports calling a stored procedure in order to supply rows for insertion into a table. 
Here's an example: 
      
CREATE TABLE #locks (spid int, dbid int, objid int, objectname sysname NULL, 
indid int, type char(4), resource char(15), mode char(10), status char(6)) 
INSERT #locks (spid, dbid, objid, indid, type, resource, mode, status) 
EXEC sp_lock 
     
This is a handy way of trapping the output of a stored procedure in a table so that you can manipulate it or 
retain it for later use. Prior to the advent of cursor OUTPUT parameters, this was the only way to perform 
further work on a stored procedure's result set within Transact-SQL. 



Guru’s Guide to Transact-SQL 

270 

Note that INSERT…EXEC works with extended procedures that return result sets as well. Here's a simple 
example: 
      
CREATE TABLE #cmd_result (output varchar(8000)) 
INSERT #cmd_result 
EXEC master..xp_cmdshell 'copy errorlog.1 *.sav' 

Environmental Concerns 

A number of SQL Server environmental settings affect the execution of stored procedures. They're specified 
via the SET command and control the way that stored procedures handle quotes, nulls, cursors, BLOB fields, 
etc. The status of two of these —QUOTED_IDENTIFIER and ANSI_NULLS—is actually recorded in each 
procedure's status field in sysobjects. QUOTED_IDENTIFIER controls whether strings within double quotes 
are interpreted as object identifiers, and ANSI_NULLS controls whether non-ANSI equality comparisons with 
NULLs are allowed. Here's an example that features a quoted identifier: 
     
USE pubs 
SET QUOTED_IDENTIFIER ON 
GO 
IF OBJECT_ID('TABLE') IS NOT NULL 
  DROP PROC "TABLE" 
GO 
CREATE PROC "TABLE" @tableclause varchar(8000), 
@columnclause varchar(8000)='*', 
@whereclause varchar(8000)=NULL, 
@groupbyclause varchar(8000)=NULL, 
@havingclause varchar(8000)=NULL, 
@orderbyclause varchar(8000)=NULL, 
@computeclause varchar(8000)=NULL 
AS 
DECLARE @execstr varchar(8000) 
SET @execstr='SELECT '+@columnclause+' FROM '+@tableclause 
+ISNULL(' WHERE '+@whereclause,' ') 
+ISNULL(' GROUP BY '+@groupbyclause,' ') 
+ISNULL(' HAVING '+@havingclause,' ') 
+ISNULL(' ORDER BY '+@orderbyclause,' ') 
+ISNULL(' COMPUTE '+@computeclause,")  
EXEC(@execstr) 
GO 
SET QUOTED_IDENTIFIER OFF 
GO 
    
Thanks to SET QUOTED_IDENTIFIER, we can use a reserved word, TABLE, as the name of the procedure. 
It allows us to build our own version of the ANSI/ISO SQL TABLE command, which Transact-SQL does not 
implement. Since it's named using a reserved word, executing such a procedure requires SET 
QUOTED_IDENTIFIER as well: 
     
SET QUOTED_IDENTIFIER ON 
GO 
"TABLE" 'sales','title_id, SUM(qty) AS  
 

sales','title_id<>''PS2091''','title_id',DEFAULT,'2 DESC' 
GO 
SET QUOTED_IDENTIFIER OFF 
GO 
    
(Results abridged) 
     
title_id  sales 
--------  ----------- 



Chapter 15. Stored Procedures and Triggers 

271 

PC8888   50 
BU1032   45 
MC3021   40 
TC3218   40 
BU2075   35 
 
    
Note that I don't recommend you use reserved words for object identifiers. In my opinion, this adds needless 
confusion to your code. It is, however, something you should be aware of because other developers 
sometimes do it. 
Rather than allowing developers to name procedures with reserved words, the more common use of SET 
QUOTED_IDENTIFIER with stored procedures is to facilitate references to objects whose names contain 
reserved words, spaces, or other normally disallowed characters. Here's an example: 
     
USE Northwind 
SET QUOTED_IDENTIFIER ON 
GO 
IF OBJECT_ID('dbo.listorders') IS NOT NULL 
   DROP PROC dbo.listorders 
GO 
CREATE PROC dbo.listorders 
AS 
SELECT * FROM "Order Details" 
GO 
SET QUOTED_IDENTIFIER OFF 
GO 
 
EXEC listorders 
    
(Results abridged) 
     
OrderID    ProductID   UnitPrice       Quantity Discount 
---------- ----------- --------------  -------- ------------------------ 
10248      11          14.0000         12       0.0 
10248      42          9.8000          10       0.0 
10248      72          34.8000         5        0.0 
10249      14          18.6000         9        0.0 
10249      51          42.4000         40       0.0 
10250      41          7.7000          10       0.0 
    
The table name " Order Details " (from the Northwind sample database) contains both a reserved word and a 
space, so it can't be referenced without special handling. In this case, we turned on quoted identifier support 
and enclosed the table name in double quotes, but a better way would be to enclose it in square brackets 
(e.g., [Order Details]) because this alleviates the need to change any settings. Note that square bracket 
delimiters are a SQL Server extension—they're not a part of the ANSI/ISO SQL standard. 
The ANSI_NULLS setting is equally important to stored procedures. It controls whether non-ANSI equality 
comparisons with NULLs are allowed. This is particularly important with stored procedure parameters that can 
allow NULLs. Here's an example: 
     
USE Northwind 
IF (OBJECT_ID('dbo.ListRegionalEmployees') IS NOT NULL) 
   DROP PROC dbo.ListRegionalEmployees 
GO 
SET ANSI_NULLS OFF 
GO 
CREATE PROC dbo.ListRegionalEmployees @region nvarchar(30) 
AS 
 
SELECT EmployeeID, LastName, FirstName, Region FROM employees 
WHERE Region=@region 
 



Guru’s Guide to Transact-SQL 

272 

GO 
SET ANSI_NULLS ON 
GO 
 
EXEC listregionalemployees NULL 
 
EmployeeID     LastName     FirstName Region 
----------     ------------ --------- ------------- 
5              Buchanan     Steven    NULL 
6              Suyama       Michael   NULL 
7              King         Robert    NULL 
9              Dodsworth    Anne      NULL 
    
If not for SET ANSI_NULLS, the procedure would be unable to compare a NULL @region successfully with 
the Region column in the Northwind Employees table. The query would never return any rows because, 
according to the ANSI spec, one NULL value never equals another. The handiness of this becomes more 
obvious when a procedure defines a number of NULLable parameters like @region. Without the ability to test 
NULL values for equality in a manner identical to non-NULL values, each NULLable parameter would require 
its own special IS NULL handling, perhaps multiplying the amount of code necessary to implement the query. 
The fact that the QUOTED_IDENTIFIER and ANSI_NULLS settings are saved with each stored procedure 
means that you can count on them to have their original values when the procedure is executed. SQL Server 
restores them to the values they had when the procedure was created each time it's executed and then resets 
them afterward. So, if we have this code: 
     
SET ANSI_NULLS ON 
EXEC listregionalemployees NULL 
    
the stored procedure still executes as though ANSI_NULLS is set to OFF. Note that you can check the saved 
status of a procedure's QUOTED_IDENTIFIER and ANSI_NULLS settings via the OBJECTPROPERTY() 
function. Here's an example: 
     
USE pubs 
SELECT OBJECTPROPERTY(OBJECT_ID('table'),'ExecIsQuotedIdentOn') AS 'QuotedIdent' 
 
USE Northwind 
SELECT OBJECTPROPERTY(OBJECT_ID('listregionalemployees'),'ExecIsAnsiNullsOn') AS  
 

'AnsiNulls' 
 
QuotedIdent 
----------- 
1 
 
AnsiNulls 
----------- 
0 
    
There are numerous other commands that affect how Transact-SQL code—both within and outside stored 
procedures—executes. Commands like SET TEXTSIZE, SET CURSOR_ CLOSE_ON_COMMIT, and SET 
IMPLICIT_TRANSACTIONS all affect how a stored procedure's code carries out its duties. If you have 
procedure code that relies on a SET command to have a particular setting, the wise thing to do is establish 
that setting as early as possible in the procedure and document why it's necessary via comments. 

Parameters 

Parameters can be passed to stored procedures by name or by position. Here's an example of each method: 
     
EXEC sp_msforeachtable @command1='sp_help "?"', @replacechar = '?' 
 
EXEC sp_msforeachtable 'sp_help "?"', '?' 



Chapter 15. Stored Procedures and Triggers 

273 

    
The obvious advantage to referencing parameters by name is that they can be specified out of order. 
You can force a parameter for which a default value has been dened to use that default by omitting it 
altogether or by passing it the DEFAULT keyword, like so: 
     
EXEC sp_msforeachtable @command1='sp_help "?"', @replacechar = DEFAULT 
 
    
You can specify NULL to supply individual parameters with NULL values. That's sometimes handy for 
procedures that expose special features when parameters are omitted or set to NULL. Here's an example: 
     
EXEC sp_who @loginame=NULL 
 
    
(Results abridged) 
     
spid     status                         loginame 
------   ------------------------------ --------------- 
1        sleeping                       sa 
2        background                     sa 
3        background                     sa 
6        background                     sa 
7        sleeping                       CALIGULA\KHEN 
8        sleeping                       CALIGULA\KHEN 
9        sleeping                       CALIGULA\KHEN 
 
    
In this example, sp_who returns a list of all active connections because its lone parameter is NULL. When a 
valid login name is specified, sp_who returns just those connections established by the specified login name. 
When the @loginame parameter is NULL, all connections are listed. The same thing would happen if 
@loginame was omitted altogether. I've specified NULL here for illustration purposes. 

Output Parameters 

Output parameters allow values to be returned from stored procedures. These parameters can be integers, 
character strings, dates, and even cursors. Here's an example: 
      
USE pubs 
IF OBJECT_ID('dbo.listsales') IS NOT NULL 
   DROP PROC dbo.listsales 
GO 
CREATE PROC dbo.listsales @bestseller tid OUT, @topsales int OUT, 
       @salescursor cursor varying OUT 
AS 
 
SELECT @bestseller=bestseller, @topsales=totalsales 
FROM ( 
     SELECT TOP 1 title_id AS bestseller, SUM(qty) AS totalsales 
     FROM sales 
     GROUP BY title_id 
     ORDER BY 2 DESC) bestsellers 
 
DECLARE s CURSOR 
LOCAL 
FOR SELECT * FROM sales  
OPEN s 
SET @salescursor=s 
RETURN(0) 
 
DECLARE @topsales int, @bestseller tid, @salescursor cursor 



Guru’s Guide to Transact-SQL 

274 

EXEC listsales @bestseller OUT, @topsales OUT, @salescursor OUT 
SELECT @bestseller, @topsales 
 
FETCH @salescursor 
CLOSE @salescursor 
DEALLOCATE @salescursor 
------ ----------- 
PS2091 191 
 
stor_id  ord_num         ord_date                 qty     payterms  title_id 
------- ---------------- ------------------------ ------  --------- -------- 
6380     6871            1994-09-14 00:00:00.000  5       Net 60    BU1032 
 
     
Output parameters are identified with the OUTPUT keyword (which can be abbreviated as "OUT"). Notice the 
use of the OUT keyword in the procedure definition as well as in the EXEC parameter list. Both the procedure 
and its caller must specify which parameters are output parameters. 
Cursor output parameters are a sensible means of returning a result set to a caller. Notice the use of the 
varying keyword with the cursor parameter in the procedure definition. This keyword is required with cursor 
parameters and indicates that the return value is nonscalar—that is, it returns more than a single value. 
Cursor parameters can only be output parameters, so the OUT keyword is required as well. 

Result Codes 

Procedures return result codes via the RETURN command. A return code of 0 indicates success, values –1 
through –14 indicate different types of failures, and values –15 through –99 are reserved for future use. 
Table15.1 lists the meaning of codes –1 through –14: 

Table 15.1. Stock return codes and their meanings. 
Code  Meaning  

–1 Object missing 
–2 Data type error occurred 
–3 Process chosen as deadlock victim 
–4 Permission error 
–5 Syntax error 
–6 Miscellaneous user error 
–7 Resource error 
–8 Nonfatal internal error 
–9 System limit reached 
–10 Fatal internal inconsistency error 
–11 Fatal internal inconsistency error 
–12 Corrupt table or index 
–13 Corrupt database 
–14 Hardware error 
You can access a procedure's return code by assigning it to an integer value, like this: 
      
DECLARE @res int 
EXEC @res=sp_who 
 
     

Listing Procedure Parameters 

You can list a procedure's parameters (which include its return code—considered parameter0) using the 
undocumented procedure sp_procedure_params_rowset. Here's an example: 
      



Chapter 15. Stored Procedures and Triggers 

275 

EXEC sp_procedure_params_rowset 'sp_MSforeachtable' 
 
     
(Results abridged) 
      
PROCEDURE_CATALOG     PROCEDURE_SCHEMA     PROCEDURE_NAME     PARAMETER_NAME      
 

ORDINAL_POSITION     PARAMETER_TYPE 
-----------------     ----------------     -----------------  --------------      
 

----------------     -------------- 
master                dbo                  sp_MSforeachtable;1 RETURN_VALUE      
0         
 

             4 
master                dbo                  sp_MSforeachtable;1 @command1         
1         
 

             1 
master                dbo                  sp_MSforeachtable;1 @replacechar      
2         
 

             1 
master                dbo                  sp_MSforeachtable;1 @command2         
3         
 

             1 
master                dbo                  sp_MSforeachtable;1 @command3         
4         
 

             1 
master                dbo                  sp_MSforeachtable;1 @whereand         
5         
 

             1 
master                dbo                  sp_MSforeachtable;1 @precommand       
6         
 

             1 
master                dbo                  sp_MSforeachtable;1 @postcommand      
7         
 

             1 
 
     

General Parameter Notes 

• Provide default values for parameters when it makes sense. Parameter defaults are limited to 
constants and the NULL value. 

• Check parameters for invalid or missing values early in your stored procedures. 
• Use human-friendly parameter names so that parameters can be passed by name easily. 
• Parameter names are local to stored procedures. You can use the same name in multiple procedures. 
• You can find stored procedure parameter information in the syscolumns system table (that's where 

sp_procedure_params_rowset gets its info). 
• Stored procedures support up to 1024 parameters. The number of stored procedure local variables is 

limited only by available memory. 

Important Automatic Variables 



Guru’s Guide to Transact-SQL 

276 

By their very nature, automatic variables (what the Books Online now call "functions") are usually accessed 
from within stored procedures. This makes most of them relevant in some way to stored procedures. However, 
a few of them are more relevant to stored procedure use than the others. Table15.2 summarizes them. 

Table 15.2. Stored procedure&ndash;related automatic variables. 
Variable Name  Returns  

@@NESTLEVEL The current procedure nesting level (see "Nesting" later) 
@@OPTIONS A bitmap of the currently specified user options 
@@PROCID The object ID of the current procedure 
@@SPID The process ID of the current process 
@@TRANCOUNT The current transaction nesting level 

Flow Control Language 

No discussion of stored procedures would be complete without covering control-of-flow language statements. 
These are referred to as "flow control" or "control-of-flow" statements because they control the flow of 
execution through a stored procedure or batch. Transact-SQL flow control language statements include 
IF…ELSE, WHILE, GOTO, RETURN, WAITFOR, BREAK, CONTINUE, and BEGIN..END. Without repeating 
what's already covered quite adequately by the Books Online, here's a simple procedure that illustrates all of 
them: 
     
USE pubs 
IF OBJECT_ID('dbo.listsales') IS NOT NULL 
  DROP PROC dbo.listsales 
GO 
CREATE PROC dbo.listsales @title_id tid=NULL 
AS 
 
IF (@title_id='/?') GOTO Help     -- Here's a basic IF 
 
-- Here's one with a BEGIN..END block 
IF NOT EXISTS(SELECT * FROM titles WHERE title_id=@title_id) BEGIN 
   PRINT 'Invalid title_id' 
   WAITFOR DELAY '00:00:03' -- Delay 3 secs to view message 
   RETURN -1 
END 
 
IF NOT EXISTS(SELECT * FROM sales WHERE title_id=@title_id) BEGIN 
   PRINT 'No sales for this title' 
   WAITFOR DELAY '00:00:03' -- Delay 3 secs to view message 
   RETURN -2 
END 
 
DECLARE @qty int, @totalsales int 
SET @totalsales=0 
 
DECLARE c CURSOR 
FOR SELECT qty FROM sales WHERE title_id=@title_id 
 
OPEN c 
 
FETCH c INTO @qty 
WHILE (@@FETCH_STATUS=0) BEGIN    -- Here's a WHILE loop 
  IF (@qty<0) BEGIN 
    Print 'Bad quantity encountered' 
    BREAK     -- Exit the loop immediately 
  END ELSE IF (@qty IS NULL) BEGIN 
   Print 'NULL quantity encountered -- skipping' 
   FETCH c INTO @qty 



Chapter 15. Stored Procedures and Triggers 

277 

   CONTINUE -- Continue with the next iteration of the loop 
  END 
 SET @totalsales=@totalsales+@qty 
 FETCH c INTO @qty 
END 
 
CLOSE c 
DEALLOCATE c 
 
SELECT @title_id AS 'TitleID', @totalsales AS 'TotalSales' 
RETURN 0      -- Return from the procedure indicating success 
 
Help: 
EXEC sp_usage @objectname='listsales',  
  @desc='Lists the total sales for a title', 
  @parameters='@title_id="ID of the title you want to check"', 
  @example='EXEC listsales "PS2091"', 
  @author='Ken Henderson', 
  @email='khen@khen.com', 
  @version='1', @revision='0', 
  @datecreated='19990803', @datelastchanged='19990818' 
WAITFOR DELAY '00:00:03' -- Delay 3 secs to view message 
RETURN -1 
GO 
 
EXEC listsales 'PS2091' 
EXEC listsales 'badone' 
EXEC listsales 'PC9999' 
TitleID TotalSales 
------- ----------- 
PS2091  191 
 
Invalid title_id 
No sales for this title 
 

Errors 

Stored procedures report errors via return codes and the RAISERROR command. RAISERROR doesn't 
change the flow of the procedure, it merely displays an error message (optionally writing it to the SQL Server 
error log and the NT application event log) and sets the @@ERROR automatic variable. RAISERROR can 
reference predefined error messages that reside in the sysmessages table (you create these with 
sp_addmessage), or you can supply it with a custom message string. If you supply a custom message during 
the call to RAISERROR, the error number is set to 50,000. RAISERROR can format messages similarly to the 
C printf() function, allowing you to supply your own arguments for the messages it displays. 
RAISERROR allows both a severity and a state to be specified with each message. Severity values less than 
16 produce informational messages in the system event log (when logged), a severity of16 produces a 
warning message in the event log, and severity values greater than16 produce error messages in the event 
log. Severity values up through 18 can be specified by any user; severity values 19–25 are reserved for 
members of the sysadmin role and require the use of the WITH LOG option. Note that severity values over20 
are considered fatal and cause the client connection to be terminated. 
State is an informational value that you can use to indicate state information to your front-end application—it 
has no predefined meaning to SQL Server. Raising an error with a state of 127 will cause the ISQL and OSQL 
utilities to set the operating system ERRORLEVEL value to the error number returned by RAISERROR. Note 
that, unlike releases prior to 7.0, the ISQL utility no longer exits immediately when a state of 127 is used—it 
merely sets ERRORLEVEL; OSQL, by contrast, exits immediately. So if we have this SQL batch: 
     
RAISERROR('Setting the OS ERRORLEVEL variable',16,127) WITH NOWAIT 
PRINT 'Prior to 7.0, execution would never make it here in ISQL' 
 



Guru’s Guide to Transact-SQL 

278 

    
and we execute it from this operating system command batch: 
     
@ECHO OFF 
isql -Usa -P -iraiserror01.sql 
ECHO %ERRORLEVEL% 
osql -Usa -P -iraiserror01.sql 
ECHO %ERRORLEVEL% 
 
    
here's what happens: 
     
D:\>RAISERROR 
1> 2> 3> Msg 50000, Level 16, State 127, Server CALIGULA, Line 1 
Setting the OS ERRORLEVEL variable 
Prior to 7.0, execution would never make it here in ISQL 
50000 
1> 2> 3> Msg 50000, Level 16, State 127, Server CALIGULA, Procedure , Line 1 
[Microsoft][ODBC SQL Server Driver][SQL Server]Setting the OS ERRORLEVEL 
variable 
50000 
 
    
This is handy for exiting a command batch immediately without causing undue alarm or generating 
unnecessary entries in the system event log. Though you could raise a message with a high severity level to 
terminate the connection, that creates log entries and potentially raises a red flag over something that's 
completely normal—aborting a batch before processing it completely. And though you could also abort the 
batch with the EXIT command, the operating system ERRORLEVEL wouldn't be set, so you'd have no way of 
knowing why the batch exited. 
RAISERROR supports a handful of options that affect its behavior. The WITH LOG option copies the error 
message to the NT event log (assuming SQL Server is running on Windows NT) and the SQL Server error log 
regardless of whether the message was defined using the with_log option of sp_addmessage. The WITH 
NOWAIT option causes the message to be returned immediately to the client. The WITH SETERROR option 
forces the automatic @@ERROR variable to return the last error number raised, regardless of the severity of 
the error message. 
The system procedure sp_addmessage is used to add messages to the sysmessages table that RAISERROR 
can then use. User messages should have error numbers of 50,000 or higher. The chief advantage of using 
SQL Server's system messages facility is that it's language independent. Because you specify a language 
with each message you add, you can have several messages with the same error number but with different 
language indicators. Then, based on the language setting the user chooses when installing SQL Server, the 
appropriate message will be displayed when your code calls RAISERROR. 
Because RAISERROR can display a message and set the @@ERROR variable in one fell swoop, it's 
sometimes used for tasks other than displaying error messages. Its printf()-like formatting ability makes it ideal 
for formatting strings other than error messages. Here's an example that features RAISERROR used to list a 
table: 
     
DECLARE c CURSOR 
FOR SELECT title_id, SUM(qty) as sales FROM sales GROUP BY title_id 
 
DECLARE @title_id tid, @qty int 
 
OPEN c 
 
RAISERROR('Starting loop',1,1) -- Seed @@ERROR 
WHILE (@@ERROR<=1) BEGIN 
   FETCH c INTO @title_id, @qty 
   IF (@@FETCH_STATUS=0) 
     RAISERROR('Title ID %s has sold %d units',1,1,@title_id,@qty) 
   ELSE 
   BREAK 
END 



Chapter 15. Stored Procedures and Triggers 

279 

 
CLOSE c 
 
DEALLOCATE c 
Msg 50000, Level 1, State 50000 
Starting loop 
Msg 50000, Level 1, State 50000 
Title ID BU1032 has sold 45 units 
Msg 50000, Level 1, State 50000 
Title ID BU1111 has sold 25 units 
Msg 50000, Level 1, State 50000 
Title ID BU2075 has sold 35 units 
Msg 50000, Level 1, State 50000 
Title ID BU7832 has sold 15 units 
Msg 50000, Level 1, State 50000 
Title ID MC2222 has sold 10 units 
Msg 50000, Level 1, State 50000 
Title ID MC3021 has sold 40 units 
Msg 50000, Level 1, State 50000 
Title ID MC3026 has sold 30 units 
Msg 50000, Level 1, State 50000 
Title ID PC1035 has sold 30 units 
Msg 50000, Level 1, State 50000 
Title ID PC8888 has sold 50 units 
Msg 50000, Level 1, State 50000 
Title ID PS1372 has sold 20 units 
Msg 50000, Level 1, State 50000 
Title ID PS2091 has sold 191 units 
Msg 50000, Level 1, State 50000 
Title ID PS2106 has sold 25 units 
Msg 50000, Level 1, State 50000 
Title ID PS3333 has sold 15 units 
Msg 50000, Level 1, State 50000 
Title ID PS7777 has sold 25 units 
Msg 50000, Level 1, State 50000 
Title ID TC3218 has sold 40 units 
Msg 50000, Level 1, State 50000 
Title ID TC4203 has sold 20 units 
Msg 50000, Level 1, State 50000 
Title ID TC7777 has sold 20 units 
    
Of course, the obligatory "Msg…" lines would be a bit of an annoyance, but you could strip these out in your 
front-end application if you decided to use this approach. 

@@ERROR 

Make a habit of checking @@ERROR after significant code in your procedures, especially after data 
modification operations. The hallmark of robust code is thorough error checking, and until Transact-SQL 
supports structure exception handling, @@ERROR is the best way to accomplish this. 

xp_logevent 

You can use the xp_logevent system procedure to add a message to the SQL Server error log or the NT 
event log. The main difference between this approach and calling RAISERROR is that no error message is 
sent to the client. The message number or string you pass to xp_logevent is silently logged without client 
notification. 

Nesting 



Guru’s Guide to Transact-SQL 

280 

Stored procedures can be nested up to 32 levels deep. The @@NESTLEVEL automatic variable indicates the 
level of nesting at any given time. A nesting level of 0 is returned at the command batch level, 1within each 
stored procedure called from level0 (and from first-level triggers), 2for each proc called from level1, and so 
forth. Objects (including temporary tables) and cursors created within a stored procedure are visible to all 
objects it calls. Objects and cursors created at level0 are visible to all objects. 

Recursion 

Transact-SQL supports recursion. Recursion can be defined as a method of solving a problem wherein the 
solution is arrived at by repetitively applying it to subsets of the problem. An obvious use of recursion is in 
creating parsers and performing numeric computations that lend themselves to repetitive evaluation by the 
same processing logic. Here's a an example that features a stored procedure that calculates the factorial of a 
number: 
     
SET NOCOUNT ON 
USE master 
IF OBJECT_ID('dbo.sp_calcfactorial') IS NOT NULL 
   DROP PROC dbo.sp_calcfactorial 
DECLARE @typestr varchar(20) 
SET @typestr='decimal('+CAST(@@MAX_PRECISION AS varchar(2))+',0)' 
IF TYPEPROPERTY('bigd','precision') IS NOT NULL 
   EXEC sp_droptype 'bigd' 
 
EXEC sp_addtype 'bigd',@typestr -- Add a custom type corresponding to the 
@@MAX_PRECISION  
 

variable 
 
GO 
CREATE PROC dbo.sp_calcfactorial @base_number bigd, @factorial bigd OUT 
AS 
SET NOCOUNT ON 
DECLARE @previous_number bigd 
 
IF ((@base_number>26) and (@@MAX_PRECISION<38)) OR (@base_number>32) BEGIN 
   RAISERROR('Computing this factorial would exceed the server''s max. numeric 
precision  
 

of %d or 
   the max. procedure nesting level of 32',16,10,@@MAX_PRECISION)  
   RETURN(-1) 
END 
IF (@base_number<0) BEGIN 
    RAISERROR('Can''t calculate negative factorials',16,10) 
    RETURN(-1) 
END 
 
IF (@base_number<2) SET @factorial=1 -- Factorial of 0 or 1=1 
ELSE BEGIN 
     SET @previous_number=@base_number-1 
     EXEC sp_calcfactorial @previous_number, @factorial OUT -- Recursive call 
     IF (@factorial=-1) RETURN(-1) -- Got an error, return 
     SET @factorial=@factorial*@base_number 
     IF (@@ERROR<>0) RETURN(-1) -- Got an error, return 
END 
RETURN(0) 
GO 
 
DECLARE @factorial bigd 
EXEC sp_calcfactorial 26, @factorial OUT 



Chapter 15. Stored Procedures and Triggers 

281 

SELECT @factorial 
 
Type added. 
 
Cannot add rows to sysdepends for the current stored procedure because it depends 
on the missing object 'sp_calcfactorial'. The stored procedure will still be 
created. 
 
------------------------------ 
403291461126605635584000000 
    
The first thing this procedure does is create a decimal-based user-dened data type that matches the 
@@MAX_PRECISION automatic variable. This allows the procedure to use as large a number as the server 
can handle. Next, the procedure checks to make sure it has been passed a valid number for which to compute 
a factorial. It then recursively calls itself to perform the computation. As you can see, with the default 
maximum numeric precision of28, SQL Server can handle numbers in excess of 400 septillion! [1]  

[1] This assumes the definition of septillion as used in the united States: 1 followed by 24 zeros. In Great Britain and 
Germany, a septillion is equal to 1 followed by 42 zeros. 

Autostart Procedures 

Autostart procedures have lots of practical uses. You can use them to perform start-up processes and other 
administrative work. You can use them to load commonly used procedures into the procedure cache with 
each server boot. You use the sp_procoption stored procedure to flag a stored procedure as an autostart 
routine, like so: 
     
EXEC sp_procoption 'sp_databases','startup',true 
 
    
Some notes about autostart procedures: 

• They must reside in the master database. 
• They must be owned by a member of the sysadmin role. 
• They cannot require any parameters. 
• They cannot return a result set. 
• You can pass trace flag 4022 (-T4022) on the SQL Server command line to prevent autostart routines 

from executing. 

Encryption 

You can encrypt the source code that's stored in syscomments for a stored procedure, view, or trigger using 
the WITH ENCRYPTION option when you create the object. This prevents users from viewing your source 
code with tools such as Enterprise Manager, but it also thwarts stored procedure debuggers, like the one 
included with the Enterprise Edition of Visual Studio. Encrypted objects have the third bit of the texttype 
column in syscomments set. 
Note that once you've encrypted an object, there's no supported way of decrypting it. You can't view it, nor 
can members of the sysadmin role or anyone else. 

Triggers 

A trigger is a special type of stored procedure that executes when a specified DML operation (an INSERT, 
DELETE, or UPDATE or any combination of them) occurs. Triggers are constructed via the CREATE 
TRIGGER command and are attached to tables. When its host table is dropped, so is the trigger. 
Most of the details of stored procedure programming apply equally well to triggers. In fact, since you can call a 
stored procedure from a trigger, you can effectively do anything in a trigger that a stored procedure can do. 
One thing that triggers don't normally do is return result sets. Most front ends have no way of handling trigger-



Guru’s Guide to Transact-SQL 

282 

generated result sets, so you just don't see it in production code. Note that SQL Server doesn't permit triggers 
to return result codes. 
Triggers re once per statement, not per row, regardless of the number of rows changed by a given DML 
statement. You can set up as many triggers as you want (well, up to 2billion per database, anyway) for a 
table—triggers associated with the same DML statement will re in succession in no particular order. 
DRI (declarative referential integrity) constraints have precedence over triggers. This means that a violation of 
a DRI constraint by a DML command will prevent triggers from executing. 
Inside triggers, you can check which columns are being updated by a DML operation via the UPDATE() and 
COLUMNS_UPDATE() functions. The UPDATE() function returns true or false based on whether the value of 
a specified column is being set (regardless of whether it's actually changing). COLUMNS_UPDATED() returns 
a bitmap representing which columns are being set. 
Triggers can cause other triggers to re if the nested triggers option has been enabled with sp_congure. 
Triggers can re themselves recursively if the recursive triggers database option has been enabled. The 
@@NESTLEVEL automatic variable returns 1 within a rst-level trigger, 2within one it causes to re, 3for any it 
causes to re, and so forth. 
When a user transaction is not active, a trigger and the DML operation that red it are considered a single 
transaction. When a trigger generates a fatal error or executes a ROLLBACK TRANSACTION, the currently 
active transaction is rolled back and the current command batch is canceled. 
SQL Server exposes special logical tables for use by triggers: the inserted and deleted tables. For INSERT 
operations, the inserted table lists the row(s) about to be appended to the table. For DELETE operations, the 
deleted table lists the row(s) about to be removed from the table. For UPDATE operations, the deleted table 
lists the old version of the row(s) about to be updated, and the inserted table lists the new version. You can 
query these tables to allow or prevent database modifications based on the columns or data the operations 
are attempting to modify. Rolling back the current transaction is normally the way that triggers are aborted 
since SQL Server's Transact-SQL doesn't support a ROLLBACK TRIGGER command (àla Sybase). Note that 
you can't modify these logical tables—they're for inspection only. 
Nonlogged operations (operations that do not generate row modification log records) do not re triggers. So, for 
example, even though TRUNCATE TABLE deletes all the rows in a table, those row deletions aren't logged 
individually and therefore do not re any delete triggers that may have been dened for the table. 
You can disable a trigger via the ALTER TABLE…DISABLE TRIGGER command. Disabled triggers can be 
reenabled using ALTER TABLE…ENABLE TRIGGER. Here are a few examples: 
     
ALTER TABLE sales 
DISABLE TRIGGER SalesQty_INSERT_UPDATE 
 
ALTER TABLE sales 
ENABLE TRIGGER SalesQty_INSERT_UPDATE 
 
ALTER TABLE sales 
DISABLE TRIGGER ALL 
 
ALTER TABLE sales 
ENABLE TRIGGER ALL 
 
    
Triggers re just after the work has been completed by the DML statement but before it has been committed to 
the database. A DML statement's execution plan branches to any triggers it fires just before returning. If the 
trigger permits the operation to proceed, and if no user transaction is present, any changes made by the DML 
statement are then committed to the database. 
Here are a few trigger examples: 
     
SET NOCOUNT ON 
USE pubs 
DROP TRIGGER SalesQty_INSERT_UPDATE 
GO 
 
CREATE TRIGGER SalesQty_INSERT_UPDATE ON sales FOR INSERT, UPDATE AS 
 
IF @@ROWCOUNT=0 RETURN -- No rows affected, exit immediately 
 
IF (UPDATE(qty)) AND (SELECT MIN(qty) FROM inserted)<10 BEGIN 



Chapter 15. Stored Procedures and Triggers 

283 

    RAISERROR('Minimum order is 10 units',16,10)  
    ROLLBACK TRAN 
    RETURN 
END 
GO 
 
-- Test a single-row INSERT 
BEGIN TRAN 
   INSERT sales VALUES (6380,'ORD9997',GETDATE(),5,'Net 60','BU1032') 
IF @@TRANCOUNT>0 ROLLBACK TRAN 
GO 
 
-- Test a multirow INSERT 
BEGIN TRAN 
   INSERT sales 
   SELECT stor_id, ord_num+'A', ord_date, 5, payterms, title_id FROM sales 
IF @@TRANCOUNT>0 ROLLBACK TRAN 
GO 
 
DROP TRIGGER Sales_DELETE 
GO 
CREATE TRIGGER Sales_DELETE ON sales FOR DELETE AS 
 
IF @@ROWCOUNT=0 RETURN -- No rows affected, exit immediately 
 
IF (@@ROWCOUNT>1) BEGIN 
  RAISERROR('Deletions of more than one row at a time are not permitted',16,10)  
  ROLLBACK TRAN 
  RETURN 
END 
GO 
BEGIN TRAN 
  DELETE sales 
IF @@TRANCOUNT>0 ROLLBACK TRAN 
GO 
 
DROP TRIGGER Salesord_date_qty_UPDATE 
GO 
CREATE TRIGGER Salesord_date_qty_UPDATE ON sales FOR INSERT, UPDATE AS 
IF @@ROWCOUNT=0 RETURN -- No rows affected, exit immediately 
 
-- Check to see whether the 3rd and 4th columns are being updated simultaneously 
IF (COLUMNS_UPDATED() & (POWER(2,3-1) | POWER(2,4-1)))=12 BEGIN 
 
UPDATE s SET payterms='Cash' 
FROM sales s JOIN inserted i ON (s.stor_id=i.stor_id AND s.ord_num=i.ord_num)  
 
IF (@@ERROR<>0) -- UPDATE generated an error, rollback transaction 
   ROLLBACK TRANSACTION 
RETURN 
 
END 
GO 
 
-- Test with a single-row UPDATE 
BEGIN TRAN 
  UPDATE sales SET ord_date=GETDATE(), qty=15 
  WHERE stor_id=7066 and ord_num='A2976' 
 
  SELECT * FROM sales 
  WHERE stor_id=7066 and ord_num='A2976' 



Guru’s Guide to Transact-SQL 

284 

IF @@TRANCOUNT>0 ROLLBACK TRAN 
GO 
 
-- Test with a multirow UPDATE 
BEGIN TRAN 
   UPDATE sales SET ord_date=GETDATE(), qty=15 
   WHERE stor_id=7066 
 
   SELECT * FROM sales 
   WHERE stor_id=7066 
IF @@TRANCOUNT>0 ROLLBACK TRAN 
 
Server: Msg 50000, Level 16, State 10, Procedure CheckSalesQty, Line 3 
Minimum order is 10 units 
Server: Msg 50000, Level 16, State 10, Procedure CheckSalesQty, Line 3 
Minimum order is 10 units 
Server: Msg 50000, Level 16, State 10, Procedure CheckSalesDelete, Line 3 
Deletions of more than one row at a time are not permitted 
 
stor_id ord_num          ord_date                qty     payterms   title_id 
------- ---------------- ----------------------- ------  ---------  --------  
7066    A2976            1999-06-13 01:10:16.193 15      Cash       PC8888 
 
stor_id ord_num          ord_date                qty     payterms   title_id 
------- ---------------- ----------------------- ------  ---------  -------- 
7066    A2976            1999-06-13 01:10:16.243 15      Cash       PC8888 
7066    QA7442.3         1999-06-13 01:10:16.243 15      Cash       PS2091 
 
    
Some general trigger notes: 

• Make sure your triggers allow for the possibility that more than one row could be altered at once. 
Triggers that work fine with single-row operations often break when multirow operations come their 
way. Not allowing for multirow updates is the single most common error that trigger neophytes make. 

• Begin each trigger by checking @@ROWCOUNT to see whether any rows have changed. If none 
have, exit immediately since there's nothing for the trigger to do. 

• Use the UPDATE() and COLUMNS_UPDATED() functions to ensure the values you're wanting to 
verify have actually changed. 

• Never wait for user input or any other user event within a trigger. 
• Check for errors after significant operations within your triggers, especially DML operations. 

Commands within triggers should check for errors just as stored procedures should. 
• Keep operations within a trigger to a minimum. Triggers should execute as quickly as possible to keep 

from adversely affecting system performance. 
• Provide descriptive error messages without being loquacious. Return user messages rather than 

obscure system error messages when possible. 
• Modularize your triggers by locating code that's executed by multiple triggers or that's lengthy or 

complex in separate stored procedures. 
• Check triggers that enforce referential integrity for robustness. Try every combination of columnar 

updates to be sure all scenarios are covered. 
• Write a test script for every trigger you build. Make sure it tests every situation the trigger is supposed 

to handle. 

Debugging Procedures 

The Enterprise Edition of Visual Studio, as well as various third-party tools, allows Transact-SQL stored 
procedures to be debugged. This means that you can step into stored procedures called from Visual Studio 
projects such as VB and VC++ applications. You can set breakpoints, establish watches, and generally do 
what debuggers are designed to do—debug code. 



Chapter 15. Stored Procedures and Triggers 

285 

The interface by which this occurs is known as the SQL Server Debug Interface, or SDI for short. It was 
originally introduced with SQL Server 6.5 and has now been completely integrated with Visual Studio. 
Some notes on debugging Transact-SQL with the SDI: 

• SDI is implemented via the sp_sdidebug pseudo procedure (see the section "Faux Procedures" 
earlier in the chapter for more information on "pseudo" procedures). 

• You should run SQL Server under a user account, not the LocalSystem account, when debugging 
because running under LocalSystem disables breakpoints. 

• When debugging on the same machine as your server, run the server under the same user context as 
the debugger. 

• Ensure that you can run SQL Server as a console app rather than a service. 
• On Windows NT, SDI messages are written to the event log under MSDEVSDI. 

Summary 

In this chapter, you explored many of the nuances and idiosyncrasies of building stored procedures and 
triggers. You learned how to construct user as well as system procedures and how to pass parameters to and 
from the procedures you create. You became familiar with some of the internals of the stored procedure 
execution process, and you learned how triggers work. You became acquainted with debugging stored 
procedures, and you learned about fringe elements of stored procedure creation such as encryption and 
execution plan recompilation. 





Chapter 16. Transact-SQL Performance Tuning 

287 

Chapter 16. Transact-SQL Performance Tuning 
Good engineering is the difference between code running in eight minutes or eight hours. It 
affects real people in real ways. It's not a "matter of opinion" any more than a bird taking flight 
is a "matter of opinion."  

—H. W. Kenton 

General SQL Server performance tuning is outside the scope of this book. That subject alone could easily fill 
several volumes on its own. Instead, the focus of this chapter is on tuning the performance of Transact-SQL 
queries. The options are many and the tools are sometimes complex, but there are a number of specific 
techniques you can employ to write optimal Transact-SQL code and to improve the performance of queries 
that don't perform acceptably well. 

General Performance Guidelines 

• The best thing you can do to ensure the code you write performs optimally is to deepen the level of 
expertise on your development team. Good developers write good code. It pays to grow development 
talent through aggressive training. None of us was born knowing what a correlated subquery is. 
Investment in people often yields long-term benefits that are difficult if not impossible to obtain 
otherwise. 

• Identify and thoroughly investigate your application's key database operations and transactions as 
early in the development process as possible. Knowing these well early on and addressing them as 
soon as possible can mean the difference between a successful release and a fiasco. 

• Go into every project you build—from small ones to mammoth ones—assuming that no amount of 
performance tuning will rectify poor application or database design. It's essential to get these right up 
front. 

• Define performance requirements in terms of peak usage. Making a general statement like "The 
system must handle five hundred users" is not terribly useful. First, will all these users be logged in 
simultaneously? What's the peak number of users? Second, what will they be doing? When is the 
server likely to have to work hardest? When it comes to predicting real-world application performance, 
TPS benchmark numbers are relative indicators at best. Being as intimate as possible with the real 
stress points of your application is the key to success. The devil is in the details. 

• Keep in mind that sometimes perception dictates reality. This is particularly true with interactive 
applications. Sometimes it's more important to return control to an application quickly than to perform 
a query as efficiently as possible. The SELECT statement's FAST n hint allows you to return control 
quickly to the calling application, though using it may actually cause the query to take longer to run to 
completion. Using asynchronous cursors is another way to return quickly from a query (see Chapter 
13, "Cursors," for more information). And remember that you can use the SET LOCK_TIMEOUT 
command to configure how long a query waits on a locked resource before timing out. This can 
prevent an app from appearing to hang while it waits on a resource. Even though a query may take 
longer overall to execute, returning control to the user in an expeditious manner can sometimes head 
off client machine reboots born of impatience or frustration. These reboots can affect performance 
themselves—especially if SQL Server and the application reside on the same machine. Thus 
perception directly affects reality. 

• Be sure to gauge performance extensively and often throughout the development process. Application 
performance testing is not a separable step that you can wait until after development to begin. It has 
to be an ongoing, fluid process that tracks the development effort closely. Application components 
should be prototyped, demonstrated, and benchmarked throughout the development process. It's 
better to know early on that a user finds performance unacceptable than to find out when you ship. 

• Thoroughly load test your app before shipping it. Load more data than your largest customer will 
require before you burn your first CD. If time permits, take your load testing to the next logical step 
and stress test the app—find out the magic values for data load, user connections, memory, and so 
on that cause it to fail or that exceed its capacity. 

Database Design Performance Tips 



Guru’s Guide to Transact-SQL 

288 

• Table row and key lengths should be as short as sensible. Be efficient, but don't be a miser. Trimming 
one byte per row isn't much of a savings if you have only a few rows, or, worse yet, you end up 
needing that one byte. The reason for narrow rows is obvious—the less work the server has to do to 
satisfy a query, the quicker it finishes. Using shorter rows allows more rows per page and more data 
in the same amount of cache space. This is also true for index pages—narrow keys allow more rows 
per page than wider ones. 

• Keeping clustered index keys as narrow as possible will help reduce the size of nonclustered indexes 
since they now reference the clustered index (if one exists) rather than referencing the table directly. 

• Begin by normalizing every database you build at least to third normal form. You can denormalize the 
design later if the need arises. See the "Denormalization" section later in this chapter for further 
information. 

• Use Declarative Referential Integrity constraints to ensure relational integrity when possible because 
they're generally faster than triggers and stored procedures. DRI constraints cause highly optimized 
native machine code internal to SQL Server to run. Triggers and stored procedures, by contrast, 
consist of pseudocompiled Transact-SQL code. All other things being equal, native machine code is 
clearly the better performer of the two. 

• Use fixed-length character data types when the length of a column's data doesn't vary significantly 
throughout a table. Processing variable-length columns requires more processing resources than 
handling fixed-length columns. 

• Disallow NULLs when possible—handling NULLs adds extra overhead to storage and query 
processing. It's not unheard of for developers to avoid NULLs altogether, using placeholders to signify 
missing values as necessary. 

• Consider using filegroups to distribute large tables over multiple drives and to separate indexes from 
data. If possible, locate the transaction log on a separate drive or drives from the filegroups that 
compose the database, and separate key tables from one another. This is especially appropriate for 
very large database (VLDB) implementations. 

• If the primary key for a given table is sequential (e.g., an identity column), consider making it a 
nonclustered primary key. A clustered index on a monotonically increasing key is less than optimal 
since you probably won't ever query the table for a range of key values or use the primary key 
column(s) with ORDER BY. A clustered sequential primary key can cause users to contend for the 
same area of the database as they add rows to the table, creating what's known as a "hotspot." Avoid 
this if you can by using clustered keys that sort the data more evenly across the table. 

• If a table frequently experiences severe contention, especially when multiple users are attempting to 
insert new rows, page locks may be at fault. Consider using the sp_indexoptions system stored 
procedure to disable page locks on the suspect table. Disabling page locks forces the server to use 
row locks and table locks. This will prevent the automatic escalation of row locks to page locks from 
reducing concurrency. 

• Use computed columns to render common column calculations rather than deriving them via SQL 
each time you query a table. This is syntactically more compact, reduces the work required to 
generate an execution plan, and cuts down on the SQL that must traverse the network for routine 
queries. 

• Test your database with different row volumes in order to get a feel for the amount of data the design 
will support. This will let you know early on what the capacity of your model is, possibly pointing out 
serious problems in the design. A database that works fine for a few thousand rows may collapse 
miserably under the weight of a few million. 

• When all else fails, consider limited database denormalization to improve performance. See the 
"Denormalization" section later in this chapter for more information. 

Index Performance Tips 

• Create indexes the query optimizer can use. Generally speaking, clustered indexes are best for range 
selections and ordered queries. Clustered indexes are also appropriate for keys with a high density 
(those with many duplicate values). Since rows are physically sorted, queries that search using these 
nonunique values will find them with a minimum number of I/O operations. Nonclustered indexes are 
better for singleton selects and individual row lookups. 

• Make nonclustered indexes as highly selective (i.e., with as low densities) as possible. Index 
selectivity can be calculated using the formula Selectivity = # of Unique Keys / # of Rows. 
Nonclustered indexes with a selectivity less than 0.1 are not efficient, and the optimizer will refuse to 



Chapter 16. Transact-SQL Performance Tuning 

289 

use them. Nonclustered indexes are best used to find single rows. Obviously, duplicate keys force the 
server to work harder to locate a particular row. 

• Along the lines of making indexes highly selective, order the key columns in a multicolumn index by 
selectivity, placing more selective columns first. As the server traverses the index tree to find a given 
key column value, the use of highly selective key columns means that it will have to perform fewer 
I/Os to reach the leaf level of the index, resulting in a faster query. 

• Keep key database operations and transactions in mind as you construct indexes. Build indexes that 
the query optimizer can use to service your more crucial transactions. 

• Consider creating indexes to service popular join conditions. If you frequently join two tables on a set 
of columns, consider building an index to speed the join. 

• Drop indexes that aren't being used. If you inspect the execution plans for the queries that should be 
using an index and find that the index can't be used as is, consider getting rid of it. Redesign it if that 
makes sense, or simply omit it—whatever works best in your particular situation. 

• Consider creating indexes on foreign key references. Foreign keys require a unique key index on the 
referenced table but make no index stipulations on the table making the reference. Creating an index 
on the dependent table can speed up foreign key integrity checks that result from modifications to the 
referenced table and can improve join performance between the two tables. 

• Create temporary indexes to service infrequent reports and user queries. A report that's run only 
annually or semiannually may not merit an index that has to be maintained year-round. Consider 
creating the index just before you run the report and dropping it afterward if that's faster than running 
the report without the index. 

• It may be advantageous to drop and recreate indexes during BULK INSERT operations. BULK 
INSERT operations, especially those involving multiple clients, will generally be faster when indexes 
aren't present. This is no longer the maxim it once was, but common sense tells us the less work that 
has to occur during a bulk load, the faster it should be. 

• If the optimizer can retrieve all the data it needs from a nonclustered index without having to reference 
the underlying table, it will do so. This is called index covering, and indexes that facilitate it are known 
as covered indexes. If adding a small column or columns to an existing nonclustered index would give 
it all the data a popular query needs, you may find that it speeds up the query significantly. Covered 
indexes are the closest you'll get to having multiple clustered indexes on the same table. 

• Allow SQL Server to maintain index statistic information for your databases automatically. This helps 
ensure that it's kept reasonably up to date and alleviates the need by most apps to rebuild index 
statistics manually. 

• Because SQL Server's automatic statistics facility uses sampling to generate statistical info as quickly 
as possible, it may not be as representative of your data as it could be. If the query optimizer elects 
not to use indexes that you think it should be using, try updating the statistics for the index manually 
using UPDATE STATISTICS...WITH FULLSCAN. 

• You can use DBCC DBREINDEX() to rebuild the indexes on a table. This is one way of removing 
dead space from a table or changing the FILLFACTOR of one of its indexes. Here's an example: 

•        
• DBCC DBREINDEX('Customers','PK_Customers') 
• DBCC DBREINDEX('Customers','',100) 
•  

      

Both of these examples cause all indexes on the Northwind Customers table to be rebuilt. In the first 
example, we pass the name of the clustered index into DBREINDEX. Rebuilding its clustered index 
rebuilds a table's nonclustered indexes as well. In the second example, we pass an empty string for 
the index name. This also causes all indexes on the table to be rebuilt. 

The nice thing about DBREINDEX is that it's atomic—either the specified index or indexes are all 
dropped and recreated or none of them are. This includes indexes set up by the server to maintain 
constraints, such as primary and unique keys. In fact, DBREINDEX is the only way to rebuild primary 
and unique key indexes without first dropping their associated constraints. Since other tables may 
depend upon a table's primary or unique key, this can get quite complicated. Fortunately, 



Guru’s Guide to Transact-SQL 

290 

DBREINDEX takes care of it automatically—it can drop and recreate any of a table's indexes 
regardless of dependent tables and constraints. 

• You can use DBCC SHOWCONTIG to list fragmentation information for a table and its indexes. You 
can use this info to decide whether to reorganize the table by rebuilding its clustered index. 

• As mentioned in the section "Database Design Performance Tips," if an index regularly experiences a 
significant level of contention during inserts by multiple users, page locking may be the culprit. 
Consider using the sp_indexoptions system procedure to disable page locks for the index. Disabling 
page locks forces the server to use row locks and table locks. As long as row locks do not escalate to 
table locks inordinately often, this should result in improved concurrency. 

• Thanks to the query optimizer's use of multiple indexes on a single table, multiple single-key indexes 
can yield better overall performance than a compound-key index. This is because the optimizer can 
query the indexes separately and then merge them to return a result set. This is more flexible than 
using a compound-key index because the single-column index keys can be specified in any 
combination. That's not true with a compound key—you must use compound-key columns in a left-to-
right order. 

• Use the Index Tuning Wizard to suggest the optimal indexes for queries. This is a sophisticated tool 
that can scan SQL Profiler trace files to recommend indexes that may improve performance. You can 
access it via the Management|Index Tuning Wizard option on the Tools|Wizards menu in Enterprise 
Manager or the Perform Index Analysis option on the Query menu in Query Analyzer. 

SELECT Performance Tips 

• Match query search columns with those leftmost in the index when possible. An index on stor_id, 
ord_num will not be of any help to a query that filters results on the ord_num column. 

• Construct WHERE clauses that the query optimizer can recognize and use as search arguments. See 
the "SARGs" section later for more information. 

• Don't use DISTINCT or ORDER BY "just in case." Use them if you need to remove duplicates or if you 
need to guarantee a particular result set order, respectively. Unless the optimizer can locate an index 
to service them, they can force the creation of an intermediate work table, which can be expensive in 
terms of performance. 

• Use UNION ALL rather than UNION when you don't care about removing duplicates from a UNIONed 
result set. Because it removes duplicates, UNION must sort or hash the result set before returning it. 
Obviously, if you can avoid this, you can improve performance—sometimes dramatically. 

• As mentioned earlier, you can use SET LOCK_TIMEOUT to control the amount of time a connection 
waits on a blocked resource. At session startup, @@LOCK_TIMEOUT returns –1, which means that 
no timeout value has been set yet. You can set LOCK_TIMEOUT to a positive integer to control the 
number of milliseconds a query will wait on a blocked resource before timing out. In highly contentious 
environments, this is sometimes necessary to prevent applications from appearing to hang. 

• If a query includes an IN predicate that contains a list of constant values (rather than a subquery), 
order the values based on frequency of occurrence in the outer query, if you know the bias of your 
data well enough. A common approach is to order the values alphabetically or numerically, but that 
may not be optimal. Since the predicate returns true as soon as any of its values match, moving those 
that appear more often to the first of the list should speed up the query, especially if the column being 
searched is not indexed. 

• Give preference to joins over nested subqueries. A subquery can require a nested iteration—a loop 
within a loop. During a nested iteration, the rows in the inner table are scanned for each row in the 
outer table. This works fine for smaller tables and was the only join strategy supported by SQL Server 
until version 7.0. However, as tables grow larger, this approach becomes less and less efficient. It's 
far better to perform normal joins between tables and let the optimizer decide how best to process 
them. The optimizer will usually take care of flattening unnecessary subqueries into joins, but it's 
always better to write efficient code in the first place. 

• Avoid CROSS JOINs if you can. Unless you actually need the cross product of two tables, use a more 
succinct join form to relate one table to another. Returning an unintentional Cartesian product and 
then removing the duplicates it generates using DISTINCT or GROUP BY are a common problem 
among beginners and a frequent cause of serious query performance problems. 



Chapter 16. Transact-SQL Performance Tuning 

291 

• You can use the TOP n extension to restrict the number of rows returned by a query. This is 
particularly handy when assigning variables using a SELECT statement because you may wish to see 
values from the first row of a table only. 

• You can use the OPTION clause of a SELECT statement to influence the query optimizer directly 
through query hints. You can also specify hints for specific tables and joins. As a rule, you should 
allow the optimizer to optimize your queries, but you may run into situations where the execution plan 
it selects is less than ideal. Using query, table, and join hints, you can force a particular type of join, 
group, or union, the use of a particular index and so on. The section on the Transact-SQL SELECT 
statement in the Books Online documents the available hints and their effects on queries. 

• If you are benchmarking one query against another to determine the most efficient way to access data, 
be sure to keep SQL Server's caching mechanisms from skewing your test results. One way to do this 
is to cycle the server between query runs. Another is to use undocumented DBCC command verbs to 
clear out the relevant caches. DBCC FREEPROCCACHE frees the procedure cache; DBCC 
DROPCLEANBUFFERS clears all caches. 

INSERT Performance Tips 

• Because individual row inserts aren't logged, SELECT...INTO is often many times faster than a 
regular logged INSERT. It locks system tables, so use it with care. If you use SELECT...INTO to 
create a large table, other users may be unable to create objects in your database until the 
SELECT...INTO completes. This has particularly serious implications for tempdb because it can 
prevent users from creating temporary objects that might very well wreak havoc with your apps, lead 
to angry mobs with torches, and cause all sorts of panic and mayhem. That's not to say that you 
shouldn't use SELECT...INTO—just be careful not to monopolize a database when you do. 

• BULK INSERT is faster than INSERT for loading external data, even when fully logged, because it 
operates at a lower level within the server. Use it rather than lengthy INSERT scripts to load large 
quantities of data onto the server. 

Bulk Copy Performance Tips 

• Use the new BULK INSERT command rather than the bcp utility to perform bulk load operations. 
Though, at the lowest level, they use the same facility that's been in SQL Server since its inception, 
data loaded via BULK INSERT doesn't navigate the Tabular Data Stream protocol, go through Open 
Data Services, or traverse the network. It's sent directly to SQL Server as an OLE-DB rowset. The 
upside of this is that it's much faster—sometimes twice as fast—as the bcp utility. The downside is 
that the data file being loaded must be accessible over the network by the machine on which SQL 
Server is running. This can present problems over a WAN (wide area network) where different 
segments of the network may be isolated from one another but where you can still access SQL Server 
via a routable protocol such as TCP/IP. 

• If possible, lock tables during bulk load operations (e.g., BULK INSERT). This can significantly 
increase load speed by reducing lock contention on the table. The best way to do this is to enable the 
table lock on bulk load option via the sp_tableoption system procedure, though you can also force 
table locks for specific bulk load operations via the TABLOCK hint. 

• Four criteria must be met in order to enable the minimally logged mode of the BULK INSERT 
command: 

1. The table must be lockable (see the sp_tableoption recommendation). 
2. The select/into bulk copy option must be turned on in the target database. 
3. The table cannot be marked for replication. 
4. If the table has indexes, they must also be empty. 

Minimally logged (or "nonlogged" in Books Online parlance) bulk load operations are usually faster 
than logged operations, sometimes very much so, but even a logged BULK INSERT is faster than a 
series of INSERT statements because it operates at a lower level within SQL Server. I call these 
operations minimally logged because page and extent allocations are logged regardless of the mode 
in which a bulk load operation runs (which is what allows it to be rolled back). 

• You can bulk load data simultaneously from multiple clients provided that the following criteria are met: 
1. The table can have no indexes. 



Guru’s Guide to Transact-SQL 

292 

2. The select/into bulk copy option must be enabled for the database. 
3. The target table must be locked (as mentioned, sp_tableoption is the best way of setting this 

up). 

Parallel bulk loading requires the ODBC version of the bulk data API, so DB-Library–based bulk 
loaders (such as the bcp utility from SQL Server 6.5) cannot participate. As with any mostly serial 
operation, running small pieces of it in parallel can yield remarkable performance gains. You can 
specify contiguous FIRSTROW/LASTROW sets to break a large input file into multiple BULK INSERT 
sets. 

• Consider directing bulk inserts to a staging area when possible, preferably to a separate database. 
Since the minimally logged version of BULK INSERT prohibits indexes on the target table (including 
those created as a result of a PRIMARY KEY constraint), it's sensible to set up staging tables whose 
whole purpose is to receive data as quickly as possible from BULK INSERT. By placing these tables 
in a separate database, you avoid invalidating the transaction log in your other databases during bulk 
load operations. In fact, you might not have to enable select into/bulkcopy in any database except 
the staging area. Once the data is loaded into the staging area, you can then use stored procedures 
to move it in batches from one database to another. 

• When bulk loading data, especially when you wish to do so from multiple clients simultaneously, 
consider dropping the target table's indexes before the operation and recreating them afterward. 
Since nonclustered indexes now reference the clustered index (when one is present) rather than the 
table itself, the constant shuffling and reshuffling of nonclustered index keys that was once 
characteristic of bulk load operations are mostly a thing of the past. In fact, dropping your indexes 
before a bulk load operation may not yield any perceptible performance gain. As with most of the 
recommendations in this chapter, trial and error should have the final word. Try it both ways and see 
which one performs better. There are situations where dropping indexes before a bulk load operation 
can improve performance by orders of magnitude, so it's worth your time to investigate. 

• Consider breaking large BULK INSERT operations into batches via the BATCHSIZE parameter. This 
lessens the load on the transaction log since each batch is committed separately. The upside is that 
this can speed up extremely large insert operations and improve concurrency considerably. The 
downside is that the target table will be left in an interim state if the operation is aborted for any 
reason. The batch that was being loaded when the operation aborted will be rolled back; however, all 
batches up to that point will remain in the database. With this in mind, it's wise to maintain a small 
LoadNumber column in your target table to help identify the rows appended by each bulk load 
operation. 

DELETE and UPDATE Performance Tips 

• Because individual row deletions aren't logged, TRUNCATE TABLE is usually many times faster than 
a logged DELETE. Like all minimally logged operations, it invalidates the transaction log, so use it 
with care. 

• DELETE and UPDATE statements are normally qualified by a WHERE clause, so the admonitions 
regarding establishing search arguments for SELECT statements apply to them as well. The faster 
the engine can find the rows you want to modify, the faster it can process them. 

Cursor Performance Tips 

• Use cursors parsimoniously and only when absolutely necessary (perhaps at gunpoint or when your 
mother-in-law comes to visit). Try to find a noncursor approach to solving problems. You'll be 
surprised at how many problems you can solve with the diversely adept SELECT statement. 

• Consider asynchronous cursors for extremely large result sets. Returning a cursor asynchronously 
allows you to continue processing while the cursor is being populated. OPEN can return almost 
immediately when used with an asynchronous cursor. See Chapter 13, "Cursors," for more 
information on asynchronous cursors. 

• Don't use static or keyset cursors unless you really need their unique features. Opening a static or 
keyset cursor causes a temporary table to be created so that a second copy of its rows or keys can be 
referenced by the cursor. Obviously, you want to avoid this if you can. 



Chapter 16. Transact-SQL Performance Tuning 

293 

• If you don't need to change the data a cursor returns, define it using the READ_ ONLY keyword. This 
alleviates the possibility of accidental changes and notifies the server that the rows the cursor 
traverses won't be changed. 

• Use the FAST_FORWARD cursor option rather than FORWARD_ONLY when setting up read-only, 
forward-only result sets. FAST_FORWARD creates a FORWARD_ONLY, READ_ONLY cursor with a 
number of built-in performance optimizations. 

• Be wary of updating key columns via dynamic cursors on tables with nonunique clustered index keys 
because this can result in the "Halloween Problem." SQL Server forces nonunique clustered index 
keys to be unique internally by suffixing them with a sequence number. If you update one of these 
keys, it's possible that you could cause a value that already exists to be generated and force the 
server to append a suffix that would move it later in the result set (if the cursor was ordered by the 
clustered index). Since the cursor is dynamic, fetching through the remainder of the result set would 
yield the row again, and the process would repeat itself, resulting in an infinite loop. 

• Avoid modifying a large number of rows using a cursor loop contained within a transaction because 
each row you change may remain locked until the end of the transaction, depending on the 
transaction isolation level. 

Stored Procedure Performance Tips 

• Use stored procedures rather than ad hoc queries whenever possible. For the cached execution plan 
of an ad hoc SQL statement to be reused, a subsequent query will have to match it exactly and must 
fully qualify every object it references. If anything about a subsequent use of the query is different—
parameters, object names, key elements of the SET environment—anything—the plan won't be 
reused. A good workaround for the limitations of ad hoc queries is to use the sp_executesql system 
stored procedure. It covers the middle ground between rigid stored procedures and ad hoc Transact-
SQL queries by allowing you to execute ad hoc queries with replaceable parameters. This facilitates 
reusing ad hoc execution plans without requiring exact textual matches. 

• If you know that a small portion of a stored procedure needs to have its query plan rebuilt with each 
execution (e.g., due to data changes that render the plan suboptimal) but don't want to incur the 
overhead of rebuilding the plan for the entire procedure each time, you should try moving it to its own 
procedure. This allows its execution plan to be rebuilt each time you run it without affecting the larger 
procedure. If this isn't possible, try using the EXEC() function to call the suspect code from the main 
procedure, essentially creating a poor man's subroutine. Since it's built dynamically, this subroutine 
can have a new plan generated with each execution without affecting the query plan for the stored 
procedure as a whole. 

• Use stored procedure output parameters rather than result sets when possible. If you need to return 
the result of a computation or to locate a single value in a table, return it as a stored procedure output 
parameter rather than a singleton result set. Even if you're returning multiple columns, stored 
procedure output parameters are far more efficient than full-fledged result sets. 

• Consider using cursor output parameters rather than "firehose" cursors (result sets) when you need to 
return a set of rows from one stored procedure to another. This is more flexible and can allow the 
second procedure to return more quickly since no result set processing occurs. The caller can then 
process the rows returned by the cursor at its leisure. 

• Minimize the number of network round-trips between clients and the server. One very effective way to 
do this is to disable DONE_IN_PROC messages. You can disable them at the procedure level via 
SET NOCOUNT or at the server level with the trace flag 3640. Especially over relatively slow 
networks such as WANs, this can make a huge performance difference. If you elect not to use trace 
flag 3640, SET NOCOUNT ON should be near the top of every stored procedure you write. 

• Use DBCC PROCCACHE to list info about the procedure cache when tuning queries. Use DBCC 
FREEPROCCACHE to clear the procedure cache in order to keep multiple executions of a given 
procedure from skewing benchmark results. Use DBCC FLUSHPROCINDB to force the recreation of 
all procedure execution plans for a given database. 

• You can query the syscacheobjects table in the master database to list caching information for 
procedures, triggers, and other objects. One key piece of information that's reported by 
syscacheobjects is the number of plans in the cache for a particular object. This can help you 
determine whether a plan is being reused when you execute a procedure. Syscacheobjects is a 
pseudotable—it does not actually exist—the server materializes it each time you query it (you can 
execute SELECT OBJECTPROPERTY(OBJECT_ID('syscacheobjects'), 'TableIsFake') to 



Guru’s Guide to Transact-SQL 

294 

verify this). Here's a stored procedure that reports on the procedure cache and queries 
syscacheobjects for you: 

•        
• USE master 
• IF OBJECT_ID('sp_helpproccache') IS NOT NULL 
•   DROP PROC sp_helpproccache 
• GO 
• CREATE PROCEDURE sp_helpproccache @dbname sysname = NULL, 
•   @procsonly varchar(3)='NO', 
•   @executableonly varchar(3)='NO' 
• /* 
• Object: sp_helproccache 
• Description: Lists information about the procedure cache 
•  
• Usage: sp_helproccache @dbname=name of database to list; pass ALL to list  
• all, 
•   @procsonly=[yes|NO] list stored procedures only, 
•   @executableonly=[yes|NO] list executable plans only 
•  
• Returns: (None) 
• Created by: Ken Henderson. Email: khen@khen.com 
•  
• Version: 1.3 
•  
• Example: EXEC sp_helpproccache "ALL", @proconly="YES" 
•  
• Created: 1999-06-02. Last changed: 1999-08-11. 
• */ 
• AS 
• SET NOCOUNT ON 
• DECLARE @sqlstr varchar(8000) 
•  
• IF (@dbname='/?') GOTO Help 
• DBCC PROCCACHE 
• PRINT '' 
•  
• SET @sqlstr= 
• "SELECT LEFT(o.name,30) AS 'Procedure', 
•      LEFT(cacheobjtype,30) AS 'Type of Plan', 
•      COUNT(*) AS 'Number of Plans' 
• FROM master..syscacheobjects c JOIN ?..sysobjects o ON (c.objid=o.id) 
• WHERE dbid = db_id('?')"+ 
•   CASE @procsonly WHEN 'YES' THEN ' and objtype = "Proc" ' ELSE ' ' END+ 
•   CASE @executableonly WHEN 'YES' THEN 
•     ' and cacheobjtype = "Executable Plan" ' ELSE ' ' END+ 
•   "GROUP BY o.name, cacheobjtype 
•   ORDER BY o.name, cacheobjtype" 
•  
• IF (@dbname='ALL') 
•      EXEC sp_MSforeachdb @command1="PRINT '***Displaying the procedure 

cache for 
•      database: ?'", 
•      @command2='PRINT ""', @command3=@sqlstr 



Chapter 16. Transact-SQL Performance Tuning 

295 

• ELSE BEGIN 
•   PRINT '***Displaying the procedure cache for database: '+DB_NAME() 
•   PRINT '' 
•   SET @sqlstr=REPLACE(@sqlstr,'?',DB_NAME()) 
•   EXEC(@sqlstr) 
• END 
• RETURN 0 
•  
• Help: 
• EXEC sp_usage @objectname='sp_helproccache', 
•      @desc='Lists information about the procedure cache', 
•      @parameters='@dbname=name of database to list; pass ALL to list all, 
•      @procsonly=[yes|NO] list stored procedures only, 
•      @executableonly=[yes|NO] list executable plans only', 
•      @example='EXEC sp_helpproccache "ALL", @proconly="YES"', 
•      @author='Ken Henderson', 
•      @email='khen@khen.com', 
•      @version='1', @revision='3', 
•      @datecreated='6/2/99', @datelastchanged='8/11/99' 
• RETURN -1 
•  
• GO 
• EXEC sp_helpproccache 'ALL' 
•  

      

(Results abridged) 

       
num proc buffs num proc buffs used num proc buffs active proc cache size 
proc cache used 
-------------- ------------------- --------------------- --------------- --
--------------- 
574            574                 162                   617             
617 
 
***Displaying the procedure cache for database: master 
 
Procedure                      Type of Plan      Number of Plans 
------------------------------ ----------------- --------------- 
sp_databases                   Compiled Plan     1 
sp_dir                         Compiled Plan     3 
sp_dir                         Executable Plan   3 
sp_executesql                  Extended Proc     1 
sp_helpproccache               Compiled Plan     1 
sp_MSforeach_worker            Compiled Plan     1 
sp_MSforeachdb                 Compiled Plan     1 
sp_table                       Compiled Plan     1 
sp_table                       Executable Plan   1 
sp_usage                       Compiled Plan     1 
sp_usage                       Executable Plan   1 
syscomments                    Parse Tree        1 
 
***Displaying the procedure cache for database: msdb 
 
Procedure                      Type of Plan      Number of Plans 
------------------------------ ----------------- --------------- 



Guru’s Guide to Transact-SQL 

296 

sysindexes                     Parse Tree        1 
sysobjects                     Parse Tree        1 
systypes                       Parse Tree        1 
 
***Displaying the procedure cache for database: Northwind 
 
Procedure                      Type of Plan      Number of Plans 
------------------------------ ----------------- --------------- 
syscolumns                     Parse Tree        1 
sysindexes                     Parse Tree        1 
sysobjects                     Parse Tree        1 
systypes                       Parse Tree        1 
 
***Displaying the procedure cache for database: pubs 
 
Procedure                      Type of Plan      Number of Plans 
------------------------------ ----------------- --------------- 
author_crosstab                Compiled Plan     1 
author_crosstab                Executable Plan   1 
CK__authors__au_id__08EA5793   Parse Tree        1 
sysindexes                     Parse Tree        1 
sysobjects                     Parse Tree        1 
systypes                       Parse Tree        1 
 
***Displaying the procedure cache for database: SCW_TS 
 
Procedure                      Type of Plan      Number of Plans 
------------------------------ ----------------- --------------- 
***Displaying the procedure cache for database: tempdb 
 
Procedure                      Type of Plan      Number of Plans 
------------------------------ ----------------- --------------- 

SARGs 

Strive to construct queries that are "SARGable." A SARG, or search argument, is a clause in a query that the 
optimizer can potentially use in conjunction with an index to limit the results returned by the query. SARGs 
have the form: 
     
Column op Constant/Variable 
 
    
(the terms can be reversed) where Column is a table column; op is one of the following inclusive 
operators:=,>=,<=,>,<, BETWEEN, and LIKE (some LIKE clauses qualify as SARGs; some don't—see below 
for details); and Constant/Variable is a constant value or variable reference. 
SARGs can be joined together with AND to form compound clauses. The rule of thumb for identifying SARGs 
is that a clause can be a useful search argument if the optimizer can detect that it's a comparison between an 
index key value and a constant or variable. A clause that compares two columns or one that compares two 
expressions is not a SARG clause. A common beginner's error is to wrap a column in a function or expression 
when comparing it with a constant or variable. This prevents the clause from being a SARG because the 
optimizer doesn't know what the expression is actually evaluating—it's not known until runtime. Here's an 
example of such a query. 
     
-- Don't do this -- Bad T-SQL 
SELECT city, state, zip FROM authors 
WHERE au_lname+', '+au_fname='Dull, Ann' 
 
city                 state zip 
---------- --------- ----- ----- 
Palo Alto            CA    94301 



Chapter 16. Transact-SQL Performance Tuning 

297 

 
    
Better written, this query might look like this: 
     
SELECT city, state, zip 
FROM authors 
WHERE au_lname='Dull' 
AND au_fname='Ann' 
    
To see the difference this small change makes, let's look at the execution plan generated by each. To enable 
execution plan viewing in Query Analyzer, press Ctrl-K or select Show Execution Plan from the Query menu 
and run the query. Figure 16.1 shows the execution plan for the first query, and Figure 16.2 shows the plan 
for the second query. 

Figure 16.1. The execution plan for the non-SARG query. 

 

Figure 16.2. The execution plan for the SARG query. 



Guru’s Guide to Transact-SQL 

298 

 
You can view details for a particular execution plan step by resting your mouse pointer over it. Execution 
plans read from right to left, so start with the rightmost node and work your way to the left. See the difference? 
The concatenation of the au_lname and au_fname columns in the first query prevents the use of the aunmind 
index—whose keys feature both columns. Instead, the first query must use the table's clustered index, whose 
key is the au_id column, not terribly useful for locating an author by name (it's effectively a table scan). By 
contrast, the second query is able to use the author name index because it correctly avoids confusing the 
optimizer with unnecessary string concatenation. 
Let's consider some additional queries and determine whether they're "SARGable." We'll begin by adding a 
few indexes for the sake of comparison. Run the following script to set up some additional secondary indexes: 
     
USE pubs 
CREATE INDEX qty ON sales (qty) 
CREATE INDEX pub_name ON publishers (pub_name) 
CREATE INDEX hirange ON roysched (hirange) 
USE Northwind 
CREATE INDEX ContactName ON Customers (ContactName) 
 
    
Here's a query that selects rows from the pubs sales table based on the qty column: 
     
SELECT * 
FROM sales 
WHERE qty+1 > 10 
 
    
Does the WHERE clause contain a SARG? Let's look at the execution plan (Figure 16.3). 

Figure 16.3. The execution plan for the sales query. 



Chapter 16. Transact-SQL Performance Tuning 

299 

 
The optimizer has chosen a clustered index scan—essentially a sequential read of the entire table—even 
though there's an index on the qty column. Why? Because the qty column in the query is involved in an 
expression. As mentioned before, enclosing a table column in an expression prevents it from being useful to 
the optimizer as a SARG. Let's rewrite the query's WHERE clause such that the qty column stands alone 
(Figure 16.4): 

Figure 16.4. The new, improved execution plan for the sales query. 

 
     
SELECT * 
FROM sales 



Guru’s Guide to Transact-SQL 

300 

WHERE qty > 9 
 
    
Since an unfettered qty is now being compared with a constant, the optimizer elects to use the index we 
added earlier. 
Here's another example (Figure 16.5): 

Figure 16.5. The execution plan for the authors query. 

 
     
SELECT * FROM authors 
WHERE au_lname LIKE '%Gr%' 
 
    
Once again, the optimizer has elected to do a clustered index scan rather than use the nonclustered index 
that's built on the au_lname column. The reason for this is simple—it can't translate the LIKE mask into a 
usable SARG. Let's rewrite the query to make it SARGable (Figure 16.6): 

Figure 16.6. The execution plan for the improved authors query. 



Chapter 16. Transact-SQL Performance Tuning 

301 

 
     
SELECT au_lname, au_fname 
FROM authors 
WHERE au_lname LIKE 'Gr%' 
 
    

NOTE 

In addition to their obvious syntactical differences, the LIKE masks of the two queries differ 
functionally as well. Strictly speaking, they don't ask quite the same question. I'm assuming here 
that the query author intended to ask for all names beginning with 'Gr' even though the first mask is 
prefixed with a wildcard. 

 

Now the optimizer elects to use the nonclustered index on the table that includes au_lname as its high-order 
key. Internally, the optimizer translates 

     
au_lname LIKE 'Gr%' 
 
    
to 
     
au_lname > 'GQ_' AND au_lname < 'GS' 
 
    
This allows specific key values in the index to be referenced. Value 'GQ_' can be located in the index (or its 
closest matching key) and the keys following it read sequentially until 'GS' is reached. The '_'character has the 
ASCII value of 254, so 'GQ_' is two values before 'Gr' followed by any character. This ensures that the first 
value beginning with 'Gr' is located. 
Let's look at a similar query with two wildcards: 



Guru’s Guide to Transact-SQL 

302 

     
SELECT * 
FROM publishers 
WHERE pub_name LIKE 'New%Moon%' 
 
    
And here's the execution plan (notice the internal translation of the WHERE clause similar to the previous 
example) (Figure 16.7). 

Figure 16.7. When possible, the optimizer translates LIKE clauses into SARGs. 

 
LIKE expressions that can be restated in terms of " x is greater than value yand less than value z " are useful 
to the optimizer as SARGs—otherwise they aren't. 
Here's another query that references the qty column in the pubs sales table (Figure 16.8): 

Figure 16.8. The query optimizer translates BETWEEN into a compound SARG clause. 



Chapter 16. Transact-SQL Performance Tuning 

303 

 
     
SELECT * 
FROM sales 
WHERE qty BETWEEN 20 AND 30 
 
    
Again, the query optimizer translates the WHERE clause into a pair of expressions it finds more useful. It 
converts the BETWEEN clause into a compound SARG that uses the simpler > = and < = operators to 
implement BETWEEN's inclusive search behavior. 
Here's an example that places the constant on the left of the operator (Figure 16.9): 

Figure 16.9. The query optimizer correctly identifies constant-first SARGs. 



Guru’s Guide to Transact-SQL 

304 

 
     
SELECT * FROM roysched 
WHERE 5000 < hirange 
 
    
As you can see, the ordering of the terms doesn't matter—the SARG is still correctly identified and matched 
with the appropriate index. 
Let's look at another query on the sales table. This one involves a search on two columns: 
     
SELECT * FROM sales 
WHERE qty > 40 OR stor_id=6380 
 
    
Prior to SQL Server 7.0, the server would use only one index per table, regardless of how many columns from 
the same table you listed in the WHERE clause. That's no longer the case, and, as you can see from the 
query's execution plan, the table's clustered index and the nonclustered index we built on the qty column 
earlier are used to populate the result set. Since we joined the two SARG clauses via OR, they're processed 
in parallel using the appropriate index and then combined using a "hash match" operation just before being 
returned as a result set (Figure 16.10). 

Figure 16.10. This execution plan features a "hash match" of two separate SARG clauses. 



Chapter 16. Transact-SQL Performance Tuning 

305 

 
In the past, inequalities were the Achilles heel of the query optimizer—it didn't know how to translate them into 
index key values and consequently would perform a full scan of the table in order to service them. That's still 
true on some DBMSs but not SQL Server. For example, consider this query: 
     
SELECT * 
FROM sales 
WHERE qty != 0 
 
    
Figure 16.11 shows the execution plan we get. 

Figure 16.11. The query optimizer knows how to optimize comparisons for inequality. 



Guru’s Guide to Transact-SQL 

306 

 
The optimizer translates 
     
qty !=0 
 
    
to 
     
qty < 0 OR qty > 0 
 
    
This allows comparisons with specific index key values and facilitates the use of the index we built earlier, as 
the execution plan shows. 
Here's an example that filters the result set based on parts of a date column—a common need and an area 
rife with common pitfalls: 
     
USE Northwind 
SELECT * FROM Orders 
WHERE DATEPART(mm,OrderDate)=5 
AND DATEPART(yy,OrderDate)=1998 
AND (DATEPART(dd,OrderDate) BETWEEN 1 AND 3) 
 
    
This query requests the orders for the first three days of a specified month.Figure 16.12 shows the execution 
plan it produces. 

Figure 16.12. The execution plan for the first rendition of the data query. 



Chapter 16. Transact-SQL Performance Tuning 

307 

 
This execution plan performs a sequential scan of the clustered index and then filters the result according to 
the WHERE clause criteria. Is the query optimizer able to use any of the WHERE clause criteria as SARGs? 
No. Once again, table columns are ensconced in expressions—the optimizer has no way of knowing what 
those expressions actually render. Here's the query rewritten such that it allows the optimizer to recognize 
SARGs (Figure 16.13): 

Figure 16.13. The execution plan for the improved version of the data query. 

 
     
USE Northwind 
SELECT * FROM Orders 



Guru’s Guide to Transact-SQL 

308 

WHERE OrderDate BETWEEN '19980501' AND '19980503' 
 
    
As you can see, the optimizer now properly recognizes and uses the SARGs in the WHERE clause to filter the 
query. It translates the BETWEEN clause into a compound SARG that uses the OrderDate index of the 
Orders table. 
What happens if we want more than three days of data? What if we want the whole month? Here's the first 
query rewritten to request an entire month's worth of data (Figure 16.14): 

Figure 16.14. The original query still performs a sequential scan of the clustered index. 

 
     
USE Northwind 
SELECT * FROM Orders 
WHERE DATEPART(mm,OrderDate)=5 
AND DATEPART(yy,OrderDate)=1998 
 
    
And here's the improved version of the query, similarly modified (Figure 16.15): 

Figure 16.15. The execution plan of the SARGable data query. 



Chapter 16. Transact-SQL Performance Tuning 

309 

 
     
USE Northwind 
SELECT * FROM Orders 
WHERE OrderDate BETWEEN '19980501' AND '19980531' 
 
    
Interestingly, the improved query now scans the clustered index as well. Why? The amount of data being 
returned is the key. The optimizer has estimated that it's less expensive to scan the entire table and filter 
results sequentially than to use the nonclustered index because each row located via the index must then be 
looked up in the clustered index (or underlying table if no clustered index exists) in order to retrieve the other 
columns the query requests. 
The step in the execution plan where this occurs is called the "Bookmark lookup" step (see Figure 16.13 for 
an example). An execution plan that locates rows using a nonclustered index must include a Bookmark lookup 
step if it returns columns other than those in the index. In this case, the optimizer has estimated that the 
overhead of this additional step is sufficient to warrant a full clustered index scan. In the original query, this 
step accounted for 80% of the execution plan's total work, so this makes sense. We've now multiplied the 
number of rows being returned several times over, so this step has become so lengthy that it's actually more 
efficient just to read the entire table. 
There are a couple of ways around this. We've already explored one of them—returning less data. In fact, the 
threshold at which the optimizer decides it's more efficient to perform a sequential scan is at five days' worth 
of Orders data—returning five or more days results in a clustered index scan. Another way around this would 
be to eliminate the Bookmark lookup step altogether by satisfying the query with a nonclustered index. To do 
this, we'd either have to create a nonclustered index containing the columns we want to return (the wider the 
index key becomes, the more expensive using it becomes in terms of I/O) or narrow the columns we request 
to those already in a nonclustered index. In this case, that would mean requesting only the OrderDate column 
from the table since that's the lone key column of the nonclustered index we're using (by virtue of the WHERE 
clause criteria). Here's the query revised to request only the OrderDate column and its accompanying 
execution plan (Figure 16.16): 

Figure 16.16. The execution plan of the covered date query. 



Guru’s Guide to Transact-SQL 

310 

 
     
USE Northwind 
SELECT OrderDate FROM Orders 
WHERE OrderDate BETWEEN '19980501' AND '19980531' 
 
    
Now, neither the clustered index nor the Bookmark lookup step is needed. As mentioned earlier, this is called 
index covering, meaning that the nonclustered index covers the query—it's able to satisfy it—without 
referencing the underlying table or its clustered index. 
Practically speaking, it's pretty rare that you'll find a nonclustered index whose key columns satisfy a query 
completely. However, you'll often find that adding a column or two to the nonclustered index used by a query 
allows it to cover the query without becoming excessively expensive. Keep in mind that widening nonclustered 
index key columns results in slower updates, because they must be kept up to date, and slower query 
processing, because they're physically larger—they require more I/O and more memory to process. 
Table 16.1 lists some examples of SARGable and non-SARGable clauses. 

Table 16.1. Table 16.1SARGs and non-SARGs. 
Clause  SARG-

able? 
Reason  Should be  

qty+1 > 10 No Column involved in expression qty > 9 
au_lname LIKE '%Gr%' No Optimizer must scan all rows for 

a match 
au_lname LIKE 'Gr%' (if 
seeking names beginning 
with "Gr") 

pub_name LIKE 'New Moon%' Yes Optimizer can gen code to seek 
to 'New Moon' 

  

qty BETWEEN 20 AND 30 Yes Optimizer can gen code to seek 
to 20 

  

5000 < hirange Yes Optimizer can gen code to seek 
to 5000 

  

ContactName='Hanna Moos' Yes Optimizer can gen code to seek 
to literal value 

  

qty > 40 OR stor_id=6380 Yes Optimizer can gen code to 
perform a Hash Match using two 
separate indexes 

  



Chapter 16. Transact-SQL Performance Tuning 

311 

qty !=0 Yes Optimizer translates to qty <0 
OR qty >0  

  

DATEPART(mm, OrderDate)=5 AND 
DATEPART(yy, OrderDate)=2000 

No Column involved in expression BETWEEN '20000501' 
AND '20000531' 

LEFT(au_lname, 2)='Gr' No Column involved in expression au_lname LIKE 'Gr%' 
au_lname LIKE 'S%' Yes Optimizer translates to 

au_lname > 'R_' and au_lname 
< 'T' 

  

Denormalization 

Especially among developers new to relational databases, there's sometimes a temptation to attribute poor 
database design to "denormalization for performance." You can't know for certain whether denormalizing a 
database is necessary until you've first normalized it and tested performance thoroughly. Even then, 
denormalizing shouldn't be your first option—it should be near the bottom of the list. I wouldn't recommend 
denormalization as the first method of fixing a performance problem any more than I'd recommend brain 
surgery for a headache. As a rule, garden-variety applications' development does not require database 
denormalization. If it did, the database design standards that have been forged and recommend over the last 
thirty years wouldn't be worth much—what good is a standard if you have to break it in order to do anything 
useful? 
That said, denormalization is a fairly common method of improving query performance—especially in high-
performance and high-throughput systems. Eliminating a single join operation from a query that processes 
millions of rows can yield real dividends. 
Understand that there's no absolute standard of measurement by which a database either is or isn't 
normalized. There are different degrees of normalization, but even the best database designers build 
databases that fail to measure up in some way to someone else's concept of normalization. 

Basic Guidelines 

• Know your database. Be sure you understand how it's organized from a logical standpoint, and be 
sure you know how applications use it. Have a good understanding of the database's data integrity 
setup. Introducing redundant data into the system makes maintaining data integrity more difficult and 
more expensive in terms of performance. It's therefore crucial to understand the frequency of data 
modifications. If the database serves a high-throughput OLTP application, you may find that the 
performance gains you achieved through denormalization are offset by the performance problems its 
creates in maintaining data integrity. 

• Don't denormalize the entire database at once. Start small, working with logically separable pieces. 
• Ascertain early on whether computed or contrived columns would address your performance needs. 

You may find that SQL Server's computed columns provide the performance your app requires 
without having to resort to large-scale denormalization. 

• Become intimate with the data volume and the transaction types underlying the parts of your 
application having performance problems. You will probably find that you can further tune your 
queries or the server and resolve those problems without having to redesign the database. 

• Become acquainted with the material resources of your server machine. Increasing the physical 
memory in the machine or the amount that's allocated to the SQL Server process may improve query 
performance dramatically. Adding or upgrading processors may help—especially if you have key 
queries that are CPU-bound. The biggest gains in terms of system performance usually come from 
hard drive–related optimizations. Using a speedier hard drive or more of them may improve 
performance by orders of magnitude. For example, you may find 

Basic Techniques 

A number of techniques that you can use to denormalize a database and hopefully improve performance exist: 

• Creating contrived or virtual columns 
• Maintaining redundant copies of data 



Guru’s Guide to Transact-SQL 

312 

• Keeping summary tables 
• Partitioning data horizontally or vertically 

Contrived Columns 

A contrived or virtual column is one that's composed of the values from other columns. SQL Server includes 
direct support for contrived columns through its computed column support. Setting up a computed column 
saves you from having to include its underlying expression each time you query the table. It's syntactically 
more compact and makes the expression's result readily available to anyone who uses the table. You define 
computed columns with the CREATE TABLE or ALTER TABLE command. Here's an example: 
      
USE Northwind 
GO 
ALTER TABLE Orders ADD DaysToShip AS CASE WHEN ShippedDate IS NULL THEN 
DATEDIFF(dd,OrderDate,RequiredDate) ELSE NULL END 
GO 
SELECT OrderId, CONVERT(char(10),OrderDate,101) AS OrderDate, 
  CONVERT(char(10),RequiredDate,101) AS RequiredDate, 
  CONVERT(char(10),ShippedDate,101) AS ShippedDate, 
  DaysToShip FROM Orders 
GO 
ALTER TABLE Orders DROP COLUMN DaysToShip 
 
     
(Results abridged) 
      
OrderId    OrderDate  RequiredDate ShippedDate DaysToShip 
---------- ---------- ------------ ----------- ---------- 
11058      04/29/1998 05/27/1998   NULL        28 
11059      04/29/1998 06/10/1998   NULL        42 
11060      04/30/1998 05/28/1998   05/04/1998  NULL 
11061      04/30/1998 06/11/1998   NULL        42 
11062      04/30/1998 05/28/1998   NULL        28 
11063      04/30/1998 05/28/1998   05/06/1998  NULL 
11064      05/01/1998 05/29/1998   05/04/1998  NULL 
11065      05/01/1998 05/29/1998   NULL        28 
 
     

Redundant Data 

A common denormalization technique is to maintain multiple copies of the same data. For example, you may 
find that it's worthwhile to look up and store join values in advance. This cuts down on the work necessary to 
return useful information when you query a table. A variation on this duplicates foreign key values so that they 
don't have to be referenced across tables. Of course, you'll want to be careful with this because it adds 
additional overhead to maintaining data integrity. The more copies of data you have, the more work required 
to keep it up to date and the more likely a mishap can compromise database integrity. The corollary to this is 
the essence of the relational model: The fewer copies of nonkey data you have, the easier it is to maintain and 
the less likely its integrity is to be damaged in the event of problems. 
Here's an example that adds columns for the first and last names of authors to the pubs titleauthor table: 
      
ALTER TABLE titleauthor ADD au_lname varchar(40) NULL, au_fname varchar(20) 
NULL 
GO 
UPDATE t 
  SET au_lname=a.au_lname, 
    au_fname=a.au_fname 
FROM titleauthor t JOIN authors a ON (t.au_id=a.au_id) 
GO 



Chapter 16. Transact-SQL Performance Tuning 

313 

SELECT * FROM titleauthor 
GO 
ALTER TABLE titleauthor DROP COLUMN au_lname 
ALTER TABLE titleauthor DROP COLUMN au_fname 
 
au_id       title_id au_ord royaltyper au_lname           au_fname 
----------- -------- ------ ---------- ------------------ ----------------- 
172-32-1176 PS3333   1      100        White              Johnson 
213-46-8915 BU1032   2      40         Green              Marjorie 
213-46-8915 BU2075   1      100        Green              Marjorie 
238-95-7766 PC1035   1      100        Carson             Cheryl 
 
     
By adding these redundant columns to titleauthor, we've eliminated one of the joins that must be performed in 
order to return useful information from the table. For a query processing millions of rows, this can make a 
significant difference in performance. Of course, a mechanism similar to the UPDATE featured in the example 
must be used to ensure that these redundant values are properly maintained. 

Summary Tables 

An increasingly common method of denormalizing for performance involves the creation of summary tables—
tables that summarize detail data from other tables. The technique has become so popular, in fact, that some 
DBMS vendors offer built-in support for summary tables. 
Building a summary table typically consists of running a popular query (that perhaps takes an extended period 
of time to run) ahead of time and storing its results in a summary table. When applications need access to the 
data, they access this static table. Then—during off-peak periods or whenever it's convenient—the summary 
query can be rerun and the table updated with the latest info. This works well and is a viable alternative to 
executing lengthy queries repetitively. 
One problem with this approach is in administration. Setting up a summary table counterpart for a detail table 
doubles the administrative work on that table. If you had ten stored procedures on the original table, you are 
likely to need twenty now. Everything you did for the detail table in terms of administration must now be done 
redundantly—all triggers, constraints, etc. must be maintained in two places now rather than one. The more 
summary tables you have, the more headaches you have. 
An option that solves the administrative dilemma while providing the query performance gains of summary 
tables is what I call inline summarization. Inline summarization involves changing the original detail table 
slightly so that it can store summary as well as detail data, then summarizing a portion of it and inserting that 
summary data back into the table itself, optionally removing or archiving the original detail rows. One of the 
benefits of this approach is that summary and detail data can be easily queried together or separately—in fact, 
queries over the table normally don't know whether they're working with detail or summary data. Subtle clues 
can indicate which rows are summary rows, but they are otherwise indistinguishable from their detail siblings. 
Note that, strictly speaking, if you remove the detail data, you also avoid the problems that accompany 
keeping redundant data. Another benefit of this approach is that you don't have the redundant administration 
hassles that accompany the separate table approach. All the foreign key references, triggers, constraints, 
views, query batches, and stored procedures that worked with the detail data work automatically with 
summary data, too. 
This is best explored by way of example. Here's a query that performs inline summarization on the Orders 
table in the Northwind sample database: 
      
USE Northwind 
GO 
ALTER TABLE Orders ADD NumberOfOrders int DEFAULT 1 -- Add summary column 
GO 
UPDATE Orders SET NumberOfOrders=DEFAULT -- Force current rows to contain DEFAULT 
value 
GO 
-- Insert summary info 
INSERT Orders (CustomerID, EmployeeID, OrderDate, RequiredDate, ShippedDate, 
  ShipVia, Freight, ShipName, ShipAddress, ShipCity, 
  ShipRegion, ShipPostalCode, ShipCountry, NumberOfOrders) 
SELECT NULL, EmployeeID, CONVERT(char(6), OrderDate, 112)+'01', 



Guru’s Guide to Transact-SQL 

314 

  '19000101', '19000101',1,0,'','','','','','',COUNT(*) -- Summarize rows 
FROM Orders 
WHERE OrderDate < '19980101' 
GROUP BY EmployeeID, CONVERT(char(6), OrderDate, 112)+'01' 
 
-- Delete Order Details rows corresponding to summarized rows 
DELETE d 
FROM [Order Details] d JOIN Orders o ON d.OrderID=o.OrderID 
WHERE o.OrderDate <'19980101' AND RequiredDate > '19000101' 
-- Use RequiredDate to leave summary rows 
 
-- Delete nonsummary versions of rows that were summarized 
DELETE Orders 
WHERE OrderDate < '19980101' AND RequiredDate > '19000101' 
 
     
This query begins by adding a new column to the Orders table, NumberOfOrders. In the past, determining the 
number of orders on file involved using COUNT(*). Inline summarization changes that. It uses 
NumberOfOrders to indicate the number of orders a given row represents. In the case of detail tables, this is 
always "1"—hence the DEFAULT constraint. In the case of summary rows, this could be any number up to the 
maximum int can store. So, to aggregate the number of orders, we simply sum the NumberOfOrders column. 
Regardless of whether the rows summed are detail or summary rows, this works as we expect. 
What this means is that instead of running this query to list the number of orders per month: 
      
SELECT CONVERT(char(6), OrderDate, 112) AS OrderMonth, 
COUNT(*) AS TotalNumberOfOrders -- Use COUNT() to count the number of orders 
FROM Orders 
GROUP BY CONVERT(char(6), OrderDate, 112) 
ORDER BY OrderMonth 
OrderMonth TotalNumberOfOrders 
---------- ------------------- 
199607     22 
199608     25 
199609     23 
199610     26 
199611     25 
199612     31 
199701     33 
199702     29 
199703     30 
199704     31 
199705     32 
199706     30 
199707     33 
199708     33 
199709     37 
199710     38 
199711     34 
199712     48 
199801     55 
199802     54 
199803     73 
199804     74 
199805     14 
 
     
we run this one: 
      
SELECT CONVERT(char(6), OrderDate, 112) AS OrderMonth, 
SUM(NumberOfOrders) AS TotalNumberOfOrders -- Use SUM to return the order count 
FROM Orders 



Chapter 16. Transact-SQL Performance Tuning 

315 

GROUP BY CONVERT(char(6), OrderDate, 112) 
ORDER BY OrderMonth 
OrderMonth TotalNumberOfOrders 
---------- ------------------- 
199607     22 
199608     25 
199609     23 
199610     26 
199611     25 
199612     31 
199701     33 
199702     29 
199703     30 
199704     31 
199705     32 
199706     30 
199707     33 
199708     33 
199709     37 
199710     38 
199711     34 
199712     48 
199801     55 
199802     54 
199803     73 
199804     74 
199805     14 
 
     
It's perhaps helpful to look at the data itself. Here's a small sample of it: 
      
SELECT CustomerID, EmployeeID, OrderDate, RequiredDate, NumberOfOrders 
FROM Orders 
WHERE OrderDate BETWEEN '19971201' AND '19980101' 
ORDER BY OrderDate, EmployeeID 
 
CustomerID EmployeeID OrderDate               RequiredDate            
NumberOfOrders 
---------- ---------- ----------------------- ----------------------- -----------
--- 
NULL       1          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 7 
NULL       2          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 5 
NULL       3          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 11 
NULL       4          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 10 
NULL       5          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 1 
NULL       6          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 5 
NULL       7          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 3 
NULL       8          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 3 
NULL       9          1997-12-01 00:00:00.000 1900-01-01 00:00:00.000 3 
OLDWO      2          1998-01-01 00:00:00.000 1998-01-29 00:00:00.000 1 
LAUGB      2          1998-01-01 00:00:00.000 1998-01-29 00:00:00.000 1 
WELLI      7          1998-01-01 00:00:00.000 1998-01-29 00:00:00.000 1 
 
     
Notice that the CustomerID column is NULL in summary rows because we summed on EmployeeID and 
OrderMonth. This is one way to distinguish summary rows from detail rows. Another way is to inspect the 
RequireDate column—it's always set to 01/01/1900—SQL Server's base date—in summary rows. 

Vertical Partitioning 



Guru’s Guide to Transact-SQL 

316 

Since SQL Server uses a fixed database page size of 8KB and a single row cannot span pages, the number 
of rows that will fit on a page is determined by row width. The wider a row, the fewer rows that fit on each 
page. Physically splitting a table into multiple tables allows more rows to fit on a page, potentially increasing 
query performance. Here's an example that vertically partitions the Orders table in the Northwind sample 
database: 
      
SET NOCOUNT ON 
USE Northwind 
BEGIN TRAN -- So we can undo all this 
 
DECLARE @pagebin binary(6), @file int, @page int 
 
-- Get the first page of the table (usually) 
SELECT TOP 1 @pagebin=first 
FROM sysindexes 
WHERE id=OBJECT_ID('Orders') 
ORDER BY indid 
-- Translate first into a file and page number 
EXEC sp_decodepagebin @pagebin, @file OUT, @page OUT 
 
-- Show the first file and page in the table 
-- Look at the m_slotCnt column in the page header to determine 
-- the number of row/page for this page. 
DBCC TRACEON(3604) 
PRINT CHAR(13) 
PRINT '***Dumping the first page of Orders BEFORE the partitioning' 
DBCC PAGE('Northwind',@file,@page,0,1) 
 
-- Run a query so we can check the cost of the query 
-- before the partitioning 
SELECT * 
INTO #ordertmp1 
FROM Orders 
 
-- Now partition the table vertically into two separate tables 
 
-- Create a table to hold the primary order information 
SELECT OrderID, CustomerID, EmployeeID, OrderDate, RequiredDate 
INTO OrdersMain 
FROM Orders 
 
-- Add a clustered primary key 
ALTER TABLE OrdersMain ADD CONSTRAINT PK_OrdersMain PRIMARY KEY (OrderID) 
 
-- Create a table that will store shipping info only 
SELECT OrderID, Freight, ShipVia, ShipName, ShipAddress, ShipCity, ShipRegion, 
ShipPostalCode, ShipCountry 
INTO OrdersShipping 
FROM Orders 
 
-- Add a clustered primary key 
ALTER TABLE OrdersShipping ADD CONSTRAINT PK_OrdersShipping PRIMARY KEY (OrderID) 
 
-- Now check the number of rows/page in the first of the new tables. 
-- Vertically partitioning Orders has increased the number of rows/page 
-- and should speed up queries 
SELECT TOP 1 @pagebin=first 
FROM sysindexes 
WHERE id=OBJECT_ID('OrdersMain') 
ORDER BY indid 
 



Chapter 16. Transact-SQL Performance Tuning 

317 

EXEC sp_decodepagebin @pagebin, @file OUT, @page OUT 
 
PRINT CHAR(13) 
PRINT '***Dumping the first page of OrdersMain AFTER the partitioning' 
DBCC PAGE('Northwind',@file,@page,0,1) 
 
-- Run a query so we can check the cost of the query 
-- after the partitioning 
SELECT * 
INTO #ordertmp2 
FROM OrdersMain 
-- Check the number of rows/page in the second table. 
SELECT TOP 1 @pagebin=first 
FROM sysindexes 
WHERE id=OBJECT_ID('OrdersShipping') 
ORDER BY indid 
 
EXEC sp_decodepagebin @pagebin, @file OUT, @page OUT 
 
PRINT CHAR(13) 
PRINT '***Dumping the first page of OrdersShipping AFTER the partitioning' 
DBCC PAGE('Northwind',@file,@page,0,1) 
DBCC TRACEOFF(3604) 
 
DROP TABLE #ordertmp1 
DROP TABLE #ordertmp2 
 
GO 
ROLLBACK TRAN -- Undo it all 
***Dumping the first page of Orders BEFORE the partitioning 
 
PAGE: 
 
BUFFER: 
 
BUF @0x11B3B000 
--------------- 
bpage = 0x1FD90000    bhash = 0x00000000    bpageno = (1:143) 
bdbid = 6             breferences = 8       bkeep = 1 
bstat = 0x9           bspin = 0             bnext = 0x00000000 
 
PAGE HEADER: 
 
Page @0x1FD90000 
---------------- 
m_pageId = (1:143)   m_headerVersion = 1  m_type = 1 
m_typeFlagBits = 0x0 m_level = 0          m_flagBits = 0x0 
m_objId = 357576312  m_indexId = 0        m_prevPage = (0:0) 
m_nextPage = (1:291) pminlen = 58         m_slotCnt = 42 
m_freeCnt = 146      m_freeData = 7962    m_reservedCnt = 0 
m_lsn = (18:151:6)   m_xactReserved = 0    m_xactId = (0:0) 
m_ghostRecCnt = 0    m_tornBits = 81921 
GAM (1:2) ALLOCATED, SGAM (1:3) NOT ALLOCATED, PFS (1:1) 0x60 MIXED_EXT ALLOCATED  
 

0_PCT_FULL 
 
DBCC execution completed. If DBCC printed error messages, contact your system  
 

administrator. 
 
***Dumping the first page of OrdersMain AFTER the partitioning 



Guru’s Guide to Transact-SQL 

318 

 
PAGE: 
 
BUFFER: 
 
BUF @0x11B37EC0 
--------------- 
bpage = 0x1FC06000 bhash = 0x00000000 bpageno = (1:424) 
bdbid = 6          breferences = 0    bkeep = 1 
bstat = 0x9        bspin = 0          bnext = 0x00000000 
 
PAGE HEADER: 
 
Page @0x1FC06000 
---------------- 
m_pageId = (1:424)   m_headerVersion = 1  m_type = 1 
m_typeFlagBits = 0x0 m_level = 0          m_flagBits = 0x4 
m_objId = 2005582183 m_indexId = 0        m_prevPage = (0:0) 
m_nextPage = (1:425) pminlen = 38         m_slotCnt = 188 
m_freeCnt = 12       m_freeData = 7804    m_reservedCnt = 0 
m_lsn = (28:144:24)  m_xactReserved = 0   m_xactId = (0:0) 
m_ghostRecCnt = 0    m_tornBits = 0 
GAM (1:2) ALLOCATED, SGAM (1:3) NOT ALLOCATED, PFS (1:1) 0x40 ALLOCATED 
0_PCT_FULL 
 
DBCC execution completed. If DBCC printed error messages, contact your system  
 

administrator. 
 
***Dumping the first page of OrdersShipping AFTER the partitioning 
 
PAGE: 
 
BUFFER: 
 
BUF @0x11B49E80 
--------------- 
bpage = 0x20504000 bhash = 0x00000000 bpageno = (1:488) 
bdbid = 6          breferences = 0    bkeep = 1 
bstat = 0x9        bspin = 0          bnext = 0x00000000 
 
PAGE HEADER: 
 
Page @0x20504000 
---------------- 
m_pageId = (1:488)   m_headerVersion = 1  m_type = 1 
m_typeFlagBits = 0x0 m_level = 0          m_flagBits = 0x0 
m_objId = 2037582297 m_indexId = 0        m_prevPage = (0:0) 
m_nextPage = (1:489) pminlen = 12         m_slotCnt = 55 
m_freeCnt = 43       m_freeData = 8039    m_reservedCnt = 0 
m_lsn = (28:179:24)  m_xactReserved = 0   m_xactId = (0:0) 
m_ghostRecCnt = 0    m_tornBits = 0 
GAM (1:2) ALLOCATED, SGAM (1:3) NOT ALLOCATED, PFS (1:1) 0x40 ALLOCATED 
0_PCT_FULL 
 
     
The steps this query goes through are as follows: 

1. Start a transaction so that all changes can be rolled back when we're done. 
2. Show the first page of the Orders table as it appears before we partition it. This tells us how many 

rows are being stored on the page (see the m_slotcnt field in the page header). 



Chapter 16. Transact-SQL Performance Tuning 

319 

3. Run a query that traverses the entire table so that we can compare the costs of querying the data 
before and after partitioning. 

4. Partition Orders into two news tables using SELECT…INTO. Put primary order-related columns in 
one table; put shipping-related columns in the other. 

5. Show the first page of the first new table. This tells us how many rows are being stored on the first 
page of the new table. 

6. Run the earlier query against the first of the new tables so we can compare query costs. 
7. Dump the first page of the second new table. This tells us how many rows fit on its first page. 
8. Drop the temporary tables created by the cost queries. 
9. Roll back the transaction. 

When you run the query, inspect the m_slotcnt field in the page header of each set of DBCC PAGE output. 
This field indicates how many row slots there are on the listed page. You'll notice that it increases substantially 
from the original Orders table to the OrdersMain table. In fact, it should be roughly four times as high in the 
new table. What does this mean? It means that a query retrieving rows from OrdersMain will be roughly four 
times more efficient than one pulling them from Orders. Even if these pages are in the cache, this could 
obviously make a huge difference. 
Understand that the actual number of rows on each page is not constant. That is, even though the first page 
of the new table may hold, say, 100rows, the second page may not. This is due to a number of factors. First, 
SQL Server doesn't maintain the table's FILLFACTOR over time. Data modifications can change the number 
of rows on a given page. Second, if a table contains variable-length columns, the length of each row can vary 
to the point of changing how many rows fit on a given page. Also, the default FILLFACTOR (0) doesn't force 
pages to be completely full—it's not the same as a FILLFACTOR of 100. A FILLFACTOR of 0 is similar to 100 
in that it creates clustered indexes with full data pages and nonclustered indexes with full leaf pages. However, 
it differs in that it reserves space in the upper portion of the index tree and in the non-leaf-level index pages 
for the maximum size of one index entry. 
This query makes use of the sp_decodepagebin stored procedure. The sp_decodepagebin procedure 
converts binary file/page numbers such as those in the first, root, and FirstIAM columns of the sysindexes 
system table to integers that can be used with DBCC PAGE. When passed a binary(6) value, like those in 
sysindexes, it returns two output parameters containing the file and page number encoded in the value. Here's 
its source code: 
      
USE master 
IF OBJECT_ID('sp_decodepagebin') IS NOT NULL 
  DROP PROC sp_decodepagebin 
GO 
CREATE PROC sp_decodepagebin @pagebin varchar(12), @file int=NULL OUT, 
  @page int=NULL OUT 
/* 
Object: sp_decodepagebin 
Description: Translates binary file/page numbers (like those in the sysindexes 
root,  
 

first, and FirstIAM columns) into integers 
Usage: sp_decodepagebin @pagebin=binary(6) file/page number, @file=OUTPUT parm 
for file  
 

number, @page=OUTPUT parm for page number 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 1.2 
 
Example: EXEC sp_decodepagebin "0x050000000100", @myfile OUT, @mypage OUT 
 
Created: 1999-06-13. Last changed: 1999-08-05. 
*/ 
AS 



Guru’s Guide to Transact-SQL 

320 

DECLARE @inbin binary(6) 
IF (@pagebin='/?') GOTO Help 
SET @inbin=CAST(@pagebin AS binary(6)) 
SELECT  @file=(CAST(SUBSTRING(@inbin,6,1) AS 
int)*POWER(2,8))+(CAST(SUBSTRING(@inbin,5,1)  
 

AS int)), 
  @page=(CAST(SUBSTRING(@inbin,4,1) AS int)*POWER(2,24)) + 
  (CAST(SUBSTRING(@inbin,3,1) AS int)*POWER(2,16)) + 
  (CAST(SUBSTRING(@inbin,2,1) AS int)*POWER(2,8)) + 
  (CAST(SUBSTRING(@inbin,1,1) AS int)) 
from sysindexes 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_decodepagebin', 
  @desc='Translates binary file/page numbers (like those in the sysindexes root, 
first,  
 

and FirstIAM columns) into integers', 
  @parameters='@pagebin=binary(6) file/page number, @file=OUTPUT parm for file 
number, 
  @page=OUTPUT parm for page number', 
  @example='EXEC sp_decodepagebin "0x050000000100", @myfile OUT, @mypage OUT', 
  @author='Ken Henderson', 
  @email='khen@khen.com', 
  @version='1', @revision='2', 
  @datecreated='6/13/99', @datelastchanged='8/5/99' 
RETURN –1 
 
     
This procedure is necessary because the first, root, and FirstIAM pages are not useful in their native format. 
We need to access first in order to access the table's starting page (though first isn't guaranteed to reference 
the table's initial page by the server, it's unfortunately the best access we have). In order to convert the 
binary(6) value that's stored in first into a usable file and page number, we need to swap the bytes in the 
number and then convert the values from hexadecimal to decimal. Once swapped, the initial two bytes of the 
first column reference its page; the last four identify its page number. By using sp_decodepagebin, we're 
spared the details of producing these. 
The example code executed a SELECT * query before and after the table partitioning in order to test the effect 
of the partitioning on query costing. Let's look at the execution plan of the before and after instances of the 
query in Figures 16.17 and 16.18. 

Figure 16.17. The execution plan of the "before" query 



Chapter 16. Transact-SQL Performance Tuning 

321 

 

Figure 16.18. The execution plan of the "after" query. 

 
The most striking difference between the two execution plans is the estimated row size. It drops from 240 in 
the first query to 41 in the second. Naturally, this means that more rows fit on a given page and more will be 
retrieved with each page read. 

Horizontal Partitioning 



Guru’s Guide to Transact-SQL 

322 

Despite having tuned a given table thoroughly, you may find that it's just too large to support the type of 
performance you need. As rows are added to a table, the infrastructure required to support it grows in size. 
Eventually, it gets so large that index navigation alone is an expensive and time-consuming proposition. 
Traversing an index B-tree that contains millions of keys can require more time than accessing the data itself. 
One answer to this is to partition the table horizontally—to break it into multiple tables based on the value of 
some column or columns. Then, the number of rows any one query will have to navigate is far less. 
Horizontal partitioning is especially handy when a subset of a table is considerably more active than the rest 
of the table. By putting it in its own partition, you allow queries that reference it to avoid wading through lots of 
data they don't need. 
Unlike vertically partitioned tables, horizontal partitions contain identical columns. Here's an example that 
horizontally partitions the Orders table in the Northwind sample database by month based on the OrderDate 
column: 
      
USE Northwind 
BEGIN TRAN -- So we can undo all this 
 
     
      
-- Drop the index so we can see the effects of partitioning more easily 
DROP INDEX Orders.OrderDate 
 
SELECT * 
INTO P199701_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970101' AND '19970131' 
 
SELECT * 
INTO P199702_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970201' AND '19970228' 
 
SELECT * 
INTO P199703_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970301' AND '19970331' 
 
SELECT * 
INTO P199704_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970401' AND '19970430' 
 
SELECT * 
NTO P199705_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970501' AND '19970531' 
 
SELECT * 
INTO P199706_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970601' AND '19970630' 
 
SELECT * 
INTO P199707_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970701' AND '19970731' 
 
SELECT * 
INTO P199708_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970801' AND '19970831' 
 



Chapter 16. Transact-SQL Performance Tuning 

323 

SELECT * 
INTO P199709_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19970901' AND '19970930' 
 
SELECT * 
INTO P199710_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19971001' AND '19971031' 
 
SELECT * 
INTO P199711_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19971101' AND '19971130' 
 
SELECT * 
INTO P199712_Orders 
FROM Orders 
WHERE OrderDate BETWEEN '19971201' AND '19971231' 
 
-- Now let's run a couple queries to see the effects of the partitioning 
SELECT CONVERT(char(6), OrderDate, 112) OrderMonth, COUNT(*) NumOrders 
FROM Orders 
WHERE OrderDate BETWEEN '19970701' AND '19970731' 
GROUP BY CONVERT(char(6), OrderDate, 112) 
ORDER BY OrderMonth 
 
ALTER TABLE P199707_Orders ADD CONSTRAINT PK_P199707_Orders PRIMARY KEY (OrderID) 
SELECT CONVERT(char(6), OrderDate, 112) OrderMonth, COUNT(*) NumOrders 
FROM P199707_Orders 
WHERE OrderDate BETWEEN '19970701' AND '19970731' 
GROUP BY CONVERT(char(6), OrderDate, 112) 
ORDER BY OrderMonth 
OrderMonth NumOrders 
---------- ----------- 
199707     33 
OrderMonth NumOrders 
---------- ----------- 
199707     33 
 
     
To see the effect partitioning the table has had on performance, let's examine the execution plans of the two 
grouped SELECTs in the query—Figures 16.19 and16.20. 

Figure 16.19. The execution plan of the query against the entire Orders tables. 



Guru’s Guide to Transact-SQL 

324 

 

Figure 16.20. The execution plan of the query against the partitioned table. 

 
The query against the partitioned table is 28% more efficient in terms of I/O cost and 89% more efficient in 
terms of CPU cost. Obviously, traversing a subset of a table is quicker than traversing the entire table. 
Among the drawbacks of horizontal partitioning is increased query complexity. Queries that span more than 
one partition become linearly more complicated. You can alleviate some of this by using views to merge 
partitions via UNIONs, but this is only marginally effective. Some degree of additional complexity is 
unavoidable. Also, self-referencing constraints are at a disadvantage when horizontal partitions are present. If 
a table needs to reference itself to check the validity of a value, the presence of partitions may force it to have 
to check several other tables. 



Chapter 16. Transact-SQL Performance Tuning 

325 

The Query Optimizer 

One of the strengths of modern relational DBMSs is server-based query optimization. It's an area where 
client/server systems have a distinct advantage over flat-file databases. Without a server, there's little 
opportunity for optimizing queries submitted by applications, especially multiuser applications. For example, 
there's no chance of reusing the execution plan of a query run by one user with one run by another user. 
There's no opportunity to cache database objects accessed by multiple users in a manner beyond simplistic 
file system–based caching because nothing but the database drivers knows anything about the database. To 
the operating system, it's just another file or files. To the application, it's a resource accessed by way of a 
special driver, usually a DLL. In short, no one's in charge—no one's minding the store as far as making sure 
access to the database is consistent and efficient across all the clients using it. 
Client/server DBMSs have changed this by making the server an equal partner with the developer in ensuring 
database access is as efficient as possible. The science behind query optimization has evolved over the years 
to the point that the optimizer is usually able to tune a query better and more quickly than a human 
counterpart. A modern optimizer can leverage one of the things computers do best—iteration. It can quickly 
loop through an assortment of potential query solutions in order to select the best one. 
DBMSs take a variety of approaches to optimizing queries. Some optimize based on heuristics—internally 
reordering and reorganizing queries based on a predefined set of algebraic rules. Query trees are dissected, 
and associative and commutative rules are applied in a predetermined order until a plan for satisfying the 
entire query emerges. 
Some DBMSs optimize queries based on syntactic elements. This places the real burden of optimization on 
the user because WHERE clause predicates and join criteria are not reordered —they generate the same 
execution plan with each run. Because the user becomes the real optimizer, intimate knowledge of the 
database is essential for good query performance. 
Semantic optimization is a theoretical technique that assumes the optimizer knows the database schema and 
can infer optimization potential through constraint definitions. Several vendors are exploring this area of query 
optimization as a means of allowing a database designer or modeler a direct means of controlling the 
optimization process. 
The most prevalent means of query optimization, and, I think, the most effective, is cost-based optimization. 
Cost-based optimization weighs several different methods of satisfying a query against one another and 
selects the one that will execute in the shortest time. A cost-based optimizer bases this determination on 
estimates of I/O, CPU utilization, and other factors that affect query performance. This is the approach that 
SQL Server takes, and its implementation is among the most advanced in the industry. 
I've already touched briefly on the query optimizer and some of its features elsewhere in this chapter, but I 
think it's essential to have a good understanding of how it works in order to write optimal T-SQL code and to 
tune queries properly. 
The optimizer goes through several steps in order to optimize a query. It analyzes the query, identifying 
SARGs and OR clauses, locating joins, etc. It compares different ways of performing any necessary joins and 
evaluates the best indexes to use with the query. Since the optimizer is cost-based, it selects the method of 
satisfying the query with the least cost. Usually, it makes the right choice, but sometimes it needs a little help. 

Join Optimizations 

Releases 7.0 and later> of SQL Server support join types beyond the simple nested loop (or nested iteration) 
joins of earlier releases. This flexibility allows the optimizer to find the best way of linking one table with 
another using all the information at its disposal. 

Nested Loops 

Nested loop joins consist of a loop within a loop. They designate one table in the join as the outer loop and the 
other as the inner loop. For each iteration of the outer loop, the entire inner loop is traversed. This works fine 
for small to medium-sized tables, but as the loops grow larger, this strategy becomes increasingly inefficient. 
Figure 16.21 illustrates a nested loop query and its execution plan. 

Figure 16.21. A nested loop join 



Guru’s Guide to Transact-SQL 

326 

 

Merge Joins 

Merge joins perform much more efficiently with large data sets than nested loop joins. A row from each table 
in the join is retrieved and compared. Both tables must be sorted on the merge column for the join to work. 
The optimizer usually opts for a merge join when working with a large data set and when the comparison 
columns in both tables are already sorted. Figure 16.22 illustrates a query that the optimizer processes 
using a merge join. 

Figure 16.22. The optimizer chooses a merge join when both tables are suitably stored 



Chapter 16. Transact-SQL Performance Tuning 

327 

 

Hash Joins 

Hash joins are also more efficient with large data sets than nested loop joins. Additionally, they work well with 
tables that are not sorted on the merge column(s). The server performs hash joins by hashing the rows from 
the smaller of the two tables (designated the "build" table), inserting them into a hash table, processing the 
larger table (the "probe" table) a row at a time, and scanning the hash table for matches. Because the smaller 
of the two tables supplies the values in the hash table, the table size is kept to a minimum, and because 
hashed values rather than real values are used, comparisons can be made between the tables very quickly. 
Hash joins are a variation on the concept of hashed indexes that have been available in a handful of 
advanced DBMS products for several years. With hashed indexes, the hash table is stored permanently—it is 
the index. Data is hashed into slots that have the same hashing value. If the index has a unique contiguous 
key, what is known as a minimal perfect hashing function exists—every value hashes to its own slot and there 
are no gaps between slots in the index. If the index is unique but noncontiguous, the next best thing—a 
perfect hashing function—can exist wherein every value hashes to its own slot, but potentially there are gaps 
between them. Figure 16.23 illustrates a hash join. 

Figure 16.23. Hash joint work well for large data sets that may not be sorted. 



Guru’s Guide to Transact-SQL 

328 

 

Index Optimizations 

In addition to identifying search arguments and using indexes to service them, the query optimizer can make 
use of indexes in other ways to streamline query processing. A number of these are made possible by the 
optimizer's ability to make use of multiple indexes on the same table. 

Index Joins 

As mentioned elsewhere in this chapter, index covering is the process whereby the optimizer uses a 
nonclustered index to satisfy a query rather than referencing the underlying table or clustered index. It 
requires that the columns requested by the query exist as keys in a nonclustered index. An execution plan 
that uses a nonclustered index to retrieve data but does not include a Bookmark lookup step is making use of 
index covering. SQL Server can join multiple nonclustered indexes to create covered indexes on the fly. This 
is often faster than using the indexes separately and certainly quicker than sequentially scanning the table 
itself. Figure 16.24 shows a query that the optimizer translates into a join between two nonclustered indexes. 

Figure 16.24. The server can join indexes to cover a query 



Chapter 16. Transact-SQL Performance Tuning 

329 

 
SQL Server's ability to join nonclustered indexes in this fashion has some ramifications for physical database 
design. Prior to the advent of index joins, the common technique for setting up index covering was to add a 
column or two to an existing index in order to allow it to cover a given query or queries. Now that the optimizer 
can join indexes, it may be more sensible to split these keys into multiple indexes and allow the optimizer to 
join them as necessary. This allows the optimizer to use them individually as well, which wouldn't be the case 
with a compound key. This isn't to say that you should abandon compound index keys altogether, but splitting 
them into separate indexes is certainly something to consider. 

Index Merging and Intersection 

Similar to index joins is the optimizer's ability to merge and intersect indexes. This allows it to merge the 
matching keys in multiple indexes into a set of key values that it may then look up in the clustered index or 
underlying table in order to retrieve columns not found in the indexes.Figure 16.25 illustrates an index 
merge/intersection query and execution plan. 

Figure 16.25. The execution plan of the query against the entire Orders tables. 



Guru’s Guide to Transact-SQL 

330 

 
Notice that the execution plan includes a Bookmark lookup step. This means that the query isn't being 
covered by nonclustered indexes. They are, however, intersected to help service it. 

Data Warehouse Optimizations 

In addition to the data warehousing and OLAP tools that ship with SQL Server, the query optimizer can 
recognize star schema layouts and perform special optimizations for queries that join fact and dimension 
tables. Since dimension tables tend to be microscopic compared with fact tables, the query optimizer can 
generate an execution plan that first cross-joins the dimension tables in a query with each other and then joins 
the result with the fact table. The end result is a smaller number of joins than with traditional methods of 
combining these types of tables. 
This is best understood by way of example. For the sake of discussion, assume we have three tables—two 
dimension tables and one fact table. The dimension tables have ten rows each, and the fact table has a 
million rows. If you join the fact table to the two dimension tables with inner joins and the optimizer performs 
no additional optimizations, two million joins will be performed (one million for the join between the fact table 
and the first dimension table and one million for the join with the second dimension table). If, instead, you 
cross-join the two dimension tables, then join the fact table with the result, you reduce the number of joins by 
nearly half: 
10 × 10 dimension rows 5 100 joins 
+ 1 1,000,000 joins between the fact table and the dimension composite 
= 1,000,100 total joins 
The following SQL script illustrates a typical star schema join. It first constructs the dimension and fact tables 
described earlier and then joins the fact table with the two dimension tables. 

NOTE 

Don't run this query with Show Execution Plan enabled in Query Analyzer—each row insertion will 
get its own section in the graphical execution plan, which will take an eternity to run and not be 
terribly useful. If you want to see the join query's execution plan for yourself, highlight the portion of 
the script up to the join and press Ctrl-E in Query Analyzer to run it. This will create the tables and 
populate them with data. Next, press Ctrl-K to turn on the graphical execution plan display; 
highlight the join itself and run it. 

 



Chapter 16. Transact-SQL Performance Tuning 

331 

      
SET NOCOUNT ON 
 
CREATE TABLE #dim1 (dim1 int identity PRIMARY KEY, dim1val int) 
CREATE TABLE #dim2 (dim2 int identity PRIMARY KEY, dim2val int) 
CREATE TABLE #facttable (k1 int identity PRIMARY KEY, dim1 int, dim2 int) 
 
DECLARE @loop INT 
SET @loop=1 
 
WHILE @loop<=10 BEGIN 
  INSERT #dim1 VALUES (@loop*50) 
  INSERT #dim2 VALUES (@loop*25) 
  SET @loop=@loop+1 
END 
 
SET @loop=1 
 
WHILE @loop<=1000000 BEGIN 
  INSERT #facttable VALUES ((@loop / 100000)+1,10-(@loop / 100000)) 
  SET @loop=@loop+1 
END 
 
SELECT COUNT(*) 
FROM #facttable f JOIN #dim1 d ON (f.dim1=d.dim1) 
JOIN #dim2 i ON (f.dim2=i.dim2) 
 
     
Figure 16.26 shows the query's execution plan. 

Figure 16.26. The server can perform special optimization on star schema queries. 

 

Semijoins 



Guru’s Guide to Transact-SQL 

332 

When the fact table in a star schema relationship contains indexes on the dimension columns used in a join, 
the optimizer will use those indexes to perform index intersections with the dimension tables. Each dimension 
table will be joined with an appropriate index on the fact table, and the results of those joins will be intersected 
before retrieving rows from the fact table. This strategy allows the optimizer to return rows from the fact table 
when it's most efficient to do so—after membership in the result set has been pared down by the index 
intersections. 

Grouping Optimizations 

The normal order of events when GROUP BY is present in a query containing joins is to perform the joins 
before grouping the data. Sometimes, however, it's faster to group the data first, especially when working with 
a huge number of rows that will be coalesced into a relatively small number of groups. In the past, Transact-
SQL developers had to perform this optimization by hand, usually via a stored procedure and some temporary 
tables. Now, the optimizer can potentially recognize situations where grouping first would be beneficial and act 
accordingly. 

Predicate Clause Optimizations 

The optimizer can detect when predicate clauses are associative and eliminate unnecessary join steps. Here's 
a query that illustrates: 
      
SET NOCOUNT ON 
 
CREATE TABLE #tmp1 (k1 int identity PRIMARY KEY)  
CREATE TABLE #tmp2 (k1 int identity PRIMARY KEY) 
CREATE TABLE #tmp3 (k1 int identity PRIMARY KEY) 
 
DECLARE @loop int 
SET @loop=1 
 
WHILE @loop<=10 BEGIN 
  INSERT #tmp1 DEFAULT VALUES 
  INSERT #tmp2 DEFAULT VALUES 
  INSERT #tmp3 DEFAULT VALUES 
  SET @loop=@loop+1 
END 
 
SELECT COUNT(*) 
FROM #tmp1 t1, #tmp2 t2, #tmp3 t3 
WHERE t1.k1=t2.k1 AND t2.k1=t3.k1 
GO 
DROP TABLE #tmp1, #tmp2, #tmp3 
 
     

NOTE 

I'm using old-style joins here to underscore the associative properties of predicate clauses. The 
concept applies equally well to ANSI joins. 

 

This query first populates three temporary tables and joins all three of them on the same column. Normally, 
the flow of execution would be to join #tmp1 and #tmp2, then join #tmp2 and #tmp3, and then join the results 
of the first to joins. If all three tables are joined on the same column(s), the query optimizer can eliminate one 
of these three steps by joining #tmp1 and #tmp3 and then joining the result with #tmp2. The execution plan for 
the example code shows this is indeed what happens (Figure 16.27). As you can see, the plan begins with 



Chapter 16. Transact-SQL Performance Tuning 

333 

#tmp1 and #tmp3 being joined using a nested loop. The result of this operation is then joined with #tmp2 to 
form the resultset. 

Figure 16.27. The optimizer can detect associative clauses. 

 

The Index Tuning Wizard 

SQL Server provides a nice facility for helping you determine the indexes you need to service anything from a 
specific query to an entire application. You can access the Index Tuning Wizard via the Query | Perform Index 
Analysis menu option in Query Analyzer or the Tools | Wizards | Management | Index Tuning Wizard option in 
Enterprise Manager. Both facilities use the same engine internally. 
Query Analyzer's Perform Index Analysis option can be used to suggest (and optionally to create) indexes to 
improve the performance of a given query. To explore this, let's create nonindexed versions of the Orders, 
Order Details, and Customers tables in the Northwind sample database and join them together: 
     
SET NOCOUNT ON 
USE Northwind 
SELECT * INTO OrdersNI FROM Orders 
SELECT * INTO OrderDetailsNI FROM [Order Details] 
SELECT * INTO CustomersNI FROM Customers 
SELECT o.OrderDate, c.CompanyName, SUM(d.UnitPrice * d.Quantity) AS 
BeforeDiscount 
FROM OrdersNI o JOIN OrderDetailsNI d ON (o.OrderID=d.OrderID) 
JOIN CustomersNI c ON (o.CustomerID=c.CustomerID) 
GROUP BY o.OrderDate, c.CompanyName 
ORDER BY o.OrderDate, c.CompanyName 
 
    
(Results abridged) 
     
OrderDate               CompanyName                         BeforeDiscount 
----------------------- -----------------------------------  
 



Guru’s Guide to Transact-SQL 

334 

--------------------1996-07-04 00:00:00.000 Vins et alcools Chevalier           
440.0000 
1996-07-05 00:00:00.000 Toms Spezialitäten           1863.4000 
1996-07-08 00:00:00.000 Hanari Carnes                       1813.0000 
1996-07-08 00:00:00.000 Victuailles en stock                670.8000 
1996-07-09 00:00:00.000 Suprêmes délices     3730.0000 
 
    
Once the tables are created, highlight the join query and press Ctrl-I to instruct Query Analyzer to analyze the 
indexes used by the query. It will recommend two new nonclustered indexes—one on the OrdersNI table and 
one on OrderDetailsNI. Figure 16.28 illustrates. 

Figure 16.28. The Perform Index Analysis Option in Query Analyzer can suggest indexes. 

 
Curiously, the analyzer doesn't recommend an index for the CustomersNI table. This is probably due to the 
fact that it believes the query is just as efficient using a table scan on CustomerNI as it would be with an index 
over the table. 
The Index Tuning Wizard in Enterprise Manager works similarly, but it's designed to work with entire 
databases or database objects rather than specific queries. To use it, follow these steps: 

1. Start the Profiler tool and begin a trace that traps Transact-SQL statement execution. 
2. Run your application, focusing on areas that are not performing as well as they need to. 
3. Save the trace information in Profile to a file. 
4. Start the Index Tuning Wizard in Enterprise Manager. 
5. Opt to perform a complete analysis unless the database is so large that that's impractical. 
6. Select your database and include all objects in the analysis unless you know for certain that a given 

object isn't used. 
7. Supply the workload file you saved earlier in Profiler as the input for the tuning process. 
8. The wizard will then recommend indexes based on the workload you specified. 
9. Click the Analysis button to gain insight into the wizard's recommendations. You can view a number of 

reports and save them to disk. 

Profiler 



Chapter 16. Transact-SQL Performance Tuning 

335 

The Profiler tool allows you to set up traces that watch server activity for particular events such as Transact-
SQL statement execution. You can find it in the SQL Server folder or on the Tools menu in Enterprise 
Manager. 
The concept behind using Profiler to tune your system is to capture events emitted from the server's storage 
or relational engine, then tune the server, query, database, and so on, and replay those events in order to 
gauge the success of your tuning efforts. 
You can set up traces that identity worst-performing queries, queries that cause deadlocks, queries that 
produce long table scans, and so on. You can set up private traces as well as those that are available to all 
users. The tool includes a wizard that assists with setting up some of the more common traces. 
One of the tool's most powerful features is its ability to play back traced events. This is what gives the tool its 
name, and it's what allows you to tune the server in an iterative fashion, replaying the suspect events with 
each tuning adjustment. 

Perfmon 

The Windows NT Performance Monitor allows a myriad of operational and performance statistics to be 
tracked for SQL Server. You can find it in the SQL Server folder as well as in the NT Administrative tools 
folder. It's also available from the toolbar of the Profiler tool. 
Normally, you'll want to start Perfmon from Profiler or the SQL Server group because doing so automatically 
enables a number of SQL Server–related counters, as illustrated by Figure 16.29. 

Figure 16.29. Starting the perfmon tool from profiler enables several SQL server counters. 

 
Perfmon can display performance counters in a variety of formats, but the most popular is the default 
histogram format. The chart is updated every three seconds and graphically depicts the values for the 
currently selected counters. 
The most popular Perfmon counters are the Buffer Cache:Buffer Cache Hit Ratio, General Statistics:SQL 
Cache Memory(KB), and the Databases:Percent Log Used counters. Some counters, including Percent Log 
Used, require you to select a database, as Figure 16.30 illustrates. 

Figure 16.30. Some perfmon counters require a database instance to be selected. 



Guru’s Guide to Transact-SQL 

336 

 

User Counters 

SQL Server defines ten user counters that you can use to track performance in your own applications. You 
use the sp_user_counterN system stored procedures to set these values from within your application. You 
can watch them in Perfmon by setting the Query counter of the appropriate instance of the SQLServer:User 
Settable object. Figure 16.31 illustrates setting a user-defined counter in Perfmon. 

Figure 16.31. You can set up user-defined counters in perfmon and set them in your apps. 

 



Chapter 16. Transact-SQL Performance Tuning 

337 

Perfmon-Related DBCC Commands 

Two DBCC command verbs, PERFMON and SQLPERF, provide useful Performance Monitor–related info via 
Transact-SQL. DBCC PERFMON returns a barrage of information in text form that's also reported graphically 
by Perfmon itself, and DBCC SQLPERF (LOGSPACE) returns the Percent Log Used counter for each 
database on the server. 

Summary 

Transact-SQL provides a wealth of query tuning techniques. Properly designing your databases and 
constructing queries to take advantage of your design are at the top of the list. Sound database designs and 
optimal queries work in harmony with one another. 
Performance tuning is a complex topic that could easily fill several books all by itself. The key to successful 
tuning is to know your tools, know how the server works, and have the tenacity to work through performance 
problems in an iterative fashion. 





Chapter 17. Administrative Transact-SQL 

339 

Chapter 17. Administrative Transact-SQL 
Thinking is the hardest work there is, which is probably the reason so few engage in it.  

—Henry Ford 

While database administration itself is beyond the scope of this book, we can still delve into administrative 
Transact-SQL in some depth. In many shops, the line between database programmer and database 
administrator is a gray one indeed, so, regardless of whether you're a DBA, it's handy to have a working 
knowledge of administrative Transact-SQL commands and syntax. 
It's common for shops to author custom stored procedures and Transact-SQL batches to perform 
administrative functions. Backups, index statistic refreshes, and data warehouse updates are examples of the 
types of tasks these routines usually perform. Using the SQL Server Agent service, they can be set up to run 
when system utilization is relatively low. 
Oscar Wilde said, "Dullness is the coming of age of seriousness." Oftentimes, database administration is the 
"coming of age" of database application development. Once an app is built, someone has to feed and care for 
it, including its database. This is usually a dreary task and a thankless job, so it makes sense to use scripts 
and stored procedures to automate it whenever possible. 

GUI Administration 

There was a time when the first response of old-timers to SQL Server management issues was to re up ISQL, 
the venerable predecessor of Query Analyzer. Since I started working with the product when it had little in the 
way of real administration tools, this has been my default, gut reaction for years. The tools that shipped with 
SQL Server (and its look-alike cousin, Sybase) were poor enough (remember the execrable SAF utility?) that 
there was little other choice. However, with SQL Server's increasing complexity and the steady improvement 
of its graphical tools, this isn't the necessity it once was. No matter how adept you are with Transact-SQL, 
your best bet for administrating SQL Server is to use the many nice graphical tools that come with it. 
Enterprise Manager, with its many built-in facilities and utilities, is a very capable administration tool. Gone are 
the days when the administrator was forced to resort to a mixed bag of Transact-SQL and third-party tools to 
get the job done. In fact, with all the functionality now present in the product, managing SQL Server using only 
Transact-SQL would be difficult if not impossible. Furthermore, Enterprise Manager has matured to the point 
that it has greatly diminished the need for third-party tools. The product offers a rich assortment of 
management facilities that's coherent and easy to use. Before you go to the trouble of writing lots of elaborate 
custom procedures using Transact-SQL syntax that is at times rather obscure, check out what comes free in 
the box. 

System Stored Procedures 

On that note, your first move in deciding what administrative tasks to automate and how to automate them is 
to peruse the system procedures that ship with SQL Server. There are a number of handy routines that come 
with SQL Server out of the box. They supplement Transact-SQL with useful functionality not found in the 
language itself, ranging from the simple listing of meta-data to specifying database option settings and 
configuring the server. The procedures included in Table17.1 aren't listed in order of importance, nor is the 
list anywhere near complete. They're intended to spur your interest in the canned routines that come with the 
product so that you'll get to know them for yourself. 

Administrative Transact-SQL Commands 

In addition to the bevy of administration-related procedures that ship with SQL Server, there are a number of 
Transact-SQL commands that have to do with system and database administration. Table17.2 lists some of 
the more pertinent ones. 
As with the earlier list, this one is far from complete. It's worth your time to scan the entirety of the Transact-
SQL language for commands and syntax that can lessen your administrative workload. 

Administrative System Functions 



Guru’s Guide to Transact-SQL 

340 

There are also several Transact-SQL functions that relate to database administration. Technically, most of the 
functions in Transact-SQL play a role in server administration at one time or another since they end up in the 
stored procedures and scripts used to perform administrative tasks. Some of them you may be familiar with, 
some you might not be. Table17.3 lists a few of the more important ones. 

Administrative Automatic Variables 

Automatic variables are predefined, read-only variables that have the prex "@@" The SQL Server Books 
Online usually refers to them as "functions," but they aren't really functions in the normal sense of the term 
(e.g., unlike functions, they can be passed as parameters to stored 

Table 17.1. Administration-related stored procedures. 
Procedure  Purpose  

Catalog stored procedures such as 
sp_tables, sp_columns, 
sp_stored_procedures, sp_statistics, etc. 

Provide catalog-level information about database objects. As 
with the ANSI SQL-92 information schema views, these can be 
used in lieu of direct system table references to avoid system 
schema dependencies. 

sp_add_job, sp_add_jobschedule, 
sp_add_jobserver, sp_addjobstep 

Used to manage SQL Server Agent automated tasks. 

sp_autostats Used to toggle the automatic maintenance of index statistics for 
a given index or indexes. 

sp_create_removable Creates a removable database. 
sp_cycle_errorlog Recreates the error log as though the server had been shut 

down and restarted. 
sp_dboption Sets database-wide options such as select into/bulk copy, 

trunc. log on chkpt., etc. 
sp_dbremove Drops a database and all les associated with it. 
sp_lock Lists detailed information about object locks, who holds them, 

etc. 
sp_makewebtask Creates a job that produces HTML from query result sets. 
sp_manage_jobs_by_login Allows the jobs belonging to a specic login to be re-assigned or 

deleted. 
sp_monitor Reports server-wide performance information. 
sp_processmail Executes queries contained in mail sent to SQL Server and 

returns the results as email replies. 
sp_procoption Configures (or displays) a procedure's autostartup status. 
sp_refreshview Rebuilds the catalog info for a view so that it rejects changes to 

underlying objects. 
sp_server_info Returns attributes and capability information for the current 

server, a database gateway, or data source (analogous to 
ODBC's SQLGetInfo function). 

sp_serveroption Allows options for remote and linked servers to be specified. 
sp_spaceused Reports on the physical space used by a database or database 

object. 
sp_tableoption Sets table-level options (e.g., table lock on bulk load).  
sp_updatestats Updates the index statistics for all user-defined indexes in the 

current database. 
sp_validname Checks to see whether an identifier is a valid SQL Server 

name. 
sp_who Reports on current user activity. 
xp_cmdshell Executes an operating system command. 
xp_printf, xp_sscanf Allows string variables to be formatted similarly to the C printf() 

and scanf() functions. 
Table 17.2. Administration-related Transact-SQL commands. 



Chapter 17. Administrative Transact-SQL 

341 

Command  Purpose  
BACKUP/RESTORE Allows databases and transaction logs to be backed up and restored 
BULK INSERT Loads data from an operating system file into a table 
CHECKPOINT Forces dirty pages to be written to disk 
CREATE DATABASE Creates a new database 
CREATE SCHEMA Creates a series of database objects in one fell swoop 
CREATE STATISTICS Creates an index histogram over a selection of columns in a table 
DBCC CHECK… Checks databases and related structures for errors 
DBCC OPENTRAN Returns information on the oldest running transaction in a database 
DBCC SHRINKDATABASE Shrinks the size of the specified database 
DBCC SQLPERF Returns transaction log usage information 
GRANT and DENY Permits or prevents access to database objects and commands 
KILL Stops a currently connected process 
RECONFIGURE Makes server configuration changes permanent 
SHUTDOWN Shuts the server down 

Table 17.3. Administration-related Transact-SQL functions. 
Function  Purpose  

DATABASEPROPERTY(), OBJECTPROPERTY(), 
INDEXPROPERTY(), TYPEPROPERTY(), COLUMNPROPERTY()

Return meta-data info from the system 
catalogs 

FILE_ID(), FILE_NAME(), FILEGROUP_ID(), 
FILEGROUP_NAME(), FILEGROUPPROPERTY() 

Return information on files and filegroups

OBJECT_ID(), OBJECT_NAME() Return object identification information 
PERMISSIONS() Returns a bitmask indicating the rights a 

user has to a given object or column 
USER_NAME, SUSER_SNAME(), USER_ID(), SUSER_SID() Return user identification information 
procedures). Throughout this book, you'll see them referred to as "automatic variables." Because they're 
global in scope—that is, they're available from any database—many of them by nature relate to database or 
system administrations. Table17.4 lists the more prominent ones. 

Where's the Beef? 

While getting familiar with administrative Transact-SQL syntax is certainly worthwhile, using it to build real-
world procedures and scripts is far more interesting. Throughout the rest of the chapter, I'll present a variety of 
stored procedures and scripts that utilize the Transact-SQL elements highlighted thus far for server and 
database administration. You can use these routines in your own work to provide functionality that's missing 
or inconvenient to access in Enterprise Manager. 

Table 17.4. Administration-related automatic variables. 
Variable Purpose 

@@CONNECTIONS, 
@@MAX_CONNECTIONS 

Returns the number of connections since the server was 
started and the maximum allowed connections 

@@CPU_BUSY, @@IDLE, @@IO_BUSY Reports on server resource utilization 
@@ERROR Returns the error number of the last command 
@@MAX_PRECISION Returns on the maximum floating point precision supported by 

the server (can be changed via /p command line option) 
@@OPTIONS Reports on the default user options in effect. These are set via 

sp_congure 'user options'.  
@@PACK_SENT, @@PACK_RECEIVED, 
@@PACK_ERRORS 

Reports packet transmission statistics 

@@SERVERNAME, @@REMSERVER, 
@@SERVICENAME 

Returns server identification information 

@@SPID, @@PROCID Identifies the current user and stored procedure, respectively 



Guru’s Guide to Transact-SQL 

342 

@@TOTAL_ERRORS, @@TOTAL_READ, 
@@TOTAL_WRITE 

Reports disk read/write statistics 

@@VERSION Returns the server version string 

Status Routines 

Status routines report on the status of the server, the users connected to it, the jobs running on it, etc. These 
types of routines are surprisingly valuable to the administrator. Database administrators like to know what's 
going on. Keeping a finger on the pulse of the servers and databases under her care helps the DBA avoid 
unpleasant surprises like blocked processes, inaccessible objects, disgruntled users, and angry mobs. Here 
are a few of the more valuable status routines I've used over the years. 

sp_active_processes 

This routine tracks system activity over a period of time. Unlike sp_who, it benchmarks what's going on at one 
point in time against what's happening at another. It provides a number of useful statistics related to system 
CPU utilization, logical I/O, and physical I/O. It lets you see what type of work the server is doing at a 
particular time and who's doing it. Here's the code: 
       
USE MASTER 
GO 
IF OBJECT_ID('sp_active_processes') IS NOT NULL 
  DROP PROC sp_active_processes 
GO 
CREATE PROC sp_active_processes 
  @loginame varchar(30)=NULL, --  'ACTIVEONLY' | spid | login name 
  @duration int=5             --  seconds to sample 
/* 
 
Object: sp_active_processes 
Description: Shows system activity over a period of time 
Usage: sp_active_processes [@loginame=login name | "ACTIVEONLY" | spid][, 
@duration=seconds to monitor] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 4.2 
 
Example usage: 
   sp_active_processes @duration=10  --  Monitors all processes for 10 seconds 
   sp_active_processes "ACTIVEONLY",30  --  Monitors all processes for 30 seconds, 
   but only lists active ones 
   sp_active_processes 34,5  --  Monitors spid 34 for 5 seconds 
 
Created: 1991-05-11. Last changed: 1999-07-02. 
 
*/ 
AS 
SET NOCOUNT ON 
 
DECLARE @before datetime, 
        @after datetime, 
        @lowlogin sysname, 
        @highlogin sysname, 
        @spidlow int, 
        @spidhigh int 
 



Chapter 17. Administrative Transact-SQL 

343 

SELECT @lowlogin='', 
       @highlogin=REPLICATE('z',TYPEPROPERTY('sysname','Precision')), 
       @spidlow=0, 
       @spidhigh=32767 
 
-- Crack @loginame 
IF (@loginame<>'ACTIVEONLY') AND (@loginame IS NOT NULL) BEGIN 
  SELECT @lowlogin=@loginame, 
         @highlogin=@loginame 
  IF SUSER_SID(@lowlogin) IS NULL BEGIN 
    IF @loginame LIKE "[0-9]%" 
      SELECT @spidlow=CAST(@loginame AS int), 
             @spidhigh=CAST(@loginame AS int), 
             @lowlogin='', 
             @highlogin=REPLICATE('z',TYPEPROPERTY('sysname','Precision')) 
     ELSE BEGIN 
       PRINT 'Invalid loginame' 
       PRINT CHAR(13) 
       GOTO Help 
     END 
   END 
END 
 
-- Get locks 
SELECT spid,'L1'=COUNT(*),'L2'=0 INTO #LCKS FROM master..syslocks WHERE spid 
BETWEEN 
@spidlow AND @spidhigh GROUP BY spid 
 
Save off time 
SELECT @before=CURRENT_TIMESTAMP 
 
-- Get processes 
SELECT SPID,LOGINAME,C1=CPU,C2=0,I1=PHYSICAL_IO,I2=0,CM1=CMD,CM2=CAST(' LOGGED 
OFF' AS 
CHAR(16)),S1=CAST(STATUS AS CHAR(16)),S2=SPACE(16),B2=0,dbid=0,HOSTNAME=SPACE(10) 
INTO #PRCS FROM master..sysprocesses WHERE loginame BETWEEN @lowlogin AND 
@highlogin 
AND spid BETWEEN @spidlow AND @spidhigh 
 
-- Wait for duration specified 
DECLARE @WAITFORSTR varchar(30) 
SET @WAITFORSTR='WAITFOR DELAY  
 

"'+CONVERT(char(8),DATEADD(ss,@duration,'19000101'),108)+'"' 
EXEC(@WAITFORSTR) 
 
-- Get the locks again 
INSERT #LCKS SELECT DISTINCT spid,0,COUNT(*) FROM master..syslocks WHERE spid 
BETWEEN 
@spidlow AND @spidhigh GROUP BY spid 
 
-- Save off the time again 
SELECT @after=CURRENT_TIMESTAMP 
 
-- Get the processes a second time 
INSERT #PRCS SELECT spid,loginame,0,CPU,0,PHYSICAL_IO,' ',CMD,'  
 

',STATUS,BLOCKED,DBID,HOSTNAME FROM master..sysprocesses 
WHERE loginame BETWEEN @lowlogin AND @highlogin AND spid BETWEEN @spidlow AND 
@spidhigh 
 



Guru’s Guide to Transact-SQL 

344 

-- Put an entry for every process in the locks work table 
INSERT #LCKS SELECT DISTINCT spid,0,0 FROM #PRCS 
 
-- Grab the blockers out of the process and lock work tables 
SELECT SPID=B2,BLKING=STR(COUNT(*),4) 
INTO #BLK 
FROM #PRCS WHERE B2<>0 GROUP BY B2 
 
INSERT #BLK 
SELECT DISTINCT l.spid,STR(0,4) FROM #LCKS l LEFT OUTER JOIN #BLK b ON 
(l.spid<>b.spid) 
WHERE b.spid IS NULL 
 
-- Print report header 
PRINT 'STATISTICS FOR '+@@SERVERNAME+' AS OF '+CAST(CURRENT_TIMESTAMP AS varchar) 
PRINT 'ACTIVITY OF '+CASE WHEN @lowlogin=@highlogin THEN 'LOGIN '+@loginame ELSE 
UPPER(LEFT(ISNULL(@loginame,'ALL'),6))+' LOGINS' END+' FOR THE PAST 
'+CAST(DATEDIFF(SS,@before,@after) AS varchar)+' SECOND(S)' 
PRINT CHAR(13) 
-- Print report body 
SELECT ' A'=CASE WHEN P.spid=@@spid THEN '*' ELSE ' ' END+ 
   CASE WHEN (L.L2<>L.L1) 
        OR (P.C2<>P.C1) 
        OR (P.I2<>P.I1) 
        OR (P.CM1<>P.CM2) 
        OR (P.S1<>P.S2) 
      THEN 'A' 
      ELSE 'I' 
      END, 
   SPID=STR(P.spid, 5), 
   LOGIN=LEFT(P.loginame,20), 
   HOST=P.HOSTNAME, 
   --C1, C2, I1, I2, L1, L2, CM1, CM2, S1, S2, 
   LOG_IO=STR(P.C2,10), 
   ' +/-'=SUBSTRING('- +',SIGN(P.C2-P.C1)+2,1)+LTRIM(STR(P.C2  -  P.C1,6)), 
   '%Chg'=STR(CASE WHEN P.C1<>0 THEN (1.0*(P.C2-P.C1)/P.C1) ELSE 0 END*100,6,1), 
   PHYS_IO=STR(P.I2,10), 
   ' +/-'=SUBSTRING('- +',SIGN(P.I2-P.I1)+2,1)+LTRIM(STR(P.I2  -  P.I1,6)), 
   '%Chg'=STR(CASE WHEN P.I1<>0 THEN (1.0*(P.I2-P.I1)/P.I1) ELSE 0 END*100,6,1), 
   LCKS=STR(L.L2,5), 
   ' +/-'=SUBSTRING('- +',SIGN(L.L2-L.L1)+2,1)+LTRIM(STR(L.L2  -  L.L1,6)), 
   '%Chg'=STR(CASE WHEN L.L1<>0 THEN (1.0*(L.L2-L.L1)/L.L1) ELSE 0 END*100,6,1), 
   BLK=STR(P.B2 ,4), 
   BLKCNT=B.BLKING, 
   COMMAND=P.CM2, 
   STATUS=LEFT(P.S2,10), 
   DB=DB_NAME(P.DBID) 
FROM (SELECT spid, 
   loginame=MAX(loginame), 
   C1=SUM(C1), 
   C2=SUM(C2), 
   I1=SUM(I1), 
   I2=SUM(I2), 
   CM1=MAX(CM1), 
   CM2=MAX(CM2), 
   S1=MAX(S1), 
   S2=MAX(S2), 
   B2=MAX(B2), 
   dbid=MAX(DBID), 
   hostname=MAX(HOSTNAME) 
   FROM #PRCS 



Chapter 17. Administrative Transact-SQL 

345 

   GROUP BY spid) P, 
   (SELECT spid, 
   L1=SUM(L1), 
   L2=SUM(L2) 
   FROM #LCKS 
   GROUP BY spid) L, 
   #BLK B 
WHERE P.spid=L.spid 
AND   P.spid=B.spid 
AND  (@loginame<>'ACTIVEONLY' 
OR    @loginame IS NULL 
OR    L.L2<>L.L1 
OR    P.C2<>P.C1 
OR    P.I2<>P.I1 
OR    P.CM1<>P.CM2 
OR    P.S1<>P.S2) 
 
-- Print report footer 
PRINT CHAR(13)+'TOTAL PROCESSES: '+CAST(@@ROWCOUNT AS varchar)+CHAR(13)+'(A - 
ACTIVE, I - INACTIVE, * - THIS PROCESS.)' 
 
-- Delete work tables 
DROP TABLE #LCKS 
DROP TABLE #PRCS 
DROP TABLE #BLK 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_active_processes', @desc='Shows system activity 
over a period of time', 
   @parameters='[@loginame=login name | "ACTIVEONLY" | spid][, @duration=seconds 
   to monitor]', 
   @example=' 
sp_active_processes @duration=10  --  Monitors all processes for 10 seconds 
sp_active_processes "ACTIVEONLY",30  --  Monitors all processes for 30 seconds, 
but only lists active ones 
sp_active_processes 34,5  --  Monitors spid 34 for 5 seconds', 
   @author='Ken Henderson',@email='khen@khen.com', 
   @version='4',@revision='2', 
   @datecreated='19910511',@datelastchanged='19990702' 
RETURN -1 
 
GO 
 
sp_active_processes 
 
      
(Results abridged) 
       
STATISTICS FOR KH AS OF Jul 5 1999 12:39AM 
ACTIVITY OF ALL LOGINS FOR THE PAST 5 SECOND(S) 
 
A   SPID LOGIN HOST   LOG_IO   +/-  %Chg  PHYS_IO  +/-  %Chg  LCKS  +/-  %Chg 
--- ---- ----- ------ -------- ---- ----- -------- ---- ----- ----- ---- ----- 
I   1    sa    0      0        0    0.0   0        0    0.0   1     0    0.0 
I   2    sa    0      0        0    0.0   0        0    0.0   0     0    0.0 
I   3    sa    0      0        0    0.0   0        0    0 0   0     0    0.0 
I   4    sa    0      0        0    0.0   0        0    0.0   0     0    0.0 
I   5    sa    0      0        0    0.0   0        0    0.0   0     0    0.0 
I   6    sa    0      0        0    0.0   64       0    0.0   1     0    0.0 
I   7    KH\KH KH     0        0    0.0   3        0    0.0   1     0 



Guru’s Guide to Transact-SQL 

346 

*A  8    KH\KH KH     0        0    0.0   57       +12  26.7  6     +1   20.0 
 
TOTAL PROCESSES: 8(A - ACTIVE, I - INACTIVE, * - THIS PROCESS.) 
 
      
This routine simulates sp_who in many ways, but it's vastly improved over it in that you get a feel for actual 
system activity rather than just a basic report listing who's logged in. 
The code itself exhibits a couple of noteworthy elements. First, note the use of derived tables to embed the 
final process and blocking queries. This cuts down on the number of steps within the query itself, simplifying 
and shortening the code somewhat. Also, note the use of the CHAR() function to format the report delivered 
by PRINT. You can use CHAR() to perform lots of menial formatting tasks. Here, we use it to embed a 
carriage return in the string we're about to display in order to ensure that there's a line break between it and 
the line just printed. Doing this saves an extra call to PRINT. Curiously, placing CHAR(13) at the end of a 
PRINT statement doesn't have the same effect. PRINT seems insistent on including one—and only one—
carriage return at the end of each string it displays. 

NOTE 

Note The stored procedures and scripts in this chapter rely on various ancillary procedures not 
listed here. For example, the stored procedure sp_usage is used by the procedures in this book to 
list usage help when '/?' is passed as the rst argument or when invalid parameter values are 
specified. You can find these routines detailed in Chapter 15, "Stored Procedures and 
Triggers," and you can find their source code on the CD accompanying this book. I've included 
the source code in multiple places on the CD in order to make it easy to find. 

 

pips 

Pips returns detailed information about running processes. It allows you to spy on your users to an extent by 
displaying detailed process information, including the input and output buffers, for each connection. It uses 
DBCC PSS() to access this info from the server's internal process-tracking facilities. 
You can optionally set the @buffers only parameter to "YES" to limit the procedure's report to the input and 
output buffers of each process. As you may have guessed, these buffers constitute the last SQL batch 
submitted and the last results returned, respectively, for each connection. When you specify this option, pips 
uses DBCC INPUTBUFFER() and DBCC OUTPUTBUFFER() rather than DBCC PSS() in order to construct 
its report. Note that these functions offer a subset of what DBCC PSS() itself provides. DBCC PSS() returns 
the buffers for a connection via its psrvproc->m_pwchLangBuff and psrvproc->srvio.outbuff columns, 
along with lots of other useful information. 
Here's the source to pips: 
       
USE master 
go 
IF OBJECT_ID('pips') IS NOT NULL 
   DROP PROC SP_PSS 
go 
CREATE PROC pips 
     @spid varchar(10)='%', 
     @buffers only varchar(3)='NO' 
/* 
Object: pips 
Description: Lists detail info for running processes 
Usage: pips [@spid=process id to list] (Defaults to all 
processes)[,@buffers only=YES|NO] - 
determines whether the report is limited to the input/output buffers for each 
process 
 
Returns: (None) 



Chapter 17. Administrative Transact-SQL 

347 

 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 4.2 
 
Example usage: pips 8 
 
Created: 1991-01-28. Last changed: 1999-06-02. 
*/ 
AS 
SET NOCOUNT ON 
 
IF (@spid='/?') OR NOT EXISTS(SELECT * FROM sysprocesses WHERE spid LIKE @spid) 
GOTO 
Help 
 
SET @buffers only=UPPER(@buffers only) 
 
DECLARE @sp int, @lname sysname 
 
DECLARE Processes CURSOR 
FOR SELECT spid, loginame FROM master..sysprocesses 
WHERE spid LIKE @spid 
AND HostProcess IS NOT NULL 
AND HostProcess <> '' 
 
OPEN Processes 
 
DBCC TRACEON(3604) 
 
FETCH Processes INTO @sp, @lname 
WHILE (@@FETCH_STATUS=0) BEGIN 
   IF (@buffers only='NO') BEGIN 
      PRINT CHAR(13)+'Retrieving PSS info for spid: '+CAST(@sp AS varchar)+' user: 
      '+@lname 
      DBCC PSS(0,@sp) 
   END ELSE BEGIN 
      PRINT CHAR(13)+'Retrieving the input buffer for spid: '+CAST(@sp AS 
varchar)+' 
      user: '+@lname 
      PRINT CHAR(13) 
      DBCC INPUTBUFFER(@sp) 
      PRINT CHAR(13)+'Retrieving the output buffer for spid: '+CAST(@sp AS 
varchar)+' 
      user: '+@lname 
      PRINT CHAR(13) 
      DBCC OUTPUTBUFFER(@sp) 
  END 
  FETCH Processes INTO @sp, @lname 
END 
DBCC TRACEOFF(3604) 
CLOSE Processes 
DEALLOCATE Processes 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_pss',@desc='Lists detail info for running 
processes', 
   @parameters='[@spid=process id to list] (Defaults to all 
processes)[,@buffers only=YES|NO] - 



Guru’s Guide to Transact-SQL 

348 

determines whether the report is limited to the input/output buffers for each 
process', 
   @author='Ken Henderson', @email='khen@khen.com', 
   @version='4', @revision='2', 
   @example='pips 8 
pips @buffers only="YES"', 
   @datecreated='19910128', @datelastchanged='19990602' 
RETURN -1 
 
GO 
pips 14 
 
      
(Results abridged) 
       
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
Retrieving PSS info for spid: 14 user: KHEN_450\KHEN 
PSS: 
 
PSS @0x1FF350E4 
--------------- 
pspid = 14      m_dwLoginFlags = 0x83e0 plsid = 15 
pbackground = 0 
pbSid 
----- 
    0: 01050000 00000005 15000000 0a423635  .............B65 
   10: ff313668 ff47202c ff030000           .16h.G ,.... 
 
sSecFlags = 0x1e         pdeadlockpri = 0           poffsets = 0x0 
pss_stats = 0x20         ptickcount = 105934285 
pcputickcount = 47488887255395                      ploginstamp = 73 
ptimestamp = 1999-07-07 14:35:15.273                prowcount = 23 
plangid = 0              pdateformat = 1            pdatefirst = 7 
Language = us_english    RemServer =                UserName = KHEN_450\KHEN 
HostName = KHEN_450      poptions = 0x20000020      poptions2 = 0x1f038 
pline = 1                pcurstepno = 0             prowcount = 23 
pstatlist = 0            pcurcmd = 253              pseqstat = 0 
ptextsize = 64512        pretstat = 0 
pslastbatchstarttime = 1900-01-01 00:00:00.000      pmemusage = 0 
hLicense = 0             tpFlags = 0x1              isolation_level = 0 
fips_flag = 0x0          sSaveSecFlags = 0x0        psavedb = 0 
pfetchstat = 0           pcrsrows = 0 
pslastbatchtime = 1999-07-07 14:35:23.777           pNtUser = KHEN 
pNtDomain = KHEN_450     pubexecdb = 0              finReplicatedProcExec = 0 
pdelimitor =             pxcb = 0x1fffa028          pxcb->xcb_xactcnt = 0 
pxcb_lock_recursion = 0  pdlckseq = 0               presSemCount = [0]8646092 
presSemCount = [0]8646092 pcputot = 0               pcputotstart = 0 
pcpucmdstart = 0         pbufread = 0               pbufreadstart = 0 
plogbufread = 42         plogbufreadstart = 40      pbufwrite = 0 
pbufwritestart = 0       pLockTimeout = 4294967295  
pec 
--- 
ecid = 0                 ec_stat = 0x0              pcurdb = 5 
ec_curckptdb = 0x0       ec_lasterror = 0           ec_preverror = 0 
ec_cpucur = 201229       ec_cmderrs = 0             ec_timeslice = 16 
ec_dbtable = 0x1f718028  ec_reswait = 0x0           ec_dbindex = -1 
psrvproc->eclClient = 2  psrvproc->status = 128     psrvproc->bNewPacket = 0 
psrvproc->pmo = 0x21e80028 
psrvproc->ums_context = 0xe45c90 
psrvproc->pV7LoginRec 



Chapter 17. Administrative Transact-SQL 

349 

--------------------- 
00000000:  b2000000 00000070 00100000 00000006  .......p........ 
00000010:  01010000 00000000 e0830000 e0010000  ................ 
00000020:  09040000 56000800 00000000 00000000  ....V........... 
00000030:  66001500 90000700 00000000 9e000400  f............... 
00000040:  a6000000 a6000600 00500404 4a190000  .........P..J... 
00000050:  0000b200 00004b00                    ......K. 
 
psrvproc->m_pwchLangBuff 
------------------------ 
00000000:  73006500 6c006500 63007400 20002a00  s.e.l.e.c.t. .*. 
00000010:  20006600 72006f00 6d002000 61007500  .f.r.o.m. .a.u. 
00000020:  74006800 6f007200 73000d00 0a00      t.h.o.r.s..... 
 
psrvproc->srvio.outbuf 
----------------------- 
00000000:  04010877 00000000 81090001 010800a7  ...w............ 
00000010:  0b000561 0075005f 00690064 00000008  ...a.u._.i.d.... 
00000020:  00a72800 08610075 005f006c 006e0061  ..(..a.u._.l.n.a 
00000030:  006d0065 00000008 00a71400 08610075  .m.e.........a.u 
00000040:  005f0066 006e0061 006d0065 00000008  ._.f.n.a.m.e.... 
00000050:  00af0c00 05700068 006f006e 00650000  .....p.h.o.n.e.. 
00000060:  000900a7 28000761 00640064 00720065  ....(..a.d.d.r.e 
00000070:  00730073 00000009 00a71400 04630069  .s.s.........c.i 
00000080:  00740079 00000009 00af0200 05730074  .t.y.........s.t 
00000090:  00610074 00650000 000900af 0500037a  .a.t.e.........z 
000000a0:  00690070 00000008 00320863 006f006e  .i.p.....2.c.o.n 
000000b0:  00740072 00610063 007400d1 0b003137  .t.r.a.c.t....17 
000000c0:  322d3332 2d313137 36050057 68697465  2-32-1176..White 
000000d0:  07004a6f 686e736f 6e0c0034 30382034  ..Johnson..408 4 
000000e0:  39362d37 3232330f 00313039 33322042  96-7223..10932 B 
000000f0:  69676765 2052642e 0a004d65 6e6c6f20  igge Rd...Menlo 
00000100:  5061726b 02004341 05003934 30323501  Park..CA..94025. 
00000110:  d10b0032 31332d34 362d3839 31350500  ...213-46-8915.. 
00000120:  47726565 6e08004d 61726a6f 7269650c  Green..Marjorie. 
00000130:  00343135 20393836 2d373032 30110033  .415 986-7020..3 
00000140:  30392036 33726420 53742e20 23343131  09 63rd St. #411 
00000150:  07004f61 6b6c616e 64020043 41050039  ..Oakland..CA..9 
00000160:  34363138 01d10b00 3233382d 39352d37  4618....238-95-7 
00000170:  37363606 00436172 736f6e06 00436865  766..Carson..Che 
00000180:  72796c0c 00343135 20353438 2d373732  ryl..415 548-772 
00000190:  330e0035 38392044 61727769 6e204c6e  3..589 Darwin Ln 
000001a0:  2e080042 65726b65 6c657902 00434105  ...Berkeley..CA. 
000001b0:  00393437 303501d1 0b003236 372d3431  .94705....267-41 
000001c0:  2d323339 3407004f 274c6561 72790700  -2394..O'Leary.. 
000001d0:  4d696368 61656c0c 00343038 20323836  Michael..408 286 
000001e0:  2d323432 38140032 3220436c 6576656c  -2428..22 Clevel 
000001f0:  616e6420 41762e20 23313408 0053616e  and Av. #14..San 
00000200:  204a6f73 65020043 41050039 35313238  Jose..CA..95128 
various psrvproc flags = 0x00000100 
 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
      
The routine itself isn't very complex because all the real work is done by DBCC. It gets the job done by 
opening a cursor on sysprocesses, looping through the table, and calling the appropriate DBCC function for 
each process. 

sp_find_root_blocker 



Guru’s Guide to Transact-SQL 

350 

When one process blocks another from accessing an object, it's often because yet another process is 
blocking it. This situation can produce a virtual chain of resource blocks that is difficult to trace. It creates a 
veritable "whodunit" for the DBA—a mystery that requires tracking down the prime offenders—the processes 
that block others but are not blocked themselves. 
The best tool for the sleuth in this case isn't a magnifying glass or meerschaum pipe—it's a stored procedure 
that traces process blocks back to their originators. That's what sp_nd_ root_blocker does. Here's the code: 
       
USE master 
GO 
IF OBJECT_ID('sp_find_root_blocker') IS NOT NULL 
   DROP PROC sp_find_root_blocker 
GO 
 
CREATE PROCEDURE sp_find_root_blocker @help char(2)=NULL 
/* 
 
Object: sp_find_root_blocker 
Description: Finds the root offender(s) in the chain(s) of blocked processes 
 
Usage: sp_find_root_blocker 
 
Returns: spid of the root blocking process (returns the last one if there are 
multiple) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 6.0 
 
Example: sp_find_root_blocker 
 
Created: 1992-11-03. Last changed: 1999-07-05. 
 
*/ 
AS 
IF (@help='/?') GOTO Help 
IF EXISTS (SELECT * FROM master..sysprocesses p1 JOIN master..sysprocesses p2 ON 
(p1.spid=p2.blocked)) BEGIN 
   DECLARE @spid int 
 
   SELECT @spid=p1.spid -- Get the _last_ prime offender 
   FROM master..sysprocesses p1 JOIN master..sysprocesses p2 ON 
(p1.spid=p2.blocked) 
   WHERE p1.blocked=0 
 
   SELECT  p1.spid, 
     p1.status, 
     loginame=LEFT(p1.loginame,20), 
     hostname=substring(p1.hostname,1,20), 
     blk=CONVERT(char(3),p1.blocked), 
     db=LEFT(db_name(p1.dbid),10), 
     p1.cmd, 
     p1.waittype 
   FROM master..sysprocesses p1 JOIN master..sysprocesses p2 ON 
(p1.spid=p2.blocked) 
   WHERE p1.blocked=0 
   RETURN(@spid) -- Return the last root blocker 
END ELSE BEGIN 
   PRINT 'No processes are currently blocking others.' 
   RETURN(0) 
END 
 



Chapter 17. Administrative Transact-SQL 

351 

RETURN 0 
Help: 
EXEC sp_usage @objectname='sp_find_root_blocker', @desc='Finds the root 
offender(s) in 
the chain(s) of blocked processes', 
@parameters='', @returns='spid of the root blocking process (returns the last one 
if 
there are multiple)', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='6', @revision='0', 
@datecreated='19921103', @datelastchanged='19990705', 
@example='sp_find_root_blocker' 
 
RETURN -1 
 
GO 
 
sp_find_root_blocker 
 
      
(Results abridged) 
       
spid    status    loginame          hostname     blk   db      cmd 
------ ---------- ------------------ ------------------ ---- -------- ---------- 
7       runnable  SLUK_CREW\KHEN    SLUK_CREW    0     pubs    SELECT 
 
      
This routine simply performs a self-join of sysprocesses with itself to locate those processes that block others 
but are not themselves blocked. It then returns a result set of the prime offenders. Note the assignment of the 
@spid return variable. Using a SELECT that returns more than one row to assign a local variable results in 
the variable receiving the last value returned. This means that @spid will return the last prime blocker if there 
is more than one of them. 

sp_lock_verbose 

SQL Server includes a stored procedure, sp_lock, which returns useful info regarding resource locks. 
Unfortunately, it's not as useful as it might be due to its inexplicable terseness. For example, rather than 
returning the name of an object that's locked, sp_lock reports its object ID. Rather than listing the database 
name of each locked object, it reports its database ID only. And the report is completely void of any reference 
to the user actually maintaining the lock— it lists only the spid of the locking process, which is meaningless 
without cross-referencing the sysprocesses system table. 
The normal course of action for the DBA is to run sp_lock and then translate the IDs of interest into their 
corresponding names using the appropriate functions and table references. This is tedious and shouldn't be 
necessary. Here's a stored procedure that provides those details for you: 
       
USE master 
GO 
IF OBJECT_ID('sp_lock_verbose') IS NOT NULL 
  DROP PROC sp_lock_verbose 
GO 
CREATE PROC sp_lock_verbose @spid1 varchar(10)=NULL, @spid2 varchar(10)=NULL 
/* 
Object: sp_lock_verbose 
Description: A more verbose version of sp_lock 
 
Usage: sp_lock_verbose [@spid1=first spid to check][,@spid2=second spid to check] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 



Guru’s Guide to Transact-SQL 

352 

 
Version: 4.2 
 
Example usage: sp_lock_verbose 18,25 -- checks spid's 18 and 25 
 
Created: 1994-11-18. Last changed: 1999-06-01. 
 
*/ 
AS 
SET NOCOUNT ON 
 
IF (@spid1='/?') GOTO Help 
 
DECLARE @dbid varchar(20), @dbname sysname, @objname sysname, @objid int, 
@execstr 
varchar(8000), @nexecstr nvarchar(4000) 
CREATE TABLE #locks (spid int, dbid int, objid int, objectname sysname NULL, 
indid int, type char(4), resource char(15), mode char(10), status char(6)) 
 
-- Get basic locking info from sp_lock 
INSERT #locks (spid, dbid, objid, indid, type, resource, mode, status) 
EXEC sp_lock @spid1, @spid2 
 
Loop through the work table and translate each object id into an object name 
DECLARE DBs CURSOR FOR SELECT DISTINCT dbid=CAST(dbid AS varchar) FROM #locks 
OPEN DBs 
FETCH DBs INTO @dbid 
WHILE (@@FETCH_STATUS=0) BEGIN 
   SET @dbname=DB_NAME(@dbid) 
   EXEC master..xp_sprintf @execstr OUTPUT, 'UPDATE #locks SET objectname=o.name 
FROM 
   %s..sysobjects o WHERE (#locks.type=''TAB'' OR #locks.type=''PAG'') AND 
dbid=%s AND 
   #locks.objid=o.id', @dbname, @dbid 
     EXEC(@execstr) 
   EXEC master..xp_sprintf @execstr OUTPUT, 'UPDATE #locks SET objectname=i.name 
FROM 
   %s..sysindexes i WHERE (#locks.type=''IDX'' OR #locks.type=''KEY'') AND 
dbid=%s AND 
   #locks.objid=i.id AND #locks.indid=i.indid', @dbname, @dbid 
   EXEC(@execstr) 
   EXEC master..xp_sprintf @execstr OUTPUT, 'UPDATE #locks SET objectname=f.name 
FROM 
   %s..sysfiles f WHERE #locks.type=''FIL'' AND dbid=%s AND 
#locks.objid=f.fileid', 
   @dbname, @dbid 
     EXEC(@execstr) 
   FETCH DBs INTO @dbid 
END 
CLOSE DBs 
DEALLOCATE DBs 
 
-- Return the result set 
SELECT login=LEFT(p.loginame,20), db=LEFT(DB_NAME(l.dbid),30), l.type, 
object=CASE WHEN 
l.type='DB' THEN LEFT(DB_NAME(l.dbid),30) ELSE LEFT(objectname,30) END, 
l.resource, 
l.mode, l.status, l.objid, l.indid, l.spid 
FROM #locks l JOIN sysprocesses p ON (l.spid=p.spid) 
ORDER BY 1,2,3,4,5,6,7 
 



Chapter 17. Administrative Transact-SQL 

353 

DROP TABLE #locks 
 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_lock_verbose', @desc='A more verbose version of 
sp_lock', 
@parameters='[@spid1=first spid to check][,@spid2=second spid to check]', 
@author='Ken Henderson',@email='khen@khen.com', 
@version='4',@revision='2', 
@datecreated='19941118', @datelastchanged='19990601', 
@example="sp_lock_verbose 18,25 -- checks spid's 18 and 25" 
RETURN -1 
 
GO 
sp_lock_verbose 
 
      
(Results abridged) 
       
login               db               type          object              resource 
------------------- ---------------- ------------- ------------------- ----------
---- 
KHEN_450\KHEN       master           DB            master 
KHEN_450\KHEN       master           DB            master 
KHEN_450\KHEN       master           DB            master 
KHEN_450\KHEN       master           TAB           spt_values 
KHEN_450\KHEN       Northwind        DB            Northwind 
KHEN_450\KHEN       pubs             DB            pubs 
KHEN_450\KHEN       pubs             DB            pubs 
KHEN_450\KHEN       pubs             DB            pubs 
KHEN_450\KHEN       pubs             DB            pubs 
KHEN_450\KHEN       pubs             DB            pubs 
KHEN_450\KHEN       pubs             KEY           aunmind          (08079ef3ee55) 
KHEN_450\KHEN       pubs             KEY           aunmind          (08079ef3ee55) 
KHEN_450\KHEN       pubs             KEY           UPKCL_auidind         
(28024f0bec4e) 
KHEN_450\KHEN       pubs             KEY           UPKCL_auidind          
(28024f0bec4e) 
KHEN_450\KHEN       pubs             KEY           UPKCL_auidind          
(28024f0bec4e) 
KHEN_450\KHEN       pubs             KEY           UPKCL_auidind          
(28024f0bec4e) 
KHEN_450\KHEN       pubs             KEY           UPKCL_auidind          
(28024f0bec4e) 
KHEN_450\KHEN       pubs             PAG           authors          1:110 
KHEN_450\KHEN       pubs             PAG           authors          1:110 
KHEN_450\KHEN       pubs             PAG           authors          1:110 
KHEN_450\KHEN       pubs             PAG           authors          1:110 
KHEN_450\KHEN       pubs             PAG           authors          1:128 
KHEN_450\KHEN       pubs             PAG           authors          1:128 
KHEN_450\KHEN       pubs             TAB           authors 
KHEN_450\KHEN       pubs             TAB           authors 
KHEN_450\KHEN       pubs             TAB           authors 
KHEN_450\KHEN       pubs             TAB           authors 
KHEN_450\KHEN       pubs             TAB           authors 
KHEN_450\KHEN       tempdb           DB            tempdb 
KHEN_450\KHEN       tempdb           DB            tempdb 
KHEN_450\KHEN       tempdb           DB            tempdb 
KHEN_450\KHEN       tempdb           TAB           #locks_____________ 
NT AUTHORITY\SYSTEM msdb             DB            msdb 



Guru’s Guide to Transact-SQL 

354 

NT AUTHORITY\SYSTEM msdb             DB            msdb 
sa                  master           DB            master 
sa                  master           DB            master 
 
      
The execution path for this query is fairly straightforward. First, it runs sp_lock and "traps" its output in a 
temporary table using INSERT...EXEC. Next, it iterates through the temporary table and updates the 
objectname column based on the type of lock. Last, it returns the lock report as a result set, translating any 
remaining IDs as necessary. 
You may be wondering why we don't just use the OBJECT_NAME() function rather than query the system 
tables directly to translate the object IDs returned by sp_lock. The reason this is necessary is that 
OBJECT_NAME() doesn't work across databases. That is, if the current database focus is pubs and you pass 
OBJECT_NAME() an ID from Northwind, you'll get a NULL result unless that ID also happens to be used in 
pubs. So, we have to find a way to take the database context into account when looking up the object name. 
One way to do this would be to prex the SQL we issue via the EXEC() function with 'USE dbname;' where 
dbname is the name of the database we want to change to. Syntactically, this works but doesn't return the 
result we want. OBJECT_NAME() still returns NULL for object IDs outside the current database. 
Also, since the INFORMATION_SCHEMA views do not include object identifiers, we can't use them to avoid 
querying the system tables directly. We receive only an object ID from sp_lock, so we must cross-reference a 
table or view that itself includes object IDs, such as the sysobjects, sysindexes, and sysfiles tables. 

Catalog Procedures 

Catalog procedures return meta-data about objects stored by the server. SQL Server ships with a number of 
these, but you may find that you need more information than they provide or that you need it in a different 
format. When possible, you should avoid querying system catalog tables directly and use either the 
INFORMATION_SCHEMA views or the catalog procedures instead. Referencing the system tables indirectly 
will prevent your code from breaking should their exact layout change in a future release of SQL Server. 

sp_table 

SQL Server provides several methods of getting at the columns contained in a table or view, but none of them 
is particularly handy. Sp_help, for example, provides a wealth of information, but its formatting is far from ideal. 
First, it returns the various elements of table meta-data as separate result sets. A single table may generate 
half a dozen result sets. Second, it doesn't support wildcards, so you're forced to inspect each table 
separately. Last, it doesn't bother to trim the columns it displays, so many of them require the maximum width 
of sysname (128characters) in screen real estate to display. You have to pan several screens just to view a 
basic column specification. 
The COLUMNS INFORMATION_SCHEMA view suffers from many of the same defects, as well as some of its 
own. The procedures below were written to address many of these shortcomings. Perhaps they have flaws of 
their own, but at least they are different flaws. Here's sp_table: 
       
USE master 
GO 
IF OBJECT_ID('sp_table') IS NOT NULL 
   DROP PROC sp_table 
GO 
CREATE PROC sp_table @objectname sysname = '%' 
/* 
 
Object: sp_table 
Description: Lists the columns in a table 
 
Usage: sp_table [@objectname]=Name of table or view to list catalog info for 
(defaults to  
 

'%') 
 
Returns: (None) 



Chapter 17. Administrative Transact-SQL 

355 

 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 4.2 
 
Example: sp_table "authors" 
 
Created: 1994-02-04. Last changed: 1999-04-11. 
*/ 
AS 
SET NOCOUNT ON 
IF (@objectname='/?') GOTO HELP 
DECLARE Objects CURSOR FOR 
   SELECT name 
   FROM sysobjects 
   WHERE name like @objectname 
   AND type in ('U','S','V') 
OPEN Objects 
FETCH Objects INTO @objectname 
IF (@@FETCH_STATUS<>0) BEGIN -- No matching objects 
   CLOSE Objects 
   DEALLOCATE Objects 
   PRINT 'No table(s) or view(s) were found that match "'+@objectname+'"' 
   GOTO Help 
END 
WHILE (@@FETCH_STATUS=0) BEGIN 
   PRINT 'Name: '+@objectname 
PRINT 'Type: '+CASE WHEN OBJECTPROPERTY(OBJECT_ID(@objectname),'IsUserTable')=1 
THEN 
   'Table' 
     WHEN OBJECTPROPERTY(OBJECT_ID(@objectname),'IsSystemTable')=1 THEN 'System 
Table' 
     WHEN OBJECTPROPERTY(OBJECT_ID(@objectname),'IsView')=1 THEN 'View' END 
   PRINT CHAR(13) 
   SELECT 
     'No.'=C.colid, 
     'Name'=LEFT(C.name,30), 
     'Type'=LEFT(CASE WHEN (T.name IN ('char','varchar','nchar','nvarchar')) THEN 
     T.name+'('+LTRIM(RTRIM(STR(C.length)))+')' 
        ELSE t.name END,30)+' '+CASE C.status WHEN 1 THEN 'NULL' ELSE 'NOT NULL' 
END 
   FROM syscolumns c JOIN sysobjects o ON (c.id = o.id) 
      JOIN systypes t ON (c.xusertype = t.xusertype) 
   WHERE o.name = @objectname 
   ORDER BY C.colid 
   FETCH Objects INTO @objectname 
END 
CLOSE Objects 
DEALLOCATE Objects 
 
RETURN 0 
 
Help: 
   EXEC sp_usage @objectname='sp_table', @desc='Lists the columns in a table', 
   @parameters='[@objectname]=Name of table or view to list catalog info for 
(defaults 
   to ''%'')', 
   @example='sp_table "authors"', 
   @author='Ken Henderson', @email='khen@khen.com', 
   @version='4', @revision='2', 
   @datecreated='19940204', @datelastchanged='19990411' 



Guru’s Guide to Transact-SQL 

356 

   RETURN -1 
GO 
 
sp_table 'authors' 
 
Name: authors 
 
Type: Table 
No.    Name                           Type 
------ ------------------------------ ------------------------------ 
1      au_id                          id NOT NULL 
2      au_lname                       varchar(40) NOT NULL 
3      au_fname                       varchar(20) NOT NULL 
4      phone                          char(12) NOT NULL 
5      address                        varchar(40) NOT NULL 
6      city                           varchar(20) NOT NULL 
7      state                          char(2) NOT NULL 
8      zip                            char(5) NOT NULL 
9      contract                       bit NOT NULL 
 
      
This routine provides a simple listing of the columns in a view or table by querying syscolumns, sysobjects, 
and systypes and truncating the data it displays to a reasonable length. It's formatted similarly to the Oracle 
DESC command and provides a quick view of what columns are exposed by the object. 
The query doesn't do anything that's particularly fancy. It doesn't decode user-defined data types and doesn't 
bother to report ancillary information such as constraints, indexes, or triggers. Its primary goal is to provide a 
quick snapshot of a table or view schema. It accepts wildcards, so you can list multiple tables at once from a 
given database. 

sp_dir 

Stand-alone database objects include tables, views, stored procedures, triggers, default objects, rule objects, 
and user-defined data types. Out of the box, SQL Server lacks a procedure or view that can list all of them at 
once. There's no easy way to get a listing of all the objects you've created in a database without resorting to 
custom system table queries. That's why sp_dir was written. It provides a listing similar to the operating 
system DIR command and includes all the objects matching a mask you specify. Here's the code: 
       
USE master 
GO 
IF OBJECT_ID('sp_dir') IS NOT NULL 
   DROP PROC sp_dir 
GO 
CREATE PROCEDURE sp_dir @mask varchar(30) = '%', 
   @obtype varchar(2) = 'U', 
   @orderby varchar(8000)='/N' 
/* 
 
Object: sp_dir 
Description: Lists object catalog information similar to the OS DIR command. 
 
Usage: sp_dir [@mask=name mask][,@obtype=object type][,@orderby=order 
switch[ ASC|DESC]] 
 
@mask = pattern of object names to list (supports SQL wildcards); defaults to all 
objects 
@obtype = type of objects to list (supports SQL wildcards); default to user 
tables 
 
The following object types are supported: 
U  = User tables 



Chapter 17. Administrative Transact-SQL 

357 

S  = System tables 
V  = Views 
P  = Stored procedures 
X  = Extended procedures 
RF = Replication filter stored procedures 
TR = Triggers 
D  = Default objects 
R  = Rule objects 
T  = User-defined data types 
 
@orderby = column on which to sort listing. 
Can also include ASC or DESC to specify ascending/descending order. 
 
The following orderings are supported: 
 
/N = by Name 
/R = by number of rows 
/S = by total object size 
/D = by date created 
/A = by total size of data pages 
/X = by total size of index pages 
/U = by total size of unused pages 
/L = by maximum row length 
/O = by owner 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example usage: 
   Parameters can be specified positionally, like so: 
 
sp_dir 'TRA%','U','/S' 
 
or by name, like so: 
 
sp_dir @mask='TRA%',@obtype='U',@orderby='/S DESC' 
 
You can also specify additional ordering columns with @orderby, like so: 
 
sp_dir @mask='TRA%',@obtype='U',@orderby='/S DESC, row_count, date_created DESC' 
 
All parameters are optional. If no parameters are specified, the following 
command is executed: 
 
sp_dir '%','U','/N' 
 
Created: 1992-06-12. Last changed: 1999-07-02. 
 
*/ 
AS 
SET NOCOUNT ON 
IF (@mask='/?') GOTO Help 
 
SELECT @orderby=UPPER(@orderby) 
 
DECLARE @execstr varchar(8000) 
 
SET @execstr= 



Guru’s Guide to Transact-SQL 

358 

"SELECT -- Get regular objects 
' '=' ', 
name=LEFT(o.name,30), 
o.type, 
date_created=o.crdate, 
row_count=ISNULL(rows,0), 
row_len_in_bytes= 
   ISNULL((SELECT SUM(length) FROM syscolumns WHERE id=o.id AND o.type in 
('U','S')),0), 
total_size_in_KB= 
   ISNULL((SELECT SUM(reserved) FROM sysindexes WHERE indid in (0, 1, 255) AND id 
= 
   o.id),0)*2, 
data_space_in_KB= 
   ISNULL(((SELECT SUM(dpages) FROM sysindexes WHERE indid > 2 AND id = o.id)+ 
   (SELECT ISNULL(SUM(used), 0) FROM sysindexes WHERE indid = 255 AND id = 
o.id)),0)*2, 
index_space_in_KB= 
   ISNULL(((SELECT SUM(used) FROM sysindexes WHERE indid in (0, 1, 255) AND id = 
o.id) - 
   ((SELECT SUM(dpages) FROM sysindexes WHERE indid > 2 AND id = o.id)+ 
   (SELECT ISNULL(SUM(used), 0) FROM sysindexes WHERE indid = 255 AND id = 
o.id))),0)*2, 
unused_space_in_KB= 
   ISNULL(((SELECT SUM(reserved) FROM sysindexes WHERE indid in (0,1,255) AND id 
= o.id) - 
   (SELECT SUM(used) FROM sysindexes WHERE indid in (0, 1, 255) AND id = 
o.id)),0)*2, 
owner=USER_NAME(o.uid) 
FROM sysobjects o, 
sysindexes i 
WHERE o.name like '"+@mask+"' AND o.type LIKE '"+@obtype+"'AND o.id*=i.id 
AND i.indid>=1 
UNION ALL -- Get user-defined data types 
SELECT ' ', LEFT(name,30), 'T', NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
USER_NAME(uid) 
FROM systypes 
WHERE (usertype & 256)<>0 
AND name LIKE '"+@mask 
+"'AND 'T' LIKE '"+@obtype 
+"' UNION ALL -- Get totals 
SELECT 
'*', 
'{TOTAL}', 
     NULL, 
     NULL, 
     SUM(row_count), 
     NULL, 
     SUM(total_size_in_KB), 
     SUM(data_space_in_KB), 
     SUM(index_space_in_KB), 
     SUM(unused_space_in_KB), 
     NULL 
FROM 
(SELECT 
 row_count=ISNULL(rows,0), 
 total_size_in_KB= 
   ISNULL((SELECT SUM(reserved) FROM sysindexes WHERE indid in (0, 1, 255) AND id 
= 
   o.id),0)*2, 
data_space_in_KB= 



Chapter 17. Administrative Transact-SQL 

359 

   ISNULL(((SELECT SUM(dpages) FROM sysindexes 
      WHERE indid > 2 AND id=o.id)+(SELECT ISNULL(SUM(used), 0) 
      FROM sysindexes WHERE indid = 255 AND id = o.id)),0)*2, 
 index_space_in_KB= 
   ISNULL(((SELECT SUM(used) FROM sysindexes WHERE indid in (0, 1, 255) AND id = 
o.id) - 
   ((SELECT SUM(dpages) FROM sysindexes WHERE indid > 2 AND id = o.id)+ 
   (SELECT ISNULL(SUM(used), 0) FROM sysindexes WHERE indid = 255 AND id = 
o.id))),0)*2, 
   unused_space_in_KB= 
   ISNULL(((SELECT SUM(reserved) FROM sysindexes WHERE indid in (0, 1, 255) AND 
id = 
   o.id)- 
   (SELECT SUM(used) FROM sysindexes WHERE indid in (0, 1, 255) AND id = 
o.id)),0)*2 
FROM sysobjects o, 
      sysindexes i 
WHERE o.name like '"+@mask+"' AND o.type LIKE '"+@obtype+"' AND o.id*=i.id 
AND i.indid>=1) 0 
ORDER BY ' ',"+ -- Ensure that totals sort last 
   CASE LEFT(@orderby,2) 
   WHEN '/N' THEN 'name'+SUBSTRING(@orderby,3,8000) -- Include ASC/DESC flag if 
there is 
   one 
   ELSE 
      CASE LEFT(@orderby,2) 
      WHEN '/D' THEN 'date_created' 
      WHEN '/S' THEN 'total_size_in_KB ' 
      WHEN '/R' THEN 'row_count' 
      WHEN '/A' THEN 'data_space_in_KB' 
      WHEN '/X' THEN 'index_space_in_KB' 
      WHEN '/U' THEN 'unused_space_in_KB' 
      WHEN '/L' THEN 'row_len_in_bytes' 
      WHEN '/O' THEN 'owner' 
   END+SUBSTRING(@orderby,3,8000)+',name' -- Include name as secondary sort to 
resolve 
   ties 
   END 
 
EXEC(@execstr) 
 
RETURN 0 
 
Help: 
     EXEC sp_usage @objectname='sp_dir', 
        @desc='Lists object catalog information similar to the OS DIR command.', 
        @parameters='[@mask=name mask][,@obtype=object type][,@orderby=order 
switch[ 
        ASC|DESC]] 
 
@mask = pattern of object names to list (supports SQL wildcards); defaults to all 
objects 
@obtype = type of objects to list (supports SQL wildcards); default to user 
tables 
The following object types are supported: 
 
U  = User tables 
S  = System tables 
V  = Views 
P  = Stored procedures 
X  = Extended procedures 



Guru’s Guide to Transact-SQL 

360 

RF = Replication filter stored procedures 
TR = Triggers 
D  = Default objects 
R  = Rule objects 
T  = User-defined data types 
 
@orderby = column on which to sort listing. 
Can also include ASC or DESC to specify ascending/descending order. 
 
The following orderings are supported: 
 
/N = by Name 
/R = by number of rows 
/S = by total object size 
/D = by date created 
/A = by total size of data pages 
/X = by total size of index pages 
/U = by total size of unused pages 
/L = by maximum row length 
/O = by owner', 
@example=" 
   Parameters can be specified positionally, like so: 
 
   sp_dir 'TRA%','U','/S' 
 
   or by name, like so: 
 
   sp_dir @mask='TRA%',@obtype='U',@orderby='/S DESC' 
 
   You can also specify additional ordering columns with @orderby, like so: 
 
   sp_dir @mask='TRA%',@obtype='U',@orderby='/S DESC, row_count, date_created 
DESC' 
 
   All parameters are optional. If no parameters are specified, the following 
   command is executed:  
 
   sp_dir '%','U','/N'", 
@author='Ken Henderson', @email='khen@khen.com', 
@version='7', @revision='0', 
@datecreated='19920612', @datelastchanged='19990702' 
RETURN -1 
 
GO 
 
sp_dir 't%' 
 
      
(Results abridged) 
       
     name                   type date_created              row_count 
row_len_in_bytes 
---- ---------------------- ---- ------------------------- --------- ------------
---- 
     temp_authors           U    1999-06-17 23:33:19.120   23      151 
     testident              U    1999-05-19 17:52:29.570   132     14 
     testtxt                U    1999-05-28 16:43:08.683   0       16 
     tid                    T    NULL                      NULL    NULL 
     titleauthor            U    1998-11-13 03:10:49.220   25      22 
     titleauthor2           U    1999-05-28 16:10:34.153   25      22 
     titles                 U    1998-11-13 03:10:48.970   18      334 



Chapter 17. Administrative Transact-SQL 

361 

*    {TOTAL}                NULL NULL                      223     NULL 
 
      
The routine returns a number of useful object meta-data elements. It can be qualified by object name and type 
and can be sequenced by any of the columns it returns (including combinations of them). 
As you can see from the result set fragment, user-defined data types are returned along with other types of 
objects despite the fact that they reside in a different system table than those objects. Developers tend to 
think of user-dened data types as of equal stature with other types of objects, so the procedure treats them 
uniformly. 
There are a couple of features of the code itself that are worth mentioning. First, note that the procedure 
doesn't use looping or control-flow syntax to generate its report. A single, rather large SELECT statement 
generates the result set returned by the procedure. The statement uses UNION ALL to aggregate the objects 
from sysobjects, systypes, and the table-related totals from sysobjects. This is more for syntactical 
amusement than anything else—storing each of the UNION terms separately in a temporary table and then 
listing the table would work equally well and might well be more efficient since the totals query could reference 
the temporary table rather than sysobjects. 
UNION ALL is used rather than UNION because it's more efficient in situations where you aren't worried about 
duplicates. UNION removes duplicates from its result set before returning it; UNION ALL doesn't. Here, the 
object names that come from sysobjects are guaranteed to be unique by the system anyway, and we wouldn't 
want to remove duplicates between the systypes and sysobjects tables, so we use UNION ALL because it's 
faster. 
Another noteworthy feature of the query is its use of a dummy column to sequence the result set. We want the 
totals row to be the last row of the report, but we also want to allow sorting of the other rows. Remember that 
you can't count on the natural order of a table—if you want a specic order, you must specify it with an ORDER 
BY clause. This makes the problem a little more difficult than simply placing the rows in a temporary table in 
the order in which we want to list them. The solution used here at the left of the report makes use of a pseudo 
column that contains either blanks for nontotals or an asterisk for totals and then uses that column as the rst 
term in the ORDER BY clause, regardless of the sort order selected by the user. Since the value for this 
column is the same for all nontotal rows, the real sorting of those rows is controlled by the other ordering 
columns we specify, not the pseudocolumn. 
One final point worth mentioning is the flexibility the procedure provides in ordering the result set. Beyond the 
simple mnemonics that can be passed to @orderby to specify a sort order, the procedure allows the DESC 
and ASC keywords of the Transact-SQL ORDER BY clause to be specified as well. Other ordering columns 
can also be specified, so '/D DESC, owner ASC' could be specified to sort the report in descending order by 
date created, then in ascending order by owner. This is made possible by the fact that the procedure uses the 
EXEC() function to execute a query that it constructs dynamically at runtime. Any ORDER BY terms passed 
into the procedure are simply appended to the end of the query following the pseudocolumn reference. 

sp_object 

As of SQL Server 7.0, Transact-SQL includes a collection of system functions that are useful for accessing 
system meta-data. Getting at this catalog information previously required spelunking around in the system 
tables and translating lots of arcane bitmaps and fossilized column values. That's no longer the case—
Transact-SQL's meta-functions make accessing system-level info much easier than it once was. The 
OBJECTPROPERTY(), TYPEPROPERTY(), COLUMNPROPERTY(), INDEXPROPERTY(), and 
DATABASEPROPERTY() functions are particularly handy in this regard. 
The stored procedure that follows uses these functions, with some help from the system tables, to interrogate 
the object meta-data stored in a database. This amounts to providing textual descriptions of an object's 
defining characteristics by examining its catalog info. There's a wealth of available data there if you know 
where to look. 
Similarly to sp_dir, sp_object lists detail-level information for an object or objects. It lists regular objects as well 
as user-defined data types and uses the …PROPERTY() functions to yield the pertinent details of each. 
Here's the source code to sp_object: 
       
USE master 
GO 
DROP PROC sp_object 
GO 
CREATE PROC sp_object @objectname sysname='%', @orderby 
varchar(8000)='1,2,3,4,5,6' 



Guru’s Guide to Transact-SQL 

362 

/* 
 
Object: sp_object 
Description: Returns detailed object info 
 
Usage: sp_object [@objectname=name or mask of object(s) to list][,@orderby=ORDER 
BY clause for query] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example: sp_object 'authors' 
 
Created: 1994-06-29. Last changed: 1999-07-01. 
 
*/ 
AS 
 
IF (@objectname='/?') GOTO Help 
EXEC(" 
SELECT Object=LEFT(O.Object,30), O.Type, 'SubType'= 
CAST(CASE O.Type 
   WHEN 'Constraint' THEN 
      CASE WHEN OBJECTPROPERTY(id,'IsCheckCnst')=1 THEN 'Check Constraint' 
         WHEN OBJECTPROPERTY(id,'IsForeignKey')=1 THEN 'Foreign Key Constraint' 
         WHEN OBJECTPROPERTY(id,'IsPrimaryKey')=1 THEN 'Primary Key Constraint' 
         WHEN OBJECTPROPERTY(id,'IsDefaultCnst')=1 THEN 'Default Constraint' 
         WHEN OBJECTPROPERTY(id,'IsUniqueCnst')=1 THEN 'Unique Constraint' 
END 
   WHEN 'Table' THEN 
      CASE  WHEN OBJECTPROPERTY(id,'TableIsFake')=1 THEN 'Virtual' 
            WHEN OBJECTPROPERTY(id,'IsSystemTable')=1 THEN 'System' 
            WHEN OBJECTPROPERTY(id,'IsUserTable')=1 THEN 'User' 
      END 
   WHEN 'Trigger' THEN 
   (SELECT ISNULL(SUBSTRING('Insert ', 
OBJECTPROPERTY(id,'ExecIsInsertTrigger'),7),'')+ 
   ISNULL(SUBSTRING('Delete ', OBJECTPROPERTY(id,'ExecIsDeleteTrigger'),7),'')+ 
   ISNULL(SUBSTRING('Update ', OBJECTPROPERTY(id,'ExecIsUpdateTrigger'),7),'')+ 
   ISNULL(SUBSTRING('(Disabled) ', 
OBJECTPROPERTY(id,'ExecIsTriggerDisabled'),11),'')) 
 
   WHEN 'Stored Procedure' THEN 
      CASE  WHEN OBJECTPROPERTY(id,'IsExtendedProc')=1 THEN 'Extended' 
            WHEN OBJECTPROPERTY(id,'IsReplProc')=1 THEN 'Replication' 
            ELSE 'User' 
   END 
   WHEN 'View' THEN 
      CASE  WHEN OBJECTPROPERTY(id,'OwnerId')=3 THEN 'ANSI SQL-92' 
            WHEN OBJECTPROPERTY(id, 'IsMSShipped')=1 THEN 'System' 
      ELSE 'User' 
      END 
   WHEN 'User-defined Data Type' THEN 
      (SELECT name+ 
      CASE WHEN name in ('char','varchar','nchar','nvarchar') THEN 
      '('+CAST(TYPEPROPERTY(Object,'Precision') AS varchar)+')' 
      WHEN name in ('float','numeric','decimal','real','money','smallmoney') THEN 
      '('+CAST(TYPEPROPERTY(Object,'Precision') AS varchar)+ ','+ 



Chapter 17. Administrative Transact-SQL 

363 

      CAST(ISNULL(TYPEPROPERTY(Object,'Scale'),0) AS varchar)+')' 
      ELSE '' 
      END 
      FROM systypes WHERE (type=id) AND (usertype & 256)=0 AND 
      (name<>'sysname') AND 
      prec=(SELECT MAX(prec) FROM systypes WHERE type=id)) 
   END 
AS varchar(25)), 
Owner=LEFT(USER_NAME(uid),25), 
'System-Supplied'= 
   CASE Type 
   WHEN 'User-defined Data Type' THEN 'NO' -- Can't be, by definition 
   ELSE 
   CASE OBJECTPROPERTY(id,'IsMSShipped') WHEN 0 THEN 'NO' ELSE 'YES' END 
   END, 
Description= 
SUBSTRING( 
   CASE WHEN O.Type='Constraint' THEN 
      (SELECT ISNULL(SUBSTRING(',Clustered Key,', OBJECTPROPERTY(id, 
      'CnstIsClustKey'),30),'')+ 
      ISNULL(SUBSTRING(',Column 
Constraint,',OBJECTPROPERTY(id,'CnstIsColumn'),30),'')+ 
      ISNULL(SUBSTRING(',Disabled,',OBJECTPROPERTY(id,'CnstIsDisabled'),30),'')+ 
      ISNULL(SUBSTRING(',Non-clustered key,', OBJECTPROPERTY(id, 
      'CnstIsNonClustKey'),30),'')+ISNULL(SUBSTRING(',NOT FOR 
      REPLICATION,',OBJECTPROPERTY(id,'CnstIsNotRepl'),30),'')) 
   WHEN O.Type='Table' THEN 
     (SELECT CASE 
      WHEN OBJECTPROPERTY(id,'TableHasDeleteTrigger')=1 THEN 
      ',# DELETE trig.:'+CAST(OBJECTPROPERTY(id, 
      'TableDeleteTriggerCount') AS varchar) ELSE '' END+ 
      CASE WHEN OBJECTPROPERTY(id,'TableHasInsertTrigger')=1 THEN 
      ',# INSERT trig.:'+ CAST(OBJECTPROPERTY(id, 
      'TableInsertTriggerCount') AS varchar) ELSE '' END+ 
      CASE WHEN OBJECTPROPERTY(id,'TableHasUpdateTrigger')=1 THEN 
      ',# UPDATE trig.:'+CAST(OBJECTPROPERTY(id, 
      'TableUpdateTriggerCount') AS varchar) ELSE '' END+ 
      ',Full-text index?:'+RTRIM(SUBSTRING('NO YES', (OBJECTPROPERTY(id, 
      'TableHasActiveFulltextIndex')*3)+1,3))+ 
      (CASE WHEN OBJECTPROPERTY(id, 'TableHasActiveFullTextIndex')=1 
      THEN ',Full-text catalog ID: '+ISNULL(CAST(OBJECTPROPERTY(id, 
      'FulltextCatalogID') AS varchar),'(None)')+ 
      ',Full-text key column: '+ 
      ISNULL((SELECT name FROM syscolumns WHERE id=id and 
      colid=OBJECTPROPERTY(id,'TableFulltextKeyColumn')),'(None)') 
      ELSE '' END)+ 
      ',Primary key?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasPrimaryKey')*3)+1,3))+ 
      ',Check cnst?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasCheckCnst')*3)+1,3))+ 
      ',Default cnst?:'+RTRIM(SUBSTRING('NO YES', (OBJECTPROPERTY(id, 
      'TableHasDefaultCnst')*3)+1,3))+ 
      ',Foreign key?:'+RTRIM(SUBSTRING('NO YES',( OBJECTPROPERTY(id, 
      'TableHasForeignKey')*3)+1,3))+ 
      ',Foreign key ref?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasForeignRef')*3)+1,3))+ 
      ',Unique cnst?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasUniqueCnst')*3)+1,3))+ 
      ',Indexed?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasIndex')*3)+1,3))+ 
      ',Clust. idx?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 



Guru’s Guide to Transact-SQL 

364 

      'TableHasClustIndex')*3)+1,3))+ 
      ',Non-clust. idx?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasNonclustIndex')*3)+1,3))+ 
      ',Identity?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasIdentity')*3)+1,3))+ 
      ',ROWGUIDCOL?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasRowGUIDCol')*3)+1,3))+ 
      ',Text col.?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasTextImage')*3)+1,3))+ 
      ',Timestamp?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableHasTimestamp')*3)+1,3))+ 
      ',Pinned?:'+RTRIM(SUBSTRING('NO YES',(OBJECTPROPERTY(id, 
      'TableIsPinned')*3)+1,3))) 
   WHEN O.Type='User-defined Data Type' THEN 
      (SELECT ',Allows NULLs?:'+RTRIM(SUBSTRING('NO YES', 
      (TYPEPROPERTY(Object,'AllowsNull')*3)+1,3))+ 
      ISNULL(',Uses ANSI trim?:'+RTRIM(SUBSTRING('NO YES', 
      (TYPEPROPERTY(Object,'UsesANSITrim')*3)+1,3)),'')) 
   WHEN O.Type IN ('Trigger','Stored Procedure','View') THEN 
      (SELECT ',ANSI NULLS='+RTRIM(SUBSTRING('OFFON ', 
      (OBJECTPROPERTY(id,'ExecIsAnsiNullsOn')*3)+1,3))+ 
      ',Startup='+RTRIM(SUBSTRING('FALSETRUE ', 
      (OBJECTPROPERTY(id,'ExecIsStartUp')*5)+1,5))+ 
      ',QuotedIdent='+RTRIM(SUBSTRING('FALSETRUE ',(OBJECTPROPERTY(id, 
      'ExecIsQuotedIdentOn')*5)+1,5))) 
   END 
,2,4000) 
FROM ( 
SELECT Object=name, 
   'Type'= 
   CASE 
   WHEN OBJECTPROPERTY(id,'IsConstraint')=1 THEN 'Constraint' 
   WHEN OBJECTPROPERTY(id,'IsDefault')=1 THEN 'Default Object' 
   WHEN OBJECTPROPERTY(id,'IsProcedure')=1 OR 
        OBJECTPROPERTY(id,'IsExtendedProc')=1 OR 
        OBJECTPROPERTY(id,'IsReplProc')=1 THEN 'Stored Procedure' 
   WHEN OBJECTPROPERTY(id,'IsRule')=1 THEN 'Rule Object' 
   WHEN OBJECTPROPERTY(id,'IsTable')=1 THEN 'Table' 
   WHEN OBJECTPROPERTY(id,'IsTrigger')=1 THEN 'Trigger' 
   WHEN OBJECTPROPERTY(id,'IsView')=1 THEN 'View' 
   ELSE 'Unknown' 
   END, 
id, 
uid 
FROM sysobjects 
WHERE name LIKE '"+@objectname+"' 
UNION ALL 
SELECT name, 'User-defined Data Type', 
type, 
uid 
FROM systypes 
WHERE (usertype & 256)<>0 
AND name LIKE '"+@objectname+"' 
) O 
ORDER BY "+@orderby 
) 
 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_object', @desc='Returns detailed object info', 



Chapter 17. Administrative Transact-SQL 

365 

@parameters='[@objectname=name or mask of object(s) to list][,@orderby=ORDER BY 
clause 
for query]', 
@author='Ken Henderson',@email='khen@khen.com', 
@version='7',@revision='0', 
@datecreated='19940629',@datelastchanged='19990701', 
@example='sp_object ''authors'' ' 
 
RETURN -1 
 
GO 
 
sp_object 'authors' 
 
      
(Results abridged) 
       
Object   Type   SubType  Owner  System-Supplied Description 
-------- ------ -------- ------ --------------- --------------------------------
authors   
 

Table  User     dbo    NO              Full-text index?:NO,Primary 
                                                key?:YES,Check cn 
sp_object 'ti%' 
 
      
(Results abridged) 
       
Object       Type                   SubType    Owner System-Supplied Description 
------------ ---------------------- ---------- ----- ---------------  
 

----------------------------- 
tid          User-defined Data Type varchar(6) dbo   NO              Allows  
 

NULLs?:NO,Uses ANSI tr 
titleauthor  Table                  User       dbo   NO              Full-text  
 

index?:NO,Primary k 
titleauthor2 Table                  User       dbo   NO              Full-text  
 

index?:NO,Primary k 
titles       Table                  User       dbo   NO              Full-text  
 

index?:NO,Primary k 
titleview    View                   User       dbo   NO              ANSI  
 

NULLS=OFF,Startup=FALSE, 
 
      
This procedure uses Transact-SQL's meta-data functions to probe the object-level information stored in the 
system catalogs. It accepts wildcards and lists each object's name, type, subtype, owner, and origin, along 
with a free-form description field further depicting the object's makeup. 
As with sp_dir, sp_object uses UNION ALL to combine the objects found in the sysobjects and systypes 
tables. Since it doesn't generate report totals, sp_dir's second UNION—used solely to compute totals—isn't 
needed. Also like sp_dir, this routine constructs at runtime a query that it then executes. This allows the 
ORDER BY criteria to be specified directly by the user. 
Note the use of a derived table to simplify the query. The derived table allows us to use the values it yields to 
qualify the outer query. That is, rather than coding CASE OBJECTPROPERTY(id, 'IsTable') in the outer 
query, we can code CASE Type WHEN 'Table' … instead. This is much more readable and helps 
modularize the code to an extent. 
Note the use of the expression: 



Guru’s Guide to Transact-SQL 

366 

       
      RTRIM(SUBSTRING('NO 
YES',(OBJECTPROPERTY(id,'TableHasPrimaryKey')*3)+1,3)) 
      
      
to translate the 1 or 0 returned by OBJECTPROPERTY() into "YES" or "NO." This is functionally equivalent to: 
       
CASE OBJECTPROPERTY('TableHasPrimaryKey') WHEN 0 THEN 'No' ELSE 'Yes' END 
 
      
I used this technique because there are already dozens of examples of CASE in the procedure and it's good 
to be aware of the other options available to you for translating integers into string tokens. Also, the sheer 
number of CASE expressions in the query can be a bit overwhelming at first mdash;breaking it up with 
deviations like this helps alleviate some of the monotony without really affecting performance. 
The code used to decode user-defined data types is also of interest. The subquery: 
       
(SELECT name+ 
CASE WHEN name in ('char','varchar','nchar','nvarchar') THEN 
'('+CAST(TYPEPROPERTY(Object,'Precision') AS varchar)+')' 
WHEN name in ('float','numeric','decimal','real','money','smallmoney') THEN       
 

'('+CAST(TYPEPROPERTY(Object,'Precision') AS varchar)+ ','+  
 

CAST(ISNULL(TYPEPROPERTY(Object,'Scale'),0) AS varchar)+')' 
ELSE '' 
END 
FROM systypes WHERE (type=id) AND (usertype & 256)=0 AND 
(name<>'sysname') AND 
prec=(SELECT MAX(prec) FROM systypes WHERE type=id)) 
 
      
determines the underlying base type of a UDDT by scanning the systypes system table for the largest base 
type (usertype & 256 = 0) whose type field matches the id column exposed by the query. We scan for the 
largest type because our subquery is allowed to return only one value. It's entirely possible that there's more 
than one base type with the same type ID. For character data types, this will always be the case due to the 
inclusion of their Unicode versions. Returning only the largest types means that nchar and nvarchar will be 
ignored since they have less precision (4000characters vs. 8000characters) than their non-Unicode siblings. 

Maintenance Routines 

Automating the maintenance of the system is probably the single most common use of administrative 
Transact-SQL. Most people, even DBAs, don't like to spend their time manually maintaining and keeping their 
systems tuned. Few subscribe to Marguerite Duras's assertion that "the best way to fill time is to waste it." 
Most people have better things to do. 
To that end, below you'll find an assortment of maintenance procedures and scripts that I've used in my own 
work to make life easier as it relates to database and system administration. Many of these are the types of 
routines that you can schedule via the SQL Server Agent service. Most of them perform tasks that you'll want 
to complete on a regular basis, so it's sensible to schedule them to run automatically when possible. 

sp_update_stats_all 

Regardless of whether you allow SQL Server automatically to maintain the statistics that it uses to optimize 
queries, you may still need to update these statistics manually on an occasional basis. There are a couple of 
reasons for this. First, the server uses sampling techniques to minimize the time spent automatically 
generating statistics. Sometimes these samples aren't representative of a table's overall data and prevent the 
optimizer from properly optimizing queries. In that 
case, you may have to help the server a bit by creating the statistics yourself using CREATE STATISTICS or 
UPDATE STATISTICS. 



Chapter 17. Administrative Transact-SQL 

367 

Another reason you may wish to update statistics manually is that you may be forced to disable automatic 
statistics generation for performance reasons. When autogeneration is enabled, the server ages and rebuilds 
statistics as needed when it optimizes queries that use those statistics. This process costs a certain amount of 
resources and processor time. In high-volume transactional environments, you may find that it's more efficient 
to update statistics manually once a day or once a week than to allow them to be maintained automatically by 
the server. The trade-off here is similar to the one you face when deciding whether to drop nonclustered 
indexes before bulk data operations—you may find that it's more efficient to "buy now and pay later" with 
index statistics than to "pay as you go."  
The following is a stored procedure that updates the statistics for all the tables in the database or databases 
you specify. It accepts wildcards and simply calls the SQL Server system procedure sp_updatestats to update 
the statistics in each database. Here's the code: 
       
USE master 
IF OBJECT_ID('sp_updatestats_all') IS NOT NULL 
  DROP PROC sp_updatestats_all 
GO 
CREATE PROC sp_updatestats_all @dbname sysname='%' 
/* 
 
Object: sp_updatestats_all 
Description: Updates index statistics for a given database or databases 
 
Usage: sp_updatestats_all [@dbname=Name of database to update (Default: "%")] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 4.2 
 
Example: sp_updatestats_all "pubs" 
 
Created: 1991-09-12. Last changed: 1999-05-03. 
 
*/ 
AS 
SET NOCOUNT ON 
IF (@dbname='/?') GOTO Help 
DECLARE Databases CURSOR FOR 
  SELECT CATALOG_NAME 
  FROM INFORMATION_SCHEMA.SCHEMATA 
  WHERE NOT 
  (CATALOG_NAME IN ('tempdb','master','msdb','model')) -- Omit system DBs 
  AND CATALOG_NAME LIKE @dbname 
DECLARE @execstr varchar(8000) 
 
OPEN Databases 
FETCH Databases INTO @dbname 
IF (@@FETCH_STATUS<>0) BEGIN -- No matching databases 
  CLOSE Databases 
  DEALLOCATE Databases 
  PRINT 'No databases were found that match "'+@dbname+'"' 
  GOTO Help 
END 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  PRINT CHAR(13)+'Updating statistics information for database: '+@dbname 
  -- Prefixing the DB name temporarily changes the current DB 
  SET @execstr='EXEC '+@dbname+'..sp_updatestats' 
  EXEC(@execstr) 
  FETCH Databases INTO @dbname 



Guru’s Guide to Transact-SQL 

368 

END 
CLOSE Databases 
DEALLOCATE Databases 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_updatestats_all', @desc='Updates index statistics 
for a  
 

given database or databases', 
@parameters='[@dbname=Name of database to update (Default: "%")]', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='4', @revision='2', 
datecreated='19910912', @datelastchanged='19990503', 
@example='sp_updatestats_all "pubs"' 
RETURN -1 
 
sp_updatestats_all 
 
Updating statistics information for database: Northwind 
Updating dbo.employees 
Updating dbo.categories 
Updating dbo.customers 
Updating dbo.dtproperties 
Updating dbo.shippers 
Updating dbo.suppliers 
Updating dbo.orders 
Updating dbo.products 
Updating dbo.order details 
Updating dbo.customercustomerdemo 
Updating dbo.customerdemographics 
Updating dbo.region 
Updating dbo.territories 
Updating dbo.employeeterritories 
 
Statistics for all tables have been updated. 
 
Updating statistics information for database: pubs 
Updating dbo.authors 
Updating dbo.publishers 
Updating dbo.titles 
Updating dbo.titleauthor 
Updating dbo.stores 
Updating dbo.sales 
Updating dbo.roysched 
Updating dbo.discounts 
Updating dbo.jobs 
Updating dbo.pub_info 
Updating dbo.employee 
Updating dbo.bets 
Updating dbo.testident 
Updating dbo.dtproperties 
Updating dbo.titleauthor2 
Updating dbo.authors2 
Updating dbo.testtxt 
Updating dbo.authors22 
Updating dbo.temp_authors 
Statistics for all tables have been updated. 
 
      



Chapter 17. Administrative Transact-SQL 

369 

This routine isn't terribly complicated. It opens a cursor on the INFORMATION_SCHEMA SCHEMATA view 
and then iterates through the databases listed by the view, executing sp_ updatestats for each one. Note that 
the query could have queried sysdatabases instead, but using an INFORMATION_SCHEMA view is always 
preferable when one that meets your needs is available. 
The actual call to sp_updatestats uses the trick, demonstrated earlier in the chapter and elsewhere in this 
book, of prefixing the system procedure name with the name of the database in order to change the database 
context temporarily: 
       
      EXEC dbname..sp_updatestats 
      
      
This causes the procedure to run in the context of the database dbname, as though a USE dbname had 
immediately preceded the call to EXEC. 

sp_updateusage_all 

Like sp_updatestats_all, sp_updateusage_all iterates through the databases on the current server to update 
system-level information. Specifically, it executes DBCC UPDATEUSAGE() to correct errors in sysindexes 
that can cause inaccuracies in the object sizes listed by stored procedures such as sp_spaceused and sp_dir. 
Here's the code: 
       
USE master 
IF OBJECT_ID('sp_updateusage_all') IS NOT NULL 
  DROP PROC sp_updateusage_all 
GO 
CREATE PROC sp_updateusage_all @dbname sysname='%' 
/* 
Object: sp_updateusage_all 
Description: Corrects usage errors in sysindexes 
 
Usage: sp_updateusage_all [@dbname=Name of database to update (Default: "%")] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
Version: 4.2 
 
Example: sp_updateusage_all "pubs" 
 
Created: 1991-09-12. Last changed: 1999-05-03. 
 
*/ 
AS 
SET NOCOUNT ON 
 
IF (@dbname='/?') GOTO Help 
DECLARE Databases CURSOR FOR 
  SELECT CATALOG_NAME 
  FROM INFORMATION_SCHEMA.SCHEMATA 
  -- Omit system DBs 
  WHERE NOT (CATALOG_NAME IN ('tempdb','master','msdb','model')) 
  AND CATALOG_NAME LIKE @dbname 
DECLARE @execstr varchar(8000) 
OPEN Databases 
 
FETCH Databases INTO @dbname 
IF (@@FETCH_STATUS<>0) BEGIN -- No matching databases 
  CLOSE Databases 
  DEALLOCATE Databases 
  PRINT 'No databases were found that match "'+@dbname+'"' 



Guru’s Guide to Transact-SQL 

370 

  GOTO Help 
END 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  PRINT CHAR(13)+ 
    'Updating sysindexes usage information for database: '+@dbname 
  SET @execstr='DBCC UPDATEUSAGE('+@dbname+') WITH COUNT_ROWS, NO_INFOMSGS' 
  EXEC(@execstr) 
  FETCH Databases INTO @dbname 
END 
CLOSE Databases 
DEALLOCATE Databases 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_updateusage_all', @desc='Corrects usage errors in  
sysindexes', 
@parameters='[@dbname=Name of database to update (Default: "%")]', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='4', @revision='2', 
@datecreated='19910912', @datelastchanged='19990503', 
@example='sp_updateusage_all "pubs"' 
RETURN -1 
 
      
If no errors are found in sysindexes, DBCC UPDATEUSAGE() returns no output, so you'll often see nothing 
but the "Updating sysindexes information for database…" message that the procedure generates for each 
database. Also, DBCC UPDATEUSAGE() can take some time to run for large tables. You should issue 
sp_updateusage_all with care and preferably when system utilization is low. 

sp_rebuildindexes_all 

There are times when you'll need to rebuild all the indexes for a given table or tables. Bulk data loads, nightly 
posts, and other types of massive data updates are examples of operations that can necessitate index 
rebuilds. The procedure below uses DBCC DBREINDEX() to rebuild the indexes on all the tables in the 
databases you specify. Rebuilding indexes in this way allows the indexes that service PRIMARY KEY and 
UNIQUE constraints to be rebuilt without having to recreate those constraints manually. It also allows a table's 
indexes to be rebuilt without knowing anything about the table. 
Because DBCC DBREINDEX() can rebuild all the indexes on a table in a single statement, it is inherently 
atomic, which means that either all the index creations will occur or none of them will. Comparable DROP 
INDEX and CREATE INDEX statements would have to be encapsulated in a transaction in order to achieve 
the same effect. Also, DBCC DBREINDEX() is easier for the server to optimize than a query featuring 
analogous DROP and CREATE INDEX statements. Here's the source to sp_rebuildindexes_all: 
       
USE master 
IF OBJECT_ID('sp_rebuildindexes_all') IS NOT NULL 
  DROP PROC sp_rebuildindexes_all 
GO 
IF OBJECT_ID('sp_rebuildindexes') IS NOT NULL 
  DROP PROC sp_rebuildindexes 
GO 
 
CREATE PROC sp_rebuildindexes @tablename sysname='%' 
AS 
SET NOCOUNT ON 
 
DECLARE @execstr varchar(8000) 
DECLARE Tables CURSOR FOR 
  -- Tried to use INFORMATION_SCHEMA.TABLES here but it refused to work 
  SELECT name 



Chapter 17. Administrative Transact-SQL 

371 

  FROM sysobjects 
  -- Exclude views and system tables 
  WHERE OBJECTPROPERTY(OBJECT_ID(name),'IsUserTable')=1 
  AND name LIKE @tablename 
OPEN Tables 
FETCH Tables INTO @tablename 
WHILE (@@FETCH_STATUS=0) BEGIN 
  PRINT CHAR(13)+'Rebuilding indexes for: '+@tablename 
  SET @execstr='DBCC DBREINDEX('+@tablename+')' 
  EXEC(@execstr) 
  FETCH Tables INTO @tablename 
END 
CLOSE Tables 
DEALLOCATE Tables 
RETURN 0 
GO 
CREATE PROC sp_rebuildindexes_all @dbname sysname='%' 
/* 
 
Object: sp_rebuildindexes_all 
Description: Rebuilds the indexes for all tables in a given database or databases 
 
Usage: sp_rebuildindexes_all [@dbname=Name of database to update (Default: "%")] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 4.2 
 
Example: sp_rebuildindexes_all "pubs" 
 
Created: 1991-09-12. Last changed: 1999-05-03. 
 
*/ 
AS 
SET NOCOUNT ON 
IF (@dbname='/?') GOTO Help 
DECLARE Databases CURSOR FOR 
  SELECT CATALOG_NAME 
  FROM INFORMATION_SCHEMA.SCHEMATA 
  WHERE NOT (CATALOG_NAME IN ('tempdb','master','msdb','model')) -- Omit system 
DBs 
  AND CATALOG_NAME LIKE @dbname 
DECLARE      @execstr varchar(8000), @tablename sysname 
 
OPEN Databases 
 
FETCH Databases INTO @dbname 
IF (@@FETCH_STATUS<>0) BEGIN -- No matching databases 
  CLOSE Databases 
  DEALLOCATE Databases 
  PRINT 'No databases were found that match "'+@dbname+'"' 
  GOTO Help 
END 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  PRINT CHAR(13)+'Rebuilding indexes in database: '+@dbname 
  PRINT CHAR(13) 
  -- Prefixing DB name temporarily changes current DB 
  SET @execstr='EXEC '+@dbname+'..sp_rebuildindexes' 



Guru’s Guide to Transact-SQL 

372 

  EXEC(@execstr) 
  FETCH Databases INTO @dbname 
END 
CLOSE Databases 
DEALLOCATE Databases 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_rebuildindexes_all', 
@desc='Rebuilds the indexes for all tables in a given database or databases', 
@parameters='[@dbname=Name of database to update (Default: "%")]', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='4', @revision='2', 
@datecreated='19910912', @datelastchanged='19990503', 
@example='sp_rebuildindexes_all "pubs"' 
RETURN -1 
 
GO 
 
      
sp_rebuildindexes_all 
       
Rebuilding indexes for: authors 
Index (ID = 1) is being rebuilt. 
Index (ID = 2) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Rebuilding indexes for: jobs 
Index (ID = 1) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Rebuilding indexes for: publishers 
Index (ID = 1) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Rebuilding indexes for: roysched 
Index (ID = 2) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Rebuilding indexes for: sales 
Index (ID = 1) is being rebuilt. 
Index (ID = 2) is being rebuilt. 
Index (ID = 3) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Rebuilding indexes for: stores 
Index (ID = 1) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Rebuilding indexes for: titleauthor 
Index (ID = 1) is being rebuilt. 
Index (ID = 2) is being rebuilt. 
Index (ID = 3) is being rebuilt. 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 



Chapter 17. Administrative Transact-SQL 

373 

 
Rebuilding indexes for: titles 
Index (ID = 1) is being rebuilt. 
Index (ID = 2) is being rebuilt. 
Index (ID = 3) is being rebuilt. 
 DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
      
Note the use of the sp_rebuildindexes stored procedure to call DBCC DBREINDEX() Why is this? Why didn't 
we just call DBREINDEX() from the main procedure? Why do we need a second routine? We need 
sp_rebuildindexes in order to change the database context temporarily so that the Transact-SQL actually 
performing the reindex runs in the correct database. Prefixing a call to a system procedure (one beginning 
with "sp_" and residing in the master database) with a database name—any database name—changes the 
database context for the duration of the procedure. It's tantamount to issuing a USE dbname just prior to 
calling the procedure and then returning to the original database afterward. 

sp_dbbackup 

Enterprise Manager includes a nice facility for scheduling and managing database backups. Since scheduled 
jobs can also be run ad hoc, you should normally use this facility to execute and manage your backups. 
That said, there may be times when you want to perform backups using Transact-SQL. You may have other 
code that needs to execute immediately prior to the backup, you might need to create backups on alternate 
media or with different options, or you may have some other compelling reason for making backups this 
way—there are a number of situations where this might be the case. Here's a procedure that automates the 
task of backing up all the databases on a server: 
       
USE master 
GO 
 
IF OBJECT_ID('sp_dbbackup') IS NOT NULL 
  DROP PROC sp_dbbackup 
GO 
CREATE PROC sp_dbbackup @dbname sysname='%', 
  @server sysname='(local)', @username sysname=NULL, @password sysname=" 
/* 
 
Object: sp_dbbackup 
Description: Backups up one or more databases, creating backup devices as needed 
 
Usage: sp_dbbackup [@dbname=database name or mask to backup (Default: '%')], 
[,@server="server name"][, @username="user name"][, @password="password"] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.01 
 
Example: sp_dbbackup 'm%' -- Backs up all databases whose names begin with 'm' 
 
Created: 1990-01-07. Last changed: 1999-07-03. 
 
*/ 
AS 
SET NOCOUNT ON 
IF (@dbname='/?') GOTO Help 
IF (@username IS NULL) SET @username=SUSER_SNAME() 
 
-- Create backup devices and backup each database (except tempdb) 



Guru’s Guide to Transact-SQL 

374 

 
DECLARE @rootpath sysname, @devname sysname, @execstr varchar(8000), @logmessage 
varchar(8000) 
-- Get SQL Server root installation path 
EXEC sp_getSQLregistry @regkey='SQLRootPath', @regvalue=@rootpath OUTPUT, 
@server=@server, 
  @username=@username, @password=@password 
 
DECLARE Databases CURSOR FOR 
  SELECT CATALOG_NAME 
  FROM INFORMATION_SCHEMA.SCHEMATA 
  WHERE CATALOG_NAME <> 'tempdb' -- Omit system DBs 
  AND CATALOG_NAME LIKE @dbname 
  ORDER BY CATALOG_NAME 
 
OPEN Databases 
 
FETCH Databases INTO @dbname 
SET @devname=@dbname+'back' 
WHILE (@@FETCH_STATUS=0) BEGIN 
  IF NOT EXISTS( 
    SELECT * FROM master..sysdevices WHERE name = @dbname+'back') 
  BEGIN 
    -- Create the data backup device 
    PRINT CHAR(13)+'Adding the data backup device for: '+@dbname 
    SET @execstr='EXEC sp_addumpdevice ''disk'',"'+@dbname+'back'+'", "'+ 
    @rootpath+'\backup\'+@dbname+'back.dmp"' 
    EXEC(@execstr) 
  END 
 
  -- Backup the database 
  PRINT CHAR(13)+'Backing up database '+@dbname 
  BACKUP DATABASE @dbname TO @devname 
  SET @logmessage='Backup of database '+@dbname+' complete' 
  EXEC master..xp_logevent 60000, @logmessage, 'INFORMATIONAL' 
 
  -- Backup its log 
  IF (@dbname<>'master') AND (DATABASEPROPERTY(@dbname,'IsTruncLog')=0) 
  BEGIN 
   IF NOT 
    EXISTS(SELECT * FROM master..sysdevices WHERE name = @dbname+'back') 
    BEGIN 
     -- Create the log backup device  
     PRINT 'Adding the log backup device for: '+@dbname 
     SET @execstr='EXEC sp_addumpdevice ''disk'', "'+ @dbname + 
     'logback'+'", "' 
     +@rootpath+'\backup\'+@dbname+'logback.dmp"' 
     EXEC(@execstr) 
   END 
   PRINT 'Backing up the transaction log for: '+@dbname 
   SET @devname=@dbname+'logback' 
   BACKUP LOG @dbname TO @devname 
   SET @logmessage='Backup of the transaction log for database '+ 
   @dbname+' complete' 
   EXEC master..xp_logevent 60000, @logmessage, 'INFORMATIONAL' 
  END 
 
  FETCH Databases INTO @dbname 
  SET @devname=@dbname+'back' 
END 
CLOSE Databases 



Chapter 17. Administrative Transact-SQL 

375 

DEALLOCATE Databases 
 
PRINT CHAR(13)+'Backup operation successfully completed' 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_dbbackup', @desc='Backups up one or more databases, 
creating backup devices as needed', 
@parameters='[@dbname=database name or mask to backup (Default: ''%'')] 
[,@server="server name"][, @username="user name"] [, @password="password"]', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='7',@revision='01', 
@datecreated='19900107', @datelastchanged='19990703', 
@example='sp_dbbackup ''m%'' -- Backs up all databases whose names begin with 
''m'' ' 
RETURN -1 
 
GO 
 
sp_dbbackup 
 
Backing up database GVM 
Processed 824 pages for database 'GVM', file 'GVM_Data' on file 30. 
Processed 1 pages for database 'GVM', file 'GVM_Log' on file 30. 
Backup or restore operation successfully processed 825 pages in 2.468 seconds 
(2.735 MB/sec). 
Backing up the transaction log for: GVM 
Processed 1 pages for database 'GVM', file 'GVM_Log' on file 14. 
Backup or restore operation successfully processed 1 pages in 0.086 seconds 
(0.011 MB/sec). 
 
Backing up database master 
Processed 1264 pages for database 'master', file 'master' on file 21. 
Processed 1 pages for database 'master', file 'mastlog' on file 21. 
Backup or restore operation successfully processed 1265 pages in 3.302 seconds 
(3.136 MB/sec). 
 
Backing up database model 
Processed 96 pages for database 'model', file 'modeldev' on file 18. 
Processed 1 pages for database 'model', file 'modellog' on file 18. 
Backup or restore operation successfully processed 97 pages in 0.433 seconds 
(1.818 MB/sec). 
 
Backing up database msdb 
Processed 936 pages for database 'msdb', file 'MSDBData' on file 17. 
Processed 1 pages for database 'msdb', file 'MSDBLog' on file 17. 
Backup or restore operation successfully processed 937 pages in 2.369 seconds 
(3.237 MB/sec). 
 
Backing up database Northwind 
Processed 392 pages for database 'Northwind', file 'Northwind' on file 17. 
Processed 1 pages for database 'Northwind', file 'Northwind_log' on file 17. 
Backup or restore operation successfully processed 393 pages in 1.113 seconds 
(2.886 MB/sec). 
 
Adding the data backup device for: Northwind2 
'Disk' device added. 
 
Backing up database Northwind2 
Processed 112 pages for database 'Northwind2', file 'Northwind2sys' on file 1. 
Processed 16 pages for database 'Northwind2', file 'Northwind2data' on file 1. 



Guru’s Guide to Transact-SQL 

376 

Processed 1 pages for database 'Northwind2', file 'Northwind2log' on file 1. 
Backup or restore operation successfully processed 129 pages in 0.591 seconds 
(1.775 MB/sec). 
 
Backing up database pubs 
Processed 248 pages for database 'pubs', file 'pubs' on file 18. 
Processed 1 pages for database 'pubs', file 'pubs_log' on file 18. 
Backup or restore operation successfully processed 249 pages in 0.770 seconds 
(2.639 MB/sec). 
 
Backup operation successfully completed 
 
      
The procedure does a couple of interesting things. First, it not only performs backups but also creates backup 
devices as needed. It uses the sp_getSQLregistry procedure (introduced in Chapter19) to query the system 
registry for SQL Server's root path and constructs a physical device location using this path. The fact that it 
automatically creates devices is one advantage this routine has over a backup scheduled via Enterprise 
Manager. 
Another interesting element of the procedure is the use of DATABASEPROPERTY() to determine whether a 
database has been configured with the trunc. log on chkpt option. It needs to know this in order to avoid 
attempting to back up such a database's transaction log, since this would result in an error. Backing up a 
transaction log that has been truncated by the system would be nonsensical—the backup would be useless—
and the server will prohibit you from doing so. Once trunc. log on chkpt is enabled, your only option for 
backing up a database is to back up the entire database. 

sp_copyfile 

The ability to execute operating system commands is a very powerful extension to the Transact-SQL 
language. This, coupled with its OLE automation support, allows Transact- SQL to perform the kinds of tasks 
normally reserved for traditional programming languages. The procedure below uses the extended procedure 
xp_cmdshell to copy an operating system file. It accepts operating system wildcards, so it can copy more than 
one file at a time. Here's the code: 
       
USE master 
IF OBJECT_ID('sp_copyfile') IS NOT NULL 
  DROP PROC sp_copyfile 
GO 
CREATE PROCEDURE sp_copyfile @sourcefilepath sysname, @targetfilepath 
sysname=NULL 
/* 
 
Object: sp_copyfile 
Description: Copies an operating system file 
 
Usage: sp_copyfile @sourcefilepath=full source file path, @targetfilepath=target 
file 
path and/or filename 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
Version: 6.0 
 
Example: sp_copyfile 'c:\mssql7\backup\masterback.dmp' 
'c:\mssql7\backup\masterback.dmp.copy' 
sp_copyfile 'c:\mssql7\backup\masterback.dmp' '\\archiveserver\d$\backups' 
sp_copyfile 'c:\mssql8\backup\*.dmp' 'g:\databasedumps' 
 
Created: 1995-12-19. Last changed: 1999-06-02. 
 



Chapter 17. Administrative Transact-SQL 

377 

*/ 
AS 
SET NOCOUNT ON 
IF (@sourcefilepath='/?') OR (@targetfilepath IS NULL) GOTO Help 
 
DECLARE @cmdstr varchar(8000) 
 
CREATE TABLE #cmd_result (output varchar(8000)) 
 
EXEC master..xp_sprintf @cmdstr OUTPUT, 'copy %s %s',@sourcefilepath, 
@targetfilepath 
 
INSERT #cmd_result 
EXEC master..xp_cmdshell @cmdstr 
 
SELECT * FROM #cmd_result 
IF EXISTS(SELECT * FROM #cmd_result WHERE output like '%file(s) copied%') BEGIN 
  SET @cmdstr='The file copy operation "'+@cmdstr+'" was successful (at least one 
file 
  was copied)' 
  PRINT @cmdstr 
  EXEC master..xp_logevent 60000, @cmdstr, 'INFORMATIONAL' 
END ELSE RAISERROR('File copy failed',16,1) 
 
DROP TABLE #cmd_result 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_copyfile',@desc='Copies an operating system file', 
@parameters='@sourcefilepath=full source file path, @targetfilepath=target file 
path 
and/or filename', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='6',@revision='0', 
@datecreated='19951219',@datelastchanged='19990602', 
@example='sp_copyfile ''c:\mssql7\backup\masterback.dmp''  
 

''c:\mssql7\backup\masterback.dmp.copy'' 
sp_copyfile ''c:\mssql7\backup\masterback.dmp'' ''\\archiveserver\d$\backups'' 
sp_copyfile ''c:\mssql8\backup\*.dmp'' ''g:\databasedumps'' ' 
 
GO 
 
sp_copyfile 'c:\mssql7\log\errorlog', 'c:\mssql7\log\errorlog.sav' 
-------------------------------------------------------------------------------- 
        1 file(s) copied. 
 
The file copy operation "copy c:\mssql7\log\errorlog 
c:\mssql7\log\errorlog.sav" 
 was successful (at least one file was copied) 
 
      
This routine uses xp_sprintf to set up the operating system COPY command before executing it. We could 
have created the command through simple string concatenation, but I've used xp_sprintf here to highlight its 
availability and usefulness. It provides functionality very similar to that of the C/C++ sprintf() function and can 
come in quite handy, especially when your formatting needs are more complex than those presented here. 
Unfortunately, it supports only string arguments at present, but you can cast other types of variables as strings 
in order to pass them to it. 
Note the use of the database prefix on both the call to xp_sprintf and the call to xp_cmdshell. This is 
mandatory because, unlike regular system procedures, extended procedures aren't automatically located 



Guru’s Guide to Transact-SQL 

378 

across databases. Failing to qualify fully a call to an extended procedure will result in that call failing from any 
database except master.  
Unless its no_output option is specified, xp_cmdshell returns a result set containing the output of the 
operating system command(s) it executes. In this case, sp_copyfile uses INSERT ...EXEC to place this output 
in a table so that it can be scanned to see whether the operation succeeded. We need to find the string "file(s) 
copied" in order to ensure that at least one file was successfully copied. The routine uses the EXISTS 
predicate to determine whether the string appears in the xp_cmdshell output and displays the appropriate 
message. 

sp_make_portable 

The need for portable databases has grown increasingly over the last few years. Networks have gotten faster, 
hard drives have gotten bigger, and machines have gotten cheaper to the point that it's common to see file 
transfers and email attachments several megabytes in size. It's not uncommon to see whole databases 
attached to an email. 
SQL Server provides the sp_create_removable stored procedure for the express purpose of creating 
portable—that is, movable—databases. Sp_make_portable uses this procedure to automate the process of 
making a portable copy of an existing database. You pass in a database name, and sp_make_portable 
creates a portable database containing the same objects as the original (without data). This database can 
then be taken off line and copied onto removable media, emailed, transferred to another server, and so on. 
Here's the code: 
       
USE master 
IF OBJECT_ID('sp_make_portable') IS NOT NULL 
  DROP PROC sp_make_portable 
GO 
CREATE PROC sp_make_portable @dbname sysname=NULL, @newdbname sysname=NULL, 
@objectname  
 

sysname='%', 
@username sysname=NULL, @password sysname=", @server sysname='(local)' 
/* 
 
Object: sp_make_portable 
Description: Makes a portable copy of an existing database (schema only - no data) 
 
Usage: sp_make_portable @newdbname=name of new database to create 
[,@dbname=database to copy (Default: DB_NAME())] 
[,@objectname=mask specifying which objects to copy (Default "%")] 
[,@username=user account to use for SQL-DMO (Default: SUSER_SNAME()] 
[,@password=password for DMO user account (Default: "")] 
[,@server=server to log into (Default: "(local)")] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example: sp_make_portable @dbname="northwind", @newdbname="northwind2", 
@user="sa" 
 
Created: 1996-08-03. Last changed: 1999-07-03. 
 
*/ 
AS 
SET NOCOUNT ON 
 
IF (@dbname='/?') OR (@newdbname='/?') OR (@newdbname IS NULL) GOTO Help 
 



Chapter 17. Administrative Transact-SQL 

379 

DECLARE @workstr varchar(8000), @sqlpath varchar(8000), @scriptfile sysname, @res 
int, 
@sysdevp sysname, @datadevp sysname, @logdevp sysname, 
@sysdevl sysname, @datadevl sysname, @logdevl sysname 
-- Default to copying the current database 
IF (@dbname IS NULL) SET @dbname=DB_NAME() 
-- Use the current user's login name for DMO 
IF (@username IS NULL) SET @username=SUSER_SNAME() 
 
IF (DB_ID(@dbname) IS NULL) GOTO Help     -- Invalid source database name 
 
EXEC @res=sp_validname @newdbname,0       -- Very rudimentary -- doesn't do much 
IF (@res=1) GOTO Help 
 
-- Get rid of target database if it already exists 
IF (DB_ID(@newdbname) IS NOT NULL) 
  EXEC sp_dbremove @newdbname,DROPDEV 
 
-- Get SQL Server's default installation path 
EXEC sp_getSQLregistry 'SQLRootPath',@sqlpath OUTPUT, 
  @username=@username, @password=@password, @server=@server 
EXEC master..xp_sprintf @workstr OUTPUT, 'DEL %s\\data\\%s.*', 
  @sqlpath,@newdbname 
-- Delete the operating system files for the target DB 
EXEC master..xp_cmdshell @workstr, no_output 
 
SET @sysdevl=@newdbname+'sys'     -- Define logical and physical device names 
SET @datadevl=@newdbname+'data'   -- based on the name of the new database 
SET @logdevl=@newdbname+'log' 
SET @sysdevp=@sqlpath+'\data\'+@newdbname+'.sdf' 
SET @datadevp=@sqlpath+'\data\'+@newdbname+'.mdf' 
SET @logdevp=@sqlpath+'\data\'+@newdbname+'.ldf' 
 
EXEC master..sp_create_removable               -- Build the new database 
  @dbname=@newdbname, 
  @syslogical=@sysdevl, 
  @sysphysical=@sysdevp, 
  @syssize=1, 
  @loglogical=@logdevl, 
  @logphysical=@logdevp, 
  @logsize=1, 
  @datalogical1=@datadevl, 
  @dataphysical1=@datadevp, 
  @datasize1=3 
 
/* 
-- Commented out because sp_certify_removable is (7/3/99, SQL 7 SP1) apparently 
broken. 
It reports: 
-- Server: Msg 208, Level 16, State 1, Procedure sp_check_portable, Line 18 
-- Invalid object name 'sysdatabases'. 
-- when called in the following manner: 
 
EXEC @res=master..sp_certify_removable @newdbname, auto     -- Ensure that the 
new DB is portable 
IF (@res<>0) BEGIN 
  RAISERROR('Error creating portable database. Database files 
  sp_certify_removable check',16,1) 
  DECLARE @filename sysname 
  SET @filename = 'CertifyR_['+@newdbname+'].txt' 
  EXEC sp_readtextfile @filename 



Guru’s Guide to Transact-SQL 

380 

  RETURN -1 
END 
 
EXEC master..sp_dboption @newdbname,'offline',false -- Set database back online 
*/ 
 
EXEC master..xp_sprintf @workstr OUTPUT,'EXEC %s..sp_generate_script 
@objectname="%s", 
@outputname="%s\%sTEMP.SQL", 
  @resultset="NO", @username="%s", @password="%s", @server="%s"', 
  @dbname,@objectname,@sqlpath,@newdbname, @username, @password, @server 
EXEC(@workstr)      -- Generate a script for the old database 
 
EXEC master..xp_sprintf @workstr OUTPUT,'osql -U%s -P%s -S%s -d%s - 
i%s\%sTEMP.SQL -o%s\%sTEMP.OUT', 
  @username,@password,@server,@newdbname,@sqlpath, @newdbname, @sqlpath, 
@newdbname 
-- Run the script _in the new database_ 
EXEC master..xp_cmdshell @workstr, no_output 
 
PRINT REPLICATE('-',256)+CHAR(13)+ 
  'Removable database '+@newdbname+' successfully created' 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_make_portable', 
@desc='Makes a portable copy of an existing database (schema only - no data)', 
@parameters='@newdbname=name of new database to create 
[,@dbname=database to copy (Default: DB_NAME())] 
[,@objectname=mask specifying which objects to copy] 
[,@username=user account to use for SQL-DMO (Default: SUSER_SNAME()] 
[,@password=password for DMO user account (Default: "")] 
[,@server=server to log into (Default: "(local)")]', 
@author='Ken Henderson', @email='khen@khen.com',@version='7',@revision='0', 
@datecreated='19960803', @datelastchanged='19990703', 
@example='sp_make_portable @dbname="northwind", @newdbname="northwind2", 
@user="sa"' 
RETURN -1 
 
GO 
 
sp_make_portable @dbname='Northwind', @newdbname='Northwind2' 
 
The CREATE DATABASE process is allocating 1.00 MB on disk 'Northwind2sys'. 
The CREATE DATABASE process is allocating 1.00 MB on disk 'Northwind2log'. 
Extending database by 3.00 MB on disk 'Northwind2data'. 
The filegroup property 'DEFAULT' has been set. 
 
      
The first step in building the new database is to determine where SQL Server is installed so that we can build 
the names of the physical devices that will host it. Next, we call sp_create_removable to build the database. 
Once this happens, we call sp_generate_script (covered later in this chapter) to generate a SQL script for the 
entire source database; then we call OSQL (via xp_cmdshell) to execute it. We use OSQL's -d command-line 
option to execute the script within the context of the new database instead of the original database. This 
ensures that the objects created by the script end up in the new database. 
The end result of all this is a database that's portable. Once your portable database is constructed, you can 
use sp_dboption to take it off line so that you can copy its operating system files elsewhere. You could even 
use sp_copyfile to copy them. 
The system procedure sp_attach_db is used to make a portable database accessible from a new server. This 
is perfect for installing ready-made databases from removable media such as CD-ROMs. It presents a viable 
alternative to using scripts and backups to deploy databases with your applications. 



Chapter 17. Administrative Transact-SQL 

381 

INIT_SERVER.SQL 

One task that it pays to standardize and streamline as much as possible is that of setting up new servers. 
DBAs who set up database servers on a regular basis usually get the whole process down to a well-oiled 
routine. They're able to do it in their sleep if they must—and sometimes they must. 
The script presented below represents a template from which you can construct such a routine of your own. 
It's certainly not comprehensive—it's likely that each shop will have its own setup requirements and needs. 
The template isn't provided as a stored procedure because the first thing you'd have to do to with a stored 
procedure is load a script on the new server to create it. Given that server initialization is usually a one-time 
thing, you might as well just use a script in the first place. 
The kinds of things that you typically find in server initialization scripts are: 

• Dump device construction 
• Creation of user databases and/or restore operations to populate them 
• Custom stored procedure installation 
• Autostartup procedure specification 
• Template database (model) setup 
• Maintenance job scheduling 
• User account and security setup 
• Database and database option configuration 
• Server configuration 

Getting the server set up correctly to begin with is essential if you want it to behave itself down the road. Even 
though the DBA's workload has been reduced with each successive release of SQL Server, planning is 
everything. Even moderately used systems require some degree of management. 
Here's an example of a server initialization script: 
       
/* 
 
Object: INIT_SERVER.SQL 
Description: Server initialization script 
 Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Created: 1990-02-06. Last changed: 1999-07-05. 
 
*/ 
SET NOCOUNT ON 
GO 
USE master 
GO 
 
DECLARE @username sysname, @password sysname, @server sysname 
SET @username='sa'                -- Put the login you want to use here 
SET @password="                   -- Put your password here (be sure this 
                                  -- script is stored in a secure location!) 
SET @server='(local)'             -- Put your server name here 
-- Set template database options 
PRINT 'Setting template database options' 
EXEC master..sp_dboption 'model','auto update statistics',true 
EXEC master..sp_dboption 'model','autoshrink',true 
EXEC master..sp_dboption 'model','select into/bulkcopy',true 
EXEC master..sp_dboption 'model','torn page detection',true 
 
-- Add tempdate data types 
PRINT 'Adding template data types' 
IF EXISTS(SELECT * FROM model..systypes WHERE name = 'd') 
  EXEC model..sp_droptype 'd' 



Guru’s Guide to Transact-SQL 

382 

EXEC model..sp_addtype 'd', 'decimal(10,2)','NULL' 
-- Create backup devices and job steps for every database except tempdb 
PRINT 'Creating backup devices and job steps for every database except tempdb' 
 
DECLARE @rootpath sysname, @execstr varchar(8000), @dbname sysname, @job_id 
uniqueidentifier, @step_id int 
-- Get SQL Server root installation path 
EXEC sp_getSQLregistry @regkey='SQLRootPath', @regvalue=@rootpath OUTPUT, 
@username=@username, @password=@password, @server=@server 
 
-- Delete the operator if it already exists 
IF EXISTS(SELECT * FROM msdb..sysoperators WHERE name = 'Puck Feet') 
  EXEC msdb..sp_delete_operator 'Puck Feet' 
 
-- Add the operator 
PRINT 'Setting up the job operator' 
EXEC msdb..sp_add_operator @name = 'Puck Feet', 
  @enabled = 1, 
  @email_address ='[SMTP:puckfeet@dastard.com]', 
  @pager_address = '8675309@pagerpros.com', 
  @weekday_pager_start_time = 090000, 
  @weekday_pager_end_time = 210000, 
  @pager_days = 127, 
  @netsend_address='NOT_HOCKEY' 
 
-- Delete the job if it already exists 
SELECT @job_id = job_id FROM msdb..sysjobs WHERE name='DailyBackup' 
IF (@job_id IS NOT NULL) BEGIN 
  -- Don't delete if it's a multi-server job 
  IF (EXISTS (SELECT * FROM msdb..sysjobservers WHERE (job_id=@job_id) AND 
(server_id 
  <> 0))) BEGIN 
    RAISERROR ('Unable to create job because there is already a multi-server job 
with 
    the same name.',16,1) 
  END ELSE -- Delete the job 
    EXECUTE msdb..sp_delete_job @job_id=@job_id 
  END 
 
-- Add the backup job 
PRINT 'Adding the backup job' 
EXEC msdb..sp_add_job @job_name = 'DailyBackup', 
  @enabled = 1, 
  @description = 'Daily backup of all databases', 
  @owner_login_name = 'sa', 
  @notify_level_eventlog = 2, 
  @notify_level_netsend = 2, 
  @notify_netsend_operator_name='Puck Feet', 
  @delete_level = 0 
 
-- Schedule the job 
PRINT 'Scheduling the job' 
EXEC msdb..sp_add_jobschedule @job_name = 'DailyBackup', 
  @name = 'ScheduledBackup', 
  @freq_type = 4, -- everyday 
  @freq_interval = 1, 
  @active_start_time = 101600 
DECLARE Databases CURSOR FOR 
  SELECT CATALOG_NAME 
  FROM INFORMATION_SCHEMA.SCHEMATA 
  WHERE CATALOG_NAME <> 'tempdb' -- Omit system DBs 



Chapter 17. Administrative Transact-SQL 

383 

  ORDER BY CATALOG_NAME 
OPEN Databases 
 
FETCH Databases INTO @dbname 
SET @step_id=0 
WHILE (@@FETCH_STATUS=0) BEGIN 
  IF NOT EXISTS(SELECT * FROM master..sysdevices WHERE name = 
  @dbname+'back') BEGIN 
    -- Create the data backup device 
    PRINT 'Adding the data backup device for '+@dbname 
    SET @execstr='EXEC sp_addumpdevice ''disk'', "'+@dbname+'back'+'", 
    "'+@rootpath+'\backup\'+@dbname+'back.dmp"' 
    EXEC(@execstr) 
  END 
 
  -- Add a job step to backup the database 
  PRINT 'Adding the database backup job step for '+@dbname 
  SET @execstr='EXEC msdb..sp_add_jobstep @job_name = ''DailyBackup'', 
  @step_name = "'+'Backup of database: '+@dbname+'", 
  @subsystem = ''TSQL'', 
  @command = ''BACKUP DATABASE '+@dbname+' TO '+@dbname+'back'', 
  @on_success_action=3' 
  EXEC(@execstr) 
  SET @step_id=@step_id+1 
 
  -- Add one to backup its log 
  IF (@dbname<>'master') AND (DATABASEPROPERTY(@dbname,'IsTruncLog')=0) 
  BEGIN 
    IF NOT EXISTS(SELECT * FROM master..sysdevices 
      WHERE name = @dbname+'back') BEGIN 
      -- Create the log backup device 
      PRINT 'Adding the log backup device for '+@dbname 
      SET @execstr='EXEC sp_addumpdevice ''disk'', 
      "'+@dbname+'logback'+'", "' 
      +@rootpath+'\backup\'+@dbname+'logback.dmp"' 
      EXEC(@execstr) 
    END 
 
    PRINT 'Adding the log backup job step for '+@dbname 
    SET @execstr='EXEC msdb..sp_add_jobstep @job_name = ''DailyBackup'', 
      @step_name = "'+'Backup of log for database: '+@dbname+'", 
      @subsystem = ''TSQL'', 
      @command = ''BACKUP LOG '+@dbname+' TO '+@dbname+'logback'', 
      @on_success_action=3' 
      EXEC(@execstr) 
      SET @step_id=@step_id+1 
  END 
 
  FETCH Databases INTO @dbname 
END 
CLOSE Databases 
DEALLOCATE Databases 
-- Set the last job step to quit with success 
EXEC msdb..sp_update_jobstep @job_name='DailyBackup', @step_id=@step_id, 
@on_success_action=1 
 
-- Associate the job with the job server 
EXEC msdb..sp_add_jobserver @job_name='DailyBackup' 
 
PRINT CHAR(13)+'Successfully initialized server' 
 



Guru’s Guide to Transact-SQL 

384 

GO 
 
Setting template database options 
Checkpointing database that was changed. 
 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Checkpointing database that was changed. 
 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Checkpointing database that was changed. 
 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Checkpointing database that was changed. 
 
DBCC execution completed. If DBCC printed error messages, contact your system 
administrator. 
 
Adding template data types 
 
Type has been dropped. 
 
Type added. 
 
Creating backup devices and job steps for every database except tempdb 
 
Setting up the job operator 
 
Adding the backup job 
 
Scheduling the job 
 
Adding the database backup job step for CM 
 
Adding the log backup job step for CM 
 
Adding the database backup job step for master 
 
Adding the database backup job step for model 
 
Adding the database backup job step for msdb 
 
Adding the database backup job step for Northwind 
 
Adding the database backup job step for Northwind2 
 
Adding the database backup job step for PM 
 
Adding the database backup job step for PO 
 
Adding the database backup job step for pubs 
 
Adding the database backup job step for VCDB 
 
Successfully initialized server 
 



Chapter 17. Administrative Transact-SQL 

385 

      
This script does a number of interesting things. First, it sets up the model database, specifying a template set 
of data types and options. These parameters will be used for new databases when they're created. They'll 
also be used for tempdb when it's rebuilt each time the server is cycled. So, for example, you could enable 
select into/bulk copy in model if you want it enabled in tempdb when the server starts. That said, an 
autostart custom procedure is probably a better option because it averts the risk of enabling select/into bulk 
copy by accident in other, newly created databases. 
Next, the script uses sp_getSQLregistry to find SQL Server's installation path, then builds backup devices as 
necessary using this path. It then sets up a SQL Server Agent job to back up each database (and its log, as 
appropriate), along with an operator and a schedule on which to run the job. 
Each SQL Server Agent job is composed of job steps. A simple job might have just one step; more complex 
ones will have many. Here, we add a separate step to back up each database and each database's log. We 
specify a default on_success_action of 3, which tells the Agent to proceed with the next step when a job 
step completes successfully. This doesn't work for the final step of the job since there is no next step. Thus 
the script includes a call to sp_update_jobstep that tells the final job step simply to terminate the job when it 
successfully completes. 
Note the call to sp_add_jobserver. This associates the newly created job with the local job server. Failing to 
do this results in a job that never runs. One would think that simply adding the job via sp_add_job would 
establish this link, but that's not the case. The flexibility here—the separation of jobs from job servers—allows 
you to schedule jobs on other servers, a feature that's quite useful to administrators managing multiserver 
environments. However, the cost of this flexibility is that you must remember to link your job with your job 
server when scheduling jobs via Transact-SQL. This is another good argument for using the GUI tools. You 
don't have to worry about details like this when using Enterprise Manager to schedule jobs—it defaults 
scheduling jobs on the local server. 

sp_readtextfile 

Text files are so ubiquitous in system administration that it's no surprise that DBAs often need to be able to 
access them from SQL Server. Processing the output from operating system commands and SQL Server's 
command-line utilities, perusing the error log, and loading SQL script files are just a few examples of the many 
dealings DBAs commonly have with text files. To that end, below is a procedure that reads a text file and 
returns it as a result set. Using INSERT…EXEC, you can place its output in a table for further processing or 
simply return it as a result set of your own, as the sp_generate_script procedure below demonstrates. Here's 
the source code to sp_readtextfile: 
       
USE master 
IF OBJECT_ID('sp_readtextfile') IS NOT NULL 
  DROP PROC sp_readtextfile 
GO 
CREATE PROC sp_readtextfile @textfilename sysname 
/* 
 
Object: sp_readtextfile 
Description: Reads the contents of a text file into a SQL result set 
 
Usage: sp_readtextfile @textfilename=name of file to read 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 7.0 
 
Example: sp_readtextfile 'D:\MSSQL7\LOGS\errorlog' 
 
Created: 1996-05-01. Last changed: 1999-06-14. 
 
*/ 
AS 
SET NOCOUNT ON 



Guru’s Guide to Transact-SQL 

386 

 
IF (@textfilename='/?') GOTO Help 
 
CREATE TABLE #lines (line varchar(8000)) 
 
EXEC('BULK INSERT #lines FROM "'+@textfilename+'"') 
 
SELECT * FROM #lines 
 
DROP TABLE #lines 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_readtextfile', 
@desc='Reads the contents of a text file into a SQL result set', 
@parameters='@textfilename=name of file to read', 
@author='Ken Henderson', @email='khen@khen.com', 
@version='7',@revision='0', 
@datecreated='19960501', @datelastchanged='19990614', 
@example='sp_readtextfile ''D:\MSSQL7\LOGS\errorlog'' ' 
RETURN -1 
 
EXEC sp_readtextfile 'c:\mssql7\log\errorlog.sav' 
 
      
(Results abridged) 
       
line 
-------------------------------------------------------------------------------- 
1999-07-06 09:10:41.14 kernel  Microsoft SQL Server 7.00 - 7.00.699 (Intel X86) 
  May 21 1999 14:08:18 
  Copyright (c) 1988-1998 Microsoft Corporation 
  Desktop Edition on Windows NT 4.0 (Build 1381: Service Pack 4) 
1999-07-06 09:10:41.25 kernel   Copyright (C) 1988-1997 Microsoft Corporation. 
1999-07-06 09:10:41.25 kernel   All rights reserved. 
1999-07-06 09:10:41.25 kernel   Logging SQL Server messages in file 
                                'd:\MSSQL7\log\ERRORLOG'. 
1999-07-06 09:10:41.56 kernel   initconfig: Number of user connections limited to 
32767. 
1999-07-06 09:10:41.56 kernel   SQL Server is starting at priority class 
'normal'(1 CPU 
                                detected). 
1999-07-06 09:10:41.70 kernel   User Mode Scheduler configured for thread 
processing 
1999-07-06 09:10:43.34 server   Directory Size: 16215 
1999-07-06 09:10:43.45 spid1    Using dynamic lock allocation. [500] Lock Blocks, 
[1000] 
                                Lock Owner Blocks 
1999-07-06 09:10:43.49 spid1    Starting up database 'master'. 
1999-07-06 09:10:43.49 spid1    Opening file d:\MSSQL7\data\master.mdf. 
1999-07-06 09:10:43.73 spid1    Opening file d:\MSSQL7\data\mastlog.ldf. 
1999-07-06 09:10:44.23 spid1    Loading SQL Server's Unicode collation. 
1999-07-06 09:10:44.28 spid1    Loading SQL Server's non-Unicode sort order and 
                                character set. 
1999-07-06 09:10:45.36 spid1    107 transactions rolled forward in database 
'master' (1). 
1999-07-06 09:10:45.37 spid1    0 transactions rolled back in database 'master' 
(1). 
1999-07-06 09:10:51.28 spid1    Recovery complete. 
1999-07-06 09:10:51.28 spid1    SQL Server's Unicode collation is: 
1999-07-06 09:10:51.28 spid1            'English' (ID = 1033). 



Chapter 17. Administrative Transact-SQL 

387 

1999-07-06 09:10:51.28 spid1            comparison style = 196609. 
1999-07-06 09:10:51.28 spid1    SQL Server's non-Unicode sort order is: 
1999-07-06 09:10:51.28 spid1            'nocase_iso' (ID = 52). 
1999-07-06 09:10:51.28 spid1    SQL Server's non-Unicode character set is: 
1999-07-06 09:10:51.28 spid1            'iso_1' (ID = 1). 
 
      
The internal workings of this routine are pretty straightforward. It first loads the file supplied to it into a 
temporary table via BULK INSERT. Next, it issues a SELECT * against the temporary table to return its 
contents as a result set. The end result is that the caller receives the text file as a SQL Server resultset. 

NOTE 

There's a bug in the initial shipping version of SQL 7.0 that prevents sp_readtext from being called 
by routines that use the OLE Automation sp_OAxxxx procedures. Sp_readtext uses the Transact-
SQL BULK INSERT command to load its text file into a temporary table, which it then returns as a 
result set. BULK INSERT is marked as a free threaded OLE provider. With the ODSOLE facility 
(the sp_OAxxxx procedures), COM is initialized using the single-apartment model. When BULK 
INSERT is called by a thread already initialized as a single apartment, the conflict between the two 
models causes the instantiation of the OLE-DB Stream provider to fail—BULK INSERT can't read 
the operating system file that's been passed to it. 

The workaround requires modifying the system registry. Follow these steps to allow BULK INSERT 
to be called from procedures and scripts using the single-apartment COM model: 

1. Run regedit.exe or regedt32.exe. 
2. Drill down into HKEY_CLASSES_ROOT\CLSID\{F3A18EEA-D34B-11d2- 88D7-

00C04F68DC44}\InprocServer32\ThreadingModel. 
3. Replace Free with Both.  

 

Scripting Routines 

A common administrative need is to be able to generate scripts for database objects. DBAs sometimes want 
these for extra backups, for making a duplicate of a database or an object, or for searching for some unusual 
coding technique or object definition. 
Enterprise Manager provides a nice facility for scripting database objects, and it should be your tool of choice 
for doing so. It performs its magic by accessing SQL Server's SQL-DMO (Distributed Management Objects) 
facility, a COM interface that provides server management facilities to applications. Since Transact-SQL 
provides access to COM servers via its ODSOLE facility (the sp_Oaxxx procedures), we can access SQL-
DMO directly from SQL without going through Enterprise Manager. (Refer to Chapter19 for more details on 
this technique.) Here's a procedure that scripts objects directly from Transact-SQL: 
      
USE master 
GO 
IF OBJECT_ID('sp_generate_script') IS NOT NULL 
  DROP PROC sp_generate_script 
GO 
CREATE PROC sp_generate_script 
   @objectname sysname=NULL,  -- Object mask to copy 
   @outputname sysname=NULL,  -- Output file to create (default: 
@objectname+'.SQL') 
   @scriptoptions int=NULL,   -- Options bitmask for Transfer 
   @resultset varchar(3)="YES",     -- Determines whether the script is returned 
as a  
 



Guru’s Guide to Transact-SQL 

388 

result set 
   @server sysname='(local)',       -- Name of the server to connect to 
   @username sysname='sa',          -- Name of the user to connect as (defaults 
to 'sa') 
   @password sysname=NULL           -- User's password 
/* 
 Object: sp_generate_script 
Description: Generates a creation script for an object or collection of objects 
 
Usage: sp_generate_script [@objectname="Object name or mask (defaults to all 
object in  
 

current 
database)"] 
   [,@outputname="Output file name" (Default: @objectname+".SQL", or 
GENERATED_SCRIPT.SQL  
 

for 
   entire database)] 
   [,@scriptoptions=bitmask specifying script generation options] 
   [,@resultset="YES"|"NO" -- determines whether to return the script as a result 
set  
 

(Default: 
   "YES")] 
   [,@server="server name"][, @username="user name"][, @password="password"] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 2.0 
 
Created: 1996-12-01. Last changed: 1999-06-06. 
 
*/ 
AS 
/* SQL-DMO constant variables omitted for brevity. They are included in the CD 
version.*/ 
DECLARE @dbname sysname, 
   @sqlobject int, -- SQL Server object 
   @object int,    -- Work variable for accessing COM objects 
   @hr int,        -- Contains HRESULT returned by COM 
   @tfobject int   -- Stores pointer to Transfer object 
IF (@objectname='/?') GOTO Help 
 
SET @resultset=UPPER(@resultset) 
 
IF (@objectname IS NOT NULL) AND (CHARINDEX('%',@objectname)=0) AND 
(CHARINDEX('_',@objectname)=0) BEGIN 
   SET @dbname=ISNULL(PARSENAME(@objectname,3),DB_NAME()) -- Extract the DB 
   name; default to current 
   SET @objectname=PARSENAME(@objectname,1)     -- Remove extraneous stuff from 
table name 
   IF (@objectname IS NULL) BEGIN 
     RAISERROR('Invalid object name.',16,1) 
     RETURN -1 
   END 
   IF (@outputname IS NULL) 
     SET @outputname=@objectname+'.SQL' 
END ELSE BEGIN 



Chapter 17. Administrative Transact-SQL 

389 

   SET @dbname=DB_NAME() 
   IF (@outputname IS NULL) 
     SET @outputname='GENERATED_SCRIPT.SQL' 
END 
 
-- Create a SQLServer object 
EXEC @hr=sp_OACreate 'SQLDMO.SQLServer', @sqlobject OUTPUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @sqlobject, @hr 
   RETURN 
END 
 
-- Create a Transfer object 
EXEC @hr=sp_OACreate 'SQLDMO.Transfer', @tfobject OUTPUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @tfobject, @hr 
   RETURN 
END 
 
-- Set Transfer's CopyData property 
EXEC @hr = sp_OASetProperty @tfobject, 'CopyData', 0 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @tfobject, @hr 
   RETURN 
END 
 
-- Tell Transfer to copy the schema 
EXEC @hr = sp_OASetProperty @tfobject, 'CopySchema', 1 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @tfobject, @hr 
   RETURN 
END 
IF (@objectname IS NULL) BEGIN -- Get all objects in the database 
 
   -- Tell Transfer to copy all objects 
   EXEC @hr = sp_OASetProperty @tfobject, 'CopyAllObjects', 1 
   IF (@hr <> 0) BEGIN 
     EXEC sp_displayoaerrorinfo @tfobject, @hr 
     RETURN 
   END 
 
   -- Tell Transfer to get groups as well 
   EXEC @hr = sp_OASetProperty @tfobject, 'IncludeGroups', 1 
   IF (@hr <> 0) BEGIN 
     EXEC sp_displayoaerrorinfo @tfobject, @hr 
     RETURN 
   END 
 
   -- Tell it to include users 
   EXEC @hr = sp_OASetProperty @tfobject, 'IncludeUsers', 1 
   IF (@hr <> 0) BEGIN 
     EXEC sp_displayoaerrorinfo @tfobject, @hr 
     RETURN 
   END 
 
   -- Tell it to include logins 
   EXEC @hr = sp_OASetProperty @tfobject, 'IncludeLogins', 1 
   IF (@hr <> 0) BEGIN 
     EXEC sp_displayoaerrorinfo @tfobject, @hr 
     RETURN 
   END 



Guru’s Guide to Transact-SQL 

390 

 
   -- Include object dependencies, too 
   EXEC @hr = sp_OASetProperty @tfobject, 'IncludeDependencies', 1 
   IF (@hr <> 0) BEGIN 
     EXEC sp_displayoaerrorinfo @tfobject, @hr 
     RETURN 
   END 
 
   IF (@scriptoptions IS NULL) 
      SET @scriptoptions=@SQLDMOScript_OwnerQualify | @SQLDMOScript_Default | 
        @SQLDMOScript_Triggers | @SQLDMOScript_Bindings | 
        SQLDMOScript_DatabasePermissions | @SQLDMOScript_Permissions | 
        @SQLDMOScript_ObjectPermissions | @SQLDMOScript_ClusteredIndexes | 
        @SQLDMOScript_Indexes | @SQLDMOScript_Aliases | @SQLDMOScript_DRI_All | 
        @SQLDMOScript_IncludeHeaders 
 
END ELSE BEGIN 
   DECLARE @obname sysname, 
      @obtype varchar(2), 
      @obowner sysname, 
      @OBJECT_TYPES varchar(30), 
      @obcode int 
 
-- Used to translate sysobjects.type into the bitmap that Transfer requires 
SET @OBJECT_TYPES='T     V  U  P     D  R  TR ' 
 
   -- Find all the objects that match the mask and add them to Transfer's 
   -- list of objects to script 
   DECLARE ObjectList CURSOR FOR 
        SELECT name,type,USER_NAME(uid) FROM sysobjects 
        WHERE (name LIKE @objectname) 
   AND (CHARINDEX(type+' ',@OBJECT_TYPES)<>0) 
   AND (OBJECTPROPERTY(id,'IsSystemTable')=0) 
   AND (status>0) 
     UNION ALL  -- Include user-defined data types 
     SELECT name,'T',USER_NAME(uid) 
     FROM SYSTYPES 
     WHERE (usertype & 256)<>0 
     AND (name LIKE @objectname) 
OPEN ObjectList 
 
FETCH ObjectList INTO @obname, @obtype, @obowner WHILE (@@FETCH_STATUS=0) BEGIN 
     SET @obcode=POWER(2,(CHARINDEX(@obtype+' ',@OBJECT_TYPES)/3)) 
 
     EXEC @hr = sp_OAMethod @tfobject, 'AddObjectByName', NULL, @obname, @obcode, 
@obowner 
     IF (@hr <> 0) BEGIN 
       EXEC sp_displayoaerrorinfo @tfobject, @hr 
       RETURN 
     END 
     FETCH ObjectList INTO @obname, @obtype, @obowner END 
   CLOSE ObjectList 
   DEALLOCATE ObjectList 
 
   IF (@scriptoptions IS NULL) 
      -- Keep it simple when not scripting the entire database 
      SET @scriptoptions=@SQLDMOScript_Default 
END 
 
-- Set Transfer's ScriptType property 
EXEC @hr = sp_OASetProperty @tfobject, 'ScriptType', @scriptoptions 



Chapter 17. Administrative Transact-SQL 

391 

IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @tfobject, @hr 
   RETURN 
 
END 
 
-- Connect to the server 
IF (@password IS NOT NULL) AND (@password<>'') 
   EXEC @hr = sp_OAMethod @sqlobject, 'Connect', NULL, @server, @username, 
@password 
ELSE 
    EXEC @hr = sp_OAMethod @sqlobject, 'Connect', NULL, @server, @username 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @sqlobject, @hr 
   RETURN 
END 
 
-- Get a pointer to the SQLServer object's Databases collection 
EXEC @hr = sp_OAGetProperty @sqlobject, 'Databases', @object OUT 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @sqlobject, @hr 
   RETURN 
END 
 
-- Get a pointer from the Databases collection for the specified database 
EXEC @hr = sp_OAMethod @object, 'Item', @object OUT, @dbname 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
PRINT 'Ignore the code displayed below. It's a remnant of the SQL-DMO method used 
to  
 

produce 
the script file' 
 
-- Call the Database object's ScriptTransfer method to create the script 
EXEC @hr = sp_OAMethod @object, 'ScriptTransfer',NULL, @tfobject, 2, @outputname 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
EXEC sp_OADestroy @sqlobject      -- For cleanliness 
EXEC sp_OADestroy @tfobject       -- For cleanliness 
 
IF (@resultset="YES") EXEC sp_readtextfile @outputname 
 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_generate_script',@desc='Generates a creation script 
for an 
object or collection of objects', 
@parameters='[@objectname="Object name or mask (defaults to all object in current 
database)"][,@outputname="Output file name" (Default: @objectname+".SQL", or 
GENERATED_SCRIPT.SQL for entire database)] 
[,@scriptoptions=bitmask specifying script generation options] 
[,@server="server name"][, @username="user name"][, @password="password"]', 
@author='Ken Henderson', @email='khen@khen.com', 



Guru’s Guide to Transact-SQL 

392 

@version='7', @revision='0', 
@datecreated='19980401', @datelastchanged='19990702', 
@example='sp_generate_script @objectname=''authors'', @outputname=''authors.sql'' 
' 
RETURN -1 
 
GO 
 
EXEC sp_generate_script 'authors' 
 
Line 
set quoted_identifier OFF 
GO 
NULL 
CREATE TABLE [authors] ( 
   [au_id] [id] NOT NULL , 
   [au_lname] [varchar] (40) NOT NULL , 
   [au_fname] [varchar] (20) NOT NULL , 
   [phone] [char] (12) NOT NULL CONSTRAINT [DF__authors__phone__09DE7BCC] DEFAULT  
 

('UNKNOWN'), 
   [address] [varchar] (40) NULL , 
   [city] [varchar] (20) NULL , 
   [state] [char] (2) NULL , 
   [zip] [char] (5) NULL , 
   [contract] [bit] NOT NULL , 
   CONSTRAINT [UPKCL_auidind] PRIMARY KEY CLUSTERED 
   ( 
      [au_id] 
   )  ON [PRIMARY] , 
   CHECK (([au_id] like '[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]')), 
   CHECK (([zip] like '[0-9][0-9][0-9][0-9][0-9]')) 
) 
 
     
This code exhibits a number of interesting techniques. Let's go through a few of them. 
The procedure begins by instantiating the DMO SQLServer and Transfer objects. DMO's SQLServer object is 
its root level access path—you use it to connect to the server and to access other objects on the server. The 
Transfer object encapsulates DMO's server-to-server or server-to-file object and data transfer facility. 
Sp_generate_script uses it to generate SQL scripts. 
Once Transfer is created, the procedure determines whether the user wants to script the entire database or 
only selected objects. This distinction is important because DMO lists objects in order of dependency when 
scripting an entire database. If only a subset of the objects in a database is to be scripted, the procedure 
opens a cursor on the sysobjects and systypes tables (via UNION ALL) and calls Transfer's 
AddObjectByName method to set them up for scripting, one by one. 
The procedure next uses the SQLServer object to locate the database housing objects it needs to script. It 
finds this database by accessing the object's Databases collection. DMO objects often expose collections of 
other objects. Items in these collections can be accessed by name or by ordinal index. In the case of 
sp_generate_script, collection items are always accessed by name. 
Once the procedure retrieves a pointer to the correct database, it calls that database's ScriptTransfer method, 
passing it the previously created Transfer object as a parameter. This generates a SQL script containing the 
objects we've specified. 
The final step in the procedure is to return the script as a result set. Usually, the caller will expect to see the 
script immediately. If @resultset 5 "YES" (the default), sp_generate_script calls sp_readtextfile to return the 
newly generated script file to the caller via a result set. A useful variation of this would be to return a cursor 
pointer to the script. 

Summary 



Chapter 17. Administrative Transact-SQL 

393 

Though it was sometimes the only method for getting the job done in earlier releases of SQL Server, the need 
to use Transact-SQL to perform administrative tasks has lessened as the GUI tools have improved. This 
means that you should make using the GUI tools your default mode of operation for managing your servers. 
That said, there may be times when your needs exceed the capabilities of Enterprise Manager and the other 
GUI tools. When that happens, you can use the routines presented in this chapter, along with procedures and 
scripts you write yourself, to fill in the gaps left by the other tools. 





Chapter 18. Full-Text Search 

395 

Chapter 18. Full-Text Search 
While there is certainly an artistic element to engineering, nobody cares what color the bridge 
was that collapsed and killed fifty people.  

—H.W. Kenton 

The ability to search character and text fields is nothing new in the world of SQL databases. For years, 
DBMSs have provided facilities for searching character strings and fields for other strings. However, these 
facilities are usually rudimentary at best. Historically, SQL Server's built-in text searching tools have been of 
the garden-variety type—just beyond ANSI compliance, but nothing to write home about. You could perform 
equality tests using character strings (as with all data types), and you could search for a pattern within a string 
(using LIKE and PATINDEX()), but you couldn't do anything sophisticated such as search by word proximity or 
inflectional usage. 
The recent addition of native full-text indexing support has changed this. Traditionally, database architects 
who wanted advanced text searching had to rely on database gateways, operating system les, and 
technologies external to SQL Server. That's no longer the case. The Microsoft Search service provides the 
functionality of a full-blown text search engine such as Microsoft Index Server (an operating system le-based 
search engine) within the SQL Server environment. It's used to build the meta-data necessary to support full-
text searching and to process full-text search queries. The service itself runs only on Windows NT Server (but 
not in a Windows NT Server Enterprise Edition clustering environment) and can be accessed by SQL Server 
clients on NT Workstation and Windows9x. 
The data maintained by Microsoft Search—the full-text indexes and catalog information it uses to service 
queries—is not stored in regular system tables and can't be accessed directly from SQL Server. It's stored in 
operating system files and is accessible only by the service itself and by NT administrators. You can think of 
Microsoft Search as a textserver in the same way that SQL Server is a SQLor database server—it receives 
queries and instructions related to full-text searching and returns results appropriately. Its one client is SQL 
Server, which is how you access it. 

NOTE 

To install Microsoft Search, make sure the Full-Text Search option is selected in the Select 
Components dialog of the SQL Server installation program (this option is available only on 
Windows NT Server). Once installed, the service must be started and full-text searching must be 
enabled separately at the database, table, and column levels. 

 

Setting up full-text indexes is not a one-step process. With increased flexibility often comes increased 
complexity. The process required to set up a specic table column so that it's available to full-text search 
syntax such as the CONTAINS() predicate and the FREETEXTTABLE() rowset function includes six steps. 
They are as follows: 

1. Full-text indexing must be enabled in the host database. 
2. Full-text catalogs must be created for the database. 
3. Full-text indexing must then be enabled for the host table and associated with a full-text catalog. 
4. The column is then added to the table's full-text index. 
5. This full-text index is then activated. 
6. The full-text catalog must then be populated. This population can be a full or incremental population. 

Of course, the initial population of a full-text index is always a full population. Subsequent populations 
can be incremental if the table contains a timestamp column and if its meta-data hasn't changed 
since the last population. 

As with most SQL Server administrative tasks, the best tool for creating full-text indexes is Enterprise 
Manager. The process required is too tedious to do by hand frequently. That said, this book isn't about 



Guru’s Guide to Transact-SQL 

396 

Enterprise Manager or the GUI tools, so here's some sample code that illustrates how to set up a full-text 
search column using nothing but Transact-SQL (I've numbered the steps in the code to correspond to the list 
above): 
     
USE pubs 
DECLARE @tablename sysname, @catalogname sysname, @indexname sysname, 
@columnname sysname 
 
SET @tablename='pub_info' 
SET @catalogname='pubsCatalog' 
SET @indexname='UPKCL_pubinfo' 
SET @columnname='pr_info' 
 
-- STEP 1: Enable FTS for the database 
EXEC sp_fulltext_database 'enable' 
 
-- STEP 2: Create a full-text catalog 
EXEC sp_fulltext_catalog @catalogname, 'create' 
 
-- STEP 3: Create a full-text index for the table 
EXEC sp_fulltext_table @tablename,'create',@catalogname,@indexname 
 
-- STEP 4: Add the column to it 
EXEC sp_fulltext_column @tablename, @columnname, 'add' 
 
-- STEP 5: Activate the newly created FT index 
EXEC sp_fulltext_table @tablename,'activate' 
 
-- STEP 6: Populate the newly created FT catalog 
EXEC sp_fulltext_catalog @catalogname, 'start_full' 
 
    
This code sets up full-text indexing on the pr_info column in pubs.pub_info. Pr_info is a text column, so it's a 
good candidate for full-text indexing. For simplicity's sake, the routine makes a number of assumptions that 
may not be valid in the real world. For example, it doesn't check to see whether the full-text catalog exists 
before attempting to create it. If the catalog already exists, the statement and the batch will fail. The same is 
true of the full-text index on the pub_info table. Each table can have just one full-text index. Attempting to 
create a second full-text index or recreate an existing one results in an error. The routine serves merely to 
demonstrate the basics of setting up full-text indexing using Transact-SQL. 
Much of the information that we need to check before calling the full-text stored procedures can be accessed 
via meta-data functions. For example, you can use the FULLTEXTCATALOGPROPERTY() function to 
determine whether a given catalog exists (it returns NULL when passed a nonexistent name). You can 
determine whether a table has a full-text index via the OBJECTPROPERTY() function and whether a column 
has been added to a full-text index using the COLUMNPROPERTY() function. Here's a stored procedure that 
makes use of these functions and a few others to set up a column for full-text indexing in a much more reliable 
fashion. It's significantly more robust than the earlier example and much safer to use in the real world: 
     
USE master 
GO 
IF OBJECT_ID('sp_enable_fulltext') IS NOT NULL 
     DROP PROC sp_enable_fulltext 
   Chapter18  Full-Text Search 
GO 
CREATE PROC sp_enable_fulltext @tablename sysname, @columnname sysname=NULL, 
@catalogname  
 

sysname=NULL, @startserver varchar(3)='NO' 
/* 
 
Object: sp_enable_fulltext 
Description: Enables full-text indexing for a specified column 



Chapter 18. Full-Text Search 

397 

 
Usage: sp_enable_fulltext @tablename=name of host table, @columnname=column to 
set up, 
[,@catalogname=name of full-text catalog to use (Default: 
DB_NAME()+"Catalog")][,@startsrever=YES|NO specifies whether to start the 
Microsoft Search service on this machine prior to setting up the column (Default: 
YES)] 
 
Returns: (None) 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Example: EXEC sp_enable_fulltext "pubs..pub_info","pr_info",DEFAULT,"YES" 
 
Created: 1999-06-14. Last changed: 1999-07-14. 
*/ 
AS 
SET NOCOUNT ON 
 
IF (@tablename='/?') OR (@columnname IS NULL) OR (OBJECT_ID(@tablename) IS NULL) 
GOTO Help 
 
IF (FULLTEXTSERVICEPROPERTY('IsFulltextInstalled')=0)  
BEGIN -- Search engine's not installed 
  RAISERROR('The Microsoft Search service is not installed on server  
  %s',16,10,@@SERVERNAME) 
  RETURN -1 
END 
 
DECLARE @catalogstatus int, @indexname sysname 
 
IF (UPPER(@startserver)='YES') 
  EXEC master..xp_cmdshell 'NET START mssearch', no_output 
IF (@catalogname IS NULL) 
  SET @catalogname=DB_NAME()+'Catalog' 
 
CREATE TABLE #indexes (    -- Used to located a unique index for use with FTS 
Qualifier    sysname NULL, 
Owner        sysname NULL, 
TableName    sysname NULL, 
NonUnique    smallint NULL, 
IndexQualifier    sysname NULL, 
IndexName    sysname NULL, 
Type         smallint NULL, 
PositionInIndex   smallint NULL, 
ColumnName   sysname NULL, 
Collation    char(1) NULL, 
Cardinality  int NULL, 
Pages        int NULL, 
FilterCondition   sysname NULL) 
 
INSERT #indexes 
EXEC sp_statistics @tablename 
 
SELECT @indexname=IndexName FROM #indexes WHERE NonUnique=0  -- Get a unique 
index on the  
 

table (gets LAST if multiple) 
 
DROP TABLE #indexes 
 



Guru’s Guide to Transact-SQL 

398 

IF (@indexname IS NULL) BEGIN -- If no unique indexes, abort 
  RAISERROR('No suitable unique index found on table %s',16,10,@tablename) 
  RETURN -1 
END 
IF (DATABASEPROPERTY(DB_NAME(),'IsFulltextEnabled')<>1) -- Enable FTS for the 
database 
  EXEC sp_fulltext_database 'enable' 
 
SET @catalogstatus=FULLTEXTCATALOGPROPERTY(@catalogname,'PopulateStatus') IF  
 

(@catalogstatus IS NULL)                --  Doesn't yet exist 
  EXEC sp_fulltext_catalog @catalogname, 'create' 
ELSE IF (@catalogstatus IN (0,1,3,4,6,7))  -- Population in progress, Throttled, 
Recovering, Incremental Population in Progress or Updating Index 
  EXEC sp_fulltext_catalog @catalogname, 'stop' 
 
IF (OBJECTPROPERTY(OBJECT_ID(@tablename), 'TableHasActiveFullTextIndex')=0) - 
Create 
full text index if not already present 
  EXEC sp_fulltext_table @tablename,'create',@catalogname,@indexname 
ELSE 
  EXEC sp_fulltext_table @tablename,'deactivate' -- Deactivate it so we can make 
changes to it 
 
IF (COLUMNPROPERTY(OBJECT_ID(@tablename),@columnname,'IsFulltextIndexed')=0) 
BEGIN - 
Add the column to the index 
  EXEC sp_fulltext_column @tablename, @columnname, 'add' 
  PRINT 'Successfully added a fulltext index for '+@tablename+'.'+@columnname+' 
in 
   database '+DB_NAME() 
END ELSE 
  PRINT 'Column '+@columnname+' in table '+DB_NAME()+'.'+@tablename+' is already 
full- 
  text indexed' 
 
EXEC sp_fulltext_table @tablename,'activate' 
 
EXEC sp_fulltext_catalog @catalogname, 'start_full' 
RETURN 0 
 
Help: 
EXEC sp_usage @objectname='sp_enable_fulltext',@desc='Enables full-text indexing 
for a 
specified column', 
@parameters='@tablename=name of host table, @columnname=column to set up, 
[,@catalogname=name of full-text catalog to use (Default: 
DB_NAME()+"Catalog")][,@startsrever=YES|NO specifies whether to start the 
Microsoft Search service on this machine prior to setting up the column (Default: 
YES)]', 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19990614',@datelastchanged='19990714', 
@example='EXEC sp_enable_fulltext "pubs..pub_info","pr_info",DEFAULT,"YES"' 
RETURN -1 
 
sp_enable_fulltext 'pub_info','pr_info' 
 
Successfully added a fulltext index for pub_info.pr_info in database pubs 
 
    



Chapter 18. Full-Text Search 

399 

This procedure does a number of interesting things. It begins by checking to see whether the Microsoft 
Search service has been installed. If it hasn't, the procedure aborts immediately. Next, it uses xp_cmdshell to 
start the Microsoft Search service if asked to do so (the command has no effect if the service is already 
running). This is done via the NET START mssearch operating system command. NET START is the 
Windows NT command syntax for starting a service, and mssearch is the internal name of the Microsoft 
Search service. (You can also start the server via Enterprise Manager, the Services applet in the Windows NT 
Control Panel, and the SQL Server Services Manager.) 
The procedure next retrieves a unique key table index for the specified table. Adding a full-text index to a table 
requires a unique key index. Here, the procedure traps the output of sp_statistics (which lists a table's indexes) 
in a temporary table via INSERT...EXEC and then scans that table for a unique index on the table. If it doesn't 
find one, it aborts immediately. 
Next, the procedure checks to see whether the database is enabled for full-text indexing. If not, it enables it. 
The code next checks the status of the full-text catalog. If it's nonexistent, the routine creates it. If it's active, it 
shuts the catalog down so that changes can be made to it. This is step2 in the list above. 
Once the full-text catalog is in place, the routine creates a full-text index for the table after checking with 
OBJECTPROPERTY() to ensure that a full-text index doesn't already exist. This is where the unique index 
that the routine located earlier is used. 
After the full-text index has been set up, the routine adds the specified column to it. The procedure takes the 
name of the column that was passed into it and adds it to the table's full-text index using sp_fulltext_column. 
This tells the server that you want to build an index to track advanced search info for the specified column but 
doesn't actually activate the index or populate it with data. That comes next. 
The routine finishes up by calling sp_fulltext_table and sp_fulltext_catalog to activate the new full-text index 
and populate it with data. Once these processes complete, you're ready to begin using full-text predicates and 
rowset functions in your code. 

Full-Text Predicates 

A predicate is a logical construct that returns True or Not True (I'll avoid False here because of the issues 
related to three-value logic). In SQL, these usually take the form of functions and reside in the WHERE clause. 
LIKE and EXISTS are examples of WHERE clause predicates. 
When full-text searching is enabled, two additional predicates are available in Transact-SQL: CONTAINS() 
and FREETEXT(). CONTAINS() provides support for both exact and inexact string matches, word proximity–
based searches, word inflection searches, and weighted searches. FREETEXT(), by contrast, is used to find 
words or phrases with the same basic meaning as those in the search term. 
Before we begin exploring these functions via code, let's enable full-text searching on the Employees table in 
the Northwind database. Employees includes a Notes text column that's ideal for full-text searching. You can 
use the sp_enable_fulltext procedure you just created to set it up, like so: 
     
EXEC northwind..sp_enable_fulltext 'Employees','notes' 
 
    
This should create the necessary meta-data and indexing information to allow the full-text search functions to 
work properly. 

The CONTAINS() Predicate 

CONTAINS() locates rows that contain a word or words or variations of them. It can perform exact and inexact 
word locations, word proximity searches, and inflectional searches. You can think of it as the LIKE predicate 
on steroids. Here's an example that uses CONTAINS() to find all the people in the Employees table whose 
Notes fields mention the word "English:"  
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(Notes,'English') 
 
     
(Results abridged) 
      
LastName  FirstName Notes 



Guru’s Guide to Transact-SQL 

400 

----------------- --------- ----------------------------------------------- 
Peacock     Margaret     Margaret holds a BA in English literature from 
Dodsworth     Anne     Anne has a BA degree in English from St.  
King     Robert     ...completing his degree in English 
 
     
Note that since we're searching all the full-text index columns in Employees (there's only one), we could have 
substituted "*" for the column name and achieved the same result, like this: 
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(*,'English') 
 
     
CONTAINS() supports word proximity searches, as well. Here's a refinement of the last example that narrows 
the employees listed to those whose Notes field contains the word "degree" located near the word "English:"  
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(*,'degree NEAR English') 
 
     
(Results abridged) 
      
LastName          FirstName Notes 
----------------- --------- ----------------------------------------------- 
Dodsworth         Anne      Anne has a BA degree in English from St.  
King              Robert    ...completing his degree in English 
 
     
This time, only two rows are listed because Margaret Peacock's Notes field doesn't contain the word "degree" 
at all. Note that the tilde character ("~") is synonymous with NEAR, so you rewrite the previous example like 
this: 
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(*,'degree ~ English') 
 
     
The search condition string also supports Boolean expressions and wildcards. Here are some examples: 
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(Notes,'English OR German') 
 
     
(Results abridged) 
      
LastName          FirstName Notes 
----------------- --------- --------- ----------------------------------------- 
Peacock           Margaret  Margaret holds a BA in English literature from 
Dodsworth         Anne      Anne has a BA degree in English from St. 
Fuller            Andrew   ...and reads German 
King              Robert   ...completing his degree in English 
 
     
This query returns the rows containing the words "English" and "German." The exact or relative positions of 
the words are unimportant— if either of the words appears anywhere in the Notes column, the row is returned. 
In this use, CONTAINS() behaves similarly to LIKE, but there's one important difference— CONTAINS() is 
sensitive to word boundaries; LIKE isn't. For example, here's the query rewritten to use LIKE: 
      



Chapter 18. Full-Text Search 

401 

SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE Notes LIKE '%English%' 
OR Notes LIKE '%German%' 
 
     
It looks similar, but this query doesn't really ask the same question as the CONTAINS() query. It will find 
matches with variations of the search words and even with words that happen to contain them (e.g., 
Germantown, Englishman, Germanic, Burgerman). The CONTAINS() query, by contrast, is word-savvy—it 
knows the difference between English and Englishman and is smart enough to return only what you ask for. 
CONTAINS() also supports prex-based wildcards. Unfortunately, they're more like operating system wildcards 
than standard SQL wildcards. Here's an example: 
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(*,'"psy*" OR "chem*"') 
 
     
(Result abridged) 
      
LastName          FirstName Notes 
----------------- --------- -------------------------------------------------- 
Leverling         Janet     Janet has a BS degree in chemistry from Boston 
Davolio           Nancy     Education includes a BA in psychology from 
Callahan          Laura     Laura received a BA in psychology from the 
 
     
This query locates all rows with Notes fields containing words that begin with "psy" or "chem." Note that suffix-
based wildcards and single-character wildcards aren't supported. 
Quotes are used within the condition string to delineate search strings from one another. When wildcards and 
multiple terms are present in the search criteria string, quotes are required, and omitting them will cause the 
query to fail. 
A really powerful aspect of CONTAINS() is its support for inflectional searches. The ability to search based on 
word forms is a potent and often very useful addition to the Transact-SQL repertoire. Here's an example that 
illustrates how to search for the forms of a word: 
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE CONTAINS(*,'FORMSOF(INFLECTIONAL,complete)') 
 
     
(Results abridged) 
      
LastName          FirstName Notes 
----------------- --------- ------------------------------------------------ 
Leverling         Janet     ...completed a certificate program in food 
Davolio           Nancy     ...She also completed "The Art of the Cold 
King              Robert     ...completing his degree in English at the 
Buchanan          Steven     ...has completed the courses 
Callahan          Laura     ...completed a course in business French. 
 
     
You can use the FORMSOF() clause to locate the difference tenses of a verb, as well as the singular and 
plural forms of a noun. In this case, the code finds five rows that contain forms of the word "complete" 
including "completed" and "completing."  

The FREETEXT() Predicate 

FREETEXT() is useful for locating rows containing words that have the same basic meaning as those in a 
search string. Unlike CONTAINS(), FREETEXT() allows you to specify a series of terms that are then 



Guru’s Guide to Transact-SQL 

402 

weighted internally and matched with values in the full-text column(s). Here's an example that locates 
employees with college degrees, especially bachelor's degrees: 
      
SELECT LastName, FirstName, Notes 
FROM EMPLOYEES 
WHERE FREETEXT(Notes,'BA BTS BS BSC degree') 
 
     
(Results abridged) 
      
LastName          FirstName Notes 
----------------- --------- -------------------------------------------------- 
Leverling         Janet     Janet has a BS degree in chemistry from Boston 
Davolio           Nancy     Education includes a BA in psychology 
Peacock           Margaret  Margaret holds a BA in English literature from 
Dodsworth         Anne      Anne has a BA degree in English from St. 
Fuller            Andrew    Andrew received his BTS commercial in 1974 and 
King              Robert    Robert King [completed] his degree in English at 
Buchanan          Steven    Steven Buchanan graduated with a BSC degree in 
Callahan          Laura     Laura received a BA in psychology from the 
 
     
Here, any row containing any of the terms or similar words are returned. As with CONTAINS(), "*" is used to 
signify all full-text indexed columns in the table. 

Rowset Functions 

Transact-SQL defines a special class of functions called rowset functions that can be used in place of tables 
in the FROM clauses of queries. Rowset functions return result sets in a fashion similar to a derived table and 
can be joined with real tables, summarized, grouped, and so on. There are two rowset functions related to full-
text searching: CONTAINSTABLE() and FREETEXTTABLE(). These are rowset versions of the predicates 
discussed earlier in the chapter. Rather than being used in the WHERE clause, these functions typically 
appear in the FROM clause of a SELECT statement. They return a result set consisting of index key values 
and row rankings. 

The CONTAINSTABLE() Rowset Function 

In addition to the fact that it's a rowset function rather than a predicate, the CONTAINSTABLE() function 
works similarly to CONTAINS(), as its name would suggest. It supports exactly the same search string criteria 
as CONTAINS() and requires one parameter—the name of the underlying table—in addition to those required 
by the predicate. Here's an example that uses CONTAINSTABLE() to produce a list of key values and search 
rankings: 
      
SELECT * 
FROM CONTAINSTABLE(Employees,*,'English OR French OR Italian OR German OR 
Flemish') 
ORDER BY RANK DESC 
 
KEY        RANK 
---------- ---------- 
8          64 
2          64 
4          48 
7          48 
9          48 
6          32 
5          32 
 
     



Chapter 18. Full-Text Search 

403 

CONTAINSTABLE() returns two columns: the key value of the row from the underlying table and a ranking of 
each row. In this example, we use the RANK column to sequence the rows logically such that higher rankings 
are listed rst. The key value can be used to join back to the original table in order to translate the key into 
something a bit more meaningful, as you'll see in a moment. 
The rankings returned by the RANK column can be tailored to your needs using the ISABOUT() function of 
the search criteria string. Here's an example: 
      
SELECT * 
FROM CONTAINSTABLE(Employees,*,'ISABOUT(English weight(0.8), French weight(0.1), 
Italian weight(0.2), German weight(0.4), Flemish weight(0.0))') 
ORDER BY RANK DESC 
KEY RANK 
---------- ---------- 
9       85 
2       54 
4       47 
7       47 
8       7 
6       3 
5       3 
 
     
In this example, weights are assigned for each language skill specifically indicated by an employee's Notes 
entry, ranging from zero for Flemish to 0.8 for English. Valid weights range from 0.0 to1.0. As in the previous 
example, we use the RANK column to sequence the rows such that higher rankings are listed rst. ISABOUT() 
is also available with the CONTAINS() predicate but has no effect since its only purpose is to alter the RANK 
column that is not used by the predicate. 
To generate results that are truly meaningful, you need to join the result set returned by CONTAINSTABLE() 
with its underlying table. The key values and rankings returned by the function itself aren't terribly useful 
without some correlation to the original data. Here's an example: 
      
SELECT R.RANK, E.LastName, E.FirstName, E.Notes 
FROM Employees AS E JOIN 
CONTAINSTABLE(Employees,*,'ISABOUT(English weight(0.8), French weight(0.1), 
Italian weight(0.2), German weight(0.4), Flemish weight(0.0))') AS R ON  
 

(E.EmployeeId=R.[KEY])  
ORDER BY R.RANK DESC 
 
     
(Results abridged) 
      
RANK    LastName        FirstName       Notes 
------- --------------- --------------- -----------------------------------------
---- 
85      Dodsworth       Anne            ...is fluent in French and German. 
54      Fuller          Andrew          ...fluent in French and Italian and reads 
                                        German 
47      Peacock         Margaret        Margaret holds a BA in English literature 
47      King            Robert          ...before completing his degree in 
English 
7       Callahan        Laura           ...reads and writes French 
3       Suyama          Michael         ...can read and write French, Portuguese, 
and 
3       Buchanan        Steven          ...is fluent in French 
 
     
A simple inner join using the Employee table's EmployeeID column and the KEY column from the 
CONTAINSTABLE() function is all that's required to link the two tables. KEY contains the value of the 
EmployeeID column in the rows returned by CONTAINSTABLE(), so this makes sense. 



Guru’s Guide to Transact-SQL 

404 

As with the earlier examples, this query sequences its result set using the RANK column returned by 
CONTAINSTABLE(). Note the use of brackets ("[]") around the reference to the KEY column returned by 
CONTAINSTABLE(). Inexplicably, SQL Server uses KEY as a column name for CONTAINSTABLE(), even 
though it's a reserved word. This necessitates surrounding it with brackets (or double quotes if the 
QUOTED_IDENTIFIER setting is enabled) any time you reference it directly. 
To see the effect of the rank weighting, let's revise the query to use the default ranking returned by Microsoft 
Search: 
      
SELECT R.RANK, E.LastName, E.FirstName, E.Notes 
FROM Employees AS E JOIN 
CONTAINSTABLE(Employees,*,'English OR French OR Italian OR German OR Flemish') AS 
R ON 
 (E.EmployeeId=R.[KEY])  
ORDER BY R.RANK DESC 
 
     
(Results abridged) 
      
RANK    LastName        FirstName       Notes 
------- --------------- --------------- -----------------------------------------
------- 
64      Fuller          Andrew          ...fluent in French and Italian and reads 
                                        German 
64      Callahan        Laura           ...reads and writes French 
48      Peacock         Margaret        Margaret holds a BA in English literature 
48      King            Robert          ...before completing his degree in 
English 
48      Dodsworth       Anne            ...is fluent in French and German. 
32      Suyama          Michael         ...can read and write French, Portuguese, 
and 
32      Buchanan        Steven          ...is fluent in French 
 
     
As you can see, the custom weighting we supplied makes a huge difference. It completely changes the order 
in which the rows are listed. 

The FREETEXTTABLE() Rowset Function 

As with its predicate cousin, FREETEXTTABLE() locates rows containing words with the same basic meaning 
as those specified in the search criteria. The format of its search criteria string is open-ended ("free") and has 
no specic syntax. The search engine extracts each word from the string and assigns it a weight and locates 
rows accordingly. Here's the earlier example that locates employees with bachelor's degrees rewritten to use 
FREETEXTTABLE(): 
      
SELECT R.RANK, E.LastName, E.FirstName, E.Notes 
FROM Employees AS E JOIN 
FREETEXTTABLE(Employees,*,'BA BTS BS BCS degree') AS R ON (E.EmployeeId=R.[KEY]) 
ORDER BY R.RANK DESC 
RANK    LastName        FirstName       Notes 
------- --------------- --------------- ----------------------------------- 
24      Leverling       Janet           Janet has a BS degree in chemistry 
10      Fuller          Andrew          Andrew received his BTS commercial 
16      Dodsworth       Anne            Anne has a BA degree in English 
from 8  Peacock         Margaret        Margaret holds a BA in English 
8       Callahan        Laura           Laura received a BA in psychology 
8       Davolio         Nancy           Education includes a BA in 
8       King            Robert          Robert King completing his degree 
in 8    Buchanan        Steven          with a BSC degree in 1976. Upon 
 
     



Chapter 18. Full-Text Search 

405 

With such a broad criteria string, the query returns all but one row in the Employees table. Each of these has 
some form of one of the words listed in the search criteria string. 

Summary 

SQL Server's full-text searching facility is a potent tool that provides most of the functionality of stand-alone le-
based search engines. Enabling columns for text searching is nontrivial, and you should use Enterprise 
Manager or the sp_enable_fulltext stored procedure (included in this chapter) to set them up. Once a column 
has been set up for full-text searches, the CONTAINS() and FREETEXT() predicates, as well as the 
CONTAINSTABLE() and FREETEXTTABLE() rowset functions, become available for use with it. They offer a 
powerful alternative to commonplace search implements such as LIKE and PATINDEX(). 





Chapter 19. Ole Automation 

407 

Chapter 19. Ole Automation 
The paperless office is about as likely as the paperless bathroom.  

—Joe Celko 

SQL Server provides a set of stored procedures whose purpose is to work with automation (formerly known as 
OLE automation) objects. Automation provides a language-independent means of controlling and using 
objects exposed by other programs. For example, you can use automation to instruct Word to spell check a 
document or Excel to compute a formula. A good number of programs and tools expose pieces of themselves 
to the outside world through automation objects. If you have access to an automation controller, you can 
make use of those objects to manipulate the host application. Fortunately, you do have access to such a 
controller— SQL Server's ODSOLE facility, which is exposed via a set of system procedures that you can call 
from Transact-SQL. 
The Transact-SQL stored procedures that relate to automation are named using the convention 
sp_OAFunction where Function indicates what the procedure does (e.g., sp_OACreate instantiates 
automation objects, sp_OAMethod calls an automation method, sp_OAGetProperty and sp_OASetProperty 
get and set properties). This facility adds a considerable amount of power to the Transact-SQL language. 
Anything you can get at via an automation interface, you can manipulate with Transact-SQL. 
To illustrate how this works, I'll show you a stored procedure that uses automation to fill a gap in the Transact-
SQL arsenal. You may recall that Transact-SQL has a BULK INSERT command. Its purpose is to bulk load an 
operating system file via SQL Server's bulk copy interface. Unfortunately, there's no reciprocating syntax for 
exporting data. You'd think they would have provided a BULK EXPORT command for exporting data to 
operating system files, but that's not the case. Of course, there are a number of ways around this that don't 
involve Transact-SQL. For example, you could use the bcp.exe command-line utility to perform data exports. 
You could build an automation controller using a traditional development tool such as Visual Basic or Delphi. 
You could even use Enterprise Manager to perform your exports. But none of these alternatives would be 
nearly as much fun as exporting data directly from Transact-SQL vis-à-vis BULK INSERT. 
The examples that follow will illustrate how to use the automation stored procedures to automate objects 
exposed by the server itself—the Distributed Management Objects (SQL-DMO). These objects provide much 
of Enterprise Manager's underlying functionality and are a handy way of managing the server via program 
code. Note that you aren't limited to accessing automation objects exposed by SQL Server—you can 
manipulate automation objects exposed by any application—Access, Visio, Visual C++,etc. 

sp-exporttable 

Given that SQL Server provides a robust automation interface to the bulk copy facility in SQL-DMO, we can 
build Transact-SQL code that performs bulk exports using Transact-SQL and the automation procedures 
mentioned above. Here's a script that builds a stored procedure to do just that: 
     
USE master 
GO 
IF (OBJECT_ID('sp_exporttable') IS NOT NULL) 
  DROP PROC sp_exporttable 
GO 
CREATE PROC sp_exporttable 
   @table varchar(128),            -- Table to export 
   @outputpath varchar(128)=NULL,  -- Output directory, terminate with a "\" 
   @outputname varchar(128)=NULL   -- Output filename (default @table+'.BCP') 
   @server varchar(128)='(local)', -- Name of the server to connect to 
   @username varchar(128)='sa',    -- User name to use (defaults to 'sa') 
 @password varchar(128)=NULL       -- User's password 
/* 
Object: sp_exporttable 
Description: Exports a table in a manner similar to BULK INSERT 
 
Usage: sp_exporttable 
   @table varchar(128),            -- Table to export 



Guru’s Guide to Transact-SQL 

408 

   @outputpath varchar(128)=NULL,  -- Output directory, terminate with a '\' 
   @outputname varchar(128)=NULL,  -- Output filename (default @table+'.BCP') 
   @server varchar(128)='(local)', -- Name of the server to connect to 
   @username varchar(128)='sa',    -- User name to use (defaults to 'sa') 
   @password varchar(128)=NULL     -- User's password 
 
Returns: Number of rows exported 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Example: EXEC sp_exporttable "authors" 
 
Created: 1999-06-14. Last changed: 1999-07-14. 
*/ 
AS 
IF (@table='/?') OR (@outputpath IS NULL) GOTO Help 
DECLARE @object int,      -- Work variable for instantiating automation objects 
   @hr int,               -- Contains HRESULT returned by automation 
   @bcobject int,         -- Stores pointer to BulkCopy object 
   @TAB_DELIMITED int,    -- Will store a constant for tab-delimited output 
   @logname varchar(128), -- Name of the log file 
   @errname varchar(128), -- Name of the error file 
   @dbname varchar(128),  -- Name of the database 
   @rowsexported int      -- Number of rows exported 
SET @TAB_DELIMITED=2                             -- SQL-DMO constant for tab-
delimited 
                                                    exports 
SET @dbname=ISNULL(PARSENAME(@table,3),DB_NAME()) -- Extract the DB name; default 
to  
 

current 
SET @table=PARSENAME(@table,1)                    -- Remove extraneous stuff from 
table  
 

name 
IF (@table IS NULL) BEGIN 
   RAISERROR('Invalid table name.',16,1) 
   GOTO Help 
END 
IF (RIGHT(@outputpath,1)<>'\') 
   SET @outputpath=@outputpath+'\'     -- Append a "\" if necessary 
SET @logname=@outputpath+@table+'.LOG' -- Construct the log file name 
SET @errname=@outputpath+@table+'.ERR' -- Construct the error file name 
 
IF (@outputname IS NULL)     -- Construct the output name based on export table 
   SET @outputname=@outputpath+@table+'.BCP' 
ELSE 
   IF (CHARINDEX('\',@outputname)=0) 
     SET @outputname=@outputpath+@outputname 
 
-- Create a SQLServer object 
EXEC @hr=sp_OACreate 'SQLDMO.SQLServer', @object OUTPUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Create a BulkCopy object 
EXEC @hr=sp_OACreate 'SQLDMO.BulkCopy', @bcobject OUTPUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 



Chapter 19. Ole Automation 

409 

   RETURN 
END 
 
-- Set BulkCopy's DataFilePath property to the output file name 
EXEC @hr = sp_OASetProperty @bcobject, 'DataFilePath', @outputname 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Tell BulkCopy to create tab-delimited files 
EXEC @hr = sp_OASetProperty @bcobject, 'DataFileType', @TAB_DELIMITED 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Set BulkCopy's LogFilePath property to the log file name 
EXEC @hr = sp_OASetProperty @bcobject, 'LogFilePath', @logname 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Set BulkCopy's ErrorFilePath property to the error file name 
EXEC @hr = sp_OASetProperty @bcobject, 'ErrorFilePath', @errname 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Connect to the server 
IF (@password IS NOT NULL) 
   EXEC @hr = sp_OAMethod @object, 'Connect', NULL, @server, @username,@password 
ELSE 
   EXEC @hr = sp_OAMethod @object, 'Connect', NULL, @server, @username 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer to the SQLServer object's Databases collection 
EXEC @hr = sp_OAGetProperty @object, 'Databases', @object OUT 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer from the Databases collection for the specified database 
EXEC @hr = sp_OAMethod @object, 'Item', @object OUT, @dbname 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer from the Database object's Tables collection for the table 
IF (OBJECTPROPERTY(OBJECT_ID(@table),'IsTable')=1) BEGIN 
   EXEC @hr = sp_OAMethod @object, 'Tables', @object OUT, @table 
   IF @hr <> 0 BEGIN 
      EXEC sp_displayoaerrorinfo @object, @hr 
      RETURN 



Guru’s Guide to Transact-SQL 

410 

   END 
END ELSE 
IF (OBJECTPROPERTY(OBJECT_ID(@table),'IsView')=1) BEGIN 
   EXEC @hr = sp_OAMethod @object, 'Views', @object OUT, @table 
   IF @hr <> 0 BEGIN 
      EXEC sp_displayoaerrorinfo @object, @hr 
      RETURN 
   END 
END ELSE BEGIN 
   RAISERROR('Source object must be either a table or view.',16,1) 
   RETURN -1 
END 
 
-- Call the object's ExportData method to export the table/view using BulkCopy 
EXEC @hr = sp_OAMethod @object, 'ExportData', @rowsexported OUT, @bcobject 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
RETURN @rowsexported 
 
Help: 
 
EXEC sp_usage @objectname='sp_exporttable', 
@desc='Exports a table in a manner similar to BULK INSERT', 
@parameters=" 
   @table varchar(128),            -- Table to export 
   @outputpath varchar(128)=NULL,  -- Output directory, terminate with a '\' 
   @outputname varchar(128)=NULL,  -- Output filename (default @table+'.BCP') 
   @server varchar(128)='(local)', -- Name of the server to connect to 
   @username varchar(128)='sa',    -- User name to use (defaults to 'sa') 
   @password varchar(128)=NULL     -- User's password 
", 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19990614',@datelastchanged='19990714', 
@example='EXEC sp_exporttable "authors", "C:\TEMP\"', 
@returns='Number of rows exported' 
RETURN -1 
GO 
 
    
Follow the comments in the source code to see how the procedure works—it's fairly straightforward. Once the 
procedure is created, you can run it using this syntax: 
     
DECLARE @rc int 
EXEC @rc=pubs..sp_exporttable @table='pubs..authors',@outputpath='d:\_temp\bcp\' 
SELECT RowsExported=@rc 
 
RowsExported 
------------ 
23 
 
    
Note the use of the "pubs.." prefix when calling the stored procedure. The stored procedure makes use of the 
OBJECTPROPERTY() function, which does not work across databases. Therefore, for the procedure to work 
correctly with objects in other databases, you need to change the current database context temporarily to 
match the one passed in via @table. As mentioned elsewhere in this book, prefixing a system procedure call 
with a database name temporarily changes the database context. It's the functional equivalent of: 
     
USE pubs 



Chapter 19. Ole Automation 

411 

GO 
EXEC @rc=sp_exporttable @table='pubs..authors', @outputpath='d:\_temp\bcp\' 
GO 
USE master -- or some other database 
GO 
 
    
Also note the use of the sp_displayoaerrorinfo system procedure. This procedure isn't created by default, but 
you can find the source to it in the Books Online. It relies on sp_hexadecimal, which is also available in the 
Books Online. See the topic "OLE Automation Return Codes and Error Information" under the 
sp_OAGetErrorInfo stored procedure in the Books Online for the source code to both procedures. 
The tasks the procedure must accomplish are as follows: 

1. Create a SQLServer object and log into the server. All communication with the server via SQL-DMO 
happens through this connection. 

2. Create a BulkCopy object and set its properties to reflect the type of bulk copy operation we want to 
perform. We'll call the Table object's ExportData method to do the actual data export, but it requires a 
BulkCopy object in order to perform the operation. 

3. Locate the source database by extracting its name from @table and looking it up in the SQLServer 
object's Databases collection. 

4. Locate the source table/view by looking it up in the Database object's Tables or Views collection. 
5. Call the object's ExportData method, passing it the BulkCopy object that was previously created. 
6. Return an integer indicating the number of rows exported. Return 21 in case of an error. 

Using automation, the procedure is able to perform all these tasks with relative ease. The amount of Transact-
SQL code required to do this is no more than that required by a comparable Delphi or Visual Basic program. 

sp-importtable 

Even though Transact-SQL provides the BULK INSERT command for bulk loading data, for completeness, 
here's the bulk load counterpart to sp_exporttable: 
     
USE master 
GO 
IF (OBJECT_ID('sp_importtable') IS NOT NULL) 
   DROP PROC sp_importtable 
GO 
CREATE PROC sp_importtable 
   @table varchar(128),            -- Table to import 
   @inputpath varchar(128)=NULL,   -- input directory, terminate with a "\" 
   @inputname varchar(128)=NULL,   -- input filename (defaults to @table+'.BCP') 
   @server varchar(128)='(local)', -- Name of the server to connect to 
   @username varchar(128)='sa',    -- Name of the user to connect as (defaults to 
'sa') 
   @password varchar(128)=NULL     -- User's password 
/* 
Object: sp_importtable 
Description: Imports a table similarly to BULK INSERT 
 
Usage: sp_importtable 
   @table varchar(128),            -- Table to import 
   @inputpath varchar(128)=NULL,   -- input directory, terminate with a '\' 
   @inputname varchar(128)=NULL,   -- input filename (defaults to @table+'.BCP') 
   @server varchar(128)='(local)', -- Name of the server to connect to 
   @username varchar(128)='sa',    -- Name of the user to connect as (defaults to 
'sa') 
   @password varchar(128)=NULL     -- User's password 
 
Returns: Number of rows imported 



Guru’s Guide to Transact-SQL 

412 

 
Created by: Ken Henderson. Email: khen@khen.com 
 
Example: EXEC importtable "authors", "C:\TEMP\" 
 
Created: 1999-06-14. Last changed: 1999-07-14. 
*/ 
AS 
IF (@table='/?') OR (@inputpath IS NULL) GOTO Help 
DECLARE @object int,      -- Work variable for instantiating automation objects 
   @hr int,               -- Contains HRESULT returned by automation 
   @bcobject int,         -- Stores pointer to BulkCopy object 
   @TAB_DELIMITED int,    -- Will store a constant for tab-delimited input 
   @logname varchar(128), -- Name of the log file 
   @errname varchar(128), -- Name of the error file 
   @dbname varchar(128),  -- Name of the database 
   @rowsimported int      -- Number of rows imported 
 
SET @TAB_DELIMITED=2                                  -- SQL-DMO constant for  
 

tab-delimited imports 
SET @dbname=ISNULL(PARSENAME(@table,3),DB_NAME())     -- Extract the DB name; 
default to  
 

current 
SET @table=PARSENAME(@table,1)                        -- Remove extraneous stuff 
from  
 

table name 
IF (@table IS NULL) BEGIN 
   RAISERROR('Invalid table name.',16,1) 
   RETURN -1 
END 
IF (RIGHT(@inputpath,1)<>'\') 
   SET @inputpath=@inputpath+'\'          -- Append a "\" if necessary 
SET @logname=@inputpath+@table+'.LOG'     -- Construct the log file name 
SET @errname=@inputpath+@table+'.ERR'     -- Construct the error file name 
 
IF (@inputname IS NULL) 
   SET @inputname=@inputpath+@table+'.BCP' -- Construct the input name based on 
import  
 

table 
ELSE 
   SET @inputname=@inputpath+@inputname    -- Prefix source path 
 
-- Create a SQLServer object 
EXEC @hr=sp_OACreate 'SQLDMO.SQLServer', @object OUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
-- Create a BulkCopy object 
EXEC @hr=sp_OACreate 'SQLDMO.BulkCopy', @bcobject OUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Set BulkCopy's DataFilePath property to the input file name 
EXEC @hr = sp_OASetProperty @bcobject, 'DataFilePath', @inputname 



Chapter 19. Ole Automation 

413 

IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Tell BulkCopy to create tab-delimited files 
EXEC @hr = sp_OASetProperty @bcobject, 'DataFileType', @TAB_DELIMITED 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Set BulkCopy's LogFilePath property to the log file name 
EXEC @hr = sp_OASetProperty @bcobject, 'LogFilePath', @logname 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Set BulkCopy's ErrorFilePath property to the error file name 
EXEC @hr = sp_OASetProperty @bcobject, 'ErrorFilePath', @errname 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Set BulkCopy's UseServerSideBCP property to true 
EXEC @hr = sp_OASetProperty @bcobject, 'UseServerSideBCP', 1 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @bcobject, @hr 
   RETURN 
END 
 
-- Connect to the server 
IF (@password IS NOT NULL) 
EXEC @hr = sp_OAMethod @object, 'Connect', NULL, @server, @username, @password 
ELSE 
   EXEC @hr = sp_OAMethod @object, 'Connect', NULL, @server, @username 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer to the SQLServer object's Databases collection 
EXEC @hr = sp_OAGetProperty @object, 'Databases', @object OUT 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer from the Databases collection for the specified database 
EXEC @hr = sp_OAMethod @object, 'Item', @object OUT, @dbname 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer from the Database object's Tables collection for the specified 
table 
IF (OBJECTPROPERTY(OBJECT_ID(@table),'IsTable')<>1) BEGIN 
   RAISERROR('Target object must be a table.',16,1) 



Guru’s Guide to Transact-SQL 

414 

   RETURN -1 
END BEGIN 
   EXEC @hr = sp_OAMethod @object, 'Tables', @object OUT, @table 
   IF @hr <> 0 BEGIN 
      EXEC sp_displayoaerrorinfo @object, @hr 
      RETURN 
   END 
END 
 
--Call the Table object's importData method to import the table using BulkCopy 
EXEC @hr = sp_OAMethod @object, 'ImportData', @rowsimported OUT, @bcobject 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
RETURN @rowsimported 
 
Help: 
 
EXEC sp_usage @objectname='sp_importtable', 
@desc='Imports a table similarly to BULK INSERT', 
@parameters=" 
   @table varchar(128),            -- Table to import 
   @inputpath varchar(128)=NULL,   -- input directory, terminate with a '\' 
   @inputname varchar(128)=NULL,   -- input filename (defaults to @table+'.BCP') 
   @server varchar(128)='(local)', -- Name of the server to connect to 
   @username varchar(128)='sa',    -- Name of the user to connect as (defaults to 
'sa') 
   @password varchar(128)=NULL     -- User's password 
", 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19990614',@datelastchanged='19990714', 
@example='EXEC importtable "authors", "C:\TEMP\"', 
@returns='Number of rows imported' 
RETURN -1 
GO 
 
    
Like BULK INSERT, sp_importtable loads operating system files into tables. As with sp_exporttable, it makes 
certain assumptions about the format of the file that you may change if you wish. Here's a code sample that 
uses sp_exporttable and sp_importtable together: 
     
SET NOCOUNT ON 
USE pubs 
DECLARE @rc int 
 
-- First, export the rows 
EXEC @rc=pubs..sp_exporttable @table='pubs..authors', @outputpath='d:\_temp\bcp\' 
SELECT @rc AS RowsExported 
 
-- Second, create a new table to store the rows 
SELECT * INTO authorsimp FROM authors WHERE 1=0 
 
-- Third, import the exported rows 
EXEC pubs..sp_importtable @table='authorsimp',  
 

@inputpath='d:\_temp\bcp\',@inputname='authors.bcp' 
 
SELECT COUNT(*) AS RowsLoaded FROM authorsimp 
GO 



Chapter 19. Ole Automation 

415 

DROP TABLE authorsimp 
 
    
This script begins by exporting the authors table from the pubs sample database. It then creates an empty 
copy of the table and imports the exported rows using sp_importtable. As with BULK INSERT, the file it loads 
must be directly accessible by the machine on which SQL Server is running. 

sp-getsQLregistry 

In addition to bulk load operations, SQL Server's SQL-DMO interface provides access to a wealth of 
administration services and server information. Much of this is exposed via automation objects. One such 
object is the Registry object. It provides access to the portion of the system registry controlled by SQL Server. 
You can use it to access such things as the currently installed character set, the default SQL Mail login name, 
the number of processors, the amount of memory installed on the server computer, and so on. Here's a stored 
procedure that gives you access to the bevy of information provided by the Registry object: 
     
USE master 
GO 
IF OBJECT_ID('sp_getSQLregistry') IS NOT NULL 
   DROP PROC sp_getSQLregistry 
GO 
CREATE PROC sp_getSQLregistry 
   @regkey varchar(128),                -- Registry key to extract 
   @regvalue varchar(8000)=NULL OUTPUT, -- Value from SQL Server registry tree 
for key 
   @server varchar(128)='(local)',      -- Name of the server to connect to 
   @username varchar(128)='sa',         -- Name of the user to connect as 
(defaults to  
 

'sa') 
   @password varchar(128)=NULL          -- User's password 
/* 
 
Object: sp_getSQLregistry 
Description: Retrieves a value from the SQL Server branch in the system registry . 
Usage: sp_getSQLregistry 
   @regkey varchar(128),           -- Registry key to extract 
   @regvalue varchar(8000) OUTPUT, -- Value from SQL Server registry tree for key 
   @server varchar(128)="(local)", -- Name of the server to connect to 
   @username varchar(128)="sa",    -- Name of the user to connect as (Default: 
"sa") 
   @password varchar(128)=NULL     -- User's password 
 
Returns: Data length of registry value 
 
Created by: Ken Henderson. Email: khen@khen.com 
 
Version: 6.4 
 
Example: sp_getSQLregistry "SQLRootPath", @sqlpath OUTPUT 
 
Created: 1996-09-03. Last changed: 1999-07-01. 
 
*/ 
AS 
SET NOCOUNT ON 
IF (@regkey='/?') GOTO Help 
 
DECLARE @object int, -- Work variable for instantiating automation objects 
   @hr int           -- Contains HRESULT returned by automation 



Guru’s Guide to Transact-SQL 

416 

 
-- Create a SQLServer object 
EXEC @hr=sp_OACreate 'SQLDMO.SQLServer', @object OUTPUT 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Connect to the server 
IF (@password IS NOT NULL) AND (@password<>'' 
   EXEC @hr = sp_OAMethod @object, 'Connect', NULL, @server, @username, @password 
ELSE 
   EXEC @hr = sp_OAMethod @object, 'Connect', NULL, @server, @username 
IF (@hr <> 0) BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
--Get a pointer to the SQLServer object's Registry object 
EXEC @hr = sp_OAGetProperty @object, 'Registry', @object OUT 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
-- Get a pointer to the SQLServer object's Databases collection 
EXEC @hr = sp_OAGetProperty @object, @regkey, @regvalue OUT 
IF @hr <> 0 BEGIN 
   EXEC sp_displayoaerrorinfo @object, @hr 
   RETURN 
END 
 
RETURN datalength(@regvalue) 
 
Help: 
EXEC sp_usage @objectname='sp_getSQLregistry', 
@desc='Retrieves a value from the SQL Server branch in the system registry', 
@parameters=' 
   @regkey varchar(128),           -- Registry key to extract 
   @regvalue varchar(8000) OUTPUT, -- Value from SQL Server registry tree for key 
   @server varchar(128)="(local)", -- Name of the server to connect to 
   @username varchar(128)="sa",    -- Name of the user to connect as (Default: 
"sa") 
   @password varchar(128)=NULL     -- User'' password', 
@author='Ken Henderson', @email='khen@khen.com', 
@datecreated='19960903', @datelastchanged='19990701', 
@version='6', @revision='4', 
@returns='Data length of registry value', 
@example='sp_getSQLregistry "SQLRootPath", @sqlpath OUTPUT' 
 
GO 
 
    
Here's a script that uses sp_getSQLregistry to access key system information: 
     
SET NOCOUNT ON 
DECLARE @numprocs varchar(10), @installedmemory varchar(20), @rootpath 
varchar(8000) 
 
EXEC sp_getSQLregistry 'PhysicalMemory', @installedmemory OUT 
EXEC sp_getSQLregistry 'NumberOfProcessors', @numprocs OUT 



Chapter 19. Ole Automation 

417 

EXEC sp_getSQLregistry 'SQLRootPath', @rootpath OUT 
 
SELECT @numprocs AS NumberOfProcessors, @installedmemory AS InstalledRAM, 
@rootpath AS  
 

RootPath 
 
DECLARE @charset varchar(100), @sortorder varchar(100) 
EXEC sp_getSQLregistry 'CharacterSet', @charset OUT 
 
SELECT @charset AS CharacterSet 
 
EXEC sp_getSQLregistry 'SortOrder', @sortorder OUT 
 
SELECT @sortorder AS SortOrder 
 
NumberOfProcessors     InstalledRAM     RootPath 
------------------     ------------     ----------------------------------- 
1                      79               c:\MSSQL7 
CharacterSet 
---------------------------------------------------------------------------------
------- 
Character Set = 1, iso_1  ISO 8859-1 (Latin-1)  -- Western European 8-bit 
character set. 
 
SortOrder 
---------------------------------------------------------------------------------
--- 
Sort Order = 52, nocase_iso    Case-insensitive dictionary sort order for use 
with 
several We 

Summary 

Transact-SQL's ability to interface with automation objects allows it to perform the kinds of tasks usually 
reserved for traditional development tools such as Delphi and Visual Basic. In this chapter, you explored 
manipulating automation objects that the server itself exposes—the Distributed Management Objects—but 
Transact-SQL's automation procedures (sp_OAxxxx) aren't limited to automation objects exposed by the 
server. You can automate Excel, Word, Visio, or any application that provides an automation interface—all 
from within Transact-SQL. 





Chapter 20. Undocumented T-SQL 

419 

Chapter 20. Undocumented T-SQL 
An ounce of technique is worth a pound of technology.  

—Danny Thorpe 

I can't stress enough how important it is to avoid relying on undocumented routines unless absolutely 
necessary. They're undocumented for a reason. As a rule, the functions, DBCC command verbs, stored 
procedures, and trace flags that have been omitted from the SQL Server documentation have been left out 
because Microsoft doesn't want you to use them. They can be dangerous—possibly even catastrophic—if 
used improperly. Wanton misuse of a DBMS's undocumented features is a fast ticket to lost data and apathy 
from the vendor. 
So be careful with the commands and syntax that follow. Use them sparingly and, even then, with due caution. 
A mangled server quickly extinguishes the joy you get from using this or that gadget simply because you've 
just learned that it exists. 
If you decide to use undocumented routines in your own code, go into it with the full expectation that those 
routines may change in a future release of the product. The PWDENCRYPT() function below, for example, 
changed between releases 6.5 and 7.0 of SQL Server, and people who wrote code that relied on it ran into 
trouble when they migrated to 7.0. 
Don't expect vendor support for undocumented routines. When you see the word "undocumented," read 
"unsupported." Leaving a feature undocumented frees the vendor to change it at will without having to be 
concerned about breaking customer code. If you decide to base mission-critical code on undocumented 
aspects of the product, you do so at your own risk. 

Defining Undocumented 

Undocumented Transact-SQL, as defined here, refers to commands, functions, trace flags, DBCC command 
verbs, and stored procedures not listed in the SQL Server Books Online. Some of these routines are found in 
other publicly available Microsoft documentation; some aren't. For this chapter, the bottom line is this: If it isn't 
in the BOL, it isn't documented. 

Undocumented DBCC Commands 

The DBCC (database consistency checker) command originally housed a small collection of database 
maintenance routines that were outside the realm and syntax of traditional Transact-SQL. The idea was to 
group these routines under an easy-to-remember, easy-to-use command "toolbox," out of the way of normal 
queries. This worked well and was basically a good idea. 
Since that time, Sybase and Microsoft have expanded DBCC's original mission to include loads of 
functionality not foreseen by the original designers. The verb list for the command has grown to include 
dozens of things not related to database error checking—to the point of being extremely unwieldy and 
bordering a bit on the ridiculous. These days, DBCC does everything from checking databases for 
consistency to wrangling full-text indexes, from managing server caches to interacting with Performance 
Manager. It's practically a language unto itself. 
Many of these command verbs are not documented—some for very good reasons. Why some of them were 
not made separate Transact-SQL commands, only the vendors know. 
Before we delve into DBCC's undocumented command verbs, there are a few pointers to be aware of. First, 
include the WITH NO_INFOMSGS option to limit DBCC output to error messages. This makes the output from 
some loquacious commands like DBCC CHECKALLOC much more manageable without losing anything of 
real importance. Second, use DBCC HELP(commandverb) to list built-in help on DBCC command verbs. Most 
of the undocumented commands aren't displayed by the command, but it never hurts to check. Last, use 
DBCC TRACEON(3604) to route DBCC output to your client connection rather than the system error log. 
Many of the undocumented commands send their output to the error log by default, so keep this in mind. If 
you execute one of the commands below and receive nothing back from the server, it's likely that the 
command's output went to the error log, and you need to use trace ag3604 to route it to you instead. 

DBCC ADDEXTENDEDPROC(procname,DLL) 



Guru’s Guide to Transact-SQL 

420 

This command adds an extended procedure to the list maintained by the server. It has the same basic 
functionality as the sp_addextendedproc stored procedure and is, in fact, called by the procedure. The 
procname parameter is the name of the extended procedure, and DLL is the name of the DLL in which it 
resides. 
      
DBCC ADDEXTENDEDPROC('xp_computemode','xp_stats.dll') 
 
     

DBCC ADDINSTANCE(object,instance) 

This command adds an object instance to track in Performance Monitor. Stored procedures that initialize 
Performance Monitor counters use this to set up various areas of SQL Server for performance tracking. Object 
is the name of the object that contains the instance (e.g., "SQL Replication Agents"), and instance is the name 
of the instance to add (e.g., "Logreader"). 
      
DBCC ADDINSTANCE("SQL Replication Agents", "Snapshot") 
 
     

DBCC BCPTABLOCK(dbid, tabid, setflag) 

This command sets the table lock on bulk load option for a table and can improve performance for bulk inserts 
since it avoids setting a row lock for every inserted row. Dbid is the database ID, tabid is the table's object ID, 
and setflag is a 1 or 0 indicating whether to set the option. 
      
DECLARE @dbid int, @objid int 
SELECT @dbid=DB_ID('pubs'), @objid=OBJECT_ID('titles') 
DBCC BCPTABLOCK(@dbid,@objid,1) 
 
     

DBCC BUFFER(dbid[,objid][,numberofbuffers][,printopt {0 | 1 | 2}]) 

This command is used to dump the contents of SQL Server memory buffers. Buffers can be listed for a specic 
object or for an entire database. 
      
DECLARE @dbid int, @objid int 
SELECT @dbid=DB_ID('pubs'), @objid=OBJECT_ID('pubs..titles') 
SELECT COUNT(*) FROM pubs..titles -- Load up the buffers 
DBCC BUFFER(@dbid,@objid,1,2) 
 
     
(Results abridged) 
      
BUFFERS (in MRU to LRU order): 
 
BUFFER: 
 
BUF @0x11B38300 
--------------- 
bpage = 0x1FC28000    bhash = 0x00000000    bpageno = (1:122) 
bdbid = 5             breferences = 8       bkeep = 0 
bstat = 0x9           bspin = 0             bnext = 0x00000000 
 
PAGE HEADER: 
 
Page @0x1FC28000 
---------------- 



Chapter 20. Undocumented T-SQL 

421 

m_pageId = (1:122)     m_headerVersion = 1     m_type = 2 
m_typeFlagBits = 0x0   m_level = 0             m_flagBits = 0x0 
m_objId = 261575970    m_indexId = 7           m_prevPage = (0:0) 
m_nextPage = (0:0)     pminlen = 13            m_slotCnt = 18 
m_freeCnt = 7592       m_freeData = 564        m_reservedCnt = 0 
m_lsn = (50:302:9)     m_xactReserved = 0      m_xactId = (0:0) 
m_ghostRecCnt = 0      m_tornBits = 0 
 
DATA: 
 
Memory Dump @0x1FC28060 
----------------------- 
1fc28060: 36627573 696e6573 73202020 20020000 6business    ... 
1fc28070: 01001a00 42553130 33323662 7573696e ....BU10326busin 
1fc28080: 65737320 20202002 00000100 1a004255 ess    .......BU 
1fc28090: 31313131 36627573 696e6573 73202020 11116business 
1fc280a0: 20020000 01001a00 42553230 37353662  .......BU20756b 
1fc280b0: 7573696e 65737320 20202002 00000100 usiness    ..... 
 
     

DBCC BYTES(startingaddress,length) 

This command lists the contents of the memory area beginning at startingaddress for length bytes. The 
address specified must be a valid address within the SQL Server process space. 
      
DBCC BYTES(0014767000,50) 
00e15398: 00000000 00000000 690b1808 00000000 ...........i.... 
00e153a8: 00000000 00000000 00000000 00000000 ................ 
00e153b8: 00000000 00000008 00000000 00000000 ................ 
00e153c8:     0000                            .. 
 
     

DBCC CALLFULLTEXT(funcid[,catid][,objid]) 

This command is used to perform a variety of full-text-related functions. Funcid species what function to 
perform and what parameters are valid. Catid is the full-text catalog ID, and objid is the object ID of the 
affected object. Note that CALLFULLTEXT is valid only within a system stored procedure. This procedure 
must have its system bit set (see the undocumented procedure sp_MS_marksystemobject below for more 
info), and its name must begin with "sp_fulltext_." Table20.1 lists the supported functions: 

Table 20.1. DBCC CALLFULLTEXT() functions. 
Funcid Function  Parameters  
1 Creates a catalog Catalog ID, path 
2 Drops a catalog Catalog ID 
3 Populates a catalog Catalog ID, 0=full, 1=incremental 
4 Stops a catalog population Catalog ID 
5 Adds table for FT indexing Catalog ID, Object ID 
6 Removes table from FT indexing Catalog ID, Object ID 
7 Drops all catalogs Database ID 
8 Performs catalog clean-up   
9 Species the level of CPU resources allocated to 

Microsoft Search 
Resource value (1–5; 1=background, 
5=dedicated—default: 3) 

10 Sets FT connection timeout Timeout value in seconds (1–32767) 
      
USE master 



Guru’s Guide to Transact-SQL 

422 

GO 
IF OBJECT_ID('sp_fulltext_resource') IS NOT NULL 
   DROP PROC sp_fulltext_resource 
GO 
CREATE PROC sp_fulltext_resource @value int -- value for 'resource_usage' 
AS 
   DBCC CALLFULLTEXT(9,@value)              -- FTSetResource (@value) 
   IF (@@error<>0) RETURN 1 
   -- SUCCESS -- 
RETURN 0   -- sp_fulltext_resource 
GO 
 
EXEC sp_MS_marksystemobject 'sp_fulltext_resource' 
EXEC sp_fulltext_resource 3 
 
     

DBCC DBCONTROL(dbname,option) 

This command sets database options. It performs many of the functions of sp_dboption and is, in fact, called 
by the procedure. Dbname is the name of the database, and option is a token specifying the option to set. 
Table20.2 lists the valid values for option: 

Table 20.2. Valid option values for DBCC DBCONTROL(). 
Option Description 

multi Species multiuser mode 
offline Takes database off line 
online Brings database back on line 
readonly Makes database readonly 
readwrite Makes database readwrite 
single Species single-user mode 
      
DBCC DBCONTROL('pubs',multi) 
 
     

DBCC DBINFO(dbname) 

This command lists system-level information about the specified database, including its creation date, ID, 
status, next timestamp value,etc. 
      
DBCC DBINFO('pubs') 
 
DBINFO STRUCTURE: 
 
DBINFO @0x0690F998 
------------------ 
dbi_dbid = 5            dbi_status = 4194436      dbi_nextid = 1810821513 
dbi_dbname = pubs       dbi_maxDbTimestamp = 2000 dbi_version = 515 
dbi_createVersion = 515 dbi_nextseqnum = 1900-01-01 00:00:00.000 
dbi_crdate = 1998-11-13 03:10:45.610              dbi_filegeneration = 1 
 
dbi_checkptLSN 
-------------- 
m_fSeqNo = 65 m_blockOffset = 340   m_slotId = 1 
 
dbi_dbbackupLSN 
--------------- 



Chapter 20. Undocumented T-SQL 

423 

m_fSeqNo = 43 m_blockOffset = 326   m_slotId = 1 
 
dbi_lastdbbackupLSN 
------------------- 
m_fSeqNo = 43 m_blockOffset = 332   m_slotId = 1 
 
dbi_createIndexLSN 
------------------ 
m_fSeqNo = 0              m_blockOffset = 0 m_slotId = 0 
dbi_sortord = 52          dbi_charset = 1   dbi_LcidCfg = 1033 
dbi_CompFlagsCfg = 196609 dbi_maxLogSpaceUsed = 3828736 
 
     

DBCC DBRECOVER(dbname) 

This command manually recovers a database. Normally, databases are recovered at system startup. If this did 
not occur—due to an error or the disabling of recovery (see trace flags 3607 and 3608 below)—DBCC 
DBRECOVER can be used to attempt a manual recovery. Dbname is the name of the database to recover. 
      
DBCC DBRECOVER('pubs') 
 
     

DBCC DBTABLE(dbid) 

This command lists DBT (DB Table) and FCB (File Control Block) information for the specified database. 
      
DECLARE @dbid int 
SET @dbid=DB_ID('pubs') 
DBCC DBTABLE(@dbid) 
 
DBTABLES: 
 
DBTABLE @0x1FA05914 
------------------- 
dbt_dbid = 5            dbt_dbname = pubs        dbt_spid = 0 
dbt_cmptlevel = 70      dbt_crtime = 1999-01-26  15:36:50.723 
dbt_dbdes = 0x374b7de0  dbt_next = 0x1f9bd418    dbt_protstamp = 0 
dbt_nextid = 1810821513 dbt_dbname = pubs        dbt_stat = 0x400004 
dbt_stat2 = 0x100000    dbt_relstat = 0x41000000 dbt_maxDbTimestamp = 2000 
dbt_dbTimestamp = 2000  dbt_dbVersion = 515      dbt_repltrans = 0 
dbt_replcount = 0       dbt_replrate = 0.000000  dbt_repllatency = 0.000000 
dbt_logmgr = 0x1f9d3eb8 dbt_backupmgr = 0x0      distbeginlsn = (0:0:0) 
distendlsn = (0:0:0)    replbeginlsn = (0:0:0)   replendlsn = (0:0:0) 
 
FCB @0x1FA4A448 
--------------- 
fcb_hdl = 0x3f0                    fcb_dbid = 5           fcb_fileid = 1 
fcb_name = d:\MSSQL7\DATA\pubs.mdf                        fcb_lname = pubs 
fcb_nwrt = 0                       fcb_nread = 0          m_status = 51380611 
m_size = 272                       m_maxSize = 4294967295 m_minSize = 96 
m_allocSize = 272                  m_growth = 10          m_perf = 0 
m_FormattedSectorSize = 512                               m_ActualSectorSize = 
512 
 
FCB @0x1FA4AE48 
--------------- 
fcb_hdl = 0x3f8                        fcb_dbid = 5           fcb_fileid = 2 



Guru’s Guide to Transact-SQL 

424 

fcb_name = d:\MSSQL7\DATA\pubs_log.ldf                        fcb_lname = 
pubs_log 
fcb_nwrt = 0                           fcb_nread = 0          m_status = 51429698 
m_size = 528                           m_maxSize = 4294967295 m_minSize = 63 
m_allocSize = 528                      m_growth = 10          m_perf = 0 
m_FormattedSectorSize = 512                                   m_ActualSectorSize 
= 512 
 
     

DBCC DELETEINSTANCE(object,instance) 

This command deletes a Performance Monitor object instance previously set up with DBCC ADDINSTANCE. 
Object is the name of the Performance Monitor object, and instance is the name of the instance to delete. 
Specify a wildcard for instance to delete multiple instances. 
      
DBCC DELETEINSTANCE("SQL Replication Merge", "%") 
 
     

DBCC DES(dbid,objid) 

This command lists system-level descriptive information for the specified object. 
      
DECLARE @dbid int, @objid int 
SELECT @dbid=DB_ID('pubs'), @objid=OBJECT_ID('authors') 
DBCC DES(@dbid, @objid) 
 
DESs: 
DES @0x374B74E0 
--------------- 
dhash = 0x374b53e0           dNavCnt = 0         dindex = 0x1f9b23f8 
dmaxrow = 183                dopen = 0           dobjstat.objid = 117575457 
dobjstat.objsysstat = 0x3903                     ddbid = 5 
dstatus = 0x20               ddbptr = 0x1fa05914 ddbdes = 0x374b73e0 
dminlen = 24                 dtscolid = 0        dtsoff = 0 
decwait = 0x0                dobjid = 117575457  dobjtype = 8277 
dobjrepl = 0                 dschema = 102       dobjcols = 9 
 
     

DBCC DETACHDB(dbname) 

This command detaches a database from the server. The database can then be moved to another server and 
reattached with sp_attach_db. This function is called by the sp_detach_db stored procedure. 
      
DBCC DETACHDB('northwind2') 
 
     

DBCC DROPCLEANBUFFERS 

This command flushes all data from memory. This is useful if you're running benchmarks and don't want 
caching to skew test results. 
      
DBCC DROPCLEANBUFFERS 
 
     



Chapter 20. Undocumented T-SQL 

425 

DBCC DROPEXTENDEDPROC(procname) 

This command drops an extended procedure. It's called by sp_dropextendedprocedure. 
      
USE master 
DBCC DROPEXTENDEDPROC('xp_computemode') 
 
     

DBCC ERRORLOG 

This command closes the current error log and starts another one, cycling the le extensions similarly to a 
server restart. It's called by the sp_cycle_errorlog stored procedure. 
      
DBCC ERRORLOG 
 
     

DBCC EXTENTINFO(dbname, tablename, indid) 

This command lists extent information for all the extents belonging to an object. Dbname is the name of the 
database, tablename is the name of the table, and indid is the index ID of the index to list. 
      
DBCC EXTENTINFO('pubs','titles',1) 
 
file_id    page_id    pg_alloc   ext_size   obj_id     index_id   pfs_bytes           
 

avg_used 
---------- ---------- ---------- ---------- ---------- ---------- ---------------
---  
 

-------- 
1          120        1          1          261575970  1          
0x6000000000000000 25 
1          132        1          1          261575970  1          
0x6000000000000000 25 
 
     

DBCC FLUSHPROCINDB(dbid) 

This command forces a recompile of all the stored procedures in a database. Dbid is the data- base ID of the 
target database. This is handy when you've changed an option in the database that would materially affect the 
queries generated for its stored procedures. Sp_dboption, for example, uses DBCC FLUSHPROCINDB to 
ensure that changes to compile-time options are accommodated by a database's stored procs. 
      
DECLARE @dbid int 
SET @dbid=DB_ID('pubs') 
DBCC FLUSHPROCINDB(@dbid) 
 
     

DBCC FREEPROCCACHE 

This command flushes the procedure cache. This is handy when you need to eliminate the effects of 
procedure caching on benchmark tests or when you want procedure execution plans to take new 
configuration values into account. 
      



Guru’s Guide to Transact-SQL 

426 

DBCC FREEPROCCACHE 
 
     

DBCC IND(dbid, objid[,printopt {0 | 1 | 2}]) 

This command lists system-level index information for the specified object. 
      
DECLARE @dbid int, @objid int 
SELECT @dbid=DB_ID('pubs'), @objid=OBJECT_ID('pubs..authors') 
DBCC IND(@dbid,@objid, 1) 
PageFID PagePID  IAMFID IAMPID  ObjectID   IndexID PageType IndexLevel 
NextPageFID 
------- -------- ------ ------- ---------- ------- -------- ---------- ----------
- 
1       101      NULL   NULL    117575457  1       10       0          0 
1       100      1      101     117575457  0       1        0          0 
1       127      1      101     117575457  1       2        0          0 
 
     

DBCC LOCKOBJECTSCHEMA (objname) 

This command blocks schema changes by other connections until the caller commits the current transaction. 
It also increments the schema_ver column in sysobjects. This command has no effect if executed outside a 
transaction. 
      
USE pubs 
BEGIN TRAN 
 
DBCC LOCKOBJECTSCHEMA('titleauthor') 
 
Comment out the COMMIT below and try a DDL modification to titleauthor 
-- from another connection. Your new connection will wait until this one 
commits. 
 
COMMIT TRAN 
 
     

DBCC LOG(dbid) 

This command displays log record information from the current database's transaction log. You can use 
INSERT..EXEC() to trap this output in a table for further processing. 
      
CREATE TABLE #logrecs 
(CurrentLSN varchar(30), 
 Operation varchar(20), 
 Context varchar(20), 
 TransactionID varchar(20)) 
 
INSERT #logrecs 
EXEC('DBCC LOG(''ubs''') 
 
SELECT * FROM #logrecs 
GO 
DROP TABLE #logrecs 
 
     



Chapter 20. Undocumented T-SQL 

427 

(Results abridged) 
      
CurrentLSN             Operation       Context            TransactionID 
---------------------- --------------- ------------------ ---------------------- 
00000035:00000144:0001 LOP_BEGIN_CKPT  LCX_NULL           0000:00000000 
00000035:00000145:0001 LOP_END_CKPT    LCX_NULL           0000:00000000 
00000035:00000146:0001 LOP_MODIFY_ROW  LCX_SCHEMA_VERSION 0000:00000000 
00000035:00000146:0002 LOP_BEGIN_XACT  LCX_NULL           0000:000020e0 
00000035:00000146:0003 LOP_MARK_DDL    LCX_NULL           0000:000020e0 
00000035:00000146:0004 LOP_COMMIT_XACT LCX_NULL           0000:000020e0 
00000035:00000147:0001 LOP_MODIFY_ROW  LCX_SCHEMA_VERSION 0000:00000000 
00000035:00000147:0002 LOP_BEGIN_XACT  LCX_NULL           0000:000020e1 
00000035:00000147:0003 LOP_MARK_DDL    LCX_NULL           0000:000020e1 
 
     

DBCC PAGE (dbid|dbname, filenum, pagenum [,printopt][,cacheopt]) 

This command dumps the contents of a specic database page. Dbid|dbname is the ID or name of the 
database, filenum is the database le number containing the page, pagenum is the number of the page, 
printopt species what to print, and cacheopt species whether to dump the disk or memory version of the page 
(values0 and 1, respectively). 
Table 20.3 lists the valid values for printopt: 

Table 20.3. Valid printtopt values. 
Value  Meaning  

0 (Default)—print the page and buffer headers 
1 Print the page and buffer headers, each row of the table, and the row offset table 
2 Print the page and buffer headers, the page itself, and the row offset table 
Note that this command requires DBCC TRACEON(3604) in order to direct its output to your client connection. 
      
DBCC TRACEON(3604) 
GO 
DBCC PAGE('pubs',1,70,2,0) 
GO 
DBCC TRACEOFF(3604) 
 
     
(Results abridged) 
      
PAGE: 
 
BUFFER: 
 
BUF @0x11BB1E80 
--------------- 
bpage = 0x1F6E4000   bhash = 0x00000000    bpageno = (1:70) 
bdbid = 5            breferences = 1       bkeep = 1 
bstat = 0x9          bspin = 0             bnext = 0x00000000 
 
PAGE HEADER: 
 
Page @0x1F6E4000 
---------------- 
m_pageId = (1:70)    m_headerVersion = 1 m_type = 10 
m_typeFlagBits = 0x0 m_level = 0         m_flagBits = 0x2 
m_objId = 19         m_indexId = 1       m_prevPage = (0:0) 
m_nextPage = (0:0)   pminlen = 90        m_slotCnt = 2 
m_freeCnt = 4        m_freeData = 8184   m_reservedCnt = 0 
m_lsn = (1:324:11)   m_xactReserved = 0  m_xactId = (0:0) 



Guru’s Guide to Transact-SQL 

428 

m_ghostRecCnt = 0    m_tornBits = 0 
GAM (1:2) ALLOCATED, SGAM (1:3) NOT ALLOCATED, PFS (1:1) 0x70 IAM_PG MIXED_EXT 
ALLOCATED 0_PCT_FULL 
DATA: 
Memory Dump @0x1F6E4060 
----------------------- 
1f6e4060: 00005e00 00000000 00000000 00000000 ..^............. 
1f6e4070: 00000000 00000000 00000000 00000000 ................ 
 
     

DBCC PRTIPAGE(dbid, objid, indexid[, printopt {0 | 1 | 2}]) 

This command lists page information for the specified index. 
      
DECLARE @dbid int, @pagebin varchar(12), @pageid int, @fileid int, @objid int 
SELECT TOP 1 @dbid=DB_ID('pubs'), @objid=id, @pagebin=first 
FROM pubs..sysindexes WHERE id=OBJECT_ID('pubs..authors') 
 
EXEC sp_decodepagebin @pagebin, @fileid OUT, @pageid OUT 
 
DBCC PRTIPAGE(@dbid, @objid, 2, @pageid) 
 
     
(Results abridged) 
      
FileId PageId    Row    Level  au_lname                     au_fname 
------ --------- ------ ------ ---------------------------- -------------------- 
1      228       0      0      Bennet                       Abraham 
1      228       1      0      Blotchet-Halls               Reginald 
1      228       2      0      Carson                       Cheryl 
1      228       3      0      DeFrance                     Michel 
1      228       4      0      del Castillo                 Innes 
1      228       5      0      Dull                         Ann 
1      228       6      0      Green                        Marjorie 
1      228       7      0      Greene                       Morningstar 
1      228       8      0      Gringlesby                   Burt 
1      228       9      0      Hunter                       Sheryl 
 
     

DBCC RESOURCE 

This command lists resource utilization information for the server. 
      
DBCC TRACEON(3604) 
DBCC resource 
DBCC TRACEOFF(3604) 
 
RESOURCE: 
 
RESOURCE @0x007D8228 
-------------------- 
rdbtab = 531005480       rdes = 927695072          *rdeshash = 927671776 
rdescount = 128          *prpssarray = 528654468   rprocihash = 0x3747053c 
rprocnhash = 0x3749053c  rprocmemused = 78         rflag1 = 144 
rflag2 = 0               rprocnum = 32             rdump = 0 
rMSversion = 117441211   rbufsteals = 0            rpsytab = 927665708 
rlangcache = 528558048   rlangfree = 0             rbinaryversion = 515 
rservername = KHEN_450   servicename = MSSQLServer rnls = 14848 



Chapter 20. Undocumented T-SQL 

429 

ropen_objmsgs = 0        pPerfStats = 8658600      pBufGStats = 8659488 
pResLock = 927379360     LoginMode = 0             rsaspid = 0 
DefaultLogin = guest     AuditLevel = 0            ckpt_status = 0 
DefaultDomain = KHEN_450 SetHostName = 0           MapChars[0] '_' = 
MapChars[1] '$' =        MapChars[2] '#' =         MaxConnections = 32767 
MaxCPUs = 2              fDBCSNonCase = TRUE       bpool = 8224800 
pbuffreewait = 0         pHandlers = 0             article_cache = 528647120 
pResLockFree = 927662120 MaxSubProcesses = 32767   CurSubProcesses = 0 
pesExprSrv = 0x1f81c3e8  replmem = 0x1f826028 
 
PERFMON @0x007D8260 
------------------- 
pcputicks = 0           pioticks = 0            pidlticks = 0 
pbs_rpck = 683          pbs_spck = 0            pbs_rbyt = 90854 
pbs_sbyt = 0            pbs_conn = 36           pbs_errors = 0 
pblk_rd = 932           pblk_wr = 1568          pblk_errors = 0 
pblk_outstanding_rd = 0 pblk_outstanding_wr = 0 psiteconns = 0 
LRU_cnt = 0             BUFLNK_cnt = 0          DATASERV_cnt = 0 
 
DS_CONFIG @0x007D9060 
--------------------- 
cconfsz = 8               cmajor = 6             cminor = 0 
crevision = 14            cbootsource = 2        crestimeout = 10 
crecinterval = 0          ccatalogupdates = 1    cmbSrvMemMin = 0 
cmbSrvMemMax = 2147483647 cusrconnections = 0    cnetworkpcksize = 4096 
ckbIndexMem = 0           cfillfactor = 0        cavetimeslice = 100 
cextendedmemory_MB = 0    ctapreten = 0          cwritestatus = 0 
cspinctr = 0              cfgpriorityboost = 0x0 cfgexposeadvparm = 0x1 
cfglogintime = 5          cfgpss = 0             cfgpad = 4096 
cfgxdes = 16              cfgaffinitymask = 0    cfgbuf = 4362 
cfgdes = 0                cfglocks = 0           cfgquerytime = 0 
cstacksz = 0              cfgcursorthrsh = -1    cnblkmax = 32 
cfgrmttimeout = 10        cfg_dtc_rpcs = 0       cclkrate = 31250 
cfg_max_text_repl_size = 65536                   cfgupddate = 36386 
cfgupdtime = 15525951     fRemoteAccess = 1      cfgbufminfree = 331 
cnestedtriggers = 0x1     cfgworkingset = 0x0    ccaseless = 0 
cdeflang = 0              cnlanginfo = 3         cold_sortord = 0x34 
cold_charset = 0x1        csortord = 0x34        ccharset = 0x1 
lcidCfg = 0x409           lcidCfgOld = 0x409     dwCompFlagsCfg = 0x30001 
dwCompFlagsCfgOld = 0x30001                      cfgCutoffYear = 2049 
cfgLangNeutralFT = 0      csysdbstart = 0        cfglogsleep = 0 
maxworkthreads = 255      minworkthreads = 32    minnetworkthreads = 32 
threadtimeout = 15        connectsperthread = 0  cusroptions = 0 
exchcostthreshold = 5     maxdop = 0             cchecksum = 770 
rWrkExtCache = Used       Cache Entry = Iam (1:86), Extent (1:112) 
 Cache Entry = Iam (1:104), Extent (1:96) 
 Cache Entry = Iam (0:0), Extent (0:0) 
 
     

DBCC SETINSTANCE(object,counter,instance,val) 

This command sets the value of a Performance Monitor instance counter. You can use this when 
benchmarking query and stored procedure performance to set a user-definable counter inside Performance 
Monitor. In fact, this is how the sp_user_counternn procedures work—they call DBCC SETINSTANCE. Object 
is the name of the Performance Monitor object, instance is the name of the object's instance to adjust, counter 
is the name of the performance counter to change, and val is the new value of the counter. 
      
DBCC SETINSTANCE('SQLServer:User Settable', 'Query', 'User counter 1', 3) 
 



Guru’s Guide to Transact-SQL 

430 

     

DBCC TAB(dbid,objid[,printopt {0 | 1 | 2}}]) 

This command lists system-level information for the specified table. 
      
DECLARE @dbid int, @objid int 
SELECT @dbid=DB_ID('pubs'), @objid=OBJECT_ID('pubs..authors') 
DBCC TAB(@dbid, @objid, 2) 
 
PageFID PagePID  IAMFID IAMPID  ObjectID   IndexID PageType IndexLevel 
NextPageFID  
 

NextPagePID 
------- -------- ------ ------- ---------- ------- -------- ---------- ----------
-  
 

----------- 
1       101      NULL   NULL    117575457  1       10       0          0           
0 
1       100      1      101     117575457  0       1        0          0           
0 
1       127      1      101     117575457  1       2        0          0           
0 
1       229      NULL   NULL    117575457  2       10       0          0           
0 
1       228      1      229     117575457  2       2        0          0           
0 
 
     

DBCC UPGRADEDB(dbname) 

This command upgrades the system objects in the specified database to the current version of the database 
engine. 
      
DBCC UPGRADEDB('oldpubs') 

Undocumented Functions and Variables 

As I said earlier, undocumented Transact-SQL elements, including functions, are usually not documented for 
a reason. They can be dangerous or even catastrophic if improperly used. They may also change between 
releases. So, use good judgment when you decide whether to use these functions in your own code. 

ENCRYPT(string) 

This command encrypts a string. It's used internally by the server to encrypt Transact-SQL code stored in 
syscomments (when WITH ENCRYPTION is specified). 
      
SELECT ENCRYPT('VALET') 
---------------------------------------------------- 
0x594F55415245415348414D454C4553535359434F5048414E54 
 
     

GET_SID(username) 



Chapter 20. Undocumented T-SQL 

431 

This command returns the current NT system ID for a specified user or group name as a varbinary(85). Prex 
username with \U to search for an NT user ID; prex it with \G to search for an NT group ID. Note that this 
function works only within system-stored procedures that have their system bit set—see the undocumented 
procedure sp_MS_marksystemobject below for more information. 
      
USE master 
GO 
IF (OBJECT_ID('sp_get_sid') IS NOT NULL) 
   DROP PROC sp_get_sid 
GO 
CREATE PROCEDURE sp_get_sid 
   @loginame sysname 
AS 
DECLARE @sid varbinary(85) 
 
IF (charindex('\', @loginame) = 0) 
   SELECT SUSER_SID(@loginame) AS 'SQL User ID' 
ELSE BEGIN 
   SELECT @sid=get_sid('\U'+@loginame, NULL) 
   IF @sid IS NULL 
      SELECT @sid=get_sid('\G'+@loginame, NULL) -- Maybe it's a group 
   IF @sid IS NULL BEGIN 
      RAISERROR('Couldn't find an ID for the specified loginame',16,10) 
         RETURN -1 
      END ELSE SELECT @sid AS 'NT User ID' 
   RETURN 0 
END 
GO 
EXEC sp_MS_marksystemobject 'sp_get_sid' 
EXEC sp_get_sid 'LEX_TALIONIS\KHEN' 
 
NT User ID 
0x0105000000000005150000000A423635BE3136688847202CE8030000 
 
     

OBJECT_ID(..,'local') 

While the OBJECT_ID() function itself is, of course, documented, its optional second parameter isn't. Since 
you can pass a fully qualified object name as the rst argument, OBJECT_ID() can return ID numbers for 
objects that reside in databases other than the current one. There may be times when you want to prevent 
this. For example, if you're performing a task on an object that requires access to catalog information in the 
current database, you may need to ensure not only that the object name translates to a valid object ID but 
also that it's a local object. Pass 'local' as OBJECT_ID()'s second parameter in order to ensure that it sees 
objects in the current database only, like so: 
      
USE pubs 
SELECT OBJECT_ID('Northwind..Orders'), OBJECT_ID('Northwind..Orders','local') 
--------- ---------------------------------------------------------------------- 
357576312 NULL 
 
     

PWDCOMPARE(str,pwd,oldenc) 

This command compares a string with an encrypted password. Str is the string to compare, pwd is the 
encrypted password to use, and oldenc is a 1 or 0 indicating whether old-style encryption was used to encrypt 
pwd. You can retrieve an encrypted password directly from the sysxlogins password column, or you can use 
the undocumented PWDENCRYPT() function to create one from a string (see below). 



Guru’s Guide to Transact-SQL 

432 

      
SELECT PWDCOMPARE('enmity', password, (CASE WHEN xstatus&2048=2048 THEN 1 ELSE 0 
END)) 
FROM sysxlogins 
WHERE name='k_reapr' 
 
----------- 
1 
 
     

PWDENCRYPT(str) 

This command encrypts a string using SQL Server's password encryption algorithm. Stored procedures that 
manage SQL Server passwords use this function to encrypt user passwords. You can use the undocumented 
PWDCOMPARE() function to compare an unencrypted string with the return value of PWDENCRYPT(). 
      
SELECT PWDENCRYPT('vengeance') AS EncryptedString,PWDCOMPARE('vengeance', 
PWDENCRYPT('vengeance'), 0) AS EncryptedCompare 
EncryptedString EncryptedCompare 
 
EncryptedString  EncryptedCompare 
---------------- ---------------- 
________         1 
 
     

TSEQUAL(ts1,ts2) 

This command compares two timestamp values—returns 1 if they're identical, raises an error if they're not. 
The TSEQUAL() function has been around for years—it dates back to the days when Microsoft SQL Server 
was merely an OS/2 port of Sybase SQL Server. It's not used as often any more, mainly because it's no 
longer necessary. You can compare two timestamp columns directly and decide for yourself whether to raise 
an error. There's also no performance advantage to using TSEQUAL rather than a simple equality comparison. 
Still, it's not documented in the Books Online, so I'm compelled to include ithere. 
      
USE tempdb 
CREATE TABLE #testts 
(k1 int identity, 
timestamp timestamp) 
 
DECLARE @ts1 timestamp, @ts2 timestamp 
 
SELECT @ts1=@@DBTS, @ts2=@ts1 
 
SELECT CASE WHEN TSEQUAL(@ts1, @ts2) THEN 'Equal' ELSE 'Not Equal' END 
 
INSERT #testts DEFAULT VALUES 
 
SET @ts2=@@DBTS 
SELECT CASE WHEN TSEQUAL(@ts1, @ts2) THEN 'Equal' ELSE 'Not Equal' END 
GO 
DROP TABLE #testts 
 
Equal 
 
Server: Msg 532, Level 16, State 2, Line 16 
The timestamp (changed to 0x0000000000000093) shows that the row has been updated 
by 
another user. 



Chapter 20. Undocumented T-SQL 

433 

 
     

@@MICROSOFTVERSION 

This automatic variable returns an internal tracking number used by Microsoft. 
      
SELECT @@MICROSOFTVERSION 
----------- 
 
117441211 

Undocumented Trace Flags 

Trace flags are special server settings that you can configure primarily by calling DBCC TRACEON() or via 
the –T server command-line option. Some options make sense only on a server-wide basis, so they're best 
specified on the server command line. Most, however, are specified via DBCC TRACEON(flagnum), where 
flagnum is the ag you want to set. To set more than one ag at a time, separate them with commas. 
Use DBCC TRACESTATUS(flagnum) to list whether a ag is enabled. Pass a –1 to return a list of all flags 
currently set. Here's a simple DBCC TRACEON() / TRACESTATUS() example: 
     
EXEC master..xp_logevent 99999,'CHECKPOINT before setting flag 
3502',informational 
CHECKPOINT 
DBCC TRACEON(3604,3502) 
DBCC TRACESTATUS(-1) 
EXEC master..xp_logevent 99999,'CHECKPOINT after setting flag 
3502',informational 
CHECKPOINT 
DBCC TRACEOFF(3604,3502) 
DBCC TRACESTATUS(-1) 
 
    
Here's what the error log looks like as a result of these commands (trace flag3502 enables extra 
CHECKPOINT log information): 
     
1999-07-27 19:57:20.06 spid11 Error: 99999, Severity: 10, State: 1 
1999-07-27 19:57:20.06 spid11 CHECKPOINT before setting flag 3502. 
1999-07-27 19:57:20.06 spid11 DBCC TRACEON 3604, server process ID (SPID) 11. 
1999-07-27 19:57:20.06 spid11 DBCC TRACEON 3502, server process ID (SPID) 11. 
1999-07-27 19:57:20.07 spid11 Error: 99999, Severity: 10, State: 1 
1999-07-27 19:57:20.07 spid11 CHECKPOINT after setting flag 3502. 
1999-07-27 19:57:20.07 spid11 Ckpt dbid 4 started (100000) 
1999-07-27 19:57:20.07 spid11 Ckpt dbid 4 phase 1 ended (100000) 
 
    

Table 20.4. A few of SQL Server's undocumented trace flags. 
Flag  Purpose  
1200 Displays verbose locking info 
1206 Complements flag 1204 by displaying the other locks held by deadlock parties 
2509 Used in conjunction with DBCC CHECKTABLE to see the total count of ghost records in a table 
3502 Logs extra information to the system error log each time a checkpoint occurs 
3607 Skips automatic recovery of all databases 
3608 Skips automatic recovery of all databases except master 
3609 Skips the creation of tempdb at system startup 
8687 Disables query parallelism 
     



Guru’s Guide to Transact-SQL 

434 

1999-07-27 19:57:20.07 spid11 Ckpt dbid 4 complete 
1999-07-27 19:57:20.07 spid11 DBCC TRACEOFF 3604, server process ID (SPID) 11. 
1999-07-27 19:57:20.07 spid11 DBCC TRACEOFF 3502, server process ID (SPID) 11. 
 
    
Table 20.4 lists some of the many undocumented SQL Server trace flags. (See the Books Online for a list of 
documented flags.) This list is not comprehensive—there are many undocumented flags not included here. 

Undocumented Procedures 

There are scads of undocumented procedures. By my count, there are nearly a hundred of them, not counting 
replication routines. I've listed most of them in Table20.5. I haven't included all of them here for a number of 
reasons. First, there are simply too many to cover with any sort of adequacy. That's why I've intentionally 
omitted the undocumented routines related to replication. Also, some undocumented routines are so 
dangerous and add so little value to the Transact-SQL command set that they are best left undocumented. As 
they say, some things are better left unsaid. Last, some of the undocumented routines behave so erratically or 
are so reliant on code external to the server (e.g., in Enterprise Manager or SQL-DMO) that they are either 
unusable or of dubious value to the Transact-SQL developer. The idea here is to provide thorough coverage 
without being excessive 

Table 20.5. Undocumented system and extended stored procedures. 
Procedure  Purpose  Example  

sp_checknames [@mode] Checks key system tables 
for non-ASCII names. 

sp_checknames @mode='silent' 

sp_delete_backuphistory 
@oldest_date 

Clears system backup 
history prior to a given date.

msdb..sp_delete_backuphistory @oldest_date 
datetime 

sp_enumerrorlogs Enumerates the current 
server error log les. 

master..sp_enumerrorlogs 

sp_enumoledbdatasources Enumerates the OLEDB 
data providers visible to the 
server. 

sp_enumoledbdatasources 

sp_xindex @dbname, 
@tabname, @indid 

Allows indexes on system 
tables to be 
dropped/recreated. 

USE northwind EXEC sp_dboption 
'northwind','single',true EXEC sp_xindex 
'northwind', 'sysobjects', 2 EXEC sp_dboption 
'northwind','single',false 

sp_gettypestring @tabid, 
@colid, @typestring output 

Renders a textual 
description of a column's 
data type. 

declare @tabid int, @typestr varchar(30) SET 
@tabid=OBJECT_ID('authors') EXEC 
sp_gettypestring @tabid, 1, @typestr OUT 

sp_MS_marksystemobject 
@objname 

Sets an object's system bit 
(0xC0000000). Several 
functions and DBCC 
command verbs do not work 
properly unless executed 
from a system object. 
Setting this bit will cause the 
IsMSShipped object 
property to return1. 

sp_Ms_marksystemobject 'sp_dir' 

Sp_MSaddguidcol 
@source_owner, 
@source_table 

Adds a ROWGUIDCOL 
column to a table. Also 
marks the table for 
replication (use EXEC 
sp_MSunmark-replinfo to 
reversethis). 

sp_MSaddguidcolumn dbo,testguid 

sp_MSaddguidindex 
@source_owner, 
@source_table 

Creates an index on a 
table's ROWGUIDCOL 
column. 

sp_MSaddguidindex dbo,testuid 

sp_MSaddlogin_implicit_ ntlogin Adds a SQL Server login sp_MSaddlogin_implicit_ntlogin 'GoofyTingler'



Chapter 20. Undocumented T-SQL 

435 

@loginame that corresponds to an 
existing NT login. 

sp_MSadduser_implicit_ ntlogin 
@ntname 

Adds a database user that 
corresponds to an existing 
NT login. 

sp_MSadduser_implicit_ntlogin 'GoofyTingler'

sp_MScheck_uid_owns_ 
anything @uid 

Returns 1 when a user owns 
any objects in the current 
database. 

DECLARE @res int, @uid int SELECT 
@uid=SUSER_ID() EXEC 
@res=sp_MScheck_uid_owns_anything @uid

sp_Msdbuseraccess 
@mode='perm'|'db',@qual'db 
name mask 

Returns a list of databases a 
user can access and a 
bitmap representing the 
access in each. 

sp_MSdbuseraccess @mode='db' 

sp_MSdbuserpriv @mode 
='perm'|'serv'|'ver'|'role' 

Returns a bitmap 
representing user privileges.

sp_MSdbuserpriv @mode='role' 

sp_MSdependencies 
@objname, @objtype, @flags 
int, @objlist 

Shows object dependencies. sp_MSdependencies @objname = 'titleauthor'

sp_MSdrop_object [@object_id] 
[,@object_name] 
[,@object_owner] 

Generically drops a table, 
view, trigger, or procedure. 

sp_MSdrop_object @object_name='authors2'

sp_MSexists_file @full_path, 
@filename 

Checks for the existence of 
an operating system file. 

DECLARE @res int EXEC 
@res=sp_Msexists_file 'd=\readme.txt' 

sp_MSforeachdb @command1 
@replacechar = '?' 
[,@command2] [,@command3] 
[,@precommand] 
[,@postcommand] 

Executes up to three 
commands for every 
database on the system. 
@replace-char will be 
replaced with the name of 
each database. 
@precommand and @post-
command can be used to 
direct commands to a single 
resultset. 

EXEC sp_MSforeachdb 'DBCC CHECKDB(?)' 
EXEC sp_MSforeachdb @command1='PRINT 
"Listing ?"', @command2='USE ?; EXEC 
sp_dir' 

sp_msforeachtable 
@command1 @replacechar = 
'?' [,@command2] 
[,@command3] [,@whereand] 
[,@precommand] 
[,@postcommand] 

Executes up to three 
commands for every table in 
a database (optionally 
matching the @whereand 
clause).@replacechar will 
be replaced with the name 
of each table. 
@precommand and 
@postcommand can be 
used to direct commands to 
a single result set. 

EXEC sp_MSforeachtable 
@command1='EXEC sp_help [?]' EXEC 
sp_MSforeachtable @command1='PRINT 
"Listing ?=', @command2='SELECT * 
FROM ?',@whereand=' AND name like" 
title%”' 

sp_MSget_oledbinfo @server 
[,@infotype] [,@login] 
[,@password] 

Returns OLEDB provider 
information for a linked 
server. 

sp_MSget_oledbinfo @server='pythia', 
@login='sa' 

sp_MSget_qualied_name 
@object_id, @qualied_name 
OUT 

Translates an object ID into 
a fully qualified object name.

DECLARE @oid int, @obname sysname SET 
@oid=OBJECT_ID('titles') EXEC 
sp_MSget_qualied_name @oid, @obname 
OUT 

sp_MSget_type @tabid, @colid, 
@colname OUT, @type OUT 

Returns the name and type 
of a table column. 

DECLARE @tabid int, @colname sysname, 
@type nvarchar(4000) SET 
@tabid5OBJECT_ID('authors') EXEC 
sp_MSget_type @tabid, 1, @colname OUT, 
@type OUT 

sp_MSguidtostr @guid, @mystr Returns a unique identifier DECLARE @guid uniqueidentier, @guidstr 



Guru’s Guide to Transact-SQL 

436 

OUT as a string. sysname SET @guid=NEWID() EXEC 
sp_MSguidtostr @guid, @guidstr OUT 

sp_MShelpindex @tablename 
[,@indexname] [,@flags] 

Lists index catalog info. sp_MShelpindex 'titles' 

sp_MShelptype [@typename] 
[,@flags='sdt'|'uddt' |NULL] 

List data type catalog info. EXEC sp_MShelptype 'id' EXEC 
sp_MShelptype 'int','sdt' EXEC sp_MShelptype

sp_MSindexspace @tablename 
[,@index_name] 

Lists index size info. EXEC sp_MSindexspace 'titles' 

sp_MSis_pk_col 
@source_table, 

Checks a column to see 
whether it's a primary key. 

DECLARE @res int EXEC 
@res=sp_MSis_pk_col 'titles','title_id',1 
@colname, @indid 

sp_MSkilldb @dbname Uses DBCC DBREPAIR to 
drop a database (even if the 
database isn't damaged). 

sp_MSkilldb 'northwind2' 

sp_MSloginmappings 
@loginname 

Lists login, database, user, 
and alias mappings. 

sp_MSloginmappings 

sp_MStable_has_unique_ index 
@tabid 

Checks a table for a unique 
index. 

DECLARE @objid int, @res int SET 
@objid=OBJECT_ID('titles') EXEC 
@res=sp_MStable_has_unique_index @objid

sp_MStablekeys [tablename] 
[,@colname] [,@type] 
[,@keyname] [,@flags] 

Lists a table's keys. sp_MStablekeys 'titles' 

sp_Mstablerefs 
@tablename,@type= 
N'actualtables', @direction = 
N'primary', @reftable 

Lists the objects a table 
references or that reference 
it. 

sp_MStablerefs 'titleauthor' 

sp_MStablespace [@name] Lists table space 
information. 

sp_MStablespace 'titleauthor' 

sp_MSunc_to_drive 
@unc_path, @local_server, 
@local_path OUT 

Converts a UNC path to a 
drive. 

DECLARE @path sysname EXEC 
sp_MSunc_to_drive '\\PYTHIA\C$\', 
'PYTHIA',@path OUT 

sp_MSuniquecolname 
table_name, @base_colname, 
@unique_colname OUT 

Generates a unique column 
name for a specified table 
using a base name. 

DECLARE @uniquename sysname EXEC 
sp_MSuniquecolname 
'titles','title_id',@uniquename OUT 

sp_Msuniquename @seed, 
@start 

Returns a result set 
containing a unique object 
name for the current 
database using a specified 
seed name and start value.

sp_MSuniquename 'titles',3 

sp_Msuniqueobjectname 
@name_in, @name_ out OUT 

Generates a unique object 
name for the current 
database. 

DECLARE @outname sysname SET 
@outname=" -- Can't be NULL EXEC 
sp_MSuniqueobjectname 'titles',@outname 
OUT 

sp_Msuniquetempname 
@name_in, @name_ out OUT 

Generates a unique 
temporary object (tempdb) 
name using a base name. 

CREATE TABLE tempdb..test (c1 int) 
DECLARE @outname sysname EXEC 
sp_MSuniquetempname 'test',@outname OUT

sp_readerrorlog [@lognum] Lists the system error log 
corresponding to lognum. 
Omit lognum to list the 
current errorlog. 

sp_readerrorlog 

sp_remove_tempdb_le 
@filename 

Removes a le on which 
tempdb is based. 

master..sp_remove_tempdb_le 'tempdev02' 

sp_set_local_time 
[@server_name] 
[,@adjustment_in_ minutes] (for 

Synchronize the computer's 
local time with another 
server (if supplied). 

msdb..sp_set_local_time 



Chapter 20. Undocumented T-SQL 

437 

Win9x) 
Sp_tempdbspace Returns space usage info 

for tempdb. 
sp_tempdbspace 

xp_dirtree 'rootpath' Completely lists all the sub-
directories (and their sub-
directories) of a given path, 
including the node level of 
each directory. 

master..xp_dirtree 'c:\' 

xp_dsninfo @systemdsn Lists ODBC DSN 
information for the specified 
system datasource. 

master..xp_dsninfo 'pubsdsn' 

xp_enum_oledb_providers Enumerates the OLEDB 
providers available on the 
server machine. 

master..xp_enum_oledb_providers 

xp_enumdsn Enumerates the system 
ODBC datasources 
available on the server 
machine. 

master..xp_enumdsn 

xp_enumerrorlogs Enumerates (lists) the 
current server error log les.

master..xp_enumerrorlogs 

xp_fileexist 'filename' Returns a result set 
indicating whether a le 
exists. 

master..xp_fileexist 
'd:\mssql7\install\readme.txt' 

xp_fixeddrives Returns a result set listing 
the fixed drives on the 
server machine. 

master..xp_xeddrives 

xp_get_MAPI_default_ profile Returns the default MAPI 
mail profile. 

master..xp_get_MAPI_default_profile 

xp_get_MAPI_profiles Returns a result set listing 
the system's MAPI profiles.

master..xp_get_MAPI_profiles 

xp_getfiledetails 'filename' Returns a result set listing le 
details for the specified file.

master..xp_getfiledetails 'd:\mssql7\install\ 
readme.txt' 

xp_getnetname Returns the network name 
of the server computer. 

master..xp_getnetname 

xp_oledbinfo @providername, 
@datasource, @location, 
@providerstring, @catalog, 
@login, @password, @infotype 

Returns a result set listing 
detailed OLEDB information 
about a specific linked 
server. 

master..xp_oledbinfo 'SQLOLEDB', 'PYTHIA', 
NULL, NULL, NULL, 'sa', 'drkildare', NULL 

xp_readerrorlog [lognum] Returns a result set (c1 
char(255) c2 int) containing 
the error log specified by 
lognum (omit to get the 
current errorlog). 

master..xp_readerrorlog 

xp_regaddmultistr 
xp_regdeletekey 
xp_regdeletevalue 
xp_regenumvalues xp_regread 
xp_regremovemultistring 
xp_regwrite 

Allows addition, 
modification, and deletion of 
registry keys and key 
values. 

EXEC master..xp_regenumvalues 
'HKEY_LOCAL_ MACHINE', 
'SOFTWARE\Microsoft\MSSQLServer\ 
MSSQLServer' DECLARE @df nvarchar(64) 
EXECUTE master.dbo.xp_regread N'HKEY_ 
CURRENT_USER', N'Control Panel\ 
International', N'sShortDate', @df OUT, 
N'no_output' 

xp_subdirs Returns a result set 
containing a directory's 
immediate subdirectories. 

master..xp_subdirs 'D:\MSSQL7' 

xp_test_MAPI_profile 'profile' Tests the specified MAPI master..xp_test_MAPI_profile 'SQL' 



Guru’s Guide to Transact-SQL 

438 

profile that ensure that it's 
valid and can be connected 
to. 

xp_varbintohexstr Converts a varbinary 
variable to a hexadecimal 
string. 

CREATE PROC sp_hex @i int, @hx 
varchar(30) OUT AS DECLARE @vb 
varbinary(30) SET @vb=CAST(@i as 
varbinary) EXEC master..xp_varbintohexstr 
@vb, @hx OUT GO DECLARE @hex 
varchar(30) EXEC sp_hex 343, @hex OUT 

Summary 

This chapter explored a number of SQL Server trace flags, DBCC commands, functions, variables, and stored 
procedures that are not documented in the Books Online. If you decide to use them in your own work, you 
should do so with care and with the expectation that they may change in a future release of the product. And 
don't expect any support from Microsoft—that's the whole idea of not documenting something—you don't have 
to support it, and you can change it at will. Using the undocumented features of any product—SQL Server 
included—is generally inadvisable. You shouldn't do it unless absolutely necessary. 



Chapter 21. Potpourri 

439 

Chapter 21. Potpourri 
Intolerance is the root of all evil—or at least many kinds of it. That could have been my son or 
your son that was beaten to death and tied to a barbed-wire fence because of his sexual 
preference. Or it could have been your brother or my brother that was dragged behind a 
pickup truck until his head came off. Or it could have been you or me. If you want to rid the 
world of evil, start with intolerance.  

—H. W. Kenton 

This chapter is the catchall of this book. Here, you'll find an assortment of odds and ends that didn't seem to fit 
elsewhere. Banishment to this chapter doesn't necessarily make a topic a second-class citizen. You may find 
some of the techniques presented here quite useful. Being a misfit doesn't necessarily make one a miscreant. 

Obscure Functions 

Each new release of SQL Server has introduced new functions to the Transact-SQL language. There are now 
over fifty of them. With so many functions, it's no surprise that the casual developer might miss a few. Though 
the goal of this book is not to supplant SQL Server's Books Online, a few of these bear mentioning because 
they can save you real work if you know about them. 

Status Functions 

Status functions tell us something about the work environment. SQL Server has a number of these. You're 
probably familiar with some of them; some of them you may not be. Here are a few that stand out from the 
rest in terms of rarity and usefulness: 
GETANSINULL() allows you to determine default nullability for a database. Default nullability is controlled by 
the ANSI null default option of each database (set via sp_dboption), as well as the SET 
ANSI_NULL_DFLT_ON/SET ANSI_NULL_DFLT_OFF session-level commands. GETANSINULL() can 
optionally receive a single parameter—the database you'd like to check. 
Here's some code that uses GETANSINULL(): 
      
DECLARE @animal int 
 
-- Save it off so that we can restore it later 
SET @animal=GETANSINULL('tempdb') 
 
IF (@animal=0) 
  SET ANSI_NULL_DFLT_ON ON 
 
CREATE TABLE #nulltest (c1 int) 
INSERT #nulltest (c1) VALUES (NULL) 
SELECT * FROM #nulltest 
 
IF (@animal=0) -- Reverse the setting above 
  SET ANSI_NULL_DFLT_ON OFF 
 
     
This code uses GETANSINULL() to determine the status of ANSI null default before changing the setting. It 
then creates a temporary table consisting of a single column whose Nullability is unspecified and inserts a 
NULL value into it. Afterwards, it restores the setting to its original value. 
HOST_NAME(), GETDATE(), and USER_NAME() are also handy environmental status functions. Frequently, 
you'll see them used to establish column defaults, though they can also be featured in SELECT lists, as this 
code illustrates: 
      
SELECT HOST_NAME() 
-------------------------------------------------------------------------------- 
PUCK_FEET 



Guru’s Guide to Transact-SQL 

440 

 
     
Here, HOST_NAME() is used to return the current workstation name. 
Another common use of these functions is as column default values. Here's an example: 
      
CREATE TABLE #REPORT_LOG 
(ReportLogId int identity PRIMARY KEY, 
 ReportDate datetime DEFAULT GETDATE(), 
 ReportUser varchar(30) DEFAULT USER_NAME(), 
 ReportMachine varchar(30) DEFAULT HOST_NAME(), 
 ReportName varchar(30) DEFAULT 'UNKNOWN') 
 
INSERT #REPORT_LOG DEFAULT VALUES 
SELECT * FROM #REPORT_LOG 
 
     
(Results abridged) 
      
ReportLogId ReportDate                ReportUser            ReportMachine 
----------- ------------------------- --------------------- -------------------- 
1           1999-06-17 02:10:03.617   dbo                   PUCK_FEET 
 
     
Note the use of INSERT...DEFAULT VALUES to add a row to the table using nothing but default values. 
Nullable columns without default values are inserted with NULL as their value; nonnullable columns without 
defaults cause an error to be generated. 
Note that you could have used the ANSI SQL-92 CURRENT_TIMESTAMP and CURRENT_USER niladic 
functions in place of GETDATE() and USER_NAME(), respectively. USER and SESSION_USER are 
synonyms for CURRENT_USER. Interestingly, ANSI-92 niladic functions such as these may also be featured 
in SELECT lists, like so: 
      
SELECT CURRENT_TIMESTAMP, CURRENT_USER 
 
--------------------------- ---------------------------------------------------- 
1999-06-17 02:32:13.600     dbo 
 
     
The SUSER_NAME() and SUSER_SNAME() functions come in handy if you prefer to default a column to the 
current user's login name rather than his or her database user name (SYSTEM_USER is the ANSI SQL 
equivalent). If your app always logs in as 'sa' and doesn't use database user names, storing the current 
database user name in a table isn't likely to be terribly useful. It will always be "dbo." Storing the user's login 
name will permit you to track user activity without forcing you to set up separate database logins for each user. 
SUSER_NAME() is included in the latest release of SQL Server for backward compatibility only— you should 
use SUSER_SNAME(), instead. SUSER_NAME() no longer maps directly to the SQL Server security model, 
so there's a notable performance penalty for using it. 

Property Functions 

Property functions return information about objects in the database. Usually, this info is in the form of "meta-
data"—data about data. There was a time when getting at even basic meta-data on SQL Server required 
spelunking through system tables. Fortunately, enough functions have been added that that's no longer the 
case. Following are some of the more interesting ones. 
COLUMNPROPERTY() returns useful info about table columns and stored procedure parameters. It takes 
three parameters—the object ID of the table or stored procedure (you can use OBJECT_ID() to get this), the 
name of the column or parameter, and a string expression indicating the exact info you're after. You can refer 
to the Books Online for more information, but some of the more interesting uses of COLUMNPROPERTY() 
are illustrated below: 
      
CREATE TABLE #testfunc 
(k1 int identity PRIMARY KEY, c1 decimal(10,2), c3 AS k1*c1)  



Chapter 21. Potpourri 

441 

 
USE tempdb 
SELECT COLUMNPROPERTY(OBJECT_ID('#testfunc'),'k1','IsIdentity'), 
COLUMNPROPERTY(OBJECT_ID('#testfunc'),'c1','Scale'), 
COLUMNPROPERTY(OBJECT_ID('#testfunc'),'c3','IsComputed'), 
COLUMNPROPERTY(OBJECT_ID('#testfunc'),'k1','AllowsNull') 
 
 ---------- ---------- ---------- ---------- 
1           2          1          0 
 
     
Note the USE tempdb immediately preceding the calls to COLUMNPROPERTY(). It's necessary because the 
object in question resides in tempdb and COLUMNPROPERTY() can't deal with cross-database references. 
DATABASEPROPERTY() is similar to COLUMNPROPERTY() in that it returns property-level info about an 
object—in this case, a database. It takes two parameters—the name of the database and the property you're 
after. Here are some examples that use DATABASEPROPERTY(): 
      
SELECT 
   DATABASEPROPERTY('pubs','IsBulkCopy'), 
     DATABASEPROPERTY('pubs','Version'), 
     DATABASEPROPERTY('pubs','IsAnsiNullsEnabled'), 
     DATABASEPROPERTY('pubs','IsSuspect'), 
     DATABASEPROPERTY('pubs','IsTruncLog') 
-------- ---------- ---------- ---------- ---------- ---------- 
1        515        0          0          1 
 
     
In the old days, you had to query master..sysdatabases and translate cryptic bit masks in order to get this 
information. Now, Transact-SQL makes the job much easier, completely insulating the developer from the 
underlying implementation details. 
TYPEPROPERTY() returns property-level information about data types. It takes two parameters—the name of 
the data type you want to inspect and a string expression indicating the property in which you're interested. 
The data type you supply can be either a system-supplied type or a user-defined data type. Here's a query 
that uses TYPEPROPERTY(): 
      
SELECT TYPEPROPERTY('id','AllowsNull') 
----------- 
0 
 
     

Identifier Functions 

IDENT_SEED() and IDENT_INCR() return the seed and increment settings for identity columns. Each function 
takes a single parameter—a string expression that specifies the name of the table you want to inspect (you 
specify a table rather than a column because each table is limited to one identity column). 
IDENTITYCOL is a niladic function that returns the value of a table's identity column. You can use it in 
SELECT statements to return an identity column's value without referencing the column by name, like so: 
      
CREATE TABLE #testident (k1 int identity, c1 int DEFAULT 0)  
 
INSERT #testident DEFAULT VALUES 
INSERT #testident DEFAULT VALUES 
INSERT #testident DEFAULT VALUES 
 
SELECT IDENTITYCOL FROM #testident 
 
     



Guru’s Guide to Transact-SQL 

442 

This is handy for writing generic routines that copy data from table to table, for example. If you establish a 
convention of always keying your tables using an identity column, IDENTITYCOL provides a generic way of 
referencing each table's primary key without having to know it in advance. 
The IDENTITY() function allows you to create tables, using SELECT..INTO, that contain new identity columns. 
Previously, this required adding the identity column after the table was created using ALTER...TABLE. Here's 
an example that features IDENTITY(): 
      
SELECT AuthorId=IDENTITY(int), au_lname, au_fname INTO #testident FROM authors 
USE tempdb 
SELECT COLUMNPROPERTY(OBJECT_ID('#testident'),'AuthorId','IsIdentity') 
1 
 
     
Though, technically speaking, it doesn't have anything to do with identity columns, NEWID() is similar to 
IDENTITY() in that it generates unique identifiers. It returns a value of type uniqueidentifier and is most often 
used to supply a default value for a column. Here's an example: 
      
CREATE TABLE #testuid (k1 uniqueidentifier DEFAULT NEWID(), k2 int identity)  
INSERT #testuid DEFAULT VALUES 
INSERT #testuid DEFAULT VALUES 
INSERT #testuid DEFAULT VALUES 
INSERT #testuid DEFAULT VALUES 
 
SELECT * FROM #testuid 
 
k1                                   k2 
------------------------------------ --------- 
F4F407B5-244F-11D3-934F-005004044A19 1 
F4F407B6-244F-11D3-934F-005004044A19 2 
F4F407B7-244F-11D3-934F-005004044A19 3 
F4F407B8-244F-11D3-934F-005004044A19 4 
 
     
The uniqueidentifier data type corresponds to the Windows GUID type. It's a unique value that is guaranteed 
to be unique across all networked computers in the world. You can use the ROWGUIDCOL keyword to 
designate a single uniqueidentifier column in each table as a global row identifier. Once you've done this, you 
can use ROWGUIDCOL analogously to IDENTITYCOL to return a table's uniqueidentifier column without 
referencing it directly, like so: 
      
CREATE TABLE #testguid 
(k1 uniqueidentifier ROWGUIDCOL DEFAULT NEWID(), k2 int identity) INSERT 
#testguid  
 

DEFAULT VALUES 
 
INSERT #testguid DEFAULT VALUES 
INSERT #testguid DEFAULT VALUES 
INSERT #testguid DEFAULT VALUES 
 
SELECT ROWGUIDCOL FROM #testguid 
 
     

Index Functions 

INDEX_COL() returns the column name of a particular index key column. You can use it to iterate through a 
table's indexes, displaying each set of key columns as you go. Here's a code sample that illustrates how to 
use INDEX_COL(): 
      
SELECT TableName=OBJECT_NAME(id), IndexName=name,  



Chapter 21. Potpourri 

443 

 
KeyName=INDEX_COL(OBJECT_NAME(id),indid,1) -- Just get the first key 
FROM sysindexes 
 
     
(Results abridged) 
      
TableName       IndexName            KeyName 
--------------- -------------------- ------------------------------- 
authors         UPKCL_auidind        au_id 
authors         aunmind              au_lname 
publishers      UPKCL_pubind         pub_id 
titles          UPKCL_titleidind     title_id 
titles          titleind             title 
titleauthor     UPKCL_taind          au_id 
titleauthor     auidind              au_id 
titleauthor     titleidind           title_id 
stores          UPK_storeid          stor_id 
sales           UPKCL_sales          stor_id 
sales           titleidind           title_id 
sales           _WA_Sys_payterms_1A1 payterms 
 
     
Note that the INFORMATION_SCHEMA.KEY_COLUMN_USAGE system schema view provides the same 
information. Querying KEY_COLUMN_USAGE is the ANSI SQL-compliant method of accessing index column 
schema information. It also has the advantage of being immune to changes in the underlying system tables 
between releases of SQL Server. 
The INDEXPROPERTY() function, like the COLUMNPROPERTY() and DATABASEPROPERTY() functions, 
returns schema-level information. Like COLUMNPROPERTY(), it takes three arguments—the ID of the 
index's host table, the name of the index, and a string expression indicating what info you'd like. Here's a 
query that uses INDEXPROPERTY(): 
      
SELECT 
   TableName=CAST(OBJECT_NAME(id) AS varchar(15)), 
   IndexName=CAST(name AS VARCHAR(20)), 
   KeyName=CAST(INDEX_COL(OBJECT_NAME(id),indid,1) AS VARCHAR(30)), 
   "Clustered?"=CASE INDEXPROPERTY(id,name,'IsClustered') WHEN 1 THEN 'Yes' ELSE 
'No' END, 
   "Unique?"=CASE INDEXPROPERTY(id,name,'IsUnique') WHEN 1 THEN 'Yes' ELSE 'No' 
END 
FROM sysindexes 
 
     
(Results abridged) 
      
TableName       IndexName            KeyName              Clustered?     Unique? 
--------------- -------------------- --------------------- ---------- ------- 
authors         UPKCL_auidind        au_id                Yes       Yes 
authors         aunmind              au_lname             No        No 
publishers      UPKCL_pubind         pub_id               Yes       Yes 
titles          UPKCL_titleidind     title_id             Yes       Yes 
titles          titleind             title                No        No 
titleauthor     UPKCL_taind          au_id                Yes       Yes 
titleauthor     auidind              au_id                No        No 
titleauthor     titleidind           title_id             No        No 
stores          UPK_storeid          stor_id              Yes       Yes 
sales           UPKCL_sales          stor_id              Yes       Yes 
sales           titleidind           title_id             No        No 
sales           _WA_Sys_payterms_1A1 payterms             No        No 
 
     



Guru’s Guide to Transact-SQL 

444 

Again, it's preferable to use the KEY_COLUMN_USAGE system view to get this type of information rather 
than querying sysindexes directly. 
STATS_DATE() returns the date the index statistics were last updated for a particular index. This is handy for 
determining when to issue UPDATE STATISTICS for the indexes in a database. You could easily write a 
query that checks each index's last statistics date and issues UPDATE STATISTICS commands for those 
considered out of date. Here's a query that does just that: 
      
DECLARE c CURSOR FOR 
SELECT 
  TableName=OBJECT_NAME(id), 
  IndexName=name, 
  StatsUpdated=STATS_DATE(id, indid) 
FROM sysindexes 
WHERE 
OBJECTPROPERTY(id,'IsSystemTable')=0 
AND indid>0 
AND indid<255 
 
DECLARE @tname varchar(30), 
  @iname varchar(30), 
  @dateupd datetime 
 
OPEN c 
FETCH c INTO @tname, @iname, @dateupd 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  IF (SELECT DATEDIFF(dd,ISNULL(@dateupd,'19000101'),GETDATE()))>30 BEGIN 
    PRINT 'UPDATE STATISTICS '+@tname+' '+@iname 
    EXEC('UPDATE STATISTICS '+@tname+' '+@iname) 
  END 
  FETCH c INTO @tname, @iname, @dateupd 
END 
 
CLOSE c 
DEALLOCATE c 
 
     
(Results abridged) 
      
UPDATE STATISTICS authors UPKCL_auidind 
UPDATE STATISTICS authors aunmind 
UPDATE STATISTICS publishers UPKCL_pubind 
UPDATE STATISTICS titles UPKCL_titleidind 
UPDATE STATISTICS titles titleind 
UPDATE STATISTICS titleauthor UPKCL_taind 
UPDATE STATISTICS titleauthor auidind 
UPDATE STATISTICS titleauthor titleidind 
UPDATE STATISTICS stores UPK_storeid 
UPDATE STATISTICS sales UPKCL_sales 
UPDATE STATISTICS sales titleidind 
 
     
Of course, you could get the same basic functionality with the sp_updatestats system procedure—it updates 
the statistics of every index on every table in a database, but you might not want to update all of them—you 
might want to be a bit more selective. Updating statistics can take a long time on large tables, so you'll want to 
run it only against tables it actually benefits and when system utilization is low. Also, keep in mind that SQL 
Server can maintain index statistics information for you automatically, alleviating much of the need for 
UPDATE STATISTICS. You can turn automatic statistic generation on for a given table via sp_autostats or for 
the entire database via sp_dboption. 



Chapter 21. Potpourri 

445 

Data Functions 

ISDATE() and ISNUMERIC() return 1 or 0 based on whether a given expression evaluates to a date or 
numeric value, respectively. These can be handy for data scrubbing operations where you need to convert a 
character column to a date or numeric but need to check it first for invalid entries. Here's a query that 
searches for bad dates in a character field: 
      
CREATE TABLE #testis (c1 char(8) NULL) 
INSERT #testis VALUES ('19990131') 
INSERT #testis VALUES ('20000131') 
INSERT #testis VALUES ('19990229') 
INSERT #testis VALUES ('20000229') 
INSERT #testis VALUES ('19990331') 
INSERT #testis VALUES ('20000331') 
SELECT * 
FROM #testis 
WHERE ISDATE(c1)=0 
c1 
19990229 
 
     
This query returns 19990229 because 1999 wasn't a leap year, making February29 an invalid date. 
DATALENGTH() returns the actual length of the data stored in a column rather than the length of the column 
itself. Though it can be used with any data type, it's more commonly used with character, binary, and BLOB 
columns, since they can vary in length. The data length of a fixed data type (such as int) never varies, 
regardless of the value it contains. DATALENGTH() has more uses than you might think, most of them having 
to do with formatting result sets or data. Here's some sample code from a previous chapter that makes novel 
use of DATALENGTH(): 
      
CREATE TABLE #array (k1 int identity, arraycol varchar(8000)) 
INSERT #array (arraycol) VALUES  ('LES PAUL       '+ 
                                 'BUDDY GUY      '+ 
                                 'JEFF BECK      '+ 
                                 'JOE SATRIANI   ') 
INSERT #array (arraycol) VALUES ('STEVE MILLER   '+ 
                                 'EDDIE VAN HALEN'+ 
                                 'TOM SCHOL      ') 
INSERT #array (arraycol) VALUES ('STEVE VAI      '+ 
                                 'ERIC CLAPTON   '+ 
                                 'SLASH          '+ 
                                 'JIMI HENDRIX   '+ 
                                 'JASON BECKER   '+ 
                                 'MICHAEL HARTMAN') 
 -- To set the fourth element 
UPDATE #array 
SET arraycol = 
LEFT(arraycol,(3*15))+'MUDDY WATERS   '+ 
RIGHT(arraycol,CASE WHEN (DATALENGTH(arraycol)-(4*15))<0 THEN 0 ELSE  
 

DATALENGTH(arraycol)-(4*15) END) 
WHERE k1=2 
 
SELECT 
   Element1=SUBSTRING(arraycol,(0*15)+1,15), 
   Element2=SUBSTRING(arraycol,(1*15)+1,15), 
   Element3=SUBSTRING(arraycol,(2*15)+1,15), 
   Element4=SUBSTRING(arraycol,(3*15)+1,15), 
   Element5=SUBSTRING(arraycol,(4*15)+1,15), 
   Element6=SUBSTRING(arraycol,(5*15)+1,15) 
FROM #array a 



Guru’s Guide to Transact-SQL 

446 

 
     
(Results abridged) 
      
Element1       Element2          Element3     Element4 
-------------- ----------------- ------------ -------------- 
LES PAUL       BUDDY GUY         JEFF BECK    JOE SATRIANI 
STEVE MILLER   EDDIE VAN         HALEN TOM    SCHOLZ MUDDY WATERS 
STEVE VAI      ERIC CLAPTON      SLASH        JIMI HENDRIX 
 
     

Unusual String Functions 

Using FORMATMESSAGE(), you can format strings using a printf()-like syntax. It takes a parameter 
specifying the ID of the message from the master..sysmessages table that you want to use, as well as a list of 
arguments to insert into the message. FORMATMESSAGE() works similarly to RAISERROR(), except that it 
doesn't return an error. Instead, it returns the resulting message as a string, which you may then do with as 
you please. Unfortunately, FORMATMESSAGE() is limited to messages that exist in sysmessages—you can't 
use it to format a plain character string. Here's a technique for working around that: 
      
DECLARE @msg varchar(60), @msgid int, @pub_id varchar(10), @inprint int 
SELECT @msgid=ISNULL(MAX(error)+1,999999) FROM master..sysmessages WHERE error > 
50000 
SELECT @pub_id=CAST(pub_id AS varchar), @inprint=COUNT(*) FROM titles GROUP BY 
pub_id --  
 

Get the last one 
BEGIN TRAN 
EXEC sp_addmessage @msgid,1,'Publisher: %s has %d titles in print' 
SET @msg=FORMATMESSAGE(@msgid,@pub_id,@inprint) 
ROLLBACK TRAN 
SELECT @msg 
 
New message added. 
------------------------------------------------------------ 
 
Publisher: 1389 has 6 titles in print 
 
     
This approach adds the string to sysmessages within a transaction for the express purpose of manipulating it 
with FORMATMESSAGE(). Once the string is formatted, it rolls the transaction back so that the message is 
removed from sysmessages. What you end up with is the ability to format a string without it having to be a 
permanent member of sysmessages first. 
Admittedly, that's a lot of code for a menial task like this. The logical thing to do here would be to generalize 
the technique by moving the code into a stored procedure. Unfortunately, this isn't easily done because 
Transact-SQL doesn't support variable stored procedure parameters—you can't specify an unlimited number 
of variably typed parameters, which is what's needed to exploit the capabilities of FORMATMESSAGE(). 
The system procedure xp_sscanf() provides a similar functionality and can handle a variable number of 
arguments but, unfortunately, supports only string parameters. It supports a variable number of parameters 
because it's not a true stored procedure—it's an extended procedure, and extended procedures are not 
written in Transact-SQL. They reside outside the server in a DLL and are usually written in C or C11. For the 
time being, it would probably be faster to cast nonstrings as strings and either call xp_sscanf() or use simple 
string concatenation to merge them with the message string. 
PARSENAME() is handy for extracting the various parts of an object name. SQL Server object names have 
four parts: 
[server.][database.][owner.]object 
You can return any of these four parts using PARSENAME(), like so: 
      
DECLARE @objname varchar(30) 



Chapter 21. Potpourri 

447 

SET @objname='KHEN.master.dbo.sp_who' 
SELECT ServerName=PARSENAME(@objname,4), 
       DatabaseName=PARSENAME(@objname,3), 
       OwnerName=PARSENAME(@objname,2), 
       ObjectName=PARSENAME(@objname,1) 
ServerName      DatabaseName    OwnerName       ObjectName 
--------------- --------------- --------------- --------------- 
KHEN            master          dbo             sp_who 
 
     
QUOTENAME() surrounds a string with either double quotation marks (""), single quotation marks (''), or 
brackets ([]). It can be especially handy when building SQL to execute via EXEC(). Here's a code sample from 
an earlier chapter that uses QUOTENAME() to create SQL code for execution by EXEC(): 
      
CREATE TABLE #array (k1 int identity, arraycol varchar(8000)) 
 
INSERT #array (arraycol) VALUES ('LES PAUL       '+ 
                                 'BUDDY GUY      '+ 
                                 'JEFF BECK      '+ 
                                 'JOE SATRIANI   ') 
INSERT #array (arraycol) VALUES ('STEVE MILLER   '+ 
                                 'EDDIE VAN HALEN'+ 
                                 'TOM SCHOLZ     ') 
INSERT #array (arraycol) VALUES ('STEVE VAI      '+ 
                                 'ERIC CLAPTON   '+ 
                                 'SLASH          '+ 
                                 'JIMI HENDRIX   '+ 
                                 'JASON BECKER   '+ 
                                 'MICHAEL HARTMAN') 
DECLARE @arrayvar varchar(8000), @select_stmnt varchar(8000) 
DECLARE @k int, @i int, @l int, @c int 
DECLARE c CURSOR FOR SELECT * FROM #array 
 
SET @select_stmnt='SELECT ' 
SET @c=0 
 
OPEN c 
FETCH c INTO @k, @arrayvar 
 
WHILE (@@FETCH_STATUS=0) BEGIN 
  SET @i=0 
  SET @l=DATALENGTH(@arrayvar)/15 
  WHILE (@i<@l) BEGIN 
    SELECT @select_stmnt=@select_stmnt+'Guitarist'+CAST(@c as 
varchar)+'='+QUOTENAME(RTRIM(SUBSTRING(@arrayvar,(@i*15)+1,15)),'"')+',' 
  SET @i=@i+1 
  SET @c=@c+1 
 END 
 FETCH c INTO @k, @arrayvar 
END 
CLOSE c 
DEALLOCATE c 
 
SELECT @select_stmnt=LEFT(@select_stmnt,DATALENGTH(@select_stmnt)-1) 
 
EXEC(@select_stmnt) 
 
     
(Results abridged) 
      
Guitarist0 Guitarist1 Guitarist2 Guitarist3   Guitarist4 



Guru’s Guide to Transact-SQL 

448 

---------- ---------- ---------- ------------ ------------ 
LES PAUL   BUDDY GUY  JEFF BECK  JOE SATRIANI STEVE MILLER 

Data Scrubbing 

The task of cleaning up data received from sources outside SQL Server is a common one. Whether the data 
is migrated from a legacy system, generated by hardware, or produced by some other means, it's fairly 
common to need to scan it for bad values. 
The first step in removing bad data is to locate it. To that end, let's consider the problem of finding duplicate 
values among the rows in a table. It's not enough that we merely return those duplicate values—that would be 
trivial considering we have GROUP BY and SQL's aggregate functions at our disposal. We need to return the 
actual rows that contain the duplicate values so that we can deal with them. We might want to delete them, 
move them to another table, fix them, and so on. Let's assume we begin with the following table of employee 
IDs and in-case-of-emergency phone numbers. The folks who hired us believe they may have duplicate 
entries in this list and have determined that the best way to identify them is to locate duplicate ICE numbers. 
Here's the table: 
     
CREATE TABLE #datascrub 
(EmpID int identity, 
ICENumber1 varchar(14), 
ICENumber2 varchar(14)) 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(101)555-1212','(101)555-1213') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(201)555-1313','(201)555-1314') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(301)555-1414','(301)5551415') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(401)555-1515','(401)555-1516') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(501)555-1616','(501)555-1617') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(101)555-1211','(101)555-1213') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(201)555-1313','(201)555-1314') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(301)555-1414','(301)555-1415') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(401)555-1515','(401)555-1516') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(501)555-1616','(501)555-1617') 
 
    
The most obvious way to locate duplicates here is to perform a cross-join of the table with itself, like this: 
     
SELECT d.EmpId, d.ICENumber1, d.ICENumber2 
FROM #datascrub d CROSS JOIN #datascrub a 
WHERE (d.EmpId<>a.EmpId) 
  AND (d.ICENumber1=a.ICENumber1) 
  AND (d.ICENumber2=a.ICENumber2) 
 



Chapter 21. Potpourri 

449 

EmpId      ICENumber1     ICENumber2 
---------- -------------- -------------- 
2          (201)555-1313  (201)555-1314 
4          (401)555-1515  (401)555-1516 
7          (201)555-1313  (201)555-1314 
9          (401)555-1515  (401)555-1516 
 
    
This approach has a couple of problems—first and foremost is efficiency or, rather, the lack of it. Cross-joins 
are notoriously inefficient and even impractical for extremely large tables. A better way would be to use a 
correlated subquery, like this: 
     
SELECT d.EmpId, d.ICENumber1, d.ICENumber2 
FROM #datascrub d 
WHERE EXISTS (SELECT a.ICENumber1, a.ICENumber2 FROM #datascrub a 
                                      WHERE a.ICENumber1=d.ICENumber1 
                                        AND a.ICENumber2=d.ICENumber2 
                                        GROUP BY a.ICENumber1, a.ICENumber2 
 
    
This technique uses GROUP BY and COUNT() to identify duplicate values within the subquery and then 
correlates those values with the outer query to restrict the rows returned. It returns the same result set as the 
previous query but doesn't require a cross-join. With small tables, the difference this makes won't be 
noticeable. In fact, the self-join technique may actually be faster with really small tables like this one. However, 
the larger the table becomes, the more noticeably faster this technique becomes. The optimizer is able to use 
the EXISTS predicate to return from the inner query as soon as even one row satisfies the conditions imposed. 
An even better way of doing this replaces the subquery with a derived table, like so: 
     
SELECT d.EmpId, d.ICENumber1, d.ICENumber2 
FROM #datascrub d, (SELECT t.ICENumber1, t.ICENumber2 FROM #datascrub t 
                                            GROUP BY t.ICENumber1, t.ICENumber2 
                                                HAVING COUNT(*) >=2) a 
WHERE (d.ICENumber1=a.ICENumber1) 
  AND (d.ICENumber2=a.ICENumber2) 
 
    
This technique embeds most of the previous example's subquery in a derived table that it then performs an 
inner join against. This solution is plain, no-frills Transact-SQL, and it's very efficient, regardless of table size. 
I mentioned early on that the first approach to solving this problem had a couple of fundamental flaws. The 
first of those was inefficiency. We've solved that one. The second one is that neither the initial solution nor any 
of the code samples presented since finds all duplicate rows. Why? Because the duplicates are disguised a 
little more cleverly than they might have first appeared. Look closely at the INSERT statements. Notice 
anything peculiar about any of the ICE numbers? Exactly! Some of them are formatted incorrectly, hiding 
potential duplicates from our routines. To find all duplicates, we need to standardize the formatting of the 
columns we're scanning. The best way to do this is simply to remove that formatting—to reduce the data to its 
bare essence. This is a common situation and, depending on the data, can be critical to a successful 
scrubbing. Here's a revised query that takes the possibility of bad formatting into account. Check out the 
difference this makes in the resultset. 
     
SELECT d.EmpId, d.ICENumber1, d.ICENumber2 
FROM #datascrub d, (SELECT ICENumber1=REPLACE(REPLACE(REPLACE(t.ICENumber1,'-
',''),  
 

'(',''),')',''), 
                           ICENumber2=REPLACE(REPLACE(REPLACE(t.ICENumber2,'-
',''),  
 

'(',''),')','') 
                    FROM #datascrub t 
                    GROUP BY REPLACE(REPLACE(REPLACE(t.ICENumber1,'-',''),  
 



Guru’s Guide to Transact-SQL 

450 

'(',''),')',''), 
                             REPLACE(REPLACE(REPLACE(t.ICENumber2,'-',''), 
'(',''),')','') 
                    HAVING COUNT(*) >=2) a 
WHERE (REPLACE(REPLACE(REPLACE(d.ICENumber1,'-',''),'(',''),')','') 
       =REPLACE(REPLACE(REPLACE(a.ICENumber1,'-',''),'(',''),')','')) 
AND (REPLACE(REPLACE(REPLACE(d.ICENumber2,'-',''),'(',''),')','') 
     =REPLACE(REPLACE(REPLACE(a.ICENumber2,'-',''),'(',''),')','')) 
EmpId       ICENumber1     ICENumber2 
----------- -------------- -------------- 
2           (201)555-1313  (201)555-1314 
7           (201)555-1313  (201)555-1314 
3           (301)555-1414  (301)555-1415 
8           (301)555-1414  (301)555-1415 
4           (401)555-1515  (401)555-1516 
9           (401)555-1515  (401)555-1516 
5           (501)555-1616  (501)555-1617 
10          (501)555-1616  (501)555-1617 
 
    
Of course, this could be extended to any number of delimiters, including spaces, commas, and so forth. This 
is one case where stored function support would really be nice. It would allow us to hide all the 
implementation details of the character stripping in a function that we could then call as needed. 

Removing Duplicates 

Once the duplicate rows are identified, deleting or moving them to another table is fairly straightforward. You 
couldn't simply translate the main SELECT into a DELETE statement as that would delete both the duplicate 
andthe original. It's easy enough to do but would probably get you fired. Instead, you could use a cursor 
defined with the same basic SELECT as the code above to cruise through the table. You could save each pair 
of phone numbers off as you traversed the cursor and then iterate through the duplicates, deleting them as 
you go. 
This would work, but there may be a better way. You may be able to use SQL Server's ability to toss duplicate 
keys when it builds an index to scrub your data. Here's an example: 
      
CREATE TABLE #datascrub 
(EmpID int identity, 
ICENumber1 varchar(14), 
ICENumber2 varchar(14)) 
 
CREATE UNIQUE INDEX #datascrub ON #datascrub (ICENumber1, ICENumber2) 
WITH IGNORE_DUP_KEY 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(101)555-1212','(101)555-1213') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(201)555-1313','(201)555-1314') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(301)555-1414','(301)555-1417') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(401)555-1515','(401)555-1516') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(501)555-1616','(501)555-1618') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(101)555-1211','(101)555-1213') 



Chapter 21. Potpourri 

451 

 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(201)555-1313','(201)555-1314') 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(301)555-1414','(301)555-1415') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(401)555-1515','(401)555-1516') 
 
INSERT #datascrub (ICENumber1, ICENumber2) 
VALUES ('(501)555-1616','(501)555-1617') 
 
SELECT * FROM #datascrub 
 
Server: Msg 3604, Level 16, State 1, Line 0 
Duplicate key was ignored. 
Server: Msg 3604, Level 16, State 1, Line 34 
Duplicate key was ignored. 
EmpId       ICENumber1      ICENumber2 
----------- -------------- -------------------- 
1           (101)555-1212  (101)555-1213 
2           (201)555-1313  (201)555-1314 
3           (301)555-1414  (301)555-1417 
4           (401)555-1515  (401)555-1516 
5           (501)555-1616  (501)555-1618 
6           (101)555-1211  (101)555-1213 
8           (301)555-1414  (301)555-1415 
10          (501)555-1616  (501)555-1617 
 
     
The key here is CREATE INDEX's IGNORE_DUP_KEYS option. Note that you can't build a UNIQUE index 
over a table with duplicate keys regardless of the IGNORE_DUP_KEYS option—that's why the code above 
creates the index, then inserts the data. As you can see, attempting to insert a duplicate key value (in this 
case, we defined the key as the two columns we want to scan for duplicates) generates a warning but 
otherwise allows the query batch to proceed. 
Note that this technique works only with "simple" duplicates—ones that don't involve delimiters and 
extraneous character removal (i.e., noncharacter types, for the most part). If your needs are as complex as 
the above technique that made use of nested REPLACE() functions, CREATE INDEX...WITH 
IGNORE_DUP_KEYS won't get the job done since SQL Server can't detect these more cleverly hidden 
duplicates. 

Iteration Tables 

It's common to need to loop through a set of values and perform some sort of computation on them. Normally, 
this is done in Transact-SQL using the WHILE looping construct, or, if you're a glutton for punishment by your 
colleagues, an illicit GOTO may do the trick. But there's a better way, if you're willing to give up a tiny amount 
of disk space for a static iteration table. An iteration table is a simple table containing a sequence of numbers 
that you use for iterative types of computations rather than looping. It's stored permanently in one of your 
databases (placing it in model will cause it to be copied to tempdb with each system restart) and can be 
filtered like any other table with a WHERE clause. To see how this works, consider the following example. 
Let's say that we want to display a table of the squares of all numbers between one and one hundred. If this 
table already exists: 
     
CREATE TABLE iterate (I int identity(-100,1)) 
DECLARE @loop int 
SET @loop=-100 
 
WHILE (@loop<101) BEGIN 
  INSERT iterate DEFAULT VALUES 
  SET @loop=@loop+1 



Guru’s Guide to Transact-SQL 

452 

END 
 
SELECT * FROM iterate 
 
I 
------------ 
-100 
-99 
-98 
(...) 
0 
1 
(...) 
99 
100 
    
writing the query is simple: 
     
SELECT SQUARE=SQUARE(I) FROM iterate 
WHERE I BETWEEN 1 AND 100 
 
    
It's fast and far more efficient than having to loop using WHILE every time we need a result set like this. Note 
the use of the negative seed for iterate's identity column. This allows us to perform computations against 
negative as well as positive numbers. A nice future SQL Server enhancement would be an automatic table of 
some sort (along the lines of Oracle's DUAL table) that you specify similarly to an identity column with a seed 
and an increment during a query. This would alleviate the requirement of a permanent iteration table in the 
example above. 

Summary 

This chapter introduced you to an assortment of esoteric and fringe Transact-SQL elements. The functions, 
commands, and techniques presented here are important but don't seem to fit elsewhere in the book. 
Knowing about them may save you real work in your own applications. 



Appendix A. Suggested Resources 

453 

Appendix A. Suggested Resources 
The following is a list of resources that you may find useful in enhancing your knowledge of SQL Server, 
Transact-SQL, and SQL in general. The list is divided into two groups: Books and Internet Resources. 

Books 

I owe a great debt to the many wonderful SQL books out there. Here are a few I've found particularly useful in 
my work: 
Bjeletich, Sharon and Greg Mable, et al. 1999. Microsoft SQL Server 7.0 Unleashed. Sams Publishing. ISBN: 
0-672-31227-1. 
Celko, Joe. 1999. Joe Celko's Data & Databases: Concepts in Practice. Morgan Kaufmann Publishers. ISBN: 
1-55860-432-4. 
Celko, Joe. 1997. Joe Celko's SQL Puzzles & Answers. Morgan Kaufmann Publishers. ISBN: 1-55860-453-7. 
Celko, Joe. 1995. Joe Celko's SQL for Smarties. Morgan Kaufmann Publishers. ISBN: 1-55860-323-9. 
Date, C. J. 1994. An Introduction to Database Systems. Addison-Wesley. ISBN: 0-201-38590-2. 
Date, C. J. with Hugh Darwen. 1993. A Guide to the SQL Standard. Addison-Wesley. ISBN: 0-201-96426-0. 
Groff, James R. and Paul N. Weinberg. 1999. SQL (The Complete Reference). Osborne. ISBN: 0-07211845-8. 
Kline, Kevin, Lee Gould, and Andrew Zanevsky. 1999. Transact-SQL Programming. O'Reilly & Associates. 
ISBN: 1-56592-401-0. 
Melton, Jim and Alan R. Simon. 1993. Understanding the new SQL: A Complete Guide. Morgan Kaufmann 
Publishers. ISBN: 1-55860245-3. 
Rozenshtein, David, Anatoly Abramovich, and Eugene Birger. 1995.Optimizing Transact-SQL: Advanced 
Programming Techniques. SQL Forum Press. ISBN: 0-9649812-0-3. 
Solomon, David and Ray Rankins, et al. 1996. Microsoft SQL Server 6.5 Unleashed. Sams Publishing. ISBN: 
0-672-30956-4. 
Soukup, Ron. 1997. Inside Microsoft SQL Server 6.5. Microsoft Press. ISBN: 1-57231-331-5. 
Soukup, Ron and Kalen Delaney. 1999. Inside Microsoft SQL Server 7.0. Microsoft Press. ISBN: 0-7356-
0517-3. 

Internet Resources 

The number of SQL Server–related Internet resources has exploded over the last couple of years. The table 
below lists a few of them: 

comp.databases.ms-sqlserver A general-purpose Microsoft SQL Server 
newsgroup. 

forumsb.compuserve.com/gvforums/default.asp?srv=sqlserver
CompuServe forum dedicated to SQL Server 
(also accessible via GO MSSQL in 
CompuServe software). 

microsoft.public.sqlserver. programming 
A Microsoft-hosted newsgroup dedicated to 
SQL Server programming issues, especially 
those related to Transact-SQL. 

http://www.acm.org  
The primary public Web site of the Association 
for Computing Machinery—the world's first 
educational and scientific computing society. 

http://www.microsoft.com/sql 

The section of the primary Microsoft public 
Web site that's dedicated to SQL Server. You 
can download a number of useful files from 
this site, including a demo copy of SQL Server 
itself. 

http://www.ntfaq.com/sql.html An FAQ (frequently asked questions) page for 
SQL Server. 

http://www.sqlwire.com  A site dedicated to tracking SQL Server–
related news. 

http://www.swynk.com  A Web site that's independent of Microsoft and 



 

454 

provides useful info on several Microsoft 
products including SQL Server. 

 


