"H-;'qur ArFe o Serions H.'-'i'l'a_l,l"."":f,gf.. The Guru's Guide to
[ransact-50QL 15 a must=-have for your reference library, "'
— ||'.|:|'Jr| Nupder, KON Education Services

Cﬂﬂeﬂg

Mieyy,
]}unﬁ' ﬂaf_Sp)/ ’

The Guru’s
Guideto
Transact-SOL

KEN HENDERSON

Foreword by _IUL‘ Celko

Guru’s Guide to Transact-SQL

The Guru's Guide to Transact-SQL

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts * Harlow, England ¢« Menlo Park, California

Berkeley, California « Don Mills, Ontario * Sydney

Bonn ¢« Amsterdam ¢ Tokyo ¢ Mexico City

Copyright Information

Copyright © 2000 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Warning and Disclaimer

The author and publisher have taken care in the preparation of this book but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

Corporate, Government, and Special Sales Group

Addison Wesley Longman, Inc.

One Jacob Way

Reading, Massachusetts 01867

(781) 944-3700

Visit AW on the Web: http://www.awl.com

Library of Congress Cataloging-in-Publication Data

Henderson, Kenneth W.The guru's guide to Transact-SQL / Kenneth W. Henderson.p. cm.Includes
bibliographical references and index.

1. SQL (Computer program language) I. Title.

QA76.73.S67 H47 2000

005.7596—dc21

99-057209Copyright © 2000 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Text printed on recycled and acid-free paper.

123456789 10—MA—03 02 01 00

1st Printing, June 2000

ForH

Foreword

Foreword

What Ken Henderson wanted to do is to write the best possible book on real, practical programming in
Transact-SQL available, bar none. He succeeded. Ken had most of these tricks in his head when he started
this book. When you work for a living, you tend to pick things up. If you are smart, you save them, study them,
and figure out why they worked and something else did not work. If you are a nice person, you write a book so
someone else can benefit from your knowledge. It is very hard for a person new to a language to walk into a
project knowing only the syntax and a few rules and write a complex program. Ever try to get along in a
foreign country with only a dictionary and a pocket grammar book?

Okay, we now have a goal for this book. The next step is how to write so that someone can use it. Writing in
the age of the Internet is really different from the days when Victor Hugo would stand by a writing desk and
write great novels on one continuous strip of paper with a quill pen. Today, within the week that a book hits
hardcopy, the author can expect some compulsive geek with an email connection to read it and find
everything that the author left out or got wrong and every punctuation mark that the proofreader or typesetter
missed. In short, you can be humiliated at the speed of light.

But this can work both ways. When you are writing your book, you can exploit this vast horde of people who
have nothing better to do with their time than be your unpaid research staff!

Since | have a reputation for expertise in SQL standards and programming, | was one of the people he
emailed and asked to look over the manuscript. Neat stuff and some tricks | had not seen before! Suddenly,
we are swapping ideas and | am stealing—er, researching—my next book, too. Well, communication is a two
way street, you know.

| think you will find this book to be an easy read with a lot of good ideas and code samples. While this is
specifically a Transact-SQL book, you will find that many of the approaches and techniques will work with any
SQL product. Enjoy!

—Joe Celko

Preface

Preface

This is a coder's book. It's intended to help developers build applications that make use of Transact-SQL. It's
not about database administration or design. It's not about end-user or GUI application development. It's not
even about server or database performance tuning. It's about developing the best Transact-SQL code
possible, regardless of the application.

When | began writing this book, | had these design goals in mind:

Be very generous with code samples—don't just tell readers how to do something, show them.
Include complete code samples within the chapter texts so that the book can be read through without
requiring a computer or CD-ROM.

e Use modern coding techniques, with specific emphases on ANSI compliance and current version
features and enhancements.

e Construct chapters so that they're self-contained—so that they rely as little as possible on objects
created in other chapters.

e Provide real-world code samples that have intrinsic value apart from thebook.

¢ Avoid rehashing what's already covered extensively in the SQL Server Books Online.

e Highlight aspects of Transact-SQL that differentiate it from other SQL dialects; don't just write another
ANSI SQL book.

e Avoid excessive screenshots and other types of filler mechanisms often seen in computer books.

e Proceed from the simple to the complex within each chapter and throughout the book.

¢ Provide an easygoing, relaxed commentary with a de-emphasis on formality. Be the reader's
indulgent, amiable tutor. Attempt to communicate in writing the way that people speak.

You'll have to judge for yourself whether these goals have been met, but my hope is that, regardless of the
degree of success, the effort will at least be evident.

About the Sample Databases

This book uses SQL Server's Northwind and pubs sample databases extensively. You'll nearly always be able
to determine which database a particular example uses from the surrounding commentary or from the code
itself. The pubs database is used more often than Northwind, so, when it's not otherwise specified or when in
doubt, use pubs.

Usually, modifications to these databases are made within transactions so that they can be reversed; however,
for safety's sake, you should probably drop and recreate them after each chapter in which they're modified.
The scripts to rebuild them (instnwnd.sql and instpubs.sql) can be found in the \Install subdirectory under the
root SQL Server folder.

Results Abridged

If | have a pet peeve about computer books, it's the shameless use of space-filling devices to lengthen them—
the dirty little secret of the computer publishing industry. Many technical books these days overflow with
gratuitous helpings of screenshots, charts, diagrams, outlines, sidebars, icons, line art, etc. There are people
who assign more value to a book that's heavy, and many authors and publishers have been all too happy to
accommodate them. They seem to take the old saying that "a picture is worth a thousand words" literally—in
some cases turning out books that are little more than picture books.

| think there's a point at which comprehensiveness gives way to corpulence, a time when exhaustiveness
becomes exhausting. In this book, I've tried to strike a balance between being thorough and being space-
efficient. To that end, I've often truncated or clipped query result sets, especially those too wide to fit on a
page and those of excessive length (I always point this out). On occasion | also list them using reduced font
sizes. | don't include screenshots unless doing so benefits the discussion at hand materially (only one chapter
contains any screenshots). This is in keeping with my design goal of being complete without being
overwrought. Nearly 600SQL scripts are used in this book, and they are all included in the chapters that
reference them. Hopefully none of the abridgements will detract from the book's overall usefulness or value.

On Formality

i1

Guru’s Guide to Transact-SQL

Another of my pet peeves is formality for the sake of formality. An artist once observed that "it's harder to draw
a good curved line than a straight one." What he meant was that it's in some ways more difficult to do
something well for which there is no exact or stringent standard than to do something that's governed by
explicit rules and stuffy precedents. All you have to do to draw a straight line is pick up a straightedge. The
rules that govern formal writing, particularly that of the academic variety, make writing certain kinds of books
easier because they convert much of the subjective nature of writing into something more objective. They're
like training wheels on the would-be author's bicycle. Writing goes from being a creative process to a
mechanical one. Cross all the T's, dot all the I's, and you're halfway there. Obviously, this relieves the author
of many of the decisions that shape creative writing. It also turns otherwise good pieces of work into dreary,
textbook-like dissertations that are about as interesting as the telephone book White Pages.

So, | reject the notion that formal writing is better writing, that it is a higher standard and is the ideal for which
all technical writers should strive. Instead, | come from the Mark Twain school of thought—I "eschew
surplusage"—and | believe that, so long as common methods of speech do not become overly banal (a
subjective distinction, | freely admit), the ultimate goal of the technical writer should be to write the way that
readers speak. It is the way people—even technical people—are most accustomed to communicating and the
way they are the most able to learn and share ideas. | did not invent this way of thinking; it's simply the way
most of my favorite authors—Mark Twain, Dean Koontz, Joe Celko, Ernest Hemingway, Robert Heinlein,
Andrew Miller, Oscar Wilde, P.J. O'Rourke, Patricia O'Connor—write. Though it is far more difficult to structure
and write a narrative that flows naturally and reads easily, it's worth the effort if the ideas the writer seeks to
convey are understood as they were intended.

So, throughout this book, you'll see a number of the rules and pseudo rules of formal writing stretched, skirted,
bent, and sometimes outright broken. This is intentional. Sometimes | split infinitives, begin sentences with
conjunctions, and end them with prepositions.lt! Sometimes record is used interchangeably with row;
sometimes field takes the place of column; and | never, ever treat data as a plural word. | saw some software
recently that displayed a message to the effect "the data are being loaded," and | literally laughed out loud.
The distinction between the plural data and its obscure singular form datum is not maintained in spoken
language and hasn't really ever been (except, perhaps, in ancient Rome). It has also been deprecated by
numerous writing guides ! and many authors®! You will have to look very hard for an author who treats
dataas a plural word (I can think of only one off the top of my head, the irascible Ted Codd). The tendency for
technical communication to become self-important or ostentatious has always bafed me: why stoop to
pretension? Why trade the uid conveyance of ideas between people for nonsense that confuses some and
reads like petty one-upmanship to others?

i According to Patricia T. O'Connor's excellent book, Words Fail Me (Harcourt Brace & Company, 1999), a number of these
rules are not really rules at all. The commonly cited prohibitions against split infinitives, beginning sentences with
conjunctions, using contractions, and ending sentences with prepositions are all pseudo rules—they are not, nor have ever
been, true English grammatical rules. They originate from dubious attmepts to force Latin grammar on the English language
and have been broken and regularly ignored by writers since the 1300s.

{2 See, for example, The Microsoft Manual of Style for Technical Publications (Microsoft Press, 1995), p.48.

B3] see, for example, Joe Celko's Data and Databases: Concepts in Practice (Morgan-Kaufmann Publishers, 1999), p.3,
where Joe refers to data in the singular as he does throughout the book.

Acknowledgments

I'd like to thank my wife, who not only makes it possible for me to write books but also makes it worthwhile.
The book you see before you is as much hers as it is mine. I'd like to thank Neil Coy, who made a real
programmer of me many years ago. Under Neil's tutelage, | learned software craftsmanship from a master.
Joe Celko, the dean of the SQL language, has been a good friend and a valuable source of information
throughout this project. Kudos to John Sarapata and Thomas Holaday for helping me come up with a title for
the book (I'll keep Sybase for Dummies in mind for future use, John). Thanks to the book's technical reviewers,
particularly Wayne Snyder, Gianluca Hotz, Paul Olivieri, and Ron Talmage. Heartfelt thanks to John
Gmuender, Joe Gallagher, Mike Massing, and Danny Thorpe for their equanimity and for keeping me sane
through the recent storm. Congratulations and genuine appreciation to the superb team at Addison-Wesley—
Michael Slaughter, Marisa Meltzer, J. Carter Shanklin, and others too numerous to list. Special thanks to
Nancy Cara-Sager, a friend, technical reviewer, and copyeditor who's been with me through several books
and a couple of publishers now. Her tireless attention to detail has saved me from embarrassing myself more
times than | can count.

v

Contents

Contents
FOTEWOIA........eeeee ettt ettt ettt et s bbbt eae e st e st en s e b e benbeene e i
PIrEIACE ... ettt ettt b e bt e eaeete st enaense s e nse e iii
About the SamPple Databasesoovi oo il
RESUIS ADIIAGEA ...ttt et ste e aeesaeennas il
ON FOMMAIILY ..ottt ettt et ettt te e eaeeeae s iii
ACKNOWIEAGMENTS ...ttt et e e aaeetaesaseeseessseenneas v
CONEENTES. ...ttt ettt et b e b et e s beeteeteesa e e e b e b e b e eteebeeteereeneeneas A%
Chapter 1. Introductory Transact-SQIL...........c.ccceviiieirieieeeeee e 1
ChoosiNg @ SQL EQITOF......c..ooiiiieieeiecieeee ettt seesaesseenseas 1
Creating @ Dat@baSse..........couooiiuiieeeeeceee ettt et 2
Creating TaDIESooieeee ettt ettt teeaeeaeene s 3
INSEIIING DAta......c..oceeieeeeeee ettt et et ra e ae b aaens 4
UPating Data........ccooiieieeieeecee ettt ettt b e b naeneenae e 5
DeletiNng Dat@oooueieeeieeeee ettt ettt e e reeeanas 5
QUETYING DAta.......ooieeeieceeeeeee ettt ettt ettt et ettt aeeae e 6
FIErING Dat@ ..ottt et et et e e s e beesseessenseense e 9
GroUuPING Dataooviieieeeeeeeeeee et et 14
OrderiNg Datac.eooeieeeeeeee ettt ettt 16
COIUMN ANGSES ...ttt ettt et e et e et e be e b e e aeebeeaseeseesbeensessseseense e 16
TADIE ANIASES......cceeeeeeee ettt bttt nee 17
Managing TranSACHIONScccvi ittt et eve e et re et eeaeeeaaeenns 17
SUMIMATY ..ottt ettt ettt te et e ete e bt esbeeaseessesseesseeseesseessesssenseessesseesseessesssesseensenns 18
Chapter 2. Transact-SQL Data Type NUANCESccooeeiieiiiieeceeee e 19
DAL ..ttt a et e st e te et e e ne e b e enteenaeseenteeneentenn 19
ST INIG S ettt ettt et ettt e et e at e be et e eae e beeateeae e reeare e 28
NUMIEIICS ...ttt ettt ettt e b e ett e beeaseeseebeesseessebeessasseesseessesssesseensasssensens 46
BLOBS ...ttt b bt bt b e st ettt et et te bt neeneeneens 50
Bl ettt ettt e e e bt et e st et e ent e e st e teenteese e seenseeneentens 55
UNIQUEIDENTIFIERcouiiieeeeeeee ettt 57
CUISOr VariabIES.........oouiieee ettt 58
TIMESTAMIPS ...ttt et e et e b e e e tb e ebe e s abeebeeeaaeeseeeaneeraeennas 62
SUMIMATY ..ottt ettt ettt ettt e e aaeett e b e esbeeaeesseeaseesseaseeasessseseenseesseseensens 64
Chapter 3. MiSSING VAIUESocouiiieiieeceeeeee ettt e 65
NULL @Nd FUNCHONS ..ottt 66
NULL @nd ANST SQIL......ovieiieieeeeese ettt sttt b e sbeeaeenaeseene e 67
NULL and Stored ProCeAUIEScoooiiiieeiecteeeettete ettt 68
NULL if YOU IMUSL.......ooiiiiiiiieieeee ettt ettt e s e beesaessaeseessesneensens 69
Chapter 4. DDL INSIGNESc.oooiiiiiieeee ettt 71
CREATE TABLE ...ttt ettt ettt et sa e sesbeeseeneeseeneenes 71
Dropping ODJECES.......coiieiieeeee ettt ettt ae b aeenraa 74
CREATE INDEXottt sttt ettt ettt ene s enes 75
TEMPORARY OBUECTSottt ettt sa e sb et na s ene 76
Object Naming and DePENAENCIES............oovieiiiuieiieiicteeeee ettt 77
SUMIMEATY ..ottt ettt et e et e et e st e s e eseesbeesseessesseesseessesseesseessesssanseessesssesseessesssensennsenns 78
Chapter 5. DML INSIGNTSc.ooouiiiieeeeeeee ettt 81

Guru’s Guide to Transact-SQL

INSERT ..ottt ettt ettt e b e be et e et e eseene e st ent et e benseeaeeneeneeneens 81
UPDATE ..ttt s b ettt be e st e nt e et et e beebe bt eneeneene e 91
DELETE ...ttt ettt ettt ettt et e et e e b e e seeseeseesaesaessessenseebeeseeseeseeseenes 100
DeteCting DIML EFTOISoioiieeeeeeeee ettt ettt et esabeeteesabeeseeesseennaans 103
SUMIMEATY ..oiiiiieetieeteete ettt ettt et e e s e et e e st e beesaeessesseesseessesseesseessenseessesssesseensesssenseessesseensens 103
Chapter 6. The Mighty SELECT Statement............c..coooiioiioicieeeeeeeee e 105
Y [ag] o] LIRS = I O =R 105
Computational and Derived Fieldscc.oooiiiiiioiecee e 105
SELECT TOP ..ottt ettt ettt ettt et sb et ebesaeeneeneas 106
Derived TabIES......c..oo ottt ettt eaae 108
JOINS ettt e e e e e tb e e teeeabeetteeabeeteeetreenteeeraeenns 111
PrediCAS. ...t 113
SUDGQUETIES ..o ettt ettt et ettt et e et ae e e aeete et e eaeeeaeenbeeseenean 123
Aggregate FUNCHONS..........coo ittt et e re e eaae 129
GROUP BY @nd HAVING ..ottt ettt 131
UNITONttt ettt ettt b et eae e st e st e st e st et e b e e beebeeseeneeneenes 137
ORDER BY ..ottt ettt ettt b e bt e beeteese st et e b e saesbeeteeneeneeneas 139
SUMIMEATY ..ottt ettt ettt et et eete e ete et e eseeeteeaseeaseseeaseessesseenseesseseessesseenreas 141
CAPLEN 7. VIBWS ...ttt ettt e e ateeteeeaeeetaeeaneenns 143
RESIFICHONS ..ottt ettt e e et e et e e eaeeeabeebeeesseesaens 143
ANSI SQL SChema VIEWSouiiieeeeeeeeee ettt 144
Getting @ VIEW'S SOUICE COUE.......c..ooviiieiieieceeeeee ettt 145
UPAtable VIEWSoo ottt ettt eve et e aeeaee 146
WITH CHECK OPTION.......coootieiieieieieteeee ettt ess s esaessesaesseeseeseesaeneas 146
Derived TabIES......c..oo ottt ettt et re e e aa e 146
DYNAMIC VIEWS......c.ooiieeee ettt ettt beesseesaeseense e 147
Partitioning Data USING VIEWS...........ooouiiiiiciieceeeeeeeee ettt 148
SUMIMEATY ..ottt ettt ettt et et e e te e e te et e eseebeeaseeaseseenseeseesseenseesseseessesseenseas 150
Chapter 8. Statistical FUNCLONScooviiieeeeeeeee e 151
THE CaSE fOr CASE ...ttt ettt bbbt eneeneas 151
EffiCIENCY CONCEINS ...ttt eae e 152
Variance and Standard Deviation.............c.occooioieiiiiccceee e 153
IMIEAIAINS ...ttt ettt et e e e te e be s e ta e be e b e reebeeaneete e aeenre e 153
ClIPPING e ettt ettt et ettt et ettt et e eat e te et e teete et e etteete et e ereereas 160
Returning the TOP NROWSooiie e e 161
RANKINGS ...ttt et et et e b e s aa e beesbeeseesseesseesseseense e 164
IMIOAES... .ttt ettt ettt b et h st n et et bbbt neeneeneenee 166
HISTOGIAMS ...ttt et et e e ae e saseesteeeaseeseeseseeseens 167
Cumulative and SIiding AQQregatescooui i 168
EXEIEIMESottt ettt e ae et e e e e e beenaeetteae e e 170
SUMIMATY ..ot ettt ettt e et eete et e e ae e te et e easeeteenseeaeeseeaseeasenseenseeseeseas 172
Chapter 9. RUNS @nd SEQUENCESccvoeeueeeeeeeeeeeeee et e 173
SEQUENCES ...ttt e e et e e e et e et e e aeeeaaeeteeeaseeeteeeaeeeteeeareereeeareenns 173
RUNS <ttt ettt b et a e st et e st e s et e beebeebeeaeeneeneenes 178
INEEIVAIS ... ettt ettt et e e et e e be e s ta e eteesabeebeeeaseereea 180
SUMIMEATY ..ottt ettt e ettt et e et e ete et e eseeebeeabeeaseseeasesssenseensesssenseessesseenseas 182
Chapter 10. AITAYS......c.oieieieeeeeee ettt ettt ettt et e saeesae e e e s seebeesseeseeseessesseenseas 185
Arays as Big SIHNGS ...o..ooeieee e 185
AITAYS @S TADIES.......oeiieeeieeeeee ettt et a e e be e s taeetaeeabaebeeesaeennaens 190
SUMIMEATY ..ottt ettt ettt et eett e be e b e e tsesaeesseessesbeesseessesseensesssesseessesssenseessesseenseas 198

vi

Contents

(0 0 F= T o] =1 gt I BT =Y £ ST USRS 199
UNHONS .ttt ettt ettt ettt e e bttt eae e st e st enten s et e beebeebeeseeneeneenes 199
DIffEIENCES ...ttt ettt et et eae et e et eae e 201
INEEISECHIONS ...ttt ettt et e e ae e beesabeeseesaseesbeessseensaens 202
SUDSELS ...ttt h ettt et et et aeeneeneas 204
SUMIMATY ..ottt ettt et ettt et e e aeeete et e easeeseeateeaeebeenseeasensseabeeseeseas 207

Chapter 12. HIEIArChIESooee et 209
SIMPIE HIEIArCRIES ...ttt 209
Multilevel HIErarChi©s.............o.ooiiiiiieeee e 210
INAENTEA [ISES ...ttt ab e e ae e s abeereeesseereens 215
SUMIMATY ..ottt ettt et e et et et e e e e e teeateeseeebeeaseeaseseeasesssesseenseessessenseeseenseas 216

CAPLEr 13, CUIMSOIS ..ottt ettt et e et e et e e teeeaseereeeaseereeeaneenns 217
ON CUrSOrs @nd ISAIMSooviiieeeeeceeee et ettt ettt et e tseeaeebeereeereas 217
TYPES OF CUISOIS ...ttt ettt et ettt et et e e e te et e e aaeeaeenseeasenis 218
APPIoPriate CUISON USEoooeviieeeeeeeeeeee ettt ettt e aeeeaeeeveeeaee e 222
T-SQL CUIMSOI SYNEAXetiiiitiiiieiieeeee ettt ettt ettt et et sbe b ebesaeeneeneas 226
CONFIGUIING CUISOTS ..ottt ettt ettt ettt et et ete et e easeeaeebeeseereas 234
UPAtiNg CUISOIS ..ottt et ettt ettt eae e e teesae e s e 238
CUIrSOr Vari@bIES ..ottt 239
CUrsor StOred ProCEAUIESc.oouviieeeeeeeeeteeeeeeee ettt ae e eae e 240
Optimizing Cursor PerfOrmMancCe.............coooiiouieiicieeeeeeceeee et 240
SUMIMATY ..ottt ettt ettt e et et e e b e e asesaeesseessesbeesseessesseessesssesseessesssenseessesseenseas 242

Chapter 14. TranSACHONS........cccvooviieeeeeeeee ettt eeraeeane e 243
Transactions DEfiNEA..........oviouiiiieiceeeeee e 243
How SQL Server Transactions WOrK...........c.ooviiiiiiiiiiiceceeeeeeee e 244
Types Of TraNSACHONScc.ociiiieieceece et nae 244
Avoiding Transactions AROGELNETc.ooovi e 246
Automatic Transaction Managementccoooiieiiiiieciec e 246
Transaction 1S0lation LEVEIScoouiiiiiieeecee e 248
Transaction Commands and SYNtAX..........ccooieviirierieiiicereee e 251
Debugging TranSaACONSoocviiii ettt eae e 256
Optimizing Transactional Code...........c..oouiiiiiieiiiceeeeceeeee e 257
SUMIMEATY ..ottt ettt ettt et eete et e e b e e tsesaeesbeessesbeesseessesseensesssesseessesssenseessesseesseas 258

Chapter 15. Stored Procedures and TriggerS.........cueouiiiieieiieeieieeeceeeeeeeee et 259
Stored Procedure AQVantagEsSooioiieiiciieieceeeeeee ettt 260
INEEINAIS ...ttt ettt e ere e aeeaeeaeeens 260
Creating Stored ProCEAUIESocuiiieiecieeee ettt esaesseeae s 261
Executing Stored ProCEAUIEScooouiiiieeeeeeeeeeee e 269
Environmental CONCEINS.........cviiiieieeee ettt 270
ParamELerS......c..o o ettt ae et ae e 272
Important Automatic Variablesooviiiioiie e 275
FIOW CONtrol LANQUAGEoviieiieeeee ettt et 276
BT O S ettt ettt et e b e tt e be e b e e teebeenreere e aeenre e 277
NS 1] o To [OOSR 279
RECUISION......eeiieeee ettt et e b e et e e eaeeeaeeeaseeeseeeaseeesseeaseeseessseenseens 280
AULOSTAIT PrOCEAUIESooeiieieeeeee ettt e be e et s beebeesaaeensaen 281
ENCIYPUON ...ttt et et eae e te e ae e 281
THIGGEIS oottt ettt et e bt e et e et e e e taeeabeeeaeeeabe e taeeabeeteeeabeeaaeeabeeteeenreeseeenseenns 281
Debugging ProCeAUIES..........ccoiiiieieeeeeeeee ettt ettt ebe e re e ebeeneen 284
SUMIMEATY ..ottt ettt ettt et e e tt e be e b e e tsesaeesseessesbeesseesseseessesssesseessesssenseessesseensens 285

vil

Guru’s Guide to Transact-SQL

Chapter 16. Transact-SQL Performance TUuNiNgcccocveoiieiiiiieiieieeeeee e 287
General Performance GUIAEIINEScoouveiiiieiieeceeee et 287
Database Design Performance TiPScovoviiiiiieieceeeeeeeeeeeee et 287
INAEX PerfOrManCe TIPSoooeeeeeeeeceeee ettt eteeeaeeeneeeeneea 288
SELECT PerformancCe TIPSooui oottt et eeae e e 290
INSERT PerformancCe TiPSc.oouviouioiiiieeeeeeeeeeeeeee ettt ettt eae s 291
Bulk Copy PerformancCe TiPS......c.ooui oottt e 291
DELETE and UPDATE Performance TIPSc.cooieeeeiieeeee e 292
CUrsor PerformManCe TIPScouui ittt ettt e eae e e ae et e easeeaeeeane e 292
Stored Procedure Performance TiPSc.oovoouioiiiieieeeeeeeeeeeeee e 293
SARGS ...ttt ettt ettt te et e teebe et e ettente et e eaeereas 296
DeNOIMAlIZAtION........ooiieieieeee ettt sa e raeae e e 311
The QUETNY OPLIMIZETocuieieeeeeeeeee ettt sbe st beeteeaeesaeneas 325
The Index TUuNING WIZAI..........c.oooiiiiieeeee ettt ettt e 333
PROTHET ...ttt ettt e e sb e e teebeesaeessesaeense e 334
POITMON ...ttt et e st e be e b e e seesbeenseesaeseense e 335
SUMIMEATY ..ottt ettt e et ete et e e aeeete et e easeeaeeaseeseeseenseesseeaeeabeeseeseas 337

Chapter 17. Administrative Transact-SQLLcccooeoiiiioiieeeeeeee e 339
GUI AMINISTrAtiON ...ttt ettt sr e b e sbesseesseesaesseenseas 339
System StOred ProCEAUIES..........c.oouviieceeeeeeeeeee ettt ae e 339
Administrative Transact-SQL Commands.............ccooieiiieiiiieiececeeeeeeeeee e 339
Administrative System FUNCHONSooovioiiieee e 339
Administrative Automatic Variables.............cccooieieiiice e 340
WHEIE'S the BEET?Z ...t 341
SUMIMEATY ..ottt ettt ettt et e et e e te e e te et e eteeeteeaseeaseseensesssesseenseessenssessesseenseas 392

Chapter 18. FUI-TEXE SEAICHooouvieieeeeeeeeeeee et 395
FUI-TEXE PrediCatesottt et eve e e e ae e 399
ROWSEE FUNCHONS ...ttt be e e ebe e 402
SUMIMEATY ..ottt ettt ettt e e tt e beesbeetsesaeesseessesbeesseessesseessesssesseessesssenseessesseenseas 405

Chapter 19. Ole AUtOMALIONoooiiiieeceeeeee et 407
SP-EXPOIEADIE ...ttt eane 407
SP-IMPOILADIE ... et 411
SP-GEISQLIEGISIIY ...ttt eneas 415
SUMIMATY ..ottt ettt et ettt et e e te et e eaeeete et e easeeteeaseeaeebeenseeaseaseenbeeseeseas 417

Chapter 20. Undocumented T-SQILccoooiiiiiiiiceeeeeeee et 419
Defining UndOoCUMENTEA..........c.oooiiiieee ettt 419
Undocumented DBCC COMMANGSccveiiiiieiiieiicieieeee ettt 419
Undocumented Functions and Variables ..o 430
Undocumented Trace FIagsSc.coouiiiiiiiieeeeeeeee et 433
Undocumented ProCEAUIESoo.ioiiiiiiieeceeeee ettt 434
SUMIMATY ..ot ettt ettt et et eete et e e ateete et e easeeteenteeseeseenseessenseenseeseereas 438

(01 0 F=To] =1 b2 I =01 oo 11 | o [P RT 439
ODBSCUME FUNCHIONSeoiiieiieeeeeeee ettt ettt et b e e b e e aeeaeesbesaeenseas 439
Data SCrUBDINGoceieicece et ae e 448
REration TADIESooeeeeeee et ettt et et e e reeeaseereea 451
SUMIMATY ..ottt ettt et e et te et e et e ete et e eseeteeabeeaseseenseessesseenseesseseessesseenseas 452

Appendix A. SUGQESEd RESOUICESccoouieiiiiiieciecteee ettt 453
BOOKS .. ettt et e e te e e b e e reeeaaeeeteeeabeetaeeabeeraeas 453
INTEINEE RESOUICTES.......oeiieeiee ettt et b e sea e e aeesabeebeessseenraens 453

viil

Chapter 1. Introductory Transact-SQL

Chapter 1. Introductory Transact-SQL

The single biggest challenge to learning SQL programming is unlearning procedural
programming.

—Joe Celko

SQL is the lingua franca of the database world. Most modern DBMSs use some type of SQL dialect as their
primary query language, including SQL Server. You can use SQL to create or destroy objects on the database
server such as tables and to do things with those objects, such as put data into them or query them for that
data. No single vendor owns SQL, and each is free to tailor the language to better satisfy its own customer
base. Despite this latitude, there is a multilateral agreement against which each implementation is measured.
It's commonly referred to as the ANSI/ISO SQL standard and is governed by the National Committee on
Information Technology Standards (NCITSH2). This standard is actually several standards—each named
after the year in which it was adopted. Each standard builds on the ones before it, introducing new features,
refining language syntax, and so on. The 1992 version of the standard—commonly referred to as SQL-92—is
probably the most popular of these and is definitely the most widely adopted by DBMS vendors. As with other
languages, vendor implementations of SQL are rated according to their level of compliance with the ANSI/ISO
standard. Most vendors are compliant with at least the entry-level SQL-92 specification, though some go
further.
Transact-SQL is Microsoft SQL Server's implementation of the language. It is largely SQL-92 compliant, so if
you're familiar with another vendor's flavor of SQL, you'll probably feel right at home with Transact-SQL. Since
helping you to become fluent in Transact-SQL is the primary focus of this book and an important step in
becoming a skilled SQL Server practitioner, it's instructive to begin with a brief tour of language fundamentals.
Much of the difficulty typically associated with learning SQL is due to the way it's presented in books and
courseware. Frequently, the would-be SQL practitioner is forced to run a gauntlet of syntax sinkholes and
query quicksand while lugging a ten-volume set on database design and performance and tuning on her back.
It's easy to get disoriented in such a situation, to become inundated with nonessential information—to get
bogged down in the details. Add to this the obligatory dose of relational database theory, and the SQL
neophyte is ready to leave summer camp early.
As with the rest of this book, this chapter attempts to keep things simple. It takes you through the process of
creating tables, adding data to them, and querying those tables, one step at a time. This chapter focuses
\exclusively on the practical details of getting real work done with SQL—it illuminates the bare necessities of
Transact-SQL as quickly and as concisely as possible.

NOTE

In this chapter, | assume you have little or no prior knowledge of Transact-SQL. If you already have
a basic working knowledge of the language, you can safely skip to the next chapter.

Like most computer languages, Transact-SQL is best learned by experience. The view from the trenches is
usually better than the one from the tower.

Choosing a SQL Editor

The first step on the road to Transact-SQL fluency is to pick a SQL entry and editing tool. You'll use this
facility to enter SQL commands, execute them, and view their results. The tool you pick will be your constant
companion throughout the rest of this book, so choose wisely.

The Query Analyzer tool that's included with SQL Server is a respectable SQL entry facility. It's certainly
capable of allowing you to work through the examples in this book. Those familiar with previous versions of
SQL Server will remember this tool as ISQL/W. The new version resembles its predecessor in many ways but
sports a slightly more modern interface. The name change reflects the fact that the new version is more than

Guru’s Guide to Transact-SQL

a mere SQL entry facility. In addition to basic query entry and execution facilities, it provides a wealth of
analysis and tuning info (see Chapter 16, "Transact-SQL Performance Tuning," for more information).
The first order of business when you start Query Analyzer is to connect to the server, so make sure your
server is running. Enter your username and password when prompted (if your server is newly installed,
username sa defaults to an empty password) and select your server name. If Query Analyzer and SQL Server
are running on the same machine, you can use"." (a period—with no quotes) or (local) (don't forget the
parentheses) for the server name. The user interface of the tool is self-explanatory: You key T-SQL queries
into the top pane of the window and view results in the bottom one.
The databases currently defined on your server are displayed in a combo-box on each window's toolbar. You
can select one from the list to make it the active database for the queries you run in that window. Pressing
Ctrl-E, F5, or Alt-X runs your query, while Ctrl-F5 checks it for syntax errors.

TIP

Hot Tip If you execute a query while a selection is active in the edit window, Query Analyzer will
execute the selection rather than the entire query. This is handy for executing queries in steps and
for quickly executing another command without opening a new window.

One of the features sorely missed in Query Analyzer is the Alt-F1 object help facility. In ISQL/W, you could
select an object name in the edit window and press Alt-F1 to get help on it. For tables and views, this
presented an abbreviated sp_help report. It was quite handy and saved many a trip to a new query window
merely to list an object's columns.

If you're a command-line devotee, you may prefer the OSQL utility to Query Analyzer. OSQL is an ODBC-
based command-line utility that ships with SQL Server. Like Query Analyzer, OSQL can be used to enter
Transact-SQL statements and stored procedures to execute. Once you've entered a query, hit return to drop
to a new line, then type GO and hit return again to run it (GO must be leftmost on the line). To exit OSQL, type
EXIT and hit return.

OSAQL has a wealth of command-line and runtime options that are too lengthy to go into here. See the SQL
Books Online for more info.

A third option is to use the Sequin SQL editor included on the CD with this book. Sequin sports many of Query
Analyzer's facilities without abandoning the worthwhile features of its predecessors.

Creating a Database

You might already have a database in which you can create some temporary tables for the purpose of
working through the examples in this book. If you don't, creating one is easy enough. In Transact-SQL, you
create databases using the CREATE DATABASE command. The complete syntax can be quite complex, but
here's the simplest form:

CREATE DATABASE GG TS

Run this command in Query Analyzer to create a scratch database for working through the examples in this
book. Behind the scenes, SQL Server creates two operating system files to house the new database:
GG_TS.MDF and GG_TS_Log.LDF. Data resides in the first file; transaction log information lives in the
second. A database's transaction log is the area where the server first carries out changes made to the data.
Once those changes succeed, they're applied atomically—in one piece—to the actual data. It's advantageous
for both recoverability and performance to separate user data from transaction log data, so SQL Server

Chapter 1. Introductory Transact-SQL

defaults to working this way. If you don't specifically indicate a transaction log location (as in the example
above), SQL Server selects one for you (the default location is the data directory that was selected during
installation).

Notice that we didn't specify a size for the database or for either of the les. Our new database is set up so that
it automatically expands as data is inserted into it. Again, this is SQL Server's default mode of operation. This
one feature alone—database files that automatically expand as needed—greatly reduces the database
administrator's (DBA's) workload by alleviating the need to monitor databases constantly to ensure that they
don't run out of space. A full transaction log prevents additional changes to the database, and a full data
segment prevents additional data from being inserted.

Creating Tables

Once the database is created, you're ready to begin adding objects to it. Let's begin by creating some tables
using SQL's CREATE TABLE statement. To ensure that those tables are created in the new database, be
sure to change the current database focus to GG_TS before issuing any of these commands. You can do this
two ways: You can execute a USE command—USE GG_TS— in the query edit window prior to executing any
other commands, or (assuming you're using Query Analyzer) you can select the new database from the DB:
combo-box on the edit window's toolbar (select <Refresh> from this list if your new database is not visible at
rst). The DB: combo-box reflects the currently selected database, so be sure it points to GG_TS before
proceeding.

Execute the following command to create the customers table:

USE GG TS — Change the current database context to GG TS
GO
CREATE TABLE customers

Cus NOT NULL,
Las ame (30) NOT NULL,
FirstName C (30) NOT NULL,
StreetAddress char(30) NOT NULL,
City char (20) NOT NULL,
State char (2) NOT NULL,
Zip char (10) NOT NULL

)
Once the customers table is built, create the orders table using similar syntax:

CREATE TABLE orders

OrderNumber int NOT NULL,

rDate datetime NOT NULL,
CustomerNumber int NOT NULL,
ItemNumber int NOT NULL,
Amount numeric(9,2) NOT NULL

Most SQL concepts can be demonstrated using three or fewer tables, so we'll create a third table. Create the
items table using this command:

CREATE TABLE items

(

ItemNumber int NOT NULL,
Description char (30) NOT NULL,
Price numeric(9,2) NOT NULL

)

These commands are fairly self-explanatory. The only element that might look a little strange if you're new to
SQL Server is the NOT NULL specification. The SQL NULL keyword is a special syntax token that's used to

represent unknown or nonexistent values. It is not the same as zero for integers or blanks for character string
columns. NULL indicates that a value is not known or completely missing from the column—that it's not there

Guru’s Guide to Transact-SQL

at all. The difference between NULL and zero is the difference between having a zero account balance and
not having an account at all. (See Chapter 3, "Missing Values," for more information on NULLs.) The
NULL/NOT NULL specification is used to control whether a column can store SQL's NULL token. This is
formally referred to as column nullability. It dictates whether the column can be truly empty. So, you could
read NULL/NOT NULL as NOT REQUIRED/REQUIRED, respectively. If a field can't contain NULL, it can't be
truly empty and is therefore required to have some other value.

Note that you don't have to specify column nullability when you create a table—SQL Server will supply a
default setting if it's omitted. The rules governing default column nullability go like this:

o If you explicitly specify either NULL or NOT NULL, it will be used (if valid—see below).

e If a column is based on a user-dened data type, that data type's nullability specification is used.

e [f a column has only one nullability option, that option is used. Timestamp columns always require
values, and bit columns can require them as well, depending on the server compatibility setting
(specified via the sp_dbcmptlevel system stored procedure).

e If the session setting ANSI_NULL_DFLT_ON is set to true (it defaults to the setting specified in the
database), column nullability defaults to true. ANSI SQL species that columns are nullable by default.
Connecting to SQL Server via ODBC or OLEDB (which is the normal way applications connect) sets
ANSI_NULL_DFLT_ON to true by default, though this can be changed in ODBC data sources or by
the calling application.

o |f the database setting ANSI null default is set to true (it defaults to false), column nullability is set
totrue.

¢ If none of these conditions species an ANSI NULL setting, column nullability defaults to false so that
columns don't allow NULL values.

Inserting Data

Use the Transact-SQL INSERT statement to add data to a table, one row at a time. Let's explore this by
adding some test data to the customers table. Enter the following SQL commands to add three rows to
customers:

hn', '123 Joshua Tree', 'Plano', 'TX','75025")

3 Joshua Tree', 'Plano

O
~
H
P
J
ul
o)
N
ul

57 Riverside', '"Reo',"'CA','90120")

Now, add four rows to the orders table using the same syntax:

INSERT INTO orders
VALUES (101,'10/18/90',1,1001,123.45)

INSERT INTO orders

VALUES (102, '02/27/92',2,1002,678.90)

INSERT INTO orders

VALUES (103, '05/20/95',3,1003,86753.09)

INSERT INTO orders
VALUES (104, '11/21/97',1,1002,678.90)

Finally, insert three rows into the items table like so:

INSERT INTO items
VALUES (1001, "WIDGET A',123.45)

INSERT INTO items
VALUES (1002, "WIDGET B',678.90)

Chapter 1. Introductory Transact-SQL

INSERT INTO items
VALUES (1003, "WIDGET C',86753.09)

Notice that none of these INSERTSs species a list of fields, only a list of values. The INSERT command
defaults to inserting a value for all columns in order, though you could have specified a column list for each
INSERT using syntax like this:

INSERT INTO items (ItemNumber, Price)
VALUES (1001,123.45)

Also note that it's unnecessary to follow the table's column order in a column list; however, the order of values
you supply must match the order of the column list. Here's an example:

INSERT INTO items (Price, ItemNumber)
VALUES (123.45, 1001)

One final note: The INTO keyword is optional in Transact-SQL. This deviates from the ANSI SQL standard
and from most other SQL dialects. The syntax below is equivalent to the previous query:

INSERT items (Price, ItemNumber)
VALUES (123.45, 1001)

Updating Data

Most people eventually want to change the data they've loaded into a database. The SQL UPDATE command
is the means by which this happens. Here's an example:

UPDATE customers
SET Zip='86753-0900"
WHERE City='Reo'

Depending on the data, the WHERE clause in this query might limit the UPDATE to a single row or to many
rows. You can update all the rows in a table by omitting the WHERE clause:

UPDATE customers
SET State='CA'

You can also update a column using columns in the same table, including the column itself, like so:

UPDATE orders
SET Amount=Amount+ (Amount*.07)

Transact-SQL provides a nice extension, the SQL UPDATE command, that allows you to update the values in
one table with those from another. Here's an example:

UPDATE o

SET Amount=Price
FROM orders o JOIN items i ON (o.ItemNumber=i.ItemNumber)

Deleting Data

The SQL DELETE command is used to remove data from tables. To delete all the rows in a table at once, use
this syntax:

DELETE FROM customers

Guru’s Guide to Transact-SQL

Similarly to INSERT, the FROM keyword is optional. Like UPDATE, DELETE can optionally include a WHERE
clause to qualify the rows it removes. Here's an example:

DELETE FROM customers
WHERE LastName<>'Doe'

SQL Server provides a quicker, more brute-force command for quickly emptying a table. It's similar to the
dBASE ZAP command and looks like this:

TRUNCATE TABLE customers

TRUNCATE TABLE empties a table without logging row deletions in the transaction log. It can't be used with
tables referenced by FOREIGN KEY constraints, and it invalidates the transaction log for the entire database.
Once the transaction log has been invalidated, it can't be backed up until the next full database backup.
TRUNCATE TABLE also circumvents the triggers defined on a table, so DELETE triggers don't re, even
though, technically speaking, rows are being deleted from the table. (See Chapter4, "DDL Insights," for more
information.)

Querying Data

The SELECT command is used to query tables and views for data. You specify what you want via a SELECT
statement, and the server "serves" it to you via a result set—a collection of rows containing the data you
requested. SELECT is the Swiss Army knife of basic SQL. It can join tables, retrieve data you request, assign
local variables, and even create other tables. It's a fair guess that you'll use the SELECT statement more than
any other single command in Transact-SQL.
We'll begin exploring SELECT by listing the contents of the tables you just built. Execute

SELECT * FROM tablename

in Query Analyzer, replacing tablename with the name of each of the three tables. You should find that the
CUSTOMER and items tables have three rows each, while orders has four.
SELECT * FROM customers

(Results abridged)

CustomerNumber LastName FirstName StreetAddress

1 Doe John 123 Joshua Tree
2 Doe Jane 123 Joshua Tree
3 Citizen John 57 Riverside

SELECT * FROM orders

OrderNumber OrderDate CustomerNumber ItemNumber Amount
101 1990-10-18 00:00:00.000 1 1001 123.45
102 1992-02-27 00:00:00.000 2 1002 678.90
103 1995-05-20 00:00:00.000 3 1003 86753.09
104 1997-11-21 00:00:00.000 1 1002 678.90

SELECT * FROM items

ItemNumber Description Price

1001 WIDGET A 123.45
1002 WIDGET B 678.90
1003 WIDGET C 86753.09

Chapter 1. Introductory Transact-SQL

Column Lists

SELECT * returns all the columns in a table. To return a subset of a table's columns, use a comma-delimited
field list, like so:

SELECT CustomerNumber, LastName, State FROM customers

CustomerNumber LastName State

Doe X

Citizen CA

N

w

A SELECT's column can include column references, local variables, absolute values, functions, and
expressions involving any combinations of these elements.

SELECTing Variables and Expressions

Unlike most SQL dialects, the FROM clause is optional in Transact-SQL when not querying database objects.
You can issue SELECT statements that return variables (automatic or local), functions, constants, and
computations without using a FROM clause. For example,

SELECT GETDATE ()

returns the system date on the computer hosting SQL Server, and
SELECT CAST(10+1 AS
CHAR (2))+'/'"+CAST (POWER (2,5) -5 AS CHAR(2))+'/19'+CAST (30+31 AS
L
CHAR(2))

9]

returns a simple string. Unlike Oracle and many other DBMSs, SQL Server doesn't force the inclusion of a
FROM clause if it makes no sense to do so. Here's an example that returns an automatic variable:
SELECT @E@VERSION

And here's one that returns the current user name:
SELECT SUSER SNAME ()

@@VERSION is an automatic variable that's predefined by SQL Server and read-only. The SQL Server
Books Online now refers to these variables as functions, but they aren't functions in the true sense of the
word—they're predefined constants or automatic variables (e.g., they can be used as parameters to stored
procedures, but true functions cannot). | like variable better than constant because the values they return can
change throughout a session—they aren't really constant, they're just read-only as far as the user is
concerned. You'll see the term automatic variable used throughout this book.

Functions

Functions can be used to modify a column value in transit. Transact-SQL provides a bevy of functions that
can be roughly divided into six major groups: string functions, numeric functions, date functions, aggregate
function, system functions, and meta-data functions. Here's a Transact-SQL function in action:

SELECT UPPER (LastName), FirstName
FROM customers

FirstName
DOE John
DOE Jane
CITIZEN John

Guru’s Guide to Transact-SQL
Here, the UPPER() function is used to uppercase the LastName column as it's returned in the result set. This
affects only the result set—the underlying data is unchanged.

Converting Data Types

Converting data between types is equally simple. You can use either the CAST() or CONVERT() function to
convert one data type to another, but CAST() is the SQL-92—compliant method. Here's a SELECT that
converts the Amount column in the orders table to a character string:

SELECT CAST (Amount AS wvarchar) FROM orders

Here's an example that illustrates how to convert a datetime value to a character string using a specific format:

SELECT CONVERT (char (8), GETDATE(),112)

This example highlights one situation in which CONVERT() offers superior functionality to CAST().
CONVERT() supports a style parameter (the third argument above) that species the exact format to use when
converting a datetime value to a character string. You can find the table of supported styles in the Books
Online, but styles102 and 112 are probably the most common.

CASE

In the examples throughout this book, you'll find copious use of the CASE function. CASE has two basic forms.
In the simpler form, you specify result values for each member of a series of expressions that are compared to
a determinant or key expression, like so:

SELECT CASE sex

WHEN O THEN 'Unknown'
WHEN 1 THEN 'Male'
WHEN 2 THEN 'Female'
ELSE 'Not applicable'
END

In the more complex form, known as a "searched" CASE, you specify individual result values for multiple,
possibly distinct, logical expressions, like this:

ld, RentDueDate, GETDATE ()) >15 THEN Desposit

, T
1, RentDueDate, GETDATE ()) >5 THEN DailyPenalty*

-

DATEDIFF (dd, RentDueDate, GETDATE ())

ELSE O

END

A searched CASE is similar to an embedded IF...ELSE, with each WHEN performing the function of a new
ELSE clause.

Personally, I've never liked the CASE syntax. | like the idea of a CASE function, but | find the syntax unwieldy.
It behaves like a function in that it can be nested within other expressions, but syntactically, it looks more like
a flow-control statement. In some languages, "CASE" is a flow-control keyword that's analogous to the
C/C++switch statement. In Transact-SQL, CASE is used similarly to an inline or "immediate" IF—it returns a

Chapter 1. Introductory Transact-SQL

value based on if-then-else logic. Frankly, | think it would make a lot more sense for the syntax to read
something like this:

CASE (sex, 0, 'Unknown', 1, 'Male', 2, 'Female', 'Unknown')

or
CASE (DATEDIFF (dd, RentDueDate, GETDATE ()) >15, Deposit,

DATEDIFF (dd, RentDueDate, GETDATE ()) >5, DailyPenalty*
DATEDIFF (dd, RentDueDate, GETDATE ()), 0)

This is the way that the Oracle DECODE() function works. It's more compact and much easier to look at than
the cumbersome ANSI CASE syntax.

Aggregate Columns

Aggregate columns consist of special functions that perform some calculation on a set of data. Examples of
aggregates include the COUNT(), SUM(), AVG(), MIN(), STDDEV(), VAR(), and MAX() functions. They're best
understood by example. Here's a command that returns the total number of customer records on file:

SELECT COUNT (*) FROM customers

Here's one that returns the dollar amount of the largest order on file:

SELECT MAX (Amount) FROM orders

And here's one that returns the total dollar amount of all orders:

SELECT SUM (Amount) FROM orders

Aggregate functions are often used in tandem with SELECT's GROUP BY clause (covered below) to produce
grouped or partitioned aggregates. They can be employed in other uses as well (e.g., to "hide" normally
invalid syntax), as the chapters on statistical computations illustrate.

Filtering Data

You use the SQL WHERE clause to qualify the data a SELECT statement returns. It can also be used to limit
the rows affected by an UPDATE or DELETE statement. Here are some queries that use WHERE to filter the
data they return:

SELECT UPPER (LastName), FirstName
FROM customers
WHERE State='TX'

FirstName

DOE John
DOE Jane

The following code restricts the customers returned to those whose address contains the word "Joshua."

SELECT LastName, FirstName, StreetAddress FROM customers
WHERE StreetAddress LIKE '%Joshua$'

Guru’s Guide to Transact-SQL

LastName FirstName StreetAddress
Doe John
Doe Jane

Note the use of "%" as a wildcard. The SQL wildcard % (percent sign) matches zero or more instances of any
character, while _ (underscore) matches exactly one.
Here's a query that returns the orders exceeding $500:

SELECT OrderNumber, OrderDate, Amount

ROM orders
WHERE Amount > 500
OrderNumber OrderDate Amount
102 1992-02-27 00:00:00.000 ©78.90
103 1995-05-20 00:00:00.000 86753.09
104 1997-11-21 00:00:00.000 678.90

The following example uses the BETWEEN operator to return orders occurring between October1990 and
May1995, inclusively. I've included the time with the second of the two dates because, without it, the time
would default to midnight (SQL Server datetime columns always store both the date and time; an omitted time
defaults to midnight), making the query noninclusive. Without specification of the time portion, the query would
return only orders placed up through the first millisecond of May31.

OrderDate, Amount FROM orders

RE OrderDate BETWEEN '10/01/90' AND '05/31/95 23:59:59.999"

OrderNumber OrderDate Amount

103 1995-05-20 00:00:00.000 86753.09

Joins

A query that can access all the data it needs in a single table is a pretty rare one. John Donne said "no man is
an island," and, in relational databases, no table is, either. Usually, a query will have to go to two or more
tables to find all the information it requires. This is the way of things with relational databases. Data is
intentionally spread out to keep it as modular as possible. There are lots of good reasons for this
modularization (formally known as normalization) that | won't go into here, but one of its downsides is that
what might be a single conceptual entity (an invoice, for example) is often split into multiple physical entities
when constructed in a relational database.

Dealing with this fragmentation is where joins come in. A join consolidates the data in two tables into a single
result set. The tables aren't actually merged; they just appear to be in the rows returned by the query. Multiple
joins can consolidate multiple tables—it's quite common to see joins that are multiple levels deep involving
scads of tables.

A join between two tables is established by linking a column or columns in one table with those in another
(CROSS JOINSs are an exception, but more on them later). The expression used to join the two tables
constitutes the join condition or join criterion. When the join is successful, data in the second table is
combined with the first to form a composite result set—a set of rows containing data from both tables. In short,
the two tables have a baby, albeit an evanescent one.

There are two basic types of joins, inner joins and outer joins. The key difference between them is that outer
joins include rows in the result set even when the join condition isn't met, while an inner join doesn't. How is
this? What data ends up in the result set when the join condition fails? When the join criteria in an outer join
aren't met, columns in the first table are returned normally, but columns from the second table are returned
with no value—as NULLs. This is handy for finding missing values and broken links between tables.

10

Chapter 1. Introductory Transact-SQL

There are two families of syntax for constructing joins—legacy and ANSI/ISO SQL-92 compliant. The legacy
syntax dates back to SQL Server's days as a joint venture between Sybase and Microsoft. It's more succinct
than the ANSI syntax and looks like this:

SELECT customers.CustomerNumber, orders.Amount
FROM customers, orders
WHERE customers.CustomerNumber=orders.CustomerNumber

CustomerNumber Amount

Note the use of the WHERE clause to join the customers and orders tables together. This is an inner join. If
an order doesn't exist for a given customer, that customer is omitted completely from the list. Here's the ANSI
version of the same query:

SELECT customers.CustomerNumber, orders.Amount
FROM customers JOIN orders ON (customers.CustomerNumber=orders.CustomerNumber)

This one's a bit loquacious, but the end result is the same: customers and orders are merged using their
respective CustomerNumber columns.

As | mentioned earlier, it's common for queries to construct multilevel joins. Here's an example of a multilevel
join that uses the legacy syntax:

SELECT customers.CustomerNumber, orders.Amount, items.Description
FROM customers, orders, items

WHERE customers.CustomerNumber=orders.CustomerNumber

AND orders.ItemNumber=items.ItemNumber

CustomerNumber Amount Description
1 123.45 WIDGET A
2 678.90 WIDGET B
3 86753.09 WIDGET C
1 678.90 WIDGET B

This query joins the composite of the customers table and the orders table with the items table. Note that the
exact ordering of the WHERE clause is unimportant. In order to allow servers to fully optimize queries, SQL
requires that the ordering of the predicates in a WHERE clause must not affect the result set. They must be
associative—the query must return the same result regardless of the order in which they're processed.

As with the two-table join, the ANSI syntax for multitable inner joins is similar to the legacy syntax. Here's the
ANSI syntax for the multitable join above:

SELECT customers.CustomerNumber, orders.Amount, items.Description
omerNumber=orders.CustomerNumber)

FROM customers JOIN orders ON (customers.Cust
JOIN items ON (orders.ItemNumber=items.ItemNumber)

Again, it's a bit wordier, but it performs the same function.

Outer Joins

Thus far, there hasn't been a stark contrast between the ANSI and legacy join syntaxes. Though not
syntactically identical, they seem to be functionally equivalent.

This all changes with outer joins. The ANSI outer join syntax addresses ambiguities inherent in using the
WHERE clause—whose terms are by definition associative—to perform table joins. Here's an example of the
legacy syntax that contains such ambiguities:

11

Guru’s Guide to Transact-SQL

-— Bad SQL - Don't run

SELECT customers.CustomerNumber, orders.Amount, items.Description
FROM customers, orders, items

WHERE customers.CustomerNumber*=orders.CustomerNumber

AND orders.ItemNumber*=items.ItemNumber

Don't bother trying to run this—SQL Server won't allow it. Why? Because WHERE clause terms are required
to be associative, but these aren't. If customers and orders are joined first, those rows where a customer
exists but has no orders will be impossible to join with the items table since their temNumber column will be
NULL. On the other hand, if orders and items are joined first, the result set will include ITEM records it likely
would have otherwise missed. So the order of the terms in the WHERE clause is significant when constructing
multilevel joins using the legacy syntax.

It's precisely because of this ambiguity—whether the ordering of WHERE clause predicates is significant—
that the SQL-92 standard moved join construction to the FROM clause. Here's the above query rewritten
using valid ANSI join syntax:

SELECT customers.CustomerNumber, orders.Amount, items.Description
FROM customers LEFT OUTER JOIN orders ON
(customers.CustomerNumber=orders.CustomerNumber)

LEFT OUTER JOIN items ON (orders.ItemNumber=items.ItemNumber)

CustomerNumber Amount Description
1 123.45 WIDGET A
1 678.90 WIDGET B
2 678.90 WIDGET B
3 86753.09 WIDGET C

Here, the ambiguities are gone, and it's clear that the query is first supposed to join the customers and orders
tables, then join the result with the items table. (Note that the OUTER keyword is optional.)

To understand how this shortcoming in the legacy syntax can affect query results, consider the following
query. We'll set it up initially so that the outer join works as expected:

SELECT customers.CustomerNumber, orders.Amount

FROM customers, orders

WHERE customers.CustomerNumber*=orders.CustomerNumber
AND orders.Amount>600

CustomerNumber Amount

3 86753.09

Since every row in customers finds a match in orders, the problem isn't obvious. Now let's change the query
so that there are a few mismatches between the tables, like so:

SELECT customers.CustomerNumber+2, orders.Amount

FROM customers, orders

WHERE customers.CustomerNumber+2*=orders.CustomerNumber
AND orders.Amount>600

This version simply adds 2 to CustomerNumber to ensure that at least a few of the joins will fail and the
columns in orders will be returned as NULLs. Here's the result set:

CustomerNumber Amount

3 86753.09
4 NULL
5 NULL

12

Chapter 1. Introductory Transact-SQL

See the problem? Those last two rows shouldn't be there. Amount is NULL in those rows (because there are
no orders for customers4 and5), and whether it exceeds $600 is unknown. The query is supposed to return
only those rows whose Amount column is known to exceed $600, but that's not the case. Here's the ANSI
version of the same query:

SELECT customers.CustomerNumber+2, orders.Amount
FROM customers LEFT OUTER JOIN orders ON

-
(customers.CustomerNumber+2=orders.CustomerNumber)

WHE o 3 1£>600

CustomerNumber Amount

The SQL-92 syntax correctly omits the rows with a NULL Amount. The reason the legacy query fails here is
that the predicates in its WHERE clause are evaluated together. When Amount is checked against the >600
predicate, it has not yet been returned as NULL, so it's erroneously included in the result set. By the time it's
set to NULL, it's already in the result set, effectively negating the >600 predicate.

Though the inner join syntax you choose is largely a matter a preference, you should still use the SQL-92
syntax whenever possible. It's hard enough keeping up with a single way of joining tables, let alone two
different ways. And, as we've seen, there are some real problems with the legacy outer join syntax. Moreover,
Microsoft strongly recommends the use of the ANSI syntax and has publicly stated that the legacy outer join
syntax will be dropped in a future release of the product. Jumping on the ANSI/ISO bandwagon also makes
sense from another perspective: interoperability. Given the way in which the DBMS world—like the real
world—is shrinking, it's not unusual for an application to communicate with or rely upon more than one
vendor's DBMS. Heterogeneous joins, passthrough queries, and vendor-to-vendor replication are now
commonplace. Knowing this, it makes sense to abandon proprietary syntax elements in favor of those that
play well with others.

Other Types of Joins

Thus far, we've explored only left joins—both inner and outer. There are a few others that are worth
mentioning as well. Transact-SQL also supports RIGHT OUTER JOINs, CROSS JOINs, and FULL OUTER
JOINSs.

A RIGHT OUTER JOIN isn't really that different from a LEFT OUTER JOIN. In fact, it's really just a LEFT
OUTER JOIN with the tables reversed. It's very easy to restate a LEFT OUTER JOIN as a RIGHT OUTER
JOIN. Here's the earlier LEFT OUTER JOIN query restated:

SELECT customers.CustomerNumber+2, orders.Amount
FROM orders RIGHT OUTER JOIN customers ON
(customers.CustomerNumber+2=orders.CustomerNumber)
Amount

A RIGHT JOIN returns the columns in the first table as NULLs when the join condition fails. Since you decide
which table is the first table and which one's the second, whether you use a LEFT JOIN or a RIGHT JOIN is
largely a matter a preference.

A CROSS JOIN, by contrast, is an intentional Cartesian product. The size of a Cartesian product is the
number of rows in one table multiplied by those in the other. So for two tables with three rows each, their
CROSS JOIN or Cartesian product would consist of nine rows. By definition, CROSS JOINs don't need or
support the use of the ON clause that other joins require. Here's a CROSS JOIN of the customers and orders
tables:

orders.Amount

13

Guru’s Guide to Transact-SQL

CustomerNumber Amount

1 123.45

1 678.90

1 86753.09
1 678.90

2 123.45

2 678.9

2 86753.09
2 678.90

3 123.45

3 678.90

3 86753.09
3 678.90

(12 row(s) affected)

A FULL OUTER JOIN returns rows from both tables regardless of whether the join condition succeeds. When
a join column in the first table fails to find a match in the second, the values from the second table are
returned as NULL, just as they are with a LEFT OUTER JOIN. When the join column in the second table fails
to find a matching value in the first table, columns in the first table are returned as NULL, as they are in a
RIGHT OUTER JOIN. You can think of a FULL OUTER JOIN as the combination of a LEFT JOIN and a
RIGHT JOIN. Here's the earlier LEFT OUTER JOIN restated as a FULL OUTERJOIN:

SELECT customers.CustomerNumber+2, orders.Amount
FROM customers FULL OUTER JOIN orders ON

-
(customers.CustomerNumber+2=orders.CustomerNumber)

Amount

3 86753.09
4 NULL

5 NULL

NULL 123.45
NULL 678.90
NULL 6

Subqueries

A SELECT statement that's enclosed in parentheses and embedded within another query (usually in its
WHERE clause) is called a subquery. A subquery is normally used to return a list of items that is then
compared against a column in the main query. Here's an example:

SELECT * FROM customers
WHERE CustomerNumber IN (SELECT CustomerNumber FROM orders)

Of course, you could accomplish the same thing with an inner join. In fact, the SQL Server optimizer turns this
query into an inner join internally. However, you get the idea—a subquery returns an item or set of items that
you may then use to filter a query or return a column value.

Grouping Data

Since SQL is a set-oriented query language, statements that group or summarize data are its bread and
butter. In conjunction with aggregate functions, they are the means by which the real work of SQL queries is
performed. Developers familiar with DBMS products that lean more toward single-record handling find this
peculiar because they are accustomed to working with data one row at a time. Generating summary

14

Chapter 1. Introductory Transact-SQL

information by looping through a table is a common technique in older database products—but not in SQL
Server. A single SQL statement can perform tasks that used to require an entire COBOL program to complete.
This magic is performed using SELECT's GROUP BY clause and Transact-SQL aggregate functions. Here's
an example:

SELECT customers.CustomerNumber, SUM(orders.Amount) AS TotalOrders
FROM customers JOIN orders ON customers.CustomerNumber=orders.CustomerNumber
GROUP BY customers.CustomerNumber

This query returns a list of all customers and the total amount of each customer's orders.

How do you know which fields to include in the GROUP BY clause? You must include all the items in the
SELECT statement's column list that are not aggregate functions or absolute values. Take the following
SELECT statement:

-— Bad SQL - don't do this

SELECT customers.CustomerNumber, customers.LastName, SUM(orders.Amount) AS
TotalOrder
FROM customers JOIN orders ON customers.CustomerNumber=orders.CustomerNumber
GROUP BY cus rs.CustomerNumber

This query won't execute because it's missing a column in the GROUP BY clause. Instead, it should read:
GROUP BY customers.CustomerNumber,
customers.LastName

Note that the addition of the LastName column doesn't really affect the results since CustomerNumber is a
unique key. That is, including LastName as a GROUP BY column won't cause any additional grouping levels
to be produced since there is only one LastName for each CustomerNumber.

HAVING

The HAVING clause is used to limit the rows returned by a SELECT with GROUP BY. Its relationship to
GROUP BY is similar to the relationship between the WHERE clause and the SELECT itself. Like the WHERE
clause, it restricts the rows returned by a SELECT statement. Unlike WHERE, it operates on the rows in the
result set rather than the rows in the query's tables. Here's the previous query modified to include a HAVING
clause:

SELECT customers.CustomerNumber, customers.LastName, SUM(orders.Amount) AS
TotalOrders

FROM customers JOIN orders ON customers.CustomerNumber=orders.CustomerNumber
GROUP BY customers.CustomerNumber, customers.LastName

HAVING SUM (orders.Amount) > 700

CustomerNumber LastName TotalOrders
3 Citizen 86753.09
1 Doe 802.35

There is often a better way of qualifying a query than by using a HAVING clause. In general, HAVING is less
efficient than WHERE because it qualifies the result set after it's been organized into groups; WHERE does so
beforehand. Here's an example that improperly uses the HAVING clause:

-—- Bad SQL - don't do this

SELECT customers.LastName, COUNT (*) AS NumberWithName
FROM customers

GROUP BY customers.LastName

HAVING customers.LastName<>'Citizen'

Properly written, this query's filter criteria should be in its WHERE clause, like so:

SELECT customers.LastName, COUNT (*) AS NumberWithName

15

Guru’s Guide to Transact-SQL

1ers

V2o S |

mers.LastName<> 'Citizen

GROUP BY customers.LastName
In fact, SQL Server recognizes this type of HAVING misuse and translates HAVING into WHERE during query

execution. Regardless of whether SQL Server catches errors like these, it's always better to write optimal
code in the rst place.

Ordering Data

The ORDER BY clause is used to order the rows returned by a query. It follows the WHERE and GROUP BY
clauses (if they exist) and sorts the result set just prior to returning it. Here's an example:

SELECT LastName, State

Here's another example:

SELECT FirstName, LastName

ORDER BY LastName DESC

Note the use of the DESC keyword to sort the rows in descending order. If not directed otherwise, ORDER BY
always sorts in ascending order.

Column Aliases

You might have noticed that some of the earlier queries in this chapter use logical column names for
aggregate functions such as COUNT() and SUM(). Labels such as these are known as column aliases and
make the query and its result set more readable. As with joins, Transact-SQL provides two separate syntaxes
for establishing column aliases: legacy or classical and ANSI standard. In the classical syntax, the column
alias immediately precedes the column and the two are separated with an equal sign, like so:

SELECT TodaysDate=GETDATE ()

ANSI syntax, by contrast, places a column alias immediately to the rightof its corresponding column and
optionally separates the two with the AS keyword, like so:

SELECT GETDATE () AS TodaysDate

or
SELECT GETDATE () TodaysDate

Unlike joins, the column alias syntax you choose won't affect query result sets. This is largely a matter of
preference, though it's always advisable to use the ANSI syntax when you can if for no other reason than
compatibility with other products.

You can use column aliases for any item in a result set, not just aggregate functions. For example, the
following example substitutes the column alias LName for the LastName column in the result set:
SELECT customers.LastName AS LName, COUNT (*) AS NumberWithName

FROM custc

Note, however, that you cannot use column aliases in other parts of the query except in the ORDER BY
clause. In the WHERE, GROUP BY, and HAVING clauses, you must use the actual column name or value. In

16

Chapter 1. Introductory Transact-SQL

addition to supporting column aliases, ORDER BY supports a variation on this in which you can specify a sort
column by its ordinal position in the SELECT list, like so:

ELECT FirstName, LastName

F

ORDER BY 2

This syntax has been deprecated and is less clear than simply using a column name or alias.

Table Aliases

Similar to column aliases, you can use table aliasesto avoid having to refer to a table's full name. You specify
table aliases in the FROM clause of queries. Place the alias to the right of the actual table name (optionally
separated with the AS keyword), as illustrated here:

SELECT c.LastName, COUNT (*) AS NumberWithName

Notice that the alias can be used in the field list of the SELECT list before it is even syntactically defined. This
is possible because a query's references to database objects are resolved before the query is executed.

Managing Transactions

Transaction management is really outside the scope of introductory T-SQL. Nevertheless, transactions are at
the heart of database applications development and a basic understanding of them is key to writing good SQL
(see Chapter14, "Transactions," for in-depth coverage of transactions).

The term fransaction refers to a group of changes to a database. Transactions provide for change atomicity—
which means that either all the changes within the group occur or none of them do. SQL Server applications
use transactions to ensure data integrity and to avoid leaving the database in an interim state if an operation
fails.

The COMMIT command writes a transaction permanently to disk (technically speaking, if nested transactions
are present, this is true only of the outermost COMMIT, but that's an advanced topic). Think of it as a
database save command. ROLLBACK, by contrast, throws away the changes a transaction would have made
to the database; it functions like a database undo command. Both of these commands affect only the changes
made since the last COMMIT; you cannot roll back changes that have already been committed.

Unless the IMPLICIT_TRANSACTIONS session variable has been enabled, you must explicitly start a
transaction in order to commit or roll it back. Transactions can be nested, and you can check the current
nesting level by querying the @@TRANCOUNT automatic variable, like so:

SELECT @@TRANCOUNT AS TranNestingLevel

Here's an example of some Transact-SQL code that uses transactions to undo changes to the database:

BEGIN TRAN

DELETE customers

ROLLBACK

SELECT * FROM customers

CustomerNumber LastName FirstName StreetAddress City State

Zip

1 Doe John 123 Joshua Tree Plano TX
5025

2 Doe Jane 123 Joshua Tree Plano TX

75025

3 Citize Jol 57 Riversid R¢ CA

90120

17

Guru’s Guide to Transact-SQL

As you can see, ROLLBACK reverses the row removals carried out by the DELETE statement.
CAUTION

Be sure to match BEGIN TRAN with either COMMIT or ROLLBACK. Orphaned transactions can
cause serious performance and management problems on the server.

Summary

This concludes Introductory Transact-SQL. You should now be able to create a database, build tables, and
populate those tables with data. You should also be familiar with the basic syntax required for querying tables
and for making rudimentary changes to them. Be sure you have a good grasp of basic Transact-SQL before
proceeding with the rest of the book.

18

Chapter 2. Transact-SQL Data Type Nuances

Chapter 2. Transact-SQL Data Type Nuances

Don't fix it if it ain't broke presupposes that you can't improve something that works
reasonably well already. If the world's inventors had believed this, we'd still be driving Model
A Fords and using outhouses.

—H. W. Kenton

SQL Server includes a wide variety of built-in data types—more, in fact, than most other major DBMSs. It
supports a wealth of character, numeric, datetime, BLOB, and miscellaneous data types. It offers narrow
types for small data and open-ended ones for large data. SQL Server character strings can range up to 8000
bytes, while its BLOB types can store up to 2GB. Numeric values range from single-byte unsigned integers up
to signed floating point values with a precision of 53 places. All except one of these data types (the cursor
data type) are scalar types—they represent exactly one value at a time. There is an abundance of nuances,
caveats, and pitfalls to watch out for as you use many of these types. This chapter will delve into a few of
them.

Dates

SQL Server dates come in two varieties: datetime types and smalldatetime types. There is no separate time
data type—dates and times are always stored together in SQL Server data. Datetime columns require eight
bytes of storage and can store dates ranging from January 1, 1753, to December 31, 9999. Smalldatetime
columns require four bytes and can handle dates from January 1, 1900, through June 6, 2079. Datetime
columns store dates and times to the nearest three-hundredths of a second (3.33 milliseconds), while
smalldatetime columns are limited to storing times to the nearest minute—they don't store seconds or
milliseconds at all.

If you wish to store a date without a time, simply omit the time portion of the column or variable—it will default
to 00:00:00.000 (midnight). If you need a time without a date, omit the date portion—it will default to January 1,
1900. Dates default to January 1, 1900 because it's SQL Server's reference date—all SQL Server dates are
stored as the number of days before or since January 1,1900.

The date portion of a datetime variable occupies its first four bytes, and the time portion occupies the last four.
The time portion of a datetime or smalldatetime column represents the number of milliseconds since midnight.
That's why it defaults to midnight if omitted.

One oddity regarding datetime columns of which you should be aware is the way in which milliseconds are
stored. Since accuracy is limited to 3.33 milliseconds, milliseconds are always rounded to the nearest three-
hundredths of a second. This means that the millisecond portion of a datetime column will always end in 0, 3,
or 7. So, "19000101 12:00:00.564" is rounded to "19000101 12:00:00.563" and "19000101 12:00:00.565" is
rounded to "19000101 12:00:00.567."

Y2K and Other Date Problems

With the arrival of year 2000, it's appropriate to discuss the impact the Y2K problem on SQL Server apps and
some ways of handling it. A lot of hysteria seems to surround the whole Year 2000 issue—on the part of
technical and nontechnical people alike—so it seems worthwhile to take a moment and address the way in
which the Y2K problem affects SQL Server and applications basedonit.

First, due to the fact that SQL Server sports a datetime data type, many of the problems plaguing older
applications and DBMSs simply don't apply here. Dates are stored as numeric quantities rather than character
strings, so no assumptions need be made regarding the century, a given datetime variable, or column
references.

Second, given that even a lowly smalldatetime can store dates up to 2079, there's no capacity issue, either.
Since four bytes are reserved for the date portion of a datetime column, a quantity of up to 2,147,483,647
days (including a sign bit) can be stored, even though there are only 3,012,153 days between January 1, 1753
and December 31, 9999.

Despite all this, there are still a number of subtle ways the Y2K and other date problems can affect SQL
Server applications. Most of them have to do with assumptions about date formatting in T-SQL code.
Consider the following:

19

Guru’s Guide to Transact-SQL

SELECT CAST('01-01-39'" AS datetime) AS DadsBirthDate

What date will be returned? Though it's not obvious from the code, the date January 1, 2039 is the answer.
Why? Because SQL Server has an internal century "window" that controls how two-digit years are interpreted.
You can configure this with Enterprise Manager (right click your server, select Properties, then click Server
Settings) or with sp_configure (via the two digit year cutoff setting). By default, two-digit years are interpreted
by SQL Server as falling between 1950 and 2049. So, T-SQL code that uses the SELECT above and
assumes it references 1939 may not work correctly. (Assuming 2039 for Dad's birth year would mean that he
hasn't been born yet!)

The simplest answer, of course, is to use four-digit years. This disambiguates dates and removes the
possibility that changing the two-digit year cutoff setting might break existing code. Note that I'm not
recommending that you require four-digit dates in the user interfaces you build—I refer only to the T-SQL
code you write. What you require of users is another matter.

Another subtle way that Y2K can affect SQL Server apps is through date-based identifiers. It's not uncommon
for older systems (and some newer ones) to use a year-in-century approach to number sequential items. For
example, a purchase order system | rewrote in the eighties used the format YY-SequenceNumber to identify
POs uniquely. These numbers were used as unique identifiers in a relational database system. Each time a
new PO was added, a routine in the front-end application would search a table for the largest
SequenceNumber and increment it by one. About five years before | became associated with the project, the
company had merged with another company that had the same numbering scheme. In order to avoid
duplicate keys, the programmer merging the two companies' data simply added 10 to the year prefixes of the
second company's purchase orders. This, of course, amounted to installing a time bomb that would explode in
ten years when the new keys generated for the first company's data began to conflict with the second
company's original keys. Fortunately, we foresaw this situation and remedied it before it occurred. We
remerged the two databases, this time adding to the SequenceNumber portion of the PO number, rather than
its year prefix. We added a number to the second company's sequence numbers that was sufficient to place
them after all those of the first company, thus eliminating the possibility of future key conflicts.

This situation was not so much Y2K related as it was an imprudent use of date-based keys; however,
consider the situation where the keys start with the year 1999. A two-digit scheme could not handle the
rollover to 2000 because it could no longer retrieve the maximum sequence value from the database and
increment it.

A common thread runs through all these scenarios: omitting the century portion of dates is problematic. Don't
do it unless you like problems.

Date Functions

SQL Server includes a number of functions to manipulate and work with datetime columns. These functions
permit you to extract portions of dates, to add a quantity of date parts to an existing date, to retrieve the
current date and time, and so on. Let's explore a few of these by way of some interesting date problems.
Consider the classic problem of determining for company employees the hire date anniversaries that fall
within the next thirty days. The problem is more subtle than it appears—there are a number of false solutions.
For example, you might be tempted to do something like this:

SELECT fname, lname, hire date
M EMPLOYEE

WHERE MONTH (hire date)=MONTH (GETDATE ())

But this fails to account for the possibility that a thirty-day time period may span two or even three months.
Another false solution can be found in attempting to synthesize a date using the current year and the hire date
month and day, like this:

lname, hire date

\R (GETDATE ()) AS wvarchar (4))+
har (8), hire date,112),5,4) AS datetime) BETWEEN GETDATE ()

20

Chapter 2. Transact-SQL Data Type Nuances

This solution fails to allow for the possibility that the synthesized date might not be valid. How? If the
employee was hired in a leap year and the current year isn't also a leap year, you'll have a problem if her hire
date was February 29. A rare possibility, yes, but one a good solution should take into account.
The best solution doesn't know or care about the exact date of the anniversary. It makes use of the SQL
Server DATEDIFF() function to make the actual anniversary date itself irrelevant. DATEDIFF() returns the
difference in time between two dates using the date or time unit you specify. The function takes three
parameters: the date part or unit of time in which you want the difference returned (e.g., days, months,
minutes, hours) and the two dates between which you wish to calculate the amount of elapsed time. You can
supply any date part you want, including q or qq for calendar quarters, as well as h, mi, ss, and ms for time
parts. Here's the code:
SELECT fname, lname, hire date

EMPLOYEE
WHERE DATEDIFF (yy, hire date,GETDATE ()+30) > DATEDIFF (hire date, GETDATE ())

JXYr

This code basically says, "If the number of years between the hire date and today's date plus thirty days
exceeds the number of years between the hire date and today's date, a hire date anniversary must have
occurred within those thirty days, regardless of the actual date."

Note the use of simple arithmetic to add days to a datetime variable (in this case, the return value of the
GETDATE() function). You can add or subtract days from datetime and smalldatetime variables and fields via
simple arithmetic. Also note the use of the GETDATE() function. This does what its name suggests—it returns
the current date and time.

Similar to DATEDIFF(), DATEADD() adds a given number of units of time to a date- time variable or column.
You can add (and subtract, using negative numbers) all the normal date components, as well as quarters and
time portions. In the case of whole days, it's syntactically more compact to use simple date arithmetic than to
call DATEDIFF(), but the results are the same.

DATEPART() and the YEAR(), MONTHY(), and DAY() functions extract portions of a given date. In addition to
the date parts already mentioned, DATEPART() can return the day of the week, the week of the year, and the
day of the year as integers.

Dates and Simple Arithmetic

Beyond being able to add or subtract a given number of days from date via simple arithmetic, you can also
subtract one date from another to determine the number of days between them, but you must be careful. SQL
Server will return the number of days between the two dates, but if either of them contains a time portion, the
server will also be forced to include fractional days in its computation. Since we are converting the result to an
integer (without the cast, subtracting one SQL Server date from another yields a third date—not terribly
useful), a time portion of twelve hours or more will be considered a full day. This is somewhat counterintuitive.
For example, consider this code:

SELECT CAST (GETDATE ()-"'19940101" AS int)

If GETDATE() equals 1999-01-17 20:47:40, SQL Server returns:

However, DATEDIFF(dd, GETDATE(),'"19940101") returns:

Why the discrepancy? Because DATEDIFF() looks at whole days only, whereas SQL Server's simple date
arithmetic considers fractional days as well. The problem is more evident if we cast to a floating point value
instead of an integer, like so:

SELECT CAST (GETDATE ()-"'19940101" As float)

51851851

So, there are 1842.87 days between January 1, 1994 and January 17, 1999 20:47:40, or, rounded to the
nearest integer, 1843.

To get the two methods to return the same result, we could adjust the first date's time to something before
noon, like so:

SELECT CAST(CAST('1999-01-17 11:47:40' AS datetime)- '19940101" AS int)

21

Guru’s Guide to Transact-SQL

Although this would work, your users may not appreciate having their data changed to accommodate schlocky
code. It would be kind of like performing heart surgery to fix a broken stethoscope. Far better simply to
remove the time from the computation since we don't care about it:

SELECT CAST (CAST (CONVERT (char (8) ,GETDATE () ,112) AS datetime)-'19940101"'" AS int)

This technique converts the date to an eight-byte character string and then back to a date again in order to
remove its time portion. The time then defaults to '00:00:00.000' for both dates, alleviating the possibility of a
partial day skewing the results.

Determining Time Gaps

A common problem with dates is determining the gaps between them, especially when a table of dates or
times is involved. Consider the following scenario: Per company policy, employees at a given factory must
clock in and out each time they enter or leave the assembly line. The line supervisor wants to know how much
time each of her employees spends away from the factory floor. Here's a script that sets up their timecard
records:

CREATE TABLE timeclock
(Employee wvarchar (30),
TimeIn smalldatetime,
TimeOut smalldatetime

)

INSERT timeclock VALUES
INSERT timeclock VALUES

('Pythia','07:31:34","'12:04:01")

('Pythia','12:45:10"',"'17:32:49")
INSERT timeclock VALUES ('Dionysus','9:31:29','10:46:55")
INSERT timeclock VALUES ('Dionysus','10:59:32','11:39:12"
INSERT timeclock VALUES ('Dionysus','13:05:16','14:07:41"
INSERT timeclock VALUES ('Dionysus','14:11:49','14:57:02"
INSERT timeclock VALUES ('Dionysus','15:04:12','15:08:38"
INSERT timeclock VALUES ('Dionysus','15:10:31','16:13:58"
INSERT timeclock VALUES ('Dionysus','16:18:24','16:58:01"

Pythia seems to be a dutiful employee, while Dionysus appears to be playing hooky quite a bit. A query to
determine the number of minutes each employee spends away on break might look something like this:

SELECT tl.Employee,

DATEADD (mi, 1, tl.TimeOut) AS StartOfLoafing,

DATEADD (mi,-1,t2.TimeIn) AS EndOfLoafing,

DATEDIFF (mi, tl.TimeOut, t2.TimeIn) AS LengthOfLoafing
FROM timeclock tl JOIN timeclock t2 ON tl.Employee=t2.Employee)
WHERE (DATEADD (mi,1,tl.TimeOut) <= DATEADD (mi,-1,t2.TimeIn))

Employee StartOfLoafing EndOfLoafing LengthOfLoafing
Pythia 1900-01-01 12:05:00 1900-01-01 12:44:00 41
Dionysus 1900-01-01 10:48:00 1900-01-01 10:59:00 13
Dionysus 1900-01-01 10:48:00 1900-01-01 13:04:00 138
Dionysus 1900-01-01 11:40:00 1900-01-01 13:04:00 86
Dionysus 1900-01-01 10:48:00 1900-01-01 14:11:00 205
Dionysus 1900-01-01 11:40:00 1900-01-01 14:11:00 153
Dionysus 1900-01-01 14:09:00 1900-01-01 14:11:00 4
Dionysus 1900-01-01 10:48:00 1900-01-01 15:03:00 257
Dionysus 1900-01-01 11:40:00 1900-01-01 15:03:00 205
Dionysus 1900-01-01 14:09:00 1900-01-01 15:03:00 56
Dionysus 1900-01-01 14:58:00 1900-01-01 15:03:00 7
Dionysus 1900-01-01 10:48:00 1900-01-01 15:10:00 264

22

Chapter 2. Transact-SQL Data Type Nuances

Dionysus 1900-01-01 11:40:00 1900-01-01 15:10:00 212
Dionysus 1900-01-01 14:09:00 1900-01-01 15:10:00 63
Dionysus 1900-01-01 14:58:00 1900-01-01 15:10:00 14
Dionysus 1900-01-01 15:10:00 1900-01-01 15:10:00 2
Dionysus 1900-01-01 10:48:00 1900-01-01 16:17:00 331
Dionysus 1900-01-01 11:40:00 1900-01-01 16:17:00 279
Dionysus 1900-01-01 14:09:00 1900-01-01 16:17:00 130
Dionysus 1900-01-01 14:58:00 1900-01-01 16:17:00 81
Dionysus 1900-01-01 15:10:00 1900-01-01 16:17:00 69
Dionysus 1900-01-01 16:15:00 1900-01-01 16:17:00 4

Obviously, there are too many breaks—even Dionysus couldn't have had more breaks than work periods. The
deceptive thing about this is that the first row looks correct—Pythia appears to have taken a forty-one minute
lunch. But problems begin to arise as soon as there are more than two Timeln/TimeOut pairs for a given
employee. In addition to correctly computing the time between Dionysus' work periods, the query computes
the difference in minutes between clock-outs and clock-ins that don't correspond to one another. What we
should be doing instead is computing each break based on the most recent clock-out, like so:

SELECT tl.Employee,

DATEADD (mi,1,tl.TimeOut) AS StartOfLoafing,

DATEADD (mi,-1,t2.TimeIn) AS EndOflLoafing,

DATEDIFF (mi, tl.TimeOut,t2.TimeIn) AS LengthOfLoafing
FROM timeclock T1 JOIN timeclock T2 ON (tl.Employee=t2.Employee)
WHERE (DATEADD (mi,1,tl.TimeOut)=

(SELECT MAX (DATEADD (mi,1,t3.TimeOut))

FROM timeclock T3

WHERE (t3.Employee=tl.Employee)

AND (DATEADD (mi,1,t3.TimeOut) <= DATEADD (mi,-1,t2.TimeIn))))

Employee StartOfloafing EndOfLoafing LengthOfLoafing
Pythia 1900-01-01 12:05:00 1900-01-01 12:44:00 41

Dionysus 1900-01-01 10:48:00 1900-01-01 10:59:00 13

Dionysus 1900-01-01 11:40:00 1900-01-01 13:04:00 86

Dionysus 1900-01-01 14:09:00 1900-01-01 14:11:00 4

Dionysus 1900-01-01 14:58:00 1900-01-01 15:03:00 7

Dionysus 1900-01-01 15:10:00 1900-01-01 15:10:00 2

Dionysus 1900-01-01 16:15:00 1900-01-01 16:17:00 4

Notice the use of a correlated subquery to determine the most recent clock-out. It's correlated in that it both
restricts and is restricted by data in the outer query. As each row in T1 is iterated through, the value in its
Employee column is supplied to the subquery as a parameter and the subquery is reexecuted. The row itself
is then included or excluded from the result set based on whether its TimeOut value is greater than the one
returned by the subquery. In this way, correlated subqueries and their hosts have a mutual dependence upon
one another—a correlation between them.

The result set is about a third of the size of the one returned by the first query. Now Dionysus' breaks seem a
bit more believable, if not more reasonable.

You could easily extend this query to generate subtotals for each employee through Transact-SQL's
COMPUTE extension, like so:

SELECT tl.Employee,

DATEADD (mi, 1, tl.TimeOut) AS StartOfLoafing,

DATEADD (mi,-1,t2.TimeIn) AS EndOfLoafing,

DATEDIFF (mi, tl.TimeOut, t2.TimeIn) AS LengthOfLoafing
FROM timeclock T1 JOIN timeclock T2 ON (tl.Employee=t2.Employee)
WHERE (DATEADD (mi,1,tl.TimeOut)=

(SELECT MAX (DATEADD (mi,1,t3.TimeOut))

FROM timeclock T3

WHERE (t3.Employee=tl.Employee)

23

Guru’s Guide to Transact-SQL

AND (DATEADD (mi,1,t3.TimeOut) <= DATEADD (mi,-1,t2.TimelIn))))
ORDER BY tl.Employee
COMPUTE SUM (DATEDIFF (mi, tl.TimeOut,t2.TimeIn)) BY tl.Employee

Employee StartOfLoafing EndOfLoafing LengthOfLoafing
Dionysus 1900-01-01 10:48:00 1900-01-01 11:01:00 13
Dionysus 1900-01-01 11:40:00 1900-01-01 13:06:00 86
Dionysus 1900-01-01 14:09:00 1900-01-01 14:13:00 4
Dionysus 1900-01-01 14:58:00 1900-01-01 15:05:00 7
Dionysus 1900-01-01 15:10:00 1900-01-01 15:12:00 2
Dionysus 1900-01-01 16:15:00 1900-01-01 16:19:00 4
sum
116
Pythia 1900-01-01 12:05:00 1900-01-01 12:46:00 41
sum
41

Note the addition of an ORDER BY clause—a requirement of COMPUTE BY. COMPUTE allows us to
generate rudimentary totals for a result set. COMPUTE BY is a COMPUTE variation that allows grouping
columns to be specified. It's quite flexible in that it can generate aggregates that are absent from the SELECT
list and group on columns not present in the GROUP BY clause. Its one downside—and it's a big one—is the
generation of multiple results for a single query—one for each group and one for each set of group totals.
Most front-end applications don't know how to deal with COMPUTE totals. That's why Microsoft has
deprecated its use in recent years and recommends that you use the ROLLUP extension of the GROUP BY
clause instead. Here's the COMPUTE query rewritten to use ROLLUP:

SELECT ISNULL(tl.Employee, 'Total') AS Employee,

DATEADD (mi, 1, tl.TimeOut) AS StartOflLoafing,

DATEADD (mi,-1,t2.TimeIn) AS EndOfLoafing,

SUM (DATEDIFF (mi, t1.TimeOut,t2.TimeIn)) AS LengthOfLoafing
FROM timeclock T1 JOIN timeclock T2 ON (tl.Employee=t2.Employee)
WHERE (DATEADD (mi,1,tl.TimeQut)=

(SELECT MAX (DATEADD (mi, 1, t3.TimeOut))

FROM timeclock T3

WHERE (t3.Employee=tl.Employee)

AND (DATEADD (mi,1,t3.TimeOut) <= DATEADD (mi,-1,t2.TimelIn))))
GROUP BY tl.Employee,

DATEADD (mi, 1, tl.TimeOut),

DATEADD (mi,-1,t2.Timeln),

DATEDIFF (mi, tl.TimeOut, t2.TimeIn) WITH ROLLUP
HAVING ((GROUPING (DATEADD (mi,-1,t2.TimelIn))=0)

OR (GROUPING (DATEADD (mi,1,tl.TimeOut))+GROUPING (DATEADD (mi,-1,t2.TimeIn))=2))

Employee StartOfLoafing EndOfLoafing LengthOfLoafing
Dionysus 1900-01-01 10:48:00 1900-01-01 10:59:00 13

Dionysus 1900-01-01 10:48:00 1900-01-01 10:59:00 13

Dionysus 1900-01-01 11:40:00 1900-01-01 13:04:00 86

Dionysus 1900-01-01 11:40:00 1900-01-01 13:04:00 86

Dionysus 1900-01-01 14:09:00 1900-01-01 14:11:00 4

Dionysus 1900-01-01 14:09:00 1900-01-01 14:11:00 4

Dionysus 1900-01-01 14:58:00 1900-01-01 15:03:00 7

Dionysus 1900-01-01 14:58:00 1900-01-01 15:03:00 7

Dionysus 1900-01-01 15:10:00 1900-01-01 15:10:00 2

24

Chapter 2. Transact-SQL Data Type Nuances

Dionysus 1900-01-01 15:10:00 1900-01-01 15:10:00 2
Dionysus 1900-01-01 16:15:00 1900-01-01 16:17:00 4
Dionysus 1900-01-01 16:15:00 1900-01-01 16:17:00 4
Dionysus NULL NULL 116
Pythia 1900-01-01 12:05:00 1900-01-01 12:44:00 41
Pythia 1900-01-01 12:05:00 1900-01-01 12:44:00 41
Pythia NULL NULL 41
Total NULL NULL 157

As you can see, the query is much longer. Improved runtime efficiency sometimes comes at the cost of
syntactical compactness.

WITH ROLLUP causes extra rows to be added to the result set containing subtotals for each of the columns
specified in the GROUP BY clause. Unlike COMPUTE, it returns only one result set. We're not interested in all
the totals generated, so we use a HAVING clause to eliminate all total rows except employee subtotals and
the report grand total. The first set of NULL values in the result set corresponds to the employee subtotal for
Dionysus. The second set marks Pythia's subtotals. The third set denotes grand totals for the result set.
Note the use of the GROUPING() function to generate a custom string for the report totals line and to restrict
the rows that appear in the result set. GROUPING() returns 1 when the specified column is being grouped
within a particular result set row and 0 when it isn't. Grouped columns are returned as NULL in the result set.
If your data itself is free of NULLs, you can use ISNULL() in much the same way as GROUPING() since only
grouped columns will be NULL.

Building Calendars

Another common use of datetime fields is to build calendars and schedules. Consider the following problem: A
library needs to compute the exact day a borrower must return a book in order to avoid a fine. Normally, this
would be fourteen calendar days from the time the book was checked out, but since the library is closed on
weekends and holidays, the problem is more complex than that. Let's start by building a simple table listing
the library's holidays. A table with two columns, HolidayName and HolidayDate, would be sufficient. We'll fill it
with the name and date of each holiday the library is closed. Here's some code to build the table:

USE tempdb

DROP TABLE HOLIDAYS
GO

CREATE TABLE HOLIDAYS
INSERT HOLIDAYS VALUE
INSERT HOLIDAYS VALUE

HolidayName varchar (30), HolidayDate smalldatetime)
"New Year's Day","19990101")
"Valentine's Day","19990214")

I
0 n

(

(

(
INSERT HOLIDAYS VALUES ("St. Patrick's Day","19990317")
INSERT HOLIDAYS VALUES ("Memorial Day","19990530")
INSERT HOLIDAYS VALUES ("Independence Day","19990704")
INSERT HOLIDAYS VALUES ("Labor Day","19990906")
INSERT HOLIDAYS VALUES ("Indigenous Peoples Day","19991011")
INSERT HOLIDAYS VALUES ("Halloween",™19991031")
INSERT HOLIDAYS VALUES ("Thanksgiving Day","19991125")
INSERT HOLIDAYS VALUES ("Day After Thanksgiving™","19991126")
INSERT HOLIDAYS VALUES ("Christmas Day","19991225")
INSERT HOLIDAYS VALUES ("New Year's Eve","19991231")

SELECT * FROM HOLIDAYS

HolidayName HolidayDate

New Year's Day 1999-01-01 00:00:00
Valentine's Day 1999-02-14 00:00:00
St. Patrick's Day 1999-03-17 00:00:00
Memorial Day 1999-05-30 00:00:00
Independence Day 1999-07-04 00:00:00
Labor Day 1999-09-06 00:00:00

Indigenous Peoples Day 1999-10-11 00:00:00

25

Guru’s Guide to Transact-SQL

Halloween 1999-10-31 00:00:00
Thanksgiving Day 1999-11-25 00:00:00
Day After Thanksgiving 1999-11-26 00:00:00
Christmas Day 1999-12-25 00:00:00
New Year's Eve 1999-12-31 00:00:00

Next, we'll build a table of check-out/check-in dates for the entire year. It will consist of two columns as well,
CheckOutDate and DueDate. To build the table, we'll start by populating CheckOutDate with every date in the
year and DueDate with each date plus fourteen calendar days. Stored procedures— compiled SQL programs
that resemble 3GL procedures or subroutines—work nicely for this because local variables and flow-control
statements (e.g., looping constructs) are right at home in them. You can use local variables and control-flow
statements outside stored procedures, but they can be a bit unwieldy and you lose much of the power of the
language in doing so. Here's a procedure that builds and populates the DUEDATES table:

USE tempdb
GO
DROP TABLE DUEDATES
GO
CREATE TABLE DUEDATES (CheckOutDate smalldatetime, DueDate smalldatetime)
GO
DROP PROC popduedates
GO
CREATE PROCEDURE popduedates AS
SET NOCOUNT ON
DECLARE (@year integer, (@insertday datetime

SELECT @year=YEAR(GETDATE ()), @insertday=CAST (dyear AS char(4))+'0101"
TRUNCATE TABLE DUEDATES -- In case ran more than once (run only from tempdb)
WHILE YEAR(@insertday)=Q@year BEGIN

-- Don't insert weekend or holiday CheckOut dates -- library is closed

IF ((SELECT DATEPART (dw,@insertday)) NOT IN (1,7))
AND NOT EXISTS (SELECT * FROM HOLIDAYS WHERE HolidayDate=@insertday)
INSERT DUEDATES VALUES (@insertday, @insertday+14)
SET @insertday=@insertday+1l
END
GO
EXEC popduedates

Now that we've constructed the table, we need to adjust each due date that falls on a holiday or weekend to
the next valid date. The problem is greatly simplified by the fact that the table starts off with no weekend or
holiday check-out dates. Since check-ins and check-outs are normally separated by fourteen calendar days,
the only way to have a weekend due date occur once the table is set up initially is by changing a holiday due
date to a weekend due date—that is, by introducing it ourselves.

One approach to solving the problem would be to execute three UPDATE statements: one to move due dates
that fall on holidays to the next day, one to move Saturdays to Mondays, and one to move Sundays to
Mondays. We would need to keep executing these three statements until they ceased to affect any rows.
Here's an example:

CREATE PROCEDURE fixduedates AS
SET NOCOUNT ON

DECLARE (@keepgoing integer

SET @keepgoing=1
WHILE (@keepgoing<>

0) BEGIN
UPDATE #DUEDATES S

(

R

T DateDue=DateDue+l
ELECT HolidayDate FROM HOLIDAYS)
WCOUNT

WHERE DateDue IN
SET @keepgoing=@@

)

ial
S
o)

UPDATE #DUEDATES SET DateDue=DateDue+2
WHERE DATEPART (dw, DateDue) =7

26

Chapter 2. Transact-SQL Data Type Nuances

SET @keepgoing=@keepgoing+@E@ROWCOUNT

UPDATE #DUEDATES
WHERE DATEPART (dw

T DateDue=DateDue+l
, DateDue) =1

SET @keepgoing=@keepgoing+@E@ROWCOUNT
END

This technique uses a join to HOLIDAYS to adjust holiday due dates and the DATEPART() function to adjust
weekend due dates. Once the procedure executes, you're left with a table of check-out dates and
corresponding due dates. Notice the use of @@ROWCOUNT in the stored procedure to determine the
number of rows affected by each UPDATE statement. This allows us to determine when to end the loop—
when none of the three UPDATES registers a hit against the table. The necessity of the @keepgoing variable
illustrates the need in Transact-SQL for a DO...UNTIL or REPEAT...UNTIL looping construct. If the language
supported a looping syntax that checked its control condition at the end of the loop rather than at the
beginning, we might be able to eliminate @keepgoing.

Given enough thought, we can usually come up with a better solution to an iterative problem like this than the
first one that comes to mind, and this one is no exception. Here's a solution to the problem that uses just one
UPDATE statement.

Seed @@ROWCOUNT

DATEPART (dw, Due
ayDate FROM HOLIDA

> THEN 3 ELSE 1 END

te IN (SELECT Holi

This technique takes advantage of the fact that the table starts off with no weekend due dates and simply
avoids creating any when it adjusts due dates that fall on holidays. It pulls this off via the CASE function. If the
holiday due date we're about to adjust is already on a Friday, we don't simply add a single day to it and expect
later UPDATE statements to adjust it further—we add enough days to move it to the following Monday. Of
course, this doesn't account for two holidays that occur back to back on a Thursday and Friday, so we're
forced to repeat the process.

The procedure uses an interesting technique of returning a message string to "seed" the @@ROWCOUNT
automatic variable. In addition to notifying the user of what the procedure is up to, returning the string sets the
initial value of @ @ROWCOUNT to 1 (because it returns one "row"), permitting entrance into the loop. Once
inside, the success or failure of the UPDATE statement sets @ @ROWCOUNT. Taking this approach
eliminates the need for a second counter variable like @@keepgoing. Again, an end-condition looping
construct would be really handy here.

Just when we think we have the best solution possible, further reflection on a problem often reveals an even
better way of doing things. Tuning SQL queries is an iterative process that requires lots of patience. You have
to learn to balance the gains you achieve with the pain they cost. Trimming a couple of seconds from a query
that runs once a day is probably not worth your time, but trimming a few from one that runs thousands of
times may well be. Deciding what to tune, what not to, and how far to go is a skill that's gradually honed over
many years.

Here's a refinement of the earlier techniques that eliminates the need for a loop altogether. It makes a couple
of reasonable assumptions in order to pull this off. It assumes that no more than two holidays will occur on
consecutive days (or that a single holiday will never span more than two days) and that no two holidays will be
separated by less than three days. Here's the code:

27

Guru’s Guide to Transact-SQL

ELSE 1
END
FROM HOLIDAYS WHERE DueDate = HolidayDate

This solution takes Thursday-Friday holidays into account via its CASE statement. If it encounters a due date
that falls on a Thursday holiday, it checks to see whether the following Friday is also a holiday. If so, it adjusts
the due date by enough days to move it to the following Monday. If not, it adjusts the due date by a single day
just as it would a holiday falling on any other day of the week.

The procedure also eliminates the subquery used by the earlier techniques. Transact-SQL supports the
FROM extension to the ANSI/ISO UPDATE statement, which allows one table to be updated based on data in
another. Here, we establish a simple inner join between DUEDATES and HOLIDAYS in order to limit the rows
updated to those with due dates found in HOLIDAYS.

Strings

SQL Server string variables and fields are of the basic garden-variety type. Variable-length and fixed-length
types are supported, with each limited to a maximum of 8000bytes. Like other types of variables, string
variables are established via the DECLARE command:

String variables are initialized to NULL when declared and can be assigned a value using either SET or
SELECT, likeso:

Concatenation

You can concatenate string fields and variables using the 1 operator, like this:

SELECT @Vocalist+' sang the classic '+@Song+' for the band Free'

Char vs. Varchar

Whether you should choose to create character or variable character fields depends on your needs. If the
data you're storing is of a relatively fixed length and varies very little from row to row, fixed character fields
make more sense. Each variable character field carries with it the overhead associated with storing a field's
length in addition to its data. If the length of the data it stores doesn't vary much, a fixed-length character field
will not only be more efficiently stored, it will also be faster to access. On the other hand, if the data length
varies considerably from row to row, a variable-length field is more appropriate.fi Variable character fields can
also be more efficient in terms of SQL syntax. Consider the previous example:

SELECT @Vocalist+' sang the classic '+@Song+' for the band Free'
Because @Vocalist is a fixed character variable, the concatenation doesn't work as we might expect. Unlike
variable-length @Song, @Vocalist is right-padded with spaces to its maximum length, which produces this

output:

Paul Rodgers sang the classic All Right Now for the band Free

28

Chapter 2. Transact-SQL Data Type Nuances

Of course, we could use the RTRIM() function to remove those extra spaces, but it would be more efficient
just to declare @Vocalist as a varchar in the first place.

One thing to watch out for with varchar concatenation is character movement. Concatenating two varchar
strings can yield a third string where a key character (e.g., the last character or the first character of the
second string) shifts within the new string due to blanks being trimmed. Here's an example:

SELECT au fname+' '+au lname
FROM authors

(Results abridged)
Abraham Bennet

Reginald Blotchet-Halls
Cheryl Carson

Michel DeFrance

Innes del Castillo

Ann Dull

Marjorie Green
Morningstar Greene

Burt Gringlesby

Due to character movement and because at least one of the names contains multiple spaces, there's no easy
way to extract the authors' first and last names once they've been combined in this way. Since au_fname is a
20-character field, the first character of au_Ilname is logical character21 in the concatenated name. However,
that character has moved due to au_Iname's concatenation with a varchar (nonpadded) string.fi It is now in a
different position for each author, making extricating the original names next to impossible. This may not be
an issue—it may be what you intend—but it's something of which you should be aware.

SET ANSI_PADDING

By default, SQL Server doesn't trim trailing blanks and zeros from varchar or varbinary values when they're
inserted into a table. This is in accordance with the ANSI SQL-92 standard. If you want to change this, use

SET ANSI_PADDING (or SET ANSI_DEFAULTS). When ANSI_PADDING is OFF, field values are trimmed
as they're inserted. This can introduce some subtle problems. Here's an example:

SET NOCOUNT ON
CREATE TABLE #testpad (cl char (30))

SET ANSI PADDING OFF

DECLARE @robertplant char (20),
@jimmypage char (20),
@johnbonham char (20),
@johnpauljones char (20)

SET @robertplant= 'ROBERT PLANT !

SET @jimmypage= 'JIMMY PAGE !

SET @johnbonham= 'JOHN BONHAM !

SET @johnpauljones= 'JOHN PAUL JONES'

@robertplant)

INSERT #testpad VALUES
INSERT #testpad VALUES
INSERT #testpad VALUES
INSERT #testpad VALUES

@jimmypage)
johnbonham)
johnpauljones)

(
(
(@
(@

SELECT DATALENGTH (cl) as LENGTH;
FROM #testpad

SELECT *
FROM #testpad

29

Guru’s Guide to Transact-SQL

WHERE cl LIKE @johnbonham

0

DROP TABLE #testpad

Because ANSI_PADDING has been turned OFF, no rows are returned by the second query even though
we're searching for a value we just inserted. Since ANSI_PADDING was disabled when @johnbonham was
inserted, its trailing blanks were removed. That's why the listed data lengths of the inserted values differ from
row to row even though the ones we supplied were all the same length. When the second query attempts to
locate a record using one of the inserted values, it fails because the value it's using hasn't been trimmed. The
salient point here is that disabling ANSI_PADDING affects only the way values are stored—it doesn't change
the way that variables and constant values are handled. Since these are often used in comparison operations
with stored values, a mismatch results—one value with trailing blanks and one without. That's where subtle
problems come in. As they say, the devil is in the details. Here's what the result set would look like with
ANSI_PADDING in effect:

JOHN BONHAM

String Functions

There are a number of SQL Server string functions. You can check the Books Online for specifics. I'll take you
through some of the more interesting ones.

CHARINDEX()

The CHARINDEX() function returns the position of one string within another. Here's an example:

SELECT CHARINDEX ('Now',@Song)

You can optionally specify a starting position, likeso:

SELECT CHARINDEX ('h', '"They call me the hunter',17)

SOUNDEX()

30

Chapter 2. Transact-SQL Data Type Nuances

The SOUNDEX() function returns a string representing the sound of a character string. Like most soundex
codes, Transact-SQL SOUNDEX() strings consist of a single character followed by three numeric digits.
SOUNDEX() is most often used to alleviate the problems introduced by misspellings and typing mistakes in
the database. Here's an example of its use:

SELECT SOUNDEX ('Terry'), SOUNDEX('Terri')

Both of these expressions return a soundex of T600.
Transact-SQL's implementation of SOUNDEX() isn't terribly sophisticated, and it's easy to fool it. Here's an
example:

SELECT SOUNDEX ('Rodgers'), SOUNDEX ('Rogers')

You might think that these two surnames would have the same soundex, but that's not the case. Usually,
SOUNDEX() is used to implement limited fuzzy searches, to build mnemonic keys or codes, and the like.
Because of its limitations, it's pretty rare in real-life applications.

A Better SOUNDEX()

It's easy enough to write a better phonetic matching routine than the one provided by SQL Server. Transact-
SQL's SOUNDEX() function is based on the original soundex algorithm patented by Margaret O'Dell and
Robert Russell in 1918. To begin improving upon the stock function, let's first rewrite it as a stored procedure.
Here's a stored procedure based on the O'Dell-Russell algorithm:

USE master
go
IF CBdhCTilD('SpisCundex') IS NOT NULL
DROP PROC sp soundex
go
CREATE PROCEDURE sp_ soundex @instring varchar (50), @soundex varchar (50)=NULL
OUTPUT

Object: sp_ soundex
Description: Returns the soundex of a string

Usage: sp soundex @instring=strin

Q

to translate, @soundex OUTPUT=string in which
return soundex

Returns: (None)

Created by: Ken Henderson. Email: khen@khen.com

Version: 7.0

Example: sp soundex "Rodgers"

Created: 1998-05-15. Last changed: 1998-05-16.

Notes: Based on the soundex algorithm published by Robert Russell and Margaret
O'Dell

in 1918.

Translation to Transact-SQL by Ken Henderson.

*/

31

Guru’s Guide to Transact-SQL

AS
IF (Qinstring='/?"') GOTO Help

DECLARE (@workstr wvarchar (10)

SET @instring=UPPER(@instring)

SET @soundex=RIGHT (@instring,LEN (@instring)-1) -- Put all but the first char in a
work

buffer (we always return the first char)

SET @workstr='AEHIOUWY' -- Remove these from the string
WHILE (Q@workstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr,1),"'")
SET @workstr=RIGHT (Qworkstr, LEN (dworkstr)-1)
END

/*

Translate characters to numbers per the following table:

Char Number
B,F,P,V 1
c,G,J,K,Q,S,X,2 2

D,T 3

L 4

M, N 5

R S

*/

SET @workstr='BFPV'

WHILE (Q@workstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr,1),'1l")
SET @workstr=RIGHT (Qworkstr, LEN (Eworkstr)-1)

END

SET @workstr='CGJKQSXZ'

WHILE (Q@workstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (Qworkstr, 1), '2")
SET @workstr=RIGHT (Qworkstr, LEN (Eworkstr)-1)

END

SET @workstr='DT'
WHILE (Qworkstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr, 1), '3")
SET @workstr=RIGHT (Gworkstr, LEN (Gworkstr) -1)
END

SET @soundex=REPLACE (@soundex, 'L','4")

SET @workstr='MN'

WHILE (Q@workstr<><>'") BEGIN
SET @soundex=REPLACE (@soundex, LEFT (Qworkstr,1),'5")
SET @workstr=RIGHT (Qworkstr, LEN (Eworkstr)-1)

END

SET @soundex=REPLACE (@soundex, 'R','6")
-- Now replace repeating digits (e.g., '1ll' or '22') with single digits

DECLARE @c int
SET @c=1

32

Chapter 2. Transact-SQL Data Type Nuances

WHILE (@c<10) BEGIN
SET @soundex=REPLACE (@soundex, CONVERT (char (2),@c*11), CONVERT (char (1), dc)) --
Multiply
by 11 to produce repeating digits
SET @c=@c+l
END
SET @soundex=REPLACE (@soundex, '00'",'0'") -- Get rid of double =zeros

SET @soundex=LEFT (@soundex, 3)

WHILE (LEN(@soundex)<3) SET @soundex=@soundex+'0' -- Pad with zero

SET @soundex=LEFT (@instring,l) +@soundex -- Prefix first char and return
RETURN 0

Help:

EXEC sp usage (@objectname='sp soundex', (@desc='Returns the soundex of a string',
@parameters='@instring=string to translate, @soundex OUTPUT=string in which to
return

L

soundex',

@Qauthor="'Ken Henderson', @email='khen@khen.com',

@datecreated='19980515"', @datelastchanged='19980516",

@version='7', @revision='0",

@example='sp soundex "Rodgers"'

RETURN -1

Create this procedure, then test your new procedure using code like the following:

DECLARE (@mysx varchar (4)
EXEC sp_ soundex 'Rogers',6 @mysx OUTPUT
SELECT @mysx, SOUNDEX ('Rogers')

Your new procedure and the stock SOUNDEX() function should return the same code. Now let's improve a bit
on the original procedure by incorporating an optimization to the original algorithm introduced by Russell.
Rather than merely removing the letters A, E, H, I, O, U, W, and Y, we'll translate them to nines, remove
repeating digits from the string, then remove the remaining nines from the string. Removing the nines after
we've removed repeating digits reintroduces the possibility of repeating digits into the string and makes for
finer granularity. This routine will perform better with a larger number of strings than the original routine.
Here's the revised routine:

USE master
go
IF OBJECT ID('sp soundex russell') IS NOT NULL
DROP PROC sp soundex russell
go
CREATE PROCEDURE sp soundex russell @instring varchar (50), @soundex varchar (50)
=NULL OUTPUT

/*

Object: sp soundex russell
Description: Returns the soundex of a string (Russell optimization)

Usage: sp soundex russell (@instring=string to translate, @soundex OUTPUT=string
in which to return soundex

Returns: (None)

Created by: Ken Henderson. Email: khen@khen.com

33

Guru’s Guide to Transact-SQL

Version: 7.0
Example: sp soundex russell "Rodgers"
Created: 1998-05-15. Last changed: 1998-05-16.

Notes:
Based on the soundex algorithm published by Robert Russell and Margaret O'Dell
in 1918, extended to incorporate Russell's optimizations for finer granularity.

*/
AS

IF (@instring='/?') GOTO Help
DECLARE @workstr wvarchar (10)

SET @instring=UPPER(Q@instring)

SET @soundex=RIGHT (@instring, LEN(@instring)-1) -- Put all but the first char in
a work buffer (we always return the first char)

/*

Translate characters to numbers per the following table:

A,E,H,I,0,U,W,Y
*/

SET @workstr='BFPV'

WHILE (Q@workstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr,1),'1l")
SET @workstr=RIGHT (Qworkstr, LEN (Eworkstr)-1)

END

SET @workstr='CGJKQSXZ'

WHILE (Qworkstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr, 1), '2")
SET @workstr=RIGHT (Gworkstr, LEN (Gworkstr) -1)

END

SET @workstr='DT'

WHILE (@workstr<>'") BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr,1),'3")
SET @workstr=RIGHT (Qworkstr, LEN (@workstr)-1)

END

SET @soundex=replace (@soundex, 'L','4")

SET @workstr="'MN'

WHILE (Qworkstr<>'"') BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr, 1), '5")
SET @workstr=RIGHT (Qworkstr, LEN (Eworkstr)-1)

END

34

Chapter 2. Transact-SQL Data Type Nuances

set @soundex=replace (@soundex, 'R','6")

SET Q@workstr="AEHIOUWY'

WHILE (@workstr<>") BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr,1),'9")
SET @workstr=RIGHT (@workstr, LEN (Gworkstr)-1)

END

-- Now replace repeating digits (e.g., '1ll' or '22') with single digits
DECLARE @c int
SET @c=1
WHILE (@c<10) BEGIN
-- Multiply by 11 to produce repeating digits
SET @soundex=REPLACE (@soundex, CONVERT (char (2) ,@c*11), CONVERT (char (1), @c))
SET Qc=@c+1

END
SET @soundex=REPLACE (@soundex, '00','0'") -- Get rid of double zeros
SET @soundex=REPLACE (@soundex, '9',") -- Get rid of 9's

SET @soundex=LEFT (@soundex, 3)

WHILE (LEN (@soundex)<3) SET (@soundex=@soundex+'0' -- Pad with zero

SET @soundex=LEFT (@instring,l)+@soundex -- Prefix first char and return
RETURN 0

Help:

EXEC sp usage (@objectname='sp soundex russell', (@desc='Returns the soundex of a
string (Russell optimization)',

@parameters='(@instring=string to translate, @soundex OUTPUT=string in which to
return soundex',

@author='Ken Henderson', @email='khen@khen.com',

@datecreated='19980515"', (@datelastchanged='1998051¢"',

@version='7', Qrevision='0",

@example='sp soundex russell "Rodgers"'

RETURN -1

Like the original routine, this routine has a rather limited set of possible return codes—26 possible initial letters
followed by three numerals, representing a maximum of 26* 10°, or 26,000 possible soundex codes. If we
change the last three numerals to letters, we increase the number of possible return codes dramatically to 26*
or 456,976. Here's a soundex procedure that takes this approach:

USE master
GO
IF OBJECT ID('sp soundex alpha') IS NOT NULL
DROP PROC sp soundex alpha
GO
CREATE PROCEDURE sp soundex alpha @instring varchar (50), @soundex
varchar (50) =NULL
OUTPUT

/*
Object: sp soundex alpha

Description: Returns the soundex of a string

Usage: sp_ soundex alpha @instring=string to translate, @soundex OUTPUT=string in

which to return soundex

Returns: (None)

35

Guru’s Guide to Transact-SQL

Created by: Ken Henderson. Email: khen@khen.com
Version: 7.0
Example: sp soundex alpha "Rodgers"
Created: 1998-05-15. Last changed: 1998-05-16.
Notes: Original source unknown.
Translation to Transact-SQL by Ken Henderson.
*/
AS
IF (Qinstring='/?"') GOTO Help
DECLARE (@workstr wvarchar (10)
SET @instring=UPPER(@instring)
SET @soundex=RIGHT (@instring, LEN(@instring)-1) -- Put all but the first char in
a work buffer (we always return the first char)
SET Q@workstr='EIOUY' -- Replace vowels with A
WHILE (@workstr<>'") BEGIN
SET @soundex=REPLACE (@soundex, LEFT (@workstr, 1), 'A")

SET @workstr=RIGHT (Gworkstr, LEN (Eworkstr) -1)
END

/*

Translate word prefixes using this table

From To
MAC MCC
KN NN
K C
PF FF
SCH SSS
PH FF
*/

-- Re-affix first char
SET @soundex=LEFT (@instring,1l)+@soundex

IF (LEFT (@soundex,3)='MAC') SET @soundex='MCC'+RIGHT (@soundex, LEN (@soundex) -3)
IF (LEFT(@soundex,2)='KN') SET @soundex='NN'+RIGHT (@soundex, LEN (@soundex) -2)
IF (LEFT (@soundex,l)='K') SET @soundex='C'+RIGHT (@soundex, LEN (@soundex) -1)

IF (LEFT (@soundex,2)='PF') SET (@soundex='FF'+RIGHT (@soundex, LEN (@soundex) -2)
IF (LEFT (@soundex,3)='SCH') SET @soundex='SSS'+RIGHT (@soundex, LEN (@soundex) —-3)
IF (LEFT (@soundex,2)='PH') SET @soundex='FF'+RIGHT (€soundex, LEN (@soundex) -2)

--Remove first char

SET @instring=@soundex

SET @soundex=RIGHT (@soundex, LEN (@soundex) -1)
/*

Translate phonetic prefixes (those following the first char) using this table:

36

Chapter 2. Transact-SQL Data Type Nuances

From To

DG GG

CAAN TAAN

D T

NST NSS

AV AF

0 G

Z S

M N

KN NN

K C

H A (unless part of AHA)

AW A

PH FFE

SCH SSS

*/

SET @soundex=REPLACE (@soundex, 'DG', 'GG")
SET @soundex=REPLACE (@soundex, "CAAN', "TAAN")
SET @soundex=REPLACE (@soundex, 'D','T")
SET @soundex=REPLACE (@soundex, "NST', 'NSS"')
SET @soundex=REPLACE (@soundex, "AV', "AF")
SET @soundex=REPLACE (@soundex, 'Q"', 'G")
SET @soundex=REPLACE (@soundex, '2"',"'S")
SET @soundex=REPLACE (@soundex, 'M', 'N"')
SET @soundex=REPLACE (@soundex, "KN', "NN'")
SET @soundex=REPLACE (@soundex, "K', 'C")

-- Translate H to A unless it's part of "AHA"

SET @soundex=REPLACE (@soundex, "AHA', '~~~")
SET @soundex=REPLACE (@soundex, 'H', 'A")

SET @soundex=REPLACE (@soundex, '~~~', "AHA")
SET @soundex=REPLACE (@soundex, "AW', 'A")
SET @soundex=REPLACE (@soundex, "PH', 'FF'")
SET @soundex=REPLACE (@soundex, "SCH', 'SSS"'")

-- Truncate ending A or S
IF (RIGHT (@soundex,l)="'A' or RIGHT (@soundex,1l)='S")
@soundex=LEFT (@soundex, LEN (@soundex) -1)

SET
-- Translate ending "NT" to "TT"
IF (RIGHT (@soundex,2)="'NT') SET @soundex=LEFT (@soundex, LEN (@soundex) -2)+'TT"'

-— Remove all As
SET @soundex=REPLACE (@soundex, 'A','")

-- Re-affix first char
SET @soundex=LEFT (@instring,1l)+@soundex

-- Remove repeating characters
DECLARE (@c int

SET @c=65
WHILE (Qc<91) BEGIN
WHILE (CHARINDEX (char (@c)+CHAR(Qc), @soundex)<>0)

SET @soundex=REPLACE (@soundex, CHAR (Qc) +CHAR (Qc) , CHAR (Qc))
SET @c=@c+1
end

SET @soundex=LEFT (@soundex, 4)

37

Guru’s Guide to Transact-SQL

IF (LEN(@soundex)<4) SET (@soundex=@soundex+SPACE (4-LEN (@soundex)) -- Pad with
spaces

RETURN 0

Help:

EXEC sp usage (@objectname='sp soundex alpha', @desc='Returns the soundex of a
string',

@parameters='(@instring=string to translate, @soundex OUTPUT=string in which to
return soundex',

@author='Ken Henderson', @email='khen@khen.com',

@datecreated='19980515"', @datelastchanged='19980516",

@version='7"', (@revision='0",

@example='sp soundex alpha "Rodgers"'

RETURN -1

To see the advantages of this procedure over the more primitive implementation, try the following query:

DECLARE @mysxl varchar(4), @mysx2 varchar (4)

EXEC sp_soundex alpha 'Schuller', @mysxl OUTPUT

EXEC sp soundex alpha 'Shuller',6 @mysx2 OUTPUT

SELECT @mysx1l, @mysx2, SOUNDEX ('Schuller'), SOUNDEX ('Shuller")

Thanks to its superior handling of common phonetic equivalents such as "SCH" and "SH," sp_soundex_alpha
correctly returns the same soundex code for Schuller and Shuller, while SOUNDEX() returns different codes
for each spelling. Beyond the obvious use of identifying alternate spellings for the same name, the real reason
we need a more complex routine like sp_soundex_alpha is to render more codes, not less of them. Consider
the following test script:

DECLARE @mysxl wvarchar(4), @mysx2 varchar (4)

EXEC sp_ soundex alpha 'Poknime', @mysxl OUTPUT

EXEC sp soundex alpha 'Poknimeister', @mysx2 OUTPUT

SELECT @mysx1l,@mysx2, soundex ('Poknime'),soundex ('Poknimeister"')

In this script, sp_soundex_alpha correctly distinguishes between the two names, while SOUNDEX() isn't able
to. Why? Because sp_soundex_alpha reduces the combination "KN" to "N," thereby allowing it to consider the
"S" at the end of "Poknimeister." SOUNDEX(), by contrast, isn't quite so capable. Since it leaves "KN"
unaltered, the string it ends up translating for both names is PKNM, thus returning the same soundex code for
each of them.

DIFFERENCE()

A companion to SOUNDEX(), DIFFERENCE() returns an integer indicating the difference between the
soundex values of two character strings. The value returned ranges from 0 to 4, with 4 indicating that the
strings are identical. So, using the earlier example:

SELECT DIFFERENCE ('Terry', 'Terri')

returns 4, while

SELECT DIFFERENCE ('Rodgers', 'Rogers')

returns 3.
Constructing a stored procedure to return the difference between two soundex codes is straightforward.
Here's an example:

38

Chapter 2. Transact-SQL Data Type Nuances

USE master

GO
IF OBJECT ID('sp_soundex difference') IS NOT NULL
DROP PROC sp soundex difference
GO
CREATE PROCEDURE sp soundex difference @stringl varchar (50), @string2
varchar (50)=NULL, @difference int=NULL OUTPUT

/*
Object: sp soundex difference
Description: Returns the difference between the soundex codes of two strings

Usage: sp soundex difference @stringl=first string to translate, @string2=second
string to translate, @difference OUTPUT=difference between the two as an integer

Returns: An integer representing the degree of similarity -- 4=identical,
O=completely different

Created by: Ken Henderson. Email: khen@khen.com
Version: 7.0

Example: sp soundex difference "Rodgers", "Rogers"
Created: 1998-05-15. Last changed: 1998-05-16.

*/
AS
IF (@stringl='/?"') GOTO Help

DECLARE @sx1 varchar (5), @sx2 wvarchar (5)
EXEC sp_ soundex alpha @stringl, @sxl OUTPUT
EXEC sp_soundex_alpha @string2, @sx2 OUTPUT
RETURN CASE

WHEN @sx1l=@sx2 THEN 4

WHEN LEFT (@sx1,3)=LEFT (@sx2,3) THEN 3

WHEN LEFT (@sx1,2)=LEFT (@sx2,2) THEN 2
WHEN LEFT (@sx1,1)=LEFT (@sx2,1) THEN 1
ELSE O
END
Help:
EXEC sp usage (@objectname='sp soundex difference', @desc='Returns the difference

between the soundex codes of two strings',
@parameters='@stringl=first string to translate, @string2=second string to
translate,

-

@difference OUTPUT=difference between the two as an integer',

@returns='An integer representing the degree of similarity -- 4=identical,
O=completely

-

different',

Qauthor='Ken Henderson', @email='khen@khen.com',

@datecreated='19980515"'", @datelastchanged='19980516",

@version='7', @revision='0",

@example='sp soundex difference "Rodgers", "Rogers"'

39

Guru’s Guide to Transact-SQL
RETURN -1

Xp_sprintf

Similar to a regular stored procedure, an extended procedure is accessed as though it was a compiled SQL
program. In actuality, extended procedures aren't written in Transact-SQL— they reside in DLLs (Dynamic
Link Libraries) external to the server. They make use of the SQL Server ODS (Open Data Services) API using
a language tool capable of producing DLLs such as C11 or Delphi.

As you might have guessed, the xp_sprintf extended stored procedure works similarly to the C sprintf()
function. You can pass it a variable, a format string, and a list of arguments in order to construct a string
variable. Currently, only string arguments are supported, so you can't pass integers or other data types
directly— but you can use them indirectly by converting them to strings first. Here's an example illustrating the
use of xp_sprintf:

DECLARE (@Line varchar (80), @Title varchar (30), @Artist wvarchar (30)
SET @Title='Butterflies and Zebras'

SET @Artist='Jimi Hendrix'

EXEC xp_ sprintf @Line output, '$s sang %s',@Artist,@Title

SELECT @Line

Here's an example showing how to cast other types of variables and fields to strings in order to use them as
arguments to xp_sprintf:

DECLARE @TotalMsg varchar (80), @Items varchar (20)

SELECT @Items=CAST (count (*) as varchar(20)) FROM ITEMS

EXEC master..xp sprintf @TotalMsg output, 'There were %$s items on file', @Items
PRINT @TotalMsg

Xp_sscanf

Xp_sscanf is the inverse of xp_sprintf. Rather than putting variables into a string, xp_sscanf extracts values
from a string and places them into user variables, similar to the C sscanf() function. Here's an example:

DECLARE @sl varchar (20),@s2 varchar (20),@s3 varchar (20),
@s5 varchar (20),@s6 varchar (20),@s7 varchar (20),@s8 va
@s9 varchar(20),@s10 varchar (20),@s1ll varchar(20),@sl2

EXEC master..xp sscant

'He Meditated for a Moment, Then Kneeling Over and Across the Ogre , King Arthur

Looked Up and Proclaimed His Wish : Now, Miserable Beasts That Hack The Secret

of the Ancient Code And Run the Gauntlet, Today I Bid You Farewell', 'He %stated

for a Moment, Then Kneeling %cver and A%cross the 0g%s , King Arthur Looked %cp
and Proclaimed His %s : Now, %s Beasts That %$s The Secret %s the %cncient %s And

%cun the Gauntlet, Today I Bid Your Farewell', @sl OUT, @s2 OUT,

@s3 OUT, @s4 OUT, @s5 OUT, @s6 OUT, @s7 OUT, @s8 OUT, @s9 OUT, @sl0 OUT, @sll

OUT, @sl1l2 OUT

s4 varchar (20),
char (20),
varchar (20)

@
r

SELECT @sl+@s2+@s3+@s4+'? "+@s5+' '"+@s6+', '"+@s5+' '"+@s7+'" '"+@s8+'" '"+@s9+
' '4+@s10+'" '"+@sll+@sl2

Using the %s and %c sscanf() format specifiers laid out in the second string, this example parses the first
string argument for the specified character strings arguments. The %s specifier extracts a string, while %c
maps to a single character. As each string or character is extracted, it's placed in the output variable
corresponding to it sequentially. A maximum of 50output variables may be passed into xp_sscanf. You can
run the query above (like the other queries in this chapter, it's also on the accompanying CD) to see how
Xp_sscanf works.

If you've used C's sscanf() function before, you'll be disappointed by the lack of functionality in the Transact-
SQL version. Many of the format parameters normally supported by sscanf()— including width specifiers—

40

Chapter 2. Transact-SQL Data Type Nuances

aren't supported, nor are data types other than strings. Nevertheless, for certain types of parsing, xp_sscanf
can be very handy.

Masks

Using the PATINDEX() function, you can search string fields and variables using wildcards. Here's an
example:

DECLARE @Song wvarchar (80)
SET @Song='Being For The Benefit Of Mr.Kite!'
SELECT PATINDEX ('$Kit%',@Song)

As used below, PATINDEX() works very similarly to the LIKE predicate of the WHERE clause. The primary
difference is that PATINDEX() is more than a simple predicate— it returns the offset of the located pattern as
well— LIKE doesn't. To see how similar PATINDEX() and LIKE are, check out these examples:

SELECT * FROM authors WHERE PATINDEX ('Green%',au lname)<>0
could be rewritten as

SELECT * FROM authors WHERE au lname LIKE 'Green%'

Similarly,

SELECT title FROM titles WHERE PATINDEX ('%database%',notes)<>0
can be reworked to use LIKE instead:

SELECT title FROM titles WHERE notes LIKE '%database$%'

PATINDEX() really comes in handy when you need to filter rows not only by the presence of a mask but also
by its position. Here's an example:

SET NOCOUNT ON

CREATE TABLE #testblob (cl text DEFAULT ' ')

INSERT #testblob VALUES ('Golf is a good walk spoiled')
INSERT #testblob VALUES ('Now is the time for all good men')
INSERT #testblob VALUES ('Good Golly, Miss Molly!"')

SELECT *
FROM #testblob
WHERE cl LIKE '$good%'

SELECT *

FROM #testblob

WHERE PATINDEX ('%good%',cl)>15
GO

DROP TABLE #testblob

-Golf is a good walk spoiled
Now is the time for all good men
Good Golly, Miss Molly!

-Now is the time for all good men

41

Guru’s Guide to Transact-SQL

Here, the first query returns all the rows in the table because LIKE can't distinguish one occurrence of the
pattern from another (of course, you could work around this by enclosing the column reference within
SUBSTRING() to prevent hits within its first fifteen characters). PATINDEX(), by contrast, allows us to filter the
result set based on the position of the pattern, not just its presence.

Executing Strings

The Transact-SQL EXEC() function and the sp_executesql stored procedure allow you to execute a string
variable as a SQL command. This powerful ability allows you to build and exe- cute a query based on runtime
conditions within a stored procedure or Transact-SQL batch. Here's an example of a cross-tab query that's
constructed at runtime based on the rows in the pubs..authors table:

USE pubs
GO
IF OBJECT ID('author crosstab') IS NOT NULL
DROP PROC author crosstab
GO
CREATE PROCEDURE author crosstab
AS
SET NOCOUNT ON
DECLARE @execsgl nvarchar (4000), @AuthorName varchar (80)

-- Initialize the create script string

SET @execsql='CREATE TABLE FIautxtab (Title wvarchar (80)"'

SELECT @execsgl=@execsqgl+', ['+au fname+' '+au lname+'] char(l) NULL DEFAULT ""'
FROM authors

EXEC (@Gexecsgl+'") ")

DECLARE InsertScript CURSOR FOR

SELECT execsqgl='INSERT ##autxtab (Title,'+'['+a.au fname+' '+a.au lname+'])
VALUES

L

("'"+t.title+'", "X")'!

FROM titles t JOIN titleauthor ta ON (t.title id=ta.title id)

JOIN authors a ON (ta.au id=a.au id)

ORDER BY t.title

OPEN InsertScript

FETCH InsertScript INTO @execsql

WHILE (@@FETCHiSTATUS:O) BEGIN
EXEC sp executesqgl @execsqgl
FETCH InsertScript INTO (@execsqgl

END

CLOSE InsertScript

DEALLOCATE InsertScript

SELECT * FROM ##autxtab
DROP TABLE ##autxtab

GO

EXEC author crosstab
GO

(Result set abridged)

Title Abraham
Bennet

L
Reginald Blotchet-H

42

Chapter 2. Transact-SQL Data Type Nuances

But Is It User Friendly?

Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

Fifty Years in Buckingham Palace Kitchens

X

Is Anger the Enemy?

Is Anger the Enemy?

Life Without Fear

Net Etiquette

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
Prolonged Data Deprivation: Four Case Studies

Secrets of Silicon Valley

Secrets of Silicon Valley

Silicon Valley Gastronomic Treats

Straight Talk About Computers

Sushi, Anyone?

Sushi, Anyone?

Sushi, Anyone?

The Busy Executive's Database Guide

The Busy Executive's Database Guide X
The Gourmet Microwave

The Gourmet Microwave

You Can Combat Computer Stress!

The cross-tab that this query builds consists of one column for the book title and one for each author. An "X"
denotes each title-author intersection. Since the author list could change from time to time, there's no way to
know in advance what columns the table will have. That's why we have to use dynamic SQL to buildit.

This code illustrates several interesting techniques. First, note the shortcut the code uses to build the first
rendition of the @execsq| string variable:

SET @execsgl='CREATE TABLE ##autxtab (Title wvarchar (80)"'
SELECT @execsqgl=@execsqgl+', ['+au fname+' '+au lname+'] char(l) NULL DEFAULT ""'
FROM authors

The cross-tab that's returned by the query is first constructed in a temporary table. @execsql is used to build
and populate that table. The code builds @execsq|l by initializing it to a stub CREATE TABLE command, then
appending a new column definition to it for each row in authors. Building @execsql in this manner is quick and
avoids the use of a cursor— a mechanism for processing tables a row at a time. Compared with set-oriented
commands, cursors are relatively inefficient, and you should avoid them when possible (see Chapterl3,
"Cursors," for more information). When the SELECT completes its iteration through the authors table,
@execsql looks like this:

CREATE TABLE ##autxtab (Title wvarchar (80),
[Abraham Bennet] char(l) NULL DEFAULT "",
[Reginald Blotchet-Halls] char(l) NULL DEFAULT "",
[Cheryl Carson] char(l) NULL DEFAULT "",

[Michel DeFrance] char (1) NULL DEFAULT "",

[Akiko Yokomoto] char(l) NULL DEFAULT ""

All that's missing is a closing parenthesis, which is supplied when EXEC() is called to create the table:

EXEC (Rexecsqgl+') ")

43

Guru’s Guide to Transact-SQL

Either EXEC() or sp_executesql could have been called here to execute @execsql. Generally speaking,
sp_executesql is faster and more feature laden than EXEC(). When you need to execute a dynamically
generated SQL string multiple times in succession (with only query parameters changing between executions),
sp_executesql should be your tool of choice. This is because it easily facilitates the reuse of the execution
plan

generated by the query optimizer the first time the query executes. It's more efficient than EXEC() because
the query string is built only once, and each parameter is specified in its native data format, not first converted
to a string, as EXEC() requires.

Sp_executesql allows you to embed parameters within its query string using standard variable names as
placeholders, likeso:

cutesgl N'SELECT * FROM authors WHERE au lname LIKE @au lname',

N'@au lname varchar (40)',@au lname='Green
Here, @au_lname is a placeholder. Though the query may be executed several times in succession, the only
thing that varies between executions is the value of @au_Iname. This makes it highly likely that the query
optimizer will be able to avoid recreating the execution plan with each queryrun.

Note the use of the "N" prefix to define the literal strings passed to the procedure as Unicode strings. Unicode
is covered in more detail later in this chapter, but it's important to note that sp_executesql requires Unicode
strings to be passed into it. That's why @execsql was defined using nvarchar.

In this particular case, EXEC() is a better choice than sp_executesql for two reasons: It's not called within a
loop or numerous times in succession, and it allows simple string concatenation within its parameter list;
sp_executesq|, like all stored procedures, doesn't.

The second half of the procedure illustrates a more complex use of dynamic SQL. In order tofi markfi eachfi
titte-authorfi intersectionfi withfi anfi "X,"fi thefi queryfi mustfi dynamicallyfi buildfi anfi INSERT statement for
each title-author pair. The title becomes an inserted value, and the author becomes a column name, with "X"
as its value.

Unlike the earlier example, sp_executesql is used to execute the dynamically generated INSERT statement
because it's called several times in succession and, thanks to the concatenation within the cursor definition,
doesn't need to concatenate any of its parameters.

Since sp_executesql allows parameters to be embedded in its query string, you may be wondering why we
don't use this facility to pass it the columns from authors. After all, they would seem to be fine examples of
query parameters that vary between executions— why perform all the concatenation in the cursor? The
reason for this is that sp_executesql limits the types of replaceable parameters it supports to true query
parameters— you can't replace portions of the query string indiscriminately. You can position replaceable
parameters anywhere a regular variable could be placed if the query were run normally (outside
sp_executesql), but you can't replace keywords, object names, or column names with placeholders—
sp_executesqgl won't make the substitution when it executes the query.

One final point worth mentioning is the reason for the use of the global temporary table. A global temporary
table is a transient table that's prefixed with "##" instead of "#" and is visible to all connections, not just the
one that created it. As with local temporary tables, it is dropped when no longer in use (when the last
connection referencing itends).

It's necessary here because we use dynamic Transact-SQL to create the cross-tab table, and local temporary
tables created dynamically are visible only to the EXEC() or sp_executesql that created them. In fact, they're
deleted as soon as the dynamic SQL that created them ends. So, we use a global temporary table instead,
and it remains visible until explicitly dropped by the query or the connection closes.

The biggest disadvantage to using global temporary tables over local ones is the possibility of name collisions.
Unlike their local brethren, global temporary table names aren't unique across connections— that's what
makes them globally accessible. Regardless of how many connections reference it, ##autxtab refers to
exactly the same object in tempdb. If a connection attempts to create a global temporary table that another
connection has already built, the create willfail.

We accepted this limitation in order to be able to create the table dynamically, but there are a couple of other
options. First, the body of the procedure could have been written and executed as one big dynamic query,
making local tables created early in the query visible to the rest of it. Second, we could create the table itself
in the main query, then use dynamic T-SQL to execute ALTER TABLE statements to add the columns for
each author in piecemeal fashion. Here's a variation on the earlier procedure that does just that:

CREATE PROCEDURE author crosstab?2

SET NOCOUNT ON

44

Chapter 2. Transact-SQL Data Type Nuances

DECLARE @execsgl nvarchar (4000), @AuthorName varchar (80)
CREATE TABLE #autxtab (Title varchar (80))

DECLARE AlterScript CURSOR FOR

SELECT 'ALTER TABLE #autxtab ADD ['+au fname+' '4au lname+'] char (1) NULL DEFAULT
mwwo

FROM authors

FOR READ ONLY

OPEN AlterScript

FETCH AlterScript INTO @execsqgl

WHILE (Q@FETCH_ STATUS=0) BEGIN
EXEC sp executesgl (@execsql
FETCH AlterScript INTO @execsqgl

END

CLOSE AlterScript

DEALLOCATE AlterScript

DECLARE InsertScript CURSOR FOR

SELECT execsqgl="INSERT #autxtab (Title,'+'['+a.au fname+' '+a.au lname+']) VALUES
-

("'+t.title+'", "X")!

FROM titles t JOIN titleauthor ta ON (t.title id=ta.title id)

JOIN authors a ON (ta.au id=a.au id) B B

ORDER BY t.title

OPEN InsertScript

FETCH InsertScript INTO (@execsqgl

WHILE (@@FZTCHiSTATUS:O) BEGIN
EXEC sp executesgl @execsqgl
FETCH InsertScript INTO @execsqgl

END

CLOSE InsertScript

DEALLOCATE InsertScript

SELECT * FROM #autxtab
DROP TABLE #autxtab

Note the use of the AlterScript cursor to supply sp_executesql with ALTER TABLE queries. Since the table
itself is created in the main query and since the temporary objects created in a query are visible to its dynamic
queries, we're able to get by with a local temporary table and eliminate the possibility of name collisions.
Though this solution requires more code than the initial one, it's also much safer.

Note that this object visibility doesn't carry over to local variables. Variables defined by the calling routine are
not visible to EXEC() or sp_executesql. Also, variables defined within an EXEC() or call to sp_executesql go
out of scope when they return to the caller. Basically, the only way to pass variables between them is via
sp_executesql's parameter list or via concatenation within the EXECcall.

Unicode

In the past, character string data was limited to characters from sets of 256 characters. Each character was
composed of a single byte and a byte can store just 256 (28) different characters. Prior to the adoption of the
Unicode standard, all character sets were composed of single-byte characters.

Unicode expands the number of possible characters to 2'°, or 65,536, by using two bytes instead of one. This
increased capacity facilitates the inclusion of the alphabets and symbols found in most of the world's
languages, including all of those from the single-byte character sets used previously.

Transact-SQL's regular string types (char, varchar, and text) are constructed of characters from a particular
single-byte character set. This character set is selected during installation and can't be changed afterward
without recreating databases and reloading data. Unicode strings, by contrast, can store any character

45

Guru’s Guide to Transact-SQL

defined by the Unicode standard. Since Unicode strings take twice as much storage space as regular strings,
they can be only half as long (4000characters).

SQL Server defines special Unicode-specific data types for storing Unicode strings: nchar, nvarchar, and ntext.
You can use these data types for columns that need to store characters from multiple character sets. As with
regular character string fields, you should use nvarchar when a column's data varies

in length from row to row and nchar when it doesn't. Use ntext when you need to store more than
4000characters.

SQLfi Server'sfi Unicodefi stringfi typesfi arefi basedfi onfi SQL-92'sfi Nationalfi Characterfi datafi types.fi Asfi
with SQL-92, Transact-SQL uses the prefix character N to distinguish Unicode data types and values, like so:

SELECT DATALENGTH(N'The Firm')

This query returns "16" because the uppercase N makes 'The Firm' a Unicode string.

Numerics

Transact-SQL supports four general classes of numeric data types: float and real, numeric and decimal,
money and smallmoney, and the integer types (int, smallint, and tinyint). Float and real are floating point
types— as such, they're approximate, not exact types— and some values within their ranges (-1.79E + 1 308
to 1.79E + 1 308 and -3.40E + 1 38 to 3.40E + 1 38, respectively) can't be represented precisely. Numeric and
decimal are fixed-point numeric types with a user-specified, fixed precision and scale and a range of 21 038 +
2110 11 038 + 21. Money and smallmoney represent monetary quantities and can range from 2% to +2%° 1
and 2% to +2°' -1 with a scale of four (-214,748.3648 to +1214,748.3647), respectively.

Integer types represent whole numbers. The int data type requires four bytes of storage and can represent
integers between -2*" and +22°" -1. Smallint requires two bytes and can represent integers between -2" and
+2"° 1. Tinyint uses just one byte and stores integers between 0 and255.

Floating Point Fun

The first thing you discover when doing any real floating point work with SQL Server is that Transact-SQL
does not correct for floating point rounding errors. This allows the same numeric problem, stated in different
ways, to return different resulis—heresy in the world of mathematics. Languages that don't properly handle
floating point rounding errors are particularly susceptible to errors due to differences in the ordering of terms.
Here's an example that generates a random list of floating point numbers, then arranges them in various
orders and totals them:

SET NOCOUNT ON

CREA \BLE #rand

(kl int identity,

cl float DEFAULT (

(CASE (CAST (ID()+.5) WHEN O THEN 1 ELSE -1 END)* (CONVERT (int,

RAND () * 100000

#rand DEFAULT VAL
and DEFAULT V
| DEFAULT V
i DEFAULT VALUES
nd DEFAULT V2
1 DEFAULT VAL
| DEFAULT VALUES
] DEFAULT VALUES
| DEFAULT VALUES
' #rand DEFAULT V2

46

Chapter 2. Transact-SQL Data Type Nuances

SELECT * FROM #rand

SELECT SUM(cl) FROM #rand

SELECT * INTO #rand2 FROM #rand ORDER BY cl
SELECT SUM(cl) FROM #rand?2

SELECT * INTO #rand3 FROM #rand2 ORDER BY ABS(cl)
SELECT SUM(cl) FROM #rand3

GO
DROP TABLE #rand, #rand2, #rand3

337.1234806786265
6133.8947556398543
4661.8483968063565
-487.1674384075381
-5402.6488177346673
8548.8042443202648
1151.1290584163344
1983.5178142724058
-48.855436548423761
0 865.11748910633833

19742.763546549555

<o 01 W N

= O

19742 .763546549551

Since the numbers being totaled are the same in all three cases, the results should be the same, but they
aren't. Increasing SQL Server's floating point precision (via the /p server command line option) helps but
doesn't solve the problem — floating point rounding errors aren't handled properly, regardless of the precision
of the float. This causes grave problems for applications that depend on floating point accuracy and is the
main reason you'll often see the complex floating point computations in SQL Server applications residing in
3GL routines.

The one foolproof answer here is to use fixed-point rather than floating point types. The decimal and numeric
data types do not suffer from floating point rounding errors because they aren't floating point types. As such,
they also can't use the processor's FPU, so computations will probably be slower than with real floating point
types. This slowness may be compen- sated for in other areas, so this is not as bad as it may seem. The
moral of the story is this: SQL Server doesn't correct floating point errors, so be careful if you decide to use
the float or real data types.

Here's the query rewritten to use a fixed-point data type with a precision of 10 and a scaleof4:

SET NOCOUNT ON

CREATE TABLE #rand

(k1 int identity,

cl decimal (10,4) DEFAULT (

(CASE (CAST(RAND()+.5 AS int)*-1) WHEN O THEN 1 ELSE -1 END)* (CONVERT (int,
RAND() * 100000) % 10000) *RAND ()

)

)

47

Guru’s Guide to Transact-SQL

INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES

SELECT * FROM #rand

SELECT SUM(cl) FROM #rand

SELECT * INTO #rand2 FROM #rand ORDER BY cl
SELECT SUM(cl) FROM #rand2

SELECT * INTO #rand3 FROM #rand2 ORDER BY ABS (cl)
SELECT SUM(cl) FROM #rand3

GO
DROP TABLE #rand, #rand2, #rand3

k1l cl

1 2450.3156
2 2248.7416
3 2014.1533
4 823.7021

5 -501.3661

6 -261.9785
7 1389.4180

8 -1608.7563
9 -850.2965
10 -3709.9473
1993.9859

1993.9859

1993.9859

Division by Zero

Prior to release 7.0 of SQL Server, dividing a numeric quantity by zero returned a NULL result. By default,
that's no longer the case. Dividing a number by zero now results in a divide by zero exception:

SELECT 1/0

Server: Msg 8134, Level 16, State 1, Line 1
Divide by zero error encountered.

48

Chapter 2. Transact-SQL Data Type Nuances

You can disable this behavior via the ANSI_ WARNINGS and ARITHIGNORE session settings. By default,
ANSI warnings are enabled when you connect to the server using ODBC or OLEDB, and ARITHIGNORE is
disabled. Here's the query modified to return NULL when a divide by zero occurs:

SET ANSI WARNINGS OFF
SET ARITHIGNORE ON

SELECT 1/0

(If you're executing this query from Query Analyzer, you'll need to disable ANSI warnings in the Current
Connection Options dialog in order for this towork.)

Funny Money

There's an inconsistency between the monetary types—money and smallmoney—and the other numeric data
types. All numerics except for money and smallmoney implicitly convert from character strings during
INSERTs and UPDATEs. Money and smallmoney, for some reason, have problems with this. For example,
the following query generates an error message:

CREATE TABLE #test (cl money)

-— Don't do this -- bad SQL
INSERT #test VALUES ('1232"'")

SELECT *
FROM #test

0
GV

DROP TABLE #test

You can change c1's data type to any other numeric type—from tinyint to float—and the query will execute as
you expect. The monetary types, for some reason, are more finicky. They require an explicit cast, likeso:

CREATE TABLE #test (cl money)
INSERT #test SELECT CAST('1232' AS money)
SELECT *

FROM #test

0

(C1V)

DROP TABLE ftest

Formatting Numeric Data

In addition to using CAST() and CONVERT() to format numeric data types as strings, you can use the STR()
function. STR() is better than the generic CAST() and CONVERT() because it provides for right justification
and allows the number of decimal places to be specified. Here are some examples:

SELECT STR(123,10) AS Str,
CAST (123 AS char(10)) AS Cas
Str Cast

49

Guru’s Guide to Transact-SQL

123 123

and

SELECT STR(PI(),7,4) AS Str,
CAST(PI () AS char (7)) AS Cast

Str Cast

3.1416 3.14159
BLOBs

SQL Server provides support for BLOB (binary large object) fields via its image and text (and ntext) data types.
These data types permit the storage and retrieval of fields up to 2GB in size. With the advent of 8000-byte
character strings, much of the need for these has gone away, but with more and more nontraditional data
types being stored in SQL Server databases everyday, BLOB fields are definitely here to stay.

Caveats

As implemented by SQL Server, BLOB fields are somewhat ponderous, and you should think twice before
including one in a table definition. BLOB fields are stored in a separate page chain from the row in which they
reside. All that's stored in the BLOB column itself is a sixteen-byte pointer to the first page of the column's
page chain. BLOBs aren't stored like other data types, and you can't treat them as though they were. You
can't, for example, declare text or image local variables. Attempting to do so generates a syntax error. You
can pass a text or image value as a parameter to a stored procedure, which you can then use in a DML
statement, but you can't reassign the variable or do much else with it. Here's a procedure that illustrates:

CREATE PROCEDURE inserttext @instext text
N Q

SET NOCOUNT ON

SELECT @instext AS 'Inserting'

CREATE TABLE #testnotes (kl int identity, notes text)
INSERT #testnotes (notes) VALUES (QRinstext)
SELECT DATALENGTH (notes), *

FROM #testnotes

DROP TABLE #testnotes
GO

EXEC inserttext 'TEST'
Inserting

Here, @instext is a text parameter that the stored procedure inserts into the text column notes. Since you
can't define local text variables, @instext can't be assigned to another text variable (though it can be assigned
to a regular char or varchar variable) and can't have a different value assigned to it. For the most part, it's
limited to being used in place of a text value in a DML (Data Management Language) command.

50

Chapter 2. Transact-SQL Data Type Nuances

You also can't refer to BLOB columns in the WHERE clause using the equal sign—the LIKE predicate,
PATINDEX(), or DATALENGTH() is required instead. Here's an example:

CREATE TABLE #testnotes (k1 int identity, notes text)
INSERT #testnotes (notes) VALUES ('test')

0
GV

-— Don't run this -- doesn't work

#testnotes
WHERE notes='test

0
GV

v

DROP TABLE #testnotes

GO

Even though the INSERT statement has just supplied the 'test' value, the SELECT can't query for it using the
traditional means of doing so. You have to do something like this instead:

SELECT *
M #testnotes
WHERE notes LIKE 'test'

The normal rules governing data types and column access simply don't apply with BLOB columns, and you
should bear that in mind if you elect to make use ofthem.

Retrieving BLOB Data

Unlike smaller BLOBES, it's not practical to return large BLOB data via a simple SELECT statement.fi Though
you can use SET TEXTSIZE to control the amount of text returned by a SELECT, your front end may not be
able to deal with large amounts of BLOB data properly. Moreover, since you can't declare local text or image
variables, you can't use SELECT to assign a large BLOB to a variable for further parsing. Instead, you should
use the READTEXT command to access it in pieces. READTEXT works with image as well as text columns. It
takes four parameters: the column to read, a valid pointer to its underlying text, the offset at which to begin
reading, and the size of the chunk to read. Use the TEXTPTR() function to retrieve a pointer to a BLOB
column's underlying data. This pointer is a binary(16) value that references the first page of the BLOB data.
You can check its validity via the TEXTVALID() function. Here's an example illustrating the use of TEXTPTR()
and READTEXT:

DECLARE (@textptr binary(1l6)

BEGIN TRAN
SELECT @textptr=TEXTPTR (pr info)
FROM pub info (HOLDLOCK)

VHERE pub i1id='1389

READTEXT pub info.pr info @Qtextptr 29 20

Algodata Infosystems

Notice the use of a transaction and the HOLDLOCK keyword to ensure the veracity of the text pointer from the
time it's first retrieved through its use by READTEXT. Since other users could modify the BLOB column while
we're accessing it, the pointer returned by TEXTPTR() could become invalid between its initial read and the
call to READTEXT. We use a transaction to ensure that this doesn't happen. People tend to think of
transactions as being limited to data modification management, but, as you can see, they're also useful for
ensuring read repeatability.

51

Guru’s Guide to Transact-SQL

Rather than specifying a fixed offset and read length, it's more common to use PATINDEX() to locate a
substring within a BLOB field and extricate it, likeso:

DECLARE @textptr binary(l16), @patindex int, (@patlength int

BEGIN TRAN

SELECT @textptr=TEXTPTR(pr info), @patindex=PATINDEX ('%Algodata
Infosystems%',pr info)-1,

@patlength=DATALENGTH ('Algodata Infosystems')

FROM pub info (HOLDLOCK)

WHERE PATINDEX ('3%Algodata Infosystems$',pr info)<>0

READTEXT pub info.pr info @textptr @patindex @patlength
COMMIT TRAN
pr_info

Algodata Infosystems

Note the use of PATINDEX() to both qualify the query and set the @patindex variable. The query must
subtract one from the return value of PATINDEX() because PATINDEX() is one-based, while READTEXT is
zero-based. As mentioned earlier, PATINDEX() works similarly to LIKE except that it can also return the offset
of the located pattern or string.

Handling larger segments requires looping through the BLOB with READTEXT, reading it a chunk at a time.
Here's an example:

DECLARE @textptr binary(l6), @blobsize int, @chunkindex int, @chunksize int
SET TEXTSIZE 64 -- Set extremely small for illustration purposes only

BEGIN TRAN

SELECT (@textptr=TEXTPTR(pr info), @blobsize=DATALENGTH (pr_ info), @chunkindex=0,
@chunksize=CASE WHEN @@TEXTSIZE < @blobsize THEN @W@TEXTSIZE ELSE @blobsize END
FROM pubiinfo (HOLDLOCK)

WHERE PATINDEX ('%Algodata Infosystems$%',pr info)<>0

IF (Q@textptr IS NOT NULL) AND (@chunksize > 0)
WHILE (@chunkindex < @blobsize) AND (@QRERROR=0) BEGIN
READTEXT pub info.pr info @textptr @chunkindex @chunksize
SELECT @chunkindex=@chunkindex+@chunksize,
@chunksize=CASE WHEN (G@chunkindex+@chunksize) > @blobsize THEN (@blobsize-
@chunkindex ELSE (@chunksize END
END
COMMIT TRAN
SET TEXTSIZE 0 -- Return to its default value (4096)

(Results abridged)

This is sample text data for Algodata Infosystems, publisher 138

9 in the pubs database. Algodata Infosystems is located in Berke

ley, California.
The trickiest part of this query is the fact that READTEXT doesn't allow reading past the end of the BLOB.

That is, if the BLOB is 100characters long, you can't specify a starting point of 90 and a chunk size of 30 and
expect to get the last 10characters of the BLOB—READTEXT will return an error instead. So, the query is

52

Chapter 2. Transact-SQL Data Type Nuances

forced to do READTEXT's work for it—it computes the exact size of the remainder of the BLOB and is careful
not to exceed it.

This query uses the fact that SQL Server evaluates expressions left to right to keep the code as small as
possible. In the initial SELECT, the @blobsize variable is used later in the SELECT list immediately after
being set by the same statement. Because SQL Server evaluates the list left to right, this works. The SELECT
statement within the loop employs the same technique. @chunkindex is used elsewhere within the SELECT
statement that also sets its value. This behavior isn't guaranteed to remain the same in future releases of the
product, so you should use it with caution.

In the examples thus far, we've used HOLDLOCK to ensure that a text pointer we re- trieve early in the query
is still valid later— to ensure read repeatability. HOLDLOCK causes the read lock initiated by the SELECT to
remain in effect until the end of the transaction. Depending on the current transaction isolation level,
HOLDLOCK may not even be necessary because we're reading the entirety of the segment we're after and
have no intention of rereading it (see Chapter 14, "Transactions," for more information). An alternative
would be to use SET TRANSACTION ISOLATION LEVEL to force the server itself to ensure repeatable reads,
likeso:

DECLARE @textptr binary(16), @blobsize int, @chunkindex int, @chunksize int
SET TEXTSIZE 64 -- Set extremely small for illustration purposes only

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRAN

SELECT @textptr=TEXTPTR(pr info), @blobsize=DATALENGTH (pr info), @chunkindex=0,
@chunksize=CASE WHEN @Q@TEXTSIZE < @blobsize THEN @Q@RTEXTSIZE ELSE (@blobsize END
FROM pub info

WHERE PATINDEX ('%Algodata Infosystems$',pr info)<>0

IF (@textptr IS NOT NULL) AND (Q@chunksize > 0)
WHILE (@chunkindex < @blobsize) AND (@QRERROR=0) BEGIN
READTEXT pub info.pr info @textptr @chunkindex Qchunksize
SELECT @chunkindex=@chunkindex+@chunksize,
@chunksize=CASE WHEN (Q@chunkindex+@chunksize) > @blobsize THEN
@blobsize-QRchunkindex ELSE @chunksize END

END

COMMIT TRAN

SET TEXTSIZE 0 —-- Return to its default value (40906)

GO

SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- Back to its default (in a

separate batch)

By telling the server to ensure the reads we perform are repeatable within the same transaction, we block
other users from making changes to pr_info while we're perusing it, which is exactly what HOLDLOCK does.

Updating BLOB Data

Supplying BLOB columns with text or image data that's less than or equal to 8000bytes in size is as
straightforward as updating any other type of column. You can use INSERT, UPDATE, and DEFAULT
constraints to supply these values, just as you can other types of data. Here's an example:

CREATE TABLE #testnotes (kl int identity, notes text DEFAULT SPACE (10))
INSERT #testnotes DEFAULT VALUES

INSERT #testnotes (notes) VALUES (REPLICATE('X',20))

UPDATE fftestnotes SET notes=REPLICATE('Y',10) WHERE kl=1

SELECT * FROM #testnotes
DROP TABLE #testnotes

k1 notes

53

Guru’s Guide to Transact-SQL

1 YYYYYYYYYY
2):0:0:9.0.0:9:0.0:9:9.0:9:9.0.0:9.0.0:9:¢

Writing values larger than 8000 bytes via Transact-SQL requires the use of the UPDATETEXT or
WRITETEXT command. UPDATETEXT can modify a portion of a BLOB field, while WRITETEXT rewrites its
entire contents. Generally speaking, UPDATETEXT is more flexible than WRITETEXT and should be your tool
of choice for writing large amounts of text or image data to a BLOB field. Here's an example:

CREATE TABLE #testnotes (k1 int identity, notes text DEFAULT REPLICATE('X',20))

BEGIN TRAN
INSERT #testnotes DEFAULT VALUES

DECLARE (@textptr binary(1l6)

SELECT @Qtextptr=TEXTPTR (notes)
FROM #testnotes (UPDLOCK)

UPDATETEXT #testnotes.notes @textptr 0 0 'zzz '

SELECT * FROM #testnotes
COMMIT TRAN

GO

DROP TABLE #testnotes

1 227 XXXXXXXXXXXXXXXXXXXX

UPDATETEXT takes five parameters: the column to be updated, a valid text pointer to it, the offset at which
the update is to occur, the number of characters to delete from the offset location, and the update text.
Despite its name, UPDATETEXT deletes, then inserts the updated text. It works similarly to the Transact-SQL
STUFF() function, whose purpose is to remove a segment of a string and replace it with another. Since we
specified an offset and delete length of zero, the string we specified is simply inserted at the front of the text
field.

As with READTEXT, valid text pointers can be acquired via the TEXTPTR() function. Transactions help
ensure that a text pointer acquired via a SELECT is valid when UPDATETEXT is called. We use UPDLOCK
rather than HOLDLOCK because we're updating the data rather than merely reading it.

The real power of UPDATETEXT shows when you need to update a segment of a BLOB rather than prefix it
with a new string or replace it altogether. Here's an example:

CREATE TABLE #testnotes (kl int identity, notes text DEFAULT ' ')

BEGIN TRAN
INSERT #testnotes DEFAULT VALUES

UPDATE #testnotes SET notes='Women and Babies First'

DECLARE (@textptr binary(l6), @patindex int, @patlength int
SELECT (Qtextptr=TEXTPTR (note
@patlength=DATALENGTH ('Babie

FROM #testnotes (UPDLOCK
WHERE PATINDEX ('%Babies%

s), (@patindex=PATINDEX ('%Babies%',notes)-1,
S L}

)

- — Q

,notes)<>0
UPDATETEXT #testnotes.notes (@textptr @patindex @patlength 'Children'

SELECT * FROM #testnotes

54

Chapter 2. Transact-SQL Data Type Nuances

COMMIT TRAN

0

DROP TABLE #testnotes
k1l notes
1 Women and Children First

Here, we use PATINDEX() to locate an offset within a text field, then we use UPDATETEXT to change the
string at that location.

WRITETEXT works similarly to UPDATETEXT. Since it writes the entire field, it doesn't require an offset or
length parameter. Here's an example:

CREATE TABLE #testnotes (k1 int identity, notes text DEFAULT ' ')
BEGIN TRAN
INSERT #testnotes DEFAULT VALUES

DECLARE (@textptr binary(1l6)

SELECT (Qtextptr=TEXTPTR (notes)

FROM #testnotes (UPDLOCK)
WRITETEXT #testnotes.notes Qtextptr 'Z72Z '
SELECT * FROM #testnotes

COMMIT TRAN
DROP TABLE #testnotes

Note the use of a constraint to supply a default value to the BLOB column. Since both UPDATETEXT and
WRITETEXT require a valid text pointer, you can't use them to write data to a BLOB field that's NULL. This
makes adding text to a newly inserted row more difficult than it should be. The best way to deal with this is to
set up a DEFAULT constraint for the BLOB column; then, when a row is added to the table, the column will
receive a valid value which you can then access via a separate TEXTPTR() query. Once you have a valid text
pointer in hand, you can call UPDATETEXT or WRITETEXT to place real data into the BLOB column.

BLOB Updates and the Transaction Log

Both UPDATETEXT and WRITETEXT support a WITH LOG option that determines whether the changes they
make are recorded in the transaction log. The default is for BLOB updates not to be logged. Unfortunately,

this invalidates the transaction log (forcing full database backups) and requires that select into/bulk copy be
enabled for the database (via sp_dboption). It's always preferable to log operations when you can. This
preserves your ability to use the transaction log as it was intended and protects the integrity of your databases.
Of course, there are exceptions to this rule—you may be adding a large amount of BLOB data at once and
wish to disable logging temporarily. If so, leave off the WITH LOG option, and only the database's extent
allocations will be recorded in the transaction log.

Bits

Bit columns and variables can have one of three values: 0, 1, or NULL. Bits are stored in groups of eight as
bytes, so if there are fewer than eight of them, they require just one byte of storage.

55

Guru’s Guide to Transact-SQL

Bits are not allowed to serve as index keys, and for good reason. A column that's limited to three possible

values would make a very poor index key because it couldn't possibly be very selective. That is, it wouldn't be
of much help identifying individual rows in a large group of them (an index's selectivity indicates the number of
rows that are typically identified by one of its key values). In a table with a bit column and 9000rows and an
even distribution of bit's possible values, the best selectivity a bit index could hope for would be one third of

the total rows, or 3000 rows per key value. This means a query that used the index would have to wade

through 3000 rows to find a particular record—not an optimal situation.

SQL Server provides a number of operators for working with bits, bit masks, and bitmaps. A bitmap is a

column or variable of a type other than bit—usually an integer or image—that stores an array of bit switches—
a map of them. A bit mask is a collection of bits—usually in the form of an integer—that's used to extract or

manipulate the bit switches in a bitmap. Here's an example:

SELECT LEFT (name,30) AS DB,

SUBSTRING (CASE status & 1 WHEN O THEN '' ELSE ',autoclose' END+
CASE status & 4 WHEN O THEN '' ELSE ', select into/bulk copy' END+
CASE status & 8 WHEN O THEN '' ELSE ', trunc. log on chkpt' END+
CASE status & 16 WHEN O THEN '' ELSE ',torn page detection' END+
CASE status & 32 WHEN O THEN '' ELSE ', loading' END+
CASE status & 64 WHEN O THEN '' ELSE ', pre-recovery' END+
CASE status & 128 WHEN O THEN '' ELSE ', recovering' END+
CASE status & 256 WHEN O THEN '' ELSE ', not recovered' END+
CASE status & 512 WHEN O THEN '' ELSE ',offline' END+
CASE status & 1024 WHEN O THEN '' ELSE ', read only' END+
CASE status & 2048 WHEN O THEN '' ELSE ',dbo use only' END+
CASE status & 4096 WHEN O THEN '' ELSE ',single user' END+
CASE status & 32768 WHEN O THEN '' ELSE ',emergency mode' END+
CASE status & 4194304 WHEN O THEN '' ELSE ',autoshrink' END+
CASE status & 1073741824 WHEN O THEN '' ELSE ',cleanly shutdown' END+
CASE status2?2 & 16384 WHEN O THEN '' ELSE ',ANSI NULL default' END+
CASE status2 & 65536 WHEN O THEN '' ELSE ',concat NULL yields NULL' END+
CASE status2 & 131072 WHEN O THEN '' ELSE ',recursive triggers' END+
CASE status2 & 1048576 WHEN O THEN '' ELSE ',default to local cursor' END+
CASE status2 & 8388608 WHEN O THEN '' ELSE ', quoted identifier' END+
CASE status2 & 33554432 WHEN O THEN '' ELSE ', cursor close on commit' END+
CASE status2?2 & 67108864 WHEN O THEN '' ELSE ',ANSI NULLs' END+
CASE status2 & 268435456 WHEN O THEN '' ELSE ',ANSI warnings' END+
CASE status2 & 536870912 WHEN O THEN '' ELSE ',full text enabled' END,
2,8000) AS Description
FROM master..sysdatabases
DB Description
L
CM select into/bulk copy,torn page detection,autoshrink
master trunc. log on chkpt
model select into/bulk copy,trunc. log on chkpt,torn page
detection, autoshrink
msdb select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly shutdown

Northwind select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly shutdown

Northwind2 autoclose,select into/bulk copy,trunc. log on chkpt,torn page

L]

detection, autoshrink,cleanl

PM autoclose, select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly
shutdown

PO autoclose, select into/bulk copy,trunc. log on chkpt,autoshrink,cleanly
shutdown

pubs select into/bulk copy,trunc. log on chkpt,autoshrink

SCW_TS autoclose,select into/bulk copy,trunc. log on chkpt,torn page

L

56

Chapter 2. Transact-SQL Data Type Nuances

detection,autoshrink
tempdb select into/bulk copy,trunc. log on chkpt,ANSI NULL default

Here, we query the sysdatabases table in the master database to decode the two status columns (status and
status2) for each database. The literal numbers specified in each CASE expression are bit masks; the status
columns are bitmaps. Each of the possible status flags that a database can have is represented by a bit or
bits in one of these two columns. We use the bitwise and operator & to match the status columns with the
switch values corresponding to each flag.

NOTE

Note As mentioned throughout this book, querying the system tables directly is now discouraged.
When possible, you should query the INFORMATION_SCHEMA views or call the catalog stored
procedures to access system-level information.

Internally, SQL Server makes extensive use of bitmaps and bit masks because they're an efficient way to
store and track status flags. For example, the sysindexes table contains a column named statblob that's used
to track index statistics. It's an image column that doesn't actually store an image—it stores a bitmap
representing index key distribution information.

UNIQUEIDENTIFIER

The uniqueidentifer data type stores GUIDs (global unique identifiers). A GUID is a 16-byte binary number
that is guaranteed to be unique across all networked computers in the world. Windows COM interfaces use
GUIDs to identify themselves. Since these are unique across all networked computers in the world, this
provides a universal numbering scheme for COM interfaces.

The T-SQL NEWID() function generates new GUIDs on demand. It can be used as a column default, like so:

SET NOCOUNT ON

CREATE TABLE #guids (cl uniqueidentifier DEFAULT NEWID())
INSERT #guids DEFAULT VALUES
INSERT #guids DEFAULT VALUES
INSERT #guids DEFAULT V o
INSERT #guids DEFAULT VALUES

SELECT * FROM #guids

GV

DROP TABLE #guids

07A7DEFF-367F-11D3-92AC-005004044A19

7ATDF00-367F-11D3-92AC-005004044A19
0O7A7DF01-367F-11D3-92AC-005004044A19
07A7DF02-367F-11D3-92AC-005004044A19
Each table can have as many uniqueidentifier columns as you wish and can identify a single uniqueidentifier
column as its ROWGUIDCOL column. The ROWGUIDCOL can be used to reference its corresponding
uniqueidentifier column indirectly without actually naming it (analogously to IDENTITYCOL). Here's an
example:

SET NOCOUNT ON
CREATE TABLE #guids (cl uniqueidentifier DEFAULT NEWID () ROWGUIDCOL)

INSERT #guids DEFAULT VALUES

57

Guru’s Guide to Transact-SQL

INSERT #guids DEFAULT
RT #guids DEFAULT
ERT #guids DEFAULT VALUES

INS

SELECT

GO

ROWGUIDCOL FROM #guids

DROP TABLE #guids

cl
)7ATDF1D-367F-11D3-92AC-005004044A19
07A7DF1E-367F-11D3-92AC-005004044A19
07A7DF1F-367F-11D3-92AC-005004044A19
07A7DF20-367F-11D3-92AC-005004044A19

Uniqueidentifiers have a number of disadvantages. Among them:

Their values are unwieldy and cryptic. They're random and don't fit or match any sort of mnemonic
pattern.

The uniqueidentifier data type is four times as large as the four-byte int type that's typically used for
row identifiers. This makes accessing them slower in general, including building and accessing
indexes overthem.

The sequence in which a set of uniqueidentifier values were generated is not discernable from the
values themselves—you can't tell which values came first and which ones came later by looking only
at the data. Among other things, this means that they make poor ORDER BY columns.

Cursor Variables

A cursor variable stores a reference to a cursor definition. Cursors defined via variables are by definition local
cursors (since you can't declare global variables) and can be used in place of direct cursor references in
commands such as OPEN, FETCH, CLOSE, and DEALLOCATE. They support the full Transact-SQL cursor
syntax and can be used to define read-only as well as updatable cursors. Cursor variables and the cursor
data type can be used most places ordinary variables and data types can with three exceptions:

You can't define a table column of type cursor.

You can't define stored procedure input parameters as cursors (but you can define cursor output
parameters).

You can't assign a cursor variable with a SELECT statement. (They must be assigned using the SET
command.)

Here's an example of a simple cursor variable definition:

DECLARE (@cursor CURSOR

SET Q@cursor=CURSOR FOR SELECT * FROM authors

OPEN (@cursor
FETCH (@cursor

WHILE

(Q@FETCH STATUS=0) BEGIN

FETCH (@cursor

END

CLOSE

DEALLC

@cursor

)CATE (@cursor

In this example, we define the cursor using the SET assignment statement. Cursor variables can also be
assigned from existing cursors, like so:

58

Chapter 2. Transact-SQL Data Type Nuances

DECLARE @cursor CURSOR
DECLARE c¢ CURS
SET @cursor=c

O R
7]
i
O
Pl
wn
Eal
=
Eal
Q
H
>*
i
=
®)
o)
e
@]
=
[0)]

OPEN (@cursor
FETCH @cursor

WHILE (@@B;TCjigTATJsfo) BEGIN
FETCH @cursor
END

CLOSE (@cursor
DEALLO E @cursor
DEALLOCATE c

Here, we first define the cursor using the traditional DECLARE CURSOR syntax; then we assign it by name to
the cursor variable. Note the separate deallocation of the cursor variable and the cursor. Deallocating the
cursor alone isn't enough; it remains in memory until it's explicitly deallocated or the last variable referencing it
goes out of scope, whichever comes last. For example, consider this variation on the code:

DECLARE (@cursor CURSOR
DECLARE ¢ CURSOR FOR SELECT * FROM authors

SET @cursor=c
DEALLOCATE c

OPEN (@cursor

FETCH @cursor

WHILE (@@FZTCHiSTATUS:O) BEGIN
FETCH @cursor
END

CLOSE (@cursor
DEALLOCATE (@cursor

Once you've assigned a regular cursor to a cursor variable, you can reference the cursor using either the
original name or the variable— they're almost synonymous. So, for example, once you've opened the cursor
via the cursor variable, as in the last example, you can't reopen it using the original cursor name without
closing it first—it's already open. Likewise, closing the cursor variable closes the original cursor, too—they
refer to the same internal structure. As a rule, they're interchangeable. The lone exception is the
DEALLOCATE command.

As you can see from the example code, deallocating the original cursor doesn't prevent you from continuing to
access it via the cursor variable. Even though the code deallocates it immediately after assigning it to the
cursor variable, it doesn't actually go away. Deallocating a cursor reference other than the final one merely
removes your ability to access the cursor via that reference—the cursor itself hangs around until the last
variable referencing it is deallocated or goes out of scope.

You can define more than one cursor variable that references a particular cursor, and you can assign cursor
variables to one another. Here's an example:

DECLARE (@cursorl CURSOR, (@cursor?2 CURSOR
DECLARE ¢ CURSOR E * FROM authors
SET @cursorl=c

SET @cursor2=@cursorl

OPEN @cursor?2
FETCH @cursor2

WHILE (QE@FETCH STATUS=0) BEGIN
FETCH @cursorl

59

Guru’s Guide to Transact-SQL

END

CLOSE @cursorl
DEALLOCATE (@Qcursorl
DEALLOCATE (@cursor?2
DEALLOCATE c¢

One handy feature of Transact-SQL cursor variables is support for cursor output parameters. In the past,
returning a cursor from a stored procedure meant either displaying it immediately or trapping it in a table via
INSERT...EXEC. Cursor variables give you more control over when and whether to display a procedure's
result set. You can call FETCH to return the result set a row at a time or place it into a variable, or you can
simply close and deallocate the cursor—it's up to you.

Several of the system procedures that relate to cursors return cursor output parameters. Sp_describe_cursor,
for example, returns a cursor that points to a single-row result set containing a report on the cursor you
specify. This necessitates setting up a cursor variable and passing it into the procedure as an OUTPUT
parameter, like so:

DECLARE @cursor CURSOR
DECLARE ¢ CURSOR GLOBAL FOR SELECT * FROM authors
OPEN c

EXEC sp describe cursor (@cursor return=@cursor OUTPUT,
@cursor source=N'global',
@cursor identity=N'c'

FETCH @cursor

FETCH c

WHILE (@@FETCH STATUS=0) BEGIN
FETCH c

END

CLOSE (@cursor
CLOSE c¢

DEALLOCATE (@cursor
DEALLOCATE c

(Result set abridged)

reference name cursor name cursor scope status model concurrency scrollable
open status

-

CUrsor rows

Once it processes the cursor, the code closes and deallocates the cursor along with its own global cursor. In
this case, it can get away with making a single call to FETCH to return sp_describe_cursor's one row. If the
cursor returned by the stored procedure referenced a multirow result set, the code would need to loop through
it, fetching each row separately. This call to sp_cursor_list illustrates:

DECLARE @authorcursor CURSOR, @authorcursor2 CURSOR, (@cursorlist CURSOR
DECLARE AuthorsList CURSOR GLOBAL FOR SELECT * FROM authors

SET @authorcursor=AuthorsList
SET @authorcursor2=AuthorsList

60

Chapter 2. Transact-SQL Data Type Nuances

OPEN AuthorsList

EXEC sp cursor list @cursor return=@cursorlist OUTPUT,
@cursor scope=3

FETCH @cursorlist

WHILE (@@FETCHisTATUS:O) BEGIN
FETCH (@cursorlist
END

CLOSE (@cursorlist
CLOSE AuthorsList

DEALLOCATE @cursorlist
DEALLOCATE AuthorsList
DEALLOCATE @authorcursor
DEALLOCATE @authorcursor?

(Results abridged)

reference name cursor_name cursor_scope status model concurrency
scrollable

@cursorlist _MICROSOFT SS 0532422748 1 -1 3 1 1
reference name cursor_ name cursor_scope status model concurrency
scrollable

@authorcursor?2 AuthorsList 1 1 3 3 0
reference name cursor_ name cursor_scope status model concurrency
scrollable

@authorcursor AuthorsList 1 1 3 3 0
reference name cursor_ name cursor_scope status model concurrency
scrollable

AuthorsList AuthorsList 2 1 3 3 0

Sp_cursor_list provides the same basic info as sp_describe_cursor but lists info for more than one cursor (all
global cursors, all local cursors, or all cursors of either type). The cursor it returns via @cursorlist is fetched a
row at a time until it's fully retrieved; then the cursor is closed and deallocated as before.

Note that the prohibition against cursor input parameters means that a cursor output parameter may not have
a cursor allocated to it prior to passing it to a procedure. If SQL Server permitted this, it would allow the input
parameter restriction to be circumvented since an output parameter can be inspected and used just like any
other stored procedure parameter. Here's an example:

-— DON'T DO THIS -- BAD T-SQL
USE pubs
GO
IF (OBJECT ID('inputcursorparm') IS NOT NULL)
DROP PROC inputcursorparm
GO
CREATE PROC inputcursorparm @cursor input cursor VARYING OUT
AS
FETCH @cursor input

61

Guru’s Guide to Transact-SQL

WHILE (@@FETCH STATUS=0) BEGIN
FETCH @cursor input
END

CLOSE (@cursor input
DEALLOCATE @cursor input
GO

DECLARE (@c CURSOR
SET @c=CURSOR FOR SELECT * FROM authors

-—- An error is generated when the procedure is called
-- because @c references an existing cursor
EXEC inputcursorparm @c OUT

Server: Msg 16951, Level 16, State 1, Line 7
The variable '@c' cannot be used as a parameter because a CURSOR OUTPUT parameter
must not have a cursor allocated to it before execution of the procedure.

Timestamps

Despite the name, timestamp columns have nothing to do with the time or date. A timestamp is a special
binary(8) value that's guaranteed to be unique across a database. A timestamp column is updated each time
the data in a row changes. In SQL Server's infancy, timestamp columns were used to effect a simplistic
optimistic locking strategy that's best explained by an example. If Juliet updates a row after Romeo reads it
but before he posts his own changes, Romeo's update attempt will fail because it will use the original
timestamp value to try to locate the row. Romeo's UPDATE statement will include the timestamp column in its
WHERE clause but won't be able to locate the original record because the timestamp value has changed due
to Juliet's update. This prevents Romeo from overwriting Juliet's changes and provides a means for his
application to detect that another user modified the row he was editing.

The TSEQUAL() function can be used to compare timestamp values. If the timestamps aren't equal,
TSEQUAL() raises an error and aborts the current command batch.

A table is limited to a single timestamp column. A common convention is to name the column timestamp, but
that's not required by the server. Here's a code sample that shows how to use the timestamp datatype:

SET NOCOUNT ON
CREATE TABLE #testts (cl int identity, c¢2 int DEFAULT 0, changelog timestamp)

INSERT #testts DEFAULT VALUES
INSERT #testts DEFAULT VALUES
INSERT #testts DEFAULT VALUES
INSERT #testts DEFAULT VALUES
INSERT #testts DEFAULT VALUES
SELECT * FROM #testts

UPDATE #testts SET c2=cl

SELECT * FROM ftestts

GO
DROP TABLE ftestts

cl c2 changelog

1 0 0x0000000000000085
2 0 0x0000000000000086
3 0 0x0000000000000087
4 0 0x0000000000000088
5 0 0x0000000000000089

62

Chapter 2. Transact-SQL Data Type Nuances

c2 changelog

1 0x000000000000008A
2 0x000000000000008B
3 0x000000000000008C
4 0x000000000000008D
5 0x000000000000008E

Note the different values for each row's timestamp column before and after the UPDATE.

You can access the last generated timestamp value for a database via the @@DBTS automatic variable.
Each database maintains its own counter, so be sure you're in the correct database before querying
@@DBTS. Here's an example:

USE tempdb

GO

SET NOCOUNT ON

CREATE

INSERT
INSERT
INSERT
INSERT
INSERT

SELECT
SELECT

UPDATE

SELECT

SELECT
GO

TABLE #testts (cl int identity, c¢2 int DEFAULT 0, changelog timestamp)

#testts DEFAULT VALUES
#testts DEFAULT VALUES
#testts DEFAULT VALUES
#testts DEFAULT VALUES
#testts DEFAULT VALUES

* FROM #testts
@@DBTS AS 'Last timestamp'

#testts SET c2=cl

* FROM #testts
@@DBTS AS 'Last timestamp'

DROP TABLE #testts

c2 changelog

0 0x00000000000000B7
0 0x00000000000000B8
0 0x00000000000000B9
0 0x00000000000000BA
0 0x00000000000000BB

0x00000000000000BB

cl c2 changelog

1 1 0x00000000000000BC
2 2 0x00000000000000BD
3 3 0x00000000000000BE
4 4 0x00000000000000BF
5 5 0x00000000000000CO

0x00000000000000CO

Note the USE tempdb at the first of the script. Since temporary tables reside in tempdb, we have to change
the current database focus to tempdb in order for @@DBTS to work properly. @@DBTS always returns the
last timestamp value generated for a database, so you can use it to acquire the timestamp of an update
you've just performed, similar to the @@IDEN- TITY automatic variable. One big difference between

63

Guru’s Guide to Transact-SQL

@@DBTS and @@IDENTITY is that @@IDENTITY is connection specific whereas @@DBTS is database
specific. The value returned by @@IDENTITY will rarely be the same for multiple users, but @@DBTS will
often be identical for all users connected to a given database.

Summary

In this chapter you've explored SQL Server's wealth of data types. You've learned about date, numeric, string,
bit, and BLOB data types, as well as fringe types such as timestamps and uniqueidentifiers. Designing sound
databases and writing robust Transact-SQL code require intimate familiarity with the wide variety of data types
SQL Server provides. Knowing them well is the first step in writing optimal code to access them.

64

Chapter 3. Missing Values

Chapter 3. Missing Values

Of the thirty-six alternatives, running away is best.
—Chinese Proverb

Missing values and the proper handling of them is a very delicate subject within the database community. The
debate centers on how (or whether) missing values should be stored in relational databases and how many
and what types of tokens should be used to represent them in SQL.

There are at least three different schools of thought regarding how to handle missing values. The inventor of
the relational database, Dr. E.F. Codd, advocates two separate missing value tokens: one for values that
should be there but aren't (e.g., the gender of a person) and one for values that shouldn't be there at all
because they are inapplicable (e.g., the gender of a corporation). Chris Date, noted database author and
lecturer, takes the minimalist position. He believes that SQL is better off without a missing value token of any
kind. ANSI/ISO SQL-92 splits the difference and provides one general-purpose missing value token: NULL.
At the risk of stating the obvious, missing values and empty values are two different things. An integer whose
value is missing is not the same as an integer whose value is zero. A null string is not the same as a zero-
length string or one containing only blanks. This distinction is important because comparisons between empty
values and missing values always fail. In fact, NULL values aren't even equal to one another in such
comparisons.

The possibility of missing values in relational data indicates that there are three possible outcomes for any
comparison: True, False, and Unknown. Of course, this necessitates the use of three-valued logic. The truth
tables in Figure 3.1 illustrate.

Figure 3.1. Three-valued logic truth tables.

AND True False Unknown
True True False Unknown
False False False False
Unknown Unknown False Unknown
OR True False Unknown
True True True True
False True False Unknown
Unknown True Unknown Unknown
NOT True False Unknown
False True Unknown

Note that | use NULL and Unknown interchangeably, even though, technically speaking, they aren't. NULL is
a data value, while Unknown represents a logical value. The distinction is a bit abstruse—especially for
veteran software developers—and is the reason you must use ...WHERE column IS NULL rather

than ...WHERE column = NULL if you want your SQL to behave sensibly. (Transact-SQL doesn't forbid the
latter syntax, but since one NULL never equals another—or even itself—it never returns True. See the section
below on Transact-SQL's ANSI NULL compliance.) As much fun as it would be, | have no desire to enter the
philosophical debate over NULLs and their proper use. So, for simplicity's sake, since our purpose is to view
the world of data and databases through the eyes of Transact-SQL, I'll stick with treating NULL and Unknown
identically throughout the book.

65

Guru’s Guide to Transact-SQL

NULL and Functions

As with simple expressions, most functions involving NULL values return NULL, so SELECT SIGN(NULL)
returns NULL, as do SELECT ABS(NULL) and SELECT LTRIM(NULL). The exceptions to this are functions
designed to work with NULL in the first place. In addition to aggregates, functions intended to be used with
NULLs include ISNULL() and COALESCE().

ISNULL() translates a NULL value into a non-NULL value. For example,

SELECT ISNULL(cl,0) FROM #nulltest

translates all NULL values found in c1 to0. Caution should be exercised when doing this, though, since
translating NULLs to other values can have unexpected side effects. For example, the AVG query from the
example above can't ignore translated NULLSs:

SELECT AVG(ISNULL(cl,0)) FROM #nulltest

The value zero is figured into the average, significantly lowering it.
Note that ISNULL()'s parameters aren't limited to constants. Consider this example:

DECLARE @x int,@y int

SET @x=5

SET Qy=2

SELECT ISNULL (CASE WHEN @x>=1 THEN NULL ELSE @x END,
CASE WHEN @y<5 THEN @x*@dy ELSE 10 END,

Here, both arguments consist of expressions, including the one returned by the function. ISNULL() can even
handle SELECT statements as parameters, as in this example:

DECLARE @x int,Qy int

SET @x=5

SET Qy=2

SELECT ISNULL (CASE WHEN @x>=1 THEN NULL ELSE @x END,
(SELECT COUNT (*) FROM authors))

The NULLIF() function is a rough inverse of ISNULL(). Though it doesn't handle NULL values being passed
into it any better than any other function, it was designed to return a NULL value in the right circumstances. It
takes two parameters and returns NULL if they're equal; otherwise it returns the first parameter. For example,

DECLARE @x int,Q@y int
SET @x=5

SET Qy=2

SELECT NULLIF (@x, @y+3
returns NULL, while
SELECT NULLIF (@x, Qy)
returns 5.

COALESCE() returns the first non-NULL value from a horizontal list. For example,

SELECT COALESCE (@x / NULL, @x * NULL, @x+NULL, NULL, Qy*2, @x,
(SELECT COUNT (*) FROM authors))

66

Chapter 3. Missing Values

returns @y*2, or 4. As with ISNULL(), parameters passed to COALESCE() can be expressions and
subqueries as well as constants, as the code sample illustrates.

NULL and ANSI SQL

With each successive version, SQL Server's ANSI/ISO compliance has steadily improved. Using a variety of
configuration switches and modern command syntax, you can write Transact-SQL code that's portable to
other ANSI-compliant DBMSs.

NULLs represent one area in which ANSI compliance improved substantially in version7.0. A number of new
configuration settings and syntax options were added to enhance SQL Server's ANSI compliance in terms of
NULL values. Many of these are discussed below.

Regarding the handling of NULL values in expressions, the ANSI/ISO SQL specification correctly separates
aggregation from basic expression evaluation (this is contrary to what a couple of otherwise fine SQL books
have said). This means, as far as the standard is concerned, that adding a NULL value to a number is not the
same as aggregating a column that contains both NULL and non-NULL values. In the former case, the end
result is always a NULL value. In the latter, the NULL values are ignored and the aggregation is performed.
Per the ANSI spec, the only way to return a NULL result from an aggregate function is to start with an empty
table or have nothing but NULL values in the aggregated column (COUNTY() is an exception—see below).
Since Transact-SQL follows the standard in this regard, these statements apply to it as well. For example,
consider the following table from earlier:

CREATE TABLE #nulltest
(cl int NULL)

and the following data:

The query:

SELECT AVG(cl) FROM #nulltest

doesn't return NULL, even though one of the values it considers is indeed NULL. Instead, it ignores NULL
when it computes the average, which is exactly what you'd want. This is also true for the SUM(), MIN(), and
MAX() functions but not for COUNT(*). For example,

SELECT COUNT (*) FROM #nulltest

returns "3," so SELECT SUM(c1)/COUNT(*) is not the same as SELECT AVG(c1). COUNT(*) counts rows,
regardless of missing values. It includes the table's second row, even though the table has just one column
and the value of that one column in row 2 is NULL. If you want COUNT() behavior that's consistent with SQL
Server's other aggregate functions, specify a column in the underlying table rather than using ™" (e.qg.,
COUNT). This syntax properly ignores NULL values, so that SELECT SUM(c1)/COUNT(c1) returns the same
value as SELECT AVG(c1).

This subtle distinction between COUNT(*) and COUNT(c1) is an important one since they return different
results when NULLs enter the picture. Generally, it's preferable to use COUNT(*) and let the optimizer choose
the best method of returning a row count rather than forcing it to count a specific column. If you need the
"special" behavior of COUNT(c1), it's probably wise to note what you're doing via comments in your code.

By default, SQL Server's ANSI_WARNINGS switch is set if you connect to the server via ODBC or OLEDB.
This means that the server generates a warning message for any query where a missing value is ignored by
an aggregate. This is nothing to worry about if you know about your missing values and intend them to be
ignored but could possibly alert you to data problems otherwise.

67

Guru’s Guide to Transact-SQL

ANSI_WARNINGS can be set globally for a given database via sp_dboption or per session using the SET
ANSI_WARNINGS command. As with all database options, session-level settings override database option
settings.

Other important ANSI NULL-related settings include SET ANSI_NULL_DFLT_ON/_OFF, SET ANSI_NULLS,
and SET CONCAT_NULL_YIELDS_NULL.

SET ANSI_NULL_DFLT_ON/_OFF determines whether columns in newly created tables can contain NULL
values by default. You can query this setting via the GETANSINULL() system function.

SET ANSI_NULLS controls how equality comparisons with NULL work. The ANSI SQL standard stipulates
that any expression involving comparison operators ("=," "<>," "=," and so forth—"theta" operators in Codd
parlance) and NULL returns NULL. Turning this setting off (it's on by default when you connect via ODBC or
OLEDB) enables equality comparisons with NULL to succeed if the column or variable in question contains a
NULL value.

SET CONCAT_NULL_YIELDS_NULL determines whether string concatenation involving NULL values returns
a NULL value. Normally, SELECT "Rush Limbaugh's IQ="+NULL yields NULL, but you can disable this by
way of Transact-SQL's SET CONCAT_ NULL_YIELDS_NULL command. Note that this setting has no effect
on other types of values. Adding a NULL to a numeric value always returns NULL, regardless of
CONCAT_NULL_ YIELDS_NULL.

| should pause for a moment and mention a peculiarity in the SQL standard that has always seemed
contradictory to me. | find the fact that the standard allows you to assign column values using "= NULL" but
does not allow you to search for them using the same syntax a bit incongruous. For example,

Y~

CA'

UPDATE authors SET state=NULL WHERE state=

followed by:

SELECT * FROM authors WHERE state=NULL

doesn't work as you might expect. The SELECT statement returns no rows, even when a number of them
were just set to NULL. Having NULLs not equal one another is not as difficult to swallow as the obvious
syntactical inconsistency. In my opinion, the standard would be more symmetrical if it required something like

this instead:

UPDATE authors SET state TO NULL WHERE state='CA'

If this were allowed, the prohibition against "=NULL" would make more sense, but, alas, that's not the case.

NULL and Stored Procedures

Stored procedures are one area where it's particularly handy to be able to control Transact-SQL's ANSI-
compliant behavior. Consider the following stored procedure:

CREATE PROCEDURE ListIdsByValue @val int

ABLE #values (k1 int identity, cl int NULL)
tvalues (cl) VALUES (1)
: 1

Despite the fact that the temporary table includes a row whose c1 column is set to NULL, passing NULL as
the procedure's lone parameter will not return any rows since one NULL never equals another. Of course, the
stored procedure could provide special handling for NULL values, but this approach becomes untenable very
quickly as procedures with large numbers of parameters are considered. For example, a procedure with just
two nullable parameters would require a nested IF that's four levels deep and would multiply the amount of

68

Chapter 3. Missing Values

code necessary to perform the query. However, thanks to SET ANSI_NULLS, this behavior can be overridden
like so:

SET ANSI NULLS OFF
PROCEDURE ListIdsByValue @val int

TABLE #values (k1 int identity, cl int NULL)

#values (cl) (1)
#values (cl (1)
#values (cl (NULL)
#values (cl) V (9)
T * FROM #values WHERE cl=Qval
DROP TABLE #values

GO
SET ANSI NULLS ON

0
GV

This changes the viability of Transact-SQL's "SNULL" extension for the duration of the procedure. By "viability"
I mean that, beyond not generating an error, the syntax actually works as you expect. Though the syntax is
technically valid regardless of SET ANSI_NULLS, it never returns True when ANSI compatibility is enabled.
As you might guess from the example code, this extension greatly simplifies the handling of nullable stored
procedure parameters, which is the main reason it was added to the language.

This technique works because the status of ANSI_NULLS is recorded at the time each stored procedure is
compiled. This provides a virtual snapshot of the environment in which the procedure was built, allowing you
to manage the setting so that it doesn't affect anything else. The corollary to this is that regardless of the
current state of ANSI_NULLS when a procedure is executed, it will behave as though ANSI_NULLS matched
its setting at the time the procedure was compiled, so be careful. For example:

SET ANSI NULLS OFF

> ListIdsByValue @val=NULL

won't produce any rows if ANSI_NULLS wasn't set OFF when the procedure was compiled.
Note that SET ANSI_NULLS also affects the viability of the IN (value, value, NULL) syntax. This means that a
query like:

SELECT * from #values where (cl in (1, NULL))

won't return rows with NULL values unless ANSI_NULLS is disabled. If you think of the IN predicate as
shorthand for a series of equality comparisons joined by ORs, this makes perfect sense.
NOTE

Note | should point out here that | don't encourage needless departure from the ANSI/ISO SQL
specification. It's always better to write code that complies with the standard, regardless of the
syntactical offerings of your particular SQL dialect. ANSI/ISO-compliant code is more portable and,
generally speaking, more readable by more people. As with using NULL values themselves, you
should carefully consider the wisdom of writing deviant code in the first place, especially when
working in multi-DBMS environments.

NULL if you Must

69

Guru’s Guide to Transact-SQL

As | mentioned earlier, | don't intend to get drawn into the debate on the proper use of NULLs. However, it's
worth mentioning that, as a practical matter, NULL values in relational databases can be a royal pain. This is
best illustrated by a couple of examples. Assuming we start with the following table and data:

ABLE #values (kl int identity, cl int NULL)
#values (cl) VALUES (1)

#values (cl) VALUES (1)
' #values (cl) VALUES (NULL)

#values (cl) VALUES (9)

one might think that this query:

SELECT * FROM #values WHERE cl=1

followed by this one:

SELECT * FROM #values WHERE cl<>1

would return all the rows in the #values table, but that's not the case. Remember that SQL is based on three-
value logic. To return all rows, we have to allow for NULL values, so something like this is necessary:

SELECT * FROM #values WHERE cl=1 OR cl IS NULL

This makes perfect sense if you consider that the NULL in row2 is really just a placeholder. Actually, the value
of the c1column in row2 is not known, so we can't positively say whether it does or does not equal1, hence the
exclusion from both queries. Unfortunately, this sort of reasoning is very foreign to many developers. To most
coders, either something is or it isn't—there is no middle ground. For this reason alone, NULLs are the bane
of many a new SQL developer. They continually perplex and frustrate the unwary.

Another problem with NULLs is the inability of most host languages to represent them properly. The
increasing use of OLE data types is changing this, but it's not unusual for host languages to use some
predefined constant to simulate NULL values if they support them at all. An unassigned variable is not the
same thing as one containing NULL, and assuming it is will lead to spurious results. Also, few database
servers, let alone traditional programming languages, implement ANSI SQL NULL behavior completely or
uniformly, and differences in the way that NULLs are handled between an application's various components
can introduce layered obfuscation.

Behind the scenes, SQL Server tracks which columns in a table are NULLable via a bitmap column in the
sysobjects system table. Obviously, this carries with it a certain amount of overhead. Every aggregate function
must take into account the fact that a column allows NULLs and take special precautions so that NULL values
in the column don't skew results. Basically, NULLs are nasty little beasties that require special handling by
anything that works with them.

To be fair, NULLs are a necessary evil in many cases. Accurate calculations involving quantities quickly
become overly complex when there is no direct support for missing values. The difference between zero and
an unknown value is the same as that between any other known value and an unknown one—it's a
conceptual chasm. It's the difference between a zero checking account balance and not having a checking
account at all. Datetime columns often require NULL values as well because dates are frequently expressed
in relative rather than absolute terms.

One accepted method for avoiding the use of NULL is to use dummy values to signify missing data. For
example, the string 'N/A' or 'NV' can be used to supplant NULLs in character string columns. —1 can be used
to indicate a missing value in many integer columns, '1900-01-01' can be used for dates, and so forth. In these
instances, the NULLIF() function comes in handy, especially when working with aggregate functions. For
example, to get SUM() to ignore numeric columns containing —1, you could use something like SELECT
SUM(NULLIF(c1, -1)) because SUM() ignores NULLs. You could code similar expressions to handle other
types of dummy NULL values.

The moral of the story is this: NULL is the kryptonite of the database world—it sucks the life out of anything
that gets near it. Use it if you must, but avoid it when you can.

70

Chapter 4. DDL Insights

Chapter 4. DDL Insights

If the auto industry had done what the computer industry has done in the last thirty years, a
Rolls Royce would cost $2.50 and get two million miles per gallon.

—Herb Grosch
But it would be the size of a Dinky toy and crash every three days. Beware of false analogy.
—Joe Celko

The chapter is not intended to cover Transact-SQL DDL (Data Definition Language) comprehensively—the
Books Online (BOL) do that well enough already. It is not a syntax guide and makes no attempt to cover every
T-SQL DDL command thoroughly, or even to cover every command.

Instead, it's a loose collection of tips, pointers, and advice regarding a variety of DDL-related topics. It's
intended to supplement the Books Online, not replace them. The goal of this chapter is to fill in some of the
gaps left by the BOL and to highlight DDL topics that could use further emphasis.

One of the challenges of writing a book like this is in trying to avoid replicating what's already covered in the
vendor documentation while remaining thorough enough to be truly useful to readers and to assure them that
their money was well spent. SQL Server's online documentation has long been one of its strong points. |
prefer it hands-down to the online documentation of the other DBMS vendors | regularly work with. That said,
the exhaustiveness of its coverage makes writing about relatively mundane topics such as DDL challenging
for the author who would aspire to fresh, original work. In short, many subjects are already covered quite well
by the Books Online, and rather than rehash what comes in the box with the product, I'd rather spend the
limited number of pages in this book covering those that aren't.

As opposed to querying database objects, DDL commands are concerned with creating and managing them.
They include Transact-SQL commands such as CREATE TABLE, CREATE INDEX, ALTER TABLE, and
CREATE PROCEDURE. These commands have a number of nuances and idiosyncrasies that one has to
explore to appreciate fully.

CREATE TABLE

Aside from the obvious function of constructing tables, CREATE TABLE is used to establish declarative
referential integrity between tables. It's also used to set up default column values and to establish primary and
unique key constraints.

Some Thoughts on Referential Integrity

Generally speaking, declarative RI (referential integrity) is preferable to triggers, and triggers are preferable to
stored procedures, but there's a place for each. Declarative Rl usually gets the nod over triggers and stored
procedures because it's easy to use and because it alleviates the possibility of a bug in a trigger or stored
procedure compromising data integrity. Declarative “Rl is also typically faster than a comparable trigger
because it is enforced before the pending change is made. Triggers, by contrast, execute just after a change
has been recorded in the transaction log but before it's been written to the database. This is what permits
them to work with the before and after images of the changed data. This notwithstanding, sometimes triggers
are a better choice due to their increased power and flexibility.

And there's nothing wrong with stored procedures that pull double duty and carry out DML (Data Management
Language) requests as well as ensure data integrity. In fact, some shops work exclusively in this mode,
creating INSERT, UPDATE, and DELETE procedures for every table in a database. This isn't taboo and has
its place in the complex world that is database application development.

One way in which stored procedures are better than triggers for ensuring Rl is in their ability to enforce data
integrity even when constraints are present. If you use a stored procedure, say, to perform deletes on a given
table, that stored procedure can ensure that no foreign key references will be broken prior to the delete and
display the appropriate error message if necessary. All the while, a declarative foreign key constraint on the
table can serve as a safety net by providing airtight protection against inappropriate deletions. That's not
possible with a delete trigger. Since declarative constraints have precedence over triggers, a deletion that
would violate referential integrity will be nabbed first by the constraint, and your app may have no control over

71

Guru’s Guide to Transact-SQL

what message, if any, is displayed for the user. In the case of deletes that violate foreign key references, the
delete trigger will never even get to process the delete because it will be rolled back by the constraint before
the trigger ever sees it.

It's not as though you can use only one of these methods to ensure referential integrity in the database apps
you build—most shops have a mix. It's not unusual to see declarative Rl make up the lion's share of an RI
scheme, with triggers and stored procedures supplementing where necessary.

Foreign Keys

A foreign key constraint establishes a relationship between two tables. It ensures that a key value inserted or
updated in the referencing table exists in the referenced table and that a key value in the referenced table
cannot be deleted as long as rows in the referencing table depend on it.

ANSI Referential Actions

The ANSI SQL-92 specification defines four possible actions that can occur when a data modification is
attempted: NO ACTION, SET NULL, SET DEFAULT, and CASCADE. Of these, only the first one, NO
ACTION, is supported directly by SQL Server. For example, if you attempt an update or deletion that would
break a foreign key reference, SQL Server rejects the change and aborts the command—the end result of
your modification is NO ACTION.

Though SQL Server doesn't directly support the other three referential actions, you can still implement them in
stored procedures and triggers. Triggers, for example, are quite handy for implementing cascading deletes
and updates. Stored procedures are the tool of choice for implementing the SET NULL and SET DEFAULT
actions since a trigger cannot directly modify a row about to be modified.

The NULL Exception

SQL Server strictly enforces foreign key relationships with one notable exception. If the column in the
referencing table allows NULL values, NULLs are allowed regardless of whether the referenced table contains
a NULL entry. In this sense, NULLs circumvent SQL Server's declarative Rl mechanism. This makes more
sense if you think of NULL as a value that's missing rather than an actual column value.

Unique Index Requirement

The target of the foreign key reference must have a unique index on the columns referenced by the
dependent table. This index can exist in the form of a primary or unique key constraint or a garden-variety
unique key index. Regardless of how it's constructed, SQL Server's declarative Rl mechanism requires the
presence of a unique index on the appropriate columns in the referenced table.

No TRUNCATE TABLE

The presence of foreign key constraints on a table precludes the use of TRUNCATE TABLE. This is true
regardless of whether deleting the rows would break a foreign key relationship. Rows deleted by TRUNCATE
TABLE aren't recorded in the transaction log, so no row-oriented operations (such as checking foreign key
constraints) are possible. It's precisely because TRUNCATE TABLE deals with whole pages rather than
individual rows that it's so much faster than DELETE.

Default Constraints

Default constraints establish default column values. These can be more than mere constant values—they can
consist of CASE expressions, functions, and other types of scalar expressions (but not subqueries). Here's an
example:

CREATE TABLE #testdc (cl int DEFAULT CASE WHEN SUSER SNAME ()='JOE' THEN 1 ELSE O
END)

INSERT #testdc DEFAULT VALUES

72

Chapter 4. DDL Insights

SELECT * FROM #testdc
cl

Even though they can't contain subqueries, default constraints can be quite complex. Here's an example that
defines a default constraint that supplies a random number default value:

CREATE TABLE #rand

(k1 int identity,

cl float DEFAULT (

(CASE (CAST(RAND()+.5 AS int)*-1) WHEN O THEN 1 ELSE -1 END) * (CAST (RAND () *
100000 AS int) % 10000) *RAND ()
)

)

INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES
INSERT #rand DEFAULT VALUES

SELECT * FROM #rand

-121.89758452446999
-425.61113508053933
3918.1554683876675
9335.2668286173412
54.463890640027664
-5.0169085346410522
-5430.63417246276
915.9835973796487
28.109161998753301
0 741.79452047043048

O 0o Joy U W

The (CASE (CAST(RAND()+.5 AS int)*-1) WHEN 0 THEN 1 ELSE -1 END) expression randomizes the sign
of the generated number, allowing for both positive and negative numbers, while the (CAST(RAND() * 100000
AS int) % 10000)*RAND() expression generates an integer between 0 and 9999.

These exotic expressions aren't limited to numeric columns. You can specify intricate default expressions for
other types of columns as well. Here's an example that supplies a random number for a numeric column and a
random character string for a varchar column:

CREATE TABLE #rand
(k1 int identity,
cl float DEFAULT (
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN O THEN 1 ELSE -1 END) * (CAST (RAND () *
100000 AS
i
int) % 10000) *RAND ()
> 14
c?2 varchar (30) DEFAULT REPLICATE (
CHAR ((CAST (RAND() * 1000 AS int) % 206) + 97)

73

Guru’s Guide to Transact-SQL

* % ot X

AS int)

1000
1000
1000
1000

2>

>

>
°cn n nwn

+ + + +
Nej
~J

643.18693338310379
4836.4599252204198
5720.9159041469775
370.00067169272609
3952.0816961988294
5106.5869548550918
-3909.4806439394761

O 00 J o O W

1416.814045485

5652

-3440.4833748335254
44.783535689721887

mhbxmmhbxm
vagrfyagrf
hxgnphxgnphxgnphxgnp
fldbmfldbm

gpmcn
iekyhiekyhiekyhiekyh
asgdw
pweudpweudpweudpweud
xtojg

yiymb

The technique used to build the varchar default is worth discussing. It begins by creating a string of five
random lowercase characters (the %26 operation returns a number between 0 and 25; since 97 is the ASCII
value of a, incrementing the number by 97 and converting it to a character value produces a character
between a and z). It then replicates that five-character string between 1 and 6 times (the %6 operation returns
a number between 0 and 5, which we then increment by1) to create a string with a maximum length of
30characters—the defined width of the column.

Dropping Objects

Though it's not documented, you can drop multiple objects off a given type simultaneously using the
appropriate DROP command. For example, to drop multiple tables, you can issue a single DROP TABLE
followed by a comma-separated list of the tables to drop. This also applies to stored procedures, views, and
other types of objects. Here's an example:

USE tempdb

GO
CREATE
SELECT
GO
CREATE
SELECT
GO
CREATE
SELECT
GO

DROP PROC f#testl,

GO
CREATE
SELECT
GO
CREATE
SELECT
GO
CREATE
SELECT
GO

DROP VIEW testl,

74

PROC #testl as
1

PROC #test2 as
2

PROC #test3 as
3
#test2,

VIEW testl
1 1

as

VIEW
2 '2"

test?2

VIEW test3
3 '3

test2,

#test3

test3

Chapter 4. DDL Insights

CREATE INDEX

There are a number of restrictions related to SQL Server indexes that bear mentioning. These are sensible
limitations, but they're ones of which you should be aware as you design databases.

No Bit or BLOB Indexes

First, you can't create indexes on bit, text, ntext, or image columns. With the exception of bit, these are all
BLOB data types, so it's logical that you can't create standard indexes on them. (For information on creating
BLOB indexes, see Chapter 18, "Full-Text Search.") The reasoning behind not allowing bit indexes is
also pretty sound. The purpose of an index is to locate a row within a table. SQL Server builds balanced trees
(B-trees) using the distinct values in the index's underlying data. If a column has only two distinct values, it's
virtually useless as an aid in locating a row. A tree representing it would have exactly two branches, though
there could be millions of rows in the table. SQL Server would always choose to read the data sequentially
rather than deal with an index branch with only two distinct values, so creating such an index would be a
waste of time. That's why the server doesn't allow it—there would be no point in building a bit index—it would
never be used.

To grasp why a column with just two distinct values is so useless as an index key, imagine being a private
investigator with the task of locating a missing person and having no information to go on other than the
person's sex. Half the world's population would match your description. That's a lot of missing people!

No Computed Column Indexes

Another limitation of SQL Server indexing is the inability to create indexes on computed columns. SQL Server
doesn't allow indexes on computed columns because computed columns do not actually exist in the
database—they don't store any real data. A computed column in a table is just like one in a view—they're both
rendered when queried, but they do not otherwise exist. Since there's no permanent data to index, indexes on
computed columns simply aren't allowed.

PAD_INDEX

When used in conjunction with FILLFACTOR, CREATE INDEX's PAD_INDEX option causes the intermediate
pages in an index to assume the same fill percentage as that specified by FILLFACTOR for the leaf nodes.
Here's an example:

IF IND ROPERTY (OBJECT ID('titles'), 'typeind', 'IsClustered') IS NOT NULL

EX titles.typeind

EX typeind ON titles (type) WITH PAD INDEX, FILLFACTOR = 10

PAD_INDEX is useful when you know in advance that you're about to load a sizable portion of new data that
will cause page splits and row relocation in an index's intermediate pages if sufficient space isn't set aside up
front for the newdata.

DROP_EXISTING

As of SQL Server 7.0, CREATE INDEX's SORTED_DATA and SORTED_DATA_REORG options are no
longer supported. In their place is the new DROP_EXISTING option. DROP_EXISTING allows you to drop
and recreate an index in one step. DROP_EXISTING offers special performance enhancements for clustered
indexes in that it rebuilds dependent nonclustered indexes only once and only when the clustered key values
change. If the data is already sorted in the correct order, DROP_EXISTING doesn't resort the data but does
compact it using the current FILLFACTOR value (providing the same basic functionality as the old
SORTED_DATA_REORG option).

75

Guru’s Guide to Transact-SQL

Because the recreation of a clustered index and its dependent nonclustered indexes using DROP_EXISTING
is carried out in one step, it's inherently atomic—either all the indexes will be created, or none of them will be.
For a comparable set of DROP INDEX/CREATE INDEX statements to have this same atomicity, the whole
operation would have to be encapsulated in a transaction.

TEMPORARY OBJECTS

SQL Server supports two types of temporary objects—local temporary objects and global temporary objects.
Locals are prefixed with one pound sign (#); globals are prefixed with two (##).

No More Unusable Temporary Objects

As of SQL Server 7.0, the CREATE VIEW, CREATE DEFAULT, and CREATE RULE commands no longer
support creating temporary objects. Prior to version 7.0, you could create these objects, but you couldn't do
anything with them—not terribly useful. That behavior has now been rectified, so in order to create a view,
default, or rule that resides in tempdb, you must first change the current database context to tempdb, then
issue the appropriate CREATE command.

Can't Create Objects in Other Databases

On a related note, these three CREATE statements don't permit you to use qualified object names—the name
you specify must be an unqualified, one-part object identifier. If you want to create an object in tempdb, you
must first switch the database context. Of course, changing to tempdb to create an object means that you
must fully qualify objects it references that reside elsewhere. This limitation does not apply to CREATE TABLE,
which directly supports creating objects in other databases.

Temporary Stored Procedures

As with tables, you can create temporary stored procedures by prefixing the procedure name with a pound
sign(#). You can create global temporary procedures by prefixing the name with a double pound sign (##).
These stored procedures can then be executed just like any other stored procedure. In the case of global
temporary procedures, they can even be executed by other connections.

Increased Temporary Table Name Length

Prior to 7.0, SQL Server reported an error if you attempted to specify a local temporary table name that was
longer than 20characters. This has been fixed, and local temporary table names may now be up to 116
characters long.

Global Temporary Status Tables

Global temporary tables (those prefixed with ##) are visible to all users and, as such, are not uniquely named
for each connection. That's what distinguishes them from local temporary tables. This global visibility makes
them ideal for status tables for long running reports and jobs. Since the table is globally accessible, the report
or job can place in it status messages that can be viewed from other connections. Here's an example:

SET NOCOUNT ON
DECLARE @statusid int

CREATE TABLE ##jobstatus
(statusid int identity,
start datetime,

finish datetime NULL,
description varchar (50),
complete bit DEFAULT O0)

76

Chapter 4. DDL Insights

INSERT ##jobstatus VALUES (GETDATE (),NULL, 'Updating index stats for pubs',0)
SET @statusid=@@IDENTITY

PRINT ''

SELECT description AS 'JOB CURRENTLY EXECUTING' FROM ##jobstatus WHERE
statusid=@statusid

EXEC pubs..sp updatestats

UPDATE ##Jjobstatus SET finish=GETDATE (), complete=1

WHERE statusid=@statusid

INSERT ##jobstatus VALUES (GETDATE (),NULL, 'Updating index stats for northwind', 0)
SET @statusid=Q@QRIDENTITY

PRINT ''!

SELECT description AS 'JOB CURRENTLY EXECUTING' FROM ##jobstatus WHERE
statusid=@statusid

EXEC northwind..sp updatestats

UPDATE ##jobstatus SET finish=GETDATE (), complete=1

WHERE statusid=@statusid

SELECT * FROM ##jobstatus
GO
DROP TABLE ##jobstatus

(Results abridged)

JOB CURRENTLY EXECUTING

Updating index stats for pubs

Updating dbo.authors
Updating dbo.publishers
Updating dbo.titles
Updating dbo.employee

Statistics for all tables have been updated.
JOB CURRENTLY EXECUTING

Updating index stats for northwind

Updating dbo.employees

Updating dbo.categories

Updating dbo.customers

Statistics for all tables have been updated.

sid start finish description
complete
1 1999-07-24 16:26:40 1999-07-24 16:26:49 Updating index stats for pubs 1

2 1999-07-24 16:26:41 1999-07-24 16:26:49 Updating index stats for northwind 1

Object Naming and Dependencies
Unqualified object names are resolved using the following process:

1. SQL Server checks to see whether you own an object with the specified name in the current database.

2. It then checks to see whether the DBO owns a table with the specified name in the current database.

3. If the object name you specified is prefixed with a pound sign (#), the server checks to see whether
you own a local temporary table or procedure with that name.

77

Guru’s Guide to Transact-SQL

4. If the object name you specified is prefixed with two pound signs (##), the server checks to see
whether a global temporary table or procedure with that name exists.

5. If the object name is prefixed with "sp_" and you are using it in a valid context for a stored procedure,
the server first checks the current database and then the master database to see whether you or the
DBO owns an object with the specified name.

6. If not one of these conditions is met, the object is not found, and an error condition results.

Changing the Database Context Temporarily

You can temporarily change the database context in which a system stored procedure will run by prefixing it
with the name of the database in which you want it to execute. That is, even though the procedure resides in
the master database, you can treat it as though it resides in a different database, like so:

EXEC pubs..sp spaceused

Regardless of your current database at the time of execution, the stored procedure will run as though you
were in the specified database when you ran it.

Temporary Table Indexes

Thanks to SQL Server 7.0's deferred name resolution, you can now refer to a temporary table's indexes by
name within the stored procedure that creates it. In version 6.5 and earlier, you were forced to reference them
by number. Since object names aren't translated into their underlying identifiers in SQL Server 7.0 until the
procedure runs, you're now able to reference temporary table indexes by name in the same manner as
indexes on permanent tables.

Be Wary of Unusable Views

There's a bit of a quirk in SQL Server's CREATE VIEW command that allows you to create views on tables to
which you have no access. No message is generated and the CREATE VIEW operation appears to work fine.
However, an error is returned if you attempt to access the view, making it basically useless. Since no compile-
time message is generated, it pays to verify that proper rights have been granted on the objects referenced by
a view before putting it into production.

Object Dependencies

SQL Server's object dependency mechanism (which uses the sp_depends stored procedure) is inherently
deficient and you shouldn't rely on it to provide accurate dependency information. The original idea behind
sp_depends was for object dependency relationships to be stored in the sysdepends table in every database
to ensure that dependency info was complete and readily accessible. Unfortunately, it didn't quite work out
that way. The mechanism has a bevy of fundamental flaws. Among them:

Objects outside the current database are not reported.

If an object with dependents is dropped, its dependency information is dropped with it.

Recreating an object that has dependents doesn't restore or recreate its dependency information.
Thanks to SQL Server's deferred name resolution, you will see dependency information only for those
objects that actually exist when an object is created.

By design, the only way the information contained in sysdepends can be kept up to date is to drop
and recreate all the objects in the database periodically in order of dependence.

PN~

o

Personally, the facility has always felt rather perfunctory—like it was an afterthought that someone squeezed
into production right before shipping without thinking it through very well. The best thing you can do with
sp_depends is to avoid using it. That goes for the object dependency report in Enterprise Manager, as well.
It's just as unreliable as sp_depends.

Summary

78

Chapter 4. DDL Insights

This chapter provides a number of DDL-related tips, tricks, and pointers. Some of the information and
techniques presented here are more common; some of them are more obscure. You should see the Books
Online for exhaustive coverage of Transact-SQL DDL.

79

Chapter 5. DML Insights

Chapter 5. DML Insights

At some point you have to decide whether you're going to be a politician or an engineer. You
cannot be both. To be a politician is to champion perception over reality. To be an engineer is
to make perception subservient to reality. They are opposites. You can't do both
simultaneously.

—H. W. Kenton

As | said in the previous chapter, the goal of this book is not to rehash SQL Server's online documentation.
Instead, | assume you'll refer frequently to the Books Online (BOL), as do most people who work regularly
with the product.

With this in mind, this chapter doesn't attempt to cover Transact-SQL DML (Data Manipulation Language)
commands exhaustively. Instead, the goal here is to get beyond the obvious and provide DML tips, tricks, and
techniques that go beyond the BOL. | would rather spend the limited pages in this book covering material with
at least a modicum of originality— and hopefully even transcendence occasionally— than merely paraphrase
what is only a couple of mouse clicks away for you anyway.

DML statements manipulate data— they delete it, update it, add to it, and list it. Transact-SQL DML syntax
includes the INSERT, UPDATE, and DELETE commands. Technically, SELECT is also a DML command, but
it's so all-encompassing and so ubiquitous in mainstream Transact-SQL development that it's been allotted its
own chapter (see Chapter6, "The Mighty SELECT Statement").

INSERT

There are four basic forms of the Transact-SQL INSERT statement; each has its own nuances. Here's the first
and simplest form:

INSERT [INTO] targettable [(targetcolumnl [,targetcolumnZ?])]
VALUES (valuel [,valueZ...])

As with the other forms of the command, the INTO keyword is optional. Unless you're only supplying values
for specific columns, the target column list is also optional. Items in the VALUES clause can range from
constant values to subqueries. Here's a simple INSERT example:

CREATE TABLE #famousjaycees
(jc varchar (15),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

INSERT #famousjaycees VALUES ('Julius Caesar', 'Military leader/dictator’',
-0045, 'Took the Roman early retirement program')

INSERT #famousjaycees VALUES ('Jesus Christ', 'Founded Christianity',
0001, 'Birth featured tellurian, ruminative, and tutelary visitors')
INSERT #famousjaycees VALUES ('John Calhoun', 'Congressman',

1825, 'Served as VP under two U.S. presidents')

INSERT #famousjaycees VALUES ('Joan Crawford', '"Actress',

1923, 'Appeared in everything from Grand Hotel to Trog')

INSERT #famousjaycees VALUES ('James Cagney', 'Actor',

1931, 'This prototypical gangster made a dandy Yankee')

INSERT #famousjaycees VALUES ('Jim Croce','Singer/songwriter',

1972, 'Would that time were in a bottle because you left us way too soon')
INSERT #famousjaycees VALUES ('Joe Celko', 'Author/lecturer',

1987, 'Counts eating and living indoors among his favorite hobbies')

SELECT * FROM #famousjaycees

81

Guru’s Guide to Transact-SQL

Jjc occupation becamefamous notes
L
Julius Caesar Military leader/dictator -45 Took the Roman early
L]
retirement

program
Jesus Christ Founded Christianity 1 Birth featured
tellurian,

ruminative, and
tutelary
L
visitors
John Calhoun Congressman 1825 Served as VP under
two U.S.

presidents
Joan Crawford Actress 1923 Appeared in
everything from
[
Grand

Hotel to Trog
James Cagney Actor 1931 This prototypical
gangster
[
made a

dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time were
in a
[
bottle

because you left us
way too
L
soon
Joe Celko Author/lecturer 1987 Counts eating and
living
L
indoors

among his favorite
hobbies

DEFAULT and NULL

To insert a default value for columns with default constraints, attached default objects, those that allow NULL
values, or timestamp columns, use the DEFAULT keyword in place of an actual value. DEFAULT causes
columns with associated default constraints to receive their default values during the INSERT. When
DEFAULT is specified with a NULLable column that doesn't otherwise have a default value, the column is set
to NULL. Timestamp columns get the database's next timestamp value.

To specify explicitly a NULL value for a column that allows NULLs, use the NULL keyword. If you specify
NULL for a column that doesn't allow NULLs (or DEFAULT for a NOT NULL column without a default), your
INSERT will fail. Here's an example that illustrates DEFAULT and NULL:

INSERT #famousjaycees
VALUES ('Julius Caesar', 'Military leader/dictator',DEFAULT,NULL)
SELECT * FROM #famousjaycees

82

Chapter 5. DML Insights

(Results abridged)

Jjc occupation becamefamous notes

Julius Caesar Military leader/dictator 0 NULL

SET IDENTITY_INSERT

Note that, contrary to the Books Online, you're not always required to supply a value for every column in the
target column list (or every column in the table if the INSERT doesn't have a column list). Identity columns
may be safely omitted from any INSERT statement— even those with target column lists. This is true
regardless of where the identity column appears in the table. Here's an example:

CREATE TABLE #famousjaycees

(jcid int identity, -- Here, we've added an identity column
jc varchar(15),

occupation varchar (25),

becamefamous int DEFAULT O,

notes text NULL

)

-— Notice that we omit it from list of wvalues

INSERT #famousjaycees VALUES ('Julius Caesar', 'Military
leader/dictator', DEFAULT, NULL)

SELECT * FROM #famousjaycees

(Results abridged)

Jjcid Jjc occupation becamefamous notes

1 Julius Caesar Military leader/dictator 0 NULL

Not only are identity columns optional, but you are not allowed to specify them unless the SET
IDENTITY_INSERT option has been enabled for the table. SET IDENTITY_INSERT allows values to be
specified for identity columns. It's handiest when loading data into a table that has dependent foreign keys
referencing its identity column.

Unlike timestamp columns and columns with defaults, you may not specify a default value for an identity
column using the DEFAULT keyword. You can't include a value of any type for an identity column unless SET
IDENTITY_INSERT has been enabled. Here's an example that features SET IDENTITY_INSERT:

SET IDENTITY INSERT #famousjaycees ON

INSERT #famousjaycees (Jjcid, jc,occupation,becamefamous,notes)

VALUES (1, 'Julius Caesar', 'Military leader/dictator', DEFAULT,NULL)
SET IDENTITY INSERT #famousjaycees OFF

SELECT * FROM #famousjaycees

jcid Jjc occupation becamefamous notes

1 Julius Caesar Military leader/dictator 0 NULL

Note the inclusion of a target column list— it's required when you specify a value for an identity column.

INSERT...DEFAULT VALUES

83

Guru’s Guide to Transact-SQL

The second form of the command allows default values to be specified for all columns at once. It looks like
this:

INSERT [INTO] targettable DEFAULT VALUES
Here's a simple example:

CREATE TABLE #famousjaycees

(jc varchar(15) DEFAULT '',

occupation varchar (25) DEFAULT 'Rock star',
becamefamous int DEFAULT O,

notes text NULL

)

INSERT #famousjaycees DEFAULT VALUES
SELECT * FROM #famousjaycees

jc occupation Dbecamefamous notes

Rock star O NULL

Here, default values are specified for all the table's columns at once. As with the first form, if you use
DEFAULT VALUES with columns that do not have defaults of some type defined, your INSERT will fail. Note
that a target column list is illegal with DEFAULT VALUES. If you supply one (even if it includes all the columns
in the table), your INSERT will fail.

As with the DEFAULT value keyword, DEFAULT VALUES supplies NULLs for NULLable fields without
defaults. And no special handling is required to use it with identity columns— it works as you would expect.

INSERT...SELECT

The third form of the INSERT command retrieves values for the table from a SELECT statement. Here's the
syntax:

INSERT [INTO] targettable [(targetcolumnl [,targetcolumn2?])]

SELECT sourcecolumnl [, sourcecolumn?2]

[FROM sourcetable...]

Since Transact-SQL's SELECT statement doesn't require that you include a FROM clause, the data may or
may not come from another table. Here's an example:

CREATE TABLE #famousjaycees2
(jc varchar (15),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

INSERT #famousjaycees?2
SELECT * FROM #famousjaycees
UNION ALL

SELECT 'Johnny Carson', 'Talk show host',1962, 'Began career as The Great Carsoni'

SELECT * FROM #famousjaycees?2

84

Chapter 5. DML Insights

Jjc occupation becamefamous notes
Julius Caesar Military leader/dictator -45 Took the Roman
early
[
retirement
program
Jesus Christ Founded Christianity 1 Birth featured
tellurian,
L

ruminative, and
tutelary
L3
visitors
John Calhoun Congressman 1825 Served as VP
under two
L
U.S.

presidents
Joan Crawford Actress 1923 Appeared in
everything
L3
from Grand

Hotel to Trog
James Cagney Actor 1931 This prototypical
L]
gangster made a

dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time
were in a
L3
bottle

because you left
us way
L]
too soon
Joe Celko Author/lecturer 1987 Counts eating and
living
L]
indoors

among his
favorite hobbies
Johnny Carson Talk show host 1962 Began career as
The Great

-
Carsoni

This example uses a UNION to add a row to those already in the source table.

INSERT...EXEC

The fourth form of the INSERT command allows the result set returned by a stored procedure or a SQL
statement to be "trapped" in a table. Here's its syntax:

INSERT [INTO] targettable [(targetcolumnl [,targetcolumn2?])]

EXEC sourceprocedurename
EXEC ('SQL statement')

85

Guru’s Guide to Transact-SQL

And here's an example of how to use it:

CREATE TABLE #Spiwho
(spid int,

status varchar (30),
loginame sysname,
hostname sysname,

blk int,

dbname sysname,

cmd varchar (16))

INSERT #sp_who
EXEC sp_who

SELECT * FROM #sp_ who

(Results abridged)

spid status loginame hostname blk dbname cmd

1 sleeping sa 0 master SIGNAL HANDLER

2 background sa 0 master LOCK MONITOR

3 background sa 0 master LAZY WRITER

4 sleeping sa 0 master LOG WRITER

5 sleeping sa 0 master CHECKPOINT SLEEP
6 background sa 0 master AWAITING COMMAND

The ability to load the results of a SQL command into a table affords a tremendous amount of power and
flexibility in terms of formatting the result set, scanning it for a particular row, or performing other tasks based
onit.

Extended Procedures

This facility also supports loading the results of extended procedures into tables, though only output from the
main thread of the extended procedure is inserted. Here's an example using an extended procedure:

USE master
IF OBJECT ID('sp listfile') IS NOT NULL
DROP PROC sp listfile
GO
CREATE PROCEDURE sp listfile @filename sysname
AS
IF (@filename IS NULL) RETURN (-1)

DECLARE (@execstr wvarchar (8000)

SET (execstr="'TYPE '+@filename
CREATE TABLE #filecontents

(output varchar (8000))

INSERT #filecontents
EXEC master..xp cmdshell @execstr

SELECT * FROM #filecontents

DROP TABLE #filecontents
GO

86

Chapter 5. DML Insights

(Results abridged)

EXEC sp listfile 'D:\MSSQL7\INSTALL\README.TXT'
output

KK A AR A AR A AR A A A A AR AR A AR A A KRR A AR AN A A A A AR A I A A A A A A A A A A AR A A A A A A AR Ak kK

SQL SERVER 7.0 README.TXT

R IR IR I a2 b b b b b b S g 2 b b b b b b S I g b b b b b b SR S g 2 b b b b b b S g 2 b b b b b IR SR S S i b b b b b Sh S d 2
This file contains important information that you should read
prior to installing Microsoft (R) SQL Server (TM) version 7.0.

It also contains information about the following SQL Server
topics that does not appear in SQL Server Books Online:

INSERT and Errors

One interesting characteristic of the INSERT command is its imperviousness to fatal command batch errors.
An INSERT that fails due to a constraint or invalid duplicate value will not cause the command batch to fail. If
a group of INSERTSs are executed within a command batch and one of them fails, the other INSERTs will not
be affected. This is as it should be; otherwise, loading large amounts of data using INSERT statements would
be greatly complicated.

If you want the whole command batch to fail when an INSERT fails, check the ROR automatic variable after
each INSERT and respond accordingly. Here's an example:

CREATE TABLE #famousjaycees

(jc varchar (15) UNIQUE, -— Define a UNIQUE constraint
occupation varchar (25),

becamefamous int DEFAULT O,

notes text NULL)

INSERT #famousjaycees VALUES ('Julius Caesar', 'Military leader/dictator’',
-0045, 'Took the Roman early retirement program')

IF (QEERROR <>0) GOTO LIST

-- Now attempt to insert a duplicate value

INSERT #famousjaycees VALUES ('Julius Caesar',6 'Military leader/dictator',
-0045, '"Took the Roman early retirement program')

IF (ROR <>0) GOTO LIST

INSERT #famousjaycees VALUES ('Jesus Christ', 'Founded Christianity',
0001, 'Birth featured tellurian, ruminative, and tutelary visitors')

IF (QEERROR <>0) GOTO LIST

INSERT #famousjaycees VALUES ('John Calhoun', 'Congressman’,

1825, 'Served as VP under two U.S. presidents')

IF (QEERROR <>0) GOTO LIST

INSERT #famousjaycees VALUES ('Joan Crawford', "Actress',

1923, 'Appeared in everything from Grand Hotel to Trog')

IF (QEERROR <>0) GOTO LIST

INSERT #famousjaycees VALUES ('James Cagney', 'Actor',

1931, 'This prototypical gangster made a dandy Yankee')

IF (QEERROR <>0) GOTO LIST

INSERT #famousjaycees VALUES ('Jim Croce', 'Singer/songwriter',

1972, 'Would that time were in a bottle because you left us way too soon')
IF (QEERROR <>0) GOTO LIST

INSERT #famousjaycees VALUES ('Joe Celko', 'Author/lecturer',

1987, 'Counts eating and living indoors among his favorite hobbies')

LIST:

SELECT * FROM #famousjaycees
Server: Msg 2627, Level 14, State 2, Line O

87

Guru’s Guide to Transact-SQL

Violation of UNIQUE KEY constraint 'UQ #famousjaycees 160F4887'. Cannot insert
duplicate key in object
'#famousjaycees

00000000002E".
The statement has been terminated.
Jjc occupation becamefamous notes
Julius Caesar Military leader/dictator -45 Took the Roman early

retirement program

Using INSERT to Remove Duplicate Rows

On a related note, another interesting aspect of the INSERT command is its ability to remove duplicate rows
by way of a unique index with the IGNORE_DUP_KEY option set. That is, if you insert a set of rows into a
table with an IGNORE_DUP_KEY index, rows that violate the index’s unique constraint will be rejected
without causing the other inserts to fail. So, in order to remove duplicate rows from a table, you can create a
work table that's identical in structure to it, then build an IGNORE_DUP_KEY index over the second table that
includes all the first table's candidate keys and insert the table's rows into it. Here's an example:

CREATE TABLE #famousjaycees
(jc varchar(15),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

INSERT #famousjaycees VALUES ('Julius Caesar',6 'Military leader/dictator',
-0045, '"Took the Roman early retirement program')

-- Include a duplicate value for the sake of illustration

INSERT #famousjaycees VALUES ('Julius Caesar', 'Military leader/dictator’',
-0045, '"Took the Roman early retirement program')

INSERT #famousjaycees VALUES ('Jesus Christ', 'Founded Christianity',
0001, 'Birth featured tellurian, ruminative, and tutelary visitors')
INSERT #famousjaycees VALUES ('John Calhoun', 'Congressman’,

1825, 'Served as VP under two U.S. presidents')

INSERT #famousjaycees VALUES ('Joan Crawford', 'Actress’,

1923, 'Appeared in everything from Grand Hotel to Trog')

INSERT #famousjaycees VALUES ('James Cagney', '"Actor',

1931, 'This prototypical gangster made a dandy Yankee')

INSERT #famousjaycees VALUES ('Jim Croce', 'Singer/songwriter',

1972, 'Would that time were in a bottle because you left us way too soon')
INSERT #famousjaycees VALUES ('Joe Celko', 'Author/lecturer',

1987, 'Counts eating and living indoors among his favorite hobbies')

CREATE TABLE #famousjaycees?2
(jc varchar (15),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

CREATE UNIQUE INDEX removedups ON #famousjaycees2 (Jjc,occupation,becamefamous)
WITH IGNORE DUP KEY

INSERT #famousjaycees?2

SELECT * FROM #famousjaycees

SELECT * FROM #famousjaycees?2

Server: Msg 3604, Level 16, State 1, Line O
Duplicate key was ignored.

88

Chapter 5. DML Insights

jc occupation becamefamous notes
Julius Caesar Military leader/dictator -45 Took the Roman early
retirement
program
Jesus Christ Founded Christianity 1 Birth featured tellurian,
ruminative, and tutelary
visitors
John Calhoun Congressman 1825 Served as VP under two U.S.
presidents
Joan Crawford Actress 1923 Appeared in everything from
Grand
Hotel to Trog
James Cagney Actor 1931 This prototypical gangster
made a
dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time were in a
bottle
because you left us way too
soon
Joe Celko Author/lecturer 1987 Counts eating and living
indoors

among his favorite hobbies

Notice that we can't include the notes column in the index because, as a text column, it's not a valid index key
candidate. This notwithstanding, the inclusion of the other columns still provides a reasonable assurance
against duplicates.

INSERT and Clustered Indexes

A table without a clustered index is known as a heap table. Rows inserted into a heap table are inserted
wherever there's room in the table. If there's no room on any of the table's existing pages, a new page is
created and the rows are inserted onto it. This can create a hotspot at the end of the table (meaning that
users attempting simultaneous INSERTSs on the table will vie for the same resources). To alleviate the
possibility of this happening, you should always establish clustered indexes for the tables you build. Consider
using a unique key that distributes new rows evenly across the table. Avoid automatic, sequential, clustered
index keys as they can cause hotspots, too. Going from a heap table to a clustered index with a monotonically
increasing key is not much of an improvement. Also avoid nonunique clustered index keys. Prior to SQL
Server 7.0, they caused the creation of overflow pages as new rows with duplicate keys were inserted,
slowing the operation and fragmenting the table. Beginning with version 7.0, a "uniqueifier" (a four-byte
sequence number) is appended to each duplicate clustered index key in order to force it to be unique.
Naturally, this takes some processing time and is unnecessary if you use unique keys in the first place. As
with all indexing, try to use keys that balance your need to access the data with your need to modify it.

BULK INSERT

In addition to standard INSERTS, Transact-SQL supports bulk data loading via the BULK INSERT command.
BULK INSERT uses the BCP (Bulk Copy Program) facility that's been available in SQL Server for many years.
Prior to its addition to Transact-SQL, developers called the external bcp utility using xp_cmdshell or accessed
the Distributed Management Objects (DMO) API in order to bulk load data from within Transact-SQL. With the
addition of the BULK INSERT command to the language itself, this is now largely unnecessary. Here's an
example:

CREATE TABLE famousjaycees
(jc varchar(15),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

89

Guru’s Guide to Transact-SQL

-— Assume the file was previously created

BULK INSERT famousjaycees FROM 'D:\GG TS\famousjaycees.bcp'

SELECT * FROM famousjaycees

Julius Caesar

early

-
retirement

Jesus Christ

tellurian,

tutelary

-
visitors

John Calhoun

two U.S.

Joan Crawford
everything from

[
Grand

James Cagney

gangster

-
made a

Jim Croce
were 1n a

[
bottle

way too

-
soon

Joe Celko
living

[
indoors

hobbies

occupation

Military leader/dictator

Founded Christianity

Congressman

Actress

Actor

Singer/songwriter

Author/lecturer

BULK INSERT and Triggers

becamefamous

-45

1825

1923

1931

1972

1987

notes

Took the Roman

program
Birth featured

ruminative, and

Served as VP under

presidents
Appeared in

Hotel to Trog
This prototypical

dandy Yankee
Would that time

because you left us

Counts eating and

among his favorite

BULK INSERT circumvents SQL Server's trigger mechanism. When you insert rows via BULK INSERT,
INSERT triggers do not fire. This is because SQL Server's BCP facility avoids logging inserted rows in the
transaction log if possible. This means that there's simply no opportunity for triggers to fire. There is, however,
a workaround that involves using a faux update to force them to fire. See the section "Using UPDATE to

Check Constraints" later in the chapter for more information.

BULK INSERT and Constraints

90

Chapter 5. DML Insights

Declarative constraints, by contrast, can be enforced via the inclusion of BULK INSERT's
CHECK_CONSTRAINTS option. By default, except for UNIQUE constraints, the target table's declarative
constraints are ignored, so include this option if you want them enforced during the bulk load operation. Note
that this can slow down the operation considerably.

BULK INSERT and Identity Columns

Another salient point regarding BULK INSERT is the fact that, by default, it causes identity column values to
be regenerated as data is loaded. Obviously, if you're loading data into a table with dependent foreign key
references, this could be catastrophic. To override this behavior, include BULK INSERT's KEEPIDENTITY
keyword.

UPDATE

UPDATE has two basic forms. One is used to update a table using static values, the other to update it using
values from another table. Here's an example of the first form:

UPDATE #famousjaycees
SET jc='Johnny Cash',

occupation='Singer/songwriter"',

becamefamous=1955,

notes="'Began career selling appliances door-to-door'
WHERE jc='John Calhoun'

SELECT * FROM #famousjaycees

Jjc occupation becamefamous notes
L
Julius Caesar Military leader/dictator =-45 Took the Roman early
retirement

program
Jesus Christ Founded Christianity 1 Birth featured
tellurian,

ruminative, and
tutelary
L
visitors
Johnny Cash Singer/songwriter 1955 Began career selling
appliances

door-to-door
Joan Crawford Actress 1923 Appeared in everything
from
[
Grand

Hotel to Trog
James Cagney Actor 1931 This prototypical
gangster
[
made a

dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time were
in a
[
bottle

because you left us
way too
L
soon

91

Guru’s Guide to Transact-SQL

Joe Celko Author/lecturer 1987 Counts eating and
living
[
indoors

among his favorite
hobbies

And here's one of the second:

CREATE TABLE f#semifamousjaycees
(jc varchar(15),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

INSERT #semifamousjaycees VALUES ('John Candy', "Actor',
1981, 'Your melliferous life was all-too brief')

INSERT #semifamousjaycees VALUES ('John Cusack', 'Actor',
1984, 'Uttered, "Go that way, very fast"')

INSERT #semifamousjaycees VALUES ('Joan Cusack', 'Actress’,
1987, 'Uncle Fester"s avaricious femme fatale')

UPDATE f
SET jc=s.jc,
occupation=s.occupation,
becamefamous=s.becamefamous,
notes=s.notes
FROM #famousjaycees f
JOIN #semifamousjaycees s ON (f.becamefamous=s.becamefamous)
SELECT * FROM #famousjaycees

jc occupation becamefamous notes
[
Julius Caesar Military leader/dictator -45 Took the Roman early
-
retirement

program
Jesus Christ Founded Christianity 1 Birth featured
tellurian,

ruminative, and
tutelary
[
visitors
John Calhoun Congressman 1825 Served as VP under
two U.S.

presidents
Joan Crawford Actress 1923 Appeared in
everything from
-
Grand

Hotel to Trog
James Cagney Actor 1931 This prototypical
gangster
-
made a

dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time were
in a

92

Chapter 5. DML Insights

sack Actress 198 Uncle Fester's

Notice the use of an alias to reference the target of the UPDATE. The actual table is named in the FROM
clause. Also note the join between the two tables. It's constructed using normal ANSI SQL-92 join syntax and
allows values to be easily located in the UPDATE's source table.

The Halloween Problem

The situation where an updated row moves within the list of rows being updated during the update, and is
therefore changed erroneously multiple times, is known as the Halloween Problem. In the early days of
DBMSs, this was a common occurrence because vendors usually performed a group of updates one row at a
time. If the update changed the key column on which the rows were sorted, it was likely that a row would
move elsewhere in the group of rows, perhaps to a location further down in the group, where it would be
changed yet again. For example, consider this code:

UPDATE sales
SET gty=gqty*1.5

Provided that the server didn't otherwise handle it and provided that the result set was sorted in descending
order on the qty column, each update could cause the row to move further down in the result set, resulting in
it being updated repeatedly as the UPDATE traversed the table— a classic case of the Halloween Problem.
Fortunately, SQL Server recognizes situations where the Halloween Problem can occur and automatically
handles them. The Row Operations Manager ascertains when encountering row movement problems and
other types of transient errors such as the Halloween Problem is likely (updates to primary keys and foreign
keys are examples) and takes steps to avoid them.

NOTE

Note Note that deferred updates, the approach SQL Server took to deal with row movement
problems prior to version7.0, are no longer used. In many cases, these were more trouble than
they were worth, and many SQL Server practitioners are glad to see them go.

It might seem likely that the combination of a primary key update and an update trigger would increase the
likelihood of the Halloween Problem occurring. After all, the trigger would see the data as it's being changed,
right? Wrong. SQL Server triggers fire once per statement, not per row, and have access only to the before
and after picture of the data, not to any of the interim stages it might have gone through during the update.

This may seem counterintuitive since triggers appear to execute in conjunction with the DML statement that
fires them, but that's not the case. A trigger's code is not compiled into the execution plan for the INSERT,
UPDATE, or DELETE that fires it. Rather, it's compiled and cached separately so that it's available for reuse
regardless of what causes it to fire. The execution plan for a DML statement branches to any triggers it fires
just before it terminates, after its work is otherwise complete.

93

Guru’s Guide to Transact-SQL

Note that this isn't true of constraints. Steps are added directly to the DML execution plan for each of a table's
constraints.

UPDATE and CASE

You can use a CASE expression to code some fairly sophisticated changes to a table via UPDATE. Using
CASE allows you to embed program logic in the UPDATE statement that would otherwise require arcane
function expressions or separate UPDATEs and flow-control syntax. Here's an example:

SELECT title id, type, price FROM titles

title id type price
BU1032 business 19.9900
BU1111 business 11.9500
BU2075 business 2.9900
BU7832 business 19.9900
MC2222 mod_cook 19.9900
MC3021 mod_cook 2.9900
MC3026 UNDECIDED NULL

PC1035 popular comp 22.9500
PC8888 popular comp 20.0000
PC9999 popular comp NULL

PS1372 psychology 21.5900
PS2091 psychology 10.9500
PS2106 psychology 7.0000
PS3333 psychology 19.9900
PS7777 psychology 7.9900
TC3218 trad cook 20.9500
TC4203 trad cook 11.9500
TCT7777 trad cook 14.9900

UPDATE titles
SET price=price*CASE title WHEN 'business' THEN 1.5
WHEN 'mod cook' THEN .8
WHEN 'trad cook' THEN .6
WHEN 'psychology' THEN .5
WHEN 'popular comp' THEN 1.75 ELSE .75
END

SELECT title id, type, price FROM titles

title id type price
BU1032 business 14.9925
BU1111 business 8.9625
BU2075 business 2.2425
BU7832 business 14.9925
MC2222 mod_cook 14.9925
MC3021 mod cook 2.2425
MC3026 UNDECIDED NULL

PC1035 popular comp 17.2125
PC8888 popular comp 15.0000
PC9999 popular comp NULL
PS1372 psychology 16.1925
PS2091 psychology 8.2125
PS2106 psychology 5.2500

94

Chapter 5. DML Insights

PS3333 psychology 14.9925
PS7777 psychology 5.9925

TC3218 trad cook 15.7125
TC4203 trad cook 8.9625
TC7777 trad cook 11.2425

Using UPDATE to Check Constraints

If you use BULK INSERT or any of the other bulk load facilities that SQL Server provides to append data to a
table that has an associated INSERT trigger, you'll notice that the trigger does not fire. Also, even though
BULK INSERT can be made to respect declarative constraints, you may find that this slows the operation
down to a relative crawl. It will probably be significantly faster to ignore the table's constraints during the load.
One option here is to check constraints and triggers manually after the operation. This requires separate code
for each constraint and trigger and a lot of effort not to make any mistakes. Another, and perhaps better, way
is to issue a bogus update against the table in question once the operation completes. This fake update
simply sets each column's value to itself. This causes triggers to fire and constraints to be checked. If any of
the rows contain bad data, the UPDATE will fail. Here's an example:

CREATE TABLE famousjaycees

(jc varchar (15) CHECK (LEFT (jc,3)<>'Joe'), -— Establish a check constraint
occupation varchar (25),

becamefamous int DEFAULT O,

notes text NULL)

-— Assume the file was previously created
BULK INSERT famousjaycees FROM 'D:\GG TS\famousjaycees.bcp'

-- Check that the miscreant is in place
SELECT * FROM famousjaycees

-—- Now do the faux update
UPDATE famousjaycees
SET jc=jc, occupation=occupation, becamefamous=becamefamous, notes=notes

jc occupation becamefamous notes
Julius Caesar Military leader/dictator -45 Took the Roman early
retirement
program
Jesus Christ Founded Christianity 1 Birth featured tellurian,

ruminative, and tutelary
visitors

John Calhoun Congressman 1825 Served as VP under two U.S.
presidents
Joan Crawford Actress 1923 Appeared in everything

from Grand
Hotel to Trog

James Cagney Actor 1931 This prototypical gangster
made a

dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time were in a
bottle

because you left us way
too soon
Joe Celko Author/lecturer 1987 Counts eating and living
indoors

95

Guru’s Guide to Transact-SQL

among his favorite hobbies

Server: Msg 547, Level 16, State 1, Line 1

UPDATE statement conflicted with COLUMN CHECK constraint 'CK famousjaycee

jc_ 5E8A0973'. The conflict occurred in database 'tempdb', table 'famousjaycees',
column 'jc'.

The statement has been terminated.

As you can see, the error message indicates the database, table, and column in which the bad data resides,
so you have some basic information to begin locating the invalid data.

Limiting the Number of Rows Affected by an UPDATE

You can use the TOP n option of the SELECT command to limit the number of rows affected by an UPDATE.
This SELECT is embedded as a derived table in the UPDATE's FROM clause and joined with the target table,
like so:

-- Establish what the table looks like before the update (limit to 10 for brevity)
SELECT TOP 10 au lname, au fname, contract FROM authors ORDER BY au id

UPDATE a

SET a.contract=0

FROM authors a JOIN (SELECT TOP 5 auiid FROM authors ORDER BY auiid) u ON
(a.au_id=u.au_ id)

-— Now show the table afterward (limit to 10 for brevity)
SELECT TOP 10 au_ lname, au fname, contract FROM authors ORDER BY au id

au_lname au_fname contract
White Johnson 1
Green Marjorie 1
Carson Cheryl 1
O'Leary Michael 1
Straight Dean 1
Smith Meander 0
Bennet Abraham 1
Dull Ann 1
Gringlesby Burt 1
Locksley Charlene 1
au_lname au_fname contract
White Johnson 0
Green Marjorie 0
Carson Cheryl 0
O'Leary Michael 0
Straight Dean 0
Smith Meander 0
Bennet Abraham 1
Dull Ann 1
Gringlesby Burt 1
Locksley Charlene 1

Swapping Column Values with UPDATE

96

Chapter 5. DML Insights

A nifty side effect of the fact that UPDATE can set local variables at the same time it sets column values is

that you can use this variable in the update itself. Since Transact-SQL is processed left to right, you can set
the variable early in the SET list, then reuse it later in the same update to supply a column value. For example,
you could use it to swap the values of two columns, like so:

CREATE TABLE #samples
(k1 int identity,
sampl float DEFAULT (rand()*1000),
samp?2 float DEFAULT (rand()*1000)
)

INSERT #samples DEFAULT VALUES
INSERT #samples DEFAULT VALUES
INSERT #samples DEFAULT VALUES
INSERT #samples DEFAULT VALUES
INSERT #samples DEFAULT VALUES
INSERT #samples DEFAULT VALUES
INSERT #samples DEFAULT VALUES

SELECT * FROM #samples
DECLARE @swap float

UPDATE #samples

SET @swap=sampl,
sampl=samp2,
samp2=@swap

SELECT * FROM #samples

k1l sampl samp?2

1 696.54331299037415 985.40886709404242
2 632.62866718204532 312.32844166524393
3 85.737145980088201 997.17767926283261
4 198.09202551602621 398.36384650194992
5 117.03223448722392 240.39329824544191
6 853.0948352692468 373.61420498632617
7 597.28655124120712 606.33492026963836
k1l sampl samp2

1 985.40886709404242 696.54331299037415
2 312.32844166524393 632.62866718204532
3 997.17767926283261 85.737145980088201
4 398.36384650194992 198.09202551602621
5 240.39329824544191 117.03223448722392
6 373.61420498632617 853.0948352692468

7 606.33492026963836 597.28655124120712

This trick is cool enough, but because column values referenced by an UPDATE statement always reflect

their values before the operation, you don't need an intermediate variable in order to swap them. You can just

simply assign the columns to one another, like this:

UPDATE #samples
SET sampl=samp?2
samp2=sampl

4

97

Guru’s Guide to Transact-SQL

k1l sampl samp?2

1 696.54331299037415 985.40886709404242
2 632.62866718204532 312.32844166524393
3 85.737145980088201 997.17767926283261
4 198.09202551602621 398.36384650194992
5 117.03223448722392 240.39329824544191
6 853.0948352692468 373.61420498632617
7 597.28655124120712 606.33492026963836
k1l sampl samp?2

1 985.40886709404242 696.54331299037415
2 312.32844166524393 632.62866718204532
3 997.17767926283261 85.737145980088201
4 398.36384650194992 198.09202551602621
5 240.39329824544191 117.03223448722392
6 373.61420498632617 853.0948352692468
7 606.33492026963836 597.28655124120712

UPDATE and Cursors

You can use the UPDATE command to modify rows returned by updatable cursors. This is facilitated via
UPDATE's WHERE CURRENT OF clause. Here's an example:

CREATE TABLE #famousjaycees
(jc varchar(1l5),

occupation varchar (25),
becamefamous int DEFAULT O,
notes text NULL)

INSERT #famousjaycees VALUES ('Julius Caesar', 'Military leader/dictator',
-0045, '"Took the Roman early retirement program')

INSERT #famousjaycees VALUES ('Jesus Christ', 'Founded Christianity', 0001, 'Birth
featured tellurian, ruminative, and tutelary visitors')

INSERT #famousjaycees VALUES ('John Calhoun', 'Congressman',1825,'Served as VP
under two U.S. presidents')

INSERT #famousjaycees VALUES ('Joan Crawford', 'Actress',1923, 'Appeared in
everything from Grand Hotel to Trog')

INSERT #famousjaycees VALUES ('James Cagney', 'Actor',1931,'This prototypical
gangster made a dandy Yankee')

INSERT #famousjaycees VALUES ('Jim Croce', 'Singer/songwriter',1972, '"Would that
time were in a bottle because you left us way too soon')

INSERT #famousjaycees VALUES ('Joe Celko', 'Author/lecturer',1987, 'Counts eating
and living indoors among his favorite hobbies')

DECLARE Jjcs CURSOR DYNAMIC FOR SELECT * FROM #famousjaycees FOR UPDATE
OPEN jcs

FETCH RELATIVE 3 FROM ijcs

UPDATE #famousjaycees
SET jc='Johnny Cash',

occupation='Singer/songwriter"',

becamefamous=1955,

notes='Began career selling appliances door-to-door'
WHERE CURRENT OF jcs

98

Chapter 5. DML Insights

CLOSE jcs
DEALLOCATE jcs

SELECT * FROM #famousjaycees

Jjc occupation becamefamous notes
-
John Calhoun Congressman 1825 Served as VP
under two
-
U.S.
presidents
Jjc occupation becamefamous notes
-
Julius Caesar Military leader/dictator -45 Took the Roman
early
-
retirement
program
Jesus Christ Founded Christianity 1 Birth featured
tellurian,
ruminative, and
tutelary
-
visitors
Johnny Cash Singer/songwriter 1955 Began career
selling
-
appliances
door-to-door
Joan Crawford Actress 1923 Appeared in
everything
-

from Grand

Hotel to Trog
James Cagney Actor 1931 This prototypical
-
gangster made a

dandy Yankee
Jim Croce Singer/songwriter 1972 Would that time
were in a

-
bottle

because you left
us way
-
too soon
Joe Celko Author/lecturer 1987 Counts eating and
living
-
indoors

among his
favorite hobbies

99

Guru’s Guide to Transact-SQL

DELETE

Like its INSERT counterpart, the DELETE command has a number of forms. | won't go into all of them here—
they correspond closely enough with their INSERT and UPDATE siblings that their use should be obvious.
There are, however, a couple of aspects of the command that bear discussion. First, in addition to limiting the
rows removed by a DELETE through the use of constants and variables in its WHERE clause, you can
reference other tables. Below is a DELETE that's based on a join to another table. It deletes customers in the
Northwind Customers table that have no orders in the Orders table:

SET NOCOUNT ON
USE Northwind
GO

BEGIN TRAN

SELECT COUNT (*) AS TotalCustomersBefore FROM Customers

DELETE c
FROM Customers c¢ LEFT OUTER JOIN Orders o ON (c.CustomerID=o.CustomerID)
WHERE o0.0OrderID IS NULL

SELECT COUNT (*) AS TotalCustomersAfter FROM Customers

GO
ROLLBACK TRAN

TotalCustomersBefore

As with the UPDATE command, the number of rows affected by DELETE can be restricted via the SELECT
TOP n extension. Here's an example:

SELECT TOP 10 ord num AS Before FROM sales ORDER BY ord num

DELETE s
FROM sales s JOIN (SELECT TOP 5 ord num FROM sales ORDER BY ord num) a
ON (s.ord num=a.ord num)

SELECT TOP 10 ord num AS After FROM sales ORDER BY ord num

Before
423LL922
423LL930
6871
722a
A2976
D4482
D4482
D4492
N914008
N914014

100

Chapter 5. DML Insights

N914008
N914014
pP2121
P2121
P2121
P3087a
P3087a

DELETE and Cursors

You can use the DELETE command to delete rows returned by updatable cursors. Similarly to UPDATE, this
is facilitated via the command's WHERE CURRENT OF clause. Here's an example:

CREATE TABLE #famousjaycees

(jc varchar(15),

occupation wvarchar (25),

becamefamous int DEFAULT O,

notes text NULL)

INSERT #famousjaycees VALUES ('Julius Caesar',6 'Military leader/dictator', -
0045, 'Took the

Roman early retirement program')

INSERT #famousjaycees VALUES ('Jesus Christ', 'Founded Christianity', 0001, 'Birth
featured

tellurian, ruminative, and tutelary visitors')

INSERT #famousjaycees VALUES ('John Calhoun', 'Congressman', 1825, 'Served as VP
under two

U.S. presidents')

INSERT #famousjaycees VALUES ('Joan Crawford', 'Actress',1923, 'Appeared in
everything

from Grand Hotel to Trog')

INSERT #famousjaycees VALUES ('James Cagney', 'Actor',1931, 'This prototypical
gangster
made a dandy Yankee')

INSERT #famousjaycees VALUES ('Jim Croce', 'Singer/songwriter',1972, '"Would that
time were

in a bottle because you left us way too soon')

INSERT #famousjaycees VALUES ('Joe Celko', 'Author/lecturer',1987, 'Counts eating
and

living indoors among his favorite hobbies')

DECLARE jcs CURSOR DYNAMIC FOR SELECT * FROM #famousjaycees FOR UPDATE
OPEN jcs

FETCH RELATIVE 3 FROM jcs

DELETE #famousjaycees
WHERE CURRENT OF jcs

CLOSE jcs
DEALLOCATE 7jcs

SELECT * FROM f#famousjaycees

101

Guru’s Guide to Transact-SQL

John Calhoun
under two

[
U.S.

Julius Caesar
early

-
retirement

Jesus Christ
tellurian,

tutelary

-
visitors

Joan Crawford
everything

[
from Grand

James Cagney
L

gangster made a

Jim Croce
were 1in a

i
bottle

us way

-

too soon
Joe Celko
living

[
indoors

favorite hobbies

occupation

Congressman

occupation

Military leader/dictator

Founded Christianity

Actress

Actor

Singer/songwriter

Author/lecturer

TRUNCATE TABLE

becamefamous

1825

becamefamous

-45

1923

1931

1972

1987

notes

Served as VP

presidents

notes

Took the Roman

program
Birth featured

ruminative, and

Appeared in

Hotel to Trog

This prototypical

dandy Yankee

Would that time

because you left

Counts eating and

among his

Analogous to BULK INSERT, the TRUNCATE TABLE command provides a way of deleting the rows in a table
with a minimum of logging. That no logging occurs at all is a common misconception. The page deallocations
are logged— they have to be. If they weren't, you couldn't execute the command from within a transaction and

couldn't reverse its effects on the database. Here's an example:

102

Chapter 5. DML Insights

USE pubs
BEGIN TRAN

SELECT COUNT (*) AS CountBefore FROM sales
TRUNCATE TABLE sales
SELECT COUNT (*) AS CountAfter FROM sales

SELECT COUNT (*) AS CountAfterRollback FROM sales

CountBefore

What's not logged with TRUNCATE TABLE is the process of deleting individual rows. That's because no row
deletions actually occur— all that really happens is the deallocation of the pages that make up the table. Since
row deletions don't occur, they aren't logged and can't fire DELETE triggers.

You'll find that TRUNCATE TABLE is many times faster than an unqualified DELETE fablename statement; in
fact, it's often instantaneous with small to medium-sized tables. There are a couple of limitations, though. You
can't use TRUNCATE TABLE on a table that's referenced by a foreign key constraint, even if the truncation
would not break any foreign key relationships (e.g., when the dependent table is empty). You also can't use
TRUNCATE TABLE on a table that's been published for replication. This is because replication relies on the
transaction log to synchronize publishers and subscribers, and TRUNCATE TABLE, as I've said, does not
generate row deletion log records.

Detecting DML Errors

Normally, you can detect DML runtime errors by inspecting the @@ERROR automatic variable. However, if a
DML statement doesn't affect any rows, @@ERROR won't be set because that's technically not an error
condition. You'll have to check @@ROWCOUNT instead. In other words, if your code needs to consider the
fact that a DML statement fails to affect (or find) any rows as an error, check @@ROWCOUNT after the
statement and respond accordingly.

Summary

In this chapter, you became acquainted with some of the more prominent aspects of Transact-SQL DML. You
learned about the INSERT, UPDATE, and DELETE commands and how they're used in real queries. You also
learned about speedy variations of them and the limitations that accompany them.

103

Chapter 6. The Mighty SELECT Statement

Chapter 6. The Mighty SELECT Statement

The fantasy element that explains the appeal of dungeon-clearing games to many
programmers is neither the fire-breathing monsters nor the milky-skinned, semi-clad sirens; it
is the experience of carrying out a task from start to finish without user requirements changing.

—Thomas L. Holaday

As | said in Chapter 1, the SELECT statement is the workhorse of the Transact-SQL language. It does
everything from assign variables to return result sets to create tables. Across all versions of SQL, SELECT is
the Ginsu knife of the language. There was even a time when it was used to clear certain server error
conditions in Sybase's version of SQL Server (using a function called LCT_ADMIN()).

While it's handy to be able to perform 75% of your work using a single tool, that tool has to be complex in
order to offer all that functionality. A tool with so many features can be a bit unwieldy—you have to be careful
lest you take off a finger.

Simple SELECTs

As was also pointed out in Chapter 1, SELECT statements need not be complex. Here are a few simple
ones to prime the discussion:

USE pubs
SELECT * FROM authors

(Results abridged)

au_id au_lname au_fname phone
172-32-1176 White Johnson 408 496-7223
213-46-8915 Green Marjorie 415 986-7020

SELECT title id, title FROM titles
(Results abridged)
title id title

PC1035 But Is It User Friendly?
PS1372 Computer Phobic AND Non-Phobic Individuals: Behavior Variations

SELECT 'One'

One

Computational and Derived Fields

In addition to garden-variety fields, you can specify functions, computations, and derived fields in the column
list of a SELECT statement (commonly referred to as its "SELECT list"). Here are some examples:

SELECT PI(), CAST(21.99115 / 7 AS decimal(7,6)) AS RoughPi
SSPi RoughPi

3.1415926535897931 3.141593

105

Guru’s Guide to Transact-SQL

You can include parameter-less functions like PI() and functions that require parameters like CAST(). You can
use expressions that reference fields and expressions that don't. You can perform basic computations in the
SELECT list and can include subqueries that return single values. Here's an example:

SELECT pub name, (SELECT COUNT (*) FROM titles t WHERE t.pub id=p.pub id) AS
NumPublished
FROM publishers p

pub name NumPublished
New Moon Books 5

Binnet & Hardley /

Algodata Infosystems 6

Five Lakes Publishing 0

Ramona Publishers 0

GGG&G 0

Scootney Books 0

Lucerne Publishing 0

A derived column consists of a subquery that returns a single value. This subquery can be related to the outer
query (correlated) or unrelated, but it must return a result set that is exactly one column by one row in size.
We'll cover correlated subqueries in more detail in a moment.

I've built the query using a derived field for illustration purposes only. It would be better written using a join,
like so:

SELECT pub name, COUNT (t.title id) AS NumPublished
FROM publishers p LEFT JOIN titles t ON (p.pub id = t.pub id)
GROUP BY pub name

This is frequently the case with subqueries— very often they can be restated as joins. These joins are
sometimes more efficient because they avoid executing the secondary query for every row in the main table.

SELECT TOP

Prior to SQL Server 7.0, restricting the number of rows returned by a query required the use of the SET
ROWCOUNT command. SET ROWCOUNT is still available, but there's now a better way. SELECT TOP n is
the number or percentage of rows you wish to return is an efficient way to truncate query results. Here's an
example:

SELECT TOP 10 t.title, SUM(s.qty) AS TotalSales

FROM sales s JOIN titles t ON (s.title id=t.title id)
GROUP BY t.title

ORDER BY TotalSales DESC

title TotalSales
Is Anger the Enemy? 191
Secrets of Silicon Valley 50
The Busy Executive's Database Guide 45
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 40
The Gourmet Microwave 40
You Can Combat Computer Stress! 35
But Is It User Friendly? 30
The Psychology of Computer Cooking 30
Cooking with Computers: Surreptitious Balance Sheets 25
Emotional Security: A New Algorithm 25

106

Chapter 6. The Mighty SELECT Statement

As you would expect, including the optional PERCENT keyword limits the rows returned to a percentage of
the total number of rows.

Add the WITH TIES clause if you want to include ties—duplicate values—in the result set. Unless you're
merely trimming the result set to a particular size, TOP n logically implies ORDER BY. Although ORDER BY is
optional with basic TOP n, the WITH TIES option requires it so that ties can be logically resolved. Here's an
example:

SELECT TOP 4 WITH TIES t.title, SUM(s.gty) AS TotalSales
FROM sales s JOIN titles t ON (s.title id=t.title id)
GROUP BY t.title

ORDER BY TotalSale

title TotalSales
Is Anger the Enemy? 191
Secrets of Silicon Valley 50
The Busy Executive's Database Guide 45
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 40
The Gourmet Microwave 40

Even though TOP 4 is specified, five rows are returned because there's a tie at position four. Note that this
special tie handling works only for ties that occur at the end of the result set. That is, using the TOP4 example,
a tie at positions two and three will not cause more than four rows to be returned—only a tie at position four
has this effect. This is counterintuitive and means that the following queries return the same result set as the
TOP4 query:

SELECT TOP 5 t.title, SUM(s.qgty) AS TotalSales

FROM sales s JOIN titles t ON (s.title id=t.title id)
GROUP BY t.title

ORDER BY TotalSales DESC

and

SELECT TOP 5 WITH TIES t.title, SUM(s.gty) AS TotalSales
FROM sales s JOIN titles t ON (s.title id=t.title id)
GROUP BY t.title

ORDER BY TotalSales DESC

Another deficiency in TOP n is the fact that it can't return grouped top segments in conjunction with a query's
GROUP BY clause. This means that a query like the one below can't be modified to return the top store in
each state using TOPn:

SELECT t.state, t.stor name, SUM(s.gty) AS TotalSales
FROM sales s JOIN stores t O (s.stor id=t.stor id)
GROUP BY t.state, t.stor name

ORDER BY TotalSales DESC, t.state, t.stor name

state stor name TotalSales
OR Bookbeat 140

WA Doc-U-Mat: Quality Laundry and Books 130

CA Barnum's 125

WA Eric the Read Books 91

CA News & Brews 90

CA Fricative Bookshop 60

Though the syntax is supported, it doesn't do what we might like:

107

Guru’s Guide to Transact-SQL

-— BAD SQL -- doesn't work as we'd like

SELECT TOP 1 t.state, t.stor name, SUM(s.gty) AS TotalSales
FROM sales s JOIN stores t ON (s.stor id=t.stor id)

GROUP BY t.state, t.stor name

ORDER BY TotalSales DESC, t.state, t.stor name

state stor name TotalSales

OR Bookbeat 140

As you can see, this query returns just one row. "TOP n " refers to the result set, not the rows in the original
table or the groups into which they've been categorized. See the "Derived Tables" section below for an
alternative to TOP n that returns grouped top subsets.

Derived Tables

Besides direct references to tables and views, you can also construct logical tables on the fly in the FROM
clause of a SELECT statement. These are called derived tables. A derived table is a subquery that's used in
place of a table or view. It can be queried and joined just like any other table or view. Here's a very basic
example:

SELECT au_lname, au_ fname
FROM (SELECT * FROM authors) A

(Results abridged)

au_lname au_fname
Bennet Abraham
Blotchet-Halls Reginald
Carson Cheryl
DeFrance Michel
del Castillo Innes

The derived table in this query is constructed via the SELECT * FROM authors syntax. Any valid query could
be inserted here and can contain derived tables of its own. Notice the inclusion of a table alias. This is a
requirement of Transact-SQL derived tables—you must include it regardless of whether the query references
other objects.

Since Transact-SQL supports nontabular SELECT statements, you can also use derived tables to construct
logical tables from scratch without referencing any other database objects. Here's an example:

SELECT *

FROM

(SELECT 'flyweight' AS WeightClass, 0 AS LowBound, 112 AS HighBound

UNION ALL

SELECT 'bantamweight' AS WeightClass, 113 AS LowerBound, 118 AS HighBound
UNION ALL

SELECT 'featherweight' AS WeightClass, 119 AS LowerBound, 126 AS HighBound
UNION ALL

SELECT 'lightweight' AS WeightClass, 127 AS LowerBound, 135 AS HighBound
UNION ALL

SELECT 'welterweight' AS WeightClass, 136 AS LowerBound, 147 AS HighBound
UNION ALL

SELECT 'middleweight' AS WeightClass, 148 AS LowerBound, 160 AS HighBound
UNION ALL

SELECT 'light heavyweight' AS WeightClass, 161 AS LowerBound, 175 AS HighBound
UNION ALL

SELECT 'heavyweight' AS WeightClass, 195 AS LowerBound, 1000 AS HighBound) W

108

Chapter 6. The Mighty SELECT Statement

ORDER BY W.LowBound

WeightClass LowBound HighBound
flyweight 0 112
bantamweight 113 118
featherweight 119 126
lightweight 127 135
welterweight 136 147
middleweight 148 160
light heavyweight 161 175
heavyweight 195 1000

Here, we "construct" a derived table containing three columns and eight rows. Each SELECT represents a
single row in this virtual table. The rows in the table are glued together using a series of UNIONSs.

The table doesn't actually exist anywhere—it's a logical construct only. You can think of a derived table as a
temporary VIEW object—it exists for the duration of the query then goes away quietly afterward. That a
SELECT statement can be treated as a table is sensible given that, by definition, the result of a SQL query is
itself a table—the result table. Here's a query that joins a regular table with a derived table:

CREATE TABLE #boxers
(Name varchar (30),
Weight float)

INSERT #boxers VALUES
INSERT #boxers VALUES
INSERT #boxers VALUES
INSERT #boxers VALUES
INSERT #boxers VALUES
INSERT #boxers VALUES
INSERT #boxers VALUES
INSERT #boxers VALUES

('Glass Joe', 112)

('"Piston Hurricane', 176)

('Bald Bull', 298)

('"Sugar Ray Ali', 151)

('"Leon Holmes', 119)

('George Liston', 139)

('Larry Leonard', 115)

('"Mike Mooncalf', 134)

SELECT B.Name, B.Weight, W.WeightClass

FROM f#boxers B,

(SELECT 'flyweight' AS WeightClass, 0 AS LowBound, 112 AS HighBound

UNION ALL

SELECT 'bantamweight' AS WeightClass, 113 AS LowerBound, 118 AS HighBound
UNION ALL

SELECT 'featherweight' AS WeightClass, 119 AS LowerBound, 126 AS HighBound
UNION ALL

SELECT 'lightweight' AS WeightClass, 127 AS LowerBound, 135 AS HighBound
UNION ALL

SELECT 'welterweight' AS WeightClass, 136 AS LowerBound, 147 AS HighBound
UNION ALL

SELECT 'middleweight' AS WeightClass, 148 AS LowerBound, 160 AS HighBound
UNION ALL

SELECT 'light heavyweight' AS WeightClass, 161 AS LowerBound, 175 AS HighBound
UNION ALL

SELECT 'heavyweight' AS WeightClass, 195 AS LowerBound, 1000 AS HighBound) W

WHERE B.Weight BETWEEN W.LowBound and W.HighBound

ORDER BY W.LowBound

Name Weight WeightClass
Glass Joe 112.0 flyweight
Larry Leonard 115.0 bantamweight
Leon Holmes 119.0 featherweight
Mike Mooncalf 134.0 lightweight
George Liston 139.0 welterweight
Sugar Ray Ali 151.0 middleweight

109

Guru’s Guide to Transact-SQL

Bald Bull

N
o)
06}
(@)

heavyweight

This query first constructs a table containing a list of fictional boxers and each boxer's fighting weight (our
"regular" table). Next, it joins this table with the derived table introduced in the previous example to partition
the list of boxers by weight class. Note that one of the boxers is omitted from the result because he doesn't fall
into any of the weight classes established by the derived table.

Of course, this query could have been greatly simplified using CASE statements, but the point of the exercise
was to show the power of derived tables. Here, we "created" a multirow table via UNION and some simple
SELECTSs without requiring a real table.

This example illustrates some of the unique abilities of derived tables. Here's an example that illustrates their
necessity:

SELECT s.state, st.stor name,s.totalsales, rank=COUNT (*)
FROM (SELECT t.state, t.stor id, SUM(s.gty) AS TotalSale
FROM sales s JOIN stores t ON (s.stor id=t.stor id)

GROUP BY t.state, t.stor id) s JOIN
(SELECT t.state, i.?i”rild SUM(s.qgty) AS TotalSales
FROM sales s JOIN stores t ON (s.stor id=t.stor id)
GROUP BY t.state, t.stor id) t ON (s.state=t.state)
JOIN stores st ON (S.QPVI _id=st.stor id)

WHERE s.totalsales <= t.totalsales

GROUP BY s.state,st.stor name totalsales

AVING COUNT (*) <=1
ORDER BY s.state, rank

state stor name totalsales rank
CA Barnum's 125 1
OR Bookbeat 140 1
WA Doc-U-Mat: Quality Laundry and Books 130 1

This query returns the store with the top sales in each state. As pointed out in the discussion of SELECT TOP
n, it accomplishes what the TOP n extension is unable to—it returns a grouped top n resultset.

In this case, a derived table is required in order to materialize the sales for each store without resorting to a
VIEW object. Again, derived tables function much like inline views. Once each store's sales have been
aggregated from the sales table, the derived table is joined with itself using its state column to determine the
number of other stores within each store's home state that have fewer sales than it does. (Actually, we
perform the inverse of this in order to give stores with more sales lower numbers, i.e., higher rankings.) This
number is used to rank each store against the others in its state. The HAVING clause then uses this ranking
to filter out all but the top store in each state. You could easily change the constant in the HAVING clause to
include the top two stores, the top three, and so forth. The query is straightforward enough but was worth
delving into in order to understand better the role derived tables play in real queries.

Of course, it would be more efficient to construct a static view to aggregate the sales for each store in
advance. The query itself would be shorter and the optimizer would be more likely to be able to reuse the
query plan it generates to service each aggregation:

CREATE VIEW SalesByState AS
SELECT s.stor id, SUM(s.gty) AS Tot
FROM sales s JOIN stores t ON (S
GROUP BY t.state, s.stor id

QELE(T s.state, st.stor name,s.totalsales, Rank=COUNT (*)

FROM SalesByState s JOIN SalesByState t ON (s.state=t.state)
JOIN stores st ON (s.stor id=st.stor id)

WHERE s.totalsales <= t.totalsales

GROUP BY s.state,st.stor name,s.totalsales

HAVING COUNT (*) <=1

ORDER BY s.state, rank

110

Chapter 6. The Mighty SELECT Statement

Nevertheless, there are situations where constructing a view in advance isn't an option. If that's the case, a
derived table may be your best option.

Joins

Chapter 1 covers the different types of joins supported by Transact-SQL in some depth, so here I'll focus on
join nuances not covered there. Review Chapter 1 if you're unsure of how joins work or need a refresher on
join basics.

Outer Joins and Join Order

The ordering of the clauses in an inner join doesn't affect the result set. If A5B, then certainly BSA. Inner join
clauses are associative. That's not true for outer joins. The order in which tables are joined directly affects
which rows are included in the result set and which values they have. That's why using the ANSI outer join
syntax is so important—the legacy syntax can generate erroneous or ambiguous result sets because
specifying join conditions in the WHERE clause precludes specifically ordering them.

To understand fully the effect join order has on OUTER JOINs, let's explore the effect it has on the result set a
query generates. Here's a query that totals items in the Orders table of the Northwind sample database:

SELECT SUM(d.UnitPrice*d.Quantity) AS TotalOrdered
FROM Orders o LEFT OUTER JOIN [Order Details] d ON (0.0rderID+10=d.OrderID)
LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID)

1339743.1900

I've intentionally introduced join condition failures into the query by incrementing 0.Orderld by ten so that we
can observe the effects of clause ordering and join failures on the result set. Now let's reorder the tables in the
FROM clause and compute the same aggregate:

SELECT SUM(d.UnitPrice * d.Quantity) AS TotalOrdered
FROM [Order Details] d LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID)
LEFT OUTER JOIN Orders o ON (0.0rderID+10=d.OrderID)

TotalOrdered

See the discrepancy? The total changes based on the order of the tables. Why? Because the first query
introduces mismatches between the Orders and Order Details tables before the UnitPrice and Quantity
columns are totaled; the second query does so afterward. In the case of the second query, we get a total of all
items listed in the Order Details table regardless of whether there's a match between it and the Orders table;
in the first query, we don't. To understand this better, consider the data on which the two totals are based:

SELECT o.OrderDate, d.UnitPrice, d.Quantity

FROM Orders o LEFT OUTER JOIN [Order Details] d ON (0.0rderID+10=d.OrderID)
LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID)

WHERE o.OrderDate IS NULL

OR d.UnitPrice IS NULL

OrderDate UnitPrice Quantity
1998-05-04 00:00:00.000 NULL NULL
1998-05-04 00:00:00.000 NULL NULL
1998-05-05 00:00:00.000 NULL NULL

111

Guru’s Guide to Transact-SQL

1998-05-05 00:00:00.000 NULL NULL
1998-05-05 00:00:00.000 NULL NULL
1998-05-05 00:00:00.000 NULL NULL
1998-05-06 00:00:00.000 NULL NULL
1998-05-06 00:00:00.000 NULL NULL
1998-05-06 00:00:00.000 NULL NULL
1998-05-06 00:00:00.000 NULL NULL

I've included a WHERE clause to pare the result set down to just those rows affected by the intentional join
mismatch. Since we increment OrderNo by ten and the order numbers are sequential, ten of the OrderNo
values in Orders fail to find matches in the Order Details table and, consequently, have NULL UnitPrice and
Quantity fields. Here's a snapshot of the underlying data for the second query (again with a restrictive WHERE
clause):

SELECT o.OrderDate, d.UnitPrice, d.Quantity

FROM [Order Details] d LEFT OUTER JOIN Products p ON (d.ProductID=p.ProductID)
LEFT OUTER JOIN Orders o ON (0.0rderID+10=d.OrderID)

WHERE o.OrderDate IS NULL

OR d.UnitPrice IS NULL

OrderDate UnitPrice Quantity
NULL 14.0000 12
NULL 9.8000 10
NULL 34.8000 5
NULL 18.6000 9
NULL 42.4000 40
NULL 7.7000 10
NULL 42.4000 35
NULL 16.8000 15
NULL 16.8000 6
NULL 15.6000 15
NULL 16.8000 20
NULL 64.8000 40
NULL 2.0000 25
NULL 27.2000 40
NULL 10.0000 20
NULL 14.4000 42
NULL 16.0000 40
NULL 3.6000 15
NULL 19.2000 21
NULL 8.0000 21
NULL 15.2000 20
NULL 13.9000 35
NULL 15.2000 25
NULL 44,0000 30
NULL 26.2000 15
NULL 10.4000 12
NULL 35.1000 25
NULL 14.4000 6
NULL 10.4000 15

Notice that this set is much longer—nineteen rows longer, to be exact. Why? Because twenty-nine rows were
omitted from the result set of the first query due to the join mismatch, though this wasn't immediately obvious.
For each broken order number link, a given number of Order Detail rows were omitted because there was a
one-to-many relationship between the Orders and Order Details tables. This, of course, skewed the total
reported by the query.

So the moral of the story is this: Be careful with outer join ordering, especially when the possibility of join
mismatches exists.

112

Chapter 6. The Mighty SELECT Statement

Predicates

By definition, a predicate is an expression that returns TRUE or NOT TRUE (I'm not using "FALSE" because
of the issues related to three-valued logic—sometimes we don't know whether an expression is FALSE, all we
know is that it is not certainly TRUE).

Predicates are usually found in a query's WHERE or HAVING clauses, though they can be located elsewhere
(e.g., in CASE expressions). Predicates can be simple logical expressions or can be composed of functions
that return TRUE or NOT TRUE. Though technically any function can be included in a predicate expression,
Transact-SQL defines a number of predicate functions that are specifically geared toward filtering queries and
result sets. The sections that follow detail each of them.

BETWEEN

The BETWEEN predicate is probably the most often used of the Transact-SQL predicates. It indicates
whether a given value falls between two other values, inclusively. Here's an example:
SELECT au_ lname, au fname
FROM authors
WHERE au lname BETWEEN 'S' AND 'ZzZz'
ORDER BY au lname

au_lname au_fname
Smith Meander
Straight Dean
Stringer Dirk
White Johnson
Yokomoto Akiko

BETWEEN works with scalar ranges, so it can handle dates, numerics, and other scalar data types. It
combines what would normally require two terms in the WHERE clause: a greater-than-or-equal-to expression,
followed by a less-than-or-equal-to expression. WHERE au_lname BETWEEN 'S’ AND 'ZZ' is shorthand for
WHERE au_lname >="'S' AND au_lname <='ZZ'.

In addition to simple constant arguments, BETWEEN accepts subquery, variable, and expression arguments.
Here's an example:

DECLARE @auiid id
SELECT @au id=(SELECT MAX (au id) FROM titleauthor)

SELECT au_ lname, au fname

FROM authors

WHERE auiid BETWEEN (SELECT MIN(aJiid) FROM titleauthor) AND
ISNULL (Qau id, 'ZZ2Z27227227227")

ORDER BY au_lname

(Results abridged)

au lname au fname
Bennet Abraham
Blotchet-Halls Reginald
Carson Cheryl
DeFrance Michel
del Castillo Innes
(..J

hite Johnson
cko to AKl(O

113

Guru’s Guide to Transact-SQL

Since the primary purpose of the predicate is to determine whether a value lies within a given range, it's
common to see BETWEEN used to determine whether one event occurs between two others. Locating
overlapping events is more difficult than it first appears and its elusiveness gives rise to many false solutions.
This is best explored by way of example. Let's say we have a list of soldiers, and we need to determine which
of them could have participated in the major military engagements of a given war. We'd need at least two
tables—one listing the soldiers and their tours of duty and one listing each major engagement of the war with
its beginning and ending dates. The idea then would be to return a result set that cross-references the soldier
list with the engagement list, taking into account each time a soldier's tour of duty began or ended during a
major engagement, as well as when it encompassed a major engagement. Assume we start with these tables:

CREATE TABLE #engagements
(Engagement varchar (30),
EngagementStart smalldatetime,
EngagementEnd smalldatetime)

INSERT #engagements VALUES ('Gulf of Tonkin', '19640802','19640804")
INSERT #engagements VALUES ('Da Nang', '19650301','19650331")

INSERT #engagements VALUES ('Tet Offensive', '19680131"','19680930")

INSERT #engagements VALUES ('Bombing of Cambodia', '19690301','19700331")
INSERT #engagements VALUES ('Invasion of Cambodia','19700401','19700430")
INSERT #engagements VALUES ('Fall of Saigon', '19750430','19750430")
CREATE TABLE #soldier tours

(Soldier wvarchar (30),

TourStartsmalldatetime,

TourEnd smalldatetime)

INSERT #soldier tours VALUES ('Henderson, Robert Lee','19700126','19700615")
INSERT #soldier tours VALUES ('Henderson, Kayle Dean','19690110','19690706")
INSERT #soldier tours VALUES ('Henderson, Isaac Lee','19680529','19680722")
INSERT #soldier tours VALUES ('Henderson, James D.','19660509','19670201")
INSERT #soldier tours VALUES ('Henderson, Robert Knapp', '19700218','19700619")
INSERT #soldier tours VALUES ('Henderson, Rufus Q.','19670909','19680320")
INSERT #soldier tours VALUES ('Henderson, Robert Michael','19680107','19680131")
INSERT #soldier tours VALUES ('Henderson, Stephen Carl','19690102','19690914")
INSERT #soldier tours VALUES ('Henderson, Tommy Ray','19700713','19710303")
INSERT #soldier tours VALUES ('Henderson, Greg Neal','19701022','19710410")
INSERT #soldier tours VALUES ('Henderson, Charles E.','19661001"','19750430")

Here's a preliminary solution:

SELECT Soldier+' served during the
FROM #soldier tours, #engagements
WHERE (TourStart BETWEEN EngagementStart AND EngagementEnd)
OR (TourEnd BETWEEN EngagementStart AND EngagementEnd)

OR (EngagementStart BETWEEN TourStart AND TourEnd)

'+Engagement

Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,

114

Isaac Lee served during the Tet Offensive

Rufus Q. served during the Tet Offensive

Robert Michael served during the Tet Offensive
Charles E. served during the Tet Offensive

Robert Lee served during the Bombing of Cambodia
Kayle Dean served during the Bombing of Cambodia
Robert Knapp served during the Bombing of Cambodia
Stephen Carl served during the Bombing of Cambodia
Charles E. served during the Bombing of Cambodia
Robert Lee served during the Invasion of Cambodia
Robert Knapp served during the Invasion of Cambodia
Charles E. served during the Invasion of Cambodia

Chapter 6. The Mighty SELECT Statement

Henderson,

Once the tables are created and populated, the query includes rows in the result set using three separate

Charles E. served during the Fall of Saigon

BETWEEN predicates: A soldier's tour began during an engagement, his tour ended during an engagement,

or an engagement started during his tour. Why do we need this last check? Why do we care whether an

engagement started during a soldier's tour—this would be the same as asking whether a soldier's tour ended
during the engagement, wouldn't it? No, not quite. Without the third predicate expression, we aren't allowing
for the possibility that an engagement could begin and end within a tour of duty.
Though this query works, there is a better solution. It requires considering the inverse of the problem. Rather
than determining when tours of duty and major engagements overlap one another, let's determine when they
don't. For a tour of duty and a major engagement not to coincide, one of two things must be true: Either the
tour of duty ended before the engagement started, or it began affer the engagement ended. Knowing this, we
can greatly simplify the query and remove the BETWEEN predicates altogether, like so:

SELECT Soldier+'
FROM #soldier tours,

WHERE NOT

((TourEnd < EngagementStart) OR

served during the
fengagements

'+Engagement

(TourStart > EngagementEnd))

Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,
Henderson,

LIKE

Isaac Lee served during the Tet Offensive

Rufus Q. served during the Tet Offensive

Robert Michael served during the Tet Offensive
Charles E. served during the Tet Offensive

Robert Lee served during the Bombing of Cambodia
Kayle Dean served during the Bombing of Cambodia
Robert Knapp served during the Bombing of Cambodia
Stephen Carl served during the Bombing of Cambodia
Charles E. served during the Bombing of Cambodia
Robert Lee served during the Invasion of Cambodia
Robert Knapp served during the Invasion of Cambodia
Charles E. served during the Invasion of Cambodia
Charles served during the Fall of Saigon

el

LIKE tests a value for a match against a string pattern:

SELECT au_lname,

au_fname

FROM authors

WHERE au_ lname LIKE

au_lname

'Green'

au_fname

Marjorie

ANSI SQL specifies two pattern wildcard characters: the % (percent) character and the _ (underscore)
character; % matches any number of characters, while _ matches exactly one. Here's an example:

SELECT au_ lname,

au_fname

FROM authors

WHERE au_ lname LIKE

au_lname

Green
Greene
Gringlesby

'G:("

au_fname

Marjorie
Morningstar
Burt

115

Guru’s Guide to Transact-SQL

Beyond those supported by ANSI SQL, Transact-SQL also supports regular expression wildcards. These
wildcards allow you to test a character for membership within a set of characters. Here's an example:

SELECT au_ lname, au_ fname
FROM authors
WHERE au lname LIKE 'Str[ai]%'

au lname au fname
Straight Dean
Stringer Dirk

In the example above, [ai] is a regular expression wildcard that matches any string with either a or i in the
fourth position. To exclude strings using a regular expression, prefix its characters with a caret, like so:

SELECT au_ lname, au fname
FROM authors
WHERE au lname LIKE 'Gr["e]%'

au lname au fname

Gringlesby Burt

Here, we request authors whose last names begin with "Gr" and contain a character other than e in the third
position.

There are some subtle differences between the _ and %wildcards. The _wildcard requires at least one
character; %requires none. The difference this makes is best explained by example. First, consider this query:

SELECT au lname, au fname
FROM authors
WHERE au lname LIKE 'Green%'

au lname au fname
Green Marjorie
Greene Morningstar

Now consider this one:

SELECT au_ lname, au_ fname
FROM authors
WHERE au lname LIKE 'Green '

Greene Morningstar

See the difference? Since _ requires at least one character, "Green_" doesn't match "Green."

Another point worth mentioning is that it's possible for a string to survive an equality test but fail a LIKE test.
This is counterintuitive since LIKE would seem to be less restrictive than a plain equality test. The reason this
is possible is that ANSI SQL padding rules require that two strings compared for equality be padded to the
same length prior to the comparison. That's not true for LIKE. If one term is padded with blanks and the other
isn't, the comparison will probably fail. Here's an example:

SELECT au lname, au fname

116

Chapter 6. The Mighty SELECT Statement

FROM authors

WHERE au lname = 'Green '
au_lname au_fname
Green Marjorie

SELECT au_ lname, au fname
FROM authors
WHERE au lname LIKE 'Green '

au lname au fname

Notice that the second query doesn't return any rows due to the padding of the string constant, even though
the equality test works fine.

EXISTS

EXISTS is a predicate function that takes a subquery as its lone parameter. It works very simply —if the
subquery returns a result set—any result set—EXISTS returns True; otherwise it returns False.

Though EXISTS isn't defined to require parentheses per se, it does. This is necessary to avoid confusing the
Transact-SQL query parser.

The subquery passed to EXISTS is usually a correlated subquery. By correlated, | mean that it references a
column in the outer query in its WHERE or HAVING clause—it's joined at the hip with it. Of course, this isn't
true when EXISTS is used with control-of-flow language statements such as IF and WHILE—it applies only to
SELECT statements.

As a rule, you should use SELECT * in the subqueries you pass EXISTS. This allows the optimizer to select
the column to use and should generally perform better.

Here's an example of a simple EXISTS predicate:

SELECT title
FROM titles t
WHERE EXISTS (SELECT * FROM sales s WHERE s.title id=t.title id)

(Results abridged)

But Is It User Friendly?

Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

This query returns all titles for which sales exist in the sales table. Of course, this could also be written as an
inner join, but more on that later.
Prefixing EXISTS with NOT negates the expression. Here's an example:

SELECT title
FROM titles t
WHERE NOT EXISTS (SELECT * FROM sales s WHERE s.t

t
-
t
—
‘('D
-
i
-+
-+
-
t
—
‘('D
-
0.

Net Etiquette

117

Guru’s Guide to Transact-SQL

This makes sense because there are no rows in the sales table for the Net Etiquette title.

NULLs

NULLs affect EXISTS in some interesting ways. Let's explore what happens when we introduce a NULL into
the sales table:

* FROM
ROM sales —-- Not actually needed-for illustration only

SELECT NULL, NULL, NULL, 90, NULL, NULL)

WHERE s.title id=t.title id AND s.gty>>75)

The query uses a UNION to introduce a row consisting mostly of NULL values into the sales table on the fly.
Every field except gty is set to NULL. Even though the underlying columns in the sales table don't allow
NULLSs, the subquery references the result of the sales-NULL values union (ensconced in a derived table),
not the table itself. Using UNION to add a "virtual" row in this manner saves us from having to modify sales in
order to explore the effects of NULLs on EXISTS.

Even though we've introduced a row containing a qty with a value greater than 75, the result set is empty
because that row's NULL title_id doesn't correlate with any in the titles table. Because the value of title_id
isn't known in the NULL row, you might think that it would correlate with every row in titles, but that's not the
case. Even if titles contained a NULL title_id, the two still wouldn't correlate since one NULL never equals
another (this can be changed with the SET ANSI NULLS command—see Chapter3, "Missing Values," for
details). This may seem a bit odd or counterintuitive, but it's the way SQL was intended to work.

Negating the EXISTS expression produces some odd effects as well. Here's an example:

SELECT title

XISTS (SELECT * FROM (SELECT * FROM sales
UNION ALL
SELECT NULL, NULL, NULL, NULL, NULL, NULL) s
s.title id=t.title id)

Since the server can't know whether the title_id for Net Etiquette matches the NULL introduced by the union,
you might think that no result would be returned. With NULLSs in the mix, we can't positively know that Net
Etiquette's title_id doesn't exist; nevertheless, the query returns Net Etiquette anyway. The apparent
discrepancy here comes about because of the way in which the expression is evaluated. First, SQL Server
determines whether the value exists, then negates the expression with NOT. We are evaluating the negation
of a positive predicate, not a negative predicate. The expression is NOT EXISTS (note the space between the
keywords), not NOTEXISTS(). So, when the query gets to the title_id for Net Etiquette, it begins by
determining whether it can establish for certain that the title_id exists in the UNIONed table. It can't, of course,
because the ID isn't there. Therefore, the EXISTS check returns False, which satisfies the NOT negation, so
the row is included in the result set, even though the fact that it does not exist in the subquery table has not
been nor can be established.

EXISTS and IN

Converting an IN predicate to EXISTS has a few peculiarities of its own. For example, the first EXISTS query
could be rewritten to use IN like this:

118

Chapter 6. The Mighty SELECT Statement

SELECT title
FROM titles t
WHERE t.title id IN (SELECT title id FROM sales)

(Results abridged)

But Is It User Friendly?

Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

And here's the inverse:

SELECT title
FROM titles t
WHERE t.title id NOT IN (SELECT title id FROM sales)

Net Etiquette

But look at what happens when NULLs figure into the equation:

SELECT title
FROM titles t
WHERE t.title id NOT IN (SELECT title id FROM sales UNION SELECT NULL)

The IN predicate provides a shorthand method of comparing a scalar value with a series of values. In this
case, the subquery provides the series. Per ANSI/ISO SQL guidelines, an expression that compares a value
for equality to NULL always returns NULL, so the Net Etiquette row fails the test. The other rows fail the test
because they can be positively identified as being in the list and are therefore excluded by the NOT.

This behavior is different from the NOT EXISTS behavior we observed earlier and is the chief reason that
converting between EXISTS and IN can be tricky when NULLs are involved.

Note that Transact-SQL's SET ANSI_NULLS command can be used to alter this behavior. When
ANSI_NULLS behavior is disabled, equality comparisons to NULL are allowed, and NULL values equal one
another. Since IN is shorthand for an equality comparison, it's directly affected by this setting. Here's an
example:

SET ANSI NULLS OFF

SELECT title

FROM titles t

WHERE t.title id NOT IN (SELECT title id FROM sales UNION SELECT NULL)
GO

SET ANSI NULLS ON -- Be sure to re-enable ANSI NULLS

Net Etiquette

119

Guru’s Guide to Transact-SQL

Now that Net Etiquette's title_id can be safely compared to the NULL produced by the UNION, the IN
predicate can ascertain whether it exists in the list. Since it doesn't, Net Etiquette makes it into the result set.

Joins

As | said earlier, many correlated subqueries used with EXISTS can be restated as simple inner joins. Not
only are these joins easier to read, they will also tend to be faster. Furthermore, using a join instead of
EXISTS allows the query to reference fields from both tables. Here's the earlier EXISTS query flattened into a
join:

SELECT DISTINCT title
FROM titles t JOIN sales s ON (t.title id = s.title id)

(Results abridged)

But Is It User Friendly?
Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

A\

Emotional Security: A New Algorithm

We're forced to use DISTINCT here because there's a one-to-many relationship between titles and sales.
Result Set Emptiness

Another common use of EXISTS is to check a result set for rows. The optimizer knows that finding even a
single row satisfies the expression, so this is often quite fast. Here's an example:

IF EXISTS (SELECT * FROM myworktable) DELETE myworktable

Since the query isn't qualified by a WHERE or HAVING clause, we're effectively checking the table for rows.
This is much quicker than something like IF (SELECT COUNT(*) FROM myworktable)>0 and provides a
speedy means of determining whether a table is empty without having to inspect system objects.

EXISTS Outside WHERE and HAVING

EXISTS, like all predicates, can do more than just restrict the rows returned by a query. EXISTS can also be
used in the SELECT list within CASE expressions and in the FROM clause via derived table definitions.
Here's an example:

SELECT CASE WHEN EXISTS (SELECT * FROM titleauthor where apiid:a.apiid) THEN
'True' ELSE 'False' END

FROM authors a

120

Chapter 6. The Mighty SELECT Statement

True
True
True
False
True
True
True
True
False
True
False
True
True

Since predicates don't return values that you can use directly, your options here are more limited than they
should be. That is, you can't simply SELECT the result of a predicate—it must be accessed instead via an
expression or function that can handle logical values—i.e., CASE. CASE translates the logical value returned
by the predicate into something the query can return.

IN

As mentioned earlier, the IN predicate provides a shorthand method of comparing a value to each member of
a list. You can think of it as a series of equality comparisons between the left-side value and each of the
values in the list, joined by OR. Though ANSI SQL-92 allows row values to be used with IN, Transact-SQL
does not—you can specify scalar values only. The series of values searched by IN can be specified as a
comma-delimited list or returned by a subquery. Here are a couple of simple examples that use IN:

SELECT title
FROM titles WHERE title id IN (SELECT title id FROM sales)

(Results abridged.)

But Is It User Friendly?

Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

SELECT title
FROM titles WHERE LLLLeiLd NOT IN (SELECT LLLleiid FROM sales)
title

Net Etiquette

Note that the individual values specified aren't limited to constants—you can use expressions and subqueries,
too. Here's an example:

SELECT titleFROM titles WHERE title id IN ((SELECT title id FROM sales WHERE
qgty>=75),
(SELECT title id FROM sales WHERE gty=5),
'PC'"+REPLICATE ('8"',4))

Is Anger the Enemy?
Secrets of Silicon Valley
The Busy Executive's Database Guide

121

Guru’s Guide to Transact-SQL

Optimizing IN

Though it's natural to order the terms in the value list alphabetically or numerically, it's preferable to order
them instead based on frequency of occurrence since the predicate will return as soon as a single match is
found. One way to do this with a subquery is to sort the subquery result set with ORDER BY. Here's an
example:

SELECT title
FROM titles WHERE title id IN (SELECT title id FROM
(SELECT TOP 999999 title id, COUNT (*) AS NumOccur FROM sales GROUP BY

title id ORDER BY NumOccur DESC) s)

(Results abridged)

Is Anger the Enemy?

The Busy Executive's Database Guide

The Gourmet Microv
Cooking with Computers: Surreptitious Balance Sheets

This query uses a derived table in order to sort the sales table before handing it to the subquery. We need a
derived table because we need two values—the title_id column and a count of the number of times it occurs,
but only the EXISTS predicate permits a subquery to return more than one column. We sort in descending
order so that title_ids with a higher degree of frequency appear first. The TOP n extension is required since
ORDER BY isn't allowed in subqueries, derived tables, or views without it.

NOTE

Note It's likely that using IN without ordering the sales table would be more efficient in this
particular example because the tables are so small. The point of the example is to show that
specifically ordering a subquery result set considered by IN is sometimes more efficient than
leaving it in its natural order. A sizable amount of data has to be considered before you overcome
the obvious overhead associated with grouping and sorting the table.

Since a SELECT without an ORDER BY isn't guaranteed to produce rows in a particular order, a valid point
that we can't trust the order of the rows in the subquery could be made. The fact that the derived table is
ordered doesn't mean the subquery will be. In practice, it appears that this works as we want. To verify it, we
can extract the subquery and run it separately from the main query, like so:

SELECT titleiid
ROM (SELECT TOP 999999 titloiid, COUNT (*) AS NumOccur
FROM sales GROUP BY title id ORDER BY NumOccur DESC) s

(Results abridged)

122

Chapter 6. The Mighty SELECT Statement

BU1032
MC3021
BU1111
BU2075

BU7832

RPN W

Though highly unlikely, it's still possible that the query optimizer could choose a different sort order for the
subquery than the one returned by the derived table, but this is the best we can do.

ANY and ALL

The ANY and ALL predicates work exclusively with subqueries. ANY (and its synonym SOME) works similarly
to IN. Here's a query expressed first using IN, then using ANY:

SELECT title
FROM titles WHERE title id IN (SELECT title id FROM sales)

But Is It User Friendly?

Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

SELECT title
FROM titles WHERE title id=ANY (SELECT title id FROM sales)

(Results abridged)

But Is It User Friendly?

Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

Since IN and =ANY are functionally equivalent, you might tend to think that NOT IN and <>ANY are equivalent
as well, but that's not the case. Instead, <>ALL is the equivalent of NOT IN. If you think about it, this makes
perfect sense. <>ANY will always return True as long as more than one value is returned by the subquery.
When two or more distinct values are returned by the subquery, there will always be one that doesn't match
the scalar value. By contrast, <>ALL works just like NOT IN. It returns True only when the scalar value is not
equal to each and every one of the values returned by the subquery.

This brings up the interesting point that ALL is more often used with the not equal operator (<>) than with the
equal operator (=). Testing a scalar value to see whether it matches every value in a list has a very limited use.
The test will fail unless all the values are identical. If they're identical, why perform the test?

Subqueries

You've already been introduced to the subquery (or subselect) elsewhere in this book, particularly in the
sections on predicates earlier in this chapter, but it's still instructive to delve into them a bit deeper.
Subqueries are a potent tool in the Transact-SQL arsenal; they allow us to accomplish tasks that otherwise
would be very difficult if not impossible. They provide a means of basing one query on another—of nesting
queries—that can be both logical and speedy.

123

Guru’s Guide to Transact-SQL

Many joins can be restated as subqueries, though this can be difficult (or even impossible) when the subquery
is not used with IN or EXISTS or when it performs aggregation. As a rule, a join will be more efficient than a
subquery, but this is not always the case.

Subqueries aren't limited to restricting the rows in a result set. They can be used any place in a SQL
statement where an expression is valid. They can be used to provide column values, within CASE
expressions, and within derived tables. (A column whose value is derived from a subquery is called a derived
column, as we discussed earlier.) They're not limited to SELECT statements, either. Subqueries can be used
with UPDATE, INSERT, and DELETE, as well.

WHERE and Subqueries

The most common use of the subquery is in the SELECT statement's WHERE clause. Here's an example:

' SUM(gty) AS TotalSales
sales
E title id=(SELECT MAX (title id) FROM titles)
TotalSales

Here, we return the total sales for the last title_id in the titles table. Note the use of MAX function to ensure
that the subquery returns only one row. Subqueries used with the equality operators (=,<>,>= and <=) may
return one value only. An equality subquery that returns more than one value doesn't generate a syntax error,
so be careful—you won't know about it until runtime. One way to avoid returning more than one value is to use
an aggregate function, as the previous example does. Another way is to use SELECT's TOP n extension, like
SO:

yty) AS TotalSales

_1d=(SELECT TOP 1 title id FROM titles ORDER BY title id DESC)

Here, we use TOP 1 to ensure that only one row is returned by the subquery. Just to keep the result set in line
with the previous one, we sort the subquery's result set in descending order on the title_id column, then
return the first (actually the last) one.

Make sure that subqueries used in equality comparisons return no more than one row. Code that doesn't
protect against multiple subquery values is a bug waiting to happen. It can crash merely because of minor
data changes in the tables it references—not a good thing.

Correlated Subqueries

A correlated subquery is a subselect that is restricted by, and very often restricts, a table in the outer query. It
usually references this table via the table's alias as specified in the outer query.

In a sense, correlated subqueries behave like traditional looping constructs. For each row in the outer table,
the subquery is reexecuted with a new set of parameters. On the other hand, a correlated subquery is much
more efficient than the equivalent Transact-SQL looping code. It's far more efficient to iterate through a table
using a correlated subquery than with, say, a WHILE loop.

Here's an example of a basic correlated subquery:

(SELECT SUM(gty) AS TotalSales FROM sales WHERE title id=t.title id) > 30

124

Chapter 6. The Mighty SELECT Statement

Is Anger the Enemy?

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
Secrets of Silicon Valley

The Busy Executive's Database Guide

The Gourmet Microwave

You Can Combat Computer Stre !

S.

0

In this query, the subquery is executed for each row in titles. As it's executed each time, it's qualified by the
title_id column in the outer table. This means that the SUM it returns will correspond to the current title_id of
the outer query. This total, in turn, is used to limit the titles returned to those with sales in excess of 30 units.
Of course, this query could easily be restated as a join, but the point of the exercise is to show the way in
which subqueries and their hosts can be correlated.

Note that correlated subqueries need not be restricted to the WHERE clause. Here's an example showing a
correlated subquery in the SELECT list:

SELECT title,
(SELECT SUM(gty) FROM sales WHERE title id=t.title id) AS TotalSales
FROM titles t

(Results abridged)

title TotalSales
But Is It User Friendly? 30
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 20
Cooking with Computers: Surreptitious Balance Sheets 25
Emotional Security: A New Algorithm 25

In this example, the subquery is restricted by the outer query, but it does not affect which rows are returned by
the query. The outer query depends upon the subquery in the sense that it renders one of its column values
but not to the degree that it affects which rows are included in the result set.

As covered in the section on predicates, a scalar value can be compared with the result set of a subquery
using special predicate functions such as IN, EXISTS, ANY, and ALL. Here's an example:

SELECT title

FROM titles t
WHERE title id IN
FR
H

WE

(SELECT s.title id
OM sales s
ERE (t.ytd sales+ ((SELECT SUM(sl.qgty) FROM sales sl
WHERE sl.title id=t.title id)*t.price))
> 5000)

You Can Combat Computer Stress!

The Gourmet Microwave

But Is It User Friendly?

Secrets of Silicon Valley

Fifty Years in Buckingham Palace Kitchens

In this example, subqueries reference two separate fields from the outer query—ytd_sales and pric—in order
to compute the total sales to date for each title. There are two subqueries here, one nested within the other,
and both are correlated with the main query. The innermost subquery computes the total unit sales for a given
title. It's necessary because sales is likely to contain multiple rows per title since it lists individual purchases.
The outer subquery takes this total, multiplies it by the book unit price, and adds the title's year-to-date sales

125

Guru’s Guide to Transact-SQL

in order to produce a sales-to-date total for each title. Those titles with sales in excess of $5000 are then
returned by the subquery and tested by the IN predicate.

As I've said, joins are often preferable to subqueries because they tend to run more efficiently. Here's the
previous query rewritten as a join:

SELECT t.title

FROM titles t JOIN sales s ON (t.title id=s.title_ id)
GROUP BY t.title id, t.title, t.ytd sales, t.price
HAVING (t.ytd sales+ (SUM(s.gty)*t.price)) > 5000

You Can Combat Computer Stress!

The Gourmet Microwave

But Is It User Friendly?

Secrets of Silicon Valley

Fifty Years in Buckingham Palace Kitchens

Though joins are often preferable to subqueries, there are other times when a correlated subquery is the
better solution. For example, consider the case of locating duplicate values among the rows in a table. Let's
say that you have a list of Web domains and name servers and you want to locate each domain with the same
name servers as some other domain. A domain can have no more than two name servers, so your table has
three columns (ignore for the moment that these are unnormalized, repeating values). You could code this
using a correlated subquery or as a self-join, but the subquery solution is better. To understand why, let's
explore both methods. First, here's the self-join approach:

CREATE TABLE #nameservers (domain varchar (30), nsl varchar(15), ns2 varchar (15))

INSERT #nameservers VALUES
INSERT #nameservers VALUES

("foolsrus.com', '24.99.0.9','24.99.0.8")
('wewanturbuks.gov','127.0.0.2','127.0.0.3")
INSERT #nameservers VALUES ('sayhitomom.edu','127.0.0.4','24.99.0.8")
INSERT #nameservers VALUES ('knickstink.org','192.168.0.254"','192.168.0.255")
INSERT #nameservers VALUES ('nukemnut.com', '24.99.0.6','24.99.0.7")
INSERT #nameservers VALUES ('wedigdiablo.org','24.99.0.9','24.99.0.8")
INSERT #nameservers VALUES ('gospamurself.edu','192.168.0.255',"'192.168.0.254")
INSERT #nameservers VALUES ('ou8l1l2.com','100.10.0.100','100.10.0.101")
INSERT #nameservers VALUES ('rothrulz.org','100.10.0.102','24.99.0.8")

SELECT n.domain, n.nsl, n.ns2
FROM #nameservers n JOIN #nameservers a ON
(n.domain<>a.domain AND ((n.nsl=a.nsl AND n.ns2=a.ns?2) OR (n.nsl=a.ns2 AND
n.ns2=a.nsl)))
ORDER BY 2,3,1

domain nsl ns2
knickstink.org 192.168.0.254 192.168.0.255
gospamurself.edu 192.168.0.255 192.168.0.254
foolsrus.com 24.99.0.9 24.99.0.8
wedigdiablo.org 24.99.0.9 24.99.0.8

We join with a second instance of the name server table and set up the entirety of the conditions on which
we're joining in the ON clause of the JOIN. For each row in the first instance of the table, we scan the second
instance for rows where a) the domain is different and b) the pair of name servers is the same. We're careful
to look for domains where the name servers have been reversed as well as those that match exactly.

Now, here's the same query expressed using a subquery:

SELECT n.domain, n.nsl, n.ns2
FROM #nameservers n

126

Chapter 6. The Mighty SELECT Statement

WHERE EXISTS (SELECT a.nsl, a.ns2 FROM #nameservers a
lomain) AND ((a.nsl=n.nsl AND a.ns2=n.ns?2) OR (a.nsl=n.ns2

WHERE (a.domain<>n.c
AND a.ns2=n.nsl)))

ORDER BY 2,3,1

domain nsl ns2
knickstink.org 192.168.0.254 192.168.0.255
gospamurself.edu 192.168.0.255 192.168.0.254
olsrus.com 24.99.0.9 24.99.0.8
wedigdiablo.org 24.99.0.9 24.99.0.8

Why is this better than the self-join? Because the EXISTS predicate returns as soon as it finds a single match,
regardless of how many matches there may be. The performance advantage of the subquery over the self-join
will grow linearly as more duplicate name server pairs are added to the table.

As with the self-join, this approach includes rows where the name servers have been reversed. If we didn't
want to consider those rows duplicates, we could streamline the query even further, like this:

SELECT n.domain, n.nsl, n.ns2

FROM #nameservers n

EXISTS (SELECT a.nsl, a.ns2 FROM #nameservers a
((a.nsl=n.nsl AND a.ns2=n.ns?2) OR (a.nsl=n.ns2 AND

)
BY a.nsl, a.ns?2
HAVING COUNT (*)>1)

ORDER BY 2,3,1

domain 1s1 ns2
foolsrus.com 24.99.0.9 24.99.0.8
wedigdiablo.org 24.99.0.9 24.99.0.8

This query groups its results on the ns1 and ns2 columns and returns only pairs with more than one
occurrence. Every pair will have one occurrence—itself. Those with two or more are duplicates of at least one
other pair.

Relational Division

An area in which correlated subqueries are indispensable is relational division. In his seminal treatise on
relational database theory,™! Dr. E.F. Codd defined a relational algebra with eight basic operations: union,
intersection, set difference, containment, selection, projection, join, and relational division. The last of these,
relational division, is the means by which we satisfy such requests as: "Show me the students who have taken
every chemistry course" or "List the customers who have purchased at least one of every item in the catalog."
In relational division, you divide a dividend table by a divisor table to produce a quotient table. As you might
guess, the quotient is what we're after—it's the result table of the query.

1] Codd E. F. 1970. "A Relational Model of Data for Large Shared Data Banks." Communications of the ACM. New York:
Association for Computing Machinery.

This isn't as abstruse as it might seem. Suppose we want to solve the latter of the two requests put forth
above—to list the customers who have ordered at least one of every item in the sales catalog. Let's say we
begin with two tables: a table listing customer orders and a catalog table. To solve the problem, we can
relationally divide the customer orders table by the catalog table to return a quotient of those customers
who've purchased every catalog item. And, as in regular algebraic multiplication, we can multiply the divisor
table by the quotient table (using a CROSS JOIN) to produce a subset of the dividend table.

This is best explored by way of example. Below is a sample query that performs a relational divide. It makes
use of the customers, orders, and items tables first introduced in Chapter1. If you still have those tables

127

Guru’s Guide to Transact-SQL

(they should have been constructed in the GG_TS database), you'll only need to add three rows to orders
before proceeding:

INSERT orders
VALUES (105, '19991111"',3,1001,123.45)

INSERT orders
VALUES (106, '19991127"',3,1002,678.90)

INSERT orders
VALUES (107,'19990101"',1,1003,86753.09)

See Chapter 1 if you need the full table definitions and the rest of the data.
Once the tables and data are in place, the following query will relationally divide the customers and orders
tables to produce a quotient of the customers who've ordered at least one of every item.

SELECT c.LastName, c.FirstName
FROM customers c
WHERE NOT EXISTS (SELECT *
FROM items i
WHERE NOT EXISTS
(SELECT *
FROM items t JOIN orders o ON (t.ItemNumber=o.ItemNumber)
WHERE t.ItemNumber=i.ItemNumber AND
o.CustomerNumber=c.CustomerNumber))

LastName FirstName
Doe John
Citizen John

This may seem a bit obscure, but it's not as bad as it first appears. Let's examine the query, piece by piece.
These kinds of queries are usually best explored from the inside out, so let's start with the innermost subquery.
It's correlated with both the items table and the customers table. The number of times it's executed is equal
to the number of rows in the items table multiplied by the number of rows in the customers table. The items
query iterates through the items table, using the subquery to find items that a) have the same item number as
the current row in items andb) are included in orders made by the current customer in the customers table.
Any rows meeting these criteria are discarded (via NOT EXISTS). This leaves only those rows that appear in
the items table but not in the orders table. In other words, these are items that the customer has not yet
ordered. The outer query—the SELECT of the customers table—then excludes any customer whose items
subquery returns rows—that is, any customer with unordered items. The result is a quotient consisting of the
customers who've ordered at least one of everything.

If we cheat a little and compare the count of the distinct items ordered by each customer with the total number
of items, there are a number of other solutions to the problem. Here's one of them:

SELECT c.LastName, c.FirstName

FROM customers c¢ JOIN

(SELECT CustomerNumber, COUNT (DISTINCT ItemNumber) AS NumOfItems
FROM orders
GROUP BY CustomerNumber) o

ON (c.CustomerNumber=o0.CustomerNumber)

WHERE o.NumOfItems=(SELECT COUNT (*) FROM items)

LastName FirstName
Doe John
Citizen John

128

Chapter 6. The Mighty SELECT Statement

This approach joins the customers table with a derived table that returns each customer number and the
number of distinct items ordered. This number is then compared via a subquery on the items table with the
total number of items on file. Those customers with the same number of ordered items as exists in the items
table are included in the list.

Here's another rendition of the same query:

SELECT c.LastName, c.FirstName
FROM customers c
WHERE CustomerNumber IN (SELECT CustomerNumber FROM orders
GROUP BY CustomerNumber
HAVING COUNT (DISTINCT ItemNumber)=
(SELECT COUNT (*) FROM items))

LastName FirstName
Doe John
Citizen John

This one uses a subquery to form a list of customers whose total number of distinct ordered items is equal to
the number of items in the items table—those that have ordered at least one of every item. It makes clever
use of GROUP BY to coalesce the customer numbers in orders to remove duplicates and enable the use of
the COUNT() aggregate in the HAVING clause. Note that even though the subquery uses GROUP BY, it
doesn't compute any aggregate values. This is legal, both from an ANSI standpoint and, obviously, from a
Transact-SQL perspective. The primary purpose of the GROUP BY is to allow the use of the COUNT()
aggregate to filter the rows returned by the subquery. HAVING permits direct references to aggregate
functions; WHERE doesn't.

Here's an approach that uses a simple join to get the job done:

SELECT c.LastName, c.FirstName

FROM customers c¢ JOIN orders o ON (c.CustomerNumber=o.CustomerNumber)
JOIN items 1 ON (o.ItemNumber=i.ItemNumber)

GROUP BY c.LastName, c.FirstName

HAVING COUNT (DISTINCT o.ItemNumber)=(SELECT COUNT (*) FROM items)

LastName FirstName
Citizen John
Doe John

This approach joins the customers and orders tables using their CustomerNumber columns, then pares the
result set down to just those customers for whom the total number of distinct ordered items equals the number
of rows in the items table. Again, this amounts to returning the customers who've ordered at least one of every
item in the items table.

Aggregate Functions

Aggregate functions summarize the data in a column into a single value. They can summarize all the data for
a column or they can reflect a grouped total for that data. Aggregates that summarize based on grouping
columns are known as vector aggregates.

SQL Server currently supports eight aggregate functions: COUNT(), SUM(), MIN(), MAX(), STDDEV()
(standard deviation), STDDEVP() (population standard deviation), VAR() (variance), and VARP() (population
variance). All of these except COUNT() automatically ignore NULL values. When passed a specific column
name, COUNT() ignores NULLs as well. Here's an example:

CREATE TABLE #testnull (cl int null)

INSERT #testnull DEFAULT VALUES
INSERT #testnull DEFAULT VALUES

129

Guru’s Guide to Transact-SQL

Warning: Null value eliminated from aggregate.

Each aggregate function can be passed two parameters: either the ALL or DISTINCT keyword specifying
whether all values or only unique ones are to be considered (this parameter is optional and defaults to ALL)
and the name of the column to aggregate. Here are some examples:

SELECT COUNT (DISTINCT titleiid) AS TotalTitles
FROM sales
TotalTitles

SELECT stor id, title id, SUM(gty) AS TotalSold
FROM sales

GROUP BY stor id, title id

ORDER BY stor id, title id

(Results abridged)

stor id title id TotalSold

6380 BU1032 5

6380 PS2091 86
7066 PC8888 50
7066 PS2091 75
7067 PS2091 10

In the first example, the DISTINCT keyword is included in order to yield a count of the unique title_ids within
the table. Since the rows in the sales table are representative of individual sales, duplicate title_id values will
definitely exist. Including the DISTINCT keyword ignores them for the purpose of counting the values in the
column. Note that DISTINCT aggregates aren't available when using the CUBE or ROLLUP operators.

The second example produces a vector aggregate using the stor_id and title_id columns. In other words, the
SUM() reported in each row of the result set reflects the total for a specific stor_id/title_id combination. Since
neither ALL nor DISTINCT was specified with the aggregate, all rows within each group are considered during
the aggregation.

Thanks to subqueries, aggregate functions can appear almost anywhere in a SELECT statement and can also
be used with INSERT, UPDATE, and DELETE. Here's an example that shows aggregate functions being used
in the WHERE clause of a SELECT to restrict the rows it returns:

SELECT t.title
FROM titles t
WHERE (SELECT COUNT (s.title id) FROM sales s WHERE s.title id=t.title id)>1

Is Anger the Enemy?
The Busy Executive's Database Guide
The Gourmet Microwave

An aggregate can be referenced in the SELECT list of a query either directly via a column reference (as the
earlier examples have shown) or indirectly via a subquery. Here's an example of both types of references:

130

Chapter 6. The Mighty SELECT Statement

itles sold,

SELECT stor id, COUNT(DISTINCT title id) AS t
) / (SELECT COUNT (*) FROM titles) AS

100*CAST (COUNT (DISTINCT ;i;leiid) AS float
-

percent of total

FROM sales

GROUP BY stor id

stor id titles sold Totalsold

6380 2 11.111111111111111
7066 2 11.111111111111111
7067 4 22.222222222222221
7131 6 33.333333333333336
7896 3 16.666666666666668
8042 5 27.777777777777779

Here, COUNT(DISTINCT title_id) is a direct reference, while SELECT COUNT(*) is an indirect one. As with
several of the other examples, the first aggregate returns a count of the number of unique titles referenced in
the sales table. The second aggregate is embedded in a noncorrelated subquery. It returns the total number
of titles in the titles table so that the query can compute the percentage of the total available titles that each
store sells. Naturally, it would be more efficient to store this total in a local variable and reference the variable
instead—I've used the subquery here for illustration only.

Aggregates can also appear in the HAVING clause of a query. When a query has a HAVING clause, it's quite
common for it to contain aggregates. Here's an example:

SELECT stor id, COUNT (DISTINCT title id) AS titles sold,

100*CAST (COUNT (DISTINCT title id) AS float) / (SELECT COUNT (*) FROM titles) AS
L

percent of total

FROM sales

GROUP BY stor id

HAVING COUNT (DISTINCT title id) > 2

stor id titles sold Totalsold

7067 4 22.222222222222221
7131 6 33.333333333333336
896 3 16.666666666666668
3042 5 2777777777777 7779

This is just a rehash of the previous query, with a HAVING clause appended to it. HAVING filters the result set
in the same way that WHERE filters the SELECT itself. It's common to reference an aggregate value in the
HAVING clause since that value was not yet computed or available when WHERE was processed.

GROUP BY and HAVING

Closely related to the aggregate functions are the GROUP BY and HAVING clauses. GROUP BY divides a
table into groups, and each group can have its own aggregate values. As | said earlier, HAVING limits the
groups returned by GROUPBY.

With the exception of bit, text, ntext, and image columns, any column can participate in the GROUP BY clause.
To create groups within groups, simply list more than one column. Here's a simple GROUP BY example:

S TotalSold
t.title id)

I v

SELECT st.stor name, t.type, SUM(s.qgty) A
FROM sales s JOIN titles t ON (s.title id
JOIN stores st ON (s.stor id=st.stor id)
GROUP BY st.stor name, t.type

ORDER BY st.stor name, t.type

131

Guru’s Guide to Transact-SQL

stor name type TotalSold
Barnum's popular comp 50
Barnum's psychology 75
Bookbeat business 65
Bookbeat mod_cook 15
Bookbeat popular comp 30
Bookbeat UNDECIDED 30
Doc-U-Mat: Quality Laundry and Books mod_cook 25
Doc-U-Mat: Quality Laundry and Books psychology 105
Eric the Read Books business 5
Eric the Read Books psychology 86
Fricative Bookshop business 50
Fricative Bookshop mod_cook 10
News & Brews psychology 10

News & Brews trad cook 80

GROUP BY ALL generates all possible groups—even those that do not meet the query's search criteria.
Aggregate values in groups that fail the search criteria are returned as NULL. Here's an example:

SELECT st.stor name, t.type, SUM(s.gty) AS TotalSold
FROM sales s JOIN titles t ON (s.title id=t.title id)
JOIN stores st ON (s.stor id=st.stor_ id)

WHERE t.type='business'

GROUP BY ALL st.stor name, t.type

ORDER BY st.stor name, t.type

stor name type TotalSold
Barnum's popular comp NULL
Barnum's psychology NULL
Bookbeat business 65
Bookbeat mod_cook NULL
Bookbeat popular comp NULL
Bookbeat UNDECIDED NULL
Doc-U-Mat: Quality Laundry and Books mod cook NULL
Doc-U-Mat: Quality Laundry and Books psychology NULL
Eric the Read Books business 5
Eric the Read Books psychology NULL
Fricative Bookshop business 50
Fricative Bookshop mod cook NULL
News & Brews psychology NULL
News & Brews trad cook NULL

GROUP BY ALL is incompatible with the ROLLUP and CUBE operators and with remote tables. It's also
overridden by HAVING, as you might expect, in the same sense that a plain GROUP BY is overridden by it—
HAVING filters what GROUP BY returns.

Notice the ORDER BY clause in the previous example. You can no longer assume that the groups returned
by GROUP BY will be sorted in a particular order. This behavior differs from that of SQL Server6.5 and earlier,
so it's something to watch out for. If you require a specific order, use ORDER BY to ensureit.

Though normally used in conjunction with aggregates, GROUP BY and HAVING don't require them. Using
GROUP BY without aggregates has the effect of removing duplicates from the data. It has the same effect as
prefixing the grouping columns with DISTINCT in the SELECT list, and, in fact, SQL Server treats GROUP BY
queries without aggregates and plain SELECTs with DISTINCT identically. This means that the same
execution plan will be generated for these two queries:

SELECT s.title id

FROM sales s
GROUP BY S.titleiid

132

Chapter 6. The Mighty SELECT Statement

SELECT DISTINCT S.Litleiid
FROM sales s

(To view execution plans in Query Analyzer, press Ctrl-K or select Show Execution Plan from the Query menu
before running your query.)

As we discovered in the earlier section on relational division, GROUP BY clauses without aggregate functions
have a purpose beyond simulating SELECT DISTINCT queries. Including a GROUP BY clause, even one
without aggregates, allows a result set to be filtered based on a direct reference to an aggregate. Unlike the
WHERE clause, the HAVING clause can reference an aggregate without encapsulating it in a subquery. One
of the relational division examples above uses this fact to qualify the rows returned by a subquery using an
aggregate in its HAVING clause.

Pivot Tables

It's pretty common to need to reshape vertically oriented data into horizontally oriented tables suitable for
reports and user interfaces. These tables are known as pivot tables or cross-tabulations (cross-tabs) and are
an essential feature of any OLAP (Online Analytical Processing), EIS (Executive Information System), or DSS
(Decision Support System) application.

SQL Server includes a bevy of OLAP support tools that are outside the scope of this book. Install the OLAP
Services from your SQL Server CD, and view the product documentation for more information.

That said, the task of reshaping vertical data is well within the scope of this book and is fairly straightforward
in Transact-SQL. Let's assume we start with this table of quarterly sales figures:

CREATE TABLE #crosstab (yr int, gtr int, sales money)

INSERT #crosstab VALUES (1999, 1, 44)
INSERT #crosstab VALUES (1999, 2, 50)
INSERT #crosstab VALUES (1999, 3, 52)
INSERT #crosstab VALUES (1999, 4, 49)
INSERT #crosstab VALUES (2000, 1, 50)
INSERT #crosstab VALUES (2000, 2, 51)
INSERT #crosstab VALUES (2000, 3, 48)
INSERT #crosstab VALUES (2000, 4, 45)
INSERT #crosstab VALUES (2001, 1, 406)
INSERT #crosstab VALUES (2001, 2, 53)
INSERT #crosstab VALUES (2001, 3, 54)
INSERT #crosstab VALUES (2001, 4, 47)

And let's say that we want to produce a cross-tab consisting of six columns: the year, a column for each
quarter, and the total sales for the year. Here's a query to do the job:

SELECT

yr AS 'Year',

SUM (CASE gtr WHEN 1 THEN sales ELSE NULL END) AS QI1,

SUM (CASE gtr WHEN 2 THEN sales ELSE NULL END) AS Q2,

SUM (CAS gtr WHEN 3 THEN sales ELSE NULL END) AS Q3,

SUM (CASE gtr WHEN 4 THEN sales ELSE NULL END) AS 04,

SUM (sales) AS Total

FROM #crosstab

GROUP BY yr

Year 01 02 03 Q4 Total
1999 44,0000 50.0000 52.0000 49.0000 195.0000
2000 50.0000 51.0000 48.0000 45.0000 194.0000
2001 46.0000 53.0000 54.0000 47.0000 200.0000

133

Guru’s Guide to Transact-SQL

Note that it isn't necessary to total the Qn columns to produce the annual total. The query is already grouping
on the yrcolumn; all it has to do to summarize the annual sales is include a simple aggregate. There's no need
for a subquery, derived table, or any other exotic construct, unless, of course, there are sales records that fall
outside quarters 1—4, which shouldn't be possible.

The gtr column in the sample data made constructing the query fairly easy—almost too easy. In practice, it's
pretty rare for time series data to include a quarter column—it's far more common to start with a date for each
series member and compute the required temporal dimensions. Here's an example that uses the Orders table
in the Northwind database to do just that. It translates the OrderDate column for each order into the
appropriate temporal boundary:

SELECT
DATEPART (yy,OrderDate) AS 'Year'

C“TNT(‘XSZ DATEPART (gqqgq, OrderDate THEN 1 ELSE NULL END) AS 01,
“OUNT (CASE DATEPART (gg,OrderDate THEN 1 ELSE NULL END) AS 0Q2,

C”bhl(CAC_ DATEPART (gg, OrderDate THEN 1 ELSE NULL END) AS Q3,

COUNT (CASE DATEPART (gq,OrderDate THEN 1 ELSE NULL END) AS 04,

COUNT (*) AS TotalNumberOfSales

FROM Orders

GROUP BY DATEPART (yy,OrderDate)

ORDER BY 1

Year 01 Q2 [0 04 TotalNumberOfSales

1996 0 0 / 82 152

1997 92 93 103 120 408

1998 182 88 0 0 27

This query returns a count of the orders for each quarter as well as for each year. It uses the DATEPART()
function to extract each date element as necessary. As the query iterates through the Orders table, the CASE
functions evaluate each OrderDate to determine the quarter "bucket" into which it should go, then return either
"1"—the order is counted against that particular quarter—or NULL—the order is ignored.

CUBE and ROLLUP

The GROUP BY clause's CUBE and ROLLUP operators add summary rows to result sets. CUBE produces a
multidimensional cube whose dimensions are defined by the columns specified in the GROUP BY clause.
This cube is an explosion of the underlying table data and is presented using every possible combination of
dimensions.

ROLLUP, by contrast, presents a hierarchical summation of the underlying data. Summary rows are added to
the result set based on the hierarchy of grouped columns, from left to right.

Here's an example that uses the ROLLUP operator to generate subtotal and total rows:

SELECT CASE GROUPING (st.stor name) WHEN O THEN st.stor name ELSE 'ALL' END AS
Store,

CASE GROUPING (t.type) WHEN O THEN t.type ELSE 'ALL TYPES' END AS Type,
SUM(s.gty) AS TotalSold

FROM sales s JOIN titles t ON (s.title id=t.title id)

JOIN stores st ON (s.stor id=st.stor id)

GROUP BY st.stor name, t.type WITH ROLLUP

Store Type TotalSold
Barnum's popular comp 50

Barnum's psychology 75

Barnum's ALL TYPES 125

Bookbeat business 65

Bookbeat mod cook 15

Bookbeat popular comp 30

134

Chapter 6. The Mighty SELECT Statement

Bookbeat UNDECIDED 30
Bookbeat ALL TYPES 140
Doc-U-Mat: Quality Laundry and Books mod_cook 25
Doc-U-Mat: Quality Laundry and Books psychology 105
Doc-U-Mat: Quality Laundry and Books ALL TYPES 130
Eric the Read Books business 5
Eric the Read Books psychology 86
Eric the Read Books ALL TYPES 91
Fricative Bookshop business 50
Fricative Bookshop mod_cook 10
Fricative Bookshop ALL TYPES 60
News & Brews psychology 10

News & Brews trad cook 80

News & Brews ALL TYPES 90

ALL ALL TYPES 636

This query has several noteworthy features. First, note the extra rows that ROLLUP inserted into the result set.
Since the query groups on the stor_name and type columns, ROLLUP produces summary rows first for each
stor_name group (ALL TYPES), then for the entire result set.

The GROUPING() function is used to translate the label assigned to each grouping column. Normally,
grouping columns are returned as NULLs. By making use of GROUPING(), the query is able to translate

those NULLs to something more meaningful.

Here's that same query again, this time using CUBE:

SELECT CASE GROUPING (st.stor name) WHEN O THEN st.stor name ELSE 'ALL' END AS
Store,

CASE GROUPING (t.type) WHEN O THEN t.type ELSE 'ALL TYPES' END AS Type,
SUM(s.qty) AS TotalSold

FROM sales s JOIN titles t ON (s.title id=t.title id)

JOIN stores st ON (s.stor id=st.stor id)

GROUP BY st.stor name, t.type WITH CUBE

Store Type TotalSold
Barnum's popular comp 50
Barnum's psychology 75
Barnum's ALL TYPES 125
Bookbeat business 65
Bookbeat mod cook 15
Bookbeat popular comp 30
Bookbeat UNDECIDED 30
Bookbeat ALL TYPES 140
Doc-U-Mat: Quality Laundry and Books mod_cook 25
Doc-U-Mat: Quality Laundry and Books psychology 105
Doc-U-Mat: Quality Laundry and Books ALL TYPES 130
Eric the Read Books business 5
Eric the Read Books psychology 86
Eric the Read Books ALL TYPES 91
Fricative Bookshop business 50
Fricative Bookshop mod cook 10
Fricative Bookshop ALL TYPES 60
News & Brews psychology 10

News & Brews trad cook 80

News & Brews ALL TYPES 90

ALL ALL TYPES 636
ALL business 120
ALL mod_cook 50
ALL popular comp 80
ALL psychology 276
ALL trad cook 80

135

Guru’s Guide to Transact-SQL

ALL UNDECIDED 30

Note the additional rows at the end of the result set. In addition to the summary rows generated by ROLLUP,
CUBE creates subtotals for each type of book as well.

Without detailed knowledge of your data, it's nearly impossible to know how many rows will be returned by
CUBE. However, computing the upper limit of the number of possible rows is trivial. It's the cross product of
the number of unique values 11 for each grouping column. The "+1" is for the ALL summary record generated
for each attribute. In this case, there are six distinct stores and six distinct book types in the sales table. This
means that a maximum of forty-nine rows will be returned in the CUBEd result set (6+1*6+1). Here, there are
fewer than forty-nine rows because not every store has sold every type of book.

On a related note, you'll notice that CUBE doesn't generate zero subtotals for book types that a particular
store hasn't sold. It might be useful to have these totals so that we can see what the store is and isn't selling.
Having the full cube creates a result set that is dimensioned more uniformly, making it easier to create reports
and charts over it. Here's a full-cube version of the last query:

SELECT
CASE GROUPING (st.stor name) WHEN O THEN st.stor name ELSE 'ALL' END AS Store,
CASE GROUPING (s.type) WHEN O THEN s.type ELSE 'ALL TYPES' END AS Type,
SUM (s.qgty) AS TotalSold
FROM
(SELECT DISTINCT st.stor id, t.type, 0 AS gty
FROM stores st CROSS JOIN titles t
UNION ALL
SELECT s.stor id, t.type, s.qty FROM sales s JOIN titles t
ON s.title id=t.title id) s
JOIN stores st ON (s.stor id=st.stor id)
GROUP BY st.stor name, s.type WITH CUBE

Store Type TotalSold
Barnum's business 0
Barnum's mod_cook 0
Barnum's popular comp 50
Barnum's psychology 75
Barnum's trad cook 0
Barnum's UNDECIDED 0
Barnum's ALL TYPES 125
Bookbeat business 65
Bookbeat mod_cook 15
Bookbeat popular comp 30
Bookbeat psychology 0
Bookbeat trad cook 0
Bookbeat UNDECIDED 30
Bookbeat ALL TYPES 140
Doc-U-Mat: Quality Laundry and Books business 0
Doc-U-Mat: Quality Laundry and Books mod cook 25
Doc-U-Mat: Quality Laundry and Books popular comp 0
Doc-U-Mat: Quality Laundry and Books psychology 105
Doc-U-Mat: Quality Laundry and Books trad cook 0
Doc-U-Mat: Quality Laundry and Books UNDECIDED 0
Doc-U-Mat: Quality Laundry and Books ALL TYPES 130
Eric the Read Books business 5
Eric the Read Books mod_cook 0
Eric the Read Books popular comp 0
Eric the Read Books psychology 86
Eric the Read Books trad cook 0
Eric the Read Books UNDECIDED 0
Eric the Read Books ALL TYPES 91
Fricative Bookshop business 50
Fricative Bookshop mod_cook 10

136

Chapter 6.

Fricativ

The Mighty SELECT Statement

e Bookshop popular comp O
Fricative Bookshop psychology 0
Fricative Bookshop trad cook 0
Fricative Bookshop UNDECIDED 0
Fricative Bookshop ALL TYPES 60
News & B business 0
Nev & B mod cook 0
Nev & Brews pular comp O
News & Brews psychology 10
N & Brews trad cook 80
News & Brews UNDECIDED 0
News & Brews ALL TYPES 90
ALL ALL TYPES 636
ALL business 120
ALL mod cook 50
ALL popular comp 80
ALL psychology 276
ALL trad cook 80
ALL UNDECIDED 30

This query begins by creating a zero-value table of stores and book types by multiplying the stores in the
stores table by the book types in the titles table using a CROSS JOIN. It then UNIONSs this set with the sales
table to produce a composite that includes the sales records for each store, as well as a zero value for each
store—book type combo. This is then fed into the outer grouping query as a derived table. The outer query
then groups and summarizes as necessary to produce the result set. Note that there are forty-nine rows in the
final result set—exactly the number we predicted earlier.

There are a few caveats and limitations related to CUBE and ROLLUP of which you should be aware:

o Both operators are limited to ten dimensions.

e Both preclude the generation of DISTINCT aggregates.
CUBE can produce huge result sets. These can take a long time to generate and can cause problems
with application programs not designed to handle them.

HAVING

As | said earlier, HAVING restricts the rows returned by GROUP BY similarly to the way that WHERE restricts
those returned by SELECT. It is processed after the rows are collected from the underlying table(s) and is
therefore less efficient for garden-variety row selection than WHERE. In fact, behind the scenes, SQL Server
implicitly converts a HAVING that would be more efficiently stated as a WHERE automatically. This means
that the execution plans generated for the following queries are identical:

SELECT title id

FROM titles

WHERE type='business'
GROUP BY title id, type
SELECT title id

FROM titles

GROUP BY title id, type
HAVING type='business'

In the second query, HAVING doesn't do anything that WHERE couldn't do, so SQL Server converts it to a
WHERE during query execution so that the number of rows processed by GROUP BY is as small as possible.

UNION

137

Guru’s Guide to Transact-SQL

The UNION operator allows you to combine the results of two queries into a single result set. We've used
UNION throughout this chapter to combine the results of various queries. UNIONs aren't complicated, but
there are a few simple rules you should keep in mind when using them:

e Each query listed as a UNION term must have the same number of columns and must list them in the
same order as the other queries.

e The columns returned by each SELECT must be assignment compatible or be explicitly converted to
a data type that's assignment compatible with their corresponding columns in the other SELECTs.

e Combining columns that are assignment compatible but of different types produces a column with the
higher type precedence of the two (e.g., combining a smallint and a float results in a float result
column).

e The column names returned by the UNION are derived from those of the first SELECT.

e UNION ALL is faster than UNION because it doesn't remove duplicates before returning. Removing
duplicates may force the server to sort the data, an expensive proposition, especially with large tables.
If you aren't concerned about duplicates, use UNION ALL instead of UNION.

Here's an example of a simple UNION:

SELECT title id, type
FROM titles

WHERE type='business'
UNION ALL

SELECT title id, type
FROM titles

WHERE type='mod cook'

title id type

BU1032 business
BU1111 business
BU2075 business
BU7832 business
MC2222 mod_cook
MC3021 mod_cook

This query UNIONs two separate segments of the titles table based on the type field. Since the query used
UNION ALL, no sorting of the elements occurs.

As illustrated earlier in the chapter, one of the niftier features of UNION is the ability to use derived tables to
create a virtual table on the fly during a query. This is handy for creating lookup tables and other types of
tabular constructs that don't merit permanent storage. Here's an example:

SELECT title id AS Title ID, t.type AS Type, b.typecode AS TypeCode
FROM titles t JOI

(SELECT 'business
UNION ALL

SELECT 'mod cook' AS type, 1 AS typecode
UNION ALL

SELECT 'popular comp' AS type, 2 AS typecode
UNION ALL

SELECT 'psychology' AS type, 3 AS typecode
UNION ALL

SELECT 'trad cook' AS type, 4 AS typecode
UNION ALL

SELECT 'UNDECIDED' A
O (t.type = b.type)
ORDER BY TypeCode, T

Title ID Type TypeCode

138

Chapter 6. The Mighty SELECT Statement

BU1032 business 0
BU1111 business 0
BU2075 business 0
BU7832 business 0
MC2222 mod cook 1
MC3021 mod cook 1
PC1035 popular comp 2
PC8888 popular comp 2
PC9999 popular comp 2
PS1372 psychology 3
PS2091 psychology 3
PS2106 psychology 3
PS3333 psychology 3
PS7777 psychology 3
TC3218 trad cook 4
TC4203 trad cook 4
TCT7777 trad cook 4
MC3026 UNDECIDED 5

The query uses Transact-SQL's ability to produce a result set without referencing a database object to
construct a virtual table from a series of UNIONed SELECT statements. In this case, we use it to translate the
type field in the titles table into a code. Of course, a CASE statement would be much more efficient here—
we've taken the virtual table approach for purposes of illustration only.

ORDER BY

The ORDER BY clause is used to sort the data in a result set. When possible, the query optimizer will use an
index to service the sort request. When this is impossible or deemed suboptimal by the optimizer, a work table
is constructed to perform the sort. With large tables, this can take a while and can run tempdb out of space if
it's not sized sufficiently large. This is why you shouldn't order result sets unless you actually need a specific
row order—doing so wastes server resources. On the other hand, if you need a fixed sort order, be sure to
include an ORDER BY clause. You can no longer rely on clauses such as GROUP BY and UNION to produce
useful row ordering. This represents a departure from previous releases of SQL Server (6.5 and earlier), so
watch out for it. Queries that rely on a specific row ordering without using ORDER BY may not work as
expected.

Columns can be referenced in an ORDER BY clause in one of three ways: by name, by column alias, or by
result set column number. Here's an example:

SELECT stor id AS s re,
ORDER BY stor id, 2, sales

o O)Y O
O W W

PS2091 3
380 PS2091 3
6380 PS2091 5
7066 PS2091 75
7067 PS2091 10
7067 TC3218 40

=
N

/7131 MC302 5
713 PS1372 20
7131 PS2091 20
7131 PS2106 25
7131 PS3333 15
/1131 PS7777 25

139

Guru’s Guide to Transact-SQL

7896 BU2075 35
7896 BU7832 15
7896 MC2222 10
8042 BU1032 10
8042 BU1032 30
8042 BU1111l 25
8042 MC3021 15
8042 MC3026 30
8042 PC1035 30

This query orders the result set using all three methods, which is probably not a good idea within a single
query. As with a lot of multiflavored coding techniques, there's nothing wrong with it syntactically, but doing
something three different ways when one will do, needlessly obfuscates your code. Remember the law of
parsimony (a.k.a. Ockham's razor)—one should neither assume nor promote the existence of more elements
than are logically necessary to solve a problem.

This doesn't mean that you might not use each of these techniques at different times. The ability to reference
result set columns by number is a nice shorthand way of doing so. (That said, ordering by column numbers
has been deprecated in recent years, so it's advisable to name your columns and sort using column aliases
instead.) Being able to use column aliases alleviates the need to repeat complex expressions in the ORDER
BY clause, and referencing table columns directly allows you to order by items not in the SELECT list.

You can also include subqueries and constants in the ORDER BY clause, though this is pretty rare.
Subqueries contained in the ORDER BY clause can be correlated or stand-alone.

Each column in the ORDER BY list can be optionally followed by the DESC or ASC keyword in order to sort in
descending or ascending (the default) order. Here's an example:

SELECT st.stor name AS Store, t.type AS Type, SUM(gty) AS Sales
FROM stores st JOIN sales s ON (st.stor id=s.stor id)

JOIN titles t ON (s.title id=t.title id)

GROUP BY st.stor name, t.type

ORDER BY Store DESC, Type ASC

Store Type Sales
News & Brews psychology 10

News & Brews trad cook 80
Fricative Bookshop business 50
Fricative Bookshop mod_cook 10
Eric the Read Books business 5
Eric the Read Books psychology 86
Doc-U-Mat: Quality Laundry and Books mod cook 25
Doc-U-Mat: Quality Laundry and Books psychology 105
Bookbeat business 65
Bookbeat mod_ cook 15
Bookbeat popular comp 30
Bookbeat UNDECIDED 30
Barnum's popular comp 50
Barnum's psychology 75

A few things to keep in mind regarding ORDER BY:

e You can't use ORDER BY in views, derived tables, or subqueries without also using the TOP n
extension (see the section on TOP n earlier in this chapter for more information). A technique for
working around this is to include a TOP n clause that specifies more rows than exist in the underlying
table(s).

e You can't sort on text, ntext, or image columns.

e If your query is a SELECT DISTINCT or combines result sets via UNION, the columns listed in the
ORDER BY clause must appear in the SELECTIist.

140

Chapter 6. The Mighty SELECT Statement

o [fthe SELECT includes the UNION operator, the column names and aliases you can use are limited
to those of the first table in the UNION.

Summary

In this chapter, you explored the ubiquitous, omnipotent Transact-SQL SELECT statement. Mastering it is
essential to becoming an adroit Transact-SQL programmer. SELECT is powerful, but that power comes at a
price: complexity. While SELECT statements can be very brief and concise, they are often extremely intricate
in real applications.

141

Chapter 7. Views

Chapter 7. Views

Where is the information?
Lost in the data.

Where is the data?

Lost in the #@ %!& database!
——Joe Celko

VIEWSs are static queries that you can use as though they were tables. A VIEW consists of a SELECT
statement compiled ahead of time using SQL's CREATE VIEW command and referenced in the same manner
as a table. VIEW columns can consist of table columns, aggregates, constants, and expressions (computed
columns). Some VIEWSs are updatable; some aren't. Whether a VIEW is updatable depends largely on
whether SQL Server can resolve an update to one of its rows to a single row in an underlying base table. All
VIEWSs must eventually reference a base table or nontabular expression (an expression that doesn't require a
table—GETDATE(), for example), though VIEWSs can be "nested"—meaning that a VIEW can reference other
VIEWSs as long as the dependence tree eventually resolves to base tables or nontabular expressions.

Restrictions

Transact-SQL doesn't support temporary VIEWSs, though you can create static VIEWs in tempdb and achieve
a similar effect. Also, VIEWSs aren't allowed to reference temporary tables—only references to other VIEWSs or
permanent base tables are permitted.

As a rule, ORDER BY is not allowed in VIEWS, so the following syntax is not valid:

-— Not valid Transact-SQL syntax
CREATE VIEW myauthors AS
SELECT * FROM authors

ORDER BY au lname

There is, however, a workaround. If you know the maximum number of rows the query might return in
advance, you can use Transact-SQL's TOP n extension to allow ORDER BY in VIEWs, like this:

CREATE VIEW myauthors AS
SELECT TOP 50 *
FROM authors

ORDER BY au lname

Specify a number large enough to exceed the number of possible rows in the table if you're unsure of the
exact count. TOP n allows the use of ORDER BY within a VIEW by permitting you to request more top rows
than actually exist in the table, resulting in all rows being returned. The query below shows that the ORDER
BY is in effect when we query the view:

SELECT au_id, au lname, au_ fname
FROM myauthors

auiia au_lname au_fname
409-56-7008 Bennet Abraham
648-92-1872 Blotchet-Halls Reginald
238-95-7766 Carson Cheryl
722-51-5454 DeFrance Michel
712-45-1867 del Castillo Innes

143

Guru’s Guide to Transact-SQL

427-17-2319 Dull Ann
213-46-8915 Green Marjorie
527-72-3246 Greene Morningstar
472-27-2349 Gringlesby Burt
846-92-7186 Hunter Sheryl
756-30-7391 Karsen Livia
486-29-1786 Locksley Charlene
724-80-9391 MacFeather Stearns
893-72-1158 McBadden Heather
267-41-2394 O'Leary Michael
807-91-6654 Panteley Sylvia
998-72-3567 Ringer Albert
899-46-2035 Ringer Anne
341-22-1782 Smith Meander
274-80-9391 Straight Dean
724-08-9931 Stringer Dirk
172-32-1176 White Johnson
672-71-3249 Yokomoto Akiko

As with stored procedures, the status of SET QUOTED_IDENTIFIER and SET ANSI_ NULLS is saved with
each VIEW. This means that individual session settings for these options are ignored by the VIEW when it's
queried. It also means that you can localize special quoted identifier or NULL handling to a particular VIEW
without affecting anything else.

DML Restrictions

An UPDATE to a VIEW is not allowed to affect more than one underlying base table at a time. If the VIEW
joins two or more tables together, an UPDATE to it may alter only one of them. Likewise, an INSERT must
modify only one table at a time in a multitable VIEW. This means that values can be supplied for only one
table—the columns in the other table(s) must have DEFAULT constraints, allow NULLSs, or otherwise be
optional. DELETE can be used only with single-table VIEWs—it can't be used with multitable VIEWSs of any
kind.

ANSI SQL Schema VIEWs

Out of the box, SQL Server provides a number of VIEWSs for accessing the system catalogs. These objects
provide an ANSI SQL-92—compliant means of retrieving meta-data and otherwise querying the server for
system-level information. You should use these rather than querying system catalog tables directly for two
reasons: 1) the ANSI SQL-92 specification defines these VIEWs—so they should work similarly between
different DBMS platforms, and 2) you can depend on them to work the same way between different releases
of SQL Server, even though their underlying system tables may change from release to release. Table 7.1
lists the SQL-92—compliant VIEWSs that SQL Server provides:

Table 7.1. SQL Server's ANSI SQL-92 schema VIEWSs.

VIEW Name

CHECK_CONSTRAINTS

COLUMN_DOMAIN_USAGE

COLUMN_PRIVILEGES

COLUMNS

CONSTRAINT_COLUMN_USAGE

CONSTRAINT_TABLE_USAGE

DOMAIN_CONSTRAINTS

DOMAINS

KEY_COLUMN_USAGE

REFERENTIAL_CONSTRAINTS

SCHEMATA

144

Chapter 7. Views

TABLE_CONSTRAINTS

TABLES

VIEW_COLUMN_USAGE

VIEW_TABLE_USAGE

VIEWS

Note that you must refer to these objects using the INFORMATION_SCHEMA database schema. In SQL
Server parlance, a schema and an owner are synonymous. This means that you must use:

SELECT * FROM INFORMATION SCHEMA.TABLES

rather than:

SELECT * FROM TABLES

Getting a VIEW's Source Code

Unless a VIEW was created using the WITH ENCRYPTION option, you can use sp_helptext to retrieve its
source code. You can also inspect and modify VIEW source code in Enterprise Manager, as well as many
SQL-DMO-enabled administration tools. Here's some sample code that returns the source of the syslogins
system VIEW:

USE master
exec sp helptext syslogins

CREATE VIEW syslogins AS SELECT
suid = convert (smallint, suser id(name)),
sid = convert (varbinary(85), sid),
status = convert(smallint, 8 +
CASE WHEN (xstatus & 2)=0 THEN 1 ELSE 2 END),
createdate = convert (datetime, xdatel),
updatedate = convert (datetime, xdate2),
accdate = convert (datetime, xdatel),
totcpu = convert (int, 0),
totio = convert (int, 0),
spacelimit = convert (int, 0),
timelimit = convert (int, 0),
resultlimit = convert (int, 0),
name = convert (varchar (30), CASE WHEN (xstatusé&4)=0 THEN name
ELSE suser name (suser id(name)) END),
dbname = convert (sysname, db name (dbid)),
password = convert (sysname, password),
language = convert (sysname, language),
denylogin = convert (int, CASE WHEN (xstatusé&l)=1 THEN 1 ELSE 0 END),
hasaccess = convert (int, CASE WHEN (xstatus&2)=2 THEN 1 ELSE O END),
isntname = convert (int, CASE WHEN (xstatusé&4)=4 THEN 1 ELSE 0 END),
isntgroup = convert (int, CASE WHEN (xstatusé&l2)=4 THEN 1 ELSE 0O END),
isntuser = convert (int, CASE WHEN (xstatusé&l2)=12 THEN 1 ELSE 0 END),
sysadmin = convert (int, CASE WHEN (xstatusé&l6)=16 THEN 1 ELSE 0 END),
securityadmin = convert (int, CASE WHEN (xstatus&32)=32 THEN 1 ELSE 0 END),
serveradmin = convert (int, CASE WHEN (xstatus&64)=64 THEN 1 ELSE 0O END),
setupadmin = convert (int, CASE WHEN (xstatus&l28)=128 THEN 1 ELSE 0 END),
processadmin = convert (int, CASE WHEN (xstatus&256)=256 THEN 1 ELSE 0 END),
diskadmin = convert (int, CASE WHEN (xstatus&512)=512 THEN 1 ELSE 0 END),
dbcreator = convert (int, CASE WHEN (xstatus&l1l024)=1024 THEN 1 ELSE 0 END),
loginname = convert (sysname, name)
FROM sysxlogins WHERE srvid IS NULL

145

Guru’s Guide to Transact-SQL

Updatable VIEWs

As mentioned earlier, there are a number of factors affecting whether a VIEW is updatable. For a VIEW to
allow updates, the following criteria must be met:

e Aggregate functions, the TOP, GROUP BY, UNION, or DISTINCT clauses or keywords are not
allowed.

e Derived columns (columns constructed from complex expressions) are not updatable.

o SELECT lists consisting entirely of nontabular expressions are not allowed.

Again, the bottom line is that the server must be able to translate an update to a row in the VIEW into an
update to a row in a base table. If it can't do this, you can't update the VIEW.

WITH CHECK OPTION

An updatable VIEW can be created so that it checks updates for compliance with its WHERE clause, if it has
one. This prevents rows added via the VIEW from "vanishing" when the VIEW is requeried since they don't
meet its selection criteria. To set up a VIEW this way, use the WITH CHECK OPTION clause when you create
it, like so:

CREATE VIEW CALLBO&BLAfAJTjO&S AS
SELECT *

FROM authors

WHERE State='CA'

WITH CHECK OPTION

This particular example ensures that any author that's added via the VIEW resides in California. For example,
this statement fails because of WITH CHECK OPTION:

INSERT CALIFORNIA AUTHORS
VALUES ('867-53-09EI', 'Henderson', 'Ken',
'972 555-1212"','57 Riverside','Dallas', 'TX','75080"',1)

Server: Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target VIEW either specifies
WITH CHECK OPTION or spans a VIEW that specifies WITH CHECK OPTION and one or
more

rows resulting from the operation did not qualify under the CHECK OPTION
constraint.

The statement has been terminated.

This also applies to updates. If an update you make through a VIEW that has WITH CHECK OPTION enabled
would cause the row to fail the VIEW's WHERE criteria, the update will be rejected.

Derived Tables

As mentioned in Chapter 6, derived tables are SELECT statements that you embed within the FROM clause
of other SELECTs in place of table references. | include coverage of them here for completeness and
because they resemble implicit or automatic VIEWSs. Derived tables make possible certain types of queries
that previously required separate VIEW objects. Here's an example:

CREATE TABLE #1996 POP ESTIMATE (Region char(7), State char(2), Population int)
INSERT #19967POP733TIMATZ VALUES ('West', 'CA',31878234)

INSERT #1996 POP ESTIMATE VALUES ('South', 'TX',19128261)
INSERT #1996 POP_ESTIMATE VALUES ('North', 'NY',18184774)

146

Chapter 7. Views

INSERT #1996 POP ESTIMATE VALUES ('South', 'FL',14399985)
INSERT #1996 POP_ESTIMATE VALUES ('North', 'NJ', 7987933)
INSERT #IQQQ P”PigffiMATq VALUES ('East', 'NC', 7322870)
INSERT #1996 POP ESTIMATE VALUES ('West', 'WA', 5532939)
INSERT #l““m OP ESTIMATE VALUES ('Central', 'MO', 5358692)
INSERT #1996 POP ESTIMATE VALUES ('E , 'MD', 5071604)
INSERT #1996 POP ESTIMATE VALUES ('Central','OK', 3300902)

SELECT * FROM (SELECT TOP 5 WITH TIES State,
Region, Population=Population/1000000
FROM #1996 POP ESTIMATE
ORDER BY Population/1000000) p

ORDER BY Population DESC

State Region Population

NJ North /
NC East 7
WA West 5
MO Central 5
MD East 5
0 Central 3

This query uses a derived table to return the five states with the lowest population among those listed in the
table. It then uses an ORDER BY in the outer SELECT to sort these in descending order. Were it not for
derived table support, this approach would require a separate stand-alone VIEW or a temporary table.

One subtlety worth mentioning here is the requirement for a table alias when using derived tables. Note the
inclusion of the table alias in the code sample above even though it's not used. This is a requirement of
derived tables, regardless of whether your code actually uses the alias.

Dynamic VIEWs

When you access a VIEW, a query plan is constructed by combining the original SELECT statement that was
used to create the VIEW with the one you're using to query it. The selection criteria you specified when you
built the VIEW are combined with any specified by your query and the composite is passed on to the server
engine for further processing.

Most VIEWSs that include selection criteria impose static criteria—the selection logic that's combined with the
SELECT accessing the VIEW never changes regardless of how many times the VIEW is queried. The
dynamic portion of the composite query usually comes from the user-supplied SELECT, not the VIEW. With
the exception of VIEWs that use joins to link other VIEWSs and tables, the criteria the VIEW supplies to filter
the result set remains the same from use to use. Most of the time this is adequate, but there are times when
it's handy to be able to make use of a dynamic VIEW—a VIEW whose selection criteria varies based on
factors external to it.

A dynamic VIEW is simply one whose selection criteria can change based on the evaluation of the
expressions in its WHERE or HAVING clauses. This is an easy concept that can come in quite handy. Rather
than evaluating to constants, these expressions return different values based on environmental or session
elements. The best example of such a VIEW is one that returns a result set based on a nontabular expression.
Here's one that lists the sales for the current date, using the nontabular GETDATE() function:

CREATE VIEW DA \ILY SALES AS
SELECT *
FROM sales
WHERE ord dat
CONVERT (char (

ETWEEN CONVERT ((“1”

BE a
,GETDATE () ,112)+"' 23:59:59.999

e
8)

You can add some rows to sales to see how this works:

INSERT sales

147

Guru’s Guide to Transact-SQL

VALUES ('8042'",'QA879.1'",GETDATE (), 30, "Net 30', 'BU1032")
INSERT sales

VALUES ('6380','D4482',GETDATE (), 11, 'Net 60', 'PS2091")
INSERT sales

VALUES ('6380"', 'D4492',GETDATE ()+1,53, "Net 30', 'PS2091")

SELECT * FROM DAILY SALES

stor id ord num ord date gty payterms title id
6380 D4482 1999-06-24 19:14:33.657 30 Net 60 PS2091
6380 D4482 1999-06-24 19:14:33.657 30 Net 60 PS2091
8042 QA879.1 1999-06-24 19:13:26.230 30 Net 30 BU1032

This VIEW uses GETDATE() to limit the sales returned to those whose ord_date is today. The criteria actually
processed by the server will vary based on the current date. Today, its WHERE clause will be expanded to
today's date, and the first two rows that were inserted will show up. Tomorrow, it will evaluate to tomorrow's
date, and the third row will show up. That's the nature of dynamic VIEWs—the criteria that are actually
processed by the server change from use to use based on external factors.

Here's another example that uses CASE to make the VIEW even more dynamic. This code improves on the
previous example by making it aware of weekends. Since no sales occur on weekends, this code returns the
sales for either the previous Friday or the upcoming Monday when the current date falls on a weekend:

CREATE VIEW DALLYiSALLS AS
SELECT *
FROM sales
WHERE ord date BETWEEN
(CASE DATEPART (DW, CONVERT (char (8) ,GETDATE () ,112))
WHEN 1 THEN CONVERT (char (8),GETDATE ()+1,112)
WHEN 7 THEN CONVERT (char (8),GETDATE ()-1,112)
ELSE CONVERT (char (8),GETDATE () ,112)
END)
AND (CASE DATEPART (DW, CONVERT (char (8),GETDATE (),112))
WHEN 1 THEN CONVERT (char (8),GETDATE ()+1,112)
WHEN 7 THEN CONVERT (char (8),GETDATE ()-1,112)
ELSE CONVERT (char (8),GETDATE () ,112)
END+' 23:59:59.999")

You can use other nontabular functions to create similar sliding or dynamic VIEWSs. For example,
SUSER_SNAME() could be used to limit the rows returned according to user name. HOST_NAME() could be
used to filter based on machine name. Whatever the case, the SELECT used to query the VIEW doesn't
change (in the examples above, it's always a simple SELECT™); only the criteria that the VIEW provides to
filter the result set do.

Partitioning Data Using Views

Views are a handy mechanism for partitioning data into subsets. This partitioning can be either horizontal or
vertical in nature or both. It can hide columns from inspection by unauthorized users and can group rows
logically based on some predetermined criteria. Here's an example of a vertically partitioned table:

USE Northwind
GO
IF (OBJECT ID('EMP VIEW') IS NOT NULL)
DROP VIEW EMP VIEW
GO
CREATE VIEW EMP VIEW AS
SELECT LastName,
FirstName,

148

Chapter 7. Views

Title,

Extension
FROM employees
GO

SELECT * FROM EMP_VIEW

LastName FirstName Title Extension
Davolio Nancy Sales Representative 5467
Fuller Andrew Vice President, Sales 3457
Leverling Janet Sales Representative 3355
Peacock Margaret Sales Representative 5176
Buchanan Steven Sales Manager 3453
Suyama Michael Sales Representative 428

King Robert Sales Representative 465
Callahan Laura Inside Sales Coordinator 2344
Dodsworth Anne Sales Representative 452

In this example, personal information such as the employee's home phone number and birth date is omitted
from the view in order to provide a basic employee listing. Here's an example of horizontal partitioning:

USE Northwind

GO

IF (OBJECTiID('USAioRDERS') IS NOT NULL)
DROP VIEW USA ORDERS

GO

IF (OBJECT ID('UK ORDERS') IS NOT NULL)
DROP VIEW UK ORDERS

GO

IF (OBJECT_ID('FRENCH_ORDERS') IS NOT NULL)
DROP VIEW FRENCH ORDERS

GO

CREATE VIEW USA ORDERS AS

SELECT TOP 10 EmployeeID, COUNT (*) AS NumOrdered

FROM orders

WHERE ShipCountry='USA'

GROUP BY EmployeelD

ORDER BY NumOrdered DESC

GO

CREATE VIEW UK ORDERS AS

SELECT TOP 10 EmployeeID, COUNT (*) AS NumOrdered

FROM orders

WHERE ShipCountry='UK'

GROUP BY EmployeeID

ORDER BY NumOrdered DESC

GO

CREATE VIEW FRENCH_ORDERS AS

SELECT TOP 10 EmployeeID, COUNT (*) AS NumOrdered

FROM orders

WHERE ShipCountry='France'

GROUP BY EmployeelD

ORDER BY NumOrdered DESC

GO

PRINT 'USA ORDERS'
SELECT * FROM USA ORDERS
GO

PRINT 'UK ORDERS'

SELECT * FROM UK ORDERS

149

Guru’s Guide to Transact-SQL

GO

PRINT 'FRENCH ORDERS'
SELECT * FROM FRENCH ORDERS
GO

USA ORDERS
EmployeeID NumOrdered

© U I N oY W
=
[InN

UK ORDERS
EmployeeID NumOrdered

U1 O J o N oo W b

FRENCH ORDERS
EmployeeID NumOrdered

4 14
3 13
2 11
1 9
6 9
8 8
5 5
7 5
9 3
Summary

You learned about VIEW obijects in this chapter. VIEWs offer a powerful means of presenting data in formats
that differ from the way in which it's stored in the database. They also offer an alternative to constraints and
triggers for controlling data insertions and updates. SQL Server itself uses views extensively, and it's likely
that you will as well if you build sophisticated applications using Transact-SQL.

150

Chapter 8. Statistical Functions

Chapter 8. Statistical Functions

Statistics are like a bikini. What they reveal is suggestive, but what they conceal is vital.
—Aaron Levenstein

There's a common misconception by many developers—advanced and beginner alike—that SQL Server is
unsuitable for performing complex computations. The perception is that it's really just a data retrieval facility—
it's superb at storing and querying data, but any heavy calculation work must be performed in a 3GL of some
sort. Though data management and retrieval are certainly its strong suit, SQL Server can perform complex
calculations as well, including statistical calculations. If you know what you're doing, there are very few
statistical computations beyond the reach of basic Transact-SQL.

Capabilities notwithstanding, on the surface, SQL Server may seem like an odd tool to use to compute
complex statistical numbers. Just because a tool is capable of performing a task doesn't mean that it's the
best choice for doing so. After all, SQL Server is a database server, right? It's an inferior choice for performing
high-level mathematical operations and complex expression evaluation, right? Wrong. Transact-SQL's built-in
support for statistical functions together with its orientation toward sets makes it quite adept at performing
statistical computations over data stored in SQL Server databases. These two things—statistical functions
and set orientation—give Transact-SQL an edge over many 3GL programming languages. Statistics need
data, so what better place to extrapolate statistics from raw data than from the server storing it? If the
supermarket has all the items you need at the right price, why drive all over town to get them?

Notice that | didn't mention anything about calling external functions written in traditional programming
languages such as C++. You shouldn't have to resort to external functions to calculate most statistics. What
Transact-SQL lacks as a programming language, it compensates for as a data language. Its orientation
toward sets and its ease of working with them yield a surprising amount of computational power with a
minimum of effort, as the examples later in the chapter illustrate.

Another item I've left out of the discussion is the use of stored procedures to perform complex calculations. If
you ask most SQL developers how to calculate the statistical median of a column in a SQL Server table,
they'll tell you that you need a stored procedure. This procedure would likely open a cursor of some sort to
locate the column's middle value. While this would certainly work, it isn't necessary. As this chapter will show,
you don't need stored procedures to compute most statistical values, normal SELECTs will do just fine.
Iterating through tables using traditional looping techniques is an "un-SQL" approach to problem solving and is
something you should avoid when possible (See Chapterl3, "Cursors," for more information). Use Transact-
SQL's strengths to make your life easier, don't try to make it something it isn't. Attempting to make Transact-
SQL behave like a 3GL is a mistake—it's not a3GL. Doing this would be just as dubious and fraught with
difficulty as trying to make a3GL behave like a data language. Forcing one type of tool to behave like another
is like forcing the proverbial square peg into a round hole—it probably won't work and will probably lead to
little more than an acute case of frustration.

One thing to keep in mind when performing complex mathematical calculations with Transact-SQL is that SQL,
as a language, does not handle floating point rounding errors. Naturally, this affects the numbers produced by
queries. It can make the same query return different results based solely on the order of the data. The answer
is to use fixed point types such as decimal and numeric rather than floating point types such as float and real.
See the section "Floating Point Fun" in Chapter2 for more information.

The Case for CASE

Its clunky language syntax notwithstanding, CASE is an extremely powerful weapon in the Transact-SQL
arsenal. It allows us to perform complex calculations during SELECT statements that previously were the
exclusive domain of arcane functions and stored procedures. Some of these solutions rely on a somewhat
esoteric technique of coding Transact-SQL expressions such that the number of passes through a table is
greatly reduced. This, in turn, yields better performance and code that is usually more compact than traditional
coding techniques. This is best explained by way of example. Let's look at a function-based solution that
creates a cross-tabulation or "pivot" table.

Assuming we have this table and data to begin with:

FYEARLY SALES

datetime,

151

Guru’s Guide to Transact-SQL

INSERT #YEARLY SALES VALUES ('19990101',86753.09)
INSERT #YEARLY SALES VALUES ('20000101',34231.12)
INSERT #YEARLY SALES VALUES ('20010101',67983.56)

here's what a function-based pivot query would look like:

SELECT
"1999"=SUM (Sales* (1-ABS (SIGN (YEAR (SalesYear)-1999)))),
"2000"=SUM (Sales* (1-ABS (SIGN (YEAR (SalesYear)-2000)))),
"2001"=SUM (Sales* (1-ABS (SIGN (YEAR (SalesYear)-2001))))
FROM #YEAR RLY SALES
1999 2000 2001
86753.0900 34231.1200 ©67983.5600

Note the inclusion of the rarely used ABS() and SIGN() functions. This is typical of function-based solutions
and is what makes them so abstruse. The term "characteristic function" was first developed by David
Rozenshtein, Anatoly Abramovich, and Eugene Birger in a series of articles for the SQL Forum publication
several years ago to describe such solutions. The characteristic function above is considered a "point
characteristic function" for the SalesYear column. Each instance of it returns a one when the year portion of
SalesYear equals the desired year and a zero otherwise. This one or zero is then multiplied by the Sales
value in each row to produce either the sales figure for that year or zero. The end result is that each column
includes just the sales number for the year mentioned in the expression—exactly what we want.
Understanding how a characteristic function works within the context of a particular query requires mentally
translating characteristic formulae to their logical equivalents. When characteristic functions were first
"discovered," tables were published to help SQL developers through the onerous task of doing this. This
translation is necessary because the problems being solved rarely lend themselves intuitively to the solutions
being used. That is, pivoting a table has nothing to do with the ABS() and SIGN() functions. This is where
CASE comes in.

With the advent of SQL-92 and CASE, the need for odd expressions like these to build complex inline logic
has all but vanished. Instead, you should use CASE whenever possible in place of characteristic functions.
CASE is easier to read, is easier to extend, and requires no mental translation to and from arcane expression
tables. For example, here's the pivot query rewritten to use CASE:

SELECT
"1999"=SUM (CAS \R (SalesYear)=1999 THEN Sales ELSE NULL END),
"2000"=SUM (C [(SalesYear)=2000 THEN Sales ELSE NULL END),
"2001"=SUM (C WHEN YEAR (SalesYear)=2001 THEN Sales ELSE NULL END)

FROM #YE ’?LY Sg

It's vastly clearer and easier to understand than the earlier method involving SIGN() and ABS(). | also find it
easier to read than:

SELECT
"1999"=SUM (CASE YEAR(SalesYear) WHEN 1999 THEN Sales ELSE NULL END),
"2000"=SUM (CASE YEAR(SalesYear) WHEN 2000 THEN Sales ELSE NULL END),
"2001"=SUM (CASE YEAR(SalesYear) WHEN 2001 THEN Sales ELSE NULL
END)
FROM #YEARLY SALES

Though this solution still represents a vast improvement over the SIGN()/ABS() approach, | prefer the
searched CASE approach simply because the relationship between "1999" and YEAR(SalesYear) is more
explicit in the searched CASE syntax, though I'd concede that this is really a matter of preference.

Efficiency Concerns

152

Chapter 8. Statistical Functions

You'll notice the liberal use of self-joins in the examples in this chapter. Techniques that involve self-joins over
large tables should be viewed with a certain amount of skepticism because they can lead to serious runtime
performance problems. This is also true of queries that make use of Cartesian products or cross-joins. |
mention this only to forewarn you to be on the lookout for techniques that may be syntactically compact but
extremely inefficient in terms of runtime performance. The key to successful SQL development is to strike a
balance between the two.

Variance and Standard Deviation

Transact-SQL sports nine different aggregate functions, all of which are useful for computing statistics.
Beyond the "standard" aggregate functions you see in most SQL DBMS products—SUM(), MIN(), MAX(),
COUNT(), and AVG()—SQL Server provides four that are specifically related to financial and statistical
calculations: STDDEV(), STDDEVP(), VAR(), VARP(). The STDDEYV functions compute sample standard
deviation and population standard deviation, respectively, while the VAR functions compute sample variance
and population variance. These functions work just like the other aggregate functions—they ignore NULLSs,
can be used with GROUP BY to create vector aggregates, and so forth. Here's an example that uses
Transact-SQL's built-in aggregate functions to compute some basic statistics:

CREATE TABLE #1996 POP ESTIMATE (Region char(7), State char(2), Population int)

INSERT #1996 POP ESTIMATE VALUES ('West', 'CA',31878234)
INSERT #1996 POP_ESTIMATE VALUES ('South', 'TX',19128261)
INSERT #1996 POP ESTIMATE VALUES ('North', 'NY',18184774)
INSERT #1996 POP_ESTIMATE VALUES ('South', 'FL',14399985)
INSERT #1996 POP_ESTIMATE VALUES ('North', 'NJ', 7987933)
INSERT #1996 POP ESTIMATE VALUES ('East', 'NC', 7322870)
INSERT #1996 POP ESTIMATE VALUES ('West', 'WA', 5532939)
INSERT #1996 POP ESTIMATE VALUES ('Central', 'MO', 5358692)
INSERT #1996 POP_ESTIMATE VALUES ('East', 'MD', 5071604)
INSERT #1996 POP ESTIMATE VALUES ('Central','OK', 3300902)

SELECT Region, MIN(Population) AS Minimum, MAX (Population) AS Maximum,
AVG (Population) AS

-

Average, VAR (Population) AS Variance, VARP (Population) AS VarianceP,
STDEV (Population) AS

-

StandardDeviation, STDEVP (Population) AS StandardDeviationP

FROM #1996 POP ESTIMATE

GROUP BY Region

ORDER BY Maximum DESC

(Results abridged)

Region Minimum Maximum Average Variance

West 5532939 31878234 18705586 347037284318512.5
South 14399985 19128261 16764123 11178296966088.0
North 7987933 18184774 13086353 51987783189640.5
East 5071604 7322870 6197237 2534099301378.0
Central 3300902 5358692 4329797 2117249842050.0
Medians

Row-positioning problems—i.e., locating rows based on their physical position within a distribution— have
historically been a bit of challenge in SQL. Locating a row by value is easy with a set-oriented language;
locating one based on position is another matter. Medians are row-positioning problems. If there is an odd
number of values in the distribution, the median value is the middle value, above and below which exist equal
numbers of items. If there is an even number of values, the median is either the average of the two middle
values (for financial medians) or the lesser of them (for statistical medians).

153

Guru’s Guide to Transact-SQL

The Identity Column Technique

Row-positioning problems are greatly simplified when a unique, sequential integer key has been established
for a table. When this is the case, the key becomes a virtual record number, allowing ready access to any row
position in the table similarly to an array. This can allow medians to be computed almost instantly, even over
distribution sets with millions of values. Here's an example:

SET NOCOUNT ON

USE GG_TS

IF (OBJECT ID('financial median') IS NOT NULL)
DROP TABLE financial median

GO

DECLARE (@starttime datetime

SET @starttime=GETDATE ()

CREATE TABLE financial median

(

cl float DEFAULT (
(CASE (CAST(RAND()+.5 AS int)*-1) WHEN O THEN 1 ELSE -1 END)* (CAST (RAND() *
100000 AS int) % 10000)*RAND()),

c?2 int DEFAULT O

)

-- Seed the table with 10 rows

INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES
INSERT financial median DEFAULT VALUES

-— Create a distribution of a million values
WHILE (SELECT TOP 1 rows FROM sysindexes WHERE id=OBJECT ID('financial median')
ORDER BY indid)< 1000000 BEGIN

INSERT financial median (c2) SELECT TOP 344640 c2 FROM financial median
END
SELECT 'It took '"+CAST (DATEDIFF (ss,@starttime,GETDATE ()) AS varchar)+' seconds
to create and populate the table'

SET @starttime=GETDATE ()

-— Sort the distribution

CREATE CLUSTERED INDEX cl ON financial median (cl)
ALTER TABLE financial median ADD kl int identity
DROP INDEX financial median.cl

CREATE CLUSTERED INDEX k1l ON financial median (k1)

SELECT 'It took '"+CAST (DATEDIFF (ss,@starttime, GETDATE ()) AS varchar)+' seconds
to sort the table'’
GO

-- Compute the financial median

DECLARE (@starttime datetime, (@rows int

SET @starttime=GETDATE ()

SET STATISTICS TIME ON

SELECT TOP 1 @rows=rows FROM sysindexes WHERE id=OBJECT ID('financial median')
ORDER BY

154

Chapter 8. Statistical Functions

-

indid

SELECT 'There are '+CAST (@rows AS varchar)+' rows'

SELECT AVG(cl) AS "The financial median is" FROM financial median

WHERE k1 BETWEEN Qrows / 2 AND (Qrows / 2)+SIGN(@rows+l % 2)

SET STATISTICS TIME OFF

SELECT 'It took '"+CAST (DATEDIFF (ms,@starttime,GETDATE ()) AS varchar)+' ms to

compute the

-
financial median

It took 148 seconds to sort the table

There are 1000000 rows

The financial median is

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 287 ms.

This query does several interesting things. It begins by constructing a table to hold the distribution and adding
a million rows to it. Each iteration of the loop fills the c1column with a new random number (all the rows
inserted by a single operation get the same random number). The table effectively doubles in size with each
pass through the loop. The top 344,640rows are taken with each iteration in order to ensure that the set
doesn't exceed a million values. The 344,640 limitation isn't significant until the final pass through the loop—
until then it grabs every row in financial_median and reinserts it back into the table (after the next-to-last
iteration of the loop, the table contains 655,360rows; 344,640 = 1,000,000-655,360). Though this doesn't
produce a random number in every row, it minimizes the time necessary to build the distribution so we can get
to the real work of calculating its median.

Next, the query creates a clustered index on the table's c1column in order to sort the values in the distribution
(a required step in computing its edian). It then adds an identity column to the table and switches the table's
clustered index to reference it. Since the values are already sequenced when the identity column is added,
they end up being numbered sequentially by it.

The final step is where the median is actually computed. The query looks up the total number of rows (so that
it can determine the middle value) and returns the average of the two middle values if there's an even number
of distribution values or the middle value if there's an odd number.

In a real-world scenario, it's likely that only the last step would be required to calculate the median. The
distribution would already exist and be sorted using a clustered index in a typical production setup. Since the
number of values in the distribution might not be known in advance, I've included a step that looks up the
number of rows in the table using a small query on sysindexes. This is just for completeness— the row count
is already known in this case because we're building the distribution and determining the median in the same
query. You could just as easily use a MAX(k1) query to compute the number of values since you can safely
assume that the k1 identity column is seeded at one and has been incremented sequentially throughout the
table. Here's an example:

DECLARE (@starttime datetime, @rows int

SET @starttime=GETDATE ()
SET STATISTICS TIME ON

155

Guru’s Guide to Transact-SQL

SELECT @rows=MAX (kl) FROM financial median

' ~Aga !
WO

SELECT 'There are '+CAST (@rows AS wvarchar)+

he financial median

2 AND (@rows

compute the

-

financial median'

Note the use of the SIGN() function in the median computation to facilitate handling an even or odd number of
values using a single BETWEEN clause. The idea here is to add 1 to the index of the middle value for an even
number of values and 0 for an odd number. This means that an even number of values will cause the average
of the two middle values to be taken, while an odd number will cause the average of the lone middle value to
be taken—the value itself. This approach allows us to use the same code for even and odd numbers of values.
Specifically, here's how this works: the SIGN() expression adds one to the number of values in the distribution
set in order to switch it from odd to even or vice versa, then computes the modulus of this number and2 (to
determine whether we have an even or odd number) and returns either 1 or0, based on its sign. So, for
1,000,000rows, we add 1, giving us 1,000,001, then take the modulus of2, which is1. Next, we take the SIGN()
of the number, which is1, and add it to the number of rows (divided by2) in order to compute the k1value of
the second middle row. This allows us to compute the AVG() of these two values in order to return the
financial median. For an odd number of values, the modulus ends up being0, resulting in a SIGN() of0, so that
both terms of the BETWEEN clause refer to the same value—the set's middle value.

The net effect of all this is that the median is computed almost instantaneously. Once the table is set up
properly, the median takes less than a second to compute on the relatively scrawny 166MHz laptop on which
I'm writing this book. Considering that we're dealing with a distribution of a million rows, that's no small feat.
This is a classic example of SQL Server being able to outperform a traditional programming language
because of its native access to the data. For a 3GL to compute the median value of a 1,000,000-value
distribution, it would probably load the items into an array from disk and sort them. Once it had sorted the list,
it could retrieve the middle one(s). This last process— that of indexing into the array— is usually quite fast. It's
the loading of the data into the array in the first place that takes so long, and it's this step that SQL Server
doesn't have to worry about since it can access the data natively. Moreover, if the 3GL approach loads more
items than will fit in memory, some of them will be swapped to disk (virtual memory), obviously slowing down
the population process and the computation of the median.

For example, consider this scenario: A 3GL function needs to compute the financial median of a distribution
set. It begins by loading the entire set from a SQL Server database into an array or linked list and sorting it.
Once the array is loaded and sorted, the function knows how many rows it has and indexes into or scans for
the middle one(s). Foolishly, it treats the database like a flat file system. It ignores the fact that it could ask
SQL Server to sort the items before returning them. It also ignores the fact that it could query the server for
the number of rows before retrieving all of them, thus alleviating the need to load the entire distribution into
memory just to count the number of values it contains and compute its median. These two optimizations
alone— allowing the server to sort the data and asking it for the number of items in advance— are capable of
reducing the memory requirements and the time needed to fill the array or list by at least half.

But SQL Server itself can do even better than this. Since the distribution is stored in a database with which the
server can work directly, it doesn't need to load anything into an array or similar structure. This alone means
that it could be orders of magnitude faster than the traditional 3GL approach. Since the data's already
"loaded," all SQL Server has to concern itself with is locating the median value, and, as I've pointed out,
having a sequential row identifier makes this a simple task.

To understand why the Transact-SQL approach is faster and better than the typical 3GL approach, think of
SQL Server's storage mechanisms (B-trees, pages, extents, etc.) as a linked list—a very, very smart linked
list—a linked list that's capable of keeping track of its total number of items automatically, one that tracks the
distribution of values within it, and one that continuously maintains a number of high-speed access paths to its
values. It's a list that moves itself in and out of physical memory via a very sophisticated caching facility that
constantly balances its distribution of values and that's always synchronized with a permanent disk version so
there's never a reason to load or store it explicitly. It's a list that can be shared by multiple users and to which
access is streamlined automatically by a built-in query optimizer. It's a list than can be transparently queried
by multiple threads and processors simultaneously—that, by design, takes advantage of multiple Win32
operating system threads and multiple processors.

156

Chapter 8. Statistical Functions

From a conceptual standpoint, SQL Server's storage/retrieval mechanisms and a large virtual memory—based
3GL array or linked list are not that different; it's just that SQL Server's facilities are a couple orders of
magnitude more sophisticated and refined than the typical 3GL construct. Not all storage/retrieval
mechanisms are created equal. SQL Server has been tuned, retuned, worked, and reworked for over ten
years now. It's had plenty of time to grow up—to mature. It's benefited from fierce worldwide competition on a
number of fronts throughout its entire life cycle. It has some of the best programmers in the world working
year-round to enhance and speed it up. Thus it provides better data storage and retrieval facilities than 95% of
the 3GL developers out there could ever build. It makes no sense to build an inferior, hackneyed version of
something you get free in the SQL Server box while steadfastly and inexplicably using only a small portion of
the product itself.

One thing we might consider is what to do if the distribution changes fairly often. What happens if new rows
are added to it hourly, for example? The k1 identity column will cease to identify distribution values
sequentially, so how could we compute the median using the identity column technique? The solution would
be to drop the clustered index on k1 followed by the column itself and repeat the sort portion of the earlier
query, like so:

DROP INDEX financial median.kl

ALTER TABLE financial median DROP COLUMN k1
_REATE CLUSTERED INDEX i N fi
ALTER TABLE financial median ADD kl int identity

a:ciaiimedLa: (cl)

P INDEX financial median.cl
CREATE CLUSTERED INDEX k1l ON financial median (k1)

Obviously, this technique is impractical for large distributions that are volatile in nature. Each time the
distribution is updated, it must be resorted. Large distributions updated more than, say, once a day are simply
too much trouble for this approach. Instead, you should use one of the other median techniques listed below.
Note that it's actually faster overall to omit the last two steps in the sorting phase. If the clustered index on c¢1
is left in place, computing the median takes noticeably longer (1—-2seconds on the aforementioned laptop), but
the overall process of populating, sorting, and querying the set is reduced by about 15%. I've included the
steps because the most common production scenario would have the data loaded and sorted on a fairly
infrequent basis— say once a day or less— while the median might be computed thousands of times daily.

The CASE Technique

Computing a median using CASE is also relatively simple. Assume we start with this table and data:

(cl int)
2

)
3)
)
1)

8)

DS = C

(
(
(
(
(

This query returns the median value:

SELECT Median=d.cl

EN 1 ELSE NULL END)=(COUNT (*)+1)/2

Here, we generate a cross-join of the #dist table with itself, then use a HAVING clause to filter out all but the
median value. The CASE function allows us to count the number of i values that are less than or equal to
each d value, then HAVING restricts the rows returned to the d value where this is exactly half the number of
values in the set.

157

Guru’s Guide to Transact-SQL

The number returned is the statistical median of the set of values. The statistical median of a set of values
must be one of the values in the set. Given an odd number of values, this will always be the middle value.
Given an even number, this will be the lesser of the two middle values. Note that it's trivial to change the
example code to return the greater of the two middle values, if that's desirable:

CREATE TABLE #dist (cl int)
INSERT #dist VALUES (2)
INSERT #dist VALUES (3)
INSERT #dist VALUES (1)
INSERT #dist VALUES (4)
INSERT #dist VALUES (8)
INSERT #dist VALUES (9)

-— Insert an even number of values

SELECT Median=d.cl

FROM #dist d CROSS JOIN #dist i

GROUP BY d.cl

HAVING COUNT (CASE WHEN i.cl <= d.cl THEN 1 ELSE NULL END)=COUNT (*)/2+1

A financial median, on the other hand, does not have to be one of the values of the set. In the case of an even
number of values, the financial median is the average of the two middle values. Assuming this data:

CREATE TABLE #dist (cl int
INSERT INTO #dist VALUES
INSERT INTO #dist VALUES
INSERT INTO #dist VALUE
INSERT INTO #dist VALU
INSERT INTO #dist VALU
INSERT INTO #dist VALU

n

M E G

0 n n

here's a Transact-SQL query that computes a financial median:

SELECT Median=CASE COUNT (*) %2
WHEN 0 THEN -- Even number of VALUES
(d.c1l+MIN(CASE WHEN i.cl>d.cl THEN i.cl ELSE NULL END)) /2.0
ELSE d.cl END -- Odd number
FROM #dist d CROSS JOIN #dist i
GROUP BY d.cl
HAVING COUNT (CASE WHEN i.cl <= d.cl THEN 1 ELSE NULL END)=(COUNT (*)+1)/2

Median

3.500000

The middle values of this distribution are 3 and 4, so the query above returns 3.5 as the financial median of
the distribution.

Vector Medians

Since Transact-SQL doesn't include a MEDIAN() aggregate function, computing vector or partitioned medians
must be done using something other than the usual GROUP BY technique. Assuming this table and data:

CREATE TABLE #dist (k1 int, cl int)

INSERT #dist VALUES (1,2)
INSERT #dist VALUES (2,3)

158

Chapter 8. Statistical Functions

INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (
(
(

~
=

—_ — — — —

~

INSERT #dist VALUES
INSERT #dist VALUES

~

N J 0NN
~
o B Ul

~
NeJ

here's a modification of the first example to return a vector median:

SELECT d.k1l, d.cl

FROM #dist d CROSS JOIN #dist i

WHERE d.kl=i.kl

GROUP BY d.kl, d.cl

HAVING COUNT (CASE WHEN i.cl<=d.cl THEN 1 ELSE NULL END)=(COUNT (*)+1)/2
ORDER BY d.kl

k1l cl
1 2
2 3
5 4
7 8

"K1" is the vectoring or partitioning column in this example. If Transact-SQL had a MEDIAN() aggregate
function, "k1" would be the lone item in the GROUP BY list.

Duplicate Values

A situation that none of the median queries presented thus far handles very well is the presence of duplicate
values in the distribution set. In fact, in all of the examples thus far, a duplicate value near the median will
cause the query to return NULL or omit the corresponding partition. The problem is that these queries group
by the c1column in the first instance of the work table. Grouping automatically combines duplicate values so
that a query cannot distinguish between multiple instances of the same value. Properly handling duplicate
values requires the HAVING clause to be reworked. Assuming we start with this table and data:

CREATE TABLE #dist (cl int)

INSERT #dist VALUES (2)

INSERT #dist VALUES (3)

INSERT #dist VALUES (1)

INSERT #dist VALUES (3) -- Duplicate wvalue
INSERT #dist VALUES (8)

INSERT #dist VALUES (9)

here's a modification of the statistical median query that handles duplicate values:

SELECT d.cl

FROM #dist d CROSS JOIN #dist i

GROUP BY d.cl

HAVING (COUNT (CASE WHEN i.cl <= d.cl THEN 1 ELSE NULL END)>= (COUNT (*)+1)/2)
AND (COUNT (CASE WHEN i.cl >=d.cl THEN 1 ELSE NULL END) >= COUNT (*)/2+1)

Likewise, here's the financial median query modified to handle duplicate values:

CREATE TABLE #dist (cl int)
INSERT #dist VALUES (2)
INSERT #dist VALUES (2)
INSERT #dist VALUES (1)

159

Guru’s Guide to Transact-SQL

INSERT #dist VALUES (5)
INSERT #dist VALUES (5)
INSERT #dist VALUES (9)

SELECT Median=ISNULL ((CASE WHEN COUNT (CASE WHEN i.cl<=d.cl THEN 1 ELSE NULL END)
> (COUNT (*)+1)/2 THEN 1.0*d.cl ELSE NULL END)+COUNT (*) %2,
(d.cl+MIN((CASE WHEN i.cl>d.cl THEN i.cl ELSE NULL END)))/2.0)
FROM #dist d CROSS JOIN #dist i
GROUP BY d.cl
HAVING (COUNT (CASE WHEN i.cl <= d.cl THEN 1 ELSE NULL END)>=(COUNT (*)+1)/2)
AND (COUNT (CASE WHEN i.cl >=d.cl THEN 1 ELSE NULL END) >= COUNT (*)/2+1)

Median

As you can see, things start to get a bit complex when duplicate values enter the picture. Here's a variation of
the financial median query that makes use of a key column (k1) and handles duplicates as well;

CREATE TABLE #dist (k1 int, cl int)
INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (
INSERT #dist VALUES (

SELECT Median=AVG (DISTINCT 1.0*cl)

FROM (SELECT dl.cl

FROM #dist dl CROSS JOIN #dist d2

GROUP BY dl.kl, dl.cl

HAVING SUM(CASE WHEN d2.cl = dl.cl THEN 1 ELSE 0 END) >=

ABS (SUM (CASE WHEN d2.cl < dl.cl THEN 1 WHEN d2.cl > dl.cl THEN -1 ELSE 0 END)))
d

Median

4.500000

Clipping

Clipping is the removal from a set of values a prefix and suffix of some predetermined size. As with medians,
figuring out which values to remove is a row-positioning problem— the rows that end up being removed
depend on their position in the set. Here's some sample code that illustrates how easy it is to clip values from
a set:

CREATE TABLE #valueset (cl int)
INSERT #valueset VALUES (
INSERT #valueset VALUES (
INSERT #valueset VALUES (
INSERT #valueset VALUES (
INSERT #valueset VALUES (

(

1
2
3
1
4
8
INSERT #valueset VALUES (9

o

SELECT wv.cl

FROM #valueset v CROSS JOIN #valueset a
GROUP BY v.cl

HAVING v.cl > MIN(a.cl) AND v.cl < MAX(a.cl)

160

Chapter 8. Statistical Functions

o W N

This code uses a cross-join and a simple HAVING clause to exclude the minimum and maximum values from
the set, but what if we wanted to exclude multiple rows from the beginning or end of the set? We couldn't
simply change >MAX(a.c1) to >MAX(c.c1)+1 because we don't know whether the values are sequential (in
fact, they aren't, in this case). Accommodating prefix/suffix sizes of more than a single row requires the
HAVING clause to be reworked. Here's a new query that clips prefixes and suffixes of any size:

SELECT v.cl

FROM #valueset v CROSS JOIN #valueset a

GROUP RY wv.cl

AVING s WHEN a.cl <=v.cl THEN 1 ELSE NULL END) > 2
WHEN a.cl >= v.cl THEN 1 ELSE NULL END) >2

cl

4

Note that this code is flexible enough to allow a prefix and a suffix of different sizes. The first predicate in the
HAVING clause clips the prefix, and the second clause handles the suffix. The ">2" comparison construct
controls the size of the clipped region. To clip more than two rows, increase the number; to clip less, decrease
it.

Returning the Top n Rows

In SQL Server 7.0 and later, the SELECT statement's TOP n extension is the most direct way to return a
given number of rows from the top or bottom of a result set. TOP n does just what it sounds like—it restricts
the rows returned to a specified number. Since you can sort the result set in descending order, TOP n can
also return the bottommost rows from a result set. It works similarly to SET ROWCOUNT but can also handle
ties and percentages. See the section "SELECT TOP" in Chapter 6 for more information.

If you're using SQL Server 6.5 or earlier or if you need more flexibility than SELECT TOP n provides, the code
from the previous clipping example can be extended to perform a number of useful functions, including
returning the topmost or bottommost rows in a result set. One obvious application is to invert it to return a
prefix or suffix of a predetermined size. Here's some sample code that does just that:

SELECT v.cl
FROM #valueset v CROSS JOIN #valueset a
GROUP BY v.cl

AVING COUNT (CASE WHEN a.cl >=v.cl THEN 1 ELSE NULL END) > COUNT (a.cl)-2

This code returns the top two rows. As with the previous example, you can modify "-2" to return any number of
rows you like. Here's the same query modified to return the bottom three rows:

SELECT v.cl
FROM #valueset v CROSS JOIN #valueset a

161

Guru’s Guide to Transact-SQL

GROUP BY v.cl
HAVING COUNT (CASE WHEN a.cl <=v.cl THEN 1 ELSE NULL END) > COUNT (a.cl)-3

This technique works but has one inherent flaw—it doesn't handle duplicates. There are a number of solutions
to this problem. Here's one that uses a derived table and a correlated sub-query to get the job done:

CREATE TABLE #valueset
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES

Q
e
-

PR RERSSDOEREDNDDNDRE

W O — — — — — —

-— Duplicate value

-— Duplicate wvalue

SELECT 1l.cl
FROM (SELECT ranking=(SELECT COUNT (DISTINCT a.cl) FROM #valueset a
WHERE v.cl >= a.cl),
v.cl
FROM #valueset v) 1
WHERE 1l.ranking <=3
ORDER BY 1l.ranking

This technique uses a derived table and a correlated subquery rather than a cross-join to compare #valueset
with itself. This, in turn, allows us to get rid of the GROUP BY clause, which caused problems with duplicates.
As mentioned earlier, GROUP BY can't distinguish between multiple instances of the same value. When
duplicate values exist within its grouping column(s), it combines them. The key, then, is to return all the rows
in #valueset filtered by criteria that restrict them based on their rank among the other values.

The above code uses a derived table to yield a list of rankings for the values in #valueset. This derived table
uses a correlated subquery to rank each value according to the number of other values in the table that are
less than or equal to it. The subquery is "correlated" because it relates to (in this case, is filtered by) values in
the outer table. (Note the use of valias in the SELECT COUNT(DISTINCT query.) Those with a rank of three
or better make the cut.

Note that you can easily alter this query to return the bottommost rows in the set rather than the topmost.
Here's the query modified to return the bottom four rows from the table:

CREATE TABLE #valueset (
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES

[
=
ct

-— Duplicate wvalue

-— Duplicate value

R RS DS WERE NN

~ e~~~ e~~~ —~ Q
PR — = = — — —

-- Duplicate value

162

Chapter 8. Statistical Functions

INSERT #valueset VALUES (13)

SELECT 1.cl
FROM (SELECT ranking=(SELECT COUNT (DISTINCT a.cl) FROM #valueset a
WHERE v.cl <= a.cl),
v.cl
FROM #valueset v) 1
WHERE 1.ranking <=4
ORDER BY 1l.ranking

W P
oW

Note that both of these queries allow ties in the result set, so you may get back more rows than you request. If
this is undesirable, you can use SELECT TOP or SET ROWCOUNT to limit the actual number of rows
returned, as the examples that follow illustrate.

SET ROWCOUNT

Another alternative to SELECT's TOP n extension is the SET ROWCOUNT command. It limits the number of
rows returned by a query, so you could do something like this in order to return the topmost rows from a
resultset:

SET ROWCOUNT 3
SELECT * FROM #valueset ORDER BY cl
SET ROWCOUNT 0 —-- Reset to normal

Returning the Bottom n Rows is equally simple. To return the bottommost rows instead of the topmost,
change the ORDER BY to sort in descending order.

While this solution is certainly straightforward, it can't handle duplicates very flexibly. You get exactly three
rows, no more, no less. Ties caused by duplicate values are not handled differently from any other value. If
you request three rows and there's a tie for second place, you won't actually see the real third place row—
you'll see the row that tied for second place in the third slot instead. This may be what you want, but if it isn't,
there is a variation of this query that deals sensibly with ties. It take advantage of the fact that assigning a
variable using a query that returns more than one row assigns the value from the last row to the variable. This
is a rarely used trick, and you should probably comment your code to indicate that it's actually what you
intended to do. Here's the code:

CREATE TABLE #valueset (cl int)

INSERT #valueset (2)

INSERT #valueset 5 (2) -- Duplicate wvalue
INSERT #valueset (1)

INSERT #valueset V (3)

INSERT #valueset VA (4)

INSERT #valueset VA (4) —-- Duplicate wvalue
INSERT #valueset VALUES (11)

163

Guru’s Guide to Transact-SQL

INSERT #valueset VALU

ES (11) -- Duplicate value
INSERT #valueset VALUES

(13)

DECLARE (@endcl int

-— Get third distinct value

SELECT DISTINCT TOP 3 @endcl=cl FROM #valueset ORDER BY cl
SELECT * FROM #valueset WHERE cl <= @endcl ORDER BY cl

This query uses DISTINCT to avoid being fooled by duplicates. Without it, the query wouldn't handle
duplicates any better than its predecessor. What we want to do here is assign the value of the third distinct
value to our control variable so that we can then limit the rows returned by the ensuing SELECT to those with
values less than or equal to it. So, if there are duplicates in the top three values, we'll get them. If there aren't,
no harm done—the query still works as expected.

Rankings

Closely related to the Top n Rows problem is that of producing rankings for a set of data. In fact, you'll note
that one of the Top n Rows solutions used a ranking column to qualify the rows it returned. Here's that query
again with the ranking column included in the SELECTIist:

CREATE TABLE #valueset (
INSERT #valueset VALUE
INSERT #valueset VALUE
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES
INSERT #valueset VALUES

int)

-— Duplicate wvalue

-- Duplicate value

~

-— Duplicate wvalue

~ e~~~ e~ o~~~ —~ QO
PR s D W NN
Wl e < - ——

~

SELECT l.ranking, 1l.cl
FROM (SELECT ranking=(SELECT COUNT (DISTINCT a.cl) FROM #valueset a
WHERE v.cl <= a.cl),
v.cl
FROM #valueset v) 1
ORDER BY l.ranking

ranking cl
1 13
2 11
2 11
3 4
3 4
4 3
5 2
5 2
6 1

This query isn't as efficient as it might be since the correlated subquery is executed for every row in #valueset.
Here's a more efficient query that yields the same result:

164

Chapter 8. Statistical Functions

SELECT Ranking=IDENTITY (int), cl
INTO #rankings

FROM f#valueset

WHERE 1=2 -- Create an empty table

INSERT #rankings (cl)
SELECT cl

FROM #valueset

ORDER BY cl DESC

SELECT * FROM #rankings ORDER BY Ranking
DROP TABLE #rankings

Ranking cl
1 13
2 11
3 11
4 4
5 4
6 3
- 5
1

Note the use of SELECT...INTO to create the temporary working table. It uses the IDENTITY() function to
create the table en passant rather than explicitly via CREATE TABLE. Though CREATE TABLE would have
been syntactically more compact in this case, | think it's instructive to see how easily SELECT...INTO allows
us to create work tables.

The SELECT...INTO is immediately followed by an INSERT that populates it with data. Why not perform the
two operations in one pass? That is, why doesn't the SELECT...INTO move the data into the #rankings table
at the same time that it creates it? There are two reasons. First, SELECT...INTO is a special nonlogged
operation that locks system tables while it runs, so initiating one that could conceivably run for an extended
period of time is a bad idea. In the case of tempdb, you'll block other users creating temporary tables, possibly
prompting them to tar and feather you. Second, SQL Server doesn't work as expected here— it hands out
identity values based on the natural order of the #valueset table rather than according to the query's ORDER
BY clause. So, even if locking the system tables wasn't a concern, this anomaly in SQL Server's row ordering
would prevent us from combining the two steps anyway.

This query doesn't handle ties as you might expect. Since the items in the #rankings table are numbered
sequentially, values that are actually duplicates (and hence tied) are listed in sequence as though no tie
existed. If you restrict the rows returned to a given segment of the top of the list and ties are present, you
won't get the results you may be expecting. For example, if you ask for four rows and there was a tie for
second, you'll only see the row in first place followed by the two that tied for second and the one that placed
third. You won't actually see the fourth place row. Since there's no way to know how many ties you might have,
returning the top four rankings from the set is more involved than it probably should be, but modifying the
query to rank the rows more sensibly is fairly easy. Here's an example:

SELECT Ranking=IDENTITY (int), cl
INTO #rankings
FROM #values

WHERE 1=2 -- Create an empty table

INSERT #rankings (cl)
SELECT cl
FROM #valueset
ORDER BY cl1 D
SELECT a.Ranking, r.cl
FROM

(SELECT Ranking=MIN (n.Ranking), n.cl FROM #rankings n GROUP BY n.cl) a,

#rankings r

165

Guru’s Guide to Transact-SQL

WHERE r.cl=a.cl
ORDER BY a.ranking
DROP TABLE f#rankings

Ranking cl
1 13
2 11
2 11
4 4
4 4
6 3
7 2
7 2
9 1

In this query, ties are indicated by identical rankings. In the case of our earlier example, the two rows tied for
second place would be ranked second, followed by the third row, which would be ranked fourth. This is the
way that ties are often handled in official rankings; it keeps the number of values above a particular ranking
manageable.

One piece of information that's missing from the above query is an indication of which rows are ties and how
many ties exist for each value. Here's a modification of the query that includes this information as well:

SELECT a.Ranking, Ties=CAST (LEFT (CAS
NULLIF (a.NumWithValue,1l)*11) AS CHAR
FROM

(SELECT Ranking=MIN (n.Ranking), NumWithValue=COUNT (*), n.cl FROM #rankings n
GROUP BY n.cl) a,

#rankings r
WHERE r.cl=a.cl
ORDER BY a.ranking
DROP TABLE frankings

(a.NumWithValue AS varchar)+'-Way tie',
11)), r.cl

Ranking Ties cl
1 NULL 13
2 2-Way tie 11
2 2-Way tie 11
4 2-Way tie 4
4 2-Way tie 4
6 NULL 3
7 2-Way tie 2
7 2-Way tie 2
9 NULL 1
Modes

There are three basic ways to reflect a middle or typical value for a distribution of values: medians, means
(averages), and modes. We've already covered medians and averages, so let's explore how to compute the
mode of a set of values. A distribution's mode is its most common value, regardless of where the value
physically appears in the set. If you have this set of values:

10, 10, 9, 10, 10

the mode is 10, the median is 9, and the mean is9.8. The mode is 10 because it's obviously the most common

value in the set. Here's a Transact-SQL query that computes the mode for a more complex set of values:
INSERT #valueset VALUES (2)

INSERT #valueset VALUES

INSERT #valueset VALUES

INSERT #valueset VALUES

INSERT #valueset VALUES

166

Chapter 8. Statistical Functions

INSERT #valueset VALUE
INSERT #valueset VALUE
INSERT #valueset VALUE
INSERT #valueset VALUE

)
)
)

S
S
S
S

e
Wk o

(
(
(
(

SELECT TOP 1 WITH TIES cl, COUNT(*) AS NumInstances
FROM #valueset

GROUP BY cl1

ORDER BY NumInstances DESC

cl NumInstances
2 2
4 2

Since a set may have more than one value with the same number of occurrences, it's possible that there may
be multiple values that qualify as the set's mode. That's where SELECT's TOP n extension comes in handy.
Its WITH TIES option can handle situations like this without requiring additional coding.

Histograms

The CASE function makes computing certain types of histograms quite easy, especially horizontal histograms.
Using a technique similar to that in the pivoting example earlier in the chapter, we can build horizontal
histogram tables with a trivial amount of Transact-SQL code. Here's an example that references the sales
table in the pubs database:

SELECT
"Less than 10"=COUNT (CASE WHEN s.sales >=0 AND s.sales <10 THEN 1 ELSE NULL END),
"10-19"=COUNT (CASE WHEN s.sales >=10 AND s.sales <20 THEN 1 ELSE NULL END),
"20-29"=COUNT (CASE WHEN s.sales >=20 AND s.sales <30 THEN 1 ELSE NULL END),
"30-39"=COUNT (CASE WHEN s.sales >=30 AND s.sales <40 THEN 1 ELSE NULL END),
"40-49"=COUNT (CASE WHEN s.sales >=40 AND s.sales <50 THEN 1 ELSE NULL END)
"50 or more"=COUNT (CASE WHEN s.sales >=50 THEN 1 ELSE NULL END)
FROM (SELECT t.title id, sales=ISNULL(SUM(s.gty),0) FROM titles t LEFT OUTER JOIN
sales s

0 n n n

I

L
ON (t.title id=s.title id) GROUP BY t.title id) s

Less than 10 10-19 20-29 30-39 40-49 50 or more

The query computes the titles that fall into each group based on their sales. Note the use of a derived table to
compute the sales for each title. This is necessary because the COUNT() expressions in the SELECTs
column list cannot reference other aggregates. Once the sales for each title are computed, this number is
compared against the range for each group to determine its proper placement.

Histograms have a tendency to make obscure trends more obvious. This particular one illustrates that most
titles have sold between ten and thirty copies.

Stratified Histograms

Beyond simple histograms, stratified histograms are crucial to comparative statistical analysis. They allow
data to be compared in multiple dimensions—both horizontally and vertically. Here's a modification of the first
histogram example to include a stratification column:

SELECT
PayTerms=isnull (s.payterms, 'NA'),
"Less than 10"=COUNT (CASE WHEN s.sales >=0 AND s.sales <10 THEN 1 ELSE NULL END),
"10-19"=COUNT (CASE WHEN s.sales >=10 AND s.sales <20 THEN 1 ELSE NULL END),
"20-29"=COUNT (CASE WHEN s.sales >=20 AND s.sales <30 THEN 1 ELSE NULL END),
"30-39"=COUNT (CASE WHEN s.sales >=30 AND s.sales <40 THEN 1 ELSE NULL END),

167

Guru’s Guide to Transact-SQL

"40-49"=COUNT (CASE WHEN s.sales >=40 AND s.sales <50 THEN 1 ELSE NULL END),
"50 or more"=COUNT (CASE WHEN s.sales >=50 THEN 1 ELSE NULL END)

FROM (SELECT t.title id, s.payterms, sales=ISNULL(SUM(s.gty),0) FROM titles t
LEFT OUTER

-

JOIN sales s ON (t.title id=s.title id) GROUP BY t.title id, payterms) s
GROUP BY s.payterms

PayTerms Less than 10 10-19 20-29 30-39 40-49 50 or
more

NA 1 0 0 0 0 0

Net 30 0 0 5 2 1 1

Net 60 1 4 3 0 0 0

ON invoice 0 2 0 1 0 1

Histograms, pivot tables, and other types of OLAP constructs can also be built using SQL Server's OLAP
Services module. Coverage of this suite of tools is outside the scope of this book, so you should consult the
Books Online for further information.

Cumulative and Sliding Aggregates

Computing running totals in Transact-SQL is relatively straightforward. As in many of the other examples in
this chapter, the technique presented here makes use of a cross-join between two copies of the source table.
Here's the code:

CREATE TABLE #valueset (k1 int identity, cl int)

INSERT #valueset (cl) VALUES (20)
INSERT #valueset (cl) VALUES (30)
INSERT #valueset (cl) VALUES (40)
INSERT #valueset (cl) VALUES (21)
INSERT #valueset (cl) VALUES (31)
INSERT #valueset (cl) VALUES (41)
INSERT #valueset (cl) VALUES (22)
INSERT #valueset (cl) VALUES (32)
INSERT #valueset (cl) VALUES (42)

SELECT v.cl, RunningTotal=SUM(a.cl)
FROM #valueset v CROSS JOIN #valueset a
WHERE (a.kl<=v.kl)

GROUP BY wv.kl,v.cl

ORDER BY v.kl,v.cl

cl RunningTotal
20 20

30 50

40 90

21 111

31 142

41 183

22 205

32 237

42 279

Note the inclusion of the ORDER BY clause. It's required because the GROUP BY clause does not implicitly
order the result set as it did in earlier releases of SQL Server.

Other types of running aggregates can be computed by replacing SUM()with another aggregate function. For
example, to compute a running AVG(), try this:

SELECT v.cl,RunningAverage=AVG(a.cl)

168

Chapter 8. Statistical Functions

FROM #valueset v CROSS JOIN #valueset a
WHERE (a.kl<=v.kl)
GROUP BY v.kl,v.cl
ORDER BY v.kl,v.cl

cl RunningAverage
20 20
30 25
40 30
21 27
31 28
41 30
22 29
32 29
42 31

SELECT RowNumber=COUNT (*), v.cl

FROM #valueset v CROSS JOIN #valueset a
WHERE (a.kl<=v.kl)

GROUP BY wv.kl,v.cl

ORDER BY v.kl,v.cl

RowNumber cl

© W Jdoy Ul WN
w
=

Sliding Aggregates

A sliding aggregate differs from a cumulative aggregate in that it reflects an aggregation of a sequence of
values around each value in a set. This subset "moves" or "slides" with each value, hence the term. So, for
example, a sliding average might compute the average of the current value and its preceding four siblings, like
SO:

CREATE TABLE #valueset (kl int identity, cl int)

INSERT #valueset (cl) VALUES (20)
INSERT #valueset (cl) VALUES (30)
INSERT #valueset (cl) VALUES (40)
INSERT #valueset (cl) VALUES (21)
INSERT #valueset (cl) VALUES (31)
INSERT #valueset (cl) VALUES (41)
INSERT #valueset (cl) VALUES (22)
INSERT #valueset (cl) VALUES (32)
INSERT #valueset (cl) VALUES (42)

SELECT v.kl, SlidingAverage=AVG(l.0*a.cl)
FROM #valueset v CROSS JOIN #valueset a
WHERE (a.kl BETWEEN wv.kl-4 AND v.kl)
GROUP BY v.kl

169

Guru’s Guide to Transact-SQL

k1 SlidingAverage
20.000000
25.000000
30.000000
27.750000
28.400000
32.600000
31.000000
29.400000
33.600000

O 0 J o) U Wk

Note that the sliding averages for the first four values are returned as running averages since they don't have
the required number of preceding values. Beginning with the fifth value, though, SlidingAverage reflects the
mean of the current value and the four immediately before it. As with the running totals example, you can
replace AVG() with different aggregate functions to compute other types of sliding aggregates.

Extremes

An extreme, as defined here, is the largest value among two or more columns in a given table. You can think
of it as a horizontal aggregate. Oracle has functions (GREATEST() and LEAST()) to return horizontal
extremes; Transact-SQL doesn't. However, retrieving a horizontal extreme value for two columns is as simple
as using CASE to select between them, like so:

CREATE TABLE #tempsamp
(SampDate datetime,
Tempb6bam int,

Tempb6bpm int)

INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES

('19990101",44,32
(
(
(
(
(
(
INSERT #tempsamp VALUES (
(
(
(
(
T

)
'19990201"',41,39)
'19990301',48,56)
'19990401"',65,72)
'19990501',59,82)
'19990601"',47,84)
'19990701',61,92)
'19990801',56,101)
'19990901',59,78
'19991001'",54,74
'19991101"',47,67
'19991201',32,41
emp6am > Temp6pm THEN Temp6am ELSE Temp6pm END

INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
INSERT #tempsamp VALUES
SELECT HiTemp=CASE WHEN
FROM #tempsamp

)
)
)
)

170

Chapter 8. Statistical Functions

You can nest CASE functions within one another if there are more than two horizontal values to consider.
Note that you can also order result sets using extreme values. All that's necessary is to reference the CASE
function's column alias in the ORDER BY clause like this:

SELECT HiTemp=CASE WHEN Tempb6am > Temp6pm THEN Temp6am ELSE Temp6pm END
FROM #tempsamp
ORDER BY HiTemp

If you wish to order by the extreme without actually selecting it, simply move the CASE expression from the
SELECT list to the ORDER BY clause. Here's a query that returns the samples sorted by the lowest
temperature on each sample date:

SELECT *
FROM #tempsamp
ORDER BY CASE WHEN Temp6am < Tempb6pm THEN Temp6am ELSE Temp6pm END

SampDate Temp6am Temp 6pm
1999-01-01 00:00:00.000 44 32
1999-12-01 00:00:00.000 32 41
1999-02-01 00:00:00.000 41 39
1999-06-01 00:00:00.000 47 84
1999-11-01 00:00:00.000 47 67
1999-03-01 00:00:00.000 48 56
1999-10-01 00:00:00.000 54 74
1999-08-01 00:00:00.000 56 101
1999-05-01 00:00:00.000 59 82
1999-09-01 00:00:00.000 59 78
1999-07-01 00:00:00.000 61 92
1999-04-01 00:00:00.000 65 72

Determining Extreme Attributes

Beyond returning horizontal extreme values, a query might need to indicate which attribute actually contains
the extreme value. Here's a query that does that:

SELECT Month=DATENAME (mm, SampDate) ,
HighestTemp=CASE WHEN Temp6am > Tempb6pm THEN 'Morning' ELSE 'Evening' END
FROM #tempsamp

Month HighestTemp

171

Guru’s Guide to Transact-SQL

January Morning
February Morning
March Evening
April Evening
May Evening
June Evening
July Evening
August Evening
September Evening
October Evening
November Evening
December Evening

Once you've computed a horizontal extreme, you may wish to find all the rows in the table with the same
extreme value. You can do this using CASE in conjunction with a subquery. Here's an example:

SELECT *

FROM #tempsamp

WHERE (CASE WHEN Temp6am < Tempb6pm THEN Temp6am ELSE Temp6pm END)=
(SELECT MIN (CASE WHEN Tempb6tam < Temp6pm THEN Temp6am ELSE Tempb6pm END)
FROM f#tempsamp)

SampDate Temp6am Temp 6pm
1999-01-01 00:00:00.000 44 32
1999-12-01 00:00:00.000 32 41
Summary

In this chapter, you learned about computing statistical information using Transact-SQL. You learned about
the built-in statistical functions as well as how to build your own. Thanks to SQL Server's set orientation and
statistical functions, it's a very capable statistics calculation engine—more so, in fact, than many 3GL tools.

172

Chapter 9. Runs and Sequences

Chapter 9. Runs and Sequences

| like to remind my team that ultimately we ship products, not specs and design documents,
so we need to remember the end game.

—Ron Soukup

Runs, regions, sequences, and series are related data constructs that usually include a minimum of two
columns: a key column that is more or less sequential and a value column that contains the information in
which we're interested. The key column of a sequence (or series) is sequential, with no gaps between
identifiers. Examples of sequences include time series, invoice numbers, account numbers, and so on. A run's
key column is also sequential, though there may or may not be gaps between identifiers. Examples of runs
include those of regular sequences (with gaps, of course) as well as house numbers, version numbers, and
the like. A region is a subsequence whose members all meet the same criteria. The simplest example of a
region is a subsequence whose members all have the same value. An interval is the product of dividing a
sequence or run into multiple, evenly sized subsequences or subsets.

Queries to process these constructs are often quite similar to one another, and the techniques to process one
type of ordered list may overlap those of another. So, the query that finds relationships between the members
of a run may also work with time series data—it just depends on what you're doing.

Sequences

Time series are probably the most ubiquitous examples of sequences. A common need with time series is to
find areas or periods within a series where values have a particular relationship to one another. You might
want to know, for example, the range of time when a stock issue was steadily increasing in price, when prices
were within a certain percentage of one another, and so on. Here's a query that demonstrates how to do this
in Transact-SQL:

CREATE TABLE #valueset (k1 smalldatetime, cl int)

(
INSERT #valueset (kl, cl) VALUES ('19990901',28)
INSERT #valueset (k1, cl) VALUES ('19991001"',25)
INSERT #valueset (k1, cl) VALUES ('19991101',13)
INSERT #valueset (k1, cl) ('19991201"',15)
INSERT #valueset (kl, cl) ('20000101"',35)
INSERT #valueset (kl, cl) ('20000201"',38)
INSERT #valueset (k1, cl) ('20000301"',106)

SELECT v.kl, v.cl

FROM #valueset v JOIN #valueset a

ON ((a.cl >= v.cl) AND (a.kl = DATEADD (mm,1l,v.k1l)))

OR ((a.cl <= wv.cl) AND (a.kl = DATEADD (mm,-1,v.kl)))
TP

1999-11-01 00:00:00
1999-12-01 00:00:00
2000-01-01 00:00:00
2000-02-01 00:00:00

Ul

w w = =
(G2 BN0N]

co

This query identifies regions within the series where values increase in succession. It uses a self-join to
compare the work table with itself, then removes duplicates from the result set via a GROUP BY clause. Note
the use of the DATEADD() function to refer to each data point's next and previous months.

Time Series Fluctuation

173

Guru’s Guide to Transact-SQL

Another common need with time series is to compute the change from one value to the next. You can use this
measurement to gauge volatility from point to point within the series and to identify outlying values. Here's an
example:

SELECT
StartTime=CAST (v.kl AS char(12)), EndTime=CAST (a.kl AS char(12)),
StartVal=v.cl, EndVal=a.cl,
Change=SUBSTRING('- +',SIGN(a.cl-v.cl)+2,1)+CAST(ABS(a.cl-v.cl) AS varchar)
FROM
(SELECT k1, cl, ranking=(SELECT COUNT (DISTINCT kl) FROM #valueset u
WHERE u.kl <= 1.k1l)
FROM #valueset 1) v LEFT OUTER JOIN
(SELECT k1, cl, ranking=(SELECT COUNT (DISTINCT kl) FROM #valueset u
WHERE u.kl <= 1.k1l)
FROM #valueset 1) a
ON (a.ranking=v.ranking+1l)
WHERE a.kl IS NOT NULL

StartTime EndTime StartVval EndvVal Change
Sep 1 1999 Oct 1 1999 28 25 -3

Oct 1 1999 ©Nov 1 1999 25 13 -12
Nov 1 1999 Dec 1 1999 13 15 +2

Dec 1 1999 Jan 1 2000 15 35 +20
Jan 1 2000 Feb 1 2000 35 38 +3

Feb 1 2000 Mar 1 2000 38 16 =22

There are several interesting elements here worth mentioning. First, note the use of derived tables to rank the
values in the series against one another. Though it would be syntactically more compact to move these to a
view, this approach demonstrates the viability of a single SELECT to get at the data we want.

Next, note the use of a subquery within each derived table to compute the ranking itself. It does this via a
COUNT(DISTINCT) of the other values in the work table that are less than or equal to each value. Finally,
note the use of the SIGN() and SUBSTRING() functions to produce a sign prefix for each change. While
simply displaying a.c1-v.c1 would have indicated negative changes via the standard "2" prefix, positive
changes would have remained unsigned.

Sampling Every nth Value

Performing calculations or computing statistics on everynth value is another common sequence-related task.
Because the query above materializes the rankings of each item in the time series, this is relatively trivial to do.
Here's the earlier query modified to sample every third value:

SELECT
StartTime=CAST (v.kl AS char(12)), EndTime=CAST (a.kl AS char(12)),
StartVal=v.cl, EndVal=a.cl,
Change=SUBSTRING('- +',SIGN(a.cl-v.cl)+2,1)+CAST(ABS(a.cl-v.cl) AS varchar)
FROM
(SELECT k1, cl, ranking=(SELECT COUNT (DISTINCT k1) FROM #valueset u
WHERE u.kl <= 1.Kkl)
FROM #valueset 1) v LEFT OUTER JOIN
(SELECT k1, cl, ranking=(SELECT COUNT (DISTINCT kl) FROM #valueset u
WHERE u.kl <= 1.Kk1l)
FROM #valueset 1) a
ON (a.ranking=v.ranking+1l)
WHERE a.kl IS NOT NULL AND v.ranking%3=0

StartTime EndTime Startval Endval Change

Nov 1 1999 Dec 1 1999 13 15 +2

174

Chapter 9. Runs and Sequences

Feb 1 2000 Mar 1 2000 38 16 =22

The only real change here is the use of modulus 3 to qualify the rows the query returns. Since only third rows
will satisfy v.ranking%3, we get the result we're after.

Regions

The most common region-related task is identifying the regions in the first place. Unlike sequences and runs,
where the presence of the construct itself is implicit, a region is defined by its values. Members of a particular
region are sequential, and all meet the same membership criteria. These criteria may stipulate that all
members of the region have the same absolute value, that each value has the same relationship to the
previous value, or that each value qualifies in some other way. Here's a technique for identifying regions
within a sequence:

CREATE TABLE #valueset (kl int identity, cl int)

INSERT #valueset (cl) VALUES (20)
INSERT #valueset (cl) VALUES (30)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (41)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (32)
INSERT #valueset (cl) VALUES (42)

SELECT v.kl

FROM #valueset v JOIN #valueset a

ON (v.cl=0) AND (a.cl=0) AND (ABS(a.kl-v.kl)=1)
GROUP BRY wv.kl

As illustrated here, the region consists of items in the sequence whose value is zero. The query's magic is
performed via a self-join that's filtered for duplicates via the GROUP BY clause. The ON clause limits the
values considered to 1)those whose value is zero and 2)those with an adjacent value of zero. Adjacency is
determined by subtracting the value of the key column in v from that ofa. An absolute value of one indicates
that the key is either just before or just after the one in v.

Relative Condition Regions

In addition to absolute values, relative conditions are a popular criterion for establishing region membership. A
relative condition identifies some relationship between the values in the sequence. Finding regions whose
values increase sequentially is an example of finding a region based on a relative condition. Here's some
Transact-SQL code that identifies a region whose values increase monotonically:

CREATE TABLE #valueset (kl int, cl int)

INSERT #valueset (kl, cl) (300,15)
INSERT #valueset (k1) (340, 25)
INSERT #valueset (k1,) (344,13)
INSERT #valueset (kl1, cl) VALUES (345,14)
INSERT #valueset (k1,) VALUES (346,15)
INSERT #valueset (k1) VALUES (347,38)
INSERT #valueset (k1) VALUES (348,10)

175

Guru’s Guide to Transact-SQL

SELECT v.k1l, v.cl

FROM #valueset v JOIN #valueset a

ON ((a.cl = v.cl+1l) AND (a.kl = v.k1l+1))
OR ((a.cl = v.cl-1) AND (a.kl = v.k1l-1))
GROUP BY wv.kl, v.cl

k1l cl
344 13
345 14
346 15

Again, we use a self-join to compare the work table with itself. The two join criteria established by the ON
clause are 1)each key value in the region must be one less or one more than the value under consideration
and 2)each value must be correspondingly sequential with its adjacent values.

Note that it's not difficult to modify this query to look for values that merely increase from point to point in the
series—that is, ones that aren't necessarily contiguous. Here's an example:

SELECT v.k1l, wv.cl

FROM #valueset v JOIN #valueset a

ON ((a.cl >= wv.cl) AND (a.kl = v.kl+1))
OR ((a.cl <= wv.cl) AND (a.kl = v.kl-1))
GROUP BY v.kl, v.cl

k1l cl
344 13
345 14
346 15
347 38

Constraining Region Sizes

Once we've identified a region, it may be desirable to qualify it further based on size. We may not want to see
within a sequence every region whose members have an absolute value or have a specific relationship to one
another—we may want to limit the regions we consider to those of a particular size or larger. Here's some
Transact-SQL code that illustrates how to constrain regions based on size:

CREATE TABLE #valueset(kl int identity, cl int)

INSERT #valueset (cl) VALUES (20)
INSERT #valueset (cl) VALUES (30)
INSERT #valueset (cl) VALUES (32)
INSERT #valueset(cl) VALUES (34)
INSERT #valueset(cl) VALUES (36)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (41)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (0)
INSERT #valueset (cl) VALUES (42)

SELECT v.kl
FROM #valueset v JOIN #valueset a ON (v.cl1=0)
GROUP BY v.kl
HAVING
ISNULL (MIN (CASE WHEN a.kl > v.kl AND a.cl !=0 THEN a.kl ELSE null END)-1,

176

Chapter 9. Runs and Sequences

MAX (CASE WHEN a.kl > v.kl THEN a.kl ELSE v.kl END))
ISNULL (MAX (CASE WHEN a.kl < v.kl AND a.cl !'=0 THEN a.kl ELSE null END)+1,
MIN (CASE WHEN a.kl < v.kl THEN a.kl ELSE wv.kl END)))+1
>=3 —-- Desired region size
k1l
9
10
11

The ">=3" above constrains the size of the regions listed to those of three or more elements, as the code
comment indicates. Note how the first region (consisting of two zero values) in the series is ignored by the
query since it's too small. Only the second one, which has the required number of members, is returned.
Beyond the use of JOIN and GROUP BY to compare the table with itself, the real work of the query is
performed by the HAVING clause. Consider the first ISNULL() expression. It uses CASE to find either 1)the
first key in a that is both less than the current key in v and whose value is nonzero or 2)the last key in a that is
greater than the current key inv. If a key that meets the first criterion isn't found, it will always be the last key in
the table. The idea is to find the nearest nonzero value following the current key inv. What we are attempting
to do is identify the key value of the region's lower boundary— its terminator.

The second ISNULL() expression is essentially a mirror image of the first. Its purpose is to establish the
identity of the first key in the region. Once the boundary keys have been identified, the upper boundary is
subtracted from the lower boundary to yield the region size. This is then compared to "=3" to filter out regions
smaller than three members in size.

Though this technique works and is relatively compact from a coding standpoint, I'd be the first to concede
that, at least on the surface, it appears to be a bit convoluted. For example, CASE is used to "throw" a NULL
back to ISNULL— which forces ISNULL() to evaluate its second argument— forming a crude nested if-then-
else expression. Written a bit more clearly, the first ISNULL() expression might look like this:

CASE

WHEN a.kl > v.kl AND a.cl !=0 THEN MIN(a.kl)-1

ELSE MAX (CASE WHEN a.kl > v.kl THEN a.kl ELSE wv.kl END)
END

The problem with this is that the plain references to a.k1 and a.c1 aren't allowed in the HAVING clause
because they aren't contained in either an aggregate or the GROUP BY clause. This is an ANSI SQL
restriction and is normally a good thing— except when you're attempting complex queries with single
SELECTS s like this one. We can't do much about the fact that they aren't in the GROUP BY clause— we need
to leave it as is to consolidate our self-join. However, we cannest both of these values within aggregate
functions so that they conform to ANSI SQL's HAVING clause restrictions. And this is exactly what the query
does— it "hides" CASE function logic within aggregates to get past limitations imposed by HAVING— and it's
the main reason the logic appears somewhat tangled at first.

Region Boundaries
It's sometimes desirable to return region boundaries rather than the regions themselves. The query above

used boundaries to compute region sizes in order to constrain the ones returned. Here's a variation of that
query that returns the boundaries of each region it finds:

Start=v.kl,RegionEnd=ISNULL (MIN (CASE WHEN a.kl>v.kl AND a.cl !=0
null END) -1,

VHEN a.kl > v.kl THEN a.kl ELSE v.kl END))

7 JOIN #valueset a ON (v.cl=0)

ISNULL (MIN (CASE WHEN a.kl>v.kl AND a.cl !=0 THEN a.kl ELSE null END)-1,
MAX (CASE WHEN a.kl > v.kl THEN a.kl ELSE v.kl END)) > v.kl

177

Guru’s Guide to Transact-SQL

AND
ISNULL (MAX (CASE WHEN a.kl<v.kl AND a.cl !=0 THEN a.kl ELSE null END)+1,
MIN (CASE WHEN a.kl < v.kl THEN a.kl ELSE v.kl END)) = v.kl

RegionStart RegionEnd

9]
9 11
Runs

Like their contiguous sequence cousins, runs include a minimum of two columns: a key column and a value
column. The key column is always sequential, though its values may not be contiguous.

As with sequences, the existence of a run is implicit. Examples of runs include time series with irregular entry
points and numbering systems with gaps (e.g., invoice numbers, credit card numbers, house numbers).

Regions

By contrast, regions within runs are not implicit. As described earlier, regions exist based on membership. The
Transact-SQL code required to locate regions within a run is not unlike that used to find them within
sequences. Here's an example:

CREATE TABLE #valueset (k1 iﬂt cl int)
INSERT #valueset VALUE (2
INSERT #valueset VALUE (
INSERT #valueset VALUE (5
INSERT #valueset VALUE (9
INSERT #valueset VALUES (
INSERT #valueset VALUE (
INSERT #valueset VALUE (
INSERT #valueset VALUES (
INSERT #valueset VALUES (

SELECT v.kl

FROM #valueset v JOIN #valueset a ON (v.cl=0)

GROUP BY v.kl

HAVING (MIN (CASE WHEN a.kl > v.kl THEN (2*(a.kl-v.kl))+CASE WHEN a.cl<>0 THEN 1
ELSE 0 END ELSE null END) $%2=0)

OR (MIN(CASE WHEN a.kl < v.kl THEN (2*(v.kl-a.kl))+CASE WHEN a.cl<>0 THEN 1 ELSE
0 END ELSE null END) %2=0)

As with many of the other queries, this query uses a self-join/GROUP BY combo to compare the work table
with itself. Note the use of nested CASE expressions to effect some fairly complex logic. Also note the way in
which this logic is wrapped within aggregate functions so that it complies with ANSI SQL's restrictions on the
HAVING clause.

Region Boundaries

178

Chapter 9. Runs and Sequences

As we did with sequences, let's explore how to return the outer boundaries of run regions rather than the
regions themselves. Here's some code that returns the boundaries of the regions it encounters within a run:

CREATE TABLE #valueset (k1 int, cl int)
INSERT #valueset VALUES (2,20)
INSERT #valueset VALUES (3,30)
INSERT #valueset VALUES (5,0)
INSERT #valueset VALUES (9,0)
INSERT #valueset VALUES (10,0)
INSERT #valueset VALUES (11,40)
INSERT #valueset VALUES (13,0)
INSERT #valueset VALUES (15,0)
INSERT #valueset VALUES (16,42)
SELECT StartRun=v.kl, EndRun=a.kl

FROM #valueset v JOIN #valueset a ON
GROUP BY v.kl, a.kl
HAVING
(SUM(ABS (1.cl) * (CASE WHEN wv.kl <=1.kl AND 1.kl
AND (ISNULL (MIN(CASE WHEN 1.kl > a.kl
THEN (2*(l.kl-a.kl))+ (CASE WHEN 1l.cl<>0 THEN 1 ELSE 0 END)
ELSE null END),1)%2 0)

(v.kl < a.kl) CROSS JOIN #valueset 1

<= a.kl THEN 1 ELSE 0 END))=0)

I =

AND (ISNULL (MIN(CASE WHEN 1.kl < v.kl
THEN (2*(v.kl-1.k1l))+ (CASE WHEN 1.cl<>0 THEN 1 ELSE 0 END)
ELSE null END),1)
%2 !'=0)
StartRun EndRun
5 10
6 15

As with the previous query, this example embeds much of its work within aggregate functions in the HAVING
clause. Some of this is counterintuitive. Note, for example, the HAVING clause expression:

(SUM(ABS (1.cl)* (CASE WHEN v.kl <=1.k1l AND 1.kl <= a.kl THEN 1 ELSE 0 END) 50)

Written more legibly, it might read:

((CASE WHEN v.kl <=1.k1 AND 1.kl <= a.kl THEN SUM(ABS(l.cl)) ELSE 0 END)50)

However, as mentioned before, v.k1 and L.k1 must either also appear in the GROUP BY clause or be wrapped
in an aggregate function in order to be used in the HAVING clause, so this syntax won't work. Instead, we
return either one or zero from the CASE expression and then multiply SUM(ABS(l.c1)) by it, achieving the
same result.

Another interesting characteristic of this query is the use of three instances of the work table. The fact that the
run's key values may not be sequential causes some additional work that requires a third instance of the table
to be performed, even though no columns are returned from it by the query.

Constrained Regions

As mentioned in the sequence examples, the need to constrain regions based on size is a common one.
Here's a Transact-SQL query that scans a run for regions consisting of three or more members with values
less than10:

CREATE TABLE #valueset
INSERT #valueset VALUES

(k1 int,
(2,20)

cl int)

179

Guru’s Guide to Transact-SQL

INSERT #valueset VALUES (3,30)
INSERT #valueset VALUES (5,0)

INSERT #valueset VALUES (9,4)

INSERT #valueset VALUES (10,8)
INSERT #valueset VALUES (11,40)
INSERT #valueset VALUES (13,0)
INSERT #valueset VALUES (15,12)
INSERT #valueset VALUES (16,42)

SELECT
StartRun=v.kl,
StartRunv=v.cl,
EndRun=a.kl,
EndRunV=a.cl,
RunSize=COUNT (CASE WHEN wv.kl <= 1.kl AND 1.kl <= a.kl THEN 1 ELSE null END),
RunAvg=AVG (CASE WHEN v.kl <= 1.k1 AND 1.kl <= a.kl THEN 1l.cl ELSE null END)
FROM #valueset v JOIN #valueset a ON (v.kl < a.kl) CROSS JOIN #valueset 1
GROUP BY v.kl, v.cl, a.kl, a.cl
HAVING (COUNT (CASE WHEN v.kl <= 1.k1 AND 1.kl <= a.kl THEN 1 ELSE NULL END)>=3) -
,3:
i
Desired Run size
AND (COUNT ((CASE WHEN 1.cl >=10 THEN 1 ELSE NULL END)* (CASE WHEN v.kl <= 1.kl AND
1.kl <=
-
a.kl THEN 1 ELSE NULL END))=0)
AND (ISNULL (MIN((CASE WHEN 1.kl > a.kl THEN (2*(l.kl-a.kl))+ (CASE WHEN 1.cl1l>=10
THEN 1

-

ELSE 0 END) ELSE null END)),1)%2 != 0)

AND (ISNULL (MIN((CASE WHEN 1.kl < v.kl THEN (2*(v.kl-1.k1l))+(CASE WHEN 1.cl1>=10
THEN 1

L

ELSE 0 END) ELSE null END)),1)%2 != 0)

StartRun StartRunV EndRun EndRunVv RunSize RunAvg
5 0 10 8 3 4

This query also requires three instances of the work table to get the job done. It self-joins the first two, then
cross-joins the third and removes the resulting duplicates using a GROUP BY clause. Beyond that, most of
the logic controlling which rows make it into the result set is contained in the HAVING clause. As in many of
the examples presented thus far, much of the selection logic is embedded in aggregate functions so that it
conforms to the restrictions imposed by HAVING.

Intervals

An interval is an ordered subsequence of values of a particular size. The ability to split a sequence into a
given number of equally sized intervals has lots of business applications— everything from stratifying
customer lists to breaking sample sequences into more manageable chunks. Assuming we start with the
following table:

CREATE TABLE #valueset (cl int)

INSERT #valueset VALUES (20)
INSERT #valueset VALUES (30)
INSERT #valueset VALUES (40)
INSERT #valueset VALUES (21)
INSERT #valueset VALUES (31)
INSERT #valueset VALUES (41)

180

Chapter 9. Runs and Sequences

INSERT #valueset VALUES
INSERT #valueset VALUES (
INSERT #valueset VALUES (

Sw N
DN DN

here's a Transact-SQL SELECT statement that breaks the sequence into three intervals, returning the end
point of each one:

SELECT v.cl

FROM #valueset v CROSS JOIN #valueset a

GROUP BY v.cl

HAVING COUNT (CASE WHEN a.cl <= v.cl THEN 1 ELSE null END)$% (COUNT (*)/3)=0

Here again we use the JOIN/GROUP BY combo to compare the table with itself. And, again, the query's
selection logic is embedded in its HAVING clause. The "/3" in the HAVING clause indicates the interval size
we seek. The HAVING clause works by counting the number of items ina that are less than or equal to the
current item inv, then checking that number modulus the total number of rows divided by the desired interval
size. If the modulus is zero, we have an interval end point that will be returned by the query.

Note that it's trivial to return the position of each end point as well. Here's the code:

SELECT

IntervalEnd=v.cl,

IntervalPos=COUNT (CASE WHEN a.cl <= v.cl THEN 1 ELSE null END)

FROM #valueset v CROSS JOIN #valueset a

GROUP BY v.cl

HAVING COUNT (CASE WHEN a.cl <= v.cl THEN 1 ELSE null END) % (COUNT (*)/3)=0

IntervalEnd IntervalPos

To get the start points rather than the end points of each interval, change the modulus check to "1," like this:

SELECT v.cl

FROM #valueset v CROSS JOIN #valueset a

GROUP BY wv.cl

HAVING COUNT (CASE WHEN a.cl <= v.cl THEN 1 ELSE null END)$% (COUNT (*)/3)=1

Partitioned Intervals

Rather than computing intervals over an entire sequence, it's often desirable to compute them in a sectioned
or partitioned fashion. That is, instead of seeing all the partitions across an en- tire table, we might want to see

181

Guru’s Guide to Transact-SQL

them grouped based on a particular column— a GROUP BY column (or columns), if you will. Since Transact-
SQL has no INTERVAL_BEGIN()- or INTERVAL_END()-type aggregate functions, performing a vector
computation such as this requires a nontraditional approach. As with most of the solutions presented in this
chapter, the technique presented here uses the Cartesian product of two instances of the work table, together
with GROUP BY and HAVING to return the data we seek. Here's a Transact-SQL routine that returns a
partitioned listing of interval information:

INSERT #valueset
INSERT #valueset
INSERT #valueset V
INSERT #valueset
INSERT #valueset

~
[G20NE)]
06}

o
Y

~

CREATE TABLE #valueset (kl int, cl int)
INSERT #valueset \ 5 (1,20)
INSERT #valueset (1,21)
INSERT #valueset (1,22)
INSERT #valueset (1,24)
INSERT #valueset (1,28)
INSERT #valueset (2,31)
INSERT #valueset (2,32)
INSERT #valueset (2,40)
INSERT #valueset (2,41)
INSERT #valueset ¥ (3,52)
INSERT #valueset (3,53)
INSERT #valueset (3,56)
()
())
()
()
()

SO W0 W W W Ww
~
[@>Ne]

~
[IO

N

SELECT v.k1l, v.cl
FROM #valueset v JOIN #valueset a ON (v.kl=a.kl)
GROUP BY v.kl, v.cl
HAVING
COUNT (CASE WHEN a.c
(COUN

BETWEEN OUNT (*) /4

— =
/\
Il

C
“
<
Q
—

THEN 1 ELSE null END)
T

=
w NN
N PO

[G2BN0N)

w N

w w NN

ol

This code partitions, or groups, the rows in the table using the k1 column into intervals of four. It then returns
the top two values from each interval. This would be useful, for example, if you needed to return the top n
salespeople from each region or the top n students within each class, but you wanted to constrain the list to
intervals of a particular size to filter out to sales people in regions with no competition or students in classes
with few other students.

Summary

Sequences, series, runs, and regions are similar data constructs that typically include at least two columns: a
sequential (though not necessarily contiguous) key column and a value column. Sequences and series are
synonymous. A sequence's key column values are sequential, with no gaps between them. A run's key
column values are also sequential, though they may not be contiguous. A region is a portion of a sequence or
run whose members meet a given set of criteria. Intervals are produced by dividing a sequence or run into
multiple, evenly sized subsequences or subsets.

In this chapter, you learned how to use self-joins and cross-joins to identify complex data trends and data
relationships within tables. Using the example code included in this chapter, you should be able to solve most

182

Chapter 9. Runs and Sequences

types of run-and sequence-related problems without resorting to control-of-flow language statements such as
loops.

183

Chapter 10. Arrays

Chapter 10. Arrays

Init, Use, Destroy. Three procedure calls, six possible sequences, five of them wrong. | am
quietly impressed that any nontrivial applications ever work.

—Thomas L. Holaday

Because there's no built-in array data type, there's really no direct way to store or work with true arrays in
Transact-SQL. There are a couple of alternatives that are fairly array-like, but since they really aren't arrays in
the 3GL sense of the word, they're less than ideal.

The two most obvious ways to simulate an array in Transact-SQL are setting up a table that mimics an array
(with columns simulating dimensions) and using a single column to store multiple values (with special indexing
routines to flatten or compose the array elements). The first approach has the advantage of being more
relational and extensible. Adding a dimension is as simple as adding a column. The second approach has the
advantage of simplicity and intuitiveness. Having a column that stores multiple values is not far removed from
having one that can store an array—it's largely a question of semantics and syntax.

Note that arrays, by their very nature, violate the basic rules of normalization. For a table to be even first
normal form compliant, it must be free of repeating values. Repeating values can take the form of multiple
columns used to store instances of the same type of value or multiple values within a single column. These
repeating values must be removed if a table is to be considered normalized. Storing arrays—even "virtual"
arrays like the ones discussed in this chapter—is a form of denormalization that you should undertake only in
special circumstances.

Arrays as Big Strings

Storing arrays as large character strings is not a new concept. In fact, in the 1980s, the Advanced Revelation
DBMS garnered quite a following through its support of "multivalued" columns—essentially string fields with
multiple values and special routines to manipulate them. Even today, many DBMSs that support array
columns store them internally as simple buffers and provide SQL extensions that insulate the developer from
having to know or deal with this. Here's a sample query that demonstrates the multivalued column approach in
Transact-SQL:

CREATE TABLE #array (k1 int identity, arraycol varchar (8000))
INSERT #array (arraycol) VALUES ('LES PAUL '+

'BUDDY GUY '+

'JEFF BECK ")
INSERT #array (arraycol) VALUES ('STEVE MILLER '+

INSERT #array (arraycol) VALUES (

'"ERIC CLAPTON '+
'SLASH)

SELECT Elementl=SUBSTRING (arraycol, (0*15)+1,15),

Element?2 3STRING (arraycol, (1*15)+1,15),

BSTRING (arraycol, (2*15)+1,15)

Element3=

lementl Element?2 Element3
LES PAUL BUDDY GUY JEFF BECK
S ' MILLER EDDIE VAN HALEN TOM SCHOLZ
STEVE VAI ERIC CLAPTON SLASH

This technique stores multiple values in the work table's arraycol column. These values emulate a single-
dimensional array, which is the easiest type to work with using this approach. Multidimensional arrays are
feasible as well, but they're exponentially more complex to deal with. Rather than building multidimensional

185

Guru’s Guide to Transact-SQL

arrays into a single row, another way to accomplish the same thing is to spread the dimensions of the array
over the entire table, with each record representing just one row in that array.

Note the use of varchar(8000) to define the array column. With the advent of SQL Server's large character
data types, we can now store a reasonably sized array using this approach. In the case of an array whose
elements are fifteen bytes long, we can store up to 533 items in each array column, in each row. That's plenty
for most applications.

Also note that virtually any type of data can be stored in this type of virtual array, not just strings. Of course,
anything stored in a character column must be converted to a string first, but that's a minor concern. The only
prerequisite is that each item must be uniformly sized, regardless of its original datatype.

The INSERT statements used to populate the table are intentionally split over multiple lines to mimic filling an
array. Though it's unnecessary, you should consider doing this as well if you decide to use this approach. It's
more readable and also helps with keeping each element sized appropriately—an essential for the technique
to work correctly.

Note the use of the expression (n*s)+1 to calculate each array element's index. Here, n represents the
element number (assuming a base of zero) you wish to access, and s represents the element size. Though it
would be easier to code

SUBSTRING (arraycol,1,15)

using the expression establishes the relationship between the element you seek and the string stored in the
varchar column. It makes accessing any element as trivial as supplying its array index.

This technique does not require that the number of elements be uniform between rows in the table. Here's an
example that shows how to implement "jagged" or unevenly sized arrays:

CREATE TABLE #array (kl int identity, arraycol varchar (8000))
INSERT #array (arraycol) VALUES ('LES PAUL ' 4

'BUDDY GUY '+
'JEFF BECK '+
'JOE SATRIANI ")
INSERT #array (arraycol) VALUES ('STEVE MILLER '+
'EDDIE VAN HALEN'-H+
'TOM SCHOLZ ")
INSERT #array (arraycol) VALUES ('STEVE VAT '+
'ERIC CLAPTON '
'SLASH '+
'JIMI HENDRIX '
'JASON BECKER '+
'MICHAE HARTMAN'")
SELECT
Elementl1=SUBSTRING (arraycol, (0*15)+1,15),
Element?2 “U% TRING (arraycol, (1*15)+1,15),
Element3=SUBSTRING (arraycol, (2*15)+1,15),
Elementd= >U3%T?Ih6(arraycol (3*15)+1,15),
Element5=SUBSTRING (arraycol, (4*15)+1,15),
Element6=SUBSTRING (arraycol, (5*15)+1,15)
FROM f#farray a
Elementl Element?2 Element3 Element4 Element5
Element6
-
LES PAUL BUDDY GUY JEFEF BECK JOE SATRIANI
STEVE MILLER EDDIE VAN HALEN TOM SCHOLZ
STEVE VAT ERIC CLAPTON SLASH JIMI HENDRIX JASON BECKER
MICHAEL
-
HARTMAN

186

Chapter 10. Arrays

The only thing that's really different here is the data. Since SUBSTRING() returns an empty string when
passed an invalid starting point, we don't need special handling for arrays with fewer than six elements.

The example above is limited to arrays with six or fewer elements. What if we want to support arrays of sixty
elements? What if we need arrays with hundreds of elements? Are we forced to include a separate column in
the result set for each one? The technique would be rather limited if we had to set up a separate result set
column for every element. That would get cumbersome in a hurry. Here's some code that demonstrates how
to handle arrays of any size without coding static result set columns for each element:

DECLARE @arrayvar varchar (8000)
DECLARE @i int, @1 int
DECLARE ¢ CURSOR FOR SELECT arraycol FROM #array

OPEN c
FETCH c¢ INTO (@arrayvar

WHILE (@@FETCH STATUS=0) BEGIN
SET @i=0
SET @1=DATALENGTH (@arrayvar) /15

WHILE (@i<@1l) BEGIN
SELECT 'Guitarist'=SUBSTRING (CGarrayvar, (@i*15)+1,15)
SET @i=@Qi+1
END
FETCH c¢ INTO (@arrayvar
END

CLOSE c¢
DEALLOCATE c

Guitarist

LES PAUL

Guitarist

BUDDY GUY

Guitarist

JEFF BECK

Guitarist

JOE SATRIANI

Guitarist

STEVE MILLER

Guitarist

EDDIE VAN HALEN

Guitarist

TOM SCHOLZ
Guitarist

STEVE VAT

187

Guru’s Guide to Transact-SQL

Guitarist

ERIC CLAPTON

Guitarist

JIMI HENDRIX

Guitarist

JASON BECKER

Guitarist

MICHAEL HARTMAN

This code opens a cursor on the work table, then iterates through the array in each row. It uses the
DATALENGTH() function to determine the length of each array and a loop to SELECT each element from the
array using the indexing expression introduced in the previous query.

Though this technique is flexible in that it allows us to process as many array elements as we want with a
minimum of code, it suffers from one fundamental flaw: It returns multiple result sets. Many front ends don't
know how to handle multiple result sets and will balk at query output such as this. There are a couple of ways
around this. Here's one approach:

CREATE TABLE #results (Guitarist wvarchar (15))

DECLARE @arrayvar varchar (8000)
DECLARE @i int, @1 int
DECLARE c¢ CURSOR FOR SELECT arraycol FROM f#array

OPEN c
FETCH c¢c INTO (@arrayvar

WHILE (@@FETCHisTATUS:O) BEGIN
SET @i=0
SET @1=DATALENGTH (@arrayvar) /15
WHILE (Q@i<@1l) BEGIN
INSERT #results SELECT SUBSTRING (Qarrayvar, (@i*15)+1,15)
SET @i=@i+1
END
FETCH c¢ INTO (@arrayvar
END
CLOSE c¢
DEALLOCATE c

SELECT * FROM #results
DROP TABLE #results

Guitarist

LES PAUL

BUDDY GUY

JEFF BECK

JOE SATRIANI
STEVE MILLER
EDDIE VAN HALEN

188

Chapter 10. Arrays

TOM SCHOLZ
STEVE VAT

ERIC CLAPTO
SLASH

JIMI HENDRIX
JASON BECKER
MICHAEL HARTMAN

Here, we use a temporary table to store each array element as it's processed by the query. Once processing
completes, the contents of the table are returned as a single result set and the temporary table is dropped. A
variation on this would be to move the code to a stored procedure and return a pointer to the cursor via an
output parameter. Then the caller could process the array at its convenience.

Another, though slightly more limited, way to process the array is to generate a SELECT statement as the
array is processed and execute it afterward. Here's an example:

DECLARE (@arrayvar varchar (8000), @select stmnt varchar (8000)
DECLARE @k int, @i int, @1 int, @c int
DECLARE c¢ CURSOR FOR SELECT * FROM #array

SET @select stmnt='SELECT '

OPEN c
FETCH c¢ INTO @k, @arrayvar

WHILE (@@BhTCHiSTATUSfo) BEGIN
SET @i=0
SET @1=DATALENGTH (@arrayvar) /15
WHILE (Q@i<@1l) BEGIN
SELECT (@select stmnt=@select stmnt+'Guitarist'+CAST (Gc
varchar) +'="+QUOTENAME (RTRIM (SUBSTRING (@arrayvar, (@i*15
SET @i=@i+1
SET (@c=@dc+1
END
FETCH c¢ INTO @k, @arrayvar
END
CLOSE c
DEALLOCATE c

)

S
t

1[15))[!”!)(![!

SELECT @select stmnt=LEFT (@select stmnt, DATALENGTH (€select stmnt)-1)

EXEC (@select stmnt)

(Results abridged)

GuitaristO Guitaristl Guitarist2?2 Guitarist3 Guitarist4 Guitaristb

LES PAUL BUDDY GUY JEFF BECK JOE SATRIANI STEVE MILLER EDDIE VAN HALEN

Note the use of the QUOTENAME() function to surround each array value with quotes so that it can be
returned by the SELECT statement. The default quote delimiters are '[' and 'T' but, as the example shows, you
can specify others.

This routine is more limited than the temporary table solution because it's restricted by the maximum size of
varchar. That is, since the SELECT statement that we build is stored in a variable of type varchar, it can't
exceed 8000bytes. While the other techniques allot 8000bytes for each row's array, this one limits the sum
length of the arrays in all records to just 8000bytes. Given that this string must also store a column name for
each element (most front ends have trouble processing unnamed columns), this is a significant limitation.

189

Guru’s Guide to Transact-SQL

Nevertheless, the fact that this approach builds SQL that it then executes is interesting in and of itself. You
can probably think of other applications for this technique such as variably sized cross-tabs, run and
sequence flattening, and so on.

Modifying Array Elements

One inherent weakness of storing arrays as strings is revealed when we attempt to make modifications to
element values. Unless you're making the most basic kind of change, updating either a single value or an
entire dimension is not a straightforward process. Clearing the array in a given row is simple— we just do
something like this:

UPDATE #array SET arraycol = '' WHERE kl=1

If you think of the array in each record as a row in a larger array (which spans the entire table), you can think
of this as clearing a single row.
What if we wanted to clear just the second element in each record's array? We'd need something like this:

UPDATE #array

SET arraycol =
LEFT (arraycol,1*15) +SPACE (1*15) +RIGHT (arraycol, DATALENGTH (arraycol) - (2*15))

(Results abridged)

Elementl Element2 Element3 Element4 Element5

LES PAUL JEFEF BECK JOE SATRIANI

STEVE MILLER TOM SCHOLZ

STEVE VAT SLASH JIMI HENDRIX JASON BECKER

This involves a few somewhat abstruse computations that depend on the element size to work correctly. As
with the earlier queries, this code multiplies an array index by the element size in order to access the array.
Though it's certainly more compact to use SPACE(15) rather than SPACE(1*15), using the expression is more
flexible in that it's easily reusable with other elements.

Note that we could use this technique to setthe value of a particular dimension rather than simply clearing it.
For example, to fill the third element in each row's array with a specific value, we would use code like this:

UPDATE f#array
SET arraycol =
LEFT (arraycol, (2*15))+'MUDDY WATERS '+4+RIGHT (arraycol, DATALENGTH (arraycol) - (3*15))

To limit the change to a particular record, include a WHERE clause that restricts the UPDATE, like this:

UPDATE f#array

SET arraycol =

LEFT (arraycol, (3*15))+'MUDDY WATERS '+

RIGHT (arraycol, CASE WHEN (DATALENGTH (arraycol)-(4*15))<0 THEN 0 ELSE
DATALENGTH (arraycol) - (4*15) END)

WHERE kl1=2

As you can see, things can get pretty convoluted considering all we want to do is change an array element.
Naturally, things would be much simpler if Transact-SQL supported arrays directly.

Arrays as Tables

190

Chapter 10. Arrays

Implementing a virtual array using a simple table is also a viable alternative to native array support. This
technique uses one or more columns as array indexes. If the array is single-dimensional, there's just one
index column. If it's multidimensional, there may be several. Here's an example:

CREATE TABLE #array (k1 int identity (0,1), guitarist wvarchar (15))

INSERT #array (guitarist) VALUES ('LES PAUL');

INSERT #array (guitarist) VALUES ('BUDDY GUY');
INSERT #array (guitarist) VALUES ('JEFF BECK');
INSERT #array (guitarist) VALUES ('JOE SATRIANI');
INSERT #array (guitarist) VALUES ('STEVE MILLER');
INSERT #array (guitarist) VALUES ('EDDIE VAN HALEN') ;

() (

() (

() (

() (

() 5 (

() 5 (
INSERT #array (guitarist) VALUES ('TOM SCHOLZ');

() S (

() (

() (

() (

() (

() (

INSERT #array (guitarist) VALUE 'STEVE VAI');
INSERT #array (guitarist) VALUES ('ERIC CLAPTON');
INSERT #array (guitarist) VALUES ('SLASH');

INSERT #array (guitarist) VALUES ('JIMI HENDRIX');
INSERT #array (guitarist) VALUES ('JASON BECKER');
INSERT #array (guitarist) VALUES ('MICHAEL HARTMAN') ;

-—- To set the third element in the array
UPDATE #array

SET guitarist='JOHN GMUENDER'

WHERE k1=2

SELECT guitarist
FROM #array

guitarist

LES PAUL

BUDDY GUY

JOHN GMUENDER
JOE SATRIANI
STEVE MILLER
EDDIE VAN HALEN
TOM SCHOLZ
STEVE VAT

ERIC CLAPTON
SLASH

JIMI HENDRIX
JASON BECKER
MICHAEL HARTMAN

This code illustrates a simple way to emulate a single-dimensional array using a table. Note the use of a seed
value for the identity column in order to construct a zero-based array, as we did in the string array examples.
Transact-SQL requires that you also specify an increment value whenever you specify a seed value, so we
specified an increment of one.

This code changes the value of the third element (which has an index value of two). Removing the WHERE
clause would allow the entire virtual array to be set or cleared.

Sorting

Unlike the varchar array technique, sorting a virtual table array is as simple as supplying an ORDER BY
clause. Deleting elements is simple, too—all you need is a DELETE statement qualified by a WHERE clause.
Inserting a new element (as opposed to appending one) is more difficult since we're using an identity column
as the array index. However, it's still doable— either via SET IDENTITY_INSERT or by changing the index
column to a nonidentity type.

Adding a dimension is as straightforward as adding a column. Here's an example:

191

Guru’s Guide to Transact-SQL

CREATE TABLE #array (band int, single int, title wvarchar (50))

INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES

'GOOD MORNING LITTLE SCHOOLGIRL') ;
'HOOCHIE-COOCHIE MAN') ;

'MUDDY WATER BLUES') ;

'THE HUNTER') ;

INSERT #array VALUES(0,0,'LITTLE BIT O'' LOVE');
INSERT #array VALUES(0,1,'FIRE AND WATER');
INSERT #array VALUES (0,2,'THE FARMER HAD A DAUGHTER');
INSERT #array VALUES (0,3, 'ALL RIGHT NOW');
INSERT #array VALUES (1,0, 'BAD COMPANY');
INSERT #array VALUES (1,1, 'SHOOTING STAR');
INSERT #array VALUES (1,2, 'FEEL LIKE MAKIN'' LOVE');
INSERT #array VALUES (1,3, 'ROCK AND ROLL FANTASY');
INSERT #array VALUES (2,0, 'SATISFACTION GUARANTEED') ;
INSERT #array VALUES (2,1, 'RADIOACTIVE') ;
INSERT #array VALUES (2,2, 'MONEY CAN''T BUY');
INSERT #array VALUES (2,3, 'TOGETHER') ;

(3,0,

(3,1,

(3,2,

(3,3,

-- To set the third element in the fourth row of the array
UPDATE #array

SET title='BORN UNDER A BAD SIGN'

WHERE band=3 AND single=2

SELECT title

FROM #array

LITTLE BIT O' LOVE

FIRE AND WATER

THE FARMER HAD A DAUGHTER
ALL RIGHT NOW

BAD COMPANY

SHOOTING STAR

FEEL LIKE MAKIN' LOVE
ROCK AND ROLL FANTASY
SATISFACTION GUARANTEED
RADIOACTIVE

MONEY CAN'T BUY

TOGETHER

GOOD MORNING LITTLE SCHOOLGIRL
HOOCHIE-COOCHIE MAN

BORN UNDER A BAD SIGN

THE HUNTER

This code sets up a two-dimensional array, then changes the third element in its fourth row. Because its
indexes are simple integer columns, the SQL necessary to manipulate the array is much more intuitive. For
example, clearing a given dimension in the array is trivial:

UPDATE #array
SET title="'"
WHERE band=2

SELECT *
FROM #array

192

band single title

0 0 LITTLE BIT O' LOVE

0 1 FIRE AND WATER

0 2 THE FARMER HAD A DAUGHTER
0 3 ALL RIGHT NOW

1 0 BAD COMPANY

1 1 SHOOTING STAR

1 2 FEEL LIKE MAKIN' LOVE

1 3 ROCK AND ROLL FANTASY

2 0

2 1

2 2

2 3

3 0 GOOD MORNING LITTLE SCHOOLGIRL
3 1 HOOCHIE-COOCHIE MAN

3 2 MUDDY WATER BLUES

3 3 THE HUNTER

Chapter 10. Arrays

This code uses a simple UPDATE statement qualified by a WHERE clause to clear the array's third dimension.
Another nifty feature of this approach is that row and column totals are easy to produce using basic aggregate
functions and the GROUP BY clause. Here's a query that performs a variety of aggregations using the array's

indexes as grouping columns:

CREATE TABLE #array (band int, single int, title wvarchar (50))

INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES

(0,0, "LITTLE BIT O'' LOVE'");
(0,1, "FIRE AND WATER') ;

(0,2, "ALL RIGHT NOW'") ;

(1,0, "BAD COMPANY'") ;

(1,1, "SHOOTING STAR'") ;

(1,2, '"FEEL LIKE MAKIN'' LOVE');
INSERT #array VALUES (1,3, 'ROCK AND ROLL FANTASY');
INSERT #array VALUES (1,4, "BURNING SKY');

INSERT #array VALUES (2,0, '"SATISFACTION GUARANTEED') ;
INSERT #array VALUES (2,1, "RADIOACTIVE') ;

INSERT #array VALUES (2,2, 'MONEY CAN''T BUY');
INSERT #array VALUES (2,3, 'TOGETHER') ;

INSERT #array VALUES (3,0,

INSERT #array VALUES (3,1,

INSERT #array VALUES (3, 2,

INSERT #array VALUES (3,3,

'HOOCHIE-COOCHIE MAN') ;
'MUDDY WATER BLUES') ;
'THE HUNTER') ;

SELECT Band, NumberOfSongsPerBand=COUNT (single)
FROM #array
GROUP BY Band

SELECT Band, "Last Song (Alphabetically)"=MAX(title)
FROM #array

GROUP BY Band

ORDER BY 2

SELECT Single, NumberOfBandsPerSingle=COUNT (Band)
FROM #array
GROUP BY Single

Band NumberOfSongsPerBand
0 3
1 5

'GOOD MORNING LITTLE SCHOOLGIRL'

)7

193

Guru’s Guide to Transact-SQL

2 4

3 4

Band Last Song (Alphabetically)
0 LITTLE BIT O' LOVE

1 SHOOTING STAR

3 THE HUNTER

2 TOGETHER

Single NumberOfBandsPerSingle
0 4

1 4

2 4

3 3

4 1

Keep in mind that the index columns used with this approach can be data types other than integers since we
access them via the WHERE clause. Datetime types, GUIDs, and bit types are popular indexes as well. Also,
these indexes can be accessed via more complex expressions than the diminutive "=i " where i is an array
index. The LIKE, BETWEEN, IN, and EXISTS predicates, as well as subqueries, can also be used to traverse
the array.

Transposing Dimensions

Swapping array dimensions is also relatively trivial with this approach. For example, assume we have a two-
dimensional array, and we want to swap its rows and columns. How would we do it? With the varchar array
approach, this could get quite involved. However, it's fairly straightforward using the table array approach and
a feature of the UPDATE statement. Here's the code:

DECLARE @i int
UPDATE #array SET @i=Band, Band=Single, Single=@1i

SELECT *
FROM #array
ORDER BY Band, Single

LITTLE BIT O' LOVE

BAD COMPANY
SATISFACTION GUARANTEED
GOOD MORNING LITTLE SCHOOLGIRL
FIRE AND WATER

SHOOTING STAR
RADIOACTIVE
HOOCHIE-COOCHIE MAN

ALL RIGHT NOW

FEEL LIKE MAKIN' LOVE
MONEY CAN'T BUY

MUDDY WATER BLUES

ROCK AND ROLL FANTASY
TOGETHER

THE HUNTER

BURNING SKY

D wwwdhDhNDNDNERE PR P OO OO
H WNRFPF WNEPEOWNE OWNRE O

194

Chapter 10. Arrays

Since Transact-SQL is processed left to right, we're able to set @i to store the value of band so that we may
swap band and single. The ability to set a local variable via UPDATE was originally intended as a
performance enhancement to shorten the time locks were held. It was designed to combine the functionality of
performing an UPDATE, then immediately SELECTing a value from the same table into a local variable for
further processing. In our case, we're using this feature, along with Transact-SQL's left-to-right execution, to
swap one column with another.

It's possible that Transact-SQL's ability to reuse variables set by an UPDATE within the UPDATE itself might
change someday since it's not specifically documented. As with all undocumented features, you should use it
only when necessary and with due caution. It might not be supported in a future release, so be wary of
becoming too dependent upon it.

Note that if you only want to swap the dimensions in the result set (rather than changing the array itself), that's
easy enough to do:

SELECT Band=single, Single=Band, Title
FROM f#array
ORDER BY 1, 2

Band Single Title

0 0 LITTLE BIT O' LOVE

0 1 BAD COMPANY

0 2 SATISFACTION GUARANTEED
0 3 GOOD MORNING LITTLE SCHOOLGIRL
1 0 FIRE AND WATER

1 1 SHOOTING STAR

1 2 RADIOACTIVE

1 3 HOOCHIE-COOCHIE MAN

2 0 ALL RIGHT NOW

2 1 FEEL LIKE MAKIN' LOVE

2 2 MONEY CAN'T BUY

2 3 MUDDY WATER BLUES

3 1 ROCK AND ROLL FANTASY

3 2 TOGETHER

3 3 THE HUNTER

4 1 BURNING SKY

We get the same results as the previous query, but the array itself remains unmodified. A VIEW object is ideal
in this situation if you need to swap an array's dimensions on a regular basis.

Ensuring Array Integrity

There are a couple of nifty ways to ensure the veracity of the array index values you store. One is to create
unique constraints on them. You can do this via PRIMARY KEY or UNIQUE KEY constraints on the
appropriate columns. For example, we might modify the CREATE TABLE statement above like so:

CREATE TABLE #array (band int, single int, title wvarchar (50)

PRIMARY KEY (band, single))

This ensures that no duplicate indexes are allowed into the table, which is what you want. It also creates an
index over the array indexes—which will probably benefit performance.

Reshaping the Array

Many of the techniques that were used to reshape or flatten the varchar array work with table arrays as well.
The most flexible of those presented is the technique that reshapes the array by populating a temporary table
with values. However, table arrays give us another option that requires far less code and is much easier to
follow:

195

Guru’s Guide to Transact-SQL

SELECT Free=MAX (CASE band WHEN 0 THEN title ELSE NULL END),
BadCompany=MAX (CASE band WHEN 1 THEN title ELSE NULL END),
TheFirm=MAX (CASE band WHEN 2 THEN title ELSE NULL END),
Solo=MAX (CASE band WHEN 3 THEN title ELSE NULL END)

FROM #array a

GROUP BY a.single

Free BadCompany TheFirm Solo

L

LITTLE BIT O' LOVE BAD COMPANY SATISFACTION GUARANTEED GOOD MORNING
LITTLE

L

SCHOOLGIRL

FIRE AND WATER SHOOTING STAR RADIOACTIVE HOOCHIE-COOCHIE
MAN

ALL RIGHT NOW FEEL LIKE MAKIN' LOVE MONEY CAN'T BUY MUDDY WATER
BLUES

NULL ROCK AND ROLL FANTASY TOGETHER THE HUNTER
NULL BURNING SKY NULL NULL

This technique uses an aggregate to "hide" the selection of the title column for each band so that it can use
GROUP BY to flatten the result set. It groups on the single column because single provides the type of
unique identifier we need to coalesce the array elements. To understand this, it's instructive to view what the
result set would look like without the MAX()/ GROUP BY combo:

SELECT Free=(CASE band WHEN O THEN title ELSE NULL END),
BadCompany= (CASE band WHEN 1 THEN title ELSE NULL END),
TheFirm= (CASE band WHEN 2 THEN title ELSE NULL END),
Solo=(CASE band WHEN 3 THEN title ELSE NULL END)

FROM #array

Free BadCompany TheFirm Solo

L

LITTLE BIT O' LOVE NULL NULL NULL

FIRE AND WATER NULL NULL NULL

ALL RIGHT NOW NULL NULL NULL

NULL BAD COMPANY NULL NULL

NULL SHOOTING STAR NULL NULL

NULL FEEL LIKE MAKIN' LOVE NULL NULL

NULL ROCK AND ROLL FANTASY NULL NULL

NULL BURNING SKY NULL NULL

NULL NULL SATISFACTION GUARANTEED NULL

NULL NULL RADIOACTIVE NULL

NULL NULL MONEY CAN'T BUY NULL

NULL NULL TOGETHER NULL

NULL NULL NULL GOOD MORNING
LITTLE

L

SCHOOLGIRL

NULL NULL NULL HOOCHIE-COOCHIE
MAN

NULL NULL NULL MUDDY WATER
BLUES

NULL NULL NULL THE HUNTER

196

Chapter 10. Arrays

As the query traverses the table, it can fill only one column of our flattened array (actually just a simple cross-
tab) at a time. Each column's CASE expression establishes that. This means that for each row in the initial
result set, every column will be NULL except one. This is where the MAX()/GROUP BY duo comes to the
rescue. Grouping on single allows us to coalesce the values in each column so that these extraneous NULLs
are removed. Using MAX() allows us to select each column while grouping (all nongrouping columns in the
SELECT list must either be aggregates or constants when GROUP BY is present). Note that MIN() would
have worked equally well. All we really need is an aggregate that can return the title column—the aggregate
merely serves to support the use of GROUP BY—which is the opposite of how we usually think of the
aggregate—GROUP BY relationship. Since MIN() and MAX() are the only two aggregates capable of returning
character fields, we're limited to using one of them.

Comparing Arrays

It's sometimes desirable to compare two arrays or two subsets of the same array with one another. This can
be tricky because comparing arrays involves ordering the elements, whereas comparing plain sets does not.
Here's a modification of the previous code sample that checks elements of the table array against one another
for equality:

CREATE TABLE #array (band int, single int, title varchar (30))

INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES

(0 '"LITTLE BIT O'' LOVE');
(0
(0
(0
(1
(1
(1
(1
INSERT #array VALUES (1,
(2
(2
(2
(2
(3
(3
(3
(3

, "FIRE AND WATER') ;

'ALL RIGHT NOW') ;

'THE HUNTER') ;

'BAD COMPANY'") ;

, "SHOOTING STAR'");

, '"FEEL LIKE MAKIN'' LOVE'");
'ROCK AND ROLL FANTASY');
'BURNING SKY');
'SATISFACTION GUARANTEED') ;
, "RADIOACTIVE") ;

, "MONEY CAN''T BUY');
'TOGETHER"') ;

'GOOD MORNING LITTLE SCHOOLGIRL') ;
'HOOCHIE-COOCHIE MAN') ;
'MUDDY WATER BLUES') ;

, '"THE HUNTER') ;

~

4

~

~

~

~

INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES
INSERT #array VALUES

~

~ 0~ 0~

~

WNFEFOWNREREO P WNEOWNDREO
~

4

SELECT * FROM

(SELECT Free=MAX (CASE band WHEN O THEN title ELSE NULL END),
BadCompany=MAX (CASE band WHEN 1 THEN title ELSE NULL END),
TheFirm=MAX (CASE band WHEN 2 THEN title ELSE NULL END),
Solo=MAX (CASE band WHEN 3 THEN title ELSE NULL END)
FROM #array
GROUP BY single) a

WHERE Free=BadCompany

OR Free=TheFirm

OR Free=Solo

OR BadCompany=TheFirm

OR BadCompany=Solo

OR TheFirm=Solo

Free BadCompany TheFirm Solo

THE HUNTER ROCK AND ROLL FANTASY TOGETHER THE HUNTER

This technique turns the earlier array flattening query into a derived table, which it then qualifies with a
WHERE clause. (As mentioned in Chapter 7, you can think of a derived table as an implicit or inline VIEW.) It
then returns all rows where the title of one band's single is identical to that of another.

197

Guru’s Guide to Transact-SQL

One problem with this approach is that it returns data we don't need. The entries in the middle two columns
are extraneous—all we really care about is that bands zero and three have singles with the same title. This
could mean that one plagiarized the other, that the songwriters for one of the bands weren't terribly original, or,
perhaps, that the same lead singer sang for both.

Efficiency is another problem with this technique. The derived table selects every row in the #array table
before handing it back to the outer query to pare down. Though the query optimizer will look at combining the
two queries into one, the way that CASE is used here would probably confuse it. It would likely be more
efficient to filter the rows returned as they're selected rather than afterward. Here's a code refinement that
does that:

N 0 THEN a.title ELSE NULL END),
))\ EN a.title ELSE NULL END),
2 THEN a.title SE NULL END),

TheFirm -
Solo=MAX (CASE a.ban H
‘ farray a LEFT JOIN #array b ON (a.title=b.
HERE NOT (a.band=b.band AND a.single=b.single)
U Y a.single

Free BadCompany TheFirm Solo

THE HUNTER NULL NULL THE HUNTER

The technique joins the array table with itself to locate duplicate elements. The query's WHERE clause
ensures that it doesn't make the mistake of matching an element with itself. Since this approach filters the
rows it returns as it processes them, it should be more efficient than the derived table approach. However, the
introduction of a self-join may cancel out any performance gains achieved. Whether this technique is more
efficient than the first one in a particular situation depends on the exact circumstances and data involved.
Note that this approach has the side effect of removing the extraneous values from the middle columns. Doing
that with the derived table approach would be much more involved since it would basically amount to
encoding the search criteria in two places: in the WHERE clause as well as in the SELECT list (via CASE
expressions).

Summary

Since Transact-SQL doesn't directly support arrays, they must be simulated using other constructs. The two
most popular means of emulating arrays are to store them as large character fields and to set up table
columns that mimic array dimensions. Using large strings for arrays is practical for single-dimensional
constructs, but the table column approach is better for multidimensional arrays. Whatever type of faux array
you elect to use, keep in mind that storing repeating values in a table row is a form a denormalization. Be sure
that's what you intend before you begin redesigning your database.

In this chapter, you learned to manipulate both types of pseudoarrays. You learned to add elements, to delete
them, and to add and clear whole dimensions. You learned how to flatten simulated arrays into cross-tabs and
to return array elements as result sets.

198

Chapter 11. Sets

Chapter 11. Sets

Servile flattery—the kind made mostly of lies— will endear a lot of different kinds of people to
you. Sycophancy wins friends and influences people. But I've never known anyone—and
certainly none of the people | call "hero"—who chased after an elusive dream—one that
required sacrifice, courage, resolve, or just plain mettle—and seized it through unctuous
flattery. Edison, Jefferson, Lincoln, Einstein, Twain, Socrates, Confucius, Poe, Da Vinci,
King—none of them fawned his way into history. Instead, they waged war against the toadies
and trucklers of the world. They left indelible handprints on the past because they had the
audacity to be honest and because they knew the difference between loyalty and servility.

—Trace Ambraise

Given that the relational model is based on sets of tuples, it should come as no surprise that SQL Server
provides a rich suite of tools for working with sets of rows. The set is the focal point of work in SQL Server—
the server resolves the queries you pass it by returning sets—result sets. It stores sets of rows together in
tables (or bags) and relates sets to one another via Declarative Referential Integrity and joins. That it provides
such comprehensive set support is to be expected—sets are the life's blood of relational databases.

The ANSI SQL-92 set operation keywords—UNION, EXCEPT, and INTERCEPT—are used to determine set
union, difference, and intersection, respectively (sets are assumed to be collections of rows). Though
Transact-SQL supports only one of these directly—UNION— it's straightforward to perform the other
operations using simple coding techniques. SQL is a set-oriented language; working with sets of records is
what it does best.

Unions

Performing a set union is trivial in Transact-SQL thanks to the inclusion of the UNION keyword. Here's some
sample code that combines two sets using the UNION operator:

ABLE #setl (coll int, col2 int)
TABLE #set2 (col3 int, cold int)
' #setl VA (1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(1

SELECT * FROM #setl

SELECT * FROM f#set?2

C = N
C =N

Note that the column names of the two tables differ in this example. All that's required of SELECT statements
joined via UNION is that they have the same number of columns and that each column's data type either
matches its counterpart or is capable of being implicitly converted to it. The SELECT statements themselves

199

Guru’s Guide to Transact-SQL

can be as complex as necessary, though they may not include COMPUTE, ORDER BY, or FOR BROWSE.
You can use COMPUTE and ORDER BY with the result set returned by the UNION operation but not with any
of its individual SELECT statements. Conversely, GROUP BY and HAVING can be used by individual
SELECT statements but not by the entire result set. This is a pretty serious limitation, but fortunately there's a
workaround. Here's some code that shows a way of using GROUP BY and HAVING with result sets created
by UNION:

ECT coll, Num=COUNT (*)
M (SELECT * FROM #setl
UNION ALL
SELECT * FROM #set?2) s
SROUP BY coll
VING (COUNT (*) > 1)
11 Num

This approach uses a derived table to wrap the UNION result set, then groups and qualifies it using GROUP
BY and HAVING. An alternative would be to encapsulate the UNION operation in a view, but the illustrated
approach is more expedient since it doesn't involve the creation of a separate object.
Note the use of UNION ALL in the example code. Normally, UNION removes duplicates from its result set by
sorting or hashing them. Obviously, this can take time. If you know your result set is already free of duplicates
or if you don't care whether it contains duplicates, UNION ALL can be a much faster way of combining tables.
It simply combines the results of its component SELECTs and returns them—there's no sorting or duplicate
elimination. It's needed by the query above because we want to apply a HAVING clause that filters the result
set according to the number of instances of each col1 value. Obviously, we can't do that if UNION removes all
duplicates, effectively restricting the number of instances of each value to just one. So, we use UNION ALL
within the derived table, then remove duplicates and aggregate our results using the GROUP BY of the outer
SELECT.

CAUTION

Caution Avoid mixing UNION and UNION ALL if you can. If duplicates are removed in some cases
but not in others, you may end up with a result set that is difficult to interpret. The individual
SELECT statements composing a compound UNION operation cease to be associative when
UNION and UNION ALL are mixed. This means, by extension, that Transact-SQL's left-to-right
order of execution will affect the result set.

Transact-SQL provides a nifty enhancement to SQL's standard UNION syntax that allows a table to be
created en passant. To do this, you include an INTO tablename clause in the first SELECT statement of those
included in the UNION operation, like so:

SELECT * INTO f#tempset FROM #setl
UNION ALL
SELECT * FROM #set2
Num=COUNT (*) FROM #tempset
OUNT (*) 1)

200

Chapter 11. Sets

coll Num
1 2
2 2
5 2

This code first creates a table via the UNION construct, then queries it via a separate SELECT statement.
This technique is better than the derived table approach if you need to process the UNION result set further
following the operation.

Differences

ANSI SQL-92 defines the EXCEPT keyword for returning a result set consisting of the difference between two
sets. Most SQL vendors, including Microsoft, have yet to implement this keyword (Oracle has the MINUS
synonym), but since Transact-SQL is a set-oriented language at heart, determining the difference between
two sets isn't a difficult task.

The most obvious way to determine the rows that exist in one set but not in another is via the EXISTS
predicate. Here's a code sample that returns the rows in one table that do not exist in another:

CREATE TABLE #setl (coll int, col2 int)
CREATE TABLE #set?2 (coll int, col2 int)
INSERT #setl VALUES (1,1)
INSERT #setl VAL (2,2)
INSERT #setl VA (3,3)
INSERT #setl VA (4,4)
INSERT #setl VA (5,5)
INSERT #set2 VALUES (1,1)
INSERT #set2 VALUES (2,2)
INSERT #set2 VALUES (5,5)

SELECT * FROM #setl sl
WHERE NOT EXISTS (SELECT * FROM #set2 s2 WHERE s2.coll=sl.coll AND
s2.col2=sl.coll)

coll col?2
4 4

This method uses a correlated subquery to find the rows in #set1 that do not exist in #set2. Note that this
method requires each column in each table to be matched up individually. This can quickly become very
cumbersome when dealing with tables with lots of columns.

Unlike the ANSI SQL EXCEPT construct, this solution returns duplicate rows if they exist in the first table. To
remedy this, insert the DISTINCT keyword in the outer SELECT.

A more efficient way to return the difference between two sets is to use a simple OUTER join. This alleviates
the need for a correlated subquery, so it's not only faster but also easier to read:

SELECT sl.*
FROM #setl sl LEFT OUTER JOIN #set2 s2

ON (sl.coll=s2.coll AND sl.col2=s2.col2)
WHERE s2.coll IS NULL

201

Guru’s Guide to Transact-SQL

The approach works by virtue of the fact that a left outer join returns columns from the rightmost table as
NULL when the join condition fails. The query simply limits the rows it returns to those where this occurs. In
other words, it restricts the rows returned from the leftmost table to those that don't exist in the right-side table.
As in the previous example, this technique requires that every column in the first set be compared with its
counterpart in the second set, which gets tedious with lots of columns.

One type of set that neither of these approaches handles very well is one containing duplicates. Codd's
relational model and basic set theory prohibit duplicate set elements, but ANSI/ ISO SQL permits them and so
does Transact-SQL. That's why tables are sometimes referred to as "multisets"—they may contain multiple
sets that individually contain unique elements.

The issues that arise when duplicates are present in a set are many and varied. If the first set contains two
instances of a given row, but the second contains just one, what should we do? A result set that shows the
difference between the two sets should include from the first set duplicate rows that have no matches in the
second set. It shouldn't exclude the row from the result set simply because there's a match for an earlier
duplicate in the second set.

Unfortunately, neither of the techniques presented thus far can handle this situation. Regardless of how many
times a given row appears in the first set, if it occurs even once in the second set, it's not included in the
difference set. Here's a query that ensures that each set has at least as many copies of a given row as the
other set before a match is assumed (l've altered the sets to include duplicate rows):

CREATE TABLE #setl (coll int, col2 int)
CREATE TABLE #set2 (coll int, col2 int)

INSERT #setl VALUES (1,1)
INSERT #set (1,1)
INSERT #set (2,2)
INSERT #set (3,3)
INSER (4,4)
INSERT (5,5)
(1,1)
(2,2)
(5,5)
(5,5)

SELECT coll, col2
FROM (SELECT coll,
col2,
Numl=COUNT (*),
Num2= (SELECT COUNT (*) FROM #set2 ss2 WHERE coll=ssl.coll AND col2=ssl.col2)
FROM #setl ssl
GROUP BY coll, col2) sl
GROUP BY coll, col2
HAVING (ABS (SUM (Numl)-SUM (Num2))>0)

coll col?
1 1
4 4

Even though row (1,1) appears in both sets, this query returns the row in the difference set because it appears
more times in the first set than in the second. Similarly, even though (5,5) appears in both sets, it appears
more times in the second set than in the first, so it's included in the resultset.

Intersections

202

Chapter 11. Sets

As with set differences, returning simple set intersections is easy using the EXISTS predicate. Here's an
example:

CREATE TABLE #setl (coll int, col2 int)
CREATE TABLE #set2 (coll int, col2 int)

INSERT #setl VALUES (1,1)
INSERT #setl VALUES (2,2)
INSERT #setl VALUES (3,3)
INSERT #setl VALUES (4,4)
INSERT #setl VALUES (5,5)
INSERT #set2 VALUES (1,1)
INSERT #set2 VALUES (2,2)
INSERT #set2 VALUES (5,5)

SELECT * FROM #setl sl
WHERE EXISTS (SELECT * FROM #set2?2 s2 WHERE s2.coll=sl.coll AND s2.col2=sl.coll)

coll col?2
1 1
2 2
5 5

Like the initial set difference query, this one requires that each field in the first set be compared with its
counterpart in the second. Each row in the first set whose columns match those of the second is then returned
by the query. The result is the intersection of the two sets—those rows contained in both sets.

A more efficient way to return the intersection of two sets is simply to join them. An inner join works nicely for
this since it omits rows without matches. Here's an example:

SELECT sl1.*
FROM #setl sl INNER JOIN #set2 s2
ON (sl.coll=s2.coll AND sl.col2=s2.col2)

It's syntactically more compact and faster and is the most common way that set intersections are returned in
SQL.

As with the set difference techniques, both of these techniques are unable to handle duplicates correctly. A
single row in the second set may match up to two or more rows in the first set—there's no provision for
ensuring that a row appears the same number of times in each set before a match is assumed. Here's a query
that addresses this:

(coll int, col2 int)

1
CREATE TABLE t2 (coll int, col2 int)

CREATE TABLE #

#
INSERT #setl VALUES
INSERT #setl VALUES
INSERT #setl VALUES
INSERT #setl VALUES
INSERT #setl VALUES
INSERT #setl VALUES

~ 0~

~ ~

~

ads w N -
~
ads w N -

INSERT #set2 VALUES (1,1)
INSERT #set2 VALUES (2,2)

203

Guru’s Guide to Transact-SQL

INSERT #set2 VALUES (5,5)

SELECT coll, col2
FROM (SELECT coll,
col2,
Numl=COUNT (*),
Num2= (SELECT COUNT (*) FROM #set2 ss2 WHERE coll=ssl.coll AND col2=ssl.col?2)
FROM #setl ssl
GROUP BY coll, col2) sl
GROUP BY coll, col2
HAVING SUM (Numl)=SUM (Num2)

coll col?2
4 4
5 5

This approach uses a derived table and a subquery to count the number of rows that appear in each set for
each pair of values. It then restricts the rows it returns to those that appear the same number of times in each
set. In this case, (1,1) is excluded because it appears twice in the first set but only once in the second.
Likewise, (2,2) is excluded because it appears twice in the second set but only once in the first.

Determining set intersection based on the number of times a row appears may amount to nothing more than
an academic exercise in many cases. You may not care that the counts are different—you may want to know
only when the two sets share a common value. If that's the case, the first two techniques presented will
accomplish the task with a minimum of code.

Subsets

Of course, the easiest way to locate a portion of a set—a subset—is with a SELECT statement and a WHERE
clause. That's the most direct route and the one most often traveled.

Beyond that, though, what if you need something that, at least on the surface, appears to be too difficult for
the WHERE clause? Take the problem of returning the top n rows in a set. What's the best way to do this?
There are a number of approaches to this problem. Some of them are presented elsewhere in this book (e.g.,
see the section "Returning the Top n Rows" in Chapter8), so | won't bother going into them here. Though it's
also covered adequately elsewhere in the book, the TOP n extension to the SELECT command is worth
mentioning here in the context of sets and subsets. By far the most straightforward way to return the top
portion of a set is via the TOP n clause, like this:

CREATE TABLE #1996 POP ESTIMATE (Region char(7), State char(2), Population int)

INSERT #1996 POP ESTIMATE VALUES
INSERT #1996 POP ESTIMATE VALU

est', 'CA',31878234
outh', 'TX',19128261
'North', 'NY',18184774
o

=

S
INSERT #1996 POP ESTIMATE VALUES
INSERT #1996 POP ESTIMATE VALUES

(

(

(

(uth', 'FL',14399985
INSERT #1996 POP ESTIMATE VALUES ('No

(

(

(

(

(

th', 'NJ', 7987933

-
INSERT #1996 POP ESTIMATE VALUES 'East’, 'NC', 7322870
INSERT #1996 POP ESTIMATE VALUES 'West', 'WA', 5532939
INSERT #1996 POP ESTIMATE VALUES 'Central', 'MO', 5358692
INSERT #1996 POP ESTIMATE VALUES 'East’', 'MD', 5071604
INSERT #1996 POP ESTIMATE VALUES 'Central', 'OK', 3300902

SELECT TOP 3 State, Region, Population
FROM #1996 POP ESTIMATE
ORDER BY Population DESC

State Region Population

CA West 31878234
X South 19128261

204

Chapter 11. Sets

NY North 18184774

SET ROWCOUNT also works nicely for this, though, at least for SELECTs, TOP n is preferable because it
doesn't require a separate SQL statement. Here's a version of the previous query that uses SET ROWCOUNT:

SET ROWCOUNT 3

SELECT State, Region, Population
FROM #1996 POP ESTIMATE

ORDER BY Population DESC

SET ROWCOUNT 0O -- Reset ROWCOUNT

One distinct advantage the TOP n approach has over SET ROWCOUNT is in its ability to handle ties. The
WITH TIES clause allows TOP n to include ties in the result set when an ORDER BY clause is used. Consider
this variation on the earlier query:

SELECT TOP 5 State, Region, Population=Population/1000000
FROM #1996 POP ESTIMATE
ORDER BY Population/1000000 DESC

State Region Population

CA West 31
X South 19
NY North 18
FL South 14
NJ North 7

It lists the top five states in population based on millions of people. Only whole millions are considered—
fractional parts are truncated. Without the TIES option, the query can't recognize the fact that there's actually

a tie for fifth place. New Jersey and North Carolina each had a population in excess of 7million people in 1996.
Here's the query with the TIES option in place, along with its resultset:

SELECT TOP 5 WITH TIES State, Region, Population=Population/1000000
FROM #1996 POP_ESTIMATE
ORDER BY Population/1000000 DESC

State Region Population

CA West 31
TX South 19
NY North 18
FL South 14
NJ North 7
NC East 7

Because ORDER BY supports both ascending and descending sorts, TOP n can be used to retrieve the
bottommost rows from a set as well, like so:

SELECT TOP 5 WITH TIES State, Region, Population=Population/1000000
FROM #1996 POP ESTIMATE
ORDER BY Population/1000000

State Region Population
OK Central 3
WA West 5
MO Central 5
MD Fast 5
NJ North 7
NC East 7

205

Guru’s Guide to Transact-SQL

If you wish to order the result set returned by TOP n differently (let's say you'd like the result set above in
descending order, for example), you can easily embed it within a derived table and sort it using a separate
ORDER BY clause, like so:

SELECT * FRO (SELECT TOP 5 WITH TIES State,
Region, Population=Population/1000000
FROM #19967POP7:STLMATL
ORDER BY Population/1000000) p

ORDER BY Population DESC

State Region Population
NJ North 7
NC East 7
WA West 5
MO Central 5
MD East 5
OK Central 3

Returning Every nth Row

Beyond lopping off the rows at the extremities of a set, you may wish to extract them based on position. For
example, you may wish to pull the odd- or even-numbered items from a set or, perhaps, every third item or
every fifth and so on. This is the same basic problem as returning an interval from a sequence or run. The
examples in Chapter9, "Runs and Sequences," illustrate how to return intervals that are larger than one row
in size and that can have other complex criteria attached to them. For the time being, here's a query that
illustrates how to return all the even-numbered items in a set:

CREATE TABLE #setl (k1 int identity)

INSERT #setl DEFAULT VALUE
INSERT #setl DEFAULT VALU
INSERT #setl DEFAULT VALU
INSERT #setl DEFAULT VALU
INSERT #setl DEFAULT VALUES

Q
()
Q
()
Q
()
S

0| E

INSERT #setl DEFAULT VALUES
INSERT #setl DEFAULT VALUES
INSERT #setl DEFAULT VALU
INSERT #setl DEFAULT VALUES
INSERT #setl DEFAULT VALUES

()

Q
()

L

Ja
L

Ja

SELECT sl1.kl

FROM #setl sl JOIN #setl s2 ON (sl.kl >= s2.kl)
GROUP BY sl.kl

HAVING (COUNT(*) % 2) = 0

This approach uses the familiar self-JOIN/GROUP BY technique, introduced earlier in this book, to compare
the table with itself. It then uses the modulus operator (%) to restrict the rows it returns to even-numbered
ones. Of course, you could change the =0 to =1 in order to return the odd-numbered rows, like so:

206

Chapter 11. Sets

SELECT sl1.kl

FROM #setl sl JOIN #setl s2 ON (sl.kl >= s2.kl)
OUP BY sl.kl

HAVING (COUNT(*) % 2) =1

GR

Summary

Transact-SQL is a set-oriented language. This is one of its strengths as a query tool and one of the chief
advantages it holds over traditional programming languages. It was designed from the start to work with data
in sets. Even though only one set-oriented operator is supported directly by Transact-SQL, finding the union,
difference, or intersection between two sets is trivial compared to 3GL-based solutions. The relational model
on which SQL Server is based makes these kinds of tasks quite straightforward.

207

Chapter 12. Hierarchies

Chapter 12. Hierarchies

If you think education is expensive, try ignorance.
—Derek Bok, former president of Harvard

A hierarchy is special kind of data structure made up of nodes connected to one another via one-way
relationships known as edges. These nodes exist at multiple levels and roughly resemble a tree— in fact,
you'll often hear the terms "hierarchy" and "tree" used interchangeably. Out of the box, Transact-SQL provides
only meager support for hierarchies and trees. Other products such as Oracle have decent tree support, but
Transact-SQL is strangely lacking here. This isn't the limitation that it might seem, though, because there are
a number of straightforward techniques that make displaying and manipulating hierarchies fairly simple in
Transact-SQL.

There are a number of common programming problems that have to do with traversing and manipulating trees.
The one that comes immediately to mind is the task of displaying an organizational chart based on a
personnel table. Each employee occupies one row in the table and each row contains a pointer to the
employee's manager, which can itself be another row in the table. These types of hierarchies are usually
established using just one database table.

By contrast, the Bill of Materials problem (which involves determining all the individual parts that make up an
item) is usually a two-table problem. This is because, unlike an organizational chart, the node or leaf level
members of a parts explosion can appear multiple times in a tree. For example, a given widget may be a
component of several items within a BOM schematic. Using a second table keeps the database normalized
and allows a part to appear more than once in the hierarchy.

Simple Hierarchies

If you're interested only in one-level-deep hierarchies, the SQL needed to produce them is fairly
straightforward. Here's some code that lists a single-level organizational chart:

CREATE TABLE staff (employee int PRIMARY KEY, employee name varchar (10),
supervisor int NULL REFERENCES staff (employee))

INSERT staff VALUES (1, "GROUCHO',1)
INSERT staff VALUES (2, 'CHICO',1)
INSERT staff VALUES (3, "HARPO',2)
INSERT staff VALUES (4, 'ZEPPO',?2)

’
5,'MOE', 1)
6, "LARRY', 5)
7, 'CURLY', 5)
, "SHEMP', 5)
,"JOE', 8)

10, 'CURLY JOE', 9)

INSERT staff VALUES
INSERT staff VALUES
INSERT staff VALUES
INSERT staff VALUES
INSERT staff VALUES
INSERT staff VALUES

SELECT t.employee name, supervises='supervises',6 s.employee name
FROM staff s INNER JOIN staff t ON (s.supervisor=t.employee)
WHERE s.supervisor<>s.employee

ORDER BY s.employee, s.supervisor

> oyee name supervises e oyee name
employee name ¢ > employee name

GROUCHO supervises CHICO
CHICO supervises HARPO
CHICO supervises ZEPPO
GROUCHO supervises MOE

MOE supervises LARRY
MOE supervises CURLY
MO supervises SHEMP
SHEMP supervises JOE

209

Guru’s Guide to Transact-SQL

JOE supervises CURLY JOE

You could order these results a number of ways; the code above takes advantage of the fact that the rows
were entered in the desired display order to sort them aesthetically.

Multilevel Hierarchies

A tree that's only one level deep isn't really a hierarchy at all. After all, the head pointy-haired boss at a
company lords his authority over the entire staff, not just those who immediately report to him. A company's
organizational chart is normally several levels deep for a reason— everyone technically reports to everyone
above her in the chart, not just to her immediate supervisor. Getting at this chain of command requires a more
sophisticated approach than the simple one presented above. What we need to do is somehow iterate
through the base table, collecting not only each employee's boss but also his boss's boss, and her boss's
boss, and so on, all the way up to the CEO. Here's a query that does just that:

SELECT chartdepth=1, employee=o02.employee, supervisor=ol.employee
INTO #org chart
FROM staff ol INNER JOIN staff o2 ON (ol.employee=o02.supervisor)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

INSERT INTO #org chart

SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor

FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)

SELECT s.employee name, supervises='supervises',6K e.employee name
FROM #org chart o INNER JOIN staff s ON (o.supervisor=s.employee)
INNER JOIN staff e ON (o.employee=e.employee)

WHERE o.supervisor<>o.employee

GROUP BY o.supervisor, o.employee, s.employee name, e.employee name

210

Chapter 12. Hierarchies

ORDER BY o.supervisor, o.employee, s.employee name, e.employee name

employee name supervises employee name

GROUCHO supervises CHICO
GROUCHO supervises HARPO
GROUCHO supervises ZEPPO
GROUCHO supervises MOE
GROUCHO supervises LARRY
GROUCHO supervises CURLY
GROUCHO supervises SHEMP
GROUCHO supervises JOE
GROUCHO supervises CURLY JOE
CHICO supervises HARPO
CHICO supervises ZEPPO

MOE supervises LARRY

MOE supervises CURLY

MOE supervises SHEMP

MOE supervises JOE

MOE supervises CURLY JOE
SHEMP supervises JOE

SHEMP supervises CURLY JOE
JOE supervises CURLY JOE

This query constructs a temporary table containing the path between every supervisor and every employee
under him or her. It does this by requiring that you execute a separate INSERT statement for each level you
want to include. Naturally, this requires that you know how many levels your hierarchy has in advance—not an
optimal solution. Here's a better one:

SELECT chartdepth=1, employee=o02.employee, supervisor=ol.employee
INTO #org chart
FROM staff ol INNER JOIN staff o2 ON (ol.employee=02.supervisor)

WHILE (Q@rowcount > 0) BEGIN
INSERT #org chart (chartdepth, employee, supervisor)
SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor
FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)
AND ol.supervisor<>ol.employee
END

SELECT s.employee name, supervises='supervises',6 e.employee name
FROM #org chart o INNER JOIN staff s ON (o.supervisor=s.employee)
INNER JOIN staff e ON (o.employee=e.employee)

WHERE o.supervisor<>o.employee

GROUP BY o.supervisor, o.employee, s.employee name, e.employee name
ORDER BY o.supervisor, o.employee, s.employee name, e.employee name

employee name supervises employee name

GROUCHO supervises CHICO
GROUCHO supervises HARPO
GROUCHO supervises ZEPPO
GROUCHO supervises MOE
GROUCHO supervises LARRY
GROUCHO supervises CURLY
GROUCHO supervises SHEMP
GROUCHO supervises JOE
GROUCHO supervises CURLY JOE
CHICO supervises HARPO

211

Guru’s Guide to Transact-SQL

CHICO supervises ZEPPO

MOE supervises LARRY

MOE supervises CURLY

MOE supervises SHEMP

MOE supervises JOE

MOE supervises CURLY JOE
SHEMP supervises JOE

SHEMP supervises CURLY JOE
JOE supervises CURLY JOE

This approach uses a WHILE loop to repeat the INSERT as many times as necessary to process all levels. It
works for any number of levels and doesn't require that you know how many you have in advance.

Like the first query, this approach uses the fact that the employee records were inserted in the desired order
to sort them logically. This might not always be possible. The CEO may be employee number 340—obviously
you can't depend on employees being added to the database in order of job level. Here's a variation on the
preceding routine that doesn't make any assumptions about the initial row insertion order:

SELECT seg=IDENTITY (int), chartdepth=1, employee=02.employee,
supervisor=ol.employee

INTO #org chart

FROM staff ol INNER JOIN staff o2 ON (ol.employee=02.supervisor)

WHILE (Q@rowcount > 0) BEGIN
INSERT #org chart (chartdepth, employee, supervisor)
SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor
FROM #org chart ol INNER JOIN #org chart o2 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)
AND ol.supervisor<>ol.employee
END

SELECT s.employee name, supervises='supervises',6 e.employee name
FROM #org chart o INNER JOIN staff s ON (o.supervisor=s.employee)
INNER JOIN staff e ON (o.employee=e.employee)

WHERE o.supervisor<>o.employee

ORDER BY seqg

employee name supervises employee name

GROUCHO supervises CHICO
CHICO supervises HARPO
CHICO supervises ZEPPO
GROUCHO supervises MOE

MOE supervises LARRY

MOE supervises CURLY

MOE supervises SHEMP
SHEMP supervises JOE

JOE supervises CURLY JOE
GROUCHO supervises HARPO
GROUCHO supervises ZEPPO
GROUCHO supervises LARRY
GROUCHO supervises CURLY
GROUCHO supervises SHEMP

MOE supervises JOE

SHEMP supervises CURLY JOE
GROUCHO supervises JOE
GROUCHO supervises CURLY JOE
MOE supervises CURLY JOE
GROUCHO supervises CURLY JOE

212

Chapter 12. Hierarchies

This approach uses the IDENTITY() function with SELECT...INTO to add an identity column to the work table.
It then uses this column to sort the result set when returning it.

Indenting a Hierarchy

A common need with hierarchies is to indent them according to level. Since the previous routine already
tracks the chart level of each row, indenting the result set is simple. Here's a variation of the earlier query that
indents the result set by level:

SELECT seg=IDENTITY (int),

chartdepth=CASE WHEN o2.employee=02.supervisor THEN O ELSE 1 END,
employee=02.employee,
supervisor=ol.employee

INTO #org chart

FROM staff ol INNER JOIN staff 02 ON (ol.employee=02.supervisor)

WHILE (QQ@rowcount > 0) BEGIN
INSERT #org chart (chartdepth, employee, supervisor)
SELECT DISTINCT ol.chartdepth+l, o2.employee, ol.supervisor
FROM #org chart ol INNER JOIN #org chart 02 ON (ol.employee=02.supervisor)
WHERE ol.chartdepth=(SELECT MAX (chartdepth) FROM #org chart)
AND ol.employee<>ol.supervisor
END

SELECT OrgChart=REPLICATE (CHAR(9),chartdepth)+s.employee name
FROM (SELECT

employee,

seg=MIN (seq),

chartdepth=MAX (chartdepth)

FROM #org chart

GROUP BY employee) o INNER JOIN staff s ON (o.employee=s.employee)
ORDER BY o.seq

OrgChart

GROUCHO

CHICO
HARPO
ZEPPO

MOE
LARRY
CURLY
SHEMP
JOE
CURLY JOE

This technique uses the REPLICATE() function to generate a string of tab characters corresponding to the
chartdepth of each row. It also uses a derived table and some aggregate tricks to remove duplicates from the
result set before returning it. The derived table is necessary because we don't want to have to encapsulate the
references to the employee_name and chartdepth columns in aggregate functions in order to GROUP BY
the employee column. We need to GROUP BY employee or employee_name in order to remove duplicates
from the result set. If we include chartdepth in the GROUP BY clause, some of the duplicates remain,
differentiated only by chartdepth.

Another Approach

As they say, there's more than one way to skin a cat, and there's certainly more than one way to expand a
tree in Transact-SQL. Another way of doing so is to loop through the base table, processing each node

213

Guru’s Guide to Transact-SQL

separately and using a temporary table to track which nodes have been processed. Here's a code sample that
uses this technique to display a multilevel hierarchy:

CREATE TABLE DINOSAURS (OrderNo int PRIMARY KEY, OrderName varchar (30),
PredecessorNo int NULL REFERENCES DINOSAURS (OrderNo))

INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES
INSERT DINOSAURS VALUES

~

'Amphibia', 1)
'Cotylosauri', 1)
'Pelycosauria', 2)
'Therapsida', 2)
'Chelonia', 3)
'Sauropterygia', 3)
'Ichthyosauria’', 3)
'Squamata', 3)

, 'Thecodontia', 3)
10, 'Crocodilia', 9)

, '"Pterosauria', 9)
, 'Saurichia', 9)
,'Ornithischia', 9)

~ 0~

~ ~

~

~

O 0 ~J o Ul WN K
~

~ e~ o~~~ o~~~ o~~~ o~ —~

e
w N

CREATE TABLE #work (1lvl int, OrderNo int)
CREATE TABLE #DINOSAURS (seqg int identity, 1vl int, OrderNo int)

DECLARE @1lvl int, @Qcurr int
SELECT TOP 1 @lvl=1l, @curr=0OrderNo FROM DINOSAURS WHERE OrderNo=PredecessorNo

INSERT INTO #work (lvl, OrderNo) VALUES (Qlvl, @curr)
WHILE (Qlvl > 0) BEGIN
IF EXISTS (SELECT * FROM #work WHERE 1lvl=@lvl) BEGIN
SELECT TOP 1 @curr=OrderNo FROM #work
WHERE 1lv1=@1vl

INSERT #DINOSAURS (lvl, OrderNo) VALUES (Q@lvl, Qcurr)

DELETE #work
WHERE 1v1l=@lvl and OrderNo=@Qcurr

INSERT #work

SELECT @lv1l+1l, OrderNo

FROM DINOSAURS

WHERE PredecessorNo=(Qcurr
AND PredecessorNo <> OrderNo

IF (@RROWCOUNT > 0) SET @lvl=Qlvl+l
END ELSE
SET @lvl=@1lvl-1
END

SELECT 'Dinosaur Orders'=

REPLICATE (CHAR(9),1vl) +1i.0rderName

FROM #DINOSAURS d JOIN DINOSAURS i ON (d.OrderNo=i.OrderNo)
ORDER BY seq

Dinosaur Orders:
Amphibia
Cotylosauri
Pelycosauria
Chelonia
Sauropterygia
Ichthyosauria

214

Chapter 12. Hierarchies

Squamata

Thecodontia
Crocodilia
Pterosauria
Saurichia
Ornithischia

Therapsida

This technique loops through the rows in the base table, placing each node it encounters into one temporary
table and the children of that node into another. When the loop cycles, the first child in this work table is
checked to see whether it has children of its own, and the process repeats itself. Each node is removed from
the work table once it's processed. This iteration continues until all nodes have been expanded.

As with the earlier queries, this routine uses an identity column to sequence itself. It also makes use of
REPLICATE(CHAR(9)) to format its result set.

| don't like this approach as much as those earlier in the chapter because, if for no other reason, it requires
significantly more code. However, it may be more efficient since it doesn't require a GROUP BY clause. The
base table would have to be much larger than it is in these examples for there to be an appreciable difference
in performance between any of the approaches presented here.

Listing Leaf Nodes

Rather than returning an entire hierarchy, you may wish to list its leaf nodes only. A node is a leaf node if it
has no children. Given that all you have to do is find the nodes that aren't listed as the parent of any of the
other nodes, locating leaf nodes is easy enough. Here's an example:

SELECT Grunts=s.employee name
FROM staff s
WHERE NOT EXISTS
(SELECT * FROM staff t WHERE t.supervisor=s.employee)

CURLY JOE

Indented lists

Though not quite the same thing as a tree or hierarchy, an indented list provides a pseudohierarchy via its
formatting. Though its uses are mostly simplistic, understanding the tools available to you for result set
formatting is always handy, regardless of whether you end up using all of them. Here's a code sample that
returns an indented list of first and last names from the authors table in the pubs sample database:

SELECT authors=
CASE WHEN au fname= (SELECT MIN (au fname) FROM authors WHERE
au lname=a.au lname)
THEN au_ lname
ELSE "
ZKD+CHAR(13)+CHAR(9)+aaifiamo
FROM authors a

Bennet
Abraham
Blotchet-Halls

215

Guru’s Guide to Transact-SQL

Reginald
Carson
Cheryl
DeFrance
Michel
del Castillo
Innes
Dull
Ann
Green
Marjorie
Greene
Morningstar
Gringlesby
Burt
Hunter
Sheryl
Karsen
Livia
Locksley
Charlene
MacFeather
Stearns
McBadden
Heather
O'Leary
Michael
Panteley
Sylvia
Ringer
Albert
Anne
Smith
Meander
Straight
Dean
Stringer
Dirk
White
Johnson
Yokomoto
Akiko

Note the use of the CASE function to limit the inclusion of each last name to one occurrence. For example,
the Ringer surname has two corresponding authors—Albert and Anne—but the surname itself is listed just
once. Also note the use of both CHAR(13) (carriage return) and CHAR(9) (tab) to create new lines and indent
the result set. You can use CHAR() to great effect when formatting result sets. By coupling it with CASE, you
can perform the same type of basic formatting that was previously the exclusive domain of report writers and
external development tools.

Summary

Though Transact-SQL provides no direct support for hierarchies, you can still produce hierarchical result sets
with a minimum of code. Self-joins and creative use of the CHAR() and REPLICATE() functions provide ample
means of generating basic hierarchical listings.

216

Chapter 13. Cursors

Chapter 13. Cursors

Bandwagon jumpers make choices based not on merit or value but on brand names, slogans,
and tag lines. As long as there are people willing to part with their hard-earned cash for
gimmickry, the world will continue to be a place where marketing is more important than
what's marketed.

—H. W. Kenton

A cursor is a mechanism for accessing the rows in a table or result set on a piecemeal basis— one at a time.
They run counter to SQL Server's normal way of doing things by parceling result sets into individual rows;
fetching a row from a cursor is analogous to returning a single row via a SELECT statement. Unlike a
traditional result set, a cursor keeps track of its position automatically and provides a wealth of facilities for
scrolling around in the underlying result set. Cursors also provide a handy means of updating the underlying
result set in a positional fashion and of returning result set pointers via variables.

The advice | usually give people who are thinking about using cursors is not to. If you can solve a problem
using Transact-SQL's many set-oriented tools, do so. It's rare (but not impossible) for a cursor-based solution
to outperform a set-based approach. SQL Server's standard result sets (also known as "firehose" cursors)
have been used to solve a myriad of distinct kinds of computing problems for years—there aren't many
conventional database challenges that actually require a cursor, though some are certainly more suited to
cursors than to set handling.

On Cursors and ISAMs

People porting ISAM or local database applications to SQL Server are often tempted to perform shallow
ports—to make no more changes than absolutely necessary to get the app working on the new DBMS. This
usually involves shortcuts like replacing ISAM record navigation (e.g., xBase SKIP) with Transact-SQL cursor
loops. ISAM records and SQL Server cursors aren't synonymous, and any effort to treat a relational DBMS
like an ISAM product is likely to go down in flames.

Some time ago, | had the misfortune of assuming the task of porting an ISAM database application to a full-
blown SQL Server app. | was trying to get the company to move to client/ server RDBMS technology, and,
after months of ambivalence, they finally decided that they wanted to convert their flagship application from an
ISAM product to SQL Server as a kind of proof of concept. Since, in spite of my best efforts, the intrinsic
benefits of RDBMSs weren't apparent to them, | was inclined to accept the challenge in order to prove the
viability of the technology. This was despite the fact that | would much rather have started with a new app than
with an existing, vitally important product.

With my guardian angel in silent verbal assault and without having investigated the code much, | accepted the
task, naively believing that the developers had built the app in a reasonably relational and logical manner.
Having nothing to suggest otherwise, | assumed that they were processing records in sets where possible in
order to save time and code, because even the puny local DBMS on which the app was built supported a fair
amount of set-oriented access (including its own basic SQL dialect). Of course, | didn't expect the code to be
perfect, but | guess | assumed they'd used their tools more or less as they were intended to be used. In talking
with the app's authors, that's certainly the impression they gave me, and | quickly rushed in where angels fear
to tread.

After two to three weeks of wading through some of the worst application code I'd ever seen, of having the
application block itself from server resources due to its dreadful design, and of having one bowling ball after
another roll out of the top of the proverbial closet and hit me in the head, | finally pulled the plug on the SQL
Server conversion.

The app broke virtually every basic tenet of sensible database application design. It used application code to
loop through tables rather than processing rows in sets. What minimal relational and data integrity it had was
implemented in a hodgepodge of application code and database constraints and was far from airtight. It used
a fatuous table versioning scheme that had never been finished or used and gave no thought to consistent
naming conventions or name casing, so database objects had arcane names that were impossible to
remember and incongruous with one another. The same attribute in multiple tables often had different names,
and different attributes among multiple tables often had the same name. Tables were denormalized
throughout the database, not for performance but because the developers didn't know any better. There'd
been no attempt to provide for concurrency, and the app was by design (or by the lack of it) strictly a single-
user contrivance. In short, it was a complete disaster from an architectural standpoint, and the fact that it had

217

Guru’s Guide to Transact-SQL

ever worked at all, even on the ISAM product, was more a testament to the developers' tenacity than to the
robustness of the app.

So, shortly after this joyous experience, | began rewriting the application. Of course, | could have taken the
"easy" way out and merely performed a shallow port of the app to SQL Server, essentially turning the server
into a glorified ISAM database server. | could have reused as much of the existing code as possible,
regardless of how poorly designed it was. Every row-by-row access in the app could have been translated to
an equivalent cursor operation on SQL Server. | could have used SQL Server in ways it was never intended to
be used, and | could have refrained from fixing the many relational and other problems in the app, madly
bolting the various disparate pieces together into a misshapen, software-borne Frankenstein. | could have
done that—it certainly would have been faster in the short run and would have made management happier—
but | just couldn't bring myself to. It's been my experience that there's usually an optimal way to build
software—and all my instincts, training, and knowledge told me that this wasn't it.

Instead, it was apparent to me that the app would have to be redesigned from the ground up if it was to have
a prayer of working properly on SQL Server or on any other RDBMS. The acute need for a rewrite was as
much due to the radical differences between ISAM products and RDBMSs as it was to poor design and
coding in the application to begin with. The fact that software appears to work properly doesn't mean that it's
been constructed properly any more than the fact that a house appears to be sound means that it won't fall
into the ground the first time you try to build on to it. There is more to application design than whether the app
meets immediate customer requirements. Making customers happy is paramount, but it should not come
completely at the expense of long-term concerns such as extensibility, interoperability, performance,
scalability, concurrency, and supportability.

These may seem like technology-centric concerns, but customers care about these things, too, whether they
know it or not. They're certainly affected by them indirectly—if not directly. A feature request that might seem
trivial to the typical user—converting a single-user app to a multiuser app, for example—can be difficult if not
impossible if the app was designed incorrectly to begin with. If the app's designer gave no thought to
concurrency when she was building it, the app will likely have to be rewritten in order to accommodate
multiple users. This rewrite translates into delayed releases and users having to wait for the features they
need. Application design affects real people in real ways. Beauty is not in the eye of the beholder—it's in the
eye of the designer.

The really ironic thing about the whole experience was that many of the problem application's design
decisions didn't make any more sense on the ISAM database platform than they would have on SQL Server.
It's just that SQL Server would have exposed many of these defects to the light of day. It would have forced
the app to clean up its act or go elsewhere. Because of their emphasis on robustness and performance,
relational DBMSs tend to be less forgiving of application misbehavior than ISAM products. | don't lament
this—I think it's a good thing. Developers shouldn't build shoddy applications regardless of the back end.
Porting ISAM applications to SQL Server is not a menial task, even for properly designed applications. Quickly
performing a shallow port by doing things like replacing ISAM access with SQL Server cursors is almost never
the right approach. It takes a good amount of moral fortitude and a stiff spine to say, "This port is going to take
some work; the app will have to be redesigned or rewritten," but that's often the best approach. Reinventing
the wheel is fine—even necessary—if the wheel you're "reinventing" was a square one to begin with. Do deep
ports when moving applications to SQL Server—think of it as the foundation on which your applications
should stand, not as just another service they use. Shallow ports are for those who, as Ron Soukup says,
"believe that there's never time to do the port right but there's always time to do it over."

Types of Cursors

There are four types of cursors supported by Transact-SQL: FORWARD_ONLY, DYNAMIC, STATIC, and
KEYSET. The primary difference between these types is in the ability to detect changes to their underlying
data while the cursor is being traversed and in the resources (locks, tempdb space, etc.) they use.
Depending on the type of cursor you create, changes made to its underlying data may or may not be shown
while traversing the cursor. In addition to new column values, these changes can affect which rows are
returned by the cursor (membership), as well as the ordering of those rows. Also, opening the cursor may
cause the entirety of its result set (or their keys) to be placed in a temporary table, possibly causing resource
contention problems in tempdb. Table13.1 summarizes the different cursor types and their attributes.

Table 13.1. The types of cursors Transact-SQL supports and their attributes.

Type Scrollable Membership/Order Column Values
FORWARD_ONLY (default) No Dynamic Dynamic
DYNAMIC/SENSITIVE Yes Dynamic Dynamic

218

Chapter 13. Cursors

STATIC / INSENSITIVE Yes Fixed Fixed

KEYSET Yes Fixed Dynamic

Forward-Only Cursors

A forward-only cursor (the default) returns rows sequentially from the database. It does not require space in
tempdb, and changes made to the underlying data are visible as soon as they're reached. Here's an example:

CREATE TABLE #temp (k1 int identity, cl int NULL)
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

DECLARE ¢ CURSOR FORWARD ONLY
FOR SELECT k1, cl FROM #temp

OPEN c

FETCH c
UPDATE #temp
SET cl=2

WHERE k1=3

FETCH c
FETCH c

SELECT * FROM #temp

CLOSE c¢
DEALLOCATE c

GO

DROP TABLE #temp
k1l cl

1 NULL
k1l cl

2 NULL
k1l cl

3 2

k1l cl

1 NULL
2 NULL
3 2

4 NULL

Dynamic Cursors

As with forward-only cursors, dynamic cursors reflect changes to their underlying rows as those rows are
reached. No extra tempdb space is required. Unlike forward-only cursors, dynamic cursors are inherently

219

Guru’s Guide to Transact-SQL

scrollable—you aren't limited to accessing their rows sequentially. They're sometimes referred to as sensitive
cursors because of their sensitivity to source data changes. Here's an example:

CREATE TABLE #temp (k1 int identity, cl int NULL)
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

DECLARE c¢ CURSOR DYNAMIC
FOR SELECT k1, cl FROM #temp

OPEN c

FETCH c
UPDATE #tomp
SET cl=2

WHERE kl1=1

FETCH c
FETCH PRIOR FROM c

SELECT * FROM #temp

k1l cl
1 NULL
k1l cl
2 NULL
k1l cl
1 2
k1l cl
1 2
2 NULL
3 NULL
4 NULL

Here, we fetch a row, then update it, fetch another, and then refetch the first row. When we fetch the first row
for the second time, we see the change made via the UPDATE, even though the UPDATE didn't use the
cursor to make its change.

Static Cursors

A static cursor returns a read-only result set that's impervious to changes to the underlying data. It's the
opposite of a dynamic cursor, though it's still completely scrollable. Once a static cursor is opened, changes
made to its source data are not reflected by the cursor. This is because the entirety of its result set is copied
to tempdb when it's first opened. Static cursors are sometimes called snapshot or insensitive cursors because
they aren't sensitive to changes made to their source data. Here's an example:

220

Chapter 13. Cursors

CREATE TABLE #temp (kl int identity, cl int NULL)

INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUE
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
DECLARE c¢ CURSOR STATIC

a
()

FOR SELECT k1, cl FROM #temp
OPEN ¢ -- The entire result set is copied to tempdb

UPDATE #temp
SET cl=2
WHERE kl1=1

FETCH ¢ -- This doesn't reflect the change made by the UPDATE

SELECT * FROM #temp -- But the change is indeed there
CLOSE c

DEALLOCATE c

GO

DROP TABLE f#temp

k1l cl
1 NULL
k1l cl
1 2
2 NULL
3 NULL
4 NULL

Here, we open the cursor and immediately make a change to the first row in its underlying table. This change
isn't reflected when we fetch that row from the cursor because the row is actually coming from tempdb. A
subsequent SELECT from the underlying table shows the change to be intact even though it's not reflected by
the cursor.

Keyset Cursors

Opening a keyset cursor returns a fully scrollable result set whose membership and order are fixed. As with
forward-only and static cursors, changes to the values in its underlying data (except for keyset columns) are
reflected when they're accessed; however, new row insertions are not reflected by the cursor. As with a static
cursor, the set of unique key values for the cursor's rows are copied to a table in tempdb (hence the term
keyset) when the cursor is opened. That's why membership in the cursor is fixed. If the underlying table
doesn't have a primary or unique key, the entire set of candidate key columns is copied to the keyset table.
Since changes to keyset columns aren't reflected by the cursor, failing to define a unique key of some type for
the underlying data results in a keyset that doesn't reflect changes to any of its candidate key columns. Here's
a simple keyset example:

CREATE TABLE #temp (k1 int identity PRIMARY KEY, cl int NULL)
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

221

Guru’s Guide to Transact-SQL

c CURSOR KEYSET

ECT k1, cl FROM #temp

OPEN ¢ -- The keyset is copied to tempdb

UPDATE #temp

SET cl=2

WHERE kl1=1

INSERT #temp VALUES (3) -- won't be visible to cursor (can safely omit identity
column)

FETCH ¢ -- Change is visible

FETCH LAST FROM ¢ -- New row isn't

SELECT * FROM f#temp

CLOSE c¢

1 2

kl cl

4 NULL
k1l cl

1 2

2 NULL
3 NULL
4 NULL

Here, once the keyset cursor is opened, a change is made to its first row before the row is fetched from the
cursor. Another row is then inserted into the underlying table. Once the routine begins fetching rows from the
cursor, the first change we made shows up, but the new row doesn't. This is because membership in a keyset
cursor doesn't change once it's opened.

Note the inclusion of a PRIMARY KEY constraint in the work table. Without it, changes to the table's ¢1
column aren't visible to the cursor, even though the cursor has an identity column. Why? Because, in and of
themselves, identity columns aren't guaranteed to be unique. You could always use SET IDENTITY_INSERT
to add duplicate identity values or reset the identity seed to have the server add them for you. To ensure
uniqueness, a PRIMARY or UNIQUE KEY constraint is required. Without a unique key, the server copies the
entirety of the candidate keys for each row to the keyset cursor's temporary table.

Appropriate Cursor Use

A word of advice: Use cursors only when you have to. That may seem a little simplistic or overly broad, but |
think most seasoned Transact-SQL developers would agree that using cursors should be near the bottom of
your list of coding techniques. Instead, try to find a solution that leverages Transact-SQL's ability to work with
sets of data to solve your problems. That's what it was designed to do; that's what it does best. Though
cursors are an easy concept for beginners to grasp, cursor overuse/misuse is a major source of performance
problems with most relational DBMSs, including SQL Server.

This isn't to say that cursor use is taboo or that all cursor users are headed for a fiery afterlife. If you program
long enough in Transact-SQL, you'll use cursors sooner or later. Some kinds of development require them
extensively. As in many things, your degree of success will depend largely on your mindset. Use cursors
when it makes sense—just be careful not to misuse them.

222

Chapter 13. Cursors

Some examples of situations where cursor use is appropriate are dynamic queries, row-oriented operations,
and scrollable forms. Dynamic queries build and execute Transact-SQL code at runtime. Row-oriented
operations are multistatement routines that are too complex or otherwise unsuitable for single statement
operations such as SELECT or UPDATE. Scrollable forms typically feature a facility (sometimes listing
multiple rows) that allows users to navigate within a result set. Scrollable cursors make setting up this
functionality as straightforward as possible for the developer.

Dynamic Queries

Cursors come in handy with dynamic queries because they allow you to construct executable Transact-SQL
code based on a result set. For example, suppose we want to construct a cross-tab (pivot table) over a series
of values. Let's assume that there are three columns in the series —a key, a subkey, and the value column
itself. We want a cross-tab featuring the keys on its x-axis and the subkeys on its y-axis, with the values listed
at each intersection. Each key may have a different number of subkeys, and these subkeys may or may not
be consecutive. Here's an approach that uses a cursor to construct dynamic T-SQL to render the cross-tab:

CREATE TABLE #series

(keyl int,

key2 int,

valuel decimal (6,2) DEFAULT (

(CASE (CAST(RAND()+.5 AS int)*-1) WHEN O THEN 1 ELSE -1 END) * (CONVERT (int, RAND ()

*

L

100000) % 10000) *RAND ()
)

)

INSERT #series (keyl, key2) VALUES (1,1)
INSERT #series (keyl, key2) VALUES (1,2)
INSERT #series (keyl, key2) VALUES (1,3)
INSERT #series (keyl, key2) VALUES (1,4)
INSERT #series (keyl, key2) VALUES (1,5)
INSERT #series (keyl, key2) VALUES (1,6)
INSERT #series (keyl, key2) VALUES (2,1)
INSERT #series (keyl, key2) VALUES (2,2)
INSERT #series (keyl, key2) VALUES (2, 3)
INSERT #series (keyl, key2) VALUES (2,4)
INSERT #series (keyl, key2) VALUES (2,5)
INSERT #series (keyl, key2) VALUES (2,06)
INSERT #series (keyl, key2) VALUES (2,7)
INSERT #series (keyl, key2) VALUES (3,1)
INSERT #series (keyl, key2) VALUES (3,2)
INSERT #series (keyl, key2) VALUES (3,3)
DECLARE s CURSOR

FOR
SELECT DISTINCT key2 FROM #series ORDER BY key2

DECLARE @key2 int, @key2str varchar(10), @sgl varchar (8000)

OPEN s
FETCH s INTO Qkey2
SET @sgl="'"
WHILE (@@FETCHisTATUS:O) BEGIN
SET @key2str=CAST (dkey2 AS varchar)
SET @sgl=@sgl+',SUM(CASE WHEN key2='+(@key2str+' THEN valuel ELSE NULL END)
["+Q@key2str+']"
FETCH s INTO Qkey2
END

SET @sgl='SELECT keyl'+@sgl+' FROM #series GROUP BY keyl'

223

Guru’s Guide to Transact-SQL

EXEC (@sql)

CLOSE s
DEALLOCATE s
DROP TABLE #series

keyl 1 2 3 4 5 6 7

1 212.74 -1608.59 1825.29 690.48 1863.44 5302.54 NULL

2 -7531.42 1848.63 -3746.60 -54.37 -2263.63 -1013.01 5453.57
3 126.13 -10.41 205.35 NULL NULL NULL NULL

To best understand how this works, it's instructive to examine the dynamic query itself. Here's what @sql
looks like just prior to execution:

SELECT keyl, SUM(CASE WHEN key2=1 THEN valuel ELSE NULL END) [1],

SUM (CASE WHEN key2=2 THEN valuel ELSE NULL END) 1,

SUM (CASE WHEN key2=3 THEN valuel ELSE NULL END)

SUM (CASE WHEN key2=4 THEN valuel ELSE NULL END)

SUM (CASE WHEN key2=5 THEN valuel ELSE NULL END)
)
)

(1,
(1 4
(1,
SUM (CASE WHEN key2=6 THEN valuel ELSE NULL END]
SUM (CASE WHEN key2=7 THEN valuel ELSE NULL END]

FROM f#series GROUP BY keyl

4

(
[
[
(
(
(

~ oy U D W N

The cursor returns a row for each unique subkey in the series. Regardless of the key that contains it, if a
subkey appears in the table, the cursor's SELECT DISTINCT returns an instance of it. The CASE statement
that's constructed for each cross-tab column returns the value1 column when the subkey matches up with its
column and NULL otherwise. The GROUP BY flattens the rows returned by the query such that each key
appears exactly once. To understand this better, let's look at the cross-tab without the GROUPBY:

keyl 1 2 3 4 5 6 7

1 212.74 NULL NULL NULL NULL NULL NULL
1 NULL -1608.59 NULL NULL NULL NULL NULL
1 NULL NULL 1825.29 NULL NULL NULL NULL
1 NULL NULL NULL 690.48 NULL NULL NULL
1 NULL NULL NULL NULL 5302.54 NULL NULL
1 NULL NULL NULL NULL NULL 5302.54 NULL
2 -7531.42 NULL NULL NULL NULL NULL NULL
2 NULL 1848.63 NULL NULL NULL NULL NULL
2 NULL NULL -3746.60 NULL NULL NULL NULL
2 NULL NULL NULL -54.37 NULL NULL NULL
2 NULL NULL NULL NULL -2263.63 NULL NULL
2 NULL NULL NULL NULL NULL -1013.01 NULL
2 NULL NULL NULL NULL NULL NULL 5453.57
3 126.13 NULL NULL NULL NULL NULL NULL
3 NULL -10.41 NULL NULL NULL NULL NULL
3 NULL NULL 205.35 NULL NULL NULL NULL

Due to the characteristics of the original series data, only one subkey column in each key row has a value.
The rest of the columns are set to NULL by their respective CASE expressions. The GROUP BY clause
minimizes these NULLs, summarizing the pivot table such that each series value appears in its respective
subkey column when present.

Row-Oriented Operations

224

Chapter 13. Cursors

Another good use of cursors is in row-oriented operations. A row-oriented operation is one that exceeds the
capabilities of single-statement processing (e.g., SELECT). Some characteristic of it requires more power or
more flexibility than a single-statement solution can provide. Here's an example of a row-oriented operation
that lists the source code for the triggers attached to each table in a database:

USE pubs

DECLARE objects CURSOR

FOR

SELECT name, deltrig, instrig, updtrig

FROM sysobjects WHERE type='U' AND deltrig+instrig+updtrig>0

DECLARE @objname sysname, (@deltrig int, @instrig int, Qupdtrig int,
@deltrigname sysname, (@instrigname sysname, (@updtrigname sysname

OPEN objects
FETCH objects INTO (@objname, @deltrig, @instrig, Qupdtrig
WHILE (@@FETCH_STATUS:O) BEGIN
PRINT 'Triggers for object: '+@objname
SELECT @deltrigname=OBJECT NAME (Gdeltrig), @instrigname=0BJECT NAME (€@instrig),
@updtrigname=0OBJECT NAME (Gupdtrig)
IF @deltrigname IS NOT NULL BEGIN
PRINT 'Table: '+@objname+' Delete Trigger: '+@deltrigname
EXEC sp helptext @deltrigname
END
IF @instrigname IS NOT NULL BEGIN
PRINT 'Table: '+@objname+' Insert Trigger: '+@instrigname
EXEC sp helptext @instrigname
END
IF @updtrigname IS NOT NULL BEGIN
PRINT 'Table: '+@objname+' Update Trigger: '+@updtrigname
EXEC sp helptext @updtrigname
END
FETCH objects INTO @objname, @deltrig, @instrig, Qupdtrig
END

CLOSE objects
DEALLOCATE objects

Triggers for object: employee
Table: employee Insert Trigger: employee insupd
Text
CREATE TRIGGER employee insupd
ON employee
FOR insert, UPDATE
AS
-- Get the range of level for this Jjob type from the jobs table.
declare @min 1vl tinyint,
@max 1vl tinyint,
@emp 1lvl tinyint,
@job id smallint
select @min 1vl = min 1vl,
@max 1vl = max 1vl,
@emp 1vl = i.job 1lvl,
@job id = i.job id
from employee e, Jjobs j, inserted i
where e.emp id = i.emp id AND i.job _id = j.job id
IF (@job_id = 1) and (Remp 1lvl <> 10)
begin
raiserror ('Job id 1 expects the default level of 10.',16,1)
ROLLBACK TRANSACTION

225

Guru’s Guide to Transact-SQL

end
ELSE
IF NOT (C@emp 1lvl BETWEEN (@min 1lvl AND @max 1vl)
begin
raiserror ('The level for job id:%d should be between %d and %d.',

le, 1, @job id, @min 1lvl, @max 1vl)
ROLLBACK TRANSACTION
end

Table: employee Update Trigger: employee insupd
Text
CREATE TRIGGER employee insupd
ON employee
FOR insert, UPDATE
AS
-— Get the range of level for this job type from the Jjobs table.
declare @min 1lvl tinyint,
@max 1vl tinyint,
@emp 1lvl tinyint,
@job_id smallint
select @min 1lvl = min 1vl,
@max 1vl = max 1vl,
@emp 1vl = i.job 1vl,
@job id = i.job id
from employee e, Jjobs j, inserted i
where e.emp id = i.emp_ id AND i.job id = j.job_id
IF (@job id = 1) and (Remp 1lvl <> 10)
begin
raiserror ('Job id 1 expects the default level of 10.',16,1)
ROLLBACK TRANSACTION

end
ELSE
IF NOT (C@emp 1lvl BETWEEN @min 1lvl AND @max 1vl)
begin
raiserror ('The level for job id:%d should be between %d and %d.',

16, 1, Qjob_id, @min 1vl, €@max 1vl)
ROLLBACK TRANSACTION
end

Of course, we could query the syscomments table directly and join it with the sysobjects table to render the
same information, but the result set wouldn't be formatted suitably. By iterating through the table one row at a
time, we can format the output for each table and its triggers however we like.

Scrollable Forms

Whether you should use a cursor to service a scrollable form depends largely on how much data the form
might require. Since Transact-SQL cursors reside on the server and return only fetched rows, they can save
lots of time and resources when dealing with large result sets. You wouldn't want to return 100,000rows over a
network to a client application. On the other hand, cursors are unnecessary with smaller result sets and
probably not worth the trouble. Other factors to consider when determining whether a cursor is appropriate for
a scrollable form are whether the form is updatable and whether you want changes by other users to show up
immediately. If the form is read-only or you're not concerned with showing changes by other users, you may
be able to avoid using a cursor.

T-SQL Cursor Syntax

There are a number of commands and functions that relate to cursors. Table13.2 summarizes them.

226

Chapter 13. Cursors

The following sections cover these commands in more detail.
Table 13.2. Transact-SQL cursor syntax.

Command or Function Purpose
DECLARE CURSOR Defines a cursor
OPEN Opens a cursor so that data may be retrieved from it
FETCH Fetches a single row from the cursor
CLOSE Closes the cursor, leaving intact the internal structures that service it
DEALLOCATE Frees the cursor's internal structures
@@CURSOR_ROWS Returns the number of rows exposed by the cursor
@@FETCH_STATUS Indicates the success or failure of the last FETCH
CURSOR_STATUS() Reports status info for cursors and cursor variables

Declare Cursor

DECLARE CURSOR defines cursors. There are two basic versions of the DECLARE CURSOR command—
the ANSI/ISO SQL 92—compliant syntax and Transact-SQL's extended syntax. The ANSI/ISO syntax looks
like this:

DECLARE name [INSENSITIVE] [SCROLL] CURSOR
FOR select
[FOR {READ ONLY | UPDATE [OF column [,...n]]}]

Transact-SQL's extended syntax follows this form:

DECLARE name CURSOR

LOCAL | GLOBAL]

FORWARD ONLY | SCROLL]

STATIC | KEYSET | DYNAMIC | FAST FORWARD]
READ ONLY | SCROLL LOCKS | OPTIMISTIC]
[TYPE WARNING]

FOR select

[FOR {READ ONLY | UPDATE [OF column [,.n]]}]

(
(
(
[

The select component of the command is a standard SELECT statement that defines what data the cursor
returns. It is not permitted to contain the keyword COMPUTE [BY], FOR BROWSE, or INTO. The select
component affects whether a cursor is read-only. For example, if you include the FOR UPDATE clause but
specify a select that inherently prohibits updates (e.g., one that includes GROUP BY or DISTINCT), your
cursor will be implicitly converted to a read-only (or static) cursor. The server converts cursors to static cursors
that, by their very nature, cannot be updated. These types of automatic conversions are known as implicit
cursor conversions. There are a number of criteria that affect implicit cursor conversions; see the Books
Online for more information.

The corollary to this is that you don't have to specify FOR UPDATE in order to update a cursor if its SELECT
statement is inherently updatable. Again, unless specified otherwise, the characteristics of the SELECT
statement determine whether the cursor is updatable. Here's an example:

CREATE TABLE #temp (k1 int identity, cl int NULL)

INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

DECLARE c¢ CURSOR

FOR SELECT k1, cl FROM #temp
OPEN c

227

Guru’s Guide to Transact-SQL

FETCH c
UPDATE #temp
SET cl=2

WHERE CURRENT OF c
SELECT * FROM #temp
CLOSE c

DEALLOCATE c

GO

DROP TABLE #temp

k1l cl
1 NULL
k1l cl
1 2
2 NULL
3 NULL
4 NULL

Even though this cursor isn't specifically defined as an updatable cursor, it's updatable by virtue of the fact that
its SELECT statement is updatable—that is, the server can readily translate an update to the cursor into an
update to a specific row in the underlying table.

If you specify the FOR UPDATE clause and include a column list, the column(s) you update must appear in
that list. If you attempt to update a column not in the list using UPDATE's WHERE CURRENT OF clause, SQL
Server will reject the change and generate an error message. Here's an example:

CREATE TABLE #temp (k1 int identity, cl int NULL, c2 int NULL)

INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

DECLARE c CURSOR

FOR SELECT k1, cl, c2 FROM #temp
FOR UPDATE OF cl

OPEN c

FETCH c

-- BAD T-SQL -- This UPDATE attempts to change a column not in the FOR UPDATE
OF -- list

UPDATE #temp

SET c2=2

WHERE CURRENT OF c

Server: Msg 16932, Level 16, State 1, Line 18

The cursor has a FOR UPDATE list and the requested column to be updated is not
in this list.

The statement has been terminated.

If select references a variable, the variable is resolved when the cursor is declared, not when it's opened. This
is significant in that you must assign values to variables before you declare a cursor that uses them. You can't

228

Chapter 13. Cursors

declare a cursor first, then assign a value to a variable that it depends on and expect the cursor to work
properly. Here's an example:

-- In case these remain from the previous example
DEALLOCATE c

DROP TABLE f#temp

GO

CREATE TABLE #temp (k1 int identity, cl int NULL)

INSERT #temp DEFAULT VALU
INSERT #temp DEFAULT VALU
INSERT #temp DEFAULT VALU
INSERT #temp DEFAULT VALU

MM E e

0 n n n

DECLARE @kl int
DECLARE ¢ CURSOR

FOR SELECT k1, cl FROM #temp WHERE k1<@kl -- Won't work -- @kl is NULL here

SET @kl=3 -- Need to move this before the DECLARE CURSOR
OPEN c
FETCH c

UPDATE #temp
SET cl=2
WHERE CURRENT OF c

SELECT * FROM #temp
CLOSE ¢

DEALLOCATE c

GO

DROP TABLE #temp

Server: Msg 16930, Level 16, State 1, Line 18
The requested row is not in the fetch buffer.
The statement has been terminated.

k1l cl

1 NULL
2 NULL
3 NULL
4 NULL

Global vs. Local Cursors

A global cursor is visible outside the batch, stored procedure, or trigger that created it and persists until it's
explicitly deallocated or until its host connection disconnects. A local cursor is visible only within the code
module that created it unless it's returned via an output parameter. Local cursors are implicitly deallocated
when they go out of scope.

For compatibility with earlier releases, SQL Server creates global cursors by default, but you can override the
default behavior by explicitly specifying the GLOBAL or LOCAL keyword when you declare a cursor. Note that
you can have global and local cursors with identical names, though this is a rather dubious coding practice.
For example, this code runs without error:

229

Guru’s Guide to Transact-SQL

DECLARE Darryl CURSOR -— My brother Darryl
LOCAL
FOR SELECT stor id, title id, gty FROM sales

DECLARE Darryl CURSOR -— My other brother Darryl
GLOBAL
FOR SELECT au lname, au fname FROM authors

OPEN GLOBAL Darryl
OPEN Darryl

FETCH GLOBAL Darryl
FETCH Darryl

CLOSE GLOBAL Darryl
CLOSE Darryl

DEALLOCATE GLOBAL Darryl
DEALLOCATE Darryl

au lname au fname

You can change whether SQL Server creates global cursors when the scope is unspecified via the
sp_dboption system procedure (see the following section "Configuring Cursors" for more information).

OPEN

OPEN makes a cursor's rows accessible via FETCH. If the cursor is an INSENSITIVE or STATIC cursor,
OPEN copies the entirety of its result set to a temporary table. If it's a KEYSET cursor, OPEN copies its set of
unique key values (or the entirety of all candidate key columns if no unique key exists) to a temporary table.
OPEN can indicate the scope of the cursor by including the optional GLOBAL keyword. If there are both a
local and a global cursor with the same name (something you should avoid when possible), use GLOBAL to
indicate the one you want to open. (The default to local cursor database option determines whether you get
a global or local cursor when neither is explicitly specified. See the following section on configuring cursors for
more information.)

Use the @@CURSOR_ROWS automatic variable to determine how many rows are in the cursor. Here's a
simple OPEN example:

CREATE TABLE #temp (k1 int identity PRIMARY KEY, cl int NULL)

INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

DECLARE GlobalCursor CURSOR STATIC -- Declare a GLOBAL cursor
GLOBAL
FOR SELECT k1, cl FROM #temp

DECLARE LocalCursor CURSOR STATIC -- Declare a LOCAL cursor
LOCAL
FOR SELECT k1, cl FROM f#temp WHERE kl<4 -- Only returns three rows

230

Chapter 13. Cursors

OPEN GLOBAL GlobalCursor
SELECT @@CURSORiROWS AS NumberOfGLOBALCursorRows

OPEN LocalCursor

SELECT @E@CURSOR_ROWS AS NumberOfLOCALCursorRows
CLOSE GLOBAL GlobalCursor

DEALLOCATE GLOBAL GlobalCursor

CLOSE LocalCursor

DEALLOCATE LocalCursor

GO

DROP TABLE #temp

NumberOfGLOBALCursorRows

For dynamic cursors, @ @CURSOR_ROWS returns —1 since new row additions could change the number of
rows returned by the cursor at any time. If the cursor is being populated asynchronously (see the "Configuring
Cursors" section), @@CURSOR_ROWS returns a negative number whose absolute value indicates the
number of rows currently in the cursor.

FETCH

FETCH is the means by which you retrieve data from a cursor. Think of it as a special SELECT that returns
just one row from a predetermined result set. Typically, FETCH is called within a loop that uses
@@FETCH_STATUS as its control variable, with each successive FETCH returning the cursor's nextrow.
Scrollable cursors (DYNAMIC, STATIC, and KEYSET cursors, or those declared using the SCROLL option)
allow FETCH to retrieve rows other than the cursor's next row. In addition to retrieving the next row, scrollable
cursors allow FETCH to retrieve a cursor's previous row, its first row, its last row, an absolute row number,
and a row relative to the current row. Here's a simple example:

SET NOCOUNT ON
CREATE TABLE f#cursortest (k1 int identity)

INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES

DECLARE ¢ CURSOR SCROLL
FOR SELECT * FROM #cursortest

OPEN c

FETCH ¢ -- Gets the first row

FETCH ABSOLUTE 4 FROM c —-- Gets the 4th row
FETCH RELATIVE -1 FROM c¢ -- Gets the 3rd row
FETCH LAST FROM c¢ -- Gets the last row

FETCH FIRST FROM ¢ -- Gets the first row

231

Guru’s Guide to Transact-SQL

CLOSE c¢

DEALLOCATE c

GO

DROP TABLE #cursortest

FETCH can be used to return a result set of its own, but usually it's used to fill local variables with table data.
FETCH's INTO clause allows retrieved values to be assigned to local variables. Here's an example:

SET NOCOUNT ON
CREATE TABLE #cursortest (k1 int identity)

INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES
INSERT #cursortest DEFAULT VALUES

DECLARE ¢ CURSOR SCROLL
FOR SELECT * FROM #cursortest

DECLARE @k int

OPEN c

FETCH c INTO (k

WHILE (QQRFETCH STATUS=0) BEGIN
SELECT @k
FETCH c INTO @k

END

CLOSE c

DEALLOCATE c

GO

DROP TABLE f#cursortest

232

Chapter 13. Cursors

NEXT is the default fetch operation, so if you don't specify what type of fetch you want, you'll retrieve the
cursor's next row. For fetch operations other than NEXT, the FROM keyword is required.

FETCH RELATIVE 0 can be used to refresh the current record. This allows you to accommodate changes
made to the current row while the cursor is being traversed. Here's an example:

USE pubs
SET CURSOR CLOSE ON COMMIT OFF -- In case it's been turned on previously
SET NOCOUNT ON

DECLARE ¢ CURSOR SCROLL
FOR SELECT title id, gty FROM sales ORDER BY gty

OPEN c

BEGIN TRAN -- So that we can undo the changes we make
PRINT 'Before image'

FETCH c

UPDATE sales

SET gty=4

WHERE gty=3 -- We happen to know that only one row qualifies, the first one
PRINT 'After image'

FETCH RELATIVE 0 FROM c

ROLLBACK TRAN -- Reverse the UPDATE

CLOSE c¢

DEALLOCATE c

Before image

233

Guru’s Guide to Transact-SQL

title id gty

After image
title id gty

CLOSE

CLOSE frees the current cursor result set and releases any locks being held by the cursor. (Prior to version
7.0, SQL Server retained all locks until the current transaction completed, including cursor locks. With 7.0 and
later, cursor locks are handled independently of other kinds of locks.) The cursor's data structures themselves
are left in place so that the cursor may be reopened if necessary. Specify the GLOBAL keyword to indicate
that you're closing a GLOBAL cursor.

Deallocate

When you're finished with a cursor, you should always deallocate it. A cursor takes up space in the procedure
cache that can be used for other things if you get rid of it when it's no longer needed. Even though
deallocating a cursor automatically closes it, it's considered poor form to deallocate a cursor without first
closing it with the CLOSE command.

Configuring Cursors

In addition to configuring cursors through declaration options, Transact-SQL provides commands and
configuration options that can modify cursor behavior as well. The procedures sp_configure and
sp_dboption and the SET command can be used to configure how cursors are created and the way that they
behave once created.

Asynchronous Cursors

By default, SQL Server generates all keysets synchronously—that is, the call to OPEN doesn't return until the
cursor's result set has been fully materialized. This may not be optimal for large data sets, and you can
change it via the sp_configure 'cursor threshold' configuration option (cursor threshold is an advanced
option; enable advanced options via sp_configure 'show advanced options' in order to access it). Here's an
example that illustrates the difference rendering a cursor asynchronously can make:

-— Turn on advanced options so that 'cursor threshold' can be configured
EXEC sp configure 'show advanced options',1l

RECONFIGURE WITH OVERRIDE

USE northwind

DECLARE ¢ CURSOR STATIC -- Force rows to be copied to tempdb

FOR SELECT OrderID, ProductID FROM [Order Details]

DECLARE @start datetime
SET @start=getdate ()

-- First try it with a synchronous cursor

OPEN c

PRINT CHAR(13) -- Pretty up the display

SELECT DATEDIFF (ms,@start,getdate()) AS [Milliseconds elapsed for Synchronous
cursor]

234

Chapter 13. Cursors

SELECT QE@CURSOR_ROWS AS [Number of rows in Synchronous cursor]
CLOSE c

-- Now reconfigure 'cursor threshold' and force an asynch cursor

EXEC sp configure 'cursor threshold', 1000 -- Asynchronous for cursors > 1000
rows

RECONFIGURE WITH OVERRIDE

PRINT CHAR(13) -- Pretty up the display

SET @start=getdate ()
OPEN ¢ -- Opens an asynch cursor since there are over 1000 rows in the table

-— OPEN comes back immediately because the cursor is being populated
asynchronously

SELECT DATEDIFF (ms,@start,getdate()) AS [Milliseconds elapsed for Asynchronous
cursor]

SELECT Q@CURSOR ROWS AS [Number of rows in Asynchronous cursor]
CLOSE c¢

DEALLOCATE c

GO

EXEC sp configure 'cursor threshold', -1 -- Back to synchronous
RECONFIGURE WITH OVERRIDE

DBCC execution completed. If DBCC printed error messages, contact your system

-
administrator.

Configuration option changed. Run the RECONFIGURE statement to install.

Milliseconds elapsed for Synchronous cursor

2155

DBCC execution completed. If DBCC printed error messages, contact your system

-
administrator.

Configuration option changed. Run the RECONFIGURE statement to install.

Milliseconds elapsed for Asynchronous cursor

DBCC execution completed. If DBCC printed error messages, contact your system

-
administrator.

Configuration option changed. Run the RECONFIGURE statement to install.

ANSI/ISO Automatic Cursor Closing

235

Guru’s Guide to Transact-SQL

The ANSI/ISO SQL-92 specification calls for cursors to be closed automatically when a transaction is
committed. This doesn't make a lot of sense for the types of apps where cursors would most often be used
(those with scrollable forms, for example), so SQL Server doesn't comply with the standard out of the box. By
default, a SQL Server cursor remains open until explicitly closed or until the connection that created it
disconnects. To force SQL Server to close cursors when a transaction is committed, use the SET
CURSOR_CLOSE_ON_COMMIT command. Here's an example:

CREATE TABLE #temp (k1 int identity PRIMARY KEY, cl int NULL)

INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES
INSERT #temp DEFAULT VALUES

DECLARE ¢ CURSOR DYNAMIC
FOR SELECT k1, cl FROM #temp

OPEN c
SET CURSOR CLOSE ON COMMIT ON
BEGIN TRAN

UPDATE #temp
SET cl=2
WHERE kl=1

COMMIT TRAN

-- These FETCHes will fail because the cursor was closed by the COMMIT
FETCH c
FETCH LAST FROM c

-— This CLOSE will fail because the cursor was closed by the COMMIT
CLOSE c

DEALLOCATE c

GO

DROP TABLE #temp

SET CURSOR CLOSE ON COMMIT OFF

Server: Msg 16917, Level 16, State 2, Line O
Cursor is not open.

Server: Msg 16917, Level 16, State 2, Line 26
Cursor is not open.

Server: Msg 16917, Level 16, State 1, Line 29
Cursor is not open.

Contrary to the Books Online, rolling back a transaction does not close updatable cursors when
CLOSE_CURSOR_ON_COMMIT is disabled. The actual behavior following a ROLLBACK differs significantly
from the documentation and more closely follows what happens when a transaction is committed. Basically,
ROLLBACK doesn't close cursors unless CLOSE_ CURSOR_ON_COMMIT has been enabled. Here's an
example:

USE pubs
SET CURSOR CLOSE ON COMMIT ON
BEGIN TRAN

DECLARE c¢ CURSOR DYNAMIC
FOR SELECT gty FROM sales

OPEN c

236

Chapter 13. Cursors

FETCH c

UPDATE sales
SET gty=qgty+1l
WHERE CURRENT OF c

ROLLBACK TRAN

-— These FETCHes will fail because the cursor was closed by the ROLLBACK
FETCH c
FETCH LAST FROM c

-— This CLOSE will fail because the cursor was closed by the ROLLBACK
CLOSE c¢

DEALLOCATE c

GO

SET CURSOR CLOSE ON COMMIT OFF

Server: Msg 16917, Level 16, State 2, Line 21
Cursor is not open.
Server: Msg 16917, Level 16, State 2, Line 22
Cursor is not open.
Server: Msg 16917, Level 16, State 1, Line 25
Cursor is not open.

Now let's disable CURSOR_CLOSE_ON_COMMIT and run the query again:

SET CURSOR CLOSE_ON_COMMIT OFF
BEGIN TRAN

DECLARE ¢ CURSOR DYNAMIC
FOR SELECT gty FROM sales

OPEN c
FETCH c

UPDATE sales
SET gty=qgty+l
WHERE CURRENT OF c

ROLLBACK TRAN

-— These FETCHes will succeed because the cursor was left open in spite of the
—-— ROLLBACK

FETCH c

FETCH LAST FROM c

-- This CLOSE will succeed because the cursor was left open in spite of the
—-— ROLLBACK

CLOSE c¢
DEALLOCATE c

237

Guru’s Guide to Transact-SQL

Despite the fact that a transaction is rolled back while our dynamic cursor is open, the cursor is unaffected.
This contradicts the way the server is documented to behave.

Defaulting to Global or Local Cursors

Out of the box, SQL Server creates global cursors by default. This is in keeping with previous versions of the
server that did not support local cursors. If you'd like to change this, set the default to local cursor database
option to true using sp_dboption.

Updating Cursors

The WHERE CURRENT OF clause of the UPDATE and DELETE commands allows you to update and delete
rows via a cursor. An update or delete performed via a cursor is known as a positioned modification. Here's an
example:

USE pubs
SET CURSOR CLOSE ON COMMIT OFF

SET NOCOUNT ON

DECLARE C CURSOR DYNAMIC

FOR SELECT * FROM sales

OPEN c

FETCH c

BEGIN TRAN -- Start a transaction so that we can reverse our changes
-- A positioned UPDATE

UPDATE sales SET gty=gqty+l WHERE CURRENT OF c

FETCH RELATIVE 0 FROM c

FETCH c

-—- A positioned DELETE
DELETE sales WHERE CURRENT OF c

SELECT * FROM sales WHERE gty=3

ROLLBACK TRAN -- Throw away our changes

SELECT * FROM sales WHERE gty=3 -- The deleted row comes back

CLOSE c¢

DEALLOCATE c

stor id ord num ord date gty payterms title id
6380 6871 1994-09-14 00:00:00.000 5 Net 60 BU1032
stor id ord num ord date gty payterms title id
6380 6871 1994-09-14 00:00:00.000 6 Net 60 BU1032

238

Chapter 13. Cursors

stor id ord num ord date gty payterms title id
6380 722a 1994-09-13 00:00:00.000 3 Net 60 PS2091
stor id ord num ord date qty payterms title id
stor id ord num ord date gty payterms title id
6380 722a 1994-09-13 00:00:00.000 3 Net 60 PsS2091

Cursor Variables

Transact-SQL allows you to define variables that contain pointers to cursors via its cursor data type. The
OPEN, FETCH, CLOSE, and DEALLOCATE commands can reference cursor variables as well as cursor
names. You can set up variables within stored procedures that store cursor definitions, and you can return a
cursor created by a stored procedure via an output parameter. Several of SQL Server's own procedures use
this capability to return results to their callers in an efficient, modular fashion (e.g., sp_cursor_list,
sp_describe_cursor, sp_fulltext_tables_cursor). Note that you can't pass a cursor via an input parameter into
a procedure—you can return cursors only via output parameters. You also cannot define table columns using
the cursor data type—only variables are allowed—nor can you assign a cursor variable using the SELECT
statement (as with scalar variables)—you must use SET.

Cursor output parameters represent an improvement over the traditional result set approach in that they give
the caller more control over how to deal with the rows a procedure returns. You can process the cursor
immediately if you want—treating it just like a traditional result set—or you can retain it for later use. Before
the advent of cursor variables, the only way to achieve this

same degree of flexibility was to trap the stored procedure's result set in a table, then process the table as
needed. This worked okay for simple, small result sets but could be problematic with larger ones.

You can use the CURSOR_STATUS() function to check a cursor output parameter to see whether it
references an open cursor and to determine the number of rows it exposes. Here's an example that features
cursor variables, output parameters, and the CURSOR_STATUS() function:

CREATE PROC listsales cur (@title id tid, @salescursor cursor varying OUT
AS B B

-- Declare a LOCAL cursor so it's automatically freed when it

-— goes out of scope

DECLARE ¢ CURSOR DYNAMIC

LOCAL

FOR SELECT * FROM sales WHERE title id LIKE Q@title id

DECLARE @sc cursor -— A local cursor variable
SET @sc=c -- Now we have two references to the cursor
OPEN c

FETCH @sc

SET @salescursor=@sc -— Return the cursor via the output parm
RETURN 0
GO

SET NOCOUNT ON

-— Define a local cursor variable to receive the output parm
DECLARE (@mycursor cursor
EXEC listsales cur 'BU1032', @mycursor OUT -- Call the procedure

-- Make sure the returned cursor is open and has at least one row
IF (CURSOR STATUS ('variable', '@mycursor')=1) BEGIN
FETCH @mycursor

239

Guru’s Guide to Transact-SQL

WHILE (Q@FETCH STATUS=0) BEGIN
FETCH (@mycursor
END
END

CLOSE @mycursor
DEALLOCATE @mycursor

stor id ord num ord date gty payterms title id
6380 6871 1994-09-14 00:00:00.000 5 Net 60 BUL032
stor id ord num ord date gty payterms title id
8042 42311930 1994-09-14 00:00:00.000 10 ON invoice BU1032
stor id ord num ord date gty payterms title id
8042 0M879.1 1999-06-24 19:13:26.230 30 Net 30 BUL032
stor id ord num ord date qty payterms title id

Notice the way example code references the cursor using three different variables as well as its original name.
For every command except DEALLOCATE, referencing a cursor variable is synonymous with referencing the
cursor by name. If you OPEN the cursor, regardless of whether you reference it using a cursor variable or the
cursor name itself, the cursor is opened, and you can FETCH rows using any variable that references it.
DEALLOCATE differs in that it doesn't actually deallocate the cursor unless it's the last reference to it. It does,
however, prevent future access using the specified cursor identifier. So if you have a cursor named foo and a
cursor variable named foovar to which foo has been assigned, deallocating foo will do nothing except
prohibit access to the cursor via foo—foovar remains intact.

Cursor Stored Procedures

SQL Server provides a number of cursor-related stored procedures with which you should familiarize yourself
if you expect to work with cursors much. Table13.3 provides a brief list of them, along with a description of
each.

Each of these returns its result via a cursor output parameter, so you'll need to supply a local cursor variable
in order to process them.

Optimizing Cursor Performance

The best performance improvement technique for cursors is not to use them at all if you can avoid it. As I've
said, SQL Server works much better with sets of data than with individual rows. It's a relational database, and
single-row access has never been the strong suit of relational DBMSs. That said, there are times when using
a cursor is unavoidable, so here are a few tips for optimizing them:

e Don't use static/insensitive cursors unless you need them. Opening a static cursor causes all of its
rows to be copied to a temporary table. That's why it's insensitive to changes—it's actually referencing
a copy of the table in tempdb. Naturally, the larger the result set, the more likely declaring a static
cursor over it will cause resource contention issues in tempdb.

Table 13.3. Stored procedures that relate to cursors.

Procedure Function

Returns a list of the cursors and their attributes that have been opened by a

sp_cursor_list .
- - connection

240

Chapter 13. Cursors

sp_describe cursor

Lists the attributes of an individual cursor

sp_describe_cursor_columns

Lists the columns (and th