

J O E C E L K O ’ S

SQL PROGRAMMING STYLE

J O E C E L K O ’ S

SQL PROGRAMMING STYLE

Joe Celko

Publishing Director Michael Forster
Publisher Diane Cerra
Publishing Services Manager Andre Cuello
Senior Production Editor George Morrison
Editorial Assistant Asma Stephan
Cover Design Side by Side Studios
Cover Image Side by Side Studios
Composition Multiscience Press, Inc.
Copyeditor Multiscience Press, Inc.
Proofreader Multiscience Press, Inc.
Indexer Multiscience Press, Inc.
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means-electronic, mechanical, photocopying,
scanning, or otherwise-without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the
Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and then
“Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Application submitted.

ISBN: 0-12-088797-5

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 5 4 3 2 1

 To Eve Astrid Andersson, Miss American

π

And April Wilson, who rubs me the right way.

C O N T E N T S

Introduction xv

1

Names and Data Elements 1

1.1 Names 2
1.1.1 Watch the Length of Names 2
1.1.2 Avoid All Special Characters in Names 3
1.1.3 Avoid Quoted Identifiers 4
1.1.4 Enforce Capitalization Rules to Avoid

Case-Sensitivity Problems 6
1.2 Follow the ISO-11179 Standards Naming Conventions 7

1.2.1 ISO-11179 for SQL 8
1.2.2 Levels of Abstraction 9
1.2.3 Avoid Descriptive Prefixes 10
1.2.4 Develop Standardized Postfixes 12
1.2.5 Table and View Names Should Be Industry Standards,

Collective, Class, or Plural Nouns 14
1.2.6 Correlation Names Follow the Same Rules as Other

Names . . . Almost 15
1.2.7 Relationship Table Names Should Be Common

Descriptive Terms 17
1.2.8 Metadata Schema Access Objects Can Have Names That

Include Structure Information 18
1.3 Problems in Naming Data Elements 18

1.3.1 Avoid Vague Names 18
1.3.2 Avoid Names That Change from Place to Place 19
1.3.3 Do Not Use Proprietary Exposed Physical Locators 21

2

Fonts, Punctuation, and Spacing 23

2.1 Typography and Code 23
2.1.1 Use Only Upper- and Lowercase Letters, Digits, and

Underscores for Names 25
2.1.2 Lowercase Scalars Such as Column Names, Parameters,

and Variables 25

viii

C O N T E N T S

2.1.3 Capitalize Schema Object Names 26
2.1.4 Uppercase the Reserved Words 26
2.1.5 Avoid the Use of CamelCase 29

2.2 Word Spacing 30
2.3 Follow Normal Punctuation Rules 31
2.4 Use Full Reserved Words 33
2.5 Avoid Proprietary Reserved Words if a Standard Keyword Is

Available in Your SQL Product 33
2.6 Avoid Proprietary Statements if a Standard Statement Is Available 34
2.7 Rivers and Vertical Spacing 37
2.8 Indentation 38
2.9 Use Line Spacing to Group Statements 39

3

Data Declaration Language 41

3.1 Put the Default in the Right Place 41
3.2 The Default Value Should Be the Same Data

Type as the Column 42
3.3 Do Not Use Proprietary Data Types 42
3.4 Place the PRIMARY KEY Declaration at the Start of the

CREATE TABLE Statement 44
3.5 Order the Columns in a Logical Sequence and Cluster Them

in Logical Groups 44
3.6 Indent Referential Constraints and Actions under the Data Type 45
3.7 Give Constraints Names in the Production Code 46
3.8 Put CHECK() Constraint Near what they Check 46

3.8.1 Consider Range Constraints for Numeric Values 47
3.8.2 Consider LIKE and SIMILAR TO Constraints for

Character Values 47
3.8.3 Remember That Temporal Values Have Duration 48
3.8.4 REAL and FLOAT Data Types Should Be Avoided 48

3.9 Put Multiple Column Constraints as Near to Both Columns
as Possible 48

3.10 Put Table-Level CHECK() Constraints at the End of the
Table Declaration 49

3.11 Use CREATE ASSERTION for Multi-table Constraints 49

C O N T E N T S

ix

3.12 Keep CHECK() Constraints Single Purposed 50
3.13 Every Table Must Have a Key to Be a Table 51

3.13.1 Auto-Numbers Are Not Relational Keys 52
3.13.2 Files Are Not Tables 53
3.13.3 Look for the Properties of a Good Key 54

3.14 Do Not Split Attributes 62
3.14.1 Split into Tables 63
3.14.2 Split into Columns 63
3.14.3 Split into Rows 65

3.15 Do Not Use Object-Oriented Design for an RDBMS 66
3.15.1 A Table Is Not an Object Instance 66
3.15.2 Do Not Use EAV Design for an RDBMS 68

4

Scales and Measurements 69

4.1 Measurement Theory 69
4.1.1 Range and Granularity 71
4.1.2 Range 72
4.1.3 Granularity, Accuracy, and Precision 72

4.2 Types of Scales 73
4.2.1 Nominal Scales 73
4.2.2 Categorical Scales 73
4.2.3 Absolute Scales 74
4.2.4 Ordinal Scales 74
4.2.5 Rank Scales 75
4.2.6 Interval Scales 76
4.2.7 Ratio Scales 76

4.3 Using Scales 77
4.4 Scale Conversion 77
4.5 Derived Units 79
4.6 Punctuation and Standard Units 80
4.7 General Guidelines for Using Scales in a Database 81

5

Data Encoding Schemes 83

5.1 Bad Encoding Schemes 84
5.2 Encoding Scheme Types 86

x

C O N T E N T S

5.2.1 Enumeration Encoding 86
5.2.2 Measurement Encoding 87
5.2.3 Abbreviation Encoding 87
5.2.4 Algorithmic Encoding 88
5.2.5 Hierarchical Encoding Schemes 89
5.2.6 Vector Encoding 90
5.2.7 Concatenation Encoding 91

5.3 General Guidelines for Designing Encoding Schemes 92
5.3.1 Existing Encoding Standards 92
5.3.2 Allow for Expansion 92
5.3.3 Use Explicit Missing Values to Avoid NULLs 92
5.3.4 Translate Codes for the End User 93
5.3.5 Keep the Codes in the Database 96

5.4 Multiple Character Sets 97

6

Coding Choices 99

6.1 Pick Standard Constructions over
Proprietary Constructions100
6.1.1 Use Standard OUTER JOIN Syntax 101
6.1.2 Infixed INNER JOIN and CROSS JOIN Syntax

Is Optional, but Nice 105
6.1.3 Use ISO Temporal Syntax 107
6.1.4 Use Standard and Portable Functions 108

6.2 Pick Compact Constructions over Longer Equivalents 109
6.2.1 Avoid Extra Parentheses 109
6.2.2 Use CASE Family Expressions 110
6.2.3 Avoid Redundant Expressions 113
6.2.4 Seek a Compact Form 114

6.3 Use Comments 118
6.3.1 Stored Procedures 119
6.3.2 Control Statement Comments 119
6.3.3 Comments on Clause 119

6.4 Avoid Optimizer Hints 120
6.5 Avoid Triggers in Favor of DRI Actions 120
6.6 Use SQL Stored Procedures 122

C O N T E N T S

xi

6.7 Avoid User-Defined Functions and Extensions inside the Database 123
6.7.1 Multiple Language Problems 124
6.7.2 Portability Problems 124
6.7.3 Optimization Problems 124

6.8 Avoid Excessive Secondary Indexes 124
6.9 Avoid Correlated Subqueries 125
6.10 Avoid UNIONs 127
6.11 Testing SQL 130

6.11.1 Test All Possible Combinations of NULLs 130
6.11.2 Inspect and Test All CHECK() Constraints 130
6.11.3 Beware of Character Columns 131
6.11.4 Test for Size 131

7

How to Use VIEWS 133

7.1 VIEW Naming Conventions Are the Same as Tables 135
7.1.1 Always Specify Column Names 136

7.2 VIEWs Provide Row- and Column-Level Security 136
7.3 VIEWs Ensure Efficient Access Paths 138
7.4 VIEWs Mask Complexity from the User 138
7.5 VIEWs Ensure Proper Data Derivation 139
7.6 VIEWs Rename Tables and/or Columns 140
7.7 VIEWs Enforce Complicated Integrity Constraints 140
7.8 Updatable VIEWs 143

7.8.1 WITH CHECK OPTION clause 143
7.8.2 INSTEAD OF Triggers 144

7.9 Have a Reason for Each VIEW 144
7.10 Avoid VIEW Proliferation 145
7.11 Synchronize VIEWs with Base Tables 145
7.12 Improper Use of VIEWs 146

7.12.1 VIEWs for Domain Support 146
7.12.2 Single-Solution VIEWs 147
7.12.3 Do Not Create One VIEW Per Base Table 148

7.13 Learn about Materialized VIEWs 149

xii

C O N T E N T S

8

How to Write Stored Procedures 151

8.1 Most SQL 4GLs Are Not for Applications 152
8.2 Basic Software Engineering 153

8.2.1 Cohesion 153
8.2.2 Coupling 155

8.3 Use Classic Structured Programming 156
8.3.1 Cyclomatic Complexity 157

8.4 Avoid Portability Problems 158
8.4.1 Avoid Creating Temporary Tables 158
8.4.2 Avoid Using Cursors 159
8.4.3 Prefer Set-Oriented Constructs to

Procedural Code 161
8.5 Scalar versus Structured Parameters 167
8.6 Avoid Dynamic SQL 168

8.6.1 Performance 169
8.6.2 SQL Injection 169

9

Heuristics 171

9.1 Put the Specification into a Clear Statement 172
9.2 Add the Words “Set of All…” in Front of the Nouns 173
9.3 Remove Active Verbs from the Problem Statement 174
9.4 You Can Still Use Stubs 174
9.5 Do Not Worry about Displaying the Data 176
9.6 Your First Attempts Need Special Handling 177

9.6.1 Do Not Be Afraid to Throw Away Your First
Attempts at DDL 177

9.6.2 Save Your First Attempts at DML 178
9.7 Do Not Think with Boxes and Arrows 179
9.8 Draw Circles and Set Diagrams 179
9.9 Learn Your Dialect 180
9.10 Imagine That Your WHERE Clause Is “Super Ameba” 180
9.11 Use the Newsgroups and Internet 181

10

Thinking in SQL 183

10.1 Bad Programming in SQL and Procedural Languages 184

C O N T E N T S

xiii

10.2 Thinking of Columns as Fields 189
10.3 Thinking in Processes, Not Declarations 191
10.4 Thinking the Schema Should Look Like the Input Forms 194

Resources 197

Military Standards 197
Metadata Standards 197
ANSI and ISO Standards 198
U.S. Government Codes 199
Retail Industry 199
Code Formatting and Naming Conventions 200

Bibliography 203

Reading Psychology 203
Programming Considerations 204

Index 207

About the Author 217

Introduction

I

 AM NOT trying to teach you to program in SQL in this book. You might
want to read that again. If that is what you wanted, there are better
books. This ought to be the second book you buy, not the first.

I assume that you already write SQL at some level and want to get
better at it. If you want to learn SQL programming tricks, get a copy of
my other book,

SQL for Smarties

 (3rd edition, 2005). I am trying to
teach the reader how to work in logical and declarative terms, instead
of in a procedural or OO manner—“Query Eye for the Database Guy,”
if you will forgive a horrible contemporary pun.

Few, if any, SQL programmers came to SQL before learning and
writing for years in a procedural or object-oriented language. They
then got one particular SQL product and were told to learn it on their
own or with a book that has a title like “SQL for Brain-Dead Morons,”
“Learn SQL in Ten Easy Lessons or Five Hard Ones,” or worse.

This is absurd! It takes at least five years to learn to be a master
carpenter or chef. Why would you believe people could become SQL
gurus in a weekend? What they become is bad SQL programmers, who
speak SQL in dialect from the local SQL product with a strong accent
from their previous languages. You might want to read “Teach Yourself
Programming in Ten Years” by Peter Norvig (www.norvig.com/21-
days.html) or “No Silver Bullets” by Fred Brooks,

Computer

, 20(4):10-
19, April 1987) to get a reality check.

xvi INTRODUCTION

The horrible part is that these people often don’t know they are bad
programmers. At one extreme, the entire shop where they work is just as
bad, and they never see anything else. At the other extreme, if anyone
tries to tell them about their problems, they become defensive or angry.
If you look at postings on SQL newsgroups, many programmers just
want to get a kludge for an immediate problem and not actually obtain a
true long-term solution.

If these were woodworking newsgroups, their questions would be the
equivalent of “What are the best kind of rocks to use to pound screws
into fine furniture?” When someone tells them to use large chunks of
granite, they are happy, but if you try to tell them about screwdrivers,
they explode into a rage.

You might want to read an essay on this phenomenon: “Unskilled and
Unaware of It: How Difficulties in Recognizing One’s Own Incompetence
Lead to Inflated Self-Assessments” by Justin Kruger and David Dunning
(Department of Psychology, Cornell University, www.apa.org/journals/
psp/psp7761121.html).

Or look at the actual and self-assessments of American high school
students in mathematics and sciences that were part of the Bush
administration’s No Child Left Behind Act.

1.1 Purpose of the Book

So how did we old farts learn to be better programmers when dinosaurs
walked the earth? One of the best helpers we had in the late 1970s when
the structured programming revolution came along was a series of books
entitled “[Pascal | FORTRAN | COBOL | BASIC] with Style: Programming
Proverbs” by Henry Ledgard and some of his colleagues at MIT. The
covers were done like a Victorian novel with angels, scrolls, and old-style
typographical elements. And like a Victorian novel, the books were
subtitled “Principles of Good Programming with Numerous Examples to
Improve Programming Style and Proficiency.” These books and others
made a big difference for most of us because they taught us how to think
like good programmers.

My goals in this book are to improve SQL programming style and
proficiency. To be more exact:

1.

To help an individual programmer write Standard SQL without an
accent or a dialect

. It is difficult to unlearn old habits but not
impossible, and it is best to learn the right way from the start.
Amateurs write code for themselves. A professional writes code

1.2 Acknowledgments xvii

to be maintained and used by other people. My rule of thumb
has been that you need to have a full year of SQL programming
before you have your epiphany and suddenly see the world in
three: valued logic, data models, and sets.

2.

To give an SQL shop a coding standard for internal use

. I have
tried carefully to give a rationale for each of my rules, and I
have given exceptions to those rules when I could think of
them. You may disagree with some of my choices, but you will
have to provide research and examples to defend your position.
It is not good enough to simply declare: “Well, that’s the way
we wrote code in FooTran,

so it must be the will of God!” as an
argument.

If you are the team leader, you now have a book (and
author) that you can hold up and blame for anything that your
people do not like. Even if I am later shown to be wrong about
something, you will have been consistent. It is much easier to
repair errors if they were made consistently.

3.

To give programmers the mental tools to approach a new problem
with SQL as their tool

. I tell people it takes about a year to “get it”
and drop your procedural programming habits.

1.2 Acknowledgments

Craig Mullins provided the structure of the chapter on VIEWs in an
article in www.DBAzine.com. The formatting style is taken from a house
style I have used in CMP magazines and other publications for more
than a decade. Peter Gulutzan provided the data for the naming
conventions in actual products from an article in www.DBAzine.com.
The affix conventions in Chapter 1 are based on internal standards from
Teradata Corporation. The scales and measurements and the encoding
schemes material appeared in several of my old magazine columns in

DBMS

 and

Database Programming & Design

before they were collected
into a chapter in my book

Data & Database

(Morgan-Kaufmann
Publishers). I have tried to give credit in the text, but so many people
have participated in the newsgroups over the years that I know I am
forgetting someone.

And, obviously, thanks to Henry Ledgard and his “Programming
Proverbs” series for the inspiration.

I would also like to thank all of the newbie programmers who wrote
bad code. It sounds a bit sarcastic, but it is not meant to be. Many of the

xviii INTRODUCTION

newbies are programmers who were thrown into a DBA or SQL
programmer job by management without training or an experienced
mentor. I do not want to blame the victims unless they are really not
working on getting better. Your errors in syntax, semantics, and style
showed me how you were thinking. Diagnosis is the first step to
treatment.

1.3 Corrections, Comments, and Future Editions

Corrections and additions for future editions can be sent to Morgan-
Kaufmann publishers directly or to me at my e-mail address,
jcelko212@earthlink.net.

C H A P T E R

1

Names and Data Elements

This is the old joke:
“When I was a kid, we had three cats.”
“What were their names?”
“Cat, cat, and cat.”
“That sounds screwed up. How did you tell them apart?”
“Who cares? Cats don’t come when you call them anyway!”

Y

OUR

DATA

WILL

 not come when it is called either if you do not give it a
name that is always distinct and recognizable. This is an important
part of any database project. Bad names for the data elements make
the code difficult, or even impossible, to read.

I am not kidding about impossible to read. In the old days,
software companies used to deliberately scramble source code names
and remove formatting to hide the algorithm from the buyers. The
tradition seems to linger on, even if not by intent. In August 2004, a
SQL newsgroup had a posting in which all of the names were one
letter and a long string of digits.

There are now ISO-11179 metadata standards that describe rules
for naming data elements and for registering standards. Because they
are an ISO standard, they are what you should be using in SQL as well
as everywhere else.

That standard, a bit of typography, and some common sense will
give you the rules you need to get started.

2 CHAPTER 1: NAMES AND DATA ELEMENTS

1.1 Names

In the early days, every programmer had his or her own personal
naming conventions. Unfortunately, they were often highly creative. My
favorite was a guy who picked a theme for his COBOL paragraph names:
one program might use countries, another might use flowers, and so
forth. This is obviously weird behavior even for a programmer, but many
programmers had personal systems that made sense to themselves but
not to other people.

For example, the first FORTRAN I used allowed only six-letter
names, so I became adept at using and inventing six-letter names.
Programmers who started with weakly typed or typeless languages like to
use Hungarian notation (see Leszynski and Reddick). Old habits are
hard to give up.

When software engineering became the norm, every shop developed
its own naming conventions and enforced them with some kind of data
dictionary. Perhaps the most widespread set of rules was MIL STD
8320.1, set up by the U.S. Department of Defense, but it never became
popular outside of the federal government. This was a definite
improvement over the prior nonsystem, but each shop varied quite a bit;
some had formal rules for name construction, whereas others simply
registered whatever the first name given to a data element was.

Today, we have ISO-11179 standards, which are becoming
increasingly widespread, required for certain government work, and
being put into data repository products. Tools and repositories of
standardized encoding schemes are being built to this standard. Given
this and XML as a standard exchange format, ISO-11179 will be the way
that metadata is referenced in the future.

1.1.1 Watch the Length of Names

Rationale:

The SQL-92 standards have a maximum identifier length of 18
characters. This length came from the older COBOL standards. These
days, SQL implementations allow longer names, but if you cannot say it
in 18 characters, then you have a problem. Table 1.1 shows the
maximum length for names of the most important SQL schema objects
according to ISO and several popular SQL products.

1.1 Names 3

The numbers in the table are either bytes or characters. A maximum
character length can be smaller than a maximum byte length if you use a
multibyte character set.

Do not use super-long names. People have to read them, type them,
and print them out. They also have to be able to understand those names
when they look at the code, search for them in the data dictionary, and
so forth. Finally, the names need to be shared in host programs that
might not allow the same maximum length.

But do not go to the other extreme of highly condensed names that
are impossible to read without weeks of study. The old Bachman design
tool was used to build DB2 databases back when column length was
limited to 18 bytes. Sometimes the tool would change the logical
attribute name to a physical column name by removing all of the vowels.
Craig Mullins referred to this as “Bachman having a vowel movement on
my DDL.” This is a bad approach to getting the name to fit within a
smaller number of characters.

Exceptions:

These exceptions would be on a case-by-case basis and probably the
result of legacy systems that had different naming restrictions.

1.1.2 Avoid All Special Characters in Names

Rationale:

Special characters in a name make it difficult or impossible to use the
same name in the database and the host language programs or even to
move a schema to another SQL product.

Table 1.2 shows the characters allowed in names by the standards
and popular SQL products.

Generally, the first character of a name must be a letter, whereas
subsequent characters may be letters, digits, or _ (underscore). Any
database management system (DBMS) might also allow $, #, or @, but
no DBMS allows all three, and in any case the special characters are not

Table 1.1

Identifier lengths

SQL-92 SQL-99 IBM MS SQL Oracle

Column

18 128 30 128 30

Constraint

18 128 18 128 30

Table

18 128 128 128 30

4 CHAPTER 1: NAMES AND DATA ELEMENTS

usable everywhere (Microsoft attaches special meaning to names that
begin with @ or # and Oracle discourages special characters in the
names of certain objects).

But what is a letter? In the original SQL, all letters had to be
uppercase Latin, so there were only 26 choices. Nowadays the repertoire
is more extensive, but be wary of characters outside the Latin-1 character
set for the following reasons:

1.

IBM cannot always recognize a letter

. It just accepts that any
multibyte character except space is a letter and will not attempt
to determine whether it’s uppercase or lowercase.

2.

IBM and Oracle use the database’s character set and so could have a
migration problem with exotic letters

. Microsoft uses Unicode and
so does not have this problem.

Intermediate SQL-92 does not allow an identifier to end in an
underscore. It is also not a good idea to put multiple underscores
together; modern printers make it difficult to count the number of
underscores in a chain.

Exceptions:

None

1.1.3 Avoid Quoted Identifiers

Rationale:

Table 1.2

Identifier character sets

Standard SQL IBM Oracle Microsoft

First
Character

Letter Letter, $#@ Letter Letter, #@

Later
Characters

Letter, Digit, _ Letter, Digit,
$#@_

Letter, Digit,
$#_

Letter, Digit,
#@_

Case
Sensitive?

No No No Optional

Term

Ordinary
identifier

Nonquoted
identifier

Regular
identifier

1.1 Names 5

This feature was added to SQL-92. Its main use has been to alias column
names to make printouts look like reports. This kludge defeats the
purpose of a tiered architecture. Instead, it destroys portability of the
code and invites poorly constructed names. Table 1.3 shows the
characteristics of delimited identifiers.

If you find the character-set restrictions of names onerous, you can
avoid them by putting identifiers inside double quotes. The result is a
delimited identifier (or quoted identifier in Oracle terminology).
Delimited identifiers may start with, and contain, any character. It is a bit
uncertain how one can include the double quote (") character. The
standard way is to double it, as in “Empl""oyees” but that’s not always
documented.

Support for delimited names is nearly universal, with only two major
exceptions: (1) IBM will not allow nonalphanumeric characters for labels
and variable names inside stored procedures, and (2) Microsoft will not
allow quoted identifiers if the QUOTED_IDENTIFIER switch is off. The
reason for the first exception is, perhaps, that IBM converts SQL
procedures into another computer language before compilation.
Suppose you make a table with a delimited identifier, for example:

CREATE TABLE "t" ("column1" INTEGER NOT NULL);

Now try to get that table with a regular identifier, thus:

SELECT column1 FROM t;

Table 1.3

Quoted identifier character sets

Standard SQL IBM Microsoft Oracle

Delimiters

"" "" "" or [] ""

First Character

Anything Anything Anything Anything

Later
Characters

Anything Anything Anything Anything

Case Sensitive

Yes Yes Optional Yes

Term

Delimited
identifier

Delimited
identifier

Delimited
identifier

Quoted
identifier

6 CHAPTER 1: NAMES AND DATA ELEMENTS

Will this work? According to the SQL standard, it should not, but
with Microsoft, it might. The reason is case sensitivity, which we discuss
in section 1.1.4.

The quoted identifiers do not work well with hot languages, especially
when they have spaces or special characters. For example, this is a valid
insertion statement:

 INSERT INTO Table ([field with space]) VALUES (value);

ADO generates the following code:

INSERT INTO Table (field with space) VALUES (value);

which is a syntax error.

Exceptions:

If you need to communicate a result to someone who cannot read or
understand the properly constructed column names in Latin-1, then use
quoted aliases to format the output. I have done this for Polish and
Chinese speakers.

I also use quoted names inside documentation so that they will
immediately read as the name of a schema object and not a regular word
in the sentence.

The usual reason for this error is that the programmer confuses a data
element name with a display header. In traditional procedural languages,
the data file and the application are in the same tier; in SQL, the database
is totally separate from the front end where the data is displayed.

1.1.4 Enforce Capitalization Rules to Avoid Case-
Sensitivity Problems

Rationale:

Case-sensitivity rules vary from product to product.
Standard SQL, IBM, and Oracle will convert regular identifiers to

uppercase but will not convert delimited identifiers to uppercase. For
Microsoft, the case-sensitivity rule has nothing to do with whether the
name is regular or delimited. Instead, identifiers depend on the default
collation. If the default collation is case insensitive, then t equals T. If it’s
case sensitive, then t does not equal T.

To sum up, there are two case-sensitivity problems. The first is that
the delimited identifier “t” and the regular identifier t differ if one follows

1.2 Follow the ISO-11179 Standards Naming Conventions 7

the SQL standard. The second is that Microsoft does not follow the SQL
standard. These problems make it difficult for one naming convention to
fit everyone.

Exceptions:

I will give a simple set of rules based on principles of readability and
typography, but there are other possible conventions:

1. Avoid delimited identifiers so you have no problems.

2. IBM uses only uppercase. Unfortunately, this is difficult to read
and looks like you are still programming on a punchcard sys-
tem.

3. Microsoft and Oracle use lowercase except where it would look
odd. Unfortunately, the definition of looking odd is not at all
precise. Sometimes reserved words are uppercased, sometimes
lowercased, and so forth.

1.2 Follow the ISO-11179 Standards Naming Conventions

This is a fairly new ISO standard for metadata, and it is not well
understood. Fortunately, the parts that a SQL programmer needs to
know are pretty obvious and simple. The real problem is in the many
ways that people violate them. A short summary of the NCITS L8
Metadata Standards Committee rules for data elements can be found at
the following sites:

http://pueblo.lbl.gov/~olken/X3L8/drafts/draft.docs.html

http://lists.oasis-open.org/archives/ubl-ndrsc/200111/
msg00005.html

Also the pdf file:

www.oasis-open.org/committees/download.php/6233/
c002349_ISO_IEC_11179

and the draft:

www.iso.org/iso/en/ittf/PubliclyAvailableStandards/
c002349_ISO_IEC_11179-1_1999(E).zip

The ISO-11179 standard is broken down into six sections:

8 CHAPTER 1: NAMES AND DATA ELEMENTS

11179-1: Framework for the Specification and Standardization of
Data Elements Definitions

11179-2: Classification for Data Elements

11179-3: Basic Attributes of Data Elements

11179-4: Rules and Guidelines for the Formulation of Data

11179-5: Naming and Identification Principles for Data

11179-6: Registration of Data Elements

1.2.1 ISO-11179 for SQL

Rationale:

Although the formal standards are good, they are very general. It is
handy to have a set of rules aimed at the SQL developer in his or her
own language. Some of the interpretations given here are the consensus
of experts, as taken from newsgroups and private e-mails.

Taking the rules from Section ISO-11179-4, a scalar data element
should do the following:

1. Be unique (within any data dictionary in which it appears).

2. Be stated in the singular.

3. State what the concept is, not only what it is not.

4. Be stated as a descriptive phrase or sentence(s).

5. Contain only commonly understood abbreviations.

6. Be expressed without embedding definitions of other data ele-
ments or underlying concepts.

7. Tables, sets, and other collections shall be named with a collec-
tive, class, or plural name.

8. Procedures shall have a verb in their name.

9. A copy (alias) of a table shall include the base table name as
well as the role it is playing at that time.

This formalism is nice in theory, but names are subject to constraints
imposed by software limitations in the real world, such as maximum
name length and character sets. Another problem is that one data
element may have many names depending on the context in which it is
used. It might be called something in a report and something else in an
electronic data interchange (EDI) file, and it might be different from the
name in the database. But you want to avoid using multiple names in the

1.2 Follow the ISO-11179 Standards Naming Conventions 9

same database, and you should be able to detect them with metadata
tools. Furthermore, you want to avoid using multiple names in different
databases in the same enterprise. Unfortunately, this is much more
difficult to detect without very good data dictionary tools. The data
dictionary should include the external names and their context.

Exceptions:

The curse of legacy databases, legacy file systems, and other traditions
can make this very difficult. If there is a common, well-understood name
for a data element, then you can use this name instead of a constructed
name. For example, “us_postal_code” is formally correct, but “zip_code”
is well understood, and you can argue for simply “zip” or “zip4” as a
name because it is a familiar term.

1.2.2 Levels of Abstraction

Name development begins at the conceptual level. An object class
represents an idea, abstraction, or thing in the real world, such as tree
or country. A property is something that describes all objects in the
class, such as height or identifier. This lets us form terms such as “tree
height” or “country identifier” from the combination of the class and
the property.

The level in the process is the logical level. A complete logical data
element must include a form of representation for the values in its data
value domain (the set of possible valid values of a data element). The
representation term describes the data element’s representation class.
The representation class is equivalent to the class word of the prime/class
naming convention with which many data administrators are familiar.
This gets us to “tree height measure,” “country identifier name,” and
“country identifier code” as possible data elements.

There is a subtle difference between “identifier name” and “identifier
code,” and it might be so subtle that we do not want to model it, but we
would need a rule to drop the property term in this case. The property
would still exist as part of the inheritance structure of the data element,
but it would not be part of the data element name.

Some logical data elements can be considered generic elements if they
are well defined and are shared across organizations. Country names and
country codes are well defined in the ISO 3166 standard, “Codes for the
Representation of Names of Countries,” and you might simply reference
this document.

10 CHAPTER 1: NAMES AND DATA ELEMENTS

Note that this is the highest level at which true data elements, by the
definition of ISO-11179, appear: They have an object class, a property,
and a representation.

The next is the application level. This is usually done with a quantifier
that applies to the particular application. The quantifier will either subset
the data value domain or add more restrictions to the definition so that
we work with only those values needed in the application.

For example, assume that we are using ISO-3166 country codes, but
we are only interested in Europe. This would be a simple subset of the
standard, but it will change slowly over time. However, the subset of
countries with more than 20 centimeters of rain this year will vary greatly
in a matter of weeks.

Changes in the name to reflect this fact will be accomplished by
addition of qualifier terms to the logical name. For example, if a view
were to list all of the countries with which a certain organization had
trading agreements, the query data element might be called
“trading_partner_country_name” to show its role in the context of the
VIEW or query that limits it. The data value domain would consist of a
subset of countries listed in ISO-3166.

The physical name is the lowest level. These are the names that
actually appear in the database table column headers, file descriptions,
EDI transaction file layouts, and so forth. They may be abbreviations or
use a limited character set because of software restrictions. However,
they might also add information about their origin or format.

In a registry, each of the data element names and name components
will always be paired with its context so that we know the source or
usage of the name or name component. The goal is to be able to trace
each data element from its source to wherever it is used, regardless of the
name under which it appears.

1.2.3 Avoid Descriptive Prefixes

Rationale:

Another silly convention among newbies is to use prefixes that describe
something about the appearance of the data element in the current table.
In the old days, when we worked with sequential file systems, the
physical location of the file was very important.

The “tbl-” prefix is particularly silly. Before you counter that this
prefix answers the question of what something is, remember that SQL
has only one data structure. What else could it be? Do you put “n-” in
front of every noun you write? Do you think this would make English

1.2 Follow the ISO-11179 Standards Naming Conventions 11

easier to read? It is like infants announcing that everything is “thingie!”
as they grab them.

“

To be something is to be something in particular; to be nothing in
particular or anything in general is to be nothing

.” —Aristotle

The next worst affix is the <table name>. Why does a data element
become something totally different from table to table? For example,
“orders_upc” and “inventory_upc” are both UPC codes no matter where
they appear, but by giving them two names, you are saying that they are
totally, logically different things in your data model.

A total nightmare is the combination of “id” in a base table (vague
name) with a reference in a second table using the base table name as a
prefix in the foreign key or non-foreign-key references. The queries fill
up with code like “Orders.ID = OrderID,” which quickly becomes a
game of looking for the period and trying to figure out what a thousand
different “ID” columns mean in the data dictionary.

Affixes like “vw” for views tell you how the virtual table is
implemented in the schema, but this has nothing to do with the data
model. If I later decide to replace the view with a base table, do I change
the name? The bad news is that a table often already exists with the same
root name, which makes for more confusion.

Equally silly and dangerous are column names that are prefixed with
the data type. This is how it is physically represented and not what it
means in the data model. The data dictionary will be trashed, because
you have no idea if there are “intorder_nbr,” “strorder_nbr,” and
perhaps even “forder_nbr,” all trying to be the simple “order_nbr” at the
same time. The user can also look at the data declaration language (DDL)

and see the data type, defaults, and constraints if he or she does not
remember them.

The final affix problem is telling us that something is the primary key
with a “PK_” or a foreign key with an “FK_” affix. That is how it is used
in that particular table; it is not a part of its fundamental nature. The user
can also look at the DDL and see the words “PRIMARY KEY” or
“FOREIGN KEY.. REFERENCES..” in the column declarations.

The strangest version of this is a rule on a Web site for a company that
specializes in Oracle programming. It advocated “<table
name>_CK_<column name>” for CHECK() constraints. This not only
gives you no help in determining the errors that caused the violation, but
it also limits you to one and only one constraint per column per table,
and it leaves you to ask about constraints that use two or more columns.

12 CHAPTER 1: NAMES AND DATA ELEMENTS

The same rules and warnings about affixes apply to all schema
objects. You will see “usp_” for user-defined stored procedures, “trig_”
for triggers, and so forth. In MS SQL Server, this is a serious problem,
because the prefix “sp_” is used for system procedures and has special
meaning in the architecture.

If the schema object does something (triggers, procedures), then use
a <verb><object> format for the name; the subject of the sentence is
understood to be the procedure. We will go into more details on this
topic in Chapter 8.

Exceptions:

You can find other opinions at:

http://www.craigsmullins.com/dbt_0999.htm

There was also a series of articles at:

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart2formatting.asp

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart1formatting.asp

1.2.4 Develop Standardized Postfixes

This list of postfixes is built on Teradata’s internal standards and
common usage. The Teradata standards are given in the Appendix.

“_id” = identifier. It is unique in the schema and refers to one entity
anywhere it appears in the schema. Never use “<table name>_id”;
that is a name based on location and tells you this is probably not a
real key at all. Just plain “id” is too vague to be useful to anyone
and will screw up your data dictionary when you have to find a zil-
lion of them, all different, but with the same data element name
and perhaps the same oversized data type.

“_date” or “dt” = date, temporal dimension. It is the date of some-
thing—employment, birth, termination, and so forth; there is no
such column name as just a date by itself.

“_nbr” or “num” = tag number. This is a string of digits that names
something. Do not use “_no” because it looks like the Boolean yes/
no value. I prefer “nbr” to “num” because it is used as a common
abbreviation in several European languages.

“_name” or “nm” = alphabetic name. This explains itself. It is also
called a nominal scale.

1.2 Follow the ISO-11179 Standards Naming Conventions 13

“_code” or “_cd” = a code is a standard maintained by a trusted
source, usually outside of the enterprise. For example, the ZIP
code is maintained by the U.S. Postal Service. A code is well under-
stood in its context, so you might not have to translate it for
humans.

“_size” = an industry standard or company scale for a commodity,
such as clothing, shoes, envelopes, or machine screws. There is
usually a prototype that defines the sizes kept with a trusted
source.

“_tot” = a sum, an aggregated dimension that is logically different
from its parts.

“_seq” = sequence, ordinal numbering. This is not the same thing as
a tag number, because it cannot have gaps.

“_tally” = a count of values. Also called an absolute scale.

“_cat” = category, an encoding that has an external source that has
distinct groups of entities. There should be strong, formal criteria
for establishing the category. The classification of Kingdom in Biol-
ogy is an example.

“_class” = an internal encoding that does not have an external
source that reflects a subclassification of the entity. There should
be strong formal criteria for the classification. The classification of
plants in Biology is an example.

“_type” = an encoding that has a common meaning both internally
and externally. Types are usually less formal than a class and might
overlap. For example, a driver’s license might be typed for motor-
cycles, automobiles, taxis, trucks, and so forth.

The differences among type, class, and category are an increasing
strength of the algorithm for assigning the type, class, or category. A
category is distinct; you will not often have to guess if something is
animal, vegetable, or mineral to put it in one of those categories.

A class is a set of things that have some commonality; you have rules
for classifying an animal as a mammal or a reptile. You may have some
cases for which it is more difficult to apply the rules, such as the
platypus, an egg-laying mammal that lives in Australia, but the
exceptions tend to become their own classification—monotremes in this
example.

A type is the weakest of the three, and it might call for a judgment.
For example, in some states a three-wheeled motorcycle is licensed as a

14 CHAPTER 1: NAMES AND DATA ELEMENTS

motorcycle, but in other states, it is licensed as an automobile, and in
some states, it is licensed as an automobile only if it has a reverse gear.

The three terms are often mixed in actual usage. Stick with the
industry standard, even if it violates the aforementioned definitions.

“_status” = an internal encoding that reflects a state of being, which
can be the result of many factors. For example, “credit_status”
might be computed from several sources.

“_addr” or “_loc” = an address or location for an entity. There can
be a subtle difference between an address and a location.

“_img” = an image data type, such as .jpg, .gif, and so forth.

Then an application might have some special situations with units of
measurement that need to be shown on an attribute or dimension. And

always

check to see if there is an ISO standard for a data element.

1.2.5 Table and View Names Should Be Industry
Standards, Collective, Class, or Plural Nouns

Rationale:

Industry standards should always be used. People in that industry will
understand the name, and the definition will be maintained by the
organization that sets those standards.

For example, the North American Industry Classification System
(NAICS) has replaced the old Standard Industrial Classification (SIC)
system in the United States. This new code was developed jointly by the
United States, Canada, and Mexico to provide new comparability in
statistics about business activity across North America. The names
“NAICS” and “naics_code” are clear to people who do business statistics,
even though they look weird to the rest of us.

If an industry standard is not right for your situation, then try to base
your names on that standard. For example, if I am dealing only with
automobiles made in Mexico, I could have a table named “VIN_Mexico”
to show the restriction. Moving down the priority list, if I cannot find an
industry standard, I would look for a collective or class name. I would
never use a singular name.

Collective or class table names are better than singular names because
a table is a set and not a scalar value. If I say “Employee,” the mental
picture is of Dilbert standing by himself—one generic employee. If I say
“Employees,” the mental picture is of the crew from Dilbert—a

1.2 Follow the ISO-11179 Standards Naming Conventions 15

collection of separate employees. If I say “Personnel,” the mental picture
is suddenly more abstract—a class without particular faces on it.

It is legal in SQL to give a table and a column the same name, but it is
a really bad idea. First of all, the column’s name would be in violation of
the rules we just discussed because it would lack a qualifier, but it would
also mean that either the table name is not a set or the column name is
not a scalar.

Exceptions:

Use a singular name if the table actually has one and only one row in it.
The one example I can think of is a table for constants that looks like
this:

CREATE TABLE Constant

(lock CHAR(1) DEFAULT 'X' NOT NULL PRIMARY KEY

 CHECK (lock = 'X'),

 pi REAL DEFAULT 3.141592653 NOT NULL,

 e REAL DEFAULT 2.718281828 NOT NULL,

 phi REAL DEFAULT 1.618033988 NOT NULL,

 ..);

INSERT INTO Constants DEFAULT VALUES;

The insertion creates one row, so the table ought to have a singular
name. The “lock” column assures you that there is always only one row.
Another version of this is to create a VIEW that cannot be changed using
SQL-99 syntax.

CREATE VIEW Constant (pi, e, phi, ..)

AS VALUES (3.141592653, 2.718281828, 1.618033988, ..);

The advantage is that this view cannot be changed; the disadvantage
is that this view cannot be changed.

1.2.6 Correlation Names Follow the Same Rules as
Other Names . . . Almost

Rationale:

Correlation names are names. They should be derived from the base
table or view name, the column name, or from the expression that

16 CHAPTER 1: NAMES AND DATA ELEMENTS

creates them. The nice part is that the readers have the context in front of
them, so you can often use a more abbreviated name.

A correlation name is more often called an

alias

, but I will be formal.
In SQL-92, they can have an optional AS operator, and it should be used
to make it clear that something is being given a new name.

This explicitly means that you do not use an alphabetical sequence
unrelated to the base table name. This horrible practice is all too
common and makes maintaining the code much more difficult.
Consider looking at several statements where the table “Personnel” is
aliased as “A” in one, “D” in another, and “Q” in a third because of its
position in a FROM clause.

Column correlation names for a computed data element should name
the computed data element in the same way that you would name a
declared column. That is, try to find a common term for the
computation. For example, “salary + COALESCE(commission, 0.00)) AS
total_pay” makes sense to the reader.

A simple table or view correlation name should have a short, simple
name derived from the base table name or descriptive of the role that
copy of the table is playing in the statement (e.g., “SELECT .. FROM
Personnel AS Management, Personnel AS Workers” as the two uses of
the table in the query).

Now to explain the “almost” part of this section’s title. In the case of
multiple correlation names on the same table, you may find it handy to
postfix abbreviated names with a number (e.g., “SELECT .. FROM
Personnel AS P1, Personnel AS P2”). The digit is to tell the reader how
many correlation names are used in the statement for that table.

In effect, these are “correlation pronouns”—a shorthand that makes
sense in a local context. They are used for the same reason as pronouns
in a natural language: to make the statement shorter and easier to read.

A table expression alias should have a short, simple name derived
from the logical meaning of the table expression.

SELECT ..

 FROM (Personnel AS P1

 INNER JOIN

 SoftballTeams AS S1

 ON P1.ssn = S1.ssn) AS CompanyTeam (..)

 ..

 WHERE ..;

1.2 Follow the ISO-11179 Standards Naming Conventions 17

Although not required, the correlation name on a table expression
can be followed by a list of new column names in parentheses. If this list
is missing, the correlation name inherits the names from the base tables
or views in the table expression. In the case of a simple table correlation
name, such a list would probably be redundant because we usually want
to use the original column names.

In the case of a table expression correlation name, such a list would
probably be a good idea to avoid ambiguous column names. It also
forces the programmer to trim the expression of extraneous columns
that were not actually needed in the query.

Exceptions:

If there is no obvious, clear, simple name for the table correlation name,
then use an invented name, such as a single letter like X. Likewise, if a
computation has no immediate name, then you might use an invented
name.

1.2.7 Relationship Table Names Should Be Common
Descriptive Terms

Rationale:

Tables and views can model relationships, usually one-to-many or
many-to-many, as well as entities. If the relationship has a common
name that is understood in the context, then use it. There is a tendency
for newbies to concatenate the names of the tables involved to build a
nounce word. For example, they name a table “Marriages” because that is
the common term for that relationship rather than “ManWoman,”
“HusbandsWives,” or something really weird. Likewise, “Enrollment”
makes more sense than “Students_Courses”; once you start looking for
the names, they come easily.

This concatenation falls apart when the relationship is not a simple
binary one, such as an escrow on a house that has a buyer, a seller, and a
lender.

Exceptions:

If there is no common term for the relationship, you will need to invent
something, and it might well be a concatenation of table names.

18 CHAPTER 1: NAMES AND DATA ELEMENTS

1.2.8 Metadata Schema Access Objects Can Have
Names That Include Structure Information

This rule does not apply to the schema information tables, which come
with standardized names. It is meant for naming indexes and other
things that deal directly with storage and access. The postfix “_idx” is
acceptable.

Rationale:

This is simply following the principle that a name should tell you what
something is. In the case of indexes and other things that deal directly
with storage and access, that is what they are. They have nothing to do
with the data model.

Exceptions:

This does not apply to schema objects that are seen by the user. Look for
the rules for the other schema objects as we go along.

1.3 Problems in Naming Data Elements

Now that we have talked about how to do it right, let’s spend some time
on common errors in names that violate the rules we set up.

1.3.1 Avoid Vague Names

Rationale:

“

That sounds vaguely obscene to me! I can’t stand vagueness!

”
—Groucho Marx.

At one extreme the name is so general that it tells us nothing. The
column is a reserved word such as “date” or it is a general word like “id,”
“amount,” “date,” and so forth. Given a column called “date,” you have
to ask, “date of what?” An appointment? Birth? Hire? Termination?
Death? The name begs the question on the face of it.

At another extreme, the name is made useless by telling us a string of
qualifiers that contradict each other. Consider the typical newbie
column name like “type_code_id” as an example. If it is an identifier, then
it is unique for every entity that has it, like the vehicle identification
number (VIN) on a automobile. If it is a code, then what is the trusted
source that maintains it like a ZIP code? It is drawn from a domain of
values that is not unique. If it is a type, then what is the taxonomy to

1.3 Problems in Naming Data Elements 19

which it belongs? Why not go all the way and call it “type_code_id_value”
instead?

Why did we not find a mere “customer_type” that would have been
understood on sight?

Exceptions:

None

Improperly formed data element names seem to be the result of
ignorance and object-oriented (OO) programming. In particular, OO
programmers put “_id” on every primary key in every table and have
problems understanding that SQL is a strongly typed language in which
things do not change their data types in programs. The names get absurd
at times. Consider a lookup table for colors:

CREATE TABLE TblColors

(color_value_id INTEGER NOT NULL PRIMARY KEY,

 color_value VARCHAR(50) NOT NULL);

But what does “_value_id” mean? Names like this are generated
without thought or research. Assume that we are using the Pantone color
system in the database, so we have a trusted source and a precise
description—we did the research! This might have been written as
follows:

CREATE TABLE Colors

(pantone_nbr INTEGER NOT NULL PRIMARY KEY,

 color_description VARCHAR(50) NOT NULL);

1.3.2 Avoid Names That Change from Place to Place

Rationale:

The worst possible design flaw is changing the name of an attribute on
the fly, from table to table. As an example, consider this slightly cleaned-
up piece of actual code from a SQL newsgroup:

SELECT Incident.Type, IPC.DefendantType,

Recommendation.Notes, Offence.StartDate, Offence.EndDate,
Offence.ReportedDateTime, IPC.URN

FROM IPC INNER JOIN Incident

ON IPC.URN = Incident.IPCURN

20 CHAPTER 1: NAMES AND DATA ELEMENTS

INNER JOIN IncidentOffence

ON Incident.URN = IncidentOffence.IncidentURN

INNER JOIN Offence

ON Offence.URN = IncidentOffence.OffenceURN

INNER JOIN IPCRecommendation

 ON IPC.URN = IPCRecommendation.IPCURN

INNER JOIN Recommendation

 ON IPCRecommendation.RecommendationID = Recommendation.ID;

Those full table names are difficult to read, but the newbie who wrote
this code thinks that the table name must always be part of the column
name. That is the way that a file worked in early COBOL programs.

This means that if you have hundreds of tables, each appearance of
the same attribute gets a new name, so you can never build a proper data
dictionary. Did you also notice that it is not easy to see underscores,
commas, and periods?

Try this cleaned-up version, which clearly shows a simple star schema
centered on the IPC table.

SELECT I1.incident_type, IPC.defendant_type, R1.notes,

 O1.start_date, O1.end_date, O1.reported_datetime, IPC.urn

 FROM Incidents AS I1, IPC, Recommendations AS R1, Offences AS O1,

 WHERE IPC.recommendation_id = R1.recommendation_id

 AND IPC.urn = O1.urn

 AND IPC.urn = I1.urn

 AND IPC.urn = R1.urn

 AND I1.urn = O1.urn;

I have no idea what a URN is, but it looks like a standard identifier of
some kind. Look at all of the kinds of “URNs” (i.e., URN, IPCURN, and
OffenseURN) in the original version of the query. It gives you the feeling
of being in a crematorium gift shop.

As you walk from room to room in your house, do you also change
your name, based on your physical location? Of course not! The name we
seek identifies the entity, not the location.

Exceptions:
Aliases inside a query can temporarily give a new name to an occurrence
of a data element. These are temporary and disappear at the end of the
statement. We discuss rules for this in another section 1.2.6.

1.3 Problems in Naming Data Elements 21

1.3.3 Do Not Use Proprietary Exposed Physical Locators
Rationale:
The most basic idea of modern data modeling is to separate the logical
model and the physical implementation from each other. This allows us
to reuse the model on different platforms and not be tied to just one
platform.

In the old days, the logical and physical implementations were fused
together. I will explain this in more detail in the next chapter, but for
now the rule is to never use proprietary physical locators. We want to
have portable code. But the real problem is that the proprietary physical
locator violates the basic idea of a key in the relational model.

When new SQL programmers use IDENTITY, GUID, ROWID, or
other auto-numbering vendor extensions to get a key that can be used
for locating a given row, they are imitating a magnetic tape’s sequential
access. It lets them know the order in which a row was added to the
table—just like individual records went onto the end of the magnetic
tape!

We will spend more time discussing this flaw in Chapter 3.

Exceptions:
You might want to fake a sequential file when you are using a SQL table
structure for some purpose other than a relational database management
system (RDBMS). For example, staging and scrubbing data outside the
“Real Schema” that do not have any data integrity issues.

C H A P T E R

2

Fonts, Punctuation, and Spacing

C

ODE

IS

USUALLY

 set in a monospace font. After more than a century of
manual typewriters and decades of punchcards, we find that it is
actually easier to read code in a monospace font than a proportional
font. Punctuation marks get the same spacing as a letter in a
monospace font, but would be lost in a proportional font.

2.1 Typography and Code

Your brain and eyes do not follow code the same way that they follow
text, process mathematics, read maps, or look at pictures. In fact,
there are a lot of individual differences in human brains.

Some people like text editors that use colors for various syntax
elements in a programming language. Other people get headaches
from colored program editors and want to see black-and-white text.
Likewise, a newspaper that put nouns in red, verbs in green, and other
such things would simply not work. Yet black-and-white maps are
much more difficult to read than those with colors. Why? This has to
do with color perception and how fast you can switch between the left
and right halves of your brain.

There is a test for brain damage in which the examiner flashes cards
with words printed in various colored inks (e.g., the word “RED”
written in green ink). The examiner asks the subject for the word or

24 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

the color and times the responses. The rate is fairly constant over the
subject’s lifetime, so a change is a symptom of some physical or chemical
change. Now, try reading this phrase:

Paris
in the

the Spring.

Almost nobody reading this for the first time catches the fact that the

word “the” appears twice. The point is that there is a vertical component
to how we read text in chunks of words.

Code on a page is read from left to right and from top to bottom, with
a lot of vertical eye movement that you would not have if you were
reading pure text.

A few years ago, the following posting made the rounds in
newsgroups. I am not sure if it is genuinely from Cambridge University,
but it makes its point very nicely:

Aoccrdnig to rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the only iprmo-
etnt tihng is taht the frist and lsat ltteer be at the rghit pclae.
The rset can be a total mses and you can sitll raed it wouthit
porbelm. Tihs is bcuseae the huamn mnid does not raed ervey
lteter by istlef, but the wrod as a wlohe.

Because the parser guarantees that running code will not have syntax
and spelling errors like those in the above text, the reader knows what
token to expect next with far more certainty than in plain text. Not only
are words seen as wholes, but they are also anticipated within each
statement in the programming language. That is, if I see an “IF” token in
Pascal or another member of the Algol family, I anticipate the matching
“THEN” that completes the statement.

Let’s discuss some basic typographic conventions for programming
code, which are based on how people read it.

2.1 Typography and Code 25

2.1.1 Use Only Upper- and Lowercase Letters, Digits,
and Underscores for Names

Rationale:

This subset of characters will port to any other programming language. It
is very handy to be able to use the same names in both the database and
the host languages of the applications.

For example, the octothrope or number sign (#) is allowed in several
SQL products, but it has a special meaning in other programming
languages and could not be used in them.

Exceptions:

If you are still programming on a machine that uses punchcards, then
you have no choice but to use the limited, uppercase-only character. It is
hard to imagine such a situation in the 21st century.

If the SQL implementation requires special symbols for certain
names, then you have no choice. For example, temporary table names
begin with an octothrope and parameter names begin with a “petite
snail” or “at sign” (@) in Sybase/SQL Server T-SQL dialects. However, it
is a good idea to be sure that the names are unique without the special
characters, so you can port the code to a more modern implementation.

Do not use an underscore as the first or last letter in a name. It looks
like the name is missing another component. Leading or trailing
underscores also get lost visually without letters or digits around them,
thanks to laser-quality printers. Likewise, do not use more than one
underscore in a row. The old mechanical line printers could not align
underscores, so you could eyeball them, whereas laser printers are
microscopically precise.

2.1.2 Lowercase Scalars Such as Column Names,
Parameters, and Variables

Rationale:

Words in books and newspapers are written in lowercase letters because
they are easier to read than uppercase words. This is basic typography.
Using all uppercase letters is the worst choice. Lowercase text is also read
faster than uppercase text. The first measurements are in Woodworth
(1938), and Smith and Fisher (1975) have confirmed it. Participants
were asked to read comparable passages of text, half completely in
uppercase text and half presented in standard lowercase text. In each
study, participants read reliably faster with the lowercase text by a 5
percent to 10 percent speed difference.

26 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

Exceptions:

Unless there is a compelling physical reason, use lowercase. The only
compelling physical reason I can think of is that you are still using
punchcards in the 21st century.

2.1.3 Capitalize Schema Object Names

Rationale:

Schema objects include tables, views, stored procedures, and so forth.
Capitalized words begin a sentence in languages that use the Latin
alphabet. Additionally, capitalization represents proper nouns—like the
names of sets being modeled by tables in SQL—in English, German, and
other natural languages. This is the way that readers expect to see these
names; don’t surprise them.

Exceptions:

Unless the name naturally begins with a lowercase letter, there is no
reason not to capitalize it.

2.1.4 Uppercase the Reserved Words

Rationale:

Uppercase words are seen as a unit, rather than being read as a series of
syllables or letters. The eye is drawn to them, and they act to announce a
statement or clause. That is why headlines and warning signs work.

Typographers use the term

bouma

 for the shape of a word. The term
appears in Paul Saenger’s book (1975). Imagine each letter on a
rectangular card that just fits it, so you see the ascenders, descenders,
and baseline letters as various-sized “Lego blocks” that are snapped
together to make a word.

The bouma of an uppercase word is always a simple, dense rectangle,
and it is easy to pick out of a field of lowercase words. Consider this
statement:

Select a, b, c from foobar where flob = 23;

versus:

SELECT a, b, c FROM Foobar WHERE flob = 23;

2.1 Typography and Code 27

See how quickly you can find each clause, reading from left to right?
Next, if you put each clause on a line of its own, you can read the code
still faster:

SELECT a, b, c

 FROM Foobar

 WHERE flob = 23;

We will deal with rules for the vertical components later.

Exceptions:

None

Keywords come in two types, reserved and nonreserved words. The
reserved words are part of the SQL language; the nonreserved words are
metadata names that appear in the environment and will not cause
syntax errors in an actual SQL program. They are also not very likely to
be used in a real application.

<key word> ::= <reserved word> | <non-reserved word>

<non-reserved word> ::=

 ADA

 | C | CATALOG_NAME | CHARACTER_SET_CATALOG | CHARACTER_SET_NAME

 | CHARACTER_SET_SCHEMA | CLASS_ORIGIN | COBOL |
COLLATION_CATALOG

 | COLLATION_NAME | COLLATION_SCHEMA | COLUMN_NAME |
COMMAND_FUNCTION

 | COMMITTED

 | CONDITION_NUMBER | CONNECTION_NAME | CONSTRAINT_CATALOG

 | CONSTRAINT_NAME

 | CONSTRAINT_SCHEMA | CURSOR_NAME

 | DATA | DATETIME_INTERVAL_CODE

 | DATETIME_INTERVAL_PRECISION | DYNAMIC_FUNCTION

 | FORTRAN

 | LENGTH

 | MESSAGE_LENGTH | MESSAGE_OCTET_LENGTH | MESSAGE_TEXT | MORE |
MUMPS

 | NAME | NULLABLE | NUMBER

 | PASCAL | PLI

 | REPEATABLE | RETURNED_LENGTH | RETURNED_OCTET_LENGTH

 | RETURNED_SQLSTATE

28 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

 | ROW_COUNT

 | SCALE | SCHEMA_NAME | SERIALIZABLE | SERVER_NAME |
SUBCLASS_ORIGIN

 | TABLE_NAME | TYPE

 | UNCOMMITTED | UNNAMED

<reserved word> ::=

 ABSOLUTE | ACTION | ADD | ALL | ALLOCATE | ALTER | AND

 | ANY | ARE | AS | ASC

 | ASSERTION | AT | AUTHORIZATION | AVG

 | BEGIN | BETWEEN | BIT | BIT_LENGTH | BOTH | BY

 | CASCADE | CASCADED | CASE | CAST | CATALOG | CHAR | CHARACTER

 | CHAR_LENGTH

 | CHARACTER_LENGTH | CHECK | CLOSE | COALESCE | COLLATE |
COLLATION

 | COLUMN | COMMIT | CONNECT | CONNECTION | CONSTRAINT

 | CONSTRAINTS | CONTINUE

 | CONVERT | CORRESPONDING | COUNT | CREATE | CROSS | CURRENT

 | CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP |
CURRENT_USER

 | CURSOR

 | DATE | DAY | DEALLOCATE | DEC | DECIMAL | DECLARE | DEFAULT

 | DEFERRABLE

 | DEFERRED | DELETE | DESC | DESCRIBE | DESCRIPTOR | DIAGNOSTICS

 | DISCONNECT | DISTINCT | DOMAIN | DOUBLE | DROP

 | ELSE | END | END-EXEC | ESCAPE | EXCEPT | EXCEPTION

 | EXEC | EXECUTE | EXISTS

 | EXTERNAL | EXTRACT

 | FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND | FROM
| FULL

 | GET | GLOBAL | GO | GOTO | GRANT | GROUP

 | HAVING | HOUR

 | IDENTITY | IMMEDIATE | IN | INDICATOR | INITIALLY | INNER |
INPUT

 | INSENSITIVE | INSERT | INT | INTEGER | INTERSECT | INTERVAL |
INTO

 | IS

 | ISOLATION

 | JOIN

 | KEY

 | LANGUAGE | LAST | LEADING | LEFT | LEVEL | LIKE | LOCAL |
LOWER

2.1 Typography and Code 29

 | MATCH | MAX | MIN | MINUTE | MODULE | MONTH

 | NAMES | NATIONAL | NATURAL | NCHAR | NEXT | NO | NOT | NULL

 | NULLIF | NUMERIC

 | OCTET_LENGTH | OF | ON | ONLY | OPEN | OPTION | OR

 | ORDER | OUTER

 | OUTPUT | OVERLAPS

 | PAD | PARTIAL | POSITION | PRECISION | PREPARE | PRESERVE |
PRIMARY

 | PRIOR | PRIVILEGES | PROCEDURE | PUBLIC

 | READ | REAL | REFERENCES | RELATIVE | RESTRICT | REVOKE |
RIGHT

 | ROLLBACK | ROWS

 | SCHEMA | SCROLL | SECOND | SECTION | SELECT | SESSION

 | SESSION_USER | SET

 | SIZE | SMALLINT | SOME | SPACE | SQL | SQLCODE | SQLERROR |
SQLSTATE

 | SUBSTRING | SUM | SYSTEM_USER

 | TABLE | TEMPORARY | THEN | TIME | TIMESTAMP | TIMEZONE_HOUR

 | TIMEZONE_MINUTE

 | TO | TRAILING | TRANSACTION | TRANSLATE | TRANSLATION | TRIM
| TRUE

 | UNION | UNIQUE | UNKNOWN | UPDATE | UPPER | USAGE | USER |
USING

 | VALUE | VALUES | VARCHAR | VARYING | VIEW

 | WHEN | WHENEVER | WHERE | WITH | WORK | WRITE

 | YEAR

 | ZONE

Vendors will also have proprietary reserved words, which should also
be capitalized.

2.1.5 Avoid the Use of CamelCase

Rationale:

The eye tends to look for a word in its usual lowercase or capitalized
form, so CamelCase words tend to lead the eye to the pieces rather than
to the whole word. In particular, a CamelCase word that begins with a
lowercase letter will be scanned starting at the first uppercase letter and
then scanned backward to get the first syllable.

Another problem is that you need to agree on how to mix the cases.
For example, should it be “upcCode,” “UpcCode,” “UPCcode,” or

30 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

“UPCCode”? In practice, you can wind up with several versions of the
same name.

It is even more difficult to read text in alternating case; that is, where
the letters of a word change from uppercase to lowercase multiple times
within a word (e.g., “AlTeRnAtInG cAsE”). The bouma shape is different
from the same word in its lowercase form. Alternating case has been
shown to be more difficult than either lowercase or uppercase text in a
variety of studies.

Smith (1969) showed that it slowed the reading speed of a passage of
text. Mason (1978) showed that the time to name a word was slowed.

Pollatsek, Well, and Schindler (1975) showed that word matching
was hindered. Meyer and Gutschera (1975) showed that category
decision times decreased.

Exceptions:

If the word naturally appears in CamelCase, such as “MacDonald,” then
use it. If you begin the object name with an uppercase letter, then you
can optionally use it. However, never use CamelCase for a scalar.

2.2 Word Spacing

Put one space between language tokens and do not jam things into a
stream. For example, do write “foobar = 21” instead of “foobar=21,” as
you will often see. Many programmers who grew up with punchcards
were taught to use minimal white space to save the limited number of
columns. For example, FORTRAN II does not need any spaces at all in
its code, nor does the original IBM job control language (JCL) for the
IBM/360 family. Modern programming languages are not this restricted,
and we now have the ability to write code as if people were more
important than computers.

Rationale:

We are now living in the 21st century, and you can add white space for
readability without running over the edge. That is a screen and not a
punchcard in front of you.

Exceptions:

You might have to wrap exceptionally long lines. This is not as big a
problem in a concise language like SQL as it was in a verbose language
like COBOL.

2.3 Follow Normal Punctuation Rules 31

2.3 Follow Normal Punctuation Rules

Rationale:

Try to follow the rules that you would for English punctuation, because
people are used to reading English and their eyes expect certain
conventions.

1. In SQL in particular, you need to follow the rule about having a
space after a comma because the comma and the period are
easy to confuse or to miss visually.

Compare:

SELECT flobs.a,flobs.b,flobs.c,fleq.d
FROM Flobs,Foobar,Fleq;

versus

SELECT flobs.a, flobs.b, flobs.c, fleq.d
FROM Flobs, Foobar, Fleq;

2. Put commas at the end of a line, not the start. A comma,
semicolon, question mark, or periods are visual signals that
something has just ended, not that it is starting. Having a
comma at the start of a line will make the eye tick leftward as it
looks for that missing word that was expected before the
comma.

SELECT flobs.a

 ,flobs.b

 ,flobs.c

 ,fleq.d

 FROM Flobs

 ,Fleq

 ;

Instead, put comma-separated lists on one line so they can be
read left to right instead of vertically. If you split the list into
two or more lines, see that each line contains related data
elements.

SELECT flobs.a, flobs.b, flobs.c, --related group

 fleq.d

 FROM Flobs, Fleq;

32 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

3. Put a new line or at least a space after a semicolon to separate
statements.

4. Put a space between words even when you could crowd them
together.

Exceptions:

If SQL does not work the same way as English, then you have to follow
the SQL syntax rules.

Many of the code-formatting habits people have go back to habits
they were taught by programmers who grew up with punchcard data
processing. Because we have video terminals and text editors today, a lot
of habits no longer have any basis.

The practice of putting a comma in front of a single variable on a
single line goes back to punchcards. It was often difficult for
programmers to get to a keypunch machine to create their decks of
cards. In this format, you could pull or insert a card to change your code.
There is no excuse for this practice since we now have video terminals.

English and European languages are read left to right and then top to
bottom. This scanning pattern is so deeply learned that we arrange
schematics, comic books, maps, and other graphics the same way. To see
how much changing that order can throw you off, try to read a Japanese
or Chinese comic book. The panels are in right-to-left order, and the
Chinese word balloons are read top to bottom. This is why typographers
have a rule that you do not set long words

V
E
R
T
T
I
C
A
L
L
Y.

Did you spot the misspelling? About one-third of readers do not.
Likewise, it is difficult to locate duplicates and errors in those long

2.5 Avoid Proprietary Reserved Words if a Standard Keyword Is Available in Your SQL Product 33

vertical lists of names. SQL formatting can use vertical alignment to
advantage in other places but in things that should be chunked together.

2.4 Use Full Reserved Words

Rational:

SQL allows you to skip some reserved words and to abbreviate others.
Try to use the full forms to document the program. This is a good thing
in COBOL, and it works in SQL as well.

For example, an alias can be written with or without an AS operator.
That is, “Personnel AS P1” is equivalent to “Personnel P1” in a FROM
clause, and “(salary + commission) AS total_pay” is equivalent to “(salary
+ commission) total_pay” in a SELECT list. But the AS reserved word
makes it easier to see there is an alias and not a comma in these
situations.

Technically, you can abbreviate INTEGER to INT and DECIMAL to
DEC, but the full names are preferred. The abbreviations look like the
reserved word “into” or the month “Dec” in English.

Exceptions:

The exception is to use the shorter forms of the character data types.
That is, CHAR(n) instead of CHARACTER(n), VARCHAR(n) instead of
VARYING CHARACTER(n), NCHAR(n) instead of NATIONAL
CHARACTER(n), and NVARCHAR(n) instead of NATIONAL VARYING
CHARACTER(n). The full names are too long to be comfortable to a
reader. Even COBOL, the most verbose programming language on earth,
allows some abbreviations.

2.5 Avoid Proprietary Reserved Words if a Standard
Keyword Is Available in Your SQL Product

Rationale:

Sticking to standards will make your code readable to other SQL
programmers who might not know your dialect. It also means that your
code can run on other products without being rewritten.

Standard code will protect you from failure when the proprietary
syntax is dropped or modified. That unwelcome surprise occurred in
several products when the vendors added the Standard SQL versions of
OUTER JOINs and deprecated

their old proprietary versions. In
particular, SQL Server programmers had to unlearn their *= syntax and
semantics for outer joins.

34 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

The other disadvantage of proprietary features is that they change
over time and have no standard behavior. For example, the BIT data
type in SQL Server changed its NULL-ability between product releases.
Oracle could not tell an empty string from a NULL. There are lots of
other examples. Because there is no external standard to appeal, a
vendor is free to do anything it wishes.

Exceptions:

If your SQL product does not yet support standard syntax for something,
then you have no choice. This is true for temporal functions. They were
late getting to Standard SQL, so the early vendors made up their own
syntax and internal temporal models.

2.6 Avoid Proprietary Statements if a Standard Statement
Is Available

Rationale:

This rule ought to be obvious. Sticking to standards will make your code
readable to other SQL programmers who might not know your dialect. It
also means that your code can run on other products without being
rewritten. Standard code will protect your code from failure when the
proprietary syntax is dropped or modified.

In fact, a vendor can actually give you proprietary features that are
unpredictable! In the “Books On Line” interactive manual that comes
with Microsoft SQL Server, we get a warning in the REMARKS section
about the proprietary “UPDATE.. FROM..” syntax that tells us:

The results of an UPDATE statement are undefined if the state-
ment includes a FROM clause that is not specified in such a
way that only one value is available for each column occur-
rence that is updated (in other words, if the UPDATE statement
is not deterministic). For example, given the UPDATE state-
ment in the following script, both rows in table S meet the
qualifications of the FROM clause in the UPDATE statement,
but it is undefined which row from S is used to update the row
in table T.

This replaces a prior behavior found in the Sybase and Ingres family
where the UPDATE.. FROM would do multiple updates, one for each
joined row in the second table.

2.6 Avoid Proprietary Statements if a Standard Statement Is Available 35

In older versions of Sybase/SQL Server, if a base table row is
represented more than once in the embedded query, then that row is
operated on multiple times instead of just once. This is a total violation
of relational principles, but it’s easy to do with the underlying physical
implementation. Here is a quick example:

 CREATE TABLE T1 (x INTEGER NOT NULL);

 INSERT INTO T1 VALUES (1);

 INSERT INTO T1 VALUES (2);

 INSERT INTO T1 VALUES (3);

 INSERT INTO T1 VALUES (4);

 CREATE TABLE T2 (x INTEGER NOT NULL);

 INSERT INTO T2 VALUES (1);

 INSERT INTO T2 VALUES (1);

 INSERT INTO T2 VALUES (1);

 INSERT INTO T2 VALUES (1);

Now try to update T1 by doubling all the rows that have a match in T2.

 UPDATE T1

 SET T1.x = 2 * T1.x

 FROM T2

 WHERE T1.x = T2.x;

 SELECT * FROM T1;

original current

 x x

 ==== ====

 16 2

 2 2

 3 3

 4 4

The FROM clause gives you a CROSS JOIN, so you get a series of four
actions on the same row (1 => 2 => 4 => 8 => 16). These are pretty
simple examples, but you get the idea. There are subtle things with self-
joins and the diseased mutant T-SQL syntax that can hang you in loops

36 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

by changing things, or you can have tables that depend on the order of
the rows for their results, and so forth.

SQL Server and Sybase used different fixes for this problem in later
versions of their products. Sybase did a hidden “SELECT DISTINCT” in
the implied query, and SQL Server gets an unpredictable row. Standard
SQL is consistent and clear about aliases, views, and derived tables, as
well as a highly orthogonal language.

If the UPDATE clause could take an alias, according to the Standard
SQL model, then you would create a copy of the contents of that base
table under the alias name, then update that copy, and delete it when the
statement was over—in effect doing nothing to the base table.

If the UPDATE clause could take a FROM clause, according to the
Standard SQL model, then you would create a result set from the table
expression, then update that copy, and delete it when the statement was
over—in effect doing nothing to the base tables.

Because this syntax is so proprietary, inconsistent with the standard
model, and ambiguous, why does it exist? In the original Sybase
product, the physical model made this “extension” relatively easy to
implement, and there were no standards or a good understanding of the
relational model back then. Programmers got used to it and then it was
almost impossible to fix.

When I lived in Indianapolis in the mid-1970s, my neighbor had
graduated from General Motors private college and gone to work for the
company. His first job was investigating industrial accident reports. We
were having a beer one night, and he got to telling war stories from the
various General Motors plants he had been to for his job. His conclusion
after a year on that job was that all industrial accidents are bizarre suicide
attempts. People would go to the machine shop and build clever devices
to short around the safety features on their equipment so they could
work a little faster.

For example, if you make a clamp that holds in one of the two safety
switches that operates a small stamping machine, you can push the other
button with one hand and work material with your free hand. Well, you
can do this until that free hand is crushed just above the wrist and
squirts across the back wall of the shop anyway. Trading speed for safety
and correctness will eventually catch up with you.

Exceptions:

If your SQL product does not yet support standard syntax for something,
then you have no choice. For example, Oracle did not support the CASE

2.7 Rivers and Vertical Spacing 37

expression, but its DECODE() function is quite close to it and can be
substituted in older versions of Oracle.

2.7 Rivers and Vertical Spacing

When you look at a magazine or newspaper, you will notice that the text
is set in a column that is even on both sides. This is called justified text,
as opposed to ragged right or ragged left text. Extra spacing is added to
each line to justify the text, but if this extra spacing appears in the same
location on several rows, you get rivers.

A

river

 is a vertical open space in text, and it is considered to be bad
typography. You want to read text from left to right, top to bottom, with
a visual break at the indentation or new line that marks the start of a
paragraph. A river pulls your eye downward and makes the text more
difficult to read.

It is easy to set up what typographers call rivers in the program code
in a monospace font because you can add spacing as needed, but that
same downward river effect aligns code on a vertical axis and makes the
program easier to read.

SELECT I1.incident_type, IPC.defendant_type, R1.notes,

O1.start_date, O1.end_date, O1.reported_datetime, IPC.urn

FROM Incidents AS I1, IPC, Recommendations AS R1, Offences AS
O1,

WHERE IPC.recommendation_id = R1.recommendation_id

AND IPC.urn = O1.urn AND IPC.urn = I1.urn

AND IPC.urn = R1.urn AND I1.urn = O1.urn;

versus no river:

SELECT I1.incident_type, IPC.defendant_type, R1.notes,

 O1.start_date, O1.end_date, O1.reported_datetime, IPC.urn

 FROM Incidents AS I1, IPC, Recommendations AS R1, Offences AS
O1,

 WHERE IPC.recommendation_id = R1.recommendation_id

 AND IPC.urn = O1.urn

 AND IPC.urn = I1.urn

 AND IPC.urn = R1.urn

 AND I1.urn = O1.urn;

38 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

2.8 Indentation

When you have to indent in block-structured 3GL programming
languages, use three spaces. A single space is too short to be read as
anything but a word separator. Two spaces will work because that is what
you were probably taught to use in typing classes at the end of a
sentence, but three spaces or a new line is clearly a paragraph to the
reader.

Indenting five or more spaces actually hurts readability. The eye has
to skip over too far to grab the code. In particular, the use of an eight-
space tab character is historical. The early Teletype machines had 80
characters per line and set tabs at eight spaces for mechanical reasons.
That became the definition when we moved to electronic terminals.

The rule for SQL is that rivers override what we were doing in the old
3GL languages.

Rationale:

What we need in data manipulation language (DML)

is a balance of
indentation and the use of rivers to the logical nesting. Note how each
subquery has a river to hold it together and that the subquery is placed
against the river.

SELECT DISTINCT pilot

 FROM PilotSkills AS PS1

 WHERE NOT EXISTS

 (SELECT *

 FROM Hangar

 WHERE NOT EXISTS

 (SELECT *

 FROM PilotSkills AS PS2

 WHERE PS1.pilot = PS2.pilot

 AND PS2.plane = Hangar.plane));

Exceptions:

A subquery is always inside parentheses, so one can make a case that the
closing parentheses should align vertically with its mate.

SELECT DISTINCT pilot

 FROM PilotSkills AS PS1

 WHERE NOT EXISTS

 (SELECT *

2.9 Use Line Spacing to Group Statements 39

 FROM Hangar

 WHERE NOT EXISTS

 (SELECT *

 FROM PilotSkills AS PS2

 WHERE PS1.pilot = PS2.pilot

 AND PS2.plane = Hangar.plane

)

);

The advantage is that you can quickly find the limits of the subquery
but at the cost of extra lines that hold only one or two tokens.

When you have a group of related columns in the SELECT clause list
or other places, then use the three-space rule to indent the members of
the group when you have to go to a second line:

SELECT C1.cust_name, C1.street_address, C1.city, C1.state,
C1.zip,

 P1.payment_1, P1.payment_2, P1.payment_3, P1.payment_4,

 P1.payment_5, P1.payment_6, P1.payment_7, P1.payment_8,

 P1.payment_9, payment_10,

 FROM Customers AS C1, Payments AS P1

 WHERE C1.cust_id = P1.cust_id;

The customer columns are on one line, while the 10 payments are
split over three lines with an indentation to group them.

2.9 Use Line Spacing to Group Statements

Rationale:

Use one new line between related statements and two new lines between
separate steps in the same process.

Clusters of related code on a page show the reader which statements
perform each step of a process. It is also a good idea to introduce each
step with a high-level comment, but we will get into that later.

As an experiment to demonstrate how important visual clustering is,
make some flash cards with some red circles on them. On one set of flash
cards, arrange the spots in the patterns in which they appear on a double
nine set of dominoes. On a second set of flash cards, put the spots on at
random.

Show the cards to your subjects for one second each and call out the
number of the card. Ask them to write down the number of spots on

40 CHAPTER 2: FONTS, PUNCTUATION, AND SPACING

each card. When there is no arrangement, most people start having
problems at five spots and almost nobody can handle eight or more
randomly arranged cards. However, nine spots in a three-by-three
arrangement present no problems. Even the 10 spots on a playing card
are easy to count because they are broken into two clusters of five spots.

Exceptions:

The double spacing between steps can be optional if it breaks up the
flow of the code.

C H A P T E R

3

Data Declaration Language

“[I need] Data! Data! Data! I can’t make bricks without clay.”

 —Sherlock Holmes
(fictional detective of author Sir Arthur Conan Doyle)

“Smart data structures and dumb code works a lot better
than the other way round.”

—Eric S. Raymond

I

BELIEVE

THAT

MOST

 of the bad SQL queries in the world are the result of
bad schema design. A bad schema can be ambiguous, require extra
work to fetch data, and not return valid results even when good data
was input into it.

Let’s start with the syntax rules that should be followed when
writing data declaration language (DDL), and then in the following
chapters, talk about the content and semantics of the DDL.

3.1 Put the Default in the Right Place

Rationale:

The DEFAULT constraint appears after the data type and NOT NULL
constraint appears after the DEFAULT value.

The SQL-92 standard requires that ordering, but most products
allow you to place the DEFAULT either after the data type or after the

42 CHAPTER 3: DATA DECLARATION LANGUAGE

NOT NULL constraint. A NULL-able column can also have a DEFAULT
value, so the standard makes sense. Because we need a consistent
pattern, let’s go with the standard. Because NOT NULL is so common, it
can be left on the same line as the DEFAULT and data type.

Exceptions:

None

3.2 The Default Value Should Be the Same Data Type
as the Column

Rationale:

That rule sounds obvious, but programmers do not follow it. You will see
columns with decimal places defaulted to integer zero, columns of
CHAR (n) defaulted to strings of less than (n) characters, and columns of
TIMESTAMP defaulted to DATE. The result in many SQL products was
implicit type conversions whenever a default value was used. Why incur
that overhead, when you could get it right in the first place?

Exceptions:

None

3.3 Do Not Use Proprietary Data Types

Rationale:

Proprietary data types do not port to other products or from one release
to another of the same product. Standard SQL has more than enough
data types to model most of the things you will find in the real world.

As an example, only the SQL Server/Sybase family has a MONEY data
type. It adds currency symbols and commas to a numeric string for
display, but it has different rules for doing computations than NUMERIC
or DECIMAL data types. The front end has to handle the currency
symbols and commas and be sure that the basic math is correct. Why do
something in the DDL only to undo it in the front end?

Even worse, machine-level things like a BIT or BYTE data type have
no place in a high-level language like SQL. SQL is a high-level language;
it is abstract and defined without regard to physical implementation.
This basic principle of data modeling is called

data abstraction

.
Bits and bytes are the lowest units of hardware-specific, physical

implementation you can get. Are you on a high-end or low-end machine?
Does the machine have 8-, 16-, 32-, 64-, or 128-bit words? Twos
complement or ones complement math? Hey, the standards allow

3.3 Do Not Use Proprietary Data Types 43

decimal-based machines, so bits do not exist at all! What about NULLs?
To be a data type, you have to have NULLs, so what is a NULL bit? By
definition, a bit is on or off and has no NULL.

What does the implementation of the host languages do with bits?
Did you know that +1, +0, -0, and -1 are all used for Booleans but not
consistently? That means all of the host languages—present, future, and
not yet defined. Surely no good programmer would ever write
nonportable code by getting to such a low level as bit fiddling!

You might also ask if zero is used for “successful completion” in the
functions of the host language or the vendor’s own 4GL. There are two
situations in practice. Either the bits are individual attributes or they are
used as a vector to represent a single attribute. In the case of a single
attribute, the encoding is limited to two values, which do not port to host
languages or other SQLs, cannot be easily understood by an end user,
and cannot be expanded.

In the second case, what some newbies, who are still thinking in
terms of second- and third-generation programming languages or even
punchcards, do is build a vector for a series of yes/no status codes, failing
to see the status vector as a single attribute. Did you ever play the
children’s game “20 Questions” when you were young?

Imagine you have six components for a loan approval, so you allocate
bits in your second-generation model of the world. You have 64 possible
vectors, but only 5 of them are valid (i.e., you cannot be rejected for
bankruptcy and still have good credit). For your data integrity, you can:

1. Ignore the problem. This is actually what most newbies do.
When the database becomes a mess without any data integrity,
they move on to the second solution.

2. Write elaborate ad hoc CHECK() constraints with user-defined
functions or proprietary bit-level library functions that cannot
port and that run like cold glue.

Now we add a seventh condition to the vector: Which end does it go
on? Why? How did you get it in the right place on all the possible
hardware that it will ever use? Did the code that references a bit in a
word by its position do it right after the change?

You need to sit down and think about how to design an encoding of
the data that is high level, general enough to expand, abstract, and
portable. For example, is that loan approval a hierarchical code?

44 CHAPTER 3: DATA DECLARATION LANGUAGE

Concatenation code? Vector code? Did you provide codes for unknown,
missing, and N/A values? It is not easy to design such things!

Exceptions:

Very, very special circumstances where there is no alternative at the
present time might excuse the use of proprietary data types. In 20 years
of consulting on SQL programming, I have never found a situation that
could not be handled by a basic data type or a CREATE DOMAIN
statement.

Next, consider porting a proprietary data type by building a user-
defined distinct type that matches the proprietary data type. This is not
always possible, so check your product. If the data type is exotic, such as
Geo/Spatial data, sound, images, or documents, you should probably do
the job in a specialized system and not SQL.

3.4 Place the PRIMARY KEY Declaration at the Start of the
CREATE TABLE Statement

Rationale:

Having the key as the first thing you read in a table declaration gives you
important information about the nature of the table and how you will
find the entities in it. For example, if I have a table named “Personnel”
and the first column is “ssn,” I immediately know that we track
employees via their Social Security numbers.

Exceptions:

In the case of a compound primary key, the columns that make up the
key might not fit nicely into the next rule (3.5). If this is the case, then
put a comment by each component of the primary key to make it easier
to find.

3.5 Order the Columns in a Logical Sequence and Cluster
Them in Logical Groups

Rationale:

The physical order of the columns within a table is not supposed to
matter in the relational model. Their names and not their ordinal
positions identify columns, but SQL has ordinal positions for columns in
tables in default situations. The SELECT * and INSERT INTO statements
use the order of declaration in their default actions.

3.6 Indent Referential Constraints and Actions under the Data Type 45

This rule is obvious; people prefer a logical ordering of things to a
random mix. For example, the columns for an address are best put in
their expected order: name, street, city, state, and postal code.

Exceptions:

Thanks to columns being added after the schema is in place, you might
not be able to arrange the table as you would like in your SQL product.
Check to see if your product allows column reordering.

If you have a physical implementation that uses the column ordering
in some special way, you need to take advantage of it. For example, DB2
for z/OS logs changes from the first byte changed to the last byte
changed, unless the row is variable; then it logs from the first byte
changed to the end of the row. If the change does not cause the length of
the variable row to change size, it goes back to logging from the first byte
changed to the last byte changed. The DBA can take advantage of this
knowledge to optimize performance by placing:

�

Infrequently updated nonvariable columns first

�

Infrequently updated variable-length columns next

�

Frequently updated columns last

�

Columns that are frequently modified together next to each other

Following this approach will cause DB2 to log the least amount of
data most of the time. Because the log can be a significant bottleneck for
performance, this approach is handy. You can always create the table
and then create a view for use by developers that resequences the
columns into the logical order if it is that important.

3.6 Indent Referential Constraints and Actions under the
Data Type

Rationale:

The idea is to make the full column declaration appear as one visual unit
when you read down the CREATE TABLE statement. In particular, put
the ON DELETE and ON UPDATE clauses on separate lines.

The standard does not require that they appear together in any
particular order. As an arbitrary decision, I am going to tell you to use
alphabetical order, so ON DELETE comes before ON UPDATE if both
are present.

46 CHAPTER 3: DATA DECLARATION LANGUAGE

Exceptions:

None

3.7 Give Constraints Names in the Production Code

Rationale:

The constraint name will show up in error messages when it is violated.
This gives you the ability to create meaningful messages and easily locate
the errors.

The syntax is simply “CONSTRAINT <name>,” and it should be a
clear statement of what has been violated done as a name. For example:

CREATE TABLE Prizes

(..

 award_points INTEGER DEFAULT 0 NOT NULL

 CONSTRAINT award_point_range

 CHECK (award_points BETWEEN 0 AND 100),

 ..);

If you do not provide a name, the SQL engine will probably provide a
machine-generated name that is very long, impossible to read, and will
give you no clue about the nature of your problem.

Exceptions:

You can leave off constraint names on PRIMARY KEYS, UNIQUE, and
FOREIGN KEY constraints, because most SQL products will give an
explicit error message about them when they are violated. The exception
is that Oracle will use the system-generated name when it displays the
execution plans.

You can leave off constraint names during development work.
However, remember that constraint names are global, not local, because
the CREATE ASSERTION statement would have problems otherwise.

3.8 Put CHECK() Constraint Near what they Check

Rationale:

Put single column CHECK() constraints on its column, multicolumn
constraints near their columns.

We want as much information about a column on that column as
possible. Having to look in several places for the definition of a column
can only cost us time and accuracy. Likewise, put multicolumn
constraints as near to the columns involved as is reasonable.

3.8 Put CHECK() Constraint Near what they Check 47

Exceptions:

If your SQL product has a CREATE DOMAIN statement, you will include
DEFAULT and CHECK() constraints in the domain declaration, so the
use of the DOMAIN is enough. Multicolumn constraints on columns
that are far apart should be moved to the end of the table declaration.
This will give you one place to look for the more complex constraints,
rather than trying to look all over the DDL statement.

It can also be argued that none of this really matters, because most of
the time we should be going to the schema information tables to retrieve
the constraint definitions, not the DDL. Constraints may have been
removed or added with subsequent ALTER statements, and the system
catalog will have the correct, current state, whereas the DDL may not.

3.8.1 Consider Range Constraints for Numeric Values

Rationale:

The whole idea of a database is that it is a single trusted repository for all
of the data in the enterprise. This is the place where the business rules
must be enforced.

The most common constraint on numbers in a data model is that
they are not less than zero. Now look at actual DDL and see how often
you find that constraint. Programmers are lazy and do not bother with
this level of details.

Exceptions:

When the column really can take any value whatsoever.

3.8.2 Consider LIKE and SIMILAR TO Constraints for
Character Values

Rationale:

Again, the whole idea of a database is that it is a single trusted repository
for all of the data in the enterprise. This is the place where the business
rules must be enforced.

An encoding will have a format that can be validated with a LIKE or
SIMILAR TO predicate. Now look at actual DDL and see how often you
find that constraint. This is not as portable an option as numeric range
checking, and many programmers who did not use UNIX in their youth
have problems with regular expressions, but it is still important.

Exceptions:

When the column really can take any value whatsoever.

48 CHAPTER 3: DATA DECLARATION LANGUAGE

3.8.3 Remember That Temporal Values Have Duration

There is no such thing as a point in time. You can ask Einstein or go back
to the Greek philosopher Zeno and his famous paradoxes. Temporal
values have duration, and you need to remember that they have a start
and finish time, either explicitly or implicitly, that includes all of the
continuum bound by them. The implicit model is a single column and
the explicit model uses a pair of temporal values.

For example, when you set a due date for a payment, you usually
mean any point from the start of that day up to but not including
midnight of the following day. When you say an employee worked on a
given date, you usually mean the event occurred during an eight-hour
duration within that day.

Remember that you can use a DEFAULT CURRENT_TIMESTAMP on
a temporal column and that a NULL can be used as a marker for
“eternity” in the finish time column. A CHECK() constraint can round
off time values to the start of the nearest year, month, day, hour, minute,
or second as needed.

3.8.4 REAL and FLOAT Data Types Should Be Avoided

Most commercial applications do not need floating-point math. SQL has
NUMERIC and DECIMAL data types that can be set to a great deal of
scale and precision and do not have floating-point numeric rounding
errors. There will be exceptions for scientific and statistical data.

3.9 Put Multiple Column Constraints as Near to Both
Columns as Possible

Rationale:

Do not make the reader have to look in multiple physical locations to
find all of the columns involved in the constraint. You do not have to
indent this constraint, but it is a good idea to split it on two lines: one
with the CONSTRAINT clause and one with the CHECK() clause.

CREATE TABLE Prizes

(..

 birth_date DATE NOT NULL,

 prize_date DATE NOT NULL,

 CONSTRAINT over_18_to_win

 CHECK (birth_date + INTERVAL 18 YEARS >= prize_date),

 ..);

3.11 Use CREATE ASSERTION for Multi-table Constraints 49

Exceptions:

This is not always physically possible, especially when many columns are
involved.

3.10 Put Table-Level CHECK() Constraints at the End of the
Table Declaration

Rationale:

These constraints are not yet well supported in SQL products, but they
are legal SQL-92 syntax. Their predicates involve the entire table as a
whole rather than just single rows. This implies that they will involve
aggregate functions.

CREATE TABLE Prizes

(..

CONSTRAINT only_5_prizes_each_winner

 CHECK (NOT EXISTS

 (SELECT *

 FROM Prizes AS P1

 GROUP BY P1.contestant_id

 HAVING COUNT(*) > 5)),

CONSTRAINT no_missing_ticket_nbrs

CHECK ((SELECT MAX(ticket_nbr) - MIN(ticket_nbr) + 1

 FROM Prizes AS P1)

 = (SELECT COUNT(ticket_nbr)

 FROM Prizes AS P1));

Exceptions:

None

3.11 Use CREATE ASSERTION for Multi-table Constraints

Rationale:

Put multiple table CHECK() Constraints in CREATE ASSERTION
statements rather than on a table declaration.

These constraints are not yet well supported in SQL products, but
they are legal SQL-92 syntax. Their predicates involve several different
tables, not just one table. This implies that they are at a higher level and
should be modeled there. The practical consideration is that all
constraints are TRUE on an empty table, so the CREATE ASSERTION

50 CHAPTER 3: DATA DECLARATION LANGUAGE

statement lets you control that possibility. The assertion name acts as the
constraint name.

CREATE ASSERTION enough_money_to_pay_prizes

AS

CHECK ((SELECT SUM(prize_money)

 FROM Prizes AS P1)

 <= (SELECT SUM(cash_on_hand)

 FROM Bank));

Exceptions:

If the SQL product does not support CREATE ASSERTION statements,
then this cannot be done, but if it were possible, then violation would
require a strong reason having to do with the schema design.

3.12 Keep CHECK() Constraints Single Purposed

Rationale:

Put simple CHECK() constraints in their own clauses rather than writing
one long constraint with multiple tests.

When you give a constraint a name, that name will appear in error
messages and can help the user to correct data. If all of the validation is
in one single CHECK() clause, what name would you give it? For
example, imagine a single validation for a name that looks for correct
capitalization, extra spaces, and a length over five characters. About all
you can call it is “bad address line” and hope the user can figure out how
to fix it. However, if there were separate checks for capitalization, extra
spaces, and a length over five characters, then those constraint names
would be obvious and give the user a clue as to the actual problem.

Exceptions:

If your SQL product supports the SIMILAR TO predicate (a version of
grep() based on the POSIX standard in Standard SQL), then you might
consider having a longer regular expression with OR-ed

patterns that fall
under a general constraint name.

If you do not want to give details about errors to users for security
reasons, then you can use a single constraint with a vague name. This
would be a strange situation.

3.13 Every Table Must Have a Key to Be a Table 51

3.13 Every Table Must Have a Key to Be a Table

Rationale:

This is the very definition of a table. The problem is that many newbies
do not understand what a key really is. A key must be a subset of the
attributes (columns) in the table. There is no such thing as a universal,
one-size-fits-all key. Just as no two sets of entities are the same, the
attributes that make them unique have to be found in the reality of the
data. God did not put a 17-letter Hebrew number on the bottom of
everything in creation.

Here is my classification of types of keys (Table 3.1).

1.

A natural key is a subset of attributes that occurs in a table and acts
as a unique identifier

. The user sees them. You can go to the
external reality and verify them. You would also like to have
some validation rule. Example: UPC codes on consumer goods
are easily seen (read the package bar code), and you validate
them with a scanner, a manual-check digit calculation, or a
manufacturer’s Web site.

2.

An artificial key is an extra attribute added to the table that is seen
by the user

. It does not exist in the external reality but can be

Table 3.1

Types of keys

Natural Key Artificial Key
Exposed
Locator

System
Surrogate

Constructed
from Reality
of the Data
Model

Yes No No No

Verifiable in
Reality

Yes No, trusted
source

No No

Validation
in Itself

Yes Yes, check
digit, syntax |

No No

Portable to
New
Platform

Yes Yes No No

Visible to
the User

Yes Yes Yes No, and can
be changed
by engine

52 CHAPTER 3: DATA DECLARATION LANGUAGE

verified for syntax or check digits inside itself. Example: The
open codes in the UPC scheme that a user can assign to his or
her own products. The check digit still works the same way,
but you have to verify the codes inside your own enterprise.

If you have to construct a key yourself, it takes time to
design it, to invent a validation rule, and so forth. There is a
chapter on that topic in this book. Chapter 5 discusses the
design of encoding schemes.

3.

An exposed physical locator is not based on attributes in the data
model and is exposed to the user

. There is no way to predict it or
verify it. The system obtains a value through some physical
process in the storage hardware that is totally unrelated to the
logical data model. Example: IDENTITY columns in the T-SQL
family; other proprietary, nonrelational auto-numbering
devices; and cylinder and track locations on the hard drive
used in Oracle.

Technically, these are not really keys at all, because they are
attributes of the physical storage and are not even part of the
logical data model, but they are handy for lazy, non-RDBMS
programmers who don’t want to research or think! This is the
worst way to program in SQL.

4.

A surrogate key is system generated to replace the actual key behind
the covers where the user never sees it

. It is based on attributes in
the table. Example: Teradata hashing algorithms, pointer
chains.

The fact that you can never see or use them for DELETE and
UPDATE or create them for INSERT is vital. When users can
get to them, they will screw up the data integrity by getting the
real keys and these physical locators out of sync. The system
must maintain them.

Notice that people get exposed physical locator and surrogate mixed
up; they are totally different concepts.

3.13.1 Auto-Numbers Are Not Relational Keys

In an RDBMS, the data elements exist at the schema level. You put tables
together from attributes, with the help of a data dictionary to model
entities in SQL.

3.13 Every Table Must Have a Key to Be a Table 53

But in a traditional 3GL-language application, the names are local to
each file because each application program gives them names and
meaning. Fields and subfields had to be completely specified to locate
the data. There are important differences between a file system and a
database, a table and a file, a row and a record, and a column and a field.
If you do not have a good conceptual model, you hit a ceiling and cannot
get past a certain level of competency.

In 25 words or less, it is “logical versus physical,” but it goes beyond
that. A file system is a loose collection of files, which have a lot of
redundant data in them. A database system is a single unit that models
the entire enterprise as tables, constraints, and so forth.

3.13.2 Files Are Not Tables

Files are independent of each other, whereas tables in a database are
interrelated. You open an entire database, not single tables within it, but
you do open individual files. An action on one file cannot affect another
file unless they are in the same application program; tables can interact
without your knowledge via DRI actions, triggers, and so on.

The original idea of a database was to collect data in a way that
avoided redundant data in too many files and not have it depend on a
particular programming language.

A file is made up of records, and records are made up of fields. A file
is ordered and can be accessed by a physical location, whereas a table is
not. Saying “first record,” “last record,” and “next

n

 records” makes sense
in a file, but there is no concept of a “first row,” “last row,” and “next
row” in a table.

A file is usually associated with a particular language—ever try to
read a FORTRAN file with a COBOL program? A database is language
independent; the internal SQL data types are converted into host
language data types.

A field exists only because of the program reading it; a column exists
because it is in a table in a database. A column is independent of any
host language application program that might use it.

In a procedural language, “READ a, b, c FROM FileX;” does not give
the same results as “READ b, c, a FROM FileX;” and you can even write
“READ a, a, a FROM FileX;” so you overwrite your local variable. In SQL,
“SELECT a, b, c FROM TableX” returns the same data as “SELECT b, c, a
FROM TableX” because things are located by name, not position.

A field is fixed or variable length, can repeat with an OCCURS in
COBOL, struct in c, and so on. A field can change data types (union in

54 CHAPTER 3: DATA DECLARATION LANGUAGE

‘C’, VARIANT in Pascal, REDEFINES in COBOL, EQUIVALENCE in
FORTRAN).

A column is a scalar value, drawn from a single domain (domain =
data type + constraints + relationships) and represented in one and only
one data type. You have no idea whatsoever how a column is physically
represented internally because you never see it directly.

Consider temporal data types: in SQL Server, DATETIME (their name
for TIMESTAMP data type) is a binary number internally (UNIX-style
system clock representation), but TIMESTAMP is a string of digits in
DB2 (COBOL-style time representation). When you have a field, you
have to worry about that physical representation. SQL says not to worry
about the bits; you think of data in the abstract.

Fields have no constraints, no relationships, and no data type; each
application program assigns such things, and they don’t have to assign the
same ones! That lack of data integrity was one of the reasons for RDBMS.

Rows and columns have constraints. Records and fields can have
anything in them and often do! Talk to anyone who has tried to build a
data warehouse about that problem. My favorite is finding the part
number “I hate my job” in a file during a data warehouse project.

Dr. Codd (1979) defined a row as a representation of a single simple
fact. A record is usually a combination of a lot of facts. That is, we don’t
normalize a file; you stuff data into it and hope that you have everything
you need for an application. When the system needs new data, you add
fields to the end of the records. That is how we got records that were
measured in Kbytes.

3.13.3 Look for the Properties of a Good Key

Rationale:

A checklist of desirable properties for a key is a good way to do a design
inspection. There is no need to be negative all the time.

1.

Uniqueness

. The first property is that the key be unique. This is
the most basic property it can have because without
uniqueness it cannot be a key by definition. Uniqueness is
necessary, but not sufficient.

Uniqueness has a context. An identifier can be unique in
the local database, in the enterprise across databases, or unique
universally. We would prefer the last of those three options.

We can often get universal uniqueness with industry:
standard codes such as VINs. We can get enterprise uniqueness

3.13 Every Table Must Have a Key to Be a Table 55

with things like telephone extensions and e-mail addresses. An
identifier that is unique only in a single database is workable
but pretty much useless because it will lack the other desired
properties.

2.

Stability

. The second property we want is stability or invariance.
The first kind of stability is within the schema, and this applies
to both key and nonkey columns. The same data element
should have the same representation wherever it appears in the
schema. It should not be CHAR(n) in one place and INTEGER
in another. The same basic set of constraints should apply to it.
That is, if we use the VIN as an identifier, then we can constrain
it to be only for vehicles from Ford Motors; we cannot change
the format of the VIN in one table and not in all others.

The next kind of stability is over time. You do not want keys
changing frequently or in unpredictable ways. Contrary to a
popular myth, this does not mean that keys cannot ever
change. As the scope of their context grows, they should be
able to change.

On January 1, 2005, the United States added one more digit
to the UPC bar codes used in the retail industry. The reason
was globalization and erosion of American industrial
domination. The global bar-code standard will be the European
Article Number (EAN) Code. The American Universal Product
Code (UPC) turned 30 years old in 2004 and was never so
universal after all.

The EAN was set up in 1977 and uses 13 digits, whereas the
UPC has 12 digits, of which you see 10 broken into two groups
of 5 digits on a label. The Uniform Code Council, which sets
the standards in North America, has the details for the
conversion worked out.

More than 5 billion bar-coded products are scanned every
day on earth. It has made data mining in retail possible and
saved millions of hours of labor. Why would you make up your
own code and stick labels on everything? Thirty years ago,
consumer groups protested that shoppers would be cheated if
price tags were not on each item, labor protested possible job
losses, and environmentalists said that laser scanners in the
bar-code readers might damage people’s eyes. The neo-
Luddites have been with us a long time.

56 CHAPTER 3: DATA DECLARATION LANGUAGE

For the neo-Luddite programmers who think that changing
a key is going to kill you, let me quote John Metzger, chief
information officer of A&P. The grocery chain had 630 stores
in 2004, and the grocery industry works 1 percent to 3 percent
profit margins—the smallest margins of any industry that is
not taking a loss. A&P has handled the new bar-code problem
as part of a modernization of its technology systems. “It is
important,” Mr. Metzger said, “but it is not a shut-the-
company-down kind of issue.”

Along the same lines, ISBN in the book trade is being
changed to 13 digits, and VINs are being redesigned. See the
following sources for more information:

(EAN: “Bar Code Détente: U.S. Finally Adds One More
Digit,” July 12, 2004,

New York Times

, by Steve Lohr;
http://www.nytimes.com/2004/07/12/business/
12barcode.html?ex=1090648405&ei=1&en=202cb9baba72e846)

(VIN: http://www.cars.com/news/stories/
070104_storya_dn.jhtml?page=newsstory&aff=national)

(ISBN: http://www.isbn.org/standards/home/isbn/
transition.asp)

3.

Familiarity

. It helps if the users know something about the data.
This is not quite the same as validation, but it is related.
Validation can tell you if the code is properly formed via some
process; familiarity can tell you if it feels right because you
know something about the context. Thus, ICD codes for disease
would confuse a patient but not a medical records clerk.

4.

Validation

. Can you look at the data value and tell that it is
wrong, without using an external source? For example, I know
that “2004-02-30” is not a valid date because no such day
exists on the Common Era calendar. Check digits and fixed
format codes are one way of obtaining this validation.

5.

Verifiability

. How do I verify a key? This also comes in context
and in levels of trust. When I cash a check at the supermarket,
the clerk is willing to believe that the photo on the driver’s
license I present is really me, no matter how ugly it is. Or
rather, the clerk used to believe it was me; the Kroger grocery
store chain is now putting an inkless fingerprinting system in
place, just like many banks have done.

3.13 Every Table Must Have a Key to Be a Table 57

When I get a passport, I need a birth certificate and
fingerprinting. There is a little less trust here. When I get a
security clearance, I also need to be investigated. There is a lot
less trust.

A key without a verification method has no data integrity
and will lead to the accumulation of bad data.

6.

Simplicity

. A key should be as simple as possible, but no
simpler. People, reports, and other systems will use the keys.
Long, complex keys are more subject to error; storing and
transmitting them is not an issue anymore, the way it was 40 or
50 years ago.

One person’s simple is another person’s complex. For an
example of a horribly complex code that is in common
international usage, look up the International Standard Bank
Number (IBAN). A country code at the start of the string
determines how to parse the rest of the string, and it can be up
to 34 alphanumeric characters in length. Why? Each country
has its own account numbering systems, currencies, and laws,
and they seldom match. In effect, the IBAN is a local banking
code hidden inside an international standard (see http://
www.ecbs.org/iban/iban.htm and the European Committee for
Banking Standards Web site for publications).

More and more programmers who have absolutely no database training
are being told to design a database. They are using GUIDs, IDENTITY,
ROWID, and other proprietary auto-numbering features in SQL products
to imitate either a record number (sequential file system mindset) or OID
(OO mindset) because they don’t know anything else. This magical,
universal, one-size-fits-all numbering is totally nonrelational, depends on
the physical state of the hardware at a particular time, and is a poor
attempt at mimicking a magnetic tape file system.

Experienced database designers tend toward intelligent keys they find
in industry-standard codes, such as UPC, VIN, GTIN, ISBN, and so on.
They know that they need to verify the data against the reality they are
modeling. A trusted external source is a good thing to have.

The reasons given for this poor programming practice are many, so
let me go down the list:

58 CHAPTER 3: DATA DECLARATION LANGUAGE

Q: Couldn’t a natural compound key become very long?
A1: So what? This is the 21st century, and we have much better
computers than we did in the 1950s when key size was a real physical
issue. What is funny to me is the number of idiots who replace a natural
two- or three-integer compound key with a huge GUID, which no
human being or other system can possibly understand, because they
think it will be faster and easy to program.
A2: This is an implementation problem that the SQL engine can handle.
For example, Teradata is a SQL designed for very large database (VLDB)
applications that use hashing instead of B-tree or other indexes. They
guarantee that no search requires more than two probes, no matter how
large the database. A tree index requires more and more probes as the
size of the database increases.
A3: A long key is not always a bad thing for performance. For example,
if I use (city, state) as my key, I get a free index on just (city). I can also
add extra columns to the key to make it a super-key when such a super-
key gives me a covering index (i.e., an index that contains all of the
columns required for a query, so that the base table does not have to be
accessed at all).

Q: Can’t I make things really fast on the current release of my SQL
software?
A1: Sure, if I want to lose all of the advantages of an abstract data model,
SQL set-oriented programming, carry extra data, and destroy the
portability of code. Look at any of the newsgroups and see how difficult
it is to move the various exposed physical locators in the same product.

The auto-numbering features are a holdover from the early SQLs,
which were based on contiguous storage file systems. The data was kept
in physically contiguous disk pages, in physically contiguous rows,
made up of physically contiguous columns. In short, just like a deck of
punchcards or a magnetic tape. Most programmers still carry that mental
model, too.

But physically contiguous storage is only one way of building a
relational database, and it is not the best one. The basic idea of a
relational database is that the user is not supposed to know how or
where things are stored at all, much less write code that depends on the
particular physical representation in a particular release of a particular
product on particular hardware at a particular time.

The first practical consideration is that auto-numbering is proprietary
and nonportable, so you know that you will have maintenance problems

3.13 Every Table Must Have a Key to Be a Table 59

when you change releases or port your system to other products.
Newbies actually think they will never port code! Perhaps they only
work for companies that are failing and will be gone. Perhaps their code
is such a disaster that nobody else wants their application.

But let’s look at the logical problems. First, try to create a table with
two columns and try to make them both auto-numbered. If you cannot
declare more than one column to be of a certain data type, then that
thing is not a data type at all, by definition. It is a property that belongs
to the physical table, not the logical data in the table.

Next, create a table with one column and make it an auto-number.
Now try to insert, update, and delete different numbers from it. If you
cannot insert, update, and delete rows, then it is not really a table by
definition.

Finally, create a simple table with one hidden auto-number column
and a few other columns. Use a few statements like:

INSERT INTO Foobar (a, b, c) VALUES ('a1', 'b1', 'c1');

INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');

INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');

Put a few rows into the table and notice that the auto-numbering
feature sequentially numbered them in the order they were presented. If
you delete a row, the gap in the sequence is not filled in, and the
sequence continues from the highest number that has ever been used in
that column in that particular table. This is how we did record numbers
in preallocated sequential files in the 1950s, by the way. A utility
program would then pack or compress the records that were flagged as
deleted or unused to move the empty space to the physical end of the
physical file.

But we now use a statement with a query expression in it, like this:

INSERT INTO Foobar (a, b, c)

SELECT x, y, z

 FROM Floob;

Because a query result is a table, and a table is a set that has no
ordering, what should the auto-numbers be? The entire, whole,
completed set is presented to Foobar all at once, not a row at a time.
There are (n!) ways to number (n) rows, so which one do you pick? The
answer has been to use whatever the physical order of the result set
happened to be. That nonrelational phrase “physical order” again!

60 CHAPTER 3: DATA DECLARATION LANGUAGE

But it is actually worse than that. If the same query is executed again,
but with new statistics or after an index has been dropped or added, the
new execution plan could bring the result set back in a different physical
order. Can you explain from a logical model why the same rows in the
second query get different auto-numbers? In the relational model, they
should be treated the same if all the values of all the attributes are
identical.

Using auto-numbering as a primary key is a sign that there is no data
model, only an imitation of a sequential file system. Because this magic,
all-purpose, one-size-fits-all pseudo identifier exists only as a result of
the physical state of a particular piece of hardware, at a particular time,
as read by the current release of a particular database product, how do
you verify that an entity has such a number in the reality you are
modeling? People run into this problem when they have to rebuild their
database from scratch after a disaster.

You will see newbies who design tables like this:

CREATE Drivers

(driver_id AUTONUMBER NOT NULL PRIMARY KEY,

 ssn CHAR(9) NOT NULL REFERENCES Personnel(ssn),

 vin CHAR(17) NOT NULL REFERENCES Motorpool(vin));

Now input data and submit the same row a thousand times or a
million times. Your data integrity is trashed. The natural key was this:

CREATE Drivers

(ssn CHAR(9) NOT NULL REFERENCES Personnel(ssn),

 vin CHAR(17) NOT NULL REFERENCES Motorpool(vin),

 PRIMARY KEY (ssn, vin));

Another problem is that if a natural key exists (which it must, if the
data model is correct), then the rows can be updated either through the
key or through the auto-number. But because there is no way to
reconcile the auto-number and the natural key, you have no data
integrity.

To demonstrate, here is a typical newbie schema. I call them “id-iots”
because they always name the auto-number column “id” in every table.

3.13 Every Table Must Have a Key to Be a Table 61

CREATE TABLE Personnel

(id AUTONUMBER NOT NULL PRIMARY KEY,—false key

 ssn CHAR(9) NOT NULL,—real key

 ..);

INSERT INTO Personnel VALUES ('999999999', ..);

Now change a row in Personnel, using the “id” column:

UPDATE Personnel

 SET ssn = '666666666'

 WHERE id = 1;

or using the natural key:

UPDATE Personnel

 SET ssn = '666666666'

 WHERE ssn = '999999999';

But when I rebuild the row from scratch:

BEGIN ATOMIC

DELETE FROM Personnel WHERE id = 1;

INSERT INTO Personnel VALUES ('666666666', ..);

END;

What happened to the tables that referenced Personnel? Imagine a
company bowling team table that also had the “id” column and the “ssn”
of the players. I need cascaded DRI actions if the “ssn” changes, but I
only have the “id,” so I have no idea how many “ssn” values the same
employee can have. The “id” column is at best redundant, but now we
can see that it is also dangerous.

Finally, an appeal to authority, with a quote from Dr. Codd (1979):
“Database users may cause the system to generate or delete a surrogate,
but they have no control over its value, nor is its value ever displayed to
them.

This means that a surrogate ought to act like an index: created by the
user, managed by the system, and never seen by a user. That means
never used in queries, DRI, or anything else that a user does.

62 CHAPTER 3: DATA DECLARATION LANGUAGE

Codd also wrote the following:

There are three difficulties in employing user-controlled keys
as permanent surrogates for entities.

1. The actual values of user-controlled keys are determined by
users and must therefore be subject to change by them (e.g., if
two companies merge, the two employee databases might be
combined, with the result that some or all of the serial numbers
might be changed).

2. Two relations may have user-controlled keys defined on dis-
tinct domains (e.g., one of them uses Social Security, while the
other uses employee serial numbers) and yet the entities
denoted are the same.

3. It may be necessary to carry information about an entity
either before it has been assigned a user-controlled key value or
after it has ceased to have one (e.g., an applicant for a job and a
retiree).

These difficulties have the important consequence that an
equi-join on common key values may not yield the same result
as a join on common entities. A solution—proposed in part [4]
and more fully in [14]—is to introduce entity domains, which
contain system-assigned surrogates. Database users may cause
the system to generate or delete a surrogate, but they have no
control over its value, nor is its value ever displayed to them. . .
(Codd, 1979).

Exceptions:
If you are using the table as a staging area for data scrubbing or some
other purpose than as a database, then feel free to use any kind of
proprietary feature you wish to get the data right. We did a lot of this in
the early days of RDBMS. Today, however, you should consider using
ETL and other software tools that did not exist even a few years ago.

3.14 Do Not Split Attributes
Rationale:
Attribute splitting consists of taking an attribute and modeling it in more
than one place in the schema. This violates Domain-key Normal Form

3.14 Do Not Split Attributes 63

(DKNF) and makes programming insanely difficult. There are several
ways to do this, discussed in the following sections.

3.14.1 Split into Tables
The values of an attribute are each given their own table. If you were to
do this with gender and have a “MalePersonnel” and a
“FemalePersonnel” table, you would quickly see the fallacy. But if I were
to split data by years (temporal values) or by location (spatial values) or
by department (organizational values), you might not see the same
problem.

In order to get any meaningful report, these tables would have to be
UNION-ed back into a single “Personnel” table. The bad news is that
constraints to prevent overlaps among the tables in the collection can be
forgotten or wrong.

Do not confuse attribute splitting with a partitioned table, which is
maintained by the system and appears to be a whole to the users.

3.14.2 Split into Columns
The attribute is modeled as a series of columns that make no sense until
all of the columns are reassembled (e.g., having a measurement in one
column and the unit of measure in a second column). The solution is to
have scale and keep all measurements in it.

Look at section 3.3 on BIT data types as one of the worst offenders.
You will also see attempts at formatting of long text columns by splitting
(e.g., having two 50-character columns instead of one 100-character
column so that the physical display code in the front end does not have
to calculate a word-wrap function). When you get a 25-character-wide
printout, though, you are in trouble.

Another common version of this is to program dynamic domain
changes in a table. That is, one column contains the domain, which is
metadata, for another column, which is data.

Glenn Carr posted a horrible example of having a column in a table
change domain on the fly on September 29, 2004, on the SQL Server
programming newsgroup. His goal was to keep football statistics; this is
a simplification of his original schema design. I have removed about a
dozen other errors in design, so we can concentrate on just the shifting
domain problem.

64 CHAPTER 3: DATA DECLARATION LANGUAGE

CREATE TABLE Player_Stats

(league_id INTEGER NOT NULL,

 player_id INTEGER NOT NULL,—proprietary auto-number on Players

 game_id INTEGER NOT NULL,

 stat_field_id CHAR(20) NOT NULL,—the domain of the number_value
column

 number_value INTEGER NULL,

 ..);

The “stat_field_id” held the names of the statistics whose values are
given in the “number_value” column of the same row. A better name for
this column should have been “yardage_or_completions_or_
interceptions_or_ ..” because that is what it has in it.
Here is a rewrite:

CREATE TABLE Player_Stats

(league_id INTEGER NOT NULL,

 player_nbr INTEGER NOT NULL,

 FOREIGN KEY (league_id, player_nbr)

 REFERENCES Players (league_id, player_nbr)

 ON UPDATE CASCADE,

 game_id INTEGER NOT NULL

 REFERENCES Games(game_id)

 ON UPDATE CASCADE,

 completions INTEGER DEFAULT 0 NOT NULL CHECK (completions >=
0),

 yards INTEGER DEFAULT 0 NOT NULL CHECK (yards >= 0),

—put other stats here

 ...

 PRIMARY KEY (league_id, player_nbr, game_id));

We found by inspection that a player is identified by a (league_id,
player_nbr) pair. Player_id was originally another IDENTITY column in
the Players table. I see sports games where the jersey of each player has a
number; let’s use that for identification. If reusing jersey numbers is a
problem, then I am sure that leagues have some standard in their
industry for this, and I am sure that it is not an auto-incremented
number that was set by the hardware in Mr. Carr’s machine.

What he was trying to find were composite statistics, such as “Yards
per Completion,” which is trivial in the rewritten schema. The hardest
part of the code is avoiding a division by zero in a calculation. Using the

3.14 Do Not Split Attributes 65

original design, you had to write elaborate self-joins that had awful
performance. I leave this as an exercise to the reader.

Exceptions:
This is not really an exception. You can use a column to change the scale,
but not the domain, used in another column. For example, I record
temperatures in degrees Absolute, Celsius, or Fahrenheit and put the
standard abbreviation code in another column. But I have to have a
VIEW for each scale used so that I can show Americans everything in
Fahrenheit and the rest of the world everything in Celsius. I also want
people to be able to update through those views in the units their
equipment gives them.

A more complex example would be the use of the ISO currency codes
with a decimal amount in a database that keeps international
transactions. The domain is constant; the second column is always
currency, never shoe size or body temperature. When I do this, I need to
have a VIEW that will convert all of the values to the same common
currency: Euros, Yen, Dollars, or whatever. But now there is a time
element because the exchange rates change constantly. This is not an
easy problem.

3.14.3 Split into Rows
The attribute is modeled as a flag and value on each row of the same
table. The classic example is temporal, such as this list of events:

CREATE TABLE Events

(event_name CHAR(15) NOT NULL,

 event_time TIMESTAMP DEFAULT CURRENT_TIMESRTAMP NOT NULL,

 ..);

INSERT INTO Events

VALUES (('start running', '2005-10-01 12:00:00'),

 ('stop running', '2005-10-01 12:15:13'));

Time is measured by duration, not by instants; the correct DDL is:

CREATE TABLE Events

(event_name CHAR(15) NOT NULL,

 event_start_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 event_finish_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 CHECK (event_start_time < event_finish_time),

 ..);

66 CHAPTER 3: DATA DECLARATION LANGUAGE

INSERT INTO Events

VALUES ('running', '2005-10-01 12:00:00', '2005-10-01
12:15:13');

Exceptions:
None

These are simply bad schema designs that are often the results of
confusing the physical representation of the data with the logical model.
This tends to be done by older programmers carrying old habits over
from file systems.

For example, in the old days of magnetic tape files, the tapes were
dated and processing was based on the one-to-one correspondence
between time and a physical file. Creating tables with temporal names
like “Payroll_Jan,” “Payroll_Feb,” and so forth just mimic magnetic
tapes.

Another source of these errors is mimicking paper forms or input
screens directly in the DDL. The most common is an order detail table
that includes a line number because the paper form or screen for the
order has a line number. Customers buy products that are identified in
the inventory database by SKU, UPC, or other codes, not a physical line
number on a form on the front of the application. But the programmer
splits the quantity attribute into multiple rows.

3.15 Do Not Use Object-Oriented Design for an RDBMS
Rationale:
Many years ago, the INCITS H2 Database Standards Committee (née
ANSI X3H2 Database Standards Committee) had a meeting in Rapid
City, South Dakota. We had Mount Rushmore and Bjarne Stroustrup as
special attractions. Mr. Stroustrup did his slide show about Bell Labs
inventing C++ and OO programming for us, and we got to ask
questions.

One of the questions was how we should put OO stuff into SQL. His
answer was that Bell Labs, with all its talent, had tried four different
approaches to this problem and came to the conclusion that you should
not do it. OO was great for programming but deadly for data.

3.15.1 A Table Is Not an Object Instance
Tables in a properly designed schema do not appear and disappear like
instances of an object. A table represents a set of entities or a

3.15 Do Not Use Object-Oriented Design for an RDBMS 67

relationship. For them to appear (CREATE TABLE) and disappear
(DROP TABLE) is like living in a world of magic, where a whole new
species of creatures are created by any user, on the fly. Likewise, there
are no OIDs in SQL. GUIDs, auto-numbering, and all of those
proprietary exposed physical locators will not work in the long run.

I have watched people try to force OO models into SQL, and it falls
apart in about a year. Every typo becomes a new attribute, or class
queries that would have been so easy in a relational model are now
multitable monster outer joins, redundancy grows at an exponential
rate, constraints are virtually impossible to write so you can kiss data
integrity goodbye, and so on.

In a thread discussing OO versus relational modeling entitled
“impedance mismatch” in the comp.databases.theory newsgroup in
October 2004, one experienced programmer reported:

I’m here to tell you what you already know—you are 100
percent correct. I am stuck with working with an OO schema
superimposed on an RDBMS. The amount of gymnastics that I
need to go through to do what should be the simplest query is
unimaginable. It took six man-hours (me and one of the OO
developers for three hours) to come up with a query that was
the equivalent of:

SELECT * FROM Field_Offices;

The data needed consisted of basic information, name of the office
location, address, manager, and phone. The final query was almost a full
page long, required the joining of all the various tables for each data
element (as each data element is now an object and each object has its
own attributes, so requires its own table), and of course the monster
object-linking tables so as to obtain the correct instance of each object.

By the way, which instance is the correct one? Why, the latest one, of
course, unless it is marked as not being the one to use, in which case
look for the one that is so marked. And the marking indicator is not
always the same value, as there are several potential values. These object-
linking tables are the biggest in the entire database. Millions of rows in
each of these in just one year’s time to keep track of less than 80,000
entity instances.

Self-joins are needed in some cases; here are two of these monster
tables, and a few smaller ones.

68 CHAPTER 3: DATA DECLARATION LANGUAGE

Fortunately, there are extracts that run nightly to transform the data
into a relational schema set up for reporting, but not all the data is there,
or is wrong, so sometimes I need to go through the above.

3.15.2 Do Not Use EAV Design for an RDBMS
The Entity-Attribute-Value (EAV) design flaw is particularly popular
among newbies who come from the agile or extreme school of software
development. This school used to be called “Code first, design and think
later” when it was first popular.

The idea is that you have one huge table with three columns of
metadata: entity name, attribute name, and attribute value. This lets your
users invent new entities as they use the database. If the American wants
to create something called a “tire” and the British speaker wants to create
something called a “tyre,” then they are both free to do so.

The values have be recorded in the most general data type in the SQL
engine, so you use a lot of VARCHAR(n) columns in the EAV model.
Now try to put a constraint on the column.

Exceptions:
None. There are better tools for collecting free-form data.

C H A P T E R

4

Scales and Measurements

B

EFORE

YOU

CAN

 put data into a database, you actually need to think about
how it will be represented and manipulated. Most programmers have
never heard of measurement theory or thought about the best way to
represent their data. Although this topic is not specifically about SQL
style, it gives a foundation for decisions that have to be made in the
design of any schema.

4.1 Measurement Theory

Measure all that is measurable and attempt to make measurable that which
is not yet so.

—Galileo (1564–1642)

Measurement theory is a branch of applied mathematics that is useful
in data analysis. Measurements are not the same as the attribute being
measured. Measurement is not just assigning numbers to things or
their attributes so much as it is assigning to things a structural
property that can be expressed in numbers or other computable
symbols. This structure is the scale used to take the measurement; the
numbers or symbols represent units of measure.

Strange as it might seem, measurement theory came from
psychology, not mathematics or computer science. In particular, S. S.

70 CHAPTER 4: SCALES AND MEASUREMENTS

Stevens originated the idea of levels of measurement and classification of
scales. Scales are classified into types by the properties they do or do not
have. The properties with which we are concerned are the following:

1.

A natural origin point on the scale

. This is sometimes called a
zero, but it does not have to be literally a numeric zero. For
example, if the measurement is the distance between objects,
the natural zero is zero meters—you cannot get any closer than
that. If the measurement is the temperature of objects, the
natural zero is zero degrees Kelvin—nothing can get any colder
than absolute zero. However, consider time: It goes from an
eternal past into an eternal future, so you cannot find a natural
origin for it.

2.

Meaningful operations can be performed on the units

. It makes
sense to add weights together to get a new weight. However,
adding names or shoe sizes together is absurd.

3.

A natural ordering of the units

. It makes sense to speak about an
event occurring before or after another event, or a thing being
heavier, longer, or hotter than another thing, but the
alphabetical order imposed on a list of names is arbitrary, not
natural—a foreign language, with different names for the same
objects, would impose another ordering.

4.

A natural metric function on the units

. A metric function has
nothing to do with the metric system of measurements, which
is more properly called SI, for Systemé International d’units in
French. Metric functions have the following three properties:

a. The metric between an object and itself is the natural
origin of the scale. We can write this in a semimathe-
matical notation as

M

(

a

,

a

) = 0.

b. The order of the objects in the metric function does not
matter. Again in the notation,

M(a, b)

 =

M(b, a)

.

c. There is a natural additive function that obeys the rule
that

M(a, b)

 +

M(b, c)

 =

M(a, c)

, which is also known as
the

triangular inequality

.

This notation is meant to be more general than just arithmetic. The
zero in the first property is the origin of the scale, not just a numeric
zero. The third property, defined with a plus and a greater than or equal

4.1 Measurement Theory 71

to sign, is a symbolic way of expressing general ordering relationships.
The greater than or equal to sign refers to a natural ordering on the
attribute being measured. The plus sign refers to a meaningful operation
in regard to that ordering, not just arithmetic addition.

The special case of the third property, where the greater than or equal
to is always greater than, is desirable to people because it means that
they can use numbers for units and do simple arithmetic with the scales.
This is called a

strong metric property

. For example, human perceptions
of sound and light intensity follow a cube root law—that is, if you
double the intensity of light, the perception of the intensity increases by
only 20 percent (Stevens, 1957). The actual formula is “Physical
intensity to the 0.3 power equals perceived intensity” in English.
Knowing this, designers of stereo equipment use controls that work on a
logarithmic scale internally but that show evenly spaced marks on the
control panel of the amplifier.

It is possible to have a scale that has any combination of the metric
properties. For example, instead of measuring the distance between two
places in meters, measure it in units of effort. This is the old Chinese
system, which had uphill and downhill units of distance.

Does this system of distances have the property that

M(a, a)

 = 0? Yes. It
takes no effort to get to where you already are located. Does it have the
property that

M(a, b)

 =

M(b, a)

? No. It takes less effort to go downhill than
to go uphill. Does it have the property that

M(a, b)

 +

M(b, c)

 =

M(a, c)

?
Yes. The amount of effort needed to go directly to a place will always be
less than the effort of making another stop along the way.

4.1.1 Range and Granularity

Range and granularity are properties of the way the measurements are
made. Because we have to store data in a database within certain limits,
these properties are important to a database designer. The types of scales
are unrelated to whether you use discrete or continuous variables.
Although measurements are always discrete because of finite precision,
attributes can be conceptually either discrete or continuous regardless of
measurement level. Temperature is usually regarded as a continuous
attribute, so temperature measurement to the nearest degree Kelvin is a
ratio-level measurement of a continuous attribute. However, quantum
mechanics holds that the universe is fundamentally discrete, so
temperature may actually be a discrete attribute. In ordinal scales for
continuous attributes, ties are impossible (or have probability zero). In
ordinal scales for discrete attributes, ties are possible. Nominal scales

72 CHAPTER 4: SCALES AND MEASUREMENTS

usually apply to discrete attributes. Nominal scales for continuous
attributes can be modeled but are rarely used.

4.1.2 Range

A scale also has other properties that are of interest to someone building
a database. First, scales have a range: What are the highest and lowest
values that can appear on the scale? It is possible to have a finite or an
infinite limit on either the lower or the upper bound. Overflow and
underflow errors are the result of range violations inside the database
hardware.

Database designers do not have infinite storage, so we have to pick a
subrange to use in the database when we have no upper or lower bound.
For example, few computer calendar routines will handle geologic time
periods, but then few companies have bills that have been outstanding
for that long either, so we do not mind.

4.1.3 Granularity, Accuracy, and Precision

Look at a ruler and a micrometer. They both measure length, using the
same scale, but there is a difference. A micrometer is more precise
because it has a finer granularity of units. Granularity is a static property
of the scale itself—how many notches there are on your ruler. In Europe,
all industrial drawings are done in millimeters; the United States has
been using 1/32nd of an inch.

Accuracy is how close the measurement comes to the actual value.
Precision is a measure of how repeatable a measurement is. Both depend
on granularity, but they are not the same things. Human nature says that
a number impresses according to the square of the number of decimal
places. Hence, some people will use a computer system to express things
to as many decimal places as possible, even when it makes no sense. For
example, civil engineering in the United States uses decimal feet for road
design. Nobody can build a road any more precisely than that, but many
civil engineering students turn in work that is expressed in ten-
thousandths of a foot. You don’t use a micrometer on asphalt! A database
often does not give the user a choice of precision for many calculations.
In fact, the SQL standards leave the number of decimal places in the
results of many arithmetic operations to be defined by the
implementation.

The ideas are easier to explain with handgun targets, which are scales
to measure the ability of the shooter to put bullets in the center of a

4.2 Types of Scales 73

target. A bigger target has a wider range compared with a smaller target.
A target with more rings has a higher granularity.

Once you start shooting, a group of shots that are closer together is
more precise because the shots were more repeatable. A shot group that
is closer to the center is more accurate because the shots were closer to
the goal. Notice that precision and accuracy are not the same thing! If I
have a good gun whose sights are off, I can get a tight cluster that is not
near the bull’s eye.

4.2 Types of Scales

The lack or presence of precision and accuracy determines the kind of
scale you should choose. Scales are either quantitative or qualitative.
Quantitative scales are what most people mean when they think of
measurements, because these scales can be manipulated and are usually
represented as numbers. Qualitative scales attempt to impose an order
on an attribute, but they do not allow for computations—just
comparisons.

4.2.1 Nominal Scales

The simplest scales are the nominal scales. They simply assign a unique
symbol, usually a number or a name, to each member of the set that they
attempt to measure. For example, a list of city names is a nominal scale.

Right away we are into philosophical differences, because many
people do not consider listing to be measurement. Because no clear
property is being measured, that school of thought would tell us this
cannot be a scale.

There is no natural origin point for a set, and likewise there is no
ordering. We tend to use alphabetic ordering for names, but it makes
just as much sense to use frequency of occurrence or increasing size or
almost any other attribute that does have a natural ordering.

The only meaningful operation that can be done with such a list is a
test for equality—“Is this city New York or not?”—and the answer will be
TRUE, FALSE, or UNKNOWN. Nominal scales are common in
databases because they are used for unique identifiers, such as names
and descriptions.

4.2.2 Categorical Scales

The next simplest scales are the categorical scales. They place an entity
into a category that is assigned a unique symbol, usually a number or a

74 CHAPTER 4: SCALES AND MEASUREMENTS

name. For example, the class of animals might be categorized as reptiles,
mammals, and so forth. The categories have to be within the same class
of things to make sense.

Again, many people do not consider categorizing to be measurement.
The categories are probably defined by a large number of properties, and
there are two potential problems with them. The first problem is that an
entity might fall into one or more categories. For example, a platypus is a
furry, warm-blooded, egg-laying animal. Mammals are warm-blooded
but give live birth and optionally have fur. The second problem is that an
entity might not fall into any of the categories at all. If we find a creature
with chlorophyll and fur on Mars, we do not have a category of animals
in which to place it.

The two common solutions are either to create a new category of
animals (monotremes for the platypus and echidna) or to allow an entity
to be a member of more than one category. There is no natural origin
point for a collection of subsets, and, likewise, there is no ordering of the
subsets. We tend to use alphabetic ordering for names, but it makes just
as much sense to use frequency of occurrence or increasing size or
almost any other attribute that does have a natural ordering.

The only meaningful operation that can be done with such a scale is a
test for membership—“Is this animal a mammal or not?”—which will
test either TRUE, FALSE, or UNKNOWN.

4.2.3 Absolute Scales

An absolute scale is a count of the elements in a set. Its natural origin is
zero, or the empty set. The count is the ordering (a set of five elements is
bigger than a set of three elements, and so on). Addition and subtraction
are metric functions. Each element is taken to be identical and
interchangeable. For example, when you buy a dozen Grade A eggs, you
assume that for your purposes any Grade A egg will do the same job as
any other Grade A egg. Again, absolute scales are in databases because
they are used for quantities.

4.2.4 Ordinal Scales

Ordinal scales put things in order but have no origin and no operations.
For example, geologists use a scale to measure the hardness of minerals
called Moh’s Scale for Hardness (MSH). It is based on a set of standard
minerals, which are ordered by relative hardness (talc = 1, gypsum = 2,
calcite = 3, fluorite = 4, apatite = 5, feldspar = 6, quartz = 7, topaz = 8,
sapphire = 9, diamond = 10).

4.2 Types of Scales 75

To measure an unknown mineral, you try to scratch the polished
surface of one of the standard minerals with it; if it scratches the surface,
the unknown is harder. Notice that I can get two different unknown
minerals with the same measurement that are not equal to each other
and that I can get minerals that are softer than my lower bound or
harder than my upper bound. There is no origin point, and operations
on the measurements make no sense (e.g., if I add 10 talc units, I do not
get a diamond).

Perhaps the most common use we see of ordinal scales today is to
measure preferences or opinions. You are given a product or a situation
and asked to decide how much you like or dislike it, how much you
agree or disagree with a statement, and so forth. The scale is usually
given a set of labels such as “strongly agree” through “strongly disagree,”
or the labels are ordered from 1 to 5.

Consider pairwise choices between ice cream flavors. Saying that
vanilla is preferred over wet leather in our taste test might well be
expressing a universal truth, but there is no objective unit of likeability
to apply. The lack of a unit means that such things as opinion polls that
try to average such scales are meaningless; the best you can do is a bar
graph of the number of respondents in each category.

Another problem is that an ordinal scale may not be transitive.

Transitivity

 is the property of a relationship in which if

R(a, b)

 and

R(b, c)

,
then

R(a, c)

. We like this property and expect it in the real world, where
we have relationships like “heavier than,” “older than,” and so forth. This
is the result of a strong metric property.

But an ice cream taster, who has just found out that the shop is out of
vanilla, might prefer squid over wet leather, wet leather over wood, and
wood over squid, so there is no metric function or linear ordering at all.
Again, we are into philosophical differences, because many people do
not consider a nontransitive relationship to be a scale.

4.2.5 Rank Scales

Rank scales have an origin and an ordering but no natural operations.
The most common example of this would be military ranks. Nobody is
lower than a private, and that rank is a starting point in your military
career, but it makes no sense to somehow combine three privates to get a
sergeant.

Rank scales have to be transitive: A sergeant gives orders to a private,
and because a major gives orders to a sergeant, he or she can also give
orders to a private. You will see ordinal and rank scales grouped together
in some of the literature if the author does not allow nontransitive

76 CHAPTER 4: SCALES AND MEASUREMENTS

ordinal scales. You will also see the same fallacies committed when
people try to do statistical summaries of such scales.

4.2.6 Interval Scales

Interval scales have a metric function, ordering, and meaningful
operations among the units but no natural origin. Calendars are the best
example; some arbitrary historical event is the starting point for the scale
and all measurements are related to it using identical units or intervals.
Time, then, extends from a past eternity to a future eternity.

The metric function is the number of days between two dates. Look
at the three properties: (1)

M(a, a)

 = 0: there are zero days between today
and today; (2)

M(a, b)

 =

M(b, a)

: there are just as many days from today
to next Monday as there are from next Monday to today; and (3)

M(a, b)

+

M(b, c)

 =

M(a, c)

: the number of days from today to next Monday plus
the number of days from next Monday to Christmas is the same as the
number of days from today until Christmas. Ordering is natural and
strong: 1900-July-1 occurs before 1993-July-1. Aggregations of the basic
unit (days) into other units (weeks, months, and years) are also arbitrary.

Please do not think that the only metric function is simple math;
there are log-interval scales, too. The measurements are assigned
numbers such that ratios between the numbers reflect ratios of the
attribute. You then use formulas of the form (

c

×

m

^

d

), where

c

 and

d

 are
constants, to do transforms and operations. For example, density =
(mass/volume), fuel efficiency expressed in miles per gallon (mpg),
decibel scale for sound, and the Richter scale for earthquakes are
exponential, so their functions involve logarithms and exponents.

4.2.7 Ratio Scales

Ratio scales are what people think of when they think about a
measurement. Ratio scales have an origin (usually zero units), an
ordering, and a set of operations that can be expressed in arithmetic.
They are called ratio scales because all measurements are expressed as
multiples or fractions of a certain unit or interval.

Length, mass, and volume are examples of this type of scale. The unit
is what is arbitrary: The weight of a bag of sand is still weight whether it is
measured in kilograms or in pounds. Another nice property is that the
units are identical: A kilogram is still a kilogram whether it is measuring
feathers or bricks.

4.4 Scale Conversion 77

4.3 Using Scales

Absolute and ratio scales are also called extensive scales because they
deal with quantities, as opposed to the remaining scales, which are
intensive because they measure qualities. Quantities can be added and
manipulated together, whereas qualities cannot. Table 4.1 describes the
different types of scales and their attributes.

The origin for the absolute scale is numeric zero, and the natural
functions are simple arithmetic. However, things are not always this
simple. Temperature has an origin point at absolute zero, and its natural
functions average heat over mass. This is why you cannot defrost a
refrigerator, which is at 0 degrees Celsius, by putting a chicken whose
body temperature is 35 degrees Celsius inside of it. The chicken does not
have enough mass relative to heat. However, a bar of white-hot steel will
do a nice job.

4.4 Scale Conversion

Scales can be put in a partial order based on the permissible
transformations:

Table 4.1

Scale properties

Type of Scale
Natural
Ordering

Natural
Origin Functions Example

Nominal No No No City names
(“Atlanta”)

Categorical No No No Species (dog, cat)

Absolute Yes Yes Yes Eggs (dozen)

Ordinal Yes No No Preferences (agree 1
to 5 scale)

Rank Yes Yes No Contests (win, place,
show)

Interval Yes No Yes Time (hours, min-
utes)

Ratio Yes Yes Yes Length (meters),
Mass (grams)

78 CHAPTER 4: SCALES AND MEASUREMENTS

An attribute might not fit exactly into any of these scales. For
example, you mix nominal and ordinal information in a single scale,
such as in questionnaires that have several nonresponse categories. It is
common to have scales that mix ordinal and an interval scale by
assuming the attribute is really a smooth monotone function. Subjective
rating scales (“strongly agree,” “agree,” . . . “strongly disagree”) have no
equally spaced intervals between the ratings, but there are statistical
techniques to ensure that the difference between two intervals is within
certain limits. A binary variable is at least an interval scale, and it might
be a ratio or absolute scale, if it means that the attribute exists or does
not exist.

The important principle of measurement theory is that you can
convert from one scale to another only if they are of the same type and
measure the same attribute. Absolute scales do not convert, which is why
they are called absolute scales. Five apples are five apples, no matter how
many times you count them or how you arrange them on the table.
Nominal scales are converted to other nominal scales by a mapping
between the scales.

That means you look things up in a table. For example, I can convert
my English city names to Polish city names with a dictionary. The
problem comes when there is not a one-to-one mapping between the
two nominal scales. For example, English uses the word “cousin” to
identify the offspring of your parents’ siblings, and tradition treats them
all pretty much alike.

Chinese language and culture have separate words for the same
relations based on the genders of your parents’ siblings and the age
relationships among them (e.g., the oldest son of your father’s oldest
brother is a particular type of cousin and you have different social
obligations to him). Something is lost in translation.

4.5 Derived Units 79

Ordinal scales are converted to ordinal scales by a monotone
function. That means you preserve the ordering when you convert.
Looking at the MSH for geologists, I can pick another set of minerals,
plastics, or metals to scratch, but rock samples that were definitely softer
than others are still softer. Again, there are problems when there is not a
one-to-one mapping between the two scales. My new scale may be able
to tell the difference between rocks, whereas the MSH could not.

Rank scales are converted to rank scales by a monotone function that
preserves the ordering, like ordinal scales. Again, there are problems
when there is not a one-to-one mapping between the two scales. For
example, different military branches have slightly different ranks that
don’t quite correspond to each other.

In both the nominal and the ordinal scales, the problem was that
things that looked equal on one scale were different on another. This has
to do with range and granularity, which was discussed in section 4.1.1 of
this chapter.

Interval scales are converted to interval scales by a linear function;
that is, a function of the form

 y

 =

a

×

 x

 +

b

. This preserves the ordering
but shifts the origin point when you convert. For example, I can convert
temperature from degrees Celsius to degrees Fahrenheit using the
formula F = (9.0

÷

 5.0

×

 C) + 32.
Ratio scales are converted to ratio scales by a constant multiplier,

because both scales have the same ordering and origin point. For
example, I can convert from pounds to kilograms using the formula p =
0.4536

×

 k. This is why people like to use ratio scales.

4.5 Derived Units

Many of the scales that we use are not primary units but rather derived
units. These measures are constructed from primary units, such as miles
per hour (time and distance) or square miles (distance and distance).
You can use only ratio and interval scales to construct derived units.

If you use an absolute scale with a ratio or interval scale, you are
dealing with statistics, not measurements. For example, using weight
(ratio scale) and the number of people in New York (absolute scale), we
can compute the average weight of a New Yorker, which is a statistic, not
a unit of measurement.

The SI measurements use a basic set of seven units (i.e., meter for
length, kilogram for mass, second for time, ampere for electrical current,
degree Kelvin for temperature, mole for molecules, and candela for light)
and construct derived units. ISO standard 2955 (“Information

80 CHAPTER 4: SCALES AND MEASUREMENTS

processing—Representation of SI and other units for use in systems with
limited character sets”) has a notation for expressing SI units in ASCII
character strings. (See ISO-2955, “Representation of SI and other units
for use in systems with limited character sets”) The notation uses
parentheses, spaces, multiplication (shown by a period), division
(shown by a solidus, or slash), and exponents (shown by numerals
immediately after the unit abbreviation). There are also names for most
of the standard derived units. For example, “100 kg.m

÷

 s

2

” converts to
10 Newtons (the unit of force), written as “10 N” instead.

4.6 Punctuation and Standard Units

A database stores measurements as numeric data represented in a binary
format, but when the data is input or output, a human being wants
readable characters and punctuation. Punctuation identifies the units
being used and can be used for prefix, postfix, or infix symbols. It can
also be implicit or explicit.

If I write $25.15, you know that the unit of measure is the dollar
because of the explicit prefix dollar sign. If I write 160 lbs., you know
that the unit of measure is pounds because of the explicit postfix
abbreviation for the unit. If I write 1989 MAR 12, you know that this is a
date because of the implicit infix separation among month, day, and
year, achieved by changing from numerals to letters, and the optional
spaces. The ISO and SQL defaults represent the same date, using explicit
infix punctuation, with 1989-03-12 instead. Likewise, a column header
on a report that gives the units used is explicit punctuation.

Databases do not generally store punctuation. The sole exception
might be the proprietary MONEY or CURRENCY data type found in
many SQL implementations as a vendor extension. Punctuation wastes
storage space, and the units can be represented in some internal format
that can be used in calculations. Punctuation is only for display.

It is possible to put the units in a column next to a numeric column
that holds their quantities, but this is awkward and wastes storage space.
If everything is expressed in the same unit, the units column is
redundant. If things are expressed in different units, you have to convert
them to a common unit to do any calculations. Why not store them in a
common unit in the first place? The DBA has to be sure that all data in a
column of a table is expressed in the same units before it is stored. There
are some horror stories about multinational companies sending the same
input programs used in the United States to their European offices,

4.7 General Guidelines for Using Scales in a Database 81

where SI and English measurements were mixed into the same database
without conversion.

Ideally, the DBA should be sure that data is kept in the same units in
all the tables in the database. If different units are needed, they can be
provided in a VIEW that hides the conversions (thus the office in the
United States sees English measurements and the European offices see SI
units and date formats; neither is aware of the conversions being done
for it).

4.7 General Guidelines for Using Scales in a Database

The following are general guidelines for using measurements and scales
in a database and not firm, hard rules. You will find exceptions to all of
them.

1.

In general, the more unrestricted the permissible transformations on
a scale are, the more restricted the statistics

. Almost all statistics
are applicable to measurements made on ratio scales, but only
a limited group of statistics may be applied to measurements
made on nominal scales.

2.

Use CHECK() clauses on table declarations to make sure that only
the allowed values appear in the database

. If you have the
CREATE DOMAIN feature of SQL-92, use it to build your
scales. Nominal scales would have a list of possible values;
other scales would have range checking. Likewise, use the
DEFAULT clauses to be sure that each scale starts with its
origin value, a NULL, or a default value that makes sense.

3.

Declare at least one more decimal place than you think you will need
for your smallest units

. In most SQL implementations, rounding
and truncation will improve with more decimal places.

The downside of SQL is that precision and the rules for
truncation and rounding are implementation dependent, so a
query with calculations might not give the same results on
another product. However, SQL is more merciful than older
file systems, because the DBA can ALTER a numeric column so
it will have more precision and a greater range without
destroying existing data or queries. Host programs may have to
be changed to display the extra characters in the results,
however.

82 CHAPTER 4: SCALES AND MEASUREMENTS

You also need to consider laws and accounting rules that
deal with currencies. The European Union has rules for
computing with euros, and the United States has similar rules
for dollars in the Generally Accepted Accounting Practices
(GAAP).

4.

Try to store primary units rather than derived units

. This is not
always possible, because you might not be able to measure
anything but the derived unit. Look at your new tire gauge; it is
set for Pascal (Newtons per square meter) and will not tell you
how many square meters you have on the surface of the tire or
the force exerted by the air, and you simply cannot figure these
things out from the Pascals given. A set of primary units can be
arranged in many different ways to construct any possible
derived unit desired. Never store both the derived and the
primary units in the same table. Not only is this redundant, but
it opens the door to possible errors when a primary-unit
column is changed and the derived units based on it are not
updated. Also, most computers can recalculate the derived
units much faster than they can read a value from a disk drive.

5.

Use the same punctuation whenever a unit is displayed

. For
example, do not mix ISO and ANSI date formats, or express
weight in pounds and kilograms in the same report. Ideally,
everything should be displayed in the same way in the entire
application system.

C H A P T E R

5

Data Encoding Schemes

Y

OU

DO

NOT

 put data directly into a database. You convert it into an
encoding scheme first, then put the encoding into the rows of the
tables. Words have to be written in an alphabet and belong to a
language; measurements are expressed as numbers. We are so used to
seeing words and numbers that we no longer think of them as
encoding schemes. We also often fail to distinguish among the
possible ways to identify (and therefore to encode) an entity or
property. Do we encode the person receiving medical services or the
policy that is paying for them? That might depend on whether the
database is for the doctor or for the insurance company. Do we encode
the first title of a song or the alternate title, or both? Or should we
include the music itself in a multimedia database? And should it be as
an image of the sheet music or as an audio recording? Nobody teaches
people how to design these encoding schemes, so they are all too often
done on the fly. Where standardized encoding schemes exist, they are
too often ignored in favor of some ad hoc scheme. Beginning
programmers have the attitude that encoding schemes do not really
matter because the computer will take care of it, so they don’t have to
spend time on the design of their encoding schemes. This attitude has
probably gotten worse with SQL than it was before. The new database
designer thinks that an ALTER statement can fix any bad things he or
she did at the start of the project.

84 CHAPTER 5: DATA ENCODING SCHEMES

Yes, the computer can take care of a lot of problems, but the data
entry and validation programs become complex and difficult to
maintain. Database queries that have to follow the same convoluted
encodings will cost both computer time and money, and a human being
still has to use the code at some point. Bad schemes result in errors in
data entry and misreading of outputs and can lead to incorrect data
models.

5.1 Bad Encoding Schemes

To use an actual example, the automobile tag system for a certain
southern state started as a punchcard system written in COBOL. Many
readers are likely too young to remember punchcard (keypunch)
machines. A punchcard is a piece of stiff paper on which a character is
represented as one or more rectangular holes made into one of 80
vertical columns on the card. Contiguous groups of columns make up
fixed-length fields of data. The keypunch machine has a typewriter-like
keyboard; it automatically feeds cards into the punch as fast as a human
being can type. The position, length, and alphabetic or numeric shift for
each field on the card can be set by a control card in the keypunch
machine to save the operator keystrokes. This is a fixed format and a fast
input method, and making changes to a program once it is in place is
difficult.

The auto tag system had a single card column for a single-position
numeric code to indicate the type of tag: private car, chauffeured car,
taxi, truck, public bus, and so forth. As time went on, more tag types
were added for veterans of assorted wars, for university alumni, and for
whatever other lobbyist group happened to have the political power to
pass a bill allowing it a special auto tag.

Soon there were more than 10 types, so a single-digit system could
not represent them. There was room on the punchcard to change the
length of the field to two digits, but COBOL uses fixed-length fields, so
changing the card layout would require changes in the programs and in
the keypunch procedures.

The first new tag code was handled by letting the data-entry clerk
press a punctuation-mark key instead of changing from numeric lock to
manual shift mode. Once that decision was made, it was followed for
each new code thereafter, until the scheme looked like everything on the
upper row of keys on a typewriter.

Unfortunately, different makes and models of keypunch machines
have different punctuation marks in the same keyboard position, so each

5.1 Bad Encoding Schemes 85

deck of cards had to have a special program to convert its punches to the
original model IBM 026 keypunch codes before the master file was
updated. This practice continued even after all of the original machines
had been retired to used-equipment heaven.

The edit programs could not check for a simple numeric range to
validate input but had to use a small lookup routine with more than 20
values in it. That does not sound like much until you realize that the
system had to handle more than 3 million records in the first quarter of
the year. The error rate was high, and each batch needed to know which
machine had punched the cards before it could use a lookup table.

If the encoding scheme had been designed with two digits (00 to 99)
at the beginning, all of the problems would have been avoided. If I were
to put this system into a database today, using video terminals for data
entry, the tag type could be INTEGER and it could hold as many tag
types as I would ever need. This is part of the legacy database problem.

The second example was reported in

Information Systems Week

 in
1987. The first sentence told the whole story: “The chaos and rampant
error rates in New York City’s new Welfare Management System appear
to be due to a tremendous increase in the number of codes it requires in
data entry and the subsequent difficulty for users in learning to use it.”
The rest of the article explained how the new system attempted to merge
several old existing systems. In the merger, the error rates increased from
2 percent to more than 20 percent because the encoding schemes used
could not be matched up and consolidated.

How do you know a bad encoding scheme when you see one? One
bad feature is the failure to allow for growth. Talk to anyone who had to
reconfigure a fixed-length record system to allow for the change from
the old ZIP codes to the current ZIP+4 codes in their address data. SQL
does not have this as a physical problem, but it can show up as a logical
problem.

Another bad property is ambiguous encodings in the scheme.
Perhaps the funniest example of this problem was the Italian telephone
system’s attempt at a “time of day” service. It used a special three-digit
number, like the 411 information number in the United States, but the
three digits they picked were also those of a telephone exchange in
Milan, so nobody could call into that exchange without getting the time
signal before they completed their call.

This happens more often than you would think, but the form that it
usually takes is that of a miscellaneous code that is too general. Very
different cases are then encoded as identical, and the user is given
incorrect or misleading information when a query is performed.

86 CHAPTER 5: DATA ENCODING SCHEMES

A bad encoding scheme lacks codes for missing, unknown, not
applicable, or miscellaneous values. The classic story is the man who
bought a prestige auto tag reading “NONE” and got thousands of traffic
tickets as a result. The police had no special provision for a missing tag
on the tickets, so when a car had no tag, they wrote “none” in the field
for the tag number. The database simply matched his name and address
to every unpaid missing-tag ticket on file at the time.

Before you say that the NULL in SQL is a quick solution to this
problem, think about how NULL is ignored in many SQL functions. The
SQL query “SELECT tag_nbr, SUM(fine) FROM tickets GROUP BY
tag_nbr;” will give the total fines on each car, but it also puts all of the
missing tags into one group (i.e., one car), although we want to see each
one as a separate case, because it is unlikely that there is only one
untagged car in all of California.

There are also differences among “missing,” “unknown,” “not
applicable,” “miscellaneous,” and erroneous values that are subtle but
important. For example, the International Classification of Disease uses
999.999 for miscellaneous illness. It means that we have diagnosed the
patient, know that he or she has an illness, and cannot classify it—a
scary condition for the patient—but this is not quite the same thing as a
missing disease code (just admitted, might not even be sick), an
inapplicable disease code (pregnancy complications in a male), an
unknown disease code (sick and awaiting lab results), or an error in the
diagnosis (the patient’s temperature is recorded as 100 degrees Celsius,
not Fahrenheit).

5.2 Encoding Scheme Types

The following is my classification system for encoding schemes and
suggestions for using each of them. You will find some of these same
ideas in library science and other fields, but I have never seen anyone
else attempt a classification system for data processing.

5.2.1 Enumeration Encoding

An enumeration encoding arranges the attribute values in some order
and assigns a number or a letter to each value. Numbers are usually a
better choice than letters, because they can be increased without limit as
more values are added. Enumeration schemes are a good choice for a
short list of values but a bad choice for a long list. It is too difficult to
remember a long list of codes, and soon any natural ordering principle is
violated as new values are tacked onto the end.

5.2 Encoding Scheme Types 87

A good heuristic is to order the values in some natural manner, if
one exists in the data, so that table lookup will be easier. Chronological
order (1 occurs before 2) or procedural order (1 must be done before 2)
is often a good choice. Another good heuristic is to order the values
from most common to least common. That way you will have shorter
codes for the most common cases. Other orderings could be based on
physical characteristics such as largest to smallest, rainbow-color order,
and so on.

After arguing for a natural order in the list, I must admit that the most
common scheme is alphabetical order, because it is simple to implement
on a computer and makes it easy for a person to look up values in a
table. ANSI standard X3.31, “Structure for the Identification of Counties
of the United States for Information Interchange,” encodes county names
within a state by first alphabetizing the names, and then numbering
them from one to whatever is needed.

5.2.2 Measurement Encoding

A measurement encoding is given in some unit of measure, such as
pounds, meters, volts, or liters. This can be done in one of two ways. The
column contains an implied unit of measure and the numbers represent
the quantity in that unit, but sometimes the column explicitly contains
the unit. The most common example of the second case would be money
fields, where a dollar sign is used in the column; you know that the unit
is dollars, not pounds or yen, by the sign.

Scales and measurement theory are a whole separate topic and are
discussed in detail in Chapter 4.

5.2.3 Abbreviation Encoding

Abbreviation codes shorten the attribute values to fit into less storage
space, but the reader easily understands them. The codes can be either of
fixed length or of variable length, but computer people tend to prefer
fixed length. The most common example is the two-letter postal state
abbreviations (e.g., CA for California, AL for Alabama), which replaced
the old variable-length abbreviations (Calif. for California, Ala. for
Alabama).

A good abbreviation scheme is handy, but as the set of values
becomes larger, the possibility for misunderstanding increases. The
three-letter codes for airport baggage are pretty obvious for major cities:
LAX for Los Angeles, SFO for San Francisco, BOS for Boston, ATL for

88 CHAPTER 5: DATA ENCODING SCHEMES

Atlanta, but nobody can figure out the abbreviations for the smaller
airports.

As another example, consider the ISO 3166 Country Codes, which
come in two-letter, three-letter, and nonabbreviation numeric forms.
The RIPE Network Coordination Centre maintains these codes.

5.2.4 Algorithmic Encoding

Algorithmic encoding takes the value to be encoded and puts it through
an algorithm to obtain the encodings. The algorithm should be
reversible, so that the original value can be recovered. Although it is not
required, the encoding is usually shorter (or at least of known maximum
size) and more uniform in some useful way compared with the original
value. Encryption is the most common example of an algorithmic
encoding scheme, but it is so important that it needs to be considered as
a topic by itself.

Computer people are used to using Julianized dates, which convert a
date into an integer. As an aside, please note that astronomers used the

Julian Date

, which is a large number that represents the number of days
since a particular heavenly event. The Julianized date is a number
between 1 and 365 or 366, which represents the ordinal position of the
day within the year. Algorithms take up computer time in both data
input and output, but the encoding is useful because it allows searching
or calculations to be done that would be difficult using the original data.
Julianized dates can be used for computations; Soundex names give a
phonetic matching that would not be possible with the original text.

Another example is hashing functions, which convert numeric values
into other numeric values for placing them in storage and retrieving
them. Rounding numeric values before they go into the database is also a
case of algorithmic encoding.

The difference between an abbreviation and an algorithm is not that
clear. An abbreviation can be considered a special case of an algorithm,
which tells you how to remove or replace letters. The tests to tell them
apart are as follows:

1. When a human being can read it without effort, it is an
abbreviation.

2. An algorithmic encoding is not easily human readable.

3. An algorithmic encoding might return the same code for more
than one value, but an abbreviation is always one-to-one.

5.2 Encoding Scheme Types 89

5.2.5 Hierarchical Encoding Schemes

A hierarchy partitions the set of values into disjoint categories, then
partitions those categories into subcategories, and so forth until some
final level is reached. Such schemes are shown either as nested sets or as
tree charts. Each category has some meaning in itself, and the
subcategories refine meaning further.

The most common example is the ZIP code, which partitions the
United States geographically. Each digit, as you read from left to right,
further isolates the location of the address: first by postal region, then by
state, then by city, and finally by the post office that has to make the
delivery. For example, given the ZIP code 30310, we know that the
30000 to 39999 range means the southeastern United States. Within the
southeastern codes, we know that the 30000 to 30399 range is Georgia
and that 30300 to 30399 is metropolitan Atlanta. Finally, the whole
code, 30310, identifies substation A in the West End section of the city.
The ZIP code can be parsed by reading it from left to right, reading first
one digit, then two, and then the last two digits.

Another example is the Dewey Decimal Classification (DDC) system,
which is used in public libraries in the United States. The 500-number
series covers “Natural Sciences”; within that, the 510s cover
“Mathematics”; and, finally, 512 deals with “Algebra” in particular. The
scheme could be carried further, with decimal fractions for kinds of
algebra.

Hierarchical encoding schemes are great for large data domains that
have a natural hierarchy. They organize the data for searching and
reporting along that natural hierarchy and make it easy, but there can be
problems in designing these schemes. First, the tree structure does not
have to be neatly balanced, so some categories may need more codes
than others and hence create more breakdowns. Eastern and ancient
religions are shortchanged in the Dewey Decimal Classification system,
reflecting a prejudice toward Christian and Jewish writings. Asian
religions were pushed into a very small set of codes. Today, the Library of
Congress has more books on Buddhist thought than on any other
religion on earth.

Second, you might not have made the right choices as to where to
place certain values in the tree. For example, in the Dewey Decimal
system, books on logic are encoded as 164, in the philosophy section,
and not under the 510s, mathematics. In the 19th century, there was no
mathematical logic. Today, nobody would think of looking for logic
under philosophy. Dewey was simply following the conventions of his

90 CHAPTER 5: DATA ENCODING SCHEMES

day, and, like today’s programmers, he found that the system
specifications changed while he was working.

5.2.6 Vector Encoding

A vector is made up of a fixed number of components. These
components can be ordered or unordered, but are always present. They
can be of fixed or variable length. The components can be dependent or
independent of each other, but the code applies to a single entity and
makes sense only as a whole unit. Punctuation, symbol-set changes, or
position within the code can determine the components of the vector.

The most common example is a date, whose components are month,
day, and year. The parts have some meaning by themselves, but the real
meaning is in the vector—the date—as a whole because it is a complete
entity. The different date formats used in computer systems give
examples of all the options. The three components can be written in
year-month-day order, month-day-year order, or just about any other
way you wish.

The limits on the values for the day depend on the year (is it a leap
year or not?) and the month (28, 29, 30, or 31 days?). The components
can be separated by punctuation (12/1/2005, using slashes and
American date format), symbol-set changes (2005 DEC 01, using digits-
letters-digits), or position (20051201, using positions 1 to 4, 5 to 6, and
7 to 8 for year, month, and day, respectively).

Another example is the ISO code for tire sizes, which is made up of a
wheel diameter (scaled in inches), a tire type (abbreviation code), and a
width (scaled in centimeters). Thus, 15R155 means a 15-inch radial tire
that is 155 millimeters wide, whereas 15SR155 is a steel-belted radial tire
with the same dimensions. Despite the mixed American and ISO units,
this is a general physical description of a tire in a single code.

Vector schemes are informative and allow you to pick the best
scheme for each component, but they have to be disassembled to get to
the components (many database products provide special functions to
do this for dates, street addresses, and people’s names). Sorting by
components is difficult unless you want them in the order given in the
encoding; try to sort the tire sizes by construction, width, and diameter
instead of by diameter, construction, and width.

Another disadvantage is that a bad choice in one component can
destroy the usefulness of the whole scheme. Another problem is
extending the code. For example, if the standard tire number had to be
expanded to include thickness in millimeters, where would that
measurement go? Another number would have to be separated by a

5.2 Encoding Scheme Types 91

punctuation mark. It could not be inserted into a position inside the
code without giving ambiguous codes. The code cannot be easily
converted to a fixed-position vector encoding without changing many of
the database routines.

5.2.7 Concatenation Encoding

A concatenation code is made up of a variable number of components
that are concatenated together. As in a vector encoding, the components
can be ordered or unordered, dependent on or independent of each
other, and determined by punctuation, symbol-set changes, or position.

A concatenation code is often a hierarchy that is refined by additions
to the right. These are also known as

facet codes

 in Europe. Or the code
can be a list of features, any of which can be present or missing. The
order of the components may or may not be important.

Concatenation codes were popular in machine shops at the turn of
the 20th century: A paper tag was attached to a piece of work, and
workers at different stations would sign off on their parts of the
manufacturing process. Concatenation codes are still used in parts of the
airplane industry, where longer codes represent subassemblies of the
assembly in the head (also called the root or parent) of the code.

Another type of concatenation code is a quorum code, which is not
ordered. These codes say that

n

 out of

k

 marks must be present for the
code to have meaning. For example, three out of five inspectors must
approve a part before it passes.

The most common use of concatenation codes is in keyword lists in
the header records of documents in textbases. The author or librarian
assigns each article in the system a list of keywords that describes the
material covered by the article. The keywords are picked from a limited,
specialized vocabulary that belongs to a particular discipline.

Concatenation codes fell out of general use because their variable
length made them more difficult to store in older computer systems,
which used fixed-length records (think of a punchcard). The codes had
to be ordered and stored as left-justified strings to sort correctly.

These codes could also be ambiguous if they were poorly designed.
For example, is the head of 1234 the 1 or the 12 substring? When
concatenation codes are used in databases, they usually become a set of
yes/no checkboxes, represented as adjacent columns in the file. This
makes them Boolean vector codes, instead of true concatenation codes.

92 CHAPTER 5: DATA ENCODING SCHEMES

5.3 General Guidelines for Designing Encoding Schemes

These are general guidelines for designing encoding schemes in a
database, not firm, hard rules. You will find exceptions to all of them.

5.3.1 Existing Encoding Standards

The use of existing standard encoding schemes is always recommended.
If everyone uses the same codes, data will be easy to transfer and collect
uniformly. Also, someone who sat down and did nothing else but work
on this scheme probably did a better job than you could while trying to
get a database up and running.

As a rule of thumb, if you don’t know the industry in which you are
working, ask a subject-area expert. Although that sounds obvious, I have
worked on a media library database project where the programmers
actively avoided talking to the professional librarians who were on the
other side of the project. As a result, recordings were keyed on GUIDs
and there were no Schwann catalog numbers in the system. If you cannot
find an expert, then Google for standards. First, check to see if ISO has a
standard, then check the U.S. government, and then check industry
groups and organizations.

5.3.2 Allow for Expansion

Allow for expansion of the codes. The ALTER statement can create more
storage when a single-character code becomes a two-character code, but
it will not change the spacing on the printed reports and screens. Start
with at least one more decimal place or character position than you think
you will need. Visual psychology makes “01” look like an encoding,
whereas “1” looks like a quantity.

5.3.3 Use Explicit Missing Values to Avoid NULLs

Rationale:

Avoid using NULLs as much as possible by putting special values in
the encoding scheme instead. SQL handles NULLs differently than
values, and NULLs don’t tell you what kind of missing value you are
dealing with.

All-zeros are often used for missing values and all-nines for
miscellaneous values. For example, the ISO gender codes are 0 =
Unknown, 1 = Male, 2 = Female, and 9 = Not Applicable. “Not applicable”
means a lawful person, such as a corporation, which has no gender.

5.3 General Guidelines for Designing Encoding Schemes 93

Versions of FORTRAN before the 1977 standard read blank
(unpunched) columns in punchcards as zeros, so if you did not know a
value, you skipped those columns and punched them later, when you
did know. Likewise, using encoding schemes with leading zeros was a
security trick to prevent blanks in a punchcard from being altered. The
FORTRAN 77 standard fixed its “blank versus zero” problem, but it lives
on in SQL in poorly designed systems that cannot tell a NULL from a
blank string, an empty string, or a zero.

The use of all-nines or all-Z’s for miscellaneous values will make those
values sort to the end of the screen or report. NULLs sort either always
to the front or always to the rear, but which way they sort is
implementation defined.

Exceptions:

NULLs cannot be avoided. For example, consider the column
“termination_date” in the case of a newly hired employee. The use of a
NULL makes computations easier and correct. The code simply leaves
the NULL date or uses COALESCE (some_date,
CURRENT_TIMESTAMP) as is appropriate.

5.3.4 Translate Codes for the End User

As much as possible, avoid displaying pure codes to users, but try to
provide a translation for them. Translation in the front is not required for
all codes, if they are common and well known to users. For example,
most people do not need to see the two-letter state abbreviation written
out in words. At the other extreme, however, nobody could read the
billing codes used by several long-distance telephone companies.

A part of translation is formatting the display so that it can be read by
a human being. Punctuation marks, such as dashes, commas, currency
signs, and so forth, are important. However, in a tiered architecture,
display is done in the front end, not the database. Trying to put leading
zeros or adding commas to numeric values is a common newbie error.
Suddenly, everything is a string and you lose all temporal and numeric
computation ability.

These translation tables are one kind of auxiliary table; we will discuss
other types later. They do not model an entity or relationship in the
schema but are used like a function call in a procedural language. The
general form for these tables is:

CREATE TABLE SomeCodes

(encode <datatype> NOT NULL PRIMARY KEY,

 definition <datatype> NOT NULL);

94 CHAPTER 5: DATA ENCODING SCHEMES

Sometimes you might see the definition as part of the primary key or
a CHECK() constraint on the “encode” column, but because these are
read-only tables, which are maintained outside of the application, we
generally do not worry about having to check their data integrity in the
application.

5.3.4.1 One True Lookup Table

Sometimes a practice is both so common and so stupid that it gets a
name, and, much like a disease, if it is really bad, it gets an abbreviation.
I first ran into the One True Lookup Table (OTLT) design flaw in a
thread on a CompuServe forum in 1998, but I have seen it rediscovered
in newsgroups every year since.

Instead of keeping the encodings and their definition in one table
each, we put all of the encodings in one huge table. The schema for this
table was like this:

CREATE TABLE OneTrueLookupTable

(code_type INTEGER NOT NULL,

 encoding VARCHAR(n) NOT NULL,

 definition VARCHAR(m) NOT NULL,

 PRIMARY KEY (code_type, encoding));

In practice,

m

 and

n

 are usually something like 255 or 50—default
values particular to their SQL product.

The rationale for having all encodings in one table is that it would let
the programmer write a single front-end program to maintain all of the
encodings. This method really stinks, and I strongly discourage it.
Without looking at the following paragraphs, sit down and make a list of
all the disadvantages of this method and see if you found anything that I
missed. Then read the following list:

1.

Normalization

. The real reason that this approach does not
work is that it is an attempt to violate first normal form. I can
see that these tables have a primary key and that all of the
columns in a SQL database have to be scalar and of one data
type, but I will still argue that it is not a first normal form table.
The fact that two domains use the same data type does not
make them the same attribute. The extra “code_type” column
changes the domain of the other columns and thus violates first
normal form because the column in not atomic. A table should

5.3 General Guidelines for Designing Encoding Schemes 95

model one set of entities or one relationship, not hundreds of
them. As Aristotle said, “To be is to be something in particular;
to be nothing in particular is to be nothing.”

2.

Total storage size

. The total storage required for the OTLT is
greater than the storage required for the one encoding, one
table approach because of the redundant encoding type
column. Imagine having the entire International Classification
of Diseases (ICD) and the Dewey Decimal system in one table.
Only the needed small single encoding tables have to be put
into main storage with single auxiliary tables, while the entire
OTLT has to be pulled in and paged in and out of main storage
to jump from one encoding to another.

3.

Data types

. All encodings are forced into one data type, which
has to be a string of the largest length that any encoding—
present and future—used in the system, but VARCHAR(n) is
not always the best way to represent data. The first thing that
happens is that someone inserts a huge string that looks right
on the screen but has trailing blanks or an odd character to the
far right side of the column. The table quickly collects garbage.

CHAR(n) data often has advantages for access and storage
in many SQL products. Numeric encodings can take advantage
of arithmetic operators for ranges, check digits, and so forth
with CHECK() clauses. Dates can be used as codes that are
translated into holidays and other events. Data types are not a
one-size-fits-all affair. If one encoding allows NULLs, then all
of them must in the OTLT.

4.

Validation

. The only way to write a CHECK() clause on the
OTLT is with a huge CASE expression of the form:

CREATE TABLE OneTrueLookupTable

(code_type CHAR(n) NOT NULL

 CHECK (code_type IN (<type 1>, ..., <type n>)),

 encoding VARCHAR(n) NOT NULL

 CHECK (CASE WHEN code_type = <type 1>

 AND <validation 1>

 THEN 1

 ...

 —assume that your SQL product can support a huge
CASE expression

 WHEN code_type = <type n>

96 CHAPTER 5: DATA ENCODING SCHEMES

 AND <validation n>

 THEN 1

 ELSE 0 END = 1),

 definition VARCHAR(m) NOT NULL,

 PRIMARY KEY (code_type, encoding));

This means that validation is going to take a long time,
because every change will have to be considered by all the
WHEN clauses in this oversized CASE expression until the
SQL engine finds one that tests TRUE. You also need to add a
CHECK() clause to the “code_type” column to be sure that the
user does not create an invalid encoding name.

5.

Flexibility

. The OTLT is created with one column for the
encoding, so it cannot be used for (n) valued encodings where
(

n

 > 1). For example, if I want to translate (longitude, latitude)
pairs into a location name, I would have to carry an extra
column.

6.

Maintenance

. Different encodings can use the same value, so
you constantly have to watch which encoding you are working
with. For example, both the ICD and Dewey Decimal system
have three digits, a decimal point, and three digits.

7.

Security

. To avoid exposing rows in one encoding scheme to
unauthorized users, the OTLT has to have VIEWs defined on it
that restrict users to the “code_type”s they are allowed to
update. At this point, some of the rationale for the single table
is gone, because the front end must now handle VIEWs in
almost the same way it would handle multiple tables. These
VIEWs also have to have the WITH CHECK OPTION clause,
so that users do not make a valid change that is outside the
scope of their permissions.

8.

Display

. You have to CAST() every encoding for the front end.
This can be a lot of overhead and a source of errors when the
same monster string is CAST() to different data types in
different programs.

5.3.5 Keep the Codes in the Database

A part of the database should have all of the codes stored in tables. These
tables can be used to validate input, to translate codes in displays, and as
part of the system documentation.

5.4 Multiple Character Sets 97

I was amazed to go to a major hospital in Los Angeles in mid-1993
and see the clerk still looking up codes in a dog-eared looseleaf
notebook instead of bringing them up on her terminal screen. The
hospital was still using an old IBM mainframe system, which had dumb
3270 terminals, rather than a client/server system with workstations.
There was not even a help screen available to the clerk.

The translation tables can be downloaded to the workstations in a
client/server system to reduce network traffic. They can also be used to
build picklists on interactive screens and thereby reduce typographical
errors. Changes to the codes are thereby propagated in the system
without anyone having to rewrite application code. If the codes change
over time, the table for a code should have to include a pair of “date
effective” fields. This will allow a data warehouse to correctly read and
translate old data.

5.4 Multiple Character Sets

Some DBMS products can support ASCII, EBCDIC, and Unicode. You
need to be aware of this, so you can set proper collations and normalize
your text.

The predicate “<string> IS [NOT] NORMALIZED” in SQL-99
determines if a Unicode string is one of four normal forms (i.e., D, C,
KD, and KC). The use of the words

normal form

 here is not the same as in
a relational context. In the Unicode model, a single character can be
built from several other characters. Accent marks can be put on basic
Latin letters. Certain combinations of letters can be displayed as ligatures
(ae becomes æ). Some languages, such as Hangul (Korean) and
Vietnamese, build glyphs from concatenating symbols in two
dimensions. Some languages have special forms of one letter that are
determined by context, such as the terminal sigma in Greek or accented
u in Czech. In short, writing is more complex than putting one letter
after another.

The Unicode standard defines the order of such constructions in their
normal forms. You can still produce the same results with different
orderings and sometimes with different combinations of symbols, but it
is handy when you are searching such text to know that it is normalized
rather than trying to parse each glyph on the fly. You can find details
about normalization and links to free software at www.unicode.org.

C H A P T E R

6

Coding Choices

“Caesar: Pardon him, Theodotus. He is a barbarian and thinks the customs
of his tribe and island are the laws of nature.”

—

Caesar and Cleopatra

, by George Bernard Shaw, 1898

T

HIS

CHAPTER

DEALS

WITH

 writing good DML statements in Standard SQL.
That means they are portable and can be optimized well by most SQL
dialects. I define

portable

 to mean one of several things. The code is
standard and can be run as-is on other SQL dialects; standard implies
portable. Or the code can be converted to another SQL dialect in a
simple mechanical fashion, or that the feature used is so universal that
all or most products have it in some form; portable does not imply
standard. You can get some help with this concept from the X/Open
SQL Portability Guides.

A major problem in becoming a SQL programmer is that people do
not unlearn procedural or OO programming they had to learn for
their first languages. They do not learn how to think in terms of sets
and predicates, and so they mimic the solutions they know in their
first programming languages. Jerry Weinberg (1978) observed this fact
more than 25 years ago in his classic book,

Psychology of Computer
Programming

. He was teaching PL/I. For those of you younger readers,
PL/I was a language from IBM that was a hybrid of FORTRAN,
COBOL, and AlGOL that had a popular craze.

100 CHAPTER 6: CODING CHOICES

Weinberg found that he could tell the first programming languages of
the students by how they wrote PL/I. My personal experience (1989) was
that I could guess the nationality of the students in my C and Pascal
programming classes because of their native spoken language.

Another problem in becoming a SQL programmer is that people tend
to become SQL dialect programmers and think that their particular
product’s SQL is some kind of standard. In 2004, I had a job interview
for a position where I was being asked to evaluate different platforms for
a major size increase in the company’s databases. The interviewer kept
asking me “general SQL” questions based on the storage architecture of
the only product he knew.

His product is not intended for Very Large Database (VLDB)
applications, and he had no knowledge of Nucleus, Teradata, Model
204, or other products that compete in the VLDB arena. He had spent
his career tuning one version of one product and could not make the
jump to anything different, even conceptually. His career is about to
become endangered.

There is a place for the specialist dialect programmer, but dialect
programming should be a last resort in special circumstances and never
the first attempt. Think of it as cancer surgery: You do massive surgery
when there is a bad tumor that is not treatable by other means; you do
not start with it when the patient came in with acne.

6.1 Pick Standard Constructions over
Proprietary Constructions

There is a fact of life in the IT industry called the Code Museum Effect,
which works like this: First, each vendor adds a feature to its product.
The feature is deemed useful, so it gets into the next version of the
standard with slightly different syntax or semantics, but the vendor is
stuck with its proprietary syntax. Its users have written code based on it,
and they do not want to redo it. The solutions are the following:

1.

Never implement the standard and just retain the old syntax

. The
problem is that you cannot pass a conformance test, which can
be required for government and industry contracts. SQL pro-
grammers who know the standard from other products cannot
read, write, or maintain your code easily. In short, you have the
database equivalent of last year’s cell phone.

2.

Implement the standard, but retain the old syntax, too

. This is the
usual solution for a few releases. It gives the users a chance to

6.1 Pick Standard Constructions over Proprietary Constructions 101

move to the standard syntax but does not break the existing
applications. Everyone is happy for awhile.

3.

Implement the standard and depreciate the old syntax

. The vendor
is ready for a major release, which lets it redo major parts of the
database engine. Changing to the standard syntax and not
supporting the old syntax at this point is a good way to force
users to upgrade their software and help pay for that major
release.

A professional programmer would be converting his or her old code
at step two to avoid being trapped in the Code Museum when step three
rolls around. Let’s be honest, massive code conversions do not happen
until after step three occurs in most shops, and they are a mess, but you
can start to avoid the problems by always writing standard code in a step
two situation.

6.1.1 Use Standard OUTER JOIN Syntax

Rationale:

Here is how the standard OUTER JOINs work in SQL-92. Assume you
are given:

Table1 Table2

 a b a c

 ====== ======

 1 w 1 r

 2 x 2 s

 3 y 3 t

 4 z

and the OUTER JOIN expression:

 Table1

 LEFT OUTER JOIN

 Table2

 ON Table1.a = Table2.a <== join condition

 AND Table2.c = 't'; <== single table condition

We call Table1 the “preserved table” and Table2 the “unpreserved
table” in the query. What I am going to give you is a little different but
equivalent to the ANSI/ISO standards.

102 CHAPTER 6: CODING CHOICES

1. We build the CROSS JOIN of the two tables. Scan each row in
the result set.

2. If the predicate tests TRUE for that row, then you keep it. You
also remove all rows derived from it from the CROSS JOIN.

3. If the predicate tests FALSE or UNKNOWN for that row, then
keep the columns from the preserved table, convert all the
columns from the unpreserved table to NULLs, and remove the
duplicates.

So let us execute this by hand:

 Let @ = passed the first predicate

 Let * = passed the second predicate

 Table1 CROSS JOIN Table2

 a b a c

 =========================

 1 w 1 r @

 1 w 2 s

 1 w 3 t *

 2 x 1 r

 2 x 2 s @

 2 x 3 t *

 3 y 1 r

 3 y 2 s

 3 y 3 t @* <== the TRUE set

 4 z 1 r

 4 z 2 s

 4 z 3 t *

 Table1 LEFT OUTER JOIN Table2

 a b a c

 =========================

 3 y 3 t <= only TRUE row

 1 w NULL NULL Sets of duplicates

 1 w NULL NULL

 1 w NULL NULL

6.1 Pick Standard Constructions over Proprietary Constructions 103

 2 x NULL NULL

 2 x NULL NULL

 2 x NULL NULL

 3 y NULL NULL <== derived from the TRUE set - Remove

 3 y NULL NULL

 4 z NULL NULL

 4 z NULL NULL

 4 z NULL NULL=

The final results:

 Table1 LEFT OUTER JOIN Table2

 a b a c

 =========================

 1 w NULL NULL

 2 x NULL NULL

 3 y 3 t

 4 z NULL NULL

The basic rule is that every row in the preserved table is represented
in the results in at least one result row.

6.1.1.1 Extended Equality and Proprietary Syntax

Before the standard was set, vendors all had a slightly different syntax
with slightly different semantics. Most of them involved an extended
equality operator based on the original Sybase implementation. There
are limitations and serious problems with the extended equality,
however. Consider the two Chris Date tables:

 Suppliers SupParts

 supno supno partno qty

 ========= ==============

 S1 S1 P1 100

 S2 S1 P2 250

 S3 S2 P1 100

 S2 P2 250

104 CHAPTER 6: CODING CHOICES

And let’s do a Sybase-style extended equality OUTER JOIN like this:

 SELECT *

 FROM Supplier, SupParts

 WHERE Supplier.supno *= SupParts.supno

 AND qty < 200;

If I do the OUTER join first, I get:

 Suppliers LOJ SupParts

 supno supno partno qty

 =======================

 S1 S1 P1 100

 S1 S1 P2 250

 S2 S2 P1 100

 S2 S2 P2 250

 S3 NULL NULL NULL

Then I apply the (qty < 200) predicate and get:

 Suppliers LOJ SupParts

 supno supno partno qty

 ===================

 S1 S1 P1 100

 S2 S2 P1 100

Doing it in the opposite order results in the following:

 Suppliers LOJ SupParts

 supno supno partno qty

 ===================

 S1 S1 P1 100

 S2 S2 P1 100

 S3 NULL NULL NULL

Sybase does it one way, Oracle does it another, and Centura (née
Gupta) lets you pick which one to use—the worst of both nonstandard
worlds! In SQL-92, you have a choice and can force the order of
execution. Either do the predicates after the join:

6.1 Pick Standard Constructions over Proprietary Constructions 105

 SELECT *

 FROM Supplier

 LEFT OUTER JOIN

 SupParts

 ON Supplier.supno = SupParts.supno

 WHERE qty < 200;

or do it in the joining:

 SELECT *

 FROM Supplier

 LEFT OUTER JOIN

 SupParts

 ON Supplier.supno = SupParts.supno

 AND qty < 200;

Another problem is that you cannot show the same table as preserved
and unpreserved in the extended equality version, but it is easy in SQL-
92. For example, to find the students who have taken Math 101 and
might have taken Math 102:

 SELECT C1.student, C1.math, C2.math

 FROM (SELECT * FROM Courses WHERE math = 101) AS C1

 LEFT OUTER JOIN

 (SELECT * FROM Courses WHERE math = 102) AS C2

 ON C1.student = C2.student;

Exceptions:

None. Almost every vendor, major and minor, has the ANSI infixed
OUTER JOIN operator today. You will see various proprietary notations
in legacy code, and you can convert it by following the discussion given
previously.

6.1.2 Infixed INNER JOIN and CROSS JOIN Syntax Is
Optional, but Nice

SQL-92 introduced the INNER JOIN and CROSS JOIN operators to
match the OUTER JOIN operators and complete the notation; other
infixed JOIN operators are not widely implemented but exist for
completeness. The functionality of the INNER JOIN and CROSS JOIN

106 CHAPTER 6: CODING CHOICES

existed in the FROM clause before and did not give the programmer
anything new like the OUTER JOINs.

Rationale:

The CROSS JOIN is a handy piece of documentation that is much harder
to miss seeing than a simple comma. Likewise, writing out INNER JOIN
instead of the shorthand INNER helps document the code.

However, many INNER JOIN operators can be visually confusing,
and you might consider using the older syntax. The older syntax lets you
put all of the predicates in one place and group them in some manner
for readability. A rule of thumb is the “rule of five” in human
psychology. This says that we have problems handling more than five
things at once, get serious problems with seven, and break down at nine
(Miller 1956).

So when you have fewer than five tables, the infixed operators are fine
but questionable for more than five INNER JOIN-ed tables. Trying to
associate ON clauses to INNER JOIN operators is visually difficult. In
particular, a Star Schema has an easily recognized pattern of joins from
the fact table to each dimension table, like this in pseudocode:

 SELECT ..

 FROM Facts, Dim1, Dim2, .., DimN

WHERE Facts.a1 = Dim1.a

 AND Facts.a2 = Dim2.a

 ..

 AND Facts.an = DimN.a

The reader can look down the right-hand side of the WHERE clause
and see the dimensions in a vertical list.

One style that is popular is to put the join conditions in the FROM
clause with INNER JOIN syntax, then do the search arguments in the
WHERE clause. Some newbies believe that this is required, but it is not.
However, if the search arguments change, having them in one place is
handy.

A quick heuristic when using old-style joins is that the number of
tables in the FROM clause should be one more than the number of join
conditions in the WHERE clause. This shows that you do not have cycles
in the joins. If the difference between the number of tables and the
number of join conditions is more than one, then you might have an
unwanted CROSS JOIN caused by a missing join condition.
Old style:

6.1 Pick Standard Constructions over Proprietary Constructions 107

SELECT O1.order_nbr, ..

 FROM Orders AS O1,

 OrderDetails AS D1

 WHERE O1.order_nbr = D1.order_nbr

 AND D1.dept = 'mens wear';

New style:

SELECT O1.order_nbr, ..

 FROM Orders AS O1

 INNER JOIN

 OrderDetails AS D1

 ON O1.order_nbr = D1.order_nbr

 AND D1.dept = 'mens wear';

Mixed style:

SELECT O1.order_nbr, ..

 FROM Orders AS O1

 INNER JOIN

 OrderDetails AS D1

 ON O1.order_nbr = D1.order_nbr

 WHERE D1.dept = 'mens wear';

Exceptions:

The infixed join operators must be used if there is an OUTER JOIN in
the FROM clause. The reason is that the order of execution matters with
OUTER JOINs, and you can control it better with parentheses and
predicates if they are all together.

As a rule of thumb, when you have a FROM clause with five or more
tables in it, the traditional syntax is probably easier to read than trying to
visually match the ON clauses to the proper tables and correlation
names. This rule of five is mentioned in other places as a limit on human
data processing ability.

6.1.3 Use ISO Temporal Syntax

Rationale:

The only display format allowed for temporal data in Standard SQL is
based on ISO-8601, and it is the “yyyy-mm-dd hh:mm:ss.sssss” style.
The Federal Information Processing Standards (FIPS) require at least five
decimal places of precision in the seconds. Anything else is ambiguous

108 CHAPTER 6: CODING CHOICES

and not acceptable if you want to work with other software that follows
ISO standards.

Standard SQL defines a minimal set of simple temporal math
operators. All of them are available in all SQL products, but the syntax
varies. For example, in the T-SQL dialect, the function call “DATEADD
(DD, 13, birthdate)” adds “13” days to the date in birthdate. The
Standard SQL syntax for the same calculation is “birthdate + INTERVAL
‘13’ DAY” instead.

You can set the display to ISO-8601 in every SQL product, and you
can do 99.99 percent of your temporal work without any proprietary
temporal functions. The problem is that porting code can be a bother.
You need to make a set of notes about any differences in your dialect and
the standard.

Exceptions:

None. Display formatting is always done in the client layer of a tiered
architecture. This is a basic programming principle and has nothing to
do with SQL per se. Failure to follow this principle is usually the result
of a newbie who came to SQL from a traditional monolithic language
with a strong coupling between the application, the display, and the file
system.

6.1.4 Use Standard and Portable Functions

Rationale:

Standard SQL is not a computational language, so it does not have the
function library of FORTRAN or a statistical package. SQL is not a text
manipulation language, so it does not have the function library of ICON
or Snobol. All you have is simple four-function math and basic string
operators in SQL-92. Vendors have always provided more than just the
basic operators, so you can write portable code that assumes other math
and string functions. The most common extra math functions are
modulus, rounding and truncation, powers, and logarithms. The most
extra common string functions are replacement, reversal, and repetition.

Exceptions:

If your dialect has a function built into it, which would require a huge
amount of code to implement or a really long running time, then use the
proprietary function and comment it for porting.

6.2 Pick Compact Constructions over Longer Equivalents 109

6.2 Pick Compact Constructions over Longer Equivalents

“Entia non sunt multiplicanda praeter necessitatem.” (No more things should
be presumed to exist than are absolutely necessary.)

—William Occam (c. 1280–1349).

“Everything should be made as simple as possible, but not simpler.”

—Attributed to Albert Einstein

Writing code in as short, clear, and compact a form as possible is just
good software engineering for any programming language. Modules that
clearly do one function are easier to modify and to understand. Systems
with fewer modules are easier to maintain.

SQL can replace hundreds of lines of procedural code with a few
statements. You ought to be predisposed to think of short, clean
solutions instead of kludges. However, old habits are hard to kill. Many
newbies still think in terms of logical tests based on Boolean logic and
simple AND-OR-NOT expressions that they know from their first
programming languages.

6.2.1 Avoid Extra Parentheses

Rationale:

Newbies see generated SQL code that has to have extra levels of
parentheses to execute safely and think that this is the way to write code.
Consider this simple query:

SELECT a, b, c

 FROM Foobar

 WHERE (a = b)

 AND (c < 42);

This is not so bad to read, but by the time you have more than five
predicates and useless nesting of parentheses, the code is difficult to
read, and a missing parentheses is a real pain to locate. Let LISP
programmers use them; they really need parentheses.

Exceptions:

Parentheses in moderation can make nested predicates easier to read:

110 CHAPTER 6: CODING CHOICES

SELECT application_nbr

 FROM LoanApplications

 WHERE years_employed > 5 OR net_worth > loan_amt

 AND monthly_expenses < 0.25 * loan_amt

 OR collateral > 2.00 * loan_amt AND age > 25

 OR collateral > loan_amt AND age > 30

 OR years_employed > 2 AND net_worth > 2.00 * loan_amt

 AND Age > 21 AND monthly_expenses < 0.50 * loan_amt;

versus:

SELECT application_nbr

 FROM LoanApplications

 WHERE years_employed > 5

 OR (net_worth > loan_amt

 AND monthly_expenses < 0.25 * loan_amt)

 OR (collateral > 2.00 * loan_amt AND age > 25)

 OR (collateral > loan_amt AND age > 30)

 OR (years_employed > 2

 AND net_worth > 2.00 * loan_amt

 AND age > 21

 AND monthly_expenses < 0.50 * loan_amt);

In the following section, we will also see how to use a CASE
expression for situations like this one.

6.2.2 Use CASE Family Expressions

The CASE expression is an expression and not a control statement; that
is, it returns a value of one data type. Because SQL is declarative, there is
no flow of control for it to modify, like the CASE statements in other
languages. The number of newbies who do not understand the difference
between an expression and a statement is frightening.

The idea and the syntax came from the ADA programming language.
Here is the formal BNF syntax for a <case specification>:

 <case specification> ::= <simple case> | <searched case>

 <simple case> ::=

 CASE <case operand>

 <simple when clause>...

 [<else clause>]

 END

6.2 Pick Compact Constructions over Longer Equivalents 111

 <searched case> ::=

 CASE

 <searched when clause>...

 [<else clause>]

 END

 <simple when clause> ::= WHEN <when operand> THEN <result>

 <searched when clause> ::= WHEN <search condition> THEN
<result>

 <else clause> ::= ELSE <result>

 <case operand> ::= <value expression>

 <when operand> ::= <value expression>

 <result> ::= <result expression> | NULL

 <result expression> ::= <value expression>

6.2.2.1 Searched CASE Expression

The searched CASE expression is probably the most-used version of the
expression. The WHEN ... THEN ... clauses are executed in left-to-right
order. The first WHEN clause that tests TRUE returns the value given in
its THEN clause, and you can nest CASE expressions inside of each
other. If no explicit ELSE clause is given for the CASE expression, then
the database will insert an implicit “ELSE NULL” clause. If you want to
return a NULL in a THEN clause, you must use a CAST (NULL AS
<datatype>) expression. I recommend always giving the ELSE clause, so
that you can change it later when you find something explicit to return.

6.2.2.2 Simple CASE Expression

The <simple case expression> is defined as a searched CASE expression
in which all of the WHEN clauses are made into equality comparisons
against the <case operand>. For example:

 CASE iso_sex_code

 WHEN 0 THEN 'Unknown'

 WHEN 1 THEN 'Male'

 WHEN 2 THEN 'Female'

112 CHAPTER 6: CODING CHOICES

 WHEN 9 THEN 'N/A'

 ELSE NULL END

could also be written as:

 CASE

 WHEN iso_sex_code = 0 THEN 'Unknown'

 WHEN iso_sex_code = 1 THEN 'Male'

 WHEN iso_sex_code = 2 THEN 'Female'

 WHEN iso_sex_code = 9 THEN 'N/A'

 ELSE NULL END

There is a gimmick in this definition, however. The expression:

 CASE foo

 WHEN 1 THEN 'bar'

 WHEN NULL THEN 'no bar'

 END

becomes:

 CASE WHEN foo = 1 THEN 'bar'

 WHEN foo = NULL THEN 'no_bar' —error!

 ELSE NULL END

The second WHEN clause is always UNKNOWN. Use the simple CASE
expression when it is appropriate.

6.2.2.3 Other CASE Expressions

The SQL-92 standard defines other functions in terms of the CASE
expression, which makes the language a bit more compact and easier to
implement. For example, the COALESCE () function can be defined for
one or two expressions by:

1. COALESCE (<value exp #1>) is equivalent to (<value exp #1>)

2. COALESCE (<value exp #1>, <value exp #2>) is equivalent to:

 CASE WHEN <value exp #1> IS NOT NULL

 THEN <value exp #1>

 ELSE <value exp #2> END

6.2 Pick Compact Constructions over Longer Equivalents 113

Then we can recursively define it for (

n

) expressions, where
(

n

 >= 3), in the list by:

COALESCE (<value exp #1>, <value exp #2>, ...,

n

) as
equivalent to:

 CASE WHEN <value exp #1> IS NOT NULL

 THEN <value exp #1>

 ELSE COALESCE (<value exp #2>, ..., n)

 END

Likewise, NULLIF (<value exp #1>, <value exp #2>) is
equivalent to:

 CASE WHEN <value exp #1> = <value exp #2>

 THEN NULL

 ELSE <value exp #1> END

Use the most compact form of these CASE expressions, and do not
expand them out to their definitions.

6.2.3 Avoid Redundant Expressions

Rationale:

Most modern SQL engines are pretty smart. This was not always the case,
so older SQL programmers will sometimes add redundant predicates to a
where clause. For example, if none of the columns in the table Foobar is
NULL-able, then given:

SELECT a, b, c

 FROM Foobar

WHERE a = b

 AND b = c

 AND c = a;

One of the three search conditions is redundant, because it can be
deduced from the other two. Redundant predicates only confuse the
human readers and do not give information to a good optimizer.

114 CHAPTER 6: CODING CHOICES

Exceptions:

If your SQL has a bad optimizer and needs the extra help, then add
redundant predicates.

6.2.4 Seek a Compact Form

Rationale:

Many of the earlier SQL engines could not use an index on a column if it
were in an expression, and they did not do any algebraic optimizations.
Today, we do this bit of cleanup work because a simpler form of an
expression is easier to maintain and to read:

SELECT a, b, c

 FROM Foobar

WHERE a + 2 = b - 4;

And a little algebra becomes:

SELECT a, b, c

 FROM Foobar

 WHERE a = b + 2;

Exceptions:
If your SQL has a really good optimizer, and the complicated form is
easier for a human being to read for some reason, then use it. Sometimes
there is no simple form.

6.2.4.1 Use BETWEEN, Not AND-ed Predicates

Rationale:
Consider this simple query:

SELECT a, b, c

 FROM Foobar

WHERE a <= b

 AND b <= c;

which can be written as:

SELECT a, b, c

 FROM Foobar

 WHERE b BETWEEN a AND c;

6.2 Pick Compact Constructions over Longer Equivalents 115

The BETWEEN is more compact and gives the reader information
about the relationship among three columns that might not be so
obvious amid a longer list of search conditions.

Exceptions:
This rule makes sense from a readability standpoint, but it does not
always stand up in terms of performance. Consider DB2 for z/OS in
which “<column name> BETWEEN <expression> AND <expression> is
both indexable and a stage one predicate.” Without explaining what a
stage one predicate is, it is preferred for performance.

However, “<value> BETWEEN <column name 1>AND <column name
2>” is both stage two and nonindexable, but formulating the same using
two <= predicates could be both stage one and indexable and therefore
preferable for performance. Likewise, the same execution plan applies to
“<column name 1> BETWEEN <column name 2> AND <column name
3>” predicates. This will differ from DBMS to DBMS and platform to
platform. As optimizers get better, this will be less and less true.

6.2.4.2 Use IN(), Not OR-ed predicates

Rationale:
The IN() predicate was first introduced in the Pascal programming
language. In SQL it has two forms; the list and the subquery. The list
form has a comma-separated list of values or expressions on the right-
hand side. The predicate returns a TRUE result if there is a match in that
list with the left-hand side of the predicate. It is shorthand for a list or
OR-ed predicates. For example consider:

SELECT a, b, c

 FROM Foobar

WHERE a = b

 OR a = c;

which can be written as:

SELECT a, b, c

 FROM Foobar

WHERE a IN (b, c);

The IN() is more compact and gives the reader information about the
relationship among three columns that might not be so obvious amid a

116 CHAPTER 6: CODING CHOICES

longer list of search conditions. The list can also consist of scalar
expressions, but that is not common.

Exceptions:
Watch out for NULLs! The IN () predicate is defined as a chain of OR-ed
predicates, thus:

a IN (x, y, z)

means ((a = x) OR (a = y) OR (a = z))

Therefore:
a IN (x, y, NULL)

means ((a = x) OR (a = y) OR (a = NULL))

 ((a = x) OR (a = y) OR UNKNOWN)

We are now in SQL’s three-valued logic. Remember that a NULL is
not the same thing as an UNKNOWN; SQL-92 has no Boolean data
type; and you cannot use AND, OR, and NOT on a NULL.

The NOT IN () predicate is defined as the negation of the IN():

a NOT IN (x, y, z)

means:

NOT (a IN (x, y, z))

 NOT ((a = x) OR (a = y) OR (a = z))

 (NOT(a = x) AND NOT(a = y) AND NOT(a = z)) --DeMorgan's law

 ((a <> x) AND (a <> y) AND (a <> z)) --definition

Now put in a NULL for one of the list elements:

((a <> x) AND (a <> y) AND UNKNOWN)

(UNKNOWN)

If you wish to have a match on a NULL in a list, then you can
COALESCE() the NULLs to the left-hand expression, thus:

 WHERE a IN (x, y, COALESCE (z, a))

6.2 Pick Compact Constructions over Longer Equivalents 117

which is a little cleaner than:

WHERE (a IN (x, y) OR z IS NULL)

6.2.4.3 Use CASE Expressions, Not Complex Nested Predicates

An advanced trick in the WHERE clause is to use a CASE expression for
a complex predicate with material implications. If you forgot your
freshman logic, a material implication logical operator is written as an
arrow with two tails, and it means “p implies q” or “if p is true then q is
true” in English.

WHERE CASE

 WHEN <search condition #1>

 THEN 1

 WHEN <search condition #2>

 THEN 1

 ...

 ELSE 0 END = 1

The use of a function that returns one or zero when given a predicate
as its parameter is called a characteristic function in logic and set theory.

Review the rules for the CASE expression in section 6.2.2 first, so you
understand it. The order of execution of the WHEN clauses can be used
to optimize performance and avoid redundant tests. You can also nest
CASE expressions inside the WHEN and THEN clauses of a containing
CASE expression and display the logic as an indented tree structure.

WHERE CASE

 WHEN <search condition #1>

 THEN CASE

 WHEN <search condition #1.1>

 THEN 1

 WHEN <search condition #1.2>

 THEN 1 ELSE 0 END

 WHEN <search condition #2>

 THEN 1

 ...

 ELSE 0 END = 1

The goal of this technique is to replace pages of long lists of simple
theta expressions inside horrible levels of parentheses and to provide

118 CHAPTER 6: CODING CHOICES

some short-circuit evaluation as a bonus. When the nesting is too messy
to understand, stop and reconsider your logic. Decision table tools, such
as Logic Gem, are an excellent way to do this.

6.3 Use Comments
Rationale:
The best documentation for maintaining a program has been comments
in the code. Perhaps it is easier for procedural language programmers to
add comments because they are explaining in a narrative fashion what
their program is doing. Unfortunately, procedural language comments
are often redundant if you can read the code. How much help did you
get from:

UPDATE Teams

 SET score = score + 1;—increment score

which gives you no information about what the variable score means and
why it is incremented.

In Standard SQL, a comment begins with two dashes (--) and ends
with a new line, because the first SQL engines were on IBM mainframes
and used punchcards. This format is a poor choice with modern
computers that can store free-form text. Word wrap in program text can
split a comment and give you errors. Because SQL supports the unary
minus operator, this is ambiguous in some rare situations and makes the
compiler work extra hard. Later standards added the C style /* and */
pairs, and many vendors have similar comment brackets. They are a
better choice.

SQL programmers do not like to put comments in their code, not
even redundant or useless ones. My guess is that because SQL does a lot
of work in one statement and programmers have been taught to
comment the code at the statement execution level rather than explain
the purpose of the code, the higher level of abstraction confuses them.
They are not inclined to put comments at the clause level because the
appearance of the code can be crowded.

Get over it. You need a high-level descriptive comment on a block of
SQL, and then more detailed comments on a few important clauses. Try
to keep the comments aimed at non-SQL programmers and in plain
English. For example, don’t say “relational division of motor pool
vehicles by available drivers” on the assumption that the reader will

6.3 Use Comments 119

know what a relational division is. Try “list all drivers who can drive all
the vehicles in the motor pool” instead. The other trick is to reference the
documentation for the schema and the applications. This assumes that
they are current and useful, however.

If you have the time, another guru-level trick is to save the best of the
various statements you tried that worked but did not perform as well as
the final choice as comments. In SQL, what was the best answer in one
situation is often no longer the best answer. Instead of making the next
programmer start from scratch, share your notes.

Exceptions:
In a well-designed schema with good data element names, much of the
code is easy for an experienced SQL programmer to read. You can skip
comments on single statements if their intent is really obvious, but
remember that one programmer’s obvious is another’s “what the heck?”
when you code.

6.3.1 Stored Procedures
Always start a stored procedure with a comment that gives at least the
author, the date, and the update history. This is simply basic software
management. After that, add a high-level description of the function of
this module. The procedure name will be in a “<verb><object>” format.
Each parameter should have a comment as needed.

6.3.2 Control Statement Comments
Comments on control statements, such as IF-THEN-ELSE, BEGIN-END,
and WHILE-DO loops, will look much like comments in any procedural
program. Complicated SQL statements need a comment at the top and
often comments at the clause level.

6.3.3 Comments on Clause
This point is difficult to generalize, but things that act as a unit might
need a comment. For example, a derived table for which there is no good
alias might need a comment to explain what it contains. A series of
predicates that define a complicated join might be prefaced with a
comment to explain what they are doing at a higher level.

120 CHAPTER 6: CODING CHOICES

6.4 Avoid Optimizer Hints
Rationale:
Many products have proprietary syntax for sending parameters to the
optimizer to change the execution plan for a statement. Because each
physical implementation is different, this syntax will not be portable, but
there are other problems too.

First, the optimizer is usually smarter than the programmer and finds
a good plan. People cannot handle computations that involve tens of
parameters very well. Second, once a hint is put on a statement, it stays
there permanently, long after the reason for the hint is gone. A typical
example of this would set up a query hint for a skewed statistical
distribution and then, as the database grows, the distribution becomes
more normal or skewed in the opposite direction. The hint that used to
be so helpful is now a handicap.

Exceptions:
If you do have a skewed statistical distribution or other weirdness in your
data that is destroying performance, then use a hint. Set up a review of
all statements with hints to see if they actually need to be maintained.
Reviews should occur when a new release of database is installed
(optimizer might be better) or the statistics of one or more of the tables
change (data might be better), but if the performance is acceptable, then
do not use hints.

6.5 Avoid Triggers in Favor of DRI Actions
Rationale:
Although there is an ANSI/ISO standard for triggers, their syntax and
semantics are still highly proprietary. Triggers are blocks of procedural
code that are executed (fired) when a database event occurs to a table.
This code is usually in a proprietary 3GL language. A database event is
something that changes the data—an insert, update, or delete.

The full ANSI version of triggers does not fire on an insertion, but
some vendor products do. The full ANSI version of triggers have more
than one trigger on a table and can fire them in a sequence either before
or after the database event. Most vendor products do not have that much
control over the triggers. On the other hand, the syntax and semantics
for DRI actions are well defined and standardized.

A newbie posted a topic under the title “Need Help with a Calculation
Trigger” on the forums in the SQL Server Central Web site in November
2004. This person was having trouble setting up a trigger to check the

6.5 Avoid Triggers in Favor of DRI Actions 121

units of a “number field [sic]”; the real problem was that the poster did
not know that a column is not a field.

For some reason, the column was declared as FLOAT and was called
length. The trouble is that some people were entering a length in meters,
centimeters, and millimeters. The poster was trying to code a trigger that
will fire on UPDATE or INSERT to check the value of length. If it is
greater than 20, chances are the number is in millimeters and should be
divided by 10. If the number is less than 0, then the number is probably
in meters and should be multiplied by 100.

CREATE TRIGGER SetCentimeters

AFTER INSERT ON Samples

UPDATE Samples

 SET length

 = (CASE

 WHEN length > 10.00

 THEN Length / 10.00

 WHEN length < 0.00

 THEN Length * 100.00

 ELSE Length END)

 WHERE length NOT BETWEEN 0.00 AND 10.00;

However, this is the wrong answer. It is in procedural code. The right
answer is in the DDL, with something like this:

length DECIMAL(2,1) NOT NULL

 CONSTRAINT length_in_centimeters_only

 CHECK (length BETWEEN 0.01 AND 9.99)

Triggers tend to fix errors on the fly; the goal is not to permit them in
the first place.

Exceptions:
Some things should be done with triggers because you cannot do them
with DRI. In particular, the INSTEAD OF trigger has to be used for
updatable views. This trigger is attached to a VIEW, and instead of taking
actions on the VIEW, it changes the base tables from which the VIEW is
built, so that the user sees those changes reflected in the VIEW.

Heuristics tend to favor stored procedures over triggers. A trigger
fires every time its database event occurs, which puts it out of your
control and adds that overhead to each database event. A stored

122 CHAPTER 6: CODING CHOICES

procedure has to be deliberately executed, which puts it completely in
your control. Furthermore, the syntax for triggers is proprietary despite
the standards, so they do not port well.

6.6 Use SQL Stored Procedures
Every SQL product has some kind of 4GL language that allows you to
write stored procedures that reside in the database and that can be
invoked from a host program. Although there is a SQL/PSM standard, in
the real world, only Mimer and IBM have implemented it at the time of
this writing. Instead, each vendor has a proprietary 4GL, such as T-SQL
for the Sybase/SQL Server family, PL/SQL from Oracle, Informix-4GL
from Informix, and so forth. For more details on these languages, I
recommend that you get a copy of Jim Melton’s excellent book,
Understanding SQL’s Stored Procedures ISBN: 1-55860461-8 [out of print]
on the subject. The advantages they have are considerable, including the
following:

� Security. The users can only do what the stored procedure allows
them to do, whereas dynamic SQL or other ad hoc access to the
database allows them to do anything to the database. The safety
and security issues ought to be obvious.

� Maintenance. The stored procedure can be easily replaced and
recompiled with an improved version. All of the host language
programs that call it will benefit from the improvements that were
made and not be aware of the change.

� Network traffic. Because only parameters are passed, network
traffic is lower than passing SQL code to the database across the
network.

� Consistency. If a task is always done with a stored procedure, then
it will be done the same way each time. Otherwise, you have to
depend on all programmers (present and future) getting it right.
Programmers are not evil, but they are human. When you tell
someone that a customer has to be at least 18 years of age, one
programmer will code “age > 18” and another will code “age >= 18”
without any evil intent. You cannot expect everyone to remember
all of the business rules and write flawless code forever.

� Modularity. Once you have a library of stored procedures, you can
reuse them to build other procedures. Why reinvent the wheel
every week?

6.7 Avoid User-Defined Functions and Extensions inside the Database 123

Chapter 8 is a general look at how to write stored procedures in SQL.
If you look at any of the SQL newsgroups, you will see awful code.
Apparently, programmers are not taking a basic software engineering
course anymore, or they think that the old rules do not apply to a
vendor’s 4GL language.

6.7 Avoid User-Defined Functions and Extensions inside
the Database

Rationale:
SQL is a set-oriented language and wants to work with tables rather than
scalars, but programmers will try to get around this model of
programming to return to what they know by writing user-defined
functions in other languages and putting them into the database.

There are two kinds of user-defined functions and extensions. Some
SQL products allow functions written in another standard language to
become part of the database and to be used as if they were just another
part of SQL. Others have a proprietary language in the database that
allows the user to write extensions.

Even the SQL/PSM allows you to write user-defined functions in any
of the ANSI X3J standard programming languages that have data-type
conversions and interfaces defined for SQL. There is a LANGUAGE
clause in the CREATE PROCEDURE statement for this purpose.

Microsoft has its common language runtime (CLR), which takes this
one step further and embeds code from any compiler that can produce a
CLR module in its SQL Server. Illustra’s “data blade” technology is now
part of Informix, IBM has “extenders” to add functionality to the basic
RDBMS, and Oracle has various “Cartridges” for its product.

The rationale behind all of these various user-defined functions and
extensions is to make the vendor’s product more powerful and to avoid
having to get another package for nontraditional data, such as temporal
and spatial information. However, user-defined functions are difficult to
maintain, destroy portability, and can affect data integrity.

Exceptions:
You might have a problem that can be solved with such tools, but this is
a rare event in most cases; most data processing applications can be done
just fine with standard SQL. You need to justify such a decision and be
ready to do the extra work required.

124 CHAPTER 6: CODING CHOICES

6.7.1 Multiple Language Problems
Programming languages do not work the same way, so by allowing
multiple languages to operate inside the database, you can lose data
integrity. Just as quick examples: How does your language compare
strings? The Xbase family ignores case and truncates the longer string,
whereas SQL pads the shorter string and is case sensitive. How does your
language handle a MOD() function when one or both arguments are
negative? How does your language handle rounding and truncation? By
hiding the fact that there is an interface between the SQL and the 3GL,
you hide the problems without solving them.

6.7.2 Portability Problems
The proprietary user-defined functions and extensions will not port to
another product, so you are locking yourself into one vendor. It is also
difficult to find programmers who are proficient in several languages to
even maintain the code, much less port it.

6.7.3 Optimization Problems
The code from a user-defined function is not integrated into the
compiler. It has to be executed by itself when it appears in an expression.
As a simple example of this principle, most compilers can do algebraic
simplifications, because they know about the standard functions. They
cannot do this with user-defined functions for fear of side effects. Also,
3GL languages are not designed to work on tables. You have to call them
on each row level, which can be costly.

6.8 Avoid Excessive Secondary Indexes
First, not all SQL products use indexes: Nucleus is based on a
compressed bit vector, Teradata uses hashing, and so forth. However,
tree-structured indexes of various kinds are common enough to be worth
mentioning. The X/Open SQL Portability Guides give a basic syntax that
is close to that used in various dialects with minor embellishments. The
user may or may not have control over the kind of index the system
builds.

A primary index is an index created to enforce PRIMARY KEY and
UNIQUE constraints in the database. Without them, your schema is
simply not a correct data model, because no table would have a key.

A secondary index is an optional index created by the DBA to
improve performance. The schema will return the same answers as it

6.9 Avoid Correlated Subqueries 125

does with them, but perhaps not in a timely fashion—or even within the
memory of living humans.

Indexes are one thing that the optimizer considers in building an
execution plan. When and how the index is used depends on the kind of
index, the query, and the statistical distribution of the data. A slight
change to any of these could result in a new execution plan later. With
that caveat, we can speak in general terms about tree-structured indexes.

If more than a certain percentage of a table is going to be used in a
statement, then the indexes are ignored and the table is scanned from
front to back. Using the index would involve more overhead than
filtering the rows of the target table as they are read.

The fundamental problem is that redundant or unused indexes take
up storage space and have to be maintained whenever their base tables
are changed. They slow up every update, insert, or delete operation to
the table. Although this event is rare, indexes can also fool the optimizer
into making a bad decision. There are tools for particular SQL products
that can suggest indexes based on the actual statements submitted to the
SQL engine. Consider using one.

6.9 Avoid Correlated Subqueries
Rationale:
In the early days of SQL, the optimizers were not good at reducing
complex SQL expressions that involved correlated subqueries. They
would blindly execute loops inside loops, scanning the innermost tables
repeatedly. The example used to illustrate this point was something like
these two queries where “x” is not NULL-able and Table “Foo” is much
larger than table “Bar,” which produce the same results:

 SELECT a, b, c

 FROM Foo

 WHERE Foo.x

 IN (SELECT x FROM Bar);

versus

SELECT a, b, c

 FROM Foo

 WHERE EXISTS

 (SELECT *

 FROM Bar

 WHERE Foo.x = Bar.x;

126 CHAPTER 6: CODING CHOICES

In older SQL engines, the EXISTS() predicate would materialize a
JOIN on the two tables and take longer. The IN() predicate would put
the smaller table into main storage and scan it, perhaps sorting it to
speed the search. This is not quite as true any more. Depending on the
particular optimizer and the access method, correlated subqueries are
not the monsters they once were. In fact, some products let you create
indexes that prejoin tables, so they are the fastest way to execute such
queries.

However, correlated subqueries are confusing to people to read, and
not all optimizers are that smart yet. For example, consider a table that
models loans and payments with a status code for each payment. This is
a classic one-to-many relationship. The problem is to select the loans
where all of the payments have a status code of ‘F’:

CREATE TABLE Loans

(loan_nbr INTEGER NOT NULL,

 payment_nbr INTEGER NOT NULL,

 payment_status CHAR(1) NOT NULL

 CHECK (payment_status IN ('F', 'U', 'S')),

PRIMARY KEY (loan_nbr, payment_nbr));

One answer to this problem uses this correlated scalar subquery in
the SELECT list:

SELECT DISTINCT

 (SELECT loan_nbr

 FROM Loans AS L1

 GROUP BY L1.loan_nbr

 HAVING COUNT(L1.payment_status) = COUNT(L2.loan_nbr))

 AS parent

 FROM Loans AS L2

 WHERE L2. payment_status = 'F'

 GROUP BY L2.loan_nbr;

This approach is backward. It works from the many side of the
relationship to the one side, but with a little thought and starting from
the one side, you can get this answer:

SELECT loan_nbr

 FROM Loans

 GROUP BY loan_nbr

6.10 Avoid UNIONs 127

HAVING MAX(payment_status) = 'F'

 AND MIN(payment_status) = 'F';

The self-reference and correlation are complicated for both humans
and machines. Most optimizers are not smart enough to flatten the first
query like this.

Exceptions:
If you have a problem that is easier to understand with correlated
subqueries and your optimizer is good, then don’t be so afraid of them.

6.10 Avoid UNIONs
Rationale:
UNIONs are usually not well optimized. Because they require that
redundant duplicates be discarded, they force most SQL engines to do a
sort before presenting the result set to the user. If possible, use UNION
ALL instead. You should never have to build a chain of UNIONs from
the same base table. That code can be written with OR-ed predicates or
CASE expressions.

As an example of a horrible misuse of SQL, Chris White posted a
procedure that built dynamic SQL that would then build a report. Aside
from the obvious violations of basic software engineering, the output was
so huge that it exceeded the text size limits of SQL Server. He was
attempting to construct an entire report in the database by using
UNIONs to get the 12 lines of the report in the right order, by assigning
them a letter of the alphabet. The whole thing would take several pages
to show, but it is an extraction of the printout lines that were constructed
from just the General Ledger. I have not attempted to clean up much of
the code, so there are many violations of good coding rules in this
snippet.

. . .

UNION

SELECT DISTINCT 'J' AS section,

 'NUMBER CHECKS' AS description, '' AS branch,

 COUNT(DISTINCT GL.source) AS total1, 0 AS total2

 FROM GeneralLedger AS GL

 WHERE GL.period >= :start_period

 AND GL.period <= :end_period

 AND GL.year_for_period = :period_yr

128 CHAPTER 6: CODING CHOICES

 AND GL.account_number IN ('3020')

 AND GL.journal_id IN ('CD')

UNION

SELECT DISTINCT 'C' AS section,

 'CASH RECEIPTS' AS description, '' AS branch,

 SUM(GL.amount) * -1 AS total1, 0 AS total2

 FROM GeneralLedger AS GL

 WHERE GL.period >= :start_period

 AND GL.period <= :end_period

 AND GL.year_for_period = :period_yr

 AND GL.account_number = '1050'

 AND GL.journal_id IN ('CR')

UNION

SELECT DISTINCT 'D' AS section,

 'NUMBER INVOICES' AS description, '' AS branch,

 COUNT(DISTINCT GL.source) AS total1, 0 AS total2

 FROM GeneralLedger AS GL

WHERE GL.period >= :start_period

 AND GL.period <= :end_period

 AND GL.year_for_period = :period_yr

 AND GL.account_number IN ('6010', '6090')

 AND GL.journal_id IN ('SJ')

UNION

SELECT DISTINCT 'E' AS section,

 'VOUCHER TOTAL' AS description, '' AS branch,

 SUM(GL.amount) * -1 AS total1, 0 AS total2

 FROM GeneralLedger AS GL

WHERE GL.period >= :start_period

 AND GL.period <= :end_period

 AND GL.year_for_period = :period_yr

 AND GL.account_number = '3020'

 AND GL.journal_id IN ('PJ', 'TJ')

UNION

SELECT DISTINCT 'F' AS section,

 'CHECKS PRINTED' AS description, '' AS branch,

 SUM(GL.amount) AS total1, 0 AS total2

FROM GeneralLedger AS GL

WHERE GL.period >= :start_period

 AND GL.period <= :end_period

 AND GL.year_for_period = :period_yr

 AND GL.account_number IN ('3020')

6.10 Avoid UNIONs 129

 AND GL.journal_id IN ('CD')

UNION

SELECT DISTINCT 'K' AS section,

 'NUMBER VOUCHERS' AS description, '' AS branch,

 COUNT(DISTINCT GL.source) AS total1, 0 AS total2

 FROM GeneralLedger AS GL

 WHERE GL.period >= :start_period

 AND GL.period <= :end_period

 AND GL.year_for_period = :period_yr

 AND GL.account_number IN ('3020')

 AND GL.journal_id IN ('PJ', 'TJ');

The last part of the code could be reduced to a single, cohesive
procedure. The output of the procedure would then be formatted in the
front. Notice that section, description, and branch are all placeholders to
give a slot for columns in the other UNIONs not shown here.

CREATE PROCEDURE GeneralLedgeSummary (start_period DATE,
end_period DATE)

SELECT

COUNT(DISTINCT CASE WHEN acct_nbr = '3020' AND journal_code =
'CD'

 THEN source ELSE NULL END),

-SUM(CASE WHEN acct_nbr = '1050' AND journal_code ='CR'

 THEN amount ELSE 0.00 END),

COUNT(DISTINCT CASE WHEN acct_nbr IN ('6010', '6090') AND
journal_code = 'SJ'

 THEN source ELSE NULL END),

-SUM(CASE WHEN acct_nbr = '1050' AND journal_code = 'CR'

 THEN amount ELSE 0.00 END),

SUM(CASE WHEN acct_nbr = '3020' AND journal_code = 'CD'

 THEN amount ELSE 0.00 END),

COUNT(DISTINCT CASE WHEN acct_nbr = '3020' AND journal_code IN
('PJ', 'TJ')

 THEN source ELSE NULL END)

INTO j_tally, c_total, d_tally, e_total, f_total, k_tally

FROM GeneralLedger AS GL

WHERE period BETWEEN start_period AND end_period;

130 CHAPTER 6: CODING CHOICES

Exceptions:
Sometimes the UNION [ALL] is what you actually want. The other set
operations in SQL-92, EXCEPT [ALL], and INTERSECT [ALL] are not
widely available yet.

6.11 Testing SQL
When you are first writing a schema, you will probably generate some
test data. If you look in the literature, there is a thing called an
Armstrong set, which is the minimal number of rows that will test all of
the constraints in a schema. Although it is difficult to automatically
create an Armstrong set, you can do a good job with a little effort.

6.11.1 Test All Possible Combinations of NULLs
Rationale:
NULLs behave strangely, and if there are problems, there is a good
chance that a NULL will be involved. Newbies using graphic tools often
leave more NULL-able columns in a single table than a professional
would in an entire schema for a Fortune 500 company payroll.

Exceptions:
If the number of combinations is excessive, then look at a redesign
rather than a stress test. It means you probably have too many NULL-
able columns in the schema.

6.11.2 Inspect and Test All CHECK() Constraints
Rationale:
You can extract the CHECK() constraint predicates from the DDL and
look at them. The first thing is to see if the same data element has the
same rules in all of the tables. Some attributes will always have the same
CHECK() constraints if the model is correct. For example, the data type,
regular expression, and check digit for a UPC code will be the same
everywhere in the schema.

Some attributes may have different constraints in different tables. For
example, it would be reasonable to have “quantity INTEGER DEFAULT
0 NOT NULL CHECK (quantity >= 0)” almost everywhere that the
quantity attribute appears. However, you might find that there is also a
“CHECK (quantity > 0)” on a table. Is this an error or a situation where a
zero quantity is disallowed? You need to look and see.

6.11 Testing SQL 131

Exceptions:
None

6.11.3 Beware of Character Columns
Rationale:
Character columns seldom have enough constraints on them. The result
is that they have extra blanks in them, allow mixed-case letters, and will
pretty much hold any kind of garbage that a user wishes to put in them.

My favorite piece of test data for oversized, unconstrained
NVARCHAR(n) columns is a collection of Buddhist sutras in Chinese
unicode. At least the users will learn a bit of classic Buddhist thought.

Exceptions:
None

6.11.4 Test for Size
Rationale:
One of the problems with small test data sets is that they will run just
fine in the development shop, but when the size of the tables grows
larger, you can get gradually degraded performance or catastrophe
points. A catastrophe point is when there is a sudden change in the
performance—the straw that breaks the camel’s back. There is usually a
physical component to a catastrophe point, such as excessive paging to a
hard drive. Frankly, there is not a lot you can do about it except wait and
see if it was a fluke or if it happens again.

Gradually degraded performance is the nicer of the two situations.
You can monitor the system, see the loss, and take action before
anything bad happens. The bad news is that the term gradual can be very
short. The query that ran so well on a few thousand rows of test data is a
pig when it goes live on several million rows of production data. Try to
stress test on a data set that is larger than the current production
database. That will let you know you have some margin of error.

Exceptions:
None

C H A P T E R

7

How to Use VIEWS

The Blind Men and the Elephant

By John Godfrey Saxe (1816–1887)

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
“God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here
So very round and smooth and sharp?
To me ‘tis mighty clear
This wonder of an Elephant

134 CHAPTER 7: HOW TO USE VIEWS

Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
“I see,” quoth he, “the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee.
“What most this wondrous beast is like
Is mighty plain,” quoth he;
“Tis clear enough the Elephant
Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: “E’en the blindest man
Can tell what this resembles most;
Deny the fact who can
This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,
“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

Moral:
So oft in theologic wars,
The disputants, I ween,
Rail on in utter ignorance

7.1 VIEW Naming Conventions Are the Same as Tables 135

Of what each other mean,
And prate about an Elephant
Not one of them has seen!

VIEWs are virtual tables, defined by SELECT statements stored in the
database. The SQL statement that defines the VIEW is executed only
when the VIEW is invoked in another statement. The standard says that
VIEWs are to act as if they are materialized, but in practice the optimizer
will decide to materialize them as physical tables or to insert the SELECT
statement in the definition into the query, invoking it and then
compiling it like a derived table. There are six basic uses for VIEWs that
we will discuss.

7.1 VIEW Naming Conventions Are the Same as Tables

Rationale:

A VIEW is a logical table. It consists of rows and columns, exactly the
same as a base table. A VIEW can be used in SELECT, UPDATE,
DELETE, and INSERT statements in the same way that a base table can.
Therefore, it stands to reason that VIEWs should utilize the same naming
conventions as are used for tables. As an aside, the same can be said for
aliases, synonyms, derived tables,

table-valued functions, or anything
that returns a table.

In particular, there is an absurd naming convention of putting a “v”
or “vw” in the first or last position of a VIEW name. My guess is that it
comes from programmers either who are used to weakly typed languages
that use Hungarian notation or who worked with file systems that had to
have prefixes to locate the physical drive for the file. In the ISO-11179,
the “vw” implies that the VIEW is a table dealing with Volkswagens.

Individuals who have a need to differentiate between tables and
VIEWs can utilize the schema information tables to determine which
objects are VIEWs and which objects are tables. They should be at the
system administration level or higher.

INSERT, UPDATE, and DELETE are operations that cannot be
performed on certain types of VIEWs. Users who need to do these
privileges can be given INSTEAD OF triggers and never know if they are
dealing with a VIEW or a base table.

Exceptions:

None

136 CHAPTER 7: HOW TO USE VIEWS

7.1.1 Always Specify Column Names

Rationale:

When creating VIEWs, SQL provides the option of specifying new
column names for the VIEW clause or defaulting to the same column
names as the defining SELECT statement. It is always advisable to
explicitly specify VIEW column names instead of allowing them to
default, even if using the same names as the underlying base tables. This
will provide for more accurate documentation.

Exceptions:

Make sure that the VIEW clause names are correct. If you misspell them,
that is what the user sees.

7.2 VIEWs Provide Row- and Column-Level Security

One of the most beneficial purposes served by VIEWs is to extend the
data security features of SQL. VIEWs can be created that provide a
subset of rows, a subset of columns, or a subset of both rows and
columns from the base table.

How do VIEWs help provide row- and column-level security?
Consider a “Personnel” table that contains all of the pertinent
information regarding an enterprise’s employees. Typically, name,
address, position, birthdate, and salary information would be contained
in such a table. However, not every user will require access to all of this
information. Specifically, it may become necessary to shield the salary
information from most users. You can accomplish this by creating a
VIEW that does not contain the salary column and then granting most
users the ability to access the VIEW, instead of the base table. The salary
column will not be visible to users of the VIEW.

Or perhaps you need to implement security at the row level. Consider
a table that contains project information. Typically, this would include
project name, purpose, start date, and who is responsible for the project.
Assume that the security requirements for projects within your
organization deem that only the employee who is responsible for the
project can access the project data. By storing the authorization ID of the
responsible employee in the “projects” table, a VIEW can be created
using the CURRENT_USER value.

CREATE VIEW MyProjects (..)

AS

SELECT ..

7.2 VIEWs Provide Row- and Column-Level Security 137

 FROM Projects

 WHERE authorized_user = CURRENT_USER;

Or, if you need to limit access to a team, you can create a table of
teams to which only team managers have access.

CREATE VIEW MyProjects (..)

AS

SELECT ..

 FROM Projects AS P

 WHERE CURRENT_USER

 IN (SELECT team_user_id

 FROM ProjectTeams AS PT

 WHERE P.team_nbr = PT.team_nbr);

Another trick is to use the CURRENT_TIMESTAMP or
CURRENT_DATE in VIEWs to get an automatic update to schedules and
other time-related events.

CREATE TABLE AssignmentSchedule

(ssn CHAR(9) NOT NULL

 REFERENCES Personnel(ssn)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 task_code CHAR(5) NOT NULL,

 start_date TIMESTAMP NOT NULL,

 end_date TIMESTAMP NOT NULL,

 CHECK (start_date < end_date),

 PRIMARY KEY (upc, start_date));

CREATE VIEW Assignments (now, ssn, task_code)

AS

SELECT CURRENT_TIMESTAMP, ssn, task_code

 FROM AssignmentSchedule

 WHERE CURRENT_TIMESTAMP BETWEEN start_date AND end_date;

Each time the VIEW is invoked, it will check the clock and see if
anything has changed for you.

138 CHAPTER 7: HOW TO USE VIEWS

7.3 VIEWs Ensure Efficient Access Paths

By coding the appropriate join criteria into the VIEW definition SQL,
you can ensure that the correct join predicate will always be used. Of
course, this technique becomes more useful as the SQL becomes more
complex.

7.4 VIEWs Mask Complexity from the User

Somewhat akin to coding appropriate access into VIEWs, complex SQL
can be coded into VIEWs to mask the complexity from the user. This can
be extremely useful when your shop employs novice SQL users (whether
those users are programmers, analysts, managers, or typical end users).

As an example, consider the code for a relational division. Relational
division is one of the eight basic operations in Codd’s (1979) relational
algebra. The idea is that a divisor table is used to partition a dividend
table and produce a quotient or results table. The quotient table consists
of those values of one column for which a second column had all of the
values in the divisor.

This is easier to explain with an example. We have a table of pilots
and the planes they can fly (dividend); we have a table of planes in the
hangar (divisor); we want the names of the pilots who can fly every plane
(quotient) in the hangar. To get this result, we divide the PilotSkills table
by the planes in the hangar.

 CREATE TABLE PilotSkills

 (pilot CHAR(15) NOT NULL,

 plane CHAR(15) NOT NULL,

 PRIMARY KEY (pilot, plane));

CREATE TABLE Hangar

 (plane CHAR(15) NOT NULL PRIMARY KEY);

Here is one way to write the query:

CREATE VIEW QualifiedPilots (pilot)

AS

SELECT DISTINCT pilot

 FROM PilotSkills AS PS1

 WHERE NOT EXISTS

 (SELECT *

 FROM Hangar

7.5 VIEWs Ensure Proper Data Derivation 139

 WHERE NOT EXISTS

 (SELECT *

 FROM PilotSkills AS PS2

 WHERE (PS1.pilot = PS2.pilot)

 AND (PS2.plane = Hangar.plane)));

This not the sort of thing that newbie SQL programmers can pull out
of their hats, but they can write “SELECT pilot FROM QualifiedPilots;”
without much trouble. Furthermore, the VIEW definition can be
changed, and the user will never know it. Here is another version of
relational division:

CREATE VIEW QualifiedPilots (pilot)

AS

SELECT PS1.pilot

 FROM PilotSkills AS PS1, Hangar AS H1

 WHERE PS1.plane = H1.plane

 GROUP BY PS1.pilot

HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM Hangar);

7.5 VIEWs Ensure Proper Data Derivation

Another valid usage of VIEWs is to ensure consistent derived data by
creating new columns for VIEWs that are based on arithmetic formulae
(e.g., creating a VIEW that contains a column named “tot_comp,” which
is defined by [salary + commission + bonus]). Because this column name
is at the table level, it can be used in the SELECT of the invoking
SELECT statement. That is, this is illegal:

SELECT emp_id, (salary + commission + bonus) AS tot_comp

 FROM Payroll

 WHERE tot_comp > 12000.00;

and this is legal:

CREATE VIEW PayrollSummary (emp_id, tot_comp)

AS

SELECT emp_id, (salary + commission + bonus)

 FROM PayrollSummary;

140 CHAPTER 7: HOW TO USE VIEWS

followed by:

SELECT emp_id, tot_comp

 FROM PayrollSummary

 WHERE tot_comp > 12000.00;

Although this is an easy formula, it is a good idea to have a
complicated one in only one place in the schema. It might not be right,
but at least it will be consistent.

7.6 VIEWs Rename Tables and/or Columns

You can rename columns in VIEWs. This is particularly useful if a table
contains arcane or complicated column names. There are some prime
examples of such tables in the schema information tables of most SQL
products. Additionally, if other tables exist with clumsy table and/or
column names, VIEWs can provide a quick solution until you can
rename them. In many SQL products, doing this can require dropping
and recreating the tables.

7.7 VIEWs Enforce Complicated Integrity Constraints

Consider a schema for a chain of stores that has three tables, thus:

CREATE TABLE Stores

(store_nbr INTEGER NOT NULL PRIMARY KEY,

 store_name CHAR(35) NOT NULL,

 ..);

CREATE TABLE Personnel

(ssn CHAR(9) NOT NULL PRIMARY KEY,

 last_name CHAR(15 NOT NULL,

 first_name CHAR(15 NOT NULL,

 ..);

The first two tables explain themselves. The third table shows the
relationship between stores and personnel—namely, who is assigned to
which job at which store and when this happened. Thus:

CREATE TABLE JobAssignments

(store_nbr INTEGER NOT NULL

7.7 VIEWs Enforce Complicated Integrity Constraints 141

 REFERENCES Stores (store_nbr)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 ssn CHAR(9) NOT NULL PRIMARY KEY

 REFERENCES Personnel(ssn)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 end_date TIMESTAMP CHECK (start_date <= end_date),

 job_type INTEGER DEFAULT 0 NOT NULL

 CHECK (job_type BETWEEN 0 AND 99),

 PRIMARY KEY (store_nbr, ssn, start_date));

Let job_type 0 = “unassigned”, 1 = “stockboy”, and so on, until we get
to 99 = “Store Manager”; we have a rule that each store has one and only
one manager. In full SQL-92 you could write a constraint like this:

CHECK (NOT EXISTS

 (SELECT store_nbr

 FROM JobAssignments

 WHERE job_type = 99))

 GROUP BY store_nbr

 HAVING COUNT(*) > 1))

But many SQL products do not allow CHECK () constraints that
apply to the table as a whole, and they do not support the scheme-level
CREATE ASSERTION statement. So, how to do this? You might use a
trigger, which will involve—ugh!—procedural code. Despite the SQL/
PSM and other standards, most vendors implement different trigger
models and use their proprietary 4GL language, but, being a fanatic, I
want a pure SQL solution.

Let’s create two tables like this:

CREATE TABLE Job_99_Assignments

(store_nbr INTEGER NOT NULL PRIMARY KEY

 REFERENCES Stores (store_nbr)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

ssn CHAR(9) NOT NULL

 REFERENCES Personnel (ssn)

 ON UPDATE CASCADE

142 CHAPTER 7: HOW TO USE VIEWS

 ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

end_date TIMESTAMP CHECK (start_date <= end_date),

job_type INTEGER DEFAULT 99 NOT NULL

 CHECK (job_type = 99));

CREATE TABLE Job_not99_Assignments

(store_nbr INTEGER NOT NULL

 REFERENCES Stores (store_nbr)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

ssn CHAR(9) NOT NULL PRIMARY KEY

 REFERENCES Personnel (ssn)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

end_date TIMESTAMP CHECK (start_date <= end_date),

job_type INTEGER DEFAULT 0 NOT NULL

 CHECK (job_type BETWEEN 0 AND 98)—no 99 code

);

Then build a UNION-ed VIEW:

CREATE VIEW JobAssignments (store_nbr, ssn, start_date,
end_date, job_type)

AS

(SELECT store_nbr, ssn, start_date, end_date, job_type

 FROM Job_not99_Assignments

 UNION ALL

 SELECT store_nbr, ssn, start_date, end_date, job_type

 FROM Job_99_Assignments)

The key and job_type constraints in each table working together will
guarantee only one manager per store. The next step is to add INSTEAD
OF triggers to the VIEW, so that the users can insert, update, and delete
from it easily.

As an exercise for the reader: How would you ensure that no store has
more than two assistant managers?

7.8 Updatable VIEWs 143

7.8 Updatable VIEWs

The SQL-92 standard is actually conservative about which VIEWs are
updatable. They have to be based on the following:

1. A SELECT statement on one and only one table, but the VIEW
can be defined on several layers of VIEWs on top of VIEWs.

2. The VIEW must include all of the columns of a UNIQUE or
PRIMARY KEY constraint in the base table. This guarantees
that all of the rows in the VIEW map back to one and only one
row in the base table from which it is derived.

3. All base table columns not shown in the VIEW must have
default values or be NULL-able. The reason for that is obvious:
You have to delete or insert a complete row into the base table,
so the system must be able to construct such a row.

However, other VIEWs are updatable, and some vendors support
more than the basic version given in the SQL-92 standard. The VIEW
must have an INSERT, UPDATE, and DELETE rule under the covers,
which maps its rows back to a single row in the base table(s).

7.8.1 WITH CHECK OPTION clause

Another feature, which is not used enough, is the WITH CHECK
OPTION clause on a VIEW. It is a bit tricky, when you nest VIEWs inside
each other, but the idea is that an UPDATE or INSERT INTO statement
cannot leave the scope of the set selected by the updatable VIEW. For
example, we have a VIEW like this:

CREATE VIEW NewYorkSalesmen (ssn, name, ..)

AS

SELECT ssn, name, ..

 FROM Salesmen

 WHERE city = 'New York';

And we update it, thus:

UPDATE NewYorkSalesmen

 SET city = 'Boston';

144 CHAPTER 7: HOW TO USE VIEWS

The result would be that “NewYorkSalesmen” would be empty when
you come back to it. This is probably not desirable. However, if we had
defined the updatable VIEW as:

CREATE VIEW NewYorkSalesmen (ssn, name, ..)

AS

SELECT ssn, name, ..

 FROM Salesmen

 WHERE city = 'New York'

WITH CHECK OPTION;

the system would test the update for a violation and would reject it.

7.8.2 INSTEAD OF Triggers

Because some VIEWs cannot be updated, you can add INSTEAD OF
triggers to fool the users. This trigger is executed instead of the INSERT,
UPDATE, or DELETE action, thus overriding the actions of the
triggering statements. The syntax will vary from product to product, but
expect something like this:

CREATE TRIGGER <trigger name>

ON <table name >

 [BEFORE | AFTER | INSTEAD OF]

 [INSERT| DELETE | UPDATE]

AS [<sql stmt> | BEGIN ATOMIC {<sql stmt>;} END]

For obvious reasons, only one INSTEAD OF trigger per INSERT,
UPDATE, or DELETE statement can be defined on a table or VIEW.
However, it is possible to define VIEWs on VIEWs where each VIEW has
its own INSTEAD OF trigger. INSTEAD OF triggers are not allowed on
updatable VIEWs that have a WITH CHECK OPTION.

You can also define INSTEAD OF triggers on base tables, but this is a
bit weird because you have BEFORE and AFTER triggers.

7.9 Have a Reason for Each VIEW

Rationale:

VIEWs should be created only when they achieve a specific, reasonable
goal. Each VIEW should have a specific application or business
requirement that it fulfills before it is created. That requirement should

7.11 Synchronize VIEWs with Base Tables 145

be documented somewhere, preferably in a data dictionary or possibly as
a remark in the VIEW declaration.

Exceptions:

None

7.10 Avoid VIEW Proliferation

Rationale:

The proliferation avoidance rule is based on common sense. Why create
something that is not needed? It just takes up space that could be used
for something that is needed.

Whenever a SQL object is created, additional entries are placed in the
schema information tables. Creating needless schema objects causes
what Craig Mullins calls

catalog clutter

. For example, in DB2, every
unnecessary VIEW that is created in SQL will potentially insert rows into
four VIEW-specific schema information tables (i.e., SYSVTREE,
SYSVLTREE, SYSVIEWS, and SYSVIEWDEP) and three table-specific
schema information tables (i.e., SYSTABLES, SYSTABAUTH, and
SYSCOLUMNS).

It is a good idea to use a utility program to see if you have VIEWs that
are not referenced anywhere. Another good idea is to see if you have
VIEWs that do the same thing, or almost the same thing, so you can
remove one of them.

Exceptions:

None

7.11 Synchronize VIEWs with Base Tables

Rationale:

Whenever a base table changes, all VIEWs that depend on that base table
should be analyzed to determine if the change affects them. All VIEWs
should remain logically pure. The VIEW should remain useful for the
specific reason you created it.

For example, say a VIEW was created to control employee access to a
project and we add the new badge numbers to the Personnel table. This
badge number probably should also be added to the access VIEW. The
badge number column can be added to the Personnel table immediately
and then to the VIEW at the earliest convenience of the development
team.

146 CHAPTER 7: HOW TO USE VIEWS

The synchronization rule requires that strict change impact analysis
procedures be in place. Every change to a base table should trigger the
usage of these utility programs and maintenance procedures.

Exceptions:

None

7.12 Improper Use of VIEWs

Over the years, VIEWs have been used for other purposes that made
sense at the time but have been rendered obsolete with the advent of
new DBMS functionality.

7.12.1 VIEWs for Domain Support

Rationale:

It is a sad fact of life that most RDBMS do not support domains.
Domains were in the original relational model and should have been part
of SQL from the start. A domain basically identifies the valid range of
values that a column can contain. Of course, domains are more complex
than this simple explanation. For example, only columns pooled from
the same domain should be able to be compared within a predicate
(unless explicitly overridden).

Some of the functionality of domains can be implemented using
VIEWs and the WITH CHECK OPTION clause, which ensures the
update integrity of VIEWs. This will guarantee that all data inserted or
updated using the VIEW will adhere to the VIEW specification.

CREATE VIEW Personnel (ssn, name, sex, ..)

AS

SELECT ssn, name, sex, ..

 FROM ISBN0008 –- a name you did not want anyone to see

 WHERE sex IN (0, 1, 2) –- iso codes

WITH CHECK OPTION;

Now, this method of using VIEWs to simulate domains is still viable,
but a better technique to provide the same functionality is available—
namely, CHECK() constraints.

CREATE TABLE Personnel

(ssn CHAR(9) NOT NULL, name, sex, ..)

 ..

7.12 Improper Use of VIEWs 147

 sex INTEGER DEFAULT 0 NOT NULL

 CHECK (sex IN (0, 1, 2)),

 ..);

And a CHECK() constraint is simpler than creating VIEWs with the
WITH CHECK OPTION.

Exceptions:

None

7.12.2 Single-Solution VIEWs

Rationale:

Another past usage for VIEWs was to enable solutions where VIEWs
really were the only way to solve a data access problem. Without VIEWs,
some complex data access requests could be encountered that were not
capable of being coded using SQL alone. However, sometimes a VIEW
can be created to implement a portion of the access. Then, the VIEW can
be queried to satisfy the remainder.

Consider the scenario where you want to report on detail information
and summary information from a single table. For instance, what if you
would like to report on stock prices? For each stock, provide all stock
details, and also report the maximum, minimum, and average prices for
that stock. Additionally, report the difference between the average price
and each individual price.

CREATE VIEW StockSummary (ticker_sym, min_price, max_price,
avg_price)

AS

SELECT ticker_sym, MIN(price), MAX(price), AVG(price)

 FROM Portfolio

 GROUP BY ticker_sym;

After the VIEW is created, the following SELECT statement can be
issued joining the VIEW to the base table, thereby providing both detail
and aggregate information on each report row:

SELECT P.ticker_sym, P.quote_date, S.min_price, S.max_price,
S.avg_price,

 (P.price - S.avg_price) AS fluctuation

 FROM Portfolio AS P, StockSummary AS S

 WHERE P.ticker_sym = S.ticker_sym;

148 CHAPTER 7: HOW TO USE VIEWS

Situations such as these were ideal for using VIEWs to make data
access a much simpler proposition. However, the advent of table
expressions (sometimes referred to as in-line VIEWs) makes this usage of
VIEWs obsolete. Why? Instead of coding the VIEW, we can take the SQL
from the VIEW and specify it directly into the SQL statement that would
have called the VIEW. Using the previous example, the final SQL
statement becomes:

SELECT P.ticker_sym, S.min_price, S.max_price, S.avg_price,

 (P.price - S.avg_price) AS fluctuation

 FROM Portfolio AS P,

 (SELECT ticker_sym, MIN(price), MAX(price), AVG(price)

 FROM Portfolio

 GROUP BY ticker_sym) AS S

 WHERE P.ticker_sym = S.ticker_sym;

So we can use a table expression to avoid creating and maintaining a
VIEW.

Exceptions:

If an expression is used in many places and it has a clear meaning in the
data model, then create a VIEW.

7.12.3 Do Not Create One VIEW Per Base Table

Rationale:

A dubious recommendation is often made to create one VIEW for each
base table in a SQL application system. This is what Craig Mullins calls
“The Big VIEW Myth.” This is supposed to insulate application programs
from database changes. This insulation is to be achieved by mandating
that all programs be written to access VIEWs instead of base tables.
When a change is made to the base table, the programs do not need to
be modified because they access a VIEW, not the base table.

There is no adequate rationale for enforcing a strict rule of one VIEW
per base table for SQL application systems. In fact, the evidence
supports not using VIEWs in this manner. Although this sounds like a
good idea in principle, indiscriminate VIEW creation should be avoided.
The implementation of database changes requires scrupulous analysis
regardless of whether VIEWs or base tables are used by your
applications. Consider the simplest kind of schema change, adding a
column to a table. If you do not add the column to the VIEW, no
programs can access that column unless another VIEW is created that

7.13 Learn about Materialized VIEWs 149

contains that column. But if you create a new VIEW every time you add a
new column, it will not take long for your environment to be swamped
with VIEWs.

Then you have to ask which VIEW should be used by which program?
Similar arguments can be made for removing columns, renaming tables
and columns, combining tables, and splitting tables.

In general, if you follow good SQL/SQL programming practices, you
will usually not encounter situations where the usage of VIEWs initially
would have helped program/data isolation anyway. By dispelling, “The
Big VIEW Myth,” you will decrease the administrative burden of creating
and maintaining an avalanche of base table VIEWs.

Exceptions:

None

7.13 Learn about Materialized VIEWs

Rationale:

A materialized VIEW is brought into existence in the physical database,
where it can be used like any other table. This is implementation
dependent, so you have to know what your product does to get the best
use of this feature.

All VIEWs are supposed to act as if they are materialized, but in
practice the text of the view can often be put into the parse tree of the
statement using it and expanded like an in-line macro statement. For
example, given this VIEW:

CREATE VIEW NewYorkSalemen (ssn, first_name, ..)

AS

SELECT ssn, first_name, ..

 FROM Personnel

 WHERE city = 'New York';

When it is used in a query, the effect is as if it were a derived table
expression inside that query. For example:

SELECT ssn, first_name, ..

 FROM NewYorkSalemen

WHERE firstname = 'Joe';

150 CHAPTER 7: HOW TO USE VIEWS

in effect becomes:

SELECT ssn, first_name, ..

 FROM (SELECT ssn, first_name, ..

 FROM Personnel

 WHERE city = 'New York')

 AS NewYorkSalemen (ssn, first_name, ..)

 WHERE firstname = 'Joe';

which will probably become something like this in the parse tree:

SELECT ssn, first_name, ..

 FROM Personnel AS NewYorkSalemen (ssn, first_name, ..)

 WHERE city = 'New York'

 AND firstname = 'Joe';

However, if more than one user references a VIEW, it can be cheaper
to materialize it once and share the data among all users. If the
materialized result set is small enough to fit into main storage, the
performance improvements are even greater.

This is actually a common event, because we tend to build views that
summarize data for reporting periods. Thus, lots of users want to get to
the same summary views at the same time. If you plan the VIEWs to take
advantage of this usage pattern, you can get major performance
improvements.

Exceptions:

None

C H A P T E R

8

How to Write Stored Procedures

“Whatever language you write in, your task as a programmer is to do the
best you can with the tools at hand. A good programmer can overcome a

poor language or a clumsy operating system, but even a great programming
environment will not rescue a bad programmer.”

—Kernighan and Pike

E

VERY

SQL

PRODUCT

 has some kind of 4GL tools that allow you to write
stored procedures that reside in the database and that can be invoked
from a host program. Each 4GL is a bit different, but they are all
block-structured languages. They have varying degrees of power and
different language models. For example, T-SQL is a simple, one-pass
compiler modeled after the C and Algol languages. It was not intended
as an application development language, but rather as a tool for doing
short tasks inside a SQL Server database.

At the other extreme, Oracle’s PL/SQL is modeled after ADA and
SQL/PSM. It is a complicated language that can be used for application
development. Likewise, Informix 4GL is an application development
language that generates C code, which can be immediately ported to a
large number of platforms.

What this means is that anything I say about SQL stored
procedures will have to be general, but perhaps the most frightening
thing is that I have to go back and teach basic software engineering

152 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

principles to SQL programmers. If you look at the SQL code posted in
newsgroups, much of it is written as if all of the work done in the 1970s
and 1980s by Yourdon, DeMarco, Dijkstra, Wirth, and others. never
happened. Wake up, people! Those rules still apply to any programming
language because they apply to programming.

8.1 Most SQL 4GLs Are Not for Applications

Rationale:

Most of the proprietary procedural languages added to SQL by vendors
were never meant to replace application development languages (note
the exceptions). They were meant to be micro-languages that could be
used for procedural operations inside the database.

The classic micro-language has no real input/output (I/O); you can
print a message on the standard system output and that is about all.
There is no file control, no complex computations, and no display
formatting functions. These languages were for writing triggers and short
cleanup modules in the schema, and the rule of thumb was never to have
a procedure over one page or 50 lines long.

This is fine; in a tiered architecture, display and complex
computations are done in the host language of the presentation layer.
But if you read the SQL newsgroups, you will constantly find newbie
programmers who want to do display formatting in the database. They
want to add leading zeros in a SELECT statement, concatenate first and
last names, put line numbers on the result set to display ranges of those
line numbers, and a host of other things. SQL is strictly a data-retrieval
language and has nothing to do with application presentation layers.

Exceptions:

Informix 4GL, Progress, Oracle’s PL/SQL, and a few other languages
were actually meant for application development. Sometimes the
language came before the SQL database and vice versa. A proprietary
language can be fast to execute, fast to write, and have lots of nice
features. A lot of mainframe packages are implemented in Informix 4GL
under the covers, Oracle sells packages written in PL/SQL, and a lot of
midsized systems are implemented in Progress. The trade-off is the
ability to maintain these proprietary code bases versus maintaining a
standard programming language with embedded SQL.

8.2 Basic Software Engineering 153

8.2 Basic Software Engineering

I am amazed that so many SQL programmers do not know basic
software engineering. Working programmers on newsgroups actually
have to ask for definitions of cohesion and coupling. Apparently,
programmers are not getting the basics of their trade and simply try to
pass certification exams instead of actually learning their craft. With
some embarrassment, I will now give what should have been covered in
a freshman course.

These principles apply to any procedural programming language, but
they have slightly different applications in SQL because it is a
nonprocedural, set-oriented language with concurrency issues.

8.2.1 Cohesion

Cohesion is how well a module does one and only one thing: that it is
logically coherent. The modules should have strong cohesion. You ought
to name the module in the format “<verb><object>,” where the
“<object>” is a specific logical unit in the data model.

There are several types of cohesion. They are ranked here from the
worst form of cohesion to the best:

1. Coincidental

2. Logical

3. Temporal

4. Procedural

5. Communicational

6. Informational

7. Functional

This scale is an ordinal scale, and a module can have characteristics of
more than one type of cohesion in it. Let’s define terms as follows:

�

Coincidental cohesion

. This is the worst kind of cohesion. This is
where a module performs several unrelated tasks under one roof.
Think of someone pasting random blocks of code together and
somehow getting it to compile. This is what you get with dynamic
SQL or passing table names as parameters.

154 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

For example, “InsertNewCustomer()” tells you that you are
going to be working with the tables related to the customers.
However, a procedure called “InsertNewRecord,” which can put a
row into any table in the schema, is too general to have good
cohesion. It works on bagpipes, marriages, and octopi or any new
table that gets put into the schema later.

Programmers should not be using dynamic SQL, because it
has no cohesion and is dangerous. Users who have to provide,
say, a table name, can also provide extra SQL code that will be
executed. For example, instead of passing just the table name,
they pass “Foobar; DELETE FROM Foobar; COMMIT” and
destroy the database. But dynamic SQL also says that the
programmer is so incompetent that he or she could not write the
program and had to give the job to any random user, present or
future, to complete on the fly.

This kind of coding is the result of trying to do metadata
operations in an application by using the schema information
tables. SQL engines have tools for metadata, and the user should
not be writing versions of them.

�

Logical cohesion

. Here modules can perform a series of related
tasks, but the calling module selects only one. The worst example
of this was a posting in 2004 on a SQL Server newsgroup where a
programmer had been ordered to put all procedures into one
module. A parameter would then pick which of 50-plus modules
would be executed and which parameters would be used and what
they would do in context.

OO programmers like to do this for each table, because they
can think of each table as some kind of object, and the procedure
looks like methods on that object. It isn’t.

�

Temporal cohesion

. The module performs a series of actions that are
related in time. The classic example is to put all startup or
shutdown actions in one module. Older COBOL and file system
programmers tend to do this because they worked with batch
processing systems that did not have concurrency issues.

�

Procedural cohesion

. The modules perform a sequence of steps in a
process that has to be executed in specific order. Again, this style is
used by file system programmers who are used to batch processing
systems. They often write a lot of temporary tables to hold the
process steps, like we used to allocate working tapes.

8.2 Basic Software Engineering 155

�

Communicational cohesion

. All elements operate on the same input
data set or produce the same output data set. The parts
communicate via common data in a global table.

�

Informational cohesion

. This is also called

sequential cohesion

 in the
literature. Output from one element in the module serves as input
for some other element, but unlike logical cohesion, the code for
each action is completely independent.

�

Functional cohesion

. The module performs exactly one function or
achieves a single goal. Math functions are the best example of this
kind of cohesion. This is what we are trying to do, and it is why
SQL is also known as a functional language.

Procedural, communicational, informational, and functional
cohesion are a bit more complicated in SQL than in 3GL programming
because we have transactions. A transaction is logically one step,
although it consists of individual SQL statements. What looks like
procedural, communicational, or informational cohesion can be much
stronger in SQL.

8.2.2 Coupling

If modules have to be used in a certain order, then they are strongly
coupled. If they can be executed independently of each other and put
together like Lego blocks, then they are loosely or weakly coupled. There
are several kinds of coupling, which are ranked from worst to best as
follows:

1. Content

2. Common

3. Control

4. Stamp

5. Data

The types of coupling are defined as follows:

�

Content coupling

. This occurs when one module directly references
the contents of another module. For example, module

x

 branches
to a local label in module

y

 or module

x

 modifies a statement of
module

y

. Such modules are inextricably linked to each other.

156 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

Content coupling is dangerous but is not often supported in SQL
4GL products. The rule here is not to pass a procedure as a
parameter in a SQL 4GL.

�

Common coupling

. This occurs when several modules have access to
the same global data. In the 3GL languages, this was use of global
variables in the C family and other languages. In SQL, this can
happen with the use of common global tables to pass information.
It gets to be dangerous when concurrency controls are not done
right.

�

Control coupling

. This occurs when one module has control over the
logic of another. If module

x

 calls module

y

 and

y

 determines
which action

x

 must take, then control coupling is present. The
passing of a control switch statement as an argument is an example
of control coupling. In SQL, you do this with subqueries that
reference other parts of the schema in predicates that drive control
flow.

�

Stamp coupling

. Entire tables are passed to the called module, but
only some columns are used. In SQL, the use of “SELECT *” in
production code is the prime example.

�

Data coupling

. Two modules are data coupled if all arguments are
scalar data elements. Data coupling is a desirable goal because
such modules are easier to maintain. Any changes in one module
or table are less likely to cause a regression fault in the others.

8.3 Use Classic Structured Programming

Although I like to say that SQL is short for “Scarcely Qualifies as a
Language,” the truth is that it came from “Structured English-like Query
Language” from the original project at IBM. A lot of current
programmers seem to have missed the structured revolution and have
reverted back to ad hoc programming but call it “extreme” or “agile”
these days to make sloppy programming sound better.

In classic structured programming, you have three control structures:

1.

Concatenation

. The statements inside brackets are executed in
sequential order. In SQL/PSM this is shown with the keyword
brackets “BEGIN [ATOMIC] .. END” and often by just
“BEGIN.. END” in proprietary 4GLs. The keyword ATOMIC
makes the block into a transaction, which we will not discuss in
detail here.

8.3 Use Classic Structured Programming 157

2.

Selection

. A Boolean expression determines which one of two
blocks of statements is executed. In SQL/PSM this is shown
with the keywords “IF .. THEN .. [ELSE ..] END IF;” and in
proprietary 4GLs with “IF .. THEN .. [ELSE ..];” or “IF .. [ELSE
..];” but syntax is always enough alike not to be a problem.

3.

Iteration

. A block of statements is repeatedly executed while a
Boolean expression is TRUE. In SQL/PSM this is shown with
the keywords “WHILE .. LOOP.. END WHILE;” and you will
see “WHILE.. DO..” keywords in many products. Again,
various products are always enough alike not to be a problem.

The important characteristic of all of these control structures is that
they have one entry and one exit point. Any code written using them will
also have one entry and one exit point. You do not use a GO TO
statement in classic structured programming.

Some languages allowed a RETURN() statement to jump out of
functions and set the value of the function call. Some allowed a switch or
case expression as a multiway selection control statement. But by
sticking as close as possible to classic structured programming, your
code is safe, verifiable, and easy to maintain.

8.3.1 Cyclomatic Complexity

So is there a heuristic for telling if I have a bad stored procedure? There
are a lot of metrics actually. In the 1970s, we did a lot of research on
software metrics and came up with some good stuff. Here is one that can
be computed by hand when you have short procedures to measure.

Tom McCabe (1976) invented the cyclomatic complexity metric. The
score is basically the number of decision points in a module plus one, or
the number of execution paths through the code. Decision points are
where a flow graph of the procedure would branch. In a well-structured
4GL program, the keywords of the language will tell us what the decision
points are. For us that means IF, WHILE, and each branch of a CASE or
SWITCH statement, if your 4GL supports that feature.

If the module has a score of 1 to 5, it is a simple procedure. If the
score is between 6 to 10, it might need simplification. If the score is
greater than 10, then you really should simplify the module. There are
other metrics and methods, but most of them are not as easy to compute
on the fly.

158 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

8.4 Avoid Portability Problems

Rationale:

We already talked about writing portable SQL statements, but you also
need to write portable 4GL code. Because these languages are
proprietary, they will have some features that will not port to other SQL
4GLs. Also, you cannot expect that you will always find programmers
who are expert in these languages or who have time to become experts.
Plain, simple code in an unfamiliar language can be a great help.

Stick to the classic three control structures. They will always port with
only mechanical syntax changes and can be read by any programmer
who knows a typical 3GL language. But there are other tricks and
heuristics.

8.4.1 Avoid Creating Temporary Tables

In some vendor languages, the programmer can create a temporary table
on-the-fly, while in Standard SQL the temporary tables are only created
by someone holding administrative privileges. Use subquery
expressions, derived tables, or VIEWs instead. The use of temporary
tables is usually a sign of a bad design. Temporary tables are most often
used to hold the steps in a procedural process. They replace the scratch
or work tapes we used in the 1950s magnetic tape file systems.

There are two major types of error handling. The Sybase/SQL Server
family uses a sequential code model. After executing each statement, the
SQL engine sets a global error variable, and the programmer has to write
code to immediately catch this value and take action.

The SQL/PSM model uses an interrupt model. There is a global
SQLSTATE (the old SQLCODE is deprecated), which can return
multiple values into a cache. These values can trigger actions that were
defined in WHENEVER statements associated with blocks of code.
Maintaining the error handling part of a module is difficult, so do a lot of
comments in it.

Put as much of the code into SQL statements, not into the 4GL.
Ideally, a stored procedure ought to be one SQL statement, perhaps with
a few parameters. The next best design would be a “BEGIN [ATOMIC] ..
END” with a straight sequence of SQL statements. You lose points for
each “IF..THEN..ELSE” and lose lots of points for each loop.

8.4 Avoid Portability Problems 159

8.4.2 Avoid Using Cursors

Rationale:

A cursor is a way of converting a set into a sequential file so that a host
language can use it. There are a lot of options on the Standard SQL
cursor, and there are a lot of vendor options, too.

Cursors are difficult to port and generally run much slower than pure
nonprocedural SQL statements. By slower, I mean orders of magnitude
slower. For safety, the SQL engine has to assume that anything can
happen inside a cursor, so it puts the transaction at the highest level it
can and locks out other users.

So why do people use them? The overwhelming reason is ignorance
of SQL and old habits. The cursors in SQL are modeled after tape file
semantics, and people know that kind of procedural programming. Here
is the analogy in detail:

ALLOCATE <cursor name> = get a tape drive on a channel

DECLARE <cursor name> CURSOR FOR .. = mount a tape and have a
record declaration for the file.

OPEN <cursor name> = open the file.

FETCH <cursor orientation> <cursor name> INTO <local variables>
= read one record at a time in the program then move the read/
write head as oriented.

CLOSE <cursor name> = close the file

DEALLOCATE <cursor name> = free tape drive

Add the use of temporary tables as working or scratch tapes and you
can mimic a 1950s tape system statement for statement and never learn
to think relationally at all. In 2004, there was an example of this in the
SQL Server Programming newsgroup. The newbie had written one
cursor to loop through the first table and select rows that met a criterion
into a temporary table. A second cursor looped through a second table
ordered on a key; inside this loop, a third cursor looped through the
temporary table to match rows and do an update. This was a classic
1950s master/transaction tape file merge but written in SQL. The 25 or
so statements used in it were replaced by one UPDATE with a scalar
subquery expression. It ran almost three orders of magnitude faster.

Exceptions:

The only uses I have found are truly exceptional. Cursors can be used to
repair poorly designed tables that have duplicate rows or data that is so
trashed you have to look at every row by itself to clean the data before

160 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

doing an ALTER TABLE to fix such poor design permanently. Here are
some reasons to use cursors:

1. Cursors can be used to build metadata tools, but you really
should be using what the vendor has provided. Messing
directly with schema information tables is dangerous.

2. Cursors can be used to solve NP-complete problems in SQL
where you stop with the first answer you find that is within
acceptable limits. The “Traveling Salesman” and “Bin Packing”
problems are examples, but they are not exactly common
database problems and are better solved with a procedural
language and backtracking algorithms.

3. In T-SQL and other products that still use physically
contiguous storage, calculating a median is probably much
faster with a cursor than with any of the set-based solutions,
but in other products with different storage or indexing,
computing the median is trivial.

4. It is possible to actually write code that is worse than a cursor.
Consider this slightly cleaned-up posting by Curtis Justus in
the SQL Server Programming newsgroup in November 2004.
He had a table of approximately 1 million rows and needed to
“do something with each of the rows” in what he called a
traditional “For/Each” type algorithm. The specifications were
never explained beyond that. He posted a pseudocode
program in T-SQL dialect, which would translate into Standard
SQL pseudocode something like this:

CREATE PROCEDURE TapeFileRoutine()

BEGIN

-- assume temporary table as a sequential scratch tape

DECLARE maxrecs INTEGER;

DECLARE current_row INTEGER;

DECLARE temp_a INTEGER;

DECLARE temp_b INTEGER;

INSERT INTO ScratchTape (record_nbr, temp_a, temp_b)

SELECT {{proprietary_auto_increment}}, col1, col2

 FROM MyBigTable;

8.4 Avoid Portability Problems 161

SET maxrecs = (SELECT COUNT(*) FROM ScratchTape);

SET current_row = 0;

WHILE (current_row < maxrecs)

DO

-- Get the values

SELECT col_1, col_2

 INTO temp_a, temp_b

 FROM ScratchTape

 WHERE rec_id = current_row;

-- do my manipulation ;

SET current_row = current_row + 1;

END WHILE;

END;

Yes, you are looking at a sequential tape file algorithm from the 1950s
written in SQL in the early 21st century. The poster wanted to know if
this was the most efficient way to go after the data. The answer,
obviously, is that even a cursor would be better than this approach.

You would be surprised by how many newbies rediscover sequential
tape processing in SQL. Perhaps even more remarkable was this person’s
attitude that he was currently getting a fast enough response time that it
did not have to be coded correctly. The lack of portability, the orders of
magnitude degradation, and the extra lines of code that had to be
maintained were simply not regarded as his responsibility as a
professional.

8.4.3 Prefer Set-Oriented Constructs to
Procedural Code

Rationale:

The optimizer cannot use control structures from the 4GL to pick an
execution plan. Thus, the more logic you can pass to it via pure SQL
statements, the better it will perform. The real cost in a stored procedure
is in data access. Timing for various operations on a typical 1-GHz PC in
summer 2001 in nanoseconds was:

Execute single instruction = 1 ns (1/1,000,000,000) sec

Fetch word from L1 cache memory = 2 ns

Fetch word from main memory = 10 ns

Fetch word from consecutive disk location = 200 ns

Fetch word from new disk location (seek) = 8,000,000 ns

162 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

If I can save a few disk fetches, I get a much better return on my
efforts than if I write faster executing computations. The seek times have
not gotten and are not going to get much better in the foreseeable future.

8.4.3.1 Use CASE Expressions to Replace IF-THEN-ELSE Control
Flow Statements

As an example of how to do this, consider the problem of updating the
prices in a bookstore. This is a version of an exercise in an early Sybase
SQL training class to show why we needed cursors. We want to take 10
percent off expensive books ($25 or more) and increase inexpensive
books by 10 percent to make up the loss. The following statement is the
first impulse of most new SQL programmers, but it does not work.

CREATE PROCEDURE IncreasePrices()

LANGUAGE SQL

DETERMINISTIC

BEGIN

UPDATE Books

 SET price = price * 0.90

 WHERE price >= 25.00;

UPDATE Books

 SET price = price * 1.10

 WHERE price < 25.00;

END;

A book priced at $25.00 is reduced to $22.50 by the first update.
Then it is raised to $24.75 by the second update. Reversing the order of
the update statements does not change the problem. The answer given in
the course was to use a cursor and to update each book one at a time.
This would look something like this:

BEGIN

DECLARE BookCursor CURSOR

FOR SELECT price FROM Books

FOR UPDATE;

 ..

ALLOCATE BookCursor;

 ..

OPEN BookCursor;

FETCH Bookcursor;

WHILE FOUND

8.4 Avoid Portability Problems 163

DO

IF price >= 25.00

THEN

UPDATE Books

 SET price = price * 0.90

 WHERE CURRENT OF BookCursor;

ELSE

UPDATE Books

 SET price = price * 1.10

 WHERE CURRENT OF BookCursor;

END IF;

FETCH NEXT Bookcursor;

END WHILE;

 ..

CLOSE BookCursor;

DEALLOCATE BookCursor;

END;

But by using a CASE expression to replace the IF..THEN..ELSE logic,
you can write:

UPDATE Books

 SET price = CASE WHEN price >= 25.00

 THEN price * 0.90;

 ELSE price * 1.10 END;

This requires less code and will run faster. The heuristic is to look for
nearly identical SQL statements in the branches of an IF statement, then
replace them inside one statement with a CASE expression.

8.4.3.2 Use Sequence Tables to Replace Loop Control Flow

A sequence table is a single-column table that contains integers from 1 to
(

n

), for some values of (

n

) that are large enough to be useful. One way of
generating such a table is:

CREATE TABLE Sequence (seq INTEGER NOT NULL PRIMARY KEY);

CREATE PROCEDURE MakeSequence()

LANGUAGE SQL

DETERMINISTIC

BEGIN

164 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

INSERT INTO Sequence (seq) VALUES(1);

WHILE (SELECT MAX(seq) FROM Sequence) > 1000

DO INSERT INTO Sequence (seq)

 SELECT MAX(seq)+1 FROM Sequence;

END WHILE;

END;

However, it is faster to write:

CREATE TABLE Sequence (seq INTEGER NOT NULL PRIMARY KEY);

CREATE PROCEDURE MakeSequence()

LANGUAGE SQL

DETERMINISTIC

INSERT INTO Sequence (seq)

SELECT hundred * 100 + ten * 10 + unit + 1

 FROM (VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) AS Units(unit)

 CROSS JOIN

 (VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) AS Tens(ten)

 CROSS JOIN

 (VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) AS
Hundreds(hundred);

This use of CROSS JOINs is another example of how to avoid loops.
A weird but useful heuristic is to put the phrase “the set of..” in front of
the nouns in a sentence that describes the problem you are solving. It is
bad grammar, but it can help shift your mindset to thinking in terms of
sets.

Converting a string with a comma-separated list of values into a
proper table with the position and value is done by using a simple
WHILE loop that cuts off one substring up to but not including the
comma, and then converts the substring to an integer. The code would
look like this:

CREATE PROCEDURE Parser(IN input_string VARCHAR(255))

DETERMINISTIC

LANGUAGE SQL

BEGIN

DECLARE parm_nbr INTEGER; SET parm_nbr = 0;

DECLARE val INTEGER; SET val = CAST(NULL AS INTEGER);

SET input_string = TRIM (BOTH input_string);

8.4 Avoid Portability Problems 165

WHILE CHAR_LENGTH(input_string) > 0

DO BEGIN

 SET parm_nbr = parm_nbr +1

 IF POSITION(','IN input_string) > 0

 THEN BEGIN

 SET val = SUBSTRING (input_string

 FROM 1

 FOR POSITION(',' IN input_string)-1);

 SET input_string = SUBSTRING (input_string

 FROM
CHAR_LENGTH(input_string)

 - POSITION(',' IN
input_string));

 END

 ELSE BEGIN

 SET val = input_string;

 SET input_string = '';—empty string

 END;

 IF END;

 INSERT INTO ParmList VALUES (parm_nbr, CAST(val AS INTEGER));

END WHILE;

END;

However, the same thing can be done with a Sequence table, thus:

CREATE PROCEDURE Parser(IN input_string VARCHAR(255))

DETERMINISTIC

LANGUAGE SQL

BEGIN

INSERT INTO ParmList (parm_nbr, parm)

SELECT COUNT(S2.seq),

 CAST (SUBSTRING (',' || input_string || ',' FROM
MAX(S1.seq + 1) FOR

 (S2.seq - MAX(S1.seq + 1)))

 AS INTEGER)

 FROM Input_strings AS I1, Sequence AS S1, Sequence AS S2

 WHERE SUBSTRING (',' || input_string || ',' FROM S1.seq FOR 1)
= ','

 AND SUBSTRING (',' || input_string || ',' FROM S2.seq FOR 1)
= ','

 AND S1.seq < S2.seq

 AND S2.seq <= CHAR_LENGTH (input_string) + 2

166 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

 GROUP BY input_string, S2.seq;

END;

It makes life easier if the lists in the input strings start and end with a
comma. You will also need a table called Sequence, which is a set of
integers from 1 to (

n

).
The S1 and S2 copies of Sequence are used to locate bracketing pairs

of commas, and the entire set of substrings located between them is
extracted and cast as integers in one nonprocedural step. The trick is to
be sure that the left-hand comma of the bracketing pair is the closest one
to the second comma. The place column tells you the relative position of
the value in the input string. The real advantage of the nonprocedural
approach comes from modifying this second procedure to handle an
entire table whose rows are CSV strings.

CREATE TABLE InputStrings

(list_name CHAR(10) NOT NULL PRIMARY KEY,

 input_string VARCHAR(255) NOT NULL);

INSERT INTO InputStrings VALUES ('first', '12,34,567,896');

INSERT INTO InputStrings VALUES ('second', '312,534,997,896');

 ...

In fact, the one row at a time procedure can be replaced with a VIEW
instead:

CREATE VIEW Breakdown (list_name, parm_nbr, param)

AS

SELECT list_name, COUNT(S2.seq),

 CAST (SUBSTRING (',' || I1.input_string || ',', MAX(S1.seq
+ 1),

 (S2.seq - MAX(S1.seq + 1)))

 AS INTEGER)

 FROM InputStrings AS I1, Sequence AS S1, Sequence AS S2

 WHERE SUBSTRING (',' || I1.input_string || ',' FROM S1.seq FOR
1) = ','

 AND SUBSTRING (',' || I1.input_string || ',' FROM S2.seq FOR
1) = ','

 AND S1.seq < S2.seq

 AND S2.seq <= CHAR_LENGTH (I1.input_string) + 2

 GROUP BY I1.list_name, I1.input_string, S2.seq;

8.5 Scalar versus Structured Parameters 167

8.4.3.3 Use Calendar Tables to Perform Temporal Calculations

Rationale:

The first thing to do when you start a new application is to build a
Sequence and Calendar table. The calendar table is keyed on a date, and
the nonkey columns contain information about that date relative to the
enterprise. Is this a workday or a holiday? What is its Julian date
number? What fiscal calendar does it fall in? In short, anything to do
with how the enterprise uses time must be detailed.

The table for 20 years of data is only about 7,050 rows, which is
nothing. You can look up programming tricks with this table in
newsgroups or in Celko (1999).

Exceptions:
None

8.4.3.4 Consider Auxiliary Tables to Perform Computations

Rationale:
If a function or computation returns only a few thousand values, instead
of computing it over and over, put the parameters and the results into an
auxiliary table that can be joined to the tables to get the answer. SQL is
good at JOINs but not at computations; play to its strength.

Exceptions:
If the computation can be done with simple four-function math, then
auxiliary tables could be overkill. If the computation is unpredictable or
known to have a huge range, then it might not be possible to put it into
an auxiliary table.

8.5 Scalar versus Structured Parameters
There are no arrays, lists, or other data structures in Standard SQL-92.
There is only one data structure: the table. There are base tables, views,
and derived tables, but the operative word in that list is “table.”

Procedural languages depend on other data structures, such as
arrays, lists, and records. Newbie programmers who learned to program
with such structures want to use them desperately when they get to
SQL. The result is that they kludge code with poor performance. Even
worse, they use dynamic SQL to construct a statement or an entire
program on the fly.

Stored procedure calls expect scalar parameters, not structured or
dynamic parameters. By using a few coding tricks, you can still get the

168 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

advantages of stored procedures and have some flexibility. A typical
problem is to pass a list of values to an IN() predicate, like this in
pseudocode:

SELECT a, b, c FROM Foobar WHERE a IN (<<parameter list>>);

The all-too-common kludge is dynamic SQL, which has a string with
a list of comma-separated values for <<parameter list>>. One answer is
to use the code in section 8.4 to put the list into a table and write a
compiled statement, thus:

SELECT a, b, c FROM Foobar WHERE a IN (SELECT aa FROM ParmList);

But a better answer is to scrub the list data in the front end and load it
into a table with an INSERT INTO statement. The ability to do this will
vary with each SQL product, but the standard SQL syntax uses row
constructors, like this:

INSERT INTO Parmlist (parm) VALUES (1), (2), (3), (4);

The VALUES() list has to be of a known number of rows, but by
putting NULLs or other dummy values in the list, you can get the effect
of a dynamic list. You only need to clean them out on the database side,
and you can use SELECT DISTINCT to remove duplicate values if
needed. The full table insertion statement would look like this in the host
language:

INSERT INTO Parmlist (parm)

SELECT DISTINCT parm

 FROM (VALUES (:h1), (:h2), (:h3), (:h4)) AS X(parm)

 WHERE X.parm IS NOT NULL;

8.6 Avoid Dynamic SQL
Dynamic SQL is both slow and dangerous. It is also a sign that the
programmer did not have a proper design for his or her application and
is now turning that job over to any user, present or future. The purpose
of Dynamic SQL is to build metadata tools, not applications. A metadata
tool treats schema objects as schema objects, not as parts of a data
model.

8.6 Avoid Dynamic SQL 169

8.6.1 Performance
A stored procedure will have a cached execution plan in most SQL
products, but Dynamic SQL has to be prepared repeatedly with each
execution. Obviously, this is going to be slower than running compiled
code that might already be in main storage. One counterargument is that
if the predicates change in some significant way, then recompiling can
give a better execution plan. The gist of this execution model is that if I
have a predicate with constants instead of parameters, the optimizer can
do a better job with it. For example, given this simple query:

 SELECT name, rank, serial_nbr

 FROM CombatMarines

 WHERE sex = :input_sex_code;

If the parameter “:input_sex_code” is male (1, using the ISO sex
codes), then a table scan is the best way to process the query; if the
parameter is female (2, using the ISO sex codes), then an index is the
best; if the parameter is anything else, simply return an empty result set.

Obviously, this is implementation dependent. However, more
modern optimizers will create several possible execution plans, based on
the statistics, and hold them until the parameter is known. In short, we
are back to the “Trust the optimizer” rule.

8.6.2 SQL Injection
SQL injection is a security attack in which the attacker places SQL code
into your procedure and executes it. Whenever you let a user input code
directly into Dynamic SQL in stored procedure or SQL statements
generated in client code, you are in danger. Here is an example of a
function that builds a simple Dynamic SQL string, based on an FAQ at
esquel@sommarskog.se:

CREATE FUNCTION Search_Orders (custname VARCHAR(60))

RETURNS VARCHAR(3000)

RETURN ('SELECT * FROM Orders WHERE '

 || COALESCE (custname, '1=1'));

Assume that the input for the parameters “custname” comes directly
from user input without any filtering or validation and that a malicious
user passes this value in:

170 CHAPTER 8: HOW TO WRITE STORED PROCEDURES

SET custname = ' 1=1; DROP TABLE Orders;';

The resulting SQL statement becomes:

'SELECT * FROM Orders WHERE 1=1; DROP TABLE orders;'

The host program can then PREPARE and EXECUTE it, and drop the
table for you.

A plain user is not likely to have permissions to drop a table, but I
can run all kinds of statements I wish via SQL injection. The attacker
looks for inputs that will produce a syntax error rather than a runtime
error, so he or she knows there is Dynamic SQL on the database side.
The attacker writes the code, and, if needed, ends it with semicolons or
with a start of comment that will remove the rest of the query code from
compilation. With a little probing, the attacker can find out if the
Dynamic SQL is providing a table name and really trash the schema.

The first defense is not to give the users more privileges than are
necessary for their jobs. A good heuristic is that plain users should be
granted only SELECT privileges on the tables with which they work, but
the best defense is not to use Dynamic SQL in production code.

C H A P T E R

9

Heuristics

T

HE

FOLLOWING

TRICKS

 and heuristics are not exactly mathematically
precise scientific methods. In fact, some of them sound pretty weird,
but as Larry Constantine once remarked, a method is a list of things
that tells you what to do next, when you did not know what to do next,
and you hope the method at least gets you to a workable solution, if
not a good solution.

Let me pick simple programming problems and apply these
heuristics as we go along. Consider the “Dance Partner Problem” in
which you are given a list of people and their gender. Your task is to
pair them into couples.

CREATE TABLE People

(name VARCHAR (35) NOT NULL PRIMARY KEY,

 gender INTEGER DEFAULT 1 NOT NULL

 CHECK (gender IN (1,2)); —iso gender codes

Then there is the classic Orders problem: Given a data model of
orders from customers for products from inventory, answer any of
several questions. This is not a complete schema, but it will work for
demonstration purposes.

172 CHAPTER 9: HEURISTICS

CREATE TABLE Orders

(order_nbr INTEGER NOT NULL,

 ..);

CREATE TABLE OrdersDetails

(order_nbr INTEGER NOT NULL

 REFERENCES Orders (order_nbr)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 sku CHAR(10) NOT NULL

 REFERENCES Inventory (sku)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 description CHAR(20) NOT NULL,

 qty INTEGER NOT NULL CHECK(qty > 0),

 unit_price DECIMAL(12,4) NOT NULL,

 ..);

9.1 Put the Specification into a Clear Statement

This might sound obvious, but the operative word is

clear

 statement. You
need to ask questions at the start. Let me give some examples from
actual problem statements having to do with a schema that models a
typical orders and order details database:

1. “

I want to see the most expensive item in each order.

” How do I
handle ties for the most expensive item? Did you mean the
highest unit price or the highest extension (quantity

×

 unit
price) on each order?

2.

“I want to see how many lawn gnomes everyone ordered.”

 How do I
represent someone who never ordered a lawn gnome in the
result set? Is that a NULL or a zero? If they returned all of their
lawn gnomes, do I show the original order or the net results?
Or do I show no order ever as a NULL and returns as a zero to
preserve information?

3.

“How many orders were over $100?”

 Did you mean strictly
greater than $100 or greater than or equal to $100?

9.2 Add the Words “Set of All…” in Front of the Nouns 173

In the “Dance Partner” example, we need to ask:

1. How do we pair the couples?

2. What do we do if there are more boys than girls (or vice versa)
in the table?

3. Can someone have more than one partner? If so, how do we
assign them?

Writing specs is actually harder than writing code. Given a complete,
clear specification, the code can almost write itself.

9.2 Add the Words “Set of All…” in Front of the Nouns

The big leap in SQL programming is thinking in sets and not in process
steps that handle one unit of data at a time. Phrases like “for each x...”
poison your mental model of the problem. Look for set characteristics
and not for individual characteristics. For example, given the task to find
all of the orders that ordered exactly the same number of each item, how
would you solve it?

One approach is, for each order, to see if there are two values of
quantity that are not equal to each other and then reject that order. This
leads to either cursors or a self-join. Here is a self-join version; I will not
do the cursor version.

SELECT D1.order_nbr

 FROM OrderDetails AS D1

 WHERE NOT EXISTS

 (SELECT *

 FROM OrderDetails AS D2

 WHERE D1.order_nbr = D2.order_nbr

 AND D1.qty <> D2.qty);

Or you can look at each order as a set with these set properties:

SELECT order_nbr

 FROM OrderDetails

 GROUP BY order_nbr

HAVING MIN(qty) = MAX(qty);

174 CHAPTER 9: HEURISTICS

9.3 Remove Active Verbs from the Problem Statement

Words like

traverse, compute,

 or other verbs that imply a process will
poison your mental model. Try to phrase it as a “state of being”
description instead. This is the same idea as in section 9.2, but with a
slight twist.

Programmers coming from procedural languages think in terms of
actions. They add numbers, whereas a declarative programmer looks at a
total. They think of process, whereas we think of completed results.

9.4 You Can Still Use Stubs

A famous Sydney Harris cartoon shows the phrase “Then a miracle
occurs” in the middle of a blackboard full of equations, and a scientist
says to the writer, “I think you should be more explicit here in step 2.”

We used that same trick in procedural programming languages by
putting in a stub module when we did not know what to do at the point
in a program. For example, if you were writing a payroll program and the
company had a complex bonus policy that you did not understand or
have specifications for, you would write a stub procedure that always
returned a constant value and perhaps sent out a message that it had just
executed. This allowed you to continue with the parts of the procedure
that you did understand.

This is more difficult to do in a declarative language. Procedural
language modules can be loosely coupled, whereas the clauses and
subqueries of a SELECT statement are a single unit of code. You could
set up a “test harness” for procedural language modules; this is more
difficult in SQL.

Looking at the “Dance Partner Problem,” I might approach it by saying
that I need the boys and the girls in two separate subsets, but I don’t know
how to write the code for that yet. So I stub it with some pseudocode in my
text editor. Because this is for dance, let’s pick the pseudocode words from
a musical. Nobody is going to see this scratch paper work, so why not?

SELECT M1.name AS male, F1.name AS female

 FROM (<miracle for guys>) AS M1(name, <join thingie for guys>)

 FULL OUTER JOIN

 (<miracle for dolls>) AS F1(name, <join thingie for
dolls>)

 ON M1.<join thingie for guys> ?? F1.<join thingie for
dolls>;

9.4 You Can Still Use Stubs 175

The angle-bracketed pseudocode might expand to multiple columns,
subqueries, or just about anything later. Right now they are
placemarkers. I also have a “??” placemarker for the relationship between
my guys and dolls. I can then go to the next level in the nesting and
expand the (<miracle for guys>) subquery like this:

(SELECT P1.name, <join thingie for guys>

 FROM People AS P1

 WHERE P1.gender = 1)

 AS M1 (name, <join thingie for guys>)

The same pattern would hold for the (<miracle for dolls>) subquery. I
now need to figure out some way of getting code for <join thingie for
guys>. The first place I look is the columns that appear in the People
table. The only thing I can find in that table is gender. I have a rule that
tells me guys = 1 and dolls = 2, and I am enforcing it in my subqueries
already. (Note: The full ISO sex codes are 0 = unknown, 1 = male, 2 =
female, and 9 = lawful persons, corporations, etc.) I could try this:

SELECT M1.name AS male, F1.name AS female

 FROM (SELECT P1.name, P1.gender

 FROM People AS P1

 WHERE P1.gender = 1) AS M1 (name, gender)

 FULL OUTER JOIN

 (SELECT P1.name, gender

 FROM People AS P1

 WHERE P1.gender = 2) AS F1 (name, gender)

 ON M1.gender = 1

 AND F1.gender = 2;

but it is pretty easy to see that this is a CROSS JOIN in thin disguise.
Add something with the names, perhaps?

SELECT M1.name AS male, F1.name AS female

 FROM (SELECT P1.name, P1.gender

 FROM People AS P1

 WHERE P1.gender = 1) AS M1 (name, gender)

 FULL OUTER JOIN

 (SELECT P1.name, gender

 FROM People AS P1

 WHERE P1.gender = 2) AS F1 (name, gender)

176 CHAPTER 9: HEURISTICS

 ON M1.gender = 1

 AND F1.gender = 2

 AND M1.name <= F1.name;

There was no help there. It produces a smaller set of pairs, but you
still get multiple couples on the dance floor. This is where some
experience with SQL helps. One of the customary programming tricks is
to use a self-join to get a ranking of elements in a set based on their
collation sequence. Because this works with any table, we can use it in
both guys and dolls to get the final query.

SELECT M1.name AS male, F1.name AS female

 FROM (SELECT P1.name, COUNT (P2.name)

 FROM People AS P1, People AS P2

 WHERE P2.name <= P1.name

 AND P1.gender = 1

 AND P2.gender = 1

 GROUP BY P1.name) AS M1 (name, rank)

 FULL OUTER JOIN

 (SELECT P1.name, COUNT (P2.name)

 FROM People AS P1, People AS P2

 WHERE P2.name <= P1.name

 AND P1.gender = 2

 AND P2.gender = 2

 GROUP BY P1.name) AS F1 (name, rank)

 ON M1.rank = F1.rank;

9.5 Do Not Worry about Displaying the Data

In a tiered architecture, display is the job of the front end, not the
database. Obviously, you do not do rounding, add leading zeros, change
case, or pick a date format in the database. The important thing is to pass
the front end all of the data it needs to do its job, but it is more than that.
You can get your dance partner pairs with the query in section 9.4, but if
you do not want to see the pairs on the same row, you can write a more
compact query like this:

SELECT P1.name, P1.gender, COUNT(P2.name) AS rank

 FROM People AS P1, People AS P2.

 WHERE P1.gender = P2.gender

 AND P2.name <= P1.name

9.6 Your First Attempts Need Special Handling 177

 GROUP BY P1.name, P1.gender;

This will put one person per row with a ranking in the alphabetical
sort for their gender rather than one couple per row, but that is still the
same information from a simpler query. Notice that both solutions can
leave unpaired people toward the end of the alphabet.

You can add an ORDER BY clause to the cursor that passes the result
set to the front-end program in a simple client/server system, but in
architectures with multiple tiers, sorting and other display functions
might be performed differently in several places. For example, the same
data is displayed in English units sorted by division in the United States
but displayed in SI units sorted by country in Europe.

9.6 Your First Attempts Need Special Handling

Henry Ledgard (1976) put it very nicely:

Pruning and restoring a blighted tree is almost an impossible
task. The same is true of blighted computer programs.
Restoring a structure that has been distorted by patches and
deletions, or fixing a program with a seriously weak algorithm
isn’t worth the time. The best that can result is a long,
inefficient, unintelligible program that defies maintenance. The
worst that could result, we dare not think of.

This is especially true with SQL, but how to handle restarts in DDL
and DML is different because of the declarative nature of the two
sublanguages. DDL execution is static once it is put into place, whereas
DML is dynamic. That is, if I issue the same CREATE <schema object>
command, it will have the same results each time, but if I issue the same
SELECT, INSERT, UPDATE, or DELETE, the execution plan could
change each time.

9.6.1 Do Not Be Afraid to Throw Away Your First
Attempts at DDL

Bad DDL will distort all of the code based on it. Just consider our little
“Dance Partner” schema: What if a proprietary BIT data type had been
used for gender? The code would not port to other SQL dialects. The
host languages would have to handle low-level bit manipulation. It
would not interface with other data sources that use ISO standards.

178 CHAPTER 9: HEURISTICS

Designing a schema is hard work. It is unlikely that you will get it
completely right in one afternoon. Rebuilding a database will take time
and require fixing existing data, but the other choices are worse.

When I lived in Salt Lake City, Utah, a programmer I met at a user
group meeting had gotten into this situation: The existing database was
falling apart as the workload increased thanks to poor design at the start.
The updates and insertions for a day’s work were taking almost 24 hours
at that time, and the approaching disaster was obvious to the
programmers. Management had no real solution, except to yell at the
programmers. They used the database to send medical laboratory results
to hospitals and doctors.

A few months later, I got to see how an improperly declared column
resulted in the wrong quantities of medical supplies being shipped to an
African disaster area. The programmer tried to save a little space by
violating first normal form by putting the package sizes into one column
and pulling them out with SUBSTRING() operations. The suppliers later
agreed to package smaller quantities to help with the fantastic expense of
shipping to a war zone. Now the first “subfield” in the quantity column
was one unit and not five, but the tightly coupled front did not know
this. Would you like to pick which four children will die because of
sloppy programming? See what we mean by the last sentence in
Ledgard’s quote?

9.6.2 Save Your First Attempts at DML

Bad DML can run several orders of magnitude slower than good DML.
The bad news is that it is difficult to tell what is good and what is bad in
SQL. The procedural programmers had a deterministic environment in
which the same program ran the same way every time. SQL decides how
to execute a query based on statistics about the data and the resources
available. They can and do change over time. Thus, what was the best
solution today could be the poorer solution tomorrow.

In 1988, Pascal (1988) published a classic article on PC database
systems at the time. Pascal constructed seven logical equivalent queries
for a database. Both the database and the query set were simple and were
run on the same hardware platform to get timings.

The Ingres optimizer was smart enough to find the equivalence, used
the same execution plan, and gave the best performance for all queries.
The other products at the time gave uneven performances. The worst
timing was an order of magnitude or more than the best. In the case of
Oracle, the worst timing was more than 600 times the best.

9.8 Draw Circles and Set Diagrams 179

I recommend that you save your working attempts so that you can
reuse them when the world and/or your optimizer change. The second
example for the “Dance Partner” in section 9.5 does a nice job of
illustrating this heuristic. Put the code for one of the queries in as a
comment, so the maintenance programmer can find it.

9.7 Do Not Think with Boxes and Arrows

This is going to sound absolutely insane, but some of us like to doodle
when we are trying to solve a problem. Even an informal diagram can be
a great conceptual help, especially when you are learning something
new. We are visual creatures.

The procedural programmers had the original ANSI X3.5 Flowchart
symbols as an aid to their programming. This standard was a first crude
attempt at a visual tool that became Structure Charts and Data Flow
Diagrams (DFD) in the 1970s. All of these tools are based on “boxes and
arrows”—they show the flow of data and/or control in a procedural
system. If you use the old tools, you will tend to build the old systems.
You might write the code in SQL, but the design will tend toward the
procedural.

9.8 Draw Circles and Set Diagrams

If you use set-oriented diagrams, you will tend to produce set-oriented
solutions. For example, draw a GROUP BY as small, disjointed circles
inside a larger containing circle so you see them as subsets of a set. Use a
time line to model temporal queries. In a set-oriented model, nothing
flows; it exists in a state defined by constraints.

Probably the clearest example of “boxes and arrows” versus “set
diagrams” is the Adjacency List model versus the Nested Sets model for
trees. You can Google these models or buy a copy of my book

Trees and
Hierarchies in SQL

for Smarties

for details. The diagrams for each
approach are shown in Figure 9.1.

Figure 9.1

Adjacency list
versus Nested Set

Trees.

180 CHAPTER 9: HEURISTICS

9.9 Learn Your Dialect

Although you should always try to write Standard SQL, it is also
important to know which constructs your particular dialect and release
favor. For example, constructing indexes and keys is important in older
products that are based on sequential file structures. At the other
extreme, the Nucleus engine from Sand Technology represents the entire
database as a set of compressed bit vectors and has no indexing because
in effect everything is automatically indexed.

9.10 Imagine That Your WHERE Clause Is “Super Ameba”

That is the weirdest title in this chapter, so bear with me. Your “Super
Ameba” computer can split off a new processor at will, and assign it a
task, in a massively parallel fashion. Imagine that every row in the
working table that was built in the FROM clause is allocated one of these
“ameba processors” that will test the WHERE clause search condition on
just that row. This is a version of Pournelle’s rule: “one task, one
processor.”

If every row in your table can be independently tested against simple,
basic search conditions, then your schema is probably a good relational
design. But if your row needs to reference other rows in the same table,
consult an outside source, or cannot answer those simple questions,
then you probably have some kind of normalization problems.

You have already seen the Nested Sets model and the Adjacency List
model for trees. Given one row in isolation from the rest of the table, can
you answer a basic node question about the tree being modeled? This
leads to asking: What are basic questions? Here is a short list that applies
to trees in graph theory.

1. Is this a leaf node?

2. Is this the root node?

3. How big is the subtree rooted at this node?

4. Given a second node in the same tree, is this node superior,
subordinate, or at the same level as my node?

Question 4 is particularly important, because it is the basic
comparison operation for hierarchies. As you can see, the Nested Sets
model can answer all of these questions and more, whereas the
Adjacency List model can answer none of them.

9.11 Use the Newsgroups and Internet 181

9.11 Use the Newsgroups and Internet

The Internet is the greatest resource in the world, so learn to use it. You
can find a whole range of newsgroups devoted to your particular product
or to more general topics. When you ask a question on a newsgroup,
please post DDL, so that people do not have to guess what the keys,
constraints, Declarative Referential Integrity, data types, and so forth in
your schema are. Sample data is also a good idea, along with clear
specifications that explain the results you wanted.

Most SQL products have a tool that will spit out DDL in one
keystroke. Unfortunately, the output of these tools is generally less than
human-readable. You should prune the real tables down to just what is
needed to demonstrate your problem: There is no sense in posting a 100-
column CREATE TABLE statement when all you want is two columns.
Then clean up the constraints and other things in the output using the
rules given in this book. You are asking people to do your job for you for
free. At least be polite enough to provide them with sufficient
information.

If you are a student asking people to do your homework for you,
please be advised that presenting the work of other people as your own is
a valid reason for expulsion and/or failure at a university. When you
post, announce that this is homework, the name of your school, your
class, and your professor. This will let people verify that your actions are
allowed.

C H A P T E R

10

Thinking in SQL

“It ain’t so much the things we don’t know that get us into trouble. It’s the
thing we know that just ain’t so.”

—Artemus Ward (Charles Farrar Browne),
American humorist (1834–1867)

T

HE

BIGGEST

HURDLE

 in learning SQL is thinking in sets and logic, instead of
in sequences and processes. I just gave you a list of heuristics in the
previous chapter, but let’s take a little time to analyze why mistakes
were made. You now have some theory, but can you do diagnostics?

 I tried to find common errors that new programmers make, but
perhaps the most difficult thing to learn is thinking in sets. Consider
the classic puzzle shown in Figure 10.1.

The usual mistake people make is trying to count the 1

×

 1

×

 2
bricks one at a time. This requires the ability to make a three-
dimensional mental model of the boxes, which is really difficult for
most of us.

The right approach is to look at the whole block as if it were
completely filled in. It is 4

×

5

 ×

5 units, or 50 bricks. The corner that
is knocked off is 3 bricks, which we can count individually, so we must
have 47 bricks in the block. The arrangement inside the block does
not matter at all.

184 CHAPTER 10: THINKING IN SQL

All of these examples are based on actual postings in a newsgroup
that have been translated into SQL/PSM to remove proprietary features.
In some cases, I have cleaned up the data element names, and in others I
have left them. Obviously, I am guessing at motivation for each example,
but I think I can defend my reasoning.

10.1 Bad Programming in SQL and Procedural Languages

As an example of not learning any relational approaches to a problem,
consider a posting in the comp.databases.ms-sqlserver newsgroup in
January 2005: The title was “How to Find a Hole in Records,” which
already tells you that the poster is thinking in terms of a file system and
not an RDBMS.

The original table declaration had the usual newbie “id” column,
without a key or any constraints. The table modeled a year’s worth of
rows identified by a week-within-year number (1 to 53) and a day-of-
the-week number (1 to 7). Thus, we started with a table that looked
more or less like this, after the names were cleaned up:

CREATE TABLE WeeklyReport

(id INTEGER AUTONUMBER NOT NULL,—not valid SQL!

 week_nbr INTEGER NOT NULL,

 day_nbr INTEGER NOT NULL);

Figure 10.1

Classic block
puzzle.

10.1 Bad Programming in SQL and Procedural Languages 185

By removing the useless, proprietary id column and adding
constraints, we then had the following table:

CREATE TABLE WeeklyReport

(week_nbr INTEGER NOT NULL

 CHECK(week_nbr BETWEEN 1 AND 53),

 day_nbr INTEGER NOT NULL

 CHECK(day_nbr BETWEEN 1 AND 7),

PRIMARY KEY(week_nbr, day_nbr));

Despite giving some constraints in the narrative specification, the
poster never bothered to apply them to the table declaration. Newbies
think of a table as a file, not as a set. The only criteria that data needs to
be put into a file is that it is written to that file. The file cannot validate
anything. The proprietary auto-number acts to replace a nonrelational
record number in a sequential file system.

The problem was to find the earliest missing day within each week for
inserting a new row. If there were some other value or measurement for
that date being recorded, it was not in the specifications. The poster’s
own T-SQL solution translated in SQL/PSM like this, with some name
changes:

CREATE FUNCTION InsertNewWeekDay (IN my_week_nbr_nbr INTEGER)

RETURNS INTEGER

LANGUAGE SQL

BEGIN DECLARE my_day_nbr INTEGER;

DECLARE result_day_nbr INTEGER;

SET my_day_nbr = 1;

xx:

WHILE my_day_nbr < 8

DO IF NOT EXISTS

 (SELECT *

 FROM WeeklyReport

 WHERE day_nbr = my_day_nbr

 AND week_nbr = my_week_nbr_nbr)

THEN BEGIN

 SET result_day_nbr = my_day_nbr;

 LEAVE xx;

 END;

ELSE BEGIN

 SET my_day_nbr = my_day_nbr + 1;

186 CHAPTER 10: THINKING IN SQL

 ITERATE xx;

 END;

END IF;

END WHILE;

RETURN result_day_nbr;

END;

This is a classic imitation of a FOR loop, or counting loop, used in all
3GL programming languages. However, if you look at it for two seconds,
you will see that this is bad procedural programming! SQL will not make
up for a lack of programming skills. In fact, the bad effects of mimicking
3GL languages in SQL are magnified. The optimizers and compilers in
SQL engines are not designed to look for procedural code optimizations.
By removing the redundant local variables and getting rid of the hidden
GOTO statements in favor of a simple, classic structured design, the
poster should have written this:

CREATE FUNCTION InsertNewWeekDay (IN my_week_nbr INTEGER)

RETURNS INTEGER

LANGUAGE SQL

BEGIN

DECLARE answer_nbr INTEGER;

SET answer_nbr = 1;

WHILE answer_nbr < 8

DO IF NOT EXISTS

 (SELECT *

 FROM WeeklyReport

 WHERE day_number = answer_nbr

 AND week_nbr = my_week_nbr)

 THEN RETURN answer_nbr;

 ELSE SET answer_nbr = answer_nbr + 1;

 END IF;

END WHILE;

RETURN CAST (NULL AS INTEGER);—cause an error

END;

This points out another weakness in this posting. We were not told
how to handle a week that has all seven days represented. In the original
table design, any integer value would have been accepted because of the
lack of constraints. In the revised DDL, any weekday value not between 1
and 7 will cause a primary-key violation. This is not the best solution,

10.1 Bad Programming in SQL and Procedural Languages 187

but it at least follows the specs that were given without making too many
guesses as to what should have been done.

But can we do this without a loop and get a pure, nonprocedural SQL
solution? Yes, there are several ways: Because the purpose of finding this
weekday number is to insert a row in the table, why not do that in one
procedure instead of finding the number in a function, and then doing
the insertion in another procedural step. Think at the level of a whole
process and not in sequential steps.

This first answer is ugly looking and difficult to generalize, but it is
fast if the optimizer factors out the tabular subquery in the WHEN
clauses and computes it once. It also uses no local variables.

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

VALUES (new_week_nbr,

 (CASE WHEN 1 NOT IN

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 1

 WHEN 2 NOT IN

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 2

 WHEN 3 NOT IN

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 3

 WHEN 4 NOT IN

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 4

 WHEN 5 NOT IN

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 5

 WHEN 6 NOT IN

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 6

 WHEN 7 NOT IN

188 CHAPTER 10: THINKING IN SQL

 (SELECT day_nbr FROM WeeklyReport WHERE week_nbr =
new_week_nbr)

 THEN 7

 ELSE NULL END;—null will violate primary key

The thought process was to get the entire set of weekday numbers
present in the week, and then compare them to each value in an ordered
list. The CASE expression is just a way to hide that list. Although it is a
step forward, it is not yet really a set-oriented solution.

Here is another version that uses a table constructor. This is more
compact and easy to generalize. Here we are actually using a set-oriented
solution! We are subtracting the set of actual days from the set of all
possible days, and then looking at the minimum value in the result to get
an answer.

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

(SELECT my_week_nbr, MIN(n)

 FROM (VALUES (1), (2), (3), (4), (5), (6), (7)) AS Weekdays(n)

 WHERE NOT EXISTS

 (SELECT *

 FROM WeeklyReport AS W

 WHERE W.week_nbr = my_week_nbr

 AND Weekdays.n = W.my_day_nbr));

You can also use a pure set operations approach. The set difference
operator can remove all of the numbers that are present, so that we can
pick the minimum value from the leftovers.

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

SELECT my_week_nbr, MIN(n)

FROM (VALUES (1), (2), (3), (4), (5), (6), (7)

 EXCEPT

 SELECT day_nbr

 FROM WeeklyReport AS W

 WHERE W.week_nbr = my_week_nbr) AS N(n);

10.2 Thinking of Columns as Fields 189

If all seven days are present, we will get an empty set, which will
return a NULL for the day_nbr, and the NULL will violate the primary-
key constraint.

Here is a third, generalized version with the Sequence table providing
any range of integers desired. Just remember that the DDL has to also
match that change.

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

SELECT my_week_nbr, MIN(n)

 FROM (SELECT seq FROM Sequence WHERE seq <= 7—change to any
value

 EXCEPT

 SELECT day_nbr

 FROM WeeklyReport AS W

 WHERE W.week_nbr = my_week_nbr) AS N(n);

In the case of only seven values, there is not going to be a huge
difference in performance among any of these answers. However, with a
huge number of values, the use of hashing or bit vector indexes would be
a noticeable improvement over a loop.

10.2 Thinking of Columns as Fields

The original code was actually much worse, because the poster wanted to
create and drop tables on the fly. The purpose is to load totals into a
summary report table.

CREATE PROCEDURE SurveySummary()

LANGUAGE SQL

BEGIN

DECLARE sche_yes INTEGER;

DECLARE sche_no INTEGER;

DECLARE sche_mb INTEGER;

DECLARE sche_other INTEGER;

DECLARE how_yes INTEGER;

DECLARE how_no INTEGER;

DECLARE how_mb INTEGER;

DECLARE how_other INTEGER;

190 CHAPTER 10: THINKING IN SQL

DECLARE paaexpl_yes INTEGER;

DECLARE paaexpl_no INTEGER;

DECLARE paaexpl_mb INTEGER;

DECLARE paaexpl_other INTEGER;

SET sche_yes = (SELECT COUNT(*) FROM SurveyForms WHERE sche =
1);

SET sche_no = (SELECT COUNT(*) FROM SurveyForms WHERE sche = 2);

SET sche_mb = (SELECT COUNT (*) FROM SurveyForms WHERE sche = 3);

SET sche_other = (SELECT COUNT(*)

 FROM SurveyForms

 WHERE NOT (sche IN (1, 2, 3)));

SET how_yes = (SELECT COUNT(*) FROM SurveyForms WHERE howwarr =
1);

SET how_no = (SELECT COUNT(*) FROM SurveyForms WHERE howwarr =
2);

SET how_mb = (SELECT COUNT (*) FROM SurveyForms WHERE howwarr =
3);

SET how_other = (SELECT COUNT(*)

 FROM SurveyForms

 WHERE NOT (howwarr IN (1,2,3)));

SET paaexpl_yes = (SELECT COUNT(*) FROM SurveyForms WHERE

paaexpl = 1);

SET paaexpl_no = (SELECT COUNT(*) FROM SurveyForms WHERE

paaexpl = 2);

SET paaexpl_mb = (SELECT COUNT (*) FROM SurveyForms WHERE
paaexpl

 = 3);

SET paaexpl_other = (SELECT COUNT(*) FROM SurveyForms WHERE NOT

(paaexpl IN (1, 2, 3)));

DELETE FROM SurveyWorkingtable;

INSERT INTO SurveyWorkingtable

VALUES (sche_yes, sche_no, sche_mb, sche_other,

 How_yes, how_no, how_mb, how_other,

 Paaexpl_yes, paaexpl_no, paaexpl_mb, paaexpl_other);

END;

Why did the poster create a dozen local variables and then use scalar
subqueries to load them? The poster is still thinking in terms of a 3GL

10.3 Thinking in Processes, Not Declarations 191

programming language. In COBOL or other 3GL languages, the file
containing the Construction Survey data would be read in one record at
a time, and then each record would be read one field at a time, from left
to right. A sequence of IF-THEN statements would look at the fields and
increment the appropriate counter. When the entire file is read, the
results would be written to the working file for the survey summary.

The poster looked at each column as if it were a field and asked how
to get the value for it, in isolation from the whole. The poster had seen
the use of a subquery expression and implemented it that way. The
subqueries will not be well optimized, so this is actually going to run
longer than if the poster had used SQL/PSM to mimic the classic COBOL
program for this kind of summary.

Without repeating a dozen columns again, a set-oriented solution is
this:

CREATE PROCEDURE SurveySummary()

LANGUAGE SQL

BEGIN

DELETE FROM SurveyWorkingtable;

INSERT INTO SurveyWorkingtable (sche_yes, sche_no, ..,
paaexpl_other)

SELECT SUM (CASE WHEN sche = 1 THEN 1 ELSE 0 END) AS sche_yes,

 SUM (CASE WHEN sche = 2 THEN 1 ELSE 0 END) AS sche_no,

 ..

 SUM (CASE WHEN paaexpl NOT IN (1, 2, 3)

 THEN 1 ELSE 0 END) AS paaexpl_other

 FROM SurveyForms;

END;

The trick was to ask what you want in each row of a summary table, as
a completed unit of work, and not start at the column level. The answer
is a tally of answers to some questions. The word

tally

 leads you to SUM()
or COUNT(), and you remember the trick with the CASE expression.

The final question is why not use a VIEW to get the summary instead
of a procedure?

10.3 Thinking in Processes, Not Declarations

This is a simple schema for checking items out of an inventory. The
original schema lacked keys and constraints that had to be added to give
us this:

192 CHAPTER 10: THINKING IN SQL

CREATE TABLE Users
(user_id CHAR(8) NOT NULL PRIMARY KEY,

 password VARCHAR(10) NOT NULL,

 max_reserves INTEGER NOT NULL

 CHECK (max_reserves >= 0));

CREATE TABLE Reservations

(user_id CHAR(8) NOT NULL

 REFERENCES Users(user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

item_id INTEGER NOT NULL

 REFERENCES Items(item_id));

The original narrative specification was:
Each user can reserve a maximum of (

n

) items. Whenever a
user reserves something, the “max_reserves” field [sic] of the
user is retrieved and checked. Then a record [sic] is inserted
into the Reservations table, and the “max_reserves” field [sic]
of the user is updated accordingly. I would like to ask if there is
a better way to implement this system, because there is a
chance that the user reserves more than the maximum num-
ber, if he or she is logged in from two computers.

The first proposal was for a stored procedure that looked like this in
SQL/PSM:

CREATE PROCEDURE InsertReservations (IN max_reserves INTEGER,

IN my_user_id CHAR(8), IN my_item_id INTEGER)

LANGUAGE SQL

BEGIN

DECLARE my_count INTEGER;

SET my_count

 = (SELECT COUNT(*)

 FROM Reservations

 WHERE user_id = my_user_id);

IF my_count >= max_reserves

THEN RETURN ('You have Reached you MAX number of items');

ELSE INSERT INTO Reservations (user_id, item_id)

 VALUES(my_user_id, my_item_id);

END IF;

END;

10.3 Thinking in Processes, Not Declarations 193

Passing the maximum number of items as a parameter makes no
sense, because you have to look it up; this will let you pass any value you
desire. Having a local variable for the count is redundant; SQL is
orthogonal, and the scalar subquery can be used wherever the scalar
variable is used.

Rows are not records and columns are not fields. SQL is a declarative
language, not a procedural one. So a sequence of procedural steps like
“Retrieve

→

 check

→

 insert

→

 update” does not make sense. Instead,
you say that you make a reservation such that the user is not over his or
her limit. Think of logic, not process.

CREATE PROCEDURE MakeReservation

 (IN my_user_id CHAR(8), IN my_item_id INTEGER)

LANGUAGE SQL

BEGIN

INSERT INTO Reservations (user_id, item_id)

SELECT my_user_id, my_item_id

 FROM Users AS U

 WHERE U.user_id = my_user_id

 AND U.max_reserves

 >= (SELECT COUNT(*)

 FROM Reservations AS R

 WHERE R.user_id = my_user_id);

-- add error handling here

END;

Instead of recording the tally of reserved items in local storage, you
can get it with a subquery expression. In fact, you might want to have a
view to use for reports.

CREATE VIEW Loans (user_id, max_reserves, current_loans)

AS

SELECT U.user_id, U.max_reserves, COUNT(*)

 FROM Reservations AS R, Users AS U

 WHERE R.user_id = U.user_id

 GROUP BY U.user_id, U.max_reserves;

194 CHAPTER 10: THINKING IN SQL

10.4 Thinking the Schema Should Look Like the Input Forms

There are several versions of this error. The easiest one is a simple
timecard form that gets modeled exactly as it is printed on the paper
form.

CREATE TABLE Timecards

(user_id CHAR(8) NOT NULL,

 punch_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 event_flag CHAR(3) DEFAULT 'IN ' NOT NULL

 CHECK(flag IN ('IN ', 'OUT')),

 PRIMARY KEY (user_id, punch_time));

But to answer even basic questions, you have to match up in and out
times. Dr. Codd (1979) described a row in an RDBMS as containing a
fact, but more than that, it should contain a whole fact and not half of it.
The “half-fact” that John showed up at the job at 09:00 Hrs has nothing
to do with paying him. I need to know that John was on the job from
09:00 to 17:00 Hrs. The correct design holds a whole in each row, thus:

CREATE TABLE Timecards

(user_id CHAR(8) NOT NULL,

 in_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 out_time TIMESTAMP,—null means current

 CHECK(in_time < out_time),

 PRIMARY KEY (user_id, in_time));

Many new SQL programmers are scared of NULLs, but this is a good
use of them. We do not know the future, so we cannot assign a value to
the out_time until we have that information.

Another common example is a simple order form that is copied
directly into DDL. In skeleton form, the usual layout is something like
this:

CREATE TABLE Orders

(order_nbr INTEGER NOT NULL PRIMARY KEY,

 ..

 order_total DECIMAL(12,2) NOT NULL,

 ..);

CREATE TABLE OrdersDetails

10.4 Thinking the Schema Should Look Like the Input Forms 195

(order_nbr INTEGER NOT NULL,

 line_nbr INTEGER NOT NULL,

 PRIMARY KEY (order_nbr, line_nbr),

 item_id INTEGER NOT NULL

 REFERENCES Inventory(item_id),

 qty_ordered INTEGER NOT NULL

 CHECK (qty_ordered > 0)

 ..);

The order total can be computed from the order details, so it is
redundant in the Orders table; but the total was a box on the paper form,
so the newbie put it in the table.

Nobody is actually buying or shipping a line number. Customers are
ordering items, but the lines on the paper form are numbered, so the
line numbers are in the OrderDetails table. This is dangerous, because if
I repeat the same item on another line, I have to consolidate them in the
database. Otherwise, quantity discounts will be missed, and I am wasting
storage with redundant data.

For example, each of the rows shows a “half-fact” in each row. One
says that I ordered two pairs of lime green pants and the other says that I
ordered three pairs of lime green pants on my order #123. The whole
fact is that I ordered five pairs of lime green pants on my order #123.

In 2004, I pointed this out to a programmer who had such a schema.
She insisted that they needed the line numbers to be able to reproduce
the original order exactly as it was keyed in, but then in a following
posting in the same thread, she complained that her people were
spending hours every day verifying the quantity of items in orders they
received, because their suppliers did not use the proper model to present
a consolidated, sorted display of the data.

A P P E N D I X

Resources

Military Standards

DoD 8320.1-M-1, Data Element Standardization Procedures.
DoD Directive 8320.1, “DoD Data Administration”

http://www.dtic.mil/whs/directives/corres/html/83201.htm
http://www.abelia.com/498pdf/498ARAPX.PDF

Metadata Standards

Here is a short summary of the NCITS L8 Metadata Standards
Committee rules for data elements:

http://pueblo.lbl.gov/~olken/X3L8/drafts/draft.docs.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00005.html

Also the pdf file:
http://www.oasis-open.org/committees/download.php/6233/
c002349_ISO_IEC_11179

The draft:
http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/
c002349_ISO_IEC_11179-1_1999(E).zip

198 RESOURCES

ANSI and ISO Standards

The SI Basics (“Metric System”)

ISO 31 “Quantities and Units (14 parts)”

ISO 1000 “SI Units and Recommendations for the Use of Their Multiple
and of Certain Other Units for the Application of the SI”

ISO 2955 “Information Processing—Representation of SI and Other
Units for Use in Systems with Limited Character Sets”

A guide to both ISO 31 and ISO 1000 can be purchased at:

http://www.iso.org/iso/en/prods-services/prods-services/otherpubs/
Quality.PublicationList?CLASSIFICATION=HANDBOOKS#090201

ISO 639-1:2002 “Codes for the Representation of Names of
Languages—Part 1: Alpha-2 Code”

ISO 639-2:1998 “Codes for the Representation of Names of
Languages—Part 2: Alpha-3 Code”

The language codes are available online:

http://www.loc.gov/standards/iso639-2/iso639jac.html

ISO 3166 “Codes for the Representation of Names of Countries”

This standard provides a unique two-letter code for each country and a
three-letter code for special uses. A three-digit numeric code is given and
intended as an alternative for all applications that need to be
independent of the alphabet or to save bits in computer storage.

http://www.iso.org/iso/en/prods-services/popstds/
countrynamecodes.html

ISO 4217:2001 “Codes for the Representation of Currencies and Funds”
http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html

IBAN: International Standard Bank Number

Retail Industry 199

http://www.ecbs.org/iban/iban.htm and the European Committee for
Banking Standards Web site for publications

ISO 8601 “Data Elements and Interchange Formats—Information
Interchange—Representation of Dates And Times.”

http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

U.S. Government Codes

NAICS: North American Industry Classification System. This system
replaced the old Standard Industrial Classification (SIC) system.

http://www.census.gov/epcd/www/naics.html

NAPCS: North American Product Classification System
http://www.census.gov/eos/www/napcs/napcs.htm

TIGER: Topologically Integrated Geographic Encoding and Referencing
system. This is how the census views geography and reports data. It is
available in electronic formats.

DOT: Dictionary of Occupational Titles. This is the U.S. Department of
Labor encoding system. You can see some of the codes at this URL:

http://www.wave.net/upg/immigration/dot_index.html

Retail Industry

EAN: European Article Number, now combined with the UPC codes

ISO/IEC 15418:1999 “EAN/UCC Application Identifiers and Fact Data
Identifiers and Maintenance”

ISO/IEC 15420:2000 “Automatic Identification and Data Capture
Techniques—Bar Code Symbology Specification—EAN/UPC”

Bar Code Détente: U.S. Finally Adds One More Digit

2004 July 12, the

New York Times

, by Steve Lohr; http://
www.nytimes.com/2004/07/12/business/
12barcode.html?ex=1090648405&ei=1&en=202cb9baba72e846

200 RESOURCES

VIN: Vehicle Identification Number

ISO 3779:1983 Vehicle Identification Number (VIN)

ISO 4030:1983 Vehicle Identification Number (VIN)—Location and
Attachment

ISO/TR 8357:1996 Instructions for the implementation of the
assignment of world manufacturer identifier (WMI) codes for vehicle
identification number (VIN) systems and for world parts manufacturer
identifier (WPMI) codes (available in English only)

A good news article on the changes that are coming to the VIN:

http://www.cars.com/news/stories/
070104_storya_dn.jhtml?page=newsstory&aff=national

ISO tire sizes explained:

http://www.hostelshoppe.com/tech_tires.php

ISBN: International Standard Book Number

http://www.isbn.org/standards/home/index.asp

This site provides a converter for the new 13-digit ISBN that is based on
the change from 10-digit UPC codes to 13-digit EAN codes in the retail
industry on January 1, 2005.

Code Formatting and Naming Conventions

You can find other opinions at:

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart2formatting.asp

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart1formatting.asp.

Gulutzan, P. “SQL Naming Conventions,” http://dbazine.com/
gulutzan5.shtml

Code Formatting and Naming Conventions 201

Bryzek, M. “Constraint Naming Standards,” http://ccm.redhat.com/doc/
core-platform/5.0/engineering-standards/eng-standards-constraint-
naming-sect-1.html

Celko, J. “Ten Things I Hate about You,”
http://www.intelligententerprise.com/001205/
celko1_1.jhtml?_requestid=304726

ISO/IEC. IS 11179-5 Information Technology Specification and
Standardization of Data Elements: PART 5, Naming and Identification
Principles for Data Elements.

http://metadata-standards.org/Document-library/Draft-standards/
11179-Part5-Naming&Identification/

Jones, S. “Standards Part 1—Abbreviated Programming,” http://
www.databasejournal.com/features/mssql/article.php/1471461

Karbowski, J. J. “Naming Standards beyond Programming,”
http://www.devx.com/tips/Tip/12710

Koch, G., and K. Loney.

Oracle8i: The Complete Reference

 (3rd ed.).
Emeryville, CA: Osborne McGraw Hill, 2000.

Kondreddi, N., Vyas. “Database Object Naming Conventions,”
http://vyaskn.tripod.com/object_naming.htm

Mullins, C. “What’s in a Name?” http://www.tdan.com/i004fe02.htm
Mullins, C. http://www.craigsmullins.com/dbt_0999.htm

Sheppard, S. “Oracle Naming Conventions,” http://www.ss64.com/
orasyntax/naming.html

A p p e n d i x

Bibliography

Reading Psychology

Fisher, D.

“Reading and Visual Search,”

Memory and Cognition

, 3, 188-
196, 1975.

Mason, M. “From Print to Sound in Mature Readers as a Function of
Reader Ability and Two Forms of Orthographic Regularity,”

Memory
and Cognition

, 6, 568–581, 1978.

Meyer, D. E., and K. D. Gutschera. “Orthographic versus Phonemic
Processing of Printed Words,” Psychonomic Society Presentation,
1975.

Pollatsek, A., A. D. Well, and R. M. Schindler.“Effects of Segmentation
and Expectancy on Matching Time for Words and Nonwords,”

Journal
of Experimental Psychology: Human Perception and Performance

, 1, 328–
338, 1975.

Saenger, P.

Space Between Words: The Origins of Silent Reading

. Palo
Alto, CA: Stanford University Press, 1975.

204 BIBLIOGRAPHY

Programming Considerations

Arthur, J.

Measuring Programmer Productivity and Software Quality

. New
York: John Wiley & Sons, 1985.

Baecker, R. “Enhancing Program Readability and Comprehensibility with
Tools for Program Visualization,”

Proceedings of the 10th International
Conference on Software Engineering

, 356-366, April 11-15, 1988,
Singapore.

Berry, R. E., and A. E. Meekings. “A Style Analysis of C Programs,”

Communications of the ACM

, 281, 80–88, January 1985.

Brooks, R. “Studying Programmer Behavior Experimentally: The
Problems of Proper Methodology,”

Communications of the ACM

, 234,
207–213, April 1980.

Celko, J. “Observations about Student Programming Practices,”

Structured Programming

, Fall 1989, p. 215.

Celko, J.

SQL for Smarties

 (3rd ed.). San Francisco: Morgan-Kaufmann,
2005.

Celko, J.

SQL Puzzles & Answers

. San Francisco: Morgan-Kaufmann,
1997.

Celko, J.

Data & Databases

. San Francisco: Morgan-Kaufmann, 1999.

Celko, J.

Trees & Hierarchies in SQL

. San Francisco: Morgan-Kaufmann,
2004.

Codd, E. F. “Extending the Database Relational Model to Capture More
Meaning,”

ACM Transactions on Database Systems

, 44, 397–434,
December 1979.

Cooper, D., and M. J. Clancy.

Oh! Pascal

! New York: W. W. Norton,
1985.

Fairley, R.

Software Engineering Concepts

. Boston: McGraw-Hill, 1985.

Programming Considerations 205

Gilmore, D. J., and R. G. Green. “Comprehension and Recall of
Miniature Programs,”

International Journal of Man-Machine Studies

, 211,
31–48, July 1984.

Grogono, P. “On Layout, Identifiers and Semicolons in Pascal
Programs,”

ACM SIGPLAN Notices

, 14(4), 35-40, April 1979.

Kernighan, B., and P. J. Plauger.

The Elements of Programming Style

.
Boston: McGraw-Hill, 1982.

Ledgard, H.

Programming Prover

bs. Rochelle Park, NJ, Hayden Books,
1975.

Ledgard, H., and L. J. Chmura.

Fortran with Style: Programming Proverb

s.
Indianapolis, IN, Sams, 1978.

Ledgard, H., and J. Tauer.

Professional Software. Volume 2: Programming
Practice

. Boston: Addison-Wesley Longman, 1987.
McCabe, Tom. “A Complexity Measure,”

IEEE Transactions on Software,

1976.

McKeithen, K., Reitman J., Rueter H., and Hirtle S.

“Knowledge
Organization and Skill Differences in Computer Programmers,”

Cognitive
Psychology

, 13, 307–325, 1981.

Meekings, B. “Style Analysis of Pascal Programs,”

ACM SIGPLAN Notices

,
18(9), 45-54, September 1983.

Miller, G., A. “The Magical Number Seven Plus or Minus Two: Some
Limits on Our Capacity for Processing Information,”

The Psycological
Review

, 1956.

Oman P., and Cook C. “A Taxonomy for Programming Style,”

Proceedings of the 1990 ACM Annual Conference on Cooperation,

February
20–22, 1990, Washington, DC.

Oman P., and Cook C. “A Paradigm for Programming Style Research,”

ACM SIGPLAN Notices

, 23(12), 69-78, December 1988.

Oman P., and Cook C. “Programming Style Authorship Analysis,”

Proceedings of the 17th Annual ACM Conference on Computer Science:

206 BIBLIOGRAPHY

Computing Trends in the 1990s,

Louisville, Kentucky, 320-326, February
1989

Oman P., and Cook C. “Typographic Style Is More Than Cosmetic,”

Communications of the ACM

, 335, 506–520, May 1990.

Pascal, F. “SQL Redundancy and DBMS Performance,”

Database
Programming & Design,

112, 22–28, December 1988.

Pressman, R. S.

Software Engineering: A Practitioner’s Approach

 (2nd ed.).
Boston: McGraw-Hill, 1986.

Redish K., and Smyth W.

“Program Style Analysis: A Natural By-Product
of Program Compilation,”

Communications of the ACM

, 29(2), 126-133,
February 1986.

Rees, M. J. “Automatic Assessment Aids for Pascal Programs,”

ACM
SIGPLAN Notices

, 1710, 33–42, October 1982.

Sheil, B. A. “The Psychological Study of Programming,”

ACM Computing
Surveys

(CSUR), 131, 101–120, March 1981.

Weinberg, G.

The Psychology of Computer Programming: Silver Anniversary
Edition

. New York: Dorset House, 1998.

Weissman, L. “Psychological Complexity of Computer Programs: An
Experimental Methodology,”

ACM SIGPLAN Notices

, 96, 25–36, June
1974.

I n d e x

3GL languages, 186, 190–91
4GL languages, 151, 152

A

Abbreviation encoding, 87–88
algorithm encoding vs., 88
defined, 87
examples, 87–88

See also

 Encoding schemes
Absolute scales, 74
Abstraction levels, 9–10
Accuracy, 72, 73
Actions, indenting, 45–46
Active verbs, 174
Affixes, 11
Algorithmic encoding, 88
Aliases.

See

 Correlation names
ALTER statement, 83, 92
ANSI X3.5 Flowchart symbols, 179
Artificial keys, 51–52
Attributes, splitting, 62–66
Auto-numbers, 52–53, 58, 59

column names, 60
natural key and, 60

as primary key, 60
problems, 58–59

Auxiliary tables, 167

B

BETWEEN predicate, 114–15
“Big VIEW Myth,” 148–49
Bits, 42, 43
Block puzzle, 183, 184
Bouma, 26
Bytes, 42

C

Calendar tables, 167
CamelCase

problems, 29
use avoidance, 29–30
use exceptions, 30

Capitalization rules, 6–7
CASE expressions, 110–13

COALESCE() function, 112–13
for complex predicate, 117
defined, 110

208 I N D E X

replacing IF-THEN-ELSE control
flow statements, 162–63

searched, 111
simple, 111–12
using, 117–18

Case-sensitivity rules, 6–7
Categorical scales, 73–74

categories, 74
defined, 73–74
properties, 77

See also

 Scales
Character columns, 131
Character sets, 97
CHECK() constraints, 46–48

applying to table as whole, 141
inspecting/testing, 130–31
single-purposed, 50
on table declarations, 81
table-level, 49

See also

 Constraints
COALESCE() function, 112–13
Codd, Dr., 61, 62, 138, 194
Code

clusters, 39
indentation, 38–39
line spacing, 39–40
lowercase scalars usage, 25–26
name usage, 25
punctuation rules, 31–33
reading, 24
reserved word use, 33–34
statements, 34–37
typography and, 23–30
upper-/lowercase letter usage, 25
word spacing, 30

Code Museum Effect, 100, 101
Coding

choices, 99–131
comments, 118–19
compact constructions, 109–18
correlated subqueries, 125–27

optimizer hints avoidance, 120
secondary index avoidance, 124–

25
standard constructions, 100–108
stored procedures, 122–23
triggers avoidance, 120–22
UNIONs, 127–30
user-defined functions, 123–24

Cohesion, 153–55
coincidental, 153–54
communicational, 155
defined, 153
functional, 155
informational, 155
logical, 154
procedural, 154
temporal, 154
types, 153

Coincidental cohesion, 153–54
Columns

added after schema, 45
character, 131
clustering, 44–45
constraints, 48–49, 54
as fields, 189–91
names, 136
ordering, 44–45
renaming, 140
splitting attributes into, 63–65
VIEW, 135

See also

 Rows
Comma-separated lists, 31, 164
Comments

on clause, 119
control statement, 119
stored procedures, 119
using, 118–19

Common coupling, 156
Common language runtime (CLR), 123
Communicational cohesion, 155
Compact constructions, 109–18

I N D E X 209

CASE family expressions, 110–13
parentheses and, 109–10
redundant expressions and, 113–

14
seeking, 114–18

Complexity, masking, 138–39
Concatenation, 156
Concatenation encoding, 91
Consistency, 122
Constraints

CHECK(), 46–48
column, 54
integrity, 140–42
LIKE, 47
multiple column, 48–49
multi-table, 49–50
names, 46
in narrative specification, 185
range, 47
referential, 46
rows, 54
SIMILAR TO, 47

Content coupling, 155–56
Control coupling, 156
Control statement comments, 119
Control structures, 156–57

concatenation, 156
iteration, 157
selection, 157

Correlation names, 15–17
column, 16
derivation, 15–16
in queries, 20
on table expression, 17

Coupling, 155–56
common, 156
content, 155–56
control, 156
data, 156
defined, 155
stamp, 156

types of, 155
CREATE ASSERTION statement, 49–

50, 141
CREATE PROCEDURE statement, 123
CREATE TABLE statement, 44, 67, 181
CROSS JOIN syntax, 105–7, 164
Cursors

porting, 159
use avoidance, 159–61
uses, 159–60

Cyclomatic complexity, 157

D

Data abstraction, 42
Database management system (DBMS),

3
Databases

codes in, 96–97
codes storage, 96–97
relational, 21, 62, 66–68

Data coupling, 156
Data declaration language (DDL), 41–

68
attribute splitting, 62–66
CHECK() constraint placement,

46–48
column ordering, 44–45
constraint names, 46
CREATE ASSERTION use, 49–50
DEFAULT value, 41–42
first attempts, 177–78
indentation, 45–46
multiple column constraints, 48–

49
object-oriented design use, 66–68
PRIMARY KEY declaration, 44
proprietary data types and, 42–44
single-purposed CHECK()

constraints, 50
table keys, 51–62
table-level CHECK() constraints,

49

210 I N D E X

Data derivation, 139–40
Data elements

affixes, 11
descriptive prefixes, 10–12
logical, 9
names in registry, 10
naming problems, 18–21
postfixes, 12–14
query, 10
scalar, 8

Data encoding schemes, 83–97
Data manipulation language (DML), 38

bad, 178
first attempts, 178–79

Data types, 95
FLOAT, 48
proprietary, 42–44
REAL, 48

Decimal places, declaring, 81–82
DEFAULT value, 41–42
Delimited identifiers, 5
Derived units, 79–80, 82
Descriptive prefixes, 10–12
Dewey Decimal Classification (DDC)

system, 89–90
Display, 96
Domain-Key Normal Form (DKNF),

62–63
DROP TABLE statement, 67
Dynamic SQL, 168–70

purpose, 168
in stored procedures, 169

E

Electronic data interchange (EDI) files,
8, 10

Encoding schemes, 83–97
abbreviation, 87–88
algorithmic, 88
ambiguous, 85
bad, 84–86
codes in database, 96–97

code translation, 93–96
concatenation, 91
design guidelines, 92–97
enumeration, 86–87
expansion and, 92
explicit missing values, 92–93
hierarchical, 89–90
measurement, 87
standards, 92
types, 86–91
vector, 90–91

Entity-Attribute-Value (EAV) design,
68

Enumeration encoding, 86–87
EXISTS() predicate, 126
Extended equality, 103–5

F

Fields, 53–54
columns as, 189–91
existence, 53
length, 53

Files
EDI, 8, 10
records, 53
tables vs., 53–54

First attempts, 177–79
DDL, 177–78
DML, 178–79

Flexibility, 96
FLOAT data type, 48
FROM clause, 34, 35
Functional cohesion, 155

G

Granularity, 71–72, 73

H

Heuristics, 171–81
active verb removal, 174
circles and set diagrams, 179
clear statements, 172–73
data display, 176–77

I N D E X 211

dialect, 180
first attempts, handling, 177–79
newsgroups and Internet use, 181
“Set of All...,” 173
stubs use, 174–76

Hierarchical encoding schemes, 89–90
Dewey Decimal system example,

89–90
uses, 89
ZIP code example, 89

See also

 Encoding schemes

I

IBM
case sensitivity rules, 6, 7
identifier character sets, 4
identifier length, 3
quoted identifiers, 5

Identifiers
character sets, 4
delimited, 5
lengths, 3
quoted, 4–6

INCITS H2 Database Standards
Committee, 66

Indentation, 38–39
actions, 45–46
referential constraints, 45–46

Informational cohesion, 155
INNER JOIN syntax, 105–7
IN() predicate, 115–17

introduction, 115
NOT, 116
NULLs and, 116

INSERT INTO statement, 44, 168
Integrity constraints, 140–42
Intelligent keys, 57
Internet, 181
Interval scales, 76

conversion, 79
defined, 76
properties, 77

See also

 Scales
ISO-3166, 9, 10
ISO-11179 standards, 1, 2

correlation names, 15–17
descriptive prefixes, 10–12
levels of abstraction, 9–10
metadata schema access objects,

18
naming conventions, 7–18
postfixes, 12–14
relationship table names, 17
scalar data elements, 8
sections, 7–8
table and view names, 14–15

ISO temporal syntax, 107–8
Iteration, 157

J

Justified text, 37

K

Keys, 51–62
artificial, 51–52
exposed locator, 52
familiarity, 56
intelligent, 57
natural, 51
properties, 54–57
simplicity, 57
stability, 55–56
surrogate, 52
types of, 51
uniqueness, 54–55
validation, 56
verifiability, 56–57

Keywords, 27

L

Levels of abstraction, 9–10
LIKE constraint, 47
Line spacing, 39–40
Logical cohesion, 154
Logical data elements, 9

212 I N D E X

Logical model implementation, 21
Lookup tables, 94–96

M

Maintenance, 96, 122
Materialized VIEWs, 149–50
Measurement encoding, 87
Measurement theory, 69–73

accuracy, 72, 73
defined, 69
granularity, 71–72, 73
precision, 72, 73
properties, 70
range, 71–72
scale conversion, 78

Metadata schema access objects, 18
Modularity, 122
Moh’s Scale for Hardness (MSH), 74
MS SQL

case-sensitivity rules, 6, 7
identifier character sets, 4
identifier length, 3
quoted identifiers, 5

Multiple character sets, 97

N

Names, 2–7
capitalization rules, 6–7
changing from place to place, 19–

20
column, 25–26, 136
constraint, 46
correlation, 15–17
data elements, 18–21
ISO-11179 standards conventions,

7–18
length, 2–3
letters, digits, underscores for, 25
quoted identifiers and, 4–6
relationship table, 17
schema object, 18, 26
special characters in, 3–4

table, 14–15
vague, 18–19
VIEW, 14–15

Natural keys
auto-numbers and, 60
compound, 58
defined, 51

See also

 Keys
NCITS L8 Metadata Standards

Committee rules, 7
Network traffic, 122
Newsgroups, 181
Nominal scales, 73
Normalization, 94–95
North American Industry Classification

System (NAICS), 14
NULLs, 43, 86, 194

avoiding, 92–93
IN() predicate and, 116
sorting, 93
testing combinations of, 130

O

Object instances, 66–68
Object-oriented design, 66–68
One True Lookup Table (OTLT), 94,

95, 96
Optimizer hints, 120
Oracle

case-sensitivity rules, 6, 7
identifier character sets, 4
identifier length, 3
quoted identifiers, 5

ORDER BY clause, 177
Orders problem, 171–72
Ordinal scales, 74–75

conversion, 79
defined, 74
properties, 77
transitivity, 75

See also

 Scales
OUTER JOIN syntax, 101–5

I N D E X 213

extended equality, 104
illustrated, 101

P

Parentheses
extra, avoiding, 109–10
in moderation, 109

Physical locators, 52
Portable functions, 108
Postfixes, 12–14

category, 13
class, 13
Teradata standards, 12–13
type, 13–14

Precision, 72, 73
PRIMARY KEY declaration, 44
Primary units, storing, 82
Procedural cohesion, 154
Processes, thinking in, 191–93
Proprietary data types, 42–44
Proprietary exposed physical locators,

21
Proprietary reserved words, 29

avoiding, 33–34
disadvantages, 34

Proprietary statements, 34–37

Psychology of Computer Programming,

99

Punchcards, 84, 85
Punctuation

rules, 31–32
standard units and, 80–81
storage and, 80
units display and, 82

Q

Queries, 84
aliases inside, 20
bad, 41

Query data elements, 10
Quoted identifiers, 4–6

R

Range, 71–72
Range constraints, 47
Rank scales, 75–76

conversion, 79
defined, 75
properties, 77
transitivity, 75–76

See also

 Scales
Ratio scales, 76

conversion, 79
defined, 76
properties, 77

See also

 Scales
REAL data type, 48
Records, 53
Redundant expressions, 113–14
Referential constraints, 45–46
Relational database management

system (RDBMS), 21, 62
EAV design and, 68
object-oriented design for, 66–68

Relationship tables, 17
Reserved words

full, 33
proprietary, 29, 33–34
uppercase, 26–29

Rivers, 37
Rows

constraints, 54
defined, 54
splitting attributes into, 65–66
VIEW, 135

See also

 Columns

S

Scalar data elements, 8
Scalar parameters, 167–68
Scales, 73–82

absolute, 74
categorical, 73–74
conversion, 77–79

214 I N D E X

derived units, 79–80
information mixing, 78
interval, 76
nominal, 73
ordinal, 74–75
properties, 72, 77
rank, 75–76
ratio, 76
types of, 73–76
unrestricted permissible

transformations, 81
use guidelines, 81–82
using, 77

Schema object names, 18, 26
Searched CASE expression, 111
Secondary indexes, 124–25
Security, 96, 122

column-level, 136–37
row-level, 136–37

Selection, 157
SELECT statement, 44, 139, 152
Sequence tables, 163–66
Set diagrams, 179
Set-oriented constructs, 161–67
SI measurements, 79–80
SIMILAR TO constraint, 47
Simple CASE expression, 111–12
Single-solution VIEWs, 147–48
Software engineering, 153–56

cohesion, 153–55
coupling, 155–56

Spacing
line, 39–40
vertical, 37
word, 30

Splitting attributes, 62–66
into columns, 63–65
into rows, 65–66
into tables, 63

SQL
4GLs, 151, 152

bad programming in, 184–89
as declarative language, 193
Dynamic, 168–70
injection, 169–70
Standard, 4, 5, 6, 7, 118
testing, 130–31
thinking in, 183–95

SQL-92
CASE expressions, 112
DEFAULT value, 41
identifier ending, 4
maximum identifier length, 2, 3
quoted identifiers, 5
string operators, 108

SQL-99, 3
Stamp coupling, 156
Standard functions, 108
Standard Industrial Classification

(SIC), 14
Standard SQL

case-sensitivity rules, 6, 7
comments, 118
identifier character sets, 4
quoted identifiers, 5

Standard syntax
CROSS JOIN, 105–7
implementation, 100–101
INNER JOIN, 105–7
ISO temporal, 107–8
OUTER JOIN, 101–5

Standard units, 80–81
Statements

clear, 172–73
grouping, 39–40
proprietary, 34–37

See also

specific statements

Stored procedures, 119
advantages, 122
Dynamic SQL and, 168–70
performance, 169
portability problems, 158–67

I N D E X 215

scalar vs. structure parameters,
167–68

software engineering and, 153–56
structured programming, 156–57
triggers vs., 121–22
using, 122–23
writing, 151–70

Strong metric properties, 71
Structured parameters, 167–68
Structured programming, 156–57

control structures, 156–57
cyclomatic complexity, 157

Stub modules, 174–76
Surrogate keys, 52
Synchronization, VIEWs, 145–46

T

Tables
auxiliary, 167
calendar, 167
declarations, 81
expression correlation names, 17
files vs., 53–54
keys, 51–62
logical, 135
lookup, 94–96
names, 14–15
newbie designs, 60
object instances vs., 66–68
relationship, 17
renaming, 140
sequence, 163–66
splitting attributes into, 63
star schema, 20
synchronizing VIEWs with, 145–

46
temporary, 158
translation, 93–95

Temporal cohesion, 154
Temporal syntax, 107–8
Temporal values, 48
Temporary tables, 158

Teradata standards, 12
Testing SQL, 130–31

character columns, 131
CHECK() constraints, 130–31
NULL combinations, 130
for size, 131

Translation, 93–96
Translation tables, 93–94
Triggers

ANSI version, 120
avoiding, 120–22
INSTEAD OF, 142, 143
length, 121
stored procedures vs., 121–22

U

UNIONs, 127–30
Units

derived, 79–80, 82
display, 82
primary, 82
standard, 80–81

Updatable VIEWs, 143–44
INSTEAD OF triggers, 144
WITH CHECK OPTION clause,

143–44

See also

 VIEWs
UPDATE statement, 34, 36
User-defined functions, 123–24

multiple language problems, 124
optimization problems, 124
portability problems, 124

V

Validation, 95–96
VALUES() list, 168
Vector encoding, 90–91

advantages, 90
defined, 90
disadvantages, 90–91

See also

 Encoding schemes
Verbs, active, 174

216 I N D E X

Vertical spacing, 37
Very Large Database (VLDB), 100
VIEWs, 133–50

application/business requirements,
144–45

column-level security, 136–37
columns, 135
data derivation, 139–40
defined, 135
for domain support, 146–47
efficient access paths, 138
improper use, 146–49
integrity constraints enforcement,

140–42
invocation, 137
masking complexity, 138–39
materialized, 149–50
names, 14–15
proliferation, avoiding, 145
reasons for, 144–45
rename tables/columns, 140
row-level security, 136–37
rows, 135
single-solution, 147–48
synchronizing, 145–46
updatable, 143–44
uses, 135

W

Weinberg, Jerry, 99–100
WHERE clause, 180
WITH CHECK OPTION clause, 143–

44
Word spacing, 30

A B O U T T H E A U T H O R

Joe Celko

 is a noted consultant and lecturer, and one of the most-read
SQL authors in the world. He is well known for his 10 years of service on
the ANSI SQL standards committee, his column in

Intelligent Enterprise

magazine (which won several Reader’s Choice Awards), and the war stories
he tells to provide real-world insights into SQL programming. His best-
selling books include

Joe Celko’s SQL for Smarties: Advanced SQL Program-
ming, second edition; Joe Celko’s SQL Puzzles and Answers;

and

Joe Celko’s
Trees and Hierarchies in SQL for Smarties.

