


 

J O E  C E L K O ’ S

 

SQL PROGRAMMING STYLE





 

J O E  C E L K O ’ S

 

SQL PROGRAMMING STYLE

 

Joe Celko



 

Publishing Director Michael Forster
Publisher Diane Cerra
Publishing Services Manager Andre Cuello
Senior Production Editor George Morrison
Editorial Assistant Asma Stephan
Cover Design Side by Side Studios
Cover Image Side by Side Studios
Composition Multiscience Press, Inc.
Copyeditor Multiscience Press, Inc.
Proofreader Multiscience Press, Inc.
Indexer Multiscience Press, Inc.
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as 
trademarks or registered trademarks. In all instances in which Morgan Kaufmann 
Publishers is aware of a claim, the product names appear in initial capital or all capital 
letters. Readers, however, should contact the appropriate companies for more complete 
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means-electronic, mechanical, photocopying, 
scanning, or otherwise-without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights 
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: 
permissions@elsevier.com.uk. You may also complete your request on-line via the 
Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and then 
“Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Application submitted.

ISBN: 0-12-088797-5

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08  5  4  3  2  1



 

 To Eve Astrid Andersson, Miss American 

 

π

 

And April Wilson, who rubs me the right way.





 

C O N T E N T S

 

Introduction xv

 

1

 

Names and Data Elements 1

 

1.1 Names 2
1.1.1 Watch the Length of Names  2
1.1.2 Avoid All Special Characters in Names 3
1.1.3 Avoid Quoted Identifiers  4
1.1.4 Enforce Capitalization Rules to Avoid 

Case-Sensitivity Problems 6
1.2 Follow the ISO-11179 Standards Naming Conventions 7

1.2.1 ISO-11179 for SQL  8
1.2.2 Levels of Abstraction 9
1.2.3 Avoid Descriptive Prefixes 10
1.2.4 Develop Standardized Postfixes  12
1.2.5 Table and View Names Should Be Industry Standards, 

Collective, Class, or Plural Nouns 14
1.2.6 Correlation Names Follow the Same Rules as Other 

Names . . . Almost  15
1.2.7 Relationship Table Names Should Be Common 

Descriptive Terms  17
1.2.8 Metadata Schema Access Objects Can Have Names That 

Include Structure Information  18
1.3 Problems in Naming Data Elements 18

1.3.1 Avoid Vague Names  18
1.3.2 Avoid Names That Change from Place to Place 19
1.3.3 Do Not Use Proprietary Exposed Physical Locators 21

 

2

 

Fonts, Punctuation, and Spacing 23

 

2.1 Typography and Code 23
2.1.1 Use Only Upper- and Lowercase Letters, Digits, and 

Underscores for Names 25
2.1.2 Lowercase Scalars Such as Column Names, Parameters, 

and Variables 25



 

viii

 

C O N T E N T S

 

 

 

2.1.3 Capitalize Schema Object Names 26
2.1.4 Uppercase the Reserved Words 26
2.1.5 Avoid the Use of CamelCase 29

2.2 Word Spacing 30
2.3 Follow Normal Punctuation Rules 31
2.4 Use Full Reserved Words 33
2.5 Avoid Proprietary Reserved Words if a Standard Keyword Is 

Available in Your SQL Product 33
2.6 Avoid Proprietary Statements if a Standard Statement Is Available 34
2.7 Rivers and Vertical Spacing 37
2.8 Indentation 38
2.9 Use Line Spacing to Group Statements 39

 

3

 

Data Declaration Language 41

 

3.1 Put the Default in the Right Place 41
3.2 The Default Value Should Be the Same Data 

Type as the Column 42
3.3 Do Not Use Proprietary Data Types 42
3.4 Place the PRIMARY KEY Declaration at the Start of the 

CREATE TABLE Statement 44
3.5 Order the Columns in a Logical Sequence and Cluster Them 

in Logical Groups 44
3.6 Indent Referential Constraints and Actions under the Data Type 45
3.7 Give Constraints Names in the Production Code 46
3.8 Put CHECK() Constraint Near what they Check 46

3.8.1 Consider Range Constraints for Numeric Values 47
3.8.2 Consider LIKE and SIMILAR TO Constraints for 

Character Values 47
3.8.3 Remember That Temporal Values Have Duration 48
3.8.4 REAL and FLOAT Data Types Should Be Avoided 48

3.9 Put Multiple Column Constraints as Near to Both Columns 
as Possible 48

3.10 Put Table-Level CHECK() Constraints at the End of the 
Table Declaration 49

3.11 Use CREATE ASSERTION for Multi-table Constraints 49



 

C O N T E N T S

 

ix

 

3.12 Keep CHECK() Constraints Single Purposed 50
3.13 Every Table Must Have a Key to Be a Table 51

3.13.1 Auto-Numbers Are Not Relational Keys 52
3.13.2 Files Are Not Tables 53
3.13.3 Look for the Properties of a Good Key 54

3.14 Do Not Split Attributes 62
3.14.1 Split into Tables 63
3.14.2 Split into Columns 63
3.14.3 Split into Rows 65

3.15 Do Not Use Object-Oriented Design for an RDBMS 66
3.15.1 A Table Is Not an Object Instance 66
3.15.2 Do Not Use EAV Design for an RDBMS 68

 

4

 

Scales and Measurements 69

 

4.1 Measurement Theory 69
4.1.1 Range and Granularity 71
4.1.2 Range 72
4.1.3 Granularity, Accuracy, and Precision 72

4.2 Types of Scales 73
4.2.1 Nominal Scales 73
4.2.2 Categorical Scales 73
4.2.3 Absolute Scales 74
4.2.4 Ordinal Scales 74
4.2.5 Rank Scales 75
4.2.6 Interval Scales 76
4.2.7 Ratio Scales 76

4.3 Using Scales 77
4.4 Scale Conversion 77
4.5 Derived Units 79
4.6 Punctuation and Standard Units 80
4.7 General Guidelines for Using Scales in a Database 81

 

5

 

Data Encoding Schemes 83

 

5.1 Bad Encoding Schemes 84
5.2 Encoding Scheme Types 86



 

x

 

C O N T E N T S

 

 

 

5.2.1 Enumeration Encoding 86
5.2.2 Measurement Encoding 87
5.2.3 Abbreviation Encoding 87
5.2.4 Algorithmic Encoding 88
5.2.5 Hierarchical Encoding Schemes 89
5.2.6 Vector Encoding 90
5.2.7 Concatenation Encoding 91

5.3 General Guidelines for Designing Encoding Schemes 92
5.3.1 Existing Encoding Standards 92
5.3.2 Allow for Expansion 92
5.3.3 Use Explicit Missing Values to Avoid NULLs 92
5.3.4 Translate Codes for the End User 93
5.3.5 Keep the Codes in the Database 96

5.4 Multiple Character Sets 97

 

6

 

Coding Choices 99

 

6.1 Pick Standard Constructions over 
Proprietary Constructions100
6.1.1 Use Standard OUTER JOIN Syntax 101
6.1.2 Infixed INNER JOIN and CROSS JOIN Syntax 

Is Optional, but Nice 105
6.1.3 Use ISO Temporal Syntax 107
6.1.4 Use Standard and Portable Functions 108

6.2 Pick Compact Constructions over Longer Equivalents 109
6.2.1 Avoid Extra Parentheses 109
6.2.2 Use CASE Family Expressions 110
6.2.3 Avoid Redundant Expressions 113
6.2.4 Seek a Compact Form 114

6.3 Use Comments 118
6.3.1 Stored Procedures 119
6.3.2 Control Statement Comments 119
6.3.3 Comments on Clause 119

6.4 Avoid Optimizer Hints 120
6.5 Avoid Triggers in Favor of DRI Actions 120
6.6 Use SQL Stored Procedures 122



 

C O N T E N T S

 

xi

 

6.7 Avoid User-Defined Functions and Extensions inside the Database 123
6.7.1 Multiple Language Problems 124
6.7.2 Portability Problems 124
6.7.3 Optimization Problems 124

6.8 Avoid Excessive Secondary Indexes 124
6.9 Avoid Correlated Subqueries 125
6.10 Avoid UNIONs 127
6.11 Testing SQL 130

6.11.1 Test All Possible Combinations of NULLs 130
6.11.2 Inspect and Test All CHECK() Constraints 130
6.11.3 Beware of Character Columns 131
6.11.4 Test for Size 131

 

7

 

How to Use VIEWS 133

 

7.1 VIEW Naming Conventions Are the Same as Tables 135
7.1.1 Always Specify Column Names 136

7.2 VIEWs Provide Row- and Column-Level Security 136
7.3 VIEWs Ensure Efficient Access Paths 138
7.4 VIEWs Mask Complexity from the User 138
7.5 VIEWs Ensure Proper Data Derivation 139
7.6 VIEWs Rename Tables and/or Columns 140
7.7 VIEWs Enforce Complicated Integrity Constraints 140
7.8 Updatable VIEWs 143

7.8.1 WITH CHECK OPTION clause 143
7.8.2 INSTEAD OF Triggers 144

7.9 Have a Reason for Each VIEW 144
7.10 Avoid VIEW Proliferation 145
7.11 Synchronize VIEWs with Base Tables 145
7.12 Improper Use of VIEWs 146

7.12.1 VIEWs for Domain Support 146
7.12.2 Single-Solution VIEWs 147
7.12.3 Do Not Create One VIEW Per Base Table 148

7.13 Learn about Materialized VIEWs 149



 

xii

 

C O N T E N T S

 

 

 

8

 

How to Write Stored Procedures 151

 

8.1 Most SQL 4GLs Are Not for Applications 152
8.2 Basic Software Engineering 153

8.2.1 Cohesion 153
8.2.2 Coupling 155

8.3 Use Classic Structured Programming 156
8.3.1 Cyclomatic Complexity 157

8.4 Avoid Portability Problems 158
8.4.1 Avoid Creating Temporary Tables 158
8.4.2 Avoid Using Cursors 159
8.4.3 Prefer Set-Oriented Constructs to 

Procedural Code 161
8.5 Scalar versus Structured Parameters 167
8.6 Avoid Dynamic SQL 168

8.6.1 Performance 169
8.6.2 SQL Injection 169

 

9

 

Heuristics 171

 

9.1 Put the Specification into a Clear Statement 172
9.2 Add the Words “Set of All…” in Front of the Nouns 173
9.3 Remove Active Verbs from the Problem Statement 174
9.4 You Can Still Use Stubs 174
9.5 Do Not Worry about Displaying the Data 176
9.6 Your First Attempts Need Special Handling 177

9.6.1 Do Not Be Afraid to Throw Away Your First 
Attempts at DDL 177

9.6.2 Save Your First Attempts at DML 178
9.7 Do Not Think with Boxes and Arrows 179
9.8 Draw Circles and Set Diagrams 179
9.9 Learn Your Dialect 180
9.10 Imagine That Your WHERE Clause Is “Super Ameba” 180
9.11 Use the Newsgroups and Internet 181

 

10

 

Thinking in SQL 183

 

10.1 Bad Programming in SQL and Procedural Languages 184



 

C O N T E N T S

 

xiii

 

10.2 Thinking of Columns as Fields 189
10.3 Thinking in Processes, Not Declarations 191
10.4 Thinking the Schema Should Look Like the Input Forms 194

 

Resources 197

 

Military Standards 197
Metadata Standards 197
ANSI and ISO Standards 198
U.S. Government Codes 199
Retail Industry 199
Code Formatting and Naming Conventions 200

 

Bibliography 203

 

Reading Psychology 203
Programming Considerations 204

 

Index 207

About the Author 217





 

Introduction

 

I

 

 AM NOT trying to teach you to program in SQL in this book. You might 
want to read that again. If that is what you wanted, there are better 
books. This ought to be the second book you buy, not the first. 

I assume that you already write SQL at some level and want to get 
better at it. If you want to learn SQL programming tricks, get a copy of 
my other book, 

 

SQL for Smarties

 

 (3rd edition, 2005). I am trying to 
teach the reader how to work in logical and declarative terms, instead 
of in a procedural or OO manner—“Query Eye for the Database Guy,” 
if you will forgive a horrible contemporary pun. 

Few, if any, SQL programmers came to SQL before learning and 
writing for years in a procedural or object-oriented language. They 
then got one particular SQL product and were told to learn it on their 
own or with a book that has a title like “SQL for Brain-Dead Morons,” 
“Learn SQL in Ten Easy Lessons or Five Hard Ones,” or worse. 

This is absurd! It takes at least five years to learn to be a master 
carpenter or chef. Why would you believe people could become SQL 
gurus in a weekend? What they become is bad SQL programmers, who 
speak SQL in dialect from the local SQL product with a strong accent 
from their previous languages. You might want to read “Teach Yourself 
Programming in Ten Years” by Peter Norvig (www.norvig.com/21-
days.html) or “No Silver Bullets” by Fred Brooks, 

 

Computer

 

, 20(4):10-
19, April 1987) to get a reality check. 
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The horrible part is that these people often don’t know they are bad 
programmers. At one extreme, the entire shop where they work is just as 
bad, and they never see anything else. At the other extreme, if anyone 
tries to tell them about their problems, they become defensive or angry. 
If you look at postings on SQL newsgroups, many programmers just 
want to get a kludge for an immediate problem and not actually obtain a 
true long-term solution. 

If these were woodworking newsgroups, their questions would be the 
equivalent of “What are the best kind of rocks to use to pound screws 
into fine furniture?” When someone tells them to use large chunks of 
granite, they are happy, but if you try to tell them about screwdrivers, 
they explode into a rage. 

You might want to read an essay on this phenomenon: “Unskilled and 
Unaware of It: How Difficulties in Recognizing One’s Own Incompetence 
Lead to Inflated Self-Assessments” by Justin Kruger and David Dunning 
(Department of Psychology, Cornell University, www.apa.org/journals/
psp/psp7761121.html). 

Or look at the actual and self-assessments of American high school 
students in mathematics and sciences that were part of the Bush 
administration’s No Child Left Behind Act. 

 

1.1 Purpose of the Book

 

So how did we old farts learn to be better programmers when dinosaurs 
walked the earth? One of the best helpers we had in the late 1970s when 
the structured programming revolution came along was a series of books 
entitled “[Pascal | FORTRAN | COBOL | BASIC] with Style: Programming 
Proverbs” by Henry Ledgard and some of his colleagues at MIT. The 
covers were done like a Victorian novel with angels, scrolls, and old-style 
typographical elements. And like a Victorian novel, the books were 
subtitled “Principles of Good Programming with Numerous Examples to 
Improve Programming Style and Proficiency.” These books and others 
made a big difference for most of us because they taught us how to think 
like good programmers. 

My goals in this book are to improve SQL programming style and 
proficiency. To be more exact: 

1.

 

To help an individual programmer write Standard SQL without an 
accent or a dialect

 

. It is difficult to unlearn old habits but not 
impossible, and it is best to learn the right way from the start. 
Amateurs write code for themselves. A professional writes code 



 

1.2 Acknowledgments xvii

 

to be maintained and used by other people. My rule of thumb 
has been that you need to have a full year of SQL programming 
before you have your epiphany and suddenly see the world in 
three: valued logic, data models, and sets. 

2.

 

To give an SQL shop a coding standard for internal use

 

. I have 
tried carefully to give a rationale for each of my rules, and I 
have given exceptions to those rules when I could think of 
them. You may disagree with some of my choices, but you will 
have to provide research and examples to defend your position. 
It is not good enough to simply declare: “Well, that’s the way 
we wrote code in FooTran,

 

 

 

so it must be the will of God!” as an 
argument. 

If you are the team leader, you now have a book (and
author) that you can hold up and blame for anything that your
people do not like. Even if I am later shown to be wrong about
something, you will have been consistent. It is much easier to
repair errors if they were made consistently. 

3.

 

To give programmers the mental tools to approach a new problem 
with SQL as their tool

 

. I tell people it takes about a year to “get it” 
and drop your procedural programming habits. 

 

1.2 Acknowledgments

 

Craig Mullins provided the structure of the chapter on VIEWs in an 
article in www.DBAzine.com. The formatting style is taken from a house 
style I have used in CMP magazines and other publications for more 
than a decade. Peter Gulutzan provided the data for the naming 
conventions in actual products from an article in www.DBAzine.com. 
The affix conventions in Chapter 1 are based on internal standards from 
Teradata Corporation. The scales and measurements and the encoding 
schemes material appeared in several of my old magazine columns in 

 

DBMS

 

 and 

 

Database Programming & Design 

 

before they were collected 
into a chapter in my book 

 

Data & Database 

 

(Morgan-Kaufmann 
Publishers). I have tried to give credit in the text, but so many people 
have participated in the newsgroups over the years that I know I am 
forgetting someone. 

And, obviously, thanks to Henry Ledgard and his “Programming 
Proverbs” series for the inspiration. 

I would also like to thank all of the newbie programmers who wrote 
bad code. It sounds a bit sarcastic, but it is not meant to be. Many of the 
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newbies are programmers who were thrown into a DBA or SQL 
programmer job by management without training or an experienced 
mentor. I do not want to blame the victims unless they are really not 
working on getting better. Your errors in syntax, semantics, and style 
showed me how you were thinking. Diagnosis is the first step to 
treatment. 

 

1.3 Corrections, Comments, and Future Editions 

 

Corrections and additions for future editions can be sent to Morgan-
Kaufmann publishers directly or to me at my e-mail address, 
jcelko212@earthlink.net.



 

C H A P T E R

 

1

 

Names and Data Elements

 

This is the old joke:
“When I was a kid, we had three cats.”
“What were their names?”
“Cat, cat, and cat.” 
“That sounds screwed up. How did you tell them apart?”
“Who cares? Cats don’t come when you call them anyway!”

 

Y

 

OUR

 

 

 

DATA

 

 

 

WILL

 

 not come when it is called either if you do not give it a 
name that is always distinct and recognizable. This is an important 
part of any database project. Bad names for the data elements make 
the code difficult, or even impossible, to read.

I am not kidding about impossible to read. In the old days, 
software companies used to deliberately scramble source code names 
and remove formatting to hide the algorithm from the buyers. The 
tradition seems to linger on, even if not by intent. In August 2004, a 
SQL newsgroup had a posting in which all of the names were one 
letter and a long string of digits.

There are now ISO-11179 metadata standards that describe rules 
for naming data elements and for registering standards. Because they 
are an ISO standard, they are what you should be using in SQL as well 
as everywhere else.

That standard, a bit of typography, and some common sense will 
give you the rules you need to get started.
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1.1 Names

 

In the early days, every programmer had his or her own personal 
naming conventions. Unfortunately, they were often highly creative. My 
favorite was a guy who picked a theme for his COBOL paragraph names: 
one program might use countries, another might use flowers, and so 
forth. This is obviously weird behavior even for a programmer, but many 
programmers had personal systems that made sense to themselves but 
not to other people.

For example, the first FORTRAN I used allowed only six-letter 
names, so I became adept at using and inventing six-letter names. 
Programmers who started with weakly typed or typeless languages like to 
use Hungarian notation (see Leszynski and Reddick). Old habits are 
hard to give up. 

When software engineering became the norm, every shop developed 
its own naming conventions and enforced them with some kind of data 
dictionary. Perhaps the most widespread set of rules was MIL STD 
8320.1, set up by the U.S. Department of Defense, but it never became 
popular outside of the federal government. This was a definite 
improvement over the prior nonsystem, but each shop varied quite a bit; 
some had formal rules for name construction, whereas others simply 
registered whatever the first name given to a data element was.

Today, we have ISO-11179 standards, which are becoming 
increasingly widespread, required for certain government work, and 
being put into data repository products. Tools and repositories of 
standardized encoding schemes are being built to this standard. Given 
this and XML as a standard exchange format, ISO-11179 will be the way 
that metadata is referenced in the future.

 

1.1.1 Watch the Length of Names 

 

Rationale: 

 

The SQL-92 standards have a maximum identifier length of 18 
characters. This length came from the older COBOL standards. These 
days, SQL implementations allow longer names, but if you cannot say it 
in 18 characters, then you have a problem. Table 1.1 shows the 
maximum length for names of the most important SQL schema objects 
according to ISO and several popular SQL products.
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The numbers in the table are either bytes or characters. A maximum 
character length can be smaller than a maximum byte length if you use a 
multibyte character set.

Do not use super-long names. People have to read them, type them, 
and print them out. They also have to be able to understand those names 
when they look at the code, search for them in the data dictionary, and 
so forth. Finally, the names need to be shared in host programs that 
might not allow the same maximum length.

But do not go to the other extreme of highly condensed names that 
are impossible to read without weeks of study. The old Bachman design 
tool was used to build DB2 databases back when column length was 
limited to 18 bytes. Sometimes the tool would change the logical 
attribute name to a physical column name by removing all of the vowels. 
Craig Mullins referred to this as “Bachman having a vowel movement on 
my DDL.” This is a bad approach to getting the name to fit within a 
smaller number of characters.

 

Exceptions: 

 

These exceptions would be on a case-by-case basis and probably the 
result of legacy systems that had different naming restrictions.

 

1.1.2 Avoid All Special Characters in Names

 

Rationale: 

 

Special characters in a name make it difficult or impossible to use the 
same name in the database and the host language programs or even to 
move a schema to another SQL product.

Table 1.2 shows the characters allowed in names by the standards 
and popular SQL products.

Generally, the first character of a name must be a letter, whereas 
subsequent characters may be letters, digits, or _ (underscore). Any 
database management system (DBMS) might also allow $, #, or @, but 
no DBMS allows all three, and in any case the special characters are not 

 

Table 1.1

 

Identifier lengths

 

SQL-92 SQL-99 IBM MS SQL Oracle

Column

 

18 128 30 128 30

 

Constraint

 

18 128 18 128 30

 

Table

 

18 128 128 128 30
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usable everywhere (Microsoft attaches special meaning to names that 
begin with @ or # and Oracle discourages special characters in the 
names of certain objects).

But what is a letter? In the original SQL, all letters had to be 
uppercase Latin, so there were only 26 choices. Nowadays the repertoire 
is more extensive, but be wary of characters outside the Latin-1 character 
set for the following reasons:

1.

 

IBM cannot always recognize a letter

 

. It just accepts that any 
multibyte character except space is a letter and will not attempt 
to determine whether it’s uppercase or lowercase.

2.

 

IBM and Oracle use the database’s character set and so could have a 
migration problem with exotic letters

 

. Microsoft uses Unicode and 
so does not have this problem.

Intermediate SQL-92 does not allow an identifier to end in an 
underscore. It is also not a good idea to put multiple underscores 
together; modern printers make it difficult to count the number of 
underscores in a chain.

 

Exceptions:

 

None 

 

1.1.3 Avoid Quoted Identifiers 

 

Rationale:

 

Table 1.2

 

Identifier character sets

 

Standard SQL IBM Oracle Microsoft 

First 
Character

 

Letter Letter, $#@ Letter Letter, #@

 

Later 
Characters

 

Letter, Digit, _ Letter, Digit, 
$#@_

Letter, Digit, 
$#_ 

Letter, Digit, 
#@_

 

Case 
Sensitive?

 

No No No Optional 

 

Term

 

Ordinary 
identifier

Nonquoted 
identifier

Regular 
identifier
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This feature was added to SQL-92. Its main use has been to alias column 
names to make printouts look like reports. This kludge defeats the 
purpose of a tiered architecture. Instead, it destroys portability of the 
code and invites poorly constructed names. Table 1.3 shows the 
characteristics of delimited identifiers.

If you find the character-set restrictions of names onerous, you can 
avoid them by putting identifiers inside double quotes. The result is a 
delimited identifier (or quoted identifier in Oracle terminology). 
Delimited identifiers may start with, and contain, any character. It is a bit 
uncertain how one can include the double quote (") character. The 
standard way is to double it, as in “Empl""oyees” but that’s not always 
documented.

Support for delimited names is nearly universal, with only two major 
exceptions: (1) IBM will not allow nonalphanumeric characters for labels 
and variable names inside stored procedures, and (2) Microsoft will not 
allow quoted identifiers if the QUOTED_IDENTIFIER switch is off. The 
reason for the first exception is, perhaps, that IBM converts SQL 
procedures into another computer language before compilation. 
Suppose you make a table with a delimited identifier, for example:

 

CREATE TABLE "t" ("column1" INTEGER NOT NULL);

 

Now try to get that table with a regular identifier, thus:

 

SELECT column1 FROM t;

 

Table 1.3

 

Quoted identifier character sets

 

Standard SQL IBM Microsoft Oracle

Delimiters 

 

"" "" "" or [ ] ""

 

First Character

 

Anything Anything Anything Anything

 

Later 
Characters

 

Anything Anything Anything Anything

 

Case Sensitive

 

Yes Yes Optional Yes

 

Term

 

Delimited 
identifier

Delimited 
identifier

Delimited 
identifier

Quoted 
identifier
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Will this work? According to the SQL standard, it should not, but 
with Microsoft, it might. The reason is case sensitivity, which we discuss 
in section 1.1.4.

The quoted identifiers do not work well with hot languages, especially 
when they have spaces or special characters. For example, this is a valid 
insertion statement:

 

 INSERT INTO Table ([field with space]) VALUES (value);

 

ADO generates the following code: 

 

INSERT INTO Table (field with space) VALUES (value);

 

which is a syntax error.

 

Exceptions:

 

If you need to communicate a result to someone who cannot read or 
understand the properly constructed column names in Latin-1, then use 
quoted aliases to format the output. I have done this for Polish and 
Chinese speakers.

I also use quoted names inside documentation so that they will 
immediately read as the name of a schema object and not a regular word 
in the sentence.

The usual reason for this error is that the programmer confuses a data 
element name with a display header. In traditional procedural languages, 
the data file and the application are in the same tier; in SQL, the database 
is totally separate from the front end where the data is displayed.

 

1.1.4 Enforce Capitalization Rules to Avoid Case-
Sensitivity Problems

 

Rationale: 

 

Case-sensitivity rules vary from product to product.
Standard SQL, IBM, and Oracle will convert regular identifiers to 

uppercase but will not convert delimited identifiers to uppercase. For 
Microsoft, the case-sensitivity rule has nothing to do with whether the 
name is regular or delimited. Instead, identifiers depend on the default 
collation. If the default collation is case insensitive, then t equals T. If it’s 
case sensitive, then t does not equal T.

To sum up, there are two case-sensitivity problems. The first is that 
the delimited identifier “t” and the regular identifier t differ if one follows 
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the SQL standard. The second is that Microsoft does not follow the SQL 
standard. These problems make it difficult for one naming convention to 
fit everyone.

 

Exceptions: 

 

I will give a simple set of rules based on principles of readability and 
typography, but there are other possible conventions:

1. Avoid delimited identifiers so you have no problems.

2. IBM uses only uppercase. Unfortunately, this is difficult to read 
and looks like you are still programming on a punchcard sys-
tem. 

3. Microsoft and Oracle use lowercase except where it would look 
odd. Unfortunately, the definition of looking odd is not at all 
precise. Sometimes reserved words are uppercased, sometimes 
lowercased, and so forth.

 

1.2 Follow the ISO-11179 Standards Naming Conventions

 

This is a fairly new ISO standard for metadata, and it is not well 
understood. Fortunately, the parts that a SQL programmer needs to 
know are pretty obvious and simple. The real problem is in the many 
ways that people violate them. A short summary of the NCITS L8 
Metadata Standards Committee rules for data elements can be found at 
the following sites: 

 

http://pueblo.lbl.gov/~olken/X3L8/drafts/draft.docs.html

http://lists.oasis-open.org/archives/ubl-ndrsc/200111/
msg00005.html

 

Also the pdf file:

 

www.oasis-open.org/committees/download.php/6233/
c002349_ISO_IEC_11179

 

and the draft:

 

www.iso.org/iso/en/ittf/PubliclyAvailableStandards/
c002349_ISO_IEC_11179-1_1999(E).zip

 

The ISO-11179 standard is broken down into six sections:
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11179-1: Framework for the Specification and Standardization of 
Data Elements Definitions 

11179-2: Classification for Data Elements 

11179-3: Basic Attributes of Data Elements 

11179-4: Rules and Guidelines for the Formulation of Data

11179-5: Naming and Identification Principles for Data 

11179-6: Registration of Data Elements

 

1.2.1 ISO-11179 for SQL 

 

Rationale:

 

Although the formal standards are good, they are very general. It is 
handy to have a set of rules aimed at the SQL developer in his or her 
own language. Some of the interpretations given here are the consensus 
of experts, as taken from newsgroups and private e-mails.

Taking the rules from Section ISO-11179-4, a scalar data element 
should do the following: 

1. Be unique (within any data dictionary in which it appears).

2. Be stated in the singular.

3. State what the concept is, not only what it is not.

4. Be stated as a descriptive phrase or sentence(s).

5. Contain only commonly understood abbreviations.

6. Be expressed without embedding definitions of other data ele-
ments or underlying concepts.

7. Tables, sets, and other collections shall be named with a collec-
tive, class, or plural name.

8. Procedures shall have a verb in their name. 

9. A copy (alias) of a table shall include the base table name as 
well as the role it is playing at that time.

This formalism is nice in theory, but names are subject to constraints 
imposed by software limitations in the real world, such as maximum 
name length and character sets. Another problem is that one data 
element may have many names depending on the context in which it is 
used. It might be called something in a report and something else in an 
electronic data interchange (EDI) file, and it might be different from the 
name in the database. But you want to avoid using multiple names in the 
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same database, and you should be able to detect them with metadata 
tools. Furthermore, you want to avoid using multiple names in different 
databases in the same enterprise. Unfortunately, this is much more 
difficult to detect without very good data dictionary tools. The data 
dictionary should include the external names and their context.

 

Exceptions:

 

The curse of legacy databases, legacy file systems, and other traditions 
can make this very difficult. If there is a common, well-understood name 
for a data element, then you can use this name instead of a constructed 
name. For example, “us_postal_code” is formally correct, but “zip_code” 
is well understood, and you can argue for simply “zip” or “zip4” as a 
name because it is a familiar term.

 

1.2.2 Levels of Abstraction

 

Name development begins at the conceptual level. An object class 
represents an idea, abstraction, or thing in the real world, such as tree 
or country. A property is something that describes all objects in the 
class, such as height or identifier. This lets us form terms such as “tree 
height” or “country identifier” from the combination of the class and 
the property.

The level in the process is the logical level. A complete logical data 
element must include a form of representation for the values in its data 
value domain (the set of possible valid values of a data element). The 
representation term describes the data element’s representation class. 
The representation class is equivalent to the class word of the prime/class 
naming convention with which many data administrators are familiar. 
This gets us to “tree height measure,” “country identifier name,” and 
“country identifier code” as possible data elements.

There is a subtle difference between “identifier name” and “identifier 
code,” and it might be so subtle that we do not want to model it, but we 
would need a rule to drop the property term in this case. The property 
would still exist as part of the inheritance structure of the data element, 
but it would not be part of the data element name.

Some logical data elements can be considered generic elements if they 
are well defined and are shared across organizations. Country names and 
country codes are well defined in the ISO 3166 standard, “Codes for the 
Representation of Names of Countries,” and you might simply reference 
this document.
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Note that this is the highest level at which true data elements, by the 
definition of ISO-11179, appear: They have an object class, a property, 
and a representation.

The next is the application level. This is usually done with a quantifier 
that applies to the particular application. The quantifier will either subset 
the data value domain or add more restrictions to the definition so that 
we work with only those values needed in the application.

For example, assume that we are using ISO-3166 country codes, but 
we are only interested in Europe. This would be a simple subset of the 
standard, but it will change slowly over time. However, the subset of 
countries with more than 20 centimeters of rain this year will vary greatly 
in a matter of weeks.

Changes in the name to reflect this fact will be accomplished by 
addition of qualifier terms to the logical name. For example, if a view 
were to list all of the countries with which a certain organization had 
trading agreements, the query data element might be called 
“trading_partner_country_name” to show its role in the context of the 
VIEW or query that limits it. The data value domain would consist of a 
subset of countries listed in ISO-3166.

The physical name is the lowest level. These are the names that 
actually appear in the database table column headers, file descriptions, 
EDI transaction file layouts, and so forth. They may be abbreviations or 
use a limited character set because of software restrictions. However, 
they might also add information about their origin or format.

In a registry, each of the data element names and name components 
will always be paired with its context so that we know the source or 
usage of the name or name component. The goal is to be able to trace 
each data element from its source to wherever it is used, regardless of the 
name under which it appears.

 

1.2.3 Avoid Descriptive Prefixes

 

Rationale: 

 

Another silly convention among newbies is to use prefixes that describe 
something about the appearance of the data element in the current table. 
In the old days, when we worked with sequential file systems, the 
physical location of the file was very important.

The “tbl-” prefix is particularly silly. Before you counter that this 
prefix answers the question of what something is, remember that SQL 
has only one data structure. What else could it be? Do you put “n-” in 
front of every noun you write? Do you think this would make English 
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easier to read? It is like infants announcing that everything is “thingie!” 
as they grab them.

“

 

To be something is to be something in particular; to be nothing in
particular or anything in general is to be nothing

 

.” —Aristotle

The next worst affix is the <table name>. Why does a data element 
become something totally different from table to table? For example, 
“orders_upc” and “inventory_upc” are both UPC codes no matter where 
they appear, but by giving them two names, you are saying that they are 
totally, logically different things in your data model.

A total nightmare is the combination of “id” in a base table (vague 
name) with a reference in a second table using the base table name as a 
prefix in the foreign key or non-foreign-key references. The queries fill 
up with code like “Orders.ID = OrderID,” which quickly becomes a 
game of looking for the period and trying to figure out what a thousand 
different “ID” columns mean in the data dictionary.

Affixes like “vw” for views tell you how the virtual table is 
implemented in the schema, but this has nothing to do with the data 
model. If I later decide to replace the view with a base table, do I change 
the name? The bad news is that a table often already exists with the same 
root name, which makes for more confusion.

Equally silly and dangerous are column names that are prefixed with 
the data type. This is how it is physically represented and not what it 
means in the data model. The data dictionary will be trashed, because 
you have no idea if there are “intorder_nbr,” “strorder_nbr,” and 
perhaps even “forder_nbr,” all trying to be the simple “order_nbr” at the 
same time. The user can also look at the data declaration language (DDL)

 

 

 

and see the data type, defaults, and constraints if he or she does not 
remember them.

The final affix problem is telling us that something is the primary key 
with a “PK_” or a foreign key with an “FK_” affix. That is how it is used 
in that particular table; it is not a part of its fundamental nature. The user 
can also look at the DDL and see the words “PRIMARY KEY” or 
“FOREIGN KEY.. REFERENCES..” in the column declarations.

The strangest version of this is a rule on a Web site for a company that 
specializes in Oracle programming. It advocated “<table 
name>_CK_<column name>” for CHECK() constraints. This not only 
gives you no help in determining the errors that caused the violation, but 
it also limits you to one and only one constraint per column per table, 
and it leaves you to ask about constraints that use two or more columns.
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The same rules and warnings about affixes apply to all schema 
objects. You will see “usp_” for user-defined stored procedures, “trig_” 
for triggers, and so forth. In MS SQL Server, this is a serious problem, 
because the prefix “sp_” is used for system procedures and has special 
meaning in the architecture.

If the schema object does something (triggers, procedures), then use 
a <verb><object> format for the name; the subject of the sentence is 
understood to be the procedure. We will go into more details on this 
topic in Chapter 8.

 

Exceptions:

 

You can find other opinions at:

 

http://www.craigsmullins.com/dbt_0999.htm

 

 

There was also a series of articles at:

 

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart2formatting.asp 

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart1formatting.asp 

 

1.2.4 Develop Standardized Postfixes 

 

This list of postfixes is built on Teradata’s internal standards and 
common usage. The Teradata standards are given in the Appendix.

“_id” = identifier. It is unique in the schema and refers to one entity
anywhere it appears in the schema. Never use “<table name>_id”;
that is a name based on location and tells you this is probably not a
real key at all. Just plain “id” is too vague to be useful to anyone
and will screw up your data dictionary when you have to find a zil-
lion of them, all different, but with the same data element name
and perhaps the same oversized data type.

“_date” or “dt” = date, temporal dimension. It is the date of some-
thing—employment, birth, termination, and so forth; there is no
such column name as just a date by itself.

“_nbr” or “num” = tag number. This is a string of digits that names
something. Do not use “_no” because it looks like the Boolean yes/
no value. I prefer “nbr” to “num” because it is used as a common
abbreviation in several European languages.

“_name” or “nm” = alphabetic name. This explains itself. It is also
called a nominal scale.
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“_code” or “_cd” = a code is a standard maintained by a trusted
source, usually outside of the enterprise. For example, the ZIP
code is maintained by the U.S. Postal Service. A code is well under-
stood in its context, so you might not have to translate it for
humans.

“_size” = an industry standard or company scale for a commodity,
such as clothing, shoes, envelopes, or machine screws. There is
usually a prototype that defines the sizes kept with a trusted
source. 

“_tot” = a sum, an aggregated dimension that is logically different
from its parts.

“_seq” = sequence, ordinal numbering. This is not the same thing as
a tag number, because it cannot have gaps.

“_tally” = a count of values. Also called an absolute scale.

“_cat” = category, an encoding that has an external source that has
distinct groups of entities. There should be strong, formal criteria
for establishing the category. The classification of Kingdom in Biol-
ogy is an example. 

“_class” = an internal encoding that does not have an external
source that reflects a subclassification of the entity. There should
be strong formal criteria for the classification. The classification of
plants in Biology is an example. 

“_type” = an encoding that has a common meaning both internally
and externally. Types are usually less formal than a class and might
overlap. For example, a driver’s license might be typed for motor-
cycles, automobiles, taxis, trucks, and so forth. 

The differences among type, class, and category are an increasing 
strength of the algorithm for assigning the type, class, or category. A 
category is distinct; you will not often have to guess if something is 
animal, vegetable, or mineral to put it in one of those categories.

A class is a set of things that have some commonality; you have rules 
for classifying an animal as a mammal or a reptile. You may have some 
cases for which it is more difficult to apply the rules, such as the 
platypus, an egg-laying mammal that lives in Australia, but the 
exceptions tend to become their own classification—monotremes in this 
example. 

A type is the weakest of the three, and it might call for a judgment. 
For example, in some states a three-wheeled motorcycle is licensed as a 



 

14 CHAPTER  1:  NAMES AND DATA ELEMENTS   

 

motorcycle, but in other states, it is licensed as an automobile, and in 
some states, it is licensed as an automobile only if it has a reverse gear.

The three terms are often mixed in actual usage. Stick with the 
industry standard, even if it violates the aforementioned definitions.

“_status” = an internal encoding that reflects a state of being, which
can be the result of many factors. For example, “credit_status”
might be computed from several sources.

“_addr” or “_loc” = an address or location for an entity. There can
be a subtle difference between an address and a location.

“_img” = an image data type, such as .jpg, .gif, and so forth.

Then an application might have some special situations with units of 
measurement that need to be shown on an attribute or dimension. And 

 

always 

 

check to see if there is an ISO standard for a data element.

 

1.2.5 Table and View Names Should Be Industry 
Standards, Collective, Class, or Plural Nouns

 

Rationale:

 

Industry standards should always be used. People in that industry will 
understand the name, and the definition will be maintained by the 
organization that sets those standards.

For example, the North American Industry Classification System 
(NAICS) has replaced the old Standard Industrial Classification (SIC) 
system in the United States. This new code was developed jointly by the 
United States, Canada, and Mexico to provide new comparability in 
statistics about business activity across North America. The names 
“NAICS” and “naics_code” are clear to people who do business statistics, 
even though they look weird to the rest of us.

If an industry standard is not right for your situation, then try to base 
your names on that standard. For example, if I am dealing only with 
automobiles made in Mexico, I could have a table named “VIN_Mexico” 
to show the restriction. Moving down the priority list, if I cannot find an 
industry standard, I would look for a collective or class name. I would 
never use a singular name. 

Collective or class table names are better than singular names because 
a table is a set and not a scalar value. If I say “Employee,” the mental 
picture is of Dilbert standing by himself—one generic employee. If I say 
“Employees,” the mental picture is of the crew from Dilbert—a 
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collection of separate employees. If I say “Personnel,” the mental picture 
is suddenly more abstract—a class without particular faces on it.

It is legal in SQL to give a table and a column the same name, but it is 
a really bad idea. First of all, the column’s name would be in violation of 
the rules we just discussed because it would lack a qualifier, but it would 
also mean that either the table name is not a set or the column name is 
not a scalar.

 

Exceptions: 

 

Use a singular name if the table actually has one and only one row in it. 
The one example I can think of is a table for constants that looks like 
this:

 

CREATE TABLE Constant

(lock CHAR(1) DEFAULT 'X' NOT NULL PRIMARY KEY

      CHECK (lock = 'X'),

 pi  REAL DEFAULT 3.141592653 NOT NULL,

 e REAL DEFAULT 2.718281828 NOT NULL,

 phi REAL DEFAULT 1.618033988 NOT NULL,

 ..);

 

INSERT INTO Constants DEFAULT VALUES;

 

The insertion creates one row, so the table ought to have a singular 
name. The “lock” column assures you that there is always only one row. 
Another version of this is to create a VIEW that cannot be changed using 
SQL-99 syntax.

 

CREATE VIEW Constant (pi, e, phi, ..)

AS VALUES (3.141592653, 2.718281828, 1.618033988, ..);

 

The advantage is that this view cannot be changed; the disadvantage 
is that this view cannot be changed.

 

1.2.6 Correlation Names Follow the Same Rules as 
Other Names . . . Almost 

 

Rationale: 

 

Correlation names are names. They should be derived from the base 
table or view name, the column name, or from the expression that 
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creates them. The nice part is that the readers have the context in front of 
them, so you can often use a more abbreviated name.

A correlation name is more often called an 

 

alias

 

, but I will be formal. 
In SQL-92, they can have an optional AS operator, and it should be used 
to make it clear that something is being given a new name.

This explicitly means that you do not use an alphabetical sequence 
unrelated to the base table name. This horrible practice is all too 
common and makes maintaining the code much more difficult. 
Consider looking at several statements where the table “Personnel” is 
aliased as “A” in one, “D” in another, and “Q” in a third because of its 
position in a FROM clause.

Column correlation names for a computed data element should name 
the computed data element in the same way that you would name a 
declared column. That is, try to find a common term for the 
computation. For example, “salary + COALESCE(commission, 0.00)) AS 
total_pay” makes sense to the reader.

A simple table or view correlation name should have a short, simple 
name derived from the base table name or descriptive of the role that 
copy of the table is playing in the statement (e.g., “SELECT .. FROM 
Personnel AS Management, Personnel AS Workers” as the two uses of 
the table in the query).

Now to explain the “almost” part of this section’s title. In the case of 
multiple correlation names on the same table, you may find it handy to 
postfix abbreviated names with a number (e.g., “SELECT .. FROM 
Personnel AS P1, Personnel AS P2”). The digit is to tell the reader how 
many correlation names are used in the statement for that table.

In effect, these are “correlation pronouns”—a shorthand that makes 
sense in a local context. They are used for the same reason as pronouns 
in a natural language: to make the statement shorter and easier to read.

A table expression alias should have a short, simple name derived 
from the logical meaning of the table expression.

 

SELECT  ..

  FROM (Personnel AS P1 

        INNER JOIN 

        SoftballTeams AS S1

        ON P1.ssn = S1.ssn) AS CompanyTeam (..)

        ..

 WHERE ..;
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Although not required, the correlation name on a table expression 
can be followed by a list of new column names in parentheses. If this list 
is missing, the correlation name inherits the names from the base tables 
or views in the table expression. In the case of a simple table correlation 
name, such a list would probably be redundant because we usually want 
to use the original column names.

In the case of a table expression correlation name, such a list would 
probably be a good idea to avoid ambiguous column names. It also 
forces the programmer to trim the expression of extraneous columns 
that were not actually needed in the query.

 

Exceptions:

 

If there is no obvious, clear, simple name for the table correlation name, 
then use an invented name, such as a single letter like X. Likewise, if a 
computation has no immediate name, then you might use an invented 
name.

 

1.2.7 Relationship Table Names Should Be Common 
Descriptive Terms 

 

Rationale: 

 

Tables and views can model relationships, usually one-to-many or 
many-to-many, as well as entities. If the relationship has a common 
name that is understood in the context, then use it. There is a tendency 
for newbies to concatenate the names of the tables involved to build a 
nounce word. For example, they name a table “Marriages” because that is 
the common term for that relationship rather than “ManWoman,” 
“HusbandsWives,” or something really weird. Likewise, “Enrollment” 
makes more sense than “Students_Courses”; once you start looking for 
the names, they come easily.

This concatenation falls apart when the relationship is not a simple 
binary one, such as an escrow on a house that has a buyer, a seller, and a 
lender.

 

Exceptions: 

 

If there is no common term for the relationship, you will need to invent 
something, and it might well be a concatenation of table names.
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1.2.8 Metadata Schema Access Objects Can Have 
Names That Include Structure Information 

 

This rule does not apply to the schema information tables, which come 
with standardized names. It is meant for naming indexes and other 
things that deal directly with storage and access. The postfix “_idx” is 
acceptable.

 

Rationale: 

 

This is simply following the principle that a name should tell you what 
something is. In the case of indexes and other things that deal directly 
with storage and access, that is what they are. They have nothing to do 
with the data model.

 

Exceptions: 

 

This does not apply to schema objects that are seen by the user. Look for 
the rules for the other schema objects as we go along.

 

1.3 Problems in Naming Data Elements 

 

Now that we have talked about how to do it right, let’s spend some time 
on common errors in names that violate the rules we set up.

 

1.3.1 Avoid Vague Names 

 

Rationale: 

 

“

 

That sounds vaguely obscene to me! I can’t stand vagueness!

 

”
—Groucho Marx.

At one extreme the name is so general that it tells us nothing. The 
column is a reserved word such as “date” or it is a general word like “id,” 
“amount,” “date,” and so forth. Given a column called “date,”  you have 
to ask, “date of what?” An appointment? Birth? Hire? Termination? 
Death? The name begs the question on the face of it.

At another extreme, the name is made useless by telling us a string of 
qualifiers that contradict each other. Consider the typical newbie 
column name like “type_code_id” as an example. If it is an identifier, then 
it is unique for every entity that has it, like the vehicle identification 
number (VIN) on a automobile. If it is a code, then what is the trusted 
source that maintains it like a ZIP code? It is drawn from a domain of 
values that is not unique. If it is a type, then what is the taxonomy to 
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which it belongs? Why not go all the way and call it “type_code_id_value” 
instead?

Why did we not find a mere “customer_type” that would have been 
understood on sight?

 

Exceptions: 

 

None

Improperly formed data element names seem to be the result of 
ignorance and object-oriented (OO) programming. In particular, OO 
programmers put “_id” on every primary key in every table and have 
problems understanding that SQL is a strongly typed language in which 
things do not change their data types in programs. The names get absurd 
at times. Consider a lookup table for colors:

 

CREATE TABLE TblColors

(color_value_id INTEGER NOT NULL PRIMARY KEY,

 color_value VARCHAR(50) NOT NULL);

 

But what does “_value_id” mean? Names like this are generated 
without thought or research. Assume that we are using the Pantone color 
system in the database, so we have a trusted source and a precise 
description—we did the research! This might have been written as 
follows:

 

CREATE TABLE Colors

(pantone_nbr INTEGER NOT NULL PRIMARY KEY,

 color_description VARCHAR(50) NOT NULL);

 

1.3.2 Avoid Names That Change from Place to Place

 

Rationale: 

 

The worst possible design flaw is changing the name of an attribute on 
the fly, from table to table. As an example, consider this slightly cleaned-
up piece of actual code from a SQL newsgroup:

 

SELECT Incident.Type, IPC.DefendantType, 

Recommendation.Notes, Offence.StartDate, Offence.EndDate, 
Offence.ReportedDateTime, IPC.URN

FROM IPC INNER JOIN Incident

ON IPC.URN = Incident.IPCURN
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INNER JOIN IncidentOffence

ON Incident.URN = IncidentOffence.IncidentURN

INNER JOIN Offence

ON Offence.URN = IncidentOffence.OffenceURN

INNER JOIN IPCRecommendation

 ON IPC.URN = IPCRecommendation.IPCURN

INNER JOIN Recommendation

 ON IPCRecommendation.RecommendationID = Recommendation.ID; 

Those full table names are difficult to read, but the newbie who wrote 
this code thinks that the table name must always be part of the column 
name. That is the way that a file worked in early COBOL programs.

This means that if you have hundreds of tables, each appearance of 
the same attribute gets a new name, so you can never build a proper data 
dictionary. Did you also notice that it is not easy to see underscores, 
commas, and periods?

Try this cleaned-up version, which clearly shows a simple star schema 
centered on the IPC table.

SELECT I1.incident_type, IPC.defendant_type, R1.notes, 

       O1.start_date, O1.end_date, O1.reported_datetime, IPC.urn

  FROM Incidents AS I1, IPC, Recommendations AS R1, Offences AS O1,

 WHERE IPC.recommendation_id = R1.recommendation_id 

   AND IPC.urn = O1.urn

   AND IPC.urn = I1.urn

   AND IPC.urn = R1.urn 

   AND I1.urn = O1.urn; 

I have no idea what a URN is, but it looks like a standard identifier of 
some kind. Look at all of the kinds of “URNs” (i.e., URN, IPCURN, and 
OffenseURN) in the original version of the query. It gives you the feeling 
of being in a crematorium gift shop.

As you walk from room to room in your house, do you also change 
your name, based on your physical location? Of course not! The name we 
seek identifies the entity, not the location.

Exceptions: 
Aliases inside a query can temporarily give a new name to an occurrence 
of a data element. These are temporary and disappear at the end of the 
statement. We discuss rules for this in another section 1.2.6.
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1.3.3 Do Not Use Proprietary Exposed Physical Locators
Rationale: 
The most basic idea of modern data modeling is to separate the logical 
model and the physical implementation from each other. This allows us 
to reuse the model on different platforms and not be tied to just one 
platform.

In the old days, the logical and physical implementations were fused 
together. I will explain this in more detail in the next chapter, but for 
now the rule is to never use proprietary physical locators. We want to 
have portable code. But the real problem is that the proprietary physical 
locator violates the basic idea of a key in the relational model.

When new SQL programmers use IDENTITY, GUID, ROWID, or 
other auto-numbering vendor extensions to get a key that can be used 
for locating a given row, they are imitating a magnetic tape’s sequential 
access. It lets them know the order in which a row was added to the 
table—just like individual records went onto the end of the magnetic 
tape! 

We will spend more time discussing this flaw in Chapter 3.

Exceptions: 
You might want to fake a sequential file when you are using a SQL table 
structure for some purpose other than a relational database management 
system (RDBMS). For example, staging and scrubbing data outside the 
“Real Schema” that do not have any data integrity issues.
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Fonts, Punctuation, and Spacing

 

C

 

ODE

 

 

 

IS

 

 

 

USUALLY

 

 set in a monospace font. After more than a century of 
manual typewriters and decades of punchcards, we find that it is 
actually easier to read code in a monospace font than a proportional 
font. Punctuation marks get the same spacing as a letter in a 
monospace font, but would be lost in a proportional font.

 

2.1 Typography and Code

 

Your brain and eyes do not follow code the same way that they follow 
text, process mathematics, read maps, or look at pictures. In fact, 
there are a lot of individual differences in human brains.

Some people like text editors that use colors for various syntax 
elements in a programming language. Other people get headaches 
from colored program editors and want to see black-and-white text. 
Likewise, a newspaper that put nouns in red, verbs in green, and other 
such things would simply not work. Yet black-and-white maps are 
much more difficult to read than those with colors. Why? This has to 
do with color perception and how fast you can switch between the left 
and right halves of your brain.

There is a test for brain damage in which the examiner flashes cards 
with words printed in various colored inks (e.g., the word “RED” 
written in green ink). The examiner asks the subject for the word or 
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the color and times the responses. The rate is fairly constant over the 
subject’s lifetime, so a change is a symptom of some physical or chemical 
change. Now, try reading this phrase:

 

Paris
in the

the Spring.

 

                 
Almost nobody reading this for the first time catches the fact that the 

word “the” appears twice. The point is that there is a vertical component 
to how we read text in chunks of words.

Code on a page is read from left to right and from top to bottom, with 
a lot of vertical eye movement that you would not have if you were 
reading pure text.

A few years ago, the following posting made the rounds in 
newsgroups. I am not sure if it is genuinely from Cambridge University, 
but it makes its point very nicely:

Aoccrdnig to rscheearch at Cmabrigde Uinervtisy, it deosn’t 
mttaer in waht oredr the ltteers in a wrod are, the only iprmo-
etnt tihng is taht the frist and lsat ltteer be at the rghit pclae. 
The rset can be a total mses and you can sitll raed it wouthit 
porbelm. Tihs is bcuseae the huamn mnid does not raed ervey 
lteter by istlef, but the wrod as a wlohe.

Because the parser guarantees that running code will not have syntax 
and spelling errors like those in the above text, the reader knows what 
token to expect next with far more certainty than in plain text. Not only 
are words seen as wholes, but they are also anticipated within each 
statement in the programming language. That is, if I see an “IF” token in 
Pascal or another member of the Algol family, I anticipate the matching 
“THEN” that completes the statement.

Let’s discuss some basic typographic conventions for programming 
code, which are based on how people read it.
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2.1.1 Use Only Upper- and Lowercase Letters, Digits, 
and Underscores for Names

 

Rationale:

 

This subset of characters will port to any other programming language. It 
is very handy to be able to use the same names in both the database and 
the host languages of the applications.

For example, the octothrope or number sign (#) is allowed in several 
SQL products, but it has a special meaning in other programming 
languages and could not be used in them.

 

Exceptions:

 

If you are still programming on a machine that uses punchcards, then 
you have no choice but to use the limited, uppercase-only character. It is 
hard to imagine such a situation in the 21st century.

If the SQL implementation requires special symbols for certain 
names, then you have no choice. For example, temporary table names 
begin with an octothrope and parameter names begin with a “petite 
snail” or “at sign” (@) in Sybase/SQL Server T-SQL dialects. However, it 
is a good idea to be sure that the names are unique without the special 
characters, so you can port the code to a more modern implementation.

Do not use an underscore as the first or last letter in a name. It looks 
like the name is missing another component. Leading or trailing 
underscores also get lost visually without letters or digits around them, 
thanks to laser-quality printers. Likewise, do not use more than one 
underscore in a row. The old mechanical line printers could not align 
underscores, so you could eyeball them, whereas laser printers are 
microscopically precise.

 

2.1.2 Lowercase Scalars Such as Column Names, 
Parameters, and Variables

 

Rationale:

 

Words in books and newspapers are written in lowercase letters because 
they are easier to read than uppercase words. This is basic typography. 
Using all uppercase letters is the worst choice. Lowercase text is also read 
faster than uppercase text. The first measurements are in  Woodworth 
(1938), and Smith and Fisher (1975) have confirmed it. Participants 
were asked to read comparable passages of text, half completely in 
uppercase text and half presented in standard lowercase text. In each 
study, participants read reliably faster with the lowercase text by a 5 
percent to 10 percent speed difference.
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Exceptions:

 

Unless there is a compelling physical reason, use lowercase. The only 
compelling physical reason I can think of is that you are still using 
punchcards in the 21st century.

 

2.1.3 Capitalize Schema Object Names

 

Rationale:

 

Schema objects include tables, views, stored procedures, and so forth. 
Capitalized words begin a sentence in languages that use the Latin 
alphabet. Additionally, capitalization represents proper nouns—like the 
names of sets being modeled by tables in SQL—in English, German, and 
other natural languages. This is the way that readers expect to see these 
names; don’t surprise them.

 

Exceptions:

 

Unless the name naturally begins with a lowercase letter, there is no 
reason not to capitalize it.

 

2.1.4 Uppercase the Reserved Words

 

Rationale:

 

Uppercase words are seen as a unit, rather than being read as a series of 
syllables or letters. The eye is drawn to them, and they act to announce a 
statement or clause. That is why headlines and warning signs work.

Typographers use the term 

 

bouma

 

 for the shape of a word. The term 
appears in Paul Saenger’s book (1975). Imagine each letter on a 
rectangular card that just fits it, so you see the ascenders, descenders, 
and baseline letters as various-sized “Lego blocks” that are snapped 
together to make a word.

The bouma of an uppercase word is always a simple, dense rectangle, 
and it is easy to pick out of a field of lowercase words. Consider this 
statement:

 

Select a, b, c from foobar where flob = 23;

 

versus:

 

SELECT a, b, c FROM Foobar WHERE flob = 23;
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See how quickly you can find each clause, reading from left to right? 
Next, if you put each clause on a line of its own, you can read the code 
still faster:

 

SELECT a, b, c

  FROM Foobar

 WHERE flob = 23;

 

We will deal with rules for the vertical components later.

 

Exceptions:

 

None

Keywords come in two types, reserved and nonreserved words. The 
reserved words are part of the SQL language; the nonreserved words are 
metadata names that appear in the environment and will not cause 
syntax errors in an actual SQL program. They are also not very likely to 
be used in a real application.

 

<key word> ::= <reserved word> | <non-reserved word>

<non-reserved word> ::=

  ADA

 | C | CATALOG_NAME | CHARACTER_SET_CATALOG | CHARACTER_SET_NAME

 | CHARACTER_SET_SCHEMA | CLASS_ORIGIN | COBOL | 
COLLATION_CATALOG

 | COLLATION_NAME | COLLATION_SCHEMA | COLUMN_NAME | 
COMMAND_FUNCTION

 | COMMITTED

 | CONDITION_NUMBER | CONNECTION_NAME | CONSTRAINT_CATALOG

 | CONSTRAINT_NAME

 | CONSTRAINT_SCHEMA | CURSOR_NAME

 | DATA | DATETIME_INTERVAL_CODE

 | DATETIME_INTERVAL_PRECISION | DYNAMIC_FUNCTION

 | FORTRAN

 | LENGTH

 | MESSAGE_LENGTH | MESSAGE_OCTET_LENGTH | MESSAGE_TEXT | MORE | 
MUMPS

 | NAME | NULLABLE | NUMBER

 | PASCAL | PLI

 | REPEATABLE | RETURNED_LENGTH | RETURNED_OCTET_LENGTH

 | RETURNED_SQLSTATE
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 | ROW_COUNT

 | SCALE | SCHEMA_NAME | SERIALIZABLE | SERVER_NAME | 
SUBCLASS_ORIGIN

 | TABLE_NAME | TYPE

 | UNCOMMITTED | UNNAMED

<reserved word> ::=

  ABSOLUTE | ACTION | ADD | ALL | ALLOCATE | ALTER | AND

 | ANY | ARE | AS | ASC

 | ASSERTION | AT | AUTHORIZATION | AVG

 | BEGIN | BETWEEN | BIT | BIT_LENGTH | BOTH | BY

 | CASCADE | CASCADED | CASE | CAST | CATALOG | CHAR | CHARACTER

 | CHAR_LENGTH

 | CHARACTER_LENGTH | CHECK | CLOSE | COALESCE | COLLATE | 
COLLATION

 | COLUMN | COMMIT | CONNECT | CONNECTION | CONSTRAINT

 | CONSTRAINTS | CONTINUE

 | CONVERT | CORRESPONDING | COUNT | CREATE | CROSS | CURRENT

 | CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP | 
CURRENT_USER

 | CURSOR

 | DATE | DAY | DEALLOCATE | DEC | DECIMAL | DECLARE | DEFAULT

 | DEFERRABLE

 | DEFERRED | DELETE | DESC | DESCRIBE | DESCRIPTOR | DIAGNOSTICS

 | DISCONNECT | DISTINCT | DOMAIN | DOUBLE | DROP

 | ELSE | END | END-EXEC | ESCAPE | EXCEPT | EXCEPTION

 | EXEC | EXECUTE | EXISTS

 | EXTERNAL | EXTRACT

 | FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND | FROM 
| FULL

 | GET | GLOBAL | GO | GOTO | GRANT | GROUP

 | HAVING | HOUR

 | IDENTITY | IMMEDIATE | IN | INDICATOR | INITIALLY | INNER | 
INPUT

 | INSENSITIVE | INSERT | INT | INTEGER | INTERSECT | INTERVAL | 
INTO

 | IS

 | ISOLATION

 | JOIN

 | KEY

 | LANGUAGE | LAST | LEADING | LEFT | LEVEL | LIKE | LOCAL | 
LOWER
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 | MATCH | MAX | MIN | MINUTE | MODULE | MONTH

 | NAMES | NATIONAL | NATURAL | NCHAR | NEXT | NO | NOT | NULL

 | NULLIF | NUMERIC

 | OCTET_LENGTH | OF | ON | ONLY | OPEN | OPTION | OR

 | ORDER | OUTER

 | OUTPUT | OVERLAPS

 | PAD | PARTIAL | POSITION | PRECISION | PREPARE | PRESERVE | 
PRIMARY

 | PRIOR | PRIVILEGES | PROCEDURE | PUBLIC

 | READ | REAL | REFERENCES | RELATIVE | RESTRICT | REVOKE | 
RIGHT

 | ROLLBACK | ROWS

 | SCHEMA | SCROLL | SECOND | SECTION | SELECT | SESSION

 | SESSION_USER | SET

 | SIZE | SMALLINT | SOME | SPACE | SQL | SQLCODE | SQLERROR | 
SQLSTATE

 | SUBSTRING | SUM | SYSTEM_USER

 | TABLE | TEMPORARY | THEN | TIME | TIMESTAMP | TIMEZONE_HOUR

 | TIMEZONE_MINUTE

 | TO | TRAILING | TRANSACTION | TRANSLATE | TRANSLATION | TRIM 
| TRUE

 | UNION | UNIQUE | UNKNOWN | UPDATE | UPPER | USAGE | USER | 
USING

 | VALUE | VALUES | VARCHAR | VARYING | VIEW

 | WHEN | WHENEVER | WHERE | WITH | WORK | WRITE

 | YEAR

 | ZONE

 

Vendors will also have proprietary reserved words, which should also 
be capitalized.

 

2.1.5 Avoid the Use of CamelCase

 

Rationale:

 

The eye tends to look for a word in its usual lowercase or capitalized 
form, so CamelCase words tend to lead the eye to the pieces rather than 
to the whole word. In particular, a CamelCase word that begins with a 
lowercase letter will be scanned starting at the first uppercase letter and 
then scanned backward to get the first syllable.

Another problem is that you need to agree on how to mix the cases. 
For example, should it be “upcCode,” “UpcCode,” “UPCcode,” or 
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“UPCCode”? In practice, you can wind up with several versions of the 
same name.

It is even more difficult to read text in alternating case; that is, where 
the letters of a word change from uppercase to lowercase multiple times 
within a word (e.g., “AlTeRnAtInG cAsE”). The bouma shape is different 
from the same word in its lowercase form. Alternating case has been 
shown to be more difficult than either lowercase or uppercase text in a 
variety of studies.

Smith (1969) showed that it slowed the reading speed of a passage of 
text. Mason (1978) showed that the time to name a word was slowed.

Pollatsek, Well, and Schindler (1975) showed that word matching 
was hindered. Meyer and Gutschera (1975) showed that category 
decision times decreased.

 

Exceptions:

 

If the word naturally appears in CamelCase, such as “MacDonald,” then 
use it. If you begin the object name with an uppercase letter, then you 
can optionally use it. However, never use CamelCase for a scalar.

 

2.2 Word Spacing

 

Put one space between language tokens and do not jam things into a 
stream. For example, do write “foobar = 21” instead of “foobar=21,” as 
you will often see. Many programmers who grew up with punchcards 
were taught to use minimal white space to save the limited number of 
columns. For example, FORTRAN II does not need any spaces at all in 
its code, nor does the original IBM job control language (JCL) for the 
IBM/360 family. Modern programming languages are not this restricted, 
and we now have the ability to write code as if people were more 
important than computers.

 

Rationale:

 

We are now living in the 21st century, and you can add white space for 
readability without running over the edge. That is a screen and not a 
punchcard in front of you.

 

Exceptions:

 

You might have to wrap exceptionally long lines. This is not as big a 
problem in a concise language like SQL as it was in a verbose language 
like COBOL.
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2.3 Follow Normal Punctuation Rules

 

Rationale:

 

Try to follow the rules that you would for English punctuation, because 
people are used to reading English and their eyes expect certain 
conventions.

1. In SQL in particular, you need to follow the rule about having a
space after a comma because the comma and the period are
easy to confuse or to miss visually.

Compare:

 

SELECT flobs.a,flobs.b,flobs.c,fleq.d 
FROM Flobs,Foobar,Fleq;

 

versus

 

SELECT flobs.a, flobs.b, flobs.c, fleq.d 
FROM Flobs, Foobar, Fleq;

 

2. Put commas at the end of a line, not the start. A comma, 
semicolon, question mark, or periods are visual signals that 
something has just ended, not that it is starting. Having a 
comma at the start of a line will make the eye tick leftward as it 
looks for that missing word that was expected before the 
comma.

 

SELECT flobs.a

       ,flobs.b

       ,flobs.c

       ,fleq.d

  FROM Flobs

       ,Fleq

 ;

 

Instead, put comma-separated lists on one line so they can be 
read left to right instead of vertically. If you split the list into 
two or more lines, see that each line contains related data 
elements.

 

SELECT flobs.a, flobs.b, flobs.c, --related group

       fleq.d

  FROM Flobs, Fleq;
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3. Put a new line or at least a space after a semicolon to separate 
statements.

4. Put a space between words even when you could crowd them 
together.

 

Exceptions:

 

If SQL does not work the same way as English, then you have to follow 
the SQL syntax rules.

Many of the code-formatting habits people have go back to habits 
they were taught by programmers who grew up with punchcard data 
processing. Because we have video terminals and text editors today, a lot 
of habits no longer have any basis.

The practice of putting a comma in front of a single variable on a 
single line goes back to punchcards. It was often difficult for 
programmers to get to a keypunch machine to create their decks of 
cards. In this format, you could pull or insert a card to change your code. 
There is no excuse for this practice since we now have video terminals.

English and European languages are read left to right and then top to 
bottom. This scanning pattern is so deeply learned that we arrange 
schematics, comic books, maps, and other graphics the same way. To see 
how much changing that order can throw you off, try to read a Japanese 
or Chinese comic book. The panels are in right-to-left order, and the 
Chinese word balloons are read top to bottom. This is why typographers 
have a rule that you do not set long words

V
E
R
T
T
I
C
A
L
L
Y.

Did you spot the misspelling? About one-third of readers do not. 
Likewise, it is difficult to locate duplicates and errors in those long 
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vertical lists of names. SQL formatting can use vertical alignment to 
advantage in other places but in things that should be chunked together.

 

2.4 Use Full Reserved Words

 

Rational:

 

SQL allows you to skip some reserved words and to abbreviate others. 
Try to use the full forms to document the program. This is a good thing 
in COBOL, and it works in SQL as well.

For example, an alias can be written with or without an AS operator. 
That is, “Personnel AS P1” is equivalent to “Personnel P1” in a FROM 
clause, and “(salary + commission) AS total_pay” is equivalent to “(salary 
+ commission) total_pay” in a SELECT list. But the AS reserved word 
makes it easier to see there is an alias and not a comma in these 
situations.

Technically, you can abbreviate INTEGER to INT and DECIMAL to 
DEC, but the full names are preferred. The abbreviations look like the 
reserved word “into” or the month “Dec” in English.

 

Exceptions:

 

The exception is to use the shorter forms of the character data types. 
That is, CHAR(n) instead of CHARACTER(n), VARCHAR(n) instead of 
VARYING CHARACTER(n), NCHAR(n) instead of NATIONAL 
CHARACTER(n), and NVARCHAR(n) instead of NATIONAL VARYING 
CHARACTER(n). The full names are too long to be comfortable to a 
reader. Even COBOL, the most verbose programming language on earth, 
allows some abbreviations.

 

2.5 Avoid Proprietary Reserved Words if a Standard 
Keyword Is Available in Your SQL Product

 

Rationale:

 

Sticking to standards will make your code readable to other SQL 
programmers who might not know your dialect. It also means that your 
code can run on other products without being rewritten.

Standard code will protect you from failure when the proprietary 
syntax is dropped or modified. That unwelcome surprise occurred in 
several products when the vendors added the Standard SQL versions of 
OUTER JOINs and deprecated

 

 

 

their old proprietary versions. In 
particular, SQL Server programmers had to unlearn their *= syntax and 
semantics for outer joins.
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The other disadvantage of proprietary features is that they change 
over time and have no standard behavior. For example, the BIT data 
type in SQL Server changed its NULL-ability between product releases. 
Oracle could not tell an empty string from a NULL. There are lots of 
other examples. Because there is no external standard to appeal, a 
vendor is free to do anything it wishes.

 

Exceptions:

 

If your SQL product does not yet support standard syntax for something, 
then you have no choice. This is true for temporal functions. They were 
late getting to Standard SQL, so the early vendors made up their own 
syntax and internal temporal models.

 

2.6 Avoid Proprietary Statements if a Standard Statement 
Is Available

 

Rationale:

 

This rule ought to be obvious. Sticking to standards will make your code 
readable to other SQL programmers who might not know your dialect. It 
also means that your code can run on other products without being 
rewritten. Standard code will protect your code from failure when the 
proprietary syntax is dropped or modified.

In fact, a vendor can actually give you proprietary features that are 
unpredictable! In the “Books On Line” interactive manual that comes 
with Microsoft SQL Server, we get a warning in the REMARKS section 
about the proprietary “UPDATE.. FROM..” syntax that tells us:

The results of an UPDATE statement are undefined if the state-
ment includes a FROM clause that is not specified in such a 
way that only one value is available for each column occur-
rence that is updated (in other words, if the UPDATE statement 
is not deterministic). For example, given the UPDATE state-
ment in the following script, both rows in table S meet the 
qualifications of the FROM clause in the UPDATE statement, 
but it is undefined which row from S is used to update the row 
in table T.

This replaces a prior behavior found in the Sybase and Ingres family 
where the UPDATE.. FROM would do multiple updates, one for each 
joined row in the second table.
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In older versions of Sybase/SQL Server, if a base table row is 
represented more than once in the embedded query, then that row is 
operated on multiple times instead of just once. This is a total violation 
of relational principles, but it’s easy to do with the underlying physical 
implementation. Here is a quick example:

 

 CREATE TABLE T1 (x INTEGER NOT NULL);

 INSERT INTO T1 VALUES (1);

 INSERT INTO T1 VALUES (2);

 INSERT INTO T1 VALUES (3);

 INSERT INTO T1 VALUES (4);

 CREATE TABLE T2 (x INTEGER NOT NULL);

 INSERT INTO T2 VALUES (1);

 INSERT INTO T2 VALUES (1);

 INSERT INTO T2 VALUES (1);

 INSERT INTO T2 VALUES (1);

 

Now try to update T1 by doubling all the rows that have a match in T2.

 

 UPDATE  T1

    SET T1.x = 2 * T1.x

   FROM T2

  WHERE T1.x = T2.x;

 SELECT * FROM T1;

original   current

    x           x

 ====         ====

   16           2

    2           2

    3           3

    4           4

 

The FROM clause gives you a CROSS JOIN, so you get a series of four 
actions on the same row (1 => 2 => 4 => 8 => 16). These are pretty 
simple examples, but you get the idea. There are subtle things with self-
joins and the diseased mutant T-SQL syntax that can hang you in loops 
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by changing things, or you can have tables that depend on the order of 
the rows for their results, and so forth.

SQL Server and Sybase used different fixes for this problem in later 
versions of their products. Sybase did a hidden “SELECT DISTINCT” in 
the implied query, and SQL Server gets an unpredictable row. Standard 
SQL is consistent and clear about aliases, views, and derived tables, as 
well as a highly orthogonal language.

If the UPDATE clause could take an alias, according to the Standard 
SQL model, then you would create a copy of the contents of that base 
table under the alias name, then update that copy, and delete it when the 
statement was over—in effect doing nothing to the base table.

If the UPDATE clause could take a FROM clause, according to the 
Standard SQL model, then you would create a result set from the table 
expression, then update that copy, and delete it when the statement was 
over—in effect doing nothing to the base tables.

Because this syntax is so proprietary, inconsistent with the standard 
model, and ambiguous, why does it exist? In the original Sybase 
product, the physical model made this “extension” relatively easy to 
implement, and there were no standards or a good understanding of the 
relational model back then. Programmers got used to it and then it was 
almost impossible to fix.

When I lived in Indianapolis in the mid-1970s, my neighbor had 
graduated from General Motors private college and gone to work for the 
company. His first job was investigating industrial accident reports. We 
were having a beer one night, and he got to telling war stories from the 
various General Motors plants he had been to for his job. His conclusion 
after a year on that job was that all industrial accidents are bizarre suicide 
attempts. People would go to the machine shop and build clever devices 
to short around the safety features on their equipment so they could 
work a little faster.

For example, if you make a clamp that holds in one of the two safety 
switches that operates a small stamping machine, you can push the other 
button with one hand and work material with your free hand. Well, you 
can do this until that free hand is crushed just above the wrist and 
squirts across the back wall of the shop anyway. Trading speed for safety 
and correctness will eventually catch up with you.

 

Exceptions:

 

If your SQL product does not yet support standard syntax for something, 
then you have no choice. For example, Oracle did not support the CASE 
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expression, but its DECODE() function is quite close to it and can be 
substituted in older versions of Oracle.

 

2.7 Rivers and Vertical Spacing

 

When you look at a magazine or newspaper, you will notice that the text 
is set in a column that is even on both sides. This is called justified text, 
as opposed to ragged right or ragged left text. Extra spacing is added to 
each line to justify the text, but if this extra spacing appears in the same 
location on several rows, you get rivers.

A 

 

river

 

 is a vertical open space in text, and it is considered to be bad 
typography. You want to read text from left to right, top to bottom, with 
a visual break at the indentation or new line that marks the start of a 
paragraph. A river pulls your eye downward and makes the text more 
difficult to read.

It is easy to set up what typographers call rivers in the program code 
in a monospace font because you can add spacing as needed, but that 
same downward river effect aligns code on a vertical axis and makes the 
program easier to read.

 

SELECT I1.incident_type, IPC.defendant_type, R1.notes,

O1.start_date, O1.end_date, O1.reported_datetime, IPC.urn

FROM Incidents AS I1, IPC, Recommendations AS R1, Offences AS 
O1,

WHERE IPC.recommendation_id = R1.recommendation_id

AND IPC.urn = O1.urn AND IPC.urn = I1.urn

AND IPC.urn = R1.urn AND I1.urn = O1.urn; 

 

versus no river:

 

SELECT I1.incident_type, IPC.defendant_type, R1.notes,

       O1.start_date, O1.end_date, O1.reported_datetime, IPC.urn

  FROM Incidents AS I1, IPC, Recommendations AS R1, Offences AS 
O1,

 WHERE IPC.recommendation_id = R1.recommendation_id

   AND IPC.urn = O1.urn

   AND IPC.urn = I1.urn

   AND IPC.urn = R1.urn

   AND I1.urn = O1.urn; 
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2.8 Indentation

 

When you have to indent in block-structured 3GL programming 
languages, use three spaces. A single space is too short to be read as 
anything but a word separator. Two spaces will work because that is what 
you were probably taught to use in typing classes at the end of a 
sentence, but three spaces or a new line is clearly a paragraph to the 
reader.

Indenting five or more spaces actually hurts readability. The eye has 
to skip over too far to grab the code. In particular, the use of an eight-
space tab character is historical. The early Teletype machines had 80 
characters per line and set tabs at eight spaces for mechanical reasons. 
That became the definition when we moved to electronic terminals.

The rule for SQL is that rivers override what we were doing in the old 
3GL languages.

 

Rationale:

 

What we need in data manipulation language (DML)

 

 

 

is a balance of 
indentation and the use of rivers to the logical nesting. Note how each 
subquery has a river to hold it together and that the subquery is placed 
against the river.

 

SELECT DISTINCT pilot

  FROM PilotSkills AS PS1

 WHERE NOT EXISTS

       (SELECT *

          FROM Hangar

         WHERE NOT EXISTS

               (SELECT *

                  FROM PilotSkills AS PS2

                 WHERE PS1.pilot = PS2.pilot

                   AND PS2.plane = Hangar.plane));

 

Exceptions:

 

A subquery is always inside parentheses, so one can make a case that the 
closing parentheses should align vertically with its mate.

 

SELECT DISTINCT pilot

  FROM PilotSkills AS PS1

 WHERE NOT EXISTS

       (SELECT *
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          FROM Hangar

         WHERE NOT EXISTS

               (SELECT *

                  FROM PilotSkills AS PS2

                 WHERE PS1.pilot = PS2.pilot

                   AND PS2.plane = Hangar.plane

               )

       );

 

The advantage is that you can quickly find the limits of the subquery 
but at the cost of extra lines that hold only one or two tokens.

When you have a group of related columns in the SELECT clause list 
or other places, then use the three-space rule to indent the members of 
the group when you have to go to a second line:

 

SELECT C1.cust_name, C1.street_address, C1.city, C1.state, 
C1.zip,

       P1.payment_1, P1.payment_2, P1.payment_3, P1.payment_4,

          P1.payment_5, P1.payment_6, P1.payment_7, P1.payment_8,

          P1.payment_9, payment_10,

  FROM Customers AS C1, Payments AS P1

 WHERE C1.cust_id = P1.cust_id;

 

The customer columns are on one line, while the 10 payments are 
split over three lines with an indentation to group them.

 

2.9 Use Line Spacing to Group Statements

 

Rationale:

 

Use one new line between related statements and two new lines between 
separate steps in the same process.

Clusters of related code on a page show the reader which statements 
perform each step of a process. It is also a good idea to introduce each 
step with a high-level comment, but we will get into that later.

As an experiment to demonstrate how important visual clustering is, 
make some flash cards with some red circles on them. On one set of flash 
cards, arrange the spots in the patterns in which they appear on a double 
nine set of dominoes. On a second set of flash cards, put the spots on at 
random.

Show the cards to your subjects for one second each and call out the 
number of the card. Ask them to write down the number of spots on 
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each card. When there is no arrangement, most people start having 
problems at five spots and almost nobody can handle eight or more 
randomly arranged cards. However, nine spots in a three-by-three 
arrangement present no problems. Even the 10 spots on a playing card 
are easy to count because they are broken into two clusters of five spots.

 

Exceptions:

 

The double spacing between steps can be optional if it breaks up the 
flow of the code.



 

C H A P T E R

 

3

 

Data Declaration Language

 

“[I need] Data! Data! Data! I can’t make bricks without clay.”

 

 —Sherlock Holmes
(fictional detective of author Sir Arthur Conan Doyle)

 

“Smart data structures and dumb code works a lot better
than the other way round.”

 

—Eric S. Raymond

 

I 

 

BELIEVE

 

 

 

THAT

 

 

 

MOST

 

 of the bad SQL queries in the world are the result of 
bad schema design. A bad schema can be ambiguous, require extra 
work to fetch data, and not return valid results even when good data 
was input into it.

Let’s start with the syntax rules that should be followed when 
writing data declaration language (DDL), and then in the following 
chapters, talk about the content and semantics of the DDL.

 

3.1 Put the Default in the Right Place

 

Rationale:

 

The DEFAULT constraint appears after the data type and NOT NULL 
constraint appears after the DEFAULT value.

The SQL-92 standard requires that ordering, but most products 
allow you to place the DEFAULT either after the data type or after the 
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NOT NULL constraint. A NULL-able column can also have a DEFAULT 
value, so the standard makes sense. Because we need a consistent 
pattern, let’s go with the standard. Because NOT NULL is so common, it 
can be left on the same line as the DEFAULT and data type.

 

Exceptions:

 

None

 

3.2 The Default Value Should Be the Same Data Type 
as the Column

 

Rationale:

 

That rule sounds obvious, but programmers do not follow it. You will see 
columns with decimal places defaulted to integer zero, columns of 
CHAR (n) defaulted to strings of less than (n) characters, and columns of 
TIMESTAMP defaulted to DATE. The result in many SQL products was 
implicit type conversions whenever a default value was used. Why incur 
that overhead, when you could get it right in the first place?

 

Exceptions:

 

None

 

3.3 Do Not Use Proprietary Data Types

 

Rationale:

 

Proprietary data types do not port to other products or from one release 
to another of the same product. Standard SQL has more than enough 
data types to model most of the things you will find in the real world.

As an example, only the SQL Server/Sybase family has a MONEY data 
type. It adds currency symbols and commas to a numeric string for 
display, but it has different rules for doing computations than NUMERIC 
or DECIMAL data types. The front end has to handle the currency 
symbols and commas and be sure that the basic math is correct. Why do 
something in the DDL only to undo it in the front end?

Even worse, machine-level things like a BIT or BYTE data type have 
no place in a high-level language like SQL. SQL is a high-level language; 
it is abstract and defined without regard to physical implementation. 
This basic principle of data modeling is called 

 

data abstraction

 

.
Bits and bytes are the lowest units of hardware-specific, physical 

implementation you can get. Are you on a high-end or low-end machine? 
Does the machine have 8-, 16-, 32-, 64-, or 128-bit words? Twos 
complement or ones complement math? Hey, the standards allow 



 

3.3 Do Not Use Proprietary Data Types 43

 

decimal-based machines, so bits do not exist at all! What about NULLs? 
To be a data type, you have to have NULLs, so what is a NULL bit? By 
definition, a bit is on or off and has no NULL.

What does the implementation of the host languages do with bits? 
Did you know that +1, +0, -0, and -1 are all used for Booleans but not 
consistently? That means all of the host languages—present, future, and 
not yet defined. Surely no good programmer would ever write 
nonportable code by getting to such a low level as bit fiddling!

You might also ask if zero is used for “successful completion” in the 
functions of the host language or the vendor’s own 4GL. There are two 
situations in practice. Either the bits are individual attributes or they are 
used as a vector to represent a single attribute. In the case of a single 
attribute, the encoding is limited to two values, which do not port to host 
languages or other SQLs, cannot be easily understood by an end user, 
and cannot be expanded.

In the second case, what some newbies, who are still thinking in 
terms of second- and third-generation programming languages or even 
punchcards, do is build a vector for a series of yes/no status codes, failing 
to see the status vector as a single attribute. Did you ever play the 
children’s game “20 Questions” when you were young?

Imagine you have six components for a loan approval, so you allocate 
bits in your second-generation model of the world. You have 64 possible 
vectors, but only 5 of them are valid (i.e., you cannot be rejected for 
bankruptcy and still have good credit). For your data integrity, you can:

1. Ignore the problem. This is actually what most newbies do. 
When the database becomes a mess without any data integrity, 
they move on to the second solution.

2. Write elaborate ad hoc CHECK() constraints with user-defined 
functions or proprietary bit-level library functions that cannot 
port and that run like cold glue.

Now we add a seventh condition to the vector: Which end does it go 
on? Why? How did you get it in the right place on all the possible 
hardware that it will ever use? Did the code that references a bit in a 
word by its position do it right after the change?

You need to sit down and think about how to design an encoding of 
the data that is high level, general enough to expand, abstract, and 
portable. For example, is that loan approval a hierarchical code? 
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Concatenation code? Vector code? Did you provide codes for unknown, 
missing, and N/A values? It is not easy to design such things!

 

Exceptions:

 

Very, very special circumstances where there is no alternative at the 
present time might excuse the use of proprietary data types. In 20 years 
of consulting on SQL programming, I have never found a situation that 
could not be handled by a basic data type or a CREATE DOMAIN 
statement.

Next, consider porting a proprietary data type by building a user-
defined distinct type that matches the proprietary data type. This is not 
always possible, so check your product. If the data type is exotic, such as 
Geo/Spatial data, sound, images, or documents, you should probably do 
the job in a specialized system and not SQL.

 

3.4 Place the PRIMARY KEY Declaration at the Start of the 
CREATE TABLE Statement

 

Rationale:

 

Having the key as the first thing you read in a table declaration gives you 
important information about the nature of the table and how you will 
find the entities in it. For example, if I have a table named “Personnel” 
and the first column is “ssn,” I immediately know that we track 
employees via their Social Security numbers.

 

Exceptions:

 

In the case of a compound primary key, the columns that make up the 
key might not fit nicely into the next rule (3.5). If this is the case, then 
put a comment by each component of the primary key to make it easier 
to find.

 

3.5 Order the Columns in a Logical Sequence and Cluster 
Them in Logical Groups

 

Rationale:

 

The physical order of the columns within a table is not supposed to 
matter in the relational model. Their names and not their ordinal 
positions identify columns, but SQL has ordinal positions for columns in 
tables in default situations. The SELECT * and INSERT INTO statements 
use the order of declaration in their default actions.
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This rule is obvious; people prefer a logical ordering of things to a 
random mix. For example, the columns for an address are best put in 
their expected order: name, street, city, state, and postal code.

 

Exceptions:

 

Thanks to columns being added after the schema is in place, you might 
not be able to arrange the table as you would like in your SQL product. 
Check to see if your product allows column reordering.

If you have a physical implementation that uses the column ordering 
in some special way, you need to take advantage of it. For example, DB2 
for z/OS logs changes from the first byte changed to the last byte 
changed, unless the row is variable; then it logs from the first byte 
changed to the end of the row. If the change does not cause the length of 
the variable row to change size, it goes back to logging from the first byte 
changed to the last byte changed. The DBA can take advantage of this 
knowledge to optimize performance by placing:

 

�

 

Infrequently updated nonvariable columns first

 

�

 

Infrequently updated variable-length columns next

 

�

 

Frequently updated columns last

 

�

 

Columns that are frequently modified together next to each other

Following this approach will cause DB2 to log the least amount of 
data most of the time. Because the log can be a significant bottleneck for 
performance, this approach is handy. You can always create the table 
and then create a view for use by developers that resequences the 
columns into the logical order if it is that important.

 

3.6 Indent Referential Constraints and Actions under the 
Data Type

 

Rationale:

 

The idea is to make the full column declaration appear as one visual unit 
when you read down the CREATE TABLE statement. In particular, put 
the ON DELETE and ON UPDATE clauses on separate lines.

The standard does not require that they appear together in any 
particular order. As an arbitrary decision, I am going to tell you to use 
alphabetical order, so ON DELETE comes before ON UPDATE if both 
are present.
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Exceptions:

 

None

 

3.7 Give Constraints Names in the Production Code

 

Rationale:

 

The constraint name will show up in error messages when it is violated. 
This gives you the ability to create meaningful messages and easily locate 
the errors.

The syntax is simply “CONSTRAINT <name>,” and it should be a 
clear statement of what has been violated done as a name. For example:

 

CREATE TABLE Prizes

(..

 award_points INTEGER DEFAULT 0 NOT NULL

              CONSTRAINT award_point_range

              CHECK (award_points BETWEEN 0 AND 100),

 ..);

 

If you do not provide a name, the SQL engine will probably provide a 
machine-generated name that is very long, impossible to read, and will 
give you no clue about the nature of your problem.

 

Exceptions:

 

You can leave off constraint names on PRIMARY KEYS, UNIQUE, and 
FOREIGN KEY constraints, because most SQL products will give an 
explicit error message about them when they are violated. The exception 
is that Oracle will use the system-generated name when it displays the 
execution plans.

You can leave off constraint names during development work. 
However, remember that constraint names are global, not local, because 
the CREATE ASSERTION statement would have problems otherwise.

 

3.8 Put CHECK() Constraint Near what they Check

 

Rationale:

 

Put single column CHECK() constraints on its column, multicolumn 
constraints near their columns.

We want as much information about a column on that column as 
possible. Having to look in several places for the definition of a column 
can only cost us time and accuracy. Likewise, put multicolumn 
constraints as near to the columns involved as is reasonable.
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Exceptions:

 

If your SQL product has a CREATE DOMAIN statement, you will include 
DEFAULT and CHECK() constraints in the domain declaration, so the 
use of the DOMAIN is enough. Multicolumn constraints on columns 
that are far apart should be moved to the end of the table declaration. 
This will give you one place to look for the more complex constraints, 
rather than trying to look all over the DDL statement.

It can also be argued that none of this really matters, because most of 
the time we should be going to the schema information tables to retrieve 
the constraint definitions, not the DDL. Constraints may have been 
removed or added with subsequent ALTER statements, and the system 
catalog will have the correct, current state, whereas the DDL may not.

 

3.8.1 Consider Range Constraints for Numeric Values

 

Rationale:

 

The whole idea of a database is that it is a single trusted repository for all 
of the data in the enterprise. This is the place where the business rules 
must be enforced.

The most common constraint on numbers in a data model is that 
they are not less than zero. Now look at actual DDL and see how often 
you find that constraint. Programmers are lazy and do not bother with 
this level of details.

 

Exceptions:

 

When the column really can take any value whatsoever.

 

3.8.2 Consider LIKE and SIMILAR TO Constraints for 
Character Values

 

Rationale:

 

Again, the whole idea of a database is that it is a single trusted repository 
for all of the data in the enterprise. This is the place where the business 
rules must be enforced.

An encoding will have a format that can be validated with a LIKE or 
SIMILAR TO predicate. Now look at actual DDL and see how often you 
find that constraint. This is not as portable an option as numeric range 
checking, and many programmers who did not use UNIX in their youth 
have problems with regular expressions, but it is still important.

 

Exceptions:

 

When the column really can take any value whatsoever.
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3.8.3 Remember That Temporal Values Have Duration

 

There is no such thing as a point in time. You can ask Einstein or go back 
to the Greek philosopher Zeno and his famous paradoxes. Temporal 
values have duration, and you need to remember that they have a start 
and finish time, either explicitly or implicitly, that includes all of the 
continuum bound by them. The implicit model is a single column and 
the explicit model uses a pair of temporal values.

For example, when you set a due date for a payment, you usually 
mean any point from the start of that day up to but not including 
midnight of the following day. When you say an employee worked on a 
given date, you usually mean the event occurred during an eight-hour 
duration within that day.

Remember that you can use a DEFAULT CURRENT_TIMESTAMP on 
a temporal column and that a NULL can be used as a marker for 
“eternity” in the finish time column. A CHECK() constraint can round 
off time values to the start of the nearest year, month, day, hour, minute, 
or second as needed.

 

3.8.4 REAL and FLOAT Data Types Should Be Avoided

 

Most commercial applications do not need floating-point math. SQL has 
NUMERIC and DECIMAL data types that can be set to a great deal of 
scale and precision and do not have floating-point numeric rounding 
errors. There will be exceptions for scientific and statistical data.

 

3.9 Put Multiple Column Constraints as Near to Both 
Columns as Possible

 

Rationale:

 

Do not make the reader have to look in multiple physical locations to 
find all of the columns involved in the constraint. You do not have to 
indent this constraint, but it is a good idea to split it on two lines: one 
with the CONSTRAINT clause and one with the CHECK() clause.

 

CREATE TABLE Prizes

(..

 birth_date DATE NOT NULL,

 prize_date DATE NOT NULL,

 CONSTRAINT over_18_to_win

 CHECK (birth_date + INTERVAL 18 YEARS >= prize_date),

 ..);
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Exceptions:

 

This is not always physically possible, especially when many columns are 
involved.

 

3.10 Put Table-Level CHECK() Constraints at the End of the 
Table Declaration

 

Rationale:

 

These constraints are not yet well supported in SQL products, but they 
are legal SQL-92 syntax. Their predicates involve the entire table as a 
whole rather than just single rows. This implies that they will involve 
aggregate functions.

 

CREATE TABLE Prizes

(..

CONSTRAINT only_5_prizes_each_winner

 CHECK (NOT EXISTS

         (SELECT *

            FROM Prizes AS P1

           GROUP BY P1.contestant_id

          HAVING COUNT(*) > 5)),

CONSTRAINT no_missing_ticket_nbrs

CHECK ((SELECT MAX(ticket_nbr) - MIN(ticket_nbr) + 1

         FROM Prizes AS P1)

       = (SELECT COUNT(ticket_nbr)

            FROM Prizes AS P1));

 

Exceptions:

 

None

 

3.11 Use CREATE ASSERTION for Multi-table Constraints

 

Rationale:

 

Put multiple table CHECK() Constraints in CREATE ASSERTION 
statements rather than on a table declaration.

These constraints are not yet well supported in SQL products, but 
they are legal SQL-92 syntax. Their predicates involve several different 
tables, not just one table. This implies that they are at a higher level and 
should be modeled there. The practical consideration is that all 
constraints are TRUE on an empty table, so the CREATE ASSERTION 
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statement lets you control that possibility. The assertion name acts as the 
constraint name.

 

CREATE ASSERTION enough_money_to_pay_prizes

AS

CHECK ((SELECT SUM(prize_money)

          FROM Prizes AS P1)

       <= (SELECT SUM(cash_on_hand)

             FROM Bank));

 

Exceptions:

 

If the SQL product does not support CREATE ASSERTION statements, 
then this cannot be done, but if it were possible, then violation would 
require a strong reason having to do with the schema design.

 

3.12 Keep CHECK() Constraints Single Purposed

 

Rationale:

 

Put simple CHECK() constraints in their own clauses rather than writing 
one long constraint with multiple tests.

When you give a constraint a name, that name will appear in error 
messages and can help the user to correct data. If all of the validation is 
in one single CHECK() clause, what name would you give it? For 
example, imagine a single validation for a name that looks for correct 
capitalization, extra spaces, and a length over five characters. About all 
you can call it is “bad address line” and hope the user can figure out how 
to fix it. However, if there were separate checks for capitalization, extra 
spaces, and a length over five characters, then those constraint names 
would be obvious and give the user a clue as to the actual problem.

 

Exceptions:

 

If your SQL product supports the SIMILAR TO predicate (a version of 
grep() based on the POSIX standard in Standard SQL), then you might 
consider having a longer regular expression with OR-ed

 

 

 

patterns that fall 
under a general constraint name.

If you do not want to give details about errors to users for security 
reasons, then you can use a single constraint with a vague name. This 
would be a strange situation.
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3.13 Every Table Must Have a Key to Be a Table

 

Rationale:

 

This is the very definition of a table. The problem is that many newbies 
do not understand what a key really is. A key must be a subset of the 
attributes (columns) in the table. There is no such thing as a universal, 
one-size-fits-all key. Just as no two sets of entities are the same, the 
attributes that make them unique have to be found in the reality of the 
data. God did not put a 17-letter Hebrew number on the bottom of 
everything in creation.

Here is my classification of types of keys (Table 3.1).

1.

 

A natural key is a subset of attributes that occurs in a table and acts 
as a unique identifier

 

. The user sees them. You can go to the 
external reality and verify them. You would also like to have 
some validation rule. Example: UPC codes on consumer goods 
are easily seen (read the package bar code), and you validate 
them with a scanner, a manual-check digit calculation, or a 
manufacturer’s Web site.

2.

 

An artificial key is an extra attribute added to the table that is seen 
by the user

 

. It does not exist in the external reality but can be 

 

Table 3.1

 

Types of keys

 

Natural Key Artificial Key
Exposed 
Locator

System 
Surrogate

Constructed 
from Reality 
of the Data 
Model

 

Yes No No No

 

Verifiable in 
Reality

 

Yes No, trusted 
source

No No

 

Validation 
in Itself

 

Yes Yes, check 
digit, syntax |

No No             

 

Portable to 
New 
Platform

 

Yes Yes No No 

 

Visible to 
the User

 

Yes              Yes Yes No, and can 
be changed 
by engine
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verified for syntax or check digits inside itself. Example: The 
open codes in the UPC scheme that a user can assign to his or 
her own products. The check digit still works the same way, 
but you have to verify the codes inside your own enterprise.

If you have to construct a key yourself, it takes time to 
design it, to invent a validation rule, and so forth. There is a 
chapter on that topic in this book. Chapter 5 discusses the 
design of encoding schemes.

3.

 

An exposed physical locator is not based on attributes in the data 
model and is exposed to the user

 

. There is no way to predict it or 
verify it. The system obtains a value through some physical 
process in the storage hardware that is totally unrelated to the 
logical data model. Example: IDENTITY columns in the T-SQL 
family; other proprietary, nonrelational auto-numbering 
devices; and cylinder and track locations on the hard drive 
used in Oracle.

Technically, these are not really keys at all, because they are 
attributes of the physical storage and are not even part of the 
logical data model, but they are handy for lazy, non-RDBMS 
programmers who don’t want to research or think! This is the 
worst way to program in SQL.

4.

 

A surrogate key is system generated to replace the actual key behind 
the covers where the user never sees it

 

. It is based on attributes in 
the table. Example: Teradata hashing algorithms, pointer 
chains.

The fact that you can never see or use them for DELETE and 
UPDATE or create them for INSERT is vital. When users can 
get to them, they will screw up the data integrity by getting the 
real keys and these physical locators out of sync. The system 
must maintain them.

Notice that people get exposed physical locator and surrogate mixed 
up; they are totally different concepts.

 

3.13.1 Auto-Numbers Are Not Relational Keys

 

In an RDBMS, the data elements exist at the schema level. You put tables 
together from attributes, with the help of a data dictionary to model 
entities in SQL.
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But in a traditional 3GL-language application, the names are local to 
each file because each application program gives them names and 
meaning. Fields and subfields had to be completely specified to locate 
the data. There are important differences between a file system and a 
database, a table and a file, a row and a record, and a column and a field. 
If you do not have a good conceptual model, you hit a ceiling and cannot 
get past a certain level of competency.

In 25 words or less, it is “logical versus physical,” but it goes beyond 
that. A file system is a loose collection of files, which have a lot of 
redundant data in them. A database system is a single unit that models 
the entire enterprise as tables, constraints, and so forth.

 

3.13.2 Files Are Not Tables

 

Files are independent of each other, whereas tables in a database are 
interrelated. You open an entire database, not single tables within it, but 
you do open individual files. An action on one file cannot affect another 
file unless they are in the same application program; tables can interact 
without your knowledge via DRI actions, triggers, and so on.

The original idea of a database was to collect data in a way that 
avoided redundant data in too many files and not have it depend on a 
particular programming language.

A file is made up of records, and records are made up of fields. A file 
is ordered and can be accessed by a physical location, whereas a table is 
not. Saying “first record,” “last record,” and “next 

 

n

 

 records” makes sense 
in a file, but there is no concept of a “first row,” “last row,” and “next 
row” in a table.

A file is usually associated with a particular language—ever try to 
read a FORTRAN file with a COBOL program? A database is language 
independent; the internal SQL data types are converted into host 
language data types.

A field exists only because of the program reading it; a column exists 
because it is in a table in a database. A column is independent of any 
host language application program that might use it.

In a procedural language, “READ a, b, c FROM FileX;” does not give 
the same results as “READ b, c, a FROM FileX;” and you can even write 
“READ a, a, a FROM FileX;” so you overwrite your local variable. In SQL, 
“SELECT a, b, c FROM TableX” returns the same data as “SELECT b, c, a 
FROM TableX” because things are located by name, not position.

A field is fixed or variable length, can repeat with an OCCURS in 
COBOL, struct in c, and so on. A field can change data types (union in 
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‘C’, VARIANT in Pascal, REDEFINES in COBOL, EQUIVALENCE in 
FORTRAN).

A column is a scalar value, drawn from a single domain (domain = 
data type + constraints + relationships) and represented in one and only 
one data type. You have no idea whatsoever how a column is physically 
represented internally because you never see it directly.

Consider temporal data types: in SQL Server, DATETIME (their name 
for TIMESTAMP data type) is a binary number internally (UNIX-style 
system clock representation), but TIMESTAMP is a string of digits in 
DB2 (COBOL-style time representation). When you have a field, you 
have to worry about that physical representation. SQL says not to worry 
about the bits; you think of data in the abstract.

Fields have no constraints, no relationships, and no data type; each 
application program assigns such things, and they don’t have to assign the 
same ones! That lack of data integrity was one of the reasons for RDBMS.

Rows and columns have constraints. Records and fields can have 
anything in them and often do! Talk to anyone who has tried to build a 
data warehouse about that problem. My favorite is finding the part 
number “I hate my job” in a file during a data warehouse project.

Dr. Codd (1979) defined a row as a representation of a single simple 
fact. A record is usually a combination of a lot of facts. That is, we don’t 
normalize a file; you stuff data into it and hope that you have everything 
you need for an application. When the system needs new data, you add 
fields to the end of the records. That is how we got records that were 
measured in Kbytes.

 

3.13.3 Look for the Properties of a Good Key

 

Rationale:

 

A checklist of desirable properties for a key is a good way to do a design 
inspection. There is no need to be negative all the time.

1.

 

Uniqueness

 

. The first property is that the key be unique. This is 
the most basic property it can have because without 
uniqueness it cannot be a key by definition. Uniqueness is 
necessary, but not sufficient.

Uniqueness has a context. An identifier can be unique in 
the local database, in the enterprise across databases, or unique 
universally. We would prefer the last of those three options.

We can often get universal uniqueness with industry: 
standard codes such as VINs. We can get enterprise uniqueness 
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with things like telephone extensions and e-mail addresses. An 
identifier that is unique only in a single database is workable 
but pretty much useless because it will lack the other desired 
properties.

2.

 

Stability

 

. The second property we want is stability or invariance. 
The first kind of stability is within the schema, and this applies 
to both key and nonkey columns. The same data element 
should have the same representation wherever it appears in the 
schema. It should not be CHAR(n) in one place and INTEGER 
in another. The same basic set of constraints should apply to it. 
That is, if we use the VIN as an identifier, then we can constrain 
it to be only for vehicles from Ford Motors; we cannot change 
the format of the VIN in one table and not in all others.

The next kind of stability is over time. You do not want keys 
changing frequently or in unpredictable ways. Contrary to a 
popular myth, this does not mean that keys cannot ever 
change. As the scope of their context grows, they should be 
able to change.

On January 1, 2005, the United States added one more digit 
to the UPC bar codes used in the retail industry. The reason 
was globalization and erosion of American industrial 
domination. The global bar-code standard will be the European 
Article Number (EAN) Code. The American Universal Product 
Code (UPC) turned 30 years old in 2004 and was never so 
universal after all.

The EAN was set up in 1977 and uses 13 digits, whereas the 
UPC has 12 digits, of which you see 10 broken into two groups 
of 5 digits on a label. The Uniform Code Council, which sets 
the standards in North America, has the details for the 
conversion worked out.

More than 5 billion bar-coded products are scanned every 
day on earth. It has made data mining in retail possible and 
saved millions of hours of labor. Why would you make up your 
own code and stick labels on everything? Thirty years ago, 
consumer groups protested that shoppers would be cheated if 
price tags were not on each item, labor protested possible job 
losses, and environmentalists said that laser scanners in the 
bar-code readers might damage people’s eyes. The neo-
Luddites have been with us a long time.
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For the neo-Luddite programmers who think that changing 
a key is going to kill you, let me quote John Metzger, chief 
information officer of A&P. The grocery chain had 630 stores 
in 2004, and the grocery industry works 1 percent to 3 percent 
profit margins—the smallest margins of any industry that is 
not taking a loss. A&P has handled the new bar-code problem 
as part of a modernization of its technology systems. “It is 
important,” Mr. Metzger said, “but it is not a shut-the-
company-down kind of issue.”

Along the same lines, ISBN in the book trade is being 
changed to 13 digits, and VINs are being redesigned. See the 
following sources for more information:

 

(EAN: “Bar Code Détente: U.S. Finally Adds One More 
Digit,” July 12, 2004, 

 

New York Times

 

, by Steve Lohr; 
http://www.nytimes.com/2004/07/12/business/
12barcode.html?ex=1090648405&ei=1&en=202cb9baba72e846)

(VIN: http://www.cars.com/news/stories/
070104_storya_dn.jhtml?page=newsstory&aff=national)

(ISBN: http://www.isbn.org/standards/home/isbn/
transition.asp)

 

3.

 

Familiarity

 

. It helps if the users know something about the data. 
This is not quite the same as validation, but it is related. 
Validation can tell you if the code is properly formed via some 
process; familiarity can tell you if it feels right because you 
know something about the context. Thus, ICD codes for disease 
would confuse a patient but not a medical records clerk.

4.

 

Validation

 

. Can you look at the data value and tell that it is 
wrong, without using an external source? For example, I know 
that “2004-02-30” is not a valid date because no such day 
exists on the Common Era calendar. Check digits and fixed 
format codes are one way of obtaining this validation.

5.

 

Verifiability

 

. How do I verify a key? This also comes in context 
and in levels of trust. When I cash a check at the supermarket, 
the clerk is willing to believe that the photo on the driver’s 
license I present is really me, no matter how ugly it is. Or 
rather, the clerk used to believe it was me; the Kroger grocery 
store chain is now putting an inkless fingerprinting system in 
place, just like many banks have done.
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When I get a passport, I need a birth certificate and 
fingerprinting. There is a little less trust here. When I get a 
security clearance, I also need to be investigated. There is a lot 
less trust.

A key without a verification method has no data integrity 
and will lead to the accumulation of bad data.

6.

 

Simplicity

 

. A key should be as simple as possible, but no 
simpler. People, reports, and other systems will use the keys. 
Long, complex keys are more subject to error; storing and 
transmitting them is not an issue anymore, the way it was 40 or 
50 years ago.

One person’s simple is another person’s complex. For an 
example of a horribly complex code that is in common 
international usage, look up the International Standard Bank 
Number (IBAN). A country code at the start of the string 
determines how to parse the rest of the string, and it can be up 
to 34 alphanumeric characters in length. Why? Each country 
has its own account numbering systems, currencies, and laws, 
and they seldom match. In effect, the IBAN is a local banking 
code hidden inside an international standard (see http://
www.ecbs.org/iban/iban.htm and the European Committee for 
Banking Standards Web site for publications).

More and more programmers who have absolutely no database training 
are being told to design a database. They are using GUIDs, IDENTITY, 
ROWID, and other proprietary auto-numbering features in SQL products 
to imitate either a record number (sequential file system mindset) or OID 
(OO mindset) because they don’t know anything else. This magical, 
universal, one-size-fits-all numbering is totally nonrelational, depends on 
the physical state of the hardware at a particular time, and is a poor 
attempt at mimicking a magnetic tape file system.

Experienced database designers tend toward intelligent keys they find 
in industry-standard codes, such as UPC, VIN, GTIN, ISBN, and so on. 
They know that they need to verify the data against the reality they are 
modeling. A trusted external source is a good thing to have.

The reasons given for this poor programming practice are many, so 
let me go down the list:
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Q: Couldn’t a natural compound key become very long?
A1: So what? This is the 21st century, and we have much better 
computers than we did in the 1950s when key size was a real physical 
issue. What is funny to me is the number of idiots who replace a natural 
two- or three-integer compound key with a huge GUID, which no 
human being or other system can possibly understand, because they 
think it will be faster and easy to program.
A2: This is an implementation problem that the SQL engine can handle. 
For example, Teradata is a SQL designed for very large database (VLDB) 
applications that use hashing instead of B-tree or other indexes. They 
guarantee that no search requires more than two probes, no matter how 
large the database. A tree index requires more and more probes as the 
size of the database increases.
A3: A long key is not always a bad thing for performance. For example, 
if I use (city, state) as my key, I get a free index on just (city). I can also 
add extra columns to the key to make it a super-key when such a super-
key gives me a covering index (i.e., an index that contains all of the 
columns required for a query, so that the base table does not have to be 
accessed at all).

Q: Can’t I make things really fast on the current release of my SQL 
software?
A1: Sure, if I want to lose all of the advantages of an abstract data model, 
SQL set-oriented programming, carry extra data, and destroy the 
portability of code. Look at any of the newsgroups and see how difficult 
it is to move the various exposed physical locators in the same product.

The auto-numbering features are a holdover from the early SQLs, 
which were based on contiguous storage file systems. The data was kept 
in physically contiguous disk pages, in physically contiguous rows, 
made up of physically contiguous columns. In short, just like a deck of 
punchcards or a magnetic tape. Most programmers still carry that mental 
model, too.

But physically contiguous storage is only one way of building a 
relational database, and it is not the best one. The basic idea of a 
relational database is that the user is not supposed to know how or 
where things are stored at all, much less write code that depends on the 
particular physical representation in a particular release of a particular 
product on particular hardware at a particular time.

The first practical consideration is that auto-numbering is proprietary 
and nonportable, so you know that you will have maintenance problems 
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when you change releases or port your system to other products. 
Newbies actually think they will never port code! Perhaps they only 
work for companies that are failing and will be gone. Perhaps their code 
is such a disaster that nobody else wants their application.

But let’s look at the logical problems. First, try to create a table with 
two columns and try to make them both auto-numbered. If you cannot 
declare more than one column to be of a certain data type, then that 
thing is not a data type at all, by definition. It is a property that belongs 
to the physical table, not the logical data in the table.

Next, create a table with one column and make it an auto-number. 
Now try to insert, update, and delete different numbers from it. If you 
cannot insert, update, and delete rows, then it is not really a table by 
definition.

Finally, create a simple table with one hidden auto-number column 
and a few other columns. Use a few statements like:

INSERT INTO Foobar (a, b, c) VALUES ('a1', 'b1', 'c1');

INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');

INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');

Put a few rows into the table and notice that the auto-numbering 
feature sequentially numbered them in the order they were presented. If 
you delete a row, the gap in the sequence is not filled in, and the 
sequence continues from the highest number that has ever been used in 
that column in that particular table. This is how we did record numbers 
in preallocated sequential files in the 1950s, by the way. A utility 
program would then pack or compress the records that were flagged as 
deleted or unused to move the empty space to the physical end of the 
physical file.

But we now use a statement with a query expression in it, like this:

INSERT INTO Foobar (a, b, c)

SELECT x, y, z

  FROM Floob;

Because a query result is a table, and a table is a set that has no 
ordering, what should the auto-numbers be? The entire, whole, 
completed set is presented to Foobar all at once, not a row at a time. 
There are (n!) ways to number (n) rows, so which one do you pick? The 
answer has been to use whatever the physical order of the result set 
happened to be. That nonrelational phrase “physical order” again!
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But it is actually worse than that. If the same query is executed again, 
but with new statistics or after an index has been dropped or added, the 
new execution plan could bring the result set back in a different physical 
order. Can you explain from a logical model why the same rows in the 
second query get different auto-numbers? In the relational model, they 
should be treated the same if all the values of all the attributes are 
identical.

Using auto-numbering as a primary key is a sign that there is no data 
model, only an imitation of a sequential file system. Because this magic, 
all-purpose, one-size-fits-all pseudo identifier exists only as a result of 
the physical state of a particular piece of hardware, at a particular time, 
as read by the current release of a particular database product, how do 
you verify that an entity has such a number in the reality you are 
modeling?  People run into this problem when they have to rebuild their 
database from scratch after a disaster.

You will see newbies who design tables like this:

CREATE Drivers

(driver_id AUTONUMBER NOT NULL PRIMARY KEY,

 ssn CHAR(9) NOT NULL REFERENCES Personnel(ssn),

 vin CHAR(17) NOT NULL REFERENCES Motorpool(vin));

Now input data and submit the same row a thousand times or a 
million times. Your data integrity is trashed. The natural key was this:

CREATE Drivers

(ssn CHAR(9) NOT NULL REFERENCES Personnel(ssn),

 vin CHAR(17) NOT NULL REFERENCES Motorpool(vin),

 PRIMARY KEY (ssn, vin));

Another problem is that if a natural key exists (which it must, if the 
data model is correct), then the rows can be updated either through the 
key or through the auto-number. But because there is no way to 
reconcile the auto-number and the natural key, you have no data 
integrity.

To demonstrate, here is a typical newbie schema. I call them “id-iots” 
because they always name the auto-number column “id” in every table.
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CREATE TABLE Personnel

(id AUTONUMBER NOT NULL PRIMARY KEY,—false key

 ssn CHAR(9) NOT NULL,—real key

 ..);

INSERT INTO Personnel VALUES ('999999999', ..);

Now change a row in Personnel, using the “id” column:

UPDATE Personnel

   SET ssn = '666666666'

 WHERE id = 1;

or using the natural key:

UPDATE Personnel

   SET ssn = '666666666'

 WHERE ssn = '999999999';

But when I rebuild the row from scratch:

BEGIN ATOMIC

DELETE FROM Personnel WHERE id = 1;

INSERT INTO Personnel VALUES ('666666666', ..);

END;

What happened to the tables that referenced Personnel? Imagine a 
company bowling team table that also had the “id” column and the “ssn” 
of the players. I need cascaded DRI actions if the “ssn” changes, but I 
only have the “id,” so I have no idea how many “ssn” values the same 
employee can have. The “id” column is at best redundant, but now we 
can see that it is also dangerous.

Finally, an appeal to authority, with a quote from Dr. Codd (1979): 
“Database users may cause the system to generate or delete a surrogate, 
but they have no control over its value, nor is its value ever displayed to 
them.

This means that a surrogate ought to act like an index: created by the 
user, managed by the system, and never seen by a user. That means 
never used in queries, DRI, or anything else that a user does.
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Codd also wrote the following:

There are three difficulties in employing user-controlled keys 
as permanent surrogates for entities.

1. The actual values of user-controlled keys are determined by 
users and must therefore be subject to change by them (e.g., if 
two companies merge, the two employee databases might be 
combined, with the result that some or all of the serial numbers 
might be changed).

2. Two relations may have user-controlled keys defined on dis-
tinct domains (e.g., one of them uses Social Security, while the 
other uses employee serial numbers) and yet the entities 
denoted are the same.

3. It may be necessary to carry information about an entity 
either before it has been assigned a user-controlled key value or 
after it has ceased to have one (e.g., an applicant for a job and a 
retiree).

These difficulties have the important consequence that an 
equi-join on common key values may not yield the same result 
as a join on common entities. A solution—proposed in part [4] 
and more fully in [14]—is to introduce entity domains, which 
contain system-assigned surrogates. Database users may cause 
the system to generate or delete a surrogate, but they have no 
control over its value, nor is its value ever displayed to them. . . 
(Codd, 1979).

Exceptions:
If you are using the table as a staging area for data scrubbing or some 
other purpose than as a database, then feel free to use any kind of 
proprietary feature you wish to get the data right. We did a lot of this in 
the early days of RDBMS. Today, however, you should consider using 
ETL and other software tools that did not exist even a few years ago.

3.14 Do Not Split Attributes
Rationale:
Attribute splitting consists of taking an attribute and modeling it in more 
than one place in the schema. This violates Domain-key Normal Form 
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(DKNF) and makes programming insanely difficult. There are several 
ways to do this, discussed in the following sections.

3.14.1 Split into Tables
The values of an attribute are each given their own table. If you were to 
do this with gender and have a “MalePersonnel” and a 
“FemalePersonnel” table, you would quickly see the fallacy. But if I were 
to split data by years (temporal values) or by location (spatial values) or 
by department (organizational values), you might not see the same 
problem.

In order to get any meaningful report, these tables would have to be 
UNION-ed back into a single “Personnel” table. The bad news is that 
constraints to prevent overlaps among the tables in the collection can be 
forgotten or wrong.

Do not confuse attribute splitting with a partitioned table, which is 
maintained by the system and appears to be a whole to the users.

3.14.2 Split into Columns
The attribute is modeled as a series of columns that make no sense until 
all of the columns are reassembled (e.g., having a measurement in one 
column and the unit of measure in a second column). The solution is to 
have scale and keep all measurements in it.

Look at section 3.3 on BIT data types as one of the worst offenders. 
You will also see attempts at formatting of long text columns by splitting 
(e.g., having two 50-character columns instead of one 100-character 
column so that the physical display code in the front end does not have 
to calculate a word-wrap function). When you get a 25-character-wide 
printout, though, you are in trouble.

Another common version of this is to program dynamic domain 
changes in a table. That is, one column contains the domain, which is 
metadata, for another column, which is data.

Glenn Carr posted a horrible example of having a column in a table 
change domain on the fly on September 29, 2004, on the SQL Server 
programming newsgroup. His goal was to keep football statistics; this is 
a simplification of his original schema design. I have removed about a 
dozen other errors in design, so we can concentrate on just the shifting 
domain problem.



64 CHAPTER  3:  DATA DECLARATION LANGUAGE   

CREATE TABLE Player_Stats

(league_id INTEGER NOT NULL,

 player_id INTEGER NOT NULL,—proprietary auto-number on Players

 game_id INTEGER NOT NULL,

 stat_field_id CHAR(20) NOT NULL,—the domain of the number_value 
column

 number_value INTEGER NULL,

 ..);

The “stat_field_id” held the names of the statistics whose values are 
given in the “number_value” column of the same row. A better name for 
this column should have been “yardage_or_completions_or_ 
interceptions_or_ ..” because that is what it has in it.
Here is a rewrite:

CREATE TABLE Player_Stats

(league_id INTEGER NOT NULL,

 player_nbr INTEGER NOT NULL,

   FOREIGN KEY (league_id, player_nbr)

   REFERENCES Players (league_id, player_nbr)

   ON UPDATE CASCADE,

 game_id INTEGER NOT NULL

      REFERENCES Games(game_id)

      ON UPDATE CASCADE,

 completions INTEGER DEFAULT 0 NOT NULL CHECK (completions >= 
0),

 yards INTEGER DEFAULT 0 NOT NULL CHECK (yards >= 0),

—put other stats here

 ...

 PRIMARY KEY (league_id, player_nbr, game_id));

We found by inspection that a player is identified by a (league_id, 
player_nbr) pair. Player_id was originally another IDENTITY column in 
the Players table. I see sports games where the jersey of each player has a 
number; let’s use that for identification. If reusing jersey numbers is a 
problem, then I am sure that leagues have some standard in their 
industry for this, and I am sure that it is not an auto-incremented 
number that was set by the hardware in Mr. Carr’s machine.

What he was trying to find were composite statistics, such as “Yards 
per Completion,” which is trivial in the rewritten schema. The hardest 
part of the code is avoiding a division by zero in a calculation. Using the 
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original design, you had to write elaborate self-joins that had awful 
performance. I leave this as an exercise to the reader.

Exceptions:
This is not really an exception. You can use a column to change the scale, 
but not the domain, used in another column. For example, I record 
temperatures in degrees Absolute, Celsius, or Fahrenheit and put the 
standard abbreviation code in another column. But I have to have a 
VIEW for each scale used so that I can show Americans everything in 
Fahrenheit and the rest of the world everything in Celsius. I also want 
people to be able to update through those views in the units their 
equipment gives them.

A more complex example would be the use of the ISO currency codes 
with a decimal amount in a database that keeps international 
transactions. The domain is constant; the second column is always 
currency, never shoe size or body temperature. When I do this, I need to 
have a VIEW that will convert all of the values to the same common 
currency: Euros, Yen, Dollars, or whatever. But now there is a time 
element because the exchange rates change constantly. This is not an 
easy problem.

3.14.3 Split into Rows
The attribute is modeled as a flag and value on each row of the same 
table. The classic example is temporal, such as this list of events:

CREATE TABLE Events

(event_name CHAR(15) NOT NULL,

 event_time TIMESTAMP DEFAULT CURRENT_TIMESRTAMP NOT NULL,

 ..);

INSERT INTO Events

VALUES (('start running', '2005-10-01 12:00:00'),

        ('stop running', '2005-10-01 12:15:13'));

Time is measured by duration, not by instants; the correct DDL is:

CREATE TABLE Events

(event_name CHAR(15) NOT NULL,

 event_start_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 event_finish_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 CHECK (event_start_time < event_finish_time),

 ..);
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INSERT INTO Events

VALUES ('running', '2005-10-01 12:00:00', '2005-10-01 
12:15:13');

Exceptions:
None

These are simply bad schema designs that are often the results of 
confusing the physical representation of the data with the logical model. 
This tends to be done by older programmers carrying old habits over 
from file systems.

For example, in the old days of magnetic tape files, the tapes were 
dated and processing was based on the one-to-one correspondence 
between time and a physical file. Creating tables with temporal names 
like “Payroll_Jan,” “Payroll_Feb,” and so forth just mimic magnetic 
tapes.

Another source of these errors is mimicking paper forms or input 
screens directly in the DDL. The most common is an order detail table 
that includes a line number because the paper form or screen for the 
order has a line number. Customers buy products that are identified in 
the inventory database by SKU, UPC, or other codes, not a physical line 
number on a form on the front of the application. But the programmer 
splits the quantity attribute into multiple rows.

3.15 Do Not Use Object-Oriented Design for an RDBMS
Rationale:
Many years ago, the INCITS H2 Database Standards Committee (née 
ANSI X3H2 Database Standards Committee) had a meeting in Rapid 
City, South Dakota. We had Mount Rushmore and Bjarne Stroustrup as 
special attractions. Mr. Stroustrup did his slide show about Bell Labs 
inventing C++ and OO programming for us, and we got to ask 
questions.

One of the questions was how we should put OO stuff into SQL. His 
answer was that Bell Labs, with all its talent, had tried four different 
approaches to this problem and came to the conclusion that you should 
not do it. OO was great for programming but deadly for data.

3.15.1 A Table Is Not an Object Instance
Tables in a properly designed schema do not appear and disappear like 
instances of an object. A table represents a set of entities or a 
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relationship. For them to appear (CREATE TABLE) and disappear 
(DROP TABLE) is like living in a world of magic, where a whole new 
species of creatures are created by any user, on the fly. Likewise, there 
are no OIDs in SQL. GUIDs, auto-numbering, and all of those 
proprietary exposed physical locators will not work in the long run.

I have watched people try to force OO models into SQL, and it falls 
apart in about a year. Every typo becomes a new attribute, or class 
queries that would have been so easy in a relational model are now 
multitable monster outer joins, redundancy grows at an exponential 
rate, constraints are virtually impossible to write so you can kiss data 
integrity goodbye, and so on.

In a thread discussing OO versus relational modeling entitled 
“impedance mismatch” in the comp.databases.theory newsgroup in 
October 2004, one experienced programmer reported:

I’m here to tell you what you already know—you are 100 
percent correct. I am stuck with working with an OO schema 
superimposed on an RDBMS. The amount of gymnastics that I 
need to go through to do what should be the simplest query is 
unimaginable. It took six man-hours (me and one of the OO 
developers for three hours) to come up with a query that was 
the equivalent of:

SELECT * FROM Field_Offices;

The data needed consisted of basic information, name of the office 
location, address, manager, and phone. The final query was almost a full 
page long, required the joining of all the various tables for each data 
element (as each data element is now an object and each object has its 
own attributes, so requires its own table), and of course the monster 
object-linking tables so as to obtain the correct instance of each object.

By the way, which instance is the correct one? Why, the latest one, of 
course, unless it is marked as not being the one to use, in which case 
look for the one that is so marked. And the marking indicator is not 
always the same value, as there are several potential values. These object-
linking tables are the biggest in the entire database. Millions of rows in 
each of these in just one year’s time to keep track of less than 80,000 
entity instances.

Self-joins are needed in some cases; here are two of these monster 
tables, and a few smaller ones.
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Fortunately, there are extracts that run nightly to transform the data 
into a relational schema set up for reporting, but not all the data is there, 
or is wrong, so sometimes I need to go through the above.

3.15.2 Do Not Use EAV Design for an RDBMS
The Entity-Attribute-Value (EAV) design flaw is particularly popular 
among newbies who come from the agile or extreme school of software 
development. This school used to be called “Code first, design and think 
later” when it was first popular.

The idea is that you have one huge table with three columns of 
metadata: entity name, attribute name, and attribute value. This lets your 
users invent new entities as they use the database. If the American wants 
to create something called a “tire” and the British speaker wants to create 
something called a “tyre,” then they are both free to do so.

The values have be recorded in the most general data type in the SQL 
engine, so you use a lot of VARCHAR(n) columns in the EAV model. 
Now try to put a constraint on the column.

Exceptions:
None. There are better tools for collecting free-form data.
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 put data into a database, you actually need to think about 
how it will be represented and manipulated. Most programmers have 
never heard of measurement theory or thought about the best way to 
represent their data. Although this topic is not specifically about SQL 
style, it gives a foundation for decisions that have to be made in the 
design of any schema.

 

4.1 Measurement Theory

 

Measure all that is measurable and attempt to make measurable that which
is not yet so.

 

—Galileo (1564–1642)

Measurement theory is a branch of applied mathematics that is useful 
in data analysis. Measurements are not the same as the attribute being 
measured. Measurement is not just assigning numbers to things or 
their attributes so much as it is assigning to things a structural 
property that can be expressed in numbers or other computable 
symbols. This structure is the scale used to take the measurement; the 
numbers or symbols represent units of measure.

Strange as it might seem, measurement theory came from 
psychology, not mathematics or computer science. In particular, S. S. 
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Stevens originated the idea of levels of measurement and classification of 
scales. Scales are classified into types by the properties they do or do not 
have. The properties with which we are concerned are the following:

1.

 

A natural origin point on the scale

 

. This is sometimes called a 
zero, but it does not have to be literally a numeric zero. For 
example, if the measurement is the distance between objects, 
the natural zero is zero meters—you cannot get any closer than 
that. If the measurement is the temperature of objects, the 
natural zero is zero degrees Kelvin—nothing can get any colder 
than absolute zero. However, consider time: It goes from an 
eternal past into an eternal future, so you cannot find a natural 
origin for it.

2.

 

Meaningful operations can be performed on the units

 

. It makes 
sense to add weights together to get a new weight. However, 
adding names or shoe sizes together is absurd.

3.

 

A natural ordering of the units

 

. It makes sense to speak about an 
event occurring before or after another event, or a thing being 
heavier, longer, or hotter than another thing, but the 
alphabetical order imposed on a list of names is arbitrary, not 
natural—a foreign language, with different names for the same 
objects, would impose another ordering.

4.

 

A natural metric function on the units

 

. A metric function has 
nothing to do with the metric system of measurements, which 
is more properly called SI, for Systemé International d’units in 
French. Metric functions have the following three properties:

a. The metric between an object and itself is the natural
origin of the scale. We can write this in a semimathe-
matical notation as 

 

M

 

(

 

a

 

, 

 

a

 

) = 0.

b. The order of the objects in the metric function does not
matter. Again in the notation, 

 

M(a, b)

 

 = 

 

M(b, a)

 

.

c. There is a natural additive function that obeys the rule
that 

 

M(a, b)

 

 + 

 

M(b, c)

 

 = 

 

M(a, c)

 

, which is also known as
the 

 

triangular inequality

 

.

This notation is meant to be more general than just arithmetic. The 
zero in the first property is the origin of the scale, not just a numeric 
zero. The third property, defined with a plus and a greater than or equal 
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to sign, is a symbolic way of expressing general ordering relationships. 
The greater than or equal to sign refers to a natural ordering on the 
attribute being measured. The plus sign refers to a meaningful operation 
in regard to that ordering, not just arithmetic addition.

The special case of the third property, where the greater than or equal 
to is always greater than, is desirable to people because it means that 
they can use numbers for units and do simple arithmetic with the scales. 
This is called a 

 

strong metric property

 

. For example, human perceptions 
of sound and light intensity follow a cube root law—that is, if you 
double the intensity of light, the perception of the intensity increases by 
only 20 percent (Stevens, 1957). The actual formula is “Physical 
intensity to the 0.3 power equals perceived intensity” in English. 
Knowing this, designers of stereo equipment use controls that work on a 
logarithmic scale internally but that show evenly spaced marks on the 
control panel of the amplifier.

It is possible to have a scale that has any combination of the metric 
properties. For example, instead of measuring the distance between two 
places in meters, measure it in units of effort. This is the old Chinese 
system, which had uphill and downhill units of distance.

Does this system of distances have the property that 

 

M(a, a)

 

 = 0? Yes. It 
takes no effort to get to where you already are located. Does it have the 
property that 

 

M(a, b)

 

 = 

 

M(b, a)

 

? No. It takes less effort to go downhill than 
to go uphill. Does it have the property that 

 

M(a, b)

 

 + 

 

M(b, c)

 

 = 

 

M(a, c)

 

? 
Yes. The amount of effort needed to go directly to a place will always be 
less than the effort of making another stop along the way.

 

4.1.1 Range and Granularity

 

Range and granularity are properties of the way the measurements are 
made. Because we have to store data in a database within certain limits, 
these properties are important to a database designer. The types of scales 
are unrelated to whether you use discrete or continuous variables. 
Although measurements are always discrete because of finite precision, 
attributes can be conceptually either discrete or continuous regardless of 
measurement level. Temperature is usually regarded as a continuous 
attribute, so temperature measurement to the nearest degree Kelvin is a 
ratio-level measurement of a continuous attribute. However, quantum 
mechanics holds that the universe is fundamentally discrete, so 
temperature may actually be a discrete attribute. In ordinal scales for 
continuous attributes, ties are impossible (or have probability zero). In 
ordinal scales for discrete attributes, ties are possible. Nominal scales 
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usually apply to discrete attributes. Nominal scales for continuous 
attributes can be modeled but are rarely used.

 

4.1.2 Range

 

A scale also has other properties that are of interest to someone building 
a database. First, scales have a range: What are the highest and lowest 
values that can appear on the scale? It is possible to have a finite or an 
infinite limit on either the lower or the upper bound. Overflow and 
underflow errors are the result of range violations inside the database 
hardware.

Database designers do not have infinite storage, so we have to pick a 
subrange to use in the database when we have no upper or lower bound. 
For example, few computer calendar routines will handle geologic time 
periods, but then few companies have bills that have been outstanding 
for that long either, so we do not mind.

 

4.1.3 Granularity, Accuracy, and Precision

 

Look at a ruler and a micrometer. They both measure length, using the 
same scale, but there is a difference. A micrometer is more precise 
because it has a finer granularity of units. Granularity is a static property 
of the scale itself—how many notches there are on your ruler. In Europe, 
all industrial drawings are done in millimeters; the United States has 
been using 1/32nd of an inch.

Accuracy is how close the measurement comes to the actual value. 
Precision is a measure of how repeatable a measurement is. Both depend 
on granularity, but they are not the same things. Human nature says that 
a number impresses according to the square of the number of decimal 
places. Hence, some people will use a computer system to express things 
to as many decimal places as possible, even when it makes no sense. For 
example, civil engineering in the United States uses decimal feet for road 
design. Nobody can build a road any more precisely than that, but many 
civil engineering students turn in work that is expressed in ten-
thousandths of a foot. You don’t use a micrometer on asphalt! A database 
often does not give the user a choice of precision for many calculations. 
In fact, the SQL standards leave the number of decimal places in the 
results of many arithmetic operations to be defined by the 
implementation.

The ideas are easier to explain with handgun targets, which are scales 
to measure the ability of the shooter to put bullets in the center of a 
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target. A bigger target has a wider range compared with a smaller target. 
A target with more rings has a higher granularity.

Once you start shooting, a group of shots that are closer together is 
more precise because the shots were more repeatable. A shot group that 
is closer to the center is more accurate because the shots were closer to 
the goal. Notice that precision and accuracy are not the same thing! If I 
have a good gun whose sights are off, I can get a tight cluster that is not 
near the bull’s eye.

 

4.2 Types of Scales

 

The lack or presence of precision and accuracy determines the kind of 
scale you should choose. Scales are either quantitative or qualitative. 
Quantitative scales are what most people mean when they think of 
measurements, because these scales can be manipulated and are usually 
represented as numbers. Qualitative scales attempt to impose an order 
on an attribute, but they do not allow for computations—just 
comparisons.

 

4.2.1 Nominal Scales

 

The simplest scales are the nominal scales. They simply assign a unique 
symbol, usually a number or a name, to each member of the set that they 
attempt to measure. For example, a list of city names is a nominal scale.

Right away we are into philosophical differences, because many 
people do not consider listing to be measurement. Because no clear 
property is being measured, that school of thought would tell us this 
cannot be a scale.

There is no natural origin point for a set, and likewise there is no 
ordering. We tend to use alphabetic ordering for names, but it makes 
just as much sense to use frequency of occurrence or increasing size or 
almost any other attribute that does have a natural ordering.

The only meaningful operation that can be done with such a list is a 
test for equality—“Is this city New York or not?”—and the answer will be 
TRUE, FALSE, or UNKNOWN. Nominal scales are common in 
databases because they are used for unique identifiers, such as names 
and descriptions.

 

4.2.2 Categorical Scales

 

The next simplest scales are the categorical scales. They place an entity 
into a category that is assigned a unique symbol, usually a number or a 
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name. For example, the class of animals might be categorized as reptiles, 
mammals, and so forth. The categories have to be within the same class 
of things to make sense.

Again, many people do not consider categorizing to be measurement. 
The categories are probably defined by a large number of properties, and 
there are two potential problems with them. The first problem is that an 
entity might fall into one or more categories. For example, a platypus is a 
furry, warm-blooded, egg-laying animal. Mammals are warm-blooded 
but give live birth and optionally have fur. The second problem is that an 
entity might not fall into any of the categories at all. If we find a creature 
with chlorophyll and fur on Mars, we do not have a category of animals 
in which to place it.

The two common solutions are either to create a new category of 
animals (monotremes for the platypus and echidna) or to allow an entity 
to be a member of more than one category. There is no natural origin 
point for a collection of subsets, and, likewise, there is no ordering of the 
subsets. We tend to use alphabetic ordering for names, but it makes just 
as much sense to use frequency of occurrence or increasing size or 
almost any other attribute that does have a natural ordering.

The only meaningful operation that can be done with such a scale is a 
test for membership—“Is this animal a mammal or not?”—which will 
test either TRUE, FALSE, or UNKNOWN.

 

4.2.3 Absolute Scales

 

An absolute scale is a count of the elements in a set. Its natural origin is 
zero, or the empty set. The count is the ordering (a set of five elements is 
bigger than a set of three elements, and so on). Addition and subtraction 
are metric functions. Each element is taken to be identical and 
interchangeable. For example, when you buy a dozen Grade A eggs, you 
assume that for your purposes any Grade A egg will do the same job as 
any other Grade A egg. Again, absolute scales are in databases because 
they are used for quantities.

 

4.2.4 Ordinal Scales

 

Ordinal scales put things in order but have no origin and no operations. 
For example, geologists use a scale to measure the hardness of minerals 
called Moh’s Scale for Hardness (MSH). It is based on a set of standard 
minerals, which are ordered by relative hardness (talc = 1, gypsum = 2, 
calcite = 3, fluorite = 4, apatite = 5, feldspar = 6, quartz = 7, topaz = 8, 
sapphire = 9, diamond = 10).
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To measure an unknown mineral, you try to scratch the polished 
surface of one of the standard minerals with it; if it scratches the surface, 
the unknown is harder. Notice that I can get two different unknown 
minerals with the same measurement that are not equal to each other 
and that I can get minerals that are softer than my lower bound or 
harder than my upper bound. There is no origin point, and operations 
on the measurements make no sense (e.g., if I add 10 talc units, I do not 
get a diamond).

Perhaps the most common use we see of ordinal scales today is to 
measure preferences or opinions. You are given a product or a situation 
and asked to decide how much you like or dislike it, how much you 
agree or disagree with a statement, and so forth. The scale is usually 
given a set of labels such as “strongly agree” through “strongly disagree,” 
or the labels are ordered from 1 to 5.

Consider pairwise choices between ice cream flavors. Saying that 
vanilla is preferred over wet leather in our taste test might well be 
expressing a universal truth, but there is no objective unit of likeability 
to apply. The lack of a unit means that such things as opinion polls that 
try to average such scales are meaningless; the best you can do is a bar 
graph of the number of respondents in each category.

Another problem is that an ordinal scale may not be transitive. 

 

Transitivity

 

 is the property of a relationship in which if 

 

R(a, b)

 

 and 

 

R(b, c)

 

, 
then 

 

R(a, c)

 

. We like this property and expect it in the real world, where 
we have relationships like “heavier than,” “older than,” and so forth. This 
is the result of a strong metric property.

But an ice cream taster, who has just found out that the shop is out of 
vanilla, might prefer squid over wet leather, wet leather over wood, and 
wood over squid, so there is no metric function or linear ordering at all. 
Again, we are into philosophical differences, because many people do 
not consider a nontransitive relationship to be a scale.

 

4.2.5 Rank Scales

 

Rank scales have an origin and an ordering but no natural operations. 
The most common example of this would be military ranks. Nobody is 
lower than a private, and that rank is a starting point in your military 
career, but it makes no sense to somehow combine three privates to get a 
sergeant.

Rank scales have to be transitive: A sergeant gives orders to a private, 
and because a major gives orders to a sergeant, he or she can also give 
orders to a private. You will see ordinal and rank scales grouped together 
in some of the literature if the author does not allow nontransitive 
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ordinal scales. You will also see the same fallacies committed when 
people try to do statistical summaries of such scales.

 

4.2.6 Interval Scales

 

Interval scales have a metric function, ordering, and meaningful 
operations among the units but no natural origin. Calendars are the best 
example; some arbitrary historical event is the starting point for the scale 
and all measurements are related to it using identical units or intervals. 
Time, then, extends from a past eternity to a future eternity.

The metric function is the number of days between two dates. Look 
at the three properties: (1) 

 

M(a, a)

 

 = 0: there are zero days between today 
and today; (2) 

 

M(a, b)

 

 = 

 

M(b, a)

 

: there are just as many days from today 
to next Monday as there are from next Monday to today; and (3) 

 

M(a, b)

 

 
+ 

 

M(b, c)

 

 = 

 

M(a, c)

 

: the number of days from today to next Monday plus 
the number of days from next Monday to Christmas is the same as the 
number of days from today until Christmas. Ordering is natural and 
strong: 1900-July-1 occurs before 1993-July-1. Aggregations of the basic 
unit (days) into other units (weeks, months, and years) are also arbitrary.

Please do not think that the only metric function is simple math; 
there are log-interval scales, too. The measurements are assigned 
numbers such that ratios between the numbers reflect ratios of the 
attribute. You then use formulas of the form (

 

c

 

 

 

×

 

 

 

m

 

^

 

d

 

), where 

 

c

 

 and 

 

d

 

 are 
constants, to do transforms and operations. For example, density = 
(mass/volume), fuel efficiency expressed in miles per gallon (mpg), 
decibel scale for sound, and the Richter scale for earthquakes are 
exponential, so their functions involve logarithms and exponents.

 

4.2.7 Ratio Scales

 

Ratio scales are what people think of when they think about a 
measurement. Ratio scales have an origin (usually zero units), an 
ordering, and a set of operations that can be expressed in arithmetic. 
They are called ratio scales because all measurements are expressed as 
multiples or fractions of a certain unit or interval.

Length, mass, and volume are examples of this type of scale. The unit 
is what is arbitrary: The weight of a bag of sand is still weight whether it is 
measured in kilograms or in pounds. Another nice property is that the 
units are identical: A kilogram is still a kilogram whether it is measuring 
feathers or bricks.
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4.3 Using Scales

 

Absolute and ratio scales are also called extensive scales because they 
deal with quantities, as opposed to the remaining scales, which are 
intensive because they measure qualities. Quantities can be added and 
manipulated together, whereas qualities cannot. Table 4.1 describes the 
different types of scales and their attributes.

The origin for the absolute scale is numeric zero, and the natural 
functions are simple arithmetic. However, things are not always this 
simple. Temperature has an origin point at absolute zero, and its natural 
functions average heat over mass. This is why you cannot defrost a 
refrigerator, which is at 0 degrees Celsius, by putting a chicken whose 
body temperature is 35 degrees Celsius inside of it. The chicken does not 
have enough mass relative to heat. However, a bar of white-hot steel will 
do a nice job.

 

4.4 Scale Conversion

 

Scales can be put in a partial order based on the permissible 
transformations:

 

Table 4.1

 

Scale properties

 

Type of Scale
Natural 
Ordering

Natural 
Origin Functions Example

 

Nominal No No No City names 
(“Atlanta”)

Categorical No No No Species (dog, cat)

Absolute Yes Yes Yes Eggs (dozen)

Ordinal Yes No No Preferences (agree 1 
to 5 scale)

Rank Yes Yes No Contests (win, place, 
show)

Interval Yes No Yes Time (hours, min-
utes)

Ratio Yes Yes Yes Length (meters), 
Mass (grams)
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An attribute might not fit exactly into any of these scales. For 
example, you mix nominal and ordinal information in a single scale, 
such as in questionnaires that have several nonresponse categories. It is 
common to have scales that mix ordinal and an interval scale by 
assuming the attribute is really a smooth monotone function. Subjective 
rating scales (“strongly agree,” “agree,” . . . “strongly disagree”) have no 
equally spaced intervals between the ratings, but there are statistical 
techniques to ensure that the difference between two intervals is within 
certain limits. A binary variable is at least an interval scale, and it might 
be a ratio or absolute scale, if it means that the attribute exists or does 
not exist.

The important principle of measurement theory is that you can 
convert from one scale to another only if they are of the same type and 
measure the same attribute. Absolute scales do not convert, which is why 
they are called absolute scales. Five apples are five apples, no matter how 
many times you count them or how you arrange them on the table. 
Nominal scales are converted to other nominal scales by a mapping 
between the scales.

That means you look things up in a table. For example, I can convert 
my English city names to Polish city names with a dictionary. The 
problem comes when there is not a one-to-one mapping between the 
two nominal scales. For example, English uses the word “cousin” to 
identify the offspring of your parents’ siblings, and tradition treats them 
all pretty much alike.

Chinese language and culture have separate words for the same 
relations based on the genders of your parents’ siblings and the age 
relationships among them (e.g., the oldest son of your father’s oldest 
brother is a particular type of cousin and you have different social 
obligations to him). Something is lost in translation.
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Ordinal scales are converted to ordinal scales by a monotone 
function. That means you preserve the ordering when you convert. 
Looking at the MSH for geologists, I can pick another set of minerals, 
plastics, or metals to scratch, but rock samples that were definitely softer 
than others are still softer. Again, there are problems when there is not a 
one-to-one mapping between the two scales. My new scale may be able 
to tell the difference between rocks, whereas the MSH could not.

Rank scales are converted to rank scales by a monotone function that 
preserves the ordering, like ordinal scales. Again, there are problems 
when there is not a one-to-one mapping between the two scales. For 
example, different military branches have slightly different ranks that 
don’t quite correspond to each other.

In both the nominal and the ordinal scales, the problem was that 
things that looked equal on one scale were different on another. This has 
to do with range and granularity, which was discussed in section 4.1.1 of 
this chapter.

Interval scales are converted to interval scales by a linear function; 
that is, a function of the form

 

 y

 

 = 

 

a

 

 

 

×

 

 x

 

 + 

 

b

 

. This preserves the ordering 
but shifts the origin point when you convert. For example, I can convert 
temperature from degrees Celsius to degrees Fahrenheit using the 
formula F = (9.0 

 

÷

 

 5.0 

 

×

 

 C) + 32.
Ratio scales are converted to ratio scales by a constant multiplier, 

because both scales have the same ordering and origin point. For 
example, I can convert from pounds to kilograms using the formula p = 
0.4536 

 

×

 

 k. This is why people like to use ratio scales.

 

4.5 Derived Units

 

Many of the scales that we use are not primary units but rather derived 
units. These measures are constructed from primary units, such as miles 
per hour (time and distance) or square miles (distance and distance). 
You can use only ratio and interval scales to construct derived units.

If you use an absolute scale with a ratio or interval scale, you are 
dealing with statistics, not measurements. For example, using weight 
(ratio scale) and the number of people in New York (absolute scale), we 
can compute the average weight of a New Yorker, which is a statistic, not 
a unit of measurement.

The SI measurements use a basic set of seven units (i.e., meter for 
length, kilogram for mass, second for time, ampere for electrical current, 
degree Kelvin for temperature, mole for molecules, and candela for light) 
and construct derived units. ISO standard 2955 (“Information 
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processing—Representation of SI and other units for use in systems with 
limited character sets”) has a notation for expressing SI units in ASCII 
character strings. (See ISO-2955, “Representation of SI and other units 
for use in systems with limited character sets”) The notation uses 
parentheses, spaces, multiplication (shown by a period), division 
(shown by a solidus, or slash), and exponents (shown by numerals 
immediately after the unit abbreviation). There are also names for most 
of the standard derived units. For example, “100 kg.m 

 

÷

 

 s

 

2

 

” converts to 
10 Newtons (the unit of force), written as “10 N” instead.

 

4.6 Punctuation and Standard Units

 

A database stores measurements as numeric data represented in a binary 
format, but when the data is input or output, a human being wants 
readable characters and punctuation. Punctuation identifies the units 
being used and can be used for prefix, postfix, or infix symbols. It can 
also be implicit or explicit.

If I write $25.15, you know that the unit of measure is the dollar 
because of the explicit prefix dollar sign. If I write 160 lbs., you know 
that the unit of measure is pounds because of the explicit postfix 
abbreviation for the unit. If I write 1989 MAR 12, you know that this is a 
date because of the implicit infix separation among month, day, and 
year, achieved by changing from numerals to letters, and the optional 
spaces. The ISO and SQL defaults represent the same date, using explicit 
infix punctuation, with 1989-03-12 instead. Likewise, a column header 
on a report that gives the units used is explicit punctuation.

Databases do not generally store punctuation. The sole exception 
might be the proprietary MONEY or CURRENCY data type found in 
many SQL implementations as a vendor extension. Punctuation wastes 
storage space, and the units can be represented in some internal format 
that can be used in calculations. Punctuation is only for display.

It is possible to put the units in a column next to a numeric column 
that holds their quantities, but this is awkward and wastes storage space. 
If everything is expressed in the same unit, the units column is 
redundant. If things are expressed in different units, you have to convert 
them to a common unit to do any calculations. Why not store them in a 
common unit in the first place? The DBA has to be sure that all data in a 
column of a table is expressed in the same units before it is stored. There 
are some horror stories about multinational companies sending the same 
input programs used in the United States to their European offices, 
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where SI and English measurements were mixed into the same database 
without conversion.

Ideally, the DBA should be sure that data is kept in the same units in 
all the tables in the database. If different units are needed, they can be 
provided in a VIEW that hides the conversions (thus the office in the 
United States sees English measurements and the European offices see SI 
units and date formats; neither is aware of the conversions being done 
for it).

 

4.7 General Guidelines for Using Scales in a Database

 

The following are general guidelines for using measurements and scales 
in a database and not firm, hard rules. You will find exceptions to all of 
them.

1.

 

In general, the more unrestricted the permissible transformations on 
a scale are, the more restricted the statistics

 

. Almost all statistics 
are applicable to measurements made on ratio scales, but only 
a limited group of statistics may be applied to measurements 
made on nominal scales.

2.

 

Use CHECK() clauses on table declarations to make sure that only 
the allowed values appear in the database

 

. If you have the 
CREATE DOMAIN feature of SQL-92, use it to build your 
scales. Nominal scales would have a list of possible values; 
other scales would have range checking. Likewise, use the 
DEFAULT clauses to be sure that each scale starts with its 
origin value, a NULL, or a default value that makes sense.

3.

 

Declare at least one more decimal place than you think you will need 
for your smallest units

 

. In most SQL implementations, rounding 
and truncation will improve with more decimal places.

The downside of SQL is that precision and the rules for 
truncation and rounding are implementation dependent, so a 
query with calculations might not give the same results on 
another product. However, SQL is more merciful than older 
file systems, because the DBA can ALTER a numeric column so 
it will have more precision and a greater range without 
destroying existing data or queries. Host programs may have to 
be changed to display the extra characters in the results, 
however.
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You also need to consider laws and accounting rules that 
deal with currencies. The European Union has rules for 
computing with euros, and the United States has similar rules 
for dollars in the Generally Accepted Accounting Practices 
(GAAP).

4.

 

Try to store primary units rather than derived units

 

. This is not 
always possible, because you might not be able to measure 
anything but the derived unit. Look at your new tire gauge; it is 
set for Pascal (Newtons per square meter) and will not tell you 
how many square meters you have on the surface of the tire or 
the force exerted by the air, and you simply cannot figure these 
things out from the Pascals given. A set of primary units can be 
arranged in many different ways to construct any possible 
derived unit desired. Never store both the derived and the 
primary units in the same table. Not only is this redundant, but 
it opens the door to possible errors when a primary-unit 
column is changed and the derived units based on it are not 
updated. Also, most computers can recalculate the derived 
units much faster than they can read a value from a disk drive.

5.

 

Use the same punctuation whenever a unit is displayed

 

. For 
example, do not mix ISO and ANSI date formats, or express 
weight in pounds and kilograms in the same report. Ideally, 
everything should be displayed in the same way in the entire 
application system.



 

C H A P T E R

 

5

 

Data Encoding Schemes

 

Y

 

OU

 

 

 

DO

 

 

 

NOT

 

 put data directly into a database. You convert it into an 
encoding scheme first, then put the encoding into the rows of the 
tables. Words have to be written in an alphabet and belong to a 
language; measurements are expressed as numbers. We are so used to 
seeing words and numbers that we no longer think of them as 
encoding schemes. We also often fail to distinguish among the 
possible ways to identify (and therefore to encode) an entity or 
property. Do we encode the person receiving medical services or the 
policy that is paying for them? That might depend on whether the 
database is for the doctor or for the insurance company. Do we encode 
the first title of a song or the alternate title, or both? Or should we 
include the music itself in a multimedia database? And should it be as 
an image of the sheet music or as an audio recording? Nobody teaches 
people how to design these encoding schemes, so they are all too often 
done on the fly. Where standardized encoding schemes exist, they are 
too often ignored in favor of some ad hoc scheme. Beginning 
programmers have the attitude that encoding schemes do not really 
matter because the computer will take care of it, so they don’t have to 
spend time on the design of their encoding schemes. This attitude has 
probably gotten worse with SQL than it was before. The new database 
designer thinks that an ALTER statement can fix any bad things he or 
she did at the start of the project.
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Yes, the computer can take care of a lot of problems, but the data 
entry and validation programs become complex and difficult to 
maintain. Database queries that have to follow the same convoluted 
encodings will cost both computer time and money, and a human being 
still has to use the code at some point. Bad schemes result in errors in 
data entry and misreading of outputs and can lead to incorrect data 
models.

 

5.1 Bad Encoding Schemes

 

To use an actual example, the automobile tag system for a certain 
southern state started as a punchcard system written in COBOL. Many 
readers are likely too young to remember punchcard (keypunch) 
machines. A punchcard is a piece of stiff paper on which a character is 
represented as one or more rectangular holes made into one of 80 
vertical columns on the card. Contiguous groups of columns make up 
fixed-length fields of data. The keypunch machine has a typewriter-like 
keyboard; it automatically feeds cards into the punch as fast as a human 
being can type. The position, length, and alphabetic or numeric shift for 
each field on the card can be set by a control card in the keypunch 
machine to save the operator keystrokes. This is a fixed format and a fast 
input method, and making changes to a program once it is in place is 
difficult.

The auto tag system had a single card column for a single-position 
numeric code to indicate the type of tag: private car, chauffeured car, 
taxi, truck, public bus, and so forth. As time went on, more tag types 
were added for veterans of assorted wars, for university alumni, and for 
whatever other lobbyist group happened to have the political power to 
pass a bill allowing it a special auto tag.

Soon there were more than 10 types, so a single-digit system could 
not represent them. There was room on the punchcard to change the 
length of the field to two digits, but COBOL uses fixed-length fields, so 
changing the card layout would require changes in the programs and in 
the keypunch procedures.

The first new tag code was handled by letting the data-entry clerk 
press a punctuation-mark key instead of changing from numeric lock to 
manual shift mode. Once that decision was made, it was followed for 
each new code thereafter, until the scheme looked like everything on the 
upper row of keys on a typewriter.

Unfortunately, different makes and models of keypunch machines 
have different punctuation marks in the same keyboard position, so each 
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deck of cards had to have a special program to convert its punches to the 
original model IBM 026 keypunch codes before the master file was 
updated. This practice continued even after all of the original machines 
had been retired to used-equipment heaven.

The edit programs could not check for a simple numeric range to 
validate input but had to use a small lookup routine with more than 20 
values in it. That does not sound like much until you realize that the 
system had to handle more than 3 million records in the first quarter of 
the year. The error rate was high, and each batch needed to know which 
machine had punched the cards before it could use a lookup table.

If the encoding scheme had been designed with two digits (00 to 99) 
at the beginning, all of the problems would have been avoided. If I were 
to put this system into a database today, using video terminals for data 
entry, the tag type could be INTEGER and it could hold as many tag 
types as I would ever need. This is part of the legacy database problem.

The second example was reported in 

 

Information Systems Week

 

 in 
1987. The first sentence told the whole story: “The chaos and rampant 
error rates in New York City’s new Welfare Management System appear 
to be due to a tremendous increase in the number of codes it requires in 
data entry and the subsequent difficulty for users in learning to use it.” 
The rest of the article explained how the new system attempted to merge 
several old existing systems. In the merger, the error rates increased from 
2 percent to more than 20 percent because the encoding schemes used 
could not be matched up and consolidated.

How do you know a bad encoding scheme when you see one? One 
bad feature is the failure to allow for growth. Talk to anyone who had to 
reconfigure a fixed-length record system to allow for the change from 
the old ZIP codes to the current ZIP+4 codes in their address data. SQL 
does not have this as a physical problem, but it can show up as a logical 
problem.

Another bad property is ambiguous encodings in the scheme. 
Perhaps the funniest example of this problem was the Italian telephone 
system’s attempt at a “time of day” service. It used a special three-digit 
number, like the 411 information number in the United States, but the 
three digits they picked were also those of a telephone exchange in 
Milan, so nobody could call into that exchange without getting the time 
signal before they completed their call.

This happens more often than you would think, but the form that it 
usually takes is that of a miscellaneous code that is too general. Very 
different cases are then encoded as identical, and the user is given 
incorrect or misleading information when a query is performed.
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A bad encoding scheme lacks codes for missing, unknown, not 
applicable, or miscellaneous values. The classic story is the man who 
bought a prestige auto tag reading “NONE” and got thousands of traffic 
tickets as a result. The police had no special provision for a missing tag 
on the tickets, so when a car had no tag, they wrote “none” in the field 
for the tag number. The database simply matched his name and address 
to every unpaid missing-tag ticket on file at the time.

Before you say that the NULL in SQL is a quick solution to this 
problem, think about how NULL is ignored in many SQL functions. The 
SQL query “SELECT tag_nbr, SUM(fine) FROM tickets GROUP BY 
tag_nbr;” will give the total fines on each car, but it also puts all of the 
missing tags into one group (i.e., one car), although we want to see each 
one as a separate case, because it is unlikely that there is only one 
untagged car in all of California.

There are also differences among “missing,” “unknown,” “not 
applicable,” “miscellaneous,” and erroneous values that are subtle but 
important. For example, the International Classification of Disease uses 
999.999 for miscellaneous illness. It means that we have diagnosed the 
patient, know that he or she has an illness, and cannot classify it—a 
scary condition for the patient—but this is not quite the same thing as a 
missing disease code (just admitted, might not even be sick), an 
inapplicable disease code (pregnancy complications in a male), an 
unknown disease code (sick and awaiting lab results), or an error in the 
diagnosis (the patient’s temperature is recorded as 100 degrees Celsius, 
not Fahrenheit).

 

5.2 Encoding Scheme Types

 

The following is my classification system for encoding schemes and 
suggestions for using each of them. You will find some of these same 
ideas in library science and other fields, but I have never seen anyone 
else attempt a classification system for data processing.

 

5.2.1 Enumeration Encoding

 

An enumeration encoding arranges the attribute values in some order 
and assigns a number or a letter to each value. Numbers are usually a 
better choice than letters, because they can be increased without limit as 
more values are added. Enumeration schemes are a good choice for a 
short list of values but a bad choice for a long list. It is too difficult to 
remember a long list of codes, and soon any natural ordering principle is 
violated as new values are tacked onto the end.
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A good heuristic is to order the values in some natural manner, if 
one exists in the data, so that table lookup will be easier. Chronological 
order (1 occurs before 2) or procedural order (1 must be done before 2) 
is often a good choice. Another good heuristic is to order the values 
from most common to least common. That way you will have shorter 
codes for the most common cases. Other orderings could be based on 
physical characteristics such as largest to smallest, rainbow-color order, 
and so on.

After arguing for a natural order in the list, I must admit that the most 
common scheme is alphabetical order, because it is simple to implement 
on a computer and makes it easy for a person to look up values in a 
table. ANSI standard X3.31, “Structure for the Identification of Counties 
of the United States for Information Interchange,” encodes county names 
within a state by first alphabetizing the names, and then numbering 
them from one to whatever is needed.

 

5.2.2 Measurement Encoding

 

A measurement encoding is given in some unit of measure, such as 
pounds, meters, volts, or liters. This can be done in one of two ways. The 
column contains an implied unit of measure and the numbers represent 
the quantity in that unit, but sometimes the column explicitly contains 
the unit. The most common example of the second case would be money 
fields, where a dollar sign is used in the column; you know that the unit 
is dollars, not pounds or yen, by the sign.

Scales and measurement theory are a whole separate topic and are 
discussed in detail in Chapter 4.

 

5.2.3 Abbreviation Encoding

 

Abbreviation codes shorten the attribute values to fit into less storage 
space, but the reader easily understands them. The codes can be either of 
fixed length or of variable length, but computer people tend to prefer 
fixed length. The most common example is the two-letter postal state 
abbreviations (e.g., CA for California, AL for Alabama), which replaced 
the old variable-length abbreviations (Calif. for California, Ala. for 
Alabama).

A good abbreviation scheme is handy, but as the set of values 
becomes larger, the possibility for misunderstanding increases. The 
three-letter codes for airport baggage are pretty obvious for major cities: 
LAX for Los Angeles, SFO for San Francisco, BOS for Boston, ATL for 
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Atlanta, but nobody can figure out the abbreviations for the smaller 
airports.

As another example, consider the ISO 3166 Country Codes, which 
come in two-letter, three-letter, and nonabbreviation numeric forms. 
The RIPE Network Coordination Centre maintains these codes.

 

5.2.4 Algorithmic Encoding

 

Algorithmic encoding takes the value to be encoded and puts it through 
an algorithm to obtain the encodings. The algorithm should be 
reversible, so that the original value can be recovered. Although it is not 
required, the encoding is usually shorter (or at least of known maximum 
size) and more uniform in some useful way compared with the original 
value. Encryption is the most common example of an algorithmic 
encoding scheme, but it is so important that it needs to be considered as 
a topic by itself.

Computer people are used to using Julianized dates, which convert a 
date into an integer. As an aside, please note that astronomers used the 

 

Julian Date

 

, which is a large number that represents the number of days 
since a particular heavenly event. The Julianized date is a number 
between 1 and 365 or 366, which represents the ordinal position of the 
day within the year. Algorithms take up computer time in both data 
input and output, but the encoding is useful because it allows searching 
or calculations to be done that would be difficult using the original data. 
Julianized dates can be used for computations; Soundex names give a 
phonetic matching that would not be possible with the original text.

Another example is hashing functions, which convert numeric values 
into other numeric values for placing them in storage and retrieving 
them. Rounding numeric values before they go into the database is also a 
case of algorithmic encoding.

The difference between an abbreviation and an algorithm is not that 
clear. An abbreviation can be considered a special case of an algorithm, 
which tells you how to remove or replace letters. The tests to tell them 
apart are as follows:

1. When a human being can read it without effort, it is an 
abbreviation.

2. An algorithmic encoding is not easily human readable.

3. An algorithmic encoding might return the same code for more 
than one value, but an abbreviation is always one-to-one.
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5.2.5 Hierarchical Encoding Schemes

 

A hierarchy partitions the set of values into disjoint categories, then 
partitions those categories into subcategories, and so forth until some 
final level is reached. Such schemes are shown either as nested sets or as 
tree charts. Each category has some meaning in itself, and the 
subcategories refine meaning further.

The most common example is the ZIP code, which partitions the 
United States geographically. Each digit, as you read from left to right, 
further isolates the location of the address: first by postal region, then by 
state, then by city, and finally by the post office that has to make the 
delivery. For example, given the ZIP code 30310, we know that the 
30000 to 39999 range means the southeastern United States. Within the 
southeastern codes, we know that the 30000 to 30399 range is Georgia 
and that 30300 to 30399 is metropolitan Atlanta. Finally, the whole 
code, 30310, identifies substation A in the West End section of the city. 
The ZIP code can be parsed by reading it from left to right, reading first 
one digit, then two, and then the last two digits.

Another example is the Dewey Decimal Classification (DDC) system, 
which is used in public libraries in the United States. The 500-number 
series covers “Natural Sciences”; within that, the 510s cover 
“Mathematics”; and, finally, 512 deals with “Algebra” in particular. The 
scheme could be carried further, with decimal fractions for kinds of 
algebra.

Hierarchical encoding schemes are great for large data domains that 
have a natural hierarchy. They organize the data for searching and 
reporting along that natural hierarchy and make it easy, but there can be 
problems in designing these schemes. First, the tree structure does not 
have to be neatly balanced, so some categories may need more codes 
than others and hence create more breakdowns. Eastern and ancient 
religions are shortchanged in the Dewey Decimal Classification system, 
reflecting a prejudice toward Christian and Jewish writings. Asian 
religions were pushed into a very small set of codes. Today, the Library of 
Congress has more books on Buddhist thought than on any other 
religion on earth.

Second, you might not have made the right choices as to where to 
place certain values in the tree. For example, in the Dewey Decimal 
system, books on logic are encoded as 164, in the philosophy section, 
and not under the 510s, mathematics. In the 19th century, there was no 
mathematical logic. Today, nobody would think of looking for logic 
under philosophy. Dewey was simply following the conventions of his 
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day, and, like today’s programmers, he found that the system 
specifications changed while he was working.

 

5.2.6 Vector Encoding

 

A vector is made up of a fixed number of components. These 
components can be ordered or unordered, but are always present. They 
can be of fixed or variable length. The components can be dependent or 
independent of each other, but the code applies to a single entity and 
makes sense only as a whole unit. Punctuation, symbol-set changes, or 
position within the code can determine the components of the vector.

The most common example is a date, whose components are month, 
day, and year. The parts have some meaning by themselves, but the real 
meaning is in the vector—the date—as a whole because it is a complete 
entity. The different date formats used in computer systems give 
examples of all the options. The three components can be written in 
year-month-day order, month-day-year order, or just about any other 
way you wish.

The limits on the values for the day depend on the year (is it a leap 
year or not?) and the month (28, 29, 30, or 31 days?). The components 
can be separated by punctuation (12/1/2005, using slashes and 
American date format), symbol-set changes (2005 DEC 01, using digits-
letters-digits), or position (20051201, using positions 1 to 4, 5 to 6, and 
7 to 8 for year, month, and day, respectively).

Another example is the ISO code for tire sizes, which is made up of a 
wheel diameter (scaled in inches), a tire type (abbreviation code), and a 
width (scaled in centimeters). Thus, 15R155 means a 15-inch radial tire 
that is 155 millimeters wide, whereas 15SR155 is a steel-belted radial tire 
with the same dimensions. Despite the mixed American and ISO units, 
this is a general physical description of a tire in a single code.

Vector schemes are informative and allow you to pick the best 
scheme for each component, but they have to be disassembled to get to 
the components (many database products provide special functions to 
do this for dates, street addresses, and people’s names). Sorting by 
components is difficult unless you want them in the order given in the 
encoding; try to sort the tire sizes by construction, width, and diameter 
instead of by diameter, construction, and width.

Another disadvantage is that a bad choice in one component can 
destroy the usefulness of the whole scheme. Another problem is 
extending the code. For example, if the standard tire number had to be 
expanded to include thickness in millimeters, where would that 
measurement go? Another number would have to be separated by a 
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punctuation mark. It could not be inserted into a position inside the 
code without giving ambiguous codes. The code cannot be easily 
converted to a fixed-position vector encoding without changing many of 
the database routines.

 

5.2.7 Concatenation Encoding

 

A concatenation code is made up of a variable number of components 
that are concatenated together. As in a vector encoding, the components 
can be ordered or unordered, dependent on or independent of each 
other, and determined by punctuation, symbol-set changes, or position.

A concatenation code is often a hierarchy that is refined by additions 
to the right. These are also known as 

 

facet codes

 

 in Europe. Or the code 
can be a list of features, any of which can be present or missing. The 
order of the components may or may not be important.

Concatenation codes were popular in machine shops at the turn of 
the 20th century: A paper tag was attached to a piece of work, and 
workers at different stations would sign off on their parts of the 
manufacturing process. Concatenation codes are still used in parts of the 
airplane industry, where longer codes represent subassemblies of the 
assembly in the head (also called the root or parent) of the code.

Another type of concatenation code is a quorum code, which is not 
ordered. These codes say that 

 

n

 

 out of 

 

k

 

 marks must be present for the 
code to have meaning. For example, three out of five inspectors must 
approve a part before it passes.

The most common use of concatenation codes is in keyword lists in 
the header records of documents in textbases. The author or librarian 
assigns each article in the system a list of keywords that describes the 
material covered by the article. The keywords are picked from a limited, 
specialized vocabulary that belongs to a particular discipline.

Concatenation codes fell out of general use because their variable 
length made them more difficult to store in older computer systems, 
which used fixed-length records (think of a punchcard). The codes had 
to be ordered and stored as left-justified strings to sort correctly.

These codes could also be ambiguous if they were poorly designed. 
For example, is the head of 1234 the 1 or the 12 substring? When 
concatenation codes are used in databases, they usually become a set of 
yes/no checkboxes, represented as adjacent columns in the file. This 
makes them Boolean vector codes, instead of true concatenation codes.
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5.3 General Guidelines for Designing Encoding Schemes

 

These are general guidelines for designing encoding schemes in a 
database, not firm, hard rules. You will find exceptions to all of them.

 

5.3.1 Existing Encoding Standards

 

The use of existing standard encoding schemes is always recommended. 
If everyone uses the same codes, data will be easy to transfer and collect 
uniformly. Also, someone who sat down and did nothing else but work 
on this scheme probably did a better job than you could while trying to 
get a database up and running.

As a rule of thumb, if you don’t know the industry in which you are 
working, ask a subject-area expert. Although that sounds obvious, I have 
worked on a media library database project where the programmers 
actively avoided talking to the professional librarians who were on the 
other side of the project. As a result, recordings were keyed on GUIDs 
and there were no Schwann catalog numbers in the system. If you cannot 
find an expert, then Google for standards. First, check to see if ISO has a 
standard, then check the U.S. government, and then check industry 
groups and organizations.

 

5.3.2 Allow for Expansion

 

Allow for expansion of the codes. The ALTER statement can create more 
storage when a single-character code becomes a two-character code, but 
it will not change the spacing on the printed reports and screens. Start 
with at least one more decimal place or character position than you think 
you will need. Visual psychology makes “01” look like an encoding, 
whereas “1” looks like a quantity.

 

5.3.3 Use Explicit Missing Values to Avoid NULLs

 

Rationale:

 

Avoid using NULLs as much as possible by putting special values in 
the encoding scheme instead. SQL handles NULLs differently than 
values, and NULLs don’t tell you what kind of missing value you are 
dealing with.

All-zeros are often used for missing values and all-nines for 
miscellaneous values. For example, the ISO gender codes are 0 = 
Unknown, 1 = Male, 2 = Female, and 9 = Not Applicable. “Not applicable” 
means a lawful person, such as a corporation, which has no gender.
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Versions of FORTRAN before the 1977 standard read blank 
(unpunched) columns in punchcards as zeros, so if you did not know a 
value, you skipped those columns and punched them later, when you 
did know. Likewise, using encoding schemes with leading zeros was a 
security trick to prevent blanks in a punchcard from being altered. The 
FORTRAN 77 standard fixed its “blank versus zero” problem, but it lives 
on in SQL in poorly designed systems that cannot tell a NULL from a 
blank string, an empty string, or a zero.

The use of all-nines or all-Z’s for miscellaneous values will make those 
values sort to the end of the screen or report. NULLs sort either always 
to the front or always to the rear, but which way they sort is 
implementation defined.

 

Exceptions:

 

NULLs cannot be avoided. For example, consider the column 
“termination_date” in the case of a newly hired employee. The use of a 
NULL makes computations easier and correct. The code simply leaves 
the NULL date or uses COALESCE (some_date, 
CURRENT_TIMESTAMP) as is appropriate.

 

5.3.4 Translate Codes for the End User

 

As much as possible, avoid displaying pure codes to users, but try to 
provide a translation for them. Translation in the front is not required for 
all codes, if they are common and well known to users. For example, 
most people do not need to see the two-letter state abbreviation written 
out in words. At the other extreme, however, nobody could read the 
billing codes used by several long-distance telephone companies.

A part of translation is formatting the display so that it can be read by 
a human being. Punctuation marks, such as dashes, commas, currency 
signs, and so forth, are important. However, in a tiered architecture, 
display is done in the front end, not the database. Trying to put leading 
zeros or adding commas to numeric values is a common newbie error. 
Suddenly, everything is a string and you lose all temporal and numeric 
computation ability.

These translation tables are one kind of auxiliary table; we will discuss 
other types later. They do not model an entity or relationship in the 
schema but are used like a function call in a procedural language. The 
general form for these tables is:

 

CREATE TABLE SomeCodes

(encode <datatype> NOT NULL PRIMARY KEY,

 definition <datatype> NOT NULL);
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Sometimes you might see the definition as part of the primary key or 
a CHECK() constraint on the “encode” column, but because these are 
read-only tables, which are maintained outside of the application, we 
generally do not worry about having to check their data integrity in the 
application.

 

5.3.4.1 One True Lookup Table

 

Sometimes a practice is both so common and so stupid that it gets a 
name, and, much like a disease, if it is really bad, it gets an abbreviation. 
I first ran into the One True Lookup Table (OTLT) design flaw in a 
thread on a CompuServe forum in 1998, but I have seen it rediscovered 
in newsgroups every year since.

Instead of keeping the encodings and their definition in one table 
each, we put all of the encodings in one huge table. The schema for this 
table was like this:

 

CREATE TABLE OneTrueLookupTable

(code_type INTEGER NOT NULL,

 encoding VARCHAR(n) NOT NULL,

 definition VARCHAR(m) NOT NULL,

 PRIMARY KEY (code_type, encoding));

 

In practice, 

 

m

 

 and 

 

n

 

 are usually something like 255 or 50—default 
values particular to their SQL product.

The rationale for having all encodings in one table is that it would let 
the programmer write a single front-end program to maintain all of the 
encodings. This method really stinks, and I strongly discourage it. 
Without looking at the following paragraphs, sit down and make a list of 
all the disadvantages of this method and see if you found anything that I 
missed. Then read the following list:

1.

 

Normalization

 

. The real reason that this approach does not 
work is that it is an attempt to violate first normal form. I can 
see that these tables have a primary key and that all of the 
columns in a SQL database have to be scalar and of one data 
type, but I will still argue that it is not a first normal form table. 
The fact that two domains use the same data type does not 
make them the same attribute. The extra “code_type” column 
changes the domain of the other columns and thus violates first 
normal form because the column in not atomic. A table should 
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model one set of entities or one relationship, not hundreds of 
them. As Aristotle said, “To be is to be something in particular; 
to be nothing in particular is to be nothing.”

2.

 

Total storage size

 

. The total storage required for the OTLT is 
greater than the storage required for the one encoding, one 
table approach because of the redundant encoding type 
column. Imagine having the entire International Classification 
of Diseases (ICD) and the Dewey Decimal system in one table. 
Only the needed small single encoding tables have to be put 
into main storage with single auxiliary tables, while the entire 
OTLT has to be pulled in and paged in and out of main storage 
to jump from one encoding to another.

3.

 

Data types

 

. All encodings are forced into one data type, which 
has to be a string of the largest length that any encoding—
present and future—used in the system, but VARCHAR(n) is 
not always the best way to represent data. The first thing that 
happens is that someone inserts a huge string that looks right 
on the screen but has trailing blanks or an odd character to the 
far right side of the column. The table quickly collects garbage.

CHAR(n) data often has advantages for access and storage
in many SQL products. Numeric encodings can take advantage
of arithmetic operators for ranges, check digits, and so forth
with CHECK() clauses. Dates can be used as codes that are
translated into holidays and other events. Data types are not a
one-size-fits-all affair. If one encoding allows NULLs, then all
of them must in the OTLT.

4.

 

Validation

 

. The only way to write a CHECK() clause on the 
OTLT is with a huge CASE expression of the form:

 

CREATE TABLE OneTrueLookupTable

(code_type CHAR(n) NOT NULL

          CHECK (code_type IN (<type 1>, ..., <type n>)),

 encoding VARCHAR(n) NOT NULL

          CHECK (CASE WHEN code_type = <type 1>

                           AND <validation 1>

                      THEN 1

                        ...

           —assume that your SQL product can support a huge 
CASE expression

                      WHEN code_type = <type n>
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                           AND <validation n>

                      THEN 1

                      ELSE 0 END = 1),

 definition VARCHAR(m) NOT NULL,

 PRIMARY KEY (code_type, encoding));

 

This means that validation is going to take a long time,
because every change will have to be considered by all the
WHEN clauses in this oversized CASE expression until the
SQL engine finds one that tests TRUE. You also need to add a
CHECK() clause to the “code_type” column to be sure that the
user does not create an invalid encoding name.

5.

 

Flexibility

 

. The OTLT is created with one column for the 
encoding, so it cannot be used for (n) valued encodings where 
(

 

n

 

 > 1). For example, if I want to translate (longitude, latitude) 
pairs into a location name, I would have to carry an extra 
column.

6.

 

Maintenance

 

. Different encodings can use the same value, so 
you constantly have to watch which encoding you are working 
with. For example, both the ICD and Dewey Decimal system 
have three digits, a decimal point, and three digits.

7.

 

Security

 

. To avoid exposing rows in one encoding scheme to 
unauthorized users, the OTLT has to have VIEWs defined on it 
that restrict users to the “code_type”s they are  allowed to 
update. At this point, some of the rationale for the single table 
is gone, because the front end must now handle VIEWs in 
almost the same way it would handle multiple tables. These 
VIEWs also have to have the WITH CHECK OPTION clause, 
so that users do not make a valid change that is outside the 
scope of their permissions.

8.

 

Display

 

. You have to CAST() every encoding for the front end. 
This can be a lot of overhead and a source of errors when the 
same monster string is CAST() to different data types in 
different programs.

 

5.3.5 Keep the Codes in the Database

 

A part of the database should have all of the codes stored in tables. These 
tables can be used to validate input, to translate codes in displays, and as 
part of the system documentation.
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I was amazed to go to a major hospital in Los Angeles in mid-1993 
and see the clerk still looking up codes in a dog-eared looseleaf 
notebook instead of bringing them up on her terminal screen. The 
hospital was still using an old IBM mainframe system, which had dumb 
3270 terminals, rather than a client/server system with workstations. 
There was not even a help screen available to the clerk.

The translation tables can be downloaded to the workstations in a 
client/server system to reduce network traffic. They can also be used to 
build picklists on interactive screens and thereby reduce typographical 
errors. Changes to the codes are thereby propagated in the system 
without anyone having to rewrite application code. If the codes change 
over time, the table for a code should have to include a pair of “date 
effective” fields. This will allow a data warehouse to correctly read and 
translate old data.

 

5.4 Multiple Character Sets

 

Some DBMS products can support ASCII, EBCDIC, and Unicode. You 
need to be aware of this, so you can set proper collations and normalize 
your text.

The predicate “<string> IS [NOT] NORMALIZED” in SQL-99 
determines if a Unicode string is one of four normal forms (i.e., D, C, 
KD, and KC). The use of the words 

 

normal form

 

 here is not the same as in 
a relational context. In the Unicode model, a single character can be 
built from several other characters. Accent marks can be put on basic 
Latin letters. Certain combinations of letters can be displayed as ligatures 
(ae becomes æ). Some languages, such as Hangul (Korean) and 
Vietnamese, build glyphs from concatenating symbols in two 
dimensions. Some languages have special forms of one letter that are 
determined by context, such as the terminal sigma in Greek or accented 
u in Czech. In short, writing is more complex than putting one letter 
after another.

The Unicode standard defines the order of such constructions in their 
normal forms. You can still produce the same results with different 
orderings and sometimes with different combinations of symbols, but it 
is handy when you are searching such text to know that it is normalized 
rather than trying to parse each glyph on the fly. You can find details 
about normalization and links to free software at www.unicode.org.
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Coding Choices

 

“Caesar: Pardon him, Theodotus. He is a barbarian and thinks the customs
of his tribe and island are the laws of nature.”

 

—

 

Caesar and Cleopatra

 

, by George Bernard Shaw, 1898

 

T

 

HIS

 

 

 

CHAPTER

 

 

 

DEALS

 

 

 

WITH

 

 writing good DML statements in Standard SQL. 
That means they are portable and can be optimized well by most SQL 
dialects. I define 

 

portable

 

 to mean one of several things. The code is 
standard and can be run as-is on other SQL dialects; standard implies 
portable. Or the code can be converted to another SQL dialect in a 
simple mechanical fashion, or that the feature used is so universal that 
all or most products have it in some form; portable does not imply 
standard. You can get some help with this concept from the X/Open 
SQL Portability Guides.

A major problem in becoming a SQL programmer is that people do 
not unlearn procedural or OO programming they had to learn for 
their first languages. They do not learn how to think in terms of sets 
and predicates, and so they mimic the solutions they know in their 
first programming languages. Jerry Weinberg (1978) observed this fact 
more than 25 years ago in his classic book, 

 

Psychology of Computer 
Programming

 

. He was teaching PL/I. For those of you younger readers, 
PL/I was a language from IBM that was a hybrid of FORTRAN, 
COBOL, and AlGOL that had a popular craze.
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Weinberg found that he could tell the first programming languages of 
the students by how they wrote PL/I. My personal experience (1989) was 
that I could guess the nationality of the students in my C and Pascal 
programming classes because of their native spoken language.

Another problem in becoming a SQL programmer is that people tend 
to become SQL dialect programmers and think that their particular 
product’s SQL is some kind of standard. In 2004, I had a job interview 
for a position where I was being asked to evaluate different platforms for 
a major size increase in the company’s databases. The interviewer kept 
asking me “general SQL” questions based on the storage architecture of 
the only product he knew.

His product is not intended for Very Large Database (VLDB) 
applications, and he had no knowledge of Nucleus, Teradata, Model 
204, or other products that compete in the VLDB arena. He had spent 
his career tuning one version of one product and could not make the 
jump to anything different, even conceptually. His career is about to 
become endangered.

There is a place for the specialist dialect programmer, but dialect 
programming should be a last resort in special circumstances and never 
the first attempt. Think of it as cancer surgery: You do massive surgery 
when there is a bad tumor that is not treatable by other means; you do 
not start with it when the patient came in with acne.

 

6.1 Pick Standard Constructions over 
Proprietary Constructions

 

There is a fact of life in the IT industry called the Code Museum Effect, 
which works like this: First, each vendor adds a feature to its product. 
The feature is deemed useful, so it gets into the next version of the 
standard with slightly different syntax or semantics, but the vendor is 
stuck with its proprietary syntax. Its users have written code based on it, 
and they do not want to redo it. The solutions are the following:

1.

 

Never implement the standard and just retain the old syntax

 

. The
problem is that you cannot pass a conformance test, which can
be required for government and industry contracts. SQL pro-
grammers who know the standard from other products cannot
read, write, or maintain your code easily. In short, you have the
database equivalent of last year’s cell phone.

2.

 

Implement the standard, but retain the old syntax, too

 

. This is the 
usual solution for a few releases. It gives the users a chance to 
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move to the standard syntax but does not break the existing 
applications. Everyone is happy for awhile.

3.

 

Implement the standard and depreciate the old syntax

 

. The vendor 
is ready for a major release, which lets it redo major parts of the 
database engine. Changing to the standard syntax and not 
supporting the old syntax at this point is a good way to force 
users to upgrade their software and help pay for that major 
release.

A professional programmer would be converting his or her old code 
at step two to avoid being trapped in the Code Museum when step three 
rolls around. Let’s be honest, massive code conversions do not happen 
until after step three occurs in most shops, and they are a mess, but you 
can start to avoid the problems by always writing standard code in a step 
two situation.

 

6.1.1 Use Standard OUTER JOIN Syntax

 

Rationale:

 

Here is how the standard OUTER JOINs work in SQL-92. Assume you 
are given:

 

Table1       Table2

 a   b        a   c

 ======       ======

 1   w        1   r

 2   x        2   s

 3   y        3   t

 4   z

 

and the OUTER JOIN expression:

 

 Table1

 LEFT OUTER JOIN

 Table2

 ON Table1.a = Table2.a      <== join condition

    AND Table2.c = 't';      <== single table condition

 

We call Table1 the “preserved table” and Table2 the “unpreserved 
table” in the query. What I am going to give you is a little different but 
equivalent to the ANSI/ISO standards.
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1. We build the CROSS JOIN of the two tables. Scan each row in
the result set.

2. If the predicate tests TRUE for that row, then you keep it. You 
also remove all rows derived from it from the CROSS JOIN.

3. If the predicate tests FALSE or UNKNOWN for that row, then 
keep the columns from the preserved table, convert all the 
columns from the unpreserved table to NULLs, and remove the 
duplicates.

So let us execute this by hand:

 

 Let @ = passed the first predicate

 Let * = passed the second predicate

 

 Table1 CROSS JOIN Table2

 

 a   b        a   c

 =========================

 1   w       1   r @

 1   w       2   s

 1   w       3   t *

 2   x       1   r

 2   x       2   s @

 2   x       3   t *

 3   y       1   r

 3   y       2   s

 3   y       3   t @* <== the TRUE set

 4   z       1   r

 4   z       2   s

 4   z       3   t *

 

 Table1 LEFT OUTER JOIN Table2

 

 a   b        a   c

 =========================

 3   y     3      t      <= only TRUE row

 -----------------------

 1   w     NULL  NULL  Sets of duplicates

 1   w     NULL  NULL

 1   w     NULL  NULL
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 -----------------------

 2   x     NULL  NULL

 2   x     NULL  NULL

 2   x     NULL  NULL

 3   y     NULL  NULL <== derived from the TRUE set - Remove

 3   y     NULL  NULL

 -----------------------

 4   z     NULL  NULL

 4   z     NULL  NULL

 4   z     NULL  NULL=

 

The final results:

 

 Table1 LEFT OUTER JOIN Table2

 a   b        a   c

 =========================

 1   w     NULL  NULL

 2   x     NULL  NULL

 3   y     3      t

 4   z     NULL  NULL

 

The basic rule is that every row in the preserved table is represented 
in the results in at least one result row.

 

6.1.1.1 Extended Equality and Proprietary Syntax

 

Before the standard was set, vendors all had a slightly different syntax 
with slightly different semantics. Most of them involved an extended 
equality operator based on the original Sybase implementation. There 
are limitations and serious problems with the extended equality, 
however. Consider the two Chris Date tables:

 

 Suppliers        SupParts

 supno             supno partno qty

 =========        ==============

 S1               S1   P1    100

 S2               S1   P2    250

 S3               S2   P1    100

                  S2   P2    250
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And let’s do a Sybase-style extended equality OUTER JOIN like this:

 

 SELECT *

  FROM Supplier, SupParts

 WHERE Supplier.supno *= SupParts.supno

   AND qty < 200;

 

If I do the OUTER join first, I get:

 

 Suppliers LOJ SupParts

 supno supno partno qty

 =======================

 S1     S1   P1    100

 S1     S1   P2    250

 S2     S2   P1    100

 S2     S2   P2    250

 S3   NULL NULL   NULL

 

Then I apply the (qty < 200) predicate and get:

 

 Suppliers LOJ SupParts

 supno supno partno qty

 ===================

 S1   S1   P1    100

 S2   S2   P1    100

 

Doing it in the opposite order results in the following:

 

 Suppliers LOJ SupParts

 supno supno partno qty

 ===================

 S1   S1   P1    100

 S2   S2   P1    100

 S3   NULL NULL NULL

 

Sybase does it one way, Oracle does it another, and Centura (née 
Gupta) lets you pick which one to use—the worst of both nonstandard 
worlds! In SQL-92, you have a choice and can force the order of 
execution. Either do the predicates after the join:
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 SELECT *

   FROM Supplier

        LEFT OUTER JOIN

        SupParts

        ON Supplier.supno = SupParts.supno

 WHERE qty < 200;

 

or do it in the joining:

 

 SELECT *

  FROM Supplier

       LEFT OUTER JOIN

       SupParts

       ON Supplier.supno = SupParts.supno

          AND qty < 200;

 

Another problem is that you cannot show the same table as preserved 
and unpreserved in the extended equality version, but it is easy in SQL-
92. For example, to find the students who have taken Math 101 and 
might have taken Math 102:

 

 SELECT C1.student, C1.math, C2.math

  FROM (SELECT * FROM Courses WHERE math = 101) AS C1

       LEFT OUTER JOIN

       (SELECT * FROM Courses WHERE math = 102) AS C2

       ON C1.student = C2.student;

 

Exceptions:

 

None. Almost every vendor, major and minor, has the ANSI infixed 
OUTER JOIN operator today. You will see various proprietary notations 
in legacy code, and you can convert it by following the discussion given 
previously.

 

6.1.2 Infixed INNER JOIN and CROSS JOIN Syntax Is 
Optional, but Nice

 

SQL-92 introduced the INNER JOIN and CROSS JOIN operators to 
match the OUTER JOIN operators and complete the notation; other 
infixed JOIN operators are not widely implemented but exist for 
completeness. The functionality of the INNER JOIN and CROSS JOIN 
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existed in the FROM clause before and did not give the programmer 
anything new like the OUTER JOINs.

 

Rationale:

 

The CROSS JOIN is a handy piece of documentation that is much harder 
to miss seeing than a simple comma. Likewise, writing out INNER JOIN 
instead of the shorthand INNER helps document the code.

However, many INNER JOIN operators can be visually confusing, 
and you might consider using the older syntax. The older syntax lets you 
put all of the predicates in one place and group them in some manner 
for readability. A rule of thumb is the “rule of five” in human 
psychology. This says that we have problems handling more than five 
things at once, get serious problems with seven, and break down at nine 
(Miller 1956).

So when you have fewer than five tables, the infixed operators are fine 
but questionable for more than five INNER JOIN-ed tables. Trying to 
associate ON clauses to INNER JOIN operators is visually difficult. In 
particular, a Star Schema has an easily recognized pattern of joins from 
the fact table to each dimension table, like this in pseudocode:

 

 SELECT ..

   FROM Facts, Dim1, Dim2, .., DimN

WHERE Facts.a1 = Dim1.a

  AND Facts.a2 = Dim2.a

  ..

  AND Facts.an = DimN.a

 

The reader can look down the right-hand side of the WHERE clause 
and see the dimensions in a vertical list.

One style that is popular is to put the join conditions in the FROM 
clause with INNER JOIN syntax, then do the search arguments in the 
WHERE clause. Some newbies believe that this is required, but it is not. 
However, if the search arguments change, having them in one place is 
handy.

A quick heuristic when using old-style joins is that the number of 
tables in the FROM clause should be one more than the number of join 
conditions in the WHERE clause. This shows that you do not have cycles 
in the joins. If the difference between the number of tables and the 
number of join conditions is more than one, then you might have an 
unwanted CROSS JOIN caused by a missing join condition.
Old style:
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SELECT O1.order_nbr, ..

  FROM Orders AS O1,

       OrderDetails AS D1

 WHERE O1.order_nbr = D1.order_nbr

   AND D1.dept = 'mens wear';

 

New style:

 

SELECT O1.order_nbr, ..

  FROM Orders AS O1

       INNER JOIN

       OrderDetails AS D1

       ON O1.order_nbr = D1.order_nbr

          AND D1.dept = 'mens wear';

 

Mixed style:

 

SELECT O1.order_nbr, ..

  FROM Orders AS O1

       INNER JOIN

       OrderDetails AS D1

       ON O1.order_nbr = D1.order_nbr

 WHERE D1.dept = 'mens wear';

 

Exceptions:

 

The infixed join operators must be used if there is an OUTER JOIN in 
the FROM clause. The reason is that the order of execution matters with 
OUTER JOINs, and you can control it better with parentheses and 
predicates if they are all together.

As a rule of thumb, when you have a FROM clause with five or more 
tables in it, the traditional syntax is probably easier to read than trying to 
visually match the ON clauses to the proper tables and correlation 
names. This rule of five is mentioned in other places as a limit on human 
data processing ability.

 

6.1.3 Use ISO Temporal Syntax

 

Rationale:

 

The only display format allowed for temporal data in Standard SQL is 
based on ISO-8601, and it is the “yyyy-mm-dd hh:mm:ss.sssss” style. 
The Federal Information Processing Standards (FIPS) require at least five 
decimal places of precision in the seconds. Anything else is ambiguous 
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and not acceptable if you want to work with other software that follows 
ISO standards.

Standard SQL defines a minimal set of simple temporal math 
operators. All of them are available in all SQL products, but the syntax 
varies. For example, in the T-SQL dialect, the function call “DATEADD 
(DD, 13, birthdate)” adds “13” days to the date in birthdate. The 
Standard SQL syntax for the same calculation is “birthdate + INTERVAL 
‘13’ DAY” instead.

You can set the display to ISO-8601 in every SQL product, and you 
can do 99.99 percent of your temporal work without any proprietary 
temporal functions. The problem is that porting code can be a bother. 
You need to make a set of notes about any differences in your dialect and 
the standard.

 

Exceptions:

 

None. Display formatting is always done in the client layer of a tiered 
architecture. This is a basic programming principle and has nothing to 
do with SQL per se. Failure to follow this principle is usually the result 
of a newbie who came to SQL from a traditional monolithic language 
with a strong coupling between the application, the display, and the file 
system.

 

6.1.4 Use Standard and Portable Functions

 

Rationale:

 

Standard SQL is not a computational language, so it does not have the 
function library of FORTRAN or a statistical package. SQL is not a text 
manipulation language, so it does not have the function library of ICON 
or Snobol. All you have is simple four-function math and basic string 
operators in SQL-92. Vendors have always provided more than just the 
basic operators, so you can write portable code that assumes other math 
and string functions. The most common extra math functions are 
modulus, rounding and truncation, powers, and logarithms. The most 
extra common string functions are replacement, reversal, and repetition.

 

Exceptions:

 

If your dialect has a function built into it, which would require a huge 
amount of code to implement or a really long running time, then use the 
proprietary function and comment it for porting.
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6.2 Pick Compact Constructions over Longer Equivalents

 

“Entia non sunt multiplicanda praeter necessitatem.” (No more things should
be presumed to exist than are absolutely necessary.)

 

—William Occam (c. 1280–1349).

 

“Everything should be made as simple as possible, but not simpler.”

 

—Attributed to Albert Einstein

Writing code in as short, clear, and compact a form as possible is just 
good software engineering for any programming language. Modules that 
clearly do one function are easier to modify and to understand. Systems 
with fewer modules are easier to maintain.

SQL can replace hundreds of lines of procedural code with a few 
statements. You ought to be predisposed to think of short, clean 
solutions instead of kludges. However, old habits are hard to kill. Many 
newbies still think in terms of logical tests based on Boolean logic and 
simple AND-OR-NOT expressions that they know from their first 
programming languages.

 

6.2.1 Avoid Extra Parentheses

 

Rationale:

 

Newbies see generated SQL code that has to have extra levels of 
parentheses to execute safely and think that this is the way to write code. 
Consider this simple query:

 

SELECT a, b, c

  FROM Foobar

 WHERE (a = b)

   AND (c < 42);

 

This is not so bad to read, but by the time you have more than five 
predicates and useless nesting of parentheses, the code is difficult to 
read, and a missing parentheses is a real pain to locate. Let LISP 
programmers use them; they really need parentheses.

 

Exceptions:

 

Parentheses in moderation can make nested predicates easier to read:
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SELECT application_nbr

  FROM LoanApplications

 WHERE years_employed > 5 OR net_worth > loan_amt

       AND monthly_expenses < 0.25 * loan_amt

       OR collateral > 2.00 * loan_amt AND age > 25

       OR collateral > loan_amt AND age > 30

       OR years_employed > 2 AND net_worth > 2.00 * loan_amt

       AND Age > 21 AND monthly_expenses < 0.50 * loan_amt;    

 

versus:

 

SELECT application_nbr

  FROM LoanApplications

 WHERE years_employed > 5

    OR (net_worth > loan_amt

        AND monthly_expenses < 0.25 * loan_amt)

    OR (collateral > 2.00 * loan_amt AND age > 25)

    OR (collateral > loan_amt AND age > 30)

    OR (years_employed > 2

        AND net_worth > 2.00 * loan_amt

        AND age > 21

        AND monthly_expenses < 0.50 * loan_amt);

 

In the following section, we will also see how to use a CASE 
expression for situations like this one.

 

6.2.2 Use CASE Family Expressions

 

The CASE expression is an expression and not a control statement; that 
is, it returns a value of one data type. Because SQL is declarative, there is 
no flow of control for it to modify, like the CASE statements in other 
languages. The number of newbies who do not understand the difference 
between an expression and a statement is frightening.

The idea and the syntax came from the ADA programming language. 
Here is the formal BNF syntax for a <case specification>:

 

 <case specification> ::= <simple case> | <searched case>

 <simple case> ::=

    CASE <case operand>

      <simple when clause>...

      [<else clause>]

    END
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 <searched case> ::=

    CASE

      <searched when clause>...

      [<else clause>]

    END

 <simple when clause> ::= WHEN <when operand> THEN <result>

 <searched when clause> ::= WHEN <search condition> THEN 
<result>

 <else clause> ::= ELSE <result>

 <case operand> ::= <value expression>

 <when operand> ::= <value expression>

 <result> ::= <result expression> | NULL

 <result expression> ::= <value expression>

 

6.2.2.1 Searched CASE Expression

 

The searched CASE expression is probably the most-used version of the 
expression. The WHEN ... THEN ... clauses are executed in left-to-right 
order. The first WHEN clause that tests TRUE returns the value given in 
its THEN clause, and you can nest CASE expressions inside of each 
other. If no explicit ELSE clause is given for the CASE expression, then 
the database will insert an implicit “ELSE NULL” clause. If you want to 
return a NULL in a THEN clause, you must use a CAST (NULL AS 
<datatype>) expression. I recommend always giving the ELSE clause, so 
that you can change it later when you find something explicit to return.

 

6.2.2.2 Simple CASE Expression

 

The <simple case expression> is defined as a searched CASE expression 
in which all of the WHEN clauses are made into equality comparisons 
against the <case operand>. For example:

 

  CASE iso_sex_code

  WHEN 0 THEN 'Unknown'

  WHEN 1 THEN 'Male'

  WHEN 2 THEN 'Female'
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  WHEN 9 THEN 'N/A'

  ELSE NULL END

 

could also be written as:

 

  CASE

  WHEN iso_sex_code = 0 THEN 'Unknown'

  WHEN iso_sex_code = 1 THEN 'Male'

  WHEN iso_sex_code = 2 THEN 'Female'

  WHEN iso_sex_code = 9 THEN 'N/A'

  ELSE NULL END

 

There is a gimmick in this definition, however. The expression:

 

 CASE foo

 WHEN 1 THEN 'bar'

 WHEN NULL THEN 'no bar'

 END

 

becomes:

 

 CASE WHEN foo = 1 THEN 'bar'

      WHEN foo = NULL THEN 'no_bar' —error!

      ELSE NULL END

 

The second WHEN clause is always UNKNOWN. Use the simple CASE 
expression when it is appropriate.

 

6.2.2.3 Other CASE Expressions

 

The SQL-92 standard defines other functions in terms of the CASE 
expression, which makes the language a bit more compact and easier to 
implement. For example, the COALESCE () function can be defined for 
one or two expressions by:

1. COALESCE (<value exp #1>) is equivalent to (<value exp #1>)

2. COALESCE (<value exp #1>, <value exp #2>) is equivalent to:

 

   CASE WHEN <value exp #1> IS NOT NULL

        THEN <value exp #1>

        ELSE <value exp #2> END
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Then we can recursively define it for (

 

n

 

) expressions, where
(

 

n

 

 >= 3), in the list by:

COALESCE (<value exp #1>, <value exp #2>, ..., 

 

n

 

) as
equivalent to:

 

   CASE WHEN <value exp #1> IS NOT NULL

        THEN <value exp #1>

        ELSE COALESCE (<value exp #2>, ..., n)

   END

 

Likewise, NULLIF (<value exp #1>, <value exp #2>) is
equivalent to:

 

   CASE WHEN <value exp #1> = <value exp #2>

        THEN NULL

        ELSE <value exp #1> END

 

Use the most compact form of these CASE expressions, and do not 
expand them out to their definitions.

 

6.2.3 Avoid Redundant Expressions

 

Rationale:

 

Most modern SQL engines are pretty smart. This was not always the case, 
so older SQL programmers will sometimes add redundant predicates to a 
where clause. For example, if none of the columns in the table Foobar is 
NULL-able, then given:

 

SELECT a, b, c

  FROM Foobar

WHERE a = b

  AND b = c

  AND c = a;

 

One of the three search conditions is redundant, because it can be 
deduced from the other two. Redundant predicates only confuse the 
human readers and do not give information to a good optimizer.
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Exceptions:

 

If your SQL has a bad optimizer and needs the extra help, then add 
redundant predicates.

 

6.2.4 Seek a Compact Form

 

Rationale:

 

Many of the earlier SQL engines could not use an index on a column if it 
were in an expression, and they did not do any algebraic optimizations. 
Today, we do this bit of cleanup work because a simpler form of an 
expression is easier to maintain and to read:

 

SELECT a, b, c

  FROM Foobar

WHERE a + 2 = b - 4;

 

And a little algebra becomes:

 

SELECT a, b, c

  FROM Foobar

 WHERE a = b + 2;

 

Exceptions:
If your SQL has a really good optimizer, and the complicated form is 
easier for a human being to read for some reason, then use it. Sometimes 
there is no simple form.

6.2.4.1 Use BETWEEN, Not AND-ed Predicates

Rationale:
Consider this simple query:

SELECT a, b, c

  FROM Foobar

WHERE a <= b

  AND b <= c;

which can be written as:

SELECT a, b, c

  FROM Foobar

 WHERE b BETWEEN a AND c;
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The BETWEEN is more compact and gives the reader information 
about the relationship among three columns that might not be so 
obvious amid a longer list of search conditions.

Exceptions:
This rule makes sense from a readability standpoint, but it does not 
always stand up in terms of performance. Consider DB2 for z/OS in 
which “<column name> BETWEEN <expression> AND <expression> is 
both indexable and a stage one predicate.” Without explaining what a 
stage one predicate is, it is preferred for performance.

However, “<value> BETWEEN <column name 1>AND <column name 
2>” is both stage two and nonindexable, but formulating the same using 
two <= predicates could be both stage one and indexable and therefore 
preferable for performance. Likewise, the same execution plan applies to 
“<column name 1> BETWEEN <column name 2> AND <column name 
3>” predicates. This will differ from DBMS to DBMS and platform to 
platform. As optimizers get better, this will be less and less true.

6.2.4.2 Use IN(), Not OR-ed predicates

Rationale:
The IN() predicate was first introduced in the Pascal programming 
language. In SQL it has two forms; the list and the subquery. The list 
form has a comma-separated list of values or expressions on the right-
hand side. The predicate returns a TRUE result if there is a match in that 
list with the left-hand side of the predicate. It is shorthand for a list or 
OR-ed predicates. For example consider:

SELECT a, b, c

  FROM Foobar

WHERE a = b

   OR a = c;

which can be written as:

SELECT a, b, c

  FROM Foobar

WHERE a IN (b, c);

The IN() is more compact and gives the reader information about the 
relationship among three columns that might not be so obvious amid a 
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longer list of search conditions. The list can also consist of scalar 
expressions, but that is not common.

Exceptions:
Watch out for NULLs! The IN () predicate is defined as a chain of OR-ed 
predicates, thus:

a IN (x, y, z)

means ((a = x) OR (a = y) OR (a = z))

Therefore:
a IN (x, y, NULL)

means ((a = x) OR (a = y) OR (a = NULL))

      ((a = x) OR (a = y) OR UNKNOWN)

We are now in SQL’s three-valued logic. Remember that a NULL is 
not the same thing as an UNKNOWN; SQL-92 has no Boolean data 
type; and you cannot use AND, OR, and NOT on a NULL.

The NOT IN () predicate is defined as the negation of the IN():

a NOT IN (x, y, z)

means:

NOT (a IN (x, y, z))

      NOT ((a = x) OR (a = y) OR (a = z))

      (NOT(a = x) AND NOT(a = y) AND NOT(a = z)) --DeMorgan's law

      ((a <> x) AND (a <> y) AND (a <> z)) --definition

Now put in a NULL for one of the list elements:

((a <> x) AND (a <> y) AND UNKNOWN)

(UNKNOWN)

If you wish to have a match on a NULL in a list, then you can 
COALESCE() the NULLs to the left-hand expression, thus:

 WHERE a IN (x, y, COALESCE (z, a))
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which is a little cleaner than:

WHERE (a IN (x, y) OR z IS NULL)

6.2.4.3 Use CASE Expressions, Not Complex Nested Predicates

An advanced trick in the WHERE clause is to use a CASE expression for 
a complex predicate with material implications. If you forgot your 
freshman logic, a material implication logical operator is written as an 
arrow with two tails, and it means “p implies q” or “if p is true then q is 
true” in English.

WHERE CASE

      WHEN <search condition #1>

      THEN 1

      WHEN <search condition #2>

      THEN 1

       ...

      ELSE 0 END = 1

The use of a function that returns one or zero when given a predicate 
as its parameter is called a characteristic function in logic and set theory.

Review the rules for the CASE expression in section 6.2.2 first, so you 
understand it. The order of execution of the WHEN clauses can be used 
to optimize performance and avoid redundant tests. You can also nest 
CASE expressions inside the WHEN and THEN clauses of a containing 
CASE expression and display the logic as an indented tree structure.

WHERE CASE

      WHEN <search condition #1>

      THEN CASE

           WHEN <search condition #1.1>

           THEN 1

           WHEN <search condition #1.2>

           THEN 1 ELSE 0 END

      WHEN <search condition #2>

      THEN 1

       ...

      ELSE 0 END = 1

The goal of this technique is to replace pages of long lists of simple 
theta expressions inside horrible levels of parentheses and to provide 
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some short-circuit evaluation as a bonus. When the nesting is too messy 
to understand, stop and reconsider your logic. Decision table tools, such 
as Logic Gem, are an excellent way to do this.

6.3 Use Comments
Rationale:
The best documentation for maintaining a program has been comments 
in the code. Perhaps it is easier for procedural language programmers to 
add comments because they are explaining in a narrative fashion what 
their program is doing. Unfortunately, procedural language comments 
are often redundant if you can read the code. How much help did you 
get from:

UPDATE Teams

   SET score = score + 1;—increment score

which gives you no information about what the variable score means and 
why it is incremented.

In Standard SQL, a comment begins with two dashes (--) and ends 
with a new line, because the first SQL engines were on IBM mainframes 
and used punchcards. This format is a poor choice with modern 
computers that can store free-form text. Word wrap in program text can 
split a comment and give you errors. Because SQL supports the unary 
minus operator, this is ambiguous in some rare situations and makes the 
compiler work extra hard. Later standards added the C style /* and */ 
pairs, and many vendors have similar comment brackets. They are a 
better choice.

SQL programmers do not like to put comments in their code, not 
even redundant or useless ones. My guess is that because SQL does a lot 
of work in one statement and programmers have been taught to 
comment the code at the statement execution level rather than explain 
the purpose of the code, the higher level of abstraction confuses them. 
They are not inclined to put comments at the clause level because the 
appearance of the code can be crowded.

Get over it. You need a high-level descriptive comment on a block of 
SQL, and then more detailed comments on a few important clauses. Try 
to keep the comments aimed at non-SQL programmers and in plain 
English. For example, don’t say “relational division of motor pool 
vehicles by available drivers” on the assumption that the reader will 
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know what a relational division is. Try “list all drivers who can drive all 
the vehicles in the motor pool” instead. The other trick is to reference the 
documentation for the schema and the applications. This assumes that 
they are current and useful, however.

If you have the time, another guru-level trick is to save the best of the 
various statements you tried that worked but did not perform as well as 
the final choice as comments. In SQL, what was the best answer in one 
situation is often no longer the best answer. Instead of making the next 
programmer start from scratch, share your notes.

Exceptions:
In a well-designed schema with good data element names, much of the 
code is easy for an experienced SQL programmer to read. You can skip 
comments on single statements if their intent is really obvious, but 
remember that one programmer’s obvious is another’s “what the heck?” 
when you code.

6.3.1 Stored Procedures
Always start a stored procedure with a comment that gives at least the 
author, the date, and the update history. This is simply basic software 
management. After that, add a high-level description of the function of 
this module. The procedure name will be in a “<verb><object>” format. 
Each parameter should have a comment as needed.

6.3.2 Control Statement Comments
Comments on control statements, such as IF-THEN-ELSE, BEGIN-END, 
and WHILE-DO loops, will look much like comments in any procedural 
program. Complicated SQL statements need a comment at the top and 
often comments at the clause level.

6.3.3 Comments on Clause
This point is difficult to generalize, but things that act as a unit might 
need a comment. For example, a derived table for which there is no good 
alias might need a comment to explain what it contains. A series of 
predicates that define a complicated join might be prefaced with a 
comment to explain what they are doing at a higher level.
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6.4 Avoid Optimizer Hints
Rationale:
Many products have proprietary syntax for sending parameters to the 
optimizer to change the execution plan for a statement. Because each 
physical implementation is different, this syntax will not be portable, but 
there are other problems too.

First, the optimizer is usually smarter than the programmer and finds 
a good plan. People cannot handle computations that involve tens of 
parameters very well. Second, once a hint is put on a statement, it stays 
there permanently, long after the reason for the hint is gone. A typical 
example of this would set up a query hint for a skewed statistical 
distribution and then, as the database grows, the distribution becomes 
more normal or skewed in the opposite direction. The hint that used to 
be so helpful is now a handicap.

Exceptions:
If you do have a skewed statistical distribution or other weirdness in your 
data that is destroying performance, then use a hint. Set up a review of 
all statements with hints to see if they actually need to be maintained. 
Reviews should occur when a new release of database is installed 
(optimizer might be better) or the statistics of one or more of the tables 
change (data might be better), but if the performance is acceptable, then 
do not use hints.

6.5 Avoid Triggers in Favor of DRI Actions
Rationale:
Although there is an ANSI/ISO standard for triggers, their syntax and 
semantics are still highly proprietary. Triggers are blocks of procedural 
code that are executed (fired) when a database event occurs to a table. 
This code is usually in a proprietary 3GL language. A database event is 
something that changes the data—an insert, update, or delete.

The full ANSI version of triggers does not fire on an insertion, but 
some vendor products do. The full ANSI version of triggers have more 
than one trigger on a table and can fire them in a sequence either before 
or after the database event. Most vendor products do not have that much 
control over the triggers. On the other hand, the syntax and semantics 
for DRI actions are well defined and standardized.

A newbie posted a topic under the title “Need Help with a Calculation 
Trigger” on the forums in the SQL Server Central Web site in November 
2004. This person was having trouble setting up a trigger to check the 
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units of a “number field [sic]”; the real problem was that the poster did 
not know that a column is not a field.

For some reason, the column was declared as FLOAT and was called 
length. The trouble is that some people were entering a length in meters, 
centimeters, and millimeters. The poster was trying to code a trigger that 
will fire on UPDATE or INSERT to check the value of length. If it is 
greater than 20, chances are the number is in millimeters and should be 
divided by 10. If the number is less than 0, then the number is probably 
in meters and should be multiplied by 100.

CREATE TRIGGER SetCentimeters

AFTER INSERT ON Samples

UPDATE Samples

   SET length

       = (CASE

          WHEN length > 10.00

          THEN Length / 10.00

          WHEN length < 0.00

          THEN Length * 100.00

          ELSE Length END)

 WHERE length NOT BETWEEN 0.00 AND 10.00;

However, this is the wrong answer. It is in procedural code. The right 
answer is in the DDL, with something like this:

length DECIMAL(2,1) NOT NULL

       CONSTRAINT length_in_centimeters_only

       CHECK (length BETWEEN 0.01 AND 9.99)

Triggers tend to fix errors on the fly; the goal is not to permit them in 
the first place.

Exceptions:
Some things should be done with triggers because you cannot do them 
with DRI. In particular, the INSTEAD OF trigger has to be used for 
updatable views. This trigger is attached to a VIEW, and instead of taking 
actions on the VIEW, it changes the base tables from which the VIEW is 
built, so that the user sees those changes reflected in the VIEW.

Heuristics tend to favor stored procedures over triggers. A trigger 
fires every time its database event occurs, which puts it out of your 
control and adds that overhead to each database event. A stored 
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procedure has to be deliberately executed, which puts it completely in 
your control. Furthermore, the syntax for triggers is proprietary despite 
the standards, so they do not port well.

6.6 Use SQL Stored Procedures
Every SQL product has some kind of 4GL language that allows you to 
write stored procedures that reside in the database and that can be 
invoked from a host program. Although there is a SQL/PSM standard, in 
the real world, only Mimer and IBM have implemented it at the time of 
this writing. Instead, each vendor has a proprietary 4GL, such as T-SQL 
for the Sybase/SQL Server family, PL/SQL from Oracle, Informix-4GL 
from Informix, and so forth. For more details on these languages, I 
recommend that you get a copy of Jim Melton’s excellent book, 
Understanding SQL’s Stored Procedures ISBN: 1-55860461-8 [out of print] 
on the subject. The advantages they have are considerable, including the 
following:

� Security. The users can only do what the stored procedure allows 
them to do, whereas dynamic SQL or other ad hoc access to the 
database allows them to do anything to the database. The safety 
and security issues ought to be obvious.

� Maintenance. The stored procedure can be easily replaced and 
recompiled with an improved version. All of the host language 
programs that call it will benefit from the improvements that were 
made and not be aware of the change.

� Network traffic. Because only parameters are passed, network 
traffic is lower than passing SQL code to the database across the 
network.

� Consistency. If a task is always done with a stored procedure, then 
it will be done the same way each time. Otherwise, you have to 
depend on all programmers (present and future) getting it right. 
Programmers are not evil, but they are human. When you tell 
someone that a customer has to be at least 18 years of age, one 
programmer will code “age > 18” and another will code “age >= 18” 
without any evil intent. You cannot expect everyone to remember 
all of the business rules and write flawless code forever.

� Modularity. Once you have a library of stored procedures, you can 
reuse them to build other procedures. Why reinvent the wheel 
every week?
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Chapter 8 is a general look at how to write stored procedures in SQL. 
If you look at any of the SQL newsgroups, you will see awful code. 
Apparently, programmers are not taking a basic software engineering 
course anymore, or they think that the old rules do not apply to a 
vendor’s 4GL language.

6.7 Avoid User-Defined Functions and Extensions inside 
the Database

Rationale:
SQL is a set-oriented language and wants to work with tables rather than 
scalars, but programmers will try to get around this model of 
programming to return to what they know by writing user-defined 
functions in other languages and putting them into the database.

There are two kinds of user-defined functions and extensions. Some 
SQL products allow functions written in another standard language to 
become part of the database and to be used as if they were just another 
part of SQL. Others have a proprietary language in the database that 
allows the user to write extensions.

Even the SQL/PSM allows you to write user-defined functions in any 
of the ANSI X3J standard programming languages that have data-type 
conversions and interfaces defined for SQL. There is a LANGUAGE 
clause in the CREATE PROCEDURE statement for this purpose.

Microsoft has its common language runtime (CLR), which takes this 
one step further and embeds code from any compiler that can produce a 
CLR module in its SQL Server. Illustra’s “data blade” technology is now 
part of Informix, IBM has “extenders” to add functionality to the basic 
RDBMS, and Oracle has various “Cartridges” for its product.

The rationale behind all of these various user-defined functions and 
extensions is to make the vendor’s product more powerful and to avoid 
having to get another package for nontraditional data, such as temporal 
and spatial information. However, user-defined functions are difficult to 
maintain, destroy portability, and can affect data integrity.

Exceptions:
You might have a problem that can be solved with such tools, but this is 
a rare event in most cases; most data processing applications can be done 
just fine with standard SQL. You need to justify such a decision and be 
ready to do the extra work required.
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6.7.1 Multiple Language Problems
Programming languages do not work the same way, so by allowing 
multiple languages to operate inside the database, you can lose data 
integrity. Just as quick examples: How does your language compare 
strings? The Xbase family ignores case and truncates the longer string, 
whereas SQL pads the shorter string and is case sensitive. How does your 
language handle a MOD() function when one or both arguments are 
negative? How does your language handle rounding and truncation? By 
hiding the fact that there is an interface between the SQL and the 3GL, 
you hide the problems without solving them.

6.7.2 Portability Problems
The proprietary user-defined functions and extensions will not port to 
another product, so you are locking yourself into one vendor. It is also 
difficult to find programmers who are proficient in several languages to 
even maintain the code, much less port it.

6.7.3 Optimization Problems
The code from a user-defined function is not integrated into the 
compiler. It has to be executed by itself when it appears in an expression. 
As a simple example of this principle, most compilers can do algebraic 
simplifications, because they know about the standard functions. They 
cannot do this with user-defined functions for fear of side effects. Also, 
3GL languages are not designed to work on tables. You have to call them 
on each row level, which can be costly.

6.8 Avoid Excessive Secondary Indexes
First, not all SQL products use indexes: Nucleus is based on a 
compressed bit vector, Teradata uses hashing, and so forth. However, 
tree-structured indexes of various kinds are common enough to be worth 
mentioning. The X/Open SQL Portability Guides give a basic syntax that 
is close to that used in various dialects with minor embellishments. The 
user may or may not have control over the kind of index the system 
builds.

A primary index is an index created to enforce PRIMARY KEY and 
UNIQUE constraints in the database. Without them, your schema is 
simply not a correct data model, because no table would have a key.

A secondary index is an optional index created by the DBA to 
improve performance. The schema will return the same answers as it 
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does with them, but perhaps not in a timely fashion—or even within the 
memory of living humans.

Indexes are one thing that the optimizer considers in building an 
execution plan. When and how the index is used depends on the kind of 
index, the query, and the statistical distribution of the data. A slight 
change to any of these could result in a new execution plan later. With 
that caveat, we can speak in general terms about tree-structured indexes.

If more than a certain percentage of a table is going to be used in a 
statement, then the indexes are ignored and the table is scanned from 
front to back. Using the index would involve more overhead than 
filtering the rows of the target table as they are read.

The fundamental problem is that redundant or unused indexes take 
up storage space and have to be maintained whenever their base tables 
are changed. They slow up every update, insert, or delete operation to 
the table. Although this event is rare, indexes can also fool the optimizer 
into making a bad decision. There are tools for particular SQL products 
that can suggest indexes based on the actual statements submitted to the 
SQL engine. Consider using one.

6.9 Avoid Correlated Subqueries
Rationale:
In the early days of SQL, the optimizers were not good at reducing 
complex SQL expressions that involved correlated subqueries. They 
would blindly execute loops inside loops, scanning the innermost tables 
repeatedly. The example used to illustrate this point was something like 
these two queries where “x” is not NULL-able and Table “Foo” is much 
larger than table “Bar,” which produce the same results:

 SELECT a, b, c

   FROM Foo

  WHERE Foo.x

        IN (SELECT x FROM Bar);

versus

SELECT a, b, c

   FROM Foo

  WHERE EXISTS

        (SELECT *

           FROM Bar

          WHERE Foo.x = Bar.x;
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In older SQL engines, the EXISTS() predicate would materialize a 
JOIN on the two tables and take longer. The IN() predicate would put 
the smaller table into main storage and scan it, perhaps sorting it to 
speed the search. This is not quite as true any more. Depending on the 
particular optimizer and the access method, correlated subqueries are 
not the monsters they once were. In fact, some products let you create 
indexes that prejoin tables, so they are the fastest way to execute such 
queries.

However, correlated subqueries are confusing to people to read, and 
not all optimizers are that smart yet. For example, consider a table that 
models loans and payments with a status code for each payment. This is 
a classic one-to-many relationship. The problem is to select the loans 
where all of the payments have a status code of ‘F’:

CREATE TABLE Loans

(loan_nbr INTEGER NOT NULL,

 payment_nbr INTEGER NOT NULL,

 payment_status CHAR(1) NOT NULL

   CHECK (payment_status IN ('F', 'U', 'S')),

PRIMARY KEY (loan_nbr, payment_nbr));

One answer to this problem uses this correlated scalar subquery in 
the SELECT list:

SELECT DISTINCT

       (SELECT loan_nbr

          FROM Loans AS L1

         GROUP BY L1.loan_nbr

        HAVING COUNT(L1.payment_status) = COUNT(L2.loan_nbr))

       AS parent

  FROM Loans AS L2

 WHERE L2.  payment_status = 'F'

 GROUP BY L2.loan_nbr;

This approach is backward. It works from the many side of the 
relationship to the one side, but with a little thought and starting from 
the one side, you can get this answer:

SELECT loan_nbr

  FROM Loans

 GROUP BY loan_nbr
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HAVING MAX(payment_status) = 'F'

   AND MIN(payment_status) = 'F';

The self-reference and correlation are complicated for both humans 
and machines. Most optimizers are not smart enough to flatten the first 
query like this.

Exceptions:
If you have a problem that is easier to understand with correlated 
subqueries and your optimizer is good, then don’t be so afraid of them.

6.10 Avoid UNIONs
Rationale:
UNIONs are usually not well optimized. Because they require that 
redundant duplicates be discarded, they force most SQL engines to do a 
sort before presenting the result set to the user.  If possible, use UNION 
ALL instead. You should never have to build a chain of UNIONs from 
the same base table. That code can be written with OR-ed predicates or 
CASE expressions.

As an example of a horrible misuse of SQL, Chris White posted a 
procedure that built dynamic SQL that would then build a report. Aside 
from the obvious violations of basic software engineering, the output was 
so huge that it exceeded the text size limits of SQL Server. He was 
attempting to construct an entire report in the database by using 
UNIONs to get the 12 lines of the report in the right order, by assigning 
them a letter of the alphabet.  The whole thing would take several pages 
to show, but it is an extraction of the printout lines that were constructed 
from just the General Ledger. I have not attempted to clean up much of 
the code, so there are many violations of good coding rules in this 
snippet.

. . .

UNION

SELECT DISTINCT 'J' AS section,

       'NUMBER CHECKS' AS description, '' AS branch,

       COUNT(DISTINCT GL.source) AS total1, 0 AS total2

   FROM GeneralLedger AS GL

  WHERE GL.period >= :start_period

    AND GL.period <= :end_period

    AND GL.year_for_period = :period_yr
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    AND GL.account_number IN ('3020')

    AND GL.journal_id IN ('CD')

UNION

SELECT DISTINCT 'C' AS section,

       'CASH RECEIPTS' AS description, '' AS branch,

       SUM(GL.amount) * -1 AS total1, 0 AS total2

  FROM GeneralLedger AS GL

 WHERE GL.period >= :start_period

   AND GL.period <= :end_period

   AND GL.year_for_period = :period_yr

   AND GL.account_number = '1050'

   AND GL.journal_id IN ('CR')

UNION

SELECT DISTINCT 'D' AS section,

       'NUMBER INVOICES' AS description, '' AS branch,

       COUNT(DISTINCT GL.source) AS total1, 0 AS total2

  FROM GeneralLedger AS GL

WHERE GL.period >= :start_period

  AND GL.period <= :end_period

  AND GL.year_for_period = :period_yr

  AND GL.account_number IN ('6010', '6090')

  AND GL.journal_id IN ('SJ')

UNION

SELECT DISTINCT 'E' AS section,

       'VOUCHER TOTAL' AS description, '' AS branch,

       SUM(GL.amount) * -1 AS total1, 0 AS total2

 FROM GeneralLedger AS GL

WHERE GL.period >= :start_period

   AND GL.period <= :end_period

  AND GL.year_for_period = :period_yr

  AND GL.account_number = '3020'

  AND GL.journal_id IN ('PJ', 'TJ')

UNION

SELECT DISTINCT 'F' AS section,

       'CHECKS PRINTED' AS description, '' AS branch,

       SUM(GL.amount) AS total1, 0 AS total2

FROM GeneralLedger AS GL

WHERE GL.period >= :start_period

  AND GL.period <= :end_period

  AND GL.year_for_period = :period_yr

  AND GL.account_number IN ('3020')
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  AND GL.journal_id IN ('CD')

UNION

SELECT DISTINCT 'K' AS section,

       'NUMBER VOUCHERS' AS description, '' AS branch,

       COUNT(DISTINCT GL.source) AS total1, 0 AS total2

  FROM GeneralLedger AS GL

 WHERE GL.period >= :start_period

   AND GL.period <= :end_period

   AND GL.year_for_period = :period_yr

   AND GL.account_number IN ('3020')

   AND GL.journal_id IN ('PJ', 'TJ');

The last part of the code could be reduced to a single, cohesive 
procedure. The output of the procedure would then be formatted in the 
front. Notice that section, description, and branch are all placeholders to 
give a slot for columns in the other UNIONs not shown here.

CREATE PROCEDURE GeneralLedgeSummary (start_period DATE, 
end_period DATE)

SELECT

COUNT(DISTINCT CASE WHEN acct_nbr = '3020' AND journal_code = 
'CD'

               THEN source ELSE NULL END),

-SUM(CASE WHEN acct_nbr = '1050' AND journal_code ='CR'

     THEN amount ELSE 0.00 END),

COUNT(DISTINCT CASE WHEN acct_nbr IN ('6010', '6090') AND 
journal_code = 'SJ'

               THEN source ELSE NULL END),

-SUM(CASE WHEN acct_nbr = '1050' AND journal_code = 'CR'

     THEN amount ELSE 0.00 END),

SUM(CASE WHEN acct_nbr = '3020' AND journal_code = 'CD'

    THEN amount ELSE 0.00 END),

COUNT(DISTINCT CASE WHEN acct_nbr = '3020' AND journal_code IN 
('PJ', 'TJ')

              THEN source ELSE NULL END)

INTO j_tally, c_total, d_tally, e_total, f_total, k_tally

FROM GeneralLedger AS GL

WHERE period BETWEEN start_period AND end_period;
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Exceptions:
Sometimes the UNION [ALL] is what you actually want. The other set 
operations in SQL-92, EXCEPT [ALL], and INTERSECT [ALL] are not 
widely available yet.

6.11 Testing SQL
When you are first writing a schema, you will probably generate some 
test data. If you look in the literature, there is a thing called an 
Armstrong set, which is the minimal number of rows that will test all of 
the constraints in a schema. Although it is difficult to automatically 
create an Armstrong set, you can do a good job with a little effort.

6.11.1 Test All Possible Combinations of NULLs
Rationale:
NULLs behave strangely, and if there are problems, there is a good 
chance that a NULL will be involved. Newbies using graphic tools often 
leave more NULL-able columns in a single table than a professional 
would in an entire schema for a Fortune 500 company payroll.

Exceptions:
If the number of combinations is excessive, then look at a redesign 
rather than a stress test. It means you probably have too many NULL-
able columns in the schema.

6.11.2 Inspect and Test All CHECK() Constraints
Rationale:
You can extract the CHECK() constraint predicates from the DDL and 
look at them. The first thing is to see if the same data element has the 
same rules in all of the tables. Some attributes will always have the same 
CHECK() constraints if the model is correct. For example, the data type, 
regular expression, and check digit for a UPC code will be the same 
everywhere in the schema.

Some attributes may have different constraints in different tables. For 
example, it would be reasonable to have “quantity INTEGER DEFAULT 
0 NOT NULL CHECK (quantity >= 0)” almost everywhere that the 
quantity attribute appears. However, you might find that there is also a 
“CHECK (quantity > 0)” on a table. Is this an error or a situation where a 
zero quantity is disallowed?  You need to look and see.
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Exceptions:
None

6.11.3 Beware of Character Columns
Rationale:
Character columns seldom have enough constraints on them. The result 
is that they have extra blanks in them, allow mixed-case letters, and will 
pretty much hold any kind of garbage that a user wishes to put in them.

My favorite piece of test data for oversized, unconstrained 
NVARCHAR(n) columns is a collection of Buddhist sutras in Chinese 
unicode. At least the users will learn a bit of classic Buddhist thought.

Exceptions:
None

6.11.4 Test for Size
Rationale:
One of the problems with small test data sets is that they will run just 
fine in the development shop, but when the size of the tables grows 
larger, you can get gradually degraded performance or catastrophe 
points. A catastrophe point is when there is a sudden change in the 
performance—the straw that breaks the camel’s back. There is usually a 
physical component to a catastrophe point, such as excessive paging to a 
hard drive. Frankly, there is not a lot you can do about it except wait and 
see if it was a fluke or if it happens again.

Gradually degraded performance is the nicer of the two situations. 
You can monitor the system, see the loss, and take action before 
anything bad happens. The bad news is that the term gradual can be very 
short. The query that ran so well on a few thousand rows of test data is a 
pig when it goes live on several million rows of production data. Try to 
stress test on a data set that is larger than the current production 
database. That will let you know you have some margin of error.

Exceptions:
None
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How to Use VIEWS

 

The Blind Men and the Elephant

 

By John Godfrey Saxe (1816–1887)

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
“God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here
So very round and smooth and sharp?
To me ‘tis mighty clear
This wonder of an Elephant
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Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
“I see,” quoth he, “the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee.
“What most this wondrous beast is like
Is mighty plain,” quoth he;
“Tis clear enough the Elephant
Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: “E’en the blindest man
Can tell what this resembles most;
Deny the fact who can
This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,
“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

Moral:
So oft in theologic wars,
The disputants, I ween,
Rail on in utter ignorance
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Of what each other mean,
And prate about an Elephant
Not one of them has seen!

VIEWs are virtual tables, defined by SELECT statements stored in the 
database. The SQL statement that defines the VIEW is executed only 
when the VIEW is invoked in another statement. The standard says that 
VIEWs are to act as if they are materialized, but in practice the optimizer 
will decide to materialize them as physical tables or to insert the SELECT 
statement in the definition into the query, invoking it and then 
compiling it like a derived table. There are six basic uses for VIEWs that 
we will discuss.

 

7.1 VIEW Naming Conventions Are the Same as Tables

 

Rationale:

 

A VIEW is a logical table. It consists of rows and columns, exactly the 
same as a base table. A VIEW can be used in SELECT, UPDATE, 
DELETE, and INSERT statements in the same way that a base table can. 
Therefore, it stands to reason that VIEWs should utilize the same naming 
conventions as are used for tables. As an aside, the same can be said for 
aliases, synonyms, derived tables,

 

 

 

table-valued functions, or anything 
that returns a table.

In particular, there is an absurd naming convention of putting a “v” 
or “vw” in the first or last position of a VIEW name. My guess is that it 
comes from programmers either who are used to weakly typed languages 
that use Hungarian notation or who worked with file systems that had to 
have prefixes to locate the physical drive for the file. In the ISO-11179, 
the “vw” implies that the VIEW is a table dealing with Volkswagens.

Individuals who have a need to differentiate between tables and 
VIEWs can utilize the schema information tables to determine which 
objects are VIEWs and which objects are tables. They should be at the 
system administration level or higher.

INSERT, UPDATE, and DELETE are operations that cannot be 
performed on certain types of VIEWs. Users who need to do these 
privileges can be given INSTEAD OF triggers and never know if they are 
dealing with a VIEW or a base table.

 

Exceptions:

 

None
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7.1.1 Always Specify Column Names

 

Rationale:

 

When creating VIEWs, SQL provides the option of specifying new 
column names for the VIEW clause or defaulting to the same column 
names as the defining SELECT statement. It is always advisable to 
explicitly specify VIEW column names instead of allowing them to 
default, even if using the same names as the underlying base tables. This 
will provide for more accurate documentation.

 

Exceptions:

 

Make sure that the VIEW clause names are correct. If you misspell them, 
that is what the user sees.

 

7.2 VIEWs Provide Row- and Column-Level Security

 

One of the most beneficial purposes served by VIEWs is to extend the 
data security features of SQL. VIEWs can be created that provide a 
subset of rows, a subset of columns, or a subset of both rows and 
columns from the base table.

How do VIEWs help provide row- and column-level security? 
Consider a “Personnel” table that contains all of the pertinent 
information regarding an enterprise’s employees. Typically, name, 
address, position, birthdate, and salary information would be contained 
in such a table. However, not every user will require access to all of this 
information. Specifically, it may become necessary to shield the salary 
information from most users. You can accomplish this by creating a 
VIEW that does not contain the salary column and then granting most 
users the ability to access the VIEW, instead of the base table. The salary 
column will not be visible to users of the VIEW.

Or perhaps you need to implement security at the row level. Consider 
a table that contains project information. Typically, this would include 
project name, purpose, start date, and who is responsible for the project. 
Assume that the security requirements for projects within your 
organization deem that only the employee who is responsible for the 
project can access the project data. By storing the authorization ID of the 
responsible employee in the “projects” table, a VIEW can be created 
using the CURRENT_USER value.

 

CREATE VIEW MyProjects (..)

AS

SELECT ..
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  FROM Projects

 WHERE authorized_user = CURRENT_USER;

 

Or, if you need to limit access to a team, you can create a table of 
teams to which only team managers have access.

 

CREATE VIEW MyProjects (..)

AS

SELECT ..

  FROM Projects AS P

 WHERE CURRENT_USER

       IN (SELECT team_user_id

             FROM ProjectTeams AS PT

            WHERE P.team_nbr = PT.team_nbr);

 

Another trick is to use the CURRENT_TIMESTAMP or 
CURRENT_DATE in VIEWs to get an automatic update to schedules and 
other time-related events.

 

CREATE TABLE AssignmentSchedule

(ssn CHAR(9) NOT NULL

     REFERENCES Personnel(ssn)

     ON UPDATE CASCADE

     ON DELETE CASCADE,

 task_code CHAR(5) NOT NULL,

 start_date TIMESTAMP NOT NULL,

 end_date TIMESTAMP NOT NULL,

 CHECK (start_date < end_date),

 PRIMARY KEY (upc, start_date));

CREATE VIEW Assignments (now, ssn, task_code)

AS

SELECT CURRENT_TIMESTAMP, ssn, task_code

  FROM AssignmentSchedule

 WHERE CURRENT_TIMESTAMP BETWEEN start_date AND end_date;

 

Each time the VIEW is invoked, it will check the clock and see if 
anything has changed for you.
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7.3 VIEWs Ensure Efficient Access Paths

 

By coding the appropriate join criteria into the VIEW definition SQL, 
you can ensure that the correct join predicate will always be used. Of 
course, this technique becomes more useful as the SQL becomes more 
complex.

 

7.4 VIEWs Mask Complexity from the User

 

Somewhat akin to coding appropriate access into VIEWs, complex SQL 
can be coded into VIEWs to mask the complexity from the user. This can 
be extremely useful when your shop employs novice SQL users (whether 
those users are programmers, analysts, managers, or typical end users).

As an example, consider the code for a relational division. Relational 
division is one of the eight basic operations in Codd’s (1979) relational 
algebra. The idea is that a divisor table is used to partition a dividend 
table and produce a quotient or results table. The quotient table consists 
of those values of one column for which a second column had all of the 
values in the divisor.

This is easier to explain with an example. We have a table of pilots 
and the planes they can fly (dividend); we have a table of planes in the 
hangar (divisor); we want the names of the pilots who can fly every plane 
(quotient) in the hangar. To get this result, we divide the PilotSkills table 
by the planes in the hangar.

 

 CREATE TABLE PilotSkills

 (pilot CHAR(15) NOT NULL,

  plane CHAR(15) NOT NULL,

  PRIMARY KEY (pilot, plane));

CREATE TABLE Hangar

 (plane CHAR(15) NOT NULL PRIMARY KEY);

 

Here is one way to write the query:

 

CREATE VIEW QualifiedPilots (pilot)

AS

SELECT DISTINCT pilot

  FROM PilotSkills AS PS1

 WHERE NOT EXISTS

       (SELECT *

          FROM Hangar
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         WHERE NOT EXISTS

               (SELECT *

                  FROM PilotSkills AS PS2

                 WHERE (PS1.pilot = PS2.pilot)

                   AND (PS2.plane = Hangar.plane)));

 

This not the sort of thing that newbie SQL programmers can pull out 
of their hats, but they can write “SELECT pilot FROM QualifiedPilots;” 
without much trouble. Furthermore, the VIEW definition can be 
changed, and the user will never know it. Here is another version of 
relational division:

 

CREATE VIEW QualifiedPilots (pilot)

AS

SELECT PS1.pilot

  FROM PilotSkills AS PS1, Hangar AS H1

 WHERE PS1.plane = H1.plane

 GROUP BY PS1.pilot

HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM Hangar);

 

7.5 VIEWs Ensure Proper Data Derivation

 

Another valid usage of VIEWs is to ensure consistent derived data by 
creating new columns for VIEWs that are based on arithmetic formulae 
(e.g., creating a VIEW that contains a column named “tot_comp,” which 
is defined by [salary + commission + bonus]). Because this column name 
is at the table level, it can be used in the SELECT of the invoking 
SELECT statement. That is, this is illegal:

 

SELECT emp_id, (salary + commission + bonus) AS tot_comp

  FROM Payroll

 WHERE tot_comp > 12000.00;

 

and this is legal:

 

CREATE VIEW PayrollSummary (emp_id, tot_comp)

AS

SELECT emp_id, (salary + commission + bonus)

  FROM PayrollSummary;
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followed by:

 

SELECT emp_id, tot_comp

  FROM PayrollSummary

 WHERE tot_comp > 12000.00;

 

Although this is an easy formula, it is a good idea to have a 
complicated one in only one place in the schema. It might not be right, 
but at least it will be consistent.

 

7.6 VIEWs Rename Tables and/or Columns

 

You can rename columns in VIEWs. This is particularly useful if a table 
contains arcane or complicated column names. There are some prime 
examples of such tables in the schema information tables of most SQL 
products. Additionally, if other tables exist with clumsy table and/or 
column names, VIEWs can provide a quick solution until you can 
rename them. In many SQL products, doing this can require dropping 
and recreating the tables.

 

7.7 VIEWs Enforce Complicated Integrity Constraints

 

Consider a schema for a chain of stores that has three tables, thus:

 

CREATE TABLE Stores

(store_nbr INTEGER NOT NULL PRIMARY KEY,

 store_name CHAR(35) NOT NULL,

 ..);

CREATE TABLE Personnel

(ssn CHAR(9) NOT NULL PRIMARY KEY,

 last_name CHAR(15 NOT NULL,

 first_name CHAR(15 NOT NULL,

 ..);

 

The first two tables explain themselves. The third table shows the 
relationship between stores and personnel—namely, who is assigned to 
which job at which store and when this happened. Thus:

 

CREATE TABLE JobAssignments

(store_nbr INTEGER NOT NULL
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        REFERENCES Stores (store_nbr)

        ON UPDATE CASCADE

        ON DELETE CASCADE,

 ssn CHAR(9) NOT NULL PRIMARY KEY

        REFERENCES Personnel( ssn)

        ON UPDATE CASCADE

        ON DELETE CASCADE,

 start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 end_date TIMESTAMP CHECK (start_date <= end_date),

 job_type INTEGER DEFAULT 0 NOT NULL

          CHECK (job_type BETWEEN 0 AND 99),

 PRIMARY KEY (store_nbr, ssn, start_date));

 

Let job_type 0 = “unassigned”, 1 = “stockboy”, and so on, until we get 
to 99 = “Store Manager”; we have a rule that each store has one and only 
one manager. In full SQL-92 you could write a constraint like this:

 

CHECK (NOT EXISTS

       (SELECT store_nbr

          FROM JobAssignments

         WHERE job_type = 99))

         GROUP BY store_nbr

        HAVING COUNT(*) > 1))

 

But many SQL products do not allow CHECK () constraints that 
apply to the table as a whole, and they do not support the scheme-level 
CREATE ASSERTION statement. So, how to do this?  You might use a 
trigger, which will involve—ugh!—procedural code. Despite the SQL/
PSM and other standards, most vendors implement different trigger 
models and use their proprietary 4GL language, but, being a fanatic, I 
want a pure SQL solution.

Let’s create two tables like this:

 

CREATE TABLE Job_99_Assignments

(store_nbr INTEGER NOT NULL PRIMARY KEY

        REFERENCES Stores (store_nbr)

        ON UPDATE CASCADE

        ON DELETE CASCADE,

ssn CHAR(9) NOT NULL

        REFERENCES Personnel (ssn)

        ON UPDATE CASCADE
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        ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

end_date TIMESTAMP CHECK (start_date <= end_date),

job_type INTEGER DEFAULT 99 NOT NULL

        CHECK (job_type = 99));

CREATE TABLE Job_not99_Assignments

(store_nbr INTEGER NOT NULL

        REFERENCES Stores (store_nbr)

        ON UPDATE CASCADE

        ON DELETE CASCADE,

ssn CHAR(9) NOT NULL PRIMARY KEY

        REFERENCES Personnel (ssn)

        ON UPDATE CASCADE

        ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

end_date TIMESTAMP CHECK (start_date <= end_date),

job_type INTEGER DEFAULT 0 NOT NULL

        CHECK (job_type BETWEEN 0 AND 98)—no 99 code

);

 

Then build a UNION-ed VIEW:

 

CREATE VIEW JobAssignments (store_nbr, ssn, start_date, 
end_date, job_type)

AS

(SELECT store_nbr, ssn, start_date, end_date, job_type

   FROM Job_not99_Assignments

  UNION ALL

 SELECT store_nbr, ssn, start_date, end_date, job_type

   FROM Job_99_Assignments)

 

The key and job_type constraints in each table working together will 
guarantee only one manager per store. The next step is to add INSTEAD 
OF triggers to the VIEW, so that the users can insert, update, and delete 
from it easily.

As an exercise for the reader: How would you ensure that no store has 
more than two assistant managers?
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7.8 Updatable VIEWs

 

The SQL-92 standard is actually conservative about which VIEWs are 
updatable. They have to be based on the following:

1. A SELECT statement on one and only one table, but the VIEW
can be defined on several layers of VIEWs on top of VIEWs.

2. The VIEW must include all of the columns of a UNIQUE or 
PRIMARY KEY constraint in the base table. This guarantees 
that all of the rows in the VIEW map back to one and only one 
row in the base table from which it is derived.

3. All base table columns not shown in the VIEW must have 
default values or be NULL-able. The reason for that is obvious: 
You have to delete or insert a complete row into the base table, 
so the system must be able to construct such a row.

However, other VIEWs are updatable, and some vendors support 
more than the basic version given in the SQL-92 standard. The VIEW 
must have an INSERT, UPDATE, and DELETE rule under the covers, 
which maps its rows back to a single row in the base table(s).

 

7.8.1 WITH CHECK OPTION clause

 

Another feature, which is not used enough, is the WITH CHECK 
OPTION clause on a VIEW. It is a bit tricky, when you nest VIEWs inside 
each other, but the idea is that an UPDATE or INSERT INTO statement 
cannot leave the scope of the set selected by the updatable VIEW. For 
example, we have a VIEW like this:

 

CREATE VIEW NewYorkSalesmen (ssn, name, ..)

AS

SELECT ssn, name, ..

  FROM Salesmen

 WHERE city = 'New York';

And we update it, thus:

UPDATE NewYorkSalesmen

   SET city = 'Boston';
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The result would be that “NewYorkSalesmen” would be empty when 
you come back to it. This is probably not desirable. However, if we had 
defined the updatable VIEW as:

 

CREATE VIEW NewYorkSalesmen (ssn, name, ..)

AS

SELECT ssn, name, ..

  FROM Salesmen

 WHERE city = 'New York'

WITH CHECK OPTION;

 

the system would test the update for a violation and would reject it.

 

7.8.2 INSTEAD OF Triggers

 

Because some VIEWs cannot be updated, you can add INSTEAD OF 
triggers to fool the users. This trigger is executed instead of the INSERT, 
UPDATE, or DELETE action, thus overriding the actions of the 
triggering statements. The syntax will vary from product to product, but 
expect something like this:

 

CREATE TRIGGER <trigger name>

ON <table name >

 [BEFORE | AFTER | INSTEAD OF]

 [INSERT| DELETE | UPDATE]

AS [<sql stmt> | BEGIN ATOMIC {<sql stmt>;} END]

 

For obvious reasons, only one INSTEAD OF trigger per INSERT, 
UPDATE, or DELETE statement can be defined on a table or VIEW. 
However, it is possible to define VIEWs on VIEWs where each VIEW has 
its own INSTEAD OF trigger. INSTEAD OF triggers are not allowed on 
updatable VIEWs that have a WITH CHECK OPTION.

You can also define INSTEAD OF triggers on base tables, but this is a 
bit weird because you have BEFORE and AFTER triggers.

 

7.9 Have a Reason for Each VIEW

 

Rationale:

 

VIEWs should be created only when they achieve a specific, reasonable 
goal. Each VIEW should have a specific application or business 
requirement that it fulfills before it is created. That requirement should 
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be documented somewhere, preferably in a data dictionary or possibly as 
a remark in the VIEW declaration.

 

Exceptions:

 

None

 

7.10 Avoid VIEW Proliferation

 

Rationale:

 

The proliferation avoidance rule is based on common sense. Why create 
something that is not needed? It just takes up space that could be used 
for something that is needed.

Whenever a SQL object is created, additional entries are placed in the 
schema information tables. Creating needless schema objects causes 
what Craig Mullins calls 

 

catalog clutter

 

. For example, in DB2, every 
unnecessary VIEW that is created in SQL will potentially insert rows into 
four VIEW-specific schema information tables (i.e., SYSVTREE, 
SYSVLTREE, SYSVIEWS, and SYSVIEWDEP) and three table-specific 
schema information tables (i.e., SYSTABLES, SYSTABAUTH, and 
SYSCOLUMNS).

It is a good idea to use a utility program to see if you have VIEWs that 
are not referenced anywhere. Another good idea is to see if you have 
VIEWs that do the same thing, or almost the same thing, so you can 
remove one of them.

 

Exceptions:

 

None

 

7.11 Synchronize VIEWs with Base Tables

 

Rationale:

 

Whenever a base table changes, all VIEWs that depend on that base table 
should be analyzed to determine if the change affects them. All VIEWs 
should remain logically pure. The VIEW should remain useful for the 
specific reason you created it.

For example, say a VIEW was created to control employee access to a 
project and we add the new badge numbers to the Personnel table. This 
badge number probably should also be added to the access VIEW. The 
badge number column can be added to the Personnel table immediately 
and then to the VIEW at the earliest convenience of the development 
team.
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The synchronization rule requires that strict change impact analysis 
procedures be in place. Every change to a base table should trigger the 
usage of these utility programs and maintenance procedures.

 

Exceptions:

 

None

 

7.12 Improper Use of VIEWs

 

Over the years, VIEWs have been used for other purposes that made 
sense at the time but have been rendered obsolete with the advent of 
new DBMS functionality.

 

7.12.1 VIEWs for Domain Support

 

Rationale:

 

It is a sad fact of life that most RDBMS do not support domains. 
Domains were in the original relational model and should have been part 
of SQL from the start. A domain basically identifies the valid range of 
values that a column can contain. Of course, domains are more complex 
than this simple explanation. For example, only columns pooled from 
the same domain should be able to be compared within a predicate 
(unless explicitly overridden).

Some of the functionality of domains can be implemented using 
VIEWs and the WITH CHECK OPTION clause, which ensures the 
update integrity of VIEWs. This will guarantee that all data inserted or 
updated using the VIEW will adhere to the VIEW specification.

 

CREATE VIEW Personnel (ssn, name, sex,  ..)

AS

SELECT ssn, name, sex, ..

  FROM ISBN0008 –- a name you did not want anyone to see

 WHERE sex IN (0, 1, 2) –- iso codes

WITH CHECK OPTION;

 

Now, this method of using VIEWs to simulate domains is still viable, 
but a better technique to provide the same functionality is available—
namely, CHECK() constraints.

 

CREATE TABLE Personnel

(ssn CHAR(9) NOT NULL, name, sex,  ..)

 ..
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 sex INTEGER DEFAULT 0 NOT NULL

     CHECK (sex IN (0, 1, 2)),

 ..);

 

And a CHECK() constraint is simpler than creating VIEWs with the 
WITH CHECK OPTION.

 

Exceptions:

 

None

 

7.12.2 Single-Solution VIEWs

 

Rationale:

 

Another past usage for VIEWs was to enable solutions where VIEWs 
really were the only way to solve a data access problem. Without VIEWs, 
some complex data access requests could be encountered that were not 
capable of being coded using SQL alone. However, sometimes a VIEW 
can be created to implement a portion of the access. Then, the VIEW can 
be queried to satisfy the remainder.

Consider the scenario where you want to report on detail information 
and summary information from a single table. For instance, what if you 
would like to report on stock prices? For each stock, provide all stock 
details, and also report the maximum, minimum, and average prices for 
that stock. Additionally, report the difference between the average price 
and each individual price.

 

CREATE VIEW StockSummary (ticker_sym, min_price, max_price, 
avg_price)

AS

SELECT ticker_sym, MIN(price), MAX(price), AVG(price)

  FROM Portfolio

 GROUP BY ticker_sym;

 

After the VIEW is created, the following SELECT statement can be 
issued joining the VIEW to the base table, thereby providing both detail 
and aggregate information on each report row:

 

SELECT P.ticker_sym, P.quote_date, S.min_price, S.max_price, 
S.avg_price,

       (P.price - S.avg_price) AS fluctuation

  FROM Portfolio AS P, StockSummary AS S

 WHERE P.ticker_sym = S.ticker_sym;



 

148 CHAPTER  7:  HOW TO USE VIEWS   

 

Situations such as these were ideal for using VIEWs to make data 
access a much simpler proposition. However, the advent of table 
expressions (sometimes referred to as in-line VIEWs) makes this usage of 
VIEWs obsolete. Why? Instead of coding the VIEW, we can take the SQL 
from the VIEW and specify it directly into the SQL statement that would 
have called the VIEW. Using the previous example, the final SQL 
statement becomes:

 

SELECT P.ticker_sym, S.min_price, S.max_price, S.avg_price,

       (P.price - S.avg_price) AS fluctuation

  FROM Portfolio AS P,

       (SELECT ticker_sym, MIN(price), MAX(price), AVG(price)

          FROM Portfolio

         GROUP BY ticker_sym) AS S

 WHERE P.ticker_sym = S.ticker_sym;

 

So we can use a table expression to avoid creating and maintaining a 
VIEW.

 

Exceptions:

 

If an expression is used in many places and it has a clear meaning in the 
data model, then create a VIEW.

 

7.12.3 Do Not Create One VIEW Per Base Table

 

Rationale:

 

A dubious recommendation is often made to create one VIEW for each 
base table in a SQL application system. This is what Craig Mullins calls 
“The Big VIEW Myth.” This is supposed to insulate application programs 
from database changes. This insulation is to be achieved by mandating 
that all programs be written to access VIEWs instead of base tables. 
When a change is made to the base table, the programs do not need to 
be modified because they access a VIEW, not the base table.

There is no adequate rationale for enforcing a strict rule of one VIEW 
per base table for SQL application systems. In fact, the evidence 
supports not using VIEWs in this manner. Although this sounds like a 
good idea in principle, indiscriminate VIEW creation should be avoided. 
The implementation of database changes requires scrupulous analysis 
regardless of whether VIEWs or base tables are used by your 
applications. Consider the simplest kind of schema change, adding a 
column to a table. If you do not add the column to the VIEW, no 
programs can access that column unless another VIEW is created that 
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contains that column. But if you create a new VIEW every time you add a 
new column, it will not take long for your environment to be swamped 
with VIEWs.

Then you have to ask which VIEW should be used by which program? 
Similar arguments can be made for removing columns, renaming tables 
and columns, combining tables, and splitting tables.

In general, if you follow good SQL/SQL programming practices, you 
will usually not encounter situations where the usage of VIEWs initially 
would have helped program/data isolation anyway. By dispelling, “The 
Big VIEW Myth,” you will decrease the administrative burden of creating 
and maintaining an avalanche of base table VIEWs.

 

Exceptions:

 

None

 

7.13 Learn about Materialized VIEWs

 

Rationale:

 

A materialized VIEW is brought into existence in the physical database, 
where it can be used like any other table.  This is implementation 
dependent, so you have to know what your product does to get the best 
use of this feature.

All VIEWs are supposed to act as if they are materialized, but in 
practice the text of the view can often be put into the parse tree of the 
statement using it and expanded like an in-line macro statement.  For 
example, given this VIEW:

 

CREATE VIEW NewYorkSalemen (ssn, first_name, ..)

AS

SELECT ssn, first_name, ..

  FROM Personnel

 WHERE city = 'New York';

 

When it is used in a query, the effect is as if it were a derived table 
expression inside that query. For example:

 

SELECT ssn, first_name, ..

  FROM NewYorkSalemen

WHERE firstname = 'Joe';
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in effect becomes:

 

SELECT ssn, first_name, ..

  FROM (SELECT ssn, first_name, ..

          FROM Personnel

         WHERE city = 'New York')

       AS NewYorkSalemen (ssn, first_name, ..)

 WHERE firstname = 'Joe';

 

which will probably become something like this in the parse tree:

 

SELECT ssn, first_name, ..

  FROM Personnel AS NewYorkSalemen (ssn, first_name, ..)

 WHERE city = 'New York'

   AND firstname = 'Joe';

 

However, if more than one user references a VIEW, it can be cheaper 
to materialize it once and share the data among all users. If the 
materialized result set is small enough to fit into main storage, the 
performance improvements are even greater.

This is actually a common event, because we tend to build views that 
summarize data for reporting periods. Thus, lots of users want to get to 
the same summary views at the same time. If you plan the VIEWs to take 
advantage of this usage pattern, you can get major performance 
improvements.

 

Exceptions:

 

None
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How to Write Stored Procedures

 

“Whatever language you write in, your task as a programmer is to do the
best you can with the tools at hand. A good programmer can overcome a

poor language or a clumsy operating system, but even a great programming
environment will not rescue a bad programmer.”

 

—Kernighan and Pike

 

E

 

VERY

 

 

 

SQL

 

 

 

PRODUCT

 

 has some kind of 4GL tools that allow you to write 
stored procedures that reside in the database and that can be invoked 
from a host program. Each 4GL is a bit different, but they are all 
block-structured languages. They have varying degrees of power and 
different language models. For example, T-SQL is a simple, one-pass 
compiler modeled after the C and Algol languages. It was not intended 
as an application development language, but rather as a tool for doing 
short tasks inside a SQL Server database.

At the other extreme, Oracle’s PL/SQL is modeled after ADA and 
SQL/PSM. It is a complicated language that can be used for application 
development. Likewise, Informix 4GL is an application development 
language that generates C code, which can be immediately ported to a 
large number of platforms.

What this means is that anything I say about SQL stored 
procedures will have to be general, but perhaps the most frightening 
thing is that I have to go back and teach basic software engineering 
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principles to SQL programmers. If you look at the SQL code posted in 
newsgroups, much of it is written as if all of the work done in the 1970s 
and 1980s by Yourdon, DeMarco, Dijkstra, Wirth, and others. never 
happened. Wake up, people! Those rules still apply to any programming 
language because they apply to programming.

 

8.1 Most SQL 4GLs Are Not for Applications

 

Rationale:

 

Most of the proprietary procedural languages added to SQL by vendors 
were never meant to replace application development languages (note 
the exceptions). They were meant to be micro-languages that could be 
used for procedural operations inside the database.

The classic micro-language has no real input/output (I/O); you can 
print a message on the standard system output and that is about all. 
There is no file control, no complex computations, and no display 
formatting functions. These languages were for writing triggers and short 
cleanup modules in the schema, and the rule of thumb was never to have 
a procedure over one page or 50 lines long.

This is fine; in a tiered architecture, display and complex 
computations are done in the host language of the presentation layer. 
But if you read the SQL newsgroups, you will constantly find newbie 
programmers who want to do display formatting in the database. They 
want to add leading zeros in a SELECT statement, concatenate first and 
last names, put line numbers on the result set to display ranges of those 
line numbers, and a host of other things. SQL is strictly a data-retrieval 
language and has nothing to do with application presentation layers.

 

Exceptions:

 

Informix 4GL, Progress, Oracle’s PL/SQL, and a few other languages 
were actually meant for application development. Sometimes the 
language came before the SQL database and vice versa. A proprietary 
language can be fast to execute, fast to write, and have lots of nice 
features. A lot of mainframe packages are implemented in Informix 4GL 
under the covers, Oracle sells packages written in PL/SQL, and a lot of 
midsized systems are implemented in Progress. The trade-off is the 
ability to maintain these proprietary code bases versus maintaining a 
standard programming language with embedded SQL.
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8.2 Basic Software Engineering

 

I am amazed that so many SQL programmers do not know basic 
software engineering. Working programmers on newsgroups actually 
have to ask for definitions of cohesion and coupling. Apparently, 
programmers are not getting the basics of their trade and simply try to 
pass certification exams instead of actually learning their craft. With 
some embarrassment, I will now give what should have been covered in 
a freshman course.

These principles apply to any procedural programming language, but 
they have slightly different applications in SQL because it is a 
nonprocedural, set-oriented language with concurrency issues.

 

8.2.1 Cohesion

 

Cohesion is how well a module does one and only one thing: that it is 
logically coherent. The modules should have strong cohesion. You ought 
to name the module in the format “<verb><object>,” where the 
“<object>” is a specific logical unit in the data model.

There are several types of cohesion. They are ranked here from the 
worst form of cohesion to the best:

1. Coincidental

2. Logical

3. Temporal

4. Procedural

5. Communicational

6. Informational

7. Functional

This scale is an ordinal scale, and a module can have characteristics of 
more than one type of cohesion in it. Let’s define terms as follows:

 

�

 

Coincidental cohesion

 

. This is the worst kind of cohesion. This is 
where a module performs several unrelated tasks under one roof. 
Think of someone pasting random blocks of code together and 
somehow getting it to compile. This is what you get with dynamic 
SQL or passing table names as parameters.
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For example, “InsertNewCustomer()” tells you that you are 
going to be working with the tables related to the customers. 
However, a procedure called “InsertNewRecord,” which can put a 
row into any table in the schema, is too general to have good 
cohesion. It works on bagpipes, marriages, and octopi or any new 
table that gets put into the schema later.

Programmers should not be using dynamic SQL, because it 
has no cohesion and is dangerous. Users who have to provide, 
say, a table name, can also provide extra SQL code that will be 
executed. For example, instead of passing just the table name, 
they pass “Foobar; DELETE FROM Foobar; COMMIT” and 
destroy the database. But dynamic SQL also says that the 
programmer is so incompetent that he or she could not write the 
program and had to give the job to any random user, present or 
future, to complete on the fly.

This kind of coding is the result of trying to do metadata 
operations in an application by using the schema information 
tables. SQL engines have tools for metadata, and the user should 
not be writing versions of them.

 

�

 

Logical cohesion

 

. Here modules can perform a series of related 
tasks, but the calling module selects only one. The worst example 
of this was a posting in 2004 on a SQL Server newsgroup where a 
programmer had been ordered to put all procedures into one 
module. A parameter would then pick which of 50-plus modules 
would be executed and which parameters would be used and what 
they would do in context.

OO programmers like to do this for each table, because they 
can think of each table as some kind of object, and the procedure 
looks like methods on that object. It isn’t.

 

�

 

Temporal cohesion

 

. The module performs a series of actions that are 
related in time. The classic example is to put all startup or 
shutdown actions in one module. Older COBOL and file system 
programmers tend to do this because they worked with batch 
processing systems that did not have concurrency issues.

 

�

 

Procedural cohesion

 

. The modules perform a sequence of steps in a 
process that has to be executed in specific order. Again, this style is 
used by file system programmers who are used to batch processing 
systems. They often write a lot of temporary tables to hold the 
process steps, like we used to allocate working tapes.
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�

 

Communicational cohesion

 

. All elements operate on the same input 
data set or produce the same output data set. The parts 
communicate via common data in a global table.

 

�

 

Informational cohesion

 

. This is also called 

 

sequential cohesion

 

 in the 
literature. Output from one element in the module serves as input 
for some other element, but unlike logical cohesion, the code for 
each action is completely independent.

 

�

 

Functional cohesion

 

. The module performs exactly one function or 
achieves a single goal. Math functions are the best example of this 
kind of cohesion. This is what we are trying to do, and it is why 
SQL is also known as a functional language.

Procedural, communicational, informational, and functional 
cohesion are a bit more complicated in SQL than in 3GL programming 
because we have transactions. A transaction is logically one step, 
although it consists of individual SQL statements. What looks like 
procedural, communicational, or informational cohesion can be much 
stronger in SQL.

 

8.2.2 Coupling

 

If modules have to be used in a certain order, then they are strongly 
coupled. If they can be executed independently of each other and put 
together like Lego blocks, then they are loosely or weakly coupled. There 
are several kinds of coupling, which are ranked from worst to best as 
follows:

1. Content

2. Common

3. Control

4. Stamp

5. Data

The types of coupling are defined as follows:

 

�

 

Content coupling

 

. This occurs when one module directly references 
the contents of another module. For example, module 

 

x

 

 branches 
to a local label in module 

 

y

 

 or module 

 

x

 

 modifies a statement of 
module 

 

y

 

. Such modules are inextricably linked to each other. 
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Content coupling is dangerous but is not often supported in SQL 
4GL products. The rule here is not to pass a procedure as a 
parameter in a SQL 4GL.

 

�

 

Common coupling

 

. This occurs when several modules have access to 
the same global data. In the 3GL languages, this was use of global 
variables in the C family and other languages. In SQL, this can 
happen with the use of common global tables to pass information. 
It gets to be dangerous when concurrency controls are not done 
right.

 

�

 

Control coupling

 

. This occurs when one module has control over the 
logic of another. If module 

 

x

 

 calls module 

 

y

 

 and 

 

y

 

 determines 
which action 

 

x

 

 must take, then control coupling is present. The 
passing of a control switch statement as an argument is an example 
of control coupling. In SQL, you do this with subqueries that 
reference other parts of the schema in predicates that drive control 
flow.

 

�

 

Stamp coupling

 

. Entire tables are passed to the called module, but 
only some columns are used. In SQL, the use of “SELECT *” in 
production code is the prime example.

 

�

 

Data coupling

 

. Two modules are data coupled if all arguments are 
scalar data elements. Data coupling is a desirable goal because 
such modules are easier to maintain. Any changes in one module 
or table are less likely to cause a regression fault in the others.

 

8.3 Use Classic Structured Programming

 

Although I like to say that SQL is short for “Scarcely Qualifies as a 
Language,” the truth is that it came from “Structured English-like Query 
Language” from the original project at IBM. A lot of current 
programmers seem to have missed the structured revolution and have 
reverted back to ad hoc programming but call it “extreme” or “agile” 
these days to make sloppy programming sound better.

In classic structured programming, you have three control structures:

1.

 

Concatenation

 

. The statements inside brackets are executed in
sequential order. In SQL/PSM this is shown with the keyword
brackets “BEGIN [ATOMIC] .. END” and often by just
“BEGIN.. END” in proprietary 4GLs. The keyword ATOMIC
makes the block into a transaction, which we will not discuss in
detail here.
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2.

 

Selection

 

. A Boolean expression determines which one of two 
blocks of statements is executed. In SQL/PSM this is shown 
with the keywords “IF .. THEN .. [ELSE ..] END IF;” and in 
proprietary 4GLs with “IF .. THEN .. [ELSE ..];” or “IF .. [ELSE 
..];” but syntax is always enough alike not to be a problem.

3.

 

Iteration

 

. A block of statements is repeatedly executed while a 
Boolean expression is TRUE. In SQL/PSM this is shown with 
the keywords “WHILE .. LOOP.. END WHILE;” and you will 
see “WHILE.. DO..” keywords in many products. Again, 
various products are always enough alike not to be a problem.

The important characteristic of all of these control structures is that 
they have one entry and one exit point. Any code written using them will 
also have one entry and one exit point. You do not use a GO TO 
statement in classic structured programming.

Some languages allowed a RETURN() statement to jump out of 
functions and set the value of the function call. Some allowed a switch or 
case expression as a multiway selection control statement. But by 
sticking as close as possible to classic structured programming, your 
code is safe, verifiable, and easy to maintain.

 

8.3.1 Cyclomatic Complexity

 

So is there a heuristic for telling if I have a bad stored procedure? There 
are a lot of metrics actually. In the 1970s, we did a lot of research on 
software metrics and came up with some good stuff. Here is one that can 
be computed by hand when you have short procedures to measure.

Tom McCabe (1976) invented the cyclomatic complexity metric. The 
score is basically the number of decision points in a module plus one, or 
the number of execution paths through the code. Decision points are 
where a flow graph of the procedure would branch. In a well-structured 
4GL program, the keywords of the language will tell us what the decision 
points are. For us that means IF, WHILE, and each branch of a CASE or 
SWITCH statement, if your 4GL supports that feature.

If the module has a score of 1 to 5, it is a simple procedure. If the 
score is between 6 to 10, it might need simplification. If the score is 
greater than 10, then you really should simplify the module. There are 
other metrics and methods, but most of them are not as easy to compute 
on the fly.
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8.4 Avoid Portability Problems

 

Rationale:

 

We already talked about writing portable SQL statements, but you also 
need to write portable 4GL code. Because these languages are 
proprietary, they will have some features that will not port to other SQL 
4GLs. Also, you cannot expect that you will always find programmers 
who are expert in these languages or who have time to become experts. 
Plain, simple code in an unfamiliar language can be a great help.

Stick to the classic three control structures. They will always port with 
only mechanical syntax changes and can be read by any programmer 
who knows a typical 3GL language. But there are other tricks and 
heuristics.

 

8.4.1 Avoid Creating Temporary Tables

 

In some vendor languages, the programmer can create a temporary table 
on-the-fly, while in Standard SQL the temporary tables are only created 
by someone holding administrative privileges. Use subquery 
expressions, derived tables, or VIEWs instead. The use of temporary 
tables is usually a sign of a bad design. Temporary tables are most often 
used to hold the steps in a procedural process. They replace the scratch 
or work tapes we used in the 1950s magnetic tape file systems.

There are two major types of error handling. The Sybase/SQL Server 
family uses a sequential code model. After executing each statement, the 
SQL engine sets a global error variable, and the programmer has to write 
code to immediately catch this value and take action.

The SQL/PSM model uses an interrupt model. There is a global 
SQLSTATE (the old SQLCODE is deprecated), which can return 
multiple values into a cache. These values can trigger actions that were 
defined in WHENEVER statements associated with blocks of code. 
Maintaining the error handling part of a module is difficult, so do a lot of 
comments in it.

Put as much of the code into SQL statements, not into the 4GL. 
Ideally, a stored procedure ought to be one SQL statement, perhaps with 
a few parameters. The next best design would be a “BEGIN [ATOMIC] .. 
END” with a straight sequence of SQL statements. You lose points for 
each “IF..THEN..ELSE” and lose lots of points for each loop.
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8.4.2 Avoid Using Cursors

 

Rationale:

 

A cursor is a way of converting a set into a sequential file so that a host 
language can use it. There are a lot of options on the Standard SQL 
cursor, and there are a lot of vendor options, too.

Cursors are difficult to port and generally run much slower than pure 
nonprocedural SQL statements. By slower, I mean orders of magnitude 
slower. For safety, the SQL engine has to assume that anything can 
happen inside a cursor, so it puts the transaction at the highest level it 
can and locks out other users.

So why do people use them? The overwhelming reason is ignorance 
of SQL and old habits. The cursors in SQL are modeled after tape file 
semantics, and people know that kind of procedural programming. Here 
is the analogy in detail:

 

ALLOCATE <cursor name> = get a tape drive on a channel

DECLARE <cursor name> CURSOR FOR .. = mount a tape and have a 
record declaration for the file.

OPEN <cursor name> = open the file.

FETCH <cursor orientation> <cursor name> INTO <local variables> 
= read one record at a time in the program then move the read/
write head as oriented.

CLOSE <cursor name> = close the file

DEALLOCATE <cursor name> = free tape drive

 

Add the use of temporary tables as working or scratch tapes and you 
can mimic a 1950s tape system statement for statement and never learn 
to think relationally at all. In 2004, there was an example of this in the 
SQL Server Programming newsgroup. The newbie had written one 
cursor to loop through the first table and select rows that met a criterion 
into a temporary table. A second cursor looped through a second table 
ordered on a key; inside this loop, a third cursor looped through the 
temporary table to match rows and do an update. This was a classic 
1950s master/transaction tape file merge but written in SQL. The 25 or 
so statements used in it were replaced by one UPDATE with a scalar 
subquery expression. It ran almost three orders of magnitude faster.

 

Exceptions:

 

The only uses I have found are truly exceptional. Cursors can be used to 
repair poorly designed tables that have duplicate rows or data that is so 
trashed you have to look at every row by itself to clean the data before 



 

160 CHAPTER  8:  HOW TO WRITE STORED PROCEDURES   

 

doing an ALTER TABLE to fix such poor design permanently. Here are 
some reasons to use cursors:

1. Cursors can be used to build metadata tools, but you really
should be using what the vendor has provided. Messing
directly with schema information tables is dangerous.

2. Cursors can be used to solve NP-complete problems in SQL 
where you stop with the first answer you find that is within 
acceptable limits. The “Traveling Salesman” and “Bin Packing” 
problems are examples, but they are not exactly common 
database problems and are better solved with a procedural 
language and backtracking algorithms.

3. In T-SQL and other products that still use physically 
contiguous storage, calculating a median is probably much 
faster with a cursor than with any of the set-based solutions, 
but in other products with different storage or indexing, 
computing the median is trivial.

4. It is possible to actually write code that is worse than a cursor. 
Consider this slightly cleaned-up posting by Curtis Justus in 
the SQL Server Programming newsgroup in November 2004. 
He had a table of approximately 1 million rows and needed to 
“do something with each of the rows” in what he called a 
traditional “For/Each” type algorithm. The specifications were 
never explained beyond that. He posted a pseudocode 
program in T-SQL dialect, which would translate into Standard 
SQL pseudocode something like this:

 

CREATE PROCEDURE TapeFileRoutine()

BEGIN

-- assume temporary table as a sequential scratch tape

DECLARE maxrecs INTEGER;

DECLARE current_row INTEGER;

DECLARE temp_a INTEGER;

DECLARE temp_b INTEGER;

INSERT INTO ScratchTape (record_nbr, temp_a, temp_b)

SELECT {{proprietary_auto_increment}}, col1, col2

  FROM MyBigTable;
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SET maxrecs = (SELECT COUNT(*) FROM ScratchTape);

SET current_row = 0;

WHILE (current_row < maxrecs)

DO

-- Get the values

SELECT col_1, col_2

  INTO temp_a, temp_b

  FROM ScratchTape

 WHERE rec_id = current_row;

-- do my manipulation ;

SET current_row = current_row + 1;

END WHILE;

END;

 

Yes, you are looking at a sequential tape file algorithm from the 1950s 
written in SQL in the early 21st century. The poster wanted to know if 
this was the most efficient way to go after the data. The answer, 
obviously, is that even a cursor would be better than this approach.

You would be surprised by how many newbies rediscover sequential 
tape processing in SQL. Perhaps even more remarkable was this person’s 
attitude that he was currently getting a fast enough response time that it 
did not have to be coded correctly. The lack of portability, the orders of 
magnitude degradation, and the extra lines of code that had to be 
maintained were simply not regarded as his responsibility as a 
professional.

 

8.4.3 Prefer Set-Oriented Constructs to 
Procedural Code

 

Rationale:

 

The optimizer cannot use control structures from the 4GL to pick an 
execution plan. Thus, the more logic you can pass to it via pure SQL 
statements, the better it will perform. The real cost in a stored procedure 
is in data access. Timing for various operations on a typical 1-GHz PC in 
summer 2001 in nanoseconds was:

 

Execute single instruction = 1 ns (1/1,000,000,000) sec

Fetch word from L1 cache memory = 2 ns

Fetch word from main memory = 10 ns

Fetch word from consecutive disk location = 200 ns

Fetch word from new disk location (seek) = 8,000,000 ns
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If I can save a few disk fetches, I get a much better return on my 
efforts than if I write faster executing computations. The seek times have 
not gotten and are not going to get much better in the foreseeable future.

 

8.4.3.1 Use CASE Expressions to Replace IF-THEN-ELSE Control 
Flow Statements

 

As an example of how to do this, consider the problem of updating the 
prices in a bookstore. This is a version of an exercise in an early Sybase 
SQL training class to show why we needed cursors. We want to take 10 
percent off expensive books ($25 or more) and increase inexpensive 
books by 10 percent to make up the loss. The following statement is the 
first impulse of most new SQL programmers, but it does not work.

 

CREATE PROCEDURE IncreasePrices()

LANGUAGE SQL

DETERMINISTIC

BEGIN

UPDATE Books

   SET price = price * 0.90

 WHERE price >= 25.00;

UPDATE Books

   SET price = price * 1.10

 WHERE price < 25.00;

END;

 

A book priced at $25.00 is reduced to $22.50 by the first update. 
Then it is raised to $24.75 by the second update. Reversing the order of 
the update statements does not change the problem. The answer given in 
the course was to use a cursor and to update each book one at a time. 
This would look something like this:

 

BEGIN

DECLARE BookCursor CURSOR

FOR SELECT price FROM Books

FOR UPDATE;

 ..

ALLOCATE BookCursor;

 ..

OPEN BookCursor;

FETCH Bookcursor;

WHILE FOUND
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DO

IF price >= 25.00

THEN

UPDATE Books

   SET price = price * 0.90

 WHERE CURRENT OF BookCursor;

ELSE

UPDATE Books

   SET price = price * 1.10

 WHERE CURRENT OF BookCursor;

END IF;

FETCH NEXT Bookcursor;

END WHILE;

 ..

CLOSE BookCursor;

DEALLOCATE BookCursor;

END;

 

But by using a CASE expression to replace the IF..THEN..ELSE logic, 
you can write:

 

UPDATE Books

   SET price = CASE WHEN price >= 25.00

               THEN price * 0.90;

               ELSE price * 1.10 END;

 

This requires less code and will run faster. The heuristic is to look for 
nearly identical SQL statements in the branches of an IF statement, then 
replace them inside one statement with a CASE expression.

 

8.4.3.2 Use Sequence Tables to Replace Loop Control Flow

 

A sequence table is a single-column table that contains integers from 1 to 
(

 

n

 

), for some values of (

 

n

 

) that are large enough to be useful. One way of 
generating such a table is:

 

CREATE TABLE Sequence (seq INTEGER NOT NULL PRIMARY KEY);

CREATE PROCEDURE MakeSequence()

LANGUAGE SQL

DETERMINISTIC

BEGIN
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INSERT INTO Sequence (seq) VALUES(1);

WHILE (SELECT MAX(seq) FROM Sequence) > 1000

DO INSERT INTO Sequence (seq)

   SELECT MAX(seq)+1 FROM Sequence;

END WHILE;

END;

 

However, it is faster to write:

 

CREATE TABLE Sequence (seq INTEGER NOT NULL PRIMARY KEY);

CREATE PROCEDURE MakeSequence()

LANGUAGE SQL

DETERMINISTIC

INSERT INTO Sequence (seq)

SELECT hundred * 100 + ten * 10 + unit + 1

  FROM (VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) AS Units(unit)

        CROSS JOIN

       (VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) AS Tens(ten)

        CROSS JOIN

       (VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) AS 
Hundreds(hundred);

 

This use of CROSS JOINs is another example of how to avoid loops. 
A weird but useful heuristic is to put the phrase “the set of..” in front of 
the nouns in a sentence that describes the problem you are solving. It is 
bad grammar, but it can help shift your mindset to thinking in terms of 
sets.

Converting a string with a comma-separated list of values into a 
proper table with the position and value is done by using a simple 
WHILE loop that cuts off one substring up to but not including the 
comma, and then converts the substring to an integer. The code would 
look like this:

 

CREATE PROCEDURE Parser(IN input_string VARCHAR(255))

DETERMINISTIC

LANGUAGE SQL

BEGIN

DECLARE parm_nbr INTEGER; SET parm_nbr = 0;

DECLARE val INTEGER; SET val = CAST(NULL AS INTEGER);

SET input_string = TRIM (BOTH input_string);
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WHILE CHAR_LENGTH(input_string) > 0

DO BEGIN

   SET parm_nbr = parm_nbr +1

   IF POSITION(','IN input_string) > 0

   THEN BEGIN

        SET val = SUBSTRING (input_string

                        FROM 1

                         FOR POSITION(',' IN input_string)-1);

        SET input_string = SUBSTRING (input_string

                                      FROM 
CHAR_LENGTH(input_string)

                                            - POSITION(',' IN 
input_string));

        END

   ELSE BEGIN

        SET val = input_string;

        SET input_string = '';—empty string

        END;

   IF END;

   INSERT INTO ParmList VALUES (parm_nbr, CAST(val AS INTEGER));

END WHILE;

END;

 

However, the same thing can be done with a Sequence table, thus:

 

CREATE PROCEDURE Parser(IN input_string VARCHAR(255))

DETERMINISTIC

LANGUAGE SQL

BEGIN

INSERT INTO ParmList (parm_nbr, parm)

SELECT COUNT(S2.seq),

       CAST (SUBSTRING (',' || input_string || ',' FROM 
MAX(S1.seq + 1) FOR

                           (S2.seq - MAX(S1.seq + 1)))

         AS INTEGER)

  FROM Input_strings AS I1, Sequence AS S1, Sequence AS S2

 WHERE SUBSTRING (',' || input_string || ',' FROM S1.seq FOR 1) 
= ','

   AND SUBSTRING (',' || input_string || ',' FROM  S2.seq FOR 1) 
= ','

   AND S1.seq < S2.seq

   AND S2.seq <= CHAR_LENGTH (input_string) + 2
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 GROUP BY input_string, S2.seq;

END;

 

It makes life easier if the lists in the input strings start and end with a 
comma. You will also need a table called Sequence, which is a set of 
integers from 1 to (

 

n

 

).
The S1 and S2 copies of Sequence are used to locate bracketing pairs 

of commas, and the entire set of substrings located between them is 
extracted and cast as integers in one nonprocedural step. The trick is to 
be sure that the left-hand comma of the bracketing pair is the closest one 
to the second comma. The place column tells you the relative position of 
the value in the input string. The real advantage of the nonprocedural 
approach comes from modifying this second procedure to handle an 
entire table whose rows are CSV strings.

 

CREATE TABLE InputStrings

(list_name CHAR(10) NOT NULL PRIMARY KEY,

 input_string VARCHAR(255) NOT NULL);

INSERT INTO InputStrings VALUES ('first', '12,34,567,896');

INSERT INTO InputStrings VALUES ('second', '312,534,997,896');

 ...

 

In fact, the one row at a time procedure can be replaced with a VIEW 
instead:

 

CREATE VIEW Breakdown (list_name, parm_nbr, param)

AS

SELECT list_name, COUNT(S2.seq),

       CAST (SUBSTRING (',' || I1.input_string || ',', MAX(S1.seq 
+ 1),

                           (S2.seq - MAX(S1.seq + 1)))

         AS INTEGER)

  FROM InputStrings AS I1, Sequence AS S1, Sequence AS S2

 WHERE SUBSTRING (',' || I1.input_string || ',' FROM S1.seq FOR 
1) = ','

   AND SUBSTRING (',' || I1.input_string || ',' FROM S2.seq FOR 
1) = ','

   AND S1.seq < S2.seq

   AND S2.seq <= CHAR_LENGTH (I1.input_string) + 2

 GROUP BY I1.list_name, I1.input_string, S2.seq;
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8.4.3.3 Use Calendar Tables to Perform Temporal Calculations

 

Rationale:

 

The first thing to do when you start a new application is to build a 
Sequence and Calendar table. The calendar table is keyed on a date, and 
the nonkey columns contain information about that date relative to the 
enterprise. Is this a workday or a holiday? What is its Julian date 
number? What fiscal calendar does it fall in? In short, anything to do 
with how the enterprise uses time must be detailed.

The table for 20 years of data is only about 7,050 rows, which is 
nothing. You can look up programming tricks with this table in 
newsgroups or in Celko (1999).

 

Exceptions:
None

8.4.3.4 Consider Auxiliary Tables to Perform Computations

Rationale:
If a function or computation returns only a few thousand values, instead 
of computing it over and over, put the parameters and the results into an 
auxiliary table that can be joined to the tables to get the answer. SQL is 
good at JOINs but not at computations; play to its strength.

Exceptions:
If the computation can be done with simple four-function math, then 
auxiliary tables could be overkill. If the computation is unpredictable or 
known to have a huge range, then it might not be possible to put it into 
an auxiliary table.

8.5 Scalar versus Structured Parameters
There are no arrays, lists, or other data structures in Standard SQL-92. 
There is only one data structure: the table. There are base tables, views, 
and derived tables, but the operative word in that list is “table.”

Procedural languages depend on other data structures, such as 
arrays, lists, and records. Newbie programmers who learned to program 
with such structures want to use them desperately when they get to 
SQL. The result is that they kludge code with poor performance. Even 
worse, they use dynamic SQL to construct a statement or an entire 
program on the fly.

Stored procedure calls expect scalar parameters, not structured or 
dynamic parameters. By using a few coding tricks, you can still get the 
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advantages of stored procedures and have some flexibility. A typical 
problem is to pass a list of values to an IN() predicate, like this in 
pseudocode:

SELECT a, b, c FROM Foobar WHERE a IN (<<parameter list>>);

The all-too-common kludge is dynamic SQL, which has a string with 
a list of comma-separated values for <<parameter list>>. One answer is 
to use the code in section 8.4 to put the list into a table and write a 
compiled statement, thus:

SELECT a, b, c FROM Foobar WHERE a IN (SELECT aa FROM ParmList);

But a better answer is to scrub the list data in the front end and load it 
into a table with an INSERT INTO statement. The ability to do this will 
vary with each SQL product, but the standard SQL syntax uses row 
constructors, like this:

INSERT INTO Parmlist (parm) VALUES (1), (2), (3), (4);

The VALUES() list has to be of a known number of rows, but by 
putting NULLs or other dummy values in the list, you can get the effect 
of a dynamic list. You only need to clean them out on the database side, 
and you can use SELECT DISTINCT to remove duplicate values if 
needed. The full table insertion statement would look like this in the host 
language:

INSERT INTO Parmlist (parm)

SELECT DISTINCT parm

  FROM (VALUES (:h1), (:h2), (:h3), (:h4)) AS X(parm)

 WHERE X.parm IS NOT NULL;

8.6 Avoid Dynamic SQL
Dynamic SQL is both slow and dangerous. It is also a sign that the 
programmer did not have a proper design for his or her application and 
is now turning that job over to any user, present or future. The purpose 
of Dynamic SQL is to build metadata tools, not applications. A metadata 
tool treats schema objects as schema objects, not as parts of a data 
model.



8.6 Avoid Dynamic SQL 169

8.6.1 Performance
A stored procedure will have a cached execution plan in most SQL 
products, but Dynamic SQL has to be prepared repeatedly with each 
execution. Obviously, this is going to be slower than running compiled 
code that might already be in main storage. One counterargument is that 
if the predicates change in some significant way, then recompiling can 
give a better execution plan. The gist of this execution model is that if I 
have a predicate with constants instead of parameters, the optimizer can 
do a better job with it. For example, given this simple query:

 SELECT name, rank, serial_nbr

   FROM CombatMarines

  WHERE sex = :input_sex_code;

If the parameter “:input_sex_code” is male (1, using the ISO sex 
codes), then a table scan is the best way to process the query; if the 
parameter is female (2, using the ISO sex codes), then an index is the 
best; if the parameter is anything else, simply return an empty result set.

Obviously, this is implementation dependent. However, more 
modern optimizers will create several possible execution plans, based on 
the statistics, and hold them until the parameter is known. In short, we 
are back to the “Trust the optimizer” rule.

8.6.2 SQL Injection
SQL injection is a security attack in which the attacker places SQL code 
into your procedure and executes it. Whenever you let a user input code 
directly into Dynamic SQL in stored procedure or SQL statements 
generated in client code, you are in danger. Here is an example of a 
function that builds a simple Dynamic SQL string, based on an FAQ at 
esquel@sommarskog.se:

CREATE FUNCTION Search_Orders (custname VARCHAR(60))

RETURNS VARCHAR(3000)

RETURN ('SELECT * FROM Orders WHERE '

        || COALESCE (custname, '1=1'));

Assume that the input for the parameters “custname” comes directly 
from user input without any filtering or validation and that a malicious 
user passes this value in:
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SET custname = ' 1=1; DROP TABLE Orders;';

The resulting SQL statement becomes:

'SELECT * FROM Orders WHERE 1=1; DROP TABLE orders;'

The host program can then PREPARE and EXECUTE it, and drop the 
table for you.

A plain user is not likely to have permissions to drop a table, but I 
can run all kinds of statements I wish via SQL injection. The attacker 
looks for inputs that will produce a syntax error rather than a runtime 
error, so he or she knows there is Dynamic SQL on the database side. 
The attacker writes the code, and, if needed, ends it with semicolons or 
with a start of comment that will remove the rest of the query code from 
compilation. With a little probing, the attacker can find out if the 
Dynamic SQL is providing a table name and really trash the schema.

The first defense is not to give the users more privileges than are 
necessary for their jobs. A good heuristic is that plain users should be 
granted only SELECT privileges on the tables with which they work, but 
the best defense is not to use Dynamic SQL in production code.
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Heuristics

 

T

 

HE

 

 

 

FOLLOWING

 

 

 

TRICKS

 

 and heuristics are not exactly mathematically 
precise scientific methods. In fact, some of them sound pretty weird, 
but as Larry Constantine once remarked, a method is a list of things 
that tells you what to do next, when you did not know what to do next, 
and you hope the method at least gets you to a workable solution, if 
not a good solution.

Let me pick simple programming problems and apply these 
heuristics as we go along. Consider the “Dance Partner Problem” in 
which you are given a list of people and their gender. Your task is to 
pair them into couples.

 

CREATE TABLE People

(name VARCHAR (35) NOT NULL PRIMARY KEY,

 gender INTEGER DEFAULT 1 NOT NULL

 CHECK (gender IN (1,2)); —iso gender codes

 

Then there is the classic Orders problem: Given a data model of 
orders from customers for products from inventory, answer any of 
several questions. This is not a complete schema, but it will work for 
demonstration purposes.



 

172 CHAPTER  9:  HEURISTICS   

 

CREATE TABLE Orders

(order_nbr INTEGER NOT NULL,

 ..);

CREATE TABLE OrdersDetails

(order_nbr INTEGER NOT NULL

        REFERENCES Orders (order_nbr)

        ON UPDATE CASCADE

        ON DELETE CASCADE,

 sku  CHAR(10) NOT NULL

       REFERENCES Inventory (sku)

       ON UPDATE CASCADE

       ON DELETE CASCADE,

 description CHAR(20) NOT NULL,

 qty INTEGER NOT NULL CHECK(qty > 0),

 unit_price DECIMAL(12,4) NOT NULL,

 ..);

 

9.1 Put the Specification into a Clear Statement

 

This might sound obvious, but the operative word is 

 

clear

 

 statement. You 
need to ask questions at the start. Let me give some examples from 
actual problem statements having to do with a schema that models a 
typical orders and order details database:

1. “

 

I want to see the most expensive item in each order.

 

” How do I
handle ties for the most expensive item? Did you mean the
highest unit price or the highest extension (quantity 

 

×

 

 unit
price) on each order?

2.

 

“I want to see how many lawn gnomes everyone ordered.”

 

 How do I 
represent someone who never ordered a lawn gnome in the 
result set? Is that a NULL or a zero? If they returned all of their 
lawn gnomes, do I show the original order or the net results? 
Or do I show no order ever as a NULL and returns as a zero to 
preserve information?

3.

 

“How many orders were over $100?”

 

 Did you mean strictly 
greater than $100 or greater than or equal to $100?
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In the “Dance Partner” example, we need to ask:

1. How do we pair the couples?

2. What do we do if there are more boys than girls (or vice versa) 
in the table?

3. Can someone have more than one partner? If so, how do we 
assign them?

Writing specs is actually harder than writing code. Given a complete, 
clear specification, the code can almost write itself.

 

9.2 Add the Words “Set of All…” in Front of the Nouns

 

The big leap in SQL programming is thinking in sets and not in process 
steps that handle one unit of data at a time. Phrases like “for each x...” 
poison your mental model of the problem. Look for set characteristics 
and not for individual characteristics. For example, given the task to find 
all of the orders that ordered exactly the same number of each item, how 
would you solve it?

One approach is, for each order, to see if there are two values of 
quantity that are not equal to each other and then reject that order. This 
leads to either cursors or a self-join. Here is a self-join version; I will not 
do the cursor version.

 

SELECT D1.order_nbr

  FROM OrderDetails AS D1

 WHERE NOT EXISTS

       (SELECT *

          FROM OrderDetails AS D2

         WHERE D1.order_nbr = D2.order_nbr

           AND D1.qty <> D2.qty);

 

Or you can look at each order as a set with these set properties:

 

SELECT order_nbr

  FROM OrderDetails

 GROUP BY order_nbr

HAVING MIN(qty) = MAX(qty);
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9.3 Remove Active Verbs from the Problem Statement

 

Words like 

 

traverse, compute,

 

 or other verbs that imply a process will 
poison your mental model. Try to phrase it as a “state of being” 
description instead. This is the same idea as in section 9.2, but with a 
slight twist.

Programmers coming from procedural languages think in terms of 
actions. They add numbers, whereas a declarative programmer looks at a 
total. They think of process, whereas we think of completed results.

 

9.4 You Can Still Use Stubs

 

A famous Sydney Harris cartoon shows the phrase “Then a miracle 
occurs” in the middle of a blackboard full of equations, and a scientist 
says to the writer, “I think you should be more explicit here in step 2.”

We used that same trick in procedural programming languages by 
putting in a stub module when we did not know what to do at the point 
in a program. For example, if you were writing a payroll program and the 
company had a complex bonus policy that you did not understand or 
have specifications for, you would write a stub procedure that always 
returned a constant value and perhaps sent out a message that it had just 
executed. This allowed you to continue with the parts of the procedure 
that you did understand.

This is more difficult to do in a declarative language. Procedural 
language modules can be loosely coupled, whereas the clauses and 
subqueries of a SELECT statement are a single unit of code. You could 
set up a “test harness” for procedural language modules; this is more 
difficult in SQL.

Looking at the “Dance Partner Problem,” I might approach it by saying 
that I need the boys and the girls in two separate subsets, but I don’t know 
how to write the code for that yet. So I stub it with some pseudocode in my 
text editor. Because this is for dance, let’s pick the pseudocode words from 
a musical. Nobody is going to see this scratch paper work, so why not?

 

SELECT M1.name AS male, F1.name AS female

  FROM (<miracle for guys>) AS M1(name, <join thingie for guys>)

       FULL OUTER JOIN

       (<miracle for dolls>) AS F1(name, <join thingie for 
dolls>)

       ON M1.<join thingie for guys> ?? F1.<join thingie for 
dolls>;
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The angle-bracketed pseudocode might expand to multiple columns, 
subqueries, or just about anything later. Right now they are 
placemarkers. I also have a “??” placemarker for the relationship between 
my guys and dolls. I can then go to the next level in the nesting and 
expand the (<miracle for guys>) subquery like this:

 

(SELECT P1.name, <join thingie for guys>

   FROM People AS P1

  WHERE P1.gender = 1)

 AS M1 (name, <join thingie for guys>)

 

The same pattern would hold for the (<miracle for dolls>) subquery. I 
now need to figure out some way of getting code for <join thingie for 
guys>. The first place I look is the columns that appear in the People 
table. The only thing I can find in that table is gender. I have a rule that 
tells me guys = 1 and dolls = 2, and I am enforcing it in my subqueries 
already. (Note: The full ISO sex codes are 0 = unknown, 1 = male, 2 = 
female, and 9 = lawful persons, corporations, etc.) I could try this:

 

SELECT M1.name AS male, F1.name AS female

  FROM (SELECT P1.name, P1.gender

          FROM People AS P1

          WHERE P1.gender = 1) AS M1 (name, gender)

       FULL OUTER JOIN

       (SELECT P1.name, gender

          FROM People AS P1

         WHERE P1.gender = 2) AS F1 (name, gender)

       ON M1.gender = 1

          AND F1.gender = 2;

 

but it is pretty easy to see that this is a CROSS JOIN in thin disguise. 
Add something with the names, perhaps?

 

SELECT M1.name AS male, F1.name AS female

  FROM (SELECT P1.name, P1.gender

          FROM People AS P1

          WHERE P1.gender = 1) AS M1 (name, gender)

       FULL OUTER JOIN

       (SELECT P1.name, gender

          FROM People AS P1

         WHERE P1.gender = 2) AS F1 (name, gender)
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       ON M1.gender = 1

          AND F1.gender = 2

          AND M1.name <= F1.name;

 

There was no help there. It produces a smaller set of pairs, but you 
still get multiple couples on the dance floor. This is where some 
experience with SQL helps. One of the customary programming tricks is 
to use a self-join to get a ranking of elements in a set based on their 
collation sequence. Because this works with any table, we can use it in 
both guys and dolls to get the final query.

 

SELECT M1.name AS male, F1.name AS female

  FROM (SELECT P1.name, COUNT (P2.name)

          FROM People AS P1, People AS P2

          WHERE P2.name <= P1.name

            AND P1.gender = 1

            AND P2.gender = 1

          GROUP BY P1.name) AS M1 (name, rank)

       FULL OUTER JOIN

       (SELECT P1.name, COUNT (P2.name)

          FROM People AS P1, People AS P2

         WHERE P2.name <= P1.name

           AND P1.gender = 2

           AND P2.gender = 2

         GROUP BY P1.name) AS F1 (name, rank)

       ON M1.rank = F1.rank;

 

9.5 Do Not Worry about Displaying the Data

 

In a tiered architecture, display is the job of the front end, not the 
database. Obviously, you do not do rounding, add leading zeros, change 
case, or pick a date format in the database. The important thing is to pass 
the front end all of the data it needs to do its job, but it is more than that. 
You can get your dance partner pairs with the query in section 9.4, but if 
you do not want to see the pairs on the same row, you can write a more 
compact query like this:

 

SELECT P1.name, P1.gender, COUNT(P2.name) AS rank

  FROM People AS P1, People AS P2.

  WHERE P1.gender = P2.gender

    AND P2.name <= P1.name



 

9.6 Your First Attempts Need Special Handling 177

 

  GROUP BY P1.name, P1.gender;

 

This will put one person per row with a ranking in the alphabetical 
sort for their gender rather than one couple per row, but that is still the 
same information from a simpler query. Notice that both solutions can 
leave unpaired people toward the end of the alphabet.

You can add an ORDER BY clause to the cursor that passes the result 
set to the front-end program in a simple client/server system, but in 
architectures with multiple tiers, sorting and other display functions 
might be performed differently in several places. For example, the same 
data is displayed in English units sorted by division in the United States 
but displayed in SI units sorted by country in Europe.

 

9.6 Your First Attempts Need Special Handling

 

Henry Ledgard (1976) put it very nicely:

Pruning and restoring a blighted tree is almost an impossible 
task. The same is true of blighted computer programs. 
Restoring a structure that has been distorted by patches and 
deletions, or fixing a program with a seriously weak algorithm 
isn’t worth the time. The best that can result is a long, 
inefficient, unintelligible program that defies maintenance. The 
worst that could result, we dare not think of.

This is especially true with SQL, but how to handle restarts in DDL 
and DML is different because of the declarative nature of the two 
sublanguages. DDL execution is static once it is put into place, whereas 
DML is dynamic. That is, if I issue the same CREATE <schema object> 
command, it will have the same results each time, but if I issue the same 
SELECT, INSERT, UPDATE, or DELETE, the execution plan could 
change each time.

 

9.6.1 Do Not Be Afraid to Throw Away Your First 
Attempts at DDL

 

Bad DDL will distort all of the code based on it. Just consider our little 
“Dance Partner” schema: What if a proprietary BIT data type had been 
used for gender? The code would not port to other SQL dialects. The 
host languages would have to handle low-level bit manipulation. It 
would not interface with other data sources that use ISO standards.



 

178 CHAPTER  9:  HEURISTICS   

 

Designing a schema is hard work. It is unlikely that you will get it 
completely right in one afternoon. Rebuilding a database will take time 
and require fixing existing data, but the other choices are worse.

When I lived in Salt Lake City, Utah, a programmer I met at a user 
group meeting had gotten into this situation: The existing database was 
falling apart as the workload increased thanks to poor design at the start. 
The updates and insertions for a day’s work were taking almost 24 hours 
at that time, and the approaching disaster was obvious to the 
programmers. Management had no real solution, except to yell at the 
programmers. They used the database to send medical laboratory results 
to hospitals and doctors.

A few months later, I got to see how an improperly declared column 
resulted in the wrong quantities of medical supplies being shipped to an 
African disaster area. The programmer tried to save a little space by 
violating first normal form by putting the package sizes into one column 
and pulling them out with SUBSTRING() operations. The suppliers later 
agreed to package smaller quantities to help with the fantastic expense of 
shipping to a war zone. Now the first “subfield” in the quantity column 
was one unit and not five, but the tightly coupled front did not know 
this. Would you like to pick which four children will die because of 
sloppy programming? See what we mean by the last sentence in 
Ledgard’s quote?

 

9.6.2 Save Your First Attempts at DML

 

Bad DML can run several orders of magnitude slower than good DML. 
The bad news is that it is difficult to tell what is good and what is bad in 
SQL. The procedural programmers had a deterministic environment in 
which the same program ran the same way every time. SQL decides how 
to execute a query based on statistics about the data and the resources 
available. They can and do change over time. Thus, what was the best 
solution today could be the poorer solution tomorrow.

In 1988, Pascal (1988) published a classic article on PC database 
systems at the time. Pascal constructed seven logical equivalent queries 
for a database. Both the database and the query set were simple and were 
run on the same hardware platform to get timings.

The Ingres optimizer was smart enough to find the equivalence, used 
the same execution plan, and gave the best performance for all queries. 
The other products at the time gave uneven performances. The worst 
timing was an order of magnitude or more than the best. In the case of 
Oracle, the worst timing was more than 600 times the best.
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I recommend that you save your working attempts so that you can 
reuse them when the world and/or your optimizer change. The second 
example for the “Dance Partner” in section 9.5 does a nice job of 
illustrating this heuristic. Put the code for one of the queries in as a 
comment, so the maintenance programmer can find it.

 

9.7 Do Not Think with Boxes and Arrows

 

This is going to sound absolutely insane, but some of us like to doodle 
when we are trying to solve a problem. Even an informal diagram can be 
a great conceptual help, especially when you are learning something 
new. We are visual creatures.

The procedural programmers had the original ANSI X3.5 Flowchart 
symbols as an aid to their programming. This standard was a first crude 
attempt at a visual tool that became Structure Charts and Data Flow 
Diagrams (DFD) in the 1970s. All of these tools are based on “boxes and 
arrows”—they show the flow of data and/or control in a procedural 
system. If you use the old tools, you will tend to build the old systems. 
You might write the code in SQL, but the design will tend toward the 
procedural.

 

9.8 Draw Circles and Set Diagrams

 

If you use set-oriented diagrams, you will tend to produce set-oriented 
solutions. For example, draw a GROUP BY as small, disjointed circles 
inside a larger containing circle so you see them as subsets of a set. Use a 
time line to model temporal queries. In a set-oriented model, nothing 
flows; it exists in a state defined by constraints.

Probably the clearest example of “boxes and arrows” versus “set 
diagrams” is the Adjacency List model versus the Nested Sets model for 
trees. You can Google these models or buy a copy of my book 

 

Trees and 
Hierarchies in SQL

 

 

 

for Smarties 

 

for details. The diagrams for each 
approach are shown in Figure 9.1.

 

Figure 9.1

 

Adjacency list
versus Nested Set

Trees.
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9.9 Learn Your Dialect

 

Although you should always try to write Standard SQL, it is also 
important to know which constructs your particular dialect and release 
favor. For example, constructing indexes and keys is important in older 
products that are based on sequential file structures. At the other 
extreme, the Nucleus engine from Sand Technology represents the entire 
database as a set of compressed bit vectors and has no indexing because 
in effect everything is automatically indexed.

 

9.10 Imagine That Your WHERE Clause Is “Super Ameba”

 

That is the weirdest title in this chapter, so bear with me. Your “Super 
Ameba” computer can split off a new processor at will, and assign it a 
task, in a massively parallel fashion. Imagine that every row in the 
working table that was built in the FROM clause is allocated one of these 
“ameba processors” that will test the WHERE clause search condition on 
just that row. This is a version of Pournelle’s rule: “one task, one 
processor.”

If every row in your table can be independently tested against simple, 
basic search conditions, then your schema is probably a good relational 
design. But if your row needs to reference other rows in the same table, 
consult an outside source, or cannot answer those simple questions, 
then you probably have some kind of normalization problems.

You have already seen the Nested Sets model and the Adjacency List 
model for trees. Given one row in isolation from the rest of the table, can 
you answer a basic node question about the tree being modeled? This 
leads to asking: What are basic questions? Here is a short list that applies 
to trees in graph theory.

1. Is this a leaf node?

2. Is this the root node?

3. How big is the subtree rooted at this node?

4. Given a second node in the same tree, is this node superior, 
subordinate, or at the same level as my node?

Question 4 is particularly important, because it is the basic 
comparison operation for hierarchies. As you can see, the Nested Sets 
model can answer all of these questions and more, whereas the 
Adjacency List model can answer none of them.
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9.11 Use the Newsgroups and Internet

 

The Internet is the greatest resource in the world, so learn to use it. You 
can find a whole range of newsgroups devoted to your particular product 
or to more general topics. When you ask a question on a newsgroup, 
please post DDL, so that people do not have to guess what the keys, 
constraints, Declarative Referential Integrity, data types, and so forth in 
your schema are. Sample data is also a good idea, along with clear 
specifications that explain the results you wanted.

Most SQL products have a tool that will spit out DDL in one 
keystroke. Unfortunately, the output of these tools is generally less than 
human-readable. You should prune the real tables down to just what is 
needed to demonstrate your problem: There is no sense in posting a 100-
column CREATE TABLE statement when all you want is two columns. 
Then clean up the constraints and other things in the output using the 
rules given in this book. You are asking people to do your job for you for 
free. At least be polite enough to provide them with sufficient 
information.

If you are a student asking people to do your homework for you, 
please be advised that presenting the work of other people as your own is 
a valid reason for expulsion and/or failure at a university. When you 
post, announce that this is homework, the name of your school, your 
class, and your professor. This will let people verify that your actions are 
allowed.
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Thinking in SQL

 

“It ain’t so much the things we don’t know that get us into trouble. It’s the
thing we know that just ain’t so.”

 

—Artemus Ward (Charles Farrar Browne),
American humorist (1834–1867)

 

T

 

HE

 

 

 

BIGGEST

 

 

 

HURDLE

 

 in learning SQL is thinking in sets and logic, instead of 
in sequences and processes. I just gave you a list of heuristics in the 
previous chapter, but let’s take a little time to analyze why mistakes 
were made. You now have some theory, but can you do diagnostics?

 I tried to find common errors that new programmers make, but 
perhaps the most difficult thing to learn is thinking in sets. Consider 
the classic puzzle shown in Figure 10.1.

The usual mistake people make is trying to count the 1 

 

×

 

 1 

 

×

 

 2 
bricks one at a time. This requires the ability to make a three-
dimensional mental model of the boxes, which is really difficult for 
most of us.

The right approach is to look at the whole block as if it were 
completely filled in. It is 4 

 

× 

 

5

 

 × 

 

5 units, or 50 bricks. The corner that 
is knocked off is 3 bricks, which we can count individually, so we must 
have 47 bricks in the block. The arrangement inside the block does 
not matter at all.
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All of these examples are based on actual postings in a newsgroup 
that have been translated into SQL/PSM to remove proprietary features. 
In some cases, I have cleaned up the data element names, and in others I 
have left them. Obviously, I am guessing at motivation for each example, 
but I think I can defend my reasoning.

 

10.1 Bad Programming in SQL and Procedural Languages

 

As an example of not learning any relational approaches to a problem, 
consider a posting in the comp.databases.ms-sqlserver newsgroup in 
January 2005: The title was “How to Find a Hole in Records,” which 
already tells you that the poster is thinking in terms of a file system and 
not an RDBMS.

The original table declaration had the usual newbie “id” column, 
without a key or any constraints. The table modeled a year’s worth of 
rows identified by a week-within-year number (1 to 53) and a day-of-
the-week number (1 to 7). Thus, we started with a table that looked 
more or less like this, after the names were cleaned up:

 

CREATE TABLE WeeklyReport

(id INTEGER AUTONUMBER NOT NULL,—not valid SQL!

 week_nbr INTEGER NOT NULL,

 day_nbr INTEGER NOT NULL);

 

Figure 10.1

 

Classic block
puzzle.
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By removing the useless, proprietary id column and adding 
constraints, we then had the following table:

 

CREATE TABLE WeeklyReport

(week_nbr INTEGER NOT NULL

          CHECK(week_nbr BETWEEN 1 AND 53),

 day_nbr INTEGER NOT NULL

         CHECK(day_nbr BETWEEN 1 AND 7),

PRIMARY KEY(week_nbr, day_nbr));

 

Despite giving some constraints in the narrative specification, the 
poster never bothered to apply them to the table declaration. Newbies 
think of a table as a file, not as a set. The only criteria that data needs to 
be put into a file is that it is written to that file. The file cannot validate 
anything. The proprietary auto-number acts to replace a nonrelational 
record number in a sequential file system.

The problem was to find the earliest missing day within each week for 
inserting a new row. If there were some other value or measurement for 
that date being recorded, it was not in the specifications. The poster’s 
own T-SQL solution translated in SQL/PSM like this, with some name 
changes:

 

CREATE FUNCTION InsertNewWeekDay (IN my_week_nbr_nbr INTEGER)

RETURNS INTEGER

LANGUAGE SQL

BEGIN DECLARE my_day_nbr INTEGER;

DECLARE result_day_nbr INTEGER;

SET my_day_nbr = 1;

xx:

WHILE my_day_nbr < 8

DO IF NOT EXISTS

  (SELECT *

      FROM WeeklyReport

     WHERE day_nbr = my_day_nbr

       AND week_nbr = my_week_nbr_nbr)

THEN BEGIN

     SET result_day_nbr = my_day_nbr;

     LEAVE xx;

     END;

ELSE BEGIN

     SET my_day_nbr = my_day_nbr + 1;
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     ITERATE xx;

     END;

END IF;

END WHILE;

RETURN result_day_nbr;

END;

 

This is a classic imitation of a FOR loop, or counting loop, used in all 
3GL programming languages. However, if you look at it for two seconds, 
you will see that this is bad procedural programming! SQL will not make 
up for a lack of programming skills. In fact, the bad effects of mimicking 
3GL languages in SQL are magnified. The optimizers and compilers in 
SQL engines are not designed to look for procedural code optimizations. 
By removing the redundant local variables and getting rid of the hidden 
GOTO statements in favor of a simple, classic structured design, the 
poster should have written this:

 

CREATE FUNCTION InsertNewWeekDay (IN my_week_nbr INTEGER)

RETURNS INTEGER

LANGUAGE SQL

BEGIN

DECLARE answer_nbr INTEGER;

SET answer_nbr = 1;

WHILE answer_nbr < 8

DO IF NOT EXISTS

     (SELECT *

         FROM WeeklyReport

        WHERE day_number = answer_nbr

          AND week_nbr = my_week_nbr)

   THEN RETURN answer_nbr;

   ELSE SET answer_nbr = answer_nbr + 1;

   END IF;

END WHILE;

RETURN CAST (NULL AS INTEGER);—cause an error

END;

 

This points out another weakness in this posting. We were not told 
how to handle a week that has all seven days represented. In the original 
table design, any integer value would have been accepted because of the 
lack of constraints. In the revised DDL, any weekday value not between 1 
and 7 will cause a primary-key violation. This is not the best solution, 
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but it at least follows the specs that were given without making too many 
guesses as to what should have been done.

But can we do this without a loop and get a pure, nonprocedural SQL 
solution? Yes, there are several ways: Because the purpose of finding this 
weekday number is to insert a row in the table, why not do that in one 
procedure instead of finding the number in a function, and then doing 
the insertion in another procedural step. Think at the level of a whole 
process and not in sequential steps.

This first answer is ugly looking and difficult to generalize, but it is 
fast if the optimizer factors out the tabular subquery in the WHEN 
clauses and computes it once. It also uses no local variables.

 

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

VALUES (new_week_nbr,

      (CASE WHEN 1 NOT IN

           (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 1

             WHEN 2 NOT IN

            (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 2

             WHEN 3 NOT IN

            (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 3

             WHEN 4 NOT IN

            (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 4

             WHEN 5 NOT IN

            (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 5

             WHEN 6 NOT IN

            (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 6

             WHEN 7 NOT IN
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            (SELECT day_nbr FROM WeeklyReport WHERE week_nbr = 
new_week_nbr)

             THEN 7

             ELSE NULL END;—null will violate primary key

 

The thought process was to get the entire set of weekday numbers 
present in the week, and then compare them to each value in an ordered 
list. The CASE expression is just a way to hide that list. Although it is a 
step forward, it is not yet really a set-oriented solution.

Here is another version that uses a table constructor. This is more 
compact and easy to generalize. Here we are actually using a set-oriented 
solution! We are subtracting the set of actual days from the set of all 
possible days, and then looking at the minimum value in the result to get 
an answer.

 

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

(SELECT my_week_nbr, MIN(n)

   FROM (VALUES (1), (2), (3), (4), (5), (6), (7)) AS Weekdays(n)

  WHERE NOT EXISTS

        (SELECT *

           FROM WeeklyReport AS W

          WHERE W.week_nbr = my_week_nbr

            AND Weekdays.n = W.my_day_nbr));

 

You can also use a pure set operations approach. The set difference 
operator can remove all of the numbers that are present, so that we can 
pick the minimum value from the leftovers.

 

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

SELECT my_week_nbr, MIN(n)

FROM (VALUES (1), (2), (3), (4), (5), (6), (7)

      EXCEPT

      SELECT day_nbr

        FROM WeeklyReport AS W

       WHERE W.week_nbr = my_week_nbr) AS N(n);
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If all seven days are present, we will get an empty set, which will 
return a NULL for the day_nbr, and the NULL will violate the primary-
key constraint.

Here is a third, generalized version with the Sequence table providing 
any range of integers desired. Just remember that the DDL has to also 
match that change.

 

CREATE PROCEDURE InsertNewWeekDay (IN new_week_nbr INTEGER)

LANGUAGE SQL

INSERT INTO WeeklyReport (week_nbr, day_nbr)

SELECT my_week_nbr, MIN(n)

   FROM (SELECT seq FROM Sequence WHERE seq <= 7—change to any 
value

         EXCEPT

         SELECT day_nbr

           FROM WeeklyReport AS W

          WHERE W.week_nbr = my_week_nbr) AS N(n);

 

In the case of only seven values, there is not going to be a huge 
difference in performance among any of these answers. However, with a 
huge number of values, the use of hashing or bit vector indexes would be 
a noticeable improvement over a loop.

 

10.2 Thinking of Columns as Fields

 

The original code was actually much worse, because the poster wanted to 
create and drop tables on the fly. The purpose is to load totals into a 
summary report table.

 

CREATE PROCEDURE SurveySummary()

LANGUAGE SQL

BEGIN

DECLARE sche_yes INTEGER;

DECLARE sche_no INTEGER;

DECLARE sche_mb INTEGER;

DECLARE sche_other INTEGER;

DECLARE how_yes INTEGER;

DECLARE how_no INTEGER;

DECLARE how_mb INTEGER;

DECLARE how_other INTEGER;
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DECLARE paaexpl_yes INTEGER;

DECLARE paaexpl_no INTEGER;

DECLARE paaexpl_mb INTEGER;

DECLARE paaexpl_other INTEGER;

SET sche_yes = (SELECT COUNT(*) FROM SurveyForms WHERE sche = 
1);

SET sche_no = (SELECT COUNT(*) FROM SurveyForms WHERE sche = 2);

SET sche_mb = (SELECT COUNT (*) FROM SurveyForms WHERE sche = 3);

SET sche_other = (SELECT COUNT(*)

                    FROM SurveyForms

                   WHERE NOT (sche IN (1, 2, 3)));

SET how_yes = (SELECT COUNT(*) FROM SurveyForms WHERE howwarr = 
1);

SET how_no = (SELECT COUNT(*) FROM SurveyForms WHERE howwarr = 
2);

SET how_mb = (SELECT COUNT (*) FROM SurveyForms WHERE howwarr = 
3);

SET how_other = (SELECT COUNT(*)

                   FROM SurveyForms

                  WHERE NOT (howwarr IN (1,2,3)));

SET paaexpl_yes = (SELECT COUNT(*) FROM SurveyForms WHERE

paaexpl = 1);

SET paaexpl_no = (SELECT COUNT(*) FROM SurveyForms WHERE

paaexpl = 2);

SET paaexpl_mb = (SELECT COUNT (*) FROM SurveyForms WHERE 
paaexpl

 = 3);

SET paaexpl_other = (SELECT COUNT(*) FROM SurveyForms WHERE NOT

(paaexpl IN (1, 2, 3)));

DELETE FROM SurveyWorkingtable;

INSERT INTO SurveyWorkingtable

VALUES (sche_yes, sche_no, sche_mb, sche_other,

        How_yes, how_no, how_mb, how_other,

        Paaexpl_yes, paaexpl_no, paaexpl_mb, paaexpl_other);

END;

 

Why did the poster create a dozen local variables and then use scalar 
subqueries to load them? The poster is still thinking in terms of a 3GL 
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programming language. In COBOL or other 3GL languages, the file 
containing the Construction Survey data would be read in one record at 
a time, and then each record would be read one field at a time, from left 
to right. A sequence of IF-THEN statements would look at the fields and 
increment the appropriate counter. When the entire file is read, the 
results would be written to the working file for the survey summary.

The poster looked at each column as if it were a field and asked how 
to get the value for it, in isolation from the whole. The poster had seen 
the use of a subquery expression and implemented it that way. The 
subqueries will not be well optimized, so this is actually going to run 
longer than if the poster had used SQL/PSM to mimic the classic COBOL 
program for this kind of summary.

Without repeating a dozen columns again, a set-oriented solution is 
this:

 

CREATE PROCEDURE SurveySummary()

LANGUAGE SQL

BEGIN

DELETE FROM SurveyWorkingtable;

INSERT INTO SurveyWorkingtable (sche_yes, sche_no, ..,  
paaexpl_other)

SELECT SUM (CASE WHEN sche = 1 THEN 1 ELSE 0 END) AS sche_yes,

       SUM (CASE WHEN sche = 2 THEN 1 ELSE 0 END) AS sche_no,

      ..

       SUM (CASE WHEN paaexpl NOT IN (1, 2, 3)

                 THEN 1 ELSE 0 END) AS paaexpl_other

 FROM SurveyForms;

END;

 

The trick was to ask what you want in each row of a summary table, as 
a completed unit of work, and not start at the column level. The answer 
is a tally of answers to some questions. The word 

 

tally

 

 leads you to SUM() 
or COUNT(), and you remember the trick with the CASE expression.

The final question is why not use a VIEW to get the summary instead 
of a procedure?
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This is a simple schema for checking items out of an inventory. The 
original schema lacked keys and constraints that had to be added to give 
us this:
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CREATE TABLE Users
(user_id CHAR(8) NOT NULL PRIMARY KEY,

 password VARCHAR(10) NOT NULL,

 max_reserves INTEGER NOT NULL

 CHECK (max_reserves >= 0));

CREATE TABLE Reservations

(user_id CHAR(8) NOT NULL

     REFERENCES Users(user_id)

     ON UPDATE CASCADE

     ON DELETE CASCADE,

item_id INTEGER NOT NULL

     REFERENCES Items(item_id));

 

The original narrative specification was:
Each user can reserve a maximum of (

 

n

 

) items. Whenever a 
user reserves something, the “max_reserves” field [sic] of the 
user is retrieved and checked. Then a record [sic] is inserted 
into the Reservations table, and the “max_reserves” field [sic] 
of the user is updated accordingly. I would like to ask if there is 
a better way to implement this system, because there is a 
chance that the user reserves more than the maximum num-
ber, if he or she is logged in from two computers.

The first proposal was for a stored procedure that looked like this in 
SQL/PSM:

 

CREATE PROCEDURE InsertReservations (IN max_reserves INTEGER,

IN my_user_id CHAR(8), IN my_item_id INTEGER)

LANGUAGE SQL

BEGIN

DECLARE my_count INTEGER;

SET my_count

    = (SELECT COUNT(*)

         FROM Reservations

        WHERE user_id = my_user_id);

IF my_count >= max_reserves

THEN RETURN ('You have Reached you MAX number of items');

ELSE INSERT INTO Reservations (user_id, item_id)

     VALUES(my_user_id, my_item_id);

END IF;

END;
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Passing the maximum number of items as a parameter makes no 
sense, because you have to look it up; this will let you pass any value you 
desire. Having a local variable for the count is redundant; SQL is 
orthogonal, and the scalar subquery can be used wherever the scalar 
variable is used.

Rows are not records and columns are not fields. SQL is a declarative 
language, not a procedural one. So a sequence of procedural steps like 
“Retrieve 

 

→

 

 check 

 

→

 

 insert 

 

→

 

 update” does not make sense. Instead, 
you say that you make a reservation such that the user is not over his or 
her limit. Think of logic, not process.

 

CREATE PROCEDURE MakeReservation

  (IN my_user_id CHAR(8), IN my_item_id INTEGER)

LANGUAGE SQL

BEGIN

INSERT INTO Reservations (user_id, item_id)

SELECT my_user_id, my_item_id

  FROM Users AS U

 WHERE U.user_id = my_user_id

    AND U.max_reserves

        >= (SELECT COUNT(*)

              FROM Reservations AS R

             WHERE R.user_id = my_user_id);

-- add error handling here

END;

 

Instead of recording the tally of reserved items in local storage, you 
can get it with a subquery expression. In fact, you might want to have a 
view to use for reports.

 

CREATE VIEW Loans (user_id, max_reserves, current_loans)

AS

SELECT U.user_id, U.max_reserves, COUNT(*)

  FROM Reservations AS R, Users AS U

 WHERE R.user_id = U.user_id

 GROUP BY U.user_id, U.max_reserves;
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10.4 Thinking the Schema Should Look Like the Input Forms

 

There are several versions of this error. The easiest one is a simple 
timecard form that gets modeled exactly as it is printed on the paper 
form.

 

CREATE TABLE Timecards

(user_id CHAR(8) NOT NULL,

 punch_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 event_flag CHAR(3) DEFAULT 'IN ' NOT NULL

     CHECK(flag IN ('IN ', 'OUT')),

 PRIMARY KEY (user_id, punch_time));

 

But to answer even basic questions, you have to match up in and out 
times. Dr. Codd (1979) described a row in an RDBMS as containing a 
fact, but more than that, it should contain a whole fact and not half of it. 
The “half-fact” that John showed up at the job at 09:00 Hrs has nothing 
to do with paying him. I need to know that John was on the job from 
09:00 to 17:00 Hrs. The correct design holds a whole in each row, thus:

 

CREATE TABLE Timecards

(user_id CHAR(8) NOT NULL,

 in_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

 out_time TIMESTAMP,—null means current

 CHECK(in_time < out_time),

 PRIMARY KEY (user_id, in_time));

 

Many new SQL programmers are scared of NULLs, but this is a good 
use of them. We do not know the future, so we cannot assign a value to 
the out_time until we have that information.

Another common example is a simple order form that is copied 
directly into DDL. In skeleton form, the usual layout is something like 
this:

 

CREATE TABLE Orders

(order_nbr INTEGER NOT NULL PRIMARY KEY,

 ..

 order_total DECIMAL(12,2) NOT NULL,

 ..);

CREATE TABLE OrdersDetails
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(order_nbr INTEGER NOT NULL,

 line_nbr INTEGER NOT NULL,

 PRIMARY KEY (order_nbr, line_nbr),

 item_id INTEGER NOT NULL

       REFERENCES Inventory(item_id),

 qty_ordered INTEGER NOT NULL

      CHECK (qty_ordered > 0)

 ..);

 

The order total can be computed from the order details, so it is 
redundant in the Orders table; but the total was a box on the paper form, 
so the newbie put it in the table.

Nobody is actually buying or shipping a line number. Customers are 
ordering items, but the lines on the paper form are numbered, so the 
line numbers are in the OrderDetails table. This is dangerous, because if 
I repeat the same item on another line, I have to consolidate them in the 
database. Otherwise, quantity discounts will be missed, and I am wasting 
storage with redundant data.

For example, each of the rows shows a “half-fact” in each row. One 
says that I ordered two pairs of lime green pants and the other says that I 
ordered three pairs of lime green pants on my order #123. The whole 
fact is that I ordered five pairs of lime green pants on my order #123.

In 2004, I pointed this out to a programmer who had such a schema. 
She insisted that they needed the line numbers to be able to reproduce 
the original order exactly as it was keyed in, but then in a following 
posting in the same thread, she complained that her people were 
spending hours every day verifying the quantity of items in orders they 
received, because their suppliers did not use the proper model to present 
a consolidated, sorted display of the data.





 

A P P E N D I X

 

Resources

 

Military Standards

 

DoD 8320.1-M-1, Data Element Standardization Procedures.
DoD Directive 8320.1, “DoD Data Administration”

http://www.dtic.mil/whs/directives/corres/html/83201.htm
http://www.abelia.com/498pdf/498ARAPX.PDF

 

Metadata Standards

 

Here is a short summary of the NCITS L8 Metadata Standards 
Committee rules for data elements:

http://pueblo.lbl.gov/~olken/X3L8/drafts/draft.docs.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00005.html

Also the pdf file:
http://www.oasis-open.org/committees/download.php/6233/
c002349_ISO_IEC_11179

The draft:
http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/
c002349_ISO_IEC_11179-1_1999(E).zip
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ANSI and ISO Standards

 

The SI Basics (“Metric System”)

ISO 31 “Quantities and Units (14 parts)”

ISO 1000 “SI Units and Recommendations for the Use of Their Multiple 
and of Certain Other Units for the Application of the SI” 

ISO 2955 “Information Processing—Representation of SI and Other 
Units for Use in Systems with Limited Character Sets”

A guide to both ISO 31 and ISO 1000 can be purchased at: 

http://www.iso.org/iso/en/prods-services/prods-services/otherpubs/
Quality.PublicationList?CLASSIFICATION=HANDBOOKS#090201

ISO 639-1:2002 “Codes for the Representation of Names of 
Languages—Part 1: Alpha-2 Code” 

ISO 639-2:1998 “Codes for the Representation of Names of 
Languages—Part 2: Alpha-3 Code”

The language codes are available online:

http://www.loc.gov/standards/iso639-2/iso639jac.html

ISO 3166 “Codes for the Representation of Names of Countries” 

This standard provides a unique two-letter code for each country and a 
three-letter code for special uses. A three-digit numeric code is given and 
intended as an alternative for all applications that need to be 
independent of the alphabet or to save bits in computer storage.

http://www.iso.org/iso/en/prods-services/popstds/
countrynamecodes.html

ISO 4217:2001 “Codes for the Representation of Currencies and Funds” 
http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html

IBAN: International Standard Bank Number
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http://www.ecbs.org/iban/iban.htm and the European Committee for 
Banking Standards Web site for publications 

ISO 8601 “Data Elements and Interchange Formats—Information 
Interchange—Representation of Dates And Times.”

http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

 

U.S. Government Codes

 

NAICS: North American Industry Classification System. This system 
replaced the old Standard Industrial Classification (SIC) system. 

http://www.census.gov/epcd/www/naics.html

NAPCS: North American Product Classification System 
http://www.census.gov/eos/www/napcs/napcs.htm 

TIGER: Topologically Integrated Geographic Encoding and Referencing 
system. This is how the census views geography and reports data. It is 
available in electronic formats. 

DOT: Dictionary of Occupational Titles. This is the U.S. Department of 
Labor encoding system. You can see some of the codes at this URL: 

http://www.wave.net/upg/immigration/dot_index.html

 

Retail Industry

 

EAN: European Article Number, now combined with the UPC codes 

 

ISO/IEC 15418:1999 “EAN/UCC Application Identifiers and Fact Data 
Identifiers and Maintenance”

ISO/IEC 15420:2000 “Automatic Identification and Data Capture 
Techniques—Bar Code Symbology Specification—EAN/UPC”

Bar Code Détente: U.S. Finally Adds One More Digit

2004 July 12, the 

 

New York Times

 

, by Steve Lohr; http://
www.nytimes.com/2004/07/12/business/
12barcode.html?ex=1090648405&ei=1&en=202cb9baba72e846
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VIN: Vehicle Identification Number

 

ISO 3779:1983 Vehicle Identification Number (VIN) 

ISO 4030:1983 Vehicle Identification Number (VIN)—Location and 
Attachment 

ISO/TR 8357:1996 Instructions for the implementation of the 
assignment of world manufacturer identifier (WMI) codes for vehicle 
identification number (VIN) systems and for world parts manufacturer 
identifier (WPMI) codes (available in English only) 

A good news article on the changes that are coming to the VIN:

http://www.cars.com/news/stories/
070104_storya_dn.jhtml?page=newsstory&aff=national

ISO tire sizes explained: 

http://www.hostelshoppe.com/tech_tires.php

 

ISBN: International Standard Book Number

 

http://www.isbn.org/standards/home/index.asp

This site provides a converter for the new 13-digit ISBN that is based on 
the change from 10-digit UPC codes to 13-digit EAN codes in the retail 
industry on January 1, 2005. 

 

Code Formatting and Naming Conventions

 

You can find other opinions at:

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart2formatting.asp 

http://www.sqlservercentral.com/columnists/sjones/
codingstandardspart1formatting.asp. 

Gulutzan, P. “SQL Naming Conventions,” http://dbazine.com/
gulutzan5.shtml
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Bryzek, M. “Constraint Naming Standards,” http://ccm.redhat.com/doc/
core-platform/5.0/engineering-standards/eng-standards-constraint-
naming-sect-1.html

Celko, J. “Ten Things I Hate about You,” 
http://www.intelligententerprise.com/001205/
celko1_1.jhtml?_requestid=304726

ISO/IEC. IS 11179-5 Information Technology Specification and 
Standardization of Data Elements: PART 5, Naming and Identification 
Principles for Data Elements. 

http://metadata-standards.org/Document-library/Draft-standards/
11179-Part5-Naming&Identification/

Jones, S. “Standards Part 1—Abbreviated Programming,” http://
www.databasejournal.com/features/mssql/article.php/1471461

Karbowski, J. J. “Naming Standards beyond Programming,” 
http://www.devx.com/tips/Tip/12710

Koch, G., and K. Loney. 

 

Oracle8i: The Complete Reference

 

 (3rd ed.). 
Emeryville, CA: Osborne McGraw Hill, 2000.

Kondreddi, N., Vyas. “Database Object Naming Conventions,” 
http://vyaskn.tripod.com/object_naming.htm

Mullins, C. “What’s in a Name?” http://www.tdan.com/i004fe02.htm 
Mullins, C. http://www.craigsmullins.com/dbt_0999.htm

Sheppard, S. “Oracle Naming Conventions,” http://www.ss64.com/
orasyntax/naming.html
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Abbreviation encoding, 87–88
algorithm encoding vs., 88
defined, 87
examples, 87–88

 

See also

 

 Encoding schemes
Absolute scales, 74
Abstraction levels, 9–10
Accuracy, 72, 73
Actions, indenting, 45–46
Active verbs, 174
Affixes, 11
Algorithmic encoding, 88
Aliases. 

 

See

 

 Correlation names
ALTER statement, 83, 92
ANSI X3.5 Flowchart symbols, 179
Artificial keys, 51–52
Attributes, splitting, 62–66
Auto-numbers, 52–53, 58, 59

column names, 60
natural key and, 60

as primary key, 60
problems, 58–59

Auxiliary tables, 167

 

B

 

BETWEEN predicate, 114–15
“Big VIEW Myth,” 148–49
Bits, 42, 43
Block puzzle, 183, 184
Bouma, 26
Bytes, 42

 

C

 

Calendar tables, 167
CamelCase

problems, 29
use avoidance, 29–30
use exceptions, 30

Capitalization rules, 6–7
CASE expressions, 110–13

COALESCE() function, 112–13
for complex predicate, 117
defined, 110
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replacing IF-THEN-ELSE control 
flow statements, 162–63

searched, 111
simple, 111–12
using, 117–18

Case-sensitivity rules, 6–7
Categorical scales, 73–74

categories, 74
defined, 73–74
properties, 77

 

See also

 

 Scales
Character columns, 131
Character sets, 97
CHECK() constraints, 46–48

applying to table as whole, 141
inspecting/testing, 130–31
single-purposed, 50
on table declarations, 81
table-level, 49

 

See also

 

 Constraints
COALESCE() function, 112–13
Codd, Dr., 61, 62, 138, 194
Code

clusters, 39
indentation, 38–39
line spacing, 39–40
lowercase scalars usage, 25–26
name usage, 25
punctuation rules, 31–33
reading, 24
reserved word use, 33–34
statements, 34–37
typography and, 23–30
upper-/lowercase letter usage, 25
word spacing, 30

Code Museum Effect, 100, 101
Coding

choices, 99–131
comments, 118–19
compact constructions, 109–18
correlated subqueries, 125–27

optimizer hints avoidance, 120
secondary index avoidance, 124–

25
standard constructions, 100–108
stored procedures, 122–23
triggers avoidance, 120–22
UNIONs, 127–30
user-defined functions, 123–24

Cohesion, 153–55
coincidental, 153–54
communicational, 155
defined, 153
functional, 155
informational, 155
logical, 154
procedural, 154
temporal, 154
types, 153

Coincidental cohesion, 153–54
Columns

added after schema, 45
character, 131
clustering, 44–45
constraints, 48–49, 54
as fields, 189–91
names, 136
ordering, 44–45
renaming, 140
splitting attributes into, 63–65
VIEW, 135

 

See also

 

 Rows
Comma-separated lists, 31, 164
Comments

on clause, 119
control statement, 119
stored procedures, 119
using, 118–19

Common coupling, 156
Common language runtime (CLR), 123
Communicational cohesion, 155
Compact constructions, 109–18
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CASE family expressions, 110–13
parentheses and, 109–10
redundant expressions and, 113–

14
seeking, 114–18

Complexity, masking, 138–39
Concatenation, 156
Concatenation encoding, 91
Consistency, 122
Constraints

CHECK(), 46–48
column, 54
integrity, 140–42
LIKE, 47
multiple column, 48–49
multi-table, 49–50
names, 46
in narrative specification, 185
range, 47
referential, 46
rows, 54
SIMILAR TO, 47

Content coupling, 155–56
Control coupling, 156
Control statement comments, 119
Control structures, 156–57

concatenation, 156
iteration, 157
selection, 157

Correlation names, 15–17
column, 16
derivation, 15–16
in queries, 20
on table expression, 17

Coupling, 155–56
common, 156
content, 155–56
control, 156
data, 156
defined, 155
stamp, 156

types of, 155
CREATE ASSERTION statement, 49–

50, 141
CREATE PROCEDURE statement, 123
CREATE TABLE statement, 44, 67, 181
CROSS JOIN syntax, 105–7, 164
Cursors

porting, 159
use avoidance, 159–61
uses, 159–60

Cyclomatic complexity, 157

 

D

 

Data abstraction, 42
Database management system (DBMS), 

3
Databases

codes in, 96–97
codes storage, 96–97
relational, 21, 62, 66–68

Data coupling, 156
Data declaration language (DDL), 41–

68
attribute splitting, 62–66
CHECK() constraint placement, 

46–48
column ordering, 44–45
constraint names, 46
CREATE ASSERTION use, 49–50
DEFAULT value, 41–42
first attempts, 177–78
indentation, 45–46
multiple column constraints, 48–

49
object-oriented design use, 66–68
PRIMARY KEY declaration, 44
proprietary data types and, 42–44
single-purposed CHECK() 

constraints, 50
table keys, 51–62
table-level CHECK() constraints, 

49
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Data derivation, 139–40
Data elements

affixes, 11
descriptive prefixes, 10–12
logical, 9
names in registry, 10
naming problems, 18–21
postfixes, 12–14
query, 10
scalar, 8

Data encoding schemes, 83–97
Data manipulation language (DML), 38

bad, 178
first attempts, 178–79

Data types, 95
FLOAT, 48
proprietary, 42–44
REAL, 48

Decimal places, declaring, 81–82
DEFAULT value, 41–42
Delimited identifiers, 5
Derived units, 79–80, 82
Descriptive prefixes, 10–12
Dewey Decimal Classification (DDC) 

system, 89–90
Display, 96
Domain-Key Normal Form (DKNF), 

62–63
DROP TABLE statement, 67
Dynamic SQL, 168–70

purpose, 168
in stored procedures, 169

 

E

 

Electronic data interchange (EDI) files, 
8, 10

Encoding schemes, 83–97
abbreviation, 87–88
algorithmic, 88
ambiguous, 85
bad, 84–86
codes in database, 96–97

code translation, 93–96
concatenation, 91
design guidelines, 92–97
enumeration, 86–87
expansion and, 92
explicit missing values, 92–93
hierarchical, 89–90
measurement, 87
standards, 92
types, 86–91
vector, 90–91

Entity-Attribute-Value (EAV) design, 
68

Enumeration encoding, 86–87
EXISTS() predicate, 126
Extended equality, 103–5
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Fields, 53–54
columns as, 189–91
existence, 53
length, 53

Files
EDI, 8, 10
records, 53
tables vs., 53–54

First attempts, 177–79
DDL, 177–78
DML, 178–79

Flexibility, 96
FLOAT data type, 48
FROM clause, 34, 35
Functional cohesion, 155

 

G

 

Granularity, 71–72, 73

 

H

 

Heuristics, 171–81
active verb removal, 174
circles and set diagrams, 179
clear statements, 172–73
data display, 176–77
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dialect, 180
first attempts, handling, 177–79
newsgroups and Internet use, 181
“Set of All...,” 173
stubs use, 174–76

Hierarchical encoding schemes, 89–90
Dewey Decimal system example, 

89–90
uses, 89
ZIP code example, 89

 

See also
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IBM
case sensitivity rules, 6, 7
identifier character sets, 4
identifier length, 3
quoted identifiers, 5

Identifiers
character sets, 4
delimited, 5
lengths, 3
quoted, 4–6

INCITS H2 Database Standards 
Committee, 66

Indentation, 38–39
actions, 45–46
referential constraints, 45–46

Informational cohesion, 155
INNER JOIN syntax, 105–7
IN() predicate, 115–17

introduction, 115
NOT, 116
NULLs and, 116

INSERT INTO statement, 44, 168
Integrity constraints, 140–42
Intelligent keys, 57
Internet, 181
Interval scales, 76

conversion, 79
defined, 76
properties, 77

 

See also
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ISO-3166, 9, 10
ISO-11179 standards, 1, 2

correlation names, 15–17
descriptive prefixes, 10–12
levels of abstraction, 9–10
metadata schema access objects, 

18
naming conventions, 7–18
postfixes, 12–14
relationship table names, 17
scalar data elements, 8
sections, 7–8
table and view names, 14–15

ISO temporal syntax, 107–8
Iteration, 157
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Justified text, 37
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Keys, 51–62
artificial, 51–52
exposed locator, 52
familiarity, 56
intelligent, 57
natural, 51
properties, 54–57
simplicity, 57
stability, 55–56
surrogate, 52
types of, 51
uniqueness, 54–55
validation, 56
verifiability, 56–57

Keywords, 27
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Levels of abstraction, 9–10
LIKE constraint, 47
Line spacing, 39–40
Logical cohesion, 154
Logical data elements, 9
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Logical model implementation, 21
Lookup tables, 94–96

 

M

 

Maintenance, 96, 122
Materialized VIEWs, 149–50
Measurement encoding, 87
Measurement theory, 69–73

accuracy, 72, 73
defined, 69
granularity, 71–72, 73
precision, 72, 73
properties, 70
range, 71–72
scale conversion, 78

Metadata schema access objects, 18
Modularity, 122
Moh’s Scale for Hardness (MSH), 74
MS SQL

case-sensitivity rules, 6, 7
identifier character sets, 4
identifier length, 3
quoted identifiers, 5

Multiple character sets, 97
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Names, 2–7
capitalization rules, 6–7
changing from place to place, 19–

20
column, 25–26, 136
constraint, 46
correlation, 15–17
data elements, 18–21
ISO-11179 standards conventions, 

7–18
length, 2–3
letters, digits, underscores for, 25
quoted identifiers and, 4–6
relationship table, 17
schema object, 18, 26
special characters in, 3–4

table, 14–15
vague, 18–19
VIEW, 14–15

Natural keys
auto-numbers and, 60
compound, 58
defined, 51
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NCITS L8 Metadata Standards 

Committee rules, 7
Network traffic, 122
Newsgroups, 181
Nominal scales, 73
Normalization, 94–95
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System (NAICS), 14
NULLs, 43, 86, 194

avoiding, 92–93
IN() predicate and, 116
sorting, 93
testing combinations of, 130
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Object instances, 66–68
Object-oriented design, 66–68
One True Lookup Table (OTLT), 94, 

95, 96
Optimizer hints, 120
Oracle

case-sensitivity rules, 6, 7
identifier character sets, 4
identifier length, 3
quoted identifiers, 5

ORDER BY clause, 177
Orders problem, 171–72
Ordinal scales, 74–75

conversion, 79
defined, 74
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illustrated, 101
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Parentheses
extra, avoiding, 109–10
in moderation, 109

Physical locators, 52
Portable functions, 108
Postfixes, 12–14

category, 13
class, 13
Teradata standards, 12–13
type, 13–14

Precision, 72, 73
PRIMARY KEY declaration, 44
Primary units, storing, 82
Procedural cohesion, 154
Processes, thinking in, 191–93
Proprietary data types, 42–44
Proprietary exposed physical locators, 

21
Proprietary reserved words, 29

avoiding, 33–34
disadvantages, 34

Proprietary statements, 34–37
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Punctuation

rules, 31–32
standard units and, 80–81
storage and, 80
units display and, 82
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Queries, 84
aliases inside, 20
bad, 41

Query data elements, 10
Quoted identifiers, 4–6
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Range, 71–72
Range constraints, 47
Rank scales, 75–76

conversion, 79
defined, 75
properties, 77
transitivity, 75–76
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conversion, 79
defined, 76
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REAL data type, 48
Records, 53
Redundant expressions, 113–14
Referential constraints, 45–46
Relational database management 
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EAV design and, 68
object-oriented design for, 66–68

Relationship tables, 17
Reserved words

full, 33
proprietary, 29, 33–34
uppercase, 26–29

Rivers, 37
Rows

constraints, 54
defined, 54
splitting attributes into, 65–66
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conversion, 77–79
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derived units, 79–80
information mixing, 78
interval, 76
nominal, 73
ordinal, 74–75
properties, 72, 77
rank, 75–76
ratio, 76
types of, 73–76
unrestricted permissible 

transformations, 81
use guidelines, 81–82
using, 77

Schema object names, 18, 26
Searched CASE expression, 111
Secondary indexes, 124–25
Security, 96, 122

column-level, 136–37
row-level, 136–37

Selection, 157
SELECT statement, 44, 139, 152
Sequence tables, 163–66
Set diagrams, 179
Set-oriented constructs, 161–67
SI measurements, 79–80
SIMILAR TO constraint, 47
Simple CASE expression, 111–12
Single-solution VIEWs, 147–48
Software engineering, 153–56

cohesion, 153–55
coupling, 155–56

Spacing
line, 39–40
vertical, 37
word, 30

Splitting attributes, 62–66
into columns, 63–65
into rows, 65–66
into tables, 63

SQL
4GLs, 151, 152

bad programming in, 184–89
as declarative language, 193
Dynamic, 168–70
injection, 169–70
Standard, 4, 5, 6, 7, 118
testing, 130–31
thinking in, 183–95

SQL-92
CASE expressions, 112
DEFAULT value, 41
identifier ending, 4
maximum identifier length, 2, 3
quoted identifiers, 5
string operators, 108

SQL-99, 3
Stamp coupling, 156
Standard functions, 108
Standard Industrial Classification 

(SIC), 14
Standard SQL

case-sensitivity rules, 6, 7
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identifier character sets, 4
quoted identifiers, 5

Standard syntax
CROSS JOIN, 105–7
implementation, 100–101
INNER JOIN, 105–7
ISO temporal, 107–8
OUTER JOIN, 101–5

Standard units, 80–81
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clear, 172–73
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Stored procedures, 119
advantages, 122
Dynamic SQL and, 168–70
performance, 169
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scalar vs. structure parameters, 
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software engineering and, 153–56
structured programming, 156–57
triggers vs., 121–22
using, 122–23
writing, 151–70

Strong metric properties, 71
Structured parameters, 167–68
Structured programming, 156–57

control structures, 156–57
cyclomatic complexity, 157

Stub modules, 174–76
Surrogate keys, 52
Synchronization, VIEWs, 145–46
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Tables
auxiliary, 167
calendar, 167
declarations, 81
expression correlation names, 17
files vs., 53–54
keys, 51–62
logical, 135
lookup, 94–96
names, 14–15
newbie designs, 60
object instances vs., 66–68
relationship, 17
renaming, 140
sequence, 163–66
splitting attributes into, 63
star schema, 20
synchronizing VIEWs with, 145–

46
temporary, 158
translation, 93–95

Temporal cohesion, 154
Temporal syntax, 107–8
Temporal values, 48
Temporary tables, 158

Teradata standards, 12
Testing SQL, 130–31

character columns, 131
CHECK() constraints, 130–31
NULL combinations, 130
for size, 131

Translation, 93–96
Translation tables, 93–94
Triggers

ANSI version, 120
avoiding, 120–22
INSTEAD OF, 142, 143
length, 121
stored procedures vs., 121–22
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UNIONs, 127–30
Units

derived, 79–80, 82
display, 82
primary, 82
standard, 80–81

Updatable VIEWs, 143–44
INSTEAD OF triggers, 144
WITH CHECK OPTION clause, 

143–44

 

See also

 

 VIEWs
UPDATE statement, 34, 36
User-defined functions, 123–24
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Vector encoding, 90–91
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column-level security, 136–37
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data derivation, 139–40
defined, 135
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efficient access paths, 138
improper use, 146–49
integrity constraints enforcement, 
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masking complexity, 138–39
materialized, 149–50
names, 14–15
proliferation, avoiding, 145
reasons for, 144–45
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row-level security, 136–37
rows, 135
single-solution, 147–48
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