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Preface

This book and [AgoMO05] grew out of notes used to teach various types of computer
graphics courses over a period of about 20 years. Having retired after a lifetime of
teaching and research in mathematics and computer science, I finally had the time to
finish these books. The two books together present a comprehensive overview of com-
puter graphics as seen in the context of geometric modeling and the mathematics that
is required to understand the material. Computer graphics itself is a multifaceted
subject, but it has grown up. It is no longer necessary that a book on graphics demon-
strate the diversity of the subject with a long list of “fun” projects at the expense of
the mathematics. From movies, television, and other areas of everyday life, readers
have already seen what graphics is about and what it can do. It follows that one should
be able to present the geometric modeling aspect of the subject in a systematic
fashion. Unfortunately, the sheer amount of material that T wanted to cover meant
that it had to be divided into two parts. This book contains the practical stuff and
describes the various algorithms and implementation issues that one runs into when
writing a geometric modeling program. The book [AgoMO05] provides the mathemat-
ical background for the underlying theory. Although each book can be read by itself
without reading the other, one will get the most benefit from them if they are read in
parallel.

The intended audience of this book (and the combined two volumes especially) is
quite broad. It can be used in a variety of computer graphics courses or by those who
are trying to learn about graphics and geometric modeling on their own. In particu-
lar, it is for those who are getting involved in what is referred to as computer-aided
design (CAD) or computer-aided geometric design (CAGD), but it is also for mathe-
maticians who might want to use computers to study geometry and topology. Both
modeling and rendering issues are covered, but the emphasis is on the former. The
basic prerequisites are that the reader has had an upper division data structure course,
minimally three semesters of calculus, and a course on linear algebra. An additional
course on advanced calculus and modern algebra would be ideal for some of the more
advanced topics. On the companion CD there is a geometric modeling program (GM)
that implements many of the algorithms discussed in the text and is intended to
provide a programming environment both for further experimentation and applica-
tion development. Another program (SPACE) on the CD is an application that uses
some of the more advanced geometric modeling concepts to display the intrinsic
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geometry of two- and three-dimensional manifolds. Both programs were written using
the Microsoft Visual C++ compiler (and OpenGL) and run under Microsoft Windows
98 or later. Their source code and documentation are included on the CD. The ReadMe
file on the CD lists what all is on the CD and also contains instructions for how to use
what is there.

As T began to develop this book on geometric modeling, one concern obviously
was to do a good job in presenting a thorough overview of the practical side of the
subject, that is, the algorithms and their implementation details. However, there were
two other goals that were important from the very beginning. One was to thoroughly
explain the mathematics and the other, to make the material as self-contained as pos-
sible. In other words, pretty much every technical term or concept that is used should
be defined and explained. The reason for putting all the computer graphics-related
material into one book and all the mathematics into the other rather than inter-
weaving the material was to keep the structure of the implementation of a modeling
program as clear as possible. Furthermore, by separating out the mathematics it is
easier for readers to skip those mathematical topics that they are already familiar with
and concentrate on those with which they are not. In general, though, and in partic-
ular as far as instructors using this book are concerned, the intent is that the mate-
rial in the two books be covered in parallel. This is certainly how I always taught my
courses. An added motivation for the given division was that the applied part of geo-
metric modeling was often a moving target because, largely due to improvements in
hardware (faster CPUs, more memory, more hard disk space, better display devices),
the way that one deals with it is changing and will continue to change in the future.
This is in contrast to the supporting mathematics. There may be new mathematics
relevant to computer graphics in the future but it will be a long time before the math-
ematics I do discuss will lose its relevance. A lot of it, in fact, is only now starting
to be used as hardware becomes capable of dealing with computationally expensive
algorithms.

One property that sets this book apart from others on geometric modeling is
its breadth of coverage, but there is another. The combined books, this one and
[AgoMO5], differ from other books on computer graphics or geometric modeling in
an important way. Some books concentrate on implementation and basically add the
relevant mathematics by tossing in appropriate formulas or mathematical algorithms.
Others concentrate on some of the mathematical aspects. I attempt to be as compre-
hensive on both the implementation and theory side. In [AgoMO05] I provide a com-
plete reference for all the relevant mathematics, but not in a cookbook fashion. A
fundamental guiding principle was to present the mathematics in such a way that the
reader will see the motivation for it and understand it. I was aiming at those indi-
viduals who will want to take the subject further in the future and this is not possi-
ble without such understanding. Just learning a few formulas is not good enough. I
have always been frustrated by books that throw the reader some formulas without
explaining them. Furthermore, the more mathematics that one knows, the less likely
it is that one will end up reinventing something. There are instances (such as in the
case of the term “geometric continuity”) where unfamiliarity with what was known
caused the introduction of confusing or redundant terminology. The success or failure
of the two books should be judged on how much understanding of the mathematics
and algorithms the reader gets. In the case of this book by itself, it is a question of
whether or not the major topics were covered adequately. In any case, because I
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emphasize understanding what is going on, there is a natural emphasis on theory and
not on tricks of the trade. The reader will also not find any beautiful glossy pictures.

Clearly, no one book can cover all that falls under the general heading of geo-
metric modeling. As usual, the topics that are in fact covered and the degree to which
they are covered reflect my own bias. In a large field, there are many special topics
and it should not be surprising that some are not discussed at all and others only
briefly in an overview. On the other hand, one would expect to see a discussion of
principles and issues that are basic to the field as a whole. In that regard, T would like
to alert the reader to one topic, namely, the issue of robustness of algorithms and com-
putations, that really is a central issue in geometric modeling, but is not dealt with
as thoroughly as it should be, given its importance. The only excuse for this is that to
do this topic justice would have entailed a much larger book. It is important that
readers who want to do serious work in geometric modeling realize that they will have
to get more information elsewhere on this. The discussion in Section 5.10 is inade-
quate (although I do devote the brief Chapter 18 to interval analysis). When it comes
to the bibliography, as large as it is, it is also a victim of space constraints. In some
cases I have tried to compensate for the lack of completeness by giving references to
books or papers where additional references could be found.

Most of this book covers material that is not new, but a few algorithms have not
appeared in print before. One is the approach to trimmed surfaces based on the Vatti
clipping algorithm described in Section 14.4. Another is the result in Section 17.5
about convex set intersections, which motivated the algorithm described in Section
13.2. Another aspect of the book that should be noted is Chapter 16 and the SPACE
program. Although the material on intrinsic geometry in Sections 16.3 and 16.4 did
not get developed as much as I would have liked, it is a start. The extensive material
on topology in [AgoMO05], in particular algebraic and differential topology, has hereto-
fore not been found in books on geometric modeling. Although this subject is slowly
entering the field, its coming has been slow. Probably the two main reasons for this
are that computers are only now getting to be powerful enough to be able to handle
the complicated computations and the material involves exceptionally advanced
mathematics that even mathematics majors would normally not see until graduate
school.

Here is how the material in this book has been used successfully in teaching three
different types of semester courses on computer graphics in the Department of Math-
ematics and Computer Science at San Jose State University. The courses were

(1) Introduction to Computer Graphics,
(2) Computer Graphics Algorithms, and
(3) Geometric Modeling.

The first two were upper-division undergraduate courses and the third was a gradu-
ate course. The prerequisites for the introductory course were three semesters of
calculus, linear algebra, and an upper division course in data structures. The only
prerequisite to both the algorithm and geometric modeling course was the introduc-
tory computer graphics course. Some of the material in the introductory course was
briefly reviewed in the other two courses. The courses used material from the fol-
lowing parts of this book and [AgoMO05] (but the material was not necessarily dis-
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cussed in the order listed, and listing a chapter or section in no way means that all
of it was covered):

Introduction to Computer Graphics: Chapters 1-4, a quick overview of Chapters
5, 6, 11, 12, and a brief discussion of
visible surface algorithms and shading
from Chapters 7 and 10.

From [AgoMO05]: Chapters 1-3.

Computer Graphics Algorithms: Chapters 2-10, just enough of Chapter 12 to
have surfaces to render, Sections 21.6—
21.8, and Chapter 22.

From [AgoMO05]: Chapter 1 and Sections 4.5,

4.7, 8.1-8.5.

Geometric Modeling: Chapters 3-6, 11, 12, a sampling of topics
from Chapters 13-15, and Sections 17.4—
17.5.

From [AgoMO05]: Review of parts of
Chapters 1 and 2, Sections 4.2, 4.5, 4.7,
Chapter 6, and Sections 8.1-8.5, 9.2-9.4,
9.9.

The numbering of items in this book uses the following format: x.y.z refers to item
number z in section y of chapter x. For example, Theorem 12.7.1 refers to the first
item of type theorem, proposition, lemma, or example in Section 7 of Chapter 12.
Algorithm 14.3.1 refers to the first algorithm in Section 3 of Chapter 14. Tables are
numbered like algorithms. Figures are numbered by chapter, so that Figure 14.7 refers
to the seventh figure in Chapter 14. Exercises and programming projects at the end
of chapters are numbered by section.

Finally, some comments on the language used in this book to describe algorithms.
Even though the C/C++ language is the language of choice for most people writing
computer graphics programs, with the exception of some initialization code found in
Section 1.6, we have opted to use “the” more universal “standard” algorithmic lan-
guage. The reason is that this book is mostly about concepts that are independent of
any particular programming language and low-level optimization issues that hinge on
the language being used do not play any role. Every reader with some general com-
puter experience will understand the language used here (a detailed description of its
syntax can be found in Appendix B) and so there seemed to be little point to restrict
the audience to those familiar with C. Consider the following points:

(1) There is little difference between the code that is presented and what the
corresponding C code would look like, so that any translation would be
straightforward.

(2) The emphasis in the code and algorithms in this book is on clarity and the
fact is that even in simple constructs like a for-loop or a case statement, C has more
complicated syntax and uses more obscure terminology which would make it harder
for the non-C reader to understand. A certain universality would be lost with no real
corresponding gain. The efficiency advantage of C that is usually cited is only really
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significant in a relatively small number of places. It would be relevant, for example,
if one wanted to implement low level drawing primitives, but that is not what this

book is about.
(3) C programmers who want to see C code can look at the GM and SPACE pro-
grams, which are written in C++.

Cupertino, California Max K. Agoston
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CHAPTER 1

Introduction

11 Overview

This book is about constructive geometry. Our object is to study geometry, all sorts of
geometry, and also to present a setting in which to carry out this investigation on a
computer. The adjective “constructive” is intended to imply that we will not be satis-
fied with an answer to a geometric problem unless we also are given a well-defined
algorithm for computing it. We need this if we are going to use a computer. However,
even though our goal is a computational one, our journey will take us through some
beautiful areas of pure mathematics that will provide us with elegant solutions to
problems and give us new insights into the geometry of the world around us. A reader
who joins us in this journey and stays with us to the end will either have implemented
a sophisticated geometric modeling program in the process or at least will know how
to implement one.

Figure 1.1 shows the task before us at a very top level. We have a number of rep-
resentation problems. Our starting point is the “real” world and its geometry, but the
only way to get our hands on that is to build a mathematical model. The standard
approach is to represent “real” objects as subsets of Euclidean space. Since higher
dimensional objects are also interesting, we shall not restrict ourselves to subsets of
3-space. On the other hand, we are not interested in studying all possible subsets. In
this book, we concentrate on the class of objects called finite polyhedra. More exotic
spaces such as fractals (the spaces one encounters when one is dealing with certain
natural phenomena) will only be covered briefly. They certainly are part of what we
are calling geometric modeling, but including them would involve a large amount of
mathematics of a quite different flavor from that on which we wish to concentrate
here. Next, after representing the world mathematically, we need to turn the (contin-
uous) mathematical representations into finite or discrete representations to make
them accessible to computers. In fact, one usually also wants to display objects on a
monitor or printer, so there are further steps that involve some other implementation
and computation issues before we are done.
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real world mathematical abstract actual
objects - objects e finite - implementations
and queries and maps representations

Figure 1.1. The geometric modeling representation pipeline.

As we look at the various representation problems shown in Figure 1.1, note that,
although we have only mentioned objects so far, representations also need to repre-
sent the maps (operations, etc.) between them because a good and complete model
of something needs to mimic everything in the original. In any case, objects and maps
go hand in hand in mathematics. With every new class of objects it is fruitful to define
the naturally associated maps (take vector spaces and linear transformations, for
example).

To summarize, the emphasis of this book is on showing how to model finite poly-
hedra and the invariants associated to them on a computer and we shall show how
to set up a programming environment to facilitate this investigation. One has a fairly
good grip on the mathematics part of the representation pipeline, but less so on the
rest, at least in terms of having a well-defined theoretical approach. The fact is that,
although computer graphics is an exciting, rapidly developing field that has come a
long way from the early days when people first tried to use computers for this, things
are still being done in rather ad hoc ways. There is really no overall systematic
approach, only a lot of isolated, special results that, neat as some of the ideas and
algorithms may be, do not fit into any unifying picture. To put it another way, com-
puter graphics today is an “art” and not a “science.” There have been a few attempts
to formalize the digital geometry aspect. See [Fium89] or [Herm98], for example. On
the other hand, since the nonmathematical part of computer graphics depends on the
current technology used for the display medium (raster devices at present) and, of
course, the computer, and since this will continually evolve (with holographic displays
the next dominant medium perhaps), the hardcore part of “computer” graphics may
stay an art and never become a science.

All that we shall do in this chapter is get a few preliminaries out of the way. We
shall introduce some basic terminology and indicate some of the mathematics we shall
need. What little we have to say about hardware topics will be found in this chapter.
The chapter ends with a bit of mathematics so that we can get started with some
simple two-dimensional (2d) graphics.

1.2 The Basic Graphics Pipeline

Any meaningful use of a computer to study geometry implies that we ultimately want
to display objects on a graphics device. Figure 1.2 shows some standard terminology
for the first step of the three-dimensional (3d) graphics pipeline that takes us from
the mathematical representation of an object in R3 to its image on the device. Objects
in the world are described by the user with respect to a world coordinate system. The
world is then projected onto a view plane from some viewpoint that we shall think of
as the location of a camera or the eye. We have an associated view plane and camera
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Figure 1.2. 3d graphics coordinate systems and terminology.

coordinate system. Looking from the viewpoint along the positive z-axis of the camera
coordinate system specifies the view direction. A window in the view plane specifies
the area of interest. The view volume or view pyramid is the infinite volume swept out
by the rays starting at the viewpoint and passing through points of the window. To
limit the output of objects one often uses a near (or front or hither) and far (or back
or yon) clipping plane. The volume inside the view volume between these two planes
is called the truncated view volume or truncated view pyramid. Only those parts of
objects that lie in this volume and project into the window will be displayed. Finding
those parts of an object is referred to as clipping. In principle, the three coordinate
systems — the world, the camera, and the view plane coordinate system — could be dis-
tinct. In practice, however, one assumes that the coordinate axes of the camera and
view plane coordinate system are parallel and the z-axes are perpendicular to the view
plane. One also assumes that their x- and y-axes are parallel to the sides of the window.

The final step in mapping an object to a graphics device involves a map that trans-
forms view plane coordinates to physical device coordinates. This is usually thought
of as a two-stage process. First, an initial map transforms the window to a viewport
that is a subrectangle of a fixed rectangle called the logical screen, and a second map
then transforms logical screen coordinates to physical device coordinates. See Figure
1.3. Sometimes the logical screen is already defined in terms of these coordinates, so
that the second map is not needed. Other times, it is set equal to a standard fixed rec-
tangle such as the unit square [0,1] x [0,1], in which case we say that the viewport is
specified in normalized device coordinates (NDC). The basic 3d graphics pipeline can
now be summarized as shown in Figure 1.4. Chapter 4 will discuss it in great length
and also fill in some missing details.
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logical Figure 1.3. The window-to-device

screen pipeline.
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Figure 1.4. The basic 3d graphics pipeline.

The two-dimensional graphics pipeline is similar but much simpler. The window-
to-device pipeline shown in Figure 1.3 stays the same, but Figures 1.2 and 1.4 get
replaced by Figures 1.5 and 1.6, respectively. We have a two-dimensional world coor-
dinate system and a window whose edges are parallel to the coordinate axes. In the
case of the three-dimensional graphics pipeline, one usually assumes that the window
is of a fixed size centered on the z-axis of the camera coordinate system. This is ade-
quate to achieve most views of the world. To move the viewpoint and change the view
direction we simply change the camera coordinate system. Zooming in and out is
accomplished by moving the view plane further from or closer to the viewpoint. In
the two-dimensional graphics case, on the other hand, one must allow the window to
move and change in size. We have to be able to move the window to see different parts
of the two-dimensional world and we must be able to shrink or expand the size of the
window to zoom.

One word of caution is in order. The distinction between “window” and “view-
port” is often blurred and, sometimes, what should be called a viewport is called a
window. The terms used are not as important as the conceptual difference. One spec-
ifies what one sees in user coordinates and the other specifies where one sees it. The
window, as defined above, refers to the former and the viewport, to the latter.



1.3 Hardware Basics 7

Figure 1.5. 2d graphics coordinate system and y
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Figure 1.6. The basic 2d graphics pipeline.

1.3 Hardware Basics

Although the goal of this book is to emphasize the abstract ideas in graphics, one does
need to understand a few hardware basics because that is what drives the search for
efficient algorithms for the implementation of low-level graphics primitives. The most
common display devices have been cathode ray tube (CRT) devices. Here an electron
beam traces out an image on a phosphor-coated screen. There have been different
types of CRTs, but since the early 1970s raster scan CRTs have been the most preva-
lent graphics display devices. They are refresh CRTs because the electron beam is con-
tinually rescanning the entire screen. The screen itself should be thought of as a
rectangular array of dots. The image that one sees depends on how those dots are lit.
The beam starts at the top of the screen and proceeds down the screen from one scan
line to the next until it gets to the bottom. It then jumps back to the top. See Figure
1.7. The term “horizontal retrace” refers to the time the beam jumps from the end of
a line to the beginning of the next line and “vertical retrace” refers to the time it jumps
from the right bottom corner of the screen to the top left corner. These times, espe-
cially the latter, were often used to write to the screen to avoid flicker and knowing
them was important to game developers who wanted to produce smooth animation
effects.

Another display technology that has been becoming more and more popular in
recent years is the liquid crystal display (LCD). Although there are different variants,
LCDs are also raster scan devices because, for all practical purposes, they consist of
a rectangular array of dots that is refreshed one row at a time. The dots themselves
are the “liquid crystals,” which are usually organic compounds that consist of mole-
cules that allow light to pass through them if they are aligned properly by means of
an applied voltage. The bottom line is that the liquid crystals can be individually
switched on or off. LCDs have a number of advantages over the raster scan CRTs. In
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scan line Figure 1.7. The raster scan CRT.
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/ //
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particular, one does not have to worry about refresh rates or flicker and they are not
as bulky.

The hardware assumption made in this book, one that should apply to two-dimen-
sional displays in the foreseeable future, is that the reader is working on a raster scan
device. This assumption has an important consequence. Raster scan devices use a
refresh buffer to specify which dots on the screen are to be lit and how. To get the
picture we want, we only have to set the values in that buffer correctly. Therefore, our
abstract representation problem specializes to representing subsets of Euclidean
space as (discrete) subsets of a rectangle in Z2. Less formally, we shall talk about rep-
resenting objects in a “raster.” A raster refers to a two-dimensional rectangular array
of pixels, where a pixel is an abbreviation for “picture element,” which could, in theory,
be any value. In practice, a pixel is represented in computer memory by one or more
bits that specify a color. A monochrome picture is where each pixel is represented by
only one bit. A row in a raster is called a scan line. If the raster has m columns and
n rows, then we say that the resolution of the picture is m x n.

The hardware graphics standards for computers have evolved over time. The stan-
dards for the IBM personal computer (PC) are listed in chronological order below:

Type Resolution Number of colors
CGA 640 x 200 2 (black plus one other)
Hercules 720 x 348 2 (black and white)
EGA 640 x 350 16

VGA 640 x 480 16

super VGA >800 x 600 >256

For more details about these standards see [Wilt87] or [Ferr94].

The refresh buffer of a raster scan device is usually called a frame buffer. In
general, the term “frame buffer” refers to an array of memory (separate from main
memory) thought of as a two-dimensional array of pixels (a raster). Frame buffers
serve two functions:

(1) as a place where the image is stored as it is computed
(2) as a refresh buffer from which the image is displayed on a raster device
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A frame bufferis an interface between what are usually relatively slow graphics compu-
tations and the high data rate video image display. In the typical personal computer the
frame buffer is located on the graphics card that manages the video subsystem of the
computer. It basically used to be not much more than some extra memory. For example,
the table below describes the frame buffers used by the IBM PC family of computers:

Type Size of frame buffer Starting memory address (in hexadecimal)
CGA 16K B800:0000

Hercules 64K B000:0000

EGA,VGA 256K for 16 colors accessed via a 64K window starting at A000:0000
super VGA 1M or more accessed via a 64K window starting at A000:0000

Over time the graphics subsystems of personal computers have become more power-
ful, and the hardware is supporting more and more of the operations that one needs
to perform in graphics, such as antialiasing (Section 2.6) and the bit map operations
discussed below and in Section 2.10. They also have additional buffers, such as a z-
buffer (Chapter 7), texture buffers (Chapter 9), or stencil buffers (for masking opera-
tions). This support only used to be found on high-end graphics workstations.

As indicated above, displaying objects on the computer screen involves writing to
the frame buffer. This amounts to storing values in memory. Ordinarily, a store opera-
tion replaces the value that was there. In the case of frame buffers one has more
options. If A is a location in memory, then let [A] denote the content of A. Frame buffers
typically support store operations of the form (V op [A]) — [A], where V is a new value
and op is a binary logical operator that operates on a bit-by-bit basis. Typical binary
logical operations on bits are or, and, xor, and replace. The statement (V replace [A])
— [A] corresponds to the standard store operation where the new value replaces the
old one. When a frame buffer uses a store operation corresponding to an operator op,
we shall say that it is in op mode. For example, we may talk about being in xor mode.

As a simple example of how having various modes for a frame buffer can be useful,
consider how the standard quick and dirty method used to move a cursor around on
the screen without destroying the background uses the xor mode. The method relies
on xor’s well-known property that

b xor (b xor a) = a.

What this means is that if one xor’s the same value to a memory location twice in a
row, then that memory location will hold its original value at the end. Now, a straight-
forward way to move a cursor on the screen without erasing what is there would be
to save the area first before writing the cursor to it and then restoring the old value
after the cursor has moved. This would be very time consuming. There is a much
better way of using the xor mode. Assume that the cursor starts out at some initial
position defined by a variable oldA. Now switch into xor mode and repeat the fol-
lowing three steps as often as desired:

Draw cursor at oldA (this will erase the cursor)
Draw cursor at new position newA
Replace the value in oldA with that in newA
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Note that replace mode would cause this loop to erase everything in the cursor’s
path and leave behind a trail of the cursor. There is one disadvantage with
the xor operation, however, which may not make it a viable option in certain situa-
tions. Although one can use it to move objects around on the screen without destroy-
ing the background, the objects may change color. If, for example, one wants to move
a red cursor and have it stay red, then this is not possible with xor mode because
the cursor will assume different colors as it moves over differently colored areas
of the screen. Therefore, if it is important that the cursor stay red, then there is
no simple alternative to first saving the area to which one is writing and restoring it
afterwards.

Because the availability of logical operators in store operations simplifies
and speeds up many useful graphics operations, current graphics systems have
built-in hardware support for them. We will have more to say about this in Section
2.10.

We finish this section with two more terms one sees frequently in graphics. Scan
conversion is the act of converting points, lines, other geometric figures, functions,
etc., into the raster data structure used in frame buffers one scan line at a time. After
a scene is modeled, it needs to be “rendered.” To render a scene means to construct
an image on a display device that is visually satisfactory. What is “satisfactory”
depends firstly on the device and its constraints and secondly on what one is trying
to do. To emphasize the position that rendering occupies in graphics, keep in mind
that the modeling or mathematical representation comes first and then the rendering.
Any given model can have many different renderings. For example, a sphere can be
rendered in different colors. In trying to render scenes one runs into a number of
important problems: visible line or surface determination, illumination, texturing,
transparency, etc. These will all be addressed in coming chapters.

1.4 Graphics Standards and Primitives

A person who wants to develop a graphics program has to learn how to access the
graphics capabilities of the system that he/she is working on. Unfortunately, there are
many graphics devices out there in the world. If one wanted a program to work with
all those devices and if one had to program the hardware directly, then one could
easily spend all of one’s time on very low-level code and never get to that in which
one is really interested. Therefore, let somebody else, say the manufacturer of the
system or the compiler vendor, worry about the low-level stuff so that one can con-
centrate on higher-level ideas. This is where software graphics standards come in.
They are the interface between a high-level language and the low-level code that talks
to the actual hardware. The interface is basically a specification of high-level graph-
ics primitives. As long as one’s code calls only these primitives, a program will run on
any system that is supported by that particular interface. In other words, standards
make code portable by making it device independent.

Lots of different standards exist with some more sophisticated than others. The
early DOS operating system standards, such as the Borland Graphics Interface (BGI),
were fairly primitive. Any program in Borland PASCAL or C/C++ that used the Borland
PASCAL or C/C++ graphics primitives was guaranteed to run under DOS on most of
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the IBM PC-compatible computers. The same was true of the corresponding inter-
face found in the Microsoft compilers. A number of much more sophisticated stan-
dards were developed over the years such as

Core (The 3d Core Graphics System): specified by ACM SIGGRAPH committees
in 1977 and 1979 ([GSPC77] and [GSPC79])

GKS (Graphics Kernel System): specified by various national and international
committees in the 1980s with a 3d version becoming a standard in 1988
(TANSIS5], [ISO 88], [EnKP84], [BDDH95])

PHIGS (Programmer’s Hierarchical Interactive Graphics System): a more complex
standard than GKS, which was specified by ANSI (the American National
Standards Institute) in 1988 ([ANSI88] and [VanD88])

See [Cars98] for a brief history. Two more recent standards are

OpenGL: see [WNDS99], [KemF97], [WriS00]
DirectX: see [Glid97], [BarD98], [Timm96]

The rise in the popularity of the Microsoft Windows operating system meant that
its application programming interface (API) became a driving force for standards for
that system. At first there was only the basic Windows graphics device interface (GDI).
This made writing graphics programs hardware independent, but at the expense of
speed. The result was that developers, especially those involved in writing games,
stayed with DOS, which allowed programmer to go directly to the hardware and
squeeze out the last ounce of speed essential for games. To attract developers to
Windows, Microsoft next came out with WinG, which provided a few low-level bitmap
functions that did speed up basic graphics operations substantially, but it was not
enough. Microsoft’s graphics standard successors to WinG were DirectDraw and
Direct3D, which were part of the DirectX API that was intended for multimedia appli-
cations. DirectDraw provided two-dimensional graphics primitives. Direct3D was
the three-dimensional counterpart. Although these allowed for high-performance
graphics under Windows, DirectDraw and Direct3D were low level. A competing
and higher-level graphics API is OpenGL, a graphics standard originally developed
by Silicon Graphics, Inc., for its graphics workstations. Good implementations of
OpenGL for Windows are built on DirectX drivers. Although native DirectX code is
currently faster, the advantage of OpenGL is that it is available on many other com-
puter and operating system platforms, a plus for Internet applications. The companion
programs for this book, GM and SPACE, use OpenGL.

Having just praised standards, we also need to point out what has traditionally
been their downside. If one uses a standard, then one must be willing to put up with
extra overhead in the code. Furthermore, because standards are device independent,
they, by definition, usually do not take advantage of any special features that a par-
ticular piece of hardware may have. What this means is that programs that use them
are sometimes much slower on a particular machine than a program that accesses its
hardware features directly. Software developers have often been forced to choose
between device independence and speed in those cases where speed is critical. For-
tunately, with DirectX and OpenGL the situation has much improved and this is no
longer a serious problem.
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1.5 From Window to Viewport

One of the first bits of mathematics one runs into in a graphics program is the trans-
formation from the window to the viewport. Both the window and viewport are rep-
resentable as rectangles in the plane whose sides are parallel to the coordinate axes.
What we are looking for is a simple map from one of these rectangles to another.
Intuitively, all this amounts to is a change of scale.

The standard representation for our rectangles is as products of intervals in the
form [a,b] x [c¢,d]. Normally, the implied assumption in the representation of an inter-
val like [a,b] is that a < b; however, in our current context where we will be interested
in maps from one interval to another, we do not require that. It will be useful to allow
a > b. Returning to our discussion of windows and viewport, if one uses normalized
device coordinates, the viewport is a subrectangle of [0,1] x [0,1]. If one considers the
viewport as a rectangle in the raster, then it has the form [m;,m;] x [n;,n;], where m;
and n; are integers. There is one caveat, however. The (0,0) position in the raster has
traditionally been associated to the top left-hand corner on the screen. That means that
the y-axis has to be inverted because users always think of that axis as going up, not
down. In other words, if, say, the resolution is 800 x 600 and the viewport is the entire
screen, then the viewport should be represented by the rectangle [0,799] x [599,0].

Mathematically then, the search for the window-to-viewport transformation boils
down to the following: If W = [w,,wp] X [we,wq] and V = [v,,vp] X [ve,vq] are the rec-
tangles that represent the window W and viewport V, respectively, then we want a
map T: W — V of the form

T(x,y) = (Ti(x), T2(y)),

where each T; is linear. In other words, we have two one-dimensional problems of the
form:

Given intervals [a,b] and [c,d], find the linear map S: [a,b] — [c,d] with
S(a) = c and S(b) = d.

If S(x) = ax + B, then the stated boundary conditions for S lead to two equations in
two unknowns o and B, which are easily solved. We get that

d-c bc-ad
S60 = b—aX+ b-a

X—a
T (d-o)

=c+

The second form of the answer says that we send x to that point in [c,d], which is the
same percentage of the way from c to d as x is from a to b. If one remembers that
intuitive fact then one has no need to solve equations because the answer is obvious.
At any rate, we now have the following solution for T:

a

T(x,y) = (w%«w, VR (Ve Wav b)) (g vy + (Wave - wcvd»j.
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Later on in Chapter 4 we shall derive a more general window-to-viewport transfor-
mation, but what we have now is good enough to do some simple two-dimensional
graphics programming.

1.6 Programming Notes

In the early years of the IBM PC and DOS and after there were some programming
languages such as PASCAL or C that had some basic graphics primitives built into the
language, it was fairly easy to describe what had to be done to write a graphics
program. It was a three-stage process. First, every such program had to enter “graph-
ics mode” when it started, then it could do all the graphics that it wanted, and finally
it had to leave graphics mode at the end and restore whatever mode the system was
in before the program started. Life has gotten much more complicated now that we
are in an age of graphical user interfaces (GUIs) and the Microsoft Windows operat-
ing system. Describing how one programs the graphics API for Microsoft Windows
would entail writing another book. However, we do want to give the reader a flavor
of what is involved. To that end we present and discuss our only piece of low-level
graphics code in this book. It shows how one would have used BGI code for the DOS
operating system.

As we just mentioned, the first thing that needed to be done in any graphics
program was to initialize both the hardware and certain global variables describing
this hardware to the program. Program 1.6.1 shows a very basic sample BGI C pro-
cedure, “InitializeGraphics,” which did this. The BGI procedure “initgraph” did the
initialization and returned the information about the hardware in use in its parame-
ters “graphDriver” and “graphMode.” The third parameter to the procedure was a DOS
path name to a directory where the BGI drivers were located. An empty string meant
that they were in the current directory. The function “graphresult” returned any error
that might have occurred and prevented the graphics system from being initialized.
A typical error was caused by the fact that the BGI driver was not located in the
current directory. The BGI drivers were files that came with the Borland program-
ming languages. Each contained hardware-specific code for the basic graphics prim-
itives and the one that matched one’s hardware got linked into one’s program.

After the graphics mode was initialized correctly, we then stored some useful
constants in global variables. The functions “getmaxx” and “getmaxy” returned the
maximum resolution of the screen in pixels in the horizontal and vertical direction,
respectively. The “textheight” and “textwidth” functions returned the height and width
of characters which one needs to determine the space required for text.

The “atexit” procedure passed the name of a procedure to call when the program
was done and was about to return to DOS. We have passed the name of the “MyEx-
itProc” procedure that calls the “closegraph” procedure. The latter switches from
graphics mode back to the standard 25 line and 80 column text mode (or whatever
mode the system was in before the program was called). Without the call to the “close-
graph” procedure the system would have been left in graphics mode with a messed-
up screen and would probably have had to be rebooted.

Assuming that the “InitializeGraphics” procedure executed without problems, one
would be in graphics mode and be presented with a blank screen. As indicated earlier,
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/* Global variables */
int graphDriver, graphMode, /* After call to InitGraph these variables specify the
current hardware */

numColors, /* maximum number of colors */
scrnXmax, scrn’Y max /* screen resolution */
txtHeight, txtWidth; /* the height and width in pixels of a character in the

current font */

void MyExitProc (void)
{ closegraph (); /* Shut down the graphics system */
}

void InitializeGraphics (void)
{ int errorCode;

graphDriver = DETECT; /* DETECT is a BGI constant */
initgraph (&graphDriver,&graphMode,"");
errorCode = graphresult ();

if (errorCode != grOk ) /* grOk is a BGI constant */

{ /* Error occurred during initialization */
printf (" Graphics system error: %s\n",grapherrormsg (errorCode));
exit (1);

}

atexit (MyExitProc); /* so that we do closegraph when exiting */

numColors = getmaxcolor () + 1;
scrnXmax = getmaxx ();
scrnYmax = getmaxy ();
txtHeight = textheight ("A");
txtWidth = textwidth ("A");

Program 1.6.1. Code for initializing DOS graphics mode.

doing a similar initialization for Microsoft Windows is much more complicated. The
reason is that the user’s program is now initializing one of potentially many windows
on the screen. Under DOS basically only one window was initialized, namely, the
whole screen. If a program wanted to deal with multiple windows, it would have to
do that completely by itself. In other words, with Microsoft Windows we have a more
complicated initialization procedure but we gain functionality. If one is using OpenGL
or DirectX, then actually two initializations are required. After initializing the native
Windows GDI, so that one can run the program in a standard window on the screen
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and use basic windowing operations, one has to initialize OpenGL and DirectX in a
separate step.

After a program has initialized the graphics hardware, the next step is to decide
how to lay out the screen. Where should graphics output go? Where to put the menus?
What about an area for getting feedback from the user and printing system-related
messages? Books have been written on what makes for a good graphical user inter-
face. See [Pedd92] for example. Microsoft has its own recommendations for programs
that run in its Windows environment. See [Micr94].

One thing is clear though about today’s GUIs. They take an awful lot of code and
time to develop. Even if one does not start from scratch and one uses the typical APIs
one gets when developing for an environment like Windows, it still requires quite a
bit of understanding about the underlying architecture to use them effectively. For
that reason, when this author has taught graphics classes he always, since the days
of DOS, provided the students with a program similar to the current GM program
that can be found on the accompanying CD. Its interface, described in the document
GmGUI which is also on the CD, allowed both mouse and keyboard input and made
it easy for students to add menus. In this way the students did not have to spend any
time developing this interface and could concentrate on implementing the various
algorithms described in the book. The current Windows version of GM is also such
that students do not need to have any prior knowledge of Windows or C++. (They obvi-
ously do have to know how to program in C.) A couple of lectures at the beginning
of the semester and another one or two later on to describe some additional features
was all that was necessary. Of course, if one wants to make use of OpenGL, then this
takes extra time.

The GM program already comes with quite a bit of functionality built into it. This
means that some of the programming projects at the end of the chapters in this book,
in particular some of the basic ones in the early chapters such as this one, have already
been implemented either implicitly or explicitly. Readers who are new to graphics pro-
gramming should ignore this fact and will find it very instructive to develop the
required code on their own. They can then compare their solutions with the ones in
the GM program. It is when one gets to more advanced projects that building on the
GM program would be appropriate.

Finally, this book will not get into any device-dependent issues and all the algo-
rithms and code will be analyzed and presented at a higher level than that. Except for
the BGI example above, we present no actual code but shall use a fairly standard
abstract program syntax (pseudocode) described in Appendix B. We shall also not use
any actual API when discussing abstract algorithms, but, if needed, use the following
set of graphics primitives:

(The points and rectangles below are assumed to be in the raster, that is, they are
specified by integer coordinates. Rectangles are specified by two points, the top left
and bottom right corner. By a rectangle we mean the border only, not the interior.)

SetMode (MODE) (sets “current” mode to MODE, where MODE is a
bit operation such as xor or replace)

SetColor (COLOR) (sets “current” color to COLOR)

Draw (point or rectangle) (in “current” color and mode)

Erase (point or rectangle) (draws in “background” color)
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Draw (point or rectangle, (attribute is typically a color but could be
attribute) something more general)
DrawLine (point, point) (draws raster version of line segment from first
point to second in “current” color and mode)
Write (string, point) (write a string into the raster at pixel location
point)

Note that erasing a point or rectangle is really the same as drawing it in the “back-
ground” color. We list the “Erase” procedure separately only for conceptual reasons.
Also, drawing a rectangle or a line segment could be implemented with the “Draw
(point)” procedure, but all current graphics APIs have efficient procedures for drawing
rectangles and line segments directly and that is why we list that procedure separately.
We shall show how the DrawLine procedure is implemented in terms of “Draw
(point)” in Chapter 2. Of course, drawing lines is a very basic operation that typically
is called many times. It is a place where optimization really pays off and is best imple-
mented in assembly language, or better yet, in hardware. Therefore, when coding pro-
grams one should use the line drawing procedure that comes with the software.

The primitives above can easily be implemented using any given API. We believe,
however, that they will make our abstract code more readable. In any case, whatever
system the reader is working on, it is assumed that he/she can implement these pro-
cedures. These primitives are all that we shall need to describe all of the algorithms
in this book.

1.7 EXERCISES

Section 1.5

1.5.1 Find the equations for the following transformations:
(a) T:[-1,31->1[5,6]

(b) T:[2,7]1 - [3,1]

(C) T: [_172] X [3)5] 4 [5r7] X [_3r_4]

(d) T [7,-2]1x[1,2] = [3,2] x[0,3]

1.8 PROGRAMMING PROJECTS

Section 1.5

In these programming assignments assume that the user’s world is the plane. We also assume
the reader has a basic windowing program with an easily extensible menu system. The GM
program is one such and the user interface in the projects below fits naturally into that program.
Furthermore, the term “screen” in the projects below will mean the window on the real screen
in which the program is running. All projects after the first one (Project 1.5.1) assume that a
window-to-viewport transformation has been implemented.

1.5.1 A window-to-viewport transformation

The goal of this first project is simply to write and test the window-to-viewport transformation.
The main menu should add another item to the list:
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MAIN

Utils

Activating the Utils item should bring up the menu

UTILS

Window
Viewport
Dimension

that allows the user to change the current dimensions of the window, to change the location of
the viewport on the screen, and to toggle the display of the window’s dimensions, respectively.
If the window dimension display has been toggled to be on, then it should stay on the screen
no matter which menu is the current one. Let the default window be [-10,10] x [-10,10]. Keep
in mind though that the window dimensions can be arbitrary real numbers. It is the viewport
dimensions that are always integers. One way to display the window dimensions would be as
follows:

+1A

-18
-18 +18

In this project there are no objects to display but it can be tested by drawing viewports
with a background that has a color different from the rest of the screen and checking the dimen-
sions that are displayed.

1.5.2 Graphing functions

The object of this project is to try out some line drawing commands. Specifically, you are to draw
a linear approximation to the graph of some functions. Add another item to the main menu:

MAIN

Graphs

The idea is to evaluate a given function at a finite set of values in its domain and then to draw
the polygonal curve through the corresponding points on its graph. See Figure 1.8. Let a user
specify the following:

(1) The interval [a,b] over which the function is to be graphed.

(2) The “resolution” n, meaning that the function will be evaluated ata +i(b-a)/n, 0 <i<n.
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Figure 1.8. A sample function graph.

a b

Because the values of a function may change substantially from one domain to the next
one it is important that one choose the window well; otherwise, the graph may look very tiny
or not show up at all. A simple scheme would scale the x-direction to be not much bigger than
the domain of the function and the y-direction to cover only that range of values needed for
the graph. To do the latter one should first evaluate all the points, find the maximum and
minimum of the y-value, and then adjust the y-dimension of the window to those values. Such
a scheme does have the disadvantage, however, that the window will keep changing if one
changes the domain. To avoid this one could leave it to the user to decide on the window or
pick some fixed default window that only changes if the graph moves outside it. To test whether
a graph lies entirely in the window check that all the points on it lie in the window.

Finally, to make the graph more readable it would help to show the coordinate axes with
ticks for some representative values.

1.5.3 Turtle graphics

This is another project to try out line drawing commands. Assume that a “turtle” is crawling
around in the plane (R?). A turtle is an object that is defined by a position and a direction (in
which it is looking). The standard basic commands that a turtle understands are

Forward (dist)
MoveTo (x,y)
Turn (0)
TurnTo (0)
Right (0)

The “Forward” procedure draws a line from the current position of the turtle to the new one,
which is a distance “dist” from the old one in the direction in which the turtle is looking. The
“MoveTo” procedure does not, but simply repositions the turtle to the real point (x,y). The
“Turn” procedure turns the turtle by the angle 6 specified relative to the current direction it
is looking. The “TurnTo” procedure is the absolute version of “Turn.” It turns the turtle to
look in the direction that makes an angle 8 with the x-axis. You will be surprised at what
interesting figures can be created by a turtle. For lots more on turtle geometry and interesting
graphics that can be generated with it see [AbeD81].
Add an item to the main menu so that it now looks like:

MAIN

L ]
Turtle
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Activating the Turtle item in the main menu should enter the user into “turtle graphics” mode,
show a turtle at its current position, and show the menu

TURTLE

PolySpi
Clear
MoveTo
Direction

A simple drawing of a turtle would be a small square with a line segment emanating from
it to show the direction in which it is looking. Activating “PolySpi” in the menu should (start-
ing with the current position and direction of the turtle) draw the path taken by the turtle
according to the following algorithm:

real dist, turnAngle, incr;
integer numSteps;

{Draws numSteps segments of a spiral with given exterior angle
(measured 1in degrees)}
for i:=1 to numSteps do
begin
Forward (dist);
Right (turnAngle);
dist := dist + 1incr;
end;

Draw the spiral after asking the user to input values for the four parameters. Some values to
try are num = 100 and (dist,angle,incr) = (.1,144,.1), (.05,89.5,.05), (.05,170,.05), and (.05,60,.05).
The “Clear” command should clear the viewport except for the turtle. The “MoveTo” and
“Direction” command should have the obvious effect on the turtle.

When entering the turtle menu for the first time, the turtle should be initialized to “sit” at
the center of an empty viewport “looking” right. After that the program should not reinitialize
the turtle or clear the screen on its own, except that the screen should be cleared whenever the
Turtle menu is exited. The turtle should only be visible whenever one is inside the Turtle menu.
When outside the turtle menu, the graphics area should always be blank except for the pos-
sible dimension values.

Note: You do not have to worry about clipping the turtle’s path to the window. In this program
it is the user’s responsibility to ensure that the path lies entirely inside the window.

1.5.4 Turtle crawling on a cube ([AbeD81])

For this project change the main menu to

MAIN

-
L]

Cube Walk
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p=at+zab+tad —
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Figure 1.9. Turtle crawling on cube.

This project is more advanced and requires familiarity with vectors. It also needs the
formula for the intersection of two segments discussed in Section 6.5. To display a turtle crawl-
ing on a cube we use a parallel projection of a three-dimensional cube into the plane. In this
way, the path of the turtle can be described via linear combinations of planar vectors without
involving any knowledge of transformations from R? to R2. See Figure 1.9(a) for what one
should see. Note that walking in a straight line preserves the angle the path makes with an edge
as the edge is crossed. Ignore the case where a path meets a vertex of the cube. One can let the
turtle disappear there.

The key idea is that, at any time, the turtle is in a face of the cube which one can identify
with a fixed square. The parallel projection then maps this square onto a parallelogram. See
Figure 1.9(b) where we map the square A with vertices a, b, ¢, and d onto the parallelogram
A’ with vertices a’, b’, ¢/, and d’, respectively. If p is an arbitrary point of A, write p in the form

a+sab+tad.
The parallel projection will then map p to
a’+sab’ +ta'd.

Therefore, the basic steps are:

(1) Pick points a; in the plane onto which the vertices of the cube (one may as well use
the standard unit cube [0,1] x [0,1] x [0,1]) get mapped.

(2) Keep track of the face the turtle is on along with the identification of its vertices with
the given vertices in the plane.

(3) When moving forward a certain distance d from a point p, check if this entails cross-
ing an edge. If yes, then move only to the point on the edge and move the remaining
distance in the new face in the next step. Let q be the end point of the current segment
through which we moved.

(4) Find the segment p’q” which is the image of the segment pq and draw it.

(5) Repeat steps (3) and (4) until one has moved forward the distance d. If we crossed an
edge, then we may have to update the face we are on.
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Figure 1.10. The chaos game.
® heads
side
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3
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To make the picture look nicer, draw the segments on the back faces of the cube with dashed
lines. To generate paths use a procedure like the polyspiral procedure in project 1.3.

1.5.5 The Chaos game ([Barn87])

To play this game add the following item to the main menu:

MAIN

Chaos Game

Let the user pick four points on the screen. For example, Figure 1.10 shows points marked
“heads,” “tails,” “side,” and “p;.” Now generate points p;, i = 2, as follows: “Toss a coin.” If the
coin comes up heads, p; is the point half way from p;_; to the point marked “heads.” If the coin
comes up tails, p; is the point half way from p;_; to the point marked “tails.” If the coin ends up
on its side, p; is the point half way from p;_; to the point marked “side.” Analyze the patterns of
points that are generated in this fashion. Tossing a coin simply translates into generating a
random integer from {0,1,2}.




CHAPTER 2

Raster Algorithms

Prerequisites: Sections 4.2, 5.2 in [AgoMO05] (to define and motivate concepts in
Section 2.2), Section 21.8 (for Section 2.6)

2.1 Introduction

As pointed out in our introductory chapter, the only real implementation constraint
that the hardware places on us is that all geometric objects eventually need to be rep-
resented by a collection of points in a two-dimensional grid (a raster). The subject
matter of this chapter is to analyze the geometry of discrete sets and to describe some
important algorithms that map continuous planar objects to discrete ones. Insofar as
it is possible, one would like the discrete world to be a mirror image of the continu-
ous one.

Section 2.2 starts the chapter by introducing some discrete world terminology.
Sections 2.3, 2.4, and 2.9.1 describe a border-following algorithm and several region-
filling algorithms. Sections 2.5 and 2.9 deal with discrete curves — how to generate
them and work with them efficiently. Sections 2.6-2.8 discuss some problems caused
by discretization and some ways to deal with them. Hardware issues that are involved
in the optimization of low-level graphics primitives are ignored in this book, but
Section 2.10 does briefly discuss how the existence of certain bit map operations helps
out. We finish with a brief discussion in Section 2.11 of a few basic techniques in 2d
animation.

2.2 Discrete Topology

This section defines the discrete analogs of a number of important continuous con-
cepts. Probably the most basic of these is the idea of continuity itself, and central to
that is the idea of a neighborhood of a point. Neighborhoods define the “topology” of
a space. Now a raster can be modeled in an obvious way as a subset of Z? and so this
leads us to describe some possible definitions of a neighborhood of a point in Z?, or
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more generally in Z". Although we are only interested in the case n = 2 in this chapter,
there is nothing special about that case (except for the terminology), and it is useful
to see what one can do in general. In fact, the case n = 3 will be needed to define dis-
crete lines for volume rendering in Chapter 10. This book will not delve into the
concept of curve rasterization in dimensions larger than 3, but the subject has been
studied. See, for example, [Wiith98] or [Herm98].

Definition. In Z?, the 4-neighbors of (i,j) are the four large grid points adjacent to
(i,j) shown in Figure 2.1(a). The 8-neighbors of (i,j) are the eight large grid points adja-
cent to (i,j) in Figure 2.1(b). More precisely, the 4-neighbors of (i,j) are the points (i,j
+1), (-1, G,j-1), and (i + 1,j). The 8-neighbors can be listed in a similar way.

In order to generalize this definition to higher dimensions, think of the plane as
tiled with 1 x 1 squares that are centered on the grid points of Z? and whose sides are
parallel to the coordinate axes (see Figure 2.1 again). Then, another way to define the
neighbors of a point (i,j) is to say that the 4-neighbors are the centers of those squares
in the tiling that share an edge with the square centered on (i,j) and the 8-neighbors
are the centers of those squares in the tiling that share either an edge or a vertex with
that square. Now think of R" as tiled with n-dimensional unit cubes whose centers
are the points of Z™ and whose faces are parallel to coordinate planes.

Definition. In Z3, the 6-neighbors of (i,j,k) are the grid points whose cubes meet the
cube centered at (i,j,k) in a face. The 18-neighbors of (i,j,k) are the grid points whose
cubes meet that cube in either a face or an edge. The 26-neighbors of (i,j,k) are the
grid points whose cubes meet that cube in either a face or an edge or a point.

Figure 2.2(a) shows the cubes of the 6-neighbors of the center point. Figure 2.2(b)
shows those of the 18-neighbors and Figure 2.2(c), those of the 26-neighbors. More
generally,
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Figure 2.1. The 4- and 8-neighbors of a point. @) b)
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Figure 2.2. The 6-, 18-, and 26-neighbors of a point.
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Definition. Let p € Z" and let d be a fixed integer satisfying 0 < d < n - 1. Suppose
that k is the number of points of Z" that are the centers of cubes that meet the cube
with center p in a face of dimension larger than or equal to d. Each of those points
will be called a k-neighbor of p in Z".

Note: The general definition for k-neighbor is not very satisfying because it is rela-
tively complicated. It would have made more sense to call the point a “d-neighbor.”
Unfortunately, the terminology as stated is too well established for the two- and three-
dimensional case to be able to change it now.

Definition. Two points in Z" are said to be k-adjacent if they are k-neighbors.

k-adjacency is the key topological concept in the discrete world. All the terms
defined below have an implicit “k-” prefix. However, to simplify the notation this prefix
will be dropped. For example, we shall simply refer to “adjacent” points rather than
“k-adjacent” points. It must be emphasized though that everything depends on the
notion of adjacency that is chosen, that is, for example, whether the intended k is 4
or 8, in the case of Z?, or 6, 18, or 26, in the case of Z>. To make this dependency
explicit, one only needs to restore the missing “k-” prefix.

There is a nice alternate characterization of k-adjacency in two special cases that
could have been used as the definition in those cases.

Alternate Definition. Let p = (p1,p2,...,pPn), 4 = (41,92, - - - ,qun) € Z". The points p
and q are 2n-adjacent in Z" if and only if

n
Z|Qi -pil=1
i=1
They are (3" — 1)-adjacent in Z" if and only if p#q and |g; —pij| £ 1 for 1 <i<n.
Properties of 2n- and (3" — 1)-adjacency are studied extensively in [Herm98].
Definition. A (discrete or digital) curve from point p to point q in Z" is a sequence
rs, 1 <s <Kk, of points such that p =r, q = r, and ry is adjacent to rg;, 1 <s <k - 1.

Furthermore, with this notation, we define the length of the curve to be k — 1.

For example, the points pi, p2, p3, and p4 in Figure 2.3 form a discrete curve of
length 3 with respect to 8-adjacency but not with respect to 4-adjacency because p;
and p, are not 4-adjacent.

Definition. A set S is connected if for any two points p and q in S there is a curve
from p to q that lies entirely in S. A maximal connected subset of S is called a
component.

Py Figure 2.3. An 8-connected discrete curve.
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Because of the difference between 4- and 8-connected, note the difference between
a 4-component and an 8-component. It is easy to show that every 8-component is the
union of 4-components (Exercise 2.2.2). A similar comment holds for the components
of sets in Z°.

Some Definitions. We assume that the sets S below are subsets of some fixed set P
in Z". In practice, P is usually a large but finite solid rectangular set representing the
whole picture for a scene, but it could be all of Z".

The complement of S in P, denoted by S¢, is, P — S.

The border of S, B(S), consists of those points of S that have neighbors belonging
to S if S # P or neighbors in Z" - P if S =P.

The background of S is the union of those components of S¢ that are either
unbounded in Z" or that contain a point of the border of the picture P.

The holes of S are all the components of S¢ that are not contained in the back-
ground of S.

S is said to be simply connected if S is connected and has no holes.

The interior of S, iS, is the set S — B(S).

An isolated point of S is a point of S that has no neighbors in S.

If S is a finite set, then the area of S is the number of points in S.

See Figure 2.4 for some examples.

Definition. There are several ways to define the distance d between two points (i,j)
and (k,1) in Z?, or, more generally, between points p and q in Z™

(a) Euclidean distance:  d=+(i-k)*+(j-1" or d = |pql.
(b) taxicab distance: d=lk-i+|j-1lord= Z|Qi -pil
i=1

This distance function gets its name from the fact that a taxi driving from one
location to another along orthogonal streets would drive that distance.

(¢) max distance: d = max (k —i|,|j = 1)) or d =max{|q; - pil}.
1<i<n
A — in background
ter B — in border
L ] .D L ] L] L] L]
***c** C - in hole
L] L] L L] -
A n° . D - in interior
Figure 2.4. Examples of discrete B E
concepts. E - isolated
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All three of these distance functions define a metric on Z®, called the Euclidean,
taxicab, and max metric, respectively. (They actually also define a metric on R".) For
example, consider the points p = (2,1) and q = (5,3). Then the distances between these
two points are:

Euclidean distance: 13
Taxicab distance: 5
Max distance: 3

The points that are a distance of 1 from a given point are its 4-neighbors when we
use the taxicab distance and the 8-neighbors when we use the max distance.

Finally, the rest of this chapter deals with two-dimensional sets and, unless stated
otherwise, all our sets will be (discrete) subsets of some given picture P in Z2. We shall
use the terminology above.

2.3 Border-Following Algorithms

Algorithms that can compute the borders of regions in a picture are important in a
variety of places, in particular in animation. We describe one such algorithm here to
give the reader a flavor of what they are like. See [RosK76] for more details. Other
contour-following algorithms are described in [Pavl82]. See also [Herm98].

Assume that each point of a picture has a value associated to it and that in our
case this is either 0 or 1, with the region of interest in it being the points with value
1. We shall show pictures by showing the values at their points and, to simplify the
discussion, we often identify the point with its value. (“Setting a point to 3” will mean
setting its value to 3.)

Definition. If C is a component of S, D a component of S€, then the D-border of C
is the set of points of C that are adjacent to a point of D.

For example, consider the connected set S of 1’'s below:

1 11
1 01
1 11

—
—J

Let Dy and D, be the components of S€ that contain the left and right “0,” respectively.
Then

1 11 1 111
1 1 and 1 1
1 11 1 111

are the D;-border and D,-border of S, respectively.
Algorithm 2.3.1 is one border-following algorithm.
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Input : an 8-component C of S, a 4-component D of S°
4-adjacency
adjacent points ce C, de D

Output:  all points of D-border of C
Follow the steps below:

(1) If Cis an isolated point, then the D-border is just c. Change c to 4 and stop.
Otherwise, change ¢ to 3 and d to 2.

(2) List the 8-neighbors of ¢ in clockwise order starting with d and ending with first
occurrence of 1, 3, or 4:
€1,€, ..., €

(3) If cis 3,exis 4, and e, is 2 for some h <k, then set c to 4, e, to 0, and stop;
otherwise, set c to 4 (only if it was 1 and not 3), take ey as the new c, take ey_;
as the new d, and go back to (2).

When the algorithm stops, the 4’s will be the D-border of C.

Algorithm 2.3.1. A border-following algorithm.

2.3.1 Example. We show the various stages of Algorithm 2.3.1 for a set S. The
values of points in the pictures below are shown in boldface and S starts off as the
points marked with 1’s. The current ¢ and d are shown in parentheses to the left of
the point to which they refer. The numbering of the 8-neighbors of ¢ is shown in paren-
theses to the right of the point. We also show the value of k that we get in step (2) of
the algorithm.

d0(1) 02) 0 2 (d0(1) 0(2) 2 0 0 0 2 0 0
©1 13) 0 — 3 ©1 03 — 3 48 @01 02) — 3 (4 0 —
1 0 1 1 0 14 1 07) @©1 0Q3) 12) (d0(1) 4

0 06) 05 04) 0 0 0
k=3 k=4 k=38 k=2
0 2 0 0 02) 23) 04) 0 0 o0 0
06) 37 4 0 — D0 ©3 450 —> 4 4 0
05 ©1 (o) 4 0 4 0 4 4 0 4

0(4) 0(3) 02 0
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Finally, the configuration

1 11 1

1 1 0 1

1110 1
1

shows that the choice of adjacency is important. The algorithm fails if C is a 4-
component and must be changed. See [RosK76].

Algorithm 2.3.1 can be used to find all border points of a set S. It provides a way
of marking its border points so that one can then fill the interior of S using a fill algo-
rithm of the type discussed in the next section.

2.4 Fill Algorithms

Contour-filling algorithms are used in many places. For example, in pattern recogni-
tion problems integrals may have to be computed over areas; in photo typesetting,
fonts are described by contours that are later filled; in animation, the cel painter who
fills figures has the next most time-consuming job after the animator.

There are two broad classes of such algorithms — polygon-based (edge-filling) algo-
rithms and pixel-based algorithms. The former can be used in the case where the
regions to be filled are defined by polygons and we can use the equations for the edges.
The latter are, in a sense, more general because they can be used both for polygonal
regions and also arbitrary regions whose boundaries are defined on the pixel level.

There is also a distinction as to how the algorithm decides whether a point is in
the interior of a region. Some use a parity check that is based on the fact that lines
intersect a closed curve an even number of times (if one counts intersections at certain
special points such as at points of tangency correctly). This test is always used in case
of polygon-based algorithms, but can also be used for pixel-based ones. Other algo-
rithms, called seed fill algorithms, use connectivity methods. Here it is assumed that
one is given a starting point or seed. Then one sees which pixels can be reached from
this one without crossing the contour. The bounding curves can be quite general. This
approach applies only to pixel-based algorithms. Also, one needs to know an interior
point. This is okay in interactive situations (where one picks one using a mouse, for
example), but if one wants to automate the process, note how border-following algo-
rithms become relevant.

In this section we shall describe the pixel-based seed fill algorithms. Section 2.9.1
will look at polygon-based fill algorithms.

The Flood Fill Problem: Given distinct colors ¢ and ¢’, a set A of the same color ¢ bounded
by points whose colors are different from ¢ and ¢’, find an algorithm that changes all points
of A and only those to the color ¢'.

An algorithm that solves this problem is called a flood fill algorithm. There are a
number of related fill problems and associated algorithms. For example, boundary fill
algorithms assume that all points of the boundary have the same color, which is dif-
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procedure BFA (integer x, y)
if Inside (x,y) then
begin
Set (x,y);
BFA (x,y —1); BFA(x,y + 1);
BFA (x — 1,y); BFA (x + 1,y);
end;

Algorithm 2.4.1. The basic fill algorithm.

ferent from the color inside the region, where the boundary of a set S means here the
set of points of S° that are adjacent to S.

In the algorithms of this section, the Boolean-valued function Inside(x,y) deter-
mines whether or not the pixel at (x,y) has the property one wants. The procedure
Set(x,y) sets the value of the pixel at (x,y) to its desired value. For example, to get a
flood fill algorithm let Inside(x,y) be true if the value of the pixel at (x,y) agrees with
the value of the pixels in the region and let Set(x,y) set the pixel value to its new
value (the same as Draw(x,y,c’)). Using the functions Inside and Set will make our
algorithms more general and applicable to a variety of fill algorithms. There is one
constraint on the Inside function however: Inside(x,y) must return false after an
operation Set(x,y).

Assume 4-adjacency is chosen and that our regions are 4-connected. The BFA pro-
cedure in Algorithm 2.4.1 shows that the basic idea behind a fill algorithm is very
simple. Notice that 4-connected is important and that the algorithm will not work if
the region is not 4-connected.

Although the BFA algorithm is simple, the recursion is expensive. One of the earli-
est nonrecursive algorithms is due to Smith ([Smit79]). It is not very efficient because
pixels are visited twice, but many of the better algorithms are based on it. It will be
worthwhile to describe Smith’s algorithm, Algorithm 2.4.2, first before we present the
one due to [Fish90b]. In this algorithm and the next, the constants XMIN, XMAX,
YMIN, and YMAX define the minimum and maximum values for the x- and y-
coordinates of pixels in the viewport. The procedures Push and Pop push and pop a pair
(x,y) onto and from a stack, respectively. The function StackNotEmpty tests whether
this stack is empty or not. The procedures Inside and Set are as described above.

For example, suppose that in Figure 2.5 our starting point is (7,3). After the first
FillRight command the two-pixel segment from (7,3) to (8,3) would have been filled.
The FillLeft command would fill (6,3). The ScanHi command would place the pixel
coordinates (6,4) and (8,4) on the stack in that order. The ScanLo command would
add (6,2). The segments of the region that (6,4), (8,4), and (6,2) belong to are usually
called “shadows.” The point of the ScanHi and ScanLo procedures is to find these
shadows that still need to be filled. We now return to the beginning of the main while
loop, pop (6,2), and make that our new starting point. The next FillRight and
FillLeft would fill the segment from (2,2) to (8,2). The ScanHi and ScanLo would
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{ Global variables }
integer x, y, Ix, rx;
a stack of pixel coordinates (X,y);

procedure Fill (integer seedx, seedy)
begin
x :=seedx; y :=seedy;
if not (Inside (x,y)) then Exit;
Push (x,y);
while StackNotEmpty () do
begin
PopXY ();
if Inside (x,y) then
begin
FillRight (); FillLeft (); { Fill segment containing pixel }
ScanHi (); ScanLo (); { Scan above and below current segment }
end
end
end;

procedure FillRight ()
begin
integer tx;

tx 1= X;
{ Move right setting all pixels of segment as we go }
while Inside (tx,y) and (tx < XMAX) do

begin

Set (tx,y); tx :=tx+ 1;

end;

rx :=tx — 1; { Save index of right most pixel in segment }
end;

procedure FillLeft ()
begin
integer tx;

X :=X;
{ Move left setting all pixels of segment as we go }
while Inside (tx,y) and (tx = XMIN) do

begin
Set (tx,y); tx :=tx—1;
end;
Ix :=tx+ 1; { Save index of left most pixel in segment }

end;

Algorithm 2.4.2. The Smith seed fill algorithm.
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procedure ScanHi ()

{ Scan the pixels between Ix and rx in the scan line above the current one.
Stack the left most of these for any segment of our region that we find.
We do not set any pixels in this pass. }

begin

integer tx;

if y+1>YMAX then Exit;
tx ;= Ix;
while tx <rx do
begin
{ Scan past any pixels not in region }
while not (Inside (tx,y + 1)) and (tx <rx) do tx :=tx+1;
if tx <rx then
begin
Push (tx,y + 1);
{ We just saved the first point of a segment in region.
Now scan past the rest of the pixels in this segment. }
while Inside (tx,y + 1) and (tx <rx) do tx :=tx+1;
end;
end
end;

procedure ScanlLo ()

{ Scan the pixels between Ix and rx in the scan line below the current one.
Stack the left most of these for any segment of our region that we find.
We do not set any pixels in this pass. }

begin

integer tx;

if y—1<YMIN then Exit;
tx = 1x;
while tx <rx do
begin
{ Scan past any pixels not in region }
while not (Inside (tx,y — 1)) and (tx <rx) do tx :=tx+1;
if tx <rx then
begin
Push (tx,y — 1);
{ We just saved the first point of a segment in region.
Now scan past the rest of the pixels in this segment. }
while Inside (tx,y — 1) and (tx <rx) do tx :=tx+1;
end;
end
end;

Algorithm 2.4.2. Continued
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Figure 2.5. A fill algorithm example.
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Figure 2.6. Pixel shadows.

put (2,3) and (6,3) on the stack. The loop would start over and pop (6,3). This time,
since (6,3) has already been filled, we immediately jump back to the beginning and
pop (2,3), and so on.

The problem with Smith’s basic algorithm is that we look at some pixels twice, as
we saw in the case of (2,3) in the previous example. This happens because we auto-
matically put coordinates from both the line above and the line below the current one
on the stack. When we then, say, deal with the line above, the algorithm will have us
look at the current line again because it will be the line below that one. For a fast
algorithm we need to prevent this duplicate effort. Algorithm 2.4.3 from [Fish90b]
involves more bookkeeping because it differentiates between the three different types
of possible shadows shown in Figure 2.6, but it will read each pixel only slightly more
than once on the average and also has good worst-case behavior. Fishkin points out
that it is optimal if the region has no holes.

An alternative improvement to Smith’s seed fill algorithm is described by Heck-
bert in [Heck90b].

Finally, another distinction that is made between flood fill algorithms is whether
we are dealing with hard or soft area flooding. The algorithms we have described so
far were hard area flooding, which basically assumed that the region to be filled was
demarcated by a “solid” boundary, that is, a curve of pixels all of the same color. Such
a boundary would be a jagged curve. To get a smoother looking boundary one typi-
cally would blur or “shade” it by assigning a gradation of colors in a neighborhood
of it. (The causes of the “jaggies” and solutions to the aliasing problem are discussed
later in Section 2.6.) If boundaries are shaded, then we would like filling algorithms
to maintain this shading. Soft area flooding refers to algorithms that do this and leave
any “shading” intact. Smith’s paper [Smit79] is a good reference for both hard and
soft area flooding. The tint fill algorithm he describes in that paper is a soft area flood-
ing algorithm.

There are other types of pixel-based fill algorithms. Pavlidis [Pavl82] describes a
parity check type algorithm. Rogers [Roge98] describes various algorithms for filling
regions bounded by polygons that he calls “edge fill” algorithms.
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direction = (-1,+1);
stackRec = record { a stackRec records the data for one shadow }
integer myLx, myRx, { endpoints of this shadow }
dadLx, dadRx, { endpoints of my parent }
myY; { scan line of shadow }
direction myDirection; { —1 means below parent, +1 means above }
end;

{ Global variable }
stack of stackRec shadowStack;

procedure Fill (integer seedx, seedy)
begin
label 1,2
integer X, I, rx, dadLx, dadRx, y;
direction dir;
boolean  wasln;

Initialize shadowStack to empty;
Find the span [Ix,rx] containing the seed point;

Push (Ix,rx,Ix,rx,seedy+1,1);
Push (Ix,rx,Ix,rx,seedy—1,-1);

while StackNotEmpty () do
begin
1: Pop ();
if (y < YMIN) or (y > YMAX) then Goto 1;
X:=Ix+1;
wasln := Inside (Ix,y);
if wasIn then
begin
Set (Ix,y); Ix:=1x—1;

{ If the left edge of the shadow touches a span, then move to its
left end setting pixels as we go }
while Inside (Ix,y) and 1x > XMIN do
begin
Set (Ix,y); Ix:=1x—1;
end
end;

{ Start the main loop. Moving to the right starting from the current position x,

if wasln is true, then we are inside a span whose left edge is at Ix. }

Algorithm 2.4.3. The Fishkin seed fill algorithm.
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while x < XMAX do

if wasln
then
begin
if Inside (x,y)
then Set (x,y) { was inside and still inside }
else
begin
{ was inside but not anymore, i.e., we
just passed the right edge of a span }
Stack (dadLx,dadRx,1x,x—1,y,dir);
wasln := false;
end
end
else
begin
if x >rx then Goto 2;
if Inside (x,y) then
begin
{ we weren't inside but are now, i.e.,
we just found the left edge of a new span }
Set (X,y);
wasln := true;
Ix :=x;
end
X:=x+1;
end;
2: if wasIn then

{ we just hit the edge of the viewport while in a span }
Stack (dadLx,dadRx,1x,x—1,y,dir);
end
end;

boolean function StackNotEmpty ()
{ Returns true if shadowStack is empty and false otherwise }

procedure Push (integer myl, myr, dadl, dadr, y; direction dir)
{ Pushes record onto shadowStack }

procedure Pop ()
{ Pops top of shadowStack into local variables Ix, rx, dadLx, dadRx, y, dir }

procedure Stack (integer dadLx, dadRx, Ix, rx, y; direction dir)

{ Pushes an extra shadow onto shadowStack, given a newly discovered span
and its parent. This is where the three types of shadows are differentiated. }

begin

Algorithm 2.4.3. Continued
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integer pushrx, pushlx;

pushrx :=rx+1; pushlx :=1x—1;

Push (Ix,rx,pushlx,pushrx,y+dir,dir);

if rx >dadRx then Push (dadRx+1,rx,pushlx,pushrx,y—dir,dir);

if 1x <dadLx then Push (Ix,dadLx—1,pushlx,pushrx,y—dir,dir);
end;

Algorithm 2.4.3. Continued

2.5 Generating Discrete Curves

Now we start a central topic of this chapter, namely, curves and the problem that one
runs into when one tries to represent them with a discrete set of points. Clearly, we
want any mapping of continuous structures into discrete ones to preserve the visual
shape properties, such as smoothness and uniform thickness, as much as possible but
this is not easy. We shall look at the problem of defining and generating discrete lines
first and then conics.

Lines, or more accurately segments, are the most basic of computer graphics
objects because most modeling systems use linear approximations to all objects so
that displaying them reduces to drawing lots of lines. It is possible to actually give a
formal definition of a discrete “straight” line (see [ArcM75] and [BoLZ75]). Not sur-
prisingly, such definitions get complicated, but from a practical point of view we are
not really interested in a definition. Rather, we are happy with an algorithm that gen-
erates a satisfactory set of points for a line. What is satisfactory? Well, that is not very
precise, but some attributes that we want the generated discrete lines to have are:

(1) Visually, the line should appear as straight as possible.

(2) The line should start and end accurately, so that, for example, if several con-
tiguous line segment are drawn, then there is no gap between them.

(3) Each line should appear to have an even visual thickness, that is, it should
have as constant a density as possible, and this thickness should be inde-
pendent of its length and slope.

(4) The conversion process must be fast.

In Sections 2.5.1-2.5.3 we look at line-drawing algorithms for the monochrome
case, that is, where the raster is an array of 0’s and 1’s and the line consists of those
pixels that are set to 1. Section 2.6 looks at some deeper problems that one encoun-
ters in the process of discretizing continuous objects and making them look smooth.
Section 2.9.1 looks at a scan line algorithm for lists of lines and fill algorithm for
polygons.

Conics are the next most common curve after the “straight” line. The circle is one
obvious such curve, but the other conics are also encountered frequently. Their geo-
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metric properties and relatively low degree (when compared with the popular cubic
splines) make them attractive for use in designing shapes such as fonts. Because of
this, a great deal of effort has been spent on devising efficient algorithms for com-
puting them. We shall look at a few of these in Sections 2.9.2 and 2.9.3.

Because one common theme of some of the algorithms that generate discrete
curves is derived from the geometric approach to solving differential equations, we
start with that subject.

25.1 Digital Differential Analyzers
Consider the basic first order differential equation of the form

dy _ _gxy)
Ix =f(x,y) = h(xy) (2.1)

If y(x) is any solution, then f(x,y(x)) specifies the slope of the graph of y(x) at the point
(x,y(x)). In other words, if one thinks of the function f as specifying a vector field over
the entire plane (to (x,y) in the plane we associate the vector (1,f(x,y))), then solving
equation (2.1) corresponds to finding a parameterized curve x — (x,y(x)) whose
tangent vectors agree with the vectors from this vector field. Mathematicians call such
curves “integral curves.” In general, given a vector field, a curve whose tangent vectors
agree with the vectors of that vector field at every point on the curve is called an inte-
gral curve for that vector field. See Figure 2.7. The reason for this nomenclature is
that solving for the curve basically involves an integration process.

This idea of vector fields and integral curves leads to the following approach to
finding numerical solutions to differential equations called Euler’s method. Suppose
that we want the solution to pass through py = (x¢,y0). Since we know the tangent
vector to the solution curve there and since the tangent line is a good approximation
to the curve, moving a small distance along the tangent, say by e(h(xq,v0),2(x0,y0)),
where € is a small positive constant, will put us at a point p; = (x1,y1), which hope-
fully is not too far away from an actual point on the curve. Next, starting at p; we
repeat this process. In general, let

S
0 Ly
o

VA4

Figure 2.7. Integral curves of a vector
field.
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Figure 2.8. Generating an integral curve y

approximation. Y= et

dy ghe,y)
dx B hix,y)
o
pir1 = pi +eth(xi,yi), g(xi,yi))- (2.2)
See Figure 2.8. The sequence of points po, p1, ..., pn Obtained in this way becomes

our approximation to the actual integral curve passing through py.

Unfortunately, as we move from point to point we start drifting away from the
actual curve and so our approximation will, in general, get further and further away
from the true solution. To make the method work we need to compensate for any
possible error as we move along. There are some very good algorithms that solve dif-
ferential equations with basically this approach by using some fancy error-correcting
terms. For more information see a text on numerical analysis such as [ConD72] or
[DahB74].

Discrete curve-drawing algorithms that are based on the qualitative solutions to
differential equations as described above are called digital differential analyzer or DDA
type algorithms. Let us see what we get in the special case of straight lines.

The differential equation for the straight line that passes through the points (xg,yo)
and (x1,y1) is

dy _ Ay _edy
dx Ax eAx’

where Ay = y; — yg, AX = X1 — Xq, and € is any positive real number. Specializing the
approximation formula, equation (2.2), to this differential equation gives us a
sequence of points p; defined by

Pi+1 =Ppi + (EAX,SAy). (23)

In fact, the points p; we generate will actually fall on the line, so that we do not have
to worry about compensating for any errors. Although this may seem like overkill in
the case of continuous lines, it does motivate an approach to generating discrete lines
that leads to an extremely efficient such algorithm (the Bresenham algorithm). Note
that if q; is the point with integer coordinates that is gotten from p; by rounding each
real coordinate of p; to its nearest integer, then the points q; define a discrete curve
that is an approximation to the continuous one. The key to getting an efficient line-
drawing algorithm is to be able to compute the q; efficiently.
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u Figure 2.9. Simple and symmetric
DDA generated lines.

o

_*f‘

X simple DDA e symmetric DDA

In the continuous case one always generates points on the line no matter what ¢
is chosen but the choice of € does matter when generating discrete lines. We now look
at two possible choices for €. These give rise to what are called the simple and sym-
metric DDA, respectively.

Let m = max(JAx|,|Ay]).

The simple DDA: Choose € = 1/m.
The symmetric DDA: Choose € = 27", where 22l <m < 2m,

2.5.1.1 Example. Suppose that we want to generate the discrete line from (1,2) to
(6,5).

Solution. In this case (Ax,Ay) = (5,3). For the simple DDA we have
e=1/5, eAx =1, eAy =3/5, and pi. =p; +1,3/5).
In the case of the symmetric DDA, we have
e=1/8, eAx=5/8, eAy=3/8, and pi =p;+(5/8,3/8).

The points that are generated are shown in Figure 2.9. The points of the simple DDA
are shown as x’s and those of the symmetric DDA are shown as solid circles.

252 The Bresenham Line-Drawing Algorithm

Although the DDA algorithms for drawing straight lines are simple, they involve real
arithmetic. Some simple modifications result in an algorithm that does only integer
arithmetic, and only additions at that.

Note that in the case of the simple DDA, either x or y will always be incremented
by 1. For simplicity, assume that the start point of our line is the origin. If we also
restrict ourselves to lines whose endpoint is in the first octant in the plane, then it will
be the x that always increases by 1. Therefore, we only need to worry about comput-
ing the y coordinates efficiently.
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Suppose therefore that we want to draw a line from (0,0) to (a,b), where a and b
are integers and 0 < b < a (which puts (a,b) into the first octant). Using equation (2.3),
the points p;, 0 <1i < a, generated by the simple DDA are then defined by

pi =pi_1 +(1,b/a) = (i,i b/a),

and the discrete line consists of the points (i,y;), where y; is the real number i(a/b)
rounded to the nearest integer.

Now the y coordinates start at 0. At what point does y; become 1? To answer this
question, we must compute b/a, 2b/a, 3b/a, . .., and watch for that place where these
values become bigger than 1/2. Furthermore, the y; will then stay 1 until these values
become bigger than 3/2, at which time y; will become 2. Since we want to avoid doing
real arithmetic, note that we do not really care what the actual values are but only
care about when they get bigger than 1/2, 3/2, 5/2, . ... This means that we can mul-
tiply through by 2a and the answer to the question as to when y; increases by 1 is
determined by when 2b, 4b, 6b, . .. become bigger than a, 3a, 5a, . ... Since comput-
ers can compare a number to 0 in less time than it takes to compare it to some other
number, we shall start off by subtracting a. Our first question now is

“When does 2b — a, 4b — a, 6b — a, . . . become bigger than 0?”

and only involves repeated integer additions of 2b to an initial sum d = 2b — a. After
the sum d has become bigger than 0 and y has switched to 1, we need to check when
the sum becomes bigger than 2a. By subtracting 2a, we again only need to keep check-
ing for when the sum gets to be bigger than 0 by successive additions of 2b. In general,
whenever y is incremented by 1, we subtract 2a from the current sum d. In that way
we always need to check d simply against 0. For example, suppose we want to draw
the line from (0,0) to (15,3). In this case, 2a = 30, 2b = 6, and the initial d is 6 — 15 =
-9. The table below shows the points (x;,y;) that are drawn and the changes to the
sum d as i ranges from 0 to 8:

i |0 1 2 3 4 5 6 7 8
d 9 3 27 21 -15 -9 -3 27
(xpyi) [ (0,00 (1,00 (200 G 41D G (61 ((71) (82)

The code in Algorithm 2.5.2.1 implements the algorithm we have been describing.

In our discussion above we have restricted ourselves to lines that start at the origin
and end in the first octant. Starting at another point simply amounts to adding a con-
stant offset to all the points. Lines that end in a different octant can be handled in a
similar way to the first octant case — basically by interchanging the x and y. What this
boils down to is that an algorithm which handles all lines is not much harder, involv-
ing only a case statement to separate between the case where the absolute value of
the slope is either larger or less than or equal to 1.

We have just described the basis for the Bresenham line-drawing algorithm
([Bres65]). It, or some variation of it, is the algorithm that is usually used for drawing
straight lines. Bresenham showed in [Bres77] that his algorithm generated the best-
fit discrete approximation to a continuous line. The variation that is Algorithm 2.5.2.2
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Code for drawing the discrete line from (0,0) to the point (a,b) in the first octant:

begin
integer d, x, y;
d:=2%b—a;
x :=0;
y:=0;
while true do
begin
Draw (x,y);
if x =a then Exit;
if d>0 then
begin
y=y+1
d:=d-2%*a;
end;
X=X+ 1;
d:=d+2%b;
end

end

Algorithm 2.5.2.1. Basic line-drawing algorithm.

comes from [Heck90c] and works for all lines. It generates the same points as the
original Bresenham line-drawing algorithm but is slightly more efficient.

To further improve the efficiency of DDA-based algorithms, there are n-step algo-
rithms that compute several pixels of a line at a time. The first of these was based on
the idea of double stepping. See [ROWW90] or [Wyvi90]. There are also algorithms
that use a 3- or 4-step process. See [BoyB00] for an n-step algorithm that automati-
cally uses the optimal n and claims to be at least twice as fast as earlier ones.

253 The Midpoint Line-Drawing Algorithm

Because drawing lines efficiently is so important to graphics, one is always on the

lookout for better algorithms. Another well-known line-drawing algorithm is the so-

called midpoint line-drawing algorithm. It produces the same pixels as the Bresenham

algorithm, but is better suited for generalizing to other implicitly defined curves such

as conics and also to lines in three dimensions (see Section 10.4.1). The general idea

was first described in [Pitt67] and is discussed in greater detail by [VanN85].
Assume that a nonvertical line L is defined by an equation of the form

f(x,y)=ax+by+c=0,
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procedure DrawLine (integer xo, Yo, X1, Y1)
begin
integer dx, ax, sgnx, dy, ay, sgny, X, ¥, d;

dx :=x1 —x0; ax:=abs (dx)*2; sgnx := Sign (dx);
dy :=yl —y0; ay:=abs (dy)*2; sgny :=Sign (dy);
x =x0; y:=y0;

if ax > ay
then { x increases faster than y }
begin
d:=ay —ax/2;
while true do
begin
Draw (x,y);
if x =x1 then Exit;
if d>0 then
begin
y:=y+sgny; d:=d-ax;
end;
X :=x+sgnx; d:=d+ay;
end
end
else { y increases faster than x }
begin
d:=ax —ay/2;
while true do
begin
Draw (x,y);
if y=yl then Exit;
if d>0 then
begin
x:=x+sgnx; d:=d-ay;
end;
y:=y+sgny; d:=d+ax;
end
end
end;

integer function Sign (real x)

if x<0O then return(-1)
else return (+1);

Algorithm 2.5.2.2. A Bresenham line-drawing algorithm.
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Figure 2.10. The midpoint line-drawing algorithm
y; + 1 _— decision.
/',_,.-—" u; * 8.5
o
Xg  Xjag = X3t 1

where —b > a > 0. This assumption implies that our line has slope between 0 and 1.
Lines with other slopes are handled in a symmetric way like in Bresenham’s algo-
rithm. Vertical lines are a very special case that would be handled separately. Another
important consequence of our assumptions is that f(x,y) will be positive for points
(x,y) below the line and negative for points above the line. Also like in the Bresenham
algorithm, the points p; = (x;,y;) that we will generate for the line will have the prop-
erty that the x-coordinate will be incremented by 1 each time, xi;; = x; + 1, so that we
only have to determine the change in the y coordinate.

See Figure 2.10. The only possible value for yi; is y; or y; + 1. The decision will
be based on the sign of

di = f(Xi +1, yi+ 05)

If d; > 0, then the line L crosses the line x = x; + 1 above the point (x; + 1, y; + 0.5) and
we need to let yi,1 be y; + 1. If d; < 0, then we should let yi;; be y;. If d; = 0, then either
y value would be satisfactory. We shall choose y; in that case. Choosing our points p;
in this way is what constitutes the basic idea behind the midpoint line-drawing algo-
rithm. The only thing that is left is to describe some optimizations that can be made
in the computations. First, the d; can be computed efficiently in an incremental way.
By definition, if d; < 0, then

di+1 = f(Xi +2, Vi + 05)
=a(x;+2)+b(y; +0.5)+c
= di +a.

On the other hand, if d; > 0, then

dis1 =£(xi +2,y; +1.5)
=a(xj +2)+b(y; +1.5)+¢
=d;+a+b.

This shows that the next value of the decision variable can be computed by simple
additions to the previous value. If our line L starts at the point pg = (Xo,y0) , then

do = f(Xo +1, Yo +05) Zf(Xo, y0)+a+b/2.

This gives us the starting value for the decision variable and all the rest are computed
incrementally. We can avoid the fraction in the starting value and do all our compu-
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tations using purely integer arithmetic by multiplying the equation for our line by 2,
that is, let us use

F(x,y) =2f(x,y) =2(ax+ by +c) =0.

This has the effect of multiplying our starting value for the decision variable and its
increments by 2. Since only the sign of the variable was important and not its value,
we have lost nothing. Putting all this together leads to Algorithm 2.5.3.1.

Finally, before leaving the subject of line-drawing algorithms, we should point out
that there are other such algorithms other than the ones mentioned here. For example,
there are run-based line drawing algorithms. See [SteL00]. One thing to keep in mind

procedure DrawLine (integer xo, yo, X1, Y1)
{ We have chosen the equation

f(x,y) = dy)x=(dx)y+c =0
as the equation for the line. }
begin

integer dx, dy, d, posInc, neglnc, X, y;

dx :=x; — Xg;

dy :=yi —yo;
d :=2*dy —dx; { Initial value of decision variable }
poslnc :=2*dy; { The increment for d when d =20 }

neglnc := 2*(dy — dx); { The increment ford when d <0 }
X =Xo; Y=o

Draw (x,y);
while x <x; do
begin
if (d<0)
then d :=d + poslnc
else
begin
d:=d+neglnc; y:=y+1;
end;
X:=X+1;
Draw (x,y);
end
end;

Algorithm 2.5.3.1. The midpoint-line drawing algorithm.
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though is that the time spent in line drawing algorithms is often dominated by the
operation of setting pixels in the frame buffer, so that software improvements alone
may be less important.

2.6 The Aliasing Problem

No matter how good a line drawing algorithm is, it is impossible to avoid giving most
discrete lines a staircase effect (the “jaggies”). They just will not look “straight.”
Increasing the resolution of the raster helps but does not resolve the problem entirely.
In order to draw the best looking straight lines one has to first understand the “real”
underlying problem which is one of sampling.

The geometric curves and surfaces one is typically trying to display are continu-
ous and consist of an infinite number of points. Since a computer can only show a
finite (discrete) set of points, how one chooses this finite set that is to represent the
object is clearly important. Consider the sinusoidal curve in Figure 2.11. If we sample
such a sine wave badly, say at the points A, B, C, and D, then it will look like a straight
line. If we had sampled at the points A, E, F, and D, then we would think that it has
a different frequency.

The basic problem in sampling theory: How many samples does one have to take so
that no information is lost?

This is a question that is studied in the field of signal processing. The theory of
the Fourier transform plays a big role in the analysis. Chapter 21, in particular Section
21.6, gives an overview of some of the relevant mathematics. For more details of the
mathematics involved in answering the sampling problem see [GonW87], [RosK76],
or [Glas95]. We shall only summarize a few of the main findings here and indicate
some practical solutions that are consequences of the theory.

Definition. A function whose Fourier transform vanishes outside a finite interval is
called a band-limited function.

One of the basic theorems in sampling theory is the following:

The Whittaker-Shannon Sampling Theorem. Let f(x) be a band-limited function
and assume that its Fourier transform vanishes outside [-w,w]. Then f(x) can be

reconstructed exactly from its samples provided that the sampling interval is no bigger
than 1/(2w).

Figure 2.11. Aliasing caused by bad sampling.



2.6 The Aliasing Problem 45

If T is a sampling interval, then 1/T is called the sampling frequency and 1/(2T) is
called the Nyquist limit. The Whittaker-Shannon Theorem says that if a function is
sampled less often than its Nyquist limit, then a complete recovery is impossible. One
says that the function is undersampled in that case. Undersampling leads to a phe-
nomenon referred to as aliasing, where fake frequencies or patterns appear that were
not in the original object. The two-dimensional situation is similar, but in practice
one must sample a lot more because of limitations of available reconstruction
algorithms.

Now in the discussion above, it was assumed that we were taking an infinite
number of samples, something that we obviously cannot do in practice. What happens
if we only take a finite number of samples? Mathematically, this corresponds to where
we multiply the sampled result by a function that vanishes outside a finite interval.
The main result is that it is in general impossible to faithfully reconstruct a function
that has only been sampled over a finite range. To put it in another way, no function
that is nonzero over only a finite interval can be band-limited and conversely, any
band-limited function is nonzero over an unbounded set.

The practical consequences of the theory sketched above can be seen in lots of
places. Aliasing is most apparent along edges, near small objects, along skinny high-
lights, and in textured regions. Ad hoc schemes for dealing with the problem may be
disappointing because of the human visual system’s extreme sensitivity to edge dis-
continuities (vernier acuity). Aliasing is also a problem in animation. The best-known
example of temporal aliasing is the case of the wagon wheel appearing to reverse its
direction of motion as it spins faster and faster. Other examples are small objects flash-
ing off and on the screen, slightly larger objects appearing to change shape and size
randomly, and simple horizontal lines jumping from one raster line to another as they
move vertically. See Figure 2.12. This happens because objects fall sometimes on and
sometimes between sampled points.

Jaggies do not seem to appear in television because the signal generated by a tel-
evision camera, which is sampled only in the vertical direction, is already band-limited
before sampling. A slightly out of focus television camera will extract image samples
that can be successfully reconstructed on the home television set. People working in
computer graphics usually have no control over the reconstruction process. This is
part of the display hardware. In practice, antialiasing techniques are imbedded in
algorithms (like line-drawing or visible surface determination algorithms). The
approaches distinguish between the case of drawing isolated lines, lines that come
from borders of polygons, and the interior of polygons.

There are essentially two methods used to lessen the aliasing problem. Intuitively
speaking, one method treats pixels as having area and the other involves sampling
at a higher rate. The obvious approach to the aliasing problem where one simply

Figure 2.12. Objects appearing, disappearing, T s S s R
changing size. e e e e s e e s
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increases the resolution of the display device is a special case of the latter. Mathe-
matically, the two methods are

(1) prefiltering, and
(2) supersampling or postfiltering

Prefiltering. This amounts to treating each sample point as representing a finite
area rather than simply a dot. Because lines often fall between pixels, this would avoid
concentrating everything at a pixel in a hit-or-miss fashion. Mathematically, the
process corresponds to applying a convolutional filter before sampling. One must
make sure that the highest frequency of a signal in a scene does not exceed one-half
the sampling rate.

Two widely used models for computing the area subtended by a pixel are

(1) One considers the image a square grid as in Figure 2.13 with the pixels in the
centers of the squares.

(2) One computes the area using a weighting function similar to a Gaussian func-
tion. This in fact models the effect of the electron beam of a CRT and print-
ing processes more closely. The pixels are larger and overlap. Details near the
center now count more heavily than those near the edge.

Model (1) is easier than (2), but (2) produces better pictures. Internal details, such as
highlights, are harder to handle.

In the case of boundaries of polygons we can use shading to suggest the position
of the edges and can make the picture look as if it had higher resolution than it in
fact has. Therefore, associate to each pixel an intensity proportional to the percent-
age of its area that is covered by the polygon. For example, if the intensity values
ranged from 0 to 15, then we might assign pixel A in Figure 2.13 a value of 2 and
pixel B, a value of 8. This approach could obviously substantially increase the amount
of computation one has to do. However, by using an efficient approximation of
the area that is needed, it turns out that all it takes is a slight modification to the
Bresenham algorithm to get an efficient implementation of it, namely, the Pitteway-
Watkinson algorithm. See [PitW80] or [Roge98].

Another approach for drawing antialiased lines treats the lines as having a thick-
ness. An algorithm of this type is the Gupta-Sproull algorithm. See [GupS81],
[Thom90], or [FVFH90]. It also starts with the standard Bresenham algorithm and
then adds some checks for nearby pixels above and below each pixel that would be
drawn by that algorithm.

\

Figure 2.13. Pixel intensities based on percentage of
area covered.
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Figure 2.14. Supersampling with scaling factor 3.

- L Ll - * *

Supersampling. Here we sample at more points than will actually be displayed.
More precisely, we sample at n uniformly situated points within the region associated
to each pixel and then assign the average of these values to the pixel. One usually over-
samples the same amount in each direction so that n = s? for some scaling factor s.
For example, to create a 512 x 512 image we would sample at 1536 x 1536 points if
s is 3. The samples would be taken 1/3 of a pixel width apart. In Figure 2.14, each
square corresponds to a pixel in the final image and the dots show the location of the
nine samples per pixel.

Postfiltering. In supersampling the sample values for each pixel are averaged. This
gives each sample the same weight. Postfiltering uses the same approach but allows
each sample to have a different weight. Supersampling is therefore a special case of
postfiltering. Different weighting or “window” functions can be used. For example,
if we represent the weighting operation in matrix form with the ij’th entry being
the weighting factor for the ij'th sample, then rather than using the supersampling
matrix

111
/91 1 1},
111
we could use
010 1 21
/81 4 1| or (1/16)2 4 2|
010 1 21

Mathematically, postfiltering corresponds to a convolution and filtering operation on
the samples. The cost of generating an image with supersampling and postfiltering is
proportional to the number of scan lines. The cost of calculations involving shading
is proportional to the square of the number of scan lines. This means that the algo-
rithm is particularly expensive for visible surface determination algorithms.

In conclusion, antialiasing techniques add a large amount of computation time to
any algorithm that uses them. To minimize this extra work, one tries to do it only for
areas where problems occur and makes no special computations for the rest. Of
course, this assumes that one knows all about the picture, say a jar defined via many
polygons. For lots more about antialiasing techniques see [FVFH90].
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2.7 Halftoning, Thresholding, and Dithering

In contrast to antialiasing where we use multiple intensity levels to increase the
resolution, halftoning (or patterning) is a technique for obtaining increased visual
resolution with a minimum number of intensity levels. Basically, rectangular grids of
pixels are treated as single pixels. This is how photographs are usually reproduced for
magazines and books. For example, using a 2 x 2 grid we can get five different inten-
sities. See Figure 2.15(a). Not all of the possible combinations are used (basically sym-
metric patterns are to be avoided) in order not to introduce unwanted patterns into
the picture. Using the patterns in Figure 2.15(b) could easily introduce unwanted hor-
izontal or vertical lines in a picture. Normally 2 x 2 or 3 x 3 grids are used.

Halftoning reduces the overall spatial resolution of a system. For example, the
resolution of a 1024 x 1024 monitor would be reduced to 512 x 512 with 2 x 2 grids.
This means that such a technique is best applied when the resolution of the original
scene is less than that of the output device.

Another technique called thresholding deals with the problem where we have a
digital image with the same resolution as our monochrome display device but with
more intensity levels. The simplest form of thresholding is to use a fixed threshold for
each pixel. If the intensity exceeds that value, the pixel is drawn white, otherwise it
is drawn black. Such a simple scheme can lose a lot of detail. A more refined algo-
rithm of this type is due to Floyd and Steinberg. See [Roge98].

Finally, dithering is a technique applying to monochrome displays that is used with
halftoning or thresholding methods to smooth edges of objects by introducing random
noise into the picture. It increases the visual resolution without reducing the spatial
resolution. One adds a random error to each pixel value before comparing to the
threshold value (if any has been selected). Good error patterns have to be chosen care-
fully. Ordered dithering is where a square dither matrix is added to the picture. Alter-
natively, rather than adding noise using the same threshold for each pixel one can
vary the threshold. With this approach, an optimum 2 X 2 matrix has been shown to

be
1
3 1)
The entries of the matrix are used as the threshold for the corresponding pixel. There
are recursive formulas for higher dimensional dither matrices. See [Roge98].

" % 8 58
uaf 8

b) Figure 2.15. Halftone patterns.
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2.8 Choosing the Coordinates of a Pixel

Before going on to discuss another scan conversion algorithm we pause to take up a
subject that probably did not occur to the reader as being an issue. However, since
pixels should be treated as having area, if we consider our image as corresponding to
a grid as we have, where should the pixels be placed? Should they be at the intersec-
tion of the grid lines or in the center of the grid squares? Equivalently, when we con-
sider scan lines, do their y-coordinates fall on integers or half-integers? Whatever
choice one makes, it does matter. We summarize the conclusions of the excellent
article by Heckbert [Heck90a].

The real issue here is how one maps reals to integers. Should one round or trun-
cate? Rounding corresponds to placing pixels at the integers because the whole inter-
val [n — 0.5,n + 0.5) will map to n. Truncating corresponds to placing the pixels at
half-integers because the whole interval [n,n + 1) will map to n. To use an example,
if one rounds, then the interval [-.5,2.5) maps to {0,1,2}, whereas if one truncates,
then [0,3) maps to {0,1,2}. The second approach is a cleaner choice because there are
no .5’s to worry about. By truncating one simplifies some mathematics. We shall there-
fore use the following correspondence if we need to map back and forth between the
continuous and discrete world:

real c — integer n = Floor (c)
integern — real (n +0.5)

(Mathematically it is the Floor function that returns an integer whereas the Trunc
function returns a real.) In two dimensions this means that when we have a pixel with
coordinates (x,y), its center will be at continuous coordinates (x + 0.5,y + 0.5). Note
that this was the choice we made when discussing antialiasing. Now we know why.

In the future, whenever we scan a continuous object the scan lines will fall on
half-integers.

2.9 More Drawing Algorithms

29.1 Scan Converting Polygons

The Bresenham line-drawing algorithm discussed in Section 2.5.2 dealt with scan con-
verting a single segment. There may be several segments we want to scan convert
such as the boundary of a polygon. In that case one can use the coherence inherent
in that problem and use an algorithm that is more efficient that simply scan con-
verting each bounding edge separately.

Consider the edges in Figure 2.16. As we move down from the top of the picture
one scan line at a time we do not need to compute the intersections of the edges
with the scan line each time. These can be computed incrementally. Since not every
edge will intersect current scan line, by using an active edge list (AEL), we do not
have to look at every edge each time. Here are the steps to scan convert these edges
efficiently:
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y Figure 2.16. Scan converting a polygon.
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Step 1. Associate a “bucket” to each scan line and initialize it to empty.

Step 2. Find the largest y value for each edge and put the edge into the correspon-
ding scan line’s bucket.

Step 3. For each edge e maintain the following information:

X - initially the x-coordinate of the highest point of the edge e (in general
the x-coordinate X, of the intersection of e with the current scan line)

dx - change in x from line to line (the reciprocal of the slope of the line)

dy - initially the number of scan lines crossed by e

Step 4. Initialize the active edge list to empty. Set y to the height of the top scan line.

Step 5. Add any edges in the bucket for y to the active edge list.

Step 6. For each edge in the active edge list draw (x,y), change the x to x + dx, and
decrement dy. If dy becomes 0, then remove that edge from the list.

Step 7. Decrement y. If y is 0, then quit; otherwise, go back to Step 5.

In Figure 2.16, when we reach scan line y1, the edges AB and BC will be added to the
active edge list. At scan line y2 nothing special happens. When we get to scan line y3,
the edges CD and DE will be added to the list. Finally, at scan line y5 there are only
the two edges BC and CD on the list and they will now be removed.

To avoid having fixed bucket sizes and limiting the amount of data for each scan
line, one stores pointers only and stores all information sequentially in an array. Alter-
natively, one can use a linked list to be able to add and delete easily.

A problem related to scan converting lists of edges which is of more practical
importance is scan converting solid polygons. This leads to polygon based fill algo-
rithms. The pixel-based analog was already discussed earlier in Section 2.4.

Assume that XMIN, XMAX, YMIN, and YMAX are the minimum and maximum
values for the x- and y-coordinates of pixels. The basic idea here is the following:

for i:=YMIN to YMAX do
for j:=XMIN to XMAX do
if Inside (polygon,j,i) then Draw (j,i);

The Boolean-valued function “Inside” counts the intersections of the line from (j,i) to
(—0,i) with the polygon. If this number is odd, then the function returns true, other-
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wise it returns false. Of course, this algorithm is too slow. One needs to take scan
line coherence into account. This leads us to what are called ordered edge list fill algo-
rithms. They have the following general form:

for each scan Tine do
begin
Find all dintersections of edges with the scan Tine;
Sort the 1intersections by increasing x;
Fill alternate segments;
end;

For example, consider the scan line y4 in Figure 2.16. Notice how filling the alternate
segments [b,c] and [d,e] does in fact fill what we want. That this works is justified by
a parity type argument. An active edge list again helps. Algorithm 2.9.1.1 shows a
more detailed version.

linerec = record
real X, dx;
integer dy;
end;

linerecs = linerec list;

begin
linerecs array [0.. ] edges; { the edges of the polygons }
linerecs acl; { the active edge list }
integer y;

Scan the polygon and set up the edges table;
ael :=nil;

for y:=YMIN to YMAX do
begin
Add all edges in edges [y] to ael;
if ael #nil then
begin
Sort ael by increasing X;
Fill pixels along y by scanning ael and filling alternate x segments;
Delete from ael edges for which dy=0;
Update each x in ael by dx;
end
end
end;

Algorithm 2.9.1.1. An ordered edge list fill algorithm.
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The following points need to be made about Algorithm 2.9.1.1:

(1) The polygon is assumed to lie entirely in window.
(2) Horizontal edges need not be considered because they get filled automatically.
(3) There is a problem with parity at vertices unless one takes precautions.

To understand the parity problem at vertices consider Figure 2.16 again. At vertices,
their x values would be listed twice in the active edge list. In the case of a local
maximum like vertex B = (xg,ys), the algorithm would fill the segments [XMIN,xg],
[xB,xg], and [xg,XMAX] on the scan line y = yg to the background color, the color of
the polygon, and the background color, respectively. This is as we would want it. On
the other hand, when the algorithm gets to vertex A = (xa,ya), assuming that there was
another edge below this vertex, it would fill [XMIN,xa] to the background color,
[xa,xBa] to the color of the polygon, and [xga, xgc] to the background color, etc. This
is not correct. Furthermore, we cannot simply skip duplicate x-coordinates as we scan
the active edge list. If we did, then vertices like A would be handled correctly, but the
algorithm would now fail at local maxima and minima like B. The way that this parity
problem is usually resolved is to shorten one of the (two) edges that meet in a vertex
that is not at a local extremum. For example, change the lower vertex (x,y) of the
upper edge to (x,y + 1) (leaving the upper vertex of the lower edge in tact). No short-
ening takes place at vertices that are local extrema. With this change to the edges,
Algorithm 2.9.1.1 will now work correctly, but we need a test for when vertices are
local extrema. Here is one:

if adjacent edges have the same sign for their slope
then the common vertex is not a local extremum
else test the opposite endpoints for whether or not they 1lie on the
same side of the scan Tine as the vertex: if they do, then the
vertex is a local extremum, otherwise, not

To see that a further test is required in the else case, consider Figure 2.17 and the
two pairs of segments ([(-1,-1),(0,0)],[(0,0),(1,-1)]) and ([(-1,-1),(0,0)1,[(0,0),(-1,1)]).
In both pairs, the segments have opposite slopes, but (0,0) is a local extremum for the
first pair but not for the second. One can tell the two apart however because the end-
points (-1,-1) and (~1,1) for the first pair lie on opposite sides of the scan line for
(0,0), whereas the endpoints (-1,-1) and (1,-1) both lie on the same side of the scan
line.

Finally, note that the ordered edge list fill algorithm “works” for polygons with
self-intersections and/or holes. See Figure 2.18. One needs to understand what “works”

-1,1)

-1,-1) | 1,-1) -1,-1) |

Figure 2.17. Testing for local extrema.
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A

(a) Self-intersecting polygon (b) Polygon with hole

Figure 2.18. Various types of polygon.

means though. For example, the inside of the inner loop of Figure 2.18(a) will be
drawn in the background color.

Looking ahead to Chapter 7, which is on visible surface determination, we can
deal with multiple polygons here if we have an associated priority number with each,
where having a higher priority means being in front of or not obscuring. In the
algorithm above, as we go along we must now keep track of the polygon to which
the “current” segment “belongs.” One way to do this is to maintain the following
additional data:

(1) covers — a Boolean array so that covers[i] is true for the ith polygon if
it covers the current segment
(2) numcover - the number of polygons covering the current segment

(3) visiblePoly - a pointer to the foremost polygon, if any

As we move from segment to segment in a scan line, numcover is incremented or
decremented appropriately. The array covers is initialized to false and every time that
one runs into an edge of the ith polygon, covers[i] is negated. The pointer visiblePoly
tells us the color of the current segment.

In conclusion, here are some points to consider when deciding on a fill algorithm.
The main advantages of ordered edge list algorithms are that pixels are visited only
once and they are well suited for shading algorithms since both ends of a span are
computed before the span is drawn so that one can interpolate intensities. The main
disadvantage is the large amount of processing required maintaining and sorting
various lists. The main advantage to seed fill algorithms is that they can fill arbitrary
planar contours, not just those bounded by polygonal curves. The main disadvantages
are that some pixels are visited many times and one requires an initial interior point.
The latter is not a problem in interactive situations but would be in a fully automated
one. One would then have to invoke another algorithm to find such a point. See
[AckW81] for some conclusions based on performance tests. Basically, fill time tends
to be dominated by the time required to set pixels making the ordered edge list algo-
rithms the most attractive overall. [FisB85] compares various specific seed fill algo-
rithms. An antialiased scan conversion algorithm is described in [Morr90].
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29.2 Drawing Circles

Probably the most straightforward approach to generating points on a circle is to use
a polar coordinate parameterization. If, for simplicity, we restrict the discussion to
circles of radius r centered at the origin, then this map is given by the formula

0 — (r cos 0, r sin 9).

The only problem with this is that the sine and cosine functions are relatively com-
plicated to evaluate. We want a speedier algorithm. One can use rational functions.
For example, there is the following rational function parameterization of the right
half of the unit circle

2
(l_t 2 ) —-1<t<1.
1+t2 1+t

These rational polynomials can be evaluated rather efficiently using a method of
forward differences, but the problem now is that equally spaced t’s do not give rise to
equally spaced points on the circle.

The DDA approach that led to a good algorithm in the case of lines is also appli-
cable to circles. By differentiating the equation

X2 +y2=r2

for a circle of radius r about the origin implicitly with respect to x, one sees that

dy __x

dx y

is the differential equation for that circle. This means that a circle-generating DDA
can be written in the form

Xn+1 =Xn t€Yn

VYn+1 =¥Yn —€ Xp.
A natural choice for € is 27, where 2*! <r < 27, Unfortunately, if one were to plot the
points that are generated by these equations, one would find that they spiral outward.

From a mathematical standpoint one should not have been surprised because the
determinant of the matrix

-

e 1

for this linear transformation is 1 + €. An ad hoc way to correct this determinant
problem is to make a slight change and note that the matrix

-
e 1-¢?
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has determinant equal to 1. The points that are generated by the corresponding trans-
formation produce a much better result. The equations for this transformation are

Xn+l =Xn t€Yn
2
Vn+l :(1_8 )yn—8 Xn,

which reduces to

Xn+l =Xn t€Yn

VYn+1 = ¥n —€ Xn+1.

Notice how the equation for the (n + 1)st value for y now also involves the (n + 1)st
value of x. The coordinates of the new point have to be computed sequentially, first
the x value, then the y value. Before we could compute them in parallel. Furthermore,
what we have here is a simple example of an error-correcting term. All good methods
for numerical solutions to differential equations have this, something that was alluded
to in Section 2.5.1.

Returning to our problem of generating points on a circle, our new system of equa-
tions produces points that no longer spiral out. However, having determinant equal to 1
is only a necessary requirement for a transformation to preserve distance. It is not a suf-
ficient one. In fact, the points generated by our new transformation form a slight ellipse.

To get a better circle-generating algorithm we start over from scratch with a new
approach. Assume that the radius r is an integer and define the “error” function E by

E=r?-x?>-y2

This function measures how close the point (x,y) is to lying on the circle of radius r.
As we generate points on the circle we obviously want to minimize this error. Let us
restrict ourselves to the octant of the circle in the first quadrant, which starts at (0,r)
and ends at (r/V2,r/72). Note that in this octant as we move from one point to the next
the x-coordinate will always increase by 1 and the y-coordinate will either stay the
same or decrease by 1. Any other choice would not minimize E. The two cases are
illustrated in Figure 2.19. We shall call the two possible moves an R-move or a
D-move, respectively.

As we move from point to point, we choose that new point which minimizes E.
However, we can save computation time by computing the new E incrementally. To
see this, suppose that we are at (x,y). Then the current E, E,, is given by

(x,y) (x+1,y) 0x,y) (x+1,y)
-—_— ] n
. \-
(x+1,y-1) (x+1,y-1)

Figure 2.19. Moves in circle-generating
algorithm. R-move D—move
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Eeyr =12 — X2 —yz.
After an R-move the new E, call it Eg, is

Eg =12 —(X+1)2 -y?
=Ecur —(2x+1).

After a D-move the new E, call it Ep, is

Ep=r’—(x+1)° —(y-1)°
=Ecuwr —2x+1)+Qy-1).

One algorithm for drawing a circle is to choose that move which makes our new error,
either Eg or Ep, have the opposite sign of our current one. The idea is that if we find
ourselves outside the circle we should move as quickly as possible back into the circle
and vice versa. This leads to Algorithm 2.9.2.1, the Bresenham circle-drawing algorithm.
The only problem with Algorithm 2.9.2.1 is that we were using a heuristic that does
not always minimize the real error E (Exercise 2.9.2.1). To get a better algorithm, we
have to make that our goal. Choosing the move that minimizes the error can be done by
testing the sign of |[Ep| — |Egr|. To gain efficiency we want to avoid having to compute
absolute values of numbers. Consider the possible outcomes shown in following table:

Ep | Er IEpl - IERI

+ + | Ep — Eg =2y — 1, always positive

+ — | Ep+Eg

- + | this case never happens

- — | —Ep + Egr = —(2y — 1), always negative

x:=0; y:=1; E:=0;
while x <y do
begin
if E<O then
begin
E=E+y+y-1
y =y = 1;
end;
E=E - x —x — 1;
X =X + 1;
Draw (x,y);
end;

Algorithm 2.9.2.1. The Bresenham circle-drawing algorithm (one octant).
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This table shows that the sign of |Ep| — |[Eg| always agrees with the sign of the auxili-
ary variable

G=Ep +Eg.

Furthermore, G can also be computed incrementally. Let Ggr and Gp denote the values
of G after an R-move or D-move, respectively. If G, is the current G value, then

GR =chr -4x-6 (24)
and
Gp =Gy —4x+4y-10. (2.5)

It is easy to derive formulas (2.4) and (2.5). We prove formula (2.4) for Gy in case we
move right. Recall that

ER = Ecur - (2X + 1)’
Ep =Ecu —(2x+1)+(2y —1), and
Geuwr =Ep +ER =2Ecur —(4x+2)+ 2y - 1).

On an R-move,

Enew = Ecur —(2x+1),
newER =E cw —[2(x+1)+1],
newEp =E,oy —[2(x+1)+1]+(2y —1), and
Ggr =newEp +newEg
=2Epew —(4x+2)-2+ 2y -1)
= 2By —202x+1)—(4x+2) =2+ 2y —1)
=Geyr —4x-6.

The other cases are proved in a similar fashion.

Finally, going one step further, the increments to Gg and Gp themselves can be
computed incrementally, producing an improved Algorithm 2.9.2.2. It can be shown
that the algorithm produces a best-fit curve for the circle when either the radius r or
its square is an integer, but that may not be the case if one tries the same approach
when r? is not an integer.

See [Blin87] for a more complete overview of circle drawing algorithms. For a
version of the midpoint line-drawing algorithm that works for circles see [VanN85].

29.3 Drawing Ellipses and Other Conics

The equation for the standard ellipse centered at the origin is

X2 2

;+%:1, (26)
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1l
0o

x :=0;
y=r
g:=2% — 3;

dgr :=—6; dgd :=4*r — 10;
while x <y do

1]
[ )

begin
if g<0
then { go diagonal }
begin
g =g + dgd;
dgd:=dgd — 8 {4 x+1)+4(y-1)-10=—4x+4y—-10-8}
y =y -1
end
else { goright }
begin
g =g + dgr;

dgd:=dgd — 4; { y stays the same, x increases by 1 }
end;

dgr :=dgr — 4; { x always gets incremented: -4 (x+1) —-6=-4x-6-4 }
X =X+ 1;

Draw (x,y);

end;

Algorithm 2.9.2.2. An improved Bresenham circle-drawing algorithm (one octant).

and we can generate points on it using the standard parameterization
0 —(acos, bsin®).
Differentiating equation (2.6) implicitly gives the differential equation

dy __xb®

dx ya?

This leads to a DDA approach similar to the case of a circle.

Because ellipses are an important class of curves, many algorithms exist to draw
them. The Bresenham approach to drawing a circle can be extended to ellipses, but
that algorithm will no longer guarantee a minimum linear error between the ellipse
and the chosen pixels. See [Mcil92] for a correct Bresenham-type algorithm. Alterna-
tively, a version of the midpoint algorithm described in Section 2.5.3 produces an
efficient and more accurate algorithm. For more details and other references see

[VanN85] and [Roge98].
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Special algorithms for generating parabolas and hyperbolas are also known. We
shall not describe any here but instead jump directly to the case of a general conic.
Every conic can be defined implicitly by an equation of the form

ax? +bxy +cy? +dx+ey +f =0.

Given a starting pixel on the conic, one can determine which adjacent pixel to pick
next similar to what we did in the case of circles by looking at an error function. Each
possible move will have an error associated to it and we simply choose the move with
the least error. It is easy to show that the error functions have the same form as the
equation of the conic and that they can be computed incrementally. See [Blin88a] and
[Chan88] for more details.

Conics are a special case of implicitly defined curves and general algorithms for
generating such curves will be presented in Section 14.5.1.

210 Bit Map Graphics

There are lots of situations in graphics where one needs to map blocks of bits from
one location to another. Today’s graphical user interfaces present a user with many
“windows” that pop on and off the screen. Animation techniques usually achieve their
motion effect by mapping a saved block of pixels to the current location of the moving
figure (thereby erasing it and restoring the background) and then mapping another
block containing the figure to its new location. This section looks at some rectangu-
lar bit map basics. The discussion is specific for the IBM PC, although most of it is
generic. For a more extensive discussion see [Miel91], [FVFH90], and [DeFL87].

First of all, what does it take to define a bit map? Rectangles are specified by the
upper left and lower right corner:

rectangle = record
integer x0, y0, { upper Tleft corner }
x1, yl; { Tower right corner }
end;

A bit map specifies a rectangle in a possibly larger rectangle:

bitMap = record
pointer base; { start address in memory }
integer width; { width in number of words }
rectangle rect;

end;

Bit maps are stored in row major form in memory. The width field refers to a possi-
ble larger bitmap that contains this rectangle. For example, the rectangle may be prop-
erly contained in a frame buffer whose pixels are stored in row major form. In that
case, the pixels of the rectangle do not form a contiguous sequence and one needs the
width of the bigger frame buffer to be able to access the pixels of the rectangle as one
moves from one row to the next. See Figure 2.20. Note that each row of a rectangle
is assumed to specify a contiguous chunk of bits in memory however.
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—_  width —— - Figure 2.20. Specifying bit maps.

SCreen

base

rectangle

Several modes are allowed in bit map copying:
opMode = ( XORmode,ORmode,ANDmode,REPLACEmode );
One often allows a “texture” so that one can generate patterns.
texture = byte array [1l..texlen];

The value of texlen depends on the graphics hardware. Each bit in the texture array
indicates whether the corresponding bit in the source rectangle is to be copied.
Here are the basic parameters of a bitBlt (bit block transfer) procedure:

procedure BitB1t (bitMap source;
integer x0, y0; { start point of source rectangle }
texture tex;
b1itMap destination;
rectangle rect; { target rectangle }
opMode mode) ;

Sometimes the source rectangle is specified instead of the target rectangle. In any
case, both the source and target rectangle are the same size and may need to be clipped
against their associated bit maps. The bit maps themselves may overlap so that the
copy operation must be careful not to overwrite essential data. Here is an outline for
the procedure:

Clip the source and target rectangle to their bit maps;
If either the width or height of the clipped rectangles is negative, then exit;
addrl := address of start of clipped source rectangle;
addr2 := address of start of clipped target rectangle;
if addrl < addr2
then
begin
Reset addrl to address of end of clipped source rectangle;
Reset addr2 to address of end of clipped target rectangle;
Copy the rows of the source rectangle to the target in bottom to top order
end
else Copy the rows of the source rectangle to the target in top to bottom order
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Before each bit is copied, one checks the appropriate bit in the texture array. A “1”
means that the bit is to be copied, a “0,” that it is not. If a source bit sB is to be copied,
then the target bit tB is replaced by sB op tB using the current copying mode op.

Although the abstract code for a bitBlt operation is straightforward, the tricky
part is to implement it as efficiently as possible. For that reason, such operations are
usually implemented in assembly language. A complicating factor is when addresses
do not fall on word boundaries. Efficient coding is absolutely essential here and can
speed up the speed of the procedure by orders of magnitude!

An important application of BitBlt procedures is managing a cursor on the screen.
What this involves is mapping predefined bit maps to specified locations on the screen.
A cursor corresponds to a small rectangle of bits. In Section 1.3 we already described
a simple way to move a cursor is using xor mode along with the advantages and dis-
advantages of this method.

2.11 2D Animation

The object of this section is to describe a few simple aspects of two-dimensional ani-
mation. The general topic is much too large to do more than that here, especially since
much of it is not really a topic in geometric modeling per se. On the other hand, many
of the techniques used in two-dimensional computer animation belong in a discus-
sion of raster graphics. This is certainly true of that part of animation which deals
with showing moving objects and which lends itself to a lot of fun programming exer-
cises. Keep in mind though that animation techniques have changed along with hard-
ware. All we shall basically do here is describe a few interesting tricks that deal with
Boolean operations on bits. These tricks were especially important in the early days
of graphics where one had only a single frame buffer and not the multiple buffers that
one finds in graphics systems today. We shall have a little to say about animation of
three-dimensional objects in Sections 4.13 and 4.14.

Showing moving objects is accomplished by showing a sequence of still objects,
where each individual picture shows the objects moved slightly from their previous
position. Here are some simple methods by which one can perform such animation,
starting with the most basic:

(1) Redraw the whole screen for each new image.

(2) If the objects consist of lines, then simply erase the current lines and redraw
them at the new location.

(3) Erase/draw objects using block write commands.

(4) Use an approach similar to (3), except let each block have “trailing” blanks,
so that each new block write erases and draws simultaneously. This reduces the
number of block writes. An example of this is shown in Figure 2.21. If we wanted to
show a ball moving from left to right, we could show the ball at the sequence of loca-
tions shown in (a). Rather than writing blocks of pixels the size of the ball, we could
write a block shown in (b) which simultaneously erases the previous ball as it writes
the new one.

(5) Use bit operations such as xor, and, or more general BitBlt procedures. We
have already discussed in Section 1.3 how xor mode is useful in moving a cursor
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Figure 2.21. Animating with “trailing

blank” blocks.
(a)
(b
cl
n
W
B
(a) (b) Figure 2.22. or/xor animation.

without disturbing the background. One can also use xor to do “rubber banding.” For
example, to drag a line anchored to a point around on the screen with the mouse, one
would perform the following two instructions in a loop:

Erase the current line segment.
Draw the line segment from the fixed point to the new location of the mouse.

The advantage of xoring is speed but its disadvantages are

The background can bleed through because if it is nonzero, then xor operation
will add bits to the image being drawn.
One cannot xor a zero.

One can also use combinations of bit operations. Here is an example using the
or/xor combination. See Figure 2.22. Suppose that one wants to move a ball around
on a grid. Assume that the ball has color c1, the grid has color ¢2, and the background
is black. Define two blocks A and B as follows: A contains a ball of color c1 on a black
background and B contains a white ball on a black background. See Figure 2.22(a).
If we want to write the ball to block W on the screen, we first save W and then replace
W by (B or W) xor A. See Figure 2.22(b). To make this work, we need to assume that
cl and ¢2 are complimentary colors in the sense that

(a) cl or c2 = white (or all 1s)
(b) c1 and c2 = black (or 0)
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Actually, the only thing we really need for this technique to work in general is that
the objects in the world have a different color from the object we are trying to move.
The reason is that we have been talking about color numbers and the association
between actual colors and their numbers is quite arbitrary and can be changed at will.
This will become clear later when we talk about color lookup tables. One can play
similar tricks with other bit operations such as or/and.

(6) Maintain several “pages” of information and “flip” between the pages. For
example, to show a walking man, one could precompute several different walking
positions of the man, and then cycle between them. Having predrawn images in
memory may very well be faster than computing them dynamically.

The speed of objects depends on how far apart they are drawn in succession. A
basic way to keep track of multiple moving figures is to cycle through them. One can
keep track of them using arrays. If objects overlap but one knows their relative
distances from the viewer one can prioritize them by distance and use a painter’s algo-
rithm (see Chapter 7) and draw the nearer objects last.

One big problem with multiple objects is collision detection. Bounding boxes (see
Chapter 6) may be helpful in cutting down on the amount of computation if the objects
are complicated. Sometimes one knows where collisions can occur and then one only
has to check in those places. One potential problem is shown in Figure 2.23 where
two objects crossed paths but no collision would have been detected since one only
checks for that in their final position. To handle that one could keep track of the paths
of objects and check their intersections.

Now, the methods above have lots of constraints and will only work in certain sit-
uations. In (2) and (3), each figure has to fit into a block with a fixed background in
that block. The methods also tend to be slow. However, in the early days of the per-
sonal computer the graphics system did not give developers much to work with. There
is another issue in the case of CRTs that was alluded to briefly in Section 1.3. Writing
a block of memory to the frame buffer while the hardware is scanning it and dis-
playing the picture will usually cause flicker in the image. This is caused by the fact
that the scan is much faster than the memory writes and during one scan only part
of the memory block may have been written. To get flicker-free images a programmer
would have to be very careful about the timing of the writes, which would usually be
done during the vertical retrace of the beam. Furthermore, everything would have to
be done in assembly language to get maximum speed. Fortunately, by using APIs like

ObjectZ
Objectl .
at timel at timeZ
. 0bjectl
Object2 at timez

Figure 2.23. A collision-detection problem. at timel
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OpenGL and DirectX, most programmers no longer have to worry about such low-
level issues because those were dealt with by the implementers of those APIs.

Next, we look at another aspect of frame buffers that is very helpful for anima-
tion. Today’s frame buffers have hardware support for

(1) lookup tables
(2) panning, and
(3) zooming

Lookup Tables. Users and programmers can reference colors in different ways even
though, at the hardware level, any representation eventually needs to be translated
into RGB values. (We shall have more to say about color in Chapter 8.) One standard
way to reference a color is by means of a number that really is an index into a table.
This table is initialized by the operating system to certain default values. The size of
the table depends on the number of colors that can be displayed simultaneously by
the graphics system. For example, the number 0 is the standard representative for
black. For a 256-color table, the standard number for white would be 255. The actual
color that the hardware can associate to an index is quite arbitrary however and can
be changed by a programmer. In that way, a relatively small table can access a large
number of colors. For example, even if we only have a table of size 256 (8 bits), we
would be able to access an actual 24 bit worth of colors (but only 256 at a time).

Panning. The frame buffer in the graphics hardware might actually be much larger
than the number of pixels on the screen. By using “origin registers” that specify the
location where the electron beam starts its scan in the buffer, the hardware makes
panning easy. One can quickly scroll the image up or down, or left or right, simply by
changing the values in those registers.

Zooming. The zoom feature allows one to display a portion of the image in magni-
fied form. The magnification power is typically a power of 2. What happens is that a
zoom factor of, say 2, would repeat each pixel and scan line twice.

The above-mentioned features allow three interesting forms of animation.

(1) Animation using lookup tables:

We explain this technique with an example. To show a red ball bouncing on a gray
floor and a black background we could set up a picture as shown in Figure 2.24.
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| Figure 2.24. Bouncing ball using lookup table.
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Figure 2.25. The bit planes of a
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The numbers show the color numbers associated to the indicated regions. We start
by associating the colors gray and red to 1 and 2, respectively, and black to all the
other numbers. For the second frame we change 2 to black and 3 to red. For the
third frame, we change 3 to black and 4 to red, and so on. In this way, making
the ith ball the red ball as i changes from 2 to 6 and then from 6 back to 2, the
ball will appear to bounce.

Animation using color cycling and bit plane extraction:

Color cycling means that if we have a color table T with n entries, then we keep
changing the colors of items via the instructions

T[2]:= T[], T[3]:=T[2];... Tli+1]:=TIi]; ... T[n] := Tn -1]; T[1] := T[n];

If the colors in the image are designed appropriately, then these changes can create
the illusion of motion.

Bit plane extraction relies on the fact that individual bits of a pixel can be
thought of as corresponding to individual image bit planes. Frame buffers are then
just a collection of k bit planes, where k is the number of bits in a pixel. See Figure
2.25. One trick we can now play is to create k different image frames with each
frame using a subset of all colors. Then animation can be achieved by setting the
lookup values for all values except the current frame value to the background
color. Such updating of lookup values causes the picture to cycle through the
frames. For example, assume that we have 3 bit pixels. We first set all color
numbers except 4 to black, then we set all color numbers except 2 to black, and
finally we set all color numbers except 1 to black. This will cycle through three
single color images.

Animation using the pan and zoom features:
One divides the frame buffer into k smaller areas. Typical values for k are 4 and

16. Next, one creates a reduced resolution image for a frame of animation in
each area. The animation is produced by zooming each area appropri-

frame buffer with k bit pixels

frame buffer. bit planes
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ately and then cycling through the areas by changing the origin registers
appropriately.

Comparing the second and third methods, we see that the second has full reso-
lution but allows a limited number of colors whereas the third has low resolution but
offers full use of colors.

Some graphics systems supported small fixed-size rectangular pixel blocks that
are maintained separately from the frame buffer but can be superimposed on it by
the hardware. These are called sprites and were common in the hardware for video
games. Using sprites it is very fast to move small images around on the screen without
disturbing the background simply by changing some registers that specify the address
in the frame buffer at which to show the sprite. Some simple video games consisted
entirely of sprites moving over a fixed background. Collisions can be checked very
easily. Sprites can also be implemented in software using bitBlt operations, although
this will obviously not be as fast.

Finally, to get a smooth animation sequence, one needs to generate a minimum
of 10-15 frames per second but this depends on the complexity of the scene and one
probably wants more like 24-30 frames per second. Aside from the fact that writing
large blocks of data takes time and would slow down any animation, there is an addi-
tional problem for CRTs that we have mentioned before. One has to be very careful
about when and what one writes to the frame buffer if one wants to avoid flicker. Tt
might be much better to create a complete image in an auxiliary buffer and then copy
it to the frame buffer in one fell swoop. The only problem is that the copy operation
would involve so much memory that it would not be fast enough and there would still
be flicker. To avoid this copying most graphics systems on PCs now support what is
called double buffering, that is, the auxiliary buffer one wants to write to is actually
part of the graphics system (not part of main memory) and rather than copying it to
the frame buffer, the hardware allows one to switch the scanning of the electron beam
between it and the initial frame buffer. The changeover becomes almost instantaneous
and the flicker will be gone. Of course, if it takes too long to compute each image,
then the animation would be jerky.

Graphics systems nowadays have lots of memory on board and support all kinds
of extra buffers. We shall have some more to say about this later in Chapter 9.

2.12 EXERCISES

Section 2.2

2.2.1 Find the various integers k so that there are k-neighbors in Z*.

2.2.2 Prove that every 8-component of a subset of Z? is the union of 4-components.

Section 2.5.1

2.5.1.1 Determine the points generated by the simple and symmetric DDA for the line segment

from (2,6) to (-1,1). Make a table and also plot these points (both the real and integer
ones).
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Section 2.9.1
2.9.2.1 Give an example showing that the first Bresenham circle-drawing algorithm

(Algorithm 2.9.2.1) is not optimal but that the improved Bresenham algorithm
(Algorithm 2.9.2.2) gives the correct results in this case.

213 PROGRAMMING PROJECTS

For some of the projects below you will first have to have a program, like GM, which lets a user
define boundaries for arbitrary regions by dragging the cursor across the screen (either with a
mouse or by using the arrow keys on the keyboard). Alternatively, deal only with polygonal
regions that the user specifies by picking its vertices.

Section 2.4

2.4.1 Fill the region with a user selected color using the Fishkin algorithm.

Section 2.9.1

2.9.1.1 Implement the algorithm for scan converting polygons described in this section. More
generally, implement this algorithm for multiple polygons that admit a back-to-front
ordering.

Section 2.10

2.10.1 Implement a program showing a bouncing ball using the color lookup table technique
as indicated in Figure 2.24.

2.10.2 A billiard ball game

The object of this project is to simulate the motion of a billiard ball and a cue stick. See Figure
2.26. Specifically, you should
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Figure 2.26. A billiard ball game. Y
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(1) display a rectangular “table” with a single solid colored ball at some initial position

(2) show a cue stick (represented as a long, thin rectangular object) hitting the ball at
various angles specified by the user

(3) show the movement of the ball after it is hit as it bounces from wall to wall

(4) have the balls slow down and finally come to a halt to make things look somewhat
realistic

Experiment with different animation techniques on your own, such as double buffering. Hand
in the one that you think gives the best results. Be sure to explain why it was chosen over other
approaches.

Optionally, have one or more other balls on the table and

(5) if a moving ball hits another one, then it should come to a stop and the other one
should move in the appropriate direction with the first one’s velocity (if a ball hits k
> 1 balls with velocity v, then they should start with velocity v/k)

Your program should have suitable menus and output explanations as to what is happening.




CHAPTER 3

Clipping

Prerequisites: Basic vector algebra

3.1 Introduction

Planar clipping algorithms rank as probably the second most important type of algo-
rithm in computer graphics, following right behind line-drawing algorithms in impor-
tance. Mathematically, to clip one set against another means to find their intersection.
In practice, one usually wants also to get this intersection in terms of some prede-
fined data structure.

This chapter discusses some of the well-known clipping algorithms along with
some newer and more efficient ones. The algorithms fall into two types: the line-
clipping algorithms, which clip single line segments against rectangular or convex
regions, and polygon-clipping algorithms, which clip whole polygons against other
polygons. The following terminology is used:

Definition. The polygon being clipped is called the subject polygon and the polygon
that one is clipping against is called the clip polygon.

The choice of algorithms to discuss was motivated by the following
considerations:

(1) It is currently one of the best algorithms of its type.

(2) It is not the best algorithm but still used a lot.

(3) The algorithm was interesting for historical reasons and easy to describe.

(4) Tt involved the use of some interesting techniques, even though it itself is no
longer a recommended method.

Below we list the algorithms described in this chapter and categorize them by con-
siderations (1)-(4) above. We also state any assumption regarding their clip polygon
and make some comments about them. Some of the algorithms will be discussed in
great detail. Others are only described very briefly, especially if they fall under heading
(3) or (4) above.
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Line-clipping algorithms:

Category Clip Polygon Comments
Cohen-Sutherland (2) rectangular The classic line-clipping algorithm. Still
popular because it is so easy to implement.
Cyrus-Beck (4) convex
Liang-Barsky (2) rectangular Faster than Cohen-Sutherland.
Still popular. Easy to implement.
Nicholl-Lee-Nicholl (1) rectangular Purely two-dimensional.
Polygon-clipping algorithms:
Category Clip Polygon Comments
Sutherland-Hodgman (3) convex
Weiler (3), (4) arbitrary
Liang-Barsky (4) rectangular
Maillot (1) rectangular
Vatti (1) arbitrary Fast, versatile, and can generate a trape-
zoidal decomposition of the intersection.
Greiner-Hormann (1) arbitrary As general as Vatti. Simpler and potentially
faster, but no trapezoidal decomposition.

Line-clipping algorithms fall into two types: those that use encoding of the end-
points of the segment (Cohen-Sutherland) and those that use a parameterization of
the line determined by the segment (Cyrus-Beck, Liang-Barsky, and Nicholl-Lee-
Nicholl). In Section 4.6 we discuss a hybrid of the two approaches that works well for
the clipping needed in the graphics pipeline.

Frequently, one needs to clip more than one edge at a time, as is the case when
one wants to clip one polygon against another. One could try to reduce this prob-
lem to a sequence of line-clipping problems, but that is not necessarily the most
efficient way to do it, because, at the very least, there would be additional book-
keeping involved. The clipped figure may involve introducing some vertices that were
not present in the original polygon. In Figure 3.1 we see that the corners A and B

Figure 3.1. Turning points in polygon clipping.
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of the window need to be added. These corners are called turning points. The term
was introduced in [LiaB83] and refers to the point at the intersection of two clip-
ping region edges that has to be added to preserve the connectivity of the original
polygon. This is the reason that polygon clipping is treated separately from line
clipping.

Polygon-clipping algorithms fall into roughly two categories: turning-point-based
algorithms like the Liang-Barsky and Maillot algorithms, which rely on quickly being
able to find turning points explicitly, and the rest. Turning-point-type algorithms scan
the segments of the subject polygon and basically clip each against the whole
window. The rest tend to find turning points implicitly, in the sense that one does not
look for them directly but that they are generated “automatically” as the algorithm
proceeds. The Sutherland-Hodgman algorithm treats the clip polygon as the inter-
section of halfplanes and clips the whole subject polygon against each of these half-
planes one at a time. The Weiler, Vatti, and Greiner-Hormann algorithms find the
turning points from the clip polygon in the process of tracing out the bounding curves
of the components of the polygon intersection, although they trace the boundaries
in different ways.

The chapter ends with some comments on clipping text. Some additional com-
ments on clipping when homogeneous coordinates are used can be found in the next
chapter in Sections 4.6 and 4.10.
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321 Cohen-Sutherland Line Clipping

This section describes an algorithm that solves the following planar clipping
problem:

Given a segment [Py, P,], clip it against a rectangular window and return the clipped segment
[Q1, Q2] (which may be empty if the original segment lies entirely outside the window).

The Cohen-Sutherland line-clipping algorithm is probably the most popular of
such algorithms because of its simplicity. It starts out by encoding the nine regions
into which the boundary lines of the window divide the whole plane with a 4-bit binary
code. See Figure 3.2. If P is an arbitrary point, then let c(P) = x3x,Xx;Xg, where x; is
either 0 or 1, define this encoding. The bits x; have the following meaning:

8118 0816 ae11

81688 2121215} 8001

1100 1088 1801

Figure 3.2. Cohen-Sutherland point codes.
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if and only if P lies strictly to the right of the right boundary line.
if and only if P lies strictly above the top boundary line.

if and only if P lies strictly to the left of the left boundary line.

if and only if P lies strictly below the bottom boundary line.

The algorithm now has three steps:

Step 1.
Step 2.

Step 3.

Encode Py and P,. Let ¢; = ¢(Py) and c; = c(P,).
Check if the segment can be trivially rejected, that is, using the bitwise
logical or and and operators, test whether

(a) ciorc; =0, or
(b) c; and c; # 0.

In case (a), the segment is entirely contained in the window since both end-
points are and the window is convex. Return Q; = Py and Q; = P».

In case (b), the segment is entirely outside the window. This follows because
the endpoints will then lie in the halfplane determined by a boundary line
that is on the other side from the window and halfplanes are also convex.
Return the empty segment.

If the segment cannot be trivially rejected, then we must subdivide the
segment. We clip it against an appropriate boundary line and then start over
with Step 1 using the new segment. Do the following to accomplish this:

(a) First find the endpoint P that will determine the line to clip against.

If ¢; = 0000, then P; does not have to be clipped and we let P be P,
and Q be P;.
If c; # 0000, then let P be P; and Q be P..

(b) The line to clip against is determined by the left-most nonzero bit in
c(P). For the example in Figure 3.3, P = Py, Q = P,, and the line to clip
against is the left boundary line of the window. Let A be the intersec-
tion of the segment [P,Q] with this line.

(c) Repeat Steps 1-3 for the segment [A,Q].

The algorithm will eventually exit in Step 2.

With
encoding

Pr\
A

respect to the efficiency of the Cohen-Sutherland algorithm, note that the
is easy since it simply involves comparing a number to some constant (the

N

AN
N

P2 Figure 3.3. Cohen-Sutherland line-clipping example.
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boundary lines of the window are assumed to be horizontal and vertical). Step 3 is
where the real work might have to be done. We shall have to clip four times in the
worst case. One such worst case is shown in Figure 3.3 where we end up having to
clip successively against each one of the window boundary lines generating the inter-
section points A, B, C, and D.

Algorithm 3.2.1.1 is an implementation of the just-described algorithm. To be
more efficient, all function calls should be replaced by inline code.

Finally, note that the encoding found in the Cohen-Sutherland line-clipping algo-
rithm is driven by determining whether a point belongs to a halfplane. One can easily
generalize this to the case where one is clipping a segment against an arbitrary convex
set X. Assume that X is the intersection of halfplanes H;, H, . . ., Hx. The encoding
of a point P is now a k-bit number c(P) = XgXk_1 . . . Xy, where

X; is 1 if P lies in H; and 0 otherwise.

Using this encoding one can define a clipping algorithm that consists of essentially
the same steps as those in the Cohen-Sutherland algorithm. One can also extend
this idea to higher dimensions and use it to clip segments against cubes. See
Section 4.6.

322 Cyrus-Beck Line Clipping

The Cyrus-Beck line-clipping algorithm ([CyrB78]) clips a segment S against an arbi-
trary convex polygon X. Let S = [P1,P;] and X = Q;Q; . . . Q. Since X is convex, it is
the intersection of halfplanes determined by its edges. More precisely, for each
segment [Q;,Qi1], 1 =1,2, ...k, (Qx1 denotes the point Q) we can choose a normal
vector Nj, so that X can be expressed in the form

X =(H;,
i=1
where H; is the halfplane
H; ={Q[N; *(Q-Q;)>0}.

With this choice, the normals will point “into” the polygon. It follows that

k
SmX=ﬂ (SN H)).

i=1

In other words, we can clip the segment S against X by successively clipping it
against the halfplanes H;. This is the first basic idea behind the Cyrus-Beck clipping
algorithm. The second, is to represent the line L determined by the segment S
parametrically in the form P; + tPyP, and to do the clipping with respect to the
parameter t.
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{ Constants }

RIGHTBDRY =1;
TOPBDRY =2;
LEFTBDRY =4,
BOTTOMBDRY = 8;

boolean function CS_Clip (ref real x0, y0, x1, y1; real xmin, ymin, Xmax, ymax)
{ This function clips the segment from (x0, y0) to (x1, y1) against the window
[xmin, xmax]x[ymin, ymax]. It returns false if the segment is entirely outside the
window and true otherwise. In the latter case the variables x0, y0, x1, and y1 will
also have been modified to specify the final clipped segment. }
begin
byte c0, c1, c;
real x, y;

{ First encode the points }
c0 := RegionCode (x0,y0);
cl := RegionCode (x1,y1);

{ Next the main loop }
while (cOorcl)=0 do
if (cOandcl)#0
then return (false);

else
begin
{ Choose the first point not in the window }
c:=c0;

if c=0 then c:=cl;

{ Now clip against line corresponding to first nonzero bit }
if (LEFTBDRY and c) #0

then
begin { Clip against left bdry }
X := Xmin;
y :=y0 + (yl — y0)*(xmin — x0)/(x1 — x0);
end|
else if (RIGHTBDRY and c¢) #0
then
begin { Clip against right bdry }
X := Xmax;
y :=y0 + (y1 — y0)*(xmax — x0)/(x1 — x0);
end
else if (BOTTOMBDRY and c) #0
then

Algorithm 3.2.1.1. The Cohen-Sutherland line-clipping algorithm.
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begin { Clip against bottom bdry }
x :=x0 + (x1 — x0)*(ymin — y0)/(y1 — y0);

y := ymin;
end
else if (TOPBDRY and c) #0
then

begin { Clip against top bdry }
x :=Xx0 + (x1 — x0)*(ymax — y0)/(y1 — y0);
y 1= ymax;

end;

{ Next update the clipped endpoint and its code }

if c=c0
then
begin
x0:=x; y0:=y;
c0 := RegionCode (x0,y0);
end
else
begin
xl:=x; yl i=y;
cl :=RegionCode (x1,y1);
end

end; { while }

return (true);
end;

byte function RegionCode (real x,y);
{ Return the 4-bit code for the point (X,y) }
begin

byte c;

c:=0;
if x <xmin

then c :=c+ LEFTBDRY

else if x > xmax

then c := ¢+ RIGHTBDRY;

if y <ymin

then c :=c+ BOTTOMBDRY

else if y > ymax

then c :=c+ TOPBDRY;
return (c);
end; { RegionCode }

Algorithm 3.2.1.1. Continued
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Let L; be the line determined by the segment [Q;,Q;;1]. Define intervals I; = [a;,b;]
as follows:

Case 1: L is parallel to L;.

(a) If L lies entirely in Hj, then let I; = (—oo, +0).
(b) If L lies entirely outside of Hj, then let I; = ¢.

Case 2: L is not parallel to L;.

In this case L will intersect L; in some point P = Py + t;PP,. We distinguish
between the case where the line L “enters” the halfplane H; and where the
line “exits” H;.

(a) (Line enters) If P1P, ¢ N; > 0, then let I; = [t;, +o0).
(b) (Line exits) If P1P, ¢ N; < 0, then let I; = (—oo, t;].

See Figure 3.4, where a segment S = [P,P;] is being clipped against a triangle Q;Q,Qs.
Note that finding the intersection point P in Case 2 is easy. All we have to do is solve
the equation

Nie®P +tPP,-Q;)=0
for t.

Now let Iy = [ag,bo] =[0,1]. The interval I is the set of parameters of points which
lie is S. It is easy to see that the interval

=L

-

Il
o

1

ax aj, min by
o<i<k  0<i<k

=[a,b]

=

Figure 3.4. Cyrus-Beck line clipping.
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is the set of parameters for the points in S N X. In other words, if I is not empty, then
SN X =[P, +aP,P;, P, + bP,P,].
We shall explain this process with the example in Figure 3.4. In this example,
I=[0,1] N [t1,+o0) N (=eo,t2] N [t3,+0) =[t3,12],

which clearly gives the right answer.

3.2.3 Liang-Barsky Line Clipping

The Liang-Barsky line-clipping algorithm ([LiaB84]) optimizes the Cyrus-Beck line-
clipping algorithm in the case where we are clipping against a rectangle. It starts by
treating a segment as a parameterized set. Let P; = (x1,y1) and P, = (X2,y2). A typical
point P = (x,y) on the oriented line L determined by P; and P, then has the form
Py + tP{P;. See Figure 3.5. If we let Ax = x, — x; and Ay = y; — yy, then

X=X +Axt
y=y1+Ayt.

If the window W we are clipping against is the rectangle [xmin,xmax] x [ymin,ymax],
then P belongs to W if and only if

xmin < xq + AX t < Xxmax

ymin <y; + Ay t < ymax
that is,

—AX t<X; —Xmin
AX t £ Xmax— X

—Ay t<y; —ymin
Ay t £ ymax-y;j.

xmin WA
ymax B
4 Poilxs.u5)
By
Plx,y) B, L
umin

Figure 3.5. Liang-Barsky line clipping. Pylxq.91?
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To simplify the notation, we introduce variables cx and qx and rewrite these equations
as

cit<qp
ct<Qq>
c3t<q3
c4t<qy4.

Set tx = qx/ck whenever ¢ # 0. Let By, B,, B3, and B, denote the left, right, bottom,
and top boundary lines of the window, respectively. With this notation we can make
the following observations:

(1) If cx > 0, then L goes from the “inside” to the “outside” of the boundary line
By as t increases and we shall call ti an exit value.

(2) If ¢k < 0, then L goes from the “outside” to the “inside” of the boundary line
By as t increases and we shall call ty an entry value.

(3) If ¢k = 0, the L is parallel to By, which is outside the window if gx < 0.

The clipping algorithm now proceeds by analyzing the three quantities gy, ¢k, and tx.
Algorithm 3.2.3.1 is a high-level version of the Liang-Barsky algorithm. Algorithm
3.2.3.2 gives the code for the actual Liang-Barsky algorithm.

3.2.3.1 Example. Consider the segment [Py,P;] in Figure 3.6. We see that ¢y, c4 <
0 and c;, ¢3 > 0. In other words, t; and t4 are entry values and t, and t; are exit values.
The picture bears this out. One can also easily see that t; < 0 < t; < t4 < 1 < t3. There-
fore, there is an entry value (t4) that is larger than an exit value (t;). Using the algo-
rithm we conclude that the segment lies entirely outside the window, which is correct.

Reject the segment as soon as

an entry value is larger than 1 or
an exit value is less than O or
an entry value is larger than an exit value

Otherwise, the segment meets the window. We need to compute an intersection
only if t0 >0 and tl < 1, where

t0 = max (0, max { entry values t } ), and
tl =min (1, min { exit values t; } ).

(The case where t0 =0 or tl =1 means that we should use the endpoint, that is,
no clipping is necessary.)

Algorithm 3.2.3.1. High-level Liang-Barsky line-clipping algorithm.
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boolean function LB_Clip (ref real x0, y0, x1, y1; real xmin, ymin, xmax, ymax)
{ This function clips the segment from (x0, y0) to (x1, y1) against the window
[xmin, xmax]X[ymin, ymax]. It returns false if the segment is entirely outside the
window and true otherwise. In the latter case the variables x0, y0, x1, and y1 will
also have been modified to specify the final clipped segment. }
begin

real t0, t1, dx, dy;

boolean more;

t0:=0; tl :=1; dx:=x1-x0;

Findt (—dx,x0 — xmin,t0,t1,more); { left bdry }
if more then
begin
Findt (dx,xmax — x0,t0,t1,more); { right bdry }
if more then
begin
dy =yl — y0;
Findt (—dy,y0 — ymin,t0,t1,more); { bottom bdry }
if more then
begin
Findt (dy,ymax — y0,t0,t1,more); { top bdry }
if more then
begin { clip the line }
if t1 <1 then
begin { calculate exit point }
x1 :=x0 + t1*dx;
yl :=y0 + t1*dy;
end;
if t0>0 then
begin { calculate entry point }
x0 := x0 + t0*dx;
y0 :=y0 + tO*dy;
end;
end
end
end
end;
return (more);
end;

procedure Findt (real denom, num; ref real t0, t1; ref boolean more)
begin

real r;

more := true;

Algorithm 3.2.3.2. The Liang-Barsky line-clipping algorithm.

19
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if denom <0
then
begin { line from outside to inside }
r := num/denom;
if r>tl
then more := false
else if r>t0 then t0:=r;
end
else if denom >0
then { line from inside to outside }
begin
r := num/denom;
if r<t0
then more := false
else if r<tl then tl :=r;
end
else if num<0  { line parallel to boundary }
then more := false;
end; { Findt }

Algorithm 3.2.3.2. Continued

Figure 3.6. Liang-Barsky line-clipping example.

3.2.3.2 Example. Consider the segment [P;,P,] in Figure 3.7. In this example, c,
c3 < 0 and ¢y, ¢4 > 0, so that t; and t; are entry values and t; and t4 are exit values.
Furthermore, t; < 0 < t3 < 1 <t; < t4. This time we cannot reject the segment and must
compute t0 = max (0, ¢y, ¢3) = ¢z and t1 = min (1, ¢3, c4) = 1. The algorithm tells us
that we must clip the segment at the P; end to get Q but do not need to clip at the P,
end. Again this is clearly what had to be done.

In conclusion, the advantage of the Liang-Barsky algorithm over the Cohen-
Sutherland algorithm is that it involves less arithmetic and is therefore faster. It needs
only two subtractions to get qx and ¢, and then one division.
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Figure 3.7. Liang-Barsky line-clipping example. P
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3.24 Nicholl-Lee-Nicholl Line Clipping

One of the problems common to both the Cohen-Sutherland and the Liang-Barsky
algorithm is that more intersections are computed than necessary. For example, con-
sider Figure 3.6 again where we are clipping line segment [Py,P;] against the window.
The Cohen-Sutherland algorithm will compute the intersection of the segment with
the top boundary at t4 even though the segment is later rejected. The Liang-Barsky
algorithm will actually compute all the parameter values corresponding to the inter-
section of the line with the window. Avoiding many of these wasted computations is
what the Nicholl-Lee-Nicholl line-clipping algorithm ([NiLN87]) is all about. These
authors also make a detailed analysis of the deficiencies of the Cohen-Sutherland and
Liang-Barsky algorithms. Their final algorithm is much faster than either of these. It
is not really much more complicated conceptually, but involves many cases. We
describe one basic case below.

Assume that we want to clip a segment [Py,P,] against a window. The determi-
nation of the exact edges, if any, that one needs to intersect, reduces, using symme-
try, to an analysis of the three possible positions of P; shown in Figure 3.8. The cases
are

(1) Py is in the window (Figure 3.8(a)),
(2) Py is in a “corner region” (Figure 3.8(b)), or
(3) Py is in an “edge region” (Figure 3.8(c)).

For each of these cases one determines the regions with the property that no matter
where in the region the second point P, is, the segment will have to be intersected
with the same boundaries of the window. These regions are also indicated in Figure
3.8. As one can see, these regions are determined by drawing the rays from Py through
the four corners of the window. The following abbreviations were used:

T - ray intersects top boundary LT - ray intersects left and top boundary

L - ray intersects left boundary LR - ray intersects left and right boundary

B - ray intersects bottom boundary LB - ray intersects left and bottom boundary

R - ray intersects right boundary TR - ray intersects top and right boundary
TB - ray intersects top and bottom boundary
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For example, suppose that the segment [P;,P;] is as shown in Figure 3.8(c). Here are
the computations one has to perform. Let P; = (x;,y;) and let C = (xmax,ymin) be the
corner of the window also indicated in Figure 3.8(c). After checking that y, < ymin,
we must determine whether the vector PP, is above or below the vector P;C. This
reduces to determining whether the ordered basis (P;C,P,P;) determines the standard
orientation of the plane or not. Since

P.C )
det( : j = (xmax—x1)(y2 — y1) — (ymin-y;)(x2 —x1) <0,
PP,

PP, is below P;C. We now know that we will have to compute the intersection of
[P,P,] with both the left and bottom boundary of the window.

Algorithm 3.2.4.1 is an abstract program for the Nicholl-Lee-Nicholl algorithm in
the edge region case (P; in the region shown in Figure 3.8(c)). We assume a window
[xmin,xmax] x [ymin,ymax].

. T 1,/ Pyt
L™ /R lﬁl_ N LT LT
' I — LR
-~ I L
~ \ T
L e ‘Pl R \ \'\_ \ TR
e 1A I
L " R ‘._\ \.\\
e B \ 1B | IR
\ | LB
N l'. "\_\ TB '.\
a) ) ¢S]

Figure 3.8. Nicholl-Lee-Nicholl line clipping.

procedure LeftEdgeRegionCase (ref real x1, y1, x2, y2; ref boolean visible)
begin
real dx, dy;

if X2 < xmin
then visible := false
else if y2 < ymin
then LeftBottom (xmin,ymin,xmax,ymax,x1,y1,x2,y2,visible)
else if y2 > ymax
then
begin

Algorithm 3.2.4.1. The edge region case of the Nicholl-Lee-Nicholl line-clipping
algorithm.
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{ Use symmetry to reduce to LeftBottom case }
yl:=-yl; y2:=-y2; { reflect about x-axis }
LeftBottom (xmin,—ymax,xmax, —ymin,x1,y1,x2,y2,visible);
yl :==—yl; y2:=-y2; { reflectback }
end
else
begin
dx :=x2—-x1; dy:=y2-yl;
if x2 > xmax then
begin
y2 =yl +dy*(xmax — x1)/dx; X2 := xmax;
end;
yl :=yl + dy*(xmin — x1)/dx; x1 := xmin;
visible := true;
end
end;

procedure LeftBottom ( real xmin, ymin, Xmax, ymax;
ref real x1, yl, x2, y2; ref boolean visible)

begin
real dx, dy, a, b, c;
dx :=x2 —x1; dy :=y2-yl;
a :=(xmin—x1)*dy; b :=(ymin-—yl)*dx;
if b>a
then visible := false { (x2,y2) is below ray from (x1,y1) to bottom left corner }
else
begin

visible := true;
if x2 < xmax

then
begin x2 :=x1+b/dy; y2:=ymin; end
else
begin
¢ := (xmax — x1)*dy;
if b>c
then { (x2,y2)is between rays from (x1,y1) to
bottom left and right corner }
begin x2:=x1+Db/dy; y2:=ymin; end
else
begin y2:=yl +c/dx; x2:=xmax; end
end;
end;
yl :=yl +a/dx; x1 :=xmin;

end;

Algorithm 3.2.4.1. Continued

83
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To deal with symmetry only rotations through 90, 180, and 270 degrees about the
origin and reflections about the lines x = —y and the x-axis are needed. These opera-
tions are extremely simple and involve only negation and assignment. See [NiLN87]
for further details.

This finishes our survey of line-clipping algorithms. Next, we turn our attention
to polygon-clipping algorithms.

3.3 Polygon-Clipping Algorithms

3.3.1 Sutherland-Hodgman Polygon Clipping

One of the earliest polygon-clipping algorithms is the Sutherland-Hodgman algorithm
([SutH74]). It is based on clipping the entire subject polygon against an edge of the
window (more precisely, the halfplane determined by that edge which contains the
clip polygon), then clipping the new polygon against the next edge of the window, and
so on, until the polygon has been clipped against all of the four edges. An important
aspect of their algorithm is that one can avoid generating a lot of intermediate data.

Representing a polygon as a sequence of vertices Py, Py, . . ., Py, suppose that we
want to clip against a single edge e. The algorithm considers the input vertices P; one
at a time and generates a new sequence Qi, Q, ..., Qu. Each P; generates 0, 1, or 2
of the Qj, depending on the position of the input vertices with respect to e. If we con-
sider each input vertex P, except the first, to be the terminal vertex of an edge, namely
the edge defined by P and the immediately preceding input vertex, call it S, then the
Q’s generated by P depend on the relationship between the edge [S,P] and the line L
determined by e. There are four possible cases. See Figure 3.9. The window side of
the line is marked as “inside.” The circled vertices are those that are output. Figure
3.10 shows an example of how the clipping works. Clipping the polygon with vertices
labeled P; against edge e; produces the polygon with vertices Q;. Clipping the new
polygon against edge e, produces the polygon with vertices R;.

Note that we may end up with some bogus edges. For example, the edge RsRg in
Figure 3.10 is not a part of the mathematical intersection of the subject polygon with

Figure 3.9. The four cases in Sutherland-
Hodgman polygon clipping.
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inside

(b2 (c)

Figure 3.10. A Sutherland-Hodgman polygon-clipping example.

the clip polygon. Eliminating such edges from the final result would be a nontrivial
effort, but normally they do not cause any problems. We run into this bogus edge
problem with other clipping algorithms also.

An implementation of the Sutherland-Hodgman algorithm can be found in
[PokG89].

3.3.2 Weiler Polygon Clipping

Another early polygon clipping algorithm was developed in the context of the visible
surface determination algorithm in [WeiA77]. Weiler and Atherton needed a new algo-
rithm because the Sutherland-Hodgman algorithm would have created too many aux-
iliary polygons. An improved version of the algorithm can be found in [Weil80]. Here
is a very brief description of the algorithm:

The boundaries of polygons are assumed to be oriented so that the inside of
the polygon is always to the right as one traverses the boundary. Note that inter-
sections of the subject and clip polygon, if any, occur in pairs: one where the
subject enters the inside of the clip polygon and one where it leaves.

Step 1: Compare the borders of the two polygons for intersections. Insert ver-
tices into the polygons at the intersections.

Step 2: Process the nonintersecting polygon borders, separating those contours
that are outside the clip polygon and those that are inside.

Step 3: Separate the intersection vertices found on all subject polygons into two
lists. One is the entering list, consisting of those vertices where the
polygon edge enters the clip polygon. The other is the leaving list, con-
sisting of those vertices where the polygon edge leaves the clip polygon.

Step 4: Now clip.
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8, Figure 3.11. Weiler polygon clipping.
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(a) Remove an intersection vertex from the entering list. If there is none,
then we are done.

(b) Follow the subject polygon vertices to the next intersection.

(¢) Jump to the clip polygon vertex list.

(d) Follow the clip polygon vertices to the next intersection.

(e) Jump back to the subject polygon vertex list.

(f) Repeat (b)-(e) until we are back to the starting point.

This process creates the polygons inside the clip polygon. To get those that
are outside, one repeats the same steps, except that one starts with a vertex
from the leaving list and the clip polygon vertex list is followed in the reverse
direction. Finally, all holes are attached to their associated exterior contours.

3.3.2.1 Example. Consider the polygons in Figure 3.11. The subject polygon ver-
tices are labeled S;, those of the clip polygon are labeled C;, and the intersections are
labeled I;. The entering list consists of I, I, I, and Ig. The leaving list consists of I,
I;, Is, and I. Starting Step 4(a) with the vertex I, will generate the inside contour

L Is14S3Is11713S 115,
Starting Step 4(a) with vertices Iy, I3, Is, and I; will generate the outside contours

1187811211, 13821413, 15841615, and 17851817.

3.3.3 Liang-Barsky Polygon Clipping

This section gives a brief outline of the Liang-Barsky polygon-clipping algorithm
([LiaB83]). The algorithm is claimed to be twice as fast as the Sutherland-Hodgman
clipping algorithm. This algorithm and the next one, the Maillot algorithm, base their
success on their ability to detect turning points efficiently. Before we get to the algo-
rithm, some comments on turning points are in order.
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Assume that [P,P,] is an edge of a polygon. It is easy to see that the only time that
this edge is relevant to the issue of turning points is if it enters or exits a corner region
associated to the window. Figure 3.12 shows some cases of polygons (the shaded
regions) and how the exiting edge [P;,P,] affects whether or not the corner C becomes
a turning point and needs to be added to the output. One sees the following:

(1) The analysis divides into two cases: whether the polygon is to the right or left
of the edge. (Figure 3.12(a,b) versus Figure 3.12(c,d))

(2) There are two subcases that depend on which side of the ray from P, to C the
segment [P,,Ps] is located.

(3) The decision as to whether a turning point will be needed cannot be made on
the basis of only a few edges. In principle one might have to look at all the
edges of the polygon first.

It is observation (3) that complicates life for polygon-clipping algorithms that process
edges sequentially in one pass. One could simplify life and generate a turning point
whenever we run into an edge that enters, lies in, or exits a corner region. The
problem with this approach is that one will generate bogus edges for our clipped
polygon. The polygon in Figure 3.12(c) would generate the “dangling” edge [B,C].
Bogus edges were already encountered in Sutherland-Hodgman clipping (but for dif-
ferent reasons). These edges might not cause any problems, as in the case where one
is simply filling two-dimensional regions. On the other hand, one would like to min-
imize the number of such edges, but avoiding them entirely would be very compli-
cated with some algorithms like the Liang-Barsky and Maillot algorithm.

With this introduction, let us describe the Liang-Barsky algorithm. We shall be
brief because it does not contain much in the way of new insights given the fact that
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it is built on the approach they use in their line-clipping algorithm. Furthermore,
another algorithm, the Maillot algorithm, is better. Our discussion here will follow
[FVFHO0], who have modified the algorithm so that it is easier to follow although it
has the potential disadvantage of creating more bogus edges.

Consider Figure 3.13. We extend the edges of our rectangular window to divide
the plane into nine regions. If we are at a point of the polygon that lies in one of the
four outside regions that meet the window in an edge, then the next edge of the
polygon can only meet the window in that edge. See Figure 3.13(a). On the other hand,
if the point is in one of the four corner regions, then the next edge could meet the
window in one of two possible edges. Without look-ahead, we really cannot tell
whether the adjacent corner of the window will become a turning point and will
have to be added to the output polygon. In such a situation we shall play it safe and
always include the corner point (even though this may create some of these unwanted
edges that we have been talking about). This is the first point to make about the
algorithm.

The other point is that the algorithm rests on the idea of entry and exit points for
the edges of the polygon that correspond to the entry and exit values used in the line-
clipping algorithm described in Section 3.2.3. By analyzing these points one can tell
if an edge intersects the window or if it gives rise to a turning point. As we work our
way through the edges of the polygon, assume that the current edge e = [pi,piz1] is
neither vertical nor horizontal. Then e will intersect all the boundary lines of our
window. If we parameterize the line containing e in the form p; + tpipis1, then the four
intersection points correspond to four parameter values and can again be classified
as two entry and two exit points. We shall denote these associated parameter values
by t_inl, t_in2, t_outl, and t_out2, respectively. It is easy to see that the smallest of
these is an entry value and we shall let t_in1 be that one. The largest is an exit value
and we shall let t_out2 be that one. Nothing can be said about the relative size of the
remaining two values in general. From Section 3.2.3 we know, however, that if t_in2
< t_outl, then the line intersects the window and if t_out2 < t_in1, then the line inter-
sects a corner region.

If a line does not intersect the window, then it must intersect three corner regions.
The conditions for that are that 0 < t_outl < 1 and 0 < t_out2 < 1. The last statement
also holds if the line intersects the window. Putting all these facts together leads to
Algorithm 3.3.3.1. However, we were assuming in the discussion that edges were
neither horizontal nor vertical. We could deal with such lines by means of special
cases, but the easiest way to deal with them and preserve the structure of Algorithm
3.3.3.1 is to use a trick and assign dummy #~ values to the missing entering and
leaving parameters. See [FVFH90].
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for each edge e of polygon do
begin
Determine the direction of e;  { Used to tell in what order the bounding
lines of the clip region will be hit }
Find exit t values;
if t out2 >0 then find t_in2;
if t in2 >t outl

then { No visible segment }
begin
if 0 <t_outl <1 then OutputVertex (turning vertex);
end
else
begin
if (0<t_outl)and (t_in2 < 1) then
begin { Part of segment is visible }
if 0<t_in2

then OutputVertex (appropriate side intersection)
else OutputVertex (starting vertex);
if t outl <1
then OutputVertex (appropriate side intersection)
else OutputVertex (ending vertex);
end
end;
if 0 <t out2<1 then OutputVertex (appropriate corner);
end;

Algorithm 3.3.3.1. Overview of a Liang-Barsky polygon-clipping algorithm.

3.3.4 Maillot Polygon Clipping

The Maillot clipping algorithm ([Mail92]) clips arbitrary polygons against a rectan-
gular window. It uses the well-known Cohen-Sutherland clipping algorithm for seg-
ments as its basis and then finds the correct turning points for the clipped polygon
by maintaining an additional bit of information. As indicated earlier, it is speedy deter-
mination of turning points that is crucial for polygon clipping, and this algorithm
does it very efficiently. We shall use the same notation that was used in Section 3.2.1.
We also assume that the same encoding of points is used. This is very important; oth-
erwise, the tables Tcc and Cra below must be changed.

Let P be a polygon defined by the sequence of vertices po, pPi1, - - ., Pn» Pnst = Po-
Algorithm 3.3.4.1 gives a top-level description of the Maillot algorithm.

In addition to the Cohen-Sutherland trivial rejection cases, Maillot’s algorithm
subjects all vertices of the polygon to one extra test, which he calls the “basic turning
point test.” This test checks for the case where the current point lies in one of the four
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P :=Po; Cp:=c(p);
for i:=1to n+1 do
begin
q:=p; cq:=c(q);

{ Clip the segment [p,q] as in Cohen-Sutherland algorithm }
DoCSClip ();

if segment [p,q] is outside clipping region then TestForComplexCase;

DoBasicTurningPointTest ();

P=q; Cp:=Cq;
end;

Algorithm 3.3.4.1. Overview of Maillot polygon-clipping algorithm.

i+l

Py

Pisz turning
point

Figure 3.14. A turning point case.

corners outside the window. One probably needs to add a turning point to the clipped
polygon in this case. See Figure 3.14. We said “probably” because if the current point
is considered in isolation (without looking at its predecessors), then to always auto-
matically add the point may cause us to add the same corner several times in a row.
See points p;, pir1, and pir2 in Figure 3.14. In the implementation of Maillot’s algo-
rithm, we do not try to eliminate such redundancies. If this is not desired, then extra
code will have to be added to avoid it.

If all of a polygon’s edges meet the window, then the basic turning point test is all
that is needed to clip it correctly. For polygons that have edges entirely outside the
clipping region, one needs to do more. Figure 3.15 shows all (up to symmetry) generic
cases that need to be handled in this more complex situation. The following termi-
nology is useful for the case of edges outside the clipping region.

Notation. A point that lies in a region with code 0001, 0010, 0100, or 1000 will be
called a 1-bit point. A point that lies in a region with code 0011, 0110, 1100, or 1001
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will be called a 2-bit point. A segment is called an x-y segment if its start point is an
x-bit point and its endpoint is a y-bit point.

Knowing the type of segment that one has is important for the algorithm. This is
why an extra bit is used in the encoding of points. It is stuck at the left end of the
original Cohen-Sutherland code. Below is an overview of the actions that are taken
in the TestForComplexCase procedure. Refer to Figure 3.15.

The 1-1 Segment Cases (Segments a and b). Either the two points have the same
code (segment a) and no turning point needs to be generated or they have different
codes (segment b). In the latter case there is one turning point that can be handled
by the basic turning point test. The code for the corner for this turning point is com-
puted from the or of the two codes and a lookup table (the Tcc table in the code).

The 2-1 and 1-2 Segment Cases (Segments ¢ and d). In this case one point of the
segment has a 1-bit code and the other, a 2-bit code.

(a) The endpoint is the point with the 1-bit code (segment ¢): If both codes and
to a nonzero value (segment [P,R] in Figure 3.16(a)), there is no turning point. If both

Figure 3.15. Turning point cases in Maillot
algorithm.

Figure 3.16. Turning point tests. (a) (b)
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codes and to zero, then we need to generate a turning point that depends on the two
codes. A lookup table (Tcc in the code) is used for this.

(b) The endpoint has the 2-bit code (segment d): The case where the and of both
codes is nonzero is handled by the basic turning point test (segment [R,Q] in Figure
3.16(b). If both codes and to zero, we need two turning points. The first one depends
on the two codes and is determined by again using a lookup table (Tcc in the code).
The other is generated by the basic turning point test (segment [P,Q] in Figure
3.16(b)).

As an example of how the Tcc table is generated, consider the segment [P,Q] in
Figure 3.16(b). In the figure there are two turning points A and B. The basic turning
point test applied to Q will generate B. Let us see how A is generated. How can one
compute the code, namely 3, for this turning point? Maillot defines the sixteen element
Tcc table in such a way that the following formula works:

newCode = code(Q) + Tcc[code(P)]

For the 1-1, 2-1, and 1-2 segment cases only four entries of Tcc are used in con-
junction with this formula. Four other entries are set to 1 and used in the 2-2 segment
case discussed below when it runs into a 1-1 segment. The remaining eight of the
entries in Tcc are set to 0.

The 2-2 Segment Case (Segments e, f and g). There are three subcases.

(a) Both points have the same code (segment e): No turning point is needed here.

(b) Both codes and to a nonzero value (segment f): Apply the basic turning point
test to the end point.

(c) Both codes and to a zero value (segment g): There will be two turning points.
One of them is easily generated by the basic turning point test. For the other one we
have a situation as shown in Figure 3.17 and we must decide between the two possi-
ble choices A or B. Maillot uses a midpoint subdivision approach wherein the edge
is successively divided into two until it can be handled by the previous cases. The

Q Figure 3.17. 2-2 segment case turning points.
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number of subdivisions required depends on the precision used. For 32-bit integers,
there will be less than 32 subdivisions.

Maillot presents a C implementation of his algorithm in [Mail92]. Our version of
this algorithm is Algorithm 3.3.4.2 below. The main difference is that we tried to be
as clear as possible by using extra auxiliary functions and procedures. To be efficient,
however, all these calls should be eliminated and the code put inline.

As mentioned earlier, Maillot’s algorithm uses the Cohen-Sutherland clipping
algorithm. One can use the implementation in Section 3.2.1 for this except that the
extended encoding function (ExtendedCsCode) shown in Algorithm 3.3.4.3 should be

{ Constants }

MAXSIZE = 1000; { maximum size of pnt2d array }
NOSEGM =0; { segment was rejected }

SEGM =1; { segment is at least partially visible }
CLIP =2; { segment was clipped }

TWOBITS = $10; { flag for 2-bit code }

{ Two lookup tables for finding turning point.

Tcc is used to compute a correct offset.

Cra gives an index into the clipRegion array for turning point coordinates. }
integer array [0..15] Tcc = (0, -3, -6,1,3,0,1,0,6,1,0,0,1,0,0,0);
integer array [0..15] Cra=(-1,-1,-1,3,-1,-1,2,-1,-1,1,-1,-1,0, -1, -1, —1);

pnt2d = record
real x, y;
end;

pnt2ds = pnt2d array [0.. MAXSIZE];

{ Global variables }

{ The clipping region [xmin,xmax]Xx[ymin,ymax] bounds listed in order:
(xmin,ymin),(xmax,ymin),(Xmin,ymax),(Xmax,ymax) }

array [0..3] of pnt2d clipRegion;

pnt2d startPt; { start point of segment }

integer startC; { code for start point }

integer startCO0; { saves startC for next call to CS_EndClip }
pnt2d endPt; { endpoint of segment }

integer endC; { code for endpoint }

integer aC; { used by procedure TwoBitEndPoint }

Algorithm 3.3.4.2. The Maillot polygon-clipping algorithm.
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procedure M_Clip (ref pnt2ds inpts; integer numin);
ref pnt2ds outpts; ref integer numout)

{ inpts[0..numin—1] defines the input polygon with inpts[numin—1] = inpts[0] .
The clipped polygon is returned in outpts[0..numout—1]. It is assumed that
the array outpts is big enough. }

begin

integer i;

numout := 0;

{ Compute status of first point. If it is visible, it is stored in outpts array. }
if CS_StartClip () >0 then
begin
outpts[numout] := startPt;
Inc (numout);
end;

{ Now the rest of the points }
for i:=1 to numin-1 do
begin
cflag := CS_EndClip (i);

startCO := endC; { endC may get changed }
if SegMetWindow (cflag)
then
begin
if Clipped (cflag) then
begin
outpts[numout] := startPt;
Inc (numout);
end;
outpts[numout] := endPt;
Inc (numout);
end
else if TwoBitCase (endC)
then TwoBitEndPoint ()
else OneBitEndPoint ();

{ The basic turning point test }
if TwoBitCase (endC) then
begin
outpts[numout] := clipRegion[Cra[endC and not (TWOBITS)]];
Inc (numout);
end;

startPt := inpts[i];
end;

Algorithm 3.3.4.2. Continued
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{ Now close the output }
if numout > 0 then
begin
outpts[numout] := outpts[0];
Inc (numout);
end
end; { M_Clip }

boolean function SegMetWindow (integer cflag)
return ( (cflag and SEGM) # 0 );

boolean function Clipped (integer cflag)

{ Actually, this function should return true only if the first point is clipped;
otherwise we generate redundant points. }

return ( (cflag and CLIP) # 0 );

boolean function TwoBitCase (integer cflag)
return ( (cflag and TWOBITS) #0 );

procedure TwoBitEndPoint ()
{ The line has been rejected and we have a 2-bit endpoint. }
if (startC and endC and (TWOBITS — 1)) =0 then
begin
{ The points have no region bits in common. We need to generate
an extra turning point - which one is specified by Cra table. }
if TwoBitCase (startC)
then BothAreTwoBits () { defines aC for this case }
else aC :=endC + Tec[startC]; { 1-bit start point, 2-bit endpoint }

outpts[numout] := clipRegion[Cra[aC and not (TWOBITS)]];
Inc (numout);
end; { TwoBitEndPoint }

procedure BothAreTwoBits ()
{ Determines what aC should be by doing midpoint subdivision. }
begin

boolean notdone;

pnt2d Ptl, Pt2, aPt;

notdone := true;
Ptl := startPt;
Pt2 := endPt;

Algorithm 3.3.4.2. Continued
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while notdone do
begin
aPt.x := (Ptl.x + Pt2.x)/2.0;
aPty := (Ptl.y + Pt2.y)/2.0;
aC := ExtendedCsCode (aPt);
if TwoBitCase (aC)
then
begin
if aC =endC
then Pt2 :=aPt
else
begin
if aC = startC
then Ptl :=aPt
else notdone := false
end
end
else
begin
if (aC and endC) #0
then aC :=endC + Tcc[startC and not (TWOBITS)]
else aC := startC + Tcc[endC and not (TWOBITS)];
notdone := false;
end
end
end; { BothAreTwoBits }

procedure OneBitEndPoint ()
{ The line has been rejected and we have a 1-bit endpoint. }
if TwoBitCase (startC)
then
begin
if (startC and endC) =0 then
endC := startC + Tcc[endC];
end
else
begin
endC := endC or startC;
if Tcc[endC] =1 then endC :=endC or TWOBITS;
end; { OneBitEndPoint }

Algorithm 3.3.4.2. Continued
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integer function ExtendedCsCode (pnt2d p)
{ The Maillot extension of the Cohen-Sutherland encoding of points }
begin
if p.x <clipRegion[0].x then
begin
if p.y > clipRegion[3].y then return (6 or TWOBITS);
if p.y <clipRegion[0].y then return (12 or TWOBITS);
return (4);
end;
if p.x > clipRegion[3].x then
begin
if p.y > clipRegion[3].y then return (3 or TWOBITS);
if p.y <clipRegion[0].y then return (9 or TWOBITS);
return (1);
end;
if p.y >clipRegion[3].y then return (2);
if p.y <clipRegion[0].y then return (8);
return (0);
end;

Algorithm 3.3.4.3. An extended clipping code function.

used. This function adds the extra bit (TWOBITS), which we talked about. Within the
Cohen-Sutherland clipping the extra bit should be ignored.

Two functions in the Maillot algorithm, Algorithm 3.3.4.2, make use of Cohen-
Sutherland clipping:

CS_StartClip: This function defines global variables

startPt — the first point of the input polygon
startC — the extended Cohen-Sutherland code for startPt

and returns values SEGM or NOSEGM, where

SEGM means that the point is inside the clipping region
NOSEGM means that the point is outside the clipping region

CS_EndClip (integer i): This function uses the global variables startCO and
startPt, clips the segment [startPt,ith point of polygon],
and defines the global variables

startC, endC - the extended Cohen-Sutherland code for the start and end-
point, respectively

startPt, endPt — these are the original endpoints if there was no clipping or
are the clipped points otherwise

The function returns values SEGM, SEGM or CLIP, or NOSEGM, where
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SEGM means that the segment is inside the clipping region
CLIP means that the segment is only partly inside the clipping region
NOSEGM means that the segment is outside the clipping region

In conclusion, Maillot claims the following for his algorithm and implementation:

(1) It is up to eight times faster than the Sutherland-Hodgman algorithm and up
to three times faster than the Liang-Barsky algorithm.

(2) Tt can be implemented using only integer arithmetic.

(3) It would be easy to modify so as to reduce the number of degenerate edges.

With regard to point (3), recall again that the Sutherland-Hodgman and Liang-Barsky
algorithms also produce degenerate edges sometimes. The Weiler and Vatti algorithm
are best in this respect.

3.3.5 Vatti Polygon Clipping

Quite a few polygon-clipping algorithms have been published. We have discussed
several. The Liang-Barsky and Maillot algorithms are better than the Sutherland-
Hodgman algorithm, but these algorithms only clip polygons against simple rectan-
gles. This is adequate for many situations in graphics. On the other hand, the
Sutherland-Hodgman and Cyrus-Beck algorithms are more general and allow clipping
against any convex polygon. The restriction to convex polygons is caused by the fact
that the algorithm clips against a sequence of halfplanes and therefore only applies
to sets that are the intersection of halfplanes, in other words, convex (linear) poly-
gons. There are situations however where the convexity requirement is too restrictive.
The Weiler algorithm is more general yet and works for non-convex polygons. The
final two algorithms we look at, the Vatti and Greiner-Hormann algorithms, are also
extremely general. Furthermore, they are the most efficient of these general algo-
rithms. The polygons are not constrained in any way now. They can be concave or
convex. They can have self-intersections. In fact, one can easily deal with lists of poly-
gons. We begin with Vatti’s algorithm ([Vatt92]).

Call an edge of a polygon a left or right edge if the interior of the polygon is to the
right or left, respectively. Horizontal edges are considered to be both left and right
edges. A key fact that is used by the Vatti algorithm is that polygons can be represented
via a set of left and right bounds, which are connected lists of left and right edges,
respectively, that come in pairs. Each of these bounds starts at a local minimum of the
polygon and ends at a local maximum. Consider the “polygon” with vertices po, p1, - - -,
ps shown in Figure 3.18(a). The two left bounds have vertices po, ps, P7, Ps and p4, p3,
P2, respectively. The two right bounds have vertices py, p1, p2 and pas, ps, Pe-

Note. In this section the y-axis will be pointing up (rather than down as usual for a
viewport).

Here is an overview of the Vatti algorithm. The first step of the algorithm is to
determine the left and right bounds of the clip and subject polygons and to store this
information in a local minima list (LML). This list consists of a list of matching pairs
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Figure 3.18. Polygon bounds.

of left-right bounds and is sorted in ascending order by the y-coordinate of the cor-
responding local minimum. It does not matter if initial horizontal edges are put into
a left or right bound. Figure 3.18(b) shows the LML for the polygon in Figure 3.18(a).
The algorithm for constructing the LML is a relatively straightforward programming
exercise and will not be described here. It can be done with a single pass of the clip
and subject polygons.

The bounds on the LML were specified to have the property that their edges are
either all left edges or all right edges. However, it is convenient to have a more general
notion of a left or right bound. Therefore, from now on, a left or right bound will
denote any connected sequence of edges only whose first edge is required to be a left
or right edge, respectively. We still assume that a bound starts at a local minimum
and ends at a local maximum. For example, we shall allow the polygon in Figure
3.18(a) to be described by one left bound with vertices po, ps, P7, Ps, Ps, P4, P3, P2 and
one right bound with vertices po, p1, p2.

The clipped or output polygons we are after will be built in stages from sequences
of “partial” polygons, each of which is a “V-shaped” list of vertices with the vertices
on the left side coming from a left bound and those on the right side coming from a
right bound with the two bounds having one vertex in common, namely, the one at
the bottom of the “V”, which is at a local minimum. Let us use the notation P[pop:
... pnl to denote the partial polygon with vertices pg, p1, - . . , Pn, Where py is the first
point and p,, the last. The points py and p, are the top of the partial left and right
bound, respectively. Some vertex p,, will be the vertex at a local minimum that con-
nects the two bounds but, since it will not be used for anything, there is no need to
indicate this index m in the notation. For example, one way to represent the polygon
in Figure 3.18(a) would be as P[psp7pspop1P2P3P4P5Ps] (with m being 3 in this case).
Notice how the edges in the left and right bounds are not always to the right or left
of the interior of the polygon here. In the case of a “completed” polygon, po and py
will be the same vertex at a local maximum, but at all the other intermediate stages
in the construction of a polygon the vertices py and p, may not be equal. However,
po and p, will always correspond to top vertices of the current left and right partial
bounds, respectively. For example, P[p7pspop1] (with m equal to 2) is a legitimate
expression describing partial left and right bounds for the polygon in Figure 3.18(a).
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A good way to implement these partial polygons is via a circularly linked list, or cycle,
and a pointer that points to the last element of the list.

The algorithm now computes the bounds of the output polygons from the LML
by scanning the world from the bottom to the top using what are called scan beams.
A scan beam is a horizontal section between two scan lines (not necessarily adjacent),
so that each of these scan lines contains at least one vertex from the polygons but
there are no vertices in between them. Figure 3.18(a) shows the scan beams and the
scan lines that determine them for that particular polygon. The scan beams are the
regions between the horizontal lines. It should be noted here that the scan lines that
determine the scan beams are not computed all at once but incrementally in a bottom-
up fashion. The information about the scan beams is kept in a scan beam list (SBL),
which is an ordered list ordered by the y-coordinates of all the scan lines that define
the scan beams. This list of increasing values will be thought of as a stack. As we scan
the world, we also maintain an active edge list (AEL), which is an ordered list con-
sisting of all the edges intersected by the current scan beam.

When we begin processing a scan beam, the first thing we do is to check the LML
to see if any of its bound pairs start at the bottom of the scan beam. These bounds
correspond to local minima and may start a new output polygon or break one into
two depending on whether the local minimum starts with a left-right or right-left edge
pair. After any new edges from the LML are added to the AEL, we need to check for
intersections of edges within a scan beam. These intersections affect the output poly-
gons and are dealt with separately first. Finally, we process the edges on the AEL.
Algorithm 3.3.5.1 summarizes this overview of the Vatti algorithm.

To understand the algorithm a little better we look at some more of its details.
The interested reader can find a much more thorough discussion with abstract pro-
grams and explicit data structures in the document VattiClip on the accompanying
CD. The UpdateLMLandSBL procedure in Algorithm 3.3.5.1 finds the bounds of a
polygon, adds them to LML, and also updates SBL. Finding a bound involves finding
the edges that make them up and initializing their data structure that maintains the
information that we need as we go along. For example, we keep track of the x-coor-
dinate of their intersection with the bottom of the current scan beam. We call this the
x-value of the edge. The edges of the AEL are ordered by these values with ties being
broken using their slope. We also record the kind of an edge which refers to whether
it belongs to the clip or subject polygon. Two edges are called like edges if they are of
the same kind and unlike edges otherwise. The partial polygons that are built and that,
in the end, may become the polygons that make up the clipped polygon are called the
adjacent polygons of their edges.

Because horizontal edges complicate matters, in order to make dealing with hor-
izontal edges easier, one assumes that the matching left and right bound pairs in the
LML list are “normalized”. A normalized left and right bound pair satisfies the fol-
lowing properties:

(1) All consecutive horizontal edges are combined into one so that bounds do not
have two horizontal edges in a row.

(2) No left bound has a bottom horizontal edge (any such edges are shifted to the
right bound).

(3) No right bound has a top horizontal edge (any such edges are shifted to the
left bound).
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{ Global variables }

real list SBL; { an ordered list of distinct reals thought of as a stack}
bound pair list LML; { a list of pairs of matching polygon bounds }
edge list AEL; { alist of nonhorizontal edges ordered by x-intercept

with the current scan line}
polygon list PL; { the finished output polygons are stored here as algorithm
progresses }

polygon list function Vatti_Clip (polygon subjectP; polygon clipP)
{ The polygon subjectP is clipped against the polygon clipP.
The list of polygons which are the intersection of subjectP and clipP is returned to the
calling procedure. }
begin
real yb, yt;

Initialize LML, SBL to empty;

{ Define LML and the initial SBL }

UpdateLMLandSBL (subjectP, subject); { subject and clip specify a subject }
UpdateLMLandSBL (clipP, clip); { or clip polygon, respectively }

Initialize PL, AEL to empty;

yb := PopSBL (); { bottom of current scan beam }
repeat

AddNewBoundPairs (yb); { modifies AEL and SBL }

yt := PopSBL (); { top of current scan beam }

ProcessIntersections (yb,yt);
ProcessEdgesInAEL (yb,yt);
yb =yt

until Empty (SBL);

return (PL);
end;

Algorithm 3.3.5.1. The Vatti polygon-clipping algorithm.

We introduce some more terminology. Some edges and vertices that one encoun-
ters or creates for the output polygons will belong to the bounds of the clipped
polygon, others will not. Let us call a vertex or an edge a contributing or noncon-
tributing vertex or edge depending on whether or not it belongs to the output poly-
gons. With regard to vertices, if a vertex is not a local minimum or maximum, then
it will be called a left or right intermediate vertex depending on whether it belongs to
a left or right bound, respectively. Because the overall algorithm proceeds by taking
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the appropriate action based on the vertices that are encountered, we shall see that
it therefore basically reduces to a careful analysis of the following three cases:

(1) The vertex is a local minimum.
(2) The vertex is a left or right intermediate vertex.
(3) The vertex is a local maximum.

Local minima are encountered when elements on the LML become active. Interme-
diate vertices and local maxima are encountered when scanning the AEL. Intersec-
tions of edges also give rise to these three cases.

Returning to Algorithm 3.3.5.1, the first thing that happens in the main loop is to
check for new bound pairs that start at the bottom of the current scan beams. If any
such pairs exist, then we have a case of two bounds starting at a vertex p that is a
local minimum. We add their first nonhorizontal edges to the AEL and the top y-values
of these to the SBL. The edges are flagged as being a left or right edge. We determine
if the edges are contributing by a parity test and flag them accordingly. An edge of
the subject polygon is contributing if there are an odd number of edges from the clip
polygon to its left in the AEL. Similarly, an edge of the clip polygon is contributing if
there are an odd number of edges from the subject polygon to its left in the AEL. If
the vertex is contributing, then we create a new partial polygon P[p] and associate
this polygon to both edges. Note that to determine whether or not an edge is con-
tributing or noncontributing we actually have to look at the geometry only for the first
nonhorizontal edge of each bound. The bound’s other edges will be of the same type
as that one.

The central task of the main loop in the Vatti algorithm is to process the edges
on the AEL. If edges intersect, we shall have to do some preprocessing (procedure
ProcessIntersections), but right now let us skip that and describe the actual process-
ing, namely, procedure ProcessEdgesInAEL. Because horizontal edges cause sub-
stantial complications, we separate the discussion into two cases. We shall discuss the
case where there are no horizontal edges first.

If an edge does not end at the top of the current scan beam, then we simply update
its x-value to the x-coordinate of the intersection of the edge with the scan line at the
top of the scan beam. If an edge does end at the top of the scan beam, then the action
we take is determined by the type of the top end vertex p. The vertex can either be an
intermediate vertex or a local maximum.

If the vertex p is a left or right intermediate vertex, then the vertex is added at the
beginning or end of the vertex list of its adjacent polygon, depending on whether it is
a left or right edge, respectively. The edge is replaced on the AEL by its successor edge
which inherits the adjacent polygon and left/right flag of the old edge.

If the vertex p is a local maximum of the original clip or subject polygons, then a
pair of edges from two bounds meet in the point p. If p is a contributing vertex, then
the two edges may belong either to the same or different (partial) polygons. If they have
the same adjacent polygons, then this polygon will now be closed once the point p is
added. If they belong to different polygons, say P and Q, respectively, then we need to
merge these polygons. Let e; and e; be the top edges for P and f; and f,, the top edges
for Q, so that e and f; meet in p with f; the successor to e; in the AEL. See Figure 3.19.
Figures 3.19(a) and (c) show specific examples and (b) and (d) generic cases. If e, is a
left edge of P (Figures 3.19(a) and (b)), then we append the vertices of Q to the begin-
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ning of the vertex list of P. If e; is a right edge of P (Figures 3.19(c) and (d)), then we
append the vertices of P to the end of the vertex list of Q. Note that each of the poly-
gons has two top contributing edges. In either case, after combining the vertices of P
and Q, the two edges e; and f; become noncontributing. If e; was a left edge, then £, will
be contributing to P and the adjacent polygon of f, will become P. If e; was a right edge,
then e, will be contributing to Q. Therefore, the adjacent polygon of e, will become Q.

When we find a local maximum we know two top edges right away, but if these
have different adjacent polygons, then we need to find the other two top edges for
these polygons. There are two ways to handle this. One could maintain pointers in
the polygons to their current top edges, or one could do a search of the AEL. The first
method gives us our edges without a search, but one will have to maintain the point-
ers as we move from one edge to the next. Which method is better depends on the
number of edges versus the number of local maxima. Since there probably are rela-
tively few local maxima, the second method is the recommended one.

Finally, we look at how one deals with intersections of edges within a scan beam.
The way that these intersections are handled depends on whether we have like or
unlike edges. Like intersections need only be considered if both edges are contribut-
ing and in that case the intersection point should be treated as both a left and right
intermediate vertex. (Note that in the case of like intersections, if one edge is con-
tributing, then the other one will be also.) Unlike intersections must always be
handled. How their intersection point is handled depends on their type, side, and rel-
ative position in the AEL.

It is possible to give some precise rules on how to classify intersection points. The
classification rules are shown in Table 3.3.5.1 in an encoded form. Edges have been
specified using the following two-letter code: The first letter indicates whether the edge
is a left (L) or right (R) edge, and the second letter specifies whether it belongs to the
subject (S) or clip (C) polygon. The resulting vertex type is also specified by a two-letter
code: local minimum (MN), local maximum (MX), left intermediate (LI), and right inter-
mediate (RI). Edge codes are listed in the order in which their edges appear in the AEL.

For example, Rule 1 translates into the following: The intersection of a left clip edge and
aleft subject edge, or the intersection of a left subject edge and a left clip edge, produces
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Table 3.3.5.1 Rules that Classify the Intersection Point Between Edges

Unlike edges: Like edges:
(1) (LC N LS) or (LS N LC) — LI (5) (LC n RC) or (RC n LC) — LI and RI
(2) (RC N RS) or (RS n RC) — RI (6) (LS " RS) or (RS N LS) — Ll and RI

(3) (LS N RC) or (LC n RS) -» MX
(4) (RS N LC) or (RC n LS) - MN

clip
polygon

Rule 1 Rule 2

< subject / \
Rule 3 Rule 4 polygon

(@) (b)

L5 n R RS N RC

LS n LC

<

Figure 3.20. Intersection rules.

a left intermediate vertex. Rules 1-4 are shown graphically in Figure 3.20(a). Figure
3.20(b) shows an example of how the rules apply to some real polygon intersections.

As one moves from scan beam to scan beam, one updates the x-values of all the
edges (unless they end at the top of the scan beam). Although the AEL is sorted as
one enters a new scan beam, if any intersections are found in a scan beam, the AEL
will no longer be sorted after the x-values are updated. The list must therefore be
resorted, but this can be done in the process of dealing with the intersections. Vatti
used a temporary sorted edge list (SEL) and an intersection list (IL) to identify and
store all the intersections in the current scan beam. The SEL is ordered by the x-coor-
dinate of the intersection of the edge with the top of the scan beam similarly to the
way that the AEL is ordered by the intersection values with the bottom of the scan
beams. The IL is a list of nodes specifying the two intersecting edges and also the
intersection itself. It is sorted in an increasing order by the y-coordinate of the inter-
section. The SEL is initialized to empty. One then makes a pass over the AEL com-
paring the top x-value of the current edge with the top x-values of the edges in the
SEL starting at the right of the SEL. There will be an intersection each time the AEL
edge has a smaller top x-value than the SEL edge. Note that the number of intersec-
tions that are found is the same as the number of edge exchanges in the AEL it takes
to bring the edge into its correct place at the top of the scan beam.

Intersection points of edges are basically treated as vertices. Such “vertices” will
be classified in a similar way as the regular vertices. If we get a local maximum, then
there are two cases. If two unlike edges intersect, then a contributing edge becomes
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a noncontributing edge and vice versa. This is implemented by simply swapping the
output polygon pointers. If two like edges intersect, then a left edge becomes a right
edge and a right edge becomes a left edge. One needs to swap the intersecting edges
in the AEL to maintain the x-sort.

This finishes our discussion of the Vatti algorithm in the case where there are no
horizontal edges. Now we address the more complicated general case that allows hor-
izontal edges to exist. (However, we never allow edges to overlap, that is, where they
share a common segment.) The only changes we have to make are in procedure
ProcessEdgesInAEL. On an abstract level, it is easy to see how horizontal edges should
be handled. The classification of vertices described above should proceed as if such
edges were absent (had been shrunk to a point). Furthermore, if horizontal edges do
not intersect any other edge, then for all practical purposes they could be ignored.
The problems arise when intersections exist.

Imagine that the polygons were rotated slightly so that there were no horizontal
edges. The edges that used to be horizontal would now be handled without any
problem. This suggests how they should be treated when they are horizontal. One
should handle horizontal edges the same way that intersections are handled. Note that
horizontal edge intersections occur only at the bottom or top of a scan beam. Hori-
zontal edges at local minima should be handled in the AddNewBoundPairs procedure.
The others are handled as special cases in that part of the algorithm that tests whether
or not an edge ends in the current scan beam. If it does, we also need to look for hor-
izontal edges at the top of the current scan beam and the type classification of a vertex
should then distinguish between a local maximum, left intermediate vertex, or right
intermediate vertex cases. The corresponding procedures need to continue scanning
the AEL for edges that intersect the horizontal edge until one gets past it. One final
problem occurs with horizontal edges that are oriented to the left. These would be
detected too late, that is, by the time one finds the edge to which they are the suc-
cessor, we would have already scanned past the AEL edges that intersected them. To
avoid this, the simplest solution probably is to make an initial scan of the AEL for all
such edges before one checks events at the top of the scan beam and put them into a
special left-oriented horizontal edge list (LHL) ordered by the x-values of their left
endpoints. Then as one scans the AEL one needs to constantly check the top x-value
of an edge for whether it lies inside one of these horizontal edges.

This completes our description of the basic Vatti algorithm. The algorithm can be
optimized in the common case of rectangular clip bounds. Another optimization is pos-
sible if the clip polygon is fixed (rectangular or not) by computing its bounds only once
and initializing the LML to these bounds at the beginning of a call to the clip algorithm.

An attractive feature of Vatti’s algorithm is that it can easily be modified to gen-
erate trapezoids. This is particularly convenient for scan line-oriented rendering algo-
rithms. Each local minimum starts a trapezoid or breaks an existing one into two
depending on whether the local minimum starts with a left-right (contributing case)
or right-left (noncontributing case) edge pair. At a contributing local minimum we
create a trapezoid. Trapezoids are output at local maxima and left or right interme-
diate vertices. A noncontributing local minimum should output the trapezoid it is
about to split and update the trapezoid pointers of the relevant edges to the two new
trapezoids. Vatti compared the performance of the trapezoid version of his algorithm
to the Sutherland-Hodgman algorithm and found it to be roughly twice as fast for
clipping (the more edges, the more the improvement) and substantially faster if one
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does both clipping and filling. Because Section 14.4 will describe a special case of the
trapezoid form of the Vatti algorithm for use with trimmed surfaces, we postpone any
further details on how to deal with trapezoids to there.

Finally, we can also use the Vatti algorithm for other operations than just inter-
section. All we have to do is replace the classification rules. For example, if we want
to output the union of two polygons, use the rules

(1) (LC U LS) or (LS U LC) — LI
(2) (RC U RS) or (RS U RC) — RI
(3) (LS U RC) or (LC U RS) — MN
(4) RSULC) or (RCULS) - MX

Local minima of the subject polygon that lie outside the clip polygon and local minima
of the clip polygon that lie outside the subject polygon should be treated as con-
tributing local minima.

For the difference of two polygons (subject polygon minus clip polygon) use the rules

(1) (RC - LS) or (LS - RC) — LI
(2) (RS - LC) or (LC - RS) — RI
(3) (RS - RC) or (LC — LS) — MN
(4) (RC - RS) or (LS - LC) —» MX

Local minima of the subject polygon that lie outside the clip polygon should be treated
as contributing local minima.

3.3.6 Greiner-Hormann Polygon Clipping

The last polygon-clipping algorithm we consider is the Greiner-Hormann algorithm
([GreH98)). It is very much like Weiler’s algorithm but simpler. Like the Weiler and
Vatti algorithm it handles any sort of polygons including self-intersecting ones. Fur-
thermore, it, like Vatti’s algorithm, can be modified to return the difference and union
of polygons, not just their intersections.

Suppose that we want to clip the subject polygon S against the clip polygon C.
What we shall do is find the part of the boundary of S in C, the part of the boundary
of C in S, and then combine these two parts. See Figure 3.21. Since we allow self-
intersecting polygons, one needs to be clear about when a point is considered to be
inside a polygon. Greiner-Hormann use the winding number w(p,y) of a point p with
respect to a parameterized curve y. They define a point p to be in a polygon P if the
winding number of the point with respect to the boundary curve of P is odd. (The
oddness or evenness of the winding number with respect to a curve is independent of
how the curve is parameterized.)

Polygons are represented by doubly-linked lists of vertices. The algorithm pro-
ceeds in three phases. One will find it helpful to compare the steps with those of the
Weiler algorithm as one reads.

Phase 1. We compare each edge of the subject polygon with each edge of the clip
polygon, looking for intersections. If we find one, we insert it in the appropriate place
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Figure 3.21. Greiner-Hormann polygon clipping.

vertex = record

float X, Y;
vertex pointer next, prev;
boolean intersect;
boolean entry;
vertex pointer neighbor;
float alpha;
vertex pointer nextPoly;
end;

Data 3.3.6.1. The Greiner-Hormann vertex structure.

in both polygons’ vertex lists. If there are no intersections, then either one polygon is
contained in the other or they are disjoint. These cases are checked for easily and we
then exit the algorithm in this case with our answer.

Phase 2. We traverse each polygon’s new vertex lists marking any intersection points
as either entry or exit points. This is done by checking whether the first vertex of each
polygon lies inside the other polygon or not using the winding number. The rest of
the tagging as entry or exit points is then easy.

Phase 3. This stage actually creates the intersection polygons. We start at an inter-
section point of the subject polygon and then move along its point list either forward
or backward depending on its entry-exit flag. If we are at an entry point, then we move
forward, otherwise, backward. When we get to another intersection point, we move
over to the other polygon’s list.

The data structure used for vertices is shown in Data 3.3.6.1. In the case of an
intersection point, if the entry field is false, then the point is an exit point. At an inter-
section vertex in one of the polygon’s vertex lists the field neighbor points to the cor-
responding vertex in the other polygon’s vertex list. The field alpha for an intersection
point specifies the position of the intersection relative to the two endpoints of the edge
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vertex pointer current;

while more unprocessed subject intersection points do
begin
current := pointer to first remaining unprocessed subject intersection point;
NewPolygon (P);
NewVertex (current);
repeat
if current—entry
then
repeat
current ;= current—next;
NewVertex (current);
until current—intersect
else
repeat
current := current—prev,
NewVertex (current);
until current—intersect
current := current—neighbor;
until Closed (P);
end;

Algorithm 3.3.6.1. Algorithm for Greiner-Hormann’s Phase 3.

containing this intersection point. Because the intersection polygon may consist of
several polygons, these polygons are linked with this field. The first vertex of each
intersection polygon list has its nextPoly field point to the first vertex of the next inter-
section polygon.

The basic steps for Phase 3 are shown in Algorithm 3.3.6.1. The procedure
NewPolygon starts a new polygon P and NewVertex creates a new vertex for this
polygon and adds it to the end of its vertex list. Figure 3.22 shows the data structure
that is created for a simple example.

The algorithm uses an efficient edge intersection algorithm and handles degener-
ate cases of intersections by perturbing vertices slightly.

The advantage of the Greiner-Horman algorithm is that it is relatively simple and
the authors claim their algorithm can be more than twice as fast as the Vatti algo-
rithm. The reason for this is that Vatti’s algorithm also checks for self-intersections
which is not done here. Of course, if one knows that a polygon does not have self-
intersections, then the extra work could be avoided in Vatti’s algorithm also. The
disadvantage of the algorithm is that one does not get any trapezoids but simply
the boundary curve of the intersection. In conclusion, the Greiner-Horman algorithm
is a good one if all one wants is boundaries of polygons because it is simple and yet
fast.
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Figure 3.22. The Greiner-Hormann data structures.

3.4 Text Clipping

The topic of text generation and display is a very complex one. We shall barely scratch
the surface here.

Characters can be displayed in many different styles and sizes and each such
overall design style is called a typeface or font. Fonts are defined in one of several ways:

Bit-Mapped Fonts. FEach character is represented by a rectangular bitmap. All the
characters for a particular font are stored in a special part of the graphics memory
and then mapped to the frame buffer when needed.

Vector Fonts. Each character is represented by a collection of line segments.

Outline Fonts. FEach character’s outline is represented by a collection of straight line
segments or spline curves. This is more general than vector fonts. An attractive feature
of both vector and outline fonts is that they are device independent and are easily
scaled, rotated, and transformed in other ways. In either case, one has the option of
scan converting them into the frame buffer on the fly or precomputing them and
storing the bitmaps in memory. Defining and scan converting outline fonts gets very
complicated if one wants the result to look nice and belongs to what is called digital

typography.

Two overall strategies that are used to clip text are:
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Figure 3.23. A Cyrus-Beck clipping example.

All-or-Nothing String Clipping. Here one computes the size of the rectangle that
contains the string and only maps the string to the frame buffer if the rectangle fits
entirely into the window in which the string is to be displayed.

All-or-Nothing Character Clipping. Here one clips on a character-by-character
basis. One computes the size of the rectangle that contains a given character and only
maps the character to the frame buffer if the rectangle fits entirely into the window
in which it is to be displayed.

The all-or-nothing approaches are easy to implement because it is easy to check
if one rectangle is inside another. The all-or-nothing character clipping approach is
often quite satisfactory. A more precise way to clip is to clip on the bit level. What
this means in the bit-mapped font case is that one clips the rectangular bitmap of
each character against the window rectangle and displays that part which is inside.
In the vector or outline font case, one would clip the curve that defines a character
against the window using one of the line-clipping algorithms and then scan converts
only the part of the character that lies in the window.

3.5 EXERCISES

Section 3.2.2.

3.2.2.1 Let p; = (-4,-2) and p; = (2,3). Let A = (0,0), B = (3,0), and C = (0,3). Work out the
steps of the Cyrus-Beck clipping algorithm and compute the [a;,b;]s that are generated
when clipping the segment [p1,p>] against triangle ABC. See Figure 3.23. Assume that
the lines Ly, L,, and L3 are defined by equations y =0, x =0, and x + y = 3, respectively.

3.6 PROGRAMMING PROJECTS

1. Clipping (Section 3.3.5 and 3.3.6)

Implement either the Vatti or Greiner-Hormann clipping algorithm in such a way so that it
handles all three set operations N, U, and —.




CHAPTER 4

Transformations and the
Graphics Pipeline

Prerequisites: Chapters 2 and 3 in [AgoMO05]. Chapter 20 for Section 4.14.

41 Introduction

In this chapter we combine properties of motions, homogeneous coordinates, pro-
jective transformations, and clipping to describe the mathematics behind the three-
dimensional computer graphics transformation pipeline. With this knowledge one will
then know all there is to know about how to display three-dimensional points on a
screen and subsequent chapters will not have to worry about this issue and can con-
centrate on geometry and rendering issues. Figure 4.1 shows the main coordinate
systems that one needs to deal with in graphics and how they fit into the pipeline. The
solid line path includes clipping, the dashed line path does not.

Because the concept of a coordinate system is central to this chapter, it is worth
making sure that there is no confusion here. The term “coordinate system” for R"
means nothing but a “frame” in R", that is, a tuple consisting of an orthonormal basis
of vectors together with a point that corresponds to the “origin” of the coordinate
system. The terms will be used interchangeably. In this context one thinks of R" purely
as a set of “points” with no reference to coordinates. Given one of these abstract points
p, one can talk about the coordinates of p with respect to one coordinate system or
other. If p = (x,y,z) € R?, then x, y, and z are of course just the coordinates of p with
respect to the standard coordinate system or frame (ei,e;,e3,0).

Describing the coordinate systems and maps shown in Figure 4.1 and dealing with
that transformation pipeline in general occupies Sections 4.2-4.7. Much of the dis-
cussion is heavily influenced by Blinn’s excellent articles [Blin88b,91a—c,92]. They
make highly recommended reading. Section 4.8 describes what is involved in creat-
ing stereo views. Section 4.9 discusses parallel projections and how one can use the
special case of orthographic projections to implement two-dimensional graphics in a
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Figure 4.1. The coordinate system pipeline.

three-dimensional environment. Section 4.10 discusses some advantages and dis-
advantages to using homogeneous coordinates in computer graphics. Section 4.11
explains how OpenGL deals with projections. The reconstruction of objects and
camera data is the subject of Section 4.12 and the last graphics pipeline related topic
of this chapter. The last two sections of the chapter are basically further examples of
transformations and their uses. Section 4.13 takes another look at animation, but from
the point of view of robotics. This subject, interesting in its own right, is included
here mainly to reinforce the importance of understanding transformations and
frames. Next, Section 4.14 explains how quaternions are an efficient way to express
transformations and how they are particularly useful in animation. We finish the
chapter with some concluding remarks in Section 4.15.

4.2 From Shape to Camera Coordinates

This section describes the first three coordinate systems in the graphics pipeline. In
what follows, we shall use the term “shape” as our generic word for a geometric object
independent of any coordinate system.

The World Coordinate System. This is the usual coordinate system with respect to
which the user defines objects.

The Shape Coordinate System. This is the coordinate system used in the actual
definition of a shape. It may very well be different from the world coordinate system.
For example, the standard conics centered around the origin are very easy to describe.
A good coordinate system for the ellipse in Figure 4.2 is defined by the indicated frame
(uy,uz,p). In that coordinate system its equation is simply
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T

Figure 4.2. A shape coordinate system. u

The equation of that ellipse with respect to the standard world coordinate system
would be much more complicated.

The Camera Coordinate System. A view of the world obtained from a central pro-
jection onto a plane is called a perspective view. To specify such view we shall borrow
some ideas from the usual concept of a camera (more precisely, a pinhole camera
where the lens is just a point). When taking a picture, a camera is at a particular posi-
tion and pointing in some direction. Being a physical object with positive height and
width, one can also rotate the camera, or what we shall consider as its “up” direction,
to the right or left. This determines whether or not the picture will be “right-side up”
or “upside down.” Another aspect of a camera is the film where the image is projected.
We associate the plane of this film with the view plane. (In a real camera the film is
behind the lens, whose position we are treating as the location of the camera, so that
an inverted picture is cast onto it. We differ from a real camera here in that for us
the film will be in front of the lens.) Therefore, in analogy with such a “real” camera,
let us define a camera (often referred to as a synthetic camera) as something specified
by the following data:

a location p

a “view” direction v (the direction in which the camera is looking)

an “up” direction w (specifies the two-dimensional orientation for the camera)
a real number d (the distance that the view plane is in front of the camera)

Clearly, perspective views are defined by such camera data and are easily manipulated
by means of it. We can view the world from any point p, look in any direction v, and
specify what should be the top of the picture. We shall see later that the parameter d,
in addition to specifying the view plane, will also allow us to zoom in or out of views
easily.

A camera and its data define a camera coordinate system specifed by a camera
frame (ui,uz,uz,p). See Figure 4.3(a). This is a coordinate system where the camera
sits at the origin looking along the positive z-axis and the view plane is a plane
parallel to the x-y plane a distance d above it. See Figure 4.3(b). We define this
coordinate system from the camera data as follows:
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Figure 4.3. The camera coordinate system.

us =V/|V|
u, = w/|wl (4.1)

u; =usz XUup.

These last two axes will be the same axes that will be used for the viewport. There
were only two possibilities for u; in equations (4.1). Why did we choose uz x u, rather
than u, x u3? Normally, one would take the latter because a natural reaction is to
choose orientation-preserving frames; however, to line this x-axis up with the x-axis
of the viewport, which one always wants to be directed to the right, we must take the
former. (The easiest way to get an orientation-preserving frame here would be to
replace uz with —u3;. However, in the current situation, whether or not the frame is
orientation-preserving is not important since we will not be using it as a motion but
as a change of coordinates transformation.)

Although an up direction is needed to define the camera coordinate system, it is
not always convenient to have to define this direction explicitly. Fortunately, there is
a natural default value for it. Since a typical view is from some point looking toward
the origin, one can take the z-axis as defining this direction. More precisely, one can
use the orthogonal projection of the z-axis on the view plane to define the second axis
u; for the camera coordinate system. In other words, one can define the camera frame

by
usz = V/|V|

w =w/|w|, where w=e3—(e;eus)u; (4.2)
u; =usz Xup.

As it happens, we do not need to take the complete cross product to find u;, because
the z-coordinate of u; is zero. The reason for this is that e; lies in the plane gen-
erated by u, and u3 and so u; is orthogonal to es. It follows that if u; = (u3q,u3;,u33)
and u; = (uy1,up,u33), then



4.2 From Shape to Camera Coordinates 115

u; = (u3uz3 —UxU33, UzzUzg — Uz3usg, 0).

It is also easy to show that u; is a positive scalar multiple of (us,,—u31,0) (Exercise
4.2.1), so that

1

u; :—\/ﬁ (u32, —u3y, 0).
usz; tus2

Although this characterization of u; is useful and easier to remember than the cross
product, it is not as efficient because it involves taking a square root.

Note that there is one case where our construction does not work, namely, when
the camera is looking in a direction parallel to the z-axis. In that case the orthogonal
projection of the z-axis on the view plane is the zero vector. In this case one can arbi-
trarily use the orthogonal projection of the y-axis on the view plane to define u,. For-
tunately, in practice it is rare that one runs into this case. If one does, what will happen
is that the picture on the screen will most likely suddenly flip around to some unex-
pected orientation. Such a thing would not happen with a real camera. One can
prevent it by keeping track of the frames as the camera moves. Then when the camera
moves onto the z-axis one could define the new frame from the frames at previous
nearby positions using continuity. This involves a lot of extra work though which is
usually not worth it. Of course, if it is important to avoid these albeit rare occurrences
then one can do the extra work or require that the user specify the desired up direc-
tion explicitly.

Finally, given the frame F = (uj,u,u3,p) for the camera, then the world-to-camera
coordinate transformation Tywor_scam in Figure 4.1 is the map

(4.3)

q— (q—P)(ulTuzTu3T) =(q-pM, (4.4)

where M is the 3 x 3 matrix that has the vectors u; as its columns.
We begin with a two-dimensional example.

4.2.1 Example. Assume that the camera is located at p = (5,5), looking in direc-
tion v = (=1,-1), and that the view plane is a distance d = 2 in front of the camera. See
Figure 4.4. The problem is to find Tyor_scam-

Solution. Let u, = v/lvl = (-1/¥2 ,—1/+2) (u; plays the role of us here). The “up” direc-
tion is determined by e, in this case, but all we have to do is switch the first and
second coordinate of u, and change one of the signs, so that u; = (-1/ N2 1/42). We
now have the camera frame (uj,u;,p). It follows that T = Tyor_scam is the map

(x,y) > (x-5y-5)

S
sl- 51~

In other words,
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u Figure 4.4. Transforming from world to
L uy camera coordinates.

(5—J2,5-12)

[t I TS S S 3 B =

=Y

1 1 1 1
Twor—)cam: X/:_T(X - 5) +T(y_ 5) :__X+Ty

y=- J—(X 5) - J—(y 5)= «/— J—y+56

As a quick check we compute T(5,5) = (0,0) and T(5 — v2,5 — v2) =(0,2), which clearly
are the correct values.

Next, we work through a three-dimensional example.
4.2.2 Example. Assume that the camera is located at p = (5,1,2), looking in direc-
tion v = (=1,-2,-1), and that the view plane is a distance d = 3 in front of the camera.

The problem again is to find Twor_scam-

Solution. Using equations (4.2) we get
SIS S
u3 - ’\/g ’ y
w = w/jw| = L(—1, -2,5), where w= l(—1, -2,5
V30 6
1
u =uzXuy = TS(—Z, 1, 0)

It follows that

=2 (x—5)+(y—
Tworﬁcam- X _‘/E(X 5)+\/§(y 1)

-+

e S 2 (4o
y —@(X 5)‘*‘@(}’ @(Z 2)

-1 -2 -1
z’=T6(x—5)+T6(y—1)+Té(z—2).
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Note in the two examples how the frame that defines the camera coordinate
system also defines the transformation from world coordinates to camera coordinates
and conversely. The frame is the whole key to camera coordinates and look how simple
it was to define this frame!

The View Plane Coordinate System. The origin of this coordinate system is the
point in the view plane a distance d directly in front of the camera and the x- and
y-axis are the same as those of the camera coordinate system. More precisely, if
(uy,uz,u3,p) is the camera coordinate system, then (uj,u,,p+dus) is the view plane
coordinate system.

4.3 Vanishing Points

If there is no clipping, then after one has the camera coordinates of a point, the next
problem is to project to the view plane z = d. The central projection n of R? from the
origin to this plane is easy to compute. Using similarity of triangles, we get

n(x,y,z) = (x,y’,d) = (dx/z,dy/z,d). (4.5)

Let us see what happens when lines are projected to the view plane. Consider

a line through a point po = (Xo,v0,20), with direction vector v = (a,b,c), and
parameterization

p(t) = (x(1), y(t), z(t)) = po + tv. (4.6)

This line is projected by & to a curve p’(t) = (x'(t),y’(t),d) in the view plane, where

Xp +at

and y/(t)=d YD, 4.7)

x'(t)=d ;
Zo t+ct Zo +ct
It is easy to check that the slope of the line segment from p’(t;) to p’(ty) is

y'(t2) —y'(t) _ yoc—bzo
x'(t2) - x'(t1) xoc—azg

which is independent of t; and t,. This shows that the curve p’(t) has constant slope
and reconfirms the fact that central projections project lines into lines (but not
necessarily onto).

Next, let us see what happens to p’(t) as t goes to infinity. Assume that ¢ # 0. Then,
using equation (4.7), we get that

lim (x(t), y’(t)) = (da/c,db/c) (4.8)

This limit point depends only on the direction vector v of the original line. What this
means is that all lines with the same direction vector, that is, all lines parallel to the
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original line, will project to lines that intersect in a point. If ¢ = 0, then one can check
that nothing special happens and parallel lines project into parallel lines.

In the context of the world-to-view plane transformation with respect to a given
camera, what we have shown is that lines in the world project into lines in the view
plane. Furthermore, the projection of some lines gives rise to certain special points
in the view plane. Specifically, let L be a line in the world and let equation (4.6) be a
parameterization for L in camera coordinates. We use the notation in the discussion
above.

Definition. If the point in the view plane of the camera that corresponds to the point
on the right hand side of equation (4.8) exists, then it is called the vanishing point for
the line L with respect to the given camera or view.

Clearly, if a line has a vanishing point, then this point is well-defined and unique.
Any line parallel to such a line will have the same vanishing point. Figure 4.5 shows
a projected cube and its vertices. Notice how the lines through the pairs of vertices A
and E, B and F, C and G, and D and H meet in the vanishing point P. If we assume
that the view direction of the camera is perpendicular to the front face of the cube,
then the lines through vertices such as A, B, and E, F, or A, C, and B, D, are paral-
lel. (This is the ¢ = 0 case.)

Perspective views are divided into three types depending on the number of
vanishing points of the standard unit cube (meaning the number of vanishing points
of lines parallel to the edges of the cube).

One-point Perspective View. Here we have one vanishing point, which means
that the view plane must be parallel to a face of the cube. Figure 4.5 shows such a
perspective view.

Two-point Perspective View. Here we have two vanishing points and is the case
where the view plane is parallel to an edge of the cube but not to a face. See Figure
4.6 and the vanishing points P; and P».
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Figure 4.6. Two-point perspective z
view.

Figure 4.7. Three-point perspective
view.

Three-point Perspective View. Here we have three vanishing points and is the case
where none of the edges of the cube are parallel to the view plane. See Figure 4.7 and
the vanishing points Py, P,, and Ps.

Two-point perspective views are the ones most commonly used in mechanical
drawings. They show the three dimensionality of an object best. Three-point per-
spective views do not add much.

4.4 Windows and Viewports Revisited

The simple view of windows and viewports described in Chapter 1 glossed over some
important points and so we need to take another look. Assume that [wxmin,wxmax]
x [wymin,wymax] and [vxmin,vxmax] x [vymin,vymax] define the window and view-
port rectangles, respectively. See Figure 4.8. We shall not change the basic idea that
a window specifies what we see and that the viewport specifies where we see it, but
there was a natural implication that it is by changing the window that one sees dif-
ferent parts of the world. Is that not how one would scan a plane by moving a rec-
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vymax Figure 4.8. The window and view-
port rectangles.
wymax .
vxmin vxnmax
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tangular window around in it? What is overlooked here is the problem that occurs
when the viewport and the window are not the same size rectangle. For example,
suppose that the window is the square [-2,2] x [-2,2] and that the viewport the rec-
tangle [0,100] x [0,50]. What would happen in this situation is that the circle of radius
1 around the origin in the view plane would map to an ellipse centered at (50,25) in
the viewport. What we know to be a circle in the world would show up visually as an
ellipse on the screen. Would we be happy with that? This is the “aspect ratio” problem.
The reader may have noticed this already when implementing some of the program-
ming projects. What can one do to make circles show up as circles?

The best way to deal with the aspect ratio problem would be to let the user change
the viewport but not the window. The window would then be chosen to match the
viewport appropriately. First of all, users are not interested in such low level concepts
anyway and want to manipulate views in more geometric ways by using commands
like “pan,” “zoom,” “move the camera,” etc. Secondly, in the case of 3d graphics, from
a practical point of view this will in no way affect the program’s ability to handle dif-
ferent views. Changing the camera data will have the same effect. In fact, changing
the position and direction of the camera gives the program more control of what one
sees than simply changing the window. Changing the distance that the view plane is
in front of the camera corresponds to zooming. A fixed window would not work in
the case of 2d graphics, however. One would have to let the user translate the window
and change its size to allow zooming. A translation causes no problem, but the
zooming has to be controlled. The size can only be allowed to change by a factor that
preserves the height divided by width ratio. There is no reason for a user to know
what is going on at this level though. As long as the user is given a command option
to zoom in or out, that user will be satisfied and does not need to know any of the
underlying technical details.

Returning to the 3d graphics case, given that our default window will be a fixed
size, what should this size be? First of all, it will be centered about the origin of the
view plane. It should have the same aspect ratio (ratio of height to width) as the view-
port. Therefore, we shall let the window be the rectangle [-1,1] x [-b,b], where b =
(vymax — vymin)/(vxmax — vxmin). Unfortunately, this is not the end of the story. There
is also a hardware aspect ratio one needs to worry about. This refers to the fact that
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Figure 4.9. Window, normalized view- NDC
port, and pixel space. +a
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the dots of the electron beam for the CRT may not be “square.” The hardware ratio
is usually expressed in the form a = ya/xa with the operating system supplying the
values xa and ya. In Microsoft Windows, one gets these values via the calls

xa = GetDeviceCaps (hdc, ASPECTX);
ya = GetDeviceCaps (hdc, ASPECTY);

where hdc is a “device context” and ASPECTX and ASPECTY are system-defined
constants.

To take the aspect ratios into account and to allow more generality in the defini-
tion of the viewport, Blinn ([Blin92]) suggests using normalized device coordinates
(NDC) for the viewport that are separate from pixel coordinates. The normalized
viewport in this case will be the rectangle [-1,1] x [-a,a], where a is the hardware
aspect ratio. If Ny and Ny are the number of pixels in the x- and y-direction of our
picture in pixel space, then Figure 4.8 becomes Figure 4.9.

We need to explain the “—¢” terms in Figure 4.9. One’s first reaction might be that
[0,Ny — 1] x [0,Ny — 1] should be the pixel rectangle. But one needs to remember our
discussion of pixel coordinates in Section 2.8. Pixels should be centered at half
integers, so that the correct rectangle is [-0.5,Ny — 0.5] x [-0.5,Ny — 0.5]. Next, the map
from NDC to pixel space must round the result to the nearest integer. Since rounding
is the same thing as adding 0.5 and truncating, we can get the same result by mapping
[-1,1] x [-a,a] to [0,N4] x [0,Ny] and truncating. One last problem is that a +1 in the
x- or y-coordinate of a point in NDC will now map to a pixel with Ny or Ny in the
corresponding coordinate. This is unfortunately outside our pixel rectangle. Rather
than looking for this special case in our computation, the quickest (and satisfactory)
solution is to shrink NDC slightly by subtracting a small amount & from the pixel
ranges. Smith suggests letting € be 0.001.

There is still more to the window and viewport story, but first we need to talk
about clipping.
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4.5 The Clip Coordinate System

Once one has transformed objects into camera coordinates, our next problem is to
clip points in the camera coordinate system to the truncated pyramid defined by
the near and far clipping planes and the window. One could do this directly, but we
prefer to transform into a coordinate system, called the clip coordinate system or clip
space, where the clipping volume is the unit cube [0,1] x [0,1] x [0,1]. We denote the
transformation that does this by Tcam-cdlip- There are two reasons for using this
transformation:

(1) It is clearly simpler to clip against the unit cube.
(2) The clipping algorithm becomes independent of boundary dimensions.

Actually, rather than using these coordinates we shall use the associated homogeneous
coordinates. The latter define what we shall call the homogeneous clip coordinate
system or homogeneous clip space. Using homogeneous coordinates will enable us to
describe maps via matrices and we will also not have to worry about any divisions by
zero on our way to the clip stage. The map Tcamohelip in Figure 4.1 refers to this
camera-to-homogeneous-clip coordinates transformation. Let Thecam—hclip denote the
corresponding homogeneous-camera-to-homogeneous-clip coordinates transforma-
tion. Figure 4.10 shows the relationships between all these maps. The map Ty is the
standard projection from homogeneous to Euclidean coordinates.

Assume that the view plane and near and far clipping planes are a distance d, d,
and df in front of the camera, respectively. To describe Tcamhelip, it will suffice to
describe Theam—shclip-

First of all, translate the camera to (0,0,—d). This translation is represented by the
homogeneous matrix

1 0 0 O
01 0 O
Mtr = .
00 1 O
0 0 -d 1
T hcam+hclip
homog honog
_= -
camera coords clip coords
T . Tcam+hclip T
Pro,j proj

camera coords| ———————= [clip coords

T

Figure 4.10. The camera-to-clip
cam3clip space transformations.
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Next, apply the projective transformation with homogeneous matrix Myersp, Where

100 0
010 0

Mpersp = . 4.9

PP 0 0 1 1/d (4.9)
000 1

To see exactly what the map defined by Mpersp does geometrically, consider the lines
ax + z=-d and ax — z = d in the plane y = 0. Note that (x,y,z,w) Mpersp = (X,y,2,(z/d)+w).
In particular,

(O) Or - d) I)Mpersp = (Or Or - dr 0)

d d?
(x,0,-d —ax,)Mpersp = X,0,-d —ax, - — |=——| -—,0,d +—,1

a ax

2
(x,0,—d +ax, DMpersp = (x, 0,—-d +ax, Z—X) = i(é 0,d- d— 1).

ax\a ax

This shows that the camera at (0,0,—d) has been mapped to “infinity” and the two lines
have been mapped to the lines x" = —d/a and x” = d/a, respectively, in the plane y = 0.
See Figure 4.11. In general, lines through (0,0,—d) are mapped to vertical lines through
their intersection with the x-y plane. Furthermore, what was the central projection
from the point (0,0,—d) is now an orthogonal projection of R? onto the x-y plane. It
follows that the composition of My and Mpersp maps the camera off to “infinity,” the
near clipping plane to z = d (1 — d/d,), and the far clipping plane to z = d (1 — d/dy).
The perspective projection problem has been transformed into a simple orthographic
projection problem (we simply project (x,y,z) to (x,y,0)) with the clip volume now being

[-1,1] x[-b, b] x [d(1 —d/d¢), d(1 —d/d,)].

= =
x'=—d a x'=d~a
axtz=—d ax—z=d
far clip
far clip plane
plane \
x »’

near clip —d/a\ /d/a ,
plane near clip

—d[camera plane

camera at —o
(al (h)

Figure 4.11. Mapping the camera to infinity.



124 4 Transformations and the Graphics Pipeline

To get this new clip volume into the unit cube, we use the composite of the following
maps: first, translate to

[0,2] % [0, 2b] x [0, dz(i -~ difﬂ

and then use the radial transformation which multiplies the x, y, and z-coordinates

by

L and—dndf
27 2b’ d?(df —dy)’

respectively. If Mgcqe is the homogeneous matrix for the composite of these two maps,
then

1
5 0 0 0
1
. ) 0 > 0 0
scale = dnd[ )
0 0 —— 0
d*(df —dy)
11 da@i-d)
2 2 d(d¢ —dy)
so that
1 0 0 0
2
0 % 0 0
tham—>hclip = MtrMpersp Mscale = 1 1 df 1 (4 10)
2d 2d d(dr-dy) d
dndf
0 -—— 7 0
d(d¢ —dn)

is the matrix for the map Theamohdip that we are after. It defines the transformation
from homogeneous camera to homogeneous clip coordinates. By construction the
map Teamosdlip sends the truncated view volume in camera coordinates into the unit
cube [0,1] x [0,1] x [0,1] in clip space.

Note that the camera-to-clip-space transformation does not cost us anything
because it is computed only once and right away combined with the world-to-camera-
space transformation so that points are only transformed once, not twice.

Finally, our camera-to-clip-space transformation maps three-dimensional points
to three-dimensional points. In some cases, such as for wireframe displays, the z-
coordinate is not needed and we could eliminate a few computations above. However,
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if we want to implement visible surface algorithms, then we need the z. Note that the
transformation is not a motion and will deform objects. However, and this is the
important fact, it preserves relative z-distances from the camera and to determine
the visible surfaces we only care about relative and not absolute distances. More pre-
cisely, let p; and p; be two points that lie along a ray in front of the camera and assume
that they map to p;” and p»’, respectively, in clip space. If the z-coordinate of p; is
less than the z-coordinate of p,, then the z-coordinate of p;” will be less than the z-
coordinate of p,’. In other words, the “in front of” relation is preserved. To see this,
let p; = (tix, tiy, tiz), 0 < t; < t2, and py" = (x{, i, z). It follows from (4.10) that

S _(l_d_n)L
o tiz (df_dn)

from which it is easy to show that t; < t; if and only if 7" < z,".

4.6 Clipping

In the last section we showed how to transform the clipping problem to a problem of
clipping against the unit cube in clip space. The actual clipping against the cube will
be done in homogeneous clip space using homogeneous coordinates (x,y,z,w). The
advantage of homogeneous coordinates was already alluded to: every point of camera
space is sent to a well-defined point here because values become undefined only when
we try to map down to clip space by dividing by w, which may be zero.

Chapter 3 discussed general clipping algorithms for individual segments or whole
polygons. These have their place, but they are not geared to geometric modeling envi-
ronments where one often wants to draw connected segments. We shall now describe
a very efficient clipping algorithm for such a setting that comes from [Blin91a]. It uses
the “best” parts of the Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms.

In homogeneous coordinates halfplanes can be defined as a set of points that have
a nonnegative dot product with a fixed vector. For example, the halfplane ax + by +
cz +d >0, is defined by the vector (a,b,c,d) in homogeneous coordinates. Therefore,
by lining up vectors appropriately, any convex region bounded by planes can be
defined as the set of points that have nonnegative dot products with a fixed finite set
of vectors. In our case, we can use the following vectors for the six bounding planes
x=0,x=1,y=0,y=1,z=0, and z = 1 for the unit cube I’:

B; =(1,0,0,0), B3=(0,1,0,0)) Bs5=(0,0,1,0),
BZ = (_1,0,0,1), B4 = (O’_I’Orl)r B6 = (0’0;_1’1)

If p = (x,y,z,w), then let BC; = BCi(p) = p* B;. We shall call the BC; the boundary coor-
dinates of p. These coordinates are easy to compute:

BC1 =X, BC3=y, BCS =7z,
BC, =w-x, BCs=w-y, BCg=w-2z.
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A point will be inside the clip volume if and only if all of its boundary coordinates are
nonnegative. If the ith boundary coordinate of a point is nonnegative, then we shall
call the point i-inside; otherwise, it is i-out. Let BC = BC(p) = (BC1(p),BCx(p), .. .,
BC¢(p)) denote the vector of boundary coordinates.

Next, let p0 and p1 be two points and set BCO = BC(p0) and BC1 = BC(p1). The
next table shows the relationship of the segment [p0,p1] with respect to the ith bound-

ary:

Sign bit Sign bit

BCO; BC1; Meaning

0 0 Entire segment is i-inside

1 0 Segment straddles boundary, p0 is i-out
0 1 Segment straddles boundary, p1 is i-out
1 1 Entire segment is i-out

It will be convenient to record the sign information of a point p into a six-bit word
called its outcode and denote it by CODE(p). More precisely, the ith bit of CODE(p)
will be the sign bit of BCi(p). Let CODEO = CODE(p0) and CODE1 = CODE(p1).
Simple logical operations on CODEO and CODE1 now give us a lot of information
about the location of the segment. For example, the segment will be inside the clip
volume if (CODEO or CODEIl) is zero. The segment will be entirely outside the
clip volume if (CODEO and CODEI1) is nonzero. (Compare this with the Cohen-
Sutherland clipping algorithm.)

Whenever the segment crosses the ith clipping plane, we need to find the inter-
section. This is easy to do if we parameterize the segment, and we have done this sort
of thing before. We need to find the t so that

(PO +t(p1-p0)) eB; =0.

With our notation, t = BC0/(BCO; — BC1;). The segment will intersect the plane only
if this t lies in [0,1]. The expression shows that this can only happen if BCO; and BC1;
have different signs.

Now, the clipping algorithm we are in the process of describing is intended for
situations where we want to do a sequence of “DrawTo” and “MoveTo” commands.
The flag parameter in the “Clip” procedure is used to distinguish between the two
cases and will save us having to write a separate “Clip” procedure for both. The
abstract programs are given in Algorithm 4.6.1 with the ViewPt procedure represent-
ing the next stage of the graphics pipeline after clipping, namely, the clip-space-to-
pixel-space map. A more efficient procedure using goto’s, assuming that the trivial
rejects are the most common cases, is shown in Algorithm 4.6.2.

Next, we describe the nontrivial stuff that happens when a segment straddles a
boundary. We basically use the Liang-Barsky algorithm here. In Algorithm 4.6.3, the
variables a0 and al keep track of the still-visible part of a segment. MASK is used to
select one boundary at a time. Blinn points out that he does the operation CODEO or
CODEI1 again on the theory that it will not get done often and we save storing an
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homogeneous point p0, p1;
real BCO0,BC1
6-bit word CODEO,CODEIL;

Procedure Clip ((move,draw) flag)
{We assume that p0, BCO, and CODEO have been defined. We clip [p0, p1]}
begin

Calculate BC1, CODEL;

case flag of
move : DoMoveStuff ();
draw : DoDrawStuff ();
end;

{ Update globals }
[p0,BC0,CODEQ] := [p1,BC1,CODEL1];
end;

Procedure DoMoveStuff ()
if CODE1 =0 then ViewPt (pl,move);

Procedure DoDrawStuff ()
if (CODEO and CODE1) =0 then
begin
if (CODEO or CODE1) =0
then ViewPt (pl.,draw)
else DoNontrivialStuff ()
end;

Algorithm 4.6.1. Abstract programs for clipping using homogeneous coordinates.

unneeded value earlier. He also made all tests as much as possible into integer com-
parisons to cut down on floating point operations.

There are some limitations to Blinn’s clipping algorithm. Although they tend to
be more theoretical than practical, one should be aware of them. The problem is that
one is clipping to the infinite inverted pyramid in homogeneous coordinate space
shown in Figure 4.12(a) when, in fact, one should be clipping to the double pyramid
shown in Figure 4.12(b). The points in the negative pyramid will also project to the
visible region. On the other hand, the basic graphics pipeline that we have been
describing will not introduce any negative w’s and so this problem will not arise here.
The problem arises only if negative w-coordinates are introduced explicitly or if one
wants to represent infinite segments (the complement of a normal segment in a line).
If one does want to handle such cases, the quickest way to do it is to draw the world
twice, once as described above and then a second time, where the matrix that maps
from shape to clip coordinates is multiplied by —1.
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Procedure Clip ((move,draw) flag)
begin
label moveit, nontriv, finish;

Calculate BC1, CODEI1;

if flag=move then goto moveit;

if (CODEO and CODEI1) #0 then goto finish;
if (CODEO or CODEl) #0 then goto nontriv;
ViewPt(pl,draw);

finish:
[p0,BCO,CODEQ] := [p1,BC1,CODE1];
return;

moveit:
if CODE1 #0 then goto finish;
ViewPt(pl,move);
goto finish;

nontriv:
DoNontrivialStuff ();

goto finish;

end;

Algorithm 4.6.2. More efficient clipping using homogeneous coordinates.

@) (b)

Figure 4.12. Single- and double-clip pyramid.
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Procedure DoNontrivialStuff ()

begin
6-bit word BCASE, MASK;
real a0, al, a;
integer  i;

homogeneous point p;

BCASE := CODEO or CODEI,;
a0:=0.0; al:=1.0; MASK :=1;
for i:=1 to numClipPlanes do
begin
if (BCASE and MASK) # 0 then
begin
a :=BCO[i] / (BCO[i] — BCI[i)]);
if (CODEO and MASK) # 0
then a0 := max (a0,a)
else al :=min (al,a);
if al <a0 then return; { reject }
end;
Shift MASK left one bit
end;

if CODEO #0 then
begin
p := p0 + a0*(pl — p0);
ViewPt (p,move);
end;

if CODE1 #0
then
begin
p :=p0 + al*(pl - p0);
ViewPt (p,draw);
end
else ViewPt (pl,draw);

end;

Algorithm 4.6.3. The nontrivial part of homogeneous coordinate clipping.
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4.7 Putting It All Together

We are finally ready to put all the pieces together. See Figure 4.1 again. Starting with
some shape we are initially in shape coordinates. We then

(1) transform to world coordinates

(2) transform from world to homogeneous clip coordinates by composing
Twor—cam and Tcam—)hclip

(3) clip

(4) project (x,y,z,w) down to (x/w,y/w,z/w) in the unit cube of clip space with Tp;

(5) map the unit square in the x-y plane of clip space to the viewport

(6) map from the viewport to pixel space

With respect to (4), note that using a front clipping plane does have the advantage
that we do not have to worry about a division by zero. Almost, but not quite. There
is the very special case of (0,0,0,0) that could occur and hence one needs to check for
it (Exercise 4.7.1). It would be complicated to eliminate this case.

Also, because of the clipping step, Blinn suggests a more complete version of the
window-to-pixel map than shown in Figure 4.9. See Figure 4.13. The square [0,1] X
[0,1] represents the clipping. This allows one to handle the situation shown in Figure
4.14, where the viewport goes outside the valid NDC range quite easily. One pulls back
the clipped viewport

[uxmin,uxmax] X [uy min,uy max]
to the rectangle
[wxmin, wxmax] X [wy min, wy max]
and then uses that rectangle as the window. Only the transformation Tcam—hclip Needs
to be changed, not the clipping algorithm.
Blinn’s approach is nice, but there may not be any need for this generality. A much

simpler scheme that works quite well is to forget about the NDC by incorporating the
hardware aspect ratio ry into the window size. Let

+a
+h —1| wymax 1
min uxm
-1 +1 1 uym
—b a 1 —a a
8 a Mx—€

Figure 4.13. From window to pixel
My-¢ coordinates.
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Figure 4.14. General window and
viewport example.

a 8 Mx—€

My—€

[vpxmin, vpxmax] x [vpy min, vpy max]
be the current viewport. Then fix the window to be the rectangle [-1,1] x [-b,b], where
b = i, (ymax— ymin)/(xmax— xmin).

Now map directly from [0,1] x [0,1] to pixel space. With this window and the view
transformations discussed in this chapter, circles will look like circles.

We close with a final remark on clipping. Clipping is expensive and therefore we
would rather not do it! In future chapters we shall discuss ways one can often avoid
it (by using bounding boxes, the convex hull property of splines, etc.).

4.8 Stereo Views

Occasionally, it is useful to allow the origin of the view plane to be a point other than
the one directly in front of the camera. One such case is where one wants to compute
stereo views. This involves computing two views, one for each eye.

The Eye Coordinate System. Given a camera, let (uj,u;,u3,p) be the camera coor-
dinate system, where the vectors uj, u;, and u; are defined by equation (4.1) If
we think of one eye as being located at p + au; + bu,, then the eye coordinate system
with respect to the given camera and some a, b € R is defined by the frame
(uy,uz,u3,p + au; + buy). If a = b = 0, then this is the same as the camera coordinate
system.

It is easy to see that if the coordinates of a point p in camera coordinates is (x,y,z),
then the coordinates of that same point in eye coordinates are (x — a,y — b,z). Fur-
thermore, if p projects to (x’,y’,d) in eye coordinates, then it projects to (x" + a,y" +
b,d) in camera coordinates. It follows that, using homogeneous coordinates, the only
difference in computing the view in camera coordinates to computing it in eye coor-
dinates amounts to replacing the matrix Mpersp, in equation (4.9) by
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Figure 4.15. Views from two eyes for stereo.
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To compute stereo views one would compute two views — one with the eye at p +
au; and one with the eye at p — au; for some suitable a. See Figure 4.15. The two
views are then displayed a suitable distance apart in a viewport. Actually, our discus-
sion here is a simplification of what is involved in stereo rendering and we refer the
reader to [Hodg92] for a much more thorough overview.

4.9 Parallel Projections

So far we have dealt solely with perspective views, but there are times when one wants
views based on parallel projections. Although this can be thought of as a special case
of central projections where the camera is moved to “infinity” along some direction,
it is worth considering on its own because one can achieve some simplifications in
that case.

Assume that our view plane is the x-y plane and that we are interested in the
parallel projection of the world onto that plane using a family of parallel lines. See
Figure 4.16.

4.9.1 Proposition. If & is the parallel projection of R® onto R? with respect to a
family of parallel lines with direction vector v = (vy,v,,v3), then

n(x,y,z) = (x —z(vi/v3),y = 2(v2/v3),0).
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Figure 4.16. A parallel projection onto the z
x-y plane.

Proof. Exercise 4.9.1.

Passing to homogeneous coordinates, consider the projective transformation Tpar
defined by the matrix

1 0 0O
0 1 00
Mp,r = ViV 0 (4.12)
V3 V3
0 0 01

Our parallel projection onto the x-y plane is then nothing but the Cartesian version
of Tpar followed by the orthogonal projection (x,y,z) — (x,y,0). It follows that the matrix
M,.r plays the role of the matrix Mpersp in Section 4.5 (equation (4.9)) in that it reduces
a general projection problem into a simple orthogonal projection.

Notice that a parallel projection does not depend on the length of the vector v. In
fact, any multiple of v will define the same projection, as is easily seen from its equa-
tions. The parallel projection can also be considered the limiting case of a central pro-
jection where one places an eye at a position v = (v1,v,v3) = (a’d,b’d,—d) and one lets
d go to infinity. This moves the eye off to infinity along a line through the origin with
direction vector v. The larger d gets, the more parallel are the rays from the eye to
the points of an object. The matrix Meye in equation (4.11) (with a = a’d and b = b’d)
approaches My, because 1/d goes to zero.

An even simpler case occurs when the vector v is orthogonal to the view plane.

Definition. A parallel projection where the lines we are projecting along are orthog-
onal to the view plane is called an orthographic (or orthogonal) projection. If the lines
have a direction vector that is not orthogonal to the view plane, we call it an obligue
(parallel) projection. A view of the world obtained via an orthographic or oblique pro-
jection is called an orthographic or oblique view, respectively.

A single projection of an object is obviously not enough to describe its shape.
Definition. An axonometric projection consists of a set of parallel projections that

shows at least three adjacent faces. A view of the world obtained via an axonometric
projection is called an axonometric view.
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Figure 4.17. Perspective and orthographic
views of a 2 x 5 x 3 block.

In engineering drawings one often shows a perspective view along with three
orthographic views — a top, front, and side view, corresponding to looking along the
z-, y-, and x-axis, respectively. See Figure 4.17. For a more detailed taxonomy of pro-
jections see [RogA90].

Finally, in a three-dimensional graphics program one might want to do some 2d
graphics. For example, one might want to let a user define curves in the plane. Rather
than maintaining a separate 2d structure for these planar objects it would be more
convenient to think of them as 3d objects. Using the orthographic projection, one can
simulate a 2d world for the user.

410 Homogeneous Coordinates: Pro and Con

The computer graphics pipeline as we have described it made use of homogeneous
coordinates when it came to clipping. The given reason for this was that it avoids a
division by zero problem. How about using homogeneous coordinates and matrices
everywhere? This section looks at some issues related to this question. We shall see
that both mathematical and practical considerations come into play.

Disadvantages of the Homogeneous Coordinate Representation. The main dis-
advantage has to do with efficiency. First, it takes more space to store 4-tuples and 4
X 4 matrices than 3-tuples and 3 x 4 matrices (frames). Second, 4 x 4 matrices need
more multiplications and additions to act on a point than 3 x 4 matrices. Another dis-
advantage is that homogenous coordinates are less easy to understand than Cartesian
coordinates.

Advantages of the Homogeneous Coordinate Representation. In a word, the
advantage is uniformity. The composite of transformations can be dealt with in a more
uniform way (we simply do matrix multiplication) and certain shape manipulations
become easier using a homogeneous matrix for the shape-to-world coordinate system
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Figure 4.18. Parts of a homogeneous matrix.
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Figure 4.19. Transformation examples.

transformation. Furthermore, computer hardware can be optimized to deal with 4 x
4 matrices to more than compensate for the inefficiency of computation issue men-
tioned above.

Let us look at the advantage of homogeneous coordinates in more detail. To see
the geometric power contained in a 4 x 4 homogeneous matrix consider Figure 4.18.
The matrix can be divided into the four parts L, T, P, and S as shown, each of which
by itself has a simple geometric interpretation. The matrix corresponds to an affine
map if and only if P is zero and in that case we have a linear transformation defined
by L followed by a translation defined by T. If P is nonzero, then some plane will be
mapped to infinity. We illustrate this with the examples shown in Figure 4.19.

First, consider L. That matrix corresponds to a linear transformation of R3. If L
is a pure diagonal matrix, then we have a map that expands and/or contracts along
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the x, y, or, z axis. For example, the map in Figure 4.19(a) sends the point (x,y,z) to
the point (x,7y,z), which expands everything by a factor of 7 in the y direction.

A lower triangular matrix causes what is called a shear. What this means is that
the map corresponds to sliding the world along a line while expanding or contract-
ing in a possibly not constant manner along a family of lines not parallel to the first
line. The same thing holds for upper triangular matrices. For example, consider the
matrix M in Figure 4.19(b). The point (x,y,z) gets sent to (x + 3y,y,z). Points get moved
horizontally. The bigger the y-coordinate is, the more the point is moved. Note that
this map is really an extension of a map of the plane.

Next, consider the map in Figure 4.19(c). This map sends the point (x,y,z) to (x —
1,y + 3,z + 5) and is just a simple translation by the vector (-1,3,5). The map in Figure
4.19(d) sends the homogenous point (x,y,z,1) to (x,7y,z,5), in other words, (x,y,z) is
sent to (x/5,7y/5,z/5), which is just a global scaling. Finally, the map in Figure 4.19(e)
sends (x,y,z) to (x/(2x + 3y + 1), y/(2x + 3y + 1), z/(2x + 3y + 1)). The plane 2x + 3y + 1
= 0 gets sent to infinity. The map is a two-point perspective map with vanishing points
for lines parallel to the x- or y-axes.

We finish this section by describing a way to visualize homogeneous coordinates
and why some caution should be exercised when using them.

The standard embedding of R? in P3 maps (x,y,z) to [x,y,z,1]. This means that we
can use the space of 4-tuples, that is, R, to help us visualize P3. More precisely, since
the lines through the origin correspond in a one-to-one fashion with the points of P?,
we can use the plane w = 1 in R? to represent the real points of P?. Furthermore, if
someone talks about a point p; with homogeneous coordinates (x,y,z,w), then we can
pretty much deal with p; as if it actually were that 4-tuple in R*. We need to remem-
ber, however, that if p; lies on a line through the origin and a point A on the plane w
= 1, then p; and A will represent the same point of P3. See Figure 4.20. Now, once
one decides to use homogeneous coordinates for a graphics problem, although one
usually starts out with a representative like A, after one has applied several transfor-
mations (represented by 4 X 4 matrices), one may not assume that the 4-tuple one
ends up with will again lie on the plane w = 1. Although one could continually project
back down to the w = 1 plane, that would be awkward. It is simpler to let our new

Figure 4.20. The w = 1 plane in R%.
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points float around in R* and only worry about projecting back to the “real” world at
the end. There will be no problems as long as we deal with individual points. Prob-
lems can arise though as soon as we deal with nondiscrete sets.

In affine geometry, segments, for example, are completely determined by their end-
points and one can maintain complete information about a segment simply by keeping
track of its endpoints. More generally, in affine geometry, the boundary of objects
usually determines a well-defined “inside,” and once we know what has happened to
the boundary we know what happened to its “inside.” A circle in the plane divides the
plane into two parts, the “inside,” which is the bounded part, and the “outside,” which
is the unbounded part. This is not the case in projective geometry, where it is not
always clear what is “inside” or “outside” of a set. Analogies with the circle and sphere
make this point clearer. Two points on a circle divide the circle into two curvilinear
segments. Which is the “inside” of the two points? A circle divides a sphere into two
curvilinear disks. Which is the “interior” of the circle?

Here is how one can get into trouble when one uses homogeneous coordinates
with segments. Again, consider Figure 4.20 and the segment corresponding to the
“real” points A and B. The figure shows that at least with some choices of represen-
tatives, namely, p; and p,, nothing strange happens. The segment [p;,p:] in R* proj-
ects onto the segment [A,B] and so the points

sp1 +tp2,0<s,t<1,s+t=1,

represent the same points of P? as the points of [A,B]. It would appear as if one can
deal with segments in projective space by simply using the ordinary 4-tuple segments
in R*. But what if we used p;’ = ap, instead, where a < 0? See Figure 4.21. In that
case, the segment [p;’,p>] projects to the exterior segment on A and B and so deter-
mines different points in P3 from [A,B]. The only way to avoid this problem would
be to ensure that the w-coordinate of all the points of our objects always stayed pos-
itive as they got mapped around. Unfortunately, this is not always feasible.

Figure 4.21. Problems with homogeneous  p» 7t
representatives for points. 3-’
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411 The Projections in OpenGL

In OpenGL one needs to specify the viewing volume. This is done in the way indi-
cated in Figure 4.22. Note that there is no view plane as such and that the z-axis does
not point in the direction one is looking but in the opposite direction. The view volume
is specified by the far clipping plane z = —f and a rectangle [(,r] x [b,t] in the near clip-

ping plane z = —n.
The steps in OpenGL are

(1) Convert to camera coordinates.
(2) Map the homogeneous camera coordinates to homogeneous clip space, but
this time one maps into the cube [-1,1] x [-1,1] x [-1,1]. The homogeneous matrix M

that does this is defined by the equation

2
n 0 0
r—/
0 tZ_nb 0 0
nM = r+¢ t+b _f+n
r—¢ t-b f-n
0 0 _& 0
f-n

The matrix M is obtained in the same manner as was Mpcam—hclip in Section 4.5. The
call to the function glFrustum ((,5;b,t,n,f) in OpenGL generates the matrix nM.
(3) Project to normalized device coordinates in Euclidean space (division by w).
(4) Transform to the viewport.

Figure 4.22.

The OpenGL viewing
volume.
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412 Reconstruction

Ignoring clipping, which we shall in this section, by using homogeneous coordinates
the mathematics in our discussion of the graphics pipeline basically reduced to an
equation of the form

aM=b, (4.13)

where M was a 4 x 3 matrix, a € R* and b € R?. The given quantities were the matrix
M, computed from the given camera, and a point in the world that determined a. We
then used equation (4.13) to compute b and the corresponding point in the view plane.
Our goal here is to give a brief look at basic aspects of two types of inverse problems.
For additional details see [PenP86]. For a much more thorough and mathematical
discussion of this section’s topic see [FauL01].

The Object Reconstruction Problem. Can one determine the point in the world
knowing one or more points in the view plane to which it projected with respect to a
given camera or cameras?

The Camera Calibration Problem. Can one determine the world-to-view-plane
transformation if we know some world points and where they get mapped in the view
plane?

Engineers have long used two-dimensional drawings of orthogonal projections of
three-dimensional objects to describe these objects. The human brain is quite adept
at doing this but the mathematics behind this or the more general problem of recon-
structing objects from two-dimensional projections using arbitrary projective trans-
formations is not at all easy. Lots of work has been done to come up with efficient
solutions, even in what might seem like the simpler case of orthographic views. See,
for example, [ShiS98]. Given three orthographic views of a point (x,y,z), say a front,
side, and top view, one would get six constraints on the three values x, y, and z. Such
overconstrained systems, where the values themselves might not be totally accurate
in practice, are typical in reconstruction problems and the best that one can hope for
is a best approximation to the answer.

Before describing solutions to our two reconstruction problems, we need to
address a complication related to homogeneous coordinates. If we consider projec-
tive space as equivalence classes [x] of real tuples x, then mathematically we are really
dealing with a map

T:P3 - P?
p— q=T(p) (4.14)

Equation (4.13) had simply replaced equation (4.14) with an equation of representa-
tives a, M, and b for p, T, and q, respectively. The representatives are only unique up
to scalar multiple. If we are given p and T and want to determine q, then we are free
to choose any representatives for p and T. The problems in this section, however,
involve solving for p given T and b or solving for T given p and q. In these cases, we
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cannot assume that the representatives in equation (4.13) all have a certain form. We
must allow for the scalar multiple in the choice of representatives at least to some
degree. Fortunately, however, the equations can be rewritten in a more convenient
form that eliminates any explicit reference to such scalar multiples. It turns out that
we can always concentrate the scalar multiple in the “b” vector of equation (4.13).
Therefore, rather than choosing the usual representative of the form b = (by,b,,1) for
[b], we can allow for scalar multiples by expressing the representative in the form

b=(c-bj,c-by,c). (4.15)

Let a = (aj,a,a3,a4) and M = (m;j). Let m; = (myj,myj,m3j,my;), j = 1,2,3, be the column
vectors of M. Equation (4.13) now becomes

(aemj,aem;,aems;)=(c-bj,c-by,c).

It follows that ¢ = aemyj. Substituting for ¢ and moving everything to the left, equa-
tion (4.13) can be replaced by the equations

aO(ml—b1m3)=0 (4.1621)
aO(mz—b2m3)=0. (4.16b)

It is this form of equation (4.13) that will be used in computations below. They have
a scalar multiple for b built into them.

After these preliminaries, we proceed to a solution for the first of our two recon-
struction problems. The object reconstruction problem is basically a question of
whether equation (4.13) determines a if M and b are known. Obviously, a single point
b is not enough because that would only determine a ray from the camera and provide
no depth information. If we assume that we know the projection of a point with
respect to two cameras, then we shall get two equations

aM’ = b’ (4.172)
aM” = b”. (4.17b)

At this point we run into the scalar multiple problem for homogeneous coordinates
discussed above. In the present case we may assume that M’ = (m;j) and M” = (mj;”)
are two fixed predetermined representatives for our projections and that we are
looking for a normalized tuple a = (ay,a;,a3,1) as long as we allow a scalar multiple
ambiguity in b’ = (¢’by’,¢’by’,¢’) and b” = (¢"by”,c”b,y”,c”). Expressing equations (4.17)
in the form (4.16) leads, after some rewriting, to the matrix equation

(a1 aza3z)A=d, (4.18)

where

’ 7’ ’ ’ ’ ’ ” ” ” ” ” ”
my; —byms; my; —bymz; my; —by may my; —b; my

” ”

7 ’ ’ ’ 7 7 ” ” ” ”
A={mp -byms; my —byms mp —by ma my; —b; mjs

” ”

7 7 ’ ’ ’ 7 ”n ” ” ”
my3 —b;yms3 mp3 —bymsz my3 —b; m33 my; —by ms3
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and
d=(bi'mss"-mys” bymas’—my” bi"mas”-myy”  by”"mss” —mys”).

This gives four equations in three unknowns. Such an overdetermined system does
not have a solution in general; however, if we can ensure that the matrix A has rank
three, then there is a least squares approximation solution

(a; a2 a3) =dA* =dAT(AAT) . (4.19)
using the generalized matrix inverse A* (see Theorem 1.11.6 in [AgoMO05]).

Next, consider the camera calibration problem. Mathematically, the problem is to
compute M if equation (4.13) holds for known points a; and b;, i=1, 2, ..., k. This
time around, we cannot normalize the a; and shall assume that a; = (a;1,a;2,a3,a14) and
b; = (¢ibig,cibiz,ci). It is convenient to rewrite equations (4.16) in the form

m;ea;—mse bilai =0 (4.203)
mpea; —mse bizai =0. (4.20b)

We leave it as an exercise to show that equations (4.20) can be written in matrix form
as

nA =0,
where
T T T
a1 a2 ak 0 0 O
T T T
A= 0 0 0 a; ar ag
T T T T T T
—byia; -bsia; -+ —bpay -biay -basa; -+ —bpran
and

n =(mj; My; M3y Mgy My My M3y Mygr Mi3 M3 M33 My43).

This overdetermined homogeneous system in twelve unknowns mj; will again have a
least squares approximation solution that can be found with the aid of a generalized
inverse provided that n is not zero.

413 Robotics and Animation

This section is mainly intended as an example of frames and transformations and how
the former can greatly facilitate the study of the latter, but it also enables us to give
a brief introduction to the subject of the kinematics of robot arms. Even though we
can only cover some very simple aspects of robotics here, we cover enough so that
the reader will learn something about what is involved in animating figures.
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Figure 4.23. Robot arm terminology.
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Mechanical manipulators are the most important examples of industrial robots
and much work has been done to understand the mechanics and control of such
manipulators. We begin with some terminology (see [Crai89]).

Kinematics: The science of motion where motion is studied without worrying about
what caused it.

Manipulator: This is assumed to be an object that consists of nearly rigid links con-
nected by joints that allow neighboring links to move. One end is usually fixed to
some nonmoving part and the other end is free. See Figure 4.23. The joints may
be either revolute joints, which allow rotational motion measured by joint angles,
or prismatic joints, which allow sliding motion that is measured by joint offsets.

Degrees of freedom of a manipulator: This is the number of variables that it takes to
completely describe the state or position of the manipulator. Typically this is the
number of joints since joints can usually be described by one variable.

End-effector: This is the tool at the free end of the manipulator such as a gripper.

Tool frame: The frame associated to the end-effector.

Base frame: The frame associated to the fixed end of the manipulator.

Forward kinematics: This is the problem where one wants to compute the tool frame
(intuitively, the position and orientation of the tool) relative to the base frame
given the set of joint angles.

Inverse kinematics: This is the problem where one wants to compute all possible sets
of joint angles that can give rise to given tool and base frames. This problem is
usually more difficult than the forward kinematics problem. There may not even
be a solution to a particular problem or there may be more than one solution.

Workspace for a given manipulator: The possible tool frames (position and orienta-
tion of the tool) that are achievable by the manipulator.

Trajectory generation: The determination of the trajectories of each joint of a manip-
ulator that lead from some initial configuration to a final configuration. Since
manipulators are usually moved by actuators that apply a force or torque to each
joint, these forces and torques would also have to be computed in order for a solu-
tion to be effective.
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For all practical purposes, links will be treated as rigid bodies connecting joints.
Links will be numbered starting with link number 0 at the base. Joints will also be
numbered with joint number i being the joint between link number i — 1 and i. The
ith joint can be defined by an axis L; about which the joint rotates or along which it
slides. Define the link length a; to be the distance between the axes L; and L;;; and let
pi be the point on L; and q;;; the point on L;;; so that a; = Ipiqi;1l. The points p; and
q; are always unique except in the case where axes are parallel. Since the choice of
these points is only an issue in defining the initial configuration of a manipulator, we
can either disallow this case or assume that they have been picked appropriately in
some other manner. We assume that all the a; are nonzero. Next associate a link frame
F; = (x3,y1,z;,pi) to the ith link as follows:

(1) z; is a direction vector for L;, that is, it is parallel to the ith joint axis,

(2) xj is the unit vector in the direction piq;.1, that is, x; = (1/a;) piqi+1, and

(3) yi = z; X xj, so that the ordered basis (xi,y;,z;) determines the standard orien-
tation of R3.

Define the link twist o; to be the angle between z; and z;;; and choose the sign of the
angle to be positive or negative depending on whether or not the ordered bases (z;,zi;1)
and (y;,z;) determine the same orientation in the y;-z; plane of F; (this corresponds to
using the right hand rule for angles about the x;-axis). Define the joint offset di;; by
Qir1Pi+1 = diz1Zis1. Note that Idiyl is the distance between qiy; and piry. digq is a vari-
able if the joint is prismatic. Finally, define the joint angle 6i,; to be the signed angle
between x; and x;;; about z;,1. This is a variable if the joint is revolute. The quantities
aj, oy, di, and 6; are called the link parameters. All, except a;, are signed numbers. See
Figure 4.24.

There are some special cases at the ends of the manipulator. Assume that there
are n + 1 links. It is convenient to choose Fj to be the same as F; when 0; is zero. At
the other end there are two cases. If the last joint is revolute, then x, is set equal to
x,_1 when 0, is zero. If the joint is prismatic, then x, is set equal to x,_;. The point p,
is always set equal to qp.

The robot or manipulator is completely described in one of two ways. We can
either specify the link frames F; or we can specify the list of link parameters a;, o, d;,

Figure 4.24. The geometry of links.
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Figure 4.25. Two-dimensional robot arm geometry.

and 6;. Our discussion above basically showed how the latter are derived from the
former. One can also show that the link parameters completely define the frames. In
practice it is easier for a user to manipulate the link parameters and so the usual
problem is to find the frames given their values. As another example, consider a two-
dimensional robot with three links and revolute joints. We can think of this as a special
case of the general one where all the z-axes of the frames point in the same direction
and all the a; and d; are zero. Figure 4.25(a) shows the link parameters and Figure
4.25(b), the associated frames.

As one can see, frames play a role in defining the state of a robot, but how are
they used to solve problems? Well, the forward kinematic problem is to find the tool
frame (“where the tool is”) given the link parameters. This problem will be solved if
we can determine the transformation T, which, given the coordinates of a point p in
F, coordinates, finds the coordinates of p with respect to Fy. Let dTj, 0 < i < n, denote
the transformation that maps coordinates relative to F; to coordinates relative to
F;_;. It follows that

T, = dT,edTyo -+ 0 dTh. (4.21)

The dT; are relatively easy to compute from the link parameters because they are the
composition of four simple maps.

The Computation of dT; and Its Homogeneous Matrix dM;. Let Tj(z;, d;) denote
the translation with translation vector dz;. Its homogeneous matrix is

o o o -~
© o = o
8- o o
- o o o
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Let Ri(z;,0;) denote the rotation about the z; axis of the frame F; through an angle 6;.
Its homogeneous matrix is

cosO; sinG; O O
—sin®; cosH; 0 O
0 0 10

0 0 01

Let Ti1(xi_1,a;i-1) denote the translation with translation vector a;_ix; ;. Its homoge-
neous matrix is

1 00O
0 1 00O
0O 010
aj_1 0 01

Finally, let R;_1(xi_1,04_1) denote the rotation about the x;_; axis of the frame Fj_
through an angle o;_;. Its homogeneous matrix is

1 0 0 0
0 cos Oli—1 sin Oli—1 0
0 -sinojq cosoj; O
0 0 0 1
Then
dT; =Ri_1(Xi_1, 0i—1) o Tioi(Xi-1, ai—1) o Ri(zi, 6;) o Ti(z4, dy), (4.22)

and multiplying the matrices for the corresponding maps together (but in reverse
order since matrices act on the right of a point), we get that the matrix dM; associ-
ated to the transformation dT; is defined by

cosB; sinb; cosoy; sin®; sinoy_g

dM; = (4.23)

0
—sin®; cos6; cosai_; cos6; sinoy; O
0 —SiI’lOLi_l COSOli—1 0

1

ai-1 —di sin Oli—1 di COSOli—1

Equations (4.21-4.23) provide the solution to the forward kinematic problem. In the
two-dimensional robot case where o; and d; are zero, the matrices dM; specialize to
matrices dN;, where

cos0; sin®;

—sin®; cosb;
0 0
aj—1 0

dN; = (4.24)

S = O O
- o O O
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This concludes what we have to say about robotics. For a more in-depth study of
the subject see [Crai89], [Feat87], or [Paul82]. The description of mechanical manip-
ulators in terms of the four link parameters described in this section is usually called
the Denavit-Hartenberg notation (see [DenH55]).

As is often the case when one is learning something new, a real understanding of
the issues does not come until one has worked out some concrete examples. The ani-
mation programming projects 4.13.1 and 4.13.2 should help in that regard. Here are
a few comments about how one animates objects. Recall the discussion in Section
2.11 for the 2d case. To show motion one again discretizes time and shows a sequence
of still pictures of the world as it would look at increasing times ti, ta, ..., ty. One
changes the apparent speed of the motion by changing the size of the time intervals
between t; and t;;1, the larger the intervals, the larger the apparent speed. Therefore,
to move an object X, one begins by showing the world with the object at its initial
position and then loops through reshowing the world, each time placing the object in
its next position.

414 Quaternions and In-betweening

This short section describes another aspect of how transformations get used in ani-
mation. In particular, we discuss a nice application of quaternions. Unit quaternions
are a more efficient way to represent a rotation of R? than the standard matrix rep-
resentation of SO(3). Chapter 20 provides the mathematical foundation for quater-
nions. Other references for the topic of this section are [WatW92], [Hogg92], and
[Shoe93].

We recall some basic facts about the correspondence between rotations about the
origin in R3 and unit quaternions. First of all, the quaternion algebra H is just R*
endowed with the quaternion product. The metric on H is the same as that on R*.
The standard basis vectors e, e;, e3, €4 are now denoted by 1, i, j, k, respectively. The
subspace generated by i, j, and k is identified with R*> by mapping the quaternion
ai+bj+ck to (a,b,c) and vice versa. The rotation R of R? through angle 6 about the
directed line through the origin with unit direction vector n is mapped to the quater-
nion q defined by

q=cos%+singneH. (4.25)

Conversely, let q = r + ai + bj + ck be a unit quaternion (q € S*) and express q in the
form

q=cos0+sin6n, (4.26)
where n is a unit vector of R3. If M is the matrix defined by

1-2b%-2¢?  2rc+2ab 2ac-2rb
Mg =| 2ab-2rc 1-2c?-2a? 2ra+2bc | (4.27)
2rb+2ac 2bc—2ra 1-2a%-2b?
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Figure 4.26. Interpolating between two quaternions. b

then Mg € SO(3) and the map of R® that sends p to pMg is a rotation Rq about the
line through the origin with direction vector n through the angle 26. This mapping

unit quaternions — rotations of R about the origin
q - Rq

has the property that Rq = R_g.

Now, suppose an object is moved by a one-parameter family of matrices M(s) e
S0O(3). Assume that we have only specified this family at a fixed set of values s;. How
can we interpolate between these values? In animation such an interpolation is called
in-betweening. A simple interpolation of the form

tM(si) + (1 — t)M(sit1)

would not work because the interpolants would not again be elements of SO(3). One
could try to use Euler angles, but there are problems with this also. See [Shoe85]. A
better way is to translate our maps into quaternions and to look for a one-parameter
family of unit quaternions q(s) that interpolates between two quaternions a and b.
However, a simple linear interpolation followed by a normalization to get unit quater-
nions does not work well either for the same reason that one does not get a uniform
subdivision of an arc of a circle by centrally projecting a uniform subdivision of the
chord connecting its endpoints. What would happen in the animation is that the object
would move faster in the middle of the interpolation. A better solution is to subdivide
the arc of the great circle in S* connecting a and b. See Figure 4.26.

4.14.1 Lemma. Let a and b be two unit quaternions that make an angle of 6 # 0
with each other, that is, a-b = cos8 and 0 < 0 < n. Then the unit quaternion c(t) that
lies in the plane spanned by a and b and which makes an angle t6 witha, 0 <t <1 is
defined by the equation

sin(l - t)0 sint@
= : at+—;
sin® sin®

c(t) b. (4.28)

Proof. By hypothesis,

c(t)=ra+sb
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for some real numbers r and s. Taking the dot product of both sides of this equation
with a and b leads to equations

costd=c(t)ea=r+sbea (4.29)
and
cos(l-t)0=c(t)eb=raeb+s. (4.30)

Solving equations (4.29) and (4.30) for r and s and using some standard trigonomet-
ric identities leads to the stated result.

4.14.2 Example. LetLjand L; be the positively directed x- and y-axis, respectively.
Let Rp and Ry be the rotations about the directed lines Ly and L, respectively, through
angle 7/3 and let My and M; be the matrices that represent them. If My, t € [0,1], is
the 1-parameter family of in-betweening matrices in SO(3) between My and M;, then
what is My,;?

Solution. The unit direction vectors for Ly and L; are ng = (1,0,0) and n; = (0,1,0),
respectively. Therefore, by equation (4.25)

T . T V31
Qo = COSg-i—Slngno =7+E(l,0,0)
and
7
q = cosg+sin%n1 = 73+%(1,0,0)

are the unit quaternions corresponding to rotation Ry and R;. The angle 6 between
qo and q; is defined by

3
cosO=qpeq =7

It follows that

V7 - 1
sin® = V1 — cos? = and singz czosezﬁ.

Using equation (4.28), let

2 @0+ )_2/i+(LL0]_2/i+L(
V2= T A= N (g ia )T N1a T

Finally, equation (4.27) implies that

LLOJ
6?6! *
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6 1 23

7 7 z

1 6 2V3

Mp,=| - = ==
2= 77 7
293 23 5
7 7 7

We can also see from the expression for qi; and equation (4.26) that My, defines a
rotation about the directed line through the origin with direction vector (1,1,0) and

angle 20, where
/ 3
o =24—.
cos 14

It is clear that the quaternions ¢(t) defined by Lemma 4.14.1 do indeed lie on a
great circles in the unit sphere of the quaternions. We have solved the uniform spacing
problem, but unfortunately this is not the end of the story as far as animation is con-
cerned. Two points on a circle divide the circle into two arcs. If the points are not
antipodal points, then one typically is interested in the smaller arc. In our situation
we cannot simply always take the smaller arc without further consideration because
we are representing rotations by quaternions, and if q is a unit quaternion, both q
and —q correspond to the same rotation in SO(3). The solution suggested in [WatW92]
is, given representations a and b for two rotations, to choose between a, b and a, —b.
One compares the distance between a and b, la — bl, to the distance between a and
—b, la + bl. If the former is smaller use a, b otherwise use a, —b.

After getting our uniformly spaced quaternions c(t;) along the arc, if we were to
do a linear interpolation between them, then the motion may look jerky. It is better
to smooth things out by using Bezier curves or, more generally, splines, but this is
somewhat more complicated in quaternion space than it was in R". See [BCGH92],
[WatW92], [Hogg92], or [Shoe93] for what needs to be done.

415 Conclusions

Transformations were at the center of all the discussions in this chapter. We would
like to emphasize one last time that when it comes to representing and defining affine
transformations one should do that via frames if at all possible. Frames are ortho-
normal basis and these are easy to define. Without them, geometric modeling for n-
dimensional objects would become very complicated when n is larger than 2. Once
one has a frame it can be interpreted as a transformation, a coordinate system, or as
defining a change of coordinates. See Chapter 2 in [AgoMO05] for more details.

The main role of homogeneous coordinates and projective space is as the natural
setting for projective transformations. The mathematics becomes much easier. A prac-
tical application is that one can replace all transformations, including translations,
with matrices in uniform way. We described some of the main perspective and par-
allel projections.
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The discussion in this chapter emphasized a mathematical view of transforma-
tions. Let us add a few comments about efficiency because there are times when effi-
ciency is more important than clarity. Transformations get used a lot in geometric
modeling and generating them in a systematic way, which usually involves repre-
senting them as a composite of primitive ones, involves more arithmetic operations
than necessary. The papers [Gold90] and [Mill99] describe a more efficient approach.
For example, suppose we express an arbitrary affine transformation T of R? in the
form

T(p)=Mp" +v,
where M is a 3 X 3 matrix and v is a fixed translation vector. If T is a rotation through
an angle 6 about a line L through a point q with direction vector w, then it is shown
that
M =cosOI +(1 —cos®)w ® w+sinBA,, and (4.31a)
v=q-Mq", (4.31b)

where I is the 3 x 3 identity matrix,

ajb; ajb, ajbs ajg
a®b=|a,b; a;b, abs|=|a, |(b; by b3),
aszb; asb, asbs as

and

0 W3 —W»
AW =| —W3 0 W1
Wo —Wjq 0

With this representation, an optimized computation takes 15 multiplications and 10
additions to compute M and 9 multiplications and 9 additions to compute v. The
number of operations to compute the matrix M and vector v with the “composite-of-
transformations” approach would be much greater. See [Gold90] for efficient formu-
las for other transformations.

Finally, one topic not discussed much in this book (other than in the documen-
tation for the GM and SPACE program) is the user interface of a modeling program,
even though this takes up a large percentage of the time needed to develop such a
program in general. Certain aspects of such a discussion, if we had the space or time,
would probably be most appropriate in the context of the topic of this chapter. There
are lots of interesting issues here as to how one can make it easier for the user to
define the desired view of the world. How to best look at the world is often a major
concern to a user. How does a user specify a view? How does one control panning
and zooming? How does one specify a user’s or the camera’s arbitrary movement
through the world? In a three-dimensional world this is not always easy if all one has
is a keyboard and a mouse.
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416 EXERCISES

Section 4.2

4.2.1 Prove equation (4.3).

4.2.2 Find the world-to-camera coordinates transformation T in two dimensions given the
following data: the camera is at (1,4) looking in direction (-1,-3) with the view “plane”
(a line) a distance V10 in front of the camera.

4.2.3 Find the world-to-camera coordinates transformation T in three dimensions given that
the camera is at (2,3,5) looking in direction (~1,2,1) with the view plane a distance 7 in
front of the camera.

Section 4.3

4.3.1 A camera is situated at the origin looking in direction v. Find the vanishing points of
the view defined by lines parallel to the standard unit cube when

(a) v=1(2,0,3)

(b) v=1(0,3,0)

(c) v=(3,1,2)
Section 4.5

4.5.1 With regard to Figure 4.11 show that the regions below are mapped as indicated:

—o<zfw<-1 - 1 <z/w<+oo
-1<z/w<0 — =-e<z/w<0
0 <z/w<+eo - 0 <z/w<+l

Note that z/w denotes the “real” z coordinate of a projective point (x,y,z,w).

4.5.2 Assume that the near and far planes for a camera are z = 2 and z = 51, respectively, in
camera coordinates. If the view plane is z = 5, find the matrix Mpcam—hlip-
Section 4.7

4.7.1 Explain how the case (0,0,0,0) can occur.

Section 4.9

4.9.1 Prove Proposition 4.9.1.
4.9.2 Compute the parallel projection of R? onto the x-y plane in the direction v = (2,1,5).

4.9.3 Compute the parallel projection of R? onto the plane x — 2y + 3z = 1 in the direction
v=(2,1,-3).
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Section 4.14

4.14.1 Let Ly and L; be the directed lines through the origin in R? with direction vectors
(1,-1,0) and (1,1,0), respectively. Let Rg and R; be the rotations about the directed lines
Ly and L;, respectively, through angle /3 and let My and M; be the matrices that rep-
resent them. If My, t € [0,1], is the 1-parameter family of in-betweening matrices in
SO(3) between My and My, find M;,,?

Section 4.15

4.15.1 Show that equations (4.31) compute the rotation T correctly.

417 PROGRAMMING PROJECTS

Section 4.5
4.5.1 A simpler graphics pipeline

The approach to clipping we described in Section 4.5 is more general than may be needed in
some simple situations. This project describes a quick way to deal with clipping if one already
has a two-dimensional clipper implemented. The basic idea is to do the z-clip in three dimen-
sions but then to project to the view plane and do the rest of the clipping with the old 2-dimen-
sional clipper. Since the far clipping plane is usually not very important, we shall ignore it and
only worry about the near clipping plane. Then a simple graphics pipeline for an object that is
either a point or a segment would go as follows:

(1) Transform any vertex (x,y,z) of the object in shape coordinates to camera coordi-
nates (X,y’,2").

(2) Clip the resulting point or segment against the near clip plane.

” "

(3) Project any vertex (x’,y’,z") of the remaining object to the point (x”,y”) in the view
plane using the equations

x"=dX  and y” = dy—,
z

’ ZI
where d is the distance that the view plane is in front of the camera.

Clipping against the near clip plane is essential for two reasons. One is that we do not want
points from behind the camera to project to the front. The second is that we want to prevent
any division by zero. The clipping itself is very easy here. Assume that the near clipping plane
is defined in the camera coordinate system by the equation z = d,. Mathematically, clipping a
single point simply amounts to checking if z” < d, or not. In the case of a segment, we have to
find the intersection of that segment with the plane.

Consider a world of rectangular blocks for this program. Each block is defined by three
real parameters a, b, and ¢ and a frame f. The basic block is situated at the origin with faces
parallel to the coordinate planes and vertices (0,0,0), (a,0,0), (a,0,c), (0,0,c), (0,b,0), (a,b,0),
(a,b,c), and (0,b,c) and all other blocks are copies of this block moved by the frame f.
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Section 4.7

4.7.1 The full-fledged clipping pipeline

Implement the graphics pipeline described in steps (1)-(6) in Section 4.7. Use the same world
of blocks as in project 4.5.1.

Section 4.9

4.9.1 Implement stereo views of some simple objects like a cube.

Section 4.12

4.12.1 Implement the object reconstruction algorithm as described in Section 4.12 in a
working graphics program like GM and check its accuracy. Let a user input a three-
dimensional point p, compute its projection q with respect to a known camera, and
compare the value of p with the one computed by the reconstruction algorithm from
q and the camera data.

4.12.2 TImplement the camera calibration algorithm as described in Section 4.12 in a working
graphics program like GM and check its accuracy. Let a user input three-dimensional
points p;, compute their projections q; with respect to a known camera, and compare
the given camera data with the one computed by the camera calibration algorithm from
the p; and q; data.

Section 4.13

4.13.1 A walking robot

This project applies some of the mathematical ideas behind the forward kinematics solution
for robots to a three-dimensional animation problem. The idea is to animate a simple robot
figure built out of blocks walking on the xy-plane. See Figure 4.27. The parts of the robot are
a head, torso, two arms, and two legs. The robotics comes into the picture when moving the
arms and legs. Each arm and leg consists of three links that are constrained to planar motion.
Figure 4.28 shows a two-dimensional projection of a leg. The base frame of the figure is that
of the torso. The head is rigidly attached to the torso.
The following menu should be associated to this project

ANIMATION
Create
Walk
Speed
Reset
Select

and the items should perform the following tasks when activated:
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Create: Ask the user for a size and then create a new robot of that given size. At any given
time there is a currently active robot (the one to which the “Walk,” “Speed,” and
“Reset” commands apply).

Walk:  Ask the user for a number of steps, then walk the robot that many steps in the direc-
tion it is facing with its joints moving in a way so that the walk is reasonably close
to a human’s walk.

Speed: Ask the user for a new speed that is a function of the distance between positions at
which the robot is displayed.

Reset:  Resets the robot to its initial configuration.

Select: Let the user specify another robot to be the currently active one.

4.13.2 Robot walking along path

Extend project 4.13.1 by associating a path to each robot along which it walks. For example,
the robot in Figure 4.27(b) is walking along path C. The default path for a robot (if the user
did not explicitly define one) is a straight line in the direction the robot is pointing.

The menu should now look like

() (b)

Figure 4.27. Robots in motion.

Figure 4.28. Two-dimensional link parameters.
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ANIMATION

Create
Walk
Speed
Path
Reset
Select

Activating the Path item should allow the user to define a new path in the xy-plane by select-
ing points that correspond to the vertices of a polygonal curve. After the new path has been
defined the robot should be placed at the beginning of the path looking in the direction defined
by the first edge.

Walking along paths entails some slight changes to the “Walk” and “Reset” operations.

Walk: Now when the robot moves along points on its path it should always be looking in the
direction that is tangent to the curve. In those few instances where the robot lands on
a vertex, assume that the tangent at the vertex is the average of the tangent vectors for
the segments meeting in that vertex.

Reset: If the robot has a path associated to it, place it at the beginning of the path looking
in the direction defined by the first edge. If there is no path, reset the robot to some
initial configuration as before.




CHAPTER 5

Approaches to Geometric
Modeling

Prerequisites: Section 4.2 (topology of R") and Chapter 7 (cell complexes, Euler char-
acteristic) in [AgoMO05]

5.1 Introduction

The last four chapters covered the basic mathematics and computer graphics algo-
rithms needed to display two- or three-dimensional points and segments. As limited
as this may sound, this is actually enough to develop a quite decent modeling system
that would handle complex linear three-dimensional objects as long as we represent
them only in terms of their edges (“wireframe” mode). Such a system might be ade-
quate in many situations. On the other hand, one would certainly not get any eye-
catching displays in this way. To generate such displays, we need to represent objects
more completely. Their surfaces, not just their edges, must be represented. After that,
there is the problem of determining which parts of a surface are visible and finally
the problem of how to shade those visible parts.

Recall the general geometric modeling pipeline shown in Figure 5.1. Of interest
are the last three boxes and maps between them. This chapter presents a survey of
the various approaches that have been used to deal with that part of the pipeline.
First, one has to understand the “pure” mathematical objects and maps. The next task
is to represent these in a finite way so that a computer can handle them. Finally, the
finite (discrete) representations have to be implemented with specific data structures.
By in large, users of current CAD systems did not require the systems to have much
understanding of the “geometry” of the objects. That is not to say that no fancy math-
ematics is involved. The popular spline curves and surfaces involve very intricate
mathematics, but the emphasis is on “local” properties. So far, there has not been any
real need for understanding global and intrinsic properties, the kind studied in topol-
ogy for example.
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real.world mathematical finite actual
Ob‘]eCtS. - objects - representations - implementations
and queries and maps

Figure 5.1. The real world to implementation pipeline.

Some texts and papers use the term “solid modeling” in the context of represent-
ing objects in 3-space. Since this term connotes the study of homogeneous spaces (n-
manifolds), we prefer to use the term “geometric modeling” and use it to refer to
modeling any geometric object. Three-dimensional objects may be the ones of most
interest usually, but we do not always want to restrict ourselves to those.

The first steps to develop a theoretical foundation for the field of geometric mod-
eling were taken in the Production Automation Project at the University of Rochester
in the early 1970s. The notion of an r-set and that of a representation scheme were
introduced there. These concepts, along with the creation of the constructive solid
geometry (CSG) modeler PADL-1 and the emphasis on the validity of representations,
had a great influence on the subsequent developments in geometric modeling. R-sets
were thought of as the natural mathematical equivalent of what one would refer to
as a “solid” in everyday conversation. Using r-sets one could define the domain of cov-
erage of a representation more carefully than before. The relevance of topology to
geometric modeling was demonstrated. The terms “r-set” and “representation scheme”
are now part of the standard terminology used in discussions about geometric mod-
eling. Most of this chapter is spent on describing various approaches to and issues in
geometric modeling within the context of that framework.

Section 5.2 defines r-sets and related set operations. Section 5.3 defines and dis-
cusses what is called a representation scheme. The definitions in these two sections
are at the core of the theoretical foundation developed at the University of Rochester.
After some observations about early representation schemes in Section 5.3.1, Sections
5.3.2-5.3.9 describe the major representation schemes for solids in more or less his-
torical order, with emphasis on the more popular ones. The two most well-known rep-
resentation schemes, the boundary and CSG representations, are discussed first. After
that we describe the Euler operations representation, generative modeling and the
sweep representations, representations of solids via parameterizations, representa-
tions based on decomposition into primitives, volume modeling, and the medial axis
representation. Next, in Section 5.4, we touch briefly on the large subject of repre-
sentations for natural phenomena. Section 5.5 is on the increasingly active subject of
physically based modeling, which deals with incorporating forces acting on objects
into a modeling system. Feature-based modeling, an attempt to make modeling easier
for designers, is described in Section 5.6. Having surveyed the various ways to repre-
sent objects, we discuss, in Section 5.7, how functions and algorithms fit into the
theory. Section 5.8 looks at the problem of choosing appropriate data structures for
the objects in geometric modeling programs. Section 5.9 looks at the important
problem of converting from one scheme to another. Section 5.10 looks at the ever-
present danger of round-off errors and their effect on the robustness of programs.
Section 5.11 takes a stab at trying to unify some of the different approaches to geo-
metric modeling. We describe what is meant by algorithmic modeling and discuss
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what computability might mean in the continuous rather than discrete setting. Finally,
Section 5.12 finishes the chapter with some comments on the status and inadequa-
cies in the current state of geometric modeling.

52 R-Sets and Regularized Set Operators

One of the terms that is used a lot in geometric modeling is the term “solid.” What
does it mean? It should be very general and include all the obvious objects. In par-
ticular, one would want it to include at the very least all linear polyhedral “solids.”
One also wants the set of solids to be closed under the natural set operations such as
union, intersection, and difference.

Intuitively, a solid is something that is truly three-dimensional and also homo-
geneous in the sense that, if we take a solid like the unit cube and stick a (one-
dimensional) segment onto it forming a set such as

X =[0,1]x[0,1] x[0,1]U[(1,1,1),(2,2,2)], (5.1

which is shown in Figure 5.2, then we do not want to call X a solid. A definition of a
solid needs to exclude the existence of such lower-dimensional parts.

Definition. Let X ¢ R". Define the regularization operator r and the regularization of
X, rX, by

rX = cl (int(X)).

The set X is called a regular set or an r-set (in R") if X = rX, that is, the set is the
closure of its interior.

Note that the definitions depend on the dimension n of the Euclidean space under
consideration because the interior of a set does. For example, the unit square is an r-
set in R? but not in R? (Exercise 5.2.1). Note also that the set X in equation (5.1) is
not an r-set because

cl (int(X)) =[0,1] x [0,1] x[0,1] = X.

One can also show that

r(rX)=rX (5.2)

d
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Figure 5.2. A nonsolid.
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(Exercise 5.2.2). In other words, rX is an r-set for any subset X of R". R-sets seem to
capture the notion of being a solid. Anything called a solid should be an r-set, but we
shall refrain from giving a formal definition of the word “solid.” In many situations,
one would probably want that to mean a compact (closed and bounded) n-manifold.
R-sets are more general than manifolds, however. The union of two tetrahedra which
meet in a vertex is an r-set but not a 3-manifold because the vertex where they meet
does not have a Euclidean neighborhood.

Because halfplanes are r-sets we get all our linear polyhedral “solids” from those
via the Boolean set operators such as union, intersection, and difference. We can think
of halfspaces as primitive building blocks for r-sets if we allow “curved halfspaces” by
extending the notion as follows:

Definition. A halfspace in R" is any set of the form

H. ) ={plf(p)20} or H_(f)={plf()=0}

where f: R® — R. If H is a halfspace, then we shall call rH a generic halfspace. A finite
combination of generic halfspaces using the standard operations of union, intersec-
tions, difference, and complement is called a semialgebraic or semianalytic set if the
functions f are all polynomials or analytic functions, respectively.

For example, the infinite (solid) cylinder of radius R about the z-axis, that is,
{(x, Y, Z) | x?+y?-R%< O},

is a generic halfspace, in fact, a semialgebraic set. See Figure 5.3. Semialgebraic sets
are an adequate set of building blocks for most geometric modeling and are also “com-
putable” (see Section 5.11).

Next, we need to address a problem with the standard Boolean set operators,
namely, they are not closed when restricted to r-sets. For example, the intersection of
the two r-sets X = [0,1] x [0,1] and Y = [1,2] x [0,1] is not an r-set. See Figure 5.4.
From the point of view of solids, we would like to consider X and Y as being disjoint.
One sometimes calls X and Y quasi-disjoint, which means that their intersection is a
lower-dimensional set. If we want closure under set operations, we need to revise their
definitions.

(..--"'"'--)/
N
-

7 X

( —T = 3 half-space instance:

-

Figure 5.3. A generic halfspace. x2+ys-4¢0



160 5 Approaches to Geometric Modeling

Figure 5.4. Quasi-disjoint sets.
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Definition. Define the regularized set operators U*, n*, —*, ¢c*, and A* by

XurY=r(XuY),
Xn*Y=r(XNnY),
X—*Y=r(X-Y),
c*Y=r(cY), and

X A*Y =(X —* Y) U* (Y =* X),

where ¢ and A are the complement and symmetric difference operators, respectively.
5.2.1 Theorem

(1) The regularized set operators take r-sets into r-sets. Furthermore, there are algo-
rithms that perform these operations.

(2) The class of regular semialgebraic or semianalytic sets is closed under regularized
set operations.

Proof. For (1) see [Tilo80] or [Mort85]. For (2) see [Hiro74].
Even though r-sets are quite general, they have their limitations.
(1) Although they have attractive features from a mathematical point of view, they
are complicated to deal with computationally.

(2) One may want to deal with nonsolids like in Figure 5.2. This is not possible
with r-sets.

Nevertheless, at least one has something mathematically precise on which to base
proofs.

53 Representation Schemes

Geometric modeling systems have taken many different approaches to representing
geometric objects. The following definitions ([ReqV82]) can be thought of as a start
towards being able to evaluate and judge these approaches in a rigorous way.
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Figure 5.5. Representation scheme.

5

Figure 5.6. Example of ambiguous repre-
sentation scheme. a) (b)

Definition. A representation scheme, or simply representation, of a set of “objects” O
using a set L is a relation r between O and L. If (x,y) € 1, then we shall say that y rep-
resents X. A representation scheme r is unambiguous (or complete) if r is one-to-one.
A representation scheme r is unique if r is a function (that is, single-valued). The ele-
ments of L are called representations or syntactically correct representations and those
in the range of r are called the semantically correct or valid representations.

See Figure 5.5. The term “syntactically/semantically correct” is used, because if r
is a representation scheme, we can think of r(x) as a set of encodings for x in a “lan-
guage” L. The semantically correct elements of L are those “sentences” which have a
“meaning” in that there is an object that corresponds to them. The terms unambigu-
ous and unique separate out those relations that are not many-to-one or one-to-many,
respectively. To be unambiguous means that if one has the encoding, then one knows
the object to which it corresponds. To be unique means that there is only one way to
encode an object.

5.3.1 Example. Let O be the set of polygons in the plane that have positive area
but no holes. Let L be the set of finite sequences of points. For example, the sequence
(2,1), (-1,3), (4,5) belongs to L. Define a representation scheme for O using L by asso-
ciating to each object in O the set of its vertices listed in some order. This represen-
tation scheme is neither unambiguous nor unique. It is ambiguous because the objects
in Figures 5.6(a) and (b) both have the same vertices. It is not unique because the ver-
tices of an object can be listed in many ways. Furthermore, not all sequences of points
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are semantically correct. A sequence of collinear points does not correspond to a
polygon in O.

We could modify Example 5.3.1. For example, we could require the polygons to
be convex or we could require that the vertices be listed in counter-clockwise order.
In both instances we would then have an unambiguous representation scheme.

There are reasons for why unambiguousness and uniqueness are important prop-
erties of a representation scheme. It is difficult to compute properties from ambigu-
ous schemes. For example, it would be impossible to compute the area of a polygon
with the ambiguous scheme in Example 5.3.1. An example of why uniqueness is
important is when one wants to determine if two objects are the same. The ability to
test for equality is important because one needs it for

(1) detecting duplication in data base of objects

(2) detecting loops in algorithms, and

(3) verifying results such as in case of numerically controlled (NC) machines
where it is important that the desired object is created

With uniqueness one merely needs to compare items syntactically. Note that the
problem of determining whether two sets are the same can be reduced to a problem
of whether a certain other set is empty, because two sets X and Y are the same if and
only if the regularized symmetric difference XA*Y is empty.

Although unambiguousness and uniqueness are highly desirable, such represen-
tations are hardly ever found. Two common types of nonuniqueness are

(1) permutational (as in the example where sequences of points represent a
polygon) and

(2) positional (where different representations exist due to primitives that differ
only by a rigid motion).

Eliminating these types of nonuniqueness would involve a high computational
expense.

The domain of a representation scheme specifies the objects that the scheme is
capable of representing. One clearly wants this to be as large as possible. In particu-
lar, one would want it to include at the very least all linear polyhedral “solids.” One
also wants the domain to be closed under some natural set operations such as union,
intersection, and difference. This raises some technical issues.

One issue that has become very important in the context of representation
schemes is validity.

The Basic Validity Problem for a Representation Scheme: When does a representa-
tion correspond to a “real” object, that is, when is a syntactically correct representation
semantically correct or valid?

Ideally, every syntactically correct representation should be semantically correct
because syntactical correctness is usually much easier to check than semantic
correctness. Certainly, a geometric database should not contain representations of
nonsense objects. The object in Figure 5.7 could easily be described in terms of surface
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Figure 5.7. A nonsense object.

patches and so its definition would seem correct from a local point of view, but taken
in its entirety it clearly does not correspond to a real object. In early geometric mod-
eling systems, validity of a representation was the responsibility of the user, but this
has changed. It is no longer acceptable to assume human intervention to correct
errors. For one thing, a modeling system might have to feed its geometric data directly
to another system such as a robot and bad data might crash that system.

Here are some other informal properties of representation schemes:

(1) Robustness and numeric precision (see Section 5.10 for a discussion of this
topic)

(2) Compactness (for storing): “Verbose” representations may contain redundan-
cies that would make verifying validity harder. On the other hand, in the usual
trade-off, this may improve performance.

(3) Computational ease and applicability: No representation is best for everything.
To support a variety of applications, we could have multiple representations
for each object, but then one must maintain consistency.

(4) Ability to convert between different representation schemes: One may want to
pass data between different modelers, but even a single modeler may contain
more than one representation scheme.

Along with a formalization of the objects that constitute the domain of a modeler,
one should also specify and formalize the allowable operations and functions. This
formalization has only been carried out in a minimal way so far. We postpone this
largely ad hoc discussion to Section 5.7. Insofar as the usual definition of the term
“representation scheme” does not address operations and functions, it is an incom-
plete concept. The term “object representation scheme” would have been more appro-
priate because it is more accurate.

Representation schemes coupled with the user interface of a modeler have a great
influence on the way that a user will think about objects or shapes. One needs to dis-
tinguish between a machine representation and a user representation. The discussion
above has concentrated on the former, which may or may not be visible to the user,
but the latter is also very important and deals with the user interface. A driving force
behind generative modeling, which will be described in Section 5.3.5, had to do with
giving a modeler a desirable user representation. The issues involved with user rep-
resentations are similar to but not the same as those for machine representations.
Some important informal questions that a user representation must address are
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(1) To what class of shapes is a user restricted?
(2) How does a user describe and edit the possible shapes and how easy is this?

(a) How shapes are described can easily limit the user’s ability to use good
designs and even to think up a good design in the first place.

(b) How much input is required for each shape?

(c) Can a user easily predict the output from the input?

(d) How accurate are the representations with respect to what the user wants?

(e) Are the operations that a user can perform on shapes closed in the sense
that the output to an operation can be the input to another?

(3) How fast and how realistically can the shapes be generated on a display?
(4) What operations can a user perform on shapes and how fast can they be
carried out?

Of course, the type of user representation that one wants depends on the user. Here
we have in mind a more technical type of user. Later in Section 5.6 we consider a user
in the context of a manufacturing environment.

5.3.1 Early Representation Schemes

Approaches to geometric modeling have changed over the years. These changes began
before computers existed and all one had was pencil and paper. Since the advent
of computers, these changes were largely influenced by their power, the essential
mathematics behind the changes being basically not new. As computers become more
and more powerful, it gradually becomes possible to implement mathematical repre-
sentations that mathematicians have used in their studies. The history of the devel-
opment of geometric modeling shows this trend. Of course, the new ways of
interactively visualizing data that was not possible before will undoubtedly cause its
own share of advances in knowledge. We shall comment more on this at the end of
this chapter.

Engineering Drawings. Engineering drawings were the earliest attempts to model
objects. Computers were not involved and they were intended as a means of com-
munication among humans. They often had errors but humans were able to use
common sense to end up with correct result. There was no formal definition of such
drawings as a representation scheme. The basic idea was to represent objects by a
collection of planar projections. As such it is a highly ambiguous representation
scheme because if one were to try to implement it on a computer, it is very difficult
to determine how many two-dimensional projections would be needed to completely
represent a three-dimensional object. Constructing an object from some two-dimen-
sional projections of it is a highly interesting and difficult problem. We touched on
two small aspects of this problem in Section 4.12. For more, see [RogA90], [BoeP94],
[PenP86], or [Egga9d8].

Wireframe Representations. Wireframe representations were the first representa-
tion schemes for three-dimensional linear polyhedra. It is a natural approach, the idea
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Figure 5.8. An ambiguous wireframe representation.

being to represent them using only their edges. After all, edges are some of the most
important features of an object that one “sees.” Unfortunately, this representation
scheme is ambiguous. For example, Figure 5.8 shows a block with a beveled hole
through its center. It is not possible to tell along which axis the hole lies from the edge
information alone. Two problems caused by the ambiguity are that one cannot remove
hidden lines reliably and one cannot produce sections automatically.

Many early commercially available modeling systems used wireframe representa-
tions. Even now many systems support a wireframe display mode because it is fast
and adequate for some jobs. A wireframe display is one where only edges and no faces
are shown. Note that how objects are displayed is quite independent of how they are
represented internally.

Faceted Representations. A simple solution that eliminates the major wireframe
representation problems for three-dimensional objects is to add faces. This represen-
tation is unambiguous. We shall look at this approach in more detail later in the
section on the boundary representation. Again, there is a difference between a mod-
eling system using a faceted representation and one using a faceted display. The latter
means that objects (of all dimensions) are displayed as if they were linear polyhedra
even though the system may maintain an exact analytic representation of objects inter-
nally. For example, a sphere centered at the origin is completely described by one
number, its radius, but it might be displayed in a faceted manner.

Attempts have been made to develop algorithms that generate faces from a wire-
frame representation automatically, but it is known that only using topological infor-
mation leads to an NP-complete problem, so that the algorithms will not be very
efficient in general. See, for example, [BagW95].

Primitive Instancing Schemes. In this scheme we simply have a finite number of
generic parameterized primitives that can be represented via tuples of the form

(type code, parameter 1, ..., parameter k)

where the parameters are either reals or integers. See Figure 5.9. We do not need all
dimensions as parameters, only those that are variable. The representation is unam-
biguous and may be unique. It is certainly very compact. With regard to algorithms
for computing properties of objects represented by such scheme, one basically needs
a special case for each primitive.
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# of teeth N Figure 5.9. Primitive instancing scheme.
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A primitive instancing scheme is only really useful when the number of primitives
is small. The scheme is similar to a language in which words cannot be combined to
make a sentence. Note that a good structured modeling system can achieve all the
advantages of a primitive instancing scheme by providing a macro capability.

53.2 Boundary Representations

Since one only sees the surface of solids, it is natural to represent them via their
boundary. Mathematically this is justified because in the special case of closed and
bounded solids in R" the boundary of a solid uniquely defines that solid. (In general,
though, the boundary of a manifold does not define the manifold.)

Definition. The boundary representation or b-rep of r-sets in R" is the representation
that associates to each r-set X its boundary bX. More generally, a b-rep for r-sets is a
representation that associates to an r-set X a representation of bX.

B-reps are probably the most common representations used in computer graph-
ics. If X is a solid in R3, then

bx= | F

"face" F of X

The boundary of each face is itself a union of edges and the boundary of an edge is
a set of two points. One can therefore think of a boundary representation scheme for
solids in terms of a relation between objects and certain graphs. See Figure 5.10 for
the most basic version of such a graph. For linear polyhedra it is actually a function.
For curved objects it is not a function because it depends on how the boundary of the
object is divided into cells (curved patches).

There are some difficult questions having to do with the validity of boundary rep-
resentations. In particular,

When does a graph of the type shown in Figure 5.10 come from a real polyhedron?
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Figure 5.10. A boundary representation o
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There is no easy answer to this question. Here are some conditions in case the b-rep
for a solid is supposed to be induced from a simplicial decomposition, that is, the
solid is the underlying space of a simplicial complex:

(1) Each face must have three edges.

(2) Each edge must have two vertices.

(3) Each edge must belong to an even number of faces.

(4) Each vertex of a face must belong to precisely two edges of the face.
(5) All points (x,y,z) must be distinct.

(6) Edges must be disjoint or intersect in a vertex.

(7) Faces must be disjoint or intersect in edges.

Conditions (1)-(4) deal with the combinatorial topology of simplicial complexes and
are easy to check. Conditions (5)—(7) are point set topology questions that are expen-
sive to test.

Some common data structures that are used to implement the boundaries of linear
polyhedra are described in Section 5.8.1.

5.3.3 The CSG Representation

In constructive solid geometry (CSG) one represents objects in terms of a sequence
of Boolean set operations and rigid motion operators starting with a given collection
of primitive objects. One can express this representation pictorially as a binary tree.
For example, in Figure 5.11 the binary tree on the left is used to represent the union
of three blocks, one of which has been translated by a vector v. Although the idea is
simple enough, we must get a little technical in order to give a precise definition.

Let P be a set of r-sets in R". The elements of P will be called primitive objects.
Let O be a set of regularized binary set operators such as U*, n*, =%, . ... Let M be a
set of pairs (m,x) where m is a label for a rigid motion of R" such as a translation,
rotation, . .., and x is data that defines a specific such motion. For example, if n = 2,
then (rotation,(p,m/2)) is a possible pair in M and represents the rotation of R? about
p through an angle n/2. If (m,x) € M, then let m(x) denote the rigid motion defined
by the pair (m,x).
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Figure 5.11. A CSG example.
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Definition. A CSG-tree for the tuple (P,O,M) is an expression T defined recursively
in BNF (Backus-Naur Form) notation by

T ::=p|ToT|Tmx,
where pe P, o€ O, (m,x) € M.
An informal definition of a CSG-tree is

(CSG-tree) ::= (primitive leaf ) | (CSG-tree)({set operation node){CSG-tree)

| (CSG-tree)(motion m){motion args)

It is clear that a CSG-tree can be identified with a binary tree like the one shown in
Figure 5.11 and that is what is usually done in practice. Some typical values that have
been used for P, O, and M are

P = {block, cylinder, disk (“solid” sphere)}
O — {U'}:, m'}:, _ 7‘:}
M = {(m, x) |m(x) is translation or rotation}

Definition. The realization of a CSG-tree T is the space ITI defined recursively as
follows:

If T=p,peP, then|T|=p.

If T=ToT,, where Ty and T, are CSG-trees and o € O, then |T| = [Ti| o [T3|

If T = Timx, where T is a CSG-tree and (m, x) € M, then |T| = m(x)(T; ).
Definition. The CSG representation or csg-rep for a tuple (P,O,M) is the representa-

tion of r-sets using CSG-trees which consists of pairs (X,T) where X is an r-set, T is a
CSG-tree for (P,O,M), and X = ITI.
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Although one is free to choose any set of primitives or transformations for a csg-
rep, generic halfspaces of one sort or another are usually used as primitives. Two
common csg-reps used

(1) “arbitrary” (possibly unbounded) generic halfspaces as primitives, or
(2) bounded generic halfspace combinations as primitives.

Primitives are often parameterized. For example, a primitive block is usually con-
sidered to be situated at the origin and to be defined by the three parameters of length,
width, and height. One then talks about instancing a primitive, where that term means

(1) assigning values to the configuration parameters, and then
(2) positioning the result of (1) via a rigid motion (which could also be viewed as
assigning values to positional parameters).

Csg-reps can handle nonmanifold objects. Their exact domain of coverage
depends on

(1) the primitives (actually the halfspaces which define them),
(2) the motion operators that are available, and
(3) the set operators that are available.

It is interesting to note the results of an extensive survey of mechanical parts and
what it takes to describe them which can be found in [SaRE76]. Fully 63% of all the
parts could be handled with a CSG system based on only orthogonal block and
cylinder primitives. A larger class of primitives provided a natural description of over
90% of the parts. This indicated that CSG is therefore a good fit for a CAD system in
that sort of environment because most mechanical parts seemed to be relatively
simple.

If one uses general operations and bounded primitives, then one gets a represen-
tation that is

(1) unambiguous,

(2) not unique,

(3) very concise, and

(4) easy to create (at least for its domain of coverage).

One of the biggest advantages of a csg-rep over other representation schemes is
that validity is pretty much built into the representation if one is a little careful about
choosing primitives. For example, if one uses r-sets as primitives and arbitrary regu-
larized set operations, then the algebraic properties of r-sets ensure that a represen-
tation is always valid. This is not the case if operations are not general, for example,
if the union operation is only allowed for quasi-disjoint objects. Also, in a CSG system
based on general generic halfspaces, some trees may represent unbounded sets and
hence not be valid. It is true however that, by in large, all syntactically correct CSG
representations (trees) are also semantically correct.

Because of the tree structure of a CSG representation, one can often use a divide-
and-conquer approach to algorithms: one first solves a problem for the primitive
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answer function Solve (Bree T)
begin

answer ansl, ans2;

operation op;

if IsPrimitive (T)
then return (PrimitiveAnswerOf (T));

else
begin
ansl: = Solve (LeftSubtree (T));
ans2: = Solve (RightSubtree (T));
op := ValueAtRoot (T);
return (CombineAnswers (ansl,op,ans2));
end

end;

Algorithm 5.3.3.1. A divide-and-conquer approach in CSG.

Figure 5.12. What are the faces of this solid?

objects and then uses recursion. See Algorithm 5.3.3.1. The point membership clas-
sification function, which is discussed in Section 5.9, is an example of this.

One disadvantage with a CSG representation is that it is not easy to generate a
display using it because one needs the boundary of an object for that. Getting a bound-
ary representation for an object defined by CSG (a process referred to as boundary
evaluation) is relatively hard. We look at this in more detail in Section 5.9. One
problem in this context (especially for mechanical design) is how to define a “face” of
an object. This certainly is no problem in the linear case, but it is for curved objects.
See Figure 5.12. What should the faces be in that figure? Some minimal characteris-
tics of a face are:

(1) A face should be contained in the boundary of the solid.

(2) Topologically, a face should be a surface with boundary.

(3) If the solid was defined via regularized Boolean set operations from a collec-
tion of halfspaces {H;}, then each face should be contained in bH; for some i.

(4) Faces should be quasi-disjoint, that is, pairwise intersections of faces should
either be empty or lie in their boundary.
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Another issue when it comes to faces is how to represent them? We shall see in
Section 5.9 that to represent a face F we can

(1) represent the halfspace in whose boundary the face F lies (for example, in the
case of a cylinder, use its equation),

(2) represent the boundary edges of F (the boundary of a face is a list of edges),
and

(3) maintain some neighborhood information for these bounding edges and
orient the edges (for example, we can arrange it so that the inside of the face
is to the right of the edge or we can store appropriate normal vectors for the
edges).

This scheme works pretty well for simple surfaces but for more complicated surfaces
one needs more.

5.3.4 Euler Operations

Representation schemes based on using Euler operations to build objects are an
attempt to have a boundary representation meet at least part of the validity issue head
on. The idea is to permit only boundary representations that have a valid Euler char-
acteristic. If we only allow operations that preserve the Euler characteristic or that
change it in a well-defined way (such operations are called Euler operations), then we
achieve this. Of course this is only a part of what is involved for an object not to be
a nonsense object. Nevertheless we have at least preserved the combinatorial validity
since the Euler characteristic is a basic invariant of combinatorial topology. As for
metric validity, one still must do a careful analysis of face/face intersections. In any
case, to say that a modeler is built on Euler operations means that it represents objects
as a sequence of Euler operations.

Topologically, Euler operations are based on elementary collapses and expansions
and/or cutting and pasting (see Sections 7.2.4 and 6.4 in [AgoMO05], respectively).
Figure 5.13 shows two elementary collapse and expansion examples. One says that
the space Y consisting of the two segments on the right of Figure 5.13(a) is obtained
from the solid triangle X on the left via an elementary collapse of the cell ¢ from the
edge e. Conversely, the space X is said to be obtained from Y via an elementary expan-
sion. Figure 5.13(b) shows another elementary collapse and expansion, this time
involving a three-dimensional cell ABCD and a face ABC. Figure 5.14 shows a cutting

collapse col lapse
s = ==\
-
X expansion expansion
(a) (b)

Figure 5.13. Elementary collapses/expansions.
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Figure 5.14. Cutting and pasting.

and pasting example. Specifically, we show how to cut the torus to get a rectangle and
how, looking at it backward, we can get the torus from the rectangle by pasting appro-
priate edges together.

Elementary collapses or expansions do not change the Euler characteristic of a
space. On the other hand, cutting and pasting operations usually do change the Euler
characteristic. It turns out that these four operations do an excellent job to completely
describe and define surfaces. (In higher dimensions things get more complicated.)
Every surface, and hence solid in 3-space, can be obtained from a point by a sequence
of elementary expansions, cuts, and pastes. Modelers based on Euler operations use
a boundary representation for solids and simply define procedures that mimic the col-
lapses, expansions, cutting, and pasting operations just described by modifying the
cell structure of this boundary representation in a well-defined way.

Definition. The Euler operation representation of polyhedra is defined by the collec-
tion of pairs (X,(61,0,, . . ., 0k)), where X is a polyhedra and 61,05, . . ., Ok is a sequence
of Euler operations that produces 0X starting with the empty set.

Euler operations were first introduced by Baumgart in his thesis and then used
in his computer vision program GEOMED ([Baum?75]). Braid, Hillyard, and Stroud
([BrHS80]) showed that only five operators are needed to describe the boundary sur-
faces of three-dimensional solids. Such a surface satisfies the Euler equation

V-E+F=2(S-H),
where

V = the number of vertices,

E = the number of edges,

F = the number of faces,

S = the number of solid components, and
H = the number of holes in the solid.

They used a set of these Euler operations in their BUILD modeling system. Although
one can make other choices for the five primitive operators, it seems that the bound-
ary representation part of modelers built on Euler operations tend to use either
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Figure 5.15. Building a tetrahedron with A
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Baumgart’s winged edge representation (see Section 5.8.1) or some variant of it, so
that this is what these operators modify.

Historically, Euler operators were given cryptic mnemonic names consisting of
letters. A few of these are shown below along with their meanings:

M — make K —kill L-loop
V - vertex E —edge F —face B/S - body/solid

Using that notation, three typical operators were:

MEV -make ede and vertex
MFE - make face and edge
MBFV — make body, face, and vertex

Figure 5.15 shows how one could create a solid tetrahedron using these operators.
The operators create the appropriate new data structure consisting of vertices,
edges, faces, and solids and merge it into the current data structure. Along with each
Euler operator that creates vertices, edges, or faces, there are operators that delete or
kill them. This enables one to easily undo operations, a very desirable feature for a
modeler.

There are good references for implementing modelers based on Euler operations.
One is the book by Mintyld ([Mant88]), which describes a modeling program
GWB (the Geometric WorkBench). Another is the book by Chiyokura ([Chiy88]),
which describes the modeling program DESIGNBASE. Euler operations were
originally defined only for polyhedra but were extended to curved surfaces by
Chiyokura.

To summarize, modelers based on Euler operations are really “ordinary” b-rep
modelers except that the objects and boundary representations that can be built are
constrained by the particular Euler operators that were chosen, so that they at least
have combinatorial validity. The Euler operators are flexible enough though so that



174 5 Approaches to Geometric Modeling

the modelers share all the advantages (and some of the disadvantages) that one gets
with a boundary representation.

We need to leave the reader, at least those who might be interested in modeling
objects in higher dimensions than three, with one word of caution however. The result
about five operators sufficing to construct objects raises some subtle issues. It applies
only to the two-dimensional boundaries of solids and not to cell structures of solids.
The fact is that not all n-cells, n > 2, are shellable (another term for collapsible)! For
a proof see [BurM71]. To put it another way, the higher-dimensional analogs of the
Euler operators are not adequate for creating all cell decompositions of higher-dimen-
sional objects.

53.5 Sweep Representations and Generative Modeling
Sweep representations correspond naturally to the way many mechanical parts are
manufactured. The basic idea of this scheme is to “sweep” one set A along another B.

See Figure 5.16. There are several different types of sweeps.

Translational sweeps: These are common in sheet metal systems. See Figure

5.17(a).
Rotational sweeps: These are used in the context of turned or lathed parts. See
Figure 5.17(b).
Solid sweeps: These are used with milling machines. See Figure 5.17(c).
General sweeps: Not much is known in this case because sweeping even nice

sets along simple paths can produce nonsolids. See Figure
5.18. It is difficult to guarantee that swept objects will be
solids.

Figure 5.16. Sweeping an object along a curve.
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Figure 5.17. Sweep operations.
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Figure 5.18. Problem with sweeps. —
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Sweeps sometimes become inputs to other representations. For example, in CADD
(a program developed by McDonnell Douglas) one can translate certain sweep repre-
sentations, such as translational and rotational ones, into boundary representations.

Related to sweeps is the multiple sweeping operation using quaternions described
in [HarA02]. There are also the generalized cylinders of Binford ([Binf71]). See Figure
5.19. Here the “sweeping” is parameterized. We shall now discuss a representation
scheme developed by J. Snyder at Caltech that is more general yet. It was the basis
for the GENMOD modeling system, which Snyder’s book [Snyd92] describes in great
detail.

Figure 5.19. Generalized cylinder.

Definition. A generative model is a shape generated by a continuous transformation
of a shape called the generator.

Arbitrary transformations of the generator are allowed. There is no restriction as
to the dimension of the model. The general form of a parameterization S(u,v) for a
generative model which is a surface is

S(u,v) =f(y(u),v), (5.3)

where vy : [a,b] = R?is a curve in R® and f : R® x R — R? is an arbitrary function. One
of the simplest examples of this is where one sweeps a circle along a straight line to
get a cylinder. Specifically, let

v:[0,1] = R3
u — (cos2mu, sin2nu, 0)

be the standard parameterization of the unit circle. Define f by

f(p,v)=p+(0,0,v).
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Figure 5.20. Generative models.

See Figure 5.20(a). A more interesting example is shown in Figure 5.20(b) where we
use

f(p, v) = (1 - %)R\,(p) + (v, 0,— %(x —3)% 4 3)

and R, is the rotation about the y-axis in R?® through an angle of nv/6. This corre-
sponds to sweeping the unit circle along the parabola

z:—%(x—3)2+3

in the xz-plane. The circle gets rotated and scaled by a factor of 1 — v/6 as we move
it.

The parameterization S(u,v) in equation (5.3) can be thought of as defining a one-
parameter family of curves v, defined by v, (u) = f (y(u),v). As the examples in Figure
5.20 suggest, this family of curves can correspond to a fixed curve being operated on
by quite general transformations as it is swept along arbitrary curves. This is, in fact,
one reason for creating the generative model representation, namely, that it allows
powerful operators for modifying objects.

More generally, generative models of arbitrary dimension have parameterization
S(u,v) of the form

S:RkXRS=Rk+S%Rn
(u,v) — T(F(u), v), (5.4)

where F: RE > R™ and T : R™ x R® — R”. This is thought of as a (k + s)-dimensional
model obtained by sweeping a k-dimensional object along an s-dimensional path. For
example, this allows us to define solids as generative models. A common representa-
tion is to represent a solid as sweeping an area along a curve.
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Definition. The generative modeling representation consists of pairs (X,F), where F
is a parameterization of the generative model X of the form shown in equation (5.4).

The driving force behind GENMOD was correcting some perceived deficiencies in
the geometric modeling systems of that time and some key defining points listed by
[Snyd92] for the generative modeling approach as implemented in GENMOD are:

(1) The representation is a generalization of the sweep representation.

(2) Shapes are specified procedurally.

(3) Specifying a shape involves combining lower-dimensional shapes into higher-
dimensional ones.

(4) An interactive shape description language allows low- and high-level opera-
tors on parametric functions.

(5) Ttis closed, that is, the outputs to operations can be inputs to operations (like
CSG).

(6) It allows parameterized shapes whose parameters a user can change.

(7) It supports powerful high-level operators and functions, such as

reparameterizing a curve by arc length,
computing the volume of a shape enclosed by surface patches, and
computing distances between shapes.

These operations are closed and free of approximation error.
(8) It supports deformation operators, CSG, and implicitly defined shapes.
(9) One has the ability to control the error in the representation.

A large variety of symbolic operators on the parameterizations and their coordi-
nates help the user define generative models, such as vector and matrix operations,
differentiation (partial derivatives), integration, concatenation, and constraint opera-
tors. Since parameterizations can be thought of as vector fields, another useful oper-
ator is one that solves ordinary differential equations. GENMOD had a language in
which a user could define models using the various operators.

Now, models will have to be displayed. By converting to polygonal meshes and ad
hoc error control, the interactive rendering of generative models becomes feasible.
One can specify the subdivisions in two ways: uniform in domain or adaptive sam-
pling. More realistic images can be obtained at the expense of speed.

For accuracy, GENMOD used interval analysis. Interval analysis (see Chapter 18)
is an attempt to make numeric computations on a computer more robust and has its
advantages and disadvantages. Snyder argued for its use in geometric modeling and
described various applications to computing nonintersecting boundaries of offset
curves and surfaces, approximating implicitly defined curves and surfaces, and
trimmed surfaces and CSG operations on them.

In summary, three more advantages used by Snyder to justify the generative
modeling approach are:

(1) The representation handles all dimensions, is high-level, and extensible.

(2) Using a high-level interpreted language, the mathematically knowledgeable
user can easily build a library of useful shapes.

(3) An adequate number of robust tools for rendering and manipulating genera-
tive models exist.
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53.6 Parametric Representations

Many of the representations of solids rest on a representation of their boundaries.
That was true even in the case of the csg-rep. Although the primitives were solids,
in practice one only had equations or parameterizations for their surfaces, and
the interior of the solid was not referenced explicitly. As far as parameterizations are
concerned, there is no reason why we have to limit ourselves to parameterizations
of two-dimensional objects. If we want access to interior points, we can define
three-dimensional parameterizations just as easily. For example,

p(r,06,z)=(rcos®,rsin®,z), rel0,1], 0€[0,2xn], z€]0,2]

is a parameterization of a solid cylinder of radius 1 and height 2 with axis the z-axis.
If we allowed such parameterizations, then we could also generate interior points of
the object at will. Chapter 12 describes a number of basic surfaces and their para-
meterizations. Similarly, one could describe a corresponding basic collection of solids
and their parameterizations. In other words, three-dimensional parameterizations are
a representation scheme for solids. See [Mort85] for a discussion of what he calls a
tricubic parametric solid. This is a space parameterized by a function p(u,v,w) of the
form

33 3
p(u,v,w) = 22 2 aijkulvjwk, u,v,we[0,1]and ajjx € R3.
i=0 j=0k=0

This is the most general cubic parameterization, but one can look at special cases
such as Bezier or spline forms, just like in the surface case. See [HosL93].

5.3.7 Decomposition Schemes

Decomposition representation schemes represent objects as a union of quasi-disjoint
pieces. These representations come in two flavors: object-based or space-based. The
object-based versions present a subdivision of the object itself. The space-based ver-
sions, on the other hand, subdivide the whole space and then mark those pieces that
belong to the object. The hatched cells in Figure 5.21(b) define a space-based decom-
position representation of the object in Figure 5.21(a). Figure 5.21(c) shows an object-
based decomposition of the same object.

Another distinction between decomposition schemes is whether they use a
uniform or adaptive subdivision. The choice is driven by the geometry of the object.
For example, at places where an object is very curved it would be advantageous to
subdivide it more to get a more accurate representation. Object-based decomposition
schemes tend to be adaptive.

Cell Decompositions. This is a very general object-based decomposition represen-
tation. Here the primitive pieces that an object is broken into can be arbitrary (curved)
cells, typically triangles in the two-dimensional case or tetrahedra in the three-
dimensional one. The idea is to find triangular or tetrahedral pieces each of which
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Figure 5.21. Decomposition
representations.
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Figure 5.22. Spatial occupancy representation.

has a relatively simple definition, something that presumably the whole object did not
have. The representation is unambiguous but certainly not unique. Cell decomposi-
tions are an essential ingredient of finite element modeling (see Chapter 19).

Certain important topological properties can be computed relatively easily from
a cell decomposition, such as answers to the questions

(1) TIs the object connected?
(2) How many holes does it have?

The representation is also good for nonhomogeneous objects. See Section 7.2.4 in
[AgoMO04] for a general definition of a cell complex. Handle decompositions of man-
ifolds (see Section 8.6 in [AgoMO05]) are a special case of this type of representation.
Chapter 16 will address the usefulness of “intrinsic” cell decompositions of spaces.

Spatial Occupancy Enumeration. This space-based scheme represents objects by
a finite collection of uniformly sized cells. Areas are divided into squares (pixels).
Volumes are divided into cubical cells called voxels, an abbreviation for “volume ele-
ments.” There are two choices here in that one can either represent the object bound-
ary or its interior. In the latter case, one can, for example, list the coordinates of the
center of grid cells in the object. See Figure 5.22.

Spatial occupancy enumeration is an ambiguous representation. Furthermore, a
big problem with this scheme is the amount of data that has to be stored. For that
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reason it was not used much for mechanical CAD or CAM (computer-aided manu-
facture) initially except for gross models to help with certain calculations such as col-
lision checking and getting a rough estimate of volume. This has changed now that
computers with gigabytes of memory have become a reality and voxel-based repre-
sentation schemes for volumes have become very popular in certain parts of computer
graphics. A more detailed discussion of this subject follows in the next section. Section
5.8.2 will describe the standard approach to cutting down on the amount of data one
has to store.

5.3.8 Volume Modeling

Here are four terms and their definitions that usually appear in the same context:

Volumetric data: The aggregate of voxels tessellating a volume.

Volume modeling: The synthesis, analysis, and manipulation of sampled, com-
puted, and synthetic objects contained within a volumetric
data set.

Volume visualization: A visualization method concerned with the representation,
manipulation, and rendering of volumetric data.

Volume graphics: The subfield of computer graphics that employs a volume
buffer for scene representation and is concerned with synthe-
sizing, manipulating, and rendering such scenes. Volume
graphics is the three-dimensional counterpart of raster
graphics.

The definitions are taken from [KaCY93] and are an adequate representation of how
these terms are usually used. The subject matter that is addressed by these terms is
what this section is about. It really only dates back to the early 1980s and started in
the context of tomography.

Although our main interest in this book is on modeling geometric objects, volume
modeling covers a much broader subject in that the “volumes” may have arisen in
other ways. Volume modeling in its most general sense deals with scalar-valued func-
tions defined on three-dimensional space. In that sense, it is not really a modeling
scheme per se but has close connections with modeling. In the special case where the
function takes on only two values, 0 and 1, we can, in fact, interpret the function as
defining a space-based decomposition scheme generalizing the voxel-based spatial
occupancy enumeration scheme. The voxel case is the uniform case, but the data set
may have different geometries such as being composed of rectangular or curved cells.
Cells might be different distances apart. On the other hand, the function could come
from some arbitrary mathematical model. For example, one might want to display
the temperature of a heated solid visually, perhaps by displaying the surfaces of con-
stant temperature. We can think of volume modeling as modeling data that is acquired
from appropriate instruments and then sampled to get the voxelization. The data
could also be an “object” that is defined in terms of point samples. Volume rendering
refers to the process of displaying such models. We shall have more to say about
volume rendering in Section 10.4.
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Figure 5.23. Foot with bones exposed
([ScML98]). (Reprinted from Schroeder et al:
The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, third edition, 2003,
1-930934-07-6, by permission of the publisher
Kitware Inc.).

Volume modeling is beginning to make an impact on the more conventional CAD
and CAGD. Here are some of its advantages:

(1) One can “cut away” parts of an object and look at its interior. See Figure 5.23.

(2) CSG can be implemented quite easily because at the voxel level the set oper-
ations are easy, especially if one has support for voxBlt (voxel block transfer)
operations that are the analog of the bitBlt operations.

(3) Rendering is viewpoint independent.

(4) It is independent of scene and object complexity.

The author has felt for many years that it was advantageous to model the whole world
and not just the objects within it. It gives one much more information. For example,
to trace a ray, one simply marches through the volume and sees what one hits along
the way, rather than having to check each object in the world for a possible intersec-
tion. Volume modeling is now making this possible.

Some disadvantages of volume modeling are:

(1) A large amount of data has to be maintained.
(2) The discretization causes loss of information.
(3) The voxelization causes aliasing effects.

Volume modeling plays an important role in the visualization of scientific data.
This is a big field in computer graphics. Although not the focus of this book, it would
not be right to omit mentioning some examples of it:

Medical Imaging. This was one of the first applications of volume modeling. See
[StFF91] for an overview of early work. Physicians used MRI (magnetic resonance
imaging) and CT (computed tomography) scanners to get three-dimensional data of
a person’s internal organs. In tomography one gets two-dimensional slices of the
object using X-rays. One projects X-rays through the body and measures their inten-
sity with detectors on the other side of the body. The X-ray projector is rotated about
the body and measurements are taken at hundreds of locations around the patient. A



182 5 Approaches to Geometric Modeling

picture of the slice is then obtained from a reconstruction process applied to all this
data. Radiologists were apparently good at seeing three-dimensional models from
these two-dimensional slices, but surgeons and doctors were not. Fortunately, there
exist algorithms that, when applied to a stack of such slices, produce a representation
of the whole organ and volume rendering makes it possible to display it. One is able
to remove uninteresting tissues to see those parts that one wants to see. At this point
in time, three-dimensional medical graphics is not yet widely used, mainly because
of the cost. Also, the slices are more accurate and have more information than the
three-dimensional reconstruction, so that radiologists tend to refer to them more.

In another recent development, surgeons can now also use haptic systems to prac-
tice surgeries beforehand. “Haptic” means that one gets physical touch feedback from
the system.

Modeling Natural Phenomena. Understanding the flow of air over an airplane
wing is important for its design. A similar understanding is needed for designing
intake or exhaust manifolds in engines. This is where fluid dynamics enters. Fluid
dynamics deals with fluid flow, which is governed by a set of differential equations
called the Navier-Stokes equations. These equations define the velocity and vorticity
of the fluid. The vorticity describes the rotational part of the flow and is defined by
a vector at each point of the fluid. Understanding vector-valued functions is not
easy, but volume-rendering techniques have enabled scientists to get a better visual
understanding of what happens inside a flow. Volume modeling has been helpful in
modeling other phenomena such as ocean turbulence and hurricanes. Oil exploration
has been greatly aided by the ability to use volume modeling to analyze geological
data.

Education. Volume modeling has been used to avoid having to use actual bodies in
dissection experiments. As a result of the visible human project sponsored by the
National Library of Medicine, there now exist models of a human male and female.
If one tried to model a human in the more traditional way by means of facets, it would
take millions of triangles to do so.

Nondestructive Testing. Volume modeling has been used to enable mechanical and
materials engineers to find structural flaws in objects without having to take them
apart.

This ends our brief overview of volume modeling. We return to the very interest-
ing topic of volume rendering in Section 10.4. There is a large body of literature on
volume modeling and the related subject of scientific visualization. A good place to
begin more reading is [LiCN98], [ScML98], and various ACM SIGGRAPH course notes
such as [Kauf98].

53.9 The Medial Axis Representation

In mathematics, when one tries to characterize or classify geometric objects, one first
looks for coarse invariants (topology) and then successively refines the classification
by adding metric criteria, differentiability criteria, etc. For example, at a very top level,
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a doughnut and a circle are similar because one can collapse the doughnut down to
a circle. A double doughnut (two doughnuts attached to each other along a disk) is
like a figure-eight curve. Therefore, since the circle is clearly a quite different shape
from a figure-eight, one can see that the more complicated solids to which they are
associated must also be fundamentally different shapes. This section is about a similar
idea, namely, to facilitate dealing with objects by representing them by simpler (lower-
dimensional) objects that nevertheless still capture the essence of the shape of the
original object. The idea of using a “skeleton” of an object as a shape descriptor goes
back to [Blumé67] and [Blum73]. The fact that one gets a representation that has many
attractive features has led to quite a bit of research activity on this subject. It should
be noted, however, that the skeletal representation of an object is not a stand-alone
representation for objects in practice. Mostly, it is intended to be used in conjunction
with others, typically a boundary representation for continuous objects and a spatial
occupancy enumeration representation based on pixels or voxels for discrete objects.

Skeletons come in two flavors, namely, continuous and discrete. We shall begin
with definitions for the continuous case.

Definition. Let X ¢ R". A maximal disk in X is a closed disk D"(p,r) contained in X
with the property that it is not properly contained in any other closed disk in X.

Definition. Let X < R". The medial axis (MA) or skeleton or symmetric axis of X is
the closure of the set of centers of maximal disks in X. The medial axis of a solid in
R3 is sometimes called a medial surface. The real-valued function that assigns to each
center of a maximal disk in X the radius of that disk extends to a continuous func-
tion on the medial axis called the radius function of that medial axis.

Note. Unfortunately, there is not complete agreement with regard to the terms
medial axis, skeleton, and symmetric axis in the literature. For example, the medial
axis in the continuous case is often also defined as the set of points equidistantly
closest to at least two points in the boundary. The advantage of the definition given
here with its closure condition is that if X is bounded then the medial axis will be a
compact set.

Figure 5.24 shows the medial axis (indicated by solid lines) of a planar L-shaped
bracket and a three-dimensional block. For a convex planar polygon it always con-
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Figure 5.24. Medial axes.
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sists of straight line segments but if the polygon is nonconvex there may be curved
arcs as Figure 5.24(a) shows. There is a close relation between the medial axis and
the Voronoi diagram of an object ([ShAR96]).

The medial axis for a polyhedron has a natural partition into cells. Determining
the medial axis basically reduces to determining its cell decomposition. In two dimen-
sions the cells are called arcs and junctions. For example, in Figure 5.24(a) BC and
CD are arcs and the points A, B, and C are called junctions. In the nondegenerate
case, junctions are the points where the maximal disk has three or more contact points
with the boundary. The maximal disks at endpoints of arcs that lie in the boundary,
like point D, have one contact point with the boundary. In three dimensions the cells
are called sheets, seams, and junctions. The sheets are surface patches. These are
further subdivided into wing sheets and body sheets. Wing sheets are those with points
in their boundary where the maximal disk makes contact with the boundary at only
one point, such as ABCD in Figure 5.24(b). Body sheets are the remaining sheets,
such as ABEF. The seams are curves that typically are the intersection of two or more
sheets where the maximal disk has three or more contact points with the boundary.
Junctions are points that are the intersections of three or more sheets. See [BBGS99].

Next, consider discrete objects. We could give the same definitions because all that
we need is a metric which we have. However, there are several natural metrics to
choose from in this case and so it is possible to play around with the definition a bit
and choose a variant which may be more suitable for a particular discrete problem.
We follow [RosK76].

Definition. Let X ¢ U ¢ Z". The medial axis (MA) or skeleton or symmetric axis of
X with respect to U is the set of points whose distances from the complement U — X
are a local maximum, that is, no neighboring point has a greater distance to the com-
plement. The distance function for the medial axis is the real-valued function that
assigns to each point of the medial axis its distance to U — X.

In practice, the “universe” U is a rectangle when n = 2 (the pixel case) and a rec-
tangular box when n = 3 (the voxel case). Figure 5.25 shows the medial axes for a 7
x 8 discrete rectangle in Z2. In Figure 5.25(a) we used the taxicab metric and in Figure
5.25(b), the max metric. The medial axes are the numbered points with the numbers
giving the distance of the point to the complement.
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Figure 5.25. Discrete medial axes.
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Definition. The medial axis representation or medial axis transform (MAT) of an
object consists of its medial axis together with the associated radius function in the
continuous case and the distance function in the discrete case.

One can show that an object is completely specified by its medial axis represen-
tation. See [Verm94] and [RosK76]. Furthermore, in the continuous case the enve-
lope of the maximal disks is just the boundary of the object. One nice thing about the
medial axis representation is that it depends on the geometry of the object and not
on the choice of coordinate axes like the quadtree or octree representation for dis-
crete objects defined by pixels or voxels.

Algorithms that compute medial axes divide into two types based on whether they
apply to discrete or continuous objects. The basic thinning algorithm for computing
the discrete medial axis is often referred to as the “grassfire” algorithm. If a fire
started at the boundary of the object were to burn into the object at a constant rate,
then it would meet in the medial axis. One starts on the boundary of the object and
strips away one layer of pixels or voxels after another until one reaches points that
the fire reaches from two directions. See [RosK76] and [WatP98] for thinning of two-
dimensional discrete sets. Similar arguments work in three dimensions.

In describing algorithms for finding the medial axis of continuous objects we shall
concentrate on three-dimensional objects. Such algorithms can be classified by the
specific approach that is used: volume thinning, tracing of seams and sheets, Voronoi
diagrams, or Delaunay triangulation. See [BBGS99] for advantages and disadvantages
for various schemes. [CuKM99] also describes previous work.

Volume Thinning. One voxelizes the object and then computes the discrete medial
axis that is then polygonized. An additional extra pass is required at the end to deter-
mine the radius function. Of course, this will only determine an approximation to the
medial axis and one must be careful that it is accurate.

Tracing Approaches. One tracing approach is described in [ShPB95]. One starts at
a known junction like a vertex of the polyhedron and then traces along an adjacent
seam, defined as the zero set of some functions, until one gets to another junction. At
that point one repeats this process for each seam that ends at that new junction. Polyg-
onal approximations to the seams are computed. The main difficulty is determining
the next junction. A similar approach is used in [CuKM99] but is claimed to be more
accurate because it uses exact arithmetic.

Voronoi Diagrams. A number of algorithms use Voronoi diagrams because of their
close connection to the medial axis problem since they also deal with equidistant sets
of points. See Section 17.7 for a definition of Voronoi diagrams and some of their
properties. The idea is to use a suitable sample of points in the boundary and compute
their Voronoi diagram. See [Bran92], [ShPB95], or [ShPB96]. [CuKM99] describes an
algorithm for polyhedra via Voronoi diagram and exact arithmetic.

Delaunay Triangulations. See Section 17.8 for a definition of a Delaunay triangu-
lation of a set of points. A Delaunay triangulation is the geometric dual to the Voronoi
diagram. [ShAR95] and [ShAR96] generate a domain Delaunay triangulation con-
sisting of a set of tetrahedra based on an adaptive collection of boundary points. The
medial axis is obtained from this triangulation.
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Figure 5.26. Interior and exterior skeletons.

interior skeleton

exterior skeleton

Most algorithms are basically discrete algorithms. One exception is the algorithm
described in [Hoff94] for CSG objects. In this regard, see also [LBDW92]. The authors
describe how one can obtain an approximation to a variant of the Voronoi diagram
for CSG objects. Sometimes bisectors of surfaces are rational. See [EIbK99]. In case
of polyhedra, the medial surface consists of bisectors that are planes or quadric sur-
faces. An algorithm for planar regions with curved boundaries can be found in
[RamGO03].

To use the medial axis representation effectively one needs to know not only how
to compute it but also how one can reconstruct the original object from it. The latter
task is often referred to as refleshing. Algorithms for refleshing divide into direct and
implicit approaches.

The direct approach to refleshing tries to reconstruct the boundary surface of
the original object directly using the given radius or distance function. This amounts
to constructing the surface from a variable offset type surface. See [GelD95]. Self-
intersections are a problem with offsets and the exterior skeleton has been used here
to help prevent these. See [STGLS97]. The exterior skeleton or exoskeleton of an object
is the skeleton of the complement of the object. The ordinary skeleton is sometimes
called the interior skeleton or endoskeleton. The exterior skeleton comes in handy at
those places where the boundary of the object is concave. See Figure 5.26.

The implicit approaches to refleshing try to define the boundary surface implic-
itly as the zero set of a suitable function. They can be further subdivided into those
that use a distance function and those that use convolution methods. See [BBGS99]
for a more detailed discussion of this along with references. The paper also describes
a new distance function approach. This involves triangulating the medial axis and
defining a local distance function for each triangular facet. The global distance func-
tion is then the minimum of all the local ones. To give the reader a flavor of how a
local distance function is constructed, we sketch the construction in the case where
the radius function is constant over a facet. The local distance function is a compos-
ite of functions defined over regions that are related to the Voronoi cells associated
to the facet, its edges, and its vertices. See Figure 5.27, which shows a triangular facet
with vertices p1, p2, and ps and its associated Voronoi cells whose boundaries are
obtained by sweeping a vector orthogonal to the edges of the facet orthogonally to the
plane of the facet. Let f; be the local distance function for point p; determined by the
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Figure 5.27. The regions used to define a local spherel
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sphere labeled spherei. Let f.j;; be the local distance function associated to the cylin-
der labeled cylij that is centered on the edge from p; to p; and meets the spheres
labeled spherei and spherej tangentially. Let fjanes be the local distance function asso-
ciated to the planes that meet the spheres labeled spherei tangentially. Then the local
distance function f(p) associated to the facet is defined by

f(p) =t (p), if p € sphere labeled spherei
=fij(p),  if p ecylinder labeled cylij
=folanes(p),  if p € region labeled planes.

If the radius is not constant over a facet but varies linearly over it, then a similar con-
struction works using cones rather than cylinders. In the end, the refleshed object is
defined as the halfspace of a (distance) function. The implicitly defined boundary (the
zero set of the function) can then be polygonized by some standard method if this is
desired.

One goal of the medial axis representation is to make modeling easier for the user.
For one thing, we have reduced the dimension by one. An example of this is the rep-
resentation of an object by orthogonal projections. See [Bloo97], [STGLS97], and
[BBGS99] for how a user might edit an object using its medial axis. In [BBGS99] the
basic approach to editing a solid was

(1) Compute the medial axis and radius function for the solid.

(2) Allow the user to interactively edit the skeleton and radii.

(3) Reflesh to obtain the edited solid.

(4) Polygonize the boundary of the solid so that the user can use the b-rep for
other purposes.

The allowed editing operations were

(1) Stretching: The user picks skeletal vertices and a translation vector.

(2) Bending: The user picks a joint and specifies a rotation by clicking with the
mouse on one side of a separating plane through the rotation axis.

(3) Rounding: At sharp convex edges the wing sheets meet the boundary of the
object and the disk radii go to zero. The user can either remove the wing sheets
or change the disk radii.
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(4) Editing disk radii: This allows a user to round, thicken, or thin parts of the
object in uniform or nonuniform ways.

The bending operation in particular shows why the medial axis representation has an
advantage over a b-rep. With a b-rep such an operation can produce tears if one is
not careful. Although bending the medial axis may produce tears or intersections, the
refleshing operation removes all that.

Medial axis computations have many applications. Just to list a few topics and
references, they are used in finite element mesh generation ([STGLS97]), shape opti-
mization and robot path planning ([GelD95]), and pattern analysis and shape recog-
nition ([FarR98]). See [Nack82] for relationships between the curvature of a surface
and curvature functions associated to its medial axis representation.

Finally, related to the medial axis are the level sets of [LazV99] and the Reeb
graph of [ShKK91] and [ShiK91]. With level sets the goal was to describe both the
topology and geometry of the object, whereas with the Reeb graph the goal was to
encode the topology. Both of these approaches are based on the handle decomposi-
tion of manifolds that is central to the classification of manifolds. See Chapter 8 in
[AgoMO04]. Reeb graphs have also been useful for volume data mining ([FTATO00]).

54 Modeling Natural Phenomena

Except for the pixel- and voxel-based types, the representation schemes we have dis-
cussed so far are not very useful for modeling natural phenomena. Objects such as
trees, mountains, grass, or various terrain cannot easily be modeled by linear poly-
hedra or smooth surface patches. Using very small pieces in the representation would
overwhelm one with massive amounts of data. Even if this were not a problem, it
would not be a satisfactory solution. The picture might look all right at the start, but
what if one were to zoom in? One would have to adjust the fineness of the subdivi-
sion dynamically to prevent things from eventually looking flat. Modeling and ren-
dering natural phenomena is a digression from the main thrust of this book. For that
reason, we shall only take a brief look at this subject. The four topics we consider are
fractals, iterated function systems, grammar based models, and particle systems.

Fractals. One of the most important applications of fractals to graphics is in the
representation of natural phenomena. For a definition of a fractal, see Section 22.3.
They enable one to represent such phenomena in a realistic way with a small amount
of data. The zooming problem also is no problem here. There is one caveat however.
Fractals are typically used to represent “generic” trees, mountains, or whatever. They
do not lend themselves easily to represent a specific tree or mountain. This is usually
not an issue though.

Why are fractals so great for modeling certain natural phenomena? To begin with
let us show how fractal curves and surfaces can be generated. The basic construction
generalizes that of the well-known Koch curve (see Section 22.3).

In the one-dimensional case, the algorithm starts with a given initial polygonal
curve and then generates a sequence of new curves, each of which adds more detail
to the previous one. In every iteration we replace each segment of the old curve with
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Figure 5.29. A fractal island.

a new curve segment. The simplest way to do this is to displace the midpoint of the
segment by a random amount along the perpendicular bisector. See Figure 5.28. Given
the segment AB, let C be its midpoint. Compute a unit normal vector u for it, choose
a suitable random number r based on the current scale, and replace AB by the seg-
ments AD and DB, where C is the midpoint of AB and D = C + ru.

Now, to describe some natural shape such as the boundary of an island proceed
as follows: Specify the rough outline of island with a polygonal curve and then apply
the algorithm described above, that is successively replace each edge with an appro-
priate collection of edges. Figure 5.29 shows one possible result after starting with an
approximation to the Australian continent. One does have to deal with the problem
of self-intersections in the resulting curves.

In the two-dimensional case, we have more freedom. For example, for surfaces
described as a collection of triangles one common approach is to do the following:
“Subdivide” each triangle into smaller triangles obtained by connecting its vertices to
appropriate random offsets of the midpoints of its sides. This replaces each triangle
successively by seven new smaller triangles and the process can be repeated. In Figure
5.30(a) the midpoints of the edges of triangle ABC were offset to D, E, and F, and the
triangle replaced by triangles ABD, BDE, BEC, CEF, ACF, ADF, and DEF. A similar
construction works for quadrilaterals. There is one complication in the two-
dimensional case, namely, if one is not careful, then gaps can appear in places where
triangles used to be adjacent. Figure 5.30(b) shows the potential problem if we offset
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Figure 5.30. Surface midpoint displacements.

the midpoint of the edge AB to X and X" with respect to the triangles ABC and ABC’,

respectively. One has to make sure that one uses the same random number and normal

when offsetting an edge with respect to both triangles that have it in common.
Some good references on fractals are [Mand83] and [DevK89].

Iterated Function Systems. Iterated function systems are an elegant way to gen-
erate fractals. We refer the reader to Section 22.4 for a brief discussion. [Barn88] is
a good reference.

Grammar-Based Models. Building on work of Lindenmayer ([Lind68]) on parallel
graph grammars, Smith ([Smit84]) described a class of plant models that he called
graftals. The modeling involved two stages: first one generates a formal string from
an initial string using production rules and then the image is generated by interpret-
ing this string as a geometric tree in a suitable way. Graftals were not necessarily frac-
tals, but were very similar in that one could generate as much detail as desired. Very
realistic plants and trees could be generated using botanical laws.

Particle Systems. Particle systems, introduced in [Reev83], were good at modeling
phenomena that was “fluid-like” and changed over time by flowing or spattering, such
as clouds, smoke, fire, water falls, and water spray. Typical particles were spheres and
ellipsoids. They would be created in a random way with respect to size, position,
shape, and other properties and then randomly deleted. During their lifetime their
paths, which could be controlled by specified physical forces, would be rendered in
appropriate colors. See also [ReBI85].

Most models above are what are called procedural models. We have more to say
about this later in Sections 5.6 and 5.11.

5.5 Physically Based Modeling

The kind of modeling we have discussed so far has dealt mostly with static objects.
Allowing for animation would not change that since animation is nothing but a matter
of generating a sequence of views of static objects (rather than a single view). This
static modeling is what the traditional CAD systems do and is quite adequate in aiding
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users in the tasks for which they are used. The real world does not consist of isolated
objects however. Objects interact due to a variety of forces. We need to broaden our
outlook. Another goal should be to facilitate the modeling of the real world with its
interactions. Geometric modeling, the modeling of isolated static objects, is an impor-
tant step toward modeling real world scenes, but it is only a first step. The next step
is to make it easier for users to include the interactions of the objects.

For example, if we wanted to model a ball in a scene with a cloth draped over it,
we could do it with the standard modeling system, but it would take quite some effort.
We would have to figure out the creases in the cloth on our own. These creases are
determined by gravity and other physical forces associated to the particular material
from which the cloth is made. We could use the relevant equations of physics to define
the set of spline surface patches, or whatever, that would generate the correct picture.
How much easier it would be if we only had to tell the CAD program the position and
radius of the ball, the material properties of the flat cloth, the starting position of the
cloth parallel to the floor at the top of the ball, and then let the program compute the
final shape of the cloth after it has reached equilibrium with respect to the forces
acting on it. Obviously, a program that could do this would have to have the relevant
equations and algorithms programmed within it, but this would only have to be done
once.

As another example, suppose that we wanted to show a ball bouncing on a floor.
Again, we could do this animation ourselves with a traditional CAD system by deter-
mining by hand the series of positions of the ball along with the time intervals between
those positions that made up the animation. Why can the CAD program not do this
for us, so that all we had to input was an initial height from which the ball is dropped?
Obviously, the CAD system could be programmed to do this. This would take some
hard work, but again, it would only have to be done once, and then it could help many
users in this and similar types of problems.

Modeling that also considers the dynamics of physical objects in addition to their
static properties is called physically based modeling. The objects may be simple parti-
cles or rigid objects, but could also be much more complex, like cloth. As indicated
earlier, we are not really dealing with a new representation scheme but rather an
extension of “traditional” representation schemes. This is a relatively new branch of
computer graphics, with the name “physically based modeling” being introduced for
the first time in an ACM SIGGRAPH 87 course by A.H. Barr ([BarrA87]). To carry out
its program involves a great deal of knowledge about physics and other sciences.

Physically based modeling can be interpreted quite generally to encompass the
three main areas in computer graphics, modeling, rendering, and animation, but at
its core, it deals with classical dynamics of rigid or flexible bodies, interaction of
bodies, and constraint-based control. An active area of research is how a user can best
control the models. There is a trade-off between realism and control. If the models
perform realistically, they are typically controlled by differential equations and the
only control a user has in initial conditions. On the other hand, giving the user more
control might mean that objects will perform less realistically. Constraint-based tech-
niques are a common way to deal with this problem. This includes constraints defined
by equations in physics but also refers to situations where we would like the user to
be able to say things like “move object A so that it touches both objects B and C,” “let
a ball roll down a hill following a given path,” or “show a moving robot, figure, or
object in a domain with obstacles.” Unfortunately, if constraints are not chosen care-
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fully, we may create underconstrained situations where there is no unique solution,
or overconstrained situations where there is no solution.

For a more thorough discussion of physically based modeling see the references
in that section of the bibliography.

5.6 Parametric and Feature-Based Modeling

We have mostly talked about various technical aspects of modeling systems, but a
good modeler must also take the user’s or designer’s point of view into account. The
difference between a machine representation and a user representation was briefly
alluded to in Section 5.3. We also touched on this subject in our discussion of gener-
ative modeling in Section 5.3.5. Users should not have to be forced to adapt their way
of describing geometry to any low-level abstractions due to technical requirements of
a modeler. Defining nontrivial geometric models is usually a difficult task in the best
of circumstances. If possible, the process should require no more expertise than the
understanding of the final model. Of course, there are times when knowing the under-
lying mathematics is essential to building a model and so the option of taking advan-
tage of it should be there. Nevertheless, for those times when it is not, we would like
a modeler to have the ability to understand high-level, user-friendly concepts. Of
course, what is considered user friendly depends on the user. In this section we are
concerned with manufacturing environments, where, for example, designers often
think of geometric objects in terms of important features that are associated to them,
such as, “a block with a slot and rounded corners.” Today’s modelers have a long way
to go in fully supporting that type of interface. This section will introduce the reader
to what is referred to as feature-based modeling. [ShaM95] is a good reference for this
subject. A brief survey can be found in [SodT94].

Systems using parametric or variational models were a first step toward feature-
based modeling and making life easier for the designer. As is pointed out in [ShaM95],
perhaps 80% of new designs are simply variations of old ones. Therefore, given the
effort that is sometimes needed to create an individual model, why should one have
to create each of these variants from scratch? As an oversimplified example of the type
of interface that would be found in a modeler using parametric models, the object in
Figure 5.31 might be defined by the following sorts of commands:

Figure 5.31. A parametric model.
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(1) horizontal line A of length a

(2) line B perpendicular to line A of length b
(3) line D makes signed angle o with line B
(4) circular arc C tangent to lines A and D

It would then be up to the system to check if this description gives rise to a unique
consistent model for particular values of a and b. The basic design process in such
a modeling system is then that the user describes a list of geometric primitives to
be used and the geometric relationships between them symbolically without any
numbers. After the user inputs the actual geometric constraints, the system creates
an actual instance of the object if possible. The user can subsequently input new data
and get new instances of the object. Note that the “parametric” models considered
here are higher-level constructs than those in the generative representation discussed
in Section 5.3.5.

Although the terms “parametric” and “variational” are often used interchangeably,
there is a subtle distinction between what are called parametric and variational
methods. Parametric methods solve constraints by replacing symbolic variables by
values that are computed sequentially from previously computed variables. Varia-
tional methods use equations to represent constraints and solve them simultaneously.
The difference is captured by the difference between defining a variable via a formula
or implicitly. For more on parametric and variational modeling see [ShaM95]. Some
sample papers on constraint-based modeling with additional references are [LiHS02]
and [Podg02].

An approach to geometric design based on functional programming that extends
variational modeling is described in [PaPV95]. The authors discuss a high-level func-
tional programming language (a language that manipulates functions) with the under-
lying geometric objects represented in a hierarchical manner much like in CSG.
Elementary polyhedra are stored as inequalities and the basic Boolean set operations
are supported. The language is such that all syntactically correct objects are valid. It
is argued that the power of this functional approach is that it lets the user naturally
generate new models from old ones and is similar to generative modeling in this
respect.

Parametric and variational modeling is a start toward facilitating geometric
design, but it still only deals with individual geometric primitives with no grouping
capabilities and lacks a vision of the whole modeling process. Consider a manufac-
turing company. Its ability to deal with the design, planning, and manufacturing
process in an integrated way is clearly of practical importance. To do this one needs
to model the whole process. However, the models used by a designer should be allowed
to be different from those used by the person manufacturing the product about which
the designer may know little. Both may evolve over time and one only needs a way to
map from one to the other. Feature modeling seems like a promising approach to an
integrated solution. Again, the problem with the type of modelers we have been dis-
cussing up to now is that they dealt solely with the geometry of objects and ignored
many of the other issues such as process planning, assembly planning, and inspec-
tion planning. Even in the case of just the geometry they were not totally adequate
since they tended to be low-level and did not make it easy for a designer to make
changes, although parametric modeling helped.
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Feature-based modeling dates back to the mid-1970s when attempts were made
to get data on manufacturing features for NC programming. Kyprianou [Kypr80]
was the person who first introduced automated feature recognition into a modeler
(BUILD). [PraW85] was one of the earliest studies of “design by features.” So what
exactly is a “feature?”

The term “feature” refers to a high-level abstract entity. It refers to some inter-
esting aspect of, or associated to, an object and is usually a combining of details into
one entity that is more meaningful for manipulation than the individual parts. For
example, in a b-rep modeler a block with a hole through it might consist of a collec-
tion of surface patches with no explicit notion of the center and radius of the hole.
Moving the hole might then involve moving and changing a subset of these patches —
a tedious task. The term “feature” was first used in manufacturing but has since taken
on a broader meaning. Machined parts typically can be described by things like holes,
slots, pockets, and grooves. A relatively small collection of such features might have
been adequate to describe a part in a particular manufacturing environment and with
them one might then be able to create a manufacturing plan. Features are important
to automating the design to manufacturing process because they help define the func-
tionality of objects. [ShaM95] lists the following characteristics of a feature:

(1) Tt is a physical constituent of a part.

(2) It is mappable to a generic shape.

(3) It has engineering significance. (This may involve describing its function or
how it “behaves.”)

(4) It has predictable properties.

A feature model is a data structure representing a part or assembly mainly in terms
of its constituent features. It is convenient to subdivide features into the following
subtypes:

(1) Geometric features

(a) Form features: They describe some idealized geometry.

(b) Tolerance features: They describe variance constraints from the ideal-
ized geometry.

(c) Assembly features: This is a grouping of various feature types into a
larger entity and includes kinematic relationships.

(2) Functional features: These describe the overall function of the part.
(3) Material features: These give material names, specify treatments such
as painting, etc.

Figure 5.32 shows a standard example of what one means by form features. It is
a slightly modified version of the CAM-I ANC101 part that is not the picture of any
real functioning object but is simply used to test geometric capabilities of modelers.
(CAM-I is an abbreviation for Computer Aided Manufacturing, Inc., a nonprofit
consortium in Arlington, Texas.) Form features can be primitive or compound. For
example, one can talk about a specific pattern of holes rather than just an individual
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Figure 5.32. Modified

ANC101 test part (CAM-I and
[ShaM95]). (This material is

used by permission of John &
Wiley & Sons, Inc. from Para- WDHQLE
metric and Feature-Based
CAD/CAM, Shah, 1995 John

Wiley & Sons, Inc.)
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hole. Tolerance constraints are needed to ensure that parts will work as specified given
the inevitability of inaccuracies in the manufacturing process. The three geometric
features (form, tolerance, and assembly features) are the ones that are mostly
supported by modelers. Support for functional features is currently still very weak
because it assumes a lot more intelligence on the part of modelers than they currently
have. Although there is no limit on the number of features one can define, attempts
have been made to create taxonomies for them. This is important if one is to have
any data exchange standards.

Just as one has to worry about the validity of geometry, one has to also make sure
that features are created, modified, and deleted in a valid way. Unfortunately, this is
not a mathematical process like it was in the case of geometry. [ShaM95] mentions
four general classes of validity checks that are needed:

(1) Attachment validation: A recess feature cannot be attached to an outside
face of a block.

(2) Dimension limits: A hole cannot be larger than the block that contains it.
(3) Location limits: A hole should not get too close to the edge of a block.
(4) Interaction limits: This is where two or more features change the geom-

etry or semantics of features. The geometry may not
necessarily be invalid. For example, a larger hole
may delete a smaller hole.

As one moves from one stage to another in the manufacturing process, the fea-
tures that are relevant to the persons involved may change. At the design stage, one
may worry about the strength of a particular geometric configuration, whereas at the
manufacturing stage this may no longer be relevant and the only features one may
care about is where certain holes are to be drilled. This calls for mappings from one
feature model to another and is referred to as feature mapping.

Modelers are typically not concerned with features as such, at least not explicitly.
One either needs to add to them the ability to deal with features or add features as a
set of primitive data structures. For example, CSG is not detailed enough for many
features and b-rep is too detailed. So how do we add feature capability to modelers?
The three standard approaches are
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(1) Interactive feature definition: = A human determines the features either at
model creation time or later.

(2) Automatic feature recognition: Here one extracts feature information a
posteriori if the geometric models are
already defined.

(3) Design by feature: Here one designs with features in the first
place.

Approach (1) is easiest to implement, but it is up to the user to check for validity and
it may be a tedious job if there are lots of features. Approach (2) is much more com-
plicated than (1), but has been incorporated in some modelers (for example, BUILD).
A number of different algorithms have been developed to get a handle on the recog-
nition problem. One basically needs a program that looks for patterns. For example,
to look for a pocket in a face one could look for a cycle of edges at which the solid
has a convex corner. Difficult as automatic feature detection may be, one may need it
if different features are used at different stages in the manufacture of an object. With
regard to approach (2), some features could be defined at model creation time, as
when one creates a slot by sweeping. However, these would by in large be purely geo-
metric features and not all features are that. Furthermore, the primitive operations
of a modeler may not directly correspond to the features that are of interest to
someone and some may lead to ambiguous features (see Figure 5.33). A good overview
of feature recognition techniques can be found in [JiMa97].

Approach (3) is probably the most attractive. A modeler might have a menu allow-
ing a designer to create an object in terms of its features. One would be able to create
an object with a slot or hole in essentially one step, or at least in a number of steps
that depended on the number of varying parameters for that particular shape. Figure
5.34 shows 10 of the 13 steps needed to create the ANC101 part in Figure 5.32.
Although this might make life easier for the designer, it would certainly make life
much harder for the implementer of this modeler. The problem is validity. The
modeler would have to make sure that the chosen features were consistent, a difficult
task in general. For example, if someone defined a block with a hole, the modeler
would have to make sure that the hole was not too close to the side so that it would
break through. The bigger the collection of features, the more checking that would
have to be done. Roller ([Roll95]) discusses designing with constrained parameterized
features.

There are two ways to deal with feature definitions in a design-by-feature sys-
tem, procedural or declarative, although these can be combined. In the procedural
approach, features are defined by a collection of procedures in the programming lan-
guage of the system. In the declarative approach a feature definition consists of a col-
lection of constraint specifications, rules, or predicate logic statements. Satisfaction

Figure 5.33. Ambiguous features: boss on disk or flange on
cylinder?
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1-INSTANCE BASE IN WCS 2 - PLACE BLOCK ON TOP FACE OF BASE

3-PLACE BLOCk & WEDGE ON TOP 4 - POSITION BOSS ON WEDGE FACE
FACE OF SMALL BLOCK 5 - POSITION PAD ON BASE & BLOCK

6-PUT DOUBLE C-BORE ON TOP FACE 8 - INSTANCE CIRCULAR HOLE PATTERN
OF BLOCK AROUND C-BORE
7-PUT BLIND HOLE CENTERD ON BOSS | 9- INSTANCE COMPOUND POCKETS &
POSITION W.R.T FACE CENTER
10 - CREATE RECTANGULAR HOLE
PATTERN ON BASE

Figure 5.34. Designing with features ([ShaM95]). (This material is used by permission
of John Wiley & Sons, Inc. from Parametric and Feature-Based CAD/CAM, Shah 1995;

John Wiley & Sons, Inc.)
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of the declarations is accomplished by a constraint satisfaction algorithm, an infer-
ence engine, or unification, respectively. Three basic approaches are used for solving
the constraint problem: constraint graphs where the nodes are geometric entities
and the edges are the constraints, logical assertions, or algebraic equations that are
expressed symbolically and solved symbolically. None of the approaches are easy. See
[LiONO2] for an example of feature mapping in a design-by-feature system.

In conclusion, many modelers are now supporting features. Overall, b-rep mod-
elers, in particular those that support nonmanifolds, seem better suited to the feature
recognition task than CSG modelers. The only advantage of the latter is in editing but
this can also be dealt with in a b-rep modeler. For example, consider an object with
slots of varying lengths. Changing the length of the slots may cause them to intersect.
With a CSG representation the history of any changes can be maintained relatively
easily, whereas with a boundary representation such changes might cause radical
changes in the relationships of facets. [Prat87b] mentions the following feature-
specific advantages of a boundary representation:

(1) Features are usually best described in terms of faces, edges, etc.

(2) Dimensioning and tolerancing of features need these low-level entities.

(3) CSG representations can be ambiguous. See Figure 5.33 again.

(4) Local operations for feature manipulation are available in the design stage.

Feature recognition algorithms for b-rep modelers divide into two types: those that
use purely surface information and those that use volume decompositions. The latter
seem to be a better approach but are not as developed yet.

[Prat87a] and [Prat87b] have a nice survey of work in feature based modeling
from 1980 to 1987.

Finally, since there are a number of feature-based modelers, it is important that
one can exchange data between them. One might also want to input some feature data
to an application program. STEP (Standard for exchange of product data) is a set
of standards that resulted from an international effort to enable this exchange. See
[ShaM95] for an overview and additional references.

5.7 Functions and Algorithms

In addition to modeling objects, modelers must also be able to perform a variety of
operations on the objects that they have modeled. As indicated in the introduction,
modeling involves modeling maps as well as objects. Here is a sample of some queries
users may want to make and actions they may want to perform:

(1) Find physical propertie of objects: center of mass, moments of inertia, area,
volume, . ..

(2) Find geometrical properties of objects: distances between objects, collision
detection, intersections and other
Boolean set operations, . . .

(3) Perform geometrical operations: rigid motions, . . .

(4) Numerical control related operations:  milling, lathing, . . .
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Figure 5.35. Relationship between functions
and algorithms.
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In a modeler mathematical functions get replaced by algorithms. We want a
commutative diagram as shown in Figure 5.35. Some issues that arise are:

(1) A “correct” algorithm must perform the “correct” action on all valid inputs.
This is a serious issue in the context of computers because of round-off errors.
For example, finding the intersection of two rectangles should work if they
only touch along a face.

(2) If an input to an algorithm is meaningless or invalid the algorithm should

(a) inform the user, and
(b) still return some answer which will not cause the system to crash

(3) An algorithm should be efficient. If objects have several representations it
should be smart enough to pick the best one for its task.
(4) An algorithm should be as general as possible to allow extensions.

We can see from this discussion that modelers must deal with many tasks that
fall into the field of computational geometry, which deals with finding geometric
algorithms and analyzing them. In this regard we should mention the relatively new
but growing area of research into genetic algorithms. These algorithms are a class
of search algorithms that are proving to be very useful in the complex optimization
problems encountered by modelers. An overview of this topic can be found in
[RenEO03].

5.8 Data Structures

5.8.1 Data Structures for Boundary Representations

Anyone interested in implementing a geometric modeling program will quickly face
the problem of choosing appropriate data structures for the geometry that is to be
modeled. As usual, one wants data structures that will be efficient in both space and
execution times of algorithms. This section will briefly look at this issue in the case
where we use a boundary representation for linear polyhedra. The next section will
look at what one can do in the case of volume rendering.

Rendering linear polyhedra, or cell complexes in general, involves two parts: the
abstract structure of the complex and the actual data. To describe the structure means
describing various adjacency relations between the cells of the space.
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Definition. A d-dimensional cell is said to be adjacent to an e-dimensional cell if

(1) d # e and one is contained in the other,
(2) d =e >0, and they have a (d-1)-dimensional cell in common, or
(3) d = e =0, and they are the two ends of some 1-dimensional cell (edge).

In our discussion here we shall restrict ourselves to two-dimensional complexes.
Algorithms dealing with such complexes typically need adjacency information such
as the set of edges of a face or the set of faces that contain a given vertex. We shall
use the following notation:

notation what it means

X >y x is adjacent to y

x—>Y the set of objects of type Y adjacent to x, that is,
{y l'y is an object of type Y and x — v}

X —>Y thesets {x - Y | x is an object of type X}

In the context of this notation, capital letters such as X and Y will be one of the types
V (vertex), E (edge), or F (face). IX| will denote the number of objects of type X. We
shall refer to X — Y as an adjacency relation.

The nine possible types of adjacency information between vertices, edges, and
faces are shown in Figure 5.36. If a data structure contains one of these adjacency
relations explicitly, then we shall say that one has direct access to that information.
For example, the notation E — V means that each edge has direct access to both of
its vertices and V — V means that each vertex has direct access to all of the vertices
adjacent to it. Call a relation X — X a self-relation.

Two questions which need to be addressed when choosing a data structure are:

(1) Does the data structure adequately describe the topology of the spaces that
are represented? If so, then we shall say that it is ropologically adequate.

(2) What is the complexity of determining the truth of x — y or computing some
x — Y given the adjacency relations defined explicitly by the data structure.

[Weil85] has an extensive discussion of question (1). The topologically adequate adja-
cency relationships are identified and proved to be that. We shall not repeat those

D,

Figure 5.36. Possible face-edge-vertex adjacency
data.
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An algorithm for computing Y - X from X > Y :
Let x;, 1 <i<IXl, and y;, I £j <IYl, denote the objects of type X and Y, respectively.

for j:==1to Yl do
begin
Initialize a set X; of objects of type X to empty;
for i:=1to IX| do
begin
One direct access gives us x; = Y;
If yye (xi—=Y) then X;=X; U {x; };
end
end;

The collection of sets X; now constitutes Y — X .

Algorithm 5.8.1.1. Computing the inverse adjacency relation Y — X.

arguments here but simply refer the interested reader to that paper. Rather, we want
to concentrate on the answer to (2) and summarize the main results of [NiBl194]. It
should be noted however, that all the adjacency relations that we mention later on as
having the best complexity properties are also topologically adequate.

First of all, as Ni and Bloor point out, we need to distinguish between complex-
ity in the context of a particular implementation and complexity at the abstract data
structure level. [NiB194] analyze the latter, which is implementation independent, and
give answers in terms of the number of direct accesses of information and the number
of set operations, such as union, intersection, etc., that are needed. A discussion of
the costs involved in the context of some specific implementations, in particular, edge-
based ones, can be found in [Weil85].

As an example of how one can compute the implementation independent cost of
an adjacency relation that may be needed for an algorithm, suppose that a single non-
self-relation X — Y is given. Algorithm 5.8.1.1 computes the inverse adjacency rela-
tion Y — X. The cost of this algorithm is IX| direct accesses, IX| set membership tests,
and at most IXIIYl unions for a total of 2IX| + IXIIY| steps. Ni and Bloor analyze in a
similar way the costs of all the other possible queries for any given set of adjacency
relations. One relation, namely, the E — E relation, is treated as a special case. Some-
times data structures are used that do not store all objects adjacent to a given object.
For historical reasons, due to the influential papers [Baum72] and [Baum75], the
edge-edge adjacency relation has come to denote a more restricted relation in that
only two of the edges adjacent to a given edge are listed.

Baumgart’s Winged Edge Representation. In this representation each face is
assumed to be bounded by a set of disjoint edge cycles. One of these is the outside
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Figure 5.37. Winged edge representation.

boundary, and the others are holes in the face. In terms of implementing this, one
uses a face table that consists of a list of edges where one has taken one edge from
each edge cycle. Each vertex belongs to a circularly ordered set of edges. These sets
are represented by one edge that is chosen from each. For each edge one lists

(1) the incident vertices,

(2) the left and right face,

(3) the preceding and succeeding edge in clockwise (cw) order with respect to the
exterior of the solid, and

(4) the preceding and succeeding edge in counter-clockwise (ccw) order with
respect to the exterior of the solid

See Figure 5.37(a). Figure 5.37(b) shows the relations which are involved, although
V — E and F — E are only partial relations in this case.

Weiler ([Weil85]) showed that although the Baumgart structure represents the
topology completely, certain algorithms for querying the data structure became com-
plicated if self-looping edges were allowed (the two endpoints are the same point). He
defined three improvements. One added a little to the structure and the other two split
the edge structure into two.

Returning to [NiBl94], one finds the following conclusions:

(1) The best single relations are V— E and F — E. These relations are also ade-
quate to describe the topology completely provided that the sets {E;} are
ordered in a circularly coherent manner.

(2) When one is given a pair of adjacency relations, this is the first time that one
can, with an appropriate choice, answer all possible adjacency queries. The
best pair of relations is V— E and F — E.

(3) The two adjacency relation combinations shown in Figure 5.38(a) are the best
combinations when one uses three adjacency relations.

(4) Figure 5.38(b) shows the best combination of four adjacency relations. This
relation was discovered by [WooT85].

(5) The winged data structure shown in Figure 5.37(b) and some of its variants
are worse than the combination in Figure 5.38(b).



5.8 Data Structures 203

ANVANAY

Figure 5.38. Optimal combinations of adjacency relations.

Figure 5.39. Another useful adjacency relation. V¥ F

See [NiBIl94] for additional observations. The authors point out that in some situa-
tions, the face-edge-vertex structure shown in Figure 5.39 is one worth considering
because the algorithms used with it are simpler than the corresponding ones one
would use with the related winged-edge representation.

Of course, as our final observation, in general the way one chooses a data struc-
ture for an algorithm is by first seeing what operations are needed by the algorithm
and then choosing an optimal data structure for these operations. In the discussion
above we evaluated data structures in terms of efficiency with respect to all possible
adjacency queries which were possible with a given set of adjacency relations. In a
particular context one may not need to answer all such queries however.

5.8.2 Data Structures for Volume Modeling

Encoding techniques based on tree structures have been used to cut down on
the amount of data one needs when objects are represented by pixels or voxels. The
recursive step in the basic algorithm for the general (n-dimensional) volume case is
the following:

(1) If the volume is empty or completely covered by the object, then no further
subdivision is necessary. Mark the volume as EMPTY or FULL, respectively.

(2) Otherwise, subdivide the volume and recursively repeat these two steps on
each of the subvolumes.
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Figure 5.40. Quadtree examples.
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Figure 5.41. Quadtree structure.

The binary nature of the algorithm suggests a binary tree structure, but this is not
as efficient as the quadtree in the two-dimensional case and octree in the three-
dimensional case.

Quadtrees. Assume that a planar region is contained in a rectangle. For example,
consider the shaded region R in Figure 5.40(a). Now change the general algorithm
above to the following:

(1) If the region covers the current rectangle or is disjoint from it, then stop sub-
dividing and return that fact; otherwise,

(2) divide the rectangle into four equal parts and repeat these two steps for each
of the subrectangles.

For the region R in Figure 5.40(a) we shall end up with a subdivision as indicated
in the figure. The region can therefore be represented by a tree structure, called
a guadtree, where each node has up to four nonempty subtrees. If we label the four
subrectangles of a rectangle as indicated in Figure 5.41(a), then the Figure 5.41(b)
shows the tree structure for R.

Quadtrees can also be used to represent curved regions as shown in Figure 5.40(b)
by modifying the criteria for when one quits subdividing in one of two ways:
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Figure 5.42. Octree subdivision.

(1) We could specify a cutoff depth below which we do not subdivide, or

(2) rather than requiring that the region either misses or covers a rectangle
completely, we can quit if it “almost” misses or quits, that is, one uses thresh-
olds on the percentage of area covered.

Octrees. Octrees are the three-dimensional generalization of quadtrees. In the case
of octrees we divide a cube into eight octants. See Figure 5.42. We can then encode
objects with trees where each node has up to eight nonempty subtrees. Octrees are
generated for objects analogous to how quadtrees are generated.

One can show that the number of nodes in a quadtree or octree are typically
proportional to the size of the object’s boundary, although it is possible to create
some worse cases. The intuitively obvious reason for that is that the only time one
needs to subdivide is when a cell is crossed by the boundary.

The quadtree and octree representations for objects have many nice properties
and they have been studied extensively in order to store and process them efficiently.
Boolean set operations are relatively easy. One traverses both trees in parallel and
takes the appropriate steps at each corresponding pair of nodes. Algorithms exist for
finding a pixel or voxel or finding neighboring pixels or voxels in the tree. These are
operations that one often needs. Some simple transformations, such as rotations by
90 degrees, scaling by powers of 2, and reflections are easy. Other transformations are
not. Aliasing is a big problem when performing these transformations. For more
details see the references in the spatial data structure section of the bibliography.

5.9 Converting Between Representations

The need for algorithms that convert from one representation to another exists not
only because modelers using different representations may want to exchange geo-
metric data but especially because modelers increasingly seem to maintain multiple
representations internally. By in large, the problem seems to have only been dealt with
in an ad hoc way. We begin by addressing the two classical CSG-to-b-rep and b-rep-
to-CSG problems. We end with some comments about the IGES data exchange
standard between modelers.

The CSG-to-b-rep problem is the boundary evaluation problem in CSG that was
first studied systematically in [ReqV85]. An early algorithm for polyhedral objects can
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be found in [LaTH86]. Ways to speed up the operation by only making computations
for “active zones” (those parts of the CSG tree that actually affect the final answer)
are described in [RosV89].

Let X be a CSG object. We clarify the basic approach to finding the boundary of
X with the example in Figure 5.43(a) which is the union of a square (the intersection
of four halfplanes defined by the edges a, b, ¢, and d) and the halfspace which is a
disk. See [GHSV93].

Step 1:

Step 2:

Step 3:

Determine the boundary of every CSG primitive halfspace H; used in the
definition of X. In our example this gives us four lines and a circle.

We know that 0X ¢ U dHj;. Assuming that we have manageable definitions
of the oHj;, we now trim these boundaries against each other to get 0X. In
our example, we would get four segments and three circular arcs. See Figure
5.43(b).

To get a more compact representation one finally tries to merge adjacent
faces into larger ones. In Figure 5.43(b) one would merge the three adjacent
arcs into one arc.

The hard part in this algorithm is Step 2. We already mentioned some aspects of
this problem in Section 5.3.3. We subdivide the step.

Step 2a:

Step 2b:

The points of each dH; are divided into three subsets which consist of those
points that are either in, out, or on with respect to X. See Figure 5.43(b).
The boundary 0X consists of all those points which are on. This set is
computed from the collection of in, out, and on sets using Boolean set
operations together with some additional neighborhood information.

Essential to these computations is the point membership classification function,
denoted by PMC. Assume that X is an r-set and p is a point. Define

PMC (p,X) =in, if p lies in the interior of X,
= out, if p lies in the complement of X,
=on, if p lies on the boundary of X.
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Figure 5.44. An ambiguity in the
on/on case for U*.
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One computes PMC by using the CSG structure of X. What this means is that

(1) one has to know the value on the CSG primitives, and

(2) one needs to be able to combine values for the various set operations, that is,
if op is one of the operations such as U* and n*, we need to express PMC
(p,X op Y) in terms of PMC (p,X) and PMC (p,Y).

As an example, here is the answer, in table form, to the combine operation (2) for the
operation N*:

X\Y in on out
in in on out
on on on/out out
out out out out

There is a complication in the case where the point p is on both sets. Figure 5.44 shows
the problem. We are unable to distinguish between the situations shown in Figure
5.44(a) and (b). To resolve this problem we need to store some neighborhood informa-
tion N(p,X) whenever the point is on X. We therefore redefine the PMC function to

PMC (p,X) =in,
= out,
= (on, N(p,X)).

Describing the neighborhoods N(p,X) can get complicated in general, depending
on the kind of primitive spaces one allows. However, as an extremely simple two-
dimensional example consider the case where the primitives are simply orthogonal
rectangles. In that case it is possible to encode N(p,X) as a 4-tuple (a,b,c,d), where a,
b, ¢, and d are T or F because the essential nature of a disk neighborhood of a point
p on the boundary of X can be captured by considering the disk to be divided into
quadrants and specifying which quadrant belongs to X. A quadrant is assigned a T if
it belongs to X and an F, otherwise. See Figure 5.45. In Figure 5.44(a), we would have
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Figure 5.46. The need for separating planes.

N(p,X) = (EET,T) and N(p,Y) = (TI,T,EF). In Figure 5.44(b), N(p,X) = (EET,T)
and N(p,Y) = (FFT,T). Simple Boolean operations on these representations would
then determine the neighborhood of points in the on/on case. In a corresponding
three-dimensional example of orthogonal blocks one would use an encoding based on
octants. The reader is referred to [Tilo80] and [ReqV85] for a discussion of how one
would handle more general cases.

Next, we consider the problem of converting from a b-rep to CSG, which is much
more difficult than going in the opposite direction. The basic idea is to use the half-
spaces associated to the faces of the b-rep to describe a CSG representation. Unfor-
tunately, this may not work as the example in Figure 5.46(a) shows. The shaded region
consisting of the three regions A, B, and C is our solid X and H; and H;, the interi-
ors of the horizontal and vertical ellipse, respectively, are the halfspaces associated to
the faces of X. No CSG representation which only uses these two halfspaces will rep-
resent X because any space defined by such a representation that contains region C
will also contain region D. We have to introduce some additional halfspaces, called
separating planes. The separating plane and the halfplane H3 below it shown in Figure
5.46(b) will do the job for the space X. For example,

X=MH;n*"H)) u*(Hz "*H,)Uu* (H; n* H,). (5.5)



5.9 Converting Between Representations 209

Therefore, before continuing, we need to answer the question: When can a space
be described in terms of unions, intersections, and complements of halfspaces?
Assume that we have a finite collection of halfspaces H = {H,(f;), H(f,), . .., H.(f)]}.
Although there is an infinite number of ways that these spaces can be combined with
the regular operators U*, n*, or —*, the following is true:

5.9.1 Theorem. All possible combinations of the halfspaces in H using the opera-
tors U*, Nn*, or —* will generate only a finite number of regular spaces X and each of
these can be represented by a unique expression in the form

XZU* IT;, where IT, =h; n* h, n*...n* hy (5.6)

and each h; is either H.(f;) or H_(f;).
Proof. See [ShaV93].

As an example of this theorem, consider the space X in Figure 5.46(b) again. The
unique decomposition of X guaranteed by the theorem is the one below:

X =(H; n*H; n* Hy) U* (Hz n* Hy n* ¢ (Hy)) U*
(Hz n*Hy; n*c*(Hy)) u* (H; n* Hy n*c* (Hy)). (5.7)

(The decomposition in equation (5.5) does not have the right structure.)

In general, let us call any space like IT; in equations (5.6) a canonical intersection
term for the collection of halfspaces H. Note that the interior of every canonical inter-
section term is the intersection of the interior of the halfspaces that defined that
canonical intersection. This leads to the main theorem about when a space admits a
CSG representation based on a given set of halfspaces.

5.9.2 Theorem. Let H={H;, Hy, ..., Hy} be a collection of halfspaces. A solid X
with the property that 0X c (0H; U 0H, U . ..U dHy) admits a CSG representation
based on H if and only if the interior of every canonical intersection term based on
H is either entirely contained in X or entirely outside of X.

Proof. See [ShaV9lal].

Theorem 5.9.2 explains why the two halfspaces in Figure 5.46(a) were inadequate
to describe the space X: the canonical intersection H; n* ¢*(H,) is half in X and half
outside of X.

We clarify our discussion with another example. We desire a b-rep-to-CSG
conversion for the solid X in Figure 5.47(a) ((GHSV93]). The b-rep of our solid X
specifies five halfspaces associated to each face in the boundary: four halfplanes and
one disk. Figure 5.47(b) shows the in/out classification of the canonical intersections
for our halfspaces. We see that the regions A and B in the figure that belong to the
same canonical intersection have a different in/out classification. They are both in the
square and outside the disk, but one is inside our solid and the other is outside it. By
Theorem 5.9.2 this means that X cannot be obtained from the given halfplanes and
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Figure 5.47. A b-rep to CSG conversion example.

disk by standard set operations. We need more halfspaces and the separating half-
space shown in Figure 5.47(c) resolves our problem.
We are now ready to describe the steps in a general b-rep-to-CSG conversion.

Step 1:

Step 2:

Step 3:

Step 4:

We use the b-rep of our solid X to specify halfspaces associated to each face
in the boundary.

Since the halfspaces we get from Step 1 may not be adequate to describe X
in a CSG way, we may have to introduce additional separating halfspaces.
This is the hardest part of the conversion. What we do is to compute the
canonical intersections of the halfspaces derived in Step 1. They divide the
whole Euclidean space into a collection of cells. These cells and their inte-
riors do not need to be connected. (See Figures 5.46 and 5.47.) Heavy use
of the point membership classification function enables us to determine the
in/out classification of these components. This classification tells us whether
we need separating planes and is also used to find such planes if they are
needed.

The CSG decomposition is gotten from the cells in Step 2 by taking a union
of all the cells that consisted of in points.

The CSG decomposition we get in this way may not be very efficient and
so as a last step one may try to perform some optimization which either
minimizes the number of primitives or the number of set operations.
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For more details see [ShaV91a], [ShaV91b], and [ShaV93]. [GHSV93] has a nice
overview of the generic representation conversion process and the general principles
that are involved. Step 4 above points to one of the stumbling blocks to having a nice
theory of conversions between different representations. The answer may not be well-
defined. In the b-rep-to-CSG case, we do not have a clear idea of which of the many
possible primitives that one can use are best.

As we have seen, converting between different representations is potentially a hard
problem. There is another related problem. Two modelers may use basically the same
representation scheme but have implemented them differently. This is hardly sur-
prising since each had a different team of programmers. What we have here is an
implementation conversion problem. Because there are many commercial modeling
systems in use, this is a real problem since many businesses are not able to assume
that all needed data will be generated internally and there is a need to transfer
data from one system to another. IGES (Initial Graphics Exchange Specification)
was developed to solve this problem and enable different systems to exchange data
between themselves. To use IGES, a modeling system must have translators that
convert from their representations to those of IGES and vice versa. A person wishing
to transfer data from system A to system B would then first use system As IGES trans-
lator to translate the system A data into the IGES format and write this to a file. That
file would then be read by system B’s IGES translator that would convert the IGES
data into system B’s own internal format.

IGES is not perfect and it is easy to complain about its constraints. There is
another more advanced data exchange format STEP that allows for much more
high-level descriptions than the relatively simple annotated geometry formats of
IGES, but we refer the reader to [ShaM95] for that. Nice features of a modeling system
can get lost in the translation to and from IGES. A direct translation from one system'’s
data structure into the other’s would usually be more efficient. The latter approach
would therefore be the way to go in certain dedicated situations. However, it is
certainly much simpler to write one translator (for IGES) than writing many (one
for each external modeling system). Writing translators is a nontrivial task. Further-
more, modeling systems continue to evolve and one would have to keep updating
any direct translators. IGES also continues to change with the times, but at least only
one update has to be written if one uses it. The bottom line is that IGES is a cost-
effective solution to the geometric data transfer problem that works. See Appendix C
for a summary of how various object types are represented by IGES and the format
of an IGES file.

510 Round-off Error and Robustness Issues

Accuracy and robustness are important issues in numerical computations. For an
overview of some common pitfalls see [McCa98]. Because geometric modeling
involves a great many numerical algorithms, one wants to minimize the potential of
round-off errors and avoid situations where small changes can lead to radically dif-
ferent results. To accomplish this one must choose carefully between different algo-
rithms and representations for objects. In this section we only scratch the surface of
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this difficult subject. Currently, solutions to numerical problems tend to be targeted
to specific areas. What are still needed are general solutions. In the meantime it is
largely up to users to be aware of potential problems and to take steps on their own
to try to avoid them.

One of the first things one learns about real numbers when programming is that
one almost never tests for equality but rather asks whether numbers are close enough.
Modeling systems tend to use plenty of epsilons, small positive constants that are used
to define when quantities are supposed to be considered equal. Getting correct yes/no
answers when one only has approximations is not easy. So often the mathematical
answer to a geometric problem is short and simple, but the computer program that
implements it is much longer and messy. For example, to determine whether a point
in the plane lies on a line is trivial mathematically. One can simply check whether the
point satisfies the equation of the line, which involves checking whether some expres-
sion equals zero. In a computer program, testing for zero would probably be too
strong a test and one would be satisfied if the expression is suitably small. This might
not cause any problems by itself, but errors can propagate. Treating two lines as par-
allel if they are only almost parallel might be all right, but if a sequence of lines are
almost parallel, then the first and the last might be quite far from being parallel. Fur-
thermore, no matter how small the epsilons, there is a potential of getting inconsis-
tencies in the geometric database. In Figure 5.48, if the segment AB is close to being
parallel to the top face f of the solid, then in the process of intersecting it with the
solid, one may conclude that AB intersects the face f in the segment CD. On the other
hand, one may get a more accurate intersection with the side face g and conclude in
that case that the line does not intersect CD. This might leave an incorrect descrip-
tion of AB in the database as a composition of three segments. The author has per-
sonally known of commercial CAD systems that (at least in their initial version) would
crash in some constructions that involved solids that touched each other along essen-
tially parallel faces.

Maintaining the orthogonality of orthogonal matrices is another problem in com-
puter graphics. Orthogonal matrices may become nonorthogonal after numerous
transformations. This is a serious problem in robotics where moving joints means
transforming matrices. What one needs to do here is to maintain a count of the
number of transformations that have been performed and then periodically reorthog-
onalize the matrices. Of course, since one does not know which values are incorrect,
the new matrices, although orthogonal, are probably not what they should be
mathematically.

Figure 5.48. Intersection inconsistencies due to
round-off errors.
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Numerical analysis is clearly the first place to look for answers about accuracy in
a world of approximations. A lot is known about the accuracy of the output of a com-
putation given the accuracy of the input. For example, to get precise answers with
linear problems one would have to perform computations using four to five times the
precision of the initial data. In the case of quadratic problems, one would need forty
to fifty times the precision. Sometimes there may be guidelines that help one improve
the accuracy of results. Given the problems with floating point arithmetic, one could
try other types of arithmetic.

Bounded Rational Arithmetic. This is suggested in [Hoff89] and refers to restrict-
ing numbers to being rational numbers with denominators that are bounded by a
given fixed integer. One can use the method of continued fractions to find the best
approximation to a real by such rationals.

Infinite Precision Arithmetic. Of course, there are substantial costs involved in
this.

“Exact” Arithmetic. This does not mean the same thing as infinite precision
arithmetic. The approach is described in [Fort95]. The idea is to have a fixed but rel-
atively small upper bound on the bit-length of arithmetic operations needed to
compute geometric predicates. This means that one can do integer arithmetic.
Although one does not get “exact” answers, they are reliable. It is claimed that bound-
ary-based faceted modelers supporting regularized set operators can be implemented
with minimal overhead (compared with floating point arithmetic). Exact arithmetic
works well for linear objects but has problems with smooth ones. See also [Yu92] and
[CuKM99].

Interval Analysis. See Chapter 18 for a discussion of this and also [HuPY96a] and
[HuPY96b].

Just knowing the accuracy is not always enough if it is worse than one would
like. Geometric computations often involve many steps. Rather than worrying about
accuracy only after data structures and algorithms have been chosen, one should
perhaps also use accuracy as one criterion for choosing the data structures and
algorithms.

One cause for the problem indicated in Figure 5.48 is that one often uses differ-
ent computations to establish a common fact. The question of whether the line
segment intersected the edge of the cube was answered twice — first by using the face
f and second by using the face g. The problem is in the redundancy in the represen-
tation of the edge and the fact that the intersection is determined from a collection
of isolated computations. If one could represent geometry in a nonredundant way,
then one would be able to eliminate quite a few inconsistency problems. Furthermore,
the problem shown in Figure 5.48 would be resolved if, after one found the intersec-
tion with face f, one would check for intersections with all the faces adjacent to f and
then resolve any inconsistencies.

We give a brief overview of an approach to achieving robust set operations on
linear polyhedra described in [HoHK89] and [Hoff89]. It involves both data structures
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and algorithms. Their data structure allows for nonmanifold objects and specifies the
following information about vertices, edges, and faces:

vertex: the adjacent edges and faces

edge: the bounding vertices and adjacent faces with the faces listed in a con-
tiguous cyclical order with respect to their intersection with a plane
orthogonal to the edge

face: the bounding edges and vertices as circular lists with the face to the right

Normal planes to edges and planes associated to planes are assumed to be oriented
appropriately. To achieve irredundancy of information, planes are defined via equa-
tions that are oriented so that the associated normals point out of the associated solid.
Vertices are defined as the intersection of the planes to which their adjacent faces
belong. Edges are oriented and defined by their bounding vertices. The entire geom-
etry is defined by a unique set of plane equations.

Since all Boolean set operations can be defined by the intersection and comple-
ment operation, the interesting operation is intersection. We consider the simplest,
but most important, case of finding the intersection of two solids X and Y with con-
nected boundaries. The initial overall strategy is

(1) If no pair of faces from X and Y intersect, check if one solid is contained in
the other and quit.

(2) Intersect the boundaries of X and Y. For each face f of X that intersects Y
find the cross-section of Y with respect to the plane of f. Determine the part
of X n* Y contained in that cross-section. These regions will be defined by
points and line segments lying in the boundary of X.

(3) The cells obtained in Step (2) will also lie in faces of Y. We use these cells to
determine the subdivision of those faces of Y. Then using face adjacency infor-
mation for Y, we find and add all the faces of Y lying in the interior of X.

(4) Assemble all the intersection faces into the solid X n* Y.

The problem with Step (2) is that intersections are computed in isolation that can
lead to the inconsistencies mentioned above, therefore, Step (2) and (3) are replaced

by

(2’) For each intersecting pair of faces f and g from X and Y, respectively, deter-
mine the points and segments in which they intersect. Using three-
dimensional neighborhood information for each intersection, the relevant
parts are then transferred to all adjacent faces of X and Y.

(3’) Finally, those faces of either solid that are contained in the other are found
using face adjacency information for the solids.

Bounding boxes are used for faces to speed up the algorithm and avoid unneces-
sary checks for face/face intersections along with efficient algorithms for determining
whether intervals intersect. The most work takes place in Step (2). It is here that one
makes sure that each element of the intersection is computed in a consistent way with
respect to all adjacent cells. For intersecting faces one has to
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(1) find and analyze the points and segments in the intersection,
(2) transfer the results to adjacent faces in X and Y, and
(3) link the various intersection pieces into complete face and edge descriptions.

These steps involve careful analysis of neighborhoods of cells. The six major cases
arise from face/face, face/edge, face/vertex, edge/edge, edge/vertex, and vertex/vertex
intersections.

The authors of [HoHK89] reported that when the algorithm we just described was
implemented, very substantial improvements in robustness were realized compared
with other modelers. Their test cases included such typically difficult cases as finding
the intersection of two cubes, where the second is a slightly rotated version of the
first. We refer the reader to that paper and [Hoff89] for additional ideas about dealing
with accuracy and robustness that we do not have space to get into here. More papers
on robustness can be found in [LinM96]. See also [DeSB92] and [EdaL99]. Often the
problems we have talked about are caused by the fact that they are special cases or
some sort of degeneracy. There is no problem determining whether two lines inter-
sect if they are reasonably skew. Therefore, perhaps one can always arrange it so that
they are or that objects are not almost touching, etc., by perturbing them slightly. This
is the basis for an approach to robustness described in [EdeM90]. Objects are put into
general position by a small perturbation; however, the perturbation is done symboli-
cally. Nothing is actually ever perturbed.

Finally, because conics are such an important class of spaces in modeling, we
finish this section with some facts about the robustness of some of their standard rep-
resentations. Four common ways to define conic curves are:

(1) via the general quadratic equation

(2) in standard form at the origin along with a transformation

(3) via a few points and/or reals (For example, one can define an ellipse in terms
of its center, major axis, and major and minor axes lengths.)

(4) via projective geometry type constructions

Which is best? It is well known that (1) is by far the worst representation. Changing
coefficients even just slightly, can, in certain circumstances, lead to incorrect conclu-
sions as to the type of the conic. According to [Wils87], (2) and (3) are the best with
(3) slightly better.

511 Algorithmic Modeling

Sections 5.3.1-5.3.9 discussed various specific approaches to geometric modeling.
This section takes a more global view and tries to identify some unifying principles
behind some of the details. Specifically, the relatively recent generative modeling
scheme and the natural phenomena and physically based modeling schemes are exam-
ples of what is referred to as algorithmic or procedural modeling in [GHSV93]. Algo-
rithmic modeling refers to that part of geometric modeling where one uses algorithms
to define and manipulate objects or functions rather than nonconstructive definitions.
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Sometimes one has a choice, but even though the spaces we might get can be
described by a function that parameterizes the space or defines it implicitly, there are
reasons for why it might be useful to generate a space algorithmically:

(1) Not all spaces can be computed and sometimes, like in the case of fractals,
one can only describe them by a limiting process.

(2) The geometry of a space sometimes changes over time or due to external influ-
ences and the best way to describe this may be algorithmically.

(3) Some complex geometric structures are too complicated to describe by
functions.

(4) Algorithmic descriptions may give rise to added flexibility and power.

In [GHSV93] algorithmic models are divided into four main classes.

Geometry-based models: Generative modeling is an example. Its models are
parameterized by properties and transformations

Functional-based models: These models are defined by functions and modified by
other functions. Texture functions are an example how
functions can modify geometry.

Grammar-based models: Here the structure is defined by a language and a
grammar for that language. The grammars can be
divided into geometric (fractals and their initiator/
generator paradigm) and topological (graftals)
grammars.

Physics-based models: The models are controlled by the laws of physics. See
Section 5.5. Also included here are particle systems,
deformable models (elastic/inelastic), and constraint
systems.

For more details see [GHSV93].

Looked at abstractly, what the theory of algorithmic modeling adds to “standard”
geometric modeling is a symbol generation mechanism that can be either determin-
istic or probabilistic. To formalize this we must generalize the notion of a Turing
machine to one that can deal with continuous functions.

Although the theory of computation is a well-developed subject, the classical
theory of Turing machines deals with discrete computations. Here, an analysis of the
complexity of a computation takes into account the size of numbers in terms of
the number of bits in their binary representation. On the other hand, when we deal
with continuous geometry, as we do in geometric modeling, it would be nice to
make our baseline the reals and to consider the cost of basic arithmetic operations,
such as multiplication, independent of their “size.” To put it another way, since
geometric shapes are usually defined by parameterizations or implicitly, we would like
to have a concept of computability based on reals and appropriate “computable” con-
tinuous functions. We would then like to ask the same types of questions as in the
discrete Turing machine case. For example, which topological spaces are “com-
putable” in this setting? In recent years, such a continuous theory of computation has
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Figure 5.49. State diagram for Example Input: =
5.11.1.
z ¢ glz)

branch

zi > Cg - I Cg

Output: =

Imput: x |(B,x)

branch

(k) <— (k+1,x-1)

Figure 5.50. Computing the greatest Output: k
integer in x.

been developed that formalizes the notion of a machine over the reals. See [BISS89]
or [GHSV93]. We would like to mention a few of the highlights of the theory in this
section.

We motivate our definition of a machine over the reals with two examples from
[BISS89].

5.11.1 Example. Let g:C — C be a complex polynomial map. Since the highest
order term of g dominates, one can show that there exists a positive constant C, so
that |zl > C, implies that Ig(z)l — o as k goes to infinity. Figure 5.49 shows a flow-
chart for an algorithm based on g. Right now we prefer to think of it as a state diagram
for a machine M. Clearly, M will halt precisely on those inputs z for which Ig(z)| —
o as k goes to infinity.

5.11.2 Example. Figure 5.50 shows an algorithm that computes the greatest
integer | x] for x € R, x > 0. We again shall think of it as a state diagram of a machine
that operates on a pair (k,x). To find the greatest integer in x, one inputs (0,x).
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What is notable about the two examples here is the state diagram of the
“machines” that carried out the associated algorithms. This is what we want to gen-
eralize now.

Let R be an ordered commutative ring with unity. Because there is no space to go
into lots of details, the definitions we give here will not be as general as they could be
but are aimed at the special cases R =Z or R.

Definition. A machine M over R consists of three sets I = R™ (the input space), O =
R” (the output space), and S = R¥ (the state space), along with a finite connected
directed graph G whose nodes are one of four types:

Input node: There is only one node of this type and it will be denoted by 1.
It has no incoming edge and only one outgoing edge to a node
denoted by B(1) and called the next node. Associated to this node
is a linear injective map 1:1 — S. One thinks of 1 as just taking
the input and “putting it into the machine.”

Output node: These nodes have no outgoing edges. Associated to each such
node o, there is a linear map g,:S — O.

Computation node: Each such node ¢ has a unique outgoing edge to a node denoted
by B(c) and called the next node. Associated to the node is a poly-
nomial map g.:S — S. If R is a field, then we can let g. be a
rational function.

Branch node: Each such node b has precisely two outgoing edges to nodes
denoted by B7(b) and B*(b) called next nodes. Associated to b is
a polynomial hy:S — R, such that B* (b) and ™ (b) are associ-
ated to the conditions hy(x) = 0 and hp(x) < 0, respectively.

By expressing the definition of a machine over a ring graphically, it is not as com-
plicated as it may sound. It leads to state diagrams just like in the Turing machine
case. The two examples above are, in fact, special cases of a machine M over the reals.
In Example 5.11.1, we identify the complex numbers C with R?. The input, output,
and state spaces of M are all R%. The function 1 associated to the input node is the
identity map and the function at the branch node is h(z) = IzI* - C,. In Example 5.11.2,
the input, output, and state spaces are R, R, and R?, respectively. The function asso-
ciated to the input node is the function from R to R? that maps x to (0,x). At com-
putation nodes, the associated function is (x,y) = (x + 1,y — 1). The output function
is the map from R? to R that maps (x,y) to y.

Now, given a machine M over a ring R with nodes N, define a partial map

G:NxS—>NxS
by G (n,s) = (n’,s”) where
(1) G is not defined if n is an input or output node.
(2) If n is a computation node, then n” = B(n) and s” = gu(s).

(3) If n is a branch node, then s’ ='s and n’ = B*(n) if hy(s) = 0 and n” = f~(n) if
h.(s) < 0.
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If we allowed rational functions in (2), then g, may not be defined because its denom-
inator vanishes on s. It turns out that it is easy to overcome this technical problem
and so there is no loss in generality if we assume that g, is always defined on any
value where we want to evaluate it.

Definition. A computation of length t is a sequence
(1’ l(X)), (nl ) Sl) = G(lr L(X))) (n21 SZ) = GZ(L l(X)), (R r(nt’ St) = Gt(l’ L(X))J (58)
where x is an element of I. The set

Qum = {x I there is a computation of the form (5.8) with n, an output node}
is called the halting set of M. The input-output map

(PM:QM -0

is defined as follows: Let x € Qpy and let (5.8) be the computation with o = n, € O.
Then

Om(X) = go(st)-

Definition. A map f:A ¢ R™ — R" is said to be computable over R if there exists a
machine M over R so that Qy = A and ¢y = f. In this case we say that M computes f.

Definition. A set A ¢ R™ is recursively enumerable over R if A = Q) for some machine
M over R. It is decidable if it and its complement are both recursively enumerable over
R; otherwise it is said to be undecidable.

One can show that decidability of a set A is equivalent to its characteristic func-
tion being computable. Lots of interesting results about machines over a ring are
proved in [BISS89]. The ones most interesting for us here will now be mentioned.

5.11.3 Theorem. A recursively enumerable set over R is the countable union of
semialgebraic sets.

Proof. See [BISS89].

5.11.4 Corollary. The halting set of a machine over R is the countable union of
disjoint semialgebraic sets. The input-output map for the machine is a piecewise poly-
nomial map.

Since one can show that the Hausdorff-Besicovitch dimension of a semialgebraic
set is an integer, we also get

5.11.5 Corollary. The halting set of a machine over R has integral Hausdorff
dimension.



220 5 Approaches to Geometric Modeling

Corollary 5.11.4 indicates why it is reasonable to stay with semialgebraic sets in
traditional geometric modeling. Corollary 5.11.5, on the other hand, shows that we
do not get fractals in this way. The next result tells us something about the sets one
encounters when trying to define fractals.

5.11.6 Theorem. The basis of attraction of a complex rational function g:C — C
(which means the union of the basin of attraction of all attractive periodic points) is
a recursively enumerable set over R. In particular, it is the countable union of semi-
algebraic sets.

Proof. See [BISS89]. It can be shown that g has only a finite number of attractive
periodic points and that there is a polynomial h so that a point is in the basin of g if
and only if h(z) < 0 for some z in its orbit. The theorem is proved using this h and a
machine very similar to the one in Example 5.11.1.

Not all basins of attraction are decidable. In fact, it is shown in [BISS89] that the
Julia set and most of its analogs are not recursively enumerable. On the other hand,
one can compute semialgebraic set approximations to Julia sets.

512 Conclusions

In the 1970s and 1980s most modelers were based on either the boundary or CSG
representations or both. Here is a summary of the differences between these two rep-
resentations. Roughly speaking, the advantages of the boundary representation are
disadvantages for the CSG representation and vice versa.

Advantages of b-reps: (1) It is good for efficient rendering algorithms.

(2) It can handle general “free-form” or “sculptured” sur-
faces, that is, “curved” surfaces that typically are
defined implicitly or via parameterizations.

(3) It is good for local modification of models.

Disadvantages of b-reps: (1) It takes a lot of data structures and space to define
objects.
(2) Object definitions tend to be complicated.
(3) Verification of validity is difficult.

Advantages of CSG: (1) It is very compact.
(2) It is a natural way to define many objects and
“perfect” for most mechanical engineering parts.
(3) Validity checking is “built in.”

Disadvantages of CSG: (1) Tt is not good for rendering because one needs a sep-
arate boundary evaluation algorithm.
(2) It may not be easy to define the motions that place
objects in position for the Boolean set operations.
(3) It is impractical to use for sculptured surfaces or
solids bounded by such surfaces except in the most
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trivial cases. With the typical set of primitives, the
best that one could do for such objects, as for
example an airplane wing, is get a very inefficient
approximation.

(4) The definition of what is a “face” is more
complicated.

Some modelers were hybrid systems that used the best features of boundary and
CSG representations. In fact, the user interfaces for modelers are reasonably standard
and hide the actual representation that is used. It is like with a database program
where the user usually does not really know (or care) whether it is truly relational or
not. The only way one might get an inkling of the representation on which a modeler
is based is by the speed and ease of completing certain queries. For example, bound-
ary representations have an easier time with queries that deal with faces. A hybrid
system does have problems however:

(1) It must be able to convert between the different representation and the b-rep-
to-CSG conversion is very hard.

(2) It must maintain consistency between representations. This limits its cover-
age. For example, if a b-rep object came from a CSG representation and one
modifies it using a parametric surface for blending, the original CSG struc-
ture can probably not be kept consistent with it. See [ShaV95].

Initially, the typical operators in b-rep modelers were the set operations basic to
CSG, but gradually more and more operations were introduced into modelers, oper-
ations, such as local blending operations, that were not easy to implement in a CSG
modeler. This has caused pure CSG modelers to disappear, probably also because of
the many advantages to using spline surfaces, especially NURBS surfaces, and the fact
that there is no general b-rep-to-CSG algorithm. The result is that most modelers are
now b-rep based. Volume-based modelers will also probably become more prevalent
in the future with faster computers and large amounts of memory. Nevertheless, CSG
has had a fundamental impact on the way that one views geometric modeling. CSG
can be viewed as an abstract description of objects and so, whether or not a modeler
is based on it, the user interfaces will continue to support it. It should be pointed out
that the parametric modeling systems that developed did not entirely avoid the prob-
lems found in the dual b-rep/csg-rep systems. When a slot in the middle of a block is
moved to the edge of the block, it and the associated blend will disappear. Shapiro
and Vossler ([ShaV95]) argue that such difficulties are caused by the fact that the
concept “parametric family” is not well-defined. A designer may not be able to predict
whether certain parameterizations will remain valid throughout the design process.
A lot more work needs to be done in this area if one wants a design process that does
not require human intervention in the parametric structure of an object.

A modeler’s ability to edit a model is extremely important to a user. Finding a good
way to do this is the basis of a lot of current research. We briefly discussed the medial
axis representation. Another approach called Erep is described in [GHSV93]. Its goal
is to be an editable, high-level textual representation for feature based solid model-
ing. It is a representation that is independent of the underlying modeler.
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-

(a) Extrusion or sweep (b) A bevel

N\

(c) Curve and surface fillets (d) Curve and surface chamfers

Figure 5.51. Various types of edits.

Editing involves performing operations on models. Below are some typical local
operations supported by modeling systems:

(1) extrusions, or more generally sweeps (Figure 5.51(a))

(2) beveling or defining wedges (Figure 5.51(b))

(3) blending (see Section 15.6), which is a general operation that involves finding
blending curves or surfaces.

A blending curve is one that smoothly connects the endpoints of two curves.

A blending surface is one that smoothly connects two surfaces along two given
curves, one in each surface, and meets the surfaces tangentially at those
curves.

Fillets are a special case of blending. See Figure 5.51(c). Filleting refers to a
“rounding” along an edge of a concave corner. This could mean, e.g., match-
ing a circle to a corner which is tangent to the edges.

Chamfering refers to “rounding” at a vertex or along a convex edge. See Figure
5.51(d).

The term “rounding” itself has sometimes been used to mean chamfering.

(4) local deformations of an edge or a face
(5) undoing one or more operations to restore a model to a previous state
(6) skinning (see Section 14.7)
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(7) transforming shapes by scaling, mirroring, rotating, translating, . ..

In addition to the geometric operations, commercial modeling systems must also
have the ability to annotate the geometry so that users can produce standard mechan-
ical drawings. As a matter of fact, dimensioning and tolerancing is not an after-
thought, but an important aspect of the total design and manufacturing process.
Dimensions specify the “nominal” or perfect geometry of an object. Since one can
never create the perfect object, one needs to be able to specify tolerances within which
it would be considered acceptable. Other annotations relate to the type of material of
an object and how it is to be rendered — in what color, etc. The representation schemes
described in this chapter dealt with dimensions. The representation problem for tol-
erances is much harder. Coming up with a rigorous theoretical foundation for what
humans have been doing manually for hundreds of years has been a nontrivial task
and many problems remain as one moves towards the goal of automating annota-
tions. See [Just92] for a brief overview of this topic.

Another property that can distinguish modelers is whether they use exact or
faceted representations of objects in computations. Many modelers use a faceted rep-
resentation for display purposes because the display hardware has been optimized to
deal with that. The display itself is not the issue here, but rather, whether an algo-
rithm, such as one that determines if two objects intersect, uses a faceted or exact
representation of these objects. Finding the intersection of linear spaces is much
easier than doing this for curved spaces and so many modelers did this in the 1980s.
There are potentially serious problems with this however. To give a two-dimensional
example, consider what happens when slightly overlapping circles are approximated
by polygons. If they are rotated, an intersection algorithm would sometimes find an
intersection and sometimes not, like in Figure 5.52. An incorrect determination of this
type could cause problems if passed on to another operation.

This chapter has presented an overview of the evolution of geometric modeling.
Although we have come a long way, the current state of the field is far from satisfac-
tory. Attempts have been made to develop theoretical foundations so that one can talk
about issues in a rigorous way, but by in large the field is still advancing in an ad hoc
way. Some specific defects are:

(1) R-sets may be inadequate. One may want to be able to represent non-
manifold solids with dangling edges or faces. Simply enlarging the domain
would still leave unanswered the question of which operations to allow and
what they would preserve. See [GHSV93].

(2) In practice the definition of a representation scheme r is rather ad hoc. Usually
only r! is well-defined and r itself is not. It is hard to compare different rep-
resentation schemes. For example, when converting from a boundary to a CSG

Figure 5.52. An intersection problem with faceted
circles.
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representation, which CSG representation of the object does one want? Which
is the “correct” one? Ad hoc answers are not good enough. See [Shap91] and
[GHSV93].

(3) A theoretical foundation for operations on objects is lacking or not well inte-
grated into the representation scheme concept.

From a very global point of view however, a basic bottleneck is computer power.
The fact is that (at least in some important aspects) there is a great body of known
mathematics about geometry and topology that is central to doing geometric model-
ing “right” and which is simply waiting for the time that computers are fast enough
to make dealing with it feasible. It is easy to see this relationship between progress
in geometric modeling and the development of speedier computers. One simply has
to look at the fantastic advances in rendering photorealistic images. This is not to say
that no innovations are needed. The use of computers has brought along with it a host
of additional problems that have to be solved while at the same time creating oppor-
tunities for finding new ways to understanding. An example of the former is the fact
that computers do not have infinite precision arithmetic so that algorithms that are
mathematically simple become very tricky to implement when one has to worry about
round-off errors. An example of the latter is the ability to use computers to visualize
data in ways that was not possible before. This by itself can lead to advances in knowl-
edge. Coming up with good user interfaces is also a great challenge. Nevertheless, if
computers could just deal with all the mathematics related to geometric modeling
that is known right now we would be a giant step further along. Along these lines,
two features that modeling systems should support but do not because the algorithms
are too expensive computationally are:

(1) The ability to differentiate between objects topologically.
(One would need to implement the basic machinery of algebraic topology.)
(2) The ability to represent space and objects intrinsically.
Another aspect of this is that one should represent not only objects but the
space in which they are imbedded. With the rise of volume rendering we are
beginning to see some movement on that front.

These issues will be addressed again in Chapter 16. Given the certainty of rapid
advances in hardware, geometric modeling has an exciting future.

Finally, here are some “philosophical” comments, alluded to before, having to do
with the way that one should approach the subject of geometric modeling ideally. One
of the things one learns from mathematics is that whenever one introduces a certain
structure, be it that of a group, vector space, or whatever, it has always been fruitful
to define maps that preserve that structure, like homomorphisms, linear transforma-
tions, and so on, respectively. The sets and maps are in a sense interchangeable. One
could start with a class of maps and define a structure in terms of that which is left
invariant by the maps. Furthermore, new structures and maps are usually studied
by associating simpler invariants to them. A perfect example of this is the field of alge-
braic topology. See Chapter 7 in [AgoMO05] for some simple examples of this (for
example, the functor from the category of simplicial complexes and simplicial maps
to the category of chain complexes and chain maps). In computer science one looks
for “representations” and everything boils down to finding suitable representations
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Figure 5.53. Commutative diagrams functor F
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for abstract concepts, representations that mimic the abstract concepts in every way.
The point of these remarks is encapsulated by Figure 5.53. Ideally, one starts with
abstract sets and transformations and then represents them by other sets and trans-
formation in such a way that everything is preserved, meaning that one gets com-
mutative diagrams. In the context of geometric modeling, there are objects,
transformations of objects, and functions on these objects. Representations act on
maps as well as sets and need to produce commutative diagrams. It would be nice if
representations were what are called functors between categories but they are not.
(The terms “functor” and “category” have a very definite meaning in mathematics.
They help make precise the notion of commutative diagrams that we talk about at
various places in this book, but that is another story that we cannot go into here.)
Nevertheless it is worth reminding the reader of what one should at least strive for,
or at least keep in mind, even if it is not possible to achieve in practice. Recall our
discussion in Section 5.7 and Figure 5.35.

5.13 EXERCISES

Section 5.2

5.2.1 Explain why the unit square [0,1] x [0,1] is not an r-set in R>.
5.2.2 Prove that r(oX) = rX.

5.2.3 Give an intuitive but convincing argument for why the regularized set operators take r-
sets to r-sets.

Section 5.3.3

5.3.3.1 Here is a slight variation of the usual linear polyhedron.

Definition. A set X < R" that can be obtained from a given collection of open linear
halfplanes by a finite sequence of set operations consisting of the complement and
intersection operator is called a Nef polyhedron.
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Prove that a set X € R" is a Nef polyhedron if and only if it is the realization of a CSG-
tree based on closed linear halfplanes and the set operations of ordinary union, inter-
section and difference. Because of this fact and other reasons, it has been argued that
Nef polyhedra are an attractive primitive for CSG and geometric modeling in general.
See [Bier95].




CHAPTER 6

Basic Geometric Modeling Tools

Prerequisites: Basic vector algebra

6.1 Introduction

This chapter describes some often-used mathematical tools and formulas in geometric
modeling. The author highly recommends the Graphics Gems series of books to the
reader (see the “Miscellaneous” section of the Bibliography). These books contain
many insights into how one can make computations and algorithms more efficient.

We begin by discussing bounding objects, such as boxes, slabs, and spheres, and
their uses in Section 6.2. Next, in Section 6.3 we look at tests for when a point is inside
a region. Section 6.4 describes some facts that, in one way or another, are related to
orientation. Some simple intersection algorithms are discussed in Section 6.5. Section
6.6 has some formulas for distances between objects, Section 6.7 has area and volume
formulas, and Section 6.8 has formulas for circle constructions. We finish the chapter
with some miscellaneous observations in Sections 6.9 and 6.10.

6.2 Bounding Objects and Minimax Tests

Checking for or finding intersections, as for example in clipping, visible surface deter-
mination, and collision detection, is a frequently performed task in graphics. It is also
one that is usually very computation intensive, even for simple objects like polygons.
Now, if complicated objects intersect, then one has to accept the fact that finding this
intersection will take a lot of work. On the other hand, to make lengthy computations
only to find out in the end that the objects do not intersect is very inefficient. One
would like a quicker way to detect when objects are disjoint. A standard way to do
this is to enclose objects in simpler ones and first check for intersections among these
simpler objects. If they do not intersect, then by definition, the original objects will
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not intersect. If they do intersect, well, then we will have to bite the bullet and check
out the original objects.

Definition. A bounding object for an object A is any object B that contains A.

This section looks at some common types of bounding objects. Keep in mind the
following three desirable properties that bounding objects should possess:

(1) They should be easy to compute.
(2) It should be easy to tell if they intersect.
(3) They should “fit” an object fairly closely.

The motivation behind property (3) is that we are trying to detect disjointness quickly,
and the bigger that bounding objects are the more they will intersect, forcing us into
lengthy computations we are trying to avoid. For an analysis as to whether bounding
objects are really worth it see [SUHH99] and [ZhoS99].

Definition. A box in R" is any subset of the form

[allbl] X [a21b2] X...X [anrbn];

where aj, b; € R. (It is convenient here to think of [a;,b;] as segments and not require
that a; < b;.) A bounding box for an object is a box that contains the object.

Figure 6.1(a) shows a bounding box. It is easy to check for intersections of bound-
ing boxes. For example, two segments [a;,b;] and [a,,b,] intersect if and only if

max(min(ay,by), min(a,,b;)) < min(max(a,b;), max(a;,bs)),
and if they intersect, then the intersection is the interval
[max(min(a;,b;), min(a;,b,)), min(max(a;,b;), max(a,,b))].

Notice how this formula shows that [1,5] n [2,7] = [2,5] and [1,5] n [7,9] = ¢. In
general, we have

bound ing box
for X \\(
d

X Cz

AN

az

(al (b

Figure 6.1. Bounding boxes.
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6.2.1 Theorem. The boxes
X =[ay,bi] x[as,ba]%...x[an,bn] and Y =[c;,di]x[c2,d2]%...%x[cn,dn]
will intersect if and only if
Ib; = max(min(a;,b;), min(c;,d;)) < ub; = min(max(a;, b;), max(c;,d;))
for all i. If they intersect, then
X NY =[lby,ub] x[lby,ubs] x...x[lby,uby].
Proof. Easy. See Figure 6.1(b).

For obvious reasons, the intersection test in Theorem 6.2.1 is usually called the
minimax test.

A bounding box for a polygon can be defined from the minimum and maximum
values of all the coordinates of its vertices. Looking ahead, the bounding box for a
spline curve or surface (defined in Chapters 11 and 12) is usually taken to be a bound-
ing box for its control points. (This uses the important fact that splines lie in the
convex hull of their control points.) Other objects may have to have their bounding
boxes defined by hand.

Bounding boxes are probably the most common bounding objects that are used
because it is so easy to work with them, but they are far from perfect. The main
problem is that they may be a bad fit to the object. For example, the best bounding
box for a line segment has that line segment as a diagonal. It is clearly easy to find
lots of other objects for which rectangular boxes are a bad fit. For that reason, other
bounding objects may be more appropriate for any given world of objects. There is
nothing to keep us from using different types of bounding objects within one program
to optimize fits. Unfortunately though, usually the better the fit, the more complicated
it is to compute intersections.

A natural way to generalize bounding boxes is to allow bounding faces to be
slanted and not just horizontal or vertical.

Definition. A slab in R" is the region between two parallel hyperplanes.

Given a bounded set X, a unit vector n determines a slab as follows: Starting arbi-
trarily far out on the two ends of the line through the origin with direction vector n,
slide two hyperplanes orthogonal to n towards the origin until they touch X.

Definition. The region between the two touching planes is called the slab for X
induced by the unit vector n and is denoted by Slab(X,n).

See Figure 6.2(a). The two hyperplanes that bound the slab Slab(X,n) can be
written in the form

nep=d™ and nep=d9,

where d" < d*, The plane that corresponds to the d™® will be called the near
plane for the slab and the other one, the far plane. Note that if we were to project X
orthogonally to the line through the origin with direction vector n, then X would
project onto the segment [d"**'n,d™n].

We can use more than one vector n.
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far plane

Slab

near plane

(al (b)

Figure 6.2. Bounding slabs.

Definition. The generalized bounding box for X determined by a fixed set, nj, ny,
., ng, of unit vectors is the intersection of the slabs that they determine. More
precisely, if we denote this set by B(X,ny,n,, . .. ,ny), then

k
B(X,nl,nz,...,nk)=qSlab(X,ni). (6.1)

See Figure 6.2(b). These parallelopiped-type boxes were introduced by [KayK86]. It
turns out that they are not much more complicated to work with than simple boxes.

First of all, we show how the generalized bounding boxes are determined for three
different types of objects in R3. Note that all we have to find is the d™*" and d'".

Linear Polyhedra. In this case we project all of its vertices p; onto the n; and use
the minimum and maximum of those values, that is,

d near

i =min{n; *p;} and difar = max{n; *pj}. (6.2)
j ]

Implicitly Defined Surfaces. Assume that a surface S is defined by an equation

f(x,y,z)=0.

The d;®* and d;" will be the minimum and maximum, respectively, of the linear
function

g(x,y,z) =n; *(x,y,2)

subject to the constraint above. These values can be solved for using the method of
Lagrange multipliers.

Compound Objects. Assume that an object is defined by successive application of
the operations of union, intersection, and difference of two objects starting with prim-
itive objects of the type above. The d™® and d" of the result is easily computed in
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Figure 6.3. Combining bounding boxes.

%
Figure 6.4. Bounding spheres. )

terms of the d"*®" and d™" of the primitives that define it. For example, to get the d""
and d™ of the union of two objects X and Y, we need simply take the minimum of
the two given d™* and the maximum of the two given d®'. See Figure 6.3.

Finding the intersection B of two generalized bounding boxes B; and B, (defined
with respect to the same set of normal vectors) is not hard. The formulas are really
the same as those for boxes. The only difference is that instead of taking maxima and
minima of coordinates (the orthogonal projections onto the standard axes e;) we now
take maxima and minima of the orthogonal projections onto the normals n;, that is,

d;" (B) = max(d;"" (B)), ;"' (B2)) and d;""(B) =min(d;"" (B,),d;""(B2)).  (6.3)

The generalized boxes B and B; are disjoint if and only if dfar(B) < di*¥"(B) for some
i.

Other common types of bounding object are circles or spheres (we shall use the
generic term “sphere” to refer to both). Such bounding spheres are also easy to deal
with and may fit the objects better. See Figure 6.4. Two spheres S; with centers ¢; and
radii r; will intersect if and only if

lci —ca| < (1 +12).

Finding the appropriate bounding sphere for an object is usually not hard if done by
hand. Automating the process is not quite so easy. It involves finding the smallest
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sphere containing a set of n points. There are optimal O(n) algorithms known for
doing this using Voronoi diagrams. See [PreS85].

6.3 Surrounding Tests

Along with finding intersections, determining whether or not a point belongs to a two-
or three-dimensional region is another common task. This section looks at some
simple tests to answer the question

“Does the point p belong to the linear polyhedron Q?”

We call them “surrounding” tests because the question could also be thought of as
one that asks whether a point is inside a closed curve or surface (the boundary of the
polyhedron Q in this case). Surrounding tests fall naturally into two classes—those
that deal with convex polyhedra and those that handle arbitrary polyhedra. Our dis-
cussion will also separate these two cases, but the reader should note the following:
In either of these two cases it is usually a good idea to use a bounding box B for Q
and first check whether p belongs to B or not. The reason is that it is very easy to
check if a point belongs to a box. If p does not belong to B, then it will not belong to
Q and there would be no need to do a lot of work to test p against Q.
We begin with tests for a convex polyhedron Q.

The Normals Test (Convex Q). A convex polyhedron Q is the intersection of a col-
lection of halfplanes associated to the faces of Q. Suppose that we are given a normal
vector n; and vertex q; for the ith face, so that the ith halfplane can be expressed in
the form

{al@-qi)*n; 20}
The point p will belong to Q if and only if
(P-qi)*n; 20

for all i. As a trivial example, suppose that Q is the unit square [0,1] x [0,1]. It has
four faces. Let

ngp = (Orl)) n; = (_1,0), n; = (0!_1)) ns = (110))
qo =(0,0), q1 =(4,0), q2 =(4,4),and q3 = (0,4).

See Figure 6.5. If p = (x,y), then

(p—qo)*np >0 meansthaty>0,
(p—qi)*n; >0 meansthat x <4,
(p—q2)*ny >0 meansthaty<4,and
(p—q3)*n3; >0 meansthatx>0.
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Figure 6.5. Surrounding test based on )
normals.
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These constraints on x and y are clearly the correct ones.

The Equations Test (Convex Q). This test is really just a rewriting of the previous
test. We shall describe it in the two-dimensional case. Let n; = (a;,b;) and ¢; = —q;-n;.
With this notation, the ith halfplane above is just the set

{(x, y)|ajx+ by +¢; =0}
It follows that p = (x,y) will belong to the polygon if and only if
ajx+bjy+¢; =0

for all i. What is the difference between the normals and equations test? Not much.
Deciding which test to use basically depends on how data has been stored in a
program. Did one store vectors n; or coefficients a;, b;, and ¢;?

The normals and equations tests can be generalized to a test for whether or not
a convex polyhedron P is contained in Q. One simply checks if all the vertices of P
belong to Q. If they do, then P will be contained in Q, otherwise not.

The Barycentric Coordinate Test (Convex Q). This test ([Bado90]) applies only to
polyghedron in the plane. We think of Q = pgp: ... px as a fan of triangles popipi+1
and then check each triangle to see whether p belongs to it by computing its barycen-
tric coordinates with respect to the vertices. For example, in the case of the triangle
A = pop1p2, express pop in the form

Pop = apop1 +bpop:.

The point p will belong to A if and only if a,b >0 and a + b < 1. See Figure 6.6. If one
keeps track of the number of triangles that cover the point, then one can extend the
test to nonconvex polygons.

The Wedge Test (Convex Q). This test ([PreS85]) also applies only to polygons in
the plane. One adds a central point q to the polygon Q = pgp; . . . px, say the centroid.
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Py Figure 6.6. Surrounding test based on barycentric
coordinates.

ep=avy+hvy
Po

51

Figure 6.7. Surrounding test based on
wedges.

The rays from this point through all the vertices of Q then divide the plane into infi-
nite wedges that are cut in half by the associated edge of Q. One can find the wedge
that contains p by doing a binary search for the angle of qp among the angles of the
vectors qp;. Finally one checks where p lies with respect to the edge of Q in the wedge.
See Figure 6.7. Because binary search is fast, this can be a good algorithm.

Next, we look at surrounding tests for arbitrary (possibly nonconvex) polyhedra.

The Parity or Crossings Test (Arbitrary Q). For this test one checks how many
times any ray starting at p will intersect the boundary of Q. If it intersects an even
number of times, p is outside Q. If it intersects an odd number of times, p is inside
Q. See Figure 6.8. For this to work though one must count an intersection twice
if the ray is “tangent” to the boundary of Q at that point. In the two-dimensional case
“tangent” means that the boundary edges containing the intersection point lie entirely
to one side of the ray. In the three-dimensional case the boundary faces containing
the point should lie entirely to one side of a “tangent” plane containing the ray. The
polyhedron does not have to be convex for the parity test, but it can be made more
efficient in the convex case.

The intersection tests and tests for tangency could make this a somewhat com-
plicated test to implement without some tricks, especially in three dimensions. We
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Figure 6.8. Surrounding test based on parity.

indicate a few details in the planar case. In this case the ray from p is usually chosen
to be parallel to the x-axis with direction vector (0,1). To avoid the problem case where
a vertex of Q actually lies on the ray, one pretends that all such points lie slightly above
the ray. Next, one can easily tell if the ray intersects an edge. If the y-coordinates of
the endpoints have the same signs, then the ray does not intersect. If they have oppo-
site signs, then there will be an intersection if both x-coordinates are to the right of
the x-coordinate of p. If the x-coordinates straddle the point, then one must compute
the intersection and check on which side of p it lies.

The Angle Counting Test. This test, which applies only to planar polygons Q, is
based on the topological concept of winding number that counts how many times one
object “winds around” another. See Section 9.3 in [AgoMO05]. The test, due to Weiler
([Weil94]), was motivated by the solution to a slightly different problem, which we
shall describe first.

Let W be a rectangular “window” in the plane. Assume that Q also lies in the plane
and that the boundaries of W and Q are disjoint. The question we want to answer is
whether the two spaces are disjoint. Just because their boundaries are disjoint does
not mean that the spaces are since one could contain the other. We present an algo-
rithm ([Roge98]) that involves counting certain angles. In the topological case we
would have to sum up infinitesimal angles, but here we do not have to be that accu-
rate. Let us number the “octants” around W as shown below:

3 2 1
0
5 6 7

For a point p, let c(p) denote the number of the octant into which it falls. For each
oriented polygon edge e, define the recursive angle increment function dé(e) by

real function do (edge e)
begin
real d;
Assume that e = [p,q]l;
d = c(q) - c(p);
if d > 4 then d := d - 8;
if d < -4 then d := d + 8;
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if |d| = 4 then
begin
Split e into two edges e; and e; at a window edge;
d := doCe) + do(ey)
end;
return d;
end;

Define the fotal angle Q by

Q=Y dee). (6.4)
edge e of Q

One can prove the following:

6.3.1 Theorem. The polygon Q will be disjoint from the window W if Q is 0 and
surround the window if Q = £8n.

Figure 6.9 shows some examples. Figure 6.10 shows the need for the adjustment
to dO in the |d6| = 4 case.

We now return to our original problem about when a point p belongs to a
polygon Q, Weiler’s angle counting algorithm. Weiler basically takes the algorithm
described above, shrinks the window W to a point p, and adjusts the algorithm accord-
ingly. Now we classify the vertices of Q with respect to the quadrant into which they
fall with respect to p = (Xo,y0). See Figure 6.11. The quadrants are encoded via inte-
gers 0, 1, 2, or 3. Given a point (x,y), define

quadrant ((x,y)) =0 if x>xo and y>ypg
=1 if x<x¢ and y>yo
=2 if x<x0 and y<yg
=3 if x>x¢p and y<yp.

(al (bl

Figure 6.9. Window surrounding test based on angle counting.
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Figure 6.10. Example showing need for care

; ; 3 2 1
in angle counting.
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A \
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5 & T
quadrant 1 quadrant 0
p
quadrant 2 quadrant 3
Figure 6.11. Surrounding test based on angle
counting.

With our choice of inequalities, the point p falls into quadrant 2 and the other points
on the vertical or horizontal axis in Figure 6.11 are encoded by the number of the
quadrant to the left or below it, respectively. The actual program that computes the
total angle Q that is traced out by Q about p is quite simple. We start with a value of
0 and then add to Q the difference d6 in quadrant values from one vertex to the next.
The only problem is that we will again have to worry about moves between diagonal
quadrants (too large of an angle). Therefore, increments will have to be adjusted using
the function adjustDelta below. To compute the adjustment, one also needs a func-
tion that determines when a polygon edge passes to the left or right of p at y-level yj.
Here are the functions we need:

Assume that p = (Xo,Yo) and that e = [qi,9,] is an oriented edge of Q
and qi = (Xi,yi).

{Find x-intercept of polygon edge e with horizontal Tine through yq.}
x_intercept (e) = x2 — (y2 - yo) * ((x2 = x2)/Cy1 - ¥2))

{d6 = quadrant (q;) - quadrant (qi)}
adjustDelta (do,e) =
case (do) of

3 : do = -1; {we are crossing between quadrants 0 and 3}
-3 : do = 1; {we are crossing between quadrants 0 and 3}
2, -2 : {we are crossing between diagonal quadrants}
if (x_intercept (e) > xo) then d6 = - d;
end;

The reader can find a C program for computing Q in [Weil94]. The main result is then
the following:
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6.3.2 Theorem. If p does not lie on the boundary of Q, then it is outside polygon
Q if Q is 0 and inside if Q = +4. If p lies on the boundary, then the algorithm will
return 0 or +4 depending on whether the interior of Q was to the left or right of p
with respect to the orientation of 0Q.

Weiler’s angle counting algorithm extends to polygons Q with holes if one knows
which is the outside boundary. The point p must be inside the outside boundary and
outside the hole boundaries. There is also an extension to nonsimple polygons, such
as polygons that intersect themselves.

Finally, we would to point the reader to the paper by Haines ([Hain94]) that
analyzes a variety of “point-in-planar-polygon” tests with some detailed conclu-
sions about which algorithm to use in which situation. Both the time and the
amount of extra storage that is needed must be taken into account. Choosing effi-
cient implementations of the algorithms is obviously also important. Haines has code
for a parity algorithm, two versions of algorithms using normals, and an algorithm
based on grids. A reader who is looking for the most efficient algorithm really
needs to read Haines’ paper, but a rough summary of his recommendations is the
following:

No preprocessing or extra storage: use the parity test
Some preprocessing and extra storage:
convex polygon:

few sides: use a normals type test on triangle fans
many sides: use the wedge test
arbitrary polygon:
few sides: use a normals type test on triangle fans
many sides: use the parity test
Lots of preprocessing capability and extra storage: use a test based on grids (see
[Hain94])

6.4 Orientation-Related Facts

When is a polygon P convex? The answer to this question is clear if P is defined as
the intersection of halfplanes, but the more typical way that polygons are presented
is via their boundary, that is, by a sequence of points. Therefore, the “real” question
is “When does a sequence of points (in a plane) define a convex polygon?” One test is
based on whether segments keep “turning” in one direction.

Definition. Two linearly independent vectors u and v in R? are said to determine a
left turn if the ordered basis (u,v) determines the standard orientation. Otherwise, we
say that they determine a right turn. If the vectors are linearly dependent, then we will
say that they determine both a left and right turn.

The notion of left or right turning vectors leads to the following intuitively obvious
convexity test:
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6.4.1 Theorem. (Convexity test for polygons) Assume that a planar polygon P is
defined by a sequence of points pg, p1, - - . , Pn, Pnt1 = Po. The polygon P will be convex
if and only if the vectors pipi;1 and pi+1pir2 either all determine left turns or all right
turns.

Another way to express this test is to say that as one traverses the boundary of
the polygon, successive edges either all make left or right turns. Alternatively, vertices
of the polygon always lie on the same side of the previous edge as the one before.

There is a simple test for when two vectors u and v determine a left turn: Tt
happens if and only if

det(u) =ez*(uxv)=0.
v

Therefore, the convexity test above is easy to program.
Next, suppose that the polygon F is the face of a solid S in R? and that p is a point
in the interior of F.

Definition. Let n be any normal for F. We say that n is an inward-pointing normal
to F with respect to the solid S, if the segment [p,p + en] is entirely contained in the
solid for some € > 0. In that case, —n is called an outward-pointing normal for F with
respect to S.

There is an easy way to determine if a normal is inward- or outward-pointing
for a convex solid S. If q is any point in the interior of S, then n will be an outward-
pointing normal for F if

neqp=0,

otherwise it is inward-pointing.

Definition. If P is a polygon in a plane X, an orientation of P is an orientation of X.
An oriented polygon is a pair (P,0), where P is a polygon and o is an orientation of P.

A choice of a normal vector n to a face F of a solid defines an orientation of the
face. Choose an ordered basis (u,v) for the plane X generated by the face so that (u,v,n)
induces the standard orientation of R3. The orientation of X induced by (u,v) is well-
defined.

Definition. The orientation [u,v] of X is called the orientation of F induced by n.

Conversely, an orientation o = [u,v] of the face determines the well-defined unit
normal vector

n=——uxv.
lu x v|

Definition. The vector n is called the normal vector of F induced by the orientation o.
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N’ Figure 6.12. Finding the intersection of two
L’ segments.

Faces are usually defined by listing their vertices in some order. This ordering
defines an orientation and normal vector in a unique way. These are called the induced
orientation and induced normal vector, respectively. For example, if the face is defined
by po, P1, - - -, Pk then the induced normal vector is pop1x p1p2 (assuming that po, p1,
and p; are noncollinear). Conversely, an orientation or normal vector for a face defines
a unique ordering of its vertices called the induced ordering.

All this extends to the case of an (n — 1)-dimensional face F of an n-dimensional
solid S in R", in particular, to the case n = 2 and edges of polygons in the plane.

Finally, if one has a set of either all outward- or all inward-pointing normals for
a polygon, then another way to test for its convexity is to take successive cross prod-
ucts of the edges and their normals and see if the vectors we get all point the same
way.

6.5 Simple Intersection Algorithms

6.5.1 Problem. Find the point I that is the intersection of two planar segments
[A,B] and [P,Q].

Solution. Let L and L’ be the lines determined by A,B and P,Q, respectively. See
Figure 6.12. Since I, if it exists, must belong to both L and L’, we can express I in the
form

I=A+sAB=P +tPQ, (6.5)

for some s and t. Assume that N and N’ are two vectors which are perpendicular to
L and L’, respectively. It follows that

AeN=(A+sAB)*N=(P+tPQ)eN=PeN+t(PQeN),
or
t=(PA*N)/(PQeN). (6.6)
Similarly,

PeN' =(P+tPQ)eN'=(A+sAB)eN'=A*N’+s(ABeN’).
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or
s=(AP*N’)/(AB*N’). (6.7)

Of course, s and t may not be defined if the denominators in (6.6) and (6.7) are zero,
but this happens precisely when L and L’ are parallel.
This leads to the following solution to Problem 6.5.1:

Case 1. [A,B] and [P,Q] are not parallel.
In this case, use equations (6.6) and (6.7) to compute s and t. If
0<s,t<],
then the segments [A,B] and [P,Q] intersect in the point
I=P+tPQ.
Case 2. [A,B] and [P,Q] are parallel.
There are two steps in this case.

(1) Check to see if L and L’ are the same line. This can be done by simply checking
if they have a point in common. For example, if AP-N =0, then they do and L =
L’. If L is not the same line as L’, then the segments will not intersect.

(2) If L =L, then we still need to check if the segments intersect. One can reduce
this to a problem of segments in R, because the problem is equivalent to asking
if the segments [0,|AB|] and [|AP|,|AQ|] intersect.

Unfortunately, although the two steps in Case 2 are a straightforward solution to
the mathematical problem, implementing this in a way that produces correct results
on a computer is not easy because of round-off errors.

One other issue must still be addressed before we leave the solution to Problem
6.5.1. How does one get the normal vectors N and N’. Since we are in the plane, this
is easy. If V = (a,b) is a vector, then (-b,a) is a vector perpendicular to V. Finally, for
a solution that is concerned with minimizing the number of arithmetic operations
needed to solve the problem see [Pras91].

6.5.2 Problem. Find the intersection I of a line L and a plane X in R?. Assume that
L is defined by two distinct points P and Q and that X contains a point O and has
normal vector N.

Solution. Since I lies on L we can again express I in the form

I=P+tPQ, (6.8)

for some t. Furthermore, OI must be orthogonal to N. Therefore,
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0=0IsN=(P+tPQ-0)eN.
Solving for t leads to

PO*N

t= .
PQeN

(6.9)

Of course, t is only defined if PQ and N are not orthogonal, that is, L is not parallel
to X. The parallel case is again a tricky case for a computer program. One needs to
determine whether or not L lies in X.

6.5.3 Example. Find the intersection I of the line L containing points P(1,1,1) and
Q(2,0,3) with the plane X which has normal vector N = (-1,2,0) and contains O(3,1,2).

Solution. Substituting into (6.9) gives

_ (2,0,1)e(-1,2,0) _

T (1,-1,2)e(~1,2,0) =2/3.

Therefore
I=P+tPQ=(1,1,1)+(2/3)1,-1,2)=(5/3,1/3,7/3).

Problem 6.5.2 easily generalizes to the case where X is a hyperplane in R". It also
generalizes to

6.5.4 Problem. Find the intersection of a line L with a k-dimensional plane X in
R". Assume that Ny, Ny, ..., and N, are orthogonal normal vectors for X. Assume
also as before that P and Q are points on L and O is a point on X.

Solution. Define numbers t; by

_PO°N;

t; = .
' PQeN;

(6.10)

The t; will be defined provided that L is not parallel to X, which is a special case that
must be treated separately. If t; = t; =. . .= t,, then L intersects the plane X in the
point

I=P+t;PQ. (6.11)
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6.5.5 Example. Find the intersection I of the lines L and L’ in R3, where L con-
tains the points A(0,3,1) and B(2,3,3) and L’ contains the points C(2,1,1) and D(0,5,3).

Solution. A direction vector for L’ is CD = (-2,4,2). Two orthogonal vectors normal
to L’ are N; = (2,1,0) and N, = (-1,2,-5). Then

_ACeN; (2,-2,002(2,1,0)

= = =1/2
ABeN; (2,0,2)+(2,1,0) /

t

and

_AC*N, (2,-2,0)¢(-1,2,-5)
" ABeN, (2,0,2)e(-1,2,-5)

ts 1/2.

Since t; = t,, the intersection I exists and
1=(0,3,1)+(1/2)2,0,2)=(1,3,2)

The reader may wonder where Nj and N, came from. One can either assume that
they were given or find two such vectors as follows: Take any two vectors orthogonal
to CD and then apply the Gram-Schmidt orthogonalization algorithm to these. An
alternate solution to this problem is to observe that L and L’ intersect if and only if
they lie in a plane X. A normal to this plane is N = AB x CD. Therefore the lines inter-
sect if C and D satisfy the plane equation

Ne(P-A)=0.

To actually find the intersection, find a normal N; to L in X (using, for example, the
Gram-Schmidt algorithm on N, AB, CD). Now the problem is to find the intersection
of a line L’ with the hyperplane L in X with normal N;. The formula from Problem
6.5.2 applies to this variation of the intersection problem also.

We should point out that Formula 6.6.5 in Section 6.6 provides a more direct
formula for the intersection of two lines in R>.

6.5.6 Problem. To find the intersection I of three planes X, i = 1,2,3, which are
defined by points p; and normal vectors Nj. We assume that the vectors N; are linearly
independent, that is, the planes are pairwise nonparallel.

Solution. One needs a simultaneous solution to the equations Nje(p — p;) =0, i =
1,2,3. The solution is

_ (p1 * N1 )(N2 x N3)+(p2 ® N2)(N3 X Nj) + (p3 ® N3)(Ny Nz)'

I
N; ¢ (N> x N3)

(6.12)
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Figure 6.13. Finding the intersection of a ray and a
circle.

7

Equation (6.12) is just a fancy way of writing the solution to this system of three equa-
tions. It is easy to check that I satisfies the equations. Note that Nj ¢ (N, x N3) is just
the determinant of that system.

The next two problems find the intersection of a ray with a circle. We shall use

the following notation: X will denote a ray from a point p in a direction v and L will
denote the line through p with direction vector v.

6.5.7 Problem. To find the intersection q, if any, of the ray X and the circle Y with
center a and radius r.

Solution. See Figure 6.13. Now, q can be written in the form q = p + tv and so we
need to solve for t satisfying

p+tv—al=r,
or equivalently,
(p-—a+tv)e(p—a+tv)=r2 (6.13)

Let A=vev, B=(p-a)ev,and C= (p —a)*(p — a) — 2. Equation (6.13) can be re-
written in the form

At? +2Bt+C=0. (6.14)

By the quadratic formula, the roots of (6.14) are

_-BxVB*-AC

t
A

(6.15)

Note that A cannot be zero because v # 0. That leaves three cases:
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Case 1: B? - AC =0: The line L will intersect the circle in a single point and is
tangent to it there. If t > 0, then the ray also intersects the circle
at that point.

Case 2: B? - AC < 0: Both the line L and the ray miss the circle.

Case 3: B? - AC > 0: The line L intersects the circle in two points. Let t; and t,
be the two distinct solutions to equation (6.13) with t; < t,.
If t; 2 0, then the ray intersects the circle in two points. If
t; < 0 <t,, then the ray intersects the circle in one point. Finally,
if t; < 0, then the ray misses the circle.

A special case of Problem 6.5.7 is

6.5.8 Problem. To find the intersection q, if any, of the ray X and the circle Y with
radius r centered at the origin.

Solution. In this case we need to solve for t satisfying
p+tvl=r,
or equivalently,
2.2 2_ 2
[v["t*+2(pev)t+|p|” —r° =0.

It follows that

_—pev)t Jpev)’ —’(p -r?)
|2

. (6.16)
|v

The three cases in Problem 6.5.7 reduce to
Case 1: (pev)’—|v(p’-r>)=0
Case 2: (pev)’ - v (p’-1?)<0
Case 3: (pev)’ - v (p*-1?)>0

with the same answers as before.

6.6 Distance Formulas

The next two sections describe a number of formulas that are handy for applications.

6.6.1 Formula. Let L be a line defined by a point Q and direction vector v and let
P be a point. The point
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. Figure 6.14. Computing the distance from a point to a

line.
A:Q+(QP-1)1 (6.17)
v| /vl

is the unique point of L that is closest to P. If d is the distance from P to L, then

d = dist(P, L) = [PA| =‘QP—(QP-1j1. (6.18)
vl |v
Alternatively,
4= PQxv (6.19)
v|

Proof. We shall only prove the first formula. The second is Exercise 6.6.1. Consider
Figure 6.14. We seek the point A so that AP is orthogonal to v (Theorem 4.5.12 in
[AgoMO05]). The vector

w=(QP-1)1

vl vl
is the orthogonal projection of QP onto L. If A = Q + w, then AP = QP — QA =
QP - w is orthogonal to v. Then d = |AP| = |QP — QA|. A solution that is concerned
with minimizing the number of arithmetic operations needed to solve the problem
can be found in [Morr91].

A straightforward generalization of Formula 6.6.1 is

6.6.2 Formula. The distance d from a point P to a plane X which contains a point

Q and has orthonormal basis vy, v, . . ., vi is given by
d =dist(P,X)
=|QP - (QPev))v; —...— (QP e vi )vy| (6.20)
Furthermore,

A=Q+(QPev))v; +...+(QP* vy )vy (6.21)
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Figure 6.15. Computing the distance from a
point to a plane.

is the unique point of X which is closest to P.
Proof. Exercise 6.6.2.

If one has a normal vector to a plane, then the formula for the distance of a point
to it is much simpler.

6.6.3 Formula. The distance d from a point P to a plane X that contains the point
Q and has normal vector N is given by

d =dist(P,X) = ‘QP.N (6.22)
The point
NN
QP —)— 6.23
-r-(or- I (23

is the unique point of X that is closest to P.

Proof. See Figure 6.15. The vector

N)N
P - |
(Q INIJIN]

is the orthogonal projection of QP onto N. Therefore, d = |w|. Define

NN
B=Q+ (QP )
NUINT

Then A=Q +BP =Q + QP — QB = P — w is the unique point of X that is closest to P
because AP is orthogonal to the plane (Theorem 4.5.12 in [AgoMO05]).

Formula 6.6.3 can be restated in terms of coordinates as follows:
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6.6.4 Formula. If X is a hyperplane in R" defined by equation
aiX;+azxs +...+apXxy +d =0,
then the distance from X to the origin is

|

\/ 2 2
a; +az +...+ay

"

Proof. Note that (aj,ay, . .. ,a,) is a normal vector to plane X. Therefore, the formula
is basically equation (6.22) written in coordinate form. For an efficient formula that
avoids square roots see [Geor92].

Two special cases of Formula 6.6.4 are worth noting. The distance from the origin
to the line in the plane with equation ax + by + ¢ = 0 is

el

The distance from the origin to the plane in R® with equation ax + by + cz + d = 0 is

Id|
_— 6.25
va?+b2 +¢? ( )

6.6.5 Formula. Let L; be the line defined by a point P and direction vector v. Let
L, be the line defined by a point Q and direction vector w. Assume that the lines are
not parallel. The distance d between L; and L, is given by

d =dist(L{,L,) =[PQ —sv + tw], (6.26)
where

s=(-(PQew)(wev)+(PQev)(wew))/D,
t=(PQev)(vew)—(PQew)vev)/D,and

D :(v-v)(w-w)—(v-w)z.
Furthermore, the point A = P + sv on L, is the unique point of L; which is closest to

L,. Similarly, the point B = Q + tw on L; is the unique point of L, which is closest to
L,. If the lines intersect, then A = B and we have formulas for the intersection point.

Proof. See Figure 6.16. Let A = P + sv and B = Q + tw be typical points on L; and
L,, respectively. Clearly, d = d(s,t) = dist(A,B), where the vector AB = PQ — sv + tw is
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Figure 6.16. Computing the distance between
two lines.

orthogonal to both v and w (Theorem 4.5.12 in [AgoMO04]). Expanding the two con-
ditions ABev = 0 and ABew = 0 reduces to the equations

twev—svev=—-PQev

twew—svew =-PQew

with the indicated solutions. By the Cauchy-Schwarz inequality, the denominator D
is zero precisely when the vectors v and w are parallel.

6.7 Area and Volume Formulas

This section contains some more useful formulas. The “proofs” of these formulas will
rely on simple-minded geometric observations and will not be very rigorous. For rig-
orous proofs one would need to use a theory of areas and volumes. The most elegant
approach would be via differential forms. See [Spiv65] or Section 4.9 in [AgoMO05].
Finally, the formulas below are “mathematical” formulas. For efficient ways to
compute them see [VanG95].

6.7.1 Formula. The area A of a parallelogram defined by two vectors u and v in
R? is given by

A=luxv|=

det(:)‘. (6.27)

Proof. The first equality follows from properties of the cross product and the fact
that A is the product of the height of the parallelogram and