


Computability and Complexity



Foundations of Computing
Michael Garey and Albert Meyer, editors

Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other

Networks, Frank Thomson Leighton, 1983

Equational Logic as a Programming Language, Michael J. O’Donnell, 1985

General Theory of Deductive Systems and Its Applications, S. Yu Maslov, 1987

Resource Allocation Problems: Algorithmic Approaches, Toshihide Ibaraki and Naoki Katoh,

1988

Algebraic Theory of Processes, Matthew Hennessy, 1988

PX: A Computational Logic, Susumu Hayashi and Hiroshi Nakano, 1989

The Stable Marriage Problem: Structure and Algorithms, Dan Gusfield and Robert Irving,

1989

Realistic Compiler Generation, Peter Lee, 1989

Single-Layer Wire Routing and Compaction, F. Miller Maley, 1990

Basic Category Theory for Computer Scientists, Benjamin C. Pierce, 1991

Categories, Types, and Structures: An Introduction to Category Theory for the Working

Computer Scientist, Andrea Asperti and Giuseppe Longo, 1991

Semantics of Programming Languages: Structures and Techniques, Carl A. Gunter, 1992

The Formal Semantics of Programming Languages: An Introduction, Glynn Winskel, 1993

Hilbert’s Tenth Problem, Yuri V. Matiyasevich, 1993

Exploring Interior-Point Linear Programming: Algorithms and Software, Ami Arbel, 1993

Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and Language Design,

edited by Carl A. Gunter and John C. Mitchell, 1994

From Logic to Logic Programming, Kees Doets, 1994

The Structure of Typed Programming Languages, David A. Schmidt, 1994

Logic and Information Flow, edited by Jan van Eijck and Albert Visser, 1994

Circuit Complexity and Neural Networks, Ian Parberry, 1994

Control Flow Semantics, Jaco de Bakker and Erik de Vink, 1996

Algebraic Semantics of Imperative Programs, Joseph A. Goguen and Grant Malcolm, 1996

Algorithmic Number Theory, Volume I: Efficient Algorithms, Eric Bach and Jeffrey Shallit,

1996

Foundations for Programming Languages, John C. Mitchell, 1996

Computability and Complexity: From a Programming Perspective, Neil D. Jones, 1997



Computability and Complexity
From a Programming Perspective

Neil D. Jones

The MIT Press
Cambridge, Massachusetts
London, England



c© 1997 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage or retrieval) without permission in writing from the publisher.

This book was set in Palatino by the author and was printed and bound in the United
States of America.

Library of Congress, Cataloging-in-Publication Data

Jones, Neil D.

Computability and complexity: from a programming perspective / Neil D.

Jones.

p. cm. -- (Foundations of computing)

Includes bibliographical references and index.

ISBN 0-262-10064-9 (alk. paper)

1. Electronic digital computers -- programming. 2. Computational

complexity.

I. Title. II. Series.

QA76.6.J6658 1997

005.13′1--dc21 96-44043

CIP



Contents

Series Foreword vii

Preface ix

I Toward the Theory 1

1 Introduction 3

2 The WHILE Language 29

3 Programs as Data Objects 47

II Introduction to Computability 65

4 Self-interpretation: Universal Programs for WHILE and I 67

5 Elements of Computability Theory 73

6 Metaprogramming, Self-application, and Compiler Generation 87

7 Other Sequential Models of Computation 111

8 Robustness of Computability 127

9 Computability by Functional Languages (partly by T. Æ. Mogensen) 137

10 Some Natural Unsolvable Problems 153

III Other Aspects of Computability Theory 167

11 Hilbert’s Tenth Problem (by M. H. Sørensen) 169
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Series Foreword

Theoretical computer science has now undergone several decades of development. The
“classical” topics of automata theory, formal languages, and computational complexity
have become firmly established, and their importance to other theoretical work and to
practice is widely recognized. Stimulated by technological advances, theoreticians have
been rapidly expanding the areas under study, and the time delay between theoreti-
cal progress and its practical impact has been decreasing dramatically. Much publicity
has been given recently to breakthroughs in cryptography and linear programming, and
steady progress is being made on programming language semantics, computational ge-
ometry, and efficient data structures. Newer, more speculative, areas of study include
relational databases, VLSI theory, and parallel and distributed computation. As this list
of topics continues expanding, it is becoming more and more difficult to stay abreast
of the progress that is being made and increasingly important that the most significant
work be distilled and communicated in a manner that will facilitate further research and
application of this work. By publishing comprehensive books and specialized monographs
on the theoretical aspects of computer science, the series on Foundations of Computing
provides a forum in which important research topics can be presented in their entirety
and placed in perspective for researchers, students, and practitioners alike.

Michael R. Garey
Albert R. Meyer





Preface

This book is a general introduction to computability and complexity theory. It should
be of interest to beginning programming language researchers who are interested in com-
putability and complexity theory, or vice versa.

The view from Olympus

Unlike most fields within computer science, computability and complexity theory deals
with analysis as much as with synthesis and with some concepts of an apparently ab-
solute nature. Work in logic and recursive function theory spanning nearly the whole
century has quite precisely delineated the concepts and nature of effective procedures,
and decidable and semi-decidable problems, and has established them to be essentially
invariant with respect to the computational device or logical theory used.

Surprisingly, a few similarly invariant concepts have also arisen with respect to com-
putations within bounded resources: polynomial time (as a function of a decision prob-
lem’s input size), polynomial storage, computation with or without nondeterminism: the
ability to “guess,” and computation with “read-only” data access.

Computability and complexity theory is, and should be, of central concern for practi-
tioners as well as theorists. For example, “lower complexity bounds” play a role analogous
to channel capacity in engineering: No matter how clever a coding (in either sense of the
word) is used, the bound cannot be overcome.

Unfortunately, the field is well-known for impenetrable fundamental definitions,
proofs of theorems, and even statements of theorems and definitions of problems. In my
opinion this owes to some extent to the history of the field, and that a shift away from
the Turing machine- and Gödel number-oriented classical approaches toward a greater
use of concepts familiar from programming languages will render classical computability
and complexity results more accessible to the average computer scientist, and can make
its very strong theorems more visible and applicable to practical problems.

This book covers classical models of computation and central results in computability
and complexity theory. However, it differs from traditional texts in two respects:

1. It is significantly more accessible, without sacrificing precision. This is achieved by
presenting the theory of computability and complexity using programming tech-
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niques and motivated by programming language theory.1

2. It relieves some tensions long felt between certain results in complexity theory and
daily programming practice. A better fit is achieved by using a novel model of
computation, differing from traditional ones in certain crucial respects.

Further, many of the sometimes baroque constructions of the classical theory become
markedly simpler in a programming context, and sometimes even lead to stronger theo-
rems. A side effect is that many constructions that are normally only sketched in a loose
way can be done more precisely and convincingly.

The perspective of the book

For those already familiar with computability and complexity theory, the two points
above can be somewhat elaborated.

As for the first point, I introduce a simple imperative programming language called
WHILE, in essence a small subset of Pascal or LISP. The WHILE language seems to have
just the right mix of expressive power and simplicity. Expressive power is important when
dealing with programs as data objects. The data structures of WHILE are particularly
well suited to this, since they avoid the need for nearly all the technically messy tasks of
assigning Gödel numbers to encode program texts and fragments (used in most if not all
earlier texts), and of devising code to build and decompose Gödel numbers. Simplicity is
also essential to prove theorems about programs and their behavior. This rules out the
use of larger, more powerful languages, since proofs about them would be too complex
to be easily understood.

More generally, I maintain that each of the fields of computability and complexity
theory, and programming languages and semantics has much to offer the other. In the
one direction, computability and complexity theory has a breadth, depth, and generality
not often seen in programming languages, and a tradition for posing precisely defined
and widely known open problems of community-wide interest. Also, questions concerning
the intrinsic impossibility or infeasibility of programs solving certain problems regarding
programs should be of interest to programming language researchers. For instance, many
problems that turn up in the field of analysis and transformation of programs turn out
to be undecidable or of intractably high complexity.

1Dana Scott was an early proponent of programming approach to automata [161], but it has not yet

been widely used.
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In the other direction, the programming language community has a firm grasp of
algorithm design, presentation and implementation, and several well-developed frame-
works for making precise semantic concepts over a wide range of programming language
concepts, e.g., functional, logic, and imperative programming, control operators, com-
munication and concurrency, and object-orientation. Moreover programming languages
constitute computation models some of which are more realistic in certain crucial aspects
than traditional models.

A concrete connection between computability and programming languages: the dry-
as-dust “s-m-n theorem” has been known in computability since the 1930s, but seemed
only a technical curiosity useful in certain proofs. Nonetheless, and to the surprise of
many people, the s-m-n theorem has proven its worth under the alias partial evaluation or
program specialization in practice over the past 20 years: when implemented efficiently,
it can be used for realistic compiling, and when self-applied it can be used to generate
program generators as well.

Another cornerstone of computability, the “universal machine,” is nothing but a self-
interpreter, well-known in programming languages. Further, the “simulations” seen in
introductory computability and complexity texts are mostly achieved by informal com-
pilers or, sometimes, interpreters.

As for the second point above, a tension has long been felt between computability
and complexity theory on the one hand, and “real computing” on the other. This is at
least in part bacause one of the first results proven in complexity is the Turing machine
speedup theorem, which asserts a counterintuitive (but true) fact: that any Turing ma-
chine program running in superlinear time can be replaced by another running twice as
fast in the limit.2 The existence of efficient self-interpreters in programming language
theory leads to the opposite result: a hierarchy theorem showing, for a more realistic
computing model than the Turing machine, that constant time factors do matter. More
precisely, given time bound f(n), where n measures the size of a problem input, there
are problems solvable in time (1+ ε)f(n) which cannot be solved in time f(n). Thus
multiplying the available computing time by a constant properly increases the class of
problems that can be solved.

This and other examples using programming language concepts lead (at least for
computer scientists) to more understandable statements of theorems and proofs in com-
putability and complexity, and to stronger results. Further new results include “intrinsic”
characterizations of the well-known problem classes logspace and ptime on the basis

2The tension arises because the “trick” used for the Turing machine construction turns out to be

useless when attempting to speed up real computer programs.
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of program syntax alone, without any externally imposed space or time bounds.
Finally, a number of old computability and complexity questions take on new life

and natural new questions arise. An important class of new questions (not yet fully
resolved) is: what is the effect of the programming styles we employ, i.e., functional style,
imperative style, etc., on the efficiency of the programs we write?

How to read this book

If used as an introduction to computability (recursive function) theory, parts I–III are
relevant. If used as an introduction to complexity theory, the relevant parts are I, IV,
and V, and chapters 6 through 8. The book contains approximately two semesters’ worth
of material which one can “mix and match” to form several courses, for instance:

Introduction to computability (1 semester): chapters 1 through 8, chapter 10, per-
haps just skimming chapter 6; and as much of chapters 9, and 11 through 14, as
time and interest allow.

Introduction to complexity (1 semester): Quickly through chapters 1, 2, 3, 4, 7, 8;
then chapters 15 through 19, chapters 21 through 23, and 25 through 27; and as
much of the remainder as time and interest allow.

Computability and complexity (2 semesters): the whole book.

Exercises. Numerous exercises are included, some theoretical and some more oriented
toward programming. An asterisk * marks ones that are either difficult or long (or both).

Correction of errors and misprints. Reports of errors and misprints may be sent to the
author by e-mail, at neil@diku.dk. A current list may be found at Worldwide Web
URL http://www.diku.dk/users/neil/.

Overall comments. Practically minded students may find chapter 6 of particular in-
terest, since it describes application of the s-m-n theorem, widely called partial evaluation,
to compiling and compiler generation. Theoretically or philosophically minded students
may find chapter 12 of particular interest because of its connections with Gödel’s theo-
rem. Chapter 20 clarifies the question of the existence of “best” or optimal programs:
Levin’s theorem proves that search problems whose solutions can be efficiently checked
possess near-optimal algorithms. In contrast, Blum’s speedup theorem shows that there
exist problems which , in a very strong sense, possess no optimal algorithm at all.
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Goals, and chapters that can be touched lightly on first reading. The book’s overall
computability goals are first: to argue that the class of all computably solvable prob-
lems is well-defined and independent of the computing devices used to define it, and sec-
ond: carefully to explore the boundary zone between computability and uncomputability.
Its complexity goals are analogous, given naturally defined classes of problems solvable
within time or memory resource bounds.

The Church-Turing thesis states that all natural computation models are of equivalent
power. Powerful evidence for it is the fact that any two among a substantial class
of computation models can simulate each other. Unfortunately, proving this fact is
unavoidably complex since the various computation models must be precisely defined,
and constructions must be given to show how an arbitrary program in one model can be
simulated by programs in each of the other models.

Chapters 7 and 8 do just this: they argue for the Church-Turing thesis without
considering the time or memory required to do the simulations. Chapters 16, 17 and 18
go farther, showing that polynomial time-bounded or space-bounded computability are
similarly robust concepts.

Once the Church-Turing thesis has been convincingly demonstrated, a more casual
attitude is quite often taken: algorithms are just sketched, using whichever model is most
convenient for the task at hand. The reader may wish to anticipate this, and at first
encounter may choose only to skim chapters 7, 8, 16, 17 and 18.

Prerequisites

The reader is expected to be at the beginning graduate level having studied some theory,
or a student at the senior undergraduate level with good mathematical maturity. Specif-
ically, the book uses sets, functions, graphs, induction, and recursive definitions freely.
These concepts are all explained in an appendix, but the appendix may be too terse
to serve as a first introduction to these notions. Familiarity with some programming
language is a necessity; just which language is much less relevant.

Novel aspects, in a nutshell

Classical computability results in this book include unsolvability of the halting problem
and several other natural problems, including context-free ambiguity and Hilbert’s Tenth
Problem; Rice’s result that all nontrivial extensional program properties are undecidable;
characterizations of the recursive functions, and recursive and recursively enumerable
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sets; Kleene’s s-m-n, second recursion, and normal form theorems; recursion by fixpoints;
Rogers’ isomorphism theorem; and Gödel’s incompleteness theorem.

Classical complexity results include study of the hierarchy of classes of problems:
logspace, nlogspace, ptime, nptime, pspace; the robustness of ptime, pspace and
logspace; complete problems for all these classes except the smallest; the speedup and
gap theorems from Blum’s machine-independent complexity theory.

In contrast with traditional textbooks on computability and complexity, this treat-
ment also features:

1. A language of WHILE programs with LISP-like data. Advantages: programming
convenience and readability in constructions involving programs as data; and free-
dom from storage management problems.

2. Stronger connections with familiar computer science concepts: compilation (sim-
ulation), interpretation (universal programs), program specialization (the s-m-n
theorem), existence or nonexistence of optimal programs.

3. Relation of self-application to compiler bootstrapping.

4. Program specialization in the form of partial evaluation to speed programs up, or
to compile and to generate compilers by specialising interpreters.

5. Speedups from self-application of program specializers.

6. Simpler constructions for “robustness” of fundamental concepts, also including
functional languages and the lambda calculus.

7. A construction to prove Kleene’s second recursion theorem that gives more efficient
programs than those yielded by the classical proof.

8. Proof that “constant time factors do matter” for a computation model more realistic
than the Turing machine, by an unusually simple and understandable diagonaliza-
tion proof.

9. A new and much more comprehensible proof of Levin’s important result on the
existence of optimal algorithms;

10. Intrinsic characterizations of the problem classes logspace and ptime by restricted
WHILE programs.

11. The use of programs manipulating boolean values to characterize “complete” or
hardest problems for the complexity classes mentioned above.

Items 7 through 11 above appear here for the first time in book form.
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What is not considered

There are numerous things in the enormous realm of complexity and computability theory
that I have chosen not to include at all in the present text. A list of some of the most
obvious omissions:

• Parallelism. In the present text all computation models are sequential in the sense
that only one operation can be executed at a time. Many models of parallel com-
putation have been suggested in the literature; overviews by Karp and Valiant may
be found in [96, 171].

• Approximate solutions. Another approach to solving problems whose algorithms
have prohibitively long running times, is to devise a quicker algorithm which does
not always give the correct answer, but only an approximate solution. Examples
include numerous algorithms testing properties of graphs, e.g. by Johnson and Kann
[73, 94].

• Stochastic algorithms. Some problems seem only to be solvable by programs that
have prohibitively long running times. In some cases, it is possible to derive an
algorithm using random numbers which runs faster, but which only returns a cor-
rect result with a certain probability more than 0.5, but less than 1. Often the
probability of correctness can be increased to 1− ε for any 1 > ε > 0 by repeat-
edly running the program. Such algorithms are called stochastic or probabilistic.
Examples include testing whether a given number is a prime, e.g., by Rabin [148].

• Nonuniform complexity, circuits, cell probe models. Lower bounds on computation
time or space are often extremely difficult to obtain. Sometimes these can be
obtained more easily by abstracting away from the algorithm altogether, and just
concentrating on a problem’s combinatorial aspects. In terms of computational
models, this amounts to allowing different computational methods (e.g. different
circuits) for different sizes of inputs. Progress has been made in this direction, e.g.,
by H̊astad [66] and by Miltersen [130].

• Computing with real numbers. In the present text all computation models are
concerned with countable data structures, but models of computation with real
numbers also exist, e.g., by Blum, Shub and Smale [13].

• Communicating systems. The view of computation as a continuing and nontermi-
nating exchange of information among a set of active agents has been developed
by Milner and others [128], but is beyond the scope of this book.
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Toward the Theory





1 Introduction

This book is about computability theory and complexity theory. In this first chapter we
try to convey what the scope and techniques of computability and complexity theory
are. We are deliberately informal in this chapter; in some cases we will even introduce a
definition or a proposition which is not rigorous, relying on certain intuitive notions.

The symbol “3” will be used to mark these definitions or propositions. All such
definitions and propositions will be reintroduced in a rigorous manner in the subsequent
chapters before they occur in any development.

Section 1.1 explains the scope and goals of computability theory. Sections 1.2–1.3
concern questions that arise in that connection, and Section 1.4 gives examples of tech-
niques and results of computability theory. Section 1.5 describes the scope and goals of
complexity theory. Section 1.6 reviews the historical origins of the two research fields.
Section 1.6 contains exercises; in general the reader is encouraged to try all the exercises.
Section 1.6 gives more references to background material.

A small synopsis like this appears in the beginning of every chapter, but from now
on we will not mention the two sections containing exercises and references.

1.1 The scope and goals of computability theory

Computability theory asks questions such as: do there exist problems unsolvable by any
effective procedure — unsolvable by any program in any conceivable programming lan-
guage on any computer?

Our programming intuitions may indicate a no answer, based on the experience that
once a problem is made precise in the form of a specification, it is a more or less routine
task to write a program to satisfy the specification. Indeed, a related intuition predomi-
nated the work of Hilbert on the foundations of mathematics, as explained in section 1.6:
they conjectured that all of mathematics could be axiomatized. However, we shall see
that both of these intuitions are disastrously wrong. There are certain problems that
cannot be solved by effective procedures.

To prove this, we must make precise what is meant by an effective procedure and
what is meant by a problem. It is not a priori obvious that any single formalization of
effective procedure could be adequate; it might seem that any specific choice would be
too narrow because it would exclude computing devices with special capabilities. Thus,
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different formalizations might lead to different theories of computability. However, one
of the great insights of computability theory was the gradual realization in the 1930’s
that any reasonable choice of formalization of the notion of effective procedure leads, in
a certain sense, to the same theory. This has been called the Church-Turing thesis, since
Alonzo Church and Alan M. Turing first formulated and substantiated versions of this
insight. Explaining why different formalizations lead to the same theory is itself one of
the topics of computability theory; we thus devote considerable effort to the matter.

Granted precise definitions of the notions of problem and effective procedure, com-
putability theory is concerned with the boundary between computability and uncom-
putability, and addresses questions such as:

• Can every precisely stated problem be solved by some effective procedure?
• What is the class of problems that can be solved by effective procedures and its

basic properties?
• What is the relationship between various problems that cannot be solved by effec-

tive procedures?

If a problem can be solved by an effective procedure we shall say that is effectively
solvable, or sometimes just solvable. The result that a certain computational problem is
unsolvable is not a purely negative fact; for instance, it conveys the important knowledge
that searching for an effective procedure to solve the problem is futile. This may indicate
that one should try to find an approximate, solvable, solution to the problem at hand
instead of trying to solve the exact, but unsolvable, problem.

In the next two sections we discuss formalization of the notions of effective proce-
dure and problem. After this, we present, informally, some of the elementary results of
computability theory, including two precisely stated problems which are unsolvable.

1.2 What is an effective procedure?

There are various strategies one can employ in formalizing the notion of effective proce-
dure. Of course, we are free to define notions as we please, but the definitions should
capture the intuitive notion of effective procedure; for example, it should not be the case
that some problem is unsolvable according to our theory, but nevertheless can be solved
on a real-world computer.

Therefore it will be useful to try and analyze the notion of effective procedure and
devise a formalization so that every intuitively effective procedure can be carried out in
the formalism, and such that all the formalism’s computations are effective.
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1.2.1 Alan Turing’s analysis of computation

Alan Turing’s analysis attempting to formalize the class of all effective procedures was
carried out in 1936 [170], resulting in the notion of a Turing machine. Its importance is
that it was the first really general analysis to understand how it is that computation takes
place, and that it led to a convincing and widely accepted abstraction of the concept of
effective procedure.

It is worth noting that Turing’s analysis was done before any computers more powerful
than desk calculators had been invented. His insights led, more or less directly, to John
von Neumann’s invention in the 1940’s of the stored program digital computer, a machine
with essentially the same underlying architecture as today’s computers.

We give the floor to Turing. Note that by a “computer” Turing means a human who
is solving a computational problem in a mechanical way, not a machine.

Computing is normally done by writing certain symbols on paper. We may suppose
this paper is divided into squares like a child’s arithemetic book. In elementary
arithmetic the two-dimensional character of the paper is sometimes used. But such
a use is always avoidable, and I think that it will be agreed that the two-dimen-
sional character of paper is no essential of computation. I assume then that the
computation is carried out on one-dimensional paper, i.e., on a tape divided into
squares. I shall also suppose that the number of symbols which may be printed
is finite. If we were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent1. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of symbols in
the place of single symbols. Thus an Arabic numeral such as 17 or 999999999999999
is normally treated as a single symbol. Similarly in any European language words
are treated as single symbols (Chinese, however, attempts to have an enumerable
infinity of symbols). The differences from our point of view between the single and
compound symbols is that the compound symbols, if they are too lengthy, cannot
be observed at one glance. This is in accordance with experience. We cannot tell
at a glance whether 9999999999999999 and 999999999999999 are the same.
The behaviour of the computer at any moment is determined by the symbols which

1If we regard a symbol as literally printed on a square we may suppose that the square is 0 ≤ x ≤
1, 0 ≤ y ≤ 1. The symbol is defined as a set of points in this square, viz. the set occupied by printer’s
ink. If these sets are restricted to be measurable, we can define the “distance” between two symbols as
the cost of transforming one symbol into the other if the cost of moving a unit area of printer’s ink unit
distance istoward unity, and there is an infinite supply of ink at x = 2,y = 0. With this topology the
symbols form a conditionally compact space. [Turing’s note].
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he is observing, and his “state of mind” at that moment. We may suppose that
there is a bound B to the number of symbols or squares which the computer can
observe at one moment. If he wishes to observe more, he must use successive
observations. We will also suppose that the number of states of mind which need
be taken into account is finite. The reasons for this are of the same character as
those which restrict the number of symbols. If we admitted an infinity of states
of mind, some of them will be “arbitrarily close” and will be confused. Again, the
restriction is not one which seriously affects computation, since the use of more
complicated states of mind can be avoided by writing more symbols on the tape.
Let us imagine the operations performed by the computer to be split up into “simple
operations” which are so elementary that it is not easy to imagine them further
divided. Every such operation consists of some change of the physical system
consisting of the computer and his tape. We know the state of the system if we
know the sequence of symbols on the tape, which of these are observed by the
computer (possible with a special order), and the state of mind of the computer.
We may suppose that in a simple operation not more than one symbol is altered.
Any other changes can be split up into simple changes of this kind. The situation
in regard to the squares whose symbols may be altered in this way is the same as
in regard to the observed squares. We may, therefore, without loss of generality,
assume that the squares whose symbols are changed are always “observed” squares.
Besides these changes of symbols, the simple operations must include changes of
distribution of observed squares. The new observed squares must be immediately
recognizable by the computer. I think it is reasonable to suppose that they can only
be squares whose distance from the closest of the immediately previously observed
squares does not exceed a certain fixed amount. Let us say that each of the new
observed squares is within L squares of an immediately previously observed square.
In connection with “immediate recognizability,” it may be thought that there are
other kinds of squares which are immediately recognizable. In particular, squares
marked by special symbols might be taken as immediately recognizable. Now if
these squares are marked only by single symbols there can be only a finite number of
them, and we should not upset our theory by adjoining these marked squares to the
observed squares. If, on the other hand, they are marked by a sequence of symbols,
we cannot regard the process of recognition as a simple process. This is a funda-
mental point and should be illustrated. In most mathematical papers the equations
and theorems are numbered. Normally the numbers do not go beyond (say) 1000.
It is, therefore, possible to recognize a theorem at a glance by its number. But if
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the paper was very long, we might reach Theorem 157767733443477; then, further
on in the paper, we might find “... hence (applying Theorem 157767733443477) we
have ...” In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possible ticking the figures off in pencil
to make sure of their not being counted twice. If in spite of this it is still thought
that there are other “immediately recognizable” squares, it does not upset my con-
tention so long as these squares can be found by some process of which my type of
machine is capable.
The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares of
one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of mind.
The most general single operation must therefore be taken to be one of the following:

(A) A possible change (a) of symbol together with a possible change of state of
mind.

(B) A possible change (b) of observed squares, together with a possible change of
state of mind.

The operation actually performed is determined, as has been suggested [above] by
the state of mind of the computer and the observed symbols. In particular, they
determine the state of mind of the computer after the operation.
We may now construct a machine to do the work of this computer. To each state
of mind of the computer corresponds an “m-configuration” of the machine. The
machine scans B squares corresponding to the B squares observed by the computer.
In any move the machine can change a symbol on a scanned square or can change
any one of the scanned squares to another square distant not more than L squares
from one of the other scanned squares. The move which is done, and the succeeding
configuration, are determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing machines as
defined (previously) and corresponding to any machine of this type a computing
machine can be constructed to compute the same sequence, that is to say the
sequence computed by the computer.
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1.2.2 The Church-Turing thesis

The machines mentioned in Turing’s analysis are called Turing machines. The wide-
ranging identification of the intuitive notion of effective procedure with the mathematical
concept of Turing machine (and related identifications) has become well-known as the
Church-Turing thesis, named after Church and Turing, two pioneers of computability
[170, 22, 23].

The thesis is not amenable to mathematical proof since it identifies an intuitive no-
tion with a mathematical concept; however we shall provide various kinds of evidence
supporting it. In one direction this is easy: the Turing machine (as well as other computa-
tional models we will introduce) is sufficiently simple that its computations are certainly
effective in any reasonable sense. In the other direction, Turing’s analysis is a rather
convincing argument for the Turing machine’s generality.

There are many other notions of effective procedure than Turing machines, e.g.,

• Recursive functions as defined by Kleene [98]

• The lambda calculus approach to function definitions due to Church [22, 23].

• Random access machines [163]

• Markov algorithms [115]

Despite considerable differences in formalism, some common characteristics of these no-
tions are [155]:

1. An effective procedure is given by means of a set of instructions of finite size. There
are only finitely many different instructions.

2. The computation is carried out in a discrete stepwise fashion, without the use of
continuous methods or analogue devices.

3. The computation is carried out deterministically, without resort to random methods
or devices, e.g., dice.

4. There is no a priori fixed bound on the amount of “memory” storage space or time
available, although a terminating computation must not rely on an infinite amount
of space or time.

5. Each computational step involves only a finite amount of data.

All of the above notions of effective procedure have turned out to be equivalent. In view
of this, the Church-Turing thesis is sometimes expressed in the following form:

1. All reasonable formalizations of the intuitive notion of effective computability are
equivalent;
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2. Turing machine computability is a reasonable formalization of effective computabil-
ity.

In support of this, later chapters will consider a number of formalizations and prove
them equivalent. For the remainder of this chapter the notion of an effective procedure,
or algorithm, will remain intuitive.

1.2.3 Are algorithms hardware or software?

Discussions of the question whether algorithms are hardware of software resemble those
of whether the chicken or the egg came first, but are nonetheless worthwhile since much
literature on computability, and especially on complexity theory, is implicitly biased
toward one or the other viewpoint. For example, the phrase “Turing machine” carries
overtones of hardware, and the “states of mind” of Turing’s argument seem to correspond
to machine states.

The hardware viewpoint states that an algorithm is a piece of machinery to realize
the desired computations. The “set of instructions” is a specification of its architec-
ture. At any one point in time a total machine state comprises the instruction it is
currently executing and its memory state. Larger algorithms correspond to larger pieces
of hardware.

The problem of not limiting the amount of storage can be handled several ways:

• Assume given an infinite separate storage unit, e.g., Turing’s “tape”;

• Assume an idealized hardware which is indefinitely expandable, though always
finite at any one point in time; or

• Work with an infinite family of finite machines M1,M2, . . ., so larger input data is
processed by larger machines.

The last way corresponds to what is often called circuit complexity . One usually requires
the sequence M1,M2, . . . to be uniform, so progressively larger data are not processed by
completely disparate machines.

The software viewpoint states that the algorithm is a set or sequence of instructions.
For instance an algorithm can simply be a program in one’s favorite programming lan-
guage. The “computing agent” then interprets the algorithm; it can be a piece of hard-
ware, or it can be software: an interpreter program written in a lower-level programming
language. Operationally, an interpreter maintains a pointer to the current instruction
within the algorithm’s instruction set, together with a representation of that algorithm’s
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current storage state. Larger algorithms correspond to larger interpreted programs, but
the interpreter itself remains fixed, either as a machine or as a program.

The first fully automatic computer was von Neumann’s “stored program” machine. It
consisted of a piece of hardware, the central processing unit (CPU), specifically designed
to interpret the program stored in its memory; and this memory was physically decoupled
from the CPU. Thus the software viewpoint was present from hardware’s first days and
characterizes most of today’s computers. Nonetheless the distinction is becoming yet less
clear because today’s “chip” technology allows relatively easy construction of special-
purpose digital hardware for rather complex problems, something which was impractical
only a few years ago. Further, even though Turing’s machine is described in hardware
terms, it was Alan Turing himself who proved the existence of a “universal machine”: a
single Turing machine capable of simulating any arbitrary Turing machine, when given
its input data and an encoding of its instruction set.

This book mostly takes the viewpoint of algorithm as software, though the “random
access machine” model will come closer to hardware.

1.3 What is a problem?

By a problem we have in mind some uniform, in general unbounded, class of questions
each of which can be given a definite, finite answer. Thus we consider two concrete
instances of the abstract notion of solving a problem: computing a function and deciding
membership in a set .

1.3.1 Effectively computable functions

In this book, a total function is written f : A→B. A partial function is written g : A→
B⊥. For a ∈A, if g(a) is defined or convergent we write g(a)↓, and if g(a) is undefined or
divergent we write g(a)↑ or g(a) = ⊥. Relation ' denotes equivalence of partial values,
see Subsection A.3.5. Thus f(a)' g(a) holds if either both of f(a) and g(a) are defined
and equal, or if both are undefined. Total and partial functions are explained in greater
detail in Subsections A.3.1–A.3.4 in Appendix A.

Definition 1.3.13 Let D,E be sets. A partial mathematical function f : D → E⊥ is
effectively computable if there is an effective procedure such that for any x ∈D:

1. The procedure eventually halts, yielding f(x) ∈ E, if f(x) is defined;

2. The procedure never halts if f(x) is undefined. 2
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The function f : IN × IN → IN where f(x,y) = x + y is effectively computable by the
effective procedure, known from elementary school, for digit-by-digit addition, assuming
x,y, and x + y are expressed in decimal notation. As another example, the function
gcd : IN ×IN → IN which maps two natural numbers into their greatest common divisor
can be computed by Euclid’s algorithm.

The effective procedure for computing f must give the correct answer to each question
which is within its set of applicability D. In particular, if f is total, the effective procedure
must halt for all arguments in D. Its behavior when applied to questions outside this set
is not of interest; it may fail to terminate, or may terminate in a nonstandard way. For
instance, Euclid’s algorithm can fail to terminate when applied to negative numbers.

1.3.2 On data representation

It might seem that the definition of an effectively computable function depends on the
notation used to represent the arguments. For instance, the addition procedure above
uses the decimal representation of natural numbers.

However, this makes no difference as long as there is an effective procedure that
translates from one notation to another and back. Suppose we have an effective procedure
p which will compute f if the argument is expressed in notation B. The following effective
procedure will then compute f in notation A:

1. Given x in notation A, translate it into notation B, yielding y.

2. Apply procedure p to y, giving z = f(y), in notation B.

3. Translate z back into notation A, giving the result.

In the remainder of this chapter we shall be informal about data representations.

1.3.3 Algorithms versus functions

We stress the important distinction between an algorithm and the mathematical function
it computes. A mathematical function is a set. For instance, the unary number-theoretic
function which returns its argument doubled is:

{(1,2),(2,4),(3,6), . . .}

For convenience one always writes this function thus: f(n) = 2n. So, a function asso-
ciates a result with each input, but does not say anything about how the result can be
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computed1.

On the other hand, an algorithm is a text, giving instructions on how to proceed
from inputs to result. We can write algorithms which, when fed a representation of a
number as input, will compute the representation of another number as output, and the
connection between input and output can be described by a mathematical function. For
instance, an algorithm p may, from the representation of n, compute the representation
of 2n. In this case we say that p computes the function f(n) = 2n, and we write [[p]] = f .
We pronounce [[p]] “the meaning of p.”

Given a formalization of effective procedure, that is, given a programming language
L, we may ask: what mathematical functions can be computed by algorithms in the lan-
guage? We say that the programming language defines the class of all such mathematical
functions:

{[[p]] |p is an L-program }

The relationship between algorithms and functions is a bit subtle. Consider, for instance,
the function f : IN → IN , defined by:

f(n) =

{
0 if Goldbach’s conjecture is true
1 otherwise

(Goldbach’s conjecture states that every even number greater than 2 is the sum of two
prime numbers. Whether the conjecture is true, is not known [155]). There is an algo-
rithm computing f ; either it is the algorithm which always return the representation of
0, or it is the algorithm which always returns the representation of 1 — but we do not
know which of the two yet it is.

Thus there are functions for which it is has been proved that an algorithm exists, and
yet no concrete algorithm computing the function is known2. There are also examples of
functions where it is not yet known whether corresponding algorithms exist at all, and
there are functions for which it is known that there definitely do not exist any algorithms
that compute them. We shall soon see an example of the last kind of function.

1If the reader is not comfortable with the notion of a function simply being a certain set, Subsec-

tion A.3.1 may be consulted.
2This can only happen if the proof is by classical logic; in intuitionistic logic proofs of existence are

always constructive.
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1.3.4 Effectively decidable and enumerable sets

How can we apply the idea of an effective procedure to the problem of definition of
sets? For example the set of prime numbers seems intuitively effective, in that given an
arbitrary number we can decide whether or not it is a prime.

Definition 1.3.23 Given a set D, and a subset S ⊆D. S is effectively decidable iff there
is an effective procedure which, when given an object x∈D, will eventually answer “yes”
if x ∈ S, and will eventually answer “no” if x 6∈ S. 2

Note that the procedure eventually halts for any input x.
The problem of deciding some set S can sometimes equally naturally be phrased as

the problem of computing a certain function, and vice versa, as we shall see later on. An
alternative notion is to call a set effective if its elements can be listed in an effective way.

Definition 1.3.33 Given a set D, and a subset S ⊆ D. S is effectively enumerable iff
there is an effective procedure which, when given an object x∈D, will eventually answer
“yes” if x ∈ S, and will answer “no” or never terminate if x 6∈ S. 2

The collection of all subsets of any infinite set (for example IN) is not countable (Exercise
1.3). This can be proven by diagonalization as introduced in the next section.

On the other hand, the collections of all effectively decidable (or effectively enumer-
able) subsets of IN are each countable, since for each nonempty set there exists a program
computing a function that decides it (enumerates it), and there is only one empty set.

We will see that there exist effectively enumerable sets which are not effectively de-
cidable. This, too, can be proven by diagonalization; a formal version will be seen later,
as Corollary 5.6.2.

1.4 A taste of computability theory

In this section we review some of the basic results and techniques of computability in an
informal manner.

1.4.1 Countable sets and enumeration functions

A set S is countable if S is empty or there is a sequence s0,s1, . . . containing all and only
all the elements of S, i.e., for all s ∈ S there is an i such that s = si. This sequence is
called an enumeration of S.
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The sequence s0,s1, . . . is actually a function3 f : IN → S defined by f(i) = si. Thus
a set is countable if and only if it is empty, or there is a surjective4 total function from
IN to S. Such a function is said to enumerate S.

Note that the sequence above is allowed to have repetitions. This amounts to saying
that f is allowed to be non-injective. Examples include:

1. The set IN is countable; an obvious sequence mentioning all elements is 0,1,2, . . ..
In other words, the required surjective function is the function f : IN→ IN,f(i) = i.

2. The set of all integers is countable; a sequence is: 0,1,−1,2,−2,3, . . ..

3. IN × IN is countable; a sequence is: (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3),
(1,2), (2,1), (3,0), . . ..

The preceding terminology in particular applies to sets of functions, partial or total. Let
A and B be sets and let S be a non-empty set of partial functions from A into B, i.e.,
S ⊆ A→ B⊥. Then S is countable iff there is a sequence f0,f1, . . . so that g ∈ S if and
only if g ' fi for some i.

1.4.2 The diagonal method and uncountable sets

Proposition 1.4.1 The set of all total functions f : IN → IN is uncountable. 2

Proof. We use Cantor’s well-known diagonal argument . Suppose the set of all functions
f : IN → IN were countable. Then there would be an enumeration f0,f1,f2, . . . such that
for any total function f : IN → IN , there is an i such that fi = f , i.e., fi(x) = f(x) for all
x ∈ IN .

Consider the function g defined by:

g(x) = fx(x)+1

This is certainly a total function from IN to IN . Therefore g must be fi for some i. But
this is impossible, as it implies, in particular, that

fi(i) = g(i) = fi(i)+1 (1.1)

and so 0 = 1 which is impossible.5 2

3More details appear in Subsection A.3.2.
4Surjective and injective functions are explained in Subsection A.3.9.
5Remark the similarity between this argument and Russell’s Paradox: The class U = {A |

A is a set and A /∈ A} is not a set. The reasoning is that if U were a set, we would have U ∈ U iff

U /∈ U .
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The proof technique above, called diagonalization, has many applications in computabil-
ity and complexity theory. To understand the name of the technique, imagine the values
of countably many functions f0,f1,f2, . . . listed in an “infinite table” for the arguments
0,1,2, . . .:

n f0(n) f1(n) f2(n) · · ·
0 f0(0) f1(0) f2(0) · · ·
1 f0(1) f1(1) f2(1) · · ·
2 f0(2) f1(2) f2(2) · · ·
...

...
...

...
. . .

For instance, the first column defines f0. Given a countable set of total functions from IN

to IN , the diagonal method constructs a new function which differs from the ith function
on the argument i in the diagonal. Thus from any enumeration of total functions from
IN to IN , at least one total function from IN to IN must be absent.

Note that diagonalization does not directly imply the uncountability of the set of
partial functions from IN to IN , since the analog of (1.1) for partial functions is not a
contradiction in case fi(i) is undefined.

Corollary 1.4.2 The following sets are also uncountable:

1. All partial functions f : IN → IN⊥.

2. All total functions f : IN →{0,1}.
3. All total functions f : A→ B where A is infinite and B has at least two elements.

2

Proof. See the Exercises. 2

1.4.3 Existence of effectively uncomputable functions

Proposition 1.4.33 The set of all effectively computable partial functions from IN to
IN is countable. 2

Proof. By the Church-Turing Thesis each effectively computable function is computed
by some Turing machine. A Turing machine can be represented as a finite string of
symbols over an alphabet consisting of English letters and mathematical and punctuation
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symbols. The set of all finite strings over any finite alphabet is countable, so the set of
all Turing machines is countable; hence the set of all effectively computable functions
must be countable as well. 2

Corollary 1.4.43 The set of all effectively computable total functions from IN to IN

is countable. 2

Proof. A subset of a countable set is countable. 2

Corollary 1.4.53

1. There exists an effectively uncomputable total function from IN to IN .

2. There exists an effectively uncomputable partial function from IN to IN . 2

Proof. By Corollary 1.4.2 there are uncountably many total and partial functions, but
by Proposition 1.4.3 and Corollary 1.4.4 only countably many of these are effectively
computable. If S is a countable subset of an uncountable set T then T\S 6= ∅. 2

It follows from this that the set of computable functions is small indeed, and that there
are uncountably many uncomputable functions.

The next two subsections gives more examples.

1.4.4 Unsolvability of the halting problem

The argument in the preceding subsection shows the existence of uncomputable functions,
but not in a constructive way, as no explicit well-defined but uncomputable function was
exhibited.

We now give a concrete example of an unsolvable problem: It is impossible effectively
to decide, given an arbitrary program p and input d, whether or not the computation
resulting from applying p to d halts. The following proof may be carried out in any
reasonable programming language. Assumptions:

1. Any program p has the form read X1,...,Xn; C; write Y.

2. Any program p denotes a partial mathematical function [[p]] : V n→ V⊥ for some n,
as sketched in subsection 1.3.3.

3. The value domain V contains at least two distinct elements, which we call true
and false.
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4. There is an effective procedure that, given any program p and input value d from
V , will execute p on d and deliver the resulting output (the value of output variable
Y.)6.

Proposition 1.4.63 The total function

halt(p,d) =

{
true if [[p]](d)↓ program p terminates on d

false if [[p]](d) =⊥ program p does not terminate on d

is not computed by any program. 2

Proof. Suppose halt were computed by some program q, i.e., for any program p and input
value d

[[q]](p,d) =

{
true if [[p]](d)↓
false if [[p]](d) =⊥

By assumption this has the form: q = read P,D; C; write Y. Now consider the follow-
ing program r, built from q:

read X;
Apply program q to input (X,X); (* Does program X stop on input X? *)
if Y then
while Y do Y := Y; (* Loop if X stops on input X *)

write Y (* Terminate if X does not stop on X *)

Now let us see what happens if we give r as input to the program just built, i.e., apply
r to itself: X = r.

Clearly one or the other of the two assertions [[r]](r)↓ or [[r]](r) =⊥ must be true.
If [[r]](r)↓, then program q will yield Y = true on input (r,r). However Y = true im-

plies that program r, when it reaches command while Y do Y := Y;, will not terminate
on input r, a contradiction.

Conclusion: [[r]](r) = ⊥ must be true. But this implies that program q will yield Y

= false on input (r,r). Thus command while Y do Y := Y; exits without looping, so
program r will terminate on input r, another contradiction.

Thus every possibility leads to a contradiction. The only unjustified assumption above
was the existence of a program q that computes halt, so this must be false.7 2

6A consequence is that all programs may be represented as elements of V .
7This argument is closely related to the paradoxes of mathematical logic. An informal but essentially

similar example: “The barber shaves just those who do not shave themselves. Who shaves the barber?”
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1.4.5 The Busy Beaver problem: an explicit uncomputable

function

The busy beaver function below, due to Rado [149] and related to the Richard paradox
[152], is mathematically well-defined. It is just as concrete as the halting problem just
seen, and is in a sense more elementary. Based on certain reasonable assumptions about
the language used to express computation, we will show that there is no algorithm which
computes it.

Assumptions: Any program p denotes a partial mathematical function [[p]] : IN→ IN⊥,
as sketched in subsection 1.3.3. Any program p has a length |p| ∈ IN : the number of
symbols required to write p. For any n, there are only finitely many programs with
length not exceeding n.

We use programs in a small subset of Pascal [72, 174] with the following notation.
Programs have the form read X; C; write Y, where X, Y are variables. Commands
C can be either of V:=n, V:=W+1, V:=W-1, where V, W are variables and n is a number
in decimal representation (similar constructions can be carried through with unary and
other representations). Commands of the forms C;C and while X>0 do begin C end

have the usual meanings.
Observation: |p| ≥ 19 for any program p = read X;C;write Y.

Proposition 1.4.7 The total function

BB(n) = max{ [[p]](0) | p is a program with |p| ≤ n, and [[p]](0)↓}

is computed by no program.8 2

Proof. Suppose for the sake of contradiction that some program q computes BB:

readX;C;writeY

The proof uses a form of diagonalization. We present the idea in three small steps.
Step 1. The idea in deriving a contradiction is to find a number K and a program r

such that |r| ≤K and [[r]](0) = [[q]](K)+1. This implies

[[q]](K) = BB(K) Since q computes BB.
≥ [[r]](0) Since |r| ≤K and [[r]](0)↓
= [[q]](K)+1 By definition of r

which is a contradiction.
8Where we define max∅= 0.
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Step 2. How to determine r and K? Well, since we are to compute [[q]](K)+1, it
seems sensible to use q in the construction of r. Since |r| must be less than K this forces
K to be at least |q|. As a first try, let K = |q| and and r be the following program
computing [[q]](K)+1:

read X;
X:=c;
C;
Y:=Y+1;

write Y

where c is a numerical constant representing the number |q|. This program does not
quite meet the requirements of Step 1, since q is part of it and so |r|> K = |q|. In other
words, the size of program r is too large compared to the input to the command C.

Step 3. As a second try, we increase the input to command C, i.e., the value of X,
without increasing the size of program r by the same amount. Let K = 3|q| and let r

be the program above slightly modified, where c is again the decimal representation of
number |q|:

read X;
X:=3*c;
C;
Y:=Y+1;

write Y

Clearly program r consists of the symbols to write q (i.e., read X;C;write Y), plus the
symbols required to write the constant c, plus (count for yourself) 13 additional symbols.

Since c is the decimal representation of the number |q|, it follows that |c| ≤ |q|.
Further, any program is at least 19 symbols long, so it follows that

|r| = 13+ |c|+ |q| By construction of r
≤ |q|+ |q|+ |q| Since 19≤ |q| and |c| ≤ |q|
= 3|q|= K

Hence, with K = 3|q|, we have |r| ≤ K and [[r]](0) = [[q]](K) + 1, as required for the
argument seen earlier. (The constant 3 can be replaced by any larger value.) 2

1.4.6 Unsolvability of the halting problem

It is not hard to write programs in the small subset of Pascal of the previous section
which do not halt, e.g.,

read X; X:=1; while X > 0 do begin X:=X end; write X
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The following is another proof that it is impossible effectively to decide the halting
problem.

Corollary 1.4.83 The total function

halt(p,n) =

{
1 if [[p]](n)↓
0 otherwise

is computed by no effective procedure. 2

Proof. Suppose, for the sake of contradiction, that such a procedure does exist. Then
BB can also be computed by the following procedure:

1. Read n.

2. Set max = 0.

3. Construct {p1, . . .pk}= {p | p is a program and |p| ≤ n}.
4. For i = 1,2, . . . ,k do: if [[p]]i(n)↓ and max < [[pi]](0), then reassign max := [[pi]](0).

5. Write max.

Step 3 is effective since there are only finitely many programs of any given size, and step
4 is effective by assumption. By the Church-Turing thesis one can turn this procedure
into a program in our subset of Pascal. The conclusion that BB is computable by a
program in this language is in contradiction with Proposition 1.4.7, so the (unjustified)
assumption that q exists must be false. 2

1.4.7 Consequences of unsolvability of the halting problem

We have just argued informally that the halting problem is not decidable by any program
of the same sort. This is analogous to the classical impossibility proofs, for example that
the circle cannot be squared using tools consisting of an unmarked ruler and a compass.
Such classical impossibility proofs, however, merely point out the need for stronger tools,
for instance a marked ruler, to solve the named problems.

Our “busy beaver” argument similarly asserts that one particular problem, the halting
problem, cannot be solved be means of any of a class of tools: programs in our Pascal
subset. But here a major difference arises because of the Church-Turing thesis. This
gives the undecidability of the halting problem much more weight since it implies that the
halting problem is not decidable by any intuitively effective computing device whatsoever.
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1.5 The scope and goals of complexity theory

Recall that computability theory is concerned with questions such as whether a prob-
lem is solvable at all, assuming one is given unlimited amounts of space and time. In
contrast, complexity theory is concerned with questions such as whether a problem can
be solved within certain limited computing resources, typically space or time. Whereas
computability theory is concerned with unsolvable problems and the boundary between
solvable and unsolvable problems, complexity theory analyzes the set of solvable prob-
lems.

To address such questions, one must have a precise definition of space and time costs.
Granted that, complexity theory asks questions such as:

• Which problems can be solved within a certain limit of time or space, and which
cannot?

• Are there resource limits within which a known combinatorial problem definitely
cannot be solved?

• Are there problems which inherently need more resources than others?

• What characteristics of problems cause the need for certain amounts of resources?

• What is the class of problems solvable within certain resource limits, and what are
the basic properties of this class?

• Given a problem, what is the complexity of its best algorithm?

• Do best algorithms always exist?

• Does adding more resources allow one to solve more problems?

1.5.1 Polynomial time

Similarly to the situation in computability theory, one might fear that one single definition
of resource accounting would not suffice, and in fact different models exist giving rise to
different theories of complexity. Specifically, the class of problems solvable within certain
sharp limits may vary from model to model.

However, we will see that many computation models define precisely the same class
ptimeof problems decidable within time bounded by some polynomial function of the
length of the input. Many researchers identify the class of computationally tractable
problems with those that lie in ptime, thereby suggesting what could well be called Cook’s
thesis, after Stephen C. Cook, a pathbreaking researcher in computational complexity:
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1. All reasonable formalizations of the intuitive notion of tractable computability are
equivalent (they can simulate each other within a polynomially bounded overhead
in time);

2. Polynomial-time Turing machine computability is a reasonable formalization of
tractable computability.

Note the close similarity with the Church-Turing thesis: “Turing machine computability”
has been replaced by “polynomial time Turing machine computability,” and “effectively
computable” by “tractable computability.” A stronger form of the first part is sometimes
called the Invariance Thesis [15].

Cook’s thesis is a useful working assumption but should not be taken as being as
solidly founded as the Church-Turing thesis, which concerns computability in a world of
unlimited resources. Reasons for a certain skepticism about Cook’s thesis include the
facts that an algorithm running in time |x|100, where |x| is the length of the input to
the algorithm, can hardly be regarded as computationally tractable; and that there are
algorithms (for instance as used in factorizing large integers) that run in a superpolyno-

mial time bound such as |x|log log |x|, but with constant factors that are small enough for
practical use.

1.5.2 Complexity hierarchies and complete problems

Ideally, one would like to be able to make statements such as “the XXX problem can be
solved in time O(n3) (as a function of its input size); and it cannot be solved in time
O(n3−ε) for any ε > 0.” Alas, such definitive statements can only rarely be proven. There
are a few problems whose exact complexity can be identified, but very few.

Because of this, a major goal of complexity theory is classification of problems by
difficulty. This naturally leads to a division of all problems into hierarchies of problem
classes. Standard classes of problems include: logspace, nlogspace, ptime, np-

time, pspace. Each class is characterized by certain computational resource bounds. For
example, problems in logspace can be solved with very little storage; those in ptime

can be solved with unlimited storage, but only by algorithms running in polynomial time;
and those in nptime can be solved by polynomial time algorithms with an extra feature:
they are allowed to “guess” from time to time during their computations.

Various combinations of these resources lead to a widely encompassing “backbone”
hierarchy:

logspace ⊆ nlogspace ⊆ ptime ⊆ nptime ⊆ pspace = npspace ⊂ rec ⊂ re
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Surprisingly, it is not known whether any one of the inclusions above is proper: for
example, the question ptime = nptime?, often expressed as P = NP?, has been open
for decades.

Nonetheless, this hierarchy has proven itself useful for classifying problems. A great
many problems have been precisely localised in this hierarchy. A typical example is SAT,
the problem of deciding whether a Boolean expression can be made true by assigning
truth values to the variables appearing in it. This problem is complete for nptime,
meaning the following. First, SAT is in nptime: There is a nondeterministic algorithm
that solves it and runs in polynomial time. Second, it is “hardest” among all problems in
nptime: If it were the case that SAT could be solved by a ptime algorithm, then every
problem in nptime would have a deterministic polynomial time solution, and ptime =

nptime would be true. This means that two stages of the hierarchy would “collapse.”
The last four chapters of this book concern complete problems for the various com-

plexity classes.

1.6 Historical background

At the Paris Conference in 1900 D. Hilbert gave a lecture which was to have profound
consequences for the development of Mathematics, particularly Mathematical Logic, and
the not yet existing field of Computer Science. Hilbert’s ambitions were high and his
belief in the power of mathematical methods was strong, as indicated by the following
quote from his lecture:

Occasionally it happens that we seek the solution under insufficient hypotheses or
in an incorrect sense, and for this reason do not succeed. The problem then arises:
to show the impossibility of the solution under the given hypotheses, or in the
sense contemplated. Such proofs of impossibility were effected by the ancients, for
instance when they showed the ratio of the hypotenuse to the side of an isosceles
triangle is irrational. In later mathematics, the question as to the impossibility of
certain solutions plays a preeminent part, and we perceive in this way that old and
difficult problems, such as the proof of the axiom of parallels, the squaring of the
circle, or the solution of equations of the fifth degree by radicals have finally found
fully satisfactory and rigorous solutions, although in another sense than originally
intended. It is probably this important fact along with other philosophical reasons
that gives rise to the conviction (which every mathematician shares, but which
no one has as yet supported by a proof) that every definite mathematical problem
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must necessarily be susceptible to an exact settlement, either in the form of an exact
answer, or by proof of the impossibility of its solution and therewith the necessary
failure of all attempts9.

At the conference Hilbert presented 23 unsolved mathematical problems. One of these,
the Entscheidungsproblem (decision problem), was described as follows:10

The Entscheidungsproblem is solved if one knows a procedure which will permit
one to decide, using a finite number of operations, on the validity, respectively the
satisfiability of a given logical expression.

This problem was part of Hilbert’s program which included an endeavour to formalize
number theory in a first-order deductive system. It was hoped that the provable theorems
of the system would be precisely the true number-theoretic propositions, and that one
could devise a procedure to decide whether or not a given proposition were a theorem of
the system.

A negative answer to the Entscheidungsproblem, i.e., a proof that no such procedure
exists, must necessarily be grounded in a precise definition of the notion of procedure.
However, Hilbert and his school believed that such a universal decision procedure existed,
and so had no reason to formalize the notion of a procedure in general terms.

In 1931 Gödel showed his celebrated Incompleteness Theorem [54] stating, roughly,
that for any consistent, sufficiently strong formalization of number theory, there are
true propositions which cannot be proved in that formalization. To the experts this
result made it seem highly unlikely that the Entscheidungsproblem could have a positive
solution.

In 1936 it was shown independently by Church [22, 23] and Turing [170] that the
Entscheidungsproblem does not have a positive solution. Further, and just as im-
portant in the long run, each author gave a formalization of the notion of procedure
(via λ-expressions and Turing machines, respectively), and derived the unsolvability of
the Entscheidungsproblem from unsolvability of the Halting problem, which they both
showed for their respective formalisms. Similar work on other formalizations, also in
1936, was done by Kleene [98] and Post [141]. Gandy [51] describes this astonishing
“confluence of ideas in 1936.”

It is a remarkable fact that the different formalisms all define the same class of number-
theoretic functions, the so-called partial recursive functions, and equivalences between

9Our italics; not present in the original.
10In a formulation from 1928; the English translation from German is adopted from [51].
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various formalisms were soon proved by Kleene, Turing, and others. In fact, one can
write compilers that turn a program in one formalism into a program in one of the
other formalisms that computes the same function, supporting what we have previously
called the Church-Turing thesis. It should be noted that this correspondence between the
algorithms in the various formalisms is a stronger result than the fact that the various
formalisms define the same class of functions.

The initial work in complexity theory in the late 1920’s and early 1930’s was concerned
with subclasses of the effectively computable functions, e.g., the primitive recursive func-
tions studied by Hilbert [69], Ackermann [1], and others. Subclasses of primitive recursive
functions were studied by Kalmar [92] and Grzegorczyk [58]. More programing language
oriented versions of these classes were later introduced by Meyer and Ritchie [125].

With the appearance of actual physical computers in the 1950’s, an increasing interest
emerged in the resource requirements for algorithms solving various problems, and the
field of complexity as it is known today, began around 1960. One of the first to consider
the question as to how difficult it is to compute some function was Rabin [145, 146].
Later, Blum [14] introduced a general theory of complexity independent of any specific
model of computation.

The first systematic investigation of time and space hierachies is due to Hartmanis,
Lewis, and Stearns [65, 64, 109] in the 1960’s, who coined the term “computational
complexity” for what we call complexity theory in this book.

Important results concerning the classes of problems solvable in polynomial time and
non-deterministic polynomial time were established by Cook [26] and Karp [95] who were
among the first to realize the importance of these concepts.

Exercises

1.1 Consider the set of all Turing machine programs. Does Turing argue that the tape
symbol alphabets of different programs should be uniformly bounded in size, or may
different machines each have their own alphabets, without any uniform size bound? 2

1.2 Again, consider the set of all Turing machine programs, and assume that the tape
symbol alphabets of different programs are uniformly bounded in size.

Could one reasonably argue that the set of “states of mind” should be uniformly
bounded as well? Hint: What would be the effect of bounding both of these on the
number of problems solvable by Turing machines? 2
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1.3 Prove that P(IN), the set of all subsets of IN , is uncountable, using the diagonal
method. Hint: if all of P(IN) could be listed S1,S2, . . ., then one can find a new subset
of IN not in this list. 2

1.4 Prove that the set of all total functions IN →{0,1} is not countable. 2

1.5 Let A and B be sets and let S be a non-empty set of partial functions from A into
B, i.e., S ⊆A→B⊥. Show that the following conditions are equivalent.

1. S is countable.

2. There is a sequence f0,f1, . . . so that g ∈ S if and only if g ' fi for some i.

3. There is a surjective function u : IN → S.

4. There is a function u : IN → (A→ B⊥) such that g ∈ S if and only if g ' u(i) for
some i.

5. There is a partial function u : (IN ×A)→ B⊥ such that g ∈ S if and only if there
is an i ∈ IN such that g(a)' u(i,a) for all a in A.

The reader should note that the f ’s, g’s, etc. above are functions, and that these are not
necessarily computed by any algorithms. 2

1.6 Consider a language like the subset of Pascal in Subsection 1.4.5, but with the
following modification. Instead of commands of form

whileX > 0dobeginCend

there are only commands of form

forX := 1tondobeginCend

where n is a numerical constant, with the usual meaning. (It terminates immediately if
n < 1.) Variable X may not be re-assigned within command C.

Use a construction similar to the one in Subsection 1.4.5 to show that there is a
function which is not computable in this language. Is the function effectively computable
at all? 2

1.7 * Change the language of the previous exercise by expanding the iteration state-
ment’s syntax to

forX := E1toE2dobeginCend

where E1 and E2 are numerical expressions. (X may still not be assigned within command
C.) Consider two alternative ways to interpret this statement (using a “goto” syntax):
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Semantics 1: equivalent to the following, where Tem is a new variable.

X := E1; Tem := E2;
1: if X > Tem then goto 2

C
X := X + 1
goto 1

2:

Semantics 2: equivalent to the following.

X := E1;
1: if X > E2 then goto 2

C
X := X + 1
goto 1

2:

Show that every program terminates under semantics 1, but that some may loop under
semantics 2. 2
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2 The WHILE Language

The notions of the introductory chapter, e.g., “effectively computable,” were imprecise,
because they relied on an intuitive understanding of the notion “effective procedure.” We
now present a model of computation, or programming language, called WHILE, which
is used throughout the book. In subsequent chapters we define the intuitive notions
of the preceding chapter precisely, by identifying “effective procedure” with “WHILE
program.”

It may seem that we avoid the vagueness of intuitive argumentation by going to the
opposite extreme of choosing one model of computation which is too simple to model
realistic computing. Later chapters will argue that this is not the case, by proving the
equivalence of WHILE with a variety of other computation models.

The WHILE language has just the right mix of expressive power and simplicity.
Expressive power is important because we will be presenting many algorithms, some
rather complex, that deal with programs as data objects. The data structures of WHILE
are particularly well suited to this, and are far more convenient than the natural numbers
used in most theory of computation texts. Simplicity is essential since we will be proving
many theorems about programs and their behaviour. This rules out the use of larger,
more powerful languages, since proofs about them would necessarily be too complex to
be easily understood.

Section 2.1 describes the WHILE syntax and informally describes the semantics of
programs. Section 2.2 precisely describes the semantics. Section 2.3 shows that equality
tests may without loss of generality be restricted to atomic values, each taking constant
time. This will be relevant later, when discussing time-bounded computations.

2.1 Syntax of WHILE data and programs

The syntax of WHILE data structures and programs is described in Subsections 2.1.1–
2.1.2. Subsection 2.1.3 informally explains the semantics of WHILE-programs by means
of an elaborate example. Subsection 2.1.4 concerns conditionals and truth values in
WHILE, and Subsections 2.1.5-2.1.6 show how to compute with numbers and lists in
WHILE. Finally, Subsection 2.1.7 describes a useful macro notation.
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2.1.1 Binary trees as data values

Recall the idealized subset of Pascal that we used in Subsection 1.4.5 in which one can
compute with numbers.1 It has commands to assign an arbitrary number to a variable,
and to increment and decrement a variable by one.

The language WHILE is very similar but with one very important difference: instead
of computing with numbers, the language computes with certain trees built from a finite
set. For instance, a and (a.c) as well as (a.(b.c)) are trees built from the set {a,b,c}.
The objects a,b,c are called atoms (definition) because, unlike for instance (a.c), they
cannot be divided further into subparts. The reason we call these objects “trees” is
that they can be represented in a graphical form as trees with atoms as leaf labels, see
Figure 2.1.
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Figure 2.1: Two trees in linear and graphical notatation.

On the number of atoms. In Turing’s analysis of computation, all computing is
based on manipulation of symbols from an alphabet. Further, he argued against the use
of an infinitely large symbol alphabet, as this would lead to symbols that differed by an
arbitrarily small extent. A conclusion is that we should not allow an unbounded number
of atoms in WHILE programs.

In fact, it suffices to have only one atom, that we will henceforth call nil. The reason
is that any computation using, say, the three atoms a, b, c could just as well be done

1The reason we call it “idealized” is that it has representations of all natural numbers 0,1,2, . . ., and

not just, say, 0 to 65535.
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using three distinct binary trees in their places, e.g., (nil.nil) for a, (nil.(nil.nil))
for b, and ((nil.nil).nil) for c.

In informal examples we will often, for the sake of human readability, use more atoms
than nil, as in Figure 2.1, but in formal definitions we only use the one atom nil.

Formally we define the set of trees ID as follows.

Definition 2.1.1 The set ID of trees is defined by:

1. The atom nil is an element of ID;

2. Whenever d1 and d2 are elements of ID, then so is (d1.d2); and

3. ID is the smallest set satisfying the previous two points.

2

Definition 2.1.2 The function | • | : ID→ IN defined by:

|d|=

{
1 if d ∈A

|d1|+ |d2| if d = (d1.d2)

denotes the size of a data value d ∈ ID. 2

In Figure 2.1, the leftmost value has size 5, and the rightmost value has size 6.

2.1.2 Syntax of WHILE programs

The operation in WHILE, analogous to the increment operation on numbers in the
idealized subset of Pascal in Subsection 1.4.5, is the operation that combines two trees
d1 and d2 into one (d1.d2). This operation is called cons (short for “construct”.) The
operations in WHILE, analogous to the decrement operation on numbers, are the two
operations that decompose a tree (d1.d2) into the subtrees d1 and d2. These are called
head and tail, respectively. There is also an operation to test equality of elements of ID.

Definition 2.1.3 Let Vars = {V0,V1,. . . } be distinct variables. We use the conventions
d, e, f, . . .∈ ID and X, Y, Z, . . .∈ Vars. Then the syntax of WHILE is given by the
following grammar:
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Expressions 3 E, F ::= X (for X ∈ Vars)
| d (for atom d)
| cons E F

| hd E

| tl E

| =? E F

Commands 3 C, D ::= X := E

| C; D
| while E do C

Programs 3 P ::= read X; C; write Y

Here X and Y are the not necessarily distinct input and output variables. 2

We use indentation to indicate the scope of while and other commands. For instance,
consider the two commands:

while E do while E do
C; C;

D D

The leftmost command repeatedly executes C as long as E is true and executes D once
when E has become false (what it means that an expression is true or false will be clear
later on). The rightmost command repeatedly executes first C and then D, as long as E

is true.

We also use braces to indicate scope, so the two above commands might have been
written {while E do C }; D and while E do {C;D}. Similarly we use parentheses to
explicate scope in expressions, such as cons (hd (tl X)) Y.

Note that a program always expects exactly one input. A program of, say, two inputs
can be expressed as a function which expects one input of form (d.e):2

read X; (* X is (d.e) *)
Y := hd X; (* Y is d *)
Z := tl X; (* Z is e *)
C;

write Y

2Comments are written in the form (* ... *), as in Pascal.
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2.1.3 Informal semantics

We now explain the semantics of a simple program to reverse a list, which illustrates
most aspects of WHILE.

Example 2.1.4 Consider the following program, reverse:

read X;
Y := nil;
while X do
Y := cons (hd X) Y;
X := tl X;

write Y

The program consists of a read command, a body, and a write command. The idea is
that some input d ∈ ID is assigned to the variable X, and then the body is executed. At
any point during execution every variable is bound to an element of ID; the collection of
all such bindings at one point is a store. Initially X is bound to the input d ∈ ID, and all
other variables in the program are bound to nil. If execution of the body terminates,
the value e ∈ ID last bound to Y is the output.

For reverse, if X is initially bound to input

(d0.(d1.(· · ·.(dn−1.(dn.nil))· · ·)))

then Y is bound to

(dn.(dn−1.(· · ·.(d1.(d0.nil))· · ·)))

when execution reaches the final write command, and this later element of ID is then the
output.

To bind a variable, say Y, to some f ∈ ID one uses the assignment Y:=f. So the second
line assigns nil to Y.3

More generally every expression E evaluates to some e ∈ ID, and Z := E assigns this
e to Z. Specifically, E evaluates to e. As another example cons E F evaluates to (e.f)

if E evaluates to e and F evaluates to f. Further, hd E and tl E evaluate to e and f,
respectively, if E evaluates to (e.f). Finally, a variable Z evaluates to the value it is
currently bound to.

3Since all variables are initially bound to nil this command is superfluous. However it often happens

that one assigns some f ∈ ID to a variable without ever making use of the initial value nil. Therefore, if

one does want to make use of the initial value nil, it is good programming practice to enter an explicit

assignment Y := nil in the program.
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The expression =? E F evaluates to true, if E and F evaluate to the same value, and to
false otherwise. Thus =? (nil.nil) (nil.nil) evaluates to true, and =? (nil.nil)

nil evaluates to false.
Turning to our program, the next thing that happens is that the while command

beginning in the third line is executed. The meaning of the command while E do C is
as follows. If E evaluates to nil proceed to the command following while E do C. In the
example this is the command write Y. However, if E evaluates to something other than
nil execute C, and test again whether E evaluates to nil. The outcome of this test may
be different from the first since the variables occurring in E may have been assigned new
values by the command C. If E evaluates to nil, go to the next command, and otherwise
execute C and test E again, etc.

So in the example program, the commands Y := cons (hd X) Y; X := tl X are
executed in sequence as long as X is not bound to nil. Before the first of these two
commands X is bound to (e.d) (otherwise execution would have proceeded to the write
command) and Y is bound to some f. After the first command Y is bound to (e.f), and
after the second command X is bound to d.

If we think of the value (d0.(d1.(· · ·.(dn−1.(dn.nil)) · · ·))) as a list d0, d1, . . .,
dn−1, dn, then the program reverses lists; more about lists in Subsection 2.1.5. 2

2.1.4 Truth values and if-then-else

As is apparent from the preceding example, whenever evaluating expressions in tests one
should think of nil as “false” and any other element of ID as “true.” This intuition is so
predominant that we explicate it in a definition:

Definition 2.1.5 We use the following abbreviations:

false = nil

true = (nil.nil)

Conditional commands and boolean expressions. We now see that conditional
commands can be expressed by while-commands alone.

Example 2.1.6 The following compound command executes C if and only if E evaluates
to true. Variable Z must be chosen different from existing variables.

Z := E; (* if E then C *)
while Z do { Z := false; C };
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The next statement will execute C1 if E evaluates to true and otherwise C2.
Z := E; (* if E then C1 else C2 *)
W := true;
while Z do { Z := false; W := false; C1 };
while W do { W := false; C2 };

2

The same idea may be applied to expressions, rather than just commands, thus expressing
conjunction E and F, disjunction E or F, or negation not E, etc..

2.1.5 Lists

As one can see from the example in subsection 2.1.3, elements of ID sometimes have
deeply nested parentheses that are hard to read; one has to resort to counting to parse
an element like ((a.(b.nil)).((d.(e.nil)).nil)).

Often the nesting has a certain regular structure, because we often express a list of
elements d0, d1,. . . , dn−1, dn as the tree (d0.(d1.(· · ·.(dn−1.(dn.nil)) · · ·))). For
instance (a.(b.nil)) represents the list consisting of elements a, b. Therefore it would
be particularly convenient to have a short notation for this form. Hence the idea is to
use the notation (d0 · · ·dn) for the tree (d0.(d1.(· · ·.(dn−1.(dn.nil)) · · ·))). Then the
tree (a.(b.nil)) can be written (a b) in short notation and, as another example, the
tree ((a.(b.nil)).((d.(e.nil)).nil) can be written ((a b) (d e)).

This is introduced in the following definition.

Definition 2.1.7 The list representation d of d ∈ ID is the string of symbols from al-
phabet {nil,(, .,)} defined recursively as follows:

d =

{
d if d is an atom
(d1 · · ·dn) if d = (d1.(d2.(· · ·(dn.nil) · · · )))

We call (d1 · · ·dn) a list of length l(d) = n; nil is the empty list of length 0. In general,
a length may be computed for any element of ID by induction:

l(nil) = 0
l((d1.d2)) = 1+ l(d2)

2

Notice that every element of ID has exactly one list representation. Henceforth we will
omit the underlines and write all values in the list form. Figure 2.2 gives some examples
of elements in ID and their list representations.
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Value d in ID Representation |d| l(d)
nil nil 1 0
(a.(b.nil)) (a b) 3 2
(a.((b.(c.nil)).(d.nil))) (a (b c) d) 6 3
((a.(((b.nil).nil).nil)).nil) ((a ((b)))) 6 1

Figure 2.2: Some trees and their list representation

The first example in the preceding subsection can now be expressed as saying that the
program reverses lists: if X was initially bound to input (d0 · · ·dn) then Y is bound to
(dn · · ·d0) when execution reaches the final write command.

2.1.6 Numbers

WHILE has only one atom, so how can we compute with numbers? One idea is to
represent the number n by a list of length n.

Definition 2.1.8 Define n = niln, where

nil0 = nil = ()
niln+1 = (nil.niln) = (nil . . . nil︸ ︷︷ ︸

n+1 times

)

and let N = {n |n ∈ IN}. The elements of N are called numerals. 2

As a matter of convenience, we will omit underlines and simply write 0,1,2, . . . instead
of 0,1,2, . . . or nil0, nil1, nil2, · · ·. With the representation in this definition, while E

do C means: as long as E does not evaluate to 0, execute C. As two very simple examples,
the successor and predecessor functions are computed by:

read X; (* succ *) read X; (* pred *)
Y := cons nil X; Y:=tl X;

write Y write Y

Here is a program for adding two numbers (note that XY is a single variable, whose value
is a pair):



Syntax of WHILE data and programs 37

read XY; (* add X Y *)
X := hd XY;
Y := tl XY;
while X do
Y := cons nil Y;
X := tl X;

write Y

More programs computing with numbers are examined in the Exercises.

2.1.7 Syntactic sugar: some useful macro notations

We introduce some programming shorthand devices to increase human readability of
program texts. The first is nearly trivial: let skip be a command with no effect, say
X:=X.

Two notations for building lists. The expression list E1 · · · En will be used as
shorthand for cons E1 (cons E2 · · · (cons En−1 (cons En nil)) · · · ) for any n ∈
IN . Its value is (d1 d2 · · · dn−1 dn) if the value of each list Ei is di.

The expression cons* E1 · · · En will be used as shorthand for cons E1 (cons

E2 · · ·(cons En−1 En)· · ·) for any n ∈ IN . (This differs slightly in that nil is not added
at the end, which makes it more useful than list for extending an already-existing list.)
Its value is (d1 d2 · · · dn−1 e1 e2 · · · em) if the value of each list Ei is di for 1≤ i < n

and the value of list En is (e1 e2 · · · em)

Inline procedure expansion. Note in the example for adding two numbers that the
program incremented and decremented X and Y, respectively, explicitly by means of cons
and tl expressions. A more abstract formulation of add, hiding the specific way numbers
are implemented, is:

read XY; (* add X Y *)
X := hd XY;
Y := tl XY;
while X do
Y := succ Y;
X := pred X;

write Y

where we allow the add program to use the succ and pred programs. Strictly speaking
we have not yet explained how this can be allowed. That is done in this subsection.
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Given a program p we will allow a program q to use the command B := p A. The
meaning is as follows. Suppose that the input and output variable in p are X and Y,
respectively. Now make a copy pp of the body of p where X and Y are replaced by A and
B, respectively, and where all variables are renamed so that no variable of pp other than
A and B occurs in q. Then replace in q the command B := p A by the body of pp.

Example 2.1.9 Consider the following program, append, which for input (d.e) with d

= (d1 · · · dn) and e = (e1 · · · em) computes (d1 · · · dn e1 · · · em).

read X; (* X is (d.e) *)
A := hd X; (* A is d *)
Y := tl X; (* Y is e *)
B := reverse A; (* B is d reversed *)
while B do
Y := cons (hd B) Y;
B := tl B;

write Y (* Y is list d with e appended *)

Written out explicitly the program is:

read X; (* X is (d.e) *)
A := hd X; (* A is d *)
Y := tl X; (* Y is e *)
B := nil; (* B becomes d reversed *)
while A do
B := cons (hd A) B;
A := tl A;

while B do
Y := cons (hd B) Y;
B := tl B;

write Y (* Y is list d with e appended *)
2

We will also allow names to stand for sequences of commands. Thus from now on,
programs may make free use of conditionals.

2.2 Semantics of WHILE programs

Recall from the introductory chapter the important distinction between algorithms and
the mathematical functions they compute. In this section we show how any program
in WHILE can be used to define a partial function from ID to ID. The interpretation is
nothing more than a precise statement of the informal semantics mentioned in Subsec-
tion 2.1.3.
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Subsection 2.2.1 formalizes the notion of a store that was mentioned in Example 2.1.4.
Subsections 2.2.2–2.2.3 then formalize the notions of evaluation of an expression and
execution of a command, also mentioned in Example 2.1.4. Finally, Subsection 2.2.4
puts together the pieces.

2.2.1 Stores

The notation [x1 7→ d1, . . . ,xn 7→ dn] denotes the finite function f such that f(xi) = di.
The notation f [x 7→ d] denotes the function g such that g(x) = d, and g(y) = f(y) for
y 6= x. See Subsection A.3.6 in the Appendix for more information.

Definition 2.2.1 Given a program p=read X; C; write Y.

1. Vars(p) denotes the set of all variables occurring in p.

2. A store σ for p is a function from Vars(p) to elements of ID. The set of all stores
for p, i.e., the set Vars(p)→ ID, is called Storep.

3. The initial store σp
0(d) ∈ Storep for input d ∈ ID is:

[X 7→ d,Z1 7→ nil . . . ,Zm 7→ nil]

where Vars(p) = {X,Z1, . . . ,Zm}. Note that if Y and X are different, Y is among the
Zi. 2

2.2.2 Evaluation of expressions

Given a store σ containing the values of the variables in an expression E, the function E
maps E and σ into the value E [[E]]σ = d in ID that E denotes. For example E [[cons X Y]]σ =
((nil.nil).nil) if σ = [X7→ (nil.nil), Y7→ nil].
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Definition 2.2.2 The function E : Expression→ (Storep→ ID) is defined by:

E [[X]]σ = σ(X)
E [[d]]σ = d

E [[cons E F]]σ = (E [[E]]σ .E [[F]]σ)

E [[hd E]]σ =

{
e if E [[E]]σ = (e.f)
nil otherwise

E [[tl E]]σ =

{
f if E [[E]]σ = (e.f)
nil otherwise

E [[=? E F]]σ =

{
true if E [[E]]σ = E [[F]]σ
false otherwise

2.2.3 Execution of commands

Given a store σ, the relation C`σ→ σ′ expresses the fact that the new store is σ′ after
executing the command C in the store σ. (If command C does not terminate in the given
store σ, then there will be no σ′ such that C ` σ→ σ′.) For instance,

X:=cons X Y ` [X 7→ nil,Y 7→ nil]→ [X 7→ (nil.nil),Y 7→ nil]

Definition 2.2.3 Define the relation • ` • → • ⊆ Command× Storep× Storep to be the
smallest relation satisfying:

X:=E ` σ→ σ[X 7→ d] if E [[E]]σ = d

C;D ` σ→ σ′′ if C ` σ→ σ′ and D ` σ′→ σ′′

while E do C `σ→σ′′ if E [[E]]σ 6= nil, C ` σ→ σ′, while E do C `σ′→σ′′

while E do C ` σ→ σ if E [[E]]σ = nil

2

2.2.4 Semantics of WHILE programs

The function [[•]] maps a program p and input value d into a value [[p]](d) = e in ID if
the program terminates. (If the program does not terminate there will be no e ∈ ID with
[[p]](d) = e.) This is done by executing C in the initial store σp

0(d) (as in Definition 2.2.1)
and writing the value σ′(Y) bound to Y in the new store σ′ resulting from execution of C.
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Definition 2.2.4 The semantics of WHILE programs is the function

[[•]]WHILE : Program→ (ID→ ID⊥)

defined for p = read X; C; write Y by:

[[p]]WHILE(d) = e if C ` σp
0(d)→ σ and σ(Y) = e

We write [[p]] instead of [[p]]WHILE when no confusion is likely to arise. If there is no e such
that [[p]](d) = e, then p loops on d;4 otherwise p terminates on d. We also say that p

computes [[p]]. 2

Given the precise semantics of programs one can prove rigorously such properties as
[[reverse]](d1 · · ·dn) = (dn · · ·d1), see the exercises.

2.2.5 Calculating semantic values

Given a program p and an input d on which p does not loop, how can we find the
corresponding output [[p]](d)? According to Definition 2.2.4 we have to find a store σ

such that C ` σp
0(d)→ σ, and then look up Y’s value in σ.

How do we solve the problem, given some C and store σ0, of finding a σ such that
C ` σ0→ σ? This can be done by applying the rules in Definition 2.2.3 as follows.

• If C has form C;D we first solve the problem of finding a σ′ such that C ` σ0→ σ′,
and then the problem of finding a σ′′ such that D ` σ′→ σ′′, and then we can use
σ = σ′′.

• If C has form X := E we calculate E [[E]]σ0 = d and then σ is the same as σ0 except
that X 7→d.

• if C has form while E do C we calculate E [[E]]σ0 = d. If d is nil then σ is σ0.
Otherwise, first solve the problem of finding a σ′ such that C ` σ0→ σ′, and then
the problem of finding a σ′′ such that while E do C ` σ′→ σ′′, and then we can
use σ = σ′′.

4In this case, we write [[p]](d) =⊥, as usual for partial functions.
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2.3 Equality versus atomic equality

One could argue, as in Turing’s analysis of Section 1.2.1, against our use of the tree
comparison operator =? on the grounds that it is not “atomic” enough. This can be
countered by showing how to test general equality without =?.

The following program assumes given input as a pair (d.e), and tests them for
equality:

read X;
GO := true; Y := false;
while GO do
if D then
D1 := hd D; D2 := tl D;
if D1 then
if E then
E1 := hd E; E2 := tl E;
if E1 then
D := cons (hd D1) (cons (tl D1) D2));
E := cons (hd E1) (cons (tl E1) E2))

else GO := false
else GO := false

else
if E then
if (hd E) then GO := false
else
D := tl D; E := tl E

else GO := false
else
if E then GO := false
else
Y := true; GO := false;

write Y

A few words on the correctness of this program are in order. First of all, termination is
ensured by the fact that a certain number gets smaller every time the body of the while
loop is executed; this is addressed in an exercise.

Assume that the values d and e have been assigned to program variables D and E.
Initially, Y is set to the most common output value false.

Case 1: If the “cascade” of tests if D, if D1, if E, if E1 are all true, then d and
e have forms ((d11.d12).d2) and ((e11.e12).e2). In this case D and E are re-assigned
values (d11.(d12.d2)) and (e11.(e12.e2)), and the loop is repeated. It is clear that the
new values for D and E are equal iff the original ones were equal.
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The next two, Cases 2 and 3, both fail because d has form ((d11.d12).d2) but e has
form (nil.e2) or nil, respectively. Then the two values cannot be equal, so the loop is
terminated by setting GO := false and not changing Y. Cases 4 also fails: d has form
(nil.d2) but e has form ((e11.e12).e2).

If execution enters Case 5, d and e have form (nil.d2) and (nil.e2). For d and e

to be equal, d2 and e2 must be equal. Therefore D and E are re-assigned values d2 and
e2, and the loop is repeated.

If execution enters Case 6, d and e have form (nil.d2 and nil, which fails.

If execution enters Case 7, d and e have form nil and (e1.e2) so the loop is termi-
nated with output false. In the final Case 8, d and e are both nil, and comparison
terminates successfully by setting output variable to Y to true.

2.3.1 More syntactic sugar

Rewrite rules: The logic of the nested if commands above is not easy to follow (one
has to parenthesize them). A convenient more compact form is to write nested if’s as
a sequence of rewrite rules of form rewrite [X1, X2,...,Xn] by Rule1;...;Rulem.
Here each Xi is a variable, and a rule Rulej may have one of two forms:

1. [pat1,...,patn] ⇒ [E1,...,En], or

2. [pat1,...,patn] ⇒ C;

where each pati is a pattern built from new variables using nil and the tree constructor
“.” and C is a command.

Informal semantics: if the current values of variables X1, X2,...,Xn match patterns
pat1,...,patn (in left-to-right order), then the rule is applied. If the rule has the first
format, Ei is an expression assigning a new value to variable Xi. If the second, C is a
command that may change Xi. The right-side expressions E1,. . . ,En or command C may
contain references to variables appearing in the patterns, though not to the left of :=.

For an example, the algorithm above could be expressed using rewrite rules as:
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read X;
GO := true; Y := false;

while GO do
rewrite [D, E] by

[((D11.D12).D2), ((E11.E12).E2)]⇒[(D11.(D12.D2)), (E11.(E12.E2))]
[ ((D11.D12).D2), (nil.E2) ] ⇒ GO := false;
[ ((D11.D12).D2), nil ] ⇒ GO := false;
[ (nil.D2), ((E11.E12).E2) ] ⇒ GO := false;
[ (nil.D2), (nil.E2) ] ⇒ [ D2, E2 ]
[ (nil.D2), nil ] ⇒ GO := false;
[ nil, (E1.E2) ] ⇒ GO := false;
[ nil, nil ] ⇒ Y := true; GO := false;

write Y;

Such rules are easily expanded into nested if commands. For instance, the first rule
would naturally expand into:

if D then
if (hd D) then
if E then
if (hd E) then
D := cons (hd (hd D)) (cons (tl (hd D)) (tl D));
E := cons (hd (hd E)) (cons (tl (hd E)) (tl E))

and the next-to-last rule would expand to:

if D then skip
else
if E then
if (hd E) then skip
else
GO := false

The case statement: A similar construction to aid readability is the case statement,
with syntax

case E of
pat1 ⇒ C1;
...
patn ⇒ Cn;
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Again, this expands into a sequence of nested if statements, and the commands C1,. . . ,Cn
may contain references to variables appearing in the patterns (though not to the left of
:=).

Exercises

2.1 Write a WHILE program that takes an input d and returns the list of atoms in d

from left to right. For instance, with d=((a.b).(a.(c.d)) the program should yield (a

b a c d) (i.e., (a.(b.(a.(c.(d.nil)))))). 2

2.2 Write a WHILE program that expects an input of the form (d1 · · · dn) (a list of
values), and removes adjacent occurrences of the atom nil. For instance, if the input
is (nil (nil) nil nil ((nil)) nil)), the program should yield ((nil (nil) nil

((nil)) nil))). 2

2.3 Let σ = {X 7→ (nil.nil)}, C be while X do X:=X, and show that there is no σ′ such
that C ` σ→ σ′. 2

2.4 Given d = (a b c), and let p = read X; C; write Y be the reverse program from
Subsection 2.1.3. Find a σ such that C ` σp

0→ σ. Explain in detail how σ is computed.
2

2.5 Prove that [[reverse]](d1 · · ·dn) = (dn · · ·d1). Hint: Proceed by induction on n.5 2

2.6 * This concerns the general program for testing equality in section 2.3. Consider
the weight function w : ID→ IN defined by:

w(d) = |d|− r(d) where
r(nil) = 1
r((d1.d2)) = 1+ r(d2) r(d) = length of right spine of d

Exercise: First, argue that this function decreases in each loop of the equality-testing
program of section 2.3. Then find an upper bound on the running time of the equality-
testing program.

2.7 Prove that the size |d| of a value d ∈ ID can be computed in time O(|d|). Hint:
modify the program for testing equality in section 2.3, so it compares d against itself,
and increases a counter niln each time a new “.” is found in d. 2

5See Subsection A.6 for a presentation of induction.
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3 Programs as Data Objects

In this chapter we are concerned with programs that take other programs as data. This
requires that programs be part of the data domain; we show how to achieve this in
Section 3.2. We then study three kinds of programs that have other programs as input
in Sections 3.3–3.6: compilers, interpreters, and specializers. The chapter concludes with
several simple examples of compilation in Section 3.7.

A compiler is a program transformer which takes a program and translates it into an
equivalent program, possibly in another language. An interpreter takes a program and
its input data, and returns the result of applying the program to that input. A program
specializer, like a compiler, is a program transformer but with two inputs. The first input
is a program p that expects two inputs X,Y. The other input to the program specializer
is a value s for X. The effect of the specializer is to construct a new program ps which
expects one input Y. The result of running ps on input d, is to be the same as that of
running p on inputs s and d.

The reason we emphasize these program types is that many proofs in computability
theory involve, either explicitly or implicitly, constructing an interpreter, a compiler, or
a specializer.

First we define what constitutes a programming language in Section 3.1.

3.1 Programming languages and simulation

Definition 3.1.1 A programming language L consists of

1. Two sets, L−programs and L−data;
2. A function [[•]]L : L−programs→ (L−data→ L−data⊥)

Here [[•]]L is L’s semantic function, which associates with every L-program p∈ L−programs
a corresponding partial function [[p]]L : L−data→ L−data⊥.

If L−programs ⊆ L−data, we will henceforth say that L has programs-as-data. Also,
if L−data×L−data⊆ L−data, we will say that L has pairing . 2

We have already seen one example of a programmming language according to this defi-
nition, viz. the language WHILE, which has L−data = ID and L−programs as in Defini-
tion 2.1.3. WHILE has pairing (the “cons” operator on ID), and we will soon see how to
represent WHILE-programs as values in ID.

47
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More programming languages will be seen in later chapters. As was the case for
WHILE, we will drop L from the notation [[•]]L whenever L is clear from the context.

Imagine one has a computer with machine language M. How is it possible to run
programs written in another language L? We will answer this question in two steps. First,
we say what it means for language M to be able to simulate an arbitrary L program. (In
effect, this says M is at least as expressive as L.) Second, we will show how M can simulate
L, in two different ways: compilation and interpretation.

Definition 3.1.2 Suppose L-data = M-data. Language M can simulate language L if for
every p ∈ L-programs there is an m-program q such that for all d ∈ L-data we have

[[p]]L(d)' [[q]]M(d)

Equivalently: M can simulate L iff there is a total function f : L-programs→ M-programs
such that [[p]]L = [[f(p)]]M for all L-programs p.

Language L is equivalent to language M, written L ≡ M, if language L and language M

can simulate each other. 2

This definition expresses the facts that L and M can compute the same functions; but it
does not assert the existence of any constructive way to obtain an M-program equivalent to
a given L-program. The remainder of this chapter concerns how simulation may be done
computably, by either translation (applying a compiling function) or by interpretation.
First, however, we will need a way to regard programs as data objects.

3.2 Representing WHILE programs in ID

We have earlier given a syntax for WHILE-programs and WHILE-data. Suppose we want to
give a WHILE program as input to another WHILE program. Presently this is not possi-
ble simply because elements of WHILE-programs are not objects in WHILE-data. Therefore
we now give a programs-as-data representation for WHILE programs.

Definition 3.2.1 Let {:=, ;, while, var, quote, cons, hd, tl, =?, nil} denote 10
distinct elements of ID. The representation p of WHILE program p is defined by the map
shown in Figure 3.11:

• : WHILE−programs→ WHILE−data
1Recall that Vars = {V0,V1, . . .}. While we often use X and Y to denote arbitrary elements of Vars, it

is convenient in the definition of • to know the index of the variable to be coded. We assume that no

program contains a variable with higher index than its output variable.
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where we use the list and number notation of Subsections 2.1.5–2.1.6. 2

read Vi; C; write Vj = ((vari)C(varj))

C;D = (;CD)
while E do C = (whileEC)
Vi:=E = (:= (vari)E)

Vi = (vari)
d = (quoted)
cons E F = (consEF)
hd E = (hdE)
tl E = (tlE)
=? E F = (=? EF)

Figure 3.1: Mapping WHILE programs to their data representations.

For example, if X and Y are the variables V1 and V2, respectively, then the program written
as

read X;
Y := nil;
while X do

Y := cons (hd X) Y;
X := tl X

write Y;
would be translated to the value in ID:

(
(var 1)
(; (:= (var 2) (quote nil))

(while (var 1)
(; (:= (var 2) (cons (hd (var 1)) (var 2)))

(:= (var 1) (tl (var 1))))))
(var 2)

)

For readability we will continue to use the original syntax when writing programs, but
it should be understood that whenever a program p is input to another, it is the corre-
sponding representation p that we have in mind.
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Analogous ideas can be used for other languages L as well, though encoding programs
as data is harder if L-data is, as in classical computability texts, the set of natural
numbers.

3.3 Compilation

Suppose we are given three programming languages:

• A source language S,

• A target language T, and

• An implementation language L.

A compiler comp ∈ L-programs from S to T has one input: a source program p ∈
S-programs to be compiled. Running the compiler with input p (on an L-machine)
must produce another program target, such that running target on a T-machine has
the same effect as running p on an S-machine.

This is easiest to describe (and do) if the source and target languages have the same
data representations S-data = T-data, as one can simply demand that [[source]]S(d) '
[[target]]T(d) for all inputs d.

3.3.1 Compiling without change of data representation

Definition 3.3.1 Suppose

• S−data = T−data and

• S−programs∪T−programs⊆ L−data.2

Then:

1. A total function f : L−data→ L−data is a compiling function from S to T iff for
every p ∈ S-programs: f(p) ∈ T−programs, and [[p]]S = [[f(p)]]T.

2. An L-program comp is a compiler from S to T if [[comp]]L is a compiling function. 2

Note that we carefully distinguish between a compiling function, and a compiler, i.e. a
compiling program. Spelled out, a compiling function f satisfies for all p ∈ S−programs
and all d ∈ S−data:

[[p]]S(d)' [[f (p)]]T(d)

2In other words: languages S and T have representations of programs as elements of L-data.
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(where both sides may be undefined, see Subsection A.3.3).
If language T can simulate language S, then by definition there exists a total compiling

function from S to T. On the other hand, a compiler comp is an L-program whose meaning
is a compiling function. It must satisfy for every p ∈ S-programs and every d ∈ S−data =
T−data,

[[p]]S(d)' [[[[comp]]L(p)]]T(d)

3.3.2 TI-diagrams

We use the symbol

S T

L

-
= { comp | ∀p ∈ S-programs,∀d ∈ S-data.

[[p]]S(d)' [[[[comp]]L(p)]]T(d)}

to denote the set of compilers from S to T written in L. Suppose we are given a collection
of S-programs, nature unspecified. This set can be denoted by

S

**

If we also have a compiler comp from source language S to target language T, written in
L, then we can perform translations, as described by the diagram:

S

**

T

**

S T

L

-
source program ∈ 3 target program

∈
compiler

In this book compilation will most often be described by informal constructions, and
if such diagrams are used, we could replace implementation language L above by H,
indicating “human.” In fact, all of our programming language translations could be
automated in principle, but going to that level of detail would be more appropriate to a
programming language course than to a theory course.
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On the other hand interpreters, under the name universal programs, will be treated
more formally. They play a central role in theorems of both complexity and computability
theory. Since their structure and running times are so important, several interpreters
will be given in considerable detail by programs.

3.3.3 Compiling with change of data representation

In order to compare computation by machines with different sorts of input/output data
we define one way that a (possibly partial) function on one data set can be represented by
a function on another set. This is a natural generalization of the concept of “commuting
diagram” to the case where some arrows denote partial functions.

Definition 3.3.2 Given sets A,B, a coding from A to B is a one-to-one total function
c : A→ B. A partial function g : B → B⊥ implements partial function f : A→ A⊥ by
coding c if for all a ∈A

1. f(a) 6=⊥ implies g(c(a)) = c(f(a))

2. f(a) =⊥ implies g(c(a)) =⊥ 2

Intuitively: in the following diagram, whenever an instance f : a 7→ f(a) of its topmost
arrow is defined, there exists a corresponding defined instance g : c(a) 7→ c(f(a)) of the
bottom arrow. Further, any undefined instance f : a 7→ ⊥ of its topmost arrow corre-
sponds to an undefined instance g : c(a) 7→ ⊥ of the bottom arrow. The behaviour of g

on values outside the range of c is irrelevant to the definition.

A -f
A

?
B

c

g
B-
?

c

Definition 3.3.3 Suppose one is

• given a coding c : S-data → T-data and that

• S−programs∪T−programs⊆ L−data.

1. f : L-data →L-data is a compiling function relative to coding c if for every p ∈
S-programs, [[f(p)]]T implements [[p]]S by c.
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2. An L-program comp is a compiler from S to T with respect to coding c if [[comp]]L is
a compiling function relative to c. 2

The first part of this definition amounts to the generalized commutativity of the following
diagram.

S-data -
[[p]]S

S-data

?
T-data

c

[[f(p)]]T
T-data-

?

c

3.4 Interpretation

Suppose we are given two programming languages:

• An implementation language L, and

• A source language S.

An interpreter int ∈ L−programs for S−programs takes as input a pair (p.d), where
p ∈ S−programs is a program and d ∈ S−data its input data. Running the interpreter
with input (p.d) on an L-machine must produce the same result as running p with input
d on an S-machine. Typically the time to run p interpretively is significantly larger than
to run it directly; we will return to this topic later.

3.4.1 Interpretation without change of data representation

Definition 3.4.1 Assume that language S has programs-as-data and pairing, and that
L−data = S−data. Then:

1. A partial function i : L−data→ L−data⊥ is an interpreting function of S if for all
p ∈ S−programs and d ∈ S−data:

i(p.d)' [[p]]S(d)

2. L-program int is an interpreter of S in L if [[int]]L is an interpreting function of S.
2
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We use the symbol

L

S
= { int | ∀p,d. [[p]]S(d)' [[int]]L(p.d) }

to denote the set of all interpreters for S written in L.

3.4.2 An interpretation example: straightline Boolean

programs

In this example a source program is a linear sequence of commands built from true and
Boolean variables X0,. . . ,Xn using boolean operations “and” and “not.” Informal syntax
is defined by the following grammar:

Program ::= read X0; I1 I2 · · · Im; write X0

I ::= Xi := true | Xi := Xj and Xk | Xi := not Xj

A program representation can be written as an element of ID (where :=true, :=and, :=not
are distinct values in ID) with the following grammar. We use the number notation nili

for i ∈ IN from Definition 2.1.8).

Program ::= (I1; I2; · · · Im)

I ::= (:=true X) | (:=and X Y Z) | (:=not X Y)

X, Y, Z ::= nil0 | nil1 | nil2 | ...

Figure 3.2 shows an interpreter for Boolean programs. Explanation: The store σ =
[X0 7→ d0, · · · ,Xn 7→ dn] will be represented as a list (d0 d1 · · · dn). Two auxiliary functions
are detailed in the next section: lookup, which finds the value di, if given the store and i

as arguments; and update, which assigns a new value to variable Xi. Operators and and
not were defined in Section 2.1.4.

The interpreter first initializes the store by binding the input value d to variable
X0 using update. It then repeatedly dispatches on the form of the first instruction in
the remainder P of the program, and performs lookups or updates to implement the
language’s three command forms. After the case command, P is reassigned to what
follows after the current instruction; so P decreases until empty.

Once the last command is executed, the value of X0 is looked up in the final store and
written out.
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read PD; (* Input = program and value of X0 *)
P := hd PD; D := tl PD; (* Extract program and data from PD *)
Store := update 0 D nil; (* Initialize store: X0 equals D *)

while P do
{ case hd P of (* First instruction of remainder of P *)

(:=true X) ⇒ Store := update X true Store;

(:=and X Y Z) ⇒ V := (lookup Y Store) and (lookup Z Store);
Store := update X V Store;

(:=not X Y) ⇒ V := not (lookup Y Store);
Store := update X V Store;

P := tl P }; (* Remove first instruction *)

V := lookup 0 Store;
write V

Figure 3.2: An interpreter for Boolean programs.

Auxiliary functions for storing and fetching

Suppose (d0 . . .dn) is a list of length n+1, and j denotes a numeral j between 0 and
n. How do we perform the assignment X:=dj? This is done by the following sequence
of commands, where the variable J contains the numeral j, and Store contains the list
(d0 . . .dn). Note that after execution of the commands, Store and J have their original
values.

T := Store; (* X := lookup J Store *)
K := J;
while K do (* Remove the first i elements from a copy of Store *)
K := pred K;
T := tl T;

X := hd T;

Conversely, given a list (d0 . . .dn), a value d, and a number j, how do we compute the
updated list (d0 . . .dj−1 d dj+1 . . .dn)? This can be done by the following program, which
assumes that the list is in Store, the number is in J, and the value d is in V.
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T := nil; (* Store := update J V Store *)
K := J;
while K do (* Net effect is to set *)
T := cons (hd Store) T; (* T = (dj-1 ... d0) and *)
Store := tl Store; (* Store = (dj dj+1 ... dn) *)
K := pred K;

Store := cons V (tl Store); (* Store = (d dj+1 ... dn) *)
while T do (* Replace d0 d1... dj-1 on Store *)

Store := cons (hd T) Store;
T := tl T;

3.5 Ways to combine compiler and interpreter

diagrams

Diagrams such as the preceding one, and more complex ones with several interpreter
blocks, compiler blocks, or other blocks put together, can be thought of as describing one
or more “computer runs.” For example, suppose a Lisp system is processed interpretively
by an interpreter written in Sun RISC machine code (call this M). The machine code
itself is processed by the central processor (call this C) so two levels of interpretation are
involved, as described by Figure 3.3.

L

**

M

L

C

M

Figure 3.3: Diagram of program execution with two interpretation levels.

Assume that certain languages are directly executable; typically a machine language
T, or an implementation language L for which one already has a compiler or interpreter
available. Then a composite diagram composed of several TI-diagrams is defined to be
directly executable if and only if every “bottom-most” diagram in it is implemented in
an executable language.
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In order to be meaningful a diagram must be “well-formed,” that is satisfy some
natural constraints:

1. All languages appearing bottom-most in the diagram must be executable (either
because they are machine languages, or because implementations are known to
exist even though not shown in the diagram).

2. Let us define language L to match language M, written L v M, to mean that any
L-program is also an M-program, and has the same semantics. A special case: L v
L, that is, any language matches itself.

3. The second constraint is that any subdiagram of either of the following two forms:

S1

**

L

S

S2

**

T2

**

S T

L

-

must satisfy:

S1v S,S2v S and Tv T2

3.6 Specialization

Suppose again that we are given three programming languages:

• A source language S,

• A target language T, and

• An implementation language L.

A program specializer is given an S-program p together with part of its input data, s.
Its effect is to construct a T-program ps which, when given p’s remaining input d, will
yield the same result that p would have produced given both inputs. We leave open the
possibility that S and T are different languages, although we will require S-data=T-data,
i.e. we only consider specialization without change in data representation.

Thus we may think of specialization as a staging transformation. Program p’s com-
putation is not performed all at once on (s.d), but rather in two stages. The first stage
is a program transformation which, given p and s, yields as output a specialized program
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subject
program p

�
�

�
�

?
program

specializer
“spec”

??

stage 1
input s

�
�
�
�-

stage 2
input d

�
�
�
�- specialized

program ps

'
&

$
%-

- output

�
�
�
�

= data
�
 �	 = program

Figure 3.4: A program specializer.

ps. In the second stage, program ps is run with the single input d—see Figure 3.4.3 The
specialized program ps is correct if, when run with any value d for p’s remaining input
data, it yields the same result that p would have produced when given both s and the
remaining input data d.

Definition 3.6.1 Assume that S has pairing, that S and T have programs-as-data, and
that S−data = L−data = T−data. Then:

1. A total function f : L−data→ L−data is a specializing function from S to T iff for
all p ∈ S−programs and d ∈ S−data f(p.d) ∈ T−programs and

[[p]]S(s.d)' [[f (p.s)]]T(d)

3Notation: data values are in ovals, and programs are in boxes. The specialized program ps is first

considered as data and then considered as code, whence it is enclosed in both. Further, single arrows

indicate program input data, and double arrows indicate outputs. Thus spec has two inputs while ps

has only one; and ps is the output of spec.
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2. L-program spec is a specializer from S to T if [[spec]]L is a specializing function.
Specifically,

[[p]]S(s.d)' [[[[spec]]L(p.s)]]T(d)

2

Theorem 3.6.2 Language M can simulate language L if either there exists a compiler
from L to M, or if there is a specializing function from M to M, and there exists an interpreter
for L written in M.

Proof. This is immediate if there is an L-to-M compiler comp written in T, since function
[[comp]]T satisfies Definition 3.1.2. Further, if L can be interpreted by M, there exists an
L-to-M compiler by Exercise 3.1. 2

3.7 Two simple examples of compilation

In this section we consider some fragments of WHILE and show by means of translations
that the fragments are as expressive, in a certain sense, as the whole language. The first
section restricts the number of variables a program may use, and the second restricts the
size of expressions.

3.7.1 The I language: one-variable WHILE-programs

I is the same language as WHILE, except that its programs only contains one variable
X, which is also used for both input and output. Any WHILE program can be translated
into an I program with the same semantics.

Definition 3.7.1 The syntax of I is given by grammar of Figure 3.5. Program semantics
is as in Section 2.2. 2

Example 3.7.2 Recall the following program to reverse a list:

read X;
Y := nil;
while X do
Y := cons (hd X) Y;
X := tl X;

write Y
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Expressions 3 E, F ::= X

| nil

| cons E F

| hd E

| tl E

Commands 3 C, D ::= X := E

| C; D
| while E do C

Programs 3 P ::= read X; C; write X

Figure 3.5: Syntax of the I language.

The program has two variables. To convert it into an equivalent 1-variable program
“pack” the two into one A=(cons X Y). Whenever we need X in some expression we take
(hd A), and whenever we need Y we take (tl A). Whenever we wish to assign E to X we
assign cons E (tl A) to A, and whenever we wish to assign E to Y we assign cons (hd

A) E to A. We thus arrive at the following program.

read A;
A := cons A nil; (* now A = cons X Y *)
while (hd A) do
A := cons (hd A) (cons (hd (hd A)) (tl A));
A := cons (tl (hd A)) (tl A);

A:= tl A; (* write X *)
write A

For the general translation we will pack the variables X1, . . . , Xn together by cons’ing to
form a list (X1 · · · Xn). More efficient translated programs could be obtained by packing
into balanced trees instead of lists.

Definition 3.7.3 Define tl0E= E and tli+1E= tli(tlE). Given a program p with input
variable X1 and output X2, apply the transformation p defined in Figure 3.6.

Proposition 3.7.4 is a compiling function from WHILE to I.
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read X1; C; write X2 = readA;A := consAnil;C;
A := hd(tlA);writeA

C1 ; C2 = C1 ; C2
while E do C = while E do C

Xi := E = A := consT1(. . .(consTnnil) . . .)
where Ti = E and Tj = Xj, j 6= i.

Xi = hd(tli−1A)
d = d

cons E1 E2 = cons E1 E2

hd E = hd E

tl E = tl E

=? E1 E2 = =? E1 E2

Figure 3.6: Transformation rules from WHILE to I.

3.7.2 Restriction to one operator

Definition 3.7.5 Restrict the syntax of WHILE programs as follows arriving at
WHILE1op.

E ::= X

| d

| cons X Y

| hd X

| tl X

| =? X Y

C ::= X := E

| C1 ; C2

| while X do C

P ::= read X; C; write Y

Note that in assignments the expression may contain at most one operator, and in while
loops the tested expression must contain no operators at all. The semantics and running
times is the same as for WHILE programs.

Any WHILE program p can be translated into a WHILE1op program with the same
semantics. The problem is to break complex expressions and while tests into simple ones.
This can be done systematically introducing new variables and assignment statements.

Example 3.7.6 The program
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read XY;
X := hd XY;
Y := tl XY;
while (hd X) do
Y := cons (hd X) (cons (tl Y) (hd Y));
X := tl X ;

write Y
can be translated into:

read XY;
X := hd XY;
Y := tl XY;
Z := hd X;
while Z do
A := hd X;
B := tl Y;
C := hd Y;
D := cons B C;
Y := cons A D;
X := tl X;
Z := hd X;

write Y

We state the general translation using the informal syntax, but it could clearly be ex-
pressed via the representation introduced earlier.

Definition 3.7.7 Given a program p, construct the transformed program p by applying
the rules given in Figure 3.7 recursively. Variables Y, Y1, Y2 are fresh variables, chosen
anew every time a rule containing them is used.

Proposition 3.7.8 is a compiling function from WHILE to WHILE1op.

Proof. See the Exercises.

Exercises

3.1 Show how one can compile from S−programs to L−programs, if given an S-interpreter
written in L and a L-specializer. State appropriate assumptions concerning the relation-
ships between various input and output domains. 2

3.2 Prove Proposition 3.7.4. 2
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read X; C; write Y = read X; C ; write Y

C1 ; C2 = C1 ; C2
while E do C = Y:=E ; {while Y do C ; Y:=E}

Z:=Y = Z:=Y

Z:=d = Z :=d

Z:=cons E1 E2 = Y1:=E1 ; Y2:=E2; Z:=cons Y1 Y2

Z:=hd E = Y:=E ; Z:=hd Y

Z:=tl E = Y:=E ; Z:=tl Y

Z:= (=? E1 E2) = Y1:=E1 ; Y2:=E2; Z:= (=? Y1 Y2)

Figure 3.7: Transformation rules from WHILE to one-operator form.

3.3 Prove Proposition 3.7.8. 2

3.4 Can one compile an arbitrary WHILE program into an equivalent with only one vari-
able and one operator per command, i.e. can one combine the results of Propositions 3.7.8
and 3.7.4?

A partial answer: explain what happens when these two compilations are combined. A
full answer: establish that such a compilation is possible (by a construction) or impossible
(by a proof).4 2

References

The practical and theoretical study of compilers and interpreters constitutes a branch
of Computer Science. An introduction to interpreters can be found in [93]. A good
introduction to compiler technology can be found in [3]. The compiler and interpreter
diagrams are due to Bratman [18]. As mentioned, interpretation, compilation, and spe-

4Hint, in case the answer is negative: To show that not every program in L-programs can be simulated

by some M-program, it is enough to give a property P(f) such that a) P([[p]]M) holds for all p∈ M-programs,

i.e., P is satisfied by every function computable by any M-program; and b) exhibit an L-program q such

that [[q]]L does not satisfy property P.

This approach requires three things: first, find a suitable property P; second, show that it holds for

every function computed by any M-program; third, find an L-program q whose computed function fails

property P.
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cialization all play important roles in computability and complexity theory, and we will
say more about all three types of programs in due course.

The practical study of specializers is yet another branch of Computer Science, also
called partial evaluation, see e.g. the textbook [89] or survey article [87].
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4 Self-interpretation: Universal Programs

for WHILE and I

Our first example of a universal program is an interpreter for WHILE written in WHILE,
developed in Section 4.1. We then develop a universal program in and for the subset
called I, in which programs have only one variable, in Section 4.2. Both of these self-
interpreters will be used extensively in the remainder of the book.

4.1 A universal program for the WHILE language

We first develop an interpreter in WHILE for WHILE programs that use only a single
variable, and then modify this interpreter so as to interpret the full WHILE language.

Let { :=, ;, while, var, quote, cons, hd, tl, =?, nil } denote 10 distinct elements
of ID mentioned in Definition 3.2.1, and let { dohd, dotl, docons, doasgn, dowh, do=? }
denote 6 more values in ID, distinct from the first 10 and from each other.

4.1.1 Interpretation of a subset of WHILE in WHILE

Proposition 4.1.1 There exists a WHILE program u1var such that [[u1var]](p.d) =
[[p]](d) for all p ∈ I-programs and all d ∈ WHILE-data. 2

Proof. The overall structure of the program is given in the following program fragment
where STEP is the sequence of commands in Figure 4.1 (explained below). Exercise 4.1
is to prove correctness of the algorithm.

read PD; (* Input (p.d) *)
P := hd PD; (* P = ((var 1) C (var 1)) *)
C := hd (tl P) (* C = hd tl p program code is C *)
Cd := cons C nil; (* Cd = (c.nil), Code to execute is c *)
St := nil; (* St = nil, Stack empty *)
Vl := tl PD; (* Vl = d Initial value of var.*)
while Cd do STEP; (* do while there is code to execute *)

write Vl;

Input is a program in the abstract syntax of Definition 3.2.1. (Input and output are
through the first and only variable, hence the (var 1)). The program uses three vari-
ables: Cd, St, Vl. The first is the code stack, Cd, holding the code to be executed. Intially

67
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rewrite [Cd, St] by

[((quote D).Cr), St ] ⇒ [Cr, cons D St]
[((var 1).Cr), St ] ⇒ [Cr, cons Vl St]

[((hd E).Cr), St ] ⇒ [cons* E dohd Cr, St]
[(dohd.Cr), (T.Sr)] ⇒ [Cr, cons (hd T) Sr]

[((tl E).Cr), St ] ⇒ [cons* E dotl Cr, St]
[(dotl.Cr), (T.Sr)] ⇒ [Cr, cons (tl T) Sr]

[((cons E1 E2).Cr), St ] ⇒ [cons* E1 E2 docons Cr, St]
[(docons.Cr), (U.(T.Sr)) ] ⇒ [Cr, cons (cons T U) Sr]

[((=? E1 E2).Cr), St ] ⇒ [cons* E1 E2 do=? Cr, St]
[(do=?.Cr), (U.(T.Sr)) ] ⇒ [Cr, cons (=? T U) Sr]

[((; C1 C2).Cr), St ] ⇒ [cons* C1 C2 Cr, St]

[((:= (var 1) E).Cr), St ] ⇒ [cons* E doasgn Cr, St]
[(doasgn.Cr), (W.Sr) ] ⇒{Cd := Cr; St := Sr; Vl:= W;}

[((while E C).Cr), St ] ⇒ [cons* E dowh (while E C) Cr, St]

[(dowh.((while E C).Cr)), (nil.Sr)] ⇒ [Cr, Sr]

[(dowh.((while E C).Cr)),((D.E).S)]⇒[cons* C (while E C) Cr, S]

[nil, St] ⇒ [nil, St]

Figure 4.1: The STEP Macro.

this is the whole program. The second is the value stack, St, holding intermediate results.
Finally, the third variable is Vl, the store holding the current value of the single program
variable. Initially this is d, the input to program p.

The effect of the sequence of commands STEP, programmed using the rewrite short-
hand notation, is to test what the next instruction in Cd is and update variables Cd, St,

Vl accordingly. Recall the skip and cons* notations from Section 2.1.7.

Expression evaluation and command execution are based on the following invariants:
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[(E.Cd), St, d] ⇒∗ [Cd, (e.St), d] iff E [[E]] [X 7→ d] = e

[(C.Cd), St, d] ⇒∗ [Cd, St, e] iff C ` [X 7→ d]→ [X 7→ e]

Suppose that, at some point, p evaluates expression E in store [X 7→ d] to e, i.e. E [[E]][X 7→
d] = e. Suppose initially the values of Cd, St, Vl in u1var will be (E.Cr), S, d, i.e. E will
be on top of the code stack. Then after a number of iterations of STEP, the new values
will be Cr, (e.S), d, i.e. the code for E will be popped from the code stack, and the value
of E will be pushed to the value stack. The store remains unchanged.

For example if the three values are ((hd E).C), S, and d, then after one iteration
of STEP the values are (E.(dohd.C)), S, d. This signifies that first the expression E is
to be evaluated, and then afterwards the hd must be taken. By the invariant, after a
number of iterations of STEP the values are (dohd.C), (e.S), and d where e is the value
of E in the given store. Supposing e = (e1.e2), after one more iteration the values are
C, (e1.S), d. So the overall effect, starting from the original values ((hd E).C), S, d
has been to calculate the value of hd E and push it to the value stack while popping the
expression from the code stack.

Command execution is based on a similar invariant. Suppose that, at some point, p
executes command C in store [X 7→ d] arriving at a new store [X 7→ e], i.e. C ` [X 7→ d]→
[X 7→ e]. Assume the values of Cd, St, Vl are (C.Cr), S, d, i.e. C is on top of the code
stack. Then after a number of iterations of STEP, the new values will be Cr, S, e, i.e.
the code for C will be popped from the code stack, the value stack is unchanged, and the
new value for X will have been saved in the store. 2

It is not hard to see that the evaluation of any expression terminates in a fixed number of
steps; the only source of possible nontermination is in the rules implementing the while

command. This is addressed in Exercise 4.2.

4.1.2 Interpretation of the full WHILE language

We now show how the interpreter u1var for single-variable programs can be extended
to accomodate programs using several variables. For this it is useful to have available
certain techniques which we first develop. The construction is straightforward and uses
the lookup and update functions from Section 3.4.2.

Theorem 4.1.2 There exists a WHILE program u such that for all p∈ WHILE-programs
and all d ∈ WHILE-data we have [[p]](d) = [[u]](p.d). 2
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Proof. The overall structure of the program is given in the program fragment of Fig-
ure 4.2, where STEP is similar to the earlier command sequence.

read PD; (* Input (p.d) *)
Pgm := hd PD; (* p = ((var i) c (var j)) *)
D := tl PD; (* D = d (input value) *)
I := hd (tl (hd Pgm)) (* I = i (input variable) *)
J := hd (tl (hd (tl (tl Pgm)))); (* J = j (output variable) *)
C := hd (tl Pgm)) (* C = c, program code *)
Vl := update I D nil (* (var i) initially d, others nil *)
Cd := cons C nil; (* Cd = (c.nil), Code to execute is c *)
St := nil; (* St = nil, computation Stack empty *)
while Cd do STEP; (* do while there is code to execute *)
Out := lookup J Vl (* Output is the value of (var j) *)
write Out;

Figure 4.2: Universal program u.

In contrast to Vl in the preceding version, Vl is now a list of k variables. Initially all
these are bound to nil, except the input variable Vi which is bound to the input d. The
output is now the value of variable Vj at the end of execution. The new version of STEP
is identical to the preceding one, except for the cases:

[((var J).Cr), St ] ⇒ Cd := Cr; X := lookup J Vl; St:=cons X St;

[((:= (var K) E).Cr), St] ⇒ Cd := cons* E doasgn K Cr;

[(doasgn.(K.Cr)), (T.Sr) ] ⇒ Cd := Cr; St := Sr; Vl := update K T Vl;

2

The program u is called a self-interpreter in programming language theory, because it
interprets the same language as it is written in. In computability theory u is called a
universal program, since it is capable of simulating any arbitrary program p.

4.2 A universal program for the I language

Recall the interpreter u1var for one-variable WHILE programs constructed in Section 4.1.1.
We obtain a universal program for I by applying methods from Section 3.7 to u1var.

Program u1var is not a self-interpreter for I, since it itself uses more than one variable,
for example Cd and St. We now describe how a 1-variable universal program can be built,
using the example compilations from Section 3.7.
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We now construct from u1var a true self-interpreter i for I. This is easily done,
since the “packing” technique of Proposition 3.7.4, translates program u1var into an
equivalent one-variable program i with [[i]]I = [[i]]WHILE = [[u1var]]WHILE. We have thus
proven

Theorem 4.2.1 There exists a self-interpreter i for I using the concrete syntax of Def-
inition ??.

Exercises

4.1 * Prove that [[p]](d) = [[u1var]](p.d) for all 1-variable p∈ WHILE-programs and all d∈
ID. This can be done by induction on the lengths of computations of program execution
and execution of the interpreter. 2

4.2 Show that for any WHILE-program p without any WHILE commands and for all
d ∈ ID, it holds that [[u1var]](p.d)↓. This can be done by induction on the length of p. 2

4.3 Extend the WHILE language with a construction repeat C until E, with a Pascal-
like semantics. Explain the semantics informally, e.g. when is E evaluated? Extend u1var

so as to interpret this new construction (still for programs with one variable). 2

References

A universal program first appeared in Turing’s paper [170], and in practically every book
on computability published since then. The universal program for I much resembles the
one sketched in [85].





5 Elements of Computability Theory

Chapter ?? set up our model WHILE of computation, Chapter 3 gave a way to pass
WHILE programs as input to other WHILE programs, and Chapter 4 showed the
existence of universal programs. We are now in a position to state and prove some of the
fundamental results of computability theory, including those that were informally proven
in Chapter 1.

Section 5.1 defines the notions of computable function and decidable set, and the two
related notions of semi-decidable and enumerable sets. Section 5.2 presents a special-
izer for WHILE programs. Section 5.3 proves that the halting problem is undecidable.
Section 5.4 proves that all properties of WHILE programs that depend only on the pro-
gram’s input-output behaviour are undecidable. Section 5.5 proves some properties of
decidable and semi-decidable sets, and Section 5.6 shows that the halting problem is
semi-decidable. Section 5.7 proves some properties of enumerable and semi-decidable
sets.

5.1 Computability, decidability, enumerability

As mentioned earlier, a function is henceforth called computable if it is computed by
some WHILE program:

Definition 5.1.1 A partial function f : ID→ ID⊥ is WHILE computable iff there is a
WHILE program p such that f = [[p]], i.e. for all d,e ∈ ID:

1. If f (d) =⊥ then [[p]](d) =⊥.
2. If f (d) = e ∈ ID then [[p]](d) = e. 2

A set A will be called decidable if the membership question for A can be answered by a
program that always terminates. If the program possibly loops on elements outside A,
the set will be called semi-decidable.

We will show semi-decidability equivalent to enumerability, where a set A is called
enumerable if there is some program that lists all and only the elements of A in some
order. This allows repetitions, and does not necessarily list A’s elements in any specific
order, for instance the order need not be increasing or without repetitions.

Definition 5.1.2

73
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1. A set A⊆ ID is WHILE decidable iff there is a WHILE program p such that [[p]](d)↓
for all d ∈ ID, and moreover d ∈A iff [[p]](d) = true.

2. A set A⊆ ID is WHILE semi-decidable iff there is a WHILE-program p such that for
all d ∈ ID: d ∈A iff [[p]](d) = true.

3. A set A⊆ ID is WHILE enumerable iff A = ∅ or there is a WHILE program p such
that for all d ∈ ID : [[p]](d)↓, and A = {[[p]](d) | d ∈ ID}. 2

5.2 Kleene’s s-m-n theorem

Recall from Chapter 3 the notion of a specializer. We now prove that there exists a
program specializer from WHILE to WHILE written in WHILE.

Theorem 5.2.1 There is a WHILE program spec such that for all p∈ WHILE−programs
and s ∈ WHILE−data, [[spec]](p.s) ∈ WHILE−programs, and for all d ∈ WHILE−data

[[[[spec]](p.s)]](d) = [[p]](s.d)

Proof. Given a program p:

read X; C; write Y

Given input s, consider the following program ps

read X; X := cons s X; C; write Y

It clearly holds that [[p]](s.d) = [[ps]](d). It therefore suffices to write a program that
transforms the pair (p.s) into ps, when both ps and p are expressed as data values in
ID. The program p is expressed as data by:

((var i) C (var j))

where C is the data representation of C. Then ps expressed as data is:

((var i) (; (:= (var i) (cons (quote s) (var i))) C) (var j))

Transformation from p to ps is done using the following program, spec, which uses the
list notation of Section 2.1.7. The "cons", ":=" and ";" in ConsExp :=..., NewC:=...,
and AssignX:=... are distinct values in ID, as in Definition 3.2.1.
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read PS; (* PS is (((var i) C (var j)).s) *)
P := hd PS; (* P is ((var i) C (var j)) *)
S := tl PS; (* S is s *)
Vari := hd P; (* Vari is (var i) *)
C := hd (tl P) (* C is C *)
Varj := hd (tl (tl P)); (* Varj is (var j) *)

QuoteS := list "quote" S;
ConsExp := list "cons" QuoteS Vari;
AssignX := list ":=" Vari ConsExp;
NewC := list ";" AssignX C ;
NewP := list Vari NewC Varj;

write NewP;
2

The same idea can be generalized to specialize programs accepting m+n arguments to
their first m arguments. This is known in recursive function theory as Kleene’s s-m-n
theorem, and plays an important role there.

The specializer above is quite trivial, as it just “freezes” the value of X by adding a
new assignment. It seems likely that spec could sometimes exploit its knowledge of p’s
first input more extensively, by performing at specialization time all of p’s computations
that depend only on s. This can indeed be done, and is known in the programming
languages community as partial evaluation. We return to this topic in the next part of
this book.

5.3 Unsolvability of the halting problem

We now show that the unsolvability of the halting problem for WHILE-programs implies
that many other problems are unsolvable. This also includes many natural problems, as
we shall see in Chapter 10.

Theorem 5.3.1 The total function

halt(a) =

{
true if a = (p.d) and [[p]](d)↓
false otherwise

is not computed by any WHILE-program. 2

Proof. The proof of Proposition 1.4.4 applies perfectly well to WHILE-programs. 2
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The halting problem above is formulated as the problem of computing the function
halt; as such it is uncomputable. One can also formulate the same problem as one of
deciding membership of the subset of ID:

HALT = {(p.d) |p ∈ WHILE−programs,d ∈ WHILE−data,and [[p]](d)↓}

It is easy to see that this set is undecidable. If it were WHILE decidable, it would follow
easily that halt is computable. Similarly, if halt were WHILE computable, it would
follow immediately that HALT is WHILE decidable.

5.4 Rice’s theorem

Rice’s theorem shows that the unsolvability of the halting problem is far from a unique
phenomenon; in fact, all nontrivial extensional program properties are undecidable.

Definition 5.4.1

1. A program property A is a subset of WHILE-programs.

2. A program property A is non-trivial if {} 6= A 6= WHILE-programs.

3. A program property A is extensional if for all p,q ∈ WHILE−programs such that
[[p]] = [[q]] it holds that p ∈A if and only if q ∈A. 2

In other words, a program property is specified by divisiding the world of all programs into
two parts: those which have the property, and those which do not. A non-trivial program
property is one that is satisfied by at least one, but not all, programs. An extensional
program property depends exclusively on the program’s input-output behaviour, and
so is independent of its appearance, size, running time or other so-called intensional
characteristics.

An example property of program p is the following: is [[p]](nil) = nil? This is
extensional, since [[p]] = [[q]] implies that [[p]](nil) = nil if and only if [[q]](nil) = nil.
On the other hand, the following program property is nonextensional: is the number of
variables in p more than 100? This is clear, since one can have two different programs p,
q that compute the same input-output function [[p]] = [[q]] : ID→ ID⊥, but such that one
has more than 100 variables and the other does not.

Theorem 5.4.2 If A is an extensional and nontrivial program property, then A is un-
decidable. 2
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Proof. Assume that nontrivial A is both extensional and decidable. We will show that
this implies that the halting problem is decidable, which it is not. Let b be a program
computing the totally undefined function: [[b]](d) =⊥ for all d ∈ ID, e.g.,

read X; while true do X := X; write Y

Assume to begin with that A contains b. By extensionality, A must also contain all other
programs computing the totally undefined function. By nontriviality of A there must be
a program c in WHILE-programs which is not in A.

We now show how the halting problem (is [[p]](e) = ⊥?) could be solved if one had a
decision procedure for A. Suppose we are given a program of form:

p = read Y; C; write Result

in WHILE-programs, and a value e∈ ID of its input, and we want to decide whether [[p]](e)
= ⊥. Without loss of generality, programs p and c have no variables in common (else
one can simply rename those in p). Construct the following program q (using the macro
notation of Subsection 2.1.7):

read X; (* Read X *)
Resultp := p e; (* First, run program p on the constant e *)
Resultc := c X; (* Then run program c on input X *)

write Resultc

Clearly if [[p]](e)↑, then [[q]](d)↑ for all d ∈ ID. On the other hand, if [[p]](e)↓, then [[q]](d)
= [[c]](d) for all d ∈ ID. Thus

[[q]] =

{
[[b]] if [[p]](e) =⊥
[[c]] if [[p]](e) 6=⊥

If p does not halt on e then [[q]] = [[b]], so extensionality and the fact that b ∈ A implies
that q ∈A. If p does halt on e then [[q]] = [[c]], and again by extensionality, c /∈A implies
q /∈A. Thus p halts on e if and only if q /∈A, so decidability of A implies decidability of
the halting problem.

The argument above applies to the case b ∈ A. If b /∈ A then exactly the same
argument can be applied to A = WHILE-programs\A. Both cases imply the decidability
of the halting problem, so the assumption that A is decidable must be false. 2

In conclusion, all nontrivial questions about programs’ input-output behaviour are
undecidable. For example
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• Does [[p]](nil) converge?

• Is the set {d | [[p]](d)} converges a finite set? An infinite set?

• Is [[p]] a total function?

and many others.

5.5 Decidable versus semi-decidable sets

In this section we present some results about WHILE decidable and semi-decidable sets.
In one of these results we encounter the first application of our interpreter u.

Theorem 5.5.1

1. Any finite set A⊆ ID is decidable.

2. If A⊆ ID is decidable then so is ID\A.

3. Any decidable set is semi-decidable.

4. A⊆ ID is decidable if and only if both A and ID\A are semi-decidable. 2

Proof.

1. If A = {d1, . . . ,dn} ⊆ ID, then it can be decided by program

read X;
if (=? X d1) then X := true else
if (=? X d2) then X := true else

...
if (=? X dn) then X := true else

X := false;
write X

2. Let p = read X; C; write R decide A. Then ID\A is decided by

read X;
C;
R := not R;

write R;

3. Obvious from Definition 5.1.2.
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4. “Only if” follows from 3 and 2. For “if,” we use a technique called dovetailing. The
idea is to simulate two computations at once by interleaving their steps, one at a
time1. Suppose now that A is semi-decided by program p:

read X1; C1; write R1

and that ID\A is semi-decided by program q:

read X2; C2; write R2

where we can assume that C1 and C2 have no variables in common.
Given d ∈ ID, if d ∈ A then [[p]](d) = true, and if d ∈ ID \A then [[q]](d) = true.
Consequently one can decide membership in A by running p and q alternately, one
step at a time, until one or the other terminates with output true.

This is easily done using the universal program for WHILE; the details are left
to the reader in an exercise. 2

Theorem 5.5.2

1. If A,B are decidable then A∪B and A∩B are both decidable.

2. If A,B are semi-decidable then A∪B and A∩B are both semi-decidable. 2

5.6 The halting problem is semi-decidable

Theorem 5.3.1 established that the halting problem is undecidable. Now we show that
it is semi-decidable.

Theorem 5.6.1 The halting problem for WHILE-programs is semi-decidable. 2

Proof. This is provable by means of the universal program u for WHILE:

read PD;
Vl:= u PD;

write true;

where we have used the macro notation Vl := u PD. Given input (p.d), the sequence of
commands for Vl := u PD will terminate if and only if program p terminates on input
d. Thus the program above writes true if and only if its input lies in HALT. 2

1Dovetailing of unboundedly many computations at once will be used in Exercise 13.5 and in Chap-

ter 20.
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Corollary 5.6.2 ID\HALT is neither decidable nor semi-decidable. 2

Proof. Immediate from Theorem 5.5.1. 2

5.7 Enumerability related to semi-decidability

It is not hard (though not as easy as for IN) to show that the elements of ID can be
enumerated in sequence, one at a time:

Lemma 5.7.1

1. There is an enumeration d0, d1, . . . of all elements of ID such that d0 = nil, and
no elements are repeated;

2. There are commands start and next such that for any i≥ 0, the value of variable
New after executing [[start; next; ...; next]] (with i occurrences of next) is di.

Program start:

L := ();
N := (nil);
New := hd N;

Program next:

N := tl N;
Old := L;
Tmp := cons (cons New New) nil;
while Old do
Tmp := cons (cons New (hd Old)) Tmp;
Tmp := cons (cons (hd Old) New) Tmp;
Old := tl Old;

N := append N Tmp;
L := cons New L;
New := hd N;

Figure 5.1: Enumerating ID.

Proof. Figure 5.1 shows WHILE codes for start, next. Explanation: they follow the
defining equation ID = {nil}∪ ID× ID, using the fact that if X ⊆ ID and d /∈X, then

(X ∪{d})× (X ∪{d}) = X×X ∪{(d.d)}∪
{(d.x) | x ∈X}∪{(x.d) | x ∈X}
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The trees created are placed on the list N. They are moved to the list L once they have
served their purpose in creating bigger trees, and New will always be the first element
of N. Thus initially, N contains the single tree nil and L is empty. Every time next is
performed, one tree New is removed from the list N and paired with all the trees that are
already in L as well as with itself. The trees thus created are added to N, and New itself
is added to L.

The following claims are easy to verify:

(1) Every iteration adds a single element to L.
(2) Every element of ID is eventually put on L. 2

5.7.1 Enumerability characterized by semi-decidability

Theorem 5.7.2 The following statements about a set A⊆ ID are equivalent:

1. A is WHILE enumerable.

2. A is WHILE semi-decidable.

3. A is the range of a WHILE computable partial function, so for some p:

A = {[[p]](d) | d ∈ ID and [[p]](d) 6=⊥}

4. A is the domain of a WHILE computable partial function, so for some p:

A = {d ∈ ID | [[p]](d) 6=⊥}

2

Proof. We show that 1 implies 2, 2 implies 3, 3 implies 1, and 2 is equivalent to 4.

1 ⇒ 2. If A = ∅ then 2 holds trivially, so assume there is a WHILE program p such
that for all d ∈ ID : [[p]](d)↓, and A = {[[p]](d) | d ∈ ID}. Let d0, d1,. . . be as in the
enumeration of Lemma 5.7.1.

read D;
start; GO := true
while GO do Y := p New;

if (=? Y D) then GO:=false;
next;

write true

Figure 5.2: 1 ⇒ 2.
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The program of Figure 5.2, given input d, computes [[p]](d0), [[p]](d1), . . ., and com-
pares d to each in turn. If d = di for some i, then p terminates after writing true.
If d 6= di for all i then p will loop infinitely, sufficient for 2.

2 ⇒ 3. Assume that A is semi-decided by program p of form read I; C; write R, and
construct the program q of Figure 5.3.

read I;
Save := I;
C;
if R then SKIP else while true do SKIP;
write Save

Figure 5.3: 2 ⇒ 3.

Clearly [[p]](d)↓ and [[p]](d) = true together imply [[q]](d) = d. On the other hand,
if either [[p]](d)↑ or [[p]](d) 6= true, then [[q]](d)↑. Thus d ∈ A iff [[q]](d) = d, so
A = {[[q]](e) |e ∈ ID and [[q]](e)↓}.

3 ⇒ 1. If A = ∅ then 1 holds trivially, so assume A contains at least one member d0, and
that A is the range of partial function [[p]], where p=((var nil1) C (var nil1)),
i.e. A = rng([[p]]). Define f such that f(nil) = d0 and

f(e.d) =

{
[[p]](d) if p stops when applied to d within |e| steps
d0 otherwise

f is obviously total. Claim: A = rng(f). Proof of ⊆: if a ∈ A = rng([[p]]) then
a = [[p]](d) for some d ∈ ID. Thus p, when applied to d, terminates within some
number of steps, call it m. Then clearly

f(1m.d) = [[p]](d) = a

so a ∈ rng(f). Proof of ⊇: Values in the range of f are either of form [[p]](d) and so
in the range of [[p]] and so in A, or are d0 which is also in A. Finally, the program
q of Figure 5.4, using the STEP macro from the universal program u, computes f .

2 ⇔ 4. A program p which semi-decides A can be modified to loop infinitely unless its
output is true, hence 2 implies 4. If p is as in 4, replacing its write command by
write true gives a program to semi-decide A. 2
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read TD; (* Input (t.d) *)
D := tl TD; (* D = d *)
Vl := update nil D nil (* (var nil1) init’ly d, others nil *)
Cd := cons C nil; (* Cd = (C.nil), Code to execute is C *)
St := nil; (* St = nil, Stack empty *)
Time := hd TD; (* Time = t, Time bound is t *)
while Cd do (* Run p for up to t steps on d *)
STEP; Time := tl Time;
if (=? Time nil) then Cd := nil; (* Abort if time out *)

if Time (* Output d0 if time ran out, else nil1 value *)
then Out := lookup nil1 Vl else Out := d0;

write Out;

Figure 5.4: 3 ⇒ 1.

5.7.2 Recursive and recursively enumerable sets

The preceding theorem justifies the following definition of two of the central concepts
of computability theory. Even though at this point only WHILE and I languages have
been considered, we will see as a result of the “robustness” results of Chapter 8 that the
concepts are invariant with respect to which computing formalism is used.

Definition 5.7.3 A set A is recursive (also called decidable) iff there is a program [[p]]
that decides the problem x ∈ A?. A set A is recursively enumerable (or just r.e., for
short) iff there is a program [[p]] that semi-decides the problem x ∈A?.

Exercises

5.1 Consider a language WHILE-forloop which is just like WHILE, except that instead of
the while command, WHILE-forloop has a command

for X := alltails(E) do C

Its informal semantics: First, E is evaluated to yield a value d. If d = (d1.d2), then X is
first bound to d, and command C is executed once. The same procedure is now repeated
with X being bound to d2. In this way command C is executed repeatedly, until X is
bound to the atom nil (which must eventually happen). At that time the for command
terminates and control goes to the next command.
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1. Define the semantics of WHILE-forloop by rules similar to those for the WHILE-
semantics, and semantic function [[p]]FL.

2. Show how WHILE-forloop programs can be translated into equivalent while-
programs.

3. Prove that your construction in (2) is correct using the semantics for WHILE and
your semantics from (1) for WHILE-forloop.

4. Is the halting problem decidable for WHILE-forloop-programs?

5. Can all computable functions be computed by WHILE-forloop-programs? 2

5.2 Define the total function g by: g(p) = not [[p]]FL(p) any WHILE-forloop-program p.
Prove that g is not computable by any WHILE-forloop-program; and prove that g is
WHILE-program computable.

Consequence: the WHILE-forloop language cannot simulate the WHILE language. 2

5.3 Prove that it is undecidable whether a given program computes a total function. 2

5.4 Hint: show that it is undecidable whether a program computes the identity function,
and derive the more general result from this. 2

5.5 Use Rice’s theorem to prove that unnecessary code elimination is undecidable: given
a program p

read X; C1; while E do C; C2; write Y

with an identified while command, it is undecidable whether test E will be false every
time control reaches the command. 2

5.6 Prove Theorem 5.5.1 part 4. Hint: you will need two copies of the universal program.
2

5.7 * Prove Theorem 5.5.2. Hint: the results for decidable A,B are straightforward, as
is semi-decidability of A∩B. For semi-decidability of A∪B, use Theorem 5.7.2, or the
“dovetailing” technique of Theorem 5.5.1, Part 4. 2

5.8 List the first 10 elements of ID as given in Lemma 5.7.1. 2

5.9 Use induction to prove the two claims made about the enumeration of ID in the proof
of Lemma 5.7.1. 2
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5.10 * The pairs in list Tmp (Lemma 5.7.1) are added to the end of list N by append.
Show that the simpler alternative of adding them to the start of N does not work. What
goes wrong in the proof of the previous Exercise 5.9 if this change is made? 2

5.11 Devise alternative start and next commands that take only O(n) time when next

is called, where n is the length of list L. Hint: find a faster way to achieve the effect of
append. More variables may be used, if convenient. 2

5.12 * Devise alternative start and next commands that take only constant time when
next is called. Hint: at each next call the only essential action is that a new element is
added to L. Find a way to defer the addition of elements to N until needed. One method
can be found in [21]. 2

5.13 Show that if an infinite set is WHILE enumerable, then it is WHILE enumerable
without repetitions (i.e. the range of a one-to-one effective total function). 2

5.14 Let ID be ordered as in Lemma 5.7.1. Show that an infinite set A can be enumer-
ated in increasing order (i.e., is the range of a strictly increasing function) if and only if
it is decidable. 2

5.15 Show that a set A 6= ∅ is decidable if it is

• the range of a WHILE computable total monotonic function; or
• the range of a WHILE computable total function greater than the identity. 2

5.16 * Show that any infinite WHILE enumerable set must contain an infinite WHILE
decidable subset. Hint: use the result of Exercise 5.14. 2

5.17 Show that there exists a fixed program p0 such that determination of whether
[[p0]](d) terminates for a given d ∈ ID is undecidable.
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6 Metaprogramming, Self-application, and

Compiler Generation

In this chapter we investigate some aspects of computability pertaining to running times,
i.e. the number of steps that computations take. Two aspects are given special atten-
tion: execution of metaprograms, i.e. compilers, interpreters, and specializers, and self-
application, e.g. application of a program to itself, and in particular a specializer.

The main purpose of this chapter is not to prove new results in computability theory
(although the Futamura projections may be new to some theorists.) Rather, our main
aim is to link the perhaps dry framework and results of this book’s material through
Chapter 5 to daily computing practice.

This involves relating the time usage of compilation and interpretation; the deleterious
effects of multiple levels of interpretation; the use of “bootstrapping” (a form of self-
application) in compiling practice to gain flexibility and speed. Last but not least, the
Futamura projections show how, using a specializer and an interpreter, one may compile,
generate compilers, and even generate a compiler generator, again by self-application.
Interestingly, the Futamura projections work well in practice as well as in theory, though
their practical application is not the subject of this book (see [89].)

Section 6.1 first introduces running times into the notion of a programming language
arriving at a timed programming language. Section 6.2 is concerned with with inter-
pretation. Section 6.3 describes self-application of compilers, and Section 6.4 introduces
partial evaluation, the well-developed practice of using program specialization for auto-
matic program optimization. Section 6.5 shows how it can be applied to compiling and
compiler generation, and discusses some efficiency issues, showing that self-application
can actually lead to speedups rather than slowdowns.

The final two Sections (which readers focused more on theoretical issues may wish
to skip) include 6.6 on pragmatically desirable properties of a specializer for practical
applications; and Section 6.7, which sketches an offline algorithm for partial evaluation.

6.1 Timed programming languages

Definition 6.1.1 A timed programming language L consists of

1. Two sets, L−programs and L−data;

87



88 Metaprogramming, Self-application, and Compiler Generation

2. A function [[•]]L : L−programs→ (L−data→ L−data⊥); and

3. A function timeL : L−programs→ (L−data→ IN⊥) such that for any p∈ L−programs
and d ∈ L−data, [[p]]L(d) =⊥ iff timeLp(d) =⊥.

The function in 2 is L’s semantic function, which associates with every p ∈ L−programs
a corresponding partial input-output function from L-data to L-data. The function in 3
is L’s running time function which associates with every program and input the number
of steps that computation of the program applied to the input takes. 2

Much more will be said about program running times in the Complexity Theory parts of
this book. In this chapter we discuss time aspects of interpretation, specialization etc.
only informally, relying on the reader’s experience and intuition.

6.2 Interpretation overhead

In the first subsection we discuss overhead in practice, i.e. for existing interpreters, and
the second subsection is concerned with self-application of interpreters. It will be seen
that interpretation overhead can be substantial, and must be multiplied when one inter-
preter is used to interpret another one.

Section 6.4 will show how this overhead can be removed (automatically), provided
one has an efficient program specializer.

6.2.1 Interpretation overhead in practice

In the present and the next subsection, we are concerned with interpreters in practice,
and therefore address the question: how fast can an interpreter be, i.e. what are the lower
bounds for the running time of practical interpreters. Suppose one has an S-interpreter
int written in language L, i.e.

L

S
int ∈

In practice, assuming one has both an L-machine and an S-machine at one’s disposal,
interpretation often turns out to be rather slower than direct execution of S-programs.
If an S-machine is not available, a compiler from S to L is often to be preferred because
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the running time of programs compiled into L (or a lower-level language) is faster than
that of interpretively executed S-programs.

In practice, a typical interpreter int’s running time on inputs p and d usually satisfies
a relation

αp · timeSp(d)≤ timeLint(p.d)

for all d. Here αp is a “constant” independent of d, but it may depend on the source
program p. Often αp = c+f(p), where constant c represents the time taken for “dispatch
on syntax” and f(p) represents the time for variable access. In experiments c is often
around 10 for simple interpreters run on small source programs, and larger for more
sophisticated interpreters. Clever use of data structures such as hash tables, binary
trees, etc. can make αp grow slowly as a function of p’s size.

6.2.2 Compiling (usually) gives faster execution than

interpretation

If the purpose is to execute S-programs, then it is nearly always better to compile than
to interpret. One extreme: if S = L, then the identity is a correct compiling function
and, letting q = [[comp]](p) = p, one has timeSp(d) = timeLq(d): considerably faster than
the above due to the absence of αp. Less trivially, even when S 6= L, execution of a
compiled S-program is nearly always considerably faster than running the same program
interpretively.

6.2.3 Layers of interpretation

Suppose a Lisp system (called L2) is processed interpretively by an interpreter written
in Sun RISC machine code (call this L1). The machine code itself is processed by the
central processor (call this L0) so two levels of interpretation are involved, as described
in the interpreter diagram in Figure 6.1.

The major problem with implementing languages interpretively is that the running
time of the interpreted program is be multiplied by the overhead occurring in the inter-
preter’s basic cycle. This cost, of one level of interpretation, may well be an acceptable
price to pay in order to have a powerful, expressive language (this was the case with
Lisp since its beginnings). On the other hand, if one uses several layers of interpreters,
each new level of interpretation multiplies the time by a significant constant factor, so
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Figure 6.1: Interpretation overhead.

the total interpretive overhead may be excessive (also seen in practice). Compilation is
clearly preferable to using several interpreters, each interpreting the next.

Indeed, suppose now that we are given

• An interpreter int1
0 written in L0 that implements language L1; and

• An interpreter int2
1 written in L1 that implements language L2.

where L0, L1, and L2 all have pairing and concrete syntax, and all have the same data
language. By definition of an interpreter,

[[p2]]L2(d) = [[int2
1]]

L1(p2.d) = [[int1
0]]

L0(int2
1.(p2.d))

One can expect that, for appropriate constants α01,α12 and any L1-program p1, L2-
program p2 and data d,

α01 · timeL1p1(d)≤ timeL0
int10

(p1.d) and

α12 · timeL2p2(d)≤ timeL1
int21

(p2.d)

where α01,α12 are constants representing the overhead of the two interpreters (often
sizable, as mentiond in the previous section).

Consequently replacing p1 in the first by int2
1 and d by p2.d, and multiplying the

second inequality by α01 we obtain:
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α01· timeL1
int2

1
(p2.d)≤ timeL0

int1
0
(int2

1.(p2.d))

α01 ·α12 · timeL2p2(d)≤ α01 · timeL1
int21

(p2.d)

Thus α01 ·α12 · timeL2p2(d)≤ timeL0
int1

0
(int2

1.(p2.d)), confirming the multiplication of inter-

pretive overheads.

6.3 Compiler bootstrapping: an example of

self-application

The term “bootstrapping” comes from the phrase “to pull oneself up by one’s bootstraps”
and refers to the use of compilers to compile themselves. The technique is widely used
in practice, including industrial applications. Examples are numerous. We choose a
common one, that of extending an existing compiler for language S to accept a larger
language S′, based on the following assumptions:

1. The new language S′ is a conservative extension of S. By definition this means that
every S-program p is also an S′-program (so S-programs ⊆ S′-programs), and has
the same semantics in both languages (so [[p]]S = [[p]]S

′
).

2. We have a compiler h ∈ S-programs, from source language S to target language
T available in source form. By definition of compiler, [[p]]S = [[[[h]]S(p)]]T for any
S-program p.

3. Further, we assume that we have an equivalent program t ∈ T-programs available
in target form, so [[h]]S = [[t]]T.

S T

S

-
high-level compiler h ∈

S T

T

-
low-level compiler t ∈

Now h and t can be used to create a compiler from S′ to T as follows:

1. Rewrite the existing compiler h, extending it to make a compiler h′ ∈ S-programs
for S′, using only features already available in S:
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S′ T

S

-
high-level compiler h′ ∈

This must be equivalent to h on the old source language S, so for all S-programs1

p, we have [[[[h]]S (p) ]]T = [[[[h′]]S (p) ]]T.

2. Now apply t to h′ to obtain an S′ compiler t1′ in target language form:

S′ T

S

-

high-level compiler h′ ∈ S T

T

-

low-level compiler t ∈

S′ T

T

-

3 low-level compiler t1′

Now we have obtained the desired extended compiler t1′ = [[t]]T (h′) . It is easy to see
that it is a target program equivalent to h′, since:

[[t1′]]T = [[[[t]]T (h′) ]]T (substitution of equals)
= [[[[h]]S (h′) ]]T Since t and h are equivalent
= [[h′]]S h compiles source program h′ from S to T.

What happens if we continue this game?

1. Use t1′ to obtain an S′ compiler t2′ in target language form:

S′ T

S

-

high-level compiler h′ ∈ S′ T

T

-

low-level compiler t1′ ∈

S′ T

T

-

3 low-level compiler t2′

2. Use t2′ to obtain an S′ compiler t3′ in target language form:

S′ T

S

-

high-level compiler h′ ∈ S′ T

T

-

low-level compiler t2′ ∈

S′ T

T

-

3 low-level compiler t3′

1Note that this does not require h and h′ to produce the same target code, just target code which

will have identical effects when run.
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Combining these runs, we get a compound diagram like those seen in [3]:

t →

S T

T

-h′ →

h′ →

h′ ↓ t3′ ↓

← t2′

← t1′

S′ T

S

- S′ T

T

-

S′ T

S

- S′ T

T

-

S′ T

S

- S′ T

T

-

These runs can be written more concisely as follows:

t1′ = [[t]]T (h′)
t2′ = [[t1′]]T (h′)
t3′ = [[t2′]]T (h′)

Now t1′ and t2′ (and t3′) are semantically equivalent since they are all obtained by
correct compilers from the same source program, h′:

[[t1′]]T = [[[[t]]T (h′) ]]T by definition of t1′

= [[[[h]]S (h′) ]]T Since t and h are equivalent
= [[[[h′]]S (h′) ]]T since h′ is a conservative extension of h
= [[[[[[t]]T (h′) ]]T (h′) ]]T since t is a compiler from S to T

= [[[[t1′]]T (h′) ]]T by definition of t1′

= [[t2′]]T by definition of t2′

Note that t1′ and t2′ may not be textually identical, since they were produced by two
different compilers, t and t1′, and it is quite possible that the extended language S′ may
require different target code than S.

However, one easily sees that t2′ and t3′ are textually identical since the compilers
used to compile them are semantically equivalent:

t2′ = [[t1′]]T (h′) by definition of t2′

= [[t2′]]T (h′) Since t1′ and t2′ are equivalent: [[t1′]]T = [[t2′]]T

= t3′ by definition of t3′

The difference between being semantical and syntactical identity of the produced com-
pilers stems from the relationship between the compilers we start out with: t and h are
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equivalent in the sense that given the same input program they produce syntactically the
same output program. However h and h′ are equivalent on S programs only in the sense
that given the same program, the two output programs they produce are semantically
equivalent (natural: when one revises a compiler, the old target code may need to be
modified).

Note that bootstrapping involves self-application in the sense that (compiled versions
of) h′ are used to compile h′ itself. Note also that self-application is useful in that it
eases the tasks of transferring a compiler from one language to another, of extending a
compiler, or of producing otherwise modified versions.

6.4 Partial evaluation: efficient program

specialization

The goal of partial evaluation is to specialize general programs so as to generate efficient
ones from them by completely automatic methods. On the whole, the general program
will be more generic, and perhaps simpler but less efficient, than the specialized versions a
partial evaluator produces. A telling catch phrase is binding-time engineering — making
computation faster by changing the times at which subcomputations are done (see Figure
3.4).

The program specializer of Section 5.2 is very simple, and the programs it ouputs
are slightly slower than the ones from which they were derived. On the other hand,
program specialization can be done much less trivivally, so as to yield efficient specialized
programs. This is known as partial evaluation, a field at the borderline between in
programming language theory and practice.

Consider, for instance, the following program, which reads a pair of numerals and
returns the product. Data is assumed in “base 1” notation, addition is done by repeatedly
adding 1 (succ below), and multiplication by repeated addition.
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read XY; (* Input is a pair XY = (x.y) *)
X := hd XY; (* Unary notation: X = nilx *)
Y := tl XY;
P := 0; (* P will be the product *)
while Y do (* Add X to P for Y times *)
Y := pred Y;
T := X;
while T do (* Add 1 to P for X times *)
T := pred T;
P := succ P;

write P;

Suppose that we want to specialize this program so that X is 3 = nil3. Then we could
get the following program:

read Y;
P := 0;
while Y do
Y := pred Y;
P := succ P;
P := succ P;
P := succ P;

write P;

Rather than calling the first program with arguments of form (3.d) it is clearly better
to use the second, more efficient program. A typical partial evaluator, i.e. specializer,
will be capable of transforming the former into the latter.

6.4.1 A slightly more complex example: Ackermann’s function

Consider Ackermann’s function, with program:

a(m,n) = if m =? 0 then n+1 else
if n =? 0 then a(m-1,1)
else a(m-1,a(m,n-1))

Computing a(2,n) involves recursive evaluations of a(m,n) for m = 0, 1 and 2, and
various values of n. A partial evaluator can evaluate expressions m=?0 and m-1, and
function calls of form a(m-1,...) can be unfolded. We can now specialize function a to
the values of m, yielding a less general program that is about twice as fast:

a2(n) = if n =? 0 then 3 else a1(a2(n-1))
a1(n) = if n =? 0 then 2 else a1(n-1)+1
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6.5 Compiling and compiler generation by

specialization

This section shows the sometimes surprising capabilities of partial evaluation for gener-
ating program generators. We will see that it is possible to use program specialization
to compile, if given an interpreter and a source program in the interpreted language; to
convert an interpreter into a compiler:

L

S
=⇒

S T

T

-

by specializing the specializer itself; and even to generate a compiler generator. This is
interesting for several practical reasons:

• Interpreters are usually smaller, easier to understand, and easier to debug than
compilers.

• An interpreter is a (low-level form of) operational semantics, and so can serve as
a definition of a programming language, assuming the semantics of L is solidly
understood.

• The question of compiler correctness is completely avoided, since the compiler will
always be faithful to the interpreter from which it was generated.

The results are called the Futamura projections since they were discovered by Yoshihiko
Futamura in 1971 [48]. We consider for simplicity only specialization without change
in data representation. That is, we assume that all the languages below have concrete
syntax and pairing, and that all the data languages are the same. Suppose we are given

• a specializer spec from L to T written in an implementation language Imp.

• an interpreter int for S-programs which is written in language L; and

• an arbitrary S-program source.

6.5.1 The first Futamura projection

The following shows that given an L to T-specializer, an S interpreter written in L, and an
S-program source, one can get a T program target equivalent to source. Concretely:

target = [[spec]]Imp(int.source)
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is a T-program equivalent to S-program source, i.e. that one can compile by partial
evaluation. (This is a solution of Exercise 3.1.)

This equation is often called the first Futamura projection [48], and can be verified
as follows, where in and out are the input and output data of source.

out= [[source]]S(in) Assumption
= [[int]]L(source.in) Definition 3.4.1 of an interpreter
= [[[[spec]]Imp(int.source)]]T(in) Definition 3.6.1 of a specializer
= [[target]]T(in) Definition of target

In other words, one can compile a new language S to the output language of the special-
izer, provided that an interpreter for S is given in the input language of the specializer.
Assuming the partial evaluator is correct, this always yields target programs that are
correct with respect to the interpreter. This approach has proven its value in practice.
See [11, 90, 89] for some concrete speedup factors (often between 3 and 10 times faster).

A common special case used by the Lisp and Prolog communities is that Imp= T= L,
so one can compile from a new language S to L by writing an S-interpreter in L.

Speedups from specialization As mentioned before, compiled programs nearly al-
ways run faster than interpreted ones, and the same holds for programs output by the
first Futamura projection. To give a more complete picture, though, we need to discuss
two sets of running times:

1. Interpretation versus execution:

timeint(p.d) versus timeintp(d)

2. Interpretation versus specialization plus execution:

timeint(p.d) versus timespec(int.p)+ timeintp(d)

If program p is to be run just once, then comparison 2 is the most fair, since it accounts
for what amounts to a form of “compile time.” If, however, the specialized program
intp is to be run often (e.g. as in typical compilation situations), then comparison 1 is
more fair since the savings gained by running intp instead of int will, in the long term,
outweigh specialization time, even if intp is only a small amount faster than int.
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6.5.2 Compiler generation by the second Futamura projection

The second equation shows that one can generate an S to T compiler written in T, provided
that an S-interpreter in L is given and Imp= L: the specializer is written in its own input
language. Concretely, we see that

compiler = [[spec]]L(spec.int)

is a stand-alone compiler: an L-program which, when applied to a single input source,
yields target. It is thus a compiler from S to L, written in L. Verification is straightfor-
ward as follows:

target = [[spec]]L(int.source) First Futamura projection
= [[[[spec]]L(spec.int)]]T(source) Definition 3.6.1 of a specializer
= [[compiler]]T(source) Definition of comp

Equation compiler = [[spec]]L(spec.int) is called the second Futamura projection. The
compiler generates specialized versions of interpreter int. Operationally, constructing a
compiler this way is hard to understand because it involves self-application — using spec

to specialize itself. But it gives good results in practice, and faster compilation than by
the first Futamura projection.

6.5.3 Compiler generator generation by the third Futamura

projection

Finally, we show (again assuming Imp = L) that

cogen = [[spec]]L(spec.spec)

is a compiler generator : a program that transforms interpreters into compilers. Verifica-
tion is again straightforward:

compiler = [[spec]]L(spec.int) Second Futamura projection
= [[[[spec]]L(spec.spec)]]T(int) Definition 3.6.1 of a specializer
= [[cogen]]T(int) Definition of compiler

The compilers so produced are versions of spec itself, specialized to various interpreters.
This projection is even harder to understand intuitively than the second, but also gives
good results in practice.
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The following more general equation, also easily verified from Definition 3.6.1, sums
up the essential property of cogen (we omit language L for simplicity):

[[p]] (s.d) = [[[[spec]] (p.s) ]] d = ... = [[[[[[cogen]] p ]] s ]] d

Further, cogen can produce itself as output (Exercise 6.9.)
While the verifications above by equational reasoning are straightforward, it is far

from clear what their pragmatic consequences are. Answers to these questions form the
bulk of the book [89].

6.5.4 Speedups from self-application

A variety of partial evaluators generating efficient specialized programs have been con-
structed. Easy equational reasoning from the definitions of specializer, interpreter, and
compiler reveals that program execution, compilation, compiler generation, and compiler
generator generation can each be done in two different ways:

out = [[int]](source.input) = [[target]](input)
target = [[spec]](int.source) = [[compiler]](source)
compiler = [[spec]](spec.int) = [[cogen]](int)
cogen = [[spec]](spec.spec) = [[cogen]](spec)

The exact timings vary according to the design of spec and int, and with the implemen-
tation language L. We have often observed in practical computer experiments [90, 89]
that each equation’s rightmost run is about 10 times faster than the leftmost. Moral:
self-application can generate programs that run faster!

6.5.5 Metaprogramming without order-of-magnitude loss of

efficiency

The right side of Figure 6.2 illustrates graphically that partial evaluation can substan-
tially reduce the cost of the multiple levels of interpretation mentioned in Section 6.2.3.

A literal interpretation of Figure 6.2 would involve writing two partial evaluators,
one for L1 and one for L0. Fortunately there is an alternative approach using only one
partial evaluator, for L0. For concreteness let p2 be an L2-program, and let in, out be
representative input and output data. Then
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Figure 6.2: Overhead introduction and elimination.

out = [[int1
0]]

L0(int2
1.(p2.in)

One may construct an interpreter for L2 written in L0 as follows:

int2
0 := [[spec]]L0(int1

0.int
2
1) satisfying

out = [[int2
0]]

L0(p2.in)

By partial evaluation of int2
0, any L2-programs can be compiled to an equivalent L0-pro-

gram. Better still, one may construct a compiler from L2 into L0 by

comp2
0 := cogenL0(int2

0)

The net effect is that metaprogramming may be used without order–of–magnitude loss
of efficiency. The development above, though conceptually complex, has actually been
realized in practice by partial evaluation, and yields substantial efficiency gains.

6.6 Desirable properties of a specializer

Totality

It is clearly desirable that specialization function [[spec]] is total, so every program p and
partial input s leads to a defined output ps = [[spec]](p.s).
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Computational completeness

The significant speedups seen in the examples above naturally lead to another demand:
that given program p and partial data s, all of p’s computations that depend only on its
partial input s will be performed.

Unfortunately this is in conflict with the desire that [[spec]] be total. Suppose, for
example, that program p’s computations are independent of its second input d, and that
[[p]] is a partial function. Then computational completeness would require [[spec]](p.s) to
do all of p’a computation on s, so it would also fail to terminate whenever [[p]](s.d) =⊥.
This is a problem, since nobody likes compilers or other program transformers that
sometimes loop infinitely!

A typical example which is difficult to specialize nontrivially without having the
specializer fail to terminate is indicated by the program fragment

if complex-but-always-true-condition-with-unavailable-input-d
then X := nil
else while true do S := cons S S;

One cannot reasonably expect the specializer to determine whether the condition will al-
ways be true. A specializer aiming at computational completeness and so less trivial than
that of Section 5.2 will likely attempt to specialize both branches of the if statement,
leading to nontermination at specialization time.

A tempting way out is to allow ps to be less completely specialized in the case that
[[p]](s.d) =⊥, e.g. to produce a trivial specialization as in Section 5.2. This is, however,
impossible in full generality, as it would require solving the halting problem.

Some practical specializers make use of run-time nontermination checks that monitor
the static computations as they are being performed, and force a less thorough special-
ization whenever there seems to be a risk of nontermination. Such strategies, if capable
of detecting all nontermination, must necessarily be overly conservative in some cases;
for if perfect, they would have solved the halting problem.

Optimality

It is desirable that the specializer be “optimal” when used for compiling, meaning that
spec removes all interpretational overhead. This can be made somewhat more precise,
given a self-interpreter sint:
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L

L
sint ∈

By definition of interpreter and specialization (or by the first Futamura projection), for
every d ∈ ID

[[p]](d) = [[sintp]](d)

where sintp = [[spec]](sint.p). Thus program sintp is semantically equivalent to p.
One could reasonably say that the specializer has removed all interpretational overhead
in case sintp is at least as efficient as p. We elevate this into a definition:

Definition 6.6.1 Program specializer spec is optimal for a self-interpreter sint in case
for every program p and data d, if sintp = [[spec]](sint.p) then

timesintp(d)≤ timep(d)

This definition of “optimality” has proven itself very useful in constructing practical
evaluators [89]. For several of these, the specialized program sintp is identical up to
variable renaming to the source program p. Further, achieving optimality in this sense has
shown itself to be an excellent stepping stone toward achieving successful and satisfactory
compiler generation by self-application.

An open problem. Unfortunately there is a fly in the ointment. The condition just
proposed is a definition relative to one particular self-interpreter sint. It could therefore
be “cheated,” by letting spec have the following structure:

read Program, S;
if Program = sint
then Result := S
else Result := the trivial specialization of Program to S;

write Result

On the other hand, it would be too much to demand that spec yield optimal spe-
cializations of all possible self-interpreters. Conclusion: the concept of “optimality” is
pragmatically a good one, but one which mathematically speaking is unsatisfactory. This
problem has not been resolved at the time of writing, and so could be a research topic
for a reader of this book.
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A two
input
program

p =

a(m,n) = if m = 0 then n+1 else

if n = 0 then a(m-1,1) else

a(m-1,a(m,n-1))

Program p, specialized to static input m = 2:

a2(n) = if n=0 then a1(1) else a1(a2(n-1))

a1(n) = if n=0 then a0(1) else a0(a1(n-1))

a0(n) = n+1

p2 =

Figure 6.3: Specialization of a Program for Ackermann’s Function.

6.7 How specialization can be done

Suppose program p expects input (s.d) and we know what s but not d will be. Intu-
itively, specialization is done by performing those of p’s calculations that depend only on
s, and by generating code for those calculations that depend on the as yet unavailable
input d. A partial evaluator thus performs a mixture of execution and code generation
actions — the reason Ershov called the process “mixed computation” [45], hence the
generically used name mix for a partial evaluator (called spec in Chapter 3). Its output
is often called the residual program, the term indicating that it is comprised of operations
that could not be performed during specialization.

For a simple but illustrative example, we will show how Ackermann’s function (seen
earlier in Section 6.4.1) can automatically be specialized to various values of its first
parameter. Ackermann’s function is useless for practical computation, but an excellent
vehicle to illustrate the main partial evaluation techniques quite simply. An example is
seen in Figure 6.3. (The underlines should be ignored for now.) Note that the specialized
program uses less than half as many arithmetic operations as the original.

Computing a(2,n) involves recursive evaluations of a(m,n) for m = 0, 1 and 2, and
various values of n. The partial evaluator can evaluate expressions m=0 and m-1 for the
needed values of m, and function calls of form a(m-1,...) can be unfolded (i.e. replaced
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by the right side of the recursive definition above, after the appropriate substitutions).
More generally, three main partial evaluation techniques are well known from program

transformation: symbolic computation, unfolding function calls, and program point spe-
cialization. Program point specialization was used in the Ackermann example to create
specialized versions a0, a1, a2 of the function a.

On-line and Off-line Specialization. Figure 6.3 illustrates off-line specialization,
an approach that makes use of program annotations, indicated there by underlines. The
alternative is called on-line specialization: computing program parts as early as possible,
taking decisions “on the fly” using only (and all) available information.

These methods sometimes work better than off-line methods. Program p2 in Figure
6.3 is a clear improvement over the unspecialized program, but can obviously be improved
even more; a few online reductions will give:

a2(n) = if n=0 then 3 else a1(a2(n-1))
a1(n) = if n=0 then 2 else a1(n-1)+1

In particular, on-line methods often work well on structured data that is partially static
and partially dynamic. On the other hand they introduce new problems and the need
for new techniques concerning termination of specializers. For a deeper discussion of the
merits of each approach, see [89].

6.7.1 Annotated programs and a sketch of an off-line partial

evaluator

The interpretation of the underlines in Figure 6.3 is extremely simple:

1. Evaluate all non-underlined expressions;

2. generate residual code for all underlined expressions;

3. unfold at specialization time all non-underlined function calls; and

4. generate residual function calls for all underlined function calls.

Sketch of an off-line partial evaluator. We assume given:

1. A first-order functional program p of form
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f1(s,d) = expression1 (* resp. static & dynamic inputs *)
g(u,v,...) = expression2
...
h(r,s,...) = expressionm

2. Annotations that mark every function parameter, operation, test, and function
call as either eliminable: to be performed/computed/unfolded during specialization,
or residual: generate program text to appear in the specialized program.

In particular the parameters of any definition of a function f can be partitioned into
those which are static and the rest, which are dynamic. For instance m is static and n is
dynamic in the Ackermann example.

The specialized program will have the same form as the original, but it will consist
of definitions of specialized functions gstatvalues (program points), each corresponding to
a pair (g, statvalues) where g is defined in the original program and statvalues is
a tuple consisting of some values for all the static parameters of g. The parameters of
function gstatvalues in the specialized will be the remaining, dynamic, parameters of g.

A specialization algorithm

Assumptions:

1. The input program p is as above, with defining function given by f1(s,d) =

expression1, and static s and dynamic d.

2. Every part of p is annotated as eliminable (no underlines) or residual (underlined).

3. The value of s is given.

In the following, variables Seenbefore and Pending both range over sets of specialized
functions gstatvalues. Variable Target will always be a list of (residual) function defini-
tions.

1. Read Program and S. (Program p and static input value s.)

2. Pending := {f1S}; Seenbefore := {};
3. While Pending is nonempty do the following:

4. Choose and remove a pair gstatvalues from Pending, and add it so Seenbefore if
not already there.

5. Find g’s definition g(x1,x2,...) = g-expression.

6. • Let D1,...,Dm be its subset of dynamic parameters.
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• Let s1,. . . ,sn = statvalues be its list of current static parameter values.

7. Generate and append to Target the definition

gstatvalues(D1,...,Dm) = Reduce(E);

where E is the result of substituting si in place of each static g-parameter xi

occurring in g-expression, and Reduce simplifies the result E.

Given the list statvalues of values of all of g’s static parameters, reduction of an ex-
pression E to its residual equivalent RE = Reduce(E) is defined as follows:

1. If E is constant or a dynamic parameter of g, then RE = E.

2. If E is a static parameter of g then then RE = its value, extracted from the list
statvalues.

3. If E is not underlined and of form operator(E1,..., En) then compute the values
v1, . . . ,vn of Reduce(E1), . . . ,Reduce(En). (These must be totally computable from
g’s static parameter values, else the annotation is in error.) Then set

RE = the value of operator applied to v1, . . . ,vn.

4. If E is operator(E1, . . . ,En) then compute E1′= Reduce(E1), . . . , En′= Reduce(En).

RE = the expression “operator(E1′,..., En′).”

5. If E is not underlined and of form if E0 then E1 else E2 then compute
Reduce(E0). This must be constant, else the annotation is in error. If Reduce(E0)
equals true, then RE = Reduce(E1), otherwise RE = Reduce(E2).

6. If E is if E0then E1 else E2 and each Ei′ equals Reduce(Ei), then

RE = the expression “if E0′ then E1′ else E2′”

7. Suppose E is f(E1, E2,...,En) and Program contains definition

f(x1 ... xn) = f-expression

Since E is not underlined, the call is to be unfolded. Then RE = Reduce(E′), where
E′ is the result of substituting Reduce(Ei) in place of each static f-parameter xi

occurring in f-expression.

8. If E is f(E1,E2, . . . ,En), then
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(a) Compute the tuple statvalues′ of the static parameters of f, by calling
Reduce on each. This will be a tuple of constant values (if not, the anno-
tation is incorrect.)

(b) Compute the tuple Dynvalues of the dynamic parameters of f, by calling
Reduce; this will be a list of expressions.

(c) Then RE = the call “fstatvalues′(Dynvalues).”

(d) A side-effect: if fstatvalues′ is neither in Seenbefore nor in Pending, then add
it to Pending.

6.7.2 Congruence, binding-time analysis, and finiteness

Where do the annotations used by the algorithm above come from? Their primal source
is knowledge of which inputs will be known when the program is specialized, for example
m but not n in the Ackermann example. There are two further requirements for the
algorithm above to succeed.

First, the internal parts of the program must be properly annotated (witness com-
ments such as “if . . . the annotation is incorrect”). The point is that if any parameter
or operation has been marked as eliminable, then one needs a guarantee that it actually
will be so when specialization is carried out, for any possible static program inputs. For
example, an if marked as eliminable must have a test part that always evaluates to a
constant. This requirement (properly formalized) is called the congruence condition in
[89].

The second condition is termination: regardless of what the values of the static inputs
are, the specializer should neither attempt to produce infinitely many residual functions,
nor an infinitely large residual expression.

It is the task of binding-time analysis to ensure that these conditions are satisfied.
Given an unmarked program together with a division of its inputs into static (will be
known when specialization begins) and dynamic, the binding-time analyzer proceeds to
annotate the whole program. Several techniques for this are described in [89]. The
problem is complex for the following reason:

1. A specializer must account for all possible runtime actions, but only knows the
value of static data. It thus accounts for consequences one step into the future.

2. A binding-time analyzer must account for all possible runtime actions, but only
knows which input values will be static, but not what their values are. It thus
accounts for computational consequences two steps into the future.
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The current state of the art is that congruence is definitely achieved, whereas binding-
time analyses that guarantee termination are only beginning to be constructed.

Exercises

6.1 Section 6.3 assumed one already had compilers for language S available in both source
form h and target form t. In practice, however, writing target code is both involved and
error-prone, so it would be strongly preferable only to write h, and the by some form of
bootstrapping obtain t satisfying [[h]]S = [[t]]T.

Explain how this can be done, assuming one only has a compiler for language S

available in source form h. Start by writing an interpreter int for S in some existing and
convenient executable language L. 2

6.2 Find another way to accomplish the same purpose. 2

6.3 Another practical problem amenable to bootstrapping is that of cross-compiling:
given a compiler h from S to T written in S, and an executable target version t in an
available target language T, the problem is to obtain an executable target version t1 in
a new target language T1.

Explain how this can be done. One way is, as a first step, to modify the “code
generation” parts of h to obtain compiler h1 from S to T1. 2

6.4 Find another way to accomplish the same purpose. 2

6.5 Explain informally the results claimed in Section 6.5.4, e.g. why compilation
by target = [[compiler]]T(source) should be faster than compilation by target =
[[spec]]L(int.source). 2

6.6 Prove that [[p]] (s.d) = [[[[[[cogen]] (p) ]] (s) ]] (d) 2

6.7 * Apply the algorithm sketched in Section 6.7.1 to the program of Figure 6.3 with
static input m = 2. 2

6.8 Find an appropriate set of annotations (underlines) for the multiplication program
specialized In Section 6.4. 2

6.9 Prove that cogen = [[cogen]] (spec) . 2
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7 Other Sequential Models of

Computation

We now define some new machine models that differ more or less radically in their
architectures from WHILE. Section 7.1 describes some comon features of these models,
and Sections 7.2–7.5 presents the details of each. New models include:

• GOTO, a model similar to WHILE but with jumps instead of structured loops;

• TM, the Turing machines originating in Turing’s 1936 paper;

• RAM, the random access machines, a model of computer machine languages.

• CM, the counter machines, a simple model useful for undecidability proofs.

Remark to the reader. This chapter and Chapter 8 introduce a series of new compu-
tational models based, loosely speaking, on new architectures; and Chapter 9 introduces
two models based on languages: one for first-order data, and the other, the lambda
calculus, allowing arbitrary functions as values.

The net effect and goal of these three chapters is to provide evidence for the Church-
Turing thesis: that all computation models are equivalent. The means by which the
goal is achieved involve defining the several new machine types (input-output data sets,
computational states, computations, etc.); defining codings between their various data
types; and showing how machines or programs of the one sort can simulate ones of the
other sorts. Some of these constructions will be revisited later when arguing for the
robustness of, for example, polynomially time-bounded computations.

Some readers, already convinced of this, may wish to skip forward to Chapter 10, on
natural undecidable problems. For their sake we point out two facts used several places
later in the book:

• Counter machines, with just two counters and instructions to increment or decre-
ment either by 1, or test either for zero, are a universal computing model: any
computable function can, modulo some data encoding, be computed by some two-
counter program. (Theorem 8.7.2.)

• Further, the GOTO language, whose programs are essentially “flow chart” equiv-
alents to WHILE programs, are also a universal computing model. Some future
constructions will be based on this representation.

111
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7.1 Common characteristics of GOTO, TM, RAM, CM

7.1.1 Data: trees built from one atom nil, strings built from

two symbols 0, 1

We assume without loss of generality that TM-data = {0,1}∗, since a Turing machine with
a larger tape alphabet can be simulated with at most linear loss of time, by one that
works on symbols encoded as strings in {0,1}∗ by encoding each symbol in an k-symbol
alphabet as a block of dlogke bits.

Our presentation of Turing machines is nonclassical because it has a programmed
control and a fixed tape alphabet {0,1}. A later section on the “speedup theorem” will
use the classical model, defined in Section 7.6.

7.1.2 Control structures

Each of the computational models GOTO, TM, RAM, and CM has an imperative control
structure, expressible by a program which is a finite sequence of instructions: p =

I1 I2 ... Im. Sometimes this will be written with explicit labels: p = 1: I1 2:

I2 ... m: Im m+1: . The exact form of each instruction I` will be different for the
various machine types. At any point in its computation, the program will be in a state
of form

s = (`,σ) where ` ∈ {1,2, . . . ,m,m+1} is a program label and
σ is a store whose form will vary from model to model

A terminal state has label ` = m+1, indicating that the computation has terminated.
To describe computations we use the common judgment forms:

Judgment form: Read as:

[[p]](x) = y y is the output from running program p on input x
p ` s→ s′ Program p transits from state s to state s′ in one step
p ` s→∗ s′ Program p transits from state s to state s′ in 0, 1, or more steps

Repeated control transitions p ` s→∗ s′ may be defined in terms of one-step transitions
as follows, for any stores s,s′,s′′:

p ` s→∗ s

p ` s→∗ s′ if p ` s→ s′′ and p ` s′′→∗ s′
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In any one run, the store will be initialized according to the program input, and the
program’s computed result will be read out from the final store. Details differ from
machine to machine, so we assume given functions of the following types, to be specified
later for each model:

Readin : L-data → L-store
Readout : L-store → L-data

Finally, we can define the effect of running program p on input x by: [[p]](x) = y if

1. σ0 = Readin(x)

2. p ` (1,σ0)→∗ (m+1,σ),1 and

3. y = Readout(σ)

7.2 A flowchart language GOTO

Definition 7.2.1 First, GOTO-data = ID as in Definition 9.1.1. Let Vars be a countable
set of variables. We use the conventions d,e ∈ ID and X,Y,Z ∈ Vars. Then GOTO-prog
= the set of imperative programs as in Section 7.1, where informal syntax of a GOTO
instruction is given by the following grammar:

I ::= X := nil | X := Y | X := hd Y | X := tl Y
| X := cons Y Z | if X goto ` else `′

Labels ` in if statements must be between 1 and m+1.
The test =? has been omitted since, by Section 2.3, general equality can be expressed

using atomic equality; and there is only one atom nil, which can be tested for using the
if instruction. 2

Note that every expression has at most one operator, and tests must use variables rather
than expressions. The intuitive semantics of GOTO-programs is as follows. Execution
begins with instruction I1. Assignments are executed as in WHILE. A statement if X

goto ` else `′ is executed in the obvious way: if the value of X is not nil then execution
proceeds with instruction I`, and otherwise instruction instruction I′` is executed.

Here is a version of the reverse program in GOTO, where instructions goto ` and if

X goto ` abbreviate the obvious special cases of if X goto ` else `′. The input will
be read into X and the output will be written from X.

1Here (m+1,σ) is a terminal state.
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1: Y := nil;
2: if X goto 4;
3: goto 8;
4: Z := hd X;
5: Y := cons Z Y;
6: X := tl X;
7: goto 2;
8: X:= Y

Note how the combination of if and goto simulates the effect of while.

Definition 7.2.2 Consider a program p = I1 ... Im. Let Vars(p)= {X,Z1...,Zn}
be the set of all variables in p, and let X be a distinguished input-output variable.

1. A store for p is a function from Vars(p) to ID. A state for p is a pair (`,σ) where
1≤ `≤m+1 and σ is a store for p.

2. Readin(d) = [X 7→ d,Z1 7→ nil, . . .Zn 7→ nil].

3. Readout(σ) = σ(X).

4. The one-step transition rules for GOTO appear in Figure 7.1. 2

(`,σ) → (`+1,σ[X 7→ nil]) If I` = X:=nil

(`,σ) → (`+1,σ[X 7→ σ(Y)]) If I` = X:=Y

(`,σ) → (`+1,σ[X 7→ d]) If I` = X:=hd Y and σ(Y) = (d.e)
(`,σ) → (`+1,σ[X 7→ nil]) If I` = X:=hd Y and σ(Y) = nil

(`,σ) → (`+1,σ[X 7→ e]) If I` = X:=tl Y and σ(Y) = (d.e)
(`,σ) → (`+1,σ[X 7→ nil]) If I` = X:=tl Y and σ(Y) = nil

(`,σ) → (`+1,σ[X 7→ (d.e)]) If I` = X:=cons Y Z and σ(Y) = d,σ(Z) = e

(`,σ) → (`′,σ) If I` = if X goto`′ else`′′ and σ(X) 6= nil

(`,σ) → (`′′,σ) If I` = if X goto`′ else`′′ and σ(X) = nil

Figure 7.1: One-step transition rules for GOTO-programs.

7.3 The Turing machine TM

This model is a direct formalization of Turing’s analysis of computational processes, using
a sequence of instructions for control.
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First, TM-data = {0,1}∗, so an input is a bit string. A Turing machine has one
or more tapes. Each tape is a two-way infinite sequence of squares, where a square
contains a symbol from a finite tape alphabet A including the “blank symbol” B. During
a computation the square’s contents may be tested or overwritten. At any time during
a computation there will only be finitely many nonblank symbols on any tape.

In the literature the tape alphabet can sometimes be arbitrarily large, but we use
{0,1,B} for simplicity and because it only makes small constant changes in running
times: the same reasons for restricting the GOTO language to the one atom nil.

In a computational total state at some moment, each of the machine’s read/write
heads is scanning one “current” square on each tape, and it is about to perform one of
its program instructions. This directs the machine to do one of the following for one of
the tapes: write a new symbol on the tape, replacing the previous scanned tape square’s
contents; move its read/write head one square to the left or to the right; or compare the
contents of its scanned square against a fixed symbol and then transfer control to one
instruction if it matches, and to another instruction if not.

...B B 0 1 0 1 B B ... Tape 1 (input)

...B 1 1 0 0 B B B ... Tape 2 (initially blank)

�
�

�
�

�
�

��>

���������:

. . .. . .XXXXXXXXXXz

. . .

...B 0 0 1 1 1 1 B ... Tape k (initially blank)

Finite
state
control
(program)

p

Figure 7.2: A multitape Turing machine.

The following grammar describes TM-prog by giving the syntax of both instructions and
data. Subscript j,1 ≤ j ≤ k, indicates which tape is involved. For one-tape Turing
machines the subscript will be omitted.
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I : Instruction ::= rightj | leftj | writej S | ifj S goto ` else `′

S,S′ : Symbol ::= 0 | 1 | B
L,R : String ::= S String | ε (ε is the empty string)
σ : Tapes ::= Tapek

Tape ::= L S R

A store σ is a k-tuple of two-way conceptually infinite tapes. The tapes must be repre-
sented finitely in order to define the transition rules. One way is to include all nonblank
symbols, so a full tape is obtained by appending infinitely many blanks to each end of a
finite tape representation. A full storage state consists of a store in which the scanned
symbol will be underlined. Thus we define

TM-store = { (L1 S1 R1, . . . ,Lk Sk Rk) | Li, Si, Ri as above }

Here the underlines mark the scanned symbols Si, and Li and Ri are (perhaps empty)
strings of symbols.

Inputs and outputs are strings in TM-data = {0,1}∗, are found on the first tape,
and consist of all symbols to the right of the scanned symbol, extending up to but not
including the first blank. The store initialization and result readout functions are defined
as follows:

Readin(x) = (Bx, B, . . . ,B) Start just left of input
Readout(L1 S1 R1,L2S2R2, . . . ,LkSkRk) = Pfx (R1) Tape 1, right to first B

where

Pfx (R) =

{
ε if R = ε or if R begins with B

S Pfx (R′) if R = S R′ and S = 0 or 1

Finally, the effect of a one-tape Turing machine one-step transition is defined as in Figure
7.3, where I` is the instruction about to be executed and S,S′ ∈ {0,1,B} are tape symbols.
Extension to multiple tapes is straightforward but notationally tedious, and so is omitted.

7.4 The counter machine CM

A counter machine program has as storage a finite number of counters (also called reg-
isters or cells) X0, X1, X2,. . . , each holding a natural number. Thus CM-data = IN .

Program instructions allow testing a counter for zero, or incrementing or decrementing
a counter’s contents by 1 (where by definition 0 .−1 = 0 and (x+1) .−1 = x for x∈ IN). All
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p ` (`,LSS′R) → (`+1,LSS′ R) If I` = right

p ` (`,LS) → (`+1,LSB) If I` = right

p ` (`,LS′ SR) → (`+1,LS′ SR) If I` = left

p ` (`,SR) → (`+1,BSR) If I` = left

p ` (`,LSR) → (`+1,LS′ R) If I` = write S′

p ` (`,LSR) → (`′,LSR) If I` = “if S goto `′”
p ` (`,LSR) → (`′,LSR) If I` = “if S′ goto `′ else `′′” and S 6= S′

Figure 7.3: Turing machine one-step transition rules.

counter contents are initially zero except for the input. The following grammar describes
the CM instruction syntax and so defines CM-prog.

I ::= Xi := Xi + 1 | Xi := Xi .- 1 | if Xi=0 goto ` else `′

(Sometimes the dot will be omitted from .−.) Additional computable instructions could
be added, e.g. Xi := 0, Xi := Xj, if Xi = 0 goto `, or goto `. Such extensions are,
however, unnecessary in principle since they are special cases of or can be simulated using
the instruction set above.

A store σ is a function in

CM-store = { σ | σ : IN → IN}

where σ(i) is the current contents of counter Xi for any i ∈ IN . The store initialization
and result readout functions are defined as follows:

Readin(x) = [0 7→ x,1 7→ 0,2 7→ 0, . . .] Input in counter 0
Readout(σ) = σ(0) Output from counter 0

Any one program can only reference a fixed set of counters. Thus for any store σ used to
execute it, σ(i) = 0 will hold for all but a fixed finite set of indices. Finally, the counter
machine one-step transition rules are defined as in Figure 7.4.

7.5 The random access machine RAM

This machine is an extension of the counter machine which more closely resembles current
machine languages. It has a number of storage registers containing natural numbers (zero
if uninitialized), and a much richer instruction set than the counter machine. The exact
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p ` (`,σ)→ (`+1,σ[i 7→ j +1]) If I` = “Xi := Xi + 1” and σ(i) = j

p ` (`,σ)→ (`+1,σ[i 7→ j−1]) If I` = “Xi := Xi .- 1” and σ(i) = j 6= 0
p ` (`,σ)→ (`+1,σ[i 7→ 0]) If I` = “Xi := Xi .- 1” and σ(i) = 0
p ` (`,σ)→ (`′,σ) If I` = “if Xi=0 goto `′ else `′′” ∧σ(i) = 0
p ` (`,σ)→ (`′′,σ) If I` = “if Xi=0 goto `′ else `′′” ∧σ(i) 6= 0

Figure 7.4: Counter machine one-step transition rules.
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Figure 7.5: Picture of a random access machine.

range of instructions allowed differ from one application to another, but nearly always
includes

1. Copying one register into another.

2. Indirect addressing or indexing. This allows a register whose number has been
computed to be fetched from or stored into.

3. Elementary operations on one or more registers, for example adding or subtracting
1, and comparison with zero.

4. Other operations on one or more registers, for example addition, subtraction, multi-
plication, division, shifiting, or bitwise Boolean operations (where register contents
are regarded as binary numbers, i.e. bit sequences).

The successor random access machine, SRAM, has only instruction types 1, 2, 3 above.
General RAM operations vary within the literature. Although rather realistic in some
aspects, the SRAM is, nonetheless, an idealized model with respect to actual machine
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codes. One reason is that there is no built-in limit to word size or memory address
space: it has a potentially infinite number of storage registers, and each may contain
an arbitrarily large natural number. Even though any one program can only address
a constant number of storage registers directly, indirect addressing allows unboundedly
many other registers to be accessed.

The following grammar describes the SRAM instruction syntax.

I ::= Xi := Xi + 1 | Xi := Xi .- 1 | if Xi=0 goto ` else `′

| Xi := Xj | Xi := <Xj> | <Xi> := Xj

While this machine resembles the counter machine, it is more powerful in that it allows
programs to fetch values from and store them into cells with computed addresses. The
intuitive meaning of Xi := <Xj> is an indirect fetch: register Xj’s contents is some
number n; and that the contents of register Xn are to be copied into register Xi. Similarly,
the effect of <Xi> := Xj is an indirect store: register Xi’s contents is some number m;
and the contents of register Xj are to be copied into register Xm.

This version is nearly minimal, but will suffice for our purposes. More general RAM
models seen in the literature often have larger instruction sets including addition, mul-
tiplication, or even all functions computed by finite-state automata with output, op-
erating on their argments’ binary representations. We will argue that such extensions
do not increase the class of computable functions. They can, however, affect the class
of polynomial-time solvable problems, as the more powerful instructions can allow con-
structing extremely large values within unrealistically small time bounds.

The RAM storage has the form

SRAM-store = { σ | σ : IN → IN}

where σ(j) is the current contents of register Xj. Further,

Readin(x) = [0 7→ x,1 7→ 0, . . .] Input in register X0
Readout(σ) = σ(0) From register X0

Even though one program can directly reference only a fixed set of registers, the in-
direct operations allow access to registers not appearing in the program text (perhaps
unboundedly many). On the other hand, the store is initialized to zero except for its
input register, so at any point during a computation only finitely many registers can
contain nonzero values. Consequently the machine state can be represented finitely (in
fact we will see that an SRAM can be simulated by a Turing machine).

The SRAM one-step transition rules are defined as in Figure 7.6.
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p ` (`,σ) → (`+1,σ[i 7→ σ(i)+1]) If I` = “Xi := Xi+1”
p ` (`,σ) → (`+1,σ[i 7→ σ(i)−1]) If I` = “Xi := Xi .- 1” and σ(i) 6= 0
p ` (`,σ) → (`+1,σ[i 7→ 0]) If I` = “Xi := Xi .- 1” and σ(i) = 0
p ` (`,σ) → (`+1,σ[i 7→ 0]) If I` = “Xi := 0”
p ` (`,σ) → (`′,σ) If I` = “if Xi=0 goto `′ else `′′”

and σ(i) = 0
p ` (`,σ) → (`′′,σ) If I` = “if Xi=0 goto `′ else `′′”

and σ(i) 6= 0
p ` (`,σ) → (`+1,σ[i 7→ σ(j)]) If I` = “Xi := Xj”
p ` (`,σ) → (`+1,σ[i 7→ σ(σ(j))]) If I` = “Xi := <Xj>”
p ` (`,σ) → (`+1,σ[σ(i) 7→ σ(j)]) If I` = “<Xi>:= Xj”

Figure 7.6: Successor random access machine one-step transition rules.

7.6 Classical Turing machines

We will later on prove certain results for which it matters whether one chooses the
formulation of Turing machines above, or the classical formulation usually adopted in
the literature. Therefore we now briefly review the classical definition.

Definition 7.6.1 A k-tape classical Turing machine is a quintuple

(Σ,Q,`init, `fin,T )

where

1. Σ is a finite alphabet containing a distinguished symbol B;

2. Q is a finite set of states, including `init, `fin; and

3. T is a set of tuples of form

(`,(a1,b1,M1), . . . ,(ak,bk,Mk), `′)

where

(a) a1, . . . ,ak,b1, . . . ,bk ∈ Σ;

(b) M1, . . . ,Mk ∈ {←,↓,→}; and

(c) `,`′ ∈Q and ` 6= `fin.

The Turing machine is deterministic if for every ` and a1, . . . ,ak there exists at most one
b1, . . . ,bk, M1, . . . ,Mk, and `′ such that (`,(a1,b1,M1), . . . ,(ak,bk,Mk), `′) ∈ T . 2
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It is perhaps easiest to understand the definition by comparison with the previous def-
inition of Turing machines. Whereas the previous definition insisted that every Turing
machine use the same tape alphabet {0,1,B}, the present definition allows each machine
to have its own tape alphabet Σ. Moreover, whereas the previous Turing machine was
controlled by a sequence of labeled commands, we now have instead a set of states Q,
and a set of transitions T between these states. Roughly, every state ` ∈Q corresponds
to a label in the earlier definition, and every transition t ∈ T corresponds to a command.

Consider, for instance, a 1-tape Turing machine with transition:

(`,(a,b,M), `′)

Such a transition may also be written more simply as a quintuple:

(`,a,b,M,`′)

The meaning of the transition is: in state `, if the scanned square contains a, then
overwrite this a with b, perform an action as specified by M , and go to state `′, where
the different values of M are interpreted as follows:

← : move the read/write head one square to the left
↓ : do not move the read/write head
→ : move the read/write head one square to the right

All this is counted as taking 1 step.
A tuple

(`,(a1,b1,M1), . . . ,(ak,bk,Mk), `′)

specifies the analogous k-tape Turing machine state transition: in state `, if the scanned
symbol on tape i is ai, for all i ∈ {1, . . .k}, then bi is to be written in place of ai for all
i∈ {1, . . .k}, the read/write head on tape i is moved according to Mi, for all i∈ {1, . . .k},
and the new state becomes `′. All this is also counted as taking 1 step. Note that all the
ai are replaced by the bi if this tuple applies; else none of them are replaced.

In order to formalize computations we make use of configurations. For a 1-tape
Turing machine a configuration is a pair (`,(L,σ,R)), where ` is the current state, σ is the
current scanned symbol, and L and R are the contents of the tape to the left and right of
σ, respectively. Transitions modify the configurations as sketched above. A computation
always begins in state `init with a blank as the scanned symbol, blank tape to the left,
and the input to the right. Computations end in `fin (if they end at all) with the output
to the right of the scanned symbol up to the first blank. There are no transitions from
`fin.
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The tape to the left and right of the scanned symbol are at all times finite. In the
situation where one moves, say, to the right and the tape to the right is empty, we simply
add a blank.

This is all made precise in the following definition.

Definition 7.6.2 Given a k-tape Turing machine M = (Σ,Q,`init, `fin,T ).

1. A configuration of M is an element of Q× (Σ∗×Σ×Σ∗)k.
2. One configuration C leads to another C ′, notation C ; C ′, if

C = (`,(L1,σ1,R1), . . . ,(Ln,σn,Rn))
C ′ = (`′,(L′1,σ

′
1,R
′
1), . . . ,(L

′
n,σ′n,R′n))

and there is a transition (`,(a1,b1,M1), . . . ,(ak,bk,Mk), `′) ∈ T such that for all
i = 1, . . . ,k both σi = ai, and:

(a) if Mi =← then

i. if Li = ε then L′i = ε, σ′i = B, and R′i = biRi;
ii. if Li = γσ with σ ∈ Σ, then L′i = γ, σ′i = σ, and R′i = biRi.

(b) if Mi =↓ then L′i = Li, σ′i = bi, and R′i = Ri

(c) if Mi =→ then

i. if Ri = ε then R′i = ε, σ′i = B, and L′i = biLi;
ii. if Ri = σγ with σ ∈ Σ then R′i = γ, σ′i = σ, and L′i = biLi.

3. C leads to C ′ in m steps, notation C ;m C ′, if there is a sequence of configurations
C1, . . . ,Cm+1 such that C = C1 and C ′ = Cm+1.

4. For x,y ∈ (Σ\{B})∗ we write M(x) = y, if for some m

(`init,(ε,B,x),(ε,B,ε), . . . ,(ε,B,ε)) ;m

(`fin,(L1,σ1,yR1),(L2,σ2,R2), . . . ,(Lk,σk,Rk))

where R1 is either ε or begins with B.
5. M decides a set L⊆ (Σ\{B})∗, if

M(x) =

{
1 for every x ∈ L

0 for every x ∈ (Σ\{B})∗\L
2

Example 7.6.3 Here is a 1-tape Turing machine M that takes a number in the unary
number system as input, and returns its successor as output, i.e., M(x) = x1 for all unary
numbers x.
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1. Σ = {0,1,B};
2. Q = {`1, `2, `3, `4};
3. `init = `1;

4. `fin = `4;

5. T = {(`1,B,B,→, `2),(`2,1,1,→, `2),(`2,B,1,←, `3),(`3,1,1,←, `3),(`3,B,B,↓, `4)}

The machine is started with scanned symbol B, blank tape to the left, and the input
1 · · ·1 to the right. Therefore it begins (first transition) by moving one step to the right.
Then (second transition) it moves one step to the right as long as it sees 1’s. When it
reaches a blank after the 1’s, it replaces the blank by an extra 1 (third transition). It
then moves to the left to get back to the initial blank (fourth transition), and when it
arrives, it terminates (fifth transition).

Here is a more clever machine computing the same function:

1. Σ = {0,1,B};
2. Q = {`1, `2};
3. `init = `1;

4. `fin = `2;

5. T = {(`1,B,1,←, `2)}. 2

Note that every transition must write something to the scanned square. In order to
simply move the read/write head one must write the same symbol to the scanned square
as is already present. For instance,

(`1,B,B,→, `2)

is the first transition in the example above which moves the read/head one square to the
right. It is convenient to let nop be an abbreviation for the triple (B,B,↓). In case we
know the scanned square is a blank, this operation neither moves the read/write head
nor writes anything to the tape—it performs a “no-operation.”

Exercises

7.1 Show that a program with several one-dimensional arrays can be simulated in a RAM.
2

7.2 Show that it is not necessary to assume that every memory cell is initialized to 0.
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1. Show how, given any CM program p as defined above, to construct a CM program q

which has the same input-output behavior as p, regardless of the initial state of its
memory. (An easy exercise.)

2. * Show that the same is true for any RAM program p as defined above. (A more
subtle exercise.)

2

7.3

1. Show that function x+1 is computable by a Turing machine, if given as input the
binary representation of x.

2. Show that a Turing machine can, given input of form xBy where y,x∈{0,1}∗, decide
whether x= y. An alphabet larger than {0,1,B} may be assumed, if convenient. 2

7.4 Show how to simulate instructions Xi := 0, Xi := Xj, goto `, and if Xi 6= 0

goto ` else `′ on a counter machine as defined above. 2

7.5 Show that a counter machine can compute functions x+y,2 ·x,x/2. 2

7.6 * This exercise and the next concern the construction of a self-interpreter for SRAM
programs. Part 1: devise an appropriate way to represent the instruction sequence
comprising an SRAM program as SRAM data in memory. (Hint: you may wish to use more
than memory cell to contain one instruction.) 2

7.7 * Part 2: Sketch the operation of the self-interpreter for SRAM programs. This can
store the program to be interpreted in odd memory locations, and can represent memory
cell loc of the program being interpreted by the interpreter’s memory cell 2 · loc. 2

7.8 Prove that the function f(x) = the largest u such that x = 3u · y for some y is
CM-computable. 2

References
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8 Robustness of Computability

In this chapter we undertake the task of justifying the Church-Turing thesis, by proving
that all the different models introduced in the preceding chapter are equivalent to the
WHILE model introduced earlier.1 The result is that computability, without limitations
on resource bounds, is equivalent for all of: WHILE, I, GOTO, CM, 2CM, RAM, and TM. This
implies that many results about WHILE carry over to the other models directly. For
instance, the halting problem is undecidable for all of the above languages.

Section 8.1 presents an overview of the equivalence proof. Sections 8.2-8.7 then prove
the various equivalences by means of compilation and interpretation.

8.1 Overview

Figure 8.1 gives an overview of the translations and interpretations in this chapter. The
labels in the diagram sum up the techniques that are used. The proofs of equivalence
come in three variants:

1. Show for a language pair X, Y how to compile an arbitrary X-program p into an
equivalent Y-program q (possibly with a change in data representation, as in Defi-
nition 3.3.3).

2. Show for a language pair X, Y how to write an interpreter for X in Y.

3. The remaining arcs, labeled with ⊂, are trivial. For instance, every 2CM-program
is a CM-program with exactly the same computational meaning.

Figure 8.2 shows the form of data and store in each of the computation models. Compi-
lation from WHILE to I was dealt with in Section 3.7.1; this involves coding multi-variable
programs into ones with only one variable X.

8.2 From GOTO to WHILE and back

Proposition 8.2.1 There is a compiling function from WHILE to GOTO.

Proof. By standard techniques; see the Exercises. 2

1Effectively so: There are computable compiling functions between any two.
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Figure 8.1: Equivalences among computational models.

The converse of the above proposition also holds. The classic Böhm-Jacopini construction
in effect shows that every program can be written in the form of one while loop (and
no goto’s) by adding an extra “instruction counter” variable. For instance, the GOTO
version of the reverse program of Section 7.2 can be converted back into the WHILE
program shown in Figure 8.3, where we use numerals from Subsection 2.1.6.

Proposition 8.2.2 There is a compiling function from GOTO to WHILE.

Proof. See the Exercises. 2

Language L L-data L-store Input Output
TM {0,1}∗ σ = L S R B R R

GOTO ID σ : IN → ID σ(0) σ(0)
WHILE and I ID σ : IN → ID σ(0) σ(0)
CM IN σ : IN → IN σ(0) σ(0)
RAM IN σ : IN → IN σ(0) σ(0)

Figure 8.2: Forms of data and stores
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read X;
C := 1;
while C do
if (=? C 1) then { Y := nil; C := 2 };
if (=? C 2) then { if X then C := 4 else C := 3};
if (=? C 3) then { C := 8 };
if (=? C 4) then { Z := hd X; C := 5 };
if (=? C 5) then { Y := cons Z Y; C := 6 };
if (=? C 6) then { X := tl X; C := 7 };
if (=? C 7) then { C := 2 };
if (=? C 8) then { X := Y; C := 0 };

write X

Figure 8.3: The result of using the Böhm-Jacopini construction on reverse.

There is a controversy, sometimes experienced in undergraduate programming courses, as
to whether the use of goto-statements in programming is acceptable. It is often claimed
that GOTO programs are unstructured whereas WHILE programs are well-structured.
The preceding example shows that WHILE programs can be exactly as unstructured
as GOTO programs. In practice, however, using WHILE programs often yields better-
structured programs.

The preceding theorem is related to Kleene’s Normal Form Theorem (13.4.3) for
recursive functions in that it shows that any WHILE program can be written in the form

read X;
Y := 1;
while Y do C;

write X

where C does not contain any while loops (except those required by the macro facility to
program if-statements).

8.3 Compilations with change of data

The various remaining machine types have different forms of input-output data, which
necessitates transforming back and forth between different data domains. Figures 8.4, 8.5
show the encodings that we will use to represent one machine type’s data for simulation
by another machine type. (The notation < , > used for cpr will be defined shortly.)
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8.3.1 Common characteristics of the simulations

All the simulations proceed by step-by-step simulation of program instructions. The
process of establishing that one can correctly embed computations by model L into those
of M can be summed up as follows, following the pattern of Definition 3.3.3:

1. Define a one-to-one data encoding c : L-data → M-data.

2. Define a representation of any store σ ∈ L-store by a store σ ∈ M-store.

3. Define the construction of an M-program p= I0;I1;I2; . . .Ik;Ik+1 from an L-program
p = I1;I2; . . . ;Ik.
Here I0 and and Ik+1 (if present) are respectively “initialize” code needed to pre-
pare the simulation, and “clean-up” code to deliver the result in the needed final
format.

4. Prove that p correctly simulates the actions of p.

We will mostly gloss over the correctness problem except where the construction is non-
trivial, hoping the reader will find the other constructions sufficiently straightforward
not to need formal proof.
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Coding function c Definition of c

c01B : {0,1,B}∗→ ID c01B(a1a2...ak) = (a†1 a
†
2 · · ·a

†
k) (in list notation)

where B† = nil,0† = (nil.nil),1† = (nil.(nil.nil))

cpr : ID→ IN cpr(nil) = 0 and cpr(d1.d2) = 1+2cpr(d1) ·3cpr(d2)

bin : IN →{0,1}∗ bin(v) = the shortest binary representation of v

c2CM : IN → IN c2CM(v) = 2v

Figure 8.5: Coding functions.

8.4 Compiling RAM to TM

We begin with the most complex compilation, from the most complex machine type (the
RAM) to the a quite simple one (the Turing machine).
First, to simplify the construction we reduce RAM instructions to what might be called a
RISC or “reduced instruction set” version using register X0 as an accumulator, and with
instruction forms:

I ::= X0 := X0 + 1 | X0 := X0 .- 1 | if X0 = 0 goto `

| X0 := Xi | Xi := X0 | X0 := <Xi> | <X0>:= Xi

| Other operations: X0 := X0 Operation Xi

Clearly any RAM program can be converted to an equivalent reduced form program, slow-
ing down its running time by at most a small constant factor.

The Turing machine simulating a RISC RAM program p will have 4 tapes as in the
following table, using the binary encoding bin : IN → {0,1}∗ of Figure 8.5. With each
tape form we have marked, by underlining, the “standard scan position.” This is the
position the scan heads are to occupy between simulation of any two RAM instructions.

The first two tapes represent the locations and values of nonzero entries in the RAM

store σ = [a0 7→ c0, . . . ,ak 7→ ck]. The third tape is the accumulator X0, the fourth is an
auxiliary “scratch” tape for various purposes.

Note that “standard scan position” can easily be located: since all number encodings
have at least one bit, it will always be the rightmost B in the first BB to the left of any
tape’s nonblank contents.
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Tape number Tape name Tape form, standard scan position

1 Addresses ...B B bin(a0) B bin(a1)...B bin(ak)BB...

2 Contents ...B B bin(c0) B bin(c1)...B bin(ck) BB...

3 Accumulator X0 ...B · · · B...
4 Scratch ...B · · · B...

Initialization code: the RAM program input bin(i) is on tape 1. This is first copied to tape
2 and 0 is placed on tape 1, signifying that cell 0 contains value bin(i). After this, both
heads are moved one position left to assume standard position. Termination code: the
first value bin(c0) on tape 2 is copied onto tape 1, and all other information is erased.

The simulation is described by three examples; the reader can fill in the rest.

1. X0 := X0 + 1:
Find the right end of the (nonblank portion of the) Accumulator tape 3. Repeatedly
replace 1 by 0 on it, and shift left one position, as long as possible. When a 0 or B
is found, change it to 1 and move one left to stop in standard position..

2. X23 := X0:
Scan right on tapes 1 and 2, one B block at a time, until the end of tape 1 is reached
or tape 1 contains a block B10111B. (Note: 10111 is 23 in binary notation.)
If the end of tape 1 was reached, location 23 has not been seen before. Add it, by
writing 10111 at the end of tape 1, and copy tape 3 (the value of X0) onto tape 2;
and return to standard position.
If, however, B10111B was found on tape 1, then bin(c23) is scanned on tape 2. In
this case it must be overwritten, done as follows:

• copy bin(c24) ...B bin(ck) B onto scratch tape 4;

• copy tape 3 (the value of X0) in place of bin(c23) on tape 2;

• write B and copy tape 4 onto tape 2, thus reinstating, after the new bin(c23),
the remainder bin(c24) ...B bin(ck) B; and finally

• return to standard position.

3. X0 := <X23>:
Starting at the left ends of tapes 1 and 2, scan right on both, one B block at a time,
until the end of tape 1 is reached or tape 1 contains a block with B10111B.
If the end is reached do nothing, as c23 = 0 and tape 3 already contains c0.
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If B10111B was found on tape 1, then bin(c23) is scanned on tape 2. Copy bin(c23)
onto tape 4. As above, search tapes 1 and 2 in parallel until location B bin(c23) B is
found on tape 1, or tape 1’s end is found. If the end was reached, write 0 on tape
3, since cc23 = c0. Otherwise copy the tape 2 block corresponding to tape 1 onto
tape 3, as the tape 2 block contains bin(c(c23)), and return to standard position.

Finally, “other operations” X0 := X0 Operation Xi can be simulated as long as they
denote Turing-computable functions on natural numbers. This holds for all operations
in the various RAM models which have been proposed.

8.5 Compiling TM to GOTO

For simplicity of notation we describe how to compile one-tape Turing machine programs
into equivalent GOTO programs; the extension to multiple tapes is obvious and simple. We
follow the “common pattern.” The encoding of Turing machine tapes as GOTO values
uses the encoding c01B defined in Figure 8.5.

A Turing machine store σ = L S R will be represented by three GOTO variables Lf,
C, Rt, whose values are related to the tape parts by C = S† (notation defined in Figure
8.5), Rt = c01B(R), and Lf = c01BL̃, where L̃ is L written backwards, last symbol first.
A Turing machine program p = I1;I2; . . .Ik is compiled into a simulating GOTO-program
p= I1;I2; . . .Ik, where each Ii is the sequence of GOTO commands defined next (with some
syntactic sugar for readability).

TM command GOTO code must achieve

right if (=? Rt nil) then Rt := (nil . nil);

Lf := cons C Lf; C := hd Rt; Rt := tl Rt;

left if (=? Lf nil) then Lf := (nil . nil);

Rt := cons C Rt; C := hd Lf; Lf := tl Lf;

write S C := d where d = S†

if S goto ` if C = d then goto ` where d = S†

The initial GOTO store for Turing Machine input BR is

[Rt 7→ c01B(R),C 7→ nil,Lf 7→ nil]

It is straightforward to prove that p correctly simulates the actions of p.
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8.6 Compiling GOTO to CM

CM program values are natural numbers, so we represent tree structures in ID by numbers,
using cpr as defined in Figure 8.5. For every GOTO variable with value x, there will be
a corresponding CM variable with value cpr(x). Consequently every CM variable will have
value 0 or 2u ·3v for some u,v; and both u and v will have the same property (recursively).

A GOTO program p = I1;I2; . . .Ik is compiled into a simulating CM-program p =
I1;I2; . . .Ik, where each Ii is the sequence of extended CM commands defined next (with
some syntactic sugar for readability).

GOTO command Extended CM code
Xi := nil Xi := 0

Xi := cons Xj Xk Xi := 2Xj ·3Xk

Xi := hd Xj Xi := u where Xi= 2u ·3v

Xi := tl Xj Xi := v where Xi= 2u ·3v

if Xi = a goto ` if Xi = cpr(a) then goto `

It is straightforward to prove that p correctly simulates the actions of p. The only
remaining task is to show that these extended CM-commands are in fact CM-computable.

Definition 8.6.1 Function f : INk → IN⊥ is CM-computable iff there is a CM-program
q with counters X1,. . . ,Xk such that if σ0 = [1 7→ x1, . . . ,k 7→ xk, all other i 7→ 0] and
y,x1, . . . ,xn ∈ IN , then

f(x1, . . . ,xn) = y iff q ` σ0→∗ [0 7→ y, . . .]

Lemma 8.6.2 The following functions are all CM-computable, where c is any constant:
a(x) = x+ c, g(x,y) = x+y, h(x,y) = x ·y, e(x) = cx, and
m(x) = max{y | ∃z .x = cy ·z}.

Proof. The c-instruction sequence X1:=X1+1;...;X1:=X1+1 computes function a(x) =
x+c. Functions g(x,y) = x+y, h(x,y) = x ·y, and e(x) = cx are computable by the three
programs:

X0 := X1; while X2 6= 0 do { X0 := X0+1; X2 := X2-1 }

X3 := X1; X0 := 0;
while X2 6= 0 do { X0 := X0 + X3; X2 := X2-1 }
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X3 := X1; X0 := 1;
while X2 6= 0 do { X0 := X0 · X3; X2 := X2-1 }

This nearly completes the proof that the functions used in the compilation are CM-
computable, except for m(x). This is left as Exercise 8.1. 2

8.7 Compiling CM to 2CM

Lemma 8.7.1 Suppose CM program p has one input and contains k variables X1,. . . ,Xk
where k ≥ 3. Then there is a CM program q with only two variables Y, Z such that2 [[p]]
can be implemented by [[q]] by encoding c2CM(x) = 2x. 2

Proof. Each command I` of p will be replaced by a sequence of commands I` in q.
Variables X1,. . . ,Xk are represented in q by two variables Y, Z. Letting h be the k-th
prime number, the following simulation invariant property will be maintained:

If variables X1, X2,. . . Xk have values x1,x2, . . . ,xk (respectively) before exe-
cution of any p-instruction I`, then

Value of(Y) = 2x1 ·3x2 · . . . ·hxk

will hold before execution of the corresponding q-instruction sequence I`.

Explanation of the simulation method: variable Z is used as an auxiliary. Assuming the
simulation invariant to hold, operations X2:= X2 + 1, X2 := X2 - 1, and X2=0? (for
instance) can be realized by replacing y by 3 ·y, or y÷3, or deciding whether y is divisible
by 3. It is easy to see that these can be done with two counters; for example y÷3 can
be computed by

while Y>0 do { Y:=Y-1; Z:=Z+1 }
while Z ≥ 4 do {Y := Y+1; Z := Z-3 }

where the test Z ≥ 4 and the operation Z := Z-3 are easily programmed. Operations on
the other Xi are similarly realized, completing the construction. Initially p has its input
x as value of X1, and every other variable has value 0. By the invariant this corresponds
to initial q value y = 2x ·30 ·50 · . . . = 2x of Y. Thus q is a 2-counter program which, given
input y = 2x, terminates with y = 2f(x) ·30 ·50 · . . . = 2f(x), as required. 2

2Recall Definition 3.3.2.
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Theorem 8.7.2 Any CM-computable function f(x) can be implemented by a 2CM-
computable function. 2

Corollary 8.7.3 The halting problem HALT-2CM for 2CM programs is undecidable. 2

Exercises

8.1 Show that the function: m(x) = max{y | ∃z.x = cy ·z} can be computed by a counter
machine program, for any fixed c. 2

8.2 Give a compiling function from WHILE programs to GOTO programs. Illustrate
on a small example. 2

8.3 Give a compiling function from GOTO programs to WHILE programs. Illustrate
on a small example. 2

8.4 Prove Corollary 8.7.3. 2
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9 Computability by Functional Languages

(partly by T. Æ. Mogensen)

9.1 A first-order functional language

The language WHILE is imperative. This means that WHILE programs have a global
store that they update by means of assignments. In contrast to this, functional languages
do not have a store. Instead they pass values to other functions in calls and receive values
when these functions return a result. This difference is reflected in the syntax of programs
in that a functional language typically has a syntactic category for expessions but, unlike
WHILE, none for commands.

9.1.1 The language F

The language F is a simple first order Lisp-like functional language whose programs have
one recursively defined function of one variable. It resembles language I of Section 4.2
in that data is built by cons from the single atom nil.

Definition 9.1.1 Let F-data = ID. We use the conventions d,e,f, . . . ∈ ID. Let X be a
variable. The informal syntax of programs is given by the following grammar:

Program 3 P ::= E whererec f(X) = B
Expression 3 E,B ::= X

| nil

| hd E

| tl E

| cons E1 E2

| if E then E1 else E2

| f E

The semantics of E whererec f(X)=B is defined in Figure 9.1 by functions:

P : Program→ (ID→ ID⊥)

E : Expression→ (Expression→ (ID→ ID⊥))

2
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E [[X]]Bv = v

E [[nil]]Bv = nil

E [[cons E1 E2]]Bv = (d1.d2) if E [[E1]]Bv = d1, E [[E2]]Bv = d2

E [[hd E]]Bv = d1 if E [[E]]Bv = (d1.d2)
E [[hd E]]Bv = nil if E [[E]]Bv ∈A

E [[tl E]]Bv = d2 if E [[E]]Bv = (d1.d2)
E [[tl E]]Bv = nil if E [[E]]Bv ∈A

E [[if E then E1 else E2]]Bv = d if E [[E]]Bv 6=⊥ or nil, E [[E1]]Bv = d

E [[if E then E1 else E2]]Bv = d if E [[E]]Bv = nil, E [[E2]]Bv = d

E [[f E]]Bv = w if E [[E]]Bv = u and E [[B]]Bu = w

P[[E0 whererec f(X) = B]]v = E [[E0]]Bv

Figure 9.1: Meanings of F-programs E : Expression→ Expression→ ID→ ID⊥

The function E [[E]] B v gives the result of evaluating expression E, assuming variable X has
value v, and that E occurs within a recursive program of form E whererec f(X) = B. If
the expression never terminates on the given value v (due to a never-ending recursion),
then E [[E]] Bv will not be defined.

Example 9.1.2 The expression append (cons (a1...am) (b1...bm)) returns the list
(a1...am b1...bm).

append Z whererec append(Z) =
if (hd Z) then cons (hd hd Z) (append (cons (tl hd Z) (tl Z)))

else (tl Z)
2

Example 9.1.3 The following is a “tail recursive” version of the reverse program in
F, esentially the imperative program of Example 2.1.4, written in functional style. The
expression reverse (cons X nil) returns the list X reversed. The program does so by
keeping the two variables X and Y from the corresponding WHILE program in packed
together in the single F variable, here called Z. An update of a variable in WHILE is
simulated by a function call in F.

rev (cons Z nil) whererec rev(Z) =
if (hd Z)
then reverse (cons (tl (hd Z)) (cons (hd (hd Z)) (tl Z)) )
else (tl Z)
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2

9.1.2 The language F+

An F+ program has programs with several multi-parameter functions defined by nutual
recursion:

E whererec f1(X1...Xk)=E1, ..., fn(Y1,...,Ym)=En

The task of Exercise ?? is to define its semantics in a manner resmbling that above for
F. The purpose of Exercise 9.3 is to show that this richer version of the F language is no
more powerful than the simple one seen above.

9.2 Interpretation of I by F and vice versa

In this section we are concerned with the problem of writing interpreters for F in WHILE
or I, and vice versa. One half of this will be left to the Exercises:

Proposition 9.2.1 There exists an interpreter intIF for I written in F.

Proof. See Exercise 9.4. 2

Proposition 9.2.2 There exists an interpreter intFI for F written in I.

Proof. First we need a way to express F programs as data values. This is done in
Figure 9.2, where var′, quote′,. . . ,doif′ are chosen to be elements of ID, all distinct.

E whererec f(X)=B = (E .B)

X = (var′)
d = (quote′ d)
cons E F = (cons′ E F)
hd E = (hd′ E)
tl E = (tl′ E)
if E F G = (if′ E F G)
f(E) = (call′ E)

Figure 9.2: F programs as data values
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An interpreter intFWHILE for F written in WHILE can be obtained by modifying the
expression evaluation part of WHILE’s universal program from Section 4.1, partly by
adding new variable B that is used as in the semantic equations defining F. The resulting
interpreter appears in Figure 9.3.

The STEP command is similar to the one in the WHILE1var interpreter written in
WHILE with two exceptions: the rules pertaining to commands have been removed, and
three new transitions have been added to deal with function calls.
How they work: the call assigns to X the call’s argument. After the argument has been
evaluated and placed on the computation stack (variable w), operation docall′ saves the
current value v of X by pushing it on the code stack. The new code stack top becomes
the body B of the enclosing program, thus setting the recursive call in action. Once this
is finished with its result u on top of the computation stack, operation return′ restores
X to its previous value.

Although interpreter intFWHILE only uses the atom nil, it has several variables.
These may be compressed into one as in Section 3.7.1, yielding the desired interpreter
intFI. 2

9.3 A higher-order functional language LAMBDA

A commonly used model of computation is the lambda calculus [?], [?]. It is, however,
seldom used in complexity texts as the notion of a computation cost is unclear. This is
both because the number of reduction steps depends heavily on the reduction strategy
used and because the basic reduction step in the lambda calculus – β-reduction – is
considered too complex to be an atomic computation step. We will not investigate these
issues here, as our prime objective is to show that the lambda calculus has the same
computation power as the I language, and hence the same as WHILE.

Expressions in the lambda calculus are either variables, lambda-abstractions or ap-
plications:

Λ ::= x1 | x2 | · · ·
| λxi .Λ
| Λ Λ

We will, for readability, often use (possibly subscripted) single-letter names for the xi.
In the expression λx.E, the variable x is bound by the λ and has scope in the expression
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read X; (* X will be ((E.B).D) where D input *)
Cd := cons (hd hd X) nil ;

(* Cd top = Expression to be evaluated *)
B := tl hd X; (* Body of function definition *)
Vl := tl X; (* Initial value of simulated X *)
St := nil; (* Computation stack *)
while Cd do STEP;
X := hd St;

write X

where STEP is:

rewrite [Cd, St] by

[((quote′ D).Cr), St ] ⇒ [ Cr, cons D St ]
[((var′).Cr), St ] ⇒ [ Cr, cons Vl St ]
[((hd′ E).Cr), St ] ⇒ [ cons* E dohd′ Cr, St ]
[(dohd′.Cr), (T.Sr) ] ⇒ [ Cr, cons (hd T) Sr]
[((tl′ E).Cr), St ] ⇒ [ cons* E dotl′ Cr, St ]
[(dotl′.Cr), (T.Sr) ] ⇒ [ Cr, cons (tl T) Sr ]
[((cons′ E1 E2).Cr), St ] ⇒ [ cons* E1 E2 docons′ Cr, St]
[(docons′.Cr), (U.(T.Sr)) ] ⇒ [ Cr, cons (cons T U) Sr ]
[((call′ E).Cr), St ] ⇒ [ cons* E docall′ Cr, St ]
[(docall′.Cr), (W.Sr) ] ⇒ { Cd := cons* B return′ Cr;

St := cons Vl Sr; Vl := W }
[(return′.Cr), (U.(V.Sr)) ] ⇒ { Cd := Cr;

St :=cons U Sr; Vl:= V }
[((if′ E F G).Cr), St ] ⇒ [ cons* E doif′ F G Cr, St ]
[(doif′.(F.(G.Cr))), (nil.Sr) ] ⇒ [ cons G Cr, Sr ]
[(doif′.(F.(G.Cr))), (D.Sr) ] ⇒ [ cons F Cr, Sr ]

Figure 9.3: Interpretation of F by WHILE

E. We use the usual abbreviations:

λab. . . c .A = λa.λb. · · ·λc.A

AB...C = ((AB)...C)

where a,b,c are arbitrary variables and A,B,C are arbitrary lambda expressions. We
call a lambda expression closed if it has no free (unbound) variables.

The intuitive meaning of an abstraction λx.E is a function that takes a value for the
variable x and computes the value of the expression E (which may contain x) given that
value. Application F B corresponds to applying a function F to a value B. This is
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modeled by the basic computation step in the lambda calculus, β-reduction:

Definition 9.3.1 A β-redex (or just redex) is an expression of the form (λx.A) B.
β-reduction is done by the following rule:

(λx.A) B →β A[x := B]

where the substitution A[x := B] replaces free occurrences of x with B and renames
bound variables in A to avoid clash with free variables in B:

x[x := A] = A

y[x := A] = y if x 6= y

(B C)[x := A] = (B[x := A]) (C[x := A])
(λy .B)[x := A] = λz .((B[y := z])[x := A]) where z is a fresh variable

β-reduction can be performed anywhere in a lambda expression, and we lift the notation
A→β B to mean that A reduces to B by a single β-reduction anywhere in the term A.
The reflexive and transitive closure of →β is denoted by →∗β .

A term is said to be in (full) normal form if it contains no β-redexes. A normal form
of a lambda calculus term A is a normal form term B that can be obtained from A by
repeated β-reductions (i.e., A→∗β B). Not all terms have normal forms.

The Church-Rosser theorem [8] shows that the order of reductions in a certain sense
doesn’t matter: if, starting with the same lambda expression, two sequences of reductions
lead to normal forms (lambda expressions where no β-reductions can be performed), then
the same normal form will be reached by both reduction sequences. Hence, it makes sense
to talk about the normal form of a term, if any such exist.

Theorem 9.3.2 If A→∗β B and A→∗β C then there exists a term D such that B→∗β D

and C→∗β D.

A

B C

D

	
β∗ R

β ∗

Rβ ∗ 	β∗
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The theorem actually proves more than the uniqueness of normal forms: If, starting
with a lambda term A, you perform two different reduction sequences and obtain the
terms B and C (which need not be in normal form), there exist a term D (also not
necessarily in normal form) such that both B and C reduce to D (using different reduction
sequences). A diagram:

Theorem 9.3.3 If lambda-expression M has a normal form at all, it can be obtained
by repeatedly locating and reducing the leftmost innermost redex (λx.A) B.

A remark on efficiency. This stragey does not seem especially efficient, as it involves
repeatedly scanning the current λ-expression in search of redexes. Further, the order of
reduction can have significant impact on the number of reductions required to reach the
normal form, and indeed even on whether any normal form at all is reached. (Reductions
can continue indefinitely without terminating.)

Practical implementations of functional languages based on the lamda-calculus use
one of the following two alternatives to the above:

Definition 9.3.4 The call-by-value reduction strategy reduces an application MN as
follows:

1. First, reduce the operator M to a normal form. Stop if this is not of form λx.P

2. Second, reduce the operand N to a normal form, call it N ′.

3. Then β-reduce (λx.P )N ′.

Definition 9.3.5 The call-by-name reduction strategy reduces an application MN as
follows:

1. First, reduce the operator M to a normal form. Stop if this is not of form λx.P

2. Then β-reduce (λx.P )N .

Call-by-value is used by the languages LISP, SCHEME and ML. The HASKELL language
uses a variant on call-by-name known as call-by-need, or lazy evaluation.

Remark. If expression reduction terminates under call-by-value, then it also terminates
under call-by-name reductions.

Various notions of what is considered a value in lambda calculus have been used.
As we want to represent arbitrary tree-structures, we have chosen to let values be nor-
mal form lambda expressions. For a discussion on other choices, including weak head
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normal forms and head normal forms and on the mathematical models of computation
these imply, see [8]. This also discusses properties of different strategies for the order of
reduction.

We define the language LAMBDA as having closed lambda calculus expressions as pro-
grams. Values in input and output are lambda calculus expressions in normal form. Run-
ning a program P with inputs X1, . . . ,Xn is done by building the application P X1 . . . Xn

and reducing this to normal form. The output of the program is the normal form obtained
this way.

9.4 Equivalence of LAMBDA and the other models

We will first show that LAMBDA is as powerful as I by writing an interpreter for I in
LAMBDA. Then we will write an interpreter for LAMBDA in an extended version of the simple
functional language F. Since the equipotency of F and I has already been established in
section 9.2, this concludes our argument.

9.4.1 Implementing I in the lambda calculus

We will now write an interpreter for I in LAMBDA. To do so we must first decide how to
represent syntax of I programs and values in the domain ID.

Values can be represented in many ways in the lambda calculus. We have chosen the
representation strategies of [133] and [132]. Values in ID are represented by a represen-
tation function d eID : ID→ Λ, defined as follows:

dnileID = λab.a

d(v.w)eID = λab.b dveID dweID

We can do case analysis on a pairs-value v by applying it (or rather, its representation)
to two LAMBDA expressions N and P. If v is nil, then dveID N P reduces to N. If v is a pair
(a,b), then dveID N P reduces to P daeID dbeID. Hence, by letting P= λht.h, we can take
the head of v and by letting P = λht. t, we can take the tail.
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We recall the syntax of I:

Program 3 P ::= read X; C; write X

Command 3 C,D ::= X := E

| C ; D

| while E do C

Expression 3 E,F ::= X

| nil

| cons E F

| hd E

| tl E

First we want to represent expressions. We use a somewhat different representation
strategy than for values. We let the representation of an expression E, dEeE be λxcht .E

E ,
where E is defined by

X
E = x

nil
E = dnileID

cons E F
E = c E

E
F
E

hd E
E = h E

E

tl E
E = t E

E

Note that EE uses the variables x,c,h and t bound by the λ in λxcht .E
E . These variables

’tag’ expressions with their kinds (x for X, c for cons, h for hd and t for tl). Note that
nil has no tag. We represent commands in a similar way: dCeC = λxsw .C

C , where C
E is

defined by

X := E
C = x dEeE

C ; D
C = s C

C
D
C

while E do C
C = w dEeE C

C

And finally we represent programs by

dread X; C; write XeP = dCeC

That is, we represent a program by the command it contains. Figure 9.4 shows an I

program and its encoding as a LAMBDA term.
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read X;

X := cons X nil;

while hd X do

X := cons (tl (hd X)) (cons (hd (hd X)) (tl X));

X := tl X;

write X

Above: an I program for reversing a list. Below: the encoding of the reverse program.

λxsw .

s (x (λxcht .c x (λab.a)))
(s (w (λxcht .h x)

(x (λxcht .c (t (h x)) (c (h (h x)) (t x)))))
x (λxcht . t x))

The layout of the encoding reflects the layout of the I program.

Figure 9.4: An I program and its encoding

9.4.2 Implementing the semantics of I

We will first construct a LAMBDA expression eval, which will take the representation of
an expression and the value of X and return the value of the expression. Using this, we
will construct a LAMBDA expression do, which will take the representation of a command
and the value of X and return the value of X after the command has been executed. This
will be our interpreter of I in LAMBDA.

Running an I program P on input v is done by running the LAMBDA program do on
inputs dPeP and dveID. This will yield a normal form dweID if and only if P given the
input v yields an output w.

Evaluation of expressions We now define the LAMBDA expression eval for evaluating
expressions:

eval = λEx.E x

(λhtab.b h t)
(λd.d d (λht.h))
(λd.d d (λht. t))
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The idea is that when evaluating an expression every occurrence of the ’tag’ (variable) x

in the representation of an expression will be replaced by the current value of X, every
’tag’ c by a function λhtab.b h t that can cons two arguments, every h by a function
that takes the head of a pair (and returns nil if given nil as argument) and every t by a
similar function returning the tail of a pair. Note that since the constant nil is untagged
in the representation of expressions, it is returned unchanged by eval.

Execution of commands We use a similar idea for the do function. The recursive
nature of the while command is a bit complex, though. We first present do, then explain
the details

do = λC .C eval

(λcdx.d (c x))
(λEc .W W)

where

W = λwx.eval E x (λw.x) (λhtw .w w (c x)) w

Occurrences of eval and W represent that the entire expressions these names represent
should be inserted in place of the names. This is just substitution of text. This means
that the variables E and c used in W are bound by the λ in the last line of the definition
of do (the line that uses W).

Similar to before, interpretation of a command C will replace occurrences of the
tagging variables x, s and w in the representation of C by functions that ’do the right
thing’ with the commands. For the assignment command X := E, this is eval, which
evaluates E and returns its value, which becomes the new value of X. For composite
commands C ; D, the function λcdx.d (c x) will first execute C (by its execution function
c) and pass the new value of X to the execution function d of D, which then produces the
final value of X.

Execution of the while statement is more tricky. The function λEc .W W takes the
condition expression E of the while command while E do C and the execution function
c of the body C and then self-applies W. This yields

λx.eval E x (λw.x) (λhtw .w w (c x)) W

When this is given a value x0 of X, eval E x0 evaluates E with respect to this value. If
the result of the evaluation is nil, the situation becomes

(λab.a) (λw.x0) (λhtw .w w (c x0)) W
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since dnileID = (λab.a). This reduces to

(λw.x0) W

and finally to x0. This is correct, as a nil condition terminates the while loop and
returns the value of X unchanged. If instead the condition evaluates to a pair (p.q), we
get

(λab.b dpeID dqeID) (λw.x0) (λhtw .w w (c x0)) W

since d(p.q)eID = λab.b dpeID dqeID. This reduces to

(λhtw .w w (c x0)) dpeID dqeID) W

and then to

WW (c x0)

and finally (recalling the definition of W) to

(λx.eval E x (λw.x) (λhtw .w w (c x)) W) (c x0)

which is the same as before we started executing the while loop, except that the value
x0 of X has been modified by the execution function c the body C of the loop. Hence, the
entire while command is redone using the new value of X.

Termination and time complexity Readers familiar with the lambda calculus might
wonder why we haven’t used a fixed-point operator to model the while loop. The reason
is that the present method is more robust with respect to changes in reduction order: If an
I program P terminates on some input v, then (do dP eP dveID) terminates regardless of
the order of reduction used to reduce lambda expressions. For certain reduction strategies
(including call-by-value), the number of β-reductions required to reach the normal form
is proportional to the number of primitive operations performed by running P (as an I

program).
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9.4.3 Interpreting the lambda calculus in F+

In our interpretation of the lambda calculus we are interested in reduction to normal form.
This means that we can’t use the simple abstract machines for reducing lambda-terms to
weak head normal form (WHNF). Instead we will develop an abstract machine that does
a one-step parallel reduction (reduces all redexes, even under lambdas) and iterate this
until no redexes are left. Parallel reduction with systematic renaming of bound variables
can be expressed by the function R[[ ]] : Λ→ Env→ IN → Λ, where ρ ∈ Env : V ar→ Λ
is a mapping from variables to LAMBDA terms. The number n ∈ IN is used for renaming
variables: A lambda at nesting level n will use the name xn. To obtain a normal form,
R[[ ]] must be applied repeatedly until no redexes remain, i.e., when the second rule isn’t
used anywhere in the term.

R[[x]]ρn = ρ x

R[[(λx.e1) e2]]ρn = R[[e1]]ρ[x := R[[e2]]ρn]n
R[[e1 e2]]ρn = (R[[e1]]ρn) (R[[e2]]ρn) if e1 6= λx.e′

R[[λx.e]]ρn = λxn .(R[[e]]ρ[x := xn](n+1))

The notation (R[[e1]]ρn) (R[[e2]]ρn) indicates that an application expression is built from
the components R[[e1]]ρn and R[[e2]]ρn. Likewise, λxn .(R[[e]]ρ[x := xn](n+1)) indicates
building of an abstraction expression. These should not be confused with semantic ap-
plication and abstraction as used in denotational semantics.

With a suitable representation of syntax, numbers and environments, we can imple-
ment R[[ ]] in a language F+, which is the functional language F extended with multiple
functions and multiple parameters as suggested in exercise ?? and with a rewrite com-
mand similar to the one used for the while language. The extensions do not add power
to the language, which can be shown by providing a translation from F+ to F. We will
not do so here, though.

We will represent numbers as described in section ??, hence 0 = nil, 1 =

(nil.nil), 2 =(nil.(nil.nil)) etc. We represent the variable xi by the number
i. We represent terms by pairs of tags (numbers) and the components of the term:

bxicE = (0.i)
bEFcE = (1.(bEcE.bFcE))
bλxi.EcE = (2.(i.bEcE))

Environments (ρ) are represented as lists of (name.value) pairs. We are now ready to
write the LAMBDA interpreter:
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normalize P whererec

normalize(P) =

normalize2(r(P,nil,0))

normalize2(Q) =

if tl Q then normalize(hd Q) else hd Q

r(E,R,N) =

rewrite [ E ] by

[ (0.X) ] => [ cons lookup(X,R) 0 ]

[ (1.((2.(X.E1)).E2)) ]

=> [ cons (hd r(E1,cons (cons X (hd r(E2,R,N))) R,N)) 1 ]

[ (1.(E1.E2)) ] => [ aux1(r(E1,R,N), r(E2,R,N)) [

[ (2.(X.E1)) ] => [ aux2(r(E1,cons (cons X N) R,cons nil N), N) ]

aux1(v,w) = cons (cons 1 (cons (hd v) (hd w)))

(if tl v then 1 else tl w)

aux2(v,N) = cons (cons 2 (cons N (hd v))) (tl v)

lookup(X,R) =

if equal(X,hd (hd R)) then tl (hd R) else lookup(X,tl R)

The functions normalize and normalize2 make up the ’main loop’ of the interpreter,
which call r until no further reduction is done. r implements the R[[ ]] function. In
addition to returning the reduced term, r also returns an indication of whether any
reduction occurs. This is done by pairing the reduced term with 1 if any reduction is
done and 0 if no reduction occurs. A few auxiliary functions are used to propagate this
information. The four cases in the case expression correspond to the four equations of
R[[ ]]. lookup fetches the value of a variable in an environment.

Time complexity While this interpreter is guaranteed to find (the representation of)
the normal form of a LAMBDA expression if one exists, we cannot say much about the
complexity of this: An arbitrary amount of work can be done in the interpreter between
each β-reduction because we may need to traverse a large term to find a single β-redex.
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Also, just counting β-reductions isn’t a very precise measure of complexity of reducing
lambda terms, as substitution as defined in definition 9.3.1 can take time proportional
to the size of term. Cost measures for the lambda calculus not based on the number of
β-reductions are discussed in [103] and [134].

Exercises

9.1 Consider an expanded version F′ of the language F, where programs contain several
functions, each with a single argument. Thus the syntax of programs should be

E whererec f1(X) = E1,..., fn(X) = En

Note that any function may call any other function, or itself.
Give a semantics similar to Figure 9.1. 2

9.2 Show how any F′ program can be translated into an equivalent F program. 2

9.3 Define a version F+ of the language F where programs contain several functions each
of which have several arguments. That is, the syntax of programs should be

E whererec f1(X1...Xk) = E1,..., fn(Y1,...,Ym) = En

Show how any F+ program can be translated into an equivalent F program. 2

9.4 * Prove Proposition 9.2.1. Hint: the pattern used in Section 4.2 will make this
easier: first, construct the needed interpreter using as many functions and variables as
is convenient. Then use the result of Exercise ??. 2

9.5 Find a lambda term Ω, such that Ω→β Ω, i.e., such that it reduces to itself in one
step. 2

9.6 Find a family of lambda terms Ωi, i ∈ IN such that Ωi →β Ωi+1 and such that
Ωi = Ωj ⇒ i = j, i.e., they are all different. 2

9.7 * A lambda term is called linear if every variable in the term occurs exactly twice:
Once where it is bound and once inside the scope of that binding. Show that all linear
lambda terms have a normal form. Hint: Show that a β-reduction strictly reduces the
size of a linear term. 2
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10 Some Natural Unsolvable Problems

We have seen earlier that there are problems that cannot be solved by programs in
WHILE or any other of the computation models we have considered. By the Church-
Turing thesis, these problems cannot be solved by any notion of effective procedures at
all.

Until now, the unsolvable problems we have considered all concern program proper-
ties: first, the Busy Beaver and halting problems, subsequently extended to all non-trivial
extensional program properties in Rice’s theorem. In this chapter we prove unsolvable
some other problems: Post’s correspondence problem, and several problems concerning
context-free grammars (emptiness of intersection, ambiguity, and exhaustiveness). After
an introduction, each of the remaining sections is each devoted to one of these problems.

10.1 Do there exist natural unsolvable problems?

We have argued, we hope convincingly, for two points, one formal and one informal:

1. That the halting problem for WHILE programs is not decidable by any WHILE pro-
gram.

2. That decidability of membership in a set A by any intuitively effective computing
device is exactly equivalent to decidability of membership in A by WHILE programs.

Point 1 is analogous to the classical impossibility proofs e.g. that the circle cannot be
squared using tools consisting of a ruler and a compass. It asserts that one particular
problem, the halting problem, cannot be solved be means of any of a powerful class of
tools: WHILE programs.

Point 2 is a version of the Church-Turing thesis. It cannot be proven, as it equates
an intuitive concept with a formal one. On the other hand it is widely believed, and
we have given evidence for it by showing a variety of different computing engines to be
equivalent.

If we assume the validity of point 2, then point 1 comes to carry much more sig-
nificance. In particular, it implies that the halting problem for WHILE programs is not
decidable by any intuitively effective computing device whatsoever.

The halting problem is not completely unnatural in computer science, since an oper-
ating system designer could have a lively interest in knowing whether the programs to be
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executed will run the risk of nontermination. Such knowledge about program behavior
in general is, alas, doomed to failure by the undecidability of the halting problem, and
Rice’s Theorem (see Theorem 5.4.2 and Exercise 5.5.)

The arguments used to prove point 1 use only accepted mathematical reasoning meth-
ods (even though the argument is subtle). Nonetheless, the halting problem for WHILE

programs is not a natural problem, as it is hard to imagine a daily mathematical context
in which one would want to solve it if one were not a computer scientist working in
operating systems or computability theory.

This discussion motivates the desire to see whether there also exist natural but un-
decidable problems. In this chapter we will present some simple problems that on the
surface seem to have nothing to do with Turing machines or WHILE programs, but that
are undecidable since if they were decidable, then one could also decide the halting prob-
lem. More generally, this technique is called reduction; a common definition in terms of
set membership problems is seen below.

In part III we present yet another undecidable problem, concerning diophantine equa-
tions (whether a polynomial equation possesses integer roots), that was among Hilbert’s
list of problems, posed in 1900. It was finally shown to be undecidable, but only in 1970
after years of effort by many mathematicians.

Definition 10.1.1 Suppose one is given A ⊆X and B ⊆ Y . Define A to be reducible1

to B if there is a total computable function f : X → Y such that for all x ∈X, we have
x ∈A if and only if f(x) ∈B.

Symbolically, we write this relation as A≤
rec

B. 2

Theorem 10.1.2 If A≤
rec

B and B is decidable, then A is also decidable. Contraposi-

tively, if A≤
rec

B and A is undecidable, then B is also undecidable.

Proof is immediate, as one can answer any question “x ∈A?” indirectly, by constructing
f(x) and then testing whether f(x) ∈ B. Since f is a total computable function and B

is decidable, this describes an effective terminating process. 2

1More specifically: reducible by a many-one recursive reduction of A to B (other problem reductions

exist, e.g. the polynomial-time ones used in later chapters.)
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Figure 10.1: A≤
rec

B if the question x ∈A? can be reduced to the question f(x) ∈B?

10.2 An undecidable problem in string rewriting

10.2.1 An undecidable problem in string rewriting

A string rewriting (or semi-Thue2) system over an alphabet Σ is a finite subset of Σ∗×Σ∗,
i.e. a finite set R = {(u1,v1), . . . ,(um,vm)} of pairs of strings where each ui,vi ∈ Σ∗. A
pair (u,v) ∈ R is called a rewrite rule or production. We often write u ::= v instead of
(u,v) ∈R. An example with Σ = {A,a,b,c} is:

R = {(A,aAa), (A,bAb), (A,c), (A,aca)}

or, equivalently,

R = {A ::= aAa, A ::= bAb, A ::= c, A ::= aca}

For a string rewriting system R over Σ, the one-step rewrite relation ⇒ between strings
in Σ∗ is defined by:

rus⇒ rvs iff u ::= v ∈R and r,s ∈ Σ∗

In our example, for instance,

A ⇒ aAa

aAa ⇒ aaAaa

aaAaa ⇒ aacaa

2Named after the Norwegian mathematician Axel Thue.
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The multi-step rewrite relation or derivation relation⇒∗ is the transitive, reflexive closure
of ⇒, defined for all r,g,h ∈ Σ∗ by:

1. If g⇒ h then g⇒∗ h.

2. g⇒∗ g for any g.

3. If g⇒∗ r and r⇒∗ h then g⇒∗ h.

In our example, for instance,
A ⇒∗ A

A ⇒∗ aAa

A ⇒∗ aacaa

10.2.2 String rewriting: undecidability of derivability

Theorem 10.2.1 The following problem DERIV is undecidable: given a string rewriting
(or semi-Thue) system R over alphabet Σ and two strings r,s ∈Σ∗, to decide whether or
not r⇒∗ s.

Proof. This is shown by reduction from the the halting problem for two-counter machines:
HALT-2CM ≤

rec
DERIV. Recall that the instructions of a two-counter machine program

must lie within the set
{X := X+1, X := X-1, Y := Y+1, Y := Y-1,
if X=0 goto ` else `′, if Y=0 goto ` else `′}

Explicit instruction labels are written for notational convenience. As running example
we use program p that doubles its input x, with F as “end-of-execution” label:

A: if X=0 goto F else B;
B: X := X-1;
C: Y := Y+1;
D: Y := Y+1;
E: if X=0 goto F else B

We use reduction, showing that if the derivability problem were decidable, then the
halting problem for two-counter machines would also be decidable.

Suppose we are given a two-counter program p = L1: I1 · · · Lm: Im with variables X
(for input) and Y (initially zero), and natural number x as input. Begin by constructing,
from program p and input x, the string rewriting system R of Figure 10.2.

We will show that (p,x) ∈ HALT-2CM if and only if R ∈ DERIV.
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R is constructed with alphabet

Σ = {#,1}∪{ L` | I` is an instruction}

Notation: a store (`,u,v) containing control point L` and values u,v of variables X, Y will
be represented by a configuration string of form C = 1uL` 1v in Σ∗.

The following is shown by an easy induction. Assertion: for any m, there is a com-
putation p ` C1→. . .→ Cm if and only if

#1xC1# ⇒m #Cm#

Consequently S ⇒∗ #1uLm+11v# for some u,v if and only if p terminates on input x.
This implies S⇒∗ ε if and only if p terminates on input x, so if the derivability problem
could be solved, one could also solve the halting problem, which we know to be unsolvable.

2

Figure 10.3 shows the effect in the running example, with input x = 2.

Production Form of instruction L` Case
L` ::= 1L`+1 L` = X:=X+1

#L` ::= #L`+1 L` = X:=X-1 X= 0
1L` ::= L`+1 L` = X:=X-1 X6= 0
#L` ::= #L`′ L` = if X=0 goto `′ else `′′ X= 0
1L` ::= 1L`′′ L` = if X=0 goto `′ else `′′ X6= 0
L` ::= L`+11 L` = Y:=Y+1

L`# ::= L`+1# L` = Y:=Y-1 Y= 0
L`1 ::= L`+1 L` = Y:=Y-1 Y6= 0
L`# ::= L`′# L` = if Y=0 goto `′ else `′′ Y= 0
L`1 ::= L`′′1 L` = if Y=0 goto `′ else `′′ Y6= 0

Common rewrite rules
S ::= #1xL1# x is program input, L1 is first instruction.

#Lm+1# ::= ε Lm is the last instruction and ε the empty string
1Lm+1 ::= Lm+1

Lm+11 ::= Lm+1

Figure 10.2: Construction of string rewrite system to simulate a two-counter program.
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Common rules: Rules for instructions:
S ::= #11A 1A ::= 1B C ::= D1

F1 ::= F #A ::= #F D ::= E1

1F ::= F 1B ::= C 1E ::= 1B

#F# ::= ε #B ::= #C #E ::= #F

Figure 10.3: Example of rewriting rules to simulate a two-counter program.

10.3 Post’s correspondence problem

Definition 10.3.1 Post’s correspondence problem PCP is defined as follows. Given
a sequence of pairs P = (u1,v1),(u2,v2), . . . ,(un,vn) of nonempty strings over a finite
alphabet Σ, the problem is to determine whether or not there exists an index sequence
i1, . . . , im such that

ui1ui2 . . .uim = vi1vi2 . . .vim

For instance, the pair sequence (a,ab),(b,ca),(ca,a),(abc,c) has solution sequence
1,2,3,1,4, with both sides above yielding

u1u2u3u1u4 = (a)(b)(ca)(a)(abc) = abcaaabc

= (ab)(ca)(a)(ab)(c) = v1v2v3v1v4

On the other hand, one can verify that the sequence given by (a,ab), (b,ca), (ca,a),
(ab,cc) has no solution sequence at all.

A notational convenience: we will write ~ı in place of index sequence i1, . . . , im, and
u~ı and v~ı for (respectively) ui1ui2 . . . ,uim and vi1vi2 . . . ,vim . Given this the PCP can be
restated simply as: does u~ı = v~ı for some ~ı?

If u~ı z = v~ı, then we call z the remainder of v~ı over u~ı.

Theorem 10.3.2 The Post correspondence problem is undecidable. 2

We begin by reducing the derivability problem r ⇒∗ s for string rewriting system R

to a restricted version RPCP of the PCP. Thus DERIV ≤
rec

RPCP, so the RPCP is

undecidable. Afterwards, we show that DERIV ≤
rec

PCP, and so the general PCP is also

undecidable.
Although the constructions involved are simple, careful reasoning is needed to prove

that they behave as desired.
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Index i ui vi

1 # #A#
2 abcba## #
3 A aAa

4 A bAb

5 A c

Index i ui vi

6 A A

7 a a

8 b b

9 c c

10 # #

Figure 10.4: Example RPCP simulating a string rewrite system.

Lemma 10.3.3 The rooted Post correspondence problem RPCP is undecidable: given
P = (u1,v1),(u2,v2), . . . ,(un,vn) ∈ Σ∗, does there exist an index sequence i1, . . . , im such
that i1 = 1 and ui1ui2 . . . ,uim = vi1vi2 . . . ,vim? 2

Construction for Lemma 10.3.3 to establish DERIV ≤
rec

RPCP.

Suppose we are given a string rewriting system R = {(u,v),(u′,v′), . . .} of pairs of
strings where each u,v ∈ Σ∗, and strings r,s in Σ∗. Its derivability problem is to decide
whether r⇒∗ s.

Construct the following RPCP problem P over alphabet Σ∪{#} where # is a new
symbol not in Σ; and (u1,v1) = (#,#r#), and (u2,v2) = (s##,#):

P = {(#,#r#)︸ ︷︷ ︸
i=1

,(s##,#)︸ ︷︷ ︸
i=2

} ∪ R ∪ {(a,a) | a ∈ Σ or a = #}

To distinguish the two sets of pairs R and P , we will use production notation u ::= v for
R instead of writing (u,v)∈R. Figure 10.4 shows the result of applying this construction
to the rewriting system with Σ = {A,a,b,c}, r = A, and s = abcba, and rewrite rule set

R = {A ::= aAa, A ::= bAb, A ::= c}

The derivation A⇒ aAa⇒ abAba⇒ abcba is modelled in Figure 10.4 by the sequence
of pairs 1,3,10,7,4,7,10,7,8,5,8,7,10,2 with

u1u3u10u7u4u7u10u7u8u5u8u7u10u2 =

# A # a A a # a b A b a # abcba## =

#A# aAa # a bAb a # a b c b a # # =

v1v3v10v7v4v7v10v7v8v5v8v7v10v2 2

Henceforth an index sequence ~ı not containing 1 or 2 will be called internal.
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Lemma 10.3.4 The following are equivalent for any t ∈ Σ∗.

I. r⇒∗ t by the string rewrite system R

II. u1~ı t# = v1~ı for some internal ~ı
III. u1~ı t2#t1 = v1~ı for some t1, t2 with t = t1t2, and for some internal ~ı 2

Proof.

I implies II. We show by induction on m that r⇒m t implies u1~ı t# = v1~ı for some
internal ~ı. The base case with m = 0 is r⇒∗ r, immediate with ~ı = ε since (u1,v1) =
(#,#r#).

Now assume r⇒m+1 t, so r⇒m xgy and xgy⇒ xhy = t for some g ::= h ∈ R. By
induction, u1~ı xgy# = v1~ı for some internal ~ı. Let x = a1 . . .ad,y = b1 . . . be where each
aj , bk ∈ Σ.

The remainder of v1~ı over u1~ı is xgy#; so to extend this partial solution, at least
enough pairs (u,v) from P must be added to extend u1~ı by xgy. It is easy to see that

u1~j xhy# = u1~ı xgy#xhy# = v1~ı xhy# = v1~j

by an appropriate index sequence extending the u and v strings:

~j =~ıj1 . . . jd pk1 . . .ke q

where indices j1 . . . jd add pairs (a,a) that in effect copy x, index p of (g,h) adds g to the
u string and h to the v string, indices k1 . . .kq copy y by adding pairs (b,b), and index q

of pair (#,#) adds the final # to both.

II implies III. This is immediate, with t2 = t and t1 = ε.

III implies I is proven by induction, with inductive hypothesis IH(~ı) : for any t1, t2 ∈
Σ∗, if u1~ı t2#t1 = v1~ı then r⇒∗ t1t2. Clearly this and t = t1t2 imply I. The base case is
~ı = ε, so we must show u1 t2#t1 = v1 implies r⇒∗ t1t2. But

#t2#t1 = u1 t2#t1 = v1 = #r#

can only hold if t2 = r and t1 = ε. Thus t = t1t2 = r, so r⇒∗ t is trivially true.
Inductively, suppose IH(~ı) holds. Consider internal index sequence ~ıj. We analyse

by cases over the pairs (uj ,vj) ∈ P .
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Case 1: (uj ,vj) = (f,g) where f ::= g ∈R. Then

u1~ıj t2#t1 = u1~ı ft2#t1 = v1~ıj = v1~ı g

Now g ∈Σ∗, so t1 = wg for some w, implying u1~ı ft2#wg = v1~ıg. Removing g from both
sides: u1~ı ft2#w = v1~ı.

By IH(~ı) (with w and ft2 in place of t1 and t2) we obtain r⇒∗ wft2. Thus

r⇒∗ wft2⇒ wgt2 = t1t2

as desired.
Case 2: (uj ,vj) = (c,c) where c ∈ Σ. Then

u1~ıj t2#t1 = u1~ı ct2#t1 = v1~ıj = v1~ı c

Now c ∈ Σ, so t1 = wc for some w, implying u1~ı ct2#wc = v1~ıc, and so u1~ı ct2#w = v1~ı.
By IH(~ı) with w and ct2 in place t1 and t2, we obtain r⇒∗ wct2 = t1t2 as desired.

Case 3: (uj ,vj) = (#,#). Then

u1~ıj t2#t1 = u1~ı #t2#t1 = v1~ıj = v1~ı #

This can only hold if t1 = ε, and so implies u1~ı #t2 = v1~ı. By induction this implies
r⇒∗ t2 = t1t2 = t, as required. 2

Proof of Lemma 10.3.3. Let RPCP be constructed as above, given a string rewriting
system R with derivability problem: to decide whether or not r⇒∗ s. By Lemma 10.3.4,
r⇒∗ s if and only if u1~ı s# = v1~ı for some internal ~ı. Clearly if r⇒∗ s the RPCP has a
solution 1~ı2 since (u2,v2) = (s##,#) and so

u1~ı2 = u1~ı s## = v1~ı# = v1~ı2

Conversely, suppose the RPCP P has a solution, and consider a shortest3 one, ~ı, among
these. The first index must be 1 (since it is a RPCP.) Further, for every proper prefix ~k

of ~ı not containing 2, there is exactly one more occurrence of symbol # in v~k than in u~k,
so ~ı must contain 2. Let ~ı = ~k2~j. Then

u~ı = u~k s##u~j = v~k#v~j = v~ı

3If an RPCP (or PCP, for that matter) has one solution, then it has infinitely many, obtainable by

concatenating as many shorter solutions as wished.
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Index i ui vi

1 [•# [•#•A•#•
2 a•b•c• b•a•#•#• ] #• ]
3 •A a•A•a•
4 •A b•A•b•
5 •A c•
6 •A A•
7 •a a•
8 •b b•
9 •c c•
10 •# #•

Figure 10.5: Example PCP simulating a string rewrite system.

implies u~k s## = v~k# (and u~j = v~j). Thus u~k s# = v~k, which by Lemma 10.3.4 implies
r⇒∗ s. 2

Proof of Theorem 10.3.2. We actually show DERIV ≤
rec

PCP, by modifying the construc-

tion of Lemma 10.3.3. Suppose we are given a string rewriting system R over alphabet
Σ, and r,s ∈ Σ∗.

Let new •, [, ] be new “padding” and “grouping” characters not in Σ. For any x =
a1a2 . . .an with each ai ∈ Σ, define

x→ = a1 •a2 • . . .an • and ←x = •a1 •a2 . . .•an

Construct the PCP P ′ as follows, similar to P constructed for Lemma 10.3.3.

P ′ = { ([ • # , [ ←r •) } ∪ { ( s→ # • # • ] , # • ]) } ∪
{ (←f , g→) | (f,g) ∈R∪{(a,a) |a ∈ Σ or a = #} }

The effect on the example of Figure 10.4 is seen in Figure 10.5. Proof that in general P

has a rooted PCP solution if and only if P ′ has an unrestricted PCP solution is left to
the exercises. 2
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10.4 Some problems concerning context-free

grammars

Theorem 10.4.1 The following problem is undecidable: given two context-free gram-
mars Gi = (Ni,Ti,Pi,Si) for i = 1,2, to decide whether or not L(G1)∩L(G2) = ∅.

Proof. This is shown by reduction from the PCP. Assume given a set of pairs
(u1,v1), (u2,v2), . . . , (un,vn) in Σ∗×Σ∗. Assuming disjointness of all the involved sym-
bols and alphabets4, we construct from this the two grammars, with N1 = {S1,E},
N2 = {S2,F},T1 = T2 = Σ∪{1,2, . . . ,n,∆} and production sets

P1 = {S1 ::= 1Eu1 | 2Eu2 | . . . | nEun}∪{E ::= ∆ | 1Eu1 | 2Eu2 | . . . | nEun}

P2 = {S2 ::= 1Fv1 | 2Fv2 | . . . | nFvn}∪{F ::= ∆ | 1Fv1 | 2Fv2 | . . . | nFvn}

Clearly S1 generates all strings of form im . . . i2i1∆ui1ui2 . . . ,uim , and S2 generates all of
form im . . . i2i1∆vi1vi2 . . . ,vim . Thus L(G1)∩L(G2) 6= ∅ if and only if there there exists
an index sequence i1, . . . , im such that ui1ui2 . . . ,uim = vi1vi2 . . . ,vim . If it were possible
to decide emptiness of L(G1)∩L(G2) we could also decide the PCP, and so the halting
problem for two-counter machines. But this, as we know, is undecidable. 2

Theorem 10.4.2 The following problem CFAMB is undecidable: given a context-free
grammar G = (N,T,P,S), to decide whether or not G is ambiguous5.

Proof. This is shown by reduction from the PCP. Given a set of correspondence pairs
(u1,v1), . . . ,(un,vn) over alphabet Σ, construct from this the grammar G = (N,Σ,P,S),
with N = {S,S1,E,S2,F} and production set P as follows

S ::= S1 | S2

S1 ::= 1Eu1 | 2Eu2 | . . . | nEun

E ::= ∆ | 1Eu1 | 2Eu2 | . . . | nEun

S2 ::= 1Fv1 | 2Fv2 | . . . | nFvn

F ::= ∆ | 1Fv1 | 2Fv2 | . . . | nFvn

Clearly S1,S2 derive just the same strings they did in G1 and G2. Thus L(G1)∩L(G2) 6= ∅
if and only if the same string can be derived from both S1 and S2. But this is true

4This can be ensured by renaming if necessary.
5See Appendix A for the definition if unfamiliar.
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if and only if G is ambiguous (all derivations are necessarily left-most since at most
one nonterminal is involved). As a consequence, decidability of ambiguity would imply
decidability of context-free interesection, in conflict with the preceding theorem. 2

Lemma 10.4.3 Given a sequence of strings U = (u1,u2, . . . ,un) over alphabet Σ, the
following set is generated by some context-free grammar GU = (NU ,T,PU ,SU ) where
T = {1,2, . . . ,n,∆}∪Σ:

{im . . . i2i1∆u | u 6= ui1ui2 . . .uim}

Theorem 10.4.4 The following problem CFALL is undecidable: given a context-free
grammar G = (N,T,P,S), to decide whether L(G) = T ∗.

Proof. Again we begin with the PCP. Given a sequence of pairs (u1,v1), . . . ,(un,vn) over
alphabet Σ, construct from this three context-free grammars

1. GU as by the preceding lemma with U = (u1,u2, . . . ,un)

2. GV as by the preceding lemma with V = (v1,v2, . . . ,vn).

3. G0 with L(G0) = {x ∈ T ∗ | x is not of the form im . . . i2i1∆uj1uj2 . . .ujk
}

It is easy (and an exercise) to see that G0 exists, and in fact can be a regular grammar.
It is also easy to construct from these a single context-free grammar G = (N,T,P,S) with
L(G) = L(GU )∪L(GV )∪L(G0).

Claim: L(G) 6= T ∗ if and only if the PCP has a solution. To see this, sup-
pose x ∈ T ∗ but x /∈ L(G) = L(GU )∪L(GV )∪L(G0). Then x ∈ T ∗ \L(G0) implies
x has the form x = im . . . i2i1∆uj1uj2 . . .ujk

. Further, x ∈ T ∗ \ L(GU ) implies x =
im . . . i2i1∆ui1ui2 . . .uim , and x ∈ T ∗ \L(GV ) implies x = im . . . i2i1∆vi1vi2 . . .vim . Thus
ui1ui2 . . .uim = vi1vi2 . . .vim , so the PCP has a solution. Similarly, if the PCP has an
index sequence i1, . . . , im as solution, then

x = im . . . i2i1∆vi1vi2 . . .vim /∈ L(G)

Thus L(G) 6= T ∗ if and only if the PCP has a solution, which is undecidable. 2

Exercises

10.1 Prove the “assertion” of Theorem 10.2.1. 2
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10.2 Does the PCP with pairs (10,101),(10,011),(011,11),(101,011) have a solution?
2

10.3 Prove that the following problem is decidable: given a sequence of pairs (u1,v1),
(u2,v2), . . . , (uk,vk) of nonempty strings over a finite alphabet Σ, the problem is to
determine whether or not there exist two index sequences i1, . . . , im and j1, . . . , jn such
that

ui1ui2 . . .uim = vj1vj2 . . .vjn

Hint: the sets of left and right sides can be described by regular expressions. 2

10.4 * Complete the proof of Theorem 10.3.2 by showing that P has a rooted solution if
and only if P ′ has an unrestricted solution. Prove both the “if” and the “only if” parts.

2

10.5 Prove Lemma 10.4.3: construct the required context-free grammar GU . 2

10.6 Complete the proof of Theorem 10.4.4 (for example by showing that the set involved
is recognizable by a finite automaton). 2

10.7 Prove that it is undecidable, given two context-free grammars G,G′, to determine
whether L(G)⊆ L(G′). 2
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11 Hilbert’s Tenth Problem

(by M. H. Sørensen)

11.1 Introduction

In the introduction to this book we mentioned Hilbert’s famous list of open problems at
the International Congress of Mathematicians in 1900. The tenth problem is stated as
follows:

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: to devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.

In modern terms, the problem is to give an algorithm which for a polynomial equation
with integer coefficients can decide whether or not it has a solution in integers. An
equation of this form is called Diophantine, after the Greek mathematician Diophantus
from the third century, who was interested in such equations.

Hilbert’s Tenth problem is an example of a problem which is of independent interest in
another field than computability theory, namely number theory. For instance, Fermat’s
famous Last Theorem states that the equation

(p+1)n+3 +(q +1)n+3 = (r +1)n+3

has no solution in natural numbers for p,q,r,n. Whether this is true has long been one
of the most famous open problems in number theory.1 For each fixed n, Fermat’s Last
Theorem is an instance of Hilbert’s Tenth problem, provided we restrict solutions to
the natural numbers—this restriction is not essential as we shall see shortly. Thus, an
algorithm deciding for a Diophantine equation whether any solution exists in the natural
numbers would prove or disprove Fermat’s Last Theorem for each fixed n. Conversely,
it has later been realized that unsolvability of Hilbert’s Tenth problem would imply
unsolvability of many other decision problems in number theory and analysis.

1Wiles has recently given a proof of Fermat’s last Theorem which seems to be widely accepted, see

Annals of Mathematics, May 1995.
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From the proof of Gödel’s famous theorem [54] it follows that every recursively enu-
merable set A can be defined by a Diophantine equation preceded by a finite number of
existential and bounded universal quantifiers. In his doctoral dissertation, Davis [32, 33]
showed that all but one of the bounded quantifiers could be eliminated. Hence, any recur-
sively enumerable set A can be defined by a Diophantine equation E(x,y,z,x1, . . . ,xn,)
as follows:

x ∈A⇔∃y,∀z ≤ y,∃x1, . . . ,∃xn : E(x,y,z,x1, . . . ,xn)

This form of definition was subsequently called Davis Normal Form.
To prove that Hilbert’s Tenth problem is unsolvable it remains to eliminate the single

bounded universal quantifier; that is, to show that any recursively enumerable set A can
be defined by a Diophantine equation E(x,x1, . . . ,xn) thus:

x ∈A⇔∃x1, . . . ,∃xn : E(x,x1, . . . ,xn)

Indeed, if A is any recursively enumerable, non-recursive set, then an algorithm deciding
for any x whether E(x,x1, . . . ,xn) has a solution, i.e., whether there are x1, . . . ,xn such
that E(x,x1, . . . ,xn) holds, would also yield a method to test membership in A, which is
impossible.

While Davis showed how to simplify the form of equations necessary for defining all
recursively enumerable sets, Robinson [153] attacked the problem from the other side. She
showed that several sets could be defined by Diophantine equations. She also studied
so-called exponential Diophantine equations, which allow unknowns in the exponents,
and in particular showed, under what is now known as the Julia Robinson hypothesis,
that any set definable by an exponential Diophantine equation is also definable by a
Diophantine equation.

Davis and Putnam finally managed to eliminate the last bounded quantifier from the
Davis Normal Form using the Chinese remainder Theorem and Robinson’s exponential
Diophantine equations. The result, sometimes called the Bounded Quantifier Theorem,
states in its original form that, if there are arbitrarily long arithmetic progressions con-
sisting entirely of primes, then every recursively enumerable set can be defined by an
exponential Diophantine equation. Robinson subsequently managed to eliminate the as-
sumption regarding primes (which is still open) and simplify the proof. The resulting
joint paper by Davis, Putnam, and Robinson [38] stating that every recursively enumer-
able set can be defined by an exponential Diophantine equation is now a classic.

It follows from Robinson’s earlier result that to prove the unsolvability of Hilbert’s
Tenth problem, it is sufficient to prove that the Julia Robinson hypothesis is true. This
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remained an open problem, believed by many to be false, until it was proved ten years
later in 1970 by the young Russian mathematician Matiyasevich [116].

In this chapter we give an account of the unsolvability of Hilbert’s Tenth problem,
leaving out the details of Matiyasevich’s result. The first section introduces exponen-
tial Diophantine equations. The second section develops certain tools that are used in
the third section to prove the Davis-Putnam-Robinson Theorem. The fourth section
considers Hilbert’s Tenth problem.

11.2 Exponential Diophantine equations and sets

We begin by making the notions of the introduction precise. As is customary we shall
be concerned with solutions in natural numbers rather than in integers. We also show
that this is an inessential modification.

Definition 11.2.1

1. A function f : INn→ IN is exponential polynomial if it can be written

f(x1, . . . ,xn) = t

where t is defined by the following grammar with 1≤ i≤ n and N ∈ IN :2

t ::= xi |N | t1 · t2 | t1 + t2 | t1− t2 | tt21

2. An equation f(x1, . . . ,xn) = 0 is exponential Diophantine if f is exponential poly-
nomial. A solution is a tuple (a1, . . . ,an) ∈ INn with f(a1, . . . ,an) = 0.

3. A set A⊆ INn is exponential Diophantine if there exists an exponential polynomial
f : INm+n→ IN such that

(a1, . . . ,an) ∈A⇔∃x1, . . . ,∃xm : f(a1, . . . ,an,x1, . . . ,xm) = 0

4. An exponential polynomial not using the last clause for t is a polynomial . Diophan-
tine equations and sets are defined by polynomials, like exponential Diophantine
equations and sets are defined by exponential polynomials. 2

A few examples illustrating the definition may be useful.

2The construction tt21 may lead outside the integers, e.g., x1−y with x = 2 and y = 2. Such situations

will be tacitly avoided in what follows.
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Example 11.2.2

1. The function
f(x,y,z) = 3x+5xy−71z5

is a polynomial, where we write z5 instead of z ·z ·z ·z ·z. Therefore,

3x+5xy−71z5 = 0

is a Diophantine equation, and the set of all natural numbers x such that there
exists y,z with 3x+5xy−71z5 = 0 is a Diophantine set.

2. The function
f(x,y) = x−2y

is a polynomial, so
x−2y = 0

is a Diophantine equation. Therefore the set of all even numbers is Diophantine;
indeed, it is the set of all natural numbers x such that there exists a y with x−2y =
0, i.e., x = 2y.

3. The function

f(p,q,r,n) = (p+1)n+3 +(q +1)n+3− (r +1)n+3

is an exponential polynomial. Hence,

(p+1)n+3 +(q +1)n+3− (r +1)n+3 = 0

is an exponential Diophantine equation. Therefore the set of all x,y,z > 0 such
that for some k ≥ 3, xk +yk = zk, is exponential Diophantine. 2

In the introduction Diophantine equations had integer solutions, but in the preceding def-
inition their solutions were natural numbers. However, the problem of deciding whether
an arbitrary (exponential) Diophantine equation has solution in integers is equivalent to
the problem of deciding whether an arbitrary (exponential) Diophantine equation has
solution in natural numbers.

To reduce the former problem to the latter, note that there is a solution in integers
to the equation

f(x1, . . . ,xn) = 0

if and only if there is a solution in natural numbers to the equation

f(p1− q1, . . . ,pn− qn) = 0
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For the opposite reduction, recall that any natural number can be written as the sum
of four squares (see, e.g., the appendix to [123]). Hence, there is a solution in natural
numbers to the equation

f(x1, . . . ,xn) = 0

if and only if there is a solution in integers to the equation

f(p2
1 + q2

1 + r2
1 +s2

1, . . . ,p
2
n + q2

n + r2
n +s2

n) = 0

In conclusion, we have simplified the problem inessentially by considering only natural
number solutions.

In a similar vein, we may allow equations of form

f(x1, . . . ,xn) = g(y1, . . . ,ym)

where g(y1, . . . ,ym) is not simply 0, since this is equivalent to

f(x1, . . . ,xn)−g(y1, . . . ,ym) = 0

We may allow conjunctions of equations

f(x1, . . . ,xn) = 0∧g(y1, . . . ,ym) = 0

since this conjunction of equations has a solution if and only if there is a solution to the
ordinary equation

f(x1, . . . ,xn) ·f(x1, . . . ,xn)+g(y1, . . . ,ym) ·g(y1, . . . ,ym) = 0

Similarly we may allow disjunctions of equations

f(x1, . . . ,xn) = 0∨g(y1, . . . ,ym) = 0

since this disjunction of equations has a solution if and only if there is a solution to the
ordinary equation

f(x1, . . . ,xn) ·g(y1, . . . ,ym) = 0

11.3 Encoding of finite sequences

We shall give a proof of the Davis-Putnam-Robinson theorem using encodings of counter
machine computation executions. The idea will be clearer in the next section. Here it
suffices to note that for this purpose it will be necessary to have available a means of
expressing facts about objects in a sequence of finite, but unknown, length.



174 Hilbert’s Tenth Problem (by M. H. Sørensen)

There are several such techniques available. The best known, first employed by
Gödel [54], uses the Chinese Remainder Theorem. In the present setting this technique
has the disadvantage that it makes it rather hard to express certain necessary opera-
tions as exponential Diophantine equations. Therefore another technique was invented
by Matiyasevich [118], which we present in this section.

Definition 11.3.1 For a,b ∈ IN , let

a =
n∑

i=0

ai2i (0≤ ai ≤ 1), b =
n∑

i=0

bi2i (0≤ bi ≤ 1)

The bitwise less-than relation a�b is defined by:

a� b⇔∀i ∈ {0, . . . ,n} : ai ≤ bi 2

The rest of this section is devoted to showing that a � b is an exponential Diophantine
relation, i.e., that

{(a,b) ∈ IN × IN |a� b}

is a Diophantine set according to Definition 11.2.1. We prove this using two lemmas.
The first lemma is due to Robinson [153], and the proof is a modification of Robinson’s

proof due to Matiyasevich [120].

Lemma 11.3.2 Define for k ≤ n, (
n

k

)
=

n!
(n−k)!k!

and let
(
n
k

)
= 0 when k > n. The relation m =

(
n
k

)
is exponential Diophantine.

Proof. First, the less-than relation is exponential Diophantine, since

a < b⇔∃x : a+x+1 = b

Second, let [N ]Bk be the k’th digit of N written in base B. For instance, since 5 in base
2 is 101 and we count from the right starting from 0, we have

[5]22 = [5]20 = 1

and
[5]23 = [5]21 = 0

The relation d = [N ]Bk is exponential Diophantine since

d = [N ]Bk ⇔∃c,e : N = cBk+1 +dBk +e∧d < B∧e < Bk
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Finally, by the binomial theorem

(B +1)n =
n∑

k=0

(
n

k

)
Bk

Note that
(
n
k

)
is the k’th digit of (B +1)n written in base B, provided

(
n
k

)
< B for all

k. This, in turn, holds if B > 2n (see the exercises). Hence, m =
(
n
k

)
is exponential

Diophantine:

m =
(

n

k

)
⇔∃B : B = 2n +1∧m = [(B +1)n]Bk 2

The second lemma necessary to prove that the bitwise less-than relation is exponential
Diophantine involves a bit of elementary number theory, which has been banished to the
exercises.

Lemma 11.3.3 n� k⇔
(
n
k

)
is odd

Proof. See the exercises. 2

Proposition 11.3.4 The bitwise less-than relation is exponential Diophantine.

Proof. The relation m =
(
n
k

)
is exponential Diophantine by Lemma 11.3.2. The relation

“m is odd” is also exponential Diophantine:

m is odd ⇔∃x : m = 2x+1

Hence, the proposition follows by Lemma 11.3.3. 2

If a� b then a is also digitwise less than b using any other base B, provided the base is
a power of 2. The converse does not generally hold; it may be that B is a power of 2,
a is digitwise less than b in base B, and yet a 6� b. However, if B is a power of 2, a is
digitwise less than b in base B, and all the digits of b in B are 0 or 1, then also a � b.
All this is perhaps best explained with an example.

Example 11.3.5 For instance, 34 � 43, as can be seen from the first two rows in Fig-
ure 11.1. Moreover, 34 is also digitwise less than 43 with base 4, as can be seen from the
last two rows in the figure. The reason is that every group of two coefficients x ·2i+1+y ·2i

in the base 2 representation is packed into a single coefficient x ·2+y in the base 4 rep-
resentation. If, in the base 2 representation, all bits in a number are less than or equal
to those in another number, then the same holds in the base 4 representation; that is, if
x1 ≤ x2 and y1 ≤ y2 then x1 ·2+y1 ≤ x2 ·2+y2.
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43 = 1 ·25+ 0 ·24 + 1 ·23+ 0 ·22 + 1 ·21+ 1 ·20

34 = 1 ·25+ 0 ·24 + 0 ·23+ 0 ·22 + 1 ·21+ 0 ·20

43 = 2 ·42 + 2 ·41 + 3 ·40

34 = 2 ·42 + 0 ·41 + 2 ·40

Figure 11.1: Digitwise comparisons in base 2 and 4.

43 = 1 ·25+ 0 ·24 + 1 ·23+ 0 ·22 + 1 ·21+ 1 ·20

18 = 0 ·25+ 1 ·24 + 0 ·23+ 0 ·22 + 1 ·21+ 0 ·20

43 = 2 ·42 + 2 ·41 + 3 ·40

18 = 1 ·42 + 0 ·41 + 2 ·40

Figure 11.2: More digitwise comparisons in base 2 and 4.

On the other hand, 18 is digitwise less than 43 in base 4, but 18 6� 43, as can be
seen from Figure 11.2. The reason is that a group of two coefficients x1 · 2i+1 + y1 · 2i

in the base 2 representation of a may fail to be digitwise less than the corresponding
two coefficients x2 · 2i+1 + y2 · 2i in the base 2 representation of b, even if it holds that
x1 ·2+y1 ≤ x2 ·2+y2. For instance, this happens if x1 < x2 and y1 > y2.

However, if all the coefficients in the base 4 representation are 0 or 1, i.e., x1 and x2

are 0, then this cannot happen. 2

11.4 The Davis-Putnam-Robinson Theorem

In this section we show that any recursively enumerable set A is exponential Diophantine.
As mentioned in Section 11.1, the result is due to Davis, Putnam, and Robinson [38].
The present proof is due to Jones and Matiyasevich [74], and is somewhat more in the
spirit of this book than the original recursion-theoretic proof.

Any recursively enumerable set A can be represented by a counter machine p in the
sense that that x ∈A iff [[p]](x) terminates. This follows from the fact that counter ma-
chines can express all partial recursive functions. The idea, then, is to formalize the execu-
tion of any counter machine p by an exponential Diophantine equation f(x,z1, . . . ,zk) = 0
such that [[p]](x) terminates iff f(x,z1, . . . ,zk) = 0 has a solution.
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Before proceeding with the general construction it will be useful to review an example,
taken from [156], which illustrates how this is done.

Example 11.4.1 Consider the following counter machine p:

I1 : ifX1 = 0goto4;
I2 : X1 := X1−1;
I3 : ifX2 = 0goto1;
I4 : stop

We assume that every subtraction command Il: X:=X-1 is preceded by a command
Il−1:if X=0 goto k. We also assume that for every conditional Il:if X=0 goto k, Ik

is not a subtraction command. This implies that a counter will never be decremented
below 0. We write a stop command at the end of the program, and assume that all
counters have value 0, when the program terminates. These assumptions present no loss
of generality.

Recall that the input is stored in counter X1. If the input to p is 2, then the com-
putation has length 7, (we count a single-step computation to have length 0), and the
following commands are executed in order:

1,2,3,1,2,3,1,4

The whole execution, including information about values of counters and the current
program point, can be represented by the matrix in Figure 11.3.

7 6 5 4 3 2 1 0 = t
0 0 0 1 1 1 2 2 = x1,t

0 0 0 0 0 0 0 0 = x2,t

0 1 0 0 1 0 0 1 = i1,t

0 0 0 1 0 0 1 0 = i2,t

0 0 1 0 0 1 0 0 = i3,t

1 0 0 0 0 0 0 0 = i4,t

Figure 11.3: Representation of execution of counter machine.

The two x-rows represent the values of the two counters before step t, counting the first
step as step 0. For instance, X1 has value 2 before step 0 and 1, so x1,0 and x1,1 are both
2. X1 has value 1 before step 2, 3, and 4, so x1,2, x1,3, and x1,4 are all 1. The i-rows
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express which command is executed in step t. For instance, in step 0, command 1 is
executed, so i1,0 is 1, and in step 2 command 3 is executed, and therefore i3,2 is 1.

Instead of representing the values of, say X1, by a row of numbers, we can pack the
information into a single number

y∑
t=0

xi,tb
t

where y = 7 is the length of the computation and b is a number larger than all the
numbers in the matrix. With this idea the whole matrix becomes the system of equations
in Figure 11.4.

0 · b7+ 0 · b6+ 0 · b5+ 1 · b4+ 1 · b3+ 1 · b2+ 2 · b1+ 2 · b0 = x1

0 · b7+ 0 · b6+ 0 · b5+ 0 · b4+ 0 · b3+ 0 · b2+ 0 · b1+ 0 · b0 = x2

0 · b7+ 1 · b6+ 0 · b5+ 0 · b4+ 1 · b3+ 0 · b2+ 0 · b1+ 1 · b0 = i1
0 · b7+ 0 · b6+ 0 · b5+ 1 · b4+ 0 · b3+ 0 · b2+ 1 · b1+ 0 · b0 = i2
0 · b7+ 0 · b6+ 1 · b5+ 0 · b4+ 0 · b3+ 1 · b2+ 0 · b1+ 0 · b0 = i3
1 · b7+ 0 · b6+ 0 · b5+ 0 · b4+ 0 · b3+ 0 · b2+ 0 · b1+ 0 · b0 = i4

Figure 11.4: Numeric representation of execution of counter machine.

Thus every computation of p on some input x can be represented by certain values
of x,x1,x2, i1, . . . , i4,y,b. These values satisfy certain properties corresponding to the
details of the computation. For instance, in all executions of p command 2 is followed by
execution of command 3. Thus in Figure 11.4 whenever bj has coefficient 1 in i2, bj+1 has
coeffient 1 in i3. This is a purely numerical relationship between the values of i2 and i3.
These relationships can be expressed as a set of equations such that every computation
of p on some input gives a solution to the equations, and every solution to the equations
correspond to a computation of p. 2

The idea, in general, is now to translate any counter machine p into an exponential Dio-
phantine equation such that if [[p]](x) terminates, then the details of the computation—
the number of steps, the values of the counters, etc.— give a solution to the equation,
and conversely, for every solution of the equation, there is a corresponding terminating
computation.

Theorem 11.4.2 Every recursively enumerable set A is exponential Diophantine.
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Proof. Let A be any recursively enumerable set and p be a counter machine such that
x ∈A iff [[p]](x) terminates. Suppose p has form

p = I1 . . .In (with counters X1, . . . ,Xm) (11.1)

We now derive an exponential Diophantine equation

f(x,x1, . . . ,xm, i1, . . . , in,y,b,U) = 0 (11.2)

such that

[[p]](x) terminates ⇔ (11.2) has a solution (11.3)

More precisely we derive 12 equation schemes which can be combined into a single con-
junction using the technique in Section 11.2.

1. First of all, we need a base b for the representation in Figure 11.4. Recall that b

must be larger than all the coefficients in order for the representation to be correct. Since
the initial value of counter X1 is x and the other counters are initialized to 0, no counter
value can exceed x+y where y is the number of steps of the computation. Therefore,

b = 2x+y+n (1)

is large enough. We shall need later two additional facts about b, both satisfied by the
above choice: that b is a power of 2 and that b > n.

2. It will be convenient to have a number whose representation in base b is a string
of length y consisting entirely of 1’s. This is the number by−1 + · · ·+ b+1. This number
satisfies the equation

1+ bU = U + by (2)

and it is the only number satisfying the equation; indeed, if U = (by − 1)/(b− 1) then
U = by−1 + · · ·+ b+1.

3. It will be necessary later that the coefficients in Figure 11.4 are all strictly smaller
than b/2. This is enforced by the following equations.

xj � (b/2−1)U (j = 1, . . . ,m) (3)

Indeed, if xj is less than (b/2−1)U bitwise, then the same thing holds digitwise in base
b, since b is a power of 2 (see Example 11.3.5). But the digits in (b/2−1)U in base b are
exactly b/2−1.

4,5. In each computation step of p, exactly one command is executed. This is
expressed by the following equations.

il � U (l = 1, . . . ,n) (4)
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U =
n∑

l=1

il (5)

The first equation states that in the binary representation of the two numbers, all the
coefficients of il are smaller or equal than those of U . Since b is a power of 2, and all the
coefficients of U are 1, this is the same as requiring that in base b, all the coefficients of
il are smaller or equal than those of U , i.e., are 0 or 1 (see Example 11.3.5). That is, in
terms of Figure 11.4, all coefficients in il are 0 or 1.

The second equation similarly expresses the fact that in every il-column in Figure 11.4
there be exactly one coefficient which is 1. For this it is necessary that no carry occur in
the summation, and this is guaranteed by the fact that b > n.

6,7. In any computation with p, the first and last step are to execute command I1

and In, respectively. This is expressed as follows.

1� i1 (6)

in = by−1 (7)

The first equation expresses that the rightmost coefficient of i1 in Figure 11.4 is 1. The
second states that the leftmost coefficient in in is 1.

8. After executing a command Il which is either a subtraction or an addition, the
next instruction should be Il+1. This is expressed as follows.

bil � ik + il+1 (for all l with Il: X:=X-1 or X:=X-1) (8)

The equation states that in Figure 11.4, if the coefficient of bj in il is 1, then the coefficient
of bj+1 should be 1 in il+1. Note how the multiplication with b represents a move to the
left in Figure 11.4.

9. After executing a conditional Il:if Xj=0 goto k the next instruction should be
either Ik or Il+1. This is expressed as follows.

bil � ik + il+1 (for all l with Il:if Xj=0 goto k) (9)

The equation states that in Figure 11.4, if the coefficient of bj in il is 1, and Il is the
command if Xj=0 goto k, then the coefficient of bj+1 should be 1 in il+1 or ik (where
k 6= l+1 by assumption).

10. Whenever executing a command Il:if Xj=0 goto k, the next command should
be Ik if Xj is 0, and Il+1 otherwise. This is expressed as follows.

bil � il+1 +U −2xj (for all l with Il:if Xj=0 goto k) (10)
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To see this, suppose that Xj = 0 before, and hence also after, step k, i.e.,

xj = . . .+0 · bk+1 +0 · bk + . . .

Then
2xj = . . .+0 · bk+1 +0 · bk + . . .

Here we made use of the fact that all coefficients are smaller than b/2, so that no bit of
the coefficient of bk−1 is shifted into the coefficient of bk by the multiplication with 2.
Hence, the subtraction U −2xj looks as in Figure 11.5.

U = 1 · by−1 + · · · + 1 · bk+1 + 1 · bk + · · ·
2xj = · · · + 0 · bk+1 + 0 · bk + · · ·

U −2xj = · · · + 1 · bk+1 + · · ·

Figure 11.5: U −2xj when Xj = 0.

The subtraction may require borrowing from the coefficient 1 of bk in U , but not from
the coefficient 1 of bk+1 in U since the coefficent of bk in 2xj is 0. Now, since

bil = . . .+1 · bk+1 + . . .

(10) holds iff the rightmost bit in the coefficient to bk+1 in il+1 is 0, i.e., iff

il+1 = . . .+0 · bk+1 + . . .

i.e., iff the next command is not Il+1. By (9) the next command must then be Ik, as
required. This covers the case Xj = 0.

If, on the other hand, Xj > 0 before and hence also after step k, i.e.,

xj = . . .+n · bk+1 +n · bk + . . .

Then
2xj = . . .+2n · bk+1 +2n · bk + . . .

Then the subtraction U −2xj looks as in Figure 11.6.
Again we made use of the fact that n < b/2 so that no bit is shifted from one coefficient

to another by the multiplication with 2. Here the subtraction of the coefficients to bk−1

may or may not require borrowing, but the coefficients to bk and bk+1 definitely do need
borrowing. Now the coefficient b−2n to bk+1 in U −2xj is even, whereas

bil = . . .+1 · bk+1 + . . .
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b b

U =1 · by−1 + · · · + 61 · bk+2 + 61 · bk+1 + 1 · bk + · · ·
2xj = · · · + 2n · bk+1 + 2n · bk + · · ·

U −2xj= · · · + (b−2n) · bk+1 + · · ·

Figure 11.6: U −2xj when Xj > 0.

so (10) holds iff the rightmost bit in the coefficient to bk+1 in il+1 is 1, i.e., iff

il+1 = . . .+1 · bk+1 + . . .

i.e., iff the next command is Il+1, as required.
11,12. It remains to express the fact that addition and subtraction instructions should

modify the contents of the counters appropriately. Let A(j) and S(j) be the set of labels
l such that the command Il is Xj:=Xj+1 and Xj:=Xj-1, respectively. This is done by the
following equations.

x1 = x+ b(x1 +
∑

l∈A(1)

il−
∑

l∈S(1)

il) (11)

xj = b(xj +
∑

l∈A(j)

il−
∑

l∈S(j)

il) (j = 2, . . . ,m) (12)

Indeed, consider (11). The sum
∑

l∈A(1) il is a number whose base b representation has
1 for every coefficient k where the k’th step in the execution of p is X1:= X1+1. Similarly
with the other sum. (11) now states that if X1 is n before the k’the step, and the
instruction executed in the k’th step is an addition, then X1 is n+1 before the k +1’th
step. For example, consider Figure 11.7.
In this example there is only a single addition to X1 during the whole execution, namely
in step 1, and a single subtraction in step 4. Before step 1, X1 has value x, hence after
it has value x+1. Similarly with subtractions. This can be expressed by requiring that
if we add x1 to the sums

∑
l∈A(1) il and −

∑
l∈S(1) il and shift the result one position to

the left, then the coefficients should match those in x1. Note that multiplication with b

does not lead to overflow since it is assumed that all counters are 0 at the end.
Equation (12) is identical to Equation (11) except that the initial contents of xj is 0

rather than x, for j = 2, . . . ,m. The whole set of equations is collected in Figure 11.8. It
is now a routine matter to verify that the claim (11.3) is indeed true. 2

Corollary 11.4.3 There is no algorithm that can decide for an exponential Diophantine
equation whether or not is has a solution in natural numbers.
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6 5 4 3 2 1 0 step

x x x+1 x+1 x+1 x x = x1

0 0 0 0 0 1 0 =
∑

l∈A(1) il

0 0 1 0 0 0 0 =
∑

l∈S(1) il

x x x x+1 x+1 x+1 x = x1 +
∑

l∈A(1) il−
∑

l∈S(1) il

x x x+1 x+1 x+1 x x = x+ b(x1 +
∑

l∈A(1) il−
∑

l∈S(1) il)

Figure 11.7: Representing additions and subtractions.

(1) b = 2x+y+n

(2) 1+ bU = U + by

(3) xj � (b/2−1)U (j = 1, . . . ,m)
(4) il � U (l = 1, . . . ,n)
(5) U =

∑n
l=1 il

(6) 1� i1
(7) in = by−1

(8) bil � il+1 (Il : Xj = Xj−1,Il : Xj = Xj+1)
(9) bil � il+1 +U −2xj (Il : ifXj= 0gotok)

(10) bil � ik + il+1 (Il : ifXj= 0gotok)
(11) x1 = x+ b(x1 +

∑
l∈A(1) il−

∑
l∈S(1) il)

(12) xj = b(xj +
∑

l∈A(j) il−
∑

l∈S(j) il) (j = 2, . . . ,m)

Figure 11.8: Representation of execution of counter machine.

Proof. Let A ⊆ IN be a recursive enumerable, non-recursive set (recall that such sets
do exist). By the Davis-Putnam-Robinson Theorem there is an exponential Diophantine
equation f(x,z1, . . . ,zn) = 0 such that

x ∈A⇔ f(x,z1, . . . ,zn) = 0 has a solution

Since we can construct effectively the equation f(x,z1, . . . ,zn) = 0 given x it follows that
an algorithm to decide for each x whether f(x,z1, . . .zn) has a solution would imply a
decision procedure for A, which is impossible since A is non-recursive. 2
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11.5 Matiyasevich’s Theorem and Hilbert’s Tenth

problem

In this section we briefly show that Hilbert’s Tenth problem is unsolvable, leaving out
almost all details. As mentioned, the following theorem, due to Matiyasevich [116], was
the final step in solving Hilbert’s Tenth problem.

Theorem 11.5.1 The relation u = vw is Diophantine.

Proof. See, e.g., [123]. 2

Corollary 11.5.2 Every recursively enumerable set is Diophantine.

Proof. By the Davis-Putnam-Robinson Theorem, there exists for every recursively enu-
merable set A an exponential Diophantine equation f(x,z1, . . . ,zn) = 0 such that

x ∈A⇔∃z1, . . . ,∃zn : f(x,z1, . . . ,zn) = 0

By Matiyasevich’s theorem there is a Diophantine equation e(u,v,w,y1, . . . ,ym) = 0 such
that

u = vw⇔∃y1, . . . ,∃ym : e(u,v,w,y1, . . . ,ym) = 0

Therefore every occurrence in f(x,z1, . . . ,zn) of tt21 can be replaced by a variable u.
We must then add to the original equation f(x,z1, . . . ,zn) = 0 the new equations v = t1,
w = t2, and e(u,v,w,y1, . . . ,ym) = 0. These can all be combined into a single Diophantine
equation using the technique in Section 11.2. 2

The following corollary then shows that Hilbert’s Tenth problem is unsolvable.

Corollary 11.5.3 There is no algorithm that can decide for a Diophantine equation
whether or not is has a solution in natural numbers.

Proof. Similar to the proof of Corollary 11.4.3 using the preceding corollary. 2

Exercises

11.1 Show that the non-strict less-than relation a≤ b is Diophantine. 2

11.2 Show that the set of numbers that are not powers of 2 is Diophantine. 2
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11.3 Show that the set of numbers that are not prime is Diophantine. 2

11.4 * Prove that for all n ∈ IN and all k ∈ {0, . . . ,n}(
n

k

)
≤ 2n

Hint: For a real number r let dre denote the smallest integer larger than r, and let brc
denote the largest integer smaller than r. For instance, b7/2c = b6/2c = 3 and d7/2e =
d8/2e= 4. Then proceed by induction on n splitting into the cases:

1. k = n;

2. 0≤ k ≤ bn/2c;
3. bn/2c< k < n.

In the last case use the fact that (
n

k

)
=

(
n

n−k

)
The following rules may also be helpful:

n/dne ≤ 2
dne−1 ≤ bnc 2

The following is adopted from [156]. For a different proof of Lemma 11.3.3, see [74].

11.5 * Prove that

k � n⇔
(

n

k

)
is odd

Hint: Prove the assertion for the cases k > n, k = n, and k < n. In the last case proceed
in the following steps.

1. Let m =
∑l

i=0 mi2i (the right hand side is the binary representation of m), and
define

ONE(m) = the number of 1s among m0, . . . ,ml

EXP(m) = the exponent of the highest power of 2 dividing m

EXP(m) is the same as the index in {0, . . . , l} of the rightmost 1 among m0, . . . ,ml.
For example, since 76 in binary is 1001100, ONE(76) = 3, EXP(76) = 2.

2. Prove that m is odd iff EXP(m) = 0.
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3. Prove that EXP(m!) = m−ONE(m) by induction on m.
In the induction step consider the cases: m is even, and m is odd, and use in the
latter case the fact that EXP(m+1) = ONE(m)−ONE(m+1)+1.

4. Prove that

EXP
(

n

k

)
= ONE(k)+ONE(n−k)−ONE(b)

5. Now let n =
∑l

i=0 ni2i and k =
∑l

i=0 ki2i. Prove that ∀i : ki ≤ ni implies

EXP
(

n

k

)
= 0

and hence the left-to-right direction in the overall assertion follows.

6. For the right-to-left direction prove that if ∃i : ki > ni then

EXP
(

n

k

)
> 0

as follows. Let i be the smallest index such that 0 = ni < ki = 1. Let Nj = kj− [b−
a]2j . Prove that

nj = Nj for all j < i

ni(= 0) < (2 =)Ni∑l
j+1 nj ≤ 1+

∑l
j+1 Nj

and conclude that

ONE(k)+ONE(n−k) = ONE(n) =
l∑

j=0

Nj−nj > 0

which gives the right-to-left direction. 2

References

As mentioned, Hilbert’s Tenth Problem was presented at the International Congress of
Mathematicians in 1900. While it was not actually stated during his lecture, it appeared
in the published version, see Reid’s biography [150].

Several papers by Davis, Putnam, and Robinson were mentioned in Section 11.1.
Another classic recursion-theoretic presentation of the unsolvability of Hilbert’s Tenth
problem, with a historical appendix and more references, is due to Davis [35].

In Section 11.1 we also mentioned several papers by Matiyasevich. For more refer-
ences and much more information about all aspects of Hilbert’s Tenth problem, consult
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Matiyasevich’s book [123]. The book discusses many applications; it infers from unsolv-
ability of Hilbert’s Tenth problem the unsolvability of several other problems in number
theory and analysis. Its sections with commentaries at the end of each chapter give many
historical details.

In several places we have adopted technical and stylistic improvements from the recent
books by Floyd and Beigel [47] and Rozenberg and Salomaa [156].





12 Inference Systems and Gödel’s

Incompleteness Theorem

Inference systems have proven themselves very powerful for defining logical systems, in
programming languages for defining operational semantics and type systems, and in many
other applications as well. The main purpose of this chapter is to understand exactly
what the limits are to their expressivity.

In Computer Science, an important application is to define a programming language’s
semantics: a systematic way to assign a meaning to every program in the language, thus
specifying precisely the possible effects that can be realized by any program1.

Inference systems originated in Mathematical Logic, for the purpose of making a pre-
cise formulation of mathematical reasoning, for example proofs in geometry from Euclid’s
axioms. A concrete “formal system” is often presented by beginning with definitions of
some syntactic categories and then by presenting inference systems for reasoning about
them. Examples of syntactic categories might be Terms T , Formulas F , Assumptions Γ,
and Judgments Γ ` F . Such a judgment usually has an intuitive reading, for instance “F

is true, provided the assumptions listed in Γ hold.” An example of an inference rule is
the ancient modus ponens rule:

If Γ ` F ⇒G and Γ ` F , then Γ `G

Logicians have tried to relate the question of which statements are true in a logical frame-
work, e.g. geometry, to the question of which statements are provable according to a given
formal logical system, e.g. Euclid’s axioms. The truth of a statement in a mathemati-
cal system concerns its meaning in an “intended interpretation,” e.g. an assertion about
figures in two-dimensional Euclidean space; whereas its provability concerns whether its
truth can be established by a certain system of formal proof procedures. The fact that the
two may be different first became clear with the discovery of non-Riemannian geometries.

In the last analysis, formal proof procedures work by symbol manipulation, and are
often presented in the form of inference systems.

Overview: Section 12.1 begins this chapter with some informal examples of the use of
inference systems to define programming language semantics.

1A “possible effect” might be transforming an input to an output, but in general need not be deter-

ministic, e.g. search processes or interactive communications are other possibilities.
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Section 12.2 introduces a generalization of the concept of set: an n-ary predicate,
which is much used in logic, and implicit in the informal examples. After this, Section 12.3
establishes several properties cocerning recursive and recursively enumerable predicates,
extending those of sets as in Chapter 5.

Section 12.4 contains a general formalization of inference systems as used to define
predicates over ID, and it is proven in Section 12.4.3 that every predicate definable by an
inference system is a recursively enumerable subset of ID.

This framework gives enough background to state and prove, in Section 12.5, a version
of Gödel’s Incompleteness Theorem: that no inference system can prove all and only the
true statements of even a particularly simple formal language DL concerning values in
ID.

12.1 Examples of operational semantics by inference

systems

Language semantics can be defined in (at least) two ways. One way is by Plotkin’s
structural operational semantics [140] or Kahn’s similar natural semantics [91]; both are
used by many researchers. By this approach, a language semantics is given by a collection
of inference rules that define how commands are excuted, how expressions are evaluated,
etc.

In an operational semantics a language definition is a set of inference rules and axioms
sufficient to execute programs. An inference rule consists of a set of premises which, if
true, allow one to conclude or deduce a conclusion. An axiom is a special case of an
inference rule — one with an empty set of premises. We give some examples now, and a
more general framework later in Section 12.4.

The I semantics defined in Section 2.2 is in essence (though not in apperance) an
operational semantics. For example, the definition of C ` σ→ σ′ is easy to re-express
using inference rules as in the next section (Exercise 12.2). According to such rules the
meaning of a recursive construction such as a while loop or a recursively defined function
is typically obtained by “syntactic unfolding”; an example will be seen below.

Another way to define semantics is by denotational semantics, first developed by Scott
[162]. (See Schmidt [158] for a gentle introduction.) By this approach, every syntactic
construction in the language is assigned a meaning in some domain: a set plus a partial
order on its elements, ordered according to their “information content.” For example,
the set IN → IN⊥ is a domain, ordered by f v g iff for all x ∈ IN , either f(x) = g(x) or
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f(x) = ⊥ (see Section 14.1 for a sketch of this approach). The meaning of a recursive
construction such as a while loop or a recursively defined function is obtained by applying
the “least fixed-point operator” to a certain higher-order function.

12.1.1 Expression evaluation by inference rules

We now investigate how expressions in a programming language can be evaluated, relating
the syntactic world of expressions as written to their semantics, i.e. the mathematical
values which they denote.

Suppose e is an expression, such as x+y, which contains occurrences of the variables
x and y. Then the value of e can be determined only under some value assumptions
about the values of x and y. Such assumptions can be represented by a finite function
σ = [x 7→ v, . . .] which for instance maps x to its value, so σ(x) = v. Function σ is usually
called a store in an imperative programming language, or an environment in a functional
programming language.

The assertion that “if x = 5 and y = 6, then x+y = 11” is written as follows:

[x 7→ 5,y 7→ 6] ` x+y⇒ 11

More generally, the notation σ ` e⇒ v is an example of what is called a judgment .
This one means that “given store (or environment) σ, expression e can be evaluated to

yield result v.” Here expression e is a syntactic object, value v is a semantic object, and
store σ connects syntactic objects (variable names) with semantic objects (their current
values).

Expression evaluation is often based on a set of inference rules, one for each form of
expression in the language. For an expression which is a variable occurrence, we have
the assertion:

σ ` x⇒ σ(x)

This is an axiom: an inference rule that is true without prerequisite assumptions, assum-
ing the value of variable x is defined by σ.

Now consider an expression succ e whose value is 1 more than the value of its
subexpression e. If subexpression e evaluates to v, then the entire expression evaluates
to v +1. This is expressed by the inference rule, where the part above the line is called
the premise:
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σ ` e⇒ v

σ ` succ e⇒ plus(v,1)

For an expression e1 + e2, if the subexpressions respectively have values u,v, then the
entire expression has value u+v. This is expressed by a two-premise inference rule:

σ ` e1⇒ u σ ` e2⇒ v

σ ` e1+e2⇒ plus(u,v)

This may look “content-free” but in fact is not, since it defines the meaning of the syn-
tactic symbol “+” appearing to the left of the ⇒ in terms of the already well-understood
mathematical operation of addition (the plus appearing to the right).

For another example consider boolean-valued expression e1 = e2, which tests two
values for equality. This is easily described by two rules, one for each case:

σ ` e1⇒ u σ ` e2⇒ u

σ ` e1 = e2⇒ true

σ ` e1⇒ u σ ` e2⇒ v u 6= v

σ ` e1 = e2⇒ false

The meaning of a conditional expression if e then e1 else e2 can also be given by
two rules, the first applying when condition e2 is true and the other applying when it is
false:

σ ` e⇒ true σ ` e1⇒ v

σ ` ifethene1elsee2⇒ v

σ ` e⇒ false σ ` e2⇒ v

σ ` ifethene1elsee2⇒ v

Using these inference rules, the value of a complex expression can be inferred from the
value assumptions held in the store σ. For instance, when σ = [m 7→ 5,n 7→ 3], then the
inference

σ ` m⇒ 5 σ ` n⇒ 3
σ ` m+n⇒ 8

σ ` m⇒ 5 σ ` 1⇒ 1
σ ` m−1⇒ 4

σ ` (m+n)∗ (m−1)⇒ 32

shows that (m+n)*(m-1) has value 32, using unstated but obvious inference rules for
evaluating constants, subtraction and multiplication.
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12.1.2 Recursion by syntactic unfolding

For another example, consider a programming construction for minimization “min x

such that e = 0.” Its intended semantics is that e is to be evaluated repeatedly with
x = 0,1,2, . . . This is repeated until e first evaluates to 0, and the value that x has at
that time is returned. (The expression’s value will be undefined if e evaluates to nonzero
values for all x.)

The following inference rules define this new construction’s semantics. A new judg-
ment is used, of form σ[x 7→ u] `min e⇒ w. It signifies “w is the smallest value of x not
less than u for which e evaluates to 0,” where σ is an environment defining the current
values of variables in e other than x.

σ[x 7→ 0] `min e⇒ w

σ ` min x such that e = 0⇒ w

σ[x 7→ u] ` e⇒ 0
σ[x 7→ u] `min e⇒ u

σ[x 7→ u] ` e⇒ v, v 6= 0, and σ[x 7→ u+1] `min e⇒ w

σ[x 7→ u] `min e⇒ w

The following illustrates computation of min x such that 1-x = 0:

[x 7→ 0] ` 1⇒ 1, [x 7→ 0] ` x⇒ 0
[x 7→ 0] ` 1−x⇒ 1

1 6= 0

[x 7→ 1] ` 1⇒ 1, [x 7→ 1] ` x⇒ 1
[x 7→ 1] ` 1−x⇒ 0

[x 7→ 1] `min 1−x⇒ 1
[x 7→ 0] `min 1−x⇒ 1

[ ] ` (min x such that 1−x = 0)⇒ 1

Intuitive explanation: computation begins at the bottom of the tree with given environ-
ment σ and expression e, and the goal is to find v such that σ ` e⇒ v.

In this case σ is an empty environment [], and the goal is to evaluate “min x such

that 1-x = 0” with no defined variables, and an as yet unknown value w. The only
inference rule applicable to yield the bottom tree node requires the node above, in effect
initializing x to 0 and asking for the value of a `min judgment. Both inference rules
for `min cause 1-x to be evaluated, yielding 1 in this case. This is nonzero so the only
applicable `min rule is the last one, which in effect asks for another `min judgment, after
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incrementing x from 0 to 1. Again, 1-x has to be evaluated, now yielding 0. Now only
the first `min rule can be used, leading to the conclusion that [x 7→ 1] `min 1−x⇒ 1 and
so that w = 1.

12.2 Predicates

The net effect of an inference system is to define a predicate, i.e. a relation among
values (for example, between expressions and their values in a given store). This section
introduces some terminology concerning predicates, and establishes some of their basic
properties.

The extensional view: predicates are sets

In this book a predicate over a set S is just a subset of S. It is common in logic to express
the fact that v ∈ S as “S(v) is true,” or sometimes even just to assert the statement
“S(v).”

If S = S1×·· ·×Sn then P is called an n-ary predicate (0-ary or nullary, unary, binary,
ternary, etc. for n = 0,1,2,3, . . .). Examples of predicates over IN :

1. binary: < is the set {(m,n) ∈ IN × IN | m is smaller than n}.
2. binary: = is the set {(m,m) ∈ IN × IN | m ∈ IN}.
3. unary: the set of prime numbers.

Operations on predicates

Suppose P and Q are n-ary predicates over S. Then the following are also n-ary predi-
cates:

1. conjunction, or “and”: P ∧Q = P ∩Q. For s ∈ Sn, s is in P ∧Q iff s is in both P

and Q.

2. disjunction, or “or”: P ∨Q = P ∪Q. For s ∈ Sn, s is in P ∪Q iff s is in P or Q or
both.

3. implication, or “if-then” :P ⇒Q = {s ∈ Sn | if s is in P then s is also in Q}.
4. negation, or “not”: ¬P = Sn\P . For s ∈ Sn, s is in ¬P iff s is not in P .

Some examples:
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1. If P is the set of prime numbers and O is the set of odd numbers, then P ∧O is
the set of odd prime numbers.

2. If O is the set of odd numbers and E is the set of even numbers then E∨O = IN .

Recall that, although functions are just certain sets, we allow shorthand notations like
f(n,m) = n+m. Similarly we allow short hand notations for predicates, like “P (x,y) is
the predicate x = y+1” with the understanding that what we really mean is that P (x,y)
is the set {(1,0),(2,1), . . .}.

Suppose that P ⊆ S1×·· ·×Sn is an n-ary predicate. Then the following are (n−1)-
ary predicates:

1. Universal quantifier , or “for all”:
∀xiP = {(x1, . . . ,xi−1,xi+1, . . . ,xn) ∈ S1×Si−1×Si+1×·· ·×Sn |

for all xi in Si, (x1, . . .xn) is in S1×·· ·×Sn}
2. Existential quantifier , or “there exists”:

∃xiP = {(x1, . . . ,xi−1,xi+1, . . . ,xn) ∈ S1×Si−1×Si+1×·· ·×Sn |
there is an xi in Si such that (x1, . . .xn) is in S1×·· ·×Sn}

Examples:

1. If P (x,y) is the predicate ≤ over IN × IN then ∀yP (x,y) is the predicate over IN

which only contains 0. (0 is smaller than all other numbers.)

2. Further, ∀xP (x,y) is the predicate over IN which contains no elements at all.
(There is no largest number).

3. If P (x,y) is the predicate x = y +1 over IN ×O where O is the set of odd num-
bers then ∃xP (x,y) is the predicate over IN containing exactly the even positive
numbers.

n-ary predicates over ID as subsets of ID

Since set ID is closed under pairing, we can represent an n-ary predicate P over ID as the
set of list values:

{(d1 . . .dn) = (d1.(d2 . . . .(dn.nil) . . .) | d1, . . . ,dn ∈ P}

Thus we may take over the terms “recursive” (decidable) and “r.e.” or “recursively enu-
merable” (semidecidable) for predicates over ID, without change from those concerning
sets. We will henceforth restrict our attention in some definitions and theorems to unary
predicates over ID, but use the freer n-ary notation where convenient.
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12.3 Predicates and program descriptions

Theorem 12.3.1 If P and Q are recursive predicates then so are P ∨Q, P ∧Q, and ¬P .

Proof. By Theorem 5.5.1 ¬P is decidable if P is decidable. Let p = read X1,...,Xn;

Cp; write Rp and q = read Y1,...,Yn; Cq; write Rq be programs deciding P and
Q, respectively. Without loss of generality they have no variables in common. The
following program clearly decides P ∧Q:

read Xp;
Y1 := X1;...; Yn := Xn;
Cp; Cq;
Result := Rp and Rq;
write Result

Further, P ∨Q≡ ¬(¬P ∧¬Q), so by Theorem 5.5.1 P ∨Q is decidable. 2

Theorem 12.3.2 If P and Q are recursively enumerable predicates then so are P ∨Q,
P ∧Q, and ∃x.P (x,y1, . . . ,yn).

Proof. By Theorem 5.7.2 there are programs p, q respectively, such that P (x1, . . . ,xn) is
true iff [[p]] terminates on input (x1, . . . ,xn) and similarly for Q and q. Then the program
just given also semidecides P ∧Q.

Unfortunately this simple approach does not work for P ∨Q, since if the program for
P loops then the program above does too — even though the Q program might terminate,
making P ∨Q true. One way to prove termination is to run p and q alternately, as was
done in the proof of Theorem 5.5.1, part 4.

For a more elegant solution, recall that a predicate is a set of tuples, so P ∨Q is the
union of two sets. If either P = ∅ or Q = ∅, then P ∨Q is trivially recursively enumerable.
If neither is empty, then P = rng(f) and Q = rng(g) where f,g : ID→ ID are recursive
total functions. Define function h by

h(x) = if hd(x) = nil then f(tl(x)) else g(tl(x))

Clearly h is total recursive, and rng(h) = rng(f)∪ rng(g) as needed.
Finally, assume P (x,y1, . . . ,yn) is r.e. If P = ∅ then ∃x.P (x,y1, . . . ,yn) = ∅ and so

is trivially recursively enumerable. Assume P = rng(f) for a recursive total function f

(recall that ID contains tuples). Define g(d) = f(tl(d)), clearly total recursive. It is easy
to see that

(y1, . . . ,yn) ∈ rng(g)⇔∃x.P (x,y1, . . . ,yn)
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which completes the proof. (Reasoning: given y1, . . . ,yn ∈ ID, if ∃x.P (x,y1, . . . ,yn) is true
then f(d) = (x,y1, . . . ,yn) for some d,x ∈ ID. Thus g(d) = (y1, . . . ,yn) so (y1, . . . ,yn) ∈
rng(g); and conversely.) 2

Theorem 12.3.3 There are recursively enumerable predicates P,Q such that neither
the predicate ¬Q nor ∀x.P (x,y1, . . . ,yn) is recursively enumerable.

Proof. By Theorem 5.7.2, since Theorems 5.3.1 and 5.6.1 prove that HALT predicate is
semidecidable but undecidable. For the second part, any nonempty r.e. set is of the form
A = rng(f) where f is total and recursive. Thus for any d ∈ ID

d ∈A iff ∃x ∈ ID .d = f(x)

Predicate d 6= f(x) is decidable since f is total recursive, so ∃x∈ ID .d= f(x) is recursively
enumerable. Finally, its negation is ∀x.d 6= f(x). This cannot be r.e., as this would imply
that ID\A is also r.e., with HALT as a special case. 2

12.4 The predicates defined by an inference system

We now simplify and generalize the examples of Section 12.1. The result is a framework
able to express the previous examples, and most logical proof systems as well. An
inference system I is a collection of inference rules which, acting together, define a
collection of provable judgments. The idea is to think of the set of values for which each
judgment is true as a predicate over ID. The system proves assertions of form P (d) where
P is a predicate name and d ∈ ID.

12.4.1 A formalization of inference systems

Definition 12.4.1 An inference system I consists of

1. Two finite sets, one of predicate names P,Q, . . . ,Z and another of inference rules
R1,R2, . . . ,Rm.

2. For each inference rule Rr, a corresponding type: Rr = P1× . . .×Pk → P where
P,P1, . . . ,Pk are predicate names.

3. Each inference rule Rr with type P1× . . .×Pk→P is a decidable inference relation:
Rr ⊆ IDk× ID. 2
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Definition 12.4.2 An inference system I defines the set ThmsI of all judgments (the-
orems) provable from I. By definition:

1. Suppose Rr has type P1 × ·· · × Pk → P and P1(d1), . . . ,Pk(dk) ∈ ThmsI . If
((d1, . . . ,dk),d) ∈Rr, then P (d) ∈ ThmsI .

2. No set ThmsI contains any element of ID unless it can be shown so by some finite
number of applications of the preceding clause.

The premises of this application of rule Rr are P1(d1), . . . ,Pk(dk), and P (d) is called its
conclusion. A special case: if k = 0, the rule is called an axiom. The effect of an axiom
is to place elements into set ThmsI with no need for premises. 2

12.4.2 Examples of inference systems

Operational semantics. In previous sections we saw a definition of expression evalu-
ation by two ternary (3-ary) predicates: σ ` expression⇒ value for normal evaluation,
and an auxiliary predicate σ `min expression⇒ value used for the minimization oper-
ator.

Horn clause deduction. Section 26.3 will describe the deduction of boolean variables
(also called propositional variables) from a set H of Horn clauses of form A1∧A2∧ . . .∧
Ak ⇒ A0. This is an archetypical example of an infernce system. In this context all
judgments have form `A where A is a propositional variable, and one inference rule for
each Horn clause A1∧A2∧ . . .∧Ak⇒A0 ∈H:

`A1 `A2 . . . `Ak

`A0

Propositional logic. This system is at a higher meta-level, not being restricted to
one fixed set H of propositional (boolean) formulas. It has only a single predicate of
form ` P where P is a boolean formula (Appendix Section A.1), possibly containing
boolean-valued variables. The following axioms and inference rule are from [100]. They
can be used to deduce ` P for all and only those boolean formulas P which are true for
every assignment of truth values to their propositional variables.

It is thus an example of a complete and consistent logical system: one which can prove
all and only the true statements in its domain of discourse (in this case, propositional
logic). As we will see from Gödel’s theorem, this is an unusual property: in most logical
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systems of a certain strength any consistent system must necessarily be incomplete, that
is there must be true statements which are not provable.

` P ⇒ (Q⇒ P ) ` (R⇒ S)⇒ [(R⇒ (S⇒ T ))⇒ (R⇒ T )]

` P ⇒ (Q⇒ P ∧Q) ` P ∧Q⇒ P ` P ∧Q⇒Q

` (P ⇒R)⇒ [(Q⇒R)⇒ (P ∨Q⇒R)] ` P ⇒ P ∨Q `Q⇒ P ∨Q

` (P ⇒Q)⇒ [(P ⇒¬Q)⇒¬P ] ` ¬¬P ⇒ P

` P ` P ⇒Q

`Q

Following is an example of its use is to prove that I⇒ I for any propositional variable I

(symbol ` omitted for compactness):

I⇒ ((I⇒ I)⇒ I)

I⇒ (I⇒ I) [I⇒ (I⇒ I)]⇒{[I⇒ ((I⇒ I)⇒ I)]⇒ (I⇒ I)}
[I⇒ ((I⇒ I)⇒ I)]⇒ (I⇒ I)

I⇒ I

12.4.3 Recursive enumerability of sets defined by inference

systems

Theorem 12.4.3 If I is an inference system, then ThmsI is a recursively enumerable
set.

Proof. Given I with predicate names P,Q, . . . ,Z and rules R1,R2, . . . ,Rm, define the
syntax of proof tree forms to be all elements of ID generated by the grammar with non-
terminal symbols S and D, start symbol S, and productions:

S ::= (nilr D Sk) for every k-premise rule Rr, r = 1,2, . . . ,m

D ::= nil | (D . D)
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Define a proof tree t to be a proof tree form such that every subtree

(nilr d (nilr
1 d1 . . .) . . .(nilr

k dk . . .))

of t where Rr ⊆ IDk× ID satisfies:

((d1, . . . ,dk),d) ∈Rr

Further, t is a proof tree for predicate P if t = (nilr ...) is a proof tree, and Rr has
type P1× . . .×Pk→ P . It is immediate from Definition 12.4.2 that P (d) ∈ ThmsI if and
only if there exists a proof tree for P .

It is straightforward to show from Definition 12.4.2 that the property “t is a proof tree
for predicate P” is decidable (Exercise 12.3). Let program checkP decide this property.
Consider the program

read T;
if checkP T then X := hd tl T else X := false;
write X

If input is a proof tree T = (nilr d ...) for P , then the program outputs d. Thus by
Theorem 5.5.1 rng([[checkP]]) is recursively enumerable. Further,

rng([[checkP]]) = {d | P (d) ∈ ThmsI}

so ThmsI is a finite union of recursively enumerable sets, and so recursively enumerable
by Theorem 12.3.2. 2

12.5 A version of Gödel’s incompleteness theorem

Gödel’s original proof involved statements concerning arithmetic on the natural numbers.
Its pathbreaking achievement was to reveal a fundamental limitation in the power of
mathematical proof systems: that beyond a certain complexity level, there can be no
hope to have a proof system which is simultaneously complete and consistent.

As might be expected, we will instead manipulate values in ID. This gives a substan-
tially simpler construction, both displaying the power of our framework, and stimulating
thought about the powers of logical systems in practice, for instance for reasoning about
program behavior.
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12.5.1 The logical language DL for ID

We now introduce a tiny logical language in which one can make statements about values
in ID. Each such statement has an immediately natural reading or “truth value.” We will
then prove that no inference system as defined above can generate all true statements in
DL.

As is traditional in logic, we first give the syntax of DL expressions. For the sake of
preciseness, we will define exactly what it means for a DL statement to be true, leaving it
to the reader to check that this captures his or her intuitions about statements involving
values from ID.

An abstract syntax of DL This is given by a grammar defining terms, which stand
for values in ID, and statements, which are assertions about relationships among terms.

Terms: T ::= nil | (T.T) | x0 | x1 | ...

Statements: S ::= T=T++T | ¬ S | S ∧ S | ∃xi S

The symbol ++ stands for the “append” operation on list values. Logical operators
∨,⇒,∀, etc. can be defined from ¬,∧,∃ above as usual, and equality T = T′ can be
regarded as syntactic sugar for T = T′++ nil. Statements are intuitively interpreted in
the natural way, for example the relation “x is a sublist of y” could be represented by
the following statement S(x,y):

∃u∃v∃w(y = w++v∧w = u++x)

We now proceed to define “true statement” more formally and precisely.
First, a free occurrence of a variable x in statement S is any occurrence which does not

lie within any substatement ∃x T of S. The set Freevars(S) of free variables in statement
S is the set of all x which have at least one free occurrence in S. Finally, S is said to be
closed if FreeV ars(S) = {}. We will sometimes write S(x,y, . . . ,z) instead of S alone, to
indicate that its free variables are x,y, . . . ,z.

The operation of substitution is done by a function Subst(F,x,d) where d ∈ ID which
yields the result of replacing by d every free occurrence of variable x within S(x). This
may also be applied to several variables, written Subst(F,(x1, . . . ,xn),(d1 . . . dn)).

Definition 12.5.1 Let size(S) be the number of occurrences of operations ++, ¬,∧,∃ in
S. The set Ti of true closed statements of size i or less is given inductively by
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1. T1 = {(d1 . . .dm e1 . . .en) = (d1 . . .dm)++(e1 . . .en) |
m,n≥ 0 and each di,ej ∈ ID}

2. For i≥ 1:

Ti+1 = Ti ∪ { ¬ S | S is closed and S /∈ Ti}
∪ { F1∧F2 | F1 ∈ Ti and F2 ∈ Ti}
∪ { ∃xS | Subst(S,x,d) ∈ Ti for some d ∈ ID}

The set of true closed statements of DL is by definition T = T1∪T2∪·· · 2

A concrete syntax of DL This is simply a representation of DL-terms and statements
as values within ID. Choose some pairwise distinct values nil, ., ++, ¬, ∧, ∃, all in ID,
which are pairwise distinct from each other, and from nili for i = 0,1, 2, . . .

The concrete syntax is defined by

Terms : CT ::= nil | (. CT CT ) | nil0 | nil1 | . . .
Statements : CS ::= (++ CT CT CT ) | (¬ CS) | (∧ CS CS) | (∃nili CS)

Finally, the set TID is by definition the set of concrete syntactic encodings, as just de-
scribed, of statements in T .

12.5.2 Representation of predicates in DL

Definition 12.5.2 A predicate P ⊆ IDn is representable in DL if there is a statement
S(x1, . . . ,xn) such that

P = {(d1 . . . dn) | Subst(S,(x1, . . . ,xn),(d1 . . . dn)) ∈ T }

Lemma 12.5.3 If set A⊆ ID is representable in DL, then so is A = ID\A.

Proof. Suppose statement S(x) represents A as above. Then

A = {d | Subst(S,x,d) /∈ T }= {d | Subst(¬S,x,d) ∈ T }

2

Theorem 12.5.4 For any I-program p, the set dom([[p]]) is representable in DL
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Proof. Recall the semantics of Section 2.2. We only consider the sublanguage I of WHILE,
so the store σ used there can be replaced by the current value d of the single variable X.

We will show that for each I expression E and command C, there exist DL-statements
FE(d,d′) and GC(d,d′) that represent the binary predicates E [[E]]d= d′ and C ` d→ d′. This
suffices since if p is read X; C; write X, then dom([[p]]) is represented by statement
∃d′GC(d,d′).

Expressions. This is by an easy induction on syntax:

Fnil(d,d′) ≡ d′ = nil

FX(d,d′) ≡ d′ = d

F(E1.E2)(d,d′) ≡ ∃r∃sFE1(d,r)∧FE2(d,s)∧d′ = (r.s)

Commands. This is also by induction on syntax. We give the definition and then
explain.

GX:=E(d,d′) ≡FE(d,d′)

GC1;C2(d,d′) ≡∃d′′(GC1(d,d′′)∧GC2(d′′,d′))

GwhileEdoC(d,d′)≡(FE(d,nil)∧d = d′)∨
∃trace∃fst ∃lst(trace = (d.lst)∧ trace = fst++(d′.nil)∧FE(d′,nil)∧

∀h∀u∀v∀t(trace = h++(u.(v.t))⇒
GC(u,v)∧∃e∃f (FE(u,(e.f)))))

2

Assignment is straightforward, and sequencing C1;C2 ` d→ d′ is represented naturally
by an intermediate state d′′.

Representation of command while E do C is a bit trickier, since its execution may
take an unbounded number of steps. The idea is to represent while E do C ` d→ d′ by
a computation trace. This will be a sequence (d1 ...dn) where d = d1, d′ = dn, and
C ` di→ di+1 for i = 1,2, . . . ,n−1.

The construction above uses this idea. The two parts concerning fst and lst ensure
that the trace properly begins with d = d1 and ends with d′ = dn. The remaining part
(beginning FE(d′,nil)) checks to see that E evaluates to false at the loop’s end (d′ =
dn), and that while E do C ` di→ di+1 holds for every pair di,di+1 in the trace.
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12.5.3 Proof of a version of Gödel’s incompleteness theorem

We now show that the set T of true DL statements is not recursively enumerable. On the
other hand, the set of all statements deducible in any inference is recursively enumerable
by Theorem 12.4.3. As a consequence, any inference system that only deduces true DL
statements cannot deduce all of them, i.e. there must be at least one statement which is
true but not provable.

Stated another way: any inference system whatever must either be inconsistent: it
deduces some statements that are not true, i.e. in T ; or it must be incomplete, i.e. it
cannot deduce all true statements.

Theorem 12.5.5 (Gödel’s incompleteness theorem.) TID is not recursively enumerable.

Proof. Consider the set

HALT = {(p.d) |p ∈ WHILE−programs,d ∈ WHILE−data,and [[p]](d)↓}

Now HALT = dom([[u]]) where u is the universal program (self-interpreter) for I pro-
grams, and so by Theorem 12.5.4 is representable in DL. By Corollary 5.6.2, its com-
plement HALT = ID\ HALT is not recursively enumerable. By Lemma 12.5.3, HALT is
representable by some statement F(x), so

HALT = {(p.d) | Subst(F,x,(p.d)) ∈ T }

Suppose TID were recursively enumerable. By Theorem 5.7.2 there must exist a program
q such that TID = dom([[q]]). Then for any I-program p and input d, we have

(p.d) ∈HALT iff [[q]](Subst(F,x,(p.d))) ↓

But this would imply that HALT is recursively enumerable, which is false. 2

Corollary 12.5.6 For any inference system I and predicate name P :

If {d | P (d) ∈ ThmsI} ⊆ TID then {d | P (d) ∈ ThmsI} ⊆/ TID

In effect this says that if any inference system proves only true DL statements, then it
cannot prove all of them. In other words there is and always will be a difference between
truth and provability by inference systems (at least for DL). This captures one essential
aspect of Gödel’s incompleteness theorem. In comparison with the original proof, and
others seen in the literature, this one uses surprisingly little technical machinery (though
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it admittedly builds on the nontrivial difference between decidable and recursively enu-
merable problems).

Differences: first, this presentation does not involve Peano arithmetic at all, as Gödel’s
original work did. Our use of ID instead gave simplified constructions, but it could well
be argued that the result is different since it concerns a different logical system (although
one which seems no more complex than Peano arithmetic). We believe that some form
of equivalence between Peano arithmetic and DL should not be difficult to establish.

Second, Gödel’s theorem is often presented as “any logical system of a certain minimal
complexity must be either incomplete or inconsistent.” We have avoided the problem of
dealing with “logical system” as studied in mathematical logic by substituting a proper
generalization: “inference system.” The assumption above that {d | P (d) ∈ ThmsI} ⊆
TID says in effect that I is consistent, and the proper inclusion we conclude expresses
incompleteness. On the other hand, the formulation above says nothing about minimal
complexity of I, just that “the full truth” of DL statements cannot be ascertained by
means of axioms and rules of logical deduction.

Third, Gödel’s theorem begins with a logical system containing Peano arithmetic,
and works by diagonalization to construct a witness: an example of a statement S which
is true, but which cannot be provable. Gödel’s original witness is (intuitively) true since
it in effect asserts “there is no proof in this system of S” — so if the system were able to
prove S, it would be inconsistent!

Our version indeed uses diagonalization, but on I programs instead, and to prove
that the problem HALT is not recursively enumerable.

Exercises

12.1 Express the first example of Section 12.1.1 as an inference system I in the style of
Definition 12.4.1. 2

12.2 Construct an inference system which defines the semantics of WHILE programs.
Hint: rewrite the definitions of E and C ` σ→ σ′. 2

12.3 Prove that the property “t is a proof tree for predicate P” is decidable. It suffices
to sketch an algorithm. 2
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13 Computability Theory Based on

Numbers

The partial recursive functions have been studied extensively, using a framework very
similar to our own but with function arguments, results, and program descriptions drawn
from the natural numbers IN = {0,1,2, ...}. This deeply studied field is known as recursive
function or computability theory, and has been developed by Kleene, Rogers, Church,
Turing, and others [100, 155, 23, 170] since the 1930s.

A wide variety of formalizations proposed in the 1930s as candidates to define the
class of all computable partial functions on natural numbers have all turned out to be
equivalent. The candidates included the Turing machine; the lambda calculus (Church);
primitive recursive function definitions plus minimization (Gödel, Kleene); systems of
recursion equations (Gödel); and systems of string or term rewrite rules (Post, Markov).

This confluence of ideas [51] led to the famous Church-Turing-Kleene thesis: that a
partial function f : IN → IN⊥ is effectively computable if and only if it is computable by
some Turing machine (and hence within any of the other formalisms).

Two cornerstones of recursive function theory are the existence of a universal func-
tion, and of a program specialization function (the latter under the name of the s-m-n
property), both partial recursive. Both concepts are very natural in Computer Science,
as we have seen.

Gödel numbers versus programs as data objects Our approach differs from the
classical one in that programs are data values in our framework, and so need not be
encoded in the form of natural numbers. For the sake of perspective we briefly outline
the beginning assumptions of classical recursive function theory; being entirely based on
natural numbers, it is necessary to encode programs and nonnumeric data structures
(e.g. n-tuples) as natural numbers.

A straightforward analogy can be made between IN and ID, the set of Lisp data
structures. In our framework programs are elements of ID, so the need to enumerate
programs by assigning each one a numerical index by an often complex Gödel numbering
scheme is completely circumvented.

207
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13.1 The class of partial recursive functions

An important early formalization of the concept of computability was the class of par-
tial recursive functions or µ-recursive functions, defined and systematically investigated
largely by Kleene, but already implicit in Gödel’s earlier pathbreaking work [54, 98, 100].
This is a purely mathematical characterization, with few computational aspects: The
partial recursive functions are defined to be the smallest class of functions containing
certain initial functions and closed under several operations on functions. For the sake
of completeness and links with other work in computability theory, we prove this class
equivalent to functions computable by counter machines

The lambda notation used in this chapter is defined in Appendix A.3.8. An abbrevi-
ation: we write xn to stand for the tuple x1, . . . ,xn or (x1, . . . ,xn).

13.2 The µ-recursive functions

This class is defined in stages, beginning with a simpler class of functions, all of which
are total.

13.2.1 Primitive recursive functions

Definition 13.2.1 A function g is obtained from f by explicit transformation if there
are e1, . . . ,en, each either a constant in IN or a variable xi, such that for all xm ∈ IN

g(x1, . . . ,xm) = f(e1, . . . ,en)

Definition 13.2.2 If f : INk→ IN⊥,gi : INn→ IN⊥ for i = 1, . . . ,k then h : INk→ IN⊥
is defined from f,g1, . . . ,gk by composition iff for all xn ∈ IN

h(xn) =

{
f(g1(xn), . . . ,gk(xn)) if each gi(xn) 6=⊥
⊥ if some gi(xn) =⊥

Definition 13.2.3 Function h : INn+1→ IN⊥ is defined from f : INn→ IN⊥,g : INn+2→
IN⊥ by primitive recursion iff for all xn, t ∈ IN

h(0,xn) = f(xn)
h(t+1,xn) = g(t,h(t,xn),xn) if h(t,xn) 6=⊥
h(t+1,xn) = ⊥ otherwise
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Definition 13.2.4 Function f is primitive recursive if it is obtainable from base func-
tions λx.0 and λx.x+1 by some finite number of applications of explicit transformation,
composition, and primitive recursion.

An easy induction shows that every primitive recursive function is total. The operations
of primitive recursion and explicit transformation may, however, be applied both to total
and to partial functions.

13.2.2 Primitive recursiveness and CM-computability

Recall Definition 8.6.1.

Theorem 13.2.5

1. The functions: λx.0 and λx.x+1 are CM-computable.

2. If f is CM-computable, then so is any function g obtained from f by explicit trans-
formation.

3. If f,g1, . . . ,gk are CM-computable functions, then so is their composition.

4. If f,g are CM-computable functions and function h is defined from them by primitive
recursion, then h is also CM-computable .

Therefore any primitive recursive function is CM-computable. 2

Proof. Part 1: Function λx.0 is computable by the program whose only command is X0
:= 0, and λx.x+1 is computable by the command X0 := X1 + 1.
Part 2: given program q that computes f , prefix its command part by straightforward
code to transform store [1 7→ x1, . . . ,n 7→ xn] into store [1 7→ e1, . . . ,m 7→ em].

Part 3: easy. Given programs to compute f,g1, . . . ,gk, concatenate the code to com-
pute and store g1(xn) in X1, code to compute and store g2(xn) in X2, . . . , with the code
to compute and store gk(xn) in Xk, followed by the code to compute f(xk). Some variable
renaming and copying may be needed so internal variables of the g and f programs do
not conflict with each other or X1, . . . , Xk.

Part 4 is left as Exercise 13.1. 2
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13.2.3 Definition of µ-recursiveness

In the following expression µy(f(y) = 0) operator µ, pronounced “minimum,” specifies a
search to find a value of argument value y such that f(y) = 0, making zero the value of
a given function f .

Definition 13.2.6 Function h : INn → IN⊥ is defined from g : INn+1 → IN by mini-
mization iff for all xn ∈ IN

h(xn) = t if t ∈ IN is the smallest number such that g(t,xn) = 0
h(xn) = ⊥ otherwise

Notation: we write function h in short form as: µt(g(t,xn) = 0), or even µt.g.

Definition 13.2.7 Function f is µ-recursive if it is obtainable from base functions λx.0
and λx.x+1 by some finite number of applications of explicit transformation, composi-
tion, primitive recursion, and minimization applied to total functions.

A µ-recursive function need not be total. Note that Definition 13.2.7 applies minimization
only to total functions g. By Rice’s Theorem (Section 5.4), this property is undecidable
from a program defining g, so Definition 13.2.7 does not naturally define a programming
language (see also Exercises 13.2, 13.4).

13.3 Equivalence of µ-recursiveness and

CM-computability

Lemma 13.3.1 If g : INn+1 → IN is a CM-computable and total function, then
µt(g(t,xn) = 0) is a CM-computable function.

Proof. Given program p to compute g(t,xn), the following program will compute
µt(g(t,xn) = 0):

read X1, ..., Xn;
T := 0;
R := p T X1 ... Xn; (* Apply p to 0,1,2... until it yields 0 *)

while R do
{ T := T + 1; R := p T X1 ... Xn };

write T (* Write T when (if) that first happens *)
2
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Corollary 13.3.2 Every µ-recursive function f : INn→ IN⊥ is CM-computable.

Theorem 13.3.3 A function f : INn→ IN⊥ is µ-recursive iff it is CM-computable.

Proof. “Only if” is Corollary 13.3.2. We give only a sketch for “if,” as this is techni-
cally rather complex, and beside the main point of this book: that using a structured
data set such as ID significantly simplifies many constructions in both computability and
complexity theory. In outline, the “if” part is proven as follows.

The starting point is a CM-program p that computes f . Let p = I1. . . Im, and suppose
it has variables X0,. . . ,Xk where n≤ k. We assume input is via variables X1,. . . ,Xn, and
output is the final value of X0.

1. A CM-state s = (`,σ) where σ = [0 7→ v0,1 7→ v0, . . . ,k 7→ vk] is represented by the
number

s = 2` ·3v0 ·5v1 · . . . ·pvk
k+2

where pi is the i-th prime number (for any i > 0).

2. Prove the function init(xn) = 21 ·30 ·5x1 · . . . ·pxn
n+2 to be primitive recursive.

3. For ` = 1, . . . ,m prove the following one-instruction store transformation function
to be primitive recursive:

ins`(s) = s′ iff I` : s→ s′

4. Prove the following state transition function to be primitive recursive:

nxt(s) =

{
ins`(s) if s = 2` ·3v0 · . . . and `≤m

0 if ` > m

5. Prove the t-step state transition function stp(t,s) = nxtt(s) (that is, stp composed
with itself t times) to be primitive recursive.

6. Clearly the function g(x) = µt(stp(t,s) = 0) is µ-recursive.

7. Finally, it is immediate that

f(x) = y where stp(g(x)−1,s) = 2` ·3y · . . . ·pvk
k+2

This is µ-recursive, since it is a composition of primitive recursive functions with
the primitive recursive stp.

Details of this sort of construction may be found in [34, 37]. 2
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13.4 Kleene’s Normal Form theorem for the WHILE

language

A parallel development to that of Section 13.2 may be carried out using data set ID and
for the WHILE language, using a standard enumeration d0, d1, . . . of ID, for example as in
Lemma 5.7.1. We omit the details as they are exact analogues of the above for the CM

language.

Definition 13.4.1 Let f : IDn+1→ IN be a WHILE-computable total function. The par-
tial function µt(f(t,xn) = true) : IDn→ ID⊥ is defined by

µt(f(t,xn) = true) =

{
di if i is the least index such that f(t,xn) = true

⊥ otherwise

Lemma 13.4.2 If f : IDn+1 → IN is WHILE-computable and total, then µt(f(t,xn) =
true) is a WHILE-computable partial function.

Proof. Given program p to compute f , and start, next, New as in Lemma 5.7.1, the
following program will compute µt(f(t,xn) = true):

read X1, ..., Xn; start;
R := p New X1 ... Xn;
while not R do
{ next; R := p New X1 ... Xn };

write Y
2

The following is interesting because it shows that all recursive functions can be repre-
sented in a uniform way. Intuitively, it says that selection of a function f to compute
amounts to selecting the constant p below. Further, performing the computation on
input d amounts to searching for the unique c that makes function T (p,d,c) the value
true; and reading out the result is done by applying a very simple function U .

This is essentially Kleene’s Normal Form theorem as in [100], but the result is some-
what stronger due to our use of structured data.

Theorem 13.4.3 There is a total function U : ID→ ID and a total WHILE-computable
function T (p,d,c) such that

1. For all p,d ∈ ID there is at most one c ∈ ID such that T (p,d,c) = true.
2. A partial function f : ID→ ID⊥ is recursive if and only if there is a p ∈ ID such that

for all d ∈ ID
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f(d) = U(µc(T (p,d,c) = true)

Further, U is WHILE-computable in constant time and T is WHILE-computable in linear
time.

Proof. Supposing T,U are recursive, the “if” of part 2 follows from WHILE-versions of
Theorems 13.2.5 and 13.3.3.

For “only if,” we must find T,U as described. Suppose f = [[p]] for some program p

(assuming only one argument x = x1 for notational simplicity.) Without loss of generality
p has only one variable X (by Section 3.7.1).

Recall the universal program u1var seen earlier for one-variable WHILE-programs.
Build from it a program which we call q, and define T (p,d,c) = [[q]](p.d.c). The idea
is that q will simulate [[p]](d)’s computation just as u1var does, but meanwhile it will
check that argument c is a correct “trace” of its computation.

More concretely, consider the universal program u1var terminates within r iterations.
Let Vali be the values of u1var variables Val, Stk, Cd just before the ith iteration of
u1var’s while loop, and define u1var’s reversed trace on input d to be c = (Valr ...Val1

Val0).
Now, program q:

read PDC; (* Input is (program.data.c) *)
Cd := cons (hd PDC) nil; (* Control stack = (program.nil) *)
Val := hd (tl PDC); (* The value of X *)
Stk := nil; (* Computation stack empty *)
Flag := true; (* Trace is OK so far *)
Trace := reverse (tl (tl PDC)); (* Computation trace *)
while Trace 6= nil do
{ if hd Trace 6= Val then Flag := false; (* Trace mismatch *)

Trace := tl Trace;
STEP };

if Cd 6= nil then Flag := false;
write Flag

To begin with, program q terminates since the while loop decreases Trace, so T is a
WHILE-recursive function.

Program q on input (p.d.c) first stores c’s reverse (Val0 Val1 ...Valr) into vari-
able Trace. It then simulates p a step at a time, checking along the way to see that
Trace agrees with the values u1var assigns to X. If p terminates on input d then
u1var terminates on (p.d), so q’s while loop will terminate with Cd = nil on input
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(p.d.(Valr...Val1 Val0)). Thus [[q]](p.d.c) = true and

(µc(T (p,d,c) = true) = (Valr . . .Val1 Val0)

Further, if [[p]](d) =⊥ then T (p,d,c) = false for all c. Clearly [[p]](d) 6=⊥ if and only if
T (p,d,c) = true where c is p’s trace on input d.

Finally, the theorem follows if we set U(c) = hd(c), to return the final value that p

assigns to its variable X. Clearly this is computable in constant time; and the time to
compute T is proportional to the length of the computation trace c. 2

Exercises

13.1 Prove that the class of CM-computable functions is closed under primitive recursion.
2

13.2 Explain why the construction used to prove Theorem 13.3.3 or Lemma 13.4.2 does
not necessarily show that partial function µy .f is recursive when f is a partial computable
function. 2

13.3 Extend µ to functions on ID in the natural way using the enumeration d0, d1, . . . of
Lemma 5.7.1. Then prove that µt.f(t,p,d) = nil may be uncomputable when f is a
partial WHILE-computable function. Hint: let f(t,p,d) = true if t = true, or if both
t 6= true and [[p]](d)↓, else undefined. 2

13.4 * Use the previous exercise to prove that µt.f(t,x) = 0 may be uncomputable when
f is a partial CM-computable function. 2

13.5 (Hilbert’s choice function.)* Define g ≈ εy .f(x,y) to hold if for all x, whenever
there exists some y such that f(x,y) = 0, then f(x,g(x)) = 0. In other words, g(x)
produces some witness to the truth of ∃y.f(x,y) = 0, but not necessarily the least one as
was the case for µy(f(x,y) = 0).

Prove that if f is partial computable, there exists a partial computable partial function
g with g ≈ εy .P (x,y). Hint: use dovetailing as in Theorem 5.5.1. 2
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Classic books on recursive function are the ones by Kleene, Davis, and Rogers [100, 33,
155]. More recent ones include a newer one by Davis et.al. [37] and one by Sommerhalder
and van Westrhenen [164], which has a scope similar to that of this book.



14 More Abstract Approaches to

Computability

One could object to the previous treatment of recursion on the grounds that it explains
recursive language constructions by means of recursion, for example in Section 2.2 or
Figure 9.1 (or Section 12.1.2). One nonrecursive way to deal with recursion has already
been given by example: “syntactic unfolding” in Section 12.1.2.

This chapter begins with two additional, and different, nonrecursive ways to deal with
recursion. The first is by means of fixpoints of functionals, in which a recursive definition
is viewed as defining a mapping from certain partial functions to others. The second is
by means of “reflexive programs”: the “Second Recursion theorem” due to Kleene.

Relations: it can be proven that syntactic unfolding gives the same semantics as least
fixpoints of functionals; and that its effect can be achieved by reflexive programs. Proofs
may be found in [114, 155], but are beyond the scope of this book.

The final parts of the chapter concern model-independent approaches to computabil-
ity. Since the robustness results of Chapter 8 suggest that all computation models are
equivalent, this is a popular modern starting point. Indeed, one result appearing at the
chapter end is Rogers’ Isomorphism theorem: Given any two programming languages L

and M (with data IN) there exists a computable isomorphism (a one-to-one onto mapping)
from L-programs to M-programs that does not change the computed functions.

14.1 Recursion by semantics: fixpoints of functionals

In this section we describe one approach to defining the meaning of recursively defined
functions, by so-called “fixpoint semantics.”

First an example: consider the recursive definition

f(n) = (if n = 0 then 1 else n∗f(n−1)) (14.1)

This is intended to define a function f : IN → IN⊥. A Pascal program corresponding to
the definition is:

function f(n:integer):integer;
begin
if n = 0 then f := 1 else f := n * f(n - 1)

end

215
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The question naturally arises: what mathematical function f : IN → IN⊥ is defined by a
recursive equation such as (14.1)?

This question amounts to “how does one interpret a recursive definition?” This is a
decidedly nontrivial question since recursive functions are defined in terms of themselves,
and problems of self-reference are notorious for creating philosophical problems.

An answer: the function defined by a recursive equation such as (14.1) is often taken
to be the least fixpoint of the functional F defined by the equation. We now define and
clarify these terms.

Uniqueness of functions defined by recursive equations

The factorial function is the only function satisfying (14.1). It can happen, however, that
an equation has more than one solution. For example, consider equation

g(n) = (if n = 0 then 0 else if n = 1 then g(1) else g(n−2)+2) (14.2)

where f : IN → IN⊥. It is satisfied by g(n) = n. On the other hand, it is also satisfied
by many other functions, for instance g(n) = if n even then n else n+100. The reason:
there is no constraint on the value of g(1).

Which among the range of all possible functions that satisfy a recursive equation
should we select as its “meaning,” i.e. the unique function defined by that recursive
definition? It is desirable that

• the “meaning” always exists;

• it is unambiguous; and

• it is a computable function (though perhaps partial), provided the operations in
the equation are themselves computable.

First, we define the meaning of the statement: “Function g : IN → IN⊥ satisfies equation
(14.2).”

Definition 14.1.1 Function g satisfies (14.2) provided1 g ' g′, where g′ is defined by

g′(n) = (if n = 0 then 0 else if n = 1 then g(1) else g(n−2)+2) (14.3)

1Recall that g ' g′ if and only if for all n ∈ IN , either g(n) and g′(n) are both undefined (⊥), or are

both in IN and equal.
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Note that this definition is nonrecursive, since g′ is defined in terms of g and not in terms
of itself. Equation (14.3) defines a transformation from g to g′. Function transformers
are often called functionals, and one may write for example g′ = F(g) where F is the
functional defined by (14.3). In this case F has type (IN → IN⊥)→ (IN → IN⊥), and is
defined by

F(g) = g′, where
g′(n) = (if n = 0 then 0 else if n = 1 then g(1) else g(n−2)+2)

For an example, F transforms function g3(n) = n2 into

F(g3) = g′3, where
g′3(n) = (if n = 0 then 0 else if n = 1 then 12 else (n−2)2 +2)

Satisfying equation (14.2) thus amounts to asserting g = F(g). Such a function is called
a fixpoint of F . Our goal is therefore to select as standard interpretation a unique
computable function g satisfying g = F(g).

Some examples (where we write def= for “equal by the definition of g”):

1. Claim: g1 satisfies (14.2) where g1(n) def= n. We show this by considering cases
n = 0, n = 1, and n > 1. First, g1(0) def= 0 = (if 0 = 0 then 0 else . . .). Now suppose
n = 1. Then

g1(1) def= 1 = (if 1 = 0 then 0 else if 1 = 1 then g1(1) else . . .)

trivially. Finally, suppose n > 1. Then

g1(n) def= n = n−2+2 def= g1(n−2)+2 =

(if n = 0 then 0 else if n = 1 then g1(1) else g1(n−2)+2)

2. (14.2) is also satisfied by g2(n) def= (if n even then n else ⊥). Arguing again by
cases, equation (14.2) is trivially true for n≤ 1. If n > 1 is even then

g2(n) def= n = n−2+2 def= g2(n−2)+2 =

(if n = 0 then 0 else if n = 1 then g2(1) else g2(n−2)+2)

and if n > 1 is odd then

g2(n) def= ⊥=⊥+2 def= g2(n−2)+2 =

(if n = 0 then 0 else if n = 1 then g2(1) else g2(n−2)+2)
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3. (14.2) is not satisfied by g3(n) def= n2 since 4 = g3(2) 6= 2 = g′3(2).

Fixpoints of functionals. Among all possible fixpoints, there will always be one which
is least defined — the one such that g ' F(g) but g(n) = ⊥ for as many values of n as
possible. This is naturally called the least fixpoint of F .

At last our standard interpretation: the effect of recursive equation f = F(f) is to
define f to be the least fixpoint of F .

Example. The least fixpoint of equation (14.1) is its only fixpoint: f(n) = n! The least
fixpoint of the equation for g is the function:

g(n) = if n is odd then ⊥ else n

The natural Pascal programs corresponding to the recursion equations for f and g have
just these solutions. So a traditional Pascal implementation is correct inasmuch as it
computes the least fixpoint of these equations. How can the least fixpoint be computed?
We begin with an analogy from numerical analysis.

Fixpoints of first order equations. Consider an equation of the form x = h(x) where
x varies over the real numbers, for example

x = 0.5−x2

where h(x) = 0.5− x2. Such an equation can often be solved by fixpoint iteration: a
solution is the limit (if it exists) of the sequence x0,h(x0),h(h(x0)), . . ., where x0 is an
initial approximation to x. If x0 = 0, we obtain

x0 = 0, x1 = h(x0) = .5−x2
0, x2 = h(x1) = .5−x2

1, . . .

Evaluating, we obtain

x0 = 0,x1 = .5,x2 = .25,x3 = .4375,x3 = .3086, . . .

which has as limit the solution x = 0.366 . . . = (−1+
√

3)/2.
Simple conditions on h guarantee convergence, i.e. that the limit of the sequence

x0,h(x0),h(h(x0)), . . . exists. This method of fixpoint iteration is widely used in numerical
analysis, for instance to solve matrix equations.
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Computing the least fixpoint of a functional

Similarly, the least fixpoint may be obtained as the limit of an infinite series of functions
f0,f1,f2, . . . = f0,F(f0),F(F(f0)), . . . where

f0(n) =⊥ for all n = 0,1,2, . . .

Using this scheme we can verify that the least fixpoint of the equation

f(n) = (if n = 0 then 1 else n∗f(n−1))

is f(n) = n! Its computation is seen in the table below. The scheme is constructed a row
at a time, with f0 as given above. The line for fi+1 is constructed from the previous line
by

fi+1(n) = F(fi) = (if n = 0 then 1 else n∗fi(n−1))

i fi n = 0 n = 1 n = 2 n = 3 n = 4 n = 5, . . .

0 f0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥, . . .

1 f1 1 ⊥ ⊥ ⊥ ⊥ ⊥, . . .

2 f2 1 1 ⊥ ⊥ ⊥ ⊥, . . .

3 f3 1 1 2 ⊥ ⊥ ⊥, . . .

4 f4 1 1 2 6 ⊥ ⊥, . . .
...

∞ f 1 1 2 6 24 120, . . .

Remarks.

1. Function f0 is an initial (and very poor) approximation to the least fixpoint of F ,
and f1,f2, . . . are successively better approximations.

2. The individual functions fi will most likely not be fixpoints (and the ones in the
table are not). But the limit of f0,f1,f2, . . . will always exist, and will always be
F ’s least fixpoint.

3. More precisely fi v fi+1 for all i, where f v g iff for all x ∈ IN either f(x) =⊥ or
f(x) = g(x) ∈ IN . The limit is the smallest function (with respect to partial order
v) f such that fi v f for all i.
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4. This scheme works in principle and as a definition, but for practical implementation
a more efficient way to compute the same values would be used. For instance one
would only compute those values of f(x) that are needed for the final answer.

Theoretical Basis. Putting this informal discussion on solid foundations requires some
mathematical “machinery,” for example as presented in [114, 158]. There it is shown
that the least fixpoint always exists and that the sequence f0,f1,f2, . . . above always
converges toward it, provided functional F is “continuous” (in a sense different from
that of analysis). Fortunately, any recursive function definition one can write using
variables, constants, tests, function calls and continuous base functions (such as +, ∗,
and “if-then-else”) defines a continuous functional.

Mutual recursion. It is easy to generalize this approach to assign meaning to a col-
lection of functions defined by mutual recursion, by computing the least fixpoint of a
functional on a cartesian product of sets of partial functions. (In Scott’s domain theory
this is extended to a variety of other “domain constructors,” see [158].) For an example,

f(n) = (if n = 0 then true else g(n−1))
g(n) = (if n = 0 then false else f(n−1))

defines functions f,g : IN → IB such that f(n) = true for even n and false for odd n, and
g(n) = false for even n and true for odd n.

14.2 Recursion by syntax: Kleene’s and Rogers’

recursion theorems

14.2.1 The theorems and some applications

Kleene’s second recursion theorem [100] in essence guarantees the computability of func-
tions defined by self-referential or “reflexive” algorithms. Given this ability, it is possible
to simulate recursion as a special case, without having it as a built-in language con-
struct. The theorem thus gives an alternate way to assign meaning to recursive language
constructs. The recursion theorem has many applications in recursive function theory,
machine-independent computational complexity, and learning theory [14, 19]. It is valid
for any programming language computing all partial recursive functions, such that the
s-m-n Theorem holds and a universal program exists. Such a language is called an
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“acceptable enumeration” (Rogers [155]) of the partial recursive functions, and will be
discussed later in this chapter.

We will first prove the recursion theorem to hold for an extension of the I language.
The proof is straighforward, and yields much more efficient programs than those given
by traditional constructions [100, 155]. In Section 14.3 it will be shown to hold for all
acceptable enumerations, thus all reasonable programming languages.

First, some motivating discussion.

The theorem and applications

Kleene’s version of the recursion theorem may be stated as follows, for a language L not
yet specified. Proofs will given later, at which time we will also discuss the efficiency of
the programs whose existence is proven.

Theorem 14.2.1 (Kleene’s second recursion theorem.) For any L-program p, there is
an L-program q satisfying, for all inputs d ∈ L-data,

[[q]](d) = [[p]](q.d)

Typically p’s first input is a program, which p may apply to various arguments, transform,
time, or otherwise process as it sees fit. The theorem in effect says that p may regard q

as its own text, thus allowing self-referential programs.
Rogers has an alternative version of this theorem, which gives another viewpoint

that is more convenient for some applications. It in essence says that every computable
total program transformation has a “syntactic fixpoint”: a program p whose meaning is
unchanged by the transformation.

Theorem 14.2.2 (Rogers’ recursion theorem.) For any total computable function f :
L-data → L-data, there is a program q such that for all inputs ∈ L-data,

[[q]] ' [[f(q)]]

A first application is to prove the existence of a program q which yields its own text
as output, regardless of its input — a favorite (and nontrivial) beginning programming
exercise.

Example 1: A self-reproducing program, using Kleene’s theorem. Let program p satisfy
[[p]](r.d) = r for all r, d. Letting q be the program given by Theorem 14.2.1, we have

[[q]](d) = [[p]](q.d) = q
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Example 2: A self-reproducing program, using Rogers’ version. Let the obviously
computable function f be defined (informally) by

f(p) = the program "read X; Y := p; write Y"

Clearly [[q]] ' [[f(q)]] implies [[q]](d) = [[f(q)]](d) = q as desired.

Example 3: Elimination of recursion, using Kleene’s version. Let L = I. Consider the
total computable function [[p]]: ID→ ID defined by

[[p]](q.x) = [if x = 0 then 1 else x * [[q]](tl x)]

where x is assumed to be a numeral niln, as in Section 2.1.6. The call to q can be pro-
grammed as the call [[i]]((q.(tl x))), where i is the universal program for I-programs.
By Theorem 14.2.1, there is a “fixed-point” program e with the property

[[e]](x) = [[p]](e.x) = [if x = 0 then 1 else x · [[i]]((e.(x-1)))] =
[if x = 0 then 1 else x · [[e]](x-1)]

Thus e, which was found without explicit use of recursion, is the factorial function. More
generally, Kleene’s theorem implies that any acceptable programming system is “closed
under recursion.”

Other examples, including the Blum Speedup Theorem involve computing time and
appear in Chapter 20.

14.2.2 Proof for a reflexive extension of I

Our first proofs of the Recursion theorems are indirect, applying only to a “reflexive”
programming language extending I.

Let I↑ be an extension of language I, with syntax as in Figure 14.1. This is an
abstract syntax; a concrete one is obtained as in Section 4.2 by encoding * and univ as
trees built from nil.

Informal semantics: the value of expression * is the text of the program currently
being executed. The value of expression univ(E, F) is the value of [[e]](f), where e is
the value of E and f is the value of F. In words: evaluation of E is expected to result in
a program text. This program is then run with the value of F as input, and the result of
this run is the value of univ(E, F). Somewhat more formally:

Definition 14.2.3 The I↑ language has I↑-programs ⊂ ID and I↑-programs the result of
encoding the programs generated by the grammar of Figure 14.1 uniquely as elements of
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Expressions 3 E, F ::= X

| nil | cons E F | hd E | tl E

| *

| univ(E1, E2)

Commands 3 C, D ::= X := E | C ; D | while E do C

Programs 3 P ::= read X; C; write X

Figure 14.1: Abstract syntax of the I↑ language.

ID. Its semantic function is defined by:

[[p]]↑(v) = [[i↑]]I(p.v)

where i↑ is the self-interpreter for I from Section 4.2, modified so that the STEP macro
is replaced by the extension in Figure 14.2.

Note that i↑ is an I program; hence any i↑ program can be efficiently compiled into I.
How interpreter i↑ works: the program being interpreted is always available in i-

variable P during interpretation. Its value is the value computed for *, as seen in the
first new part of the case statement. For the rest, recall the expression evaluation and
command execution invariants of Section 4.1.1.

Expression univ(E1, E2) is handled by first saving the current value Vl of variable
X, and then evaluating E1 and E2. This is done by the case part that pushes E1, E2, and
douniv onto the control stack Cd. Once their values V1, V2 are obtained (in reverse order
on the computation stack St), the case for which douniv starts Cd applies. This replaces
Vl by V2, and pushes V1 onto Cd. By the command execution invariant of Section 4.1.1
this will effect execution of program V1 on input V2. Once this is completed, the result
of the program run is stored into variable Vl. The case for which clean starts Cd re-
establishes the expression invariant by: pushing Vl onto St; resetting Vl to its former
value (saved on Cd); and continuing with the rest of the program.

Remark: running interpreter i↑ on an I program will be slower than running the
same I program directly. However the cost is only the overhead of one extra interpre-
tation layer — not prohibitive, even for programs using * and univ. The point is that
invoking univ does not cause a new layer of interpretation, but just continues to use the
current interpreter’s facilities by simulating a recursive call using the stacks. Thus the
multiplication of interpretive overhead mentioned in Section 6.2 is avoided.
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case Cd, St of
...
((hd E).Cd), St ⇒ Cd:= cons* E dohd Cd;
(dohd.Cd), (T.St) ⇒ St:= cons (hd T) St;
...
((*).Cd), St ⇒ St:= cons P St;
((univ E1 E2).Cd),St ⇒ Cd:= cons* E1 E2 douniv Cd;
(douniv.Cd), (V2.(V1.St)) ⇒ Cd:= cons* V1 clean Vl Cd; Vl:= V2;
(clean.Old.Cd), St ⇒ St:= cons Vl St; Vl:= Old;
...
((; C1 C2).Cd), St ⇒ Cd:= cons* C1 C2 Cd;
...

Figure 14.2: Reflexive extension of the STEP Macro.

We now program the two examples above directly in I↑.

Example 1: a self-reproducing program. Let q be the following program, in abstract
syntax form:

read X;
X := *;
write X

Running this program on any input will yield q as output.

Example 2: recursive computation in a nonrecursive imperative language. The facto-
rial function is computed by the following I↑ program:

read x;
if x = 0
then Answer := 1
else { Temp := x - 1; Answer := x · univ(*, Temp) };
write Answer

Theorem 14.2.4 Kleene’s and Rogers’ recursion theorems hold for L = I↑.

Proof. Kleene’s theorem: For an arbitrary I↑ program p = read X; C; write Y, let q

be the following I↑ program:
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read D;
X := cons * D;
C;
write Y

For any d ∈ ID, q first assigns (q.d) to X, and then writes [[p]]↑(q.d) = [[q]]↑(d).
Rogers’ theorem: Given I↑ program p with f = [[p]]↑, let q be the I↑ program:

read D;
Tem := p *;
Y := univ(Tem, D);
write Y

For any d ∈ ID, [[q]]↑(d) = [[r]]↑(d) where r = [[p]]↑(q) = f(q). Thus [[q]]↑ = [[f(q)]]↑

2

14.3 A model-independent approach to

computability

Turing machine computability is often expressed mathematically by beginning with a
standard enumeration p0, p1, p2,. . . of all Turing machines. Letting pi be the ith Turing
machine in the list, for each i≥ 0 one may define ϕi : IN → IN⊥ to be the partial function
that pi computes.

A similarity with this book’s framework is immediate, if we identify the ith Turing
machine with its numerical index i (i is often called the Gödel number of the Turing
machine “program”). Then the enumeration defines a programming language with data
domain IN and semantic function [[ ]]TM : IN → (IN → IN⊥) where [[i]]TMd = ϕi(d). This is
extended to multi-argument functions by defining the partial n-ary function ϕn

i : INn→
IN⊥ to be

ϕn
i (x1, . . . ,xn) = ϕi(<x1,. . .xn>)

where < ,. . . , > is a total computable one-to-one “tupling function” that assigns a unique
natural number to each n-tuple of natural numbers. The superscript of ϕn

i is dropped
when the number of arguments is clear from context.

An example 2-tupling or pairing function is <x,y> = 2x · 3y already seen in Figure
8.4. Actually, pairing is enough since tuples can be formed by repeated pairing: define
<x1,x2, . . . ,xn> to be <x1,<x2, . . . ,<xn−1,xn>. . .>>.
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More recent recursive function theory, e.g. as formulated by Rogers [155], begins even
more abstractly: instead of an enumeration p0, p1, p2,. . . of programs, one simply as-
sumes that for each i ≥ 0 there is given a partial function ϕi : IN → IN⊥. The starting
point is thus an enumeration ϕ0,ϕ1,ϕ2, . . . of one-argument partial recursive functions
that are required to satisfy certain natural conditions. The definition given below cap-
tures properties sufficient for a development of computability theory which is entirely
independent of any particular model of computation.

The underlying theme is to avoid explicit construction of programs wherever possible,
so there is no formal definition of program at all; a program is merely an index in this
standard enumeration. Informal algorithm sketches, with liberal appeals to the Church-
Turing thesis, are used to establish computability.

The approach emphasizes extensional properties expressed in terms of numbers and
mathematical functions, rather than intensional properties of programs, for example their
appearance, time efficiency, or storage consumption.

Our goals are somewhat different, though, partly because we start from Computer
Science, in which the exact nature of programs and their intensional properties is of
major concern. We are more interested in efficient problem solving by programs than
in exploring the outer regions of uncomputability. Nonetheless the interplay between
these two viewpoints is fascinating and well worth study, since the extensional viewpoint
focuses on what the problems are that are to be solved (computing functions, deciding
membership in sets, etc.), whereas the intensional viewpoint focuses on how they are to be
solved, by concrete programs running with measurable time and storage usage. Another
way to describe this is as a distinction between problem specification and problem solution
by means of programs.

14.3.1 Acceptable enumerations of recursive functions

In the following definitions, an n-argument function f : INn → IN⊥ is consid-
ered effectively computable iff for some total effectively computable tupling function
<x1,x2, . . . ,xn> there is a one-argument effectively computable g : IN → IN⊥ such that
for any x1, . . . ,xn ∈ IN

f(x1, . . . ,xn) = g(<x1,x2, . . . ,xn>)

For conciseness we will also write x.y instead of <x,y>. Henceforth we will write a
value ranging over IN in teletype font, e.g. p, when it clearly denotes an index used as a
program, otherwise in mathematical style, e.g. p.
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Definition 14.3.1 A sequence ϕ0,ϕ1,ϕ2, . . . of partial recursive functions is defined to
be an acceptable enumeration [155] if it satisfies the following conditions:

1. Turing completeness: for any effectively computable partial function f : IN→ IN⊥
there exists an index p ∈ IN such that ϕp = f .

2. Universal function property : the universal function univ : IN × IN → IN⊥ is com-
putable, where univ(p,x) = ϕp(x) for any p,x ∈ IN .

3. s-m-n function property : for any natural numbers m,n there exists a computable
total function sm

n : INm+1 → IN such that for any index p ∈ IN and any inputs
(x1, . . . ,xm,y1, . . . ,yn) ∈ INm+n

ϕm+n
p (x1, . . . ,xm,y1, . . . ,yn) = ϕn

sm
n (p,x1,...,xm)(y1, . . . ,yn)

These properties correspond to quite familiar programming concepts. Completeness says
that the language is “Turing powerful” and so by the Church-Turing thesis at least as
strong as any other computing formalism.

By the completeness property, there must be an index up ∈ IN such that [[up]](p.x) =
univ(p,x) for any p,x ∈ IN . By universal function property, program up is a universal
program such that ϕup(p,x) = univ(p,x) = ϕp(x) for all x ∈ IN for any index p ∈ IN . But
this can be re-expressed as [[up]](p.x) = [[p]](x), so up is a self-interpreter as in Definition
3.4.1.

Finally, the s-m-n function property asserts the possibility of program specialization,
also known as partial evaluation. To see this, let m = n = 1. Since s1

1 is computable, by
property 1 there must be a program spec that computes it, so s1

1 = [[spec]]. The last
equation above becomes, after omitting some sub- and superscripts:

ϕp(x,y) = ϕϕspec(p,x)(y)

which can be re-expressed as [[p]](x.y) = [[[[spec]](p.x)]](y), the same as Definition 3.6.1.
Further, an m+n-argument function may be specialized to its first m arguments by a
series of one-argument specializations, using the pairing function.

Clearly any of the languages we have studied so far can be used to define an acceptable
function enumeration, by appropriately numbering its programs.

Theorem 14.3.2 Language I defines an acceptable enumeration.

Proof. Let d0,d1, . . . enumerate ID as in Lemma 5.7.1, and define ϕi : IN → IN⊥ by

ϕi(n) = m if [[di]]
I(niln) = nilm, else ⊥
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Functions taking i to di and back are clearly computable by the Church-Turing thesis.
2

A simple result using this approach is that symbolic function composition is possible in
any language defining an accepable enumeration. This generalizes the result of Theorem
13.2.5, that symbolic function composition can be done for CM programs.

Theorem 14.3.3 Given any acceptable enumeration ϕ, there is a total recursive func-
tion compose : IN2→ IN such that for any indices p, q and x ∈ IN

ϕcompose(p,q)(x) = ϕp(ϕq(x))

Proof. By the Church-Turing thesis, the function ϕi(ϕj(x)) is computable; our task is
to find an index for it by a uniform method. First, define f by

f(p,q,x) = ϕp(ϕq(x)) = univ(p,univ(q,x))

(equality holds by universality). By the Church-Turing thesis, this 3-argument function
is computable, and so by Turing completeness has some index r. The needed function
is then compose = ϕcompose where compose = s2

1(r,p,q). Alternatively this can be done
using only one-argument specialization, by: compose = s1

1(s
1
1(r,p),q). 2

Remarks

Even though very natural from a computing viewpoint, these conditions are not guaran-
teed to be satisfied for any arbitrary sequence ϕ0,ϕ1,ϕ2, . . . of partial recursive functions.
For example, suppose the indices i correspond to positions in a listing of all finite au-
tomata, and ϕi(x) is the result of applying finite automaton number i to input x expressed
as a bit string. This fails Turing completeness since it is well known that finite automata
cannot compute all computable functions. Similarly, there exist enumerations possessing
a partial recursive universal function but not a partial recursive s-m-n function, or vice
versa, or neither [113], [155].

14.3.2 Kleene’s and Rogers’ theorems revisited

Theorem 14.3.4 Kleene’s recursion theorem holds for all acceptable enumerations ϕ:
For any program p ∈ IN there is a program e ∈ IN such that ϕe(x) = ϕp(e,x). We call
such an e a Kleene fixed-point for p.
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Proof. By the s-m-n property there is an effectively computable function spec : IN → IN

such that ϕp(y,x) = ϕspec(p,y)(x) holds for any program p ∈ IN . It is evidently possible
to construct a program q ∈ IN such that for any x,y:

ϕq(y,x) = ϕp(spec(y,y),x)

Let e be the program spec(q,q). Then we have

ϕp(e,x) = ϕp(spec(q,q),x) = ϕq(q,x) = ϕspec(q,q)(x) = ϕe(x)

2

Remark: This proof was devised by Kleene as a realization in his framework of “reduction
by the Y combinator” from the lambda calculus. Close examination reveals a similarity,
except for the use of the universal and s-m-n functions which is needed here.

Theorem 14.3.5 (The second recursion theorem, Rogers’ version (1967)) For any com-
putable function, f , taking programs as input (a program transformation) there is a
fixed-point program, that is an n ∈ IN such that

ϕn(x) = ϕf(n)(x)

whenever f(n) is defined. For a program p with ϕp = f , this n is called a Rogers fixed-point
for p.

Informally, this says that any computable program transformer has a “syntactic fixpoint,”
i.e. a program n whose meaning is unchanged by the transformation. Possibly relevant
applications include cryptography.

The direct proof of Rogers’ version of the recursion theorem is a bit more involved
than that of Kleene’s, see [155]. Due to the following propositions, the two apparently
different theorems are of equal power in the sense that given the ability to find Kleene
fixed-points Rogers fixed-points can be found as well and vice versa.

Lemma 14.3.6 Rogers implies Kleene: Theorem 14.3.5 and the s-m-n property implies
Theorem 14.3.4.

Lemma 14.3.7 Kleene implies Rogers: Theorem 14.3.4 together with the universal func-
tion property implies Theorem 14.3.5.

Proof. Lemma 14.3.6: Given p, let f(n) = spec(p,n) (we use the s-m-n theorem). Then
by Theorem 14.3.5 we have, as required for all x:

ϕn(x) = ϕf(n)(x) = ϕspec(p,n)(x) = ϕp(n,x)
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Lemma 14.3.7: Let f be any computable program transformation. By the Church-Turing
thesis applied to to the universal function and f there exists a program gp such that
ϕgp(q,x) = ϕf(q)(x) when q ∈ IN and f(q) is defined. By Theorem 14.3.4 the program
gp has a fixed-point, that is, there is an e with ϕe(x) = ϕgp(e,x) = ϕf(e)(x). Thus e is a
Rogers fixed-point program for the transformation f . 2

In the proofs of Theorem 14.3.4 and Proposition 14.3.7 fixed-points are obtained in a
uniform manner. The second recursion theorem can therefore be generalized a bit:

Proposition 14.3.8 There exist total computable functions, kfix,rfix : IN → IN , such
that for any program p ∈ IN , kfix(p),rfix(p) are Kleene, respectively Rogers, fixed-points
for p.

14.3.3 Relation to the fixpoint theorems for I↑

A strength of the results just proven, in relation to that of Theorem 14.2.4, is that they
hold for any programming language defining an acceptable enumeration. In particular
they hold for I as well as for I↑, and even for Turing machines.

A weakness, however, is that all nontrivial uses of either fixpoint theorem seem to
require the universal program. If the constructions seen above for Theorems 14.3.4
and 14.3.5 are carried out in practice, the resulting programs e or n turn out to be
unacceptably inefficient. For example, [62] reports several experiments to compute the
factorial n! Every program built, by either the Kleene or the Rogers method, had running
time greater than exponential in n. The reason is that carrying out the constructions
above literally leads to the use of n interpretation levels, each consisting of one universal
program interpreting the next, in order to compute n!

The “reflective” construction of Theorem 14.2.4, however, only takes approximately
time linear in n to compute n!, since only one interpretation level is ever involved. More
details on experiments and efficiency of fixpoint algorithms may be found in [78, 62].

14.4 Rogers’ isomorphism theorem

Rogers’ remarkable theorem is that there exists a compiling bijection between any two
programming languages L, M defining acceptable enumerations of the partial recursive
functions on IN : compiling functions which are total, computable, meaning-preserving,
one-to-one, and onto. The proof involves several steps:
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1. An easy proof that there exists a meaning-preserving computable total function
from L-programs into M-programs (and thus vice versa). Step 2 strengthens this by
adding “one-to-one,” step 4 shows the compiler can be strictly increasing, and step
5 finishes the proof.

2. A specializer is constructed which is one-to-one in its second argument. Conse-
quence: the compiler of step 1 may be can be made one-to-one.

3. A “padding lemma” is proven: every program can be transformed into an equivalent
one which is as large as desired.

4. Consequences of step 3 are proven:

(a) There is a strictly monotonic compiler g : L-programs → M-programs, meaning
g(p) < g(p+1) for any L-program p.

(b) There is a strictly monotonic compiler h : M-programs → L-programs.

5. g and h are merged to yield the desired one-to-one compiler, using a method drawn
from a proof of the Cantor-Bernstein2 theorem.

Notational conventions. To reduce notational overhead we henceforth assume that
L, M and the anonymous ϕ are acceptable enumerations of the partial recursive functions,
so natural numbers serve as both programs and data for each language, each is Tur-
ing complete, and each has its own universal function and one-argument specialization
functions. For L, call these functions respectively univL and specL, and the L-programs
to compute them: univL and specL; if we wish to emphasize the programming language
viewpoint we may write [[p]]L(d) instead of univL(p,d). Language M is treated analogously;
and enumeration ϕ has functions univ or [[ ]]( ), spec, and programs: univ and spec.

Even though all the program and data sets equal IN we sometimes write, for example,
“L-program p” to help the reader keep clear which language is being discussed.

Proposition 14.4.1 There is a total computable function r : L-programs → M-programs
such that [[p]]L = [[r(p)]]M for any p ∈ L-programs.

Proof. Function univL is partial recursive, so by Turing completeness there is an M-
program ulm with [[ulm]]M = univL. Consider function r(p) = specM(ulm.p). This is
certainly total and computable. Further, it is an L-to-M compiler since

2This theorem states that if there exist two one-to-one functions f : A→ B,g : B → A, then there

exists an isomorphism (a one-to-one and onto function) between A and B.
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[[p]]L(d) = univL(p.d) = [[ulm]]M(p.d) = [[specM(ulm.p)]]
M(d)

2

Solving equations with programs as unknowns by the recursion theorems

Both form of the recursion theorem amount to computable equation solving, in which
the “unknowns” are programs. For the Kleene version: given a program p, we wish to
find a q such that for all data d the equation [[p]](q.d) = [[q]](d) holds. For the Rogers
version: given a computable function f , we wish to find a q such that equation [[q]] =
[[f(q)]] holds (equality of two input-output functions).

This idea underlies the following construction.

Theorem 14.4.2 Let h be a total recursive function, and spec an s-1-1 function. There
is an i such that [[h(x)]] = [[spec(i,x)]] for all x, and such that spec(i,x) is one-to-one as
a function of x.

Proof. Call i a “1-1 specialization index” if spec(i,x) is one-to-one as a function of x. We
formulate an equation with free variable i such that any solution i is a 1-1 specialization
index, and satisfies [[h(x)]] = [[spec(i,x)]] for all x. The equation:

[[i]](j,y) =


0 if spec(i, j) = spec(i,k) for some k < j

1 if spec(i, j) 6= spec(i,k) for all k < j and
spec(i, j) = spec(i,k) for some k with j < k ≤ y

[[h(j)]](y) otherwise

This is recursively defined, since program i is used on both sides. Still, the right side
is clearly a computable function of i, j,y (Church-Turing!), so there is a program r such
that [[r]](i, j,y) equals the right side’s value. Define f(i) = spec(r, i). Then certainly [[i]]
= [[f(i)]] is another way to express the equation.

By Rogers’ version of the recursion theorem (since f is clearly total computable), [[i]]
= [[f(i)]] has a solution i. We now show that i is a 1-1 specialization index and [[h(x)]]
= [[spec(i,x)]] for all x. First, suppose for the sake of contradiction that i is not a 1-1
specialization index. Consider the smallest k such that spec(i, j′) = spec(i,k) for some
j′ > k, and let j be the smallest such j′ for this k. Then for any y we have

[[spec(i, j)]](y) = [[i]](j,y) = 0
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and for all y ≥ j we have

[[spec(i,k)]](y) = [[i]](k,y) = 1

This contradicts spec(i, j) = spec(i,k). Consequently i must be a 1-1 specialization index
so spec(i,x) is one-to-one as a function of x. But this implies that the first two cases of
the equation (yielding 0 and 1) can never apply, and so that [[spec(i,x)]](y) = [[i]](x,y) =
[[h(x)]](y) for all y, as required. 2

Computational remarks on this theorem: the first two parts of the equation serve only
to detect possible violations of the one-to-one property of spec(i,x), but every solution i

must be one-to-one (in argument x), as just argued. It seems somehow paradoxical that
the first two cases above can never apply for any j,y; but the cases must be present, else
the recursion theorem would not yield a program i with the desired property.

It would be interesting to investigate the relative efficiency of the two programs h(x)
and spec(i,x). Without the first two parts of the equation, one could compute [[i]](j,y) =
univ(h(j),y), not too expensive. It appears, though, that the extra overhead imposed
by the search over k values could be substantial.

Proposition 14.4.3 There is a one-to-one total computable r : L-programs → M-
programs such that [[p]]L = [[r(p)]]M for any p ∈ L-programs.

Proof. Let h be a total recursive compilation function as given by Proposition 14.4.1.
Given this h, let i be the index from Theorem 14.4.2. Then r(p) = spec(i,p) is a one-to-
one compiling function as required, since [[h(p)]] = [[spec(i,p)]]. 2

Program padding

It is intuitively clear that one can, by adding useless instructions, transform any pro-
gram into another which is arbitrarily larger but equivalent. This is the essence of the
following. Remark: the condition “arbitrarily larger but equivalent” is neatly and ab-
stractly expressed by the fact that function π is one-to-one and for all d we have [[p]]CM

= [[π(p,d)]]CM (reflect a bit on this).

Lemma 14.4.4 The Padding Lemma. For any language L defining an acceptable enu-
meration there is a one-to-one total computable function π : IN×IN → IN such that [[p]]L

= [[π(p,d)]]L for every p, d ∈ IN .
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Proof. Consider the pairing function pr(x,y) = <x,y> from Section 14.3, and let pr1

be its (computable) left inverse, so x = pr1(<x,y>) for any x,y ∈ IN . Choosing h = pr1

in Theorem 14.4.2 (and omitting superscripts), we obtain a program index i such that
[[pr1(z)]] = [[spec(i,z)]] for all z. By definition of spec this implies for any p, d that

[[p]] = [[pr1(< p,d >)]] = [[spec(i,< p,d >)]]

By Theorem 14.4.2 the function π(p,d) = spec(i,< p,d >) is total computable, and one-
to-one in < p,d >. 2

Using padding, we can now strengthen Proposition 14.4.3 to make the compiling functions
strictly monotonic.

Proposition 14.4.5 There is a total computable g : L-programs→ M-programs such that
[[p]]L = [[g(p)]]M for p ∈ L-programs, and 0 < g(p) < g(p+1) for all p.

Proof. Let r be the one-to-one function from Proposition 14.4.3, and π a padding function
as just constructed. Define g as follows:

g(0) = π(r(0), min{y | π(r(0),y) > 0})
g(p+1) = π(r(p+1), min{y | π(r(p+1),y) > g(p)})

Function g simply takes a program compiled from L into M by r, and “pads” it sufficiently
to exceed all of its own values on smaller arguments. It is clearly computable. 2

Finally, the crux of our development:

Theorem 14.4.6 There is a one-to-one, onto, total computable function f : L-programs
→ M-programs such that [[p]]L = [[f(p)]]M for p ∈ L-programs.

Proof. Let g : L-programs → M-programs and h : M-programs → L-programs be compiling
functions from Proposition 14.4.5 such that [[p]]L = [[g(p)]]M, [[q]]M = [[h(q)]]L, and 0 <

g(p) < g(p+1) and 0 < h(q) < h(q+1) for all p, q.
Both functions are one-to-one and p< g(p) and q< h(q); these will be key properties

in the following construction. The one-to-one property ensures that g−1 and h−1 are par-
tial functions; the monotonicity of both implies that their inverses are also computable.

Define functions zig : L-programs → {true,false}, zag : M-programs → {true,
false}, and f as follows:
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zig(p) = if ∃ q . h(q) = p then zag(q) else true

zag(q) = if ∃ p . g(p) = q then zig(p) else false

f(p) = if zig(p) then g(p) else h−1(p)

If zig’s argument (which is always an L-program) is not in the range of h, then true

is returned. If it is in the range of h, zig traces its argument backward one step, and
applies zag. Symmetrically, zag returns false if its M-program argument is not in the
range of g, else it traces backward with the aid of zig.

Figure 14.3 shows how they work. Given L-program p, the chain of its immediate
ancestors by g,h is traced backwards until a program is found which is outside the range
of h if the chain starts in L, or outside the range of g if the chain starts in M. (Being outside
is marked by a crossbar over an arrow in the diagram.) In the first case f(p) = g(p) and
in the second, f(p) = h−1(p).

Case 1: zig(p) = true
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p p

S
S
��

S
Sw

S
S
��

S
Sw

S
S

S
SSw

L

?
g

M

L

6
h

M�
�

�
��7

�
�

�
��7

�
�

�
��7

f(p) = h−1(p)f(p) = h−1(p)

Figure 14.3: Isomorphism by the Cantor-Bernstein construction.
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Note that zig,zag are both total since g,h decrease. Further, f(p) is always uniquely
defined. This is evident if zig(p) = true, as f(p) = g(p). The other case is zig(p) = false,
which can (by inspection of zig’s definition) only occur if p is in the range of h, in which
case f(p) is the unique value of h−1(p).

We must now show that f is a total computable isomorphism. From the remarks
above it should be clear that f is total and recursive.

Onto. Let q ∈ M-programs. Value zag(q) is either true or false. If true then q= g(p)
for some q ∈ L-programs for which zig(p) = true. This implies f(p) = q. If zag(q) is
false then zig(h(q)) = zag(q) = false, which implies implies f(h(q)) = h−1(h(q)) = q.
Thus all M programs are in the range of f .

One-to-one. Suppose f(p) = f(p′). As f is defined, there are two possibilities for each
(the “then” or the “else” branch above), giving four combinations. First: if f(p) = g(p)
and f(p′) = g(p′) then g(p) = g(p′) which implies p = p′ since g is one-to-one. Second: if
f(p) = h−1(q) and f(p′) = h−1(q′) then h−1(q) = h−1(q′) which implies q = q′ since h is
a single-valued function.

Third possiblity: f(p) = g(p) and f(p′) = h−1(p′), which by definition of f can only
happen if zig(p) = true and zig(p′) = false. But this is impossible since p′ = h(f(p′)) =
h(f(p)) = h(g(p)), which implies zig(p) = zig(p′). The fourth possibility is the same, just
with the roles of p and p′ reversed. 2

Exercises

14.1 Construct a self-reproducing WHILE-program directly, so [[p]](d) = p for all d. 2

References

Manna’s book [114] has a lucid and elementary treatment of the fixpoint treatment of
recursion, a subject treated from a more abstract viewpoint in denotational semantics
[162, 158]. The recursion theorem is originally due to Kleene [100], and Rogers gave an
alternate form involving program transformation in [155]. The isomorphism theorem is
from [154]; our proof is adapted from [113].
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Introduction to Complexity





15 Overview of Complexity Theory

15.1 Where have we been?

Parts I, II and III of this book concerned understanding the nature of computability, and
delineating the boundary between problems that are effectively solvable (computable)
and those that are not. The problems studied involved computing partial functions and
deciding memberships in sets1.

Following Turing’s analysis of computation in general, we chose at first the WHILE

language as computing formalism, and proved several fundamental results using it in
Chapter 5. In particular Kleene’s s-m-n theorem established the possibility of program
specialization, the halting problem was shown undecidable, and Rice’s theorem estab-
lished the undecidability of all nontrivial extensional program properties. A universal
WHILE-program, able to simulate any WHILE-program at all, was constructed.

The boundary between those sets whose membership problems are decidable, semide-
cidable, and undecidable was explored, as were the relations among semidecidability of
set membership, effective enumerability, and the computability of possibly partial func-
tions.

After that rather abstract chapter, relations to daily computing concepts were dis-
cussed informally in Chapter 6: compilers, interpreters, partial evaluation, compiler boot-
strapping, and related computational time aspects. Time was, however, only treated in
a quite informal way.

The remainder of Part II very significantly broadened the scope, relevance, and ap-
plicability of the previous formal results, by showing that they hold not only for the
WHILE language, but also for several other computing formalisms: both flow chart and
functional analogues of the WHILE language; Turing machines; counter machines; random
access machines; and classically defined “recursive functions.” This was done by showing
all these formalisms to be mutually simulable, or by compilations. In particular, Chapter
8 on “robustness” introduced models CM, 2CM, RAM, SRAM, TM and proved their equiva-
lences (see Figure 8.1 for an overview.) The main result was: computability, without
regard to resource bounds, is equivalent for all of: F, WHILE, GOTO, CM, 2CM, RAM, and TM.
A corollary: the halting problem is undecidable for any language L in this list.

Finally, some relatively natural and simple problems (at least in appearance!) were

1All over countably infinite value domains.
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shown to be impossible to solve by any effective computational process. These included
Post’s Correspondence Problem and Context-free Ambiguity.

Part III concerned several more advanced aspects of computability, including Rogers’
Isomorphism Theorem and Gödel’s Incompleteness Theorem.

15.2 Where are we now going?

Parts I through III concerned only what was computable, and paid no attention at all
(aside from the informal Chapter 6) to how much time or space was required to carry
out a computation. In the real computing world, however, computational resource usage
is of primary importance, as it can determine whether or not a problem is solvable at all
in practice.

In the remainder of the book we thus investigate computability in a world of limited
resources such as running time or memory space. We will develop a hierarchy of robust
subclasses within the class of all decidable sets. In some cases we will prove proper con-
tainments: that a sufficient resource increase will properly increase the class of problems
that can be solved. In other cases, questions concerning proper containments are still
unsolved, and have been for many years.

Finally, and in lieue of definitive answers, we will characterize certain problems as
complete for the class of all problems solvable within given resource bounds. A com-
plete problem is both solvable within the given bounds and, in a precise technical sense,
“hardest” among all problems so solvable. Many familiar problems will be seen to be
complete for various of these complexity classes.

15.2.1 How complexity differs from computability

Characteristics of complexity theory include the following. First, complexity theory is
intensional : it concerns properties of programs and their computations, as well as what is
computed. (This is in contrast to “extensional” as in Definition 5.4.1.) As a consequence,
it is vital that we have “fair” resource measures with respect to actual implementations.
As was the case for computability, we will not consider finite problems2; instead, we study
the asymptotic complexity of a program solving a problem: how rapidly its resource usage
grows, as the size of its input data grows to infinity.

2The difficult field of Kolmogorov complexity [110] concerns efficiency of computations on purely finite

problems.
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Complexity theory has as yet a great many unsolved open questions, but has evolved
a substantial understanding of just what the intrinsic complexity is of many interesting
general and practically motivated problems. This is reflected by a well-developed clas-
sification system for “how decidable” a problem is. Computability theory has similar
classification systems, for “how undecidable” a problem is [100], [155], but this subject
is beyond the scope of this book.

15.2.2 Robustness of ptime and pspace

The concepts we attempt to capture all involve computational resources, the central ones
being time, space, and nondeterminism (the ability to “guess”).

First, we define what it means to decide a problem within a given time bound. Second,
we define what it means to decide a problem within a givenspace bound (i.e., a limit on
memory or storage) . The third “resource,” nondeterminacy, will also be introduced and
discussed.

These definitions will require some discussion since not entirely straightforward, partly
due to the multitude of our machine models, and partly to some near-philosophical
questions about “what is a fair time or space cost?” when input size grows toward
infinity. After carefully investigating “fair” resource measures, we will establish that:

1. Computability, up to linear differences in running time, is equivalent for F, WHILE,
and GOTO.

2. Computability, up to polynomial differences in running time, is equivalent for all
of: F, WHILE, GOTO, SRAM, and TM.

3. Computability, up to polynomial differences in memory usage, is equivalent for all
of: F, WHILE, GOTO, SRAM, and TM.

Invariance of polynomial-time computability

Conclusion 2 supports (or will, once proven) a strong “robustness” result: The class
ptime, consisting of all problems solvable in time polynomially bounded in the size of
the problem’s input, is essentially independent of the computation model being used3.

The assertion that ptimeL is the same class of problems for all reasonable sequential
(that is, nonparallel) computational models L could well be called Cook’s thesis, after
Stephen C. Cook, a pathbreaking researcher in computational complexity. A stronger

3Conclusion 1 is not as strong since it involves fewer machine types, and it seems likely that the

property of linear time solvability in fact depends on the machine model used.
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version, analogous to the Church-Turing thesis but most likely too strong, is to identify
ptime with the class of all tractable, or feasible problems.

The complexity equivalences in points 2 and 3 above do not concern either the counter
machine or the unrestricted RAM. Informal reasons: counter machines have so limited an
instruction set that solving even trivial problems can take nonpolynomial computation
time. The full RAM model has the opposite problem: it can solve some problems faster
than is realistic on actual computers (Section 16.5 contains a more detailed discussion).

Conclusions 2 and will be shown by following arcs in the cycle SRAM→ TM→ GOTO→
SRAM: We will show how, for each arc L → M in the cycle, to construct, for an arbitrary
L-program p, an equivalent M-program q whose running time is polynomially bounded in
the running time (resp. space usage) of p. In essence we will traverse the central loop of
Figure 8.1, with one exception: a GOTO program will be directly simulated by an SRAM

program, bypassing the counter machines of Figure 8.1.

15.3 Computational resources and problems

We deal with such questions as: what is the most efficient way to solve a given problem?
Such a question is quite difficult to answer because it quantifies over all possible correct
algorithms for the problem. Nevertheless we will establish lower bounds on needed re-
sources (time or space) for some problems: proofs that any algorithm solving the problem
within a certain programming language must use at least at certain amount of computing
resources.

Establishing that problem A cannot be solved in time f(n) amounts to proving that
no matter how any program p is written, if p solves A then it must take more than f(n)
amount of time on some inputs of size n. Such results can only be proven in precisely
defined contexts, and even then are not at all easy to obtain.

On the other hand, there exist some problems that have no best algorithm: The
famous Blum speedup theorem (Chapter 20) says that there are problems such that for
any program p whatever that solves the problem, there is another program q also solving
the problem that is much faster than p on all but finitely many inputs.

In this book part we are primarily concerned with the following question. When do
added computational resources provably increase problem-solving ability? For instance,
is there a problem P solvable by no algorithm whatsoever that runs in time n2 (where
n is the size of the input data), but which can be solved by at least one algorithm that
runs in time n3? We will see that the answer is “yes.”
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A similar question: given time resource bound function f , are there problems solvable
in time b ·f(n), but not in time a ·f(n) for some constants a < b? (Here, again, n is the
size of the input data.) In other words, do constant time factors matter for problems
solvable in time O(f(n))? We will see that the answer is “yes” for the programming
language I.

As a special case, we prove that constant time factors are indeed important, even
within linear-time solvable problems; thus confirming in theory what one tends to think
from practical experience. Practice can, however, only establish positive results such as:
problem A can be solved in time f(n). Negative results are much harder, as it is clearly
inadequate to say “I tried to solve this problem in this way . . . , but failed.”

What problems are solvable in bounded time or space?

Our goal is to investigate the relative computing power of the above mentioned models
for solving problems, given bounds on programs’ running times or space usage. This
leads first to asking the question: “what is a problem?”

If a problem is to compute a function f(x) there is a risk of a trivial answer: given
more time, more problems can be solved simply because a larger result f(x) can be
written out if more time is available(!). Such answers give little real insight into the
relation between available resources and problem-solving power, so we restrict ourselves
to decision problems.

A decision problem is given by a subset A⊆ L-data for some language L. The problem
to be solved is, when given an input data value x ∈ L-data, to answer the question: Is
x ∈A?

In the remainder of the book for simplicity of exposition we will, unless explictly
stated otherwise, assume L is an imperative language as described in Section 7.1, with
programs of form: p = I1. . . Ik. Thus a computation is a linear sequence of states
p ` s1→ s2→ . . .→ st. This naturally describes computations by all the languages seen
so far, except for the functional languages.

Nondeterminism

Many practically interesting but apparently intractable problems lie is the class nptime,
a superset of ptime including, loosely speaking, programs that can “guess” (a precise
definition will appear later.) Such programs can solve many challenging search or op-
timization problems by a simple-minded technique of guessing a possible solution and
then verifying, within polynomial time, whether or not the guessed solution is in fact a
correct solution.
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The ability to guess is formally called “nondeterminism” (hence the N in nptime)
and will be discussed in a later chapter. The concept involves a so-called angelic inter-
pretation. By this view a membership decision problem is nondeterministically solvable
if for each “yes” instance there exists one or more correct guess sequences leading to ac-
ceptance of the input, and for each “no” instance, no guess sequence at all can possibly
lead to answering “yes.”

For practical purposes it is not at all clear how, or whether, nondeterministic poly-
nomial-time algorithms can be realized by deterministic polynomial-time computation.
This well-studied problem “ptime = nptime?,” often expressed as “P = NP?,” has been
open for many years. In practice, all solutions to such problems seem to take at least
exponential time in worst-case situations. It is particularly frustrating that no one has
been able to prove no subexponential worst-case solutions exist.

15.4 ptime and tractability

An extension of Cook’s thesis would be to argue that the class of all computationally
tractable problems comprises exactly those that lie in ptime. This is a useful working
assumption in many circumstances, but should not be taken too literally.

Identification of ptime with the computationally tractable problems is less solidly
founded than the Church-Turing thesis, which concerns computability in a world of
unlimited resources. Reasons for a certain skepticism include two facts:

• An algorithm running in time |x|100 can hardly be regarded as computationally
tractable for inputs with |x|> 2;

• There exist algorithms that run in a superpolynomial time bounds in the worst case,
but which work quite well in practice and with small constant factors. Examples:

– The Simplex method for linear programming can take exponential time in
the worst case, but works very well in practice for finding optimal solutions
to systems of linear inequalities. In this interesting case, there exist alterna-
tive algorithms that are truly polynomially time-bounded (e.g. the “ellipsoid
method”), but all seem to have unacceptably large constant time factors for
practical use.

– Type inference in the programming language SML [129] has been proven to
take exponential time in the worst case, regardless of the algorithm used, but
again works well in practice.
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There are, as well, a number of arguments in favour of identifying ptime with tractabil-
ity. While admittedly not a perfect fit, the class ptime has good closure properties, so
reasonable operations on problems in ptime or on programs running in polynomial time
do not take us outside the class. Further, the class has many alternative characterizations
and theorems, making it mathematically appealing to work with.

15.5 A proper hierarchy based on constant time

factors

The constant speedup theorem, well known from Turing machine based complexity theory,
in essence states that any program running in superlinear time can be rewritten so as
to run faster – by any preassigned constant factor. This counterintuitive result will be
proven false for a natural imperative programming language I that manipulates tree-
structured data. This relieves a long-standing tension between general programming
practice, where linear factors are essential, and complexity theory, where linear time
changes are traditionally regarded as trivial.

Specifically, there is a constant b such that for any a≥ 1 there is a set X recognizable
in time a ·b ·n but not in time a ·n (where n is the size of the input.) Thus the collection
of all sets recognizable in linear time by deterministic I-programs, contains an infinite
hierarchy ordered by constant coefficients. Constant hierarchies also exist for larger
increases from time bounds T (n) to T ′(n), provided the bounds are time-constructible
in a natural sense.

15.6 A backbone hierarchy of set membership

problems

Various combinations of these resources lead to a widely encompassing “backbone” hier-
archy:

rdonly ⊆ nrdonly ⊆ ptime ⊆ nptime ⊆ pspace = npspace ⊂ rec ⊂ re

where rdonly denotes the class of all problems decidable by“read-only” algorithms4 (i.e.
without rewritable storage), and ptime and pspace denote those problems solvable in

4This problem class will be seen to be identical to the Turing-machine-defined class logspace.
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time and space, respectively, bounded by polynomial functions of the problem’s input
size. Classes nrdonly, nptime, npspace denote the problems decidable within the
same bounds, but by nondeterministic algorithms that are allowed to “guess”; and rec,

re are the recursive and recursively enumerable classes of decision problems already
studied in Chapter 5.

Invariance of with respect to problem representation

The significance of this hierarchy is that a great number of practically interesting prob-
lems (e.g. maze searching, graph coloring, timetabling, regular expression manipulation,
context-free grammar properties) can be precisely located at one or another stage in this
progression.

Its significance is notably enhanced by the fact that the placement of a problem
within the hierarchy is in general quite independent of the way the problem is described.
For example, a problem concerning graphs will appear in the same complexity class
regardless of whether the graphs are represented by connection matrices or by adjacency
lists. (There are a few exceptions to this rule involving degenerate problem instances,
for example extremely sparse graphs, but such exceptions only seem to confirm that the
rule holds in general.)

A collection of open problems

A long-standing open problem is whether the “backbone” inclusions are proper. Many
researchers think that every inclusion is proper, but proofs have remained elusive. All
that is known for sure is that nrdonly⊂ pspace, a very weak statement.

15.7 Complete problems for (most of) the problem

classes

In spite of the many unresolved questions concerning proper containments in the “back-
bone,” a great many problems have been proven to be complete for the various classes.
If such a problem P is complete for class c, then it is “hardest” in the sense that if it lay
within the next smaller class (call it b with b⊆ c), then every problem in class c would
also be in class b, i.e. the hierarchy would “collapse” there, giving b = c. Complete
problems are known to exist and will be constructed for every class in the “backbone”
except for rdonly (since no smaller class is present) and rec (for more subtle reasons.)
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15.8 Intrinsic characterizations of logspace and

ptime

The classes logspace and ptime have been traditionally defined by imposing space,
respectively time, bounds on Turing machines. We will give two “intrinsic” characteri-
zations, free of any externally imposed bounds. In particular, we will see that logspace

is identical to the class rdonly of problems solvable by WHILE-programs that do not
use the cons operation; and that ptime is identical to the class rdonlyrec of problems
solvable by the same programming language, extended by recursion. We anticipate the
first result briefly as follows.

Read-only computation models A one-tape Turing machine with input length n

can run for time 2O(n), i.e. exponential time, without ever moving its read/write head
beyond the boundaries of its input string d. This time bound is “intractable,” i.e. well
beyond the running times of practically usable algorithms. This problem thus motivates
a study of space bounds that are small enough to give running times closer to practical
interest: smaller than n = |d|, the length of the input.

A solution is to use “read-only” models that allow only read-only access to the input
value d and, when measuring program space consumption, to count only the “workspace”
that is used over and above the input length. (This is intuitively reasonable, since read-
only input will remain unchanged during the entire computation.) We will see that the
following all define the same class of decidable problems:

• Read-only Turing machine programs whose work space is bounded by k log(|d|) for
some k and all d

• Read-only counter programs such that each counter value is bounded by |d|, or a
polynomial in |d|

• GOTO programs without “cons,” i.e. that use no additional space at all, beyond the
input d

Further, all problems in this class will be seen to lie in ptime (though whether the class
is a proper subset of ptime is still an open question).
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16 Measuring Time Usage

Parts I-III concerned only the limits of computability and completely ignored questions
of running time and space, except for the very informal treatment of time in Chapter
6. In the remainder of the book we mainly consider imperative languages, as described
in Section 7.1. Two tree-manipulating imperative languages will be the main focus: the
languages GOTO and I of Sections 7.2 and 4.2.

We will need to be much more precise about running time and space than before,
partly to be able to prove theorems concerning what can or cannot be done within various
resource bounds, and partly to justify that these results reflect facts about real-world
computations (at least in contexts where resource bounds may be expanded whenever
needed).

16.1 Time usage in imperative languages

An imperative language L has programs of form p = I1 . . . Im, and states of form s = (`,σ)
where 1≤ `≤m+1 and σ is a store whose form depends on the particular language being
studied. In an imperative language a computation is a sequence of state transitions
p ` s1→ s2→ . . .→ st from initial state s1 to terminal state st = (m+1,σt).

16.1.1 Some simplifications

For technical convenience we make some small changes in the machine or programming
models seen earlier, and precisely define program running times in the revised computa-
tion models. The main changes are the following. None affect the class of problems that
can be solved, though some problem’s representations may be encoded. Their aim is to
provide better descriptions of computations within limited time or space resources (with
fairer cost assignments, or technically more manageable.)

• All the computation models will consistently use a fixed input set , namely L-data
= {0,1}∗ or L-data = ID01, a subset of ID isomorphic to {0,1}∗. This will make it
easier to compare various models, without having continually to invoke data coding
and decoding functions.
• The input to an SRAM program is a read-only string a1 . . . an ∈ {0,1}∗. Initially all

registers are set to zero, except that register R0 will be initialized to n.

249
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16.1.2 The unit-cost time measure

Recall Definition 6.1.1 of a timed programming language L. The simplest time measure is
the unit cost time measure, quite commonly used in complexity theory:

Definition 16.1.1 For an imperative language L, the function timeL : L−programs→
(L−data→ IN⊥) is defined as follows, for any p ∈ L−programs,d ∈ L−data:

timeLp(d) =

{
t if p ` s1→ s2→ . . .→ st, and s1 = (1,Readin(d)), and st is terminal
⊥ otherwise

This associates with any completed computation p ` s1→ s2→ . . .→ st the number of
transition steps t it takes. This seems reasonably faithful to daily computational practice,
but some special cases can be questioned: the cost of cons and =? in the GOTO language,
and the cost of RAM operations in case register values or memory sizes become extremely
large. These will be discussed carefully below in Sections 17.1 and 16.5.

A “non-unit-cost” measure will account for differences in time that executing individ-
ual instructions may take. The idea is to assign a cost to each instruction as it is executed
(perhaps depending on the current store σ), and to let the cost of a computation be the
sum of the costs of its individual steps.

16.2 Relating binary trees and bit strings

Before continuing, there is a difference in data sets that must be reconciled: Turing
machines read bit strings, and counter machines read numbers, whereas our WHILE, GOTO
and other languages read binary trees. Function bin of Chapter 8 maps numbers into bit
strings, so all we need is a way to represent a bit string in {0,1}∗ as a binary tree in ID,
and vice versa.

Isomorphism of {0,1}∗ and a subset of ID

We regard 0, 1 as standing for standard encodings in ID of nil and (nil.nil), respec-
tively. Clearly any ID-value in the set ID01 generated by the following grammar

D01 ::= nil | (nil . D01) | ((nil.nil) . D01)



Comparing times between computation models 251

can be regarded as a string from {0,1}∗. Further, string a1a2...ak ∈{0,1}∗ with ai ∈{0,1}
can be regarded as an element of ID01 by the coding c : {0,1}∗→ ID01 defined as follows,
using the list notation of Section 2.1.5:

c(a1a2...ak) = (a1a2...an) ∈ ID01

Treating all of ID

Our restriction to the subset ID01 of ID makes things simpler, but is by no means essential.
A coding of arbitrary ID elements is easy to define and work with, with for example
cID : ID → {0,1}∗ representing d ∈ ID by its “Polish prefix form” in {0,1}∗. This is
obtained by traversing its tree structure in preorder, writing 0 every time nil is seen,
and 1 every time an internal “cons” node is seen.

The constructions seen below could be carried out using the full ID, at the expense
of some complications (see Exercise 16.3).

16.3 Comparing times between computation models

We now refine the definition of “simulation,” as formulated by Definition 3.1.2, to include
time factors. For complexity purposes it will often be necessary to compare the efficiency
of source and target programs of some simulation.

The following is expressed assuming two timed languages, L and M with L-data =
M-data; but it is easily generalized with respect to simulations with respect to a 1-1 data
coding function c : L-data → M-data.

16.3.1 Comparing languages

Definition 16.3.1 Suppose one is given two timed programming languages, L and M

with L-data = M-data. Then by definition1

1. L �ptime M if every for L-program p there is an L-program q such that [[p]]L = [[q]]M

and a polynomial f(n) such that for all d ∈ L−data

timeMq(d)≤ f(timeLp(d))

In words: M can simulate L, up to a polynomial difference in time.
1To avoid trivial exceptions, the requirements only apply to programs p and languages S such that

|d| ≤ timeSp(d) for all data d. This is not unreasonable, since a program running in time less than this

would be unable to examine all of its input data.
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2. L �lintime M if every for L-program p there exists a constant ap≥ 0 and an L-program
q such that [[p]]L = [[q]]M and for all d ∈ L−data

timeMq(d)≤ ap · timeLp(d)

In words: M can simulate L, up to a linear difference in time. Here ap is called
the overhead factor . It can be either less than 1 (speedup) or greater than one
(slowdown).

3. L ≡ptime M iff L �ptime M and M �ptime L. In words: L and M are polynomially
equivalent .

4. L ≡lintime M iff L �lintime M and M �lintime L. In words: L and M are linearly
equivalent .

Lemma 16.3.2 Let xxx be either ptime or lintime. If L �xxx M and M �xxx N, then L

�xxx N. Consequently L �xxx M �xxx L implies L ≡xxx M.

Proof. The composition of two polynomials, or of two linear functions, is also polynomial
or linear. 2

16.3.2 Program-dependent or -independent overhead

We now define a more refined version ≡lintime−pg−ind of linear-time simulation, a subtle
difference that will turn out to be important in Chapter 19 in connection with the lan-
guages I and F. Chapter 19 will proven that among the programs that solve problems
within linear running time, a difference of even a constant factor can make a provable
difference in programs’ ability to solve problems. In preparation for this, we now describe
program simulation in more detail than seen above.

Definition 16.3.3 Suppose one is given two timed programming languages, L and M

with L-data = M-data. Then by definition

1. L �lintime−pg−ind M if there is a constant a ≥ 0 such that for every L-program p

there exists an M-program q such that [[p]]L = [[q]]M and for all d ∈ L−data

timeMq(d)≤ a · timeLp(d)

In words: M can simulate L up to a program-independent linear time difference (or
overhead factor) a.
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2. L ≡lintime−pg−ind M iff L �lintime−pg−ind M and M �lintime−pg−ind L. In words: L

and M are strongly linearly equivalent .

The only difference between program-independent and program-dependent linear over-
head as in Definition 16.3.1 is in the order of the quantifiers. The program-independent
version is stricter since the same constant a has to suffice for all programs p.

Lemma 16.3.4 If L �lintime−pg−ind M and M �lintime−pg−ind N, then L �lintime−pg−ind

N. Consequently L �lintime−pg−ind M �lintime−pg−ind L implies L ≡lintime−pg−ind M.

Proof. The composition of two program-independent linear functions is also a program-
independent linear function. 2

16.4 Tree-manipulating programs

16.4.1 Henceforth: only atomic comparisons

In Section 2.3 it was shown that any program using tree comparison operator =? could be
replaced by an equivalent one using only tests on nil. Consequently in the remainder of
this book we assume that tree-manipulating programs only compare values only against
the atom nil, and that such a comparison has unit time cost. Remark: this avoids any
need to have the operation =?, since its effects can be achieved using if and while.

16.4.2 GOTO revisited

The language GOTO will henceforth have the following syntax (slightly restricted) and
semantics, and running times:

Definition 16.4.1 Let program p = I1...Im, and let Vars be a countable set of vari-
ables. We use the conventions d,e∈ ID and X,Y,Z∈ Vars. The informal syntax of GOTO
is given by the following grammar for instruction forms where d ∈ ID:

I ::= X := d | X := Y | X := hd Y | X := tl Y
| X := cons Y Z | if X goto ` else `′

Labels ` in if statements must be between 1 and m+1. Program semantics [[p]]GOTO(d)
is as in Definition 7.2.2. Program running time timeGOTOp (d) is given by the unit-cost
measure of Section 16.1.2. 2
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16.4.3 Running times of WHILE programs

Conceptually, this is very simple: one counts one time unit for each operation or test
performed on data during execution. Technically, we use parts of the definitions of E etc.
from Section 2.2.

Definition 16.4.2 Given a store σ containing the values of the variables in an expression
E, the function T maps E and σ into the time T [[E]]σ ∈ IN taken to evaluate E. Function
T : Expression→ (Storep→ IN) is defined by:

T [[X]]σ = 1
T [[d]]σ = 1
T [[hd E]]σ = 1+T [[E]]σ
T [[tl E]]σ = 1+T [[E]]σ
T [[cons E F]]σ = 1+T [[E]]σ +T [[F]]σ

2

Given a store σ, the relation C `time σ ⇒ t expresses the fact that t time units are
expended while executing the command C, beginning with store σ. (If command C does
not terminate in the given store σ, then there will be no t such that C `time σ⇒ t.) By
definition C `time σ⇒ t is the smallest relation satisfying:

X := E `time σ⇒ t+1 if T [[E]]σ = t

C; D `time σ⇒ t+ t′ if C `time σ⇒ t,C ` σ→ σ′,

and D `time σ′⇒ t′

whileEdoC`time σ⇒ t+1 if T [[E]]σ = t and E [[E]]σ = nil

whileEdoC`time σ⇒ t+ t′+1 if T [[E]]σ = t and E [[E]]σ 6= nil and
C; whileEdoC `time σ⇒ t′

2

16.5 Fair time complexity measures

Since all our programs are imperative, the most natural cost to assign to a computation
is the sum of the costs of its individual steps. The “unit cost per operation” model will
consistently be used unless other measures are specified. Thus Turing machines and the
GOTO language use unit cost, whereas WHILE and I use time as specified by Definition
16.4.2.
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One-step instruction times for random access machines can be defined in more than
one way, and some are closer to daily computational practice than others.

Time measures on the counter machine CM do not give much insight. The problem
is that the CM instructions are too weak to solve interesting problems within reasonable
time, since in any one instruction, a counter may change in value by at most 1. We
will see, however, that a reasonable measure of computation space can be defined for a
counter machine.

The full RAM model has somehat the opposite problem under the unit-cost model, if
memory cells are unlimited in value: its instruction set is typically too strong to yield
a reasonable time measure. The problem is one of data value size: if instructions such
as X:=Y+Z are allowed, executing X:=X+X k times will multiply X’s value by 2k; and an
instruction X:=X*X (allowed on many RAM models) can, if repeated, construct extremely
large values within short time.

A symptom of this problem is that some problems known to be “NP-complete” (pre-
sented later in this book) can be solved in polynomially many steps on the unlimited RAM

model [159]. One solution to this problem is to use a nonuniform cost measure, in effect
“charging” instructions according to how large the values are that they manipulate. This
leads to the logarithmic cost model discussed below.

Another solution, which we will use, is to limit the RAM model to be a “successor RAM”
or SRAM, with indirect addressing to load and store data, but only with data computation
instructions X:=Y+1 or X:=Y-1. We will see that this yields the same class ptime under
unit time costing as Turing machines and other models. Further, it is essentially equiv-
alent to “impure Lisp,” meaning Lisp with instructions to change already existing cells
via operations such as SETCAR! or RPLACA. Another equivalent formulation is Schönhages
storage modification machine [160].

16.5.1 Random access machine instruction times

There is some controversy about what a “fair charge” should be for instruction times on
a RAM, for at least two reasons. First, the model is fairly close to actual machine hardware
instruction sets to relate its computation times to those we deal with in practice (unlike,
for example, the counter machine). Second, the model allows arbitrarily large natural
numbers to be stored in its registers or memory cells — a feature in conflict with the
first.

It is not easy to get around allowing arbitrarily large values in memory cells, since
if one assumes all cells are finite then the machine becomes a kind of finite automaton.
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While interesting in themselves and useful for many purposes (e.g. lexical analysis in
a compiler), finite automata are not Turing complete, and daily Computer Science al-
gorithms become quite unnatural when truncated to fit within finitely bounded word
sizes.

We here have a paradoxical situation: that the most natural model of daily computing
on computers, which we know to be finite, is by means of an infinite (i.e. potentially
unbounded) computation model. This question can be discussed at great length, which
we will not do here. One element in such a discussion, though, would surely be the
fact that we carefully design and build our computers to provide a faithful model of
a mathematical world, e.g. great attention is paid to ensure that an ADD instruction
behaves as closely as possible to the idealized mathematical addition function, as long as
‘overflow” does not occur.

Consequently it would seem unnatural not to model our descriptions of computer
capacities on mathematical idealizations, at least until one exceeds limits due to word
size, run time cost, or memory capacity. It is also relevant that today’s computers are
extremely fast and have very large memories, so such limitations are not encountered as
often as in the earlier days of our field.

Back to the point of assigning fair costs to the RAM model. Hardware factors relevant
to “fair costing” can include:

1. Should the size of the data being manipulated be considered?
One view: one data item fits into one machine word, which takes a constant time
to fetch or store.
Another view: very large data values take longer to manipulate, and this should
be accounted for in the instruction cost.

2. Should program-dependent factors be included?
A basic example is the address (index) of an explicitly named program variable.
Some other examples follow.

3. Should the time to locate the current instruction be included?
4. What effect does instruction pipelining have on times? Should a linear sequence of

instructions be charged less time than code with control transfers?
5. What about page faults, or data or instruction cache misses? These involve distinc-

tions between data in local memory, e.g. on the chip with the CPU, and memory
held in a global store.

6. Computer circuits exist in three-dimensional space, so time O(n1/3) is surely a
lower bound in the limit for the time to access data at address n. (Actually time
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O(n1/2) could well be argued, due to the essentially two-dimensional nature of
today’s layered circuit technology.)
These are much larger than the logarithmic cost assumed in many “realistic” models
(see below.)

Points 4 and 5 make “only constant differences,” but constant factors that are sometimes
large enough to be critical. Following are the two most popular RAM cost models.

16.5.2 Two time cost models for the RAM

The unit-cost measure. As for Turing machines, this charges 1 step for any current
instruction I`.

The logarithmic-cost measure. This charges to each operation a time proportional
to the number of bits occupied by its operands. The reasoning is that data are tradi-
tionally stored in binary form, and it takes more time to manipulate longer data values.
Further, the same reasoning is applied to addresses or register numbers involved in indi-
rect fetch and store operations.

Some literature accounts for point 1 above, some accounts for point 2, and most of
the literature ignores the remaining points. Accounting for 1 and 2 gives the following
instruction time charge (ignoring constants). The idea is to “charge” time proportional
to the number of bits manipulated by each instruction when executed.

Instruction form Execution time, given store σ

Xi := Xi+1 log i+logσ(i)
Xi := Xi-1 log i+logσ(i)
Xi := 0 log i

if Xi=0 goto ` else `′ log i+logσ(i)
Xi := Xj log i+log j +logσ(j)
Xi := <Xj> log i+log j +logσ(j)+ logσ(σ(j))
<Xi> := Xj log i+log j +logσ(i)+ logσ(j)

Which time measure is more realistic? We will see that, when discussing poly-
nomial time bounds and the class ptime, it makes little difference which time measure
is chosen. However, these factors become highly relevant if we discuss either or both of
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linear time computability, or the effect of increasing both data and storage size toward
infinity.

The assumption that both data and storage size can grow toward infinity implies a
computing model where more and more hardware or circuitry is needed. It thus models
one aspect of distributed computing , e.g. situations involving very large data bases, but
not daily practice within a single stored-program computer.

In spite of the argument that one should “charge” time proportional to the address
length for access to a memory cell, or a dag or graph node, this is not the way people
think or count time when they program. Memories are now quite large and quite cheap
per byte, so most programmers need to take little account of the time to access memory
in external data storage.

Further, computer memories are carefully designed to make pointer access essentially
a constant time operation, so users rarely need to be conscious of address length in order
to make a program run fast enough. In practice computer hardware is fixed: word sizes
or memory capacities cannot practically be increased on demand.

An analogy is with arithmetic: Even though the computer certainly cannot deal with
arbitrary integers, it is carefully designed to model operations on them faithfully as long
as they do not exceed, say, 32 bits. Given this fact, programmers have the freedom
to assume that the computer faithfully realizes the world of arithmetical calculations,
thinking of his or her problem and ignoring the computer’s actual architecture unless
boundary cases arise.

Our choice of SRAM timing

We are especially interested in problems that can be solved within small resource usage,
for example linear time algorithms and those using limited storage (e.g. logarithmic
space). Such programs simply do not run long enough to fill astronomically many memory
cells, or to create long addresses or values. Thus for the purpose of this book we feel
that the unit-cost SRAM model is more faithful to daily programming, and so take it as
our model. This view is admittedly biased toward problems with reasonable memory
requirements, where time is the limiting factor of greatest practical interest.

Fortunately, the SRAM model above is so restricted that long addresses or values take
significant computation time to create. However if, for example, multiplication were
allowed as a primitive operation, extremely large values could be constructed in a short
time, bringing the fairness of the unit-cost time measure into question.
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Exercises

16.1 Find a program-independent bound on the slowdown of the translation in Propo-
sition ??. 2

16.2 Find a program-dependent bound on the slowdown of the translation in Proposi-
tion 3.7.4 as a function of p. 2

16.3 The purpose of this exercise is to show how to modify the coding between bit
strings in {0,1}∗ and binary trees d ∈ ID01 of Section 16.2 to include all of ID. Coding
cID represents d ∈ ID by its “Polish prefix form.” This is obtained by doing a preorder
traversal of its tree structure, writing 0 every time nil is seen, and 1 every time an
internal “cons” node is seen.

Formally it is defined by cID(nil) = 0, cID(d1.d2) = 1cID(d1)cID(d2). Figure 16.1 shows
an example.
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cID(((nil.((nil.nil).nil)).nil)) = 110110000

Figure 16.1: Polish prefix code for a binary tree.

The exercise is to prove the following:

1. |cID(d)|= 2 |d|−1 for all d ∈ ID.

2. cID is one-to-one.

3. Let the balance bal(x) of x = a1 . . .an ∈ {0,1}∗ be the number of 1’s in x minus the
number of 0’s in x. Then x = cID(d) for some d ∈ ID if and only if bal(x) =−1, and
bal(y)≥ 0 for every prefix y = a1 . . .ai of x with i < n.
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The lemma gives a simple algorithm to determine whether a bit string corresponds to a
tree: initialize a counter to 1, and scan the bit string from the left. Add 1 every time a
1 is seen and subtract 1 whenever a 0 is seen. The string represents a tree if and only if
the counter equals 0 when the scan is finished, and never becomes negative.

Hint: Part 3 can be used for part 2. 2

References

The random access machine was introduced by Shepherdson and Sturgis in 1963 [163].
Discussions of the delicate issue of what is a fair time cost measure are found the the book
by Aho, Hopcroft and Ullman [2], and in articles by Schönhage and by Jones [159, 78].



17 Time Usage of Tree-manipulating

Programs

17.1 A DAG semantics for GOTO

To deserve its name, complexity theory must concern realistic models of program be-
haviour. In this (admittedly low-level) chapter we examine several basic assumptions,
hoping that the discussion will give greater faith that our complexity models faithfully
capture intuitive complexity concepts.

As in the preceding chapter, nil will be the only atom used in any construction
or definition henceforth — even though for the sake of readability we may use other
atomic abbreviations in examples, for instance 0 and 1 as alternate ways to write nil

and (nil.nil). Extension to multiple atoms is straightforward but more complex.

17.1.1 Justification of unit cost timing for GOTO programs

We have assumed every elementary operation cons, hd, etc. as well as every conditional
to take one time unit in GOTO, and similar costs appear in WHILE. These costs may
seem illogical and even unreasonable since, for example, command X := cons Y Y binds
to X a tree with more than twice as many nodes as that bound to Y.

In fact, it is reasonable to assign constant time to a cons operation and the oth-
ers using the data-sharing implementation techniques common to Lisp and functional
programming languages. In this section we give such a semantics for GOTO.

The first subsection introduces a certain form of graphs. The second subsection
reveals the connection between these graphs and elements of ID. The third subsection uses
the graphs to state the new semantics and the fourth subsection proves the correctness
of the new GOTO semantics with respect to the standard GOTO-semantics. The last
subsection sketches a Pascal-like implementation of the semantics, which will be used in
later chapters.

Definition 17.1.1

1. A DAG is a directed acyclic graph.

2. A data-storage graph (DSG for short) is a DAG with the following properties:
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(a) Every node has either no out-edges or two out-edges. The first is called an
atom-node, and the second is called a cons-node.

(b) For every cons-node, one out-edge has label l and the other has label r. The
node pointed to by the edge with label l is called the left child of the cons-node,
and the node pointed to by the edge with label r is called its right child.

(c) There is only one atom-node, named node 0, to represent atom nil.

3. A rooted DSG is a DSG together with a designated node chosen as the root. A
DSG may have nodes that are unreachable from its root.

4. Suppose δ is a DSG with two nodes n1,n2, and let n be a fresh node not already
in δ. Then add(δ,n1,n2,n) is the DSG obtained by adding the node n to δ, and
adding an edge from n to n1 labelled l, and a node from n to n2 labelled r. For
instance, the DSG in the right of Figure 17.1 could arise from the one to its left by
an add(δ,n1,n2,n) operation. 2

Figure 17.1 shows two example DSGs; consider the leftmost one. (It represents
((nil.nil).(nil.nil)), which can also be written as (1 0) or even (1.1).) For
simplicity, the labels l and r have not been written; instead the same information is
represented by the physical horizontal relationship between the edges on paper. There is
in reality only one node labeled nil, but we have duplicated it to make it easier to read
the diagrams.
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Figure 17.1: Two example DSGs
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17.1.2 From ID to DSGs and back

In connection with the DAG semantics we shall view elements of ID as DSGs, and con-
versely. To view a DSG δ as an element of ID we unfold it from a given node n to give
the value unf (δ,n) ∈ ID.

Definition 17.1.2 Given a d∈ ID define a DSG δ = dag(d,n) with root node n as follows.

1. if d is the atom nil then δ consists of the dag with one node named 0.
2. if d = (d1.d2) then δ has a root n, which has edges to n1 and n2 where n1 and n2

are the roots of the DSGs for d1 and d2, respectively.

Definition 17.1.3 Given a DSG δ and a node n in δ define d= unf(δ,n) ∈ ID as follows.

unf(δ,n) =


0 if n = 0 is an atom-node for nil
(d1.d2) Where unf(n1, δ) = d1 and unf(n2, δ) = d2 and

n is a cons-node with left child n1 and right child n2

For example, let δ be the leftmost DSG in Figure 17.1, and n its topmost node. Then
unf(δ,n) = ((nil.nil).(nil.nil)) = (1(0.nil)) = (1 0).

During execution in GOTO, the DAG semantics builds a DSG δ. Rather than binding
a variable X to a value d ∈ ID, the execution binds X to a node in the DSG. To do this,
it will use an environment ρ : Vars(p)→ DagNodes. Instead of binding variable X to the
atom nil, X will now be bound to atom-node 0, and instead of binding variable X to a
pair (d1.d2), the new semantics will bind X to a cons-node. For an example, consider the
reverse program seen in Section 7.2.

0: read X;
1: Y:= nil;
2: if X then goto 4;
3: goto 8;
4: Z := hd X;
5: Y := cons Z Y;
6: X := tl X;
7: goto 2;
8: write Y

Consider this program, applied to input (1 0). The left part of Figure 17.2 illustrates
the DSG at the start: X is bound to DAG structure for (1 0) = ((nil.nil) nil), while
Y and Z point to nil. At the end of execution two more nodes have been allocated and
Y points to the node denoting the result (0 1), the reverse of input (1 0).
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Figure 17.2: First and last DSG in execution of reverse

DAG semantics

In general the DAG semantics is as follows.

Definition 17.1.4 (DAG semantics for GOTO). Let program p = I1; ...; Im with
both input and output via variable X, and let Vars(p)={X,Z1...,Zn} be the set of all
variables in p.

1. A store for p is a pair (δ,ρ) where δ is a DSG and ρ is a mapping from Vars(p) to
nodes of δ. A state for p is a pair (`,σ) where 1≤ `≤m+1 and σ is a store for p.

2. The initial store σp
0(d) for p with input d is (δ0,ρ0) where δ0 = dag(d, l) and

ρ0 = [X 7→ l,Z1 7→ 0, . . . ,Zn 7→ 0]

3. The rules for the DAG semantics of GOTO appear in Figure 17.3. We define

[[p]]DAG(d) = e iff (1,(δ0,ρ0))→ . . .→ (m+1,(δ,ρ)) and unf(δ,ρ(Y)) = e

4. We define the running time of p on input d by:

timeDAG
p (d) = t iff (1,(δ0,ρ0))→ . . .→ (m+1,(δ,ρ))︸ ︷︷ ︸

t+1 states
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s(δ,ρ,a) = (δ,0) Where 0 is δ’s nil node.
s(δ,ρ,Y) = (δ,ρ(Y))

s(δ,ρ,consZY) = (add(δ,ρ(Z),ρ(Y),n),n) Where n is fresh.

s(δ,ρ,hdY) =


(δ,n)

(δ,0)

If ρ(Y) is a cons-node
with left child n, else

where 0 is δ’s nil node.

s(δ,ρ,tlY) =


(δ,n)

(δ,0)

If ρ(Y) is a cons-node
with right child n, else

where 0 is δ’s nil node

(`,σ)→(`+1,(δ′,ρ[X 7→ n])) If I` = X:=E, σ = (δ,ρ), s(δ,ρ,E) = (δ′,n)
(`,σ)→(`′,σ) If I` = if X goto`′ else `′′ and ρ(X) 6= 0
(`,σ)→(`′′,σ) If I` = if X goto `′ else `′′ and ρ(X) = 0

Figure 17.3: DAG Semantics of GOTO-programs, where σ = (ρ,δ).

17.1.3 Correctness of the DAG semantics

Informally a DSG store (δ,ρ) corresponds to a GOTO store σ : Vars(p)→ ID if ρ and
σ bind the same variables, and unfolding the node bound to Z by ρ gives the value
bound to Z by σ.

Definition 17.1.5 Correspondence (δ,ρ) ∼ σ between a DSG store (δ,ρ) and a GOTO

store σ is defined as follows.

(δ,ρ)∼ σ iff dom(ρ) = dom(σ) and unf(δ,ρ(Z)) = σ(Z) for all Z ∈ dom(ρ)

Theorem 17.1.6 For any program p, [[p]]DAG(d) = [[p]]GOTO(d), that is the standard and
DAG semantics are equivalent.

Proof. First prove that (δ0,ρ0) ∼ σ0 for the initial stores in the DAG and standard
semantics (use the property that unf(dag(d,n),n) = d). Then prove that (δ,ρ)∼ σ implies

(`,σ)→ (`′,σ′) for some σ′

iff
(`,(δ,ρ))→ (`′,(δ′,ρ′)) for some (δ′,ρ′)
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and that if these two reductions hold then (δ′,ρ′)∼ σ′. It follows that given a program
p = I1; ...; Im and some input d, either

1. Neither the standard nor the DAG semantics ever arrive at label m+1;

2. Both the standard and the DAG semantics arrive at label m+1 in t steps, and the
final states (m+1,(δ,ρ)) and (m+1,σ) satisfy (δ,ρ)∼ σ. If so, then unf(δ,ρ(Y)) =
σ(Y), so the final result in the two semantics are the same. 2

17.2 A Pascal-like implementation of GOTO

We now give a Pascal-like implementation using arrays of the DAG semantics of flow
chart language GOTO. This will be used for several purposes:

• To justify the unit-cost timing used for GOTO programs, or that assigned in Section
16.4.3 to WHILE programs.

• To prove that the problems solvable by functional F programs without cons are
exactly those solvable in polynomial time, in Section 24.2.

• To prove that boolean program nontriviality and Horn clause satisfiability are
“complete for ptime,” meaning that they are in a sense “most difficult” among
all problems solvable in polynomial time (Chapter 26).

17.2.1 Simulating input-free programs

The first is now the main goal: to make it evident that each operation takes time bounded
by a constant. As usual we assume there is only one atom, nil (the technique is easily
extendible to any fixed finite set of atoms). The implementation technique is easier to
explain for an input-free program, so we begin assuming no input, and then explain how
to account for initialization for input data.

Given a GOTO program p = I1; ...; Im with output through variable X, let
{X,Z1...,Zk} be the set of variables in p. Construct a Pascal-like simulating program
as follows:
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type Index = 0..infinity;
Node = 0..infinity; (* 0 encodes nil *)

var X, Y, Z1, ..., Zk : Node;
Hd, Tl : array Index of Node;
Time : Index; (* The current step number *)

Hd[0] := 0; Tl[0] := 0; (* So Hd and Tl of nil give nil *)
X := 0; Z1 := 0; ...; Zn := 0; (* Initialize all vars to nil *)
Time := 1; (* Step number initially 1 *)
1 : I1; (* Code simulating p’s instructions *)
2 : I2;
...
m : Im;
m+1 : writeout;

The idea is that the two parallel arrays Hd, Tl hold all pointers to hd and tl substructures.
Variables assume only node pointers as values in this implementation. A variable X has
value 0 if it is bound to nil, and otherwise points to a position in the arrays Hd and Tl

arrays. This position contains pointers to the first and second components of X’s value.

For simplicity we handle allocation by using variable Time to find an unused index in
these arrays1. Command I`, which simulates command I` for 1 ≤ ` ≤m+1, is defined
in Figure 17.4. Note that each of the simulation sequences above takes constant time,
under the usual assumptions about Pascal program execution.

Instruction I Simulating instruction I

Z := nil Z := 0; Time := Time + 1

Z := V Z := V; Time := Time + 1

Z := hd V Z := Hd[V]; Time := Time + 1

Z := tl V Z := Tl[V]; Time := Time + 1

Z := cons V W Hd[Time] := V; Tl[Time] := W;

Z := Time; Time := Time + 1;

if Z = nil goto r else s if Z = 0 then goto r else s

Figure 17.4: Pascal-like implementation of GOTO.

We leave the actual programming of the writeout procedure as an exercise for the reader
(Exercise 17.1).

1A more economical implementation could maintain a “free list” of unused memory cells.
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17.2.2 Data initialization.

Suppose now that program p has input d = (d1 d2 . . . dn) ∈ ID. This data has to be
stored into the Pascal data structures Hd, Tl. One way to describe this is to assume that
variable X has been initialized by the following sequence of instructions, inserted at the
start of p, where Zero indicates the always-present cell 0:

One := cons Zero Zero; X := Zero; Initn;...Init1;

where for 1≤ i≤ n Initi is:

X := cons Zero X

if di = 0, else

X := cons One X

This adds n+2 instructions and so has the effect of incrementing every instruction label
in p by n+3, so the simulation should now implement GOTO code if Z = nil goto r

else s in p by Pascal-like code if Z = 0 then goto r+n+3 else s+n+3.
The following indicates the initial DAG built this way for input d = (1 0), coded as

((nil.nil) nil).
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Hd[0] = Tl[0] = 0: Head, tail of nil = nil

Hd[1] = Tl[1] = 0: Cell for One = (nil.nil)

X = nil at start, no values in Hd[2] or Tl[2]
Hd[3] = Tl[3] = 0: cons 0 onto X

X = 4, Hd[4] = 1, Tl[4] = 3: cons 1 onto X

An alternative approach. Some readers may object to the approach of building the input
into the Pascal-like simulating program. While we will find this convenient later, there
is a simple alternative: Just replace the line

X := Zero; Z1 := 0;... Zn := 0; (* Initialize all vars to nil *)

above by

readin; Z1 := 0;... Zn := 0; (* Initialize X to d, others to nil *)

where procedure readin reads d = (d1 d2 . . . dn) and initializes Hd, Tl and sets Time to
n+3 (all just as the initialization sequence above would do). This is Exercise 17.2.
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Trace of an example simulation. Consider the reverse program seen before, and
assume that it is given input X = (1 0), coded as ((nil.nil) nil), which is represented
in the Hd, Tl table positions 0 through 4. This would give rise to the sequence of memory
images in Figure 17.5, where

Timet = the DAG cell that variable U is bound to at time t

Instrt = the instruction about to be executed at time t

Hdt, Tlt = the final values of Hd[t], Tl[t], respectively

This models the right part of Figure 17.1, except that all of nil, a and b are represented
by cell number 0.

Timet Instrt Hdt Tlt Xt Yt Zt

0 0 0 0 0
1 Initialize data at 0 0 0 0
2 times - - 0 0
3 t = 1, . . . ,n+2 0 0 3 0 0
4 1 3 4 0 0
5 1: Y := nil - - 4 0 0
6 2: if X goto 4 - - 4 0 0
7 4: Z := hd X - - 4 0 1
8 5: Y := cons Z Y 1 0 4 8 1
9 6: X := tl X - - 3 8 1
10 7: goto 2 - - 3 8 1
11 2: if X goto 4 - - 3 8 1
12 4: Z := hd X - - 3 8 0
13 5: Y := cons Z Y 0 8 3 13 0
14 6: X := tl X - - 0 13 0
15 7: goto 2 - - 0 13 0
16 2: if X goto 4 - - 0 13 0
17 3: goto 8 - - 0 13 0
18 8: write Y - - 0 13 0

Figure 17.5: Some values.
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Memory reuse

Practical implementations of programs manipulating tree-structured data re-use memory
cells, in contrast to the method above which allocates a new cell every time the clock
ticks. This is often done by organizing all free cells into a single linked list called the
freelist. A cons operation can be implemented by detaching a cell from the freelist, and
assigning its two fields. When memory is exhausted (assuming it is finite, unlike in the
model above), a garbage collection phase ensues, in which cells that have no pointers
to them are located and collected together into a new freelist (assuming there are any
unused cells, else execution aborts). Describing such methods in more detail is beyond
the scope of this book.

Exercises

17.1 Write a Pascal-like program “writeout(index)”. Its effect should be to print out
the value in ID denoted by position index in the Hd and Tl arrays. 2

17.2 Write a Pascal-like program “readin.” Its input should be a list (a1 . . .an) ∈ ID01.
Its effect should be to initialise the Hd and Tl arrays so that cell n+2 denotes the value
(a1 . . .an). 2

References

The implementation ideas sketched in this chapter stem from McCarthy’s original work
on Lisp [124]. A more pedagogical treatment can be found in Henderson’s book [67].
Relevant ideas are also discussed in [78, 159].



18 Robustness of Time-bounded

Computation

In Chapter 8 the term “robust” had a precise meaning: that the classes of problems
decidable by a wide range of computation models are invariant, aside from inessential data
encodings. Computing in a resource-limited context leads to a new aspect of robustness.
Ideally, resource-bounded problem solvability should be:

1. invariant with respect to choice of machine model;

2. invariant with respect to size and kind of resource bound (e.g. quadratic time,
polynomial space, etc.); and

3. invariant with respect to problem representation (e.g. the choice to represent a
directed graph by an incidence matrix or by adjacency lists should not make a
complexity difference).

In this chapter we will affirm the first two points for polynomial time bounds, and leave
the last to Chapter 25. As before we are only interested in decision problems expressible
by a “yes-no” answer, and not in computation of functions.

18.1 Classifying programs by their running times

We begin by defining a resource-bounded program class to be the set of programs that run
within a given resource bound. Next, we define the sets of problems solvable by programs
running within these classes; for instance the well-known class ptime is defined below to
be exactly the set of problems solvable by programs in WHILEptime.

Consequent to the discussion of Section 16.2, we assume L-data= {0,1}∗ for every
language L. Recall that |d| is the size of a data value d: the number of symbols in it if d
is a string in {0,1}∗, and the number of leaves if d is a tree in ID.

Definition 18.1.1 Given programming language L and a total function f : IN → IN , we
define three sets of time-bounded programs:

Ltime(f(n)) = {p ∈ L-program | timeLp(d)≤ f(|d|) for all d ∈ L-data}

271
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Lptime =
⋃

p a polynomial

Ltime(λn.p(n))

Llintime =
∞⋃

k=0

Ltime(λn.kn)

The corresponding classes of decision problems solvable within limited time are easy to
define.

Definition 18.1.2 Given programming language L and a total function f : IN → IN

1. The class of problems L-decidable in time f is:

timeL(f) = {A⊆ {0,1}∗ | A is decided by some p ∈ Ltime(f(n))}

2. The class ptime of problems L-decidable in polynomial time is:

ptimeL = {A⊆ {0,1}∗ | A is decided by some p ∈ Lptime)}

3. The class lintime of problems L-decidable in linear time is:

lintimeL = {A⊆ {0,1}∗ | A is decided by some p ∈ Llintime}

Lemma 18.1.3 L �lintime M implies lintimeL ⊆ lintimeM, and L ≡lintime M implies
lintimeL = lintimeM.

Proof. Let A ∈ lintimeL. Then A is decided by some L-program p such that timeLp(d)≤
a · |d| for some a and all d. By Definition 16.3.1, L �lintime M implies there exists an
M-program q such that [[p]]L = [[q]]M, and timeMq(d)≤ b · timeLp(d) for some b and all data d.
Combining these two we get

timeMq(d)≤ b · timeLp(d)≤ b ·a · |d|

Consequently A ∈ lintimeM, so lintimeL ⊆ lintimeM.
If L≡lintime M then L�lintime M and M�lintime A. By the reasoning above, this implies

lintimeL ⊆ lintimeM and lintimeM ⊆ lintimeL and so that lintimeL = lintimeM. 2
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18.2 Robustness of polynomial time

Recall the several simulations and constructions from Chapter 8. We now do time anal-
yses of some of them, and give another construction. Recall from Definition 16.3.1 that
notation �lintime−pg−ind is used for linear-time simulation overhead with a program-
independent constant factor a.

18.2.1 Efficiently compiling TM to GOTO

Theorem 18.2.1 TM �lintime−pg−ind GOTO

Proof. Let program p = I1 ...Im be a Turing machine program using alphabet {0,1,B}.
By the construction of Section 8.5, each Turing machine instruction is mapped into
a nonlooping sequence of GOTO instructions. Let k be the length of the longest such
instruction sequence. Thus the total GOTO program run time is at most k times slower
than the Turing machine. Further, k is independent of program p, so we have a lintime-
pg-ind simulation. 2

18.2.2 Efficiently compiling GOTO to SRAM

In Chapter 8 we showed how to compile a GOTO program to an equivalent CM program.
That construction does not serve our needs, though, for several reasons. First, counter
machine programs have too limited an instruction set for polynomial time to be mean-
ingful. Second, the translation of Chapter 8 took no account of data sharing (as used
in the DAG semantics), so the time to simulate X:=cons X X, for instance, would be
unrealistically high, even if the first problem could somehow be overcome.

Instead, we will show how to compile an GOTO-program p into an equivalent SRAM-
program. The idea is simply to implement the DAG semantics of Section 17.1 on the
SRAM model.

Theorem 18.2.2 GOTO �lintime−pg−ind SRAM

Proof. In Section 17.2 we sketched a Pascal-like implementation of a GOTO program. The
implementation assumed data to be stored in registers representing the tree structures
of GOTO programs by means of graph structures: The SRAM memory represents a DAG,
which in turn represents a memory state of the GOTO program being simulated. The
simulation sketched in Section 17.2 preserves these representations after simulating any
one GOTO instruction.
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The running time of the Pascal-like program from the construction of Figure 17.4
is clearly at most linearly slower (by a program-independent constant factor) than the
GOTO program from which it was obtained. The construction can be refined to yield an
equivalent SRAM program, as in Exercise 18.6.

Given these representations, each GOTO operation is conceptually realized by a simple
operation on the DAG, realizable by a nonlooping sequence of SRAM operations. Further,
the running time of the SRAM program is shown in Exercise 18.6 to be slower than the
GOTO program from which it was obtained by at most a program-independent linear
factor. 2

18.2.3 Compiling SRAM to TM

Theorem 18.2.3 Under the unit-cost measure, SRAM �ptime TM

Proof. Assume the construction of Section 8.4 is applied to an SRAM-program p =
I1;I2; . . .Im, yielding a 5-tape TM-program q with [[p]]SRAM = [[q]]TM. We will argue that q’s
running time is slower than p’s running time by at most a polynomial factor.

Recall the SRAM instruction syntax.

I ::= Xi := Xi + 1 | Xi := Xi .- 1 | if Xi=0 goto ` else `′

| Xi := Xj | Xi := <Xj> | <Xi> := Xj

For any input d of length n, p’s initial store is σ0 = [0 7→ n,1 7→ 0,2 7→ 0, . . . , i 7→ 0, . . .].
Now suppose that program p, after executing t≥ n steps, has store

σ = [0 7→ v0,1 7→ v1, . . . ,k 7→ vk, . . .]

We now analyze store σ. Initially, the value of every cell Xi was 0 except for X0, which
contained n. The only way cell i with nonzero address can receive a nonzero value is
by a direct store Xi := ... or an indirect store <Xi> := Xj. Since in one step an
SRAM-program can at most increase the value σ(i) of cell Xi by 1, after t steps none of
the values vi can exceed t′ = t+n ≤ 2t in value. Further we have σ(i) = 0 for all i > t′,
since no addresses i larger than t′ can have been computed.

This implies that in the Turing machine simulation the Address and Contents tapes
can have length at most O(t log t) bits after simulating t steps. The same length bound
applies to the accumulator and scratch tapes. One instruction of SRAM-program p is
simulated on the Turing machine by at most five scans and copyings of the various
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tapes. Thus the t-th computation step of SRAM-program pgtp is simulated by at most
O(5t log t)≤ a · t log t Turing machine steps, for a suitable constant a and all t.

Now, a total time analysis: let u = timeSRAMp (d). No step by p takes time more than
timeTMq (d)≤ a ·u logu to simulate by the Turing machine, and one simulation step requires
at most a ·u logu time.

Thus the entire u-step simulation takes time at most a ·u2 logu Turing machine steps.
This yields timeTMq (d) = O(u2 logu) where u = timeSRAMp (d). This is polynomially bounded,
as required. 2

18.2.4 The polynomial-time robustness theorem

Theorem 18.2.4 ptimeSRAM = ptimeTM = ptimeGOTO = ptimeWHILE = ptimeI

Proof. First, ptimeGOTO = ptimeWHILE = ptimeI by Lemma 18.1.3 and Exercise 18.1.
Second, by the constructions just given,

TM�lintime−pg−ind GOTO�lintime−pg−ind SRAM�ptime TM

Now in general L�lintime−pg−ind M or L�lintime M implies L�ptime M, and so in particular
TM�ptime GOTO�ptime SRAM�ptime TM. Thus TM≡ptime GOTO≡ptime SRAM≡ptime TM.

From this it is immediate that ptimeSRAM = ptimeTM = ptimeGOTO.

This theorem justifies writing only ptime, since the class of problems so defined s in-
dependent of (any reasonable) computing model used to define it. Remark: using the
logarithmic cost measure, the general RAM is polynomially equivalent to the models above;
see Exercise 18.7.

18.3 Linear time

Some of the following results concern programs in the functional language F, leading
to the need to define its time usage function timeFp(d). Informally, this is just another
“unit-cost” measure, counting 1 for every operation, test or function call.

18.3.1 Running times of F programs

Consider program p = E0 whererec f(X) = B. The following uses the F semantic func-
tion E : Expression→ Expression→ ID→ ID⊥ as defined in Figure 9.1. Given a value v
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of the variable X in an expression E, the function T maps E and v into the time T [[E]]v∈ IN

taken to evaluate E. Further, function P maps p and d into the time P[[p]]d ∈ IN taken
to run p on d, i.e. P[[p]]d = timeFp(d).

Definition 18.3.1 The functions T : Expression→ Expression→ ID→ IN⊥ and P :
F−program→ ID→ IN⊥ are defined by:

P[[E0 whererec f(x) = B]]d = T [[E0]]Bd
T [[X]]Bv = 1
T [[d]]Bv = 1
T [[hd E]]Bv = 1+T [[E]]Bv
T [[tl E]]Bv = 1+T [[E]]Bv
T [[cons E F]]Bv = 1+T [[E]]Bv+T [[F]]Bv
T [[if E then E1 else E2]]Bv = 1+T [[E]]Bv+T [[E1]]Bv, if E [[E]]Bv 6= nil

T [[if E then E1 else E2]]Bv = 1+T [[E]]Bv+T [[E2]]Bv, if E [[E]]Bv = nil

T [[f(E)]]Bv = 1+T [[E]]Bv+T [[B]]B(E [[E]]B)

2

18.3.2 Linear-time equivalence of GOTO, WHILE, I, and F

Lemma 18.3.2 There exist two programs intIF and intFI and constants c,d such that
for any p ∈ I−programs,q ∈ F−programs and all d ∈ ID:

[[intIF]]F(p.d) = [[p]]I(d) and timeFintIF(p.d)≤ c · timeIp(d)

[[intFI]]I(q.d) = [[q]]F(d) and timeIintFI(q.d)≤ d · timeFq(d)

Proof. The result follows from an easy time analysis of the constructions in Propositions
9.2.1 and 9.2.2. Program independence holds because I and F programs have only one
variable. 2

Theorem 18.3.3 GOTO ≡lintime WHILE≡lintime I≡lintime F, so

lintimeGOTO = lintimeWHILE = lintimeI = lintimeF

By Exercise 18.1, L≡ptime M for any two of the languages just listed.
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Proof. This follows partly from the compilations of Propositions 8.2.1 and 8.2.2. In each
case, the translated program q runs slower than the original p by a constant factor. For
example in going from WHILE to GOTO by Proposition 8.2.1, timeGOTOq (d)≤ a · timeWHILEp (d)
for some a and all d.

The remainder follows from Lemma 18.3.2.
2

Theorem 18.3.3 states a form of robustness within linear-time decidable problems: the
class lintimeL is stable for the cluster we have studied until now of programming lan-
guages that L manipulate trees in ID.

Robustness of the concept of lineartime

The question “just which problems can be solved in linear time” has aroused some contro-
versy and many differences of opinion, as it depends critically on the exact commputation
model used (i.e. it is not as “robust” as the class ptime). One might hope that Theorem
18.3.3 could be extended, for example to

lintimeTM = lintimeGOTO = lintimeSRAM

but this seems false: the class of problems solvable in linear time is nonrobust since it
appears to be different for various models. In particular, the multitape Turing machine
model is unnatural for linear time, and seems unable to solve as many problems in linear
time as the SRAM.

18.4 Linear time factors don’t matter for Turing

machines

The following material is included for historical interest, but is not central to our devel-
opment. It should probably be skipped on first reading.

In the classical Turing machine model (described in Section 7.6), one-step transitions
are defined to cost one time unit each. The definition is unrealistic, as it ignores two
important program-dependent parameters: the number of tapes k, and the size of the tape
alphabet Σ. The assumption that these can be chosen arbitrarily large is also questionable
in view of Alan Turing’s analysis of computation, cf. Exercise 1.1.
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In this section we show that not accounting for these factors1 implies the well-known
Turing machine constant speedup theorem. It in essence asserts that for any classical
Turing machine running in superlinear time, there is an equivalent one that runs faster
by any desired constant factor. The central idea in the proof is to replace the tape
alphabet Σ by another alphabet Σm for a possibly large constant m.

There is some controversy as to the interpretation of the speed-up theorem and its
proof. Papadimitriou [138] claims that “advances in hardware make constants meaning-
less,” since the proof shows that increasing the word size of the computer decreases the
running-time by a constant-factor. Saying that a program runs in 2 ·n2 time does not
make sense, because while this may be true of today’s computer, the program may run in
n2 time on the computer of tomorrow. Instead, one should simply say that the program
runs in O(n2) time, thus abstracting from the constant factor.

This however, does not account for the fact that constant-factors may make a differ-
ence when considering programs that run on the same computer, i.e., when the word size
is fixed. Indeed, claiming that every superlinear program’s running time can be cut in
half clearly contradicts daily programming experience. Moreover, a sign of a mismatch of
theory with practice is seen in its proof which, in practical terms, amounts to increasing
the word size. Intuitively speaking, the speedup is obtained by a change of hardware
— unrealistic from a programming perspective. In any case, the physical realizability of
this trick is dubious.

Further, it is not at all clear that the technique could be adapted to more familiar
machine architectures, even if one assumed that hardware could be increased in size
upon demand. The constant speedup theorem is in fact false for the I and F languages:
Theorem 19.3.1 shows that increased constant factors give a provable increase in decision
power for linear time bounds, and Theorem 19.5.3 does the same for a broad class of
so-called constructible time bounds. A consequence is that the classical Turing machine
computation model is provably different from I and F for problems solvable in linear and
many other time bounds. One view of this is that I and F are more faithful models of
computational practice than classical Turing machines.

Before proving the main result it may be useful to review a simple example illustrating
the essential idea in the speed-up theorem.

Example 18.4.1 The following Turing machine M decides the set of even unary num-
bers.

1. Σ = {0,1,B};
1Together with the one-dimensional nature of the storage tapes.
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2. Q = {`0, . . . , `3};
3. `init = `0;

4. `fin = `3;

5. T = {(`0,B,B,→, `1),(`1,1,B,→, `2),(`1,B,1,←, `3),(`2,1,B,→, `1),(`2,B,0,←, `3)}

The machine first moves to the right of the initial blank and then reads past 1’s. It is
in state `1 whenever it has read an even number of 1’s, and in state `2 whenever it has
read an odd number of 1’s. Therefore, if the blank following the input is arrived at in
`1, the input is even and the output hence is 1. The machine requires around |x| steps
to compute its result, where x is the input, and |x| its length.

We will now consider an equivalent machine M ′ which, apart from an initial setup
phase, runs in half the time. The idea is to use an alphabet which allows us to express
two consecutive occurrences of 1 in a single symbol 11. This allows us to read past two
1’s in a single transition, and therefore the new machine will run twice as fast.

However, M ′ receives its input in the same form as M and must therefore first trans-
form it into the compressed format. We will use an extra tape to carry the compressed
form of the input. Here is M ′:2

1. Σ = {0,1,B,11,1B};
2. Q = {`0, . . . , `5};
3. `init = `0;

4. `fin = `5;

5. T = {(`0,(B,B,→),nop,`1),

(`1,(1,B,→),nop,`2),(`2,(1,B,→),(B,11,→), `1),
(`1,(B,B,↓),(B,B,←), `3),(`2,(B,B,↓),(B,1B,←), `3),

(`3,nop,(11,11,←), `3),(`3,nop,(B,B,→), `4),

(`4,nop,(11,B,→), `4),(`4,(B,0,←),(1B,B,↓), `5),(`4,(B,1,←),(B,B,↓), `5)}

As usual the first transition just skips the initial blank. The next group of transitions
move the input to the second tape in compressed form. If the input does not have even
length, then it is necessary to pad an extra blank to the last 1, since we collect pairs
of symbols into single symbols. The symbol 1B is used for this. The third group of
transitions move to the start of the compressed input on the second tape (alternatively
we could have processed the input backwards). Finally, the last group of transitions
process the compressed input.

2Remember that nop is short for (B,B,↓).
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The last phase takes around d|x|/2e steps so we have roughly reduced the running-
time by half. The price to be paid is that we need to compress the input and go back to
the start, and this takes around |x|+ d|x|/2e steps. 2

In this example, the total cost has been increased. However, this is just because M

has linear running time. If M runs in superlinear time then the added linear time to
compress the input may be outweighed by the halfing of the superlinear running time,
as the next theorem shows.

Theorem 18.4.2 Let M be a classical Turing machine deciding a set L in time f . For
any ε > 0 there is a Turing machine deciding L in time g where g(n) = ε ·f(n)+2n+4.

Proof. We shall prove that if

M = (Σ,Q,`init, `fin,T )

is a 1-tape Turing machine running in time f and ε > 0, then there is a 2-tape machine

M ′ = (Σ′,Q′, `′init, `
′
fin,T ′)

running in time λn.ε ·f(n)+2n+4. It is easy to modify the proof to show that if M is
a k-tape machine, for k > 1, then M ′ also is a k-tape machine.

The essential idea of the proof is similar to that of the example above. Each symbol
of M ′ encodes several symbols of M . As a consequence, several successive transitions in
M can be encoded by a single transition of M ′.

More specifically, we shall encode m = d6/εe symbols of M into a single symbol of
M ′ (the choice of m will be clear at the end of the proof). Thus Σ′ contains all m-tuples
of symbols from M . Since M ′ must be able do deal with the input to M , Σ′ must also
include the alphabet of M . Hence:

Σ′ = Σ∪Σm

The transitions of M ′ are divided into three phases: a compression phase, a simulation
phase, and a decompression phase.

In the compression phase M ′ reads the input x from tape 1 and stores it in compressed
form of length d|x|/me on the auxiliary tape, erasing tape 1 at the same time.3 Whenever
m symbols σ1, . . . ,σm ∈Σ have been read from tape 1, the single symbol (σ1, . . . ,σm)∈Σm

is written to the auxiliary tape. This can be done by recalling in the state the symbols
that are read.

3Note that in the general case where M is a k-tape machine, k > 1, such an auxiliary tape is available

already in M ′ which is also given k tapes.



Linear time factors don’t matter for Turing machines 281

More specifically, we include in M ′ states

Q′ = Σ0∪Σ1∪ . . .∪Σm−1

with the following meaning:

state in has meaning
() Σ0 no symbols read from tape 1 yet
(σ) Σ1 σ read from tape 1
(σ1,σ2) Σ2 σ1,σ2 read from tape 1

...
...

...
(σ1, . . . ,σm−1) Σm−1 σ1, . . . ,σm−1 read from tape 1

The transitions to do the compression appear in Figure 18.1, to which the following
numbers refer. As long as less than m symbols have been read from tape 1, another
symbol is read and recorded in the state (1). When m symbols have been read from tape
1, the compressed symbol is written to tape 2, and control returns to the initial state (2).
If the whole input has been read, the compression phase ends (3). In case the input ends
in the middle of an m-tuple, additional blanks are padded (4). When the compression
phase ends, the read/write head on tape 2, moves to the beginning of the input (5). All
this takes 2+ |x|+ d|x|/me steps.

We are then ready to the simulation phase in which all operations take place on the
second tape. In the simulation phase M ′ repeatedly simulates m transitions of M by
at most 6 transitions. Such a simulation of m steps is called a stage. At every stage
M ′ moves one square to the left, two to the right, and one to the left again. Recalling
the scanned tuples in the state, M ′ now has sufficient information to predict the next
m steps of M . These m steps can affect at most m successive squares, spanning over at
most two consective m-tuples, and so M ′ can implement the next m transitions of M by
at most two transitions.

More specifically, at each stage, M ′ begins in a state (q,j), where q represents the
state of M and j is the position of M ’s read/write head within the m-tuple that M ′

currently scans. This requires the addition to Q′:

Q′ = . . .∪Q×{1, . . . ,m}

At the very first stage, control must be passed from the compression phase to the simu-
lation phase (6). M ′ now moves one square to the left (7), then two to the right (8-9),
and one to the left again (10), recalling the scanned m-tuples in the state. This requires
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Compression phase. For all (~τ) ∈ Σm,σi ∈ Σ:

(1) ((σ1, . . . ,σl),(σ,B,→),nop,(σ1, . . . ,σl,σ)) 0≤ l ≤m−1
(2) ((σ1, . . . ,σm−1),(σ,B,→),((σ1, . . . ,σm−1,σ),B,→),())
(3) ((),(B,B,↓),(B,B,←), `eos)
(4) ((σ1, . . . ,σl),(B,B,↓),((σ1, . . . ,σl,B, . . . ,B),B,←), `eos) 1≤ l ≤m−1
(5) (`eos,nop,(~τ ,~τ ,←), `eos)

Simulation phase I. For all (~σ),(~τ),(~ρ) ∈ Σm∪{B}, q ∈Q,j ∈ {1, . . . ,m}:

(6) (`eos,nop,(B,B,↓),(`init,m))
(7) ((q,j),nop,(~τ ,~τ ,←),(q,j,~τ))
(8) ((q,j,~τ),nop,(~σ,~σ,→),(q,j,~σ,~τ))
(9) ((q,j,~σ,~τ),nop,(~τ ,~τ ,→),(q∗, j,~σ,~τ))
(10) ((q∗, j,~σ,~τ),nop,(~ρ,~ρ,←),(q,j,~σ,~τ ,~ρ))

Simulation phase II. For (~σ),(~τ),(~ρ) ∈ Σm∪{B}, q ∈Q,j ∈ {1, . . . ,m} with
(q,(L~στ1 . . . τj−1, τj , τj+1 . . . τm, ~ρR)) ;t (q′,(Lπ1 . . .πl−1,πl,πl+1 . . .π3mR))
where t = m, or t < m and q′ = `fin

and ~π1 = π1, . . . ,πm, ~π2 = πm+1, . . . ,π2m, ~π3 = π2m+1, . . . ,π3m :

(11)
((q,j,(~σ,~τ ,~ρ)),nop,((~τ),(~π2),←),(q∗, j,(~σ,~τ ,~ρ)))
((q∗, j,(~σ,~τ ,~ρ)),nop,((~σ),(~π1),↓),(q′, l))

if 1≤ l−1≤m

(12)
((q,j,(~σ,~τ ,~ρ)),nop,((~τ),(~π2),→),(q∗, j,(~σ,~τ ,~ρ)))
((q∗, j,(~σ,~τ ,~ρ)),nop,((~σ),(~π3),↓),(q′, l))

if 2m+1≤ l−1≤ 3m

(13)
((q,j,(~σ,~τ ,~ρ)),nop,((~τ),(~π2),←),(q∗, j,(~σ,~τ ,~ρ)))
((q∗, j,(~σ,~τ ,~ρ)),nop,((~σ),(~π3),→),(q′, l))

if m+1≤ l−1≤ 2m

and ~π1 6= ~σ

(14)
((q,j,(~σ,~τ ,~ρ)),nop,((~τ),(~π2),→),(q∗, j,(~σ,~τ ,~ρ)))
((q∗, j,(~σ,~τ ,~ρ)),nop,((~σ),(~π3),←),(q′, l))

if m+1≤ l−1≤ 2m

and ~π3 6= ~ρ

(15)((q,j,(~σ,~τ ,~ρ)),nop,((~τ),(~π2),↓),(q′, l))
if m+1≤ l−1≤ 2m

and ~π1 = ~σ,~π3 = ~ρ

Decompression phase. For all (~σ) ∈ Σm∪{B}, j ∈ {1, . . . ,m}:

(16) ((`fin, j),(B,σj+1,←),(~σ,~σ,↓), `∞)

Figure 18.1: Transitions in the sped-up machine.
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the addition to Q′:
Q′ = . . .

∪ Q×{1, . . . ,m}×Σm

∪ Q×{1, . . . ,m}×Σ2m

∪ Q×{1, . . . ,m}×Σ3m

After these move operations, M ′ is in a state4

(q,j,~σ,~τ ,~ρ)

representing the information that at this point M is in state q, τj is its scanned symbol,
and to the left on the tape it has ~σ,τ1, . . . , τj−1, and to the right it has τj+1, . . . , τn, ~ρ. Now
suppose that M has the following computation in m steps (all such m-step computations
can be computed from just the definition of M , without knowing the input).5

(q,(L~στ1 . . . τj−1, τj , τj+1 . . . τm, ~ρR)) ;m (q′,(Lπ1 . . .πl−1,πl,πl+1 . . .π3mR))

Then M ′ simulates that in two steps, splitting into cases according to whether changes
are made in ~σ, ~τ , and ~ρ (11)-(15). If the computation happens in fewer than m steps,
but ends `fin, similar transitions are made by M ′. Thus the simulation phase comprises
a total of at most 6df(|x|)/me+1 steps.

The decompression phase begins, if M ever terminates, and simply consists in decom-
pressing the output.

More specifically, if M terminates, the initial configuration of M leads to

(`fin,(Lτ1 · · ·τj−1, τj , τj+1 · · ·τmR))

where τj+1 is either 1 or 0. Correspondingly, M ′ terminates in a configuration,

((`fin, j),(L′,~σ,R′),(L,~τ ,R))

Therefore, τj is written on tape 1, and M ′ ends in its final state `∞ (17). This adds just
one to the running time.

The total running time, then, of the simulation is

(2+ |x|+ d|x|/me)+(6df(|x|)/me+1)+1≤ εf(|x|)+4+2|x|

as requried. 2

4From now on it will be convenient to use the vector notation ~σ = σ1, . . . ,σm. We shall bit a bit

sloppy and write, e.g., ~σ ∈ Σm instead of the more correct (~σ) ∈ Σm.
5Some of the σi, τj ,ρl could be blanks; m-tuples of blanks are treated as a single blank.
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The reader should not be surprised to see analogs of the preceding theorem with the
term 2n+4 replaced by some other term. The term is sensitive to small changes in the
definition of Turing machines. For instance, some models only allow a machine to write
a symbol or move one square, but not both, in a single step, and this makes a difference.

Exercises

18.1 Show that L≡lintime M implies ptimeL = ptimeM. 2

18.2 Show that that the interpreter int of F by WHILE of Proposition 9.2.2 induces at
most a program-independent constant slowdown: given any F-program p and input d,
timeWHILEint (p.d)≤ b · timeFp(d). 2

18.3 Complete Lemma 18.3.2 part 1 by showing that the interpreter int of Exercise
18.2 can be replaced by an I program. 2

18.4 Show that the interpreter int of I by F of Proposition 9.2.2 induces at most constant
slowdown: for any I program p and input d, timeFint(p.d) ≤ b · timeIp(d). This finishes
Lemma 18.3.2. 2

18.5 Show how to simulate a Pascal-like program with several arrays, with no more than
a constant overhead time per operation. RAM 2

18.6 * The Pascal-like implementation of GOTO was not quite a SRAM program because
it had several arrays, and records as well. Prove that this is equivalent to an SRAM

program running at most linearly more slowly. Consequence: any GOTO program p can
be implemented by a SRAM program q which runs in time linear in p’s running time.

Does the constant coefficient depend on program p? 2

18.7 Argue informally that the SRAM�ptime TM under the logarithmic time cost measure
for SRAM computations. Show that this implies ptime = ptimeSRAM. 2

18.8 Why can the proof method of Theorem 18.4.2 not be applied to WHILE or GOTO? 2
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19 Linear and Other Time Hierarchies for

WHILE Programs

An interesting question is: for a given programing language L, does a < b imply1

timeL(a ·n)⊆/ timeL(b ·n)

In other words: can L-programs solve more problems if one gives them a larger “running-
time allowance” ? In this chapter we answer positively, by proving that increasing the
time available by a sufficient amount does indeed increase the class of solvable problems,
even within linear time bounds.

The first result concerns the small subset of the WHILE language called I, in which
programs are limited to one variable. We prove that constant time factors do matter for
both I and F (the functional language of Section 9.1), for linear time bounds. This result,
in agreement with daily experience, is in contrast to the situation for Turing machines
as seen by Theorem 18.4.2.

A key to the proof is the existence of an “efficient” self-interpreter for I. This is
used in a time-bounded version of the diagonalization argument used earlier to show the
existence of uncomputable functions.

This is first shown for I, then the results are extended to the functional language F,
and then to superlinear time bounds: proper increases can occur when one time bound
function dominates another in the limit. Finally, some limits to the construction of
hierarchies are referenced; proofs of those results will appear in a later chapter.

For I, we show specifically that there is a constant b such that for any a≥ 1 there is
a decision problem A which cannot be solved by any program that runs in time bounded
by a ·n. This fact is true regardless of how clever one is at programming, or at problem
analysis, or both.

On the other hand, there is a constant b such that problem A can be solved by some
I-program in time a · b ·n on all inputs of size n. In other words, provision of sufficiently
more time provably gives a greater problem-solving ability, even within lintime.

Essentially the same construction has been carried out in detail on the computer by
Hesselund and Dahl. By carefully examining the constant factors in their construction,
they establish in [31] that timeI(201 · a ·n + 48) properly includes timeI(a ·n), so the
result holds for the value b = 201+48 = 249.

1Here n is the length of a program’s input.
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19.1 An efficient universal program for I

Running times of I programs are defined just as in Section 16.4.3 (reasonable, since I is
a subset of WHILE). We show that the universal program for I developed in Section 4.1.1
is “efficient,” a term we use with a definite technical meaning:

An “efficient” interpreter is one whose use costs at most a program-independent linear
overhead, as in Section 16.3.2. Note that constant a below is quantified before p, so the
overhead caused by an efficient interpreter is independent of the programs it interpret.

Definition 19.1.1 An S-interpreter int written in L is efficient if there is a constant a

such that for all p ∈ S−programs and d ∈ S−data:

timeLint(p.d)≤ a · timeSp(d)

Constructing an efficient interpreter

Recall the interpreter u1var for one-variable WHILE programs constructed in Section
4.1.1. It had form:

read PD; (* Input (p.d) *)
P := hd PD; (* P = ((var 1) c (var 1)) *)
C := hd (tl P) (* C = c program code is c *)
Cd := cons C nil; (* Cd = (c.nil), Code to execute is c *)
St := nil; (* St = nil, Stack empty *)
Vl := tl PD; (* Vl = d Initial value of var.*)
while Cd do STEP; (* do while there is code to execute *)
write Vl;

where STEP is the large rewrite command of Figure 4.1. This program u1var is easily
seen to be efficient in the sense above:

Proposition 19.1.2 There exists a such that for all p and d

timeWHILEu1var(p.d)≤ a · timeWHILEp (d)

Proof. Note that the entire STEP command of Figure 4.1 is a fixed piece of noniterative
code. For any one operation of p, STEP finds the appropriate rule(s) to apply, by matching
the top of the control stack Cd and, in some cases, the top of the computation stack St.
For any one p operation it only takes a constant amount of time (independent of p and
d) to find the appropriate rewrite rule(s) and to realize its effect (their effects).
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Any single step of the interpreted program is realized by applying at most two it-
erations of STEP. For example, the decision of whether while E do C should perform C

the first time takes one step in p (in addition to the time to evaluate E). The interpreter
realizes the action of while E do C by applying STEP twice: one to set up the code stack
before evaluating the expression E; and once after E’s evaluation, to check E’s value to
see whether to enter command C or to escape from the while loop.

This implies that there exists a uniform and program-independent upper bound on
the interpretation/execution time ratio for all computations.

Variable access in the simulated program p is simulated by actions in u1var. Since p

has at most one variable, their execution times are independent of p. They are dependent
on the interpreter u1var, but are independent of program p.

However it is not clear that a program-independent upper bound can exist if p is
allowed to be an arbitrary multiple-variable WHILE program. The problem is that if the
interpreted program has multiple variables, the actions to simulate variable access and
storage will take time depending on the number of variables in p. 2

Remark: u1var satisfies another natural inequality, in the opposite direction: there exists
a constant b such that for each one-variable program p and input d:

timeWHILE
p (d)≤ b · timeWHILEu1var(p.d)

Such a bound is quite natural, because every single step of the interpreted program p is
simulated by several actions (always more than one) of u1var.

Although natural, such a constant b does not exist for all universal programs, since
there exist infinite classes of programs that can be simulated faster than they run. One
way this can be done is by remembering whether a certain subcomputation has been
performed before and, if so, fetching its result from memory rather than repeating the
computation. An example os this is Cook’s construction involving stack programs [30, 6].

An efficient self-interpreter for I

Program u1var is not, however, a self-interpreter, since it itself uses more than one
variable (such as Cd and St). However it can be translated into one, as in Section 3.7.1.

Theorem 19.1.3 The self-interpreter i of Theorem 4.2.1 is efficient.
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Proof. A correctness proof resembles that of Exercise 4.1. Each operation of the inter-
preted program is realized by a program-independent number of the interpreter’s opera-
tions. 2

19.2 An efficient timed universal program for I

Definition 19.2.1 An I-program tu is a timed universal program if for all p ∈ I-
programs, d ∈ ID and n≥ 1:

1. If timep(d)≤ n then [[tu]](p . d . niln) = ([[p]](d).nil), and

2. If timep(d) > n then [[tu]](p . d . niln) = nil.

The effect of [[tu]](p.d.niln) is to simulate p for min(n,timep(d)) steps. If timep(d) ≤ n,
i.e. p terminates within n steps, then tu produces a non-nil value containing p’s result.
If not, the value nil is yielded, indicating “time limit exceeded.”

Similar to the terminology for interpreters, we say:

Definition 19.2.2 A timed universal I-program tu is efficient if there is a constant k

such that for all p, d ∈ ID and n≥ 1:

timetu((p.d).niln)≤ k ·min(n, timep(d))

We will now construct an efficient timed universal program tu for I.

Construction 19.2.3 Recall the universal program i for I in Section 19.1. It was built
by translating the WHILE program u1var (plus its STEP command) into I.

The idea in constructing tu is to start with u1var, to add an extra input: a time
limit of the form niln stored in a variable Cntr, and some extra “clocking” code. Every
time the simulation of one operation of program input p on data input d is completed,
the “clocking” code will decrement Cntr and test it, stopping when it reaches zero. Call
the resulting program tt.

Details: program tt is seen in Figure 19.1, which uses a shorthand notation for the
membership test. This is easily turned into actual I commands. Finally, let tu be the
result of translating tt from WHILE to one-variable I code as in Proposition 3.7.4.

Lemma 19.2.4 tu is an efficient timed universal I-program.
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read X; (* X = ((p.d).niln) *)

Cd := cons (hd (hd X)) nil; (* Code to be executed *)

Vl := tl (hd X); (* Initial value of simulated X *)

Cntr := tl X; (* Time bound *)

St := nil; (* Computation stack *)

while Cd do
if Cntr
then { if hd (hd Cd) ∈ {quote,var,do hd,do tl,

do cons,do asgn,do while}
then Cntr := tl Cntr;
STEP; X := cons Vl nil;}

else { Cd := nil; X := nil};
write X

Figure 19.1: An efficient timed universal program tt.

Proof. To prove tu efficient, we must find a k such that for all p ∈ I−programs,d ∈ ID,
and n we have both of:

timetu((p.d).niln) ≤ k · timep(d)
timetu((p.d).niln) ≤ k ·n

The first inequality holds by reasoning similar to that of Proposition 19.1.2. The second
is immediate from the form of tu, since Cntr decreases with each iteration. If k1,k2

respectively satisfy the first and second, then max(k1,k2) satisfies both. 2

19.3 A linear-time hierarchy for I: constant time

factors do matter

Theorem 19.3.1 There is a b such that for all a≥ 1, there is a set A in timeI(a · b ·n)
that is not in timeI(a ·n).

Proof. Let program diag be as in Figure 19.2. Claim: the set

A = {d | [[diag]]L(d) = true}

is in timeI(a · b ·n) for an appropriate b (and all n), but is not in timeI(a ·n). Further,
b will be seen to be independent of a and n.
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read X;

Timebound := nila·|X|;
Arg := cons (cons X X) Timebound;

X := tu Arg; (* Run X on X for up to a · |X| steps *)

if hd X then X := false (* or until Timebound is reduced to zero *)

else X := true;

write X

Figure 19.2: Diagonalization program diag.

We now analyze the running time of program diag on input p. Since a is fixed,
nila·|d| can be computed in time c ·a · |d| for some c and all d. We implicitly assume that
command “Timebound := nila·|X|” has been replaced by code to do this computation.

From Lemma 19.2.4 there exists k such that the timed universal program tu of Figure
19.1 runs in time timetu((p.p).niln)≤ k ·min(n, timep(p)). Thus the command “X :=

tu Arg” takes time at most

k ·min(a · |p|, timep(p))≤ k ·a · |p|

so on input p, program diag runs in time at most

c ·a · |p|+k ·a · |p|+e

where c is the constant factor used to compute a · |X|, k is from the timed universal
program, and e accounts for the time beyond computing Timebound and running tu.
Now |p| ≥ 1 so

c ·a · |p|+k ·a · |p|+e≤ a · (c+k +e) · |p|

which implies that A ∈ timeI(a · b ·n) with b = c+k +e.
We prove that A /∈ timeI(a ·n) by a diagonal argument. Suppose for the sake of

contradiction that A ∈ timeI(a ·n). Then there exists a program p which decides mem-
bership in A and satisfies timep(d) ≤ a · |d| for all d ∈ ID. Now consider the effect of
running p on itself as input, i.e., computing [[p]](p). The fact that timep(p) ≤ a · |p| im-
plies that tu in Figure 19.2 has sufficient time to simulate p to completion on input p.
By Definition 19.2.2, this implies

[[tu]]((p.p).nila·|p|) = ([[p]](p).nil)
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If [[p]](p) is false, then [[diag]](p) = true by construction of diag. If [[p]](p) is true,
then [[diag]](p) = false. Both cases contradict the assumption that p and diag both
decide membership in A. The only unjustified assumption was that A ∈ timeI(a ·n), so
this must be false. 2

Two open problems.

1. Theorem 19.3.1 holds for the value b = 201 + 48 = 249. Can b be reduced still
farther, perhaps even to 1+ε for any ε > 0?

2. Does Theorem 19.3.1 hold for languages WHILE or GOTO?

The theorem’s proof technique can be extended to the SRAM, although somewhat more
complex programming is involved.

Theorem 19.3.2 For either the unit-cost or the logarithmic cost measure, there is a
constant b such that for all a≥ 1, there is a decision problem A in timeSRAM(a · b ·n) that
is not in timeSRAM(a ·n).

Proof. Exercises 19.3 and 19.4.

19.4 A linear-time hierarchy for F

Theorem 19.4.1 The result of Theorem 19.3.1 holds for the one-variable, one-atom
functional language F.

Proof. By Theorem 19.3.1 timeI(a ·n)⊆/ timeI(ab ·n) for all a. Using this and constants
c,d from Lemma 18.3.2 we obtain a chain of inequalities:

timeF(a ·n)⊆ timeI(ad ·n)⊆/ timeI(abd ·n)⊆ timeF(abcd ·n)

so the result holds with bcd in place of the b of Theorem 19.3.1. 2

19.5 Hierarchy results for superlinear times

We showed earlier for languages I and F that within linear time bounds, increased time
gives provably greater decision power. The proof technique involved diagonalization. In
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this section we carry the theme further, showing analogous results for other computation
models, and for other time bounds. In particular we will look at asymptotic complexity,
showing that when one functional time bound grows faster than another in the limit,
there are problems solvable in the larger time bound but not in the smaller.

First, a slight generalization of the construction seen earlier.

Construction 19.5.1 Given an I-program b, consider the program diag-b of Figure
19.3, where tu is the timed universal program of Lemma 19.2.4:

read X;
Timebound := b X; (* Insert body of b here *)
Arg := cons (cons X X) Timebound;
X := tu Arg; (* run X on input X until it stops, *)
if hd X (* or until Timebound is reduced to nil *)
then X := false else X := true;
write X

Figure 19.3: Diagonalization program diag-b.

Behavior: Suppose [[b]](d) always yields values of the form nilm (as it always will in
our applications). Then for any input p ∈ ID with [[b]](p) = nilm:

[[diag-b]](p) =


true if timep(p) > m

false if timep(p)≤m and [[p]](p) 6= false

true if timep(p)≤m and [[p]](p) = false

Time analysis: Let k be the interpretation and counting overhead incurred by the
timed universal program tu, and e the time to perform the final test above. Then for
any p ∈ ID

timediag−b(p) ≤ timeb(p)+k ·min(|[[b]](p)|+e, timep(p))
≤ timeb(p)+k · |[[b]](p)|+e

Time-costructible functions

Motivation: For a time bound function f(n) to be useful, it must be possible when given
an input of size n to find out how much time f(n) is available by a computation not
taking more than the order of f(n) steps.
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Definition 19.5.2 Function f : IN → IN is time constructible if there is a program b

and a c > 0 such that for all n≥ 0

[[b]](niln) = nilf(n) and timeb(niln)≤ c ·f(n)

Many familiar monotone functions are time-constructible, e.g. all linear functions, all
polynomials, and f +g,f ∗g,fg whenever f,g are time-constructible (Exercise19.8).

A more liberal definition is to let [[b]](niln) be the binary representation of f(n). All
the following works with this broader formulation; only small changes are necessary.

Theorem 19.5.3 Suppose f is time-constructible and f(x) 6= 0 for all x. Then there
exists b > 0 such that timeI(bf)\timeI(f) 6= ∅.

Proof. Suppose b and c are as in the definition of time-constructible, and let program
diag-b be as in Construction 19.5.1. Then

timediag−b(p)≤ c ·f(|p|)+k ·f(|p|)+e≤ (c+k +e) ·f(|p|)

so the set A decided by diag-b lies in time((c+k +e) ·f).
Now suppose A ∈ time(f). Then [[diag-b]] = [[p]] for some program p satisfying

timep(d) ≤ f(|d|) for all d ∈ ID. Looking at diag-b’s behaviour on input p, we see that
Timebound is set to nilf(|p|), so the timed universal program tu has enough time to
simulate p on p to completion. Consequently

[[p]](p) = [[diag-b]](p) =

{
false if [[p]](p) 6= false

true if [[p]](p) = false

This is a contradiction, which suffices to prove the theorem. 2

Some traditional theorems

The following theorem generalizes Theorem 19.5.3, since the upper and lower time bounds
f,g may be two quite different functions.

Theorem 19.5.4 Suppose functions f,g are time constructible, f(n) ≥ n,g(n) ≥ n for
all n, and limn→∞ g(n)/f(n) = 0. Then timeI(f)\timeI(g) 6= ∅.

Proof. This is very similar to the proof of Theorem 19.5.3, but needs the “padding
lemma” 14.4.4. 2
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Corollary 19.5.5 For any ε > 0 and k > 0, timeI(λn.nk+ε)\timeI(λn.nk) 6= ∅.

The following can be proven directly by diagonal constructions similar to that of Theorem
19.5.3, though more complex since self-interpreters are less easy to write for languages
TM or RAM than for GOTO. Alternatively, somewhat weaker versions may be proven using
Theorem 19.5.4.

Theorem 19.5.6 Suppose functions f,g are time constructible, f(n) ≥ n,g(n) ≥ n for
all n, and limn→∞ f(n)/(g(n) logg(n)) =∞. Then timeTM(f)\timeTM(g) 6= ∅.

Theorem 19.5.7 Suppose functions f,g are time constructible, f(n) ≥ n,g(n) ≥ n for
all n, and limn→∞ f(n)/g(n) =∞. Then timeSRAM(f)\timeSRAM(g) 6= ∅.

Exercises

19.1 Why can the proof method of Theorem 19.3.1 not be applied to WHILE or GOTO? 2

19.2 Prove that there are problems solvable by WHILE programs in time n3 but not in
time n2. Hint: use the result of Theorem 19.5.4 together with a cost bound on the
simulation of WHILE programs by I programs. 2

19.3 Sketch the construction of a universal program for SRAM programs. This can store
the program to be interpreted in odd memory locations, and can represent program
memory cell loc in the interpreter’s memory cell 2 · loc. Discuss its running time in
relation to that of the interpreted program, under the unit-cost asumption. 2

19.4 For the interpreter of the previous exercise, consider a logarithmic cost which also
accounts for the cost of instruction access. Thus all times are as in the table given before
for SRAM instruction times, but with factor log` added to execute instruction in location
`.

Show that under this cost, the total interpretation time will be bounded by a program-
independent constant times the interpreted program’s running time. 2

19.5 Prove the unit-cost version of Theorem 19.3.2 from Exercise 19.3: that linear time
SRAM-decidable sets possess an infinite hierarchy ordered by constant coefficients, as in
Theorem 19.3.1. 2

19.6 Prove the logarithmic cost version of Theorem 19.3.2 from Exercise 19.4. 2
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19.7 Prove that the following functions are time constructible:

1. f(n) = an+ b, for non-negative integer constants a and b.

2. f +g, assuming that f,g are time constructible.

3. f ∗g, assuming that f,g are time constructible.

4. fg, assuming that f,g are time constructible. 2

19.8 We say that a numeric function f : IN→ IN is WHILE-computable if there is a WHILE

program that computes nilf(n) given niln. Prove, that if f is WHILE-computable then
there is a function h such that h(n)≥ f(n) for all n, and h is time constructible. 2
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20 The Existence of Optimal Algorithms

(by A. M. Ben-Amram)

The previous chapter’s hierarchy theorems (19.3.1, 19.4.1, 19.5.3) show that there ex-
ist programs whose running time cannot be improved beyond a constant multiplicative
factor. We call such programs optimal1.

These theorems construct, from a given time bound T (n), a problem which is solvable
by an optimal program with running time cT (n) for some c and all n. In practice,
however, we are typically given a problem that we wish to solve by computer, rather than
a time bound. We attempt to write a program that will solve it as fast as possible. But
how fast can a given problem be solved?

The branches of Computer Science that deal with such questions are the design of
efficient algorithms and, on the negative side, lower-bound theory. (This book deals
mainly with the hierarchy and completeness results underlying lower-bound theory.) In
this chapter we consider what may be the most essential question to begin with: given
a problem, does there necessarily exist a “fastest” algorithm to solve it? In other words,
is the goal of algorithm design always well defined?

One of the major results in complexity theory, Blum’s Speedup theorem, shows that
there exist problems for which this goal cannot be achieved. For every algorithm to solve
such a problem, there is another one that is significantly faster. These problems are,
however, artificially constructed to prove the theorem. It is therefore edifying to discover
that for an important class of problems that occur in practice an optimal algorithm
does exist: one whose time cannot be improved by more than a constant multiplicative
factor. This result is known as Levin’s theorem. In this chapter we formulate and
prove, first Levin’s theorem, and then Blum’s theorem. We conclude with a theorem
of a somewhat different flavour, known as the Gap theorem. This theorem shows that
the results of the hierarchy theorems depend on the time bound T being a “nice” (that
is, time constructible) function: there exist functions t such that no program can be
designed to have running time inside some large zone lying just above t.

Remarks: Levin’s theorem exploits the existence of an efficient interpreter. All of
these theorems can be proven in a general form that applies not only to running time

1Actually, “optimal up to a constant factor” would be a more precise description.
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but to other reasonable computing resources, e.g. space. We do not go into details of
this generalization here.

20.1 Levin’s Theorem

For R⊆ ID× ID the first projection of R is the set

π1R = {x ∈ ID | (∃y ∈ ID)(x,y) ∈R}

Definition 20.1.1 Let R⊆ ID×ID be a semi-decidable predicate. A function f : ID→ ID⊥
is called a witness function for R if x ∈ π1R implies (x,f(x)) ∈R.

For example, let SAT be the set of satisfiable propositional formulae; recall from Section
A.1.1 that evalθF evaluates formula F for truth assignment θ. Let RSAT = {(F ,θ) | F ∈
SAT,evalθF = true}. Then a witness function for RSAT would be any function f that
produces a satisfying assignment for a formula that has one, and produces any answer
whatsoever (or loops) for an unsatisfiable one.

The reason that such an f is called a witness function is that problems like SAT are
often considered as decision problems; for instance, in Chapter 27 we will consider the
problem of deciding membership in SAT. In this situation, the role of f is to witness
that a formula is satisfiable. In practice, however, computing f will often be our actual
goal, since we would not be content just with knowing that a solution (e.g. a satisfying
assignment, a clique in the graph, etc.) exists.

Remark: if [[r]](d) =⊥ we define timer(d) =∞.

Theorem 20.1.2 Levin’s Theorem.
Let R ⊆ ID× ID be a semi-decidable binary predicate, so R = dom([[r]]) for some

program r. Then there is a WHILE program opt such that [[opt]] is a witness function
for R, and for every program q that computes a witness function f for R, we have

timeopt(x)≤ aq(timeq(x)+ timer(x.f(x)))

for all x, where aq is a constant that depends on q but not on x. Further, the program
opt can be effectively obtained from r. 2

Proof will be given later, after discussion of motivations and consequences.
A brute-force search program for finding a witness immediately comes to mind. Given

x∈ ID we just enumerate elements y∈ ID, checking one after the other until a witness pair
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(x,y) ∈R has been found2. It is quite obvious that this strategy can yield an extremely
inefficient program, since it may waste a lot of time on wrong candidates until it finds a
witness. Levin’s theorem states a surprising fact: for many interesting problems there is
another brute-force search strategy that not only is efficient, but optimal up to constant
factors. The difference is that Levin’s strategy generates and tests not solutions, but
programs.

Problems with easy witness checking. A common situation with many problems is
that verifying membership of a pair (x,y) in R (checking a witness) is relatively straight-
forward, not withstanding that producing a witness might be difficult. For example,
verifying membership in RSAT amounts to evaluating θ(F); this can be done in linear
time. On the other hand, finding a witness for F is at least as hard as just deciding
whether the witness exists, a problem complete for nptime.

This situation holds for a great many problems. For example it has been open for
many years whether SAT has any solution algorithm at all that runs in subexponential
time. The beauty of Levin’s theorem is that, even though no-one knows how fast (say)
satisfiability can be decided, the construction nonethelss gives an algorithm for it that is
asymptotically optimal (up to constant factors).

For Levin’s theorem to be of interest, it suffices that we be able to check witnesses
efficiently enough so that having the complexity of checking as a lower bound for witness-
searching is acceptable. However, in many cases, it can actually be proved that searching
for a witness cannot be done asymptotically faster than checking; for instance, this is
obvious when checking takes linear time (as in the SAT example).

This is a quite general phenomenon, which led to formulation of the class nptime,
also called np (to be discussed at length in Chapters 25 and 27). By definition, all
problems in nptime can be soved by “guess-and-verify” algorithms, where both guessing
and verification can be done in polynomial time. The only cause of superpolynomial time
is that the number of possible guesses is typically exponential in the problem input size,
and thus too large to enumerate.

A more sophisticated result that is relevant: by the version we saw of Kleene’s Normal
Form (Theorem 13.4.3), for any program p there is a predicate R, decidable in linear time,
such that R(x,y) is true if and only if y is the computation of p on input x. In this case,

2If R is decidable, this is straightforward by testing (x,y) ∈R for all finite binary trees y, using a loop

as in Lemma 5.7.1 to enumerate them. If R is semi-decidable but not decidable, then one could use a

“dovetailing” of computations as in Theorem 5.5.1 to test (x,d0) ∈R?, (x,d1) ∈R?, . . . in parallel.
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finding a witness for x is exactly equivalent to running p on x, and so can have arbitrarily
high complexity.

Ease of witness checking is captured in the following definition. (Section A.3.11
explains the o( ) notation.)

Definition 20.1.3 We call a semi-decidable binary predicate R easy to check if there is
a program r such that R = dom([[r]]), and no witness function f can be computed (on
input x) in o(timer(x.f(x))). 2

Suppose R is easy to check, and that program r satisfies Definition 20.1.3. Then program
opt of Theorem 20.1.2 is asymptotically fastest (that is, up to a constant factor) among
all programs that compute witnesses for R.

Proof of Levin’s theorem.

Proof. We make a simple, non-restrictive assumption on the program r: when run with
input (x.y), if (x,y) ∈R it gives y as output. Otherwise, it loops forever.

Recall that the concrete syntax for I programs uses only the atom nil. Enumerate
ID = {d0,d1, . . .} as in Lemma 5.7.1 by programs start and next. We build program opt

from these parts (a concrete program will be given shortly):

1. A “main loop” to generate all finite trees. At each iteration one new tree is added
to list L = (dn. . . d1d0). Tree dn for n = 0,1,2, . . . will be treated as the command
part of the n-th I program pn.

2. Iteration n will process programs pk for k = n,n−1, . . . ,1,0 as follows:

(a) Run pk on input x for a “time budget” of at most bk(n) = 2n−k steps.

(b) If pk stops on x with output y, then run r on input (x.y), so pk and r together
have been executed for at most bk(n) steps.

(c) If pk or r failed to stop, then replace k by k− 1, double the time budget to
bk−1(n) = 2n−k+1 steps, and reiterate.

3. If running pk followed by r terminates within time budget bk(n), then output
[[opt]](x) = y and stop; else continue with iteration n+1.

Thus the programs are being interpreted concurrently, every one receiving some “inter-
pretation effort.” We stop once any one of these programs has both solved our problem
and been checked, within its given time bounds. Note that opt will loop in case no witness
is found.



Levin’s Theorem 303

The keys to “optimality” of opt are the efficiency of STEP, plus a policy of allocating
time to the concurrent simulations so that the total time will not exceed, by more than a
constant factor, the time of the program that finishes first. The following table showing
the time budgets of the various runs may aid the reader in following the flow of the
construction and correctness argument.

Time budget p0 p1 p2 p3 p4 p5 . . .
n = 0 1 - - - - - . . .
n = 1 2 1 - - - - . . .
n = 2 4 2 1 - - - . . .
n = 3 8 4 2 1 - - . . .
n = 4 16 8 4 2 1 - . . .
n = 5 32 16 8 4 2 1 . . .
n = 6 64 32 16 8 4 2 . . .
. . . . . .

We first argue that the abstract algorithm just given is correct, then give it in concrete
program form, and finally analyze its time usage.

Correctness of the algorithm. Proving correctness of opt has two parts: showing
that opt produces only witnesses, and that it produces a witness for every x∈ π1R. First,
if [[opt]](x) = y then [[r]](x.y) terminates, so (x,y) ∈ R. Thus every output of opt is a
witness for its input.

Second, suppose x ∈ π1R. Claim: there is a pair (n,k) with k ≤ n such that

1. timepk
(x)≤ 2n−k; and

2. timepk
(x)+ timer(x.y)≤ 2n−k where y = [[pk]](x).

Proof of claim: since x ∈ π1R there exists a pair (x,y) ∈ R. For this y, clearly [[r]](x.y)
terminates. Choose any program pk such that y = [[pk]](x), and choose a value n large
enough so that 1 and 2 hold.

The computation of [[opt]](x) stops at iteration n or before. This implies [[opt]](x) =
[[r]](x.y) = y and (x,y) ∈R, so opt has a witness as output for every input x ∈ π1R.
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read X; start; (* Start enumeration of the d’s *)
Go := true; (* Set up main loop (1) *)
while Go do (* Iterate until (if) witness found *)
{
L1 := L; (* Copy list L = (dn ... d1 d0) *)
T := (nil); (* Budget: time t = 2(n−k) = 1 for k = n *)

while L1 do (* Loop (2): set up to run pk on x *)
{
Cd := hd L1; St := nil; Vl := X;
T1 := T; (* Copy time bound t *)

while T1 do (* 2(a): Run pk on x for t steps *)
{STEP; T1 := tl T1;}

if Cd = nil (* 2(b): If pk stopped on x in <= t steps *)
then (* Prepare to run r on (x.y) *)
{Y := Vl; (* Save y := final variable value *)
Cd := r; St := nil; Vl := cons X Y;}

while T1 and Cd do (* Run r on (x.y) *)
{STEP; T1 := tl T1;} (* for remaining steps *)

if Cd = nil (* If r stopped on x in time left *)
then {L1 := nil; Go := false;} (* then stop! *)

if Go then (* (2c): If pk or r failed to stop *)
{L1 := tl L1;(* k := k-1 *)
T1 := T; (* Double time budget t := 2(n−k) *)
while T1 do
{T1 := tl T1; T := cons nil T;}

} (* End of if Go *)
next; L1 := cons New L1;
} (* End of 2(a-b-c) *)

} (* End of loop (1); try n := n+1 *)
write Y

Figure 20.1: Program opt.

A program for opt. Let STEP be the WHILE macro used in Lemma ?? to execute an
arbitrary I program. This uses variables Cd, St and Vl to contain the control stack,
computation stack, and current value of the (unique) variable, respectively. By the proof
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of Proposition 4.1.1, any single step of the interpreted program is simulated by at most
two applications of STEP.

Program opt is built from STEP and start, next of Lemma 5.7.1, and can be seen in
Figure 20.1. The list of all elements of ID considered to date is maintained in variable L,
with a local copy L1. The time budget is maintained in variable T, with a local copy T1.

The main loop of the program is (1). During its n-th iteration, the inner loop (2)

first applies STEP to simulate each program pk on L1 on input x for 2n−k steps.
Program opt stops once one of the programs yields an output y (loop (2a)), provided

that value has been verified using r without overrunning the time budget (loop (2c)).
Faithfulness to the informal algorithm above should be clear.

Time analysis of opt. The following are easy to establish for n > 0. The phrase
“simulation of pk” includes running both pk and subsequently r (Steps 2(a) and 2(b)
above).

(1) The time for each iteration of the main loop, outside the code to simulate pk by
STEP or to double t, is bounded by c0n where c0 is a constant and n is the iteration
number (cf. Exercises 5.11, 5.12).

(2) In iteration n, STEP is applied to n+1 programs: pn, . . . ,p1,p0.
(3) In iteration n, program pk is simulated for a number of interpretation steps, no

larger than 2n−k.
(4) The total time to maintain time counter t is of the order of 1+2+ . . .+2n−k =

2n−k+1−1, thus O(2n).
(5) The total time for iteration n is bounded by the sum of the times for the pk:

c0n+
n∑

k=0

c12n−k + c22n ≤ c32n

for constants c0, . . . , c3 and all n.
(6) The total time up to and including iteration n is bounded by c32n+1.

Another important fact has already been demonstrated in Section 19.2 on “timed in-
terpreters”: if program q, followed by program r, terminates within time t, then 2t

invocations of STEP are enough to bring the interpretation to completion.
Now let x be the input to opt, and suppose that a program q computes a witness y

for x. Thus, running q followed by r will yield the output y in time

tq;r(x) = timeq(x)+ timer(x.y)
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Sure enough, q appears somewhere in the enumeration of all I programs; say q = pk.
Choose n so that

2n−k ≤ 2tq;r(x) < 2n+1−k

If program opt reaches iteration n and simulates q = pk on x, it will have enough time
to simulate both q and r to completion. The effect is that opt will yield its result within
time

timeopt(x)≤ c32n+1 ≤ c32k+12n−k ≤ c32k+2tq;r(x)

The other possibility is that program opt has already stopped earlier and so does not
reach iteration n+1 to simulate q = pk on x because another simulated program was
successfully completed and checked. In this case timeopt(x) is even smaller.

We conclude that timeopt(x) ≤ c32k+2tq;r(x). Since 2k+2 is a constant that depends
only on q, the proof is complete. 2

Final remarks. Levin’s theorem shows, that for a large class of important problems,
we can obtain an “optimal” program with only the effort of devising a solution checker.
This is obviously a tremendous reduction of the effort in developing programs for many
practical problems. However, this is also an example of how important it is to observe
that a constant factor is program-dependent. Program opt is slower than program pk

by the factor c32k+2. Note that k is the number in the enumeration of the program
pk. If our problem is indeed complicated, we can expect even the smallest program that
solves it to be quite large; if it appears at, say, position p1000, then opt will be slower by
c3 ·21002. Conclusions:

• Assuming that checking a solution is indeed easy (as often happens), the only
achievement that can be claimed by the hard-working algorithm developer is a
saving on the constant factor!

• “there is no free lunch”: since the constant factor is enormous, there is still point
in spending energy on devising programs to solve problems directly.

20.2 Functions arbitrarily hard to compute

Blum’s Speedup theorem involves two techniques: a diagonalization argument more sub-
tle than that seen before in Theorem 5.3.1; and a search process executing programs
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under a time budget, similar to that used in proving Levin’s theorem. Before proving
Blum’s result, we establish a simpler result that uses the same sort of diagonalization.

We define the following simplifying framework for the proof, only considering input of
the form niln. A program accepts a set of integers, in the sense that it program accepts
n if it outputs a non-nil value for input niln. The time complexity of program p, then,
can be expressed as a function on IN , namely tp(n) = timep(niln).

On diagonalization. In Chapter 19 we used diagonalization to prove the hierarchy
theorem. In this chapter we use diagonalization in a slightly more involved manner, so
it may be useful to present first a general form of the diagonalization argument.

Let Q be a set of programs. We wish to construct a program p and ensure that p /∈Q.
We construct p so [[p]] 6= [[q]] for all q ∈ Q. More explicitly, p will be built so for every
q ∈Q there is at least one input d such that [[p]](d) differs from [[q]](d).

Such a q will be said to have been “killed.” We construct p so every q ∈ Q will be
“killed” at some stage during p’s computations, thus making p ∈ Q impossible. This is
done by inverting q’s output for some input d, so [[p]](d) = true if [[q]](d) = false and
false otherwise.

The following shows that there exist problems arbitrarily hard to solve, no matter what
algorithm is used. The result is stronger than Theorem 19.3.1 since the lower bound on
run time applies to all but finitely many inputs.

Theorem 20.2.1 For every total recursive function g : IN → IN there exists a total
recursive f : IN→{true,false} such that if f = [[p]] for any program p, then tp(n) > g(n)
for all but finitely many n ∈ IN . 2

Proof. The proof uses some ideas from the proof of Levin’s theorem 20.1.2. We
assume that the reader is familiar with this, and now just give a sketch. Let p0,
p1, p2,. . . enumerate all I-programs. Program pk can be generated by code start;

next;...; next with k occurrences of next (as in the proof of Levin’s theorem).
Call program p “quick on m” if tp(m)≤ g(m). Our goal is to find a function f such

that f = p implies p /∈ Q, where Q is the set of programs that are quick on infinitely
many inputs. This is done progressively. The value of any f(n) is computed in stages:
for each m = 0,1,2, . . . ,n we construct two sets

Deadm = Those programs pk that have been “killed” so far
Quickm = All programs pk with k ≤m that are not in Deadm−1

and are “quick” on m



308 The Existence of Optimal Algorithms (by A. M. Ben-Amram)

read n;
Dead := ∅; (* Programs that have been killed *)
for m := 0 to n do (* Compute f(0), ...,f(n) *)
Quick := ∅; (* Programs that run with time <= g *)
for k := 0 to m do (* Iterate on different inputs *)
if k /∈ Dead and tpk(m)≤ g(m) (* Collect unkilled pgms *)
then Quick := Quick ∪ {k}; (* quick on input m *)

if Quick 6= ∅ (* Now compute f(m) *)
then k := the smallest index in Quick;

Dead := Dead ∪ {k};
Quick := Quick \ {k};
Answer := ¬[[pk]](m) (* The value of f(m) *)

else Answer := true;
(* End of all the loops *)

write Answer

Figure 20.2: A function that is hard to compute.

The set sequences will be monotone: r ≤ s implies Deadr ⊆ Deads and Deadr ∪Quickr ⊆
Deads∪Quicks.

The value of f(n) will be made different from pk(n) where k is the smallest index in
Quickn, assuming this set is nonempty. Function f is (by definition) computed by the
program of Figure 20.2. This program reads n, then computes Deadi,Quicki,f(i) in turn
for i = 0,1, . . . ,n, and finally writes f(n). It is evident that f is total.

In the program (which omits the subscripts on Quick and Dead) any index k such
that tpk(m)≤ g(m) for some value k ≤m≤ n will be entered into Quick, unless already in
Dead.

For each n, the value of f(n) is defined so as to make f 6= [[pk]] for a new pk in Quick.
(This happens provided Quick is nonempty, which will occur infinitely often.) When
program pk has been killed, it is removed from the set Quick and placed in set Dead.

Suppose now that f = pr. By construction [[pk]] 6= f for every element k put into Dead,
so r is not in any set Deadm. Suppose further that program pr is fast on infinitely many
inputs. Then it is also fast on infinitely many inputs n0,n1, . . . larger than r (see Figure
20.3 for a pictorial representation). For every one of these of these, r will be entered
into Quickni

(since r is not in Deadni
). Eventually r will be the smallest index in some

Quickni
, at which point it will be added to Deadni

. A contradiction arises because of the
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Figure 20.3: Program pr is quick infinitely often.

assumption that f = [[pr]]:

f(ni) = Answer = ¬[[pr]](ni) = ¬f(ni)

2

20.3 Blum’s Speedup Theorem

Theorem 20.3.1 For any total recursive function h there exists a total recursive func-
tion f such that for any program p computing f , there is another program p′ such that
f = [[p]] = [[p′]], and for all but finitely many d ∈ ID

timep(d)≥ h(time
p
′(d))

To appreciate the significance of this theorem, let h be a “fast growing” function such
as 2n. The theorem says that there is a function f such that, for every program p0 you
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choose for computing f , there is an infinite sequence of programs p1, p2,. . . which all
compute f , and such that every pi+1 is exponentially faster than pi for all but finitely
many inputs. Interestingly, the proof shows the existence of these programs, but it can
also be shown that there is no algorithm which can construct a pi+1 from pi.

Proof. The proof of Blum’s theorem uses some ideas from the proof of Levin’s theorem
20.1.2 and some from Theorem 20.2.1. We assume that the reader is familiar with them,
and now just give a sketch.

We further assume the “speedup” function h to be time-constructible. This is no
loss of generality, since a time-constructible function always exists “above” h (see Ex-
ercise 19.8). Further, we assume that h(n) ≥ 2n for all n, and h is monotone. We let
h(k)(x) = h(h(. . .h(x) . . .)) with k applications (and h(0)(x) = x).

We now describe a “diagonalizing” program blum and define f = [[blum]]. In the
construction below, we use the STEP macro to simulate programs concurrently in the
manner of Section 20.1, with two modifications.

First, the checking phase using the program r is irrelevant to the current construction.
Secondly, we modify the computation of the number of steps t. In the proof of Theorem
20.1.2, t began at 1 and was doubled after every round of simulation, so that on iteration
n, we performed 2n−k interpretation steps on behalf of pk. In the current construction,
t will be replaced at the end of each round by h(t), so pk is interpreted for h(n−k) steps.

On input n, the main task of program blum is to compute a set Deadn⊆{0,1,2, . . . ,n}.
By computing a set we mean, creating a list of its elements (in nili notation). Note that
checking whether k is in the set, using this representation, takes O(n2) time.

Computation of Deadn. If n = 0, Deadn is empty. For n > 0 compute Deadn−1 first.
Next, perform precisely n iterations of the following generate-and-simulate loop. During
the loop, we maintain a list Quickn of programs to be “killed”. Initially Quickn is empty.
Iteration m will process programs pk for k = m,m−1, . . . ,1,0 as follows:

1. Run pk on input m for a “time budget” of at most t = h(m−k)(1) steps.

2. If k /∈ Deadn−1 and pk stops on m with output y, then add k to Quickn.

3. Replace k by k−1, and change the time budget to t := h(t) = h(m−(k−1))(1) steps.

Once n iterations have been completed, we define Deadn as follows: if list Quickn is
empty, Deadn = Deadn−1. If it is not, Deadn is Deadn−1 plus the lowest index that
appears on Quickn (note that it is necessarily not in Deadn−1).
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read n;
Dead := ∅; (* Programs that have been killed *)
for m := 0 to n do (* Compute f(0), ...,f(n)
*)
Quick := ∅; (* Programs to be killed *)
T := 1; (* Time budget t = h(m−k)(1) for k = m

*)
for k := m, m-1,...,0 do (* Iterate on different inputs *)
if k /∈ Dead and tpk(m)≤ T (* Collect unkilled pgms *)
then Quick := Quick ∪ {k}; (* that stopped in time *)
T := h(T); (* Increase time budget and decrease k *)

if Quick 6= ∅ (* Now compute f(m)
*)
then k := the smallest index in Quick;

Answer := ¬[[pk]](m); (* The value of f(m) *)
Dead := Dead ∪ {k};
Quick := Quick \ {k}

else Answer := true;
(* End of all the loops *)

write Answer

Figure 20.4: A program to compute Blum’s function.

Completion of the program. The program is completed by removing from Quickn

the smallest index k, and “killing” program pk by setting the output of blum to true if
pk on input n yields false, and false otherwise. Figure 20.4 contains this algorithm in
program form.

Time analysis. Clearly h(k)(1)≥ 2k. Thus the “budget” for pk in iteration n is bk(n) =
h(n−k)(1).

Claim 1: Let p be any I program such that [[p]] = [[blum]]. Then (∃k) tp(n) > bk(n) for
all but finitely many n.
Proof : Since the enumeration pi includes all I programs, there is a k so that p = pk.
Assume to the contrary that tp(n)≤ bk(n) for infinitely many values of n. In particular,
infinitely many such values are larger than k. For each such value, the generate-and-
simulate loop will generate p and find that it terminates within its budget of bk(n) steps.
Hence it will put it on Quick (unless it has been killed already). Since for every n,
the lowest index on Quick is killed, k will eventually be killed. This contradicts the
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hypothesis that [[p]] = [[blum]].

Claim 2: The running time of the iteration that computes Deadn from Deadn−1 is
bounded by c2h

(n+1)(1) where c2 is a constant.
Proof : This is rather similar to the analysis for Levin’s theorem. It is straightforward
fromthe estimations already performed, since we used the generate-and-simulate loop,
and only added the effort of lookup in Dead for programs that terminate; this effort takes
at most O(n3) time, which (due to the growth rate of h) is bounded by c1h

(n+1)(1) for
an appropriate constant c1.

Claim 3: For every k ≥ 0 there is a program blumk such that [[blumk]] = [[blum]] and
tblumk

(n)≤ h(n−k−1)(1), for all but finitely many n.
Proof : Let k0 = k + dlogc2e+3. Let n0 be a value of n such that no program among
p0,p1,p2, . . . ,pk0 is killed for n > n0 (observe that such an n0 always exists). Pro-
gram blumk is a “shortcut” version of program blum, that skips the computation of
Dead0,Dead1, . . . ,Deadn0 . Instead, it has Deadn0 initialized as a quoted constant. This
actually only helps if the input n is larger than n0; for n≤ n0 the program does the same
as blum. However for larger n the time of computing Deadn0 is saved.

Also, in the generate-and-simulate loops for n0 +1,n0 +2, . . . ,n it is not necessary to
simulate pj for any j ≤ k0 (this follows from the definition of n0). We next compute the
running time of blumk for n > n0.

A simple modification of Claim 2 above shows that the iteration that computes
Deadn from Deadn−1 now runs in time c2h

(n+1−k0)(1). Summing over the iterations
for Deadn0+1,Deadn0+2, . . . ,Deadn we obtain the bound:

c2

n∑
i=n0+1

h(n+1−k0)(1) ≤ c2h
(n+2−k0)(1)

≤ 2k0−k−3h(n+2−k0)(1)

≤ h(k0−k−3)
(
h(n+2−k0)(1)

)
≤ h(n−k−1)(1)

This completes the proof of the claim.
We are ready to complete the proof of Theorem 20.3.1 (modulo the simplifying frame-

work). Let p = pk be an arbitrary program such that [[p]] = [[blum]]. Using Claim 3 we
obtain a program blumk such that [[blumk]] = [[p]], and for all but finitely many values of
n,

tblumk
(n)≤ h(n−k−1)(1)
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On the other hand, by Claim 1,

tp(n) > bk(n) = h(n−k)(1)

Combining the last two inequalities and using monotonicity of h, we get

tp(n) > h(tblumk
(n))

and the proof is complete. 2

20.4 The Gap Theorem

The Gap theorem shows that for an arbitrarily chosen computable increase in time
bounds, there exist functions such that applying the increase to the bound does not
enlarge the class of decidable problems (in sharp contrast to the hierarchy results of the
last chapter). The theorem provides such a function that satisfies a pair of conditions,
one an arbitrarily chosen computable lower time bound g and another, h, that defines
the amount of increase to be applied.

Theorem 20.4.1 The Gap Theorem. For any (arbitrarily large) total recursive func-
tions g : ID→ IN and h : IN → IN such that (∀n)h(n) ≥ n, there is a total recursive
function t : ID→ IN such that (∀d) t(d)≥ g(d) and for every I program p we have

timep(d)≤ h(t(d)) =⇒ timep(d)≤ t(d)

for all but finitely many values d.

Thus, time bound h◦t is not “stronger” than t when infinitely many inputs are considered.
Note that by the assumption on h, we have h◦ t≥ t, so the statement is significant. We
say that there is a complexity gap between t and h◦ t.
Proof. First define a macro TEST that accepts as input a tree variable X and an integer-
valued variable N , and gives a Boolean result. Macro TEST generates I programs
p1,p2, . . . ,pj until pj = X (this will happen because our enumeration process generates
all trees). Using the timed interpreter from the previous chapter, TEST runs each gener-
ated program for at most h(N) steps on X. If any of these programs terminates within s

steps where N < s≤ h(N) the result of TEST is false. Otherwise it’s true.
We now use the macro TEST to write a program that computes a function t : ID→ IN .

On input X, the program computes n = g(X), then repeatedly applies TEST to X and
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N = n,n+1,n+2, . . . until true is obtained. The result, t(X), is the last value of N . We
claim that function t is total, and satisfies the theorem.

Proving that t is total amounts to showing that the loop in the program will always
terminate, i.e., that TEST eventually yields true. To this end, note that all the calls to
TEST run the same set of programs on the same input, X. Among these programs, some
may terminate on input X, while others do not. Let τ be the largest number of steps
that a program that does terminate takes to do so. Then unless the loop stops for some
N ≤ τ , it will surely stop for N = τ +1 (the reader may care to verify this).

To prove that t satisfies the theorem, suppose that for some program p, timep(d) ≤
h(t(d)). Suppose that p = d or appears before d in the enumeration of trees; then p is
among the programs enumerated by TEST in computing t(d). Note that t(d) is defined as
a value of N for which TEST yields true. This means, that timep(d)≤ t(d), for otherwise
TEST would have yielded false.

We conclude, that timep(d)≤ h(t(d)) =⇒ timep(d)≤ t(d), except possibly if p appears
later than d in the enumeration of trees. But this case applies to finitely many d. 2

The statement of the Gap theorem would not be very surprising if, when we relate the
time bound t(d) to the size of d, we find that t does not grow monotonically with |d|
but keeps oscillating up and down. For then h◦ t would also be such an oscillating func-
tion, and why would any program have a running time that is “sandwiched” between
such strange bounds? Actually the gap feature is not restricted to such functions. Ex-
ercise 20.8 shows, that the theorem can be modified to guarantee that t is monotone
increasing in |d|.

Another natural question to ask is, where do we find these strange time bounds?
For instance, could they be polynomial? Versions of the Gap theorem that describe the
growth rate of the function t have been proven, but are beyond the scope of our book.
However, exercise 20.9 gives an illustration of the fact, that these functions would in
general be very fast-growing.

Exercises

20.1 The proof of Levin’s theorem assumes program q to be coded in language I, while
opt is a WHILE program. Explain why this discrepancy does not affect the result. 2

20.2 * What is the space complexity of opt? In particular, how does it relate to the
space consumption of a given program q for the problem in question? 2
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20.3 Suppose we change every “semi-decidable” in Levin’s theorem to “decidable,” and
require r to halt on every input, with some appropriate convention to signal whether the
checking was successful or not. Would then opt halt always? 2

20.4 Prove a version of Levin’s theorem for space complexity (it suffices to explain the
differences from the given proof). 2

20.5 Give an upper bound on the time required to compute function f in Theorem
20.2.1. 2

20.6 * Extend the proof of Blum’s theorem to cover arbitrary inputs. 2

20.7 Section 20.3 claimed that Blum’s theorem establishes the existence of a faster
program p′, but there is no algorithm to construct it, given p. However, from the proof
of the theorem we know that blumk+1 is that faster program. Why doesn’t the proof
imply an algorithm to obtain the faster program? In other words, why is the construction
of blumk+1 not effective? 2

20.8 Modify the proof of Theorem 20.4.1 to ensure that function t will increase when
|d| is increased. 2

20.9 * Let us restrict attention to time bounds which only depend on the size of the
input, t(d) = f(|d|). Demonstrate that for some constant a > 0, it is not possible to find
such a time bound t such that there is a “gap” between t and at, and 0 < f(n) ≤ n2.
Hint: Design a program p1 such that for every odd n and 0 < i≤ n

(∃d) i < timep1(d)≤ ai

for an appropriate constant a. Design another program p2 whose time similarly lies
between in and ain. Show, that for t,f as above, and for infinitely many inputs, one
of these programs will have its running time inside the intended “gap.” Remark: It is
actually possible to generalize this result to any polynomial function of n (instead of n2).

2
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21 Space-bounded Computations

We have hitherto emphasized computation time. There is a similar but somewhat differ-
ent way to classify problems according to how much memory space is required to solve
them. For simplicity of exposition we limit ourselves to imperative languages in which
a computation is a linear sequence of states, i.e. all the languages seen so far except the
functional languages1.

For the computation models of Chapter 7 the input is contained in the initial store,
which always has length at least |d|, i.e. space linear in the size of the input. In other
words, there are no problems solvable in sublinear space in the models given earlier.

In general, linear space decidable sets can take exponential time to decide; and no
better bound is known (see Theorem 21.5.2). This time bound is intractable, i.e., well
beyond the running time of practically usable algorithms. This motivates a study of
space bounds that are small enough to give running times closer to practical interest,
i.e., the study of space bounds smaller than |d|, the length of the input d.

A solution to this problem is to use “offline” models that allow only read-only access
to an input value d and, when measuring program space consumption, to count only the
“workspace” that is used beyond the input length. (This is intuitively reasonable, since
read-only input will remain unchanged during the entire computation.) For the moment
we are only interested in decision problems expressible by a yes-no answer, and not in
computation of functions.

In order to study space-bounded computations, we will equip Turing, counter, or ran-
dom access machines with a read-only input, instead of the earlier device of incorporating
the program input value into its initial state. A motivation is that it will become possible
to analyse computations in sublinear space, i.e. using space smaller than the size of the
program input, thus bringing space-limited computation nearer practically interesting
problems than before.

The models will later be extended to allow output as well. This will be write-only,
symmetric with the read-only restriction on input, in order to maintain the separation of
work storage from storage used for input-ouput data. Classes of functions computable in
limited space analogous to the above time-bounded decidable classes will turn out to be
quite useful for investigating complete, i.e. hardest problems for the various complexity

1Functional languages can also be classified spacewise, but require more subtle definitions because of

implicit space usage caused by recursion.
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classes. Of special use will be those computable in logarithmic space.

21.1 Space-bounded computation models

21.1.1 Space measures for imperative machine models

The following is to be regarded as a generic definition, parametrized by the definition of
state space or size used for the various machine types. Precise definitions of these will
be given shortly.

Definition 21.1.1 Let p = 1 : I1 . . .m : Im be any imperative program in some language
L, and let p ` s1→ s2→ . . .→ st be a terminating computation with s1 = (1,Readin(d))
for some input value d ∈ L−values. Then by definition (parametrized on the length |s|
of a state s):

spaceLp(d) = max{|s1|, |s2|, . . . , |st|}

Turing machine space usage is the standard used to define space-bounded computation.
First, we define this for the multitape Turing machines seen earlier in Section 7.3.

Definition 21.1.2 Let p be a k-tape Turing machine program. We define the length of
a state s = (`,σ), where ` is the instruction counter and σ = (L1 S1 R1, . . . ,Lk Sk Rk) is a
k-tuple of tapes, to be

|s|= max(|L1S1R1| , |L2S2R2| , . . . , |LkSkRk|)

2

21.1.2 Some read-only machine models and their space or size

usage

The read-only Turing machine variant has read-only access to its input d. Further, only
the “workspace” that is used beyond the input data will be counted. (This is intuitively
reasonable, since read-only input will remain unchanged during the entire computation.)
A pictorial representation may be seen in Figure 21.1.

Definition 21.1.3 A read-only Turing machine TMro is a two-tape Turing machine
whose input is a string d in {0,1}∗. Its instructions are as follows, where subscript
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...B B a1 a2...an B B ... Tape 1 (input)

6

?

...B 0 0 1 1 1 1 B ... Worktape (initially blank)

Finite
state
control
(program)

p

Figure 21.1: An offline Turing machine.

u = 1 indicates that the two-way read-only input tape 1 is involved; or u = 2 indicates
that the two-way read-write work tape 2 is involved. Instruction syntax is as follows:

Tape 1: I ::= right1 | left1 | if1 S goto ` else `′

Tape 2: I ::= right2 | left2 | if2 S goto ` else `′ | write2 S

Symbols: S ::= 0 | 1 | B

A tape together with its scanning position will be written as . . .BL1S1R1B . . ., where the
underline indicates the scanned position. We assume the program never attempts to
move right or left beyond the blanks that delimit the input, unless a nonblank symbol
has first been written2.

We define the length of a read-only TMro state s = (`,σ), where ` is the instruction
counter and σ = (. . .BL1S1R1B . . ., . . .BL2S2R2B . . .), to be |s|= |L2S2R2|, formally expressing
that only the symbols on “work” tape 2 are counted, and not those on tape 1. 2

Definition 21.1.4 A read-only counter machine CMro is a register machine whose input
is a string d in {0,1}∗. Input access is by instruction if InCi = 0 goto ` else `′, which
tests symbol ak in input d = a1a2...an indirectly: index k is the value of counter Ci.
Data initialization sets counter C0 to n, giving the program a way to “know” how long
its input is.

I ::= Ci := Ci + 1 | Ci := Ci .- 1 | Ci := Cj

| if Ci=0 goto ` else `′ | if InCi=0 goto ` else `′

2This condition simplifies constructions, and causes no loss of generality in computational power, or

in time beyond a constant factor.
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Storage has form CMro-store = (d,σ) ∈ {0,1}∗×{ σ | σ : IN → IN} where d is the input
data and σ(i) is the current contents of counter Ci for any i ∈ IN . The counter values σ

are initialized to zero except for C0: initially,

σ = [0 7→ |d|,1 7→ 0,2 7→ 0, . . .]

A state has form s = (`,(d,σ)), where ` is the instruction counter. The effect of instruction
execution is as expected from the syntax, plus definition of the effect of instruction if

InCi=0 goto ` else `′. Informally: if 1≤ i≤ n and aσ(i) = 0 then control is transferred
to I`′ , else to I`′′ .

We define the space of a read-only CMro state s = (`,(d,σ)) to be

|s|=
∑

σ(i) 6=0

log(σ(i))

where logv is the number of bits required to represent v. This formally expresses that
only the space usage of nonempty registers (measured in bits) is counted. 2

Remark: This differs slightly from the counter machines seen earlier in Section 7.4, in
that input is a bit string instead of a number.

21.1.3 Comparing ordinary and read-only machines

The following easily proven propositions assert that, as far as space usage is concerned,
multiple tapes are only essential when considering computations that use space less than
the length of the input.

Proposition 21.1.5 For any k-tape Turing machine p such that spaceTMp (d)≥ |d| for any
input d, there exists a 1-tape Turing machine q with [[p]]TM = [[q]]TM and a constant a such
that spaceTMq (d)≤ a · spaceTMp (d) for any input d.

Corollary 21.1.6 If p is a read-only Turing machine such that spaceTMrop (d)≥ |d| for all
inputs d, there is a 1-tape Turing machine q with [[p]]TMro = [[q]]TM, and a constant a such
that spaceTMq (d)≤ a · spaceTMrop (d) for any input d ∈ {0,1}∗.

Proof. Exercises 21.1 and 21.2. 2

Essentially the same results hold for counter machines. Hints for the straightfoward
proofs are give in Exercises 21.3, 21.4.
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Proposition 21.1.7 For any counter machine p as in Section 7.4 there exists a read-only
counter machine q and a constant a such that for any input v ∈ IN :

[[q]]CMro(cIN (v)) = cIN ([[p]]CM(v)) and spaceCMroq (cIN (v))≤ a · spaceCMp (v)

Proposition 21.1.8 For any read-only counter machine p such that spaceCMrop (d) ≥ |d|
for any input d, there exists a counter machine q as in Section 7.4 and a constant a such
that for any input v ∈ IN :

cIN ([[q]]CM(v)) = [[p]]CMro(cIN (v)) and spaceCMq (v)≤ a · spaceCMrop (cIN (v))

21.1.4 Space-bounded classes of programs and problems

Definition 21.1.9 Given programming language L and a total function f : IN → IN , we
define classes of space-bounded programs by

1. Lspace(f) = {p ∈ L-program | spaceLp(d)≤ f(|d|) for all d ∈ L-data}

2. Llogspace =
⋃∞

k=0 L
space(λn.k logn)

3. Lpspace =
⋃

f apolynomial L
space(f)

The corresponding classes of problems solvable within limited space are easy to define:

Definition 21.1.10 Given programming language L and a total function f : IN → IN

1. The class of problems L-decidable in space f is:

spaceL(f) = {A⊆ L-data | A is decided by some p ∈ Lspace(f(n)}

2. The class of problems L-decidable in logarithmic space is:

logspaceL = {A⊆ L-data | A is decided by some p ∈ Llogspace}

3. The class of problems L-decidable in polynomial space is:

pspaceL = {A⊆ L-data | A is decided by some p ∈ Lpspace}
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21.2 Comparing space usage of Turing and counter

machines

We now show that Turing machines and counter machines are equivalent as regards space
usage. First-time readers may skip this section without loss of continuity.

Theorem 21.2.1 For any f with f(n)≥max(logn,1)⋃
c

spaceTMro(cf) =
⋃
d

spaceCMro(df)

Corollary 21.2.2 For any f with f(n)≥ n⋃
c

spaceTM(cf) =
⋃
d

spaceCM(df)

Proof. The corollary is immediate from Theorem 21.2.1 and the preceding propositions.
Two constructions follow to prove Theorem 21.2.1, one building from an f -space-bounded
Turing machine program a corresponding counter machine operating in the desired size
bound, and another construction in the opposite direction. We leave it to the reader to
verify that the constructed programs decide the same sets as their sources, that is that
the simulations are faithful. This should not be surprising, as each program simulates
the operations of the other in exactly the same order, so it is only important to verify
that the desired space bounds are preserved, and that the two programs’ states continue
to correspond properly. 2

Construction 21.2.3 A ∈ spaceTMro(cf) implies A ∈
⋃

d spaceCMro(df)).

Representation of TMro storage in a CMro program. A TMro total state is

s = (`, . . .BL1S1R1B . . ., . . .BL2S2R2B . . .)

where ` is the instruction counter. Assume A ∈ spaceTMro(cf). Clearly the scan-
ning positions on both tapes can be represented by counters, each no larger than
2 + max(n,cf(n)) ≤ 22cf(n). The idea of the simulation is to represent the work tape
contents by two counters, each no larger than 22cf(n), and to simulate operations on
both tapes by corresponding counter operations.

A work tape containing b1. . . bi. . . bm where m≤ cf(n) can be represented by a pair
of numbers l, r, where
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• l is the value of b1. . . bi as a base 3 number (counting B as digit 0, 0 as digit 1, and
1 as digit 2), and

• r is the value of bmbm−1. . . bi+1, also as a base 3 number.

The work tapes are initially all blank, so l = r = 0 at the simulated computation’s start.
Since m≤ cf(n), we have

l, r ≤ 3cf(n) ≤ 4cf(n) = 22cf(n)

Putting these together, we have two counters to represent the input and work tape
scanning position, and two counters to represent the work tape contents. The effect of
moving a work tape head right one position can be simulated by arithmetic operations:

l := 3 · l+(r mod 3)
r := r÷3

and similarly for moving left. It is easy to see that these operations can be done by
counters. Testing the scanned square’s contents amounts to a test on l mod 3, also easily
done.

These counters are all bounded in size by 22cf(n) and so by 2cf(n) bits; and collec-
tively represent the Turing machine’s total state. Each Turing machine operation can be
faithfully simulated by operations on counters, concluding the construction. 2

Construction 21.2.4 A ∈ spaceCMro(df) implies A ∈
⋃

c spaceTMro(cf):

Representation of CMro storage in a TMro program. Suppose p is a CMro program,
and d = a1a2 . . .an is an input. The CMro input a1a2...an will be present on tape 1 of
the TMro.

The TMro code to simulate p will represent each variable Ci by a block of bits on
the work tape containing the binary representation of value j of Ci. Some TM data
initialization is needed, as the initial value of counter C0 is n. It is easy to write TM code
to accomplish this; the main task is to construct the binary representation of value n

(which occupies logn bits, whence the lower bound on f).
Each CMro counter C1, C2,. . . ,Ck is assumed to have length at most df(n) bits. One

may think of having as a new symbol the marker 2, so the work tape form would be

...B B Block1 2 Block2 2...2 Blockk B B...
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The same effect can be achieved without the extra symbol 2 by a simple data encoding
into 0, 1, at most doubling the tape space. Since there is a fixed number k of CMro

variables, the total amount of work tape storage, including markers to separate the
blocks, is at most a constant times f(n) bits, as required.

Each CMro operation is straightforwardly simulable by the Turing machine. For ex-
ample, command if InCi=0 goto ` else `′ can be realized by steps:

• Locate the block containing the value j of Ci, and copy it into another block for
use as a counter c.

• If 1≤ c≤ n then continue, else goto the code simulating `.

• Move to the left end of input tape 1 containing a1a2...an.

• If c = 1, the input symbol aj has been found and may be tested for zero.

• If c > 1 then decrement it by 1, scan forward one symbol on the input tape, and
repeat from the previous step. 2

21.3 Relation of logspace to counter machines and

ptime

Corollary 21.3.1 logspaceTM = logspaceCM

Proof. Immediate from Theorem 21.2.1. 2

Corollary 21.3.2 logspace ⊆ ptime

Proof. Suppose A ∈ logspace is decided by some Turing machine p with m instructions
in space k logn for some k and all inputs of length n. Then p cannot run for more than
m · (n+2) ·3k logn steps, else it would have repeated a state and so be in an infinite loop.
This expression is certainly polynomial-bounded, since alogn = nloga for any a,n > 0, and
so 3k logn = nk log3. 2

21.4 Robustness of pspace

Theorem 21.2.1 gives a pleasingly tight connection between the space used by Turing
machine computations and the sizes of counters used by counter machines solving the
same problems. Further, any counter machine is also a RAM, so we now briefly consider
the translation compiling RAM to TM from a memory usage perspective.
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The amount of Turing machine tape used by a translated program can be assumed to
be bounded by the sum of the lengths and addresses of the nonzero RAM memory cells3.
Now every nonconstant address must have first appeared in a register; so if the RAM

program uses at most space f(d) bits of storage on input d, then the simulating Turing
machine uses at most linearly more space.

From this (informal) argument we can conclude pspaceTM = pspaceCM = pspaceRAM.
Therefore we henceforth often write pspace rather than pspaceTM.

Extending this result to GOTO programs has some complications that require a more
subtle implementation; the complications and an alternate implementation are sketched
below.

Storage usage in GOTO programs.

The original tree-based semantics gives unrealistically high space measures for two rea-
sons. First, the tree model did not account for sharing, whereas an assignment such as
X:=cons X X should clearly not double the memory assigned to X.

A second problem is that even if the more realistic DAG model of Section 17.1.1 is
used, it often happens that nodes become inaccessible. For example, consider the trans-
lation compiling a Turing machine program to an equivalent GOTO seen in Section 18.2.
Without accounting for unreachable nodes, this would require space roughly proportional
to the simulated Turing machine’s running time, since every tape head motion is simu-
lated by a cons. This is far in excess of what seems reasonable. The following seems to
be a fairer definition:

Definition 21.4.1 A space measure for the flow chart language GOTO: Consider the se-
mantics of Section 17.1.1 in which the store σ is a DAG (δ,ρ) where ρ maps Vars(p) to
nodes, and δ is a DSG that specifies the structure of the DAG. By definition, the size |σ|
of such a store is the number of nodes in the dag that can be reached from some node
variable, that is the number of nodes reachable via δ from the entry nodes in the range
of ρ.

3Using the construction of Chapter 8 , this could only fail if the RAM repeatedly stored first a nonzero

value, and then 0, in a great many cells. This would create many useless but space-consuming blocks

on the Turing machine’s tape. The problem is easy to circumvent; each time a register-changing RAM

instruction is performed, the simulating Turing machine checks to see whether the new value is zero.

If so, the address and value are removed from address and contents tapes, thus “compacting” the tape

storage. This yields the desired space bound.
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Storage in the TM to GOTO to RAM translations.

In the translation compiling TM to GOTO, the number of DAG nodes accessible from
variables can be seen to be proportional to the sum of the lengths of the tapes of the
Turing machine being simulated. Consequently pspaceTM ⊆ pspaceGOTO.

In the translation compiling GOTO to SRAM, the number of accessible SRAM memory cells
is proportional to the DAG size since the implementation simply realizes the DAG as
described. On the other hand, the implementation as sketched does not perform garbage
collection. Revising the implementation to do this would give pspaceGOTO ⊆ pspaceRAM

and thus

pspaceGOTO = pspaceRAM = pspaceTM = pspaceCM

21.5 Relations between space and time

Proposition 21.5.1 timeTM(f)⊆ spaceTM(f) for any f . Consequently ptime⊆ pspace.

Proof. timeTM(f) ⊆ spaceTM(f) is obvious, since a TM-program p that runs in time
bounded by f(|d|) cannot write on more than f(|d|) tape cells. Thus spaceTMp (d)≤ f(|d|)
by Definition 21.4.1 so

pspaceTM ⊇ ptimeTM = ptimeSRAM = ptimeGOTO.

2

Theorem 21.5.2 If f(n)≥ n for all n then

spaceTM(f)⊆
⋃
c

timeTM(cf )

Proof. We show that if a one-tape Turing machine program p runs in space f and
terminates on its inputs, then it also runs in time cf for appropriate c.

Clearly p cannot repeat any computational state s = (`, . . .BLSRB . . .) in the com-
putation on input d, since if this happened, p would loop infinitely on d. So to prove
our result it suffices to show that a terminating program running in space f has at most
cf(|d|) different states for some c.

Consider any computational state s reachable on input d. By the assumption on p,
|LSR| ≤ f(|d|). The total number of possible values of the nonblank tape contents LSR
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with this space bound is bounded by 3f(|d|), since each symbol in LSR must be 0, 1, or
B. Further, the scanning position where S is located has at most f(|d|) possibilities.

Combining these bounds, the total number of different possible values of the tape,
including both tape scanning position and contents, is bounded by

f(|d|) ·3f(|d|)

Now n≤ 2n for all n≥ 1, so by the assumption that f(n)≥ n we have

f(|d|) ·3f(|d|) ≤ 2f(|d|) ·3f(|d|) = 6f(|d|)

Finally, a total configuration of program p includes the control point and the state of its
tape. The number of these is bounded by (|p|+1) · 6f(|d|) ≤ cf(|d|) for all d where, for
example, c = 12|p| will do since

(|p|+1) ·6f(|d|) ≤ (2|p|)f(|d|) ·6f(|d|) = (12|p|)f(|d|)

Since no state in p ` s0→ s1→ . . .st→ st+1 . . . can be repeated, the running time of p is
bounded by cf(|d|). Thus A lies in time(cf(|d|)). 2

21.6 Functions computable in logarithmic space

For later usage in Chapter 26 (and for the sake of curiosity), we show that a number of
familiar functions can be computed in logarithmic space. The read-only Turing machine
has binary integers as inputs (multiple entries are separated by blanks), and is now
assumed equipped with a one-way write-only output tape to write function values.

Proposition 21.6.1 The following functions f : {0,1}∗→{0,1}∗ are Turing computable
in space logn:

1. λ(x,y) .x+y,λ(x,y) .x .−y,λ(x,y) .x≤ y

2. λ(x,y) .x ·y
3. f(x1,x2, . . .xn) = the same sequence sorted into nondecreasing order

Proof. Exercises 21.5, 21.6, 21.7.

Lemma 21.6.2 The following statements about a function f : {0,1}∗ → {0,1}∗ are
equivalent, provided |f(d)| is bounded by some polynomial p(|d|) for all d:
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1. f is Turing computable in space k logn for some k.

2. The following function is Turing computable in space k′ log |d| for some k′:

λ(i,d) .the i-th bit of f(d)

Proof. To show 1 implies 2, suppose f is Turing computable by program p in space k logn

with input X, and that it produces its output on a third tape by executing a series of
instructions of form write3 Z. The idea is simply to produce the bits of f(d) = [[p]](d),
one at a time, but to ignore them until the i-th bit has been produced, at which time
that bit is written.

Add to p an extra input variable I and a counter variable C, and prefix p’s code by
the following:

if I > p(|X|) then stop; Otherwise:
read I; (* from input tape (I.X) into memory *)
C := 0; (* initialize bit counter *)

(nil is written for a nonexistent bit.) Because of the polynomial bound on |f(d)|, variable
I, if stored, will not require more than O(logp(|d|)) bits. This is bounded by a constant
times log |d|. To complete the construction, replace every instruction write3 Z in p by
the following:

C := C + 1;

if C = I then write3 Z and stop;

To show 2 implies 1, let program p compute λ(i,d) .the i-th bit of f(d). Embed it in a
program q of form:

for C := 1 to p(|d|) do

{ B := p C Input; if B = 0 or B = 1 then write3 B }

The idea is to write the bits of f(d) = [[p]](d), one bit at a time in order, by computing
the i-th bit of f(d) for i = 1,2, . . . ,p(|d|)) and printing its results.

The expression p C Input above is realized by running p, modified to take the Input
part of its argument from the read-only tape, and the C part from the work tape. 2

Theorem 21.6.3 If f,g are both computable in space logn then so is f ◦g.
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Proof. The obvious approach is simply to compute g(x) and then apply f to this result.
Unfortunately this does not prove the theorem, because g(x) may occupy more that
k logn bits (for example, even if g is the identity function). The problem is that a
logspace f program cannot store all its input on a work tape, but is restricted only to
look at its input one symbol at a time. Our strategy is thus not to store g(x) explicitly
but rather virtually, using the result of Lemma 21.6.2. Let TM-program pf compute f ,
and assume program pg computes

λ(i,x) .the ith bit of g(x)

as in Lemma 21.6.2. We sketch the construction of a 6-tape Turing program r to compute
f(g(x)).

Tape number Tape contents
1 (read-only input) x = a1. . . an

2 Program pf ’s work tape
3 i = scan position on program pf ’s input tape
4 b = program pf ’s scanned input symbol from g(x)
5 Program pg’s work tape

6 (write-only output) Program pf ’s output tape

Figure 21.2: Tape contents for 6-tape Turing program r.

Storage representation r’s tape contents are as shown in Figure 21.2. Initialization
is trivial, as programs pf and pg for functions f and g both begin scanning the blank to
the left of their respective inputs g(x) and x. Thus the only initialization action is to set
i = 0 by writing 0 on tape 3, as all other tapes are initially blank.

Instruction simulation. First, any instructions in program pf of forms right2,
left2, goto ` and if2 S goto ` can be performed without change; and write2 S is
of course simulated by write6 S. Instruction if1 S goto ` can be performed by testing
the contents b of tape 4.

The remaining pf instruction forms are right1 and left1; we only describe the first,
as the other is nearly identical. Instruction right1 is simulated by code to effectuate:

i := i + 1; b := pg x i; (* i = scan position from tape 3 *)
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Finally, it must be seen that this code can be programmed on a Turing machine, and
that the resulting machine r works in logarithmically bounded space.

As to programming, command b := pg x i can be realized by modifying pg’s pro-
gram to use tape 5 as its work tape, and to take its input from tape 1 as long as it is
scanning the x part of its two-part input xBi, and to shift over to reading from tape 3
when reading from the i part.

As to r’s space consumption, let n = |x|. Tape 4 is of constant size, and tape 5 is
pg’s work tape on x and so is logarithmically bounded in n. The value of g(x), which is
pf ’s simulated input, must be bounded by some polynomial π(n) by the running time
argument of Corollary 21.3.2. Thus 0≤ i≤ 1+π(n), so tape 3 is logarithmically bounded
(assuming i to be represented in binary notation). Finally, tape 2 has length at most
k′ log |g(x)| ≤ k′ log(π(n)) = O(logn).

Tape 1 is not counted, and all 4 work tapes are logarithmically bounded. They can
all be combined into one work tape, also logarithmically bounded, which completes the
argument. 2

21.7 Hierarchies of problems solvable in bounded

space

Very similar results to those seen earlier for time bounds can also be proven for space
bounds. The following is analogous to Definition 19.5.2.

Definition 21.7.1 Function f : IN → IN is space-constructible if there is a TM program
f and a constant c > 0 such that for all n≥ 0

[[f]]TM(0n) = bin(f(n)) and spaceTMf (0n)≤ c ·f(n)

Many familiar monotone functions are space-constructible, e.g. all linear functions, all
polynomials, and f +g,f ∗g,fg whenever f,g are time-constructible (Exercise21.8).

Theorem 21.7.2 For one-tape Turing machines: If f is space-constructible there exists
b > 0 such that pspaceTM(bf)\pspaceTM(f) 6= ∅.

Proof. The proof is very similar to that of Theorem 19.5.3 and so is just sketched here.
The technique used is again diagonalization to construct a program diag defining a set
A in pspaceTM(bf)\pspaceTM(f) for suitable b.
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There are, however, some differences. To begin with, we must assume that one-
tape Turing machine programs are encoded as strings over {0,1}∗. The next step is to
construct a self-interpreter that uses such a description of a program by a string. This is
technically rather messy, and has been done in numerous books and articles, so we omit
the details.

The diagonalizing program diag is then a modification of the self-interpreter, just as
in Section 19.5.3. Program diag is constructed so that for any input p ∈ {0,1}∗:

[[diag]](p) =


1 if spacep(p) > f(|p|)

or [[p]](p) does not terminate within limit(p) steps
0 if spacep(p)≤ f(|p|) and [[p]](p) 6= 0

1 if spacep(p)≤ f(|p|) and [[p]](p) = 0

It is of course essential that the diagonalizing program diag terminate on all inputs, and
that it does not use more than bf(|p|) space on input p. Termination can be achieved by
observing that the simulated Turing program p on input d may not run for more than

limit(d) = (|p|+1) ·3f(|d|) ·f(|d|)

steps without entering an infinite loop, since exceeding this limit would imply it had
repeated a total state and so was in an infinite loop. If [[p]](p) has not terminated within
this number of steps, it will never terminate. Thus this value may be used for a variable
Timebound, playing the same role as in Theorem 19.5.3. The code Timebound := tl

Timebound from Section 19.5.3 must thus be replaced by code to perform the binary
number operation Timebound := Timebound - 1.

Space analysis It must also be guaranteed that diag runs in space bf(|d|) for some
b and all d. First, note that O(f(|p|)) space is enough to store Timebound as a binary
number. Second, the space condition above can be checked by monitoring the space
usage of p, rejecting it if it uses more than f(|p|) memory, or more than limit(p) time.
If diag is itself written in a space-economical way as just described, it will not use more
than linearly more space than f(|p|).

Finally, assuming the set decided by diag can be decided by another program in
space not exceeding f(|d|) leads to a contradiction, just as in Section 19.5.3; this proves
the theorem. 2

Theorem 21.7.3 If functions f,g are space constructible, f(n) ≥ n,g(n) ≥ n for all n,
and limn→∞ g(n)/f(n) = 0, then spaceTM(f)\spaceTM(g) 6= ∅.
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Proof. This is very similar in concept to the proof of Theorems 19.5.3 and 21.7.2. 2

Exercises

21.1 Prove Proposition 21.1.5. 2

21.2 Prove Corollary 21.1.6. 2

21.3 Prove Proposition 21.1.7.
This can be done by filling in the details of the following sketch. Given CM program

p, its code can be modified as follows: First, CMro program q scans the symbols of its
input a1 . . .an = bin(v), and computes v = bin−1(a1 . . .an), which it stores into a counter.
It then executes the code of p without modification. A straightforward size analysis of
the values involved shows that this can be done in the required space. 2

21.4 Prove Proposition 21.1.8. This can be done by filling in the details of the following
sketch.

Given CMro program p, its code can be modified as follows: First, q copies input v

into a counter Cv not used by p, and then determines its length n and puts it into counter
C0. This is straightforward using the definition of bin: divide v +1 by 2 repeatedly and
discard the remainder until 0 is obtained; the number of times halving is done is n+1.

Second, p can be simulated stepwise, all instructions that q executes being identical
to those of p with a single exception: InCi=0 goto ` else `′. The value of the needed
bit from bin(v) can be found by repeatedly halving v+1 a number of times equal to the
value of Ci. If the result is positive and even then the bit is 0, else if positive and odd
then 1, else Ci exceeds n. A straightforward size analysis of the values involved shows
that this can be done in the required space. 2

21.5 Prove Proposition 21.6.1, part 1. An informal construction, for instance a sketch
of a Turing machine, will do; just make it clear that the algorithm works, and that all
values involved are logarithmically bounded. 2

21.6 Prove Proposition 21.6.1, part 2. 2

21.7 Prove Proposition 21.6.1, part 3. 2

21.8 Prove that the following functions are space-constructible:
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1. f(n) = an+ b, for non-negative integer constants a and b.

2. f +g, assuming that f,g are space constructible.

3. f ∗g, assuming that f,g are space constructible.

4. fg, assuming that f,g are space constructible. 2
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The earliest work on space-bounded hierarchies is from 1965, due to Hartmanis, Lewis
and Stearns [64, 65]. Early results on sublinear space are found in papers by Savitch,
Meyer, Jones, and Jones, Lien and Laaser [157, 126, 84, 75, 80].





22 Nondeterministic Computations

A nondeterministic program is one that may “guess,” i.e. one whose next-state transition
relation is multivalued rather than a partial function, as has been the case hitherto. This
capacity may be added to any of the imperative computation models already seen by
adding a single instruction form `: goto `′ or `′′. Its semantics is to enlarge the state
transition relation of Figure 7.1 to also allow transitions

(`,σ)→ (`′,σ) and (`,σ)→ (`′′,σ)

Correspondingly, one makes a while program nondeterministic by adding a “choice com-
mand,” for example

C ::= choose C1 or C2

with the natural semantics: Either command C1 or command C2 may be executed.
Note that nondeterministic programs are /em not functional in a mathematical sense:

the same input may give rise to many different computations, some of which may fail to
terminate, and some which may terminate with different outputs.

22.1 Definition of nondeterministic acceptance

Definition 22.1.1 A computation p` s1→ s2→ . . .→ st is accepting if it terminates and
writes the output true. An input d∈ L−data is accepted by nondeterministic program p if
p has at least one accepting computation p ` s1→ s2→ . . .→ st with s1 = (1,Readin(d)).
The set Acc(p)⊆D accepted by p is by definition

Acc(p) = {d ∈ Σ∗ | p accepts d}

This is sometimes called “angelic nondeterminism”: Input d is accepted if there exists
at least one sequence of “guesses” leading to output true, but the definition does not
specify how such a sequence can be obtained. One can think of acceptance as the result
of a search through the tree of all possible comptations on the given input, a search which
succeeded in finding a branch ending in “accept.”

335
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22.2 A simple example: path finding

The problem is, given a directed graph G = (V,E,s, t) with edges E = {(u1,v1),
(u2,v2), . . .} and a source and target nodes s, t, to decide whether there exists a path
from s to t. The following nondeterministic WHILE program sketch assumes inputs s, t,
and that the graph G is given as a list ((u1.v1) (u2.v2) ...(un.vn)) in ID.

read S, T, G;
W := S;

while W 6= T do (* Repeat until (if ever) T is reached *)
Copy := G;
while Copy do (* This chooses an edge at random: *)

choose
Copy := tl Copy (* Either omit the first edge of G’s copy *)

or { Edge := hd Copy; Copy := nil }; (* or keep it *)

if W = hd Edge (* If W = source of chosen edge then *)
then W := tl Edge; (* continue from target of chosen edge *)

write true (* If it gets here, a path was found *)

This straightforward nondeterministic program just “guesses” a path from s to t.

22.3 Resource-bounded nondeterministic algorithms

Time and space usage are also interpreted angelically, taking the least possible values
over all accepting computations:

Definition 22.3.1 Given a computation C = p ` s1 → s2 → . . .st, its running time is
t (its number of states). The space usage of computation C is by definition |C| =
max{|s0|, |s1|, . . . , |st|}. The time usage (space usage) function of program p on input
d is the shortest length (minimum space) of any accepting computation:

timep(d) =min{t | p ` s1→ ·· · → st is an accepting computation on input d}
spacep(d)=min{|C| | C = p ` s1→ ·· · → st is an accepting computation on input d}

Definition 22.3.2 In the following, L- program p may be nondeterministic.

nptimeL = {Acc(p) | timeLp(d)≤ a polynomial p in |d|}
npspaceL = {Acc(p) | spaceLp(d)≤ a polynomial p in |d|}
nlogspaceL = {Acc(p) | spaceLp(d)≤ k log |d| for some k}
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The symbol N in the classes above indicates nondeterminism. Note that, by definition
and in contrast to deterministic computation as defined before, if p fails to accept an
input d then it may enter an infinite loop (though it is not required to do so).

Proposition 22.3.3
ptimeL ⊆nptimeL, pspaceL ⊆npspaceL, and logspaceL ⊆nlogspaceL.

Proof. Immediate since every deterministic program is also nondeterministic, and uses
no more time nor space under the nondeterministic measure than under the deterministic
one. 2

Theorem 22.3.4 Aside from data encoding,

• nptimeTM =nptimeSRAM =nptimeGOTO

• npspaceTM =npspaceSRAM =npspaceGOTO=npspaceCM

• nlogspaceTM =nlogspaceCM

Proof. The constructions seen earlier for deterministic programs can without modification
be applied to the nondeterministic ones. 2

Exercises

22.1 Prove that any set A⊆ {0,1}∗ that is accepted by a nondeterministic Turing ma-
chine p is recursively enumerable.

Hint: Let a choice sequence be a string cs = c1c2 . . . cm ∈ {0,1}∗. For each time step
t in p’s computation, if the current instruction to execute is goto `′ or `′′, interpret ct

as advice on which branch to take: p should take branch `′ if ct = 0, else take branch `′′.
Consider the function

f(d,cs) =

{
d if p accepts d, given choice sequence cs

⊥ if not, or |cs|< timep(d)

First, show that f is computable by an ordinary deterministic Turing machine. Then
argue that the result follows from Theorem 5.7.2. 2

References

The earliest work on nondeterministic space-bounded computation is by Kuroda from
1964 [102], soon followed by Hartmanis, Lewis and Stearns [64, 65]. Edmonds explored
nondeterministic algorithms from a more practical viewpoint [42].





23 A Structure for Classifying the

Complexity of Various Problems

This chapter introduces a wide-ranging sequence of problem classes, and proves them to
be a hierarchy. Many familiar and important computational problems can be located
precisely in this hierarchy, hence the chapter’s title.

It is not yet known, however, which or how many of the inclusions below are proper
ones, for instance whether there exists at least one problem solvable in polynomial time by
a nondeterministic algorithm, but not solvable in polynomial time by any deterministic
algorithm.1 The containments we will establish are:

logspace⊆ nlogspace⊆ ptime⊆ nptime⊆ pspace = npspace

Computation models henceforth

We will henceforth refer to logspace, ptime, etc. without naming the computation
model involved. When time bounds are being discussed, a one-tape Turing machine
will generally be used because of its simplicity, and the “work tape” will refer to its only
tape. When possibly sublinear space bounds are involved, the model will be the read-only
Turing machine, with a read-only input tape and an additional read-rite work tape.

Input format

Turing machine inputs are in principle always strings in Σ∗ = {0,1}∗. It will sometimes
be convenient, however, to represent inputs as strings over an alphabet Σ⊃ {0,1}, e.g.,
with markers or parentheses for the sake of readability. Any Turing machine with such
an extended input tape alphabet can be simulated by one using oonly the symbols 0,1

at the cost of a constant slowdown, and multiplication of space usage by a constant.

23.1 Some convenient normalizations

In this and following chapters many constructions start with a Turing machine program
p, deterministic or nodeterministic, that accepts a set A ⊆ {0,1}∗. These constructions

1This is the famous P = NP? b.
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340 A Structure for Classifying the Complexity of Various Problems

become technically more convenient if we can assume without loss of generality that
program p has been normalized so that acceptance of an input only occurs in a fixed
way, less general than as defined before, and so easier to manage in our constructions.
This is the content of

Proposition 23.1.1 For any Turing machine program p there is a program q = I1. . . Im

such that for any d ∈ {0,1}∗

1. p has a computation that accepts d if and only if q has a computation

Readin(d) = (0,σ0)→ . . .→ (m,σm)→ (m,σm)→ . . .

where the work tape of σm contains 1BB....

2. p has a computation that does not accept d if and only if q has a computation

Readin(d) = (0,σ0)→ . . .→ (m−1,σm−1)→ (m−1,σm−1)→ . . .

where the work tape of σm−1 contains 0BB....

3. In the computations above, q first reaches configurations with label m or m− 1
after using the same space as p on the same input, and time at most a constant
factor larger than that used by p on the same input.

Proof. First, let q be identical to p, but with instructions added at the end of its program
to “clean up” the work tape by writing blanks over all squares except for the answer (0
or 1), and then stopping there. Next, add to q the instructions

m-1: if 0 goto m-1;
m: if 1 goto m

at its end, so q loops infinitely at control point m-1 if the answer is 0, else at control
point m.

Clearly the cleanup code costs no extra space, and uses time at most the length of
the nonblank part of p’s work tape, which is of course bounded by p’s run time. The
final code only adds a constant amount to time usage. 2
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23.2 Program state transition graphs

Definition 23.2.1 A concrete syntax for graphs. Graph G = (V,E,v0,vend) can be rep-
resented by listing its vertices, edges, and source and target as the following string over
the alphabet Σ = {0,1, [, ],(,),}, where each vertex vi is represented by i as a binary
number:

[v1, . . . ,vr], [(u,u
′),(v,v′), . . . ,(w,w′)],v0,vend

Definition 23.2.2 We assume given a deterministic or nondeterministic read-only Tur-
ing machine program p with m instructions, normalized as in Proposition 23.1.1; and an
input d = a1a2 . . .an ∈ {0,1}∗. A configuration of p for input d is by definition a tuple
C = (`, i, j,W), where

• 1≤ `≤m is a control point in p;

• W = b1b2 . . .bw ∈ {0,1,B}∗ is the contents of p’s work tape; and

• i, j are the scan positions on its input and work tapes, respectively, so symbols ai

and bj are scanned (blank if at one end of either tape).

The state transition graph Gp(d) of p for input d is a directed graph Gp(d) = (V,E,v0,vend)
with identified initial and final vertices v0,vend, where

1. Vertex set V = Vp(d) equals the set of all of p’s configurations;

2. Edge set E = Ep(d) equals the set of all configuration pairs (C,C ′) (or more sugges-
tively: C→C ′) such that program p takes configuration C to C ′ in one computation
step;

3. The initial vertex of Gp(d) is v0 = (1,0,0,B), so the work tape is empty; and

4. The final vertex of Gp(d) is vend = (m,0,0,1), where m is the number of instructions
in p.

Definition 23.2.3 Turing machine program p is f-bounded if for every input d and
every configuration C = (`, i, j,W) reachable from the initial configuration for d satisfies
0≤ j ≤ f(|d|)+1.

An f -bounded program p may only enter finitely many different configurations. Since
the graph vertex set V is a set of configurations, the graph for any program that runs in
space f is always finite, even though p may have infinitely long computations.
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Lemma 23.2.4 Suppose A⊆ {0,1}∗ is accepted in space f by program p, where f(n)≥
logn for all n. Let transition graph Gp(d) of p for input d be as above. Then

• d ∈A if and only if Gp(d) has a path from v0 to vend; and

• Any vertex of Gp(d) can be represented in O(f(|d|)) space.

The first part is immediate. As to the second, in any configuration C = (`, i, j,W) we have
0 ≤ i ≤ n+1 and 0 ≤ j ≤ f(n)+1. Thus in binary notation, i can be stored in at most
1+ logn = O(f(n)) bits, and j can be stored in at most log(f(n)+ 1) = O(f(n)) bits.
The number of control points ` is independent of n, and |W| ≤ f(n) by definition.

23.3 Algorithms for graph searching

The following apparently rather specialized problem will turn out to play a central role
in establishing several parts of the space-time complexity hierarchy.

Decision problem GAP (graph accessibility):

Input: a directed graph G = (V,E,v0,vend) as in the concrete syntax of Definition 23.2.1.

Output: true if G has a path v0→∗ vend, else false.

We present no less than four algorithms for the problem. The first two are nondeter-
ministic and use logarithmic space: one gives positive answers and the other, negative
answers. The others are deterministic. The third uses linear time, and linear space
as well; and the last runs in space O(log2 n). Each is expressed by giving an informal
procedure, after which its time or space usage on a Turing machine is analysed.

23.3.1 Graph accessibility in nondeterministic logarithmic space

Theorem 23.3.1 The GAP problem is in the class nlogspaceTM.

Proof. Let G = (V,E,v0,vend) be a graph with designated start and finish vertices v0,vend

and vertex set V = {v1, . . . ,vr}. Note that r ≤ size(G). Consider the program sketch
(assuming graph G is given as read-only data):
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w := v0;
while w 6= vend do
choose an arbitrary node x with w → x ∈ E;
w := x

write true

This straightforward nondeterministic program just “guesses” a path from v0 to vend. It
stores at most two vertices at any one time. Given r vertices in V , this alorithm requires
at most O(logr) bits of storage , which is at most O(logsize(G)). 2

23.3.2 Graph inaccessibility in nondeterministic logarithmic

space

Surprisingly, the negation of this problem can also be solved within logarithmic space
using nondeterminism.

Theorem 23.3.2 The following set is in the class nlogspaceTM:

GAP = { G = (V,E,v0,vend) | graph G has no path from vertex v0 to vend }

Proof. Let G be a graph be as above. Let

ni = #{u |v0→≤i u}

be the number of nodes that can be reached from node v0 by a path of length at most
i. We will soon show how each ni can be computed. First, though, we show a nondeter-
ministic algorithm which, assuming nr−1 to be given in advance, can answer “Nopath =

true” iff G ∈GAP. Consider the program sketch of Figure 23.1.
Assume that nr−1 is given correctly. This program, for every node z, can either ignore

it, or “guess” that there exists a path from v0 to z. The next step is to see whether its
guess was correct, and to abort if the verification attempt fails2. The number Count of
such verified guesses is counted. If it equals nr−1 then every accessible node has been
examined.

In this case, the final value of Nopath is true if and only if there exists no path from
v0 to vend. In all other cases the program fails to terminate, so only correct answers are
ever produced.

The algorithm above uses several variables, each of value bounded by either a constant
or logr, and so runs in logarithmic space (assuming nr−1 given in advance).

2This can be done by a random walk, exactly as in Section 23.3.1.
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Nopath := true; (* Attempt to scan all and only the nodes *)
Count := 0; (* reachable from v0 *)
for z := 1 to r do

choose (* Guess whether node z is reachable or not *)
skip (* negative guess *)

or (* positive guess *)
if ∃ path v0 →∗z
then Count := Count + 1; (* One more node reached *)

if z = vend then Nopath := false
else abort; (* e.g. loop infinitely *)

if Count 6= n(r−1) then abort;
write Nopath

Figure 23.1: Nondeterministic graph inaccessibility algorithm.

What remains is to verify that nr−1 can be computed in logarithmic space; this is
done by the following algorithm, also nondeterministic. First, note that n0 = 1 since
there is exactly one path v0→0 v0 of length 0 from v0.

The rest of the algorithm is based on the fact that v0 →i u for i ≥ 1 iff for some
node w, v0 →i−1 w and w→ u is a G edge. The algorithm determines for every node
u whether or not there is an edge from at least one node w with v0→i−1 w. Assuming
inductively that the count ni−1 is known, this can be done as in the algorithm above:
nondeterministically choose some nodes w with v0 →i−1 w, and use the count ni−1 to
verify that all such nodes have been examined. If so, v0→i u iff there is an edge w→ u

where w is one of the nodes that was examined.
The program of Figure 23.2 embodies these ideas. The algorithm uses several vari-

ables, each either of value bounded by either a constant or logr, and so runs in logarithmic
space. 2

23.3.3 Graph accessibility in polynomial time

Lemma 23.3.3 GAP is in ptime.

Proof is omitted; it is just the correctness of the “depth-first search” algorithm of Figure
23.3. Time analysis, at first abstractly: the loop to initialize Seenbefore takes time
O(|V |). Procedure Probe can call itself recursively at most r times. No edge is probed
more than once, so the total time used in Probe is O(max(|V |, |E|)). Combining these,
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n := 1; i := 0;
repeat (* Invariant here: n = ni *)
i := i + 1;
n := 0; (* Search for all and only nodes u reachable *)
for u := 1 to r do (* from v0 in ≤i steps *)
Counter := n i; (* Find all nodes reachable in <i steps *)
Foundu := false;
for w := 1 to r do (* Examine EVERY node w *)
choose (* Guess w unreachable in <i steps *)
skip
or (* Guess w reachable in <i steps *)
if ∃ path v0→<iw
then Counter := Counter-1; (* w reached in <i steps *)

if w → u then Foundu := true; (* If reachable *)
else abort;

if Counter 6= 0
then abort (* Missed nodes reachable in <i steps *)

if Foundu
then n := n + 1; (* Another u reachable in ≤i steps *)

until i = r-1;
(* End of outermost loop *)

write n

Figure 23.2: Nondeterministic algorithm to compute nr.

the algorithm’s total run time is O(max(|V |, |E|)). A Turing machine implementation of
the algorithm takes time more than linear, but still a low-degree polynomial.

23.3.4 Graph accessibility in log2 n space

Lemma 23.3.4 GAP is in
⋃

k spaceTM( k(logn)2).

Proof. Let G = (V,E,v0,vend). Correctness of the following algorithm is based on the
observation that x→k y iff one of three cases holds: k = 0 and x = y; or k = 1 and
(x,y) ∈ E; or k > 1 and for some z ∈ V , both of x→d k

2 e z and z→b k
2 c y are true. 2

Algorithm Divide-and-conquer search.
This algorithm (Figure 23.4) uses recursion to decide whether there exists a path

from vertex i to vertex j of length at most `. Termination is ensured by dividing ` by
two at each recursive call. Space bound log2 r is understood to mean (logr)2. 2
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procedure Main: Graph -> Boolean;
begin

read V, E, v0, vend;
forall v in V do Seenbefore[v] := false;
Probe(v0);
write Seenbefore[vend];

end (* Main program *);

procedure Probe(v); (* Side effect on Seenbefore *)
begin

if not Seenbefore[v] then {
Seenbefore[v] := true;
for every edge v -> v′ in E do Probe(v′) }

end

Figure 23.3: Depth-first Graph Search.

procedure Main: Graph -> Boolean;
begin

read V, E, v0, vend ;
r := Number of vertices in V;
write Path(v0, vend, r);

end (* Main program *);

procedure Path(i,j,`);
begin (* Gives true if ∃ path i→∗j no longer than ` *)

if ` = 0 then {return truth of ’is i = j?’};
if ` = 1 then {return truth of ’is i -> j in E?’};
for k := 1 to r do {

`′ := ` div 2; (* Integer division *)
if Path(i, k, `′) and Path(k, j, ` − `′)
then return true };

return false
end

Figure 23.4: Divide-and-conquer search.

Space analysis: procedure Path can call itself recursively to a depth of at most O(logr),
as this is the number of times that r can be halved before reaching 1. The “call stack”
of traditional implementations thus has at most O(logr) stack frames, each containing 3
numbers between 0 and r (plus a return address, of constant size). Each number can be
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represented in O(logr) bits, so the total storage requirement is at most O(log2 r) bits.
This bound is easily achieved on a Turing machine, by storing the call stack on its tape.

23.3.5 Time and space to generate a state transition graph

Assume we are given a work space size bound function f : IN → IN , an f -bounded
program p with m instructions, and an input d of length n. Let Gp(d) = (V,E,v0,vend)
be the state transition graph from Definition 23.2.2.

Lemma 23.3.5 If f is space constructible and f(n) ≥ logn for all n, then for a fixed
program p there is a c such that for all d, graph Gp(d) can be constructed in time at
most cf(|d|).

Construction 23.3.6 The abstract algorithm of Figure 23.5 will write Gp(d). 2

read d;
n := length(d); (* Input size *)
z := f(n); (* Work tape space bound *)
V := {}; (* No vertices initially *)
E := {}; (* No edges initially *)

for ` := 1 to m+1 do (* Compute the set of all vertices *)
for i := 0 to n+1 do
for j := 0 to z+1 do
forall strings w ∈ {0,1,B}∗ with |w| ≤ z do

V := V ∪ {(`, i, j,w)};
write V;

forall c1 ∈ V do forall c2 ∈ V do (* Compute all edges *)
if c1 → c2 by program p
then E := E ∪ {c1→ c2};

write E;

v0 := (1,0,0,B); vend := (m,0,1,1); (* Initial and final *)

write v0, vend;

Figure 23.5: Build state transition graph.

Proof. First, configurations have form C = (`, i, j,W). Since p is f -bounded, their number
is at most (m+1)(n+2)(f(n)+2)3f(n). This is O(gf(n)) for appropriate g. Since f is
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space constructible, step z := f(n); in Figure 23.5 can be performed in space f(n) and
so in time hf(n) for appropriate h.

The first nest of four loops takes time proportional to the number of configurations.
The second nest of two loops takes time at most quadratic in the number of configurations,
which only serves to increase the base of the exponent. The test “if c1 → c2” can be
done in time O(|c1|+ |c2|).

Implementation of this algorithm on a Turing machine is straightforward. The only
effect of slow access to data stored on its tapes being to increase the value of c. This
completes the proof. 2

Lemma 23.3.7 If f is space constructible and f(n) ≥ logn for all n, then for a given
fixed program p there is a c such that for any d, graph Gp(d) can be constructed using
work space at most cf(|d|).

Proof. A slight modification of Construction 23.3.6 can be used. One change is that
instead of storing the vertices and edges of Gp(d) in memory, they are written on a
write-only output tape as they are constructed. Another is to find a way to avoid storing
all of V .

First, note that a single configuration C = (`, i, j,w) takes space at most

O(max(log(m+1), log(n+1), log(f(n)),f(n))

which is of size O(f(n)) by the assumption that f(n) ≥ logn (recall that m is fixed).
The first nest of loops require storing values of `, i, j and w, which together occupy the
space of one configuration. Instead of storing the result, the algorithm is modified to
write configurations on the output tape as soon as computed.

The second nest of loops require storing the two configurations c1 and c2 at once.
Listing all values of c1 ∈ V can be done by the same four nested loops just mentioned,
and the values of c2 ∈ V can be generated by four more. Again, edges are written out
as soon as generated.

The total storage usage of the algorithm just sketched is clearly O(f(n)), as required.
2
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23.4 Some inclusions between deterministic and

nondeterministic classes

We have now done most of the work needed for the following result, which strengthens
that of Theorem 21.5.2.

Theorem 23.4.1 nspace(f)⊆ time(cf ) for some constant c, if f is space constructible
and f(n)≥ logn for all n.

Proof. Given p that runs in space f , Construction 23.3.6 yields its state transition graph
Gp(d) = (V,E,v0,vend) in time O(gf(n)) for appropriate g, where n = |d|. We have shown
that p accepts d if and only if Gp(d) has a path from v0 to vend. This can be tested
by the depth-first graph searching algorithm of Section 23.3 in time polynomial in gf(n),
which is again exponential in f(n) (for example (gf(n))k = (gk·f(n))). 2

Corollary 23.4.2 nlogspace ⊆ ptime

Proof. ck logn = nk logc, so nspace(k logn)⊆ time(ck logn) = time(nk logc). 2

Theorem 23.4.3 nspace(f)⊆
⋃

c space(c ·(f2)), provided f is space constructible and
f(n)≥ logn for all n.

Proof. Suppose A ∈ nspace(f) is accepted by program q. Let program p be as in
Proposition 23.1.1, and let Gp(d) be p’s state transition graph. As observed before,
d ∈ A iff q accepts d, so d ∈ A iff Gp(d) has a path from v0 to vend. It thus suffices to
show that the existence of such a path can be tested within space (f(n)2), where n = |d|.

By Lemma 23.3.7 there is a c such that the function g(d) = Gp(d) can be constructed
using work space at most cf(|d|), and graph Gp(d) has at most r = cf(n) nodes. By the
result of Section 23.3.4, this graph can be tested to see whether a path from v0 to vend

exists in space O((logr)2). Finally

(logr)2 = (log(cf(n)))2 = (f(n) logc)2 = (logc)2f(n)2

Consequently the test for existence of a path from v0 to vend can be carried out in space
at most O(f(n)2). 2

Corollary 23.4.4 pspace = npspace

Proof. Left-to-right containment is immediate by definition. The opposite containment
follows from Theorem 23.4.3, since the square of any polynomial is also a polynomial. 2
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23.5 An enigmatic hierarchy

Theorem 23.5.1 logspace ⊆ nlogspace ⊆ ptime ⊆ nptime ⊆ pspace = npspace,
and nlogspace 6= pspace.

Proof. The set inclusions are immediate consequences of the definitions of the various
complexity classes, plus Theorem 23.4.2 and 23.4.3. Further, Theorem 23.4.3 establishes

nlogspace⊆
⋃
k≥1

space(k log2 n)

For any k ≥ 1 we have limn→∞ k log2 n/n = 0, so by the hierarchy theorem for space
constructible bounds (Theorem 21.7.2), there exist problems in space(n) but not in
space(k log2 n) for any k, and so a fortiori not in nlogspace. Since n is certainly a
polynomial, there are problems in pspace but not in nlogspace. 2

An interesting and challenging fact is that, even after many years’ research, it is still
not known which of the inclusions above are proper inclusions. The undoubtedly best-
known of these several open questions is whether ptime = nptime, also known as the
P=NP? question.

Frustratingly, the result that nlogspace ⊆/ pspace implies that at least one among
the inclusions

logspace⊆ nlogspace⊆ ptime⊆ nptime⊆ pspace

must be a proper inequality (in fact, one among the last three, since equality of all three
would violate nlogspace ⊆/ pspace); but it is not known which ones are proper.

The gap in computational resources between, say, logspace and nptime seems to
be enormous. On the one hand, nptime allows both polynomially much time, and as
much space as can be consumed during this time, and as well the ability to guess. On
the other hand, logspace allows only deterministic program that move a fixed number
of pointers about, without changing their data at all. (This claim will be substantiated
in Section 24.1.)

Nonetheless, no one has been able either to prove that logspace = nptime, nor
to find a problem solvable in the larger class that is provably unsolvable in the smaller.
Many candidates exist that are plausible in a very strong sense, as will be seen in a later
chapter on “complete problems,” but the problems of proper inclusion remain open.

Theorem 23.5.2 If A ∈ nspace(f) and f(n) ≥ logn is space-constructible, then A ∈
nspace(c ·f) for some c > 0, where A is the complement of A.



An enigmatic hierarchy 351

Proof. Suppose nondeterministic Turing machine program p accepts A in space f . Then
an arbitrary input d is in A iff there is a path in the transition graph Gp(d) of p for input
d from v0 to vend. In other words, d ∈ A iff Gp(d) ∈ GAP. But this implies d ∈ A iff
Gp(d) ∈GAP.

By Lemma 23.3.7 there is a c such that for all d, graph Gp(d) can be constructed using
work space at most cf(|d|). Combining the construction of Gp(d) with the algorithm of
Theorem 23.3.2, we obtain a nondeterministic algorithm to test membership in A.

Its space usage is at most logsize(Gp(d)), and size(Gp(d)) is at most bf(|d|) for some
b and all inputs d. Consequently the algorithm uses at most logbf(|d|) = O(f(|d|)) space,
as required. 2

Exercises

23.1 Estimate the running time of the graph searching algorithm of Lemma 23.3.4. 2

23.2 Estimate the running time of the state transition graph-searching algorithm of
Theorem 23.3.2. 2

23.3 Prove carefully that GAP ∈ nlogspace. 2

23.4 Estimate the running time of the logspace algorithm of Theorem 23.3.2 for de-
ciding membership in GAP. 2
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24 Characterizations of logspace and

ptime by GOTO Programs

24.1 Characterizing logspace by cons-free GOTO

programs

A tree-manipulating program is read-only if it never constructs new values, but instead
just scans its input. While limited in their computational power, such programs are
by no means trivial. For example (if equipped with a write-only output string) the
“append” function is easy to program, and arithmetic operations are not difficult (see
the Exercises.) The following defines this and two other restrictions more precisely:

Definition 24.1.1 The restricted languages below have exactly the same semantics as
before, except that their sets of programs are limited in various ways.

1. WHro, GOTOro, and F+ro will henceforth denote the read-only versions of the lan-
guages WHILE, GOTO and F, respectively, meaning: the same programs and seman-
tics, except that programs restricted not to contain cons. An F program will,
however, be allowed to have any fixed number of variables.

2. A CM\C:=C+1 program is a CM program without any operations to increase a counter.
It is allowed, however, to have instructions Ci := Cj to copy one counter into
another.

3. A CMvalue(n) program is a CM program that, if given input of length n, computes so
that no counter ever exceeds n in value.

4. An F+-program is tail-recursive if no function call is nested inside another opera-
tion or function call (nesting inside the then or else branch of an if expression
is allowed, though). F+tr will henceforth denote F restricted to tail-recursive pro-
grams, and F+rotr will henceforth denote F restricted to cons-free tail-recursive
programs. 2

First, an easy result:

Proposition 24.1.2 WHro ≡lintime GOTOro ≡lintime F+rotr

353
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Proof. WHro ≡lintime GOTOro is immediate from the proof of Theorem 18.3.3, as the
operation cons was not used in Propositions 8.2.1 or 8.2.2. The point of Exercise 24.1 is
to prove GOTOro ≡lintime F+rotr (straightforward). 2

Looking ahead, we will eventually prove that, when applied to inputs from {0,1}∗

1. WHro, GOTOro, and F+rotr decide exactly the problems in logspace.

2. F+ro decides exactly the problems in ptime (even though F+ro programs may run
for exponentially many steps!).

Read-only tail-recursive programs are just those output by Wadler’s treeless trans-
former [172] when applied to (possibly nonlinear) input programs of type {0,1}∗→{0,1}.
This is interesting since the concept of treelessness was introduced for the “deforestation”
program optimization without thought of complexity; and the result above characterizes
the computations performable by programs that can be deforested.

24.1.1 Some central simulation lemmas

To establish the first point above, we show that the following all define the same decidable
problems (on inputs from ID01 for GOTOro programs):

• Turing machine programs that run in space k log(|d|) for some k.

• Read-only counter programs in which each counter is bounded in value by |d|, or a
polynomial in |d|, or even restricted so that no counter may be incremented.

• GOTOro programs.

• Frotr programs.

Proofs are by a series of lemmas progressing from GOTOro programs to the logspace
counter-length bounded machines of Corollary 21.3.1.

Lemma 24.1.3 A⊆ {0,1}∗ is decidable by a CM\C:=C+1 program iff A is decidable by a
GOTOro program.

Lemma 24.1.4 If A⊆ {0,1}∗ is decidable by a CMvalue(n) program then A is decidable
by a CM\C:=C+1 program.

Lemma 24.1.5 If A⊆ {0,1}∗ is decidable by a CMlogspace program then A is decidable
by a CMvalue(n) program.
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Together these lemmas imply the following:

Corollary 24.1.6 A⊆ {0,1}∗ is decidable by a CMlogspace program iff A is decidable by
a CM\C:=C+1 program.

Proof. Corollary 24.1.6: “If” is immediate since CM\C:=C+1 ⊆ CMvalue(n) ⊆ CMlogspace.
“Only if” follows from from Lemmas 24.1.5 and 24.1.4. 2

Theorem 24.1.7 A⊆ {0,1}∗ is in logspaceTM iff A is decidable by a GOTOro program
iff A is decidable by a F+rotr program. 2

The theorem is immediate from Corollary 21.3.1, Corollary 24.1.6, and Proposition 24.1.2.

24.1.2 Constructions to prove the simulation lemmas

We must now prove the three Lemmas. The following is an easy result on very limited
counter machines:

Proof. Lemma 24.1.3: we must show that any CM\C:=C+1 program p is equivalent to some
GOTOro program program, and conversely. Input to a CM-program is a string a1a2...an,
corresponding to input list

(anan−1...ak...a1) ∈ ID01

(using Lisp list notation) for a GOTOro-program. Each ai is nil or (nil.nil).
Suppose we are given a CM\C:=C+1 program p. Its counters Ci can only assume values

between 0 and n. Thus any Ci with value k can be represented by a GOTOro program
variable Xi which points to sublist (ak...a1) (and to the nil at the end of the input list,
in case k = 0).

Counter command Ci := Cj can obviously be simulated by Xi := Xj. Command
Ci := Ci.-1 can be simulated by Xi := tl Xi (recall that tl(nil) = nil). Command if

Ci = 0 goto ` else `′ can be simulated by if Xi goto `′ else ` (the test is reversed
since counter value 0 corresponds to the end of the list, which has list value nil = false).
Command if inCi = 0 goto ` else `′ can be simulated by if hd Xi goto `′ else `

(the test is again reversed since symbol 0 is coded as nil = false).
Conversely, suppose that we are given a GOTOro-program p and the input list

(anan−1...ak...a1) ∈ ID01. We assume n > 0; a special case can be added to give the
correct answer if n = 0.
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The variables X of p can only point to: one of three things: 1) a position (ai...ak...a1)
within the list with i≥ 1; or 2) the root of (nil.nil), encoding some ai = 1; or 3) the
atom nil.

Thus variable X may be represented by two counter variables X1, X2. In case 1) X1

has i≥ 1 as value. In case 2) X1 has value 0 and X2 has value n. In case 3) both variables
have value 0.

Counter code to maintain these representation invariants is straighforward to con-
struct, by enumerating the possible forms of GOTOro commands. 2

Proof. Lemma 24.1.4: we must show that any CMvalue(n) program p is equivalent to some
program q without C := C+1. All counters are by assumption bounded by n, so we need
not account for “overflow.” Recall that counter C0 is initialized to the length n of the
input.

We can simulate C := C+1 (without addition!) by using an auxiliary variable Tem

and exploiting the instruction Tem := C0 which assigns input length n to Tem. Let the
initial value of C be i.

The following works in two phases: first, variable Tem is initialized to n, and then
C and Tem are synchronously decremented by 1 until C = 0. Thus Tem ends at n− i, at
which point it is decremented once again, to n− i− 1. For the second pass C is reset
to n, and Tem and C are again synchronously counted down until Tem = 0. Once this
happens, C is i+1 = n− (n− i−1), as required. Note that if C = n, the effect is to leave
C unchanged.

Tem := C0; (* Tem := n *)
while C 6= 0 do (* Tem := n− i and C := 0 *)
{C := C-1; Tem := Tem-1};

Tem := Tem - 1; (* Tem := n− i−1 *)
C := C0; (* C := n *)
while Tem 6= 0 do (* C := i+1 by decreasing Tem to 0 *)
{C := C - 1; Tem := Tem - 1};

2

Proof. Corollary 24.1.5: We must show that any CMlogspace program p is equivalent to
some CMvalue(n) program q. We do this in two stages.

Representation of an n2-bounded CM counter by a fixed number of 2n-bounded
counters. Consider the traditional enumeration of pairs of natural numbers:

{(0,0),(0,1),(1,0),(2,0),(1,1),(0,2),(0,3), . . .}
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as described in Appendix A.7. We represent any one counter Cz with value z by two
counters Cx, Cy with values x,y such that z is the position of the pair (x,y) in this
enumeration. Note that

z = (x+y)(x+y +1)/2+y = (x2 +2xy +y2 +x+3y)/2

so 0≤ x2,y2 ≤ 2z. Thus x,y ≤ 2n if z ≤ n2.
Each CM operation on Cz is simulable by operation on Cx, Cy as in Figure 24.1. For

example, Cz:=Cz+1 involves moving Northwest one position along a diagonal unless x = 0,
in which case one moves to the start of the next diagonal.

We showed earlier that without loss of generality one may assume that test if InC = 0
goto ` else `′ is only performed when the value i of C satifies i≤ n. This is harder, as it
involves reconstructing i from the representation Cx, Cy of C. First, Cx and Cy are copied
into Dx, Dy, giving representation of a variable we could call D. By manipulating Dx and
Dy the loop decrements D until it reaches 0 or n decrements have occurred, meanwhile
counting variable R up by 1 at each iteration. The net result is to set R to i = min(i,n),
and that input position is then tested.

This reduces the counter bound from n2 to 2n; the technique below can be used to
reduce this further to n. 2

The development above supports the intuition that logspace is precisely the class of all
problems solvable by read-only programs, which may move any fixed number of markers
around their input, but cannot use any other form of storage. The characterization by
GOTO programs is particularly elegant, although one has a suspicion that such programs
will take extra time due to the complexity of “backing up” to inspect an already-seen
input.

Representation of one 2n-bounded CM counter C by several n-bounded coun-
ters. We represent C containing x by counters Under and Over, where Under contains
min(x,n), and Over contains 0 if x≤ n and x−n otherwise. Each CM operation on C is
simulable as in Figure 24.2. Variable N is counter C0, initialized to the input length n

(again assumed to be posititve).

24.1.3 Relation to functional and Wadler’s treeless programs

Wadler’s “treeless transformer,” when applied to any of a quite useful class of first-
order programs, will automatically yield a linear-time equivalent program which builds
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operation on C Simulation on C1, C2
Cz := Cz+1 if Cx 6= 0 then {Cx := Cx-1; Cy := Cy+1}

else {Cx := Cy+1; Cy := 0}
Cz := Cz-1 if Cy 6= 0 then {Cx := Cx+1; Cy := Cy-1}

else {Cy := Cx-1; Cx := 0}
if Cz 6= 0 goto ` if C1 6= 0 or C2 6= 0 then goto `

if InC 6= 0 goto ` R := 0; S := C0; Dx := Cx; Dy := Cy;

while S 6= 0 and not(Cz1 = Cz2 = 0) do

{R := R+1; Code for D := D-1}
if InR 6= 0 goto `

Figure 24.1: Simulating an n2-bounded counter by two 2n-bounded counters.

Operation on C Simulation
C := C+1 if Under = n

then Over := Over+1 else Under := Under+1

C := C-1 if Over = 0
then Under := Under-1 else Over := Over-1

if C 6= 0 goto ` if Over 6= 0 or Under 6= 0 then goto `

if InC 6= 0 goto ` if InUnder 6= 0 goto `

Figure 24.2: Simulating a 2n-bounded counter by n-bounded counters.

no intermediate tree structures [172]. Here cons operations may appear (and other
constructors too, henceforth ignored); but their only function is to construct output
values, not to produce data in one program part that will be consumed in another (the
functional world’s equivalent of “storage”).

Relaxing Wadler’s requirement that right sides must be linear (not contain two refer-
ences to the same variable), we obtain a language identical to F+rotr. Consider a treeless
program that yields only constant values as output. Even though it may use cons in-
ternally, the program output by his transformation then contains no “cons” operations
at all. Again relaxing the linearity requirement on right sides, we obtain a language
essentially identical with F+rotr.

Theorem 24.1.8 Without the right side linearity requirement, treeless programs with
input in {0,1}∗ and output in {0,1} decide exactly the problems in logspace.
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24.2 Characterizing ptime by cons-free programs

with recursion

We now prove that ptime is identical to the set of problems solvable by cons-free pro-
grams with recursion. This is analogous to the intrinsic characterization of logspace,
without reference to time or storage bounds.

24.2.1 The recursive extension of a programming language

Definition 24.2.1 Suppose L is a programming language in which each program has
form

1:I1 2:I2 ... k:Ik

The recursive extension L+rec is defined so L+rec-programs consists of all programs with
syntax as in Figure 24.3. where each instruction In, Jn or Kn can be either:

• “call Pr” where 1≤ r≤ m; or

• Any L-instruction (unlimited, except that in each procedure Pi, any referenced
variable X must satisfy X ∈ {U1, . . . ,Uu,Pi1,Pi2, . . .}, i.e. it must be either local or
global).

Semantics is what you expect and so only briefly described. A total state is a sequence
(l0,σ0,l1,σ1, . . . ,ln,σn,exit).

Storage: σn contains the global variable bindings, σ0 contains the variable bindings of
the most recently called procedure, and σ1, . . . ,σn−1 contain bindings of earlier procedures
that have been called but not yet returned from. Variable fetches and assignments are
done using only σn and σ0.

Control: l0 is the current control point, l1,. . . ,ln are return addresses, and exit

indicates program termination. The initial state is (1, [U1 7→ input],exit). Instruction
“l:call Pi” causes l0,σ0 to be replaced by

1,σnew,l0+1,σ0

Here 1 is the new procedure’s initial control point, and σnew assigns default values to
all of Pi’s local variables. Thus label l0+1 plays the role of “return address” (or exit

for the initial call.) When a procedure’s last instruction has been executed, the leftmost
label and store l0,σ0 are popped off, and control is transferred to the instruction whose
label is on the stack top.
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globalvariables U1,...,Uu;

procedure P1; localvariables P11,...,P1v;
1:I1 2:I2 ... i:Ii

procedure P2; localvariables P21,...,P2w;
1:J1 2:J2 ... j:Jj
.....

procedure Pm; localvariables Pm1,...,Pmx;
1:K1 2:K2 ... k:Kk

read U1; 1:call P1; 2: write U1

Figure 24.3: Recursive program syntax.

24.2.2 Simulating ptime without cons

As a first step we use the flow chart implementation of GOTO using arrays, as in Section
17.2 of Chapter 17. An example appears in Figure 17.5.

Lemma 24.2.2 Given a GOTO-program p = 1:I1 2:I2 ...m:Im and an input d ∈ ID01.
Let (`1,σ1)→ . . .(`t,σt)→ . . . be the (finite or infinite) computation of p on d, where
`1 = 1 and σ1 is the initial DAG for input d. Then for any t ≥ 0 and variable X the
equations in Figure 24.4 hold.

Proof. A simple induction on t, using the definitions from Figure 17.4. 2

Theorem 24.2.3 If V ⊆ ID01 is decidable by a (recursive or nonrecursive) WHILE-
program p in polynomial time, then V is decidable by a CMlogspace+rec-program.

Proof. Suppose one is given a WHILE-program p that runs in time f(n) where f is a
polynomial, and an input d. The various functions Instrt,Hdt,Tlt,Xt are computable by
mutual recursion, at least down to t = n+3 (the time used to build the initial DAG as in
Section 17.2.2). Further, the values of Hdt,Tlt for t = 0,1, . . . ,n+2 are determined solely
by the program input d, and easily computed.

Regard each equation in Figure 24.4 as a definition of a function of one variable t.
This is always an integer, between 0 and f(n)+n+3 where n = |d|.

The calls all terminate, since in each call the value of argument t decreases. Now t

is bounded by the running time, which is a polynomial in the size of d, hence p can be
simulated by a recursive counter machine with polynomial size bounds on its counters.
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Instrt+1 =


l′: Il′ if Instrt = l: goto l’

l′: Il′ if Instrt = l: if X goto l’ else l′′ and Xt 6= 0
l′′: Il′′ if Instrt = l: if X goto l’ else l′′ and Xt = 0
l+1: Il+1 otherwise

Hdt+1 =

{
Yt if Instrt = l: X := cons Y Z

0 otherwise

Tlt+1 =

{
Zt if Instrt = l: X := cons Y Z

0 otherwise

Xt+1 =



Yt if Instrt = l: X := Y

Hd(Yt) if Instrt = l: X := hd Y

Tl(Yt) if Instrt = l: X := tl Y

t+1 if Instrt = l: X := cons Y Z

Xt otherwise

Figure 24.4: Relations among the values of Hd, Tl, X in general.

The value of output variable X is thus available, e.g. to a “print” function, through
Xf(n)+n+3. 2

Corollary 24.2.4 If A is decidable in polynomial time, then it is decidable by an F+ro

program.

Proof. By the means seen seen earlier in Section 24.1, the CMlogspace+rec-program can
be simulated by a |d|-bounded counter machine with recursion (the addition of recursion
requires no changes to the constructions), and this in turn can be simulated by a cons-free
F+-program. 2

Remark. Time analysis of this procedure reveals that it takes exponential time, due
to recomputing values many times (for example, Instrt is recomputed again and again).
Thus even though a polynomial-time problem is being solved, the solver is running in
superpolynomial time. Fortunately, the following result gives a converse.

Theorem 24.2.5 If V ⊆ ID01 is decidable by an F+ro program, then V is decidable in
polynomial time.
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Proof. (Sketch.) This is done by tabulation. Suppose we are given an F+ro program p,
and an input d0 = (a1 . . .an) ∈ ID.

The idea is to collect a set MFG1 of triples of forms (f,σ,•) or (f,σ,d), where f is
the name of a function defined in p, σ is a tuple of arguments to f, and d ∈ ID. These
signify the following.

1. (f,σ,•)∈MFG: function f appearing in program p has been called, with argument
tuple σ. Computation of the value of f(σ) is not yet finished.

2. (f,σ,d)∈MFG: function f appearing in program p has been called, with argument
tuple σ, and the value f(σ) = d has been computed.

Since p is cons-free, the value that σ assigns to any variable X must be a pointer to some
part of d0. There are at most n of these, and so there exist at most 2m ·nk+1 possible
triples in MFG, where m is the number of functions defined in p.

The simulation algorithm:

1. MFG := {(f1, [X1 7→ (d0)],•)}, where the first function in p is f1 and has argument
X1.

2. Repeat steps 3 through 9 until MFG cannot be changed.

3. Pick a triple (f,σ,•) ∈MFG, and find the definition f(X1,...,Xn) = Exp in pro-
gram p.

4. Attempt to evaluate Exp with X1,...,Xn bound to the values in σ.

5. If the value of a call g(Exp1,...,Expm) is needed in order to evaluate Exp, try to
evaluate the arguments Exp1,...,Expm to yield a tuple σ′.

6. If argument evaluation fails, then abandon the current attempt to evaluate Exp.

7. If argument evaluation succeeds and MFG contains a triple (g,σ′,d′), then continue
to evaluate Exp with d′ as the value of the call g(Exp1,...,Expm).

8. If argument evaluation succeeds but MFG contains no triple (g,σ′,d′) with d′ ∈ ID,
then perform MFG := MFG∪ {(g,σ′,•)}, and abandon the current attempt to
evaluate Exp.

9. If evaluation of Exp with X1,...,Xn bound to the values in σ succeeds with result
value d, then replace (f,σ,•) ∈MFG by (f,σ,d) ∈MFG.

10. If (f, [X1 7→ (d0)],d) ∈MFG, then [[p]](d0) = d, else [[p]](d0) = ⊥.

1MFG stands for “minimal function graph.” as in [83].
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MFG is used for two purposes while simulating program p. The first is as an “oracle,”
from which to fetch values of already computed function applications, rather than re-
computing them. The second is as a “repository” in which the triple (f,σ,d) is placed
every time a new fact f(σ) = d has been established. If this happens, the triple (f,σ,•)
(which must already be in MFG) is replaced by the new (f,σ,d).

This process is repeated until MFG cannot be increased. If one ever adds a triple
(f1, [X1 7→ d0],d), then we know that [[p]](d0) = d, and the computation stops. The entire
algorithm can be made terminating, since there exists only a polynomially bounded
number of possible triples to put in MFG.

Interestingly, the same technique also works if p is nondeterministic, and the method
applies as well if the functions are replaced by relations. 2

Further developments. Cook [30] proved similar results in the framework of “auxil-
iary push-down automata.” Further developments involving efficient memoization led to
the result that any 2DPDA (two-way deterministic pushdown automaton) can be simu-
lated in linear time on a RAM ([27, 76, 6]). This in turn led to efficient pattern-matching
algorithms, in particular the Knuth-Morris-Pratt string matcher – an interesting case
where investigations in “pure theory” led to a practically significant algorithm.

An interesting open problem. The results above can be interpreted as saying that,
in the absence of “cons,” functional programs are capable of simulating imperative ones;
but at a formidable cost in computing time, since results computed earlier cannot be
stored but must be recomputed. In essence, the “heap” can be replaced by the “stack,”
but at a high time cost.

It is not known, however, whether this cost is necessary. Proving that it is necessary
(as seems likely) would require proving that there exist problems which can be solved in
small time with general storage, but which require large time when computed functionally.
A simple but typical example would be to establish a nonlinear lower bound on the
time that a one-tape, no-memory two-way pushdown automaton [30] requires to solve
some decision problem. One instance would be to prove that string matching must take
superlinear time. We conjecture that such results can be obtained.
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Exercises

24.1 Prove the missing part of Theorem 24.1.2. (Note that two inclusions need to be
established.) 2

24.2 Prove that it is possible to construct from any GOTOro program an equivalent WHro
program, and vice versa. (You may appeal to constructions seen earlier.) 2

24.3 Prove that it is possible to construct from any GOTO program an equivalent Fro

program. 2

24.4 Try to show how to construct from any Fro program an equivalent GOTOro or WHro
program. Reflect on the results of your attempt. 2

24.5 Assume that WHro programs are allowed a command “write X” whose effect is to
extend a write-only output string by 0 in case the value of X is nil, and to extend it by
1 otherwise. The output string is initially empty.

Denote by x the binary representation of number x, as a list of bits written in reverse
order, i.e. least significant bit first. Write a WHro program which, when given input
(x y), will write out x+y. 2

24.6 Assume WHro programs have outputs as described in the previous exercise. Write
a WHro program which, when given input (a1a2. . . an) where each ai ∈ {0,1}, will write
out its reversal (anan−1. . . a1). 2

References

Both of the main results of this chapter have been seen before in other forms.
It has long been a “folklore theorem” that logspace consists of exactly to the sets

decidable by a multihead, two-way read-only Turing machine. The result of Theorem
24.1.7 implies this, since such a Turing machine is essentially identical to a CMvalue(n)

program. Our result is a bit stronger since Theorem 24.1.7 can be read as saying that
the Turing machine could be restricted only to move its heads right, or to reset them
back to the start of the input tape.
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push-down automata,” to characterize ptime. In essence this is very close to our proof
that ptime equals the sets decidable by Frotr-programs, the main difference being that
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our recursive programs have an implicit call stack in place of Cook’s nonrecursive au-
tomata with an explicit single stack.

In comparison to these classical results, our program-oriented version seems more
natural from a programming viewpoint (both appear in [88], which sums up the results
of this chapter). In particular, the results are still of considerable interest as regards
relationships between time and space, or the power of “cons” in a functional language.





Part V

Complete Problems





25 Completeness and Reduction of One

Problem to Another

An old slogan: “If you can’t solve problems, then at least you can classify them.”

25.1 Introduction

The unsolved problems of Theorem 23.5.1 concerning proper containments within

logspace ⊆ nlogspace ⊆ ptime ⊆ nptime ⊆ pspace = npspace

are apparently quite difficult, since they have remained open since the 1970s in spite of
many reseachers’ best efforts to solve them. This has led to an alternative approach: to
define complexity comparison relations ≤ between decision problems (different relations
will be appropriate for different complexity classes).

The statement A≤B can be interpreted as “problem A is no more difficult to solve
than problem B,” or even better: “given a good way to solve B, a good way to solve A

can be found.” Further, we can use this idea to break a problem class such as nptime

into equivalence subclasses by defining A and B to be of equivalent complexity if A≤B

and B ≤A.
Complexity comparison is almost always via reduction of one problem to another:

A≤B means that one can efficiently transform an algorithm that solves B within given
resource bounds into an algorithm that solves A within similar resource bounds1. Two
interesting facts lie at the core of modern complexity theory, and will be proven in the
following chapters:

1. Each of the several complexity classes C already studied possesses complete prob-
lems. Such a problem (call it H) lies in class C, and is “hardest” for it in the sense
that A≤H for each problem A in C. Class C may have many hardest problems.

2. A complete problem H for class D has the property that if H ∈ C for a lower class
C in the hierarchy of Theorem 23.5.1, then C = D: the two classes are identical.
Informally said, the hierarchy collapses at that point.

1Examples have already been seen in Chapter 10 including Definition 10.1.1. There several problems

were proven undecidable by reducing the halting problem to them. Intuitively: if HALT is thought of

as having infinite complexity, proving HALT ≤B shows that B also has infinite complexity.

369
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3. Even more interesting: Many natural and practically motivated problems have been
proven to be complete for one or another complexity class C.

25.1.1 Forms of reduction

The idea of reduction of one problem to another has been studied for many years, for
example quite early in Mathematical Logic as a tool for comparing the complexity of
two different unsolvable problems or undecidable sets. Many ways have been devised to
reduce one problem to another since Emil Post’s pathbreaking work in 1944 [143].

A reduction A ≤ B where (say) A,B ⊆ ID can be defined in several ways. First, the
reduction may be many-one: one shows that A ≤ B by exhibiting a total computable
function such that for any d ∈ ID we have d ∈ A if and only if f(d) ∈ B. Clearly, an
algorithm for deciding membership in B can be used to decide membership in A. (A
concrete example will be given shortly.) A stronger version is one-one, in which f is
required to be injective.

An alternative is truth-table reducibility, where one answers a question x ∈ A? by
asking several questions y1 ∈ B,. . . ,yk ∈ B?, and then combining the truth values of
their answers in some preassigned way. Yet another variant is Turing reducibility, where
question x ∈ A? gives rise to a dialogue: a whole series of questions about membership
in B. The first question depends only on x. The second question (if any) can depend
both on x and the response (positive or negative) to the first question; and so forth. The
chief requirement on such a reduction is that the series is required to terminate for every
x and answer sequence.

If computability is being studied, the only essential requirement is that the reduction
be effective. Complexity classifications are naturally involve bounds on the complexity
of the questions that can be asked, for example of the function f used for many-one
reducibility. In order to study, say, the class nptime using many-one reducibility, it is
natural to limit one’s self to questions that can be computed by deterministic algorithms
in time polynomial in |x|.

25.1.2 Three example problems

Appendix Section A.1 describes graphs, and boolean expressions and their evaluation.
We use the term CNF to stand for conjunctive normal form.

Definition 25.1.1
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1. A k-clique in undirected graph G is a set of k vertices such that G has an edge
between every pair in the set. Figure 25.1 shows a graph G containing two 3-cliques:
one with vertices 1, 2, 5 and another with vertices 1, 4, 5.

2. A boolean expression F is said to be closed if it has no variables. If closed, F can
be evaluated by the familiar rules such as true∧false = false.

3. A truth assignment for F is a function θ mapping variables to truth values such
that θ(F) is a closed boolean expression. F is satisfiable if it evaluates to true for
some truth assignment θ.

4. By definition

SAT = {F | F is a satisfiable boolean CNF expression}

For an example of the satisfiability problem, the CNF expression

(A∨¬B)∧ (B∨C)∧ (¬A∨¬C)

is satisfied by truth assignment θ = [A 7→ false,B 7→ false,C 7→ true]. 2

Three combinatorial decision problems. Following are three typical and interest-
ing problems which will serve to illustrate several points. In particular, each will be seen
to be complete, i.e. hardest, problems among all those solvable in a nondeterministic
time or space class. The problems:

GAP = { (G,v0,vend) | directed graph G = (V,E) has a path
from vertex v0 to vend }

CLIQUE = { (G,k) | undirected graph G has a k-clique }

SAT = { F | F is a satisfiable boolean CNF expression }

25.1.3 Complete problems by reduction to programs with only

boolean variables

In this and the following chapters, we prove problems complete for various classes using
a novel approach. Supose we are given a decision problem H that we wish to show
complete for complexity class C. The most intricate part is usually to show that H is
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Figure 25.1: An undirected graph, and its incidence matrix.

“hard” for C: to show that A≤H for any arbitrary problem A ∈ C, using an appropriate
reduction notion ≤ for classifying problems2 in C.

To say we are given an arbitrary problem A ∈ C usually means we are given an L-
program p (for some language L) that decides membership in A within the time, space, or
other resource bounds defining problem class C. Reduction usually establishes hardness
by showing how, given a resource-bounded program p ∈ L-prog that solves A, to construct
a reduction function f .

Such a function maps problems in C into problems in C, and has the property that
for any input d ∈ L-data, the answer to the question “does p accept d?” is “yes” if and
only if f(d) ∈H. Our approach usually proves a problem H hard for C in two steps:

1. Reduce the question “is d ∈A” to a question involving a very simple class SBP of
programs involving only boolean variables.

2. Then we further reduce the question about programs in SBP to a question involv-
ing problem H. Typically H is a simple mathematical, logical, or combinatorial
problem defined without any reference to programs at all.

25.2 Invariance of problem representations

Before comparing problem complexities, we have to address a question: can the way a
problem is presented significantly affect the complexity of its solution? For one example,
a number n can be presented either in binary notation, or in the much longer unary
notation, such as the list form niln used before. Another example is that a directed or

2Showing that H ∈ C is usually much more straightforward.
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undirected graph G = (V,E) with V = {v1,v2, . . . ,vn} can be presented in any of several
forms:

1. An n by n incidence matrix M with Mi,j equal to 1 if (vi,vj) ∈E and 0 otherwise.
Figure 25.1 contains an example.

2. An adjacency list (u,u′,u′′, . . .) for each v ∈ V , containing all vertices u for which
(v,u) ∈ E. An example is

[1 7→ (2,4,5),2 7→ (1,3,5),3 7→ (2,4),4 7→ (1,3,5),5 7→ (1,2,4)].

3. A list of all the vertices v ∈ V and edges (vi,vj) ∈ E, in some order. Example:

[1,2,3,4,5], [(1,2),(2,3),(3,4),(4,5),(5,1),(1,4),(2,5)]; or

4. In a compressed format, in case the graph is known to be sparse, i.e. have few edges
between vertices.

Loosely speaking, unary notation for numbers seems unnatural given that we measure
complexity as a function of input length, since unary notation is exponentially more
space-consuming than binary notation.

There are also differences in the graph representations, though less dramatic. For
example, the incidence matrix is guaranteed to use n2 bits, but a sparse matrix could be
stored in much less space; and even the apparently economical adjacency list form is less
than optimal for dense graphs, as adjacency lists can take as many as O(n2 logn) bits,
assuming vertex indices to be given in binary.

Problem equivalence modulo encodings

One may circumvent many of these problems by considering problems “modulo encod-
ings,” i.e. to consider two problem representations P1 and P2 to be equivalent if there
exist computable functions to convert instances of P1 problems into instances of P2
problems with corresponding solutions, and vice versa. Ideally such conversion functions
should be simple, and efficiently computable, so a good solution immediately gives rise
to a good solution to P2 and vice versa.

It is not known whether the CLIQUE problem is in ptime or not — all known
algorithms take exponential time in the worst case. However a little thought shows that
the choice of representation will not affect its status, since one can convert back and forth
among the representations above in polynomial time; so existence of a polynomial time
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CLIQUE algorithm for one representation would immediately imply the same for any of
the other representations.

From this viewpoint the most “sensible” problem representations are all equivalent, at
least up to polynomial-time computable changes in representation. The question of rep-
resentation becomes trickier when one moves to lower complexity classes, and especially
so for linear time computation.

Recent work by Paige on the “reading problem” [137] shows that data formed from
finite sets by forming tuples, sets, relations, and multisets can be put into a canonical and
easily manipulable storage form in linear time on an SRAM3. This ensures the independence
of many standard combinatorial algorithms from the exact form of problem presentation.

25.3 Reduction for complexity comparisons

Reducing SAT to CLIQUE in polynomial time

Many superficially quite different problems turn out to be “sisters under the skin,” in the
sense that each can be efficiently reduced to the other. We show by informal example that
SAT ≤

ptime
CLIQUE. This means that there is a polynomial time computable function f

which, when given any CNF boolean expression F , will yield a pair f(F) = (G,k) such
that graph G has a k-clique if and only if F is a satisfiable expression.

This implies that CLIQUE is at least as hard to solve as SAT in polynomial time:
given a polynomial time algorithm p to solve CLIQUE, one could answer the question
“is F satisfiable?” by first computing f(F) and then running p on the result.

Construction 25.3.1 Given a conjunctive normal form boolean expression F = C1 ∧
. . .∧Ck, construct a graph f(F) = (G,k) where graph G = (V,E) and

1. V = the set of occurrences of literals in F
2. E = {(a,b) | a and b are not in the same conjunct of F , and neither is the negation

of the other}

For an instance, the expression

(A∨¬B)∧ (B∨C)∧ (¬A∨¬C)

3The term “pointer machine” is sometimes used but imprecise, as argued in [10]. By most definitions,

the programs obtained by compiling GOTO programs into SRAM code are all pointer programs.
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Figure 25.2: The graph f((A∨¬B)∧ (B∨C)∧ (¬A∨¬C)).

would give graph f(F) as in Figure 25.2. The expression F is satisfied by truth assign-
ment [A 7→ false,B 7→ false,C 7→ true], which corresponds to the 3-clique {¬A,¬B,C}.
More generally, if F has n conjuncts, there will be one n-clique in f(F) for every truth
assignment that satisfies F , and these will be the only n-cliques in f(F).

It is also possible to show that CLIQUE ≤
ptime

SAT, but by a less straightforward

construction. We now proceed to define these concepts more formally.

25.3.1 A general definition of problem reduction

Recall that a problem is identified with deciding membership in a set of strings A ⊆ Σ∗

where Σ = {0,1}.

Definition 25.3.2 Let ≤ be a binary relation between decision problems over Σ = {0,1}.
Let C,D ⊆ P(Σ∗) be two sets of problems4 with C ⊆ D. Relation ≤ is called a C, D-
classifier if for all A,B,C ⊆ Σ∗

1. A≤A Reduction is reflexive
2. A≤B and B ≤ C implies A≤ C Reduction is transitive
3. A≤B and B ∈ C implies A ∈ C C is downwards closed under reduction
4. A≤B and B ∈ D implies A ∈ D D is downwards closed under reduction

4For example we could have C = ptime and D = nptime. Generally, C and D will be two classes for

which we know that C ⊆ D, but we do not know whether the inclusion is proper.
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Definition 25.3.3 Given a C, D-classifier ≤ and sets A,B,H ⊆ Σ∗

• A,B are ≤-equivalent if A≤B and B ≤A.

• H is ≤-hard for D if A≤H for all A ∈ D.

• H is ≤-complete for D if H ∈ D, and H is ≤-hard for D.

Figure 25.3 illustrates the idea that problem H is complete; it lies within set D, and
every problem in D or its subset C is reducible to H. The following shows the utility of
these ideas: if a problem complete for a larger class is contained in a smaller class (with
an appropriate reduction), then the two classes are identical.

Proposition 25.3.4 If ≤ is a C, D-classifier, and C ⊆ D, and H is ≤-complete for D,
then H ∈ C if and only if C =D.

Proof. “If” is trivial. For “only if,” suppose H ∈ C, and let A ∈ D be arbitrary. By
completeness A ≤ H, and by the definition of a classifier, A ∈ C. Thus D ⊆ C and so
D = C. 2

Proposition 25.3.5 If A is ≤-complete for D, and A ≤ B for some B ∈ D, then B is
also complete for D.

Proof. Let D ∈D be arbitrary. By completeness of A, D ≤A. D ≤A and A≤B implies
D ≤B by transitivity of ≤. Thus B is D-hard, so B ∈ D implies it is D-complete. 2
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Many-one reductions

A common classification technique is by so-called many-one reduction functions. A func-
tion f that reduces A to B has the property that x ∈ A iff f(x) ∈ B for all x. Thus
the question “is x ∈ A?” can be answered by first computing f(x), and then asking “is
f(x) ∈ B?” Provided f is essentially simpler to compute than the problem of deciding
membership in A, this shows a way that answering one problem can help to answer
another.

Definition 25.3.6 Given a class Fns of total functions f : Σ∗→ Σ∗, define

A ≤
Fns

B if and only if ∃f ∈ Fns(∀x ∈ Σ∗ . x ∈A if and only if f(x) ∈B)

The general idea is that Fns is a class of “easy” reduction functions, that can be used to
classify complex problems by reducing one to another. An example would be the function
f used to reduce SAT to CLIQUE in the example seen earlier.

Lemma 25.3.7 ≤
Fns

is a C, D-classifier, provided

1. Class Fns contains the identity function id : Σ∗→ Σ∗,

2. Fns is closed under composition (so f,g ∈ Fns implies f ◦g ∈ Fns),

3. f : Σ∗→ Σ∗ ∈ Fns and B ∈ C implies {x | f(x) ∈B} ∈ C, and

4. f : Σ∗→ Σ∗ ∈ Fns and B ∈ D implies {x | f(x) ∈B} ∈ D.

Proof. Condition 1 implies A ≤
Fns

A for any A. If A ≤
Fns

B by function f in Fns and B ≤
Fns

C

by function g in Fns, then A ≤
Fns

C by function g ◦f in Fns, by Condition 2. Finally, by

Conditions 3 and 4 A≤B,B ∈ C imply A ∈ C, and A≤B,B ∈ D imply A ∈ D. 2

Definition 25.3.8 Some special cases of many-one classifiers:

≤
rec

: Fns = {total recursive functions f : Σ∗→ Σ∗}

≤
ptime

: Fns = {polynomial time computable functions f : Σ∗→ Σ∗}

≤
logs

: Fns = {logarithmic space computable functions f : Σ∗→ Σ∗}

Theorem 25.3.9 Consider the list of problem classes logspace, nlogspace, ptime,
nptime, pspace, rec, re.
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1. ≤
rec

is a rec, re-classifier

2. ≤
ptime

is a ptime, D-classifier for any D appearing later in the list than ptime.

3. ≤
logs

is a logspace, D-classifier for any D appearing later in the list than logspace.

Proof. Straightforward verification of the conditions of Lemma 25.3.7. 2

The following shows that the complement of a complete problem is also complete, pro-
vided the class it is in is closed under complementation.

Theorem 25.3.10 Suppose that D is closed under complementation, meaning A ∈ D
implies Σ∗ \A ∈ D. If ≤ is a C, D-classifier and problem H is ≤-complete for D, then
Σ∗ \H is also ≤-complete for D.

Proof. Since H is ≤-complete for D it is in D, which implies Σ∗ \H is also in D. Note
that by completeness of H we have (Σ∗ \H) ≤H. Further, it is immediate that A ≤ B

if and only if (Σ∗ \A)≤ (Σ∗ \B) for any A,B. This implies H ≤ (Σ∗ \H).
To show hardness, consider an arbitrary problem A ∈ D. Then A ≤H by hardness

of H and so A≤ (Σ∗ \H) by transitivity of reduction. Thus Σ∗ \H is ≤-complete for D.
2

25.3.2 Sources of complete problems

It may seem surprising that complete problems exist at all for our various complexity
classes. Interestingly, most of the classes mentioned before (excepting linear time) have
natural and interesting complete problems. The following chapters will discuss several in
detail

Existence of complete problems

Given a class D and an appropriate notion of problem reduction ≤, a first question to ask
is whether or not D has at least one ≤-complete problem, say, H. This can be technically
difficult since it involves showing that any problem A in D can be reduced to H, i.e. that
H is “hard” for D. The other part, showing that H ∈ D, is often (though not always)
fairly straightforward.

The usual way to show H to be ≤-hard for D is to begin with an arbitrary Turing
machine (or other) program p that decides a problem A within the resource limits that
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define D, and to show how, given an arbitrary p-input d, to construct a value f(d) such
that d ∈ A⇔ f(d) ∈H. If f defines a ≤-reduction, the task is completed since one has
shown A≤H for any A ∈ D.

A powerful and general way to prove the existence of such problems is to make
variants of the set accepted by the universal programs seen before (for instance we will
see that the halting problem HALT is complete for the recursively enumerable sets).
While this proves the existence of complete problems, the problems obtained this way
are often, however, somewhat unnatural and unintuitive. An example will be seen below
for nondeterministic linear time in Section 25.6.

Showing other problems complete

Once the existence of one ≤-complete problem for D has been established, other problems
can be shown complete by Proposition 25.3.5: If H is ≤-complete for D, and H ≤ B,
and B ∈D, then B is also complete for D. This is usually much simpler since it does not
involve reasoning about arbitrary programs in a computation model. The technique has
been used extensively since Cook’s pathbreaking work proving the existence of problems
≤

ptime
-complete for nptime. Several hundred problems have been shown complete for

nptime and for ptime. Relevant books include [52] and [56].
However for this approach to be useful it is necessary that problem H be well-chosen:

simply stated, and such that H can easily be reduced to many interesting problems. It is
for this reason that the problems SAT and GAP have taken prominent roles within the
classes nptime and nlogspace, respectively. We will see similarly archetypical problems
for both ptime and pspace.

We begin with two examples: one obtained by a universal construction, and one
obtained from the state transition graphs used earlier.

25.4 Complete problems for re by recursive

reductions

Theorem 25.4.1 The following set is ≤
rec

-complete for the class re:

HALT = {(p.d) | p is a GOTO-program and [[p]](d) 6=⊥}

Proof. HALT ∈ re by Theorem 5.6.1. We now need to show that A ≤
rec

HALT for any
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A ∈ re. By Theorem 5.7.2, A ∈ re implies that there exists a GOTO-program p such that
A = dom([[p]]). Thus for any d ∈ Σ∗

d ∈A if and only if [[p]](d) 6=⊥ if and only if (p.d) ∈HALT

Thus A≤
rec

HALT by the (obviously recursive) reduction function f(d) = (p.d). 2

We conclude that HALT is a “hardest” problem among all recursively enumerable prob-
lems. Further, for each problem X shown undecidable in Chapter 10, either X or its
complement is ≤

rec
-complete for re:

Theorem 25.4.2 The following sets are ≤
rec

-complete for the class re:

1. HALT-2CM = {(p.d) | p is a 2CM-program and [[p]](d) 6=⊥}.
2. The string rewriting problem DERIV.
3. Post’s correspondence problem PCP.
4. {(G1,G2) |G1,G2 are context-free grammars and L(G1)∩L(G2) 6= ∅}.
5. CFAMB = {G |G is an ambiguous context-free grammar}.
6. CFNOTALL = {G | L(G) 6= T ∗ where T is CF grammar G’s terminal alphabet}.

Proof. Chapter 8 showed that HALT ≤
rec

HALT-2CM, and Chapter 10 had proofs that

HALT≤
rec

X for each remaining set X in this list. By Theorem 25.4.1, A≤
rec

HALT for any

A ∈ re, so by Theorem 25.3.9, HALT≤
rec

X implies A≤
rec

X for any A ∈re. Thus each of

the sets X above is hard for re.
Further, it is quite easy to see that each of the sets X above lies in re, concluding

the proof. 2

By the Friedberg-Muchnik theorem (see [155] for a proof) there exist incomparable re-
cursively enumerable problems, that is to say, there are problems A,B such that neither
A≤

rec
B nor B≤

rec
A holds.

25.5 Complete problems for nlogspace by logspace

reductions

Theorem 25.5.1 The following set is ≤
logs

-complete for the class nlogspace:

GAP = { G = (V,E,v0,vend) | graph G has a path from vertex v0 to vend }
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Proof. Let G = (V,E,v0,vend) be a given graph with designated start and finish ver-
tices v0,vend and vertex set V = {v1, . . . ,vr}. Note that r ≤ size(G) for any natural
representation.

First, GAP ∈ nlogspace by Theorem 23.3.1. We now need to show that if A ∈
nlogspace then A ≤

logs
GAP. Let A = Acc(p) where p is a nondeterministic TMro-program

running in logarithmic space.
Section 23.2 showed how to build the state transition graph Gp(d) from d for a given

TMro-program p. Further, the proof of Lemma 23.3.7 showed that the vertices and edges
of Gp(d) could be listed using at most k logn space, where n = |d|. In other words,
function f(d) = Gp(d) is computable in logarithmic space.

Clearly d∈A if and only if p accepts d, which in turn holds if and only if f(d) = Gp(d)∈
GAP. Consequently A ≤

logs
GAP, so GAP is nlogspace-hard. It is also in nlogspace,

so it is ≤
logs

-complete for nlogspace. 2

Thus GAP is a “hardest” problem among all problems in nlogspace:

Corollary 25.5.2 GAP is in logspace if and only if logspace = nlogspace.

Theorem 25.5.3 The nonemptiness problem for regular grammars is ≤
logs

-complete for

nlogspace. 2

Proof. First, it is in nlogspace: Given regular grammar G = (N,T,P,S), build a graph
with edge from A to B whenever there is a production A ::= xB. Then L(G) 6= ∅ iff
there is a path from S to some C where C ::= x with x ∈ T ∗ is a production in P . In
Section 23.3 we saw that graph searching could be done by a nondeterministic algorithm
in logarithmic space. The graph built has size no larger than that of the grammar, so
this shows that the nonemptiness problem for regular grammars is in nlogspace.

Conversely, since the graph accessibility problem GAP is complete for nlogspace

it suffices by Proposition 25.3.5 to reduce GAP to the regular nonemptiness problem.
Given a graph accessibility problem instance (G,v0,vend), construct a grammar with
start symbol v0, productions A ::= B for all edges A→ B of G, and a single terminal
production vend ::= ε. This regular grammar will generate the set {ε} if G has a path
from v0 to vend, and ∅ if there is no such path. 2

The following are immediate from Theorem 25.3.10.
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Corollary 25.5.4 The following set is ≤
logs

-complete for the class nlogspace:

GAP = { G = (V,E,v0,vend) | graph G has no path from v0 to vend}

Corollary 25.5.5 The emptiness problem for regular grammars is ≤
logs

-complete for

nlogspace.

25.6 A problem complete for nlintime

We now show that nlintime has a “hardest” problem with respect to linear-time reduc-
tions. This problem is a variant of the set accepted by the universal program u; one of
the complete problem sources mentioned in Section 25.3.2.

A nondeterministic universal program

By definition A ∈ nlintime iff A is accepted by a nondeterministic program p which
runs in time bounded by a · |d| for some a and all d ∈ ID.

Recall the universal program u of Chapter 4. Construct a universal program nu for
nondeterministic programs by extending the STEP macro by adding two rules to interpret
the instruction choose C1 or C2, as follows. These can be implemented simply by using
a choose instruction in the interpreter itself.

Code Comp. stack Value ⇒ Code Comp. stack Value

(choose C1 C2).Cd St Vl ⇒ C1.Cd St Vl

(choose C1 C2).Cd St Vl ⇒ C2.Cd St Vl

It is easy to see that nu is efficient as we have defined the term, and that (p.d) is accepted
iff p accepts d.

Definition 25.6.1 f : ID→ ID is linear time and size computable if there are a,b,p such
that f = [[p]], and timep(d)≤ a · |d|, and |f(d)| ≤ b · |d| for all d ∈ ID.

Definition 25.6.2 Let L,M ⊆ ID. Then L is reducible to M (written L ≤
ltime

M) iff there

is a linear time and size computable function f such that d ∈ L iff f(d) ∈M for all d in
ID.

Further, P ⊆ ID is complete for nlintime iff P ∈ nlintime and L ≤
ltime

P for all L ∈
nlintime.
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Lemma 25.6.3 ≤
ltime

is a reflexive and transitive relation.

Proof. This is essentially the same as for Lemma 25.3.7. It is immediate that the
identity function is linear time computable. Further, the composition of any two linear
time computable functions is also linear time computable. Note that the size condition
|f(d)| ≤ b · |d| for some b and all d ∈ ID is needed for this: Functions computable within
linear time without a size limit are not closed under composition since they can build
values exponentially larger than their argument, for example by repeatedly executing
X := cons X X. 2

Lemma 25.6.4 L ≤
ltime

M and M ∈ lintime implies L ∈ lintime.

Corollary 25.6.5 If H is complete for nlintime, then H ∈ lintime if and only if
nlintime = lintime.

Theorem 25.6.6 WFA (while-free acceptance) is complete for nlintime, where

WFA = {(p.d) | p is a while-free I program, and p accepts d}

Proof. To show WFA ∈ nlintime, modify the nondeterministic universal program nu

as follows. First, check that input p is an encoded while-free program, and then run
nu. The checking can be done in time linear in |p|, and while-freeness implies that
tp(d) ≤

ltime
|p| regardless of d. Thus recognition of WFA takes time at most linear in

|(p .d)| for all p, d in ID.
Now suppose problem A is accepted by p in time a · |d|. Given d, define f(d) = (q.d)

where q is the following program, and STEPa·|d| stands for a · |d| copies of the code for the
STEP macro of section 4.1.1:

read X; (* Input is d *)
Cd := cons p nil; (* Control stack = (p.nil) *)
Vl := X; (* The value of X = d *)
Stk := nil; (* Computation stack is initially empty *)
STEPa·|d|; (* a · |d| = time bound *)
write Vl; (* Final answer is value of X *)

Clearly f is linear time computable. Program q is while-free, and it works by simulating
p on d for a · |d| steps. This is sufficiently long to produce p’s output5, so d ∈ A if and
only if f(d) ∈WFA. 2

5It also works if p stops in fewer than a · |d| steps, since the STEP macro makes no changes to Vl if Cd

is nil.
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Exercises

25.1 Prove that SAT ≤
logs

CLIQUE, i.e. that the reduction described before can be done

in logarithmic space. 2

25.2 Prove that GAP ≤
logs

GAP1, where GAP1 is the set of all acyclic graphs with a

path from v0 to vend. Show that GAP1 is also ≤
logs

-complete for the class nlogspace.

Hint: given graph G = (V,E), the triple (G,v0,vend) is in GAP iff G has a path from
v0 to vend. This path can have at most n− 1 vertices, where n = |V |. Show how to
construct from G an acyclic graph G′ = (V ′,E′) that has a path from v′0 to v′end iff G

has a path from v0 to vend. 2

25.3 Prove that CLIQUE ≤
ptime

VERTEXCOVER, where VERTEXCOVER is the set

of all of all triples (G,S,k) such that S is a subset containing k of G’s nodes, such that
every edge of G includes a node from S as an endpoint. Hint: consider the complement
graph G, with the same vertices but with all and only the edges that are not edges of G.

2

25.4 Prove two parts of Theorem 25.3.9. 2
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The fact that SAT is complete for nptime is perhaps the most important result in
theoretical Computer Science. The technical breakthrough was Cook’s realization that
questions about Turing machine computations could be expressed in terms of formulas
in propositional logic, i.e., boolean expressions.

As a convenient stepping-stone we will first reduce questions about Turing machine
computations to questions about boolean programs, and then reduce questions about their
computations further to ones about propositional logic. Although the questions we ask
are similar to the halting problem and so are all undecidable for Turing machines, boolean
programs have decidable properties since their entire state spaces can be computed.

In this and the next two chapters we prove theorems relating well-known complexity
classes to properties of boolean programs, and then use them as a basis to show sev-
eral standard combinatorial, logical and linguistic problems to be complete for various
complexity classes.

Definition 26.0.7 (The language BOOLE and sublanguages.)

1. A boolean program is an input-free program q = I1. . . Im where each instruction I

and expression E is of form given by:

I ::= X := E | I1; I2 | goto ` | if E then I1 else I2

E ::= X | true | false | E1 ∨ E2 | E1 ∧ E2 |¬ E | E1 ⇒ E2 | E1 ⇔ E2

X ::= X0 | X1 | . . .

2. Language SBOOLE (sequential BOOLE) is identical, except that programs may not
contain goto `.

3. Language MCIRCUIT (monotone BOOLE) has a very limited instruction format:

I ::= X := Y | X := true | X := Y ∨ Z | X := Y ∧ Z

4. Boolean program q is single-assignment if no variable appears on the left sides of
two different assignment statements

Taking larger steps than before, we omit formally defining a semantics and data repre-
sentation for programs. Informally, program semantics is as one would expect, where

387
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all variables are assigned to false in the initial store. Since there is no input, rather
than the form [[q]](d) used until now we instead write [[q]]↓ and [[q]]↑ to indicate that
the computation by q does or does not terminate; and notation [[q]] to denote the value
computed by q: the value stored by the last assignment done by program q, assuming
[[q]]↓ ([[q]] is undefined if [[q]]↑).

26.1 SBOOLE computation is complete for ptime

Definition 26.1.1 The length |q| of a BOOLE program is the number obtained by count-
ing one for every operator :=, ;,. . . , ⇔ appearing in q, and adding 1+ dlog(i+1)e for
each occurrence of a variable Xi in q.

This is consistent with assuming that variable Xi is represented by a tag (such as the
var used earlier) together with the value of i in binary notation.

Lemma 26.1.2 An SBOOLE program always terminates, and can be executed in time
polynomial in its length.

Proof. Immediate by a simple algorithm slightly extending that of Section 3.4.2.

Lemma 26.1.3 Let Turing machine program p run in polynomial time π(n) on inputs
of length n. There is a logspace computable function f : {0,1}∗→ {SBOOLE programs}
such that for any d ∈ {0,1}∗:

p accepts d if and only if [[f(d)]]SBOOLE = true

Proof. Let the given Turing program be p = I1...Im. By assumption timeTMp (d)≤ π(|d|)
for some polynomial π(n) and all d ∈ {0,1}∗.

For a fixed p we show how to construct from d a Boolean program q= f(d) as desired.
Without loss of generality we may assume that p accepts d if and only if p’s computation
on d terminates at program control point m+1.

Structure of program q = f(d). Figure 26.1 shows the structure of the SBOOLE

program q that simulates p’s computation on d. If d = a1. . . an then program q = f(d)
has a total of 6π(n)+m+5 boolean variables, grouped as follows.

Name Intended interpretation: true iff Index range
L` Instruction ` of p is about to be simulated 1≤ `≤m+1
Ta

i TM square i holds symbol a ∈ {B,0,1} −π(n)≤ i≤ π(n)
Accept The TM has accepted input d
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Each Turing machine instruction I is simulated by a sequence I of SBOOLE instructions
using these Boolean variables, as detailed in Figure 26.2. The simulation will be arranged
so that at any time t, the current Turing machine instruction ` will be described by
L` = true and Lk = false for k 6= `,1≤ k ≤m+1. The Turing machine’s scanned square
will be described by index 0, so if symbol B (for instance) is at the scanning position, the
boolean program will have variables TB0 = true and T00 = T10 = false. The square to the
right of the scanning position will be similarly identified by index 1, and the square to
the left, by index −1.

T1 :≡ a1;. . . ; Tn :≡ an; Input d = a1. . . an on squares 1,2, . . . ,n;
Tn+1 :≡ B; . . . ; Tπ(n) :≡ B; blanks to the right; and
T0 :≡ B; T−1 :≡ B; . . . ; T−π(n) :≡ B; blanks to the left.
L1 := true; Accept := false; Start at I1; p has not yet accepted d.
STEP;π(n) Run p for π(n) steps.
Accept := Accept; Accept = true iff p eventually accepted d.

Figure 26.1: Turing simulation by Boolean program q = f(d) with d = a1. . .an.

To manage these clusters of boolean variables we use some abbreviations:

Ti :≡ a; for T0i:=false; T1i:=false; TBi:=false; Tai:=true;

Ti :≡ Tj; for T0i:=T
0
j; T1i:=T

1
j; TBi:=T

B
j;

RIGHT(r); for T−r :≡T−r+1; ...; T−1 :≡T0; T0 :≡T1;...; Tr−1 :≡Tr; Tr :≡B;
LEFT(r); for Tr :≡Tr−1; ...; T1 :≡T0; T0 :≡T−1;...; T−r+1 :≡T−r; T−r :≡B;

Turing instruction: I` Boolean sequence I`

right RIGHT(π(n)); L`:= false; L`+1:= true;
left LEFT(π(n)); L`:= false; L`+1:= true;
write a T0 :≡ a; L`:=false; L`+1:=true;

if a goto `′ else `′′ L` := false; L`′ := Ta0; L`′′ := ¬ Ta0;

Figure 26.2: Turing instructions simulated by Boolean instructions.

Figure 26.1 contains π(n) copies of the SBOOLE code STEP, which simulates a single step
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of p’s computation on d. Its form:

STEP =


if L1 then I1 else

if L2 then I2 . . .

if Lm then Im else Accept := true

Lemma 26.1.4 Consider the state of Boolean program q just after the t-th execution
of the instructions in STEP, where 0≤ t≤ π(n). Then L` will be true for exactly one `,
and for each i with −π(n)≤ i≤ π(n), Boolean variable Tai will be true for exactly one a.

Proof. Recall that any uninitialized variable has start value false. The result is imme-
diate for t = 0 by the way q was constructed. Further, examination of the cases in Figure
26.2 shows that these properties are preserved in going from t to t+1.

Lemma 26.1.5 (Correctness of simulation) Let p ` (`1,σ1)→ . . .→ (`r,σr) be the com-
putation by TM-program p on input d. For any 0≤ t≤ r let σt = LSR where b0b1 . . .br = SR

and b−r . . .b−1 = L. Then SBOOLE program q, after executing STEP for the t-th interation,
will be in a state such that L`t = true, and Tbi

t = true for any i with −r ≤ i≤ r.

Corollary 26.1.6 At the end of execution, q will assign true to Accept if and only if
p accepts d.

Lemma 26.1.7 q = f(d) is constructible from d in space O(log |d|).

Proof. Construction of q begins by generating the initialization code for Ti, L1 and
Accept, done with one loop over i = −π(n), . . . ,π(n). The code for one occurrence of
STEP has O(π(n)) SBOOLE instructions, and each Turing machine instruction code I`, for
` = 1, . . . ,m, can be generated in time O(π(n) logn). The STEP code is replicated π(n)
times, followed by generation of Accept:=Accept. These several loops all involve indices
i, t that lie between −π(n) and π(n) and so can be stored is space O(logn).

Lemma 26.1.2 implies that SbooleComp is in ptime. By that result and the hardness
property just shown, we have proven the following:

Theorem 26.1.8 The following set1 is ≤
logs

-complete for ptime:

SbooleComp = {p | p is an SBOOLE program whose last assignment yields true}
1SbooleComp stands for “the sequential boolean program computation” problem.
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26.2 The monotone circuit value problem

Programs in the subset MCIRCUIT of BOOLE are so simple that they can be regarded as
circuits. We now show that these too yield a decision problem complete for ptime.

The key is to show that SBOOLE programs can be reduced still further, by eliminating
if and ¬. The following proves this, plus another result we will use later (in Theorem
26.3.3): that no variable is assigned in two different commands.

Lemma 26.2.1 There is a logspace computable translation from any SBOOLE program
p to another q such that [[p]] = [[q]] and q has each of the following properties:

1. The right sides of assignments in q are all of form X, true, X ∧ Y, X ∨ Y, or ¬X,
where X, Y are variables; and the if instruction tests only variables.

2. Property 1 plus: q has no if instructions, so it is just a sequence of assignments.

3. Properties 1 and 2 plus: no right side of any assignment in q contains ¬.

4. Properties 1, 2 and 3 plus: q has the single-assignment property.

Proof. We prove these accumulatively, in order. Item 1 is quite straightforward by
adding extra assignments to simplify complex expressions (using methods seen before),
and expressing the operators ⇒ and ⇔ in terms of ∨ and ¬. Any occurrence of false
can be replaced by an uninitialized variable.

Items 2 and 3 are less trivial. For item 2, suppose p = I1. . . Im is an SBOOLE program.
We define an if-free translation I of each instruction I, and set program q to be:

Go := true; I1...Im

The translation I is given below. Variable S below is to be chosen as a new variable
for each occurrence of if in I, but the same Go is used for all of q. We have used
expressions with more than one right-side operator for readability, but they can obviously
be eliminated.

if U then I else J = S:=Go; Go:=S∧U; I; Go:=S∧¬U; J; Go:=S
I; J = I; J
X := E = X := (E ∧ Go) ∨ (X ∧ ¬Go)

Remark: this translation is to be proven correct in Exercise 26.1. It definitely has
deleterious effects on run time: Instead of choosing to execute either instruction I or J

in if U then I else J, the translated program executes them both, but in such a way
that only one of them has any effect (so the other is in effect a “no-operation”).
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Correctness is based on the following claim: For any simple or compound instruction
I, its translation I

• has exactly the same effect as I on variables assigned in I, provided Go is true

when its execution begins, and

• has no effect at all on variables assigned in I, provided Go is false when its exe-
cution begins.

First, it is easy to see that the translation of X:=E will make no change to X if variable Go
is false, and that it will effectuate the assignment X:=E if variable Go is true. Second,
if Go is false when execution of instruction if U then I else J or instruction I; J

begins, then it will remain false until its end, so I has no effect.
Third, assuming Go is initially true, the translation of if U then I else J will

execute the translations of both branches I and J, and in that order; and it will also set
Go to true in the branch to be executed, and to false in the other branch.

For item 3: Instructions of form X := ¬Y can be eliminated by a straightforward
program transformation. The device is to represent every p variable X by two comple-
mentary variables, X′ and X′′, in its translation p′. The idea is that each will always be the
negation of the other, and the value of X in p is the value of X′. This property is ensured
at the start by prefixing the code of p′ by instructions X′′ := true for every X occurring
in p (since all are initially false). The last step is to show how each of p’s instructions
can be simulated while perserving this invariant representation property. This is easy, as
seen in the table of Figure 26.3. Variable Tem is used in the last line so an assignment X
:= ¬ X will not go wrong.

Instruction in p Translation in p′

X := true X′ := true; X′′ := Freshvariable

X := Y X′ := Y′; X′′ := Y′′

X := Y ∧ Z X′ := Y′ ∧ Z′; X′′ := Y′′ ∨ Z′′

X := Y ∨ Z X′ := Y′ ∨ Z′; X′′ := Y′′ ∧ Z′′

X := ¬Y Tem := Y′; X′ := Y′′; X′′ := Tem

Figure 26.3: Removal of negation from a boolean program.

Finally, for item 4 we must make p single-assignment. A logspace algorithm to do
this will be described shortly,
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Logspace computability. This is straightforward; since logspace computable func-
tions are closed under composition we need only argue that each individual transforma-
tion can be done in logarithmic space.

Item 1 is not difficult; the only trick is to use counters to keep track of expressions’
nesting level (a fully parenthesized concrete syntax should be used). Item 2 is also
straightforward — one must just assign unique S variables, which can be done by indexing
them 1,2, etc. Item 3 can be done in two passes. Pass one finds all variables X in p,
and to generate X′′:=true for each to prefix the translation. Pass two translates each
instruction as described above.

Finally, item 4 (variable renaming): each instruction Ii in a given p = I1. . . Im is an
assignment; denote it by Xi:=Ei. There may, however, be several assignments with the
same left side Xi = Xj even though i 6= j. Transformation: replace every Ii by Xi:=Ei

where X1,. . . ,Xm are new variables, and Ei is identical to Ei except that reference to any
Y in Ei is replaced as follows:

• Trace backward from Ii until you first find an instruction Ii = Y:=..., or the
program start.

• If Ii = Y:=... is found then replace Y by Xi, else leave Y unchanged.

This can be done using three pointers: one for the current Ii, one for tracing backward,
and one used to compare variables for equality. 2

Theorem 26.2.2 The monotone circuit value problem is ≤
logs

-complete for ptime:

MCV = {p | p is a monotone circuit and [[p]] = true}

Proof. Lemma 26.1.2 implies that the MCV problem is in ptime (all that is needed is an
extra program syntax check). By the construction of Theorem 26.1.8, A ≤

logs
SbooleComp

for any problem A ∈ ptime. The construction just given implies SbooleComp ≤
logs

MCV,

which implies A ≤
logs

MCV as required. 2

26.3 Provability by Horn clauses

Definition 26.3.1 A Horn clause is a boolean expression

A1∧A2∧ . . .∧Ak⇒A0
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where each Ai is a boolean variable and k ≥ 0. An axiom is a Horn clause with k = 0.
Given a conjunction H of Horn clauses, we define variable A to be provable from H,
written H `A, as follows:

1. Any axiom in H is provable from H.

2. If A1,A2∧ . . .∧Ak⇒A0 ∈H and H `Ai for i = 1,2, . . .k, then H `A0.

3. No other variables are provable from H.

(The second case includes the first as the case k = 0.) It is natural to read A1∧A2∧ . . .∧
Ak⇒ A0 as “A0 is true if A1,. . . ,Ak are all true.” The Horn clause provability problem
is defined to be

HORN = {(H,A) | H `A}

Remark: the disjunctive form of a Horn clause F = A1∧A2∧ . . .∧Ak⇒A0 is

F ′ = ¬A1∨¬A2∨ . . .∨¬Ak ∨A0

This is a logically equivalent expression, meaning that expressions F and F ′ have the
same value under any truth assignment. Thus a conjunction of Horn clausesH is logically
equivalent to an expression in conjunctive normal form.

Such an expression H can be trivially satisfied, by assigning true to every variable.
A link fully characterising the syntactically defined notion of provability H `A in terms
of the semantic notion of satisfibility is the following (Exercise 26.2):

Proposition 26.3.2 H `A holds if and only if H∧¬A is unsatisfiable.

The HORN problem has been studied under several names including “attribute closure”
and is essentially equivalent to deciding whether a context-free grammar generates a
nonempty set of strings. The following result in essence says that if propositional Prolog
programs can be executed in logarithmic space, then ptime = logspace.

Theorem 26.3.3 HORN is ≤
logs

-complete for ptime.

Proof. HORN is in ptime: Consider the following simple marking algorithm. It is easy
to verify that it runs in polynomial (quadratic) time. The HORN problem can, in fact,
be solved in linear time on a pointer machine [40, 10].
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Algorithm. Given (H,A), begin with every boolean variable being unmarked. Then
for each Horn clause A1 ∧A2 ∧ . . .∧Ak ⇒ A0 ∈ H with unmarked A0, mark A0 if all of
A1∧A2, . . . ,Ak are marked; and repeat until no more variables can be marked.

Clearly the algorithm works in time at most the square of the size of H. Correctness
is the assertion that H ` A iff A has been marked when the algorithm terminates (it
is clear that it does terminate since no variable is marked more than once). For “if,”
we use induction on the number of times the algorithm above performs “for each Horn
clause. . . ”

Note that all axioms will be marked first, and these are trivially provable from H.
Now consider A1∧A2∧ . . .∧Ak⇒A0 in H, and suppose a mark has just been placed on
A0. By the inductive assumption each left side variable is provable, so the right side will
also be provable (by Definition 26.3.1). In this way every provable variable will eventually
be marked, so if A has been marked when the algorithm terminates, then H `A.

Similar reasoning applies in the other direction (“only if”), using induction on the
number of steps in a proof. The base case where A is an axiom is immediate. Assume
H`A by a proof of n+1 steps whose last step uses Horn clause A1,A2∧ . . .∧Ak⇒A0 ∈H.
By induction all of A1,A2 . . . ,Ak have been marked, so A0 will be marked if not already
so. Thus every variable that is provable from H will get marked.

HORN is hard for ptime: Suppose A ∈ ptime is decided by TM program p in poly-
nomial time. For a given input d, consider the single-assignment MCIRCUIT program q

constructed from p, d in the proof of Theorem 26.2.2. It had the property that d ∈A iff
[[q]] = true.

Construct from this a Horn problem H which has

1. An axiom ⇒ X for every assignment X := true in q.

2. A clause Y⇒ X for every assignment X := Y in q.

3. A clause Y∧Z⇒ X for every assignment X := Y ∧ Z in q.

4. Clauses Y⇒ X and Z⇒ X for every assignment X := Y ∨ Z in q.

Exercise 26.3 is to show that this construction can be done in logarithmic space. Letting
A be the last variable assigned in q, the following Lemma 26.3.4 shows (H,A) has a
solution if and only if [[q]] = true. 2

Remark: the single-assignment property is essential for this, since there is no concept of
order in the application of Horn clauses to deduce new boolean variables. If applied to
an arbitrary monotone straightline BOOLE program, H can deduce as true every X that



396 Complete Problems for ptime

the program makes true, but it could possibly also deduce more than just these, since
it need not follow q’s order of executing instructions.

Lemma 26.3.4 Let q = 1:X1:=E1 . . . m:Xm:=Em, and let

q ` (1,σ0)→ . . .→ (m+1,σm)

be q’s computation where σ0(X) = false for every q variable X. Then for every i ∈ [0,m]
we have H ` Xi if and only if σi+1(Xi) = true.

Proof. This is by induction on i. Assume the statement holds for all k with 0≤ k < i≤m,
and consider the form of the ith instruction Xi:=Ei. If it is Xi:=true then σi+1(Xi) =
true and H ` Xi since ⇒ Xi is an axiom. Suppose the ith instruction is Xi:=Xj ; then
j < i by the single-assignment property as established in Lemma 26.2.1. By induction
σj+1(Xj) = true iff H ` Xj .

One direction: suppose σi+1(Xi) = true. This implies σi(Xj) = σj+1(Xj) = true. Then
by induction H ` Xj , which implies H ` Xi by clause Xj ⇒ Xi. The other direction:
suppose H ` Xi. This can only be deduced from clause Xj ⇒ Xi because of q’s single-
assignment property, so H ` Xj holds, and σj+1(Xj) = true by induction. Again by q’s
single-assignment property, this implies σi(Xj) = true = σi+1(Xi).

The other two cases are very similar and so omitted. 2

26.4 Context-free emptiness and other problems

complete for ptime

Corollary 26.4.1 The following set is ≤
logs

-complete for ptime:

CF6=∅ = {context-free grammar G | L(G) 6= ∅}

Proof. Given G it is easy to decide whether it generates at least one terminal string
by a marking algorithm like the one above: first mark all productions whose right sides
consist exclusively of terminal symbols, then all productions whose right sides contain
only marked symbols, and repeat until no more marks can be added. Then G ∈ CF6=∅ if
and only if its start nonterminal has been marked. Thus the problem “is G ∈CF6=∅?” is
in ptime.
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By Theorem 26.3.3, A ∈ ptime implies A ≤
logs

HORN for any A. Thus it suffices

to prove that HORN ≤
logs

CF6=∅, since ≤
logs

-reduction is transitive. This is easy: Given

a pair (H,B), construct a context-free grammar G whose nonterminals are the boolean
variables appearing in H, with start symbol B, and which has productions:

A ::= ε (the empty string) if →A is an axiom in H
A ::= A1A2...Ak if A1∧A2∧ . . .∧Ak→A ∈H

It is easy to see that L(G) = {ε} if H ` B, and L(G) = ∅ if H ` B does not hold, so
(H,B) ∈HORN iff G ∈ CF6=∅. 2

The following is immediate from Theorem 25.3.10.

Corollary 26.4.2 The complementary set CF∅ is ≤
logs

-complete for ptime.

GAME is complete for ptime

Definition 26.4.3 A two-player game is a quadruple G = (P1,P2,M,W ) where
P1,P2,M,W are finite sets such that P1∩P2 = ∅,W ⊆ P1∪P2,M ⊆ (P1×P2)∪ (P2×P1).
The set of positions for player 1 (respectively 2) is P1 (respectively P2), the set of moves
is M , and the set of won positions is W .

The set of winning positions is defined inductively by: any won position in p ∈W is
winning (for player 1 if p ∈ P1, else for player 2). Further, position p ∈ P1 is winning for
player 1 if there is a move (p,q) ∈M such that q is winning for player 1; and position
p∈P2 is winning for player 1 if for every move (p,q)∈M , position q is winning for player
1. Winning positions for player 2 are defined analogously.

Theorem 26.4.4 The following problem GAME is complete for ptime: given a two-
player game (P1,P2,M,W ) and a start position s, to decide whether s is a winning
position for player 1.

Proof. First, GAME is in ptime by a simple marking algorithm: mark each position in
W ∩P1; and then add marks to each position that is winning for player 1 by the above
definition, until no new marks can be added. Anwer “yes” if start position s gets marked.

Second, we will prove that a HORN problem (H,A) can be reduced to GAME. Con-
struct

G = (V ars,H,M,Axioms) = (P1,P2,M,W )
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where V ars is the set of boolean variables appearing in (H,A), and Axioms is the set of
clauses of form ⇒B in H, and

M = {(A0, A1∧ . . .∧Ak⇒A0) | A1∧ . . .∧Ak⇒A0 ∈H}
∪ {(A1∧ . . .∧Ak⇒A0, Ai) | 1≤ i≤ k}

In words: a position for player 1 is a variable, and a position for player 2 is a clause in
H. A move for player 1 from position A is to choose a clause implying A, and a move
for player 2 from A1∧ . . .∧Ak⇒A0 is to choose a premise Ai to prove.

It is easy to verify (Exercise 26.4) that position A is winning for player 1 if and only
if A is deducible from H, i.e. G = (V ars,H,M,Axioms) ∈ GAME iff (H,A) ∈ HORN.
Further, it is easily seen that G is constructible from H in logarithmic space. 2

26.5 Parallel computation and problems complete

for ptime

There seems to be a clear gap between those problems that are easy to solve using paral-
lelism, and problems that are complete for ptime. A sketch follows, although parallelism
is outside the scope of this book.

The class nc (standing for “Nick’s Class”) is the set of all problems that can be
solved on inputs of size n in time O(logk n) (very fast), provided one is given a number of
processors that is polynomial in n, and that these can communicate instantaneously (a
rather liberal assumption). Analogous to identifying ptime with the class of all feasibly
solvable problems, many researchers identify nc with the class of all problems that have
efficient parallel solutions. While the identification is not perfect, it gives a starting point,
and has been used in many investigations.

The classes logspace and nlogspage are easily seen to lie within nc, which certainly
lies within ptime. On the other hand, if any problem that is ≤

logs
-complete for ptime lies

in nc, then ptime = nc, that is all polynomial-time solvable problems have fast parallel
solutions. This would be a remarkable result, comparable in its significance to showing
that ptime = nptime.

Thus to show that certain problems are hard to parallelize, it suffices to show that
they are complete for ptime. This property is often used in the literature, and is a major
motivation of the book [56]. More details can be found in that book, or in the one by
Papadimitriou [138].
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Exercises

26.1 Prove correctness of the translation of Lemma 26.2.1, using induction on program
length. 2

26.2 Prove Proposition 26.3.2. 2

26.3 Complete the proof of Theorem 26.3.3 by showing that function f is computable
in logarithmic space. 2 2

26.4 Fill in the missing details of the proof of Proposition 26.4.4. 2

26.5 A two-player game as in Definition 26.4.3 is played on a finite directed graph
(P1∪P2,M). In general, this graph may contain cycles. Prove that GAME is complete
for ptime even if restricted to DAGs, i.e. acyclic directed graphs. 2

26.6 Prove that GAME is in logspace when restricted to graphs that are trees. Hint
(by Ben-Amram): the problem is essentially one of tree traversal. Choose a data repre-
sentation of the game tree that makes this convenient. 2

References

The first problem known to be ≤
logs

-complete for ptime was Cook’s “path problem,” de-

scribed in [26]. The circuit value problem was proven complete for ptime by Goldschlager
in 1977 [55]. The remaining problems in this chapter were proven complete by Jones [79].

The book by Greenlaw, Hoover, and Ruzzo [56] has a very large collection of problems
complete for ptime, with particular emphasis on parallel computation.
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In Chapter 26 we showed the Horn clause deducibility problem to be complete for ptime.
Hardness was proven by steps whose net effect is to reduce acceptance of an input by a
deterministic polynomial time Turing machine program to provability of a goal by a set
of Horn clauses. A variation on this construction is used to prove the central result of
this chapter: that SAT is ≤

logs
-complete for nptime.

A recapitulation. Much of Chapter 26 can be re-used for nptime, so we recapitulate
its two-phase development. Phase 1:

1. Begin with a deterministic TM program p running in polynomial time, and input d.

2. Build from p and d an SBOOLE program q such that [[p]]TM(d) = true iff [[q]]BOOLE =
true.

Conclusion: Problem SbooleComp is ≤
logs

-complete for ptime. Completeness of Horn

clause deducibility was proven by carrying this development further as follows:

1. Eliminate if’s from q to obtain an equivalent SBOOLE program q′ whose instructions
are all of form: X:=true, X:=Y, X:=Y∨Z, or X:=Y∧Z.

2. Build from q′ an equivalent single-assignment SBOOLE program q′′.

3. Build from q′′ a Horn problem H,A such that [[q′′]]BOOLE = true iff H `A.

The development for nptime is quite analogous. The essential difference from ptime is
program p may be nondeterministic (recall Chapter 22): Turing program p can “guess”
from time to time by executing an instruction of form: goto `′ or `′′. Phase 1 is almost
as above:

1. Begin with a nondeterministic TM program p running in polynomial time, and an
input d.

2. Build from p and d a deterministic SBOOLE program q such that TM-program p

applied to input d can yield true iff [[Init;q]]BOOLE(d) = true for some sequence of
assignments Init.

Based on this construction we will see that the following problem, which we willcall
“Nontrivial,” is complete for nptime:

401
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Given an SBOOLE program, does there exist an initialization of its variables
causing it to produce output true?

Phase two also involves constructing a boolean expression F from program p and input
d, but asking a different question than in Chapter 26: is expression F satisfiable, i.e.
is it possible to assign truth values to its variables to make F evaluate to true?1 The
construction follows the same lines as that of the previous chapter:

1. Build from TM-program p and d ∈ {0,1}∗ an SBOOLE program q such that program
p on input d can yield true iff [[Init;q]]BOOLE(d) = true for some assignments Init.

2. Build from q an equivalent SBOOLE program q1 without conditional instructions.

3. Build from q1 an equivalent single-assignment no-if, no-goto SBOOLE program q2.

4. Build from q2 a boolean expression F such that F is satisfiable iff, for some assign-
ment sequence Init,

[[Init;q]]SBOOLE = [[Init;q1]]
SBOOLE = [[Init;q2]]

SBOOLE = true

27.1 Boolean program nontriviality is complete for

nptime

A very simple problem complete for nptime is the following:

Theorem 27.1.1 The following problem NonTrivial is ≤
logs

-complete for nptime:

Given: a deterministic SBOOLE program q.
To decide: is

[[X1:=bi;. . . Xk:=bk; q]] = true

for some sequence of assignments X1:=bi;. . . Xk:=bk with bi ∈ {true,false} ?

Proof. NonTrivial is in nptime by a simple “guess and verify” algorithm: choose values
bi nondeterministically, set up an initial store binding the variables to them, and then
evaluate q. The following Lemma 27.1.2 shows that NonTrivial is ≤

logs
-hard for nptime,

and so complete. 2

1By Proposition 26.3.2, Horn clause deducibility is a special case of nonsatisfiability, and so Horn

clause nondeducibility is a special case of satisfiability. By Theorem 25.3.10 Horn clause nondeducibility

is also complete for ptime, so phase two’s result naturally extends that for ptime.
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Assume A is accepted by nondeterministic TM program2 p. To show: A can be reduced
to SBOOLE program nontriviality in logarithmic space.

Lemma 27.1.2 Let p be a nondeterministic TM program running in time π(|d|) for any
input d∈ ID, where π(n) is a polynomial. Then for any input d there exists a deterministic
SBOOLE program q such that [[Init;q]]BOOLE = true for some assignment sequence Init
iff p can accept d. Further, q can be constructed from p and d in space O(log |d|).

Proof. We mostly follow the pattern of the proof of Lemma 26.1.3. The first step is to
construct from p and d = I1 . . . Im an SBOOLE program

q′ = L1 := true; I1; . . . ;Iπ(n); Answer := Lm+1

Exactly the same construction from Figure 26.2 can be used, plus the following translation
of the nondeterministic choice instruction:

TM Instruction I` SBOOLE instructions I
t
` for t ∈ [0,π(n)]

goto `′ or `′′ L` :=false; if Ot then L`′ :=true else L`′′ :=true

This is clearly a deterministic program. Construct q from q′ by prefixing it with in-
structions X:=false for every variable in q, except the oracle variables Ot. Clearly
{O0,O1, . . . ,Oπ(n)} includes all variables not assigned in q.

Now q has the property that TM program p has a terminating computation on input
d if and only if [[Init;q]] = true for some initialization assignment sequence Init. (This
was not true for q′ since its construction relied on the falsity of unassigned variables.)
An example initialization sequence:

Init = O0:= true; O1:= false; . . . ; Oπ(n):= true;

Correctness of q. First, if [[Init;q]] = true for some initialization sequence Init, then
the accepting computation by Init;q clearly corresponds to an accepting computation
by p on d. Now consider any computation (there may be many) by p on d:

p ` (1,B d)→∗ (`t1 ,σt1)→ (`′t1 ,σ
′
t1

)→∗ . . .(`tr ,σtr )→ (`′tr ,σ′t1)→
∗ . . .

where (`t1 ,σt1),(`t2 ,σt2), . . . is a list of all states (`t,σt) such that I`t has form goto `′

or `′′. For each such ti, let Init contain assignment Oti:= true if branch `′ti is taken in

2From Chapter 22: a TM program which may also have instructions of form goto `′ or `′′.
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this computation, else assignment Oti:= false if branch `′′ti is taken. Then Init;q will,
when it encounters its ti-th instruction

L` := false; if Oti then L`′ := true else L`′′ := true

take the branch that p takes on d. Consequently Init;q will have a computation that is
parallel to the one by p on d, yielding result [[Init;q]]= true.

It should be evident that this construction can be done in logarithmic space because
it is so similar to that of Lemma 26.1.3. 2

27.2 Satisfiability is complete for nptime

Expression F , to be built from p and d, will have the same boolean variables as in the
previous section, plus new boolean “oracle” variables Ot, one for each point in time, i.e.,
polynomially many new variables.

A “choice” by p to transfer control to `′ at time t will amount to setting Ot = true

in F , and a transfer to `′′ will amount to setting Ot = false in F . Each Ot is called an
oracle variable, since the choice of a satisfying truth assignment (Definition 25.1.1) for
F , in effect, predetermines the sequence of choices to be taken by program p, just as
the initialization sequence Init of the preceding section. The values of variables Ot will
not be uniquely determined: Since p may have many different computations on the same
input d, some accepting and others not, there may be many satisfying truth assignments.
F will be constructed from q very similarly to the way H was built, but a few

additional clauses will be needed to be certain that F can be satisfied only in ways
that correspond to correct computations.

Theorem 27.2.1 SAT is ≤
logs

-complete for nptime.

Proof. First, SAT ∈ nptime by a simple “guess and verify” algorithm. Given a boolean
expression F , a nondeterministic program can first select a truth assignment θ, using the
instruction goto ` or `′ to choose between assigning true or false to each variable.
Then evaluate θ(F) in polynomial time by Lemma 26.1.2. If true, accept the input, else
don’t. All this can certainly be done by a nondeterministic polynomial time computation.

The next task is to show that A ≤
logs

SAT for any set A⊆ ID01 in nptimeTM. This is

done by modifying the construction of a Horn clause program from a TM program seen
before; details appear in the following section. After that, correctness and space usage
of the construction will be established. 2
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27.2.1 Construction of a 3CNF expression from a program and

its input

Lemma 27.2.2 Let p be a nondeterministic TM program running in time g(|d|) for any
input d ∈ ID where g(n) is a polynomial. Then for any input d there exists a 3CNF
boolean expression3

F = C1∧C2∧ . . .∧Ct

which is satisfiable iff p can accept d. Further, F can be constructed from p and d in
space O(log |d|).

Proof. Begin with SBOOLE program q from Lemma 27.1.2. Apply a construction in
Lemma 26.2.1 to q to construct an equivalent SBOOLE program q1 without conditional. Its
instructions can only have forms X:=true, X:=false, X:=Y, X:=¬Y, X:=Y∨Z, or X:=Y∧Z.

Next, apply another construction from Lemma 26.2.1 to q1 to construct an equivalent
single-assignment no-if, no-goto SBOOLE program q2 = I1I2. . . Im. Finally, construct
boolean expression

F = I1∧ . . .∧Im

from q2, where each I is defined as follows:

BOOLE Instruction I Clauses I 3CNF equivalent
X := true X X

X := false ¬X ¬X
X := Y Y ⇒ X ¬Y∨X
X := ¬Y ¬Y ⇒ X Y∨X
X := Y∨Z (Y ⇒ X)∧ (Z ⇒ X) (¬Y∨X)∧ (¬Z∨Y)
X := Y∧Z Y∧Z⇒ X (¬Y∨¬Z∨X)

Expression F does not have the form of a set of Horn clauses because the negation
operator appears in two places. Further, we are asking a different question, satisfiability,
rather than Horn clause deducibility.

3Meaning of 3CNF: each Ci is a disjunction of at most three literals. See Appendix Section A.1 for

terminology if unfamiliar.
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Correctness. First, note that expression F has exactly the same variables as q2. Sec-
ond, the only unassigned variables in q2 are the oracle variables Oi.

If [[Init;q2]]
BOOLE = true for some initialization Init of the oracle variables, it is clear

that θ(F) will evaluate to true under the truth assignment

θ(X) = the value Init assigns to X

Conversely, suppose θ(F) evaluates to true for truth assignment θ, and let Init contain
X:=true for each X with θ(X) = true and X:=false for each X with θ(X) = false. Since
q2 is single-assignment, a simple induction on computation length very like the proof
of Lemma 26.3.4 shows that for each assignment X:=... performed by Init;q2, truth
assignment θ must map variable X to the (unique) value that Init;q2 stores into X.

Thus F is satisfiable if and only if [[Init;q2]] = true for some truth assignment θ. We
have already seen that this holds if and only if [[θ(q1)]] = true for some truth assignment
θ, and that this holds iff p on input d can yield true.

Thus F is satisfiable if and only if p accepts d. Exercise 27.2 is to show that this
construction can be done in logarithmic space. 2

27.3 Other problems complete for nptime

Thousands of problems have been shown complete for nptime. For a large selection,
see [52]. Many of the first problems shown complete for nptime concern graphs, as
indicated by the following selection. However there is a wide variety in nearly all areas
where combinatorial explosions can arise. For historical reasons we now sometimes write
“vertex” where “node” has been used other places in the book; but the meaning is exactly
the same.

Corollary 27.3.1 The CLIQUE problem is ≤
logs

-complete for nptime.

Proof. First, CLIQUE ∈ nptime by a simple algorithm. Given graph G and number k,
just guess a subset of k of G’s vertices and check to see whether every pair is joined by
an edge of G. This takes at most quadratic time.

Second, we saw in Construction 25.3.1 how the SAT problem can be reduced to
CLIQUE. It is easy to see that the construction can be done in logarithmic space, so
SAT ≤

logs
CLIQUE. By Proposition 25.3.5, CLIQUE is also ≤

logs
-complete for nptime. 2
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Theorem 27.3.2 The following problem, called VertexCover, is ≤
logs

-complete for

nptime:
Given: an undirected graph G = (V,E) and a number k.
To decide: is there a subset S ⊆ V with size k such that every edge in E has an endpoint
in S?

Proof. It is clear that VertexCover is in nptime by a simple guess-and-verify algorithm.
Second, we show CLIQUE ≤

logs
VertexCover which by the previous result and Proposition

25.3.5 implies VertexCover is also ≤
logs

-complete for nptime.

The reduction is as follows, given a CLIQUE problem instance (G,k) (does G = (V,E)
have k mutually adjacent vertices?). Construct the “complement” graph G = (V,E′)
where E′ = {(v,w) |(v,w ∈ V,v 6= w,(v,w) /∈ E}. Let n be the number of vertices in V .

Claim: C is a k-element clique of G if and only if S = V \C is a (n−k)-element vertex
cover of G. Assume C is a k-clique. An arbitrary edge (v,w) of G connects two distinct
vertices and is not in E. Thus at least one of v or w must not be in C, and so must be
in S \C. Thus every edge has an endpoint in S, so S is an (n−k)-element vertex cover
of G.

Now assume S is an (n−k)-element vertex cover of G and v,w are any two distinct
vertices of C. If (v,w) were an edge in E′ then one of them would be in S = V \C. Thus
(v,w) is an edge in E, so C is a clique.

Thus (G,k) ∈ CLIQUE iff (G,n−k) ∈ VertexCover. Further, (G,n−k) can be con-
structed from (G,k) in logarithmic space, so CLIQUE ≤

logs
VertexCover. 2

Theorem 27.3.3 The following problem, called SetCover, is ≤
logs

-complete for nptime:

Given: a number k and a collection of sets4 S1, . . . ,Sn.
To decide: is there a subcollection Si1 , . . . ,Sik of at most k of these whose union covers

all elements in any Si:

j=n⋃
j=1

Si =
j=k⋃
j=1

Sij

4For example, by listing each as a string {v1, . . . ,vm}, using binary integers to denote the various

elements vi.
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Proof. It is again clear that SetCover is in nptime by a simple guess-and-verify algorithm.
Second, we show VertexCover ≤

logs
SetCover. By the previous result and Proposition

25.3.5, this implies SetCover is also ≤
logs

-complete for nptime.

The reduction is as follows, given a VertexCover problem instance (G,k) (does G =
(V,E) have a set of k vertices that contact every edge?). Construct the collection of sets
Sv, one for each vertex v ∈ V , such that

Sv = {(u,w) ∈ V |v = u∨v = w}

Clearly, Si1 , . . . ,Sik is a set cover of V =
⋃

v∈V Sv if and only if {vi1 , . . . ,vik} is a vertex
cover of E. Constructibility in logarithmic space is simple. 2

Exercises

27.1 Prove Theorem 27.1.1. Hint: for hardness, show that SAT ≤
logs

NonTrivial. 2

27.2 Complete the proof of Theorem 27.2.1 by showing that function f is computable
in logarithmic space. 2

27.3 Verify the equivalence stated in Theorem 27.3.3. 2

27.4 Prove that the FeedbackVertexSet problem is ≤
logs

-complete for nptime:

Given: a directed graph G = (V,E) and a number k.
To decide: is there a k-element subset S ⊂ V such that every cycle of G contains at

least one vertex in E? Hint: reduce VertexCover to FeedbackVertexSet. 2

References

Many thousands of combinatorial and other problems have been proven complete for
nptime. A wide-ranging survey may be found in the book by Garey and Johnson [52].
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28.1 Acceptance by boolean programs with goto

First, we will prove the following:

Theorem 28.1.1 The following set is ≤
logs

-complete for pspace:

BooleComp = {p | p is a BOOLE program whose last assignment yields true}

In light of Theorem 26.1.8, this says that the difference between simulating programs with
or without goto corresponds to the difference between pspace and ptime (if any). Using
this as a basis, we will proceed to show the following problems complete for pspace:

REGALL = {R | R is a regular expression over Σ and L(R) = Σ∗}
QBT = {F | F is a true quantified boolean expression}

Lemma 28.1.2 Boolean programs can be executed in space at most a polynomial func-
tion of their length. Further, termination can be decided within polynomial space.

Proof. A simple interpreter slightly extending that of Section 3.4.2 can execute an ar-
bitrary BOOLE program. Let the interpreted program p have m labels and k boolean
variables. Clearly m≤ |p| and k ≤ |p|. The interpreter can store the current state (`,σ)
of p using O(log |p|) bits for the control point and one bit for the current value of each
program variable, O(|p|) bits in all.

This naive interpreter will of course loop infinitely if the interpreted program does
so. It can be modified always to terminate as follows. Observe that program p can enter
at most m ·2k configurations without repeating one, and so going into an infinite loop.

Modify the interpreter to maintain a binary counter c consisting of r = kdlogme
boolean values (initially all false), and increase this counter by 1 every time an instruction
of p is simulated. If c becomes 2r−1 (all true’s) then the interpreter stops simulation
and signals that p has entered an infinite loop. This is sufficient since 2r ≥m ·2k.

Clearly the modified interpreter uses O(|p| log |p|) space.

Theorem 28.1.1 in essence says that if boolean programs can be executed in polyno-
mial time, then ptime = pspace. To show that BooleComp is hard for pspace we

409
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reduce computations by an arbitrary polynomially space-bounded Turing machine to
BooleComp.

Lemma 28.1.3 Let Turing machine program p run in polynomial space π(n) on inputs
of length n. There is a logspace computable function f : {0,1}∗ → {BOOLE programs}
such that for any d ∈ {0,1}∗:

p accepts d if and only if [[f(d)]]BOOLE = true

Proof. Let the given Turing program be p = I1...Im. By assumption spaceTMp (d)≤ π(|d|)
for some polynomial π(n) and all d ∈ {0,1}∗. For a fixed p we show how to construct
from d a Boolean program q= f(d) as desired. Without loss of generality we may assume
that p accepts d if and only if p’s computation on d terminates at program control point
m+1.

Figure 28.1 shows the structure of the BOOLE program q that simulates p’s computa-
tion on d. It uses the notation and the STEP macro from Chapter 26. The correctness
argument is just the same as that of Lemma 26.1.5 (the only difference is the use of the
WHILE loop in Figure 28.1.)

T1 :≡ a1;. . . ; Tn :≡ an; Input d = a1. . . an on squares 1,2, . . . ,n;
Tn+1 :≡ B; . . . ; Tπ(n) :≡ B; blanks to the right; and
T0 :≡ B; T−1 :≡ B; . . . ; T−π(n) :≡ B; blanks to the left.
L1 := true; Accept := false; Start at I1; p has not yet accepted d.
while not Accept do STEP; Run p until it terminates.
Accept := true; Accept = true iff p eventually accepted d.

Figure 28.1: Turing simulation by Boolean program q = f(d) with d = a1. . .an.

Proof. Theorem 28.1.1: By Lemma 28.1.2, BooleComp is in pspace. If A is in pspace

then it is decidable by some polynomially space-bounded Turing machine program p.
The preceding Lemma shows how to reduce A to BooleComp, so BooleComp is ≤

logs
-hard

for pspace. 2

The following variant is a bit simpler, and so will be used in some later reductions to
prove problems hard for pspace.
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Corollary 28.1.4 The following set is ≤
logs

-complete for pspace:

Bterm = {p | p is a BOOLE program which terminates}

28.2 Quantified boolean algebra

Definition 28.2.1 A quantified boolean expression is an expression E of form given by:

E ::= X | true | false | E1 ∨ E2 | E1 ∧ E2 |¬ E | E1 ⇒ E2 | E1 ⇔ E2

| ∀ X . E | ∃ X . E

X ::= X0 | X1 | . . .

We say that E is closed if every variable X is bound, i.e. lies within the scope of some
quantifier ∀X.E or ∃X.E. The value of a closed quantified boolean expression E is either
true or false.

An expression of form ∀X.E has value true if both E+ and E- have value true, where
E+, E- are obtained from E by replacing every unbound occurrence of X in E by true,
respectively false. Expression ∃X.E has value true if E+ or E- have value true (or both),
and expressions E1 ∨ E2, etc. are evaluated by combining the values of their components
in the usual way for boolean expressions. 2

Theorem 28.2.2 The set QBT of true quantified boolean expressions is ≤
logs

-complete

for pspace.

Proof. First, it should be clear that truth of a quantified boolean expression can be
established in linear space, by an algorithm that enumerates all combinations of val-
ues true,false of its quantified variables, and combines the results of subexpressions
according to the logical operators and quantifiers in E. This requires one bit per variable.

We next show Bterm ≤
logs

QBT, so QBT is ≤
logs

-complete for pspace by Theorems

28.1.1 and 25.3.5.
Consider BOOLE program p = I1. . . Im with variables X1,. . . ,Xk. Without loss of

generality we may assume every instruction in p is of the form X := true, X := false,
or if X goto ` else `′, where the latter abbreviates if X then goto ` else goto `′.
The reason is that the boolean operators and assignments may all be transformed into
code to “test and jump” with at most linear increase in program size (a transformation
obviously computable in logspace).

For example, the assignment X := Y could be realized by
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1: X := true;
2: if Y goto 4 else 3
3: X := false

and similarly for the other forms.

One-step simulation We start out by constructing a quantified boolean expression
Nx(~X,~L,~X′,~L′) where ~X stands for the sequence X1, . . . ,Xk, ~L stands for L1, . . . ,Lm+1, and
similarly for their primed versions. The expression will be such that

p ` (`, [1 7→ v1, . . . ,k 7→ vk])→ (`′, [1 7→ v′1, . . . ,k 7→ v′k])

if and only if

Nx(v1, . . . ,vk,false, . . . , true, . . . ,false, v′1, . . . ,v
′
k,false, . . . , true, . . . ,false)

evaluates to true, where the first sequence of truth values has true in position ` only, and
the second has true in position `′ only. Intention: L` = true (L′` = true ) if the current
control point (next control point) is instruction I`.

Some auxiliary notation: if vectors ~U,~V have the same length s, then ~U⇔ ~V stands
for (U1 ⇔ U1)∧ . . .∧ (Us ⇔ Us). Similarly, if I ⊆ {1,2, . . . ,s}, then ~U ⇔I ~V stands for∧

i∈I(Ui⇔ Ui). Finally, two more abbreviations, where we write [r,s) for {i | r ≤ i < s}:

Lab(`) stands for L`∧
∧

i∈[1,`)∪(`,k]¬Li

Lab′(`) stands for L′`∧
∧

i∈[1,`)∪(`,k]¬L′i

Given this machinery, define

Nx( ~Xk,~Lm+1,~X
′
k,~L′m+1)≡ (Lab(1)∧E1)∨ . . .∨ (Lab(m)∧Em)∨Lab(m+1)

where the E` are defined by the table

BOOLE Instruction I` Quantified boolean expression E`

goto `′ Lab′(`′)∧~X⇔ ~X′

Xi := true Lab′(`+1)∧~X⇔[1,i)
~X′∧X′i∧~X⇔(i,k]

~X′

Xi := false Lab′(`+1)∧~X⇔[1,i)
~X′∧¬X′i∧~X⇔(i,k]

~X′

if Xi goto `′ else `′′ (Xi∧Lab′(`′))∨ (¬Xi∧Lab′(`′′))∧~X⇔ ~X′
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The size of this expression is clearly polynomial in m+k, and it is also evident that it is
logspace computable with the aid of a few counters bounded by k or m.

Multi-step simulation For this we will construct quantified boolean expressions
Nx2i

(~X,~L′, ~X′,~L′) for i = 0,1,2, . . ., which evaluate to true if program p can go from state
represented by (~X,~L) to the state represented by (~X′, ~L′) by a 2i-step sequence of transi-
tions.

This can be defined inductively as follows. To illustrate the technique without unduly
long argument lists, we consider only a binary predicate P 2i

(a,b) rather than the 2(m+
k)-ary boolean predicate Nx2i

(...).

P 1(a,b) ≡ P (a,b)

P 2t(a,b) ≡ ∃c ∀u ∀v {[(u = a∧v = c)∨ (u = c∧v = b)]⇒ P t(u,v)}

Claims: first, expression P 2i
(a,b) will be true if and only if there exists a sequence

a1,a2, . . . ,a2i such that P 2i−1
(ai,ai+1) holds for every i ∈ [1,2i). Second, the size of the

expression P 2i
(a,b) is O(i+s) where s is the size of expression P (a,b), since each doubling

of the exponent only adds a constant number of symbols to the previous expression.
Now let r = dk · log(m+1)e, so 2r ≥ (m+1)2k (the number of configurations p can

enter without looping). Consider quantified boolean expression Nx2r
(~X, ~L′, ~X′, ~L′). Value

2r is large enough so that if program p can go from state represented by (~X,~L) to the
state represented by (~X′, ~L′) by any sequence of transitions, then it can do so in at most
2r transitions.

Consequently p terminates iff its start transition can reach one with control point
m+1 within 2r steps. Thus [[p]] = true iff the following quantified boolean expression
is true1:

∃~X∃~L . [~X⇔
−→

false ∧L1∧~L⇔(1,m+1]

−→
false]∧Nx2r

(~X,~L, ~X′, ~L′)∧L′m+1

Finally, a size analysis: by the argument above about P (a,b), the size of boolean expres-
sion Nx2r

(...) is of the order of r times the size of Nx(~X, ~L′, ~X′, ~L′). The latter has been
argued to be polynomial in the size of program p, so the total is polynomially bounded.
The final step, logspace computability of the reduction, is Exercise 28.4. 2

1The part in square brackets describes p’s initial state.
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28.3 Regular expression totality

Theorem 28.3.1 The totality problem REGALL for regular expressions (is L(R) = Σ∗?)
is ≤

logs
-complete for pspace.

Proof. We actually show the complementary problem REGNOTALL = {R | L(R) 6= Σ∗}
to be ≤

logs
-complete for pspace. This suffices by Theorems 25.3.10 and 23.5.2.

REGNOTALL is in pspace. Given regular expression R over alphabet Σ, the prop-
erty L(R) 6= Σ∗ can be decided in linear space as follows. First, construct an NFA
M = (Q,Σ,m,q0,F ) (nondeterministic finite automaton, see the appendix) such that
L(M) = L(R). This can be done so the size of M is linear in the size of R [3].

Then apply the usual “subset construction” [3] to define a DFA (deterministic finite
automaton) MD accepting the same set L(R) = L(M) = L(MD). Note that MD may
have a number of states exponential in the size of M , since each state is a subset of the
states of M .

The property L(MD) 6= Σ∗ holds if and only if there is some path from the automa-
ton’s initial state {q0} to a nonaccepting state. As seen before, this can be done by a
nondeterministic search through MD’s transition graph, storing at most one graph node
at a time (it is not necessary to build all of MD first). The natural way to represent a
state of automaton MD is by storing one bit for each M state, that is as a bit vector of
size O(|R|). Thus the nondeterministic search can be done in at most linear space.

This shows the problem L(R) 6= Σ∗ is in nspace(n), and so in pspace by Theorem
23.4.3.

REGNOTALL is hard for pspace. We prove Bterm ≤
logs

REGNOTALL. Suppose

we are given a BOOLE program p = I1. . . Im with variables X1,. . . ,Xk. Without loss of
generality we may assume every instruction in p is of the form X := true, X := false,
or if X goto ` else `′.

We will show how to construct a regular expression Rp over Σ = {#,0,1,t,f} which
generates all sequences that are not terminating computations by p. Thus L(Rp) = Σ∗

iff p does not terminate (which implies every string in Σ∗ is a noncomputation), so p ∈
Bterm iff Rp is in REGNOTALL.

Represent a configuration C = (`, [1 7→ b1, . . . ,k 7→ bk]) by the following string over
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alphabet Σ of length m+1+k:

C = 0`−110m+1−`b1 . . .bk

where bi = t if bi = true and bi = f if bi = false for i = 1, . . . ,k. A computation trace
will be a string over alphabet Σ:

Tracesp = {#C1# . . .#Ct# | p ` C1→ . . .→ Ct and
C1 = (1, [1 7→ false, . . . ,k 7→ false]) and Ct = (m+1, [. . .])

Claim: for each BOOLE program p there is a “yardstick” regular expression Rp such that

1. L(Rp) = Σ∗ \Tracesp

2. Rp is constructible in space O(|p|)
3. Rp = R1 | R2 | R3 | R4 where the Ri behave as follows:

L(R1) = Σ∗ \ #[(0|1)m+1(t|f)k#]∗ Wrong format

L(R2) = Σ∗ \ #10m#fkΣ∗ Wrong start

L(R3) = Σ∗ \ Σ∗#0m1(t|f)k# Wrong finish

L(R4) = Σ∗#(E1|E2| . . . |Em)#Σ∗ Some Ci 6→ Ci+1

Exercise 28.2 is to show that R1,R2,R3 can be defined without using \.
Regular expressions E` for each instruction label ` define the set of strings C#C ′

such that p 6`C→C ′. In order to define them, we use abbreviation Σ\a for the obvious
finite union, and

∨
i∈I Xi for the union (|) of Xi for each i ∈ I.

Strings having symbol a at position i are generated by Y a
i = Σi−1aΣ∗.

Strings not having symbol a at position i:

Na
i = Σ∗ \Y a

i = ε | Σ | . . . | Σi−1 | Σi−1(Σ\a)Σ∗

Strings including C#C ′ with a,b ∈ {t,f} at positions i of C and C ′ (respectively):

Bab
i = (0|1)m+1(t|f)i−1a (t|f)k−i#Y b

i+m+1

Strings including C#C ′ with a,b ∈ {t,f} at some position i of C and C ′ (resp.):

Bab = Bab
1 | . . . | Bab

k
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Strings with a at position i of C such that ` is not the control point in C ′:

Ca`
i = (0|1)m+1(t|f)i−1a(t|f)k−i#N1

`

Given these, definition of the E` is straightforward:

BOOLE Instruction I` Regular expression E`

goto `′ N1
` | Σm+1+kN1

`′ | B
ft | Btf

Xi := true N1
` | Σm+1+kN1

`′ | B
ff
i | Btf

i |
∨

j∈[1,i]∪(i,k](B
ft|Btf)

Xi := false N1
` | Σm+1+kN1

`′ | B
ft
i | Btt

i |
∨

j∈[1,i]∪(i,k](B
ft|Btf)

if Xi goto `′ else `′′ N1
` | Bft | Btf | Ct`′

i | Cf`′′
i

Verification of this construction’s correctness is straightforward but tedious. 2

A generalization: regular expressions with squaring. Suppose the class of reg-
ular expressions is enriched by adding the operator R2, where by definition L(R2) =
L(R) ·L(R). The totality problem for this class (naturally called REG2ALL) can by
essentially similar methods be shown complete for

⋃
c space(2cn).

The ability to square makes it possible, by means of an extended regular expression
of size O(n), to generate all noncomputations of an exponentially space-bounded Turing
machine. Intuitively, the point is that an expression (. . .(Σ2)2 . . .)2 of size n generates all
strings in Σ∗ of length 2n, so the “yardstick” m+k+1 used above can be made exponen-
tially long by an extended regular expression of length O(n). This allows generation of
all noncomputations by an exponential space Turing machine by a linear-length regular
expression with squaring.

28.4 Game complexity

Board games. We showed a simple one-token game to be complete for ptime in
Theorem 26.4.4. A natural question is what the complexity is for many-token games
such as n×n-board size chess, Hex, or Go. It might be expected that their complexity is
higher, since the number of possible configurations is exponential in the board size. This
is indeed the case; constructions and references may be found in [164], [173], [52]-
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Blindfold games. Games such as Battleship, Kriegspiel (blindfold chess), and even
card games are based on imperfect information: No player is fully aware of the total game
state. Again, it might be expected that their complexity is higher. It is shown in [77]
that the one-token game shown complete for ptime in Theorem 26.4.4 becomes complete
for pspace in its natural blindfold version. The technique used is a simple reduction
from REGALL.

Exercises

28.1 Prove Corollary 28.1.4: the problem of deciding a Boolean program’s termination
is complete for pspace. 2

28.2 Construct regular expressions for R1,R2,R3 without using set complement \. Give
bounds on their lengths in relation to the size of program p. 2

28.3 Prove that the membership problem for context-sensitive grammars is complete for
pspace. 2

28.4 Prove that the quantified boolean expression of the proof of Theorem 28.2.2 can
be built in logarithmic space. 2

References

The technique of reducing computations by arbitrary programs to ones using only boolean
variables was used extensively by Jones and Muchnick in [81, 82]. Completeness for
pspace of the REGALL and QBT problems is due to Meyer and to Stockmeyer [126, 165].





Part VI

Appendix





A Mathematical Terminology and

Concepts

This appendix introduces a number of mathematical concepts that are used throughout
the book. Readers with little or no mathematical background may read the appendix
from one end to the other and do the exercises. Readers familiar with the notions
introduced may consult the appendix if the need arises. The index should make this
easy.

Section A.1 gives a short introduction to the manipulation of logical expressions.
Section A.2 introduces sets and operations on sets, and Section A.3 is concerned with
functions. Section A.4 introduces graphs. Section A.5 describes grammars, regular ex-
pressions, and finite automata. Section A.6 introduces definition and proof by induction.
Section A.7 describes pairing functions.

Section A.7 contains a number of exercises; in general the reader is encouraged to try
all the exercises. Section A.7 gives references for further reading.

A.1 Boolean algebra

Boolean algebra is the manipulation of logical expressions or propositional formulas. In
boolean algebra we work with two truth values, true and false. We use p,q,r, . . . to denote
boolean variables.

A boolean expression or formula, is formed by combining truth values, variables and
smaller boolean expressions with the boolean operators shown in the following table:

operator pronounced arity precedence associativity
¬ not unary 5 —
∧ and binary 4 left
∨ or binary 3 left
⇒ implies binary 2 left
⇔ if and only if binary 1 left

“If and only if” is usually abbreviated to “iff,” and p∧ q is called the conjunction of p

and q. Likewise, p∨ q is called the disjunction of p and q, and ¬p the negation of p.
The ¬-operator has the tightest binding strength, so p∨ q∨¬q∧ true ⇔ r⇒¬false is a

421
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boolean expression equivalent to ((p∨ q)∨ ((¬q)∧ true))⇔ ((¬false)⇒ r). A literal is
either a boolean variable or its negation, making p and ¬q literals, whereas ¬¬p, (p∧ q)
and true are not.

It is interesting to note that by using the following equations:

¬(p∧ q)≡ ¬p∨¬q ¬(p∨ q)≡ ¬p∧¬q (de Morgan’s laws)
(p∧ q)∨ r ≡ (p∨ r)∧ (q∨ r) (p∨ q)∧ r ≡ (p∧ r)∨ (q∧ r)
p∧ (q∨ r)≡ (p∧ q)∨ (p∧ r) p∨ (q∧ r)≡ (p∨ q)∧ (p∨ r)

}
(distributivity)

¬(p⇒ q)≡ p∧¬q ¬(p⇔ q)≡ (¬p∨¬q)∧ (p∨ q)
¬¬p≡ p true ≡ p∨¬p false ≡ p∧¬p

it is possible to convert any boolean formula into conjunctive normal form (CNF), that
is a finite conjunction of finite disjunctions of literals: (A11∨·· ·∨A1n1)∧·· ·∧(Am1∨·· ·∨
Amnm). A concrete example of a boolean formula in CNF is (p∨¬q)∧¬q∧ (¬p∨p∨ q).

A.1.1 Evaluation of boolean expressions

When we want to determine the truth value of a boolean expression, we must specify
how the variables in the expression are to be interpreted. To this end we let θ be a
truth assignment mapping boolean variables to truth values. If all the boolean variables
occurring in an expression E are in the domain of (θ), then we define the value of E under
the truth assignment θ to be the result of applying the function eval : truth assignments→
boolean expressions → truth values given by

evalθE =



true, if E is true
false, if E is false
θ(E), if E is a variable
p̄op q̄, if E is pop q andp̄ = evalθp and q̄ = evalθq
¬p̄, if E is ¬p and p̄ = evalθp

where the truth value of pop q is given by the following truth table:

p q ¬p p∧ q p∨ q p⇒ q p⇔ q

true true false true true true true
true false false false true false false
false false true false false true true
false true true false true true false
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A.2 Sets

A.2.1 Definition and examples

A set is informally defined to be a collection of objects. The only requirement a collection
must satisfy to be called a set is that for any object x, either x is definitely in the
collection, or x is definitely not in it. If S is a set and x is an object in S we say that x

is an element of S (or x is in S, or x belongs to S, or x is a member of S, or even that
x is contained in S) and write x ∈ S. If x is not in S we write x /∈ S.

Well-known examples of a set inlude:

1. IN : the set of all non-negative integers (thus including zero), also called the natural
numbers.

2. IR: the set of all real numbers, e.g. 2.1,1/3,400,−32,π,e.

3. IR+: the set of positive real numbers, e.g. 2.1,1/3,400,π,e.

4. The collection of all graphs with at most five edges.

If a set contains only finitely many different objects a1,a2, . . . ,an then the set is written
{a1,a2, . . . ,an}. For example, the set containing the first three prime numbers (and
nothing else) is written {2,3,5}.

An infinite set may be described similarly if there is an obvious rule for listing its
elements. For instance the set of odd non-negative numbers may be written {1,3,5,7, . . .}.

Two sets T and S are equal , written T = S, if and only if they contain the same
elements, i.e. if and only if every element in T is also an element in S and vice versa.
Thus the sets {2,5,2,5,3} and {2,3,5} are equal. If T = S we also say that T and S are
one and the same set.

A set T is a subset of another set S, written T ⊆ S if every element of T is also an
element of S. If T is a subset of S and vice versa, T and S are equal by the definition of
equality.

By definition of equality there is only one set without any members at all. This set
is written ∅, and is called the empty set .

If S is some set and P (x) is some condition involving x we use the notation {x ∈
S |P (x)} to denote the set of all those members of S that satisfy the condition P (x). For
instance the set

{x ∈ IN |x≥ 2 and the only divisors of x are 1 and x}

is the set of all prime numbers.
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A.2.2 Some operations on sets

If T and S are two sets then the union S ∪T is the set of all those objects that are
elements in T or in S (or both). For example, {1,3}∪{3,5}= {1,3,5}. The intersection
S ∩T is the set of all those objects that are elements in both T and S. For example,
{1,3,4}∩{3,4,5}= {3,4}. S and T are disjoint if they have no members in common, i.e.
if S ∩T = ∅. Finally, the difference S\T is the set of all those objects that belong to to
S but not T . Thus {1,2,5}\{3,5,7}= {1,2}.

An ordered pair is a sequence of two (not necessarily distinct) objects in parentheses
(a,b). The first component is a and the second component is b. If S and T are sets the
cartesian product S×T is the set of all ordered pairs where the first component belongs
to T and the second component belongs to S.

Similarly we speak of triples (a,b,c), quadruples (a,b,c,d), and in general n-tuples
(a1,a2, . . . ,an), and of the cartesian product of n sets S1,S2, . . . ,Sn.
P(S) denotes the set of all subsets of S. For instance,

P({1,2,3}) = { ∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3} }

If S is a finite set we let | S | denote the number of elements in S.

A.2.3 An abbreviation

We use the vector notation ~xn to denote the sequence x1,x2, . . . ,xn (also when
x1,x2, . . . ,xn are numbers, graphs, etc.). Note that ~xn does not include parentheses,
so (~xn) means (x1,x2, . . . ,xn). Moreover, if ~xn denotes x1,x2, . . . ,xn and ~ym denotes
denotes y1,y2, . . . ,ym then (~xn,~ym) means (x1,x2, . . . ,xn,y1,y2, . . . ,ym).

A.3 Functions

A.3.1 Total Functions

A function from a set A into a set B is a correspondence which associates to every a in
A exactly one b in B. More precisely, a function from A into B is a subset f of A×B

satisfying:

1. For all a in A there is at least one b in B such that (a,b) is in f (definedness).

2. For all a in A there is at most one b in B such that (a,b) is in f (uniqueness).
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If f is a function from A into B, a is an element of A, and b is the unique b in B such
that (a,b) is in f , we write f(a) = b and call a the argument and b the result . Note that
by the definition of a function there corresponds to every argument exactly one result.

The set of all functions from A into B is written A→ B, and the fact that f is a
function from A into B is written f : A→B.

Some examples:

1. The function double f : IN → IN associates to every n in IN the number n + n.
This is the set {(0,0),(1,2),(2,4),(3,6), . . .}. For example, f(2) = 4.

2. The function predecessor g : IN → IN associates to every n 6= 0 the number n− 1
and associates 0 to 0. This is the set {(0,0),(1,0),(2,1),(3,2), . . .}. For example,
f(3) = 2.

3. The function monus .− : IN × IN → IN which associates to every pair (m,n) with
m ≥ n the difference m− n and associates 0 to all other pairs. This is the
set {((0,0),0),((0,1),0),((1,0),1),((2,0),2),((1,1),0),((0,2),0), . . .}. For example
f(0,2) = 0.

The set-theoretic definition of a function can be thought of as a table listing the arguments
in one column (first component) and the result of applying the function to the arguments
in the second column. For instance, double is:

0 0
1 2
2 4
...

...
A more customary way of writting the example functions is symbolically, e.g.:

1. f(n) = n+n.

2. f(n) =

{
n−1 if n > 0
0 if n = 0

3. f(m,n) =

{
m−n if m > n

0 if m≤ n

We shall also employ this shorthand notation. However it is important to keep in mind
that a function is just a certain set.

A function is sometimes called a total function to make explicit the difference from
the partial functions introduced in the next subsection. The unqualified term function
will always refer to a total function.
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A.3.2 Infinite sequences

Let S be some set. An infinite sequence of elements from S is a total function from IN

to S. For example, the identity function i : IN → IN defined by i(x) = x is a sequence,
and the function i : IN → IN × IN defined by i(x) = (i,2i) is a sequence.

Instead of presenting a sequence by a function definition, one often simply writes the
first few values i(0), i(1), i(2), etc. when it is obvious how i is then defined. For instance,
the first sequence above would simply be written “0,1,2, . . .” and the second would be
written “(0,0), (1,2), (2,4), (3,6), . . .”

A.3.3 Partial functions

A partial function from A into B is a correspondence which associates to every a in A

at most one b in B, i.e. a subset f of A×B such that for every a in A there is at most
one b in B such that (a,b) ∈ f .

This is the same as a total function except that there is no definedness condition; a
partial function may not have a result in B for some argument in A. However, when a
partial function has a result for some argument, then it has only one result.

If f is a partial function from A into B and (a,b) ∈ f then we say that f is defined or
converges on a, and we write f(a)↓. If a is an element of A on which f is defined, and
b is the unique element in B such that (a,b) is in f , we again write f(a) = b and call a

and b the argument and result, respectively.
If, on the other hand, for some a in A there is no b in B with (a,b) belonging to f we

say that f is undefined or diverges on a and write f(a)↑, or alternatively f(a) =⊥. In
these two notations one should not think of f(a) or ⊥ as objects existing in B or some
other set; the notations simply state that there exists no b ∈ B such that (a,b) ∈ f . If
f(a)↑ and g(a)↑ we will even write f(a) = g(a). Again this simply means that f and g

are both undefined on the value that they are applied to.
The set of all partial functions from A into B is written A→ B⊥, and the fact that

f is a partial function from A into B is written f : A→B⊥.
As an example of a partial function, consider f : IN×IN→ IN⊥, which maps any pair

(m,n) to the result of rounding m
n up to the nearest integer. For instance f(3,2) = 2.

This function is defined on (m,n) if and only if n 6= 0, e.g. f(2,0) =⊥.
The cautious reader will have noticed a small error in the preceding example. Recall

that IN × IN is the set of all pairs (m,n) where m,n ∈ IN . Thus f associates to every
(m,n) with n 6= 0 a number k in IN . Recall also that if a ∈ A and g : A→ B⊥ and
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(a,b) ∈ g we write b = g(a), that is, we put parentheses around a. Thus above we should
have written f((3,2)) = 2, rather than f(3,2) = 2. However it is customary to drop one
set of parentheses, and we shall also do so.

For a partial function f : A→B⊥ the domain of f is the set

dom(f) = {a ∈A |f(a) ↓}

In case f is total, dom(f) = A.
The codomain of a total or partial function from A into B is the set B.
The range of a total or partial function from A into B is the set

rng(f) = {b ∈B | there is a a ∈A such that f(a) = b}

A.3.4 Total versus partial functions

Any total function is also a partial function. For a partial function f : A→ B⊥ it may
happen that for all a ∈A, f(a) is defined, i.e. dom(f) = A. In that case f is also a total
function.

There are two standard ways of obtaining a total function f ′ from a partial function
f : A→B⊥:

1. Remove all those elements of A on which f is undefined: Define f ′ : dom(f)→ B

by f ′(a) = f(a) for all a ∈ dom(f).

2. Add a new element ∗ to B and let that be the result whenever f is undefined:
Define f ′ : A→ (B ∪{∗}) by: f ′(a) = f(a) for all a ∈ dom(f), and f ′(a) = ∗ for
a ∈A\dom(f).

A.3.5 Equality of functions and partial values

Recall that functions are just certain sets, and that two sets are equal if and only if they
contain the same elements. This implies that two total functions f,g : A→ B are equal
if and only if they are the same sets of pairs. Equal total functions f and g thus satisfy
f(a) = g(a) for all a ∈A.

Similarly, two partial functions f,g : A→ B⊥ are equal iff dom(f) = dom(g) and for
all a ∈ dom(f) : f(a) = g(a), i.e. iff for all a ∈A:

1. f(a)↑ and g(a)↑; or

2. f(a)↓ and g(a)↓ and f(a) = g(a).
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If b,b′ ∈ B⊥, we write b ' b′ to indicate that both are in B and equal, or both are
undefined. Thus partial functions f,g : A→B⊥ are equal iff f(a)' g(a) for all a ∈A.

A.3.6 Some operations on partial functions

The composition of two partial functions f : A→ B⊥ and g : B → C⊥ is the partial
function (g ◦f) : A→B⊥ defined by

(g ◦f)(a) =

{
g(f(a)) if a ∈ dom(f) and f(a) ∈ dom(g)
⊥ otherwise

The function updating of two partial functions f,g : A → B⊥ is the partial function
f [g] : A→B⊥ defined by

f [g](a) =

{
g(a) if a ∈ dom(g)
f(a) otherwise

Note that if both g and f are undefined on a ∈A, then so is f [g].
A function f : A→ B⊥ with finite domain dom(f) = {a1,a2, . . . ,an} is also written

[a1 7→ b1,a2 7→ b2, . . . ,an 7→ bn] where f(a1) = b1,f(a2) = b2, . . . ,f(an) = bn. (This is just
a slight variant of the notation {(a1, b1),(a2, b2), . . . ,(an, bn)} for f .) So (omitting a pair
of square brackets)

f [a1 7→ b1,a2 7→ b2, . . . ,an 7→ bn]

is the function h : A→B⊥ such that h(a1) = b1,h(a2) = b2, . . . ,h(an) = bn, and h(a) = f(a)
for a ∈A\{a1,a2, . . . ,an}.

Let f,g : X → IR⊥ for some set X. Then

1. The sum f +g : X → IR⊥ is defined by:

(f +g)(x) =

{
f(x)+g(x) if f(x)↓ and g(x)↓
⊥ otherwise

2. The product f ·g : X → IR⊥ is defined by:

(f ·g)(x) =

{
f(x) ·g(x) if f(x)↓ and g(x)↓
⊥ otherwise

3. The difference f −g : X → IR⊥ is defined by:

(f −g)(x) =

{
f(x)−g(x) if f(x)↓ and g(x)↓
⊥ otherwise
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4. The quotient f/g : X → IR⊥ is defined by:

(f/g)(x) =

{
f(x)/g(x) if f(x)↓ and g(x)↓ and g(x) 6= 0
⊥ otherwise

5. Similar notation is used with a constant a ∈X in place of f . For instance, a · f :
X → IR⊥ is defined by (a ·f)(x) = a ·f(x).

In the special case where f,g are total functions (see Section A.3.4) the operations 1-3
and 5 give as a result a total function. In 4 the result may be a partial function even
when f,g are both total.

A.3.7 Higher-order functions

A higher-order function is a function that returns a function as its value.
One example is twice : (IN→ IN)→ (IN→ IN) where by definition for any f : IN→ IN

we have twice(f) = g where g(n) = f(f(n)) for all n ∈ IN .
Another example is apply : (IN → IN)× IN → IN where for any f : IN → IN,n ∈ IN

we have apply(f,n) = f(n).

A.3.8 Lambda notation

Lambda notation is a device to define a function without giving it a name. For instance,
we have previously described the successor function as

f : IN → IN,f(n) = n+1

Using the lambda notation this function could be written:

λn .n+1 : IN → IN

The notation λn .n+1 should be read: the function that maps any n to n+1.
In the usual notation we write for example f(3) = 3+1. What we do when we write

3+1 on the right hand side of this equality is that we take the definition of f , f(n) = n+1
and substitute 3 for n in the right hand side of the definition. In the lambda notation
we do something similar by writing

(λn .n+1)3 = 3+1 = 4

Note the unusual bracketing in this expression.
We write functions of several variables, e.g. addition, as:

(∗) λ(m,n) .m+n : IN × IN → IN
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and for instance (λ(m,n) .m+n) (3,4) = 3+4 = 7.
Another slightly different function is a higher-order verion of the same:

(∗∗) λm.λn .m+n : IN → (IN → IN)

Whereas the first function expects a pair (m,n) and then gives m+n as result, the second
function expects a number and then gives a function as result. For instance,

(λm.λn .m+n) 3 = λn .3+n

This function, “add 3” can itself be applied to some argument, for instance

(λm.3+m) 4 = 3+4 = 7

Thus
((λm.λn .m+n) 3) 4 = (λn .3+n) 4 = 3+4 = 7

It is clear that for any two numbers k, l ∈ IN

(λ(m,n) .m+n) (k, l) = ((λm.λn .m+n)k) l

This suggests that one can represent functions of several variables by means of functions
of just one variable. Indeed this holds in general as was discovered independently by
several people. The transformation from a function like the one in (∗) to the one in (∗∗)
is called currying after H. B. Curry, one of the discoverers of the idea.

From now on multiple function applications associate to the left, so e1 e2 e3 means
(e1 e2)e3.

A.3.9 Injective, surjective, bijective, and monotonic total

functions

An injective function is a function f : A→ B such that for all a,a′ ∈ A, if a 6= a′ then
f(a) 6= f(a′). An injective function is also said to be one-to-one.

A surjective function is a function f : A→B such that for all b ∈B there is an a ∈A

such that f(a) = b, i.e. if and only if rng(f) = B. Note that this does not follow from the
fact that f is a function from A into B. A surjective function is also said to be onto.

A bijective function is a function which is both injective and surjective.
Examples:

1. f : IN → IN,f(n) = n+1 is injective but not surjective.

2. g : IN × IN → IN,g(m,n) = m+n is surjective but not injective.
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3. h : IN → O, where O is the set of odd non-negative numbers, defined by h(n) =
2 ·n+1 is bijective.

A function f : IN→ IN is monotonic if n≤m implies f(n)≤ f(m), and strictly monotonic
if n < m implies f(n) < f(m). If a function f : IN → IN is strictly monotonic then it is
also injective, but not necessarily vice versa.

A.3.10 Some useful functions

We review some functions that are used in the remainder.
The logarithmic function with base 2, log : IN → IN is defined by:

log(n) =

{
0 if n = 0
m otherwise, where m ∈ IN is the largest number such that 2m ≤ n

For instance, log(65536) = 16 since 216 = 65536. It is convenient to assume that log(0) =
0. Thus log is a total function from IN into IN .

For a non-empty set N of natural numbers max(N) denotes the largest number in N

if it exists, and ∞ otherwise. Thus max is a total function from the set of non-empty
subsets of IN into IN ∪{∞}, i.e. max : P(IN)\{∅}→ IN ∪{∞}.

For a non-empty set N of natural numbers min(N) denotes the smallest number in
N . Such a number exists in every non-empty subset of IN .

A.3.11 Comparing the growth of functions

Below all functions are from IN into IR+. Given a total function f .

1. O(f) (pronounced big oh) is the set of all functions g such that for some r ∈ IR+,
and for all but finitely many n,

g(n) < r ·f(n)

2. Ω(f) is the set of all functions g such that for some r ∈ IR+ and for infinitely many
n,

g(n) > r ·f(n)

3. Θ(f) is the set of all functions g such that for some r1, r2 ∈ IR+ and for all but
finitely many n,

r1 ·f(n)≤ g(n)≤ r2 ·f(n)
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4. o(f) (pronounced little oh) is the set of all functions g such that

lim
n→∞

g(n)
f(n)

= 0

If g ∈O(f) then for some r the graph of g is below that of r ·f = λx . r ·f(x) for all but
finitely many arguments. If g ∈ o(f) then the graph of g is below that of r ·f = λx.r ·f(x)
for all r > 0 and all but finitely many arguments.

If g ∈Θ(f) then for some r1, r2 the graph of f stays between the graph of r1 ·f and
r2 ·f for all but finitely many arguments.

The following properties are useful. Their proofs are left as exercises.

1. g ∈Θ(f) iff g ∈O(f) and f ∈O(g)
2. g ∈Θ(f) iff f ∈Θ(g)

Some examples of the O-notation, whose proofs are also left as exercises:

1. λn .k ∈O(λn .n), but λn .n 6∈O(λn .k), for any k ∈ IR+.
2. λn . logn ∈O(λn .n), but λn .n 6∈O(λn . logn).
3. λn .na ∈O(λn . bn), but λn . bn 6∈O(λn .na), for all a,b ∈ IR+.

A common but sloppy notation is to write f = O(g) instead of f ∈O(g). Such notation
is harmless as long as one keeps in mind that the = is neither symmetric nor transitive.
Thus if f = O(g) and h = O(g) one should conclude neither O(g) = f which is meaningless
nor f = h which may be plain wrong.

A.4 Graphs

A graph consists of a number of nodes and a number of edges between these nodes. For
instance the following graph has three nodes and three edges. The edges have arrows in
one direction, so this is a directed graph.

���1
�

�
�/���2 -���3S

S
So

More precisely, we define a directed graph to be a pair (V,E) where V is called the
set of nodes or vertices and E ⊆ V ×V is called the set of edges. The graph above is
({1,2,3},{(1,2),(2,3),(3,1)}). An edge (x,y) ∈ E may also be written as x→ y.



Grammars and finite automata 433

A path in (V,E) (from x1 to xn) is a finite sequence x1, . . . ,xn where n ≥ 1 and
xi→ xi+1 is an edge in E for each i with 1 ≤ i < n. The length of the path is n. The
empty path is the unique path of length 0. The path is a cycle if n > 0 and x1 = xn. A
graph is cyclic if there is a cycle in it, and acyclic otherwise. A DAG is a directed acyclic
graph.

We write

• x1→ . . .→ xn for a path x1,x2, . . . ,xn

• x→∗ y if there is a path from x to y

• x→n y if there is a path from x to y of length n

• x→≤n y if there is a path from x to y of length n or less.

A directed graph with source and target nodes is a 4-tuple G = (V,E,v0,vend) where
v0,vend ∈ V and (V,E) is a directed graph.

An undirected graph is a directed graph (V,E) such that E is symmetric: whenever
edge (x,y) ∈ E then we also have (y,x) ∈ E.

A.5 Grammars and finite automata

A.5.1 Alphabets and strings

A finite non-empty set is sometimes called an alphabet , in which case the members of the
set are called symbols. If Σ = {a1, . . . ,ak} is an alphabet, a string over Σ is a sequence
b1b2 . . .bm where m ≥ 0 and each bi ∈ Σ. For example, if Σ = {0,1}, then 11, 101, and
100011 are all strings over Σ. The empty string ε is the unique string with m = 0.

If x = b1 . . .bm and y = c1 . . .cn, then x and y are equal, written x = y, if m = n and
bi = ci for all i ∈ {1, . . .n}. If x = b1 . . .bm and y = c1 . . .cn, their concatenation is the
string xy = b1 . . .bmc1 . . .cn. If z = xy then we say x is a prefix of z, and that y is a suffix
of z. If z = xwy then we say w is a substring of z.

If A,B are two sets of strings over Σ, then we define

AB = {xy | x ∈A,y ∈B}
A∗ = {x1x2 . . .xn | n≥ 0,x1, . . . ,xn ∈A}
A+ = {x1x2 . . .xn | n≥ 1,x1, . . . ,xn ∈A}(so A∗ = A+∪{ε})

The reverse of string x = b1b2 . . .bm is the string x̃ = bm . . .b2b1, i.e. “x written back-
wards.”
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A.5.2 Grammars

A grammar includes a rewrite system P (as defined in Section 10.2.1), used as a tool
to generate strings over an alphabet. We often write δ ::= γ instead of (δ,γ) ∈ P . For
instance

A ::= aAa

A ::= bAb

A ::= c

A ::= aca

with Σ = {a,b,c} is a grammar. For conciseness we often group productions with the
same left side, separated by the symbol “|” (pronounced “or”). Thus the four productions
above could be expressed as one:

A ::= aAa | bAb | c | aca

The usage of a grammar is that one starts out with the start symbol S and then replaces
non-terminals A (in particular S) by the right hand sides of their productions, so the
preceding grammar, beginning with A, can generate strings over {a,b} like:

aacaa
aaabcbaaa
bbaacaabb
baacaab

(What is the underlying structure of all these strings?)
More formally, a grammar is a 4-tuple G = (N,T,P,S) where

1. N is an alphabet whose members are called nonterminals.

2. T is an alphabet, disjoint from N , whose members are called terminals.

3. P is a string rewriting system over N ∪T such that (δ,γ) ∈ P implies δ /∈ T ∗.

4. S is a member of N called the start symbol .

In the preceding example

1. N = {A}.
2. T = {a,b,c}.
3. P = {(A,aAa), (A,bAb), (A,c), (A,aca)}.
4. S = A.



Grammars and finite automata 435

The requirement on δ in part 3 of the definition of a grammar states that no production
may allow a sequence of terminals to be rewritten further, hence the name “terminal
symbol.”

We now give precise definitions of one-step and multi-step rewriting. These are called
the one-step derivation relation ⇒ and the multi-step derivation relation ⇒∗ and are
defined as follows where α,β,ρ,σ ∈ (N ∪T )∗:

1. αδβ⇒ αγβ iff δ ::= γ ∈ P .

2. If ρ⇒ σ then ρ⇒∗ σ.

3. ρ⇒∗ ρ.

4. If ρ⇒∗ α and α⇒∗ σ then ρ⇒∗ σ.

The set generated by a grammar G = (N,T,P,S) is:

L(G) = {x ∈ T ∗ | S⇒∗ x }

The set generated by our example grammar is the set of all strings xcx̃ where x is a
string of a’s and b’s, and x̃ is the reverse string of x.

A.5.3 Classes of grammars

Some classes of grammars are particularly interesting, and well-studied for programming
language applications.

A regular grammar G = (N,T,P,S) is a grammar in which every production is of
form A ::= x or A ::= xB where A,B ∈ N,x ∈ T ∗. Our example grammar above is not
regular.

A context-free grammar G = (N,T,P,S) is one such that in every production δ ::=
γ ∈ P , δ is a single nonterminal symbol. Our example grammar above is context-free.

Clearly every regular grammar is context-free, but not necessarily vice versa.
A context-sensitive grammar G = (N,T,P,S) is one such that in every production

α ::= β ∈ P , the length of β is larger than or equal to that of α, or α ::= β is S ::= ε, and
S does not appear on the right side of any production in P .

Let G = (N,T,P,S) be a context-free grammar. There is a specific form of one-step
and multi-step rewriting where one always rewrites the left-most non-terminal. These are
called the left-most one-step derivation relation ⇒l and the left-most multi-step deriva-
tion relation ⇒∗l and are defined as follows where ρ,σ ∈ (N ∪T )∗:

1. αδβ⇒l αγβ iff δ ::= γ ∈ P and α ∈ T ∗,β ∈ (N ∪T )∗.
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2. If ρ⇒l σ then ρ⇒∗l σ.

3. ρ⇒∗l ρ.

4. If ρ⇒∗l α and α⇒∗l σ then ρ⇒∗l σ.

Sometimes one can generate the same terminal string from a context-free grammar by
two different left-most derivation sequences. For instance, in our example grammar

A⇒l aca

by the last production, but also

A⇒l aAa⇒l aca

In this case the grammar is said to be ambiguous.

A.5.4 Decidability problems for grammars

We mention some decision problemsoncerning grammars and strings:

1. The membership problem for grammar G = (N,T,P,S) is: given a string x ∈ T ∗, to
decide whether or not x ∈ L(G).

2. The non-emptiness problem for G is to decide whether or not L(G) = ∅.

3. The completeness problem for G is to decide whether or not L(G) = T ∗.

4. The ambiguity problem for context-free grammar G is to decide whether or not G

is ambiguous.

Some special cases of these problems are so important that they have their own names:

1. CF6=∅: The non-emptiness problem for context-free grammars.

2. CFALL: the completeness problem for context-free grammars.

3. CFAMB: the ambiguity problem for context-free grammars.

4. REG 6=∅: The non-emptiness problem for regular grammars.

5. REGALL: the completeness problem for regular grammars.

6. REGAMB: the ambiguity problem for regular grammars.
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A.5.5 Regular expressions

One way to represent a set of strings is to find a grammar generating exactly that set.
Another way is to find a regular expression. Let Σ be an alphabet. The set of regular
expressions over Σ is defined as follows.

1. ε is a regular expression over Σ.
2. If a ∈ Σ then a is a regular expression over Σ.
3. If r,s are regular expressions over Σ then so are (r |s), (rs), and (r∗)

To save parentheses we adopt the conventions that

1. ∗ has the highest precedence;
2. concatenation has the second highest precedence, and associates to the left;
3. | has the lowest precedence, and associates to the left.

For instance the regular expression r = (((00)∗) | (1((11)∗))) can be written shorter as
(00)∗ |1(11)∗.

As for grammars we define L(r), the set generated by the regular expression r, as
follows:

1. L(ε) = ∅;
2. L(a) = {a} for every a ∈ Σ;
3. L(r |s) = L(r)∪L(s);
4. L(rs) = L(r)L(s);
5. L(r∗) = L(r)∗

where L(r)L(s) and L(r)∗ are defined in Subsection A.5.1. For the regular expression r

above L(r) is the set of all strings consisting either of an even number of 0’s or an odd
number of 1’s.

The cautious reader may have noticed that a certain class of grammars was called
the regular grammars. This suggests some connection to the regular expressions. Indeed
the following property holds:

Proposition A.5.1

1. For any regular grammar G there is a regular expression r with L(G) = L(r).
2. For any regular expression r there is a regular grammar G with L(G) = L(r).

On the other hand there are certain sets of strings that are generated by a context-free
grammar but not by any regular expression or regular grammar. For instance, this is the
case with the set of strings consisting of n a’s followed by n b’s.
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A.5.6 NFA and DFA

Grammars and regular expressions are compact representations of sets of strings. We now
introduce a third kind of representation of a set of strings, namely a non-deterministic
finite automaton, or NFA for short. Pictorially an NFA is a directed graph where every
edge has a label, one node is depicted as the start node, and zero, one or more nodes are
depicted as accept nodes. Here is an example where the start node stands out by having
an arrow labelled “start” into it, and where the single accepting node has two circles
rather than just one:

-start ���1 -c ���2 -b��O a �
��
3 -c��O a �
��l4

The idea of representing a set L of strings by this NFA is as follows. From the start node
1 we can “read” a c and then proceed to node 2. From this node we can read any number
of a’s without leaving the state and then read a b, jumping to node 3. Again we can
read any number of a’s and then a c, jumping to the accepting node. Thus altogether
we have read a string of form: ca . . .aba . . .ac. The set L consists of all the strings we
can read in this manner; in other words, L is the same set of string as the set generated
by the regular expression ca∗ba∗c.

The reason why these automata are called “non-deterministic” is that there can be
two different edges out of a node with the same label, and there can be edges labelled ε,
as illustrated in the following NFA, which accepts the set of strings generated by ε |ab |ac:

-start ���1 -a
H

HHHHja

���2 -

c

� �
W

ε

���l3
���4 -

b

���l5
More formally an NFA is a 5-tuple (Q,Σ,m,q0,F ) where

• Q is a set of states;

• Σ is an alphabet;

• m : Q× (Σ∪{ε})→P(Q) is a transition function that maps a state and a symbol
to a set of states;

• q0 is a state, the start state;

• F is a set of states, the accepting states.
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In the first example above:

• Q = {1,2,3,4};
• Σ = {a,b,c};
• m(1, c) = {2}

m(2,a) = {2}
m(2, b) = {3}
m(3,a) = {3}
m(3, c) = {4}

• q0 = 1;

• F = {4}.

Formally, a string x = a1 . . .an with each ai ∈ Σ is accepted by an NFA (Q,Σ,m,q0,F )
if there is a sequence of states q1, . . . qn+1 ∈Q and symbols a1, . . . ,an ∈ Σ∪{ε} such that
m(qi,ai) 3 qi+1 for all i ∈ {1, . . . ,n}, and q0 = q1. Given an NFA N , L(N) denotes the
set of all strings accepted by N , and this is called the language accepted by N .

A deterministic finite automaton, or DFA for short, is an NFA such that no edge is
labelled ε and all edges out of the same node are labelled by different symbols. The first
of the above NFAs is a DFA, the second is not. Formally, a DFA can be dscribed as a
5-tuple (Q,Σ,m,q0,F ) where

• Q is a set of states;

• Σ is an alphabet;

• m : Q×Σ→Q is a transition function that maps a state and a symbol to a state;

• q0 is a state, the start state;

• F is a set of states, the accepting states.

Note that m now maps from Σ (instead of Σ∪{ε}) to Q (instead of P(Q)). A string
x = a1 . . .an with each ai ∈ Σ is accepted by a DFA (Q,Σ,m,s0,F ) if there is a sequence
of states q1, . . . qn+1 ∈ Q and symbols a1, . . . ,an ∈ Σ∪{ε} such that m(qi,ai) = qi+1 for
all i ∈ {1, . . . ,n}, and q0 = q1. L(N) denotes the set of all strings accepted by the DFA
N , and this is called the language accepted by N .

It is easy to turn the second of the above NFA’s into a DFA accepting the same
language. It is also easy, as we have done, to express the language accepted by the two
NFA’s by means of regular expressions. It is natural to wonder what the connections
are in general between NFA’s, DFA’s, and regular expressions. This is settled in the
following proposition.
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Proposition A.5.2 the following conditions are equivalen for any language L:

1. There is a DFA accepting L.

2. There is an NFA accepting L.

3. There is a regular expression generating L.

4. There is a regular grammar generating L.

Proofs of these properties can be found in [3].
In constructing 2 from 1, the number of states of the two automata are the same since

any DFA may be converted into an equivalent NFA by a trivial change in the transition
function (to yield a singleton set of states instead of one state). In constructing 1 from
2, the DFA may have as many as 2n states where n is the number of states of the NFA.
In constructing 2 from 3, the NFA has at most twice as many states as the size of the
regular expression.

A.6 Induction

A.6.1 Inductive proofs

Consider the formula

(∗) 1+2+ . . .+n =
n(n+1)

2
Is this equation true for all n ∈ IN?1 If n = 0 it states that2 0 = (0 ·1)/2 which is true.
For n = 1 it states 1 = (1 ·2)/2 which is true. For n = 2,3 it states that 1+2 = (2 ·3)/2
and 1+2+3 = (3 ·4)/2, which are both true, and so on.

The formula seems to be true for all examples. However this does not constitute
a proof that it really is true in all cases. It could be that the formula fails for some
number.3 On the other hand, if we don’t know what n is, we need a general technique
to prove the equation.

Suppose we could prove the following.

1. (∗) holds for n = 0.

1Recall that predicates are certain sets. In this section we often discuss whether or not something

holds or is true. This always boils down to set membership, cf. Section 12.2.
2By convention 1+2+ . . .+n = 0 when n = 0.
3Allenby [5] mentions a a striking example of this kind. Consider the following property that a number

n may or may not have: n can be written as n3
1 +n3

2 +n3
3 +n3

4 +n3
5 +n3

6 +n3
7 +n3

8 where n1, . . . ,n8 ∈ IN .

It turns out that the property holds for all natural numbers except 23 and 239.



Induction 441

2. Whenever (∗) holds for some number n it also holds for n+1.

Then (∗) would hold for 0, for 1, for 2, and so on. The principle of mathematical induction
states that if the above two properties hold then (∗) holds for all numbers:

Mathematical induction. If for some predicate P (n) on IN , P (0) is true, and
it holds that for all n ∈ IN P (n) implies P (n + 1), then P (n) holds for all
n ∈ IN .

We can prove (∗) by applying this principle, using (∗) in place of P (n):
Base case: If n = 0 then (∗) states that 0 = 0 ·1/2 which is true.
Induction Step: Suppose that (∗) holds for some n. (This is called the induction

hypothesis). Then

1+2+ . . .+n =
n(n+1)

2

Then
1+2+ . . .+n+(n+1) = n(n+1)

2 +(n+1)
= n(n+1)

2 + 2(n+1)
2

= n(n+1)+2(n+1)
2

= (n+1)(n+2)
2

so (∗) also holds for n+1.
Hence by mathematical induction, (∗) holds for all n ∈ IN .
If one wants to prove for some predicate P (n) that P (n) holds for all n≥ 1 one must

prove in the base case that P (1) holds and prove for all n≥ 1 that P (n) implies P (n+1).
For a predicate P (n) it sometimes happens that we can prove P (n+1) more easily if

we know that P (k) holds not only for k = n but for all k ≤ n. This can be stated as the
mathematically equivalent principle of complete induction or course-of-values induction:

Complete induction. If for some predicate P (n) on IN P (0) is true, and it
holds that P (k) for all k≤ n implies P (n+1), then P (n) holds for all n ∈ IN .

Again if one proves P (1) in the base case, the conclusion is that P (n) holds for all n≥ 1.
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A.6.2 Inductive definitions

One can define objects inductively (or recursively). For instance, the sum s(n) = 1+2+
. . .+n can be defined as follows:

s(0) = 0
s(n+1) = (n+1)+s(n)

More generally we may use:

Definition by Recursion. If S is some set, a is an element of S, and g :
S× IN → S is a total function, then the function f : IN → S

f(0) = a

f(n+1) = g(f(n),n)

is well-defined.

In the preceding example S was IN , a was 0, and g(x,n) = (n+1)+x.
Many variations of this principle exist. For instance:

1. f(n+1) may use not only n and f(n), but all the values 0, . . . ,n and f(0), . . . ,f(n).
2. Function f may have more parameters than the single one from IN .
3. Several functions may be defined simultaneously.

As examples of the three variations:

1. The fibonacci function f : IN → IN is defined by:

f(0) = 1
f(1) = 1
f(n+2) = f(n+1)+f(n)

2. The power function λ(m,n) .mn : IN × IN → IN is defined by:

m0 = 1
mn+1 = m ·mn

3. The functions even : IN → {T,F} returning T iff the argument is even, and odd :
IN→{T,F} returning T iff the argument is odd can be defined by mutual recursion:

even(0) = T

even(n+1) = odd(n)

odd(0) = F

odd(n+1) = even(n)
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A.6.3 Other structures than numbers

The set of strings generated by a grammar can be viewed as defined inductively. Here is
an example:

A parenthesis string is a string over the alphabet {(,)}. The set of all balanced
parenthesis strings is defined as the set of strings generated by the following grammar:

S ::= ε

S ::= S S

S ::= (S)

Example strings generated by the grammar: () and (()()) and (()(())). Some examples,
not generated by the grammar: )( and ()(() and ())).

There is a well-known algorithm to test whether a parenthesis string is balanced. Let
l(x) and r(x) be the number of left and right parentheses in x, respectively. A prefix of
x is a string y such that x = yz for some z, i.e. an initial part of x. Claim: a parenthesis
string x is balanced iff l(x) = r(x) and for all prefixes y of x l(y)≤ r(y).

Actually we can prove correctness of this claim. This has two parts. First, that
any string x generated by the grammar satisfies the test; and second, that any string
satisfying the test is also generated by the grammar.

For the first part, the proof is by complete induction on n, the number of steps in the
derivation S⇒∗ x, with base case n = 1. So P (n) is: any string x in a derivation S⇒∗ x

with n steps satisfies the test.
Base case. If n = 1 then the derivation must be S⇒∗ ε (remember that every derived

string consists only of terminals). Clearly, l(ε) = 0 = r(ε), and since the only prefix of ε

is ε itself, l(y)≤ r(y) for all prefixes y.
Induction step: Suppose all strings generated in n or fewer steps from the grammar

satisfy the test, and consider some string x generated in n+1 steps. The rewriting must
begin with either S⇒ S S or S⇒ (S).

We consider first the case beginning with S⇒ S S. Here x has form uv where S⇒∗ u

and S⇒∗ v are derivations in n or fewer steps. By induction hypothesis the test holds
for both u and v. Then

l(x) = l(uv)
= l(u)+ l(v)
= r(u)+ r(v)
= r(x)

Now we only need to show that l(y) ≤ r(y) for any prefix y of x = uv, so let y be some
prefix of x. If y is a prefix of u then l(y) ≤ r(y) by induction hypothesis. If y is not a
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prefix of u then y = uw where w is a prefix of v. Then by induction hypothesis:

l(y) = l(uw)
= l(u)+ l(w)
= r(u)+ l(w)
≤ r(u)+ r(w)
= r(uw)
= r(x)

as required.
The case where the derivation begins with S⇒ (S) is left as an exercise, and the proof

of the remaining part, that any string x satisfying the test is generated by the grammar,
is also an exercise.

Induction proofs occur frequently in computability and complexity theory as well as
in other branches of theoretical computer science. The only way to get to master such
proofs is to try and do a number of them. Therefore the reader is strongly encouraged
to try out Exercises A.17 and A.18.

A.7 Pairing functions

A pairing decomposition of set X consists of three total functions

pr : X×X →X,hd : X →X,tl : X →X

such that for all x,y ∈X and all z ∈ rng(pr):

hd(pr(x,y)) = x

tl(pr(x,y)) = y

In a pairing decomposition pr is called a pairing function.
The pairing function pr is one-to-one since pr(x,y) = pr(x′,y′) implies that x =

hd(pr(x,y)) = hd(pr(x′,y′)) = x′ and similarly for y,y′. Function pr need not be onto,
although such functions do exist.

There are several pairing functions for the set IN of natural numbers. One example is
pr1(x,y) = 2x ·3y. To understand that one can find corresponding hd,tl one must know
that if 2x3y = 2a3b then x = a and y = b. This follows from the fundamental theorem
of arithmetic: Any n 6= 0 can be written in exactly one way as a product pn1

1 pn2
2 . . .pnm

m

where p1 < p2 < .. . < pm are prime numbers and n1,n2 . . . ,nm are all numbers different
from 0.
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For a more economical example in which pr is onto, consider the pairing decomposition
where the pairing function is pr3(x,y) = (x+ y)(x+ y +1)/2+ y = (x2 +2xy + y2 +x+
3y)/2. This pairing is surjective.

This can be illustrated by the figure:

y
... . . . . . . . . . . . . . . . . . .
4 10 . . . . . . . . . . . . . . .
3 6 11 . . . . . . . . . . . .
2 3 7 12 . . . . . . . . .
1 1 4 8 13 . . . . . .
0 0 2 5 9 14 . . .

0 1 2 3 4 . . . x

In both of the two last pairing decompositions the pairs in the sequence

{(0,0),(0,1),(1,0),(2,0),(1,1),(0,2),(0,3), . . .}

receive increasing values by the pairing function, and in the last example these values
are even consecutive. Further, Polya has proven that any surjective polynomial pairing
function must be identical to pr3(x,y) or its converse pr4(x,y) = pr3(y,x).

Exercises

A.1

1. Place the implicit parentheses in the boolean expression p⇒¬q⇒¬q⇔¬p⇒¬q

2. Convert the expression to CNF and indicate which equations you use.

3. Given the truth assignment θ(p) = true, θ(q) = false, what is the value of the
expression in question 1? What is the value of the CNF-converted expression?
A boolean expression is called satisfiable iff there exists a truth assignment for
the variables of the expression such that the value of the expression is true. It is
called valid iff the value of the expression is true under all truth assignments of the
variables.

4. Is the expression in question 1 satisfiable? Is it valid? 2
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A.2 Suppose f : A→ B⊥ and g : B → C⊥ are two partial functions. What function is
the set

h = {(a,c) ∈A×C | there is a b ∈B : (a,b) ∈ f and (b,c) ∈ g}?

Give a similar explicit description of f [g]. 2

A.3 Prove 1-3 in Subsection A.3.9. 2

A.4 Prove that if f : A→B is a bijective function then there exists exactly one function
f−1 : B→ A such that: f(a) = b if and only f−1(b) = a. The function f−1 is called the
inverse of f . 2

A.5 Prove that if f : A→B is an injective function then there exists exactly one function
f−1 : rng(f)→ A such that: f(a) = b if and only f−1(b) = a. The function f−1 is again
called the inverse of f . 2

A.6 Prove that the inverse of an injective function is surjective. 2

A.7 Give an example of a function which is neither injective nor surjective. 2

A.8 What is the inverse of the composition of two bijective functions? 2

A.9 Show that if f ∈O(g) and g ∈O(h) then f ∈O(h). 2

A.10 Prove the five properties at the end of Section A.3.11. 2

A.11 Suppose f ∈O(f ′) and g ∈O(g′). Which of the following are true?

1. f +g ∈O(f ′+g′).

2. f ·g ∈O(f ′ ·g′).
3. f/g ∈O(f ′/g′).

4. Suppose that f − g and f ′ − g′ are functions from IN into IR+. Then f − g ∈
O(f ′−g′). 2

A.12 Construct NFAs accepting the following regular expressions:

1. (a|b)∗

2. (a∗|b∗)∗

3. ((ε |a)b∗)∗ 2
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A.13 Convert the NFAs of the preceding exercise into DFAs. 2

A.14 Give a regular expression generating the language accepted by the following NFA:

���
@

@
@

@R

��� ���
�

�
�

�	��� ���l
��O

� �
W

- - -

-

ε

start 1 2 3

4 5

a b

a

c

c
a

2

A.15 Convert the NFA of the preceding exercise into a DFA. 2

A.16 What is wrong with the following alledged induction proof?
A set of natural numbers is odd if all its members are odd.
Claim: Every finite set of natural numbers N is odd.
proof: By induction on the number of elements in N .
Base case: n = 0. Then trivially all elements are odd, since there are no elements

[the rat is not buried here].
Induction step: We assume that all sets with n members are odd and must show

that all members with n+1 members are odd. Let S have n+1 members. Remove one
element l and let the resulting set be called L. Since L has n members the induction
hypothesis guarantees that L is odd. Now put l back and take another element k out
resulting in a set K. K again has n elements and so is odd. In particular l is odd, and
since S = L∪{l} and L is odd, S is odd. 2

A.17 Prove the last case in the proof that every string generated by the grammar for bal-
anced parenthesis strings satisfies the test for parenthesis strings (see Subsection A.6.3).

2

A.18 Prove that every parenthesis string satisfying the test in Subsection A.6.3 is also
generated by the grammar in the same subsection. Hint: use induction on the number
of symbols in the string x with base case 0. In the induction step argue that since x

satisfies the test, x must have form (y) where y satisfies the test, or vw where v and w

satisfy the test. Then use the induction hypothesis. 2

A.19 Give algorithms to compute hd and tl for the three pairing decompositions in
Section A.7. 2
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References

Most of the contents of this appendix is covered by many books on discrete mathematics.
For more specialized texts, an excellent introduction to sets and functions can be found in
Halmos’ book [61], and finite automata are covered by the classic text by Aho, Hopcroft,
and Ullman [2].
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algorithm, 9
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finite, 438

binding-time engineering, 94
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boolean expression, 421
boolean operators, 421
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boolean variables, 421
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Church-Turing thesis, 4, 8, 127
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circuit complexity, xv, 9
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CM-computability, 127, 210

CM-computable, 134, 210

CMlogspace, 354
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communicating systems, xv

compilation, 50, 59

for proving equivalence of languages,
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versus interpretation, 89

with change of data, 52, 129
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generation, 96

compiling function, 50

w.r.t. coding, 52

complete logical system, 198, 200
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bounds, 353

non-deterministic, 336

relations among, 324, 326, 336, 349,
350

robustness of, 277
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logspace, 321

pspace, 321, 324

definition of, 321, 336

robustness of, 324
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ptime, 244

definition of, 336

robustness of, 273, 277
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of (primitive) recursive functions, 208

of compiler and interpreter diagrams,
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in logarithmic space, 327

computable function, 207

computation model
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SRAM, 118
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computation models

comparison of times, 251, 273
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effect on complexity theory, 21, 241

equivalence v.r.t. computability, 127

fair time measures, 254

introduced, 111

read-only, 247, 318

space measures, 318

computational completeness

of a specializer, 101

optimality of a specializer, 101
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computationally tractable, 21

concrete syntax, 341

conditionals, 34

configuration, 341

configuration string, 157

conjunction, 35, 194, 421

cons*, 37

cons-free programs, 353, 359

conservative extension, 91

consistent logical system, 198, 200

constant time factor, 291

constant time factors, 243, 287, 291

constructible, 295

space, 330

convergent, 10

Cook’s construction, 289, 363

Cook’s thesis, 21, 241

currying, 430

cycle, 433
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DAG semantics, 264

data sharing, 261

data-storage graph, 261

Davis-Putnam-Robinson theorem, 178

decidable, 74

in linear time, 272

in logarithmic space, 321
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decision problems, 243
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deterministic finite automaton, 439
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DL, 201
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encoding

booleans as trees, 34

in compilaxious with change of data,
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integers as trees, 36

of bit strings in trees, 250

of problem input, 372

of trees in bit strings, 251

programs in mumbers (Gödel), 207

sequences in numbers (Matiyasevich),
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Entscheidungsproblem, 24

enumerable, 74

enumeration, 13

environment, 191

equation

Diophantine, 171
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equation solving, 232

equivalence of µ-recursiveness, 210
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evaluation, 39

execution, 39
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explicit transformation, 208

expression

evaluation, 191
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false, 421

false, 34

finite automaton, 255, 438
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fixpoint iteration, 218
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function, 424
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addition, 428

argument, 425

bijective, 430

codomain of, 427

composition, 428

computable in logarithmic space, 327

computing a, 10

converging, 426

defined, 426

defined inductively, 442

definedness, 424

diverging, 426

division, 429

domain of, 427

double, 425

exponential polynomial, 171
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inverse, 446
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maximum, 431
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partial, 426
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recursive, 207



463

recursively defined, 442

result, 425

semantic, 47

strictly monotonic, 431
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surjective, 430

total, 425

undefined, 426

uniqueness, 424

updating, 428

function call, 137
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GAME, 397

game complexity, 416

GAP, 371

Gap theorem, 313

garbage collection, 270

Gödel numbers, 207

Gödel’s incompleteness theorem, 200

GOTO, 111

GOTOro, 353

grammar, 434

ambiguous, 163, 436

context-free, 163, 435

decision problems for, 163, 396, 436

definition, 435

context-sensitive, 435

decision problems for, 417

definition, 435

regular, 435, 437

decision problems for, 414, 436

definition, 435

set generated by, 435

graph, 432

accessibility, 342

acyclic, 433

algorithm, 342, 344–346

building, 347

cyclic, 433

directed, 432

inaccessibility, 343

searching, 342

state transition, 341

halting problem, 17, 75
hardware viewpoint, 9
hierarchy, 287, 293, 369
higher-order function, 429
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Hilbert’s program, 24
Hilbert’s tenth problem, 169
Hilbert, D., 169
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I↑, 222
implements, 52
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indirect fetch, 119
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induction, 441

complete, 441
course-of-values, 441
hypothesis, 441

inference relation, 197
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inference system, 190, 197
infinite sequence, 426
initial store, 264
intensional, 226, 240
interpreter, 53

efficient, 288
overhead, 88

interpreting function, 53
invariance, 241
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judgment, 191
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lambda calculus, 8
lambda notation, 429
language
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435

left-most one-step derivation relation, 435

length (of a list), 35

length of a read-only TMro state, 319

length of a state, 318

linear time, 277, 293
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lintime, 277

lintime, 272

list, 35

list, 37

list representation, 35

literal, 422

logarithmic cost, 255, 257

logspace, 321, 324, 350, 355

logspace functions, 327

lookup, 54

Markov algorithms, 8

match, 57
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minimization, 210

model-independent, 225

multi-step derivation relation, 435

multi-step rewrite relation, 156

natural numbers, 423

natural semantics, 190
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NFA, 438
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nlogspace, 336, 349, 350
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non-deterministic finite automaton, 438
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numerals, 36

O-notation, 431

o-notation, 432
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one-step derivation relation, 435

one-step rewrite relation, 155

operational semantics, 190
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ordered pair, 424
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pairing, 47

pairing decomposition, 444

parallelism, xv

parallelism,ptime, 398

partial evaluation, 64, 75, 94

off-line, 104

techniques, 103

partial recursive, 207

partial recursive functions, 24

Pascal-like implementation of GOTO, 266

path finding, 336
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polynomial-time, 275
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predecessor, 36
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primitive recursion, 208

problem, 3

ambiguity, 163, 436

complete for nlogspace, 380
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representation, 271

representation of, 372
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program

cons-free, 353

boolean, 409

computes a function, 41

function computed by, 41

looping, 41

self-reproducing, 221

stack, 289

terminating, 41

time-bounded, 271
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program point specialization, 104
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extensional, 76
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non-trivial, 76

program specializer, 57, 227

optimal, 102
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programming language, 47

programs
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programs-as-data representation, 48
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recursive function, 8, 207
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