

This page intentionally left blank

P, NP, and NP-Completeness
The Basics of Computational Complexity

The focus of this book is the P versus NP Question and the theory of NP-completeness.
It also provides adequate preliminaries regarding computational problems and compu-
tational models.

The P versus NP Question asks whether finding solutions is harder than checking
the correctness of solutions. An alternative formulation asks whether discovering proofs
is harder than verifying their correctness. It is widely believed that the answer to these
equivalent formulations is positive, and this is captured by saying that P is different
from NP.

Although the P versus NP Question remains unresolved, the theory of NP-
completeness offers evidence for the intractability of specific problems in NP by showing
that they are universal for the entire class. Amazingly enough, NP-complete problems
exist, and hundreds of natural computational problems arising in many different areas
of mathematics and science are NP-complete.

oded goldreich is a Professor of Computer Science at the Weizmann Institute of
Science and an Incumbent of the Meyer W. Weisgal Professorial Chair. He is an editor
for the SIAM Journal on Computing, the Journal of Cryptology, and Computational
Complexity and previously authored the books Modern Cryptography, Probabilistic
Proofs and Pseudorandomness, the two-volume work Foundations of Cryptography,
and Computational Complexity: A Conceptual Perspective.

P, NP, and NP-Completeness
The Basics of Computational Complexity

ODED GOLDREICH

Weizmann Institute of Science

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-19248-4

ISBN-13 978-0-521-12254-2

ISBN-13 978-0-511-90793-7

© Oded Goldreich 2010

2010

Information on this title: www.cambridge.org/9780521192484

This publication is in copyright. Subject to statutory exception and to the
provision of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy
of urls for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Paperback

eBook (EBL)

Hardback

to Dana

Contents

List of Figures page xi
Preface xiii
Overview xvii
To the Teacher xxi
Notations and Conventions xxv
Main Definitions and Results xxvii

1 Computational Tasks and Models 1
Teaching Notes 2

1.1 Representation 3
1.2 Computational Tasks 5

1.2.1 Search Problems 5
1.2.2 Decision Problems 6
1.2.3 Promise Problems (an Advanced Comment) 8

1.3 Uniform Models (Algorithms) 8
1.3.1 Overview and General Principles 9
1.3.2 A Concrete Model: Turing Machines 11

1.3.2.1 The Actual Model 12
1.3.2.2 The Church-Turing Thesis 16

1.3.3 Uncomputable Functions 18
1.3.3.1 On the Existence of Uncomputable Functions 18
1.3.3.2 The Halting Problem 19
1.3.3.3 A Few More Undecidability Results 21

1.3.4 Universal Algorithms 22
1.3.4.1 The Existence of Universal Algorithms 23
1.3.4.2 A Detour: Kolmogorov Complexity 24

1.3.5 Time (and Space) Complexity 26
1.3.6 Oracle Machines and Turing-Reductions 29

vii

viii Contents

1.3.7 Restricted Models 31
1.4 Non-Uniform Models (Circuits and Advice) 31

1.4.1 Boolean Circuits 32
1.4.1.1 The Basic Model 32
1.4.1.2 Circuit Complexity 35

1.4.2 Machines That Take Advice 36
1.4.3 Restricted Models 37

1.4.3.1 Boolean Formulae 38
1.4.3.2 Other Restricted Classes of Circuits 39

1.5 Complexity Classes 40
Exercises 41

2 The P versus NP Question 48
Teaching Notes 49

2.1 Efficient Computation 50
2.2 The Search Version: Finding versus Checking 53

2.2.1 The Class P as a Natural Class of Search Problems 54
2.2.2 The Class NP as Another Natural Class of Search

Problems 56
2.2.3 The P versus NP Question in Terms of Search Problems 57

2.3 The Decision Version: Proving versus Verifying 58
2.3.1 The Class P as a Natural Class of Decision Problems 59
2.3.2 The Class NP and NP-Proof Systems 59
2.3.3 The P versus NP Question in Terms of Decision Problems 62

2.4 Equivalence of the Two Formulations 63
2.5 Technical Comments Regarding NP 65
2.6 The Traditional Definition of NP 66
2.7 In Support of P Being Different from NP 69
2.8 Philosophical Meditations 70

Exercises 71

3 Polynomial-time Reductions 74
Teaching Notes 75

3.1 The General Notion of a Reduction 75
3.1.1 The Actual Formulation 76
3.1.2 Special Cases 77
3.1.3 Terminology and a Brief Discussion 79

3.2 Reducing Optimization Problems to Search Problems 81
3.3 Self-Reducibility of Search Problems 83

Contents ix

3.3.1 Examples 85
3.3.2 Self-Reducibility of NP-Complete Problems 87

3.4 Digest and General Perspective 88
Exercises 89

4 NP-Completeness 96
Teaching Notes 97

4.1 Definitions 98
4.2 The Existence of NP-Complete Problems 99

Bounded Halting and Non-Halting 102
4.3 Some Natural NP-Complete Problems 103

4.3.1 Circuit and Formula Satisfiability: CSAT and SAT 104
4.3.1.1 The NP-Completeness of CSAT 105
4.3.1.2 The NP-Completeness of SAT 109

4.3.2 Combinatorics and Graph Theory 113
4.3.3 Additional Properties of the Standard Reductions 120
4.3.4 On the Negative Application of NP-Completeness 121
4.3.5 Positive Applications of NP-Completeness 122

4.4 NP Sets That Are Neither in P nor NP-Complete 126
4.5 Reflections on Complete Problems 130

Exercises 133

5 Three Relatively Advanced Topics 142
Teaching Notes 142

5.1 Promise Problems 142
5.1.1 Definitions 143

5.1.1.1 Search Problems with a Promise 143
5.1.1.2 Decision Problems with a Promise 144
5.1.1.3 Reducibility Among Promise Problems 145

5.1.2 Applications and Limitations 146
5.1.2.1 Formulating Natural Computational Problems 146
5.1.2.2 Restricting a Computational Problem 147
5.1.2.3 Non-generic Applications 147
5.1.2.4 Limitations 148

5.1.3 The Standard Convention of Avoiding Promise Problems 149
5.2 Optimal Search Algorithms for NP 151
5.3 The Class coNP and Its Intersection with NP 154

Exercises 158

Historical Notes 165

x Contents

Epilogue: A Brief Overview of Complexity Theory 169

Appendix: Some Computational Problems 177
A.1 Graphs 177
A.2 Boolean Formulae 179

Bibliography 181
Index 183

List of Figures

0.1 Outline of the suggested course. page xxiv
1.1 A single step by a Turing machine. 12
1.2 Multiple steps of the machine depicted in Figure 1.1. 15
1.3 A circuit computing f (x1, x2, x3, x4) = (x1 ⊕ x2, x1 ∧ ¬ x2 ∧ x4). 34
1.4 Recursive construction of parity circuits and formulae. 38
1.5 A 3DNF formula computing x1 ⊕ x2 ⊕ x3. 39
2.1 Solving S by using a solver for R. 64
2.2 Solving R by using a solver for S ′R . 65
3.1 The Cook-reduction that arises from a Karp-reduction. 78
3.2 The Cook-reduction that arises from a Levin-reduction. 80
3.3 The three proofs of Theorem 3.8. 95
4.1 Overview of the emulation of a computation by a circuit. 106
4.2 Consecutive computation steps of a Turing machine. 107
4.3 The idea underlying the reduction of CSAT to SAT. 111
4.4 The reduction to G3C – the clause gadget and its sub-gadget. 119
4.5 The reduction to G3C – connecting the gadgets. 120
4.6 The (non-generic) reductions presented in Section 4.3. 121
5.1 A schematic depiction of a promise problem. 145
5.2 The world view under P �= coNP ∩NP �= NP . 158

xi

Preface

The quest for efficiency is ancient and universal, as time and other resources
are always in shortage. Thus, the question of which tasks can be performed
efficiently is central to the human experience.

A key step toward the systematic study of the aforementioned question is a
rigorous definition of the notion of a task and of procedures for solving tasks.
These definitions were provided by computability theory, which emerged in
the 1930s. This theory focuses on computational tasks, considers automated
procedures (i.e., computing devices and algorithms) that may solve such tasks,
and studies the class of solvable tasks.

In focusing attention on computational tasks and algorithms, computability
theory has set the stage for the study of the computational resources (like
time) that are required by such algorithms. When this study focuses on the
resources that are necessary for any algorithm that solves a particular task
(or a task of a particular type), it is viewed as belonging to the theory of
Computational Complexity (also known as Complexity Theory). In contrast,
when the focus is on the design and analysis of specific algorithms (rather than
on the intrinsic complexity of the task), the study is viewed as belonging to a
related area that may be called Algorithmic Design and Analysis. Furthermore,
Algorithmic Design and Analysis tends to be sub-divided according to the
domain of mathematics, science, and engineering in which the computational
tasks arise. In contrast, Complexity Theory typically maintains a unity of
the study of computational tasks that are solvable within certain resources
(regardless of the origins of these tasks).

Complexity Theory is a central field of the theoretical foundations of com-
puter science (CS). It is concerned with the study of the intrinsic complexity
of computational tasks. That is, a typical Complexity theoretic study refers to
the computational resources required to solve a computational task (or a class
of such tasks), rather than referring to a specific algorithm or an algorithmic

xiii

xiv Preface

schema. Actually, research in Complexity Theory tends to start with and focus
on the computational resources themselves, and addresses the effect of limiting
these resources on the class of tasks that can be solved. Thus, Computational
Complexity is the general study of what can be achieved within limited time
(and/or other limitations on natural computational resources).

The most famous question of Complexity Theory is the P-vs-NP Question.
This question can be phrased as asking whether finding solutions to certain
problems is harder than checking the correctness of solutions to these problems.
Indeed, this phrasing refers to so-called search problems (i.e., problems of
searching for solutions). An alternative phrasing, which refers to so-called
decision problems, asks whether or not deciding the validity of assertions can
be facilitated by the presentation of adequate proofs. Equivalently, the question
is whether discovering proofs (of the validity of assertions) is harder than
verifying their correctness; that is, is proving harder than verifying?

The fundamental nature of the P-vs-NP Question is evident in each of the
foregoing formulations, which are in fact equivalent. It is widely believed that
the answer to these equivalent formulations is that finding (resp., proving) is
harder than checking (resp., verifying); that is, it is believed that P is different
from NP, where P corresponds to the class of efficiently solvable problems and
NP corresponds to the seemingly wider class of problems allowing for efficient
verification of potential solutions.

Indeed, the P-vs-NP Question has been unresolved since the early 1970s, and
it is the author’s guess that the question will remain unresolved for centuries,
waiting for the development of a deeper understanding of the nature of efficient
computation. However, life will continue in the meantime, and it will bring
along a variety of NP-problems, where some of these problems will be placed
in P (by presenting efficient algorithms solving them) and others will resist
such attempts and will be conjectured to be too computationally hard to belong
to P. Actually, the latter description is not a wild guess; this has been the state
of affairs for several decades now.

At present, when faced with a seemingly hard problem in NP, we can only
hope to prove that it is not in P by assuming that NP is different from P. Thus,
we seek ways of proving that if the problem at hand is in P, then NP equals
P, which means that all problems in NP are in P. This is where the theory of
NP-completeness comes into the picture. Intuitively, a problem in NP is called
NP-complete if any efficient algorithm for it can be converted into an efficient
algorithm for any other problem in NP. It follows that if some NP-complete
problem is in P, then all problems in NP are in P. Hence, if NP is different
from P, then no NP-complete problem can be in P. Consequently, the P-vs-NP

Preface xv

Question is captured by the question of whether or not an individual (NP-
complete) problem can be solved efficiently. Amazingly enough, NP-complete
problems exist, and furthermore, hundreds of natural computational problems
arising in many different areas of mathematics and science are NP-complete.

The aforementioned conversion of an efficient algorithm for one problem
into efficient algorithms for other problems is actually performed by a transla-
tion of the latter problems’ instances. Such a translation is called a reduction,
and the theory of NP-completeness is based on the notion of efficient reduc-
tions. In general, one computational problem is (efficiently) reducible to another
problem if it is possible to (efficiently) solve the former when provided access
to an (efficient) algorithm for solving the latter. A problem (in NP) is NP-
complete if any problem in NP is efficiently reducible to it, which means that
each individual NP-complete problem “encodes” all problems in NP. The fact
that NP-complete problems exist, let alone in such an abundance and variety,
is indeed amazing.

Since its discovery, NP-completeness has been used as the main tool by
which the intrinsic complexity of certain problems is demonstrated. A vast
number of NP-completeness results have been discovered since the early 1970s.
These discoveries have been guiding theoretical research as well as technologi-
cal development by indicating when one needs to relax computational problems
in order to obtain efficient procedures. This impact is neither confined to com-
puter science nor to the need to solve some computational problems. It typically
occurs when researchers or engineers seek a simple characterization of objects
that satisfy some property, whereas it turns out that deciding whether a given
object has this property is an NP-complete problem. Needless to say, in such
a case, no simple characterization is likely to exist, and so one better abandon
the search for it. Indeed, diverse scientific disciplines, which were unsuccess-
fully struggling with some of their internal questions, came to realize that these
questions are inherently difficult since they are closely related to computational
problems that are NP-complete.

The Current Book. The main focus of the current book is on the P-vs-NP
Question and on the theory of NP-completeness. Indeed, a large portion of
the book is devoted to presenting and studying the various formulations of the
P-vs-NP Question. This portion may be viewed as a mathematical articulation
of the intuitive gap between searching for solutions and checking their validity
(or between proving theorems and verifying the correctness of proofs). Another
large portion of the book is devoted to the presentation of the theory of NP-
completeness, while providing a treatment of the general notion of efficient

xvi Preface

reductions between computational problems. This portion may be viewed as a
mathematical articulation of the daily notion of a “reduction” (i.e., solving one
problem by using a known procedure for another problem), augmented with
the fundamental and surprising feature of “universality” (i.e., the existence of
complete problems to which all problems can be reduced).

The book, which includes adequate preliminaries regarding computational
problems and computational models, aims to provide a wide perspective on the
issues in its core. For example, the treatment of efficient reductions goes beyond
the minimum that suffices for a presentation of the theory of NP-completeness,
and this feature supports the study of the relative complexity of search and
decision problems. In general, the book is believed to present the very basics of
Complexity Theory, while bearing in mind that most readers do not intend to
specialize in Complexity Theory (and yet hoping that some will be motivated
to do so).

Relation to a Different Book by the Author. The current book is a significant
revision of Chapter 2 (and Section 1.2) of the author’s book Computational
Complexity: A Conceptual Perspective [13]. The revision was aimed at mak-
ing the book more friendly to the novice. In particular, numerous technical
expositions were further detailed and many exercises were added.

Web Site for Notices Regarding This Book. The author intends to maintain
a Web site listing corrections of various types. The location of the site is

http://www.wisdom.weizmann.ac.il/∼oded/bc-book.html

Acknowledgments. The author is grateful to Asilata Bapat and Michael Forbes
for their careful reading of a draft of this book and for the numerous corrections
and suggestions that they provided.

Overview

This book starts by providing the relevant background on computability theory,
which is the setting in which Complexity theoretic questions are being studied.
Most importantly, this preliminary chapter (i.e., Chapter 1) provides a treatment
of central notions, such as search and decision problems, algorithms that solve
such problems, and their complexity. Special attention is given to the notion of
a universal algorithm.

The main part of this book (i.e., Chapters 2–5) focuses on the P-vs-NP Ques-
tion and on the theory of NP-completeness. Additional topics covered in this
part include the general notion of an efficient reduction (with a special empha-
sis on reductions of search problems to corresponding decision problems), the
existence of problems in NP that are neither NP-complete nor in P, the class
coNP, optimal search algorithms, and promise problems. A brief overview of
this main part follows.

The P-vs-NP Question. Loosely speaking, the P-vs-NP Question refers to
search problems for which the correctness of solutions can be efficiently
checked (i.e., there is an efficient algorithm that given a solution to a given
instance determines whether or not the solution is correct). Such search prob-
lems correspond to the class NP, and the P-vs-NP Question corresponds to
whether or not all these search problems can be solved efficiently (i.e., is there
an efficient algorithm that given an instance finds a correct solution). Thus, the
P-vs-NP Question can be phrased as asking whether finding solutions is harder
than checking the correctness of solutions.

An alternative formulation, in terms of decision problems, refers to asser-
tions that have efficiently verifiable proofs (of relatively short length). Such
sets of assertions also correspond to the class NP, and the P-vs-NP Question
corresponds to whether or not proofs for such assertions can be found effi-
ciently (i.e., is there an efficient algorithm that given an assertion determines

xvii

xviii Overview

its validity and/or finds a proof for its validity?). Thus, the P-vs-NP Question
can also be phrased as asking whether discovering proofs is harder than veri-
fying their correctness; that is, is proving harder than verifying (or are proofs
valuable at all).

In these equivalent formulations of the P-vs-NP Question, P corresponds to
the class of efficiently solvable problems, whereas NP corresponds to a natural
class of problems for which it is reasonable to seek efficient solvability (i.e.,
NP corresponds to the seemingly wider class of problems allowing for efficient
verification of potential solutions). We also note that in both cases, equality
between P and NP contradicts our intuitions regarding the notions that underlie
the formulation of NP (i.e., the notions of solving search problems and proving
theorems).

Indeed, it is widely believed that the answer to these two equivalent for-
mulations of the P-vs-NP Question is that P is different from NP; that is,
finding (resp., discovering) is harder than checking (resp., verifying). The fact
that this natural conjecture is unsettled seems to be one of the big sources of
frustration of Complexity Theory. The author’s opinion, however, is that this
feeling of frustration is unjustified and is rooted in unrealistic expectations (i.e.,
naive underestimations of the difficulty of relating complexity classes of such
a nature). In any case, at present, when faced with a seemingly hard problem
in NP, we cannot expect to prove that the problem is not in P unconditionally.
The best we can expect is a conditional proof that the said problem is not in
P, based on the assumption that NP is different from P. The contrapositive is
proving that if the said problem is in P, then so is any problem in NP (i.e., NP
equals P). The theory of NP-completeness captures this idea.

NP-Completeness. The theory of NP-completeness is based on the notion
of an efficient reduction, which is a relation between computational problems.
Loosely speaking, one computational problem is efficiently reducible to another
problem if it is possible to efficiently solve the former when provided with an
(efficient) algorithm for solving the latter. Thus, the first problem is not harder
to solve than the second one. A problem (in NP) is NP-complete if any problem
in NP is efficiently reducible to it, which means that the first problem “encodes”
all problems in NP (and so, in some sense, is the hardest among them). Indeed,
the fate of the entire class NP (with respect to inclusion in P) rests with each
individual NP-complete problem. In particular, showing that a problem is NP-
complete implies that this problem is not in P unless NP equals P.

The fact that NP-complete problems can be defined does not mean that they
exist. Indeed, the ability of an individual problem to encode all problems in a
class as diverse as NP is unfamiliar in daily life, and a layperson is likely to guess

Overview xix

that such a phenomenon is self-contradictory (especially when being told that
the complete problem has to be in the same class). Nevertheless, NP-complete
problems exist, and furthermore, hundreds of natural computational problems
arising in many different areas of mathematics and science are NP-complete.

The list of known NP-complete problems includes finding a satisfiable
assignment to a given Boolean formula (or deciding whether such an assign-
ment exists), finding a 3-coloring of the vertices of a given graph (or deciding
whether such a coloring exists), and so on. The core of establishing the NP-
completeness of these problems is showing that each of them can encode any
other problem in NP. Thus, these demonstrations provide a method of encoding
instances of any NP problem as instances of the target NP-complete problem.

The Actual Organization. The foregoing paragraphs refer to material that
is covered in Chapters 2–4. Specifically, Chapter 2 is devoted to the P-vs-NP
Question per se, Chapter 3 is devoted to the notion of an efficient reduction, and
Chapter 4 is devoted to the theory of NP-completeness. We mention that NP-
complete problems are not the only seemingly hard problems in NP; that is, if P
is different from NP, then NP contains problems that are neither NP-complete
nor in P (see Section 4.4).

Additional related topics are discussed in Chapter 5. In particular, in Sec-
tion 5.2, it is shown that the P-vs-NP Question is not about inventing sophis-
ticated algorithms or ruling out their existence, but rather boils down to the
analysis of a single known algorithm; that is, we will present an optimal
search algorithm for any problem in NP, while having no clue about its time-
complexity.

Each of the main chapters (i.e., Chapters 1–4) starts with a short overview,
which sets the stage for the entire chapter. These overviews provide the basic
motivation for the notions defined, as well as a high-level summary of the main
results, and hence should not be skipped. The chapter’s overview is followed by
teaching notes, which assume familiarity with the material and thus are better
skipped by the novice. Each chapter ends with exercises, which are designed to
help verify the basic understanding of the main text (and not to test or inspire
creativity). In a few cases, exercises (augmented by adequate guidelines) are
used for presenting related advanced material.

The book also includes a short historical account (see Historical Notes), a
brief overview of Complexity Theory at large (see Epilogue), and a laconic
review of some popular computational problems (see Appendix).

To the Teacher

According to a common opinion, the most important aspect of a scientific work
is the technical result that it achieves, whereas explanations and motivations
are merely redundancy introduced for the sake of “error correction” and/or
comfort. It is further believed that, as with a work of art, the interpretation of
the work should be left to the reader.

The author strongly disagrees with the aforementioned opinions, and argues
that there is a fundamental difference between art and science, and that this dif-
ference refers exactly to the meaning of a piece of work. Science is concerned
with meaning (and not with form), and in its quest for truth and/or understand-
ing, science follows philosophy (and not art). The author holds the opinion that
the most important aspects of a scientific work are the intuitive question that
it addresses, the reason that it addresses this question, the way it phrases the
question, the approach that underlies its answer, and the ideas that are embed-
ded in the answer. Following this view, it is important to communicate these
aspects of the work.

The foregoing issues are even more acute when it comes to Complexity
Theory, firstly because conceptual considerations seem to play an even more
central role in Complexity Theory than in other scientific fields. Secondly (and
even more importantly), Complexity Theory is extremely rich in conceptual
content. Thus, communicating this content is of primary importance, and failing
to do so misses the most important aspects of Complexity Theory.

Unfortunately, the conceptual content of Complexity Theory is rarely com-
municated (explicitly) in books and/or surveys of the area. The annoying (and
quite amazing) consequences are students who have only a vague understand-
ing of the meaning and general relevance of the fundamental notions and results
that they were taught. The author’s view is that these consequences are easy
to avoid by taking the time to explicitly discuss the meaning of definitions and
results. A closely related issue is using the “right” definitions (i.e., those that

xxi

xxii To the Teacher

reflect better the fundamental nature of the notion being defined) and emphasiz-
ing the (conceptually) “right” results. The current book is written accordingly;
two concrete and central examples follow.

The first example refers to the presentation of the P-vs-NP Question, where
we avoid using (polynomial-time) non-deterministic machines. We believe that
these fictitious “machines” have a negative effect from both a conceptual and a
technical point of view. The conceptual damage caused by defining NP in terms
of (polynomial-time) non-deterministic machines is that it is unclear why one
should care about what such machines can do. Needless to say, the reason to
care is clear when noting that these fictitious “machines” offer a (convenient
but rather slothful) way of phrasing fundamental issues. The technical damage
caused by using non-deterministic machines is that they tend to confuse the
students.

In contrast to using a fictitious model as a pivot, we define NP in terms of
proof systems such that the fundamental nature of this class and the P-vs-NP
Question are apparent. We also push to the front a formulation of the P-vs-NP
Question in terms of search problems. We believe that this formulation may
appeal to non-experts even more than the formulation of the P-vs-NP Question
in terms of decision problems. The aforementioned formulation refers to classes
of search problems that are analogous to the decision problem classes P and NP.
Specifically, we consider the classes PF and PC (see Definitions 2.2 and 2.3),
where PF consists of search problems that are efficiently solvable and PC
consists of search problems having efficiently checkable solutions.1

To summarize, we suggest presenting the P-vs-NP Question both in terms
of search problems and in terms of decision problems. Furthermore, when pre-
senting the decision-problem version, we suggest introducing NP by explicitly
referring to the terminology of proof systems (rather than using the more stan-
dard formulation, which is based on non-deterministic machines). We mention
that the formulation of NP as proof systems is also a better starting point for the
study of more advanced issues (e.g., counting classes, let alone probabilistic
proof systems).

Turning to the second example, which refers to the theory of NP-
completeness, we highlight a central recommendation regarding the presen-
tation of this theory. We believe that from a conceptual point of view, the
mere existence of NP-complete problems is an amazing fact. We thus suggest
emphasizing and discussing this fact per se. In particular, we recommend first
proving the mere existence of NP-complete problems, and only later establish-
ing the fact that certain natural problems such as SAT are NP-complete. Also,
when establishing the NP-completeness of SAT, we recommend decoupling

1 Indeed, these classes are often denoted FP and FNP , respectively.

To the Teacher xxiii

the emulation of Turing machines by circuits (used for establishing the NP-
completeness of CSAT) from the emulation of circuits by formulae (used in the
reduction of CSAT to SAT).

Organization. In Chapter 1, we present the basic framework of Computational
Complexity, which serves as a stage for the rest of the book. In particular,
we formalize the notions of search and decision problems (see Section 1.2),
algorithms solving them (see Section 1.3), and their time complexity (see
Section 1.3.5). In Chapter 2, we present the two formulations of the P-vs-NP
Question. The general notion of a reduction is presented in Chapter 3, where we
highlight its applicability outside the domain of NP-completeness. In particular,
in Section 3.3 we treat reductions of search problems to corresponding decision
problems. Chapter 4 is devoted to the theory of NP-completeness, whereas
Chapter 5 treats three relatively advanced topics (i.e., the framework of promise
problems, the existence of optimal search algorithms for NP, and the class
coNP). The book ends with an Epilogue, which provides a brief overview of
Complexity Theory, and an Appendix that reviews some popular computational
problems (which are used as examples in the main text).

The Chapters’ Overviews. Each of the main chapters (i.e., Chapters 1–4)
starts with a short overview, which provides the basic motivation for the notions
defined in that chapter as well as a high-level summary of the chapter’s main
results. We suggest using these overviews as a basis for motivational discussions
preceding the actual technical presentation.

Additional Teaching Notes. Each chapter overview is followed by additional
teaching notes. These notes articulate various choices made in the presentation
of the material in the corresponding chapter.

Basing a Course on the Current Book. The book can serve as a basis for
an undergraduate course, which may be called Basics of Computational Com-
plexity. The core material for this course is provided by Chapters 1–4. Specifi-
cally, Sections 1.1–1.3 provide the required elements of computability theory,
and Chapters 2–4 provide the basic elements of Complexity Theory. In addition,
§1.4.1.1 and §1.4.3.1 (or, alternatively, Appendix A.2) provide preliminaries
regarding Boolean circuits and formulae that are required in Section 4.3 (which
refers to CSAT and SAT). For a schematic outline of the course, see Figure 0.1.

On the Choice of Additional (Basic and Advanced) Topics. As depicted in
Figure 0.1, depending on time constraints, we suggest augmenting the core
material with a selection of additional basic and advanced topics. As for

xxiv To the Teacher

topic sections
Elements of computability theory 1.1−1.3
The P-vs-NP Question 2.1−2.4, 2.7

Optional: definitional variations 2.5, 2.6
Polynomial-time reductions 3.1−3.3
The existence of NP-complete problems 4.1−4.2
Natural NP-complete problems (e.g., CSAT, SAT, VC) 4.3

Preliminaries on Boolean circuits and formulae 1.4.1, 1.4.3, A.2
Add’l basic topics: NPI, promise problems, optimal search 4.4, 5.1, 5.2
Advanced topics, if time permits from [13, 1]

Figure 0.1. Outline of the suggested course.

the basic topics, we recommend at least mentioning the class NPI, promise
problems, and the optimal search algorithms for NP. Regarding the choice of
advanced topics, we recommend an introduction to probabilistic proof sys-
tems. In our opinion, this choice is most appropriate because it provides nat-
ural extensions of the notion of an NP-proof system and offers very appeal-
ing positive applications of NP-completeness. Section 4.3.5 provides a brief
overview of probabilistic proof systems, while [13, Chap. 9] provides an exten-
sive overview (which transcends the needs of a basic complexity course).
Alternative advanced topics can be found in [13, 1].

A Revision of the CS Curriculum. The best integration of the aforementioned
course in undergraduate CS education calls for a revision of the standard CS
curriculum. Indeed, we believe that there is no real need for a semester-long
course in Computability (i.e., a course that focuses on what can be computed
rather than on what can be computed efficiently). Instead, CS undergraduates
should take a course in Computational Complexity, which should contain the
computability aspects that serve as a basis for the study of efficient computation
(i.e., the rest of this course). Specifically, the computability aspects should
occupy at most one-third of the course, and the focus should be on basic
complexity issues (captured by P, NP, and NP-completeness), which may be
augmented by a selection of some more advanced material. Indeed, such a
course can be based on the current book (possibly augmented by a selection of
some additional topics from, say, [13, 1]).

Notations and Conventions

Although we do try to avoid using various notations and conventions that may
not be familiar to the reader, some exceptions exists – especially in advanced
discussions. In order to be on the safe side, we list here some standard notations
and conventions that are (lightly) used in the book.

Standard Asymptotic Notation. When referring to integral functions, we use
the standard asymptotic notation; that is, for f, g : N → N, we write f = O(g)
if there exists a constant c > 0 such that f (n) ≤ c · g(n) holds for all sufficiently
large n ∈ N. We usually denote by “poly” an unspecified polynomial, and write
f (n) = poly(n) instead of “there exists a polynomial p such that f (n) ≤ p(n)
for all n ∈ N.”

Standard Combinatorial and Graph Theory Terms and Notation. For a

natural number n ∈ N, we denote [n]
def= {1, . . . , n}. Many of the computational

problems that we mention refer to finite (undirected) graphs. Such a graph,
denoted G = (V,E), consists of a set of vertices, denoted V , and a set of
edges, denoted E, which are unordered pairs of vertices. By default, graphs
are undirected, whereas directed graphs consist of vertices and directed edges,
where a directed edge is an order pair of vertices. For further background on
graphs and computational problems regarding graphs, the reader is referred to
Appendix A.1.

Typographic Conventions. We denote formally defined complexity classes by
calligraphic letters (e.g., NP), but we do so only after defining these classes.
Furthermore, when we wish to maintain some ambiguity regarding the specific
formulation of a class of problems, we use Roman font (e.g., NP may denote
either a class of search problems or a class of decision problems). Likewise,

xxv

xxvi Notations and Conventions

we denote formally defined computational problems by typewriter font (e.g.,
SAT). In contrast, generic problems and algorithms will be denoted by italic
font.

Our Use of Footnotes. In trying to accommodate a diverse spectrum of readers,
we use footnotes for presentation of additional details that most readers may
wish to skip but some readers may find useful. The most common usage of
footnotes is for providing additional technical details that may seem obvious
to most readers but be missed by some others. Occasionally, footnotes are also
used for advanced comments.

Main Definitions and Results

Following is a list of the main definitions and results presented in the book.
The list only provides a laconic description of each of the items, while a full
description can be found in the actual text (under the provided reference).
The list is ordered approximately according to the order of appearance of the
corresponding topics in the main text.

Search and Decision Problems. The former refer to finding solutions to given
instances, whereas the latter refer to determining whether the given instance
has a predetermined property. See Definitions 1.1 and 1.2, respectively.

Turing Machines. The model of Turing machines offers a relatively simple
formulation of the notion of an algorithm. See Section 1.3.2.

Theorem 1.4. The set of computable functions is countable, whereas the set
of all functions (from strings to strings) is not countable.

Theorem 1.5. The Halting Problem is undecidable.

Universal Algorithms. A universal machine computes the partial function u

that is defined on pairs (〈M〉, x) such that M halts on input x, in which case it
holds that u(〈M〉, x) = M(x). See Section 1.3.4.

Efficient and Inefficient. Efficiency is associated with polynomial-time com-
putations, whereas computations requiring more time are considered inefficient
or intractable (or infeasible). See Section 2.1.

The Class PF (Polynomial-time Find). The class of efficiently solvable
search problems. See Definition 2.2.

xxvii

xxviii Main Definitions and Results

The Class PC (Polynomial-time Check). The class of search problems hav-
ing efficiently checkable solutions. See Definition 2.3.

The Notations SR and R(x) Associated with a Search Problem R. For any
search problem, R, we denote the set of solutions to the instance x by R(x)
(i.e., R(x) = {y : (x, y) ∈ R}), and denote the set of instances having solutions
by SR (i.e., SR = {x : R(x) �= ∅}).

The Class P . The class of efficiently solvable decision problems. See Defini-
tion 2.4.

The Class NP . The class of decision problems having efficiently verifiable
proof systems. See Definition 2.5.

Theorem 2.6. PC ⊆ PF if and only if P = NP .

The P-vs-NP Question. It is widely believed that P is different from NP. This
belief is supported by both philosophical and empirical considerations. See
Section 2.7.

The Traditional Definition of NP . Traditionally, NP is defined as the class
of sets that can be decided by a fictitious device called a non-deterministic
polynomial-time machine (which explains the source of the notation NP). See
Section 2.6.

Cook-reductions. A problem � is Cook-reducible to a problem �′ if � can
be solved efficiently when given access to any procedure (or oracle) that solves
the problem �′. See Definition 3.1.

Karp-reductions. A decision problem S is Karp-reducible to a decision prob-
lem S ′ if there exists a polynomial-time computable function f such that, for
every x, it holds that x ∈ S if and only if f (x) ∈ S ′. See Definition 3.3.

Levin-reductions. A search problem R is Levin-reducible to a search problem
R′ if there exists polynomial-time computable functions f and g such that (1) f

is a Karp-reduction of SR to SR′ , and (2) for every x ∈ SR and y ′ ∈ R′(f (x)) it
holds that (x, g(x, y ′)) ∈ R. See Definition 3.4.

Theorem 3.2. Every search problem in PC is Cook-reducible to some decision
problem in NP .

Main Definitions and Results xxix

Self-reducibility of Search Problems. The decision implicit in a search prob-
lem R is deciding membership in the set SR , and R is called self-reducible if it
is Cook-reducible to SR . See Section 3.3.

NP-Completeness (of Decision Problems). A decision problem S is NP-

complete if (1) S is in NP , and (2) every decision problem in NP is Karp-
reducible to S. See Definition 4.1.

NP-Completeness of Search Problems. A search problem R is PC-complete
(or NP-complete) if (1) R is in PC, and (2) every search problem in PC is
Levin-reducible to R. See Definition 4.2.

Theorem 4.3. There exist NP-complete search and decision problems.

Theorems 4.5 and 4.6 (Also Known as Cook–Levin Theorem). Circuit sat-
isfiability (CSAT) and formula satisfiability (SAT) are NP-complete.

Proposition 4.4. If an NP-complete decision problem S is Karp-reducible
to a decision problem S ′ ∈ NP (resp., a PC-complete search problem R is
Levin-reducible to a search problem R′ ∈ PC), then S ′ is NP-complete (resp.,
R′ is PC-complete).

Theorem 4.12. Assuming NP �= P , there exist decision problems in NP \ P
that are not NP-complete (even when allowing Cook-reductions).

Promise Problems. Promise problems are natural generalizations of search
and decision problems that are obtained by explicitly specifying a set of legiti-
mate instances (rather than considering any string as a legitimate instance). See
Section 5.1.

Theorem 5.5. There exists an optimal algorithm for any candid search problem
in NP, where the candid search problem of the binary relation R consists of
finding solutions whenever they exist (and behaving arbitrarily otherwise; see
Definition 5.2).

Theorem 5.7. If every set in NP can be Cook-reduced to some set in NP ∩
coNP , then NP = coNP , where coNP = {{0, 1}∗ \ S : S ∈ NP}.

1

Computational Tasks and Models

Overview: We assume that the reader is familiar with computing devices
but may associate the notion of computation with specific incarnations
of it. Our first goal is to promote viewing computation as a general
phenomenon, which may capture both artificial and natural processes.
Loosely speaking, a computation is a process that modifies a relatively
large environment via repeated applications of a simple and predeter-
mined rule. Although each application of the rule has a very limited
effect, the effect of many applications of the rule may be very complex.

We are interested in the transformation of the environment effected by
the computational process (or computation), where the computation rule
is designed to achieve a desired effect. Typically, the initial environment
to which the computation is applied encodes an input string, and the end
environment (i.e., at termination of the computation) encodes an output
string. Thus, the computation defines a mapping from inputs to outputs,
and such a mapping can be viewed as solving a search problem (i.e., given
an instance x find a solution y that relates to x in some predetermined
way) or a decision problem (i.e., given an instance x determine whether
or not x has some predetermined property).

Indeed, our focus will be on solving computational tasks (mostly
search and decision problems), where a computational task refers to
an infinite set of instances such that each instance is associated with a
set of valid solutions. In the case of search problem this set may contain
several different solutions (per each instance), but in the case of a decision
problem the set of solutions is a singleton that consists of a binary value
(per each instance).

1

2 1 Computational Tasks and Models

In order to provide a basis for a rigorous study of the complexity of
computational tasks, we need to define computation (and its complexity)
rigorously. This, in turn, requires specifying a concrete model of com-
putation, which corresponds to an abstraction of a real computer (be it
a PC, mainframe, or network of computers) and yet is simpler (and thus
facilitates further study). We will refer to the model of Turing machines,
but any reasonable alternative model will do.

We also discuss two fundamental features of any reasonable model
of computation: the existence of problems that cannot be solved by
any computing device (in this model) and the existence of universal
computing devices (in this model).

Organization. We start by introducing the general framework for our
discussion of computational tasks (or problems). This framework refers
to the representation of instances as binary sequences (see Section 1.1)
and focuses on two types of tasks: searching for solutions and making
decisions (see Section 1.2). Once computational tasks are defined, we
turn to methods for solving such tasks, which are described in terms of
some model of computation. The description of such models is the main
contents of this chapter.

Specifically, we consider two types of models of computation: uniform
models and non-uniform models (see Sections 1.3 and 1.4, respectively).
The uniform models correspond to the intuitive notion of an algorithm,
and will provide the stage for the rest of the book (which focuses on
efficient algorithms). In contrast, non-uniform models (e.g., Boolean cir-
cuits) facilitate a closer look at the way a computation progresses, and will
be used only sporadically in this book. Thus, whereas Sections 1.1–1.3
are absolute prerequisites for the rest of this book, Section 1.4 is not.

Teaching Notes

This chapter provides the necessary preliminaries for the rest of the book; that
is, we discuss the notion of a computational task and present computational
models for describing methods for solving such tasks.

Sections 1.1–1.3 correspond to the contents of a traditional Computability
course, except that our presentation emphasizes some aspects and deempha-
sizes others. In particular, the presentation highlights the notion of a universal
machine (see Section 1.3.4), explicitly discusses the complexity of computation

1.1 Representation 3

(Section 1.3.5), and provides a definition of oracle machines (Section 1.3.6).
This material (with the exception of Kolmogorov Complexity) is taken for
granted in the rest of the current book. In contrast, Section 1.4 presents basic
preliminaries regarding non-uniform models of computation (e.g., various types
of Boolean circuits), and these are used only lightly in the rest of the book.

We strongly recommend avoiding the standard practice of teaching the
student to program with Turing machines. These exercises seem very painful
and pointless. Instead, one should prove that the Turing machine model is
exactly as powerful as a model that is closer to a real-life computer (see the
“sanity check” in §1.3.2.2); that is, a function can be computed by a Turing
machine if and only if it is computable by a machine of the latter model. For
starters, one may prove that a function can be computed by a single-tape Turing
machine if and only if it is computable by a multi-tape (e.g., two-tape) Turing
machine.

As noted in Section 1.3.7, we reject the common coupling of computability
theory with the theory of automata and formal languages. Although the histor-
ical links between these two theories (at least in the West) cannot be denied,
this fact cannot justify coupling two fundamentally different theories (espe-
cially when such a coupling promotes a wrong perspective on computability
theory). Thus, in our opinion, the study of any of the lower levels of Chomsky’s
Hierarchy [16, Chap. 9] should be decoupled from the study of computability
theory (let alone the study of Complexity Theory). Indeed, this is related to the
discussion of the “revision of the CS curriculum” in the preliminary section
“To the Teacher.”

The perspective on non-uniform models of computation provided by Sec-
tion 1.4 is more than the very minimum that is required for the rest of this book.
If pressed for time, then the teacher may want to skip all of Section 1.4.2 as well
as some of the material in Section 1.4.1 and Section 1.4.3 (i.e., avoid §1.4.1.2 as
well as §1.4.3.2). Furthermore, for a minimal presentation of Boolean formulae,
one may use Appendix A.2 instead of §1.4.3.1.

1.1 Representation

In mathematics and most other sciences, it is customary to discuss objects
without specifying their representation. This is not possible in the theory of
computation, where the representation of objects plays a central role. In a sense,
a computation merely transforms one representation of an object to another
representation of the same object. In particular, a computation designed to
solve some problem merely transforms the problem instance to its solution,

4 1 Computational Tasks and Models

where the latter can be thought of as a (possibly partial) representation of the
instance. Indeed, the answer to any fully specified question is implicit in the
question itself, and computation is employed to make this answer explicit.

Computational tasks refer to objects that are represented in some canonical
way, where such canonical representation provides an “explicit” and “full” (but
not “overly redundant”) description of the corresponding object. Furthermore,
when we discuss natural computational problems, we always use a natural
representation of the corresponding objects. We will only consider finite objects
like numbers, sets, graphs, and functions (and keep distinguishing these types
of objects although, actually, they are all equivalent). While the representation
of numbers, sets, and functions is quite straightforward (see the following),
we refer the reader to Appendix A.1 for a discussion of the representation of
graphs.

In order to facilitate a study of methods for solving computational tasks, these
tasks are defined with respect to infinitely many possible instances (each being
a finite object). Indeed, the comparison of different methods seems to require
the consideration of infinitely many possible instances; otherwise, the choice
of the language in which the methods are described may totally dominate and
even distort the discussion (cf., e.g., the discussion of Kolmogorov Complexity
in §1.3.4.2).

Strings. We consider finite objects, each represented by a finite binary
sequence called a string. For a natural number n, we denote by {0, 1}n the
set of all strings of length n, hereafter referred to as n-bit (long) strings. The set
of all strings is denoted {0, 1}∗; that is, {0, 1}∗ = ∪n∈N{0, 1}n, where 0 ∈ N.
For x∈{0, 1}∗, we denote by |x| the length of x (i.e., x∈{0, 1}|x|), and often
denote by xi the i th bit of x (i.e., x = x1x2 · · · x|x|). For x, y∈{0, 1}∗, we denote
by xy the string resulting from concatenation of the strings x and y.

At times, we associate {0, 1}∗×{0, 1}∗ with {0, 1}∗; the reader should merely
consider an adequate encoding (e.g., the pair (x1 · · · xm, y1 · · · yn)∈{0, 1}∗×
{0, 1}∗ may be encoded by the string x1x1 · · · xmxm01y1 · · · yn∈{0, 1}∗). Like-
wise, we may represent sequences of strings (of fixed or varying length) as
single strings. When we wish to emphasize that such a sequence (or some other
object) is to be considered as a single object, we use the notation 〈·〉 (e.g., “the
pair (x, y) is encoded as the string 〈x, y〉”).

Numbers. Unless stated differently, natural numbers will be encoded by their
binary expansion; that is, the string bn−1 · · · b1b0 ∈ {0, 1}n encodes the number∑n−1

i=0 bi · 2i , where typically we assume that this representation has no leading
zeros (i.e., bn−1 = 1), except when the number itself is zero. Rational numbers

1.2 Computational Tasks 5

will be represented as pairs of natural numbers. In the rare cases in which one
considers real numbers as part of the input to a computational problem, one
actually means rational approximations of these real numbers.

Sets are usually represented as lists, which means that the representation
introduces an order that is not specified by the set itself. Indeed, in general,
the representation may have features that are not present in the represented
object. Functions are usually represented as sets of argument–value pairs (i.e.,
functions are represented as binary relations, which in turn are sets of ordered
pairs).

Special Symbols. We denote the empty string by λ (i.e., λ ∈ {0, 1}∗ and |λ| =
0), and the empty set by ∅. It will be convenient to use some special symbols that
are not in {0, 1}∗. One such symbol is⊥, which typically denotes an indication
(e.g., produced by some algorithm) that something is wrong.

1.2 Computational Tasks

Two fundamental types of computational tasks are the so-called search prob-
lems and decision problems. In both cases, the key notions are the problem’s
instances and the problem’s specification.

1.2.1 Search Problems

A search problem consists of a specification of a (possibly empty) set of valid
solutions for each possible instance. Given an instance, one is required to find
a corresponding solution (or to determine that no such solution exists). For
example, consider the problem in which one is given a system of equations and
is asked to find a valid solution. Needless to say, much of computer science is
concerned with solving various search problems (e.g., finding shortest paths in
a graph, finding an occurrence of a given pattern in a given string, finding the
median value in a given list of numbers, etc). Furthermore, search problems
correspond to the daily notion of “solving a problem” (e.g., finding one’s way
between two locations), and thus a discussion of the possibility and complexity
of solving search problems corresponds to the natural concerns of most people.

In the following definition of solving search problems, the potential solver
is a function (which may be thought of as a solving strategy), and the sets of
possible solutions associated with each of the various instances are “packed”
into a single binary relation.

6 1 Computational Tasks and Models

Definition 1.1 (solving a search problem): Let R ⊆ {0, 1}∗ × {0, 1}∗ and
R(x)

def= {y : (x, y) ∈ R} denote the set of solutions for the instance x. A func-
tion f : {0, 1}∗ → {0, 1}∗ ∪ {⊥} solves the search problem of R if for every x

the following holds: if R(x) �= ∅ then f (x) ∈ R(x) and otherwise f (x) = ⊥.

Indeed, R = {(x, y)∈{0, 1}∗ × {0, 1}∗ : y∈R(x)}. The solver f is required to
find a solution to the given instance x whenever such a solution exists; that is,
given x, the solver is required to output some y ∈ R(x) whenever the set R(x)
is not empty. It is also required that the solver f never outputs a wrong solution;
that is, if R(x) �= ∅ then f (x) ∈ R(x), and if R(x) = ∅ then f (x) = ⊥. This
means that f indicates whether or not x has any solution (since f (x) ∈ {0, 1}∗
if x has a solution, whereas f (x) = ⊥ �∈ {0, 1}∗ otherwise). Note that the solver
is not necessarily determined by the search problem (i.e., the solver is uniquely
determined if and only if |R(x)| ≤ 1 holds for every x).

Of special interest is the case of search problems having a unique solution
(for each possible instance); that is, the case that |R(x)| = 1 for every x. In
this case, R is essentially a (total) function, and solving the search problem
of R means computing (or evaluating) the function R (or rather the function

R′ defined by R′(x)
def= y if and only if R(x) = {y}). Popular examples include

sorting a sequence of numbers, multiplying integers, finding the prime factor-
ization of a composite number, and so on.1

1.2.2 Decision Problems

A decision problem consists of a specification of a subset of the possible
instances. Given an instance, one is required to determine whether the instance
is in the specified set. For example, consider the problem where one is given a
natural number and is asked to determine whether or not the number is a prime
(i.e., whether or not the given number is in the set of prime numbers). Note
that one typically presents decision problems in terms of deciding whether a
given object has some predetermined property, but this can always be viewed
as deciding membership in some predetermined set (i.e., the set of objects
having this property). For example, when talking about determining whether
or not a given graph is connected, we refer to deciding membership in the set
of connected graphs.

1 For example, sorting is represented as a binary relation that contains all pairs of sequences such
that the second sequence is a sorted version of the first sequence. That is, the pair ((x1, . . . , xn),
(y1, . . . , yn)) is in the relation if and only if there exists a permutation π over [n] such that yi =
xπ (i) and yi < yi+1 for every relevant i.

1.2 Computational Tasks 7

One important type of decision problems concerns those derived from search
problems by considering the set of instances having a solution (with respect
to some fixed search problem); that is, for any binary relation R ⊆ {0, 1}∗ ×
{0, 1}∗ we consider the set {x : R(x) �= ∅}. Indeed, being able to determine
whether or not a solution exists is a prerequisite to being able to solve the
corresponding search problem (as per Definition 1.1).

In general, decision problems refer to the natural task of making binary
decisions, a task that is not uncommon in daily life (e.g., determining whether
a traffic light is red). In any case, in the following definition of solving decision
problems, the potential solver is again a function; specifically, in this case the
solver is a Boolean function, which is supposed to indicate membership in a
predetermined set.

Definition 1.2 (solving a decision problem): Let S ⊆ {0, 1}∗. A function f :
{0, 1}∗ → {0, 1} solves the decision problem of S (or decides membership in S)
if for every x it holds that f (x) = 1 if and only if x ∈ S.

That is, the solver f is required to indicate whether or not the instance x resides
in the predetermined set S. This indication is modeled by a binary value, where 1
corresponds to a positive answer and 0 corresponds to a negative answer. Thus,
given x, the solver is required to output 1 if x ∈ S, and output 0 otherwise (i.e.,
if x �∈ S).

Note that the function that solves a decision problem is uniquely determined
by the decision problem; that is, if f solves (the decision problem of) S, then f

equals the characteristic function of S (i.e., the function χS : {0, 1}∗ → {0, 1}
defined such that χS(x) = 1 if and only if x ∈ S).

As hinted already in Section 1.2.1, the solver of a search problem implicitly
determines membership in the set of instances that have solutions. That is, if f

solves the search problem of R, then the Boolean function f ′ : {0, 1}∗ → {0, 1}
defined by f ′(x)

def= 1 if and only if f (x) �= ⊥ solves the decision problem of
{x : R(x) �= ∅}.

Terminology. We often identify the decision problem of a set S with S itself,
and also identify S with its characteristic function. Likewise, we often identify
the search problem of a relation R with R itself.

Reflection. Most people would consider search problems to be more natural
than decision problems: Typically, people seeks solutions more often than they
stop to wonder whether or not solutions exist. Definitely, search problems are
not less important than decision problems; it is merely that their study tends

8 1 Computational Tasks and Models

to require more cumbersome formulations. This is the main reason that most
expositions choose to focus on decision problems. The current book attempts
to devote at least a significant amount of attention to search problems, too.

1.2.3 Promise Problems (an Advanced Comment)

Many natural search and decision problems are captured more naturally by the
terminology of promise problems, in which the domain of possible instances is
a subset of {0, 1}∗ rather than {0, 1}∗ itself. In particular, note that the natural
formulation of many search and decision problems refers to instances of a
certain type (e.g., a system of equations, a pair of numbers, a graph), whereas
the natural representation of these objects uses only a strict subset of {0, 1}∗.
For the time being, we ignore this issue, but we shall revisit it in Section 5.1.
Here we just note that in typical cases, the issue can be ignored by postulating
that every string represents some legitimate object; for example, each string
that is not used in the natural representation of these objects is postulated to be
a representation of some fixed object (e.g., when representing graphs, we may
postulate that each string that is not used in the natural representation of graphs
is in fact a representation of the 1-vertex graph).

1.3 Uniform Models (Algorithms)

We finally reach the heart of the current chapter, which is the definition of
(uniform) models of computation. Before presenting these models, let us briefly
explain the need for their formal definitions.

Indeed, we are all familiar with computers and with the ability of computer
programs to manipulate data. But this familiarity is rooted in positive experi-
ence; that is, we have some experience regarding some things that computers
can do. In contrast, Complexity Theory is focused at what computers cannot do,
or rather with drawing the line between what can be done and what cannot be
done. Drawing such a line requires a precise formulation of all possible com-
putational processes; that is, we should have a clear definition of all possible
computational processes (rather than some familiarity with some computational
processes).

We note that while our main motivation for defining formal models of
computation is to capture the intuitive notion of an algorithm, such models also
provide a useful perspective on a wide variety of processes that take place in
the world.

1.3 Uniform Models (Algorithms) 9

Organization of Section 1.3. We start, in Section 1.3.1, with a general and
abstract discussion of the notion of computation. Next, in Section 1.3.2, we
provide a high-level description of the model of Turing machines. This is done
merely for the sake of providing a concrete model that supports the study
of computation and its complexity, whereas the material in this book will
not depend on the specifics of this model. In Section 1.3.3 and Section 1.3.4
we discuss two fundamental properties of any reasonable model of computa-
tion: the existence of uncomputable functions and the existence of universal
computations. The time (and space) complexity of computation is defined in
Section 1.3.5. We also discuss oracle machines and restricted models of com-
putation (in Section 1.3.6 and Section 1.3.7, respectively).

1.3.1 Overview and General Principles

Before being formal, let us offer a general and abstract description of the
notion of computation. This description applies both to artificial processes
(taking place in computers) and to processes that are aimed at modeling the
evolution of the natural reality (be it physical, biological, or even social).

A computation is a process that modifies an environment via repeated appli-
cations of a predetermined rule. The key restriction is that this rule is simple:
In each application it depends and affects only a (small) portion of the envi-
ronment, called the active zone. We contrast the a priori bounded size of the
active zone (and of the modification rule) with the a priori unbounded size of
the entire environment. We note that although each application of the rule has a
very limited effect, the effect of many applications of the rule may be very com-
plex. Put in other words, a computation may modify the relevant environment
in a very complex way, although it is merely a process of repeatedly applying
a simple rule.

As hinted, the notion of computation can be used to model the “mechanical”
aspects of the natural reality, that is, the rules that determine the evolution of
the reality (rather than the specific state of the reality at a specific time). In this
case, the starting point of the study is the actual evolution process that takes
place in the natural reality, and the goal of the study is finding the (computation)
rule that underlies this natural process. In a sense, the goal of science at large
can be phrased as finding (simple) rules that govern various aspects of reality
(or rather one’s abstraction of these aspects of reality).

Our focus, however, is on artificial computation rules designed by humans
in order to achieve specific desired effects on a corresponding artificial environ-
ment. Thus, our starting point is a desired functionality, and our aim is to design

10 1 Computational Tasks and Models

computation rules that effect it. Such a computation rule is referred to as an
algorithm. Loosely speaking, an algorithm corresponds to a computer program
written in a high-level (abstract) programming language. Let us elaborate.

We are interested in the transformation of the environment as effected by
the computational process (or the algorithm). Throughout (almost all of) this
book, we will assume that, when invoked on any finite initial environment, the
computation halts after a finite number of steps. Typically, the initial environ-
ment to which the computation is applied encodes an input string, and the end
environment (i.e., at termination of the computation) encodes an output string.
We consider the mapping from inputs to outputs induced by the computation;
that is, for each possible input x, we consider the output y obtained at the end
of a computation initiated with input x, and say that the computation maps
input x to output y. Thus, a computation rule (or an algorithm) determines a
function (computed by it): This function is exactly the aforementioned mapping
of inputs to outputs.

In the rest of this book (i.e., outside the current chapter), we will also consider
the number of steps (i.e., applications of the rule) taken by the computation
on each possible input. The latter function is called the time complexity of the
computational process (or algorithm). While time complexity is defined per
input, we will often considers it per input length, taking the maximum over all
inputs of the same length.

In order to define computation (and computation time) rigorously, one needs
to specify some model of computation, that is, provide a concrete definition of
environments and a class of rules that may be applied to them. Such a model
corresponds to an abstraction of a real computer (be it a PC, mainframe, or
network of computers). One simple abstract model that is commonly used is that
of Turing machines (see Section 1.3.2). Thus, specific algorithms are typically
formalized by corresponding Turing machines (and their time complexity is
represented by the time complexity of the corresponding Turing machines).
We stress, however, that almost all results in the theory of computation hold
regardless of the specific computational model used, as long as it is “reasonable”
(i.e., satisfies the aforementioned simplicity condition and can perform some
apparently simple computations).

What is being Computed? The foregoing discussion has implicitly referred
to algorithms (i.e., computational processes) as means of computing functions.
Specifically, an algorithm A computes the function fA : {0, 1}∗→{0, 1}∗ ∪ {⊥}
defined by fA(x)=y if, when invoked on input x, algorithm A halts with output
y. However, algorithms can also serve as means of “solving search problems”
or “making decisions” (as in Definitions 1.1 and 1.2). Specifically, we will say

1.3 Uniform Models (Algorithms) 11

that algorithm A solves the search problem of R (resp., decides membership in
S) if fA solves the search problem of R (resp., decides membership in S). In
the rest of this exposition we associate the algorithm A with the function fA

computed by it; that is, we write A(x) instead of fA(x). For the sake of future
reference, we summarize the foregoing discussion in a definition.

Definition 1.3 (algorithms as problem solvers): We denote by A(x) the output
of algorithm A on input x. Algorithm A solves the search problem R (resp., the
decision problem S) if A, viewed as a function, solves R (resp., S).

1.3.2 A Concrete Model: Turing Machines

The model of Turing machines offers a relatively simple formulation of the
notion of an algorithm. The fact that the model is very simple complicates
the design of machines that solve problems of interest, but makes the analysis
of such machines simpler. Since the focus of Complexity Theory is on the
analysis of machines and not on their design, the trade-off offered by this
model is suitable for our purposes. We stress again that the model is merely
used as a concrete formulation of the intuitive notion of an algorithm, whereas
we actually care about the intuitive notion and not about its formulation. In
particular, all results mentioned in this book hold for any other “reasonable”
formulation of the notion of an algorithm.

The model of Turing machines provides only an extremely coarse description
of real-life computers. Indeed, Turing machines are not meant to provide an
accurate portrayal of real-life computers, but rather to capture their inherent
limitations and abilities (i.e., a computational task can be solved by a real-life
computer if and only if it can be solved by a Turing machine). In comparison to
real-life computers, the model of Turing machines is extremely oversimplified
and abstracts away many issues that are of great concern to computer practice.
However, these issues are irrelevant to the higher-level questions addressed
by Complexity Theory. Indeed, as usual, good practice requires more refined
understanding than the one provided by a good theory, but one should first
provide the latter.

Historically, the model of Turing machines was invented before modern
computers were even built, and was meant to provide a concrete model of
computation and a definition of computable functions.2 Indeed, this concrete

2 In contrast, the abstract definition of “recursive functions” yields a class of “computable”
functions without referring to any model of computation (but rather based on the intuition that
any such model should support recursive functional composition).

12 1 Computational Tasks and Models

3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -

Figure 1.1. A single step by a Turing machine.

model clarified fundamental properties of computable functions and plays a
key role in defining the complexity of computable functions.

The model of Turing machines was envisioned as an abstraction of the
process of an algebraic computation carried out by a human using a sheet of
paper. In such a process, at each time, the human looks at some location on the
paper, and depending on what he/she sees and what he/she has in mind (which
is little . . .), he/she modifies the contents of this location and shifts his/her look
to an adjacent location.

1.3.2.1 The Actual Model
Following is a high-level description of the model of Turing machines. While
this description should suffice for our purposes, more detailed (low-level)
descriptions can be found in numerous textbooks (e.g., [30]). Recall that, in
order to describe a computational model, we need to specify the set of possible
environments, the set of machines (or computation rules), and the effect of
applying such a rule on an environment.

The Environment. The main component in the environment of a Turing
machine is an infinite sequence of cells, each capable of holding a single
symbol (i.e., member of a finite set � ⊃ {0, 1}). This sequence is envisioned as
starting at a leftmost cell, and extending infinitely to the right (cf. Figure 1.1).
In addition, the environment contains the current location of the machine on
this sequence, and the internal state of the machine (which is a member of a
finite set Q). The aforementioned sequence of cells is called the tape, and its
contents combined with the machine’s location and its internal state is called
the instantaneous configuration of the machine.

1.3 Uniform Models (Algorithms) 13

The Machine Itself (i.e., the Computation Rule). The main component in
the Turing machine itself is a finite rule (i.e., a finite function) called the
transition function, which is defined over the set of all possible symbol-state pairs.
Specifically, the transition function is a mapping from � ×Q to � ×Q×
{−1, 0,+1}, where {−1,+1, 0} correspond to a movement instruction (which
is either “left” or “right” or “stay,” respectively). In addition, the machine’s
description specifies an initial state and a halting state, and the computation of
the machine halts when the machine enters its halting state. (Envisioning the
tape as in Figure 1.1, we use the convention by which if the machine ever tries
to move left of the end of the tape, then it is considered to have halted.)

We stress that in contrast to the finite description of the machine, the tape
has an a priori unbounded length (and is considered, for simplicity, as being
infinite).

A Single Application of the Computation Rule. A single computation step
of such a Turing machine depends on its current location on the tape, on the
contents of the corresponding cell, and on the internal state of the machine.
Based on the latter two elements, the transition function determines a new
symbol-state pair as well as a movement instruction (i.e., “left” or “right” or
“stay”). The machine modifies the contents of the said cell and its internal
state accordingly, and moves as directed. That is, suppose that the machine
is in state q and resides in a cell containing the symbol σ , and suppose that
the transition function maps (σ, q) to (σ ′, q ′,D). Then, the machine modifies
the contents of the said cell to σ ′, modifies its internal state to q ′, and moves
one cell in direction D. Figure 1.1 shows a single step of a Turing machine
that, when in state “b” and seeing a binary symbol σ ∈ {0, 1}, replaces σ with
the symbol σ + 2, maintains its internal state, and moves one position to the
right.3

Formally, we define the successive configuration function that maps each
instantaneous configuration to the one resulting by letting the machine take a
single step. This function modifies its argument in a very minor manner, as
described in the foregoing paragraph; that is, the contents of at most one cell
(i.e., at which the machine currently resides) is changed, and in addition the
internal state of the machine and its location may change, too.

3 Figure 1.1 corresponds to a machine that, when in the initial state (i.e., “a”), replaces the
symbol σ ∈ {0, 1} by σ + 4, modifies its internal state to “b,” and moves one position to the
right. (See also Figure 1.2, which depicts multiple steps of this machine.) Indeed, “marking” the
leftmost cell (in order to allow for recognizing it in the future) is a common practice in the
design of Turing machines.

14 1 Computational Tasks and Models

Providing a concrete representation of the successive configuration function
requires providing a concrete representation of instantaneous configurations.
For example, we may represent each instantaneous configuration of a machine
with symbol set � and state set Q as a triple (α, q, i), where α ∈ �∗, q ∈ Q and
i ∈ {1, 2, . . . , |α|}. Let T : � ×Q→ � ×Q× {−1, 0,+1} be the transition
function of the machine. Then, the successive configuration function maps
(α, q, i) to (α′, q ′, i + d) such that α′ differs from α only in the i th location,
which is determined according to the first element in T (αi, q). The new state
(i.e., q ′) and the movement (i.e., d) are determined by the other two elements
of T (αi, q). Specifically, except for some pathological cases, the successive
configuration function maps (α, q, i) to (α′, q ′, i + d) if and only if T (αi, q) =
(α′i , q

′, d) and α′j = αj for every j �= i, where αj (resp., α′j) denotes the j th

symbol of α (resp., α′). The aforementioned pathological cases refer to cases
in which the machine resides in one of the “boundary locations” and needs to
move farther in that direction. One such case is the case that i = 1 and d = −1,
which causes the machine to halt (rather than move left of the left boundary of
the tape). The opposite case refers to i = |α| and d = +1, where the machine
moves to the right of the rightmost non-blank symbol, which is represented by
extending α′ with a blank symbol “-” (i.e., |α′| = |α| + 1 and α′|α|+1 = -).

Initial and Final Environments. The initial environment (or configuration)
of a Turing machine consists of the machine residing in the first (i.e., leftmost)
cell and being in its initial state. Typically, one also mandates that in the initial
configuration, a prefix of the tape’s cells holds bit values, which concatenated
together are considered the input, and the rest of the tape’s cells hold a special
(“blank”) symbol (which in Figures 1.1 and 1.2 is denoted by “-”). Thus, the
initial configuration of a Turing machine has a finite (explicit) description. Once
the machine halts, the output is defined as the contents of the cells that are to
the left of its location (at termination time).4 Note, however, that the machine
need not halt at all (when invoked on some initial environment).5 Thus, each
machine defines a (possibly partial) function mapping inputs to outputs, called
the function computed by the machine. That is, the function computed by machine
M maps x to y if, when invoked on input x, machine M halts with output y,
and is undefined on x if machine M does halt on input x.

4 By an alternative convention, the machine must halt when residing in the leftmost cell, and the
output is defined as the maximal prefix of the tape contents that contains only bit values. In such
a case, the special non-Boolean output ⊥ is indicated by the machine’s state (and indeed in this
case the set of states, Q, contains several halting states).

5 A simple example is a machine that “loops forever” (i.e., it remains in the same state and the
same location regardless of what it reads). Recall, however, that we shall be mainly interested in
machines that do halt after a finite number of steps (when invoked on any initial environment).

1.3 Uniform Models (Algorithms) 15

01 --------

0 -5 -------

b

a

11 1000

1 11000

33 222 01

b

5 --------

33 222 03

b

-5 -------

Figure 1.2. Multiple steps of the machine depicted in Figure 1.1.

As stated up front, the Turing machine model is only meant to provide
an extremely coarse portrayal of real-life computers. However, the model is
intended to reflect the inherent limitations and abilities of real-life computers.
Thus, it is important to verify that the Turing machine model is exactly as pow-
erful as a model that provides a more faithful portrayal of real-life computers
(see the “sanity check” in §1.3.2.2); that is, a function can be computed by a
Turing machine if and only if it is computable by a machine of the latter model.
For starters, one may prove that a function can be computed by a single-tape
Turing machine if and only if it is computable by a multi-tape (e.g., two-tape)
Turing machine (as defined next); see Exercise 1.3.

Multi-tape Turing Machines. We comment that in most expositions, one
refers to the location of the “head of the machine” on the tape (rather than to
the “location of the machine on the tape”). The standard terminology is more
intuitive when extending the basic model, which refers to a single tape, to a

16 1 Computational Tasks and Models

model that supports a constant number of tapes. In the corresponding model of
so-called multi-tape machines, the machine maintains a single head on each such
tape, and each step of the machine depends on and effects the cells that are at
the machine’s head location on each tape. The input is given on one designated
tape, and the output is required to appear on some other designated tape. As
we shall see in Section 1.3.5, the extension of the model to multi-tape Turing
machines is crucial to the definition of space complexity. A less fundamental
advantage of the model of multi-tape Turing machines is that it is easier to
design multi-tape Turing machines that compute functions of interest (see, e.g.,
Exercise 1.4).

1.3.2.2 The Church-Turing Thesis
The entire point of the model of Turing machines is its simplicity. That is, in
comparison to more “realistic” models of computation, it is simpler to formulate
the model of Turing machines and to analyze machines in this model. The
Church-Turing Thesis asserts that nothing is lost by considering the Turing
machine model: A function can be computed by some Turing machine if and
only if it can be computed by some machine of any other “reasonable and
general” model of computation.

This is a thesis, rather than a theorem, because it refers to an intuitive notion
(i.e., the notion of a reasonable and general model of computation) that is
left undefined on purpose. The model should be reasonable in the sense that it
should allow only computation rules that are “simple” in some intuitive sense.
For example, we should be able to envision a mechanical implementation
of these computation rules. On the other hand, the model should allow the
computation of “simple” functions that are definitely computable according
to our intuition. At the very least, the model should allow the emulatation of
Turing machines (i.e., computation of the function that, given a description of
a Turing machine and an instantaneous configuration, returns the successive
configuration).

A Philosophical Comment. The fact that a thesis is used to link an intuitive
concept to a formal definition is common practice in any science (or, more
broadly, in any attempt to reason rigorously about intuitive concepts). Any
attempt to rigorously define an intuitive concept yields a formal definition that
necessarily differs from the original intuition, and the question of correspon-
dence between these two objects arises. This question can never be rigorously
treated because one of the objects that it relates to is undefined. That is, the
question of correspondence between the intuition and the definition always

1.3 Uniform Models (Algorithms) 17

transcends a rigorous treatment (i.e., it always belongs to the domain of the
intuition).

A Sanity Check: Turing Machines can Emulate an Abstract RAM. To
gain confidence in the Church-Turing Thesis, one may attempt to define an
abstract Random-Access Machine (RAM), and verify that it can be emulated
by a Turing machine. An abstract RAM consists of an infinite number of memory

cells, each capable of holding an integer, a finite number of similar registers,
one designated as program counter, and a program consisting of instructions
selected from a finite set. The set of possible instructions includes the following
instructions:

� reset(r), where r is an index of a register, results in setting the value of
register r to zero.

� inc(r), where r is an index of a register, results in incrementing the content
of register r . Similarly dec(r) causes a decrement.

� load(r1, r2), where r1 and r2 are indices of registers, results in loading to
register r1 the contents of the memory location m, where m is the current
contents of register r2.

� store(r1, r2), stores the contents of register r1 in the memory, analogously
to load.

� cond-goto(r, �), where r is an index of a register and � does not exceed the
program length, results in setting the program counter to �− 1 if the content
of register r is non-negative.

The program counter is incremented after the execution of each instruction,
and the next instruction to be executed by the machine is the one to which the
program counter points (and the machine halts if the program counter exceeds
the program’s length). The input to the machine may be defined as the contents
of the first n memory cells, where n is placed in a special input register, and all
other memory cells are assumed to be empty (i.e., contain blanks).

We note that the abstract RAM model (as defined) is as powerful as the
Turing machine model (see the following details). However, in order to make
the RAM model closer to real-life computers, we may augment it with addi-
tional instructions that are available on real-life computers like the instruction
add(r1, r2) (resp., mult(r1, r2)) that results in adding (resp., multiplying) the
contents of registers r1 and r2 (and placing the result in register r1). Like-
wise, we may augment the model with explicit loop-constructs (although such
constructs are easily implementable using the cond-goto instruction).

We suggest proving that this abstract RAM can be emulated by a Turing
machine, see Exercise 1.5. We emphasize this direction of the equivalence of

18 1 Computational Tasks and Models

the two models, because the RAM model is introduced in order to convince
the reader that Turing machines are not too weak (as a model of general
computation). The fact that they are not too strong seems self-evident. Thus, it
seems pointless to prove that the RAM model can emulate Turing machines.
(Still, note that this is indeed the case, by using the RAM’s memory cells to
store the contents of the cells of the Turing machine’s tape, and holding its head
location in a special register.)

Reflections. Observe that the abstract RAM model is significantly more cum-
bersome than the Turing machine model. Furthermore, seeking a sound choice
of the instruction set (i.e., the instructions to be allowed in the model) cre-
ates a vicious cycle (because the sound guideline for such a choice should
have been allowing only instructions that correspond to “simple” operations,
whereas the latter correspond to easily computable functions . . .). This vicious
cycle was avoided in the foregoing paragraph by trusting the reader to include
only instructions that are available in some real-life computer. (We comment
that this empirical consideration is justifiable in the current context because
our current goal is merely linking the Turing machine model with the reader’s
experience of real-life computers.)

1.3.3 Uncomputable Functions

Strictly speaking, the current subsection is not necessary for the rest of this
book, but we feel that it provides a useful perspective.

1.3.3.1 On the Existence of Uncomputable Functions
In contrast to what every layman would think, not all functions are computable.
Indeed, an important message to be communicated to the world is that not
every well-defined task can be solved by applying a “reasonable” automated
procedure (i.e., a procedure that has a simple description that can be applied to
any instance of the problem at hand). Furthermore, not only is it the case that
there exist uncomputable functions, but it is rather the case that most functions
are uncomputable. In fact, only relatively few functions are computable.

Theorem 1.4 (on the scarcity of computable functions): The set of computable
functions is countable, whereas the set of all functions (from strings to strings)
is not countable. Furthermore, the latter set has the same cardinality as the
power set of the natural numbers, which in turn has the same cardinality as the
set of real numbers.

1.3 Uniform Models (Algorithms) 19

We stress that the theorem holds for any reasonable model of computation. In
fact, it relies only on the postulate that each machine in the model has a finite
description (i.e., can be described by a string).

Proof: Since each computable function is computable by a machine that has
a finite description, there is an injection of the set of computable functions to
the set of strings (whereas the set of all strings is in 1-1 correspondence to the
natural numbers). On the other hand, there is a 1-1 correspondence between
the set of Boolean functions (i.e., functions from strings to a single bit) and the
power set of the natural numbers. This correspondence associates each subset
S ∈ N to the function f : N → {0, 1} such that f (i) = 1 if and only if i ∈ S.
Establishing the remaining set theoretic facts is not really in the scope of the
current book. Specifically, we refer to the following facts:

1. The set of all Boolean functions has the same cardinality as the set of all
functions (from strings to strings).

2. The power set of the natural numbers has the same cardinality as the set of
real numbers.

3. Each of the foregoing sets (e.g., the real numbers) is not countable.6

The theorem follows.

1.3.3.2 The Halting Problem
In contrast to the discussion in Section 1.3.1, at this point we also con-
sider machines that may not halt on some inputs. The functions computed
by such machines are partial functions that are defined only on inputs on which
the machine halts. Again, we rely on the postulate that each machine in the
model has a finite description, and denote the description of machine M by
〈M〉 ∈ {0, 1}∗. The halting function, h : {0, 1}∗ × {0, 1}∗ → {0, 1}, is defined

such that h(〈M〉, x)
def= 1 if and only if M halts on input x. The following

result goes beyond Theorem 1.4 by pointing to an explicit function (of natural
interest) that is not computable.

Theorem 1.5 (undecidability of the halting problem): The halting function is
not computable.

The term undecidability means that the corresponding decision problem cannot
be solved by an automated procedure. That is, Theorem 1.5 asserts that the

6 Advanced comment: This fact is usually established by a “diagonalization” argument, which
is actually the core of the proof of Theorem 1.5. For further discussion, the interested reader is
referred to [3, Chap. 2].

20 1 Computational Tasks and Models

decision problem associated with the set h−1(1) = {(〈M〉, x) : h(〈M〉, x) = 1}
is not solvable by an algorithm (i.e., there exists no algorithm that, given a pair
(〈M〉, x), decides whether or not M halts on input x). Actually, the following
proof shows that there exists no algorithm that, given 〈M〉, decides whether
or not M halts on input 〈M〉. The conceptual significance of Theorem 1.5 is
discussed in §1.3.3.3 (following Theorem 1.6).

Proof: We will show that even the restriction of h to its “diagonal” (i.e.,

the function d(〈M〉) def= h(〈M〉, 〈M〉)) is not computable. Note that the value
of d(〈M〉) refers to the question of what happens when we feed M with its
own description, which is indeed a “nasty” (but legitimate) thing to do. We
will actually do something “worse”: toward the contradiction, we will consider
the value of d when evaluated at a (machine that is related to a) hypothetical
machine that supposedly computes d.

We start by considering a related function, d′, and showing that this function
is uncomputable. The function d′ is defined on purpose so as to foil any attempt
to compute it; that is, for every machine M , the value d′(〈M〉) is defined to
differ from M(〈M〉). Specifically, the function d′ : {0, 1}∗ → {0, 1} is defined

such that d′(〈M〉) def= 1 if and only if M halts on input 〈M〉 with output 0. That
is, d′(〈M〉) = 0 if either M does not halt on input 〈M〉 or its output does not
equal the value 0. Now, suppose, toward the contradiction, that d′ is computable
by some machine, denoted Md′ . Note that machine Md′ is supposed to halt on
every input, and so Md′ halts on input 〈Md′ 〉. But, by definition of d′, it holds
that d′(〈Md′ 〉) = 1 if and only if Md′ halts on input 〈Md′ 〉 with output 0 (i.e., if
and only if Md′(〈Md′ 〉) = 0). Thus, Md′(〈Md′ 〉) �= d′(〈Md′ 〉) in contradiction to
the hypothesis that Md′ computes d′.

We next prove that d is uncomputable, and thus h is uncomputable (because
d(z) = h(z, z) for every z). To prove that d is uncomputable, we show that if d
is computable then so is d′ (which we already know not to be the case). Indeed,
suppose toward the contradiction that A is an algorithm for computing d (i.e.,
A(〈M〉) = d(〈M〉) for every machine M). Then, we construct an algorithm for
computing d′, which given 〈M ′〉, invokes A on 〈M ′′〉, where M ′′ is defined to
operate as follows:

1. On input x, machine M ′′ emulates M ′ on input x.
2. If M ′ halts on input x with output 0 then M ′′ halts.
3. If M ′ halts on input x with an output different from 0 then M ′′ enters an

infinite loop (and thus does not halt).
Otherwise (i.e., M ′ does not halt on input x), then machine M ′′ does not halt
(because it just stays stuck in Step 1 forever).

1.3 Uniform Models (Algorithms) 21

Note that the mapping from 〈M ′〉 to 〈M ′′〉 is easily computable (by augmenting
M ′ with instructions to test its output and enter an infinite loop if necessary),
and that d(〈M ′′〉) = d′(〈M ′〉), because M ′′ halts on x if and only if M ′ halts
on x with output 0. We thus derived an algorithm for computing d′ (i.e.,
transform the input 〈M ′〉 into 〈M ′′〉 and output A(〈M ′′〉)), which contradicts the
already established fact by which d′ is uncomputable. Thus, our contradiction
hypothesis that there exists an algorithm (i.e., A) that computes d is proved
false, and the theorem follows (because if the restriction of h to its diagonal
(i.e., d) is not computable, then h itself is surely not computable).

Digest. The core of the second part of the proof of Theorem 1.5 is an algorithm
that solves one problem (i.e., computes d′) by using as a subroutine an algo-
rithm that solves another problem (i.e., computes d (or h)).7 In fact, the first
algorithm is actually an algorithmic scheme that refers to a “functionally speci-
fied” subroutine rather than to an actual (implementation of such a) subroutine,
which may not exist. Such an algorithmic scheme is called a Turing-reduction
(see formulation in Section 1.3.6). Hence, we have Turing-reduced the com-
putation of d′ to the computation of d, which in turn Turing-reduces to h. The
“natural” (“positive”) meaning of a Turing-reduction of f ′ to f is that, when
given an algorithm for computing f , we obtain an algorithm for computing f ′.
In contrast, the proof of Theorem 1.5 uses the “unnatural” (“negative”) counter-
positive: If (as we know) there exists no algorithm for computing f ′ = d′ then
there exists no algorithm for computing f = d (which is what we wanted to
prove). Jumping ahead, we mention that resource-bounded Turing-reductions
(e.g., polynomial-time reductions) play a central role in Complexity Theory
itself, and again they are used mostly in a “negative” way. We will define such
reductions and extensively use them in subsequent chapters.

1.3.3.3 A Few More Undecidability Results
We briefly review a few appealing results regarding undecidable problems.

Rice’s Theorem. The undecidability of the Halting Problem (or rather the fact
that the function h is uncomputable) is a special case of a more general phe-
nomenon: Every non-trivial decision problem regarding the function computed
by a given Turing machine has no algorithmic solution. We state this fact next,
clarifying the definition of the aforementioned class of problems. (Again, we
refer to Turing machines that may not halt on all inputs.)

7 The same holds also with respect to the first part of the proof, which uses the fact that the ability
to compute h yields the ability to compute d. However, in this case the underlying algorithmic
scheme is so obvious that we chose not to state it explicitly.

22 1 Computational Tasks and Models

Theorem 1.6 (Rice’s Theorem): Let F be any non-trivial subset8 of the set of
all computable partial functions, and let SF be the set of strings that describe
machines that compute functions inF . Then deciding membership in SF cannot
be solved by an algorithm.

Theorem 1.6 can be proved by a Turing-reduction from d. We do not provide
a proof because this is too remote from the main subject matter of the book.
(Still, the interested reader is referred to Exercise 1.6.)

We stress that Theorems 1.5 and 1.6 hold for any reasonable model of
computation (referring both to the potential solvers and to the machines the
description of which is given as input to these solvers). Thus, Theorem 1.6
means that no algorithm can determine any non-trivial property of the func-
tion computed by a given computer program (written in any programming
language). For example, no algorithm can determine whether or not a given
computer program halts on each possible input. The relevance of this assertion
to the project of program verification is obvious. See further discussion of this
issue at the end of Section 4.2.

The Post Correspondence Problem. We mention that undecidability also
arises outside of the domain of questions regarding computing devices (given
as input). Specifically, we consider the Post Correspondence Problem in which
the input consists of two sequences of (non-empty) strings, (α1, . . . , αk) and
(β1, . . . , βk), and the question is whether or not there exists a sequence of
indices i1, . . . , i� ∈ {1, . . . , k} such that αi1 · · ·αi� = βi1 · · ·βi� . (We stress that
the length of this sequence is not a priori bounded.)9

Theorem 1.7: The Post Correspondence Problem is undecidable.

Again, the omitted proof is by a Turing-reduction from d (or h), and the
interested reader is referred to Exercise 1.8.

1.3.4 Universal Algorithms

So far we have used the postulate that in any reasonable model of computation,
each machine (or computation rule) has a finite description. Furthermore, in the
proof of Theorem 1.5, we also used the postulate that such a model allows for

8 The set S is called a non-trivial subset of U if both S and U \ S are non-empty. Clearly, if F is a
trivial set of computable functions then the corresponding decision problem can be solved by a
“trivial” algorithm that outputs the corresponding constant bit.

9 In contrast, the existence of an adequate sequence of a specified length can be determined in
time that is exponential in this length.

1.3 Uniform Models (Algorithms) 23

easy modification of a description of a machine that computes a function into a
description of a machine that computes a closely related function. Here, we go
one step further and postulate that the description of machines (in this model)
is “effective” in the following natural sense: There exists an algorithm that,
given a description of a machine (resp., computation rule) and a corresponding
environment, determines the environment that results from performing a single
step of this machine on this environment (resp., the effect of a single application
of the computation rule).10 This algorithm can, in turn, be implemented in the
said model of computation (assuming this model is general; see the Church-
Turing Thesis). Successive applications of this algorithm lead to the notion of
a universal machine, which (for concreteness) is formulated next in terms of
Turing machines.

Definition 1.8 (universal machines): A universal Turing machine is a Turing
machine that when given a description of a machine M and a corresponding
input x returns the value of M(x) if M halts on x and otherwise does not halt.

That is, a universal Turing machine computes the partial function u that is
defined on pairs (〈M〉, x) such that M halts on input x, in which case it holds
that u(〈M〉, x) = M(x). That is, u(〈M〉, x) = M(x) if M halts on input x, and
u is undefined on (〈M〉, x) otherwise. We note that if M halts on all possible
inputs then u(〈M〉, x) is defined for every x.

1.3.4.1 The Existence of Universal Algorithms
We stress that the mere fact that we have defined something (i.e., a universal
Turing machine) does not mean that it exists. Yet, as hinted in the foregoing
discussion and obvious to anyone who has written a computer program (and
thought about what he/she was doing), universal Turing machines do exist.

Theorem 1.9: There exists a universal Turing machine.

Theorem 1.9 asserts that the partial function u is computable. In contrast, it can
be shown that any extension of u to a total function is uncomputable. That is, for
any total function û that agrees with the partial function u on all the inputs on
which the latter is defined, it holds that û is uncomputable (see Exercise 1.10).

Proof: Given a pair (〈M〉, x), we just emulate the computation of machine
M on input x. This emulation is straightforward because (by the effectiveness
of the description of M) we can iteratively determine the next instantaneous
configuration of the computation of M on input x. If the said computation

10 For details, see Exercise 1.9.

24 1 Computational Tasks and Models

halts, then we will obtain its output and can output it (and so, on input (〈M〉, x),
our algorithm returns M(x)). Otherwise, we turn out emulating an infinite
computation, which means that our algorithm does not halt on input (〈M〉, x).
Thus, the foregoing emulation procedure constitutes a universal machine (i.e.,
yields an algorithm for computing u).

As hinted already, the existence of universal machines is the fundamental
fact underlying the paradigm of general-purpose computers. Indeed, a specific
Turing machine (or algorithm) is a device that solves a specific problem. A pri-
ori, solving each problem would have required building a new physical device
that allows for this problem to be solved in the physical world (rather than as
a thought experiment). The existence of a universal machine asserts that it is
enough to build one physical device, that is, a general purpose computer. Any
specific problem can then be solved by writing a corresponding program to
be executed (or emulated) by the general-purpose computer. Thus, universal
machines correspond to general-purpose computers, and provide the philosoph-
ical basis for separating hardware from software. Furthermore, the existence of
universal machines says that software can be viewed as (part of the) input.

In addition to their practical importance, the existence of universal machines
(and their variants) has important consequences in the theories of computing and
Computational Complexity. To demonstrate the point, we note that Theorem 1.6
implies that many questions about the behavior of a fixed (universal) machine
on certain input types are undecidable. For example, it follows that for some
fixed machines (i.e., universal ones), there is no algorithm that determines
whether or not the (fixed) machine halts on a given input (see Exercise 1.7).
Also, revisiting the proof of Theorem 1.7 (see Exercise 1.8), it follows that the
Post Correspondence Problem remains undecidable even if the input sequences
are restricted to having a specific length (i.e., k is fixed). A more important
application of universal machines to the theory of computing is presented next
(i.e., in §1.3.4.2).

1.3.4.2 A Detour: Kolmogorov Complexity
The existence of universal machines, which may be viewed as universal lan-
guages for writing effective and succinct descriptions of objects, plays a cen-
tral role in Kolmogorov Complexity. Loosely speaking, the latter theory is
concerned with the length of (effective) descriptions of objects, and views the
minimum such length as the inherent “complexity” of the object; that is, “sim-
ple” objects (or phenomena) are those having a short description (resp., short
explanation), whereas “complex” objects have no short description. Needless
to say, these (effective) descriptions have to refer to some fixed “language” (i.e.,

1.3 Uniform Models (Algorithms) 25

to a fixed machine that, given a succinct description of an object, produces its
explicit description). Fixing any machine M , a string x is called a description of

s with respect to M if M(x) = s. The complexity of s with respect to M , denoted
KM (s), is the length of the shortest description of s with respect to M . Certainly,
we want to fix M such that every string has a description with respect to M ,
and furthermore such that this description is not “significantly” longer than the
description with respect to a different machine M ′. This desire is fulfilled by
the following theorem, which makes it natural to use a universal machine as
the “point of reference” (i.e., as the aforementioned M).

Theorem 1.10 (complexity wrt a universal machine): Let U be a universal
machine. Then, for every machine M ′, there exists a constant c such that
KU (s) ≤ KM ′(s)+ c for every string s.

The theorem follows by (setting c = O(|〈M ′〉|) and) observing that if x is
a description of s with respect to M ′ then (〈M ′〉, x) is a description of s

with respect to U . Here it is important to use an adequate encoding of
pairs of strings (e.g., the pair (σ1 · · · σk, τ1 · · · τ�) is encoded by the string
σ1σ1 · · · σkσk01τ1 · · · τ�). Fixing any universal machine U , we define the Kol-

mogorov Complexity of a string s as K(s)
def= KU (s). The reader may easily verify

the following facts:

1. K(s) ≤ |s| +O(1), for every s.

(Hint: Apply Theorem 1.10 to a machine that computes the identity mapping.)

2. There exist infinitely many strings s such that K(s) � |s|.
(Hint: Consider s = 1n. Alternatively, consider any machine M such that |M(x)| �
|x| for every x.)

3. Some strings of length n have complexity at least n. Furthermore, for every
n and i,

|{s ∈ {0, 1}n : K(s) ≤ n− i}| < 2n−i+1

(Hint: Different strings must have different descriptions with respect to U .)

It can be shown that the function K is uncomputable; see Exercise 1.11. The
proof is related to the paradox captured by the following “description” of
a natural number: the smallest natural number that cannot be

described by an English sentence of up to a thousand letters.
(The paradox amounts to observing that if the foregoing number is well defined,
then we reach contradiction by noting that the foregoing sentence uses fewer
than one thousand letters.) Needless to say, the foregoing sentence presupposes

26 1 Computational Tasks and Models

that any English sentence is a legitimate description in some adequate sense
(e.g., in the sense captured by Kolmogorov Complexity). Specifically, the fore-
going sentence presupposes that we can determine the Kolmogorov Complexity
of each natural number, and thus that we can effectively produce the small-
est number that has Kolmogorov Complexity exceeding some threshold (by
relying on the fact that natural numbers have arbitrarily large Kolmogorov
Complexity). Indeed, the paradox suggests a proof to the fact that the latter task
cannot be performed; that is, there exists no algorithm that given t produces
the lexicographically first string s such that K(s) > t , because if such an algo-
rithm A would have existed then K(s) ≤ O(|〈A〉|)+ log t in contradiction to
the definition of s.

1.3.5 Time (and Space) Complexity

Fixing a model of computation (e.g., Turing machines) and focusing on algo-
rithms that halt on each input, we consider the number of steps (i.e., applications
of the computation rule) taken by the algorithm on each possible input. The
latter function is called the time complexity of the algorithm (or machine); that
is, tA : {0, 1}∗ → N is called the time complexity of algorithm A if, for every
x, on input x algorithm A halts after exactly tA(x) steps.

We will be mostly interested in the dependence of the time complexity on the
input length when taking the maximum over all inputs of the relevant length.
That is, for tA as in the foregoing paragraph, we will consider TA : N → N

defined by TA(n)
def= maxx∈{0,1}n{tA(x)}. Abusing terminology, we sometimes

refer to TA as the time complexity of A.

A Small Detour: Linear Speedup and the O-Notation. Many models of
computation allow for speed-up computation by any constant factor; see Exer-
cise 1.14, which refers to the Turing machine model. This motivates the ignor-
ing of constant factors in stating (time) complexity upper bounds, and leads
to an extensive usage of the corresponding O-notation in computer science.
Recall that we say that f : N → N is O(g), where g : N → N, if there exists a
(positive) constant c such that for every (sufficiently large) n ∈ N it holds that
f (n) ≤ c · g(n). (The parenthetical augmentations are intended to overcome
some pathological cases, where one wishes to use natural bounding functions
that “misbehave” on finitely many inputs; e.g., g(n) = n evaluates to zero on 0,
and g(n) = n log2 n evaluates to zero on 1).

The Time Complexity of a Problem. As stated in the Preface, typically
Complexity Theory is not concerned with the (time) complexity of a specific

1.3 Uniform Models (Algorithms) 27

algorithm. It is rather concerned with the (time) complexity of a problem,
assuming that this problem is solvable at all (by some algorithm). Intuitively,
the time complexity of such a problem is defined as the time complexity of the
fastest algorithm that solves this problem (assuming that the latter term is well
defined).11 Actually, we shall be interested in upper and lower bounds on the
(time) complexity of algorithms that solve the problem. Thus, when we say that
a certain problem � has complexity T , we actually mean that � has complexity
at most T . Likewise, when we say that � requires time T , we actually mean
that � has time complexity at least T .

Recall that the foregoing discussion refers to some fixed model of computa-
tion. Indeed, the complexity of a problem � may depend on the specific model
of computation in which algorithms that solve � are implemented. The follow-
ing Cobham-Edmonds Thesis asserts that the variation (in the time complexity)
is not too big, and in particular is irrelevant to the P-vs-NP Question (as well
as to almost all of the current focus of Complexity Theory).

The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-
lem may depend on the model of computation. For example, deciding mem-
bership in the set {xx : x ∈ {0, 1}∗} can be done in linear time on a two-tape
Turing machine, but requires quadratic time on a single-tape Turing machine
(see Exercise 1.13). On the other hand, any problem that has time complexity t

in the model of multi-tape Turing machines has complexity O(t2) in the model
of single-tape Turing machines (see Exercise 1.12). The Cobham-Edmonds
Thesis asserts that the time complexities in any two “reasonable and general”
models of computation are polynomially related. That is, a problem has time
complexity t in some “reasonable and general” model of computation if and only
if it has time complexity poly(t) in the model of (single-tape) Turing machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.
It asserts not only that the class of solvable problems is invariant as far as
“reasonable and general” models of computation are concerned, but also that
the time complexity (of the solvable problems) in such models is polynomially
related.

We note that when compared to the Church-Turing Thesis, the Cobham-
Edmonds Thesis relies on a more refined perception of what constitutes a
reasonable model of computation. Specifically, we should not allow unit-cost
operations (i.e., computational steps) that effect an unbounded amount of data,

11 Advanced comment: We note that the naive assumption that a “fastest algorithm” (for solving
a problem) exists is not always justified (even when ignoring constant factors; see [13,
Sec. 4.2.2]). On the other hand, the assumption is essentially justified in some important cases
(see, e.g., Theorem 5.5). But even in these cases the said algorithm is “fastest” (or “optimal”)
only up to a constant factor.

28 1 Computational Tasks and Models

or alternatively we should charge each operation proportionally to the amount
of data being effected by it. A typical example arises in the abstract RAM
model rediscussed next.

Referring to the abstract RAM model (as defined in §1.3.2.2), we note that a
problem has time complexity t in the abstract RAM model if and only if it has
time complexity poly(t) in the model of (single-tape) Turing machines. While
this assertion requires no qualification when referring to the bare model (which
only includes the operation reset(·), inc(·), dec(·), load(·, ·), store(·, ·),
and cond-goto(·, ·)), we need to be careful with respect to augmenting this
instruction set with additional (abstract) instructions that (correspond to instruc-
tions that) are available on real-life computers. Consider, for example, augment-
ing the instruction set with add(r1, r2) (resp., mult(r1, r2)) that represents
adding (resp., multiplying) the contents of registers r1 and r2 (and placing
the result in register r1). Note that using the addition instruction t times may
increase the length (of the bit representation) of the numbers stored in these
registers by at most t units,12 but t applications of the multiplication instruction
may increase this length by a factor of 2t (via repeated squaring). Thus, we
should either restrict these operations to fixed-length integers (as done in real-
life computers) or charge each of these operations in proportion to the length
of the actual contents of the relevant (abstract) registers.

Efficient Algorithms. As hinted in the foregoing discussions, much of Com-
plexity Theory is concerned with efficient algorithms. The latter are defined as
polynomial-time algorithms (i.e., algorithms that have time complexity that is
upper-bounded by a polynomial in the length of the input). By the Cobham-
Edmonds Thesis, the definition of this class is invariant under the choice of
a “reasonable and general” model of computation. For further discussion of
the association of efficient algorithms with polynomial-time computation see
Section 2.1.

Universal Machines, Revisited. The notion of time complexity gives rise to a
time-bounded version of the universal function u (presented in Section 1.3.4).

Specifically, we define u′(〈M〉, x, t)
def= y if on input x machine M halts within

t steps and outputs the string y, and u′(〈M〉, x, t)
def= ⊥ if on input x machine

M makes more than t steps. Unlike u, the function u′ is a total function.
Furthermore, unlike any extension of u to a total function, the function u′

12 The same consideration applies also to the other basic instructions (e.g., inc(·)), which
justifies our ignoring the issue when discussing the basic instruction set. In fact, using only the
basic instructions yields an even slower increase in the length of the stored numbers.

1.3 Uniform Models (Algorithms) 29

is computable. Moreover, u′ is computable by a machine U ′ that, on input
X = (〈M〉, x, t), halts after poly(|〈M〉| + |x| + t) steps. Indeed, machine U ′ is
a variant of a universal machine (i.e., on input X, machine U ′ merely emulates
M for t steps rather than emulating M till it halts (and potentially indefinitely)).
Note that the number of steps taken by U ′ depends on the specific model of
computation (and that some overhead is unavoidable because emulating each
step of M requires reading the relevant portion of the description of M).

Space Complexity. Another natural measure of the “complexity” of an algo-
rithm (or a task) is the amount of memory consumed by the computation. We
refer to the memory used for storing some intermediate results of the compu-
tation. Since computations that utilize memory that is sub-linear in their input
length are of natural interest, it is important to use a model in which one can
differentiate memory used for computation from memory used for storing the
initial input or the final output. In the context of Turing machines, this is done
by considering multi-tape Turing machines such that the input is presented on
a special read-only tape (called the input tape), the output is written on a special
write-only tape (called the output tape), and intermediate results are stored on a
work-tape. Thus, the input and output tapes cannot be used for storing interme-
diate results. The space complexity of such a machine M is defined as a function
sM such that sM (x) is the number of cells of the work-tape that are scanned
by M on input x. As in the case of time complexity, we will usually refer to

SA(n)
def= maxx∈{0,1}n{sA(x)}. In this book we do not discuss space complexity

any further, but rather refer the interested reader to [13, Chap. 5].

1.3.6 Oracle Machines and Turing-Reductions

The notion of Turing-reductions, which was discussed in Section 1.3.3, is cap-
tured by the following definition of so-called oracle machines. Loosely speak-
ing, an oracle machine is a machine that is augmented such that it may pose
questions to the outside. We consider the case in which these questions, called
queries, are answered consistently by some function f : {0, 1}∗ → {0, 1}∗,
called the oracle. That is, if the machine makes a query q, then the answer
it obtains is f (q). In such a case, we say that the oracle machine is given access
to the oracle f . For an oracle machine M , a string x and a function f , we
denote by Mf (x) the output of M on input x when given access to the oracle
f . (Reexamining the second part of the proof of Theorem 1.5, observe that we
have actually described an oracle machine that computes d′ when given access
to the oracle d.)

30 1 Computational Tasks and Models

Oracle machines provide a formulation of procedures that use “functionally
specified” subroutines. That is, the functionality of the subroutine is specified
(by the aforementioned function f), but its operation remains unspecified.
In contrast, the oracle machine (i.e., M) provides a full specification of how
the subroutine (represented by f) is used. Such procedures (or rather such
efficient procedures) are the subject of Chapter 3, and further discussion will
appear there. Our aim in the current section is merely introducing the basic
framework, which is analogous to our introducing the notion of algorithms in
the current chapter, whereas the entire book focuses on efficient algorithms.

The notion of an oracle machine extends the notion of a standard computing
device (machine), and thus a rigorous formulation of the former extends a for-
mal model of the latter. Specifically, extending the model of Turing machines,
we derive the following model of oracle Turing machines.

Definition 1.11 (using an oracle):

� An oracle machine is a Turing machine with a special additional tape, called
the oracle tape, and two special states, called oracle invocation and oracle

spoke.
� The computation of the oracle machine M on input x and access to the oracle f :
{0, 1}∗ → {0, 1}∗ is defined based on the successive configuration function.
For configurations with a state different from oracle invocation the next
configuration is defined as usual. Let γ be a configuration in which the
machine’s state is oracle invocation and suppose that the actual contents of
the oracle tape is q (i.e., q is the contents of the maximal prefix of the tape
that holds bit values).13 Then, the configuration following γ is identical to
γ , except that the state is oracle spoke, and the actual contents of the oracle
tape is f (q). The string q is called M’s query and f (q) is called the oracle’s

reply.
� The output of the oracle machine M on input x when given oracle access to

f is denoted Mf (x).

We stress that the running time of an oracle machine is the number of steps
made during its (own) computation, and that the oracle’s reply on each query
is obtained in a single step. Combining Definition 1.11 with the notion of
solving a problem (see Definitions 1.1 and 1.2), we obtain the definition of a
Turing-reduction.

13 This fits the definition of the actual initial contents of a tape of a Turing machine (cf.
Section 1.3.2). A common convention is that the oracle can be invoked only when the
machine’s head resides at the leftmost cell of the oracle tape.

1.4 Non-Uniform Models (Circuits and Advice) 31

Definition 1.12 (Turing reduction): A problem � is Turing-reducible to a prob-
lem �′ if there exists an oracle machine M such that for every function f that
solves �′ it holds that Mf solves �.

It follows that if there exists an algorithm for solving �′, then there exists
an algorithm for solving �. Indeed, in the proof of Theorem 1.5 we used
the contrapositive of the foregoing (i.e., if no algorithm can solve �, then no
algorithm can solve �′). Recall that (efficient) reductions are the subject matter
of Chapter 3, and so we shall return to them at greater length at that point.

1.3.7 Restricted Models

We mention that restricted models of computation are often mentioned in
the context of a course on computability, but they will play no role in the
current book. One such model is the model of finite automata, which in some
variant coincides with Turing machines that have space complexity zero (equiv.,
constant).

In our opinion, the most important motivation for the study of these restricted
models of computation is that they provide simple models for some natural (or
artificial) phenomena. This motivation, however, seems only remotely related
to the study of the complexity of various computational tasks, which calls for
the consideration of general models of computation and the evaluation of the
complexity of computation with respect to such models.

1.4 Non-Uniform Models (Circuits and Advice)

In the current book, we only use non-uniform models of computation as a source
of some natural computational problems (cf. Section 4.3.1). Specifically, we
will refer to the satisfiability of Boolean circuits (defined in §1.4.1.1) and
formulae (defined in §1.4.3.1). We mention, however, that these models are
typically considered for other purposes (see a brief discussion that follows).

By a non-uniform model of computation we mean a model in which for each
possible input length a different computing device is considered, while there is
no “uniformity” requirement relating devices that correspond to different input
lengths. Furthermore, this collection of devices is infinite by nature, and (in
the absence of a uniformity requirement) this collection may not even have
a finite description. Nevertheless, each device in the collection has a finite
description. In fact, the relationship between the size of the device (resp., the
length of its description) and the length of the input that it handles will be of

32 1 Computational Tasks and Models

major concern. Specifically, the size of these devices gives rise to a complexity
measure that can be used to upper-bound the time complexity of corresponding
algorithms.

Non-uniform models of computation are considered either toward the devel-
opment of techniques for proving complexity lower bounds or as providing
simplified upper bounds on the ability of efficient algorithms.14 In both cases,
the uniformity condition is eliminated in the interest of simplicity and with the
hope (and belief) that nothing substantial is lost as far as the issues at hand are
concerned. In the context of developing lower bounds, the hope is that the finite-
ness of all parameters (i.e., the input length and the device’s description) will
allow for the application of combinatorial techniques to analyze the limitations
of certain settings of parameters. We mention that this hope has materialized
in some restricted cases (see Section 1.4.3).

We will focus on two related models of non-uniform computing devices:
Boolean circuits (Section 1.4.1) and “machines that take advice” (Sec-
tion 1.4.2). The former model is more adequate for the study of the evolution of
computation (i.e., development of “lower bound techniques”), whereas the lat-
ter is more adequate for modeling purposes (e.g., limiting the ability of efficient
algorithms).

1.4.1 Boolean Circuits

The most popular model of non-uniform computation is the one of Boolean
circuits. Historically, this model was introduced for the purpose of describing
the “logic operation” of real-life electronic circuits. Ironically, nowadays this
model provides the stage for some of the most practically removed studies
in Complexity Theory (which aim at developing methods that may eventually
lead to an understanding of the inherent limitations of efficient algorithms).

1.4.1.1 The Basic Model
A Boolean circuit is a directed acyclic graph15 with labels on the vertices, to be
discussed shortly. For the sake of simplicity, we disallow isolated vertices (i.e.,
vertices with no incoming or outgoing edges), and thus the graph’s vertices are
of three types: sources, sinks, and internal vertices.

14 Advanced comment: The second case refers mainly to efficient algorithms that are given a
pair of inputs (of (polynomially) related length) such that these algorithms are analyzed with
respect to fixing one input (arbitrarily) and varying the other input (typically, at random).
Typical examples include the context of de-randomization (cf. [13, Sec. 8.3]) and the setting of
zero-knowledge (cf. [13, Sec. 9.2]).

15 See Appendix A.1.

1.4 Non-Uniform Models (Circuits and Advice) 33

1. Internal vertices are vertices having incoming and outgoing edges (i.e.,
they have in-degree and out-degree at least 1). In the context of Boolean
circuits, internal vertices are called gates. Each gate is labeled by a Boolean
operation, where the operations that are typically considered are ∧, ∨ and¬
(corresponding to and, or and neg). In addition, we require that gates
labeled ¬ have in-degree 1. The in-degree of ∧-gates and ∨-gates may be
any number greater than zero, and the same holds for the out-degree of any
gate.

2. The graph sources (i.e., vertices with no incoming edges) are called input

terminals. Each input terminal is labeled by a natural number (which is to
be thought of as the index of an input variable). (For the sake of defining
formulae (see §1.4.3.1), we allow different input terminals to be labeled by
the same number.)16

3. The graph sinks (i.e., vertices with no outgoing edges) are called output

terminals, and we require that they have in-degree 1. Each output terminal is
labeled by a natural number such that if the circuit has m output terminals
then they are labeled 1, 2, . . . , m. That is, we disallow different output
terminals to be labeled by the same number, and insist that the labels of
the output terminals are consecutive numbers. (Indeed, the labels of the
output terminals will correspond to the indices of locations in the circuit’s
output.)

See the example in Figure 1.3. For the sake of simplicity, we also mandate that
the labels of the input terminals are consecutive numbers.17

A Boolean circuit with n different input labels and m output terminals
induces (and indeed computes) a function from {0, 1}n to {0, 1}m defined as
follows. For any fixed string x ∈ {0, 1}n, we iteratively define the value of ver-
tices in the circuit such that the input terminals are assigned the corresponding
bits in x = x1 · · · xn and the values of other vertices are determined in the
natural manner. That is:

� An input terminal with label i ∈ {1, . . . , n} is assigned the i th bit of x (i.e.,
the value xi).

16 This is not needed in the case of general circuits, because we can just feed outgoing edges of
the same input terminal to many gates. Note, however, that this is not allowed in the case of
formulae, where all non-sinks are required to have out-degree exactly 1.

17 This convention slightly complicates the construction of circuits that ignore some of the input
values. Specifically, we use artificial gadgets that have incoming edges from the corresponding
input terminals, and compute an adequate constant. To avoid having this constant as an output
terminal, we feed it into an auxiliary gate such that the value of the latter is determined by the
other incoming edge (e.g., a constant 0 fed into an ∨-gate). See an example of dealing with x3
in Figure 1.3.

34 1 Computational Tasks and Models

21

1 2

0

34

and and

and

and

or
or

negneg neg

Figure 1.3. A circuit computing f (x1, x2, x3, x4) = (x1 ⊕ x2, x1 ∧ ¬x2 ∧ x4).

� If the children of a gate (of in-degree d) that is labeled ∧ have values
v1, v2, . . . , vd , then the gate is assigned the value ∧d

i=1vi . The value of a gate
labeled ∨ (or ¬) is determined analogously.
Indeed, the hypothesis that the circuit is acyclic implies that the following
natural process of determining values for the circuit’s vertices is well defined:
As long as the value of some vertex is undetermined, there exists a vertex
such that its value is undetermined but the values of all its children are
determined. Thus, the process can make progress, and terminates when the
values of all vertices (including the output terminals) are determined.

The value of the circuit on input x (i.e., the output computed by the circuit
on input x) is y = y1 · · · ym, where yi is the value assigned by the foregoing
process to the output terminal labeled i. We note that there exists a polynomial-
time algorithm that, given a circuit C and a corresponding input x, outputs
the value of C on input x. This algorithm determines the values of the circuit’s
vertices, going from the circuit’s input terminals to its output terminals.

We say that a family of circuits (Cn)n∈N computes a function f : {0, 1}∗ →
{0, 1}∗ if for every n the circuit Cn computes the restriction of f to strings of
length n. In other words, for every x ∈ {0, 1}∗, it must hold that C|x|(x) = f (x).

Bounded and Unbounded Fan-in. It is often natural to consider circuits in
which each gate has at most two incoming edges.18 In this case, the types of

18 Indeed, the term bounded fan-in suggests that the upper bound on the number of incoming
edges may be any fixed constant, but such circuits can be emulated by circuits with
two-argument operations while incurring only a constant factor blowup in their size. The same
reason justifies the assertion that the choice of a full basis is immaterial, because each such

1.4 Non-Uniform Models (Circuits and Advice) 35

(two-argument) Boolean operations that we allow is immaterial (as long as
we consider a “full basis” of such operations, i.e., a set of operations that can
implement any other two-argument Boolean operation). Such circuits are called
circuits of bounded fan-in. In contrast, other studies are concerned with circuits
of unbounded fan-in, where each gate may have an arbitrary number of incoming
edges. Needless to say, in the case of circuits of unbounded fan-in, the choice
of allowed Boolean operations is important and one focuses on operations that
are “uniform” (across the number of operands, e.g., ∧ and ∨). Unless specified
differently, we shall refer to circuits of unbounded fan-in; however, in many of
the cases that we consider, the choice is immaterial.

1.4.1.2 Circuit Complexity
As stated earlier, the Boolean circuit model is used in Complexity Theory
mainly as a basis for defining a (non-uniform) complexity measure. Specifically,
the complexity of circuits is defined as their size.

Circuit Size as a Complexity Measure. The size of a circuit is the number
of its edges. When considering a family of circuits (Cn)n∈N that computes a
function f : {0, 1}∗ → {0, 1}∗, we are interested in the size of Cn as a function
of n. Specifically, we say that this family has size complexity s : N → N if for
every n the size of Cn is s(n). The circuit complexity of a function f , denoted
sf , is the infimum of the size complexity of all families of circuits that compute
f . Alternatively, for each n we may consider the size of the smallest circuit
that computes the restriction of f to n-bit strings (denoted fn), and set sf (n)
accordingly. We stress that non-uniformity is implicit in this definition, because
no conditions are made regarding the relation between the various circuits used
to compute the function on different input lengths.19

On the Circuit Complexity of Functions. We highlight some simple facts
regarding the circuit complexity of functions. These facts are in clear corre-
spondence to facts regarding Kolmogorov Complexity mentioned in §1.3.4.2,
and establishing them is left as an exercise (see Exercise 1.15).

1. Most importantly, any Boolean function can be computed by some fam-
ily of circuits, and thus the circuit complexity of any function is well

basis allows for emulating any two-argument operation by a constant size circuit. Indeed, in
both cases, we disregard constant factor changes in the circuit size.

19 Advanced comment: We also note that, in contrast to footnote 11, the circuit model and the
corresponding (circuit size) complexity measure support the notion of an optimal computing
device: Each function f has a unique size complexity sf (and not merely upper and lower
bounds on its complexity).

36 1 Computational Tasks and Models

defined. Furthermore, each function has at most exponential circuit com-
plexity.

2. Some functions have polynomial circuit complexity. In particular, any func-
tion that has time complexity t (i.e., is computed by an algorithm of time
complexity t) has circuit complexity at most poly(t). Furthermore, the cor-
responding circuit family is uniform (in a natural sense to be discussed in
the next paragraph).

3. Almost all Boolean functions require exponential circuit complexity. Specif-
ically, the number of functions mapping {0, 1}n to {0, 1} that can be computed
by some circuit of size s is smaller than s2s .

Note that the first fact implies that families of circuits can compute functions
that are uncomputable by algorithms. Furthermore, this phenomenon occurs
also when restricting attention to families of polynomial-size circuits. See
further discussion in Section 1.4.2 (and specifically Theorem 1.14).

Uniform Families. A family of polynomial-size circuits (Cn)n∈N is called
uniform if given n one can construct the circuit Cn in poly(n)-time. Note that if
a function is computable by a uniform family of polynomial-size circuits then it
is computable by a polynomial-time algorithm. This algorithm first constructs
the adequate circuit (which can be done in polynomial time by the uniformity
hypothesis), and then evaluates this circuit on the given input (which can be
done in time that is polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of
polynomial-size circuits certainly hold for uniform families (of polynomial-size
circuits), which in turn yield limitations on the computing power of polynomial-
time algorithms. Thus, lower bounds on the circuit complexity of functions yield
analogous lower bounds on their time complexity. Furthermore, as is often the
case in mathematics and science, disposing of an auxiliary condition that is
not well understood (i.e., uniformity) may turn out to be fruitful. Indeed, this
has occured in the study of classes of restricted circuits, which is reviewed in
Section 1.4.3.

1.4.2 Machines That Take Advice

General (non-uniform) circuit families and uniform circuit families are two
extremes with respect to the “amounts of non-uniformity” in the computing
device. Intuitively, in the former, non-uniformity is only bounded by the size of
the device, whereas in the latter, the amount of non-uniformity is zero. Here we
consider a model that allows for decoupling the size of the computing device

1.4 Non-Uniform Models (Circuits and Advice) 37

from the amount of non-uniformity, which may range from zero to the device’s
size. Specifically, we consider algorithms that “take a non-uniform advice”
that depends only on the input length. The amount of non-uniformity will be
defined to equal the length of the corresponding advice (as a function of the
input length).

Definition 1.13 (taking advice): We say that algorithm A computes the function

f using advice of length � : N → N if there exists an infinite sequence (an)n∈N

such that

1. For every x ∈ {0, 1}∗, it holds that A(a|x|, x) = f (x).
2. For every n ∈ N, it holds that |an| = �(n).

The sequence (an)n∈N is called the advice sequence.

Note that any function having circuit complexity s can be computed using
advice of length O(s log s), where the length upper bound is due to the fact
that a graph with v vertices and e edges can be described by a string of
length 2e log2 v. Note that the model of machines that use advice allows for
some sharper bounds than the ones stated in §1.4.1.2: Every function can be
computed using advice of length � such that �(n) = 2n, and some uncomputable
functions can be computed using advice of length 1.

Theorem 1.14 (the power of advice): There exist functions that can be com-
puted using one-bit advice but cannot be computed without advice.

Proof: Starting with any uncomputable Boolean function f : N → {0, 1},
consider the function f ′ defined as f ′(x) = f (|x|); that is, the value of f ′(x)
only depends on the length of x (and, specifically, equals f (|x|)). Note that
f is Turing-reducible to f ′ (e.g., on input n make any n-bit query to f ′, and
return the answer).20 Thus, f ′ cannot be computed without advice. On the other
hand, f ′ can be easily computed by using the advice sequence (an)n∈N such
that an = f (n); that is, the algorithm merely outputs the advice bit (and indeed
a|x| = f (|x|) = f ′(x), for every x ∈ {0, 1}∗).

1.4.3 Restricted Models

The model of Boolean circuits (cf. §1.4.1.1) allows for the introduction of many
natural subclasses of computing devices. Following is a laconic review of a few

20 Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |n| = log2 n),
but this is immaterial in the current context.

38 1 Computational Tasks and Models

n1
of x x

n1
of x x

n1
of x x

2n
of x ...x

n+1 2n
of x ...x

n+12n
of x ...x

n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure 1.4. Recursive construction of parity circuits and formulae.

of these subclasses. (For further detail regarding the study of these subclasses,
the interested reader is referred to [1].)

1.4.3.1 Boolean Formulae
In (general) Boolean circuits the non-sink vertices are allowed arbitrary out-
degree. This means that the same intermediate value can be reused without
being recomputed (and while increasing the size complexity by only one unit).
Such “free” reusage of intermediate values is disallowed in Boolean formulae,
which are formally defined as Boolean circuits in which all non-sink vertices
have out-degree 1. This means that the underlying graph of a Boolean formula
is a tree (see Appendix A.2), and it can be written as a Boolean expression over
Boolean variables by traversing this tree (and registering the vertices’ labels in
the order traversed). Indeed, we have allowed different input terminals to be
assigned the same label in order to allow formulae in which the same variable
occurs multiple times.

As in the case of general circuits, one is interested in the size of these
restricted circuits (i.e., the size of families of formulae computing various
functions). We mention that quadratic lower bounds are known for the formula
size of simple functions (e.g., parity), whereas these functions have linear
circuit complexity. This discrepancy is depicted in Figure 1.4.

Formulae in CNF and DNF. A restricted type of Boolean formulae consists
of formulae that are in conjunctive normal form (CNF). Such a formula consists
of a conjunction of clauses, where each clause is a disjunction of literals, each
being either a variable or its negation. That is, such formulae are represented
by layered circuits of unbounded fan-in in which the first layer consists of

1.4 Non-Uniform Models (Circuits and Advice) 39

32

and

1

neg neg

32

and

neg

1

neg

32

and

neg

1

neg

32

and

or

1

1

Figure 1.5. A 3DNF formula computing x1 ⊕ x2 ⊕ x3 as (x1 ∧ x2 ∧ x3) ∨ (x1 ∧
¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2 ∧ x3).

neg-gates that compute the negation of input variables, the second layer con-
sists of or-gates that compute the logical-or of subsets of inputs and negated
inputs, and the third layer consists of a single and-gate that computes the
logical-and of the values computed in the second layer. Note that each Boolean
function can be computed by a family of CNF formulae of exponential size
(see Exercise 1.17), and that the size of CNF formulae may be exponentially
larger than the size of ordinary formulae computing the same function (e.g.,
parity).21 For a constant k (e.g., k = 2, 3), a formula is said to be in kCNF

if its CNF has disjunctions of size at most k. An analogous restricted type of
Boolean formulae refers to formulae that are in disjunctive normal form (DNF).
Such a formula consists of a disjunction of a conjunction of literals, and when
each conjunction has at most k literals we say that the formula is in kDNF. (Fig-
ure 1.5 depicts a 3DNF formula that computes the parity of three variables.)

1.4.3.2 Other Restricted Classes of Circuits
Two other restricted classes of circuits, which have received a lot of attention in
Complexity Theory (but are not used in this book), are the classes of constant-
depth circuits and monotone circuits.

Constant-depth Circuits. Circuits have a “natural structure” (i.e., their struc-
ture as graphs). One natural parameter regarding this structure is the depth

21 See Exercise 1.18.

40 1 Computational Tasks and Models

of a circuit, which is defined as the longest directed path from any source to
any sink. Of special interest are constant-depth circuits of unbounded fan-in.
We mention that sub-exponential lower bounds are known for the size of such
circuits that compute a simple function (e.g., parity).

Monotone Circuits. The circuit model also allows for the consideration of
monotone computing devices: A monotone circuit is one having only monotone
gates (e.g., gates computing ∧ and ∨, but no negation gates (i.e., ¬-gates)).
Needless to say, monotone circuits can only compute monotone functions,
where a function f : {0, 1}n → {0, 1} is called monotone if for any x � y it
holds that f (x) ≤ f (y) (where x1 · · · xn � y1 · · · yn if and only if for every
bit position i it holds that xi ≤ yi). One natural question is whether, as far
as monotone functions are concerned, there is a substantial loss in using only
monotone circuits. The answer is yes: There exist monotone functions that
have polynomial circuit complexity but require sub-exponential-size monotone
circuits.

1.5 Complexity Classes

Complexity classes are sets of computational problems. Typically, such classes
are defined by fixing three parameters:

1. A type of computational problems (see Section 1.2). Indeed, the most stan-
dard complexity classes refer to decision problems, but classes of search
problems, promise problems, and other types of problems are also consid-
ered.

2. A model of computation, which may be either uniform (see Section 1.3) or
non-uniform (see Section 1.4).

3. A complexity measure and a limiting function (or a set of functions), which
when put together limit the class of computations of the previous item; that
is, we refer to the class of computations that have complexity not exceeding
the specified function (or set of functions).
For example, in Section 1.3.5, we mentioned time complexity and space
complexity, which apply to any uniform model of computation. We also
mentioned polynomial-time computations, which are computations in which
the time complexity (as a function) does not exceed some polynomial (i.e.,
is a member of the set of polynomial functions).

The most common complexity classes refer to decision problems, and are
sometimes defined as classes of sets rather than classes of the corresponding

Exercises 41

decision problems. That is, one often says that a set S ⊆ {0, 1}∗ is in the class
C, rather than saying that the problem of deciding membership in S is in the
class C. Likewise, one talks of classes of relations rather than classes of the
corresponding search problems (i.e., saying that R ⊆ {0, 1}∗ × {0, 1}∗ is in
the class C means that the search problem of R is in the class C).

Exercises

Exercise 1.1 (a quiz)

1. What is the default representation of integers (in Complexity Theory)?
2. What are search and decision problems?
3. What is the motivation for considering the model of Turing machines?
4. What does the Church-Turing Thesis assert?
5. What is a universal algorithm?
6. What does undecidability mean?
7. What is the time complexity of an algorithm?
8. What does the Cobham-Edmonds Thesis assert?
9. What are Boolean circuits and formulae?

Exercise 1.2 Prove that any function that can be computed by a Turing machine
can be computed by a machine that never moves left of the end of the tape.

Guideline: Modify the original machine by “marking” the leftmost cell of the
tape (by using special symbols such that the original contents is maintained).
Needless to say, this marking corresponds to an extension of the tape’s symbols.

Exercise 1.3 (single-tape versus multi-tape Turing machines) Prove that a
function can be computed by a single-tape Turing machine if and only if it
is computable by a multi-tape (e.g., two-tape) Turing machine.

Guideline: The emulation of the multi-tape Turing machine on a single-tape
machine is based on storing all the original tapes on a single tape such that the
i th cell of the single tape records the contents of the i th cell of each of the original
tapes. In addition, the i th cell of the single tape records an indication as to which
of the original heads reside in the i th cell of the corresponding original tapes. To
emulate a single step of the original machine, the new machine scans its tape,
finds all original head locations, and retrieves the corresponding cell contents.
Based on this information, the emulating machine effects the corresponding
step (according to the original transition function) by modifying its (single)
tape’s contents in an analogous manner.

42 1 Computational Tasks and Models

Exercise 1.4 (computing the sum of natural numbers) Prove that a Turing
machine can add natural numbers; that is, outline a (multi-tape) Turing machine
that on input a pair of integers (in binary representation) outputs their sum.
Specifically, show that the straightforward addition algorithm can be imple-
mented in linear time by a multi-tape Turing machine.

Guideline: A straightforward implementation of addition on a two-tape Turing
machine starts by copying the two (input) integers (from the input tape) to the
second tape such that the i th least significant bits of both integers reside in the
i th cell (of the second tape).

Exercise 1.5 (Turing machines vs abstract RAM) Prove that an abstract RAM
can be emulated by a Turing machine.

Guideline: Recall that by our conventions, the abstract RAM computation is
initialized such that only a prefix of the memory cells contains meaningful
data, and (the length of) this prefix is specified in a special register. Thus,
during the emulation (of the abstract RAM), we only need to keep track of the
contents of these memory cells as well as the contents of any other memory cells
that were accessed during the computation (and the contents of all registers).
Consequently, during the emulation, the Turing machine’s tape will contain
a list of the RAM’s memory cells that were accessed so far as well as their
current contents. When we emulate a RAM instruction that refers to some
memory location (which is specified in the contents of a fixed register), we first
check whether the relevant RAM cell appears on our list, and accordingly either
augment the list by a corresponding entry or modify this entry as required.

Exercise 1.6 (Rice’s Theorem (Theorem 1.6)) Let F and SF be as in Theo-
rem 1.6. Present a Turing-reduction of d to SF .

Guideline: Let f⊥ denote the function that is undefined on all inputs. Assume,
without loss of generality, that f⊥ �∈ F , let f1 denote an arbitrary function in F ,
and let M1 be an arbitrary fixed machine that computes f1. Then, the reduction
maps an input 〈M〉 for d to the input 〈M ′〉 for SF such that machine M ′ operates
as follows on input x:

1. First, machine M ′ emulates M on input 〈M〉.
2. If M halts (in Step 1), then M ′ emulates M1(x), and outputs whatever it

does.

Note that the mapping from 〈M〉 to 〈M ′〉 is easily computable (by augmenting
M with the fixed machine M1). Now, if d(〈M〉) = 1, then machine M ′ reaches
Step 2, and thus M ′(x) = f1(x) for every x, which in turn implies 〈M ′〉 ∈ SF

Exercises 43

(because M ′ computes f1 ∈ F). On the other hand, if d(〈M〉) = 0, then
machine M ′ remains stuck in Step 1, and thus M ′ does not halt on any x,
which in turn implies 〈M ′〉 �∈ SF (because M ′ computes f⊥ �∈ F).

Exercise 1.7 Prove that there exists a Turing machine M such that there is no
algorithm that determines whether or not M halts on a given input.

Guideline: Let M be a universal machine, and present a Turing-reduction from
h to hM , where hM (x) = h(〈M〉, x).

Exercise 1.8 (Post Correspondence Problem (Theorem 1.7)) The following
exercise is significantly more difficult than the norm. Present a Turing-reduction
of h to the Post Correspondence Problem, denoted PCP. Furthermore, use
a reduction that maps an instance (〈M〉, x) of h to a pair of sequences
((α1, . . . , αk), (β1, . . . , βk)) such that only α1 and β1 depend on x, whereas
k as well as the other strings depend only on M .

Guideline: Consider a modified version of the Post Correspondence Problem,
denoted MPCP, in which the first index in the solution sequence must equal 1
(i.e., i1 = 1). Reduce h to MPCP, and next reduce MPCP to PCP. The main
reduction (i.e., of h to MPCP) maps (〈M〉, x) to ((α1, . . . , αk), (β1, . . . , βk))
such that a solution sequence (i.e., i1, . . . , i� s.t. αi1 · · ·αi� = β1 · · ·βi�) yields
a full description of the computation of M on input x (i.e., the sequence of all
instantaneous configurations in this computation). Specifically, α1 will describe
the initial configuration of M on input x, whereas β1 will be essentially empty
(except for a delimiter, denoted #, which is also used at the beginning and at
the end of α1). Assuming that the set of tape-symbols and the set of states of M

are disjoint (i.e., � ∩Q = ∅), configurations will be described as sequences
over their union (i.e., sequences over � ∩Q, where # �∈ � ∪Q). Other pairs
(αi, βi) include

� For every tape-symbol σ , we shall have αi = βi = σ (for some i). We shall
also have αi = βi = # (for some i). Such pairs reflect the preservation of the
tape’s contents (whenever the head location is not present at the current cell).

� For every non-halting state q and every transition regarding q, we shall have
a pair reflecting this transition. For example, if the transition function maps
(q, σ) to (q ′, σ ′,+1), then we have βi = qσ and αi = σ ′q ′ (for some i). For
left movement (i.e., if the transition function maps (q, σ) to (q ′, σ ′,−1)) we
have βi = τqσ and αi = q ′τσ ′. Assuming that blank symbols (i.e.,) are
only written to the left of other blank symbols (and when moving left), if the
transition function maps (q, σ) to (q ′, ,−1), then we have βi = τqσ and
αi = q ′τ (rather than αi = q ′τ).

44 1 Computational Tasks and Models

� Assuming that the machine halts in state p only when it resides in the leftmost
cell (and after writing blanks in all cells), we have βi = p ## and αi = #
(for some i).

Note that in a solution sequence i1, . . . , i� such that αi1 · · ·αi� = β1· · ·βi� , for
every t < � it holds that βi1 · · ·βit is a prefix of αi1 · · ·αit such that the latter
contains exactly one configuration less than the former. The relations between
the pairs (αi, βi) guarantee that these prefixes are prefixes of the sequence of
all instantaneous configurations in the computation of M on input x, and a
solution can be completed only if this computation halts. For details see [16,
Sec. 8.5] or [30, Sec. 5.2].

Exercise 1.9 (total functions extending the universal function) Present an
algorithm that, given a description of a Turing machine and a correspond-
ing instantaneous configuration, determines the instantaneous configuration
that results by performing a single step of the given machine on the given
instantaneous configuration. Note that this exercise requires fixing a concrete
representation of Turing machines and corresponding configurations.

Guideline: Use the representation of configurations provided in §1.3.2.1.

Exercise 1.10 (total functions extending the universal function) Let u be the
function computed by any universal machine (for a fixed reasonable model of
computation). Prove that any extension of u to a total function (i.e., any total
function û that agrees with the partial function u on all the inputs on which the
latter is defined) is uncomputable.

Guideline: The claim is easy to prove for the special case of the total function
û that extends u such that the special symbol ⊥ is assigned to inputs on

which u is undefined (i.e., û(〈M〉, x)
def= ⊥ if u is not defined on (〈M〉, x) and

û(〈M〉, x)
def= u(〈M〉, x) otherwise). In this case h(〈M〉, x) = 1 if and only if

û(〈M〉, x) �= ⊥, and so the halting function h is Turing-reducible to û. In the
general case, we may adapt the proof of Theorem 1.5 by using the fact that for
any machine M that halts on every input, it holds that û(〈M〉, x) = u(〈M〉, x)
for every x (and in particular for x = 〈M〉).
Exercise 1.11 (uncomputability of Kolmogorov Complexity) Prove that the
Kolmogorov Complexity function, denoted K , is uncomputable.

Guideline: Consider, for every integer t , the string st that is defined as the

lexicographically first string of Kolmogorov Complexity exceeding t (i.e., st
def=

mins∈{0,1}∗ {K(s) > t}). Note that st is well defined and has length at most t (see

Exercises 45

Fact 3 in §1.3.4.2). Assuming that K is computable, we reach a contradiction by
noting that st has description length O(1)+ log2 t (because it may be described
by combining a fixed machine that computes K with the integer t).

Exercise 1.12 (single-tape versus multi-tape Turing machines, refined) In
continuation of Exercise 1.3, show that any function that can be computed
by a multi-tape Turing machine in time complexity t can be computed by a
single-tape Turing machine in time complexity O(t2).

Exercise 1.13 (single-tape vs two-tape Turing machines, a complexity gap)
The following exercise is significantly more difficult than the norm. Show that
the emulation upper bound stated in Exercise 1.12 is optimal. Specifically,
prove that deciding membership in the set {xx : x ∈ {0, 1}∗} requires quadratic
time on a single-tape Turing machine, and note that this decision problem can
be solved in linear time on a two-tape Turing machine.

Guideline: Proving the quadratic time lower bound is quite non-trivial. One
proof is by a “reduction” from a communication complexity problem [19,
Sec. 12.2]. Intuitively, a single-tape Turing machine that decides membership
in the aforementioned set can be viewed as a channel of communication between
the two parts of the input. Specifically, focusing our attention on inputs of the
form y0nz0n, for y, z ∈ {0, 1}n, note that each time that the machine passes
from the one part to the other part it carries O(1) bits of information (in its
internal state) while making at least n steps. The proof is completed by invoking
the linear lower bound on the communication complexity of the (two-argument)
identity function (i.e, id(y, z) = 1 if y = z and id(y, z) = 0 otherwise); cf.
[19, Chap. 1].

Exercise 1.14 (linear speedup of Turing machine) Prove that any problem
that can be solved by a two-tape Turing machine that has time complexity
t can be solved by another two-tape Turing machine having time complexity t ′,
where t ′(n) = O(n)+ (t(n)/2). Prove an analogous result for one-tape Turing
machines, where t ′(n) = O(n2)+ (t(n)/2).

Guideline: Consider a machine that uses a larger alphabet, capable of encoding
a constant (denoted c) number of symbols of the original machine, and thus
capable of emulating c steps of the original machine in O(1) steps, where the
constant in the O-notation is a universal constant (independent of c). Note that
the O(n) term accounts for a preprocessing that converts the binary input to
work-alphabet of the new machine (which encodes c input bits in one alphabet
symbol). Thus, a similar result for one-tape Turing machines seems to require
an additive O(n2) term.

46 1 Computational Tasks and Models

Exercise 1.15 (on the circuit complexity of functions) Prove the following
facts:

1. The circuit complexity of any Boolean function is at most exponential.

Guideline: fn : {0, 1}n → {0, 1} can be computed by a circuit of size O(n2n)
that implements a look-up table. See also Exercise 1.17.

2. Some functions have polynomial circuit complexity. In particular, any func-
tion that has time complexity t (i.e., is computed by an algorithm of time
complexity t), has circuit complexity poly(t). Furthermore, the correspond-
ing circuit family is uniform.

Guideline: Consider a Turing machine that computes the function, and
consider its computation on a generic n-bit long input. The corresponding
computation can be emulated by a circuit that consists of t(n) layers such
that each layer represents an instantaneous configuration of the machine, and
the relation between consecutive configurations is captured by (“uniform”)
local gadgets in the circuit. For further details see the proof of Theorem 4.5,
which presents a similar emulation.

3. Almost all Boolean functions require exponential circuit complexity. Specif-
ically, show that the number of functions mapping {0, 1}n to {0, 1} that can be
computed by some circuit of size s is smaller than s2s , which is smaller than
22n

unless 2s log2 s ≥ 2n. Note that the total number of functions mapping
{0, 1}n to {0, 1} is 22n

.

Guideline: Show that, without loss of generality, we may consider circuits
of bounded fan-in. The number of such circuits having v vertices is at
most

(
2 · (v

2

)+ v
)v

, where for each gate we either have a choice of binary
operation (i.e., ∧ or ∨) and two feeding vertices or a choice of a single
feeding vertex (for a ¬-gate). Note that the input terminals each have a
choice of an index of an input variable in [n], and by our conventions v ≥ n.

Exercise 1.16 (the class P/poly) We denote byP/� the class of decision prob-
lems that can be solved in polynomial time with advice of length �, and by
P/poly the union of P/p taken over all polynomials p. Prove that a decision
problem is in P/poly if and only if it has polynomial circuit complexity.

Guideline: Suppose that a problem can be solved by a polynomial-time algo-
rithm A using the polynomially bounded advice sequence (an)n∈N. We obtain
a family of polynomial-size circuits that solves the same problem by observing
that the computation of A(a|x|, x) can be emulated by a circuit of poly(|x|)-
size, which incorporates a|x| and is given x as input. That is, we construct a
circuit Cn such that Cn(x) = A(an, x) holds for every x ∈ {0, 1}n (analogously

Exercises 47

to the way Cx is constructed in the proof of Theorem 4.5, where it holds that
Cx(y) = MR(x, y) for every y of adequate length). On the other hand, given a
family of polynomial-size circuits, we obtain a polynomial-time advice-taking
machine that emulates this family when using advice that provides the descrip-
tion of the relevant circuits. (Indeed, we use the fact that a circuit of size s can
be described by a string of length O(s log s).)

Exercise 1.17 (generic DNF and CNF formulae) Prove that every Boolean
function can be computed by a family of DNF (resp., CNF) formula of expo-
nential size.

Guideline: For any a ∈ {0, 1}n, consider the function δa : {0, 1}n → {0, 1} such
that δa(x) = 1 if x = a and δa(x) = 0 otherwise. Note that any function δa can
be computed by a single conjunction of n literals, and that any Boolean func-
tion f : {0, 1}n → {0, 1} can be written as

∨
a:f (a)=1 δa . A corresponding CNF

formula can be obtained by applying de-Morgan’s Law to the DNF obtained
for ¬f .

Exercise 1.18 (on the size of general vs DNF formulae) Prove that every DNF
(resp., CNF) formula for computing parity must have exponential size. On
the other hand, show that parity has quadratic-size formulae (and linear-size
circuits).

Guideline: For the lower bound, observe that each conjunction in the candidate
DNF must contain a literal for each variable. The upper bound follows by
Figure 1.4.

2

The P versus NP Question

Overview: Our daily experience is that it is harder to solve problems
than it is to check the correctness of solutions to these problems. Is this
experience merely a coincidence or does it represent a fundamental fact
of life (or a property of the world)? This is the essence of the P versus
NP Question, where P represents search problems that are efficiently
solvable and NP represents search problems for which solutions can be
efficiently checked.

Another natural question captured by the P versus NP Question is
whether proving theorems is harder that verifying the validity of these
proofs. In other words, the question is whether deciding membership in
a set is harder than being convinced of this membership by an adequate
proof. In this case, P represents decision problems that are efficiently
solvable, whereas NP represents sets that have efficiently verifiable proofs
of membership.

These two formulations of the P versus NP Question are indeed equiv-
alent, and the common belief is that P is different from NP. That is, we
believe that solving search problems is harder than checking the correct-
ness of solutions for them and that finding proofs is harder than verifying
their validity.

Organization. The two formulations of the P versus NP Question are
rigorously presented and discussed in Sections 2.2 and 2.3, respectively.
The equivalence of these formulations is shown in Section 2.4, and the
common belief that P is different from NP is further discussed in Sec-
tion 2.7. We start by discussing the notion of efficient computation (see
Section 2.1).

48

Teaching Notes 49

Teaching Notes

Most students have heard of P and NP before, but we suspect that many of them
have not obtained a good explanation of what the P-vs-NP Question actually
represents. This unfortunate situation is due to the use of the standard technical
definition of NP (which refers to the fictitious and confusing device called a
non-deterministic polynomial-time machine). Instead, we advocate the use of
slightly more cumbersome definitions, sketched in the foregoing paragraphs
(and elaborated in Sections 2.2 and 2.3), which clearly capture the fundamental
nature of NP. Indeed, we advocate communicating the fundamental nature of the
P-vs-NP Question by using two equivalent formulations, which refer to search
problems (Section 2.2) and decision problems (Section 2.3), respectively.

On the Search Problems’ Formulation. Complexity theorists are so accus-
tomed to focusing on decision problems that they seem to forget that search
problems are at least as natural as decision problems. Furthermore, to many
non-experts, search problems may seem even more natural than decision prob-
lems: Typically, people seek solutions more often than they pause to wonder
whether or not solutions exist. Thus, we recommend starting with a formulation
of the P-vs-NP Question in terms of search problems. Admittedly, the cost is
more cumbersome formulations, but it is more than worthwhile.

In order to reflect the importance of the search version, as well as to facilitate
less cumbersome formulations, we chose to introduce concise notations for
the two classes of search problems that correspond to P and NP: These classes
are denoted PF and PC (standing for Polynomial-time Find and Polynomial-
time Check, respectively). The teacher may prefer using notations and terms
that are more evocative of P and NP (such as P-search and NP-search), and
actually we also do so in some motivational discussions. (Still, in our opinion,
in the long run, the students and the field may be served better by using
standard-looking notations.)1

On the Decision Problems’ Formulation. When presenting the P-vs-NP
Question in terms of decision problems, we define NP as a class of sets having
efficiently verifiable proofs of membership (see Definition 2.5). This defini-
tion clarifies the fundamental nature of the class NP, but is admittingly more

1 Indeed, these classes are often denoted FP and FNP , respectively. (We mention that “F”
stands for function(s), although the definitions actually refer to binary relations.) However,
since these notations are not widely used (and since they are somewhat misleading), we
prefered to introduce new notations (which we consider better).

50 2 The P versus NP Question

cumbersome than the more traditional definition of NP in terms of fictitious
“non-deterministic machines” (see Definition 2.7).

Although Definitions 2.5 and 2.7 are equivalent (see Theorem 2.8), we
believe that it is important to present NP as in Definition 2.5. Conceptually,
this is the right choice because Definition 2.5 clarifies the fundamental nature
of the class NP, whereas Definition 2.7 fails to do it. Indeed, a fictitious model
can provide a basis for a sound definition, but it typically fails to provide
motivation for its study (which may be provided by an equivalence to a nat-
ural definition). Furthermore, not all sound definitions are equally accessible.
Specifically, many students find Definition 2.7 quite confusing, because they
assume that it represents some natural model of computation, and consequently
they allow themselves to be fooled by their intuition regarding such models.
(Needless to say, the students’ intuition regarding computation is irrelevant
when applied to a fictitious model.) Thus, Definition 2.5 is also preferable to
Definition 2.7 from a technical point of view.

2.1 Efficient Computation

As hinted in the foregoing discussions, much of Complexity Theory is con-
cerned with efficient algorithms. The latter are defined as polynomial-time
algorithms (i.e., algorithms that have time complexity that is upper-bounded
by a polynomial in the length of the input). By the Cobham-Edmonds Thesis
(see Section 1.3.5), the definition of this class is invariant under the choice of
a “reasonable and general” model of computation. The association of efficient
algorithms with polynomial-time computation is grounded in the following two
considerations:

� Philosophical consideration: Intuitively, efficient algorithms are those that
can be implemented within a number of steps that is a moderately growing
function of the input length. To allow for reading the entire input, at least lin-
ear time should be allowed. On the other hand, apparently slow algorithms
and in particular “exhaustive search” algorithms, which take exponential
time, must be avoided. Furthermore, a good definition of the class of effi-
cient algorithms should be closed under natural composition of algorithms
(as well as be robust with respect to reasonable models of computation and
with respect to simple changes in the encoding of problems’ instances).
Choosing polynomials as the set of time bounds for efficient algorithms
satisfies all the foregoing requirements: Polynomials constitute a “closed”
set of moderately growing functions, where “closure” means closure under

2.1 Efficient Computation 51

addition, multiplication, and functional composition. These closure proper-
ties guarantee the closure of the class of efficient algorithms under natural
composition of algorithms (as well as its robustness with respect to any rea-
sonable and general model of computation). Furthermore, polynomial-time
algorithms can conduct computations that are apparently simple (although
not necessarily trivial), and on the other hand they do not include algorithms
that are apparently inefficient (like exhaustive search).

� Empirical consideration: It is clear that algorithms that are considered effi-
cient in practice have running time that is bounded by a small polynomial
(at least on the inputs that occur in practice). The question is whether any
polynomial-time algorithm can be considered efficient in an intuitive sense.
The belief, which is supported by past experience, is that every natural prob-
lem that can be solved in polynomial time also has a “reasonably efficient”
algorithm.

Although the association of efficient algorithms with polynomial-time com-
putation is central to our exposition, we wish to highlight the fact that this
association is not the source of any of the phenomena discussed in this book.
That is, the same phenomena also occur when using other reasonable inter-
pretations of the concept of efficient algorithms. A related comment applies
to the formulation of computational problems that refer only to instances of a
certain predetermined type. Both issues are discussed further in the following
advanced comments.

On Other Notions of Efficient Algorithms. We stress that the association
of efficient algorithms with polynomial-time computation is not essential to
most of the notions, results, and questions of Complexity Theory. Any other
class of algorithms that supports the aforementioned closure properties and
allows for conducting some simple computations but not overly complex ones
gives rise to a similar theory, albeit the formulation of such a theory may be
more complicated. Specifically, all results and questions treated in this book are
concerned with the relation among the complexities of different computational
tasks (rather than with providing absolute assertions about the complexity of
some computational tasks). These relations can be stated explicitly, by stating
how any upper bound on the time complexity of one task gets translated to
an upper bound on the time complexity of another task.2 Such cumbersome

2 For example, the NP-completeness of SAT (cf. Theorem 4.6) implies that any algorithm solving
SAT in time T yields an algorithm that factors composite numbers in time T ′ such that
T ′(n) = poly(n) · (1+ T (poly(n))). More generally, if the correctness of solutions for n-bit
instances of some search problem R can be verified in time t(n) then the hypothesis regarding

52 2 The P versus NP Question

statements will maintain the contents of the standard statements; they will
merely be much more complicated. Thus, we follow the tradition of focusing
on polynomial-time computations, while stressing that this focus both is natural
and provides the simplest way of addressing the fundamental issues underlying
the nature of efficient computation.

On the Representation of Problem Instances. As noted in Section 1.2.3,
many natural (search and decision) problems are captured more naturally by
the terminology of promise problems (cf. Section 5.1), where the domain of
possible instances is a subset of {0, 1}∗ rather than {0, 1}∗ itself. For example,
computational problems in graph theory presume some simple encoding of
graphs as strings, but this encoding is typically not onto (i.e., not all strings
encode graphs), and thus not all strings are legitimate instances. However,
in these cases, the set of legitimate instances (e.g., encodings of graphs) is
efficiently recognizable (i.e., membership in it can be decided in polynomial
time). Thus, artificially extending the set of instances to the set of all possible
strings (and allowing trivial solutions for the corresponding dummy instances)
does not change the complexity of the original problem. We discuss this issue
further in Section 5.1.

Summary. We associate efficient computation with polynomial-time algo-
rithms.3 Recall that this association is justified by the fact that polynomials are
moderately growing functions and the set of polynomials is closed under oper-
ations that correspond to the natural composition of algorithms. Furthermore,
the class of polynomial-time algorithms is independent of the specific model
of computation, as long as the latter is “reasonable” (cf. the Cobham-Edmonds
Thesis).

A Word About Inefficient Computations and Intractability. Computations
requiring more that polynomial time are considered inefficient or intractable. We
typically refer to these terms only in motivational discussions, when discussing
tasks that cannot be performed by efficient algorithms. Our focus is on efficient
computations, and the technical presentation refers only to them.

SAT implies that solutions (for n-bit instances of R) can be found in time T ′ such that T ′(n) =
t(n) · (1+ T (O(t(n))2)).

3 Advanced comment: In this book, we consider deterministic (polynomial-time) algorithms as
the basic model of efficient computation. A more liberal view includes also probabilistic
(polynomial-time) algorithms (see [25] or [13, Chap. 6]). We stress that the most important
facts and questions that are addressed in the current book have parallels with respect to
probabilistic polynomial-time algorithms.

2.2 The Search Version: Finding versus Checking 53

2.2 The Search Version: Finding versus Checking

Much of computer science is concerned with solving various search problems
(as in Definition 1.1). A few examples, which will serve us throughout the
book, are presented next.4 In each of these examples, if no solution exists, then
the solver should indicate that this is the case.

� Solving linear (or polynomial) systems of equations: Given a system of linear
(or polynomial) equations, find an assignment to the variables that satisfies
all equations.
Formulae satisfiability is a related problem in which one is given a Boolean
formula and is required to find an assignment that satisfies it. (When the
formula is in CNF, this can be viewed as finding an assignment that satisfies
a system of Boolean equations (which arise from the individual clauses).)

� Integer factorization: Given a natural number, find a non-trivial factor of this
number.

� Finding a spanning tree: Given a (connected) graph, find a spanning tree in it
(i.e., a connected subgraph that contains all vertices of the original graph but
contains no simple cycles).

� Finding a Hamiltonian path (or cycle): Given a (connected) graph, find a simple
path (cycle) that traverses all the vertices of the graph. Indeed, a Hamiltonian
path is a spanning tree in which each intermediate vertex has degree 2.

� The traveling salesman problem (TSP): Given a matrix of distances between
cities and a threshold, find a tour that passes all cities and covers a total
distance that does not exceed the threshold. Indeed, the Hamiltonian cycle
problem is a special case of TSP, where the distances are in {0, 1} and
represent the existence of the various edges in the graph.5

� Job scheduling: This term actually refers to a variety of problems, in which
one is given a set of scheduling constraints and is required to find a scheduling
of jobs to machines such that the given constraints are all satisfied.

In addition to the dominant role of search problems in computer science, solving
search problems corresponds to the daily notion of “solving problems.” Thus,
search problems are of natural general interest. In the current section, we will
consider the question of which search problems can be solved efficiently.

Indeed, efficiently solvable search problems are the subject matter of most
basic courses on algorithmic design. Examples include sorting, finding patterns
in strings, finding (rational) solutions to linear systems of (rational) equations,

4 See Appendix for further details.
5 That is, in the TSP instance, the distance between i and j equals 1 if {i, j} is an edge in the

graph, and equals 0 otherwise.

54 2 The P versus NP Question

finding shortest paths in graphs, and many other graph-theoretic search prob-
lems. In contrast to these courses, our focus will be on search problems that
cannot be solved efficiently.

A Necessary Condition for Efficient Solvability. One type of search prob-
lems that cannot be solved efficiently consists of those for which the solutions
are too long in terms of the length of the problem’s instances. In such a case,
merely typing the solution amounts to an activity that is deemed inefficient,
and so this case is not really interesting (from a computational point of view).
Thus, we consider only search problems in which the length of the solution is
bounded by a polynomial in the length of the instance. Recalling that search
problems are associated with binary relations (see Definition 1.1), we focus our
attention on polynomially bounded relations.

Definition 2.1 (polynomially bounded relations): We say that R ⊆ {0, 1}∗ ×
{0, 1}∗ is polynomially bounded if there exists a polynomial p such that for every
(x, y) ∈ R it holds that |y| ≤ p(|x|).

Recall that (x, y) ∈ R means that y is a solution to the problem instance x,
where R represents the problem itself. For example, in the case of finding a
prime factor of a given integer, we refer to a relation R such that (x, y) ∈ R if
the integer y is a prime factor of the integer x. Likewise, in the case of finding
a spanning tree in a given graph, we refer to a relation R such that (x, y) ∈ R

if y is a spanning tree of the graph x.
For a polynomially bounded relation R it makes sense to ask whether or

not, given a problem instance x, one can efficiently find an adequate solution
y (i.e., find y such that (x, y) ∈ R). The polynomial bound on the length of
the solution (i.e., y) guarantees that a negative answer is not merely due to the
length of the required solution.

2.2.1 The Class P as a Natural Class of Search Problems

Recall that we are interested in the class of search problems that can be solved
efficiently, that is, problems for which solutions (whenever they exist) can
be found efficiently. Restricting our attention to polynomially bounded rela-
tions, we identify the corresponding fundamental class of search problems (or
binary relations), denoted PF (standing for “Polynomial-time Find”). (The
relationship between PF and the standard definition of P will be discussed
in Sections 2.4 and 3.3.) The following definition refers to the formulation of
solving search problems provided in Definition 1.1.

2.2 The Search Version: Finding versus Checking 55

Definition 2.2 (efficiently solvable search problems):

� The search problem of a polynomially bounded relation R ⊆ {0, 1}∗ ×
{0, 1}∗ is efficiently solvable if there exists a polynomial-time algorithm A

such that, for every x, it holds that if R(x)
def= {y : (x, y) ∈ R} is not empty,

then A(x) ∈ R(x), and otherwise A(x) = ⊥ (indicating that x has no solu-
tion).6

� We denote by PF the class of (polynomially bounded) search problems that
are efficiently solvable. That is, R ∈ PF if R is polynomially bounded and
there exists a polynomial-time algorithm that solves R.

Note that R(x) denotes the set of valid solutions for the problem instance x.
Thus, the solver A is required to find a valid solution (i.e., satisfy A(x) ∈ R(x))
whenever such a solution exists (i.e., R(x) is not empty). On the other hand,
if the instance x has no solution (i.e., R(x) = ∅) then clearly A(x) �∈ R(x).
The extra condition (also made in Definition 1.1) requires that in this case
A(x) = ⊥. Thus, algorithm A always outputs a correct answer, which is a valid
solution in the case that such a solution exists (and provides an indication that
no solution exists otherwise).

We have defined a fundamental class of problems, and we do know of many
natural problems in this class (e.g., solving linear equations over the rationals,
finding shortest paths in graphs, finding patterns in strings, finding a perfect
matching in a graph, and a variety of other search problems that are the focus
of various courses on algorithms). However, these facts per se do not mean that
we are able to characterize natural problems with respect to membership in this
class. For example, we do not know whether or not the problem of finding the
prime factors of a given integer is in this class (i.e., in PF).

In fact, currently, we do not have a good understanding regarding the actual
contents of the class PF ; that is, we are unable to characterize many natural
problems with respect to membership in this class. This situation is quite
common in Complexity Theory, and seems to be a consequence of the fact
that complexity classes are defined in terms of the “external behavior” (of
potential algorithms), rather than in terms of the “internal structure” (of the
problem).

Turning back to PF , we note that while it contains many natural search
problems, there are also many natural search problems that are not known to
be in PF . A natural class containing a host of such problems is presented
next.

6 Recall that by Definition 1.1 this means that A solves R.

56 2 The P versus NP Question

2.2.2 The Class NP as Another Natural Class of Search Problems

Natural search problems have the property that valid solutions (for them) can
be efficiently recognized. That is, given an instance x of the problem R and a
candidate solution y, one can efficiently determine whether or not y is a valid
solution for x (with respect to the problem R, i.e., whether or not y ∈ R(x)). For
example, candidate solutions for a system of linear (or polynomial) equations
can be easily verified for validity by instantiation and arithmetic manipulation.
Likewise, it is easy to verify whether a given sequence of vertices constitutes a
Hamiltonian path in a given graph.

The class of all search problems allowing for efficient recognizable (valid)
solutions is a natural class per se, because it is not clear why one should
care about a solution unless one can recognize a valid solution once given.
Furthermore, this class is a natural domain of candidates for PF , because the
ability to efficiently recognize a valid solution seems to be a natural (albeit not
absolutely necessary) prerequisite for a discussion regarding the complexity of
finding such solutions.

We restrict our attention again to polynomially bounded relations, and con-
sider the class of relations for which membership of pairs in the relation can be
decided efficiently. We stress that we consider deciding membership of given
pairs of the form (x, y) in a fixed relation R, and not deciding membership of x

in the set SR
def= {x : R(x) �= ∅}. (The relationship between the following defi-

nition and the standard definition of NP will be discussed in Sections 2.4–2.6
and 3.3.)

Definition 2.3 (search problems with efficiently checkable solutions):

� The search problem of a polynomially bounded relation R ⊆ {0, 1}∗ ×
{0, 1}∗ has efficiently checkable solutions if there exists a polynomial-time
algorithm A such that, for every x and y, it holds that A(x, y) = 1 if and
only if (x, y) ∈ R.

� We denote by PC (standing for “Polynomial-time Check”) the class of search
problems that correspond to polynomially bounded binary relations that
have efficiently checkable solutions. That is, R ∈ PC if the following two
conditions hold:

1. For some polynomial p, if (x, y) ∈ R then |y| ≤ p(|x|).
2. There exists a polynomial-time algorithm that given (x, y) determines

whether or not (x, y) ∈ R.

Note that the algorithm postulated in Item 2 must also handle inputs of the
form (x, y) such that |y| > p(|x|). Such inputs, which are evidently not in
R (by Item 1), are easy to handle by merely determining |x|, |y| and p(|x|).

2.2 The Search Version: Finding versus Checking 57

Thus, the crux of Item 2 is typically in the case that the input (x, y) satisfies
|y| ≤ p(|x|).

The class PC contains thousands of natural problems (e.g., finding a trav-
eling salesman tour of length that does not exceed a given threshold, finding
the prime factorization of a given composite, finding a truth assignment that
satisfies a given Boolean formula, etc). In each of these natural problems, the
correctness of solutions can be checked efficiently (e.g., given a traveling sales-
man tour it is easy to compute its length and check whether or not it exceeds
the given threshold); see Exercise 2.4.

The class PC is the natural domain for the study of which problems are in
PF , because the ability to efficiently recognize a valid solution is a natural
prerequisite for a discussion regarding the complexity of finding such solutions.
We warn, however, that PF contains (unnatural) problems that are not in PC
(see Exercise 2.2).

2.2.3 The P versus NP Question in Terms of Search Problems

Is it the case that every search problem in PC is in PF? That is, is it the case
that the ability to efficiently check the correctness of solutions, with respect to
some (polynomially bounded) relation R, implies the ability to find solutions
with respect to R? In other words, if it is easy to check whether or not a given
solution for a given instance is correct, then is it also easy to find a solution to
a given instance?

If PC ⊆ PF then this would mean that whenever solutions to given
instances can be efficiently checked (for correctness), it is also the case that
such solutions can be efficiently found (when given only the instance). This
would mean that all reasonable search problems (i.e., all problems in PC) are
easy to solve. Needless to say, such a situation would contradict the intuitive
feeling (and the daily experience) that some reasonable search problems are
hard to solve. Furthermore, in such a case, the notion of “solving a problem”
would lose its meaning (because finding a solution will not be significantly
more difficult than checking its validity).

On the other hand, if PC \ PF �= ∅ then there exist reasonable search
problems (i.e., some problems in PC) that are hard to solve. This conforms
with our basic intuition by which some reasonable problems are easy to solve
whereas others are hard to solve. Furthermore, it reconfirms the intuitive gap
between the notions of solving and checking (asserting that at least in some
cases “solving” is significantly harder than “checking”).

To illustrate the foregoing paragraph, consider various puzzles like jigsaw
puzzles, mazes, crossword puzzles, Sudoku puzzles, and so on. In each of these

58 2 The P versus NP Question

puzzles, checking the correctness of a solution is very easy, whereas finding a
solution is sometimes extremely hard.

As was mentioned in the various overviews, it is widely believed that finding
solutions to search problems is, in general, harder than verifying the correctness
of such solutions; that is, it is widely believed that PC \ PF �= ∅. However, as
also mentioned before, this is only a belief, not a fact. For further discussion
see Section 2.7.

2.3 The Decision Version: Proving versus Verifying

As we shall see in Section 2.4 (and further in Section 3.3), the study of search
problems (e.g., the PC-vs-PF Question) can be “reduced” to the study of deci-
sion problems. Since the latter problems have a less cumbersome terminology,
Complexity Theory tends to focus on them (and maintains its relevance to the
study of search problems via the aforementioned reduction). Thus, the study of
decision problems provides a convenient way for studying search problems. For
example, the study of the complexity of deciding the satisfiability of Boolean
formulae provides a convenient way for studying the complexity of finding
satisfying assignments for such formulae.

We wish to stress, however, that decision problems are interesting and natural
per se (i.e., beyond their role in the study of search problems). After all, some
people do care about the truth, and so determining whether certain claims are
true is a natural computational problem. Specifically, determining whether a
given object (e.g., a Boolean formula) has some predetermined property (e.g.,
is satisfiable) constitutes an appealing computational problem. The P-vs-NP
Question refers to the complexity of solving such problems for a wide and
natural class of properties associated with the class NP. The latter class refers
to properties that have “efficient proof systems” allowing for the verification of
the claim that a given object has a predetermined property (i.e., is a member of
a predetermined set). Jumping ahead, we mention that the P-vs-NP Question
refers to the question of whether properties that have efficient proof systems can
also be decided efficiently (without proofs). Let us clarify all of these notions.

Properties of objects are modeled as subsets of the set of all possible objects
(i.e., a property is associated with the set of objects having this property). For
example, the property of being a prime is associated with the set of prime
numbers, and the property of being connected (resp., having a Hamiltonian
path) is associated with the set of connected (resp., Hamiltonian) graphs. Thus,
we focus on deciding membership in sets (as in Definition 1.2). The standard
formulation of the P-vs-NP Question refers to the questionable equality of

2.3 The Decision Version: Proving versus Verifying 59

two natural classes of decision problems, denoted P and NP (and defined in
Section 2.3.1 and Section 2.3.2, respectively).

2.3.1 The Class P as a Natural Class of Decision Problems

Needless to say, we are interested in the class of decision problems that are effi-
ciently solvable. This class is traditionally denoted P (standing for Polynomial
time). The following definition refers to the formulation of solving decision
problems (provided in Definition 1.2).

Definition 2.4 (efficiently solvable decision problems):

� A decision problem S ⊆ {0, 1}∗ is efficiently solvable if there exists a
polynomial-time algorithm A such that, for every x, it holds that A(x) = 1
if and only if x ∈ S.

� We denote by P the class of decision problems that are efficiently solvable.

Without loss of generality, for an algorithm A as in the first item, it holds that
A(x) = 0 whenever x �∈ S, because we can modify any output different from 1
to 0. (Thus, A solves the decision problem S as per Definition 1.2.)

As in the case of Definition 2.2, we have defined a fundamental class of
problems, which contains many natural problems (e.g., determining whether
or not a given graph is connected), but we do not have a good understanding
regarding its actual contents (i.e., we are unable to characterize many natural
problems with respect to membership in this class). In fact, there are many
natural decision problems that are not known to reside in P , and a natural class
containing a host of such problems is presented next. This class of decision
problems is denoted NP (for reasons that will become evident in Section 2.6).

2.3.2 The Class NP and NP-Proof Systems

Whenever deciding on our own seems hard, it is natural to seek help (e.g.,
advice) from others. In the context of verifying that an object has a predeter-
mined property (or belongs to a predetermined set), help may take the form of
a proof, where proofs should be thought of as advice that can be evaluated for
correctness. Indeed, a natural class of decision problems that arises is the class,
denoted NP, of all sets such that membership (of each instance) in each set can
be verified efficiently with the help of an adequate proof. Thus, we define NP
as the class of decision problems that have efficiently verifiable proof systems.
This definitional path requires clarifying the notion of a proof system.

60 2 The P versus NP Question

Loosely speaking, we say that a set S has a proof system if instances in S

have valid proofs of membership (i.e., proofs accepted as valid by the system),
whereas instances not in S have no valid proofs. Indeed, proofs are defined as
strings that (when accompanying the instance) are accepted by the (efficient)
verification procedure. That is, we say that V is a verification procedure for
membership in S if it satisfies the following two conditions:

1. Completeness: True assertions have valid proofs (i.e., proofs accepted as
valid by V). Bearing in mind that assertions refer to membership in S, this
means that for every x ∈ S there exists a string y such that V (x, y) = 1; that
is, V accepts y as a valid proof for the membership of x in S.

2. Soundness: False assertions have no valid proofs. That is, for every x �∈ S

and every string y it holds that V (x, y) = 0, which means that V rejects y

as a proof for the membership of x in S.

We note that the soundness condition captures the “security” of the verification
procedure, that is, its ability not to be fooled (by anything) into accepting a
wrong assertion. The completeness condition captures the “viability” of the
verification procedure, that is, its ability to be convinced of any valid assertion
(when presented with an adequate proof).

We stress that, in general, proof systems are defined in terms of their veri-
fication procedures, which must satisfy adequate completeness and soundness
conditions. Our focus here is on efficient verification procedures that utilize rel-
atively short proofs (i.e., proofs that are of length that is polynomially bounded
by the length of the corresponding assertion).7

Let us consider a couple of examples before turning to the actual definition
(of efficiently verifiable proof systems). Starting with the set of Hamiltonian
graphs, we note that this set has a verification procedure that, given a pair
(G,π), accepts if and only if π is a Hamiltonian path in the graph G. In this
case, π serves as a proof that G is Hamiltonian. Note that such proofs are
relatively short (i.e., the path is actually shorter than the description of the
graph) and are easy to verify. Needless to say, this proof system satisfies the

7 Advanced comment: In continuation of footnote 3, we note that in this book we consider
deterministic (polynomial-time) verification procedures, and consequently the completeness
and soundness conditions that we state here are errorless. In contrast, we mention that various
types of probabilistic (polynomial-time) verification procedures, as well as probabilistic
completeness and soundness conditions, are also of interest (see Section 4.3.5 and [13,
Chap. 9]). A common theme that underlies both treatments is that efficient verification is
interpreted as meaning verification by a process that runs in time that is polynomial in the
length of the assertion. In the current book, we use the equivalent formulation that considers the
running time as a function of the total length of the assertion and the proof, but require that the
latter has length that is polynomially bounded by the length of the assertion. (The latter issue is
discussed in Section 2.5.)

2.3 The Decision Version: Proving versus Verifying 61

aforementioned completeness and soundness conditions. Turning to the case of
satisfiable Boolean formulae, given a formula φ and a truth assignment τ , the
verification procedure instantiates φ (according to τ), and accepts if and only
if simplifying the resulting Boolean expression yields the value true. In this
case, τ serves as a proof that φ is satisfiable, and the alleged proofs are indeed
relatively short and easy to verify.

Definition 2.5 (efficiently verifiable proof systems):

� A decision problem S ⊆ {0, 1}∗ has an efficiently verifiable proof system if
there exists a polynomial p and a polynomial-time (verification) algorithm
V such that the following two conditions hold:
1. Completeness: For every x ∈ S, there exists y of length at most p(|x|)

such that V (x, y) = 1.
(Such a string y is called an NP-witness for x ∈ S.)

2. Soundness: For every x �∈ S and every y, it holds that V (x, y) = 0.
Thus, x ∈ S if and only if there exists y of length at most p(|x|) such that
V (x, y) = 1.
In such a case, we say that S has an NP-proof system, and refer to V as its
verification procedure (or as the proof system itself).

� We denote by NP the class of decision problems that have efficiently verifi-
able proof systems.

We note that the term NP-witness is commonly used.8 In some cases, V (or the
set of pairs accepted by V) is called a witness relation of S. We stress that the
same set S may have many different NP-proof systems (see Exercise 2.5), and
that in some cases the difference is quite fundamental (see Exercise 2.6).

Typically, for natural decision problems in NP , it is easy to show that
these problems are in NP by using Definition 2.5. This is done by designing
adequate NP-proofs of membership, which are typically quite straightforward,
because natural decision problems are typically phrased as asking about the
existence of a structure (or an object) that can be easily verified as valid. For
example, SAT is defined as the set of satisfiable Boolean formulae, which means
asking about the existence of satisfying assignments. Indeed, we can efficiently
check whether a given assignment satisfies a given formula, which means that
we have (a verification procedure for) an NP-proof system for SAT. Likewise,
Hamiltonian graphs are defined as graphs containing simple paths that pass
through all vertices.

8 In most cases, this is done without explicitly defining V , which is understood from the context
and/or by common practice. In many texts, V is not called a proof system (nor a verification
procedure of such a system), although this term is most adequate.

62 2 The P versus NP Question

Note that for any search problem R in PC, the set of instances that have

a solution with respect to R (i.e., the set SR
def= {x : R(x) �= ∅}) is in NP .

Specifically, for any R ∈ PC, consider the verification procedure V such that

V (x, y)
def= 1 if and only if (x, y)∈R, and note that the latter condition can

be decided in poly(|x|)-time. Thus, any search problem in PC can be viewed
as a problem of searching for (efficiently verifiable) proofs (i.e., NP-witnesses
for membership in the set of instances having solutions). On the other hand,
any NP-proof system gives rise to a natural search problem in PC, that is,
the problem of searching for a valid proof (i.e., an NP-witness) for the given
instance. (Specifically, the verification procedure V yields the search problem
that corresponds to R = {(x, y) : V (x, y)=1}.) Thus, S ∈ NP if and only if
there exists R ∈ PC such that S = {x : R(x) �= ∅}.

The last paragraph suggests another easy way of showing that natural deci-
sion problems are in NP: just thinking of the corresponding natural search
problem. The point is that natural decision problems (in NP) are phrased
as referring to whether a solution exists for the corresponding natural search
problem. (For example, in the case of SAT, the question is whether there exists
a satisfying assignment to a given Boolean formula, and the corresponding
search problem is finding such an assignment.) In all these cases, it is easy to
check the correctness of solutions; that is, the corresponding search problem is
in PC, which implies that the decision problem is in NP .

Observe that P ⊆ NP holds: A verification procedure for claims of mem-
bership in a set S ∈ P may just ignore the alleged NP-witness and run the
decision procedure that is guaranteed by the hypothesis S ∈ P; that is, we may
let V (x, y) = A(x), where A is the aforementioned decision procedure. Indeed,
the latter verification procedure is quite an abuse of the term (because it makes
no use of the proof); however, it is a legitimate one. As we shall shortly see,
the P-vs-NP Question refers to the question of whether such proof-oblivious
verification procedures can be used for every set that has some efficiently veri-
fiable proof system. (Indeed, given that P ⊆ NP holds, the P-vs-NP Question
is whether or not NP ⊆ P .)

2.3.3 The P versus NP Question in Terms of Decision Problems

Is it the case that NP-proofs are useless? That is, is it the case that for every
efficiently verifiable proof system, one can easily determine the validity of
assertions without looking at the proof? If that were the case, then proofs
would be meaningless, because they would offer no fundamental advantage
over directly determining the validity of the assertion. The conjecture P �= NP
asserts that proofs are useful: There exist sets in NP that cannot be decided by

2.4 Equivalence of the Two Formulations 63

a polynomial-time algorithm, which means that for these sets, obtaining a proof
of membership (for some instances) is useful (because we cannot efficiently
determine membership in these sets by ourselves).

In the foregoing paragraph, we viewed P �= NP as asserting the advantage
of obtaining proofs over deciding the truth by ourselves. That is, P �= NP
asserts that (at least in some cases) verifying is easier than deciding. A slightly
different perspective is that P �= NP asserts that finding proofs is harder than
verifying their validity. This is the case because, for any set S that has an NP-
proof system, the ability to efficiently find proofs of membership with respect
to this system (i.e., finding an NP-witness of membership in S for any given
x ∈ S) yields the ability to decide membership in S. Thus, for S ∈ NP \ P , it
must be harder to find proofs of membership in S than to verify the validity of
such proofs (which can be done in polynomial time).

As was mentioned in the various overviews, it is widely believed that P �=
NP . For further discussion see Section 2.7.

2.4 Equivalence of the Two Formulations

As hinted several times, the two formulations of the P-vs-NP Questions are
equivalent. That is, every search problem having efficiently checkable solutions
is solvable in polynomial time (i.e., PC ⊆ PF) if and only if membership in
any set that has an NP-proof system can be decided in polynomial time (i.e.,
NP ⊆ P). Recalling that P ⊆ NP (whereas PF is not contained in PC; see
Exercise 2.2), we prove the following.

Theorem 2.6: PC ⊆ PF if and only if P = NP .

Proof: Suppose, on the one hand, that the inclusion holds for the search version
(i.e., PC ⊆ PF). We will show that for any set in NP , this hypothesis implies
the existence of an efficient algorithm for finding NP-witnesses for this set,
which in turn implies that this set is in P . Specifically, let S be an arbitrary
set in NP , and V be the corresponding verification procedure (i.e., satisfying
the conditions in Definition 2.5). Without loss of generality, there exists a
polynomial p such that V (x, y) = 1 holds only if |y| ≤ p(|x|). Considering
the (polynomially bounded) relation

R
def= {(x, y) : V (x, y) = 1} , (2.1)

note that R is in PC (since V decides membership in R). Using the hypothesis
PC ⊆ PF , it follows that the search problem of R is solvable in polynomial

64 2 The P versus NP Question

Input: x

Subroutine: a solver A for the search problem of R.
Alternative 1: Output 1 if A(x) �= ⊥ and 0 otherwise.
Alternative 2: Output V (x,A(x)).

Figure 2.1. Solving S by using a solver for R.

time. Denoting by A the polynomial-time algorithm solving the search problem
of R, we decide membership in S in the obvious way: That is, on input x, we
output 1 if and only if A(x) �= ⊥. Note that A(x) �= ⊥ holds if and only if
A(x) ∈ R(x), which in turn occurs if and only if R(x) �= ∅ (equiv., x ∈ S).9

Thus, S ∈ P . Since we started with an arbitrary set in NP , it follows NP ⊆ P
(and NP = P).

Suppose, on the other hand, that NP = P . We will show that for any search
problem in PC, this hypothesis implies an efficient algorithm for determining
whether a given string y ′ is a prefix of some solution to a given instance x

of this search problem, which in turn yields an efficient algorithm for finding
solutions (for this search problem). Specifically, let R be an arbitrary search
problem in PC. Considering the set

S ′R
def= {〈x, y ′〉 : ∃y ′′ s.t. (x, y ′y ′′)∈R} , (2.2)

note that S ′R is in NP (because R ∈ PC). Using the hypothesis NP ⊆ P , it
follows that S ′R is in P . This yields a polynomial-time algorithm for solving
the search problem of R, by extending a prefix of a potential solution bit by
bit while using the decision procedure to determine whether or not the current
prefix is valid. That is, on input x, we first check whether or not 〈x, λ〉 ∈ S ′R and
output ⊥ (indicating R(x) = ∅) in case 〈x, λ〉 �∈ S ′R . Otherwise, 〈x, λ〉 ∈ S ′R ,
and we set y ′ ← λ. Next, we proceed in iterations, maintaining the invariant that
〈x, y ′〉 ∈ S ′R . In each iteration, we set y ′ ← y ′0 if 〈x, y ′0〉 ∈ S ′R and y ′ ← y ′1
if 〈x, y ′1〉 ∈ S ′R . If none of these conditions hold (which happens after at most
polynomially many iterations), then the current y ′ satisfies (x, y ′) ∈ R. (An
alternative termination condition amounts to checking explicitly whether the
current y ′ satisfies (x, y ′) ∈ R; see Figure 2.2.) Thus, for every x ∈ SR (i.e.,
x such that R(x) �= ∅), we output some string in R(x). It follows that for an
arbitrary R ∈ PC, we have R ∈ PF , and hence PC ⊆ PF .

Reflection. The first part of the proof of Theorem 2.6 associates with each set
S in NP a natural relation R (in PC). Specifically, R (as defined in Eq. (2.1))

9 Indeed, an alternative decision procedure outputs 1 if and only if (x,A(x)) ∈ R, which in turn
holds if and only if V (x,A(x)) = 1. The latter alternative appears as Alternative 2 in Figure 2.1.

2.5 Technical Comments Regarding NP 65

Input: x

(Checking whether solutions exist)
If 〈x, λ〉 �∈ S ′R then halt with output ⊥.
(Comment: 〈x, λ〉 �∈ S ′R if and only if R(x) = ∅.)

(Finding a solution (i.e., a string in R(x) �= ∅))
Initialize y ′ ← λ.
While (x, y ′) �∈ R repeat

If 〈x, y ′0〉 ∈ S ′R then y ′ ← y ′0 else y ′ ← y ′1.
(Comment: Since 〈x, y ′〉 ∈ S ′R but (x, y ′) �∈ R,
either 〈x, y ′0〉 or 〈x, y ′1〉 must be in S ′R .)

Output y ′ (which is indeed in R(x)).

Figure 2.2. Solving R by using a solver for S ′R .

consists of all pairs (x, y) such that y is an NP-witness for membership of x

in S. Thus, the search problem of R consists of finding such an NP-witness,
when given x as input. Indeed, R is called the witness relation of S, and solving
the search problem of R allows for deciding membership in S. Thus, R ∈
PC ⊆ PF implies S ∈ P . In the second part of the proof, we associate with
each R ∈ PC a set S ′R (in NP), but S ′R is more “expressive” than the set

SR
def= {x : ∃y s.t. (x, y)∈R} (which is the natural NP-set arising from R).

Specifically, S ′R (as defined in Eq. (2.2)) consists of strings that encode pairs
(x, y ′) such that y ′ is a prefix of some string in R(x) = {y : (x, y) ∈ R}. The
key observation is that deciding membership in S ′R allows for solving the search
problem of R; that is, S ′R ∈ P implies R ∈ PF .

Conclusion. Theorem 2.6 justifies the traditional focus on the decision version
of the P-vs-NP Question. Indeed, given that both formulations of the question
are equivalent, we may just study the less cumbersome one.

2.5 Technical Comments Regarding NP

The following comments are rather technical, and only the first one is used in
the rest of this book.

A Simplifying Convention. We shall often assume that the length of solu-
tions for any search problem in PC (resp., NP-witnesses for a set in NP) is
determined (rather than upper-bounded) by the length of the instance. That is,
for any R ∈ PC (resp., verification procedure V for a set in NP), we shall

66 2 The P versus NP Question

assume that for some fixed polynomial p, if (x, y) ∈ R (resp., V (x, y) = 1)
then |y| = p(|x|) rather than |y| ≤ p(|x|). This assumption can be justified by
a trivial modification of R (resp., V); see Exercise 2.7.

Solving Problems in NP via Exhaustive Search. Every problem inPC (resp.,
NP) can be solved in exponential time (i.e., time exp(poly(|x|)) for input x).
This can be done by an exhaustive search among all possible candidate solutions
(resp., all possible candidate NP-witnesses). Thus, NP ⊆ EXP , where EXP
denotes the class of decision problems that can be solved in exponential time
(i.e., time exp(poly(|x|)) for input x).

An Alternative Formulation. Recall that when defining PC (resp., NP),
we have explicitly confined our attention to search problems of polynomially
bounded relations (resp., NP-witnesses of polynomial length). In this case, a
polynomial-time algorithm that decides membership of a given pair (x, y) in a
relation R ∈ PC (resp., check the validity of an NP-witness y for membership
of x in S ∈ NP) runs in time that is polynomial in the length of x. This
observation leads to an alternative formulation of the class PC (resp., NP), in
which one allows solutions (resp., NP-witnesses) of arbitrary length but requires
that the corresponding algorithms run in time that is polynomial in the length
of x rather than polynomial in the length of (x, y). That is, by the alternative
formulation a binary relation R is in PC (resp., S ∈ NP) if membership of
(x, y) in R can be decided in time that is polynomial in the length of x (resp., the
verification of a candidate NP-witness y for membership of x in S is required to
be performed in poly(|x|)-time). Although this alternative formulation does not
upper-bound the length of the solutions (resp., NP-witnesses), such an upper
bound effectively follows in the sense that it suffices to inspect a poly(|x|)-
bit long prefix of the solution (resp., NP-witness) in order to determine its
validity. Indeed, such a prefix is as good as the full-length solution (resp., NP-
witness) itself. Thus, the alternative formulation is essentially equivalent to the
original one.

2.6 The Traditional Definition of NP

Unfortunately, Definition 2.5 is not the most commonly used definition of NP .
Instead, traditionally, NP is defined as the class of sets that can be decided by
a fictitious device called a non-deterministic polynomial-time machine (which
explains the source of the notation NP). The reason that this class of fictitious
devices is interesting is due to the fact that it captures (indirectly) the definition
of NP-proof systems (i.e., Definition 2.5). Since the reader may come across the

2.6 The Traditional Definition of NP 67

traditional definition of NP when studying different works, we feel obliged
to provide the traditional definition as well as a proof of its equivalence to
Definition 2.5.

Definition 2.7 (non-deterministic polynomial-time Turing machines):

� A non-deterministic Turing machine is defined as in Section 1.3.2, except that
the transition function maps symbol-state pairs to subsets of triples (rather
than to a single triple) in � ×Q× {−1, 0,+1}. Accordingly, the configura-
tion following a specific instantaneous configuration may be one of several
possibilities, each determined by a different possible triple. Thus, the compu-

tations of a non-deterministic machine on a fixed input may result in different
outputs.
In the context of decision problems, one typically considers the question
of whether or not there exists a computation that halts with output 1 after
starting with a fixed input. This leads to the following notions:
– We say that the non-deterministic machine M accepts x if there exists a

computation of M , on input x, that halts with output 1.
– The set accepted by a non-deterministic machine is the set of inputs that are

accepted by the machine.
� A non-deterministic polynomial-time Turing machine is defined as one that halts

after a number of steps that is no more than a fixed polynomial in the length
of the input. Traditionally, NP is defined as the class of sets that are each
accepted by some non-deterministic polynomial-time Turing machine.

We stress that Definition 2.7 refers to a fictitious model of computation. Specif-
ically, Definition 2.7 makes no reference to the number (or fraction) of possible
computations of the machine (on a specific input) that yield a specific output.10

Definition 2.7 only refers to whether or not computations leading to a certain
output exist (for a specific input). The question of what the mere existence
of such possible computations means (in terms of real life) is not addressed,
because the model of a non-deterministic machine is not meant to provide
a reasonable model of a (real-life) computer. The model is meant to capture
something completely different (i.e., it is meant to provide an “elegant” defini-
tion of the class NP , while relying on the fact that Definition 2.7 is equivalent
to Definition 2.5).11

10 Advanced comment: In contrast, the definition of a probabilistic machine refers to this
number (or, equivalently, to the probability that the machine produces a specific output, when
the probability is taken (essentially) uniformly over all possible computations). Thus, a
probabilistic machine refers to a natural model of computation that can be realized provided
we can equip the machine with a source of randomness. For details, see [13, Sec. 6.1].

11 Whether or not Definition 2.7 is elegant is a matter of taste. For sure, many students find
Definition 2.7 quite confusing; see further discussion in the teaching notes to this chapter.

68 2 The P versus NP Question

Note that unlike other definitions in this book, Definition 2.7 makes explicit
reference to a specific model of computation. Still, a similar (non-deterministic)
extension can be applied to other models of computation by considering ade-
quate non-deterministic computation rules. Also note that without loss of gen-
erality, we may assume that the transition function maps each possible symbol-
state pair to exactly two triples (see Exercise 2.11).

Theorem 2.8: Definition 2.5 is equivalent to Definition 2.7. That is, a set S has
an NP-proof system if and only if there exists a non-deterministic polynomial-
time machine that accepts S.

Proof: Suppose, on the one hand, that the set S has an NP-proof system,
and let us denote the corresponding verification procedure by V . Let p be a
polynomial that determines the length of NP-witnesses with respect to V (i.e.,
V (x, y) = 1 implies |y| = p(|x|)).12 Consider the following non-deterministic
polynomial-time machine, denoted M , that (on input x) first produces non-
deterministically a potential NP-witness (i.e., y ∈ {0, 1}p(|x|)) and then accepts
if and only if this witness is indeed valid (i.e., V (x, y) = 1). That is, on input
x, machine M proceeds as follows:

1. Makes m = p(|x|) non-deterministic steps, producing (non-deterministi-
cally) a string y ∈ {0, 1}m.

2. Emulates V (x, y) and outputs whatever it does.

We stress that the non-deterministic steps (taken in Step 1) may result in
producing any m-bit string y. Recall that x ∈ S if and only if there exists
y ∈ {0, 1}p(|x|) such that V (x, y) = 1. It follows that x ∈ S if and only if there
exists a computation of M on input x that halts with output 1 (and thus x ∈ S

if and only if M accepts x). This implies that the set accepted by M equals S.
Since M is a non-deterministic polynomial-time machine, it follows that S is
in NP according to Definition 2.7.

Suppose, on the other hand, that there exists a non-deterministic polynomial-
time machine M that accepts the set S, and let p be a polynomial upper-
bounding the time complexity of M . Consider the following deterministic
polynomial-time machine, denoted M ′, that on input (x, y) views y as a
description of the non-deterministic choices of machine M on input x, and
emulates the corresponding computation. That is, on input (x, y), where y has
length m = p(|x|), machine M ′ emulates a computation of M on input x while
using the bits of y to determine the non-deterministic steps of M . Specifically,
the i th step of M on input x is determined by the i th bit of y such that the i th

12 See the simplifying convention in Section 2.5.

2.7 In Support of P Being Different from NP 69

step of M follows the first possibility (in the transition function) if and only if
the i th bit of y equals 1. Note that x ∈ S if and only if there exists y of length
p(|x|) such that M ′(x, y) = 1. Thus, M ′ gives rise to an NP-proof system for
S, and so S is in NP according to Definition 2.5.

2.7 In Support of P Being Different from NP

Intuition and concepts constitute . . . the elements of all our knowledge,
so that neither concepts without an intuition in some way corresponding
to them, nor intuition without concepts, can yield knowledge.

Immanuel Kant (1724–1804)

Kant speaks of the importance of both philosophical considerations (referred
to as “concepts”) and empirical considerations (referred to as “intuition”) to
science (referred to as (sound) “knowledge”). We shall indeed follow his lead.

It is widely believed that P is different from NP, that is, that PC contains
search problems that are not efficiently solvable, and that there are NP-proof
systems for sets that cannot be decided efficiently. This belief is supported by
both philosophical and empirical considerations.

Philosophical Considerations. Both formulations of the P-vs-NP Question
refer to natural questions about which we have strong conceptions. The notion
of solving a (search) problem seems to presume that, at least in some cases (or
in general), finding a solution is significantly harder than checking whether a
presented solution is correct. This translates to PC \ PF �= ∅. Likewise, the
notion of a proof seems to presume that, at least in some cases (or in general),
the proof is useful in determining the validity of the assertion, that is, that
verifying the validity of an assertion may be made significantly easier when
provided with a proof. This translates to P �= NP , which also implies that it is
significantly harder to find proofs than to verify their correctness, which again
coincides with the daily experience of researchers and students.

Empirical Considerations. The class NP (or rather PC) contains thousands
of different problems for which no efficient solving procedure is known. Many
of these problems have arisen in vastly different disciplines, and were the
subject of extensive research of numerous different communities of scientists
and engineers. These essentially independent studies have all failed to provide
efficient algorithms for solving these problems, a failure that is extremely hard
to attribute to sheer coincidence or to a streak of bad luck.

70 2 The P versus NP Question

We mention that for many of the aforementioned problems, the best-known
algorithms are not significantly faster than an exhaustive search (for a solution);
that is, the complexity of the best-known algorithm is polynomially related to
the complexity of an exhaustive search. Indeed, it is widely believed that for
some problems in NP, no algorithm can be significantly faster than an exhaustive
search.

The common belief (or conjecture) that P �= NP is indeed very appealing
and intuitive. The fact that this natural conjecture is unsettled seems to be
one of the sources of frustration of Complexity Theory. Our opinion, however,
is that this feeling of frustration is out of place (and merely reflects a naive
underestimation of the issues at hand). In contrast, the fact that Complexity
Theory evolves around natural and simply stated questions that are so difficult
to resolve makes its study very exciting.

Throughout the rest of this book, we will adopt the conjecture that P is
different from NP. In a few places, we will explicitly use this conjecture,
whereas in other places, we will present results that are interesting (if and) only
if P �= NP (e.g., the entire theory of NP-completeness becomes uninteresting
if P = NP).

2.8 Philosophical Meditations

Whoever does not value preoccupation with thoughts, can skip this
chapter.

Robert Musil, The Man without Qualities, Chap. 28

The inherent limitations of our scientific knowledge were articulated by Kant,
who argued that our knowledge cannot transcend our way of understanding.
The “ways of understanding” are predetermined; they precede any knowledge
acquisition and are the precondition to such acquisition. In a sense, Wittgenstein
refined the analysis, arguing that knowledge must be formulated in a language,
and the latter must be subject to a (sound) mechanism of assigning meaning.
Thus, the inherent limitations of any possible “meaning-assigning mechanism”
impose limitations on what can be (meaningfully) said.

Both philosophers spoke of the relation between the world and our thoughts.
They took for granted (or rather assumed) that in the domain of well-formulated
thoughts (e.g., logic), every valid conclusion can be effectively reached (i.e.,
every valid assertion can be effectively proved). Indeed, this naive assumption
was refuted by Gödel. In a similar vain, Turing’s work asserts that there exist
well-defined problems that cannot be solved by well-defined methods.

Exercises 71

We stress that Turing’s assertion transcends the philosophical considerations
of the first paragraph: It asserts that the limitations of our ability are due not
only to the gap between the “world as is” and our model of it. In contrast,
Turing’s assertion refers to inherent limitations on any rational process, even
when this process is applied to well-formulated information and is aimed at
a well-formulated goal. Indeed, in contrast to naive presumptions, not every
well-formulated problem can be (effectively) solved.

The P �= NP conjecture goes even beyond Turing’s assertion. It limits
the domain of the discussion to “fair” problems, that is, to problems for which
valid solutions can be efficiently recognized as such. Indeed, there is something
feigned in problems for which one cannot efficiently recognize valid solutions.
Avoiding such feigned and/or unfair problems, P �= NP means that (even with
this limitation) there exist problems that are inherently unsolvable in the sense
that they cannot be solved efficiently. That is, in contrast to naive presumptions,
not every problem that refers to efficiently recognizable solutions can be solved
efficiently. In fact, the gap between the complexity of recognizing solutions and
the complexity of finding them vouches for the meaningfulness of the notion
of a problem.

Exercises
Exercise 2.1 (a quiz)

1. What are the justifications for associating efficient computation with
polynomial-time algorithms?

2. What are the classes PF and PC?
3. What are the classes P and NP?
4. List a few computational problems in PF (resp., P).
5. Going beyond the list of the previous question, list a few problems in PC

(resp., NP).
6. What does PC �⊆ PF mean in intuitive terms?
7. What does P �= NP mean in intuitive terms?
8. Is it the case that PC �⊆ PF if and only if P �= NP?
9. What are the justifications for believing that P �= NP?

Exercise 2.2 (PF contains problems that are not in PC) Show thatPF con-
tains some (unnatural) problems that are not in PC.

Guideline: Consider the relation R = {(x, 1) : x ∈ {0, 1}∗} ∪ {(x, 0) : x ∈ S},
where S is some undecidable set. Note that R is the disjoint union of two binary

72 2 The P versus NP Question

relations, denoted R1 and R2, where R1 is in PF whereas R2 is not in PC.
Furthermore, for every x it holds that R1(x) �= ∅.

Exercise 2.3 In contrast to Exercise 2.2, show that if R ∈ PF and each instance
of R has at most one solution (i.e., |R(x)| ≤ 1 for every x), then R ∈ PC.

Exercise 2.4 Show that the following search problems are in PC.

1. Finding a traveling salesman tour of length that does not exceed a given
threshold (when also given a matrix of distances between cities);

2. Finding the prime factorization of a given natural number;
3. Solving a given system of quadratic equations over a finite field;
4. Finding a truth assignment that satisfies a given Boolean formula.

(For Item 2, use the fact that primality can be tested in polynomial time.)

Exercise 2.5 Show that any S ∈ NP has many different NP-proof systems
(i.e., verification procedures V1, V2, . . . such that Vi(x, y) = 1 does not imply
Vj (x, y) = 1 for i �= j).

Guideline: For V and p as in Definition 2.5, define Vi(x, y) = 1 if |y| =
p(|x|)+ i and there exists a prefix y ′ of y such that V (x, y ′) = 1.

Exercise 2.6 Relying on the fact that primality is decidable in polynomial
time and assuming that there is no polynomial-time factorization algorithm,
present two “natural but fundamentally different” NP-proof systems for the set
of composite numbers.

Guideline: Consider the following verification procedures V1 and V2 for the
set of composite numbers. Let V1(n, y) = 1 if and only if y = n and n is not
a prime, and V2(n,m) = 1 if and only if m is a non-trivial divisor of n. Show
that valid proofs with respect to V1 are easy to find, whereas valid proofs with
respect to V2 are hard to find.

Exercise 2.7 Show that for every R ∈ PC, there exists R′ ∈ PC and a polyno-
mial p such that for every x it holds that R′(x) ⊆ {0, 1}p(|x|), and R′ ∈ PF if
and only if R ∈ PF . Formulate and prove a similar fact for NP-proof systems.

Guideline: Note that for every R ∈ PC, there exists a polynomial p such that

for every (x, y) ∈ R it holds that |y| < p(|x|). Define R′ such that R′(x)
def=

{y01p(|x|)−(|y|+1) : (x, y) ∈ R}, and prove that R′ ∈ PF if and only if R ∈
PF .

Exercise 2.8 In continuation of Exercise 2.7, show that for every set S ∈ NP
and every sufficiently large polynomial p, there exists an NP-proof system V

Exercises 73

such that all NP-witnesses to x ∈ S are of length p(|x|) (i.e., if V (x, y) = 1
then |y| = p(|x|)).
Guideline: Start with an NP-proof system V0 for S and a polynomial p0 such
that V0(x, y) = 1 implies |y| ≤ p0(|x|). For every polynomial p > p0 (i.e.,
p(n) > p0(n) for all n ∈ N), define V such that V (x, y ′01p(|x|)−(|y ′ |+1)) = 1 if
V0(x, y ′) = 1 and V (x, y) = 0 otherwise.

Exercise 2.9 In continuation of Exercise 2.8, show that for every set S ∈ NP
and every “nice” � : N → N, there exists set S ′ ∈ NP such that (1) S ′ ∈ P if
and only if S ∈ P , and (2) there exists an NP-proof system V ′ such that all
NP-witnesses to x ∈ S ′ are of length �(|x|). Specifically, consider as nice any
function � : N → N such that � is monotonically non-decreasing, computable
in polynomial time,13 and satisfies �(n) ≤ poly(n) and n ≤ poly(�(n)) (for
every n ∈ N). Note that the novelty here (wrt Exercise 2.8) is that � may be a
sub-linear function (e.g., �(n) = √n).

Guideline: For an adequate polynomial p′, consider S ′ def= {x01p′(|x|)−|x|−1}
and the NP-proof system V ′ such that V ′(x01p′(|x|)−|x|−1, y) = V (x, y) and
V ′(x ′, y) = 0 if |x ′| �∈ {p′(n) : n ∈ N}. Now, use Exercise 2.8.

Exercise 2.10 Show that for every S ∈ NP , there exists an NP-proof system

V such that the witness sets Wx
def= {y : V (x, y) = 1} are disjoint.

Guideline: Starting with an NP-proof system V0 for S, consider V such that
V (x, y) = 1 if y = 〈x, y ′〉 and V0(x, y ′) = 1 (and V (x, y) = 0 otherwise).

Exercise 2.11 Regarding Definition 2.7, show that if S is accepted by some
non-deterministic machine of time complexity t , then it is accepted by a non-
deterministic machine of time complexity O(t) that has a transition function
that maps each possible symbol-state pair to exactly two triples.

Guideline: First note that a k-way (non-deterministic) choice can be emulated
by log2 k (non-deterministic) binary choices. (Indeed, this requires creating
O(k) new states for each such k-way choice.) Also note that one can introduce
fictitious (non-deterministic) choices by duplicating the set of states of the
machine.

13 In fact, it suffices to require that the mapping n �→ �(n) can be computed in time poly(n).

3

Polynomial-time Reductions

Overview: Reductions are procedures that use “functionally specified”
subroutines. That is, the functionality of the subroutine is specified, but
its operation remains unspecified and its running time is counted at unit
cost. Thus, a reduction solves one computational problem by using oracle
(or subroutine) calls to another computational problem. Analogously to
our focus on efficient (i.e., polynomial-time) algorithms, here we focus
on efficient (i.e., polynomial-time) reductions.

We present a general notion of (polynomial-time) reductions among
computational problems, and view the notion of a “Karp-reduction” (also
known as “many-to-one reduction”) as an important special case that
suffices (and is more convenient) in many cases. Reductions play a key
role in the theory of NP-completeness, which is the topic of Chapter 4.

In the current chapter, we stress the fundamental nature of the notion of
a reduction per se and highlight two specific applications: reducing search
problems and optimization problems to decision problems. Furthermore,
in these applications, it will be important to use the general notion of
a reduction (i.e., “Cook-reduction” rather than “Karp-reduction”). We
comment that the aforementioned reductions of search and optimization
problems to decision problems further justify the common focus on the
study of the decision problems.

Organization. We start by presenting the general notion of a poly-
nomial-time reduction and important special cases of it (see Section 3.1).
In Section 3.2, we present the notion of optimization problems and reduce
such problems to corresponding search problems. In Section 3.3, we dis-
cuss the reduction of search problems to corresponding decision prob-
lems, while emphasizing the special case in which the search problem is

74

3.1 The General Notion of a Reduction 75

reduced to the decision problem that is implicit in it. (In such a case, we
say that the search problem is self-reducible.)

Teaching Notes

We assume that many students have heard of reductions, but we fear that
most have obtained a conceptually distorted view of their fundamental nature.
In particular, we fear that reductions are identified with the theory of NP-
completeness, whereas reductions have numerous other important applications
that have little to do with NP-completeness (or completeness with respect
to any other class). In particular, we believe that it is important to show that
(natural) search and optimization problems can be reduced to (natural) decision
problems.

On Our Terminology. We prefer the terms Cook-reductions and Karp-
reductions over the terms “general (polynomial-time) reductions” and “many-
to-one (polynomial-time) reductions.” Also, we use the term self-reducibility
in a non-traditional way; that is, we say that the search problem of R is
self-reducible if it can be reduced to the decision problem of SR = {x : ∃y
s.t. (x, y)∈R}, whereas traditionally, self-reducibility refers to decision prob-
lems and is closely related to our notion of downward self-reducible (presented
in Exercise 3.16).

A Minor Warning. In Section 3.3.2, which is an advanced section, we assume
that the students have heard of NP-completeness. Actually, we only need the
students to know the definition of NP-completeness. Yet the teacher may prefer
postponing the presentation of this material to Section 4.1 (or even to a later
stage).

3.1 The General Notion of a Reduction

Reductions are procedures that use “functionally specified” subroutines. That
is, the functionality of the subroutine is specified, but its operation remains
unspecified and its running time is counted at unit cost. Analogously to algo-
rithms, which are modeled by Turing machines, reductions can be modeled
as oracle (Turing) machines. A reduction solves one computational problem

76 3 Polynomial-time Reductions

(which may be either a search problem or a decision problem) by using oracle
(or subroutine) calls to another computational problem (which again may be
either a search or a decision problem). Thus, such a reduction yields a (simple)
transformation of algorithms that solve the latter problem into algorithms that
solve the former problem.

3.1.1 The Actual Formulation

The notion of a general algorithmic reduction was discussed in Section 1.3.3 and
formally defined in Section 1.3.6. These reductions, called Turing-reductions
and modeled by oracle machines (cf. Section 1.3.6), made no reference to the
time complexity of the main algorithm (i.e., the oracle machine). Here, we
focus on efficient (i.e., polynomial-time) reductions, which are often called
Cook-reductions. That is, we consider oracle machines (as in Definition 1.11)
that run in time that is polynomial in the length of their input. We stress that
the running time of an oracle machine is the number of steps made during its
(own) computation, and that the oracle’s reply on each query is obtained in a
single step.

The key property of efficient reductions is that they allow for the transforma-
tion of efficient implementations of the subroutine (or the oracle) into efficient
implementations of the task reduced to it. That is, as we shall see, if one prob-
lem is Cook-reducible to another problem and the latter is polynomial-time
solvable, then so is the former.

The most popular case is that of reducing decision problems to decision
problems, but we will also explicitly consider reducing search problems to
search problems and reducing search problems to decision problems. Note that
when reducing to a decision problem, the oracle is determined as the unique
valid solver of the decision problem (since the function f : {0, 1}∗ → {0, 1}
solves the decision problem of membership in S if, for every x, it holds that
f (x) = 1 if x ∈ S and f (x) = 0 otherwise). In contrast, when reducing to a
search problem, the oracle is not uniquely determined because there may be
many different valid solvers (since the function f : {0, 1}∗ → {0, 1}∗ ∪ {⊥}
solves the search problem of R if, for every x, it holds that f (x) ∈ R(x)

def= {y :
(x, y) ∈ R} if R(x) �= ∅ and f (x) = ⊥ otherwise).1 We capture both cases in
the following definition.

Definition 3.1 (Cook-reduction): A problem � is Cook-reducible to a problem
�′ if there exists a polynomial-time oracle machine M such that for every

1 Indeed, the solver is unique only if for every x it holds that |R(x)| ≤ 1.

3.1 The General Notion of a Reduction 77

function f that solves �′ it holds that Mf solves �, where Mf (x) denotes the
output of M on input x when given oracle access to f .

Note that � (resp., �′) may be either a search problem or a decision problem (or
even a yet-undefined type of a problem). At this point, the reader should verify
that if � is Cook-reducible to �′ and �′ is solvable in polynomial time, then so
is �; see Exercise 3.2 (which also asserts other properties of Cook-reductions).

We highlight the fact that a Cook-reduction of � to �′ yields a simple
transformation of efficient algorithms that solve the problem �′ into efficient
algorithms that solve the problem �. The transformation consists of combining
the code (or description) of any algorithm that solves �′ with the code of
reduction, yielding a code of an algorithm that solves �.

An Important Example. Observe that the second part of the proof of Theo-
rem 2.6 is actually a Cook-reduction of the search problem of any R in PC to a
decision problem regarding a related set S ′R = {〈x, y ′〉 : ∃y ′′ s.t. (x, y ′y ′′)∈R},
which is in NP . Thus, that proof establishes the following result.

Theorem 3.2: Every search problem in PC is Cook-reducible to some decision
problem in NP .

We shall see a tighter relation between search and decision problems in Sec-
tion 3.3; that is, in some cases, R will be reduced to SR = {x : ∃y s.t. (x, y)∈R}
rather than to S ′R .

3.1.2 Special Cases

We shall consider two restricted types of Cook-reductions, where the first type
applies only to decision problems and the second type applies only to search
problems. In both cases, the reductions are restricted to making a single query.

Restricted Reductions Among Decision Problems. A Karp-reduction is a
restricted type of a reduction (from one decision problem to another decision
problem) that makes a single query, and furthermore replies with the very
answer that it has received. Specifically, for decision problems S and S ′, we
say that S is Karp-reducible to S ′ if there is a Cook-reduction of S to S ′ that
operates as follows: On input x (an instance for S), the reduction computes
x ′, makes query x ′ to the oracle S ′ (i.e., invokes the subroutine for S ′ on input
x ′), and answers whatever the latter returns. This reduction is often represented
by the polynomial-time computable mapping of x to x ′; that is, the standard
definition of a Karp-reduction is actually as follows.

78 3 Polynomial-time Reductions

x f f(x)
oracle for S’

Figure 3.1. The Cook-reduction that arises from a Karp-reduction.

Definition 3.3 (Karp-reduction): A polynomial-time computable function f is
called a Karp-reduction of S to S ′ if, for every x, it holds that x ∈ S if and only
if f (x) ∈ S ′.

Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but it
trivially gives rise to one (i.e., on input x, the oracle machine makes query
f (x), and returns the oracle answer; see Figure 3.1). Being slightly inaccurate
but essentially correct, we shall say that Karp-reductions are special cases of
Cook-reductions.

Needless to say, Karp-reductions constitute a very restricted case of Cook-
reductions. Specifically, Karp-reductions refer only to reductions among deci-
sion problems, and are restricted to a single query (and to the way in which
the answer is used). Still, Karp-reductions suffice for many applications (most
importantly, for the theory of NP-completeness (when developed for deci-
sion problems)). On the other hand, due to purely technical (or syntactic)
reasons, Karp-reductions are not adequate for reducing search problems to
decision problems. Furthermore, Cook-reductions that make a single query are
inadequate for reducing (hard) search problems to any decision problem (see
Exercise 3.12).2 We note that even within the domain of reductions among
decision problems, Karp-reductions are less powerful than Cook-reductions.
Specifically, whereas each decision problem is Cook-reducible to its comple-
ment, some decision problems are not Karp-reducible to their complement (see
Exercises 3.4 and 5.10).

Augmentation for Reductions Among Search Problems. Karp-reductions
may (and should) be augmented in order to handle reductions among search
problems. The augmentation should provide a way of obtaining a solution for

2 Cook-reductions that make a single query overcome the technical reason that makes Karp-
reductions inadequate for reducing search problems to decision problems. (Recall that Karp-
reductions are a special case of Cook-reductions that make a single query; cf. Exercise 3.11.)

3.1 The General Notion of a Reduction 79

the original instance from any solution for the reduced instance. Indeed, such
a reduction of the search problem of R to the search problem of R′ operates
as follows: On input x (an instance for R), the reduction computes x ′, makes
query x ′ to the oracle R′ (i.e., invokes the subroutine for searching R′ on input
x ′) obtaining y ′ such that (x ′, y ′) ∈ R′, and uses y ′ to compute a solution y to x

(i.e., y ∈ R(x)). Thus, such a reduction can be represented by two polynomial-
time computable mappings, f and g, such that (x, g(x, y ′)) ∈ R for any y ′

that is a solution of f (x) (i.e., for y ′ that satisfies (f (x), y ′) ∈ R′). Indeed, f

is a Karp-reduction (of SR = {x : R(x) �= ∅} to SR′ = {x ′ : R′(x ′) �= ∅}), but
(unlike in the case of decision problems) the function g may be non-trivial (i.e.,
we may not always have g(x, y ′) = y ′). This type of reduction is called a Levin-

reduction and, analogously to the case of a Karp-reduction, it is often identified
with the two aforementioned mappings themselves (i.e., the (polynomial-time
computable) mappings f of x to x ′, and the (polynomial-time computable)
mappings g of (x, y ′) to y).

Definition 3.4 (Levin reduction): A pair of polynomial-time computable func-
tions, f and g, is called a Levin-reduction of R to R′ if f is a Karp-
reduction of SR = {x : ∃y s.t. (x, y)∈R} to SR′ = {x ′ : ∃y ′ s.t. (x ′, y ′)∈R′}
and for every x ∈ SR and y ′ ∈ R′(f (x)) it holds that (x, g(x, y ′)) ∈ R, where
R′(x ′) = {y ′ : (x ′, y ′)∈R′}.

Indeed, the (first) function f preserves the existence of solutions; that is, for
any x, it holds that R(x) �= ∅ if and only if R′(f (x)) �= ∅, since f is a Karp-
reduction of SR to SR′ . As for the second function (i.e., g), it maps any solution
y ′ for the reduced instance f (x) to a solution for the original instance x (where
this mapping may also depend on x). We mention that it is natural also to
consider a third function that maps solutions for R to solutions for R′ (see
Exercise 4.20).

Again, syntactically speaking, a Levin-reduction is not a Cook-reduction,
but it trivially gives rise to one (i.e., on input x, the oracle machine makes query
f (x), and returns g(x, y ′) if the oracle answers with y ′ �= ⊥ (and returns ⊥
otherwise); see Figure 3.2).

3.1.3 Terminology and a Brief Discussion

Cook-reductions are often called general (polynomial-time) reductions, whereas
Karp-reductions are often called many-to-one (polynomial-time) reductions.
Indeed, throughout the current chapter, whenever we neglect to mention the
type of a reduction, we actually mean a Cook-reduction.

80 3 Polynomial-time Reductions

f f(x)
oracle for R’

g
y’

g(x,y’)

x

(in R’(f(x)))

Figure 3.2. The Cook-reduction that arises from a Levin-reduction.

Two Compound Notions. The following terms, which refer to the existence
of several reductions, are often used in advanced studies.

1. We say that two problems are computationally equivalent if they are reducible
to each other. This means that the two problems are essentially as hard (or
as easy). Note that computationally equivalent problems need not reside in
the same complexity class.
For example, as we shall see in Section 3.3, for many natural rela-
tions R ∈ PC, the search problem of R and the decision problem of
SR = {x : ∃y s.t. (x, y)∈R} are computationally equivalent, although (even
syntactically) the two problems do not belong to the same class (i.e., R ∈ PC
whereas SR ∈ NP). Also, each decision problem is computationally equiv-
alent to its complement, although the two problems may not belong to the
same class (see, e.g., Section 5.3).

2. We say that a class of problems, C, is reducible to a problem �′ if every
problem in C is reducible to �′. We say that the class C is reducible to the
class C ′ if for every � ∈ C there exists �′ ∈ C ′ such that � is reducible
to �′.
For example, Theorem 3.2 asserts that PC is reducible to NP . Also note
that NP is reducible to PC (see Exercise 3.9).

On the Greater Flexibility of Cook-reductions. The fact that we allow Cook-
reductions (rather than confining ourselves to Karp-reductions) is essential to
various important connections between decision problems and other computa-
tional problems. For example, as will be shown in Section 3.2, a natural class
of optimization problems is reducible to NP . Also recall that PC is reducible
to NP (cf. Theorem 3.2). Furthermore, as will be shown in Section 3.3, many
natural search problems inPC are reducible to a corresponding natural decision

3.2 Reducing Optimization Problems to Search Problems 81

problem in NP (rather than merely to some problem in NP). In all of these
results, the reductions in use are (and must be) Cook-reductions.

Recall that we motivated the definition of Cook-reductions by referring to
their natural (“positive”) application, which offers a transformation of efficient
implementations of the oracle into efficient algorithms for the reduced prob-
lem. Note, however, that once defined, reductions have a life of their own. In
fact, the actual definition of a reduction does not refer to the aforementioned
natural application, and reductions may be (and are) also used toward other
applications. For further discussion, see Section 3.4.

3.2 Reducing Optimization Problems to Search Problems

Many search problems refer to a set of potential solutions, associated with each
problem instance, such that different solutions are naturally assigned different
“values” (resp., “costs”). For example, in the context of finding a clique in a
given graph, the size of the clique may be considered the value of the solution.
Likewise, in the context of finding a 2-partition of a given graph, the number of
edges with both end points in the same side of the partition may be considered
the cost of the solution. In such cases, one may be interested in finding a solution
that has value exceeding some threshold (resp., cost below some threshold).
Alternatively, one may seek a solution of maximum value (resp., minimum
cost).

For simplicity, let us focus on the case of a value that we wish to maximize.
Still, the two different aforementioned objectives (i.e., exceeding a threshold
and optimization) give rise to two different (auxiliary) search problems related
to the same relation R. Specifically, for a binary relation R and a value function
f : {0, 1}∗ × {0, 1}∗ → R, we consider two search problems.

1. Exceeding a threshold: Given a pair (x, v), the task is to find y ∈ R(x) such
that f (x, y) ≥ v, where R(x) = {y : (x, y)∈R}. That is, we are actually
referring to the search problem of the relation

Rf
def= {(〈x, v〉, y) : (x, y)∈R ∧ f (x, y) ≥ v}, (3.1)

where 〈x, v〉 denotes a string that encodes the pair (x, v).
2. Maximization: Given x, the task is to find y ∈ R(x) such that f (x, y) = vx ,

where vx is the maximum value of f (x, y ′) over all y ′ ∈ R(x). That is, we
are actually referring to the search problem of the relation

R′f
def= {(x, y)∈R : f (x, y) = max

y ′∈R(x)
{f (x, y ′)}}. (3.2)

(If R(x) = ∅, then we define R′f (x) = ∅.)

82 3 Polynomial-time Reductions

Examples of value functions include the size of a clique in a graph, the amount
of flow in a network (with link capacities), and so on. The task may be to
find a clique of size exceeding a given threshold in a given graph or to find a
maximum-size clique in a given graph. Note that in these examples, the “base”
search problem (i.e., the relation R) is quite easy to solve, and the difficulty
arises from the auxiliary condition on the value of a solution (presented in Rf

and R′f). Indeed, one may trivialize R (i.e., let R(x) = {0, 1}poly(|x|) for every
x), and impose all necessary structure by the function f (see Exercise 3.6).

We confine ourselves to the case that f is (rational-valued and) polynomial-
time computable, which in particular means that f (x, y) can be represented by
a rational number of length polynomial in |x| + |y|. We will show next that
in this case, the two aforementioned search problems (i.e., of Rf and R′f) are
computationally equivalent.

Theorem 3.5: For any polynomial-time computable f :{0, 1}∗×{0, 1}∗→Q

and a polynomially bounded binary relation R, let Rf and R′f be as in Eq. (3.1)
and Eq. (3.2), respectively. Then, the search problems of Rf and R′f are com-
putationally equivalent.

Note that for R ∈ PC and polynomial-time computable f , it holds that Rf ∈
PC. Combining Theorems 3.2 and 3.5, it follows that in this case both Rf

and R′f are reducible to NP . We note, however, that even in this case it does
not necessarily hold that R′f ∈ PC (unless, of course, P = NP). See further
discussion following the proof.

Proof: The search problem of Rf is reduced to the search problem of R′f by
finding an optimal solution (for the given instance) and comparing its value to
the given threshold value. That is, we construct an oracle machine that solves
Rf by making a single query to R′f . Specifically, on input (x, v), the machine
issues the query x (to a solver for R′f), obtaining the optimal solution y (or an
indication ⊥ that R(x) = ∅), computes f (x, y), and returns y if f (x, y) ≥ v.
Otherwise (i.e., either y = ⊥ or f (x, y) < v), the machine returns an indication
that Rf (〈x, v〉) = ∅.

Turning to the opposite direction, we reduce the search problem of
R′f to the search problem of Rf by first finding the optimal value vx =
maxy∈R(x){f (x, y)} (by binary search on its possible values), and next finding
a solution of value vx . In both steps, we use oracle calls to Rf . For simplicity,
we assume that f assigns positive integer values (see Exercise 3.7), and let
� = poly(|x|) be such that f (x, y) ≤ 2� − 1 for every y ∈ R(x). Then, on
input x, we first find vx = max{f (x, y) : y∈R(x)}, by making oracle calls of

3.3 Self-Reducibility of Search Problems 83

the form 〈x, v〉. The point is that vx < v if and only if Rf (〈x, v〉) = ∅, which in
turn is indicated by the oracle answer⊥ (to the query 〈x, v〉). Making � queries,
we determine vx (see Exercise 3.8). Note that in case R(x) = ∅, all the answers
will indicate that Rf (〈x, v〉) = ∅, and we halt indicating that R′f (x) = ∅ (which
is indeed due to R(x) = ∅). Thus, we continue only if vx > 0, which indicates
that R′f (x) �= ∅. At this point, we make the query (x, vx), and halt returning the
oracle’s answer, which is a string y ∈ R(x) such that f (x, y) = vx .

Comments Regarding the Proof of Theorem 3.5. The first direction of the
proof uses the hypothesis that f is polynomial-time computable, whereas the
opposite direction only uses the fact that the optimal value lies in a finite space
of exponential size that can be “efficiently searched.” While the first direction is
proved using a Levin-reduction, this seems impossible for the opposite direction
(i.e., finding an optimal solution does not seem to be Levin-reducible to finding
a solution that exceeds a threshold).

On the Complexity of R f and R′
f . Here, we focus on the natural case in which

R ∈ PC and f is polynomial-time computable. In this case, Theorem 3.5 asserts
that Rf and R′f are computationally equivalent. A closer look reveals, however,
that Rf ∈ PC always holds, whereas R′f ∈ PC does not necessarily hold. That
is, the problem of finding a solution (for a given instance) that exceeds a given
threshold is in the class PC, whereas the problem of finding an optimal solution
is not necessarily in the class PC. For example, the problem of finding a clique
of a given size K in a given graph G is in PC, whereas the problem of finding a
maximum-size clique in a given graph G is not known (and is quite unlikely)3

to be in PC (although it is Cook-reducible to PC).
The foregoing discussion suggests that the class of problems that are

reducible to PC, which seems different from PC itself, is a natural and inter-
esting class. Indeed, for every R ∈ PC and polynomial-time computable f , the
former class contains R′f .

3.3 Self-Reducibility of Search Problems

The results to be presented in this section further justify the focus on decision
problems. Loosely speaking, these results show that for many natural relations

3 See Exercise 5.14.

84 3 Polynomial-time Reductions

R, the question of whether or not the search problem of R is efficiently solvable
(i.e., is in PF) is equivalent to the question of whether or not the “decision
problem implicit in R” (i.e., SR = {x : ∃y s.t. (x, y)∈R}) is efficiently solvable
(i.e., is in P). In fact, we will show that these two computational problems (i.e.,
R and SR) are computationally equivalent. Note that the decision problem of
SR is easily reducible to the search problem of R, and so our focus is on the
other direction. That is, we are interested in relations R for which the search
problem of R is reducible to the decision problem of SR . In such a case, we say
that R is self-reducible.4

Definition 3.6 (the decision implicit in a search and self-reducibility): The
decision problem implicit in the search problem of R is deciding membership
in the set SR = {x : R(x) �= ∅}, where R(x) = {y : (x, y) ∈ R}. The search
problem of R is called self-reducible if it can be reduced to the decision problem
of SR .

Note that the search problem of R and the problem of deciding membership in
SR refer to the same instances: The search problem requires finding an adequate
solution (i.e., given x find y ∈ R(x)), whereas the decision problem refers to
the question of whether such solutions exist (i.e., given x determine whether
or not R(x) is non-empty). Thus, SR corresponds to the intuitive notion of a
“decision problem implicit in R,” because SR is a decision problem that one
implicitly solves when solving the search problem of R. Indeed, for any R, the
decision problem of SR is easily reducible to the search problem for R (see
Exercise 3.10). It follows that if a search problem R is self-reducible, then it is
computationally equivalent to the decision problem SR .

Note that the general notion of a reduction (i.e., Cook-reduction) seems
inherent to the notion of self-reducibility. This is the case not only due to
syntactic considerations, but is also the case for the following inherent reason.
An oracle to any decision problem returns a single bit per invocation, while the
intractability of a search problem in PC must be due to the lack of more than a
“single bit of information” (see Exercise 3.12).

We shall see that self-reducibility is a property of many natural search prob-
lems (including all NP-complete search problems). This justifies the relevance
of decision problems to search problems in a stronger sense than established

4 Our usage of the term self-reducibility differs from the traditional one. Traditionally, a decision
problem is called (downward) self-reducible if it is Cook-reducible to itself via a reduction that
on input x only makes queries that are smaller than x (according to some appropriate measure
on the size of instances). Under some natural restrictions (i.e., the reduction takes the
disjunction of the oracle answers), such reductions yield reductions of search to decision (as
discussed in the main text). For further details, see Exercise 3.16.

3.3 Self-Reducibility of Search Problems 85

in Section 2.4: Recall that in Section 2.4, we showed that the fate of the search
problem class PC (wrt PF) is determined by the fate of the decision problem
class NP (wrt P). Here, we show that for many natural search problems in PC
(i.e., self-reducible ones), the fate of such an individual problem R (wrt PF) is
determined by the fate of the individual decision problem SR (wrt P), where SR

is the decision problem implicit in R. (Recall that R ∈ PC implies SR ∈ NP .)
Thus, here we have “fate reductions” at the level of individual problems, rather
than only at the level of classes of problems (as established in Section 2.4).

3.3.1 Examples

We now present a few search problems that are self-reducible. We start with
SAT (see Appendix A.2), the set of satisfiable Boolean formulae (in CNF), and
consider the search problem in which given a formula one should find a truth
assignment that satisfies it. The corresponding relation is denoted RSAT; that
is, (φ, τ) ∈ RSAT if τ is a satisfying assignment to the formula φ. Indeed, the
decision problem implicit in RSAT is SAT. Note that RSAT is in PC (i.e., it is
polynomially bounded, and membership of (φ, τ) in RSAT is easy to decide (by
evaluating a Boolean expression)).

Proposition 3.7 (RSAT is self-reducible): The search problem of RSAT is re-
ducible to SAT.

Thus, the search problem of RSAT is computationally equivalent to deciding
membership in SAT. Hence, in studying the complexity of SAT, we also address
the complexity of the search problem of RSAT.

Proof: We present an oracle machine that solves the search problem of RSAT by
making oracle calls to SAT. Given a formula φ, we find a satisfying assignment
to φ (in case such an assignment exists) as follows. First, we query SAT on φ

itself, and return an indication that there is no solution if the oracle answer is 0
(indicating φ �∈ SAT). Otherwise, we let τ , initiated to the empty string, denote
a prefix of a satisfying assignment of φ. We proceed in iterations, where in
each iteration we extend τ by one bit (as long as τ does not set all variables of
φ). This is done as follows: First we derive a formula, denoted φ′, by setting
the first |τ | + 1 variables of φ according to the values τ0. We then query SAT
on φ′ (which means that we ask whether or not τ0 is a prefix of a satisfying
assignment of φ). If the answer is positive, then we set τ ← τ0 else we set
τ ← τ1. This procedure relies on the fact that if τ is a prefix of a satisfying
assignment of φ and τ0 is not a prefix of a satisfying assignment of φ, then τ1
must be a prefix of a satisfying assignment of φ.

86 3 Polynomial-time Reductions

We wish to highlight a key point that has been blurred in the foregoing
description. Recall that the formula φ′ is obtained by replacing some variables
by constants, which means that φ′ per se contains Boolean variables as well as
Boolean constants. However, the standard definition of SAT disallows Boolean
constants in its instances.5 Nevertheless, φ′ can be simplified such that the
resulting formula contains no Boolean constants. This simplification is per-
formed according to the straightforward Boolean rules: That is, the constant
false can be omitted from any clause, but if a clause contains only occur-
rences of the constant false, then the entire formula simplifies to false.
Likewise, if the constant true appears in a clause, then the entire clause can
be omitted, and if all clauses are omitted, then the entire formula simplifies to
true. Needless to say, if the simplification process yields a Boolean constant,
then we may skip the query, and otherwise we just use the simplified form of
φ′ as our query.

Other Examples. Reductions analogous to the one used in the proof of Propo-
sition 3.7 can also be presented for other search problems (and not only for
NP-complete ones). Two such examples are searching for a 3-coloring of a
given graph and searching for an isomorphism between a given pair of graphs
(where the first problem is known to be NP-complete and the second problem
is believed not to be NP-complete). In both cases, the reduction of the search
problem to the corresponding decision problem consists of iteratively extending
a prefix of a valid solution, by making suitable queries in order to decide which
extension to use. Note, however, that in these two cases, the process of getting
rid of constants (representing partial solutions) is more involved. Specifically,
in the case of Graph 3-Colorability (resp., Graph Isomorphism), we need to
enforce a partial coloring of a given graph (resp., a partial isomorphism between
a given pair of graphs); see Exercises 3.13 and 3.14, respectively.

Reflection. The proof of Proposition 3.7 (as well as the proofs of similar
results) consists of two observations.

1. For every relation R in PC, it holds that the search problem of R is reducible
to the decision problem of S ′R = {〈x, y ′〉 : ∃y ′′ s.t. (x, y ′y ′′)∈R}. Such a
reduction is explicit in the proof of Theorem 2.6 and is implicit in the proof
of Proposition 3.7.

5 While the problem seems rather technical in the current setting (since it merely amounts to
whether or not the definition of SAT allows Boolean constants in its instances), the analogous
problem is far from being so technical in other cases (see Exercises 3.13 and 3.14).

3.3 Self-Reducibility of Search Problems 87

2. For specific R ∈ PC (e.g., SSAT), deciding membership in S ′R is reducible
to deciding membership in SR = {x : ∃y s.t. (x, y)∈R}. This is where the
specific structure of SAT was used, allowing for a direct and natural trans-
formation of instances of S ′R to instances of SR .
We comment that if SR is NP-complete, then S ′R , which is always in NP ,
is reducible to SR by the mere hypothesis that SR is NP-complete; this
comment is elaborated in the following Section 3.3.2.

For an arbitrary R ∈ PC, deciding membership in S ′R is not necessarily
reducible to deciding membership in SR . Furthermore, deciding membership in
S ′R is not necessarily reducible to the search problem of R. (See Exercises 3.18,
3.19, and 3.20.)

In general, self-reducibility is a property of the search problem and not of
the decision problem implicit in it. Furthermore, under plausible assumptions
(e.g., the intractability of factoring), there exist relations R1, R2 ∈ PC having
the same implicit-decision problem (i.e., {x : R1(x) �= ∅} = {x : R2(x) �= ∅})
such that R1 is self-reducible but R2 is not (see Exercise 3.21). However, for
many natural decision problems, this phenomenon does not arise; that is, for
many natural NP-decision problems S, any NP-witness relation associated with
S (i.e., R ∈ PC such that {x : R(x) �= ∅} = S) is self-reducible. For details, see
the following Section 3.3.2.

3.3.2 Self-Reducibility of NP-Complete Problems

In this section, we assume that the reader has heard of NP-completeness.
Actually, we only need the reader to know the definition of NP-completeness
(i.e., a set S is NP-complete if S ∈ NP and every set in NP is reducible to S).
Indeed, the reader may prefer to skip this section and return to it after reading
Section 4.1 (or even later).

Recall that, in general, self-reducibility is a property of the search problem
R and not of the decision problem implicit in it (i.e., SR = {x : R(x) �= ∅}). In
contrast, in the special case of NP-complete problems, self-reducibility holds
for any witness relation associated with the (NP-complete) decision problem.
That is, all search problems that refer to finding NP-witnesses for any NP-
complete decision problem are self-reducible.

Theorem 3.8: For every R in PC such that SR is NP-complete, the search
problem of R is reducible to deciding membership in SR .

In many cases, as in the proof of Proposition 3.7, the reduction of the
search problem to the corresponding decision problem is quite natural. The

88 3 Polynomial-time Reductions

following proof presents a generic reduction (which may be “unnatural” in
some cases).

Proof: In order to reduce the search problem of R to deciding SR , we compose
the following two reductions:

1. A reduction of the search problem of R to deciding membership in S ′R =
{〈x, y ′〉 : ∃y ′′ s.t. (x, y ′y ′′)∈R}.
As stated in Section 3.3.1 (in the paragraph titled “Reflection”), such a
reduction is implicit in the proof of Proposition 3.7 (as well as being explicit
in the proof of Theorem 2.6).

2. A reduction of S ′R to SR .
This reduction exists by the hypothesis that SR is NP-complete and the
fact that S ′R ∈ NP . (Note that we need not assume that this reduction is a
Karp-reduction, and furthermore it may be an “unnatural” reduction).

The theorem follows.

3.4 Digest and General Perspective

Recall that we presented (polynomial-time) reductions as (efficient) algorithms
that use functionally specified subroutines. That is, an efficient reduction of
problem � to problem �′ is an efficient algorithm that solves � while making
subroutine calls to any procedure that solves �′. This presentation fits the
“natural” (“positive”) application of such a reduction; that is, combining such
a reduction with an efficient implementation of the subroutine (that solves �′),
we obtain an efficient algorithm for solving �.

We note that the existence of a polynomial-time reduction of � to �′ actually
means more than the latter implication. For example, a moderately inefficient
algorithm for solving �′ also yields something for �; that is, if �′ is solvable
in time t ′ then � is solvable in time t such that t(n) = poly(n) · t ′(poly(n));
for example, if t ′(n) = nlog2 n then t(n) = poly(n)1+log2 poly(n) = nO(log n). Thus,
the existence of a polynomial-time reduction of � to �′ yields a general upper
bound on the time complexity of � in terms of the time complexity of �′.

We note that tighter relations between the complexity of � and �′ can be
established whenever the reduction satisfies additional properties. For example,
suppose that � is polynomial-time reducible to �′ by a reduction that makes
queries of linear length (i.e., on input x each query has length O(|x|)). Then, if
�′ is solvable in time t ′ then � is solvable in time t such that t(n) = poly(n) ·
t ′(O(n)); for example, if t ′(n) = 2

√
n then t(n) = 2O(log n)+√O(n) = 2O(

√
n). We

Exercises 89

further note that bounding other complexity measures of the reduction (e.g.,
its space complexity) allows for relating the corresponding complexities of the
problems.

In contrast to the foregoing “positive” applications of polynomial-time
reductions, the theory of NP-completeness (presented in Chapter 4) is famous
for its “negative” application of such reductions. Let us elaborate. The fact that
� is polynomial-time reducible to �′ means that if solving �′ is feasible, then
solving � is feasible. The direct “positive” application starts with the hypothe-
sis that �′ is feasibly solvable and infers that so is �. In contrast, the “negative”
application uses the counter-positive: It starts with the hypothesis that solving
� is infeasible and infers that the same holds for �′.

Exercises

Exercise 3.1 (a quiz)

1. What are Cook-reductions?
2. What are Karp-reductions and Levin-reductions?
3. What is the motivation for defining all of these types of reductions?
4. Can any problem in PC be reduced to some problem in NP?
5. What is self-reducibility and how does it relate to the previous question?
6. List five search problems that are self-reducible. (See Exercise 3.15.)

Exercise 3.2 Verify the following properties of Cook-reductions:

1. Cook-reductions preserve efficient solvability: If � is Cook-reducible to �′

and �′ is solvable in polynomial time, then so is �.
2. Cook-reductions are transitive: If � is Cook-reducible to �′ and �′ is

Cook-reducible to �′′, then � is Cook-reducible to �′′.
3. Cook-reductions generalize efficient decision procedures: If � is solvable

in polynomial time, then it is Cook-reducible to any problem �′.

In continuation of the last item, show that a problem � is solvable in polynomial
time if and only if it is Cook-reducible to a trivial problem (e.g., deciding
membership in the empty set).

Exercise 3.3 Show that Karp-reductions (and Levin-reductions) are transitive.

Exercise 3.4 Show that some decision problems are not Karp-reducible to their
complement (e.g., the empty set is not Karp-reducible to {0, 1}∗).
A popular exercise of dubious nature is showing that any decision problem in
P is Karp-reducible to any non-trivial decision problem, where the decision

90 3 Polynomial-time Reductions

problem regarding a set S is called non-trivial if S �= ∅ and S �= {0, 1}∗. It
follows that every non-trivial set in P is Karp-reducible to its complement.

Exercise 3.5 (Exercise 2.7, reformulated) Show that for every search problem
R ∈ PC there exists a polynomial p and a search problem R′ ∈ PC that is
computationally equivalent to R such that for every x it holds that R′(x) ⊆
{0, 1}p(|x|). Formulate and prove a similar fact for NP-proof systems. Similarly,
revisit Exercise 2.9.

Exercise 3.6 (reducing search problems to optimization problems) For every
polynomially bounded relation R (resp., R ∈ PC), present a function f (resp.,
a polynomial-time computable function f) such that the search problem of R

is computationally equivalent to the search problem in which given (x, v) one
has to find a y ∈ {0, 1}poly(|x|) such that f (x, y) ≥ v.

Guideline: Let f (x, y) = 1 if (x, y) ∈ R and f (x, y) = 0 otherwise.

Exercise 3.7 In the proof of the second direction of Theorem 3.5, we made the
simplifying assumption that f assigns values that are both integral and positive.

1. Justify the aforementioned assumption by showing that for any rational-
valued function f there exists a function g as in the assumption such that
Rf (resp., R′f) is computationally equivalent to Rg (resp., R′g), where Rf ,R′f
and Rg,R

′
g are as in Theorem 3.5.

2. Extend the current proof of Theorem 3.5 so that it also applies to the general
case in which f is rational-valued.

Indeed, the two items provide alternative justifications for the simplifying
assumption made in the said proof.

Exercise 3.8 (an application of binary search) Show that using � binary
queries of the form “is z < v” it is possible to determine the value of an
integer z that is a priori known to reside in the interval [0, 2� − 1].

Guideline: Consider a process that iteratively halves the interval in which z is
known to reside in.

Exercise 3.9 Prove that NP is reducible to PC.

Guideline: Consider the search problem defined in Eq. (2.1).

Exercise 3.10 Prove that for any R, the decision problem of SR is easily
reducible to the search problem for R, and that if R is in PC then SR is in
NP .

Exercises 91

Guideline: Consider a reduction that invokes the search oracle and answer 1 if
and only if the oracle returns some string (rather than the “no solution” symbol).

Exercise 3.11 (Cook-reductions that make a single query) Let M be a poly-
nomial-time oracle machine that makes at most one query. Show that the
computation of M can be represented by two polynomial-time computable
functions f and g such that MF (x) = g(x, F (f (x))), where MF (x) denotes
the output of M on input x when given oracle access to the function F . Discuss
the relationship between such Cook-reductions and Karp-reductions (resp.,
Levin-reductions).

Exercise 3.12 Prove that if R ∈ PC is reducible to SR by a Cook-reduction that
makes a logarithmic number of queries, then R ∈ PF . Thus, self-reducibility
for problems in PC \ PF requires making more than logarithmically many
queries. More generally, prove that if R ∈ PC \ PF is Cook-reducible to any
decision problem, then this reduction makes more than a logarithmic number
of queries.

Guideline: Note that the oracle answers can be emulated by trying all possibil-
ities, and that (for R ∈ PC) the correctness of the output of the oracle machine
can be efficiently tested.

Exercise 3.13 Show that the standard search problem of Graph 3-Colorability6

is self-reducible, where this search problem consists of finding a 3-coloring for
a given input graph.

Guideline: Iteratively extend the current prefix of a 3-coloring of the graph by
making adequate oracle calls to the decision problem of Graph 3-Colorability.
Specifically, encode the question of whether or not (χ1, . . . , χt) ∈ {1, 2, 3}t is
a prefix of a 3-coloring of the graph G as a query regarding the 3-colorability
of an auxiliary graph G′. Note that we merely need to check whether G has
a 3-coloring in which the equalities and inequalities induced by the (prefix of
the) coloring (χ1, . . . , χt) hold. This can be done by adequate gadgets (e.g.,
inequality is enforced by an edge between the corresponding vertices, whereas
equality is enforced by an adequate subgraph that includes the relevant vertices
as well as auxiliary vertices).

Exercise 3.14 Show that the standard search problem of Graph Isomorphism7

is self-reducible, where this search problem consists of finding an isomorphism
between a given pair of graphs.

6 See Appendix A.1.
7 See Appendix A.1.

92 3 Polynomial-time Reductions

Guideline: Iteratively extend the current prefix of an isomorphism between the
two N -vertex graphs by making adequate oracle calls to the decision problem
of Graph Isomorphism. Specifically, encode the question of whether or not
(π1, . . . , πt) ∈ [N]t is a prefix of an isomorphism between G1 = ([N], E1)
and G2 = ([N], E2) as a query regarding isomorphism between two auxiliary
graphs G′

1 and G′
2. This can be done by attaching adequate gadgets to pairs of

vertices that we wish to be mapped to each other (by the isomorphism). For
example, we may connect each of the vertices in the i th pair to an auxiliary star
consisting of (N + i) vertices.

Exercise 3.15 List five search problems that are self-reducible.

Guideline: Note that three such problems were mentioned in Section 3.3.1.
Additional examples may include any NP-complete search problem (see Sec-
tion 3.3.2) as well as any problem in PF .

Exercise 3.16 (downward self-reducibility) We say that a set S is downward

self-reducible if there exists a Cook-reduction of S to itself that only makes
queries that are each shorter than the reduction’s input (i.e., if on input x the
reduction makes the query q then |q| < |x|).8
1. Show that SAT is downward self-reducible with respect to a natural encoding

of CNF formulae. Note that this encoding should have the property that
instantiating a variable in a formula results in a shorter formula.
A harder exercise consists of showing that Graph 3-Colorability is downward
self-reducible with respect to some reasonable encoding of graphs. Note that
this encoding has to be selected carefully.

Guideline: For the case of SAT use the fact that φ ∈ SAT if and only if
either φ0 ∈ SAT or φ1 ∈ SAT, where φσ denotes the formula φ with the first
variable instantiated to σ . For the case of Graph 3-Colorability, partition all
possible 3-colorings according to whether or not they assign the first pair
of unconnected vertices the same color. Enforce an inequality constraint
by connecting the two vertices, and enforce an equality constraint by com-
bining the two vertices (rather than by connecting them via a gadget that
contains auxiliary vertices as suggested in the guideline to Exercise 3.13).
Use an encoding that guarantees that any (n+ 1)-vertex graph has a longer
description than any n-vertex graph, and that adding edges decreases the
description length.9

8 Note that on some instances, the reduction may make no queries at all. (This option prevents a
possible non-viability of the definition due to very short instances.)

9 For example, encode any n-vertex graph that has m edges as an (n3 − 2m log2 n)-bit long string
that contains the (adequately padded) list of all pairs of unconnected vertices.

Exercises 93

2. Suppose that S is downward self-reducible by a reduction that outputs the
disjunction of the oracle answers.10 Show that in this case, S is characterized
by a witness relation R ∈ PC (i.e., S = {x : R(x) �= ∅}) that is self-reducible
(i.e., the search problem of R is Cook-reducible to S). Needless to say, it
follows that S ∈ NP .

Guideline: Define R such that (x0, 〈x1, . . . , xt 〉) is in R if xt ∈ S ∩ {0, 1}O(1)

and, for every i ∈ {0, 1, . . . , t − 1}, on input xi the self-reduction makes a
set of queries that contains the string xi+1. Prove that if x0 ∈ S then a
sequence (x0, 〈x1, . . . , xt 〉) ∈ R exists (by forward induction (which selects
for each xi ∈ S a query xi+1 in S)). Next, prove that (x0, 〈x1, . . . , xt 〉) ∈ R

implies x0 ∈ S (by backward induction from xt ∈ S (which infers from the
hypothesis xi+1 ∈ S that xi is in S)). Finally, prove that R ∈ PC (by noting
that t ≤ |x0|).

Note that the notion of downward self-reducibility may be generalized in some
natural ways. For example, we may also say that S is downward self-reducible
in case it is computationally equivalent via Karp-reductions to some set that is
downward self-reducible (in the foregoing strict sense). Note that Part 2 still
holds.

Exercise 3.17 (compressing Karp-reductions) In continuation of Exer-
cise 3.16, we consider downward self-reductions that make at most one query
(i.e., Cook-reductions of decision problems to themselves that make at most
one query such that this query is shorter than the reduction’s input). Note that
compressing Karp-reductions are a special case, where the Karp-reduction f

is called compressing if |f (x)| < |x| holds for all but finitely many x’s. Prove
that if S is downward self-reducible by a Cook-reduction that makes at most
one query, then S ∈ P .

Guideline: Consider first the special case of compressing Karp-reductions.
Observe that for every x and i (which may depend on x), it holds that x ∈ S

if and only if f i(x) ∈ S, where f i(x) denotes the Karp-reduction f iterated i

times. When extending the argument to the general case, use Exercise 3.11.

Exercise 3.18 (NP-problems that are not self-reducible)

1. Prove that if a search problem R is not self-reducible then (1) R �∈ PF and
(2) the set S ′R = {〈x, y ′〉 : ∃y ′′ s.t. (x, y ′y ′′)∈R} is not Cook-reducible to
SR = {x : ∃y s.t. (x, y)∈R}.

10 Note that this condition holds for both problems considered in the previous item.

94 3 Polynomial-time Reductions

2. Assuming that P �= NP ∩ coNP , where coNP def= {{0, 1}∗\S : S∈NP},
show that there exists a search problem that is inPC but is not self-reducible.

Guideline: Given S ∈ (NP ∩ coNP) \ P , present relations R1, R2 ∈ PC
such that S = {x : R1(x) �= ∅} = {x : R2(x) = ∅}. Then, consider the rela-
tion R = {(x, 1y) : (x, y) ∈ R1} ∪ {(x, 0y) : (x, y) ∈ R2}, and prove that
R ∈ PC \ PF . Noting that SR = {0, 1}∗, infer that R is not self-reducible.
(Actually, R = R1 ∪ R2 will work, too.)

Exercise 3.19 (extending generic solutions’ prefixes versus PC and PF) In
contrast to what one may guess, extending solutions’ prefixes (equiv., deciding
membership in S ′R = {〈x, y ′〉 : ∃y ′′ s.t. (x, y ′y ′′)∈R}) may not be easy even if
finding solutions is easy (i.e., R ∈ PF). Specifically, assuming that P �= NP ,
present a search problem R in PC ∩ PF such that deciding S ′R is not reducible
to the search problem of R.

Guideline: Consider the relation R = {(x, 0x) : x ∈ {0, 1}∗} ∪ {(x, 1y) :
(x, y) ∈ R′}, where R′ is an arbitrary relation in PC \ PF , and note that
R ∈ PC. Prove that R ∈ PF but S ′R �∈ P .

Exercise 3.20 In continuation of Exercise 3.18, present a natural search prob-
lem R in PC such that if factoring integers is intractable, then the search
problem R (and so also S ′R) is not reducible to SR .

Guideline: As in Exercise 2.6, consider the relation R such that (n, q) ∈ R if
the integer q is a non-trivial divisor of the integer n. Use the fact that the set of
prime numbers is in P .

Exercise 3.21 In continuation of Exercises 3.18 and 3.20, show that under suit-
able assumptions there exists relations R1, R2 ∈ PC having the same implicit-
decision problem (i.e., {x : R1(x) �= ∅} = {x : R2(x) �= ∅}) such that R1 is self-
reducible but R2 is not. Specifically:

1. Prove the existence of such relations assuming that P �= NP ∩ coNP;
2. Present natural relations assuming the intractability of factoring.

Hint: see Exercise 2.6.

Exercise 3.22 Using Theorem 3.2, provide an alternative (presentation of
the) proof of Theorem 3.8 without referring to the set S ′R = {〈x, y ′〉 :
∃y ′′ s.t. (x, y ′y ′′)∈R}.11

11 Indeed, this is merely a matter of presentation, since the proof of Theorem 3.2 refers to S′R .
Thus, when using Theorem 3.2, the decision problem (in NP) to which we reduce R is
arbitrary only from the perspective of the theorem’s statement (but not from the perspective of
its proof).

Exercises 95

R

RSarbitrary
RS

RSATR

SAT

R

S’R RS

Figure 3.3. The three proofs of Theorem 3.8: The original proof of Theorem 3.8
is depicted on the left, the outline of Exercise 3.22 is in the middle, and the outline
of Exercise 3.23 is on the right. The upper ellipses represent the class PC, and the
lower ellipses represent NP .

Guideline: Theorem 3.2 implies that R is Cook-reducible to some decision
problem in NP , which in turn is reducible to SR (due to the NP-completeness
of SR).

Exercise 3.23 (Theorem 3.8, revisited) In continuation of Exercise 3.22, using
Proposition 3.7 and the fact that RSAT is PC-complete (as per Definition 4.2),
provide an alternative proof of Theorem 3.8 (again, without referring to the set
S ′R). See Figure 3.3.

Guideline: Reduce the search problem of R to deciding SR , by composing the
following three reductions: (1) a reduction of the search problem of R to the
search problem of RSAT, (2) a reduction of the search problem of RSAT to SAT,
and (3) a reduction of SAT to SR .

4

NP-Completeness

Overview: In light of the difficulty of settling the P-vs-NP Question,
when faced with a hard problem H in NP, we cannot expect to prove that
H is not in P (unconditionally), because this would imply P �= NP . The
best we can expect is a conditional proof that H is not in P, based on
the assumption that NP is different from P. The contrapositive is proving
that if H is in P, then so is any problem in NP (i.e., NP equals P). One
possible way of proving such an assertion is showing that any problem in
NP is polynomial-time reducible to H. This is the essence of the theory
of NP-completeness.

In this chapter we prove the existence of NP-complete problems, that
is, the existence of individual problems that “effectively encode” a wide
class of seemingly unrelated problems (i.e., all problems in NP). We also
prove that deciding the satisfiability of a given Boolean formula is NP-
complete. Other NP-complete problems include deciding whether a given
graph is 3-colorable and deciding whether a given graph contains a clique
of a given size. The core of establishing the NP-completeness of these
problems is showing that each of them can encode any other problem in
NP. Thus, these demonstrations provide a method of encoding instances
of any NP problem as instances of the target NP-complete problem.

Organization. We start by defining NP-complete problems (see Sec-
tion 4.1) and demonstrating their existence (see Section 4.2). Next, in
Section 4.3, we present several natural NP-complete problems, including
circuit and formula satisfiability (i.e., CSAT and SAT), set cover, and
Graph 3-Colorability. In Section 4.4, assuming that P �= NP , we prove
the existence of NP problems that are neither in P nor NP-complete.

96

Teaching Notes 97

Teaching Notes

We are sure that many students have heard of NP-completeness before, but
we suspect that most of them have missed some important conceptual points.
Specifically, we fear that they have missed the point that the mere existence of
NP-complete problems is amazing (let alone that these problems include natural
ones such as SAT). We believe that this situation is a consequence of presenting
the detailed proof of Cook’s Theorem right after defining NP-completeness. In
contrast, we suggest starting with a proof that Bounded Halting is NP-complete.

We suggest establishing the NP-completeness of SAT by a reduction from
the circuit satisfaction problem (CSAT), after establishing the NP-completeness
of the latter. Doing so allows us to decouple two important parts of the proof
of the NP-completeness of SAT: the emulation of Turing machines by circuits
and the emulation of circuits by formulae with auxiliary variables.

In view of the importance that we attach to search problems, we also address
the NP-completeness of the corresponding search problems. While it could have
been more elegant to derive the NP-completeness of the various decision prob-
lems by an immediate corollary to the NP-completeness of the corresponding
search problems (see Exercise 4.2), we chose not to do so. Instead, we first
derive the standard results regarding decision problems, and next augment
this treatment in order to derive the corresponding results regarding search
problems. We believe that our choice will better serve most students.

The purpose of Section 4.3.2 is to expose the students to a sample of NP-
completeness results and proof techniques. We believe that this traditional
material is insightful, but one may skip it if pressed for time.

We mention that the reduction presented in the proof of Proposition 4.10 is
not the “standard” one, but is rather adapted from the FGLSS-reduction [10].
This is done in anticipation of the use of the FGLSS-reduction in the context of
the study of the complexity of approximation (cf., e.g., [15] or [13, Sec. 10.1.1]).
Furthermore, although this reduction creates a larger graph, we find it clearer
than the “standard” reduction.

Section 4.3.5 provides a high-level discussion of some positive applications
of NP-completeness. The core of this section is a brief description of three types
of probabilistic proof systems and the role of NP-completeness in establishing
three fundamental results regarding them. For further details on probabilistic
proof systems, we refer the interested reader to [13, Chap. 9]. Since probabilistic
proof systems provide natural extensions of the notion of an NP-proof system,
which underlies our definition of NP , we recommend Section 4.3.5 (with a
possible augmentation based on [13, Chap. 9]) as the most appropriate choice of
advanced material that may accompany the basic material covered in this book.

98 4 NP-Completeness

This chapter contains some additional advanced material that is not intended
for presentation in class. One such example is the assertion of the existence
of problems in NP that are neither in P nor NP-complete (i.e., Theorem 4.12).
Indeed, we recommend either stating Theorem 4.12 without a proof or merely
presenting the proof idea. Another example is Section 4.5, which seems unsuit-
able for most undergraduate students. Needless to say, Section 4.5 is definitely
inappropriate for presentation in an undergraduate class, but it may be useful
for guiding a discussion in a small group of interested students.

4.1 Definitions

Loosely speaking, a problem in NP is called NP-complete if any efficient
algorithm for it can be converted into an efficient algorithm for any other prob-
lem in NP. Hence, if NP is different from P, then no NP-complete problem
can be in P. The aforementioned conversion of an efficient algorithm for one
NP-problem1 into efficient algorithms for other NP-problems is actually per-
formed by a reduction. Thus, a problem (in NP) is NP-complete if any problem
in NP is efficiently reducible to it, which means that each individual NP-
complete problem “encodes” all problems in NP.

The standard definition of NP-completeness refers to decision problems,
but we will also present a definition of NP-complete (or rather PC-complete)
search problems. In both cases, NP-completeness of a problem � combines
two conditions:

1. � is in the class (i.e., � being in NP or PC, depending on whether � is a
decision or a search problem).

2. Each problem in the class is reducible to �. This condition is called NP-

hardness.

Although a perfectly good definition of NP-hardness could have allowed
arbitrary Cook-reductions, it turns out that Karp-reductions (resp., Levin-
reductions) suffice for establishing the NP-hardness of all natural NP-complete
decision (resp., search) problems. Consequently, NP-completeness is com-
monly defined using this restricted notion of a polynomial-time reduction.

Definition 4.1 (NP-completeness of decision problems, restricted notion): A
set S is NP-complete if it is in NP and every set in NP is Karp-reducible
to S.

1 I.e., a problem in NP.

4.2 The Existence of NP-Complete Problems 99

A set is NP-hard if every set in NP is Karp-reducible to it (i.e., the class NP
is Karp-reducible to it). Indeed, there is no reason to insist on Karp-reductions
(rather than using arbitrary Cook-reductions), except that the restricted notion
suffices for all known demonstrations of NP-completeness and is easier to work
with. An analogous definition applies to search problems.

Definition 4.2 (NP-completeness of search problems, restricted notion): A
binary relation R is PC-complete if it is in PC and every relation in PC is
Levin-reducible to R.

Throughout the book, we will sometimes abuse the terminology and refer to
search problems as NP-complete (rather than PC-complete). Likewise, we will
say that a search problem is NP-hard (rather than PC-hard) if every relation
in PC is Levin-reducible to it. Note that if R is PC-complete, then SR is
NP-complete, where SR = {x : ∃y s.t. (x, y)∈R} (see Exercise 4.2).

We stress that the mere fact that we have defined a property (i.e., NP-
completeness) does not mean that there exist objects that satisfy this property.
It is indeed remarkable that NP-complete problems do exist. Such problems
are “universal” in the sense that efficiently solving them allows for efficiently
solving any other (reasonable) problem (i.e., problems in NP).

4.2 The Existence of NP-Complete Problems

We suggest not to confuse the mere existence of NP-complete problems, which
is remarkable by itself, with the even more remarkable existence of “natural”
NP-complete problems. The following proof delivers the first message and also
focuses on the essence of NP-completeness, rather than on more complicated
technical details. The essence of NP-completeness is that a single computa-
tional problem may “effectively encode” a wide class of seemingly unrelated
problems.

Theorem 4.3: There exist NP-complete relations and sets.

Proof: The proof (as well as any other NP-completeness proofs) is based on
the observation that some decision problems in NP (resp., search problems
in PC) are “rich enough” to encode all decision problems in NP (resp., all
search problems in PC). This fact is most obvious for the “generic” decision
and search problems, denoted Su and Ru (and defined next), which are used to
derive the simplest proof of the current theorem.

We consider the following relation Ru and the decision problem Su implicit
in Ru (i.e., Su = {x : ∃y s.t. (x, y)∈Ru}). Both problems refer to the same

100 4 NP-Completeness

type of instances, which in turn have the form x = 〈M,x, 1t 〉, where M is a
description of a (standard deterministic) Turing machine, x is a string, and t

is a natural number. The number t is given in unary (rather than in binary) in
order to guarantee that bounds of the form poly(t) are polynomial (rather than
exponential) in the instance’s length. (This implies that various complexity
measures (e.g., time and length) that can be upper-bounded by a polynomial
in t yield upper bounds that are polynomial in the length of the instance (i.e.,
|〈M,x, 1t 〉|, which is linearly related to |M| + |x| + t).) A solution to the
instance x = 〈M,x, 1t 〉 (of Ru) is a string y (of length at most t)2 such that M

accepts the input pair (x, y) within t steps.

Definition. The relation Ru consists of pairs (〈M,x, 1t 〉, y) such that M

accepts the input pair (x, y) within t steps, where |y| ≤ t .

The corresponding set Su
def= {x : ∃y s.t. (x, y) ∈ Ru} consists of triples

〈M,x, 1t 〉 such that machine M accepts some input of the form (x, ·)
within t steps.

It is easy to see that Ru is in PC and that Su is in NP . Indeed, Ru is
recognizable by a universal Turing machine, which on input (〈M,x, 1t 〉, y)
emulates (t steps of) the computation of M on (x, y). Note that this emulation
can be conducted in poly(|M| + |x| + t) = poly(|(〈M,x, 1t 〉, y)|) steps, and
recall that Ru is polynomially bounded (by its very definition). (The fact that
Su ∈ NP follows similarly.)3 We comment that u indeed stands for universal
(i.e., universal machine), and the proof extends to any reasonable model of
computation (which has adequate universal machines).

We now turn to show that Ru and Su are NP-hard in the adequate sense
(i.e., Ru is PC-hard and Su is NP-hard). We first show that any set in NP
is Karp-reducible to Su. Let S be a set in NP and let us denote its witness
relation by R; that is, R is in PC and x ∈ S if and only if there exists y such
that (x, y) ∈ R. Let pR be a polynomial bounding the length of solutions in R

(i.e., |y| ≤ pR(|x|) for every (x, y) ∈ R), let MR be a polynomial-time machine
deciding membership (of alleged (x, y) pairs) in R, and let tR be a polynomial
bounding its running time. Then, the desired Karp-reduction maps an instance

2 Instead of requiring that |y| ≤ t , one may require that M is “canonical” in the sense that it reads
its entire input before halting. Thus, if |y| > t , then such a canonical machine M does not halt
(let alone accept) within t steps when given the input pair (x, y).

3 Alternatively, Su ∈ NP follows from Ru ∈ PC, because for every R ∈ PC it holds that
SR = {x : ∃y s.t. (x, y) ∈ R} is in NP .

4.2 The Existence of NP-Complete Problems 101

x (for S) to the instance 〈MR, x, 1tR (|x|+pR (|x|))〉 (for Su); that is,

x �→ f (x)
def= 〈MR, x, 1tR (|x|+pR (|x|))〉. (4.1)

Note that this mapping can be computed in polynomial time, and that x ∈ S if
and only if f (x) = 〈MR, x, 1tR (|x|+pR (|x|))〉 ∈ Su. Details follow.

First, note that the mapping f does depend (of course) on S, and so it
may depend on the fixed objects MR , pR and tR (which depend on S). Thus,
computing f on input x calls for printing the fixed string MR , copying x, and
printing a number of 1’s that is a fixed polynomial in the length of x. Hence, f

is polynomial-time computable. Second, recall that x ∈ S if and only if there
exists y such that |y| ≤ pR(|x|) and (x, y) ∈ R. Since MR accepts (x, y) ∈ R

within tR(|x| + |y|) steps, it follows that x ∈ S if and only if there exists y such
that |y| ≤ pR(|x|) and MR accepts (x, y) within tR(|x| + |y|) steps.4 It follows
that x ∈ S if and only if f (x) ∈ Su.

We now turn to the search version. For reducing the search problem of any
R ∈ PC to the search problem of Ru, we use essentially the same reduction.
On input an instance x (for R), we make the query 〈MR, x, 1tR (|x|+pR (|x|))〉 to
the search problem of Ru and return whatever the latter returns. Note that if
x �∈ S, then the answer will be “no solution,” whereas for every x and y it
holds that (x, y) ∈ R if and only if (〈MR, x, 1tR (|x|+pR (|x|))〉, y) ∈ Ru. Thus, a
Levin-reduction of R to Ru consists of the pair of functions (f, g), where f

is the foregoing Karp-reduction and g(x, y) = y. Note that, indeed, for every
(f (x), y) ∈ Ru, it holds that (x, g(x, y)) = (x, y) ∈ R.

Digest: Generic Reductions. The reduction presented in the proof of The-
orem 4.3 is called “generic” because it (explicitly) refers to any (generic)
NP-problem. That is, we actually presented a scheme for the design of reduc-
tions from any set S in NP (resp., relation R in PC) to the set Su (resp.,
relation Ru). When plugging in a specific set S (resp., relation R), or rather by
providing the corresponding machine MR and polynomials pR, tR , we obtain
a specific Karp-reduction f (as described in the proof). Note that the fact that
we not only provide a Karp-reduction of each S ∈ NP to Su but also provide
a scheme for deriving such reductions, is more than required in the definition
of NP-completeness.5

4 This presentation assumes that pR and tR are monotonically non-decreasing, which holds
without loss of generality.

5 Advanced comment: We comment that it is hard to conceive of a demonstration of
NP-completeness that does not yield a scheme for the design of reductions from any given

102 4 NP-Completeness

Digest: the Role of 1t in the Definition of Ru. The role of including 1t in the
description of the problem instance is to allow placement of Ru in PC (resp., Su
inNP). In contrast, consider the relation R′u that consists of pairs (〈M,x, t〉, y)
such that M accepts 〈x, y〉 within t steps. Indeed, the difference between Ru

and R′u is that in Ru the time bound t appears in unary notation, whereas in R′u
it appears in binary. Note that although R′u is PC-hard (see Exercise 4.3), it is
not in PC (because membership in R′u cannot be decided in polynomial time
(see [13, §4.2.1.2])). Going even further, we note that omitting t altogether from
the problem instance yields a search problem that is not solvable at all. That

is, consider the relation RH
def= {(〈M,x〉, y) : M(x, y) = 1} (which is related

to the Halting Problem). Indeed, the search problem of any relation in PC is
Karp-reducible to the search problem of RH , but RH is not solvable at all (i.e.,
there exists no algorithm that halts on every input such that on input x = 〈M,x〉
the algorithm outputs a string y in RH (x) if such a y exists).

Bounded Halting and Non-Halting

We note that the problem shown to be NP-complete in the proof of Theo-
rem 4.3 is related to the following two problems, called Bounded Halting

and Bounded Non-Halting. Fixing any programming language, the instance
to each of these problems consists of a program π and a time bound t (presented
in unary).

1. The decision version of Bounded Halting consists of determining
whether or not there exists an input (of length at most t) on which the
program π halts in t steps, whereas the search problem consists of finding
such an input.

2. The decision version of Bounded Non-Halting consists of determining
whether or not there exists an input (of length at most t) on which the
program π does not halt in t steps, whereas the search problem consists of
finding such an input.

It is easy to prove that both problems are NP-complete (see Exercise 4.4). Note
that the two (decision) problems are not complementary (i.e., (π, 1t) may be a
yes-instance of both decision problems).6

NP-problem to the target NP-complete problem. On the other hand, our scheme requires
knowledge of a machine MR and polynomials pR, tR that correspond to the given relation R,
rather than only knowledge of the relation R itself. But, again, it is hard to conceive of an
alternative (i.e., how is R to be represented to us otherwise?).

6 Indeed, (π, 1t) can not be a no-instance of both decision problems, but this does not make the
problems complementary. In fact, the two decision problems yield a three-way partition of the

4.3 Some Natural NP-Complete Problems 103

The decision version of Bounded Non-Halting refers to a fundamen-
tal computational problem in the area of program verification, specifically, to
the problem of determining whether a given program halts within a given
time bound on all inputs of a given length.7 We have mentioned Bounded

Halting because it is often referred to in the literature, but we believe that
Bounded Non-Halting is much more relevant to the project of program ver-
ification (because one seeks programs that halt on all inputs (i.e., no-instances
of Bounded Non-Halting), rather than programs that halt on some input).

Reflection. The fact that Bounded Non-Halting is probably intractable
(i.e., is intractable provided that P �= NP) is even more relevant to the project
of program verification than the fact that the Halting Problem is undecidable.
The reason is that the latter problem (as well as other related undecidable
problems) refers to arbitrarily long computations, whereas the former problem
refers to an explicitly bounded number of computational steps. Specifically,
Bounded Non-Halting is concerned with the existence of an input that
causes the program to violate a certain condition (i.e., halting) within a given
time bound.

In light of the foregoing discussion, the common practice of “bashing”
Bounded (Non-)Halting as an “unnatural” problem seems very odd at an age
in which computer programs play such a central role. (Nevertheless, we will
use the term “natural” in this traditionally and odd sense in the next title,
which actually refers to natural computational problems that seem unrelated to
computation.)

4.3 Some Natural NP-Complete Problems

Having established the mere existence of NP-complete problems, we now turn
to proving the existence of NP-complete problems that do not (explicitly) refer
to computation in the problem’s definition. We stress that thousands of such
problems are known (and a list of several hundreds can be found in [11]).

instances (π, 1t): (1) pairs (π, 1t) such that for every input x (of length at most t) the
computation of π (x) halts within t steps, (2) pairs (π, 1t) for which such halting occurs on some
inputs but not on all inputs, and (3) pairs (π, 1t) such that there exists no input (of length at
most t) on which π halts in t steps. Note that instances of type (1) are exactly the no-instances
of Bounded Non-Halting, whereas instances of type (3) are exactly the no-instances of
Bounded Halting.

7 The length parameter need not equal the time bound. Indeed, a more general version of the
problem refers to two bounds, � and t , and to whether the given program halts within t steps on
each possible �-bit input. It is easy to prove that the problem remains NP-complete also in the
case that the instances are restricted to having parameters � and t such that t = p(�), for any
fixed polynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).

104 4 NP-Completeness

We will prove that deciding the satisfiability of Boolean formulae is NP-
complete (i.e., Cook’s Theorem), and also present some combinatorial problems
that are NP-complete. This presentation is aimed at providing a (small) sample
of natural NP-completeness results, as well as some tools toward proving NP-
completeness of new problems of interest. We start by making a comment
regarding the latter issue.

The reduction presented in the proof of Theorem 4.3 is called “generic”
because it (explicitly) refers to any (generic) NP-problem. That is, we actually
presented a scheme for the design of reductions from any desired NP-problem
to the single problem proved to be NP-complete. Indeed, in doing so, we have
followed the definition of NP-completeness. However, once we know some
NP-complete problems, a different route is open to us. We may establish the
NP-completeness of a new problem by reducing a known NP-complete problem
to the new problem. This alternative route is indeed a common practice, and it
is based on the following simple proposition.

Proposition 4.4: If an NP-complete problem � is reducible to some problem �′

in NP, then �′ is NP-complete. Furthermore, reducibility via Karp-reductions
(resp., Levin-reductions) is preserved.

That is, if an NP-complete decision problem S is Karp-reducible to a decision
problem S ′ ∈ NP , then S ′ isNP-complete. Similarly, if aPC-complete search
problem R is Levin-reducible to a search problem R′ ∈ PC, then R′ is PC-
complete.

Proof: The proof boils down to asserting the transitivity of reductions. Specif-
ically, the NP-hardness of � means that every problem in NP is reducible to
�, which in turn is reducible to �′ (by the hypothesis). Thus, by transitivity
of reduction (see Exercise 3.3), every problem in NP is reducible to �′, which
means that �′ is NP-hard and the proposition follows.

4.3.1 Circuit and Formula Satisfiability: CSAT and SAT

We consider two related computational problems, CSAT and SAT, which refer
(in the decision version) to the satisfiability of Boolean circuits and formulae,
respectively. (We refer the reader to the definition of Boolean circuits, formulae,
and CNF formulae (see §1.4.1.1 and §1.4.3.1).)

We suggest establishing the NP-completeness of SAT by a reduction from
the circuit satisfaction problem (CSAT), after establishing the NP-completeness
of the latter. Doing so allows the decoupling of two important parts of the proof
of the NP-completeness of SAT: the emulation of Turing machines by circuits
and the emulation of circuits by formulae with auxiliary variables.

4.3 Some Natural NP-Complete Problems 105

4.3.1.1 The NP-Completeness of CSAT
Recall that (bounded fan-in) Boolean circuits are directed acyclic graphs with
internal vertices, called gates, labeled by Boolean operations (of arity either 2
or 1), and external vertices called terminals that are associated with either
inputs or outputs. When setting the inputs of such a circuit, all internal nodes
are assigned values in the natural way, and this yields a value to the output(s),
called an evaluation of the circuit on the given input. The evaluation of circuit
C on input z is denoted C(z). We focus on circuits with a single output, and
let CSAT denote the set of satisfiable Boolean circuits; that is, a circuit C is in
CSAT if there exists an input z such that C(z) = 1. We also consider the related
relation RCSAT = {(C, z) : C(z) = 1}.

Theorem 4.5 (NP-completeness of CSAT): The set (resp., relation) CSAT

(resp., RCSAT) is NP-complete (resp., PC-complete).

Proof: It is easy to see that CSAT ∈ NP (resp., RCSAT ∈ PC). Thus, we turn
to showing that these problems are NP-hard. We will focus on the decision
version (but also discuss the search version).

We will present (again, but for the last time in this book) a generic reduction,
where here we reduce any NP-problem to CSAT. The reduction is based on
the observation, mentioned in Section 1.4.1 (see also Exercise 1.15), that the
computation of polynomial-time algorithms can be emulated by polynomial-
size circuits. We start with a description of the basic idea.

In the current context, we wish to emulate the computation of a fixed machine
M on input (x, y), where x is fixed and y varies (but |y| = poly(|x|) and the
total number of steps of M(x, y) is polynomial in |x| + |y|). Thus, x will be
“hard-wired” into the circuit, whereas y will serve as the input to the circuit.
The circuit itself, denoted Cx , will consists of “layers” such that each layer will
represent an instantaneous configuration of the machine M , and the relation
between consecutive configurations in a computation of this machine will be
captured by (“uniform”) local gadgets in the circuit. The number of layers will
depend on |x| as well as on the polynomial that upper-bounds the running
time of M , and an additional gadget will be used to detect whether the last
configuration is accepting. Thus, only the first layer of the circuit Cx (which
will represent an initial configuration with input prefixed by x) will depend on x.
(See Figure 4.1.) The punch line is that determining whether, for a given x, there
exists a y ∈ {0, 1}poly(|x|) such that M(x, y) = 1 (in a given number of steps)
will be reduced to whether there exists a y such that Cx(y) = 1. Performing
this reduction for any machine MR that corresponds to any R ∈ PC (as in the
proof of Theorem 4.3), we establish the fact that CSAT is NP-complete. Details
follow.

106 4 NP-Completeness

x ---y

y

x ---

2nd layer

3rd layer

4th layer

last layer

2nd configuration

3rd configuration

4th configuration

last configuration

Figure 4.1. The schematic correspondence between the configurations in the com-
putation of M(x, y) (on the left) and the evaluation of the circuit Cx on input y

(on the right), where x is fixed and y varies. The value of x (as well as a sequence
of blanks) is hard-wired (marked gray) in the first layer of Cx , and directed edges
connect consecutive layers.

Recall that we wish to reduce an arbitrary set S ∈ NP to CSAT. Let R, pR ,
MR , and tR be as in the proof of Theorem 4.3 (i.e., R is the witness relation
of S, whereas pR bounds the length of the NP-witnesses, MR is the machine
deciding membership in R, and tR is its polynomial time bound). Without
loss of generality (and for simplicity), suppose that MR is a one-tape Turing
machine.8 We will construct a Karp-reduction that maps an instance x (for S)

to a circuit, denoted f (x)
def= Cx , such that Cx(y) = 1 if and only if MR accepts

the input (x, y) within tR(|x| + pR(|x|)) steps. Thus, it will follow that x ∈ S

if and only if there exists y ∈ {0, 1}pR (|x|) such that Cx(y) = 1 (i.e., if and only
if Cx ∈ CSAT). The circuit Cx will depend on x as well as on MR,pR , and tR .
(We stress that MR,pR , and tR are fixed, whereas x varies and is thus explicit
in our notation.)

Before describing the circuit Cx , let us consider a possible computation of
MR on input (x, y), where x is fixed and y represents a generic string of length
pR(|x|). Such a computation proceeds for (at most) t = tR(|x| + pR(|x|)) steps,
and corresponds to a sequence of (at most) t + 1 instantaneous configurations,
each of length t . Each such configuration can be encoded by t pairs of symbols,
where the first symbol in each pair indicates the contents of a cell and the second
symbol indicates either a state of the machine or the fact that the machine is
not located in this cell. Thus, each pair is a member of � × (Q ∪ {⊥}), where
� is the finite “work alphabet” of MR , and Q is its finite set of internal states,
which does not contain the special symbol ⊥ (which is used as indication that
the machine is not present at a cell). The initial configuration consists of 〈x, y〉
8 See Exercise 1.12.

4.3 Some Natural NP-Complete Problems 107

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

last configuration

initial configuration

Figure 4.2. An array representing ten consecutive computation steps on input
110y1y2. Blank characters are marked by a hyphen (-), whereas the indication that
the machine is not present in the cell is marked by ⊥. The state of the machine
in each configuration is represented in the cell in which it resides, where the set
of states of this machine equals {a, b, c, d, e, f}. The three arrows represent the
determination of an entry by the three entries that reside above it. The machine
underlying this example accepts the input if and only if the input contains a zero.

as input, and is padded by blanks to a total length of t , whereas the decision
of MR(x, y) can be read from (the leftmost cell of) the last configuration.9

We view these t + 1 possible configurations as rows in an array, where the
i th row describes the instantaneous configuration of M(x, y) after i − 1 steps
(and repeats the previous row in the case that the computation of M(x, y) halts
before making i − 1 steps). For every i > 1, the values of the entries in the
i th row are determined by the entries of the (i − 1)st row (which resides just
above the i th row), where this determination reflects the transition function
of MR . Furthermore, the value of each entry in the said row is determined
by the values of (up to) three entries that reside in the row above it (see Exer-
cise 4.5). Thus, the aforementioned computation is represented by a (t + 1)× t

array, depicted in Figure 4.2, where each entry encodes one out of a constant

9 We refer to the output convention presented in Section 1.3.2, by which the output is written in
the leftmost cells and the machine halts at the cell to its right.

108 4 NP-Completeness

number of possibilities, which in turn can be encoded by a constant-length bit
string.
The actual description of Cx . The circuit Cx has a structure that corresponds to
the aforementioned array (see, indeed, Figure 4.1). Specifically, each row in
the array is represented by a corresponding layer in the circuit Cx such that
each entry in the array is represented by a constant number of gates in Cx .
When Cx is evaluated at y, these gates will be assigned values that encode the
contents of the corresponding entry in the array that describes the computation
of MR(x, y). In particular, the entries of the first row of the array are “encoded”
(in the first layer of Cx) by hard-wiring the reduction’s input (i.e., x) and
feeding the circuit’s input (i.e., y) to the adequate input terminals. That is, the
circuit has pR(|x|) (“real”) input terminals (corresponding to y), and the hard-
wiring of constants to the other O(t)− pR(|x|) gates (of the first layer) that
represent the first row is done by simple gadgets (as in Figure 1.3). Indeed, the
additional hard-wiring in the first layer corresponds to the other fixed elements
of the initial configuration (i.e., the blank symbols, and the encoding of the
initial state and of the initial location; cf. Figure 4.2). The entries of subsequent
rows will be “encoded” in corresponding layers of Cx (or rather computed at
evaluation time). Specifically, the values that encode an entry in the array will
be computed by using constant-size circuits that determine the value of an entry
based on the three relevant entries that are encoded in the layer above it. Recall
that each entry is encoded by a constant number of gates (in the corresponding
layer), and thus these constant-size circuits merely compute the constant-size
function described in Exercise 4.5. In addition, the circuit Cx has a few extra
gates that check the values of the entries of the last row in order to determine
whether or not it encodes an accepting configuration.10

Advanced comment. We note that although the foregoing construction of
Cx capitalizes on various specific details of the (one-tape) Turing machine
model, it can be easily adapted to other natural models of efficient com-
putation (by showing that in such models, the transformation from one
configuration to the subsequent one can be emulated by a (polynomial-
time constructible) circuit). Alternatively, we recall the Cobham-Edmonds
Thesis asserting that any problem that is solvable in polynomial time (on
some “reasonable” model) can be solved in polynomial time by a (one-tape)
Turing machine.

10 In continuation of footnote 9, we note that it suffices to check the values of the two leftmost
entries of the last row. We assumed here that the circuit propagates a halting configuration to
the last row. Alternatively, we may check for the existence of an accepting/halting
configuration in the entire array, since this condition is quite simple.

4.3 Some Natural NP-Complete Problems 109

The complexity of the mapping of x to f (x) = Cx . Given x, the circuit Cx can
be constructed in polynomial time, by encoding x in an appropriate manner
(in the first layer) and generating a “highly uniform” gridlike circuit of size s,
where s = O(tR(|x| + pR(|x|))2). Specifically, the gates of the first layer are
determined by x such that each gate is determined by at most a single bit of x,
whereas the constant-size circuits connecting consecutive layers only depend
on the transition function of MR (which is fixed in the context of reducing S

to CSAT). Finally, note that the total number of gates is quadratically related to
tR(|x| + pR(|x|)), which is a fixed polynomial in |x| (again, because pR and tR

are fixed (polynomials) in the context of reducing S to CSAT).

The validity of the mapping of x to f (x) = Cx . By its construction, the circuit
Cx emulates tR(|x| + pR(|x|)) steps of computation of MR on input (x, ·).
Thus, indeed, Cx(y) = 1 if and only if MR accepts the input (x, y) while
making at most tR(|x| + pR(|x|)) steps. Recalling that S = {x : ∃y s.t. |y|=
pR(|x|) ∧ (x, y)∈R} and that MR decides membership in R in time tR , we
infer that x ∈ S if and only if f (x) = Cx ∈ CSAT. Furthermore, (x, y) ∈ R if
and only if (f (x), y) ∈ RCSAT.

It follows that f is a Karp-reduction of S to CSAT, and, for g(x, y)
def= y, it

holds that (f, g) is a Levin-reduction of R to RCSAT. The theorem follows.

4.3.1.2 The NP-Completeness of SAT
Recall that Boolean formulae are special types of Boolean circuits (i.e., circuits
having a tree structure).11 We further restrict our attention to formulae given in
conjunctive normal form (CNF). We denote by SAT the set of satisfiable CNF
formulae (i.e., a CNF formula φ is in SAT if there exists a truth assignment
τ such that φ(τ) = 1). We also consider the related relation RSAT = {(φ, τ) :
φ(τ) = 1}.
Theorem 4.6 (NP-completeness of SAT): The set (resp., relation) SAT (resp.,
RSAT) is NP-complete (resp., PC-complete).

Proof: Since the set of possible instances of SAT is a subset of the set of
instances of CSAT, it is clear that SAT ∈ NP (resp., RSAT ∈ PC). To prove
that SAT is NP-hard, we reduce CSAT to SAT (and use Proposition 4.4).
The reduction boils down to introducing auxiliary variables in order to “cut”
the computation of an arbitrary (“deep”) circuit into a conjunction of related
computations of “shallow” circuits (i.e., depth-2 circuits) of unbounded fan-
in, which in turn may be presented as a CNF formula. The aforementioned

11 For an alternative definition, see Appendix A.2.

110 4 NP-Completeness

auxiliary variables hold the possible values of the internal gates of the original
circuit, and the clauses of the CNF formula enforce the consistency of these
values with the corresponding gate operation. For example, if gatei and gatej

feed into gatek , which is a ∧-gate, then the corresponding auxiliary variables
gi, gj , gk should satisfy the Boolean condition gk ≡ (gi ∧ gj), which can be
written as a 3CNF formula with four clauses. Details follow.

We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C, with
n input terminals and m gates, we first construct m constant-size formulae on
n+m variables, where the first n variables correspond to the input terminals of
the circuit and the other m variables correspond to its gates. The i th formula will
depend on the variable that correspond to the i th gate and the 1 or 2 variables
that correspond to the vertices that feed into this gate (i.e., 2 vertices in case of
∧-gate or ∨-gate and a single vertex in case of a ¬-gate, where these vertices
may be either input terminals or other gates). This (constant-size) formula will
be satisfied by a truth assignment if and only if this assignment matches the
gate’s functionality (i.e., feeding this gate with the corresponding values results
in the corresponding output value). Note that these constant-size formulae can
be written as constant-size CNF formulae (in fact, as 3CNF formulae).12 Taking
the conjunction of these m formulae and the variable associated with the (gate
that feeds into the) output terminal, we obtain a formula φ in CNF. An example,
where n = 3 and m = 4, is presented in Figure 4.3.

To summarize, the reduction maps the circuit C to a CNF formula φ such
that

φ(x1, . . . , xn, g1, . . . , gm) =
(

m∧
i=1

φi(x1, . . . , xn, g1, . . . , gm)

)
∧ gm (4.2)

where the Boolean variables x1, . . . , xn represent the possible values of the
input terminals of C, the Boolean variables g1, . . . , gn represent possible values
of the corresponding gates of C, and φi is a constant-size CNF formula that
depends only on 2 or 3 of the aforementioned variables (as explained in the
previous paragraphs).

Note that φ can be constructed in polynomial time from the circuit C; that
is, the mapping of C to φ = f (C) is polynomial-time computable. We claim
that C is in CSAT if and only if φ is in SAT. The two directions of this claim
are proved next.

12 Recall that any Boolean function can be written as a CNF formula having size that is
exponential in the length of its input (cf. Exercise 1.17), which in this case is a constant (i.e.,
either 2 or 3). Indeed, note that the Boolean functions that we refer to here depend on 2 or 3
Boolean variables (since they indicate whether or not the corresponding values respect the
gate’s functionality).

4.3 Some Natural NP-Complete Problems 111

1 2 3

or

and

and

1 2

g1

3

g2g1 g2

and

g3

eq

or

eq eq

g4

eq

gate1

gate2

gate3

and

3

gate4 neg

neg

g3 g4
and

Figure 4.3. Using auxiliary variables (i.e., the gi ’s) to “cut” a depth-5 circuit
(into a CNF). The dashed regions will be replaced by equivalent CNF formulae.
The (small) dashed circle, representing an unbounded fan-in and-gate, is the
conjunction of all constant-size circuits (which enforce the functionalities of the
original gates) and the variable that represents the (gate that feeds the) output
terminal in the original circuit.

1. Suppose that for some string s it holds that C(s) = 1. Then, assigning to
the i th auxiliary variable (i.e., gi) the value that is assigned to the i th gate
of C when evaluated on s, we obtain (together with s) a truth assignment
that satisfies φ. This is the case because such an assignment satisfies all
m constant-size CNF formulae (i.e., all φi’s), as well as the variable gm

associated with the output of C.
2. On the other hand, if the truth assignment τ satisfies φ, then the first n bit

values in τ correspond to an input on which C evaluates to 1. This is the
case because the m constant-size CNF formulae (i.e., the φi’s) guarantee
that the variables of φ are assigned values that correspond to the evaluation
of C on the first n bits of τ , while the fact that gm has value true guarantees
that this evaluation of C yields the value 1. (Recall that gm must have value
true in any assignment that satisfies φ, whereas the value of gm represents
the value of the output of C on the foregoing input.)

Thus, we have established that f is a Karp-reduction of CSAT to SAT. Note
that the mapping (of the truth assignment τ to its n-bit prefix) used in Item 2 is
the second mapping required by the definition of a Levin-reduction. Thus, aug-
menting f with the aforementioned second mapping yields a Levin-reduction
of RCSAT to RSAT.

Digest and Perspective. The fact that the second mapping required by the
definition of a Levin-reduction is explicit in the proof of the validity of the
corresponding Karp-reduction is a fairly common phenomenon. Actually (see

112 4 NP-Completeness

Exercise 4.20), typical presentations of Karp-reductions provide two auxiliary
polynomial-time computable mappings (in addition to the main mapping of
instances from one problem (e.g., CSAT) to instances of another problem (e.g.,
SAT)): The first auxiliary mapping is of solutions for the preimage instance
(e.g., of CSAT) to solutions for the image instance of the reduction (e.g., of
SAT), whereas the second mapping goes the other way around. For example,
the proof of the validity of the Karp-reduction of CSAT to SAT, denoted f ,
specified two additional mappings h and g such that (C, s) ∈ RCSAT implies
(f (C), h(C, s)) ∈ RSAT and (f (C), τ) ∈ RSAT implies (C, g(C, τ)) ∈ RCSAT.
Specifically, in the proof of Theorem 4.6, we used h(C, s) = (s, a1, . . . , am)
where ai is the value assigned to the i th gate in the evaluation of C(s), and
g(C, τ) being the n-bit prefix of τ . (Note that only the main mapping (i.e., f)
and the second auxiliary mapping (i.e., g) are required in the definition of a
Levin-reduction.)

3SAT. Observe that the formulae resulting from the Karp-reduction presented
in the proof of Theorem 4.6 are actually 3CNF formulae; that is, each such
formula is in conjunctive normal form (CNF) and each of its clauses contains at
most three literals. Thus, the foregoing reduction actually establishes the NP-
completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three
literals per clause). Alternatively, one may Karp-reduce SAT (i.e., satisfiability
of CNF formula) to 3SAT (i.e., satisfiability of 3CNF formula) by replacing
long clauses with conjunctions of three-variable clauses (using auxiliary vari-
ables; see Exercise 4.6). Either way, we get the following result, where the
“furthermore” part is proved by an additional reduction.

Proposition 4.7: 3SAT is NP-complete. Furthermore, the problem remains NP-
complete also if we restrict the instances such that each variable appears in at
most three clauses.

Proof: The “furthermore part” is proved by a reduction from 3SAT. We just
replace each occurrence of a Boolean variable by a new copy of this variable,
and add clauses to enforce that all these copies are assigned the same value.
Specifically, if variable z occurs t times in the original 3CNF formula φ, then
we introduce t new variables (i.e., its “copies”), denoted z(1), . . . , z(t), and
replace the i th occurrence of z in φ by z(i). In addition, we add the clauses
z(i+1) ∨ ¬z(i) for i = 1 . . . , t (where t + 1 is understood as 1). Thus, each
variable appears at most three times in the new formula. Note that the clause
z(i+1) ∨ ¬z(i) is logically equivalent to z(i) ⇒ z(i+1), and thus the conjunction of

4.3 Some Natural NP-Complete Problems 113

the aforementioned t clauses is logically equivalent to z(1) ⇔ z(2) ⇔ · · · ⇔ z(t).
The validity of the reduction follows.

Related Problems. Note that instances of SAT can be viewed as systems of
Boolean conditions over Boolean variables. Such systems can be emulated by
various types of systems of arithmetic conditions, implying the NP-hardness
of solving the latter types of systems. Examples include systems of integer
linear inequalities (see Exercise 4.8) and systems of quadratic equalities (see
Exercise 4.10).

In contrast to the foregoing, we mention that SAT restricted to CNF for-
mula with up to two literals per clause is solvable in polynomial time (see
Exercise 4.7). Thus, whereas deciding the satisfiability of 3CNF formulae
(i.e., 3SAT) is NP-complete, the corresponding problem for 2CNF formulae,
denoted 2SAT, is in P . The same phenomena arise also with respect to other
natural problems (e.g., 3-colorability versus 2-colorability), but we suggest not
attributing too much significance to this fact.

4.3.2 Combinatorics and Graph Theory

The purpose of this section is to expose the reader to a sample of NP-
completeness results and proof techniques (i.e., the design of reductions among
computational problems). We present just a few of the many appealing combi-
natorial problems that are known to be NP-complete.

As in §4.3.1.2, the NP-completeness of new problems is proved by showing
that their instances can encode instances of problems that are already known to
be NP-complete (e.g., SAT-instances can encode CSAT-instances). Typically,
these encodings operate in a local manner, mapping small components of
the original instance to local gadgets in the produced instance. Indeed, these
problem-specific gadgets are the core of the encoding scheme.

Throughout this section, we focus on the decision versions of the various
problems and adopt a more informal style. Specifically, we will present a typical
decision problem as a problem of deciding whether a given instance, which
belongs to a set of relevant instances, is a “yes-instance” or a “no-instance”
(rather than referring to deciding membership of arbitrary strings in a set of
yes-instances). For further discussion of this style and its rigorous formulation,
see Section 5.1. We will also omit showing that these decision problems are in
NP; indeed, for natural problems in NP, showing membership in NP is typically
straightforward.

114 4 NP-Completeness

Set Cover. We start with the Set Cover problem, in which an instance consists
of a collection of finite sets S1, . . . , Sm and an integer K and the question (for
decision) is whether or not there exist (at most)13 K sets that cover

⋃m
i=1 Si

(i.e., indices i1, . . . , iK such that
⋃K

j=1 Sij =
⋃m

i=1 Si).

Proposition 4.8: Set Cover is NP-complete.

Proof: We present a Karp-reduction of SAT to Set Cover. For a CNF for-
mula φ with m clauses and n variables, we consider the sets S1,t,

S1,f, .., Sn,t, Sn,f ⊆ {1, . . . , m} such that Si,t (resp., Si,f) is the set of the indices
of the clauses (of φ) that are satisfied by setting the i th variable to true (resp.,
false). That is, if the i th variable appears unnegated in the j th clause then
j ∈ Si,t, whereas if the i th variable appears negated in the j th clause then
j ∈ Si,f. Indeed, Si,t ∪ Si,f equals the set of clauses containing an occurrence

of the i th variable, and the union of all these 2n sets equals [m]
def= {1, . . . , m}.

In order to force any cover to contain either Si,t or Si,f, we augment the universe
with n additional elements and add the i th such element to both Si,t and Si,f.
Thus, the reduction proceeds as follows.

1. On input a CNF formula φ (with n variables and m clauses), the reduction
computes the sets S1,t, S1,f, .., Sn,t, Sn,f such that Si,t (resp., Si,f) is the
set of the indices of the clauses in which the i th variable appears unnegated
(resp., negated).

2. The reduction outputs the instance f (φ)
def= ((S1, .., S2n), n), where for i =

1, . . . , n it holds that S2i−1 = Si,t ∪ {m+ i} and S2i = Si,f ∪ {m+ i}.
Note that f (φ) is a yes-instance of Set Cover if and only if the collection
(S1, .., S2n) contains a sub-collection of n sets that covers [m+ n]. Observing
that f is computable in polynomial time, we complete the proof by showing
that f is a valid Karp-reduction of SAT to Set Cover.

Assume, on the one hand, that φ is satisfied by τ1 · · · τn. Then, for every
j ∈ [m] there exists an i ∈ [n] such that setting the i th variable to τi satisfies
the j th clause, and so j ∈ S2i−τi

. It follows that the collection {S2i−τi
: i =

1, . . . , n} covers {1, . . . , m+ n}, because {S2i−τi
∩ [m] : i = 1, . . . , n} cov-

ers {1, . . . , m} while {S2i−τi
\ [m] : i = 1, . . . , n} covers {m+ 1, . . . , m+ n}.

Thus, φ ∈ SAT implies that f (φ) is a yes-instance of Set Cover.
On the other hand, for every i ∈ [n], each cover of {m+ 1, . . . , m+ n} ⊂

{1, . . . , m+ n}must include either S2i−1 or S2i , because these are the only sets
that cover the element m+ i. Thus, a cover of {1, . . . , m+ n} using n of the Sj ’s

13 Clearly, in the case of Set Cover, the two formulations (i.e., asking for exactly K sets or at
most K sets) are computationally equivalent; see Exercise 4.13.

4.3 Some Natural NP-Complete Problems 115

must contain, for every i, either S2i−1 or S2i but not both. Setting τi accordingly
(i.e., τi = 1 if and only if S2i−1 is in the cover) implies that {S2i−τi

: i =
1, . . . , n} (or rather {S2i−τi

∩ [m] : i = 1, . . . , n}) covers {1, . . . , m}. It follows
that τ1 · · · τn satisfies φ, because for every j ∈ [m] there exists an i ∈ [n] such
that j ∈ S2i−τi

(which implies that setting the i th variable to τi satisfies the j th

clause). Thus, if f (φ) is a yes-instance of SetCover (i.e., there is a cover of
[m+ n] that uses n of the Sj ’s), then φ ∈ SAT.

Exact Cover and 3XC. The Exact Cover problem is similar to the SetCover
problem, except that here the sets that are used in the cover are not allowed to
intersect. That is, each element in the universe should be covered by exactly one
set in the cover. Restricting the set of instances to sequences of 3-sets (i.e., sets
of size three), we get the restricted problem called 3-ExactCover (3XC), in
which it is unnecessary to specify the number of sets to be used in the exact
cover (since this number must equal the size of the universe divided by three).
The problem 3XC is rather technical, but it is quite useful for demonstrating
the NP-completeness of other problems (by reducing 3XC to them); see, for
example, Exercises 4.17 and 4.18.

Proposition 4.9: 3-ExactCover is NP-complete.

Indeed, it follows that the ExactCover (in which sets of arbitrary size are
allowed) is NP-complete. This follows both for the case that the number of
sets in the desired cover is unspecified and for the various cases in which this
number is upper-bounded and/or lower-bounded in terms of an integer that is
part of the instance (as in SetCover).

Proof: The reduction is obtained by composing four reductions, which involve
three intermediate computational problems. The first of these problems is a
restricted case of 3SAT, denoted r3SAT, in which each literal appears in at
most two clauses. Note that, by Proposition 4.7, 3SAT is NP-complete even
when the instances are restricted such that each variable appears in at most three
clauses. Actually, the reduction presented in the proof of Proposition 4.7 can
be slightly modified in order to reduce 3SAT to r3SAT (see Exercise 4.11).14

The second intermediate problem that we consider is a restricted version
of SetCover, denoted 3SC, in which each set has at most three elements.
(Indeed, as in the general case of SetCover, an instance consists of a sequence
of finite sets as well as an integer K , and the question is whether there exists a

14 Alternatively, a closer look at the reduction presented in the proof of Proposition 4.7 reveals
that it always produces instances of r3SAT. This alternative presupposes that copies are
created also when the original variable appears three times in the original formula.

116 4 NP-Completeness

cover with at most K sets.) We reduce r3SAT to 3SC by using the (very same)
reduction presented in the proof of Proposition 4.8, while observing that the
size of each set in the reduced instance is at most three (i.e., one more than the
number of occurrences of the corresponding literal in clauses of the original
formula).

Next, we reduce 3SC to the following restricted version of ExactCover,
denoted 3XC′, in which each set has at most three elements. An instance of 3XC′

consists of a sequence of finite sets as well as an integer K , and the question
is whether there exists an exact cover with at most K sets. The reduction maps
an instance ((S1, . . . , Sm),K) of 3SC to the instance (C ′,K) such that C ′ is a
collection of all subsets of each of the sets S1, . . . , Sm. Since each Si has size
at most three, we introduce at most seven non-empty subsets per each such set,
and the reduction can be computed in polynomial time. The reader may easily
verify the validity of this reduction (see Exercise 4.12).

Finally, we reduce 3XC′ to 3XC. Consider an instance ((S1, . . . , Sm),K)
of 3XC′, and suppose that

⋃m
i=1 Si = [n]. If n > 3K then this is definitely a

no-instance, which can be mapped to a dummy no-instance of 3XC, and so we

assume that x
def= 3K − n ≥ 0. Intuitively, x represents the “excess” covering

ability of a hypothetical exact cover that consists of K sets, each having three
elements. Thus, we augment the set system with x new elements, denoted
n+ 1, . . . , 3K , and replace each Si such that |Si | < 3 by a sub-collection of 3-
sets such that each 3-set contains Si as well as an adequate number of elements
from {n+ 1, . . . , 3K}, such that the sub-collection associated with Si contains
a set for each possible (3− |Si |)-set of {n+ 1, . . . , 3K}. That is, in case |Si | =
2, the set Si is replaced by the sub-collection (Si ∪ {n+ 1}, . . . , Si ∪ {3K}),
whereas a singleton Si is replaced by the sets Si ∪ {j1, j2} for every j1 < j2 in
{n+ 1, . . . , 3K}. In addition, we add all possible 3-subsets of {n+ 1, . . . , 3K}.
This completes the description of the last reduction, the validity of which is left
as an exercise (see Exercise 4.12).

Let us conclude. We have introduced the intermediate problems r3SAT,
3SC, and 3XC′, and presented a sequence of Karp-reductions leading from
3SAT to 3XC via these intermediate problems. Specifically, we reduced 3SAT
to r3SAT, then reduced r3SAT to 3SC, next reduced 3SC to 3XC′, and finally
reduced 3XC′ to 3XC. Composing these four reductions, we obtain a Karp-
reduction of 3SAT to 3XC, and the proposition follows.

Vertex Cover, Independent Set, and Clique. Turning to graph theoretic prob-
lems (see Appendix A.1), we start with the VertexCover problem, which
is a special case of the Set Cover problem. The instances consist of pairs
(G,K), where G = (V,E) is a simple graph and K is an integer, and the

4.3 Some Natural NP-Complete Problems 117

problem is whether or not there exists a set of (at most) K vertices that is
incident to all graph edges (i.e., each edge in G has at least one end point in
this set). Indeed, this instance of VertexCover can be viewed as an instance
of Set Cover by considering the collection of sets (Sv)v∈V , where Sv denotes
the set of edges incident at vertex v (i.e., Sv = {e ∈ E : v ∈ e}). Thus, the NP-
hardness of SetCover follows from the NP-hardness of VertexCover (but
this implication is unhelpful for us here, since we already know that SetCover
is NP-hard and we wish to prove that VertexCover is NP-hard). We also
note that the VertexCover problem is computationally equivalent to the
IndependentSet and Clique problems (see Exercise 4.14), and thus it
suffices to establish the NP-hardness of one of these problems.

Proposition 4.10: The problems Vertex Cover, Independent Set and
Clique are NP-complete.

Proof: We show a reduction from 3SAT to IndependentSet.15 On input a
3CNF formula φ with m clauses and n variables, we construct a graph with 7m

vertices, denoted Gφ , as follows:

� The vertices are grouped in m equal-size sets, each corresponding to one
of the clauses, and edges are placed among all vertices that belong to each
of these 7-sets (thus obtaining m disjoint 7-vertex cliques). The 7-set cor-
responding to a specific clause contains seven vertices that correspond to
the seven truth assignments (to the three variables in the clause) that satisfy
the clause. That is, the vertices in the graph correspond to partial assign-
ments such that the seven vertices that belong to the i th 7-set correspond to
the seven partial assignments that instantiate the variables in the i th clause
in a way that satisfies this clause. For example, if the i th clause equals
xj1 ∨ xj2 ∨ ¬xj3 , then the i th 7-set consists of vertices that correspond to the
seven Boolean functions τ that are defined on {j1, j2, j3} ⊂ [n] and satisfy
τ (j1) ∨ τ (j2) ∨ ¬τ (j3).

� In addition to the edges that are internal to these m 7-sets (which form
7-vertex cliques), we add an edge between each pair of vertices that cor-
responds to partial assignments that are mutually inconsistent. That is, if a
specific (satisfying) assignment to the variables of the i th clause is incon-
sistent with some (satisfying) assignment to the variables of the j th clause,
then we connect the corresponding vertices by an edge. In particular, no

15 Advanced comment: The following reduction is not the “standard” one (see Exercise 4.15),
but is rather adapted from the FGLSS-reduction (see [10]). This is done in anticipation of the
use of the FGLSS-reduction in the context of the study of the complexity of approximation
(cf., e.g., [15] or [13, Sec. 10.1.1]).

118 4 NP-Completeness

edges are placed between 7-sets that represent clauses that share no com-
mon variable. (In contrast, the edges that are internal to the m 7-sets may
be viewed as a special case of the edges connecting mutually inconsistent
partial assignments.)

To summarize, on input φ, the reduction outputs the pair (Gφ,m), where Gφ is
the aforementioned graph and m is the number of clauses in φ.

We stress that each 7-set of the graph Gφ contains only vertices that corre-
spond to partial assignments that satisfy the corresponding clause; that is, the
single partial assignment that does not satisfy this clause is not represented as
a vertex in Gφ . Recall that the edges placed among vertices represent partial
assignments that are mutually inconsistent. Thus, each truth assignment τ to
the entire formula φ yields an independent set in Gφ , which contains all the
vertices that correspond to partial assignments that are consistent with τ and
satisfy the corresponding clauses. Indeed, the size of this independent set equals
the number of clauses that are satisfied by the assignment τ . These observations
underlie the validity of the reduction, which is argued next.

Suppose, on the one hand, that φ is satisfiable by the truth assignment τ .
Consider the partial assignments, to the m clauses, that are derived from τ . We
claim that these partial assignments correspond to an independent set of size m

in Gφ . The claim holds because these m partial assignments satisfy the corre-
sponding m clauses (since τ satisfies φ) and are mutually consistent (because
they are all derived from τ). It follows that the these m partial assignments
correspond to m vertices (residing in different 7-sets), and there are no edges
between these vertices. Thus, φ ∈ SAT implies that Gφ has an independent set
of size m.

On the other hand, any independent set of size m in Gφ must contain exactly
one vertex in each of the m 7-sets, because no independent set may contain
two vertices that reside in the same 7-set. Furthermore, each independent set
in Gφ induces a (possibly partial) truth assignment to φ, because the partial
assignments “selected” in the various 7-sets must be consistent (or else an
edge would have existed among the corresponding vertices). Recalling that an
independent set that contains a vertex from a specific 7-set induces a partial
truth assignment that satisfies the corresponding clause, it follows that an
independent set that contains a vertex of each 7-set induces a truth assignment
that satisfies φ. Thus, if Gφ has an independent set of size m then φ ∈ SAT.

Graph 3-Colorability (G3C). In this problem, the instances are graphs and
the question is whether or not the graph’s vertices can be colored using three
colors such that neighboring vertices are not assigned the same color.

4.3 Some Natural NP-Complete Problems 119

1

2

3

x

y
M

T1

T2

T3

Figure 4.4. The clause gadget and its sub-gadget. The left-hand side depicts the
sub-gadget and a generic legal 3-coloring of it. Note that if x = y, in this 3-
coloring, then x = y = 1. The clause gadget is shown on the right-hand side. For
any legal 3-coloring of this gadget it holds that if the three terminals of the gadget
are assigned the same color, χ , then M is also assigned the color χ .

Proposition 4.11: Graph 3-Colorability is NP-complete.

Proof: We reduce 3SAT to G3C by mapping a 3CNF formula φ to the graph Gφ

that consists of two special (“designated”) vertices, a gadget per each variable
of φ, a gadget per each clause of φ, and edges connecting some of these
components as follows:

� The two designated vertices are called ground and false, and are con-
nected by an edge that ensures that they must be given different colors in
any legal 3-coloring of Gφ . We will refer to the color assigned to the vertex
ground (resp., false) by the name ground (resp., false). The third
color will be called true.

� The gadget associated with variable x is a pair of vertices, associated with
the two literals of x (i.e., x and¬x). These vertices are connected by an edge,
and each of them is also connected to the vertex ground. Thus, in any legal
3-coloring of Gφ one of the vertices associated with the variable is colored
true and the other is colored false.

� The gadget associated with a clause C is depicted in Figure 4.4. It contains
a master vertex, denoted M, and three terminal vertices, denoted T1, T2, and
T3. The master vertex is connected by edges to the vertices ground and
false, and thus in any legal 3-coloring of Gφ the master vertex must be
colored true. The gadget has the property that it is possible to color the
terminals with any combination of the colors true and false, except for
coloring all terminals with false. That is, in any legal 3-coloring of Gφ , if
no terminal of a clause gadget is colored ground, then at least one of these
terminals is colored true.
The terminals of the gadget associated with clause C will be identified with
the vertices (of variable gadgets) that are associated with the corresponding

120 4 NP-Completeness

variable gadgets

clause gadgets

GROUND FALSE
the two designated verices

Figure 4.5. A single clause gadget and the relevant variables gadgets.

literals appearing in C. This means that each clause gadget shares its ter-
minals with the corresponding variable gadgets, and that the various clause
gadgets are not vertex-disjoint but may rather share some terminals (i.e., those
associated with literals that appear in several clauses).16 See Figure 4.5.
The aforementioned association forces each terminal to be colored either
true or false (in any legal 3-coloring of Gφ). By the foregoing discussion
it follows that in any legal 3-coloring of Gφ , at least one terminal of each
clause gadget must be colored true.

Verifying the validity of the reduction is left as an exercise (see Exer-
cise 4.16).

Digest. The reductions presented in the current section are depicted in Fig-
ure 4.6, where bold arrows indicate reductions presented explicitly in the proofs
of the various propositions (indicated by their index). Note that r3SAT and 3SC
are only mentioned inside the proof of Proposition 4.9.

4.3.3 Additional Properties of the Standard Reductions

We mention that the standard reductions used to establish natural NP-
completeness results have several additional properties or can be modified

16 Alternatively, we may use disjoint gadgets and “connect” each terminal with the corresponding
literal (in the corresponding vertex gadget). Such a connection (i.e., an auxiliary gadget)
should force the two end points to have the same color in any legal 3-coloring of the graph.

4.3 Some Natural NP-Complete Problems 121

SAT 3SAT SC

r3SAT 3SC 3XC

IS

VC

Clique

G3C

4.7 4.8

(4.9)

(4.9) (4.9)

4.10

4.11

4.6
CSAT

Figure 4.6. The (non-generic) reductions presented in Section 4.3.

to have such properties. These properties include an efficient transformation
of solutions in the direction of the reduction (see Exercise 4.20), the preser-
vation of the number of solutions (see Exercise 4.21), and being invertible in
polynomial time (see Exercise 4.22 as well as Exercise 4.23). Furthermore,
these reductions are relatively “simple” in the sense that they can be com-
puted by restricted classes of polynomial-time algorithms (e.g., algorithms of
logarithmic space complexity).

The foregoing assertions are easiest to verify for the generic reductions
presented in the proofs of Theorems 4.3 and 4.5. These reductions satisfy all
additional properties (without any modification). Turning to the non-generic
reductions (depicted in Figure 4.6), we note that they all satisfy all additional
properties with the exception of the preservation of the number of solutions
(see Exercise 4.21). However, in each of the cases that our reduction does not
satisfy the latter property, an alternative reduction that does satisfy it is known.

We also mention the fact that all known NP-complete sets are (effec-
tively) isomorphic in the sense that every two such sets are isomorphic via
a polynomial-time computable and invertible mapping (see Exercise 4.24).

4.3.4 On the Negative Application of NP-Completeness

Since its discovery in the early 1970s, NP-completeness has been used as the
main tool by which the intrinsic complexity of certain problems is demon-
strated. Recall that if an NP-complete problem is in P, then all problems in
NP are in P (i.e., P = NP). Hence, demonstrating the NP-completeness of a
problem yields very strong evidence for its intractability.

We mention that NP-completeness means more than intractability in the
strict computational sense (i.e., that no efficient algorithm may solve the

122 4 NP-Completeness

problem). It also means that the problem at hand (or the underlying ques-
tion) has a very rich structure and that the underlying question has no simple
answer. To see why this is the case, consider a question that refers to objects of
a certain type (e.g., territorial maps) and a property that some of these objects
have (e.g., being 3-colorable). The question at hand may call for a simple char-
acterization of the objects that satisfy the property, but if the corresponding
decision problem is NP-complete,17 then no such characterization is likely to
exist. We stress that the quest for a “simple” characterization could have had
nothing to do with computation, but “simple” characterizations yield efficient
decision procedures and so NP-completeness is relevant. Furthermore, the NP-
completeness of a problem means that the objects underlying the desired char-
acterization are complex enough to encode all NP-problems. Indeed, diverse
scientific disciplines, which were unsuccessfully struggling with some of their
internal questions, came to realize that these questions are inherently diffi-
cult since they are closely related to computational problems that are NP-
complete.

Lastly, let us note that demonstrating the NP-completeness of a problem is
not the end of the story. Since the problem originates in reality, it does not go
away once we realize that it is (probably) hard to solve. However, the problem
we consider is never identical to the problem we need to solve in reality; the
former is just a model (or abstraction) of the latter. Thus, the fact that our
abstraction turns out to yield an NP-complete problem calls for a refinement of
our modeling. A careful reconsideration may lead us to realize that we only care
about a subset of all possible instances or that we may relax the requirements
from the desired solutions. Such relaxations lead to notions of average-case
complexity and approximation, which are indeed the subject of considerable
study. The interested reader is referred to [13, Chap. 10].

4.3.5 Positive Applications of NP-Completeness

Throughout this chapter, we have referred to the negative implication of NP-
completeness, that is, the fact that it provides evidence to the intractability
of problems. Indeed, the definition of NP-complete problems was motivated
by the intention to use it as a vehicle for proving the hardness of natural
computational problems (which reside in NP). Furthermore, we really do not
expect to use NP-completeness for the straightforward positive applications of
reductions that were discussed in Section 3.4. So what can the current section
title actually mean?

17 This is indeed the case with respect to determinig whether a given territorial map is 3-colorable.

4.3 Some Natural NP-Complete Problems 123

The answer is that we may use NP-complete problems as a vehicle to
demonstrate properties of all problems in NP. For example, in Section 2.5,
we proved that NP ⊆ EXP by referring to an exhaustive search among all
possible NP-witnesses (for a given instance, with respect to any problem in
NP). An alternative proof can first establish that SAT ∈ EXP and then use the
fact that membership in EXP is preserved under Cook-reductions. The benefit
in this approach is that it is more natural to consider an exhaustive search for
SAT. However, this positive application is in line with the applications discussed
in Section 3.4, although EXP is not considered a class of efficient problems.

Nevertheless, positive applications that are farther from the applications dis-
cussed in Section 3.4 have played an important role in the study of “probabilistic
proof systems” (to be surveyed shortly). In three important cases, fundamental
results regarding (all decision problems in) NP were derived by first estab-
lishing the result for SAT (or G3C), and then invoking the NP-completeness
of SAT (resp., G3C) in order to derive the same result for each problem in NP .
The benefit in this methodology is that the simple and natural structure of SAT
(resp., G3C) facilitates the establishing of the said result for it.

Following is a brief description of three types of probabilistic proof sys-
tems and the role of NP-completeness in establishing three fundamental results
regarding them. The reader is warned that the rest of the current section is
advanced material, and furthermore that following this text requires some
familiarity with the notion of randomized algorithms. On the other hand, the
interested reader is referred to [13, Chap. 9] for further details.

A General Introduction to Probabilistic Proof Systems. The glory attributed
to the creativity involved in finding proofs causes us to forget that it is the less-
glorified process of verification that gives proofs their value. Conceptually
speaking, proofs are secondary to the verification procedure; indeed, proof
systems are defined in terms of their verification procedures. The notion of
a verification procedure presupposes the notion of computation and, further-
more, the notion of efficient computation. Associating efficient computation
with polynomial-time procedures, we obtain a fundamental class of proof sys-
tems, called NP-proof systems; see, indeed, Definition 2.5. We stress that that
NP-proofs provide a satisfactory formulation of (efficiently verifiable) proof
systems, provided that one associates efficient procedures with deterministic
polynomial-time procedures. However, we can gain a lot if we are willing
to take a somewhat non-traditional step and allow probabilistic verification
procedures.

We shall consider three types of probabilistic proof systems. As in the
case of NP-proof systems, in each of the following types of proof systems,

124 4 NP-Completeness

explicit bounds are imposed on the computational complexity of the verification
procedure, which in turn is personified by the notion of a verifier. The real
novelty, in the case of probabilistic proof systems, is that the verifier is allowed
to toss coins and rule by statistical evidence. Thus, these probabilistic proof
systems carry a probability of error; yet this probability is explicitly bounded
and, furthermore, can be reduced by successive application of the proof system.

Interactive Proof Systems. As we shall see, randomized and interactive ver-
ification procedures, giving rise to interactive proof systems, seem much more
powerful (i.e., “expressive”) than their deterministic counterparts. Loosely
speaking, an interactive proof system is a game between a computationally
bounded verifier and a computationally unbounded prover whose goal is to
convince the verifier of the validity of some assertion. Specifically, the veri-
fier is probabilistic and its time complexity is polynomial in the length of the
assertion. It is required that if the assertion holds, then the verifier must always
accept (when interacting with an appropriate prover strategy). On the other
hand, if the assertion is false, then the verifier must reject with probability at
least 1

2 , no matter what strategy is employed by the prover. Thus, a “proof”
in this context is not a fixed and static object, but rather a randomized (and
dynamic) process in which the verifier interacts with the prover. Intuitively, one
may think of this interaction as consisting of “tricky” questions asked by the
verifier, to which the prover has to reply “convincingly.”

A fundamental result regarding interactive proof systems is their existence

for any set in coNP def= {S : S∈NP}, where S
def= {0, 1}∗\S. This result should

be contrasted with the common belief that some sets in coNP do not have NP-
proof systems (i.e., NP �= coNP; cf. Section 5.3). Interestingly, the fact that
any set in coNP has an interactive proof system is established by presenting
such a proof system for SAT (and deriving a proof system for any S ∈ coNP
by using the Karp-reduction of S to SAT, which is the very Karp-reduction of
S to SAT).18 The construction of an interactive proof system for SAT relies on
an “arithmetization” of CNF formulae, and hence we clearly benefit from the
fact that this specific and natural problem (i.e., SAT) is NP-complete.

Zero-knowledge Proof Systems. Interactive proof systems provide the stage
for a meaningful introduction of zero-knowledge proofs, which are of great

18 Advanced comment: Actually, the result can be extended to show that a decision problem has
an interactive proof system if and only if it is in PSPACE , where PSPACE denotes the class
of problems that are solvable in polynomial space complexity. We mention that this extension
also relies on the use of a natural complete problem, which is also amenable to arithmetization.

4.3 Some Natural NP-Complete Problems 125

theoretical and practical interest (especially in cryptography). Loosely speak-
ing, zero-knowledge proofs are interactive proofs that yield nothing (to the
verifier) beyond the fact that the assertion is indeed valid. For example, a zero-
knowledge proof that a certain Boolean formula is satisfiable does not reveal
a satisfying assignment to the formula nor any partial information regard-
ing such an assignment (e.g., whether the first variable can assume the value
true). Whatever the verifier can efficiently compute after interacting with a
zero-knowledge prover can be efficiently computed from the assertion itself
(without interacting with anyone). Thus, zero-knowledge proofs exhibit an
extreme contrast between being convinced of the validity of a statement and
learning anything in addition (while receiving such a convincing proof).

A fundamental result regarding zero-knowledge proof systems is their exis-
tence, under reasonable complexity assumptions, for any set in NP . Interest-
ingly, this result is established by presenting such a proof system for Graph
3-Colorability (i.e., G3C), and by deriving a proof system for any S ∈ NP by
using the Karp-reduction of S to SAT. The construction of a zero-knowledge
proof system for G3C is facilitated by the simple structure of the problem,
specifically, the fact that verifying the (global) claim that a specific 3-partition
is a valid 3-coloring amounts to verifying a polynomial number of local
constraints (i.e., that the colors assigned to the end points of each edge are
different).

Probabilistically Checkable Proof Systems. NP-proofs can be efficiently
transformed into a (redundant) form that offers a trade-off between the number
of locations examined in the NP-proof and the confidence in its validity. These
redundant proofs are called probabilistically checkable proofs (abbreviated
PCPs), and have played a key role in the study of approximation problems.

Loosely speaking, a PCP-system consists of a probabilistic polynomial-time
verifier having access to an oracle that represents a proof in redundant form.
Typically, the verifier accesses only few of the oracle bits, where these bit
positions are determined by the outcome of the verifier’s coin tosses. Again,
it is required that if the assertion holds, then the verifier must always accept
(when given access to an adequate oracle), whereas, if the assertion is false,
then the verifier must reject with probability at least 1

2 , no matter which oracle
is used.

A fundamental result regarding PCP-systems is that any set in NP has a
PCP-system in which the verifier issues only a constant number of (binary!)
queries. Again, the fact that any set inNP has such a PCP-system is established
by presenting such a proof system for SAT (and deriving a similar proof system
for any S ∈ NP by using the Karp-reduction of S to SAT). The construction

126 4 NP-Completeness

for SAT relies, again, on an arithmetization of CNF formulae, where this arith-
metization is different from the one used in the construction of interactive proof
systems for SAT.

4.4 NP Sets That Are Neither in P nor NP-Complete

As stated in Section 4.3, thousands of problems have been shown to be NP-
complete (cf. [11, Apdx.], which contains a list of more than three hundred main
entries). Things have reached a situation in which people seem to expect any
NP-set to be either NP-complete or in P . This naive view is wrong: Assuming
NP �= P , there exist sets in NP that are neither NP-complete nor in P , where
here NP-hardness also allows Cook-reductions.

Theorem 4.12: Assuming NP �= P , there exists a set T in NP \ P such that
some sets in NP are not Cook-reducible to T .

Theorem 4.12 asserts that if NP �= P , then NP is partitioned into three
non-empty classes: the class P , the class of problems to which NP is Cook-
reducible, and the rest, denoted NPI (where “I” stands for “intermediate”).
We already know that the first two classes are not empty, and Theorem 4.12
establishes the non-emptiness of NPI under the condition that NP �= P ,
which is actually a necessary condition (because if NP = P then every set in
NP is Cook-reducible to any other set in NP).

The following proof of Theorem 4.12 presents an unnatural decision problem
in NPI. We mention that some natural decision problems (e.g., some that are
computationally equivalent to factoring) are conjectured to be in NPI. We
also mention that if NP �= coNP , where coNP = {{0, 1}∗ \ S : S ∈ NP},
then �

def= NP ∩ coNP ⊆ P ∪NPI holds (as a corollary to Theorem 5.7).
Thus, if NP �= coNP then � \ P is a (natural) subset of NPI, and the non-
emptiness of NPI follows provided that � �= P . Recall that Theorem 4.12
establishes the non-emptiness ofNPI under the seemingly weaker assumption
that NP �= P .

Proof Sketch:19 The basic idea is to modify an arbitrary set in NP \ P so as
to fail all possible reductions (from NP to the modified set), as well as all pos-
sible polynomial-time decision procedures (for the modified set). Specifically,
starting with S ∈ NP \ P , we derive S ′ ⊂ S such that on the one hand there is
no polynomial-time reduction of S to S ′ while on the other hand S ′ ∈ NP \ P .

19 For an alternative presestation, see [1, sec 3.3].

4.4 NP Sets That Are Neither in P nor NP-Complete 127

The process of modifying S into S ′ proceeds in iterations, alternatively failing
a potential reduction (by dropping sufficiently many strings from the rest of
S) and failing a potential decision procedure (by including sufficiently many
strings from the rest of S). Specifically, each potential reduction of S to S ′

can be failed by dropping finitely many elements from the current S ′, whereas
each potential decision procedure can be failed by keeping finitely many ele-
ments of the current S ′. These two assertions are based on the following two
corresponding facts:

1. Any polynomial-time reduction (of any set not in P) to any finite set (e.g.,
a finite subset of S) must fail, because only sets in P are Cook-reducible
to a finite set. Thus, for any finite set F1 and any potential reduction (i.e.,
a polynomial-time oracle machine), there exists an input x on which this
reduction to F1 fails.20

2. For every finite set F2, any polynomial-time decision procedure for S \ F2

must fail, because S is Cook-reducible to S \ F2. Thus, for any potential
decision procedure (i.e., a polynomial-time algorithm), there exists an input
x on which this procedure fails.21

As stated, the process of modifying S into S ′ proceeds in iterations, alternatively
failing a potential reduction (by dropping finitely many strings from the rest
of S) and failing a potential decision procedure (by including finitely many
strings from the rest of S). This can be done efficiently because it is inessential
to determine the first possible points of alternation (in which sufficiently many
strings were dropped (resp., included) to fail the next potential reduction (resp.,
decision procedure)). It suffices to guarantee that adequate points of alternation
(albeit highly non-optimal ones) can be efficiently determined. Thus, S ′ is the
intersection of S and some set in P , which implies that S ′ ∈ NP . Following
are some comments regarding the implementation of the foregoing idea.

The first issue is that the foregoing plan calls for an (“effective”) enumeration
of all polynomial-time oracle machines (resp., polynomial-time algorithms).
However, none of these sets can be enumerated (by an algorithm). Instead, we

20 We mention that the proof relies on additional observations regarding this failure. Specifically,
the aforementioned reduction fails while the only queries that are answered positively are
those residing in F1. Furthermore, the aforementioned failure is due to a finite set of queries
(i.e., the set of all queries made by the reduction when invoked on an input that is smaller or
equal to x). Thus, for every finite set F1 ⊂ S′ ⊆ S, any reduction of S to S′ can be failed by
dropping a finite number of elements from S′ and without dropping elements of F1.

21 Again, the proof relies on additional observations regarding this failure. Specifically, this
failure is due to a finite “prefix” of S \ F2 (i.e., the set {z ∈ S \ F2 : z ≤ x}). Thus, for every
finite set F2, any polynomial-time decision procedure for S \ F2 can be failed by keeping a
finite subset of S \ F2.

128 4 NP-Completeness

enumerate all corresponding machines along with all possible polynomials, and
for each pair (M,p) we consider executions of machine M with time bound
specified by the polynomial p. That is, we use the machine Mp obtained from
the pair (M,p) by suspending the execution of M on input x after p(|x|) steps.
We stress that we do not know whether machine M runs in polynomial time,
but the computations of any polynomial-time machine is “covered” by some
pair (M,p).

Next, let us clarify the process in which reductions and decision procedures
are ruled out. We present a construction of a “filter” set F in P such that
the final set S ′ will equal S ∩ F . Recall that we need to select F such that
each polynomial-time reduction of S to S ∩ F fails, and each polynomial-
time procedure for deciding S ∩ F fails. The key observation is that for every
finite F ′ each polynomial-time reduction of S to (S ∩ F) ∩ F ′ fails, whereas for
every finite F ′ each polynomial-time procedure for deciding (S ∩ F) \ F ′ fails.
Furthermore, each of these failures occurs on some input, and such an input
can be determined by finite portions of S and F . Thus, we alternate between
failing possible reductions and decision procedures on some inputs, while not
trying to determine the “optimal” points of alternation but, rather, determining
points of alternation in an efficient manner (which in turn allows for efficiently
deciding membership in F). Specifically, we let F = {x : f (|x|) ≡ 1 mod 2},
where f : N → {0} ∪ N will be defined such that (i) each of the first f (n)− 1
machines is failed by some input of length at most n, and (ii) the value f (n)
can be computed in poly(n)-time.

The value of f (n) is defined by the following process that performs exactly
n3 computation steps (where cubic time is a rather arbitrary choice). The process
proceeds in (an a priori unknown number of) iterations, where in the i + 1st

iteration we try to find an input on which the i + 1st (modified) machine fails.
Specifically, in the i + 1st iteration we scan all inputs, in lexicographic order,
until we find an input on which the i + 1st (modified) machine fails, where this
machine is an oracle machine if i + 1 is odd and a standard machine otherwise.
If we detect a failure of the i + 1st machine, then we increment i and proceed to
the next iteration. When we reach the allowed number of steps (i.e., n3 steps),
we halt outputting the current value of i (i.e., the current i is output as the value
of f (n)). Needless to say, this description is heavily based on determining
whether or not the i + 1st machine fails on specific inputs. Intuitively, these
inputs will be much shorter than n, and so performing these decisions in time
n3 (or so) is not out of the question – see next paragraph.

In order to determine whether or not a failure (of the i + 1st machine) occurs
on a particular input x, we need to emulate the computation of this machine
on input x, as well as determine whether x is in the relevant set (which is

4.4 NP Sets That Are Neither in P nor NP-Complete 129

either S or S ′ = S ∩ F). Recall that if i + 1 is even, then we need to fail a
standard machine (which attempts to decide S ′), and otherwise we need to fail
an oracle machine (which attempts to reduce S to S ′). Thus, for even i + 1
we need to determine whether x is in S ′ = S ∩ F , whereas for odd i + 1 we
need to determine whether x is in S as well as whether some other strings
(which appear as queries) are in S ′. Deciding membership in S ∈ NP can be
done in exponential time (by using the exhaustive search algorithm that tries all
possible NP-witnesses). Indeed, this means that when computing f (n) we may
only complete the treatment of inputs that are of logarithmic (in n) length, but
anyhow in n3 steps we cannot hope to reach (in our lexicographic scanning)
strings of length greater than 3 log2 n. As for deciding membership in F , this
requires an ability to compute f on adequate integers. That is, we may need
to compute the value of f (n′) for various integers n′, but as noted, n′ will be
much smaller than n (since n′ ≤ poly(|x|) ≤ poly(log n)). Thus, the value of
f (n′) is just computed recursively (while counting the recursive steps in our
total number of steps).22 The point is that when considering an input x, we may
need the values of f only on {1, . . . , pi+1(|x|)}, where pi+1 is the polynomial
bounding the running time of the i + 1st (modified) machine, and obtaining
such a value takes at most pi+1(|x|)3 steps. We conclude that the number of
steps performed toward determining whether or not a failure (of the i + 1st

machine) occurs on the input x is upper-bounded by an (exponential) function
of |x|.

As hinted in the foregoing paragraph, the procedure will complete n3 steps
well before examining inputs of length greater than 3 log2 n, but this does not
matter. What matters is that f is unbounded (see Exercise 4.25). Furthermore,
by construction, f (n) is computed in poly(n)-time.

Comment. The proof of Theorem 4.12 actually establishes that for every
decidable set S �∈ P , there exists S ′ �∈ P such that S ′ is Karp-reducible to S but
S is not Cook-reducible to S ′.23 Thus, if P �= NP then there exists an infinite
sequence of sets S1, S2, . . . in NP \ P such that Si+1 is Karp-reducible to Si

but Si is not Cook-reducible to Si+1. Furthermore, S1 may be NP-complete.
That is, there exists an infinite sequence of problems (albeit unnatural ones),
all in NP , such that each problem is “easier” than the previous ones (in the
sense that it can be reduced to any of the previous problems while none of these
problems can be reduced to it).

22 We do not bother to present a more efficient implementation of this process. That is, we may
afford to recompute f (n′) every time we need it (rather than store it for later use).

23 The said Karp-reduction (of S′ to S) maps x to itself if x ∈ F and otherwise maps x to a fixed
no-instance of S.

130 4 NP-Completeness

4.5 Reflections on Complete Problems

This book will perhaps only be understood by those who have them-
selves already thought the thoughts which are expressed in it – or similar
thoughts. It is therefore not a text-book. Its object would be attained if it
afforded pleasure to one who read it with understanding.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Indeed, this section should be viewed as an invitation to meditate together
on questions of the type: What enables the existence of complete problems?
Accordingly, the style is intentionally naive and imprecise; this entire section
may be viewed as an open-ended exercise, asking the interested reader to
consider substantiations of the vague text.24

We know that NP-complete problems exist. The question we ask here is
what aspects in our modeling of problems enable the existence of complete
problems. We should, of course, bear in mind that completeness refers to a
class of problems; the complete problem should “encode” each problem in the
class and be itself in the class. Since the first aspect, hereafter referred to as
encodability of a class, is amazing enough (at least to a layman), we start by
asking what enables it. We identify two fundamental paradigms, regarding the
modeling of problems, that seem essential to the encodability of any (infinite)
class of problems:

1. Each problem refers to an infinite set of possible instances.
2. The specification of each problem uses a finite description (e.g., an algorithm

that enumerates all the possible solutions for any given instance).25

These two paradigms seem somewhat conflicting, yet put together they sug-
gest the definition of a universal problem. Specifically, this problem refers to
instances of the form (D, x), where D is a description of a problem and x is
an instance to that problem, and a solution to the instance (D, x) is a solution
to x with respect to the problem (described by) D. Intuitively, this universal
problem can encode any other problem (provided that problems are modeled
in a way that conforms with the foregoing paradigms): Solving the universal
problem allows for solving any other problem.26

24 We warn that this exercise may be unsuitable for most undergraduate students.
25 This seems the most naive notion of a description of a problem. An alternative notion of a

description refers to an algorithm that recognizes all valid instance-solution pairs (as in the
definition of NP). However, at this point, we also allow “non-effective” descriptions (as giving
rise to the Halting Problem).

26 Recall, however, that the universal problem is not (algorithmically) solvable. Thus, both parts
of the implication are false (i.e., this problem is not solvable and, needless to say, there exist

4.5 Reflections on Complete Problems 131

Note that the foregoing universal problem is actually complete with respect
to the class of all problems, but it is not complete with respect to any class
that contains only (algorithmically) solvable problems (because this universal
problem is not solvable). Turning our attention to classes of solvable problems,
we seek versions of the universal problem that are complete for these classes.
One archetypical difficulty that arises is that, given a description D (as part
of the instance to the universal problem), we cannot tell whether or not D is
a description of a problem in a predetermined class C (because this decision
problem is unsolvable).27 This fact is relevant because if the universal problem
requires solving instances that refer to a problem not in C, then intuitively it
cannot be itself in C.

Before turning to the resolution of the foregoing difficulty, we note that the
aforementioned modeling paradigms are pivotal to the theory of computation
at large. In particular, so far we have made no reference to any complexity
consideration. Indeed, a complexity consideration is the key to resolving the
foregoing difficulty: The idea is modifying any description D into a description
D′ such that D′ is always in C, and D′ agrees with D in the case that D is in
C (i.e., in this case they described exactly the same problem). We stress that
in the case that D is not in C, the corresponding problem D′ may be arbitrary
(as long as it is in C). Such a modification is possible with respect to many
Complexity theoretic classes. We consider two different types of classes, where
in both cases the class is defined in terms of the time complexity of algorithms
that do something related to the problem (e.g., recognize valid solutions, as in
the definition of NP).

1. Classes defined by a single time-bound function t (e.g., t(n) = n3). In this
case, any algorithm D is modified to the algorithm D′ that, on input x,
emulates (up to) t(|x|) steps of the execution of D(x). The modified version
of the universal problem treats the instance (D, x) as (D′, x). This version
can encode any problem in the said class C (corresponding to time complex-
ity t).
But will this (version of the universal) problem be itself in C? The answer
depends both on the efficiency of emulation in the corresponding com-
putational model and on the growth rate of t . For example, for triple-
exponential t , the answer will be definitely yes, because t(|x|) steps

unsolvable problems). Indeed, the notion of a problem is rather vague at this stage; it certainly
extends beyond the set of all solvable problems.

27 Here we ignore the possibility of using promise problems, which do enable for avoiding such
instances without requiring anybody to recognize them. Indeed, using promise problems
resolves this difficulty, but the issues discussed following the next paragraph remain valid.

132 4 NP-Completeness

can be emulated in poly(t(|x|))-time (in any reasonable model) while
t(|(D, x)|) > t(|x| + 1) > poly(t(|x|)). On the other hand, in most reason-
able models, the emulation of t(|x|) steps requires more than O(t(|x|))
time, whereas for any polynomial t it holds that t(n+O(1)) is smaller than
2 · t(n).

2. Classes defined by a family of infinitely many functions of different growth
rate (e.g., polynomials). We can, of course, select a function t that grows
faster than any function in the family and proceed as in the prior case, but
then the resulting universal problem will definitely not be in the class.
Note that in the current case, a complete problem will indeed be striking
because, in particular, it will be associated with one function t0 that grows
more moderately than some other functions in the family (e.g., a fixed
polynomial grows more moderately than other polynomials). Seemingly
this means that the algorithm describing the universal machine should be
faster in terms of the actual number of steps than some algorithms that
describe some other problems in the class. This impression presumes that
the instances of both problems are (approximately) of the same length,
and so we intensionally violate this presumption by artificially increasing
the length of the description of the instances to the universal problem. For
example, if D is associated with the time bound tD , then the instance (D, x)
to the universal problem is presented as, say, (D, x, 1t−1

0 (tD (|x|)2)), where the
square compensates for the overhead of the emulation (and in the case of
NP we used t0(n) = n).

We believe that the last item explains the existence of NP-complete problems.
But what about the NP-completeness of SAT?

We first note that the NP-hardness of CSAT is an immediate consequence of
the fact that Boolean circuits can emulate algorithms.28 This fundamental fact is
rooted in the notion of an algorithm (which postulates the simplicity of a single
computational step) and holds for any reasonable model of computation. Thus,
for every D and x, the problem of finding a string y such that D(x, y) = 1 is
“encoded” as finding a string y such that CD,x(y) = 1, where CD,x is a Boolean
circuit that is easily derived from (D, x). In contrast to the fundamental fact
underlying the NP-hardness of CSAT, the NP-hardness of SAT relies on a clever
trick that allows for encoding instances of CSAT as instances of SAT.

As stated, the NP-completeness of SAT is proved by encoding instances
of CSAT as instances of SAT. Similarly, the NP-completeness of other new
problems is proved by encoding instances of problems that are already known to

28 The fact that CSAT is in NP is a consequence of the fact that the circuit evaluation problem is
solvable in polynomial time.

Exercises 133

be NP-complete. Typically, these encodings operate in a local manner, mapping
small components of the original instance to local gadgets in the produced
instance. Indeed, these problem-specific gadgets are the core of the encoding
phenomenon. Presented with such a gadget, it is typically easy to verify that it
works. Thus, one may not be surprised by most of these individual gadgets, but
the fact that they exist for thousands of natural problems is definitely amazing.

Exercises
Exercise 4.1 (a quiz)

1. What are NP-complete (search and decision) problems?
2. Is it likely that the problem of finding a perfect matching in a given graph is

NP-complete?
3. Prove the existence of NP-complete problems.
4. How does the complexity of solving one NP-complete problem effect the

complexity of solving any problem in NP (resp., PC)?
5. In continuation of the previous question, assuming that some NP-complete

problem can be solved in time t , upper-bound the complexity of solving any
problem in NP (resp., PC).

6. List five NP-complete problems.
7. Why does the fact that SAT is Karp-reducible to Set Cover imply that

Set Cover is NP-complete?
8. Are there problems in NP \ P that are not NP-complete?

Exercise 4.2 (PC-completeness implies NP-completeness) Show that if the
search problem R is PC-complete, then SR is NP-complete, where SR = {x :
∃y s.t. (x, y)∈R}.
Exercise 4.3 Prove that any R ∈ PC is Levin-reducible to R′u, where R′u con-
sists of pairs (〈M,x, t〉, y) such that M accepts the input pair (x, y) within t

steps (and |y| ≤ t). Recall that R′u �∈ PC (see [13, §4.2.1.2]).

Guideline: A minor modification of the reduction used in the proof of Theo-
rem 4.3 will do.

Exercise 4.4 Prove that Bounded Halting and Bounded Non-Halting

are NP-complete, where the problems are defined as follows. The instance
consists of a pair (M, 1t), where M is a Turing machine and t is an integer. The
decision version of Bounded Halting (resp., Bounded Non-Halting)
consists of determining whether or not there exists an input (of length at

134 4 NP-Completeness

most t) on which M halts (resp., does not halt) in t steps, whereas the search
problem consists of finding such an input.

Guideline: Either modify the proof of Theorem 4.3 or present a reduction
of (say) the search problem of Ru to the search problem of Bounded (Non-)
Halting. (Indeed, the exercise is more straightforward in the case of Bounded
Halting.)

Exercise 4.5 In the proof of Theorem 4.5, we claimed that the value of each
entry in the “array of configurations” of a machine M is determined by the
values of the three entries that reside in the row above it (as in Figure 4.2).
Present a function fM : �3 → �, where � = � × (Q ∪ {⊥}), that substantiates
this claim.

Guideline: For example, for every σ1, σ2, σ3 ∈ �, it holds that fM ((σ1,⊥),
(σ2,⊥), (σ3,⊥)) = (σ2,⊥). More interestingly, if the transition function
of M maps (σ, q) to (τ, p,+1) then, for every σ1, σ2, σ3 ∈ Q, it holds
that fM ((σ, q), (σ2,⊥), (σ3,⊥)) = (σ2, p) and fM ((σ1,⊥), (σ, q), (σ3,⊥)) =
(τ,⊥).

Exercise 4.6 Present and analyze a reduction of SAT to 3SAT.

Guideline: For a clause C, consider auxiliary variables such that the i th variable
indicates whether one of the first i literals is satisfied, and replace C by a
3CNF formula that uses the original variables of C as well as the auxiliary
variables. For example, the clause ∨t

i=1xi is replaced by the conjunction of
3CNF formulae that are logically equivalent to the formulae (y2 ≡ (x1 ∨ x2)),
(yi ≡ (yi−1 ∨ xi)) for i = 3, . . . , t , and yt . We comment that this is not the
standard reduction, but we find it conceptually more appealing. (The standard
reduction replaces the clause ∨t

i=1xi by the conjunction of the 3CNF formula
(x1 ∨ x2 ∨ y2), ((¬yi−1) ∨ xi ∨ yi) for i = 3, . . . , t , and ¬yt .)

Exercise 4.7 (efficient solvability of 2SAT) In contrast to the NP-comple-
teness of 3SAT, prove that 2SAT (i.e., the satisfiability of 2CNF formulae)
is in P .

Guideline: Consider the following forcing process for CNF formulae. If the
formula contains a singleton clause (i.e., a clause having a single literal), then
the corresponding variable is assigned the only value that satisfies the clause,
and the formula is simplified accordingly (possibly yielding a constant formula,
which is either true or false). The process is repeated until the formula is
either a constant or contains only non-singleton clauses. Note that a formula φ

is satisfiable if and only if the formula obtained from φ by the forcing process

Exercises 135

is satisfiable. Now, consider the following algorithm for solving the search
problem associated with 2SAT.

1. Choose an arbitrary variable in φ. For each σ ∈ {0, 1}, denote by φσ the
formula obtained from φ by assigning this variable the value σ and applying
the forcing process to the resulting formula.
Note that φσ is either a Boolean constant or a 2CNF formula (which is a
conjunction of some clauses of φ).

2. If, for some σ ∈ {0, 1}, the formula φσ equals the constant true, then we
halt with a satisfying assignment for the original formula.

3. If both assignments yield the constant false (i.e., for every σ ∈ {0, 1} the
formula φσ equals false), then we halt asserting that the original formula
is unsatisfiable.

4. Otherwise (i.e., for each σ ∈ {0, 1}, the formula φσ is a (non-constant) 2CNF
formula), we select σ ∈ {0, 1} arbitrarily, set φ ← φσ , and go to Step 1.

Proving the correctness of this algorithm boils down to observing that the
arbitrary choice made in Step 4 is immaterial. Indeed, this observation relies on
the fact that we refer to 2CNF formulae, which implies that the forcing process
either yields a constant or a 2CNF formula (which is a conjunction of some
clauses of the original φ).

Exercise 4.8 (Integer Linear Programming) Prove that the following prob-
lem is NP-hard.29 An instance of the problem is a system of linear inequalities
(say, with integer constants), and the problem is to determine whether the
system has an integer solution. A typical instance of this decision problem
follows.

x + 2y − z ≥ 3

−3x − z ≥ −5

x ≥ 0

−x ≥ −1

Guideline: Reduce from SAT. Specifically, consider an arithmetization of the
input CNF by replacing ∨ with addition and ¬x by 1− x. Thus, each clause
gives rise to an inequality (e.g., the clause x ∨ ¬y is replaced by the inequality

29 Proving that the problem is in NP requires showing that if a system of linear inequalities has an
integer solution, then it has an integer solution in which all numbers are of length that is
polynomial in the length of the description of the system. Such a proof is beyond the scope of
the current textbook.

136 4 NP-Completeness

x + (1− y) ≥ 1, which simplifies to x − y ≥ 0). Enforce a 0-1 solution by
introducing inequalities of the form x ≥ 0 and −x ≥ −1, for every variable x.

Exercise 4.9 (Maximum Satisfiability of Linear Systems over GF(2)) Prove
that the following problem is NP-complete. An instance of the problem consists
of a system of linear equations over GF(2) and an integer k, and the problem is to
determine whether there exists an assignment that satisfies at least k equations.
(Note that the problem of determining whether there exists an assignment that
satisfies all of the equations is in P .)

Guideline: Reduce from 3SAT, using the following arithmetization. Replace
each clause that contains t ≤ 3 literals by 2t − 1 linear GF(2) equations that cor-
respond to the different non-empty subsets of these literals, and assert that their
sum (modulo 2) equals one; for example, the clause x ∨ ¬y is replaced by the
equations x + (1− y) = 1, x = 1, and 1− y = 1. Identifying {false,true}
with {0, 1}, prove that if the original clause is satisfied by a Boolean assignment
v then exactly 2t−1 of the corresponding equations are satisfied by v, whereas if
the original clause is unsatisfied by v then none of the corresponding equations
is satisfied by v.

Exercise 4.10 (Satisfiability of Quadratic Systems over GF(2)) Prove that the
following problem is NP-complete. An instance of the problem consists of a
system of quadratic equations over GF(2), and the problem is to determine
whether there exists an assignment that satisfies all the equations. Note that the
result also holds for systems of quadratic equations over the reals (by adding
conditions that force values in {0, 1}).
Guideline: Start by showing that the corresponding problem for cubic equations
is NP-complete, by a reduction from 3SAT that maps the clause x ∨ ¬y ∨ z to
the equation (1− x) · y · (1− z) = 0. Reduce the problem for cubic equations
to the problem for quadratic equations by introducing auxiliary variables; that
is, given an instance with variables x1, . . . , xn, introduce the auxiliary variables
xi,j ’s and add equations of the form xi,j = xi · xj .

Exercise 4.11 (restricted versions of 3SAT) Prove that the following restricted
version of 3SAT, denoted r3SAT, is NP-complete. An instance of the problem
consists of a 3CNF formula such that each literal appears in at most two clauses,
and the problem is to determine whether this formula is satisfiable.

Guideline: Recall that Proposition 4.7 establishes the NP-completeness of a
version of 3SAT in which the instances are restricted such that each variable
appears in at most three clauses. So it suffices to reduce this restricted problem
to r3SAT. This reduction is based on the fact that if all (three) occurrences of

Exercises 137

a variable are of the same type (i.e., they are all negated or all non-negated),
then this variable can be assigned a value that satisfies all clauses in which
it appears (and so the variable and the clauses in which it appear can be
omitted from the instance). Thus, the desired reduction consists of applying the
foregoing simplification to all relevant variables. Alternatively, a closer look
at the reduction used in the proof of Proposition 4.7 reveals the fact that this
reduction maps any 3CNF formula to a 3CNF formula in which each literal
appears in at most two clauses.

Exercise 4.12 Verify the validity of the three main reductions presented in the
proof of Proposition 4.9; that is, we refer to the reduction of r3SAT to 3SC,
the reduction of 3SC to 3XC′, and the reduction of 3XC′ to 3XC.

Exercise 4.13 Show that the following two variants of Set Cover are com-
putationally equivalent. In both variants, an instance consists of a collection of
finite sets S1, . . . , Sm and an integer K . In the first variant we seek a vertex
cover of size at most K , whereas in the second variant we seek a vertex cover of
size exactly K . Consider both the decision and search versions of both variants,
and note that K ≤ m may not hold.

Exercise 4.14 (Clique and Independent Set) An instance of the Indepen-

dentSet problem consists of a pair (G,K), where G is a graph and K is an
integer, and the question is whether or not the graph G contains an independent
set (i.e., a set with no edges between its members) of size (at least) K . The
Clique problem is analogous. Prove that both problems are computationally
equivalent via Karp-reductions to the Vertex Cover problem.

Exercise 4.15 (an alternative proof of Proposition 4.10) Consider the fol-
lowing sketch of a reduction of 3SAT to Independent Set. On input a
3CNF formula φ with m clauses and n variables, we construct a graph Gφ

consisting of m triangles (corresponding to the (three literals in the) m clauses)
augmented with edges that link conflicting literals. That is, if x appears as the
i th
1 literal of the j th

1 clause and¬x appears as the i th
2 literal of the j th

2 clause, then
we draw an edge between the i th

1 vertex of the j th
1 triangle and the i th

2 vertex of
the j th

2 triangle. Prove that φ ∈ 3SAT if and only if Gφ has an independent set
of size m.

Exercise 4.16 Verify the validity of the reduction presented in the proof of
Proposition 4.11.

Exercise 4.17 (Subset Sum) Prove that the following problem is NP-complete.
The instance consists of a list of n+ 1 integers, denoted a1, . . . , an, b, and the
question is whether or not a subset of the ai’s sums up to b (i.e., exists I ⊆ [n]

138 4 NP-Completeness

such that
∑

i∈I ai = b). Establish the NP-completeness of this problem, called
SubsetSum, by a reduction from 3XC.

Guideline: Given an instance (S1, . . . , Sm) of 3XC, where (without loss of
generality) S1, . . . , Sm ⊆ [3k], consider the following instance of SubsetSum
that consists of a list of m+ 1 integers such that b =∑3k

j=1(m+ 1)j and
ai =

∑
j∈Si

(m+ 1)j for every i ∈ [m]. (Some intuition may be gained by
writing all integers in base m+ 1.)

Exercise 4.18 Prove that the following problem is NP-complete. The instance
consists of a list of permutations over [n], denoted π1, . . . , πm, a target permu-
tation π (over [n]), and an integer t presented in unary (i.e., 1t). The question
is whether or not there exists a sequence, i1, . . . , i� ∈ [m], such that � ≤ t and
π = πi� ◦ · · · ◦ πi2 ◦ πi1 , where ◦ denotes the composition of permutations.
Establish the NP-completeness of this problem by a reduction from 3XC.

Guideline: Given an instance (S1, . . . , Sm) of 3XC, where (without loss of
generality) S1, . . . , Sm ⊆ [3k], consider the following instance ((π1, . . . , πm),
π, 1k) of the permutation problem (over [6k]). The target permutation π is
the involution (over [6k]) that satisfies π (2i) = 2i − 1 for every i ∈ [3k]. For
j = 1, . . . , m, the j th permutation in the list (i.e., πj) is the involution that
satisfies π (2i) = 2i − 1 if i ∈ Sj and π (2i) = 2i (as well as π (2i − 1) = 2i −
1) otherwise.

Exercise 4.19 The fact that SAT and CSAT are NP-complete implies that
Graph 3-Colorability and Clique can be reduced to SAT and CSAT

(via a generic reduction). In this exercise, however, we ask for simple and
direct reductions.

1. Present a simple reduction of Graph3-Colorability to 3SAT.

Guideline: Introduce three Boolean variables for each vertex such that xi,j

indicates whether vertex i is colored with the j th color. Construct clauses
that enforce that each vertex is colored by a single color, and that no adjacent
vertices are colored with the same color.

2. Present a simple reduction of Clique to CSAT.

Guideline: Introduce a Boolean input for each vertex such that this input
indicates whether the vertex is in the clique. The circuit should check that
all pairs of inputs that are set to 1 correspond to pairs of vertices that are
adjacent in the graph, and check that the number of variables that are set
to 1 exceeds the given threshold. This calls for constructing a circuit that
counts. Constructing a corresponding Boolean formula is left as an advanced
exercise.

Exercises 139

Exercise 4.20 (an augmented form of Levin-reductions) In continuation of
the discussion in the main text, consider the following augmented form of
Levin-reductions. Such a reduction of R to R′ consists of three polynomial-
time mappings (f, h, g) such that (f is a Karp-reduction of SR to SR′ and)30

the following two conditions hold:

1. For every (x, y) ∈ R it holds that (f (x), h(x, y)) ∈ R′.
2. For every (f (x), y ′) ∈ R′ it holds that (x, g(x, y ′)) ∈ R.

(We note that this definition is actually the one used by Levin in [21], except
that he restricted h and g to depend only on their second argument.)

Prove that such a reduction implies both a Karp-reduction and a Levin-
Reduction, and show that all reductions presented in this chapter satisfy this
augmented requirement.

Exercise 4.21 (parsimonious reductions) Let R,R′ ∈ PC and let f be a Karp-
reduction of SR = {x : R(x) �=∅} to SR′ = {x : R′(x) �=∅}. We say that f is
parsimonious (with respect to R and R′) if for every x it holds that |R(x)| =
|R′(f (x))|. For each of the reductions presented in this chapter, determine
whether or not it is parsimonious.31

Exercise 4.22 (polynomial-time invertible reductions) Show that, under a
suitable (but natural) encoding of the problems’ instances, all Karp-reductions
presented in this chapter are one-to-one and polynomial-time invertible; that is,
show that for every such reduction f there exists a polynomial-time algorithm
that, on any input in the image of f , returns the unique preimage under f . Note
that, without loss of generality, when given a string that is not in the image of
f , the inverting algorithm returns a special symbol.

Exercise 4.23 (on polynomial-time invertible reductions (following [2])) In
continuation of Exercise 4.22, we consider a general condition on sets that
implies that any Karp-reduction to them can be modified into a one-to-one
and polynomial-time invertible Karp-reduction. Loosely speaking, a set is
markable if it is feasible to “mark” any instance x by a label α such that the
resulting instance M(x, α) preserves the “membership bit” of x (wrt the set)
and the label is easily recoverable from M(x, α). That is, we say that a set S is

30 The parenthetical condition is actually redundant, because it is implied by the following two
conditions.

31 Advanced comment: In most cases, when the standard reductions are not parsimonious, it is
possible to find alternative reductions that are parsimonious (cf. [11, Sec. 7.3]). In some cases
(e.g., for 3-Colorability), finding such alternatives is quite challenging.

140 4 NP-Completeness

markable if there exists a polynomial-time (marking) algorithm M such that

1. For every x, α ∈ {0, 1}∗ it holds that
(a) M(x, α) ∈ S if and only if x ∈ S.
(b) |M(x, α)| > |x|.

2. There exists a polynomial-time (de-marking) algorithm D such that, for
every x, α ∈ {0, 1}∗, it holds that D(M(x, α)) = α.

Note that all natural NP-sets (e.g., those considered in this chapter) are markable
(e.g., for SAT, one may mark a formula by augmenting it with additional
satisfiable clauses that use specially designated auxiliary variables). Prove that
if S ′ is Karp-reducible to S and S is markable, then S ′ is Karp-reducible to S by
a length-increasing, one-to-one, and polynomial-time invertible mapping. Infer
that for any natural NP-complete problem S, any set inNP is Karp-reducible to
S by a length-increasing, one-to-one, and polynomial-time invertible mapping.

Guideline: Let f be a Karp-reduction of S ′ to S, and let M be the guaranteed
marking algorithm. Consider the reduction that maps x to M(f (x), x).

Exercise 4.24 (on the isomorphism of NP-complete sets (following [2]))
Suppose that S and T are Karp-reducible to each other by length-increasing,
one-to-one, and polynomial-time invertible mappings, denoted f and g,
respectively. Using the following guidelines, prove that S and T are “effec-
tively” isomorphic; that is, present a polynomial-time computable and in-

vertible one-to-one mapping φ such that T = φ(S)
def= {φ(x) : x∈S}.

1. Let F
def= {f (x) : x∈{0, 1}∗} and G

def= {g(x) : x∈{0, 1}∗}. Using the length-
increasing condition of f (resp., g), prove that F (resp., G) is a proper
subset of {0, 1}∗. Prove that for every y ∈ {0, 1}∗ there exists a unique triple
(j, x, i) ∈ {1, 2} × {0, 1}∗ × ({0} ∪ N) that satisfies one of the following two
conditions:
(a) j = 1, x ∈ G

def= {0, 1}∗ \G, and y = (g ◦ f)i(x);

(b) j = 2, x ∈ F
def= {0, 1}∗ \ F , and y = (g ◦ f)i(g(x)).

(In both cases h0(z)
def= z, hi(z)

def= h(hi−1(z)), and (g ◦ f)(z)
def= g(f (z)).

Hint: consider the maximal sequence of inverse operations g−1, f −1, g−1, . . . that
can be applied to y, and note that each inverse shrinks the current string.)

2. Let U1
def= {(g ◦ f)i(x) : x∈G ∧ i≥0} and U2

def= {(g ◦ f)i(g(x)) : x∈F ∧
i≥0}. Prove that (U1, U2) is a partition of {0, 1}∗. Using the fact that f and g

are length-increasing and polynomial-time invertible, present a polynomial-
time procedure for deciding membership in the set U1.

Exercises 141

Prove the same for the sets V1 = {(f ◦ g)i(x) : x∈F ∧ i≥0} and V2 =
{(f ◦ g)i(f (x)) : x∈G ∧ i≥0}.

3. Note that U2 ⊆ G, and define φ(x)
def= f (x) if x ∈ U1 and φ(x)

def= g−1(x)
otherwise.
(a) Prove that φ is a Karp-reduction of S to T .
(b) Note that φ maps U1 to f (U1) = {f (x) : x∈U1} = V2 and U2 to

g−1(U2) = {g−1(x) : x∈U2} = V1. Prove that φ is one-to-one and onto.
Observe that φ−1(x) = f −1(x) if x ∈ f (U1) and φ−1(x) = g(x) otherwise.
Prove that φ−1 is a Karp-reduction of T to S. Infer that φ(S) = T .

Using Exercise 4.23, infer that all natural NP-complete sets are isomorphic.

Exercise 4.25 Referring to the proof of Theorem 4.12, prove that the function
f is unbounded (i.e., for every i there exists an n such that n3 steps of the
process defined in the proof allow for failing the i + 1st machine).

Guideline: Note that f is monotonically non-decreasing (because more steps
allow for failure of at least as many machines). Assume, toward the con-
tradiction that f is bounded. Let i = maxn∈N{f (n)} and n′ be the smallest
integer such that f (n′) = i. If i is odd then the set F determined by f is co-
finite (because F = {x : f (|x|)≡1 (mod 2)} ⊇ {x : |x|≥n′}). In this case,
the i + 1st machine tries to decide S ∩ F (which differs from S on finitely
many strings), and must fail on some x. Derive a contradiction by showing
that the number of steps taken till reaching and considering this x is at most
exp(poly(|x|)), which is smaller than n3 for some sufficiently large n. A sim-
ilar argument applies to the case that i is even, where we use the fact that
F ⊆ {x : |x|<n′} is finite and so the relevant reduction of S to S ∩ F must fail
on some input x.

Exercise 4.26 (universal verification procedures) A natural notion, which
arises from viewing NP-complete problems as “encoding” all problems in NP,
is the notion of a “universal” NP-proof system. We say that an NP-proof system
is universal if verification in any other NP-proof system can be reduced to veri-
fication in it. Specifically, following Definition 2.5, let V and V ′ be verification
procedures for S ∈ NP and S ′ ∈ NP , respectively. We say that verification
with respect to V ′ is reduced to verification with respect to V if there exists
two polynomial-time computable functions f, h : {0, 1}∗ → {0, 1}∗ such that
for every x, y ∈ {0, 1}∗ it holds that V ′(x, y) = V (f (x), h(x, y)). Prove the
existence of universal NP-proof systems and show that the natural NP-proof
system for SAT is universal.

Guideline: See Exercise 4.20.

5

Three Relatively Advanced Topics

In this chapter we discuss three relatively advanced topics. The first topic,
which was alluded to in previous chapters, is the notion of promise problems
(Section 5.1). Next, we present an optimal algorithm for solving (“candid”)
NP-search problems (Section 5.2). Finally, in Section 5.3, we briefly discuss
the class (denoted coNP) of sets that are complements of sets in NP.

Teaching Notes

Typically, the foregoing topics are not mentioned in a basic course on com-
plexity. Still, we believe that these topics deserve at least a mention in such
a course. This holds especially with respect to the notion of promise prob-
lems. Furthermore, depending on time constraints, we recommend presenting
all three topics in class (at least at an overview level).

We comment that the notion of promise problems was originally introduced
in the context of decision problems, and is typically used only in that context.
However, given the importance that we attach to an explicit study of search
problems, we extend the formulation of promise problems to search problems
as well. In that context, it is also natural to introduce the notion of a “candid
search problem” (see Definition 5.2).

5.1 Promise Problems

Promise problems are natural generalizations of search and decision problems.
These generalizations are obtained by explicitly considering a set of legitimate
instances (rather than considering any string as a legitimate instance). As noted
previously, this generalization provides a more adequate formulation of natural
computational problems (and, indeed, this formulation is used in all informal

142

5.1 Promise Problems 143

discussions). For example, in Section 4.3.2 we presented such problems using
phrases like “given a graph and an integer . . .” (or “given a collection of
sets . . . ”). In other words, we assumed that the input instance has a certain
format (or rather we “promised the solver” that this is the case). Indeed, we
claimed that in these cases, the assumption can be removed without affecting
the complexity of the problem, but we avoided providing a formal treatment of
this issue, which we do next.1

5.1.1 Definitions

Promise problems are defined by specifying a set of admissible instances. Can-
didate solvers of these problems are only required to handle these admissible
instances. Intuitively, the designer of an algorithm solving such a problem is
promised that the algorithm will never encounter an inadmissible instance (and
so the designer need not care about how the algorithm performs on inadmissible
inputs).

5.1.1.1 Search Problems with a Promise
In the context of search problems, a promise problem is a relaxation in which
one is only required to find solutions to instances in a predetermined set, called
the promise. The requirement regarding efficient checkability of solutions is
adapted in an analogous manner.

Definition 5.1 (search problems with a promise): A search problem with a

promise consists of a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ and a promise set
P . Such a problem is also referred to as the search problem R with promise P .

� The search problem R with promise P is solved by algorithm A if for every
x ∈ P it holds that (x,A(x)) ∈ R if x ∈ SR and A(x) = ⊥ otherwise, where
SR = {x : R(x) �= ∅} and R(x) = {y : (x, y) ∈ R}.
The time complexity of A on inputs in P is defined as TA|P (n)

def=
maxx∈P∩{0,1}n{tA(x)}, where tA(x) is the running time of A(x) and TA|P (n) =
0 if P ∩ {0, 1}n = ∅.

� The search problem R with promise P is in the promise problem extension of

PF if there exists a polynomial-time algorithm that solves this problem.2

1 Advanced comment: The notion of promise problems was originally introduced in the context
of decision problems, and is typically used only in that context. However, we believe that
promise problems are as natural in the context of search problems.

2 In this case, it does not matter whether the time complexity of A is defined on inputs in P or on
all possible strings. Suppose that A has (polynomial) time complexity T on inputs in P ; then
we can modify A to halt on any input x after at most T (|x|) steps. This modification may only
effect the output of A on inputs not in P (which are inputs that do not matter anyhow). The

144 5 Three Relatively Advanced Topics

� The search problem R with promise P is in the promise problem extension of

PC if there exists a polynomial T and an algorithm A such that, for every
x ∈ P and y ∈ {0, 1}∗, algorithm A makes at most T (|x|) steps and it holds
that A(x, y) = 1 if and only if (x, y) ∈ R.

We stress that nothing is required of the solver in the case that the input violates
the promise (i.e., x �∈ P); in particular, in such a case the algorithm may halt
with a wrong output. (Indeed, the standard formulations of PF and PC are
obtained by considering the trivial promise P = {0, 1}∗.)3

In addition to the foregoing motivation for promise problems, we mention
one natural class of search problems with a promise. These are search problem
in which the promise is that the instance has a solution; that is, in terms of
Definition 5.1, we consider a search problem R with the promise P = SR . We
refer to such search problems by the name candid search problems.

Definition 5.2 (candid search problems): An algorithm A solves the candid

search problem of the binary relation R if for every x ∈ SR (i.e., for every (x, y)∈
R) it holds that (x,A(x)) ∈ R. The time complexity of such an algorithm is

defined as TA|SR
(n)

def= maxx∈SR∩{0,1}n{tA(x)}, where tA(x) is the running time of
A(x) and TA|SR

(n) = 0 if SR ∩ {0, 1}n = ∅.

Note that nothing is required when x �∈ SR: In particular, algorithm A may
either output a wrong solution (although no solutions exist) or run for more than
TA|SR

(|x|) steps. The first case can be essentially eliminated whenever R ∈ PC.
Furthermore, for R ∈ PC, if we “know” the time complexity of algorithm A

(e.g., if we can compute TA|SR
(n) in poly(n)-time), then we may modify A into

an algorithm A′ that solves the (general) search problem of R (i.e., halts with
a correct output on each input) in time TA′ such that TA′(n) essentially equals
TA|SR

(n)+ poly(n); see Exercise 5.2. However, we do not necessarily know the
running time of an algorithm that we consider (or analyze). Furthermore, as
we shall see in Section 5.2, the naive assumption by which we always know the
running time of an algorithm that we design is not valid either.

5.1.1.2 Decision Problems with a Promise
In the context of decision problems, a promise problem is a relaxation in
which one is only required to determine the status of instances that belong to a
predetermined set, called the promise. The requirement of efficient verification

modification can be implemented in polynomial time by computing t = T (|x|) and emulating
the execution of A(x) for t steps. A similar comment applies to the definition of PC, P , and
NP .

3 Here we refer to the alternative formulation of PC outlined in Section 2.5.

5.1 Promise Problems 145

YES- NO-
instances instances

instances
that violate

the promise

Figure 5.1. A schematic depiction of a promise problem.

is adapted in an analogous manner. In view of the standard usage of the term,
we refer to decision problems with a promise by the name promise problems.
Formally, promise problems refer to a three-way partition of the set of all strings
into yes-instances, no-instances, and instances that violate the promise. (See
schematic depiction in Figure 5.1.) Standard decision problems are obtained
as a special case by insisting that all inputs are allowed (i.e., the promise is
trivial).

Definition 5.3 (promise problems): A promise problem consists of a pair of
non-intersecting sets of strings, denoted (Syes, Sno), and Syes ∪ Sno is called the
promise.

� The promise problem (Syes, Sno) is solved by algorithm A if for every x ∈ Syes

it holds that A(x) = 1 and for every x ∈ Sno it holds that A(x) = 0. The
promise problem is in the promise problem extension of P if there exists a
polynomial-time algorithm that solves it.

� The promise problem (Syes, Sno) is in the promise problem extension of NP
if there exists a polynomial p and a polynomial-time algorithm V such that
the following two conditions hold:
1. Completeness: For every x ∈ Syes, there exists y of length at most p(|x|)

such that V (x, y) = 1.
2. Soundness: For every x ∈ Sno and every y, it holds that V (x, y) = 0.

We stress that for algorithms of polynomial-time complexity, it does not matter
whether the time complexity is defined only on inputs that satisfy the promise
or on all strings (see footnote 2). Thus, the extended classes P and NP (like
PF and PC) are invariant under this choice.

5.1.1.3 Reducibility Among Promise Problems
The notion of a Cook-reduction extends naturally to promise problems, when
postulating that a query that violates the promise (of the problem at the target

146 5 Three Relatively Advanced Topics

of the reduction) may be answered arbitrarily.4 That is, the oracle machine
should solve the original problem no matter how the oracle answers queries
that violate the promise.

The latter requirement is consistent with the conceptual meaning of reduc-
tions and promise problems. Recall that reductions capture procedures that
make subroutine calls to an arbitrary procedure that solves the “target” prob-
lem. But in the case of promise problems, such a solver may behave arbitrarily
on instances that violate the promise. We stress that the main property of a
reduction is preserved (see Exercise 5.3): If the promise problem � is Cook-
reducible to a promise problem that is solvable in polynomial time, then � is
solvable in polynomial time.

Caveat. The extension of a complexity class to promise problems does not
necessarily inherit the “structural” properties of the standard class. For example,
in contrast to Theorem 5.7, there exist promise problems in NP ∩ coNP such
that every set in NP can be Cook-reduced to them, see Exercise 5.4. Needless
to say, NP = coNP does not seem to follow from Exercise 5.4. See further
discussion in §5.1.2.4.

5.1.2 Applications and Limitations

The following discussion refers to both the decision and the search versions of
promise problems. We start with two generic applications, and later consider
some specific applications. (Other applications are surveyed in [12].) We also
elaborate on the foregoing caveat.

5.1.2.1 Formulating Natural Computational Problems
Recall that promise problems offer the most direct way of formulating natural
computational problems. Indeed, this is a major application of the notion of
promise problems (although this application usually goes unnoticed). Specifi-
cally, the presentation of natural computational problems refers (usually implic-
itly) to some natural format, and this can be explicitly formulated by defining a
(promise problem with a) promise that equals all strings in that format. Thus, the
notion of a promise problem allows the discarding of inputs that do not adhere

4 It follows that Karp-reductions among promise problems are not allowed to make queries that
violate the promise. Specifically, we say that the promise problem � = (�yes,�no) is
Karp-reducible to the promise problem �′ = (�′

yes, �
′
no) if there exists a polynomial-time

mapping f such that for every x ∈ �yes (resp., x ∈ �no) it holds that f (x) ∈ �′
yes (resp.,

f (x) ∈ �′
no).

5.1 Promise Problems 147

to this format (and a focus on inputs that do adhere to this format). For exam-
ple, when referring to computational problems regarding graphs, the promise
mandates that the input is a graph (or, rather, the standard representation of
some graph).

We mention that, typically, the format (or rather the promise) is easily
recognizable, and so the complexity of the promise problem can be captured by
a corresponding problem (with a trivial promise); see Section 5.1.3 for further
discussion.

5.1.2.2 Restricting a Computational Problem
In addition to the foregoing application of promise problems, we mention
their use in formulating the natural notion of a restriction of a computational
problem to a subset of the instances. Specifically, such a restriction means that
the promise set of the restricted problem is a subset of the promise set of the
unrestricted problem.

Definition 5.4 (restriction of computational problems):

� For any P ′ ⊆ P and binary relation R, we say that the search problem R

with promise P ′ is a restriction of the search problem R with promise P .
� We say that the promise problem (S ′yes, S

′
no) is a restriction of the promise

problem (Syes, Sno) if both S ′yes ⊆ Syes and S ′no ⊆ Sno hold.

For example, when we say that 3SAT is a restriction of SAT, we refer to the
fact that the set of allowed instances is now restricted to 3CNF formulae (rather
than to arbitrary CNF formulae). In both cases, the computational problem is
to determine satisfiability (or to find a satisfying assignment), but the set of
instances (i.e., the promise set) is further restricted in the case of 3SAT. The fact
that a restricted problem is never harder than the original problem is captured
by the fact that the restricted problem is Karp-reducible to the original one (via
the identity mapping).

5.1.2.3 Non-generic Applications
In addition to the two aforementioned generic uses of the notion of a promise
problem, we mention that this notion provides adequate formulations for a vari-
ety of specific Computational Complexity notions and results. One example is
the notion of a candid search problem (i.e., Definition 5.2). Two other examples
follow:

1. Unique solutions: For a binary relation R, we refer to the set of instances that
have (at most) a single solution; that is, the promise is P = {x : |R(x)| ≤ 1},
where R(x) = {y : (x, y)∈R}. Two natural problems that arise are the search

148 5 Three Relatively Advanced Topics

problem of R with promise P and the promise problem (P ∩ SR, P \ SR),
where SR = {x : R(x) �=∅}. One fundamental question regarding these
promise problems is how their complexity relates to the complexity of
the original problem (e.g., the standard search problem of R). For details,
see [13, Sec. 6.2.3].

2. Gap problems: The complexity of various approximation tasks can be cap-
tured by the complexity of appropriate “gap problems”; for details, see [13,
Sec. 10.1]. For example, approximating the value of an optimal solution
is computationally equivalent to the promise problem of distinguishing
instances having solutions of high value from instances having only solu-
tions of low value, where the promise rules out instances that have an optimal
solution of intermediate value.

In all of these cases, promise problems allow discussion of natural computa-
tional problems and making statements about their inherent complexity. Thus,
the complexity of promise problems (and classes of such problems) addresses
natural questions and concerns. In particular, demonstrating the efficient solv-
ability (resp., intractability) of such a promise problem (or of a class of such
problems) carries the same conceptual message as demonstrating the efficient
solvability (resp., intractability) of a standard problem (or of a class of corre-
sponding standard problems). For example, saying that some promise problem
cannot be solved by a polynomial-time algorithm carries the same conceptual
message as saying that some standard (search or decision) problem cannot be
solved by a polynomial-time algorithm.

5.1.2.4 Limitations
Although the promise problem classes that correspond to P and PF preserve
the intuitive meaning of the corresponding standard classes of (search or deci-
sion) problems, the situation is less clear with respect to NP and PC. Things
become even worse when we consider the promise problem classes that corre-
spond to NP ∩ coNP , where coNP = {{0, 1}∗ \ S : S ∈ NP}. Specifically,
for S ∈ NP ∩ coNP it holds that every instance x has an NP-witness for mem-
bership in the corresponding set (i.e., either S or S = {0, 1}∗ \ S); however, for a
promise problem (Syes, Sno) in the corresponding “extension of NP ∩ coNP”
it does not necessarily hold that every x has an NP-witness for membership in
the corresponding set (i.e., either Syes or Sno or {0, 1}∗\(Syes ∪ Sno)). The effect
of this discrepancy is demonstrated in the discrepancy between Theorem 5.7
and Exercise 5.4.

In general, structural properties of classes of promise problems do not nec-
essarily reflect the properties of the corresponding decision problems. This

5.1 Promise Problems 149

follows from the fact that the answer of an oracle for a promise problem is not
necessarily determined by the problem. Furthermore, the (standard) definitions
of classes of promise problems do not refer to the complexity of the promise,
which may vary from being trivial to being efficiently recognizable to being
intractable or even undecidable.

5.1.3 The Standard Convention of Avoiding Promise Problems

Recall that although promise problems provide a good framework for present-
ing natural computational problems, we managed to avoid this framework in
previous chapters. This was done by relying on the fact that for all of the (natu-
ral) problems considered in the previous chapters, it is easy to decide whether
or not a given instance satisfies the promise, which in turn refers to a standard
encoding of objects as strings. Details follow.

Let us first recall some natural computational problems. For example, SAT
(resp., 3SAT) refers to CNF (resp., 3CNF) formulae, which means that we
implicitly consider the promise that the input is in CNF (resp., in 3CNF).
Indeed, this promise is efficiently recognizable (i.e., given a formula it is easy
to decide whether or not it is in CNF (resp., in 3CNF)). Actually, the issue arises
already when talking about formulae, because we are actually given a string that
is supposed to encode a formula (under some predetermined encoding scheme).
Thus, even for a problem concerning arbitrary formulae, we use a promise (i.e.,
that the input string is a valid encoding of some formula), which is easy to decide
for natural encoding schemes. The same applies to all combinatorial problems
we considered, because these problems (in their natural formulations) refer to
objects like sets and graphs, which are encoded as strings (using some encoding
scheme).

Thus, in all of these cases, the natural computational problem refers to
objects of some type, and this natural problem is formulated by considering a
promise problem in which the promise is the set of all strings that encode such
objects. Furthermore, in all of these cases, the promise (i.e., the set of legal
encodings) is efficiently recognizable (i.e., membership in it can be decided
in polynomial time). In these cases, we may avoid mentioning the promise by
using one of the following two “nasty” conventions:

1. Fictitiously extending the set of instances to the set of all possible strings
(and allowing trivial solutions for the corresponding dummy instances). For
example, in the case of a search problem, we may either define all instances
that violate the promise to have no solution or define them to have a trivial
solution (e.g., be a solution for themselves); that is, for a search problem R

150 5 Three Relatively Advanced Topics

with promise P , we may consider the (standard) search problem of R where
R is modified such that R(x) = ∅ for every x �∈ P (or, say, R(x) = {x} for
every x �∈ P). In the case of a promise (decision) problem (Syes, Sno), we
may consider the problem of deciding membership in Syes, which means
that instances that violate the promise are considered as no-instances.

2. Considering every string as a valid encoding of some object (i.e., effi-
ciently identifying strings that violate the promise with strings that satisfy
the promise).5 For example, fixing any string x0 that satisfies the promise,
we consider every string that violates the promise as if it were x0. In the case
of a search problem R with promise P , this means considering the (standard)
search problem of R where R is modified such that R(x) = R(x0) for every
x �∈ P . Similarly, in the case of a promise (decision) problem (Syes, Sno),
we consider the problem of deciding membership in Syes (provided x0 ∈ Sno

and otherwise we consider the problem of deciding membership in {0, 1}∗ \
Sno).

We stress that in the case that the promise is efficiently recognizable, the
aforementioned conventions (or modifications) do not affect the complexity of
the relevant (search or decision) problem. That is, rather than considering the
original promise problem, we consider a (search or decision) problem (without
a promise) that is computational equivalent to the original one. Thus, in some
sense we lose nothing by studying the latter problem rather than the original one
(i.e., the original promise problem). However, to get to this situation we need
the notion of a promise problem, which allows a formulation of the original
natural problem.

Indeed, even in the case that the original natural (promise) problem and
the problem (without a promise) that was derived from it are computation-
ally equivalent, it is useful to have a formulation that allows for distinguish-
ing between them (as we do distinguish between the different NP-complete
problems although they are all computationally equivalent). This conceptual
concern becomes of crucial importance in the case (to be discussed next) that
the promise (referred to in the promise problem) is not efficiently recognizable.

In the case that the promise is not efficiently recognizable, the foregoing
transformations of promise problems into standard (decision and search) prob-
lems do not necessarily preserve the complexity of the problem. In this case, the
terminology of promise problems is unavoidable. Consider, for example, the
problem of deciding whether a Hamiltonian graph is 3-colorable. On the face of
it, such a problem may have fundamentally different complexity than the pro-
blem of deciding whether a given graph is both Hamiltonian and 3-colorable.

5 Unlike in the first convention, this means that the dummy instances inherit the solutions to some
real instances.

5.2 Optimal Search Algorithms for NP 151

In spite of the foregoing issues, we have adopted the convention of focusing
on standard decision and search problems. That is, by default, all computational
problems and complexity classes discussed in other sections of this book refer
to standard decision and search problems, and the only exception in which we
refer to promise problems (outside of the current section) is explicitly stated as
such (see Section 5.2). This is justified by our focus on natural computational
problems, which can be stated as standard (decision and search) problems by
using the foregoing conventions.

5.2 Optimal Search Algorithms for NP

This section refers to solving the candid search problem of any relation in PC.
Recall that PC is the class of search problems that allow for efficient checking
of the correctness of candidate solutions (see Definition 2.3), and that the candid
search problem is a search problem in which the solver is promised that the
given instance has a solution (see Definition 5.2).

We claim the existence of an optimal algorithm for solving the candid search
problem of any relation in PC. Furthermore, we will explicitly present such an
algorithm and prove that it is optimal in a very strong sense: For any algorithm
solving the candid search problem of R ∈ PC, our algorithm solves the same
problem in time that is at most a constant factor slower (ignoring a fixed additive
polynomial term, which may be disregarded in the case that the problem is not
solvable in polynomial time).

Needless to say, we do not know the time complexity of the aforementioned
optimal algorithm (indeed, if we knew it, then we would have resolved the
P-vs-NP Question). In fact, the P-vs-NP Question boils down to determining
the time complexity of a single explicitly presented algorithm (i.e., the optimal
algorithm claimed in Theorem 5.5).6

Theorem 5.5: For every binary relation R ∈ PC there exists an algorithm A

that satisfies the following:

1. Algorithm A solves the candid search problem of R.
2. There exists a polynomial p such that for every algorithm A′ that solves the

candid search problem of R, it holds that tA(x) = O(tA′(x)+ p(|x|)) (for
any x ∈ SR), where tA(x) (resp., tA′(x)) denotes the number of steps taken
by A (resp., A′) on input x.

Interestingly, we establish the optimality of A without knowing what its (opti-
mal) running time is. Furthermore, the optimality claim is “instance-based”

6 That is, P = NP if and only if the optimal algorithm of Theorem 5.5 has polynomial-time
complexity.

152 5 Three Relatively Advanced Topics

(i.e., it refers to any input) rather than “global” (i.e., referring to the (worst-
case) time complexity as a function of the input length).

We stress that the hidden constant in the O-notation depends only on A′,
but in the following proof this dependence is exponential in the length of the
description of algorithm A′ (and it is not known whether a better dependence
can be achieved). Indeed, this dependence, as well as the idea underlying
it, constitute one negative aspect of this otherwise amazing result. Another
negative aspect is that the optimality of algorithm A refers only to inputs
that have a solution (i.e., inputs in SR).7 Finally, we note that the theorem
as stated refers only to models of computation that have machines that can
emulate a given number of steps of other machines with a constant overhead.
We mention that in most natural models, the overhead of such emulation is
at most poly-logarithmic in the number of steps, in which case it holds that
tA(x) = Õ(tA′(x)+ p(|x|)), where Õ(t) = poly(log t) · t .

Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decides
membership in R, and let p be a polynomial bounding the running time of M

(as a function of the length of the first element in the input pair). Using M , we
present an algorithm A that solves the candid search problem of R as follows.
On input x, algorithm A emulates (“in parallel”) the executions of all possible
search algorithms (on input x), checks the result provided by each of them
(using M), and halts whenever it recognizes a correct solution. Indeed, most
of the emulated algorithms are totally irrelevant to the search, but using M we
can screen the bad solutions offered by them and output a good solution once
obtained.

Since there are infinitely many possible algorithms, it may not be clear what
we mean by the expression “emulating all possible algorithms in parallel.”
What we mean is emulating them at different “rates” such that the infinite sum
of these rates converges to 1 (or to any other constant). Specifically, we will
emulate the ith possible algorithm at rate 1/(i + 1)2, which means emulating
a single step of this algorithm per (i + 1)2 emulation steps (performed for
all algorithms).8 Note that a straightforward implementation of this idea may
create a significant overhead, which is involved in switching frequently from
the emulation of one machine to the emulation of another. Instead, we present
an alternative implementation that proceeds in iterations.

7 We stress that Exercise 5.2 is not applicable here, because we do not know TA|SR
(·) (let alone

that we do not have a poly(n)-time algorithm for computing the mapping n �→ TA|SR
(n)).

8 Indeed, our choice of using the rate function ρ(i) = 1/(i + 1)2 is rather arbitrary and was
adopted for the sake of simplicity (i.e., being the reciprocal of a small polynomial). See further
discussion in Exercise 5.6.

5.2 Optimal Search Algorithms for NP 153

In the j th iteration, for i = 1, . . . , 2j/2 − 1, algorithm A emulates 2j /(i +
1)2 steps of the i th machine (where the machines are ordered according to
the lexicographic order of their descriptions). Each of these emulations is
conducted in one chunk, and thus the overhead of switching between the
various emulations is insignificant (in comparison to the total number of steps
being emulated).9 In the case that one of these emulations (on input x) halts
with output y, algorithm A invokes M on input (x, y), and outputs y if and
only if M(x, y) = 1. Furthermore, the verification of a solution provided by a
candidate algorithm is also emulated at the expense of its step count. (Put in
other words, we augment each algorithm with a canonical procedure (i.e., M)
that checks the validity of the solution offered by the algorithm.)

By its construction, whenever A(x) outputs a string y (i.e., y �= ⊥) it must
hold that (x, y) ∈ R. To show the optimality of A, we consider an arbitrary
algorithm A′ that solves the candid search problem of R. Our aim is to show
that A is not much slower than A′. Intuitively, this is the case because the
overhead of A results from emulating other algorithms (in addition to A′), but
the total number of emulation steps wasted (due to these algorithms) is inversely
proportional to the rate of algorithm A′, which in turn is exponentially related
to the length of the description of A′. The punch line is that since A′ is fixed,
the length of its description is a constant. Details follow.

For every x, let us denote by t ′(x) the number of steps taken by A′ on
input x, where t ′(x) also accounts for the running time of M(x, ·); that is,
t ′(x) = tA′(x)+ p(|x|), where tA′(x) is the number of steps taken by A′(x)
itself. Then, the emulation of t ′(x) steps of A′ on input x is “covered” by the j th

iteration of A, provided that 2j /(2|A
′|+1)2 ≥ t ′(x) where |A′| denotes the length

of the description of A′. (Indeed, we use the fact that the algorithms are emulated
in lexicographic order, and note that there are at most 2|A

′|+1 − 2 algorithms that
precede A′ in lexicographic order.) Thus, on input x, algorithm A halts after
at most jA′(x) iterations, where jA′(x) = 2(|A′| + 1)+ log2(tA′(x)+ p(|x|)),
after emulating a total number of steps that is at most

t(x)
def=

jA′ (x)∑
j=1

2j/2−1∑
i=1

2j

(i + 1)2
(5.1)

< 2jA′ (x)+1 = 22|A′|+3 · (tA′(x)+ p(|x|)), (5.2)

9 For simplicity, we start each emulation from scratch; that is, in the j th iteration, algorithm A

emulates the first 2j /(i + 1)2 steps of the ith machine. Alternatively, we may maintain a record
of the configuration in which we stopped in the j − 1st iteration and resume the computation
from that configuration for another 2j /(i + 1)2 steps, but this saving (of

∑
k<j 2k/(i + 1)2

steps) is clearly insignificant.

154 5 Three Relatively Advanced Topics

where the inequality uses
∑2j/2−1

i=1
1

(i+1)2 <
∑

i≥1
1

(i+1)·i =
∑

i≥1

(
1
i
− 1

i+1

) = 1

and
∑jA′ (x)

j=1 2j < 2jA′ (x)+1. The question of how much time is required for
emulating these many steps depends on the specific model of computation. In
many models of computation (e.g., a two-tape Turing machine), emulation is
possible within poly-logarithmic overhead (i.e., t steps of an arbitrary machine
can be emulated by Õ(t) steps of the emulating machine), and in some models
this emulation can even be performed with constant overhead. The theorem
follows.

Comment. By construction, the foregoing algorithm A does not halt on input
x �∈ SR . This can be easily rectified by letting A emulate a straightforward
exhaustive search for a solution, and halt with output ⊥ if and only if this
exhaustive search indicates that there is no solution to the current input. This
extra emulation can be performed in parallel to all other emulations (e.g., at a
rate of one step for the extra emulation per each step of everything else).

5.3 The Class coNP and Its Intersection with NP

By prepending the name of a complexity class (of decision problems) with the
prefix “co” we mean the class of complement sets; that is,

coC def= {{0, 1}∗ \ S : S ∈ C}. (5.3)

Specifically, coNP = {{0, 1}∗ \ S : S ∈ NP} is the class of sets that are com-
plements of sets in NP .

Recalling that each set in NP is characterized by its witness relation such
that x ∈ S if and only if there exists an adequate NP-witness, it follows that this
set’s complement consists of all instances for which there are no NP-witnesses
(i.e., x ∈ {0, 1}∗ \ S if there is no NP-witness for x being in S). For example,
SAT ∈ NP implies that the set of unsatisfiable CNF formulae is in coNP .
Likewise, the set of graphs that are not 3-colorable is in coNP . (Jumping
ahead, we mention that it is widely believed that these sets are not in NP .)

Another perspective on coNP is obtained by considering the search prob-
lems in PC. Recall that for such R ∈ PC, the set of instances having a solution
(i.e., SR = {x : ∃y s.t. (x, y)∈R}) is in NP . It follows that the set of instances
having no solution (i.e., {0, 1}∗ \ SR = {x : ∀y (x, y) �∈R}) is in coNP .

It is widely believed that NP �= coNP (which means that NP is not closed
under complementation). Indeed, this conjecture implies P �= NP (because P
is closed under complementation). The conjecture NP �= coNP means that

5.3 The Class coNP and Its Intersection with NP 155

some sets in coNP do not have NP-proof systems (because NP is the class of
sets having NP-proof systems). As we will show next, under this conjecture, the
complements of NP-complete sets do not have NP-proof systems; for example,
there exists no NP-proof system for proving that a given CNF formula is not
satisfiable. We first establish this fact for NP-completeness in the standard sense
(i.e., under Karp-reductions, as in Definition 4.1).

Proposition 5.6: Suppose that NP �= coNP and let S ∈ NP such that every

set in NP is Karp-reducible to S. Then S
def= {0, 1}∗ \ S is not in NP .

In other words, if S is NP-complete (under Karp-reductions) and S ∈ NP ,
then NP = coNP .

Proof Sketch: We first observe that the fact that every set in NP is Karp-
reducible to S implies that every set in coNP is Karp-reducible to S (see
Exercise 5.8). We next claim (and prove later) that if S ′ is in NP , then every set
that is Karp-reducible to S ′ is also in NP . Applying the claim to S ′ = S, we
conclude that S ∈ NP implies coNP ⊆ NP , which in turn implies NP =
coNP (see Exercise 5.7) in contradiction to the main hypothesis.

We now turn to prove the foregoing claim; that is, we prove that if S ′ has
an NP-proof system and S ′′ is Karp-reducible to S ′, then S ′′ has an NP-proof
system. Let V ′ be the verification procedure associated with S ′, and let f be
a Karp-reduction of S ′′ to S ′. Then, we define the verification procedure V ′′

(for membership in S ′′) by V ′′(x, y) = V ′(f (x), y). That is, any NP-witness
for f (x) ∈ S ′ serves as an NP-witness for x ∈ S ′′ (and these are the only NP-
witnesses for x ∈ S ′′). This may not be a “natural” proof system (for S ′′), but it
is definitely an NP-proof system for S ′′.

Assuming that NP �= coNP , Proposition 5.6 implies that sets in NP ∩
coNP cannot be NP-complete with respect to Karp-reductions. In light of
other limitations of Karp-reductions (see, e.g., Exercise 3.4), one may wonder
whether or not the exclusion of NP-complete sets from the class NP ∩ coNP
is due to the use of a restricted notion of reductions (i.e., Karp-reductions). The
following theorem asserts that this is not the case: Some sets in NP cannot be
reduced to sets in the intersection NP ∩ coNP even under general reductions
(i.e., Cook-reductions).

Theorem 5.7: If every set in NP can be Cook-reduced to some set in NP ∩
coNP , then NP = coNP .

156 5 Three Relatively Advanced Topics

In particular, assuming NP �= coNP , no set in NP ∩ coNP can be NP-
complete, even when NP-completeness is defined with respect to Cook-
reductions. Since NP ∩ coNP is conjectured to be a proper superset of P ,
it follows (assuming NP �= coNP) that there are decision problems in NP
that are neither in P nor NP-hard (i.e., specifically, the decision problems in
(NP ∩ coNP) \ P). We stress that Theorem 5.7 refers to standard decision
problems and not to promise problems (see Section 5.1 and Exercise 5.4).

Proof: Analogously to the proof of Proposition 5.6, the current proof boils
down to proving that if S is Cook-reducible to a set in NP ∩ coNP , then
S ∈ NP ∩ coNP . Using this claim, the theorem’s hypothesis implies that
NP ⊆ NP ∩ coNP , which in turn implies NP ⊆ coNP and NP = coNP
(see Exercise 5.7).

Fixing any S and S′ ∈ NP ∩ coNP such that S is Cook-reducible to S ′, we
prove that S ∈ NP (and the proof that S ∈ coNP is similar).10 Let us denote
by M the oracle machine reducing S to S ′. That is, on input x, machine M makes
queries and decides whether or not to accept x, and its decision is correct pro-
vided that all queries are answered according to S ′. To show that S ∈ NP , we
will present an NP-proof system for S. This proof system, denoted V , accepts an
alleged (instance-witness) pair of the form (x, 〈(z1, σ1, w1), . . . , (zt , σt , wt)〉)
if the following two conditions hold:

1. On input x, machine M accepts after making the queries z1, . . . , zt , and
obtaining the corresponding answers σ1, . . . , σt .
That is, V checks that, on input x, after obtaining the answers σ1, . . . , σi−1

to the first i − 1 queries, the i th query made by M equals zi . In addition, V

checks that, on input x and after receiving the answers σ1, . . . , σt , machine
M halts with output 1 (indicating acceptance).
Note that V does not have oracle access to S ′. The procedure V , rather,
emulates the computation of M(x) by answering, for each i, the ith query of
M(x) by using the bit σi (provided to V as part of its input). The correctness
of these answers will be verified (by V) separately (i.e., see the next item).

2. For every i, it holds that if σi = 1 then wi is an NP-witness for zi ∈ S ′,
whereas if σi = 0 then wi is an NP-witness for zi ∈ {0, 1}∗ \ S ′.
Thus, if this condition holds, then it is the case that each σi indicates the
correct status of zi with respect to S ′ (i.e., σi = 1 if and only if zi ∈ S ′).

10 Alternatively, we show that S ∈ coNP by applying the following argument to S
def= {0, 1}∗ \ S

and noting that S is Cook-reducible to S′ (via S, or alternatively that S is Cook-reducible to
{0, 1}∗ \ S′ ∈ NP ∩ coNP).

5.3 The Class coNP and Its Intersection with NP 157

We stress that we have used the fact that both S ′ and S
′ def= {0, 1}∗ \ S have

NP-proof systems, and we have referred to the corresponding NP-witnesses.
Note that V is indeed an NP-proof system for S. Firstly, the length of the

corresponding witnesses is bounded by the running time of the reduction (and
the length of the NP-witnesses supplied for the various queries). Next note
that V runs in polynomial time (i.e., verifying the first condition requires an
emulation of the polynomial-time execution of M on input x when using the
σi’s to emulate the oracle, whereas verifying the second condition is done
by invoking the relevant NP-proof systems). Finally, observe that x ∈ S if

and only if there exists a sequence y
def= ((z1, σ1, w1), . . . , (zt , σt , wt)) such

that V (x, y) = 1. In particular, V (x, y) = 1 holds only if y contains a valid
sequence of queries and answers as made in a computation of M on input x

and oracle access to S ′, and M accepts based on that sequence.

The World View – a Digest. Recall that on top of the P �= NP conjecture,
we mentioned two other conjectures (which clearly imply P �= NP):

1. The conjecture that NP �= coNP (equivalently, NP ∩ coNP �= NP).
This conjecture is equivalent to the conjecture that CNF formulae have no
short proofs of unsatisfiability (i.e., the set {0, 1}∗ \ SAT has no NP-proof
system).

2. The conjecture that NP ∩ coNP �= P .
Notable candidates for the class (NP ∩ coNP) \ P include decision prob-
lems that are computationally equivalent to the integer factorization problem
(i.e., the search problem (in PC) in which, given a composite number, the
task is to find its prime factors).

Combining these conjectures, we get the world view depicted in Figure 5.2,
which also shows the class of coNP-complete sets (defined next).

Definition 5.8: A set S is called coNP-hard if every set in coNP is Karp-
reducible to S. A set is called coNP-complete if it is both in coNP and
coNP-hard.

Indeed, insisting on Karp-reductions is essential for a distinction between NP-
hardness and coNP-hardness. Furthermore, the class of problems that are
Karp-reducible to NP equals NP (see Exercise 5.9), whereas the class of
problems that are Karp-reducible to coNP equals coNP (because S is Karp-
reducible to S ′ if and only if {0, 1}∗ \ S is Karp-reducible to {0, 1}∗ \ S ′).
In contrast, recall that the class of problems that are Cook-reducible to NP

158 5 Three Relatively Advanced Topics

P

NPC

coNP

NP

coNPC

Figure 5.2. The world view under P �= coNP ∩NP �= NP .

(resp., to coNP) contains NP ∪ coNP . This class, commonly denoted PNP ,
is further discussed in Exercise 5.13.

Exercises

Exercise 5.1 (a quiz)

1. What are promise problems?
2. What is the justification for ignoring the promise (in a promise problem)

whenever it is polynomial-time recognizable?
3. What is a candid search problem?
4. Could the P-vs-NP Question boil down to determining the time complexity

of a single (known) algorithm?
5. What is the class coNP?
6. How does NP relate to the class of decision problems that are Cook-

reducible to NP?
7. How does NP relate to the class of decision problems that are Karp-

reducible to NP?

Exercise 5.2 Let R ∈ PC and suppose that A solves the candid search problem
of R in time complexity TA|SR

. Prove that if the mapping n �→ TA|SR
(n) can be

computed in poly(n)-time, then the standard search problem of R (as well as the
decision problem SR) can be solved in time TA′(n) = Õ(TA|SR

(n))+ poly(n),
where Õ(t) = poly(log t) · t .
Guideline: Consider an algorithm A′ that on input x first computes t ←
TA|SR

(|x|), and then emulates the execution of A(x) for at most t steps. (The
poly-logarithmic factor is due to the overhead of this emulation.) If A(x) halts

Exercises 159

with output y, then A′ checks whether (x, y) ∈ R, and outputs y if the answer
is positive (and ⊥ otherwise).

Exercise 5.3 (Cook-reductions preserve efficient solvability of promise prob-
lems) Prove that if the promise problem � is Cook-reducible to a promise
problem that is solvable in polynomial time, then � is solvable in polynomial
time. Note that the solver may not halt on inputs that violate the promise.

Guideline: Use the fact that any polynomial-time algorithm that solves any
promise problem can be modified such that it halts on all inputs (in polynomial
time).

Exercise 5.4 (NP-complete promise problems in coNP (following [9])) Con-
sider the promise problem xSAT, having instances that are pairs of CNF for-
mulae. The yes-instances consist of pairs (φ1, φ2) such that φ1 is satisfiable
and φ2 is unsatisfiable, whereas the no-instances consist of pairs such that φ1

is unsatisfiable and φ2 is satisfiable.

1. Show that xSAT is in the intersection of (the promise problem classes that
are analogous to) NP and coNP .

2. Prove that any promise problem in NP is Cook-reducible to xSAT. In
designing the reduction, recall that queries that violate the promise may be
answered arbitrarily.

Guideline: Note that the promise problem version of NP is reducible to
SAT, and show a reduction ofSAT toxSAT. Specifically, show that the search
problem associated with SAT is Cook-reducible to xSAT, by adapting the
ideas of the proof of Proposition 3.7. That is, suppose that we know (or
assume) that τ is a prefix of a satisfying assignment to φ, and we wish
to extend τ by one bit. Then, for each σ ∈ {0, 1}, we construct a formula,
denoted φ′σ , by setting the first |τ | + 1 variables of φ according to the values
τσ . We query the oracle about the pair (φ′1, φ

′
0) and extend τ accordingly

(i.e., we extend τ by the value 1 if and only if the answer is positive). Note
that if both φ′1 and φ′0 are satisfiable then it does not matter which bit we use
in the extension, whereas if exactly one formula is satisfiable then the oracle
answer is reliable.

3. Pinpoint the source of failure of the proof of Theorem 5.7 when applied to
the reduction provided in the previous item.

Exercise 5.5 Note that Theorem 5.5 holds for any search problem in NP, and
not only for NP-complete search problems. Compare the result of Theorem 5.5
to what would have followed from a corresponding result that only asserts
optimal algorithms for all NP-complete search problems. Ditto with respect

160 5 Three Relatively Advanced Topics

to a corresponding result that only asserts optimal algorithm for some NP-
complete search problem.

Guideline: Note that we refer to a strong notion of optimality, which may not
be preserved by Levin-reductions.

Exercise 5.6 Generalizing the proof of Theorem 5.5, consider the possibility
of running the i th machine at rate ρ(i) rather than at rate 1/(i + 1)2, where
ρ satisfies

∑
i≥1 ρ(i) ≤ 1. Prove that, for any “reasonable” choice of ρ (e.g.,

ρ(i) = 1/O(i · (log2(i + 1)) or ρ(i) = 2−i), the result of Theorem 5.5 remains
intact, although the constant hidden in the O-notation is effected. What should
be required of a “reasonable” choice of ρ?

Guideline: Note that our choice of ρ(i) = 1/(i + 1)2 was quite good, although
ρ(i) = 1/O(i · (log2(i + 1)) is better.

Exercise 5.7 For any class C, prove that C ⊆ coC if and only if C = coC.

Exercise 5.8 Prove that S1 is Karp-reducible to S2 if and only if {0, 1}∗ \ S1 is
Karp-reducible to {0, 1}∗ \ S2.

Exercise 5.9 Prove that a set S is Karp-reducible to some set in NP if and
only if S is in NP .

Guideline: For the non-trivial direction, see the proof of Proposition 5.6.

Exercise 5.10 Recall that the empty set is not Karp-reducible to {0, 1}∗,
whereas any set is Cook-reducible to its complement. Thus, our focus here
is on the Karp-reducibility of non-trivial sets to their complements, where a set
is non-trivial if it is neither empty nor contains all strings. Furthermore, since
any non-trivial set in P is Karp-reducible to its complement (see Exercise 3.4),
we assume that P �= NP and focus on sets in NP \ P .

1. Prove that NP = coNP implies that some sets in NP \ P are Karp-
reducible to their complements.

2. Prove that NP �= coNP implies that some sets in NP \ P are not Karp-
reducible to their complements.

Guideline: Use NP-complete sets in both parts, and Exercise 5.9 in the second
part.

Exercise 5.11 (TAUT is coNP-complete) Prove that the following problem,
denoted TAUT, is coNP-complete (even when the formulae are restricted

Exercises 161

to 3DNF). An instance of the problem consists of a DNF formula, and the
problem is to determine whether this formula is a tautology (i.e., a formula that
evaluates to true under every possible truth assignment).

Guideline: Reduce from SAT (i.e., the complement of SAT), using the fact that
φ is unsatisfiable if and only if ¬φ is a tautology.11

Exercise 5.12 (the class NP ∩ coNP) Prove that a set S is in NP ∩ coNP
if and only if the set S ′ def= {(x, χS(x)) : x∈{0, 1}∗} is in NP , where χS :
{0, 1}∗ → {0, 1} is the characteristic function of S (i.e., χS(x) = 1 if and only
if x ∈ S).

Guideline: An NP-proof systems for S ′ can be obtained by combining NP-
proof systems for S and S, whereas NP-proof systems for S and S can be
derived from any NP-proof system for S ′.

Exercise 5.13 (the class PNP) Recall that PNP denotes the class of problems
that are Cook-reducible to NP . Prove the following (simple) facts.

1. For every class C, the class of problems that are Cook-reducible to C equals
the class of problems that are Cook-reducible to coC. In particular, PNP

equals the class of problems that are Cook-reducible to coNP .
2. The class PNP is closed under complementation (i.e., PNP = coPNP).

Note that each of the foregoing items implies that PNP contains NP ∪ coNP .

Exercise 5.14 Assuming that NP �= coNP , prove that the problem of finding
a maximum clique (resp., independent set) in a given graph is not in PC. Prove
the same for the following problems:

� Finding a minimum vertex cover in a given graph.
� Finding an assignment that satisfies the maximum number of equations in a

given system of linear equations over GF(2) (cf. Exercise 4.9.)

We stress that maximum and minimum refer to the optimum taken over all
legitimate solutions, whereas the terms maximal and minimal refer to a “local
optimum” (i.e., optimal with respect to augmenting the current solution or
omitting elements from it, respectively).

Guideline: Note that the set of pairs (G,K) such that the graph G contains no
clique of size K is coNP-complete.

11 Note that, given a CNF formula φ, we can easily obtain a DNF formula for ¬φ (by applying
de-Morgan’s Law).

162 5 Three Relatively Advanced Topics

Exercise 5.15 (the class P/poly, revisited) In continuation of Exercise 1.16,
prove that P/poly equals the class of sets that are Cook-reducible to a sparse
set, where a set S is called sparse if there exists a polynomial p such that for
every n it holds that |S ∩ {0, 1}n| ≤ p(n).

Guideline: For any set in P/poly, encode the advice sequence (an)n∈N as a
sparse set {(1n, i, σn,i) : n∈N , i ≤ |an|}, where σn,i is the i th bit of an. For the
opposite direction, note that the emulation of a Cook-reduction to a set S, on
input x, only requires knowledge of S ∩⋃poly(|x|)

i=1 {0, 1}i .
Exercise 5.16 In continuation of Exercise 5.15, we consider the class of sets
that are Karp-reducible to a sparse set. It can be proved that this class contains
SAT if and only if P = NP (see [23]).12 Here, we only consider the special
case in which the sparse set is contained in a polynomial-time decidable set
that is itself sparse (e.g., the latter set may be {1}∗, in which case the former set
may be an arbitrary unary set). Actually, the aim of this exercise is to establish
the following (seemingly stronger) claim:13

If SAT is Karp-reducible to a set S ⊆ G such that G ∈ P and G \ S is
sparse, then SAT ∈ P .

Using the hypothesis, we outline a polynomial-time procedure for solving the
search problem of SAT and leave the task of providing the details as an exercise.
The procedure (looking for a satisfying assignment) conducts a DFS on the tree
of all possible partial truth assignments to the input formula,14 while truncating
the search at nodes that correspond to partial truth assignments that were already
demonstrated to be useless (i.e., correspond to a partial truth assignment that
cannot be completed to a satisfying assignment).

Guideline: The key observation is that each internal node (which yields a
formula derived from the initial formula by instantiating the corresponding
partial truth assignment) is mapped by the Karp-reduction either to a string
not in G (in which case we conclude that the sub-tree contains no satisfying
assignments and backtrack from this node) or to a string in G. In the latter case,
unless we already know that this string is not in S, we start a scan of the sub-
tree rooted at this node. However, once we backtrack from this internal node,
we know that the corresponding member of G is not in S, and we will never

12 An alternative presentation is available from the book’s Web site.
13 This claim is seemingly stronger because G itself is not assumed to be sparse.
14 For an n-variable formula, the leaves of the tree correspond to all possible n-bit long strings,

and an internal node corresponding to τ is the parent of the nodes corresponding to τ0 and τ1.

Exercises 163

scan again a sub-tree rooted at a node that is mapped to this string (which was
detected to be in G \ S). Also note that once we reach a leaf, we can check by
ourselves whether or not it corresponds to a satisfying assignment to the initial
formula. When analyzing the foregoing procedure, prove that when given an
n-variable formula φ as input, the number of times we start to scan a sub-tree
is at most n · |⋃poly(|φ|)

i=1 {0, 1}i ∩ (G \ S)|.

Historical Notes

The following brief account decouples the development of the theory of com-
putation (which was the focus of Chapter 1) from the emergence of the P-vs-NP
Question and the theory of NP-completeness (studied in Chapters 2–5).

On Computation and Efficient Computation

The interested reader may find numerous historical accounts of the develop-
ments that led to the emergence of the theory of computation. The following
brief account is different from most of these historical accounts in that its
perspective is the one of the current research in computer science.

The theory of uniform computational devices emerged in the work of Tur-
ing [32]. This work put forward a natural model of computation, based on
concrete machines (indeed Turing machines), which has been instrumental for
subsequent studies. In particular, this model provides a convenient stage for the
introduction of natural complexity measures referring to computational tasks.

The notion of a Turing machine was put forward by Turing with the explicit
intention of providing a general formulation of the notion of computability [32].
The original motivation was to provide a formalization of Hilbert’s challenge
(posed in 1900 and known as Hilbert’s Tenth Problem), which called for design-
ing a method for determining the solvability of Diophantine equations. Indeed,
this challenge referred to a specific decision problem (later called the Entschei-
dungsproblem (German for the Decision Problem)), but Hilbert did not provide
a formulation of the notion of “(a method for) solving a decision problem.” (We
mention that in 1970, the Entscheidungsproblem was proved to be undecidable
(see [24]).)

In addition to introducing the Turing machine model and arguing that it cor-
responds to the intuitive notion of computability, Turing’s paper [32] introduces

165

166 Historical Notes

universal machines, and contains proofs of undecidability (e.g., of the Halt-
ing Problem). (Rice’s Theorem (Theorem 1.6) is proven in [27], and the
undecidability of the Post Correspondence Problem (Theorem 1.7) is proven
in [26].)

The Church-Turing Thesis is attributed to the works of Church [4] and
Turing [32]. In both works, this thesis is invoked for claiming that the fact that
some problem cannot be solved in a specific model of computation implies that
this problem cannot be solved in any “reasonable” model of computation. The
RAM model is attributed to von Neumann’s report [33].

The association of efficient computation with polynomial-time algorithms
is attributed to the papers of Cobham [5] and Edmonds [7]. It is interesting to
note that Cobham’s starting point was his desire to present a philosophically
sound concept of efficient algorithms, whereas Edmonds’s starting point was
his desire to articulate why certain algorithms are “good” in practice.

The theory of non-uniform computational devices emerged in the work of
Shannon [29], which introduced and initiated the study of Boolean circuits.
The formulation of machines that take advice (as well as the equivalence to the
circuit model) originates in [18].

On NP and NP-Completeness

Many sources provide historical accounts of the developments that led to the
formulation of the P-vs-NP Problem and to the discovery of the theory of NP-
completeness (see, e.g., [11, Sec. 1.5] and [31]). Still, we feel that we should
not refrain from offering our own impressions, which are based on the texts of
the original papers.

Nowadays, the theory of NP-completeness is commonly attributed to
Cook [6], Karp [17], and Levin [21]. It seems that Cook’s starting point was his
interest in theorem-proving procedures for propositional calculus [6, p. 151].
Trying to provide evidence for the difficulty of deciding whether or not a given
formula is a tautology, he identified NP as a class containing “many appar-
ently difficult problems” (cf, e.g., [6, p. 151]), and showed that any problem
in NP is reducible to deciding membership in the set of 3DNF tautologies. In
particular, Cook emphasized the importance of the concept of polynomial-time
reductions and the complexity class NP (both explicitly defined for the first
time in his paper). He also showed that CLIQUE is computationally equivalent
to SAT, and envisioned a class of problems of the same nature.

Karp’s paper [17] can be viewed as fulfilling Cook’s prophecy: Stimulated
by Cook’s work, Karp demonstrated that a “large number of classic difficult

Historical Notes 167

computational problems, arising in fields such as mathematical programming,
graph theory, combinatorics, computational logic and switching theory, are
[NP-]complete (and thus equivalent)” [17, p. 86]. Specifically, his list of twenty-
one NP-complete problems includes Integer Linear Programming, Hamilton
Circuit, Chromatic Number, Exact Set Cover, Steiner Tree, Knapsack, Job
Scheduling, and Max Cut. Interestingly, Karp defined NP in terms of verifica-
tion procedures (i.e., Definition 2.5), pointed to its relation to “backtrack search
of polynomial bounded depth” [17, p. 86], and viewed NP as the residence
of a “wide range of important computational problems” (which seem not to be
in P).

Independently of these developments, while being in the USSR, Levin
proved the existence of “universal search problems” (where universality meant
NP-completeness). The starting point of Levin’s work [21] was his interest in
the “perebor” conjecture asserting the inherent need for brute force in some
search problems that have efficiently checkable solutions (i.e., problems in
PC). Levin emphasized the implication of polynomial-time reductions on the
relation between the time complexity of the related problems (for any growth
rate of the time-complexity), asserted the NP-completeness of six “classi-
cal search problems,” and claimed that the underlying method “provides a
means for readily obtaining” similar results for “many other important search
problems.”

It is interesting to note that although the works of Cook [6], Karp [17],
and Levin [21] were received with different levels of enthusiasm, none of
their contemporaries realized the depth of the discovery and the difficulty
of the question posed (i.e., the P-vs-NP Question). This fact is evident in
every account from the early 1970s, and may explain the frustration of the
corresponding generation of researchers over the failure to resolve the P-vs-
NP Question, which they expected to be resolved in their lifetime (if not in
a matter of a few years). Needless to say, the author’s opinion is that there
was absolutely no justification for these expectations, and that one should have
actually expected quite the opposite.

We mention that the three “founding papers” of the theory of NP-
completeness (i.e., Cook [6], Karp [17], and Levin [21]) use the three different
types of reductions used in this book. Specifically, Cook uses the general notion
of polynomial-time reduction [6], often referred to as Cook-reductions (Defini-
tion 3.1). The notion of Karp-reductions (Definition 3.3) originates from Karp’s
paper [17], whereas its augmentation to search problems (i.e., Definition 3.4)
originates from Levin’s paper [21]. It is worth stressing that Levin’s work is
stated in terms of search problems, unlike Cook’s and Karp’s works, which
treat decision problems.

168 Historical Notes

The reductions presented in Section 4.3.2 are not necessarily the original
ones. Most notably, the reduction establishing the NP-hardness of the Inde-
pendent Set problem (i.e., Proposition 4.10) is adapted from [10]. In contrast,
the reductions presented in Section 4.3.1 are merely a reinterpretation of the
original reduction as presented in [6]. The equivalence of the two definitions
of NP (i.e., Theorem 2.8) was proven in [17].

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theo-
rem 4.12) was proven by Ladner [20], Theorem 5.7 was proven by Selman [28],
and the existence of optimal search algorithms for NP-relations (i.e., Theo-
rem 5.5) was proven by Levin [21]. (Interestingly, the latter result was proven
in the same paper in which Levin presented the discovery of NP-completeness,
independently of Cook and Karp.) Promise problems were explicitly introduced
by Even, Selman, and Yacobi [9]; see [12] for a survey of their numerous appli-
cations. A more detailed description of probabilistic proof systems, including
proper credits for the results mentioned in Section 4.3.5, can be found in [13,
Chap. 9].

Epilogue: A Brief Overview
of Complexity Theory

Out of the tough came forth sweetness.1

Judges, 14:14

The following brief overview is intended to give a flavor of the questions
addressed by Complexity Theory. It includes a brief review of the contents of
the current book, as well as a brief overview of several more advanced topics.
The latter overview is quite vague, and is merely meant as a teaser toward
further study (cf., e.g., [13]).

Absolute Goals and Relative Results

Complexity Theory is concerned with the study of the intrinsic complexity of
computational tasks. Its “final” goals include the determination of the complex-
ity of any well-defined task. Additional goals include obtaining an understand-
ing of the relations between various computational phenomena (e.g., relating
one fact regarding Computational Complexity to another). Indeed, we may say
that the former type of goals is concerned with absolute answers regarding
specific computational phenomena, whereas the latter type is concerned with
questions regarding the relation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping
with goals of the latter (“relative”) type. In fact, the failure to resolve questions
of the “absolute” type led to the flourishing of methods for coping with ques-
tions of the “relative” type. Musing for a moment, let us say that, in general,
the difficulty of obtaining absolute answers may naturally lead to a search for
conditional answers, which may in turn reveal interesting relations between

1 The quotation is commonly interpreted as meaning that benefit arose out of misfortune.

169

170 Epilogue

phenomena. Furthermore, the lack of absolute understanding of individual
phenomena seems to facilitate the development of methods for relating differ-
ent phenomena. Anyhow, this is what happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure to obtain
absolute answers, we must admit that there is something fascinating in the suc-
cess of relating different phenomena: In some sense, relations between phenom-
ena are more revealing than absolute statements about individual phenomena.
Indeed, the first example that comes to mind is the theory of NP-completeness.
Let us consider this theory for a moment, from the perspective of these two
types of goals.

P, NP, and NP-completeness

Complexity Theory has failed to determine the intrinsic complexity of tasks
such as finding a satisfying assignment to a given (satisfiable) propositional
formula or finding a 3-coloring of a given (3-colorable) graph. But it has
succeeded in establishing that these two seemingly different computational
tasks are in some sense the same (or, more precisely, are computationally
equivalent). We find this success amazing and exciting, and hope that the
reader shares these feelings. The same feeling of wonder and excitement is
generated by many of the other discoveries of Complexity Theory. Indeed, the
reader is invited to join a fast tour of some of the other questions and answers
that make up the field of Complexity Theory.

We will start with the P versus NP Question (and, indeed, briefly review
the contents of Chapter 2). Our daily experience is that it is harder to solve a
problem than it is to check the correctness of a solution (e.g., think of either a
puzzle or a research problem). Is this experience merely a coincidence or does
it represent a fundamental fact of life (i.e., a property of the world)? Could
you imagine a world in which solving any problem is not significantly harder
than checking a solution to it? Would the term “solving a problem” not lose its
meaning in such a hypothetical (and impossible, in our opinion) world? The
denial of the plausibility of such a hypothetical world (in which “solving” is not
harder than “checking”) is what “P different from NP” actually means, where P
represents tasks that are efficiently solvable and NP represents tasks for which
solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs.
Indeed, finding proofs is a special type of the aforementioned task of “solving
a problem” (and verifying the validity of proofs is a corresponding case of

Epilogue 171

checking correctness). Again, “P different from NP” means that there are
theorems that are harder to prove than to be convinced of their correctness when
presented with a proof. This means that the notion of a “proof” is meaningful;
that is, proofs do help when seeking to be convinced of the correctness of
assertions. Here, NP represents sets of assertions that can be efficiently verified
with the help of adequate proofs, and P represents sets of assertions that can be
efficiently verified from scratch (i.e., without proofs).

In light of the foregoing discussion, it is clear that the P versus NP Question
is a fundamental scientific question of far-reaching consequences. The fact that
this question seems beyond our current reach led to the development of the
theory of NP-completeness. Loosely speaking, this theory (presented in Chap-
ter 4) identifies a set of computational problems that are as hard as NP. That
is, the fate of the P versus NP Question lies with each of these problems: If any
of these problems is easy to solve, then so are all problems in NP. Thus, showing
that a problem is NP-complete provides evidence of its intractability (assuming,
of course, “P different than NP”). Indeed, demonstrating the NP-completeness
of computational tasks is a central tool in indicating hardness of natural com-
putational problems, and it has been used extensively both in computer science
and in other disciplines. We note that NP-completeness indicates not only the
conjectured intractability of a problem but also its “richness,” in the sense that
the problem is rich enough to “encode” any other problem in NP. The use of
the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn establishes relations between different computational problems
(without referring to their “absolute” complexity).

Some Advanced Topics

The foregoing discussion of NP-completeness hints at the importance of rep-
resentation, since it referred to different problems that encode one another.
Indeed, the importance of representation is a central aspect of Complexity The-
ory. In general, Complexity Theory is concerned with problems for which the
solutions are implicit in the problem’s statement (or rather in the instance). That
is, the problem (or rather its instance) contains all necessary information, and
one merely needs to process this information in order to supply the answer.2

Thus, Complexity Theory is concerned with manipulation of information, and

2 In contrast, in other disciplines, solving a problem may require gathering information that is not
available in the problem’s statement. This information may either be available from auxiliary
(past) records or be obtained by conducting new experiments.

172 Epilogue

with its transformation from one representation (in which the information is
given) to another representation (which is the one desired). Indeed, a solution
to a computational problem is merely a different representation of the informa-
tion given, that is, a representation in which the answer is explicit rather than
implicit. For example, the answer to the question of whether or not a given
Boolean formula is satisfiable is implicit in the formula itself (but the task is
to make the answer explicit). Thus, Complexity Theory clarifies a central issue
regarding representation, that is, the distinction between what is explicit and
what is implicit in a representation. Furthermore, it even suggests a quantifica-
tion of the level of non-explicitness.

In general, Complexity Theory provides new viewpoints on various phe-
nomena that were also considered by past thinkers. Examples include the
aforementioned concepts of solutions, proofs, and representation, as well as
concepts like randomness, knowledge, interaction, secrecy, and learning. We
next discuss the latter concepts and the perspective offered by Complexity
Theory.

The concept of randomness has puzzled thinkers for ages. Their perspective
can be described as ontological: They asked “what is randomness” and won-
dered whether it exists at all (or whether the world is deterministic). The per-
spective of Complexity Theory is behavioristic: It is based on defining objects
as equivalent if they cannot be told apart by any efficient procedure. That is, a
coin toss is (defined to be) “random” (even if one believes that the universe is
deterministic) if it is infeasible to predict the coin’s outcome. Likewise, a string
(or a distribution on strings) is “random” if it is infeasible to distinguish it from
the uniform distribution (regardless of whether or not one can generate the lat-
ter). Interestingly, randomness (or rather, pseudorandomness) defined this way
is efficiently expandable; that is, under a reasonable complexity assumption
(to be discussed next), short pseudorandom strings can be deterministically
expanded into long pseudorandom strings. Indeed, it turns out that randomness
is intimately related to intractability. Firstly, note that the very definition of
pseudorandomness refers to intractability (i.e., the infeasibility of distinguish-
ing a pseudorandomness object from a uniformly distributed object). Secondly,
as stated, a complexity assumption, which refers to the existence of functions
that are easy to evaluate but hard to invert (called one-way functions), implies
the existence of deterministic programs (called pseudorandom generators) that
stretch short random seeds into long pseudorandom sequences. In fact, it turns
out that the existence of pseudorandom generators is equivalent to the existence
of one-way functions.

Complexity Theory offers its own perspective on the concept of knowledge
(and distinguishes it from information). Specifically, Complexity Theory views

Epilogue 173

knowledge as the result of a hard computation. Thus, whatever can be efficiently
done by anyone is not considered knowledge. In particular, the result of an
easy computation applied to publicly available information is not considered
knowledge. In contrast, the value of a hard-to-compute function applied to
publicly available information is knowledge, and if somebody provides you
with such a value, then that person has provided you with knowledge. This
discussion is related to the notion of zero-knowledge interactions, which are
interactions in which no knowledge is gained. Such interactions may still be
useful, because they may convince a party of the correctness of specific data
that was provided beforehand. For example, a zero-knowledge interactive proof
may convince a party that a given graph is 3-colorable without yielding any
3-coloring.

The foregoing paragraph has explicitly referred to interaction, viewing it as
a vehicle for gaining knowledge and/or gaining confidence. Let us highlight
the latter application by noting that it may be easier to verify an assertion
when one is allowed to interact with a prover rather than when reading a
proof. Put differently, interaction with a good teacher may be more beneficial
than reading any book. We comment that the added power of such interactive
proofs is rooted in their being randomized (i.e., the verification procedure is
randomized), because if the verifier’s questions can be determined beforehand,
then the prover may just provide the transcript of the interaction as a traditional
written proof.

Another concept related to knowledge is that of secrecy: Knowledge is
something that one party may have but another party does not have (and cannot
feasibly obtain by itself) – thus, in some sense knowledge is a secret. In
general, Complexity Theory is related to cryptography, where the latter is
broadly defined as the study of systems that are easy to use but hard to abuse.
Typically, such systems involve secrets, randomness, and interaction, as well
as a complexity gap between the ease of proper usage and the infeasibility
of causing the system to deviate from its prescribed behavior. Thus, much of
cryptography is based on Complexity theoretic assumptions, and its results are
typically transformations of relatively simple computational primitives (e.g.,
one-way functions) into more complex cryptographic applications (e.g., secure
encryption schemes).

We have already mentioned the concept of learning when referring to learn-
ing from a teacher versus learning from a book. Recall that Complexity Theory
provides evidence to the advantage of the former. This is in the context of
gaining knowledge about publicly available information. In contrast, computa-
tional learning theory is concerned with learning objects that are only partially
available to the learner (i.e., reconstructing a function based on its value at a few

174 Epilogue

random locations or even at locations chosen by the learner). Still, Complexity
Theory sheds light on the intrinsic limitations of learning (in this sense).

Complexity Theory deals with a variety of computational tasks. We have
already mentioned two fundamental types of tasks: searching for solutions (or,
rather, “finding solutions”) and making decisions (e.g., regarding the validity of
assertions). We have also hinted that in some cases these two types of tasks can
be related. Now we consider two additional types of tasks: counting the number
of solutions and generating random solutions. Clearly, both the latter tasks are
at least as hard as finding arbitrary solutions to the corresponding problem, but
it turns out that for some natural problems they are not significantly harder.
Specifically, under some natural conditions on the problem, approximately
counting the number of solutions and generating an approximately random
solution is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approximation, we note that the study of the
complexity of finding “approximate solutions” is also of natural importance.
One type of approximation problems refers to an objective function defined
on the set of potential solutions: Rather than finding a solution that attains
the optimal value, the approximation task consists of finding a solution that
attains an “almost optimal” value, where the notion of “almost optimal” may
be understood in different ways, giving rise to different levels of approximation.
Interestingly, in many cases, even a very relaxed level of approximation is as
difficult to obtain as solving the original (exact) search problem (i.e., finding an
approximate solution is as hard as finding an optimal solution). Surprisingly,
these hardness-of-approximation results are related to the study of probabilis-
tically checkable proofs, which are proofs that allow for ultra-fast probabilistic
verification. Amazingly, every proof can be efficiently transformed into one
that allows for probabilistic verification based on probing a constant number
of bits (in the alleged proof). Turning back to approximation problems, we
mention that in other cases, a reasonable level of approximation is easier to
achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems.
Another natural relaxation is the study of average-case complexity, where the
“average” is taken over some “simple” distributions (representing a model of
the problem’s instances that may occur in practice). We stress that although it
was not stated explicitly, the entire discussion so far has referred to “worst-case”
analysis of algorithms. We mention that worst-case complexity is a more robust
notion than average-case complexity. For starters, one avoids the controversial
question of characterizing the instances that are “important in practice” and,
correspondingly, the selection of the class of distributions for which average-
case analysis is to be conducted. Nevertheless, a relatively robust theory of

Epilogue 175

average-case complexity has been suggested, albeit it is less developed than
the theory of worst-case complexity.

In view of the central role of randomness in Complexity Theory (as evi-
dent, say, in the study of pseudorandomness, probabilistic proof systems, and
cryptography), one may wonder as to whether the randomness needed for the
various applications can be obtained in real life. One specific question, which
received a lot of attention, is the possibility of “purifying” randomness (or
“extracting good randomness from bad sources”). That is, can we use “defec-
tive” sources of randomness in order to implement almost perfect sources of
randomness? The answer depends, of course, on the model of such defective
sources. This study turned out to be related to Complexity Theory, where the
most tight connection is between some type of randomness extractors and some
type of pseudorandom generators.

So far we have focused on the time complexity of computational tasks,
while relying on the natural association of efficiency with time. However, time
is not the only resource one should care about. Another important resource
is space: the amount of (temporary) memory consumed by the computation.
The study of space complexity has uncovered several fascinating phenomena,
which seem to indicate a fundamental difference between space complexity and
time complexity. For example, in the context of space complexity, verifying
proofs of validity of assertions (of any specific type) has the same complexity
as verifying proofs of invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air tour
of some mountaintops, and dizziness is to be expected. For a totally different
touring experience, we refer the interested reader to the author’s book [13],
which offers climbing the aforementioned mountains by foot, while stopping
often for appreciation of the view and reflection.

Absolute Results (also Known as Lower Bounds). As stated in the beginning
of this epilogue, absolute results are not known for many of the “big questions”
of Complexity Theory (most notably the P versus NP Question). However,
several highly non-trivial absolute results have been proved. For example, it was
shown that using negation can speed up the computation of monotone functions
(which do not require negation for their mere computation). In addition, many
promising techniques were introduced and employed with the aim of providing
a low-level analysis of the progress of computation. However, as stated up
front, the focus of this epilogue was elsewhere.

Appendix: Some Computational Problems

Although we view specific (natural) computational problems as secondary to (natural)
complexity classes, we do use the former for clarification and illustration of the latter.
This appendix provides definitions of such computational problems, grouped according
to the type of objects to which they refer (i.e., graphs and Boolean formula).

We start by addressing the central issue of the representation of the various objects
that are referred to in the aforementioned computational problems. The general principle
is that elements of all sets are “compactly” represented as binary strings (without much
redundancy). For example, the elements of a finite set S (e.g., the set of vertices in a
graph or the set of variables appearing in a Boolean formula) will be represented as
binary strings of length log2 |S|.

A.1 Graphs

Graph theory has long become recognized as one of the more useful mathematical
subjects for the computer science student to master. The approach which is
natural in computer science is the algorithmic one; our interest is not so much in
existence proofs or enumeration techniques, as it is in finding efficient algorithms
for solving relevant problems, or alternatively showing evidence that no such
algorithms exist. Although algorithmic graph theory was started by Euler, if not
earlier, its development in the last ten years has been dramatic and revolutionary.

Shimon Even, Graph Algorithms [8]

A simple graph G= (V,E) consists of a finite set of vertices V and a finite set of edges E,
where each edge is an unordered pair of vertices; that is, E ⊆ {{u, v} : u, v∈V ∧ u �=v}.
This formalism does not allow self-loops and parallel edges, which are allowed in general
(i.e., non-simple) graphs, where E is a multi-set that may contain (in addition to two-
element subsets of V also) singletons (i.e., self-loops). The vertex u is called an end
point of the edge {u, v}, and the edge {u, v} is said to be incident at v. In such a case, we
say that u and v are adjacent in the graph, and that u is a neighbor of v. The degree of a
vertex in G is defined as the number of edges that are incident at this vertex.

177

178 Appendix

We will consider various sub-structures of graphs, the simplest one being paths. A
path in a graph G= (V,E) is a sequence of vertices (v0, . . . , v�) such that for every
i ∈ [�]

def= {1, . . . , �} it holds that vi−1 and vi are adjacent in G. Such a path is said to
have length �. A simple path is a path in which each vertex appears at most once, which
implies that the longest possible simple path in G has length |V | − 1. The graph is
called connected if there exists a path between each pair of vertices in it.

A cycle is a path in which the last vertex equals the first one (i.e., v� = v0). The cycle
(v0, . . . , v�) is called simple if � > 2 and |{v0, . . . , v�}| = � (i.e., if vi = vj then i ≡ j

(mod �), and the cycle (u, v, u) is not considered simple). A graph is called acyclic (or a
forest) if it has no simple cycles, and if it is also connected, then it is called a tree. Note
that G= (V,E) is a tree if and only if it is connected and |E| = |V | − 1, and that there
is a unique simple path between each pair of vertices in a tree.

A subgraph of the graph G= (V,E) is any graph G′ = (V ′, E′) satisfying V ′ ⊆ V

and E′ ⊆ E. Note that a simple cycle in G is a connected subgraph of G in which
each vertex has degree exactly two. An induced subgraph of the graph G= (V,E) is
any subgraph G′ = (V ′, E′) that contains all edges of E that are contained in V ′ (i.e.,
E′ = {{u, v}∈E : u, v∈V ′}). In such a case, we say that G′ is the subgraph induced
by V ′.

Directed Graphs. We will also consider (simple) directed graphs (also known as
digraphs), where edges are ordered pairs of vertices.1 In this case, the set of edges is a
subset of V × V \ {(v, v) : v∈V }, and the edges (u, v) and (v, u) are called anti-parallel.
General (i.e., non-simple) directed graphs are defined analogously. The edge (u, v) is
viewed as going from u to v, and thus is called an outgoing edge of u (resp., incoming edge
of v). The out-degree (resp., in-degree) of a vertex is the number of its outgoing edges
(resp., incoming edges). Directed paths and the related objects are defined analogously;
for example, v0, . . . , v� is a directed path if for every i ∈ [�] it holds that (vi−1, vi) is a
directed edge (which is directed from vi−1 to vi). It is common to consider also a pair
of anti-parallel edges as a simple directed cycle.

A directed acyclic graph (DAG) is a digraph that has no directed cycles. Every DAG
has at least one vertex having out-degree (resp., in-degree) zero, called a sink (resp., a
source). A simple directed acyclic graph G= (V,E) is called an inward (resp., outward)
directed tree if |E| = |V | − 1 and there exists a unique vertex, called the root, having
out-degree (resp., in-degree) zero. Note that each vertex in an inward (resp., outward)
directed tree can reach the root (resp., is reachable from the root) by a unique directed
path.2

Representation. Graphs are commonly represented by their adjacency matrix and/or
their incidence lists. The adjacency matrix of a simple graph G= (V,E) is a |V |-by-|V |

1 Again, the term “simple” means that self-loops and parallel (directed) edges are not allowed. In
contrast, anti-parallel edges are allowed.

2 Note that in any DAG, there is a directed path from each vertex v to some sink (resp., from
some source to each vertex v). In an inward (resp., outward) directed tree this sink (resp.,
source) must be unique. The condition |E| = |V | − 1 enforces the uniqueness of these paths,
because (combined with the reachability condition) it implies that the underlying graph
(obtained by disregarding the orientation of the edges) is a tree.

Appendix 179

Boolean matrix in which the (i, j)-th entry equals 1 if and only if i and j are adjacent
in G. The incidence list representation of G consists of |V | sequences such that the i th

sequence is an ordered list of the set of edges incident at vertex i. (Needless to say, it is
easy to transform one of these representations to the other.)

Computational Problems. Simple computational problems regarding graphs
include determining whether a given graph is connected (and/or acyclic) and find-
ing shortest paths in a given graph. Another simple problem is determining whether a
given graph is bipartite, where a graph G= (V,E) is bipartite (or 2-colorable) if there
exists a 2-coloring of its vertices that does not assign neighboring vertices the same
color. All of these problems are easily solvable by BFS.

Moving to more complicated tasks that are still solvable in polynomial time, we
mention the problem of finding a perfect matching (or a maximum matching) in a given
graph, where a matching is a subgraph in which all vertices have degree 1, a perfect
matching is a matching that contains all of the graph’s vertices, and a maximum matching
is a matching of maximum cardinality (among all matching of the said graph).

Turning to seemingly hard problems, we mention that the problem of determining
whether a given graph is 3-colorable3 (i.e., G3C) is NP-complete. A few additional
NP-complete problems follow.

� A Hamiltonian path (resp., Hamiltonian cycle) in the graph G= (V,E) is a simple path
(resp., cycle) that passes through all of the vertices of G. Such a path (resp., cycle)
has length |V | − 1 (resp., |V |). The problem is to determine whether a given graph
contains a Hamiltonian path (resp., cycle).

� An independent set (resp., clique) of the graph G= (V,E) is a set of vertices V ′ ⊆ V

such that the subgraph induced by V ′ contains no edges (resp., contains all possible
edges). The problem is to determine whether a given graph has an independent set
(resp., a clique) of a given size.
A vertex cover of the graph G= (V,E) is a set of vertices V ′ ⊆ V such that each edge
in E has at least one end point in V ′. Note that V ′ is a vertex cover of G if and only
if V \ V ′ is an independent set of V .

A natural computational problem, which is believed to be neither in P nor NP-complete,
is the Graph Isomorphism problem. The input consists of two graphs, G1= (V1, E1)
and G2= (V2, E2), and the question is whether there exist a 1-1 and onto mapping
φ : V1 → V2 such that {u, v} is in E1 if and only if {φ(u), φ(v)} is in E2. (Such a
mapping is called an isomorphism.)

A.2 Boolean Formulae

In §1.4.3.1, Boolean formulae are defined as a special case of Boolean circuits (cf.
§1.4.1.1). Here, we take the more traditional approach and define Boolean formulae (also

3 We say that a a graph G= (V,E) is 3-colorable if its vertices can be colored using three colors
such that neighboring vertices are not assigned the same color.

180 Appendix

known as propositional formulae) as structured sequences over an alphabet consisting
of variable names and various connectives. It is most convenient to define Boolean
formulae recursively as follows:

� A Boolean variable is a Boolean formula.
� If φ1, . . . , φt are Boolean formulae and ψ is a t-ary Boolean operation, then

ψ(φ1, . . . , φt) is a Boolean formula.

Typically, we consider three Boolean operations: the unary operation of negation
(denoted neg or ¬), and the (bounded or unbounded) conjunction and disjunction
(denoted ∧ and ∨, respectively). Furthermore, the convention is to shorthand ¬(φ) by
¬φ, and to write (∧t

i=1φi) or (φ1 ∧ · · · ∧ φt) instead of ∧(φ1, . . . , φt), and similarly
for ∨.

Two important special cases of Boolean formulae are CNF and DNF formulae. A
CNF formula is a conjunction of disjunctions of variables and/or their negation; that is,
∧t

i=1φi is a CNF if each φi has the form (∨ti
j=1φi,j), where each φi,j is either a variable

or a negation of a variable (and is called a literal). If for every i it holds that ti ≤ k (e.g.,
k = 2, 3), then we say that the formula is a kCNF. Similarly, DNF formulae are defined
as disjunctions of conjunctions of literals.

The value of a Boolean formula under a truth assignment to its variables is defined
recursively along its structure. For example,∧t

i=1φi has the value true under an assign-
ment τ if and only if every φi has the value true under τ . We say that a formula φ is
satisfiable if there exists a truth assignment τ to its variables such that the value of φ

under τ is true.
The set of satisfiable CNF (resp., 3CNF) formulae is denoted SAT (resp., 3SAT), and

the problem of deciding membership in it is NP-complete. The set of tautologies (i.e.,
formula that have the value true under any assignment) is coNP-complete, even when
restricted to 3DNF formulae.

Bibliography

[1] S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge
University Press, 2009.

[2] L. Berman and J. Hartmanis. On Isomorphisms and Density of NP and Other
Complete Sets. SIAM Journal on Computing, Vol. 6 (2), pages 305–322, 1977.

[3] G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic, 5th edition.
Cambridge University Press, 2007.

[4] A. Church. An Unsolvable Problem of Elementary Number Theory. Amer. J. of
Math., Vol. 58, pages 345–363, 1936.

[5] A. Cobham. The Intristic Computational Difficulty of Functions. In Proc.
1964 Iternational Congress for Logic Methodology and Philosophy of Science,
pages 24–30, 1964.

[6] S. A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACM
Symposium on the Theory of Computing, pages 151–158, 1971.

[7] J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages 449–467,
1965.

[8] S. Even. Graph Algorithms. Computer Science Press, 1979.
[9] S. Even, A. L. Selman, and Y. Yacobi. The Complexity of Promise Problems

with Applications to Public-Key Cryptography. Information and Control, Vol. 61,
pages 159–173, 1984.

[10] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating
Clique is Almost NP-Complete. Journal of the ACM, Vol. 43, pages 268–292,
1996. Preliminary version in 32nd FOCS, 1991.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[12] O. Goldreich. On Promise Problems: A Survey. In [14]. An earlier version is
available from ECCC, TR05-018, 2005.

[13] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

[14] O. Goldreich, A. L. Rosenberg, and A. L. Selman (eds.). Essays in Theoret-
ical Computer Science in Memory of Shimon Even. Springer Verlag, LNCS
Festschrift, Vol. 3895, March 2006.

[15] D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS,
1996.

181

182 Bibliography

[16] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[17] R. M. Karp. Reducibility among Combinatorial Problems. In Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press,
pages 85–103, 1972.

[18] R. M. Karp and R. J. Lipton. Some Connections Between Nonuniform and Uni-
form Complexity Classes. In 12th ACM Symposium on the Theory of Computing,
pages 302–309, 1980.

[19] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1996.

[20] R. E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the
ACM, Vol. 22, pages 155–171, 1975.

[21] L. A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages
115–116, 1973 (in Russian). English translation in Problems of Information
Transmission 9, pages 265–266.

[22] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer Verlag, August 1993.

[23] S. Mahaney. Sparse Complete Sets for NP: Solution of a Conjecture of Berman
and Hartmanis. Journal of Computer and System Science, Vol. 25, pages 130–
143, 1982.

[24] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
[25] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
[26] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52,

pages 264–268, 1946.
[27] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Prob-

lems. Trans. AMS, Vol. 89, pages 25–59, 1953.
[28] A. Selman. On the Structure of NP. Notices Amer. Math. Soc., Vol. 21 (6),

page 310, 1974.
[29] C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.

American Institute of Electrical Engineers, Vol. 57, pages 713–723, 1938.
[30] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,

1997.
[31] B. A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute Force

Search) Algorithms. Annals of the History of Computing, Vol. 6 (4), pages 384–
398, 1984.

[32] C. E. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages 230–
265, 1936. A Correction, ibid., Vol. 43, pages 544–546.

[33] J. von Neumann, First Draft of a Report on the EDVAC, 1945. Contract No.
W-670-ORD-492, Moore School of Electrical Engineering, University of Penn-
sylvania, Philadelphia. Reprinted (in part) in Origins of Digital Computers:
Selected Papers. Springer-Verlag, Berlin and Heidelberg, pages 383–392, 1982.

Index

Author Index

Church, A., 165
Cobham, A., 165
Cook, S. A., 165–167
Edmonds, J., 165
Even, S., 167
Karp, R. M., 165–167
Ladner, R. E., 167
Levin, L. A., 165–167
Selman, A. L., 167
Shannon, C. E., 165
Turing, A. M., 164, 165
Yacobi, Y., 167

Subject Index

Algorithms, see Computability theory
Approximation, 173
Average-case complexity, 173

Boolean circuits, 32–40, 104–113
bounded fan-in, 35
constant-depth, 40
depth, 39
monotone, 40
size, 35–36
unbounded fan-in, 35, 38, 40
uniform, 36

Boolean formulae, 33, 38–39, 177–178
clauses, 38
CNF, 38, 104–113, 178
DNF, 39, 178
literals, 38

Church-Turing Thesis, 16, 17, 27
Circuits, see Boolean circuits
CNF, see Boolean formulae
Cobham-Edmonds Thesis, 27, 28, 50, 52, 108
Complexity classes

coNP, 94, 126, 154–158
EXP, 66, 123
generic, 40
IP, see Interactive proofs
NP, see NP
NPC, see NP-completeness
NPI, 126
P, see P
PC, 55–58, 63–66, 69, 77, 80–88, 98–102,

105, 109, 144, 151–154
PCP, see Probabilistically checkable proofs
PF, 54–55, 57–58, 63–65
ZK, see Zero-knowledge

Computability theory, 1–31
Computational problems

2SAT, 113
3SAT, 112, 113, 123, 124, 126, 178
3XC, 115
Bipartiteness, 177
Bounded Halting, 102
Bounded Non-Halting, 102–103
Clique, 117, 177
Connectivity, 177
CSAT, 104–112
Entscheidungsproblem, 164
Exact Cover, 115
Factoring integers, 53, 72, 94, 157
Graph 2-Colorability, 113, 177
Graph 3-Colorability, 91, 113, 118, 123,

125, 177

183

184 Index

Computational problems (cont.)
Graph Isomorphism, 91, 177
Halting Problem, 19–21, 102, 103
Hamiltonian path, 53, 56, 58, 60, 61, 177
Independent Set, 117, 177
PCP, see Post Correspondence Problem
Perfect matching, 177
Primality testing, 72
SAT, 53, 57, 61, 85–86, 104–113, 154, 178
Set Cover, 114
Solving systems of equations, 53
Spanning trees, 53
TSP, 53, 57
Vertex Cover, 117, 177

Computational tasks and models, 1–47
Constant-depth circuits, see Boolean circuits
Cook-reductions, see Reductions
Cryptography, 125, 172

Decision problems, 6–8, 58–65
DNF, see Boolean formulae

Exhaustive search, 50, 51, 66, 70

Finite automata, 31
Formulae, see Boolean formulae

Graph theory, 175–177

Halting Problem, see Computational problems
Hilbert’s Tenth Problem, 164

Interactive proofs, 124, 172

Karp-reductions, see Reductions
Kolmogorov Complexity, 24–26, 35

Levin-reductions, see Reductions

Monotone circuits, see Boolean circuits

NP, 48–158
as proof system, 59–62, 123, 125
as search problem, 55–58
Optimal search, 151–154
traditional definition, 66–69

NP-completeness, 89–133, 155–158

O-notation, 26
One-way functions, 171
Optimal search for NP, 151–154
Oracle machines, 29–31

P, 48–158
as search problem, 54–55, 57–58

P versus NP Question, 48–70
Polynomial-time reductions, see Reductions
Post Correspondence Problem, 22, 24, 43
Probabilistic proof systems, 123–126
Probabilistically checkable proofs, 125–126
Promise problems, 8, 52, 142–151, 156
Proof systems

Interactive, see Interactive proofs
NP, see NP
PCP, see Probabilistically checkable proofs
Probabilistic, see Probabilistic proof

systems
Zero-knowledge, see Zero-knowledge

Pseudorandom generators, 171
Pseudorandomness, 171

Randomness extractors, 174
Reductions

Cook-reductions, 76–99, 120–129, 155–157
Downward self-reducibility, 92
Karp-reductions, 77–81, 98–120, 155
Levin-reductions, 79–81, 83, 99–113
parsimonious, 139
Polynomial-time reductions, 74–129
Self-reducibility, 83–88
to sparse sets, 162–163
Turing-reductions, 21, 29–31

Rice’s Theorem, 21

Search problems, 5–6, 52–58, 63–65
versus decision, 63–65, 77, 80, 83–88

Self-reducibility, see Reductions
Space complexity, 29

Time complexity, 10, 26–29
Turing machines, 11–18

multi-tape, 16
non-deterministic, 66–69
single-tape, 15
with advice, 36–37

Turing-reductions, see Reductions

Uncomputable functions, 18–22
Undecidability, 19, 22
Universal algorithms, 22–26, 28
Universal machines, 22–26

Worst-case complexity, 173

Zero-knowledge, 124–125, 172

	Cover
	Half-title
	Title
	Copyright
	Contents
	List of Figures
	Preface
	Overview
	To the Teacher
	Notations and Conventions
	Main Definitions and Results
	1 Computational Tasks and Models
	Teaching Notes
	1.1 Representation
	1.2 Computational Tasks
	1.2.1 Search Problems
	1.2.2 Decision Problems
	1.2.3 Promise Problems (an Advanced Comment)

	1.3 Uniform Models (Algorithms)
	1.3.1 Overview and General Principles
	1.3.2 A Concrete Model: Turing Machines
	1.3.2.1 The Actual Model
	1.3.2.2 The Church-Turing Thesis

	1.3.3 Uncomputable Functions
	1.3.3.1 On the Existence of Uncomputable Functions
	1.3.3.2 The Halting Problem
	1.3.3.3 A Few More Undecidability Results

	1.3.4 Universal Algorithms
	1.3.4.1 The Existence of Universal Algorithms
	1.3.4.2 A Detour: Kolmogorov Complexity

	1.3.5 Time (and Space) Complexity
	1.3.6 Oracle Machines and Turing-Reductions
	1.3.7 Restricted Models

	1.4 Non-Uniform Models (Circuits and Advice)
	1.4.1 Boolean Circuits
	1.4.1.1 The Basic Model
	1.4.1.2 Circuit Complexity

	1.4.2 Machines That Take Advice
	1.4.3 Restricted Models
	1.4.3.1 Boolean Formulae
	1.4.3.2 Other Restricted Classes of Circuits

	1.5 Complexity Classes

	Exercises

	2 The P versus NP Question
	Teaching Notes
	2.1 Efficient Computation
	2.2 The Search Version: Finding versus Checking
	2.2.1 The Class P as a Natural Class of Search Problems
	2.2.2 The Class NP as Another Natural Class of Search Problems
	2.2.3 The P versus NP Question in Terms of Search Problems

	2.3 The Decision Version: Proving versus Verifying
	2.3.1 The Class P as a Natural Class of Decision Problems
	2.3.2 The Class NP and NP-Proof Systems
	2.3.3 The P versus NP Question in Terms of Decision Problems

	2.4 Equivalence of the Two Formulations
	2.5 Technical Comments Regarding NP
	2.6 The Traditional Definition of NP
	2.7 In Support of P Being Different from NP
	2.8 Philosophical Meditations
	Exercises

	Exercises

	3 Polynomial-time Reductions
	Teaching Notes
	3.1 The General Notion of a Reduction
	3.1.1 The Actual Formulation
	3.1.2 Special Cases
	3.1.3 Terminology and a Brief Discussion

	3.2 Reducing Optimization Problems to Search Problems
	3.3 Self-Reducibility of Search Problems
	3.3.1 Examples
	3.3.2 Self-Reducibility of NP-Complete Problems

	3.4 Digest and General Perspective

	Exercises

	4 NP-Completeness
	Teaching Notes
	4.1 Definitions
	4.2 The Existence of NP-Complete Problems

	Bounded Halting and Non-Halting
	4.3 Some Natural NP-Complete Problems
	4.3.1 Circuit and Formula Satisfiability: CSAT and SAT
	4.3.1.1 The NP-Completeness of CSAT
	4.3.1.2 The NP-Completeness of SAT

	4.3.2 Combinatorics and Graph Theory
	4.3.3 Additional Properties of the Standard Reductions
	4.3.4 On the Negative Application of NP-Completeness
	4.3.5 Positive Applications of NP-Completeness

	4.4 NP Sets That Are Neither in P nor NP-Complete
	4.5 Reflections on Complete Problems

	Exercises

	5 Three Relatively Advanced Topics
	Teaching Notes
	5.1 Promise Problems
	5.1.1 Definitions
	5.1.1.1 Search Problems with a Promise
	5.1.1.2 Decision Problems with a Promise
	5.1.1.3 Reducibility Among Promise Problems

	5.1.2 Applications and Limitations
	5.1.2.1 Formulating Natural Computational Problems
	5.1.2.2 Restricting a Computational Problem
	5.1.2.3 Non-generic Applications
	5.1.2.4 Limitations

	5.1.3 The Standard Convention of Avoiding Promise Problems

	5.2 Optimal Search Algorithms for NP
	5.3 The Class coNP and Its Intersection with NP

	Exercises

	Historical Notes
	On Computation and Efficient Computation
	On NP and NP-Completeness

	Epilogue: A Brief Overview of Complexity Theory
	Absolute Goals and Relative Results
	P, NP, and NP-completeness
	Some Advanced Topics

	Appendix: Some Computational Problems
	A.1 Graphs
	A.2 Boolean Formulae

	Bibliography
	Index

