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Preface

Aim

The aim of this book is to provide an introduction to essential concepts in

computability, presenting and comparing alternative models of computation.

We define and analyse the most significant models of computation and their

associated programming paradigms, from Turing machines to the emergent

computation models inspired by systems biology and quantum physics.

About this book

This book provides an introduction to computability using a series of abstract

models of computation.

After giving the historical context and the original challenges that motivated

the development of computability theory in the 1930s, we start reviewing the

traditional models of computation: Turing machines, Church’s Lambda calcu-

lus (or λ-calculus), and the theory of recursive functions of Gödel and Kleene.

These three models of computation are equivalent in the sense that any compu-

tation procedure that can be expressed in one of them can also be expressed in

the others. Indeed, Church’s Thesis states that the set of computable functions

is exactly the set of functions that can be defined in these models.

Each of the above-mentioned models of computation gave rise to a pro-

gramming paradigm: imperative, functional, or algebraic. We also include in

the first part of the book a computation model based on deduction in a frag-

ment of first-order logic, which gave rise to the logic programming paradigm,
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because the work by Herbrand in this area dates also from the late 1920s and

early 1930s.

As programming languages evolved and new programming techniques were

developed, other models of computation became available; for instance, based

on the concept of object or on a notion of interaction between agents. It is

possible, for example, to show that any computable function can be defined

by using an abstract device where one can define objects, invoke their meth-

ods, and update them. In the second part of the book, we describe a calculus

of objects as a foundation for object-oriented programming and compare its

computational power with the traditional ones. We also describe a graphical,

interaction-based model of computation and a formalism for the specification

of concurrent computations.

Recently, there has been a renewed interest in computability theory, with

the emergence of several models of computation inspired by biological and phys-

ical processes. In the last chapter of the book, we discuss biologically inspired

calculi and quantum computing.

This book is addressed to advanced undergraduate students, as a comple-

ment to programming languages or computability courses, and to postgraduate

students who are interested in the theory of computation. It was developed to

accompany lectures in a Master’s course on models of computation at King’s

College London. The book is for the most part self-contained; only some basic

knowledge of logic is assumed. Basic programming skills in one language are

useful, and knowledge of more programming languages will be helpful but is

not necessary.

Each chapter includes exercises that provide an opportunity to apply the

concepts and techniques presented. Answers to selected exercises are given at

the end of the book. Although some of the questions are just introductory,

most exercises are designed with the goal of testing the understanding of the

subject; for instance, by requiring the student to adapt a given technique to

different contexts.

Organisation

The book is organised as follows. Chapter 1 gives an introduction to com-

putability and provides background material for the rest of the book, which is

organised into two parts.

In Part I, we present the traditional models of computation. We start with

the study of various classes of automata in Chapter 2. These are abstract

machines defined by a collection of states and a transition function that con-
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trols the way the machine’s state changes. Depending on the type of memory

and the kind of response that the automaton can give to external signals, we

obtain machines with different computation power. After giving an informal

description, we provide formal specifications and examples of finite automata,

push-down automata, and Turing machines. The chapter ends with a discus-

sion of the applications of these automata to programming language design and

implementation.

The next two chapters are dedicated to the study of computation models

inspired by the idea of “computation as functional transformation”. In Chap-

ter 3, we give an overview of the λ-calculus, with examples that demonstrate the

power of this formalism, highlighting the role of the λ-calculus as a foundation

for the functional programming paradigm. In Chapter 4, we define primitive

recursion and the general class of partial recursive functions.

The final chapter in Part I describes a model of computation based on de-

duction in a fragment of first-order logic. We introduce the Principle of Resolu-

tion and the notion of unification. We then study the link between these results

and the development of logic programming languages based on SLD-resolution.

Part II studies three modern computation paradigms that can be seen

as the foundation of three well-known programming styles: object-oriented,

interaction-based, and concurrent programming, respectively. In addition, it

includes a short discussion on emergent models of computation inspired by bi-

ological and physical processes. More precisely, Part II is organised as follows.

In Chapter 6, we analyse the process of computation from an object-oriented

perspective: Computation is structured around objects that own a collection

of functions (methods in the object-oriented terminology). We describe object-

oriented computation models, providing examples and a comparison with tra-

ditional models of computation.

In Chapter 7, we study graphical models of computation, where computa-

tion is centred on the notion of interaction. Programs are collections of agents

that interact to produce a result. We show that some graphical models natu-

rally induce a notion of sequentiality, whereas others can be used to describe

parallel functions.

Chapter 8 describes a calculus of communicating processes that can be

used to specify concurrent computation systems, and gives a brief account of

an alternative view of concurrency inspired by a chemical metaphor.

Chapter 9 gives a short introduction to some of the emergent models of

computation: biologically inspired calculi and quantum computing.

The last chapter of the book (Chapter 10) contains answers to a selection

of exercises.

At the end of the book there is a bibliographical section with references to

articles and books where the interested reader can find more information.
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1
Introduction

This book is concerned with abstract models of computation. Several new mod-

els of computation have emerged in the last few years (e.g., chemical machines,

bio-computing, quantum computing, etc.). Also, many developments in tradi-

tional computational models have been proposed with the aim of taking into

account the new demands of computer system users and the new capabilities

of computation engines. A new model of computation, or a new feature in a

traditional one, usually is reflected in a new family of programming languages

and new paradigms of software development. Thus, an understanding of the

traditional and emergent models of computation facilitates the use of modern

programming languages and software development tools, informs the choice of

the correct language for a given application, and is essential for the design of

new programming languages.

But what exactly is a “model of computation”? To understand what is

meant by a model of computation, we briefly recall a little history. The notions

of computability and computable functions go back a long time. The ancient

Greeks and the Egyptians, for instance, had a good understanding of compu-

tation “methods”. The Persian scientist Al-Khwarizmi in 825 wrote a book

entitled “On the Calculation with Hindu Numerals”, which contained the de-

scription of several procedures that could now be called algorithms. His name

appears to be the origin of the word “algorithm”: When his book was trans-

lated into Latin, its title was changed to “Algoritmi de Numero Indorum”. The

word “algorithm” was later used to name the class of computation procedures

described in the book. Roughly, an algorithm is:
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– a finite description of a computation in terms of well-defined elementary

operations (or instructions);

– a deterministic procedure: the next step is uniquely defined, if there is one;

– a method that always produces a result, no matter what the input is (that

is, the computation described by an algorithm always terminates).

The modern computability theory has its roots in the work done at the

beginning of the twentieth century to formalise the concept of an “algorithm”

without referring to a specific programming language or physical computational

device. A computation model abstracts away from the material details of the

device we are using to make the calculations, be it an abacus, pen and paper,

or our favourite programming language and processor.

In the 1930s, logicians (in particular Alan Turing and Alonzo Church) stud-

ied the meaning of computation as an abstract mental process and started to

design theoretical devices to model the process of computation, which could be

used to express algorithms and also non-terminating computations.

The notion of a partial function generalises the notion of an algorithm

described above by considering computation processes that do not always lead

to a result. Indeed, some expressions do not have a value:

1. True + 4 is not defined (we cannot add a number and a Boolean).

2. 10/0 is not defined.

3. The expression factorial(−1) does not have a value if factorial is a recursive

function defined as follows:

factorial(0) = 1

factorial(n) = n ∗ factorial(n − 1)

The first is a type error since addition is a function from numbers to num-

bers: For any pair of natural numbers, the result of the addition is defined. We

say that addition is a total function on the natural numbers.

The second is a different kind of problem: 10 and 0 are numbers, but division

by 0 is not defined. We say that division is a partial function on the natural

numbers.

There is another case in which an expression may not have a value: The

computation may loop, as in the third example above. We will say that factorial

is a partial function on the integers.

The notion of a partial function is so essential in computability theory that

it deserves to be our first definition.
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Definition 1.1 (Partial function)

Let A and B be sets. We denote their Cartesian product by A × B; that is,

A × B denotes the set of all the pairs where the first element is in A and the

second in B. We use the symbol ∈ to denote membership; i.e., we write a ∈ A

to indicate that the element a is in the set A.

A partial function f from A to B (abbreviated as f : A → B) is a subset

of A × B such that if (x, y) ∈ f and (x, z) ∈ f , then y = z. In other words,

a partial function from A to B associates to each element of A at most one

element of B.

If (x, y) ∈ f , we write f(x) = y and say that y is the image of x. The

elements of A that have an image in B are in the domain of f .

In the study of computability, we are often interested only in functions

whose domain and co-domain are the set of integer numbers. In some cases,

this is even restricted to natural numbers; that is, integers that are positive or

zero.

The notion of a partial function is also important in modern programming

techniques. From an abstract point of view, we can say that each program

defines a partial function. In practice, we are interested in more than the func-

tion that the program computes; we also want to know how the function is

computed, how efficient the computation is, how much memory space we will

need, etc. However, in this book we will concentrate on whether a problem has

a computable solution or not, and how the actual computation mechanism is

expressed, without trying to obtain the most efficient computation.

1.1 Models of computation

Some mathematical functions are computable and some are not: There are

problems for which no computer program can provide a solution even assuming

that the amount of time and space available to carry out the computation is

infinite. Complexity theory studies the “practical” aspects of computability;

that is, for a computable function, it answers the question: How much time

and space will be needed for the computation? We will not cover complexity

theory in this book but instead will concentrate on computability.

First we need to define precisely the notion of a computable function. This is

a difficult task and is still the subject of research. We will first give an intuitive

definition.
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Definition 1.2 (Computable function)

All the functions on the natural numbers that can be effectively computed in

an ideal world, where time and space are unlimited, are called partial recursive

functions or computable functions.

The definition of a computable function above does not say what our notion

of “effective” computation is: Which programming language is used to define

the function? What kind of device is used to compute it? We need a model of

computation to abstract away from the material details of the programming

language and the processor we are using. In fact, computability was studied as

a branch of mathematical logic well before programming languages and com-

puters were built. Three well-studied abstract models of computation dating

from the 1930s are

– Turing machines, designed by Alan Turing to provide a formalisation of the

concept of an algorithm;

– the Lambda calculus, designed by Alonzo Church with the aim of providing

a foundation for mathematics based on the notion of a function; and

– the theory of recursive functions, first outlined by Kurt Gödel and further

developed by Stephen Kleene.

These three models of computation are equivalent in that they can all ex-

press the same class of functions. Indeed, Church’s Thesis says that they com-

pute all the so-called computable functions. More generally, Church’s Thesis

says that the same class of functions on the integers can be computed in any

sequential, universal model of computation that satisfies basic postulates about

determinism and the effectiveness of elementary computation steps. This class

of computable functions is the set of partial recursive functions.

We say that a programming language is Turing complete if any computable

function can be written in this language. All general-purpose programming

languages available nowadays are complete in this sense. Turing completeness is

usually proved through an encoding in the programming language of a standard

universal computation model.

1.2 Some non-computable functions

Since the 1930s, it has been known that certain basic problems cannot be solved

by computation. The typical example is the Halting problem discussed below,
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which was proved to be non-computable by Church and Turing. Other examples

of non-computable problems are:

– Hilbert’s 10th problem: solving Diophantine equations.

Diophantine equations are equations of the form

P (x1, . . . , xn) = Q(x1, . . . , xn)

where P and Q are polynomials with integer coefficients. A polynomial is a

sum of monomials, each monomial being a product of variables with a coeffi-

cient. The coefficients are constants; for example, x2 +2x+1 is a polynomial

on one variable, x.

The mathematician David Hilbert asked for an algorithm to solve Diophan-

tine equations; that is, an algorithm that takes a Diophantine equation as

input and determines whether this equation has integer solutions or not. This

problem was posed by Hilbert in 1900 in a list of open problems presented

at the International Congress of Mathematicians, and it became known as

Hilbert’s 10th problem. It is important to note that the coefficients of the

polynomials are integers and the solution requested is an assignment of in-

teger numbers to the variables in the equation.

Hilbert’s 10th problem remained open until 1970, when it was shown to be

undecidable in general by Yuri Matijasevic̆, Julia Robinson, Martin Davis,

and Hilary Putnam.

– Hilbert’s decision problem: the Entscheidungsproblem.

This problem was also posed by Hilbert in 1900. Briefly, the problem requires

writing an algorithm to decide whether any given mathematical assertion in

the functional calculus is provable.

Hilbert thought that this problem was computable, but his conjecture was

proved wrong by Church and Turing, who showed that an algorithm to solve

this problem could also solve the Halting problem.

These are examples of undecidable problems. We end this introduction with

a description of the Halting problem.

The Halting problem. Intuitively, to solve the Halting problem, we need an

algorithm that can check whether a given program will stop or not on a given

input. More precisely, the problem is formulated as follows:

Write an algorithm H such that given

– the description of an algorithm A (which requires one input) and
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– an input I,

H will return 1 if A stops with the input I and 0 if A does not stop on I.

We can see the algorithm H as a function: H(A, I) = 1 if the program A

stops when the input I is provided, and H(A, I) = 0 otherwise.

In the quest for a solution to this problem, Turing and Church constructed

two abstract models of computation that later became the basis of the modern

theory of computing: Turing machines and the Lambda calculus.

In fact, Church and Turing proved that there is no algorithm H such that,

for any pair (A, I) as described above, H produces the required output. Its

proof, which follows, is short and elegant.

Proof

If there were such an H, we could use it to define the following program C:

C takes as input an algorithm A and computes H(A,A). If the result

is 0, then it answers 1 and stops; otherwise it loops forever.

Below we will use the notation A(I) ↑, where A is a program and I is its

input, to represent the fact that the program A does not stop on the input I.

Using the program C, for any program A, the following properties hold:

– If H(A,A) = 1, then C(A)↑ and A(A) stops.

– If H(A,A) = 0, then C(A) stops and A(A)↑.

In other words, C(A) stops if and only if A(A) does not stop.

Since A is arbitrary, it could be C itself, and then we obtain a contradiction:

C(C) stops if and only if C(C) does not stop.

Therefore H cannot exist.

The proofs of undecidability of Hilbert’s decision problem or Diophantine

equations are more involved and we will not show them in this book, but it is

important to highlight that these results, obtained with the help of abstract

models of computation, still apply to current computers.

Since the class of computable functions is the same for all the traditional

computation models, we deduce that imperative or functional languages (which

are based on Turing machines and the Lambda calculus, respectively) can de-

scribe exactly the same class of computable functions. Several other models
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of computation, or idealised computers, have been proposed, some of them in-

spired by advances in physics, chemistry, and biology. There is hope that some

of these new models might solve some outstanding non-feasible problems (i.e.,

problems that cannot be solved on a realistic timescale in traditional models).

1.3 Further reading

Readers interested in algorithms can find more information in Harel and Feld-

man’s book [22]. Further information on partial functions and computability

in general can be found in [47, 49] and in the chapter on computability in

Mitchell’s book [36]. Additional references are provided in the following chap-

ters.

1.4 Exercises

1. Give more examples of total and partial functions on natural numbers.

2. To test whether a number is even or odd, a student has designed the fol-

lowing function:

test(x)
def

= if x = 0 then "even"

else if x = 1 then "odd" else test(x-2)

Is this a total function on the set of integer numbers? Is it total on the

natural numbers?

3. Consider the following variant of the Halting problem:

Write an algorithm H such that, given the description of an al-

gorithm A that requires one input, H will return 1 if A stops for

any input I and H will return 0 if there is at least one input I for

which A does not stop.

In other words, the algorithm H should read the description of A and

decide whether it stops for all its possible inputs or there is at least one

input for which A does not stop.

Show that this version of the Halting problem is also undecidable.



Part I

Traditional Models of Computation



2
Automata and Turing Machines

In the 1930s, logicians (in particular Alan Turing and Alonzo Church) studied

the meaning of computation as an abstract mental process and started to design

theoretical devices to model it. As mentioned in the introduction, they needed

a precise, formal definition of an algorithm in order to show that some of

the problems posed by David Hilbert at the 1900 International Congress of

Mathematicians could not be solved algorithmically. This was a very important

step towards the construction of actual computers and, later, the design of

programming languages. Turing machines influenced the development of digital

computers, and the Lambda calculus is the basis of functional programming

languages. At the same time, computers give to the early computability studies

a practical application.

Turing defined an algorithm as a process that an abstract machine, now

called a Turing machine, can perform. Church described his algorithms using

the Lambda calculus. Several other models of computation, or idealised com-

puters, have been proposed and studied since then. Depending on the features

of the idealised computer, some abstract models of computation can represent

all computable functions and others cannot. For instance, finite automata, one

of the classes of machines that we will define in this chapter, have less computa-

tion power than Turing machines but are very useful in text processing and in

the lexical analysis phase of compilers and interpreters. Another model of com-

putation, called a push-down automaton, is used in parsing (the second phase

of compilers and interpreters); it is a generalisation of the finite automaton that

includes memory in the form of a stack. These two models of computation are

not Turing complete; that is, they are not powerful enough to express all the
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computable functions. The Turing machine is a more general automaton that

includes an unlimited memory.

In this chapter, we will define and compare these three kinds of automata

from the point of view of their power to represent algorithms. But first we

will discuss another application of these machines: We can associate to each

automaton a formal language, which is simply the set of sequences of signals

that will take the machine to a specific state (a final state). We call this set

of sequences the language recognised by the automaton. Each of the classes of

automata mentioned above can recognise a different class of formal language.

2.1 Formal languages and automata

Formal languages are a particular kind of language that we distinguish from,

for instance, natural languages such as French, English, Spanish, etc. A for-

mal language is a set of words with a given syntax (the rules that govern the

construction of words) and a semantics that gives meaning to the words.

First, we need to specify what we mean by “word”. Formally, we start by

fixing the alphabet of the language. This is just a finite set X of symbols.

Definition 2.1 (Language)

A formal language, or simply a language, with alphabet X is a set of words

over X .

A word over X is a sequence of symbols taken from X ; that is, a chain or

string of elements in X . The chain could be empty, in which case we will write

it ǫ.

For example, a programming language such as Java or Haskell is a formal

language. It has well-defined syntax rules; for instance, to build a conditional

expression, we use the string “if” followed by a condition, etc.

Once we have defined the alphabet and the set of words in the language, two

questions arise: How do we check that a given word belongs to the language?

How do we generate the words in the language? To answer these questions, we

will build abstract machines — the automata mentioned above.

It is clear that the problem of deciding whether a word belongs to a cer-

tain language or not can be more or less difficult depending on the form of

the language. In the 1950s, the linguist Noam Chomsky classified formal lan-

guages into four categories according to their expressive power. The first two

classes of languages, called regular and context-free, respectively, are useful to
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describe the syntax of programming languages. The fourth, most general class

of languages has all the expressive power of Turing machines. For each class of

language in Chomsky’s hierarchy, there is an associated class of automata. The

simplest kind, used to recognise regular languages, are called finite automata;

they are useful to describe the lower-level syntactic units of a programming lan-

guage, and for this reason we find them in most compilers (lexical analysers are

specified as finite automata). To analyse the syntactic structure of a program,

we need more than a finite automaton: To recognise context-free languages, we

use push-down automata.

We study finite automata in the next section. We then go on to define

push-down automata before giving a description of Turing machines.

2.2 Finite automata

Automata can be seen as abstract machines, or abstract models of computa-

tion. Finite automata are the simplest kind of machines in this family, and the

computations that they can make are very restricted. However, they have im-

portant applications (for instance, in lexical analysis, as mentioned above), and

because of their simplicity they are a useful tool for the study of algorithms.

Finite automata are machines that can be in a finite number of different

states and that respond to external signals by performing a transition; that is,

a change of state (they can also output a message).

Example 2.2

A lift can be modelled as a finite automaton. It can be in a finite number of

different states (corresponding to its position, the direction in which it is going,

whether the door is closed or open, etc.) and reacts to external signals.

Another example is an automatic door (for instance, the doors at the en-

trance of an airport hall). They can be in a finite number of states (open or

closed) and react to signals (sent when somebody stands near the door).

A finite automaton with alphabet X is defined by a finite number of states

and a set of transitions between states (one transition for each symbol in X ).

There is a distinguished state, called the initial state, where the automaton

starts, and one or several final states, or accepting states.

A finite automaton can be represented in different ways; we will often use

a graphical representation, which emphasises the fact that automata are tran-

sition machines. However, before giving the graphical representation, we will
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give a formal and concise definition of a finite automaton.

Definition 2.3 (Finite automaton)

A finite automaton is a tuple (X , Q, q0, F, δ), where

1. X is an alphabet (that is, a set of symbols);

2. Q is a finite set of states {q0, . . . , qn} for some n ≥ 0;

3. q0 ∈ Q is the initial state;

4. F ⊆ Q is the subset of final states; and

5. δ is the transition function δ : Q ×X → Q.

We can better visualise this definition if we give the transition function

as a diagram where the states are represented by points (or circles) and the

change of state (i.e., transition) is represented by an arrow. In other words,

the transition function is represented by edges between nodes in a graph. From

this point of view, a finite automaton is a directed graph, where the nodes

represent states and an edge from qi to qj labelled by x ∈ X represents a

transition δ(qi, x) = qj .

Example 2.4

The automaton A = ({a}, {q0, q1}, q0, {q0}, δ), where δ(q0, a) = q1 and

δ(q1, a) = q0, is represented by

a

a

q0 q1

The arrow indicates the initial state (q0), and the double circle denotes a

final state (in this case, the initial state is also final).

Another image, depicted in Figure 2.1, can help us see automata as machines

with

– a control unit (states and transition function) and

– a tape with symbols from the alphabet.
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a1 a2 a3 an−1 an

control

· · ·

Figure 2.1 A finite automaton depicted as a machine.

The machine is in the initial state at the beginning, with the reading head

in the first position of the tape. It reads a symbol on the tape (or receives

an external signal), moves to the next symbol, and makes a state transition

according to the symbol just read. This cycle is repeated until we reach a final

state or the end of the tape.

The language associated with a finite automaton — sometimes referred to

as the language recognised by the automaton — is simply the set of words (or

sequences of signals) that takes it to a final state.

Definition 2.5

A word w over the alphabet X is recognised, or accepted, by a finite automaton

with alphabet X if the machine described above reaches a final state when

started in the initial state on a tape that contains the word w and such that

the reading head is positioned on the first symbol of w.

Using our graphical description of automata, we could reformulate the def-

inition of recognised words by saying that a word w over X is recognised by an

automaton with alphabet X if there is a path from the initial state to a final

state in the graph that represents the automaton such that all the edges in the

path are labelled by the symbols in the word w (in the same order).

Example 2.6

All the words that contain an even number of symbols a (that is, all the words

of the form (a)2n, where n can also be zero) are recognised by the automaton

given in Example 2.4.
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Definition 2.7

The language recognised by an automaton A is the set of words that the au-

tomaton accepts; we will denote it by L(A).

Lexical analysers are often specified using finite automata; we give a simple

example below.

Example 2.8

Consider a programming language where the syntax rules specify that iden-

tifiers must be finite sequences of letters or numbers (capitals, punctuation

symbols, and other characters are not allowed), starting with a letter. We can

use the following automaton to recognise strings satisfying the constraints (an

arrow labelled by a . . . z represents a set of arrows, each labelled with one of

the letters a to z, and similarly an arrow labelled with 0 . . . 9 is an abbreviation

for a set of arrows, each labelled with a digit).

a . . . z

a . . . z

0 . . . 9
q0 q1

2.2.1 Deterministic and non-deterministic automata

We defined finite automata using a transition function δ : Q × X → Q. Thus,

given a state and an input, the next state is uniquely determined — we say

that the automaton is deterministic.

We can generalise this using a relation δ ⊆ Q×X ×Q instead of a function.

This means that δ is now defined as a set of triples, where the first and third

elements are states and the second element is a symbol from the alphabet.

The idea is that we may have several triples with the same first and second

elements. For instance, if δ contains (qi, x, q) and (qi, x, q′), then from the state

qi with input x, either q or q′ can be reached. Thus, given a state and an input,

the automaton can move to a number of different states in a non-deterministic

way. Another way to represent this relation is as a function from Q and X to

the set of parts of Q:

δ : Q ×X → P(Q)
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In this way, we can write δ(q, x) to denote all the states that can be reached

from q when the machine reads the symbol x.

One may wonder what is the use of a machine that can make transitions

in a non-deterministic way. Does this kind of behaviour have a computational

meaning? Indeed, a non-deterministic automaton can be understood as a par-

allel machine: When there are several states that can be reached in a transition,

we can think of this as several threads proceeding in parallel.

However, deterministic and non-deterministic finite automata have the same

computation power. They are equivalent: They recognise exactly the same class

of languages (or implement the same class of functions). This is not the case

with more powerful automata. There are examples of machines for which the

non-deterministic versions are strictly more powerful than the deterministic

ones.

Non-deterministic finite automata can also be represented graphically. We

will define them using graphs where nodes correspond to states and edges

describe transitions, with the essential difference that now we can have several

edges coming out from the same state and labelled by the same symbol.

Example 2.9

The non-deterministic automaton

A = ({a, b, c}, {q0, q1, q2}, q0, {q1, q2}, δ)

where δ(q0, a) = {q1, q2}, δ(q1, b) = {q1}, and δ(q2, c) = {q2}, is represented

in Figure 2.2. We use the same conventions as above: The arrow points to the

initial state, and a double circle indicates a final state; in this case we have two

final states.

a

a

b

c

q0 q1

q2

Figure 2.2 Diagram of the finite automaton A
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The language recognised by a non-deterministic automaton is defined in the

same way as in the case of deterministic automata.

If A = (X , Q, q0, F, δ) is a non-deterministic automaton, the language L(A)

recognised by A is the set of words over X such that there is a path in the graph

representing the automaton A from the initial state to a final state, where each

edge in the path is labelled by a symbol in the word.

The main difference with the previous definition is that we can now have

several different paths labelled by the same word.

For example, the non-deterministic automaton in Figure 2.2 recognises all

the words in the alphabet {a, b, c} that consist of an a followed by either a

string of b or a string of c.

2.2.2 The power of finite automata

Only the languages in the most basic class in Chomsky’s hierarchy (that is,

regular languages) can be recognised by finite automata (deterministic or non-

deterministic). In practice, it would be useful to have a simple test to know,

given a language, whether there is some finite automaton that recognises it. In

this way we could know, for instance, how difficult it would be to implement

an algorithm to recognise words in this language.

We can try to answer this question by studying the properties of the lan-

guages that can be recognised by finite automata. On the one hand, regular

languages are closed under simple set operations, such as union and intersec-

tion. On the other hand, it is possible to characterise the languages that cannot

be recognised by finite automata using the so-called Pumping Lemma. We can

use these two kinds of properties to decide whether a certain language can or

cannot be recognised by a finite automaton.

We will not study in detail the closure properties of regular languages;

instead we finish this section with the Pumping Lemma. Before giving its formal

statement, we will discuss the intuitive ideas behind this result.

Suppose that a certain language can be recognised by a finite, deterministic

automaton A with n states. If we consider an input w with more than n sym-

bols, it is obvious that, to recognise w, A will have to repeat at least one of its

states. In other words, there must be a loop in the path representing the tran-

sitions associated with w. Assume w = a1 . . . am (with m > n), and let ai, aj

be the symbols in the first and last transitions in the loop (therefore i ≤ j). As

a direct consequence of this observation, we can eliminate from w the symbols

ai . . . aj and still the word w′ = a1 . . . ai−1aj+1 . . . am will be recognised by A.

Similarly, we could traverse the loop in the path several times, repeating

this sequence of symbols. Let us write (ai . . . aj)
∗ to denote words containing 0
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or more repetitions of the sequence of symbols ai . . . aj . Thus, all the words of

the form a1 . . . ai−1(ai . . . aj)
∗aj+1 . . . am will also be recognised by A.

Therefore, if we have a sufficiently long word w ∈ L(A), where A is a finite

automaton, we can always identify a segment near the beginning of the word,

which we can repeat as many times as we want, and all the resulting words will

also belong to L(A). Using the same reasoning, if, given a language L and a

word w ∈ L, there is no segment of w with the property described above, then

we can deduce that L is not a regular language.

Formally, the Pumping Lemma is stated as follows.

Proposition 2.10 (Pumping Lemma)

Let L be a regular language. There exists a constant n such that if z is any

given word in L with more than n symbols, then there are three words, u, v,

and w, such that z can be written as the concatenation uvw, where

1. the length of uv is less than or equal to n,

2. the length of v is greater than or equal to 1, and

3. for any i ≥ 0, uviw ∈ L, where vi represents the word v repeated i times.

The Pumping Lemma indicates that finite automata have limited compu-

tation power. For instance, we can use the Pumping Lemma to show that the

language of well-balanced brackets (that is, words where each open bracket

has a corresponding closing bracket) cannot be recognised by a finite automa-

ton. This is indeed a corollary. Suppose, by contradiction, that the language

L of well-balanced brackets is regular, and take the word (n)n; that is, n open

brackets followed by n closed brackets, where n is the constant mentioned in

the Pumping Lemma. Now, using this lemma, we know that there are words u,

v, and w such that (n)n = uvw, the length of uv is less than or equal to n, and

v is not empty. Hence v is built out of open brackets only, and the Pumping

Lemma says that uviw ∈ L for all i. Thus, L contains words that do not have

a well-balanced number of brackets, contradicting our assumptions.

Corollary 2.11

The language L containing all the words over the alphabet {(, )} where each

( has a corresponding ) is not regular.

This corollary shows that to check the syntax of programs that contain

arithmetic expressions, we need more than finite automata.
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The Pumping Lemma can also be used to show that no finite automaton

can recognise the language L of strings built out of 0s and 1s such that each

word is formed by the concatenation of a string w and its reverse w:

L = {ww | w is a string of 0s and 1s and w is its mirror image}

No finite automaton can be used to check whether a given word belongs to

this language or not. To recognise this language, and also the language con-

sisting of words with well-balanced brackets, we need more powerful machines,

such as the push-down automata described in the next section.

2.3 Push-down automata

Push-down automata are a more general version of finite automata: They

have an additional component — a stack — that provides additional mem-

ory. Thanks to this memory, push-down automata (or PDAs for short) can

recognise some languages that finite automata cannot recognise; the class of

languages associated with PDAs contains strictly the set of regular languages.

Languages that can be recognised by push-down automata are called context-

free; they are one step up from regular languages in Chomsky’s hierarchy.

Before giving a precise definition of this class of abstract machines, we will

recall the main operations available in stacks. A stack is a sequence of elements

(possibly empty) where elements can be added on the top and also be taken

out from the top. Stacks are often associated with the acronym “LIFO”, which

stands for “last in, first out”, referring to the fact that new elements are pushed

onto the top, and elements are read and removed also from the top.

A push-down automaton can read the top element of the stack (and only

the top element) and can put a new element at the top of the stack. The latter

operation is called push. It is also possible to remove the top element of the

stack. This operation is called pop. The elements in the stack, as well as the

input symbols for the push-down automaton, must belong to a given alphabet.

It is usually assumed that a push-down automaton can use different alphabets

for the input and the stack.

The operational behaviour of a push-down automaton can be described sim-

ilarly to a non-deterministic finite automaton, but there is a crucial difference:

The transition function is now governed by the input symbol and the symbol

in the top of the stack. The push-down automaton starts on a distinguished

(initial) state with an empty stack. It reads an input symbol and the symbol

from the top of the stack (if the stack is not empty), and according to this
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pair of values, a transition to a new state (or set of states) is defined. We will

assume that each time a symbol is read from the stack, it is removed.

Thus, the current state, the input symbol, and the symbol at the top of the

stack determine a set of states to which the machine can move. If, at the end of

the input, the machine is in a final state (also called an accepting state), then

the word containing the sequence of input symbols read is recognised.

Actually, it is possible to define transitions that ignore the input symbol

or the value in the top of the stack. These are called ǫ-transitions (recall that

ǫ represents the empty string) because we can always assume that there is an

empty string in front of the first input symbol or on top of the element on the

top of the stack.

We are now ready to define PDA formally.

Definition 2.12 (Push-down automaton)

A push-down automaton is a tuple (X , Q, Γ, q0, F, δ) where

1. X is an alphabet;

2. Q is a finite set of states {q0, . . . , qn};

3. Γ is the alphabet of the stack;

4. q0 ∈ Q is the initial state;

5. F ⊆ Q is the subset of final states; and

6. δ is the transition function from tuples containing a state, an input symbol

(or ǫ), and a stack symbol (or ǫ) to sets of pairs made up of a state and

stack:
δ : Q × (X ∪ ǫ) × (Γ ∪ ǫ) → P(Q × (Γ ∪ ǫ))

Note that Γ was not part of the definition of finite automata (see Defini-

tion 2.3). The transition function δ for a given state is now defined on pairs

(input, stack-top) and produces as a result a set of pairs (state, stack-top).

Indeed, non-determinism is built into the definition (because δ returns a set

and because of the existence of ǫ-transitions). If we restrict ourselves to deter-

ministic PDAs, we obtain machines that have strictly less power. In this sense,

the properties of PDAs are different from the properties of finite automata

since for finite automata the non-determinism of δ does not add any power;

deterministic and non-deterministic finite automata recognise the same class of

languages.

We can depict a push-down automaton as a machine in the same way as we

represented finite automata in Figure 2.1; we just need to add a stack, which

the control unit can consult and update.
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In the previous section, we described two languages that are not recognisable

by finite automata (we used the Pumping Lemma for this):

1. {(n)n} for any number n (that is, the set of strings containing n opening

brackets followed by the same number of closing brackets);

2. {ww | w is a string of 0s and 1s and w is its mirror image }.

PDAs can recognise these languages because it is possible to use the stack

to memorise a string of symbols of any given length. For instance, to recognise

the first language, a push-down automaton can push all the ‘(’ symbols in the

stack and start popping them when it reads a ‘)’ symbol. Then, the word is

accepted if at the end of the input string the stack is empty.

Formally, we define a push-down automaton recognising the language

{(n
)
n | n is a natural number}

as follows.

Let Q be the set {q1, q2, q3, q4}, where q1 is the initial state. The input

alphabet, X , contains the symbols ( and ). The stack’s alphabet, Γ , contains

just the symbol ( and a marker 0. The final states are q1 and q4, and the

transition function contains the following moves:

δ(q1, ǫ, ǫ) = {(q2, 0)} Starting from the initial state, and without reading

the input or the stack, the automaton moves to

state q2 and pushes 0 onto the stack.

δ(q2, (, ǫ) = {(q2, ()} If in the state q2 the input symbol is (, without

reading the stack the automaton remains in q2

and pushes ( onto the stack.

δ(q2, ), () = {(q3, ǫ)} If in the state q2 the input symbol is ) and there is

a symbol ( on top of the stack, the automaton moves

to q3; the symbol ( is removed from the stack.

δ(q3, ), () = {(q3, ǫ)} If in the state q3 the input symbol is ) and there is

a ( on top of the stack, then the automaton remains

in q3; the symbol ( is removed from the stack.

δ(q3, ǫ, 0) = {(q4, ǫ)} If in the state q3 the top of the stack is 0, then the

automaton moves to q4, which is a final state.

As usual, the automaton starts in the initial state with an empty stack, but

in this case the first transition will put a mark 0 in the stack and move to a

state q2 in which all the open brackets in the input word will be pushed onto

the stack. The presence of a closing bracket in the input word will trigger a

transition to state q3, and an open bracket is popped from the stack. Then, the
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automaton remains in state q3 while there are closing brackets in the input word

and open brackets in the stack. If the word belongs to the language, the input

word will finish at the same time as we reach the 0 in the stack. However, if the

input word contains fewer closing brackets, then the automaton will be blocked

in q3, which is not an accepting state. Similarly, if the input word contains more

closing brackets than open brackets, the automaton will be blocked in q4.

Note that the word is recognised only if the automaton has reached a final

state at the end of the input. While there are symbols in the input word, even

if the automaton reaches a final state, the computation is not finished (the

automaton remains blocked if no transitions are defined).

Finite automata and PDAs are useful tools for the implementation of com-

pilers and interpreters (typically, lexical analysers are specified as finite au-

tomata and parsers are defined using PDAs). Although PDAs are strictly more

powerful than finite automata, their power is limited. In the previous section,

we used the Pumping Lemma to characterise the class of regular languages. It

is possible to prove a Pumping Lemma for context-free languages, but the char-

acterisation is more involved: Words in context-free languages can be divided

into five parts, such that the second and fourth parts can be repeated together

any number of times and the result is still a word in the same language.

We will not state the Pumping Lemma for PDAs here; instead we finish

this section with an example of a language that can be shown to be outside the

class of context-free languages: {anbncn | n ≥ 0}.

2.4 Turing machines

A Turing machine is a universal model of computation in the sense that all com-

putable functions can be defined using a Turing machine. We can see a Turing

machine as an automaton, a generalisation of a push-down automaton where

we have an unlimited amount of memory and no restriction on the positions

that can be read from this memory (it is no longer a stack).

We can also think of a Turing machine as a specification of a formal lan-

guage: The languages that can be recognised by Turing machines form the

topmost category in Chomsky’s hierarchy. However, it is not possible to de-

cide, in general, whether or not a word belongs to the language associated with

a Turing machine. This is a consequence of the undecidability of the Halting

problem: It is not possible to decide, given a Turing machine and an input

word, whether the machine will halt in an accepting state or not.

The memory of a Turing machine is usually represented by an infinite tape

with a head that can read and write symbols and move in both directions on the
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tape. In this way, the machine can store information on the tape and later move

back to read it. The other important component of the machine is its control

unit, represented by a set of states and a transition function that governs the

changes of state.

Similarly to the other automata discussed in this section, a Turing machine

has a distinguished state called the initial state. The machine always starts

from the initial state and with a tape containing only the input string (that is,

the tape is blank everywhere else). We also assume that the head is positioned

on the first symbol of the input string when the machine starts.

The machine will make transitions depending on the symbol that the head

reads, and it can write on the tape and move the head one position to the left

or to the right (this will be indicated by the letters L and R). It continues

until a final state is reached. If we think of the machine as recognising a certain

language, then it is useful to include two final states qreject and qaccept. If an

input word belongs to the language, the machine will halt in the final state

“accept” (qaccept); otherwise it will halt in the final state “reject” (qreject) or

it could continue forever, never halting (recall the undecidability results for

languages associated with Turing machines discussed in Chapter 1).

At each point during the computation, the situation of the machine can be

described by giving the state in which the control is, the contents of the tape,

and the position of the head on the tape. These three data define the machine’s

configuration. So the computation of a Turing machine can be described as a

sequence of configurations. The transition function indicates how to pass from

one configuration to the next one. This sequence of configurations can of course

be infinite. If it is finite, the state in the last configuration must be a final state.

Before giving the formal definition of a Turing machine, let us see an ex-

ample of a language that can be recognised with a Turing machine.

Example 2.13

Consider natural numbers written in unary notation; that is, each number

is represented by a string of 1s. The number 0 is represented by the empty

string, and any positive number n is represented by a sequence containing n

occurrences of the symbol 1. For instance, the number 3 is represented by the

string 111. The language

{12n

| n ≥ 0}

(that is, the language of the strings that represent a power of 2 in unary no-

tation) can be recognised using a Turing machine. The informal description of

the machine is as follows.

Assume we start the machine with a number in unary notation written on

the tape (surrounded by blanks) and the reading head on the leftmost position
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in this number.

1. If the head is on blank when we start, reject.

2. Otherwise, starting on the first 1, move to the end of the string (i.e., the

first blank symbol), changing every other 1 into •.

a) If the tape contained just one 1, accept.

b) If the number of 1s was odd, reject.

3. Return the head to the beginning of the input.

4. Repeat.

The idea is that each iteration changes half of the 1s into •. If the number

is a power of 2 in unary notation (that is, if the string contains a number of 1s

that is a power of 2), we will eventually end up with just one 1 and accept the

input.

We have given above a description of an algorithm to check whether the

length of a string of 1s is a power of 2. Below we specify this algorithm formally,

but first we will formally define a Turing machine.

Definition 2.14 (Turing machine)

A Turing machine is a tuple (Q,X , Γ, δ, q0, F ) where

1. Q is a finite set of states;

2. X is the input alphabet, which cannot contain the blank symbol;

3. Γ is the tape alphabet, containing the input alphabet and the blank symbol;

4. δ is the transition function,

δ : Q × Γ → Q × Γ × {L,R}

5. q0 ∈ Q is a distinguished state, called the initial state; and

6. F ⊆ Q is the set of final states, and we assume that it contains two distin-

guished states, qreject and qaccept.

When the machine is started, the tape contains an input string surrounded

by blanks, the head is in the first symbol of the input string, and the machine is

in the state q0. As the computation proceeds, the situation of the machine, or

configuration, is described by a triple containing the current state, the contents

of the tape, and the position of the head on the tape.
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If the machine reaches the state qaccept, it stops. We say that the machine

has accepted the input. If it reaches the state qreject, it also stops, and we say

that the machine has rejected the input. The machine can also loop forever.

Definition 2.15

A language L over the alphabet X is recognised by a Turing machine M if the

machine accepts every word in L and rejects every word over X that is not in

L. We will say that a language L is decidable if there is a Turing machine that

recognises L.

Example 2.16

We now give a formal description of the Turing machine that recognises the

language
{12n

| n ≥ 0}

Let Q be the set of states {q1, q2, q3, q4, q5, qreject, qaccept}, where q1 is the

initial state and qreject, qaccept are the final states. The input alphabet, X , con-

tains only the symbol 1. The tape alphabet, Γ , also contains 1 and additionally

the blank symbol ◦ and a marker •. We give the transition function using a

diagram in Figure 2.3. In the diagram, states are represented as nodes in a

graph and transitions are represented by directed edges (arrows). Each arrow

is labelled by the symbol read, the symbol written, and the direction in which

the head moves. For instance, the arrow from q1 to q2 labelled by 1 ◦ R in-

dicates that δ(q1, 1) = (q2, ◦, R). In other words, there is a transition from q1

to q2 when the symbol read is 1; the machine writes ◦ and moves to the right.

The arrow pointing to q1 indicates that this is the initial state.

In this example, we have used the machine as a device to recognise the

words of the language; however, a Turing machine can also be seen as a device to

perform computations. In this case, the Turing machine represents an algorithm

that receives an input and computes an output that is written on the tape.

For instance, we can use a Turing machine to compute arithmetic functions

(addition, multiplication, etc.), as the following example shows.

Example 2.17

We describe informally a Turing machine that computes the double of a number

(its input) written in binary notation on the tape. The machine has an initial

state q0 and an accepting state qaccept (qreject is not used in this example). The

input alphabet is {0, 1}, and the tape alphabet is the same, with the addition
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◦ ◦ L

1 1R

1 1 L

• • L

• • R

• • R

• • R

• • R

◦ ◦ R

◦ ◦ R

◦ ◦ R

◦ ◦ R

1 ◦ R 1 • R

1 • R

qreject qaccept

q1 q2 q3

q4

q5

Figure 2.3 Transition function

of a blank symbol. The machine starts in the initial state, q0, with the head on

top of the first binary digit. While there are digits in the input word (either 0

or 1), the machine moves to the right and remains in q0. Finally, when arriving

at a blank symbol, the machine replaces it by 0 and moves to the final state

qaccept.

We will say that a Turing machine implements a partial function f from I

to O, where I and O are sets of words (I is the set of possible inputs and O

the set of outputs) if whenever the machine starts from a word w in I, with

the head in the first symbol of w, the machine halts in the final state qaccept

and leaves the word f(w) on the tape when f is defined in w. If f(w) is not

defined, then the machine may never halt. Thus, if the function f is total (that

is, it is defined for all its possible inputs) and there is a Turing machine that

implements it, we can see the Turing machine as an algorithm to compute the

function (recall that an algorithm must always produce a result).
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Definition 2.18 (Turing-computable functions)

A function that can be implemented by a Turing machine is called Turing

computable.

Thus, if a function is Turing computable, a Turing machine that implements

it is a representation of an algorithm to compute the function. The question

that arises is whether all computable functions can be defined in terms of Turing

machines.

Church’s Thesis answers this question positively. It says that, given any

algorithm, there is some Turing machine that implements it. In other words,

if a function is computable, then it is Turing computable (that is, computable

by some Turing machine).

Although this thesis is formally stated, we cannot attempt to prove it be-

cause it is not precise enough; we have not given a formal definition of algorithm

that is independent from the definition of Turing machine.

It turns out that all other definitions of algorithm that have been proposed

(using different models of computation, such as the Lambda calculus, recursive

functions, etc.) have turned out to be equivalent to Turing machines. This

provides evidence for Church’s Thesis (but does not prove it).

2.4.1 Variants of Turing machines

The definition of a Turing machine that we have given is one of many available

in the literature. Some definitions involve more elements than the one we gave

or impose more restrictions than we did.

For instance, there are non-deterministic Turing machines, which take their

name from the fact that the transition function is non-deterministic. In a non-

deterministic Turing machine, given a configuration, there are several possible

moves, so the next configuration is not uniquely determined.

Similarly to finite automata (and unlike PDAs), non-deterministic Turing

machines have the same computation power as deterministic ones in the sense

that they recognise the same languages or compute the same functions.

Other variants of Turing machines use several infinite tapes instead of only

one tape, and again it is possible to show that these machines are equivalent

in power to the machines with only one tape.

Still another variant uses one tape but limited in one direction: The tape

has a starting point but has no bound to the right, so the machine can move

an infinite number of steps towards the right. It is possible also to limit the
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alphabet, for instance by reducing the tape alphabet to just two symbols. Again,

these variants have exactly the same power.

2.4.2 The universal Turing machine

It is possible to give a code for each Turing machine, so that from the code we

can retrieve the machine. An easy way of doing this is as follows.

Assume the machine has n states q0, . . . , qn−1, where each qi is a number,

q0 is the initial state, and the last m states are final. Also assume that the

input alphabet is {1} and the tape alphabet is {0, 1} (where 0 plays the role of

a blank symbol). It is well known that a binary alphabet is sufficient to encode

any kind of data, so there is no loss of generality in making this assumption.

The transition function can be represented as a table, or equivalently a list of

5-tuples of the form (q, s, q′, s′, d), where q represents the current state, s the

symbol on the tape under the head, q′ the new state, s′ the symbol written

on the tape, and d the direction of movement, which we will write as 0, 1. The

order of the tuples is not important here. Thus, we can assume without loss of

generality that the transition function is represented by a list l of tuples. The

full description of the machine under these assumptions is given by the tuple

(n,m, l), where l is the list representing the transition function, n the number

of states, and m the number of final states, as indicated above. We will say that

the tuple is the code for the machine since from it we can recover the original

machine. In fact, the code for the machine is not unique since we can reorder

the list l and still obtain an equivalent machine.

Now we can see the codes of Turing machines as words, and as such they

can be used as input for a Turing machine. It is then possible to define a Turing

machine U such that, when the code of a machine A is written on the tape,

together with an input word w for A, U decodes it and simulates the behaviour

of the machine A on w. The machine U is usually called the universal Turing

machine.

2.5 Imperative programming

The work done by Turing on abstract computation models had a deep influence

on the design of computers and later on the design of programming languages

for those computers. The main components of Turing abstract machines are

present in the von Neumann architecture of modern computers: a memory,

which can be thought of as infinite if we consider not only the RAM but also

the storage available through disks and other peripherals; and a control unit
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that governs the work of the machine. We can see modern computers as im-

plementations of Turing’s universal machine. The memory is one of the main

components of the computer, storing instructions and data, and the other im-

portant component is the processor.

The first programming languages were designed to follow closely the phys-

ical design of the machine. The languages that evolved from them, usually

called imperative programming languages, are still influenced by the architec-

ture of the computer. Imperative languages are abstractions of the underlying

von Neumann machine in the sense that they retain the essential parts but

drop out complicating, superfluous details. Low-level languages provide a very

limited level of abstraction, whereas a high-level language can be seen as a

virtual machine where, in general, memory manipulation is transparent for the

programmer and input/output primitives are hardware independent.

Although the level of abstraction provided by imperative languages varies

greatly from assembly languages to sophisticated languages such as Java, there

are common features in the design of all the imperative languages that reflect

the underlying machine architecture. The memory and processor, the main

components of the machine, are abstracted in a high-level imperative language

by variables, representing memory space, together with assignment instructions

that modify their contents, and control structures that indicate the order of

execution of instructions in the processor.

The influence of Turing’s work is not limited to computer architecture and

the design of the first imperative programming languages. Abstract machines

based on the notion of a state transition are used nowadays to give a precise

meaning to language constructs in use in imperative languages. Indeed, the

first approach to giving a precise, formal description of the behaviour of pro-

gramming language constructs was in terms of an abstract machine, or more

precisely a transition system specifying an interpreter for the programming

language.

2.6 Further reading

For more information on automata theory, we refer the interested reader to [47,

24]. Further information on Church’s Thesis and ways to prove it can be found

in the recent article [12]. For more information on the use of abstract machines

as a tool to describe the semantics of imperative programming languages, we

refer to [15, 37, 53].



Chapter 2. Automata and Turing Machines 31

2.7 Exercises

1. Consider the alphabet {0, 1}. Describe (graphically or formally)

a) a finite automaton that recognises the language of the strings of 0s of

any length;

b) a finite automaton that recognises the language of the strings of 0s and

1s that contain a 1 in the second position;

c) a finite automaton that recognises the language of the strings of 0s and

1s that start and finish with 00 and do not contain 11.

2. Build finite automata with alphabet {0, 1} to recognise

a) the language of strings that have three consecutive 0s;

b) the language of strings that do not have three consecutive 1s.

3. Describe a finite automaton that recognises words over the alphabet

{a, b, c} with an odd number of symbols and such that they do not contain

aa or bb.

4. Let A be a finite automaton. Show that the set of subwords (that is, pre-

fixes, suffixes, or any continuous segment) of the words in the language

L(A) can also be recognised by a finite automaton.

5. Use the Pumping Lemma to show that the language L containing all the

words of the form anbncn, for any n ≥ 0, cannot be recognised by a finite

automaton.

6. How can a push-down automaton recognise the language

{ww | w is a string of 0s and 1s and w is its mirror image}?

Give an informal description of such an automaton.

7. Show that the class of languages recognisable by push-down automata (i.e.,

the class of context-free languages) is closed under union and concatenation

but not under intersection.

8. Describe a Turing machine that recognises the language of the strings w•w,

where w is a string over an alphabet {0, 1}.

9. Define a Turing machine that, for any word w over the alphabet {0, 1},

outputs ww (that is, the machine starts with w and halts with a tape

containing ww).

10. Show that if a language L over the alphabet X can be recognised by a

Turing machine, then the following languages are also recognisable:



32 Chapter 2. Automata and Turing Machines

a) the complement of L (that is, the set of all the strings over X that are

not in L);

b) the union of L and another decidable language L′;

c) the concatenation of L and another decidable language L′ (that is, the

language consisting of all the words that can be formed by concatenat-

ing a word from L and a word from L′);

d) the intersection of L and another decidable language L′.

11. Define a Turing machine that accepts the words from the alphabet {a, b, c}

such that the number of occurrences of each character in the word is exactly

the same.



3
The Lambda Calculus

The Lambda calculus, or λ-calculus, is a model of computation based on the

idea that algorithms can be seen as mathematical functions mapping inputs

to outputs. It was introduced by Alonzo Church in the 1930s as a precise

notation for a theory of anonymous functions; its name is due to the use of the

Greek letter λ in functional expressions. Church remarked that when denoting

a function by an expression such as x + y, it was not always clear what the

intended function was. For instance, the expression x+ y can be interpreted as

1. the number x + y, where x and y are some given numbers;

2. the function f : x �→ x+ y that associates to a number x the number x+ y

for some predetermined value y;

3. the function g : y �→ x + y that associates to an input y the number x + y

for some predetermined value x; or

4. the function h : x, y �→ x+y, which takes as arguments x and y and outputs

the value x + y.

This can be a source of ambiguity, and Church proposed a new notation for

functions that emphasises the distinction between variables used as arguments

and variables that stand for predefined values. In this notation, a function with

an argument x is preceded by the symbol λ and the variable x. For instance,

the function f : x �→ x + y that associates to an input x the number x + y for

some predetermined value y is written λx.x + y. In particular, the functions

mentioned above can be easily distinguished using the λ-calculus notation:

– The number x + y is written just x + y.
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– The function f : x �→ x + y is written λx.x + y.

– The function g : y �→ x + y is written λy.x + y.

– The function h : x, y �→ x + y is written λxy.x + y.

The λ-calculus is a Turing-complete model of computation. It has exactly

the same computational power as Turing machines. Church’s work, like Tur-

ing’s, was motivated by the need to formalise the notion of an algorithm in order

to solve some of Hilbert’s open problems from the 1900 Congress of Mathemati-

cians. In addition to being a useful tool to analyse computability problems, in

recent years the λ-calculus has also been extremely useful to

– give a semantics to programming languages,

– study strategies and implementation techniques for functional languages,

– encode proofs in a variety of logic systems, and

– design automatic theorem provers and proof assistants.

In the rest of this chapter, we will describe the λ-calculus as an abstract

model of computation and also as the foundation for the functional program-

ming paradigm. We first give the syntax of terms in the λ-calculus and then

associate computations with terms.

3.1 λ-calculus: Syntax

We assume that there is an infinite, countable set of variables x, y, z, . . . , which

we will use to define by induction the set of λ-calculus terms (sometimes called

λ-terms, or simply terms if there is no ambiguity). There are three kinds of

terms in the λ-calculus: variables, abstractions, and applications. Below we give

the precise definition.

Definition 3.1 (λ-terms)

The set Λ of λ-terms is the smallest set such that:

– All the variables x, y, z, . . . are in Λ (that is, variables are λ-terms).

– If x is a variable and M is a λ-term, then (λx.M) is also a λ-term. Such

λ-terms are called abstractions.

– If M and N are λ-terms, then (M N), called an application, is also a λ-term.
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An abstraction (λx.M) can be seen as a function, where x is the argument and

M is the function body. We apply a function to a concrete argument by juxta-

posing the function and its argument; if M is a function and N its argument,

then the pair (M N) represents the application of M to N .

It is traditional to use some conventions to simplify the syntax, avoiding

writing too many brackets. In particular:

– We will omit the outermost brackets in abstractions and applications when

there is no ambiguity.

– Application associates to the left, so instead of writing ((MN)P ) we will

simply write M N P (by default, if there are no brackets, the left association

determines the order of application).

– Abstraction associates to the right, so instead of writing λx.(λy.M) we simply

write λx.λy.M , or even shorter, λxy.M .

– We will assume the scope of a λ is as “big” as possible. In order to shorten

it, we will use brackets. For example, we write λx.y x instead of λx.(y x),

and we write (λx.y) x to limit the scope.

Example 3.2

The following are examples of λ-terms:

– x.

– λx.x — This term represents a function that takes an argument x and returns

just x. It is the identity function.

– λx.λy.x — This term represents a function that takes two arguments, x and

y, and returns the first one.

– λx.λy.y — This term also represents a function with two arguments, but the

result is the second one.

– λx.λy.xy — Here the function has two arguments, and the result is obtained

by applying the first one to the second one. Although we have not mentioned

types yet, it is clear that this term will make sense if the first argument is

itself a function.

– λx.xx — This term is usually called self-application. It denotes a function

that takes an argument x and applies it to itself.

– λx.y — Here we have a function that takes an argument x but does not use

it at all. The result of the function is y.
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– λx.yx — In this case, x is used as an argument for the function y (a parameter

in this expression).

– λxyz.xz(yz) — This is an interesting term that takes three arguments. The

first is applied to the third and to the result of the second applied to the third.

Here it is important to put the brackets in the expression (yz); otherwise,

according to the conventions, we would apply x to three arguments, z, y, z,

instead of two.

In a λ-term, it is important to distinguish between variables that are associ-

ated with a λ in an abstraction and variables that do not have a corresponding

λ. More precisely, in a λ-abstraction λx.M , the variable x is bound inside M .

The variables that are not bound by a λ are said to be free. For example, in

the term λx.yx, the variable x is bound, whereas y is free.

In fact, to be precise, we should talk about free and bound occurrences of

variables since the same variable may occur many times in a term and some

of the occurrences may be bound while others are free. For instance, in the

λ-term x(λx.x), the leftmost occurrence of x is free, but since we have on the

right a λ-abstraction for x, the occurrence of x in the body of the abstraction is

bound. Thus, each occurrence of a variable in a λ-term may be free or bound,

depending on whether it is under the scope of a corresponding λ or not.

The set of free variables of a λ-term M will be denoted FV (M). It is defined

by induction below.

Definition 3.3 (Free variables)

We define the set of free variables of M , FV (M), as a recursive function. There

are three cases, depending on whether M is a variable, an abstraction, or an

application:
FV (x) = {x}

FV (λx.M) = FV (M) − {x}

FV (MN) = FV (M) ∪ FV (N)

The definition above is an example of an inductive definition: We have

defined the set of free variables of a term by induction on the structure of the

term. There is a case for each kind of λ-term. In the case of a variable, there is

no λ and therefore the variable is free. In an abstraction, the variable attached

to the λ is bound in the body, so it is not in the set of free variables. For

an application, we compute the set of free variables of the function and the

argument and take the union.

Terms without free variables are called closed terms. They are also called

combinators.
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Example 3.4

Using the definition above, we can easily see that the term λz.z is closed since

the only occurrence of z is bound by the leading λz. In the terms λx.z and

zλx.x, the variable z occurs free. The term λxyz.xz(yz) is closed since all the

variables are bound by a λ.

Similarly, we can define the set of bound variables of a term as follows.

Definition 3.5 (Bound variables)

The function BV computes the set of bound variables of a term:

BV (x) = ∅

BV (λx.M) = {x} ∪ BV (M)

BV (MN) = BV (M) ∪ BV (N)

Note that, according to the previous definitions, FV (x (λx.x)) = {x} and

BV (x (λx.x)) = {x}; this is because, as explained above, the first occurrence

of x is free but the second is bound by a λ.

In general, if we say that a variable is free in a term, it means that there is

at least one free occurrence of this variable.

Since an abstraction λx.M is the representation of a function that uses x

as a formal parameter, it is clear that we should obtain an equivalent function

if we chose a new variable z, changed x to z, and consistently renamed the

occurrences of x in M as z. In other words, the name of a bound variable is

not important. We can see the variable just as a placeholder, or a marker that

indicates the positions where the argument will be used. Since the name of a

bound variable is not important, λ-terms that differ only in the names of their

bound variables will be equated. More precisely, we will take the quotient of the

set of λ-terms by an equivalence relation, called α-equivalence, that equates

terms modulo renaming of variables. The renaming of x by y will be denoted

{x �→ y}.

The operation of renaming should be done in a consistent way to preserve

the meaning of the term. In particular, we should not capture variables during

the renaming process. We say that a variable has been captured if it was free

before renaming and it becomes bound after renaming. For instance, if we

rename x as y in the term λy.xy, the occurrence of x becomes y and therefore

becomes bound by the leading λ. This is a problem because the meaning of

the function has changed. Before renaming, we had a function with argument y

that applies some predefined x to y, whereas after renaming we have a function

that takes an argument y and applies it to itself. We can solve the problem by
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first changing y to a different name, for instance z. More precisely,

(λy.xy){x �→ y} = (λz.xz){x �→ y} = (λz.yz)

Using renamings, we can now define the α-equivalence relation inductively.

Definition 3.6 (α-equivalence)

The α-equivalence relation on λ-terms, denoted by =α, is generated by the

following rules:

– M =α N if M and N are exactly the same variable: M = N = x.

– M =α N if M = M1M2, N = N1N2 and M1 =α N1, M2 =α N2.

– M =α N if M = λx.M1, N = λx.N1 and M1 =α N1.

– M =α N if M = λx.M1, N = λy.N1 and there is a fresh variable z such that

M1{x �→ z} =α N1{y �→ z}.

It is an equivalence relation (i.e., it is reflexive, symmetric, and transitive).

The following are concrete examples of α-equalities:

– λx.x =α λy.y.

– λx.λy.xy =α λz1.λz2.z1z2.

– (λx.x)z =α (λy.y)z.

In what follows, we will consider λ-terms as representatives of equivalence

classes for the α-equality relation. More precisely, λ-terms are defined modulo

α-equivalence, so λx.x and λy.y are the same term. Indeed, we will see that

α-equivalent terms have the same computational behaviour.

3.2 Computation

Abstractions represent functions that can be applied to arguments. The main

computation rule, called β-reduction, indicates how to find the result of a

function (i.e., its output) when an argument (i.e., input) is provided.

A redex is a term of the form

(λx.M)N

It represents the application of the function λx.M to the argument N . To

obtain the result, the intuitive idea is that we need to perform the operations
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indicated in the body of the function using the concrete argument N instead

of the formal argument x. In other words, inside M (the body of the function

λx.M) we have to replace the formal argument x by the concrete argument N .

This is the main computation rule in the λ-calculus. Formally, we define it as

follows.

Definition 3.7 (β-reduction rule)

The reduction scheme

(λx.M)N →β M{x �→ N}

where (λx.M)N is a redex and M{x �→ N} represents the term obtained when

we substitute x by N in M is called the β-reduction rule.

We write M →β M ′ to indicate that M reduces to M ′ using the β-rule.

We will say that the redex (λx.M)N β-reduces, or simply reduces, to the

term M{x �→ N}, where {x �→ N} is a substitution. The notion of substitution

used here is subtle since we have to take into account the fact that λ-terms are

defined modulo α-equivalence. We give the precise definition of substitution

below.

The β-reduction rule can be used to reduce a redex anywhere in a λ-term,

not necessarily at the top. In other words, we can reduce a subterm inside a

λ-term. We say that the rule generates a relation that is closed by context

(sometimes this is called a compatible relation). Closure by context can be

formally defined as follows.

Definition 3.8 (β-reduction relation)

A context, denoted C[−], is a λ-term with one free occurrence of a distinguished

variable −. We write C[M ] to denote the term obtained by replacing − with

M .

The β-reduction relation is a binary relation containing all the pairs

(λx.M)N →β M{x �→ N} generated by the β-reduction rule and in addition

all the pairs C[M ] →β C[M ′] such that M →β M ′.

We write M →β M ′ to indicate that the pair of terms M and M ′ belongs

to the β-reduction relation, and we say that M reduces to M ′ in one step.

It is also useful to have a notation for terms that are related through a chain

of zero or more reduction steps. We write M →∗

β M ′ if there is a sequence of

terms M1, . . . , Mn (where n ≥ 1) such that M = M1 →β M2 →β . . . →β Mn =

M ′. Notice that, if n = 1, the sequence of reduction steps is empty and M ′ is

M itself. The relation →∗

β is the reflexive and transitive closure of →β .
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Before giving the formal definition of substitution, we show some simple

examples of reduction.

Example 3.9

– The redex (λx.x)y denotes the application of the identity function to the

argument y. The expected result is therefore y. We can see that β-reduction

computes exactly that. We have a reduction step (λx.x)y →β x{x �→ y},

where x{x �→ y} represents the term obtained by replacing x by y in x (that

is, the term y).

– More interestingly, the term (λx.λy.x)(λz.z)u has a β-redex on the left:

(λx.λy.x)(λz.z). This β-redex reduces to the term λy.λz.z. Since β-reduction

is closed by context, we have a step of reduction (λx.λy.x)(λz.z)u →β

(λy.λz.z)u. The latter still has a β-redex, and can be further reduced to

λz.z. Thus,

(λxλy.x)(λz.z)u →∗

β λz.z

– We also have a reduction sequence:

(λx.λy.xy)(λx.x) →β λy.(λx.x)y →β λy.y

Note that we use the word “reduce”, but this does not mean that the term

on the right is any simpler. For example, if the function is the self-application

term λx.xx and we apply it to the last term in Example 3.2, we have a reduction

step:

(λx.xx)(λxyz.xz(yz)) →β (λxyz.xz(yz))(λxyz.xz(yz))

3.2.1 Substitution

Substitution in the λ-calculus is a special kind of replacement. M{x �→ N}

means replace all free occurrences of x in M by the term N without capturing

free variables of N .

The reason why we only replace free occurrences of variables is clear: λ-

terms are defined modulo α-equivalence; bound variables stand for unknown

arguments of functions.

The definition of substitution also takes into account the fact that in re-

placing x by N inside a λ-term M we should preserve the meaning of the term

N . In particular, if N contains free variables, they should remain free after the

replacement has been done. For instance, it would be wrong to replace y in

λz.yz by a term containing z free. Indeed, consider the substitution {y �→ z}
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and the term λz.yz. If we replace without taking into account binders, we ob-

tain (λz.zz) — the self-application. However, since λz.yz is a representative

of an equivalence class, we could have taken instead any other representative,

for instance λx.yx, which is α-equivalent. The replacement in this case would

produce λx.zx, which is not a self-application. In the first case, we say that the

variable z was captured ; this is something that should be avoided.

To avoid capturing variables, it is sufficient to rename the bound variables

appropriately. The operation of renaming boils down to choosing a different

representative of an α-equivalence class, which is permitted since λ-terms are

defined modulo α-equivalence.

We are now ready to define, by induction, the operation of substitution of

a variable x by a term N in M , avoiding capture.

Definition 3.10 (Substitution)

The result of M{x �→ N} is defined by induction on the structure of M , with

cases for variable, application, and abstraction. If M is a variable, there are

two subcases, depending on whether M is x or a different variable. The case

for abstraction is also divided into subcases:

x{x �→ N} = N

y{x �→ N} = y

(PQ){x �→ N} = (P{x �→ N})(Q{x �→ N})

(λx.P ){x �→ N} = (λx.P )

(λy.P ){x �→ N} = λy.(P{x �→ N}) if x 
∈ FV (P )

or y 
∈ FV (N)

(λy.P ){x �→ N} = (λz.P{y �→ z}){x �→ N} if x ∈ FV (P )

and y ∈ FV (N),

where z is fresh

In the last line, we have used a fresh variable z; that is, a variable that does

not occur in the expressions under consideration. This is to avoid capturing the

variable y that occurs free in the term N .

Example 3.11

Let us apply the definition above to compute (λz.yz){y �→ z}; in other words,

we will compute the result of the substitution {y �→ z} on the term λz.yz. In

this case, the term is an abstraction with bound variable z, and y is free in the

body of the abstraction. Also, the substitution will replace y by a term that

contains z free (the term to be substituted for y is precisely z). Therefore, we

are in the last case of the definition above, and before replacing y we need to
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rename the bound variable. Since x does not occur in any of the expressions in

our example, we can choose x as a fresh variable. Thus

(λz.yz){y �→ z} = (λx.(yz){z �→ x}){y �→ z}

According to the definition above,

(yz){z �→ x} = (y{z �→ x})(z{z �→ x}) = (yx)

Using this equality, we obtain

(λz.yz){y �→ z} = (λx.yx){y �→ z}

and now we can apply the second case for abstraction in Definition 3.10 together

with the cases for application and variables, obtaining

(λz.yz){y �→ z} = (λx.zx)

A useful property of substitution is the following, known as the Substitution

Lemma.

Property 3.12

If x 
∈ FV (P ), (M{x �→ N}){y �→ P} = (M{y �→ P}){x �→ N{y �→ P}}.

3.2.2 Normal forms

Computation in the λ-calculus is a reduction process using the β-rule. A natural

question arises: When do we stop reducing? In other words, if computation is

reduction, we need to know when we have found the result.

There are several notions of “result” in the λ-calculus; we define two below.

– Normal form: A simple answer to the question above is: Stop reducing when

there are no redexes left to reduce.

A normal form is a term that does not contain any redexes.

A term that can be reduced to a term in normal form is said to be normalis-

able. Formally, M is normalisable if there exists a normal form N such that

M →∗

β N . For example,

λabc.((λx.a(λy.xy))b c) →β λabc.(a(λy.by)c)

and the latter is a normal form (recall that application associates to the left).
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– Weak head normal form: Another notion of result that is very useful in

functional programming requires reducing the β-redexes that are not under

an abstraction. In other words, we stop reducing when there are no redexes

left but without reducing under an abstraction. For example,

λabc.((λx.a(λy.xy))b c)

is a weak head normal form but not a normal form.

3.2.3 Properties of reductions

Since we can view a λ-term as a program and normal forms as a notion of

result, it is important to study the properties of the reduction relation that

will allow us to obtain the result associated with a program. The first question

here is whether, given a program, there is a result at all. If there is a result, we

may wonder whether that result is unique. Indeed, each term has at most one

normal form in the λ-calculus, and some terms have none.

Some of the most interesting properties of reduction relations are stated

below.

– Confluence: A reduction relation is confluent if peaks of reductions (i.e., two

reduction sequences branching out of the same term) are always joinable.

More precisely, → is confluent if, whenever M →∗ M1 and M →∗ M2, there

exists a term M3 such that M1 →∗ M3 and M2 →∗ M3.

The β-reduction relation in the λ-calculus is confluent.

– Normalisation: A term is normalisable if there exists a sequence of reductions

that ends in a normal form.

Some λ-terms are not β-normalisable.

– Strong Normalisation (or Termination): A term M is strongly normalisable,

or terminating, if all reduction sequences starting from M are finite.

The λ-calculus is confluent but not strongly normalising (or even normal-

ising), as witnessed by the term (λx.xx)(λx.xx); this term is usually called

Ω.

Each λ-term has at most one normal form: this unicity of normal forms is a

consequence of the confluence property of β-reduction (the proof of this result

is left as an exercise; see Section 3.8).
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3.2.4 Reduction strategies

If a term has a normal form, there may be many different reduction sequences

leading to that normal form (and the same can happen if we try to reduce to

a weak head normal form). For instance, we can build the following kinds of

reduction sequences:

– Leftmost-outermost reduction: If a term has several redexes, we first reduce

the one at the leftmost-outermost position in the term; that is, the first redex

starting from the left that is not contained in any other redex.

– Leftmost-innermost reduction: If a term has several redexes, we first reduce

the one at the leftmost-innermost position in the term; that is, the first redex,

starting from the left, that does not have any other redex inside.

A function that, given a term, selects a position to reduce is called a strategy.

Leftmost-outermost and leftmost-innermost are two examples of strategies. The

choice of strategy can make a huge difference in how many reduction steps are

needed and on whether we may find a normal form at all (when one exists).

The leftmost-outermost strategy always finds the normal form of the term if

there is one. For this reason, it is usually called a normalising strategy. However,

it may be inefficient (in the sense that there may be other strategies that find

the normal form in fewer reduction steps). We show a simple example below.

Example 3.13

Consider the term λx.xxx and assume we apply it to the term (λy.y)z. We

give two reduction sequences below; the first one follows the leftmost-outermost

strategy, whereas the second one is a leftmost-innermost reduction.

Leftmost-outermost reduction:

(λx.xxx)((λy.y)z) →β ((λy.y)z)((λy.y)z)((λy.y)z)

→β z((λy.y)z)((λy.y)z)

→β zz((λy.y)z)

→β zzz

Leftmost-innermost reduction:

(λx.xxx)((λy.y)z) →β (λx.xxx)z

→β zzz

Most functional programming languages reduce terms (more precisely, pro-

grams) to weak head normal form (i.e., they do not reduce under abstractions).

This is because if the normal form of a program is an abstraction, that means



Chapter 3. The Lambda Calculus 45

the result is a function; reduction does not proceed until some arguments are

provided.

Although reduction to weak head normal form is standard in functional

languages, there is no consensus as to which is the best strategy of reduction

to implement. Several choices are possible:

1. Call-by-name (also called normal order of reduction): Arguments are eval-

uated each time they are needed. This corresponds to an outermost reduc-

tion.

2. Call-by-value (also called applicative order of reduction). Arguments are

evaluated first and the reduced terms are then used in the substitution

(avoiding duplication of work). This corresponds to an innermost reduction.

3. Lazy evaluation: Arguments are evaluated only if needed, and at most once.

Lazy evaluation is similar to call-by-name in that arguments are evaluated

when they are needed, but it imposes a further restriction in that they are

only evaluated once to improve efficiency.

Most functional languages implement either a call-by-value or a lazy evalu-

ation strategy.

3.3 Arithmetic functions

The syntax of the λ-calculus is very simple: Terms can be variables, applica-

tions, or λ-abstractions. We have not given any syntax to represent numbers or

data structures. It turns out that no additional syntax is necessary for this. It

is possible to represent numbers, and general data structures, in the λ-calculus,

as we will see below.

Definition 3.14 (Church numerals)

We can define the natural numbers as follows:

0 = λx.λy.y

1 = λx.λy.x y

2 = λx.λy.x(x y)

3 = λx.λy.x(x(x y))
...

These are called Church integers or Church numerals. Below we write n to

denote the Church numeral representing the number n.
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Using this representation of numbers, we can define the arithmetic func-

tions. For example, the successor function that takes n and returns n + 1 is

defined by the λ-term

S = λx.λy.λz.y(x y z)

To check it, we see that when we apply this function to the representation

of the number n, we obtain the representation of the number n + 1:

Sn = (λx.λy.λz.y((x y)z))(λx.λy.x . . . (x(x y)))

→β λy.λz.y((λx.λy.x . . . (x(x y)) y)z)

→∗

β λy.λz.y(y . . . (y(y z)) = n + 1

In the rest of the chapter, we will often call the Church numerals simply “num-

bers”. In general, to define an arithmetic function f that requires k arguments

f : Natk �→ Nat

we will use a λ-term λx1 . . . xk.M , which will be applied to k numbers:

(λx1 . . . xk.M)n1 . . . nk.

For example, the following term defines addition:

ADD = λx.λy.λa.λb.(x a)(y a b)

We can check that this term indeed behaves like the addition function by ap-

plying it to two arbitrary Church numerals m and n and computing the result

(which will be m + n). We leave this as an exercise; see Section 3.8.

3.4 Booleans

We can also represent the Boolean values True and False, as well as the Boolean

functions, using just variables, abstraction, and application.

Definition 3.15 (Booleans)

We define the constants True and False by the following terms:

False = λx.λy.y

True = λx.λy.x

Using these representations, we can now define Boolean functions such as

NOT, AND, OR, etc. For example, the function NOT is defined by the λ-term

NOT = λx.x False True
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We can check that this definition is correct by applying it to the represen-

tation of the Boolean constants:

NOT False = (λx.x False True)False →β False False True →β True

and

NOT True = (λx.x False True)True →β True False True →β False

Using the same ideas, we can define a λ-term that behaves like a conditional

construct in a programming language. We will call it IF, and it is the λ-calculus

implementation of an if-then-else statement:

IF = λx.λy.λz.x y z

It is easy to see that

IF B E1 E2 →∗

β E1 if B = True

and

IF B E1 E2 →∗

β E2 if B = False

Instead of IF B E1 E2, we may write IF B THEN E1 ELSE E2.

Example 3.16

The function is-zero? can be defined as

λn.n(True False)True

Then

is-zero? 0 →∗

β True

and

is-zero? n →∗

β False if n > 0.

We can use IF and is-zero? to define the SIGN function:

SIGN = λn.IF (is-zero? n) THEN 0 ELSE 1



48 Chapter 3. The Lambda Calculus

3.5 Recursion

Assume we know how to compute multiplication, the predecessor, and a test for

zero, and we want to define the familiar factorial function on natural numbers

(that is, a function that associates with 0 the value 1 and for any number n > 0

it evaluates to the product of n and the factorial of n− 1). Our goal will be to

define a λ-term FACT that when applied to a number produces as a result the

factorial of this number. In other words, the normal form of FACT n should be

the number representing the factorial of n.

As a first attempt, we can write

FACT = λn.IF (is-zero? n) THEN 1

ELSE (MULT n (FACT (PRED n))

However, this is not a well-defined λ-term since we are using inside the

definition of FACT the term FACT that we are trying to define!

There is a solution to this problem via the so-called fix point operators of

the λ-calculus. A fix point operator is a λ-term that computes fix points, or in

other words a λ-term Y such that for any term M

Y M =β M(Y M)

where =β is the reflexive, symmetric, and transitive closure of →β . In this case,

we say that Y computes the fix point of M .

For instance, we can take

Y = λh.(λx.h(x x))(λx.h(x x))

or even better

YT = AA where A = λa.λf.f(aaf)

since using the latter we can compute fix points by reduction:

YT F = AAF = (λa.λf.f(aaf))AF →β (λf.f(AAf))F →β F (AAF )=F (YT F )

The term YT is usually called Turing’s fix point combinator and has the

property that, for all terms M , YT M →∗

β M(YT M), as shown above. Thanks

to this property, we can use YT to define recursive functions. For example,

consider the following definition of a term H:

H = λf.λn.IF (is-zero? n) THEN 1 ELSE (MULT n (f(PRED n)))

Now the factorial function can be defined as the fix point of H:

FACT = YT H
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We then have the reduction sequence

FACT n = YT Hn →∗

β H(YT H)n →∗

β

IF (is-zero? n) THEN 1 ELSE (MULT n (YT H(PRED n)))

where YT H(PRED n) is, by our definition, FACT(PRED n), as required.

Thus, although functions in the λ-calculus are anonymous, we can simulate

a recursive “call” using a fix point operator. This is a technique that we can

use to define recursive functions in general.

3.6 Functional programming

The work done by Church on abstract computation models based on the math-

ematical theory of functions has had a deep influence on the design of modern

functional programming languages. The λ-calculus can be seen as the abstract

model of computation underlying functional programming languages such as

LISP, Scheme, ML, and Haskell.

The main domains of application for functional languages up to now have

been in artificial intelligence (for the implementation of expert systems), text

processing (for instance, the UNIX editor emacs is implemented in LISP),

graphical interfaces, natural language, telephony, music composition, symbolic

mathematical systems, theorem provers, and proof assistants.

When developing software applications, properties such as low maintenance

cost, easy debugging, or formally provable correctness nowadays have a high

priority. For example, in safety-critical domains (such as medical applications,

telecommunications, or transport systems) it is important to develop programs

whose correctness can be certified (i.e., formally proved). Functional languages

are a good alternative to imperative languages in this case since functional

programs are in general shorter and are easier to debug and maintain than their

imperative counterparts. For these reasons, functional programming languages

are becoming increasingly popular.

LISP, introduced by John McCarthy in the 1950s, is considered to be the

ancestor of all functional programming languages. The syntax of LISP is based

on lists (as the name of the language suggests: LISt Processing), and the atomic

elements of lists are numbers and characters. Its conciseness and elegance have

made LISP a very popular language. Since data and programs are represented

as lists, it is easy in LISP to define higher-order functions (that is, functions

that take other functions as their argument or produce functions as their result).

This style of programming is one of the main features of functional languages.

Several versions of LISP are in use, including Scheme.
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Modern functional languages such as ML and Haskell have radically changed

the syntax and introduced sophisticated type systems with type inference ca-

pabilities. These modern functional languages are still based on the λ-calculus,

but their design is also influenced by the theory of recursive functions developed

by Gödel and Kleene, which we discuss in the next chapter. We will come back

to the relationship between functional programming languages and abstract

computation models at the end of the next chapter.

3.7 Further reading

More information on the λ-calculus can be found in [21]. Barendregt’s book [4]

is a comprehensive reference. For an introduction to functional programming

we recommend the books by Bird [6] and by Cousineau and Mauny [10]. For

a description of the functional languages mentioned above, see the following

references: LISP [32], Scheme [50], ML [35], and Haskell [51].

3.8 Exercises

1. Compute the sets of free and bound variables for the terms in Example 3.2.

2. Write the result of the following substitutions.

a) x{y �→ M}, where M is an arbitrary λ-term

b) (λx.xy){y �→ (xx)}

c) (λy.xy){y �→ (xx)}

d) (xx){x �→ λy.y}

3. Compute the normal forms of the following terms

a) λy.(λx.x)y

b) λy.y(λx.x)

c) II

d) KI

e) KKK

where K = λxy.x and I = λx.x.



Chapter 3. The Lambda Calculus 51

4. Different notions of normal form were discussed in this chapter, including

the full normal form (or simply normal form) and weak head normal form.

a) What is the difference between a term having a normal form and being

a normal form? Write down some example terms.

b) If a closed term is a weak head normal form, it has to be an abstraction

λx.M . Why?

c) Indicate whether the following λ-terms have a normal form:

– (λx.(λy.yx)z)v

– (λx.xxy)(λx.xxy)

d) Show that the term Ω = (λx.xx)(λx.xx) does not have a normal form.

Find a term different from Ω that is not normalising (i.e., a term such

that every reduction sequence starting from it is infinite).

5. Explain why if a reduction system is confluent, then each term has at most

one normal form.

6. Show leftmost-outermost and leftmost-innermost reductions for the follow-

ing terms:

– G (F x) where

G = λx.xxx

F = λyz.yz

– ΘΘΘ

– Θ(ΘΘ)

where
Θ = λx.xKSK

S = λxyz.xz(yz)

K = λxy.x

7. In your view, which are the best and worst reduction strategies for a func-

tional programming language? Give examples to support your claims.

8. In this chapter, we have shown how to define arithmetic operations using

Church numerals.

a) Check that the term ADD = λxyab.(xa)(yab) behaves like the addi-

tion function; that is, show that when we apply ADD to two Church

numerals, we obtain the Church numeral representing their sum.

Hint: Reduce the term (λx.λy.λa.λb.(xa)(yab))n m.
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b) Show that the λ-term MULT = λx.λy.λz.x(yz) applied to two Church

numerals m and n computes their product m × n.

c) Which arithmetic operation does the term λn.λm.m (MULT n) 1 com-

pute?

9. Check that the following definitions are correct by applying them to the

Boolean constants:

AND = λx.λy.x y x

OR = λx.λy.x x y

10. Consider the model of computation defined as the restriction of the λ-

calculus to the set of linear terms. Linear terms are inductively defined as

follows:

– A variable is a linear term.

– If x occurs free in a linear term M , then λx.M is a linear term.

– If M and N are linear terms and the sets of free variables of M and N

are disjoint, then (M N) is a linear term.

In λx.M , the variable x is bound; terms are defined modulo α-equivalence

as usual.

a) Show that λx.λy.xy is a linear term according to the definition above,

and give an example of a non-linear term.

b) The computation rule in the linear λ-calculus is the standard β-

reduction rule. Indicate whether each of the following statements is

true or false and why.

i. In the linear λ-calculus, we can ignore α-equivalence when we apply

the β-reduction rule.

ii. If we β-reduce a linear term, we obtain another linear term.

iii. The linear λ-calculus is confluent.

iv. Every sequence of reductions in the linear λ-calculus is finite (in

other words, the linear λ-calculus is terminating).

v. The linear λ-calculus is a Turing-complete model of computation.

11. Combinatory logic (CL for short) is a universal model of computation.

Terms in the language of CL are built out of variables x, y, . . ., constants

S and K, and applications (M N). More precisely, terms are generated by

the grammar
M,N ::= x | S | K | (M N)
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The standard notational conventions are used to avoid brackets: Applica-

tions associate to the left, and we do not write the outermost brackets. For

instance, we write K x y for the term ((K x) y).

There are two computation rules in combinatory logic:

K x y → x

S x y z → x z (y z)

a) Using the rules above, there is a sequence of reduction steps

SKKx →∗ x

Show all the reduction steps in this sequence.

b) The term SKK can be seen as the implementation of the identity

function in this system since, for any argument x, the term SKKx

evaluates to x.

Show that SKM , where M is an arbitrary term, also defines the iden-

tity function.

c) Consider the system of combinatory logic without the second compu-

tation rule (that is, only the rule Kxy → x may be used). We call this

weaker system CL−.

We call CL+ the system of combinatory logic with an additional con-

stant I and rule Ix → x.

Indicate whether each of the following statements is true or false and

why.

i. In CL−, all the reduction sequences are finite.

ii. The system CL+ has the same computational power as the system

CL.

iii. The system CL− is Turing complete.



4
Recursive Functions

In the previous chapters, we discussed the notion of a computable function and

characterised this class of functions as the ones that can be defined via Turing

machines or the λ-calculus. In this chapter, we give an alternative character-

isation of computable functions based on the notion of a recursive function.

Usually, we say that a function is recursive if it “calls itself”. Recursive func-

tions are functions for which the result for a certain argument depends on the

results obtained for other (smaller in some sense) arguments. Recursion is a

very useful tool in modern programming languages, in particular when dealing

with inductive data structures such as lists, trees, etc.

The theory of recursive functions was developed by Kurt Gödel and Stephen

Kleene in the 1930s. In this chapter, we will define the general class of partial

recursive functions. These are functions on numbers, each one with a fixed

arity; that is, with a specific number of arguments. In the definition of recursive

functions, we will identify some basic functions that serve as building blocks in

our characterisation of computability. We will also identify some mechanisms

that can be used to combine functions, so that starting from the basic initial

functions we can obtain a class of functions that is equivalent to the class of

functions that can be defined, for instance, in the λ-calculus.

Primitive recursive functions play an important role in the formalisation of

computability. Intuitively speaking, partial recursive functions are those that

can be computed by Turing machines, whereas primitive recursive functions can

be computed by a specific class of Turing machines that always halt. Many of

the functions normally studied in arithmetic are primitive recursive. Addition,

subtraction, multiplication, division, factorial, and exponential are just some
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of the most familiar examples of primitive recursive functions. Ackermann’s

function, which we will define in Section 4.1, is a well-known example of a

non-primitive recursive function.

There are several alternative definitions of the class of primitive recursive

functions. There is no consensus as to what is the best set of basic initial

functions, and also the notion of recursion may vary; for instance, in some

cases, a notion of iteration is used instead of recursion. As with the variants of

Turing machines mentioned in Chapter 2, it can be shown that the alternative

definitions of primitive recursion available in the literature are all equivalent.

We start the chapter by defining the class of primitive recursive functions as

the least set including the zero, successor, and projection functions and closed

under the operations of composition and primitive recursion. We then go on to

define more general recursive functions using a minimisation scheme. We finish

this chapter with a discussion of functional programming and partial recursive

functions.

4.1 Primitive recursive functions

In the definition of primitive recursive functions, we will use the natural num-

bers, together with some basic projection functions to erase, copy, and permute

arguments of functions. Starting from these basic functions, we will use two

mechanisms to define more interesting functions: composition and the primi-

tive recursive scheme. All the functions that we will define work on the set of

natural numbers, denoted Nat. Thus, a function of arity k will take k natural

numbers as arguments and produce a result of type Nat. This is abbreviated as

f : Natk → Nat.

Composition is a familiar operation. Given two functions f and g from Nat

to Nat, we can define a new function h so that the result of h on a number x

is obtained by applying f to the result of g on x; that is, h(x) = f(g(x)). The

composition operator used in the definition of primitive recursive functions is

more general than this, as we will see below.

Primitive recursion is possibly the easiest way to define recursive functions.

The idea is that, to define a function f , first we give the value of f for 0,

and then for any other number n + 1 we define f(n + 1) in terms of f(n). For

example, the factorial function is usually defined by the equations

0! = 1 and (n + 1)! = (n + 1) ∗ n!
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We see that, in the second equation, to compute the factorial of n + 1 we

use multiplication and the factorial of n. The primitive recursive scheme, de-

fined below, generalises this technique. Before giving the definition of primitive

recursive functions, we introduce some notation.

Notation. We use x1, . . . , y1, . . . to denote natural numbers, f, g, h to rep-

resent functions, and X1, X2, . . . to represent tuples or sequences of the form

x1, . . . , xn. We only have tuples on natural numbers; thus we will work modulo

associativity for simplicity: (X1, (x1, x2), X2) = (X1, x1, x2, X2).

Definition 4.1 (Primitive recursive functions)

A function f : Natk → Nat is primitive recursive if it can be defined from a set

of initial functions using composition and the primitive recursive scheme. The

set of initial functions and the composition and recursive scheme are defined

below.

– Initial functions: These can be either the zero and successor functions, used

to build natural numbers, or projections. More precisely:

1. The constant function zero, written 0, and the successor function S are

initial functions. Natural numbers can be built from these two functions

using composition. We write n or Sn(0) for S(. . . S(S
︸ ︷︷ ︸

n

(0) . . .)).

2. Projection functions: These are functions that allow us to select an element

of a tuple. There are projection functions for tuples of any length. We will

denote by πn
i the function that selects the ith element of a tuple of length

n. More precisely,

πn
i (x1, . . . , xn) = xi (1 ≤ i ≤ n)

We will omit the superindex, writing simply πi, when there is no ambiguity.

– Composition allows us to define a primitive recursive function h using aux-

iliary functions f , g1, . . . , gn, where n ≥ 0:

h(X) = f(g1(X), . . . , gn(X))

– The primitive recursive scheme allows us to define a recursive function h using

two auxiliary primitive recursive functions f , g. The function h is defined as

follows:
h(X, 0) = f(X)

h(X, S(n)) = g(X,h(X,n), n).
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There are two cases in the definition of h above, depending on whether the

last argument is 0 or not. If it is 0, then the value of h(X, 0) is obtained

by computing f(X). Otherwise, the second equation defines h by using the

auxiliary function g and the result of a recursive call to h.

According to Definition 4.1, any function that can be specified by using

initial functions and an arbitrary (finite) number of operations of composition

and primitive recursion is primitive recursive. We give examples of primitive

recursive functions below.

As we have already mentioned, there are alternative versions of the primitive

recursion scheme. For instance, the one above could be replaced by a more

restricted iteration scheme.

Definition 4.2

Let g be a primitive recursive function. The following scheme, defining the

function h in terms of g, is called pure iteration:

h(X, 0) = X

h(X, S(n)) = g(h(X,n))

The function h defined by the pure iteration scheme, using the auxiliary func-

tion g, takes X and a number n and iterates n times the function g on X. For

this reason, we can abbreviate h(X,n) as gn(X).

We do not have constant functions of the form C(X) = n as initial functions

in Definition 4.1. However, we can see 0 as a constant function with no argu-

ments, and every other constant function can be built by composition using 0

and S, as shown in the following example.

Example 4.3

The constant function zero(x, y) = 0 is defined as an instance of the com-

position scheme using the initial 0-ary function 0. The constant function

one(x, y) = S(zero(x, y)) is again an instance of the composition scheme.

Functions obtained from primitive recursive functions by introducing

“dummy” arguments, permuting arguments, or repeating them are also prim-

itive recursive. To keep our definitions simple, we will sometimes omit the

definition of those functions.
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Example 4.4

Consider the standard functions add and mul from Nat2 to Nat:

add(x, y) = x + y mul(x, y) = x ∗ y

The function add can be defined by primitive recursion as

add(x, 0) = f(x)

add(x,S(n)) = g(x, add(x, n), n)

where
f(x) = π1(x) = x

g(x1, x2, x3) = S(π2(x1, x2, x3)) = S(x2)

The primitive recursive function mul is defined by

mul(x, 0) = f(x)

mul(x,S(n)) = g(x,mul(x, n), n)

where

f(x) = 0

g(x1, x2, x3) = add(π1(x1, x2, x3), π2(x1, x2, x3)) = add(x1, x2)

Similarly, we can define the function sub to subtract numbers.

sub(x, 0) = π1(x)

sub(x,S(n)) = pred(x, sub(x, n), n)

where the function pred is defined below using projections and the function

predecessor (defined by primitive recursion).

pred(x, y, z) = predecessor(π2(x, y, z))

predecessor(0) = 0

predecessor(S(n)) = π2(predecessor(n), n)

Functions defined by cases may be more difficult to encode directly using

primitive recursion. In order to be able to express definitions by cases in a

convenient way, we introduce the notion of a recursive predicate.

Definition 4.5 (Primitive recursive predicates)

The condition P depending on X ∈ Natn, such that P (X) is either true or

false, is called an n-ary predicate. An n-ary predicate P is primitive recursive

if its characteristic function XP : Natn → {0, 1} is primitive recursive. The

characteristic function of a predicate associates 1 with the tuples X for which

P (X) holds and 0 with the others.
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Example 4.6

The predicates eq (equality) and lt (less than) are primitive recursive with

characteristic functions

Xlt(x, y) = f(sub(y, x))

Xeq(x, y) = f(add(sub(x, y), sub(y, x)))

where f(0) = 0 and f(S(n)) = 1. The function f is primitive recursive (see the

exercises at the end of the chapter).

Definition 4.7 (Case construction)

If f1, . . . , fk are primitive recursive functions from Natn to Nat, P1, . . . , Pk are

primitive recursive n-ary predicates, and for every X ∈ Natn exactly one of the

conditions P1(X), . . . , Pk(X) is true, then the function f : Natn → Nat defined

below is primitive recursive.

f(X) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(X) if P1(X)

f2(X) if P2(X)

. . .

fk(X) if Pk(X)

We can easily understand how such a function can be built from primitive

recursive functions. Since exactly one of the conditions P1(X), . . . , Pk(X) is

true, then exactly one of the values of XPi
(X) will be 1 and all the others will

be 0. Then one can obtain the function f by composition using P1, . . . , Pk, the

given functions f1, . . . , fk, addition, and multiplication (the latter two denoted

by + and ∗).

f(X) = f1(X) ∗ XP1
(X) + · · · + fk(X) ∗ XPk

(X)

Thus, f is a primitive recursive function.

For example, we can give a definition by cases for the operator of bounded

minimisation. This operator searches for the minimum number that satisfies

a given condition, in a given interval, where the condition is specified as a

primitive recursive predicate. To show that bounded minimisation is primitive

recursive, we can define it as follows.

Definition 4.8

Let P be an (n + 1)-ary primitive recursive predicate and X ∈ Natn. The
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bounded minimisation of P is the primitive recursive function

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if the set is not empty

k + 1 otherwise

All the primitive recursive functions are total; that is, for any primitive

recursive function f : Natk → Nat, given k numbers n1, . . . , nk, the value

f(n1, . . . , nk) is well defined. This can be proved as follows.

Proof

The initial functions are obviously total, as is the composition of two total

functions.

Assume h is defined by primitive recursion using two total functions f and

g. We can prove by induction on n that h(X,n) is total for all n. First, note that

h(X, 0) is total (since f is). Next, assume that h(X,n) is well defined (induction

hypothesis). Then, since g is total, h(X, S(n)) is also well-defined.

Although most of the functions that we use are primitive recursive, the

set of computable functions also includes functions that are outside this class.

For instance, some computable functions are partial functions, and there are

also total computable functions that are not primitive recursive. Ackermann’s

function is a standard example of a total, non-primitive recursive function:

ack(0, n) = S(n)

ack(S(n), 0) = ack(n,S(0))

ack(S(n),S(m)) = ack(n, ack(S(n),m))

In the next section, we define the class of partial recursive functions by

including an additional mechanism to build functions, called unbounded min-

imisation or just minimisation.

4.2 Partial recursive functions

We start by defining the unbounded minimisation operator.

Definition 4.9 (Minimisation)

Let f be a total function from Natn+1 to Nat. The function g from Natn to Nat

that computes for each tuple X of numbers the minimum y such that f(X, y)
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is zero is called the minimisation of f . More precisely, the minimisation of f is

the function g defined as follows:

g(X) = min{y | f(X, y) = 0}

We denote g as Mf .

Note that although the equality predicate used in the definition of minimi-

sation is total, the minimisation operation is not necessarily terminating. It

requires performing a search without an upper limit on the set of numbers to

be considered. For this reason, a function defined by minimisation of a total

function may be partial.

The class of partial recursive functions includes the primitive recursive func-

tions and also functions defined by minimisation. Despite its name, this class

also includes total functions. We will simply call the functions in this class

recursive functions.

Definition 4.10 (Recursive functions)

The set of recursive functions is defined as the smallest set of functions con-

taining the natural numbers (built from 0 and the successor function S) and

the projection functions and closed by composition, primitive recursion, and

minimisation.

Closure by minimisation implies that, for every n ≥ 0 and every total

recursive function f : Natn+1 → Nat, the function Mf : Natn → Nat defined by

Mf (X) = min{y | f(X, y) = 0}

is a (possibly partial) recursive function. In other words, a function is recursive

if it can be defined using initial functions and a finite number of operations of

composition, primitive recursion, and minimisation.

In particular, every primitive recursive function is also recursive (since in

both definitions we use the same initial functions, composition, and primitive

recursive scheme). However, if minimisation is used in the definition of the

function, the result may not be primitive recursive, and it may fail to be total.

Kleene showed the following result, which indicates that only one minimi-

sation operation is sufficient to define recursive functions.

Theorem 4.11 (Kleene normal form)

Let h be a (possibly partial) recursive function on Natk. Then, a number n can
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be found such that

h(x1, . . . , xk) = f(Mg(n, x1, . . . , xk))

where f and g are primitive recursive functions.

Although all the functions we have defined are functions from numbers to

numbers, the primitive recursion and minimisation mechanisms can also be

used to define functions on strings, lists, trees, etc. Indeed, using a technique

developed by Gödel, known as Gödel numbering, it is possible to associate

a number (i.e., a code) with each string, list, tree, etc., and then define the

functions on data structures as numeric functions acting on codes. Instead of

encoding the data, we can redefine the initial functions, composition, recursive

schemes, and minimisation to work directly on the specific data structure of

interest.

We finish this section by stating, without a proof, that all the partial re-

cursive functions can be defined in the λ-calculus. The converse is also true;

indeed, these two models of computation are equivalent (and also equivalent in

computational power to Turing machines).

Property 4.12

The set of recursive functions, the set of functions that can be defined in the

λ-calculus, and the set of functions that can be computed by a Turing machine

coincide.

4.3 Programming with functions

The common feature of all functional programming languages is that programs

consist of functions (as in the mathematical notion of a function, which is the

basis of the λ-calculus and the theory of partial recursive functions; not to be

confused with the notion of a function used in imperative languages).

Most modern functional programming languages are strongly typed (that is,

equipped with a type system that guarantees that well-typed expressions will

not produce type errors at run time) and have built-in memory management.

ML and Haskell are examples of these. In the rest of this section, we give

examples of functional definitions using the syntax of Haskell.

A function in this sense is simply a mapping between elements of two sets,

for instance,

f :: α → β
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can be seen as a declaration of a function f that, applied to an argument x in

α, gives a result (f x) in β.1 With this approach, the focus is on what is to be

computed, not how it should be computed. In the example above, we say that

the function f has type α → β.

Some functional programming languages adopt a syntactic style that is

based on equational definitions similar to the definitions of primitive recursive

functions or, more generally, partial recursive functions. However, functional

languages also allow the programmer to define anonymous functions, as in the

λ-calculus. In general, a function in a functional programming language can

be defined in terms of other functions previously defined by the programmer,

taken from the libraries, or provided as language primitives. Composition of

functions and recursion play major roles in functional programming languages.

The composition operator, denoted by ·, as in the expression f · g, is itself

a function; it is predefined in functional languages. In Haskell, it is defined as

follows:

· :: ((β → γ), (α → β)) → (α → γ)

(f · g) x = f (g x)

The type of · indicates that we can only compose functions whose types are

compatible. In other words, the composition operator · expects two functions,

f and g, as arguments, such that the domain of f coincides with the co-domain

of g. The type of f is (β → γ) and the type of g is (α → β), where α, β, and γ

are type variables representing arbitrary types.

The result of composing two functions f and g of compatible types (β → γ)

and (α → β), respectively, is a function of type (α → γ). It accepts an argument

x of type α (which will be supplied to g) and produces f (g x), which is in

the co-domain of f and therefore is of type γ.

Example 4.13 (Composition)

Consider the function

square :: Integer → Integer

that computes the square of a number. It can be defined by the equation

square x = x * x

where we have used a predefined multiplication operator, written *.

1 Most functional languages adopt the λ-calculus notation (f x) for application.
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Using the function square and the composition operator, we can define a

function quad that computes the fourth power of a number as follows:

quad = square · square

Arithmetic operations are built-in functions used in infix notation, as in the

expressions 3 + 4 or x * x. In Haskell, we can use them in prefix notation if

we enclose them in brackets; for example, (+) 3 4.

The functions (+) and + have different types:

+ :: (Integer, Integer) → Integer

(+) :: Integer → Integer → Integer

The function (+) is the Curryfied version of +; that is, instead of working

on pairs of numbers (i.e., two numbers provided simultaneously), it expects

a number followed by another number. This might seem a small difference

at first sight, but Curryfication (the word derives from the name of the

mathematician Haskell Curry, after whom the programming language also is

named) provides great flexibility to functional languages. For instance, we

can use (*), the Curryfied version of the multiplication operator, to define a

function double, which doubles its argument:

double :: Integer → Integer

double = (*) 2

As in the λ-calculus, there are some notational conventions to avoid writing

too many brackets in expressions; for example, it is understood that applica-

tion has priority over arithmetic operations. For example, square 1 + 4 * 2

should be read as (square 1) + (4 * 2).

The process of evaluating an expression is a simplification process, also

called a reduction process. An evaluator for a functional programming language

implements the β-reduction rule of the λ-calculus. The goal is to obtain the

value or irreducible form (also called the normal form) associated with an

expression by a series of reduction steps. The meaning of an expression is its

value.

Functional programming languages inherit their main properties from the

λ-calculus. One of the main properties is the unicity of normal forms:

In (pure) functional languages, the value of an expression is uniquely

determined by its components.
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An obvious advantage of this property is improved readability of programs.

Not all the reduction sequences that start with a given expression lead to

a value. This is not in contradiction with the previous property. It is caused

by non-termination. Some reduction sequences for a given expression may be

infinite, but all the sequences that terminate reach the same value. This is more

clearly seen with an example.

Example 4.14 (Non-termination)

Let us define the constant function fortytwo. This is a primitive recursive

function, and in a language like Haskell we can define it with an equation:

fortytwo x = 42

We can also define equationally a non-primitive recursive function

infinity:

infinity = infinity + 1

It is clear that the evaluation of infinity never reaches a normal form.

The expression
fortytwo infinity

gives rise to some reduction sequences that do not terminate, but those that

terminate give the value 42 (unicity of normal forms).

The example above shows that, although the normal form is unique, the

order of reductions is important. As in the λ-calculus, functional programming

languages evaluate expressions by reduction and follow a given evaluation strat-

egy. Recall that a strategy of evaluation specifies the order in which reductions

take place; in other words, it defines the reduction sequence that the language

implements.

The most popular strategies of evaluation for functional languages are:

1. Call-by-name (normal order): In the presence of a function application, first

the definition of the function is used and then the arguments are evaluated

if needed.

2. Call-by-value (applicative order): In the presence of a function application,

first the arguments are evaluated and then the definition of the function is

used to evaluate the application.

For example, using call-by-name, the expression fortytwo infinity is re-

duced in one step to the value 42 since this strategy specifies that the definition
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of the function fortytwo is used, which does not require the argument (it is a

constant function). However, when using call-by-value, we must first evaluate

the argument infinity, and, as we already mentioned, the reduction sequence

for this expression is infinite; hence we will never reach a normal form. Call-

by-name guarantees that if an expression has a value, it will be reached.

As this example shows, different strategies of evaluation require different

numbers of reduction steps, and therefore the efficiency of a program (which

is related to the number of reduction steps) depends on the strategy used.

Some functional languages (for instance, ML) use call-by-value so that when

an argument is used several times in the definition of a function it is evaluated

only once. Haskell uses a strategy called lazy evaluation. It is based on call-by-

name, which guarantees that if an expression has a normal form, the evaluator

will find it, but to avoid the potential lack of efficiency of a pure call-by-name

strategy, Haskell uses a sharing mechanism. When an argument is used many

times in a function definition, its evaluation is performed at most once, and the

value is shared between all its occurrences.

4.4 Further reading

There are many books and journal articles on recursive functions, for in-

stance [18, 19, 39, 46, 2]. Some of these references provide alternative definitions

of the classes of primitive recursive functions and general recursive functions.

Kleene’s book [27] is an interesting reference. To complement the information

on Haskell given in the previous section, we recommend [6, 51].

4.5 Exercises

1. Show that the factorial function is primitive recursive.

2. Show that the function f used in Example 4.6, defined by f(0) = 0 and

f(S(n)) = 1, is primitive recursive.

3. Consider the functions Div and Mod such that Div(x, y) and Mod(x, y)

compute the quotient and remainder, respectively, of the division of x by y.

These are not total functions because division by 0 is not defined, but we

can complete the definition by stating that Div(x, 0) = 0 and Mod(x, 0) =

x. Show that the extended functions Div and Mod are primitive recursive.

4. Show that the pure iteration scheme given in Definition 4.2 is equivalent
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to the primitive recursive scheme given in Definition 4.1.

5. Indicate whether the following statements are true or false:

a) All primitive recursive functions are total.

b) All total computable functions are primitive recursive.

c) All partial recursive functions are computable.

d) All total functions are computable.

6. Write functional programs defining cube (the function that computes the

third power of a number) and double (the function that doubles its argu-

ment). Describe the reduction sequences for the expression

cube (double (3 + 1))

using call-by-name (normal order) and call-by-value (applicative order).

7. In functional languages, there is a primitive function if-then-else that

we can use to define a function by cases that depend on a Boolean condition

(see the case construction in Definition 4.7). Thus,

if x == 0 then 0 else x * y

will return 0 if the value of x is equal to 0 and will return the product of x

and y otherwise.

Assume the function mult on natural numbers is defined by

mult x y
def

= if x == 0 then 0 else x * y

where == is the equality test. Assume that e1 == e2 is evaluated by reducing

e1 and e2 to normal form and then comparing the normal forms.

a) Is mult commutative over numbers; i.e., will mult m n and mult n m

compute the same result for all numbers m and n?

b) Let infinity be the function defined by

infinity
def

= infinity + 1

What is the value of mult infinity 0?

What is the value of mult 0 infinity?



5
Logic-Based Models of Computation

During the late 1920s, Jacques Herbrand, a young mathematician, developed

a method to check the validity of a class of first-order logic formulas. In his

thesis, published in 1931, Herbrand discussed what can be considered the first

unification procedure. Unification is at the heart of modern implementations

of logic programming languages.

In this chapter, we will discuss the model of computation that serves as

a basis for the logic programming paradigm. Prolog, one of the most popular

logic programming languages, will be discussed in the final part of the chapter.

5.1 The Herbrand universe

In logic programs, the domain of computation is the Herbrand universe, the

set of terms defined over a universal alphabet of

– variables, such as X, Y , etc., and

– function symbols with fixed arities (the arity of a symbol is as usual the

number of arguments associated with it).

Function symbols are usually denoted by f, g, h, . . ., or a, b, c, . . . if the arity

is 0 (i.e., a, b, c, . . . denote constants). In our examples, we will often use more

meaningful names for function symbols.
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Definition 5.1 (Terms)

A term is either a variable or has the form f(t1, . . . , tn), where f is a function

symbol of arity n and t1, . . . , tn are terms. Notice that n may be 0, and in this

case we will just write f , omitting the brackets.

Example 5.2

If a is a constant, f a binary function, and g a unary function, then

f(f(X, g(a)), Y ) is a term, where X and Y are variables.

Function symbols in this framework correspond to data constructors; they

are used to give structure to the domain of computation. For example, if our

algorithm deals with arrays of three elements, a suitable data structure can

be defined using a function symbol array of arity 3. The array containing the

elements 0, 1, 2 is then represented by the term array(0, 1, 2).

There is no definition associated with a function symbol (although in Prolog

implementations there are some built-in functions, such as arithmetic opera-

tions, that have a specific meaning).

We will not fix the alphabet used to define the Herbrand universe. The

names of variables and function symbols needed to represent the problem do-

main can be freely chosen. In this chapter, names of variables start with capital

letters and names of functions start with lower case letters (we follow the con-

ventions used in Prolog’s syntax).

5.2 Logic programs

Once the domain of computation is established, a problem can be described by

means of logic formulas involving predicates.

Predicates represent properties of terms and are used to build basic formulas

that are then composed using operators such as and, not, and or, denoted by

∧,¬, and ∨, respectively.

Definition 5.3

Let P be a set of predicate symbols, each with a fixed arity. If p is a predicate

of arity n and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atomic formula, or

simply an atom. Again, n may be 0, and in this case we omit the brackets. A

literal is an atomic formula or a negated atomic formula.
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Example 5.4

The following are two literals (the second is a negated atom), where we use the

predicates value of arity 2 and raining of arity 0, a unary function symbol

number, and the constant 1:

value(number(1),1)

¬raining

We have followed another syntactic convention of Prolog in that names of

predicates start with a lower case letter.

We mentioned before that logic (or, more precisely, a subset of first-order

logic) can be seen as an abstract model of computation. Logic formulas will be

used to express algorithms or, more generally, partial functions (since some of

the computations that we will model may not halt). We will call them logic

programs. As another piece of evidence to support Church’s Thesis, it can be

shown that logic programs can express exactly the same class of functions that

Turing machines can define. Logic programs are Turing complete.

Definition 5.5 (Logic programs)

Logic programs are sets of definite clauses, also called Horn clauses, that are

a restricted class of first-order formulas. A definite clause is a disjunction of

literals with at most one positive literal.

We now introduce some notational conventions for clauses. We write P1,

P2, . . . to denote atoms. A definite clause P1 ∨¬P2 ∨ . . .∨¬Pn (where P1 is the

only positive literal) will be written

P1 :- P2, . . . , Pn.

and we read it as

“P1 if P2 and . . . and Pn.”

We call P1 the head of the clause and P2, . . . , Pn the body.

If the clause contains just P1 and no negative literals, then we write

P1.

Both kinds of clauses are called program clauses; the first kind is called a

rule and the second kind is called a fact. If the clause contains only negative

literals, we call it a goal or query and write

:-P2, . . . , Pn.
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Program clauses can be seen as defining a database: Facts specify informa-

tion to be stored, and rules indicate how we can deduce more information from

the previously defined data.

Goals are questions to be answered using the information about the problem

in the database. This can be better seen with some examples.

Example 5.6

In the following logic program, the first four clauses are facts and the last one

is a rule.

based(prolog,logic).1

based(haskell,functions).

likes(claire,functions).

likes(max,logic).

likes(X,L) :- based(L,Y), likes(X,Y).

Here we have used two binary predicates, based and likes, constants

prolog, logic, haskell, functions, claire, and max, and variables X,

Y, and L.

The first two clauses in the program can be read as “Prolog is based on logic

and Haskell on functions”. More precisely, these are facts about the predicate

based; they define a relation to be stored in the database.

The next three clauses define the predicate likes. There are two facts,

which can be read as “Claire likes functions and Max likes logic”, and a rule

that allows us to deduce more information about people’s tastes. We can read

this rule as “X likes L if L is based on Y and X likes Y”.

Once this information is specified in the program as shown above, we can

ask questions such as “Is there somebody (some Z) who likes Prolog?” which

corresponds to the goal

:- likes(Z,prolog).

With the information given in the program, we can deduce that Max likes

Prolog. We know that Max likes logic and Prolog is based on logic, and therefore

the last rule allows us to conclude that Max likes Prolog.

The precise deduction mechanism that we use to reach this conclusion can

be specified using an inference rule called resolution, which we describe below.

1 In some versions of Prolog, the word prolog is reserved; therefore, to run this
example, it might be necessary to replace prolog by myprolog, for instance.



Chapter 5. Logic-Based Models of Computation 73

5.2.1 Answers

Answers to goals will be represented by substitutions that associate values

with the unknowns (i.e., the variables) in the goal. Values are also terms in the

Herbrand universe (see Definition 5.1).

Definition 5.7 (Substitution)

A substitution is a partial mapping from variables to terms, with a finite do-

main. If the domain of the substitution σ is

dom(σ) = {X1, . . . , Xn}

we denote the substitution by {X1 �→ t1, . . . , Xn �→ tn}.

Substitutions are extended to terms and literals in the natural way: We

apply a substitution σ to a term t or a literal l by simultaneously replacing

each variable occurring in dom(σ) by the corresponding term. The resulting

term is denoted tσ.

Since substitutions are functions, composition of substitutions is simply

functional composition. For example, σ · ρ denotes the composition of the sub-

stitutions σ and ρ.

Example 5.8

The application of the substitution

σ = {X �→ g(Y ), Y �→ a}

to the term

f(f(X, g(a)), Y )

yields the term

f(f(g(Y ), g(a)), a)

Note the simultaneous replacement of X and Y in the term above.

Since logic programs are first-order formulas, their meaning is precise. There

is a declarative interpretation in which the semantics of a program is defined

with respect to a mathematical model (the Herbrand universe). There is also a

procedural interpretation of programs, which explains how the program is used

in computations. The latter defines a logic-based computation model.

The computation associated with a logic program is defined through the

use of SLD-resolution, a specific version of the Principle of Resolution. Using

SLD-resolution, different alternatives to find a solution will be explored for a



74 Chapter 5. Logic-Based Models of Computation

given goal in the context of a program. These alternatives will be represented as

branches in a tree, called the SLD-resolution tree or simply SLD-tree. Some of

the branches in the SLD-tree may not produce a solution; we need to traverse

the whole tree (which can be infinite) in order to find all the solutions for a

goal. The traversal of the tree can be done in different ways, and this will give

us models of computation with different properties. Here we will consider a

strategy for the traversal that explores each branch in depth, from left to right.

Some branches may end with a failure (we will describe this notion below), and

we will have to backtrack to the nearest point in the tree where there are still

alternative branches to explore. We continue traversing the SLD-tree until all

the alternatives are exhausted.

To illustrate the idea, let us look at a logic program defining the predicate

append for lists. The empty list is denoted by the constant [], and a non-empty

list is denoted as [X|L], where X represents the first element of the list (also

called the head) and L is the rest of the list (also called the tail of the list).

Note that [ | ] is a binary function symbol, a constructor that is used to build

a list structure. We abbreviate [X|[]] as [X], [X|[Y|[]]] as [X,Y], and in

general [X1,...,Xn] denotes a list of n elements.

Example 5.9

The predicate append is defined as a relation between three lists: the two lists

we want to concatenate and their concatenation. More precisely, the atomic

formula append(S,T,U) indicates that the result of appending the list T onto

the end of the list S is the list U. We can define the predicate append by giving

two program clauses (a fact and a rule):

append([],L,L).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

The predicate append defines a relation and can be used in different ways.

For instance, a goal

:- append([0],[1,2],L).

will compute the answer substitution {L �→ [0, 1, 2]}, but with the same logic

program and the goal

:- append([0],U,[0,1,2]).

we will obtain the solution {U �→ [1, 2]}. In this case, the first and third ar-
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guments of the predicate are used as inputs and the second as output. All

combinations are possible.

Answers to goals (i.e., substitutions mapping variables to values) will be

automatically generated by the unification algorithm, which is part of the pro-

cess of resolution. More precisely, to find the answer for a goal, we need to

find in the program the clauses that can be applied; during this process, some

equations between terms will be generated, and the unification algorithm will

be called in order to solve these equations. If there is a solution, there is also

one that is the most general solution in the sense that all the others can be

derived from it. This is called the most general unifier. We will formally define

unification problems and give a unification algorithm in the next section, but

we can already give an example.

Example 5.10

To solve the query

:- append([0],[1,2],U).

in the context of the logic program

append([],L,L).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

we will start by using the second program clause (the first one cannot be applied

because in our goal the first list is not empty). The substitution

{X �→ 0, L �→ [], Y �→[1,2], U �→ [0|Z]}

unifies the head of the second program clause with the query; that is,

if we apply this substitution to the literals append([X|L],Y,[X|Z]) and

append([0],[1,2],U) we obtain exactly the same result:

append([0],[1,2],[0|Z]).

Since the second clause in the program says that append([X|L],Y,[X|Z])

holds if append(L,Y,Z) holds, all that remains to be proved is that

append([],[1,2],Z) holds for some Z.

Now we have an atom in which the first list is empty, and we have a fact

append([],L,L) in the program. Applying the substitution

{Z �→ [1,2]}
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to our atom, we obtain (an instance of) a fact.

Combining both substitutions we get

{U �→ [0,1,2]}

which solves the query. It is the most general answer substitution for the given

goal, and the process by which we derived this solution is an example of an

application of the Principle of Resolution.

Goals such as

:- append([0],[1,2],U)

:- append(X,[1,2],U)

:- append([1,2], U,[0])

can all be seen as questions to be answered using the definitions given in the

program. The first one has only one solution:

{U �→ [0,1,2]}

The second has an infinite number of solutions, and the third one has none.

5.3 Computing with logic programs

In this section, we will describe how logic programs are executed, or in other

words how computations are carried out in a model of computation where

algorithms are expressed as logic programs. We have already mentioned in the

previous section that the Principle of Resolution is the basis of this computation

model. We will start by defining unification, a key step in the Principle of

Resolution. Then we will define SLD-resolution, which uses a specific strategy

to search for solutions to goals.

5.3.1 Unification

Although a process of unification was sketched by Herbrand in his thesis in

the early 1930s, it was only in the 1960s, after Alan Robinson introduced the

Principle of Resolution and gave an algorithm to unify terms, that logic pro-

gramming became possible. Robinson’s unification algorithm was the basis for

the implementation of the programming language Prolog. The version of the

unification algorithm that we present is based on the work of Martelli and
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Montanari, where unification is described as a simplification process to solve

equations between terms.

Definition 5.11 (Unifier)

A unification problem U is a set of equations between terms containing vari-

ables. We will use the notation

{s1 = t1, . . . , sn = tn}

A solution to U , also called a unifier, is a substitution σ (see Definition 5.7)

such that when we apply σ to all the terms in the equations in U we obtain

syntactical identities: For each equation si = ti, the terms siσ and tiσ coincide.

A unifier σ is said to be most general if any other unifier for the problem

can be obtained as an instance of σ.

Although there may be many different substitutions that are most general

unifiers, one can show that they are all equivalent modulo renaming of

variables. In other words, the most general unifier is unique if we consider it

modulo renamings. The algorithm of Martelli and Montanari finds the most

general unifier for a unification problem if a solution exists; otherwise it fails,

indicating that there are no solutions. To find the most general unifier for

a unification problem, the algorithm simplifies (i.e., transforms) the set of

equations until a substitution is generated. The simplification rules apply to

sets of equations and produce new sets of equations or a failure.

Unification algorithm

Input: A finite set of equations between terms:

{s1 = t1, . . . , sn = tn}

Output: A substitution that is the most general unifier (mgu) for these terms

or failure.

Transformation rules: The rules that are given below transform a unification

problem into a simpler one or produce a failure. Below, E denotes an arbitrary

set of equations between terms.
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(1) f(s1, . . . , sn) = f(t1, . . . , tn), E → s1 = t1, . . . , sn = tn, E

(2) f(s1, . . . , sn) = g(t1, . . . , tm), E → failure

(3) X = X,E → E

(4) t = X,E → X = t, E if t is not a

variable

(5) X = t, E → X = t, E{X �→ t} if X is

not in t and X occurs in E

(6) X = t, E → failure if x occurs in t

and x 
= t

The unification algorithm applies the transformation rules in a non-

deterministic way until no rule can be applied or a failure arises. Note that

we are working with sets of equations, and therefore the order in which they

appear in the unification problem is not important.

The test in case (6) is called occur-check; for example, X = f(X) fails.

This test is time-consuming, and for this reason in some systems it is not

implemented.

If the algorithm finishes without a failure, we obtain a substitution, which

is the most general unifier of the initial set of equations.

Note that rules (1) and (2) apply also to constants (i.e., 0-ary functions):

In the first case, the equation is deleted, and in the second there is a failure.

Example 5.12

1. We start with {f(a, a) = f(X, a)}.

a) Using rule (1), this problem is rewritten as {a = X, a = a}.

b) Using rule (4), we get {X = a, a = a}.

c) Using rule (1) again, we get {X = a}.

Now no rule can be applied, and therefore the algorithm terminates with

the most general unifier {X �→ a}.

2. In Example 5.10, we solved the unification problem

{[X|L] = [0], Y = [1,2], [X|Z] = U}
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Recall that [ | ] is a binary function symbol (a list constructor; its argu-

ments are the head and the tail of the list, respectively). [0] is shorthand

for [0|[]], and [] is a constant (the empty list).

We apply the unification algorithm, starting with the set of equations

above.

a) Using rule (1) in the first equation, we get

{X = 0, L = [], Y = [1,2], [X|Z] = U}

b) Using rule (5) and the first equation, we get

{X = 0, L = [], Y = [1,2], [0|Z] = U}

c) Using rule (4) and the last equation, we get

{X = 0, L = [], Y = [1,2], U = [0|Z]}

Then the algorithm stops. Therefore the most general unifier is

{X �→ 0, L �→ [],Y �→ [1,2], U �→ [0|Z]}

5.3.2 The Principle of Resolution

Resolution is based on refutation. In order to solve a query

:- A1,...,An

with respect to a set P of program clauses, resolution seeks to show that

P,¬A1, . . . ,¬An

leads to a contradiction. That is, the negation of the literals in the goal is added

to the program P ; if a contradiction arises, then we know that P did entail the

literals in the query.

Definition 5.13

A contradiction is obtained when a literal and its negation are stated at the

same time.

For example, A, ¬A is a contradiction. If a contradiction does not arise

directly from the program and the goal, new clauses will be derived by resolu-

tion, and the process will continue until a contradiction arises (the search may

continue forever). The derived clauses are called resolvents.
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We will describe the generation of resolvents using a restriction of the Prin-

ciple of Resolution called SLD-resolution; Prolog is based on SLD-resolution.

5.3.2.1 SLD-resolution. Let us consider first a simple case where in the

query there is just one atom. If we have a goal

:- p(u1, . . . , un).

and a program clause (we rename the variables in the clause if necessary so

that all the variables are different from those in the goal)

p(t1, . . . , tn) :- S1, . . . , Sm.

such that p(t1, . . . , tn) and p(u1, . . . , un) are unifiable with mgu σ, then we

obtain the resolvent

:- S1σ, . . . , Smσ.

In the general case, the query may have several literals. Prolog’s SLD-

resolution generates a resolvent using the first literal in the goal.

Definition 5.14 (SLD-resolution)

If the query has several literals, for instance

:- A1, . . . , Ak.

the resolvent is computed between the first atom in the goal (A1) and a

(possibly renamed) program clause. If there is a program clause

A′

1 :- S1, . . . , Sm.

such that A′

1 and A1 are unifiable with mgu σ, then we obtain a resolvent

:- S1σ, . . . , Smσ,A2σ, . . . , Akσ.

In other words, the resolvent is generated by replacing the first atom in

the goal that unifies with the head of a clause by the body of the clause and

applying the unifier to all the atoms in the new goal. Note that when we

compute a resolvent using a fact (i.e., when m = 0), the atom disappears from
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the query. An empty resolvent indicates a contradiction, which we will denote

by the symbol ♦.

We stress the fact that each resolution step computes a resolvent between

the first atom of the last resolvent obtained and a clause in the program. This

is why this particular form of resolution is called SLD-resolution.

The ‘S’ stands for selection rule: A fixed computation rule is applied in

order to select a particular atom to resolve upon in the goal. Prolog always

selects the leftmost literal in the goal.

The ‘D’ stands for definite: It indicates that all the program clauses are

definite.

The ‘L’ stands for linear, indicating that each resolution step uses the most

recent resolvent (to start with, it uses the given query) and a program clause.

Prolog uses the clauses in the program in the order they are written.

Given a logic program and a query, the idea is to continue generating re-

solvents until an empty one (a contradiction) is generated. When an empty

resolvent is generated, the composition of all the substitutions applied at each

resolution step leading to the contradiction is computed. This is also a substi-

tution (recall that substitutions are functions from terms to terms, and com-

position is simply functional composition; see Definition 5.7 for more details).

The restriction of this substitution to the variables that occur in the initial goal

is the answer to the initial query.

We represent each resolution step graphically as follows:

Query

| mgu

Resolvent

Since there might be several clauses in the program that can be used to

generate a resolvent for a given query, we obtain a branching structure called

an SLD-resolution tree.

Definition 5.15 (SLD-tree)

Every branch in the SLD-tree that leads to an empty resolvent produces an

answer. All the branches that produce an answer are called success branches.

If a finite branch does not lead to an empty resolvent, it is a failure.

An SLD-resolution tree may have several success branches, failure branches,

and also infinite branches that arise when we can continue to generate resolvents

but never reach an empty one.
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Example 5.16

Consider the program P

based(prolog,logic).

based(haskell,functions).

likes(max,logic).

likes(claire,functions).

likes(X,P) :- based(P,Y), likes(X,Y).

and the query

:- likes(Z,prolog).

Using the last clause and the mgu {X �→ Z, P �→ prolog}, we obtain the

resolvent

:- based(prolog,Y), likes(Z,Y).

Now using the first clause and the mgu {Y �→ logic}, we obtain the new

resolvent

:- likes(Z,logic).

Finally, since we can unify this atom with the fact likes(max,logic) using

the substitution {Z �→ max}, we obtain an empty resolvent. This is therefore a

success branch in the SLD-tree for the initial query.

The composition of the substitutions used in this branch is

{X �→ max, P �→ prolog, Y �→ logic, Z �→ max}

Therefore, the answer to the initial query is {Z �→ max}.

There are other branches in the SLD-tree for this query, but this is the only

successful one. The SLD-resolution tree for this query is shown in Figure 5.1.

Note that in the branch that leads to failure we again use the last clause of

the program but rename its variables as X’, P’, Y’ to avoid confusion with

the previous use of this clause (see Definition 5.14).

Now consider the same program with an additional clause:

likes(claire,logic).
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likes(Z,prolog)

| {X �→ Z, P �→ prolog}

based(prolog,Y), likes(Z,Y)

| {Y �→ logic}

likes(Z,logic).

{Z �→ max} / \ {X’ �→ Z, P’ �→ logic}

♦ based(logic,Y’),likes(Z,Y’)

(Failure)

Figure 5.1 SLD-resolution tree for the query :- likes(Z,prolog). using

the program P .

The new program will be called P ′. The SLD-resolution tree for the same

query in the context of the program P ′ is shown in Figure 5.2.

likes(Z,prolog)

| {X �→ Z, P �→ prolog}

based(prolog,Y), likes(Z,Y)

| {Y �→ logic}

likes(Z,logic).

{Z �→ max}/ {Z �→ claire}| \

♦ ♦ based(logic,Y’),likes(Z,Y’)

(Failure)

Figure 5.2 SLD-tree for :- likes(Z,prolog). using the program P ′.

Finally, with the same program and a query

:- likes(Z,painting).
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the SLD-tree is

likes(Z,painting)

| {X �→ Z, P �→ painting}

based(painting,Y), likes(Z,Y)

(Failure)

5.4 Prolog and the logic programming paradigm

We have seen how logic formulas can be used to express knowledge and describe

problems and how we can compute solutions to a problem using resolution as

the inference rule. In this section, we discuss the logic programming paradigm.

If we analyse the approaches to programming discussed in the previous

chapters (imperative and functional), we can single out one major difference:

Functional programs are concerned with what needs to be computed, whereas

imperative programs indicate how to compute it. Functional languages are

declarative. Logic programming languages also belong to the family of declar-

ative languages. Roughly speaking, programs in logic programming languages

specify a problem, and the execution of a program is a process of proof search-

ing during which solutions for the problem will be generated. Since programs

are just descriptions of problems, this is a knowledge-based programming style

that has many applications in artificial intelligence (for example, to build expert

systems).

The language of logic is a very powerful one. The same formalism can be

used to specify a problem, write a program, and prove properties of the pro-

gram. The same program can be used in many different ways. Based on this

idea, several programming languages have been developed that differ in the

kind of logic that is used for the description of the problem and the method

employed to find proofs. The most well-known logic programming language is

Prolog, which is based on first-order predicate calculus and uses the Principle

of Resolution. Actually, first-order logic and the Principle of Resolution are too

general to be used directly as a model of computation, but in the 1970s Robert

Kowalski, Alain Colmerauer, and Philippe Roussel defined and implemented a

suitable restriction based on the clausal fragment of classical first-order logic,

as described in the previous sections. Their work resulted in the first version

of Prolog.
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Prolog builds the SLD-tree for a given query using the clauses in the pro-

gram in the order in which they occur, in a depth-first manner: The leftmost

branch in the SLD-tree is generated first. If this branch is infinite, Prolog will

fail to find an answer even if there are other successful branches. For this reason,

the order of the clauses in a Prolog program is very important.

If during the traversal of the tree Prolog arrives at a failure leaf, it will go

back (towards the root of the tree) to explore the remaining branches. This

process is called backtracking.

We could summarise Prolog’s computations as SLD-resolution with a depth-

first search strategy and automatic backtracking.

Example 5.17

Consider the program P defining the predicate append:

append([],L,L).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

The goal

:- append(X,[1,2],U).

produces the answer {X �→ [], U �→ [1, 2]}, but if we change the order of

the clauses in the program, the same goal leads to an infinite computation. In

this case, there is no answer for the query, and eventually the interpreter will

give an error message (out of memory space because the leftmost branch of the

SLD-tree that Prolog is trying to build is infinite).

SLD-resolution has interesting computational properties:

1. It is refutation-complete: Given a Prolog program and a goal, if a con-

tradiction can be derived, then SLD-resolution will eventually generate an

empty resolvent.

2. It is independent of the computation rule: If there is an answer for a goal,

SLD-resolution will find it whichever selection rule is employed for choosing

the literals resolved upon.

However, the particular tree traversal strategy that Prolog uses is not com-

plete. In the example above, we see that if we change the order of the clauses

in the program, Prolog fails to find an answer, even if an empty resolvent can

be generated by SLD-resolution. The problem is that this empty resolvent will

be generated in a branch of the SLD-tree that Prolog does not build.
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There is an easy way to obtain a refutation-complete implementation of

SLD-resolution: using a breadth-first search instead of a depth-first search.

However, there is a price to pay. A breadth-first search strategy will in general

take more time to find the first answer. For this reason, this strategy is not

used in practice.

Nowadays, several versions of Prolog exist. The basic framework has been

enriched to make it more efficient and easier to use. Extensions include primi-

tive data types such as integers and real numbers, advanced optimisation tech-

niques, file-handling facilities, graphical interfaces, control mechanisms, and

others. Some of these features are non-declarative, and often programs that

use them are called impure because, to achieve efficiency in the program, the

problem description is mixed with implementation details (i.e., the what and

the how are mixed). Constraint logic programming languages, which were de-

veloped from Prolog, achieve efficiency by incorporating optimised proof search

methods for specific domains.

5.5 Further reading

We refer the reader to [23] for more examples of logic programs. Robinson’s

article [43] introduces the Principle of Resolution. More information on the

unification algorithm presented in this chapter can be found in Martelli and

Montanari’s article [31]. The book [7] provides an introduction to logic pro-

gramming, and [44] is a reference document for Prolog.

5.6 Exercises

1. Assuming that A,B,C are atoms, which of the following clauses are Horn

clauses?

a) ¬A

b) A ∨ B ∨ ¬C

c) A ∨ ¬A

d) A

2. Numbers and arithmetic operations are predefined in Prolog. Assume we

define the predicate mean using the clause

mean(A,B,C) :- C is (A+B)/2.
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What are the answers to the following goals?

:- mean(2,4,X).

:- mean(2,4,6).

3. Show that for the problem f(X) = f(Y) both {X �→ Y} and {Y �→ X} are

most general solutions. Can you find a different substitution that is also a

most general unifier for these terms?

4. Give the most general unifier (if it exists) of the following atoms (recall

that [1,2] is short for the list [1|[2|[]]]):

a) append([1,2],X,U), append([Y|L],Z,[Y|R])

b) append([1,2],X,[0,1]), append([Y|L],Z,[Y|R])

c) append([],X,[0,1]), append([Y|L],Z,[Y|R])

d) append([],X,[0]), append([],[X|L],[Y])

5. Lists are predefined in Prolog; in particular, the predicate append is pre-

defined, but in this exercise we will define a new append:

myappend([],Y,Y).

myappend([H|T],Y,[H|U]) :- myappend(T,Y,U).

What are the answers to the following goals?

:- myappend([1,2],[3,4,5],[1,2,3,4,5]).

:- myappend([1,2],[3,4,5],[1,2]).

:- myappend([1,2],[3,4,5],X).

:- myappend([1,2],X,[1,2,3,4,5]).

:- myappend(X,[3,4,5],[1,2,3,4,5]).

:- myappend(X,Y,[1,2,3,4,5]).

:- myappend(X,Y,Z).

Explain the answers.

6. Show that the resolvent of the clauses

P :- A1, . . . , An

and
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:- Q1, . . . , Qm

is also a Horn clause.

7. Consider the program

nat(s(X)) :- nat(X).

nat(0).

and the query

:- nat(Y).

a) Describe the complete SLD-resolution tree for this query.

b) Explain why Prolog will not find an answer for this query.

c) Change the program so that Prolog can find an answer.

8. Write a logic program defining a binary predicate member such that

member(a,l) is true if the element a is in the list l.

What are the answers to the following queries? Draw the SLD-resolution

tree for each one.

a) :- member(1,[2,1,3]).

b) :- member(1,[2,3,4]).

c) :- member(1,[]).

9. What is the purpose of the occur-check in the unification algorithm?

10. Write a logic program for sorting a list of numbers (in ascending order)

using the insertion sort algorithm.

For this, you will need to define:

– a predicate sort such that sort(L,L’) holds if L’ is a list containing

the same elements as L but in ascending order; and

– a predicate insertion such that insertion(X,L,L’) holds if X is a

number, L is a sorted list (in ascending order), and L’ is the result of

inserting X in the corresponding place in the list L.

11. Consider the following program and queries:

Program:

even(0).

even(s(s(X))) :- even(X).



Chapter 5. Logic-Based Models of Computation 89

odd(s(0)).

odd(X) :- even(s(X)).

Queries:

:- odd(s(s(0))).

:- odd(s(0)).

Write an SLD-resolution tree for each query.

We now replace the fourth clause of the program by

odd(X) :- greater(X,s(0)), even(s(X)).

Write the clauses defining the predicate greater such that greater(m,n)

holds when the number m is greater than n.

Give the SLD-tree for the query

:-odd(s(0)).

with the modified program.

12. A graph is a set V = {a, b, c, . . .} of vertices and a set E ⊆ V ×V of edges.

We use the binary predicate edge to represent the edges: edge(a,b) means

that there is an edge from a to b. In a directed graph, the edges have a

direction, so edge(a,b) is different from edge(b,a). We say that there is

a path from a to b in a graph if there is a sequence of one or more edges

that allows us to go from a to b.

a) Write a logic program defining the predicate path.

b) Write a query to compute all the directed paths starting from a in the

graph.

c) Write a query to compute all the directed paths in the graph.



Part II

Modern Models of Computation



6
Computing with Objects

Turing machines and the λ-calculus are two examples of universal (i.e., Turing-

complete) models of computation. We will now describe another universal

model, based on the use of objects, with method invocation and update as

main operations.

Many modern programming languages are based on the object model: Java,

Eiffel, C++, Smalltalk, Self, OCaml, OHaskell, etc. In defining an object-based

model of computation, we will try to encapsulate the essential features of object-

oriented programming languages. These are:

– the ability to create objects, which are collections of fields and methods;

– the ability to use a method belonging to an object — this is usually called

method invocation, but sometimes the terminology “message passing” is used;

– the ability to modify a method in an object — this is usually called method

update or method override.

An object calculus is the analogue of the λ-calculus for objects rather than

functions. The object calculus that we will describe was introduced by Mart́ın

Abadi and Luca Cardelli in the 1990s. It has primitives to define methods (and

fields as a particular case), to call methods that have already been defined,

and to update them. It can be seen as a minimal object-oriented programming

language or as the kernel of an object-oriented language. We will see that the

calculus of objects has the same computation power as the λ-calculus.

In the description of the object calculus in this chapter, we will follow the

same pattern as for the λ-calculus. We present first the syntax of the object
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calculus, then the reduction rules we will use to compute with objects, and

finally we will discuss the properties of the calculus and its applications to the

design of object-oriented programming languages.

6.1 Object calculus: Syntax

We start by defining the syntax of the terms that we will use to represent

objects and operations on them.

Objects will be represented as collections of methods, each method having

a different label (its name) and body (the method’s definition). The body of

a method can refer to the whole object where the method is defined; in other

words, objects can contain self-references. This is done by using a distinguished

variable, called self or this in object-oriented programming languages. In the

object calculus, we will simply use a bound variable. Thus a method will have

the form l = ς(x)b, where l is the name of the method, and the occurrences

of x in b will represent the object where the method is defined. We say that

the variable x is bound in ς(x)b, and ς is a binder (like λ in the λ-calculus).

Because of the use of this symbol as a binder, the object calculus is sometimes

called ς-calculus.

Methods that do not use a self-reference in their definition are called fields;

in other words, a field is a method of the form l = ς(x)b, where b does not

contain any occurrence of x. In this case, it can simply be written l = b.

We write objects by listing their methods between square brackets:

[l1 = ς(x1)b1, . . . , ln = ς(xn)bn]

We will sometimes use the notation [li = ς(xi)b
i∈1...n
i ] as an abbreviation. Note

that the order in which we write the methods in an object is not important

(objects are sets of methods).

We assume that there is an infinite, countable set X of variables

x, y, z, . . . , x1, x2, . . ., and an infinite, countable set L of labels l1, . . . , ln, . . .,

such that X and L are disjoint. The language of terms in the ς-calculus is

defined by induction, with variables as a base case, as described below.

Definition 6.1

The set O of terms is the smallest set that contains

– all the variables in X ;

– objects of the form [li = ς(xi)b
i∈1...n
i ], where li ∈ L, xi ∈ X , and bi ∈ O, for

all i ∈ {1, . . . , n};
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– method invocations a.l, where a ∈ O and l ∈ L; and

– method updates a.l ⇐ ς(x)b, where a, b ∈ O, l ∈ L, x ∈ X .

An invocation a.l denotes a call to the method with label l in the object

a. Update operations will be used to modify method definitions (or fields as a

particular case). For instance, o.l ⇐ ς(x)b will be used to replace (only) the

method l in o with ς(x)b. In the case of an update of a field, we will simply

write a.l := b.

Since ς is a binder, we have an associated notion of free and bound variables.

Any occurrence of a variable x in b is bound in the term ς(x)b. Occurrences of

variables that are not in the scope of a binder are free. The sets of free and

bound variables of a term can be computed using the functions defined below.

Definition 6.2 (Free and bound variables)

The set of free variables of o will be denoted by FV (o). This set can be com-

puted as follows:

FV (x) = {x}

FV (ς(x)b) = FV (b) − {x}

FV ([li = ς(xi)b
i∈1...n
i ]) =

⋃i∈1...n
FV (ς(xi)bi)

FV (a.l) = FV (a)

FV (a.l ⇐ ς(x)b) = FV (a) ∪ FV (ς(x)b)

A term a is closed if it has no free variables; that is, FV (a) = ∅. The set of

bound variables of o is also defined by induction:

BV (x) = ∅

BV (ς(x)b) = BV (b) ∪ {x}

BV ([li = ς(xi)b
i∈1...n
i ]) = {x1, . . . , xn} ∪

⋃i∈1...n
BV (bi)

BV (a.l) = BV (a)

BV (a.l ⇐ ς(x)b) = BV (a) ∪ BV (ς(x)b)

As in the λ-calculus, terms represent α-equivalence classes: Two terms that

can be made equal by renaming their bound variables are considered equivalent.

Many of these ideas will become clearer after we give the computation rules

that define the dynamics of the calculus in the next section.
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6.2 Reduction rules

There are two computation rules in the ς-calculus: The invocation rule describes

the behaviour of a method invocation, and the update rule describes the effect

of a method update. Object-oriented computation is described as a sequence of

reduction steps using these rules; in other words, a computation is a sequence

of method invocations and updates.

Consider an object o = [li = ς(xi)b
i∈1...n
i ]. Intuitively, the invocation of the

method lj in o should trigger the evaluation of the body of this method (i.e.,

bj). Since bj may contain self-references (to the object o), before evaluating bj

all occurrences of xj in bj must be replaced by the object o. More precisely, the

invocation of the method lj in o triggers the evaluation of bj{xj �→ o}, where

we use the notation {xj �→ o} to represent the substitution of xj by o. This is

the essence of the invocation rule. The update rule simply replaces a method

with a new definition.

(invocation) o.lj −→ bj{xj �→ o}

(update) o.lj ⇐ ς(y)b −→ [lj = ς(y)b, li = ς(xi)b
i∈(1...n)−j
i ]

Substitution must be performed with care in the presence of bound vari-

ables. The notion of substitution used in the invocation rule is the same capture-

avoiding notion of substitution that we defined for the λ-calculus in Chapter 3.

We recall it below.

In both rules above, we assume j ∈ 1 . . . n. We now give a simple example.

Example 6.3

Consider an object o with only one method, called l, whose body is just a

self-reference. In the ς-calculus, this object is defined by the term

o = [l = ς(x)x]

Then, using the invocation rule, o.l −→ o.

As usual, we denote a sequence of reduction steps from t to u by t −→∗ u.

We define below the operation of substitution, taking into account the fact

that terms are defined modulo α-equivalence: In substituting under a binder,

we must avoid the capture of free variables.
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Definition 6.4 (Substitution)

The substitution of x by c in a term o, written o{x �→ c}, is defined as follows:

x{x �→ c} = c

y{x �→ c} = y

(ς(y)b){x �→ c} = ς(y′)(b{y �→ y′}{x �→ c}) (y′ fresh)

([li = ς(xi)b
i∈1...n
i ]){x �→ c} = [li = (ς(xi)bi){x �→ c}i∈1...n]

(a.l){x �→ c} = a{x �→ c}.l

(a.l ⇐ ς(y)b){x �→ c} = (a{x �→ c}).l ⇐ (ς(y)b){x �→ c}

Note that in the third case above, when we apply the substitution {x �→ c} to

ς(y)b, the variable y is renamed to a fresh variable y′ to ensure that there are

no clashes with the variables in c.

Some examples of terms and computations in the object calculus follow.

Example 6.5

1. Empty object: It is possible to define an empty object, with no methods or

fields, by writing [ ]. The object o = [empty = [ ]] has just one field, and

o.empty −→ [ ].

2. Self: It is also possible to define an object with one method that returns the

object itself, as shown in Example 6.3. If o = [l = ς(x)x], then o.l −→ o.

In some object-oriented programming languages, this can be achieved by

returning ‘self’ or ‘this’.

3. Non-termination: Due to the possibility of defining recursive methods (that

is, methods that invoke themselves), objects in this calculus may generate

infinite computation sequences. For instance, if we define o = [l = ς(x)x.l],

then the method invocation o.l produces a non-terminating computation

sequence:

o.l −→ x.l{x �→ o} = o.l −→ · · ·

The reduction relation generated by the invocation and update rules is

confluent.

Property 6.6 (Confluence)

The ς-calculus is confluent: If a −→∗ b and also a −→∗ c, then there is some d

such that b −→∗ d and c −→∗ d.
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A term is in normal form if it is irreducible. Normal forms can be seen as

results; when a program is evaluated, it produces a normal form or an infinite

computation.

The confluence property implies the unicity of normal forms. Although some

terms may not produce a result, if a program gives a result, then this result is

uniquely determined.

6.3 Computation power

We mentioned at the beginning of the chapter that the object calculus is Turing

complete. This can be proved by defining an encoding of the λ-calculus into the

object calculus. Below we show an encoding, defined by Abadi and Cardelli,

that is based on the idea that a function can be represented as an object with

a field arg to store the function’s argument and a field val that defines the

function itself. Formally, the encoding is defined inductively. The idea is to

give, for each class of λ-term, the corresponding ς-term. For this, we define a

transformation function from λ-terms to ς-terms and show that the translated

terms have the same behaviour. For the sake of uniformity, in this chapter we

write λ-abstractions as λ(n)t instead of λn.t.

Definition 6.7

Let T : λ → ς be a function from λ-terms to ς-terms defined as follows:

T (x) = x

T (λx.M) = [arg = ς(x)x.arg, val = ς(x)T (M){x �→ x.arg}]

T (MN) = (T (M).arg := T (N)).val

According to the function T , the encoding of a λ-abstraction is an object,

where the body of the λ-abstraction is stored in the method val and any refer-

ence to its argument is replaced by a call to the method arg. Then, the encoding

of an application simply stores the actual argument in the field arg and calls

val.

To see that this encoding actually works, we need to show that the reduc-

tions out of a λ-term can be simulated by reductions on the ς-term obtained by

the encoding. More precisely, we need to show that if t −→ u in the λ-calculus,

then T (t) −→∗ T (u) in the ς-calculus. For this it is sufficient to show that

T ((λx.M)N) →∗ T (M{x �→ N}) = T (M){x �→ T (N)}
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which we can do as follows:

T ((λx.M)N) = (T (λx.M).arg := T (N)).val

= [arg = T (N), val = ς(x)T (M){x �→ x.arg}].val

Let o be the object [arg = T (N), val = ς(x)T (M){x �→ x.arg}]. Then we can

write T ((λx.M)N) = o.val, and we have the following reduction steps:

o.val −→ (T (M){x �→ x.arg}){x �→ o}

= T (M){x �→ o.arg}

−→∗ T (M){x �→ T (N)}

Although we did not include numbers or other data structures in the syntax

of the ς-calculus, it should be clear that data structures can be encoded in this

calculus. For instance, this can be done via an encoding into the λ-calculus,

as shown in Chapter 3, which can itself be encoded in the ς-calculus as shown

above. In what follows, we freely use numbers in examples.

6.4 Object-oriented programming

The object-oriented paradigm is one of the most popular in industry. There are

two different flavours of object-oriented languages in use:

– Class-based object-oriented languages: These are the most widespread and

include languages such as C++, Java, and Smalltalk. In class-based languages,

there is a global hierarchy of object generators, called classes, organised by

the inheritance relation. Every object is generated by a single class, and

therefore the partial order between classes induces a categorisation and a

partial order on objects.

– Prototype-based object-oriented languages: In these languages, objects can be

defined directly, without first defining a class. There is a cloning operation

that can be used to create additional copies of objects (i.e., objects are seen

as prototypes that can be cloned). Examples of prototype-based languages are

Self and Javascript. These languages, although less popular than class-based

ones, present remarkable features in terms of flexibility, expressiveness, and

conceptual simplicity.

The object calculus is classified as prototype-based since there is no primitive

notion of class in the calculus. However, classes can be encoded in prototype-

based calculi. Before showing the encoding, let us give some simple examples

that relate the ς-calculus to class-based languages in the style of Java.

Consider the following program defining the class Empty:
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class Empty {

}

class Test {

public static void main(String[] args){

Empty o = new Empty();

}

}

Objects in the class Empty do not contain any fields or methods. The object

o created with the command new Empty() corresponds to the object [ ] in the

ς-calculus.

Consider now the object

o = [l = 3]

in the ς-calculus, and the new object obtained by evaluating the expression

o.l ⇐ 4

which updates the value of the field l. The same effect can be obtained by

defining the following classes in Java:

class Number {

int l = 3;

}

class Test {

public static void main(String[] args){

Number o = new Number();

o.l = 4;

}

}

The previous examples illustrate the creation of simple objects via the def-

inition of classes and the definition of the same objects in a direct way in the

ς-calculus. We can use this technique to simulate classes in the object calculus.

Since there is no primitive notion of class in the object calculus, we will use

objects to define classes. More precisely, a class will be an object with

– a method new for creating new objects and

– all the methods needed in the objects generated from the class.

For instance, to generate an object

o = [li = ς(xi)b
i∈1...n
i ]
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we will use the class

c = [new = ς(z)[li = ς(x)z.li(x)i∈1...n], lj = λ(xj)b
j∈1...n
j ]

It is easy to see that c.new = o since c.new −→ [li = ς(x)c.li(x)i∈1...n], and

c.li(x) = bi.

We call the method new a generator. Each field li is called a premethod.

As the attentive reader might have noticed, in this encoding of classes we

have also used the λ-calculus: We have defined the methods lj in the class c as

λ-abstractions (i.e., functions) with formal argument xj and body bj . However,

it is also possible to encode classes using just the object calculus since we have

already shown that the λ-calculus can be encoded in the ς-calculus.

As this encoding shows, it is convenient to have access to both object prim-

itives and functions in the same calculus. We will define functional extensions

of the object calculus below.

6.5 Combining objects and functions

Although object-oriented languages are popular, languages that are based solely

on objects deprive users of a certain number of useful programming techniques

available in other paradigms (e.g., pattern matching on data, typical of mod-

ern functional programming languages). Ideally, we would like a programming

language to offer the best features of each of the programming paradigms. How-

ever, combining object-oriented and functional programming styles in a single

multiparadigm language is not an easy task. The problem is finding a uniform

way of integrating both styles rather than glueing together a functional and an

object-oriented language. Several solutions have been proposed; for instance,

the programming languages OCaml, OHaskell, and Scala smoothly integrate

features of object-oriented languages and functional languages. Their under-

lying model of computation can be explained by extending the ς-calculus to

include other features, such as

– basic data types (e.g., numbers, Booleans),

– the λ-calculus, and

– more general reduction systems.

There are several motivations for using such combinations. For instance, it

is generally more efficient to add “built-in” data structures rather than define

them in the basic calculus (numbers especially). Also, other calculi may provide

a more natural representation for certain features; typically, an input-output
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behaviour is more naturally captured as a function, and functions are more

naturally represented using the λ-calculus.

The addition of features such as numbers and functions allows the program-

mer to define in a concise way systems that would require heavy encodings in

the ς-calculus. However, the addition of these features does not offer any ad-

ditional computation power. We have already seen that we can encode the

λ-calculus in the ς-calculus, and we can also encode numbers in these calculi.

Thus we can always replace the new features with the corresponding simulation

in the pure object calculus.

It is also possible to model imperative features in the object calculus; for

instance, memory locations (which can be directly manipulated in an impera-

tive language) can also be initialised and updated using the object calculus, as

the following example shows.

Example 6.8

We can model a memory cell in the ς-calculus by using an object with a field

to store a value and a method set to change this value. The object loc defined

below represents a memory location storing the value 0.

loc = [value = 0, set = ς(x)λ(n)x.value := n]

In this example, the field value contains a number, and the method set allows

us to change this number.

The method invocation loc.value can be used to retrieve the value stored at

the location. Note that the method set is defined using a function (represented

by a λ-abstraction) that takes as its argument the new value n to be stored at

the location.

Below we show a reduction sequence for the term loc.set(2):

loc.set(2) −→ (λ(n)[value = 0, set = ς(x)λ(n)x.value := n].value := n)2

−→ [value = 0, set = ς(x)λ(n)x.value := n].value := 2

−→ [value = 2, set = ς(x)λ(n)x.value := n]

Thus loc.set(2).value −→∗ 2.

Functional and object-oriented computations fit naturally in the example

above. The functional part in this example models the input of the value (in

this case the number 2), and the object-oriented part models the update of the

memory location with the input value.

We give below another example that shows the combined use of functions

and objects to model the behaviour of a pocket calculator.
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Example 6.9 (Calculator)

The calculator will be represented by an object calc, with an accumulator,

represented by the field acc, and methods representing the arithmetic opera-

tions addition, subtraction, etc. The method equals behaves like the key = in

a pocket calculator.

calc = [arg = 0.0,

acc = 0.0,

enter = ς(s)λ(n)s.arg := n,

add = ς(s)(s.acc := s.equals).equals ⇐ ς(s′)s′.acc + s′.arg,

sub = ς(s)(s.acc := s.equals).equals ⇐ ς(s′)s′.acc − s′.arg,

· · ·

equals = ς(s)s.arg]

For example, the term calc.enter(5.0).equals reduces to the value 5.0, and

calc.enter(5.0).sub.enter(3.5).equals reduces to 1.5.

In the example above, we have used an extension of the ς-calculus that

includes numbers and basic functions to operate on them. The extension does

not increase the computation power of the calculus but makes it easier to use.

A more radical approach consists of adding general rewrite rules of the form

l → r

where l and r are terms. A rewrite rule can be thought of as an oriented equality,

or a simplification step that can be used to compute the value of an expression.

For example, x + 0 → x is a rewrite rule with the intended meaning that to

compute the result of x + 0 for any arbitrary expression x we just need to

compute the value of x.

An extension of this kind, with arbitrary rewrite rules, can change the

computation properties of the calculus since it is not the case that all rewrite

rules can be encoded in the ς-calculus. The reason is simply that the addition

of arbitrary reduction rules can break the confluence of the system. Moreover,

even if we restrict the extension to sets of confluent rules, the resulting system

may be non-confluent, as the following example shows.

Consider the rewrite system

f x x −→ 0

f x S(x) −→ 1

This system is confluent, but the combination of the ς-calculus with such

rules leads to a non-confluent system. Take o = [l = ς(x)S(x.l)], and examine

the possible results of f o.l o.l. Using the first rule,

f o.l o.l → 0
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Using the invocation rule, o.l −→ S(o.l), and therefore

f o.l o.l → f o.l S(o.l) → 1

However, if we extend the ς-calculus using only left-linear rules (that is,

rules such that on the left-hand side each variable occurs at most once), then

the extended calculus is confluent. In particular, all the extensions mentioned

above (ς-calculus combined with numbers and arithmetic operations, ς-calculus

combined with λ-calculus, etc.) fall into this class and are therefore confluent.

6.6 Further reading

For more details on object calculi, we refer the reader to Abadi and Cardelli’s

book [1]. The class-based object-oriented programming languages C++, Java,

and Smalltalk are described in [48], [20], and [25], respectively. For further

information about prototype languages, see the descriptions of Self [52] and

Javascript [13]. For more details on languages combining object-oriented and

functional features, see the descriptions of OCaml [30] and Scala [38]. Further

information on combinations of object calculi and rewrite rules can be found

in [9].

6.7 Exercises

1. What is the fundamental difference between a method defined by l = ς(x)b

in an object o and a function with argument x defined by the λ-term λ(x)b?

2. Describe at least two different ways to encode numbers in the object cal-

culus.

3. Add a method get in the object loc defined in Example 6.8 to represent a

memory location, so that the field value is accessed by get.

4. In a calculus that combines objects, functions, numbers, and arithmetic

functions, we have defined the following object:

loc = [value = 0,

set = ς(x)λ(n)x.value := n,

incr = ς(x)x.value := x.value + 1]

a) Describe in your own words the behaviour of the methods set and incr.
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b) Evaluate the terms (and show the reduction steps)

i. loc.set(1).set(3).value

ii. loc.incr.value

where loc is the object defined above.

5. Show the reduction sequences for the following terms using the definition

of the calculator in Example 6.9:

calc.enter(5.0).equals

calc.enter(5.0).sub.enter(3.5).equals

calc.enter(5.0).add.add.equals

6. Recall the translation function T from the λ-calculus to the ς-calculus

defined in this chapter:

T (x) = x

T (λx.M) = [arg = ς(x)x.arg, val = ς(x)T (M){x �→ x.arg}]

T (MN) = (T (M).arg := T (N)).val

a) Using this definition, write down the ς-terms obtained by the following

translations:

i. T (λx.x)

ii. T (λxy.x)

iii. T (λy.(λx.x)y)

iv. T ((λx.x)(λy.y))

b) Reduce T ((λx.x)(λy.y)) to normal form using the reduction rules of

the ς-calculus.

c) What are the advantages and disadvantages of a computation model

that combines the ς-calculus and additional rewriting rules? Compare

it with the pure ς-calculus.

7. Indicate whether each of the following statements about the ς-calculus is

true or false and why.

a) The ς-calculus is confluent; therefore each expression has at most one

normal form in this calculus.

b) The ς-calculus does not have an operation to add methods to an object;

therefore it is not a Turing-complete model of computation.



7
Interaction-Based Models of Computation

In this chapter, we study interaction nets, a model of computation that can be

seen as a representative of a class of models based on the notion of “computation

as interaction”. Interaction nets are a graphical model of computation devised

by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic.

It can be seen as an abstract formalism, used to define algorithms and analyse

their cost, or as a low-level language into which other programming languages

can be compiled. This is fruitful because interaction nets can be implemented

with reasonable efficiency.

An interaction net system is specified by a set of agents and a set of in-

teraction rules. One can think of agents as logical symbols (connectives) and

interaction rules as a specification of their meaning. There is also an analogy

with electric circuits, where the agents are seen as gates and the edges as wires

connecting the gates. Or we can simply think of the agents as computation

entities, with interaction rules specifying their behaviour.

In the following sections, we give an overview of the interaction paradigm,

give examples of uses of interaction nets to express algorithms, and also show

how other computation models can be encoded in interaction nets.

7.1 The paradigm of interaction

Interaction net systems are specified by giving a set Σ of symbols used to build

nets and a set R of rewrite rules, called interaction rules, that must satisfy the
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set of conditions given below. Each symbol α ∈ Σ has an associated (fixed)

arity, a natural number. We assume that the function ar : Σ → Nat provides

the arity of each symbol in Σ.

Definition 7.1 (Net)

A net N built on Σ is a graph (not necessarily connected) where nodes are

labelled by symbols in Σ. A labelled node is called an agent, and an edge

between two agents is called a wire, so nets are graphs built out of agents and

wires.

The points of attachment of wires are called ports. If the arity of α is n,

then a node labelled with α must have n + 1 ports: a distinguished one called

the principal port, depicted by an arrow, and n auxiliary ports corresponding

to the arity of the symbol.

We index ports clockwise from the principal port, and hence the orientation

of an agent is not important. If ar(α) = n, then an agent α is represented

graphically in the following way:

��
��

α

�

� �· · ·
x1 xn

or equivalently ��
��

α
�

� �· · ·
xn x1

Note that this agent has been rotated (not reflected) and the ports are

indexed in the same way. If ar(α) = 0, then the agent has no auxiliary ports,

but it will always have a principal port.

In an interaction net, edges connect agents together at the ports such that

there is at most one edge at each port (edges may connect two ports of the

same agent). The ports of an agent that are not connected to another agent

are called free ports. There are two special instances of a net that we should

point out. A net may contain only edges (no agents); this is called a wiring,

and the free extremities of the edges are also called ports. In this case, if there

are n edges, then there are 2n free ports in the net. If a net contains neither

edges nor agents, then it is the empty net. The interface of a net is its set of

free ports.

Definition 7.2 (Interaction rule)

A pair of agents (α, β) ∈ Σ × Σ connected together on their principal ports is

called an active pair ; this is the interaction net analogue of a redex, and it will

be denoted α ⊲⊳ β.
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An interaction rule α ⊲⊳ β =⇒ N in R is composed of an active pair on

the left-hand side and a net N on the right-hand side. Rules must satisfy two

strong conditions:

1. In an interaction rule, the left- and right-hand sides have the same interface;

that is, all the free ports are preserved. The following diagram illustrates

the idea, where N is any net built from Σ.

��
��

α ��
��

β��
�

�

�

�

...
...

xn

x1

ym

y1

=⇒ N
...

...
xn

x1

ym

y1

We remark that the net N may contain occurrences of the agents α and β.

N can be just a wiring (but only if the number of free ports in the active

pair is even), and if there are no free ports in the active pair, then the net

N may be (but is not necessarily) the empty net.

2. In a set R of interaction rules, there is at most one rule for each unordered

pair of agents (that is, only one rule for α ⊲⊳ β, which is the same as the

rule for β ⊲⊳ α).

Interaction rules generate a reduction relation on nets, as shown below.

Definition 7.3

A reduction step using the rule α ⊲⊳ β =⇒ N replaces an occurrence of the

active pair α ⊲⊳ β by a net N . More precisely, we write W =⇒ W ′ if there is

an active pair α ⊲⊳ β in W and an interaction rule α ⊲⊳ β =⇒ N in R such

that W ′ is the net obtained by replacing α ⊲⊳ β in W with N (since N has the

same interface as α ⊲⊳ β, there are no dangling edges after the replacement).

We write =⇒ for a single interaction step and =⇒∗ for the transitive re-

flexive closure of the relation =⇒. In other words, N =⇒ N ′ indicates that we

can obtain N ′ from N by reducing one active pair, and N =⇒∗ N ′ indicates

that there is a sequence of zero or more interaction steps that take us from N

to N ′.

We do not require a rule for each pair of agents, but if we create a net with

an active pair for which there is no interaction rule, then this pair will not be

reduced (it will be blocked).

It is important to note that the interface of the net is ordered. Adopting this

convention, we can avoid labelling the free edges of a net. To give an example,

we can write the rule
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��
��

α ��
��

β��
�

�

�

�x2

x1

y2

y1

=⇒
x2

x1

y2

y1

that connects x1 with y2 and x2 with y1 equivalently as the rule

��
��

α ��
��

β��
�

�

�

�x2

x1

y2

y1

=⇒
x2

x1

y1

y2

but in the latter the labelling is essential (the difference being that we have

changed the order of the free ports of the net). We will always make an effort,

at the cost of making the rules look more complicated, to ensure that the order

of the edges is always preserved when we write a rule to avoid having to label

the edges (adopting the same convention for nets as we did for agents).

An interaction net is in full normal form (we will often just call it normal

form) if there are no active pairs. The notation N ⇓ N ′ indicates that there

exists a finite sequence of interactions N =⇒∗ N ′ such that N ′ is a net in

normal form. We say that a net N is normalisable if N ⇓ N ′; N is strongly

normalisable if all sequences of interactions starting from N are finite.

As a direct consequence of the definition of interaction nets, in particular

of the constraints on the rewrite rules, reduction is (strongly) commutative in

the following sense: If two different reductions are possible in a net N (that

is, N =⇒ N1 and N =⇒ N2), then there exists a net M such that N1 and

N2 both reduce in one step to M : N1 =⇒ M and N2 =⇒ M . This property

is stronger than confluence (it is sometimes called strong confluence or the

diamond property); it implies confluence. Consequently, we have the following

result.

Proposition 7.4

Let N be a net in an interaction system (Σ,R). Then:

1. If N ⇓ N ′, then all reduction sequences starting from N are terminating

(N is strongly normalisable).

2. Normal forms are unique: If N ⇓ N ′ and N ⇓ N ′′, then N ′ = N ′′.

Below we give an example of the implementation of two familiar operations

using interaction nets.
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Example 7.5

The following interaction rules define two ubiquitous agents, namely the erasing

agent (ǫ), which deletes everything it interacts with, and the duplicator (δ),

which copies everything.

��
��

ǫ

��
��

α

�
�

� �· · ·

=⇒ ��
��

ǫ

�

· · · ��
��

ǫ

�

��
��

α

� �· · ·

��
��

δ
� �

�
� =⇒

��
��

α ��
��

α

��
��

δ ��
��

δ· · ·

� �

� �

�
��

�
��

In the diagrams representing the rules, α denotes any agent. Indeed, there is

one rule defining the interaction between ǫ and each agent α in Σ and also one

rule for each pair δ ⊲⊳ α.

According to the first rule above, the interaction between α and ǫ deletes

the agent α and places erase agents on all the free edges of the agent. Note that

if the arity of α is 0, then the right-hand side of the rule is the empty net; in this

case the interaction marks the end of the erasing process. One particular case

of this is when α is an ǫ agent itself. These rules provide the garbage collection

mechanism for interaction nets.

In the second rule, we see that the α agent is copied, and the δ agents placed

on the free edges can now continue copying the rest of the net.

7.2 Numbers and arithmetic operations

Natural numbers can be represented using 0 and a successor function, as de-

scribed in previous chapters. For example, the number 3 is represented by

S(S(S(0))). Consider the following specification of the standard addition op-

eration:
add(0, y) = y

add(S(x), y) = S(add(x, y))

which indicates that adding 0 to any number y gives y as a result, and to add

x + 1 to y, we need to compute x + y and add 1.
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To code this system into an interaction net program, we introduce three

agents, corresponding to add, S, and 0. These are drawn as follows.

��
��

0

�

��
��

S

�

��
��
add

�����

Next we must specify the rules of interaction. In this case, we can mirror the

specification of addition given above. The two rules that we need are as follows:

��
��

0

��
��
add

��
��

S

��
��
add

��
��
add

��
��

S

�

�� �
	

� ���
	

�

�� �

=⇒ =⇒

These rules trivially satisfy the requirements of preserving the interface for

an interaction.

Consider the net corresponding to the term add(S(0), S(0)):

��
��

S

��
��

0

�

��
��

0

�

��
��
add

����
�

	

��
��

S



In this example, there is only one choice of reduction since at each step there

is only one possible interaction that can take place. The complete sequence of

reductions is shown below. The result is a net representing S(S(0)), as expected.

��
��

S

��
��

0

�

��
��

0

�

��
��
add

����
�

	

��
��

S

 =⇒

��
��

0

��
��

0

�

��
��
add

��
��

S

�

����
�

	

��
��

S

 =⇒

��
��

0

�

��
��

S

�

��
��

S

�
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This example is rather too simple though to bring out the essential features

of interaction nets. A more interesting example is the coding of the operation

of multiplication, specified by

mult(0, y) = 0

mult(S(x), y) = add(mult(x, y), y)

To give an algorithm to multiply numbers using interaction nets, we need to

introduce a new agent, m, to represent the multiplication operator. The inter-

action rules for this agent are more involved than those for add due to the fact

that multiplication is not a linear operation (as was the case with addition).

To keep in line with the definition of an interaction rule, we must preserve the

interface. To illustrate this, here are the two rules for multiplication:

��
��

0

��
��
m

��
��

ǫ

��
��

0

� =⇒
��
	

�

�

�
��
��

S

��
��
m

��
	

� =⇒
��
��
add

��
��
m ��

��
δ

�

�

��

��

�

To preserve the interface, we have used the erasing and duplicating agents

(ǫ and δ), that were introduced in Example 7.5.

This example illustrates one of the most interesting aspects of interaction

nets. It is impossible to duplicate active pairs, and thus sharing of computation

is naturally captured. Indeed, to duplicate a net, δ must be able to interact with

all the agents in the net, but if α and β are connected on their principal ports,

they cannot interact with δ and therefore cannot be copied.

Below we give another example of an operation on numbers and its definition

using interaction nets.

Example 7.6

Consider the function that computes the maximum of two natural numbers:

max(0, y) = y

max(x, 0) = x

max(S(x), S(y)) = S(max(x, y))

The problem with this specification is that it is defined by cases on both of the

arguments. If we follow the same ideas as in the previous examples, we would

need two principal ports for the agent max, but this is not possible in interaction

nets. However, we can transform the specification of max, introducing a new
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function max′, to obtain an equivalent system where each operation is defined

by cases on only one argument:

max(0, y) = y

max(S(x), y) = max′(x, y)

max′(x, 0) = S(x)

max′(x, S(y)) = S(max(x, y))

The corresponding interaction rules are:

��
��

0

��
��
max

=⇒���
	

� ��
��
mx′

��
��

0

��
��

S� ��

�

=⇒�
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� � =⇒
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mx′
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S
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S

��
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The definition of a system of interaction for computing the minimum of two

numbers is left as an exercise (see Section 7.9).

This example suggests a method of compiling functions on numbers into

interaction nets. Indeed, it is possible to compile all functional programs into

interaction nets. Interaction nets are in fact a universal programming language,

as we will see in the next section.

7.3 Turing completeness

To show that a model of computation is Turing complete, we have to prove

that any computable function can be represented. In the case of interaction

nets, this can be shown for instance by giving an encoding of combinatory

logic (CL). Combinatory logic was introduced in Chapter 3 (see Exercise 11)

as a system of combinators with constants, S and K, and two reduction rules

with the same power as the λ-calculus. Let us recall the reduction rules:

K x y → x

S x y z → x z (y z)
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To represent CL as a system of interaction nets, we require an agent @ corre-

sponding to application and several agents for the combinators. For example,

the K combinator is encoded by introducing two agents, K0 and K1, and two

interaction rules:

��
��
K0

��
��
@

��
	

� � =⇒ ��
��
K1

�

��
��
K1

��
��
@

��
	

� � =⇒

��
��

ǫ

�

The combinator S can be defined in a similar way using three agents and three

interaction rules; we leave it as an exercise.

Interaction nets have also been used to implement λ-calculus evaluators.

Indeed, the first implementation of the optimal reduction strategy for the λ-

calculus (that is, the strategy that makes the minimum number of β-reduction

steps in order to normalise terms) used interaction nets. Interaction nets are

also used in other (non-optimal, but in some cases more efficient) implementa-

tions of the λ-calculus.

Actually, if we restrict ourselves to linear λ-terms (see the definition of the

linear λ-calculus in Exercise 10 of Chapter 3), we only need an application

agent @ and an abstraction agent λ; variables can be encoded by wires. Then

the β-reduction rule is simply encoded as follows:

��
��

λ

��
��
@

�
�

� �

� �

=⇒

For general λ-terms, we have to introduce copying agents and erasing agents,

as well as auxiliary agents to keep track of the scope of abstractions.

7.4 More examples: Lists

We can represent lists in interaction nets in different ways. For instance, we

can build a list by using a binary agent cons to link the first element of the list

to the rest of the list. The empty list can be represented with an agent nil. This

representation of lists mimics the traditional specification of the list data struc-

ture in functional languages using constructors cons and nil. For instance, in a
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functional language, we could define list concatenation (the append function)

as follows:

append(nil, l) = l

append(cons(x, l), l′) = cons(x, append(l, l′))

Using this representation of lists, the time required to concatenate two lists

is proportional to the length of the lists (more precisely, with the definition

above, it is proportional to the length of the first list).

A trivial encoding of lists and the concatenation operator in interaction

nets, following the specification above, uses three agents: cons, nil, and append.

However, if we use graphs instead of trees to represent lists, then we can obtain a

more efficient implementation. The idea, to speed up the append function, is to

have direct access to the first and last elements of the lists. Since interaction nets

are general graphs, not just trees, this can be achieved simply by representing

a list as a linked structure, using an agent Diff to hold pointers to the first and

last elements of the list (the name comes from difference lists) and an agent

cons as usual to link the internal elements.

The empty list, nil, is then encoded by the net:

��
��
Diff

�

The operation of concatenation is implemented in constant time with the

net

��
��
Diff

�

��
��
Open ��

��
Open

� �

using an additional interaction rule that allows us to access the lists:

��
��
Open

��
��
Diff

�
�

�

�

�

�

=⇒
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For example, we have the following reduction:

Diff

Cons

Cons

Cons

Dappend

DiffDiff

Cons

Cons

DiffDiff

Cons

DiffDiff

Open

Diff

Cons

Cons

Cons

=⇒=⇒

C

C

C

O

O

O

M

M

M

7.5 Combinators for interaction nets

The combinators S and K of combinatory logic provide a complete characteri-

sation of computable functions; similarly, there is a universal set of combinators

for interaction nets that uses three agents called δ, γ, and ǫ. In Figure 7.1, we

give these three basic agents. The first two provide multiplexing operations

(i.e., merging two wires into one), and the third is an erasing operation. All in-

teraction nets can be built from these agents by simply wiring agents together.

��
��

γ
� �

��
��

δ
� �

��
��

ǫ

� � �

Figure 7.1 Interaction combinators: γ, δ, and ǫ.

In Figure 7.2, we give the six interaction rules for this system. It is clear

that the ǫ agent behaves as an erasing operation in that it consumes everything

it interacts with. The multiplexing agents either annihilate each other (if they

are the same agent), giving a wiring, or they mutually copy each other (if they

are different). Note that the right-hand side in the final rule is the empty net.

This system of combinators is universal in the sense that any other inter-

action net system can be encoded using these combinators. There are other

universal systems of combinators for interaction nets.
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Figure 7.2 Interaction rules for the interaction combinators.

7.6 Textual languages and strategies for

interaction nets

The graphical language of interaction nets is very natural, and diagrams are

often easier to grasp than a textual description. However, a formal, textual

account of interaction nets has many advantages: It simplifies the actual writing

of programs (graphical editors are not always available), and static properties

of nets, such as types, can be defined in a more concise way. Indeed, several

textual notations for interaction nets have been devised. Below we describe

three notations through an example before developing one of the notations

into a full textual interaction calculus.

As a running example, consider the net given in Figure 7.3 and the inter-

action rule for β-reduction in the linear λ-calculus given in Section 7.3.

A natural textual notation for nets consists of listing all the agents, with

their ports, using some convention. For instance, we could list the ports clock-
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Figure 7.3 A λ-term represented as a net.

wise, starting from the principal port. Edges in the net can be represented by

using the same port name. Using these conventions, the example net above is

written

@(a, b, c), λ(a, d, d), λ(b, e, e)

since we have two λ agents and an application agent @. Note the repetition of

name ports to define edges; for instance, in λ(a, e, e), the repeated e indicates

that there is a wire linking the two auxiliary ports of this λ agent.

The same notation can be used to represent interaction rules. For example,

the interaction rule for linear β-reduction is written

@(a, b, c), λ(a, d, e) =⇒ I(c, e), I(b, d)

where the symbol I is used to represent wirings (they are not attached to

agents). Note that exactly the same ports are used on the left- and right-hand

sides since interaction rules preserve the interface.

Another alternative is to use indices instead of names for ports, starting

with the index 0 for the principal port. For the example net above, we use a

set of agents:

Σ = {@1, λ1, λ2}

The linear β-rule is written

(λi,@j) −→ (∅, {λi.1 ≡ @j .1, λi.2 ≡ @j .2})

and the example net is represented by

({@1, λ1, λ2}, {@1.0 ≡ λ1.0,@1.1 ≡ λ2.0, λ1.1 ≡ λ1.2, λ2.1 ≡ λ2.2})

A third alternative, which yields a more compact notation, is based on a

representation of active pairs as equations. In this case, our example net is

written

λ(a, a) = @(λ(b, b), c)

where the = sign represents the connection between the principal port of the

λ agent on the left-hand side and the principal port of the @ agent on the
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right-hand side (i.e., the equation encodes an active pair formed by a λ agent

and an @ agent). The left-hand side λ(a, a) of the equation indicates that both

auxiliary ports of this λ agent are connected and similarly for λ(b, b).

We follow the same approach to represent rules, but this time we use the

symbol ⊲⊳ instead of =. For example, the linear β-reduction rule is written

@(x, y) ⊲⊳ λ(x, y)

This notation, being more concise, is more suitable for the implementation

of interaction net systems. The textual calculus of interaction that we present

below is based on these ideas.

7.6.1 A textual interaction calculus

In this section, we describe a textual calculus for interaction nets that gives a

formal account of the reduction process.

Interaction nets are strongly confluent, but as in all reduction systems, there

exist different notions of strategies and normal forms (for instance, irreducible

nets, or weak normal forms associated with lazy reduction strategies). We will

see that these can be precisely defined in the calculus. Such strategies have

applications for encodings of the λ-calculus, where interaction nets have had

the greatest impact, and where a notion of a strategy is required to avoid

non-termination.

We begin by describing the syntax of the interaction calculus.

Agents: Let Σ be a set of symbols α, β, . . ., each with a given arity (formally,

we assume that there is a function ar : Σ → Nat that defines the arity of

each symbol). An occurrence of a symbol will be called an agent. The arity

of a symbol corresponds precisely to its number of auxiliary ports.

Names: Let N be a set of names x, y, z, etc. N and Σ are assumed disjoint.

Terms: A term is built using agents in Σ and names in N . Terms are generated

by the grammar

t ::= x | α(t1, . . . , tn)

where x ∈ N , α ∈ Σ, and ar(α) = n, with the restriction that each name

can appear at most twice in a term. If n = 0, then we omit the parentheses.

If a name occurs twice in a term, we say that it is bound ; otherwise it is

free. Since free names occur exactly once, we say that terms are linear.

We write �t for a list of terms t1, . . . , tn.
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A term of the form α(�t) can be seen as a tree with edges between the leaves

if names are repeated; the principal port of α is at the root, and the terms

t1, . . . , tn are the subtrees connected to the auxiliary ports of α. Note that

all the principal ports have the same orientation, and therefore there are

no active pairs in such a tree.

Equations: If t and u are terms, then the (unordered) pair t = u is an equation.

Δ, Θ, . . . will be used to range over multisets of equations. Examples of

equations include x = α(�t), x = y, α(�t) = β(�u). Equations allow us to

represent nets with active pairs.

Rules: Rules are pairs of terms written as α(�t) ⊲⊳ β(�u), where (α, β) ∈ Σ × Σ

is the active pair of the rule (that is, the left-hand side of the graphical

interaction rule), and �t, �u are terms. All names occur exactly twice in a

rule, and there is at most one rule for each pair of agents.

Definition 7.7 (Names in terms)

The set N (t) of names of a term t is defined in the following way, which extends

to multisets of equations and rules in the obvious way.

N (x) = {x}

N (α(t1, . . . , tn)) = N (t1) ∪ · · · ∪ N (tn)

Given a term, we can replace its free names by new names, provided the lin-

earity restriction is preserved.

Definition 7.8 (Renaming)

The notation t{x �→ y} denotes a renaming that replaces the free occurrence

of x in t by a new name y. Note that since the name x occurs exactly once in

the term, this operation can be implemented directly as an assignment, as is

standard in the linear case. This notion extends to equations and multisets of

equations in the obvious way.

More generally, we consider substitutions that replace free names in a term

by other terms, always assuming that the linearity restriction is preserved.

Definition 7.9 (Substitution)

The notation t{x �→ u} denotes a substitution that replaces the free occurrence

of x by the term u in t. We only consider substitutions that preserve the linearity

of the terms.
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Note that renaming is a particular case of substitution. Substitutions have

the following commutation property.

Proposition 7.10

Assume that x 
∈ N (v).

If y ∈ N (u), then t{x �→ u}{y �→ v} = t{x �→ u{y �→ v}}; otherwise

t{x �→ u}{y �→ v} = t{y �→ v}{x �→ u}.

We now have all the machinery that we need to define nets in this calculus.

Definition 7.11 (Configurations)

A configuration is a pair c = (R, 〈�t | Δ〉), where R is a set of rules, �t a sequence

t1, . . . , tn of terms, and Δ a multiset of equations. Each name occurs at most

twice in c. If a name occurs once in c, then it is free; otherwise it is bound.

For simplicity, we sometimes omit R when the set of rules used is clear from

the context. We use c, c′ to range over configurations. We call �t the head or

observable interface of the configuration.

Intuitively, 〈�t | Δ〉 represents a net that we evaluate using R, and Δ repre-

sents the active pairs and the renamings of the net. It is a multiset (i.e., a set

where elements may be repeated since we may have several occurrences of the

same active pair). The roots of the terms in the head of the configuration and

the free names correspond to ports in the interface of the net. We work modulo

α-equivalence for bound names as usual. Configurations that differ only in the

names of the bound variables are equivalent since they represent the same net.

There is an obvious (although not unique) translation between the graphical

representation of interaction nets and the configurations that we are using.

Briefly, to translate a net into a configuration, we first orient the net as a

collection of trees with all principal ports facing in the same direction. Each

pair of trees connected at their principal ports is translated as an equation, and

any tree whose root is free or any free port of the net goes in the head of the

configuration. We give below a simple example to explain this translation.

Example 7.12

The usual encoding of the addition of natural numbers (see Section 7.2) uses

the agents Σ = {0, S, add}, where ar(0) = 0, ar(S) = 1, ar(add) = 2. The

diagrams below illustrate the net representing the addition 1+0 in the “usual”

orientation and also with all the principal ports facing up.
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We then obtain the configuration 〈x | S(0) = add(x, 0)〉, where the only port

in the interface is x, which we put in the head of the configuration.

The reverse translation simply requires that we draw the trees for the terms,

connect the common variables together, and connect the trees corresponding

to the members of an equation together on their principal ports.

Definition 7.13 (Computation rules)

The operational behaviour of the system is given by the following set of com-

putation rules:

Interaction: If (α(t′1, . . . , t
′

n) ⊲⊳ β(u′

1, . . . , u
′

m)) ∈ R, then

〈�t | α(t1, . . . , tn) = β(u1, . . . , um), Γ 〉 −→

〈�t | t1 = t′1, . . . , tn = t′n, u1 = u′

1, . . . , um = u′

m, Γ 〉

Indirection: If x ∈ N (u), then

〈�t | x = t, u = v, Γ 〉 −→ 〈�t | u{x �→ t} = v, Γ 〉

Collect: If x ∈ N (�t), then

〈�t | x = u,Δ〉 −→ 〈�t{x �→ u} | Δ〉

Multiset: If Θ ⇀↽∗ Θ′, 〈�t1 | Θ′〉 −→ 〈�t2 | Δ′〉,Δ′ ⇀↽∗ Δ, then

〈�t1 | Θ〉 −→ 〈�t2 | Δ〉

These rules generate a reduction relation −→ on configurations. We denote

by −→∗ the reflexive and transitive closure of −→.

The first rule, Interaction, is the main computation rule. When using this

rule, we always apply an α-renaming to get a copy of the interaction rule with

all variables fresh. Indirection and Collect are administrative rules that we use

to obtain a more compact textual representation and to make explicit the active

pairs that may be created after applying the Interaction rule. The symbol ⇀↽

above denotes an equivalence relation that states the irrelevance of the order

of equations in the multiset as well as the order of the members in an equation.



124 Chapter 7. Interaction-Based Models of Computation

The calculus makes evident the real cost of implementing an interaction

step, which involves generating an instance (i.e., a new copy) of the right-hand

side of the rule, plus renamings (rewirings). Of course this also has to be done

when working in the graphical framework, even though it is often seen as an

atomic step.

Example 7.14 (Natural numbers)

We show two different encodings of natural numbers and addition using the

interaction calculus. The first encoding is the standard one, and the second is

a more efficient version that offers a constant time addition operation.

1. Let Σ = {0, S, add} with ar(0) = 0, ar(S) = 1, ar(add) = 2, and R:

add(S(x), y) ⊲⊳ S(add(x, y))

add(x, x) ⊲⊳ 0

As shown in Example 7.12, the net for 1+0 is given by the configuration

(R, 〈a | add(a, 0) = S(0)〉). One possible sequence of reductions for this net

is the following:

〈a | add(a, 0) = S(0)〉

−→ 〈a | a = S(x′), y′ = 0, 0 = add(x′, y′)〉

−→∗ 〈S(x′) | 0 = add(x′, 0)〉

−→ 〈S(x′) | x′′ = x′, x′′ = 0〉

−→∗ 〈S(0) |〉

2. Let Σ = {S,N,N∗}, ar(S) = 1, ar(N) = ar(N∗) = 2. Numbers are rep-

resented as a list of S agents, where N is a constructor holding a link to

the head and tail of the list. The number 0 is defined by the configura-

tion 〈N(x, x) |〉, and in general n is represented by 〈N(Sn(x), x) |〉. The

operation of addition can then be encoded by the configuration

〈N(b, c), N∗(a, b), N∗(c, a)〉

which simply appends two numbers. We only need one interaction rule

N(a, b) ⊲⊳ N∗(b, a)

which is clearly a constant time operation. To show how this works, we

give an example of the addition of 1+1:

〈N(b, c) | N(S(x), x) = N∗(a, b), N(S(y), y) = N∗(c, a)〉

−→∗ 〈N(b, c) | b = S(a), a = S(c)〉

−→∗ 〈N(S(S(c)), c) |〉
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The interaction calculus is a Turing-complete model of computation, and

therefore the halting problem (i.e., deciding whether a configuration produces

an infinite reduction sequence) is undecidable in general. The following example

shows that there are non-terminating configurations.

Example 7.15 (Non-termination)

Consider the net 〈x, y | α(x) = β(α(y))〉 and the rule α(a) ⊲⊳ β(β(α(a))). The

following non-terminating reduction sequence is possible:

〈x, y | α(x) = β(α(y))〉 −→ 〈x, y | x = a, β(α(a)) = α(y)〉

−→ 〈a, y | β(α(a)) = α(y)〉

−→ · · ·

There is an obvious question to ask about this language with respect to

the graphical formalism: Is it expressive enough to specify all interaction net

systems? Under some assumptions, the answer is yes. There are in fact two

restrictions. The first one is that there is no way of writing a rule with an

active pair on the right-hand side. This is not a problem since it is possible

to show that the class of interaction net systems where interaction rules are

free of active pairs on the right-hand side has the same computation power

as the class of rules that may include active pairs on the right-hand side. The

second problem is the representation of interaction rules for active pairs without

interface. In the calculus, an active pair without interface can only rewrite to

the empty net. This is justified by the fact that disconnected nets can be ignored

in this model of computation (only global computation rules can distinguish

disconnected nets).

7.6.2 Properties of the calculus

This section is devoted to showing various properties of the reduction system

defined by the rules Indirection, Interaction, Collect, and Multiset (see Def-

inition 7.13). We have already mentioned these properties for the graphical

formalism of interaction nets; they also hold for the calculus.

Proposition 7.16 (Confluence)

The relation −→ is strongly confluent: If c −→ d and c −→ e, for two different

configurations d and e, then there is a configuration c′ such that d −→ c′ and

e −→ c′.
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We write c ⇓ c′ if and only if c −→∗ c′ 
−→. In other words, c ⇓ c′ if c′ is a

normal form of c. As an immediate consequence of the previous property, we

deduce that there is at most one normal form for each configuration: c ⇓ d and

c ⇓ e implies d = e.

Although the calculus is non-terminating, as shown in Example 7.15, the

restriction to the “administrative” rules Indirection and Collect is indeed ter-

minating since applications of these rules reduce the number of equations in

a configuration. Non-termination arises because of the Interaction rule (see

Example 7.15), as expected.

7.6.3 Normal forms and strategies

Although we have stressed the fact that systems of interaction are strongly

confluent, there are clearly many ways of obtaining the normal form (if one

exists), and moreover there is scope for alternative kinds of normal forms, for

instance those induced by weak reduction.

It is easy to characterise configurations that are fully reduced — we will call

them full normal forms or simply normal forms. A configuration (R, 〈�t | Δ〉) is

in full normal form if Δ is empty or all the equations in Δ have the form x = s

with x ∈ s or x free in 〈�t | Δ〉.

We now define a weak notion of normal form, called the interface nor-

mal form, that is analogous to the notion of weak head normal form in the

λ-calculus. This is useful in the implementation of the λ-calculus and func-

tional programming languages to avoid non-terminating computations in dis-

connected nets.

Definition 7.17 (Interface normal form)

A configuration (R, 〈�t | Δ〉) is in interface normal form (INF) if each ti in �t is

of one of the following forms:

– α(�s). For example, 〈S(x) | x = Z〉.

– x, where x ∈ N (tj), i 
= j. This is called an open path. For example, 〈x, x | Δ〉.

– x, where x occurs in a cycle of principal ports in Δ. For example, the configu-

ration 〈x | y = α(β(y), x),Δ〉 has a cycle of principal ports (see the diagrams

below).

Intuitively, an interaction net is in interface normal form when there are

agents with principal ports on all of the observable interface, or, if there are
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ports in the interface that are not principal, then they will never become prin-

cipal by reduction (since they are in an open path or a cycle).

The following diagrams illustrate the notion of an interface normal form.

The first diagram, a subnet in the configuration 〈α(t1, . . . , tn) | Δ〉, has an

agent α with a free principal port in the interface; the terms ti connected to

the auxiliary ports of α represent the rest of the net, and there may be active

pairs in this net if Δ is not empty. The second net contains an open path

(through the agent δ).

〈α(t1, . . . , tn) | Δ〉 〈x, δ(x, 0) |〉
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The following configurations are examples of nets with cycles of principal

ports.

〈x | α(β(y), x) = y〉 〈x | δ(z,+(x, y)) = z, y = . . .〉
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7.7 Extensions to model non-determinism

Interaction nets are a distributed model of computation in the sense that com-

putations in a net can take place in parallel at any point in the net (no syn-

chronisation is needed due to the strong confluence property of reductions in

this model). However, interaction nets cannot model non-deterministic compu-

tations, which are a key ingredient of parallel programming languages.

To obtain an abstract model of computation capable of expressing non-

deterministic choice, several extensions of interaction nets have been proposed.

For instance, we could extend interaction net systems by

1. permitting the definition of several interaction rules for the same pair of
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agents, in which case one of the rules will then be chosen at random when

the two agents interact;

2. permitting edges that connect more than two ports; or

3. generalising the notion of an agent in order to permit interactions at several

ports (in other words, multiple principal ports are permitted in an agent).

The first alternative is simple but not powerful enough to model a general

notion of non-determinism. The second and third alternatives are more pow-

erful. In fact, in the third case, it is sufficient to extend the interaction net

paradigm of computing with just one agent with two principal ports. This dis-

tinguished agent represents ambiguous choice and is usually called amb. It is

defined by the following interaction rules.
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When an agent α has its principal port connected to a principal port of amb,

an interaction can take place and the agent α arrives at the main output port

of amb, which we called m in the diagram above. If in a net there are agents

with principal ports connected to both principal ports of amb, the choice of the

interaction rule to be applied is non-deterministic.

We illustrate the use of amb to program the Parallel-or function. This is

an interesting Boolean operation that applies to two Boolean expressions and

returns True if one of the arguments is True, independently of the computation

taking place in the other argument. In other words, if both arguments have

a Boolean value, this operation behaves exactly like an or, but even if one of

the arguments does not return a value, as long as the other one is True, the

Parallel-or function should return True. Since one of the arguments of Parallel-

or may involve a partially defined Boolean function, the agent amb is crucial to

detect the presence of a value True in one of the arguments. Below we specify

this function using interaction nets extended with amb.

Example 7.18

The function Parallel-or must give a result True as soon as one of the arguments

is True, even if the other one is undefined. Using an agent amb, we can easily

encode Parallel-or with the net
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where the agent or represents the Boolean function or, defined (in standard

interaction nets) by two interaction rules:
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The model of computation based on interaction nets extended with amb is

strictly more powerful than the interaction net model in the sense that it allows

us to define non-deterministic computations or non-sequential functions, such

as Parallel-or.

In order to define parallel processes explicitly and facilitate the analysis

of the behaviour of concurrent systems, in the next chapter we will present a

formalism based on a notion of communication between processes.

7.8 Further reading

Yves Lafont’s article [28] provides an introduction to interaction nets and many

examples of their use. For more information on interaction combinators, and

a proof of universality, we refer the reader to [29]. We refer to [42] for imple-

mentations of interaction nets. The compact textual notation for interaction

nets described in this chapter was suggested by Lafont in his introductory ar-

ticle [28]; the calculus based on this notation is developed in [16]. We also refer

the reader to [16] for more notions of normal forms and strategies of evaluation.
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7.9 Exercises

1. Using interaction nets, define the following functions on numbers repre-

sented with 0 and S (successor):

– is-zero, which produces a result True if the number is 0 and False other-

wise;

– min, which computes the minimum of two numbers;

– factorial, which computes the factorial of a number.

2. Specify an interaction system that generates infinite computations (loops).

3. Complete the definition of the interaction system for combinatory logic

given in Section 7.3. More precisely, define the agents and rules needed to

define the S combinator (it can be defined with three agents and three

rules).

4. a) Give an interaction system to compute the Boolean function and.

b) Draw the interaction net representing the expression

(True and False) and True

How many reductions are needed to fully normalise this net?

c) Modify the system so that the result is True if and only if both argu-

ments have the same value (i.e., both True or both False).

5. Give a representation of lists in interaction nets, and use it to implement

a function that interleaves the elements of two given lists. More precisely,

define an interaction system that, given two lists l1 and l2, produces a new

list containing the elements of l1 interleaved with those of l2. For instance,

the result of interleaving [0, 2, 4] and [1, 3] is the list [0, 1, 2, 3, 4].

6. Textual rules defining addition were given in Example 7.14. Can you write

the textual version of the rules for multiplication given in Section 7.2?

7. Explain why interaction nets are not suitable as a model for non-

deterministic computations.

8. Define the function Parallel-and using the agent amb. Parallel-and is a

binary Boolean operator returning the value False whenever one of the

arguments is False and True when both are True.
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Concurrency

In the previous chapters, we described several models of computation that

reflect different ways in which the process of computation can be understood.

All these different abstract models of computation share one characteristic: The

goal is to express sequential algorithms. To describe the meaning of a sequential

program, we can use an operational approach in which we see an algorithm as a

black box transforming some given input data into the desired output. However,

in some contexts, for example when describing the behaviour of an operating

system, this input-output abstraction is not well suited. The final result of the

algorithm might not be of interest, or the notion of “final” might not even

apply. Indeed, an operating system does stop running in some cases, typically

when we shut down our computer, but then we are not expecting a “result”

from the computation.

Concurrent systems of computation differ from sequential ones in three main

aspects:

– Non-termination:

Although sequential programs that do not terminate are usually uninter-

esting, in the concurrent case most interesting systems are actually non-

terminating. In this context, we need a more general notion of algorithm

that associates a computational meaning also to programs that do not stop.

– Non-determinism:

Sequential algorithms are usually deterministic, and each execution of the

same program with the same data in the same abstract machine produces
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the same results. However, in some cases non-determinism is useful (most

programming languages, even sequential ones, allow programmers to simulate

non-determinism by using, for instance, a random number generator).

– Interference:

In a concurrent system, the meaning of a program may depend on the be-

haviour of the other programs that are being executed concurrently, unlike

in sequential systems, where the meaning of a program is determined by the

program itself and the abstract machine for which it was written. For in-

stance, if several programs are running in parallel and they are all trying to

read and write the same record in a database, then, in order to guarantee

the consistency of the database, access to records must be controlled, as the

following example of interference shows.

Example 8.1

Suppose that a university stores the contact details of students in a file

containing a record for each student. Suppose the fields in each record include

the name and the address of the student, and we have a record containing

Name: "Claire", Address: "Belgravia"

Consider two processes, P1 and P2, running concurrently and executing the

following operations on Claire’s record, with the aim of adding more details

to the address (we use the symbol + to denote string concatenation).

Process P1:

Address := "Belgravia, London";

Print record

Process P2:

Address := Address + ", London";

Print record

Seen as sequential programs, P1 and P2 can be considered equivalent: they

both replace the contents of the address field in this record by the string

“Belgravia, London”

and print it.
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However, in a concurrent system, if these processes are running in parallel,

the final result depends on the order in which the instructions are executed.

We may have some unexpected results if, for instance, P1’s first instruction

is followed by P2’s first instruction. In this case, the execution of a printing

instruction for this record will show

Claire, Belgravia, London, London

which is not the intended result.

Concurrent programs should be carefully written to avoid interference.

Concurrent systems share a number of general characteristics, including the

following notions:

– Process: Any entity that describes computation, or that is capable of per-

forming computations, is usually called a process; the words agent, compo-

nent, or thread are sometimes used instead of the word process.

– Communication: Processes that are running in parallel can exchange data, or

information in general, by sending and receiving messages. In some cases, the

communication links are fixed, whereas in other cases there is some degree of

flexibility and the system can create new communication channels or change

the ones available.

– Interaction: As a result of the fact that processes are running concurrently,

their collective behaviour may depend on each other’s individual actions.

Processes can interact, either in a positive way to achieve a common goal or in

an unintended way as in the case of the interference described in Example 8.1.

There is another important aspect of concurrent systems: their observable

behaviour. This replaces the notion of “result” associated with a sequential

algorithm. Since in many cases there is no result associated with a concurrent

program, the important feature of such a system is its behaviour whilst running.

In other words, we should be able to observe changes during the execution of

the concurrent program, and we can compare concurrent systems by observing

their behaviour and comparing the observations.

Some examples may help to illustrate these ideas. We can identify the no-

tions described above in the concurrent systems that we encounter in everyday

situations. For example, the following are concurrent systems in the sense de-

scribed above:

– A vending machine for drinks and a person using the machine can be seen

as a concurrent system. Although in this chapter we will be focusing on

computer systems rather than physical systems, it is still interesting to see
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that the same notions apply. We can see the vending machine and the user

as two processes that communicate (albeit in a simple, not very flexible way)

and interact in order to attain a common goal. The behaviour of the system

is easy to observe: Lights indicate whether different drinks are available,

buttons can be used to select drinks, the machine accepts coins, the machine

delivers a drink, etc. And, of course, if two vending machines for drinks are

available, our choice is likely to be based on our observations.

– The World Wide Web is a good example of a concurrent system where the

notion of communication is very flexible. New communication links can be

created, and existing links can be removed.

– Another example of a concurrent system where the communication channels

are not fixed is an airport. More precisely, an airport’s control tower and

the collection of aircraft that at any time are under the control of the tower

can be seen as a concurrent system. In this case, an aircraft might establish

a communication link with the tower in order to land at the airport, and

after the landing has taken place, the channel may be destroyed. Interac-

tion between different aircraft is possible, although not always expected, and

interaction between the tower and the aircraft is of course expected.

8.1 Specifying concurrent systems

In the previous section, we identified the main features that distinguish a con-

current system from a sequential one. In order to specify a concurrent system,

we need a formalism that allows us to define these different features. In partic-

ular, since in the case of a concurrent system we are interested in the behaviour

of the system as opposed to its final outputs, we need a formalism that allows

us to specify behavioural aspects of the system.

Transition diagrams are one of the tools used for the description of pro-

cesses in concurrent systems. We can see these diagrams as a particular kind of

automaton, where the transitions describe the possible actions of the machine.

There is also a textual view of these diagrams: In Chapter 2, we associated a

formal language with a finite automaton; similarly, it is possible to associate

an algebra of expressions with a transition diagram.

Specifically, in this chapter we will use labelled transition systems to specify

concurrent systems. These are graphs where nodes represent the state of the

system and edges correspond to transitions between states, labelled by actions.

Before giving the formal definition, we present some examples to illustrate the

idea.
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Example 8.2

Consider a simple version of a vending machine that can deliver coffee or tea.

Assume that, after introducing a coin, the machine allows us to select the drink

by pushing the tea or the coffee button. The machine will then produce the

required drink and deliver it, after which it is again ready to sell another drink.

The behaviour of this machine can be specified using a labelled transition

diagram, as depicted in Figure 8.1.

coin

tea

coffee

select tea

select coffee

1 2

3

4

Figure 8.1 Labelled transition diagram for a vending machine.

The diagram in Figure 8.1 is similar to the diagrams used in Chapter 2 to

recognise regular languages, and we have used the same notation to indicate

the initial state (a small arrow). However, in the case of finite automata, the goal

is to describe a formal language, whereas now we are describing the actions the

machine can do at each state. In this sense, the properties of labelled transition

diagrams are different from the properties of finite automata. For instance, the

diagram in Figure 8.2, seen as a non-deterministic finite automaton, defines

the same language as the automaton in Figure 8.1, but in fact, as a description

of a vending machine, it specifies a behaviour that is very different from the

previous one. When in the initial state the user inserts a coin, the machine

will move in a non-deterministic way either to a state in which it can produce

a coffee or to a state in which it can produce a tea. In other words, whereas

in the machine specified in Figure 8.1 it is the user who chooses the drink, in

the second machine the choice is done internally. After we insert a coin, all we

know is that a drink will be delivered, but it could be either a coffee or a tea

and there is no way to know in advance which one the machine will produce!
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tea

coffee

select coffee

select tea

coin

coin

1′

2′

3′

4′

5′

Figure 8.2 Labelled transition diagram for a non-deterministic vending ma-

chine.

The question then naturally arises as to when two such systems are equiv-

alent. The fact that processes of interest may be non-terminating or non-

deterministic rules out a notion of equivalence based on the results obtained, as

is standard for sequential programs, where two functions f and g are equivalent

if they produce the same output for each given input, formally

f = g ⇐⇒ ∀x.f(x) = g(x).

Also, as the previous example shows, it is not useful to compare the automata

by comparing their associated languages. Moreover, it is easy to see that the

fact that two systems are defined by diagrams with a similar shape does not

guarantee that they have the same behaviour. What then would be a reasonable

notion of equivalence?

Indeed, we should not forget that the specification of a concurrent system

is mainly a description of its behaviour. It is then natural to say that two

systems are equivalent if they have the same behaviour. We mentioned in the

previous section that one of the main characteristics of this notion of behaviour

is that it is observable: We are interested in the observable behaviour of the

system. To give a concrete example, we could say that two vending machines

that offer the same drinks at the same price (i.e., two machines for which all

the relevant observations coincide) are equivalent, even if internally they are

built in different ways.

Below we will define this notion of behavioural equivalence formally using

a bisimilarity relation, but in order to do that, we need a formal definition of

labelled transition systems.
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Let Act be an alphabet; i.e., a denumerable (finite or infinite) set of symbols,

called labels. The alphabets we will use in our examples are composed of two

kinds of labels, called actions and co-actions:

Act = N ∪N

For example, in the case of the vending machine, the set of actions is

N = {coin, coffee, tea, . . .}

and the co-actions are

N = {coin, coffee, tea, . . .}

Actions and co-actions represent two complementary views of an interaction

between two processes. This will be useful in systems composed of several

processes that need to work in a synchronised way.

We are now ready to define labelled transition systems.

Definition 8.3 (Labelled transition system)

A labelled transition system, with labels in Act, is a pair (Q,T ), where

– Q is a set of states and

– T is a transition relation; that is, a ternary relation between a state, a label,

and another state: T ⊆ (Q × Act × Q).

We write q −→a q′ if (q, a, q′) ∈ T and say that in the state q the process

can perform the action a and move to state q′.

Each process in a concurrent system will be specified as a labelled transition

system. It is not necessary to define an initial state, and in general there are

no final states in labelled transition systems. Indeed, in many cases there is

no distinguished starting state, every state can be considered as an initial one,

and every state can be a final state.

We can now go back to the problem of defining process equivalence.

8.2 Simulation and bisimulation

Given two labelled transition systems, we start by defining a relation between

their states. In fact, it does not matter whether the states belong to the same
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automaton or to different ones (in any case, an automaton can be composed of

several disconnected parts).

Intuitively, we would like to say that two states are equivalent if their ob-

servations coincide. More precisely, two states are equivalent if whenever an

action is possible in one of them it is also possible in the other, and after this

action takes place the resulting states are also equivalent. Formally, we define

the notion of strong simulation as follows.

Definition 8.4 (Strong simulation)

Let (Q,T ) be a labelled transition system on Act. A binary relation S on Q is

a strong simulation if pSq implies that, for each a in Act such that p −→a p′,

there exists q′ in Q such that q −→a q′ and p′Sq′.

If pSq holds, we say that q simulates p.

The idea is that if pSq holds, any transition that can be done from the state

p can also be done from q, and the resulting states are still in the relation.

Example 8.5

Consider the diagrams in Figures 8.1 and 8.2. The relation

S = {(1′, 1), (2′, 2), (3′, 2), (4′, 3), (5′, 4)}

is a strong simulation. We can check that, for each pair (p, q) ∈ S and for

each action a such that p −→a p′, there is a transition q −→a q′ such that

(p′, q′) ∈ S. For instance, take (3′, 2). There is only one possible action at state

3′ in Figure 8.2, namely select coffee, with a transition 3′ −→select coffee 5′.

Similarly, in Figure 8.1, there is a transition 2 −→select coffee 4 and the pair

(5′, 4) is in S as required.

The fact that we can build a strong simulation as above indicates that the

deterministic vending machine can simulate the non-deterministic one. The re-

verse is not true: The non-deterministic machine cannot simulate the original

one. For this, it is sufficient to prove that there is no strong simulation contain-

ing the pair (2, i′) for any state i′ in the non-deterministic machine. In other

words, the behaviour of the original machine in state 2 is observably differ-

ent from the behaviour of the non-deterministic machine, whichever state we

consider.

The strong simulation relation defined above allows us to compare processes,

but it does not define an equivalence relation. To obtain an equivalence relation,
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we need simulations in both directions; this is the essence of the notion of strong

bisimulation.

Definition 8.6 (Strong bisimulation)

Let (Q,T ) be a labelled transition system on Act and S a binary relation on

Q. We say that S is a strong bisimulation if S and S−1 are strong simulations,

where S−1 denotes the inverse of S (i.e., pS−1q if qSp).

We will write p ∼ q if there is a strong bisimulation S such that (p, q) ∈ S,

and in this case we will say that p and q are bisimilar. The relation ∼ is called

strong bisimilarity.

According to the definition above, ∼ is the union of all the strong bisimula-

tions — it contains all the pairs (p, q) such that pSq for some strong bisimulation

S.

The strong bisimilarity relation defined above is also a strong bisimulation,

and it is an equivalence relation (indeed, it is the equivalence relation we were

looking for).

Proposition 8.7

1. The relation ∼ is reflexive, symmetric, and transitive:

For all p, p ∼ p.

For all p, q, if p ∼ q, then q ∼ p.

For all p, q, r, if p ∼ q and q ∼ r, then p ∼ r.

2. The relation ∼ is a strong bisimulation.

In the rest of the chapter, we define a simple programming language that

can be used to define individual processes (Section 8.3) and then show how

this language can be extended to model process communication and interaction

(Section 8.4). We briefly describe an alternative view of concurrency, based on

the chemical metaphor, in Section 8.5.

8.3 A language to write processes

We can associate a process expression with a labelled transition diagram. A

language of expressions will be useful to program concurrent systems where each
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component can be seen as a process (i.e., an expression) and several processes

can be combined via suitable operators.

Consider a set of identifiers that will be used as names for processes

Id = {A,B,C, . . .}

and a set of labels

Act = N ∪N = {a, b, c, . . .} ∪ {a, b, c, . . .}

We will also assume that there is a denumerable set of variables x1, . . . , xn, . . ..

Definition 8.8 (Process expression)

Process expressions are generated by the grammar

P ::= A〈α1, . . . , αn〉 | Σi∈I αi.Pi

where the symbols αi range over variables or labels, A is a process identifier, I

is a finite set of indices, and in αi.Pi we say that αi is a prefix.

The two kinds of process expressions generated by the grammar above are

called named processes and sums, respectively. A named process consists of a

process identifier and a list of parameters, written A〈α1, . . . , αn〉, and a sum is a

finite set of expressions of the form αi.Pi, where each Pi is a process expression.

In the latter case, if I = ∅, then Σi∈Iαi.Pi is written 0, representing the inert

process that does not perform any computation.

To each process identifier A we will associate an expression, using an equa-

tion that we call the definition of A,

A(x1, . . . , xn) = PA

where PA is a sum that can use the variables x1, . . . , xn.

The intuition behind a definition such as the one above is that each

time the process A is used in a program (that is, each time an expression

of the form A〈a1, . . . , an〉 occurs), it can be replaced by the expression PA,

where each occurrence of xi is replaced by ai. The latter will be written

PA{x1 �→ a1, . . . , xn �→ an}, where the expression {x1 �→ a1, . . . , xn �→ an}

is a substitution.

For this reason, in the context of an equation A(x1, . . . , xn) = PA, the

expression A〈a1, . . . , an〉 is equivalent to PA{x1 �→ a1, . . . , xn �→ an}, and, more

generally, two expressions P and Q are considered equivalent, written P ≡ Q,

if the equality P = Q can be derived in the equational theory generated by the

equations.
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For example, in the context of the equation

A(x) = x.A〈x〉

we can derive the following equivalences:

A〈a〉 ≡ a.A〈a〉 ≡ a.a.A〈a〉

We now have all the ingredients to define processes.

Definition 8.9 (Process)

A process is defined by a process expression (see Definition 8.8) together with

the equations that define the process identifiers occurring in the expression.

To each process we can associate a labelled transition system (Q,T ) on Act

as follows:

– The set Q of states corresponds to the set of (sub)expressions in the process.

– There is a transition Σi∈I αi.Pi −→
αj Pj for each j ∈ I.

The example below illustrates the idea.

Example 8.10 (Buffer)

Consider a buffer of size two that we see as a container where we can store two

items. The actions associated with the buffer are only of two kinds. We can

either put an item in the buffer if there is space for it or take an item out if

the buffer is not empty. In the latter case, if the buffer is full, we assume that

any one of the items stored will be removed.

In this case, we can model the buffer using an alphabet that contains the

actions

N = {in, out}

We now have to define the associated process. For this, we will first use

a labelled transition system to specify the behaviour of the buffer. The set of

states should include the empty buffer, the buffer that contains one value, and

a full buffer. Let us call the states B0 (empty buffer), B1 (buffer containing one

item), and B2 (full buffer).

We have the following transitions at each state:

B0 −→in B1

B1 −→in B2, B1 −→out B0

B2 −→out B1
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We can then associate the following definitions with the identifiers B0, B1,

and B2:
B0(in) = in.B1〈in, out〉

B1(in, out) = out.B0〈in〉 + in.B2〈out〉

B2(out) = out.B1〈in, out〉

The system is initialised by defining the process Buffer = B0〈in〉.

8.4 A language for communicating processes

Using the language of expressions defined in the previous section, we can specify

the behaviour of an individual process. In order to specify a system of concur-

rent processes, we need to extend the language, so that communication and

interaction between processes can be defined. With this aim, we introduce two

new syntactic constructions:

– Parallel composition, written P1|P2, allows us to specify two processes, P1

and P2, and combine them by executing them in parallel. The binary operator

of parallel composition, denoted by |, is associative and commutative, so we

can compose several processes simply by writing P1|P2|P3| . . ..

– The restriction operator allows us to encapsulate a name to avoid name

clashes when several individual processes that could use the same alpha-

bet are combined together. We write νa.P to indicate that the name a is

private in P and will be distinguished from any other a used in the pro-

cesses composed with P . This is easy to achieve by considering ν as a binder

and defining process expressions as equivalence classes modulo renamings of

bound names (for instance, in the same way as λ is a binder and λ-terms

are defined modulo α-equivalence). We will sometimes abbreviate νa.νb.P as

νab.P .

Two processes that are running in parallel can interact by performing an

action and the associated co-action. For instance, in the example of the vending

machine, if we consider the machine as a process and a user as another one,

interaction can take place by an action performed by the user (e.g., introducing

a coin) with the associated co-action (accepting the coin) performed by the

machine. As mentioned previously, actions and co-actions are just two different

views of the interaction, so it makes sense to synchronise parallel processes in

this way. More precisely, if P and Q are processes running in parallel, where P

performs a transition labelled by a and Q performs a transition labelled by a,

we will say that P and Q have interacted and as a result the system as a whole

has changed state.
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This interaction can be specified operationally

If P −→a P ′ and Q −→a Q′ then P |Q −→τ P ′|Q′

which states that the system formed by the concurrent processes P and Q

has changed state after the processes have performed complementary actions.

Notice that the transition out of P |Q has a special label, τ . Transitions labelled

by τ are called τ -transitions or silent transitions because if we consider the

system as a black box, we cannot observe the individual actions taking place

in P or Q. In other words, in a τ -transition there is no interaction with the

environment, the interaction is internal.

To take into account τ -transitions, we extend the set Act used in the defi-

nition of individual processes by adding a distinguished label τ .

Summarising, the set of expressions in the extended language includes the

process expressions defined previously (in Definition 8.8) and all the expressions

that can be obtained by parallel composition and restriction as indicated below.

Definition 8.11 (Extended process language)

The syntax of the expressions in the concurrent process language is defined by

the grammar

P ::= A〈α1, . . . , αn〉 | Σi∈Iαi.Pi | P1|P2 | νa.P

where the αis range over variables or labels from the alphabet Act:

Act = N ∪N ∪ {τ} and N = {a, b, c, . . .}

We work modulo a congruence ≡ on expressions (i.e., an equivalence relation

closed by context) generated by

– renaming (i.e., α-conversion) of restricted names;

– commutativity and associativity of the sum;

– commutativity and associativity of parallel composition;

– neutral element: P |0 ≡ P ;

– νa.(P |Q) ≡ P |νa.Q if a is not free in P ;

– νa.0 ≡ 0, νab.P ≡ νba.P ;

– A〈b1, . . . , bn〉 ≡ PA{a1 �→ b1, . . . , an �→ bn} if A(a1, . . . , an) = PA.

The transition relation extends in the natural way to expressions that use

parallel composition and restriction operators. We define below the extended

relation, which we still call T since there is no ambiguity. In the definition of

transitions, we use α to denote any label in Act = N ∪N ∪ {τ}.
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Definition 8.12 (Extended transition relation)

The transition relation is generated by the following rules:

(Sum) M + α.P −→α P

(Def) A〈a1, . . . , an〉 −→α P ′ if A(x1, . . . , xn) = PA and

PA{x1 �→ a1, . . . , xn �→ an} −→α P ′

(Reaction) P |Q −→τ P ′|Q′ if P −→α P ′ and Q −→α Q′

where α 
= τ

(Par) P |Q −→α P ′|Q if P −→α P ′

(Restr) νa.P −→α νa.P ′ if P −→α P ′ and α 
= a, α 
= a

Note that, since we are working on equivalence classes, if for a given expres-

sion P there is a transition P −→α P ′ according to the definition above, then

also Q −→α Q′ for any Q and Q′ such that P ≡ Q and P ′ ≡ Q′. In particular,

if Q −→a Q′, then P |Q −→a P |Q′ using the rule (Par).

We give an example below.

Example 8.13

Let P be the expression

νb.((a.b.P1 + b.P2 + c.0) | a.0) | (b.P3 + a.P4)

Using (Sum), (a.b.P1+b.P2+c.0) −→a b.P1, and also a.0 −→a 0. Therefore,

using (Reaction), we deduce

((a.b.P1 + b.P2 + c.0) | a.0) −→τ b.P1 | 0

Hence P −→τ νb.(b.P1|0) | (b.P3 + a.P4) using (Restr) and (Par), and the

latter expression is congruent with νb.(b.P1) | (b.P3 + a.P4), so

P −→τ νb.(b.P1) | (b.P3 + a.P4)

Now, although b and b are prefixes of parallel processes in this expression, the

reaction cannot take place because b is a private name in one of the components;

we could have written equivalently

P −→τ νc.(c.P1) | (b.P3 + a.P4)

Note that the transition relation is not confluent: For a given expression,

there may be several different irreducible forms. For instance, in the example

above, the initial expression P can be written as

νd.((a.d.P1 + d.P2 + c.0) | a.0) | (b.P3 + a.P4)
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which is congruent with

νd.((a.d.P1 + d.P2 + c.0) | (b.P3 + a.P4) | a.0)

and we have a transition P −→τ νd.(d.P1|P4|a.0).

Indeed, when several τ -transitions are possible, there is no pre-established

order for them; this non-deterministic aspect of the transition relation is one

of the features of concurrent systems.

Since the extended transition relation includes τ -transitions, which cannot

be observed, the definition of bisimulation is extended to ignore silent transi-

tions.

Let P ⇒α Q, where α 
= τ , denote a sequence of transitions from P to Q con-

taining any number of τ steps and at least one α-transition. More precisely, we

write P ⇒α Q if there is a sequence of transitions P−→τ ∗P ′ −→α Q′−→τ ∗Q.

Bisimulation is defined as in Definition 8.6 but using ⇒ instead of −→; in this

way, bisimilarity equates processes that have the same behaviour when we do

not consider τ transitions.

The language of concurrent process expressions satisfies the following prop-

erties.

Proposition 8.14

– For each expression P , there are only a finite number of transitions P −→α P ′

available (i.e., the transition diagram is finitely branching).

– The structural congruence ≡ is a strong bisimulation and thus is included in

the bisimilarity relation; that is, P ≡ Q implies P ∼ Q.

We finish this section with the specification of a bidirectional channel using

the language of concurrent process expressions defined above.

Example 8.15 (Bidirectional channel)

A channel can be seen as a buffer where the sender deposits a message on one

end and the receiver retrieves the message from the other end. In a bidirectional

channel, both ends can be senders or receivers.

We start by defining a bidirectional channel of size 1. In this case, the

maximum number of messages in the channel at any time is 1. Let us call the

channel C and assume the points connected by the channel are called A and

B, as depicted in Figure 8.3.

In the process calculus, we will represent the channel C as a process and

will denote by a the action of sending a message from A and by a′ the action
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a

a′

b

b′

A C B

Figure 8.3 Bidirectional channel.

of receiving a message at A (similarly, b and b′ denote sending and receiving at

B). The process C can be defined by the equation

C(a, a′, b, b′) = a.b.C + b′.a′.C

The transition diagram is given in Figure 8.4. It is easy to see in the diagram

that the following sequence of transitions is permitted, allowing messages to

pass from left to right through the channel:

C −→a b.C −→b C

Similarly, messages can be sent from right to left.

a

a′

b

b′

b.C

C

a′.C

Figure 8.4 Transition diagram for a bidirectional channel.

We can compose several channels; for instance, let D be another bidirec-

tional channel of size 1, connecting B with E. Assume D is defined by the

equation
D(b, b′, e, e′) = C〈b, b′, e, e′〉

We can now define the channel CD connecting A with E by composing C and

D using the expression

CD(a, a′, e, e′) = νbb′.(C〈a, a′, b, b′〉|D〈b, b′, e, e′〉)

The channels C and D are now “joined” at B. The fact that B is no longer an

“open end” is represented by the restriction, which makes the names b and b′

private to C and D.
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8.5 Another view of concurrency:

The chemical metaphor

Around fifteen years ago, Jean-Pierre Banâtre and Daniel Le Métayer intro-

duced the Γ language, which models computation as the global evolution of

a collection of values interacting freely. This idea can be explained intuitively

through the chemical reaction metaphor:

– Programs work on a data structure defined as a multiset of atomic values that

can be thought of as a chemical solution. The values are molecules “floating”

freely in the solution.

– Programs specify chemical reactions through conditional reaction rules.

For example, to define the function that computes the maximum of a set

of numbers, we can consider the numbers to be molecules in the solution, and

the reaction is specified by the rule

(max) x, y → x if x ≥ y

This rule indicates that a reaction can take place between the molecules x and

y, provided x ≥ y, and as a result x and y are replaced by x.

In the solution, reactions can take place in parallel, provided the side con-

dition of the reaction rule is satisfied. Since reactions can occur simultaneously

in many points of the solution, this formalism allows us to model concurrent

computations in a simple and concise way. For example, after repeated, possi-

bly concurrent, applications of the rule (max) given above, there will be only

one molecule in the solution, which is the maximum of the numbers originally

in the solution. Note how compact this program is (just one line of code).

The Chemical abstract machine is an implementation of this paradigm of

concurrency; it defines a concurrent programming methodology that is free

from control management in the sense that the concurrent components (i.e.,

the molecules in this case) are freely moving in the solution and can commu-

nicate whenever they come in contact. It is possible to show that a calculus

of concurrent communicating processes such as the one defined in the previous

sections can be implemented via the Chemical abstract machine.

8.6 Further reading

The process calculus defined in this chapter is based on Robin Milner’s CCS

(a calculus of communicating systems) [33]. Several other calculi are available
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to specify and reason about concurrent processes; the references are numerous,

but we mention in particular the π-calculus, developed also by Robin Milner

as a direct generalisation of CCS that permits more flexible communication

patterns [34]. For a detailed account of the theory of bisimulation, we refer to

David Park’s work [40]. An advanced treatment of the π-calculus theory can

be found in [45]. For more information on the Γ formalism and the Chemical

abstract machine, we recommend the articles [3, 5].

8.7 Exercises

1. Prove that the relation ∼ introduced in Definition 8.6 is an equivalence

relation, as stated in Proposition 8.7.

2. Prove that if p ∼ q, then p simulates q and q simulates p.

The reverse is not true. Can you give a counterexample?

3. Show that the following definition is equivalent to the definition of strong

bisimulation (see Definition 8.6):

R is a strong bisimulation if pRq implies

a) for all n and for all a1, . . . , an ∈ Act,

p −→a1,...,an p′ ⇒ ∃q′ | q −→a1,...,an q′ and p′Rq′

b) for all n and for all a1, . . . , an ∈ Act,

q −→a1,...,an q′ ⇒ ∃p′ | p −→a1,...,an p′ and p′Rq′

where p −→a1,...,an p′ denotes a sequence of transitions from p to p′ labelled

by the actions a1, . . . , an.

4. Consider a counter defined as a device that can hold a natural number,

increment its value, or decrement it, but if the value of the counter is zero,

decrementing it does not change the value of the counter. Write a process

expression defining such a counter.

5. In order to prove that P ≡ Q implies P ∼ Q as stated in the second part

of Proposition 8.14, it is sufficient to show that the structural congruence

≡ is a strong bisimulation. Can you prove this fact?

6. Let P be the process defined by the expression ν d e f .(K1|K2|K3), where

K1 = f.a.d.K1

K2 = d.b.e.K2

K3 = f.e.c.K3



Chapter 8. Concurrency 149

and let H be the process defined by the equation

H = a.b.c.H

a) Give labelled transition systems for P and for H.

b) Show that P ∼ H.

7. Consider the process defined by D(b, b′, e, e′) = C〈b, b′, e, e′〉, where C is

the bidirectional channel defined in Example 8.15. Let the process CD be

defined by

CD(a, a′, e, e′) = νbb′.(C〈a, a′, b, b′〉|D〈b, b′, e, e′〉)

Describe the transition diagram for CD, and show that CD can transmit

messages like a bidirectional channel but can also be in deadlock.



9
Emergent Models of Computation

In this chapter, we briefly present two fields that have emerged in recent years:

natural computing and quantum computing.

Natural computing refers to computational techniques inspired in part by

systems occurring in nature. In particular, this includes models of computation

that take inspiration from the mechanisms that take place in living organisms.

The main observation here is that living organisms routinely perform complex

processes at the micro-level in a way that is hard to emulate with standard

computing technology. Several new models of computation have been proposed

in recent years based on advances in biology that have allowed us to understand

better how various processes take place. This family of computation models is

generally known as bio-computing.

Quantum computing refers to computation that uses quantum technology.

One of the motivations for the study of quantum computing stems from the

current trend to miniaturise computers. It has been observed that if this trend

continues, it will be necessary to replace the current technology with quantum

technology, as on the atomic scale matter obeys the rules of quantum mechanics,

which are very different from the classical rules. Indeed, quantum technology

is already available (albeit not yet for general computer science applications),

and it can offer much more than compact and fast computers: It can give rise

to a new kind of programming paradigm based on quantum principles.

The following sections give a short introduction to these two computing

paradigms.
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9.1 Bio-computing

Biologically inspired models of computation make use of natural processes oc-

curring in living organisms as a basis for the development of programming

techniques. Since complex algorithms are efficiently performed at different lev-

els in a living organism (in particular, at the cell level, at the gene level, and at

the protein level), the idea is to develop algorithms to solve complex computa-

tional problems by applying similar techniques. This research problem should

not be confused with the problem of developing software to simulate behaviours

or processes that occur in nature (sometimes called “executable biology”). Al-

though biological modelling is one of the applications of bio-computing, soft-

ware tools to represent and analyse biological processes have been written in a

variety of programming languages with different underlying computation mod-

els. Bio-computing, in the sense defined here, should also not be confused with

the branch of computer science that studies the use of biological materials in

hardware components.

The three main levels at which biological mechanisms occur correspond

to biochemical networks, performing all the mechanical and metabolic tasks,

formalised as protein interaction; gene regulatory networks, which control the

activities by regulating the concentrations of proteins; and transport networks,

defined in terms of biochemical compartments (or membranes) where protein

interactions are confined. Accordingly, biologically inspired models of compu-

tation can be classified by taking into account the level at which they work.

Without going into the details, we will describe here the main features of

two models of computation: membrane systems, introduced by Gheorghe Paun,

which take inspiration from the transport networks, and the protein-centric

interaction systems defined by Vincent Danos and Cosimo Laneve. These two

computation models are representative of the two main classes of bio-computing

formalisms, but we should point out that several other calculi have been pro-

posed; this is an active research area and there is no “standard” model.

9.1.1 Membrane calculi

Membrane systems are a class of distributed, parallel computing devices in-

spired by the basic features of biological membranes, which are the essence of

the transport networks. Membranes play a fundamental role in the complex

reactions that take place in living organisms.

A membrane structure can be seen as a series of compartments where mul-

tisets of objects can be placed. Membranes are permeable, so objects can pass

through a membrane and move between compartments. The membranes can
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change their permeability, and they can dissolve or divide, thus changing the ge-

ometrical configuration of the membrane structure. This definition is based on

the observation that any biological system is a complex hierarchical structure

where the flow of materials and information is essential to its function.

In membrane calculi, the objects inside the membranes evolve in accordance

with reaction rules associated with the compartments. Reaction rules can be

applied in a parallel, non-deterministic manner. In this way, computation can

be defined as sequences of transitions between configurations of the system.

Programs in this formalism are called P systems. The objects (which are

usually numbers or strings) are the data structures on which the program

works. Many different classes of P systems have already been investigated,

and, in particular, it has been shown that P systems are Turing complete: It

is possible to encode a Turing machine using a P system.

Since P systems can perform parallel computations, we could use P pro-

grams to model concurrent systems. In fact, the reverse is also possible, and

indeed process calculi have been used in the past to model biological mech-

anisms. For instance, variants of the π-calculus have been used to represent

cellular processes. However, the use of more abstract systems, such as mem-

brane calculi or protein-interaction calculi, has the advantage of permitting a

more clear and concise representation of biological systems.

9.1.2 Protein interaction calculi

The use of process calculi to represent biological systems has led to the design

of several different calculi. Here we briefly describe the κ-calculus, which is in-

spired by the mechanism of protein interaction. Our presentation will follow the

graphical intuitions behind the calculus; there is also an algebraic presentation.

The protein interaction calculus, as its name indicates, places a strong em-

phasis on the notion of interaction. In this sense, this formalism is closely related

to the interaction nets that were the subject of Chapter 7. One of the main dif-

ferences is that the notion of interaction here is more abstract in the sense that

interactions reflect protein behaviour and are therefore not restricted to binary

interactions involving principal ports of agents as in the case of interaction

nets.

Each protein has a structure that can be represented in an abstract way

as a set of switches and binding sites, not all of them accessible at a given

time. These components, generally called domains, determine possible bindings

between proteins and, as a consequence, possible interactions. Interactions can

result in changes in the protein folding, which in turn can affect the interaction

capabilities of the protein. The notion of a site is used in the κ-calculus to
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abstract over domains and folding states of a protein. Sites may be free or

bound, and the free sites can be visible or hidden.

In the graphical representation, proteins are nodes in the graph and sites

are ports, where edges can be attached, but only if the site is free and visible.

Bound sites correspond to sites that are already involved in a binding with

another protein (i.e., ports where an edge has been attached).

The graphs obtained by combining several nodes (i.e., proteins) and their

links are called protein complexes or simply complexes. In biological terms,

the complexes represent groups of proteins connected together by low-energy

bounds governed by protein-interaction rules. A collection of proteins and com-

plexes is called a solution; solutions evolve by means of reactions. Computa-

tionally, solutions are graphs where rewriting can take place, as defined by

graph-rewriting rules associated with the biochemical reactions.

Biochemical reactions are either complexations or decomplexations: A com-

plexation is a reaction that creates a new complex out of proteins that can

interact, whereas a decomplexation breaks a complex into smaller components.

These reactions may occur in parallel and may involve activation or deactiva-

tion of sites. Causality does not allow simultaneous complexations and decom-

plexations at the same site. From a computational point of view, this means

that not all graph rewriting rules can be accepted as biochemical reactions.

For this reason, in the κ-calculus there are constraints on the kind of graph

rewriting rules that can be defined as protein-interaction rules. For instance,

the left-hand sides should be connected, and a new edge can be attached to a

given site only if the site is free and visible.

Computationally, the κ-calculus is universal: Turing machines can be easily

simulated in this calculus by representing the contents of the tape as a finite

chain of nodes in the graph and using a system of graph rewriting rules to

represent the transitions between configurations of the machine. Compilations

of (the algebraic version of) the calculus into the π-calculus are also available.

9.2 Quantum computing

A quantum computer is a device that makes direct use of quantum mechanics

in order to perform computations. Roughly, if we think of computation as

the process of performing operations on data, the main difference between a

classical computer and a quantum one lies in the physical laws that govern the

medium used to store the data and the mechanisms used to manipulate the

data. In quantum computers, quantum properties are used to represent data

and perform operations on these data.
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Before describing in more detail the principles behind quantum computing,

we need to recall a few notions from quantum physics.

Around 1900, physicists such as Max Planck, Niels Bohr, Erwin Schrödinger,

and others were working on a theory that became known as “quantum physics”.

The name derives from the word used by Planck when he announced that radi-

ant energy could only be propagated in tiny, indivisible bundles called quanta.

The word photon is used to refer to a quantum of light.

Quantum physics gives a description of the universe that is capable of ex-

plaining phenomena that cannot be explained by classical laws. One of the

best-known examples is a simple experiment using a beam splitter with equal

probability of reflecting or transmitting the photons (e.g., a half-silvered mir-

ror). When a photon source is directed towards the beam splitter, according to

the classical laws of physics, half of the photons should pass and half should

be reflected. Indeed, this is what the experiment with one beam splitter shows.

However, if instead of measuring the light that passes and the light that is

reflected we use two full mirrors to reflect it back to a second beam splitter, as

indicated in Figure 9.1, then the result does not agree with classical intuition.

Instead of seeing photons again split equally, we see that all the photons end

up in the same path (marked result in Figure 9.1).

photons

splitter

splitter mirror

mirror

result

Figure 9.1 Two beam splitters.

The results of this experiment cannot be explained if we assume that after

the photon encounters the first beam splitter it is either reflected or trans-

mitted with equal probability, as classical laws indicate. However, it can be

explained if we assume that the first beam splitter has caused the photon to be

in a superposition of states (a combination of “reflected” and “transmitted”).

Then, the second beam splitter applies the same transformation, causing the

superposition to unfold into only one of the states.
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The classical laws of physics are a good approximation of quantum mechan-

ics at the macroscopic scale, but on the quantum level the classical laws are

inaccurate, as this experiment shows, and the quantum laws should be used

instead.

The main idea behind quantum computation is then to replace the classical

circuits in traditional computers by quantum gates to obtain a computer whose

work is quantum-mechanical.

The notion of a quantum bit , or qubit , is fundamental in quantum comput-

ing. A qubit can be encoded in a two-level system such as a photon. Thus,

unlike classical bits, which represent binary information, in a quantum system

the state of the qubit is generally defined by a vector in a two-dimensional

Hilbert space. This is a combination of the basis vectors, usually written as

|0〉 and |1〉 and corresponding to the classic binary values. In this way, it is

possible to represent states with superposition. In general, a qubit’s state can

be written as
α|0〉 + β|1〉

where α and β are complex numbers such that α2 + β2 = 1; states that differ

only by a scalar factor with modulus 1 are considered indistinguishable.

One important difference between classic bits and qubits is the role of mea-

surement. If a qubit is in the state α|0〉 + β|1〉, it means that its value, if

measured, will be 0 with probability α2 and 1 with probability β2.

Another important difference is the entanglement phenomenon, which can

arise in systems with two or more qubits. This means that the states of the

qubits may be correlated in such a way that a measurement on one of the qubits

will determine the result of the measurement in the other (even if the qubits

are physically separated).

In a quantum circuit, logical qubits (quantum binary digits) are carried

along “wires” and quantum gates act on the qubits, changing their state.

The first formal quantum circuit model was proposed by David Deutsch,

who also defined a quantum Turing machine. Not only do these results show

that quantum mechanics can be used to design computers, but also it has been

shown that there are efficient algorithms to solve problems for which no efficient

solution is known on a standard or probabilistic Turing machine. Thus, if large-

scale quantum computers could be built, they would be able to solve certain

problems, such as integer factorisation, much faster than any current classical

computer. This has enormous implications in areas such as cryptography since

many encryption protocols would then be easy to break.

Quantum computing is still in its early stages, but experiments have been

carried out in which quantum computations were executed on a very small

number of qubits. Research continues, and we can expect that new results will

be available soon due to the important consequences of this research in areas

such as cryptanalysis.
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9.3 Further reading

For further information on quantum computing, we refer the reader to the

introductory book by Kaye, Laflamme, and Mosca [26]; a survey on quantum

programming languages can be found in [17].

The use of process calculi to represent biological systems has led to the

design of several calculi. In addition to the membrane calculi and the κ-calculus

discussed in this chapter, for which we refer the reader to Paun’s work [41] and

Danos and Laneve’s article [11], respectively, we can mention the brane calculi

designed by Luca Cardelli [8] and the biochemical machine (BIOCHAM) [14],

amongst others.
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Answers to Selected Exercises

Exercises in Chapter 1

1. Give more examples of total and partial functions on natural numbers.

Answer:

There are many examples of total functions. Addition, multiplication, and any

combination of these, as well as the well-known factorial function, are all total.

Subtraction is partial on natural numbers (but total on integers).

2. To test whether a number is even or odd, a student has designed the fol-

lowing function:

test(x)
def

= if x = 0 then "even"

else if x = 1 then "odd" else test(x-2)

Is this a total function on the set of integer numbers? Is it total on the

natural numbers?

Answer:

The set of natural numbers contains 0 and all the positive integers. For these,

the test provided above gives a result: For 0 the result is “even”, for 1 the

result is “odd”, and for any number x greater than 1 the number x-2 is still

a natural number that can be tested again. Since each recursive call to the

function test carries a smaller argument, it is easy to see that eventually the

function will be called with either 0 or 1 and will produce a result. Therefore

the function is total on natural numbers.
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However, if the function is called with a negative number, for example

test(-1), then there is no result. Therefore the function is partial on integers.

3. Consider the following variant of the Halting problem:

Write an algorithm H such that, given the description of an al-

gorithm A that requires one input, H will return 1 if A stops for

any input I and H will return 0 if there is at least one input I for

which A does not stop.

In other words, the algorithm H should read the description of A and

decide whether it stops for all its possible inputs or there is at least one

input for which A does not stop.

Show that this version of the Halting problem is also undecidable.

Answer:

We adapt the proof of undecidability given for the Halting problem in Sec-

tion 1.2.

The specification of H indicates that H(A) = 1 if A stops for all inputs and

H(A) = 0 if there is some I such that A(I)↑.

Assuming H exists, we can build an algorithm C such that C(A)↑ if H(A) = 1

and C(A) = 0 otherwise. In other words, C(A) diverges if, for all inputs I,

A(I) stops; otherwise C(A) stops.

Now, if we run C with argument C, we have

C(C)↑ if and only if, for all inputs I, C(I) stops.

This is a contradiction: If C stops with any input, this includes also the input

C, and therefore C(C) should stop.

Selected exercises from Chapter 2

2. Build finite automata with alphabet {0, 1} to recognise

a) the language of strings that have three consecutive 0s;

b) the language of strings that do not have three consecutive 1s.

Answer:

The diagrams below specify the required automata.
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q4q3q2q1

0, 1 0, 1

0 00

q3q1 q2

0

0

0

1 1

4. Let A be a finite automaton. Show that the set of subwords (that is, pre-

fixes, suffixes, or any continuous segment) of the words in the language

L(A) can also be recognised by a finite automaton.

Answer:

To show that the language consisting of prefixes of words in L(A) is recog-

nisable by a finite automaton, we can simply build an automaton for it using

as a starting point the automaton A. Indeed, to recognise a prefix of a word

in L(A), it is sufficient to turn every state in A for which there is a path to a

final state into a final state. In this way, we have a finite automaton A′ with

the same alphabet as A and such that if a word is a prefix (i.e., the initial

segment) of a word in L(A), then A′ will reach a final state.

Recognising suffixes is slightly more subtle, but again, starting from A we

can build an automaton with the required property by inserting ǫ transitions

between the initial state of A and all the other states for which there is a path

to a final state. This gives a non-deterministic automaton A′′ that, for any

suffix (i.e., final segment) of a word in L(A), reaches a final state.

Finally, combining both techniques, we can obtain an automaton that recog-

nises any continuous segment of words in L(A).

5. Use the Pumping Lemma to show that the language L containing all the

words of the form anbncn, for any n ≥ 0, cannot be recognised by a finite

automaton.

Answer:

Similar to Corollary 2.11. We sketch the idea: If a word anbncn is in L, then

as a consequence of the Pumping Lemma there is a substring that can be
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repeated an arbitrary number of times. Therefore L contains strings where the

number of symbols a, b, or c is different, which contradicts the assumptions.

6. How can a push-down automaton recognise the language

{ww | w is a string of 0s and 1s and w is its mirror image}?

Give an informal description of such an automaton.

Answer:

It is easy to build a non-deterministic automaton that recognises this language.

The idea is to define states that non-deterministically put in the stack the

symbols read and also start popping symbols in case we have already reached

the middle point in the word.

7. Show that the class of languages recognisable by push-down automata (i.e.,

the class of context-free languages) is closed under union and concatenation

but not under intersection.

Answer:

Union: Assume PDA1 and PDA2 recognise two context-free languages, L1

and L2. To build a PDA that recognises the union of L1 and L2, it is sufficient

to include all the states in PDA1 and PDA2 (without loss of generality, we

can assume that the sets of states are disjoint) but define a new initial state

q0 with ǫ transitions to the initial states of PDA1 and PDA2 (which are no

longer initial states in the new automaton).

Concatenation: Similarly, we can build a PDA that recognises all the words

formed by concatenation of a word from L1 and a word from L2 simply by

adding ǫ transitions from the final states in PDA1 (which are no longer final

in the new automaton) to the initial state in PDA2 (which is no longer an

initial state).

Intersection: Showing that context-free languages are not closed by intersection

is more difficult. To show it, we rely on the fact that the language consisting

of all the strings of the form anbncn is not context-free (see Section 2.3 and

Exercise 5 of Chapter 2). This language is the intersection of two context-free

languages, L1 = {a∗bncn | n ≥ 0} and L2 = {anbnc∗ | n ≥ 0}, where a∗

denotes a string with an arbitrary number (0 or more) of symbols a and c∗

denotes a string with an arbitrary number (0 or more) of symbols c. We leave

to the reader the proof that there are PDAs that recognise L1 and L2 — see

the PDA defined in Section 2.3 to recognise the language

{(n
)
n | n is a natural number}
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8. Describe a Turing machine that recognises the language of the strings w•w,

where w is a string over an alphabet {0, 1}.

Answer:

The machine can be formally defined as follows:

– The set Q of states contains q0, q1, q2, q3, q4, q5, q6, qaccept, qreject.

The initial state is q0, and the final states are qaccept and qreject.

– The input alphabet is {0, 1}. The tape alphabet contains additionally the

blank symbol ◦.

– The transition function δ is defined by

δ(q0, •) = (qaccept, •, R)

δ(q0, 0) = (q1, ◦, R) δ(q0, 1) = (q4, ◦, R)

δ(q1, 0) = (q1, 0, R) δ(q1, 1) = (q1, 1, R)

δ(q1, •) = (q2, •, R) δ(q2, •) = (q2, •, R)

δ(q2, 0) = (q3, •, L) δ(q3, •) = (q3, •, L)

δ(q3, 0) = (q3, 0, L) δ(q3, 1) = (q3, 1, L)

δ(q3, ◦) = (q0, ◦, R) δ(q4, 0) = (q4, 0, R)

δ(q4, 1) = (q4, 1, R) δ(q4, •) = (q5, •, R)

δ(q5, •) = (q5, •, R) δ(q5, 1) = (q6, •, L)

δ(q6, •) = (q6, •, L) δ(q6, 0) = (q6, 0, L)

δ(q6, 1) = (q6, 1, L) δ(q6, ◦) = (q0, ◦, R)

δ(qi, x) = (qreject, ◦, R) for any (qi, x) not defined above

The idea is that the machine, once started in the first symbol of the word,

remembers whether it is a 0 or a 1 (by moving to q1 or q4) and replaces

the first symbol by a blank. Then it jumps over all the remaining 0s and 1s

until it finds a •, and then it looks for the first symbol different from •. If

it is the required 0 or 1, then it replaces it by a • (otherwise, the word is

rejected). After replacing the symbol by •, the machine goes backwards to

the beginning of the word and repeats the cycle.

Selected exercises from Chapter 3

3. Compute the normal forms of the following terms

a) λy.(λx.x)y

b) λy.y(λx.x)
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c) II

d) KI

e) KKK

where K = λxy.x and I = λx.x.

Answer:

We have the following reductions to normal form:

a) λy.(λx.x)y → λy.y

b) λy.y(λx.x) (the term was already a normal form!)

c) II = (λx.x)(λx.x) → λx.x = I

d) KI = (λxy.x)(λx.x) → λyx.x

e) KKK = ((λxy.x)(λxy.x))(λxy.x) →∗ λxy.x = K (recall that applica-

tion associates to the left).

4. Different notions of normal form were discussed in Chapter 3, including

the full normal form (or simply normal form) and weak head normal form.

a) What is the difference between a term having a normal form and being

a normal form? Write down some example terms.

b) If a closed term is a weak head normal form, it has to be an abstraction

λx.M . Why?

c) Indicate whether the following λ-terms have a normal form:

– (λx.(λy.yx)z)v

– (λx.xxy)(λx.xxy)

d) Show that the term Ω = (λx.xx)(λx.xx) does not have a normal form.

Find a term different from Ω that is not normalising (i.e., a term such

that every reduction sequence starting from it is infinite).

Answer:

a) A term is in normal form if it is irreducible (i.e., it has no β-redex). It has

a normal form if it can be reduced to a term in normal form. For example,

the term (λx.x)(λx.x) has a normal form but is not a normal form.

b) A weak head normal form is a term where all β-redexes occur under an

abstraction. If a term is closed, it cannot be just a variable. It may be an

application or an abstraction. In the latter case, it is a weak head normal

form. We will now show that it cannot be an application. For this, we
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reason by contradiction. Suppose that the term is an application (MN).

Since it is closed and it is a weak head normal form, M must be an

application, M = (M1 . . . M2 . . . Mn), where M1 is either a variable or

an abstraction. The first contradicts the closedness assumption, and the

latter contradicts the assumption that the term is a weak head normal

form.

c) The term (λx.(λy.yx)z)v has a normal form. It reduces to zv, which is in

normal form. The term (λx.xxy)(λx.xxy), on the other hand, does not

have a normal form.

d) The term Ω is reducible, but its only redex is Ω itself. If we reduce it, we

again obtain Ω. Therefore, the only reduction sequence out of Ω is the

infinite sequence Ω → Ω → Ω . . ..

Another example was given above: (λx.xxy)(λx.xxy).

The term (λx.y)Ω is interesting. It is not strongly normalisable since there

is an infinite reduction sequence that always reduces the Ω subterm; how-

ever, it has a normal form since it reduces in one step to y. This is an

example of a term that is normalisable but not strongly normalisable.

5. Explain why if a reduction system is confluent, then each term has at most

one normal form.

Answer:

In a confluent reduction system, for any term M such that M →∗ M1 and

M →∗ M2, there is some term M3 such that M1 →∗ M3 and M2 →∗ M3.

Now, let us assume, by contradiction, that in a confluent system some term

M has two different normal forms, N1 and N2. Since the system is confluent,

there must exist a term N3 that joins N1 and N2. But then N1 and N2 are

not normal forms since they reduce to N3 (contradiction).

11. Combinatory logic (CL for short) is a universal model of computation.

Terms in the language of CL are built out of variables x, y, . . ., constants

S and K, and applications (M N). More precisely, terms are generated by

the grammar
M,N ::= x | S | K | (M N)

The standard notational conventions are used to avoid brackets: Applica-

tions associate to the left, and we do not write the outermost brackets. For

instance, we write K x y for the term ((K x) y).

There are two computation rules in combinatory logic:

K x y → x

S x y z → x z (y z)
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a) Using the rules above, there is a sequence of reduction steps

SKKx →∗ x

Show all the reduction steps in this sequence.

b) The term SKK can be seen as the implementation of the identity

function in this system since, for any argument x, the term SKKx

evaluates to x.

Show that SKM , where M is an arbitrary term, also defines the iden-

tity function.

c) Consider the system of combinatory logic without the second compu-

tation rule (that is, only the rule Kxy → x may be used). We call this

weaker system CL−.

We call CL+ the system of combinatory logic with an additional con-

stant I and rule Ix → x.

Indicate whether each of the following statements is true or false and

why.

i. In CL−, all the reduction sequences are finite.

ii. The system CL+ has the same computational power as the system

CL.

iii. The system CL− is Turing complete.

Answer:

a) The reduction sequence is SKKx → Kx(Kx) → x.

b) The reduction SKMx → Kx(Mx) → x justifies the claim.

c) This question has three parts. In the first part, the claim is that all re-

duction sequences are finite. This is true because each application of the

reduction rule decreases the size of the term, and therefore reductions

eventually terminate.

It is easy to see that CL+ has the same computational power as CL since

I can be implemented in CL as shown above.

On the other hand, CL− is strictly less powerful than CL: CL− is not

Turing complete. Several arguments can be used to justify this claim: the

fact that each reducible term is equivalent to one of its subterms, the fact

that there is no way to copy arguments, the termination of the reduction

relation, etc.
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Selected exercises from Chapter 4

1. Show that the factorial function is primitive recursive.

Answer:

The factorial function can be defined using the primitive recursive scheme as

factorial(0) = S(0)

factorial(S(n)) = g(factorial(n), n)

where the auxiliary function g multiplies the first argument by the succes-

sor of the second. The function g can be defined by the composition of the

multiplication and addition functions:

g(x, y) = add(π1(x, y),mul(x, y))

2. Show that the function f used in Example 4.6, defined by f(0) = 0 and

f(S(n)) = 1, is primitive recursive.

Answer:

The function f can be defined as

f(0) = 0

f(S(n)) = one(f(n), n)

where one(x, y) = S(zero(x, y)) and zero(x, y) = 0.

5. Indicate whether the following statements are true or false:

a) All primitive recursive functions are total.

b) All total computable functions are primitive recursive.

c) All partial recursive functions are computable.

d) All total functions are computable.

Answer:

The first claim is true and was proved in Chapter 4.

The second claim is false since there are total functions that are not primitive

recursive. Ackermann’s function, given at the end of Section 4.1, is an example

of a total but not primitive recursive function.

The third claim is true. The class of partial recursive functions is equivalent to

the class of functions that can be computed by Turing machines.

The fourth claim is false. The function that solves the Halting problem is total,

but it is not computable.
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7. In functional languages, there is a primitive function if-then-else that

we can use to define a function by cases, depending on a Boolean condition

(see the case construction in Definition 4.7). Thus,

if x == 0 then 0 else x * y

will return 0 if the value of x is equal to 0 and will return the product of x

and y otherwise.

Assume the function mult on natural numbers is defined by

mult x y
def

= if x == 0 then 0 else x * y

where == is the equality test. Assume that e1 == e2 is evaluated by reducing

e1 and e2 to normal form and then comparing the normal forms.

a) Is mult commutative over numbers; i.e., will mult m n and mult n m

compute the same result for all numbers m and n?

b) Let infinity be the function defined by

infinity
def

= infinity + 1

What is the value of mult infinity 0?

What is the value of mult 0 infinity?

Answer:

If both arguments of mult are numbers, then the comparison with 0 always

produces a result, and therefore mult is commutative. If one of the arguments

is 0, the result is 0; otherwise it is the result of x ∗ y.

However, for mult infinity 0, the evaluation process does not terminate.

The value of infinity is undefined, and therefore the comparison with 0 does

not return a result.

For mult 0 infinity, the value is 0 and can be found with a strategy that

uses normal order.

Selected exercises from Chapter 5

1. Assuming that A,B,C are atoms, which of the following clauses are Horn

clauses?

a) ¬A

b) A ∨ B ∨ ¬C
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c) A ∨ ¬A

d) A

Answer:

The only clause that is not a Horn clause is the second one (it has two positive

literals).

4. Give the most general unifier (if it exists) of the following atoms (recall

that [1,2] is short for the list [1|[2|[]]]):

a) append([1,2],X,U), append([Y|L],Z,[Y|R])

b) append([1,2],X,[0,1]), append([Y|L],Z,[Y|R])

c) append([],X,[0,1]), append([Y|L],Z,[Y|R])

d) append([],X,[0]), append([],[X|L],[Y])

Answer:

a) The most general unifier of the terms append([1,2],X,U) and

append([Y|L],Z,[Y|R]) is {Y �→ 1, L �→ [2], Z �→ X,U �→ [1|R]}.

b) The terms append([1,2],X,[0,1]), append([Y|L],Z,[Y|R]) are not

unifiable since we need Y = 1 and Y = 0 at the same time.

c) The terms append([],X,[0,1]), append([Y|L],Z,[Y|R]) are not

unifiable since we cannot unify the empty list with a non-empty list.

d) The terms append([],X,[0]), append([],[X|L],[Y]) are not unifi-

able since we cannot unify X with [X|L] (occur-check).

6. Show that the resolvent of the clauses

P :- A1, . . . , An

and

:- Q1, . . . , Qm

is also a Horn clause.

Answer:

By definition, each Horn clause contains zero or one positive literal. Resolving

eliminates one literal Qi and replaces it by A1, . . . , An, with a suitable sub-

stitution (which will only modify the terms inside the literals). Therefore the

resolvent is still a Horn clause.
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7. Consider the program

nat(s(X)) :- nat(X).

nat(0).

and the query

:- nat(Y).

a) Describe the complete SLD-resolution tree for this query.

b) Explain why Prolog will not find an answer for this query.

c) Change the program so that Prolog can find an answer.

Answer:

The complete SLD-tree is

nat(Y)

{Y �→ s(X1)}/ \{Y �→ 0}

nat(X1) ♦

{X1 �→ s(X2)}/ \{X1 �→ 0}

nat(X2) ♦

...

Prolog will not find an answer because first it explores the leftmost branch,

which is infinite in this case. We need to change the order of the clauses:

nat(0).

nat(s(X)) :- nat(X).

12. A graph is a set V = {a, b, c, . . .} of vertices and a set E ⊆ V ×V of edges.

We use the binary predicate edge to represent the edges: edge(a,b) means

that there is an edge from a to b. In a directed graph, the edges have a

direction, so edge(a,b) is different from edge(b,a). We say that there is

a path from a to b in a graph if there is a sequence of one or more edges

that allows us to go from a to b.

a) Write a logic program defining the predicate path.

b) Write a query to compute all the directed paths starting from a in the

graph.

c) Write a query to compute all the directed paths in the graph.
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Answer:

The following program defines the predicate path:

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

The following query computes the paths starting from a:

:- path(a,X).

The following query computes all the paths:

:- path(X,Y).

Selected exercises from Chapter 6

1. What is the fundamental difference between a method defined by l = ς(x)b

in an object o and a function with argument x defined by the λ-term λ(x)b?

Answer:

In l = ς(x)b, x is the self variable. It refers to the whole object where the

method l is defined.

We could simulate method invocation using function application. Assume we

define an object o = [li = λ(xi)b
i∈1...n
i ]. Then we can replace the usual

invocation rule

o.lj −→ bj{xj �→ o}

by

o.lj −→ (λ(xj)bj)o

Observe that (λ(xj)bj)o → bj{xj �→ o} as required.

3. Add a method get in the object loc defined in Example 6.8 to represent a

memory location, so that the field value is accessed by get.

Answer:

loc = [value = 0,

set = ς(x)λ(n)x.value := n,

get = ς(x)x.value]
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4. In a calculus that combines objects, functions, numbers, and arithmetic

functions, we have defined the following object:

loc = [value = 0,

set = ς(x)λ(n)x.value := n,

incr = ς(x)x.value := x.value + 1]

a) Describe in your own words the behaviour of the methods set and incr.

b) Evaluate the terms (and show the reduction steps)

i. loc.set(1).set(3).value

ii. loc.incr.value

where loc is the object defined above.

Answer:

The method set stores a value in the field value, and incr increases by one

the number stored in value.

The reductions are

loc.set(1).set(3).value → ((λ(n)loc.value := n)1).set(3).value

→ (loc.value := 1).set(3).value

→ [value = 1, set = ς(x)λ(n)x.value := n,

incr = ς(x)x.value := x.value + 1].set(3).value

→ ((λ(n)loc′.value := n)3).value

→ (loc′.value := 3).value

→ [value = 3, set = ς(x)λ(n)x.value := n,

incr = ς(x)x.value := x.value + 1].value

→ 3

loc.incr.value → (loc.value := loc.value + 1).value

→ (loc.value := 0 + 1).value

→ [value = 0 + 1, set = ς(x)λ(n)x.value := n,

incr = ς(x)x.value := x.value + 1].value

→ 0 + 1 → 1

6. Recall the translation function T from the λ-calculus to the ς-calculus

defined in Chapter 6:

T (x) = x

T (λx.M) = [arg = ς(x)x.arg, val = ς(x)T (M){x �→ x.arg}]

T (MN) = (T (M).arg := T (N)).val
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a) Using this definition, write down the ς-terms obtained by the following

translations:

i. T (λx.x)

ii. T (λxy.x)

iii. T (λy.(λx.x)y)

iv. T ((λx.x)(λy.y))

b) Reduce T ((λx.x)(λy.y)) to normal form using the reduction rules of

the ς-calculus.

c) What are the advantages and disadvantages of a computation model

that combines the ς-calculus and additional rewriting rules? Compare

it with the pure ς-calculus.

Answer:

T (λx.x) = [arg = ς(x)x.arg, val = ς(x)x.arg]

To compute T (λxy.x), we proceed as follows:

T (x) = x

T (λy.x) = [arg = ς(y)y.arg, val = ς(y)x]

T (λxy.x) = [arg = ς(x)x.arg,

val = ς(x)[arg = ς(y)y.arg, val = ς(y)x.arg]]

To compute T (λy.(λx.x)y), we proceed as follows:

T ((λx.x)y) = ([arg = ς(x)x.arg, val = ς(x)x.arg].arg := y).val

T (λy.(λx.x)y) = [arg = ς(y)y.arg,

val = ς(y)([arg = ς(x)x.arg,

val = ς(x)x.arg].arg := y.arg).val]

Below we compute T ((λx.x)(λy.y)) and reduce it to normal form.

T ((λx.x)(λy.y)) = ([arg = ς(x)x.arg, val = ς(x)x.arg].arg :=

[arg = ς(y)y.arg, val = ς(y)y.arg]).val

−→ [arg = [arg = ς(y)y.arg, val = ς(y)y.arg],

val = ς(x)x.arg].val

−→ [arg = [arg = ς(y)y.arg, val = ς(y)y.arg],

val = ς(x)x.arg].arg

−→ [arg = ς(y)y.arg, val = ς(y)y.arg]

= T (λy.y)
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The advantages of a model of computation combining the ς-calculus with

additional reduction rules include the fact that additional rules can make it

easier to write programs in specific domains; for instance, an extension with

the λ-calculus allows the natural representation of functional components of a

program, specifically input/output.

The disadvantage is that an extension may break some useful properties (e.g.,

confluence).

7. Indicate whether each of the following statements about the ς-calculus is

true or false and why.

a) The ς-calculus is confluent; therefore each expression has at most one

normal form in this calculus.

b) The ς-calculus does not have an operation to add methods to an object;

therefore it is not a Turing-complete model of computation.

Answer:

It is confluent, and confluence implies the unicity of normal forms.

It does not have an operation to extend objects with new methods, but it is

Turing complete. For instance, the λ-calculus can be encoded in the object

calculus, as shown in Chapter 6.

Selected exercises from Chapter 7

4. a) Give an interaction system to compute the Boolean function and.

Answer:

��
��

F
�	

��
��
and

m

�� �
x

=⇒ ��
��

F

m

�

��
��

ǫ

x �
��
��

T
�	

��
��
and

m

�� �
x

=⇒

x

m

b) Draw the interaction net representing the expression

(True and False) and True

How many reductions are needed to fully normalise this net?
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Answer:

We omit the diagram; the net has an active pair T ⊲⊳ and, which creates

another active pair F ⊲⊳ and. This interaction produces an agent F and

creates an active pair T ⊲⊳ ǫ. The final result, after three interaction steps,

is False.

6. Textual rules defining addition were given in Example 7.14. Can you write

the textual version of the rules for multiplication given in Section 7.2?

Answer:

m(0, ǫ) ⊲⊳ 0

m(x, δ(y, z)) ⊲⊳ S(m(add(x, z), y))

7. Explain why interaction nets are not suitable as a model for non-

deterministic computations.

Answer:

Interaction nets are intrinsically deterministic. They are strongly confluent,

which means that all reduction sequences produce the same result.

Selected exercises from Chapter 8

1. Prove that the relation ∼ introduced in Definition 8.6 is an equivalence

relation, as stated in Proposition 8.7.

Answer:

Recall that p ∼ q if there is a strong bisimulation S such that (p, q) is in S. The

relation S is a strong bisimulation if both S and S−1 are strong simulations.

To prove that ∼ is an equivalence relation, we need to show:

– Reflexivity: For all p ∈ Q, p ∼ p.

This can be proved using the relation S that contains all the pairs (p, p)

such that p is a state in Q.

The relations S and S−1 coincide in this case, and it is easy to see that S

is a strong simulation.

– Symmetry: For all p, q ∈ Q, if p ∼ q, then q ∼ p.

Note that p ∼ q implies that (p, q) is in a strong bisimulation S, and (q, p)

is in S−1, which is also a strong bisimulation by the definition of ∼. Hence

q ∼ p.
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– Transitivity: For all p, q, r ∈ Q, if p ∼ q and q ∼ r, then p ∼ r.

To show transitivity, it is sufficient to prove that if S and S′ are strong

bisimulations, then so is S ◦ S′, where

S ◦ S′ = {(p, r) | (p, q) ∈ S and (q, r) ∈ S′ for some q}

2. Prove that if p ∼ q, then p simulates q and q simulates p.

The reverse is not true. Can you give a counterexample?

Answer:

If p ∼ q, then there is a strong bisimulation S such that pSq. By definition,

this means that S and S−1 are strong simulations and contain the pairs (p, q)

and (q, p), respectively. Therefore q simulates p and p simulates q.

The reverse implication is not true, as the following counterexample shows.

Consider two labelled transition systems, D1 = (Q1, T1) and D2 = (Q2, T2),

such that in D1 there is a state p with transitions p −→a p1 and also

p −→a p′1; that is, from the state p, we can pass to the state p1 or p′1
(non-deterministically) by a. Assume that a further transition is possible from

p1 to p2, labelled by b: p1 −→b p2.

Assume Q2 = {q, q1, q2} and T2 contains the transitions q −→a q1 and q1 −→b

q2.

We can show that q simulates p using the relation

S = {(p, q), (p1, q1), (p
′

1, q1), (p2, q2)}

which is a strong simulation.

We can also show that p simulates q using the strong simulation

S′ = {(q, p), (q1, p1), (q2, p2)}

However, S and S′ are not inverses, and it is not possible to define a strong

simulation such that the inverse is also a strong simulation because p and q

are not observationally equivalent: There is a transition p −→a p′1 after which

D1 is blocked (no further transitions are possible), whereas for D2 there is no

equivalent state.

4. Consider a counter defined as a device that can hold a natural number,

increment its value, or decrement it, but if the value of the counter is zero,

decrementing it does not change the value of the counter. Write a process

expression defining such a counter.
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Answer:

We can specify the counter using a transition system with a state for each

possible value of the counter (for instance, Q = Cn (n ≥ 0)) and transitions

labelled by incr or decr to increment or decrement the value of the counter.

The following equations can be used to define the states:

C0(inc, dec) = inc.C1〈inc, dec〉 + dec.C0〈inc, dec〉

Cn+1(inc, dec) = inc.Cn+2〈inc, dec〉 + dec.Cn〈inc, dec〉

We initialise the counter by defining Counter = C0〈inc, dec〉.

5. In order to prove that P ≡ Q implies P ∼ Q as stated in the second part

of Proposition 8.14, it is sufficient to show that the structural congruence

≡ is a strong bisimulation. Can you prove this fact?

Answer:

First, note that ≡ and ≡−1 coincide, so we just need to show that ≡ is a

strong simulation.

Assume P ≡ Q. Then, if P −→α P ′, also Q −→α P ′, and P ′ ≡ P ′ as

required.

6. Let P be the process defined by the expression ν d e f .(K1|K2|K3), where

K1 = f.a.d.K1

K2 = d.b.e.K2

K3 = f.e.c.K3

and let H be the process defined by the equation

H = a.b.c.H

a) Give labelled transition systems for P and for H.

b) Show that P ∼ H.

Answer:

a) The set of states is isomorphic to the set of subexpressions. The transitions

are defined by

P −→τ P 1 = ν d e f .(ad.K1|dbe.K2|ec.K3)

−→a P 2 = ν d e f .(d.K1|dbe.K2|ec.K3)

−→τ P 3 = ν d e f .(K1|be.K2|ec.K3)

−→b P 4 = ν d e f .(K1|e.K2|ec.K3)

−→τ P 5 = ν d e f .(K1|K2|c.K3)

−→c P
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and

H −→a H ′ = bc.H −→b H ′′ = c.H −→c H

To show that they are bisimilar, we can use the relation

S = {(H,P ), (H,P 1), (H ′, P 2), (H ′, P 3), (H ′′, P 4), (H ′′, P 5)}.
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