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Preface

Computability has played a crucial role in mathematics and computer sci-

ence – leading to the discovery, understanding and classification of decid-

able/undecidable problems, paving the way to the modern computer era

and affecting deeply our view of the world. Recent new paradigms of com-

putation, based on biological and physical models, address in a radically

new way questions of efficiency and even challenge assumptions about the

so-called Turing barrier.

This book addresses various aspects of the ways computability and the-

oretical computer science enable scientists and philosophers to deal with

mathematical and real world issues, ranging through problems related to

logic, mathematics, physical processes, real computation and learning the-

ory. At the same time it focuses on different ways in which computability

emerges from the real world, and how this affects our way of thinking about

everyday computational issues.

But the title Computability in Context has been carefully chosen.

The contributions to be found here are not strictly speaking ‘applied

computability’. The literature directly addressing everyday computational

questions has grown hugely since the days of Turing and the computer

pioneers. The Computability in Europe conference series and association is

built on the recognition of the complementary role that mathematics and

fundamental science plays in progressing practical work; and, at the same

time, of the vital importance of a sense of context of basic research. This

book positions itself at the interface between applied and fundamental re-

search, prioritising mathematical approaches to computational barriers.

For us, the conference Computability in Europe 2007: Computation and

Logic in the Real World was a hugely exciting – and taxing – experience.

It brought together a remarkable assembly of speakers, and a level of par-

ticipation around issues of computability that would surely have astounded

Turing and those other early pioneers of ‘computing with understanding’.

All of the contributions here come from invited plenary speakers or Pro-

v
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vi Preface

gramme Committee members of CiE 2007. Many of these articles are likely

to become key contributions to the literature of computability and its real-

world significance. The authors are all world leaders in their fields, all much

in demand as speakers and writers. As editors, we very much appreciate

their work.

Barry Cooper and Andrea Sorbi
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Chapter 1

Computation, Information, and the Arrow of Time

Pieter Adriaans & Peter van Emde Boas

Adriaans ADZA Beheer B.V., and
FNWI, University of Amsterdam,

1098 XG Amsterdam, The Netherlands

E-mail: pieter@pieter-adriaans.com

Bronstee.com B.V., Heemstede, and
ILLC, FNWI, University of Amsterdam
1090 GE Amsterdam, The Netherlands

E-mail: peter@bronstee.com

In this chapter we investigate the relation between information and com-
putation under time symmetry. We show that there is a class of non-
deterministic automata, the quasi-reversible automata (QRTM), that is
the class of classical deterministic Turing machines operating in negative
time, and that computes all the languages in NP. The class QRTM is
isomorphic to the class of standard deterministic Turing machines TM,
in the sense that for every M ∈ TM there is a M−1 in QRTM such
that each computation on M is mirrored by a computation on M−1

with the arrow of time reversed. This suggests that non-deterministic
computing might be more aptly described as deterministic computing
in negative time. If Mi is deterministic then M−1

i is non deterministic.
If M is information discarding then M−1 “creates” information. The
two fundamental complexities involved in a deterministic computation
are Program Complexity and Program Counter Complexity. Programs
can be classified in terms of their “information signature” with pure
counting programs and pure information discarding programs as two
ends of the spectrum. The chapter provides a formal basis for a further
analysis of such diverse domains as learning, creative processes, growth,
and the study of the interaction between computational processes and
thermodynamics.

1
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1.1. Introduction

The motivation behind this research is expressed in a childhood memory of

one of the authors: “When I was a toddler my father was an enthusiastic

8-mm movie amateur. The events captured in these movies belong to my

most vivid memories. One of the things that fascinated me utterly was the

fact that you could reverse the time. In my favorite movie I was eating a

plate of French fries. When played forward one saw the fries vanish in my

mouth one by one, but when played backward a miracle happened. Like a

magician pulling a rabbit out of a hat I was pulling undamaged fries out

of my mouth. The destruction of fries in positive time was associated with

the creation of fries in negative time.”

This is a nice example of the kind of models we have been discussing

when we were working on the research for this paper. It deals with com-

putation and the growth and destruction of information. Deterministic

computation seems to be incapable of creating new information. In fact

most recursive functions are non-reversible. They discard information. If

one makes a calculation like a + b = c then the input contains roughly

(log a + log b) bits of information whereas the answer contains log(a + b)

bits which is in general much less. Somewhere in the process of transform-

ing the input to the output we have lost bits. The amount of information

we have lost is exactly the information needed to separate c in to a and b.

There are many ways to select two numbers a and b that add up to c. So

there are many inputs that could create the output. The information about

the exact history of the computation is discarded by the algorithm. This

leaves us with an interesting question: If there is so much information in

the world and computation does not generate information, then where does

the information come from?

Things get more fascinating if we consider the Turing machine version

of the French fries example above. Suppose we make a Turing machine
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that only erases its input and we make a movie of its execution and play

it backward. What would we see? We see a machine creating information

out of nothing, just the same way the toddler in the reversed movie was

pulling neat French fries out of his mouth. So also in this case, if we reverse

the arrow of time, destruction of information becomes creation and vice

versa. In previous papers the first author has investigated the relation

between learning and data compression ([2, 4]). Here we are interested in

the converse problem: How do data-sets from which we can learn something

emerge in the world? What processes grow information?

There is a class of deterministic processes that discard or destroy in-

formation. Examples are: simple erasure of bits, (lossy) data compression,

and learning. There is another class of processes that seems to create infor-

mation: coin flipping, growth, evolution. In general, stochastic processes

create information, exactly because we are uncertain of their future, and

deterministic processes discard information, precisely because the future

of the process is known. The basic paradigm of a stochastic information

generating process is coin flipping. If we flip a coin in such a way that the

probability of heads is equal to the probability of tails, and we note the

results as a binary string, then with high probability this string is random

and incompressible. The string will then have maximal Kolmogorov com-

plexity, i.e. a program that generates the string on a computer will be at

least as long as the string itself ([8]). On the other hand if we generate a

string by means of a simple deterministic program (say “For x = 1 to k

print("1")”) then the string is highly compressible and by definition has

a low Kolmogorov complexity which approximates log k for large enough k.

In the light of these observations one could formulate the following research

question: Given the fact that creation and destruction of information seem

to be symmetrical over the time axis, could one develop a time-invariant

description of computational processes for which creation of information

is the same process as destruction of information with the time arrow re-

versed? A more concise version of the same question is: Are destruction

and creation of information computationally symmetrical in time? The

main part of this paper is dedicated to a positive answer to this question.

Prima facie it seems that we compute to get new information. So if

we want to know what the exact value of 10! is, then the answer 3628800

really contains information for us. It tells us something we did not know.

We also have the intuition, that the harder it is to compute a function, the

more value (i.e. information) the answer contains. So 10! in a way contains



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

4 P. Adriaans & P. van Emde Boas

more information than 102. Yet from a mathematical point of view 10! and

3628800 are just different descriptions of the same number. The situation

becomes even more intriguing if we turn our intention to the simulation of

processes on a computer that really seem to create new information like

the growth of a tree, game playing, or the execution of a genetic algorithm.

What is happening here if computation cannot generate information? What

is the exact relation between information generating processes that we find

in our world and our abstract models of computation?

In most curricula, theories about information and computation are

treated in isolation. That is probably the reason why the rather funda-

mental question studied in this paper up till now has received little at-

tention in computer science: What is the interaction between information

and computation? Samson Abramsky has posed this question in a recent

publication with some urgency (without offering a definitive answer): We

compute in order to gain information, but how is this possible logically or

thermodynamically? How can it be reconciled with the point of view of In-

formation Theory? How does information increase appear in the various

extant theories? ([1], p. 487). Below we will formulate a partial answer

to this question by means of an analysis of time invariant descriptions of

computational processes.

1.2. A Formal Framework: Meta-computational Space

In order to study the interplay between entropy, information, and compu-

tation we need to develop a formal framework. For this purpose we develop

the notion of meta-computational space in this section: formally, the space

of the graphs of all possible computations of all possible Turing machines.

The physical equivalent would be the space of all possible histories of all

possible universes.

C(x) will be the classical Kolmogorov complexity of a binary string x,

i.e. the length of the shortest program p that computes x on a reference

universal Turing machine U . Given the correspondence between natural

numbers and binary strings, M consists of an enumeration of all possible

self-delimiting programs for a preselected arbitrary universal Turing ma-

chine U . Let x be an arbitrary bit string. The shortest program that

produces x on U is x∗ = argminM∈M(U(M) = x) and the Kolmogorov

complexity of x is C(x) = |x∗|. The conditional Kolmogorov complexity of

a string x given a string y is C(x|y), this can be interpreted as the length

of a program for x given input y. A string is defined to be random if
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C(x) ≥ |x|. I(x) is the classical integer complexity function that assigns to

each integer x another integer C(x) [8].

We will follow the standard textbook of Hopcroft, Motwani, and Ullman

for the basic definitions ([7]). A Turing machine (TM) is described by a

7-tuple

M = (Q,Σ,Γ, δ, q0, B, F ).

Here, as usual, Q is the finite set of states, Σ is the finite set of input symbols

with Σ ⊂ Γ, where Γ is the complete set of tape symbols, δ is a transition

function such that δ(q,X) = (p, Y,D), if it is defined, where p ∈ Q is the

next state, X ∈ Γ is the symbol read in the cell being scanned, Y ∈ Γ is

the symbol written in the cell being scanned, D ∈ {L,R} is the direction

of the move, either left or right, q0 ∈ Q is the start state, B ∈ Γ−Σ is the

blank default symbol on the tape, and F ⊂ Q is the set of accepting states.

A move of a TM is determined by the current content of the cell that is

scanned and the state the machine is in. It consists of three parts:

(1) Change state;

(2) Write a tape symbol in the current cell;

(3) Move the read-write head to the tape cell on the left or right.

A non-deterministic Turing machine (NTM) is equal to a deterministic

TM with the exception that the range of the transition function consists of

sets of triples:

δ(q,X) = {(p1, Y1, D1), (p2, Y2, D2), ..., (pk, Yk, Dk)}.

A TM is a reversible Turing machine (RTM) if the transition function

δ(q,X) = (p, Y,D) is one-to-one, with the additional constraint that the

movement D of the read-write head is uniquely determined by the target

state p.

Definition 1.1. An Instantaneous Description (ID) of a TM during its

execution is a string X1X2...Xi−1qXiXi+1...Xn in which q is the state

of the TM, the tape head is scanning the i-th head from the left,

X1X2...Xn is the portion of the tape between the leftmost and the rightmost

blank. Given an Instantaneous Description X1X2...Xi−1qXiXi+1...Xn it

will be useful to define an Extensional Instantaneous Description (EID)

X1X2...Xi−1XiXi+1...Xn, that only looks at the content of the tape and

ignores the internal state of the machine and an Intensional Instantaneous

Description (IID) qXiD, that only looks at the content of the current cell
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of the tape, the internal state of the machine, and the direction D in which

the head will move.

We make the jump from an object- to a meta-level of descriptions of

computations by means of considering the set of all possible transitions

between instantaneous descriptions.

Definition 1.2. Let< IDM ,⊢M> be the configuration graph of all possible

transformations of a machine M , i.e. IDM is the countable set of all

possible instantaneous descriptions and for IDi,j ∈ IDM :

IDi ⊢M IDj

if and only if TM can reach IDj in one move from IDi. IDm is reachable

from IDi iff there exists a sequence of transformations from one to the

other:

(IDi ⊢∗M IDm)⇔ IDi ⊢M IDj ⊢M IDk...IDl ⊢M IDm.

The intensional description of such a transformation will be: (IIDi ⊢∗M
IIDm). The extensional description will be: (EIDi ⊢∗M EIDm).

Note that two machines can perform computations that are extensionally

isomorphic without intensional isomorphism and vice versa. We refer here

to transformations rather than computations since, in most cases, only

a subpart of the configuration graph represents valid computations that

begin with a start state and end in an accepting state. Note that the class

of all possible instantaneous descriptions for a certain machine contains

for each possible tape configuration, at each possible position of the head

on the tape, an instance for each possible internal state. Most of these

configurations will only be the result, or lead to, fragments of computations.

On the other hand, all valid computations that begin with a start state and

either continue forever or end in an accepting state, will be represented in

the configuration graph.

Note that there is a strict relation between the structure of the transi-

tion function δ and the configuration graph: For a deterministic machine

the configuration graph has only one outgoing edge for each configuration,

for a non-deterministic machine the configuration graph can have multiple

outgoing edges per ID, for a reversible machine the graph consists only of

a number of linear paths without bifurcations either way.

Lemma 1.1. Let M be a Turing machine. We have C(< IDM ,⊢M>) <
C(M) +O(1).
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Proof. Given M the graph < IDM ,⊢M> can be constructed by the fol-

lowing algorithm: Create IDM by enumerating the language of all possible

IDs, at each step of this process run M for one step on all IDs created so

far and add appropriate edges to ⊢M when M transforms IDi in IDj . �

The finite object M and the infinite object < IDM ,⊢M> identify the

same structure. We use here two variants of the Kolmogorov complexity:

The complexity of the finite object M is defined by the smallest program

that computes the object on a universal Turing machine and then halts; the

complexity of < IDM ,⊢M> is given by the shortest program that creates

the object in an infinite run.

Definition 1.3. Given an enumeration of Turing machines the meta-

computational space is defined as the disjunct sum of all configuration

graphs < IDMi
,⊢Mi

> for i ∈ N.

The meta-computational space is a very rich object in which we can

study a number of fundamental questions concerning the interaction be-

tween information and computation. We can also restrict ourselves to the

study of either extensional or intensional descriptions of computations and

this will prove useful, e.g. when we want to study the class of all compu-

tational histories that have descriptions with isomorphic pre- or suffixes.

For the moment we want to concentrate on time symmetries in meta-

computational space.

1.3. Time Symmetries in Meta-computational Space

In this paragraph we study the fact that some well-known classes of compu-

tational processes can be interpreted as each others’ symmetrical images in

time, i.e. processes in one class can be described as processes in the other

class with the time arrow reversed, or, to say it differently, as processes tak-

ing place in negative time. We can reverse the time arrow for all possible

computations of a certain machine by means of reversing all the edges in

the computational graph. This motivates the following notation:

Definition 1.4.

(IDi ⊢ IDj)⇔ (IDj ⊣ IDi)

(IDi ⊢∗ IDk)⇔ (IDk ⊣∗ IDi).
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The analysis of valid computations of TM can now be lifted to the

study of reachability in the configuration graph. The introduction of such

a meta-computational model allows us to study a much more general class of

computations in which the arrow of time can be reversed. We will introduce

the following shorthand notation that allows us to say thatM−1 is the same

machine as M with the arrow of time reversed:

M =< IDM ,⊢M>⇔M−1 =< IDM ,⊣M> .

Intuitively the class of languages that is “computed” in negative time by a

certain Turing machine is the class of accepting tape configurations that can

be reached from a start state. We have to stress however, that moving back

in time in the configuration graph describes a process that is fundamentally

different from the standard notion of “computation” as we know it. We give

some differences:

• The standard definition of a Turing machine knows only one starting

state and possibly several accepting states. Computing in negative time

will trace back from several accepting states to one start state.

• The interpretation of the δ-function or relation is different. In positive

time we use the δ-function to decide which action to take given a certain

state-symbol combination. In negative time this situation is reversed:

We use the δ-function to decide which state-symbol-move combination

could have led to a certain action.

• At the start of a computation there could be a lot of rubbish on the

tape that is simply not used during the computation. All computations

starting with arbitrary rubbish are in the configuration graph. We

want to exclude these from our definitions and stick to some minimal

definition of the input of a computation in negative time.

In order to overcome these difficulties the following lemma will be useful:

Lemma 1.2. (Minimal Input-Output Reconstruction) If an inten-

sional description of a fragment of a (deterministic or non-deterministic)

computation of a machine M : (IIDi ⊢∗M IIDm) can be interpreted as the

trace of a valid computation then there exist a minimal input configuration

IDi and a minimal output configuration IDm for which M will reach IDm

starting at IDi. Otherwise the minimal input and output configuration are

undefined.

Proof. The proof first gives a construction for the minimal output in a

positive sweep and then the minimal input in a negative sweep.
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Positive sweep: Note that (IIDi ⊢∗M IIDm) consists of a sequence of

descriptions: qiXiDi ⊢ qi+1Xi+1Di+1 ⊢ ... ⊢ qmXmDm. Reconstruct a

computation in the following way: Start with an infinite tape for which all

of the symbols are unknown. Position the read-write head at an arbitrary

cell and perform the following interpretation operation: Interpret this as

the state-symbol-move configuration qiXiDi. Now we know the contents of

the cell Xi, the state qi, and the direction D of the move of the read-write

head. The action will consist of writing a symbol in the current cell and

moving the read-write head left or right. Perform this action. The content

of one cell is now fixed. Now there are two possibilities:

(1) We have the read-write head in a new cell with unknown content. From

the intensional description we know that the state-symbol combination

is qi+1Xi+1Di+1, so we can repeat the interpretation operation for the

new cell.

(2) We have visited this cell before in our reconstruction and it already

contains a symbol. From the intensional description we know that the

state-symbol combination should be qi+1Xi+1Di+1. If this is inconsis-

tent with the content of the current cell, the reconstruction stops and

the minimal output is undefined. If not, we can repeat the interpreta-

tion operation for the new cell.

Repeat this operation till the intensional description is exhausted. Cells

on the tape that still have unknown content have not been visited by the

computational process: We may consider them to contain blanks. We now

have the minimal output configuration on the tape IDm.

Negative sweep: start with the minimal output configuration IDm. We

know the current location of the read-write head and the content of the cell.

From the intensional description (IIDi ⊢∗M IIDm) we know which state-

symbol combination qmXmDm has led to IDm: from this we can construct

IDm−1. Repeat this process till the intensional description is exhausted

and we read IDi, which is the minimal input configuration. �

Lemma 1.2 gives us a way to tame the richness of the configuration

graphs: We can restrict ourselves to the study of computational processes

that are intensionally equivalent, specifically intensionally equivalent pro-

cesses that start with a starting state and end in an accepting state. This

facilitates the following definition:
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Definition 1.5. If (IIDi ⊢∗M IIDm) is an intensional description of a

computation then

INPUT(IIDi ⊢∗M IIDm) = x

gives the minimal input x and

OUTPUT(IIDi ⊢∗M IIDm) = y

gives the minimal output y. With some abuse of notation we will also apply

these functions to histories of full IDs.

Definition 1.6. Given a Turing machineM the language recognized by its

counterpart M−1 in negative time is the set of minimal output configura-

tions associated with intensional descriptions of computations on M that

begin in a start state and end in an accepting state.

Definition 1.7. The class P−1 is the class of languages that are recognized

by an M−1
i with i ∈ N in time polynomial to the length of minimal input

configuration.

Note that, after a time reversal operation, the graph of a deterministic

machine is transformed into a specific non-deterministic graph with the

characteristic that each ID has only one incoming edge. We will refer

to such a model of computation as quasi-reversible. The essence of this

analysis is that, given a specific machine M , we can study its behavior

under reversal of the arrow of time.

We can use the symmetry between deterministic and quasi-reversible

computing in proofs. Whatever we prove about the execution of a program

on M also holds for M−1 with the time reversed and vice versa.

Let QRTM be the class of quasi-reversible non-deterministic machines

that are the mirror image in time of the class of deterministic machines

TM , and QRP be the class of languages that can be recognized by QRTM

in polynomial time. The lemma below is at first sight quite surprising. The

class of languages that we can recognize non-deterministically in polynomial

time is the same class as the class of polynomial quasi-reversible languages:

Lemma 1.3. The class LQRP of languages recognized by a QRTM in poly-

nomial time is NP.

Proof. 1) LQRP ⊆ NP : The class of languages recognized by quasi-

reversible machines is a subclass of the class of languages recognized by
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non-deterministic machines. This is trivial since there is a non-deterministic

machine that produces any {0, 1}≤k in time k.

2) NP ⊆ LQRP : The class NP is defined in a standard way in terms of

a checking relation R ⊆ Σ∗ × Σ∗
1 for some finite alphabets Σ∗ and Σ∗

1. We

associate with each such relation R a language LR over Σ∗∪Σ∗
1∪# defined

by

LR = {w#y|R(w, y)}
where the symbol # is not in Σ. We say that R is polynomial-time iff

LR ∈ P . Now we define the class NP of languages by the condition that

a language L over Σ is in NP iff there is k ∈ N and a polynomial-time

checking relation R such that for all w ∈ Σ∗,

w ∈ L⇔ ∃y(|y| < |w|k & R(w, y))

where |w| and |y| denote the lengths of w and y, respectively. Suppose

that M implements a polynomial-time checking relation for R. Adapt M

to form M ′ that takes R(w, y) as input and erases y from the tape after

checking the relation, the transformation of M to M−1 is polynomial. The

corresponding QRTM M ′−1 will start with guessing a value for y non-

deterministically and will finish in a configuration for which the relation

R(w, y) holds in polynomial time since |y| < |w|k and the checking relation

R is polynomial. �

We can formulate the following result:

Theorem 1.1. NP = P−1

Proof. Immediate consequence of Lemma 1.3 and Definition 1.7. �

NP is the class of languages that can be recognized by deterministic

Turing machines in negative time. This shows that quasi-reversible com-

puting is in a way a more natural model of non-deterministic computing

than the classical full-blown non-deterministic model. The additional power

is unnecessary.

1.4. The Interplay of Computation and Information

We now look at the interplay between information and computation. The

tool we use will be the study of the changes in C(IDt), i.e. changes in the

Kolmogorov complexity of instantaneous descriptions over time. We make

some observations:
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• If IDi ⊢M IDj then the information distance between the instanta-

neous descriptions IDi and IDj is log k + 1 at most where k is the

number of internal states of M .

• If EIDi ⊢M EIDj then the information distance between the exten-

sional descriptions EIDi and EIDj is 1 bit at most.

• If IIDi ⊢M IIDj then the information distance between the intensional

descriptions IIDi and IIDj is log k+2 at most where k is the number

of internal states of M .

• Let x be the minimal input of a computational fragment (IIDi ⊢∗M
IIDm) and let y be the minimal output. We have

C(x|IIDi ⊢∗M IIDm) = C(y|IIDi ⊢∗M IIDm) = O(1).

This is an immediate consequence of Lemma 1.2.

We can now identify some interesting typical machines:

• No machine can produce information faster than 1 bit per computa-

tional step. There is indeed a non-deterministic machine that reaches

this “speed”: the non-deterministic “coin-flip” automaton that writes

random bits. For such an automaton we have with high probability

C(IDt) ≈ t. In negative time this machine is the maximal eraser. It

erases information with the maximum “speed” of 1 bit per computa-

tional step.

• A unary counting machine produces information with a maximum

speed of log t. Note that C(t) = I(t), i.e. the complexity at time t

is equal to the value of the integer complexity function. The function

I(x) has indefinite “dips” in complexity, i.e. at those places where it

approaches a highly compressible number. When t approaches such a

dip the information produced by a unary counting machine will drop

as the machine continues to write bits. The counter part of the unary

counter in negative time is the unary eraser. It erases information with

the maximal speed of log t, although at times it will create information

by erasing bits.

• The slowest information producer for its size is the busy-beaver func-

tion. When it is finished it will have written an enormous number of

bits with a conditional complexity of O(1). Its counterpart in nega-

tive time will be a busy-glutton automaton that “eats” an enormous

number of bits of an exact size.
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These insights allow us to draw a picture that tells us how information

and computation are intertwined in a deterministic process.

Figure 1.1. Schematic representation of the various types of complexity estimates in-
volved in a deterministic computation.

The complexity of the history of a computation is related to the com-

plexity of the input given the output. There are two forms of complexity

involved in a deterministic computation:

• Program Complexity: This is the complexity of the input and its sub-

sequent configurations during the process. It cannot grow during the

computation. Most computations reduce program complexity.

• Program Counter Complexity: This is the descriptive complexity of

the program counter during the execution of the process. It is 0 at the

beginning, grows to log a in the middle, and reduces to 0 again at the

end of the computation.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

14 P. Adriaans & P. van Emde Boas

The relationship between these forms of complexity is given by the following

theorem:

Theorem 1.2. (Information exchange in Deterministic Comput-

ing) Suppose M is a deterministic machine and IDi ⊢M IDa is a fragment

of an accepting computation, where IDm contains an accepting state. For

every i ≤ k ≤ a we have:

(1) Determinism: C(IDi+k+1 ⊢M IDa|M, IDi+k) = O(1), i.e. at any

moment of time if we have the present configuration and the definition

of M then the future of the computation is known.

(2) Program Counter Complexity from the start: C(IDt|ID0,M) <

(log k) +O(1), this constraint is known during the computation.

(3) Program Counter Complexity from the end: C(IDt|ID0,M) < (log a−
k) +O(1), this constraint is not known during the computation.

(4) Program complexity:

C((IIDi+k ⊢∗M IIDa)|M) = C(INPUT(IIDi+k ⊢∗M IIDa)|M) +O(1).

Proof.

(1) Trivial, since M is deterministic.

(2) Any state IDk at time k can be identified by information of size log k

if the initial configuration and M are known.

(3) Any state IDk at time k can be identified by information of size log(a−
k) if the total description of the accepting computational process and

M are known.

(4) By the fact that the computation is deterministic it can be recon-

structed from the minimal input, given M . By Lemma 1.2, given M ,

the minimal input can be reconstructed from (IIDi ⊢∗M IIDa). This

gives the equality modulo O(1).
�

We cannot prove such a nice equality for the minimal output. Note that

even if the following inequality holds:

C((IIDi ⊢∗M IIDa)|M) ≥ C((IIDi+k ⊢∗M IIDa)|M) +O(1)

this does not imply that:

C(OUTPUT(IIDi ⊢∗M IIDa)|M) ≥ C(OUTPUT(IIDi+k ⊢∗M IIDa)|M)+O(1).

As a counterexample, observe that a program that erases a random string

has a string of blanks as minimal output. A longer string still can have a

lower Kolmogorov complexity.
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In computations that use counters, Program Complexity and Program

Counter Complexity are mixed up during the execution. In fact one can

characterize various types of computations by means of their “information

signature”. Informally, at extremes of the spectrum, one could distinguish:

• Pure Information Discarding Processes: in such processes the program

counter does not play any role. They reach an accepting state by means

of systematically reducing the input. Summation of a set of numbers,

or erasing of a string are examples.

• Pure Counting Processes: For x=1 to i write("1"): The condi-

tional complexity of the tape configuration grows from 0 to log i and

then diminishes to 0 again.

• Pure Search Processes: In such processes the input is not reduced but

is kept available during the whole process. The information in the

program counter is used to explore the search space. Standard decision

procedures for NP-hard programs, where the checking function is tested

on an enumeration of all possible solutions, are an example.

A deeper analysis of various information signatures of computational pro-

cesses and their consequences for complexity theory is a subject of future

work.

1.5. Discussion

We can draw some conclusions and formulate some observations on the

basis of the analysis given above.

1) Erasing and creating information are indeed, as suggested in the

introduction, from a time invariant computational point of view the same

processes: The quasi-reversible machine that is associated with a simple de-

terministic machine that erases information is a non-deterministic machine

writing arbitrary bit-strings on the tape. This symmetry also implies that

creation of information in positive time involves destruction of information

in negative time.

2) The class of quasi-reversible machines indeed describes the class of

data-sets from which we can learn something in the following way: If L is

the language accepted by M then M−1 generates L. M−1 is an informer

for L in the sense of [6], every sentence in L will be non-deterministically

produced by M−1 in the limit. QRTM is the class of all informers for

type-0 languages.
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3) These insights suggests that we can describe stochastic processes in

the real world as deterministic processes in negative time: e.g. throwing a

dice in positive time is erasing information about its “future” in negative

time, the evolution of species in positive time could be described as the

“deterministic” computation of their ancestor in negative time. A necessary

condition for the description of such growth processes as computational

processes is that the number of bits that can be produced per time unit is

restricted. A stochastic interpretation of a QRTM can easily be developed

by assigning a set of probabilities to each split in the δ relation. The

resulting stochastic-QRTM is a sufficient statistic for the data-sets that are

generated.

4) The characterization of the class NP in terms of quasi-reversible com-

puting seems to be more moderate than the classical description in terms

of full non-deterministic computing. The full power of non-deterministic

computing is never realized in a system with only one time direction.

5) Processes like game playing and genetic algorithms seem to be meta-

computational processes in which non-deterministic processes (throwing a

dice, adding mutations) seem to be intertwined with deterministic phases

(making moves, checking the fitness function).

6) Time-symmetry has consequences for some philosophical positions.

The idea that the evolution of our universe can be described as a determin-

istic computational process has been proposed by several authors (Zuse,

Bostrom, Schmidthuber, Wolfram [10], Lloyd [9], etc.). Nowadays it is re-

ferred to as pancomputationalism [5]. If deterministic computation is an

information discarding process then it implies that the amount of informa-

tion in the universe rapidly decreases. This contradicts the second law of

thermodynamics. On the other hand, if the universe evolves in a quasi-

reversible way, selecting possible configurations according to some quasi-

reversible computational model, it computes the Big Bang in negative time.

The exact implications of these observations can only be explained by means

of the notion of facticity [3], but that is another discussion. The concept of

quasi-reversible computing seems to be relevant for these discussions [2].

1.6. Conclusion

Computing is moving through meta-computational space. For a fixed Tur-

ing machine Mi such movement is confined to one local infinite graph

< IDMi
,⊢Mi

>. If Mi is deterministic then M−1
i is non-deterministic.

If M is information discarding then M−1 “creates” information. The two
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fundamental complexities involved in a deterministic computation are Pro-

gram Complexity and Program Counter Complexity. Programs can be

classified in terms of their “information signature” with pure counting pro-

grams and pure information discarding programs as two ends of the spec-

trum. The class NP is simply the class of polynomial deterministic time

calculations in negative time. Thinking in terms of meta-computational

space allows us to conceptualize computation as movement in a certain

space and is thus a source of new intuitions to study computation. Specif-

ically a deeper analysis of various information signatures of computational

(and other) processes is a promising subject for further study.
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2.1. Introduction

The Isomorphism Conjecture for the class NP states that all polynomial-

time many-one complete sets for NP are polynomial-time isomorphic to each

other. It was made by Berman and Hartmanis [21]a, inspired in part by

a corresponding result in computability theory for computably enumerable

sets [50], and in part by the observation that all the existing NP-complete

∗N Rama Rao Professor, Indian Institute of Technology, Kanpur. Research supported
by J C Bose Fellowship FLW/DST/CS/20060225.
aThe conjecture is also referred as Berman–Hartmanis Conjecture after the proposers.
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sets known at the time were indeed polynomial-time isomorphic to each

other. This conjecture has attracted a lot of attention because it predicts

a very strong structure of the class of NP-complete sets, one of the funda-

mental classes in complexity theory.

After an initial period in which it was believed to be true, Joseph and

Young [40] raised serious doubts against the conjecture based on the notion

of one-way functions. This was followed by investigation of the conjecture

in relativized worlds [27, 33, 46] which, on the whole, also suggested that

the conjecture may be false. However, disproving the conjecture using one-

way functions, or proving it, remained very hard (either implies DP 6= NP).

Hence research progressed in three distinct directions from here.

The first direction was to investigate the conjecture for complete degrees

of classes bigger than NP. Partial results were obtained for classes EXP and

NEXP [20, 29].

The second direction was to investigate the conjecture for degrees other

than complete degrees. For degrees within the 2-truth-table-complete degree

of EXP, both possible answers to the conjecture were found [41, 43, 44].

The third direction was to investigate the conjecture for reducibilities

weaker than polynomial-time. For several such reducibilities it was found

that the isomorphism conjecture, or something close to it, is true [1, 2, 8, 16].

These results, especially from the third direction, suggest that the Iso-

morphism Conjecture for the class NP may be true contrary to the evidence

from the relativized world. A recent work [13] shows that if all one-way

functions satisfy a certain property then a non-uniform version of the con-

jecture is true.

An excellent survey of the conjecture and results related to the first two

directions is in [45].

2.2. Definitions

In this section, we define most of the notions that we will need.

We fix the alphabet to Σ = {0, 1}. Σ∗ denotes the set of all finite strings

over Σ and Σn denotes the set of strings of size n. We start with defining

the types of functions we use.

Definition 2.1. Let r be a resource bound on Turing machines. Function

f , f : Σ∗ 7→ Σ∗, is r-computable if there exists a Turing machine (TM, in

short) M working within resource bound of r that computes f . We also

refer to f as an r-function.
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Function f is size-increasing if for every x, |f(x)| > |x|. f is honest if

there exists a polynomial p(·) such that for every x, p(|f(x)|) > |x|.
For function f , f−1 denotes a function satisfying the property that

for all x, f(f−1(f(x))) = f(x). We say f is r-invertible if some f−1 is

r-computable.

For function f , its range is denoted as: range(f) = {y | (∃x) f(x) = y}.

We will be primarily interested in the resource bound of polynomial-

time, and abbreviate it as p. We now define several notions of reducibilities.

Definition 2.2. Let r be a resource bound. Set A r-reduces to set B if

there exists an r-function f such that for every x, x ∈ A iff f(x) ∈ B. We

also write this as A ≤rm B via f . Function f is called an r-reduction of A

to B.

Similarly, A ≤r1 B (A ≤r1,si B; A ≤r1,si,i B) if there exists a 1-1 (1-1 and

size-increasing; 1-1, size-increasing and r-invertible) r-function f such that

A ≤rm B via f .

A ≡rm B if A ≤rm B and B ≤rm A. An r-degree is an equivalence class

induced by the relation ≡rm.

Definition 2.3. A is r-isomorphic to B if A ≤rm B via f where f is a 1-1,

onto, r-invertible r-function.

The definitions of complexity classes DP, NP, PH, EXP, NEXP etc. can

be found in [52]. We define the notion of completeness we are primarily

interested in.

Definition 2.4. Set A is r-complete for NP if A ∈ NP and for every B ∈
NP, B ≤rm A. For r = p, set A is called NP-complete in short. The class of

r-complete sets is also called the complete r-degree of NP.

Similarly one defines complete sets for other classes.

The Satisfiability problem (SAT) is one of the earliest known NP-

complete problems [25]. SAT is the set of all satisfiable propositional

Boolean formulas.

We now define one-way functions. These are p-functions that are not

p-invertible on most of the strings. One-way functions are one of the fun-

damental objects in cryptography.

Without loss of generality (see [30]), we can assume that one-way func-

tions are honest functions f for which the input length determines the

output length, i.e., there is a length function ℓ such that |f(x)| = ℓ(|x|) for
all x ∈ Σ∗.
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Definition 2.5. Function f is a s(n)-secure one-way function if (1) f

is a p-computable, honest function and (2) the following holds for every

polynomial-time randomized Turing machineM and for all sufficiently large

n:

Pr
x∈UΣn

[ f(M(f(x))) = f(x) ] <
1

s(n)
.

In the above, the probability is also over random choices ofM , and x ∈U Σn

mean that x is uniformly and randomly chosen from strings of size n.

We impose the property of honesty in the above definition since a func-

tion that shrinks length by more than a polynomial is trivially one-way.

It is widely believed that 2n
ǫ

-secure one-way functions exist for some

ǫ > 0. We give one example. Start by defining a modification of the

multiplication function:

Mult(x, y) =






1z if x and y are both prime numbers

and z is the product x ∗ y
0xy otherwise.

In the above definition, (·, ·) is a pairing function. In this paper, we

assume the following definition of (·, ·): (x, y) = xyℓ where |ℓ| = ⌈log |xy|⌉
and ℓ equals |x| written in binary. With this definition, |(x, y)| = |x|+ |y|+
⌈log |xy|⌉. This definition is easily extended for m-tuples for any m.

Mult is a p-function since testing primality of numbers is in DP [11].

Computing the inverse of Mult is equivalent to factorization, for which no

efficient algorithm is known. However, Mult is easily invertible on most of

the inputs, e.g., when any of x and y is not prime. The density estimate

for prime numbers implies that Mult is p-invertible on at least 1 − 1
nO(1)

fraction of inputs. It is believed that Mult is (1 − 1
nO(1) )-secure, and it

remains so even if one lets the TM M work for time 2n
δ

for some small

δ > 0. From this assumption, one can show that arbitrary concatenation

of Mult:

MMult(x1, y1, x2, y2, . . . , xm, ym) =

Mult(x1, y1) ·Mult(x2, y2) · · ·Mult(xm, ym)

is a 2n
ǫ

-secure one-way function [30](p. 43).

One-way functions that are 2n
ǫ

-secure are not p-invertible almost any-

where. The weakest form of one-way functions are worst-case one-way

functions:
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Definition 2.6. Function f is a worst-case one-way function if (1) f is a

p-computable, honest function, and (2) f is not p-invertible.

2.3. Formulation and Early Investigations

The conjecture was formulated by Berman and Hartmanis [21] in 1977.

Part of their motivation for the conjecture was a corresponding result in

computability theory for computably enumerable sets [50]:

Theorem 2.1. (Myhill) All complete sets for the class of computably enu-

merable sets are isomorphic to each other under computable isomorphisms.

The non-trivial part in the proof of this theorem is to show that complete

sets for the class of computably enumerable sets reduce to each other via 1-1

reductions. It is then easy to construct isomorphisms between the complete

sets. In many ways, the class NP is the resource bounded analog of the

computably enumerable class, and polynomial-time functions the analog of

computable functions. Hence it is natural to ask if the resource bounded

analog of the above theorem holds.

Berman and Hartmanis noted that the requirement for p-isomorphisms

is stronger. Sets reducing to each other via 1-1 p-reductions does not guar-

antee p-isomorphisms as p-functions do not have sufficient time to perform

exponential searches. Instead, one needs p-reductions that are 1-1, size-

increasing, and p-invertible:

Theorem 2.2. (Berman–Hartmanis) If A ≤p1,si,i B and B ≤p1,si,i A
then A is p-isomorphic to B.

They defined the paddability property which ensures the required kind

of reductions.

Definition 2.7. Set A is paddable if there exists a p-computable padding

function p, p : Σ∗ × Σ∗ 7→ Σ∗, such that:

• Function p is 1-1, size-increasing, and p-invertible,

• For every x, y ∈ Σ∗, p(x, y) ∈ A iff x ∈ A.

Theorem 2.3. (Berman–Hartmanis) If B ≤pm A and A is paddable,

then B ≤p1,si,i A.

Proof. Suppose B ≤pm A via f . Define function g as: g(x) = p(f(x), x).

Then, x ∈ B iff f(x) ∈ A iff g(x) = p(f(x), x) ∈ A. By its definition and
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the fact that p is 1-1, size-increasing, and p-invertible, it follows that g is

also 1-1, size-increasing, and p-invertible. �

Berman and Hartmanis next showed that the known complete sets for

NP at the time were all paddable and hence p-isomorphic to each other.

For example, the following is a padding function for SAT:

pSAT (x, y1y2 · · · ym) = x ∧
m∧

i=1

zi

m∧

i=1

ci

where ci = zm+i if bit yi = 1 and ci = z̄i if yi = 0 and the Boolean variables

z1, z2, . . ., z2m do not occur in the formula x.

This observation led them to the following conjecture:

Isomorphism Conjecture. All NP-complete sets are p-isomorphic to

each other.

The conjecture immediately implies DP 6= NP:

Proposition 2.1. If the Isomorphism Conjecture is true then DP 6= NP.

Proof. If DP = NP then all sets in DP are NP-complete. However, DP

has both finite and infinite sets and there cannot exist an isomorphism

between a finite and an infinite set. Hence the Isomorphism Conjecture is

false. �

This suggests that proving the conjecture is hard because the problem

of separating DP from NP has resisted all efforts so far. A natural question,

therefore, is: Can one prove the conjecture assuming a reasonable hypoth-

esis such as DP 6= NP? We address this question later in the paper. In

their paper, Berman and Hartmanis also asked a weaker question: Does

DP 6= NP imply that no sparse set can be NP-complete?

Definition 2.8. Set A is sparse if there exist constants k, n0 > 0 such that

for every n > n0, the number of strings in A of length ≤ n is at most nk.

This was answered in the affirmative by Mahaney [49]:

Theorem 2.4. (Mahaney) If DP 6= NP then no sparse set is NP-

complete.

Proof Sketch. We give a proof based on an idea of [9, 19, 51]. Suppose

there is a sparse set S such that SAT ≤pm S via f . Let F be a Boolean

formula on n variables. Start with the set T = {F} and do the following:
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Replace each formula F̂ ∈ T by F̂0 and F̂1 where F̂0 and F̂1 are obtained
by setting the first variable of F̂ to 0 and 1 respectively. Let T =
{F1, F2, . . . , Ft}. If t exceeds a certain threshold t0, then let Gj = F1 ∨
Fj and zj = f(Gj) for 1 ≤ j ≤ t. If all zj ’s are distinct then drop
F1 from T . Otherwise, zi = zj for some i 6= j. Drop Fi from T and
repeat until |T | ≤ t0. If T has only formulas with no variables, then
output Satisfiable if T contains a True formula else output Unsatisfiable.
Otherwise, go to the beginning of the algorithm and repeat.

The invariant maintained during the entire algorithm is that F is sat-

isfiable iff T contains a satisfiable formula. It is true in the beginning, and

remains true in each iteration after replacing every formula F̂ ∈ T with F̂0

and F̂1. The threshold t0 must be such that t0 is a upper bound on the

number of strings in the set S of size maxj |f(Gj)|. This is a polynomial in

|F | since |Gj | ≤ 2|F |, f is a p-function, and S is sparse. If T has more than

t0 formulas at any stage then the algorithm drops a formula from T . This

formula is F1 when all zj ’s are distinct. This means there are more than t0
zj ’s all of size bounded by maxj |f(Gj)|. Not all of these can be in S due

to the choice of t0 and hence F1 6∈ SAT. If zi = zj then Fi is dropped. If Fi
is satisfiable then so is Gi. And since zi = zj and f is a reduction of SAT

to S, Gj is also satisfiable; hence either F1 or Fj is satisfiable. Therefore

dropping Fi from T maintains the invariant.

The above argument shows that the size of T does not exceed a poly-

nomial in |F | at any stage. Since the number of iterations of the algorithm

is bounded by n ≤ |F |, the overall time complexity of the algorithm is

polynomial. Hence SAT ∈ DP and therefore, DP = NP. �

The “searching-with-pruning” technique used in the above proof has

been used profitably in many results subsequently. The Isomorphism Con-

jecture, in fact, implies a much stronger density result: All NP-complete

sets are dense.

Definition 2.9. Set A is dense if there exist constants ǫ, n0 > 0 such that

for every n > n0, the number of strings in A of length ≤ n is at least 2n
ǫ

.

Buhrman and Hitchcock [22] proved that, under a plausible hypothesis,

every NP-complete set is dense infinitely often:

Theorem 2.5. (Buhrman–Hitchcock) If PH is infinite then for any

NP-complete set A, there exists ǫ > 0 such that for infinitely many n, the

number of strings in A of length ≤ n is at least 2n
ǫ

.
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Later, we show that a stronger density theorem holds if 2n
ǫ

-secure one-

way functions exist.

2.4. A Counter Conjecture and Relativizations

After Mahaney’s result, there was not much progress on the conjecture

although researchers believed it to be true. However, this changed in 1984

when Joseph and Young [40] argued that the conjecture is false. Their

argument was as follows (paraphrased by Selman [53]). Let f be any 1-1,

size-increasing, 2n
ǫ

-secure one-way function. Consider the set A = f(SAT).

Set A is clearly NP-complete. If it is p-isomorphic to SAT, there must exist

a 1-1, honest p-reduction of SAT to A which is also p-invertible. However,

the set A is, in a sense, a “coded” version of SAT such that on most of the

strings of A, it is hard to “decode” it (because f is not p-invertible on most

of the strings). Thus, there is unlikely to be a 1-1, honest p-reduction of

SAT to A which is also p-invertible, and so A is unlikely to be p-isomorphic

to SAT. This led them to make a counter conjecture:

Encrypted Complete Set Conjecture. There exists a 1-1, size-

increasing, one-way function f such that SAT and f(SAT) are not p-

isomorphic to each other.

It is useful to observe here that this conjecture is false in computable

setting: The inverse of any 1-1, size-increasing, computable function is also

computable. The restriction to polynomial-time computability is what gives

rise to the possible existence of one-way functions.

It is also useful to observe that this conjecture too implies DP 6= NP:

Proposition 2.2. If the Encrypted Complete Set Conjecture is true then

DP 6= NP.

Proof. If DP = NP then every 1-1, size-increasing p-function is also

p-invertible. Hence for every such function, SAT and f(SAT) are p-

isomorphic. �

The Encrypted Complete Set conjecture fails if one-way functions do

not exist. Can it be shown to follow from the existence of strong one-

way functions, such as 2n
ǫ

-secure one-way functions? This is not clear.

(In fact, later we argue the opposite.) Therefore, to investigate the two

conjectures further, the focus moved to relativized worlds. Building on a

result of Kurtz [42], Hartmanis and Hemachandra [33] showed that there
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is an oracle relative to which DP = UP and the Isomorphism Conjecture is

false. This shows that both the conjectures fail in a relativized world since

DP = UP implies that no one-way functions exist.

Kurtz, Mahaney, and Royer [46] defined the notion of scrambling func-

tions:

Definition 2.10. Function f is scrambling function if f is 1-1, size-

increasing, p-computable, and there is no dense polynomial-time subset

in range(f).

Kurtz et al. observed that,

Proposition 2.3. If scrambling functions exist then the Encrypted Com-

plete Set Conjecture is true.

Proof. Let f be a scrambling function, and consider A = f(SAT). Set

A is NP-complete. Suppose it is p-isomorphic to SAT and let p be the

isomorphism between SAT and A. Since SAT has a dense polynomial-time

subset, sayD, p(D) is a dense polynomial time subset ofA. This contradicts

the scrambling property of f . �

Kurtz et al., [46], then showed that,

Theorem 2.6. (Kurtz, Mahaney, Royer) Relative to a random oracle,

scrambling functions exist.

Proof Sketch. Let O be an oracle. Define function f as:

f(x) = O(x)O(x1)O(x11) · · ·O(x12|x|)
where O(z) = 1 if z ∈ O, 0 otherwise. For a random choice of O, f

is 1-1 with probability 1. So, f is a 1-1, size-increasing, pO-computable

function. Suppose a polynomial-time TMM with oracle O accepts a subset

of range(f). In order to distinguish a string in range of f from those outside,

M needs to check the answer of oracle O on several unique strings. And

since M can query only polynomially many strings from O, M can accept

only a sparse subset of range(f). �

Therefore, relative to a random oracle, the Encrypted Complete Set

Conjecture is true and the Isomorphism Conjecture is false. The question

of existence of an oracle relative to which the Isomorphism Conjecture is

true was resolved by Fenner, Fortnow, and Kurtz [27]:

Theorem 2.7. (Fenner, Fortnow, Kurtz) There exists an oracle rela-

tive to which Isomorphism Conjecture is true.
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Thus, there are relativizations in which each of the three possible an-

swers to the two conjectures is true. However, the balance of evidence

provided by relativizations is towards the Encrypted Complete Set Conjec-

ture since properties relative to a random oracle are believed to be true in

unrelativized world too.b

2.5. The Conjectures for Other Classes

In search of more evidence for the two conjectures, researchers translated

them to classes bigger than NP. The hope was that diagonalization argu-

ments that do not work within NP can be used for these classes to prove

stronger results about the structure of complete sets. This hope was real-

ized, but not completely. In this section, we list the major results obtained

for classes EXP and NEXP which were the two main classes considered.

Berman [20] showed that,

Theorem 2.8. (Berman) Let A be a p-complete set for EXP. Then for

every B ∈ EXP, B ≤p1,si A.

Proof Sketch. Let M1, M2, . . . be an enumeration of all polynomial-time
TMs such that Mi halts, on input x, within time |x||i| + |i| steps. Let

B ∈ EXP and define B̂ to be the set accepted by the following algorithm:

Input (i, x). Let Mi(i, x) = y. If |y| ≤ |x|, accept iff y 6∈ A. If there
exists a z, z < x (in lexicographic order), such that Mi(i, z) = y, then
accept iff z 6∈ B. Otherwise, accept iff x ∈ B.

The set B̂ is clearly in EXP. Let B̂ ≤pm A via f . Let the TM Mj compute

f . Define function g as: g(x) = f(j, x). It is easy to argue that f is 1-1

and size-increasing on inputs of the form (j, ⋆) using the definition of B̂

and the fact that f is a reduction. It follows that g is a 1-1, size-increasing

p-reduction of B to A. �

Remark 2.1. A case can be made that the correct translation of the iso-

morphism result of [50] to the polynomial-time realm is to show that the

complete sets are also complete under 1-1, size-increasing reductions. As

observed earlier, the non-trivial part of the result in the setting of com-

putability is to show the above implication. Inverting computable reduc-

tions is trivial. This translation will also avoid the conflict with Encrypted

Complete Set Conjecture as it does not require p-invertibility. In fact, as
bThere are notable counterexamples of this though. The most prominent one is the
result IP = PSPACE [48, 54] which is false relative to a random oracle [24].
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will be shown later, one-way functions help in proving an analog of the

above theorem for the class NP! However, the present formulation has a

nice symmetry to it (both the isomorphism and its inverse require the same

amount of resources) and hence is the preferred one.

For the class NEXP, Ganesan and Homer [29] showed that,

Theorem 2.9. (Ganesan–Homer) Let A be a p-complete set for NEXP.

Then for every B ∈ NEXP, B ≤p1 A.

The proof of this uses ideas similar to the previous proof for EXP. The

result obtained is not as strong since enforcing the size-increasing property

of the reduction requires accepting the complement of a NEXP set which

cannot be done in NEXP unless NEXP is closed under complement, a very

unlikely possibility. Later, the author [5] proved the size-increasing property

for reductions to complete sets for NEXP under a plausible hypothesis.

While the two conjectures could not be settled for the complete p-degree

of EXP (and NEXP), answers have been found for p-degrees close to the

complete p-degree of EXP. The first such result was shown by Ko, Long,

and Du [41]. We need to define the notion of truth-table reductions to state

this result.

Definition 2.11. Set A k-truth-table reduces to set B if there exists a p-

function f , f : Σ∗ 7→ Σ∗ × Σ∗ × · · · × Σ∗
︸ ︷︷ ︸

k

×Σ2k such that for every x ∈ Σ∗,

if f(x) = (y1, y2, . . . , yk, T ) then x ∈ A iff T (B(y1)B(y2) · · ·B(yk)) = 1

where B(yi) = 1 iff yi ∈ B and T (s), |s| = k, is the sth bit of string T .

Set B is k-truth-table complete for EXP if B ∈ EXP and for every A ∈
EXP, A k-truth-table reduces to B.

The notion of truth-table reductions generalizes p-reductions. For both

EXP and NEXP, it is known that complete sets under 1-truth-table reduc-

tions are also p-complete [23, 38], and not all complete sets under 2-truth-

table reductions are p-complete [55]. Therefore, the class of 2-truth-table

complete sets for EXP is the smallest class properly containing the complete

p-degree of EXP.

Ko, Long, and Du [41] related the structure of certain p-degrees to the

existence of worst-case one-way functions:

Theorem 2.10. (Ko–Long–Du) If there exist worst-case one-way func-

tions then there is a p-degree in EXP such that the sets in the degree are not
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all p-isomorphic to each other. Further, sets in this degree are 2-truth-table

complete for EXP.

Kurtz, Mahaney, and Royer [43] found a p-degree for which the sets are

unconditionally not all p-isomorphic to each other:

Theorem 2.11. (Kurtz–Mahaney–Royer) There exists a p-degree in

EXP such that the sets in the degree are not all p-isomorphic to each other.

Further, sets in this degree are 2-truth-table complete for EXP.

Soon afterwards, Kurtz, Mahaney, and Royer [44] found another p-

degree with the opposite structure:

Theorem 2.12. (Kurtz–Mahaney–Royer) There exists a p-degree in

EXP such that the sets in the degree are all p-isomorphic to each other.

Further, this degree is located inside the 2-truth-table complete degree of

EXP.

The set of results above on the structure of complete (or nearly com-

plete) p-degree of EXP and NEXP do not favor any of the two conjectures.

However, they do suggest that the third possibility, viz., both the conjec-

tures being false, is unlikely.

2.6. The Conjectures for Other Reducibilities

Another direction from which to approach the two conjectures is to weaken

the power of reductions instead of the class NP, the hope being that for

reductions substantially weaker than polynomial-time, one can prove un-

conditional results. For several weak reductions, this was proven correct

and in this section we summarize the major results in this direction.

The two conjectures for r-reductions can be formulated as:

r-Isomorphism Conjecture. All r-complete sets for NP are r-

isomorphic to each other.

r-Encrypted Complete Set Conjecture. There is a 1-1, size-

increasing, r-function f such that SAT and f(SAT) are not r-

isomorphic to each other.

Weakening p-reductions to logspace-reductions (functions computable by

TMs with read-only input tape and work tape space bounded by O(log n),

n is the input size) does not yield unconditional results as any such result



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

The Isomorphism Conjecture for NP 31

will separate NP from L, another long-standing open problem. So we need

to weaken it further. There are three major ways of doing this.

2.6.1. Restricting the input head movement

Allowing the input head movement in only one direction leads to the notion

of 1-L-functions.

Definition 2.12. A 1-L-function is computed by deterministic TMs with

read-only input tape, the workspace bounded by O(log n) where n is the

input length, and the input head restricted to move in one direction only

(left-to-right by convention). In other words, the TM is allowed only one

scan of its input. To ensure the space bound, the first O(log n) cells on the

work tape are marked at the beginning of the computation.

These functions were defined by Hartmanis, Immerman, and Ma-

haney [34] to study the complete sets for the class L. They also ob-

served that the “natural” NP-complete sets are also complete under 1-L-

reductions. Structure of complete sets under 1-L-reductions attracted a lot

of attention, and the first result was obtained by Allender [14]:

Theorem 2.13. (Allender) For the classes PSPACE and EXP, complete

sets under 1-L-reductions are p-isomorphic to each other.

While this shows a strong structure of complete sets of some classes

under 1-L-reductions, it does not answer the 1-L-Isomorphism Conjecture.

After a number of extensions and improvements [10, 29, 37], the author [1]

showed that,

Theorem 2.14. (Agrawal) Let A be a 1-L-complete set for NP. Then for

every B ∈ NP, B ≤1−L
1,si,i A.

Proof Sketch. We first show that A is also complete under forgetful 1-

L-reductions. Forgetful 1-L-reductions are computed by TMs that, imme-

diately after reading a bit of the input, forget its value. This property is

formalized by defining configurations: A configuration of a 1-L TM is a

tuple 〈q, j, w〉 where q is a state of the TM, j its input head position, and

w the contents of its worktape including the position of the worktape head.

A forgetful TM, after reading a bit of the input and before reading the

next bit, reaches a configuration which is independent of the value of the

bit that is read.
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Let B ∈ NP, and define B̂ to be the set accepted by the following

algorithm:

Input x. Let x = y10b1k. Reject if b is odd or |y| 6= tb for some integer
t. Otherwise, let y = y1y2 · · · yt with |yi| = b. Let vi = 1 if yi = uu for
some u, |u| = b

2
; vi = 0 otherwise. Accept iff v1v2 · · · vt ∈ B.

The set B̂ is a “coded” version of set B and reduces to B via a p-

reduction. Hence, B̂ ∈ NP. Let f be a 1-L-reduction of B̂ to A computed

by TM M . Consider the workings of M on inputs of size n. Since M

has O(log n) space, the number of configurations of M will be bounded

by a polynomial, say q(·), in n. Let b = k⌈logn⌉ such that 2b/2 > q(n).

Let C0 be the initial configuration of M . By the Pigeon Hole Principle, it

follows that there exist two distinct strings u1 and u′1, |u1| = |u′1| = b
2 , such

that M reaches the same configuration, after reading either of u1 and u′1.
Let C1 be the configuration reached from this configuration after reading

u1. Repeat the same argument starting from C1 to obtain strings u2, u
′
2,

and configuration C2. Continuing this way, we get triples (ui, u
′
i, Ci) for

1 ≤ i ≤ t = ⌊n−b−1
b ⌋. Let k = n − b − 1 − bt. It follows that the TM M

will go through the configurations C0, C1, . . ., Ct on any input of the form

y1y2 . . . yt10
b1k with yi ∈ {uiui, u′iui}. Also, that the pair (ui, u

′
i) can be

computed in logspace without reading the input.

Define a reduction g of B to B̂ as follows: On input v, |v| = t, compute

b such that 2b/2 > q(b+1+ bt), and consider M on inputs of size b+1+ bt.

For each i, 1 ≤ i ≤ t, compute the pair (ui, u
′
i) and output uiui if the ith

bit of v is 1, output uiu
′
i otherwise. It is easy to argue that the composition

of f and g is a forgetful 1-L-reduction of B to A.

Define another set B′ as accepted by the following algorithm:

Input x. Reject if |x| is odd. Otherwise, let x = x1x2 · · ·xns1s2 · · · sn.
Accept if exactly one of s1, s2, . . ., sn, say sj , is zero and xj = 1. Accept
if all of s1, s2, . . ., sn are one and x1x2 · · ·xn ∈ B. Reject in all other
cases.

Set B′ ∈ NP. As argued above, there exists a forgetful 1-L-reduction of

B′ to A, say h. Define a reduction g′ of B to B′ as: g′(v) = v1|v|. It is easy
to argue that h ◦ g′ is a size-increasing, 1-L-invertible, 1-L-reduction of B

to A and h ◦ g′ is 1-1 on strings of size n for all n. Modifying this to get a

reduction that is 1-1 everywhere is straightforward. �

The above result strongly suggests that the 1-L-IsomorphismConjecture

is true. However, the author [1] showed that,
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Theorem 2.15. (Agrawal) 1-L-complete sets for NP are all 2-L-

isomorphic to each other but not 1-L-isomorphic.

The 2-L-isomorphism above is computed by logspace TMs that are al-

lowed two left-to-right scans of their input. Thus, the 1-L-Isomorphism

Conjecture fails and a little more work shows that the 1-L-Encrypted Com-

plete Set Conjecture is true! However, the failure of the Isomorphism Con-

jecture here is for a very different reason: it is because 1-L-reductions are

not powerful enough to carry out the isomorphism construction as in The-

orem 2.2. For a slightly more powerful reducibility, 1-NL-reductions, this

is not the case.

Definition 2.13. A 1-NL-function is computed by TMs satisfying the re-

quirements of definition 2.12, but allowed to be non-deterministic. The

non-deterministic TM must output the same string on all paths on which

it does not abort the computation.

For 1-NL-reductions, the author [1] showed, using proof ideas similar to

the above one, that,

Theorem 2.16. (Agrawal) 1-NL-complete sets for NP are all 1-NL-

isomorphic to each other.

The author [1] also showed similar results for c-L-reductions for constant

c (functions that are allowed at most c left-to-right scans of the input).

2.6.2. Reducing space

The second way of restricting logspace reductions is by allowing the TMs

only sublogarithmic space, i.e., allowing the TM space o(logn) on input of

size n; we call such reductions sublog-reductions. Under sublog-reductions,

NP has no complete sets, and the reason is simple: Every sublog-reduction

can be computed by deterministic TMs in time O(n2) and hence if there

is a complete set for NP under sublog-reductions, then NTIME(nk+1) =

NTIME(nk) for some k > 0, which is impossible [26]. On the other hand,

each of the classes NTIME(nk), k ≥ 1, has complete sets under sublog-

reductions.

The most restricted form for sublog-reductions is 2-DFA-reductions:

Definition 2.14. A 2-DFA-function is computed by a TM with read-only

input tape and no work tape.
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2-DFA functions do not require any space for their computation, and

therefore are very weak. Interestingly, the author [4] showed that sublog-

reductions do not add any additional power for complete sets:

Theorem 2.17. (Agrawal) For any k ≥ 1, sublog-complete sets for

NTIME(nk) are also 2-DFA-complete.

For 2-DFA-reductions, the author and Venkatesh [12] proved that,

Theorem 2.18. (Agrawal-Venkatesh) Let A be a 2-DFA-complete set

for NTIME(nk) for some k ≥ 1. Then, for every B ∈ NTIME(nk), B ≤2DFA
1,si

A via a reduction that is mu-DFA-invertible.

muDFA-functions are computed by TMs with no space and multiple

heads, each moving in a single direction only. The proof of this is also

via forgetful TMs. The reductions in the theorem above are not 2-DFA-

invertible, and in fact, it was shown in [12] that,

Theorem 2.19. (Agrawal-Venkatesh) Let f(x) = xx. Function f is a

2-DFA-function and for any k ≥ 1, there is a 2-DFA-complete set A for

NTIME(nk) such that A 6≤2DFA
1,si,i f(A).

The above theorem implies that 2-DFA-Encrypted Complete Set Con-

jecture is true.

2.6.3. Reducing depth

Logspace reductions can be computed by (unbounded fan-in) circuits of

logarithmic depth.c Therefore, another type of restricted reducibility is

obtained by further reducing the depth of the circuit family computing the

reduction. Before proceeding further, let us define the basic notions of a

circuit model.

Definition 2.15. A circuit family is a set {Cn : n ∈ N} where each Cn is an

acyclic circuit with n Boolean inputs x1, . . . , xn (as well as the constants 0

and 1 allowed as inputs) and some number of output gates y1, . . . , yr. {Cn}
has size s(n) if each circuit Cn has at most s(n) gates; it has depth d(n) if

the length of the longest path from input to output in Cn is at most d(n).

A circuit family has a notion of uniformity associated with it:

cFor a detailed discussion on the circuit model of computation, see [52].
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Definition 2.16. A family C = {Cn} is uniform if the function n 7→ Cn
is easy to compute in some sense. This can also be defined using the

complexity of the connection set of the family:

conn(C) = {(n, i, j, Ti, Tj) | the output of gate i of type Ti
is input to gate j of type Tj in Cn}.

Here, gate type Ti can be Input, Output, or some Boolean operator.

Family C is Dlogtime-uniform [18] if conn(C) is accepted by a linear-time

TM. It is p-uniform [15] if conn(C) is accepted by a exponential-time TM

(equivalently, by a TM running in time bounded by a polynomial in the

circuit size). If we assume nothing about the complexity of conn(C), then
we say that the family is non-uniform.

An important restriction of logspace functions is to functions computed

by constant depth circuits.

Definition 2.17. Function f is a u-uniform AC0-function if there is a u-

uniform circuit family {Cn} of size nO(1) and depth O(1) consisting of

unbounded fan-in AND and OR and NOT gates such that for each input

x of length n, the output of Cn on input x is f(x).

Note that with this definition, an AC0-function cannot map strings of

equal size to strings of different sizes. To allow this freedom, we adopt the

following convention: Each Cn will have nk+k log(n) output bits (for some

k). The last k logn output bits will be viewed as a binary number r, and

the output produced by the circuit will be the binary string contained in

the first r output bits.

It is worth noting that, with this definition, the class of Dlogtime-

uniform AC0-functions admits many alternative characterizations, includ-

ing expressibility in first-order logic with {+,×,≤} [18, 47], the logspace-

rudimentary reductions [17, 39], logarithmic-time alternating Turing ma-

chines with O(1) alternations [18] etc. Moreover, almost all known NP-

complete sets are also complete under Dlogtime-uniform AC0-reductions

(an exception is provided by [7]). We will refer to Dlogtime-uniform AC0-

functions also as first-order-functions.

AC0-reducibility is important for our purposes too, since the complete

sets under the reductions of the previous two subsections are also complete

under AC0-reductions (with uniformity being Dlogtime- or p-uniform). This

follows from the fact that these sets are also complete under some appro-

priate notion of forgetful reductions. Therefore, the class of AC0-complete

sets for NP is larger than all of the previous classes of this section.
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The first result for depth-restricted functions was proved by Allender,

Balcázar, and Immerman [16]:

Theorem 2.20. (Allender–Balcázar–Immerman) Complete sets for

NP under first-order projections are first-order-isomorphic to each other.

First-order projections are computed by a very restricted kind of

Dlogtime-uniform AC0 family in which no circuit has AND and OR gates.

This result was generalized by the author and Allender [6] to NC0-functions,

which are functions computed by AC0 family in which the fan-in of every

gate of every circuit is at most two.

Theorem 2.21. (Agrawal–Allender) Let A be a non-uniform NC0-

complete set for NP. Then for any B ∈ NP, B non-uniform NC0-reduces

to A via a reduction that is 1-1, size-increasing, and non-uniform AC0-

invertible. Further, all non-uniform NC0-complete sets for NP are non-

uniform AC0-isomorphic to each other where these isomorphisms can be

computed and inverted by depth three non-uniform AC0 circuits.

Proof Sketch. The proof we describe below is the one given in [3]. Let

B ∈ NP, and define B̂ to be the set accepted by the following algorithm:

On input y, let y = 1k0z. If k does not divide |z|, then reject. Otherwise,
break z into blocks of k consecutive bits each. Let these be u1u2u3 . . . up.
Accept if there is an i, 1 ≤ i ≤ p, such that ui = 1k. Otherwise, reject
if there is an i, 1 ≤ i ≤ p, such that ui = 0k. Otherwise, for each i,
1 ≤ i ≤ p, label ui as null if the number of ones in it is 2 modulo 3; as
zero if the number of ones in it is 0 modulo 3; and as one otherwise. Let
vi = ǫ if ui is null, 0 if ui is zero, and 1 otherwise. Let x = v1v2 · · · vp,
and accept iff x ∈ B.

Clearly, B̂ ∈ NP. Let {Cn} be the NC0 circuit family computing a reduction

of B̂ to A. Fix size n and consider circuit Ck+1+n for k = 4⌈logn⌉. Let C
be the circuit that results from setting the first input k + 1 bits of Ck+1+n

to 1k0. Randomly set each of the n input bits of C in the following way:

With probability 1
2 , leave it unset; with probability 1

4 each, set it to 0 and

1 respectively. The probability that any block of k bits is completely set

is at most 1
n4 . Similarly, the probability that there is a block that has at

most three unset bits is at most 1
n , and therefore, with high probability,

every block has at least four unset bits.

Say that an output bit is good if, after the random assignment to the

input bits described above is completed, the value of the output bit depends

on exactly one unset input bit. Consider an output bit. Since C is an NC0
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circuit, the value of this bit depends on at most a constant, say c, number

of input bits. Therefore, the probability that this bit is good after the

assignment is at least 1
2 · 1

4c−1 . Therefore, the expected number of good

output bits is at least m
4c , where m is the number of output bits of C

whose value depends on some input bit. Using the definition of set B̂, it

can be argued that Ω(n) output bits depend on some input bit, and hence

Ω(n) output bits are expected to be good after the assignment. Fix any

assignment that does this, as well as leaves at least four unset bits in each

block. Now set some more input bits so that each block that is completely

set is null, each block that has exactly two unset bits has number of ones

equal to 0 modulo 3, and there are no blocks with one, three, or more unset

bits. Further, for at least one unset input bit in a block, there is a good

output bit that depends on the bit, and there are Ω( n
logn ) unset input bits.

It is easy to see that all these conditions can be met.

Now define a reduction of B to B̂ as: On input x, |x| = p, consider

Ck+1+n such that the number of unset input bits in Ck+1+n after doing the

above process is at least p. Now map the ith bit of x to the unset bit in a

block that influences a good output bit and set the other unset input bit in

the block to zero. This reduction can be computed by an NC0 circuit (in

fact, the circuit does not need any AND or OR gate).

Define a reduction of B to A given by the composition of the above two

reductions. This reduction is a superprojection: it is computed by circuit

family {Dp} with each Dp being an NC0 circuit such that for every input

bit to Dp, there is an output bit that depends exactly on this input bit. A

superprojection has the input written in certain bit positions of the output.

Therefore, it is 1-1 and size-increasing. Inverting the function is also easy:

Given string y, identify the locations where the input is written, and check

if the circuit Dp (p = number of locations) on this input outputs y. This

checking can be done by a depth two AC0 circuit.

This gives a 1-1, size-increasing, AC0-invertible, NC0-reduction of B

to A. The circuit family is non-uniform because it is not clear how to

deterministically compute the settings of the input bits. Exploiting the

fact that the input is present in the output of the reductions, an AC0-

isomorphism, computed by depth three circuits, can be constructed between

two complete sets following [21] (see [8] for details). �

Soon after, the author, Allender, and Rudich [8] extended it to all

AC0-functions, proving the Isomorphism Conjecture for non-uniform AC0-

functions.
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Theorem 2.22. (Agrawal–Allender–Rudich) Non-uniform AC0-com-

plete sets for NP are non-uniform AC0-isomorphic to each other. Fur-

ther, these isomorphisms can be computed and inverted by depth three non-

uniform AC0 circuits.

Proof Sketch. The proof shows that complete sets for NP under AC0-

reductions are also complete under NC0-reductions and invokes the above

theorem for the rest. Let A be a complete set for NP under AC0-reductions.

Let B ∈ NP. Define set B̂ exactly as in the previous proof. Fix an AC0-

reduction of B̂ to A given by family {Cn}. Fix size n, and consider Ck+1+n

for k = n1−ǫ for a suitable ǫ > 0 to be fixed later. Let D be the circuit that

results from setting the first k + 1 input bits of Ck+1+n to 1k0.

Set each input bit of D to 0 and 1 with probability 1
2 − 1

2n1−2ǫ each and

leave it unset with probability 1
n1−2ǫ . By the Switching Lemma of Furst,

Saxe, and Sipser [28], the circuit D will reduce, with high probability, to an

NC0 circuit on the unset input bits for a suitable choice of ǫ > 0. In each

block of k bits, the expected number of unset bits will be nǫ, and therefore,

with high probability, each block has at least three unset bits. Fix any

settings satisfying both of the above.

Now define a reduction of B to B̂ that, on input x, |x| = p, identifies n

for which the circuit D has at least p blocks, and then maps ith bit of input

x to an unset bit of the ith block of the input to D, setting the remaining

bits of the block so that the sum of ones in the block is 0 modulo 3. Unset

bits in all remaining blocks are set so that the sum of ones in the block

equals 2 modulo 3.

The composition of the reduction of B to B̂ and B̂ to A is an NC0-

reduction of B to A. Again, it is non-uniform due to the problem of finding

the right settings of the input bits. �

The focus then turned towards removing the non-uniformity in the

above two reductions. In the proof of Theorem 2.21 given in [6], the uni-

formity condition is p-uniform. In [7], the uniformity of 2.22 was improved

to p-uniform by giving a polynomial-time algorithm that computes the cor-

rect settings of input bits. Both the conditions were further improved to

logspace-uniform in [3] by constructing a more efficient derandomization

of the random assignments. And finally, in [2], the author obtained very

efficient derandomizations to prove that,

Theorem 2.23. (Agrawal) First-order-complete sets for NP are first-

order-isomorphic.
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The isomorphisms in the theorem above are no longer computable by

depth three circuits; instead, their depth is a function of the depth of the

circuits computing reductions between the two complete sets.

2.6.4. Discussion

At first glance, the results for the weak reducibilities above seem to provide

equal support to both the conjectures: The Isomorphism Conjecture is

true for 1-NL and AC0-reductions for any reasonable notion of uniformity,

while the Encrypted Complete Set Conjecture is true for 1-L and 2-DFA

reductions. However, on a closer look a pattern begins to emerge. First of

all, we list a common feature of all the results above:

Corollary 2.1. For r ∈ {1-L, 1-NL, 2-DFA, NC0, AC0}, r-complete sets

for NP are also complete under 1-1, size-increasing, r-reductions.

The differences arise in the resources required to invert the reductions

and to construct the isomorphism. Some of the classes of reductions that

we consider are so weak, that for a given function f in the class, there is no

function in the class that can check, on input x and y, whether f(x) = y.

For example, suppose f is an NC0-function and one needs to construct

a circuit that, on input x and y, outputs 1 if y = f(x), and outputs 0

otherwise. Given x and y, an NC0 circuit can compute f(x), and can check

if the bits of f(x) are equal to the corresponding bits of y; however, it cannot

output 1 if f(x) = y, since this requires taking an AND of |y| bits. Similarly,

some of the reductions are too weak to construct the isomorphism between

two sets given two 1-1, size-increasing, and invertible reductions between

them. Theorems 2.14 and 2.15 show this for 1-L-reductions, and the same

can be shown for NC0-reductions too. Observe that p-reductions do not

suffer from either of these two drawbacks. Hence we cannot read too much

into the failure of the Isomorphism Conjecture for r-reductions. We now

formulate another conjecture that seems better suited to getting around

the above drawbacks of some of the weak reducibilities. This conjecture

was made in [1].

Consider a 1-1, size-increasing r-function f for a resource bound r. Con-

sider the problem of accepting the set range(f). A TM accepting this set

will typically need to guess an x and then verify whether f(x) = y. It

is, therefore, a non-deterministic TM with resource bound at least r. Let

rrange ≥ r be the resource bound required by this TM. For a circuit accept-

ing range(f), the non-determinism is provided as additional “guess bits”
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and its output is 1 if the circuit evaluates to 1 on some settings of the guess

bits. We can similarly define rrange to be the resource bound required by

such a non-deterministic circuit to accept range(f).

r-Complete Degree Conjecture. r-Complete sets for NP are also com-

plete under 1-1, size-increasing, r-reductions that are rrange-invertible.

Notice that the invertibility condition in the conjecture does not allow

non-determinism. For p-reductions,

Proposition 2.4. The p-Complete Degree Conjecture is equivalent to the

Isomorphism Conjecture.

Proof. Follows from the observation that prange = p as range of a p-

function can be accepted in non-deterministic polynomial-time, and from

Theorem 2.2. �

Moreover, for the weaker reducibilities that we have considered, one can

show that,

Theorem 2.24. For r ∈ {1-L, 1-NL, 2-DFA, NC0, AC0}, the r-Complete

Degree Conjecture is true.

Proof. It is an easy observation that for r ∈ {1-L, 1-NL, AC0}, rrange =
r. The conjecture follows from Theorems 2.14, 2.16, and 2.23.

Accepting range of a 2-DFA-function requires verifying the output of

2-DFA TM on each of its constant number of passes on the input. The

minimum resources required for this are to have multiple heads stationed

at the beginning of the output of each pass, guess the input bit-by-bit, and

verify the outputs on this bit for each pass simultaneously. Thus, the TM

is a non-deterministic TM with no space and multiple heads, each moving

in one direction only. So Theorem 2.18 proves the conjecture.

Accepting range of an NC0-function requires a non-deterministic AC0

circuit. Therefore, Theorems 2.21 and 2.23 prove the conjecture for r =

NC0. �

In addition to the reducibilities in the above theorem, the r-Complete

Degree Conjecture was proven for some more reducibilities in [1].

These results provide evidence that r-Complete Degree Conjecture is

true for all reasonable resource bounds; in fact, there is no known example

of a reasonable reducibility for which the conjecture is false.
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The results above also raise doubts about the intuition behind the En-

crypted Complete Set Conjecture as we shall argue now. Consider AC0-

reductions. There exist functions computable by depth d, Dlogtime-uniform

AC0 circuits that cannot be inverted on most of the strings by depth three,

non-uniform AC0 circuits [35]. However, by Theorem 2.22, AC0-complete

sets are also complete under AC0-reductions that are invertible by depth

two, non-uniform AC0 circuits and the isomorphisms between all such sets

are computable and invertible by depth three, non-uniform AC0 circuits.

So, for every 1-1, size-increasing, AC0-function, it is possible to efficiently

find a dense subset on which the function is invertible by depth two AC0

circuits.

Therefore, the results for weak reducibilities provide evidence that the

Isomorphism Conjecture is true.

2.7. A New Conjecture

In this section, we revert to the conjectures in their original form. The

investigations for weak reducibilities provide some clues about the struc-

ture of NP-complete sets. They strongly suggest that all NP-complete sets

should also be complete under 1-1, size-increasing p-reductions. Proving

this, of course, is hard as it implies DP 6= NP (Proposition 2.1). Can we

prove this under a reasonable assumption? This question was addressed

and partially answered by the author in [5], and subsequently improved by

the author and Watanabe [13]:

Theorem 2.25. (Agrawal–Watanabe) If there exists a 1-1, 2n
ǫ

-secure

one-way function for some ǫ > 0, then all NP-complete sets are also com-

plete under 1-1, and size-increasing, P/poly-reductions.

In the above theorem, P/poly-functions are those computed by

polynomial-size, non-uniform circuit families.

Proof Sketch. Let A be an NP-complete set and let B ∈ NP. Let f0 be a

1-1, 2n
ǫ

-secure one-way function. Recall that we have assumed that |f0(y)|
is determined by |y| for all y. H̊astad et al., [36], showed how to construct a

pseudorandom generator using any one-way function. Pseudorandom gen-

erators are size-increasing functions whose output cannot be distinguished

from random strings by polynomial-time probabilistic TMs. Let G be the

pseudorandom generator constructed from f0. Without loss of generality,

we can assume that |G(y)| = 2|y| + 1 for all y. We also modify f0 to f

as: f(y, r) = f0(y)rb where |r| = |y| and b = y · r, the inner product of
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strings y and r. It is known that the bit b is a hard-core bit, i.e., it cannot

be predicted by polynomial-time probabilistic TMs on input f0(y)r [32].

Define B1 to be the set:

B1 = {(x,w) | x ∈ B ∧ |w| = |x|2/ǫ} ∪ range(G),

and B2 to be the set:

B2 = {f(z) | z ∈ B1}.
Both the sets are in NP. Let B2 reduce to A via polynomial-time reduction

g. Since f is 1-1, h = g ◦ f is a reduction of B1 to A. We now show that h

rarely maps a large number of strings to a single string. For an odd n, let

pn = Pr
z,z′∈UΣn

[h(z) = h(z′)].

In other words, pn is the collision probability of the function h for strings

of length n. Define function f̄(y, r) = f0(y)rb̄ where b̄ is the complement

of the inner product value y · r. Since f0 is 1-1, range(f) and range(f̄) are

disjoint and therefore, range(F̄ ) is a subset of B̄2. Let

p̄n = Pr
z,z′∈UΣn

[h(z) = g(f̄(z′))].

Define a probabilistic TM M+ that on input u, |u| = |f(z)| for |z| = n,

randomly picks z′ ∈ Σn and accepts iff g(u) = h(z′). The probability, over

random z ∈ Σn, that M+ accepts f(z) is exactly pn. The probability, over

random y, r ∈ Σ
n−1
2 and b ∈ Σ, that M+ accepts u = f0(y)rb is exactly

1
2pn+

1
2 p̄n (since b is either y ·r or its complement with probability 1

2 each).

Hence the gap between the two probabilities is exactly | 1
2pn − 1

2 p̄n|. If this
is large, then M+ can be used to predict the hard-core bit of f with high

probability, which is not possible. Therefore, the difference of pn and p̄n is

small.

To show that p̄n is small, define another TM M− that on input z,

|z| = n, randomly picks z′ ∈ Σn and accepts iff h(z) = g(f̄(z′)). On a

random z ∈ Σn, the probability that M− accepts is exactly p̄n. On input

G(x) when x is randomly chosen from Σ
n−1
2 , the probability that M−

accepts is zero since range(G) is contained in B1 and range(f̄) is contained

in B̄2. Hence the difference between the two probabilities is exactly p̄n.

This cannot be large as otherwise it violates the pseudorandomness of G.

Therefore, pn is small.

Now define function t as follows. For every n, randomly choose a wn,

|wn| = n2/ǫ; let t(x) = (x,w|x|). Note that t is a probabilistic func-

tion. It can be argued that with high probability (over the choices of wn),
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(1) range(t) does not intersect with range(G), and so t is a reduction of B

to B1, and (2) h◦t is 1-1, and size-increasing. Non-uniformly fixing a choice

of wn for every n, we get that h ◦ t is a 1-1, size-increasing, non-uniform

polynomial-time reduction of B to A. �

In hindsight, the above theorem is not surprising since the analogous

result for EXP was shown using diagonalization [20] and one-way functions

provide a strong form of diagonalization that works within NP in contrast

to standard diagonalization techniques. It is a little unsatisfactory though,

since it only shows completeness under non-uniform 1-1, size-increasing

reductions. It is, however, sufficient to conclude that,

Corollary 2.2. If there exists a 1-1, 2n
ǫ

-secure one-way function for some

ǫ > 0, then all NP-complete sets are dense.

Proof. By the above theorem, all NP-complete sets are also complete

under 1-1, size-increasing, P/poly-reductions. It is an easy observation that

if A is dense and reduces to B via a 1-1 reduction then B is also dense.

The corollary follows from the fact that SAT is dense. �

Another suggestion from the previous section is that one-way functions

may have easily identifiable dense subsets on which they are p-invertible.

This was investigated in [13], where the easy cylinder property was defined.

Definition 2.18. Let f be a 1-1, size-increasing, P/poly-function. The

function f has an easy cylinder if there exist

• polynomials q(·), q′(·), and ℓ(·) with ℓ(n) ≥ 2q(q′(n)+n+ ⌈log(q′(n)+
n)⌉), and
• a P/poly embedding function e, computable by circuits of size ≤
q(|e(y)|) on input y,

such that for every n and for every string u of length ℓ(n), there ex-

ists a polynomial size circuit Cu, and string su, |su| ≤ q′(n), such that

Cu(f(u, e(su, x))) = x for all x ∈ Σn.

Intuitively, a function f has an easy cylinder if there exists a

parametrized (on u) dense subset in its domain on which it is easy to

invert, and the dense subset depends on the parameter in a simple way (via

the string su). Note that the circuit Cu can be chosen depending on f as

well as u but the embedding function e must be independent of u.
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Define set K as:

K = {(p, y) | p is a code of an NTM Mp

such that Mp accepts y in at most |py|2 steps}.
K is easily seen to be NP-complete. The author and Watanabe [13]

showed that,

Theorem 2.26. (Agrawal–Watanabe) Suppose K reduces to A via f

and f is a 1-1, size-increasing, P/poly-reduction with an easy cylinder.

Then K is P/poly-isomorphic to A.

Proof Sketch. Suppose f has an easy cylinder with embedding function e.

We define a P/poly-reduction h from K to K such that f is easy to invert

on the range of h. Fix any n, and consider a non-deterministic Turing

machine M that executes as follows:

Input (u, y). Guess x, s, |x| = n, |s| ≤ q′(n), and check whether e(s, x)
equals y; if not, reject; if yes, accept if and only if x is in K.

Here we note that the advice of size q(q′(n) + n+ ⌈log(q′(n) + n)⌉) for
computing e on Σq

′(n)+n+⌈log(q′(n)+n)⌉ is hardwired in M . Further, from

the complexity of e, M(y) halts within 2q(q′(n) + n + ⌈log(q′(n) + n)⌉)
steps. Thus, by letting pn be a code of this machine M that is (with some

padding) of size ℓ(n) ≥ 2q(q′(n) + n+ ⌈log(q′(n) + n)⌉), we have that Mpn

halts and accepts (pn, e(s, x)) in |pne(s, x)|2 steps iffM accepts (pn, e(s, x))

iff x ∈ K for all x ∈ Σn.

With these machine codes pn for all n, the reduction h of K to itself is

defined as follows for each n and each x ∈ Σn:

h(x) = (pn, e(spn , x)).

It follows from the above argument that h is a reduction of K to K.

Furthermore, h is P/poly-function.

Let g = f ◦ h. Function g is clearly a 1-1, size-increasing P/poly-

reduction of K to A. We show that g is also P/poly-invertible. This follows

from the existence of circuit Cpn such that x = Cpn(f(pn, e(spn , x))) for all

x ∈ Σn. �

Finally, [13] showed that many of the candidate one-way functions do

have easy cylinders. For example, the function Mult defined above:

Mult has two inputs numbers x and y. Fix polynomials q′(n) = 0,
q(n) = n, and ℓ(n) = 2(n + ⌈log n⌉). Fix su = ǫ and the embedding
function e(su, z) = (su, z) = zt where |t| = ⌈log |z|⌉ and t equals the
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number |z| in binary. Therefore, Mult(u, e(su, z)) = Mult(u, zt). Since
|u| ≥ |zt|, fixing u fixes the first number x and z determines the second
number y. Therefore, given u, it is trivial to invert Mult(u, zt).

The function Mult also has an easy cylinder: use u to fix all but the

second string of the last pair. It is also proved in [13] that all 1-1, size-

increasing, AC0-functions have easy cylinders. The notion of easy cylinders

is a formalization of the property of AC0 functions identified at the end of

the last section. As already observed, many well-known candidate one-way

functions do have easy cylinders. Based on this, [13] conjectured that,

Easy Cylinder Conjecture. All 1-1, size-increasing, P/poly-functions

have an easy cylinder.

The following corollary follows from the above two theorems.

Corollary 2.3. If there exists a 2n
ǫ

-secure one-way function and the Easy

Cylinder Conjecture is true, then all sets complete for NP under P/poly-

reductions are P/poly-isomorphic to each other.

It is not clear if the Easy Cylinder Conjecture is true. The only indica-

tion we have is that the conjecture is true when translated to AC0 settings,

and that many well-known candidate one-way functions have easy cylin-

ders. Goldreich [31] argued against the conjecture by defining a candidate

one-way function of the form fn where f is a candidate one-way function

in NC0 based on expander graphs. He argued that it is not clear whether

fn has an easy cylinder, and conjectured that it does not.

2.8. Future Directions

The results of the previous two sections suggest that the Isomorphism Con-

jecture is true. However, the evidence is far from overwhelming. Answers

to the following questions should make the picture clearer:

• Can one prove the r-Complete Degree Conjecture for other reducibil-

ities, for example, AC0[2] (computed by constant depth circuits with

AND and PARITY gates)?

• Does Goldreich’s function have an easy cylinder? Can one prove it does

not under a reasonable hypothesis?

• Even if the Easy Cylinder Conjecture is true and strong one-way

functions exist, the Isomorphism Conjecture is true only for P/poly-
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reductions. Can one define alternative and plausible conjecture(s) from

which the Isomorphism Conjecture for p-reductions follows?
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3.1. The Hierarchy of Sets

The notion of a computably enumerable (c.e.) set, i.e. a set of integers whose

members can be effectively listed, is a fundamental one. Another way

of approaching this definition is via an approximating function {As}s∈ω
to the set A in the following sense: We begin by guessing x /∈ A at

stage 0 (i.e. A0(x) = 0); when later x enters A at a stage s + 1, we

change our approximation from As(x) = 0 to As+1(x) = 1. Note that

this approximation (for fixed) x may change at most once as s increases,

namely when x enters A. An obvious variation of this definition is to

allow more than one change: A set A is 2-c.e. (or d-c.e.) if for each x,

As(x) change at most twice as s increases. This is equivalent to requir-

ing the set A to be the difference of two c.e. sets A1 − A2. Similarly,

one can define n-c.e. sets by allowing n changes for each x. A direct

generalization of this reasoning leads to sets which are computably ap-

proximable in the following sense: For a set A there is a set of uniformly

computable sequences {f(0, x), f(1, x), . . . , f(s, x), . . . |x ∈ ω} consisting of

0 and 1 such that for any x the limit of the sequence f(0, x), f(1, x), . . .

exists and is equal to the value of the characteristic function A(x) of

A. The well-known Shoenfield Limit Lemma states that the class of

such sets coincides with the class of all ∆0
2-sets. Thus, for a set A,

A 6T ∅′ if and only if there is a computable function f(s, x) such that

A(x) = lims f(s, x).

The notion of d-c.e. and n-c.e. sets goes back to Putnam [51] and

Gold [37], and was first investigated and generalized by Ershov [33–35].

The arising hierarchy of sets is now known as the Ershov difference hierar-

chy. The position of a set A in this hierarchy is determined by the number

of changes in the approximation of A described above, i.e. by the number

of different pairs of neighboring elements of the sequence.

The Ershov hierarchy consists of the finite and infinite levels. The finite

levels of the hierarchy consist of the n-c.e. sets for n ∈ ω. Otherwise a set

belongs to one of the infinite levels of the hierarchy. The infinite levels of

the hierarchy are defined using infinite constructive ordinals. As it turns

out, the resulting hierarchy of sets exhausts the whole class of ∆0
2-sets.

Each subsequent level of the hierarchy contains all previous ones but does

not coincide with any of them. At the same time the levels of the hierarchy

are arranged so uniformly, that even the following conjecture was stated:

The semilattices of the Turing degrees of the sets from the finite levels of

the hierarchy starting with the second level are indistinguishable in first



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

The Ershov Hierarchy 51

order predicate logic. This conjecture became well known as Downey’s

Conjecture and involved a whole series of publications.

The Turing degrees of the sets from the finite levels of the Ershov hi-

erarchy have been intensively studied since the 1970s. It turned out that

they (partially ordered by Turing reducibility) have a sufficiently rich in-

ner structure, in many respects repeating its paramount representative, the

class of c.e. degrees.

Our notation and terminology are standard and generally follow

Soare [56]. In particular, the standard enumerations of the c.e. sets and

partial computable functions are denoted by {Wx}x∈ω and {Φx}x∈ω re-

spectively. As usual, we append [s] to various functionals such as ΦAe (x)[s]

to indicate the state of affairs at stage s. In particular if A is c.e. (or oth-

erwise being approximated) we mean by this notation the result of running

the eth Turing machine for s steps on input x with oracle As, the subset

of A enumerated by stage s (or the approximation to A at stage s). We

take the use of this computation to be the greatest number about which

it queries the oracle and denote it by ϕe(A;x)[s]; so changing the oracle

at ϕe(A;x)[s] destroys the computation. We also use a modified version

of the restriction notation for functions to mesh with this definition of the

use: f⌈x means the restriction of the function f to numbers y ≤ x. Thus if
ΦAe (x) is convergent, then the use is A⌈ϕe(A;x) and changing A at ϕe(A;x)

destroys this computation (and similarly for computations and approxima-

tions at stage s of a construction). For a set A ⊆ ω its complement ω − A
is denoted by Ā. The cardinality of a set A is denoted by |A|.

The pairing function 〈x, y〉 is defined as 〈x, y〉 := (x+y)2+3x+y
2 and

bijectively maps ω2 onto ω. We denote by l and r the uniquely de-

fined functions such that for all x, y, l(〈x, y〉) = x, r(〈x, y〉) = y and

〈l(x), r(x)〉 = x; the n-place function 〈x1, . . . xn〉 for n > 2 is defined

as 〈x1, . . . xn〉 = 〈〈. . . 〈x1, x2〉, x3〉, . . . , xn〉. In this case the s-th compo-

nent of 〈x1, . . . xn〉 is denoted as cn,s. Thus, 〈cn,1(x), . . . cn,n(x)〉 = x and

cn,s(〈x1, . . . xn〉) = xs. If a function f is defined at x, then we write f(x) ↓,
otherwise f(x) ↑. The characteristic function of a set A is denoted by the

same letter: A(x) = 1, if x ∈ A, and otherwise A(x) = 0.

3.1.1. The finite levels of the Ershov hierarchy

We begin with the following characterization of the ∆0
2-sets (i.e. sets

A 6T ∅′).
Lemma 3.1. (Shoenfield Limit Lemma) A set A is a ∆0

2-set if and only if
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there is a computable function of two variables f such that f(s, x) ∈ {0, 1}
for all s, x, f(0, x) = 0 and lims f(s, x) exists for each x (i.e. |{s : f(s, x) 6=
f(s+ 1, x)}| <∞), and lims f(s, x) = A(x).

It follows easily from the Limit Lemma that

Theorem 3.1. A set A is Turing reducible (T-reducible) to ∅′ if and only if

there is a uniformly computably enumerable sequence of c.e. sets {Rx}x∈ω
such that

R0 ⊇ R1 ⊇ . . . ,
∞⋂

x=0

Rx = ∅, and A =

∞⋃

x=0

(R2x −R2x+1). (1)

Proof. (→) Let A 6T ∅′. By the Limit Lemma there is a computable

function f such that A = lims f(s, x), and for all x, f(0, x) = 0. Define c.e.

sets Rn, n ∈ ω, as follows:
R0 = {y : ∃s(f(s, y) = 1)};
R1 = {y : ∃s0, s1(s0 < s1, f(s0, y) = 1, f(s1, y) = 0)}, and in general for

n > 0;

Rn = {y : ∃s0 < s1 < . . . < sn(f(s0, y) = 1, f(s1, y) = 0, . . . , f(sn, y) =

n+ 1 mod 2}.
Obviously, all sets Rn are c.e., the sequence {Rx}x∈ω is uniformly c.e.,

and R0 ⊇ R1 ⊇ . . .. It is also easy to check that
⋂∞
x=0Rx = ∅ and

A =
⋃∞
x=0(R2x −R2x+1).

(←) For this direction the proof is straightforward. �

Note that if A is an arbitrary Σ0
2-set then it is easy to show that A =⋃∞

x=0(R2x − R2x+1) for a uniformly computably enumerable sequence of

c.e. sets {Rx}x∈ω such that R0 ⊇ R1 ⊇ R2 ⊇ . . .. Therefore, in Theorem

3.1 the condition
⋂∞
x=0Rx = ∅ is necessary.

If in (1) starting from some n all elements of the sequence {Rx}x∈ω are

empty, then we obtain sets from the finite levels of the Ershov hierarchy.

Definition 3.1. A set A is n-computably enumerable (an n-c.e. set), if

either n = 0 and A = ∅, or n > 0 and there are c.e. sets R0 ⊇ R1 ⊇ R2 ⊇
. . . ⊇ Rn−1 such that

A =

[
n−1
2

]
⋃

i=0

(R2i −R2i+1) (here if n is an odd number then Rn = ∅).
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It follows from this definition that if n > 1 and n is an even number

(n = 2m) then

A =

m−1⋃

x=0

(R2x −R2x+1),

and if n > 1 and n is an odd number (n = 2m+ 1) then

A =
{m−1⋃

x=0

(R2x −R2x+1)
}
∪R2m.

Therefore, the class of 1-c.e. sets coincides with the class of c.e. sets,

2-c.e. sets can be written as R1 − R2, where R1 ⊇ R2 c.e. sets, therefore

they are also called d-c.e. (difference-c.e.) sets, 3-c.e. sets can be written

as (R1 −R2) ∪R3 etc.

The n-c.e. sets constitute the level Σ−1
n of the Ershov hierarchy. They

are also called Σ−1
n -sets. The complements of the Σ−1

n -sets constitute the

level Π−1
n of the hierarchy (Π−1

n -sets). The intersection of these two classes

is denoted by ∆−1
n :

∆−1
n = Σ−1

n ∩ Π−1
n .

The proof of the following statement is straightforward.

Theorem 3.2. A set A is an n-c.e. set for some n > 0 if and only if

there is a computable function g of two variables s and x such that A(x) =

lims g(s, x) for every x, g(0, x) = 0, and

|{s|g(s+ 1, x) 6= g(s, x)}| 6 n. (1)

The class of the n-c.e. sets is denoted by Rn. It is clear that every

n-c.e. set is also (n+ 1)-c.e., therefore R0 ⊆ R1 ⊆ R2 ⊆ . . . . It is easy to

see that the reverse inclusions do not hold and that for every n > 0 there

is an (n + 1)-c.e. set with an (n + 1)-c.e. complement which is not n-c.e.

and not even co-n-c.e.

Therefore, we have

Theorem 3.3. (Hierarchy Theorem) For every n > 0,

Σ−1
n ∪ Π−1

n ( Σ−1
n+1 ∩ Π−1

n+1.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

54 M. M. Arslanov

Comment. The Limit Lemma appeared for the first time in Shoen-

field [54]. The finite levels of the Ershov hierarchy were defined and stud-

ied (under different names) also in Putnam [51] and Gold [37]. Addison [1]

considered a general method of constructing “difference” hierarchies. In

particular, his hierarchy, generated by c.e. sets, defines the same classes of

n- and ω-c.e. sets (ω-c.e. sets will be defined later). In the same paper

he also obtained several properties of n- and ω-c.e. sets, for instance, the

Hierarchy Theorem 3.3. The notations Σ−1
n ,Π−1

n and ∆−1
n for the finite

levels of the hierarchy, as well as analogous notations for further levels (see

Theorem 3.14) were introduced by Ershov [33, 34].

3.1.2. The properties of productiveness and creativeness on

the n-c.e. sets

On the class of n-c.e. sets Ershov [33] introduced the notion of creative sets

which is similar to the appropriate definition on c.e. sets and preserves its

main properties.

Definition 3.2. A set P is Σ−1
n -productive, n > 2, if there is an n-place

computable function f(x1, . . . , xn) such that for any c.e. setsWx1 ⊇Wx2 ⊇
. . . ⊇Wxn

[
n+1
2

]
⋃

i=1

(Wx2i−1 −Wx2i) ⊆ P → f(x1, . . . , xn) ∈ P −

[
n+1
2

]
⋃

i=1

(Wx2i−1 −Wx2i)

(for odd n, set Wxn+1 = ∅).
An n-c.e. set A is Σ−1

n -creative if its complement is Σ−1
n -productive.

For simplicity we will consider only the case n = 2, the general case is

similar.

For d-c.e. sets the definition of Σ−1
2 -productive sets can be reformula-

ted as follows: A set P is Σ−1
2 -productive, if there is a unary computable

function f such that for any x,

Wl(x) ⊇Wr(x)& (Wl(x) −Wr(x)) ⊆ P → f(x) ∈ P − (Wl(x) −Wr(x)).

Similarly to the case of c.e. sets, Σ−1
2 -productive sets cannot be d-c.e. sets.

Indeed, if P = Wx −Wy, Wx ⊇ Wy, then f(〈x, y〉) ∈ P − (Wx −Wy) = ∅,
a contradiction.
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Define:

R1 = {x|x ∈Wl(x) ∪Wr(x)};
R2 = {x|x ∈Wr(x)}.

It is clear that R1 ⊇ R2 and R1 −R2 = {x|x ∈ Wl(x) & x /∈Wr(x)}.

Theorem 3.4. The set R1 −R2 is
∑−1

2 -creative.

Proof. We have to prove that the set ω − (R1 −R2) = (ω −R1) ∪R2 is∑−1
2 -productive.

Let Wx − Wy ⊆ (ω − R1) ∪ R2. If 〈x, y〉 ∈ R1 − R2, then 〈x, y〉 ∈
R1 & 〈x, y〉 /∈ R2 implies 〈x, y〉 ∈ Wx and 〈x, y〉 /∈ Wy, which implies 〈x, y〉 ∈
Wx−Wy. But this is impossible, sinceWx−Wy ⊆ (ω−R1)∪R2. Therefore

〈x, y〉 ∈ ω − (R1 − R2). If 〈x, y〉 ∈ Wx − Wy, then 〈x, y〉 ∈ Wx and

〈x, y〉 /∈ Wy . It follows that 〈x, y〉 ∈ R1 − R2, a contradiction. Therefore,

for all x and y, Wx −Wy ⊆ ω − (R1 − R2), which implies 〈x, y〉 ∈ (ω −
(R1 −R2))− (Wx −Wy). �

Theorem 3.5. The set R1 − R2 is Σ−1
2 -complete in the sense that every

d-c.e. set is m-reducible to R1 −R2.

Proof. We have R1 − R2 = {x|x ∈ Wl(x) & x /∈ Wr(x)}. It follows

from the proof of Theorem 3.4 that the function 〈x, y〉 is a productive

function for R1 −R2, i.e. Wx − Wy ⊆ R1 −R2 → 〈x, y〉 ∈ R1 −R2 −
(Wx −Wy).

Let A1 and A2 be c.e. sets and A1 ⊇ A2. Now we define a computable

function h which m-reduces A1 −A2 to R1 −R2.

We first define computable functions g1 and g2 as follows:

Wg1(x) = {t|Φx(t, 0) ↓= 0},Wg2(x) = {t|Φx(t, 0) ↓= 0&Φx(t, 1) ↓= 1}.
Now define

q(y, z, t, n) =






0, if y ∈ A1, t ∈ Wz, n = 0;

1, if y ∈ A2, t ∈ Wz, n = 1;

↑, in all other cases.
By the s-m-n-theorem there is a computable function α such that

Φα(y,z)(t, n) = q(y, z, t, n). It follows that

Φα(y,z)(t, n) =

{
n, if y ∈ An+1, t ∈Wz , n 6 1;

↑, otherwise.
Define p(x) = 〈g1(x), g2(x)〉. Let β be a computable function such that

for all y, z, Wβ(y,z) = {p(α(y, z))}.
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By the Recursion Theorem there is a computable function f such that

for each y,

Wβ(y,f(y)) =Wf(y).

It follows from the definition of the function β thatWf(y) = {p(α(y, f(y)))}.
Finally define h(y) = p(α(y, f(y))).

To prove that for any y, y ∈ A1 − A2 ↔ h(y) ∈ R1 −R2, suppose that

y ∈ A1 − A2. We have Φα(y,f(y))(t, 0) ↓= 0 if and only if t ∈ Wf(y) if and

only if t = p(α(y, f(y))) if and only if t = h(y). Therefore, Wg1(α(y,f(y))) =

{h(y)} =Wf(y). Since y /∈ A2, Wg2(α(y,f(y))) = ∅.
Let us denote 〈g1(α(y, f(y))), g2(α(y, f(y)))〉 by x. Then x =

p(α(y, f(y))). If Wg1(α(y,f(y))) − Wg2(α(y,f(y))) ⊆ R1 −R2, then x ∈
R1 −R2 − Wg1(α(y,f(y))), and since x = p(α(y, f(y))) = h(y), h(y) ∈
R1 −R2 −Wg1(α(y,f(y))), a contradiction.

Therefore, Wg1(α(y,f(y))) −Wg2(α(y,f(y))) ⊆ R1 −R2. But the set

Wg1(α(y,f(y))) − Wg2(α(y,f(y))) consists of a single element h(y), therefore

h(y) ∈ R1 −R2.

Now suppose that y /∈ A1 −A2. In this case we have either a) y /∈ A1,

or b) y ∈ A1 ∩ A2.

Case a) If y /∈ A1, then the function q is undefined at this y and all

z, t, n, therefore the function Φα(y,f(y)) is also undefined for all t, n. It

follows that the sets Wg1(α(y,f(y))) and Wg2(α(y,f(y))) are empty and

h(y) = 〈g1(α(y, f(y))), g2(α(y, f(y)))〉 ∈ R1 −R2,

since the set R1 −R2 is productive.

Case b) If y ∈ A1∩A2, then it follows from their definitions that the sets

Wg1(α(y,f(y))) and Wg2(α(y,f(y))) coincide. Therefore, since the set R1 −R2

is productive, we have h(y) ∈ R1 −R2.

It follows that the function h(y) m-reduces the set A1−A2 to the Σ−1
2 -

creative set R1 −R2, as required. �

The proof of Theorem 3.5 can be reorganized to prove a more general

claim: Any Σ−1
n -creative set is Σ−1

n -complete in the sense that any n-c.e.

set is m-reducible to this set.

Theorem 3.6. Let Qn =

[n+1
2 ]⋃

i=1

(R2i−1−R2i) (letting Rn+1 = ∅), where c.e.

sets R1 ⊇ R2 ⊇ . . . ⊇ Rn are defined as follows: for every i, 1 6 i 6

n,Ri = {x|x ∈
n⋃

s=i

Wcns(x)}.
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a) The sets Qn are Σ−1
n -creative sets for all n, 2 6 n < ω;

b) The sets Qn are Σ−1
n -complete.

The proof is similar to the proof of Theorem 3.5. Now the functions

gi, 1 6 i 6 n, and p are defined as follows: Wgi(x) = {t|Φx(t, 0) ↓=
0& . . . &Φx(t, i− 1) ↓= i− 1}, p(x) = g(〈g1(x), . . . , gn(x)〉), where g is the

productive function for Qn.

Comment. Theorems 3.4, 3.5 and 3.6 are from Ershov [33].

3.1.3. The class of the ω-c.e. sets

As we can see, the n-c.e. sets for n < ω does not exhaust the collection

of ∆0
2-sets. Therefore, to obtain in this way a description of all ∆0

2-sets we

need to consider infinite levels of the hierarchy.

In the definition of n-c.e. sets (n < ω) we have used non-increasing

sequences R0 ⊇ R1 ⊇ . . . ⊇ Rn−1 of c.e. sets. The infinite levels of the

Ershov hierarchy are defined using uniformly c.e. sequences of c.e. sets,

such that the c.e. sets in these sequences satisfy the same ⊆-relations which
are consistent with the order type of the ordinal which defines the level of

this set in the hierarchy.

Definition 3.3. Let P (x, y) be a computable binary relation which par-

tially orders the set of natural numbers (for convenience instead of P (x, y)

we will write x 6P y.) By definition, a uniformly c.e. sequence {Rx} of

c.e. sets is a P - (or 6P -)sequence if for all pairs x, y, x 6P y implies that

Rx ⊆ Ry.

Note that we can easily redefine the n-c.e. sets for n < ω according to

this definition. Indeed, if, for instance, for some c.e. sets A1 ⊇ A2 ⊇ . . . An
we have A = (A1 −A2) ∪ . . . ∪ (An−1 −An) (where n is an even number),

then let R0 = An, R1 = An−1, . . . , Rn−1 = A1. We have thus obtained an

n-sequence (n = {0 < 1 < . . . < n− 1}) R0 ⊆ R1 ⊆ . . . ⊆ Rn−1 such that

A =

n−1
2⋃

i=0

(R2i+1 −R2i).

The sets from the first infinite level of the Ershov hierarchy are the ω-

c.e. sets. They are defined using ω-sequences of c.e. sets, i.e. sequences

{Rx}x∈ω, in which the relation Rx ⊆ Ry is consistent with the order type

of ω = {0 < 1 < . . .}: R0 ⊆ R1 ⊆ . . . .
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Definition 3.4. A set A ⊆ ω belongs to level Σ−1
ω of the Ershov hier-

archy (or A is a Σ−1
ω -set) if there is an ω-sequence {Rx}x∈ω such that

A =
∞⋃

n=0

(R2n+1 − R2n). A belongs to level Π−1
ω of the Ershov hierar-

chy (or A is a Π−1
ω -set), if A ∈ Σ−1

ω . Finally, A belongs to level ∆−1
ω of

the Ershov hierarchy (A is a ∆−1
ω -set), if A and A both are Σ−1

ω -sets, i.e.

∆−1
ω = Σ−1

ω ∩Π−1
ω . ∆−1

ω -sets are also called ω-c.e. sets.

Theorem 3.7. (Epstein, Haas, and Kramer [32]) A set A ⊆ ω belongs to

level Σ−1
ω of the Ershov hierarchy if and only if there is a partial computable

function ψ such that for every x,

x ∈ A implies ∃s(ψ(s, x) ↓) and A(x) = ψ(µs(ψ(s, x) ↓), x);
x /∈ A implies either ∀s(ψ(s, x) ↑),

or ∃s(ψ(s, x) ↓) & A(x) = ψ(µs(ψ(s, x) ↓), x).
In other words, A ⊆ dom(ψ(µs(ψ(s, x) ↓), x)), and for every x,

x ∈ dom(ψ(µs(ψ(s, x) ↓), x)) implies A(x) = ψ(µs(ψ(s, x) ↓), x).

Proof. (→) Let A =
∞⋃

n=0

(R2n+1 − R2n) for some ω-sequence {Rx}x∈ω.

Define the required partial computable function ψ(s, x) as follows: For a

given x, wait for a stage s such that x ∈ R2m+1,s for some (least) m. (If

this never happens then ψ(s, x) ↑ for all s.) Then define ψ(2m+ 1, x) = 1

and wait for a stage s1 > s and a number n < 2m + 1 such that x ∈
Rn,s1 − Rn−1,s1 . Then define ψ(n, x) = 1, if n is an odd number, and

ψ(n, x) = 0, if n is an even number, and so on. Obviously, the function ψ

is the required function.

(←) Define c.e. sets Ri, i > 0, as follows:

R0 = {x|ψ(0, x) ↓= 0},
R1 = R0 ∪ {x|ψ(0, x) ↓= 1},
. . . . . . . . . . . . .

R2m = R2m−1 ∪ {x|ψ(m,x) ↓= 0},
R2m+1 = R2m ∪ {x|ψ(m,x) ↓= 1}.

Obviously, {Rn}n∈ω is a uniformly c.e. sequence of c.e. sets Ri, i ∈ ω, and
R0 ⊆ R1 ⊆ . . . .
Now suppose that x ∈ A. Then there is an integer s such that ψ(s, x) ↓,
A(x) = ψ(s, x) = 1, and if s > 0, then ψ(s− 1, x) ↑. Therefore, x ∈ R2n+1

for some (least) n, x /∈
⋃

m<2n+1

Rm and x ∈
∞⋃

n=0

(R2n+1 −R2n).
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Conversely, if x /∈ A, then either ψ(s, x) ↑ for all s, or there is an integer

s such that ψ(s, x) ↓= 0, and if s > 0 then ψ(s − 1, x) ↑. Therefore, either
x /∈ Ri for all i, or x ∈ R2n for some (least) n and x /∈

⋃

m<2n

Rm. This

means that x /∈
∞⋃

n=0

(R2n+1 −R2n).
�

Definition 3.5. Let f be a total unary function. A set A is called f -

computably enumerable (an f -c.e. set), if there is a computable function g

such that for all s and x, A(x) = lims g(s, x), and

|{s : g(s, x) 6= g(s+ 1, x)}| 6 f(x).

Theorem 3.8. a) There is an id-c.e. set (where id is the identity function)

which is not n-c.e. for any n ∈ ω;
b) Let f and g be computable functions such that ∃∞x(f(x) < g(x)).

Then there is a g-c.e., but not f -c.e. set;

c) There is a ∆0
2-set which is not f -c.e. for any computable function f ;

d) Let A be an f -c.e. set for some computable function f , A 6= ∅, and
let g be a computable function such that ∀y∃x(g(x) > y). Then there exists

a g-c.e. set B such that A ≡T B.

Proof. For parts a)–c) use Cantor’s diagonalization argument. For part

d) let h be the following computable function: h(0) = 0, and h(x + 1) =

µy{y > h(x)& g(y) > f(x+ 1)}. Define B = {x : ∃z ∈ A(x = h(z))}. Then
B is g-c.e. and B ≡T A. �

Theorem 3.9. Let A ⊆ ω. The following are equivalent:

a) A is ω-c.e.

b) There is an ω-sequence {Rx}x∈ω such that
⋃

x∈ω
Rx = ω; and A =

∞⋃

n=0

(R2n+1 −R2n).

c) A is f -c.e. for some computable function f .

d) There is a partial computable function ψ such that for all x,

A(x) = ψ(k, x), where k = µt(ψ(t, x) ↓). (1)

(In this case we write A(x) = ψ(µt(ψ(t, x) ↓), x).)
e) A is tt-reducible to ∅′.
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Proof. c)→ d) Let A be ω-c.e. and

A(x) = lim
s
g(s, x), |{s|g(s+ 1, x) 6= g(s, x)}| 6 f(x)

for some computable functions g and f . Define a partial computable func-

tion ψ as follows: For any x

ψ(f(x), x) = g(0, x).

If ∃s(g(s + 1, x) 6= g(s, x)), then let s1 be the least such s. Define

ψ(f(x)−1, x) = g(s1+1, x). Further we proceed by induction: let ψ(f(x)−
i, x) = g(si + 1, x) be the last value of ψ defined this way. If ∃s > si(g(s+

1, x) 6= g(s, x)), then let si+1 be the least such s. Define ψ(f(x)−(i+1), x) =

g(si+1, x). It is clear that the function ψ is partial computable and for all

x, A(x) = ψ(µs(ψ(s, x) ↓), x).
Part d)→ a) immediately follows from Theorem 3.7.

a)→ b) Let {Px}x∈ω and {Qx}x∈ω be ω-sequences such that

A =

∞⋃

n=0

(P2n+1 − P2n) and Ā =

∞⋃

n=0

(Q2n+1 − Q2n). Define a new ω-

sequence {Rx}x∈ω as follows: R0 = P0. For x > 0, Rx = Px ∪ Qx−1. It is

clear, that A =

∞⋃

n=0

(R2n+1 −R2n) and
⋃

x∈ω
Rx = ω;.

b) → c) Let A =

∞⋃

n=0

(R2n+1 − R2n) for an ω-sequence {Rx}x∈ω such

that
⋃

x∈ω
Rx = ω;. Define computable functions g(s, x) and f(x) as follows:

For a given x ∈ ω, first find the first stage t such that either x ∈ R0,t

or x ∈ Rm,t − Rm−1,t for some m > 0. If x ∈ R0,t then f(x) = 0 and

g(s, x) = 0 for all s ∈ ω. Otherwise define f(x) = m, g(0, x) = 1, if m

is an odd number, and g(0, x) = 0, otherwise. Further, for s > 0 define

g(s, x) = g(s−1, x), if for any m, x ∈ Rm,s implies x ∈ Rm,s−1. Otherwise,

let n = µm(x ∈ Rm,s). Define g(0, x) = 1, if n is an odd number, and

g(0, x) = 0 otherwise.

Obviously, the functions g and f are computable, A(x) = lims g(s, x)

for all x, and |{s : g(s, x) 6= g(s+ 1, x)}| 6 f(x).

c)→ e) Let A(x) = lims g(s, x) and |{s : g(s, x) 6= g(s+ 1, x)}| ≤ f(x)

for some computable functions g and f . Define

M = {〈i, x, a〉 : ∃t(|{s ≤ t : g(s, x) 6= g(s+ 1, x)}| = i & g(t, x) = a)}.
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Obviously,M is c.e. and x ∈ A if and only if (〈0, x, 1〉 ∈M & 〈1, x, 1〉 6∈
M & 〈1, x, 0〉 6∈M)∨ (〈1, x, 1〉 ∈M & 〈2, x, 1〉 6∈M & 〈2, x, 0〉 6∈M)∨. . .∨
〈f(x), x, 1〉 ∈M.

The last condition can be written as a tt-condition and, therefore, A ≤tt
M .

e) → c) For a given x we can effectively find an integer n, a Boolean

function α : {0, 1}n → {0, 1}, and a finite set {t1, . . . tn} such that x ∈ A if

and only if α(K(t1), . . . K(tn)) = 1. Define

g(s, x) = α(Ks(t1), . . . Ks(tn)).

(Here K is the creative set {e : e ∈ We} and {Ks}s∈ω is an effective

enumeration of K.) It is clear, that A(x) = lims g(s, x), and |{s : g(s, x) 6=
g(s+ 1, x)}| ≤ n. �

If we replace in part d) of Theorem 3.9 µt by a bounded search opeara-

tor µt6 n, then we obtain a similar description of the n-c.e. sets (more

precisely, the weakly n-c.e. sets) for 1 6 n < ω.

Definition 3.6. (Epstein, Haas, and Kramer [32]) A set A is weakly n-c.e.

for some n > 0, if there is a computable function g of two variables s and

x such that A(x) = lims g(s, x) and

|{s|g(s+ 1, x) 6= g(s, x)}| 6 n

(in the definition of n-c.e. sets the condition “g(0, x) = 0 for every x” is

omitted).

The following properties of the weakly n-c.e. sets are straightforward.

a) A set is weakly 0-c.e. if and only if it is computable; b) Every n-c.e.

set also is weakly n-c.e.; c) A set A is weakly n-c.e. for an arbitrary n > 0

if and only if its complement Ā is also weakly n-c.e.; d) The sets A and Ā

are both (n + 1)-c.e. (i.e. A ∈ ∆−1
n+1) if and only if they are both weakly

n-c.e.; e) For any n > 0 there is a weakly n-c.e. set A such that neither A

nor Ā is n-c.e.

Theorem 3.10. (Epstein, Haas, and Kramer [32], Carstens [15]) Let A ⊆
ω and n > 0. The following are equivalent:

a) A is weakly n-c.e.;

b)There is a partial computable function ψ such that for every x,

A(x) = ψ(µt6 n(ψ(t, x) ↓), x); (1)
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c) A is bounded truth-table reducible to ∅′ with norm n.

Proof. a) → b) Let A(x) = lims g(s, x) for some computable function g

and |{s|g(s+ 1, x) 6= g(s, x)}| 6 n for every x.

The required function ψ is defined as follows: for every x, ψ(n, x) =

g(0, x). If ∃s(g(s + 1, x) 6= g(s, x)), then let s1 be the least such s. Define

ψ(n− 1, x) = g(s1 + 1, x). Further proceed by induction: let ψ(n− i, x) =
g(si+1, x) be the last value of ψ which was defined. If ∃s > si(g(s+1, x) 6=
g(s, x)), then let si+1 be the least such s. Define ψ(n − (i + 1), x) =

g(si+1, x).

It is clear, that ψ is partial computable and (1) holds.

b)→ a) In this direction the proof is straightforward.

c)→ a) Let A be btt-reducible to the creative set K with norm n. This

means that for any x we can effectively find an n-place Boolean function

αx and a finite set Fx = {t1, t2, . . . , tn} such that x ∈ A if and only if

αx(K(t1), . . . , K(tn)).

Define a computable function g as follows:

g(s, x) = α(Ks(x1), . . . , Ks(xn)).

Obviously, A(x) = lims g(s, x), and |{s|g(s+ 1, x) 6= g(s, x)}| ≤ n.
a)→ c) The proof of this part is similar to the proof of part c)→ e) of

Theorem 3.9. �

3.1.4. A description of the ∆0

2
-sets using constructive ordi-

nals

The ω-c.e. sets are the first examples of sets from infinite levels of the

Ershov hierarchy. Later we will consider sets from other infinite levels of

the hierarchy exhausting all ∆0
2-sets.

In what follows we use Kleene’s system of ordinal notations (O,<0)

(Kleene [43], see also Rogers [53]). Recall that if a ∈ O then |a|0 denotes

the ordinal α, which has O-notation a.

On O a computable function +0 is defined which for all x, y and z, has

the following properties:

a) x, y ∈ O → x+0 y ∈ O;
b) x, y ∈ O& y 6= 1→ x <0 x+0 y;

c) x, y ∈ O → |x+0 y|0 = |x|0 + |y|0;
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d) x ∈ O& y <0 z ↔ x+0 y <0 x+0 z.

Remark 3.1. In general, the relation y <0 x+0 y does not necessarily hold

for all x, y ∈ O. But it follows from part c), that for all x, y ∈ O such that

1 ≤0 x, we have the following: |y|0 ≤ |x+0 y|0.
Definition 3.7. Let a, b ∈ O and |a|0 = α, |b|0 = β. We say that a is

monotonically reducible to b (written a �0 b), if there is a partial com-

putable function h such that {x : x <0 a} ⊆ domh, ∀x <0 a(h(x) <0 b),

and

1) (∀c, d <0 a)(c <0 d↔ h(c) <0 h(d)), and

2) (∀d <0 a)(k0(d) = k0(h(d))),

where k0 is the partial computable function which is used in the definition

of O as a system of notations: then, for x ∈ O, k0(x) = 0, if |x|0 = 0;

k0(x) = 1, if |x|0 is a successor; and k0(x) = 2, if |x|0 is a limit ordinal.

It is clear that the relation �0 is reflexive and transitive, and for all

a, b ∈ O, a �0 b implies Σ−1
a ⊆ Σ−1

b . Now the properties c) and d) of +0

stated above imply the following useful property of notations from O which

will be used in Theorem 3.19.

Proposition 3.1. For all x, y ∈ O, y �0 x+0 y.

Definition 3.8. Let S be a univalent system of notations for constructive

ordinals, let α be an ordinal which has an S-notation, and let Ψ be a partial

computable function and f a unary function. We write Ψ→{α,S} f , if for
all x ∈ domf we have f(x) = Ψ(n, x), where n is a notation for the least

ordinal λ < α such that Ψ(n, x) ↓.
For simplicity in this case we will also write (cf. Theorems 3.9 and 3.10)

f(x) = Ψ((µλ< α)S(Ψ((λ)S , x) ↓), x).
Let α be an ordinal. The parity function on ordinals is defined as follows:

α is an even ordinal if either it is 0 or a limit ordinal, or it is the successor

of an odd ordinal. Otherwise α is an odd ordinal. Therefore, if α is even

then α′ (the successor of α) is odd and vice versa.

In the system of notations S the parity function e(x) is defined as fol-

lows: Let n ∈ DS. Then e(n) = 1, if |n|S is an odd ordinal, and e(n) = 0,

if |n|S is an even ordinal.

Let α be an ordinal which has a notation a in a notation system S, i.e.

|a|S = α. Suppose that for a set A, a partial computable function Ψ and

for every x we have
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A(x) = Ψ((µλ< α)S(Ψ((λ)S , x) ↓, x)) (1)

(in symbols Ψ→{α,S} A).

We define an a-sequence of c.e. sets {Rx} as follows: For every x <S a,

Rx =
⋃

y<Sx

Ry ∪
{ {z| ∃t 6S x(Ψ(t, z) ↓= 1)}, if e(x) 6= e(a);

{z| ∃t 6S x(Ψ(t, z) ↓= 0)}, if e(x) = e(a).

Clearly,

A = {z|∃x <S a(z ∈ Rx& e(x) 6= e(a)& ∀y <S x(z /∈ Ry)}. (2)

In particular, if α = ω this agrees with our previous description of ω-c.e.

sets via ω-sequences, and if α = n < ω (α is a natural number) with our

description of n-c.e. sets.

If a set A is defined as in (2) using some α-sequence {Rx} such that⋃

x<Sa

Rx = ω, then the converse claim also holds: The set A can be defined

as in (1) for some partial computable function Ψ.

Indeed, let Ψ be the following function:

Ψ(x, z) =






1, if z ∈ Rx, e(x) 6= e(a);

0, if z ∈ Rx, e(x) = e(a);

↑, otherwise.

Since
⋃

x<Sa

Rx = ω we have ∀z∃x(Ψ(x, z) ↓). Now it is easy to see that

A(x) = Ψ((µλ< α)S(Ψ((λ)S , x) ↓, x)).

Remark 3.2. Here the condition
⋃

x<Sa

Rx = ω is necessary, otherwise the

condition ∀z∃x(Ψ(x, z) ↓), which we need for (1), does not hold. It is easy

to see that in (2) the a-sequence {Rx} has this property.

We have proved the following:

Theorem 3.11. Let S be a univalent system of notations for construc-

tive ordinals, A ⊆ ω and α an ordinal which has S-notation a. Then the

following are equivalent:

a) There is a partial computable function Ψ such that for every x,

A(x) = Ψ((µλ< α)S(Ψ((λ)s, x) ↓, x));
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b) There is an a-sequence {Rx}x<sa such that
⋃

x<Sa

Rx = ω, and

A = {z| ∃x <S a(z ∈ Rx& e(x) 6= e(a)& ∀y <S x(z /∈ Ry)}.

Theorem 3.11 generalizes the previously obtained descriptions of ω-c.e.

and n-c.e. sets for n < ω using ω-sequences and n-sequences of c.e. sets

respectively. Now we will show that any ∆0
2-set has such a description for

some a-sequence {Rx}, where a is a notation for some ordinal α in the

notation system S. Moreover, we will have that α 6 ω2.

We first prove that any set which can be so defined using an a-sequence

{Rx} for some a ∈ S, is a ∆0
2-set, i.e. these definitions do not take us out

of the class of ∆0
2-sets.

Theorem 3.12. Let S be a univalent and recursively related system of

notations, α a constructive ordinal which has a notation in S, Ψ a partial

computable function, and let f be a function such that Ψ →{α,S} f . Then

f 6T ∅′.

Proof. Let x be a given integer. To ∅′-compute f(x) find the first (if

any) integer n such that Ψ(n, x) ↓. (If there is no such n, then f(x) ↑.)
Let Ψ(n, x) ↓ for some n. Using the oracle ∅′ find (if it exists) an

integer m such that νS(m) < νS(n) and Ψ(m,x) ↓. This is possible since

S is recursively related. Now repeat the same, replacing n by m and so

on. Since the set α is well-ordered we will repeat this process only finitely

many times. Now let m be an integer such that νs(m) is the least ordinal

such that Ψ(m,x) ↓. We have f(x) = Ψ(m,x). �

Theorem 3.13. Let f 6T ∅′ be a total function. There is a partial com-

putable function Ψ such that for every x,

f(x) = Ψ(|µλ< ω2|0(Ψ(|λ|0, x) ↓), x).

Proof. Since O is a universal system of notations, it is enough to con-

struct a univalent and recursively related system of notations S and a partial

computable function Ψ such that for every x,

f(x) = Ψ((µλ< ω2)S(Ψ((λ)S , x) ↓), x).
Let f(x) = lims g(s, x) for all x and some computable function g. Let

0 = sx0 < sx1 < . . . < sxkx be all integers s, for which g(s, x) 6= g(s + 1, x).

Therefore kx is the number of different values of the function g on the set

of pairs {(s, x)|s ∈ ω}.
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Arrange all pairs (y, x) (or rather, the indices 〈y, x〉 of these pairs) into

an ω2-sequence as follows:

Block 0





〈s0k0 , 0〉, 〈s0k0 + 1, 0〉, 〈s0k0 + 2, 0〉, . . . , 〈s0k0 + j, 0〉, . . .
〈s0k0−1, 0〉, 〈s0k0−1 + 1, 0〉, 〈s0k0−1 + 2, 0〉, . . . , 〈s0k0 − 1, 0〉
...........................................................................

〈s01, 0〉, 〈s01 + 1, 0〉, 〈s01 + 2, 0〉, . . . , 〈s02 − 1, 0〉
〈0, 0〉, 〈1, 0〉, 〈2, 0〉, . . . , 〈s01 − 1, 0〉

Block 1





〈s1k1 , 1〉, 〈s1k1 + 1, 1〉, 〈s1k1 + 2, 1〉, . . . , 〈s1k1 + j, 1〉, . . .
〈s1k1−1, 1〉, 〈s1k1−1 + 1, 1〉, 〈s1k1−1 + 2, 1〉, . . . , 〈s1k1 − 1, 1〉
...........................................................................

〈s11, 1〉, 〈s11 + 1, 1〉, 〈s11 + 2, 1〉, . . . , 〈s12 − 1, 1〉
〈0, 1〉, 〈1, 1〉, 〈2, 1〉, . . . , 〈s11 − 1, 1〉
............................................................................ .

Each i-th row (except the 0th) of the x-th block (0 6 x <∞) is filled with

numbers 〈sxi , x〉, 〈sxi + 1, x〉, 〈sxi + 2, x〉, . . . , 〈sxi+1 − 1, x〉, and the 0th row

consists of the infinite sequence of numbers 〈sxkx + j, x〉 , j > 0. It is clear

that x-th block of this matrix contains all numbers 〈j, x〉, j > 0, without

repetition.

Now, for each x, we transform rows of the x-th block so that its i-th

row for each i > 0 (not only for i = 0) contains infinitely many integers,

but nevertheless we still have the following conditions:

1) The first element of the i-th row is the number 〈sxkx−i, x〉,
2) Each block contains all natural numbers 〈j, x〉, j > 0 without repetition.

For this we fill the rows of the x-th block as follows: Sequen-

tially compute g(0, x), g(1, x), . . . and simultaneously fill with numbers

〈0, x〉, 〈1, x〉, 〈2, x〉, . . . the positions of the last row from left to right un-

til we reach the number sx1 , for which we have g(sx1 −1, x) 6= g(sx1 , x). After

that we begin to fill with numbers 〈sx1 , x〉, 〈sx1 + 1, x〉, . . . simultaneously

from left to right positions of the last two rows until we reach the number

sx2 , for which we have g(sx2 − 1, x) 6= g(sx2 , x). Then we fill with numbers

〈sx2 , x〉, 〈sx2 +1, x〉, . . . simultaneously from left to right positions of the last

three rows: the third to last, second to last and last (in this order), until we

reach the number sx3 and so on. Let us denote this process of enumerating

elements of the constructed matrix by M, and by ai,j the element of the

matrix which is in the j-th place of its i-th row.
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Thus, inside each block we have finitely many rows of order type ω. It is

clear that for each pair (x, y) the number 〈x, y〉 belongs to exactly one row

of the matrix. Define a linear ordering <ϕ on the elements of the matrix

as follows: ai,j <ϕ ak,l, if either i < k, or i = k, but j < l. Therefore, each

of the ω blocks has order type ω · n for some n > 1, and all the numbers in

the matrix give order type ω2.

Now we define a univalent system of notations S for ordinals < ω2 as

follows: We map, in an order-preserving way (and denoting this map as

νS) the integer ai,j to the ordinal ω · i+ j, 0 6 i < ω: α < β if and only if

(α)S <ϕ (β)S .

To verify that S is a univalent system of notations, define computable

functions kS , pS and a partial computable function qS as follows:

kS(〈s, x〉) =






0, if s = s0k0 , x = 0;

2, if s = 0 ∨ (s > 0 & g(s, x) 6= g(s− 1, x));

1, otherwise.

Obviously kS is a computable function, and if kS(x) = 0, then νS(x) =

0; if νS(x) a successor, then kS(x) = 1, and if νS(x) a limit ordinal then

kS(x) = 2.

We define the function pS(x) as follows: If l(x) 6= s
r(x)
i for some

i 6 kr(x), then pS(x) = 〈l(x)− 1, r(x)〉.
It is clear that pS is a partial computable function, and if νS(x) is a

successor then pS(x) is defined and νS(x) = νS(pS(x)) + 1.

To define the function qS consider the following two cases.

Case 1. x = 〈n, 0〉. (The number x belongs to the 0-th block of the ta-

ble.) Define qS(x) as an index of the following partial computable function

f : If n < s0k0 , then we sequentially compute values of g(n, 0), g(n+1, 0), . . .

until we obtain a number s > n such that g(s− 1, 0) 6= g(s, 0). (It is clear

that if n = s0i for some i < k0 then s = s0i+1.) Define f(t) = g(s+ t, 0) for

all t > 0.

Case 2. x = 〈n,m〉,m > 0. (The number x belongs to the m-th nonzero

block.) In this case qS(x) is an index of the following partial computable

function f : We define f(0), f(1), . . . sequentially as 〈0,m − 1〉, 〈1,m −
1〉, 〈2,m− 1〉, . . . (the subsequent elements of the last row of the (m− 1)th

block) and simultaneously compute g(n,m), g(n+1,m), g(n+2,m), . . . un-

til we again obtain a number s > n such that g(s − 1, 0) 6= g(s, 0). (It is

clear that if n = smi for some i < km, then again s = smi+1.) After that, the
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remaining values of the function f are defined as the subsequent values of

the function g(s+ t,m), t > 0.

It is easy to see that if νS(x) is a limit ordinal then qS(x) is defined and

{νS(ΦqS(x)(n))}n∈ω is an increasing sequence whose limit is νS(x).

Obviously νS(x) < νS(y) if and only if either r(x) < r(y) or r(x) = r(y),

but then l(x) < l(y). Therefore S is also recursively related system of

notations for ordinals.

Now let

Ψ(〈s, y〉, x) =
{
g(s, x), if x = y;

↑, otherwise.

Obviously, Ψ is a partial computable function and for every x,

f(x) = Ψ((µλ< ω2)S(Ψ((λ)S , x) ↓), x). �

Since O is a universal system of notations, Theorems 3.11, 3.12, and

3.13 imply the following:

Corollary 3.1. For any set A ⊆ ω, A 6T ∅′ if and only if there is an

a-sequence {Rx}x<0a, |a|0 6 ω2, such that
⋃

x<0a

Rx = ω, and

A = {z| ∃x <0 a(z ∈ Rx& e(x) 6= e(a)& ∀y <0 x(z /∈ Ry)}.

Comment. Theorems 3.12 and 3.13 are due to Ershov [34]. In the proofs,

we have used an approach suggested by Epstein, Haas, and Kramer [32].

Theorem 3.11 is also from this work.

3.1.5. The infinite levels of the Ershov hierarchy

Since |a|0 has order-type 〈{x : x <0 a}, <0〉, the sentence “a-sequence of

c.e. sets {Rx}” for a ∈ O has to be understood in the sense of Definition

3.3. Define for a ∈ O the operations Sa and Pa, which map a-sequences

{Rx}x<0a into subsets of ω as follows:

Sa(R) = {z|∃x <0 a(z ∈ Rx& e(x) 6= e(a)& ∀y <0 x(z /∈ Ry))}.
Pa(R) = {z|∃x <0 a(z ∈ Rx& e(x) = e(a)& ∀y <0 x(z /∈ Ry))}

∪ {ω −
⋃

x<0a

Rx}.
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It follows from these definitions that Pa(R) = Sa(R) for all a ∈ O and

all a-sequences R.

By definition the class Σ−1
a (Π−1

a ) for a ∈ O is the class of sets Sa(R)

(Pa(R), respectively), where R = {Rx}x<0a runs through all a-sequences

of c.e. sets. Let ∆−1
a = Σ−1

a ∩ Π−1
a .

It is easy to see that for natural numbers n > 0 and for a ∈ O such that

|a|0 = ω these definitions coincide with the previous ones. (The finite levels

of the Ershov hierarchy are denoted by ordinals, not by their O-notations.)

Theorem 3.14. (Hierarchy Theorem) Let a, b ∈ O and a <0 b.

Then Σ−1
a ∪ Π−1

a ( Σ−1
b ∩ Π−1

b .

Proof. It follows immediately from the definitions of the classes of Σ−1
a -

and Π−1
a - sets that if a <0 b then Σ−1

a ∪Π−1
a ⊆ Σ−1

b ∩Π−1
b . It is easy to see

that here all the inclusions are proper. �

Corollary 3.2. For every a ∈ O, Σ−1
a ( Σ0

2 ∩ Π0
2.

Proof. Suppose, for the sake of contradiction, that for some a ∈ O we

have Σ−1
a = Σ0

2 ∩ Π0
2. Let b ∈ O be a notation such that a <0 b. Then,

by Theorem 3.14, Σ−1
a ⊂ Σ−1

b . Therefore, Σ0
2 ∩ Π0

2 = Σ−1
a ⊂ Σ−1

b , a

contradiction. �

Theorem 3.15. Let |a|0 be a limit ordinal. The set A belongs to the class

∆−1
a if and only if there is an a-sequence R such that A = Sa(R) and⋃
b<0a

Rb = ω.

Proof. (→) Let A ∈ ∆−1
a . Then A = Sa(R0) and ω − A = Sa(R1) for

a-sequences of c. e. sets R0 = {R0,x}x<0a and R1 = {R1,x}x<0a.

We define a new a-sequence P = {Px}x<0a as follows: If in {x | x <0 a}
x is a notation for a limit ordinal, then we define Px = R0,x, otherwise |x|0
is the successor of an ordinal |y|0 such that y <0 x. Define Px = R0,x∪R1,y.

Since A ⊆
⋃

x<0a

R0,x and ω − A ⊆
⋃

x<0a

R1,x, and for all y <0 a we

have the inclusions R0,y ⊆ Py and R1,y ⊆ Px, where y <0 x <0 a, we

concluded that
⋃

x<0a

Px = ω. The verification of the condition A = Sa(P)

is straightforward.

(←) Now suppose that A = Sa(P) for some a-sequence P = {Px}x<0a,

suppose also that
⋃

x<0a

Px = ω. Define a new a-sequence R = {Rx}x<0a
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as follows: R1 = ∅. Further, for an arbitrary x ∈ O, 1 <0 x <0 a, we

set Rx = ∪y<0xRy, if x is a notation of a limit ordinal in {x | x <0 a}.
Otherwise, we set Rx = Py for some y <0 x such that |x|0 is a successor of

|y|0. Again it is easy to check that ω −A = Sa(R). �

Theorem 3.11 now immediately implies the following:

Corollary 3.3. Let |a|0 be a limit ordinal. The set A belongs to the class

∆−1
a if and only if there is a partial computable function Ψ such that for

every x,

A(x) = Ψ(|µλ< α|0(Ψ(|λ|0, x) ↓, x)).

The proof of the following theorem is similar to the proofs of Theorems

3.11 and 3.15:

Theorem 3.16. Let A ⊆ ω and a ∈ O. The following are equivalent:

a) A belongs to the class Σ−1
a ;

b) There is a partial computable function Ψ such that for every x, x ∈ A
if and only if Ψ(|µλ< α|0(Ψ(|λ|0, x) ↓, x)).

Generalizing Definition 3.4 of the ω-c.e. sets to infinite ordinals we

introduce the following definition:

Definition 3.9. Let |a|0 be a limit ordinal. If A ∈ ∆−1
a , then the set A is

called an |a|0-c.e. set (or an α-c.e. set, if |a|0 = α).

It is clear that if A ∈ Σ−1
a for some a ∈ O, and B 6m A, then B ∈ Σ−1

a ,

and if A is |a|0-c.e. for some limit ordinal |a|0, a ∈ O, and B 6m A, then

B is also |a|0-c.e. set.
The following theorem is a direct corollary of Theorems 3.11, 3.12 and

3.13.

Theorem 3.17.
⋃

a∈O
Σ−1
a =

⋃

a∈O,|a|0=ω2

Σ−1
a = Σ0

2 ∩Π0
2.

Theorem 3.17 cannot be strengthened:

Theorem 3.18.
⋃

a∈O,|a|0<ω2

Σ−1
a 6= Σ0

2 ∩ Π0
2.

Proof. Let a, b ∈ O be notations such that |a|0 = ω2, |b|0 < ω2. It is

easy to see that b �0 a, which implies Σ−1
b ⊆ Σ−1

a . Therefore, for each

a ∈ O such that |a|0 > ω2, we have
⋃

b∈O,|b|0<ω2

Σ−1
b ⊆ Σ−1

a ⊂ Σ0
2 ∩ Π0

2.
�
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Theorem 3.19. a) For any a ∈ O there is a path T0 in O through a such

that
⋃

b∈T0

Σ−1
b = Σ0

2 ∩ Π0
2;

b) There is a path T in O such that |T |0 = ω3 and
⋃

a∈T
Σ−1
a = Σ0

2 ∩ Π0
2.

Proof. a) Let a ∈ O, and let {b0, b1, . . .} be a listing of all b ∈ O such

that |b|0 = ω2. We define T0 as a path through c0, c1, c2, . . . , where c0 =

a, c1 = a+0 b0, c2 = (a+0 b0)+0 b1, . . . , cn = (. . . (a+0 b0)+0 . . .)+0 bn.

Obviously c0 <0 c1 <0 c2 <0 . . ., and the order type of T0 is |a|0 + ω3.

Since for each n < ω we have cn = d+0 bn for some d ∈ O, and for all x, y,

y �0 x+0 y (see Proposition 3.1), we have, for every n, that bn �0 cn. Now

it follows from Theorem 3.17 that
⋃

b∈T0

Σ−1
b = Σ0

2 ∩ Π0
2.

b) Immediate by the preceding proof for a = 1. �

The following claim shows that Theorem 3.19 b) cannot be strength-

ened:

Proposition 3.2. If a path T in O is such that |T |0 < ω3, then
⋃

a∈T
Σ−1
a 6=

Σ0
2 ∩Π0

2.

Proof. We first prove the following:

Lemma 3.2. For any a ∈ O,
⋃

a60b,|b|0−|a|0<ω2

Σ−1
b 6= Σ0

2 ∩ Π0
2.

Proof of Lemma. Let d ∈ O be a notation such that a 60 d and |d|0 =

|a|0+ω2. It is not difficult to see that for every b ∈ O such that a 60 b and

|b|0 − |a|0 < ω2 we have b �0 d. Therefore,
⋃

a60b,|b|0−|a|0<ω2

Σ−1
b ⊆ Σ−1

d 6=

Σ0
2 ∩Π0

2. � (of Lemma)

(Proof of Proposition 3.2 continued.) Since |T |0 < ω3, in T there is

an element a such that for some ordinal ρ < ω2 we have |T |0 = |a|0 + ρ.

Hence, if b ∈ T and a 60 b, then |b|0 − |a|0 < ω2. Therefore,
⋃

b∈T
Σ−1
b ⊆

⋃

a60b,|b|0−|a|0<ω2

Σ−1
b .

Now it remains to apply the preceding lemma. �

Comment. All results of this section are due to Ershov [34].
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3.1.6. Levels of the Ershov hierarchy containing Turing

jumps

M. C. Faizrahmanov [36] has investigated the levels of the Ershov hierarchy

containing Turing jumps. Not every level of the hierarchy contains the

Turing jump of a set. For instance, its finite levels contain Turing jumps

only of computable sets. Indeed, if A′ is n-c.e. and A is non-computable,

then there is a non-n-c.e. set B <T A. Therefore B
′ 61 A

′. It follows that
B <1 A

′ and, hence, B is an n-c.e. set, a contradiction.

Theorem 3.20. (M. C. Faizrahmanov) If A′ ∈ Π−1
a for a set A and a

notation a ∈ O, then A′ ∈ ∆−1
a .

Proof. As usual, we denote domΦAe by WA
e for every e ∈ ω. Here

{ΦAe }e∈ω is the standard enumeration of all unary functions partial com-

putable in A.

Since ω − A′ ∈ Σ−1
a , then it follows from Theorem 3.16 that there

is a partial computable function Ψ such that x ∈ A′ if and only if

Ψ(|µλ< α|0(Ψ(|λ|0, x) ↓, x)) = 1. (In this case we also say that ω−A′ ∈ Σ−1
a

with function Ψ.)

Let B = {x : ∃t ∈ O(Ψ(t, x) ↓ & t <0 a)}. Obviously, B is c.e. and

A′ ⊆ B. Let {Bs}s∈ω be an effective enumeration of B. Since A is a ∆0
2-set,

there is a uniformly computable sequence {As}s∈ω such that A = limsAs.

Let e be an integer that A′(x) = limsW
As
e,s (x) for all x.

Now we define a set U c.e. in A. Using the Recursion Theorem we

initially fix an index of U (in the enumeration {WA
e }e∈ω) and, therefore,

we can fix a computable function f such that

(∀x){x ∈ U ↔ f(x) ∈ A′}.

Stage s = 0. Set U0 = ∅.
Stage s > 0. Let (s)0 = i. If f(i) ∈ Bs and ΦAe,s(i) ↓, then enumerate i

into Us.

Let U =
⋃
s Us.

For every i we have f(i) ∈ B. Indeed, suppose f(i) /∈ B for some

i. Then i /∈ U and, therefore, f(i) ∈ A′. It follows that f(i) ∈ B, a

contradiction.
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Now we define a partial computable function Θ as follows:

Θ(t, x) =






0, if Ψ(t, f(x)) ↓= 1;

1, if Ψ(t, f(x)) ↓6= 1;

↑, if Ψ(t, f(x)) ↑ .

It is clear, that the function Θ defines A′ as a ∆−1
a -set. �

Theorem 3.21 is proved for the following natural system of notations

〈DC , |.|C〉 for ordinals below ωω with its domain DC and the map |.|C :

DC → ωω.

DC = {x : ∃m, k0, . . . , km(x = 〈m, k0, . . . , km〉 & m 6= 0→ k0 6= 0)},

|〈m, k0, . . . , km〉|C = ωmk0 + ωm−1k1 + · · ·+ km.

In this theorem the levels of the Ershov hierarchy Σ−1
a ,Π−1

a and ∆−1
a are

also defined for a ∈ C. It is clear that C is a univalent and recursively

related system and for simplicity, in what follows we identify ordinals with

their notations.

Let α and β be ordinals < ωω and

α = ωmp0 + ωm−1p1 + · · · pm,

β = ωmq0 + ωm−1q1 + · · · qm,
for some m, p0, . . . , pm, q0, . . . , qm.

The ordinal α(+)β defined as

α(+)β = ωm(p0 + q0) + ωm−1(p1 + q1) + · · · (pm + qm)

is called the natural sum of α and β.

Theorem 3.21. (M. C. Faizrahmanov) Let A ⊂ ω.
a) If n > 0 and A′ ∈ Σ−1

ωn , then A′ ∈ ∆−1
ωn ;

b) If m,n > 0 and A′ ∈ Σ−1
ωnm, then A′ ∈ ∆−1

ωn ;

c) For every n > 0 there is a set A such that A′ ∈ ∆−1
ωn+1 −∆−1

ωn .

Proof. We present only part a) of the theorem. The proof of part b) is

based on part a) and uses induction on m. The proof of part c) is achieved

by means of a direct construction using a finite injury priority argument.

Let n > 0 and A′ ∈ Σ−1
ωn . Define

S = {2x(2y + 1) : x ∈ A′ & y ∈ ω}.
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It is clear that S recursively isomorphic to A′ and, therefore, there is

a partial computable function Ψ such that x ∈ S if and only if (∃β <

ωn)(Ψ(β, x) ↓= 1 & (∀γ < β)(Ψ(γ, x) ↑) (i.e. Ψ defines S as a Σ−1
ωn -set).

Define a c.e. set B as follows: B = {x : ∃β < ωn(Ψ(β, x) ↓)}. Let

{Bs}s∈ω be a computable enumeration of B. Since A is a ∆0
2-set, there

is a uniformly computable sequence {As}s∈ω such that A = limsAs. Let

S = limsW
A
e [s] for some integer e.

Define for all x, i and s

r(x, i) = 2x3i,

q(x, i, s) = |{t < s : ΦAe (r(x, i))[t] 6= ΦAe (r(x, i))[t + 1]}|,

p(x, i, s) = 3x5i+17q(x,i,s).

For each partial computable function Φn we define partial computable

functions hn0 and hn1 as follows:

Let hn0,0 = hn1,0 = ∅. Suppose that hn0,s and hn1,s are already defined

and let i = min{k : hn0,s(k) ↑}. Let x 6 s be the least (if any) integer

such that Φn,s(r(x, i)) ↓∈ Bs, Φn,s(p(x, i, s)) ↓∈ Bs, and ΦAe (r(x, i))[s] ↑.
If there is such x, then define hn0,s+1 = hn0,s ∪ {(i, r(x, i))}, hn1,s+1 = hn1,s ∪
{(i, p(x, i, s))}. Otherwise, define hn0,s+1 = hn0,s, h

n
1,s+1 = hn1,s. Let hn0 =⋃

s h
n
0,s, h

n
1 =

⋃
s h

n
1,s. It follows from the definitions of hn0 and hn1 that

hn0,s(i) ↓ if and only if hn1,s(i) ↓. Since the ranges of r and p are disjoint,

the ranges of values of hn0 and hn1 are also disjoint.

Now we construct set U c.e. in A. By the Recursion Theorem we can

initially fix an index of U and, therefore, fix a computable function f such

that x ∈ U ↔ f(x) ∈ S. Let n be an integer such that f = Φn and denote

hk = hnk , hk,s = hnk,s for k = 0, 1.

Stage s = 0. Let U0 = ∅.
Stage s+ 1 consists of two steps.

Step 1. Let i = µj(j /∈ dom h0,s). For each x 6 s,

(a) If ΦAe (r(x, i))[s] ↓ and As ↾ ϕe(A, r(x, i))[s] = A ↾ ϕe(A, r(x, i))[s],

then enumerate r(x, i) into Us+1;

(b) Let r̂ = max{ϕe(A, r(x, i))[t] : t 6 s}. If As ↾ r̂ = A ↾ r̂, then

enumerate p(x, i, s) into Us+1.

Step 2. For each j ∈ dom h0,s such that ΦAe,s+1(j) ↓, enumerate h0,s(j),

h1,s(j) into Us+1.

Now let U =
⋃
s Us. There are two possibilities:
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Case 1. The function h0 is not total.

Let i = min{k : h0(k) ↑}. In this case for all x we have that

f(r(x, i)) ∈ B → r(x, i) ∈ S.

Indeed, suppose that f(r(x, i)) ∈ B. Since S = limsW
A
e [s], there is a

stage s such that As ↾ r̂ = A ↾ r̂, where r̂ is defined as above. Moreover,

the stage s can be chosen so that this equality will be preserved at all

subsequent stages. Then for all t > s we have p(x, i, t) ∈ U and, therefore,

f(p(x, i, t)) ∈ B. Since h0(i) is undefined, ΦAe (r(x, i)) is defined, which

means that r(x, i) ∈ S.

It follows from part (a) of the construction that

{r(x, i) : r(x, i) ∈ U} = {r(x, i) : r(x, i) ∈ S}.

Therefore, if r(x, i) ∈ S, then f(r(x, i)) ∈ B and we have A′ 61 B via

the reduction function g(x) = f(r(x, i)). This means that A′ is c.e. and,

therefore, A′ ∈ ∆−1
ωn .

Case 2. The function h0 is total.

It follows that h1 is also total. Let i ∈ ω be an arbitrary integer and

s be the least stage such that h0,s+1(i) ↓. By definition of h0 we have

ΦAe (h0(i))[s] ↑. Let s0 = min{t 6 s : ∀s′ ∈ [t, s](ΦAe (h0(i))[s
′] ↑) }.

Obviously, for all t ∈ [s0, s) we have q(x, i, t) = q(x, i, t + 1). Hence

h1(i) = p(x, i, s0). Also it is clear that p(x, i, s0) 6∈ Us0 .
Now either h0(i) 6∈ Us+1, or h1(i) 6∈ Us+1. Indeed, suppose that

h0(i) ∈ Us+1. Then there is a stage t < s0 such that ΦAe (h0(i))[t] ↓ and

At ↾ ϕe(A, h0(i))[t] = A ↾ ϕe(A, h0(i))[t]. Since for all u ∈ [s0, s] we have

ΦAe (h0(i))[u] ↑, we also have for all u ∈ [s0, s], Au ↾ ĥ 6= A ↾ ĥ, where

ĥ = max{ϕe(A, h0(i))[v] : v 6 s0}. Therefore, p(x, i, s0) 6∈ Us+1. Now step

2 of the construction ensures that

∀i(i ∈ S ↔ (f(h0(i)) ∈ S & f(h1(i)) ∈ S)). (1)

Now we define a function Θ, which defines S as a ∆−1
ωn -set. Let Ψs

denote the part of the function Ψ defined at the end of stage s.

For a given i find a stage v and ordinals β0, β1 < ωn such that

Ψv(β0, f(h0(i))) ↓ and Ψv(β1, f(h1(i))) ↓. (Such ordinals β0 and β1 ex-

ist, since by construction for all j we have {f(h0(j)), f(h1(j))} ⊂ B.)

Define a partial computable function Θ0 so that

Θ0(β0(+)β1, i) = Ψv(β0, f(h0(i))) ·Ψv(β1, f(h1(i))).
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Now suppose that a partial computable function Θs is already defined

and for k ∈ {0, 1} let γk = µδ(Ψv+s(δ, f(hk(i)) ↓). Define a partial com-

putable function Θs+1 so that

Θs+1(γ0(+)γ1, i) = Ψv+s(γ0, f(h0(i))) ·Ψv+s(γ1, f(h1(i))).

Let Θ =
⋃
sΘs. To show that Θ defines S as a ∆−1

ωn -set, take an arbitrary

integer x and let αk = µβ(Ψ(β, f(hk(x))) ↓), k = 0, 1. Then α0(+)α1 =

µγ(Θ(γ, x) ↓). Since α0 and α1 are below ωn, α0(+)α1 < ωn. Now it

follows from (1) that

S(x) = Ψ(α0, f(h0(x))) ·Ψ(α1, f(h1(x))) = Θ(α0(+)α1, x).

This means that A′ ∈ ∆−1
ωn . �

3.2. The Turing Degrees of the n-c.e. Sets

3.2.1. The class of the n-c.e. degrees

The first results on the Turing degrees of the sets from different levels

of the Ershov hierarchy were obtained in 1970’s of the last century when

S.B. Cooper in his dissertation (Cooper [16]) proved the existence of a

Turing degree which contains a 2-c.e. set, but does not contain c.e. sets

(below such degrees are called properly 2-c.e. degrees), and A.H. Lachlan

(unpublished) proved that for any n > 1 below any properly n-c.e. degree

there is a non-computable c.e. degree. These two results show that the

class of n-c.e. degrees for n > 1 differs from the class of c.e. degrees as well

as from the class of degrees below 0′: By Lachlan’s above-mentioned result

no n-c.e. degree can be minimal while there are minimal degrees below

< 0′.
These results provoked a certain interest among mathematicians and

became the starting point for the investigation of properties of the n-c.e.

degrees. Generalizing Cooper’s theorem, M.Lerman and L. Hay established

that for any n > 1 there are (n + 1)-c.e. degrees c and d such that the

interval {b| c 6 b 6 d} does not contain n-c.e. degrees. They also noted

that combining Cooper’s proof with the permitting method, one can con-

struct below any non-computable c.e. degree a properly 2-c.e. degree.

Further, R.A. Shore and L. Hay combined Cooper’s method with Sacks’s

coding technique to construct a properly 2-c.e. degree above any given

T-incomplete c.e. degree. (These results are not published, they are men-

tioned in Epstein, Haas, and Kramer [32].)
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More active investigations toward the development of the structural

theory of the n-c.e. (mainly the 2-c.e.) degrees began after publications by

Arlsanov [5, 6], and Downey [26]. In these papers the authors prove that

the elementary theories of the semilattices of c.e. degrees and n-c.e. degrees

are different. M.M. Arslanov proved that for any n > 1 and for any n-c.e.

degree a > 0 there exists a 2-c.e. degree d < 0′ such that a∪d = 0′. Earlier
S.B. Cooper and C.E.M. Yates (unpublished, see Miller [50]) independently

proved that this result fails in the c.e. degrees. This shows that these

theories are different at the Σ0
3-level. R.G. Downey proved that the four-

element lattice♦ which is also called the diamond lattice, is embeddable into

the 2-c.e. degrees preserving 0 and 0′ (earlier Lachlan [44] had proved that

this is impossible in the c.e. degrees). Therefore, these theories are different

also at the Σ0
2-level (at the Σ

0
1-level they coincide, which easily follows from

Lachlan’s above-mentioned result on the n-c.e. degrees). In his paper

Downey also stated his famous conjecture on the elementarily equivalence

of the semilattices of n- and m- c.e. degrees for n 6= m,n,m > 1.

At present the structural theory of the n-c.e. degrees is worked out fairly

well. Most important results obtained in this area of research in the past

forty years are (in addition to the above-mentioned results of Arslanov and

Downey) the proof of the non-density of the ordering of the n-c.e. degrees

for any n > 1 (Cooper, Harrington, Lachlan, Lempp, and Soare [21]), the

recent work of Arslanov, Kalimullin, and Lempp [11] on the non-elementary

equivalence of the semilattices of 2-c.e. and 3-c.e. degrees, the work of Yang

and Yu [59], where it is proved that in the signature {6} the c.e. degrees

do not form a Σ1-substructure of the n-c.e. degrees for any n > 2, and

a series of papers by Cooper, Li, Yi, and Ishmukhametov, in which the

authors investigated the splitting properties of the n-c.e. degrees for the

different n > 1.

But a whole number of natural and important questions still remain

open. First of all there is the problem of definability of the c.e. degrees

in the ordering of the n-c.e. degrees for n > 1 (in a more general setting

the question on definability of the m-c.e. degrees in the orderings of n-

c.e. degrees for 1 6 m < n), the problem on the elementary equivalence

of the structures of n-c.e. degrees for different n > 2, the decidability of

the restricted fragments of theories of these structures, in particular the

problem of the decidability of the ∃∀-theory of the 2-c.e. degrees.

Definition 3.10. A Turing degree a is n-computably enumerable (an n-c.e.

degree), if it contains some n-c.e. set; an n-c.e. degree a is properly n-c.e.

degree, if it contains no m-c.e. sets for any m < n.
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The set of all n-c.e. degrees we denote by Dn, the class of all Turing

degrees by D, and the set of all Turing degrees below 0′ by D(6 0′) . Dω
denotes the set of all ω-c.e. degrees. We have

D0 ( D1 ( D2 ( . . . ( Dω ( D(6 0′).

Theorem 3.22. (Lachlan, unpublished) Let a be a properly n-c.e. degree

for some n > 1. There are degrees a1, a2 . . . ,an such that 0 < a1 < . . . <

an = a and for every m, 1 < m 6 n, am is c.e. in am−1, and a1 is a

properly c.e. degree. In particular, below any n-c.e. degree a > 0 there is

a non-computable c.e. degree.

Note that in this theorem we don’t require that every am, 1 < m < n,

must be a properly c.e. degree. It will follow from Corollary 3.5 that if a3 is

a properly 3-c.e. degree then a2 also must be a properly d-c.e. degree. We

don’t know whether this is true for any n > 3. Probably, not. An indirect

argument toward this conjecture is Theorem 3.29.

Theorem 3.22 allows us to transfer some properties of the c.e. degrees

to the case of the n-c.e. degrees for n > 1. We demonstrate this in the

following two examples.

It follows from Lachlan’s non-diamond theorem, Lachlan [44], that there

are no c.e. degrees, except 0 and 0′, which have complements in the

c.e. degrees. (By a complement of a c.e. degree a we mean a degree b such

that a ∪ b = 0′ and a ∩ b = 0. It is clear that 0 and 0′ are complements

to each other.) Later in Theorem 3.44 we show that this result does not

hold in the n-c.e. degrees for any n > 1, but it easily follows from Theorem

3.22 that a similar result holds in case of the n-c.e. degrees in the following

weaker formulation.

Theorem 3.23. For every n > 1 there is a n-c.e. degree which has no

complement.

Proof. Let a > 0 be a c.e. degree such that a∩b 6= 0 for any c.e. degree

b > 0 (Yates [60]). If there is an n-c.e. degree b > 0 such that a ∩ b = 0,

then by Theorem 3.22 we have a ∩ c = 0 for some c.e. degree c > 0, a

contradiction. �

Further, it follows from Theorem 3.22 that if a pair (d0, d1) is a minimal

pair of degrees in D2 then there is a pair (a0, a1) of c.e. degrees minimal

in R such that a0 < d0 and a1 < d1. Therefore, Lachlan’s theorem
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(Lachlan [46]) on the existence of a c.e. degree a > 0 such that there is no

minimal pair of c. e. degrees below a immediately gives the following:

Theorem 3.24. There is a non-computable c.e. degree such that below it

there is no minimal pair of d-c.e. degrees.

In Epstein [31] by a permitting argument below any given c.e. degree

a > 0 a minimal degree is constructed. Obviously, any such construction

produces an ω-c.e. set. Therefore, we have the following:

Theorem 3.25. For every c.e. degree a > 0 there is a minimal ω-c.e.

degree m < a.

3.2.2. The degrees of the n-c.e. sets in the n-CEA hierarchy

It follows from Theorem 3.22 that the hierarchy of the n-c.e. sets is closely

connected with the hierarchy of n-CEA (n-computably enumerable and

above) sets, which was first defined and studied in Arslanov [2, 4], and

Jockusch and Shore [40, 41].

Definition 3.11. The c.e. sets are 1-CEA sets. Further by induction, a

set A is an (n + 1)-CEA set for some n ≥ 1 if it is c.e. in an n-CEA set

B 6T A. Furthermore, if a set A c.e. in a set B 6T A, then A is called a

B-CEA set. A degree a is an n-CEA degree for some n > 1, if it contains

an n-CEA set.

By Theorem 3.22 every n-c.e. set is also an n-CEA set. The converse,

obviously, does not hold: For instance, the n-th jump of any c.e. set is

also an n-CEA set. Moreover, the hierarchy of the n-c.e. degrees does not

coincide with the hierarchy of the n-CEA degrees even among the degrees

below 0′:

Theorem 3.26. There is a 2-CEA degree a < 0′, which is not an ω-c.e.

degree.

Proof. Let d < 0′ be a d-c.e. degree such that the interval (d,0′) does
not contain ω-c.e. degrees (see Theorem 3.48 below). By Theorem 3.22 d

is CEA(a) for some c.e. degree a 6 d, and by the Sacks Density Theorem

(relativized to a) there is a degree b c.e. in a such that d < b < 0′. By

choice of d, the degree b is not ω-c.e. �

The following theorem asserts that, conversely, for any n > 1 there are

n-c.e. degrees, which are not (n− 1)-CEA degrees.
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Theorem 3.27. (Arslanov [4], Jockusch and Shore [41]) Let n > 1. There

is an n-c.e. set D such that the degree of D does not contain (n− 1)-CEA

sets.

Theorem 3.28. (Arslanov, LaForte, and Slaman [12]) Let C be an ω-c.e.

set and let A be a c.e. set. If C 6T A⊕WA, then there is a d-c.e. set D

such that C 6T D 6T A⊕WA.

Notice that the d-c.e. set D constructed in the above theorem is itself

c.e. in A as a set, rather than merely being of A-c.e. degree.

Corollary 3.4. If C is ω-c.e., A is c.e., and the degree of C is A-CEA,

then there exists a d-c.e. set D which is itself c.e. in A as a set such that

C ≡T D.

Proof. Take C ≡T A⊕WA in the previous theorem. Then D 6T C, so

C ≡T D. �

Theorem 3.28 immediately yields the following:

Corollary 3.5. Any ω-c.e. degree which is 2-CEA is also d-c.e.

It is natural to assume that a similar result holds for all n in the sense

that the n-c.e. and the n-CEA degrees agree on the ω-c.e. degrees. But

this is not true:

Theorem 3.29. (Arslanov, LaForte, and Slaman [12]) There exists a d-

c.e. set D such that, for every n > 3, there exists a set An which is simul-

taneously D-CEA and (n+ 1)-c.e., yet fails to be of n-c.e. degree.

Now we turn to the discussion of the following question which has a

long history: Let a < 0′ be a non-computable c.e. degree. Is there a degree

b < 0′ CEA in a such that b is not c.e.? The following result is due to

Soare and Stob [57], and it is the first result in this direction.

Theorem 3.30. Let a be a non-computable c.e. degree such that a′ = 0′.
Then there is a non c.e. degree b > a c. e. in a.

In Arslanov, Lempp, and Shore [14] we answer this question negatively

in the following very strong form:

Theorem 3.31. There is an incomplete non-computable c.e. set A such

that every set CEA in A and computable in 0′ is of c.e. degree.
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On the other hand, in this paper, we also obtain the following result in

the positive direction:

Theorem 3.32. Let c < h be c.e. degrees such that c is low and h is high.

Then there is a degree a < h such that a is CEA in c.

Soare and Stob [57] also claimed that a modification of their strate-

gy for a low a would make b 2-c.e. They have since withdrawn this claim

(personal communication) but Theorems 3.30 and 3.32 suggest the following

conjecture:

Conjecture 3.1. For every low c.e. degree a > 0 there is a d-c.e. degree

b CEA in a which is not c.e.

Unfortunately, we did not succeed in answering this question. The only

results we obtained in this direction are Theorems 3.33, 3.34 and 3.35.

Theorem 3.33. (Arslanov, Lempp, and Shore [14]) For all high c.e. de-

grees h < g there is a properly d-c.e. degree a such that h < a < g and a

c.e. in h.

Theorem 3.34. (Arslanov, Lempp, and Shore [14]) There is a c.e. degree

a,0 < a < 0′, such that for any degree b > a c.e. in a, if b 6 0′ then b is

c.e.

Now suppose c is a low, non-computable c.e. degree and a the degree

CEA in c constructed by Soare and Stob [57].

Let C ∈ c be a c.e. set and a set A ∈ a c.e. in C, A >T C. Let Φ be a

p.c. functional such that A = dom ΦC . Since c is low there is a computable

function g such that ΦC(x) ↓ if and only if lims g(s, x) = 1, and ΦC(x) ↑ if
and only if lims g(s, x) = 0.

Let us construct a d-c.e. set V which is c.e. in C:

For each x, wait for a stage s such that ΦC(x)[s] ↓ and g(s, x) = 1.

Enumerate < x, 0 > into V and wait for a stage t > s such that

Ct⌈ϕ(C, x)[s] 6= Cs⌈ϕ(C, x)[s] and g(t, x) = 0, then remove 〈x, 0〉 from
V . Wait for a stage s′ such that again ΦC(x)[s′] ↓ with a new value of

ϕ(C, x)[s′] and g(s′, x) = 1, then put 〈x, 1〉 into V , and so on.

Obviously, V is a d-c.e. set c.e. in C such that V 6T C ⊕A.
Now, if in addition C′ is ω-c.e. (and, therefore, by Theorem 3.9 C′ ≤tt

∅′) then there are computable functions f and g such that for all x, C′(x) =
lims g(s, x) and

|{s : g(s+ 1, x) 6= g(s, x)}| 6 f(x).
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In this case we have A 6T C ⊕V : To compute A(x) find some i 6 f(x)

such that < x, i >∈ V . If there is no such i then x 6∈ A, if there is some

such i then x ∈ A.
Therefore, if C′ is an ω-c.e. set then C ⊕ A ≡T C ⊕ V , and the degree

a CEA in c from Soare and Stob [57] is itself d-c.e., without an additional

construction. Recall that a set A is called superlow if A′ ≡tt ∅′. A degree

is superlow if it contains a superlow set. Therefore, we have the following:

Theorem 3.35. Let a > 0 be a superlow degree. Then there is a properly

d-c.e. degree d > a such that d is c.e. in a.

3.2.3. The relative arrangement of the n-c.e. degrees

In this section we study the relative arrangement of degrees from finite

levels of the Ershov hierarchy. We begin with the following theorem which

generalizes an unpublished result of R. Shore and L. Hay and can be proved

similarly to Cooper’s proof of the existence of a properly n-c.e. degree.

Theorem 3.36. For all n > 1 there are n-c.e. sets V <T U such that

between degrees V and U there are no (n− 1)-c.e. degrees.

The assertion of the following theorem is wrong if n = 1 (see Theorem

3.55 below).

Theorem 3.37. For all n > 1, if a is a properly (n+ 1)-c.e. degree, then

there is an n-c.e. degree b < a such that between b and a there are no c.e.

degrees.

Proof. Let n > 1 and let A be an (n+1)-c.e. set of properly (n+1)-c.e.

degree. By Theorem 3.22 there is an n-c.e. set Ã such that A is an Ã-CEA

set. Obviously, Ã <T A. Suppose that Ã 6T W <T A for some c.e. set W .

Then A is a W -CEA set and, therefore, 2-CEA. But then by Corollary 3.5

the degree of A is d-c.e., a contradiction. �

Suppose that in Theorem 3.36 one of the sets U >T ∅ or V <T ∅′ is
fixed. It is natural to ask the following question: Is there another set such

that the claim of Theorem 3.36 still holds? In general the answer to this

question is unknown. But:

Theorem 3.38. (R. Shore and L. Hay, unpublished) There is, for instance,

a d-c.e. set V of low degree such that between V and ∅′ in Turing reducibil-

ity there are no c.e. sets.
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The properly n-c.e. degrees are situated dense enough among the de-

grees ≤ 0′, in particular, between any two c.e. degrees a < b there is a

properly n-c.e. degree, for any n > 1. For the case n = 2 this is proved in

Cooper, Lempp, and Watson [22], the proof for n > 2 is similar.

Theorem 3.39. Let V <T U be c.e. sets. There exists a d-c.e. set D such

that V <T D <T U and ∀x(Wx 6≡T D).

Is it possible in Theorem 3.39 to make the degree of D c.e. in V ? This

question has been extensively studied. It follows from Theorem 3.34 that

in general it is impossible even if U = ∅′. Can we do that if V ′ ≡T U = ∅′?
This is an open question (see Conjecture 3.1 above).

Theorem 3.40. (Cooper and Yi [25] for n = 2; Arslanov, LaForte, and

Slaman [12] for n > 2) For any c.e. degree x and any n-c.e. degree y, if

x < y then x < z < y for some d-c.e. degree z.

Proof. For n = 1 this is the Sacks Density Theorem, and for n = 2 this

is Theorem 3.55, part (iii). For n > 2 use an induction argument: Assume,

that the theorem is proved for m-c.e. sets for all m 6 n and let B be

an (n + 1)-c.e. set, n > 1, and let A <T B be a c.e. set. There is an

n-c.e. set B̃ 6T B, in which B is c.e. Then the set A ⊕ B̃ is also n-c.e.

If A <T A ⊕ B̃, then, by assumption, there is a d-c.e. set C such that

A <T C <T A ⊕ B̃ 6T B. If A ≡T A ⊕ B̃, then the (n + 1)-c.e. set B is

c.e. in A and, therefore, by Corollary 3.5 the degree of B is d-c.e. Now the

claim follows from the case n = 2. �

3.2.4. The cupping, capping and density properties

We begin with the following

Theorem 3.41. (Arslanov [5, 6]) Let a > 0 be an n-c.e. degree for some

n > 2. Then there is a d-c.e. degree d < 0′ such that a ∪ d = 0′.

Since there is a non-computable c.e. set A such that A ⊕ U <T ∅′ for
every c.e. set U <T ∅′ (Cooper, Yates, unpublished, see Miller [50]), it

follows from Theorem 3.41 that for every n > 2, the structures Dn and R
are not elementarily equivalent at the Σ3-level.

Generalizing Theorem 3.41 Cooper, Lempp, and Watson [22], proved

the following,

Theorem 3.42. If a > 0 is a c.e. degree and h > a is a high c.e. degree

then there is a d-c.e. degree b < h such that a ∪ b = h.
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In turn Harrington (see Miller [50]) strengthened the above mentioned

result of Cooper and Yates replacing 0′ by an arbitrary high c.e. degree.

Therefore, for every n > 2 and any high c.e. degree h, the structures

Dn(6 h) and R(6 h) are also non-elementarily equivalent at the Σ0
3-level.

Further, Arslanov and Cooper (unpublished, see Arslanov [8] for the case

h = 0′) generalized Theorem 3.42 in the following way:

Theorem 3.43. Let h be a high c.e. degree, a < h and b < h arbitrary

non-computable c.e. degrees. Then there is a d-c.e. degree d < h such that

h = a ∪ d = b ∪ d.

As we already mentioned, the diamond lattice is not embeddable into

the c.e. degrees preserving 0 and 0′. Downey [26], proved that in the n-c.e.

degrees such an embedding is possible for any n, n > 2.

Theorem 3.44. There are incomparable d-c.e. degrees a and b such that

a ∪ b = 0′ and a ∩ b = 0.

Therefore, for every n > 2, the structures Dn andR are not elementarily

equivalent at the Σ2-level.

One can try to strengthen the Diamond Theorem 3.44 in several direc-

tions. First of all the following natural question arises: Is it possible in

this theorem to replace the degrees 0 and 0′ by arbitrary c.e. degrees

a and b, a < b, respectively? Further, it follows from Lachlan’s non-

diamond theorem, (Lachlan [44]), that in Theorem 3.44 at least one of the

d-c.e. degrees a or b cannot be c.e. Can we make one of these degrees

c.e.? Finally, Theorem 3.44 states that there is a non-trivial d-c.e. degree

d which has a complement in D2. (A degree c is a complement for d if

d ∪ c = 0′ and d ∩ c = 0.) A natural question asks: Which degrees in D2

have complements?

The first question is connected with a general question on the decom-

posability of a c.e. degree a over a given c.e. degree b 6 a into two

incomparable d-c.e. degrees, i.e. on the existence of incomparable d-c.e.

degrees c0 and c1 such that c0 > b, c1 > b and a = c0∪c1. (It follows from
Lachlan’s non-splitting theorem (Lachlan [45]) that in R such an assertion

does not hold for a = 0′ and some c.e. degree b > 0.)

A negative answer to the first question was obtained by Kaddah [42]:

Theorem 3.45. In D2 below any c.e. degree a > 0 there is a c.e. degree

b 6 a non-branching in d-c.e. degrees. (A degree a is branching, if there

are degrees b > a and c > a such that b ∩ c = a.)
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Therefore, there is, for instance, a low c.e. degree l > 0 such that the

diamond lattice is not embeddable between degrees 0′ and l, preserving l

as its least element.

The answer to the second question turned out to be positive. It follows

from the next theorem:

Theorem 3.46. (Li and Yi [49]) There are incomparable d-c.e. degrees

a0 and a1 such that for every n-c.e. degree x > 0, either a0 ∪ x = 0′, or
a1 ∪ x = 0′.

Corollary 3.6. There are a c.e. degree a > 0 and a d-c.e. degree b > 0

such that a ∪ b = 0′ and a ∩ b = 0.

Proof. Let a0 and a1 be as in Theorem 3.46. It is clear that a0 ∩ a1 = 0.

Let d > 0 be an arbitrary d-c.e. degree. Suppose for definiteness that

d∪ a0 = 0′. If d∩ a0 6= 0, then there exists a c.e. degree b > 0 such that

b 6 d and b 6 a0. Since a0 ∩ a1 = 0, b ∩ a1 = 0. Since b ∪ a0 = a0, we

have b ∪ a1 = 0′ by Theorem 3.46. Therefore, the desired pair of degrees

is either d and a0, or b and a1. �

Theorem 3.47. (Jiang [39]) For any high degree h there is a c.e. set

H ∈ h such that in Theorem 3.44 the set ∅′ can be replaced by H.

This result can be also obtained using Cooper’s proof in Cooper [17]

where below any high c.e. degree a minimal pair of c.e. degrees is con-

structed. On the other hand, it follows from Theorem 3.24 that not every

c.e. degree a > 0 in D2 is the top of a diamond lattice.

The ordering of the n-c.e. degrees is not dense for any n > 1:

Theorem 3.48. (Cooper, Harrington, Lachlan, Lempp, and Soare [21])

There is a d-c.e. degree d < 0′ such that there are no ω-c.e. degrees b

such that d < b < 0′.

For the class of 2-low n-c.e. degrees with n > 1 we have another picture:

Theorem 3.49. (Cooper [18]) For every n > 1 the partial ordering of

the 2-low n-c.e. degrees is dense. Moreover, if b < a are 2-low n-c.e.

degrees, then there are n-c. e. degrees a0 and a1 such that a = a0 ∪ a1
and b < a0, a1.

Theorem 3.48 states that there is a maximal d-c.e. degree. But there are

no maximal low d-c.e. degrees (Arslanov, Cooper and Li [9, 10]). Jiang [39]

strengthened Theorem 3.48 establishing:
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Theorem 3.50. For any n ≥ 1, above any low n-c.e. degree there is a

maximal d-c.e. degree.

On the other hand,

Theorem 3.51. (Yi, unpublished, see Cooper [20]) There is a high c.e.

degree h < 0′ such that below h there are no maximal d-c.e. degrees.

It follows from this theorem that the semilattices D2 and D2(6 h) are

not elementarily equivalent.

Theorem 3.49 leaves open the question on the elementary equivalence

of the semilattices of the low2 c.e. and the low2 d-c.e. degrees. So far we

have no example which would distinguish these two semilattices.

3.2.5. Splitting properties

Let a > 0 be a properly n-c.e. degree for some n > 1, and let b be

a c. e. degree such that b < a. Since a is c.e. in some (n − 1)-c.e.

degree a0 < a (Theorem 3.22), it follows from the Sacks Splitting Theorem,

relativized to a0 ∪ b < a, that a is splittable into two ∆0
2-degrees which

are above b, i.e. there are ∆0
2-degrees c0 and c1 such that c0 ∪ c1 = a and

b < c0 < a,b < c1 < a. It turns out that such a splitting is possible also

in the d-c.e. degrees.

Theorem 3.52. (Cooper and Li [23]) Any d-c.e. degree a > 0 is non-

trivially splittable in D2 over any c.e. degree b < a.

Since the ordering of the d-c.e. degrees is non-dense, it follows that

in Theorem 3.52 we cannot replace the c.e. degree b by a d-c.e. degree.

Moreover, it follows from Theorem 3.48 that in general, this is impossible

even if a is a c.e. degree. However,

Theorem 3.53. (Arslanov, Cooper, and Li [9, 10]) Any c.e. degree is

splittable in the d-c.e. degrees over any low d-c.e. degree.

It follows from Theorem 3.49 that the properties of density and splitting

can be combined in the low2 n-c.e. degrees. In the class of the low2 c.e.

degrees this result also holds (Shore and Slaman [55]). These and some

other similarities between the low2 c.e. and the low2 n-c.e. degrees for n > 1

suggest the following conjecture (Downey and Stob [28]):

Conjecture 3.2. The ordering of the low2 n-c.e. degrees is elementarily

equivalent to the ordering of the low2 c. e. degrees.
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For the low3 n-c.e. degrees Cooper and Li [23] proved the following:

Theorem 3.54. For any n > 1, there is a low3 n-c.e. degree a and a c.e.

degree b, 0 < b < a, such that for any splitting of a into n-c.e. degrees a0
and a1, at least one of the degrees a0 or a1 is above b.

(In this case we say that a is not splittable avoiding the upper cone of

degrees above b.)

Since in R such a splitting of the low3 c.e. degrees is possible, it follows

that elementary theories of these two semilattices are different.

3.2.6. Isolated d-c.e. degrees

Cooper and Yi [25] defined the notion of an isolated d-c.e. degree. A d-c.e.

degree d is isolated by a c.e. degree a < d (we also say “a isolates d”), if

for any c.e. degree b, b 6 d implies b 6 a. Cooper and Yi [25] established

the following results about such degrees:

Theorem 3.55. (i) There exists an isolated d-c.e. degree;

(ii) There exists a non-isolated properly d-c.e. degree;

(iii) Given any c.e. degree a and any d-c.e. degree d > a, there is a

d-c.e. degree e between a and d.

Theorem 3.56. a) (LaForte [47], and Arslanov, Lempp, and Shore [13])

Given any two comparable c.e. degrees v < u, there exist an isolated d-c.e.

degree c and a non-isolated d-c.e. degree d between them.

b) (Arslanov, Lempp, and Shore [13]) There is a non-computable c.e.

degree a such that a does not isolate any degree b > a which is c.e. in a.

The following two results show that the c.e. degrees a not isolating

any d-c.e. degree d which is CEA in a are widely distributed in the c.e.

degrees.

Theorem 3.57. (Arslanov, Lempp, and Shore [13]) a) For every non-

computable c.e. degree c, there is a non-computable c.e. degree a 6 c

which isolates no degree CEA in it;

b) If c is a degree c.e. in 0′, then there is a c. e. degree a, a′ = c,

which isolates no degree CEA in it.

Suppose that a c.e. degree a isolates a d-c.e. degree d > a. Since

between a and d there are no c.e. degrees except a, then one might think

that the degrees a and d are situated “close enough” to each other. But it
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follows from Theorem 3.58 that this is not true (if we agree that the high

degrees are situated “close” to 0′, and the low degrees are situated ”close”

to 0).

Theorem 3.58. (Ishmukhametov and Wu [38]) There are a high d-c.e.

degree d and a low c.e. degree a < d such that a isolates d.

The following result is due to Wu [58]. It can easily be derived from

known results and is an interesting generalization of the idea of isolated

degrees.

Theorem 3.59. There are d-c.e. degrees a < b such that there is exactly

one c.e. degree c between them. Moreover, the degree b can be included

into any given interval of high c.e. degree u and v, u < v.

Proof. Let u and v, u < v, be high c.e. degrees. Between u and v there

is an isolated d-c.e. degree b (LaForte [47]). Let c < b be a c.e. degree

which isolates b. It is easy to see that u 6 c, otherwise the c.e. degree

u ∪ c contradicts the choice of b. Therefore, since the degree u is high,

the degree c is also high. It is known (Cooper [20]) that for any high c.e.

degree, in particular for the degree c, there exists a c.e. degree d < c, such

that for every c.e. degree x < c we have x∪d < c. Also, in Cooper, Lempp,

and Watson [22] it is proved that for any high c.e. degree, in particular

for the degree c, and for any nonzero c.e. degree below it, in particular for

the degree d, there exists a d-c.e. degree a < c such that a ∪ d = c. It

follows that between a and c there are no c.e. degrees. (Since for any such

c.e. degree x we would have x ∪ d = c, which contradicts the choice of d.)

Therefore, the c.e. degree c is the unique c.e. degree between a and b. �

3.2.7. A generalization

There are several ways to generalize the notion of isolated d-c.e. degrees.

Some of them can be found in Efremov [29, 30] and Wu [58]. Here we

consider the following common generalization.

Definition 3.12. Let A and B be classes of sets such that A ⊆ B. By

definition, a set A ∈ A isolates a set B ∈ B, if A <T B and for any set

W ∈ A, W 6T B → W 6T A. In this case we also say that the set B is

A-isolated by the set A. A Turing degree b is A-isolated, if it contains an
A-isolated set.
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In particular, if A is the class of m-c.e. degrees, and B is the class of

n-c.e. degrees, m < n, then we obtain the notion of a n-c.e. degree which

is isolated by some m-c.e. degree, and of an m-c.e. degree, which isolates

some n-c.e. degree. (It is clear that if n = 2 and m = 1 this definition

coincides with the Cooper/Yi definition of isolated degrees.)

Definition 3.13. Let A and B be two classes of sets such that A ⊆ B, and
let A,B ∈ B. We define a relation A 6{A,B} B on B by

A 6{A,B} B if and only if for any set W ∈ A we have W 6T A implies

W 6T B.

If here A is the class of all m-c.e. sets and B is the class of all n-c.e. sets

for some 1 6 m 6 n, then instead of A 6{A,B} B we write A 6{m,n} B.

If in this definition A = B, then we obtain the usual notion of Turing

reducibility. In particular, for any n > 1, A 6{n,n} B if and only if A 6T B.

Also, it is obvious that for all A ⊆ B, A,B ∈ B,

1) A 6T B → A 6{A,B} B;

2) A 6{A,B} B,B 6{A,B} C → A 6{A,B} C.

We call the corresponding equivalency classes the {A,B}-degrees. It

follows from 1), that every {A,B}-degree is a collection of possibly several

Turing degrees.

These definitions are naturally connected with the notion of isolated

degrees. For instance, if a c.e. degree a isolates a d-c.e. degree b, then

this means that b 6{1,2} a. Therefore, a ={1,2} b, i.e. all isolated d-c.e.

degrees and their isolating c.e. degrees belong to the same {1,2}-degree.
Cooper and Yi’s theorem on the existence of an isolated d-c.e. degree d

now means that there exists a {1,2}-degree, which contains a c.e. degree

and a non c.e. d-c.e. degree. On the other hand, the existence of a non-

isolated d-c.e. degree means that there exists a {1,2}-degree, which contains

a d-c.e. degree and does not contain c.e. degrees. Theorem 3.66 states that

there exists a {1,2}-degree which consists of a single c.e. degree. Theorem

3.55, part (iii) states that no c.e. degree d-c.e.-isolates a d-c.e. degree (on

the class of all d-c.e. degrees). Similarly, Theorem 3.40 states that no c.e.

degree d-c.e.-isolates any n-c.e. degree, for any n > 1.

Below, we will deal with the classes of d-c.e. sets and {1,2}-degrees.
It is clear that each {1,2}-degree contains at most one c. e. degree and, in

general, may contain several d-c.e. degrees. As usual, we call a {1,2}-degree
as a c.e. {1,2}-degree if it contains a c.e. degree.
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The following theorem states that each c.e. {1,2}-degree either does not
contain any non c.e. d-c.e. degree or contains infinitely many such degrees.

Theorem 3.60. Any c.e. {1,2}-degree either consists of a single c. e.

degree or contains an infinite descending chain of non c.e. d-c.e. degrees.

Proof. Let a c.e. {1,2}-degree contain a c.e. set A and a d-c.e. set D,

which is not T-equivalent to any c.e. sets. Since A ≡{1,2} D, A <T D

and A isolates D. By Theorem 3.55 there is a d-c.e. set C such that

A <T C <T D. It is easy to see that the set A also isolates C, therefore

A ≡{1,2} C ≡{1,2} D. Now we repeat the same argument with A and C

instead of A and D and so on. �

It is easy to see that the c.e. {1,2}-degrees form an upper semilattice

where the least upper bound for the {1,2}-degrees of c.e. sets A and B is

the degree of the set A ⊕ B. Indeed, if A 6{1,2} C and B 6{1,2} C for

some set C then we have A 6T C and B 6T C, otherwise the c.e. sets A

and B refute the {1,2}-reducibility of A and B to C, accordingly. Therefore,

A⊕B 6T C and, hence, A⊕B 6{1,2} C. We don’t know, whether the {1,2}-
degrees of the d-c.e. sets form an upper semilattice. In general, the join

operator A⊕B does not give the least upper bound for the {1,2}-degrees of
sets A and B. (This can be easily proved by a routine finite injury priority

argument.)

Theorem 3.61. For each n > 2 there exists a {1,2}-degree, which contains

at least n incomparable Turing degrees.

Proof. The proof is a direct generalization of the proof of Theorem 3.55,

part (i). �

Theorem 3.62 states that there are no maximal {1,2}-degrees among the

low2 degrees.

Theorem 3.62. Let D be a d-c.e. set such that D′′ ≡T ∅′′. Then there is

a c.e. set A such that D <{1,2} A <{1,2} ∅′.

Proof. It is enough to consider only the case when the degree of D is not

computably enumerable. Otherwise, since a 6 b implies a 6{1,2} b, the

theorem follows from the Sacks Density Theorem.

The following lemma is proved in Arslanov [3] (see also Soare [56, The-

orem XII.5.1]).
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Lemma 3.3. For any function ψ which is computable in ∅′′, there is a

computable function g such that Wg(e) ≡T Wψ(e) for all e.

Let S = {〈i, j〉 |Wi = ΦDj }. It is easy to see that S ∈ ΠD2 , therefore S is

computable in D′′ ≡T ∅′′, i.e. S 6T ∅′′. Now we define a function g 6T ∅′′:

Wg(〈i,j〉) =

{
Wi, if〈i, j〉 ∈ S;
∅, otherwise.

Since g is a total function and g 6T ∅′′, by Lemma 3.3 there exists a com-

putable function f such thatWf(〈i,j〉) ≡T Wg(〈i,j〉). Let E = ⊕16k<∞Wf(k).

Since for any k ∈ ω we haveWf(k) 6T D and the degree of D does not con-

tain c.e. sets, the set E is computably enumerable and ∀n{D 66T E[<n] ≡T
⊕16k6nWf(k)}.

By Shoenfield’s Thickness Lemma (see Soare [56, Lemma VIII.1.1])

there is a c.e. set A 6T E such that A is a thick subset of E (i. e. A ⊆ E,

and A[e] =∗ E[e]), D 66T A. (We denote by X =∗ Y that (X−Y )∪(Y −X)

is finite, and let X [e] = {〈x, e〉 : 〈x, e〉 ∈ X} be the e-th section of X .)

We have Wi = ΦDj implies Wi ≡T E[〈i,j〉] =∗ A[〈i,j〉], i.e. Wi 6T D

implies Wi 6T A.

There are the following two possibilities:

1) A 6T D. Then A isolates D. Let B be an arbitrary c.e. set such

that A <T B <T ∅′. We have D <{1,2} B <{1,2} ∅′.
2) A 66T D. Then, obviously, D <{1,2} A <{1,2} ∅′. �

Remark 3.3. Analyzing this proof we can see that we have proved a

slightly stronger result. For instance, let D be a d-c.e. set such that its

degree is not computably enumerable and there is a computable function f

with the following properties:

a) Wf(e) 6T D for any e ∈ ω;
b) (∀e ∈ ω)(We 6T D → (∃x ∈ ω)[We 6T Wf(x)]).

Then, defining the set E again as ⊕16k<∞Wf(k) and repeating the con-

struction of the set A, we obtain that D <{1,2} A <{1,2} ∅′. Moreover, if we

have d-c.e. sets D1 and D2 such that D1 <
{1,2} D2, and if for the set D1

there is a computable function f with properties a), b), and the additional

property E 6T D2, then, again repeating the previous argument we obtain

that D1 <
{1,2} A <{1,2} D2 for some c.e. set A.
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3.2.8. Further results and open questions

The following questions are the main open questions on the arrangement

of the n-c.e. degrees for various n > 1:

• Is the relation “x is c.e.” definable in Dn for each n > 2? Are there

non-trivial finite sets of c.e. degrees definable in Dn? (For an infinite

definable set of c.e. degrees see Corollary 3.11 below.)

• Is the relation “x is m-c.e.” definable in Dn for each pair n,m, n >

m > 2?

• Are {Dm, <} and {Dn, <} elementarily equivalent for each n 6=
m,m, n > 2 ? (For the case m = 2, n = 3 see Corollary 3.10 below.)

• Are there n 6= m,m, n > 1, such that Dm(a,b) is elementarily equiva-

lent to Dn(a,b) for some c.e. degrees a < b?

• Are there numbers n > m > 1 such that {Dm, <} is a Σ1-substructure

of {Dn, <}?

An investigation of the problems listed above is driven by the need to

better understand the level of the structural similarity of the classes of

c.e. and n-c.e. degrees for different n > 1, as well as of the level of the

homogeneity for the notion of c.e. with respect to n-c.e. degrees in the

sense of the level of the similarity of orderings of the c.e. degrees and of

the n-c.e. degrees which are CEA in some d.

a) Elementary equivalence.

We first consider questions on the elementary equivalence.

Theorem 3.63. (Arslanov, Kalimullin, and Lempp [11]) There are 2-c.e.

degrees d and e such that 0 < d < e and for any 2-c.e. degree u < e either

u 6 d or d 6 u.

Theorem 3.64. (Arslanov, Kalimullin, and Lempp [11]) For all c.e. de-

grees x and 2-c.e. degrees d and e such that both d, e are c.e. in x and

0 < x < d < e, there is a 2-c.e. degree u c.e. in x such that x < u < e

and d|u.

The following theorem is a refinement of Theorem 3.63.

Theorem 3.65. a) In Theorem 3.63 the degree d is necessarily c.e. and

b) for each 2-c.e. degree e there is at most one c.e. degree d < e with this

property.
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Proof. By Theorem 3.22 the degree e is c.e. in a c.e. degree b < e. If

b > d, then by the Sacks Splitting Theorem we split b into two c.e. degrees

b0 and b1 avoiding the upper cone of d (avoiding d, for short). At least

one of these degrees must be incomparable with d, a contradiction.

If b < d, then consider the c.e. degree c = b ∪ a, where a < d is a c.e.

degree such that d is c.e. in a. Obviously, c 6 d. If c < d then we obtain

a contradiction with Theorem 3.64, since both the 2-c.e. degrees e and d

are c.e. in c. Therefore, d = c. Similar arguments prove also the second

part of the theorem. �

Corollary 3.7. (of Theorem 3.65). There are no strong minimal covers in

the 2-c.e. degrees.

Proof. Indeed, if b is a strong minimal cover for a, then by Theorem

3.65, a is c.e. and, therefore, by Theorem 3.55 there is a d-c.e. degree

strictly between a and b. �

Corollary 3.8. (of Theorem 3.65). There are no 2-c.e. degrees f > e >

d > 0 such that for any u,

(i) if u 6 f then either e 6 u or u 6 e, and

(ii) if u 6 e then either d 6 u or u 6 d.

Proof. If there are such degrees f > e > d > 0 then by Theorem 3.65 the

degree e is c.e. and by the Sacks Splitting Theorem is splittable avoiding

d which is a contradiction. �

Question 3.1. Are there 3-c.e. degrees f > e > d > 0 with this property?

Obviously, an affirmative answer to this question refutes the elementary

equivalence of D2 and D3.

Though this question still remains open, we can weaken a little this prop-

erty of degrees (d, e, f) to carry out the mission imposed to these degrees

to refute the Downey’s Conjecture. We consider triples of non-computable

n-c.e. degrees {(d, e, f) | 0 < d < e < f} with the following (weaker) prop-

erty: For any n-c.e. degree u,

(i) if u 6 f then either u 6 e or e 6 d ∪ u, and

(ii) if u 6 e then either d 6 u or u 6 d.

(In the first line the former condition e 6 u was replaced by a weaker

condition e 6 d ∪ u.)
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We still have the following corollary from Theorems 3.63 and 3.64:

Corollary 3.9. There are no 2-c.e. degrees f > e > d > 0 such that for

any 2-c.e. degree u,

(i) if u 6 f then either u 6 e or e 6 d ∪ u, and

(ii) if u 6 e then either d 6 u or u 6 d.

Proof. Suppose that there are such degrees f > e > d > 0. Let f1 6 f

and e1 6 e be c.e. degrees such that f and e are c.e. in f1 and e1,

respectively. Consider the degree x = d ∪ e1 ∪ f1. Obviously, d 6 x 6 f .

By Theorem 3.65 the degree x is c.e. and e 6< x, otherwise x is splittable

in the c.e. degrees avoiding e, which is a contradiction. Also x 6= e, since in

this case we can split x avoiding d, which is again a contradiction. Finally, if

x 66 e then it follows from condition (i) that e 6 d∪x = x, a contradiction.

Therefore, x < e. Since f and e are both c.e. in x, it follows now from

Theorem 3.64 that there is a 2-c.e. degree u such that x < u < f and u|e,
a contradiction. �

Theorem 3.66. (Arslanov, Kalimullin, and Lempp [11]) There are a c.e.

degree d > 0, a 2-c.e. degree e > d, and a 3-c.e. degree f > e such that

for any 3-c.e. degree u,

(i) if u 6 f then either u 6 e or e 6 d ∪ u, and

(ii) if u 6 e then either d 6 u or u 6 d.

Corollary 3.10. D2 6≡ D3 at the Σ2- level.

Theorems 3.63 and 3.66 raise a whole series of new questions, study of

which could lead to the better understanding of the inner structure of the

ordering of the n-c.e. degrees. Below we consider some of these questions.

Definition 3.14. Let n > 1. An (n+1)-tuple of degrees a0, a1, . . .an−1, an
forms an n-bubble in Dm for some m > 1, if 0 = a0 < a1 < a2 < . . . <

an−1 < an, ak is k-c.e. for each k, 1 6 k 6 n, and for any m-c.e. degree u,

if u 6 ak then either u 6 ak−1 or ak−1 6 u.

An (n+1)-tuple of degrees a0, a1, a2, . . .an−1, an forms a weak n-bubble

in Dm for some m > 1, if 0 = a0 < a1 < a2 < . . . < an−1 < an, ak is k-c.e.

for each k, 1 6 k 6 n, and for any m-c.e. degree u, if u 6 ak then either

u 6 ak−1 or ak−1 6 u ∪ ak−2.

Obviously, every n-bubble is also an n-weak bubble for every n > 1, but

we don’t know if the reverse holds. Theorem 3.63 and Corollary 3.8 state

that in the 2-c.e. degrees there are 2-bubbles and there are no n-bubbles
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(and even that there are no n-weak bubbles), for every n > 2. Theorem 3.66

states that in the 3-c.e. degrees there are 3-weak bubbles. Questions on the

existence of n-bubbles (and even on n-week bubbles) in the n-c.e. degrees

for n > 3, and on the existence of the n-bubbles in the m-c.e. degrees for

2 < m < n are open.

Conjecture 3.3. For every n, 1 < n < ω, Dn contains an n-bubble, but

does not contain m-bubbles for any m > n. (As we already saw this is true

for n = 2.)

Obviously, if this conjecture holds for some n > 1 then this means that

Dn is not elementarily equivalent to Dm,m > n.

b) Definability.

Definition 3.15. (Cooper and Li [23]). A Turing approximation to the

class of the c.e. degrees R in the n-c.e. degrees is a Turing definable class

Sn of n-c.e. degrees such that

(i) either R ⊆ Sn (in this case we say that Sn is an approximation to R
from above), or

(ii) Sn ⊆ R (Sn is an approximation to R from below).

Obviously, R is definable in the n-c.e. degrees if and only if there is a

Turing definable class Sn of n-c.e. degrees which is a Turing approximation

to the class R in the n-c.e. degrees simultaneously from above and from

below.

There are a number of known nontrivial Turing approximations from

above to the class of the c.e. degrees in the n-c.e. degrees. For instance,

such an approximation can be obtained from Theorem 3.55 (iii).

A nontrivial Turing approximation from below can be obtained from

Theorems 3.1 and 3.65. Consider the following set of c.e. degrees: S2 =

{0}⋃{x > 0|(∃y > x)(∀z)(z 6 y → z 6 x ∨ x 6 z)}. It follows from

Theorem 3.65 that

Corollary 3.11. S2 ⊆ R and S2 6= {0}.

Therefore, S2 is a nontrivial approximation from below to the class of

the c.e. degrees R in the class of the d-c.e. degrees. A small additional

construction in Theorem 3.63 allows to achieve that S2 contains infinitely

many c.e. degrees.
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Since each non-computable c.e. degree d from S2 isolates some d-c.e.

degree e, it follows from Theorem 3.57 that S2 does not coincide with the

class of all c.e. degrees.

Open Question. Is there for every pair of c.e. degrees a < b a degree

c ∈ S2 such that a < c < b (i.e. S2 is dense in R)?
An affirmative answer to this question implies definability of R in D2

as follows: Given a c.e. degree a > 0 we first split a into two incomparable

c.e. degrees a0 and a1, then using the density of S2 in R find between a

and ai, i 6 1, a c.e. degree ci, i 6 1, such that a = c0 ∪ c1. This shows

that in this case a nonzero 2-c.e. degree is c.e. if and only if it is the least

upper bound of two incomparable 2-c.e. degrees from S2.

Conjecture 3.4. Each c.e. degree a > 0 is the least upper bound of two

incomparable degrees from S2 and, therefore, the class of the c.e. degrees is

definable in D2.

Question 3.2. Is R definable in D2? Is Dm definable in Dn for some

1 < m < n?

c) Σ1-substructures.

There are only a few known results in this direction.

(T. Slaman, unpublished) The partial ordering of the n-c.e. degrees is

not a Σ1-substructure of {D(6 0′), <}.
(Yang and Yu [59]) The structure {R, <} is not a Σ1-substructure of

{D2, <}.
In Theorem 3.66 we have a c.e. degree d > 0 and a 2-c.e. degree

e > d such that every 3-c.e. degree u 6 e is comparable with d. Can this

condition be strengthened in the following sense: there are a c.e. degree

d > 0 and a 2-c.e. degree e > d such that every n-c.e. degree 6 e for

every n < ω is comparable with d?

Question 3.3. Are there a c.e. degree d > 0 and a 2-c.e. degree e > d

such that for any n < ω and any n-c.e. degree u 6 e either u 6 d or

d 6 u?

An affirmative answer to this question would reveal an interesting pro-

perty of the finite levels of the Ershov difference hierarchy with far-reaching

consequences. From other side, if the question has a negative answer, then



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

The Ershov Hierarchy 97

let d > 0 and e > d be a c.e. degree and a 2-c.e. degree, respectively,

and let n > 3 be the greatest natural number such that every n-c.e. degree

u 6 e is comparable with d and there is an (n+1)-c.e. degree v 6 e which

is incomparable with d. Now consider the following Σ1-formula:

ϕ(x, y, z) ≡ ∃u(x < y < z& u 6 z& u 66 y& y 66 u).

Let d and e be degrees and n be the integer whose existence is assumed

by the negative answer to the previous question. Then we have Dn+1 |=
ϕ(0,d, e), and Dn |= ¬ϕ(0,d, e), which means that in this case Dn is not

a Σ1-substructure of Dn+1. This is a well-known open question.

We see that an answer to this question in either direction leads to very

interesting consequences.

All sentences known so far in the language of partial ordering, which

are true in the n-c.e. degrees and false in the (n+ 1)-c.e. degrees for some

n > 1, belong to the level ∀∃ or to a higher level of the arithmetic hierarchy.

This and some other observations allow us to state the following plausible

conjecture:

Conjecture 3.5. For any n > 1 and for any ∃∀-sentence ϕ, Dn |= ϕ →
Dn+1 |= ϕ. (The ∃∀-theory of the n-c.e. degrees is a subtheory of the

∃∀-theory of the (n+ 1)-c.e. degrees.)

How many parameters are needed in formulas which are witnesses in

the proof that D1 is not a Σ1-substructure of D(6 0′) and D2?

• Slaman’s result (R 6�Σ1 D(0′): 3 parameters;

• Yang and Yu (R 6�Σ1 D2): 4 parameters.

Question 3.4. Can these numbers be reduced?
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In this chapter the following model is considered: We assume that an
instance I of a computationally hard optimization problem has been
solved and that we know the optimum solution of such an instance. Then
a new instance I ′ is proposed, obtained by means of a slight perturbation
of instance I . How can we exploit the knowledge we have on the solution
of instance I to compute an (approximate) solution of instance I ′ in an
efficient way? This computation model is called reoptimization and is
of practical interest in various circumstances. In this chapter we first
discuss what kind of performance we can expect for specific classes of
problems and then we present some classical optimization problems (i.e.
Max Knapsack, Min Steiner Tree, Scheduling) in which this approach
has been fruitfully applied. Subsequently, we address vehicle routing
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problems and we show how the reoptimization approach can be used to
obtain good approximate solutions in an efficient way for some of these
problems.
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4.1. Introduction

In this chapter we illustrate the role that a new computational paradigm

called reoptimization plays in the solution of NP-hard problems in various

practical circumstances. As it is well known a great variety of relevant

optimization problems are intrinsically difficult and no solution algorithms

running in polynomial time are known for such problems. Although the

existence of efficient algorithms cannot be ruled out at the present state

of knowledge, it is widely believed that this is indeed the case. The most

renowned approach to the solution of NP-hard problems consists in resort-

ing to approximation algorithms which, in polynomial time, provide a sub-

optimal solution whose quality (measured as the ratio between the values of

the optimum and approximate solution) is somehow guaranteed. In the last

twenty years the definition of better and better approximation algorithms

and the classification of problems based on the quality of approximation

that can be achieved in polynomial time have been among the most impor-

tant research directions in theoretical computer science and have produced

a huge flow of literature [4, 36].

More recently a new computational approach to the solution of NP-

hard problems has been proposed [1]. This approach can be meaningfully

adopted when the following situation arises: Given a problem Π, the in-

stances of Π that we need to solve are indeed all obtained by means of a

slight perturbation of a given reference instance I. In such a case we can de-

vote enough time to the exact solution of the reference instance I and then,
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any time that the solution for a new instance I ′ is required, we can apply a

simple heuristic that efficiently provides a good approximate solution to I ′.
Let us imagine, for example, that we know that a traveling salesman has

to visit a set S of, say, one thousand cities plus a few more cities that may

change from time to time. In such case it is quite reasonable to devote a

conspicuous amount of time to the exact solution of the traveling salesman

problem on the set S and then to reoptimize the solution whenever the

modified instance is known, with a (hopefully) very small computational

effort.

To make the concept more precise let us consider the following simple

example (Max Weighted Sat): Let φ be a Boolean formula in conjunctive

normal form, consisting of m weighted clauses over n variables, and let us

suppose we know a truth assignment τ such that the weight of the clauses

satisfied by τ is maximum; let this weight be W . Suppose that now a new

clause c with weight w over the same set of variables is provided and that we

have to find a “good” although possibly not optimum truth assignment τ ′

for the new formula φ′ = φ∧c. A very simple heuristic can always guarantee

a 1/2 approximate truth assignment in constant time. The heuristic is the

following: If W ≥ w then put τ ′ = τ , otherwise take as τ ′ any truth

assignment that satisfies c. It is easy to see that, in any case, the weight

provided by this heuristic will be at least 1/2 of the optimum.

Actually the reoptimization concept is not new. A similar approach

has been applied since the early 1980s to some polynomial time solvable

optimization problems such as minimum spanning tree [16] and shortest

path [14, 32] with the aim to maintain the optimum solution of the given

problem under input modification (say elimination or insertion of an edge

or update of an edge weight). A big research effort devoted to the study of

efficient algorithms for the dynamic maintenance of the optimum solution

of polynomial time solvable optimization problems followed the first results.

A typical example of this successful line of research has been the design of

algorithms for the partially or fully dynamic maintenance of a minimum

spanning tree in a graph under edge insertion and/or edge elimination [12,

22] where at any update, the computation of the new optimum solution

requires at most O(n1/3 logn) amortized time per operation, much less

than recomputing the optimum solution from scratch.

A completely different picture arises when we apply the concept of reop-

timization to NP-hard optimization problems. In fact, reoptimization pro-

vides very different results when applied to polynomial time optimization

problems with respect to what happens in the case of NP-hard problems.
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In the case of NP-hard optimization problems, unless P=NP polynomial

time reoptimization algorithms can only help us to obtain approximate

solutions, since if we knew how to maintain an optimum solution under

input updates, we could solve the problem optimally in polynomial time

(see Section 4.3.1).

The application of the reoptimization computation paradigm to NP-

hard optimization problems is hence aimed at two possible directions: ei-

ther at achieving an approximate solution of better quality than we would

have obtained without knowing the optimum solution of the base instance,

or achieving an approximate solution of the same quality but at a lower

computational cost (as is the case in our previous example).

In the first place the reoptimization model has been applied to classical

NP-hard optimization problems such as scheduling (see Bartusch et al. [6],

Schäffter [34], or Bartusch et al. [7] for practical applications). More re-

cently it has been applied to various other NP-hard problems such as Steiner

Tree [9, 13] or the Traveling Salesman Problem [1, 5, 8]. In this chapter

we will discuss some general issues concerning reoptimization of NP-hard

optimization problems and we will review some of the most interesting ap-

plications.

The chapter is organized as follows. First, in Section 4.2 we provide

basic definitions concerning complexity and approximability of optimiza-

tion problems and we show simple preliminary results. Then in Section

4.3 the computational power of reoptimization is discussed and results con-

cerning the reoptimization of various NP-hard optimization problems are

shown. Finally Section 4.4 is devoted to the application of the reoptimiza-

tion concept to a variety of vehicle routing problems. While most of the

results contained in Section 4.3 and Section 4.4 derive from the literature,

it is worth noting that a few of the presented results – those for which no

reference is given – appear in this paper for the first time.

4.2. Basic Definitions and Results

In order to characterize the performance of reoptimization algorithms and

analyze their application to specific problems we have to provide first a basic

introduction to the class of NP optimization problems (NPO problems) and

to the notion of approximation algorithms and approximation classes. For

a more extensive presentation of the theory of approximation the reader

can refer to [4].
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Definition 4.1. An NP optimization (NPO) problem Π is defined as a

four-tuple (I, Sol,m, opt) such that:

• I is the set of instances of Π and it can be recognized in polynomial

time;

• given I ∈ I, Sol(I) denotes the set of feasible solutions of I; for every

S ∈ Sol(I), |S| (the size of S) is polynomial in |I| (the size of I); given

any I and any S polynomial in |I|, one can decide in polynomial time

if S ∈ Sol(I);

• given I ∈ I and S ∈ Sol(I), m(I, S) denotes the value of S; m is

polynomially computable and is commonly called objective function;

• opt ∈ {min,max} indicates the type of optimization problem.

As it is well known, several relevant optimization problems, known as

NP-hard problems, are intrinsically difficult and no solution algorithms run-

ning in polynomial time are known for such problems. For the solution of

NP-hard problems we have to resort to approximation algorithms, which in

polynomial time provide a suboptimal solution of guaranteed quality.

Let us briefly recall the basic definitions regarding approximation algo-

rithms and the most important approximation classes of NPO problems.

Given an NPO problem Π = (I, Sol,m, opt), an optimum solution of an

instance I of Π is denoted S∗(I) and its measure m(I, S∗(I)) is denoted

opt(I).

Definition 4.2. Given an NPO problem Π = (I, Sol,m, opt), an approxi-

mation algorithm A is an algorithm that, given an instance I of Π, returns

a feasible solution S ∈ Sol(I).

If A runs in polynomial time with respect to |I|, A is called a polynomial

time approximation algorithm for Π.

The quality of an approximation algorithm is usually measured as the

ratio ρA(I), approximation ratio, between the value of the approximate so-

lution, m(I, A(I)), and the value of the optimum solution opt(I). For mini-

mization problems, therefore, the approximation ratio is in [1,∞), while for

maximization problems it is in [0, 1]. According to the quality of approxi-

mation algorithms that can be designed for their solution, NPO problems

can be classified as follows:

Definition 4.3. An NPO problem Π belongs to the class APX if there

exists a polynomial time approximation algorithm A and a rational value

r such that, given any instance I of Π, ρA(I) 6 r (resp. ρA(I) > r) if Π is
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a minimization problem (resp. a maximization problem). In such case A is

called an r-approximation algorithm.

Examples of combinatorial optimization problems belonging to the class

APX are Max Weighted Sat, Min Vertex Cover, and Min Metric TSP.

For particular problems in APX a stronger form of approximability can

indeed be shown. For such problems, given any rational r > 1 (or r ∈
(0, 1) for a maximization problem), there exists an algorithm Ar and a

suitable polynomial pr such that Ar is an r-approximation algorithm whose

running time is bounded by pr as a function of |I|. The family of algorithms

Ar parametrized by r is called a polynomial time approximation scheme

(PTAS).

Definition 4.4. An NPO problem Π belongs to the class PTAS if it admits

a polynomial time approximation scheme Ar.

Examples of combinatorial optimization problems belonging to the class

PTAS are Min Partitioning, Max Independent Set on Planar Graphs, and

Min Euclidean TSP.

Notice that in the definition of PTAS, the running time of Ar is poly-

nomial in the size of the input, but it may be exponential (or worse) in

the inverse of |r − 1|. A better situation arises when the running time is

polynomial in both the input size and the inverse of |r − 1|. In the favor-

able case when this happens, the algorithm is called a fully polynomial time

approximation scheme (FPTAS).

Definition 4.5. An NPO problem Π belongs to the class FPTAS if it admits

a fully polynomial time approximation scheme.

It is important to observe that, under the (reasonable) hypothesis that

P 6= NP, it is possible to prove that FPTAS ( PTAS ( APX ( NPO.

4.3. Reoptimization of NP-hard Optimization Problem

As explained in the introduction, the reoptimization setting leads to inter-

esting optimization problems for which the complexity properties and the

existence of good approximation algorithms have to be investigated. This

section deals with this question, and is divided into two parts: In Sub-

section 4.3.1, we give some general considerations on these reoptimization

problems, both on the positive side (obtaining good approximate solutions)

and on the negative side (hardness of reoptimization). In Subsection 4.3.2,
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we survey some results achieved on reoptimizing three well-known prob-

lems (the Min Steiner Tree problem, a scheduling problem, and the Max

Knapsack problem).

4.3.1. General properties

As mentioned previously, if one wishes to get an approximate solution on

the perturbed instance, she/he can compute it by applying directly, from

scratch, a known approximation algorithm for the problem dealt (on the

modified instance). In other words, reoptimizing is at least as easy as

approximating. The goal of reoptimization is to determine if it is possible

to fruitfully use our knowledge on the initial instance in order to:

• either achieve better approximation ratios;

• or devise much faster algorithms;

• or both!

In this section, we present some general results dealing with reopti-

mization properties of some NPO problems. We first focus on a class of

hereditary problems, then we discuss the differences between weighted and

unweighted versions of classical problems, and finally present some ways to

achieve hardness results in reoptimization.

Of course, many types of problems can be considered, and for each of

them many ways to modify the instances might be investigated. We mainly

focus here on graph problems where a modification consists of adding a new

vertex on the instance, but show with various examples that the approaches

we present are also valid in many other cases.

4.3.1.1. Hereditary problems

We say that a property on graphs is hereditary if the following holds: If

G = (V,E) satisfies this property, then for any V ′ ⊆ V , the subgraph G[V ′]
induced by V ′ verifies the property. Following this definition, for instance,

being independent a, being bipartite, or being planar are three hereditary

properties. Now, let us define problems based on hereditary properties.

Definition 4.6. We call Hered the class of problems consisting, given a

vertex-weighted graph G = (V,E,w), of finding a subset of vertices S (i)

such that G[S] satisfies a given hereditary property (ii) that maximizes

w(S) =
∑
v∈S w(v).

ai.e. having no edge.
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Hereditary problems have been studied before as a natural generaliza-

tion of important combinatorial problems [27]. For instance, Max Weighted

Independent Set, Max Weighted Bipartite Subgraph, Max Weighted Planar

Subgraph are three famous problems in Hered that correspond to the three

hereditary properties given above.

For all these problems, we have a simple reoptimization strategy that

achieves a ratio 1/2, based on the same idea used in the introduction. Note

that this is a huge improvement for some problems respect to their ap-

proximability properties; for instance, it is well known that Max Weighted

Independent Set is not approximable within any constant ratio, if P 6= NPb.

Theorem 4.1. Let Π be a problem in Hered. Under a vertex insertion,

reoptimizing Π is approximable within ratio 1/2 (in constant time).

Proof. Let I = (G,w) be the initial instance of Π, I ′ = (G′, w′) be the

final instance (a new vertex v has been inserted), S∗ be an optimum solution

on I, and S∗
I′ be an optimum solution on I ′. Notice that w′(u) = w(u) for

all u 6= v.

Getting a 1/2-approximate solution is very easy: just consider the best

solution among S∗ and (if feasible) S1 := {v}. Solution S∗ is feasible by

heritability. We can also assume S1 feasible, as otherwise by heritability

no feasible solution can include v, and S∗ must be optimal. Finally, by

heritability, S∗
I′ \ {v} is a feasible solution on the initial instance. Then,

w′(S∗
I′) ≤ w′(S∗) + w′(v) = w′(S∗) + w′(S1) ≤ 2max(w′(S∗), w′(S1)). �

Now, let us try to outperform this trivial ratio 1/2. A first idea that

comes to mind is to improve the solution S1 of the previous proof since

it only contains one vertex. In particular, one can think of applying an

approximation algorithm on the “remaining instance after taking v”. Con-

sider for instance Max Weighted Independent Set, and revisit the proof of

the previous property. If S∗
I′ does not take the new vertex v, then our

initial solution S∗ is optimum. If S∗
I′ takes v, then consider the remaining

instance Iv after having removed v and its neighbors. Suppose that we have

a ρ-approximate solution S2 on this instance Iv. Then S2∪{v} is a feasible

solution of weight:

w(S2 ∪ {v}) ≥ ρ(w(S∗
I′ )− w(v)) + w(v) = ρw(S∗

I′) + (1− ρ)w(v). (4.1)

On the other hand, of course :

w(S∗) ≥ w(S∗
I′)− w(v). (4.2)

bAnd not even within ratio n1−ε for any ε > 0, under the same hypothesis [37].
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If we output the best solution S among S∗ and S2 ∪ {v}, then, by adding

equations (4.1) and (4.2) with coefficients 1 and (1− ρ), we get:

w(S) ≥ 1

2− ρw(S
∗
I′).

Note that this ratio is always better than ρ.

This technique is actually quite general and applies to many problems

(not only graph problems and maximization problems). We illustrate this

on two well-known problems: Max Weighted Sat (Theorem 4.2) and Min

Vertex Cover (Theorem 4.3). We will also use it for Max Knapsack in

Section 4.3.2.

Theorem 4.2. Under the insertion of a clause, reoptimizing MaxWeighted

Sat is approximable within ratio 0.81.

Proof. Let φ be a conjunction of clauses over a set of binary variables,

each clause being given with a weight, and let τ∗(φ) be an initial optimum

solution. Let φ′ := φ ∧ c be the final formula, where the new clause c =

l1 ∨ l2 ∨ . . . ∨ lk (where li is either a variable or its negation) has weight

w(c).

We consider k solutions τi, i = 1, . . . , k. Each τi is built as follows:

• We set li to true;

• We replace in φ each occurrence of li and li with its value;

• We apply a ρ-approximation algorithm on the remaining instance (note

that the clause c is already satisfied); together with li, this is a partic-

ular solution τi.

Then, our reoptimization algorithm outputs the best solution τ among

τ∗(φ) and the τis.

As previously, if the optimum solution τ∗(φ′) on the final instance does

not satisfy c, then τ∗(φ) is optimum. Otherwise, at least one literal in c,

say li, is true in τ∗(φ′). Then, it is easy to see that

w(τi) ≥ ρ(w(τ∗(φ′))− w(c)) + w(c) = ρw(τ∗(φ′)) + (1− ρ)w(c).
On the other hand, w(τ∗(φ)) ≥ w(τ∗(φ′)) − w(c), and the following

result follows:

w(τ) ≥ 1

2− ρw(τ
∗(φ′)).

The fact that Max Weighted Sat is approximable within ratio ρ = 0.77 [3]

concludes the proof. �



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

110 G. Ausiello, V. Bonifaci, & B. Escoffier

It is worth noticing that the same ratio (1/(2 − ρ)) is achievable for

other satisfiability or constraint satisfaction problems. For instance, using

the result of Johnson [24], reoptimizing Max Weighted E3SATc when a new

clause is inserted is approximable within ratio 8/9.

Let us now focus on a minimization problem, namely Min Vertex Cover.

Given a vertex-weighted graph G = (V,E,w), the goal in this problem is

to find a subset V ′ ⊆ V such that (i) every edge e ∈ E is incident to at

least one vertex in V ′, and (ii) the global weight of V ′, that is,
∑

v∈V ′ w(v)

is minimized.

Theorem 4.3. Under a vertex insertion, reoptimizing Min Vertex Cover is

approximable within ratio 3/2.

Proof. Let v denote the new vertex and S∗ the initial given solution.

Then, S∗ ∪ {v} is a vertex cover on the final instance. If S∗
I′ takes v, then

S∗ ∪ {v} is optimum.

From now on, suppose that S∗
I′ does not take v. Then it has to take all

its neighbors N(v). S∗ ∪ N(v) is a feasible solution on the final instance.

Since w(S∗) ≤ w(S∗
I′), we get:

w(S∗ ∪N(v)) ≤ w(S∗
I′ ) + w(N(v)). (4.3)

Then, as for Max Weighted Independent Set, consider the following feasible

solution S1:

• Take all the neighbors N(v) of v in S1;

• Remove v and its neighbors from the graph;

• Apply a ρ-approximation algorithm on the remaining graph and add

these vertices to S1.

Since we are in the case where S∗
I′ does not take v, it has to take all its

neighbors, and finally:

w(S1) ≤ ρ(w(S∗
I′)−w(N(v)))+w(N(v)) = ρw(S∗

I′)−(ρ−1)w(N(v)). (4.4)

Of course, we take the best solution S among S∗ ∪N(v) and S1. Then, a

convex combination of equations (4.3) and (4.4) leads to:

w(S) ≤ 2ρ− 1

ρ
w(S∗

I′).

The results follows since Min Vertex Cover is well known to be approximable

within ratio 2. �
cRestriction of Max Weighted Sat when all clauses contain exactly three literals.
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To conclude this section, we point out that these results can be general-

ized when several vertices are inserted. Indeed, if a constant number k > 1

of vertices are added, one can reach the same ratio with similar arguments

by considering all the 2k possible subsets of new vertices in order to find

the ones that will belong to the new optimum solution. This brute force

algorithm is still very fast for small constant k, which is the case in the

reoptimization setting with slight modifications of the instance.

4.3.1.2. Unweighted problems

In the previous subsection, we considered the general cases where vertices

(or clauses) have a weight. It is well known that all the problems we

focused on are already NP-hard in the unweighted case, i.e. when all ver-

tices/clauses receive weight 1. In this (very common) case, the previous

approximation results on reoptimization can be easily improved. Indeed,

since only one vertex is inserted, the initial optimum solution has an abso-

lute error of at most one on the final instance, i.e.:

|S∗| ≥ |S∗
I′ | − 1.

Then, in some sense we don’t really need to reoptimize since S∗ is

already a very good solution on the final instance (note also that since

the reoptimization problem is NP-hard, we cannot get rid of the constant

−1). Dealing with approximation ratio, we derive from this remark, with

a standard technique, the following result:

Theorem 4.4. Under a vertex insertion, reoptimizing any unweighted

problem in Hered admits a PTAS.

Proof. Let ε > 0, and set k = ⌈1/ε⌉. We consider the following algo-

rithm:

(1) Test all the subsets of V of size at most k, and let S1 be the largest

one such that G[S1] satisfies the hereditary property;

(2) Output the largest solution S between S1 and S∗.

Then, if S∗
I′ has size at most 1/ε, we found it in step 1. Otherwise, |S∗

I′ | ≥
1/ε and:

|S∗|
|S∗
I′ |
≥ |S

∗
I′ | − 1

|S∗
I′ |

≥ 1− ε.

Of course, the algorithm is polynomial as long as ε is a constant. �
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In other words, the PTAS is derived from two properties: the absolute

error of 1, and the fact that problems considered are simple. Following [30],

a problem is called simple if, given any fixed constant k, it is polynomial to

determine whether the optimum solution has value at most k (maximiza-

tion) or not.

This result easily extends to other simple problems, such as Min Vertex

Cover, for instance. It also generalizes when several (a constant number

of) vertices are inserted, instead of only 1.

However, it is interesting to notice that, for some other (unweighted)

problems, while the absolute error 1 still holds, we cannot derive a PTAS as

in Theorem 4.4 because they are not simple. One of the most famous such

problems is the Min Coloring problem. In this problem, given a graph G =

(V,E), one wishes to partition V into a minimum number of independent

sets (called colors) V1, . . . , Vk. When a new vertex is inserted, an absolute

error 1 can be easily achieved while reoptimizing. Indeed, consider the

initial coloring and add a new color which contains only the newly inserted

vertex. Then this coloring has an absolute error of 1 since a coloring on the

final graph cannot use fewer colors than an optimum coloring on the initial

instance.

However, deciding whether a graph can be colored with 3 colors is an

NP-hard problem. In other words, Min Coloring is not simple. We will

discuss the consequence of this fact in the section on hardness of reopti-

mization.

To conclude this section, we stress the fact that there exist, obviously,

many problems that do not involve weights and for which the initial opti-

mum solution cannot be directly transformed into a solution on the final

instance with absolute error 1. Finding the longest cycle in a graph is such

a problem: adding a new vertex may change considerably the size of an

optimum solution.

4.3.1.3. Hardness of reoptimization

As mentioned earlier, the fact that we are interested in slight modifications

of an instance on which we have an optimum solution makes the problem

somehow simpler, but unfortunately does not generally allow a jump in

complexity. In other words, reoptimizing is generally NP-hard when the

underlying problem is NP-hard.

In some cases, the proof of NP-hardness is immediate. For instance,
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consider a graph problem where modifications consists of inserting a new

vertex. Suppose that we had an optimum reoptimization algorithm for this

problem. Then, starting from the empty graph, and adding the vertices one

by one, we could find an optimum solution on any graph on n vertices by us-

ing iteratively n times the reoptimization algorithm. Hence, the underlying

problem would be polynomial. In conclusion, the reoptimization version is

also NP-hard when the underlying problem is NP-hard. This argument is

also valid for other problems under other kinds of modifications. Actually,

it is valid as soon as, for any instance I, there is a polynomial-time solvable

instance I ′ (the empty graph in our example) that can be generated in poly-

nomial time and such that a polynomial number of modifications transform

I ′ into I.
In other cases, the hardness does not directly follow from this argument,

and a usual polynomial time reduction has to be provided. This situation

occurs, for instance, in graph problems where the modification consists of

deleting a vertex. As we will see later, such hardness proofs have been

given, for instance, for some vehicle routing problems (in short, VRP).

Let us now focus on the hardness of approximation in the reoptimization

setting. As we have seen in particular in Theorem 4.4, the knowledge of the

initial optimum solution may help considerably in finding an approximate

solution on the final instance. In other words, it seems quite hard to prove a

lower bound on reoptimization. And in fact, few results have been obtained

so far.

One method is to transform the reduction used in the proof of NP-

hardness to get an inapproximability bound. Though more difficult than

in the usual setting, such proofs have been provided for reoptimization

problems, in particular for VRP problems, mainly by introducing very large

distances (see Section 4.4).

Let us now go back to Min Coloring. As we have said, it is NP-hard to

determine whether a graph is colorable with 3 colors or not. In the usual

setting, this leads to an inapproximability bound of 4/3− ε for any ε > 0.

Indeed, an approximation algorithm within ratio ρ = 4/3 − ε would allow

us to distinguish between 3-colorable graphs and graphs for which we need

at least 4 colors. Now, we can show that this result remains true for the

reoptimization of the problem:

Theorem 4.5. Under a vertex insertion, reoptimizing Min Coloring cannot

be approximated within a ratio 4/3− ε, for any ε > 0.
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Proof. The proof is actually quite straightforward. Assume you have

such a reoptimization algorithm A within a ratio ρ = 4/3−ε. LetG = (V,E)

be a graph with V = {v1, · · · , vn}. We consider the subgraphs Gi of G

induced by Vi = {v1, v2, · · · , vi} (in particular Gn = G). Suppose that

you have a 3-coloring of Gi, and insert vi+1. If Gi+1 is 3-colorable, then

A outputs a 3-coloring. Moreover, if Gi is not 3-colorable, then neither is

Gi+1. Hence, starting from the empty graph, and iteratively applying A,

we get a 3-coloring of Gi if and only if Gi is 3-colorable. Eventually, we are

able to determine whether G is 3-colorable or not. �

This proof is based on the fact that Min Coloring is not simple (ac-

cording to the definition previously given). A similar argument, leading

to inapproximability results in reoptimization, can be applied to other non

simple problems (under other modifications). It has been in particular

applied to a scheduling problem (see Section 4.3.2).

For other optimization problems however, such as MinTSP in the metric

case, finding a lower bound in approximability (if any!) seems a challenging

task.

Let us finally mention another kind of negative result. In the reopti-

mization setting, we look somehow for a possible stability when slight modi-

fications occur on the instance. We try to measure how much the knowledge

of a solution on the initial instance helps to solve the final one. Hence, it

is natural to wonder whether one can find a good solution in the “neigh-

borhood” of the initial optimum solution, or if one has to change almost

everything. Do neighboring instances have neighboring optimum/good so-

lutions? As an answer to these questions, several results show that, for

several problems, approximation algorithms that only “slightly” modify

the initial optimum solution cannot lead to good approximation ratios. For

instance, for reoptimizing MinTSP in the metric case, if you want a ratio

better than 3/2 (guaranteed by a simple heuristic), then you have to change

(on some instances) a significant part of your initial solution [5]. This kind

of result, weaker than an inapproximability bound, provides information on

the stability under modifications and lower bounds on classes of algorithms.

4.3.2. Results on some particular problems

In the previous section, we gave some general considerations on the reop-

timization of NP-hard optimization problems. The results that have been

presented follow, using simple methods, from the structural properties of
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the problem dealt with and/or from known approximation results. We now

focus on particular problems for which specific methods have been devised,

and briefly mention, without proofs, the main results obtained so far. We

concentrate on the Min Steiner Tree problem, on a scheduling problem, and

on the Max Knapsack problem. Vehicle routing problems, which concen-

trated a large attention in reoptimization, deserve, in our opinion, a full

section (Section 4.4), in which we also provide some of the most interesting

proofs in the literature together with a few new results.

4.3.2.1. Min Steiner Tree

The Min Steiner Tree problem is a generalization of the Min Spanning Tree

problem where only a subset of vertices (called terminal vertices) have to

be spanned. Formally, we are given a graph G = (V,E), a non-negative

distance d(e) for any e ∈ E, and a subset R ⊆ V of terminal vertices.

The goal is to connect the terminal vertices with a minimum global dis-

tance, i.e. to find a tree T ⊆ E that spans all vertices in R and minimizes

d(T ) =
∑
e∈T d(e). It is generally assumed that the graph is complete, and

the distance function is metric (i.e. d(x, y) + d(y, z) ≥ d(x, z) for any ver-

tices x, y, z): indeed, the general problem reduces to this case by initially

computing shortest paths between pairs of vertices.

Min Steiner Tree is one of the most famous network design optimization

problems. It is NP-hard, and has been studied intensively from an approx-

imation viewpoint (see [18] for a survey on these results). The best known

ratio obtained so far is 1 + ln(3)/2 ≃ 1.55 [31].

Reoptimization versions of this problem have been studied with modi-

fications on the vertex set [9, 13]. In Escoffier et al. [13], the modification

consists of the insertion of a new vertex. The authors study the cases where

the new vertex is terminal or non-terminal.

Theorem 4.6 ([13]). When a new vertex is inserted (either terminal or

not), then reoptimizing the Min Steiner Tree problem can be approximated

within ratio 3/2.
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Moreover, the result has been generalized to the case in which several

vertices are inserted. Interestingly, when p non-terminal vertices are in-

serted, then reoptimizing the problem is still 3/2-approximable (but the

running time grows very fast with p). On the other hand, when terminal

vertices are added, the obtained ratio decreases (but the running time re-

mains very low). The strategies consist, roughly speaking, of merging the

initial optimum solution with Steiner trees computed on the set of new

vertices and/or terminal vertices. The authors tackle also the case where

a vertex is removed from the vertex set, and provide a lower bound for a

particular class of algorithms.

Böckenhauer et al. [9] consider a different instance modification. Rather

than inserting/deleting a vertex, the authors consider the case where the

status of a vertex changes: either a terminal vertex becomes non-terminal,

or vice versa. The obtained ratio is also 3/2.

Theorem 4.7 ([9]). When the status (terminal / non-terminal) of a ver-

tex changes, then reoptimizing the Min Steiner Tree problem can be approx-

imated within ratio 3/2.

Moreover, they exhibit a case where this ratio can be improved. When

all the distances between vertices are in {1, 2, · · · , r}, for a fixed constant

r, then reoptimizing Min Steiner Tree (when changing the status of one

vertex) is still NP-hard but admits a PTAS.

Note that in both cases (changing the status of a vertex or adding a

new vertex), no inapproximability results have been achieved, and this is

an interesting open question.

4.3.2.2. Scheduling

Due to practical motivations, it is not surprising that scheduling problems

received attention dealing with the reconstruction of a solution (often called

rescheduling) after an instance modification, such as a machine breakdown,

an increase of a job processing time, etc. Several works have been proposed

to provide a sensitivity analysis of these problems under such modifica-

tions. A typical question is to determine under which modifications and/or

conditions the initial schedule remains optimal. We refer the reader to the

comprehensive article [20] where the main results achieved in this field are

presented.
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Dealing with the reoptimization setting we develop in this chapter,

Schäffter [34] proposes interesting results on a problem of scheduling with

forbidden sets. In this problem, we have a set of jobs V = {v1, · · · , vn},
each job having a processing time. The jobs can be scheduled in parallel

(the number of machines is unbounded), but there is a set of constraints

on these parallel schedules: A constraint is a set F ⊆ V of jobs that cannot

be scheduled in parallel (all of them at the same time). Then, given a set

F = {F1, · · · , Fk} of constraints, the goal is to find a schedule that respects

each constraint and that minimizes the latest completion time (makespan).

Many situations can be modeled this way, such as the m-Machine Prob-

lem (for fixed m), hence the problem is NP-complete (and even hard to

approximate).

Schäffter considers reoptimization when either a new constraint F is

added to F , or a constraint Fi ∈ F disappears. Using reductions from the

Set Splitting problem and from the Min Coloring problem, he achieves the

following inapproximability results:

Theorem 4.8 ([34]). If P 6= NP, for any ε > 0, reoptimizing the schedul-

ing with forbidden sets problem is inapproximable within ratio 3/2−ε under
a constraint insertion, and inapproximable within ratio 4/3−ε under a con-

straint deletion.

Under a constraint insertion Schäffter also provides a reoptimization

strategy that achieves approximation ratio 3/2, thus matching the lower

bound of Theorem 4.8. It consists of a simple local modification of the

initial scheduling, by shifting one task (at the end of the schedule) in order

to ensure that the new constraint is satisfied.

4.3.2.3. Max Knapsack

In the Max Knapsack problem, we are given a set of n objects O =

{o1, . . . , on}, and a capacity B. Each object has a weight wi and a value

vi. The goal is to choose a subset O′ of objects that maximizes the global

value
∑

oi∈O′ vi but that respects the capacity constraint
∑

oi∈O′ wi ≤ B.

This problem is (weakly) NP-hard, but admits an FPTAS [23].

Obviously, the reoptimization version admits an FPTAS too. Thus,

Archetti et al. [2] are interested in using classical approximation algorithms

for Max Knapsack to derive reoptimization algorithms with better approx-

imation ratios but with the same running time. The modifications consid-

ered consist of the insertion of a new object in the instance.
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Though not being a graph problem, it is easy to see that the Max

Knapsack problem satisfies the required properties of heritability given in

Section 4.3.1 (paragraph on hereditary problems). Hence, the reoptimiza-

tion version is 1/2-approximable in constant time; moreover, if we have

a ρ-approximation algorithm, then the reoptimization strategy presented

in Section 4.3.1 has ratio 1
2−ρ [2]. Besides, Archetti et al. [2] show that

this bound is tight for several classical approximation algorithms for Max

Knapsack.

Finally, studying the issue of sensitivity presented earlier, they show

that any reoptimization algorithm that does not consider objects discarded

by the initial optimum solution cannot have ratio better than 1/2.

4.4. Reoptimization of Vehicle Routing Problems

In this section we survey several results concerning the reoptimization of

vehicle routing problems under different kinds of perturbations. In particu-

lar, we focus on several variants of the Traveling Salesman Problem (TSP),

which we define below.

The TSP is a well-known combinatorial optimization problem that has

been the subject of extensive studies – here we only refer the interested

reader to the monographs by Lawler et al. [26] and Gutin and Punnen [19].

The TSP has been used since the inception of combinatorial optimization

as a testbed for experimenting a whole array of algorithmic paradigms and

techniques, so it is just natural to also consider it from the point of view of

reoptimization.

Definition 4.7. An instance In of the Traveling Salesman Problem is given

by the distance between every pair of n nodes in the form of an n×n matrix

d, where d(i, j) ∈ Z+ for all 1 ≤ i, j ≤ n. A feasible solution for In is a

tour, that is, a directed cycle spanning the node set N := {1, 2, . . . , n}.

Notice that we have not defined an objective function yet; so far we

have only specified the structure of instances and feasible solutions. There

are several possibilities for the objective function and each of them gives

rise to a different optimization problem. We need a few definitions. The

weight of a tour T is the quantity w(T ) :=
∑

(i,j)∈T d(i, j). The latency of

a node i ∈ N with respect to a given tour T is the total distance along the

cycle T from node 1 to node i. The latency of T , denoted by ℓ(T ), is the

sum of the latencies of the nodes of T .
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Table 4.1. Best known results on the approximability of the standard and
reoptimization versions of vehicle routing problems (AR = approximation ra-
tio, Π+ = vertex insertion, Π− = vertex deletion, Π± = distance variation).

Problem Π AR(Π) Ref. AR(Π+) AR(Π−)AR(Π±) Ref.

Min TSP unbounded [33] unb. unb. unb. [5, 8]
Min MTSP 1.5 [11] 1.34 - 1.4 [1, 9]

Min ATSP O(logn) [15] 2 2 - this work
Max TSP 0.6 [25] 0.66− O(n−1) - - this work

Max MTSP 0.875 [21] 1− O(n−1/2) - - [5]
MLP 3.59 [10] 3 - - this work

The matrix d obeys the triangle inequality if for all i, j, k ∈ N we have

d(i, j) ≤ d(i, k)+d(k, j). The matrix d is said to be a metric if it obeys the

triangle inequality and d(i, j) = d(j, i) for all i, j ∈ N .

In the rest of the section we will consider the following problems:

(1) Minimum Traveling Salesman Problem (Min TSP): find a tour of min-

imum weight;

(2) MinimumMetric TSP (Min MTSP): restriction of Min TSP to the case

when d is a metric;

(3) Minimum Asymmetric TSP (Min ATSP): restriction of Min TSP to

the case when d obeys the triangle inequality;

(4) Maximum TSP (Max TSP): find a tour of maximum weight;

(5) Maximum Metric TSP (Max MTSP): restriction of Max TSP to the

case when d is a metric;

(6) Minimum Latency Problem (MLP): find a tour of minimum latency; d

is assumed to be a metric.

TSP-like problems other than those above have also been considered in

the literature from the point of view of reoptimization; in particular, see

Böckenhauer et al. [8] for a hardness result on the TSP with deadlines.

Given a vehicle routing problem Π from the above list, we will consider

the following reoptimization variants, each corresponding to a different type

of perturbation of the instance: insertion of a node (Π+), deletion of a node

(Π−), and variation of a single entry of the matrix d (Π±).
In the following, we will sometimes refer to the initial problem Π as

the static problem. In Table 4.1 we summarize the approximability results

known for the static and reoptimization versions of the problems above

under these types of perturbations.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

120 G. Ausiello, V. Bonifaci, & B. Escoffier

Some simple solution methods are common to several of the problems

we study in this section. We define here two such methods; they will be

used in the remainder of the section.

Algorithm 1 (Nearest Insertion). Given an instance In+1 and a tour

T on the set {1, . . . , n}, find a node i∗ ∈ argmin1≤i≤n d(i, n+1). Obtain the

solution by inserting node n+ 1 either immediately before or immediately

after i∗ in the tour (depending on which of these two solutions is best).

Algorithm 2 (Best Insertion). Given an instance In+1 and a tour T on

the set {1, . . . , n}, find a pair (i∗, j∗) ∈ argmin(i,j)∈T d(i, n + 1) + d(n +

1, j)− d(i, j). Obtain the solution by inserting node n+ 1 between i∗ and

j∗ in the tour.

4.4.1. The Minimum Traveling Salesman Problem

4.4.1.1. The general case

We start by considering the Min TSP. It is well known that in the standard

setting the problem is very hard to approximate in the sense that it can-

not be approximated within any factor that is polynomial in the number

of nodes [33]. It turns out that the same result also holds for the reopti-

mization versions of the problem, which shows that in this particular case

the extra information available through the optimal solution to the original

instance does not help at all.

Theorem 4.9 ([5, 8]). Let p be a polynomial. Then each of Min TSP+,

Min TSP−, and Min TSP± is not 2p(n)-approximable, unless P=NP.

Proof. We only give the proof for Min TSP−; the other proofs follow a

similar approach. We use the so-called gap technique from Sahni and Gon-

zales [33]. Consider the following problem, Restricted Hamiltonian Cycle

(RHC): Given an undirected graph G = (V,E) and a Hamiltonian path P

between two nodes a and b in G, determine whether there exists a Hamilto-

nian cycle in G. This problem is known to be NP-complete [28]. We prove

the claim of the theorem by showing that any approximation algorithm for

Min TSP− with ratio 2p(n) can be used to solve RHC in polynomial time.

Consider an instance of RHC, that is, a graph G = (V,E) on n nodes,

two nodes a, b ∈ V and a Hamiltonian path P from a to b. Without loss

of generality we can assume that V = {1, . . . , n}. We can construct in

polynomial time the following TSP instance In+1 on node set {1, . . . , n, n+
1}:
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- d(i, j) = 1 if (i, j) ∈ E;

- d(n+ 1, a) = d(b, n+ 1) = 1;

- all other entries of the matrix d have value 2p(n) · n+ 1.

Since all entries are at least 1, the tour T ∗
n+1 := P ∪ {(b, n+ 1), (n+ 1, a)}

is an optimum solution of In+1, with weight w(T ∗
n+1) = n + 1. Thus,

(In+1, T
∗
n+1) is an instance of Min TSP−. Let T ∗

n be an optimum solution

of instance In. Then w(T ∗
n) = n if and only if G has a Hamiltonian cycle.

Finally, a 2p(n)-approximation algorithm for Min TSP− allows us to decide

whether w(T ∗
n ) = n. �

4.4.1.2. Minimum Metric TSP

In the previous section we have seen that no constant-factor approximation

algorithm exists for reoptimizing the Minimum TSP in its full generality.

To obtain such a result, we are forced to restrict the problem somehow.

A very interesting case for many applications is when the matrix d is a

metric, that is, the Min MTSP. This problem admits a 3/2-approximation

algorithm, due to Christofides [11], and it is currently open whether this

factor can be improved. Interestingly, it turns out that the reoptimization

version Min MTSP+ is (at least if one considers the currently best known

algorithms) easier than the static problem: It allows a 4/3-approximation –

although, again, we do not know whether even this factor may be improved

via a more sophisticated approach.

Theorem 4.10 ([5]). Min MTSP+ is approximable within ratio 4/3.

Proof. The algorithm used to prove the upper bound is a simple combi-

nation of Nearest Insertion and of the well-known algorithm by Christofides

[11]; namely, both algorithms are executed and the solution returned is the

one having the lower weight.

Consider an optimum solution T ∗
n+1 of the final instance In+1, and the

solution T ∗
n available for the initial instance In. Let i and j be the two

neighbors of vertex n + 1 in T ∗
n+1, and let T1 be the tour obtained from

T ∗
n with the Nearest Insertion rule. Furthermore, let v∗ be the vertex in

{1, . . . , n} whose distance to n+ 1 is the smallest.

Using the triangle inequality, we easily get w(T1) ≤ w(T ∗
n+1)+2d(v∗, n+

1) where, by definition of v∗, d(v∗, n+1) = min{d(k, n+1) : k = 1, . . . , n}.
Thus

w(T1) ≤ w(T ∗
n+1) + 2max(d(i, n+ 1), d(j, n+ 1)). (4.5)
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Now consider the algorithm of Christofides applied on In+1. This gives

a tour T2 of length at most (1/2)w(T ∗
n+1) +MST(In+1), where MST(In+1)

is the weight of a minimum spanning tree on In+1. Note that MST(In+1) ≤
w(T ∗

n+1)−max(d(i, n+ 1), d(j, n+ 1)). Hence

w(T2) ≤
3

2
w(T ∗

n+1)−max(d(i, n+ 1), d(j, n+ 1)). (4.6)

The result now follows by combining equations (4.5) and (4.6), because

the weight of the solution given by the algorithm is min(w(T1), w(T2)) ≤
(1/3)w(T1) + (2/3)w(T2) ≤ (4/3)w(T ∗

n+1). �

The above result can be generalized to the case when more than a

single vertex is added in the perturbed instance. Let Min MTSP+k be the

corresponding problem when k vertices are added. Then it is possible to

give the following result, which gives a trade-off between the number of

added vertices and the quality of the approximation guarantee.

Theorem 4.11 ([5]). For any k ≥ 1, Min MTSP+k is approximable

within ratio 3/2− 1/(4k + 2).

Reoptimization under variation of a single entry of the distance ma-

trix (that is, problem Min MTSP±) has been considered by Böcken-

hauer et al. [9].

Theorem 4.12 ([9]). Min MTSP± is approximable within ratio 7/5.

4.4.1.3. Minimum Asymmetric TSP

The Minimum Asymmetric Traveling Salesman Problem is another variant

of the TSP that is of interest for applications, as it generalizes the Metric

TSP. Unfortunately, in the static case there seems to be a qualitative differ-

ence with respect to the approximability of Minimum Metric TSP: While in

the latter case a constant approximation is possible, for Min ATSP the best

known algorithms give an approximation ratio of Θ(log n). The first such

algorithm was described by Frieze et al. [17] and has an approximation guar-

antee of log2 n. The currently best algorithm is due to Feige and Singh [15]

and gives approximation (2/3) log2 n. The existence of a constant approxi-

mation for Min ATSP is an important open problem.

Turning now to reoptimization, there exists a non-negligible gap be-

tween the approximability of the static version and of the reoptimiza-
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tion version. In fact, reoptimization drastically simplifies the picture:

Min ATSP+ is approximable within ratio 2, as we proceed to show.

Theorem 4.13. Min ATSP+ is approximable within ratio 2.

Proof. The algorithm used to establish the upper bound is extremely

simple: just add the new vertex between an arbitrarily chosen pair of con-

secutive vertices in the old optimal tour. Let T be the tour obtained by

inserting node n+1 between two consecutive nodes i and j in T ∗
n . We have:

w(T ) = w(T ∗
n) + d(i, n+ 1) + d(n+ 1, j)− d(i, j).

By triangle inequality, d(n+ 1, j) ≤ d(n+ 1, i) + d(i, j). Hence

w(T ) ≤ w(T ∗
n) + d(i, n+ 1) + d(n+ 1, i).

Again by triangle inequality, w(T ∗
n) ≤ w(T ∗

n+1), and d(i, n+1)+d(n+1, i) ≤
w(T ∗

n+1), which concludes the proof. �

We remark that the above upper bound of 2 on the approximation ratio

is tight, even if we use Best Insertion instead of inserting the new vertex

between an arbitrarily chosen pair of consecutive vertices.

Theorem 4.14. Min ATSP− is approximable within ratio 2.

Proof. The obvious idea is to skip the deleted node in the new tour,

while visiting the remaining nodes in the same order. Thus, if i and j are

respectively the nodes preceding and following n + 1 in the tour T ∗
n+1, we

obtain a tour T such that

w(T ) = w(T ∗
n+1) + d(i, j)− d(i, n+ 1)− d(n+ 1, j). (4.7)

Consider an optimum solution T ∗
n of the modified instance In, and the node

l that is consecutive to i in this solution. Since inserting n+1 between i and

l would yield a feasible solution to In+1, we get, using triangle inequality:

w(T ∗
n+1) ≤ w(T ∗

n) + d(i, n+ 1) + d(n+ 1, l)− d(i, l)
≤ w(T ∗

n) + d(i, n+ 1) + d(n+ 1, i).

By substituting in (4.7) and using triangle inequality again,

w(T ) ≤ w(T ∗
n ) + d(i, j) + d(j, i).

Hence, w(T ) ≤ 2w(T ∗
n). �
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4.4.2. The Maximum Traveling Salesman Problem

4.4.2.1. Maximum TSP

While the typical applications of the Minimum TSP are in vehicle rout-

ing and transportation problems, the Maximum TSP has applications to

DNA sequencing and data compression [25]. Like the Minimum TSP, the

Maximum TSP is also NP-hard, but differently from what happens for

the Minimum TSP, it is approximable within a constant factor even when

the distance matrix can be completely arbitrary. In the static setting, the

best known result for Max TSP is a 0.6-approximation algorithm due to

Kosaraju et al. [25]. Once again, the knowledge of an optimum solution to

the initial instance is useful, as the reoptimization problem under insertion

of a vertex can be approximated within a ratio of 0.66 (for large enough n),

as we show next.

Theorem 4.15. Max TSP+ is approximable within ratio (2/3) · (1− 1/n).

Proof. Let i and j be such that (i, n+ 1) and (n+ 1, j) belong to T ∗
n+1.

The algorithm is the following:

(1) Apply Best Insertion to T ∗
n to get a tour T1;

(2) Find a maximum cycle cover C = (C0, . . . , Cl) on In+1 such that:

(a) (i, n+ 1) and (n+ 1, j) belong to C0;

(b) |C0| ≥ 4;

(3) Remove the minimum-weight arc of each cycle of C and patch the paths

obtained to get a tour T2;

(4) Select the best solution between T1 and T2.

Note that Step 2 can be implemented in polynomial time as follows: We

replace d(i, n+ 1) and d(n+ 1, j) by a large weight M , and d(j, i) by −M
(we do not know i and j, but we can try each possible pair of vertices and

return the best tour constructed by the algorithm). Hence, this cycle cover

will contain (i, n + 1) and (n + 1, j) but not (j, i), meaning that the cycle

containing n+ 1 will have at least 4 vertices.

Let a := d(i, n+ 1) + d(n + 1, j). Clearly, w(T ∗
n+1) ≤ w(T ∗

n) + a. Now,

by inserting n+ 1 in each possible position, we get

w(T1) ≥ (1− 1/n)w(T ∗
n) ≥ (1 − 1/n)(w(T ∗

n+1)− a).

Since C0 has size at least 4, the minimum-weight arc of C0 has cost at

most (w(C0)− a)/2. Since each cycle has size at least 2, we get a tour T2
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of value:

w(T2) ≥ w(C)− w(C0)− a
2

− w(C)− w(C0)

2

=
w(C) + a

2
≥ w(T ∗

n+1) + a

2
.

Combining the two bounds for T1 and T2, we get a solution which is

(2/3) · (1− 1/n)-approximate. �

The above upper bound can be improved to 0.8 when the distance ma-

trix is known to be symmetric [5].

4.4.2.2. Maximum Metric TSP

The usual Maximum TSP problem does not admit a polynomial-time ap-

proximation scheme, that is, there exists a constant c such that it is NP-

hard to approximate the problem within a factor better than c. This result

extends also to the Maximum Metric TSP [29]. The best known approxi-

mation for the Maximum Metric TSP is a randomized algorithm with an

approximation guarantee of 7/8 [21].

By contrast, in the reoptimization of Max MTSP under insertion of a

vertex, the Best Insertion algorithm turns out to be a very good strategy:

It is asymptotically optimum. In particular, the following holds:

Theorem 4.16 ([5]). Max MTSP+ is approximable within ratio 1 −
O(n−1/2).

Using the above result one can easily prove that Max MTSP+ admits

a polynomial-time approximation scheme: If the desired approximation

guarantee is 1− ǫ, for some ǫ > 0, just solve by enumeration the instances

with O(1/ǫ2) nodes, and use the result above for the other instances.

4.4.3. The Minimum Latency Problem

Although superficially similar to the Minimum Metric TSP, the Minimum

Latency Problem appears to be more difficult to solve. For example, in

the special case when the metric is induced by a weighted tree, the MLP is

NP-hard [35] while the Metric TSP is trivial. One of the difficulties in the

MLP is that local changes in the input can influence the global shape of the

optimum solution. Thus, it is interesting to notice that despite this fact,

reoptimization still helps. In fact, the best known approximation so far for

the static version of the MLP gives a factor of 3.59 and is achieved via a
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sophisticated algorithm due to Chaudhuri et al. [10], while it is possible

to give a very simple 3-approximation for MLP+, as we show in the next

theorem.

Theorem 4.17. MLP+ is approximable within ratio 3.

Proof. We consider the Insert Last algorithm that inserts the new node

n + 1 at the “end” of the tour, that is, just before node 1. Without loss

of generality, let T ∗
n = {(1, 2), (2, 3), . . . , (n− 1, n)} be the optimal tour for

the initial instance In (that is, the kth node to be visited is k). Let T ∗
n+1 be

the optimal tour for the modified instance In+1. Clearly ℓ(T ∗
n+1) ≥ ℓ(T ∗

n)

since relaxing the condition that node n + 1 must be visited cannot raise

the overall latency.

The quantity ℓ(T ∗
n) can be expressed as

∑n
i=1 ti, where for i = 1, . . . , n,

ti =
∑i−1

j=1 d(j, j + 1) can be interpreted as the “time” at which node i is

first visited in the tour T ∗
n .

In the solution constructed by Insert Last, the time at which each node

i 6= n + 1 is visited is the same as in the original tour (ti), while tn+1 =

tn+d(n, n+1). The latency of the solution is thus
∑n+1

i=1 ti =
∑n

i=1 ti+tn+

d(n, n+ 1) ≤ 2ℓ(T ∗
n) + ℓ(T ∗

n+1) ≤ 3ℓ(T ∗
n+1), where we have used ℓ(T ∗

n+1) ≥
d(n, n + 1) (any feasible tour must include a subpath from n to n + 1 or

vice versa). �

4.5. Concluding Remarks

In this chapter we have seen how the reoptimization model can often be

applied to NP-hard combinatorial problems in order to obtain algorithms

with approximation guarantees that improve upon the trivial approach of

computing an approximate solution from scratch.

Apart from designing algorithms with good approximation guarantees

for reoptimization problems – and from obtaining sharper negative results

– there are some general open directions in the area. One is to investigate

the more general issue of maintaining an approximate solution under input

modifications. In our model we assumed that an optimal solution was

available for the instance prior to the modification, but it is natural to

relax this constraint by assuming only an approximate solution instead. In

some cases the analysis of the reoptimization algorithm can be carried out

in a similar way even with such a relaxed assumption, but this needs not

be always true.
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Another general question is that of studying the interplay between run-

ning time, approximation guarantee, and amount of data perturbation. If

we devote enough running time (for example, exponential time for prob-

lems in NPO) to the solution of an instance, we can find an optimal solution

independently of the amount of perturbation. On the other hand we saw

that for many problems it is possible to find in polynomial time an almost

optimal solution for any slightly perturbed instance. One could expect that

there might be a general trade-off between the amount of data perturbation

and the running time needed the reconstruct a solution of a given quality.

It would be interesting to identify problems for which such trade-offs are

possible.
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Logic has its origins in basic questions about the nature of the real world
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epistemological relevance of some of the more recent technical work in
logic and computability theory.
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5.1. Introduction

Logic has an impressive history of addressing very basic questions about

the nature of the world we live in. At the same time, it has clarified con-

cepts and informal ideas about the world, and gone on to develop sophis-

ticated technical frameworks within which these can be discussed. Much

of this work is little known or understood by non-specialists, and the sig-

nificance of it largely ignored. While notions such as set, proof and con-

sistency have become part of our culture, other very natural abstractions

such as that of definability are unfamiliar and disconcerting, even to work-

ing mathematicians. The widespread interest in Gödel’s [46, 47] incom-

pleteness results and their frequent application, often in questionable ways,

shows both the potential for logicians to say something important about

the world, while at the same time illustrating the limitations of what has

been achieved so far. This article seeks to bring out the relevance of some

of the more recent technical work in logic and computability theory. Ba-

sic questions addressed include: How do scientists represent and establish

control over information about the universe? How does the universe it-

self exercise control over its own development? And more feasibly: How

can we reflect that control via our scientific and mathematical representa-

tions?

Definability – what we can describe in terms of what we are given in a

particular language – is a key notion. As Hans Reichenbach (Hilary Putnam

is perhaps his best-known student) found in the 1920s onwards, formalising

definability in the real world comes into its own when we need to clarify and

better understand the content of a hard-to-grasp description of reality, such

as Einstein’s theory of general relativity. Reichenbach’s seminal work [78]

on axiomatising relativity has become an ongoing project, carried forward

today by Istvan Nemeti, Hajnal Andreka and their co-workers (see, for ex-

ample, Andréka, Madarász, Németi and Székely [2]). One can think of such

work as paralleling the positive developments that models of computation

enabled during the early days of computer science, bringing a surer grip

on practical computation. But computability theory also gave an overview

of what can be computed in principle, with corresponding technical devel-

opments apparently unrelated to applications. The real-world relevance of

most of this theory remains conjectural.

The capture of natural notions of describability and real-world robust-

ness via the precisely formulated ones of definability and invariance also

brings a corresponding development of theory, which can be applied in
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different mathematical contexts. Such an application does not just bring

interesting theorems, which one just adds to the existing body of theory

with conjectural relevance. It fills out the explanatory framework to a point

where it can be better assessed for power and validity. And it is this which

is further sketched out below. The basic ingredients are the notions of de-

finability and invariance, and a mathematical context which best describes

the scientific description of familiar causal structure.

5.2. Computability versus Descriptions

In the modern world, scientists look for theories that enable predictions,

and, if possible, predictions of a computational character. Everyone else

lives with less constrained descriptions of what is happening, and is likely

to happen. Albert Einstein [38] might have expressed the view in 1950 that:

When we say that we understand a group of natural phenomena, we
mean that we have found a constructive theory which embraces them.

But in everyday life people commonly use informal language to describe

expectations of the real world from which constructive or computational

content is not even attempted. And there is a definite mismatch between

the scientist’s drive to extend the reach of his or her methodology, and the

widespread sense of an intrusion of algorithmic thinking into areas where it

is not valid. A recent example is the controversy around Richard Dawkins’

book [32], The God Delusion. This dichotomy has some basis in theorems

from logic (such as Gödel’s incompleteness theorems): but the basis is more

one for argument and confusion than anything more consensual. Things

were not always so.

If one goes back before the time of Isaac Newton, before the scientific

era, informal descriptions of the nature of reality were the common currency

of those trying to reason about the world. This might even impinge on

mathematics – as when the Pythagoreans wrestled with the ontology of

irrational numbers. Calculation had a quite specific and limited role in

society.

5.3. Turing’s Model and Incomputability

In 1936, Turing [100] modelled what he understood of how a then human

“computer” (generally a young woman) might perform calculations – lay-

ing down rules that were very restrictive in a practical sense, but which
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enabled, as he plausibly argued, all that might be achieved with apparently

more powerful computational actions. Just as the Turing machine’s primi-

tive actions (observing, moving, writing) were the key to modelling complex

computations, so the Turing machine itself provided a route to the mod-

elling of complex natural processes within structures which are discretely

(or at least countably) presented. In this sense, it seemed we now had a way

of making concrete the Laplacian model of science which had been with us

in some form or other ever since the significance of what Newton had done

became clear.

But the techniques for presenting a comprehensive range of computing

machines gave us the universal Turing machine, so detaching computations

from their material embodiments: and – a more uncomfortable surprise

– by adding a quantifier to the perfectly down-to-earth description of the

universal machine we get (and Turing [100] proved it) an incomputable

object, the halting set of the machine. In retrospect, this becomes a vivid

indication of how natural language has both an important real-world role,

and quickly outstrips our computational reach. The need then becomes to

track down material counterpart to the simple mathematical schema which

give rise to incomputability. Success provides a link to a rich body of theory

and opens a Pandora’s box of new perceptions about the failings of science

and the nature of the real universe.

5.4. The Real Universe as Discipline Problem

The Laplacian model has a deeply ingrained hold on the rational mind. For

a bromeliad-like late flowering of the paradigm we tend to think of Hilbert

and his assertion of very general expectations for axiomatic mathematics.

Or of the state of physics before quantum mechanics. The problem is

that modelling the universe is definitely not an algorithmic process, and

that is why intelligent, educated people can believe very different things,

even in science. Even in mathematics. So for many, the mathematical

phase-transition from computability to incomputability, which a quantifier

provides, is banned from the real world (see for example Cotogno [24]).

However simple the mathematical route to incomputability, when looking

out at the natural world, the trick is to hold the eyeglass to an unseeing

eye. The global aspect of causality so familiar in mathematical structures

is denied a connection with reality, in any shape or form. For a whole

community, the discovery of incomputability made the real universe a real

discipline problem. When Martin Davis [30] says:
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The great success of modern computers as all-purpose algorithm-
executing engines embodying Turing’s universal computer in physical
form, makes it extremely plausible that the abstract theory of com-
putability gives the correct answer to the question, ‘What is a compu-
tation?’, and, by itself, makes the existence of any more general form of
computation extremely doubtful.

we have been in the habit of agreeing, in a mathematical setting. But in

the context of a general examination of hypercomputational propositions

(whatever the validity of the selected examples) it gives the definite im-

pression of a defensive response to an uncompleted paradigm change. For

convenience, we call this response [31] – that ‘there is no such discipline as

hypercomputation’ - Davis’ Thesis.

The universal Turing machine freed us from the need actually embody

the machines needed to host different computational tasks. The importance

of this for building programmable computers was immediately recognised by

John von Neuman, and played a key role in the early history of the computer

(see Davis [29]). The notion of a virtual machine is a logical extension of this

tradition, which has found widespread favour amongst computer scientists

and philosophers of a functionalist turn of mind – for instance, there is the

Sloman and Chrisley [89] proposition for releasing consciousness from the

philosophical inconvenience of embodiment (see also Torrance, Clowes and

Chrisley [99]). Such attempts to tame nature are protected by a dominant

paradigm, but there is plenty of dissatisfaction with them based on respect

for the complex physicality of what we see.

5.5. A Dissenting Voice . . .

Back in 1970, Georg Kreisel considered one of the simplest physical situa-

tions presenting mathematical predictive problems. Contained within the

mathematics one detects uncompleted infinities of the kind necessary for

incomputability to have any significance for the real world. In a footnote to

Kreisel [56] he proposed a collision problem related to the 3-body problem,

which might result in ‘an analog computation of a non-recursive function’.

Even though Kreisel’s view was built on many hours of deep thought

about extensions of the Church–Turing thesis to the material universe –

much of this embodied in Odifreddi’s 20-page discussion of the Church–

Turing thesis in his book [69] on Classical Recursion Theory – it is not

backed up by any proof of of the inadequacy of the Turing model built on

a precise description of the collision problem.
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This failure has become a familiar one, what has been described as a

failure to find ‘natural’ examples of incomputability other than those com-

putably equivalent to the halting problem for a universal Turing machine

– with even that not considered very natural by the mainstream mathe-

matician. One requirement of a ‘natural’ incomputable set is that it be

computably enumerable, like the set of solutions of a diophantine equation,

or the set of natural numbers n such that there exists a block of precisely

n 7s in the decimal expansion of the real number π – or like the halting

set of a given Turing machine. The problem is that given a computably

enumerable set of numbers, there are essentially two ways of knowing its

incomputability. One way is to have designed the set oneself to have comple-

ment different to any other set on a standard list of computably enumerable

sets. Without working relative to some other incomputable set, one just

gets canonical sets computably equivalent to the halting set of the universal

Turing machine. Otherwise the set one built has no known robustness, no

definable character one can recognise it by once it is built. The other way

of knowing a particular computably enumerable set to be incomputable is

to be able to compute one of the sets built via way one from the given set.

But only the canonical sets have been found so far to work in this way. So

it is known that there is a whole rich universe of computably inequivalent

computably enumerable sets – but the only individual ones recognisably

so are computably equivalent to the halting problem. Kreisel’s failure is

not so significant when one accepts that an arbitrary set picked from na-

ture in some way is very unlikely to be a mathematically canonical object.

It seems quite feasible that there is a mathematical theorem waiting to

be proved, explaining why there is no accessible procedure for verifying

incomputability in nature.

Since Kreisel’s example, there have been other striking instances of in-

finities in nature with the potential for hosting incomputability. In Off to

Infinity in Finite Time Donald Saari and Jeff Xia [86] describe how one can

even derive singularities arising from the behaviour of five bodies moving

under the influence of the familiar Newtonian inverse square law.

There is a range of more complex examples which are hard to fit into

the standard Turing model, ones with more real-world relevance. There is

the persistence of problems of predictability in a number of contexts. There

is quantum uncertainty, constrained by computable probabilities, but host-

ing what looks very much like randomness; there are apparently emergent

phenomena in many environments; and chaotic causal environments giving

rise to strange attractors; and one has relativity and singularities (black
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holes), whose singular aspects can host incomputability. Specially inter-

esting is the renewed interest in analog and hybrid computing machines,

leading Jan van Leeuwen and Jiri Wiedermann [105] to observe that ‘. . . the

classical Turing paradigm may no longer be fully appropriate to capture all

features of present-day computing.’ And – see later – there is mentality,

consciousness and the observed shortcomings of the mathematical models

of these.

The disinterested observer of Martin Davis’ efforts to keep nature con-

tained within the Turing/Laplacian model might keep in mind the well-

known comment of Arthur C. Clarke [16] (Clarke’s First Law) that:

When a distinguished but elderly scientist states that something is pos-
sible, he is almost certainly right. When he states that something is
impossible, he is very probably wrong.

In what follows we look in more detail at three key challenges to the

attachment of Davis, and of a whole community, to the Turing model in

the form of Davis’ thesis.

There is a reason for this. At first sight, it may seem unimportant to

know whether we have computational or predictive difficulties due to mere

complexity of a real-world computational task, or because of its actual in-

computability. And if there is no distinguishable difference between the two

possibilities, surely it cannot matter which pertains. Well, no. Attached

to two different mathematical characterisations one would expect different

mathematical theories. And there is a rich and well-developed theory of in-

computability. This mathematics may well constrain and give global form

to the real world which it underlies. And these constraints and structur-

ings may be very significant for our experience and understanding of the

universe and our place in it.

5.6. The Quantum Challenge

In the early days of quantum computing, there was some good news for

Davis’ thesis from one of its most prominent supporters. David Deutsch

was one of the originators of the standard model of quantum computa-

tion. In his seminal 1985 article [33] ‘Quantum Theory, the Church-Turing

Principle and the Universal Quantum Computer’ in the Proceedings of the

Royal Society of London, he introduced the notion of a ‘universal quantum

computer’, and described how it might exploit quantum parallelism to com-

pute more efficiently than a classical Turing machine. But Deutsch is quite
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clear that real computers based on this model would not compute anything

not computable classically by a Turing machine. And, of course, there

are many other instances of successful reductions of ‘natural examples’ of

nature-based computational procedures to the Turing model.

But like Martin Davis, Deutsch [35] is keen to take things further – a lot

further – attempting a reduction of human mentality to the Turing model

in a way even Turing in his most constructive frame of mind might have

had misgivings about:

I am sure we will have [conscious computers], I expect they will be purely
classical and I expect that it will be a long time in the future. Significant
advances in our philosophical understanding of what consciousness is,
will be needed.

Be this as it may, there are aspects of the underlying physics which are

not fully used in setting up the standard model for quantum computing. It

is true that measurements do play a role in a quantum computation, but in

a tamed guise. This is how Andrew Hodges explains it, in his article What

would Alan Turing have done after 1954? in the Teuscher volume [98]:

Von Neumann’s axioms distinguished the U (unitary evolution) and R

(reduction) rules of quantum mechanics. Now, quantum computing so
far (in the work of Feynman, Deutsch, Shor, etc.) is based on the U

process and so computable. It has not made serious use of the R process:
the unpredictable element that comes in with reduction, measurement
or collapse of the wave function.

The point being that measurements in the quantum context are intrusive,

with outcomes governed by computable probabilities, but with the mapping

out of what goes on within those probabilities giving the appearance of ran-

domness. There are well-established formalisations of the intuitive notion

of randomness, largely coincident and a large body of mathematical theory

built on these (see, for example, Chaitin [15], Downey and Hirschfeldt [36],

Nies [67]). A basic feature of the theory is the fact that randomness im-

plies incomputability (but not the converse). Calude and Svozil [14] have

extracted a suitable mathematical model of quantum randomness, built

upon assumptions generally acceptable to the physicists. Analysing the

computability-theoretic properties of the model, they are able to show that

quantum randomness does exhibit incomputability. But, interestingly, they

are unable as yet to confirm that quantum randomness is mathematically

random.
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But quantum mechanics does not just present one of the toughest chal-

lenges to Davis’ thesis. It also presents the observer with a long-standing

challenge to its own realism. Interpretations of the theory generally fail

to satisfy everyone, and the currently most widely accepted interpretations

contain what must be considered metaphysical assumptions. When we have

assembled the key ingredients, we will be in a position to argue that the sort

of fundamental thinking needed to rescue the theory from such assumptions

is based on some very basic mathematics.

5.7. Schrödinger’s Lost States, and the Many-Worlds Inter-

pretation

One way of describing the quantum world is via the Schrödinger wave equa-

tion. What Hodges refers to above are the processes for change of the wave

equation describing the quantum state of a physical system. On the one

hand, one has deterministic continuous evolution via Schrödinger’s equa-

tion, involving superpositions of basis states. On the other, one has proba-

bilistic non-local discontinuous change due to measurement. With this, one

observes a jump to a single basis state. The interpretive question then is:

Where do the other states go?

Writing with hindsight: If the physicists knew enough logic, they would

have been able to make a good guess. And if the logicians had been focused

enough on the foundations of quantum mechanics they might have been able

to tell them.

As it is, physics became a little weirder around 1956. The backdrop to

this is the sad and strange life-story of Hugh Everett III and his family,

through which strode the formidable John Wheeler, Everett’s final thesis

advisor, and Bryce DeWitt, who in 1970 coined the term ‘Many-Worlds’

for Everett’s neglected and belittled idea: an idea whose day came too late

to help the Everett family, now only survived by the son Mark who relives

parts of the tragic story via an autobiography [42] and appropriately left

field confessional creations as leader of the Eels rock band.

Many-Worlds, with a little reworking, did away with the need to explain

the transition from many superposed quantum states to the ‘quasi-classical’

uniqueness we see around us. The multiplicity survives and permeates

micro- to macro-reality, via a decohering bushy branching of alternative

histories, with us relegated to our own self-contained branch. Max Tegmark

has organised the multiplying variations on the Many-Worlds theme into

hierarchical levels of ‘multiverses’, from modest to more radical proposals,
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with even the underlying mathematics and the consequent laws of physics

individuating at Level IV. Of course, if one does not bother any more to

explain why our universe works so interestingly, one needs the ‘anthropic

principle’ on which to base our experience of the world – ‘We’re here because

we’re here because we’re here because we’re here . . . ’, as they sang during

the Great War, marching towards the trenches. The attraction of this

picture derives from the drive for a coherent overview, and the lack of a

better one. As David Deutsch put it in The Fabric of Reality [34, p.48]:

. . . understanding the multiverse is a precondition for understanding re-
ality as best we can. Nor is this said in a spirit of grim determination to
seek the truth no matter how unpalatable it may be . . . It is, on the con-
trary, because the resulting world-view is so much more integrated, and
makes more sense in so many ways, than any previous world-view, and
certainly more than the cynical pragmatism which too often nowadays
serves as surrogate for a world-view amongst scientists.

Here is a very different view of the multiverse from the distinguished

South African mathematician George Ellis [40, p.198], one-time collabora-

tor of Stephen Hawking:

The issue of what is to be regarded as an ensemble of ‘all possible’
universes is unclear, it can be manipulated to produce any result you
want . . . The argument that this infinite ensemble actually exists can
be claimed to have a certain explanatory economy (Tegmark 1993),
although others would claim that Occam’s razor has been completely
abandoned in favour of a profligate excess of existential multiplicity, ex-
travagantly hypothesized in order to explain the one universe that we do
know exists.

The way out of this foundational crisis, as with previous ones in mathe-

matics and science, is to adopt a more constructive approach. In this way,

one can combine the attractions of Tegmark’s [96] Mathematical Universe

Hypothesis (MUH) with the discipline one gets from the mathematics of

what can be built from very small beginnings.

5.8. Back in the One World . . .

A constructive approach is not only a key to clarifying the interpretive

problem. Eliminating the redundancy of parallel universes, and the reliance

on the anthropic principle, also entails the tackling of the unsatisfactory

arbitrariness of various aspects of the standard model. The exact values

of the constants of nature, subatomic structure, the geometry of space –
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all confront the standard model of particle physics with a foundational

problem. Alan Guth, inventor of the ‘cosmic inflation’ needed to make

sense of our picture of the early universe, asks [48]:

If the creation of the universe can be described as a quantum process,
we would be left with one deep mystery of existence: What is it that
determined the laws of physics?

And Peter Woit, in his recent book [106] Not Even Wrong – The Failure of

String Theory and the Continuing Challenge to Unify the Laws of Physics,

comments on the arbitrary constants one needs to give the right values to

get the standard model to behave properly:

One way of thinking about what is unsatisfactory about the standard
model is that it leaves seventeen non-trivial numbers still to be explained,
. . .

Even though the exact number of constants undetermined by theory, but

needing special fine-tuning to make the standard model fit with observa-

tion, does vary, even one is too many. This dissatisfaction with aspects of

the standard model goes back to Einstein. Quoting from Einstein’s Auto-

biographical Notes [39, p.63]:

. . . I would like to state a theorem which at present can not be based upon
anything more than upon a faith in the simplicity, i.e. intelligibility, of
nature . . . nature is so constituted that it is possible logically to lay down
such strongly determined laws that within these laws only rationally
completely determined constants occur (not constants, therefore, whose
numerical value could be changed without destroying the theory) . . .

What is needed is mathematics which does more than express mecha-

nistic relationships between basic entities. One needs theory expressed in

language strong enough to encapsulate not just relations on the material

world, but relations on such relations – relations which entail qualifications

sophisticated enough to determine all aspects of the our universe, including

the laws of nature themselves. Or, as Roger Penrose terms it [70, pp. 106–

107], we need to capture Strong Determinism, whereby:

. . . all the complication, variety and apparent randomness that we see all
about us, as well as the precise physical laws, are all exact and unam-
biguous consequences of one single coherent mathematical structure.

The article [13] of Calude, Campbell, Svozil and Stefanescu on Strong deter-

minism vs. computability contains a useful discussion of the computability-

theoretic ramifications of strong determinism.
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In the next section we examine some more approachable phenomena

than those at the quantum level. Even though the challenge these present

to Davis’ Thesis is less obvious than that of quantum uncertainty, they do

point us in the direction of the mathematics needed to make sense of strong

determinism.

5.9. The Challenge from Emergence

The waves on the seashore, the clouds scudding across the sky, the com-

plexity of the Mandelbrot set – observing these, one is made aware of limits

on what we can practically compute. The underlying rules governing them

are known, but that is not enough. When we talk about the problem of

‘seeing the wood for the trees’ we are approaching the gap between micro

and macro events from another direction. Either way, there are commonly

encountered situations in which either reduction, or seeing the ‘big picture’,

entails more than a computation.

Although an interest in such things goes back to Poincaré – we already

mentioned the 3-body problem – it was the second half of the twentieth

century saw the growth of chaos theory, and a greater of awareness of

the generation of informational complexity via simple rules, accompanied

by the emergence of new regularities. The most mundane and apparently

uncomplicated situations could provide examples, such as Robert Shaw’s

[87] strange attractor arising from an appropriately paced dripping tap.

And inhospitable as turbulent fluids might appear, there too higher order

formations might emerge and be subject to mathematical description, as

demonstrated by David Ruelle (see Ruelle [85]) another early pioneer in the

area. Schematic metaphors for such examples are provided by the cellular

automaton (CA) model, and famously by John Conway’s Game of Life.

Here is the musician Brian Eno [41] talking in relation to how his creative

work on ‘generative music’ was influenced by ‘Life’:

These are terribly simple rules and you would think it probably couldn’t
produce anything very interesting. Conway spent apparently about a
year finessing these simple rules. . . . He found that those were all the
rules you needed to produce something that appeared life-like.

What I have over here, if you can now go to this Mac computer, please.
I have a little group of live squares up there. When I hit go I hope they
are going to start behaving according to those rules. There they go. I’m
sure a lot of you have seen this before. What’s interesting about this is
that so much happens. The rules are very, very simple, but this little
population here will reconfigure itself, form beautiful patterns, collapse,
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open up again, do all sorts of things. It will have little pieces that wander
around, like this one over here. Little things that never stop blinking, like
these ones. What is very interesting is that this is extremely sensitive to
the conditions in which you started. If I had drawn it one dot different
it would have had a totally different history. This is I think counter-
intuitive. One’s intuition doesn’t lead you to believe that something like
this would happen.

Margaret Boden and Ernest Edmonds [7] make a case for generative art,

emergent from automata-like computer environments, really qualifying as

art. While computer pioneer Konrad Zuse was impressed enough by the

potentialities of cellular automata to suggest [107] that the physics of the

universe might be CA computable.

An especially useful key to a general mathematical understanding of

such phenomena is the well-known link between emergent structures in

nature, and familiar mathematical objects, such as the Mandelbrot and

Julia sets. These mathematical metaphors for real-world complexity and

associated patterns have caught the attention of many – such as Stephen

Smale [6] and Roger Penrose – as a way of getting a better grip on the

computability/complexity of emergent phenomena. Here is Penrose [71]

describing his fascination with the Mandelbrot set:

Now we witnessed . . . a certain extraordinarily complicated looking set,
namely the Mandelbrot set. Although the rules which provide its defini-
tion are surprisingly simple, the set itself exhibits an endless variety of
highly elaborate structures.

As a mathematical analogue of emergence in nature, what are the dis-

tinctive mathematical characteristics of the Mandelbrot set? It is derived

from a simple polynomial formula over the complex numbers, via the ad-

dition of a couple of quantifiers. In fact, with a little extra work, the

quantifiers can be reduced to just one. This gives the definition the aspect

of a familiar object from classical computability theory – namely, a Π0
1 set.

Which is just the level at which we might not be surprised to encounter

incomputability. But we have the added complication of working with real

(via complex) numbers rather than just the natural numbers. This creates

room for a certain amount of controversy around the use of the BSS model

of real computation (see Blum, Cucker, Shub and Smale [6]) to show the

incomputability of the Mandelbrot set and most Julia sets. The 2009 book

by Mark Braverman and Michael Yampolsky [9] on Computability of Julia

Sets is a reliable guide to recent results in the area, including those using

the more mainstream computable analysis model of real computation. The
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situation is not simple, and the computability of the Mandelbrot set, as of

now, is still an open question.

What is useful, in this context, is that these examples both connect

with emergence in nature, and share logical form with well-known objects

which transcend the standard Turing model. As such, they point to the role

of extended language in a real context taking us beyond models which are

purely mechanistic. And hence give us a route to mathematically capturing

the origins of emergence in nature, and to extending our understanding of

how nature computes. We can now view the halting set of a universal

Turing machine as an emergent phenomenon, despite it not being as pretty

visually as our Mandelbrot and Julia examples.

One might object that there is no evidence that quantifiers and other

globally defined operations have any existence in nature beyond the minds

of logicians. But how does nature know anything about any logical con-

struct? The basic logical operations derive their basic status from their as-

sociation with elementary algorithmic relationships over information. Con-

junction signifies an appropriate and very simple merging of information,

of the kind commonly occurring in nature. Existential quantification ex-

presses projection, analogous to a natural object throwing a shadow on a

bright sunny day. And if a determined supporter of Davis’ Thesis plays at

God, and isolates a computational environment with the aim of bringing

it within the Turing model, then the result is the delivery of an identity

to that environment, the creating a natural entity – like a human being,

perhaps – with undeniable naturally emergent global attributes.

There are earlier, less schematic approaches to the mathematics of emer-

gence, ones which fit well with the picture so far.

It often happens that when one gets interested in a particular aspect of

computability, one finds Alan Turing was there before us. Back in the 1950s,

Turing proposed a simple reaction–diffusion system describing chemical re-

actions and diffusion to account for morphogenesis, i.e. the development

of form and shape in biological systems. One can find a full account of

the background to Turing’s seminal intervention in the field at Jonathan

Swinton’s well-documented webpage [95] on Alan Turing and morphogene-

sis. One of Turing’s main achievements was to come up with mathematical

descriptions – differential equations – governing such phenomena as Fi-

bonacci phyllotaxis: the surprising showing of Fibonacci progressions in

such things as the criss-crossing spirals of a sunflower head. As Jonathan

Swinton describes:
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In his reaction-diffusion system [Turing] had the first and one of the most
compelling models mathematical biology has devised for the creation
process. In his formulation of the Hypothesis of Geometrical Phyllotaxis
he expressed simple rules adequate for the appearance of Fibonacci pat-
tern. In his last, unfinished work he was searching for plausible reasons
why those rules might hold, and it seems only in this that he did not
succeed. It would take many decades before others, unaware of his full
progress, would retrace his steps and finally pass them in pursuit of a
rather beautiful theory.

Most of Turing’s work in this area was unpublished in his lifetime, only

appearing in 1992 in the Collected Works [103]. Later work, coming to

fruition just after Turing died, was carried forward by his student Bernard

Richards, appearing in his thesis [79]. See Richards [80] for an interesting

account of Richards’ time working with Turing.

The field of synergetics, founded by the German physicist Hermann

Haken, provides another mathematical approach to emergence. Synergetics

is a multi-disciplinary approach to the study of the origins and evolution of

macroscopic patterns and spacio-temporal structures in interactive systems.

An important feature of synergetics for our purposes is its focus on self-

organisational processes in science and the humanities, particularly that of

autopoiesis. An instance of an autopoietic system is a biological cell, and

is distinguished by being sufficiently autonomous and operationally closed,

to recognisably self-reproduce.

A particularly celebrated example of the technical effectiveness of the

theory is Ilya Prigogine’s achievement of the Nobel Prize for Chemistry

in 1977 for his development of dissipative structure theory and its appli-

cation to thermodynamic systems far from equilibrium, with subsequent

consequences for self-organising systems. Nonlinearity and irreversibility

are associated key aspects of the processes modelled in this context.

See Michael Bushev’s comprehensive review of the field in his book [12]

Synergetics – Chaos, Order, Self-Organization. Klaus Mainzer’s book [61]

on Thinking in Complexity: The Computational Dynamics of Matter, Mind,

and Mankind puts synergetics in a wider context, and mentions such things

as synergetic computers.

The emphasis of the synergetists on self-organisation in relation to the

emergence of order from chaos is important in switching attention from the

surprise highlighted by so many accounts of emergence, to the autonomy

and internal organisation intrinsic to the phenomenon. People like Pri-

gogine found within synergetics, as did Turing for morphogenesis, precise
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descriptions of previously mysteriously emergent order.

5.10. A Test for Emergence

There is a problem with the big claims made for emergence in many different

contexts. Which is that, like with ‘life’, nobody has a good definition of

it. Sometimes, this does matter. Apart from which, history is littered with

instances of vague concepts clarified by science, with huge benefits to our

understanding of the world and to the progress of science and technology.

The clarification of what we mean by a computation, and the subsequent

development of the computer and computer science is a specially relevant

example here. Ronald C. Arkin, in his book [3, p.105] Behaviour-Based

Robotics, summarises the problem as it relates to emergence:

Emergence is often invoked in an almost mystical sense regarding the
capabilities of behavior-based systems. Emergent behavior implies a
holistic capability where the sum is considerably greater than its parts.
It is true that what occurs in a behavior-based system is often a surprise
to the system’s designer, but does the surprise come because of a short-
coming of the analysis of the constituent behavioral building blocks and
their coordination, or because of something else?

There is a salutary warning from the history of British Emergentists,

who had their heyday in the early 1920s – Brian McLaughlin’s book [64].

The notion of emergence has been found to be a useful concept from at

least the time of John Stuart Mill, back in the nineteenth century. The

emergentists of the 1920s used the concept to explain the irreducibility

of the ‘special sciences’, postulating a hierarchy with physics at the bot-

tom, followed by chemistry, biology, social science etc. The emergence

was seen, anticipating modern thinking, as being irreversible, imposing the

irreducibility of say biology to quantum theory. Of course the British emer-

gentists experienced their heyday before the great quantum discoveries of

the late 1920s, and as described in McLaughlin [64], this was in a sense their

undoing. One of the leading figures of the movement was the Cambridge

philosopher C. D. Broad, described by Graham Farmelo in his biography

of Paul Dirac [43, p.39] as being, in 1920, ‘one of the most talented young

philosophers working in Britain’. In many ways a precursor of the current

philosophers arguing for the explanatory role of emergence in the philosophy

of mind, Charlie Broad was alive to the latest scientific developments, lec-

turing to the young Paul Dirac on Einstein’s new theory of relativity while

they were both at Bristol. But here is Broad writing in 1925 [10, p.59]
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about the ‘emergence’ of salt crystals:

. . . the characteristic behaviour of the whole . . . could not, even in theory,
be deduced from the most complete knowledge of the behaviour of its
components . . . This . . . is what I understand by the ‘Theory of Emer-
gence’. I cannot give a conclusive example of it, since it is a matter
of controversy whether it actually applies to anything . . . I will merely
remark that, so far as I know at present, the characteristic behaviour of
Common Salt cannot be deduced from the most complete knowledge of
the properties of Sodium in isolation; or of Chlorine in isolation; or of
other compounds of Sodium, . . .

The date 1925 is significant of course. It was in the years following that

Dirac and others developed the quantum mechanics which would explain

much of chemistry in terms of locally described interactions between sub-

atomic particles. The reputation of the emergentists, for whom such ex-

amples had been basic to their argument for the far-reaching relevance of

emergence, never quite recovered.

For Ronald, Sipper and Capcarrère in 1999, Turing’s approach to pin-

ning down intelligence in machines suggested a test for emergence. Part

of the thinking would have been that emergence, like intelligence, is some-

thing we as observers think we can recognise; while the complexity of what

we are looking for resists observer-independent analysis. The lesson is to

police the observer’s evaluation process, laying down some optimal rules for

a human observer. Of course, the Turing Test is specially appropriate to

its task, our own experience of human intelligence making us well qualified

to evaluate the putative machine version. Anyway, the Emergence Test

of Ronald, Sipper and Capcarrère [83] for emergence being present in a

system, modelled on the Turing Test, had the following three ingredients:

(1) Design: The system has been constructed by the designer, by describ-

ing local elementary interactions between components (e.g. artificial

creatures and elements of the environment) in a language L1.

(2) Observation: The observer is fully aware of the design, but describes

global behaviours and properties of the running system, over a period

of time, using a language L2.

(3) Surprise: The language of design L1 and the language of observation

L2 are distinct, and the causal link between the elementary interactions

programmed in L1 and the behaviours observed in L2 is non-obvious

to the observer – who therefore experiences surprise. In other words,

there is a cognitive dissonance between the observer’s mental image of
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the system’s design stated in L1 and his contemporaneous observation

of the system’s behaviour stated in L2.

Much of what we have here is what one would expect, extracting the

basic elements of the previous discussion, and expressing it from the point

of view of the assumed observer. But an ingredient which should be noted is

the formal distinction between the language L1 of the design and that of the

observer, namely L2. This fits in with our earlier mathematical examples:

the halting set of a universal Turing machine, and the Mandelbrot set,

where the new language is got by adding a quantifier – far from a minor

augmentation of the language, as any logician knows. And it points to the

importance of the language used to describe the phenomena, an emphasis

underying the next section.

5.11. Definability the Key Concept

We have noticed that it is often possible to get descriptions of emergent

properties in terms of the elementary actions from which they arise. For

example, this is what Turing did for the role of Fibonacci numbers in re-

lation to the sunflower etc. This is not unexpected, it is characteristic of

what science does. And in mathematics, it is well known that complicated

descriptions may take us beyond what is computable. This could be seen

as a potential source of surprise in emergence.

But one can turn this viewpoint around, and get something more basic.

There is an intuition that entities do not just generate descriptions of the

rules governing them: they actually exist because of, and according to

mathematical laws. And that for entities that we can be aware of, these

will be mathematical laws which are susceptible to description. That it is

the describability that is key to their observability. But that the existence of

such descriptions is not enough to ensure we can access them, even though

they have algorithmic content which provides the stuff of observation.

It is hard to for one to say anything new. In this case Leibniz was there

before us, essentially with his Principle of Sufficient Reason. According to

Leibniz [60] in 1714:

. . . there can be found no fact that is true or existent, or any true propo-
sition, without there being a sufficient reason for its being so and not
otherwise, although we cannot know these reasons in most cases.

Taking this a little further – natural phenomena not only generate descrip-

tions, but arise and derive form from them. And this connects with a
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useful abstraction – that of mathematical definability, or, more generally,

invariance under the automorphisms of the appropriate structure. So giving

precision to our experience of emergence as a potentially non-algorithmic

determinant of events.

This is a familiar idea in the mathematical context. The relevance of

definability for the real world is implicitly present in Hans Reichenbach’s

work [78] on the axiomatisation of relativity. It was, of course, Alfred Tarski

who gave a precise logical form to the notion of definability. Since then

logicians have worked within many different mathematical structures, suc-

ceeding in showing that different operations and relations are non-trivially

definable, or in some cases undefinable, in terms of given features of the

structure. Another familiar feature of mathematical structures is the rela-

tionship between definability within the structure and the decidability of its

theory (see Marker [62]), giving substance to the intuition that knowledge

of the world is so hard to capture, because so much can be observed and

described. Tarski’s proof of decidability of the real numbers, contrasting

with the undecidability of arithmetic, fits with the fact that one cannot

even define the integers in the structure of the real numbers.

Unfortunately, outside of logic, and certainly outside of mathematics,

the usefulness of definability remains little understood. And the idea that

features of the real world may actually be undefinable is, like that of in-

computability, a recent and unassimilated addition to our way of looking

at things.

At times, definability or its breakdown comes disguised within quite

familiar phenomena. In science, particularly in basic physics, symmetries

play an important role. One might be surprised at this, wondering where

all these often beautiful and surprising symmetries come from. Maybe

designed by some higher power? In the context of a mathematics in which

undefinability and nontrivial automorphisms of mathematical structures

is a common feature, such symmetries lose their unexpectedness. When

Murray Gell-Mann demonstrated the relevance of SU(3) group symmetries

to the quark model for classifying of elementary particles, it was based

on lapses in definability of the strong nuclear force in relation to quarks

of differing flavour. The automorphisms of which such symmetries are an

expression give a clear route from fundamental mathematical structures and

their automorphism groups to far-reaching macro-symmetries in nature. If

one accepts that such basic attributes as position can be subject to failures

of definability, one is close to restoring realism to various basic sub-atomic

phenomena.
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One further observation: identifying emergent phenomena with material

expressions of definable relations suggests an accompanying robustness of

such phenomena. One would expect the mathematical characterisation to

strip away much of the mystery which has made emergence so attractive to

theologically inclined philosophers of mind, such as Samuel Alexander [1,

p.14]:

The argument is that mind has certain specific characters to which there
is or even can be no neural counterpart . . .Mind is, according to our
interpretation of the facts, an ‘emergent’ from life, and life an emergent
from a lower physico-chemical level of existence.

And further [1, p.428]:

In the hierarchy of qualities the next higher quality to the highest at-
tained is deity. God is the whole universe engaged in process towards the
emergence of this new quality, and religion is the sentiment in us that
we are drawn towards him, and caught in the movement of the world to
a higher level of existence.

In contrast, here is Martin Nowak, Director of the Program for Evolu-

tionary Dynamics at Harvard University, writing in the collection [11] What

We Believe But Cannot Prove, describing the sort of robustness we would

expect:

I believe the following aspects of evolution to be true, without knowing
how to turn them into (respectable) research topics.

Important steps in evolution are robust. Multicellularity evolved at least
ten times. There are several independent origins of eusociality. There
were a number of lineages leading from primates to humans. If our
ancestors had not evolved language, somebody else would have.

What is meant by robustness here is that there is mathematical content

which enables the process to be captured and moved between different

platforms; though it says nothing about the relevance of embodiment or the

viability of virtual machines hostable by canonical machines. We return to

this later. On the other hand, it gives us a handle on representability of

emergent phenomena, a key aspect of intelligent computation.

5.12. The Challenge of Modelling Mentality

Probably the toughest environment in which to road-test the general math-

ematical framework we have associated with emergence is that of human

mental activity. What about the surprise ingredient of the Emergence Test?
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Mathematical thinking provides an environment in which major in-

gredients – Turing called them intuition and ingenuity, others might call

them creativity and reason – are easier to clearly separate. A classical

source of information and analysis of such thinking is the French mathe-

matician Jacques Hadamard’s The Psychology of Invention in the Math-

ematical Field [49], based on personal accounts supplied by distinguished

informants such as Poincaré, Einstein and Polya. Hadamard was particu-

larly struck by Poincaré’s thinking, including a 1908 address of his to the

French Psychological Society in Paris on the topic of Mathematical Cre-

ation. Hadamard followed Poincaré and Einstein in giving an important

role to unconscious thought processes, and their independence of the role

of language and mechanical reasoning. This is Hadamard’s account, built

on that of Poincaré [73], of Poincaré’s experience of struggling with a prob-

lem:

At first Poincaré attacked [a problem] vainly for a fortnight, attempting
to prove there could not be any such function . . . [quoting Poincaré]:

“Having reached Coutances, we entered an omnibus to go some place or
other. At the moment when I put my foot on the step, the idea came to
me, without anything in my former thoughts seeming to have paved the
way for it . . . I did not verify the idea . . . I went on with a conversation
already commenced, but I felt a perfect certainty. On my return to Caen,
for conscience sake, I verified the result at my leisure.”

This experience will be familiar to most research mathematicians – the

period of incubation, the failure of systematic reasoning and the surprise

element in the final discovery of the solution: a surprise that may, over a

lifetime, lose some of its bite with repetition and familiarity, but which one

is still compelled to recognise as being mysterious and worthy of surprise.

Anyway, the important third part of the Emergence Test is satisfied here.

Perhaps even more striking is the fact that Poincaré’s solution had that

robustness we looked for earlier: the solution came packaged and mentally

represented in a form which enabled it to be carried home and unpacked

intact when back home. Poincaré just carried on with his conversation on

the bus, his friend presumably unaware of the remarkable thoughts coursing

through the mathematician’s mind.

Another such incident emphasises the lack of uniqueness and the spe-

cial character of such incidents – Jacques Hadamard [49] quoting Poincaré

again:
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“Then I turned my attention to the study of some arithmetical questions
apparently without much success . . . Disgusted with my failure, I went
to spend a few days at the seaside and thought of something else. One
morning, walking on the bluff, the idea came to me, with just the same
characteristics of brevity, suddenness and immediate certainty, that the
arithmetic transformations of indefinite ternary quadratic forms were
identical with those of non-Euclidian geometry.”

What about the design, and the observer’s awareness of the design?

Here we have a large body of work , most notably from neuro-scientists and

philosophers, and an increasingly detailed knowledge of the workings of the

brain. What remains in question – even accepting the brain as the design

(not as simple as we would like!) – is the exact nature of the connection

between the design and the emergent level of mental activity. This is an

area where the philosophers pay an important role in clarifying problems

and solutions, while working through consequences and consistencies.

The key notion, providing a kind of workspace for working through alter-

natives, is that of supervenience. According to Jaegwon Kim [53, pp.14–15],

supervenience:

. . . represents the idea that mentality is at bottom physically based, and
that there is no free-floating mentality unanchored in the physical nature
of objects and events in which it is manifested.

There are various formulations. This one is from the online Stanford En-

cyclopedia of Philosophy:

A set of properties A supervenes upon another set B just in case no two
things can differ with respect to A-properties without also differing with
respect to their B-properties.

So in this context, it is the mental properties which are thought to supervene

on the neuro-physical properties. All we need to know is are the details of

how this supervenience takes place. And what throws up difficulties is our

own intimate experience of the outcomes of this supervenience.

One of the main problems relating to supervenience is the so-called

‘problem of mental causation’, the old problem which undermined the

Cartesian conception of mind–body dualism. The persistent question is:

How can mentality have a causal role in a world that is fundamentally

physical? Another unavoidable problem is that of ‘overdetermination’ –

the problem of phenomena having both mental and physical causes. For a

pithy expression of the problem, here is Kim [54] again:
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. . . the problem of mental causation is solvable only if mentality is phys-
ically reducible; however, phenomenal consciousness resists physical re-
duction, putting its causal efficacy in peril.

It is not possible here, and not even useful, to go into the intricacies

of the philosophical debates which rage on. But it is important to take

on board the lesson that a crude mechanical connection between mental

activity and the workings of the brain will not do the job. Mathemati-

cal modelling is needed to clarify the mess, but has to meet very tough

demands.

5.13. Connectionist Models to the Rescue?

Synaptic interactions are basic to the workings of the brain, and connection-

ist models based on these are the first hope. And there is optimism about

such models from such leading figures in the field as Paul Smolensky [90],

recipient of the 2005 David E. Rumelhart Prize:

There is a reasonable chance that connectionist models will lead to the
development of new somewhat-general-purpose self-programming, mas-
sively parallel analog computers, and a new theory of analog parallel
computation: they may possibly even challenge the strong construal of
Church’s Thesis as the claim that the class of well-defined computations
is exhausted by those of Turing machines.

And it is true that connectionist models have come a long way since Turing’s

1948 discussion [102] of ‘unorganised machines’, and McCulloch and Pitts’

1943 early paper [65] on neural nets. (Once again, Turing was there at the

beginning, see Teuscher’s book [97] on Turing’s Connectionism.)

But is that all there is? For Steven Pinker [72] ‘. . . neural networks

alone cannot do the job’. And focusing on our elusive higher functionality,

and the way in which mental images are recycled and incorporated in new

mental processes, he points to a ‘kind of mental fecundity called recursion’:

We humans can take an entire proposition and give it a role in some
larger proposition. Then we can take the larger proposition and embed
it in a still-larger one. Not only did the baby eat the slug, but the father
saw the baby eat the slug, and I wonder whether the father saw the baby
eat the slug, the father knows that I wonder whether he saw the baby eat
the slug, and I can guess that the father knows that I wonder whether
he saw the baby eat the slug, and so on.
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Is this really something new? Neural nets can handle recursions of

various kinds. They can exhibit imaging and representational capabilities.

They can learn. The problem seems to be with modelling the holistic

aspects of brain functionalism. It is hard to envisage a model at the level

of neural networks which successfully represent and communicate its own

global informational structures. Neural nets do have many of the basic

ingredients of what one observes in brain functionality, but the level of

developed synergy of the ingredients one finds in the brain does seem to

occupy a different world. There seems to be a dependency on an evolved

embodiment which goes against the classical universal machine paradigm.

We develop these comments in more detail later in this section.

For the mathematician, definability is the key to representation. As

previously mentioned, the language functions by representing basic modes

of using the informational content of the structure over which the language

is being interpreted. Very basic language corresponds to classical compu-

tational relationships, and is local in import. If we extend the language,

for instance, by allowing quantification, it still conveys information about

an algorithmic procedure for accessing information. The new element is

that the information accessed may now be emergent, spread across a range

of regions of the organism, its representation very much dependent on the

material embodiment and with the information accessed via finitary compu-

tational procedures which also depend on the particular embodiment. One

can observe this preoccupation with the details of the embodiment in the

work of the neuro-scientist Antonio Damasio. One sees this in the follow-

ing description from Damasio’s book, The Feeling Of What Happens, of the

kind of mental recursions Steven Pinker was referring to above [25, p.170]:

As the brain forms images of an object – such as a face, a melody, a
toothache, the memory of an event – and as the images of the object
affect the state of the organism, yet another level of brain structure
creates a swift nonverbal account of the events that are taking place
in the varied brain regions activated as a consequence of the object-
organism interaction. The mapping of the object-related consequences
occurs in first-order neural maps representing the proto-self and object;
the account of the causal relationship between object and organism can
only be captured in second-order neural maps. . . . one might say that
the swift, second-order nonverbal account narrates a story: that of the
organism caught in the act of representing its own changing state as it
goes about representing something else.
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Here we see the pointers to the elements working against the classical in-

dependence of the computational content from its material host. We may

have a mathematical precision to the presentation of the process. But the

presentation of the basic information has to deal with emergence of a pos-

sibly incomputable mathematical character, and so has to be dependent on

the material instantiation. And the classical computation relative to such

information, implicit in the quotations from Pinker and Damasio, will need

to work relative to these material instantiations. The mathematics sets up

a precise and enabling filing system, telling the brain how to work hierarchi-

cally through emergent informational levels, within an architecture evolved

over millions of years.

There is some recognition of this scenario in the current interest in the

evolution of hardware – see, for example, Hornby, Sekanina and Haddow

[52]. We tend to agree with Steven Rose [84]:

Computers are designed, minds have evolved. Deep Blue could beat
Kasparov at a game demanding cognitive strategies, but ask it to escape
from a predator, find food or a mate, and negotiate the complex inter-
actions of social life outside the chessboard or express emotion when it
lost a game, and it couldn’t even leave the launchpad. Yet these are
the skills that human survival depends on, the products of 3bn years of
trial-and-error evolution.

From a computer scientist’s perspective, we are grappling with the design of

a cyber-physical system (CPS). And as Edward Lee from Berkeley describes

[59]:

To realize the full potential of CPS, we will have to rebuild computing
and networking abstractions. These abstractions will have to embrace
physical dynamics and computation in a unified way.

In Lee [58], he argues for ‘a new systems science that is jointly physical and

computational’.

Within such a context, connectionist models with their close relation-

ship to synaptic interactions, and availability for ad hoc experimentation,

do seem to have a useful role. But there are good reasons for looking for

a more fundamental mathematical model with which to express the ‘de-

sign’ on which to base a definable emergence. The chief reason is the need

for a general enough mathematical framework, capable of housing differ-

ent computationally complex frameworks. Although the human brain is an

important example, it is but one part of a rich and heterogeneous compu-

tational universe, reflecting in its workings many elements of that larger
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context. The history of mathematics has led us to look for abstractions

which capture a range of related structures, and which are capable of the-

oretical development informed by intuitions from different sources, which

become applicable in many different situations. And which provide basic

understanding to take us beyond the particularities of individual examples.

5.14. Definability in What Structure?

In looking for the mathematics to express the design, we need to take

account of the needs of physics as well as those of mentality or biology.

In his The Trouble With Physics [91], Lee Smolin points to a number of

deficiencies of the standard model, and also of popular proposals such as

those of string theory for filling its gaps. And in successfully modelling the

physical universe, Smolin declares [91, p.241]:

. . . causality itself is fundamental.

Referring to ‘early champions of the role of causality’ such as Roger Pen-

rose, Rafael Sorkin (the inventor of causal sets), Fay Dowker and Fotini

Markopoulou, Smolin goes on to explain [91, p.242]:

It is not only the case that the spacetime geometry determines what the
causal relations are. This can be turned around: Causal relations can
determine the spacetime geometry . . .

It’s easy to talk about space or spacetime emerging from something more
fundamental, but those who have tried to develop the idea have found
it difficult to realize in practice. . . .We now believe they failed because
they ignored the role that causality plays in spacetime. These days,
many of us working on quantum gravity believe that causality itself is
fundamental – and is thus meaningful even at a level where the notion
of space has disappeared.

So, when we have translated ‘causality’ into something meaningful, and the

model based on it has been put in place – the hoped-for prize is a theory

in which even the background character of the universe is determined by

its own basic structure. In such a scenario, not only would one be able

to do away with the need for exotic multiverse proposals, patched with

inflationary theories and anthropic metaphysics. But, for instance, one can

describe a proper basis for the variation of natural laws near a mathematical

singularity, and so provide a mathematical foundation for the reinstatement

of the philosophically more satisfying cyclical universe as an alternative to
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the inflationary Big Bang hypothesis – see Paul Steinhardt and Neil Turok’s

book [94] for a well worked out proposal based on superstring theory.

5.15. The Turing Landscape, Causality and Emergence . . .

If there is one field in which ‘causality’ can be said to be fundamental, it

is that of computability. Although the sooner we can translate the term

into something more precise, the better. ‘Causality’, despite its everyday

usefulness, on closer inspection is fraught with difficulties, as John Earman

[37, p.5] nicely points out:

. . . the most venerable of all the philosophical definitions [of determin-
ism] holds that the world is deterministic just in case every event has a
cause. The most immediate objection to this approach is that it seeks
to explain a vague concept – determinism – in terms of a truly obscure
one – causation.

Historically, one recognised the presence of a causal relationship when a

clear mechanical interaction was observed. But Earman’s book makes us

aware of the subtleties beyond this at all stages of history. The success of

science in revealing such interactions underlying mathematically signalled

causality – even for Newton’s gravitational ‘action at a distance’ – has

encouraged us to think in terms of mathematical relationships being the

essence of causality. Philosophically problematic as this may be in general,

there are enough mathematical accompaniments to basic laws of nature

to enable us to extract a suitably general mathematical model of physical

causality, and to use this to improve our understanding of more compli-

cated (apparent) causal relationships. The classical paradigm is still Isaac

Newton’s formulation of a mathematically complete formulation of his laws

of motion, sufficient to predict an impressive range of planetary motions.

Schematically, logicians at least have no problem representing Newto-

nian transitions between mathematically well-defined states of a pair of

particles at different times as the Turing reduction of one real to another,

via a partial computable (p.c.) functional describing what Newton said

would happen to the pair of particles. The functional expresses the com-

putational and continuous nature of the transition. One can successfully

use the functional to approximate, to any degree of accuracy, a particular

transition.

This type of model, using partial computable functionals extracted from

Turing’s [101] notion of oracle Turing machine, is very generally applica-
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ble to basic laws of nature. However, it is well known that instances of a

basic law can be composed so as to get much more problematic mathemat-

ical relationships, relationships which have a claim to be causal. We have

mentioned cases above – for instance those related to the 3-body problem,

or strange attractors emergent from complex confluences of applications of

basic laws. See recent work Beggs, Costa, Loff and Tucker [4], Beggs and

Tucker [5] concerning the modelling of physical interactions as computa-

tion relative to oracles, and incomputability from mathematical thought

experiments based on Newtonian laws.

The technical details of the extended Turing model, providing a model

of computable content of structures based on p.c. functionals over the reals,

can be found in Cooper [19]. One can also find there details of how Emil

Post [75] used this model to define the degrees of unsolvability – now known

as the Turing degrees – as a classification of reals in terms of their relative

computability. The resulting structure has turned out to be a very rich

one, with a high degree of structural pathology. At a time when primarily

mathematical motivations dominated the field – known for many years

as a branch of mathematical logic called recursive function theory – this

pathology was something of a disappointment. Subsequently, as we see

below, this pathology became the basis of a powerful expressive language,

delivering a the sort of richness of definable relations which qualify the

structure for an important real-world modelling role.

Dominant as this Turing model is, and widely accepted to have a canon-

ical role, there are more general types of relative computation. Classically,

allowing non-deterministic Turing computations relative to well-behaved

oracles gives one nothing new. But in the real world one often has to cope

with data which is imperfect, or provided in real time, with delivery of com-

putations required in real time. There is an argument that the correspond-

ing generalisation is the ‘real’ relative computability. There are equivalent

formalisations – in terms of enumeration reducibility between sets of data,

due to Friedberg and Rogers [45], or (see Myhill [66]), in terms of relative

computability of partial functions (extending earlier notions of Kleene and

Davis). The corresponding extended structure provides an interesting and

informative context for the better known Turing degrees – see, for exam-

ple, Soskova and Cooper [93]. The Bulgarian research school, including D.

Skordev, I. Soskov, A. Soskova, A. Ditchev, H. Ganchev, M. Soskova and

others has played a special role in the development of the research area.

The universe we would like to model is one in which we can describe

global relations in terms of local structure – so capturing the emergence of
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large-scale formations, and giving formal content to the intuition that such

emergent higher structures ‘supervene’ on the computationally more basic

local relationships.

Mathematically, there appears to be strong explanatory power in the

formal modelling of this scenario as definability over a structure based on

reducibilities closely allied to Turing functionals: or more generally, freeing

the model from an explicit dependence on language, as invariance under

automorphisms of the Turing structure. In the next section, we focus on

the standard Turing model, although the evidence is that similar outcomes

would be provided by the related models we have mentioned.

5.16. An Informational Universe, and Hartley Rogers’ Pro-

gramme

Back in 1967, the same year that Hartley Rogers’ influential book Theory

of Recursive Functions and Effective Computability appeared, a paper [81],

based on an earlier talk of Rogers, appeared in the proceedings volume

of the 1965 Logic Colloquium in Leicester. This short article initiated

a research agenda which has held and increased its interest over a more

than 40 year period. Essentially, Hartley Rogers’ Programme concerns the

fundamental problem of characterising the Turing invariant relations.

The intuition is that these invariant relations are key to pinning down

how basic laws and entities emerge as mathematical constraints on causal

structure: where the richness of the Turing structure discovered so far be-

comes the raw material for a multitude of non-trivially definable relations.

There is an interesting relationship here between the mathematics and the

use of the anthropic principle in physics to explain why the universe is as

it is. It is well known that the development of the complex development

we see around us is dependent on a subtle balance of natural laws and as-

sociated constants. One would like the mathematics to explain why this

balance is more than an accidental feature of one of a multitude, perhaps

infinitely many, randomly occurring universes. What the Turing universe

delivers is a rich infrastructure of invariant relations, providing a basis for

a correspondingly rich material instantiation, complete with emergent laws

and constants, a provision of strong determinism, and a globally originat-

ing causality equipped with non-localism – though all in a very schematic

framework. Of course, echoing Smolin, it is the underlying scheme that is

currently missing. We have a lot of detailed information, but the skeleton

holding it all together is absent.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

160 S. B. Cooper

However, the computability theorists have their own ‘skeleton in the

cupboard’. The modelling potential of the extended Turing model depends

on it giving some explanation of such well-established features as quan-

tum uncertainty, and certain experimentally verified uncertainties relating

to human mentality. And there is a widely believed mathematical conjec-

ture which would rob the Turing model of basic credentials for modelling

observable uncertainty.

The Bi-Interpretability Conjecture, arising from Leo Harrington’s famil-

iarity with the model theoretic notion of bi-interpretability, can be roughly

described as asserting that:

The Turing definable relations are exactly those with information content
describable in second-order arithmetic.

Moreover, given any description of information content in second-order

arithmetic, one has a way of reading off the computability-theoretic def-

inition in the Turing universe. Actually, a full statement of the conjec-

ture would be in terms of ‘interpreting’ one structure in another, a kind

of poor-man’s isomorphism. Seminal work on formalising the global ver-

sion of the conjecture, and proving partial versions of it complete with key

consequences and equivalences, were due to Theodore Slaman and Hugh

Woodin. See Slaman’s 1990 International Congress of Mathematicians ar-

ticle [88] for a still-useful introduction to the conjecture and its associated

research project.

An unfortunate consequence of the conjecture being confirmed would

be the well-known rigidity of the structure second-order arithmetic being

carried over to the Turing universe. The breakdown of definability we see

in the real world would lose its model. However, work over the years makes

this increasingly unlikely.

See Nies, Shore and Slaman [68] for further development of the requisite

coding techniques in the local context, with the establishment of a number

of local definability results. See Cooper [18, 22] for work in the other direc-

tion, both at the global and local levels. What is so promising here is the

likelihood of the final establishment of a subtle balance between invariance

and non-invariance, with the sort of non-trivial automorphisms needed to

deliver a credible basis for the various symmetries, and uncertainties pe-

culiar to mentality and basic physics: along with the provision via partial

versions of bi-interpretability of an appropriate model for the emergence

of the more reassuring ‘quasi-classical’ world from out of quantum uncer-

tainty, and of other far-reaching consequences bringing such philosophical
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concepts as epistemological relativism under a better level of control.

To summarise: What we propose is that this most cartesian of re-

search areas, classical computability theory, regain the real-world signifi-

cance it was born out of in the 1930s. And that it structure the informa-

tional world of science in a radical and revealing way. The main features of

this informational world, and its modelling of the basic causal structure of

the universe would be:

• A universe described in terms of reals . . .

• With basic natural laws modelled by computable relations between

reals.

• Emergence described in terms of definability/invariance over the result-

ing structure . . .

• With failures of definable information content modelling mental phe-

nomena, quantum ambiguity, etc. . . .

• Which gives rise to new levels of computable structure . . .

• And a familiarly fragmented scientific enterprise.

As an illustration of the explanatory power of the model, we return to

the problem of mental causation. Here is William Hasker, writing in The

Emergent Self [50, p. 175], and trying to reconcile the automomy of the

different levels:

The “levels” involved are levels of organisation and integration, and the
downward influence means that the behaviour of “lower” levels – that
is, of the components of which the “higher-level” structure consists – is
different than it would otherwise be, because of the influence of the new
property that emerges in consequence of the higher-level organization.

The mathematical model, making perfect sense of this, treats the brain

and its emergent mentality as an organic whole. In so doing, it replaces the

simple everyday picture of what a causal relationship is with a more subtle

confluence of mathematical relationships. Within this confluence, one may

for different purposes or necessities adopt different assessment of what the

relevant causal relationships are. For us, thinking about this article, we

regard the mentality hosting our thoughts to provide the significant causal

structure. Though we know full well that all this mental activity is emer-

gent from an autonomous brain, modelled with some validity via a neural

network.

So one might regard causality as a misleading concept in this context.

Recognisable ‘causality’ occurs at different levels of the model, connected
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by relative definability. And the causality at different levels in the form of

relations with identifiable algorithmic content, this content at higher levels

being emergent. The diverse levels form a unity, with the ‘causal’ structure

observed at one level reflected at other levels – with the possibility of non-

algorithmic ‘feedback’ between levels. The incomputability involved in the

transition between levels makes the supervenience involved have a non-

reductive character.
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6.1. Introduction

The notion of computability in mathematics and technics has become a

subject of great interest and study. This is largely motivated by the rapid

development and use of computers (in both theory and practice). An evi-

dence of this fact is the successful realization of the European programme

“Computability in Europe” (CiE), one of the aims of which is the organi-

zation of annual conferences gathering together mathematicians, specialists

in computer science, biology, chemistry, and philosophy.

On the one hand, there is a generally accepted (absolute) theory of

computability for (partial) functions and predicates on natural numbers –

a classical computability theory. On the other hand, various proposals for

generalized theories of computability have been accumulated. Such general-

izations are motivated by a wish for a better understanding of the absolute

theory and expansion of the possibilities of application (understanding) of

computability notions to subjects (structures) far from natural numbers,

in particular, to uncountable structures (such as, e.g., the field R of real

numbers).

Development of the classical computability theory raises the following

general methodological problem: How to “extend” the existing theory to a

wider class of objects. One of the (successful) approaches in this direction is

the theory of numberings [19, 35]. But this approach has strict cardinality

limitations, since numberings are defined for countable collections of objects

only. Another approach is the theory of computability on admissible sets

of the form HF(A), for reasonably “simple” structures A. Exactly this

approach is discussed in the present paper.

The development of the theory of admissible sets began with the gen-

eralization of computability on ordinals, initially on the first nonrecursive

ordinal (metarecursive theory) (Kreisel and Sacks, see [82, 83, 134]), then on

arbitrary admissible (and other) ordinals (Kripke and Platek, see [84, 112]).

It was completed in the papers by Barwise when he introduced admissible

sets with urelements. The introduction of urelements would seem to be

a technical improvement; however, now we know that just such an ex-

tension of the notion of the admissible set led to the universal theory of

computability based on the notion of definability by formulas with (in a

broad sense) effective semantics. Obviously, this theory generalizes nonde-

terministic computability unlike generalizations based on expansions of the

notion of (abstract) computing devices. Therefore, we can say that this

is a theory of constructively recognizable properties (predicates). Whereas
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the development of the classical theory of computability has shown that

study of computable functions is reasonable with the partial computable

functions only, the computability in arbitrary admissible sets shows that

computable (Σ-) predicates are a natural environment for the study of par-

tial computable (Σ-) functions. We can even say that the notion of the

computable (Σ-) predicate is more fundamental than that of the (partial)

computable function.

A general theory of admissible sets is a remarkable synthesis of the main

directions in modern mathematical logic – set theory (including its classical

section – descriptive set theory), model theory (infinite languages), and

computability theory. The fundamental monograph of Barwise [11] is still

the main source of all the indicated aspects of the theory of admissible sets.

An intensive and profound study of the Turing reducibility on admissible

(and not only) ordinals can be found in the monograph of Sacks [134].

In the monograph of Barwise, the class of admissible sets of the form

HYP(A) is regarded as the class of “minimal” admissible sets, probably

because the author considered the admissible sets of the form HF(A) to be

too simple and trivial. The authors of the present paper think different.

We believe that, for a better understanding of the general nature of

computability (constructive cognoscibility), one should develop the notion

of computability in admissible sets of the form HF(A) – the hereditarily

finite superstructure over a structure A, where A is either a model of a

reasonably “simple” theory or a model of classical subjects, e.g., such as

the field R of real numbers. It should be noted that the notion of search

computability in an arbitrary structure A introduced in [105], as well as

the notion of abstract computability in the sense of [90], coincides (in ac-

cordance with [45]) with the notion of computability in the admissible set

HF(A). In Section 6.8, we compare HF-computability with some other

closely related approaches to generalized computability, in particular, with

BSS-computability. Theoretical computer science also requires the super-

structures of such kind for the development of the theory of computability.

In [39] an approach called semantic programming, based on the use of ef-

fective semantics as a programming language is proposed.

6.2. HF-Logic

On the one hand, HF-logic (or the weak second order logic) is a powerful

tool to introduce the notion of finiteness in first order logic. On the other

hand, it enables us to deal with natural numbers and, therefore, to introduce



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

172 Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev

the notion of computability on arbitrary structures. By ω we denote the

set of natural numbers. Also, we will often identify ω with the set of all

natural ordinals. Let M be an arbitrary set. We construct the collection

of hereditarily finite sets over M as follows:

• HF0(M) = {∅};
• HFn+1(M) = Pω(M ∪ HFn(M)) (here Pω(X) is the collection of all

finite subsets of X), n < ω;

• HF (M) =
⋃
n<ω

HFn(M).

If M is a structure of some relation signature σ then one can define a

structure HF(M) of a signature σ ∪ {U,∅,∈} (σ ∩ {U,∅,∈} = ∅) on M ∪
HF (M) so that

• UHF(M) =M ;

• PHF(M) = PM, P ∈ σ;
• ∅HF(M) = ∅ ∈ HF0(M);

• ∈HF(M)=∈⊆ ((M ∪HF (M))×HF (M)).

We will consider structures of at most countable signatures only. Moreover,

in most cases we shall restrict our considerations to finite signatures. As in

set theory (e.g., in ZF), one can define natural ordinals and finite sequences

on HF(M). Indeed, HF(M) is an admissible set and, therefore, we can

apply methods which are used in KPU (see Section 6.9). A hereditarily

finite superstructure can be considered as a structure, so we can apply usual

model theoretic methods for studying it. The problem of nonrealizability

of some type on hereditarily finite superstructures has a simple solution.

We consider the following collections of formulas:

θ0(x0) ⇌ {∃ distinct x1, . . . , xn((x1 ∈ x0) ∧ . . . (xn ∈ x0)) | n < ω},
θ1(x0) ⇌ {∃ distinct x1, . . . , xn((x1 ∈ x0) ∧ . . . ∧ (xn ∈ xn−1))|n < ω}.

If θ0(x0) is satisfied on a then a has infinitely many elements, i.e., it has

an infinite width; if θ1(x0) is satisfied on a then a has an infinite rank (in

absolute sense). Thus, no hereditarily finite superstructure realizes θ0(x0)

or θ1(x0). Indeed, it follows from definability of the cardinality operation

on hereditarily finite superstructures that θ0(x0) and θ1(x0) are realized or

not simultaneously.

Lemma 6.1. Let HF(M) be the hereditarily finite superstructure over M

and let T0 be its theory. If A is a structure of T0 on which θ0(x0) is not
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satisfied then A has the form HF(M′) for some structure M′ |= Th(M).

Conversely, no hereditarily finite superstructure satisfies θ0(x0).

Let T be a theory of signature σ. By a type of T in σ we mean

a consistent (possibly incomplete) under T collection of formulas of the

same signature with some fixed finite number of free variables. A type

ξ(x0, x1, . . . , xk−1) is called principal under T if there exists a formula

ψ(x0, . . . , xk−1) such that T ⊢ ∀x0 . . . ∀xk−1(ψ → ϕ) for any ϕ ∈ ξ. Other-

wise, this type is called nonprincipal.

Lemma 6.1 enables us to apply General Omitting Types Theorem

for constructing hereditarily finite superstructures with desired properties.

Namely,

Corollary 6.1. Let A be an arbitrary hereditarily finite superstructure in

some countable signature. Then for every countable collection S of non-

principal types of Th(A), there exists a hereditarily finite superstructure

HF(M′) |= Th(A) on which no type from S is satisfied.

Since M 4 N implies S(M) ⊆ S(N), where S(M) is the collection of

types of Th(M) satisfied on M, the downwards Löwenheim–Skolem Theo-

rem holds for hereditarily finite superstructures:

Proposition 6.1. If ~ 4 HF(M) then ~ has the form HF(M′) for some

M′ 4 M.

In general, the upwards Löwenheim–Skolem–Mal’cev Theorem does not

hold for hereditarily finite superstructures (see also Theorem 6.8). First we

define the following sequence of cardinals:

• i0(ω) = ω;

• iα+1(ω) = 2iα(ω);

• iλ(ω) =
⋃
γ<λ iγ(ω) if γ is limit.

Theorem 6.1. [11, 118] Let HF(M) be the hereditarily finite super-

structure over a structure M in some countable signature and let T =

Th(HF(M)) be its theory. Then the following statements are equivalent:

(1) for any infinite cardinal β, there exists Mβ such that HF(Mβ) |= T

and card(Mβ) > β;

(2) there exists M0 such that HF(M0) |= T and card(M0) = iω1(ω);

(3) there exists M0 such that HF(M0) |= T and there is an infinite set

X ⊆ dom(M0) of indiscernibles in some Skolem expansion of HF(M0);
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(4) there exists a countable structure M0 such that HF(M0) |= T and there

is an infinite set X ⊆ dom(M0) of indiscernibles in some Skolem ex-

pansion of HF(M0).

To apply this theorem for complete diagrams of hereditarily finite super-

structures over countable structures, we infer the Elementary Extension

Theorem. It follows from the following Theorem that iω1(ω) is the Hanf

number for theories of hereditarily finite superstructures over countable

structures.

Theorem 6.2. [16, 118] For every ordinal α < ω1, there exists a structure

Mα in some finite signature such that card(M) = iα(ω) and it satisfies the

following conditions:

(1) HF(Mα) has no proper elementary extension of kind HF(M);

(2) for every M′, HF(Mα) ≡ HF(M′) implies HF(M′) 6 HF(Mα).

Now we consider the problem of realizability of types on hereditarily finite

superstructures. To decide this problem, we apply one more Omitting

Types method. The language of hereditarily finite superstructures can be

considered as the language of ω-logic and a hereditarily finite superstructure

can be viewed as an ω-structure. In this case, ordinals of a hereditarily finite

superstructure play the role of naturals.

We describe the language of ω-logic. A signature σ corresponds to a

language Lωσ which can be obtained from Lσ by adding one unary relation

symbol N and a collection {n | n < ω} of constant symbols. Assume that

N and n, n < ω, don’t occur in Lσ. Terms and formulas of Lωσ are defined

just as in first order logic.

A structure A is called an ω-structure if {n | n < ω} ⊆ |A|. If A is an

ω-structure of σ, then it can be expanded to Aω ⇌ 〈A, NA
ω

, 〈n : n < ω〉〉
so that NA

ω

= {n | n < ω}. Let ϕ(x0, x1, . . . , xk−1) be a formula of

Lωσ and a0, a1, . . . , ak−1 ∈ A. Then suppose that A |= ϕ(a0, a1, . . . ,ak−1)

if Aω |= ϕ(a0, a1, . . . ,ak−1) in the usual sense whenever n and N(x) are

interpreted as n and “x ∈ NA
ω

” respectively.

Let S be a collection of sentences of Lωσ including {¬(m = n) | m 6=
n} ∪ {N(n) | n < ω}. Then S is called ω-consistent if it is consistent in

the usual sense and, for any formula ψ(x) of Lωσ , if S ∪ {∃x(N(x) ∧ ψ(x))}
is consistent then so is S ∪ {ψ(n)} for some n < ω. The notion of ω-

consistency is not finitary, i.e., there are collections S of sentences that

every finite subset S0 ⊆ S is ω-consistent but S is not.
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Let T be a theory of signature σ ∪ 〈N, 〈n | n < ω〉〉. The theory T is

called ω-complete if, for every formula ψ(x) in Lωσ , T ⊢ ∀x(N(x) → ψ(x))

whenever T ⊢ ψ(n), for every n < ω.

Given a set of sentences T , we write T |=ω ϕ if ϕ holds in all ω-structures

of T .

Let T be a collection of sentences of Lωσ . A formula ϕ is a consequence

of T in ω-logic, written T ⊢ω ϕ, if ϕ is in the smallest set of formulas

containing T together with the axioms of ω-logic closed under the usual

rules and the ω-rule:

If T ⊢ω ϕ(n) for every n < ω then T ⊢ω ∀v(N(v)→ ϕ(v)).

The following Existence Theorems for ω-logic holds:

Theorem 6.3. [111] If S is a countable ω-consistent collection of sentences

of ω-logic, then S has an ω-structure.

Theorem 6.4. (ω-completeness) Let σ be countable and let T be a set

of sentences of Lωσ . If ϕ is a sentence of Lωσ , then T |=ω ϕ iff T ⊢ω ϕ.

Now we turn to studying hereditarily finite superstructures. Let M be a

structure of σ and let HF(M) be the hereditarily finite superstructure over

M, σ∗ = σ∪{U,∅,∈}. As it is noticed above, any formula Ψ(x0, . . . , xk−1),

k < ω, of Lωσ∗ is equivalent on HF(M) to some formula Ψ0(x0, . . . , xk−1) of

σ∗ whenever N and {n | n < ω} are interpreted as the set of all ordinals and

definable representations of ordinals respectively. Thus, the Orey Theorem

sometimes enables us to construct a hereditarily finite superstructure on

which some fixed type is satisfied.

In [115], syntactical characterizations of properties of countable cat-

egoricity and categoricity in HF-logic are given. Recall that the theory

Th(HF(M)) of the hereditarily finite superstructure HF(M) over a count-

able structure M is called (countably) categorical in HF-logic if HF(M) ≡
HF(M′) implies HF(M) ∼= HF(M′), for every (countable) structure M′.
Hereinafter, ‘A ∼= B’ means that A and B are isomorphic where A and B

are structures. Using these characterizations we have the following:

Theorem 6.5. Let M be a countable structure of some countable signature.

Then Th(HF(M)) is countably categorical in HF-logic iff every hereditarily

finite superstructure of it is an atomic structure.

Theorem 6.6. Let M be a countable structure in some countable signature.

Then Th(HF(M)) is categorical in HF-logic iff it is atomic and it has no

pair of hereditarily finite superstructures A0, A1 such that A0 � A1.
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It is clear that if M is a structure of (countably) categorical theory then

Th(HF(M)) is also (countably) categorical in HF–logic. We give examples

which demonstrate differences between these notions.

Examples 6.2.1.

(1) Let F be an algebraically closed field of some finite degree of transcen-

dency. Then Th(HF(F)) is categorical in HF–logic.

(2) Let F be an algebraically closed field of some infinite degree of tran-

scendency. Then Th(HF(F)) is countably categorical but not categori-

cal in HF–logic. In particular, Th(HF(C)) is countably categorical but

not categorical in HF-logic where C is the field of complex numbers.

Moreover, any two hereditarily finite superstructures over algebraically

closed fields with infinite degrees of transcendency having the same

characteristic are elementarily equivalent.

(3) It is evident that Th(HF(N)) is categorical in HF-logic where N is the

standard model of arithmetic.

(4) Let Z be the set of integer numbers, 0 < n < ω, and let 6 be the

lexicographic order on Zn. Then Th(HF(〈Zn,6〉)) is categorical in

HF–logic.

In [13], an example of a finitely generated semi-group is constructed which

demonstrates that the condition of a theory to be atomic in Theorem 6.6

is essential. Moreover, the following holds:

Proposition 6.2. Let M be a countable structure such that Th(HF(M))

is not atomic and has no pair of hereditarily finite superstructures A0, A1,

for which A0 � A1. Then Th(HF(M)) has 2ℵ0 pairwise non-isomorphic

hereditarily finite superstructures and all of them are minimal structures.

The notion of interpretability of one structure in another is one of the key

notions in the Model Theory. For simplicity, we assume that signatures con-

sist of relations symbols only (otherwise, we can replace all the operations

by their graphs) and the equality is a signature relation.

Definition 6.1. Let M, N be structures of signatures σ0 and σ1 respec-

tively. We say that M is definable in N if there are

• a sequence of elements a = a0, . . . , an−1 from |N|, n < ω (hereinafter,

given a structure N, by |N| we denote its universe);

• a formula ψ(x0, . . . , xm−1, y0, . . . , yn−1) of σ1;

• a map ν from ψ(Nm, a) onto |M|;
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• a formula ψP (x1, . . . , x#(P ), y0, . . . , ym−1) of σ1, for every P ∈ σ0 of

arity #(P ); xk has length m and all variables in x1, . . . , x#(P ) are

distinct;

such that for any P ∈ σ0 and b0, . . . , b#(P ) from ψ(Nm, a), we have:

M |= P (ν(b1), . . . , ν(b#(P )))⇔ N |= ϕP (b1, . . . , b#(P ), a).

M and N are bidefinable if M and N are mutually definable.

Definition 6.2. Let K0, K1 be classes of structures of σ0, σ1 respectively.

We say that K0 is definable in K1 if there exists a single list S of formulas

of σ1 such that, for any M1 ∈ K1, there is M0 ∈ K0 definable in M1 via S;

for every M0 ∈ K0, there is M1 ∈ K1 in which M0 is definable via S. If K0

and K1 are mutually definable then we say that K0 and K1 are bidefinable.

From now to the end of this section, all the signatures considered below are

assumed to be finite. We consider now several examples of bidefinability of

structures and hereditarily finite superstructures. Indeed, it is important

that in all examples considered below, there exists a transformation of

formulas of weak second order to ones of first order logic.

Definition 6.3. A language Lwω of weak second order logic consists of sym-

bols from L, new variables X1, ..., Xn, ..., and binary relation symbols ∈
and ⋐. Formulas of Lwω are constructed as usual from atomic ones includ-

ing atomic formulas of L and Xi ∈ Xj , vi ⋐ Xj , where vi is an individ-

ual variable of L. To obtain a structure A in Lwω we interpret symbols

from L as before; X1, ..., Xn, ... are interpreted on HF (|A|) ∪ |A| in the

following way: Xi ∈ Xj if and only if Xi is an element from Xj and

rnk(Xj)=rnk(Xi) + 1; and v ⋐ X if only if there are A1, ..., An ∈ HF (|A|)
such that v ∈ A1 ∈ ... ∈ An ∈ A and rnk(A1) = 1.

All the classes considered below have the following property.

Proposition 6.3. For any formula Φ(v0, ..., vn−1) ∈ Lwω (K), there ex-

ists a formula Ψ(v0, ..., vn−1) ∈ L(K) such that A |= Φ(a1, ..., an) iff

A |= Ψ(a1, . . . , an), for every A ∈ K and a1, ..., an ∈ |A|.

1. ff–Classes.

Definition 6.4. [159] We say that a class of structures K admits elemen-

tary definability of finite functions (K is a ff–class) if there is Φ(x, y, z) ∈
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L(K) such that, for any structure A ∈ K and function f ⊂ |A| × |A| whose
domain is finite, there exists a ∈ |A| for which f(x) = y if and only if

A |= Φ(x, y, a).

We give now some examples of ff -classes [159].

Proposition 6.4. The class of existentially closed groups is an ff–class.

Proposition 6.5. The class of unintentionally closed semi-groups is an

ff–class.

The proof of the following results can be found in [159].

Proposition 6.6. Let µ : ω → L(K) be a Gödel numbering of terms. There

exists a formula Φ(X,Y, z) ∈ Lwω (K) satisfied on K-structure A if and only

if X is a number of a term τ(x1, ..., xk), Y is a sequence of the length k,

and z is the value of τ from Y in A.

Proposition 6.7. Let ν : ω → L(K) be a Gödel numbering of Πn-formulas

with free variables contained in {v0, ..., vm−1}. There exists a formula

Φ(X, v0, ..., vm−1) which is satisfied on K-structure A on a1, ..., am if and

only if X is a natural number and A satisfies ν(X) on a1, ..., am ∈ |A|.

Corollary 6.2. Let K be an ff–class and let {Φi | i ∈ I} be an arithmetical

collection of Πn-formulas of L(K) with free variables from {v0, ..., vm−1}.
Then there are formulas

Φ(v0, ..., vm−1), Ψ(v0, ..., vm−1)

such that for any K-structure A and a1, ..., am ∈ |A|,

A |=
∧

i∈I
Φi(a1, ..., am) iff A |= Φ(a1, ..., am)

and

A |=
∨

i∈I
Φi(a1, ..., am) iff A |= Ψ(a1, ..., am).

2. ε–Fragments. A structure A = 〈A, ε〉 of signature {ε} is called an

ε-fragment if the following conditions hold:

1) regularity: for any non-empty subset A′ ⊆ A, there exists a′ ∈ A′

such that a′′εa′ is not satisfied, for every a′′ ∈ A′.
Let Au ⇋ {a|a ∈ A, ∀a′ ∈ A(¬(a′εa))}; then, by 1), Au 6= ∅.
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2) extensionality: for any a0, a1 ∈ A \Au, we have

a0 = a1 ⇐⇒ â0 = â1,

where âi ⇋ {a|a ∈ A, aεai}, i = 0, 1.

A structure of kind A∅ ⇋ 〈A, a0, ε〉 is called a marked ε-fragment if

〈A, ε〉 is an ε-fragment and a0 ∈ Au; in this case, set A0 ⇋ Au \ {a0}.
If A∅ is a marked ε-fragment then one can define a correspondence

κ(= κA∅
) : A→ HF (A0) as follows:

κ(a) ⇋ a if a ∈ A0;

κ(a0) ⇋ ∅;

κ(a) ⇋ {κ(a′)|a′ ∈ A, a′εa} if a′ ∈ A \ (A0 ∪ {a0}).
A subset A′ ⊆ A of a marked ε-fragment A∅ is called dense if A′ ⊇ A0,

where A0 ⇋ {a|a ∈ A, ∀a′ ∈ A(a /∈ a′)} \ {a0}.
Let A∅ = 〈A, a0, ε〉 be a marked ε-fragment and A′ ⊆ A its dense subset.

We say that 〈A∅, A
′〉 codes κ(A∅, A

′) ⇋ {κ(a′)|a′ ∈ A′} ∈ HF (A0). In

this case, 〈A∅, A
′〉 is called a code.

Lemma 6.2. If 〈A∅, A
′〉, 〈B∅, B

′〉 are codes and κ(A∅, A
′) = κ(B∅, B

′),
then A0 = B0 and there is a unique isomorphism ϕ : A∅ → B∅ such that

ϕ ↾ A0 = idA0 , ϕ(a0) = b0, and ϕ(A
′) = B′. Conversely, if A0 = B0 and

there exists an isomorphism ϕ, then κ(A∅, A
′) = κ(B∅, B

′).

Lemma 6.3. If B is infinite then, for any S ∈ HF (B), there is a code

〈A∅, A
′〉 of S such that A ∈ B.

Proof. Let A0 ⇋ sp(S) ⊆ B where sp is the support function (see section

6.9.2). Also, let S∗ ⊆ HF (B) be the least end subset of HF (B) containing

S∪{∅} as a subset. It is clear that S∗ is finite and, therefore, S∗ ∈ HF (B).

The set S∗ can be defined as follows: š0 ⇋ TC(s0) for every s0 ∈ S \ A0;

š0 ⇋ {s0} if s0 ∈ S ∩ A0. Then S∗ ⇋ {∅} ∪ ⋃
s0∈S

š0 as desired. Let

ρ : S∗ → B be an injective map such that ρ(a) = a for any a ∈ A0.

Suppose that A⇋ ρ(S∗) and a′εa ⇐⇒ ρ−1(a′) ∈ ρ−1(a) for any a, a′ ∈ A;
then A∅ ⇋ 〈A, ε, a0(= ρ(∅))〉 is a marked ε-fragment, A′ ⇋ {ρ(s)|s ∈ S}
is a dense subset of A∅ and, as it could be easily checked, κ(A∅, A

′) = S.

�

Theorem 6.7. If there is a coding of all finite binary relations on M then

HF(M) is definable in M.
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3. Hereditarily listed superstructures.

Let M be an arbitrary set. We define the collection of hereditary lists

over M by induction on n < ω:

• HL0(M) =M ∪ {∅};
• HLn+1(M) = HLn(M) ∪ {〈x, y〉 | x, y ∈ HLn(M)};
• HL(M) =

⋃
n<ωHLn(M).

Natural numbers are identified with the following elements from HL(M):

∅, 〈∅,∅〉, 〈〈∅,∅〉,∅〉 etc:

• 0 = ∅;

• n+ 1 = 〈n,∅〉;
• ω = {0, 1, 2, . . .}.

Every z ∈ HL(M) corresponds to l(z) and r(z) inductively as follows:

l(∅) = r(∅) = ∅;

l(z) = r(z) = 1 if z ∈M ;

l(z) = x, r(z) = y if z = 〈x, y〉.
Let M be a structure of some finite relation signature σ. Then a

hereditarily listed superstructure HL(M) over M is a structure of signa-

ture σ∪{l, r, 〈·, ·〉}, HL(M) its domain, such that l and r are defined above

and symbols from σ are interpreted on M only as before. Then HF(M)

and HL(M) are bidefinable.

4. Admissible Structures.

Let A be an arbitrary admissible set (definition, examples, and basic

properties of such objects are given in section 6.9). Then one can construct

a directed graph 〈|A|, R〉 without loops such that A and HF(〈|A|, R〉) are

bidefinable [122]. Moreover, this transformation preserves the semilattice

of Σ-degrees considered in 6.6.1, the semilattice of mΣ-degrees (see Section

6.4), and all descriptive set theoretical properties considered in Section 6.5

but quasiresolvability. However, it cannot be applied in studying TΣ- and

eΣ-degrees (see Section 6.4) and semilattices of degrees of presentability

(see Section 6.7).

We mention one more result which gives a natural example of bidefin-

ability between special admissible sets and hereditarily finite superstruc-

tures. Namely, it was proved in [144] that HY P (M) and HF(M) are Σ-

equivalent in case when M is a recursively saturated model of a regular

theory (in [9] it is proved that this Σ-equivalence is strong). For the defi-

nition of Σ-definability we refer the reader to Section 6.6.
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In Examples 3 and 4, the property to be a Σ-subset is preserved under

certain interpretations. This enables us to transfer semantic approaches to

computability from one object to another.

Now we consider problems of definability of structures in hereditarily

finite superstructures. First we discuss model theoretic properties.

Definition 6.5. A structure M0 is called saturated enough if there exists

an ω-saturated structure M1 such that HF(M0) 4 HF(M1).

It is well known that any structure has some elementary ω-saturated exten-

sion [16]. However, there are structures which are not saturated enough.

The standard model of arithmetic and the field of real numbers are exam-

ples of such structures. In [118], a series of structures of sufficiently large

cardinality is given which are not saturated enough. We give a nice model

theoretic property of structures saturated enough.

Proposition 6.8. [31, 33] Let M0 and M1 be structures saturated enough.

If M0 ≡ M1, then HF(M0) ≡ HF(M1). If M0 4 M1, then HF(M0) 4

HF(M1).

The following variant of the Löwenheim-Skolem-Mal’cev Theorem holds for

structures saturated enough.

Theorem 6.8. [31, 33] Let T be a complete ω-stable or ω-categorical

theory, let M be a structure of T saturated enough, and let an uncountable

structure N be definable in HF(M). Then for any infinite cardinals α and β

such that α 6 card(N) 6 β, there are structures Mα and Mβ of T saturated

enough such that Mα 4 M and Mα 4 Mβ. The structure Mα contains

all the parameters from |M| used in the definition of N in HF(M). If Nα

and Nβ are structures definable in HF(Mα) and HF(Mβ) respectively via

the same formulas and parameters as N in HF(M) then card(Nα) = α,

card(Nβ) = β.

If the theory T is categorical in some infinite power, thenMβ from Theorem

6.8 can be chosen so that M 4 Mβ . The authors do not know whether Mβ

could be always chosen in such a way.

In the end of this section, we consider several examples of definability

of classical structures.

Definition 6.6. Let A be an admissible structure, let A be its universe,

and let S ⊆ P(A). We say that S is definable in A if there are a sequence a
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of elements from A and a formula ψ(x, y, z) such that S∪{∅} = {ψ(A, b, a) |
b ∈ A}.

A criterion of definability of the field R of real numbers in admissible sets

is contained in the following theorem.

Theorem 6.9. [117] Let A be an admissible set. Then R is definable in A

iff P(ω) is definable in A.

Corollary 6.3. Let T be a theory categorical in some infinite cardinality

and M a structure of T. Then R is not definable in HF(M).

Corollary 6.4. [33] Let T be either the theory of dense linear orders, the

theory of algebraically closed fields, or the theory of infinite sets in the empty

language. If M is a structure of T, then R is not definable in HF(M).

We give now one positive example of an application of this theorem.

Proposition 6.9. (Puzarenko) For any S ⊆ P(ω), there is a linearly

ordered set LS such that S is definable in HF(LS).

Proof. Let S ⊆ P(ω). We assume that S 6= ∅ and ∅ 6∈ S.
We give now some method of coding of a set A ∈ S. Fix a surjective

map f : ω + ω∗ → A and define an A-block as follows:

• for any n ∈ ω + ω∗, we take a linear ordering Ln, containing f(n) + 2

elements so that if n,m ∈ ω + ω∗ satisfy n < m and l0 ∈ Ln, l1 ∈ Lm,

then l0 < l1;

• for any n ∈ ω + ω∗, we put Ln,n+1 isomorphic to the segment [0; 1] of

rational numbers between Ln and Ln+1;

• we also put linear orderings isomorphic to [0; 1] before L0, 0 ∈ ω, and
after L0, 0 ∈ ω∗.

Now we define a structure LS . First we fix some surjective map g : 2ω(ω∗+
ω)→ S. The domain of LS will have the following form:

• for every n ∈ 2ω(ω∗+ω), we take some g(n)-block Kn so that if n,m ∈
2ω(ω∗ + ω) satisfy n < m and l0 ∈ Kn, l1 ∈ Km, then l0 < l1;

• for every n ∈ 2ω(ω∗ + ω), we put a singleton Kn,n+1 between Kn and

Kn+1 (if a ∈ Kn−1,n, b ∈ Kn,n+1, then {a, b} is said to define the

n-block).

Now we show that S is definable in HF(LS). First we give several auxiliary
assumptions.
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〈1〉 “a ∈ Kn,n+1 for some n ∈ 2ω(ω∗ + ω)” is definable in LS by some

formula (denote this set as R). Indeed, a ∈ R⇔ ∃x∃y[(x < a < y)∧∀t((t <
x) → ∃z(t < z < x)) ∧ ∀t((y < t) → ∃z(y < z < t)) ∧ ¬∃z(x < z <

a) ∧ ¬∃z(a < z < y)].

〈2〉 “{a, b} defines an n-block for some n ∈ 2ω(ω∗ + ω)” is definable

in LS by some formula (we denote this relation as Q, and the set g(n)

corresponding to it as Aa,b). Indeed, Q(a, b) ⇔ [R(a) ∧ R(b) ∧ (a < b) ∧
¬∃t((a < t < b) ∧R(t))].
〈3〉 The relation “n ∈ Aa,b” from 〈a, b〉 ∈ Q and n ∈ ω is definable in

HF(LS) by some formula. Indeed, n ∈ Aa,b ⇔ [Q(a, b)∧∃x((card(x) = n+

2)∧∀y ∈ x(a < y < b)∧∃u∃v∃f((f : 〈n+4, <〉 ∼→ 〈x∪{u, v}, <〉)∧ (f(0) =
u) ∧ (f(n + 3) = v) ∧ ∀m ∈ n + 3((f(m) < f(m + 1)) ∧ ¬∃z(f(m) < z <

f(m+1))) ∧ ∀t((t < u)→ ∃z(t < z < u))∧ ∀t((v < t)→ ∃z(v < z < t))))].

To finish the proof, it remains to note that S = {Aa,b | Q(a, b)}. �

Applying Proposition 6.9 to P(ω) we have:

Corollary 6.5. There is a linearly ordered set L such that R is definable

in HF(L).

In comparison with the last result, R is not Σ-definable in HF(L), for
any linearly ordered set L (see Section 6.6.2).

Additional information about the HF-logic can be found in [12, 108,

109, 158, 159].

6.3. Σ-Subsets on Hereditarily Finite Superstructures

Here, by computability on hereditarily finite superstructures we mean Σ-

definability, and (generalized) computably enumerable sets are identified

with Σ-subsets.

The class of ∆0-formulas is the least one containing atomic formulas

which is closed under ∨, ∧, →, ¬ and restricted quantifiers ∀x ∈ y and

∃x ∈ y (∀x ∈ yϕ and ∃x ∈ yϕ are abbreviations for ∀x(x ∈ y → ϕ) and

∃x(x ∈ y ∧ ϕ) respectively.
The class of Σ-formulas is the least one containing ∆0-formulas closed

under ∨, ∧, restricted quantifiers ∀x ∈ y, ∃x ∈ y, and ∃x.
A Σ1-formula is a formula of kind ∃uϕ0 where ϕ0 is ∆0-formula.

It follows from Σ-Reflection Principle [11] that any Σ-formula is equiv-

alent under KPU to some Σ1-formula.
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A Σ-predicate is a relation definable by some Σ-formula (possibly with

parameters). A ∆-predicate is a Σ-predicate whose complement is also Σ.

A partial operation is called a (partial) Σ-function if its graph is Σ.

The following fact demonstrates that computability on hereditarily finite

superstructures is actually a generalization of the classical computability.

Proposition 6.10. [11, 33]

(1) There exists a one-to-one correspondence γ between HF (∅) and ω

which is a Σ-function on HF(∅).

(2) A ⊆ ω is computably enumerable iff it is a Σ-subset of HF(∅).

(3) A ⊆ ω is computably enumerable iff it is a Σ-subset of HF(N) (A can

be considered here as a subset of Ord(HF(N)) or as a subset of |N|).

Hereinafter, by N we denote the standard model of arithmetic.

In the study of computability on hereditarily finite superstructures, an

approach of defining sets by infinite computable formulas is actively used.

This method is proposed in [162].

Before stating the method we consider the problem of constructiviz-

ability of hereditarily finite superstructures. The basic notions from the

constructible model theory can be found in [37]. Recall that a sequence

{An}n∈ω of finite subsets of natural numbers is strongly computable if the

relation {〈m,n〉 | m ∈ An} and the function n 7→ card(An) are computable.

Proposition 6.11. Let (M, ν) be a constructivizable structure. Then there

exists a constructivization ν0 of the hereditarily finite superstructure HF(M)

which satisfies the following conditions:

(1) ν 6 ν0;

(2) there exists a strongly computable sequence {An}n∈ω of finite sets for

which ν0(n) = {ν0(k) | k ∈ An};
(3) ν−1

0 (P ) is computably enumerable, for every Σ-predicate P on HF(M);

(4) ν−1
0 (P ) is computable, for every ∆-predicate P on HF(M).

Proof. It is evident that a constructivization

ν0(n) =






∅ if n = 0;

ν(k) if n = 2k + 1;

{ν0(k1) . . . , ν0(kl)} if n = 2(2k1 + . . .+ 2kl), k1 < . . . < kl;

has the desired properties. �
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Indeed, 2 implies 3, 4, and, therefore, this enables us to translate ele-

ments of the hereditarily finite superstructure into finite objects on natural

numbers, in particular, we can transfer restricted quantifiers on hereditarily

finite superstructures into ones on the standard model of arithmetic.

Notice that there are constructivizations of hereditarily finite super-

structures HF(M) over any constructivizable structure M which do not

satisfy 2, 3, 4 from Proposition 6.3. To understand this, it suffices to code

finite sets by computable but not strongly computable indices.

The identical map on ω is a constructivization of N, so there exists

a constructivization of HF(N) which satisfies Proposition 6.3. From now

on we identify elements from |HF(N)| with their numbers under a fixed

constructivization of HF(N) satisfying Proposition 6.3.

We assign every element κ ∈ |HF(N)| a term tκ in signature {∅, {·},∪}
for which tκ(m) = κ for some sequence of pairwise distinct ur-variables m

containing all the elements from sp(κ) as follows ( n ∈ ω is here number of

free variables in this term; if n = 0 then it has no free variable):

• tκ(u0, . . . , un−1) = ∅ if κ = ∅;

• tκ(u0, . . . , un−1) = ui if κ = i ∈ N ;

• tκ(u0, . . . , un−1) = {tκ0(u0, . . . , un−1)} ∪ {tκ1(u0, . . . , un−1)} ∪ . . . ∪
{tκk

(u0, . . . , un−1)} if κ = {κ0,κ1, . . . ,κk} and κ0 < κ1 < . . . < κk,

k ∈ ω \ {0}.

By Σ-recursion, it is easy to check that (κ, a) ∈ |HF(N)|×|M|<ω 7→ tκ(a) ∈
|HF(M)| will be a Σ-function on HF(M), for any structure M. Notice also

that the collection of permutation groups Sκ(⇌ {π ∈ S(sp(κ)) | tκ(u) =
tκ(πu)}) is strongly computable.

We say that κ0,κ1 ∈ |HF(N)| are termally equivalent (and denote as

κ0 ∼ κ1), if 〈TC({κ0}),∈,∅, sp(κ0)〉 ∼= 〈TC({κ1}),∈,∅, sp(κ1)〉. If κ0 ∼
κ1 then for any hereditarily finite superstructure, there are tuples u, v of

urelements such that HF(M) |= ∀u∀v(tκ0(u) ≈ tκ1(v)). If, in addition,

we assume that elements of these tuples are distinct, then the converse

assumption is also true. We will write κ0∈̃κ1 if there are κ′
0 ∼ κ0 and

κ′
1 ∼ κ1 that κ′

0 ∈ κ′
1.

Remark 6.3.1. It is convenient to use “almost” single-valued representa-

tions, i.e., elements from |HF(N)| are chosen so that every element from the

hereditarily finite superstructure is in the range of some unique term with

some tuple of pairwise distinct urelements. Then the values of terms are de-

termined by some strongly computable sequence of groups of permutation
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of urelements. This is important in studying such principles on hereditar-

ily finite superstructures as uniformization, reduction, the existence of a

universal function etc.

For convenience, we will use different ur-variables u0, v0, u1, v1, . . . for

urelements only and common variables x0, y0, x1, y1, . . . for all elements to

the end of this section.

Lemma 6.4. For any ∆0-formula Φ from ur-variables in signature σ ∪
{U,∅,∈,∪, { }}, one can effectively construct ∃− and ∀−formulas Φ0 and

Φ1 respectively in signature σ that

HF(M) |= Φ⇔M |= Φ0 ⇔M |= Φ1.

Moreover, if σ contains constants or FV(Φ) 6= ∅ then Φ0 can be chosen

quantifier free.

Proof. Let Φ be a formula in σ. We effectively construct a quantifier-free

formula Ψ of σ∪{⊤,⊥} equivalent to it where ⊤ and ⊥ are logical constants

“true” and “false” respectively. We prove this assumption by induction on

the number of logical connectives. By an improper term in Φ we mean a

term which is maximal under inclusion occurring in Φ. We assume that

the implications do not occur in Φ, the negations appear before atomic

subformulas of Φ only, and all terms of {∅,∪, { }} improper in Φ have the

form tκ(u) for some κ ∈ |HF(N)| and tuple u with pairwise distinct ur-

variables. Also, all the restricted quantifiers appearing in Φ have the forms

∀x ∈ . . . or ∃x ∈ . . . where x is a common variable. We consider several

cases.

(1) Φ is atomic or the negation of atomic:

• if {U,∅,∈,∪, { }} do not occur in Φ then Ψ = Φ;

• if Φ = U(tκ(u)) then Ψ = ⊤ whenever tκ(u) is an ur-variable;

Ψ = ⊥, otherwise;
• if Φ = (tκ0(u) ≈ tκ1(v)), then Ψ =

∨
π∈Sκ0

(u ≈ π(v′)) (v′ satisfies

HF(N) |= (tκ0(v
′) ≈ tκ1(v))), whenever κ0 ∼ κ1 and sp(κ0) 6= ∅;

⊤, if κ0 ∼ κ1 and sp(κ0) = ∅; otherwise, Ψ = ⊥;
• if Φ = (tκ0(u) ∈ tκ1(v)) then Ψ is obtained by the previous rule

from
∨

κ2∈κ1
(tκ0(u) ≈ tκ2(v)) whenever κ0∈̃κ1; Ψ = ⊥, otherwise;

• if Ψ is an atomic formula of σ ∪ {U,∅,∈,∪, { }} which is not con-

sidered above then we let Ψ = ⊥;
• ¬⊤ and ¬⊥ are replaced with ⊥ and ⊤ respectively;
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(2) if Φ = (Φ0∨Φ1) or Φ = (Φ0∧Φ1) then Ψ = (Ψ0∨Ψ1) or Ψ = (Ψ0∧Ψ1)

respectively;

(3) if Φ = ∀x ∈ tκ(u)Φ0 then Ψ is obtained from
∧

κ′∈κ
[Φ0]xt

κ′ (u)
by the

previous rules (as usual,
∧
∅ = ⊤);

(4) if Φ = ∃x ∈ tκ(u)Φ0 then Ψ is obtained from
∨

κ′∈κ
[Φ0]xt

κ′ (u)
by the

previous rules (as usual,
∨
∅ = ⊥).

To finish the proof, it suffices to replace ⊤ and ⊥ with some quantifier-free

true and false formulas if such formulas exist; with formulas ∃u(u ≈ u),

∀u(u ≈ u), and ∃u¬(u ≈ u), ∀u¬(u ≈ u) respectively, otherwise. �

Proposition 6.12. For every Σ1-formula Φ of σ ∪ {U,∅,∈,∪, { }} with

ur-variables, one can effectively construct some computable disjunction Φ∗

of ∃-formulas of the signature σ so that

HF(M) |= Φ⇔M |= Φ∗.

Proof. We assume that any unrestricted quantifier appearing in Φ acts

on a common variable. If Φ = ∃xΦ0(x, v) then Ψ =
∨
n<ω ∃uΦ0(tn(u), v).

This transformation is effective. To finish the proof, it remains to apply

Lemma 6.4. �

Thus, we have proved the following:

Theorem 6.10. Let σ be a finite relation signature. Then there exists a

computable sequence Am,n for which the following conditions hold:

(1) if Φ(x0, y0, . . . , yl−1) is a Σ-formula of σ∪{U,∅,∈} then AΦ,n consists

of ∃-formulas of σ;

(2) for any structure M of σ, A is definable in HF(M) by the Σ-formula

Φ(x0, s0, . . . , sl−1) with parameters s0, . . . , sl−1, l > 0 if and only if

A = {tn(u) | n ∈ ω, M |= ϕ(u, s0, . . . , sl−1)) for some ϕ ∈ AΦ,n}.

Moreover, an “almost” converse assumption holds:

Theorem 6.11. Let σ be a finite relation signature. For any computable

sequence {An}n∈ω in which every An consists of ∃-formulas of signature σ,

A = {tn(u) | n ∈ ω, M |= f(n)(u, s0, . . . , sl−1))}
is a Σ-subset of HF(M) where M is a structure of σ. Moreover, a Σ-formula

defining A is independent of a choice of M and can be effectively found from

{An}n∈ω.
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To establish this assumption, it suffices to show that the truth predicate

for Σ-formulas is Σ-definable.

Let HF(M) be the hereditarily finite superstructure over a structure

M of signature σ. By a Σ-operator we mean a map F : P(HF (M)) →
P(HF (M) ∪ M) which is defined in the following way, for every X ⊆
HF (M):

F (X) = {a | ∃b[〈a, b〉 ∈ R ∧ (b ⊆ X)]}

for some Σ-predicate R.

The notion of Σ-operator generalizes the notion of enumeration oper-

ator. Like the enumeration operators, these operators have the following

properties:

continuity: x ∈ F (X)⇒ ∃Y ⊆ X [card(Y ) < ω ∧ x ∈ F (Y )];

monotonicity: X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2).

Now we give a series of examples of Σ-operators. Let Φ(x,R+) be a

Σ-formula of σ ∪ {R}, #(R) = 1, R 6∈ σ, in which R occurs positively.

Then for any X ⊆ HF (M),

FΦ(X) = {a | (HF(M), X) |= Φ(a)}

is a Σ-operator.

By monotonicity, every Σ-operator has the least fixed point, namely,

there is Y0 ⊆ HF (M) such that F (Y0) = Y0 and ∀Y1 ⊆ HF (M)[F (Y1) ⊆
Y1 ⇒ Y0 ⊆ Y1]. Let Γ0 ⇌ ∅; Γα+1 ⇌ F (Γα); Γη ⇌

⋃
β<η Γβ if η is limit;

then it is easy to check that Γ∗ ⇌
⋃
α<card(HF(M))+ Γα will be the least

fixed point of F .

Theorem 6.12. (Gandy) Let HF(M) be the hereditarily finite superstruc-

ture over M and F be a Σ-operator on HF(M). Then the least fixed point

Γ∗ of F is Σ on HF(M). Moreover, Γ∗ = Γω.

It follows from the Gandy Theorem that for any structure M, HF(M)

has a universal Σ-predicate. Let K be a class of n-ary relations on HF(M).

A predicate P ⊆ |HF(M)|n+1 is called universal for K if K = {{〈b1, . . . , bn〉 |
〈a, b1, . . . , bn〉 ∈ P} | a ∈ |HF(M)|}. In particular, P is a universal Σ-

predicate if it is universal for the class of all n-ary Σ-predicates on HF(M);

a partial Σ-function f(y, x1, . . . , xn) is universal if its graph Γf is universal

for the class of graphs of all n-ary partial Σ-functions.
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Theorem 6.13. There exists a binary Σ-predicate TrΣ on HF(M) such

that for any Σ-formula Φ(x) and a ∈ HF (M) ∪M ,

〈Φ, a〉 ∈ TrΣ ⇔ HF(M) |= Φ(a).

Theorem 6.14. There exists an (n + 1)-ary universal Σ-predicate

T (e, x1, . . . , xn) on HF(M).

Notice that not all hereditarily finite superstructures have universal Σ-

functions [49, 101, 132, 162].

The collection of Σ-subsets of ω is one of the main computation invari-

ants of hereditarily finite superstructures.

Theorem 6.15. [101, 114, 133]

(1) For any admissible set A, the collection of ∆-subsets of ω is closed

under ⊕ and downwards under T -reducibility.

(2) For any admissible set A, the collection of Σ-subsets of ω is closed

under ⊕ and downwards under e-reducibility.

(3) For every T -ideal I, there exists a hereditarily finite superstructure on

which the class of T -degrees of ∆-subsets coincides with I.

(4) For every e-ideal I, there exists a hereditarily finite superstructure on

which the class of e-degrees of Σ-subsets coincides with I.

At the end of this section, we consider a series of examples of hereditarily

finite superstructures having universal Σ-functions. Let HF(M) be the

hereditarily finite superstructure over a structure M of some finite relation

signature. A sequence of its subsets

A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ An+1 ⊆ . . . , n ∈ ω

is called a Σ-resolution of HF(M) if the following hold:

(1) An is a transitive subset of HF(M), for any n ∈ ω;
(2)

⋃
n∈ω Aα = A;

(3) {〈a, n〉 | n ∈ ω, a ∈ An} is Σ on HF(M).

Proposition 6.13. Let {An}n∈ω be a Σ-resolution of HF(M), let Φ(x) be a

Σ-formula with parameters m1, . . . ,mk ∈ |M|, k ∈ ω, and let b ∈ |HF(M)|.
Then HF(M) |= Φ(b) if and only if HF(M) ↾ An |= Φ(b) for some n

satisfying {b,m1, . . . ,mk} ⊆ An.
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A sequence Dn ⇌ {a | a ∈ HF (M), rk(a) 6 n}, n ∈ ω, is an example of

a nontrivial Σ-resolution of HF(M). A Σ-resolution {An}n∈ω of HF(M) is

called a quasiresolution if

TrΣ({An}n∈ω) ⇌ {〈n,Φ, a〉 | n ∈ ω, a ∈ An,
Φ(x) is a Σ− formula, HF(M) ↾ An |= Φ(a)}

is ∆ on HF(M).

Remark 6.3.2. If {An}n∈ω is a Σ-resolution for HF(M) then

TrΣ({An}n∈ω) is always Σ on HF(M).

HF(M) is said to be quasiresolvable if HF(M) has at least one quasires-

olution. If HF(M) is quasiresolvable then it satisfies reduction and has

a universal Σ-function [33, 36]. There exist hereditarily finite superstruc-

tures which are not quasiresolvable but satisfy reduction and have universal

Σ-functions [49].

By a canonical Σ-resolution of HF(M) we mean the following Σ-

resolution:

• B0 ⇌M = U(HF(M));

• Bn ⇌ {tκ(m) | m ∈Mn, κ ∈ HFn(n)}, 0 < n < ω.

Proposition 6.14. For any Σ-formula Φ(u0, . . . , uk−1) and n ∈ ω, one

can effectively find an ∃-formula of the signature of M so that

HF(M) ↾ Bn |= Φ(m0, . . . ,mk−1)⇔M |= Φn(m0, . . . ,mk−1),

for each m0, . . . ,mk−1 ∈ |M|.

Corollary 6.6. For every Σ-formula Φ(u0, . . . , uk−1) and m0, . . . ,mk−1 ∈
|M|,

HF(M) |= Φ(m0, . . . ,mk−1)⇔M |=
∨

n∈ω
Φn(m0, . . . ,mk−1).

Proposition 6.15. The canonical Σ-resolution of HF(M) is a quasireso-

lution if and only if M is 1-decidable in HF(M), i.e.,

{〈Φ, a〉 | Φ is ∃-formula, a ∈ |M|<ω ,M |= Φ(a)}
is ∆ on HF(M).

We give one important corollary of Proposition 6.15.

Proposition 6.16. Let M be such that for any ∀-formula Φ(u) of the

signature of M, one can effectively find some ∃-formula Ψ(u) satisfying
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M |= ∀u(Φ(u) ↔ Ψ(u)). Then the canonical Σ-resolution of HF(M) is a

quasiresolution.

Notice that if M satisfies the conditions of Proposition 6.16 then Th(M)

is model complete. In particular, these conditions are satisfied whenever

M is a structure of some regular theory T. Recall that T is regular if it is

decidable and model complete.

Proposition 6.17. [57] Let M be such that Th(M) is ω-categorical. Then

M is 1-decidable in HF(M) iff HF(M) is quasiresolvable.

A structure M is said to be quasiresolvable if HF(M) is quasiresolvable.

Theorem 6.16. [58] For any Ershov algebra A, the following conditions

are equivalent:

(1) A is quasiresolvable;

(2) A is 1-decidable in HF(A);

(3) A is the join of a non-atomic Ershov algebra and of a finite Boolean

algebra.

Theorem 6.17. [58] Let G be an abelian p-group and let R, D be its

reducible and its divisible parts respectively. The following conditions are

equivalent:

1) G is quasiresolvable;

2) if r(D) > ω then R is finite; if r(D) < ω then R = R0 ⊕ R1, where

R0 is finite and there is n > 0, for which R1
∼= Cαpn(C

α
p0 = 0), α > ω (Cpn

is a cyclic group of order pn here).

6.4. Reducibilities on Hereditarily Finite Superstructures

In this section, we consider generalizations of classical reducibilities on

hereditarily finite superstructures. We recall some lattice-theoretic notions.

Definition 6.7. Let L = 〈L,6〉 be a partially ordered set.

• L is called an upper semilattice if any two elements a and b have a least

upper bound a⊔ b, i.e., for any a, b, c ∈ L, we have: a 6 a⊔ b, b 6 a⊔ b
and (a 6 c) ∧ (b 6 c)⇒ (a ⊔ b 6 c).

• An upper semilattice L is called distributive if for any a, b, c ∈ L, there
are a0, b0 ∈ L such that (c 6 a⊔b)⇒ ((a0 6 a)∧(b0 6 b)∧(c = a0⊔b0)).

• A non-empty subset I ⊆ L is called an ideal of an upper semilattice L
if I satisfies the following conditions:
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(1) a, b ∈ I ⇒ a⊔ b ∈ I (it is closed under taking the least upper bound

operation);

(2) b ∈ I, a 6 b ⇒ a ∈ I (it is closed downwards under 6).

• a ∈ L is the least (greatest) element if a 6 b (b 6 a), for every b ∈ L.

Definition 6.8. Let HF(M) be the hereditarily finite superstructure over

M and B,C ⊆ |HF(M)|.

• We say that B is mΣ-reducible to C, written B 6mΣ C, if there exists

a binary Σ-predicate R on HF(M) such that Pr1(R) = |HF(M)| and
〈a, b〉 ∈ R⇒ ((a ∈ B)↔ (b ∈ C)), for every a, b ∈ |HF(M)|.
• We say that B is TΣ-reducible to C, written B 6TΣ C, if there

exist two binary Σ-operators Φ0 and Φ1 on HF(M) such that B =

Φ0(C, |HF(M)| \ C) and |HF(M)| \B = Φ1(C, |HF(M)| \ C).
• We say that B is eΣ-reducible to C, written B 6eΣ C, if there exists a

Σ-operator Φ on HF(M) for which B = Φ(C).

• Let r ∈ {mΣ, TΣ, eΣ}. We say that B and C are r-equivalent (B ≡r C)
if B 6r C and C 6r B.

• Let r ∈ {mΣ, TΣ, eΣ}. A class w.r.t r-equivalence is called an r-degree.

We give some properties of these reducibilities:

(1) If HF(M) satisfies uniformization then the notion of mΣ-reducibility

can be formulated as in the classical case: B 6mΣ C if and only if

there exists a total Σ-function f such that a ∈ B ⇔ f(a) ∈ C, for

every a ∈ |HF(M)|.
(2) Let HF(S) be the hereditarily finite superstructure over an infinite set

S. For any A ⊆ ω, we define SA = {〈n, a〉 | n ∈ A; a = 〈a0, . . . , an−1〉 ∈
Sn; ai 6= aj , 0 6 i < j < n} which is mΣ-equivalent to A. Then there

is no total Σ-function establishing mΣ-reducibility SA to A whenever

A is not computable.

The relations of mΣ-, eΣ- and TΣ-reducibilities are preorders on

P(|HF(M)|) \ {∅, |HF(M)|} and, therefore, classes of corresponding de-

grees form partially ordered sets under the induced orderings. Moreover,

they are upper semilattices with least elements, namely, classes contain-

ing proper ∆-subsets of HF(M). Note that [B] ⊔ [C] = [B ⊕ C] where

B ⊕ C = (B × {0}) ∪ (C × {1}).
By LmΣ(HF(M)), LTΣ(HF(M)), LeΣ(HF(M)) we denote upper semilat-

tices of classes ofmΣ-, TΣ- and eΣ-degrees of proper subsets ofHF (M)∪M
respectively. As it was shown in [114], the upper semilattice LmΣ(HF(M))
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is distributive, for every structure M. Furthermore, there exists a natural

isomorphism between LmΣ(HF(∅)), LTΣ(HF(∅)), LeΣ(HF(∅)) and upper

semilattices of m-,T -, e-degrees respectively.

Let M be an arbitrary structure and let r ∈ {mΣ, TΣ, eΣ}.

Definition 6.9. A degree a ∈ Lr(HF(M)) is called computably enumerable

if there exists a Σ-subset B ∈ a of HF(M).

Definition 6.10. A degree a ∈ Lr(A) is called definable if there exists a

definable subset B ∈ a of HF(M).

Recall that a theory T is called c-simple [33] if it is ω-categorical, model

complete, decidable, and has a decidable set of complete formulas.

The following theorem describes relations between semilattices on hered-

itarily finite superstructures over structures of c-simple theories and classi-

cal ones:

Theorem 6.18. [113, 114] Let M be a structure of a c-simple theory

in some finite signature and ı the natural embedding HF(∅) into HF(M).

Then the following conditions hold:

(1) ı induces an isomorphism between the upper semilattices of computably

enumerable m-(T -) degrees and of computably enumerable mΣ-(TΣ-)

degrees;

(2) ı induces an isomorphism between the upper semilattices of definable

m-(T -,e-) degrees and of definable mΣ-(TΣ-,eΣ-) degrees;

(3) ı induces embedding of the upper semilattices of m-(T -,e-) degrees into

LmΣ(HF(M)) (LTΣ(HF(M)), LeΣ(HF(M))) as ideals.

If M is a countable structure of some c-simple theory then the semilattice

LmΣ(HF(M)) is described up to isomorphism:

Theorem 6.19. [124, 125] Let M be a countable structure of a c-simple

theory in some finite signature. Then the upper semilattices LmΣ(HF(M))

and Lm are isomorphic.

Additional information about generalized numberings and reducibilities

on admissible sets can be found in [5, 6, 33, 44, 52, 53, 116, 117, 121, 131,

160, 161, 163].
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6.5. Descriptive Properties on Hereditarily Finite Super-

structures

As in the classical computability, the existence of a universal Σ-predicate

implies that the class of Σ-subsets is not closed under the complement

operation. To avoid this obstacle, properties from descriptive set theory are

sometimes applied. In this section, we discuss the problem of the existence

of hereditarily finite superstructures with respect to relations between such

properties. Recall the basic definitions.

Let A be a hereditarily finite superstructure and A its universe.

Definition 6.11.

(1) A is called recursively listed if there is a Σ-function f : ω → A with

ρf = A.

(2) A is called resolvable if there exists a Σ-function f : ω → A with⋃
n∈ω f(n) = A. Such an f is called a resolution for A.

(3) Let C be a Σ-subset of A.

• A is projectible into C if there exists a Σ-function f with δf ⊆ C

and ρf = A such that f−1(x) ∈ A for every x ∈ A.
• A is quasiprojectible into C if there exists a Σ-function f with δf ⊆ C

and ρf = A.

Definition 6.12. We say that A satisfies

• reduction if, for any Σ-subsets B0 and B1, there are disjoint Σ-subsets

C0 ⊆ B0 and C1 ⊆ B1 such that C0 ∪C1 = B0 ∪B1.

• separation if, for any disjoint Σ-subsets B0 and B1, there is a ∆-subset

C such that B0 ⊆ C ⊆ A \B1.

• extension if, for any partial Σ-function ϕ(x), there is a total Σ-function

f(x) such that Γϕ ⊆ Γf .

• uniformization if, for any binary Σ-predicate R on A, there is a partial

Σ-function ϕ(x) with δϕ = Pr1(R) and Γϕ ⊆ R.

The main merit of a recursively listed hereditarily finite superstructure is

the existence of an effective function enumerating its range via natural num-

bers which enables us to transfer such principles from classical computabil-

ity as reduction, uniformization, the existence of a universal Σ-function

etc., [11]. Also, any infinite Σ-subset C of A has an enumeration without

repetition, namely, a one-to-one Σ-function f with δf = ω and ρf = C.
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The notion of resolvable hereditarily finite superstructure is a generaliza-

tion of the notion of recursively listed hereditarily finite superstructure. As

for recursively listed hereditarily finite superstructures, in the study of the

properties of such structures, one can apply the method of constructing

Σ-subsets by using effective approximations consisting of finite subsets. As

before, they satisfy reduction and have universal Σ-functions; however, in

general, uniformization does not hold on them. Moreover, the following is

true:

Proposition 6.18. Let HF(M) be resolvable. Then HF(M) is recursively

listed if and only if HF(M) satisfies uniformization.

An approach which avoids uniformization is to construct structures with a

small number of types and an infinite set of indiscernibles.

Theorem 6.20. [57] If M is a structure of some countably categorical

theory then HF(M) does not satisfy uniformization.

Theorem 6.21. [9] If M is an ω-saturated structure of some uncountably

categorical theory then HF(M) does not satisfy uniformization.

E.g., if M is an algebraically closed field with characteristic zero (in other

words, a structure of the theory of the field of complex numbers), then

HF(M) does not satisfy uniformization, even if M is not ω-saturated. How-

ever, if N is a structure of the theory Th(ω,0, s) of natural numbers with

zero and the successor relation, then HF(N) does not satisfy uniformiza-

tion iff N is ω-saturated; moreover, if N is not ω-saturated then HF(N) is

recursively listed.

The notion of projectibility is one more generalization of the notion of

recursively listed hereditarily finite superstructure. This definition was in-

troduced in [11]. Hereditarily finite superstructures quasiprojectible into

ω seem to be interesting; such structures have properties which look like

the corresponding ones on enumeration degrees. Further on, hereditarily

finite superstructures quasiprojectible into ω will be called simply quasipro-

jectible.

Example 6.1. Let A ⊆ ω. We define a structure NA of signature {0, s,P}
as follows:

• |NA|⇌ ω ⊎ {za | a ∈ A}, whenever za1 6= za2 for a1 < a2 (hereinafter,

the symbol ⊎ means the disjoint union);

• 0NA = 0 ∈ ω; 〈a, b〉 ∈ sNA ⇔ ({a, b} ⊆ ω ∧ b = a+ 1);
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• PNA ⇌ {〈a, za〉 | a ∈ A}.

The class of structures {HF(NA) | A ⊆ ω} consists of hereditarily finite

superstructures projectible into ω only. This class has a series of nice prop-

erties [49].

Now we give sufficient conditions of satisfiability of properties from de-

scriptive set theory on admissible sets. As is said above, we have the fol-

lowing:

Theorem 6.22. [33, 36] If A is a quasiresolvable admissible set then A

satisfies reduction and has a universal Σ-function.

In section 6.6.3, a criterion for the satisfiability of uniformization on hered-

itarily finite superstructures structures of kind HF(M), where Th(M) is

regular, is given (see also [142, 157]). In general, the uniformization prop-

erty does not hold even on hereditarily finite superstructures of this kind.

The following theorem gives us a description of hereditarily finite su-

perstructures with respect to relations between the properties considered

here [123].

Theorem 6.23. The following implications between the properties on

hereditarily finite superstructures hold:
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All the implications in the diagram are proper. Hereditarily finite su-

perstructures over computable structures can be found in (0–5, 9). There

is no such structure in (6–8).

Now we give examples of hereditarily finite superstructures over clas-

sical and (or) computable structures (if it is possible) which demonstrate

differences between the properties considered above.

Examples 6.5.1. The numbering of examples coincides with the correspond-

ing implications from Theorem 6.23.

0 One can take here the standard model of arithmetic.

1 Let R be the field of real numbers. Then HF(R) satisfies uniformiza-

tion [142], however, for reasons of cardinality, this hereditarily finite

superstructure is not recursively listed. Indeed, there are countable

hereditarily finite superstructures which satisfy uniformization but are

not recursively listed, e.g., HF(NΠ1
1
) or a countable elementary sub-

structure of HF(R).

However, all the structures considered above are not computable.

Now we give an example of computable real closed field R∗ for

which HF(R∗) is not recursively listed but satisfies uniformization.

Let Q(a0, a1, . . . , an, . . .) be a purely transcendental extension of the

ordered field of rational numbers such that all the elements from

Q(a0, . . . , an−1) are infinitesimal w.r.t. an, n ∈ ω. Then we set R∗

as the real closure of Q(a0, a1, . . . , an, . . .) [33]. Then it is computable

(even decidable) and HF(R∗) has the desired properties.

2 If M is a structure of some decidable, model complete, countably cate-

gorical theory then HF(M) is not resolvable, uniformization does not

hold on HF(M) but this hereditarily finite superstructure satisfies re-

duction and has a universal Σ-function. One can take here the set of

rational numbers with the natural order and a countable structure in

the empty language as M.

3 In [123], a series of examples of hereditarily finite superstructures in-

cluding computable ones are given, however, these structures are not

classical.

4 We define a structure M of signature {P,Q}, #(Q) = 2, as follows:

• PM and |M| \ PM are infinite;
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• QM is the graph of a one-to-one function from PM into |M| \ PM

such that (|M| \ PM) \ Pr2(QM) is infinite.

Then HF(M) does not satisfy reduction but has a universal Σ-function.

Notice that Th(M) is decidable and countably categorical, and there-

fore the unique countable structure of the theory is computable (even

decidable).

5 There exists a Σ2-set A ⊆ ω such that HF(NA) does not satisfy reduction

and separation, and has no universal Σ-function [49].

In [132], an example of hereditarily finite superstructure over a count-

able structure of some decidable countably categorical theory without

universal Σ-function is given. Furthermore, reduction and separation

does not hold on this hereditarily finite superstructure.

6 The hereditarily finite superstructure HF(NΣ1
1
) satisfies separation but

does not satisfy extension. These conditions are satisfied on HF(G) for
some abelian group G [57]. To prove this, it suffices to apply methods

from [119].

7 In [119], examples of hereditarily finite superstructures satisfying exten-

sion are constructed. At this moment, examples of hereditarily finite

superstructures over classical structures have not been found.

8 A series of quasiprojectible hereditarily finite superstructures is given in

Example 6.1.

9 The hereditarily finite superstructure HF(NΣ1
1
) has the desired proper-

ties.

Additional information about the properties considered above can be

found in [7, 57, 58, 60, 66, 94, 114, 122, 133, 162].

6.6. Σ-Definability of Structures

The theory of constructive (computable) models is one of the important

research areas of the classical computability theory, as well as of the model

theory. Because of the evident cardinality limitations, in the classical com-

putable model theory only countable structures are considered. The ap-

proach regarding generalized computability as Σ-definability in admissible

sets allows us to consider structures with arbitrary cardinality. Heredi-

tarily finite superstructures are the “simplest” admissible sets, from the

set-theoretical point of view. Besides of this, Σ-definability in hereditary

finite superstructures is one of the natural approaches generalizing classical

computability theory on natural numbers to the case of computability over
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arbitrary structures.

Hence, for a structure M the following problems naturally arise:

• to describe the structures Σ-definable in HF(M);

• to describe the structures such that M is Σ-definable in their HF-

superstructures.

Let us formalize the problems stated above. Let M be a structure of a

finite predicate signature 〈P1, . . . , Pk〉, where each Pi is ni-ary, and let A

be an admissible set. To simplify the notations in this chapter, we write

M instead of |M|. The following notion is an effectivization of the model-

theoretical notion of interpretability of one structure in another, and also a

natural generalization of the notion of constructivizability of a (countable)

structure on natural numbers.

Definition 6.13. [24, 33] M is Σ-definable in A if there exist Σ-formulas

Φ(x0, y),Ψ(x0, x1, y),Ψ
∗(x0, x1, y),Φ1(x0, . . . , xn1−1, y),

Φ∗
1(x0, . . . , xn1−1, y), . . . ,Φk(x0, . . . , xnk−1, y),Φ

∗
k(x0, . . . , xnk−1, y),

such that for some parameter a ∈ A, and letting

M0 ⇌ ΦA(x0, a), η ⇌ ΨA(x0, x1, a) ∩M2
0

one has that M0 6= ∅ and η is a congruence relation on the structure

M0 ⇌ 〈M0, P
M0
1 , . . . , PM0

k 〉,

where PM0

i ⇌ ΦA
i (x0, . . . , xni−1) ∩Mni

0 for all 1 6 i < k,

Ψ∗A(x0, x1, a) ∩M2
0 =M2

0 \ΨA(x0, x1, a),

Φ∗A
i (x0, . . . , xni−1, a) ∩Mni

0 =Mni

0 \ ΦA
i (x0, . . . , xni−1)

for all 1 6 i < k, and the structure M is isomorphic to the quotient

structure M0�η.

Definition 6.14. M is A-constructivizable if there exists a map ν from |A|
onto |M| such that {〈a0, a1, . . . , ani−1〉 | Pi(ν(a0), ν(a1), . . . , ν(ani−1))},
1 6 i 6 k, and {〈a, b〉 | ν(a) = ν(b)} are ∆ on A.

Proposition 6.19. Let A be an admissible set and M a structure. Then

M is Σ-definable in A iff M is A-constructivizable.
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Remark 6.1. Definition 6.13 can be naturally generalized to the case of

structures with infinite computable signatures. Namely, a structure M

with a computable predicate signature 〈P0, P1, . . .〉, where each Pi is ni-ary,
is called Σ-definable in A if there exists a computable sequence Φ(x0, y),

Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y), Φ∗
0(x0, . . . , xn0−1, y), . . .,

Φk(x0, . . . , xnk−1, y), Φ
∗
k(x0, . . . , xnk−1, y), . . . of Σ-formulas and a param-

eter a ∈ A, which forms a Σ-definition of M in A, in the sense of Definition

6.13.

For structures M and N, we denote by M 6Σ N the fact that M is

Σ-definable in HF(N). From the definition it follows that the relation 6Σ

is reflexive and transitive. We now look at the general properties of this

relation, regarding it as a kind of effective reducibility on structures.

6.6.1. Σ-Definability on structures: general properties

For any infinite cardinal α, we denote by Kα the class of structures having

a finite signature and with cardinality less than or equal to α.

As usual, preordering 6Σ generates on Kα a relation of Σ-equivalence:

A ≡Σ B if A 6Σ B and B 6Σ A. Classes of Σ-equivalence are called

degrees of Σ-definability, or Σ-degrees. The poset

SΣ(α) = 〈Kα/ ≡Σ,6Σ〉

is an upper semilattice with the least element, which is the degree consisting

of computable structures. We denote the Σ-degree of a structure A by

[A]Σ. The notion of Σ-degree of a structure is invariant from the choice

of a semilattice SΣ(α), because all infinite structures of the same Σ-degree

have the same cardinality. For any structures A,B ∈ Kα, [A]Σ ∨ [B]Σ =

[(A,B)]Σ, where (A,B) is a pair of A and B in the model-theoretical sense.

For a structure A ∈ Kα and infinite cardinals β 6 α, γ > α, the sets

Iβ(A) = {[B]Σ |B ∈ Kβ , B 6Σ A}, Fγ(A) = {[B]Σ |B ∈ Kγ , A 6Σ B}

are, correspondingly, an ideal in SΣ(β) (principal for β = α) and a filter

in SΣ(γ) (principal for any γ > α). The sets Fγ(A) in semilattices SΣ(γ)
are natural analogues of the spectrum of a structure A. The sets Iβ(A) in

semilattices SΣ(β) consist of Σ-degrees of structures Σ-presentable over A.

A presentation of a structure M in an admissible set A is any structure

C which is isomorphic to M and whose domain C is a subset of A (the

relation = is treated as a congruence relation on C, and it may differ from
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the standard equality relation C). In what follows, we will identify the

presentation C (more precisely, its atomic diagram) with some subset of A,

fixing a Gödel numbering of atomic formulas of the signature σM.

Definition 6.15. A problem of presentability of a structure M in A is the

set Pr(M,A) consisting of all possible presentations of M in A.

Denote by M the set Pr(M,HF(∅)) of presentations of M in the least

admissible set.

Since Σ-definability in HF(∅) is equivalent to classical computability on

natural numbers, we get the following:

Proposition 6.20. Let M be a countable structure. The following are

equivalent:

1) M is constructivizable;

2) M is Σ-definable in HF(∅).

Moreover, there exist natural embeddings of the semilattices D of Tur-

ing degrees and De of degrees of enumerability of sets of natural numbers

into the semilattice SΣ(ω) (and hence into any semilattice SΣ(α)) via the

mappings i : D → SΣ(ω) and j : De → SΣ(ω) defined below. These def-

initions show that the notion of Σ-degree of a structure, which is total,

i.e., defined for any structure, no matter countable or not, is a natural

generalization of the (partial) notion of a degree of a countable structure,

introduced in [127]. Also, we get that the semilattices SΣ(α) extend in a

natural way the semilattices D and De.

Definition 6.16. Let M be a countable structure. We say that M has

a degree (e-degree) if there exists the least degree in the set of T -degrees

(e-degrees) of all possible presentations of M on natural numbers.

Using the equivalence of “∀-recursiveness” and “∃-definability”, in the

sense of [85] and [104] (see also [4] and [3]), we get:

Theorem 6.24. [150] For a countable structureM, the following are equiv-

alent:

1) M has a degree (e-degree);

2) there exists a presentation C ∈ M which is a ∆-subset (Σ-subset) of

HF(M).
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We define mappings i : D → SΣ(ω) and j : De → SΣ(ω) in the following

way: for every degree a ∈ D, put

i(a) = [Ma]Σ, where Ma is any structure having degree a.

Similarly, for every e-degree b ∈ De, put

j(b) = [Mb]Σ, where Mb is any structure having e-degree b.

Lemma 6.5. The mappings i and j are well defined: For any (e-)degree

a there are structures having (e-)degree a. Moreover, for any countable

structures M and N, if M has (e-)degree a and M ≡Σ N, then N also has

(e-)degree a.

Note, however, that the property of having a (e-)degree is not closed down-

wards w.r.t. 6Σ.

Definition 6.17. [152, 153] For a structure A, a jump of the Σ-degree

[A]Σ (in the semilattice SΣ(card(A))) is the Σ-degree of the structure

A
′ = (HF(A),Σ-SatHF(A)),

where Σ-SatHF(A) denotes the satisfiability relation for the set of Σ-formulas

in HF(A).

The definition of Σ-jump is correct: For any structures A and B, from

A ≡Σ B it follows that A′ ≡Σ B′. It seems to be an open problem whether

the inequality A <Σ A′ holds for every structure A.

Remark 6.2. In a similar way the jump operation was introduced in [10]

for the semilattice of s-degrees of countable structures. Also, in the same

way a notion of the jump of an admissible set with respect to various

effective reducibilities was introduced in [96, 122]. One more definition of

the jump of a structure, closely related to the notion of Σ-jump, was given

in [91].

The jump operation for Σ-degrees agrees with the jump operations for

Turing and enumeration degrees w.r.t. the natural embeddings: If a struc-

ture A has a (e-)degree a, then the structure A′ has (e-)degree a′. Hence-

forth, we have the following:

Proposition 6.21. The mappings i : D → SΣ and j : De → SΣ are

embeddings preserving 0, ∨ and the jump operation.
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The existence of an embedding of D in SΣ was first noted in [59].

The jump inversion theorem from the classical computability theory can

also be generalized to the case of the semilattices of Σ-degrees of structures.

There is:

Theorem 6.25. [152, 153] Let A be a structure such that i(0′) 6Σ A.

Then there exists a structure B such that

B
′ ≡Σ A.

Remark 6.3. Relation of Σ-reducibility, being defined on structures of ar-

bitrary cardinality, in the case of countable structures can be viewed as the

strongest reducibility in the hierarchy of effective reducibilities on struc-

tures [150, 151] (see Section 6.7). One of the weak reducibilities in this

hierarchy is the Muchnik reducibility. In [139, 140], the jump inversion

theorem for the semilattices of degrees of presentability of countable struc-

tures with respect to the Muchnik reducibility is proved. As a corollary of

Theorem 6.25, we get the jump inversion theorem for all known effective

reducibilities on countable structures (see Section 6.7).

6.6.2. Σ-Definability on special structures

As has already been mentioned, cardinality boundaries are unavoidable in

the classical theory of computability (CTC). Numberings allow us to use

CTC for countable objects. Admissible sets of the form HF(M) can have an

arbitrary cardinality. Hence, the following question naturally arise: Does

there exists a “reasonably good” theory T such that the class of admissible

sets of the form HF(M), with M |= T , allows to extend, in some natural

way, the classical theory CTC to the case of objects with an arbitrary

cardinality?

Recall that a theory T of a finite signature is called regular [33] if it

is decidable and model complete. Recall also, that a theory T is called

c-simple (constructively simple) [33] if it is regular, ω-categorical, and has

a decidable set of the complete formulas.

Remark 6.4. In [33] such theories were called simple, but this terminology

was simultaneously used in the model theory for a different notion.

In the definition of a c-simple theory, ω-categoricity gives the unique-

ness, up to an isomorphism, of a countable model of such theory. Model

completeness, decidability of a theory, and decidability of the set of its
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complete formulas, guarantee the autostability of every constructivization

of this countable theory, i.e., the uniqueness of the “computability” on its

countable models.

Furthermore, if T is a c-simple theory, M0 and M1 are any models

of T (Mi |= T , i = 0, 1), then HF(M0) ≡ HF(M1), since the models of

ω-categorical theories are saturated enough ([33]).

Henceforth, for a c-simple theory T , the class of admissible sets of the

form HF(M), M |= T , extends “uniformly” the classical theory of com-

putability for arbitrary infinite cardinalities.

An example of a c-simple theory is the theory TE of infinite structures

with the empty signature. But this theory is too “weak”, if we regard a

theory T being “strong” in case there are many uncountable structures Σ-

definable in HF(M), M |= T . The reason of the “weakness” of TE is the

following property: For an arbitrary set X and arbitrary permutation f on

X , f can be extended (in a unique way) to an automorphism f∗ of HF(X).

Another example of a c-simple theory is the theory TDLO of dense linear

orders (without endpoints). This theory seems to be quite reasonable candi-

date for a “correct extension of CTC for arbitrary cardinalities”. Below we

present two different characterizations of the theories having uncountable

models which are Σ-definable in HF(L), L |= TDLO.

We now formalize a desired property of TDLO to be the “strongest” in

the class of c-simple theories.

Conjecture 6.1. [34] Suppose a theory T has an uncountable model which

is Σ-definable in HF(M), for some structure M with a c-simple theory.

Then T has an uncountable model which is Σ-definable in HF(L) for some

L |= TDLO.

It is an open question whether this conjecture is equivalent to the fol-

lowing one (which is its formal consequence).

Conjecture 6.2. Any c-simple theory has an uncountable model which is

Σ-definable in HF(L) for some L |= TDLO.

It is known that Conjecture 6.2 is true for rather a “rich” class of c-

simple theories (see Theorem 6.29 below).

Following [23, 32, 33], we present a characterization of the theories hav-

ing uncountable models which are Σ-definable in HF(L) for L |= TDLO.

The category ∗ω is defined as follows: Its objects are the sets of the

form [n] ⇋ {0, 1, . . . , n−1}, n ∈ ω ([0] ⇋ ∅), and its morphisms are order-
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preserving embeddings. It should be noted that there is a unique morphism

from [0] into [n] for any n ∈ ω.

Definition 6.18. By a ∗ω-spectrum we mean any functor S from the cat-

egory ∗ω into the category Mod∗σ of structures (of some fixed signature σ),

whose morphisms are all possible embeddings.

To define a ∗ω-spectrum S, it is necessary to give an infinite sequence

M0,M1, . . . ,Mn, . . ., n ∈ ω, of structures of signature σ, and associate with

each order-preserving embeddings µ : [n]→ [m] an embedding µ∗ : Mn →
Mm so that, if µ0 : [n] → [m] and µ1 : [m] → [k], n 6 m 6 k ∈ ω, are
morphisms of the category ∗ω, then (µ1µ0)∗ = µ1∗µ0∗, and if µ : [n]→ [n]

is the unique morphism from [n] into [n] (= id[n]), then µ∗ = idMn
: Mn →

Mn, n ∈ ω.
If the ∗ω-spectrum S={Mn, µ∗|n ∈ ω, µ ∈ Mor∗ω} has been defined,

then for any linearly ordered set L, it is possible to define the structure

ML(M
S
L
) as a direct limit lim−−→

L0

M
′
L0

of the spectrum

{M′
L0
, ϕL0,L1 | L0 ⊆ L1 ⊆ L, L1 is finite},

where M′
L0

⇋ Mn, if L0 ⊆ L is finite and |L0| = n, and the embedding

ϕL0,L1 : M′
L0
→ M′

L1
is defined for finite L0 ⊆ L1(⊆ L) as follows: If

L1 = {l0 < l1 < . . . < lm−1} and L0 = {li0 < li1 < . . . < lin−1} (in which

case 0 6 i0 < i1 < . . . < in−1 6 m) and µ : [n] → [m] is defined as

µ(j) ⇋ ij, j < n, then

ϕL0,L1 ⇋ µ∗ : M′
L0

= Mn →Mm = M
′
L1
.

If L ⊆ L′ are linearly ordered sets, then the structure ML can be identified

with a substructure of ML′ in a natural way.

Any isomorphism between linearly ordered sets L and L′ induces an

isomorphism between ML and ML′ . Also if L ⊆ L
′ are dense linear orders

without endpoints, then ML 4 ML′ . As a corollary, if L and L
′ are dense

linear orders without endpoints, then ML ≡ML′ .

Let µ0 and µ1 be morphisms from [1] into [2] such that µ0(0) = 0 and

µ1(0) = 1. The condition

µ0∗ 6= µ1∗ (∗)

is sufficient for |MS
L
| > |L| to hold for any linearly ordered set L.
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Definition 6.19. A system of numberings νn : ω →Mn, n ∈ ω, is called a

computable sequence of constructivization

(M0, ν0), (M1, ν1), . . . , (Mn, νn), . . . , n ∈ ω,
if the following conditions hold (we assume that the signature σ of the

structures M0,M1, . . . is finite and without function symbols):

1) E ⇋ {〈n,m0,m1〉|n,m0,m1 ∈ ω, νn(m0) = νn(m1)} is a ∆-predicate

on ω;

2) NP ⇋ {n̄ = 〈n0, n1, . . . , nk〉|n̄ ∈ ωk+1, 〈νn0(n1), . . . , νn0(nk)〉 ∈ PMn0}
is a ∆-predicate on ω for any (k-ary) predicate symbol P ∈ σ;

3) for any constant symbol c ∈ σ there exists a Σ-function fc : ω → ω

such that cMn = νnfc(n).

Every morphism µ : [n] → [m] of the category ∗ω is uniquely defined

by the number m and the subset µ([n]) ⊆ [m]. This remark allows us to

define a one-to-one correspondence µ∗ : ∆ → Mor∗ω between the subset

∆ ⇋ {n|n ∈ ω, r(n) < 2l(n)} ⊆ ω and the set Mor∗ω, provided that n ∈ ∆

is assumed to code the morphism µ : [k] → [l] such that l = l(n) and r(n)

is the number of the subset µ([k]) ⊆ [l] = [l(n)] in some standard listing of

the finite subsets of ω. It is evident that ∆ is a ∆-subset of ω.

Definition 6.20. Let S = {Mn, µ∗|n ∈ ω, µ ∈ Mor∗ω} be a ∗ω-spectrum.

By a constructivization of S we mean any computable sequence of construc-

tivizations

(M0, ν0), (M1, ν1), . . . , (Mn, νn), . . . , n ∈ ω,
together with a Σ-function f : ∆ × ω → ω such that, for any n,m, k ∈ ω
and µ : [n] → [m] ∈ Mor∗ω, if n∗ ∈ ∆ is such that µ∗(n∗) = µ, then

µ∗νn(k) = νmf(n
∗, k).

A ∗ω-spectrum S is called constructivizable if there exists a construc-

tivization for it.

Theorem 6.26. [33] Let L be a dense linear order without endpoints. A

theory T has an uncountable model Σ-definable in HF(L) if and only if there

exists a constructivizable ∗ω-spectrum S, satisfying condition (∗), and such

that MS
L
|= T .

One of the important corollaries of this theorem is the first part of the

following result, showing that the field C of complex numbers is rather

“simple”. The second part shows that C is not “too simple”.
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Theorem 6.27. [33]

1) C is Σ-definable in HF(L) for any dense linear order L of size contin-

uum;

2) C is not Σ-definable in HF(S) for any structure S with empty signature.

A structure A is called locally constructivizable [33] if Th∃(A, a) is c.e.

for every a ∈ A<ω. It is easy to verify that a structure A is locally con-

structivizable if and only if, for any a ∈ A<ω, there exist a constructivizable

structure B and a tuple b ∈ B<ω such that (A, a) ≡1 (B, b) (or, which is

the same, HF(A, a) ≡1 HF(B, b)). Symbol ≡α, here and further on, denotes

elementary equivalence w.r.t. the class of formulas with less than α groups

of alternating groups of quantifiers in the prenex normal form (0 6 α 6 ω).

Henceforth, the next definition is a generalization of the notion of local

constructivizability.

Definition 6.21. [151] A structure A is called locally constructivizable of

level α (0 < α 6 ω) if for any a ∈ A<ω there exists a constructivizable

structure B and a tuple b ∈ B<ω such that

HF(A, a) ≡α HF(B, b).

Local constructivizability of any level is preserved by Σ-definability.

There is:

Proposition 6.22. [151] Let A and B be such that A 6Σ B and B is

locally constructivizable of level α, 0 < α 6 ω. Then A is also locally

constructivizable of level α.

Any structure with a c-simple theory is saturated enough [33] and lo-

cally constructivizable of level ω. Moreover, its countable “computable

simulation”, in the terminology from [89], is unique up to the computable

isomorphism. The situation is different in the case of regular theories:

There are structures with a regular theory, which are not locally construc-

tivizable even of level 1. For example, consider the fields R and Qp of real

and p-adic numbers.

Corollary 6.7. [33] For any linear order L, fields R and Qp are not Σ-

definable in HF(L).
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In some cases there are more simple criteria, for a given theory, of the

existence of uncountable models Σ-definable in HF(L), L |= TDLO. We now

present such a criterion for c-simple theories.

The next definition is a generalization of the model-theoretical notions

of order and total indiscernibility.

Definition 6.22. For structures A, B and some k > 0, a set I ⊆ Ak ∩ B
is called a set of A-indiscernibles in B (with dimension k) if for any pair of

tuples i, i
′ ∈ I<ω with the same length,

〈A, i〉 ≡ 〈A, i′〉 implies 〈B, i〉 ≡ 〈B, i′〉.

Proposition 6.23. Suppose A is uncountable structure, structure B is sat-

urated enough and locally constructivizable of level ω, and let A 6Σ B.

There exist computable structures A0 and B0 such that A0 ≡ A, B0 ≡ B,

and there is an infinite computable set of (B0, b0)-indiscernibles in A0 with

a dimension k, for some k > 0 and b0 ∈ (B0)
<ω.

For certain c-simple theories this necessary condition of Σ-definability of

uncountable models can be simplified (by assuming the dimension to equal

1), and turns out also to be sufficient. Namely, for theory TDLO of dense

linear orders without endpoints, and theory TE of infinite structures with

empty signature, there is

Theorem 6.28. [145] Let T be a c-simple theory, and let A be any com-

putable model of T . Then

1) there exists an uncountable M |= T such that M 6Σ L, L |= TDLO, if

and only if there exists an infinite computable set of order indiscernibles

in A (with dimension 1);

2) there exists an uncountable M |= T such that M 6Σ S, S |= TE, if and

only if there exists an infinite computable set of total indiscernibles in

A (with dimension 1).

Remark 6.5. This result is not true in the case theory T is not c-simple.

For example, there exists a computable algebraically closed field (with char-

acteristic 0) with an infinite computable set of total indiscernibles (see [62]),

but there are no uncountable algebraically closed fields (with characteristic

0) Σ-definable in HF(S), S |= TE .

We now present some applications of Theorem 6.28.
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Definition 6.23. Let n ∈ ω. A (first-order) theory T is called n-discrete

if every finite type of T is uniquely determined by its n-subtypes.

A theory T is called discrete if it is n-discrete for some n ∈ ω. If T

is n-discrete and has a finite number of n-types then T is ω-categorical

and submodel complete in some expansion by a finite number of definable

predicates. Any regular n-discrete theory with a finite number of n-types is

c-simple. Also, any submodel complete theory of a finite relational signature

is n-discrete with a finite number of n-types, for some n ∈ ω, and any ω-

categorical submodel complete theory of a finite signature is n-discrete with

a finite number of n-types, for some n ∈ ω.
A theory T is called sc-simple [154] if it is ω-categorical, submodel com-

plete, decidable, and has a decidable set of complete formulas. Henceforth,

a theory (of a finite signature) is sc-simple if it is c-simple and submodel

complete.

From the Ehrenfeucht–Mostowski Theorem we get

Proposition 6.24. [154] If T is a sc-simple theory of a finite signature

then, in any computable model of T , there exists an infinite computable set

of order indiscernibles.

As a corollary of the above fact, we get

Theorem 6.29. [154] Let T be sc-simple theory of a finite signature. There

exists an uncountable model A of T such that A 6Σ L, L |= TDLO.

In the case of an infinite signature there is a counterexample. Using a

construction from [63] together with Theorem 6.28, the following result was

proved in [145]:

Theorem 6.30. There is an sc-simple theory of an infinite computable

signature, such that, for any uncountable A |= T and any L |= TDLO, we

have A 66Σ L.

We now present some examples of sc-simple theories. For a ω-categorical

theory T , by a Ryll-Nardzewski function of T we mean the function rT :

ω → ω defined as follows: for any n ∈ ω, rT (n) is the number of (complete)

n-types of theory T .

It is easy to check that, for any ω-categorical decidable theory T , the

following are equivalent:

1) T has a decidable set of complete formulas;

2) T has a decidable Ryll-Nardzewski function.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

210 Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev

One of the methods for constructing ω-categorical theories is the Fräıssé

construction [46]. Let K be a class of finitely generated structures of some

fixed signature. K is said to satisfy, respectively,

1) the hereditary property (K |= HP) if, for any A ∈ K and B, B ⊆ A

implies that B ∈ K;

2) the joint embedding property (K |= JEP) if, for any A,B ∈ K, there is

C ∈ K such that there exist embeddings A →֒ C and B →֒ C;

3) amalgamation property (K |= AP) if, for any A,B,C ∈ K and embed-

dings f1 : C →֒ A, f2 : C →֒ B, there are D ∈ K and embeddings

g1 : A →֒ D, g2 : B →֒ D such that f1g1 = f2g2;

4) the property of uniform local finiteness (K |= ULF) if there is a function

f : ω → ω such that, for any A ∈ K with no more than n generators,

the cardinality of A is no more than f(n).

If a class K of finitely generated structures satisfy the properties

HP, JEP and AP, then there is a unique, up to the isomorphism, submodel

complete countable structure A, the class of finitely generated substructures

of which is equal to K, up to the isomorphism (see, for example, [46]). We

call such structure A a Fräıssé limit of K (denoted as A = limFK).

Theorem 6.31 (see [46]). Let K be a countable class of finitely gen-

erated structures of some fixed finite signature, satisfying the properties

HP, JEP,AP, and ULF. Then limFK is ω-categorical.

We present some examples of sc-simple theories constructed via Fräıssé

limits (see [62, 63] for the details related to decidability).

Let FinGraph be the class of all finite symmetric graphs. It is easy to

check that this class satisfies the properties HP, JEP,AP, and ULF.

Definition 6.24. A symmetric graph A is called random if, for any finite

X,Y ⊆ A such that X ∩Y = ∅, there is a vertex v ∈ A \ (X ∪Y ) such that

v is adjacent with all vertexes from X and not with vertexes from Y .

Proposition 6.25 (see [46]). If A is the Fräıssé limit of the class

FinGraph then A is a random graph. Moreover, Th(A) is sc-simple.

Corollary 6.8. [154] There is an uncountable random graph A such that

A 6Σ L, L |= TDLO.
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Let σ be a finite predicate signature. The class Fin(σ) of all finite

structures of signature σ satisfies the properties HP, JEP,AP, and ULF.

Definition 6.25. Let σ be a finite predicate signature. A random structure

Ran(σ) of signature σ is the Fräıssé limit of the class Fin(σ).

Corollary 6.9. [154] There is an uncountable structure A ≡ Ran(σ) such
that A 6Σ L, L |= TDLO.

For other computability properties of Fräıssé limits we refer the reader

to [17].

6.6.3. Special cases of Σ-definability

In some cases, for structures A and B one can say more than just state

the fact that A 6Σ B. For example, it is obvious that HF(A) 6Σ A for

any A, but, in case of the standard model of arithmetic N, much stronger

result is true: HF(N) is Σ-definable within N, not using the elements of the

superstructure.

In particular, a natural additional restriction on Σ-definability of struc-

tures in admissible sets is the restriction on the rank of elements used in this

process. To describe the situation formally, we now give some definitions.

Fix some signature σ, and let P be an unary predicate symbol not in σ.

For any formula Φ of the signature σ ∪ {∈}, with the bounded quantifiers

of the form ∀x ∈ t and ∃x ∈ t, we define by induction the relativization ΦP

of Φ by P :

– if Φ is an atomic formula, put ΦP = Φ;

– if Φ = (Φ1 ∗ Φ2), ∗ ∈ {∧,∨,→}, put ΦP = (ΦP1 ∗ ΦP2 );
– if Φ = ¬Ψ, put ΦP = ¬ΨP ;
– if Φ = (Qx ∈ y)Ψ, Q ∈ {∀, ∃}, put ΨP = (Qx ∈ y)ΨP ;
– if Φ = ∃xΨ, put ΦP = ∃x(P (x) ∧ΨP );

– if Φ = ∀xΨ, put ΦP = ∀x(P (x)→ ΨP ).

Let now A be an admissible set, B ⊆ A be some transitive subset of A,

and Φ(x0, . . . , xn−1) be a formula of the signature σA. Define the set

(Φ(x0, . . . , xn−1))
B = {〈a0, . . . , an−1〉 ∈ An | 〈A, B〉 |= ΦP (a0, . . . , an−1)}.

Definition 6.26. [146] Let A be an admissible set, B ⊆ A be some

transitive subset of A. A structure of a computable predicate signature

〈P0, P1, . . .〉, where each Pi is ni-ary, is called Σ-definable in A inside B if

there exist a computable sequence

Φ(x0, y),Ψ(x0, x1, y),Ψ
∗(x0, x1, y),Φ0(x0, . . . , xn0−1, y),
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Φ∗
0(x0, . . . , xn0−1, y), . . . ,Φk(x0, . . . , xnk−1, y),Φ

∗
k(x0, . . . , xnk−1, y), . . .

of Σ-formulas of σA, and a parameter b ∈ B, such that, for the sets

M0 ⇌ ΦB(x0, b), M0 ⊆ B, η ⇌ ΨB(x0, x1, b) ∩M2
0 ,

the following holds: M0 6= ∅, η is a congruence relation on the structure

M0 ⇌ 〈M0, P
M0
0 , . . . , PM0

k , . . .〉,
where PM0

k ⇌ (Φk(x0, . . . , xnk−1))
B ∩Mnk

0 , k ∈ ω,
(Ψ∗(x0, x1, a))

B ∩M2
0 =M2

0 \ (Ψ(x0, x1, a))
B ,

(Φ∗
k(x0, . . . , xnk−1, a))

B ∩Mnk

0 =Mnk

0 \ (Φk(x0, . . . , xnk−1))
B

for any k ∈ ω, and the quotient structure M is isomorphic to M0�η.

For an admissible set A and a subset B ⊆ A, define the ordinal rnk(B)

as follows:

rnk(B) = sup{rnk(b)|b ∈ B}.

Definition 6.27. [146] The rank of inner constructivizability of an admis-

sible set A is the ordinal

cr(A) = inf{rnk(B) | A is Σ-definable in A inside B}.

The next theorem gives the precise estimate for the rank of inner con-

structivizability of hereditarily finite superstructures. It can be viewed as

an effective analogue of some results from [90] on definability in higher order

languages.

Theorem 6.32. [146] Let M be a structure of a computable signature.

1) If M is finite then cr(HF(M)) = ω.

2) If M is infinite then cr(HF(M)) 6 2.

As a corollary of Theorem 6.32 we get the following. For structures M,

N, and a natural number n ∈ ω, we denote by M 6nΣ N the fact that M is

Σ-definable in HF(N) inside the subset consisting of all elements with the

rank less or equal n. If N is an infinite structure then

M 6nΣ N if and only if M 6Σ N

for any M and any n > 2.

Typical examples of structuresM with cr(HF(M)) = 2 are infinite struc-

tures with the empty signature, dense linear orders, and, more interesting
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one, the structure 〈ω, s〉 of natural numbers with the successor function.

This fact follows from the next proposition, taking into account the decid-

ability of ThWM(〈ω, s〉), where ThWM(M) is the weak monadic second-order

theory of M.

Proposition 6.26. [146] If ThWM(M) is decidable then cr(HF(M)) = 2.

An example of a structure M with cr(HF(M)) = 0 is, obviously, the

standard model of arithmetic. An example of a structure which hereditary

finite superstructure has rank of inner constructivizability 1 is the field R

of real numbers. There is the following:

Proposition 6.27. [146] cr(HF(R)) = 1.

Another natural special type of a Σ-presentation of a structure M in

an admissible set A, s.t. M ⊆ U(A), is a Σ-presentation preserving the

domain of a structure. For a signature σ and an ordinal n 6 ω, we denote

by Formn(σ) the set of (finite first-order) formulas of the signature σ,

which have a prenex normal form with no more than n alternating groups

of quantifiers.

We assume that, for any signature considered, some Gödel numbering

⌈·⌉ of its terms and formulas is fixed.

Definition 6.28. Let M be a structure of a finite signature σ, A an admis-

sible set, and let M ⊆ U(A). The structure M is n-decidable in A (n 6 ω)

if

{〈⌈ϕ⌉,m〉 | ϕ ∈ Formn(σ),m ∈M<ω,M |= ϕ(m)}
is ∆-definable in A.

A structure M is computable in A ifM is 0-decidable in A, and decidable

in A if M is ω-decidable in A.

Proposition 6.28. If Th(M) is regular then M is decidable in HF(M).

The decidability is rather a strong condition. For example, there is:

Proposition 6.29. A liner order L is 1-decidable in HF(L) if and only if

L is a sum of a finite number of dense linear orders and points.

A structure M of signature σ is n-complete [37] (n 6 ω) if for any

formula ϕ(x) ∈ Formn(σ) and for any m ∈ M<ω such that M |= ϕ(m)
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there exists a ∃-formula ψ(x) such that M |= ψ(m) and M |= ∀x(ψ(x) →
ϕ(x)). The following proposition follows immediately from the definitions.

Proposition 6.30.

1) Suppose M is n-decidable in HF(M) (n 6 ω). Then M is n-complete

in some expansion of M by a finite number of constants.

2) Suppose M is n-complete and Th(M) is decidable. Then M is n-

decidable in HF(M).

Suppose M is 1-decidable in HF(M). Then HF(M) is quasiresolvable,

and hence has a universal Σ-function and satisfies reduction, but not nec-

essarily uniformization.

Let M be a structure of signature σ and let signature σ∃-Skolem consist

of all symbols of σ and new functional symbols fϕ(x1, . . . , xn) for all ∃-
formulas ϕ(x0, x1, . . . , xn) of signature σ. The structure M′ of signature
σ∃-Skolem is called an ∃-Skolem expansion of M if M ′ =M , M ↾σ= M′ ↾σ,
and for any ∃-formula ϕ(x0, x1, . . . , xn) of signature σ

M
′ |= ∀x1 . . . ∀xn(∃xϕ(x, x1 , . . . , xn)→ ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)).

Theorem 6.33. [142] If HF(M) satisfies uniformization then some ∃-
Skolem expansion of M is computable in HF(M).

In some cases, this necessary condition is also sufficient.

Skolem expansion MS of a structure M is well defined if for every

ϕ(x0, x1, . . . , xn) ∈ Form(σ), every m ∈ Mn, and every permutation ρ

of the set {1, . . . , n},

M |= (ϕ(x0,m)↔ ϕ(x0, ρ(m))) implies MS |= (fϕ(m) = fϕ(ρ(m))),

where ρ(m) = 〈mρ(1), . . . ,mρ(n)〉.
The next theorem is a reformulation (and correction) of the main result

from [142] (unfortunately, the property of well-definedness for Skolem ex-

pansions was not explicitly stated there, yet it was implicitly used in the

text).

Theorem 6.34. [142, 157] Suppose Th(M) is regular. Then HF(M) sat-

isfies uniformization if and only if some well-defined ∃-Skolem expansion

MS of M is computable in HF(M).

Remark 6.6. As it was recently noted (see [157]), this theorem admits a

natural reformulation in terms of the s-reducibility on structures [10] and
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Proposition 6.31 can be viewed as a natural (and non-trivial) example of

s-equivalence.

One of the important corollaries of this criterion follows from the next

result.

Proposition 6.31. [142] There exist well-defined Skolem expansions RS

and (Qp)S , of the fields R and Qp, respectively, such that RS and (Qp)S

are computable in HF(R) and HF(Qp), respectively.

Corollary 6.10. [142] Structures HF(R) and HF(Qp) satisfy uniformiza-

tion and have a universal Σ-function.

For HF(R), the uniformization property and existence of a universal

Σ-function was independently proved in [141] and [66].

The role of parameters in the Σ-definition of a structure is rather impor-

tant. For example, as it is easy to see, any countable structure is Σ-definable

in HF(R), where R is the field of real numbers. The case of Σ-definability

without parameters turned out to be more interesting, as it was shown

recently in [100].

Theorem 6.35. [100] Suppose a countable structure M is Σ-definable in

HF(R) without parameters. Then M has a hyperarithmetic presentation.

This estimate is precise, as follows from the next theorem:

Theorem 6.36. [100] For any δ < ωCK1 there is a countable structure M

such that

1) M is Σ-definable in HF(R) without parameters;

2) for any H ⊆ ω such that M has an H-computable presentation, holds

0(δ) 6T H.

In case we fix some restrictions on the cardinality of the congruence

classes, the estimate of complexity becomes much lower.

Theorem 6.37. [100] Let M be a countable structure with a finite signa-

ture. The following are equivalent:

1) M is Σ-definable without parameters in HF(R), and all equivalence

classes are at least countable;

2) M is computable.
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For other results on computability (Σ-definability) on the reals and on

some topological spaces, we refer the reader to [65–70, 99], and [71–80, 117].

6.7. Semilattices of Degrees of Presentability of Structures

Relation 6Σ of Σ-reducibility, being defined on structures of arbitrary car-

dinality, in the case of countable structures can be viewed as the strongest

reducibility in the hierarchy of effective reducibilities on structures, as it

was shown in [150, 151]. We overview briefly some of the results in this

field.

Let A be an admissible set. We define uniform reducibilities on fami-

lies of subsets of A, which are the direct generalizations of the Medvedev,

Muchnik, and Dyment reducibilities on mass problems. Let X ,Y ⊆ P (A).

Then,

(1) X isMedvedev reducible to Y (X 6 Y) if there are binary Σ-operators
F0 and F1 such that, for all Y ∈ Y, 〈Y,A \ Y 〉 ∈ δc(F0) ∩ δc(F1), and for

some X ∈ X , X = F0(Y,A \ Y ) and A \X = F1(Y,A \ Y );

(2) X is Dyment reducible to Y (X 6e Y) if there is a unary Σ-operator

F such that Y ∈ δc(F ) for all Y ∈ Y, and F (Y) ⊆ X ;
(3) X is Muchnik reducible to Y (X 6w Y) if for every Y ∈ Y there are

binary Σ-operators F0 and F1 such that 〈Y,A \ Y 〉 ∈ δc(F0) ∩ δc(F1), and

for some X ∈ X , X = F0(Y,A \ Y ) and A \X = F1(Y,A \ Y );

(4) X is weakly Dyment reducible to Y (X 6e Y) if there is a unary

Σ-operator F such that Y ∈ δc(F ) for every Y ∈ Y, and F (Y ) ∈ X .

For any admissible set A and for any r ∈ {e, , w, ew} (here r = ‘ ’ is

used to denote the Medvedev reducibility), we denote byMr(A) the degree

structure 〈P (P (A))/ ≡r,6r〉. We will writeMr instead ofMr(HF(∅)) for

brevity. All structures of the form Mr(A) are lattices with 0 and 1, and

M,Me, andMw are isomorphic to the Medvedev, Dyment, and Muchnik

lattices, respectively.

For a countable structureM, we consider the following classes consisting

of structures that are effectively reducible to M:

KΣ(M) = {N | N 6Σ M},
Ke(M) = {N | N 6e (M, m̄) for some m̄ ∈M<ω},
K(M) = {N | N 6 (M, m̄) for some m̄ ∈M<ω},
Kew(M) = {N | N 6ew M},
Kw(M) = {N | N 6w M}.
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It is known [151] that for any structure M, the following inclusions hold:

KΣ(M) ⊆ Ke(M) ⊆ K(M) ⊆ Kw(M),

and

Ke(M) ⊆ Kew(M) ⊆ Kw(M).

In general, all these inclusions are proper [48].

For any r ∈ {e, , w, ew}, we define a relation 6r on Kω by setting

M 6r N iffKr(M) ⊆ Kr(N) and letting Sr = 〈Kω/ ≡r,6r〉 be the structure
of degrees of presentability corresponding to this relation.

Theorem 6.38. For any r ∈ {e, , w, ew}, the structure Sr is an upper

semilattice with 0, and the following embeddings (→֒) and homomorphisms

(→) hold:

D →֒ De →֒ SΣ → Se → S →֒M.

As a corollary from this result and the Jump Inversion Theorem for the

semilattices of Σ-degrees we get:

Theorem 6.39. [152, 153] Let r be an effective reducibility, i.e., r ∈
{e, , w, ew}. If A is a structure with 0′ 6r A then there exists a structure

B such that

B
′ ≡r A.

This result can be generalized to the case of degrees of presentability of

structures in arbitrary admissible sets, see [156].

For arbitrary structures M and M′ with the same signature and any n ∈
ω, we denote by M ≡HF

n M′ the fact that HF(M) ≡n HF(M′). It is clear

that for n < 2, M ≡HF
n M

′ if and only if M ≡n M
′. In case n = 2, M ≡HF

2

M′ if and only if, for any computable sequence {ϕmn(xm, yn)|m,n ∈ ω} of
quantifier-free formulas of signature σM,

M
′ |=

∨

m∈ω
∃xm

∧

n∈ω
∀ynϕmn(xm, yn)

if and only if the same sentence is true in M.

For arbitrary structures M and N, we denote by M 6∃ N the fact

that, for any tuple m ∈ M<ω, there exists a tuple n ∈ N<ω such that

Th∃(M,m) 6e Th∃(N, n). In particular, if M is locally constructivizable

then M 6∃ N for any structure N. As was noted in [33], if M 6Σ N and
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N is locally constructivizable then M is also locally constructivizable. A

straightforward generalization of this fact is as follows: M 6Σ N implies

M 6∃ N.

Definition 6.29. A structure M is uniformly locally constructivizable of

level n (1 < n 6 ω) if there exists a constructivizable structure N for which

M 4HF
n N.

For instance, the structure 〈ωCK1 ,6〉 is uniformly locally constructiviz-

able of level ω since 〈ωCK1 ,6〉 4HF 〈ωCK1 (1+η),6〉, where the last ordering
(known as the Harrison ordering) is constructivizable.

Proposition 6.32. If M 6Σ N and a structure N is (uniformly) locally

constructivizable of level n (1 < n 6 ω), then M is also (uniformly) locally

constructivizable of level n.

The next proposition states that a class of locally constructivizable (of

level 1) countable structures is downward closed w.r.t. 6w, which is weakest

among the reducibilities under consideration.

Proposition 6.33. Let M and N be structures. Then N 6∃ M if N ∈
Kw(M). In particular, if M is locally constructivizable, then every structure

N ∈ Kw(M) is also locally constructivizable.

A pair (M,N) is locally constructivizable iff so are M and N; therefore,

a set of degrees generated by locally constructivizable structures is an ideal

in semilattices Sr , r ∈ {Σ, e, , w, ew}. Classes of locally constructivizable

structures of level n, n > 1, however, are downward closed w.r.t. 6Σ only

(so they form initial segments in SΣ). For weaker reducibilities, this is not
the case. For example, we have:

Theorem 6.40. There exists a countable structure M0 which is locally

constructivizable of level 1 (strictly) and is such that M0 6 M for every

nonconstructivizable countable structure M. Specifically, if M is locally

constructivizable of level n > 1 but is not constructivizable, then KΣ(M)  

K(M).

The proof makes use of the result (obtained by T. Slaman [137], and,

independently, S. Wehner [164]) which states that there exists a structure

whose problem of presentability belongs to the least nonzero degree of the

Medvedev lattice (which, in particular, means that a semilattice S of de-

grees of presentability has a least nonzero element). Every such structure

is locally constructivizable. Namely, in [150] was proved the following:
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Theorem 6.41. There exist a countable structure M and a unary relation

P ⊆M for which (M, P ) ≡M but (M, P ) 66Σ M.

Theorem 6.41 is of interest in connection with the following result in [4]:

For any countable structure M, a relation P ⊆ Mn, n ∈ ω, is Σ-definable
in HF(M) iff P C is C ↾ σM-c.e. for every C ∈ (M, P ).

The next result from [150] gives some sufficient conditions for the equal-

ity of the principal ideals generated by a structure M with respect to dif-

ferent effective reducibilities.

Theorem 6.42. If M has a degree then KΣ(M) = Ke(M) = K(M) =

Kw(M). If M has an e-degree then KΣ(M) = Ke(M) = Kew(M).

A natural (open) question is, Are these sufficient conditions also necessary?

For structures M and N with card(M) 6 card(N), consider the class

K(M,N) = {M′ | Pr(M′,HF(N)) 6 Pr((M, m̄),HF(N)), m̄ ∈M<ω}.

Classes Ke(M,N), Kw(M,N), and Kew(M,N) are defined similarly.

Proposition 6.34. Let M and N be countable structures and let N be a

structure of the empty signature, or dense linear order. Then KΣ(M) =

Ke(M,N) = K(M,N).

As a consequence, there exist natural isomorphisms between a semilat-

tice SΣ of degrees of Σ-definability and semilattices S(HF(N)) of degrees

of presentability, where N is a countable structure of the empty signature,

or dense linear order.

One more result on the equivalence of “∀-recursiveness” and “∃-
definability”, in the sense of [85] and [104] (see also [4] and [3]), is the

following:

Theorem 6.43. For any countable structures M and N and any relation

R ⊆ HF(N), the following conditions are equivalent:

1) R 6eΣ C for every presentation C of M in the admissible set HF(N);

2) R is Σ-definable in HF(M,N).

Definition 6.30. Let M and N be countable structures. Structure M has

a degree (an e-degree) over structure N if there exists a least degree among

all TΣ-degrees (eΣ-degrees) of all possible presentations of M in HF(N).
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An immediate consequence of 6.43 is a generalization of 6.24:

Theorem 6.44. Let M and N be countable structures. Then the conditions

below are equivalent:

1) M has a degree (an e-degree) over N;

2) some presentation C ⊆ HF (N) of M is a ∆-subset (Σ-subset) in

HF(M,N).

Obviously, for M 6∃ N, the structure M has a degree, and also an

e-degree, over N iff M 6Σ N. It is also clear that if M has a degree, and

also an e-degree, over N, and N 6Σ N′, then M has a degree, and also

an e-degree, over N′. Furthermore, we have for any countable structure

A, there exists a structure M which has a degree but is not Σ-definable in

HF(A).

As in the nonrelativized case, we have:

Theorem 6.45. Let M and N be countable structures. If M has a degree

over N, then KΣ(M,N) = Ke(M,N) = K(M,N). If M has an e-degree

over N, then KΣ(M,N) = Ke(M,N).

6.8. Closely Related Approaches to Generalized Com-

putability

Now, we overview some of the approaches to the computability over abstract

structures, looking for the differences and similarities of a given approach

and the approach based on HF-computability.

6.8.1. BSS-computability

All results of this section are from [8], and we use the original terminology

from this paper, saying “recursive” instead of “computable”. The following

definition is a generalization of the main definition from [14]. Let M be a

structure of a finite signature σ.

Definition 6.31. A BSS-machine contains following:

1) a triple of positive integers 〈m,n, k〉, which are called input, work-

ing, and output dimensions, respectively, and are denoted by m=dimIM ,

n=dimWM , and k=dimOM ;

2) a flow chart of a program.
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A flow chart of a program is a connected directed graph having 4 types

of nodes, with each of which, either a tuple of terms or an atomic formula

of signature σ is associated.

(1) There exists a unique node without incoming edges. It has just one

outgoing edge and the associated tuple of terms

〈t1(x1, . . . , xm), . . . , tn(x1, . . . , xm)〉, (1)

which is called an input node. Here m and n are the input and working

dimensions, respectively. We call this node an input node.

(2) There exists at least one node without outgoing edges.With each such

node we associate a tuple of terms

〈t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)〉, (2)

and we call it an output tuple. Here n and k are the working and output

dimensions, respectively. We call such nodes output nodes.

(3) A computation node has several incoming and one outgoing edge. As-

sociated with this node is a tuple of terms

〈t1(x1, . . . , xn), . . . , tn(x1, . . . , xn)〉, (3)

where n is the working dimension.

(4) A branch node has several incoming and two outgoing edges. One of

the outgoing edges is labeled by “0”, the other by “1”. Associated with

this node is an atomic formula ϕ(x1, . . . , xn), where n is the working

dimension, in the signature σ.

Note that a flow chart may have no computation and branch nodes.

Each term t(x1, . . . , xr) of signature σ defines a term function f : M r →
M as follows: f(m1, . . . ,mr) = t(m1, . . . ,mr) for m1, . . . ,mr ∈ M . Each

tuple of terms 〈t1(x1, . . . , xr), . . . , ts(x1, . . . , xr)〉 defines a term function

f :M r →M s similarly.

We define an arbitrary BSS-machine S over a structure M. The sets

Ī = Am, S̄ = An, Ō = Ak are called, respectively, input, working, and

output spaces.

Given any x ∈ Ī, a BSS-machine does computations which either never

halt or halt and produce y ∈ Ō. First, the machine sends x into an input

node, which computes the term function I(x) defined by the associated

tuple of terms (1). The resulting value z = I(x) goes along the outgoing

edge to the next node. At a computation node, the term function g defined
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by the tuple (3) is applied to z, and g(z) is sent along the outgoing edge.

When z ∈ S̄ reaches (if ever) a branch node, the truth value of associated

formula ϕ(z) is computed. If ϕ(z) is true, the element z goes to the next

node along the edge labeled “1”; if not, it is sent along the edge labeled

“0”. At an output node, the element z ∈ S̄ is converted to y = O(z) of the

output space, where O is the term function defined by the associated tuple

of terms (2), and the machine S halts and produces y ∈ Ō. If the machine

never reaches some output node, we say that the result is undefined.

If the machine S with input x ∈ Ī outputs y, we write y = S(x).

The set

Ω(S,M) = {x ∈ Ī| S halts on input x}

is called the halting set of a machine S in the structure M.

Definition 6.32. A function f : Ω → Mk, Ω ⊆ Mm, is said to be BSS-

computable if there exists a BSS-machine S such that Ω = Ω(S,M) and

f(x) = S(x) for all x ∈ Ω.

Definition 6.33. A set X ⊆ Mn is called recursively enumerable over M

if and only if it is the domain of some BSS-computable function over M.

A set X ⊆ HL(M) is called recursively enumerable (r.e.) if it is r.e. over

HL(M).

Definition 6.34. A set X ⊆Mn is called recursive over M if X itself and

its complement Mn \X are r.e. over M. Recursive sets X ⊆ HL(M) over

HL(M) are called recursive.

Definition 6.35. A set X ⊆Mn is called an output set over M if X is the

range of some BSS-computable function over M. Output sets X ⊆ HL(M)

over HL(M) are called (simply) output sets.

Lemma 6.6. Each recursive set over M is r.e. over M. Each r.e. set over

M is an output set over M.

Proposition 6.35. The following statements are valid:

1) each r.e. set X ⊆ HL(M)n is the projection of some recursive set

over HL(M);

2) X ⊆ HL(M)n is the output set over HL(M) if and only if X is the

projection of a recursive set over M.
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Theorem 6.46. Each recursively enumerable set X ⊆Mn over HL(M) is

defined in M by a formula of the form
∨

i∈ω
ϕi(x1, . . . , xn),

where {ϕi | i ∈ ω} is a recursive set of quantifier-free formulas in the

signature σ. Conversely, each set X ⊆Mn defined by a formula
∨

i∈ω
ϕi(x1, . . . , xn),

where {ϕi | i ∈ ω} is a recursively enumerable set of quantifier-free formulas

in the signature σ, is recursively enumerable over HL(M).

Theorem 6.47. Each output set X ⊆Mn over HL(M) is defined in M by

a formula of the form
∨

i∈ω
(∃xi)ϕi(xi, y1, . . . , yn),

where {ϕi | i ∈ ω} is a recursive set of quantifier-free formulas in the

signature σ. Conversely, each set X ⊆Mn defined by a formula
∨

i∈ω
(∃xi)ϕi(xi, y1, . . . , yn),

where {ϕi | i ∈ ω} is a recursively enumerable set of quantifier-free formulas

in the signature σ, is an output set over HL(M).

For other results on BSS-computability (and similar machine-style ap-

proaches), see [5–7] and [15].

6.8.2. Search computability

We recall some of the central notions of the theory introduced in [105, 106],

together with the relationships with Σ-definability established in [45].

Let M be a structure of a finite signature, and let HL(M) denote the

hereditarily listed superstructure over M. The central notion is that of

a partial multi-valued function (p.m.f) from HL(M)k to the set of subsets

HL(M), where k < ω. We use the following notations (here u ∈ HL(M)k):

• f(u)→ z, if z ∈ f(u) (we say that f(u) produces z);

• f(u) ↓, if f(u) 6= ∅ (we say that f(u) is defined);

• f ⊆ g, if ∀u(f(u) ⊆ g(u));
• f = g, if (f ⊆ g) ∧ (g ⊆ f);
• f(u) = z, if f(u) = {z}.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

224 Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev

Substitution (superposition) of p.m.f. is defined in the natural way:

f(x, g(x,y),y)→ z ⇔ ∃u[(g(x,y)→ u) ∧ (f(x, u,y)→ z)].

Simultaneous substitution is interpreted as a successful substitution. In

particular,

[f(g(x), g(x))→ z]⇔ ∃u∃v[(g(x)→ u) ∧ (g(x)→ v) ∧ (f(u, v)→ z)],

so that (in effect) a multi-valued term that occurs more than once in a

formula may have different denotations for each of its occurrences.

A ν-operator is a nondetermined analogue of the minimization operator,

and is defined as follows:

νy[g(y,x)→ 0]→ z ⇔ (g(z,x)→ 0).

Now, we consider the construction schemes for multi-valued functions.

Let ϕ = ϕ1, . . . , ϕl be a finite (possibly empty) list of p.m.f. on HL(M), ϕi
is ni-ary, 1 6 i 6 l. In the schemes C0–C10, x ∈ HL(M)n, y ∈ HL(M)m

n,m ∈ ω (possibly n = 0 or m = 0). We explain shortly the expressions in

the right parts.

C0. f(t1, . . . , tni
,x) = ϕi(t1, . . . , tni

), 〈0, ni + n, i〉
C1. f(x) = y 〈1, n, y〉
C2. f(y,x) = y 〈2, n+ 1〉
C3. f(s, t,x) = 〈s, t〉 〈3, n+ 2〉
C40. f(y,x) = l(y) 〈4, n+ 1, 0〉
C41. f(y,x) = r(y) 〈4, n+ 1, 1〉
C5. f(x) = g(h(x),x) 〈5, n, g, h〉
C6. f(y,x) = g(y,x), if y ∈M ; 〈6, n+ 1, g, h〉

f(〈s, t〉,x) = h(f(s,x), f(t,x), s, t,x)

C7. f(x) = g(xj+1, x1, . . . , xj , xj+2, . . . , xn) 〈7, n, j, h〉
C8. f(e,x,y) = {e}(x) 〈8, n+m+ 1, n〉
C9. f(x) = νy[g(y,x)→ 0] 〈9, n, g〉.

All schemes, besides C8, were defined previously. Schemes C0–C4 define

basic operations; C5,C7 corresponds to the superposition; C6 corresponds

to the primitive recursion; and C9 to the minimization. Scheme C8 corre-

sponds to the universal machine, with the expressions in the left playing

the role of function indices. More exactly,

C0′. If ϕi(t1, . . . , tni
)→ z, then {〈0, ni + n, i〉}(t1, . . . , tni

,x)→ z.

C1′. {〈1, n, y〉}(x)→ y.

C2′. {〈2, n+ 1〉}(y,x)→ y.

C3′. {〈3, n+ 2〉}(s, t,x)→ 〈s, t〉.
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C40
′. {〈4, n+ 1, 0〉}(y,x)→ l(y).

C41
′. {〈4, n+ 1, 1〉}(y,x)→ r(y).

C5′. If there exists a u such that {g}(x)→ u and f(u,x)→ z, then

{〈5, n, g, h〉}(x)→ z.

C6′. If y ∈M and g(y,x)→ z, then {〈6, n+ 1, g, h〉}(y,x)→ z;

if there exist u, v such that {〈6, n + 1, g, h〉}(s,x) → u, {〈6, n +

1, g, h〉}(t,x)→ v and {h}(u, v, s, t,x)→ z, then

{〈6, n+ 1, g, h〉}(〈s, t〉,x)→ z.

C7′. If {g}(xj+1, x1, . . . , xj , xj+2, . . . , xn)→ z, then {〈7, n, j, h〉}(x)→ z.

C8′. If {e}(x)→ z, then {〈8, n+m+ 1, n〉}(e,x,y)→ z.

C9′. If {g}(y,x)→ 0, then {〈9, n, g〉}(x)→ y.

A p.m.f. f is called search computable relative to ϕ, if it is constructed

with C0–C9, where C0 may contain functions from ϕ. A predicate R(u)

on HL(M) is called search computable relative to ϕ, if its characteristic

function is search computable relative to ϕ. A predicate R(u) on HL(M)

is called semi-search computable relative to ϕ, if there exists a search com-

putable (relative to ϕ) predicate R0(y,u) such that R(u)⇔ ∃yR0(y,u).

If a structureM is defined on the setM then (if not stated overwise), the

list ϕ consists exactly of characteristic functions of the signature predicates

of M.

Theorem 6.48. [45] Let M be a structure of a finite predicate signature,

and R be a relation on HL(M).

(1) R is semi-search computable on HL(M) if and only if R is a Σ-predicate

on HL(M);

(2) R is search computable on HL(M) if and only if R is a ∆-predicate on

HL(M).

In conclusion, we present an approach to relative computability of ab-

stract countable structures, introduced by I.N.Soskov in the framework of

search computability. Let us consider algebraic structures of the form

A=〈U, N, =U , 6=U , R1, . . . , Rn〉,

where U is an infinite countable set, N is the set of the natural numbers,

and Ri ⊆ Uai×Nbi , ai, bi ∈ N, 1 6 i 6 n, ai+bi > 1, are partial predicates,

which take only value true, whenever defined.

We use the so called Moschovakis enrichment. Let U0 = U ∪{o}, where
o 6∈ U and let 〈·, ·〉 be an injective binary function defined on U0 with values

outside of U0. Let U
∗ be the closure of U0 with respect to 〈·, ·〉.
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Let R∗
i (s, z) be true if and only if Ri(s, z) is true, for any 1 6 i 6 n and

(s, z) ∈ Uai × Nbi . Also define partial predicates U , O and Π on the set

U∗ in the following way: U(s) is true if and only if s ∈ U for each s ∈ U∗;
O(s) is true if and only if s=o for each s ∈ U∗; and Π(s, t, r) is true if and

only if s = 〈t, r〉 for every s, t, r ∈ U∗.
By U , O and Π denote the complement predicates of U , O and Π, for

example U(s) is true if and only if U(s) is false for each s ∈ U∗. Moschovakis

enrichment of A (∗-structure of A) is

A∗=〈U∗, N, =U∗ , 6=U∗ , U , U , O, O, Π, Π, R∗
1, . . . , R

∗
n〉.

We write (A∗, R) to denote the structure that is obtained by adding R to

A.

The predicate R ⊆ Uk×Nm is called SC-definable in A (write R 6SC A)

if and only if there exists a primitive recursive (m+ 1)-ary function γ and

t1, . . . , tq ∈ U such that for all (s, x) ∈ Uk × Nm the following equivalence

holds:

R(s, x) is true ⇐⇒ ∃n ∈ N(ν(γ(n, x))(t, s) is true),

where ν is some Gödel numeration of positive ∃-formulas.

Definition 6.36. For structures A = 〈U, N, =U , 6=U , RA
1 , . . . , R

A
n 〉 and

B = 〈U, N, =U , 6=U , RB
1 , . . . , R

B
n 〉, A is said to be SC-reducible to B

(A 6SC B), if RA
i 6SC B for each 1 6 i 6 n.

The relation 6SC is reflexive and transitive, and induces an equivalence

relation ≡SC in the class of all algebraic structure with the abstract sort U .

The respective equivalence classes are called s-degrees, and they form an

upper semilattice. For the results in this field we refer the reader to [10, 140].

6.8.3. Montague computability

The results from this section describe one of the very first generalizations

of computability theory over the natural numbers to the case of com-

putability over arbitrary structures. It was presented by R. Montague

in [90] as an attempt to look at the computability theory as a part of

the model theory, considering computability as definability in higher or-

der logics. The connections with the search computability introduced by

Y.N. Moschovakis [104, 105], another one of the first generalizations of

computability theory, are due to C. Gordon [45].
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Let A be a structure of a finite predicate signature 〈R1, . . . , Rk〉, where
each Ri is ni-ary, and let κ be a cardinal. Define

S0, κ =A,

Sn+1, κ = {x ⊂ Sn,κ | card(x) < κ}.

Consider a language with relation symbols for the relations of A and

the membership symbol ∈ and variables of type n to range over Sn, k.

Definition 6.37. S =
⋃
n∈ω S

n, where Sn is defined inductively:

S0 = A,

Sn+1 = {x | x is a finite subset of Sn}.
The elements of Sn are called objects of type n.

Definition 6.38. A system At = 〈S,∈, R1, . . . , Rk, R
∗
1, . . . , R

∗
k〉 is called a

t-extension of the system A, where R∗
i is the complement of Ri relative to

Ani .

Definition 6.39. The language Σt (for the structure At) has the following

symbols:

(a) For each n ∈ ω, a countable sequence v0, n, v1, n, . . . , of variables of

type n;

(b) Relation symbols R1, . . . , Rk, R
∗
1, . . . , R

∗
k;

(c) The symbols ∧, ∨, ∀, ∃, ∈, (, ), and , .

The formulas of Σt are defined inductively by:

(d) For i=1, . . . , k, if x1, . . . xni
are type 0 variables then Ri(x1, . . . , xni

)

and R∗
i (x1, . . . , xni

) are formulas;

(e) If ϕ and ψ are formulas then (ϕ ∧ ψ) and (ϕ ∨ ψ) are formulas;

(f) If ϕ is a formula, x is a variable of type n and y is a variable of type

n+ 1 then (∃x ∈ y)ϕ, (∀x ∈ y)ϕ and ∃xϕ are formulas.

(Notice that x ∈ y is not a formula of Σt).

The interpretation of Σt in At is the obvious one with variables of type n

ranging over objects of type n.

The relations on A which are Σt definable in At are those which are

considered in [90] as analogs of the recursively enumerable relations.

Theorem 6.49. [45] Any Σt-relation on A is semi-search computable.
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Theorem 6.50. [45] If the equality relation on A and its complement are

Σt-relations in A then any semi-search computable relation on A is a Σt-

relation.

6.9. KPU. Examples of Admissible Structures

Now we give some general information about admissible sets. As it is said

above, it can be used in the HF-computability because any hereditarily

finite superstructure is an admissible set.

6.9.1. Elements of KPU

Recall the axioms of Kripke-Platek Theory with Urelements (KPU). Let

σ be a signature which contains a binary symbol ∈ and a unary symbol

U. They are interpreted as the membership relation and as the set of

urelements respectively.

Extensionality ∀x∀y((¬U(x) ∧ ¬U(y))→ (∀z((z ∈ x)↔ (z ∈ y))→ (x ≈
y)));

Pair ∀x∀y∃z((x ∈ z) ∧ (y ∈ z));
Union ∀x∃y(¬U(y) ∧ ∀z∀w(((z ∈ x) ∧ (w ∈ z))→ (w ∈ y)));
Urelements ∀x(U(x)→ ∀y¬(y ∈ x));
Empty Set Existence ∃x(¬U(x) ∧ ∀y¬(y ∈ x));
Foundation Scheme ∀z(∃xϕ(x, z) → ∃x(ϕ(x, z) ∧ ∀y((y ∈ x) →

¬ϕ(y, z)))), for any formula ϕ of σ in which y does not occur free.

It follows from Extensionality that a set without elements (i.e., an empty

set) is unique.

To formulate the remaining axioms, we need a definition of ∆0-formula:

Definition 6.40. The class of ∆0-formulas of signature σ is the least one

which contains atomic formulas and is closed under the following logical

connectives: →, ∨, ∧, ¬, ∀y ∈ t, ∃y ∈ t, where t is a term of σ and y

is a variable (as before, ∀y ∈ t . . . and ∃y ∈ t . . . are abbreviations for

∀y((y ∈ t)→ . . .) and ∃y((y ∈ t) ∧ . . .) respectively).

∆0 Separation Scheme ∀z∀x(¬U(x)→ ∃y(¬U(y)∧∀w((w ∈ y)↔ ((w ∈
x) ∧ ϕ(w, z))))), for every ∆0-formula ϕ of the signature σ in which y

does not occur free;

∆0 Collection Scheme ∀z∀x(¬U(x) → (∀w ∈ x∃yϕ(w, y, z) → ∃u∀w ∈
x∃y ∈ uϕ(w, y, z))), for every ∆0-formula ϕ of the signature σ in which

u does not occur free.
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It follows from these axioms that, for any elements x, y, there exist the

pair {x, y}, the ordered pair 〈x, y〉⇌ {{x}, {x, y}}, the union
⋃
x, and the

results of the usual set theoretic operations x ∪ y, x ∩ y, x \ y.
Structures of the theory KPU are denoted as A, B, C, . . . (possibly

with indices); their domains are denoted as A, B, C, . . . respectively (with

corresponding indices). Given a structure A of KPU, elements from U(A)

are called urelements and elements from A \ U(A) are called sets. The

axioms of KPU enables us to prove the existence of the Cartesian product

a × b for any sets a and b. A structure with operations and relations can

be given on the set of urelements.

The theory KPU can be considered as a fragment of the theory ZF

with urelements and, therefore, we can define the notions of a transitive

set as a set containing all its elements as subsets and that of an ordi-

nal as a transitive set consisting of transitive sets only. Notice that for

any set x there exists the transitive closure TC(x), i.e., the least tran-

sitive set under inclusion containing x as a subset. Moreover, TC(x)

is a Σ-function. By using foundation [11, 33] one can prove that ordi-

nals on structures of KPU are linearly ordered by the membership rela-

tion and every non-empty definable subset of ordinals has the least el-

ement. A structure A of KPU is called an admissible set [33] if the

set Ord(A) of ordinals of the structure is well ordered under the mem-

bership relation. Such a definition is more abstract than the definition

from [11] because it is closed under all isomorphic images. However, any

admissible set is isomorphic to some admissible set in the sense [11]. An

ordinal α is called admissible if Ord(A) = α, for some admissible set

A.

As it is said above, hereditarily finite superstructures are admissible

sets. We give now a series of other examples of admissible structures:

(1) Any standard model of ZF with urelements is an admissible set.

(2) Let κ be an infinite cardinal and let M be a structure (possibly, empty)

of some signature τ . Then a structure Hκ(M) of τ ∪ {U,∈} with its

domain {a ∈ VM | card(TC(a)) < κ}, where VM is the universe over

M(II.1 [11])), is an admissible set with Ord(Hκ(M)) = κ. Thus, any

infinite cardinal is admissible.

(3) Let M be a structure. Then there exists the least admissible

set HYP(M) under inclusion containing M as an element. More-

over, its domain can be found constructively in any such admissi-

ble set, namely, there is a Σ-function L(a, α) that it coincides with
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⋃
α∈Ord(HYP(M)) L(M,α) [11, 33]. Consider HYP(N) where N is the

standard model of arithmetic. Then Ord(HYP(N)) = ωCK1 is the first

non-constructible ordinal and the collections of ∆- and Σ-subsets are

exactly ∆1
1 and Π1

1 respectively. The properties of this admissible set

are studied in detail in [11].

(4) Given an admissible set A, {a ∈ A | TC({a})∩U(A) = ∅} is the domain

of an admissible set which is called the pure part of A. Generally,

admissible sets without urelements are said to be pure. As a corollary,

an ordinal α0 is admissible if and only if Lα0 = 〈⋃β<α0
L(∅, β),∈〉 is

admissible. Admissible sets of such kind are called constructible.

Indeed, the pure part of any admissible set whose ordinal is ω coincides

with HF(∅), i.e., the least admissible set under inclusion(II.2.12 [11]).

Notice that if A is an admissible set over M then HF (M) is exactly

the closure of the set M of urelements together with {∅} under values of

set-theoretic terms {·} and ∪.

6.9.2. Σ-subsets

In comparison with classical computability, an effectively presented relation

is the main object of study here, not a function. The main interest in these

relations lies in the method of defining them, as well as in the general

absence of a universal effective function.

The notions of Σ-formulas, Σ- and ∆-subsets, and Σ-functions on struc-

tures of KPU are defined like these for hereditarily finite superstructures.

We give examples of basic ∆-predicates and Σ-functions used here:

• Ord(x) (x is an ordinal);

• Nat(x) (x is a natural number; we often denote the set of finite ordinals

in admissible sets as ω);

• TC(x) is the least transitive set containing x as a subset;

• sp(x) ⇌ {y ∈ TC(x) | U(y)} is the support of x;

• rk(x) = sup{rk(y) + 1 | y ∈ x} is the rank of x.

As usual, 〈x, y〉 ⇌ {{x}, {x, y}}, 〈x〉 ⇌ x, 〈x1, x2, . . . , xn−1, xn〉 ⇌

〈〈x1, x2, . . . , xn−1〉, xn〉. As in the classical case, it suffices to consider sub-

sets of admissible sets only because the ordered pair operation is definable

by some ∆0-formula. Moreover, this formula is independent of choice of a

structure of KPU. We give now several equivalent definitions of Σ-subsets

in any structure of KPU.
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Proposition 6.36. Let A be a structure of KPU and let B ⊆ A. Then the

following conditions are equivalent:

(i) B is a Σ-subset of A;

(ii) B is a Σ1-subset of A;

(iii) B = δF for some partial Σ-function F ;

(iv) B = ρF for some partial Σ-function F ;

(v) B = ∅ or B = ρF for some total Σ-function F .

Proof. (i) → (ii) follows from the Reflection Principle [11]. (ii) → (v)

Let B be a nonempty Σ1-subset and let ∃yϕ0(x, y) define B, where ϕ0 is a

∆0-formula. Take b0 ∈ B and define a Σ-formula ψ(x, y) as follows:

(∃u∃v((x = 〈u, v〉) ∧ ((ϕ0(u, v) ∧ (y = u)) ∨ (¬ϕ0(u, v) ∧ (y = b0))))∨
(¬(x is an ordered pair) ∧ (y = b0))).

It is easy to check that a Σ-formula ψ(x, y) defines the graph of some total

function f with B = ρf . (v) → (iv) If B = ∅ then a Σ-formula ¬(x = x)

defines the graph of nowhere converged function, in particular, the range

of it is empty. If B 6= ∅, then it is evident that (iv) is true. (iv) → (i),

(iii) → (i) Let a Σ-formula φ(x, y) define the graph of F . Then ∃xφ(x, y)
and ∃yφ(x, y) define B in (iv) and (iii) respectively. (i) → (iii) Suppose

that B is definable by Σ-formula θ(x). Then (θ(x) ∧ (x = y)) defines the

graph of some function f whose domain coincides with B. �

An infinite Σ-subset B of A needs not have total Σ-functions “enumer-

ating” it without repetitions, i.e., one-to-one correspondences from A onto

B. Several examples are given.

Examples 6.9.1.

(1) Any admissible set has always a countable ∆-subset ω ⊆ Ord(A).

(2) If an admissible set A satisfies ω < Ord(A) then ω cannot be enu-

merated without repetitions via a total Σ-function, otherwise A ∈ A,
by Σ-Replacement (I.4.6 [11]). Moreover, if a ∈ A then a cannot be

enumerated without repetitions via a total Σ-function.

(3) There exists a hereditarily finite superstructure over a countable struc-

ture of some finite signature which has an infinite Σ-subset B ⊆ ω

such that any coinfinite Σ-subset of B is finite (theorem 2.1 [101]).

In particular, B cannot be enumerated without repetitions via a total

Σ-function or even a partial Σ-function with domain ω.
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6.9.3. Gandy’s Theorem

An approximation by some strongly computable sequence of finite sets is

one of the universal methods of defining computably enumerable sets in

classical computability. In general, this method cannot be applied in ad-

missible sets because Σ-subsets cannot be constructed by ordinal steps in

some admissible sets. However, nondeterministic analogues can be used

here if elements of a certain kind play the role of steps.

Definition 6.41. Let M, N be structures of some signature σ ⊇ {∈}.
A structure N is called an end extension of M (we write M 6end N) if

{b | b ∈M a} = {b | b ∈N a} for each a ∈M .

If A is a structure of KPU in some relation signature and a ∈ A is tran-

sitive then A ↾ a 6end A. Any embedding of one structure into another

is extendible to some end extension, that is, given two structures M and

N such that M 6 N, there is an embedding ı : HF(M) →֒ AN such that

ı(HF(M)) 6end AN, for every admissible set AN over N.

Since Σ-formulas are preserved under end extensions (I.8.4 [11]) we have:

Proposition 6.37.

(1) Let A be a structure of KPU in some relation signature, Φ(x) be a Σ-

formula in the signature with a parameter a0 ∈ A, and b ∈ A. Then

A |= Φ(b) if and only if A ↾ c |= Φ(b) for some transitive set c ∈ A,
{a0, b} ⊆ c.

(2) Let HF(M) be a hereditarily finite superstructure in some relation

signature, Φ(x) be a Σ-formula in the signature with parameters

m0, . . . ,mk−1 from M, and b ∈ HF (M). Then HF(M) |= Φ(b) if

and only if HF(M0) |= Φ(b) for some finite substructure M0 6 M,

{m0, . . . ,mk−1} ∪ sp(b) ⊆M0.

An important circumstance is that both the approximations are defined by

some Σ-formulas which can be effectively found from Φ. It is convenient to

use variations of proposed approaches in practice.

Now we describe Gandy’s method of construction of a Σ-predicate as

the least fixed point of some Σ-operator. In section 6.3, this method was

defined on hereditarily finite superstructures.

Let A be a structure of KPU. We define two topologies on P(A).

• The strong topology τs is defined by an open basis consisting of sets of

kind Va ⇌ {M |M ⊆ A, a ⊆M}, a ∈ A \ U(A).
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• The weak topology τw is defined by an open pre-basis consisting of sets

of kind V{a}, a ∈ A. In other words, sets of kind Va, where a ∈ A\U(A)

is a finite set, form an open basis of this topology.

Note that these topologies coincide on hereditarily finite superstructures. A

continuous map F : 〈P(A), τs〉 → 〈P(A), τw〉 is called a weakly continuous

operator. Every weakly continuous operator F is monotonic, i.e.,M ⊆ N ⊆
A ⇒ F (M) ⊆ F (N) and, therefore, it has the least fixed point which can

be found in the following way: Γ0 ⇌ ∅; Γα+1 ⇌ F (Γα); Γη ⇌
⋃
β<η Γβ ,

if η is limit; then, as it is easily checked, Γ∗ ⇌
⋃
α<card(A)+ Γα is the least

fixed point of F .

A weakly continuous operator F is called a Σ-operator if Γ∗
F ⇌ {〈a, b〉 |

a ∈ A \ U(A), b ∈ F (a)} is Σ on A.

Theorem 6.51. [Gandy] Let A be an admissible set and F be a Σ-operator

on A. Then the least fixed point Γ∗ of the operator F is a Σ-subset of A.

Moreover, Γ∗ = ΓOrd(A).

We illustrate some applications of this theorem.

Let Ψ(x, P+) be a Σ-formula and FΨ(M) = {b | 〈A,M〉 |= Ψ(b)},
for every subset M of an admissible set A. Then FΨ is a Σ-operator on A.

Thus, the Gandy Theorem can be viewed as a generalization of Σ-Recursion

Principles.

Proposition 6.38. Let A be an admissible structure over M. Then

HF (M) is a Σ-subset of A.

Proof. Let Ψ(x, P+) be

U(x) ∨ ∃y∃z(P (y) ∧ P (z) ∧ ((x = {y}) ∨ (x = y ∪ z))). �

Indeed, Σ- cannot be replaced by ∆- in 6.38(V.2.6 [11]). However, the

following holds:

Proposition 6.39. Let A be an admissible set. Then HF (∅) will be a

∆-subset of A, HF(∅) 6end A and hence every Σ-(∆-)predicate on HF(∅)

is Σ(∆) on A.

Proposition 6.40. Let A be an admissible set and letM be a ∆-(Σ-)subset

of A. Then {〈n, a〉 | a ∈Mn, n < ω} will be ∆(Σ) on A.

Proof. Let Ψ0(x, y, P
+) be

((y = 1) ∧ (x ∈ M)) ∨ ∃u∃v[(x = 〈u, v〉) ∧ (v ∈ M) ∧ ∃z(Nat(z) ∧ (y =

z + 1) ∧ (z > 0) ∧ P (u, z))]
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and let Ψ1(x, y,Q
+) be

¬Nat(y)∨ (y = 0)∨ ((y = 1)∧ (x 6∈M))∨∃z(Nat(z)∧ (y = z+1)∧ (z >
0) ∧ ∀u ∈ TC(x)∀v ∈ TC(x)(¬(x = 〈u, v〉) ∨Q(u, z) ∨ (v 6∈M))). �

Corollary 6.11. Let A be an admissible set and let M be a ∆-(Σ-)subset

of A. Then M<ω ⇌
⋃
n<ωM

n is also a ∆-(Σ-)subset of A.

Gandy’s Theorem implies the existence of a universal Σ-predicate on any

admissible set. Let A be an admissible set and K a class of n-ary relations

on A. A predicate P ⊆ An+1 is universal for K if K = {{〈b1, . . . , bn〉 |
〈a, b1, . . . , bn〉 ∈ P} | a ∈ A}. In particular, P is a universal Σ-predicate

if it is universal for the class of all n-ary Σ-predicates on A; a partial Σ-

function f(y, x1, . . . , xn) is a universal Σ-function if its graph Γf is universal

for the class of graphs of all n-ary partial Σ-functions.

We identify formulas with their Gödel numbers.

Theorem 6.52. There is a binary Σ-predicate TrΣ on A such that, for

every Σ-formula Φ(x) and a ∈ A,
〈Φ, a〉 ∈ TrΣ ⇔ A |= Φ(a).

Theorem 6.53. There exists a universal (n + 1)-ary Σ-predicate

T (e, x1, . . . , xn) on A.

As is mentioned above (see Sections 6.3, 6.5), there are admissible sets

without universal Σ-functions [49, 101, 132, 162].
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Département de Mathématiques et Applications UMR 8553 et CNRS
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questions have gained a revival of interest in recent years due to new
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7.1. Introduction

Digital machines, by their extraordinary logical and computational capa-

bility, are changing the world. They are changing it with their power and

their originality, but also with the image of the world they reflect: they

help perform thousands of tasks and enable radically new ones, they are

an indispensable tool for scientific research, but they also project their own

mathematical structure upon the processes they are involved in.

The aim of this paper is to present several situations (in a non-

exhaustive and rather kaleidoscopic way) where a precise confrontation of

digital capacities with real settings in natural sciences is possible, and, in

particular, to show how, in these situations, the computer science’s concept

of computability has to be carefully handled and sometimes not pertinent.

Digital machines are not neutral, as they have a complex history, based

on several turning points in terms of the thinking which enabled their inven-

tion. They synthesize a vision and a science which is very profound. They

are “alphabetic” in the specific sense of the encoding of human language,

produced by a bagpipe over strings, by means of discrete and meaningless

letter-units, an incredible invention which dates back 5,000 years. They

are Cartesian in their software/hardware duality and in their reduction of

thought to the elementary and simple steps of arithmetic calculus. They

are logical by stemming from a logico-arithmetical framework, in the tradi-

tion of Frege and Hilbert, during the 1930s (“proofs are programs”). And

this by the final remarkable invention, by Gödel: the number-theoretic en-

coding of any alphabetic writing. For all of these reasons, they contribute

to a reading of nature based on the computable discrete, from the alphabet

to arithmetic, on a space–time framed within discrete topology, of which

the access and the measurement are exact, just like in digital databases.

We will see why confounding physics, despite its great “mathematicity”,

with computations and calculus, in any form whatsoever, seems a mistake

to us. First, the idea that physics “reduces to solving” equations is an

erroneous idea. To be assured of this, one needs only to consider that a

great part of physics concerns variational problems in which the search of a

geodesic differs greatly from the search for the solution to an equation. And

this, without mentioning the singular quantum situation, to be discussed

below, nor the life sciences, which are not very mathematized and for which

the notions of invariant and of the transformation which preserves it, central

to mathematics, are far from being “stabilized”.
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The new importance of digital machines, in particular in the natural

sciences, requires a thorough analysis of the relationship between computa-

tions and natural processes. We will focus here on the relationships between

computations and, among the physical processes, those which we consider

as “natural”, that is, those that occur somehow “independently” of hu-

man intervention (because a machine also produces, or even is, a physical

process, but it is a result of a human construction which is extremely orig-

inal and theoretically rich). We will then ask the question: Do physical

processes compute?

The paper is organized as follows: Section 2 is devoted to a topologi-

cal discussion of the link between computability and continuity. It leads

to Section 3 where mathematics, especially computational mathematics,

is confronted to physics endowed with its peculiar “reality” property. We

show in particular how physics deals with a lot of concepts which escape

from any sense of “calculus”. Section 4 gives an epistemological example of

a mathematical object which, with the evolution of physics, lost its compu-

tational flavour after entering the game of modern physics. Sections 5, 6,

7, and 8 are somewhat the core of the paper. We first discuss the concept

of predictability in the mirror of chaoticity in dynamical systems. Then we

come back to topological remarks and consider the problem of determin-

ism, a fashionable subject in computer sciences nowadays. We then look at

the case of quantum mechanics, also a subject which entered strongly into

computer sciences lately. Section 9 discusses the position of randomness

inside dynamical systems, and we end up with some final remarks.

Let us mention once again that the scope of this paper is by no means

to present a general theory of non-adequacy of computer sciences in natural

philosophy, but rather to present warnings concerning a general temptation

of overusing computational ideas in physics and mathematics, given the

major role of computing in today’s science.

7.2. Computability and Continuity

The naive, and unfortunately highly widespread response to the question

above is that yes, everything can be seen in terms of alphanumeric in-

formation and its computational elaboration. This thesis, under different

forms, is often called the “Physical Church Thesis”. So let’s return briefly

to Church’s thesis in its original form, which is purely logico-mathematical

and in no way physical.
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Church’s thesis, introduced in the 1930s after the functional equiva-

lence proofs of various formal systems for computability (and concerning

only computability over integers), is an extremely robust thesis: it ensures

that any finitistic formal system over integers (a Hilbertian-type logico-

formal system) computes at best the recursive functions, as defined by

Gödel, Kleene, Church, Turing.... This thesis, therefore, emerged within

the context of mathematical logic, as grounded on formal systems for arith-

metic/discrete computations: the lambda-calculus (Church, 1932), a sys-

tem for the functional encoding of logical deductions, and Turing’s Logical

Computing Machinea, were the motors of various equivalence proofsb.

The very first question to ask is the following: If we broaden the formal

framework, what happens? For example, if we consider as basic support

for computation a set “greater” than the natural integers, is this invari-

ance of formalisms preserved? Of course, if we want to refer to continuous

(differentiable) physics-mathematics, an extension to consider may be the

following: What about the computational processing of these computable

“limit” numbers which are the computable real numbers? Are the vari-

ous formalisms for computability over real numbers equivalent, when they

are maximal? An affirmative response could suggest a sort of Church the-

sis “extended” to this sort of computational “continuity”. Of course, the

computable reals are countably many, but they are dense in the “natural”

topology over Cantor’s reals, a crucial difference as we shall see.

With this question, we then begin to near physics, all the while re-

maining in a purely mathematical framework, because mathematics on the

continuum of real numbers constitutes a very broad field of application to

physics, since Newton and Leibniz. In particular, it is within spatial and

often also temporal continuity that we represent dynamical systems, that

a1936: “A man provided with paper, pencil and rubber, and subject to a strict discipline,
is in effect a Universal (Turing) Machine”, [31]. In fact, the reader/writer needs only to
know how to read/write 0 and 1 on an endless length of tape, then to move one notch to
the right or to the left, according to given instructions (write, erase, move right, move
left) to compute any formally computable function (see the next note).
bThe other definitions of computability are more “mathematical”: they propose, in
different ways, arithmetic function classes which contain the constant function 0, the
identity and the successor functions +1, and which are closed by composition, by
primitive recursion (in short: f(x + 1) = h(f(x), x)) and by minimalization (that is,
f(x) = miny[g(x, y) = 0]). It is a mathematically non obvious remark that by read-
ing/writing/moving 0s and 1s left and right on a tape it is possible to calculate all of
these functions: there lies the genius of Turing and the origin of the 0 and 1 machine
which will change the world.
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is, most mathematical models (in logical terms: mathematical formalisms)

for classical physics. This does not imply that the world is continuous, but

only that we have said many things thanks to continuous tools as very well

specified by Cantor (but his continuum is not the only possible one: Law-

vere and Bell, [6], say, proposed another without points, but one which is

unfortunately not richer for the moment in mathematical terms – although

some may hope to use it to better address the geometry of quantum physics;

so, let’s rest on Cantor for the time being).

Now, from this equivalence of formalisms, at the heart of Church’s the-

sis, there remains nothing regarding computability over real numbers: the

models proposed, in their original structure, are demonstrably different, in

terms of computational expressiveness (the classes of defined functions).

Today, it is possible to roughly group different formal systems into four

main groups (however not exhaustive ones), in order to perform computa-

tions over real numbers:

- recursive analysis, which develops the approach to Turing’s computable

real numbers, or even the Turing Machine itself, by an infinite extension

recently formalized by Weihrauch (two tapes, one which can encode a com-

putable real hence infinite number, and the other which encodes the pro-

gram, see [35]; from the mathematical standpoint, the idea was first devel-

oped by Lacombe and Grezgorzcyk, in 1955–57);

- the Blum, Shub, and Smale BSS model (an infinite tape and a little

control system, see [7]);

- the Moore-type recursive real functions (defined in a more mathemat-

ical manner: a few basic functions, and closure by composition, projection,

integration, and search for the zero, see [24]);

- different forms of “analog” systems, among which threshold neurons,

the GPAC (General Purpose Analog Computer, attributable to Shannon,

[30], of which a first idea preceded classical recursivity: V. Bush, M.I.T.,

1931, [10]).

Each of these systems has its own interest. Besides, they confirm the

solidity of Church’s original thesis, since the restriction to integers of all

known models of computability over continua again produces classical re-

cursivity (or no more than that). What else could we say, concerning inclu-

sions, links, demonstrable passages, as for these formalisms for computabil-

ity on continua?

Of course, it is a matter of “relative” continuity: computable real num-

bers do not form a Cantor-type continuum, as we said; they are a denumer-

able set of measure 0. However, their “natural” (interval) topology is not
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the discrete topology (and mathematicians know what “natural” means:

the discrete topology over Cantor reals is not natural; one does nothing

with it). This is the crucial mathematical difference of computations on

reals from computability over the isolated points of the countable discrete:

the natural topology is not the discrete topology, but the induced one, by

intervals.

The difference is crucial with regard to physical modelling for the fol-

lowing reasons. In physics, the (Cartesian) dimension of space is funda-

mental. By dimension we mean both the number of independent variables

in functions and their “physical meaning” (the dimension of energy, say,

is different from that of force). Relativity and string theory, to use some

examples, make it into a constitutive issue, as for the dimension of space-

time; but also, the propagation of heat, or the mean field theory, to remain

in classical physics, depends in an essential way upon the dimension under

consideration, see [3]. Now, computability over integers is “indifferent” to

the Cartesian dimension: the expressivity of the machine does not change

by changing the dimensions of its databases, but only the polynomial effi-

ciency. This is due to the computable isomorphism < ., . > between N2 and

N . One may therefore define, without difficulty and for any discrete formal-

ism, the universal function U within the very class of computable functions

(that is, once the computable functions have been enumerated, (fi)i∈N ,

function U(i, n) = fi(n) belongs to such class by the coding < ., . >).

These properties, quite interestingly, are a consequence of the rather

general fact that discrete topology does not force a dimension. In short,

in the discrete universe (the category of sets), any infinite set (integers,

in particular) is isomorphic to all of its finite (Cartesian) products. But

when discrete topology is no longer “natural”, within a continuum, say,

with Euclidean (or real) topology, for example, the spaces having differ-

ent dimensions are no longer isomorphic. We then say that the dimension

is a topological invariant, for topologies which derive from the interval of

physical measurement (Euclidean, typically). A remarkable relationship

between geometry and physics: the metrics (and the topology induced) of

the sphere (or interval) indeed corresponds to the “natural” physical mea-

surement, that of the intervals, and it “forces” the dimension, a crucial

notion in physics. So here is a fundamental difference for continuous math-

ematics (and for computability over continua, would they be just dense):

any bijective encoding of spaces with different dimensions is necessarily

non-continuous and, in order to define, typically, the universal function, it

is necessary to change dimension, hence to leave the given class.
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So let’s return to our question, which is, in our view, a rigorous way

to address the extensions of the Church thesis to the mathematics of

physics: Can we correlate different formalisms for computability over a

continuum, these being adequate for physical systems and which, there-

fore, make the Cartesian dimension into a fundamental issue, even if they

are non-equivalent? There are no extensions today of the Church thesis

to computable continua and just partial answers are provided by many

authors: [9, 21] present an overview and recent results which, by the addi-

tion of functions and operators which are highly relevant from the physical

standpoint, enable us to establish inclusions under certain conditions, these

being rather informative links. On the basis of these works, we should arrive

at a notion of a “standard system” for computability over the set of com-

putable real numbers which represent a reasonable extension of Church’s

thesis to computable continuity (all “standard” systems would be equiva-

lent, modulo the fundamental issue of dimensions), and therefore also find

an interesting link with the mathematics of physics.

However, for a large enough class, this standardization is not obvious

and we are far from having a Church-like equivalence between systems.

Moreover, it is clear that we remain, as in the case of the logico-formal

Church thesis, within mathematical formalismsc. And what about physical

processes?

7.3. Mathematical Computability and the Reality of Physics

Let’s ask a preliminary question to asking if nature computes: What could

nature actually compute? If we look at the object before looking at the

method, things may not be so simple. Vladimir Arnol’d recalls in his

book [2] the formula attributed to Newton: “It is useful to solve differ-

ential equations”. From another perspective, physics could very well be

expressed according to another formula, provided this time by Galileod.

cIn what concerns the extension of the Church thesis to computer networks and to
concurrent systems in general, systems which are perfectly discrete but distributed over
space–time, this being better understood by means of continuous tools, we refer to [1] and
to its introduction: in this text, it is noted that this thesis, in such a context, is not only
false, but also completely misleading (the processes are not input-output relationships
and their “computational path” – modulo homotopy, for instance – is the true issue of
interest).
d“La filosofia scritta in questo grandissimo libro che continuamente ci sta aperto innanzi
agli occhi (io dico l’Universo) non si puó intendere se prima non s’impara a intender la
lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica,
e i caratteri son triangoli, cerchi, ed altre figure geometriche, senza i quali mezzi è
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And from Galileo’s standpoint which is, however, far from being formal-

istic or number-theoretic but rather “geometric”, and which continues to

perceive “filosofia” as an intermediary between ourselves and the world, the

question asked above could very well be natural.

Newton–Arnold’s view point seems more modern. However, it is now

necessary to observe that the importance of an equation, or more gener-

ally, of a mathematical conceptual structure used in physics is often more

important in abstracto than its numerical solutions. But let’s nevertheless

look at what happens upwards to this.

Is there something to solve, to compute?

The description of a physical phenomenon takes place within a frame-

work of “modelling”, that is, within a fundamentally “perturbational”

framework. The isolation of a phenomenon, its intrinsic comprehension,

supposes that we neglect its interaction with the rest of the world. But to

neglect does not mean to annihilate: the rest of the world exists and creates

perturbations at this isolation. From this point of view, a model must be

immersed in an “open set” of models.

The isolation of a concept upon which one is working, for instance,

results from the choice of a given scale. Neighboring scales are then sup-

posed to be either inaccessible (smaller scales), or processable by averaging

(larger scales). In both cases, they can influence the model and the equa-

tion which yields it. Asking the question whether something which we

compute, physically, fits into a framework of computability, in the classical

sense, commands having precautions at least.

In particular, are there equations and only equations? A great part

of classical physics rests upon variational principles. The trajectory ap-

pears not only as the solution to an equation, but as a solution that is

chosen because it optimizes, extremizes a quantity (action). Of course, this

is equivalent to resolving equations (Euler–Lagrange), but this is only an

equivalence. Let’s recall that Feynman [14] preferred solutions to equations

for quantum mechanics. In this case, no more equations: all possible tra-

jectories (minimizing or not the action functional) are involved. This is

possible, but is so thanks to the functional integral, in an infinite dimen-

sional space. And what about computability in this case?

impossibile a intenderne umanamente parola; senza questi è un aggirarsi vanamente per
un oscuro laberinto.” (Il Saggiatore, 1623.)



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

The Mathematics of Computing between Logic and Physics 251

Let’s look at another example: quantum field theory, a physical theory

which is not mathematically well founded yet, but which has been phenom-

enally successful in terms of precision, is based entirely on perturbative

calculations [26].

Thus it is obvious that, even without considering the lack of precision

of classical measurement, which we will address later on, the true situation

is somewhat fuzzy, largely perturbative, and hence that the problem of

computability in physics is multiple and complex.

Nevertheless let’s suppose that there actually are equations. And let’s

suppose that the true issue is really the solution, which is predictive. We will

then be compelled to remark that the situations where the solution’s values

are important are rare. A simple example: physicists like to draw curves,

even when a formula providing the solution is available. But what is left

of computability when the “result” is smoothed by the graphical process,

where only the general “trends” are important, not the exact values?

Let’s take a look at the dynamical systems provided by maps, the case

of the “baker’s map”, for instance. In principle, there is no mapping in

physics; there are flows. A map appears when we compute a flow at time 1

(which we will later iterate), but this flow at time 1 is actually computed

from equations. The Poincaré first recurrence map, and the dynamical

systems which followed, were invented as simpler tools, qualitatively and

quantitatively more manageable, but it would be wise to not identify them

too much with the initial systems.

In conclusion let us see whether it is possible to consider an isolated

equation in physics. As we observed, if equations come in families within

which (possibly continuous) parameters change, how must one apprehend

the problem of computability, so carefully defined within a discrete and

countable space? Maybe nature does compute, but knowledge, our theory of

nature, fundamentally rests in huge, infinite spaces (spaces of parametrized

equations, typically), which could very well escape any computationalistic

approach.

Let us examine carefully the example of the epistemological evolution

of the classical concept of “action”.

7.4. From the Principle of Least Action to the Quantum

Theory of Fields

The concept of differential equation is not the only one which provides a

way for computing dynamics in physics. As we mentioned, an alternative

approach consists in minimizing a certain functional (the action) among
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different candidates for the trajectory. More precisely to any path γ going

from an initial point to a final one is associated a number, S(γ), and the

“true” trajectory, the one that the particle is going effectively to follow,

is the one which provides the lowest (in fact any extremal) value of S(γ).

This principle of “least action” does not ask to solve an equation, it just

asks to evaluate the functional S at any possible path γ, and select the

extremal one. If it asks to compute something it doesn’t ask to compute a

finite number or set of numbers, it asks to evaluate a huge set of numbers,

and to find the smallest.

As a matter of fact it is true that the principle of least action is, in

many situations at least, equivalent to the so-called Euler–Lagrange equa-

tions, therefore shown to be embedded in the operational setting. But

the Feynman “path integral” formulation of quantum mechanics creates a

revival of this idea of evaluating instead of computing. The quantum am-

plitude of probability is obtained by summing expressions of the form ei
S(γ)

~

over all paths γ: the process of minimizing the action of the path disap-

peared completely. Here again this formalism is shown to be equivalent to

the Schrödinger equation, getting back once more to the operational level.

The situation drastically changes with quantum theory of fields, a mix-

ing of quantum mechanics and partial differential equations. This theory,

conceptual basis of our deep understanding of elementary particles, is a

generalization of quantum mechanics to infinite dimension. The formalism

of quantum theory of fields is an extension of the “path integral” method to

the case where the “paths” γ sit in infinite dimensional spaces. This is the

theory which provides nowadays the most accurate numerical agreement

with experimental data. It “lives” in an extremely huge space (the space of

infinite dimensional paths), and has, up to now, no equivalent operational

setting. Once more we are very far from any form of (extended) Turing

computability. Of course computers were of definitive usefulness in quan-

tum theory of fields, as heavy computations were involved. But this was

inside a perturbative approach (see [26]), and not at a conceptual level, as

the conceptual frames radically differ. The close analysis of this difference

is one of the enriching challenges (and the interest) of computing, today, in

physics.

7.5. Chaotic Determinism and Predictability

In what concerns the relationships between dynamical systems and their

capacity to predict physical evolutions, there is often a great confusion be-



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

The Mathematics of Computing between Logic and Physics 253

tween mathematics and physical processes. The notion of deterministic

chaotic system is purely mathematical and is given, in a standard way, by

three formal properties (sensitivity to initial conditions, topological transi-

tivity, and density of periodic trajectories, see [12]). However, it is legiti-

mate to speak of a physical process and to say that it is deterministic (and

chaotic, if such is the case): what is meant by that is that it is possible,

or believed to be so, to write a system of equations, or even an evolution

function, which determines its evolution (in time or regarding the relevant

control parameter). Chaos pops out when the formal properties above are

realized in deterministic systems (yet, weaker forms of chaos are possible,

“mixing systems” for example, [12])

Unpredictability is then a property which arises at the interface between

physical and mathematical processes. One gives oneself a physical process

and a mathematical system, which is supposed to “model” it (a system of

equations, typically, or even an evolution function – an iterated system thus

a discrete-time system, within a continuous space). Then the process with

regard to the system (or even with regard to any reasonable system which

we consider to modelize the given process) is said to be unpredictable.

A physical process “as such” is not unpredictable: one must attempt to

state or even predict, usually by mathematical writing, for there to be

unpredictability. Likewise, a mathematical system is not unpredictable, as

such: it is written and, if fed values, it computes.

And this is where computability comes into play. It happens that any

“reasonable” mathematical system would be characterized by effective writ-

ing: save a pathology (feeding a polynomial with non-computable coeffi-

cients, Chaitin’s Omega for instance!), we normally write evolution func-

tions which are computable (we will however see some counter-examples).

More specifically, any Cauchy problem (a very broad class of differential

equations) admits computable solutions (if solutions there are), in one of

the known systems for continuous computability. Interesting pathologies,

or counter-examples, do exist; for the moment, it suffices to mention some

solutions of the Poisson equation in [27], the boundary of a Julia set, in [5].

But the problem is not only there (not really there, as a matter of fact):

the choice of scale, of perturbative method, of phase space, (or of hidden

variables, or those which were explicitly or unconsciously excluded) shows

the constituted autonomy of mathematical language, because mathemat-

ics is constructed within a friction contingent to the world and then de-

taches from it by its symbolic autonomy. And this construction is a highly

non-computable historical decision, often an infinitary transition towards
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a limit concept. By this, mathematics is not arbitrary, but the result of a

constructed objectivity.

In summary, when we write a formalism, we give ourselves something

“computable” (grosso modo, because the different continuous systems for

computability are not yet unified, as we recalled above) but this is ob-

tained by an historical choice or limit process, which singles out finitistic

symbolic construction from the world. So the fact of the computability of

an evolution function, which we suppose to be adequate regarding the de-

scription (modelling) of a physical system, is the evidence which we deduct

from its writing. The logistic function, for instance, see [12, 22], is a sim-

ple and important chaotic system; a computable bilinear function, with a

coefficient k (well, only if one takes a non-computable k, a crazy choice,

it is not computable). A very famous variant of the logistic function is

also given by the “tent” function, a continuous but non-differentiable de-

formation which preserves many of its interesting properties. This function

modelizes, grosso modo, the movements of stretching and mixing of a piece

of dough by a baker who is a little stiff and repetitive in his movements.

These systems, as in the case of any formal writing, are effective and are

in no way unpredictable, as such. We give them values (computable ones)

and they compute: within the limits of the available (finite) machine, they

produce outputs. However, any physical system which is considered to be

modelized (formalized) by one of these functions is unpredictable, even if

by one of their non-differentiable variants (an ago-antagonistic system –

chemical action–reaction oscillations, for example, or the baker’s transfor-

mation, in the differentiable or non-differentiable case of which we were

speaking). As soon as we give the result of a physical measurement, that

is, an interval, to the function in question, this interval is mixed and expo-

nentially widened, quickly preventing any prediction of the evolution. Of

course, the machine which computes these non-linear functions can also

help appreciate chaos:

1 - it provides images of “dense” trajectories (sequences of points) in

the definition domain;

2 - a difference (at the 16th decimal, for instance) in the numeric input

gives very different values after few iterations (about 50 in our logistic cases,

see below).

However, if it is relaunched with the same initial values, in a discrete

context (and this is fundamental) it will always return the same trajectory

(sequence of numbers). The point is that, in discrete state machines, ac-

cess to data is exact : this is the crucial difference w.r. to access to the
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world by (classical) physical measure, which is given by the interval of

(approximated) measurement, by principle (there is at least the thermal

fluctuation).

And there lies also the advantage of the discrete state machine, of which

the access to the database is exact: it iterates identically, because it is,

firstly, an iterating machine. Iteration founds Gödel-type primitive recur-

sion, which is iteration and +1 in a register (see the note above). It enables

the portability of the software and hence its identical transferal and itera-

tion at will (and it works – without portability and iterability of software,

there would be no computing, nor market for software). You may launch a

program hundreds of times, thousands of times and it iterates.

Computer scientists are so good that they have been able to produce re-

liable and portable software (that is iterating identically) even for networks

of concurrent computers, embedded in continuous space–time, with no abso-

lute clock. Yet, the discrete data types allow this remarkable performance.

Note that identical iteration of a process is very rare in nature (fortunately,

otherwise we would still be with the universe of the origin or with the early

protozoans). We, humans, along our history, invented the discrete state

machines, which iterate. A remarkable human construction, in our space

of humanity, using the alphabet, Descartes dualism (software/hardware),

Hilbert’s systems, Gödel’s numberings, Turing’s ideas. . . , and a lot of dis-

crete state physics. Computing, programs and alike are not “already there”

in nature. Unfortunately, some miss the point and do not appreciate the

originality nor the founding principles of computing and claim, for example,

that “sometimes they do not iterate”, like nature. Of course, there may

be hardware problems, but these are problems, usually (and easily) fixed.

Instead, non-iteration, identically, is part of the principles of non-linear

dynamics, it is not “a problem”. Let alone life sciences where the main

invariant is. . . variability, even within “structural stability”, which is not

phenotypic identity.

But let’s go back to the interface mathematics/physics. The passage

from the physical process to the formal system is done by means of mea-

surement. If the only formalization/determination we have, or which we

consider to be relevant for a given process, is of the deterministic but chaotic

type, the (classical) physical measurement, which is always an interval (and

which we describe, in general, within a context of continuity) enables us to

only give an interval as input for the computation. And this has a further

fundamental connection with physics, that we already mentioned: the inter-

val topology yields the topological invariance of dimension, a fundamental
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property of the continua of mathematical physics. Now, given that non-

linear dynamics are mixing (the extremes and the maximum and minimum

points of any interval are “mixed” at each step) and have an “exponential

drift” as Turing puts it, this is a nice way, Turing’s way, to say what we

observed: the interval of measurement soon occupies in a chaotic – mixing

– way an increasing part of space and it is impossible to further predict the

evolution of the physical process. If we were to use as input not an interval,

but a rounded value, this would obviously not help prediction: the result of

the computation may have nothing to do with the physical evolution – for

the logistic function, with k = 4, a rounded value at the 16th decimal makes

any physical process unpredictable approximately from the 50th iteration,

– this is calculated using the value of the Lyapounov exponent, [12].

To return to the baker’s dough, a very simple and common example,

it is a physical process determined by a demonstrably chaotic evolution

function, thus unpredictable. It is a mistake to say, as we sometimes hear,

that it is non-deterministic; it is unpredictably deterministic, which is quite

different (the error, in this case, is exactly Laplace’s error, for whom deter-

mination should imply predictability). In physical terms, the forces at play

are all known; the “tent” function determines its evolution well, just as the

logistic determines that of the ago-antagonistic processes or as the equa-

tions of Newton–Laplace determine the evolution of Poincaré’s three-body.

In classical physics everything is deterministic, even a toss of dice! But

sometimes, it is impossible to predict or calculate evolutions because of the

approximation of physical measurement in conjunction with the sensitiv-

ity to contour conditions, proper to the intended, modelling, mathematical

systems (or with the excess of relevant but hidden variables in the process:

Einstein hoped to transfer this very paradigm to quantum physics).

So, in general, the mathematical systems which we write are computable

and predictable, at the formal level; some of these systems, being chaotic,

refer to unpredictable physical processes. In principle, the latter, as such,

do not “compute”, in the sense of the Church thesis or of its continuous

versions. Let’s specify this point once more.

Computation is an issue of numbers, in fact of the (re-)writing of integer

numbers: lambda-calculus, Turing Machines, are actually a paradigm of it.

Now, to associate a number to a physical system, it is necessary to have

recourse to measurement, a challenge and major issue regarding principles

in physics, as has been realized since Poincaré and Planck, extraneous to

the logic of arithmetic and, thus, largely forgotten by computationalists

(the world is a large “digital computer”). Classically, if we were to decide
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that a certain state of a physical process constitutes the input, and another

the output, and that we associate these states to measurement intervals

and if all we know of this process is mathematically unpredictable, then

it will be impossible, in general and after a sufficient amount of time (if

time acts as a control parameter), to compute or predict an output interval

from the input interval of the order of magnitude of the given physical

measurement. In short, if we launch a good old physical double pendulum, if

we manipulate a baker’s dough, it will be impossible to compute, within the

limits of measurement, its position after five or six oscillations or foldings,

although they may themselves be determined by two equations or by an

evolution function in which all is computable. So the double pendulum,

the stretched dough, as a physical machine/process, does not compute a

computable function. As for quantum mechanics, we will return to this

below.

But do they define a function, in the usual sense of a single-valued

relation? Because in the same initial (physical) conditions, they do not

generally iterate, and therefore do not even define a mathematical function

of an argument (which one?) within the initial interval of measurement,

that is a function which would always return the same value. In short, in

mathematics, f(x) = y, when x is not time, is f(x) = y also tomorrow;

while in chaos, even the intervals are not preserved. It would therefore be

necessary to parameter them across time according to a physical reference

system: at best they would define a function with multiple variables of

which one is the time of the chosen reference system. This makes them

rather useless as machines for defining non-computable functions: they

cannot even be re-used, in time, to compute the same function, because at

each different moment we would have different values which are a priori

non-repeatable. And no one would buy them as “non-Turing” machines.

And here we are confronted once more with another common error: ex-

pecting that if the physical Church thesis were to be false, then the counter-

example should return a process which computes more than Turing. But

such is not the case. This is an error because a “wild” physical process (as

biologists would put it), in general, does not even define a function, that

is, a single-valued argument/value relation. The very idea that a process

could be reiterated suggests that it could be redone in the same (identical,

as within a discrete framework) initial conditions. And this, which is so

trivial (in both the English and French senses of the term) for a discrete

state machine, is unachievable in nature, except in very rare or artificial

cases, save the extension of the parameters to an additional temporal di-
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mension which considers the counting of the experience performed. In what

concerns life phenomena, do not by any means try to make the halting of a

Turing Machine computed by a paramecium and the movements of its two

thousand cilia: quite upstream to computation, paramecia do not define

functions by their activities (between the paramecium and computation

there is the “wall” of measurement: how to measure, what to measure,

using which level of approximation?).

Quite thankfully, we have invented an alpha-numeric machine that is

not wild at all, but well domesticated and exact. It comes with its own

reference system and clock (hence the problem in concurrent networks,

where a spatiotemporal absolute is lacking). Thanks to its structure as a

discrete state machine, as Turing emphasized from the moment he produced

his inventione, this machine enables an access to the data and computations

and. . . it iterates, identically, when made to: there are the two reasons for

its strength. And even within computer networks, thanks to the discrete

aspect of databases, we manage to iterate processes, as we said, despite the

challenges entailed by concurrency within physical space–time.

7.6. Return to Computability in Mathematics

Let’s return to the issue of computability beyond the measurement which

we just addressed.

Mathematically, chaos is a long-time phenomenon: as for the sensitivity

to the initial conditions, it is the long-time asymptotic behavior which dif-

fers between chaos and integrability. What is the evolution of the baker’s

dough in the case of an infinite number of iterations? Let’s be more specific

and look at the case of ergodicity, a property of chaos which is actually weak

(and non-characteristic). A system is ergodic when, for almost all points

(the “ergodic” ones), the temporal and spatial averages of any observable

coincide at the infinite limit. This is a property “in measure” (measure

meant here in the mathematical sense) and it requires, in its “time” com-

ponent, an integration over an infinite time.

Clearly, the question of computability of average up to time t for any

value of t makes sense, and has a clear answer in terms of properties of com-

putability of ordinary differential equations, but the passing to the limit

t → ∞ shifts us towards these limits of which it was questioned earlier

eOr shortly after: in 1936, it was nothing more than a logical machine, “a man in the
act of computing”; it is only after 1948 that Turing viewed it also as a physical process
– a discrete state one, as he called it in [32] and [33].
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and which we will return to now. In particular, the rate of (mathematical)

convergence will intervene in the answer to the first question, and obtaining

information on the rate of this convergence is a very delicate problem es-

pecially in what concerns real, practical flows, those which nature provides

us with.

One must nevertheless not forget the huge contribution of computer

science: the computer, however fundamentally non-chaotic, “shows” chaos

amazingly well, suggests it, presents it to our eyes in a very spectacular and

now completely indispensable way. And this by the (approximated) images

of the density of trajectories, by the very different results in the change of

the 16th decimal or so etc. By developing turbulences of any sort in an

otherwise unfeasible way and showing them on a screen, a fantastic help to

scientific insight is achieved.

The passing to continuity

The passing from rational numbers to real numbers poses more problems

than it may seem: a quantum system in a finite volume is indeed represented

by a vector space of finite dimension. Yet, some caution is required; not only

must this space be bounded, but so must the momentum dimension, that is,

the phase space, of which the standard of measurement is Plank’s constant.

But the superposition principle immediately makes the number of states

infinite (to the power of the continuum): this is precisely the “vectorial

aspect” of the theory. Quantum mechanics resides in vector spaces and the

“finiteness” of space entails the finiteness of the dimensions of these spaces,

not their cardinals. It is impossible, for a set value of the Planck constant, to

put anything but a finite number, d = V
~
, of independent vectors (states)

within a finite volume V , but thanks to (because of) the superposition

principle, it is in fact possible to put an infinite number of vectors, as many

as there are points in Cd. This doesn’t mean of course that, for certain

definitions of information, the “quantity” of information could not remain

bounded as the system remains confined in a finite volume, but this shows

the difference of the concepts of space in classical and quantum situations

(for a discussion of this discrete/continuous dichotomy see e.g. [25]).

One must then evoke the Rolls-Royce of mathematical physics: the the-

ory of partial differential equations (PDEs). A PDE can be seen as an

ordinary differential equation in infinite dimension, it is like a system of

ordinary differential equations, each of them labelled by a continuous pa-

rameter (by the way, it is precisely this aspect which the computer retains
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before discretizing this continuous variable): each point in space “carries”

a dynamic variable of which the evolution depends on immediately (even

infinitesimally) neighboring points. Contrary to ordinary differential equa-

tions which, in general, have a solution for all values of time, we can say

that a PDE has (still generally speaking, in the “hyperbolic” case) a limited

life span, in the sense that its solution can explode in a finite amount of

time. We therefore witness the emergence of two pitfalls: one passing to

infinity for space, and one passage to “finiteness” for time. This is another

example where the very notion of computability does not apply well to the

physico-mathematical phenomenon.

Let’s now ask ourselves why chaos was invented. The sensitivity to the

initial conditions has appeared as a negative result, preventing integrabil-

ity. The negation of integrability aims to be perceptible in a finite amount

of time (since integrability places us in front of eternity). But it is very dif-

ficult to demonstrate that a system is not integrable. An alternative result

consists in looking for a totally inverse paradigm: instead of stability, one

looks at instability. The theory of chaos, an extreme and antipodic point

of integrability, offers powerful and realistic results and shows, by this in-

version of paradigm and its qualitative (and negative, yet very informative)

fall-out, its limits with regard to computability.

7.7. Non-determinism?

In computer science, we often define non-functional relations as being “non-

deterministic”; in short, when we associate a number to a set. Let’s first ex-

amine the case of so-called “non-deterministic” Turing Machines, of which

the transition functions have precisely this nature (from a value to a set of

values). Calling them non-deterministic may be reasonable, as an a priori

as long as we remain within logico-computational formalisms, but makes no

physico-mathematical sense. Is there an underlying physical process which

will associate to an input number a set or an element of the set in question?

Not necessarily. So, if deterministic (classical) means (potentially) deter-

mined by equations or evolution functions, a “non-deterministic” Turing

Machine is indeed determined by a function which associates an output set

to an input value (an issue of asymmetrical typing, nothing more).

If there is indeed a choice of value to be made among a set, quantum

physics could certainly propose one: it is legitimate to say that quantum

measurement, by giving probabilities within possible values, performs such

an operation. Can we use a classical process for the same association? Why
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not: we can take a physical double pendulum, determined by two equations

or the baker’s dough, of which the evolution is described by the “tent” func-

tion – so there is nothing more deterministic than these two objects and

their evolutions. We give them an input number; the evolution starts off on

an interval of measurement which is roughly centered around this number,

but the result, which is unpredictable after a few iterations, can take a value

among all those within the space. This is what deterministic unpredictabil-

ity is. Yet, with a playful use of language (and a little bit of confusion),

computer scientists also say that this association (one value/one set) pro-

duces a non-functional relation and so consider it as non-deterministic. But

contextual clarity, necessary to the good relationship between mathematics

and physics, then disappears: all is grey and that which is not functional

(nor calculable) is the same, as there is no more difference between classical

unpredictable determination and quantum indetermination, typically.

In what concerns concurrent systems, the situation is more interest-

ing. Over the course of a process, which occurs within physical space–time,

choices are made among possible values, following the interaction with other

processes. In concrete machines, these choices can depend on classical, rel-

ativistic, quantum, or even human phenomena which intervene within a

network. In the first two cases, everything is deterministic, although de-

scribed by non-singled-valued relations and although there may be classical

unpredictability (which value within the determined set? A lesser temporal

discrepancy can produce different choices). In the other two cases (quantum

and “human”), the choice of value will be intrinsically non-deterministic,

but, in principle, for different reasons (not being able to give an appropri-

ate physical name to the will of humans acting upon a network). In some

cases, authors in concurrency, by non-determinism, refer to a “do-not-care”

of the physical “determination”: whatever is your hardware and your (com-

patible) operating system or compiler, my program for the network must

work identically. A new concept of “non-determination” a very interesting

one, probably with no analogy in natural sciences (my soul doesn’t work

independently of my body, this was Descartes’ mistake, nor it is portable –

this would be a form of metempsychosis).

It would be preferable to introduce a notion of “indeterminacy” spe-

cific to computer science corresponding to the absence of univocity of the

input–output relation with choices, in particular that which can be found

in “multitasking”, in the concurrence of network processes, etc.
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The discrete and the “myth” of continuity.

This loss of meaning of continuous physics can be found in Gandy’s

reflections on Church’s Thesis, for instance (he was one of the pioneers of the

physical Church thesis, [19]). He posits among other things a physical world

within which information is finite, because it is part of a finite universe.

So it is made to be discrete, all the while remaining within a classical

framework, and then deterministic chaos disappears, as happens with the

Turing Machine (Turing says this very clearly in [32], see also [23], and the

discussion on finiteness in quantum mechanics in the preceding paragraph).

Firstly, the mathematical definitions of chaos use continuity (to repre-

sent the interval of measurement); they will lose their meaning when the

natural topology of space considered is discrete topology (we keep returning

to this, because it is important: the access to the measurement of the pro-

cess will then become exact, because isolated points are accessed exactly,

mathematically – another way to summarize all which we have just said).

Now Gandy does not appear to have followed his master Turing, the in-

ventor of the “Discrete State Machine” (which is theoretically predictable,

says Turing, [32], though it may be practically hard to predict – very long

programs), in the adventure of the continuity of non-linear dynamics (the-

oretically unpredictable, Turing remarks, this being their most interesting

property, [33], see [23] for a discussion).

As a matter of fact, Turing had a deep understanding of this issue in

the later years of his life, making a remarkable contribution to the devel-

opment of what he called “continuous systems” (the name which he gives

to the linear and non-linear models of morphogenesis, [33], and which he

already uses in [32] in contraposition to his machine). In fact, continuity is

currently the best tool we have for addressing classical determination. It is

the “myth” of an underlying or abstract space, a mathematical continuum,

which leads us to think that any classical trajectory is deterministic: it is

“filiform” (widthless) and stems from a Euclid–Cantor point (dimension-

less, said Euclid). It is a “myth” in the sense of Greek mythology, because

it constructs knowledge, but is removed from the world. This limit, the

point, and Euclid’s widthless line are not given by measurement, our only

access to the physical world. The myth is at the asymptotic limit, like the

thermodynamic integral which gives us the irreversibility of diffusion at the

infinite limit (that is, which demonstrates the second principle, by suppos-

ing an infinity of trajectories for the molecules of a gas within a large, but

finite volume). The mythical (conceptual, if the reader prefers) limit makes
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us understand: how audacious this beginning of a science, this imagination

of the widthless line, of the point of no dimension. Without those limit

(infinitary!) concepts, which are not in the world, there would have been

no theory of the measurement of surfaces: it is necessary to have “width-

less” edges and dimensionless points at the intersections of lines, in order

to propose a general theory of areas, the Greek extraordinary invention

(how thick should otherwise be the border of a triangle?). Myths, as the

invention of something “which is not there”, are necessary to enhance the-

ories, beginning with Euclid’s continuum, lines, points. . . finiteness, as the

discrete of a naive and pre-scientific, pre-Greek perception, entails machine-

like stupidity.

In this context and since Einstein, we have gone further and have even

come to say that finite, for the universe, does not mean limited. Think of the

relativistic model of the Riemann sphere: it is finite but unlimited, contrary

to the notion of finiteness as limitation to be found with Euclid (infinite =

a-peiron = without limits). Why would the information on the Riemann

sphere be “finite” in such a model? Of which type of finiteness would we

be speaking of? Euclidean finiteness or modern unlimited finiteness? Be

it relativistic or quantum, “finiteness” contains infinity, as unboundedness,

by measure.

Except for great thinkers such as Turing, logicians and computer scien-

tists tend to have a culture of the finite/discrete/Laplacian, as Turing said

of his machine, which is difficult to escape. Its origin is the arithmetizing

perspective of Frege with regard to the “delirium” of Riemannian geome-

try, says he in 1884. But it is also in the philosophical incomprehension

of Hilbert, one of the great figures of mathematical physics, concerning

unpredictability, of even Poincaré’s type of undecidability (it is impossi-

ble to calculate – decide – the position of three planets after a sufficiently

long period of time), when he speaks of mathematics: 20 years later, he

will launch one decidability conjecture after the other, all of them being

false (Arithmetics, Choice, Continuum Hypothesis), despite the highly jus-

tified objections from Poincaré (Mr Hilbert thinks of mathematics as a

sausage-making machine!). Poincaré had already experimented with unde-

cidability, as unpredictability, though in the friction between mathematics

and physics (not of purely mathematical statements, Hilbert’s question).

However, this culture of predictable (and integrable!), of the determination

within a universe (a discrete, finite, and limited database), has given us

marvelous Laplacian machines. Let’s just make an effort to better correlate

them to the world, today. A good practice, and theory, of modelling and of
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networks, that of concurrency, impose them. They evolve within a space–

time which we understand better, for the moment, thanks to continuity.

Thankfully, there are also hybrid systems and continuous computability

which propose quite different perspectives. And likewise for the work of

Girard which tries to enrich logic with concepts that are central to the

field of the physico-mathematical: symmetries, operator algebra, quantum

non-commutativity.

But let’s return to quantum mechanics.

7.8. The Case of Quantum Mechanics

The quantum issue could at first glance present a perfect symbiosis be-

tween the two preceding sections: we are dealing with a fundamentally

fundamental equation, Schrödinger’s equation, which derives from nothing,

which must be at the center of any fundamental process, and of which the

mathematization is perfect, depending on only a single parameter (actu-

ally, is the value of Planck’s constant a computable number?). Moreover,

“measurement” takes on a whole new dimension. The interval, as such, no

longer exists and intrinsic randomness is introduced.

Let’s now mention the importance, particularly in the field of the physics

of elementary particles, of the role played by computers. The computation

of precise numeric values, for instance the calculation of the electron’s mag-

netic moment, and their literally “phenomenal” concordance with experi-

ence has doubtlessly had a crucial importance for the development of the

theory. And this precisely in the very field where computers have become

irreplaceable: numeric computation. Associating a number to hundreds, to

thousands of Feynman diagrams is an operation beyond human capability

and which computer science bravely accomplishes.

The results provided by quantum physics are precise, and have a level

of precision which any other physical theory has yet to attain. They are

also discrete, meaning that the richness of continuity has been lost, and

that we are facing a (discrete) play of possibilities. Of course, what we are

actually measuring is a classical object, a classical trace (bubble chamber,

photographic plate, etc.) with a quantum value. We are indeed at the

heart of the problem: a quantum measurement provides values belonging

to a discrete set (set of values specific to the Hamiltonian), hence a cer-

tain rigidity that is a source of stability and therefore of precision (those

of discrete topology). Seen from this angle, quantum “precision” seems

tautological in a way; we allow ourselves no leeway around discrete values
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which would enable us to extend into the voluptuousness of imprecision.

We could even say: let’s provide ourselves, once and for all, with all the

values specific to all the Hamiltonians of the world and we will have a field

of “outputs” which is discrete in its very essence.

But this is precisely forgetting that the result of such measurement is

obtained upon a classical object from which the result of the measure is

accessible to us. The atomic spectral lines appear on a photographic plate.

Therefore the classical continuum is, a posteriori, the locus of the quan-

tum result, together with its virtues, harmful because prone to introduce

imprecision. And so, what the fact that quantum mechanics is incredibly

precise really means is that, during experiments, it leaves classical traces of

an extreme level of precision, practically exhibiting a discrete sub-structure

of the continuum.

And this is not tautological at all.

In addition to this discreteness, and precision, quantum mechanics has

caused some difficulties by conferring a random aspect to the result of

measurement. Let’s say right now that something had to happen, because

the principle of quantum superposition prohibits a direct access, beyond

measurement, to the quantum space of states (we do not “see” superposed

states, or entangled states); more accurately, we “look” at them, and they

must be looked at to be seen, by getting measured, they “de-superpose”

themselves, they de-entangle. This random aspect immediately escapes

any computational system of. . . computability. No more determinism, no

more equations. Of course, it is possible to talk about statistics, and to

wonder whether these statistics are computable. We then return to the

non-deterministic algorithms of the preceding section, but with a different

problem.

Quantum algorithms are a perfect illustration of this. Let’s recall that

a quantum algorithm consists in a quantum system evolving from an initial

piece of data having, in a way, a classical “input”. By principle of super-

position, entanglement, at the end of an evolution, has done its job and

the final state is typically quantum, superposed in several states, of which

a single one contains the “output” sought. To get it, we then perform a

measurement that is supposed, by construction, to produce the good result

with a maximal probability.

What is Turing computable in all of this?

We can wonder regarding the first part of the quantum evolution related

to quantum “equational” evolution modulo the remarks made at the end

of Section 7.6 concerning PDEs (Schrödinger’s equation is a PDE after all,
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but a linear and not an hyperbolic one), and could possibly answer: yes,

this part of the quantum evolution is computable. But the last phase, that

of measurement, again escapes computational reduction: the random aspect

of measurement, let us rest assured, will never enable a quantum computer

to decode a credit card at the desired moment with certainty.

Quantum algorithms versus non-deterministic algorithms

It could be advisable to specify the important difference between quan-

tum and non-deterministic algorithms, a source, it appears, of many con-

fusions. Indeed, one could confuse two very different “parallel” aspects.

A quantum algorithm, in a way, works well in parallel; computation

is fundamentally vectorial because of the very nature of quantum dynam-

ics. But the final result, that which needs to be extracted from the final

quantum state, is a single one of the components present within the latter.

The other components, the whole “final state” vector, has no interest as

such: firstly because it is inaccessible, then because the other components

(other than the component containing the results) do not carry any infor-

mation related to the initial problem. So it is not an issue of dispersing the

information in order to parcel it out and hence increase the power of the

computation and then “patching the pieces back together”, in a way, but

rather of placing oneself within a space (a quantum space, and again, one

that has not yet been satisfactorily achieved experimentally) from which

one needs to suddenly return in order to finish the computation.

Because the essential is indeed there: the “computation”, the “process”

is finished only once the ultimate measurement is taken. It is this total pro-

cess which must be placed in the view of computability, and not the purely

quantum part which conveys no information. It is exactly the same idea

which is responsible for there being no “EPR paradox” because, although

we are acting from a distance upon the entangled vector, no information is

transmitted.

Let us mention also that logic based on the quantum mechanics

paradigm has been recently introduced by J.Y. Girard, without explicit mo-

tivation in the direction of quantum calculus [20]. We conclude by saying

that the randomness of quantum mechanics is intrinsic, it escapes compu-

tation. What about classical randomness?
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7.9. Randomness, Between Unpredictability and Chaos

In [4], classical randomness and deterministic unpredictability are identi-

fied, from the point of view of mathematical physics. Randomness would

present itself, we observed, at the interface between mathematics (or,

more generally, between language) and physical processes. It must how-

ever not be ignored that, in certain probabilistic, purely mathematical

frameworks (measure theory), we can also speak of randomness, away

from physical processes. By computation theoretic tools, Per Martin-

Löf advanced, 40 years ago, a purely mathematical notion of random-

ness. More specifically, one can, by means of computability, tell when

an infinite sequence of integers (of 0s and 1s for example) is random,

without reference to an eventual physical generative process. In short,

a random sequence is Martin-Löf (ML) computable if it is “strongly” non-

computable, a definition which requires a little bit of work (see [29] for a

recent overview). In a sense, formal computability/predictability can tell

us when we leave its domain: this is like Gödel who, in his proof of incom-

pleteness, never left the formal, and who was yet able to give a formula

which escapes the formal (which is formally unprovable, jointly to its nega-

tion).

Moreover, what interests us here, this purely mathematical random-

ness, is “at infinity”, exactly like the randomness within chaotic classical

dynamics is asymptotic: a random Martin-Löf sequence is infinite (the ini-

tial segments are at best incompressible).

What can then be said of the relationship between this notion, purely

mathematical, and physics? From the statistical viewpoint, which was the

preoccupation of Martin-Löf at the time, every thing is fine: the distribu-

tion of the probabilities of a ML-random sequence, for a good probability

measurement, is that of the toss of a coin, to infinity. But what about the

relationship to the physico-mathematical of dynamical systems? How can

one pass directly, by mathematical means, without reference to the physical

processes that the two approaches modelize, from ML-randomness to un-

predictable determinism (systems of equations or evolution functions)? We

can see possible correlations in the recent PhD theses by M. Hoyrup and

C. Rojas (in Longo’s team): the points and the trajectories within chaotic

systems are analyzed in terms of ML-randomness, all the while using suit-

able notions of measure, of mathematical entropy and Birkhoff ergodicity.

In the two cases, those of sequences of integers and of continuous dynamics,

we work to infinity.
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Let’s be more precise. A dynamical system, as a purely mathematical

formalism for physics, is said to be “mixing” if the correlation of a given

pair of observables decreases at least polynomially with time. Like ergod-

icity, this is an asymptotic property of “disorder”, a weak form of chaos.

What was recently proved is that, in mixing dynamics, ergodic points co-

incide with ML-random ones (in fact for a slightly different definition of

ML-randomness, due to Schnorr). Thus deterministic unpredictability, as

ergodicity in mixing dynamics, overlap with a strong form of undecidability,

that is algorithmic randomness. In other words, if we want to relate physical

processes to effective computations, which is an issue of elaboration of num-

bers, we can, but, at the limit: all processes that are modeled by a some-

what chaotic system, produce non-computable, actually random, sequences,

within the mathematical system. Or, also, (strong) non-computability (as

algorithmic randomness) may be found in formal writings of the physical

world (dynamical systems are perfectly formalisable, of course). That is,

at the limit, we may say “no” to Laplace’s conjecture of predictability of

deterministic systems and, this, in terms of (a strong form of) undecidabil-

ity, à la Gödel. Predicting, in physics, is a matter of “saying” (pre-dicere,

to say in advance) by a formal language or system about a physical process

in finite time, as we said several times: by these results, instead, Poincaré’s

finite unpredictability joins undecidability, asymptotically. In conclusion,

deterministic ergodic and mixing dynamics, which model “weakly chaotic”

physical processes, generate (highly) non-computable featuresf .

7.10. General Conclusions

The reader might have felt that the authors have a point of view “against”

a vision of nature that was too organized around computations. Once

again computers have brought so much to science that it is not necessary

to recall the benefit provided. It seems to us that this situation, where a

given viewpoint invades a whole field of science, happened several times in

the past. An example is the case of mathematical analysis at the turn of

the last century, a period where many new objects in mathematics were

born, such as nowhere differentiable functions, Cantor sets, summation

methods of diverging series. To focus on the latter let us quote Emile

Borel, in the introduction of his famous book on diverging series [8]. Borel

discusses the fact that analysis “à la Cauchy”, based on convergent Taylor

expansions of analytic functions, although it brought a considerable amount

fSee [16–18], [15] and http://www.di.ens.fr/∼longo/ for ongoing work. Connections be-
tween algorithmic and quantum randomness are analyzed in [11].
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of progress in mathematics, fixed also into rigidity a lot of non-rigorous

methods used by the geometers (in the sense of physicists) of the older time:

“This revolutiong was necessary: nevertheless one might ask if dropping

the less rigorous methods of the geometers (...) was good or not: (...) but

this period [of rigor] being passed, the study of former methods might be

wealthy...”.

Let’s see what we have done so far. We have reviewed certain aspects of

computation in physics and in mathematics. We have seen that many situ-

ations in physics, even classical physics, cause processes which are “beyond

computation” (in the sense of “calculus resolving equations”) to intervene.

We have also mentioned the calculatory contribution of computer science

and its essential role. Now, let’s not forget the importance as such of the

plurality of “visions” for understanding the natural sciences, a plurality

which has always existed in the sciences. The new perspective proposed

by the discrete, in great part due to the contribution of computer science,

is a conceptual and technical resource, which adds itself to the differen-

tiable physico-mathematical continuum, from Newton to Schrödinger (or

even consider, for example, the importance of computer modelling in biol-

ogy, to mention another discipline, [34]). On the other hand, the reduction

to a conceptual and mathematical dimension that is too “computational”

(in the excessively naive sense of the term) would, in our view, lead us to

sterile boredom, in which even the “nuances” of the post-Laplacian contin-

uum would be absent. Finally and in particular, within an “equational”

framework for the play between the continuum and the discrete, we have

discussed notions that appear to be fundamental to modern science, such as

those of determinism and of predictability, from where emerges the notion

of uncertainty. But let’s take a further look.

As compounded in [4], classical physical randomness is of an “epistemic”

nature, whereas that of quantum measurement is intrinsic or “objective”:

a distinction which should be solely an instrument of clarity, of conceptual

clarity if possible, and nothing more. By this we refer to several aspects

among which the one of interest to us is the following: classical random-

ness can be analyzed by means of different methods. In short, it is possible

to address dice, the double pendulum, the baker’s dough, etc. in terms

of statistically random sequences and of probability distributions (central

limit theorem, etc.), but also by means of the mathematics of chaotic de-

gThe Cauchy and Abel rigorous vision of Analysis based on convergence of expansions
of Taylor series.
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terminism (if we have the courage to write the several equations needed for

the movement of dice; it is easy for the double pendulum and the baker’s

dough). Some people, mainly in the field of computer science as we have

seen, say that the toss of dice or that the baker’s dough (or even the three

bodies?) are non-deterministic because, by using the approximation of

measurement, it is possible to associate several numeric outputs to an ex-

act input number and the same wording is used for computational non-

determinism. It is an abuse of language which ignores the specifications

brought by the broadening by Poincaré of the field of determination, which

includes classical randomness in the field of chaotic determination (the non-

linearity of “continuous systems”, and the related “exponential drift”, says

Turing in 1952), and by the indetermination of quantum physics. This is

specific to the culture of the discrete, which is wonderful for our discrete

state machines, but which misses the 120 years of geometrization of physics

(geometry of dynamic and relativistic systems) and which fails to appreciate

the role of measurement (classical/quantum).

We thus see the apparition of three idealizations thanks to which we

could think it possible to discover and understand the world (classical).

1. The digital, discrete ideal which (possibly) shows nature as computing

and only as computing. Computing, iterating, and reiterating to infinity

with a wonderful and misleading precision.

2. The ideal of continuous mathematics, where nature (mathematics)

solves equations. In itself, this vision is perfectly deterministic, the equa-

tions have solutions.

3. The ideal of the equation, for which nature divides itself into different

scales, impenetrable to each other – for example the quantum world, the

classical one, hydrodynamics, celestial mechanics, cosmology etc.

These ideals (1,2,3) are placed in anti-chronological order: historically,

equations were the first to appear, followed by their mathematical models,

and finally by their digital simulation.

To conclude, let’s look at the connections and anti-connections between

these three worldviews, these three tiers that we could compare to Girard’s

three basements. This would be the result of the present work.

At first glance, we could easily go up from the third to the second and

then to the first level. Continuous mathematics seem perfect for equations,

and digital approximation has become so commonplace that one must al-

most hide to criticize it. But the elevator does not work properly: between

the third and second levels, Poincaré shakes things up (non-integrability

and sensitivity to the initial conditions, as it is, make difficult the practi-
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cal idea of a trajectory within continua), and between the second and first

levels we have lost, by climbing to the level of the discrete, a few aspects

that were important to continuity (the fluctuations below the threshold of

discretization as well as the discrete blackness of milk). If we take the stairs

to go down, we get dizzy: lack of computational equivalence for the pass-

ing to computational continua (Section 2), and loss of reliability with the

introduction of the interval of imprecision when passing from the second to

the third levels. . .

And there is quantum mechanics with its intrinsic randomness. Ideal

3 is then shattered during measurement: no more equations. Of course,

physics can make do without individual measurement processes: we have

not (yet) experimentally observed the reduction of wave packets during

unique events, all we can observe are averages, statistics. But recent physics

pushes towards the study and observation of simple quantum physical sys-

tems which are always better at conducting the “gedenken Experiment”h of

the founding fathers [28], and in any case the reduction of the wave packet

during measurement is, we believe, a necessary component of quantum for-

malism, an axiom which makes it coherent.

This situation is not new in physics: we do not observe Newtonian me-

chanics in a mole of gas. And yet it is thanks to such mechanics that we can

reconstruct the dynamics of gases and thermodynamics. Mind though, this

reconstruction is the result of the passing to infinity (the thermodynamic

integral) from a finite non-observable model.
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Supérieure, (2005). Organizers: C. Debru, and G. Longo, T. Paul and
G.Vivance. Available at: http://www.diffusion.ens.fr/index.php?res=

conf\&idconf=807, [Accessed October 2010].
[29] C. Rojas, Computability and information in models of randomness and

chaos, Math. Structures Comput. Sci. 18, 291–307, (2008).
[30] C. Shannon, Mathematical theory of the differential analyzer, J. Math. Phys.

20, 337–354, (1941).
[31] A. M. Turing. Intelligent machinery. In eds. B. Meltzer and D. Michie,

Machine Intelligence 5, pp. 3–23. Edinburgh University Press, Edinburgh,
(1969). National Physical Laboratory Report, 1948.

[32] A. M. Turing, Computing machines and intelligence, Mind. LIX(236), 433–
460, (1950).

[33] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc.
London. B237, 37–72, (1952).
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The Liquid State Machine (LSM) has emerged as a computational model
that is more adequate than the Turing machine for describing compu-
tations in biological networks of neurons. Characteristic features of this
new model are (i) that it is a model for adaptive computational systems,
(ii) that it provides a method for employing randomly connected circuits,
or even “found” physical objects for meaningful computations, (iii) that
it provides a theoretical context where heterogeneous, rather than stereo-
typical, local gates, or processors increase the computational power of
a circuit, (iv) that it provides a method for multiplexing different com-
putations (on a common input) within the same circuit. This chapter
reviews the motivation for this model, its theoretical background, and
current work on implementations of this model in innovative artificial
computing devices.
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8.1. Introduction

The Liquid State Machine (LSM) had been proposed in [26] as a computa-

tional model that is more adequate for modelling computations in cortical

microcircuits than traditional models, such as Turing machines or attractor-
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based models in dynamical systems. In contrast to these other models, the

LSM is a model for real-time computations on continuous streams of data

(such as spike trains, i.e., sequences of action potentials of neurons that

provide external inputs to a cortical microcircuit). In other words: both

inputs and outputs of an LSM are streams of data in continuous time.

These inputs and outputs are modelled mathematically as functions u(t)

and y(t) of continuous time. These functions are usually multi-dimensional

(see Fig. 8.1, Fig. 8.2, and Fig. 8.3), because they typically model spike

trains from many external neurons that provide inputs to the circuit, and

many different “readouts” that extract output spike trains. Since an LSM

maps input streams u(·) onto output streams y(·) (rather than numbers or

bits onto numbers or bits), one usually says that it implements a functional

or operator (like a filter), although for a mathematician it simply imple-

ments a function from and onto objects of a higher type than numbers or

bits. A characteristic feature of such higher-type computational processing

is that the target value y(t) of the output stream at time t may depend on

the values u(s) of the input streams at many (potentially even infinitely

many) preceding time points s.

Another fundamental difference between the LSM and other computa-

tional models is that the LSM is a model for an adaptive computing system.

Therefore its characteristic features only become apparent if one considers

it in the context of a learning framework. The LSM model is motivated by

the hypothesis that the learning capability of an information processing de-

vice is its most delicate aspect, and that the availability of sufficiently many

training examples is a primary bottleneck for goal-directed (i.e., supervised

or reward-based) learning. Therefore its architecture is designed to make

the learning as fast and robust as possible. It delegates the primary load of

goal-directed learning to a single and seemingly trivial stage: the output, or

readout stage (see Fig. 8.4), which typically is a very simple computational

component. In models for biological information processing each readout

usually consists of just a single neuron, a projection neuron in the terminol-

ogy of neuroscience, which extracts information from a local microcircuit

and projects it to other microcircuits within the same or other brain areas.

It can be modelled by a linear gate, a perceptron (i.e., a linear gate with

a threshold), by a sigmoidal gate, or by a spiking neuron. The bulk of the

LSM (the “Liquid”) serves as pre-processor for such readout neuron, which

amplifies the range of possible functions of the input streams u(t) that it

can learn. Such division of computational processing into Liquid and read-

out is actually quite efficient, because the same Liquid can serve a large
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Figure 8.1. Modelling a generic cortical microcircuit by an LSM. Template for a generic
cortical microcircuit based on data from [33], see [9, 10] for details. The width of arrows
indicates the product of connection probabilities and average strength (i.e., synaptic
weight) between excitatory (left hand side) and inhibitory (right hand side) neurons on
three cortical layers. Input stream 1 represents sensory inputs, input stream 2 represents
inputs from other cortical areas. Arrows toward the top and toward the bottom indicate
connections of projection neurons (“readouts”) on layer 2/3 and layer 5 to other cortical
microcircuits. In general these projection neurons also send axonal branches (collaterals)
back into the circuit.

number of different readout neurons, that each learn to extract a different

“summary” of information from the same Liquid. The need for extracting

different summaries of information from a cortical microcircuit arises from

different computational goals (such as the movement direction of objects

versus the identity of objects in the case where u(t) represents visual in-
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Figure 8.2. Hypothetical computational function of a generic cortical microcircuit in
the context of the LSM model. In general the projection neurons also provide feedback
back into the microcircuit (see Theorem 8.2 in Section 3).

puts) of different projection targets of the projection neurons. Data from

neurophysiology show in fact that for natural stimuli the spike trains of

different projection neurons from the same column tend to be only weakly

correlated. Thus the LSM is a model for multiplexing diverse computations

on a common input stream u(t) (see Fig. 8.1, Fig. 8.2, and Fig. 8.3).

One assumes that the Liquid is not adapted for a single computational

task (i.e., for a single readout neuron), but provides computational prepro-

cessing for a large range of possible tasks of different readouts. It could also



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

Liquid State Machines: Motivation, Theory, and Applications 279

Figure 8.3. Multi-tasking in real-time. Below the 4 input spike trains (shown at the top)
the target outputs (dashed curves) and actual outputs (solid curves) of 7 linear readout
neurons are shown in real-time (on the same time axis). Targets were to output every
30ms the sum of the current firing rates of input spike trains 1 and 2 during the preceding
30ms (f1), the sum of the current firing rates of input spike trains 3 and 4 during the
preceding 30ms (f2), the sum of f1 and f2 in an earlier time interval [t-60ms, t-30ms]
(f3) and during the interval [t-150ms, t] (f4), spike coincidences between inputs 1&3
(f5(t) is defined as the number of spikes which are accompanied by a spike in the other
spike train within 5ms during the interval [t-20ms, t]), a simple nonlinear combination f6
(product) and a randomly chosen complex nonlinear combination f7 of earlier described
values. Since all readouts were linear units, these nonlinear combinations are computed
implicitly within the generic microcircuit model (consisting of 270 spiking neurons with
randomly chosen synaptic connections). The performance of the model is shown for test
spike inputs that had not been used for training (see [27] for details).

be adaptive, but by other learning algorithms than the readouts, for exam-

ple by unsupervised learning algorithms that are directed by the statistics

of the inputs u(t) to the Liquid. The Liquid is in more abstract mod-

els a generic dynamical system – preferentially consisting of diverse rather
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than uniform and stereotypical components (for reasons that will become

apparent below). In biological models (see Fig. 8.1, Fig. 8.2, Fig. 8.3) the

Liquid is typically a generic recurrently connected local network of neurons,

modelling for example a cortical column which spans all cortical layers and

has a diameter of about 0.5 mm. But it has been shown that also an ac-

tual physical Liquid (such as a bucket of water) may provide an important

computational preprocessing for subsequent linear readouts (see [7] for a

demonstration, and [8] for theoretical analysis). We refer to the input vec-

tor x(t) that a readout receives from a Liquid at a particular time point t as

the liquid state (of the Liquid) at this time point t (in terms of dynamical

systems theory, this liquid state is that component of the internal state of

the Liquid – viewed as a dynamical system – that is visible to some readout

unit). This notion is motivated by the observation that the LSM generalizes

the information processing capabilities of a finite state machine (which also

maps input functions onto output functions, although these are functions

of discrete time) from a finite to a continuous set of possible values, and

from discrete to continuous time. Hence the states x(t) of an LSM are more

“liquid” than those of a finite state machine.

Figure 8.4. Structure of a Liquid State Machine (LSM) M , which transforms input
streams u(·) into output streams y(·). LM denotes a Liquid (e.g., some dynamical
system), and the “liquid state” xM (t) ∈ Rk is the input to the readout at time t. More
generally, xM (t) is that part of the current internal state of the Liquid that is “visible”
for the readout. Only one input and output channel are shown for simplicity.
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This architecture of a LSM, consisting of Liquid and readouts, makes

sense, because it turns out that in many contexts there exist common com-

putational preprocessing needs for many different readouts with different

computational goals. This can already be seen from the trivial fact that

computing all pairwise products of a set of input numbers (say: of all

components of a multi-dimensional input u(t′) for a fixed time point t′)
gives any subsequent linear readout the virtual expressive power of any

quadratic computation on the original input u(t′). A pre-processor for a

linear readout is even more useful if it maps more generally any frequently

occurring (or salient) different input streams u(·) onto linearly independent

liquid states x(t) [21], similarly as an RBF-kernel for Support Vector Ma-

chines. A remarkable aspect of this more general characterization of the

pre-processing task for a Liquid is that it does not require that it computes

precise products, or any other concrete nonlinear mathematical operation.

Any “found” analog computing device (it could even be very imprecise,

with mismatched transistors or other more easily found nonlinear opera-

tions in physical objects) consisting of sufficiently diverse local processes,

tends to approximate this requirement quite well. A closer look shows that

the actual requirement on a Liquid is a bit more subtle, since one typically

only wants that the Liquid maps “saliently” different input streams u(·)
onto linearly independent liquid states x(t), whereas noisy variations of the

“same” input stream should rather be mapped onto a lower dimensional

manifold of liquid states, see [20, 21] for details.

An at least equally important computational pre-processing task of a

Liquid is to provide all temporal integration of information that is needed by

the readouts. If the target value y(t) of a readout at time t depends not only

on the values of the input streams at the same time point t, but on a range of

input values u(s) for many different time points s (say, if y(t) is the integral

over one component of u(s) for a certain interval [t−1, t]), then the Liquid

has to collect all required information from inputs at preceding time points

u(s), and present all this information simultaneously in the liquid state

x(t) at time point t (see Fig. 8.3 and Fig. 8.4). This is necessary, because

the readout stage has, by assumption, no temporal integration capability

of its own, i.e., it can only learn to carry out “static” computations that

map x(t) onto y(t). A readout does not even know what the current time

t is. It just learns a map f from input numbers to output numbers. Hence

it just learns a fixed recoding (or projection) f from liquid states into

output values. This severe computational limitation of the readout of an

LSM is motivated by the fact, that learning a static map f is so much
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simpler than learning a map from input streams to output streams. And

a primary goal of the LSM is to make the learning as fast and robust as

possible. Altogether, an essential prediction of LSM-theory for information

processing in cortical microcircuits is that they accumulate information over

time. This prediction has recently been verified for cortical microcircuits

in the primary visual cortex [28] and in the primary auditory cortex [18].

The advantage of choosing for a LSM the simplest possible learning de-

vice is twofold: Firstly, learning for a single readout neuron is fast, and

cannot get stuck in local minima (like backprop or EM). Secondly, the sim-

plicity of this learning device entails a superior – in fact, arguably optimal

– generalization capability of learned computational operations to new in-

puts streams. This is due to the fact that its VC-dimension (see [2] for a

review) is equal to the dimensionality of its input plus 1. This is the small-

est possible value of any nontrivial learning device with the same input

dimension.

It is a priori not clear that a Liquid can carry the highly nontrivial com-

putational burden of not only providing all desired nonlinear preprocessing

for linear readouts, but simultaneously also all temporal integration that

they might need in order to implement a particular mapping from input

streams u(·) onto output streams y(·). But there exist two basic mathemat-

ical results (see Theorems 8.1 and 8.2 in Section 8.3) which show that this

goal can in principle be achieved, or rather approximated, by a concrete

physical implementation of a Liquid which satisfies some rather general

property. A remarkable discovery, which had been achieved independently

and virtually simultaneously around 2001 by Herbert Jaeger [14], is that

there are surprisingly simple Liquids, i.e., generic preprocessors for a subse-

quent linear learning device, that work well independently of the concrete

computational tasks that are subsequentially learned by the learning de-

vice. In fact, naturally found materials and randomly connected circuits

tend to perform well as Liquids, which partially motivates the interest of

the LSM model both in the context of computations in the brain, and in

novel computing technologies.

Herbert Jaeger [14] had introduced the name Echo State Networks

(ESNs) for the largely equivalent version of the LSM that he had inde-

pendently discovered. He explored applications of randomly connected re-

current networks of sigmoidal neurons without noise as Liquids (in con-

trast to the biologically oriented LSM studies, that assume significant in-

ternal noise in the Liquid) to complex time series prediction tasks, and

showed that they provide superior performance on common benchmark
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tasks. The group of Benjamin Schrauwen (see [31, 32, 35, 36]) intro-

duced the term Reservoir Computing as a more general term for the in-

vestigation of LSMs, ESNs, and variations of these models. A variety

of applications of these models can be found in a special issue of Neu-

ral Networks 2007 (see [15]). All these groups are currently collaborat-

ing in the integrated EU-project ORGANIC (= Self-organized recurrent

neural learning for language processing) that investigates applications of

these models to speech understanding and reading of handwritten text (see

http://reservoir-computing.org). An industrial partner in this project,

the company PLANET (http://english.planet.de) had already good

success in applications of Reservoir Computing to automated high-speed

reading of hand-written postal addresses.

We will contrast these models and their computational use with that of

Turing machines in the next section. In Section 8.3 we will give a formal

definition of the LSM, and also some theoretical results on its computational

power. We will discuss applications of the LSM and ESN model to biology

and new computing devices in Section 8.4 (although the discussion of its

biological aspects will be very short in view of the recent review paper [5]

on this topic).

8.2. Why Turing Machines are Not Useful for Many Impor-

tant Computational Tasks

The computation of a Turing machine always begins in a designated initial

state q0, with the input x (some finite string of symbols from some finite

alphabet) written on some designated tape. The computation runs until a

halt-state is entered (the inscription y of some designated tape segment is

then interpreted as the result of the computation). This is a typical example

for an offline computation (Fig. 8.5A), where the complete input x is avail-

able at the beginning of the computation, and no trace of this computation,

or of its result y, is left when the same Turing machine subsequently carries

out another computation for another input x̃ (starting again in state q0).

In contrast, the result of a typical computation in the neuronal system of

a biological organism, say the decision about the location y on the ground

where the left foot is going to be placed at the next step (while walking

or running), depends on several pieces of information: on information from

the visual system, from the vestibular system which supports balance con-

trol, from the muscles (proprioceptive feedback about their current state),

from short term memory (how well did the previous foot placement work?),
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from long-term memory (how slippery is this path in the current weather

conditions?), from brain systems that have previously decided where to go

and at what speed, and on information from various other parts of the

neural system. In general these diverse pieces of information arrive at dif-

ferent points in time, and the computation of y has to start before the

last one has come in (see Fig. 8.5B). Furthermore, new information (e.g.,

visual information and proprioceptive feedback) arrives continuously, and

it is left up to the computational system how much of it can be integrated

into the computation of the position y of the next placement of the left

foot (obviously those organisms have a better chance to survive which also

can integrate later arriving information into the computation). Once the

computation of y is completed, the computation of the location y′ where
the right foot is subsequently placed is not a separate computation, that

starts again in some neutral initial state q0. Rather, it is likely to build on

pieces of inputs and results of subcomputations that had already been used

for the preceding computation of y.

The previously sketched computational task is a typical example for

an online computation (where input pieces arrive all the time, not in one

batch, see Fig. 8.5B). Furthermore it is an example for a real-time com-

putation, where one has a strict deadline by which the computation of

the output y has to be completed (otherwise a two-legged animal would

fall). In fact, in some critical situations (e.g., when a two-legged animal

stumbles, or hits an unexpected obstacle) a biological organism is forced

to apply an anytime algorithm, which tries to make optimal use of inter-

mediate results of computational processing that has occurred up to some

externally given time point t0 (such forced halt of the computation could

occur at“any time”). Difficulties in the control of walking for two-legged

robots have taught us how difficult it is to design algorithms which can carry

out this seemingly simple computational task. In fact, this computational

problem is largely unsolved, and humanoid robots can only operate within

environments for which they have been provided with an accurate model.

This is perhaps surprising, since on the other hand current computers can

beat human champions in seemingly more demanding computational tasks,

such as winning a game of chess. One might argue that one reason, why

walking in a new terrain is currently a computationally less solved task,

is that computation theory and algorithm design have focused for several

decades on offline computations, and have neglected seemingly mundane

computational tasks such as walking. This bias is understandable, because

evolution had much more time to develop a computational machinery for



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

Liquid State Machines: Motivation, Theory, and Applications 285

Figure 8.5. Symbolic representation of offline and online computations. (A) In an
offline computation all relevant input computations are available at the start of the
computation, and the algorithm may require substantial computation time until the
result becomes available. (B) In online computations additional pieces of information
arrive all the time. The most efficient computational processing scheme integrates as
many preceding input pieces as possible into its output whenever an output demand
arises. In that sense computations by a LSM are optimally efficient.

the control of human walking, and this computational machinery works so

well that we don’t even notice anymore how difficult this computational

task is.

8.3. Formal Definition and Theory of Liquid State Machines

A computation machine M that carries out online computations typically

computes a function F that does not map input numbers or (finite) bit

strings onto output numbers or bit strings, but input streams onto output

streams. These input and output streams are usually encoded as functions

u : Z → Rn or u : R → Rn, where the argument t of u(t) is interpreted
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as the (discrete or continuous) time point t when the information that is

encoded by u(t) ∈ Rn becomes available. Hence such computational ma-

chineM computes a function of higher type (usually referred to as operator,

functional, or filter), that maps input functions u from some domain U onto

output functions y. For lack of a better term we will use the term “filter”

in this section, although filters are often associated with somewhat trivial

signal processing or preprossessing devices. However, one should not fall

into the trap of identifying the general term of a filter with special classes

of filters such as linear filters. Rather one should keep in mind that any

input to any organism is a function of time, and any motor output of an

organism is a function of time. Hence biological organisms compute filters.

The same holds true for any artificial behaving system, such as a robot.

We will only consider computational operations on functions of time

that are input-driven, in the sense that the output does not depend on any

absolute internal clock of the computational device. Filters that have this

property are called time invariant. Formally one says that a filter F is time

invariant if any temporal shift of the input function u(·) by some amount t0
causes a temporal shift of the output function by the same amount t0, i.e.,

(Fut0)(t) = (Fu)(t+t0) for all t, t0 ∈ R, where ut0 is the function defined by

ut0(t) := u(t+t0). Note that if the domain U of input functions u(·) is closed
under temporal shifts, then a time invariant filter F : U → RR is identified

uniquely by the values y(0) = (Fu)(0) of its output functions y(·) at time

0. In other words: in order to identify or characterize a time invariant filter

F we just have to observe its output values at time 0, while its input varies

over all functions u(·) ∈ U . Hence one can replace in the mathematical

analysis such filter F by a functional, i.e., a simpler mathematical object

that maps input functions onto real values (rather than onto functions of

time).

Various theoretical models for analog computing are of little practical

use because they rely on hair-trigger decisions, for example they allow that

the output is 1 if the value of some real-valued input variable u is ≥ 0, and

0 otherwise. Another unrealistic aspect of some models for computation

on functions of time is that they automatically allow that the output of

the computation depends on the full infinitely long history of the input

function u(·). Most practically relevant models for analog computation on

continuous input streams degrade gracefully under the influence of noise,

i.e., they have a fading memory. Fading memory is a continuity property

of filters F , which requires that for any input function u(·) ∈ U the output

(Fu)(0) can be approximated by the outputs (Fv)(0) for any other input
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functions v(·) ∈ U that approximate u(·) on a sufficiently long time interval

[−T, 0] in the past. Formally one defines that F : U → RR has fading

memory if for every u ∈ Un and every ε > 0 there exist δ > 0 and T > 0

so that |(Fv)(0) − (Fu)(0)| < ε for all v ∈ U with ‖u(t)− v(t)‖ < δ for all

t ∈ [−T, 0]. Informally, a filter F has fading memory if the most significant

bits of its current output value (Fu)(0) depend just on the most significant

bits of the values of its input function u(·) in some finite time interval

[−T, 0]. Thus, in order to compute the most significant bits of (Fu)(0) it is

not necessary to know the precise value of the input function u(s) for any

time s, and it is also not necessary to have knowledge about values of u(·)
for more than a finite time interval back into the past.

The universe of time-invariant fading memory filters is quite large. It

contains all filters F that can be characterized by Volterra series, i.e., all

filters F whose output (Fu)(t) is given by a finite or infinite sum (with

d = 0, 1, . . .) of terms of the form
∞∫
0

. . .
∞∫
0

hd(τ1, . . . , τd) · u(t − τ1) · . . . ·
u(t − τd)dτ1 . . . dτd, where some integral kernel hd is applied to products

of degree d of the input stream u(·) at various time points t − τi back in

the past. In fact, under some mild conditions on the domain U of input

streams the class of time invariant fading memory filters coincides with the

class of filters that can be characterized by Volterra series.

In spite of their complexity, all these filters can be uniformly approxi-

mated by the simple computational modelsM of the type shown in Fig. 8.4,

which had been introduced in [26]:

Theorem 8.1. (based on [3]; see Theorem 3.1 in [24] for a detailed proof).

Any filter F defined by a Volterra series can be approximated with any

desired degree of precision by the simple computational model M shown in

Fig. 8.1 and Fig. 8.2.

• if there is a rich enough pool B of basis filters (time invariant, with fading

memory) from which the basis filters B1, . . . , Bk in the filterbank LM can

be chosen (B needs to have the pointwise separation property) and

• if there is a rich enough pool R from which the readout functions f can be

chosen (R needs to have the universal approximation property, i.e., any

continuous function on a compact domain can be uniformly approximated

by functions from R).

Definition 8.1. A class B of basis filters has the pointwise separation

property if there exists for any two input functions u(·), v(·) with u(s) 6=
v(s) for some s ≤ t a basis filter B ∈ B with (Bu)(t) 6= (Bv)(t).
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It turns out that many real-world dynamical systems (even a pool of

water) satisfy (for some domain U of input streams) at least some weak

version of the pointwise separation property, where the outputs xM (t) of

the basis filters are replaced by some “visible” components of the state

vector of the dynamical system. In fact, many real-world dynamical systems

also satisfy approximately an interesting kernel propertya, which makes

it practically sufficient to use just a linear readout function fM . This

is particularly important if LM is kept fixed, and only the readout fM

is selected (or trained) in order to approximate some particular Volterra

series F . Reducing the adaptive part of M to the linear readout function

fM has the unique advantage that a learning algorithm that uses gradient

descent to minimize the approximation error ofM cannot get stuck in local

minima of the mean-squared error. The resulting computational model can

be viewed as a generalization of a finite state machine to continuous time

and continuous (“liquid”) internal states xM (t). Hence it is called a Liquid

State Machine.

If the dynamical systems LM have fading memory, then only filters

with fading memory can be represented by the resulting LSMs. Hence they

cannot approximate arbitrary finite state machines (not even for the case

of discrete time and a finite range of values u(t)). It turns out that a large

jump in computational power occurs if one augments the computational

model from Fig. 8.4 by a feedback from a readout back into the circuit

(assume it enters the circuit like an input variable).

Theorem 8.2. [23]. There exists a large class Sn of dynamical systems

C with fading memory (described by systems of n first order differential

equations) that acquire through feedback universal computational capabili-

ties for analog computing. More precisely: through a proper choice of a

(memoryless) feedback function K and readout h they can simulate any

given dynamical system of the form z(n) = G(z, z′, . . . , z(n−1)) + u with

a sufficiently smooth function G (see Fig. 8.6). This holds in particular

aA kernel (in the sense of machine learning) is a nonlinear projection Q of n input
variables u1, . . . , un into some high-dimensional space. For example all products ui · uj

could be added as further components to the n-dimensional input vector < u1, . . . , un >.
Such nonlinear projection Q boosts the power of any linear readout f applied to Q(u).
For example in the case where Q(u) contains all products ui · uj , a subsequent linear
readout has the same expressive capability as quadratic readouts f applied to the original
input variables u1, . . . , un. More abstractly, Q should map all inputs u that need to be
separated by a readout onto a set of linearly independent vectors Q(u).
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for neural circuits C defined by differential equations of the form x′i(t) =

−λixi(t) + σ(
∑n

j=1 aijxj(t)) + bi · σ(v(t)) (under some conditions on the

λi, aij , bi).

Figure 8.6. Illustration of the notation and result of Theorem 8.2.

If one allows several feedbacks K, such dynamical systems C become

universal for nth order dynamical systems defined by a system consisting

of a corresponding number of differential equations. Since such systems

of differential equations can simulate arbitrary Turing machines [4], these

dynamical systems C with a finite number of feedbacks become (according

to the Church–Turing thesis) also universal for digital computation.

Theorem 8.2 suggests that even quite simple neural circuits with feed-

back have, in principle, unlimited computational powerb. This suggests

that the main problem of a biological organism becomes the selection (or

learning) of suitable feedback functions K and readout functions h. For

dynamical systems C that have a good kernel-property, already linear feed-

backs and readouts endow such dynamical systems with the capability to

emulate a fairly large range of other dynamical systems (or “analog com-

puters”).

Recent theoretical work has addressed methods for replacing supervised

training of readouts by reinforcement learning [22] (where readout neurons

explore autonomously different settings of their weights, until they find

some which yield outputs that are rewarded) and by completely unsuper-

vised learning (where not even rewards for successful outputs are available).

bOf course, in the presence of noise this computational power is reduced to that of a
finite state machine, see [23] for details.
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It is shown in [19] that already the repeated occurrence of certain trajecto-

ries of liquid status enables a readout to classify such trajectories according

to the type of input which caused them. In this way a readout can for

example learn without supervision to classify (i.e., “understand”) spoken

digits. The theoretical basis for this result is that unsupervised slow feature

extraction approximates the discrimination capability of the Fisher Linear

Discriminant if the sequence of liquid states that occur during training

satisfies a certain statistical condition.

8.4. Applications

LSMs had been introduced in the process of searching for computational

models that can help us to understand the computations that are carried

out in a “cortical microcircuit” [25], i.e., in a local circuit of neurons in the

neocortex (say in a “cortical column”). This approach has turned out to

be quite successful, since it made it possible to carry out quite demanding

computations with circuits consisting of reasonably realistic models for bi-

ological neurons (“spiking neurons”) and biological synapses (“dynamical

synapses”). Note that in this model a large number of different readout

neurons can learn to extract different information from the same circuit.

One concrete benchmark task that has been considered was the classifica-

tion (“recognition”) of spoken digits [12]. It turned out that already an

LSM where the “Liquid” consisted of a randomly connected circuit of just

135 spiking neurons performed quite well. In fact, it provided a nice exam-

ple for “anytime computations”, since the linear readout could be trained

effectively to guess at “any time”, while a digit was spoken, the proper

classification of the digit [26, 27]. More recently it has been shown that

with a suitable transformation of spoken digits into spike trains one can

achieve with this simple method the performance level of state-of-the-art

algorithms for speech recognition [36].

A number of recent neurobiological experiments in vivo has lead many

biologists to the conclusion that also for neural computation in larger neural

systems than cortical microcircuits a new computational model is needed

(see the recent review [30]). In this new model certain frequently occurring

trajectories of network states – rather than attractors to which they might

or might not converge – should become the main carriers of information

about external sensory stimuli. The review [5] examines to what extent the

LSM and related models satisfy the need for such new models for neural

computation.
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It has also been suggested [16] that LSMs might present a useful frame-

work for modeling computations in gene regulation networks. These net-

works also compute on time varying inputs (e.g., external signals) and

produce a multitude of time varying output signals (transcription rates of

genes). Furthermore these networks are composed of a very large number

of diverse subprocesses (transcription of transcription factors) that tend to

have each a somewhat different temporal dynamics (see [1]). Hence they

exhibit characteristic features of a Liquid in the LSM model. Furthermore

there exist perceptron-like gene regulation processes that could serve as

readouts from such Liquids (see chapter 6 in [1]).

In the remainder of this section we will review a few applications of

the LSM model to the design of new artificial computing system. In [7] it

had been demonstrated that one can use a bucket of water as Liquid for a

physical implementation of the LSM model. Input streams were injected

via 8 motors into this Liquid and video-images of the surface of the water

were used as “liquid states” x(t). It was demonstrated in [7] that the pre-

viously mentioned classification task of spoken digits could in principle also

be carried out with this – certainly very innovative – computing device.

But other potential technological applications of the LSM model have also

been considered. The article [32] describes an implementation of a LSM

in FPGAs (Field Programmable Gate Arrays). In the US a patent was

recently granted for a potential implementation of a LSM via nanoscale

molecular connections [29]. Furthermore work is in progress on implemen-

tations of LSMs in photonic computing, where networks of semiconductor

optical amplifiers serve as Liquid (see [35] for a review).

The exploration of potential engineering applications of the computa-

tional paradigm discussed in this article is simultaneously also carried out

for the closely related echo state networks (ESNs) [14], where one uses sim-

pler non-spiking models for neurons in the “Liquid”, and works with high

numerical precision in the simulation of the “Liquid” and the training of

linear readouts. Research in recent years has produced quite encourag-

ing results regarding applications of ESNs and LSMs to problems in tele-

communication [14], robotics [11], reinforcement learning [6], natural lan-

guage understanding [34], as well as music-production and -perception [13].

8.5. Discussion

We have argued in this article that Turing machines are not well suited for

modeling computations in biological neural circuits, and proposed Liquid
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state machines (LSMs) as a more adequate modeling framework. They are

designed to model real-time computations (as well as anytime computa-

tions) on continuous input streams. In fact, it is quite realistic that an

LSM can be trained to carry out the online computation task that we had

discussed in Section 8.2 (see [17] for a first application to motor control). A

characteristic feature of practical implementations of the LSM model is that

its “program” consists of the weights w of a linear readout function. These

weights provide suitable targets for learning (while all other parameters of

the LSM can be fixed in advance, based on the expected complexity and

precision requirement of the computational tasks that are to be learnt). It

makes a lot of sense (from the perspective of statistical learning theory) to

restrict learning to such weights w, since they have the unique advantage

that gradient descent with regard to some mean-square error function E(w)

cannot get stuck in local minima of this error function (since ∇wE(w) = 0

defines an affine – hence connected – subspace of the weight space for a

linear learning device).

One can view these weights w of the linear readout of a LSM as an

analog to the code < M > of a Turing machine M that is simulated by a

universal Turing machine. This analogy makes the learning advantage of

LSMs clear, since there is no efficient learning algorithm known which allows

us to learn the program < M > for a Turing machine M from examples for

correct input/output pairs of M . However the examples discussed in this

chapter show that an LSM can be trained quite efficiently to approximate

a particular map from input to output streams.

We have also shown in Theorem 8.2 that LSMs can overcome the lim-

itation of a fading memory if one allows feedback from readouts back into

the “Liquid”. Then not only all digital, but (in a well-defined sense) also

all analog computers can be simulated by a fixed LSM, provided that one

is allowed to vary the readout functions (including those that provide feed-

back). Hence these readout functions can be viewed as program for the sim-

ulated analog computers (note that all “readout functions” are just “static”

functions, i.e., maps from Rn into R, whereas the LSM itself maps input

streams onto output streams). In those practically relevant cases that have

been considered so far, these readout functions could often be chosen to

be linear. A satisfactory characterization of the computational power that

can be reached with linear readouts is still missing. But obviously the

kernel-property of the underlying “Liquid” can boost the richness of the

class of analog computers that can be simulated by a fixed LSM with linear

readouts.
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The theoretical analysis of computational properties of randomly con-

nected circuits and other potential “Liquids” is still in its infancy. We refer

to [8, 20, 21, 31, 37] for useful first steps. The qualities that we expect

from the “Liquid” of an LSM are completely different from those that one

expects from standard computing devices. One expects diversity (rather

than uniformity) of the responses of individual gates within a Liquid (see

Theorem 8.1), as well as diverse local dynamics instead of synchronized

local gate operations. Achieving such diversity is apparently easy to attain

by biological neural circuits and by new artificial circuits on the molecular

or atomic scale. It is obviously much easier to attain than an emulation

of precisely engineered and synchronized circuits of the type that we find

in our current generation of digital computers. These only function prop-

erly if all local units are identical copies of a small number of template

units that respond in a stereotypical fashion. For a theoretician it is also

interesting to learn that sparse random connections within a recurrent cir-

cuit turn out to provide better computational capabilities to an LSM than

those connectivity graphs that have primarily been considered in earlier

theoretical studies, such as all-to-all connections (Hopfield networks) or a

two-dimensional grid (which is commonly used for cellular automata). Al-

together one sees that the LSM and related models provide a wide range

of interesting new problems in computational theory, the chance to under-

stand biological computations, and new ideas for the invention of radically

different artificial computing devices that exploit, rather than suppress,

inherent properties of diverse physical substances.
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The chapter consists of four sections. First we discuss aspects of gener-
alized computability theory with a focus of how various approaches to
abstract computability theory relate to computational analysis. Empha-
sis is put on the distinction between internal and external algorithms.
Then we prove some old and some new results related to the typed hier-
archy of hereditarily total objects over complete and separable normed
vectorspaces, with the aim of carrying out the arguments within the
framework of Kuratowski limit spaces.

In the final section we prove a topological consequence of an assump-
tion that the total continuous functions from one complete, separable
metric space to another is dense in the sense of domain theory. It turns
out that this assumption will have consequences for how the connected-
ness properties of the two metric spaces relate.
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9.1. Introduction

This chapter will consist of four sections. In Sections 1 and 2 we will survey

some of the history of generalized computability theory with the partial aim

of discussing the elements from generalized computability theory that may

be relevant for computational analysis.

One of the aims of this introductory part is to clarify the distinction

between internal and external approaches to computability over a mathe-

matical structure in general and over a structure appearing in analysis in

particular. The objective is, however, wider. On a general basis we will

discuss the motivations for generalizing computability theory.

In Section 3, we will investigate spaces of functionals of higher finite

types in the category of Kuratowski limit spaces, where the base types are

interpreted as complete and separable normed vector spaces. We prove a

new theorem about the topological embeddability of some of these hier-

archies into others, and give a proof of a density theorem not stated in

its present form elsewhere, but nevertheless provable using known methods

from domain theory. One important aspect of Section 3 is that we only

use concepts related to the limit space structure of the spaces at hand,

and no domain representation or other kinds of superstructure. What we

aim to learn from this is which tools may be available and needed in order

to study aspects of computability on such spaces without bringing in the

computational structure of representing spaces.

One observation we have made while this work was in progress, is that

when we try to restrict the means we can use in proofs, the results we

obtain are often slightly better. The reason is that we need to formulate

sharper theorems in order to carry out, for example, proofs by induction.

In contrast, the proofs often turn out to be simpler. As an example of

this observation, if we prove the density theorem for the Kleene–Kreisel

functionals in the traditional way, we simply get that there is a recursive

enumeration of a dense set of total functionals at every type, and to extract

further properties requires further work. If we prove the density theorem

in the setting of limit spaces, the proof is actually simpler and we get for

free how to approximate any functional by a sequence from this countable

dense subset, (see Normann [18]).

In Section 4 we consider the standard domain representation of the set

of continuous functions from one metric space to another. We show that
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if the total objects in the domain representation of X → Y is dense in the

underlying domain, then Y is what we call compactly saturated over X . This

result has no consequence for the rest of the paper, and is included partly

to prevent other researchers to look for strong density theorems based on

domain theory in a naive way, and partly because the concept of compactly

saturated may be of independent interest.

9.1.1. Classical computability theory

By classical computability theory we mean the study of the concept of com-

putability induced by Turing Machines on sets of words over a prefixed al-

phabet, or of any of the equivalent reformulations. Classical computability

theory is simple in the sense that the basic definitions are well understood,

but complex in the sense that it offers deep results with occasionally very

hard proofs. Classical computability theory appears in many guises, the

authors’s favorites are via Kleene schemes giving an elegant proof of the

recursion theorem, and set recursion over the set HF of hereditarily finite

sets, as we consider HF to be the ultimate data-type (of finite data) inside

which all other genuine data-types live.

9.1.2. Generalizing computability theory

There are several reasons for generalizing computability theory. This was

discussed in depth by Kreisel [11], and anyone working with generalized

computability in any sense should consult [11]. One of the reasons suggested

by Kreisel is that we may find applications to the rest of the mathematical

world and the world of science in general. Applications of metarecursion

theory to descriptive set theory will be an example of this. Another reason

is that we may learn something about the concepts used in computability

theory and which properties of these concepts we actually use by general-

izing them.

We will not give a complete historical survey of generalized computabil-

ity theory, but mention a few directions it has taken and how this may have

some impact on today’s research. As a simple example, let us consider the

set Q of rational numbers. We may view Q as constructed from N via Z or

we may view Q as a spontaneously given field or even as an ordered field.

In the latter case, it is well known that N is not definable over Q in the

sense of first order logic. However, N is an inductively defined substruc-

ture of Q, and then Q itself is an inductively definable substructure of Q.
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Building Q from 0 and 1 and the algebraic operations as an inductively

defined structure gives us the tools needed in order to perform induction,

selection, etc. In the case of Q we may even let the identity relation be

inductively defined. If we accept positive induction and corresponding re-

cursion as basic elements of computability, it does not really matter if we

consider Q as constructed or given. What is to be considered as computable

or semicomputable over Q does not depend on how the elements of Q are

represented as data.

If we replace Q with its algebraic completion C(Q), i.e. we hereditarily

add solutions to all polynomial equations, the situation is different. We of

course have an effective enumeration of C(Q), i.e. a surjective map

ν : N→ C(Q)

such that all algebraic operations on C(Q) have their computable counter-

parts over N. Given ν, we may even find a computable function

sqrt : N→ N

that represents a kind of square root on C(Q) in the following sense:

ν(sqrt(n)) · ν(sqrt(n)) = ν(n)

for all n ∈ N. There is, however, no square root function definable over

C(Q), even if we accept higher order definitions. In order to have one we

need some kind of external representations of the objects of C(Q) and we

need to be allowed to compute on these external representations. It will of

course suffice to identify i =
√
−1, but the structure offers no distinction

between i and −i. If we increase the ambition and aim at finding a function

solving polynomial equations in general, we know that we cannot hope to

do so from within.

This example illustrates in a nutshell our distinction between internal

and external concepts of computability; the internal concepts must grow

out of the structure at hand, while external concepts may be inherited from

computability over superstructures via, for example, enumerations, domain

representations, or in other ways. This distinction was first made explicit in

Normann [15]. A similar distinction between abstract and concrete notions

of computations was discussed in Tucker and Zucker [26].

9.1.3. Generalizing finiteness

The step from standard computability theory to computability in analysis

has to take the step from the discrete to the continuous, and the step
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from locally finiteness to locally continuum, into account. One of the ways

computability theory was generalized was by assuming or axiomatizing that

certain infinite sets share some of the properties of finite sets. Following

Kreisel [11] this helps us understand which of the properties finite sets

have that we actually make use of in, for example, degree theory. The

question is if we have to make similar steps in order to make sense of

internal computational analysis.

The original example of this kind of generalization is metrarecursion

theory, or hyperarithmetical theory.

At first, computable was replaced by ∆1
1 and semicomputable was re-

placed by Π1
1. This made a poor analogue of the classical theory. Then

one replaced finite with hyperarithmetic, computable with ∆1
1 on the set of

hyperarithmetical sets and semicomputable with Π1
1 on the set of hyper-

arithmetical sets.

This led in turn to α-recursion theory, β-recursion theory, computability

relative to higher type functionals, preferably normal ones, computability

over admissible structures, and to set recursion. See Sacks [21] for an

introduction to this area, known as higher recursion theory.

The recent investigations of the so called hypercomputations, i.e. where

Turing Machines and Register Machines are allowed to work in transfinite

time and occasionally with transfinite memory stores, fits well into this

tradition. We will not discuss possible motivations for this renewal of higher

recursion theory, but advise anyone wanting to enter the field to use [11]

for the calibration of motives.

With several examples of generalized computability, one naturally

wanted to axiomatize the theory. It is worthwhile to consult the contri-

butions from Moschovakis [14] and Fenstad [6] in order to get two different

perspectives on what a computation might be in a general setting.

The kind of generalizations we find in higher computability theory are

too far from the classical Turing model to be of any relevance to questions

of internal computability in analysis, where we after all must have as a

requirement that there is at least one suitable digitalization of the data

at hand, and then that what is computable in an internal sense must also

be computable in the external sense. This is a soundness criterion for any

concept of computability.

We will use the expression Extended Computability Theory for the sit-

uation where our concepts try to capture genuine algorithms in a setting

going beyond the Turing world, but where we at least, through some kind

of digitalization, may reduce our concepts to the classical ones. This does
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not mean that we believe that in all situations, using digitalization to define

the concept of computability is the best approach. We will return to this

discussion later.

9.1.4. Computability at higher types

One direction of generalized computability of interest to both logic and com-

puter science is the study of computations relative to continuous functionals

of higher types. The starting point was the equivalent constructions of the

typed hierarchy of hereditarily total continuous functionals by Kleene [9]

and Kreisel [10]. An extensive survey of what Kleene and Kreisel achieved,

and of the significance of the related work of Scott [23, 24], Plotkin [20], and

Milner [13] is given in Normann [17]. Kleene and Kreisel worked with hered-

itarily total objects, i.e. with natural numbers, functions sending natural

numbers to natural numbers, continuous functionals sending such functions

to natural numbers, and so on. Kleene showed how his internal definition of

computations using the S1-S9 – schemes from Kleene [8] makes sense for the

continuous functionals. Kleene’s computations are essentially well-founded

trees, in most cases of the cardinality of the continuum. Kreisel [10] ob-

jected to Kleene’s concept for this reason, and preferred an external notion

essentially based on digitalization and Turing machines working on oracles.

The facts that all Kleene-computable functionals are Kreisel-computable,

and that all Kreisel-computable functionals of interest in [10] are Kleene-

computable, indicate that all applications of the continuous functionals one

had in mind in 1959 could be made using internal concepts. Of course, the

very definitions of the continuous functionals by the two authors involved

an element of digitalizability of the objects, and thus the external defini-

tion of the computability of a continuous functional may seem the most

natural one. Later characterizations of this typed hierarchy makes internal

approaches to computations in higher types more natural, (see e.g. Nor-

mann [18]).

The Scott Model is a typed hierarchy of partial, continuous functionals,

given in the form of Scott domains. Since each domain in this hierarchy is

an effective Scott domain, each domain accepts an external concept of com-

putability. The hierarchy is also the original domain for the denotational

semantics of LCF (Scott [23, 24]) and the equivalent PCF (Plotkin [20]).

We consider LCF and PCF as defining internal concepts of computability

for the Scott hierarchy, but the inherited concepts for the classical Kleene-

Kreisel functionals must be considered to be external since it is based on
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a computability concept for a superstructure. When it comes to domain

representations in general, we will modify our views here to some extent

later.

Grilliot [7] showed that we sometimes, in a computable way, may decide

problems expressed with number quantifiers. Under certain circumstances

we may decide if a given functional F : NN → N is continuous with respect

to a given convergent sequence f = limn→∞ fn from NN. We may actually

find a term in Gödel’s T accepting F , the sequence, its limit and a modulus

function for the sequence as inputs, and the output (when we use the full

typed hierarchy of all total functionals as the base for the denotational

semantics) will answer if F (f) = limn→∞ F (fn) or not. In case of local

continuity, we may use µ-recursion to find the modulus of the limit, and in

case of local discontinuity there is (uniformly) another T -term defining the

functional 2E from the data at hand.

Here 2E is quantification over N as the total functional of type 2:

2E(f) =

{
0 if ∀x ∈ N(f(x) = 0)

1 if ∃x ∈ N(f(x) > 0.

This must not be confused with the continuous existential quantifier ∃ω
defined by

∃ω(f) =
{
0 if f(⊥) = 0

1 if ∃x ∈ N(f(x) > 0.

We call the computational machinery originating from Grilliot [7] the

Grilliot Theory, and Grilliot theory shows that even internal concepts of

computability not aimed at generalizing what is considered to be finite to

some extent is strong enough to make quantification over certain infinite

sets computable in some sense. In [5] Escardó explores another example of

such phenomena.

9.2. Computational Analysis

The term computational analysis covers the study of problems in math-

ematics and theoretical computer science where one is interested in the

computational content of phenomena in analysis. It is mainly an area for

foundational research, and not so practically oriented as numerical analysis.

One of the main motivations is to make computational analysis relate to

numerical analysis in the same way as classical computability theory relates

to the practical use of digital computers. With our terminology we may say
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that computational analysis is classical computability theory extended to

structures appearing in analysis. This does not mean that we have to take

an external view on computational analysis and that there is only one valid

concept of computability in a given relevant context. There are at least

three levels on the scale from external to internal that will be of interest.

9.2.1. Type two enumerability

It is well known how we may extend classical computability theory to com-

putations relative to function oracles. Thus the structure (N,NN) accepts

a natural, internal concept of computability. In computational algebra it

is standard to tie a concept of computability to effective enumerations of

the algebraic structure at hand. In analysis, the structures are mostly un-

countable, but often of the power of the continuum. Weihrauch suggested

that for many such structures, an effective “enumeration” over a subset of

NN could be used instead. See Weihrauch [27] for the carrying out of this

approach.

Representing objects as elements of NN is essentially the one natural way

to “digitalize” the same objects, so borrowing concepts of computability

from a type two enumeration is a very external approach to computational

analysis. If the purpose is just to capture “in principle computable by a

digital computer in one way or another”, the TTE-approach is both sound

and natural. If the aim is to find algorithms that in a natural way fall out

of the structure at hand, the TTE-approach may be of less help.

9.2.2. Domain representability

As an alternative to the TTE-approach by Weihrauch and others, repre-

sentations over effective domains have been attempted as a foundation for

computational analysis. Among those initiating this approach we mention

Stoltenberg-Hansen and Tucker [25] and Edalat [2]. This approach is so gen-

eral that unless the domain in question is carefully chosen, the approach

is more or less as external as the TTE-approach. However, a carefully

chosen domain may capture a reasonable notion of “partial object” for the

structure at hand, like the objects in the Scott hierarchy does. If there is a

natural internal approach to computability for the extended set of partial

objects, then the derived notions for the original structure will be more

internal than if the TTE-approach is used.

If we go back to one of the origins of domain theory, Scott [23], the

motivation was to construct a structure that could provide denotational
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interpretations of programs or algorithmic terms of some sort. This in-

dicates that if we start with a mathematical structure that we for some

reason would like to consider as a data-type and then form a programming

language suitable for dealing with data of this kind (and not primarily with

digitalized representations of these data), then a cleverly chosen domain

representation, where the finitary objects of the domain actually represent

partial objects of the data-type in question, together with some internal

notion of computability on the representing domain reflecting the algebra

of the given data-type, may lead to a more fine tuned and less external

approach to computability on the original data-type.

How can we judge if a domain representation is cleverly chosen, in the

sense of leading to more internal concepts than the TTE-approach? One

criterion is that if two finitary objects have extensions representing the same

original data-object, then they should have a joint extension representing

the same object. In an abstract way, this would mean that the domain

object directly approximates the data-objects, not just digitalized versions

of them. Another criterion will be that the algebra of the data-structure

has a natural extension to an algebra on the representing domain. This is,

for instance, the case for Escardó’s Real PCF [3]. Actually, we will con-

sider real PCF as a purely internal way of defining computable functions

from reals to reals, but slightly external if it is used to define, for example,

computable operators. The reason is that R is a substructure of its domain

representation, so when a real number is considered as an input of an algo-

rithm in Real PCF , it is really that number, and not some representative

for it, that is the input.

Now, why should we be interested in whether an approach is internal or

not, why not use the strongest concept of computability that makes sense

in a given context?

Our main reason is analogue to the reason why logicians should try to

prove theorems in weak systems, the weaker tools we use to obtain a result,

the more extra knowledge can be obtained from the process of obtaining the

result. We would like to claim that an internal approach to computability

in analysis will result in easy-to-use, high level, programming languages

for computing in analysis, but the development cannot support this claim

yet. The possibility of finding support for such a claim, together with basic

curiosity, is nevertheless the motivation behind trying to find out what

internally based algorithms might look like.
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9.2.3. Quotients of countably based spaces

There has been a renewed interest in the spaces that may have TTE rep-

resentations or domain representations, and in exploring the possible cate-

gories of such spaces without actually always doing it within domain theory

or over Baire space NN. qcb-spaces, quotients of countably based spaces,

forms an interesting category QCB of topological spaces. As a category,

QCB is at present too general to accept a uniform approach to internal com-

putability, but all spaces considered in this paper will be qcb-spaces or vari-

ous sorts of representations for them. This category originates from Menni

and Simpson [12], but was characterized as qcb-spaces by Schröder [22],

who independently characterized them as the spaces with admissible TTE-

representations..

9.2.4. A purely internal approach?

As an example, let us consider the Banach-space l2 of functions f : N→ R
such that

∞∑

i=0

(f(n))2 <∞.

This is a normed vector space, and we may ask for the set of total and

partial functions

F : l2 → R

that may be considered to be computable.

Taking a strictly external point of view, we may construct admissible

representations of l2 and R over NN, and then consider those functions

F : l2 → R that can be lifted to partial computable functions F̂ : NN → NN.

The problem with this approach is that there is no natural structure on the

set of computable functions defined this way that we can use for further

investigations.

Our approach will be quite the opposite. We will see what can be

achieved accepting the internal structure (algebra, norm etc.) as com-

putable, and then use general principles for creating new computable op-

erators from old ones. l2 is a separable space. If we let fn be the object in

l2 that takes the value 1 on n and 0 elsewhere, it is reasonable to consider

the sequence

{fn}n∈N
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as a part of the basis for defining computability over l2. Clearly the set

of finite, rational linear combinations of the fn’s is dense in l2, and since

Q is inductively definable over R, there is a dense, internally computably

enumerable subset of l2. Moreover, all coordinate functions

n, f 7→ f(n)

will be computable, since they can be calculated from fn as defined above.

This again shows that the identity function, seen as a function from l2

to RN is computable. The inverse is not continuous, and should not be

computable.

In order to be able to define functions via some sort of recursive con-

structions, and at the same time make use of the fact that l2 is a topological

space, it is natural to include some natural limit process as basically com-

putable. Since we are just providing an example of how it can be done, and

not of how it has to be done, we suggest the principle developed below:

Definition 9.1.

a) Let ∆ : R→ [0, 1] be the projection of R to [0, 1] and for each n ∈ N, let

∆n(x) = 2−n∆(2nx).

b) If u and v are distinct vectors in a normed vector space V like l2 and

n ∈ N, we let

modn(u, v) = u+
∆n(||v − u||)
||v − u|| (v − u),

and we let modn(u, u) = u for all u.

c) We define modseq : V
N → V N by recursion

– modseq({vn}n∈N)0 = v0
– modseq({vn}n∈N)k+1 = modk+1(modseq({vn}n∈N)k, vk+1).

We considermodn as computable uniformly in n since it is the single-valued

interpretation of the following nondeterministic algorithm:

If ||v − u|| < 2−n then modn(u, v) = u

AND

If ||v − u|| > 0 then modn(u, v) = u+ ∆n(||v−u||)
||v−u|| (v − u).

The function modn(u, v) demonstrates that the 2−n-ball around u is a re-

tract of the full space, and the recursively defined modseq then retracts all

sequences to a subset of uniformly converging Cauchy sequences.
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The point is not that we propose to include general nondeterministic or

parallel algorithms like the one used in “computing” modn in a construc-

tion of internal computability principles for analysis, but that some basic

functions justifiable by the use of such or other principles may be included.

The danger is, as we learned from Escardó, Hofmann, and Streicher [4],

that we may introduce an unwanted amount of nondeterministic processes

just by adding one basic function. They showed that including a contin-

uous extension of + to the domain representation of R into an otherwise

deterministic calculus, gives us the full power of the weak parallel or.

Remark 9.1. In this example, we have shown (the well known fact) that

for a normed vector space V , the space of Cauchy sequences converging

at least as fast as {2−n}n∈N is a retract of the space of all sequences, the

point being that we have used well known computable functions over R and

primitive recursion in combination with the internal algebra. We do not

consider the use of ∆n as being an example of external algorithms, since

we do not replace the data-objects in V with something else representing

them.

The important choice to make is which infinite steps we may take in

describing internal algorithms. Our lesson from the Grilliot theory of func-

tionals in higher types will be that if we have a sequence with a known

modulus of convergence, then passing to the limit is in essence computable.

Thus, as an example, we propose to add the following principle to our

definition of internal computability over V :

LIM : V N → V

defined by

LIM({vn}n∈N) = lim
k→∞

{modseq({vn}n∈N)k}k∈N.

In the sequel, we are not going to propose a rigid definition of internally

computable analysis, but prove some nontrivial results using internal, in

some sense effective, means only.

9.3. Some Typed Hierarchies of Limit Spaces

9.3.1. Total versus partial functionals

In this section we will consider typed hierarchies of total continuous func-

tionals where the base spaces are certain complete, separable metric spaces.

From the point of view of computational analysis it may be more natural to
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consider hereditarily partial functionals that in some way are continuous.

However, given effective metric spaces as base spaces, it is a challenging

task to explore what we might mean by a functional of finite type that is

partial and hereditarily computable relative to an object of the base space.

This would involve finding the proper analogue of the sequential functionals

over N⊥ for other base spaces than N. It is by no means obvious that if

a project like this is successfully carried out, then each hereditarily total

object we study in this paper will be represented by hereditarily relative

computable functionals.

Not ignoring the importance of partiality in computational analysis, our

starting point is that the structures we study are of independent interest,

and that it thus is of interest to find internal approaches to computability

over these structures.

An effective metric space is normally given as the completion of a com-

putable metric on N, and though we may consider spaces with additional

computational structure, the enumeration of the dense set and how it relates

to its completion will form one basis for how to compute internally. For

other separable topological spaces, an enumeration of a countable dense

subset and some additional structure relating the other elements to this

dense set will be a natural tool in an internal approach to computability.

In this section we will see how this infrastructure may be established for

some hierarchies of functionals.

9.3.2. The problem with density

All spaces we will consider in this section will be by default separable Haus-

dorff spaces, and they will be sequential spaces. The latter means that the

topology is the finest one with exactly the present set of convergent se-

quences with limits.

If X1, . . . , Xn are Polish spaces and

σ = σ(x1, . . . , xn)

is a type expression in the grammar

σ ::= x1 | · · · |xn | (σ → σ)

(where we will drop parentheses according to standard conventions) we may

interpret σ as a space σ(X1, . . . , Xn) using the category of Kuratowski limit

spaces.

Then we know that σ(X1, . . . , Xn) is a sequential, separable space. How-

ever, there is no general way of constructing a dense countable subset, even
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when X1, . . . , Xn are effective metric spaces. As a general problem, this

is related to understanding how the connectedness properties of the spaces

in question relate, and even how local connectedness of the domain space

relates to global connectedness of the image space. For a few cases, one has

used domain theory to obtain effective density theorems. Indeed, in Sec-

tion 4 we will show that this method has major limitations unless combined

with some insight on the connectedness properties of the spaces involved.

9.3.3. Probabilistic projections

The rational numbers is a dense subset of the real numbers, so every real

can be approximated by a sequence of rationals. This fact is used in most

of the standard ways we represent reals as digitalized data objects. There

is, however no way we continuously in a real r may select a sequence of

rationals converging to r, since any such continuous selection must be con-

stant. It turns out that if we consider sequences of probability distributions

on Q with finite support instead of sequences of rationals, we may use the

sequences of probability distributions to many of the computational tasks

for which we initially would like to be able to select a convergent sequence

of rationals in a continuous way. In this section we will introduce the con-

cepts of probabilistic projections and probabilistic selection that has turned

out to be useful in this respect.

Definition 9.2. Let Y be a sequential space, let A = ∪n∈NAn be the union

of a family of finite subsets An in Y and let X ⊆ Y be a subspace with

A ⊆ X .

A probabilistic projection from Y to X will be a sequence of continuous

maps

y 7→ µy,n,

where µy,n is a probability distribution on An, such that whenever x =

limn→∞ xn, x ∈ X and akn ∈ An with µxn,n(akn) > 0 for each n ∈ N, then

x = lim
n→∞

akn .

Remark 9.2. It follows that A is dense in X .

Though our definition depends on A and its enumeration, we will only

require that there exists an A as above when we say that there is a proba-

bilistic projection from Y to X .
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Lemma 9.1. Let Y be a complete, separable metric space, A = ∪n∈NAn
an increasing union of finite subsets of Y and let X be the closure of A in

Y .

Then we may construct a probabilistic projection from Y to X.

Proof. Let d be the metric on Y . For any y ∈ Y , let d(y,An) be the

minimal distance from y to an element of An. This function is continuous

in y.

For u, v ∈ R≥0 we let u ·−v = max{u− v, 0}.
This function is also continuous.

For each y ∈ Y and a ∈ An we let

µy,n(a) =
d(y,An) + 2−n ·−d(y, a)∑

b∈An
[d(y,An) + 2−n ·−d(y, b)] .

If d(y,An) = d(y, b), then

d(y,An) + 2−n ·−d(y, b) = 2−n > 0

so the denominator is positive. Thus µy,n(a) is well defined.

Clearly 0 ≤ µy,n(a) ≤ 1 and
∑

a∈An

µy,n(a) = 1

by trivial calculation.

Thus µy,n is a probability distribution on An, and y 7→ µy,n will be contin-

uous by construction.

It remains to prove that {An}n∈N and {y 7→ µy,n}n∈N satisfy the re-

quirement of the definition.

Let x = limn→∞ xn where x ∈ X , each xn ∈ Y and let bn ∈ An such that

µxn,n(bn) > 0 for each n ∈ N.
Let ǫ > 0. We will find n0 such that if n ≥ n0, then d(x, bn) < ǫ.

Let n0 satisfy the following requirements:

i) If n ≥ n0 then d(x, xn) <
ǫ
4 .

ii) For some a ∈ An0 we have that d(x, a) < ǫ
4 .

iii) 2−n0 < ǫ
4 .

Let n ≥ n0.

Then d(x,An) <
ǫ
4 by ii), so d(xn, An) <

ǫ
2 by i).

Since µxn,n(bn) > 0, we have that

d(xn, bn) <
ǫ

2
+ 2−n <

3ǫ

4
.
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Consequently, d(x, bn) <
3ǫ
4 + ǫ

4 = ǫ.

This ends the proof of the lemma. �

We will prove a combined embedding and density theorem for hierar-

chies of limit spaces using normed vector spaces at base level. We need:

Lemma 9.2. For each n, let V be a complete, normed vector space, and

let v ∈ V . For each n ∈ N, let Xn ⊂ V be finite, and assume that v =

limn→∞ vn whenever vn ∈ Xn for all n ∈ N.
For each n, let µn be a probability distribution on Xn. Then

v = lim
n→∞

∑

u∈Xn

µn(u) · u.

The proof is trivial.

Definition 9.3. Let X be a sequential separable Hausdorff space. We

say that X admits uniform probabilistic selection if there is a probabilistic

projection from X to X .

Definition 9.4. Let X be a metric space, and let x = limn→∞ xn from X .

A probabilistic modulus of convergency for the sequence is a sequence

{νk}k∈N of probability distributions on N such that for all n, m and k

in N, if

νk(n) > 0

and n ≤ m, then d(xn, x) < 2−k.

The proof of Lemma 9.1 is constructive in the following sense:

Observation 9.1. Let Y be a complete metric space, and let A = ∪n∈NAn
and X be as in Lemma 9.1. Then, uniformly in k, we may compute a

function νk mapping x ∈ X into a probability distribution νk(x) on N such

that for all n, m, k in N and all a ∈ Am, if νk(x)(n) > 0, n ≤ m and

µx,m(a) > 0 then d(a, x) < 2−k.

Proof. That µx,m(a) > 0 simply means that

d(x,Am) + 2−m > d(x, a)

and this means that d(x, a) < 2−k whenever d(x,Am) < 2−(k+1) andm > k.

Let r ∈ [1,∞〉 and let r = m+ λ where m ∈ N and 0 ≤ λ < 1.

Let

fx(r) = (1 − λ)d(x,Am) + λd(x,Am+1) +
1

r
.
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Then fx is strictly decreasing with 0 as its limit value when r → ∞, and

x, r 7→ fx(r) is continuous. Let z = f−1
x (2−k).

Then z = n+ ξ for some n ∈ N and 0 ≤ ξ < n.

Let νk(x)(n+ 1) = 1− ξ and νk(x)(n+ 2) = ξ.

This does the trick. �

In order to prove the combined density and embedding theorem, we

need to extend our pool of concepts.

Definition 9.5. Let X and Y be sequential separable Hausdorff spaces,

π : X → Y a topological embedding.

Let {An}n∈N be a family of finite subsets of X , and for each n ∈ N, let
y 7→ µy,n be a continuous map from Y to the set of probability distributions

on An.

a) We define the auxiliary equivalence relation ∼ on Y by y ∼ z when

∀n ∈ N(µy,n = µz,n).

We will let X be a closed subset of Y extending the image π[X ] such

that

∀y ∈ X∃x ∈ X(y ∼ π(x)).

We call the sequence of maps y 7→ µy,n a probabilistic projection with

respect to (X, π,X, Y ) if whenever y ∈ X, x ∈ X , y ∼ π(x), y =

limn→∞ yn and an ∈ An such that µy,n(an) > 0 for each n ∈ N, then
x = limn→∞ an.

b) A control will be a continuous map y 7→ hy : R≥0 → R≥0 such that

i) Each hy is strictly increasing.

ii) hy(0) = 0 for all y.

iii) If y ∈ X then hy is bounded by 1
2 .

iv) If y 6∈ X then hy is unbounded.

We may use the terminology and notation introduced in this definition

without explicit reference, when it is clear from the context that they apply.

Since X is Hausdorff, if y ∈ X there is a unique xy ∈ X such that

y ∼ π(xy). From now on, we will always assume that y 7→ xy is continuous,

and we view this as a partial projection commuting with the embedding π.

We will apply these concepts to hierarchies of typed functionals, where

the base types will be separable, complete, normed vector spaces over R.
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As an induction start, we will show that in the case of metric spaces, our

construction can be modified in order to satisfy all the extra properties.

So let X and Y be complete metric spaces, and let π : X → Y be isometric.

Then X = π[X ] will be closed. Let A = ∪n∈NAn be as in the proof of

Lemma 9.1.

We modify the construction of the probability distributions to this new

situation, and we let

µy,n(a) =
dY (π[An], y) + 2−n ·−d(y, π(a))∑

b∈An
dY (π[An], y) + 2−n ·−dY (y, π(b))

.

We define the control

hy(r) =
1

2
(1− 2−r) + r · dY (y,X).

It is easy, but tedious, to see that all properties are satisfied, partly based

on the proof of Lemma 9.1.

Now, in order to create an induction step, we will assume that X , Y ,

π : X → Y , {y 7→ µy,n}n∈N, and y 7→ hy satisfy that X and Y are

sequential Hausdorff spaces, π is a topological embedding, {y 7→ µy,n}n∈N

is a corresponding probabilistic projection with control y 7→ hy overX ⊆ Y .

We will let {An}n∈N be the sequence of finite subsets of X supporting each

µy,n
Let U and V be normed, complete separable vector spaces such that U

is a closed subspace of V .

We aim to construct an embedding π+ of X → U into Y → V together

with a corresponding probability projection and control. To this end, let

v 7→ δv,n be the probabilistic projection constructed above, when we see U

and V as metric spaces. Let B = ∪n∈NBn be the countable set used as the

basis for the construction of δv.n for v ∈ V .

Our first move will be to construct the embedding π+.

So let f : X → U and y ∈ Y be given.

We will define π+(f)(y) separately for two cases.

Case 1. The control hy is bounded by 1
2 .

Then let

π+(f)(y) = lim
n→∞

∑

a∈An

µy,n(a) · f(a).

We will prove later that this is well defined.

Case 2. The control hy is unbounded.
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Let zy = ny + λy be the unique real such that hy(zy) = 1, where ny ∈ N
and 0 ≤ λy < 1. y 7→ zy is continuous when we are in this case. Let

π+(f)(y) = (1 − λy)
∑

a∈Any

µy,ny
· f(a) + λy

∑

a∈Any+1

µy,ny+1(a) · f(a).

Claim 1. π+(f)(y) is well defined.

Proof of Claim 1. This is only a problem in Case 1, where we have to

prove that the limit exists. In this case, y ∼ π(x) for some x, and thus,

whenever {an}n∈N is a sequence from
∏
n∈N

An such that µy,n(an) > 0 for

each n, we have that x = limn→∞ an, so f(x) = limn→∞ f(an).

Then, using the compactness of
∏
n∈N

An, we see that

∀ǫ > 0∃n∀m ≥ n∀a ∈ Am(µy,m(a) > 0⇒ d(f(x), f(a)) < ǫ).

Given ǫ > 0 and n as above, for m ≥ n we have that

d(f(x),
∑

a∈Am
µy,m(a) · f(a))

≤∑a∈Am
d(µy,m(a) · f(x), µy,m(a) · f(a))

=
∑
a∈Am

µy,m(a)d(f(x), f(a)) ≤ ǫ,

and we are through, the limit is f(x).

Claim 2. π+ is continuous.

Proof of Claim 2. We have to prove that π+ is sequentially continuous,

so let f : X → U , fk : X → U for each k, y ∈ Y and yk ∈ Y for each k

such that

f = lim
k→∞

fk

and

y = lim
k→∞

yk.

We must show that π+(f)(y) = limk→∞ π+(fk)(yk).

If y 6∈ X , then for sufficiently large k we have that yk 6∈ X , and in

this case it is easily seen that the construction is continuous. It is actually

computable by construction.

So assume that y ∈ X. Then by assumption, if ak ∈ Ak with µyk,k(ak) >
0 for each k, then x = limk→∞ ak.

Since f = limk→∞ fk we have that

f(x) = lim
k→∞

fk(ak)
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under the same assumptions, where x ∈ X is the unique object such that

π(x) ∼ y. Then, using the same argument we used to show that π+(f)(y)

is well defined for y ∈ X, we have that

π+(f)(y) = f(x) = lim
k→∞

∑

a∈Ak

µyk,k(a) · fk(a).

Since the sequences {yk}k∈N and {fk}k∈N are arbitrary, it also holds that

π+(f)(y) = lim
n→∞

∑

a∈An

µykn ,n(a) · fkn(a)

when n 7→ kn is increasing and unbounded, but not necessarily strictly

increasing.

By this remark, it is sufficient to prove that

π+(f)(y) = lim
k→∞

π+(fk)(yk)

for the two cases where all yk are in X and where none of them are in X .

In the first case, we use that

π+(fk)(yk) = lim
n→∞

∑

a∈An

µyk,n(a) · fk(a)

for each k. We let n1 be such that

d(
∑

a∈Am

µy1,m(a) · f1(a), π+(f1)(y1)) <
1

2

for all m ≥ n1.

Then we let n2 > n1 be such that

d(
∑

a∈Am

µy2,m(a) · f2(a), π+(f2)(y2)) <
1

4

for all m ≥ n2, and so on.

We then slow down the sequence {k}k∈N to the sequence {ki}i∈N by letting

it be 1 until i = n1, then letting it be 2 until i = n2 and so on. Then

π+(f)(y) = lim
i→∞

∑

a∈Ai

µyki ,i(a) · fki(a) = lim
k→∞

π+(fk)(yk)

by construction.

In the second case, we just make use of the fact that

lim
k→∞

zyk =∞

and the result follows from the limit space property.



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

Experiments on an Internal Approach to Typed Algorithms in Analysis 317

This ends the construction of π+ and the proof of its continuity, i.e. the

proof of Claim 2.

Now, let X → U = {g : Y → V | ∀a ∈ A(g(π(a)) ∈ U)}.
Then of course ∀x ∈ X(g(π(x)) ∈ U) when g ∈ X → U , and g may be

projected to

λx ∈ Xg(π(x)) ∈ X → U.

We must wait for the definition of the probabilistic projection before making

further sense of this.

Our control will be

hg(n+λ) = (1−λ)·
n∑

i=0

d(g(π(ai)), U)+λ·
n+1∑

i=0

d(g(π(ai)), U)+
1

2
(1−2−(n+λ))

when g : Y → V is continuous.

We will now construct the finite sets supporting the probabilistic pro-

jection and prove the required properties.

Recall that {An} and {Bn}n∈N are the supports of the probabilistic pro-

jections of Y to X and of V to U resp.

Let C∗
n = An → Bn, and let φ ∈ C∗

n.

Let fφ : X → U be defined by

fφ(x) =
∑

a∈An

µπ(x),n(a) · φ(a).

Let Cn = {fφ | φ ∈ C∗
n}.

Now we will define the probabilistic projection µ+:

Let g : Y → V and let fφ ∈ C∗
n. Let

µ+
g,n(fφ) =

∏

a∈An

δg(π(a)),n(f(a)).

Since we construct µ+ using products of probability distributions, µ+
g,n is

itself a probability distribution.

Clearly, if g ∈ X → U , then

g ∼ π+(λx ∈ X.g(π(x)))

since these two functions will be identical on X, and then in particular on

the π-image of A.

So assume that g ∈ X → U and that g = limn→∞ gn.
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Assume further that µ+
gn,n(fφn

) > 0 for each n.

We must show that

λx ∈ X.g(π(x)) = lim
n→∞

fφn
.

Let x ∈ X and x = limn→∞ xn. We must show that

(∗) g(π(x)) = lim
n→∞

fφn
(xn).

We have that

fφn
(xn) =

∑

a∈An

µπ(xn),n(a) · φn(a).

Let an ∈ An for each n ∈ N.
Then, since µ+

gn,n(fφn
) > 0 we must have that

δgn(π(an)),n(φn(an)) > 0

since the product probability would be zero otherwise.

Now, let us restrict ourselves to the sequences {an}n∈N such that for all

n we have that µxn,n(an) > 0.

Then x = limn→∞ an by assumption, so

g(π(x)) = lim
n→∞

gn(π(an)).

But then g(π(x)) = limn→∞ φn(an) since φn has positive gn(π(an))-

probability for each n.

Then we finally apply Lemma 9.2 to see that (∗) holds.
We have now established the base case and the induction step needed to

prove the following theorem:

Theorem 9.1. Let U1, . . . , Un be complete and separable normed vector

spaces that are subspaces of one space V . Let σ be a type term in the type

variables u1, . . . , un and let σ(U1, . . . , Un) be the canonical interpretation in

the category of limit spaces.

a) Each space σ(U1, . . . , Un) contains a dense countable set admitting prob-

abilistic selection.

b) There are topological embeddings of σ(U1, . . . , Un) into σ(V, . . . , V ) com-

muting with application and admitting probabilistic projections.

Remark 9.3. Adding some notational details, we might include N in the

set of base types. Then this theorem generalizes one of the theorems in [16].

In addition to be a generalization, the proof is carried out in the setting
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of limit spaces only, not using domain theory as we did in [16]. In many

respects, we view the method of proof as important as the result itself.

9.4. Domain Representations and Density

When one works with an external notion of computability, i.e. transfers

the notion from some representing structure, it is natural to try to estab-

lish results about how the representing structure relates to the space in

question. One example is representations by domains and density theo-

rems. In its simplest form, a density theorem states that the representing

objects are dense in the underlying domain. In this section we will show

that a density theorem for the standard domain representation of the set of

continuous functions from one separable metric space to another will have

strong implications.

There are certainly cases where we have an effective enumeration of a

dense set, but where the canonical domain representation does not satisfy

density. One lesson to learn is that the internal approach to density implicit

in Section 3 may be as useful as using external approaches. By the way, all

constructions in this section must be considered as extensional.

Definition 9.6. Let X and Y be topological spaces.

We say that Y is compactly saturated overX if whenever C ⊆ E are compact

subsets of X and g : C → Y is continuous, then g can be extended to a

continuous f : E → Y .

Remark 9.4. This property indicates that Y in some sense is globally as

connected as X will be locally. What this means more precisely remains

to be explored, but, for example, if there is a nontrivial path in X , then Y

will be path connected. Similar phenomena for higher dimensions indicate

that “local lack of multidimensional holes” in X implies the corresponding

global lack of holes in Y .

In this section we will show that if X and Y are two separable complete

metric spaces with domain representations DX and DY in the style of

Blanck [1], and the total objects are dense in the domain DX → DY , then

Y is compactly saturated over X .

We have to introduce some terminology:

Let 〈X, dX〉 and 〈Y, dY 〉 be the two spaces.

Let {ξXk }k∈N and {ξYl }l∈N be prefixed enumerations of dense subsets of X

and Y resp.
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For r ∈ Q+, let BXk,r and BYl,r be the open balls around ξXk and ξYl resp.

with radius r. Let B
X

k,r and B
Y

l,r be the corresponding closed balls.

The finitary objects in the domain representation used by Blanck [1] will be

finite sets of such closed balls such that the distance between two centers

do not exceed the sum of the corresponding radii. Thus we use finite sets

of closed balls such that it is consistent that the intersection is nonempty.

One finite set {B1, . . . , Bn} is below another set {B′
1, . . . , B

′
m} in the do-

main ordering if each B′
i is formally the subset of some Bj , formally by

comparing the radii and the distances between the centers.

The domains used are then the ideal completion of this ordering, and an

ideal represents an element x of X (or Y ) if x is an element of all closed

balls of the ideal, and any open ball around x contains at least all closed

ball in one of the elements of the ideal. The total ideals will be those rep-

resenting elements in X or Y , and an object in the domain DX → DY is

total if it maps total ideals to total ideals.

Theorem 9.2. With the terminology above, if the total objects are dense

in DX → DY , then Y is compactly saturated over X.

We will prove the theorem in several steps. Let C ⊆ E and g : C → Y be

as in the definition of compactly saturated. The rough idea is to use the

density property to construct a sequence of continuous maps fn : X → Y

such that limn→∞ fn(x) exists on E and will be a continuous extension of

g to E.

Let {BXk }k∈N and {BYl }l∈N be enumerations of the two chosen bases for

X and Y , using ik, rk and jl, sl to denote the index of the center and the

radius of each ball.

Throughout, we will let D = g[C], the image of C under g. D is a compact

subset of Y .

We will first construct a set G of pairs of natural numbers such that

{〈BXk , B
Y

l 〉 | 〈k, l〉 ∈ G}
generates an ideal approximating g.

By recursion, we will define the finite set Gn and the real δn > 0.

We will refer to Gn and to δn in the main construction. In the construction

of the sequence of Gns, we will also define the auxiliary ∆n ⊆ N, and some

other entities only needed in order to explain the recursion step.

Let G0 = ∅, δ0 = 1 and ∆0 = ∅.
Assume that Gn, δn and ∆n are constructed.
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First, let ∆n+1 ⊆ N be a finite set such that {BYl | l ∈ ∆n+1} is and open

covering of D and such that sl < 2−n whenever l ∈ ∆n+1.

Let Πn+1 = {g−1(B
Y

l ) | l ∈ ∆n+1}.
If A,B ∈ Πn+1 and A ∩B = ∅, then dX(A,B) > 0, since the sets A and B

are closed subsets of C, and thus compact.

If A ∈ Πn+1 and B = B
X

k for some 〈k, l〉 ∈ Gn and ∀x ∈ A(dX(x, ξXik ) > rk),

then

inf{dX(x, ξXik )− rk | x ∈ A} > 0.

This is because A is compact. We call the latter number the formal distance

from A to B
X

k .

Let πn+1 be the least of the distances between disjoint elements of Πn+1

and the formal distances between an element of Πn+1 and a closed ball B
X

k

for some 〈k, l〉 ∈ Gn as above.

Let Γn+1 ⊂ N be a finite set such that

If k ∈ Γn+1, then rk < min{πn+1

4 , δn4 }.
If k ∈ Γn+1, then B

X
k ∩ C 6= ∅

{BXk | k ∈ Γn+1} is an open covering of C.

If k ∈ Γn+1, then B
X

k ∩ C ⊆ g−1(B
Y

l ) for some l ∈ ∆n+1.

The compactness of C and the fact that {g−1(BYl ) | l ∈ ∆n+1} is an open

covering of C ensures that there exists a set Γn+1 like this.

We now let 〈k, l〉 ∈ Gn+1 if k ∈ Γn+1, l ∈ ∆n+1 and B
X

k ∩C ⊆ g−1(B
Y

l ).

We let

δn+1 = dX(C,X \
⋃
{BXk | k ∈ Γn+1}).

By construction, 0 < δn+1 ≤ δn
4 .

Let G = ∪n∈NGn.

Let Ĝn = {〈BXk , B
Y

l 〉 | 〈k, l〉 ∈ Gn} and let Ĝ = ∪n∈NĜn.

Claim 1. Each Ĝn is a consistent set.

Proof of Claim 1. Let 〈k, l〉 and 〈k′, l′〉 be in Gn such that

dX(ξXik , ξ
X
ik′

) ≤ rk + rk′ .

This is the formal consistency requirement on {BXk , B
X

k′}.
Since B

X

k ∩C is nonempty and contained in g−1(B
Y

l ) ∈ Πn+1 and B
X

k′ ∩C
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is nonempty and contained in g−1(B
Y

l′ ), there is x ∈ g−1(B
Y

l ) and x′ ∈
g−1(B

Y

l′ ) with

dX(x, x′) ≤ 2rk + 2rk′ < πn+1.

Then, by choice of πn+1, we have that

g−1(B
Y

l ) ∩ g−1(B
Y

l′ ) 6= ∅,
and

B
Y

l ∩B
Y

l′ ∩D 6= ∅.
Then

dY (ξ
Y
kl
, ξYkl′ ) ≤ sl + sl′ ,

which is the consistency requirement for {BYl , B
Y

l′ }.
Thus the right hand sides of two pairs in Ĝn are consistent when the left

hand sides are consistent. Thus Ĝn is consistent, and Claim 1 is proved.

Claim 2. Ĝ is consistent.

Proof of Claim 2. Let 〈BXk , B
Y

l 〉 ∈ Ĝn and 〈BXk′ , B
Y

l′ 〉 ∈ Ĝm with m < n

and assume that

dX(ξXik , ξ
X
ik′

) ≤ rk + rk′ .

Then we can argue in analogy with the proof of Claim 1 that there will be

an

x ∈ g−1(B
Y

l ) ∩B
X

k′ .

Since x ∈ g−1(B
Y

l ) and x ∈ B
X

k′ ∩C ⊆ g−1(B
Y

l′ ) we have that

B
Y

l ∩B
Y

l′ 6= ∅,
so

dY (ξ
Y
jl , ξ

Y
jl′
) ≤ sl + sl′ .

This ends the proof of Claim 2.

By construction, each Ĝn is an approximation to g where Ĝn “decides”

the value of g(x) up to a precision of 2−n. Thus Ĝ will generate an ideal

representing g.

The reason why we use tiny left hand sides as well is that we want to

have some freedom in adjusting the construction of the extension f of g

close to C.
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We will now give the main construction. For each finitary p : DX → DY ,

i.e. finite consistent sets of pairs of closed balls, we let fp be a continuous,

total extension.

We will construct a sequence {pn}n∈N of finitary objects, and we will let

fn = fpn .

pn will satisfy that ∪i≤nĜn ⊑ pn, which will ensure that we construct some

extension of g.

For each n, let

Cn = {x ∈ X | dX(x,C) < δn}

and let En = E \ Cn. Let p0 = ∅ and f0 = fp0 .

Assume that pn and fn are constructed, with ∪i≤nĜi ⊆ pn.
Let

Yn =
⋃
{fi[E] | i ≤ n}.

Then Yn ⊆ Y is a compact set.

First, let kn be minimal such that

Kn = {BYl | l ≤ kn ∧ sl ≤ 2−n}

is an open covering of Yn. Clearly n ≤ m⇒ kn ≤ km.

Let Ln consist of all nonempty sets f−1
n (B

Y

l ) ∩ En for l ≤ kn. Let εn be

the least element in the set consisting of δn, all distances between disjoint

elements of Ln and all formal distances between disjoint elements of Ln

and sets B
X

k for some 〈k, l〉 ∈ ⋃i≤nGi.
Let mn be the least number such that

Mn = {BXk | k ≤ mn ∧ rk <
εn
4
}

contains an open covering of each A ∈ Ln.
We then let pn+1 consist of ∪i≤n+1Ĝi together with the set p′n+1 of all

pairs 〈BXk , B
Y

l 〉 such that l ≤ kn, BXk ∈Mn and

B
X

k ∩ f−1
n (B

Y

l ) ∩En 6= ∅.

Claim 3. pn+1 is a consistent set.

Proof of Claim 3. We have to prove that p′n+1 is consistent with itself,

with Ĝn+1 and with ∪i≤nĜi.
Let 〈BXk , B

Y

l 〉 and 〈B
X

k′ , B
Y

l′ 〉 be elements of p′n+1 such that

dX(ξXik , ξ
X
ik′

) ≤ rk + rk′ .
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Let x ∈ BXk ∩ f−1
n (B

Y

l ) ∩En and x′ ∈ BXk′ ∩ f−1
n (B

Y

l′ ) ∩ En.
Then dX(x, x′) ≤ 2rk + 2rk′ < εn.

Thus f−n
n (B

Y

l ) ∩En and f−1
n (B

Y

l′ ) ∩ En intersect, so B
Y

l ∩ B
Y

l′ 6= ∅. Then

dY (ξ
Y
jl
, ξYjl′ ) ≤ sl + sl′ .

This shows that p′n+1 is consistent.

Now, let 〈BXk , B
Y

l 〉 ∈ Ĝn+1 and 〈BXk′ , B
Y

l′ 〉 ∈ p′n+1.

Since B
X

k′ ∩ C 6= ∅ and B
X

k′ ∩ En 6= ∅ and they both have radii ≤ εn
4 ≤ δn

4

the set B
X

k and B
X

k′ must be formally disjoint, since we do not leap over

the half distance between C and En in any of these balls.

Finally, let 〈BXk , B
Y

l 〉 ∈ Ĝi for some i ≤ n and 〈BXk′ , B
Y

l′ 〉 ∈ p′n+1, and

assume that

dX(ξXik , ξik′
) ≤ rk + rk′ .

Now

A = f−1
n (B

Y

l′ ) ∩ En ∈ Ln,

and since the distance between ξXik and A is bounded by rk+2rk′ < rk+εn,

the formal distance between A and B
X

k is < εn Then A ∩ BXk 6= ∅.
Let x ∈ A ∩BXk .

Since 〈BXk , B
Y

l 〉 ∈ Ĝi ⊆ pn, we will have that f(x) ∈ B
Y

l ∩ B
Y

l′ , so

dY (ξ
Y
jl
, ξYjl′ ) ≤ sl + sl′ .

This ends the proof of Claim 3.

Claim 4. Let 〈BXk , B
Y

l 〉 ∈ pn and let m ≥ n.

a) If 〈BXk , B
Y

l 〉 ∈ ∪i≤nGn then

B
X

k ⊆ f−1
m (B

Y

l ).

b) If 〈BXk , B
Y

l 〉 ∈ p′n, then

B
X

k ∩ En ⊆ f−1
m (B

Y

l ).

Proof of Claim 4. a) is trivial since 〈BXk , B
Y

l 〉 ∈ pm for m ≥ n.
b) is proved by induction on m ≥ n where the base case n = m is trivial.

So let x ∈ BXk ∩En and assume as an induction hypothesis that fm(x) ∈ BYl
where l ≤ kn.
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We will show that fm+1(x) ∈ B
Y

l .

We have that l ≤ km, so

f−1
m (B

Y

l ) ∩Em ∈ Lm
with

x ∈ f−1
m (B

Y

l ) ∩ Em.

Then there will be a B
X

k′ ∈Mm such that x ∈ BXk′ .
Then 〈BXk′ , B

Y

l 〉 ∈ pm+1, and consequently fm+1(x) ∈ B
Y

l .

This ends the proof of Claim 4.

Claim 5 . For each x ∈ E, limn→∞ fn(x) exists.

Proof of Claim 5. We split the argument into two cases.

If x ∈ C, then g(x) = limn→∞ Ĝn(x) (in the sense of domains), and

Ĝn(x) ⊑ fn(x) for each n, so
g(x) = lim

n→∞
fn(x).

If x ∈ E \ C, let ǫ > 0 be given. We choose n so large that 2−n < ǫ and

x ∈ En.
Then fn(x) ∈ Yn and we pick one BYl ∈ Kn such that fn(x) ∈ BYl .
Then x ∈ f−1

n (B
Y

l ) ∩ En ∈ Ln and then there is a BXk ∈ Mn such that

x ∈ BXk .

By construction then

〈BXk , B
Y

l 〉 ∈ p′n+1.

By Claim 4b), fm(x) ∈ BYl for all m ≥ n.
This shows that {fn(x)}n∈N is a Cauchy sequence, so the limit exists.

This ends the proof of Claim 5.

Let f(x) = limn→∞ fn(x).

Claim 6. f is continuous on E.

Proof of Claim 6. Let x ∈ E and ǫ > 0 be given.

If x ∈ C, choose n so large that 2−n < ǫ.

By construction of Ĝn there will be a pair 〈BXk , B
Y

l 〉 ∈ Ĝn+1 such that x

is in the interior of B
X

k .

By Claim 4a) we have that f(y) ∈ BYl whenever y ∈ BXk .

Thus, if δ > 0 is so small that the open δ-ball around x is contained in B
X

k ,

and then dY (f(x), f(y)) ≤ 2−n < ǫ. This shows continuity in this case.
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If x ∈ E \ C we in addition choose n such that x ∈ En.
We then use p′n+1 to the same effect as we used Ĝn+1 above, now applying

Claim 4b).

This ends the proof of Claim 6 and the theorem.

Concluding remarks

This chapter can be seen as part two of a trilogy, where [18] is the first part.

The third part is still in preparation a. There we will use external methods

combined with the probabilistic approach in order to learn more about the

typed hierarchy of total functionals over separable complete metric spaces

in general.
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derive from, or at least interact with, a wider mathematical and intellectual

experience. I can only offer suggestions, not scholarly arguments, to those
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10.1. Types of Recursion

The recursive functions take their name from the process of “recurrence” or

“recursion”, which in its most general numerical form consists in defining

the value of a function by using other values of the same function. There

are many different types of recursions, and among them the following are

perhaps the most basic:

10.1.1. Iteration

The simplest type of recursion occurs when a given function is iterated.

Technically, the n-th iteration of a function f is defined as follows:

f (0)(x) = x f (n+1)(x) = f(f (n)(x)).

The first clause is needed to obtain f (1)(x) = f(x) from the second clause.
One of the earliest examples of iteration comes from the Rhind Papyrus,

written about 1700 B.C., which gives as Problem 79 the following:

In each of 7 houses are 7 cats; each cat kills 7 mice; each mouse would
have eaten 7 ears of spelt (wheat); each ear of spelt would have produced 7
hekat (half a peck) of grain. How much grain is saved by the 7 house cats?

The solution amounts to computing the sixth term of a geometrical pro-

gression with first term 1 and multiplier 7, i.e. f (6)(7), with f(x) = 7x.

The papyrus gives not only the correct answer (16,807), but also the sum

of the first five terms of the progression (19,607).
A similar use of a geometrical progression comes from a medieval story

about the origin of chess:

According to an old tale, the Grand Vizier Sissa Ben Dahir was granted
a boon for having invented chess for the Indian King, Shirham.

Sissa addressed the King: “Majesty, give me a grain of wheat to place
on the first square of the board, and two grains of wheat to place on the
second square, and four grains of wheat to place on the third, and eight
grains of wheat to place on the fourth, and so on. Oh, King, let me cover
each of the 64 squares of the board.”

“And is that all you wish, Sissa, you fool?” exclaimed the astonished
King.

“Oh, Sire,” Sissa replied, “I have asked for more wheat than you have in
your entire kingdom. Nay, for more wheat that there is in the whole world,
truly, for enough to cover the whole surface of the earth to the depth of
the twentieth part of a cubit.”a

aReported in Newman [18].



January 24, 2011 16:5 World Scientific Review Volume - 9in x 6in computability

Recursive Functions: An Archeological Look 331

Some version of the story was known to Dante, since he refers to it in the

Paradiso (xxviii, 92–93) to describe the abundance of Heaven’s lights:

eran tante, che ’l numero loro
più che ’l doppiar degli scacchi s’immilla.

They were so many, that their number
piles up faster than the chessboard doubling.

As in the previous Egyptian problem, the solution amounts to computing

the sum of the first 64 terms of a geometrical progression with first term 1

and multiplier 2, i.e.

1 + 2 + 22 + · · ·+ 263 = 264 − 1

= 18, 446, 744, 073, 709, 551, 615.

Coming closer to our times, an interesting use of iteration was made

by Church [6] in the Lambda Calculus, which he had concocted as an al-

ternative foundation for mathematics based on the notion of function and

application, as opposed to set and membership. Church’s idea was to rep-

resent the natural number n in the Lambda Calculus as the binary operator

n that, when applied to the arguments f and x, produces the n-th iteration

f (n)(x).

Apparently unnoticed by Church, the same idea had been proposed

earlier by Wittgenstein [35], as follows:

6.02 And this is how we arrive at numbers. I give the following definitions

x = Ω0′x Def.,

Ω′Ων ′
x = Ων+1′ Def.

So, in accordance with these rules, which deal with signs, we write the
series

x, Ω′
x, Ω′Ω′

x, Ω′Ω′Ω′
x, . . .

in the following way

Ω0′x, Ω0+1′x, Ω0+1+1′x, . . .

[· · · ] And I give the following definitions

0 + 1 = 1 Def.,

0 + 1 + 1 = 2 Def.,

0 + 1 + 1 + 1 = 3 Def.,

(and so on)
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6.021 A number is the exponent of an operation.

Even earlier, Peano [23] had suggested the same idea:

Then, if b is an N , by aαb we want to indicate what is obtained by exe-
cuting the operation α on a, b times in a row. Hence, if a is a number,
a+ b represents what is obtained by executing b times on a the operation
+, that is the successor of a of order b, i.e. the sum of a and b. [· · · ]

If a and b indicate two numbers, by their product a× b we will mean what
is obtained by executing b times on 0 the operation +a. [· · · ]

If a and b indicate two numbers, by ab we will mean what is obtained by
executing b times on 1 the operation ×a.

Thus Peano, like Church but unlike Wittgenstein, saw that the definition

of the numbers as iterators gives for free the representability of a number

of functions obtained by iteration.

10.1.2. Primitive recursion

Primitive recursion is a procedure that defines the value of a function at an

argument n by using its value at the previous argument n − 1 (see CRT,

I.1.3).

Iteration is obviously a special case of primitive recursion, on the number

of iterations. And so is the predecessor function, defined by

pd(n) =

{
0 if n = 0 or n = 1

pd(n− 1) + 1 otherwise.

It is not immediate that the predecessor function can be reduced to an itera-

tion, and hence is representable in the Lambda Calculus. It was Kleene [11]

who saw how to do this, apparently during a visit to the dentist. Basically,

pd(n) is the second component of the n-th iteration of the function on pairs

defined as

f((x, y)) = (x+ 1, x),

started on (0, 0).

More generally, it is possible to prove that any primitive recursion can be

reduced to an iteration, in the presence of a coding and decoding mechanism

(see CRT, I.5.10). This implies that all primitive recursive functions are

actually representable in the Lambda Calculus, as proved by Kleene [12].
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10.1.3. Primitive recursion with parameters

When defining a function of many variables by primitive recursion, all vari-

ables except one are kept fixed. Primitive recursion with parameters relaxes

this condition, and it allows substitutions for these variables. Although ap-

parently more general, this notion actually turns out to be reducible to the

usual primitive recursion (see CRT, VIII.8.3.a).

One ancient example of a primitive recursion with parameters is the

solution to the old problem known as the Towers of Hanoi or the Towers

of Brahma:

In the great temple of Benares, beneath the dome which marks the centre
of the world, rests a brass-plate in which are fixed three diamond needles,
each a cubit high and as thick as the body of a bee. On one of these needles,
at the creation, God placed sixty-four disks of pure gold, the largest disk
resting on the brass plate, and the others getting smaller and smaller up to
the top one. This is the Tower of Brahma. Day and night unceasingly the
priests transfer the disks from one diamond needle to another according
to the fixed and immutable laws of Brahma, which require that the priest
must not move more than one disk at a time and that he must place this
disk on a needle so that there is no smaller disk below it. When the sixty-
four disks shall have been thus transferred from the needle on which at the
creation God placed them to one of the other needles, tower, temple, and
Brahmins alike will crumble into dust, and with a thunderclap the world
will vanish.b

The natural recursive solution is the following: to move n disks from needle

A to needle C, first move n− 1 disks from needle A to needle B, then move

one disk from needle A to needle C, and then move n− 1 disks from needle

B to needle C. More concisely:

move(n,A,C) = move(n− 1, A,B) ∧move(1, A, C) ∧move(n− 1, B, C).

Notice the use of move(n− 1, A,B) and move(n− 1, B, C), as opposed to

move(n− 1, A, C), in the computation of move(n,A,C), which makes this

a primitive recursion with parameters (the value move(1, A, C) does not

count, being constant).

If we let f(n) be the number of moves needed for n disks provided by

the previous solution, then

f(1) = 0 f(n+ 1) = 1 + 2f(n),

i.e.

f(n) = 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1,

bReported in Rouse Ball [27].
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and it is known that this is the least possible number of moves needed

to solve the problem. In particular, according to the previous story, the

doomsday will be reached after 264−1 moves, i.e. the same number provided

by the chessboard problem. If one correct move is made every second, for

24 hours a day and 365 days a year, the time required for the completion

of the task would be of approximately 58 billion centuries.

10.1.4. Course-of-value recursion

When defining by primitive recursion a function at a given argument, only

the value for the immediately preceeding argument can be used. Course-of-

value recursion relaxes this condition, and it allows the use of any number

of values for previous arguments. Although apparently more general, this

notion actually turns out to be reducible to the usual primitive recursion

(see CRT, I.7.1).

An early example of a course-of-value recursion was given by Leonardo

da Pisa, also called Fibonacci, in his Liber abaci , written in 1202 and revised

in 1228, when discussing the famous rabbit problem (paria coniculorum):

How many pairs of rabbits can be bred in one year from one pair?

A man has one pair of rabbits at a certain place entirely surrounded by a
wall. We wish to know how many pairs can be bred from it in one year, if
the nature of these rabbits is such that they breed every month one other
pair, and begin to breed in the second month after their birth. Let the first
pair breed a pair in the first month, then duplicate it and there will be 2
pairs in a month. From these pairs one, namely the first, breeds a pair in
the second month, and thus there are 3 pairs in the second month. From
these in one month two will become pregnant, so that in the third month
2 pairs of rabbits will be born. Thus there are 5 pairs in this month. From
these in the same month 3 will be pregnant, so that in the fourth month
there will be 8 pairs. [· · · ]

In the margin Fibonacci writes the sequence

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

and continues:

You can see in the margin how we have done this, namely by combining
the first number with the second, hence 1 and 2, and the second with the
third, and the third with the fourth . . . At last we combine the 10th with
the 11th, hence 144 and 233, and we have the sum of the above-mentioned
rabbits, namely 377, and in this way you can do it for the case of infinite
numbers of months.
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This provides the definition of the Fibonacci sequence:

f(0) = 0 f(1) = 1 f(n+ 2) = f(n) + f(n+ 1).

Notice the use of the two values f(n) and f(n + 1) in the definition of

f(n+ 2), which makes this a course-of-value recursion.

The earliest record of a Fibonacci sequence is probably a set of weights

discovered a few decades ago in Turkey, going back to around 1200 B.C.

and arranged into a progression approximately equal to it (Petruso [24]).

The sequence was also known in Egypt and Crete (Preziosi [25]), and it

was used by the ancient and medieval Indians to define the metric laws of

sanscrit poetry (Singh [31]).

Double recursion

Primitive recursion can be used to define functions of many variables, but

only by keeping all but one of them fixed. Double recursion relaxes this

condition, and it allows the recursion to happen on two variables instead of

only one. Although apparently more general, this notion actually turns out

to be reducible in many cases (but not all) to the usual primitive recursion

(see CRT, VIII.8.3.b and VIII.8.11).
The first use of a double recursion was made around 220 B.C. by

Archimedes in his Sand Reckoner to solve the following problem:

There are some, King Gelon, who think that the number of the sand
is infinite in multitude; and I mean the sand not only which exists about
Syracuse and the rest of Sicily, but also that which is found in every region
whether inhabited or uninhabited. Again there are some who, without
regarding it as infinite, yet think that no number has been named which
is great enough to exceed this multitude. And it is clear that they who
hold this view, if they imagined a mass made up of sand in other respects
as large as the mass of the earth, including in it all the seas and the
hollows of the earth filled up to a height equal to that of the highest of the
mountains, would be many times further still from recognizing that any
number could be expressed which exceeded the multitude of the sand so
taken. But I will try to show you by means of geometrical proofs, which
you will be able to follow, that, of the numbers named by me and given
in the work which I sent to Zeuxippus,c some exceed not only the number
of the mass of sand equal in magnitude to the earth filled up in the way
described, but also that of a mass equal in magnitude to the universe.

To denote his large number, Archimedes fixes a number a of units and

defines the number hn(x) by a double recursion, on the cycle x and the

cArchimedes is referring here to a work now lost.
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period n, as follows:

h0(x) = 1 hn+1(0) = hn(a) hn+1(x+ 1) = a · hn+1(x),

so that

hn(x) = (ax)n = axn.

Then he considers

ha(a) = (aa)a = a(a
2)

for the particular value a = 108, i.e. a myriad myriads (the myriad, i.e.

10,000, was the largest number for which the Greeks had a proper name).

This takes him up to

(108)(10
16) = 108·10

16 ≈ 1010
17

,

which he calls “a myriad myriads units of the myriad-myriadesimal order

of the myriad-myriadesimal period”. This number, consisting of 80 million

billions ciphers, remained the largest number used in mathematics until

Skewes [32], who needed 1010
1034

as a bound to the first place where the

function π(x) − li(x) first changes sign.
By an evaluation of the sizes of a grain of sand and of the then known

universe, Archimedes gets an estimate of 1063 for the number of grains of

sand needed to fill the universe, well below the bound above. It may be

interesting to note that by using the values for the sizes of an electron (10−18

meters) and of the currently known universe (1035 light years), we get an

estimate of 10207 for the number of electrons needed to fill the universe,

still well below the bound above.

Archimedes’ concludes his work as follows:

I conceive that these things, King Gelon, will appear incredible to the
great majority of people who have not studied mathematics, but that to
those who are conversant therewith and have given thought to the question
of the distances and sizes of the earth, the sun and moon and the whole
universe, the proof will carry conviction. And it was for this reason that
I thought the subject would not be inappropriate for your consideration.

10.2. The First Recursion Theorem

The so-called First Recursion Theorem (see CRT, II.3.15) provides a ba-

sic tool to compute values of functions which are solutions to recursive

equations, implicitly defining functions by circular definitions involving the

function itself.
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The procedure is similar to a classical method to compute approxima-

tions to real numbers which are solutions to algebraic equations, implicitly

defining real numbers by circular definitions involving the number itself.

For example, consider the equation

x = 1 +
1

x
·

Then x can be thought of as a fixed point of the function

f(x) = 1 +
1

x
,

in the sense that

x = f(x).

To make x explicit, we have at least two ways.

For example, we can transform the equation into the equivalent form

x2 − x− 1 = 0,

and use the well-known formula for the solution to the second degree equa-

tion that was already known to the Babylonians around 2000 B.C., thus

getting

x =
1±
√
5

2
.

However, this works only for simple functions. Moreover, the solutions are

not circular anymore, but are still implicit (the radical
√
5 still needs to be

evaluated by other methods).

Alternatively, we can perform repeated substitutions of the right-hand

side for x, thus obtaining a continuous function of the kind introduced in

1572 by Raffaele Bombelli in his Algebra:

x = 1 +
1

x
= 1 +

1

1 + 1
x

= · · · = 1 +
1

1 + 1
1+ 1

1+···

.

The infinite expression is built up as a limit of finite expressions, that

provide approximations to the solution. More precisely, if we write f(n+1)
f(n)

for the n-th approximation, then

f(n+ 2)

f(n+ 1)
= 1 +

1
f(n+1)
f(n)

=
f(n) + f(n+ 1)

f(n+ 1)
,

i.e.

f(n+ 2) = f(n) + f(n+ 1).
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In other words, f is simply the Fibonacci sequence, and the approximations

are given by the ratios of its successive terms:

2

1

3

2

5

3

8

5

13

8

21

13
· · · .

This iterative method is the same underlying the proof of the First

Recursion Theorem, and it has a long history.

10.2.1. Differentiable functions

An early appearance of the method is found in the Indian Sulvasutra, com-

posed between 600 and 200 B.C. To compute numerical approximations to√
2, the following recursive algorithm is proposed.

A first approximation is obtained by dissecting a rectangle of edges 1

and 2 (i.e. of area 2) into two squares of edge 1. One square is cut into two

rectangles of short edge 1
2 , which are placed along the other square. The

square of edge 1 + 1
2 = 3

2 has an area that exceeds 2 by a small square of

edge 1
2 , thus producing an error equal to 1

4 .

A second approximation is obtained by subtracting from the square of

edge 3
2 giving the first approximation the error, i.e. two rectangular stripes

of area 1
8 and short edge 1

8 · 2
3 = 1

12 . This produces a square of edge
3
2 − 1

12 = 17
12 , whose area differs from 2 by a small square of edge 1

12 , thus

producing an error equal to 1
144 .

A third approximation is obtained by subtracting from the square of

edge 17
12 giving the second approximation the error, i.e. two rectangular

stripes of area 1
288 and short edge 1

288 · 1217 = 1
408 . This produces a square

of edge 17
12 − 1

408 = 577
408 , which is the approximation to

√
2 given by the

Sulvasutra, and is correct to 5 decimal places.

The procedure can be iterated as follows: Given an approximation xn,

we produce a new approximation

xn+1 = xn −
x2n − 2

2xn
,

where x2n − 2 is the error of the n-th approximation,
x2
n−2
2 the area of each

of the two rectangular stripes, and
x2
n−2
2xn

their short edge.

If we let f(x) = x2 − 2, then f ′(x) = 2x and f(
√
2) = 0. The previous

recursive formula can thus be rewritten as

xn+1 = xn −
f(xn)

f ′(xn)
·
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When generalized to any derivable functions, this becomes Newton’s for-

mula (1669) to approximate a zero of the given function by starting from

a point x0 sufficiently close to a zero and having a nonzero derivative.

In the case of the f considered above, Newton’s formula can be obtained

directly by looking for an increment h such that

f(xn + h) = 0,

i.e.

(xn + h)2 − 2 = x2n + 2xnh+ h2 − 2 = 0.

By disregarding the quadratic term h2 (which is the reason for the persis-

tence of an error), we get

x2n + 2xnh = 2,

i.e.

h = −x
2
n − 2

2xn
·

Similar proofs hold for any polynomial. In general, for an analytical func-

tion f the increment is obtained from Taylor’s formula (1715):

f(x+ h) = f(x) +
h

1!
f ′(x) +

h2

2!
f ′′(x) + · · ·+ hn

n!
f (n)(x) + · · · .

10.2.2. Contractions

When discussing the problem of consciousness, Royce [28] observed that an

individual must have an infinite mental image of its own mind, since the

image must contain an image of the image, which must contain an image

of the image of the image, and so on.

Abstracting from the problem of consciousness, Royce presented a para-

doxical metaphor that caught the fancy of the writer Jorge Luis Borges, who

quoted it at least three times in his work with the following words:

Imagine a portion of the territory of England has been perfectly levelled,
and a cartographer traces a map of England. The work is perfect. There
is no particular of the territory of England, small as it can be, that has
not been recorded in the map. Everything has its own correspondence.
The map, then, must contain a map of the map, that must contain a map
of the map of the map, and so on to infinity.
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The metaphor has been interpreted as a proof by contradiction that a per-

fect map is impossible, supporting the well-known aphorism of Korzyb-

ski [16]: “the map is not the territory”.

Actually, from a mathematical point of view a perfect map that contains

a copy of itself is not a contradiction, but rather a contraction, in the sense

that it defines a function f such that

|f(x)− f(y)| ≤ c · |x− y|,
for some c such that 0 < c < 1. Banach [2] has proved that a contraction

on a complete metric space has a unique fixed point, and the proof is a

typical iteration. Indeed, by induction,

|f (n+1)(x)− f (n)(x)| ≤ cn · |f(x)− x|.
By the triangular inequality,

|f (n+m)(x)− f (n)(x)| ≤
∑

i<m

|f (n+i+1)(x)− f (n+i)(x)|

≤ (
∑

i<m

cn+i) · |f(x)− x|.

Thus the sequence {f (n)(x)}n∈ω converges to a point x0, and hence so does

the sequence {f (n+1)(x)}n∈ω . Since f is continuous, the second sequence

also converges to f(x0), which must then be equal to x0. In other words,

x0 is a fixed point of f . Moreover, if x1 is another fixed point, then

|x0 − x1| = |f(x0)− f(x1)| ≤ c · |x0 − x1|.
Since c < 1, it follows that x0 = x1, i.e. x0 is the unique fixed point of f .

In the case of a perfect map, this means that there must be a point of

the territory that coincides with its image on the map. Thus a perfect map

is not the territory in general, but it is so in one (and only one) point.

10.2.3. Continuous functions

Banach’s result was obtained as an abstraction of the technique of suc-

cessive substitution developed in the xix Century by Liouville, Neumann,

and Volterra to find solutions to integral equations, in which an unknown

function appears under an integral sign. A similar technique was used by

Peano [22] to find solutions to systems of linear differential equations. In

both cases an appropriate contraction is determined by the usual continu-

ity and Lipschitz conditions, which ensure existence and uniqueness of the

solution.
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An extension of Banach’s Fixed Point Theorem, for more special spaces

but more general maps, was obtained by Brouwer [4], who proved that a

continuous function of a convex compact subset of a Euclidean space on

itself has a fixed point.

Brouwer’s original proof determined the existence of a fixed point by

contradiction, without actually exhibiting it (this was quite ironical, due

to Brouwer’s costructive philosophy). In the special case of a closed disk,

Brouwer’s proof amounted to the following: If a continuous function of a

closed disk on itself had no fixed point, every point would be moved to a

different point. By extending the vector determined by an argument and its

image, we could associate to every point on the disk a point on the border.

This would determine an impossible continuous deformation of the whole

disk into the border.

However, a constructive version of Brouwer’s Fixed Point Theorem for

a continuous function on a closed square on itself can be obtained by the

iteration technique, as follows: Suppose there is no fixed point on the bor-

der. Then the vector determined as above makes a complete turn while the

point moves around the border. Divide the square into four equal squares.

Either the vector vanishes on a point of the border on one of the squares,

thus determining a fixed point of the given function, or there is at least one

square on which the vector makes a complete turn while the point moves

around the border, and the process can be started again. If no fixed point

is found along the way, the process determines a sequence of telescopic

squares which uniquely identifies a point. Since any neighborhood of the

point contains vectors in every direction, by continuity the vector field must

vanish at it, i.e. the process determines a fixed point.

In one dimension Brouwer’s Fixed Point Theorem becomes a version of

the Intermediate Value Theorem proved by Bolzano [3], according to which

a continuous function on a closed interval that takes values respectively

greater and smaller than c on the extremes of the interval, must take value

c at some point of the interval. In this case, an intermediate value can be

found by a bisection method similar to the above.

Even more abstract versions of Banach’s theorem than Brouwer’s were

obtained by Knaster [15] and Tarski [34], who proved the existence of fixed

points for any monotone function on a complete lattice. Abian and Brown

[1] replaced complete lattices by chain-complete partial orderings, in which

every chain of elements has a least upper bound. In particular, a chain-

complete partial ordering has a least element ⊥, since the empty chain must

have a l.u.b.
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Given a monotone function f on a chain complete partial ordering,

consider the following transfinite sequence of elements:

x0 = ⊥
xα+1 = f(xα)

xβ = the l.u.b. of {f(xa)}α<β , if β is a limit ordinal.

Since f is monotone, this defines a chain, whose length cannot exceed the

maximal length of chains on the given partial ordering. Then there is

a largest element xα0 , otherwise the l.u.b. of the chain would be a larger

element. And f(xα0) = xα0 , otherwise xα0 would not be the largest element

of the chain. Moreover, xα0 is the least fixed point, because every element

of the chain is below any other fixed point, by induction.

It thus follows that any monotone function on a chain complete partial

ordering has a least fixed point. If, moreover, f is continuous (in the sense

of preserving l.u.b.s
⊔
), then the fixed point is obtained in at most ω

iterations, because

f(xω) = f(
⊔

n∈ω
xn) =

⊔

n∈ω
f(xn) =

⊔

n∈ω
xn+1 = xω .

As an application, we can sketch a proof of the First Fixed Point Theo-

rem of Kleene [14]. Consider the chain complete partial ordering consisting

of the partial functions on the integers, ordered by inclusion. Since a re-

cursive functional is monotone and continuous, it has a least fixed point xω
by the theorem. Moreover, the least fixed point is recursive by the proof.

10.3. The Second Recursion Theorem

The so-called Second Recursion Theorem (see CRT, II.2.13) provides a ba-

sic tool to find explicit solutions to recursive equations, implicitly defining

programs of recursive functions by circular definitions involving the pro-

gram itself.

The procedure is the analogue of a classical method to find explicit defi-

nitions for functions implicitly defined by recursive equations. For example,

consider the implicit definition of the Fibonacci sequence:

f(0) = 0 f(1) = 1 f(n+ 2) = f(n) + f(n+ 1).

To make f explicit, we can use De Moivre’s method (1718) of generating

functions, and let

F (x) = f(0) + f(1) · x+ f(2) · x2 + · · ·+ f(n) · xn + · · · .
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By computing

F (x)− F (x) · x− F (x) · x2

we notice that most terms cancel out, since they have null coefficients of

the form f(n+ 2)− f(n+ 1)− f(n). We thus get

F (x) =
x

1− x− x2 ·

By factoring the denominator, expanding the right-hand-side into a power

series, and comparing it term by term to F (x), we obtain the following

explicit description for f :

f(n) =
1√
5

[(
1 +
√
5

2

)n
−
(
1−
√
5

2

)n ]
·

This result, which uses 1±
√
5

2 to express the Fibonacci sequence, is the

complement of the result proved above, which uses the Fibonacci sequence

to approximate 1+
√
5

2 ·
Kronecker [17] generalized the previous example to show that every

linear recursive relation determines the coefficients of a power series defining

a rational function. Conversely, every rational function can be expressed

as a power series with coefficients satisfying a linear recursive relation.

The Second Recursion Theorem serves a similar purpose, by turning

recursive programs which define functions by recursive calls, into programs

for the same functions without any recursive call.

10.3.1. The diagonal method

The proofs of the Second Recursion Theorem and its variants (see CRT,

II.2.10 and II.2.13) are elaborate and abstract forms of the diagonal method,

which can be considered the most pervasive tool of Recursion Theory. Its

essence is the following.

Given an infinite matrix {aij}ij , we first transform the elements ann on

the diagonal by means of a switching function d, thus obtaining d(ann). If

the switching function d is never the identity on the elements of the matrix,

then the transformed diagonal function is not a row of the matrix. More

precisely, it differs on the n- th element from the n-th row.

Equivalently, if the transformed diagonal function is a row of the matrix,

e.g. the n-th, then the switching function d must be the identity on some

element of the matrix. More precisely, it leaves the n-th element of the n-th
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row unchanged. In this form, the diagonal method provides a fixed point

of the function d.

10.3.2. The diagonal

The first ingredient of the diagonal method is the consideration of the

elements on the diagonal of an appropriate matrix.

This was done in a nontrivial way already by Archimedes in the Sand

Reckoner discussed above, when stepping from the matrix {hn(x)}n,x to

the diagonal element ha(a).

In modern times, Du Bois Reymond has made a substantial use of diago-

nalization in his study of orders of infinity, reported in Hardy [10]. Basically,

he defines an ordering based on domination (i.e. a function is greater than

another if it is above it for almost all arguments), and classifies classes of

functions by means of skeletons of fast growing functions obtained by start-

ing with functions f greater than the identity, iterating at successor stages,

and diagonalizing at limit stages. More precisely, a function f such that

f(x) ≥ x for almost all arguments defines the following skeleton:

f0(x) = f(x) fα+1(x) = f (x)
α (x) fα(x) = fαx

(x),

where in the last clause α is the limit of the ascending sequence of the

ordinals αx (the definition obviously depends on the choice of the ascending

sequence.)

Today these skeletons have become standard in Complexity Theory, to

classify complexity classes such as the primitive recursive functions (see

CRT, VIII.8.10).

10.3.3. The switching function

The second ingredient of the diagonal method is the use of the switching

function on the elements of the diagonal.

This was first done by Cantor [5], in his historical proof that the sets

of natural numbers are more than the numbers themselves. By considering

characteristic functions, the proof amounts to the observation that given a

sequence {fn}n∈ω of 0,1-valued functions, the function

d(x) = 1− fx(x)
is 0,1-valued but not in the sequence, since it differs from fn on the argu-

ment n. The switching function, true to its name, is here the function that

interchanges 0 and 1.
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The same type of argument was used by Russell [29], to prove his cele-

brated paradox. This time we consider the set

R = {x : ¬(x ∈ x)}.

Then

x ∈ R ⇐⇒ ¬(x ∈ x),

and thus

R ∈ R ⇐⇒ ¬(R ∈ R),

contradiction. The switching function is now the negation operator that

interchanges the truth values “true” and “false”.

Russell’s paradox was turned into a theorem by Curry [8], who proved

the existence of fixed points for any λ-term in the Untyped Lambda Cal-

culus, according to the following correspondence:

Set Theory Lambda Calculus

element argument

set term

membership application

set formation {} λ-abstraction

set equality term equality

If the term N is supposed to correspond to negation, then the set R corre-

sponds to the term

C = λx.N(xx).

By the reduction rules of the Lambda Calculus,

Cx = N(xx),

and thus

CC = N(CC).

However, this is not a contradiction, but rather a proof that CC is a fixed

point of N . In other words, in the Lambda Calculus there is no switching

function, in the sense of a term that always changes its arguments.

Curry’s Fixed Point Theorem is a version of the Recursion Theorems,

and together with the representability of the predecessor function quoted

above implies the representability of all recursive functions in the Lambda

Calculus, as proved by Kleene [12] (see CRT, I.6.6.c).
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10.3.4. Selfreference

In the last two arguments above, diagonalization takes the form of a self-

reference. Indeed, the conditions “x ∈ x” in Russell’s paradox can be read

as: “x belongs to itself”. Similarly, the condition “xx” in Curry’s theorem

can be read as: “x applied to itself”.

Selfreference is obviously trivial in any language possessing the pronoun

“I”. The best known ancient reference is God’s own description in Exodus

(3.14): “I am that I am”. However, this kind of selfreference is somewhat

indirect, since the pronoun is a linguistic object that refers not to itself,

but to the person who is pronouncing it. A better example is a phrase that

talks of itself, for example: “This phrase consists of six words”.

The first paradoxical selfreference was probably the Liar paradox, at-

tributed to Eubulides (iv Century B.C.) in the form: “I am lying”. A

purely linguistic analogue is: “This phrase is false”.

It is not paradoxical, instead, for a Cretian such as Epimenides (vi

Century B.C.) to say: “All Cretians always lie”. This phrase cannot be

true, otherwise Epimenides would be a Cretian who is not always lying.

Then it must be false, i.e. some Cretian does not always lie. It does not

follow that such a Cretian is Epimenides. Nor would it follow, if he were,

that the phrase is one of his truths. So being, the following comment by St.

Paul in the Epistle to Titus (1.12) turns out to be even more cretin than it

looks at first sight:

For there are many unruly and vain talkers and deceivers, specially they
of the circumcision: whose mouths must be stopped, who subvert whole
houses, teaching things which they ought not, for filthy lucre’s sake. One
of themselves, even a prophet of their own, said, “The Cretians are always
liars, evil beasts, slow bellies”. This witness is true.

The Liar paradox had counteless versions in history. In particular, the

original one-step selfreference was turned into a two-step one by Philip

Jourdain in 1913 (following Buridan of the xiv Century), as follows:

The following phrase is false.
The previous phrase is true.

Finite n-steps versions are obtained in a similar fashion. An infinite dia-
bolical version, as the name suggests, has been proposed by Yablo [36, 37]:

All the following phrases are false.
All the following phrases are false.
. . .
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Suppose the first phrase is true. Then all the following ones are false, in

particular the second. Moreover, all the remaining phrases are false, and

hence the second one is true, contradiction. Then the first phrase is false,

i.e. one of the following phrases is true, and a contradiction is reached as

for the first. Thus the first phrase is contradictory. Similarly, so are all the

remaining ones.

The turning point in these developments came with Gödel [9], who made

an explicit reference to the Liar paradox in his paper. His main result

can be stated as follows: Given any property P weakly representable in a

sufficiently strong formal system for Arithmetic, there is a sentence saying

of itself that it has the property P (see CRT, p. I.165). For the proof,

consider an enumeration {ϕn}n∈ω of the formulas with one free variable,

the matrix

aij = the sentence “ϕj has the property expressed by ϕi”

and the switching function

d(ϕ) = the sentence “ϕ has the property P”.

Since P is weakly representable, the transformed diagonal sequence is still

a row of the matrix, up to provable equivalence. Thus there is a ϕ such

that d(ϕ) is provably equivalent to ϕ, i.e. ϕ says of itself that it has the

property P .

A first consequence is that truth cannot be weakly representable in any

consistent and sufficiently strong formal system for Arithmetic. Otherwise

so would be its negation, and the general result would give a contradictory

sentence asserting its own negation, as in the Liar paradox. The unrepre-

sentability of truth was obtained by Gödel before his Incompleteness The-

orem, but he did not publish it. The result is thus usually attributed to

Tarski [33].

A second consequence is that, since provability is weakly representable

in any consistent and sufficiently strong formal system for Arithmetic, the

general result gives a sentence asserting its own unprovability. From this

one can easily obtain all the epochal results of Gödel [9], Rosser [26], and

Church [7] (see CRT, pp. I.166–169).

By the same type of argument we can also prove the Second Recursion

Theorem of Kleene [13], following Owings [21]. Given an effective trans-

formation of programs f , consider an enumeration {ϕn}n∈ω of the partial

recursive unary functions, the matrix

aij = the function with program coded by ϕi(j)
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and the switching function

d(ϕe) = the function with program coded by f(e).

Since f is effective, the transformed diagonal sequence is still a row of the

matrix. Thus there is an e such that d(ϕe) and ϕe are the same function.

Equivalently, the programs coded by e and f(e) compute the same function.

References

[1] S. Abian and A. B. Brown, A theorem on partially ordered sets with appli-
cations to fixed-point theorems, Can. J. Math. 13, 78–83, (1961).

[2] S. Banach, Sur les operations dans les ensembles abstraits et leurs applica-
tions aux equations integrales, Fund. Math. 3, 7–33, (1922).

[3] B. Bolzano. Rein analytischer Beweise des Lehrsatzes, dass zwischen je zwey
Werthen, die ein entgegengesetzes Resultat gewhren, wenigstens eine reelen
Wurzel der Gleichen liege, Gottlieb Haase, Prague, (1817).
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Reverse Mathematics and Well-ordering Principles
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This chapter is concerned with generally Π1
2 sentences of the form “ if X

is well ordered then f(X) is well ordered”, where f is a standard proof
theoretic function from ordinals to ordinals. It has turned out that a
statement of this form is often equivalent to the existence of countable
coded ω-models for a particular theory Tf whose consistency can be
proved by means of a cut elimination theorem in infinitary logic which
crucially involves the function f . To illustrate this theme, we shall fo-
cus on the well-known ϕ-function which figures prominently in so-called
predicative proof theory. However, the approach taken here lends it-
self to generalization in that the techniques we employ can be applied
to many other proof-theoretic functions associated with cut elimination
theorems. In this paper we show that the statement “ if X is well ordered
then ϕX0 is well ordered” is equivalent to ATR0. This was first proved
by Friedman (see [7]) using recursion-theoretic and combinatorial meth-
ods. The proof given here is proof-theoretic, the main techniques being
Schütte’s method of proof search (deduction chains) [15], generalized to
ω logic, and cut elimination for infinitary ramified analysis.

∗Research of both authors was supported by Royal Society International Joint Projects
award 2006/R3. The first author would like to thank the Swedish Collegium for Advanced

Study in Uppsala for providing an excellent research environment for the completion of
this paper.

351



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

352 M. Rathjen and A. Weiermann

Contents

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

11.2 The Ordering ϕX0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

11.3 The Theory ATR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

11.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11.4.1 Deduction chains in ω-logic . . . . . . . . . . . . . . . . . . . . . . . . 357

11.4.2 The infinitary calculus ∆1
1-CRQ

∞ . . . . . . . . . . . . . . . . . . . . . 360

11.5 Ramified Analysis RA∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

11.5.1 Finishing the proof of the main theorem . . . . . . . . . . . . . . . . . 367

11.6 Finishing the Proof of Theorem 11.1.3 . . . . . . . . . . . . . . . . . . . . . . 368

11.7 Prospectus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

11.1. Introduction

The larger project broached in this paper is to present a general proof-

theoretic machinery for investigating special kinds of Π1
2 statements about

well-orderings from a reverse mathematics point of view. These Π1
2 state-

ments are of the form

WOP(f) “ if X is well ordered then f(X) is well ordered” (11.1)

where f is a standard proof-theoretic function from ordinals to ordinals.

There are by now several examples of functions f where the statement

WOP(f) has turned out to be equivalent to one of the theories of reverse

mathematics over a weak base theory (usually RCA0). The first example

is due to Girard [9].

Theorem 11.1.1. (Girard, 1987) Let WO(X) express that X is a well

ordering. Over RCA0 the following are equivalent:

(i) Arithmetic Comprehension.

(ii) ∀X [WO(X)→WO(2X)].

Recently two new theorems appeared in preprints [7, 11]. These results give

characterizations of the form (11.1) for the theories ACA+
0 and ATR0,

respectively, in terms of familiar proof-theoretic functions. ACA+
0 denotes

the theory ACA0 augmented by an axiom asserting that for any set X the

ω-th jump in X exists while ATR0 asserts the existence of sets constructed

by transfinite iterations of arithmetical comprehension. α 7→ εα denotes the

usual ε function while ϕ stands for the two-place Veblen function familiar

from predicative proof theory (cf. [15]). More detailed descriptions ofATR0
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and the function X 7→ ϕX0 will be given shortly. Definitions of the familiar

subsystems of reverse mathematics can be found in [17].

Theorem 11.1.2. (Montalban, Marcone, 2007) Over RCA0 the following

are equivalent:

(i) ACA+
0 .

(ii) ∀X [WO(X)→WO(εX)].

Theorem 11.1.3. (Friedman) Over RCA0 the following are equivalent:

(i) ATR0.

(ii) ∀X [WO(X)→WO(ϕX0)].

The proof of Theorem 11.1.3 uses rather sophisticated recursion-

theoretic results about linear orderings and is quite combinatorial. Theorem

11.1.3 builds on a result from [6] to the effect that there is no arithmetic

sequence of degrees descending by ω-jumps. The latter result was then im-

proved by Steel [18] to descent by Turing jumps: If Q ⊆ Pow(ω)×Pow(ω)

is arithmetic, then there is no sequence {An | n ∈ ω} such that (a) for

every n, An+1 is the unique set such that Q(An, An+1), (b) for every n,

A′
n+1 ≤T An.
For a proof theorist, theorems 11.1.2 and 11.1.3 bear a striking resem-

blance to cut elimination theorems for infinitary logics. This prompted the

first author of this paper to look for proof-theoretic ways of proving these

results. The hope was that this would also unearth a common pattern

behind them and possibly lead to more results of this kind. The project

commenced with [2], where a purely proof-theoretic proof of Theorem 11.1.2

was presented. In this paper we shall give a new proof of Theorem 11.1.3. It

is principally proof-theoretic, the main techniques being Schütte’s method

of proof search (deduction chains) [15] and cut elimination for ramified

analysis. The general pattern, of which this paper provides a second ex-

ample, is that a statement WOP(f) is often equivalent to a familiar cut

elimination theorem for an infinitary logic which in turn is equivalent to

the assertion that every set is contained in an ω-model of a certain theory

Tf .

To guide the reader through the paper we shall briefly sketch the main

parts of the proof of Theorem 11.1.3, i.e., that (ii) implies (i). We start with

the observation thatATR0 can be axiomatized overACA0 via a single sen-

tence of the form ∀X(WO(<X) → ∀Z∃Y B0(X,Y, Z)) where B0(X,Y, Z)

is an arithmetical formula (cf. Lemma 11.3.2). Thus to verify ATR0 it
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suffices to show that for every well-ordering <Q there exists an ω-model of

M of ACA0 which contains Q such that M |= ∀Z∃Y B0(Q, Y, Z). To find

M we employ Schütte’s method of proof search from [15, II§4], which he

used to prove the completeness theorem for first order logic (cf. [15, Theo-

rem 5.7]). The method has to be extended to ω-logic, though. Rather than

working in the Schütte calculus of positive and negative forms we work in a

Gentzen sequent calculus with finite sets of formulas, called sequents. Let

C be a sentence that axiomatizes arithmetic comprehension and let DQ(n)

be the formula n ∈ Q if the latter formula is true and n /∈ Q otherwise. The

main idea is to start with the sequent {¬∀Z∃Y B0(Q, Y, Z),¬C,¬DQ(0)}
and systematically apply the rules of ω-logic for the second order sequent

calculus backwards, giving rise to a tree of sequents DQ. One also has to

add the formula ¬DQ(n) to all sequents generated in this way after n steps.

There are two possible outcomes. If the tree DQ is not well-founded

then it contains an infinite path P. Now define a set M via

(M)i = {n | n /∈ Ui occurs in P}

and let M = (N; {(M)i | i ∈ N},+, ·, 0, 1, <). For a formula F , let F ∈ P
mean that F occurs in P, i.e. F ∈ Γ for some Γ ∈ P. Let U0, U1, U2, . . . be

an enumeration of the free set variables. For the assignment Ui 7→ (M)i
one can then show that F ∈ P ⇒ M |= ¬F . Whence M is an ω-model of

ACA and M |= ∀Z∃Y B0(Q, Y, Z). Also note that (M)0 = Q, thus Q is in

M.

The other conceivable outcome is that DQ is well-founded, i.e. all paths

in DQ are finite, and thus every maximal path ends in a sequent which

contains a basic axiom. In other words DQ is a proof tree and the Kleene-

Brouwer ordering of this tree is some well-ordering τ . The crucial step

to perform next consists in envisaging DQ as a skeleton of a proof tree in

infinitary ramified analysis, dubbed RA∗ in [15]. In actuality DQ can be

viewed as the skeleton of a proof of the empty sequent in RA∗. As we can

remove all cuts in this proof we end up with a cut free proof of the empty

sequent. But this is impossible, and therefore DQ cannot be well-founded.

To be able to carry out the removal of all cuts we have to enlist the help

of arithmetical transfinite induction, roughly up to the ordinal ϕτ0. Hence

this is the step where the principle ∀X [WO(X) → WO(ϕX0)] makes its

appearance in showing the direction (ii) ⇒ (i) of Theorem 11.1.3.
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11.2. The Ordering ϕX0

Via simple coding procedures, countable well-orderings, and functions on

them can be expressed in the language of second order arithmetic, L2.

Variables X,Y, Z, . . . are supposed to range over subsets of N. Using an

elementary injective pairing function 〈, 〉 (e.g. 〈n,m〉 := (n+m)2 + n+ 1),

every set X encodes a sequence of sets (X)i, where (X)i := {m | 〈i,m〉 ∈
X}. We also adopt from [17], II.2 the method of encoding a finite sequence

(n0, . . . , nk−1) of natural numbers as a single number 〈n0, . . . , nk−1〉.

Definition 11.2.1. Every set of natural numbers Q can be viewed as en-

coding a binary relation <Q on N via n <
Q
m iff 〈n,m〉 ∈ Q. The field of

Q, fld(Q) is the set {n | ∃m [n <
Q
m ∨ m <

Q
n]}.

We say that Q is a well-ordering if <
Q
is a well-ordering, that is <

Q

is a linear ordering of its field and every non-empty subset U of fld(Q) has

a <
Q
-least element.

Definition 11.2.2. Let Q be a linear ordering with least element 0Q. Let

ϕua := 〈0, 〈u, a〉〉, H := {ϕua | u, a ∈ N}, h(ϕua) = u and h(b) = 0Q if

b /∈ H.

We introduce the ordering ϕQ0 by inductively defining its field fld(ϕQ0)

and the ordering <
ϕQ0

:

(1) 0 ∈ fld(ϕQ0).

(2) 0 <
ϕQ0 α if α ∈ fld(ϕQ0) and α 6= 0.

(3) ϕuα ∈ fld(ϕQ0) if u ∈ fld(Q), α ∈ fld(ϕQ0) and h(α) ≤
Q
u.

(4) If α1, . . . , αn ∈ fld(ϕQ0) ∩H, n > 1 and αn ≤ϕQ0
. . . ≤

ϕQ0
α1, then

α1 + . . .+ αn ∈ fld(ϕQ0)

where α1 + . . .+ αn := 〈1, 〈α1, . . . , αn〉〉.
(5) If α1 + . . .+ αn, β1 + . . .+ βm ∈ fld(ϕQ0), then

α1 + . . .+ αn <ϕQ0
β1 + . . .+ βm iff

n < m ∧ ∀i ≤ n αi = βi or

∃i ≤ min(n,m)[αi <ϕQ0
βi ∧ ∀j < i αj = βj ].

(6) If α1 + . . . + αn ∈ fld(ϕQ0), ϕuβ ∈ fld(ϕQ0) and ϕuβ ≤
ϕQ0

α1 then

ϕuβ <
ϕQ0

α1 + . . .+ αn.

(7) If α1 + . . . + αn ∈ fld(ϕQ0), ϕuβ ∈ fld(ϕQ0) and α1 <ϕQ0
ϕuβ then

α1 + . . .+ αn <ϕQ0
ϕuβ.
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(8) If ϕuα, ϕvβ ∈ fld(ϕQ0), then

ϕuα <
ϕQ0

ϕvβ iff u <
Q
v ∧ α <

ϕQ0
ϕvβ or

u = v ∧ α <
ϕQ0

β or

v <
Q
u ∧ ϕuα <

ϕQ0
β.

Lemma 11.2.3. (RCA0)

(i) If Q is a linear ordering then so is ϕQ0.

(ii) ϕQ0 is elementary recursive in Q.

11.3. The Theory ATR0

Definition 11.3.1. Let A(u, Y ) be any formula. Define HA(X,Y ) to be

the formula which says that <X is a linear ordering and that Y is equal to

the set of pairs 〈n, j〉 such that j is in the field of <X and A(n, Y j) where

Y j = {〈m, i〉 | i <X j ∧ 〈m, i〉 ∈ Y }. Intuitively HA(X,Y ) says that Y is

the result of iterating A along <X .

ATR0 is the formal system in the language of second order arithmetic

whose axioms consist of ACA0 plus all instances of

∀X(WO(<X)→ ∃Y HA(X,Y ))

where A is arithmetical.

Lemma 11.3.2. ATR0 can be axiomatized over ACA0 via a single sen-

tence

∀X(WO(<X)→ ∀Z∃Y B0(X,Y, Z)) (11.2)

where B0(X,Y, Z) is of the form HA(X,Y ) for some arithmetical formula

A(u, Y, Z) with all free variables exhibited.

Proof. This is a standard result. One could for instance take B0(X,Y, Z)

to mean that Y is obtained from Z by iterating the Turing jump operation

along <X starting with Z; so A(u, Y, Z) would actually be a Σ0
1 (complete)

formula. Another (shorter and citable) way of showing this is to use the

fact that ATR0 is equivalent over RCA0 to the statement that every two

well-orderings are comparable (see [17], Theorem V.6.8). The proof of the

latter statement in ATR0 just requires an instance HA of said form (see

the proof of [17, Lemma V.2.9]). �
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Definition 11.3.3. Let T be a theory in the language of second order

arithmetic, L2. A countable coded ω-model of T is a set W ⊆ N, viewed as

encoding the L2-model

M = (N,S,+, ·, 0, 1, <)

with S = {(W )n | n ∈ N} such that M |= T .

This definition can be made in RCA0 (see [17], Definition VII.2).

We write X ∈ W if ∃n X = (W )n.

11.4. Main Theorem

The main result we want to prove is the following:

Theorem 11.4.1. RCA0 + ∀X [WO(X)→WO(ϕX0)] proves ATR0.

A central ingredient of the proof will be a method of proof search (de-

duction chains) pioneered by Schütte [15].

11.4.1. Deduction chains in ω-logic

Definition 11.4.2.

(i) Let U0, U1, U2, . . . be an enumeration of the free set variables of L2.

For a closed term t, let t
N

be its numerical value. We shall assume

that all predicate symbols of the language L2 are symbols for primitive

recursive relations. L2 contains predicate symbols for the primitive

recursive relations of equality and inequality and possibly more (or

all) primitive recursive relations. If R is a predicate symbol in L2 we

denote by R
N

the primitive recursive relation it stands for. If t1, . . . , tn
are closed terms the formula R(t1, . . . , tn) (¬R(t1, . . . , tn)) is said to be

true if R
N

(t
N

1, . . . , t
N

n) is true (is false).

(ii) Henceforth a sequent will be a finite set of L2-formulas without free

number variables.

(iii) A sequent Γ is axiomatic if it satisfies at least one of the following

conditions:

(1) Γ contains a true literal, i.e. a true formula of either form

R(t1, . . . , tn) or ¬R(t1, . . . , tn), where R is a predicate symbol in

L2 for a primitive recursive relation and t1, . . . , tn are closed terms.

(2) Γ contains formulas s ∈ U and t /∈ U for some set variable U and

terms s, t with s
N

= t
N

.
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(iv) A sequent is reducible or a redex if it is not axiomatic and contains

a formula which is not a literal.

Definition 11.4.3. For Q ⊆ N define

DQ(n) =

{
n̄ ∈ U0 if n ∈ Q
n̄ /∈ U0 otherwise .

For the proof of Theorem 11.4.1 it is convenient to have a finite axiom-

atization of arithmetic comprehension.

Lemma 11.4.4. ACA0 can be axiomatized via a single Π1
2 sentence

∀X C(X).

Proof: [17], Lemma VIII.1.5. ⊓⊔

Definition 11.4.5. Let <Q be a well-ordering. Let B(Ui) be the formula

∃Y B0(U0, Y, Ui) of Lemma 11.3.2.

A Q-deduction chain is a finite string

Γ0,Γ1, . . . ,Γk

of sequents Γi constructed according to the following rules:

(i) Γ0 = ¬DQ(0),¬B(U0),¬C(U0).

(ii) Γi is not axiomatic for i < k.

(iii) If i < k and Γi is not reducible then

Γi+1 = Γi,¬DQ(i + 1),¬B(Ui+1),¬C(Ui+1).

(iv) Every reducible Γi with i < k is of the form

Γ′
i, E,Γ

′′
i

where E is not a literal and Γ′
i contains only literals.

E is said to be the redex of Γi.

Let i < k and Γi be reducible. Γi+1 is obtained from Γi = Γ′
i, E,Γ

′′
i as

follows:

(1) If E ≡ E0 ∨ E1 then

Γi+1 = Γ′
i, E0, E1,Γ

′′
i ,¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1).

(2) If E ≡ E0 ∧ E1 then

Γi+1 = Γ′
i, Ej ,Γ

′′
i ,¬DQ(i + 1),¬B(Ui+1),¬C(Ui+1)

where j = 0 or j = 1.
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(3) If E ≡ ∃xF (x) then
Γi+1 = Γ′

i, F (m̄),Γ′′
i ,¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1), E

where m is the first number such that F (m̄) does not occur in

Γ0, . . . ,Γi.

(4) If E ≡ ∀xF (x) then
Γi+1 = Γ′

i, F (m̄),Γ′′
i ,¬DQ(i + 1),¬B(Ui+1),¬C(Ui+1)

for some m.

(5) If E ≡ ∃X F (X) then

Γi+1 = Γ′
i, F (Um),Γ′′

i ,¬DQ(i + 1),¬B(Ui+1),¬C(Ui+1), E

where m is the first number such that F (Um) does not occur in

Γ0, . . . ,Γi.

(6) If E ≡ ∀X F (X) then

Γi+1 = Γ′
i, F (Um),Γ′′

i ,¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1)

where m is the first number such that m 6= i + 1 and Um does not

occur in Γi.

The set of Q-deduction chains forms a tree DQ labeled with strings of

sequents. We will first consider the case that DQ is not well-founded. Then

DQ contains an infinite path P. Now define a set M via

(M)i = {t
N | t /∈ Ui occurs in P}.

Set M = (N; {(M)i | i ∈ N},+, ·, 0, 1, <).
For a formula F , let F ∈ P mean that F occurs in P, i.e. F ∈ Γ for

some Γ ∈ P.
Claim. Under the assignment Ui 7→ (M)i we have

F ∈ P ⇒ M |= ¬F. (11.3)

The Claim will imply that M is an ω-model of ACA. Also note that

(M)0 = Q, thus Q is in M. The proof of (11.3) follows by induction on

F using Lemma 11.4.6 below. The upshot of the foregoing is that we can

prove Theorem 11.4.1 under the assumption that DQ is ill-founded for all

sets Q ⊆ N.

Lemma 11.4.6. Let Q be an arbitrary subset of N and DQ be the corre-

sponding deduction tree. Moreover, suppose DQ is not well-founded. Then

DQ has an infinite path P. P has the following properties:
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(1) P does not contain literals which are true in N.

(2) P does not contain formulas s ∈ Ui and t /∈ Ui for constant terms s

and t such that sN = tN.

(3) If P contains E0 ∨ E1 then P contains E0 and E1.

(4) If P contains E0 ∧ E1 then P contains E0 or E1.

(5) If P contains ∃xF (x) then P contains F (n̄) for all n.

(6) If P contains ∀xF (x) then P contains F (n̄) for some n.

(7) If P contains ∃XF (X) then P contains F (Um) for all m.

(8) If P contains ∀XF (X) then P contains F (Um) for some m.

(9) P contains ¬B(Um) for all m.

(10) P contains ¬C(Um) for all m.

(11) P contains ¬DQ(m) for all m.

Proof. Standard. �

Corollary 11.4.7. If DQ is ill-founded then there exists a countable coded

ω-model of ACA0 containing Q which satisfies ∀Z∃Y B0(Q, Y, Z).

The remainder of the paper will be devoted to ruling out the possibil-

ity that, whenever Q is a well-ordering, DQ can be a well-founded tree.

This is the place where cut elimination for the infinitary proof system of

ramified analysis, RA∗ (see [15], part C), enters the stage. In a nutshell,

the idea is that a well-founded DQ gives rise to a derivation of the empty

sequent (contradiction) in RA∗ which can be ruled out by showing cut

elimination for RA∗ using transfinite induction up to ϕX0, where X is a

well-ordering not much longer than Q. However, to simplify the technical

treatment we first introduce an intermediate system ∆1
1-CRQ

∞ based on

the ∆1
1-comprehension rule and the ω-rule. This theory basically coincides

with Schütte’s system DA∗ (see [15], part C). It is not difficult to see that

a well-founded DQ can be viewed as a derivation of the empty sequent in

∆1
1-CRQ

∞. The last step towards reaching a contradiction consists in em-

bedding ∆1
1-CRQ

∞ into RA∗. Here we can basically follow [15] Theorem

22.14.

11.4.2. The infinitary calculus ∆1

1
-CRQ

∞

In what follows we fix Q ⊆ N such that <Q is a well-ordering. In the

main, the system ∆1
1-CRQ

∞ is obtained from ACA0 by adding the ∆1
1-

comprehension rule, the ω-rule and the basic diagram of Q. The language

of ∆1
1-CRQ

∞ is the same as that of ACA0 but the notion of formula comes
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enriched with set terms. Formulas and set terms are defined simultane-

ously. Literals are formulas. Every set variable is a set term. If A(x) is a

formula without set quantifiers (i.e. arithmetical) then {x | A(x)} is a set

term. If P is a set term and t is a numerical term then t ∈ P and t /∈ P
are formulas. The other formation rules pertaining to ∧,∨, ∀x, ∃x, ∀X, ∃X
are as per usual.

We will be working in a Tait-style formalization of the second order

arithmetic with formulas in negation normal form, i.e. negations only in

front of atomic formulas. Due to the ω-rule there is no need for formulas

with free numerical variables. Thus all sequents below are assumed to

consist of formulas without free numerical variables.

Axioms of ∆1
1-CRQ

∞

(i) Γ, L where L is a true literal.

(ii) Γ, s ∈ U, t /∈ U where s
N

= t
N

.

(iii) Γ, s ∈ U0 if s
N ∈ Q.

(iv) Γ, s /∈ U0 if s
N

/∈ Q.

Rules of ∆1
1-CRQ

∞

(∧) Γ, A Γ, B
Γ, A ∧B .

(∨) Γ, Ai
Γ, A0 ∨ A1

where i ∈ {0, 1}.

(Cut)
Γ, A Γ,¬A

Γ
.

(ω)
Γ, F (n̄) for all n

Γ, ∀xF (x) .

(∃1) Γ, F (t)

Γ, ∃xF (x) .

(∀2) Γ, F (P ) for all set terms P

Γ, ∀XF (X)
.

(∃2) Γ, F (P )

Γ, ∃XF (X)
where P is a set term.
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(∆1
1-CR)

∀x[∀Y A0(x, Y )↔ ∃Y A1(x, Y )]

Γ, ∃X∀x[x ∈ X ↔ ∀Y A0(x, Y )]
with A0, A1 arithmetical.

(ST1)
Γ, A(t)

Γ, t ∈ P where P is the set term {x | A(x)}.

(ST2)
Γ,¬A(t)
Γ, t /∈ P where P is the set term {x | A(x)}.

∆1
1-CRQ

∞ is a sequent calculus version of the system DA∗ of [15, §20].
The language of DA∗, though, is based on the connectives ⊥, ∀,→ while

∆1
1-CRQ

∞ has the connectives ∧,∨, ∀, ∃,¬ and formulas are in negation

normal form, i.e. the negation sign appears only in front of atomic formulas.

The other main difference is that the deduction system of DA∗ is the Schütte
calculus of positive and negative forms whereas ∆1

1-CRQ
∞’s is the Gentzen

sequent calculus.

Lemma 11.4.8. We shall use ∆1
1-CRQ

∞ Γ to convey that the sequent

Γ is derivable in ∆1
1-CRQ

∞. Pivotal properties of ∆1
1-CRQ

∞ we shall exploit

are the following:

(a) n ∈ Q⇒ ∆1
1-CRQ

∞ n̄ ∈ U0 .

(b) n /∈ Q⇒ ∆1
1-CRQ

∞ n̄ /∈ U0 .

(c) ∆1
1-CRQ

∞ WO(U0) .

(d) ∆1
1-CRQ

∞ ∃Y HA(U0, Y ) for all arithmetical formulas A(u, Y ) hav-

ing no other free numerical variables than u.

Proof:

(a) and (b) are immediate by the axioms (iii) and (iv) of ∆1
1-CRQ

∞.

(c) follows by (outer) transfinite induction on <Q, crucially using the ω-

rule. This is standard but it seems to be a challenge to find a reference. Via

the axioms (iii) and (iv), the role of Q is played in ∆1
1-CRQ

∞ by the variable

U0. Writing s ∈ Q and s <Q t for s ∈ U0 and 〈s, t〉 ∈ U0, respectively, we

would like to show that ∆1
1-CRQ

∞ ⊢ ∀X(ProgQ(X) → ∀xx ∈ X), where

ProgQ(U) stands for ∀x[∀y(y <Q x → y ∈ U) → x ∈ U ]. It suffices to

show

∆1
1-CRQ

∞ ⊢ ¬ProgQ(U), n̄ ∈ U (11.4)

for all n for an arbitrary set variable U . To this end we proceed by induction

on Q. Inductively assume that ∆1
1-CRQ

∞ ⊢ ¬ProgQ(U), m̄ ∈ U holds for

all m <Q n. If m <Q n is false then 〈m,n〉 /∈ Q and hence ∆1
1-CRQ

∞ ⊢
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¬m̄ <Q n̄. As a result, ∆1
1-CRQ

∞ ⊢ ¬ProgQ(U),¬m̄ <Q n̄, m̄ ∈ U holds for

all m. Using (∨) inferences followed by an application of the ω-rule, we get

∆1
1-CRQ

∞ ⊢ ¬ProgQ(U), ∀y(y <Q n̄ → y ∈ U). As ∆1
1-CRQ

∞ ⊢ n̄ /∈ Q, n̄ ∈
Q, an inference (∨) (and weakening) yields

∆1
1-CRQ

∞ ⊢ ¬ProgQ(U), ∀y(y <Q n̄→ y ∈ U) ∧ n̄ /∈ Q, n̄ ∈ Q.
Hence via (∃1) we arrive at

∆1
1-CRQ

∞ ⊢ ¬ProgQ(U), ∃x[∀y(y <Q n̄→ y ∈ U) ∧ x /∈ Q], n̄ ∈ Q,
which is the same as ∆1

1-CRQ
∞ ⊢ ¬ProgQ(U), n̄ ∈ Q. Thus, by induction

on <Q, (11.4) follows.

(d) also follows by transfinite induction on<Q using ∆1
1-CR. A reference

will be provided in Lemma 11.4.10. ⊓⊔
We shall need to measure the length of the previous derivations. For (c)

and (d) the lengths of those derivations will be “longer” than Q, though not

“much longer”. Let τ be the ordinal giving the order-type of Q. It is easy

to cook up a new ordering Q∗ in an elementary way from Q corresponding

to the ordinal ω2 + ω · τ + ω in such a way that RCA0 suffices to prove

WO(Q)→WO(Q∗) (see [9]). The rationale for the choice of ω2+ω · τ +ω
is that it gives us enough elbow room for calibrating the lengths of the

foregoing derivations.

From the standing assumption that Q is a well-ordering we get that Q∗

is a well-ordering, too.

Definition 11.4.9. If α is an element of the field of <Q∗ , we use the nota-

tion ∆1
1-CRQ

∞
α
Γ to convey that the sequent Γ is deducible in ∆1

1-CRQ
∞

via a derivation of length ≤ α. More formally, this relation is defined

by recursion on α as follows: ∆1
1-CRQ

∞
α
Γ holds if either Γ is an ax-

iom of ∆1
1-CRQ

∞ or Γ is the conclusion of a ∆1
1-CRQ

∞-inference with pre-

misses (Γi)i∈I such that for every i ∈ I there exists βi <Q∗ α with

∆1
1-CRQ

∞
βi

Γi .

Lemma 11.4.10.

(1) ∆1
1-CRQ

∞
0
DQ(n) for all n with 0 being the least element of Q.

(2) ∆1
1-CRQ

∞
α
C(U) for some α ∈ field(Q∗) and all free set variables

U .
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(3) ∆1
1-CRQ

∞
β
WO(U0) for some β ∈ field(Q∗).

(4) ∆1
1-CRQ

∞
γ ∃Y HA(U0, Y ) for some γ ∈ field(Q∗) for all arithmeti-

cal formulas A(u, Y ) having no other free numerical variables than u.

(5) ∆1
1-CRQ

∞
δ
B(U) for some δ ∈ field(Q∗) and all free set variables U .

Proof: (1) is an immediate consequence of Lemma 11.4.8 (a) and (b).

(2) follows since the rule (∃2) gives arithmetical comprehension. (3) and

(4) correspond to Lemma 11.4.8 (c) and (d), respectively. A detailed proof

of (4) amounts to basically the same as that of [15, §21 Lemma 14]. (5) is

an immediate consequence of (4). ⊓⊔

Recall that, by Corollary 11.4.7, there exists a countable coded ω-model

of ACA0 containing Q and satisfying ∀Z∃Y B0(Q, Y, Z) providing DQ is

ill-founded. Now let us assume that Q is a well-ordering and that DQ
is well-founded. Then DQ can be viewed as a deduction with hidden

cuts involving formulas of the shape ¬B(Ui+1), ¬C(Ui+1) and ¬DQ(i+1).

Note that by Lemma 11.4.10, ∆1
1-CRQ

∞
0
DQ(n) , ∆

1
1-CRQ

∞
α
C(U) , and

∆1
1-CRQ

∞
γ
B(U) for some α, γ ∈ field(Q∗). Thus if Γ is the sequent

attached to a node τ of DQ and (Γi)i∈I is an enumeration of the sequents

attached to the immediate successor nodes of τ in DQ then the transition
(Γi)i∈I
Γ

can be viewed as a combination of four inferences in ∆1
1-CRQ

∞,

the first one being a logical inferences and the other three being cuts. By

interspersingDQ with cuts and adding three cuts with cut formulas ¬C(U0),

¬B(U0) and ¬DQ(0) at the bottom we obtain a derivation D̃Q in ∆1
1-CRQ

∞
of the empty sequent. Since the preceding line of arguments can be done

in ACA0 we arrive at the following:

Corollary 11.4.11 (ACA0). If Q is a well-ordering and DQ is well-

founded then there is a derivation D̃Q in ∆1
1-CRQ

∞ of the empty sequent.

To finish the paper we thus have to show that the latter is impossible.

This we shall do by embedding ∆1
1-CRQ

∞ into a systemRA∞ defined below.

Note that an upper bound for the length of D̃Q is provided by (α+γ+ρ) ·4,
where ρ corresponds to the Kleene–Brouwer ordering on DQ.
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11.5. Ramified Analysis RA∞

The theories RAρ are designed to capture Gödel’s notion of constructibility

restricted to sets of natural numbers. They use ordinal indexed variables

Xα, Y α, Zα, . . . for α < ρ, with the intended meaning that level 0 variables

range over sets definable by numerical quantification, and level α > 0 vari-

ables range over sets definable by numerical quantification and level < α

set quantification. The proof-theoretic ordinal of RAα is ϕα0. We are

interested in an infinitary version of ramified analysis.

Definition 11.5.1. RA∞ is basically the same system asRA∗ in [15, §22].
One difference is that the language of RA∗ is based on the connectives

⊥, ∀,→ while RA∞ has ∧,∨, ∀, ∃,¬ and formulas are in negation normal

form, i.e. the negation sign appears only in front of atomic formulas. The

other difference is that the deduction system of RA∗ is the Schütte calcu-

lus of positive and negative forms whereas RA∞’s is the Gentzen sequent

calculus.

The formulas of RA∞ do not have free numerical variables. Literals are

formulas of the form R(t1, . . . , tn) and ¬R(t1, . . . , tn) with R being a sym-

bol for a primitive recursive relation and t1, . . . , tn being closed numerical

terms.

RA∞ uses ordinal indexed free set variables Uα, V α,Wα, . . . and bound

set variables Xβ, Y β, Zβ , . . . with β > 0, where the ordinals are assumed to

be elements of some countable well-ordering R.

The set terms and formulas together with their levels are generated as

follows (cf. [15, §22]):

(1) Every literal is a formula of level 0.

(2) Every free set variable Uα is a set term of level α.

(3) If P is a set term of level α and t is a numerical term, then t ∈ P and

t /∈ P are formulas of level α.

(4) If A and B are formulas of levels α and β, then A ∨ B and A ∧ B are

formulas of level max(α, β).

(5) If F (0) is a formula of level α, then ∀xF (x) and ∃xF (x) are formulas

of level α and {x | F (x)} is a set term of level α.

(6) If F (Uβ) is a formula of level α and β > 0, then ∀XβF (Xβ) is a formula

of level max(α, β).

Definition 11.5.2. The calculus RA∞
Q
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Axioms

Γ, L where L is a true literal.

Γ, s ∈ Uα, t /∈ Uα where s
N

= t
N

.

Γ, s ∈ U0 if s
N ∈ Q.

Γ, s /∈ U0 if s
N

/∈ Q.

Rules

(∧), (∨), (ω), numerical (∃) and (Cut) as per usual.

(∃α) Γ, F (P )
Γ, ∃XαF (Xα)

P set term of level < α.

(∀α) Γ, F (P ) for all set terms P of level < α

Γ, ∀XαF (Xα)
.

(ST1)
Γ, F (t)

Γ, t ∈ {x | F (x)} .

(ST2)
Γ,¬F (t)

Γ, t /∈ {x | F (x)} .

Definition 11.5.3. The cut rank of a formula A in RA∞
Q , |A|, is defined

as follows (cf. [15, §22]):

(1) |L| = 0 for arithmetical literals L.

(2) |t ∈ Uα| = |t /∈ Uα| = ω · α.

(3) |B0 ∧B1| = |B0 ∨B1| = max(|B0|, |B1|) + 1.

(4) |∀xB(x)| = |∃xB(x)| = |t ∈ {x | B(x)}| = |t /∈ {x | B(x)}| = |B(0)|+1.

(5) |∀XαA(Xα)| = |∃XαA(Xα)| = max(ω · γ, |A(U0)|+ 1)

where γ is the level of ∀XαA(Xα).

By recursion on α we define the relation RA∞
Q

α

ρ Γ as follows: RA∞
Q

α

ρ Γ

holds if either Γ is an axiom of RA∞
Q or Γ is the conclusion of an RA∞

Q -
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inference with premisses (Γi)i∈I such that for every i ∈ I there exists βi < α

with RA∞
Q

βi

ρ Γi and, moreover, if this inference is a cut with cut formula

A then |A| < ρ.

The following three statements are proved in [15] for the system RA∗.
It is routine to transfer them to RA∞

Q since cut-elimination in a Schütte

calculus of positive and negative is closely related to cut-elimination in

sequent calculi. Moreover, the additional axioms pertaining to Q do not

impede the cut-elimination process.

Theorem 11.5.4 (Cut-elimination I).

RA∞
Q

α

η+1
Γ ⇒ RA∞

Q

ωα

η Γ .

Proof. Similar to [15, §22 Lemma 4]. �

Theorem 11.5.5 (Cut-elimination II).

RA∞
Q

α

ωρ Γ ⇒ RA∞
Q

ϕρα

0
Γ .

Proof. Similar to [15, Theorem 22.7]. �

For a formula F of the language of ∆1
1-CRQ

∞ let F σ be the result of

replacing every bound variable X by Xσ and every free set variable by a

set term of a level < σ. For Γ = {F1, . . . , Fn} let Γσ = {F σ1 , . . . , Fσn }.

Theorem 11.5.6 (Interpretation Theorem).

∆1
1-CRQ

∞
α
Γ ⇒ RA∞

Q
ω·σ+ω+ω·α
ω·σ Γσ

for all σ of the form ωα · β with β 6= 0.

Proof. This is basically the same as [15, Theorem 22.14]. �

There are different ways of formalizing infinite deductions in theories

like PA. We just mention [16] and [8].

11.5.1. Finishing the proof of the main theorem

Recall that in order to finish the proof of Theorem 11.4.1 we want to show

that DQ is not well-founded whenever Q is a well-ordering. By Corollary

11.4.11, if Q is a well-ordering and DQ is well-founded then there is a

derivation D̃Q in ∆1
1-CRQ

∞ of the empty sequent. By the Interpretation

Theorem 11.5.6 we would then get a derivation in RA∞
Q of the empty

sequent. Using the principle WO(X) → WO(ϕX0) we can then employ
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the cut-elimination Theorem 11.5.5 to obtain a cut-free derivation of the

empty sequent in RA∞
Q . But this is impossible.

From Corollary 11.4.7 we can thus conclude that for every well-ordering

Q̃ there exists a countable coded ω-model of ACA0 containing Q̃ and

satisfying ∀Z∃Y B0(Q̃, Y, Z). From this we would like to infer that for every

well-orderingQ and every set Z0 there exists a set Y such that B0(Q̃, Y, Z0).

We can do this by encoding Q and Z0 in a well-ordering Q̃ from which Q

and Z0 can be retrieved in any ω-model of ACA0 containing Q̃. One way

of doing this is to define the new ordering Q̃ by letting

〈n,m〉 <Q̃ 〈n′,m′〉 iff [n = n′ = 0 ∧ m <Q̃ m′] ∨
[n = n′ = 1 ∧ m,m′ ∈ Z0 ∧ m < m′] ∨
[n = 0 ∧ n′ = 1 ∧ m ∈ field(Q) ∧ m′ ∈ Z0].

Obviously Q̃ is a well-ordering, too, and any ω-model M of ACA0

containing Q̃ will contain Z0 as well. Moreover, M |= ∃Y B0(Q̃, Z0) im-

plies M |= ∃Y B0(Q,Z0). Hence, in view of Lemma 11.3.2, we get ATR0,

thereby finishing the proof of Theorem 11.4.1.

11.6. Finishing the Proof of Theorem 11.1.3

One direction of Theorem 11.1.3 follows from Theorem 11.4.1. The other

direction is implicit in the proof of [15] Theorem 21.6.

11.7. Prospectus

The methodology exemplified in the proof of Theorem 11.1.3 should

have many more applications. Every cut-elimination theorem in ordinal-

theoretic proof theory potentially encapsulates a theorem of type 11.1.3.

The first author has looked at two more examples and sketched proofs

of the pertaining theorems. A familiar function from proof theory is the

Γ-function where α 7→ Γα enumerates the fixed points of the ϕ-function.

Since the proof of the next result has only been sketched we classify it as a

conjecture.a

Conjecture 11.7.1. Over RCA0 the following are equivalent:

(i) Every set X is contained in a countable coded ω-model of ATR0.

(ii) ∀X [WO(X)→WO(ΓX)].

aRecently this conjecture has been proved in [13].



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

Reverse Mathematics and Well-ordering Principles 369

The direction (i)⇒(ii) follows from [12, 4.13,4.16].

For an example from impredicative proof theory one would perhaps

first turn to the ordinal representation system used for the ordinal anal-

ysis of the theory ID1 of non-iterated inductive definitions, which can be

expressed in terms of the θ-function (cf. [5]). ID1 has the same strength

as the subsystem of second order arithmetic based on bar induction, BI

(cf. [4, 5, 14]). In Simpson’s book the acronym used for BI is Π1
∞-TI0

(cf. [17, §VII.2]). In place of the function θ we prefer to work with sim-

pler ordinal representations based on the ψ-function introduced in [3] or

the ϑ-function of [14]. For definiteness we refer to [14]. Given a well-

ordering X, the relativized versions ϑX and ψX of the ϑ-function and the

ψ-function, respectively, are obtained by adding all the ordinals from X to

the sets Cn(α, β) of [14, §1] and Cn(α) of [14, Definition 3.1] as initial seg-

ments, respectively. The resulting well-orderings ϑX(εΩ+1) and ψX(εΩ+1)

are equivalent owing to [14, Corollary 3.2].

Again, as the following statement has not been buttressed by a complete

proof we formulate it as a conjecture.

Conjecture 11.7.2. Over RCA0 the following are equivalent:

(i) Every set X is contained in a countable coded ω-model of BI.

(ii) ∀X [WO(X)→WO(ψX(εΩ+1))].
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Discrete computing models, such as that of the Turing machine or of
Register machines, can be allowed to run transfinitely if suitable limit
ordinal behavior is described. This chapter relates such models to classi-
cal accounts of higher type recursion theory, going back to Kleene. Using
such models as a yardstick, one can analyse more modern models, such
as computation in particular physical spacetimes, to give bounds on the
complexity of such forms of computation. Computation on ordinals and
set recursion are briefly discussed.
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12.1. Introduction

12.1.1. The contents

In the past few years there has been a resurgence of interest in discrete mod-

els of computation that are allowed to act transfinitely. Such conceptual

machines act in simple steps or stages, and have as a paradigm the standard

Turing machine. This, during its progress moves one cell at a time, to the

left or the right along an unbounded tape that it is reading, and subse-

quently alters symbols, changes states and moves on. This paradigm has

been with us for 70 years, and for much of this chapter we shall consider

variants of such a device.

Our models will all be discrete acting computational digital models. We

shall consider how Turing and other computing machines could possibly

behave when allowed to perform supertasks (by which we mean that they

are allowed to complete an infinite sequence of tasks or operations). Such

a machine is usually envisaged with an unbounded tape. If supertasks are

allowed then naturally the whole of that tape comes into play, and we can

imagine that tape already having some characteristic function written on it.

The machine can then act on that tape and is then essentially a computer

acting at a higher type, namely that of infinite sequences of 0, 1s, in other

words, of real numbers.

Surprisingly, even if one restricts one’s model to, say, a register machine

model, where the registers are finite in number with natural number entries,

then simply defined behaviour at transfinite limit stages of computation

lead to quite powerful decision procedures. This chapter will look at these as

well. Whereas at the finite level the power of Turing and register machines

is the same, at the transfinite level they diverge markedly.

We shall not deal here with any machine that is, broadly speaking, an

analog machine or computes in an analog fashion. Indeed apart from Sec-

tion 2.1 we shall not be entering into any discussion of physical viabilities,

feasibilities etc. We thus do not wish to discuss various machine propos-

als that could be seen to fall under the rubric we are setting ourselves, in

that they seek to compute functions whilst being constructed to conform to

some ambient physical theory or constraint. We have in mind models such

as Davies [7], and the models of Beggs and Tucker [3] that attempt to com-

pute any set of natural numbers, by some kinematic-based device, and thus

do so within a fragment of Newtonian mechanics; nor do we consider the

interaction of standard machines with physically based ‘advice’ functions
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or oracles, such as is done in [2]. We also shall not particularly consider

classical quantum computation, as functions computed by such models are

also Turing computable.

Section 2.1 is somewhat of an exception, in that we do consider a partic-

ular construction in detail due to Etesi and Németi [12], and to Hogarth [21],

that allows Turing machines to be placed or arranged within particular

spacetimes to allow for the algorithmic decision of Π1 (and beyond) predi-

cates without supertask phenomena. We can calculate somewhat precisely,

the bounds to what can be computed in such models. We also recount the

observation from [56], that separability of the spacetime manifold puts a

universal countable bound on formal systems of computation within that

spacetime (under some mild assumptions).

A major lacuna is that we do not consider finite automata on infinite

graphs, or in particular on infinite binary trees. This would have fitted well

in any discussion of discrete models, and is admittedly a serious omission.

Lastly, this chapter is not about computation with an algebraic or struc-

tural flavour, and we include here, inter alia, the Blum, Shub, Smale model

of computation on the reals ([4]). Although we do want to consider com-

putation on the reals, R is considered primarily as unordered Baire space,

or Cantor space, and there is not any other algebraic or structural feature

that distinguishes the models considered here.

12.1.2. Argument

In the 1960s and 1970s much research was undertaken deriving ultimately

from Kleene’s theory ([26], [29]) of recursion in higher types (Generalized

Recursion Theory, Kleene Recursion), and the pioneering work of Aczel,

Gandy, Moschovakis amongst others, that would lead to Spector classes, the

theory of inductive definitions , and the theory of admissible sets , (Barwise,

Kripke, Platek).

Our motivation is that we wish to revisit some of these older theories

and results and see how some recent activity in a class of models of compu-

tation fits in the older picture. Some of these later models are no more than

familiar models with different style of inputs (register machines on ordinals

say); others such as Infinite Time Turing Machine of Hamkins and Kidder

([15]) are versions of the standard model adapted to enable larger compu-

tations to be performed by allowing transfinite sequences of operations or

stages; yet a third class simply consists of ‘standard computation’ placed

in an unconventional framework (Turing machines stacked up, or regarded
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as inhabiting particular spacetimes). We want to see how these models fit

in with our conceptions of recursion and computation formed in the earlier

period.

We emphasise the logico-mathematical part of this, in particular the

descriptive set theoretical descriptions. No apology is needed for this: to

understand the model is to understand what the model produces: If this

transcends that produced by finitary operations (in whatever form) then

we are obliged to consider the underlying set-theoretical fundamentals. We

consider further in Section 5 the connections of the computation models to

the theory of inductive definitions (either monotone or not), and to sub-

systems of second order arithmetic. We do not consider this an accurate

account on historical principles and we do not even claim to do justice to

the concepts and individuals involved, but are merely taking a snapshot,

as we rush past a fast-evolving subject.

12.2. Computation on Integers

We start ahistorically in terms of the published literature, but with a fact

that surely must have been known to early recursion theorists such as Post:

that allowing a Turing machine to at least run out indefinitely allows for the

printing of the characteristic function not just of the halting problem (as a

complete Σ1-set) but of a ∆2-set. This has been called ‘truth in the limit’.

A Turing machine may answer any Π1-question, if it is allowed ω-many

stages: given a recursive predicate R(v0, v1) we may program a machine to

investigate in turn R(0, n), R(1, n), . . . , R(k, n) . . . in turn, and if for some

k ¬R(k, n), then we require it to halt with a ‘0’ for ‘no’ as output. If

the machine does not halt, then were we able to ‘transcend time’ we could

look back and say that the machine verified ∀v0R(v0, n). If we assume the

machine has an output tape as well as a scratch tape, and if we assume the

output tape starts out with every cell having a ‘1’ written to it, we could

dovetail all the queries ?∀v0R(v0, n)? for each n, and have the machine

change a 1 to a 0 as soon as it verified that ∀v0R(v0, n) failed. Then after

ω many stages, if we still could look at the output tape, we’d have written

the characteristic function of the Π1 set A =df {n | ∀v0R(v0, n)}. If we

asked the question, Is A non-empty? this is a Σ2-query: ∃v1∀v0R(v0, v1)?
We cannot, in general, answer this, without allowing ourselves some further

infinitary operation.

Putnam, much later, made the following definition:
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Definition 12.1. (Putnam [42]) P is a trial and error predicate if and

only if there is a general recursive function f such that for every x1, . . . , xn
P (x1, . . . , xn) ≡ limy→∞ f(x1, . . . , xn, y) = 1

¬P (x1, . . . , xn) ≡ limy→∞ f(x1, . . . , xn, y) = 0.

Putnam asked, and answered, the question as to the complexity in the

arithmetical hierarchy of such predicates: they are ∆2 = Σ2 ∩ Π2 in the

arithmetical hierarchy. We obtain the truth of P (x1, . . . , xn) ‘in the limit’

as y −→∞.

If we imagine the recursive function f as being computed by a Tur-

ing machine M writing its 0/1 output to a particular cell C0 on its tape,

the clauses above amount to a prescription of M ’s behaviour on any in-

put x1, . . . , xn that the contents of the cell C0, after computing in turn

f(x1, . . . , xn, 0), f(x1, . . . , xn, 1), . . . , f(x1, . . . , xn, y), . . ., ‘settles down’ as

y increases: it must be either eventually 1/0 depending. We may thus

rephrase Putnam as:

P ⊂ Nn is a trial and error predicate if there is a Turing machine M0

so that

P (x1, . . . , xn)⇐⇒ the eventual value of M0’s output cell on input n is 1

¬P (x1, . . . , xn)⇐⇒ the eventual value of M0’s output cell on input n is 0.

Continuing with this model for a moment, one sees that if there is in

advance a fixed bound on the number of alternations that M0 makes on

the output cell C0’s value, then that knowledge allows us to compute the

characteristic functions of predicates in particular levels of the difference

hierarchy of Σ1 sets. Briefly: we say that P (~x) is in the k’th level of

the difference hierarchy, if there are Σ1 sets Q0, . . . , Q2k−1 with P (~x) ↔∨
i≤k(Q2i−2(~x)∧¬Q2i−1(~x)); if we specify thatM ′

0 may only write to the cell

C0 at most 2k+1 times, thenM ′
0 may decide P (~x). Note that it is the fixity

of the value k that determines the complexity within the class of Boolean

combinations that is capable of being decided by such an arrangement.

However even allowing k to be unbounded, is not quite sufficient. The

following can be shown:

Fact. As long as the number of times that M ′
0 can change its mind

about the value of C0 is a recursive function, f(~x) say, of the input ~x, then

still such predicates do not exhaust ∆2. To put it another way, there cannot

be any recursive constraint on the number of alterations if the process is to

decide all ∆2 predicates.

There is the possibility of using the output of one Turing Machine as

input to another. For functions on integers, this could be regarded as just
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composition of recursive functions. If we allow the output of a machine

after ω many stages, either as a truth-in-the-limit operation or otherwise

then we can display this as an infinitary operation on an infinite sequence

of 0s and 1s (or whatever the alphabet of the machine is). How one does

this, or under what preconditions one allows such models to be considered

depends on how fastidiously one takes exception to ‘supertasks’, the latter

being roughly defined here as a process that at some stage has completed

infinitely many subtasks.

We now consider various mechanisms for this.

12.2.1. Transcending the finite through stacking Turing ma-

chines

One obvious objection to an infinitely running process is the ‘Thom-

son Lamp’ ( [52]) objection: if a switch has been thrown at times
1
2 ,

2
3 ,

3
4 , . . . ,

n
n+1 , . . . at what position is it at, or what value does it have,

at time ‘1’? Similarly if a cell on the Turing machine tape has changed

value infinitely often from 0 to 1 and back again at finite stages, what value

should we allot it at ‘time’ ω? Placing models in certain spacetimes neatly

sidesteps this puzzle.

12.2.1.1. General relativistic models: Malament–Hogarth Space-

times

Pitowsky [40] gave an account of an attempt to define spacetimes in which

the effect of infinitely many computational tasks could be seen by an ob-

server Or in that spacetime. (By ‘spacetime’ we mean here a Hausdorff,

paracompact, Riemannian manifold which is a solution to the Einsteinian

GR equations – we refer the reader to [18].) He used the example of the, at

the time, unresolved Fermat’s Last Theorem but we can consider any other

task that involves looking at a Π0
1 question: for example, the consistency of

the axioms of Peano Arithmetic, or Goldbach’s Conjecture, both of which

involve a simple universal quantifier ∀n over a recursive predicate. Let us

take the latter: another observer Oq performs the tasks of checking that

each even number in turn is the sum of two primes. This they do along

their world-line γ1, the proper time of which is infinite (as each calculation

takes some finite unit of time). If they find a counterexample they send

a signal to Op travelling along her worldline γ2. The point of the exam-

ple is to arrange that the proper time of γ2 is finite, and has the whole of

γ1 in her chronological past. As Earman and Norton [10] mention, there
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are problems with this account not least that along γ1 Op must undergo

unbounded acceleration. Since then more sophisticated spacetimes due to

Hogarth [21] and Etesi & Németi [12], have been devised. For the moment

we follow formally [10] to define:

Definition 12.2. M=(M, gab) is a Malament–Hogarth (MH) spacetime

just in case there is a time-like half-curve γ1 ⊂M and a point p ∈M such

that
∫
γ1
dτ = ∞ and γ1 ⊂ I−(p) (where τ denotes proper time and I−(p)

the causal past of p).

This seemingly makes no reference to the word-line of the observer Op
travelling along their path γ2, but they point out that there will be in any

case such a future-directed timelike curve γ2 passing through a point q ∈
I−(p) to p such that

∫
γ2(q,p)

dτ <∞, with q chosen to lie in the causal future

of the past endpoint of γ1. The important point is that the whole of γ1 lies

in the chronological past of Op. As Hogarth showed in [21] such spacetimes

are not globally hyperbolic, thus ruling out many standard spacetimes (such

as Minkowski spacetime). (See [10] for a discussion on global hyperbolicity

and a family of Penrosian Causal Censorship Hypotheses in this context –

this is an interesting debate on how one might add extra axioms to GR to

limit the types of spacetimes permissible – but would take this chapter too

far off course.)

To obtain a spacetime as above, they take Minkowski spacetime N0 =

(R4, ηab) and choose a scalar field Ω which is everywhere equal to 1 out-

side of a compact set C, and which rapidly goes to +∞ as the point r

is approached. The point r is removed and the MH spacetime is then

N = (R4\{r}, gab), where gab = Ω2ηab. Ω and γ1 can be chosen so that γ1
is a timelike geodesic. This ‘toy’ spacetime is pictured on the left.

2

r

p

C

γ
γ2

1 1γ

r

C

p

γ

Figure 12.1. A ‘toy’ MH spacetime. On the right Hogarth’s representation.
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Earman and Norton discuss various possible spacetimes already in the

literature that conform to being MH: Gödel spacetimes are MH but are

causally ‘vicious’; anti-de Sitter spacetime is MH, but fails a strong en-

ergy condition; Reissner–Nordstrom spacetime meets this, but as in all MH

spacetimes there is divergent blue-shift of the signal to Op; further, of the
unbounded amplification of signals that Op may have to receive, etc., etc.

Again this is beyond the terms of our discussion here, and apart from the

rotating Kerr black hole solution of Etesi & Németi [12] to which we shortly

turn, our aim is only to analyse the logico-mathematical possibilities inher-

ent in these models.

12.2.1.2. Etesi & Németi’s rotating black hole model

The authors consider an observer sent axially into the region containing

a rotating black hole of a certain size, and rotating at certain speeds – a

Kerr solution. The first notable feature of such a black hole is that the

primary singularity is ring-formed around the axis of rotation (see [18]).

The observer, Op, is sent along the axis of rotation and receives signals

sent from a Turing machine that is orbiting forever around the black hole.

The machine is again looking for counterexamples, say, to a Π1-predicate

and will transmit one if it is found to Op. A clear desideratum for them is

Assumption 1 ‘No swamping’: it should not be the case that any part of

the machinery or any observer should have to transmit or receive infinitely

many signals.

Initially, the orbiting machine and Op, should send and receive respec-

tively, a single signal: the witness to the failure of the Π1 predicate under

inspection. They further remark though (their Proposition 2) that in fact

the computational arrangement allows deciding queries ?n ∈ R? for sets

R slightly more complicated than Π1 or Σ1: R can be taken as a union

of a Σ1 and a Π1 set for example. Indeed they indicate an argument (at

their Proposition 3), that if the machine-observer Om is allowed to send k

different signals, (they take k = 2) then any k-fold Boolean combination

of Σ1 and Π1 sets R =
⋂
i<k−1(S

i ∪ P i) (with Si ∈ Σ1 and P i ∈ Π1)

can be decided. They ask how far in the arithmetical hierarchy this kind

of argument can be taken. The discussion above concerning ∆2 predicates

shows:

Theorem 12.1. [56] The relations R ⊆ N computable in the Etesi–Németi

model form a subclass of the ∆2 predicates of N; this is a proper subclass

if and only if there is a fixed finite bound on the number of signals sent to

the observer Op.
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We have seen (at the Fact above) that for a ∆2 predicate R there is

no recursive bound on the input n as to how many times the machine will

have to change its mind concerning whether n ∈ R, and a fortiori no fixed

in advance finite bound. Of course for checking whether any one n is in

R, finitely many signals will suffice; hence only if the architecture of the

experiment allows for potentially unboundedly many signals, then (and only

then) can ∆2 predicates be decided, still without breaking Assumption 1 .

12.2.1.3. Hogarth’s arithmetically deciding spacetime regions

Hogarth names a ‘unit’ or ‘region’ of spacetime that is capable of deciding

a Π1 question as above an ‘SAD1 spacetime or region’, and as a shorthand

denotes it by the right hand diagram above at Fig. 12.1. Hogarth in [22],

(and in the later [23]) stacks up such regions to finite depths in order to

answer Πn queries.

If a spacetime contains a sequence ~O = 〈Oj |j ≥ 0〉 of non-intersecting
open regions such that (1) for all j ≥ 0 Oj ⊆ I−(Oj+1) and (2) there is a

point p ∈ M such that ∀j ≥ 0 Oj ⊆ I−(p) then ~O is said to form a past

temporal string or just string. To decide membership in a Π2-definable

set of integers P (n) ≡ ∀a∃bQ(a, b, n) he then stacks up a string of regions

taking each Oj as a SAD1 region, each looking like the component of the

right of Fig. 12.1, with O0 being used to decide ∃bQ(0, b, n). If this fails a

signal is sent out to Op; but if this is successful, a signal is sent to O1 to

start to decide ∃bQ(1, b, n) etc. Ultimately, putting this all together, again

Op receives a signal if ¬P (n), or else knows after a finite interval that P (n).

It should be noted that

Assumption 2 The open regions Oj are disjoint

and still that no observer or part of the machinery of the system has to

send or receive infinitely many signals (thus the ‘no swamping’ assumption

is kept). This whole region is then dubbed an ‘SAD2’ spacetime.

An ‘SADn+1’ spacetime is defined accordingly as composed from an

infinite string of (again disjoint) SADn regions On, again all in the past

of some point p. (Earman and Norton [11] show that an SAD1 spacetime

cannot decide Π2 statements, and Hogarth [23] follows this up with the

generalisation that SADj cannot decide Πj+1 statements.) In Fig. 2.2

below, on the right is the underlying tree structure of an SAD3 region for

computing queries of the form ?n ∈ A? for some Σ3 set A: each large circle

represents an SAD2 region (which in turn contains a string of infinitely

many of the small circles – pictured by the terminal nodes of the tree
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– representing the SAD1 regions) which can be used for computing the

answers to Σ2 queries. Correspondingly, in Fig. 12.2, if each On is a SADj
region then the diagram on the left is that of an SADj+1 region.

1

O

O
2

O
2O

1

O

0

3

O

pp
p

O0

Figure 12.2. An SAD3 region as a past temporal string of SAD2 regions; and its tree
representation (right).

In Fig.12.2, each regionOn contains itself an ω sequence of SAD1 regions

which are shown in (the enlarged) circles of the tree.

We thus have that Πn+1 questions can be decided by allowing nested

stacks of suitable SAD regions to depth n (if we define the depth of the

simplest region in Fig. 12.1 as being 0). He then puts these altogether:

Definition 12.3. A spacetime (M, gab) is an arithmetic deciding (AD)

spacetime just when it admits a past temporal string of disjoint open regions
~O = 〈Oj |j ≥ 0〉 with each Oj an SADj+1 region.

Of course there are many unresolved difficulties with this. There is a

recognition problem: how, for example, could one ever recognise an AD

spacetime region if such existed? Let alone one equipped with appropriate

ranks of Turing machines coordinated and ready to go?

We now see how to go beyond Hogarth and observe that there is really

no reason for us to stop at arithmetic. Hogarth has defined regions SADn+1

containing stacked SADn subregions to a fixed finite depth n. He thus has

used a subset of the class of finite path trees to label his regions. In the next

definition N<N denotes the set of all finite sequences of natural numbers.NN denotes the set of all such infinite sequences from N to N.

Definition 12.4. A finite path tree is any subtree (T,<T 〉 of

T̃ = 〈T̃ , <T̃ 〉 = 〈N<N,⊇〉where all branches under <T are of finite length.
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We assign ordinal ranks to the nodes of a finite path tree (which are

necessarily wellfounded) by recursion: the rank of T is then the rank

of the empty sequence, (), the topmost node. A tree is in general in-

finitely splitting (a given node sequence node u in N<N may have in-

finitely many immediate one step extensions), even though all branches

are of finite length; hence ranks of nodes can in general be infinite, but of

countable ordinal height (for an account of this and the following con-

text, see e.g. [44] Section 15.2). Finite path trees in general can be

used to describe the construction of the Borel Sets on spaces such asNk × (NN)l for any k, l < ω. A space, taken for simplicity as, N × NN
has a topology constructed from basic open sets typically of the form

U〈s,p〉 =df {〈s, x〉 ∈ N ×NN | s ∈ N ∧ ∃k ∈ N(x ↾ k = p)} where p ∈ N<N.
Definition 12.5. (The Borel Hierarchy). (i) X ⊆ N×NN is in Σ0 and in

Π0 if it is a basic open set in the above topology; (ii) X ∈ Πξ iff cX ∈ Σξ;

(iii) X ∈ Σξ iff X =
⋃
nAn where each An ∈ Πξn for some ξn < ξ; a set X

is Borel if for some countable ordinal ξ X ∈ Σξ.

It is well known that this hierarchy is built up progressively through

ω1 many stages (where ω1 is the first uncountable cardinal), and then no

further sets are added (that is Σω1 = Πω1 = Σω1+1). Of particular interest

is the hyperarithmetical hierarchy which is in one sense the constructive

part of the Borel hierarchy. Here the construction of the Borel set is given

by a recursive finite path tree (meaning the tree T and its extension rela-

tion <T are given by computable functions) with a recursive assignment of

recursively open sets to the bottommost rank 0 nodes, that is to the leaves

of the tree. Membership then in an hyperarithmetic set of integers (that

is taking l = 0 in the above) is given by testing a recursive protocol of

queries. Already one construal of Hogarth’s AD spacetime region is that

it is capable in the above notation of answering questions concerning some

unions of arithmetic sets, S ∈ Σω. Why ‘some’? Because the descrip-

tion of the union
⋃
nAn must be given to us in an effective, i.e. recursive

way. The upshot is that for any hyperarithmetic set H ⊆ N there could

be constructed a spacetime region SADH for which queries ?n ∈ H? could

be answered. Such a region satisfies Assumptions 1 and 2 and consists of

SAD regions of smaller rank stacked according to the recursive finite path

tree description for the construction of H .

A discussion and the details of the above can be found in [56]. Can a

‘hyperarithmetically deciding spacetime’ by analogy with Hogarth’s AD de-

ciding spacetime be constructed? It can, if we can enumerate those Turing

programs that describe hyperarithmetic set building protocols.
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Proposition 12.1. ([56]) If 〈ei | i ∈ N〉 enumerates those indices of Turing

programs that construct in the above sense hyperarithmetic sets Sei , via

recursive trees, we may define a single MH ‘hyperarithmetically deciding’,

HYPD, spacetime region in which any query of the form ?n ∈ Sei? can be

answered in finite time.

Here we piece together regions that are ‘Sei -deciding’ just as the AD-

deciding region is built. Given input 〈i, n〉 to an initial control machine,

it activates Sei and asks if ?n ∈ Sei? Of course this query will result in

subqueries activating regions of lower rank down the tree coded by ei which

are themselves Sej -deciding etc.

At this point the reader will, I think, object that the recognition prob-

lem has now got well out of hand: the collection of indices 〈ei | i ∈ N〉
enumerating hyperarithmetic set constructions is itself well beyond recur-

sive or arithmetic, forming as it does a Π1
1-complete set of integers. However

it is worth emphasising that no machine in this tree array is itself perform-

ing ‘supertasks’ (i.e. performing infinitely many actions in its own proper

time), but if it issues a signal to another process, it does so only once af-

ter a finite amount of its own proper time. It is simply that the overall

tree no longer has a recursive description, and its ordinal rank is no longer

a recursively given ordinal. We have not violated our two core assump-

tions. However the point should be that anthropomorphic considerations

are being put aside and we are calculating what is feasible given the kind

of techniques Hogarth contemplates. We have here what might be called a

hyperarithmetic computer .

12.2.1.4. A universal constant upper bound for any computation

Nevertheless if we take this discussion to its logical conclusion, one might

ask, How far could one possibly go building regions of higher and higher

complexity without violating the core idea?

There is in any case a bound on the depth of any finite path tree to

which we can assign MH regions without violating Assumption 2 .

Definition 12.6. LetM = (M, gab) be a spacetime. We define w(M) to

be the least ordinal η so thatM contains no SAD region whose underlying

tree structure has ordinal rank η.

Note that 0 ≤ w(M) ≤ ω1. Here a zero value w(M) implies that M
contains no SAD regions whatsoever, that is, is not MH; the upper bound
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is for the trivial reason that every finite path tree is a countable object and

so cannot have uncountable ordinal rank.

Proposition 12.2. ( [56]) For any spacetime M, w(M) < ω1.

Proof. Assumption 2 says that for different η the different SADη com-

ponents must occupy disjoint open regions Oη of the manifold. However

the manifold is separable (which follows from paracompactness and being

Hausdorff). Let X ⊂ M be a countable dense subset of M . Then each

open region Oη of M contains members of X . As disjoint regions contain

differing members of X there can only be countably many such regions

Oη ⊂M, and therefore a countable bound. �

This is just the usual argument that separability of the real continuumR implies that any family of disjoint intervals of R must be countable.

Consequently if Mactual is our spacetime, (modelled using these basic as-

sumptions) then w(Mactual) is a constant giving an upper bound to the

complexity of MH regions, and so putative computations performable in

Mactual. Dropping either of the Hausdorff or paracompactness properties

from our list of properties of manifolds would seemingly result in unrecog-

nisable (in current terms) ‘spacetimes’. In short, although MH-spacetimes

allow, at the most generous, for a reorganisation of any countable length

computation (in some formalism, such as Turing machines) into one compu-

tation using trees of countable depth, this would be impossible for uncount-

ably long (or many) computations whose stages occupy discrete spacetime

regions. The same restriction would of course be true for any other system,

or arrangement, of computations and is nothing to do with Hogarth style

formalisations: this holds for any separable manifold and any generalised

computation that requires a disjoint region of spacetime for each step or

unit of computation. Somewhat more formally:

Proposition 12.3. Let M = (M, gab) be a spacetime. Let F be some

formal mechanism of computation, such that each computation step of

the mechanism occupies a disjoint open neighbourhood of the manifold.

Then there is a countable upper bound w(M,F) to the lengths of the F-
computations in M.

The proposition is not a completely precise mathematical statement,

since we have not defined ‘formal mechanism’, but the point we hope should

be clear. We have not specified ‘step’ or ‘unit’ but again this can mean a
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Turing machine instruction step, or a cell unit. Anything that occupies a

discrete interval in spacetime, whether it be an MH-spacetime, (so as to

avoid supertask like phenomena), or in other spacetimes more generally

with supertasks envisaged: one cannot in advance arrange the formalism

to occupy uncountably many distinct open neighbourhoods. Hence the

bound. If we are allowed to play God and are handed a separable manifold

and (a set of integers coding) a countable ordinal α, in advance, then indeed

we could cook up an MH manifold to accommodate computations of that

length (of proper time), using stacked Turing machines, or any other form

of computational model F . What we cannot have is one manifoldM that

will work for our chosen F for all countable α.

12.2.2. Allowing supertasks

By means of using spacetime regions of a particular type the Etesi–Németi

and Hogarth models avoid considering any supertasks, where any observer

has performed infinitely many tasks in his or her chronological past. If

we relax this constraint we may ask of our computing machines what they

are capable of when given some well-defined behaviour in the transfinite.

Amusingly even simple machines can perform a lot.

12.2.2.1. Punch-hole machines

We first consider a simple kind of Turing machine. We envisage such a

machine as having a tape, infinite in one direction, thus with a leftmost

starting cell, and a read/write head traversing the tape in the usual fashion.

The alphabet of the machine is simple: it consists of a blank and a ‘0’. The

latter we can think of as a hole that the machine punches. Thus the machine

can only write once, or punch a hole, in a cell; otherwise it ‘reads’ and moves

a cell left or right in the usual fashion. The program or transition table for

such a machine is simply that of an ordinary machine of this architecture.

We have to specify what happens at stage ω and subsequent stages.

There are several possibilities: but let us say that we simply allow the

machine to run for ω many stages, then consider what is on the tape (a

potentially infinite sequence of holes and blanks) as input to be fed back

into the machine at its starting state again for the next ω many stages. We

thus reset the R/W head to first leftmost cell, and let it run the program

afresh.

So, ignoring difficulties with ‘hanging chads’, such cells are usable once

only. One easily sees that in ω steps again ∆2, or trial-and-error predicates
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are decidable. One may simply arrange that any new calculation extends

beyond the scratch area of tape already used up. If one has a ∆2 predicate

P (v0) it is not hard to arrange this so that a machine will punch holes

(using additional blank gaps) on an output ‘sub-tape’ so that the correct

final 0/1 value is recorded. Now we have allowed the possibility to reset the

head to its starting position, and let the machine continue running. We let

ourselves do and re-do this process, at every limit stage in time, pulling the

head back to the start position and letting it work on the accumulated tape-

full of punch-holes. Could we calculate more? For which predicates P (n)

of natural numbers n is there a machine of this kind that halts for a given n

with the correct P (n)\¬P (n) answer? These machines were first considered

by Hamkins and Kidder but they discarded them as too weak, in favour

of the Infinite Time Turing Machine to follow. Surprisingly perhaps, they

can still calculate quite a lot: we have the following observation (due to

S.D. Friedman and the author). Calling the above arrangement an ‘infinite

punch tape machine’, it is not hard to demonstrate:

Proposition 12.4. (i) Precisely the arithmetical predicates are decidable

by infinite punch tape machines; (ii) any computation either halts by, or is

in an infinite loop, by time ω2.

12.2.2.2. Infinite Time Register Machines (ITRMs)

Koepke and Miller [34] consider the following register machine model. MN

is a Shepherdson-Sturgis register machine (see [47], or as described in, e.g.

Cutland [6]). MN has N registers Ri(i < N) each of which may con-

tain a natural number. Suppose that the program under consideration

has instruction set ~I = I0, . . . , Iq. Let us say that at time t Ri contains

Ri(t) ∈ N, and that instruction I(t) is about to be performed. We adopt a

slightly more subtle behaviour than that for the punch-hole machines. We

consider the state list q0, q1, . . . , qp of the machine and at time λ where λ is

any limit ordinal, we say that the machine will next perform the instruction

numbered I(λ) =df lim infα−→λ I(α) where I(α) is the instruction number

about to be performed at time α. This formulation has the rather pleasant

effect of placing the machine at time λ, at the start of the outermost nested

loop that it entered (if any) unboundedly often before time λ.

We have to assign register values, and here of course a register may have

changed value infinitely often.

For i < N we set:
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Ri(λ) =df lim infα→λRi(α) and if this is finite we set Ri(λ)= R̄i(λ). If

infinite we set Ri(λ) = 0.

It is this ‘resetting’ of a register that gives the model its strength. We

may additionally consider such a machine to be able to consult an oracle:

thus there is an instruction, so that if Z ⊆ N, a register can be reset to 0

if Ri(α) ∈ Z. Computations relative to an oracle Z can be regarded in this

manner as using the set Z as an input; the infinite time available allows

all of Z to be consulted. We discuss the strength of this model below, but

again surprisingly complicated predicates can be calculated.

12.2.2.3. Infinite Time Turing Machines (ITTMs)

This model, due to Hamkins and Kidder, awakened recent interest in trans-

finite computational models. It was designed in the 1990s but an account of

them only appeared in [15] much later. We give a computationally equiv-

alent version to that of their original model – and discuss the differences

afterwards.

We go back to the punch-hole machine described above, but we now

consider what to do if the machine is allowed to reuse cells. Clearly a cell

may then be reused infinitely often and we must define a behaviour for it.

We consider Turing machines with an alphabet of just three letters: 0,1 and

B (for blank). We suppose that its standard program has states q0, . . . , qk.

The read/write head moves according to the description given by the usual

transition table, but that also uses the liminf of cell positions that it has

been reading at limit stages of time to calculate its position at a limit stage,

(if this liminf of the read/write head positions is infinite at a limit stage,

then the head is set back by fiat to the starting cell C0). Further, we set

the state q(λ) at limit times to be the liminf of previous states. (This has

the same effect of course of positioning the read/write head at outermost

loops as it did for ITRMs.) If the cells of the machine are enumerated

〈Ci | i ∈ N〉 with values at time ν denoted by 〈Ci(ν) | i ∈ N〉 then we set

at limit time λ:

Ci(λ) = k ⇐⇒ ∃α < λ∀β < λ(α < β −→ Ci(β) = k)for k ∈ {0, 1,B};
Otherwise Ci is set to a ‘B’.

Thus if the machine has changed its mind unboundedly often below

λ about the cell value then, this is set to a blank – for ambiguity if you

will. Programs, are simply standard Turing machine ones, and may be
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enumerated as 〈Pe | e ∈ N〉. If a particular program Pe halts, then we can

consider the contents of the tape the output of that machine. We may also

prime the tape with an infinite string x from the alphabet, and consider

Pe(x) to be the computation of the e’th program on input x.

Such machines can decide Π1
1-predicates. We illustrate by means of the

complete Π1
1-predicate on integers: those e ∈ N so that the e’th (stan-

dard) recursive function, {e} = f , computes the characteristic function of a

wellorder ofN. Given input e the machine simulates the e’th standard Tur-

ing program and writes the output characteristic function on, say the cells

of the tape Ci where i ≡ 0(mod 3). The other cells are blank for scratch

work. This takes ω many stages. When this is complete, the machine then

checks the Π2-condition of this characteristic function f coding a discrete

linear ordering. (This is of the form ∀n∃mR(n,m, f) and R is recursive.

This can be verified in ω steps, by starting with n = 0, recording ‘0’ on

the scratch tape cells Ci where i ≡ 1(mod 3) , searching for an m, using

the scratch tape cells Ci where i ≡ 2(mod3), for auxiliary calculation,

then proceeding to n = 1 if successful, etc.) If this test is passed, we have

an order <e; we then need to test for wellorderedness. We wipe clean the

scratch tape area, and search for the <e’th least element of the ordering.

We may do this by simply guessing a least element on a scratch tape, and

then continually revising our guess <e-downwards each time we find a lesser

one. If after ω many steps we did not find such then we did not have a

wellorder, and we can output a 0; if after ω many steps we only changed

our minds finitely often, then we indeed located the <e-least element, say

it was 23, and we have it written concretely on the scratch tape. We now

proceed through the code function f and erase all mention of the element

23. This leaves us with a new code f ′ of a discrete linear order written

on the cells 〈C3i | i ∈ N〉, and we simply now repeat this process. There

are only two outcomes: either at some point we arrived at the situation

where the ‘current’ linear order is illfounded, and we discover this fact, by

descending through it infinitely often looking for its least element, or else

we end up emptying out the C3i cells for i ∈ N completely: after looking

through this slice of the tape, and seeing it is empty (which takes a final ω

many steps) we verify that it was truly wellfounded. If the order type of the

ordering was α then this has been achieved in, rather roughly, ω+ω.α+ω

many steps.

Once the reader has convinced themselves of this, it is not hard to

imagine programs that write out successfully on some slice of the scratch

tape (which we might as well call ‘output tape’) those ei with {ei} ∈WO.
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Moreover, one can also imagine a machine coding the ordinal sum of all

the recursive ordinals α < ωck
1 and outputting a code for that, i.e. ωck

1 , on

the output tape. However as Hamkins and Lewis showed, and we shall see

later, this is only scratching the surface.

Suppose we denote by Pe(n) the e’th computation on integer input of

n, represented by an infinite string of n 1s followed by an infinite string of

0s. Several natural questions arise:

Q1 What is 0∇ = {e|Pe(0) ↓}? (The halting problem on integers).

Q2 What are the halting times that arise? That is, if Pe(0) ↓ halts in

α steps how large is α?

Q3 What are the decidable predicates? Where we say R(n) is semi-

decidable if there is some e so that R(n) ↔ Pe(n) ↓ 1, and is decidable if

both it and its complement are strongly semi-decidable.

Hamkins and Lewis [15] first developed the theory of such machines,

using the analogy of the standard Turing machine as a source of the notion

of recursion: they note that there are versions of the Recursion Theorems,

and the Snm-Theorem for this notion of computation and there is a univer-

sal machine with a universal program. Much of the standard development

proceeds very smoothly but of course there are considerable differences: for

Turing machines the whole run of a halting computation, the snapshots of

the states and of tape’s contents etc. can be encoded by an single integer;

it is thus of the same type as the objects on which it operates. However for

ITTMs, computations Pe(n) on integer input, are in general a transfinite

sequence S = 〈Sβ | β ≤ α〉 of snapshots of the cell values 〈Ci(β) | i < ω〉
at each stage β ≤ α. A computation is then an infinite object and must be

coded in this context by a set of integers or a ‘real’ number. (One uses reals

that code wellorderings of length α + 1 and attaches by pairing functions

the snapshots to the nodes of the wellorder, together with any auxiliary

information such as machine state etc. along the way). Computations are

thus of different types from the integer inputs. A central representation

of standard Turing machines comes via Kleene’s T -predicate, yielding a

canonical Normal Form Theorem. This theorem allows one to proceed ef-

fectively from e, and uniformly in n, from a halting computation of the form

Pe(n) ↓ to a program e′ so that Pe′ (n) ↓ will halt, and moreover produce an

integer output which codes the whole course-of-computation that demon-

strates Pe(n) ↓. For such a notion to work in this new area we should need

the program Pe′ to be capable of producing the reals needed to code the

potentially transfinitely many steps in calculations such as that of Pe(n) ↓.
But are they capable of this? In short, Is every ordinal length of a halting
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computation on an integer input capable of being itself ‘written’ or being the

output of some other computation? This must be true if we are to have a

hope of producing a Normal Form theorem. Hamkins and Lewis called the

halting time ordinals the clockable ordinals, and the question they asked is:

Is every clockable ordinal writable?

The answer turns out, thankfully, to be affirmative, (it follows from the

λ, ζ,Σ-theorem below, [54]). We refer the reader not to the original papers,

but to [57] for a later but somewhat tidier account of this theorem and the

answers to the above three questions.

From this one gets the desired representation theorem (where Pe(n)

refers to ITTM computation).

Theorem 12.2. (Normal Form Theorem I) (Welch [55, 57]) ∀e∃e′∀n ∈N
Pe(n) ↓−→ (Pe′ (n) ↓ y where y ∈ 2N codes a wellordered course-of-

computation sequence for Pe(x) ↓).
Moreover the map e −→ e′ is effective (in the usual Turing sense).

There is a higher type version obtained by relativising all the results

(now for λx, ζx etc.) above to real number inputs. Part (b) below is simply

a variant form stated to be reminiscent of the Kleene T -predicate. We let

ϕe be the (partial) function computed by Pe.

Corollary 12.1. (Normal Form Theorem II) (a) For any ITTM com-

putable function ϕe we can effectively find another ITTM computable func-

tion ϕe′ so that on any input x from 2N, if ϕe(x) ↓ then ϕe′(x) ↓ y ∈ 2N,
where y codes a wellordered computation sequence for ϕe(x). (b) There is

a universal predicate T1 which satisfies ∀e∀x:

Pe(x) ↓ z ↔ ∃y ∈ 2N[T1(e, x, y) ∧ Last(y) = z].

The effectivity is again established in the same way, noting that the

input (whether n ∈ N or x ∈ 2N) does not affect the above description of

an algorithm in any dynamic way.

However the proof that all clockable ordinals are writable proceeds via

an analysis of how each single cell Ci behaves during the course of a compu-

tation Pe(n). In general cells may stabilize on some fixed value, or forever

change value. The same is true for infinite sub-segments of the ITTM tape.

Suppose we reserve cells Ci (i ≡ 2mod 3) for ‘output’ then we say that

a real y ∈ 2N is ‘eventually computable’ if there is an ITTM computation

Pe(n) – which is not required to halt – but which has y as the characteristic
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function of the output tape from some point in time onwards. The notion

is then that a computation need not formally halt in order to ‘produce’ an

output: it is sufficient that the output tape segment be stable from some

point onwards. Hamkins and Lewis called an ordinal α eventually writable,

if there was an eventually computable yα ∈ 2N coding α. Clearly we can

consider any halting computation a special case of an eventually stable one,

and thus if λ is the supremum of all writable ordinals, and ζ the supremum

of the eventually writable ordinals then λ < ζ. Evaluating λ, ζ turned out

to be tied up with calculating stabilisation points of cells Ci in the universal

machine calculations, and the following characterisation is possible.

Theorem 12.3. (The λ, ζ,Σ-theorem) (Welch [57]) (i) Any ITTM com-

putation Pe(n) on integers which halts, does so by time λ, the latter defined

as the supremum of the writable ordinals;

(ii) any computation Pe(n) with eventually stable output tape, will stabilise

by time ζ the supremum of the eventually writable ordinals;

(iii) moreover ζ is the least ordinal so that there exists Σ > ζ with the

property that

Lζ ≺Σ2 LΣ ;

(iv) then λ is the least ordinal satisfying:

Lλ ≺Σ1 Lζ .

We thus have a clear picture of the action of ITTM computations on

integers. The machines run using very constructive rules, even for the limit

stages, so their action is of course absolute to Gödel’s constructible universe

L. As [15] had noted, if an ITTM machine has its hands on a real y coding

an ordinal α then there is a standard Turing machine program for using

that code to run a construction of the L-hierarchy ‘along’ that ordering

y, thereby producing a real code for the α’th level Lα. Hence the tie up

with L is natural. A further observation on the λ, ζ,Σ-Theorem is in order.

The machine limit rules of liminf can be expressed in a Σ2 way. If one

has two levels of the L hierarchy satisfying Lζ′ ≺Σ2 LΣ′ then running the

universal machine inside L it is pretty much immediate that the machine’s

snapshots at time ζ′ and Σ′ will be identical: this is what the elementarity

entails. The machine will then either have halted, or, as one can show, has

entered an eternally repeating loop (although the elementarity assumed is

suggestive of this, in fact the latter still has to be shown). It turns out the

pair (ζ,Σ) is the lexicographically least pair of ordinals where the universal

machine has identical snapshots, and first enters an infinite loop.
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What further seems to emerge from the proofs above, is that the pri-

mary notion here is not that of a ‘halted computation’ but of a ‘stable

computation’: there are computations of the form Pe(n) which do not for-

mally halt, but eventually have a settled output tape, and thereafter just

footle around for ever on their scratch tape areas. Halting is just a special

case of stabilising, and this is borne out by the fact that we cannot fully

analyse halting computations without analysing stabilising ones. Halting

can be expressed by a Σ1 statement in set theory (‘There exists a real y that

successfully codes the course of computation of Pe(n) with a last halting

state’); this is at the basis of the Σ1 characterisation of λ in the λ, ζ,Σ the-

orem as Lλ ≺Σ1 Lζ , once we have discovered ζ. We may further establish

theorems corresponding to those for halting computations.

The reader may have noticed that we seem to be avoiding discussion

of the obvious fact that ITTMs can work on infinite input as well have

infinite output: such computation is thus on one type up, on that of sets of

integers, or reals themselves, rather than merely on integers. Before we turn

to this we emphasise that Hamkins’ and Kidder’s original formulation of an

ITTM immediately visualised such capabilities: their machine was devised

as coming equipped with three infinite tapes, for input, scratch and output.

A single read/write head surveyed a single cell from each of the three tapes

simultaneously and according to its state and program, would write from an

alphabet set of {0, 1}. At limit stages a cell Ci’s value was determined by

taking the limsup of the previous cell values (there was no Blank character);

the read/write head at limit stages would be brought back to the very first

triplet of cells on the tapes, and the machine would enter a special ‘limit

state’ qL. The differences between this arrangement and that sketched

above play no role in determining the classes of functions or sets computed

(either on integers or on reals, which we are coming to): they are the same

for either model. There are minor differences in calculating halting times,

and in precisely which classes of ordinals are clockable often by an obvious

factor of ω or so, but apart from these finer details there are functionally no

differences between the models proposed. (This discussion does conceal one

remark, that in fact, a one tape machine with two symbols cannot produce

the same class of computable functions f : R −→ R. However for functions

of type f : R −→ N or f : N −→ N a one tape two-alphabet machine turns

out to be sufficient. For the wider class curiously a third character – which

we have introduced here by the way of the Blank above – turns out to be

necessary. See [17] for a discussion of this somewhat technical point and

proofs of these results mentioned.)
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12.3. Computation on Reals

Kleene developed an equational calculus for developing the notion of recur-

sion in a higher type object (see [30], [26], [29]). The relevant type here is

Type 2 , the objects under consideration are functionals I : NN −→ N. This

generalised his earlier equational calculus for (standard) recursive functions

that used (characteristic functions for Type 1) oracles, I : N −→ N. The

intuitive notion of a functional F being computable relative to I is that

we have some kind of machine that can take inputs in the form of (finite

sequences) of integers and reals, ~n, ~x, and which is connected to some ora-

cle/memory device that has access to the graph of I – itself a set of size the

continuum. As the domain of I is NN, the machine must compute a real x

to present to the oracle, which will return I(x). Thus an infinite amount of

computation must be performed in some scratch/storage area before this

oracle query can be launched. A computation will thus in general be of

infinite length, but is perhaps better thought of as given by an infinite tree

where, for example, there may be infinite branching nodes: below the call

for I(x) will be the prior individual computations for x(0), x(1), . . . . An

illfounded tree, that is one with an infinite descending path, represents an

undefined computation. There is some discussion of this in Rogers ([44], p.

406), where there is no oracle I discussed but where the allusion is to an

“ℵ0-mind’ capable of forming such generalised machine computations. A

crucial point is that a generalised computation step must only be allowed to

take previously, inductively, defined generalised steps. The resulting notion

is ‘hyperarithmetic computability’. (See also here [28], [27].)

With the addition of the oracle I it can thus be loosely characterised

([24]) as a model of computation in which the computational device has a

(i) countably infinite memory; and

(ii) an ability to manipulate (search through, write to) that memory in

finite time; and optionally

(iii) an ability to quiz an oracle I about that memory contents (in a

single step).

If the above is all done within the e’th program we call the above com-

putation {e}(~n, ~x, I) which again, may or may not halt. The following

functional is essential for developing much of the regular theory of relative

recursiveness:

E(x) =
{
0 if ∃nx(n) = 0;

1 otherwise.
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The immediate import of this is that computation relative to the object

E is closed under existential number quantification (for any I the class of re-
lations semi-recursive in I is closed under universal number quantification).

A second effect is that:

• If A is an arithmetical set of reals then A is recursive in E .
More important consequences follow: if I is any functional such that E

is recursive in I, then we have the full Ordinal Comparison Theorem for

stages of computation (see [39]) which is crucial for developing the theory

of relations semi-recursive in a Type-2 functional. By ‘relation’ in the next

theorem, we mean any predicate R(~n, ~x) ⊆ Nk × (NN)l for k, l ∈ N. We

thus arrive at the notion of Kleene Recursion.

Theorem 12.4. (Kleene) The hyperarithmetic relations are precisely

those recursive in E.
The Π1

1 relations are precisely those semi-recursive in E.

If we are considering relative recursion of a set of reals A ⊆ R in a set of

reals B (which we may identify with its characteristic function oracle IB)
we may denote such:

x ∈ A ≃ {e}(x,B, E) ↓ 1
and say that ‘A is recursive in B’ if {e} gives a function total on inputs x,

and then one has appropriate versions of the above theorem relativised to

B. There is an appropriate notion of Kleene Degree:

Definition 12.7. (Kleene degrees) Let A,B ⊆ R; we say that

A ≤K B iff there is an index e and a real y so that

for any x ∈ R (x∈
/∈A←→ {e}(x, y, B, E) ↓ 1

0 );

A is Kleene-semi-recursive in B iff there is an index e and a real y so

that

for any x ∈ R (x ∈ A←→ {e}(x, y, B, E) ↓ 1).

The presence of the fixed real y ensures that the degree class of B con-

tains continuum many sets of reals A; moreover the degree of B, being thus

closed under continuous pre-images, forms a so-called Wadge degree. In

general a computation evolves its own tree structure as it grows, according

to its instruction set. But one can think of y as also contributing to some

part of the computational tree structure. In this case, as y is allowed to

vary, we see that 0K contains ∅,R, and in fact consists of the Borel sets .

0′K (the K-degree of a complete Kleene semi-recursive set of reals) contains

WO, the set of reals coding wellorders, and so a complete Π1
1 set of reals.

In fact it consists of all the co-analytic, so precisely the Π1

1
, sets.
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It is possible to give a set theoretical description of Kleene recursion

in a relation B and E . In what follows, ωB,y,x1 ck denotes the least ordinal

which does not have a real code recursive in (B, x, y); it turns out that

the wellfounded computation tree of a converging Kleene recusion will have

rank less than ωB,y,x1 ck . This is the basis of the following characterisation: we

only need to look inside a model with enough ordinals – namely ωB,y,x1 ck – to

see whether the computation tree is wellfounded. Moreover, in admissibility

theory wellfoundedness of any relation inside a transitive admissible set is

actually a Σ1-notion. Here L∈,Ẋ is the language of set theory augmented

by a predicate symbol Ẋ – to be interpreted by B.

Lemma 12.1. A ≤K B iff there are Σ1-formulae in L∈,Ẋ ϕ1(Ẋ, v0, v1),

ϕ2(Ẋ, v0, v1), and there is y ∈ R, so that for any x ∈ R
x ∈ A⇐⇒ LωB,y,x

1
[B, y, x] |= ϕ1[B, y, x]⇐⇒ LωB,y,x

1
[B, y, x] |= ¬ϕ2[B, y, x].

Thus to determine whether x ∈ A/x /∈ A we perform Σ1-searches

through the least admissible set LωB,y,x
1

[B, y, x] relative to B containing

y, x. As intimated equivalence with the former definition comes about

through the original (relativised) theorem of Kleene (Theorem 12.4) and

the theory of admissible sets (cf. [1]).

The generalised theory of recursion in higher types was much investi-

gated and developed in the late 1960s and 1970s, with a history too rich

to go into here, with names such as Gandy, Moschovakis, Sacks, Grilliot,

Fenstad, Normann, Moldestad, Harrington prominent. The recursion rela-

tive to the single operator E is in one respect merely illustrative, being the

historical example from the earlier days and papers ([26], [29], [30]) of the

Kleene Equational Calculus. The reader may consult Hinman [20] for an

overall development of the theory, Fenstad [13] for an attempt to present

an axiomatic approach to general computation theories and the latter Part

D of Sacks [45] for the further development in relation to set recursion.

Mention must now be made of the connections to the theory of inductive

definitions and here more particularly to the theory of Spector classes. The

latter is a general unifying theory of definability developed by Moschovakis

in [39]. We consider here just pointclasses Γ ⊆ Nk×(NN)l (for any k, l < ω)

and use the notation that Γ̆ = {¬R : R ∈ Γ}. ∃N, ∀N represent natural

number quantifiers as opposed to ∃NN , ∀NN over elements of NN.
Definition 12.8. A Spector class of pointsets Γ ⊆ Nk × (NN)l for any

k, l, is a collection that is (i) closed under ∩,∪, number quantification: ∃N,
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∀N; closed under (standard) recursive substitutions, has a universal set U

indexing byN all members of Γ and lastly has the Prewellordering property:

PW: For any P ∈ Γ there is σ : P −→ λ for some ordinal λ with the

property that there are relations: x ≤σ0∈ Γ, x ≤σ1 y ∈ Γ̆ so that:

P (y)⇒ (∀x[P (x) ∧ σ(x) ≤ σ(y)]⇐⇒ x ≤σ0 y ⇐⇒ x ≤σ1 y).

It would be impossible to give a full exposition of the import of Spector

pointclasses here, but suffice it to say that the definition above encapsulates

a fundamental unifying approach to the theory of inductive definability.

Familiar Spector pointclasses are Π1
1 and Σ1

2 but there are many others.

For Σ1
n or Π1

n the existence of the prewellordering property depends on the

surrounding set theory in which one works. We shall only be discussing

Spector pointclasses within ∆1
2 = Π1

2 ∩ Σ1
2. The Kleene recursion theory

then throws up a canonical example of a Spector pointclass: the Kleene

semi-recursive (in E) sets are precisely the Π1
1 sets.

The type of formalism on the right-hand side equivalences of Lemma

12.1 in fact is also one way of defining Spector classes within the ∆1
2 point-

class.

12.3.1. ITTM computations on reals

If we now return to the ITTM model we shall see that it fits very nicely into

this overall general theory. We have a choice to make here. At Q3 above

we called the decidable predicates, those where a characteristic function of

the predicate could always be computed by a halting computation. It is

natural, particularly given the machine nature of the origins of the notion,

to think of halting as somehow fundamental, and therefore it is this that

should be used to characterise ‘decidability’. However here we are adopting

the position that the fundamental feature of the ITTMs is the Σ2 nature of

the limit rule for the cell values, and the concomitant phenomenon of their

having stabilised output without halting; it was indeed from this stabilising

and looping times, from ζ and Σ, that we could characterise the halting

times. The halting computations are for this purpose to be regarded as the

special sub-class of ‘fully stabilised’ computations: halting is just a special

kind of stabilisation (sic). This position is further strengthened when we

consider below its relation to previous notions of higher type recursion.

We stated the Normal Form Theorems in the stronger, halting, version,

as these would be more familiar to the reader, but there are equally well

Normal Form Theorems which are verbatim as above but with ↓ replaced
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by ↑ throughout. The viewpoint here is that the strongly stabilising, i.e.

halting, computations should probably be thought to give rise to a notion

of strong decidability (and strong semi-decidability) whilst the stabilising

computations correspond to the notion of decidability and semi-decidability.

However most papers distinguish the ‘stabilising’ form, with the adverb

‘eventually’, used in the form: ‘eventually (semi)-decidable predicates’ or

adjectively as in ‘eventual ITTM degrees’ etc. This is established enough

that it would egregious to go against it here.

However for notions from higher type recursion theory, one says in gen-

eral that a class of ‘semi-decidable sets are those semi-recursive in a F ’
where the latter F is some higher type functional. Then, for the appro-

priate F for ITTMs, actually ‘semi-recursive in F ’ would correspond to

the stabilising behaviour rather than the halting one. This would also ac-

cord with the usage inherited from Kleene Recursion. We shall call here

then ‘ITTM-semi-recursive’ those predicates where membership facts can

be represented as the stable output of some program, and thus correspond-

ing to ‘eventually semi-decidable’ in the literature. (For different classes

of machines such as the Σn-machines mentioned below, the notion of ‘out-

put’ becomes somewhat more rarified, but these too one we would like

to think of as providing mathematical classes of sets that are generalised

(semi-)recursive in some way.)

It is a conceptually simple adjustment to have within an ITTM program

an oracle call that requests of some oracle B ⊆ R (here 2N) whether the

current contents of the scratch tape, y ∈ 2N, is an element of B, and

receive a 0/1 reply. Thus computation relative to an oracle for sets of

reals is unproblematic. We again adopt the same notation that PBe (x) ↓ y
if the e’th machine with oracle B, on input x ∈ 2N halts with output

y ∈ 2N. Changing the arrow to PBe (x) ↑ y indicates that eventually y is

written to the output tape, and remains there unchanging from some point

on. (We have to have some other notation such as ‘PBe (x) |’ for when the

computation diverges or is undefined.)

We first give the integer version.

Definition 12.9. (i) A set of integers x is ITTM-semi-recursive in a set y

if and only if:

∃e∀n ∈ x [P ye (n) ↑ 1←→ n ∈ x ] ;

(ii) A set of integers x is ITTM-recursive in a set y if and only if:

∃e∀n ∈ x [P ye (n) ↑ 1↔ n ∈ x ∧ P ye (n) ↑ 0↔ n /∈ x] .
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We may write x �∞ y for the reducibility ordering.

Equivalently: x is ITTM-recursive in y if both x and ¬x are ITTM-

semi-recursive in y (since if the latter holds it is easy to amalgamate the

two programs into a single program Pe with the effect of the Definition.

The relation �∞ is in the class ∆1
2. There is a natural prewellordering

that arises on computations Pe establishing membership in some set x: put

n ≺ m if the computation Pe(n) ↑ 1 stabilises to an output of 1 before

that of Pe(m) ↑ 1 does. The relation ≺ is itself ITTM-semi-recursive (think

of the universal machine that observes the simulated copies of computa-

tion sequences of Pe for various n – eventually it itself will stabilise into

seeing that Pe(n) stabilises before Pe(m)) and thus we can establish the

prewellordering property very easily.

There is a natural notion of complete ITTM-semi-recursive set of inte-

gers :

Definition 12.10. x̃ =df {e | Pe(0) ↑} – the complete set of stable indices.

The following tells us what this set is by way of a set theoretic charac-

terisation. We regard x֌ x̃ as an analogy to the hyperjump operation.

Theorem 12.5. (Welch [54]) x̃ is (Turing-)recursively isomorphic to the

Σ2-theory of 〈Lζx [x],∈, x〉. In particular 0̃ is recursively isomorphic to the

Σ2-theory of 〈Lζ ,∈〉.

This should be compared with Kleene’s result that his notation system

set O – a complete Π1
1 set of integers coding indices of wellfounded finite

path trees – is in fact (Turing-)recursively isomorphic to the Σ1-truth set

of 〈Lωck
1
,∈〉. Indeed Klev has defined in [31] an extension of Kleene’s O to

an O++, that mirrors exactly Kleene’s original definition as a tree (indeed

the tree is literally an extension of Kleene’s). By the above, it is thus to

the complete Σ2(Lζ) set what O is to Σ1(Lωck
1
).

The following is the natural version for real computation:

Definition 12.11. A set of reals A is ITTM-semi-recursive in a set of reals

B if and only if:

∃e∀x ∈ 2N [PBe (x) ↑ 1↔ x ∈ A
]
;

(ii) A set of reals A is ITTM-recursive in a set of reals B if and only if:

∃e∀x ∈ 2N [PBe (x) ↑ 1↔ x ∈ A ∧ PBe (x) ↑ 0↔ x /∈ A
]
.
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Definition 12.12. A ≤∞ B iff for some e ∈ ω, for some y ∈ R : A is

ITTM-recursive in (y,B).

Notice in the above that we have included a parameter real y to ensure

the closure under continuous preimages as before. This will ensure we

have Wadge pointclasses and that the ensuing notion of ≤∞-degree with

the degree ordering induced, will be wellfounded. The structure of this

degree ordering is dependent on the ambient set theory – we shall not

go into this now, but under the assumption of ‘sufficient Determinacy’

(that of two-person perfect information games of sufficient complexity in

their payoff sets) we shall have that the degrees are wellordered; under

the assumption of V = L the ordering of ≤∞ degrees is very different,

and below the complete ≤∞-semi-recursive set of reals there are plenty

of ≤∞-incomparable sets (and hence Post’s problem has a rich positive

solution); whilst under ‘sufficient determinacy’ assumptions, there are no

intermediate degrees at all. This was to be expected, and serves only to

confirm the position of the pointclass of ITTM-semi-recursive sets as one

within the totality of the Wadge ordering of all reasonable pointclasses of

sets of reals. See [55] for a further discussion and results.

By analogy with Kleene recursion we have:

Lemma 12.2. A ≤∞ B iff there are Σ2-formulae in L∈,Ẋ ϕ1(Ẋ, v0, v1),

ϕ2(Ẋ, v0, v1) and y ∈ R, so that for all x ∈ R
x ∈ A⇐⇒ LζB,y,x [B, y, x] |= ϕ1[B, y, x]⇐⇒ LζB,y,x [B, y, x] |= ¬ϕ2[B, y, x].

The lemma then identifies structures in which we can look to ascertain

the outcomes of our ITTM computations relative to a set of reals B, say.

By way of analogy with ζ, the ordinal ζB,y,x is the least that is not ITTM-

(B, x, y)-recursive. It is thus also least such that LζB,y,x [B, y, x] has a

proper Σ2-elementary end-extension.

12.4. Computation on Ordinals, and Ordinal Length Ma-

chines

In the 1970s the theory of α-recursion coming out of the meta-recursion

of the 1960s reached its highest stage of development. The observation

that an enumeration of a Π1
1-complete set of integers was very naturally

effected, not in ω, but in ωck
1 (the least non-recursive ordinal) steps led

to a discussion on the role of hyperarithmetic vis à vis finite. In meta-

recursion the motivation was to have a generalisation of recursion theory



January 4, 2011 15:24 World Scientific Review Volume - 9in x 6in computability

Discrete Transfinite Computation Models 399

where infinitely long computations converged. Initially the emphasis had

been on using an analogy between finite/recursive/recursively enumerable

to yield a notion of meta-finite/meta-recursive/meta-r.e. In the latter the

integers would be replaced by recursive ordinals, and a meta-r.e. set was a

set of recursive ordinals whose indices formed a Π1
1 set. Meta-recursive sets

would be those that were both meta-r.e. and co-meta-r.e. The notion that

replaced finiteness, was that of meta-finiteness which was to be identified

with a set of ordinals together with a hyperarithmetic index set. In partic-

ular the domain of computation had now changed: instead of ω it would

become ωck
1 . (See, e.g., the discussion in [45] Part V for an account of this

development.) This was not the first generalisation of recursion theory to

ordinals: Takeuti [51] had replaced ‘recursive enumerability’ by a scheme

equivalent to Σ1-definability and was the first to generalise recursion theory

from natural numbers to ordinals. There were a number of developments

from Kleene’s equational calculus to include ordinal valued functions in

equations: Machover [38], Levy [37], Tugué [53], Kripke [36], Platek [41]

all had such calculi. The latter two involved what emerged as a primary

notion, that of an admissible ordinal with the concomitant axiomatisation

of admissible set theory as a fragment of full ZFC set theory. Platek had

the notion of an admissible set . From one perspective, it seems pointless

to split the distinction between an ‘equational calculus’ and an abstract

‘machine’ (if there is one to split). Platek, though, seems to have had in

mind, or at least the picture of, an ordinal register machine of some sorts,

which we shall turn to these later.

12.4.1. Ordinal length tapes

Since the Hamkins–Kidder machines can construct levels of the Gödel L-

hierarchy up to a certain stage (below the level Σ alluded to above) it is a

natural generalisation to think up behaviours for machines with tape not

an ω sequence of cells, but longer. Indeed why not consider a sequence of

cells Cα for α any ordinal? Both Koepke and Dawson independently, and

at roughly around the same time, came up with the idea of ordinal length

tape machines, equipped with liminf rules to locate read/write heads and

instruction numbers within a program list. One allows the head to move

left, but again must specify if the head is over a limit cell Cλ what de-

fault action to do if the machine is asked to move left one cell. As sets

can be coded by sets of ordinals (assuming the Axiom of Choice) we have

some means of dealing with, or representing sets on tapes. If a machine
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runs and produces a sequence of 0s and 1s on a tape, then again, if of

the right form, we can say that the machine is producing (codes for) sets.

We may label these machines as Ordinal Time Turing Machines (OTM).

Dawson [8] formulated an Axiom of Computability that states that every

set is computable, in that there is a program that produces (not necessar-

ily halting) at some point a code for that set. He then proves that the

computable sets form a transitive class satisfying the ZF axioms together

with AC. A condensation lemma on the elements appearing in a table of

a long computation then produces the Generalised Continuum Hypothesis.

As the construction of the machine and its action is completely absolute in

character, we can imagine the machine running inside Gödel’s constructible

universe L, performing the same actions with the same outcomes. Since L

is the minimal transitive class model of ZF, then of course the machine is

producing precisely the construcible sets.

Koepke gave a detailed description in [32], [33] of the organisation of

such results, and whereas Dawson was considering codes for sets running

on an everlasting machine, Koepke considers halting computations starting

from an input tape with marks for finitely many ordinals. Koepke then

shows in detail that a Bounded Truth function for L is computable. He

then has:

Theorem 12.6. (Koepke [32]) A set x is computable from a finite set of

ordinal parameters if and only if it is a member of the constructible hierar-

chy.

He then proceeds to derive GCH again using this analysis. During the

1970s Silver produced a description of the constructible hierarchy using,

what came to be called ‘Silver Machines’. Silver’s motivation was to avoid

R.B. Jensen’s ‘fine-structural’ description of L, which Jensen had used to

great effect in establishing fundamental properties both of L, and of the

universe of all sets. An account of Silver’s method is in [9], Part IX.

The ‘machine’ nature of the description is essentially that of an extremely

slowed production of constructible sets, and owes more to a desire to have

as simple as possible method of set construction, rather than a perspective

with a mechanical a flavour. Silver convincingly made use of his theory by

producing a fine-structure free proof of an important combinatorial princi-

ple of L called 2, due to Jensen. The ordinal length tape Turing machine

model held out hope that another different proof of 2 might be possible

using the machine’s description. That hope has not been realised, and it

seems that despite the smoothness of set construction at successor steps,
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the infinitary nature of the limit rule mitigates against certain construction

principles that seem common to most proofs of 2 to date, so maybe this

approach would seem difficult.

Nevertheless, the description of the constructible sets, now adds a fur-

ther method of describing L besides the two originally due to Gödel, and

to those of Jensen and Silver.

12.4.1.1. α-length tapes

Rather than take ON length tapes, it would be possible to consider compu-

tation using the above machines but with the length of tape, and perhaps

time, restricted to, say, suitable ordinals α, such as initial ordinals or car-

dinal numbers. There would indeed be nothing against this: one could

produce, say, just the hereditarily countable members of L by allowing

only computations that took countable lengths of time. For restricting to

computations not of cardinal length, some closure considerations come into

effect. In order to have effective methods of combining even very elemen-

tary processes on sets, one should require that ordinals be sufficiently closed

to enable this, and something such as closure under the primitive recursive

set functions (cf. [9], p.100) would be suitable.

The notion of admissible ordinal stands out, not least because of the

development of α-recursion theory in the 1960s and 1970s. We have briefly

mentioned the origins of this theory at the beginning of this section. The

motivation for its development was indeed a theoretical one: to lift fromN the theory of recursion to other domains. The closure of an admissible

ordinal was soon seen to result in a powerful theory of sets that when

axiomatised gives essentially a reduced form of ZF, with the scheme of

Replacement restricted to Σ1 instances, and that of Comprehension to ∆1.

An admissible set was then a model of this theory, and 〈Lωck
1
,∈〉 is the least

transitive model of this theory (if one includes the axiom of infinity). An

account of this development is contained in [45].

One could therefore simply restrict an ordinal length tape machine to

an admissible ordinal length α, and consider calculations of length at most

α in time.

Does one get back precisely the theory of α-recursion theory? Does

‘computably enumerable’ correspond to α-r.e., and if so does the machine

approach give any new slant on the old results from the 1970s such as

the Sacks–Simpson theorem [46] that there are incomparable α-r.e. sets

neither (weakly) α-recursive in the other; or the Shore Splitting and Density
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theorems [48], [49]? These are matters still under investigation. Dawson

([8]) has established for a notion of what he calls uniform α-computation

that indeed one has the Sacks–Simpson and Shore Density results.

12.4.2. Ordinal Register Machines

We now turn to full blooded finite register machines with the capability

of ordinal entries. Again, such machines are allowed to run transfinitely

using an ordinary register arrangement, and finite instruction set, with a

suitable liminf rules for register values and instruction numbers at limit

ordinal λ lengths of time. We have mentioned that one (unpublished by

Platek) approach yielded an equational calculus for ordinal recursion up

to ωck
1 , Siders and Koepke [35], consider register machines with a stack

and remarkably even a machine with finitely many registers allows one

to calculate a bounded truth predicate for L. One thus can represent L

both using Ordinal Register Machines (ORM) and Ordinal Time Turing

Machines (OTM).

As for the ITTMs one has notions of clockable ordinal (one for which an

ORM or OTM halts on, say, 0 input) and writable ordinal (one for which

a code can be written: this is easier to formulate for an OTM: a code can

be written literally on the tape; for an ORM one simply has the machine

halt with the ordinal in, say, the first register). For both these notions it

is easier than for ITTMs to conclude that γ the supremum of the clockable

ordinals is that of the writable ordinals. In [16] it is explicitly shown how

to convert calculations from an ORM to an OTM and vice versa.

Using ordinal register machines with values up to the admissible ordinal

γ Hamkins and Miller have used priority arguments to produce a Friedberg–

Muchnik like solution to Post’s problem [16] for ORMs: they produce ORM-

enumerable but incomparable sets A,B ⊂ γ that are below the appropriate

notion of jump.

Definition 12.13. Let Pe be the e’th ORM program, the (weak) jump is

the set

0♦ = {e ∈ N | Pe(0) ↓}.
Although neither [16] nor [35] make the following characterisation, it

appears reasonable to argue that the ordinal γ in fact is recognisable by

set theorists as the first Σ1-stable ordinal σ. This is defined to be the

least ordinal σ so that 〈Lσ,∈〉 ≺Σ1 〈V,∈〉, that is, Lσ is an elementary

substructure of the universe of all sets, but only for Σ1 sentences expressible
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using parameters from Lσ. (See [20] p. 412 for an equivalent definition in

terms of ∞-partial recursive functions.) Consequently if any ORM (or

OTM) halts on integer input (or indeed any input less than γ) then the

length of that computation must be also less than σ, as this halting assertion

is itself a simple Σ1-statement in the language of set theory. (Moreover

anything output by such a machine must also clearly be an ordinal less

than σ by the same reasoning.) Hence γ ≤ σ. To see that σ ≤ γ observe

that in the L hierarchy, new Σ1 sentences become true in Lδ for arbitrarily

large ordinals δ < γ. Now given a true Σ1 sentence in the language of set

theory, run an ORM (or OTM) program to search for that ordinal δ, and

then halt. This task must take more than δ (but also less than σ) steps.

Hence σ = γ. One then obtains:

Proposition 12.5. 0♦ is recursively isomorphic to the Σ1-truth set of

〈Lσ,∈〉.
One can compare this with the statement that the standard Turing

halting set is recursively isomorphic to the Σ1-truth set of 〈Lω,∈〉 where
Lω = HF the class of hereditarily finite sets. A similar result holds (with

the appropriate formulations) for OTMs for the same reasons.

12.5. Theoretical Machine Strength

We consider finally the theoretical strengths of the various types of mech-

anisms discussed here. We have answered, in one fashion at least, the

capabilities of the machines in the Malament–Hogarth spacetimes, and the

Etesi–Németi model in particular. It is also clear that the ON-length tape

machines are full ZFC-machines that are capable of producing Gödel’s con-

structible universe.

For the intermediate machine models we have mentioned, one could

simply be satisfied by seeing at which level of complexity the machines can

answer queries concerning predicates. One can however somewhat more

formally, formulate a theory in which the behaviour of the machine can be

represented, and one may then calibrate this theory, not necessarily proof

theoretically, but at least as a theory within other theories, for example as

a subsystem of second order analysis, much as is done in the Reverse Math-

ematics Program (see [50]). The discussion becomes somewhat technical,

but for the logician, interesting.

Towards analysing the ITTMs we first look at connections to certain

kinds of quasi-inductive definitions that were defined earlier, at least in one

form, by Burgess in [5].
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Let Γ : P(ω) → P(ω) be any arithmetic operator (that is ‘n ∈ Γ(X)’

is arithmetic; we emphasise that Γ need be neither monotone nor progres-

sive). We define the following iterates of Γ : Γ0(X) = X ; Γα+1(X) =

Γ(Γα(X)); Γλ(X) = lim infα→λ Γα(X) = ∪α<λ ∩λ>β>α Γβ(X). Follow-

ing [5], we say that Y ⊆ ω is arithmetically quasi-inductive if for some such

Γ, Y is (1-1) reducible toΓOn(∅). Any such definition has a least countable

ξ = ξ(Γ)with Γξ(∅) = ΓOn(∅). If we let ζ denote the supremum of all such

ξ(Γ), then we have that the ζ defined here is none other than the ζ defined

above relating to ITTMs. In fact the ITTMs give an example of a recursive

quasi-inductive operator that is complete for all arithmetic quasi-inductive

operators . (Think: a universal ITTM can be programmed to mimick any

arithmetic quasi-inductive operator.) Hence the same class of sets arises,

it turns out, if one restricts to simply recursive Γ.

For any such arithmetic quasi-inductive operator Γ let us now define

the repeat pair of Γ on a starting set X , as the lexicographically least pair

(ζ(Γ, X),Σ(Γ, X)) with Γζ(X) = ΓΣ(X).

Definition 12.14. AQI is the sentence: ‘For every arithmetic opera-

tor Γ, for every X ⊆ N, there is a wellordering W with a repeat pair

(ζ(Γ, X),Σ(Γ, X)) in Field(W )’. If an arithmetic operator Γ acting on X

has a repeat pair, we say that Γ converges (with input X).

Then AQI can be formulated in second order number theory, and essen-

tially is asserting that there are sufficient wellorderings for every operator

on every input set X to converge. One may ask:

Q: What is the strength of ACA0 + AQI?

(The choice of ACA0, arithmetical comprehension, as a base theory is

somewhat arbitrary. We refer the reader to [50] in what follows for all

notions concerning these axiom systems, and determinacy hypotheses etc.)

We could have equivalently reformulated a version of AQI which mentioned

instead looping points of ITTMs, but this would turn out to be equivalent,

as we have intimated. Π1
3CA0 is sufficient to prove there are β-models of

ACA0 + AQI.

Theorem 12.7. ([58]) (i) Π1
3CA0, ACA0+AQI and Π1

2CA0 are in descending

order of strength in that each theory proves the existence of β-models of the

next.

More precisely, and in the same sense:

(ii) ∆1
3CA0+Σ0

3
-Determinacy, ACA0+ AQI, and ∆1

3CA0 are similarly in

strictly descending order of strength.
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Determinacy makes an appearance here, since this theorem is the out-

come of an attempt to generalise the theorem of Solovay (see [25]) that

strategies for Σ0
2-games appear at the level σ1

1 of the L hierarchy, the closure

ordinal for Σ1
1-monotone inductive definitions. (In turn, as is well known,

strategies for Σ0
1-games appear at ω1 ck the closure ordinal for Π1

1-monotone

inductive definitions. We are thus trying to link AQIs, or ITTMs to strate-

gies for certain infinite games.) Thus AQIs are close to, but not equivalent

to, Σ0
3-Determinacy. That they are stronger than Σ0

2-Determinacy, is be-

cause σ1
1 < ζ. Moreover, letting ‘Bool(Σ0

2)’ denote Boolean combinations of

Σ0
2 sets, the constructible rank of the height of the least β-model of Π1

2CA0

(as shown by Möllerfeld and Heinatsch [19]) where strategies for Bool(Σ0
2)

games are to be found, is less than ζ, and in fact is again a ‘writable’ ordinal

less than λ, in the sense of ITTMs. This shows that the assertion that any

ITTM halts or loops, is stronger than Bool(Σ0
2)-Determinacy.

That ∆1
3CA0 + AQI is stronger than ∆1

3CA0 in the above sense should

be plausible in that the universal ITTM on input ∅ will go into a loop at

the ‘repeat pair’ ordinals ζ and Σ where Lζ ≺Σ2 LΣ. However it is easy to

see from this Σ2-extendability property that any suchLζ is a Σ2-admissible

set (where we now require the admissible set to additionally be a model of

Σ2-Replacement) and is also a union of such. The reals of such a model

then form a β-model of ∆1
3CA0.

Connections to ordinal analysis

The notion of ‘Σ2-extendibility’ of a model, that is of having a proper

Σ2-elementary end extension, would seem prima facie, to be connected to

any attempt to prove a generalisation of Rathjen’s ordinal analysis ([43]) of

Π1
2CA0 that could be lifted to Π1

3CA0. In the former proof, chains of arbi-

trary but finite length of Σ1-end extensions in the constructible hierarchy

of the form Lξ1 ≺Σ1 Lξ1 ≺Σ1 · · · ≺Σ1 Lξn are analysed. (Note that the

least β-model of Π1
2CA0 consists of P(N) ∩ Lξω where ξω is the least ordi-

nal with Lξω a union of an infinite tower of Σ1 substructures.) To analyse

Π1
3CA0 in a similar way would require lifting the ‘1’ above to ‘2’ and looking

at arbitrarily long chains of Σ2-extensions. It would seem then that any

ordinal analysis of Π1
3CA0 would first have to go through an analysis of AQI,

the latter being but the very first step in this linkage.

Σn- or ‘hypermachines.’

The notion of liminf is essentially a two quantifier alternation: ‘there

exists a time such that for all later times...’ . It is possible to enquire

whether there are other types of limit rule that bring about different notions

of computation, or different classes of computable function. One attempt
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to consider this question is a result of [54] which shows that, amongst all

possible Σ2-rules the liminf (or equivalently the limsup) rule is complete,

or the most general. This is entirely unsurprising: if the universal ITTM

machine can produce the constructible hierarchy up to LΣ, there is little

else for it to do. Further any other Σ2-rule would itself produce looping

behaviour between Lζ and LΣ.

One may thus broaden the enquiry and look for more complex rules.

It is possible to develop a Σ3-machine which incorporates a Σ3-limit rule

cf. [14]; the essential idea is that instead of taking a liminf along all or-

dinals one takes a liminf using only those ordinals that already bound

the reappearances of earlier (shifted) snapshots. One thus has in some

sense a dynamic limit rule in that the behaviour at a limit rule depends

more formally on the tapes’ prior contents. One then has the analogous

result that a universal machine program would then have identical snap-

shots at the least pair (ζ(3),Σ(3)) where Lζ(3) ≺Σ3 LΣ(3)to mirror the

earlier λ-ζ-Σ theorem at Σ2. After Σ(3) it then returns to the previous

snapshot at ζ(3) and thereafter repeats forever. It is possible to gener-

alise this to higher quantificational levels Σn with the snapshot/looping

behaviour at the appropriate pair (ζ(n),Σ(n)) lexicographically least with

Lζ(n) ≺Σn
LΣ(n). However showing these facts is more technical, and is

reliant more on the underlying set theory; it thus perhaps has decreasingly

less of an appeal to intuitions concerning machine computation. This is

explained in [14].

ITRMs on integers

The ITRMs of Miller and Koepke (12.2.2.2) with entries restricted to

natural numbers turn out to be pleasantly strong. It is possible show that

such machines are Π1
1-complete, in that for any Π1

1 set A there is a program

on an ITRM, that correctly accepts or rejects n depending on whether n is

or is not in A. It can thus, for example, decide for which indices e the e’th

(standard) Turing function {e} is the characteristic function of a wellorder

or not. Moreover it can be shown that the strength of the machine strictly

increases with the number N of registers. It is possible with 2N registers

to simulate an N register machine, whilst giving as output integer codes of

those programs on N registers that halt. A corollary is that there can be no

such universal machine. Here we let Pe,N denote the e’th ITRM program

for an N register machine.

Definition 12.15. Let ITRM be the axiom scheme that states for each

N ∈ N that halting sets for N -register machines exists:
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‘For any N ∈ N, KN =df {e|Pe,N(~0) ↓} exists’.

One then obtains (with RCA0 as the recursive comprehension scheme):

Theorem 12.8. RCA0 ⊢ ITRM←→ Π1
1CA0.

Reverse mathematics has shown that a wealth of theorems can be proven

in the system Π1
1CA0. As a sample we have the following, in which we

assume the ITRM is equipped with an oracle set Z ⊆ N (and a register

operation to query it):

Theorem 12.9. Let T ⊆ {σ | σ ∈<NN} be a set of sequences which form

a tree. Then if Z ⊆ N codes T (via some recursive coding), the perfect

kernel of T is ITRM-computable in the oracle Z.

(By the perfect kernal we mean the maximal subtree whose branches

form a perfect set, that is without isolated points.) Thus, as with much of

this kind of study, a seemingly simple model in fact turns out to be rather

powerful.
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B. Löwe, B. Piwinger and T. Räsch, Classical and New Paradigms of Com-
putation and their Complexity hierarchies, Papers of the Conference Foun-
dations of the Formal Sciences III, vol. 23, Trends in logic, pp. 223–237.
Kluwer, Dordrecht, (2004).

[56] P. D. Welch, Turing Unbound: The extent of computations in Malament-
Hogarth spacetimes, British J. Philos. Sci. 15(4), 659–674, (2008).

[57] P. D. Welch, Characteristics of discrete transfinite Turing machine mod-
els: halting times, stabilization times, and normal form theorems, Theoret.
Comput. Sci. 410, 426–442, (2009).

[58] P. D. Welch, Weak systems of determinacy and arithmetical quasi-inductive
definitions, arXiv: 0905.4412, to appear in the J. Symbolic Logic. (2010).


	Contents
	Preface
	1. Computation, Information, and the Arrow of Time P. Adriaans & P. van Emde Boas
	1.1. Introduction
	1.2. A Formal Framework: Meta-computational Space
	1.3. Time Symmetries in Meta-computational Space
	1.4. The Interplay of Computation and Information
	1.5. Discussion
	1.6. Conclusion
	References

	2. The Isomorphism Conjecture for NP M. Agrawal
	Contents
	2.1. Introduction
	2.2. Definitions
	2.3. Formulation and Early Investigations
	2.4. A Counter Conjecture and Relativizations
	2.5. The Conjectures for Other Classes
	2.6. The Conjectures for Other Reducibilities
	2.6.1. Restricting the input head movement
	2.6.2. Reducing space
	2.6.3. Reducing depth
	2.6.4. Discussion

	2.7. A New Conjecture
	2.8. Future Directions
	References

	3. The Ershov Hierarchy M. M. Arslanov
	Contents
	3.1. The Hierarchy of Sets
	3.1.1. The finite levels of the Ershov hierarchy
	3.1.2. The properties of productiveness and creativeness on the n-c.e. sets
	3.1.3. The class of the !-c.e. sets
	3.1.4. A description of the  0 2-sets using constructive ordi- nals
	3.1.5. The infinite levels of the Ershov hierarchy
	3.1.6. Levels of the Ershov hierarchy containing Turing jumps

	3.2. The Turing Degrees of the n-c.e. Sets
	3.2.1. The class of the n-c.e. degrees
	3.2.2. The degrees of the n-c.e. sets in the n-CEA hierarchy
	3.2.3. The relative arrangement of the n-c.e. degrees
	3.2.4. The cupping, capping and density properties
	3.2.5. Splitting properties
	3.2.6. Isolated d-c.e. degrees
	3.2.7. A generalization
	3.2.8. Further results and open questions

	References

	4. Complexity and Approximation in Reoptimization G. Ausiello, V. Bonifaci, & B. Escoffer
	Contents
	4.1. Introduction
	4.2. Basic Definitions and Results
	4.3. Reoptimization of NP-hard Optimization Problem
	4.3.1. General properties
	4.3.1.1. Hereditary problems
	4.3.1.2. Unweighted problems
	4.3.1.3. Hardness of reoptimization

	4.3.2. Results on some particular problems
	4.3.2.1. Min Steiner Tree
	4.3.2.2. Scheduling
	4.3.2.3. Max Knapsack


	4.4. Reoptimization of Vehicle Routing Problems
	4.4.1. The Minimum Traveling Salesman Problem
	4.4.1.1. The general case
	4.4.1.2. Minimum Metric TSP
	4.4.1.3. Minimum Asymmetric TSP

	4.4.2. The Maximum Traveling Salesman Problem
	4.4.2.1. Maximum TSP
	4.4.2.2. Maximum Metric TSP

	4.4.3. The Minimum Latency Problem

	4.5. Concluding Remarks
	References

	5. Definability in the Real Universe S. B. Cooper
	Contents
	5.1. Introduction
	5.2. Computability versus Descriptions
	5.3. Turing’s Model and Incomputability
	5.4. The Real Universe as Discipline Problem
	5.5. A Dissenting Voice . . .
	5.6. The Quantum Challenge
	5.7. Schr¨odinger’s Lost States, and the Many-Worlds Interpretation
	5.8. Back in the One World . . .
	5.9. The Challenge from Emergence
	5.10. A Test for Emergence
	5.11. Definability the Key Concept
	5.12. The Challenge of Modelling Mentality
	5.13. Connectionist Models to the Rescue?
	5.14. Definability in What Structure?
	5.15. The Turing Landscape, Causality and Emergence . . .
	5.16. An Informational Universe, and Hartley Rogers’ Programme
	References

	6. HF-Computability Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev
	Contents
	6.1. Introduction
	6.2. HF-Logic
	6.3.  -Subsets on Hereditarily Finite Superstructures
	6.4. Reducibilities on Hereditarily Finite Superstructures
	6.5. Descriptive Properties on Hereditarily Finite Superstructures
	6.6.  -Definability of Structures
	6.6.1.  -Definability on structures: general properties
	6.6.2.  -Definability on special structures
	6.6.3. Special cases of  -definability

	6.7. Semilattices of Degrees of Presentability of Structures
	6.8. Closely Related Approaches to Generalized Computability
	6.8.1. BSS-computability
	6.8.2. Search computability
	6.8.3. Montague computability

	6.9. KPU. Examples of Admissible Structures
	6.9.1. Elements of KPU
	6.9.2.  -subsets
	6.9.3. Gandy’s Theorem

	Acknowledgements
	References

	7. The Mathematics of Computing between Logic and Physics G. Longo & T. Paul
	Contents
	7.1. Introduction
	7.2. Computability and Continuity
	7.3. Mathematical Computability and the Reality of Physics
	7.4. From the Principle of Least Action to the Quantum Theory of Fields
	7.5. Chaotic Determinism and Predictability
	7.6. Return to Computability in Mathematics
	7.7. Non-determinism?
	7.8. The Case of Quantum Mechanics
	7.9. Randomness, Between Unpredictability and Chaos
	7.10. General Conclusions
	Acknowledgements
	References

	8. Liquid State Machines: Motivation, Theory, and Applications W. Maass
	Contents
	8.1. Introduction
	8.2. Why Turing Machines are Not Useful for Many Important Computational Tasks
	8.3. Formal Definition and Theory of Liquid State Machines
	8.4. Applications
	8.5. Discussion
	Acknowledgements
	References

	9. Experiments on an Internal Approach to Typed Algorithms in Analysis D. Normann
	Contents
	9.1. Introduction
	9.1.1. Classical computability theory
	9.1.2. Generalizing computability theory
	9.1.3. Generalizing finiteness
	9.1.4. Computability at higher types

	9.2. Computational Analysis
	9.2.1. Type two enumerability
	9.2.2. Domain representability
	9.2.3. Quotients of countably based spaces
	9.2.4. A purely internal approach?

	9.3. Some Typed Hierarchies of Limit Spaces
	9.3.1. Total versus partial functionals
	9.3.2. The problem with density
	9.3.3. Probabilistic projections

	9.4. Domain Representations and Density
	Acknowledgements
	References

	10. Recursive Functions: An Archeological Look P. Odifreddi
	Contents
	10.1. Types of Recursion
	10.1.1. Iteration
	10.1.2. Primitive recursion
	10.1.3. Primitive recursion with parameters
	10.1.4. Course-of-value recursion

	10.2. The First Recursion Theorem
	10.2.1. Differentiable functions
	10.2.2. Contractions
	10.2.3. Continuous functions

	10.3. The Second Recursion Theorem
	10.3.1. The diagonal method
	10.3.2. The diagonal
	10.3.3. The switching function
	10.3.4. Selfreference

	References

	11. Reverse Mathematics and Well-ordering Principles M. Rathjen & A. Weiermann
	Contents
	11.1. Introduction
	11.2. The Ordering 'X0
	11.4. Main Theorem
	11.4.1. Deduction chains in !-logic
	11.4.2. The infinitary calculus  1 1-CRQ 1

	11.5. Ramified Analysis RA1
	11.5.1. Finishing the proof of the main theorem

	11.6. Finishing the Proof of Theorem 11.1.3
	11.7. Prospectus
	References

	12. Discrete Transfinite Computation Models P. D. Welch
	Contents
	12.1. Introduction
	12.1.1. The contents
	12.1.2. Argument

	12.2. Computation on Integers
	12.2.1. Transcending the finite through stacking Turing ma- chines
	12.2.1.1. General relativistic models: Malament–Hogarth Spacetimes
	12.2.1.2. Etesi & N´emeti’s rotating black hole model
	12.2.1.3. Hogarth’s arithmetically deciding spacetime regions
	12.2.1.4. A universal constant upper bound for any computation

	12.2.2. Allowing supertasks
	12.2.2.1. Punch-hole machines
	12.2.2.2. Infinite Time Register Machines (ITRMs)
	12.2.2.3. Infinite Time Turing Machines (ITTMs)


	12.3. Computation on Reals
	12.3.1. ITTM computations on reals

	12.4. Computation on Ordinals, and Ordinal Length Machines
	12.4.1. Ordinal length tapes
	12.4.1.1.  -length tapes

	12.4.2. Ordinal Register Machines

	12.5. Theoretical Machine Strength
	Acknowledgements
	References


