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Preface

Computability has played a crucial role in mathematics and computer sci-
ence — leading to the discovery, understanding and classification of decid-
able/undecidable problems, paving the way to the modern computer era
and affecting deeply our view of the world. Recent new paradigms of com-
putation, based on biological and physical models, address in a radically
new way questions of efficiency and even challenge assumptions about the
so-called Turing barrier.

This book addresses various aspects of the ways computability and the-
oretical computer science enable scientists and philosophers to deal with
mathematical and real world issues, ranging through problems related to
logic, mathematics, physical processes, real computation and learning the-
ory. At the same time it focuses on different ways in which computability
emerges from the real world, and how this affects our way of thinking about
everyday computational issues.

But the title Computability in Context has been carefully chosen.
The contributions to be found here are not strictly speaking ‘applied
computability’. The literature directly addressing everyday computational
questions has grown hugely since the days of Turing and the computer
pioneers. The Computability in Furope conference series and association is
built on the recognition of the complementary role that mathematics and
fundamental science plays in progressing practical work; and, at the same
time, of the vital importance of a sense of context of basic research. This
book positions itself at the interface between applied and fundamental re-
search, prioritising mathematical approaches to computational barriers.

For us, the conference Computability in Europe 2007: Computation and
Logic in the Real World was a hugely exciting — and taxing — experience.
It brought together a remarkable assembly of speakers, and a level of par-
ticipation around issues of computability that would surely have astounded
Turing and those other early pioneers of ‘computing with understanding’.
All of the contributions here come from invited plenary speakers or Pro-
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gramme Committee members of CiE 2007. Many of these articles are likely
to become key contributions to the literature of computability and its real-
world significance. The authors are all world leaders in their fields, all much
in demand as speakers and writers. As editors, we very much appreciate
their work.

Barry Cooper and Andrea Sorbi
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Chapter 1

Computation, Information, and the Arrow of Time

Pieter Adriaans & Peter van Emde Boas

Adriaans ADZA Beheer B.V., and
FNWI, University of Amsterdam,
1098 XG Amsterdam, The Netherlands

E-mail: pieter@pieter-adriaans.com

Bronstee.com B.V., Heemstede, and
ILLC, FNWI, University of Amsterdam
1090 GE Amsterdam, The Netherlands

E-mail: peter@bronstee.com

In this chapter we investigate the relation between information and com-
putation under time symmetry. We show that there is a class of non-
deterministic automata, the quasi-reversible automata (QRTM), that is
the class of classical deterministic Turing machines operating in negative
time, and that computes all the languages in NP. The class QRTM is
isomorphic to the class of standard deterministic Turing machines TM,
in the sense that for every M € TM there is a M ™! in QRTM such
that each computation on M is mirrored by a computation on M 1
with the arrow of time reversed. This suggests that non-deterministic
computing might be more aptly described as deterministic computing
in negative time. If M; is deterministic then MZ-_1 is non deterministic.
If M is information discarding then M ™' “creates” information. The
two fundamental complexities involved in a deterministic computation
are Program Complexity and Program Counter Complexity. Programs
can be classified in terms of their “information signature” with pure
counting programs and pure information discarding programs as two
ends of the spectrum. The chapter provides a formal basis for a further
analysis of such diverse domains as learning, creative processes, growth,
and the study of the interaction between computational processes and
thermodynamics.
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1.1. Introduction

The motivation behind this research is expressed in a childhood memory of
one of the authors: “When I was a toddler my father was an enthusiastic
8-mm movie amateur. The events captured in these movies belong to my
most vivid memories. One of the things that fascinated me utterly was the
fact that you could reverse the time. In my favorite movie I was eating a
plate of French fries. When played forward one saw the fries vanish in my
mouth one by one, but when played backward a miracle happened. Like a
magician pulling a rabbit out of a hat I was pulling undamaged fries out
of my mouth. The destruction of fries in positive time was associated with
the creation of fries in negative time.”

This is a nice example of the kind of models we have been discussing
when we were working on the research for this paper. It deals with com-
putation and the growth and destruction of information. Deterministic
computation seems to be incapable of creating new information. In fact
most recursive functions are non-reversible. They discard information. If
one makes a calculation like a + b = ¢ then the input contains roughly
(loga + logb) bits of information whereas the answer contains log(a + b)
bits which is in general much less. Somewhere in the process of transform-
ing the input to the output we have lost bits. The amount of information
we have lost is exactly the information needed to separate ¢ in to a and b.
There are many ways to select two numbers a and b that add up to ¢. So
there are many inputs that could create the output. The information about
the exact history of the computation is discarded by the algorithm. This
leaves us with an interesting question: If there is so much information in
the world and computation does not generate information, then where does
the information come from?

Things get more fascinating if we consider the Turing machine version
of the French fries example above. Suppose we make a Turing machine
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that only erases its input and we make a movie of its execution and play
it backward. What would we see? We see a machine creating information
out of nothing, just the same way the toddler in the reversed movie was
pulling neat French fries out of his mouth. So also in this case, if we reverse
the arrow of time, destruction of information becomes creation and vice
versa. In previous papers the first author has investigated the relation
between learning and data compression ([2, 4]). Here we are interested in
the converse problem: How do data-sets from which we can learn something
emerge in the world? What processes grow information?

There is a class of deterministic processes that discard or destroy in-
formation. Examples are: simple erasure of bits, (lossy) data compression,
and learning. There is another class of processes that seems to create infor-
mation: coin flipping, growth, evolution. In general, stochastic processes
create information, exactly because we are uncertain of their future, and
deterministic processes discard information, precisely because the future
of the process is known. The basic paradigm of a stochastic information
generating process is coin flipping. If we flip a coin in such a way that the
probability of heads is equal to the probability of tails, and we note the
results as a binary string, then with high probability this string is random
and incompressible. The string will then have maximal Kolmogorov com-
plexity, i.e. a program that generates the string on a computer will be at
least as long as the string itself ([8]). On the other hand if we generate a
string by means of a simple deterministic program (say “For x = 1 to k
print("1")”) then the string is highly compressible and by definition has
a low Kolmogorov complexity which approximates log k for large enough k.
In the light of these observations one could formulate the following research
question: Given the fact that creation and destruction of information seem
to be symmetrical over the time axis, could one develop a time-invariant
description of computational processes for which creation of information
1s the same process as destruction of information with the time arrow re-
versed? A more concise version of the same question is: Are destruction
and creation of information computationally symmetrical in time? The
main part of this paper is dedicated to a positive answer to this question.

Prima facie it seems that we compute to get new information. So if
we want to know what the exact value of 10! is, then the answer 3628800
really contains information for us. It tells us something we did not know.
We also have the intuition, that the harder it is to compute a function, the
more value (i.e. information) the answer contains. So 10! in a way contains
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more information than 102. Yet from a mathematical point of view 10! and
3628800 are just different descriptions of the same number. The situation
becomes even more intriguing if we turn our intention to the simulation of
processes on a computer that really seem to create new information like
the growth of a tree, game playing, or the execution of a genetic algorithm.
What is happening here if computation cannot generate information? What
is the exact relation between information generating processes that we find
in our world and our abstract models of computation?

In most curricula, theories about information and computation are
treated in isolation. That is probably the reason why the rather funda-
mental question studied in this paper up till now has received little at-
tention in computer science: What is the interaction between information
and computation? Samson Abramsky has posed this question in a recent
publication with some urgency (without offering a definitive answer): We
compute in order to gain information, but how is this possible logically or
thermodynamically? How can it be reconciled with the point of view of In-
formation Theory? How does information increase appear in the various
extant theories? ([1], p. 487). Below we will formulate a partial answer
to this question by means of an analysis of time invariant descriptions of
computational processes.

1.2. A Formal Framework: Meta-computational Space

In order to study the interplay between entropy, information, and compu-
tation we need to develop a formal framework. For this purpose we develop
the notion of meta-computational space in this section: formally, the space
of the graphs of all possible computations of all possible Turing machines.
The physical equivalent would be the space of all possible histories of all
possible universes.

C(z) will be the classical Kolmogorov complexity of a binary string z,
i.e. the length of the shortest program p that computes z on a reference
universal Turing machine U. Given the correspondence between natural
numbers and binary strings, M consists of an enumeration of all possible
self-delimiting programs for a preselected arbitrary universal Turing ma-
chine U. Let = be an arbitrary bit string. The shortest program that
produces x on U is z* = argminyem(U(M) = x) and the Kolmogorov
complexity of x is C'(x) = |z*|. The conditional Kolmogorov complexity of
a string x given a string y is C'(z]y), this can be interpreted as the length
of a program for z given input y. A string is defined to be random if
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C(z) > |z|. I(z) is the classical integer complexity function that assigns to
each integer = another integer C(z) [8].

We will follow the standard textbook of Hopcroft, Motwani, and Ullman
for the basic definitions ([7]). A Turing machine (TM) is described by a
7-tuple

M = (Q327F367q07BvF)'

Here, as usual, @ is the finite set of states, X is the finite set of input symbols
with ¥ C T', where I' is the complete set of tape symbols, § is a transition
function such that 6(q, X) = (p,Y, D), if it is defined, where p € @Q is the
next state, X € I is the symbol read in the cell being scanned, Y € I is
the symbol written in the cell being scanned, D € {L, R} is the direction
of the move, either left or right, gy € @ is the start state, B € I' — X is the
blank default symbol on the tape, and F' C @ is the set of accepting states.
A move of a TM is determined by the current content of the cell that is
scanned and the state the machine is in. It consists of three parts:

(1) Change state;
(2) Write a tape symbol in the current cell;
(3) Move the read-write head to the tape cell on the left or right.

A non-deterministic Turing machine (NTM) is equal to a deterministic
TM with the exception that the range of the transition function consists of
sets of triples:

6(q7X) = {(p17Y17D1)7 (p27Y27D2)7 ceey (pkaYkaDk)}

A TM is a reversible Turing machine (RTM) if the transition function
d(q,X) = (p,Y, D) is one-to-one, with the additional constraint that the
movement D of the read-write head is uniquely determined by the target
state p.

Definition 1.1. An Instantaneous Description (ID) of a TM during its
execution is a string X7 Xs...X;-1¢X;X;+1...X,, in which ¢ is the state
of the TM, the tape head is scanning the i-th head from the left,
X1 X5...X,, is the portion of the tape between the leftmost and the rightmost
blank. Given an Instantaneous Description X7 Xs...X;_1¢X; X;41...X,, it
will be useful to define an Extensional Instantaneous Description (EID)
X1X5..X;-1X; X;41...X,, that only looks at the content of the tape and
ignores the internal state of the machine and an Intensional Instantaneous
Description (IID) ¢X;D, that only looks at the content of the current cell
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of the tape, the internal state of the machine, and the direction D in which
the head will move.

We make the jump from an object- to a meta-level of descriptions of
computations by means of considering the set of all possible transitions
between instantaneous descriptions.

Definition 1.2. Let < ZDy;, > be the configuration graph of all possible
transformations of a machine M, i.e. ZD); is the countable set of all
possible instantaneous descriptions and for ID; ; € ZD -

ID; Fa ID;

if and only if TM can reach ID; in one move from ID;. ID,, is reachable
from ID; iff there exists a sequence of transformations from one to the
other:

(ID; Vi IDy,) < ID; Fap ID; Fap IDg.. 1D, by ID,,,.

The intensional description of such a transformation will be: (IID; 3%,
I1D,,). The extensional description will be: (EID; 5, EID,,).

Note that two machines can perform computations that are extensionally
isomorphic without intensional isomorphism and vice versa. We refer here
to transformations rather than computations since, in most cases, only
a subpart of the configuration graph represents valid computations that
begin with a start state and end in an accepting state. Note that the class
of all possible instantaneous descriptions for a certain machine contains
for each possible tape configuration, at each possible position of the head
on the tape, an instance for each possible internal state. Most of these
configurations will only be the result, or lead to, fragments of computations.
On the other hand, all valid computations that begin with a start state and
either continue forever or end in an accepting state, will be represented in
the configuration graph.

Note that there is a strict relation between the structure of the transi-
tion function ¢ and the configuration graph: For a deterministic machine
the configuration graph has only one outgoing edge for each configuration,
for a non-deterministic machine the configuration graph can have multiple
outgoing edges per ID, for a reversible machine the graph consists only of
a number of linear paths without bifurcations either way.

Lemma 1.1. Let M be a Turing machine. We have C(< IDp,Fa>) <
C(M)+ 0O(1).
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Proof. Given M the graph < ZD s, Far> can be constructed by the fol-
lowing algorithm: Create ZD); by enumerating the language of all possible
IDs, at each step of this process run M for one step on all IDs created so
far and add appropriate edges to s when M transforms ID; in ID;. 0O

The finite object M and the infinite object < ZDps, s> identify the
same structure. We use here two variants of the Kolmogorov complexity:
The complexity of the finite object M is defined by the smallest program
that computes the object on a universal Turing machine and then halts; the
complexity of < ZDps,Far> is given by the shortest program that creates
the object in an infinite run.

Definition 1.3. Given an enumeration of Turing machines the meta-
computational space is defined as the disjunct sum of all configuration
graphs < IDyy,,bar, > for i € N.

The meta-computational space is a very rich object in which we can
study a number of fundamental questions concerning the interaction be-
tween information and computation. We can also restrict ourselves to the
study of either extensional or intensional descriptions of computations and
this will prove useful, e.g. when we want to study the class of all compu-
tational histories that have descriptions with isomorphic pre- or suffixes.
For the moment we want to concentrate on time symmetries in meta-
computational space.

1.3. Time Symmetries in Meta-computational Space

In this paragraph we study the fact that some well-known classes of compu-
tational processes can be interpreted as each others’ symmetrical images in
time, i.e. processes in one class can be described as processes in the other
class with the time arrow reversed, or, to say it differently, as processes tak-
ing place in negative time. We can reverse the time arrow for all possible
computations of a certain machine by means of reversing all the edges in
the computational graph. This motivates the following notation:

Definition 1.4.

(ID; V* IDy) < (IDy * ID;).
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The analysis of valid computations of TM can now be lifted to the
study of reachability in the configuration graph. The introduction of such
a meta-computational model allows us to study a much more general class of
computations in which the arrow of time can be reversed. We will introduce
the following shorthand notation that allows us to say that A/ ! is the same
machine as M with the arrow of time reversed:

M =< IDy,Fy>a M~ =< IDy, Hyr> .

Intuitively the class of languages that is “computed” in negative time by a
certain Turing machine is the class of accepting tape configurations that can
be reached from a start state. We have to stress however, that moving back
in time in the configuration graph describes a process that is fundamentally
different from the standard notion of “computation” as we know it. We give
some differences:

e The standard definition of a Turing machine knows only one starting
state and possibly several accepting states. Computing in negative time
will trace back from several accepting states to one start state.

e The interpretation of the §-function or relation is different. In positive
time we use the d-function to decide which action to take given a certain
state-symbol combination. In negative time this situation is reversed:
We use the d-function to decide which state-symbol-move combination
could have led to a certain action.

e At the start of a computation there could be a lot of rubbish on the
tape that is simply not used during the computation. All computations
starting with arbitrary rubbish are in the configuration graph. We
want to exclude these from our definitions and stick to some minimal
definition of the input of a computation in negative time.

In order to overcome these difficulties the following lemma will be useful:

Lemma 1.2. (Minimal Input-Output Reconstruction) If an inten-
sional description of a fragment of a (deterministic or non-deterministic)
computation of a machine M: (IID; 4, IID,,) can be interpreted as the
trace of a valid computation then there erist ¢ minimal input configuration
ID; and a minimal output configuration I D,, for which M will reach ID,,
starting at ID;. Otherwise the minimal input and output configuration are
undefined.

Proof. The proof first gives a construction for the minimal output in a
positive sweep and then the minimal input in a negative sweep.
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Positive sweep: Note that (IID; %, I1D,,) consists of a sequence of
descriptions: ¢; X;D; F q¢i+1Xiy1Di+1 F ... b ¢ XDy, Reconstruct a
computation in the following way: Start with an infinite tape for which all
of the symbols are unknown. Position the read-write head at an arbitrary
cell and perform the following interpretation operation: Interpret this as
the state-symbol-move configuration ¢; X;D;. Now we know the contents of
the cell X, the state ¢;, and the direction D of the move of the read-write
head. The action will consist of writing a symbol in the current cell and
moving the read-write head left or right. Perform this action. The content
of one cell is now fixed. Now there are two possibilities:

(1) We have the read-write head in a new cell with unknown content. From
the intensional description we know that the state-symbol combination
is ¢i+1Xi+1Dit1, so we can repeat the interpretation operation for the
new cell.

(2) We have visited this cell before in our reconstruction and it already
contains a symbol. From the intensional description we know that the
state-symbol combination should be ¢;41X;4+1D;41. If this is inconsis-
tent with the content of the current cell, the reconstruction stops and
the minimal output is undefined. If not, we can repeat the interpreta-
tion operation for the new cell.

Repeat this operation till the intensional description is exhausted. Cells
on the tape that still have unknown content have not been visited by the
computational process: We may consider them to contain blanks. We now
have the minimal output configuration on the tape ID,,.

Negative sweep: start with the minimal output configuration I D,,. We
know the current location of the read-write head and the content of the cell.
From the intensional description (II1D; %, I1D,,) we know which state-
symbol combination ¢, X, Dy, has led to ID,,: from this we can construct
ID,,_1. Repeat this process till the intensional description is exhausted
and we read ID;, which is the minimal input configuration. O

Lemma 1.2 gives us a way to tame the richness of the configuration
graphs: We can restrict ourselves to the study of computational processes
that are intensionally equivalent, specifically intensionally equivalent pro-
cesses that start with a starting state and end in an accepting state. This
facilitates the following definition:
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Definition 1.5. If (IID; +3}, IID,,) is an intensional description of a
computation then

INPUT(IID; 3, I1Dy,) = x
gives the minimal input x and
QUTPUT(IID; F3; IID,,) =y

gives the minimal output y. With some abuse of notation we will also apply
these functions to histories of full IDs.

Definition 1.6. Given a Turing machine M the language recognized by its
counterpart M ! in negative time is the set of minimal output configura-
tions associated with intensional descriptions of computations on M that
begin in a start state and end in an accepting state.

Definition 1.7. The class P! is the class of languages that are recognized
by an M{l with ¢ € N in time polynomial to the length of minimal input
configuration.

Note that, after a time reversal operation, the graph of a deterministic
machine is transformed into a specific non-deterministic graph with the
characteristic that each ID has only one incoming edge. We will refer
to such a model of computation as quasi-reversible. The essence of this
analysis is that, given a specific machine M, we can study its behavior
under reversal of the arrow of time.

We can use the symmetry between deterministic and quasi-reversible
computing in proofs. Whatever we prove about the execution of a program
on M also holds for M ~! with the time reversed and vice versa.

Let QRT M be the class of quasi-reversible non-deterministic machines
that are the mirror image in time of the class of deterministic machines
TM, and QRP be the class of languages that can be recognized by QRT M
in polynomial time. The lemma below is at first sight quite surprising. The
class of languages that we can recognize non-deterministically in polynomial
time is the same class as the class of polynomial quasi-reversible languages:

Lemma 1.3. The class Lorp of languages recognized by a QRT M in poly-
nomial time is NP.

Proof. 1) Lorp € NP: The class of languages recognized by quasi-
reversible machines is a subclass of the class of languages recognized by
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non-deterministic machines. This is trivial since there is a non-deterministic
machine that produces any {0, 1}<F in time k.

2) NP C Lgrp: The class NP is defined in a standard way in terms of
a checking relation R C ¥* x X7 for some finite alphabets ¥* and ¥7. We
associate with each such relation R a language Lr over ¥* UXT U# defined
by

Lr = {w#y|R(w,y)}

where the symbol # is not in ¥. We say that R is polynomial-time iff
Lr € P. Now we define the class NP of languages by the condition that
a language L over % is in NP iff there is £ € N and a polynomial-time
checking relation R such that for all w € ¥*,

we L+ 3y(yl < wl* & R(w,y))

where |w| and |y| denote the lengths of w and y, respectively. Suppose
that M implements a polynomial-time checking relation for R. Adapt M
to form M’ that takes R(w,y) as input and erases y from the tape after
checking the relation, the transformation of M to M ~! is polynomial. The
corresponding QRTM M’~! will start with guessing a value for y non-
deterministically and will finish in a configuration for which the relation
R(w, y) holds in polynomial time since |y| < |w|* and the checking relation
R is polynomial. O

We can formulate the following result:

Theorem 1.1. NP = P!

Proof. Immediate consequence of Lemma 1.3 and Definition 1.7. (]

NP is the class of languages that can be recognized by deterministic
Turing machines in negative time. This shows that quasi-reversible com-
puting is in a way a more natural model of non-deterministic computing
than the classical full-blown non-deterministic model. The additional power
is unnecessary.

1.4. The Interplay of Computation and Information

We now look at the interplay between information and computation. The
tool we use will be the study of the changes in C(ID;), i.e. changes in the
Kolmogorov complexity of instantaneous descriptions over time. We make
some observations:
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If ID; Fpr ID; then the information distance between the instanta-
neous descriptions ID; and ID; is logk + 1 at most where k is the
number of internal states of M.

If EFID; by EID; then the information distance between the exten-
sional descriptions EID; and EID; is 1 bit at most.

If IID; =y 11D; then the information distance between the intensional
descriptions I1D; and I1D; is log k 4 2 at most where k is the number
of internal states of M.

Let = be the minimal input of a computational fragment (IID; +3,
I1D,,) and let y be the minimal output. We have

C(z|IID; V3 IIDy,) = C(y|IID; Fyy 11D,,) = O(1).
This is an immediate consequence of Lemma 1.2.

We can now identify some interesting typical machines:

e No machine can produce information faster than 1 bit per computa-

tional step. There is indeed a non-deterministic machine that reaches
this “speed”: the non-deterministic “coin-flip” automaton that writes
random bits. For such an automaton we have with high probability
C(ID:) =~ t. In negative time this machine is the maximal eraser. It
erases information with the maximum “speed” of 1 bit per computa-
tional step.

A unary counting machine produces information with a maximum
speed of logt. Note that C(t) = I(t), i.e. the complexity at time ¢
is equal to the value of the integer complexity function. The function
I(x) has indefinite “dips” in complexity, i.e. at those places where it
approaches a highly compressible number. When ¢ approaches such a
dip the information produced by a unary counting machine will drop
as the machine continues to write bits. The counter part of the unary
counter in negative time is the unary eraser. It erases information with
the maximal speed of log ¢, although at times it will create information
by erasing bits.

The slowest information producer for its size is the busy-beaver func-
tion. When it is finished it will have written an enormous number of
bits with a conditional complexity of O(1). Its counterpart in nega-
tive time will be a busy-glutton automaton that “eats” an enormous
number of bits of an exact size.
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These insights allow us to draw a picture that tells us how information
and computation are intertwined in a deterministic process.

i log t (upperbound of conditional complexity given 1D, and M at t=0)
——— -log (a —t) (upperbound of conditional complexity at t=a)

........... C{t]1D, , M) (actual Kolmogorov complexity given the total computation )
______ log (t — i) (upperbound of conditional complexity given ID, and M at t=i)
— C(L]1D;, M) (actual Kolmogorov complexily given Lhe compulation lrom i)
T C(ID,) (Kolmogorov complexity of the tape configuration over time)

Figure 1.1. Schematic representation of the various types of complexity estimates in-
volved in a deterministic computation.

The complexity of the history of a computation is related to the com-
plexity of the input given the output. There are two forms of complexity
involved in a deterministic computation:

e Program Complexity: This is the complexity of the input and its sub-
sequent configurations during the process. It cannot grow during the
computation. Most computations reduce program complexity.

e Program Counter Complexity: This is the descriptive complexity of
the program counter during the execution of the process. It is 0 at the
beginning, grows to loga in the middle, and reduces to 0 again at the
end of the computation.
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The relationship between these forms of complexity is given by the following
theorem:

Theorem 1.2. (Information exchange in Deterministic Comput-
ing) Suppose M is a deterministic machine and ID; & ID, is a fragment
of an accepting computation, where ID,, contains an accepting state. For
every i < k < a we have:

(1) Determinism: C(IDitp+1 Far IDg|M,IDitvy) = O(1), ie. at any
moment of time if we have the present configuration and the definition
of M then the future of the computation is known.

(2) Program Counter Complexity from the start: C(ID{IDo,M) <
(logk) + O(1), this constraint is known during the computation.

(8) Program Counter Complezity from the end: C(ID¢|IDgy, M) < (loga—
k) 4+ O(1), this constraint is not known during the computation.

(4) Program complezity:

C((IID;yr b3y IIDG)| M) = C(INPUT(IID; i, Fiy I1D,)| M) + O(1).
Proof.

(1) Trivial, since M is deterministic.

(2) Any state I Dy at time k can be identified by information of size logk
if the initial configuration and M are known.

(3) Any state I Dy, at time k can be identified by information of size log(a—
k) if the total description of the accepting computational process and
M are known.

(4) By the fact that the computation is deterministic it can be recon-
structed from the minimal input, given M. By Lemma 1.2, given M,
the minimal input can be reconstructed from (I1D; 3, I1D,). This

gives the equality modulo O(1). 0

We cannot prove such a nice equality for the minimal output. Note that
even if the following inequality holds:

C((IID; Fyy IIDG)|M) > C((ITDjyx By T1DG)|M) + O(1)
this does not imply that:
C(OUTPUT(IID; 3, I11D,)|M) > C(OUTPUT(II D,y F3y I1D,)|M)+0O(1).

As a counterexample, observe that a program that erases a random string
has a string of blanks as minimal output. A longer string still can have a
lower Kolmogorov complexity.
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In computations that use counters, Program Complexity and Program
Counter Complexity are mixed up during the execution. In fact one can
characterize various types of computations by means of their “information
signature”. Informally, at extremes of the spectrum, one could distinguish:

e Pure Information Discarding Processes: in such processes the program
counter does not play any role. They reach an accepting state by means
of systematically reducing the input. Summation of a set of numbers,
or erasing of a string are examples.

e Pure Counting Processes: For x=1 to i write("1"): The condi-
tional complexity of the tape configuration grows from 0 to logs and
then diminishes to 0 again.

e Pure Search Processes: In such processes the input is not reduced but
is kept available during the whole process. The information in the
program counter is used to explore the search space. Standard decision
procedures for NP-hard programs, where the checking function is tested
on an enumeration of all possible solutions, are an example.

A deeper analysis of various information signatures of computational pro-
cesses and their consequences for complexity theory is a subject of future
work.

1.5. Discussion

We can draw some conclusions and formulate some observations on the
basis of the analysis given above.

1) Erasing and creating information are indeed, as suggested in the
introduction, from a time invariant computational point of view the same
processes: The quasi-reversible machine that is associated with a simple de-
terministic machine that erases information is a non-deterministic machine
writing arbitrary bit-strings on the tape. This symmetry also implies that
creation of information in positive time involves destruction of information
in negative time.

2) The class of quasi-reversible machines indeed describes the class of
data-sets from which we can learn something in the following way: If L is
the language accepted by M then M ~! generates L. M~! is an informer
for L in the sense of [6], every sentence in L will be non-deterministically
produced by M~! in the limit. QRTM is the class of all informers for
type-0 languages.
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3) These insights suggests that we can describe stochastic processes in
the real world as deterministic processes in negative time: e.g. throwing a
dice in positive time is erasing information about its “future” in negative
time, the evolution of species in positive time could be described as the
“deterministic” computation of their ancestor in negative time. A necessary
condition for the description of such growth processes as computational
processes is that the number of bits that can be produced per time unit is
restricted. A stochastic interpretation of a QRTM can easily be developed
by assigning a set of probabilities to each split in the ¢ relation. The
resulting stochastic-QRTM is a sufficient statistic for the data-sets that are
generated.

4) The characterization of the class NP in terms of quasi-reversible com-
puting seems to be more moderate than the classical description in terms
of full non-deterministic computing. The full power of non-deterministic
computing is never realized in a system with only one time direction.

5) Processes like game playing and genetic algorithms seem to be meta-
computational processes in which non-deterministic processes (throwing a
dice, adding mutations) seem to be intertwined with deterministic phases
(making moves, checking the fitness function).

6) Time-symmetry has consequences for some philosophical positions.
The idea that the evolution of our universe can be described as a determin-
istic computational process has been proposed by several authors (Zuse,
Bostrom, Schmidthuber, Wolfram [10], Lloyd [9], etc.). Nowadays it is re-
ferred to as pancomputationalism [5]. If deterministic computation is an
information discarding process then it implies that the amount of informa-
tion in the universe rapidly decreases. This contradicts the second law of
thermodynamics. On the other hand, if the universe evolves in a quasi-
reversible way, selecting possible configurations according to some quasi-
reversible computational model, it computes the Big Bang in negative time.
The exact implications of these observations can only be explained by means
of the notion of facticity [3], but that is another discussion. The concept of
quasi-reversible computing seems to be relevant for these discussions [2].

1.6. Conclusion

Computing is moving through meta-computational space. For a fixed Tur-
ing machine M; such movement is confined to one local infinite graph
< IDpg > If M; is deterministic then M[l is non-deterministic.
If M is information discarding then M~! “creates” information. The two
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fundamental complexities involved in a deterministic computation are Pro-
gram Complexity and Program Counter Complexity. Programs can be
classified in terms of their “information signature” with pure counting pro-
grams and pure information discarding programs as two ends of the spec-
trum. The class NP is simply the class of polynomial deterministic time
calculations in negative time. Thinking in terms of meta-computational
space allows us to conceptualize computation as movement in a certain
space and is thus a source of new intuitions to study computation. Specif-
ically a deeper analysis of various information signatures of computational
(and other) processes is a promising subject for further study.
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In this chapter, we survey the arguments and known results for and
against the Isomorphism Conjecture.
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2.1. Introduction

The Isomorphism Conjecture for the class NP states that all polynomial-
time many-one complete sets for NP are polynomial-time isomorphic to each
other. It was made by Berman and Hartmanis [21]?, inspired in part by
a corresponding result in computability theory for computably enumerable
sets [50], and in part by the observation that all the existing NP-complete
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2The conjecture is also referred as Berman—Hartmanis Conjecture after the proposers.
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sets known at the time were indeed polynomial-time isomorphic to each
other. This conjecture has attracted a lot of attention because it predicts
a very strong structure of the class of NP-complete sets, one of the funda-
mental classes in complexity theory.

After an initial period in which it was believed to be true, Joseph and
Young [40] raised serious doubts against the conjecture based on the notion
of one-way functions. This was followed by investigation of the conjecture
in relativized worlds [27, 33, 46] which, on the whole, also suggested that
the conjecture may be false. However, disproving the conjecture using one-
way functions, or proving it, remained very hard (either implies DP # NP).
Hence research progressed in three distinct directions from here.

The first direction was to investigate the conjecture for complete degrees
of classes bigger than NP. Partial results were obtained for classes EXP and
NEXP [20, 29].

The second direction was to investigate the conjecture for degrees other
than complete degrees. For degrees within the 2-truth-table-complete degree
of EXP, both possible answers to the conjecture were found [41, 43, 44].

The third direction was to investigate the conjecture for reducibilities
weaker than polynomial-time. For several such reducibilities it was found
that the isomorphism conjecture, or something close to it, is true [1, 2, 8, 16].

These results, especially from the third direction, suggest that the Iso-
morphism Conjecture for the class NP may be true contrary to the evidence
from the relativized world. A recent work [13] shows that if all one-way
functions satisfy a certain property then a non-uniform version of the con-
jecture is true.

An excellent survey of the conjecture and results related to the first two
directions is in [45].

2.2. Definitions

In this section, we define most of the notions that we will need.

We fix the alphabet to ¥ = {0,1}. ¥* denotes the set of all finite strings
over X and X" denotes the set of strings of size n. We start with defining
the types of functions we use.

Definition 2.1. Let r be a resource bound on Turing machines. Function
f, [ X% = X* is r-computable if there exists a Turing machine (TM, in
short) M working within resource bound of r that computes f. We also
refer to f as an r-function.
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Function f is size-increasing if for every z, |f(x)| > |z|. f is honest if
there exists a polynomial p(-) such that for every z, p(|f(z)|) > |z|.

For function f, f~! denotes a function satisfying the property that
for all z, f(f~1(f(x))) = f(x). We say f is r-invertible if some f~! is
r-computable.

For function f, its range is denoted as: range(f) = {y | (3z) f(z) = y}.

We will be primarily interested in the resource bound of polynomial-
time, and abbreviate it as p. We now define several notions of reducibilities.

Definition 2.2. Let 7 be a resource bound. Set A r-reduces to set B if
there exists an r-function f such that for every z, z € A iff f(z) € B. We
also write this as A <] B via f. Function f is called an r-reduction of A
to B.

Similarly, A < B (A <f ,; B; A <7, ; B) if there exists a 1-1 (1-1 and
size-increasing; 1-1, size-increasing and r-invertible) r-function f such that
A<’ Bvia f.

A=l Bif A< Band B <] A. An r-degree is an equivalence class
induced by the relation =] .

Definition 2.3. A is r-isomorphic to B if A <] B via f where f is a 1-1,
onto, r-invertible r-function.

The definitions of complexity classes DP, NP, PH, EXP, NEXP etc. can
be found in [52]. We define the notion of completeness we are primarily
interested in.

Definition 2.4. Set A is r-complete for NP if A € NP and for every B €
NP, B <7 A. For r = p, set A is called NP-complete in short. The class of
r-complete sets is also called the complete r-degree of NP.

Similarly one defines complete sets for other classes.

The Satisfiability problem (SAT) is one of the earliest known NP-
complete problems [25]. SAT is the set of all satisfiable propositional
Boolean formulas.

We now define one-way functions. These are p-functions that are not
p-invertible on most of the strings. One-way functions are one of the fun-
damental objects in cryptography.

Without loss of generality (see [30]), we can assume that one-way func-
tions are honest functions f for which the input length determines the
output length, i.e., there is a length function ¢ such that |f(x)| = £(|z|) for
all x € ¥*.
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Definition 2.5. Function f is a s(n)-secure one-way function if (1) f
is a p-computable, honest function and (2) the following holds for every
polynomial-time randomized Turing machine M and for all sufficiently large
n:

Pr [f(M(f(2))) = f(z)] <

zEyEn s(n)’

In the above, the probability is also over random choices of M, and x €y X"
mean that z is uniformly and randomly chosen from strings of size n.

We impose the property of honesty in the above definition since a func-
tion that shrinks length by more than a polynomial is trivially one-way.

It is widely believed that 2" -secure one-way functions exist for some
€ > 0. We give one example. Start by defining a modification of the
multiplication function:

1z if x and y are both prime numbers
Mult(z,y) = and z is the product z * y
Ozy otherwise.

In the above definition, (-,-) is a pairing function. In this paper, we
assume the following definition of (-,-): (z,y) = zyf where |[¢| = [log|zy|]
and ¢ equals |x| written in binary. With this definition, |(z,y)| = |z|+ |y| +
[log|zy|]. This definition is easily extended for m-tuples for any m.

Mult is a p-function since testing primality of numbers is in DP [11].
Computing the inverse of Mult is equivalent to factorization, for which no
efficient algorithm is known. However, Mult is easily invertible on most of
the inputs, e.g., when any of z and y is not prime. The density estimate
for prime numbers implies that Mult is p-invertible on at least 1 — ﬁ
fraction of inputs. It is believed that Mult is (1 — ﬁ)—secure, and it
remains so even if one lets the TM M work for time 2" for some small
6 > 0. From this assumption, one can show that arbitrary concatenation
of Mult:

MMult(xhyla T2,Y2, .-+, xmaym) =
Mult(z1, y1) - Mult(x2, y2) - - - Mult(z,, Yim)

is a 2" -secure one-way function [30](p. 43).

One-way functions that are 2" -secure are not p-invertible almost any-
where. The weakest form of one-way functions are worst-case one-way
functions:
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Definition 2.6. Function f is a worst-case one-way function if (1) f is a
p-computable, honest function, and (2) f is not p-invertible.

2.3. Formulation and Early Investigations

The conjecture was formulated by Berman and Hartmanis [21] in 1977.
Part of their motivation for the conjecture was a corresponding result in
computability theory for computably enumerable sets [50]:

Theorem 2.1. (Myhill) All complete sets for the class of computably enu-
merable sets are isomorphic to each other under computable isomorphisms.

The non-trivial part in the proof of this theorem is to show that complete
sets for the class of computably enumerable sets reduce to each other via 1-1
reductions. It is then easy to construct isomorphisms between the complete
sets. In many ways, the class NP is the resource bounded analog of the
computably enumerable class, and polynomial-time functions the analog of
computable functions. Hence it is natural to ask if the resource bounded
analog of the above theorem holds.

Berman and Hartmanis noted that the requirement for p-isomorphisms
is stronger. Sets reducing to each other via 1-1 p-reductions does not guar-
antee p-isomorphisms as p-functions do not have sufficient time to perform
exponential searches. Instead, one needs p-reductions that are 1-1, size-
increasing, and p-invertible:

Theorem 2.2. (Berman-Hartmanis) If A <, B and B <} ;, A
then A is p-isomorphic to B.

They defined the paddability property which ensures the required kind
of reductions.

Definition 2.7. Set A is paddable if there exists a p-computable padding
function p, p : 3* x ¥* +— ¥*, such that:

e Function p is 1-1, size-increasing, and p-invertible,
e For every x, y € % p(x,y) € A iff x € A.

Theorem 2.3. (Berman—Hartmanis) If B <2 A and A is paddable,
then B <V .. A.

>1,si

Proof. Suppose B <P A via f. Define function g as: g(z) = p(f(z), z).
Then, z € B iff f(x) € A iff g(z) = p(f(x),x) € A. By its definition and



24 M. Agrawal

the fact that p is 1-1, size-increasing, and p-invertible, it follows that g is
also 1-1, size-increasing, and p-invertible. O

Berman and Hartmanis next showed that the known complete sets for
NP at the time were all paddable and hence p-isomorphic to each other.
For example, the following is a padding function for SAT:

m m
psar(@, iy ym) =2z A Nz N\ @
i=1 i=1

where ¢; = 2,4 if bit y; = 1 and ¢; = Z; if y; = 0 and the Boolean variables
21, 22, ..., Zam do not occur in the formula x.
This observation led them to the following conjecture:

Isomorphism Conjecture. All NP-complete sets are p-isomorphic to
each other.

The conjecture immediately implies DP # NP:
Proposition 2.1. If the Isomorphism Conjecture is true then DP # NP.

Proof. 1If DP = NP then all sets in DP are NP-complete. However, DP
has both finite and infinite sets and there cannot exist an isomorphism
between a finite and an infinite set. Hence the Isomorphism Conjecture is
false. O

This suggests that proving the conjecture is hard because the problem
of separating DP from NP has resisted all efforts so far. A natural question,
therefore, is: Can one prove the conjecture assuming a reasonable hypoth-
esis such as DP # NP? We address this question later in the paper. In
their paper, Berman and Hartmanis also asked a weaker question: Does
DP # NP imply that no sparse set can be NP-complete?

Definition 2.8. Set A is sparse if there exist constants k,ng > 0 such that
for every n > ng, the number of strings in A of length < n is at most n*.

This was answered in the affirmative by Mahaney [49]:

Theorem 2.4. (Mahaney) If DP # NP then no sparse set is NP-
complete.

Proof Sketch. We give a proof based on an idea of [9, 19, 51]. Suppose
there is a sparse set S such that SAT <P S via f. Let F' be a Boolean
formula on n variables. Start with the set T'= {F'} and do the following:
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Replace each formula FerT by Fo and £ 1 where Fo and F' 1 are obtained
by setting the first variable of F to 0 and 1 respectively. Let T =
{F1, F>,...,F:}. If t exceeds a certain threshold ¢o, then let G; = F1 V
F; and z; = f(G;) for 1 < 5 < t. If all z;’s are distinct then drop
Fy from T. Otherwise, z; = z; for some i # j. Drop F; from T and
repeat until |T'| < to. If T has only formulas with no variables, then
output Satisfiable if T' contains a True formula else output Unsatisfiable.
Otherwise, go to the beginning of the algorithm and repeat.

The invariant maintained during the entire algorithm is that F' is sat-
isfiable iff T' contains a satisfiable formula. It is true in the beginning, and
remains true in each iteration after replacing every formula F e T with Fy
and F‘l. The threshold ty must be such that ty is a upper bound on the
number of strings in the set .S of size max; | f(G;)|. This is a polynomial in
|F| since |G| < 2|F|, f is a p-function, and S is sparse. If T has more than
to formulas at any stage then the algorithm drops a formula from 7'. This
formula is F; when all z;’s are distinct. This means there are more than ¢g
z;’s all of size bounded by max; | f(G;)|. Not all of these can be in S due
to the choice of ¢y and hence Fy & SAT. If z; = z; then F; is dropped. If F;
is satisfiable then so is G;. And since z; = z; and f is a reduction of SAT
to S, G; is also satisfiable; hence either F} or F} is satisfiable. Therefore
dropping F; from T maintains the invariant.

The above argument shows that the size of T does not exceed a poly-
nomial in |F| at any stage. Since the number of iterations of the algorithm
is bounded by n < |F|, the overall time complexity of the algorithm is
polynomial. Hence SAT € DP and therefore, DP = NP. O

The “searching-with-pruning” technique used in the above proof has
been used profitably in many results subsequently. The Isomorphism Con-
jecture, in fact, implies a much stronger density result: All NP-complete
sets are dense.

Definition 2.9. Set A is dense if there exist constants €, ng > 0 such that
for every n > ng, the number of strings in A of length < n is at least 2™".

Buhrman and Hitchcock [22] proved that, under a plausible hypothesis,
every NP-complete set is dense infinitely often:

Theorem 2.5. (Buhrman—Hitchcock) If PH is infinite then for any
NP-complete set A, there exists € > 0 such that for infinitely many n, the
number of strings in A of length < n is at least 2™ .
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Later, we show that a stronger density theorem holds if 2" -secure one-
way functions exist.

2.4. A Counter Conjecture and Relativizations

After Mahaney’s result, there was not much progress on the conjecture
although researchers believed it to be true. However, this changed in 1984
when Joseph and Young [40] argued that the conjecture is false. Their
argument was as follows (paraphrased by Selman [53]). Let f be any 1-1,
size-increasing, 2" -secure one-way function. Consider the set A = f(SAT).
Set A is clearly NP-complete. If it is p-isomorphic to SAT, there must exist
a 1-1, honest p-reduction of SAT to A which is also p-invertible. However,
the set A is, in a sense, a “coded” version of SAT such that on most of the
strings of A, it is hard to “decode” it (because f is not p-invertible on most
of the strings). Thus, there is unlikely to be a 1-1, honest p-reduction of
SAT to A which is also p-invertible, and so A is unlikely to be p-isomorphic
to SAT. This led them to make a counter conjecture:

Encrypted Complete Set Conjecture. There exists a 1-1, size-
increasing, one-way function f such that SAT and f(SAT) are not p-
isomorphic to each other.

It is useful to observe here that this conjecture is false in computable
setting: The inverse of any 1-1, size-increasing, computable function is also
computable. The restriction to polynomial-time computability is what gives
rise to the possible existence of one-way functions.

It is also useful to observe that this conjecture too implies DP # NP:

Proposition 2.2. If the Encrypted Complete Set Conjecture is true then
DP # NP.

Proof. If DP = NP then every 1-1, size-increasing p-function is also
p-invertible. Hence for every such function, SAT and f(SAT) are p-
isomorphic. O

The Encrypted Complete Set conjecture fails if one-way functions do
not exist. Can it be shown to follow from the existence of strong one-
way functions, such as 2" -secure one-way functions? This is not clear.
(In fact, later we argue the opposite.) Therefore, to investigate the two
conjectures further, the focus moved to relativized worlds. Building on a
result of Kurtz [42], Hartmanis and Hemachandra [33] showed that there
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is an oracle relative to which DP = UP and the Isomorphism Conjecture is
false. This shows that both the conjectures fail in a relativized world since
DP = UP implies that no one-way functions exist.

Kurtz, Mahaney, and Royer [46] defined the notion of scrambling func-
tions:

Definition 2.10. Function f is scrambling function if f is 1-1, size-
increasing, p-computable, and there is no dense polynomial-time subset

in range(f).
Kurtz et al. observed that,

Proposition 2.3. If scrambling functions exist then the Encrypted Com-
plete Set Conjecture is true.

Proof. Let f be a scrambling function, and consider A = f(SAT). Set
A is NP-complete. Suppose it is p-isomorphic to SAT and let p be the
isomorphism between SAT and A. Since SAT has a dense polynomial-time
subset, say D, p(D) is a dense polynomial time subset of A. This contradicts
the scrambling property of f. O

Kurtz et al., [46], then showed that,

Theorem 2.6. (Kurtz, Mahaney, Royer) Relative to a random oracle,
scrambling functions exist.

Proof Sketch. Let O be an oracle. Define function f as:
f(z) = 0(2)0(21)O(x11) - - - O(x121])

where O(z) = 1 if z € O, 0 otherwise. For a random choice of O, f
is 1-1 with probability 1. So, f is a 1-1, size-increasing, p?-computable
function. Suppose a polynomial-time TM M with oracle O accepts a subset
of range(f). In order to distinguish a string in range of f from those outside,
M needs to check the answer of oracle O on several unique strings. And
since M can query only polynomially many strings from O, M can accept
only a sparse subset of range(f). O

Therefore, relative to a random oracle, the Encrypted Complete Set
Conjecture is true and the Isomorphism Conjecture is false. The question
of existence of an oracle relative to which the Isomorphism Conjecture is
true was resolved by Fenner, Fortnow, and Kurtz [27]:

Theorem 2.7. (Fenner, Fortnow, Kurtz) There exists an oracle rela-
tive to which Isomorphism Conjecture is true.



28 M. Agrawal

Thus, there are relativizations in which each of the three possible an-
swers to the two conjectures is true. However, the balance of evidence
provided by relativizations is towards the Encrypted Complete Set Conjec-
ture since properties relative to a random oracle are believed to be true in
unrelativized world too.”

2.5. The Conjectures for Other Classes

In search of more evidence for the two conjectures, researchers translated

them to classes bigger than NP. The hope was that diagonalization argu-

ments that do not work within NP can be used for these classes to prove

stronger results about the structure of complete sets. This hope was real-

ized, but not completely. In this section, we list the major results obtained

for classes EXP and NEXP which were the two main classes considered.
Berman [20] showed that,

Theorem 2.8. (Berman) Let A be a p-complete set for EXP. Then for
every B € EXP, B <¥ . A.

—1,st

Proof Sketch. Let My, Ms, ... be an enumeration of all polynomial-time

TMs such that M; halts, on input z, within time |z|/*l + |i| steps. Let

B € EXP and define B to be the set accepted by the following algorithm:
Input (¢,2). Let M;(i,x) = y. If |y| < |z|, accept iff y ¢ A. If there
exists a z, z < z (in lexicographic order), such that M;(i, z) = y, then
accept iff z € B. Otherwise, accept iff x € B.

The set B is clearly in EXP. Let B <P Avia f. Let the TM M; compute
f. Define function g as: g(z) = f(j,z). It is easy to argue that f is 1-1
and size-increasing on inputs of the form (j,+) using the definition of B
and the fact that f is a reduction. It follows that g is a 1-1, size-increasing
p-reduction of B to A. O

Remark 2.1. A case can be made that the correct translation of the iso-
morphism result of [50] to the polynomial-time realm is to show that the
complete sets are also complete under 1-1, size-increasing reductions. As
observed earlier, the non-trivial part of the result in the setting of com-
putability is to show the above implication. Inverting computable reduc-
tions is trivial. This translation will also avoid the conflict with Encrypted
Complete Set Conjecture as it does not require p-invertibility. In fact, as

PThere are notable counterexamples of this though. The most prominent one is the
result IP = PSPACE [48, 54] which is false relative to a random oracle [24].
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will be shown later, one-way functions help in proving an analog of the
above theorem for the class NP! However, the present formulation has a
nice symmetry to it (both the isomorphism and its inverse require the same
amount of resources) and hence is the preferred one.

For the class NEXP, Ganesan and Homer [29] showed that,

Theorem 2.9. (Ganesan—Homer) Let A be a p-complete set for NEXP.
Then for every B € NEXP, B < A.

The proof of this uses ideas similar to the previous proof for EXP. The
result obtained is not as strong since enforcing the size-increasing property
of the reduction requires accepting the complement of a NEXP set which
cannot be done in NEXP unless NEXP is closed under complement, a very
unlikely possibility. Later, the author [5] proved the size-increasing property
for reductions to complete sets for NEXP under a plausible hypothesis.

While the two conjectures could not be settled for the complete p-degree
of EXP (and NEXP), answers have been found for p-degrees close to the
complete p-degree of EXP. The first such result was shown by Ko, Long,
and Du [41]. We need to define the notion of truth-table reductions to state
this result.

Definition 2.11. Set A k-truth-table reduces to set B if there exists a p-
function f, f: ¥* > X" x X" x ... x ¥* x 2" such that for every x € X¥,

k
if f(z) = (y1,92,.--,9k, L) then z € A iff T(B(y1)B(y2)---Blyx)) = 1
where B(y;) = 1iff y; € B and T'(s), |s| = k, is the sth bit of string T'.
Set B is k-truth-table complete for EXP if B € EXP and for every A €
EXP, A k-truth-table reduces to B.

The notion of truth-table reductions generalizes p-reductions. For both
EXP and NEXP, it is known that complete sets under 1-truth-table reduc-
tions are also p-complete [23, 38], and not all complete sets under 2-truth-
table reductions are p-complete [55]. Therefore, the class of 2-truth-table
complete sets for EXP is the smallest class properly containing the complete
p-degree of EXP.

Ko, Long, and Du [41] related the structure of certain p-degrees to the
existence of worst-case one-way functions:

Theorem 2.10. (Ko—Long—Du) If there exist worst-case one-way func-
tions then there is a p-degree in EXP such that the sets in the degree are not
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all p-isomorphic to each other. Further, sets in this degree are 2-truth-table
complete for EXP.

Kurtz, Mahaney, and Royer [43] found a p-degree for which the sets are
unconditionally not all p-isomorphic to each other:

Theorem 2.11. (Kurtz—Mahaney—Royer) There exists a p-degree in
EXP such that the sets in the degree are not all p-isomorphic to each other.
Further, sets in this degree are 2-truth-table complete for EXP.

Soon afterwards, Kurtz, Mahaney, and Royer [44] found another p-
degree with the opposite structure:

Theorem 2.12. (Kurtz—Mahaney—Royer) There exists a p-degree in
EXP such that the sets in the degree are all p-isomorphic to each other.
Further, this degree is located inside the 2-truth-table complete degree of
EXP.

The set of results above on the structure of complete (or nearly com-
plete) p-degree of EXP and NEXP do not favor any of the two conjectures.
However, they do suggest that the third possibility, viz., both the conjec-
tures being false, is unlikely.

2.6. The Conjectures for Other Reducibilities

Another direction from which to approach the two conjectures is to weaken
the power of reductions instead of the class NP, the hope being that for
reductions substantially weaker than polynomial-time, one can prove un-
conditional results. For several weak reductions, this was proven correct
and in this section we summarize the major results in this direction.

The two conjectures for r-reductions can be formulated as:

r-Isomorphism Conjecture. All r-complete sets for NP are r-
isomorphic to each other.

r-Encrypted Complete Set Conjecture. There is a 1-1, size-
increasing, r-function [ such that SAT and f(SAT) are not r-
isomorphic to each other.

Weakening p-reductions to logspace-reductions (functions computable by
TMs with read-only input tape and work tape space bounded by O(logn),
n is the input size) does not yield unconditional results as any such result
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will separate NP from L, another long-standing open problem. So we need
to weaken it further. There are three major ways of doing this.

2.6.1. Restricting the input head movement

Allowing the input head movement in only one direction leads to the notion
of 1-L-functions.

Definition 2.12. A 1-L-function is computed by deterministic TMs with
read-only input tape, the workspace bounded by O(logn) where n is the
input length, and the input head restricted to move in one direction only
(left-to-right by convention). In other words, the TM is allowed only one
scan of its input. To ensure the space bound, the first O(logn) cells on the
work tape are marked at the beginning of the computation.

These functions were defined by Hartmanis, Immerman, and Ma-
haney [34] to study the complete sets for the class L. They also ob-
served that the “natural” NP-complete sets are also complete under 1-L-
reductions. Structure of complete sets under 1-L-reductions attracted a lot
of attention, and the first result was obtained by Allender [14]:

Theorem 2.13. (Allender) For the classes PSPACE and EXP, complete
sets under 1-L-reductions are p-isomorphic to each other.

While this shows a strong structure of complete sets of some classes
under 1-L-reductions, it does not answer the 1-L-Isomorphism Conjecture.
After a number of extensions and improvements [10, 29, 37|, the author [1]
showed that,

Theorem 2.14. (Agrawal) Let A be a 1-L-complete set for NP. Then for
every B € NP, B Si;%z A.

Proof Sketch. We first show that A is also complete under forgetful 1-
L-reductions. Forgetful 1-L-reductions are computed by TMs that, imme-
diately after reading a bit of the input, forget its value. This property is
formalized by defining configurations: A configuration of a 1-L. TM is a
tuple (g, j, w) where ¢ is a state of the TM, j its input head position, and
w the contents of its worktape including the position of the worktape head.
A forgetful TM, after reading a bit of the input and before reading the
next bit, reaches a configuration which is independent of the value of the
bit that is read.
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Let B € NP, and define B to be the set accepted by the following
algorithm:

Input z. Let = y10°1*. Reject if b is odd or ly| # tb for some integer
t. Otherwise, let y = y1y2 - -y with |y;| = b. Let v; = 1 if y; = uu for
some u, |u| = g; v; = 0 otherwise. Accept iff vivy---v; € B.

The set B is a “coded” version of set B and reduces to B via a p-
reduction. Hence, B € NP. Let f be a 1-L-reduction of B to A computed
by TM M. Consider the workings of M on inputs of size n. Since M
has O(logn) space, the number of configurations of M will be bounded
by a polynomial, say q(-), in n. Let b = k[logn] such that 2°/2 > ¢(n).
Let Cp be the initial configuration of M. By the Pigeon Hole Principle, it
follows that there exist two distinct strings u; and uf, [ui| = |u}| = £, such
that M reaches the same configuration, after reading either of u; and wj.
Let C1 be the configuration reached from this configuration after reading
u1. Repeat the same argument starting from C; to obtain strings usg, ub,
and configuration Cs. Continuing this way, we get triples (u;,u}, C;) for
1<i<t= L”*THJ. Let Kk =n—b—1—bt. It follows that the TM M
will go through the configurations Cy, C1, ..., C; on any input of the form
Y1y - .y 10°1F with y; € {w;u;, wlu;}. Also, that the pair (u;,u)) can be
computed in logspace without reading the input.

Define a reduction g of B to B as follows: On input v, |v| = ¢, compute
b such that 2°/2 > q(b+ 1+ bt), and consider M on inputs of size b+ 1 + bt.
For each i, 1 <14 < t, compute the pair (u;,u}) and output u;u; if the ith
bit of v is 1, output u;u; otherwise. It is easy to argue that the composition
of f and g is a forgetful 1-L-reduction of B to A.

Define another set B’ as accepted by the following algorithm:

Input z. Reject if |z| is odd. Otherwise, let © = z122+ - Zns152- - $n.

Accept if exactly one of s1, s2, ..., Sn, say sj, is zero and z; = 1. Accept
if all of s1, s2, ..., s, are one and x1x2--- T, € B. Reject in all other
cases.

Set B’ € NP. As argued above, there exists a forgetful 1-L-reduction of
B’ to A, say h. Define a reduction ¢’ of B to B’ as: ¢'(v) = v1l*l. Tt is easy
to argue that h o ¢’ is a size-increasing, 1-L-invertible, 1-L-reduction of B
to A and h o g’ is 1-1 on strings of size n for all n. Modifying this to get a
reduction that is 1-1 everywhere is straightforward. O

The above result strongly suggests that the 1-L-Isomorphism Conjecture
is true. However, the author [1] showed that,
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Theorem 2.15. (Agrawal) I1-L-complete sets for NP are all 2-L-
isomorphic to each other but not 1-L-isomorphic.

The 2-L-isomorphism above is computed by logspace TMs that are al-
lowed two left-to-right scans of their input. Thus, the 1-L-Isomorphism
Conjecture fails and a little more work shows that the 1-L-Encrypted Com-
plete Set Conjecture is true! However, the failure of the Isomorphism Con-
jecture here is for a very different reason: it is because 1-L-reductions are
not powerful enough to carry out the isomorphism construction as in The-
orem 2.2. For a slightly more powerful reducibility, 1-NL-reductions, this
is not the case.

Definition 2.13. A 1-NL-function is computed by TMs satisfying the re-
quirements of definition 2.12, but allowed to be non-deterministic. The
non-deterministic TM must output the same string on all paths on which
it does not abort the computation.

For 1-NL-reductions, the author [1] showed, using proof ideas similar to
the above one, that,

Theorem 2.16. (Agrawal) 1-NL-complete sets for NP are all 1-NL-
isomorphic to each other.

The author [1] also showed similar results for ¢-L-reductions for constant
¢ (functions that are allowed at most ¢ left-to-right scans of the input).

2.6.2. Reducing space

The second way of restricting logspace reductions is by allowing the TMs
only sublogarithmic space, i.e., allowing the TM space o(logn) on input of
size n; we call such reductions sublog-reductions. Under sublog-reductions,
NP has no complete sets, and the reason is simple: Every sublog-reduction
can be computed by deterministic TMs in time O(n?) and hence if there
is a complete set for NP under sublog-reductions, then NTIME(n**!) =
NTIME(n*) for some k > 0, which is impossible [26]. On the other hand,
each of the classes NTIME(n*), k > 1, has complete sets under sublog-
reductions.
The most restricted form for sublog-reductions is 2-DFA-reductions:

Definition 2.14. A 2-DFA-function is computed by a TM with read-only
input tape and no work tape.
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2-DFA functions do not require any space for their computation, and
therefore are very weak. Interestingly, the author [4] showed that sublog-
reductions do not add any additional power for complete sets:

Theorem 2.17. (Agrawal) For any k > 1, sublog-complete sets for
NTIME(n*) are also 2-DFA-complete.

For 2-DFA-reductions, the author and Venkatesh [12] proved that,

Theorem 2.18. (Agrawal-Venkatesh) Let A be a 2-DFA-complete set
for NTIME(n*) for some k > 1. Then, for every B € NTIME(n*), B gfgff‘
A via a reduction that is mu-DFA-invertible.

muDFA-functions are computed by TMs with no space and multiple
heads, each moving in a single direction only. The proof of this is also
via forgetful TMs. The reductions in the theorem above are not 2-DFA-
invertible, and in fact, it was shown in [12] that,

Theorem 2.19. (Agrawal-Venkatesh) Let f(x) = xxz. Function f is a
2-DFA-function and for any k > 1, there is a 2-DFA-complete set A for
NTIME(n*) such that A £2PFA f(A).

1,s%,¢

The above theorem implies that 2-DFA-Encrypted Complete Set Con-
jecture is true.

2.6.3. Reducing depth

Logspace reductions can be computed by (unbounded fan-in) circuits of
logarithmic depth.© Therefore, another type of restricted reducibility is
obtained by further reducing the depth of the circuit family computing the
reduction. Before proceeding further, let us define the basic notions of a
circuit model.

Definition 2.15. A circuit family is a set {C), : n € N} where each C), is an
acyclic circuit with n Boolean inputs 1, ..., z, (as well as the constants 0
and 1 allowed as inputs) and some number of output gates y1,...,y,. {Cn}
has size s(n) if each circuit C,, has at most s(n) gates; it has depth d(n) if
the length of the longest path from input to output in C,, is at most d(n).

A circuit family has a notion of uniformity associated with it:

°For a detailed discussion on the circuit model of computation, see [52].
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Definition 2.16. A family C = {C,,} is uniform if the function n — C,
is easy to compute in some sense. This can also be defined using the
complexity of the connection set of the family:

conn(C) = {(n, 4,4, T;,T;) | the output of gate ¢ of type T;
is input to gate j of type T} in Cp}.
Here, gate type T; can be Input, Output, or some Boolean operator.
Family C is Dlogtime-uniform [18] if conn(C) is accepted by a linear-time
TM. It is p-uniform [15] if conn(C) is accepted by a exponential-time TM
(equivalently, by a TM running in time bounded by a polynomial in the
circuit size). If we assume nothing about the complexity of conn(C), then
we say that the family is non-uniform.

An important restriction of logspace functions is to functions computed
by constant depth circuits.

Definition 2.17. Function f is a u-uniform ACY-function if there is a u-
uniform circuit family {C,} of size n®1) and depth O(1) consisting of
unbounded fan-in AND and OR and NOT gates such that for each input
z of length n, the output of C,, on input x is f(z).

Note that with this definition, an AC’-function cannot map strings of
equal size to strings of different sizes. To allow this freedom, we adopt the
following convention: Each C,, will have n* + klog(n) output bits (for some
k). The last klogn output bits will be viewed as a binary number r, and
the output produced by the circuit will be the binary string contained in
the first r output bits.

It is worth noting that, with this definition, the class of Dlogtime-
uniform AC’-functions admits many alternative characterizations, includ-
ing expressibility in first-order logic with {4, x, <} [18, 47], the logspace-
rudimentary reductions [17, 39], logarithmic-time alternating Turing ma-
chines with O(1) alternations [18] etc. Moreover, almost all known NP-
complete sets are also complete under Dlogtime-uniform AC’-reductions
(an exception is provided by [7]). We will refer to Dlogtime-uniform AC’-
functions also as first-order-functions.

ACO—reducibility is important for our purposes too, since the complete
sets under the reductions of the previous two subsections are also complete
under AC’-reductions (with uniformity being Dlogtime- or p-uniform). This
follows from the fact that these sets are also complete under some appro-
priate notion of forgetful reductions. Therefore, the class of AC-complete
sets for NP is larger than all of the previous classes of this section.
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The first result for depth-restricted functions was proved by Allender,
Balcdzar, and Immerman [16]:

Theorem 2.20. (Allender—Balcdzar-Immerman) Complete sets for
NP wunder first-order projections are first-order-isomorphic to each other.

First-order projections are computed by a very restricted kind of
Dlogtime-uniform ACY family in which no circuit has AND and OR gates.
This result was generalized by the author and Allender [6] to NC°-functions,
which are functions computed by AC® family in which the fan-in of every
gate of every circuit is at most two.

Theorem 2.21. (Agrawal-Allender) Let A be a non-uniform NC°-
complete set for NP. Then for any B € NP, B non-uniform NC°-reduces
to A wvia a reduction that is 1-1, size-increasing, and non-uniform AC°-
invertible. Further, all non-uniform NC°-complete sets for NP are non-
uniform AC-isomorphic to each other where these isomorphisms can be
computed and inverted by depth three non-uniform AC® circuits.

Proof Sketch. The proof we describe below is the one given in [3]. Let
B € NP, and define B to be the set accepted by the following algorithm:
On input y, let y = 1¥0z. If k does not divide |z|, then reject. Otherwise,
break z into blocks of k consecutive bits each. Let these be uiusus . . . up.
Accept if there is an i, 1 < ¢ < p, such that u; = 1*. Otherwise, reject
if there is an 4, 1 < i < p, such that u; = 0. Otherwise, for each 4,
1 <i < p, label u; as null if the number of ones in it is 2 modulo 3; as
zero if the number of ones in it is 0 modulo 3; and as one otherwise. Let
v; = € if u; is null, 0 if u; is zero, and 1 otherwise. Let x = viva - - - vy,
and accept iff x € B.

Clearly, B € NP. Let {Cy} be the NCP circuit family computing a reduction
of B to A. Fix size n and consider circuit Cri14n for k = 4[logn]. Let C
be the circuit that results from setting the first input k + 1 bits of Cx414n
to 1%0. Randomly set each of the n input bits of C' in the following way:
With probability £, leave it unset; with probability § each, set it to 0 and
1 respectively. The probability that any block of k bits is completely set
is at most # Similarly, the probability that there is a block that has at
most three unset bits is at most %, and therefore, with high probability,
every block has at least four unset bits.

Say that an output bit is good if, after the random assignment to the
input bits described above is completed, the value of the output bit depends
on exactly one unset input bit. Consider an output bit. Since C' is an NC°
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circuit, the value of this bit depends on at most a constant, say ¢, number
of input bits. Therefore, the probability that this bit is good after the
assignment is at least % . 46%1. Therefore, the expected number of good
output bits is at least 7z,
whose value depends on some input bit. Using the definition of set é, it
can be argued that 2(n) output bits depend on some input bit, and hence
Q(n) output bits are expected to be good after the assignment. Fix any
assignment that does this, as well as leaves at least four unset bits in each
block. Now set some more input bits so that each block that is completely
set is null, each block that has exactly two unset bits has number of ones
equal to 0 modulo 3, and there are no blocks with one, three, or more unset
bits. Further, for at least one unset input bit in a block, there is a good
output bit that depends on the bit, and there are Q(%) unset input bits.
It is easy to see that all these conditions can be met.

Now define a reduction of B to B as: On input z, |z| = p, consider
Cl+14n such that the number of unset input bits in Cy414, after doing the
above process is at least p. Now map the ith bit of x to the unset bit in a
block that influences a good output bit and set the other unset input bit in
the block to zero. This reduction can be computed by an NC° circuit (in
fact, the circuit does not need any AND or OR gate).

Define a reduction of B to A given by the composition of the above two
reductions. This reduction is a superprojection: it is computed by circuit
family {D,} with each D, being an NC? circuit such that for every input
bit to D,, there is an output bit that depends exactly on this input bit. A
superprojection has the input written in certain bit positions of the output.
Therefore, it is 1-1 and size-increasing. Inverting the function is also easy:
Given string y, identify the locations where the input is written, and check
if the circuit D, (p = number of locations) on this input outputs y. This
checking can be done by a depth two AC? circuit.

This gives a 1-1, size-increasing, AC%-invertible, NC%-reduction of B
to A. The circuit family is non-uniform because it is not clear how to
deterministically compute the settings of the input bits. Exploiting the
fact that the input is present in the output of the reductions, an AC’-
isomorphism, computed by depth three circuits, can be constructed between
two complete sets following [21] (see [8] for details). O

Soon after, the author, Allender, and Rudich [8] extended it to all
AC’-functions, proving the Isomorphism Conjecture for non-uniform AC’-

where m is the number of output bits of C

functions.
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Theorem 2.22. (Agrawal-Allender—Rudich) Non-uniform AC’-com-
plete sets for NP are non-uniform ACY-isomorphic to each other. Fur-
ther, these isomorphisms can be computed and inverted by depth three non-
uniform AC® circuits.

Proof Sketch. The proof shows that complete sets for NP under AC’-
reductions are also complete under NC%-reductions and invokes the above
theorem for the rest. Let A be a complete set for NP under AC’-reductions.
Let B € NP. Define set B exactly as in the previous proof. Fix an AC’-
reduction of B to A given by family {C,,}. Fix size n, and consider Cyy1n
for k = n'~¢ for a suitable € > 0 to be fixed later. Let D be the circuit that
results from setting the first & + 1 input bits of Cyp 14, to 1%0.

Set each input bit of D to 0 and 1 with probability % — 271% each and
leave it unset with probability nl% By the Switching Lemma of Furst,
Saxe, and Sipser [28], the circuit D will reduce, with high probability, to an
NC® circuit on the unset input bits for a suitable choice of € > 0. In each
block of k bits, the expected number of unset bits will be n¢, and therefore,
with high probability, each block has at least three unset bits. Fix any
settings satisfying both of the above.

Now define a reduction of B to B that, on input z, |z| = p, identifies n
for which the circuit D has at least p blocks, and then maps ith bit of input
x to an unset bit of the ith block of the input to D, setting the remaining
bits of the block so that the sum of ones in the block is 0 modulo 3. Unset
bits in all remaining blocks are set so that the sum of ones in the block
equals 2 modulo 3.

The composition of the reduction of B to B and B to A is an NC%-
reduction of B to A. Again, it is non-uniform due to the problem of finding
the right settings of the input bits. (I

The focus then turned towards removing the non-uniformity in the
above two reductions. In the proof of Theorem 2.21 given in [6], the uni-
formity condition is p-uniform. In [7], the uniformity of 2.22 was improved
to p-uniform by giving a polynomial-time algorithm that computes the cor-
rect settings of input bits. Both the conditions were further improved to
logspace-uniform in [3] by constructing a more efficient derandomization
of the random assignments. And finally, in [2], the author obtained very
efficient derandomizations to prove that,

Theorem 2.23. (Agrawal) First-order-complete sets for NP are first-
order-isomorphic.
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The isomorphisms in the theorem above are no longer computable by
depth three circuits; instead, their depth is a function of the depth of the
circuits computing reductions between the two complete sets.

2.6.4. Discussion

At first glance, the results for the weak reducibilities above seem to provide
equal support to both the conjectures: The Isomorphism Conjecture is
true for 1-NL and AC’-reductions for any reasonable notion of uniformity,
while the Encrypted Complete Set Conjecture is true for 1-L and 2-DFA
reductions. However, on a closer look a pattern begins to emerge. First of
all, we list a common feature of all the results above:

Corollary 2.1. For r € {1-L, 1-NL, 2-DFA, NC°, AC®}, r-complete sets
for NP are also complete under 1-1, size-increasing, r-reductions.

The differences arise in the resources required to invert the reductions
and to construct the isomorphism. Some of the classes of reductions that
we consider are so weak, that for a given function f in the class, there is no
function in the class that can check, on input = and y, whether f(z) = y.
For example, suppose f is an NC’-function and one needs to construct
a circuit that, on input = and y, outputs 1 if y = f(z), and outputs 0
otherwise. Given z and y, an NC° circuit can compute f (z), and can check
if the bits of f(x) are equal to the corresponding bits of y; however, it cannot
output 1 if f(x) = y, since this requires taking an AND of |y| bits. Similarly,
some of the reductions are too weak to construct the isomorphism between
two sets given two 1-1, size-increasing, and invertible reductions between
them. Theorems 2.14 and 2.15 show this for 1-L-reductions, and the same
can be shown for NC’-reductions too. Observe that p-reductions do not
suffer from either of these two drawbacks. Hence we cannot read too much
into the failure of the Isomorphism Conjecture for r-reductions. We now
formulate another conjecture that seems better suited to getting around
the above drawbacks of some of the weak reducibilities. This conjecture
was made in [1].

Consider a 1-1, size-increasing r-function f for a resource bound r. Con-
sider the problem of accepting the set range(f). A TM accepting this set
will typically need to guess an x and then verify whether f(z) = y. It
is, therefore, a non-deterministic TM with resource bound at least r. Let
rTe"9¢ > r be the resource bound required by this TM. For a circuit accept-
ing range(f), the non-determinism is provided as additional “guess bits”
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and its output is 1 if the circuit evaluates to 1 on some settings of the guess
bits. We can similarly define 7"%"9¢ to be the resource bound required by
such a non-deterministic circuit to accept range(f).

r-Complete Degree Conjecture. r-Complete sets for NP are also com-

range

plete under 1-1, size-increasing, r-reductions that are r -invertible.

Notice that the invertibility condition in the conjecture does not allow
non-determinism. For p-reductions,

Proposition 2.4. The p-Complete Degree Conjecture is equivalent to the
Isomorphism Conjecture.

Proof. Follows from the observation that p™®™9¢ = p as range of a p-
function can be accepted in non-deterministic polynomial-time, and from
Theorem 2.2. g

Moreover, for the weaker reducibilities that we have considered, one can
show that,

Theorem 2.24. For r € {I1-L, 1-NL, 2-DFA, NCP, ACO}, the r-Complete
Degree Conjecture is true.

Proof. 1t is an easy observation that for r € {1-L, 1-NL, ACO}, rrange —
r. The conjecture follows from Theorems 2.14, 2.16, and 2.23.

Accepting range of a 2-DFA-function requires verifying the output of
2-DFA TM on each of its constant number of passes on the input. The
minimum resources required for this are to have multiple heads stationed
at the beginning of the output of each pass, guess the input bit-by-bit, and
verify the outputs on this bit for each pass simultaneously. Thus, the TM
is a non-deterministic TM with no space and multiple heads, each moving
in one direction only. So Theorem 2.18 proves the conjecture.

Accepting range of an NC’-function requires a non-deterministic AC°
circuit. Therefore, Theorems 2.21 and 2.23 prove the conjecture for r =
NC. O

In addition to the reducibilities in the above theorem, the r-Complete
Degree Conjecture was proven for some more reducibilities in [1].

These results provide evidence that r-Complete Degree Conjecture is
true for all reasonable resource bounds; in fact, there is no known example
of a reasonable reducibility for which the conjecture is false.
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The results above also raise doubts about the intuition behind the En-
crypted Complete Set Conjecture as we shall argue now. Consider AC’-
reductions. There exist functions computable by depth d, Dlogtime-uniform
ACP circuits that cannot be inverted on most of the strings by depth three,
non-uniform AC’ circuits [35]. However, by Theorem 2.22, AC’-complete
sets are also complete under AC’-reductions that are invertible by depth
two, non-uniform AC circuits and the isomorphisms between all such sets
are computable and invertible by depth three, non-uniform AC® circuits.
So, for every 1-1, size-increasing, AC°-function, it is possible to efficiently
find a dense subset on which the function is invertible by depth two AC®
circuits.

Therefore, the results for weak reducibilities provide evidence that the
Isomorphism Conjecture is true.

2.7. A New Conjecture

In this section, we revert to the conjectures in their original form. The
investigations for weak reducibilities provide some clues about the struc-
ture of NP-complete sets. They strongly suggest that all NP-complete sets
should also be complete under 1-1, size-increasing p-reductions. Proving
this, of course, is hard as it implies DP # NP (Proposition 2.1). Can we
prove this under a reasonable assumption? This question was addressed
and partially answered by the author in [5], and subsequently improved by
the author and Watanabe [13]:

Theorem 2.25. (Agrawal-Watanabe) If there exists a 1-1, 2™ -secure
one-way function for some € > 0, then all NP-complete sets are also com-
plete under 1-1, and size-increasing, P /poly-reductions.

In the above theorem, P /poly-functions are those computed by
polynomial-size, non-uniform circuit families.

Proof Sketch. Let A be an NP-complete set and let B € NP. Let fy be a
1-1, 2™ -secure one-way function. Recall that we have assumed that |fo(y)]
is determined by |y| for all y. Hastad et al., [36], showed how to construct a
pseudorandom generator using any one-way function. Pseudorandom gen-
erators are size-increasing functions whose output cannot be distinguished
from random strings by polynomial-time probabilistic TMs. Let G be the
pseudorandom generator constructed from fy. Without loss of generality,
we can assume that |G(y)| = 2|y| + 1 for all y. We also modify fo to f
as: f(y,r) = fo(y)rb where |r| = |y| and b = y - r, the inner product of
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strings y and r. It is known that the bit b is a hard-core bit, i.e., it cannot
be predicted by polynomial-time probabilistic TMs on input fy(y)r [32].
Define B to be the set:

By = {(z,w) |z € B A |w| =|z|*¢} U range(Q),
and B> to be the set:
By ={f(2)| 2z € B:}.
Both the sets are in NP. Let Bs reduce to A via polynomial-time reduction
g. Since fis 1-1, h = go f is a reduction of B; to A. We now show that i
rarely maps a large number of strings to a single string. For an odd n, let
pn=__Pr_ [h(z) = h(z")].

z,2'€EyXn

In other words, p,, is the collision probability of the function h for strings
of length n. Define function f(y,7) = fo(y)rb where b is the complement

of the inner product value y - r. Since fp is 1-1, range(f) and range(f) are
disjoint and therefore, range(F) is a subset of By. Let

Pn=_Pr_ [h(z)=g(f(<"))]

z,2' ey Xn

Define a probabilistic TM M that on input u, |u| = |f(z)| for || = n,
randomly picks 2’ € £™ and accepts iff g(u) = h(z’). The probability, over
random 2z € X", that M accepts f(z) is exactly p,. The probability, over
random y,r € Y and b € Y, that M™* accepts u = fo(y)rb is exactly
%pn + %ﬁn (since b is either y -7 or its complement with probability % each).
Hence the gap between the two probabilities is exactly \%pn — %ﬁn| If this
is large, then M ™ can be used to predict the hard-core bit of f with high
probability, which is not possible. Therefore, the difference of p,, and p, is
small.

To show that p, is small, define another TM M~ that on input z,
|z| = n, randomly picks 2’ € X" and accepts iff h(z) = g(f(z’)). On a
random z € X", the probability that M~ accepts is exactly p,. On input
G(z) when z is randomly chosen from £"7, the probability that M~
accepts is zero since range(G) is contained in B; and range(f) is contained
in B,. Hence the difference between the two probabilities is exactly py,.
This cannot be large as otherwise it violates the pseudorandomness of G.
Therefore, p, is small.

Now define function ¢ as follows. For every n, randomly choose a w,,,
lwn| = n?/¢ let t(z) = (v,wy,). Note that t is a probabilistic func-
tion. It can be argued that with high probability (over the choices of w,,),
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(1) range(t) does not intersect with range(G), and so t is a reduction of B
to Bi, and (2) hot is 1-1, and size-increasing. Non-uniformly fixing a choice
of w, for every n, we get that h ot is a 1-1, size-increasing, non-uniform
polynomial-time reduction of B to A. d

In hindsight, the above theorem is not surprising since the analogous
result for EXP was shown using diagonalization [20] and one-way functions
provide a strong form of diagonalization that works within NP in contrast
to standard diagonalization techniques. It is a little unsatisfactory though,
since it only shows completeness under non-uniform 1-1, size-increasing
reductions. It is, however, sufficient to conclude that,

Corollary 2.2. If there exists a 1-1, 2" -secure one-way function for some
€ > 0, then all NP-complete sets are dense.

Proof. By the above theorem, all NP-complete sets are also complete
under 1-1, size-increasing, P/poly-reductions. It is an easy observation that
if A is dense and reduces to B via a 1-1 reduction then B is also dense.
The corollary follows from the fact that SAT is dense. |

Another suggestion from the previous section is that one-way functions
may have easily identifiable dense subsets on which they are p-invertible.
This was investigated in [13], where the easy cylinder property was defined.

Definition 2.18. Let f be a 1-1, size-increasing, P/poly-function. The
function f has an easy cylinder if there exist

e polynomials ¢(-), ¢'(+), and £(-) with £(n) > 2q(¢'(n) +n+ [log(q'(n) +
n)]), and
e a P/poly embedding function e, computable by circuits of size <

q(le(y)]) on input y,

such that for every n and for every string u of length #(n), there ex-
ists a polynomial size circuit C,, and string s,, [su| < ¢'(n), such that
Cu(f(u,e(sy,x))) =z for all z € ™.

Intuitively, a function f has an easy cylinder if there exists a
parametrized (on u) dense subset in its domain on which it is easy to
invert, and the dense subset depends on the parameter in a simple way (via
the string s, ). Note that the circuit C, can be chosen depending on f as
well as u but the embedding function e must be independent of u.
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Define set K as:

K = {(p,y) | p is a code of an NTM M,,
such that M, accepts y in at most |py|* steps}.

K is easily seen to be NP-complete. The author and Watanabe [13]
showed that,

Theorem 2.26. (Agrawal-Watanabe) Suppose K reduces to A via f
and [ is a 1-1, size-increasing, P /poly-reduction with an easy cylinder.
Then K is P /poly-isomorphic to A.

Proof Sketch. Suppose f has an easy cylinder with embedding function e.
We define a P/poly-reduction h from K to K such that f is easy to invert
on the range of h. Fix any n, and consider a non-deterministic Turing
machine M that executes as follows:

Input (u,y). Guess z, s, |z| = n, |s| < ¢’(n), and check whether e(s, )
equals y; if not, reject; if yes, accept if and only if x is in K.

Here we note that the advice of size ¢(¢’(n) + n + [log(¢’(n) + n)]) for
computing e on X4 (M+ntlog(@ (M) +n)1 js hardwired in M. Further, from
the complexity of e, M(y) halts within 2¢(¢’(n) + n + [log(¢’(n) + n)])
steps. Thus, by letting p,, be a code of this machine M that is (with some
padding) of size £(n) > 2¢(¢'(n) + n + [log(¢’(n) +n)]), we have that M,
halts and accepts (pn, e(s,z)) in |pne(s, 2)|? steps iff M accepts (py, e(s, z))
iff x € K for all x € ¥".

With these machine codes p,, for all n, the reduction h of K to itself is
defined as follows for each n and each x € ¥™:

h(l‘) = (pme(spn?x))-

It follows from the above argument that h is a reduction of K to K.
Furthermore, h is P/poly-function.

Let ¢ = f o h. Function g is clearly a 1-1, size-increasing P/poly-
reduction of K to A. We show that g is also P/poly-invertible. This follows
from the existence of circuit Cy,, such that x = Cp, (f(pn, €(sp,.,x))) for all
xzeX”. g

Finally, [13] showed that many of the candidate one-way functions do
have easy cylinders. For example, the function Mult defined above:

Mult has two inputs numbers z and y. Fix polynomials ¢’'(n) = 0,
g(n) = n, and ¢(n) = 2(n + [logn]). Fix s, = € and the embedding
function e(sy,2) = (su,2) = 2t where |t| = [log|z|] and t equals the
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number |z| in binary. Therefore, Mult(u, e(su, z)) = Mult(u, zt). Since
|u| > |2t], fixing u fixes the first number = and z determines the second
number y. Therefore, given w, it is trivial to invert Mult(u, 2t).

The function Mult also has an easy cylinder: use u to fix all but the
second string of the last pair. It is also proved in [13] that all 1-1, size-
increasing, ACY-functions have easy cylinders. The notion of easy cylinders
is a formalization of the property of ACY functions identified at the end of
the last section. As already observed, many well-known candidate one-way
functions do have easy cylinders. Based on this, [13] conjectured that,

Easy Cylinder Conjecture. All 1-1, size-increasing, P /poly-functions
have an easy cylinder.

The following corollary follows from the above two theorems.

Corollary 2.3. If there exists a 2" -secure one-way function and the Easy
Cylinder Conjecture is true, then all sets complete for NP under P /poly-
reductions are P /poly-isomorphic to each other.

It is not clear if the Easy Cylinder Conjecture is true. The only indica-
tion we have is that the conjecture is true when translated to AC® settings,
and that many well-known candidate one-way functions have easy cylin-
ders. Goldreich [31] argued against the conjecture by defining a candidate
one-way function of the form f™ where f is a candidate one-way function
in NC° based on expander graphs. He argued that it is not clear whether
f™ has an easy cylinder, and conjectured that it does not.

2.8. Future Directions

The results of the previous two sections suggest that the Isomorphism Con-
jecture is true. However, the evidence is far from overwhelming. Answers
to the following questions should make the picture clearer:

e Can one prove the r-Complete Degree Conjecture for other reducibil-
ities, for example, ACO[Z] (computed by constant depth circuits with
AND and PARITY gates)?

e Does Goldreich’s function have an easy cylinder? Can one prove it does
not under a reasonable hypothesis?

e Even if the Easy Cylinder Conjecture is true and strong one-way
functions exist, the Isomorphism Conjecture is true only for P/poly-
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reductions. Can one define alternative and plausible conjecture(s) from
which the Isomorphism Conjecture for p-reductions follows?
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In this chapter we investigate set-theoretic properties and the Turing
degree structure of the hierarchy of AS-sets, which is well known in the
literature as the Ershov hierarchy.
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3.1. The Hierarchy of Sets

The notion of a computably enumerable (c.e.) set, i.e. a set of integers whose
members can be effectively listed, is a fundamental one. Another way
of approaching this definition is via an approximating function {A;}sc.w
to the set A in the following sense: We begin by guessing x ¢ A at
stage 0 (i.e. Ag(z) = 0); when later x enters A at a stage s + 1, we
change our approximation from Ag(z) = 0 to Asy1(x) = 1. Note that
this approximation (for fixed) x may change at most once as s increases,
namely when z enters A. An obvious variation of this definition is to
allow more than one change: A set A is 2-c.e. (or d-c.e.) if for each =z,
As(x) change at most twice as s increases. This is equivalent to requir-
ing the set A to be the difference of two c.e. sets A; — As. Similarly,
one can define n-c.e. sets by allowing n changes for each z. A direct
generalization of this reasoning leads to sets which are computably ap-
proximable in the following sense: For a set A there is a set of uniformly
computable sequences {f(0,z), f(1,z),..., f(s,x),...|r € w} consisting of
0 and 1 such that for any = the limit of the sequence f(0,x), f(1,x),...
exists and is equal to the value of the characteristic function A(x) of
A. The well-known Shoenfield Limit Lemma states that the class of
such sets coincides with the class of all A9-sets. Thus, for a set A,
A <r O if and only if there is a computable function f(s,z) such that
A(z) = lim, f(s, x).

The notion of d-c.e. and n-c.e. sets goes back to Putnam [51] and
Gold [37], and was first investigated and generalized by Ershov [33-35].
The arising hierarchy of sets is now known as the Ershov difference hierar-
chy. The position of a set A in this hierarchy is determined by the number
of changes in the approximation of A described above, i.e. by the number
of different pairs of neighboring elements of the sequence.

The Ershov hierarchy consists of the finite and infinite levels. The finite
levels of the hierarchy consist of the n-c.e. sets for n € w. Otherwise a set
belongs to one of the infinite levels of the hierarchy. The infinite levels of
the hierarchy are defined using infinite constructive ordinals. As it turns
out, the resulting hierarchy of sets exhausts the whole class of AY-sets.
Each subsequent level of the hierarchy contains all previous ones but does
not coincide with any of them. At the same time the levels of the hierarchy
are arranged so uniformly, that even the following conjecture was stated:
The semilattices of the Turing degrees of the sets from the finite levels of
the hierarchy starting with the second level are indistinguishable in first
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order predicate logic. This conjecture became well known as Downey’s
Conjecture and involved a whole series of publications.

The Turing degrees of the sets from the finite levels of the Ershov hi-
erarchy have been intensively studied since the 1970s. It turned out that
they (partially ordered by Turing reducibility) have a sufficiently rich in-
ner structure, in many respects repeating its paramount representative, the
class of c.e. degrees.

Our notation and terminology are standard and generally follow
Soare [56]. In particular, the standard enumerations of the c.e. sets and
partial computable functions are denoted by {W,}icw and {®y}rcw re-
spectively. As usual, we append [s] to various functionals such as ®(z)[s]
to indicate the state of affairs at stage s. In particular if A is c.e. (or oth-
erwise being approximated) we mean by this notation the result of running
the e’ Turing machine for s steps on input = with oracle A, the subset
of A enumerated by stage s (or the approximation to A at stage s). We
take the use of this computation to be the greatest number about which
it queries the oracle and denote it by ¢.(A;x)[s]; so changing the oracle
at . (A;x)[s] destroys the computation. We also use a modified version
of the restriction notation for functions to mesh with this definition of the
use: f[z means the restriction of the function f to numbers y < . Thus if
®4(x) is convergent, then the use is A[p.(A;z) and changing A at . (A; )
destroys this computation (and similarly for computations and approxima-
tions at stage s of a construction). For a set A C w its complement w — A
is denoted by A. The cardinality of a set A is denoted by |A|.

2
(z+y) 2+3:c+y and

The pairing function (z,y) is defined as (z,y) =
bijectively maps w? onto w. We denote by [ and r the uniquely de-
fined functions such that for all z,y, I({(z,y)) = z,r({z,y)) = y and
(I(x),r(z)) = z; the n-place function (x1,...xz,) for n > 2 is defined
as (x1,...xn) = {{...{(x1,22),23),...,2Tn). In this case the s-th compo-
nent of (z1,...x,) is denoted as ¢y s. Thus, (¢, 1(2),...cnn(z)) =z and
en,s((T1,...Tn)) = xs. If a function f is defined at x, then we write f(z) |,
otherwise f(z) 1. The characteristic function of a set A is denoted by the

same letter: A(z) =1, if z € A, and otherwise A(z) = 0.

3.1.1. The finite levels of the Ershov hierarchy

We begin with the following characterization of the AY-sets (i.e. sets
A<y ).

Lemma 3.1. (Shoenfield Limit Lemma) A set A is a AY-set if and only if
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there is a computable function of two variables f such that f(s,x) € {0,1}
for all s,z, f(0,2) = 0 and lim, f(s,z) exists for each x (i.e. |{s: f(s,x) #
f(s+1,2)} < o0), and lim, f(s,z) = A(z).

It follows easily from the Limit Lemma that

Theorem 3.1. A set A is Turing reducible ( T-reducible) to O if and only if
there is a uniformly computably enumerable sequence of c.e. sets {Ry}rcw
such that

RoD2R12..., [JR:=0 and A= |J(Raw— Rows1). (1)
=0

=0

Proof. (—) Let A <r ('. By the Limit Lemma there is a computable
function f such that A = lim; f(s, z), and for all z, f(0,z) = 0. Define c.e.
sets R,,n € w, as follows:
Ro={y:3s(f(s,y) = D}
Ry = {y : 3s0,s1(s0 < s1, f(s0,y) = 1, f(s1,y) = 0)}, and in general for
n > 0;
R, ={y:3s0 < s1 < ... <su(f(s0,9) =1, f(s1,9) =0,..., f(sn,y) =
n+ 1 mod 2}.

Obviously, all sets R,, are c.e., the sequence {R;} e, is uniformly c.e.,

and Ry 2 Ry D .... It is also easy to check that (;_ R, = 0 and
A= U;.;O(RQI - R2r+1)-
(+) For this direction the proof is straightforward. O

Note that if A is an arbitrary $9-set then it is easy to show that A =
U;’;O(ng — Rg;41) for a uniformly computably enumerable sequence of
c.e. sets {R;}zcw such that Ry 2 Ry 2 Ry D .... Therefore, in Theorem
3.1 the condition ,~, Ry = 0 is necessary.

If in (1) starting from some n all elements of the sequence { Ry }yew are
empty, then we obtain sets from the finite levels of the Ershov hierarchy.

Definition 3.1. A set A is n-computably enumerable (an n-c.e. set), if
either n = 0 and A = (), or n > 0 and there are c.e. sets Ry 2 Ry 2 Ry D
... 2 R, 1 such that

[=5]
A= U (R2; — Roiy1) (here if n is an odd number then R,, = ).
i=0
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It follows from this definition that if n > 1 and n is an even number
(n = 2m) then

m—1

A= U (R2z — Rag+1),
x=0

and if n > 1 and n is an odd number (n = 2m + 1) then

m—1

A={ U (Row — Rogy1)} U Ropy.

=0

Therefore, the class of 1-c.e. sets coincides with the class of c.e. sets,
2-c.e. sets can be written as Ry — Ra, where R; O Ry c.e. sets, therefore
they are also called d-c.e. (difference-c.e.) sets, 3-c.e. sets can be written
as (R1 — R2) U R3 etc.

The n-c.e. sets constitute the level ¥ ! of the Ershov hierarchy. They
are also called X, 1-sets. The complements of the X, 1-sets constitute the
level IT,,; ! of the hierarchy (I, '-sets). The intersection of these two classes
is denoted by A1

A= tnIot
The proof of the following statement is straightforward.

Theorem 3.2. A set A is an n-c.e. set for some n > 0 if and only if
there is a computable function g of two variables s and x such that A(x) =
limg g(s,x) for every x, g(0,2) =0, and

[{slg(s +1,2) # g(s,2) }| <n. (1)

The class of the n-c.e. sets is denoted by R,. It is clear that every
n-c.e. set is also (n + 1)-c.e., therefore Rg C R1 C R C ... . It is easy to
see that the reverse inclusions do not hold and that for every n > 0 there
is an (n + 1)-c.e. set with an (n + 1)-c.e. complement which is not n-c.e.
and not even co-n-c.e.

Therefore, we have

Theorem 3.3. (Hierarchy Theorem) For every n > 0,

-1 —1 -1 —1
IRLNUR | el Yol | I
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Comment. The Limit Lemma appeared for the first time in Shoen-
field [54]. The finite levels of the Ershov hierarchy were defined and stud-
ied (under different names) also in Putnam [51] and Gold [37]. Addison [1]
considered a general method of constructing “difference” hierarchies. In
particular, his hierarchy, generated by c.e. sets, defines the same classes of
n- and w-c.e. sets (w-c.e. sets will be defined later). In the same paper
he also obtained several properties of n- and w-c.e. sets, for instance, the
Hierarchy Theorem 3.3. The notations 3,1, 11! and A-! for the finite
levels of the hierarchy, as well as analogous notations for further levels (see
Theorem 3.14) were introduced by Ershov [33, 34].

3.1.2. The properties of productiveness and creativeness on
the n-c.e. sets

On the class of n-c.e. sets Ershov [33] introduced the notion of creative sets
which is similar to the appropriate definition on c.e. sets and preserves its
main properties.

Definition 3.2. A set P is ¥, '-productive, n > 2, if there is an n-place
computable function f(z1,...,z,) such that for any c.e. sets W, 2 W,, D
R

=] [=4]

nt1
U <W$21171 - Wﬂcm) CP— f(xl’ s ,SL’n) SN U (lei—l - szi)
=1 3

(for odd n, set Wy, = 0).
An n-c.e. set A is X t-creative if its complement is ¥ !-productive.

For simplicity we will consider only the case n = 2, the general case is
similar.

For d-c.e. sets the definition of X5 '-productive sets can be reformula-
ted as follows: A set P is X5 '-productive, if there is a unary computable
function f such that for any =z,

Wiz) 2 Wia) & Wiy = Wi@)) € P — f(x) € P — (Wi@) — Wew))-
Similarly to the case of c.e. sets, Z;l—productive sets cannot be d-c.e. sets.

Indeed, if P = W, — W,, W, O W,, then f((z,y)) € P — (W, — W,) =0,

a contradiction.
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Define:

Ry = {1‘|1‘ S Wl(m) U Wr(m)};
Ry = {l‘|l‘ S Wr(aj)}.

It is clear that Ry O Ry and Ry — Ry = {z]z € W) &z & Wiy}
Theorem 3.4. The set R — Ry is Z;l-creative.

Proof. We have to prove that the set w — (Ry — R2) = (w — R1) U Ry is
Do '_productive.

Let Wy — W, C (w— Ri)U Ry. If (z,y) € Ri — Ry, then (z,y) €
Ry & (z,y) ¢ Ry implies (z,y) € W, and (z,y) ¢ W,, which implies (z,y) €
Wy —W,,. But this is impossible, since W, — W, C (w— R;)UR;. Therefore
(x,y) € w— (R1 — R2). If (z,y) € Wy — W, then (z,y) € W, and
(x,y) ¢ Wy. It follows that (x,y) € Ri — R, a contradiction. Therefore,
for all  and y, W, — W, C w — (R1 — R»), which implies (z,y) € (w —
(R1 — Ra)) — (W — Wy). 0

Theorem 3.5. The set Ry — Ry s E;l-complete in the sense that every
d-c.e. set is m-reducible to R — R».

Proof. We have Ry — Ry = {z|r € Wi,y & x & Wy} It follows
from the proof of Theorem 3.4 that the function (z,y) is a productive
function for Ry — Ra, ie. W, -W, C Ry — Ry — (z,y) € Ry — Ry —
(We —Wy).
Let A; and As be c.e. sets and A; O As. Now we define a computable
function h which m-reduces A; — As to R1 — Rs.
We first define computable functions g; and go as follows:
Wos(oy = {H182(£,0) 1= 0}, Wya) = {H1Bo(£,0) 1= 0& By(t, 1) = 1},
Now define
0, ifye Ay, te W,, n=0;
qy,z,t,m) =4 1, ify € Ag, t € W,, n=1;
7, in all other cases.
By the s-m-n-theorem there is a computable function « such that
DPo(y,2) (1) = q(y, z,t,n). It follows that
n, ifye Ay, teW,, n<1;
P t =
a(y.z) (t:1) {T, otherwise.
Define p(z) = (g91(x), g2(z)). Let 8 be a computable function such that

for all y, z, Wa(y .y = {p(a(y, 2))}.
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By the Recursion Theorem there is a computable function f such that
for each y,

W) = Wrw):-
It follows from the definition of the function 3 that Wy, = {p(a(y, f(y)))}
Finally define h(y) = p(a(y, f(y))).

To prove that for any y, y € Ay — Ay +> h(y) € R1 — Ry, suppose that
y € Ay — As. We have Cba(y)f(y))(t,()) J=0if and only if £ € Wf(y) if and
only if t = p(a(y, f(y))) if and only if ¢ = h(y). Therefore, Woitaly,f ) =

{h(y)} = Wy Since y ¢ Az, Wo,(agy, sy = 0-
Let us denote {(g1(a(y, f(y))),g2(a(y, f(y)))) by z. Then z =
play, JW): I Wy (awsw) — Walatw.tw) S Fi— Rz, then z €
S

) 1
Ry — Ry — Wy, (a(y.f(y)))> and since = = p(a(y, f(y))) = h(y), h(y)
Ry — Ry — Wi (a(y,£()))» & contradiction.

Therefore, ng(a(y,f(y))) — Wgz(a(y,f(y))) C Ry — Ry. But the set
Wi aty.f))) — Woa(aly.f(y))) consists of a single element h(y), therefore
h(y) € R — Rs.

Now suppose that y ¢ A; — As. In this case we have either a) y ¢ Ay,
orb)y € AN As.

Case a) If y ¢ Aj, then the function ¢ is undefined at this y and all
z,t,n, therefore the function @,y f(y)) is also undefined for all t,n. It
follows that the sets Wy, (a(y,f(y))) and Wy, (a(y, f(y))) are empty and

h(y) = (g1(e(y, f(v))), 92(a(y, f(y)))) € R — Ra,

since the set Ry — Rs is productive.

Caseb) If y € A1 N Ag, then it follows from their definitions that the sets
ng(a(y’f(y))) and WgQ(a(y F(y))) coincic coincide. Therefore, since the set Ry — Ry
is productive, we have h(y) € Ry — Ra.

It follows that the function h(y) m-reduces the set A; — Ay to the X5 -
creative set Ry — Ry, as required. (]

The proof of Theorem 3.5 can be reorganized to prove a more general
claim: Any X !-creative set is ¥, '-complete in the sense that any n-c.e.
set is m-reducible to this set.

("]
Theorem 3.6. Let Q, = U (R2i—1 — Ro;) (letting Ry11 = 0), where c.e.

i=1
sets R1 O Ry O ... O R, are defined as follows: for every i, 1 < i <
n

n,Ri = {.’E|(E S U chs(ﬁ)}'

s=1
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a) The sets Qn are ¥ 1-creative sets for alln, 2 < n < w;
b) The sets Q. are X, t-complete.

The proof is similar to the proof of Theorem 3.5. Now the functions
gi» 1 < i < n, and p are defined as follows: Wy, () = {t[®.(t,0) |=
0& ... & D, (t,i—1) l=i—1}, p(x) = g({91(x), ..., gn(x))), where g is the
productive function for Q,,.

Comment. Theorems 3.4, 3.5 and 3.6 are from Ershov [33].

3.1.3. The class of the w-c.e. sets

As we can see, the n-c.e. sets for n < w does not exhaust the collection
of AY-sets. Therefore, to obtain in this way a description of all AJ-sets we
need to consider infinite levels of the hierarchy.

In the definition of n-c.e. sets (n < w) we have used non-increasing
sequences Rg O Ry O ... D R,_1 of c.e. sets. The infinite levels of the
Ershov hierarchy are defined using uniformly c.e. sequences of c.e. sets,
such that the c.e. sets in these sequences satisfy the same C-relations which
are consistent with the order type of the ordinal which defines the level of
this set in the hierarchy.

Definition 3.3. Let P(z,y) be a computable binary relation which par-
tially orders the set of natural numbers (for convenience instead of P(x,y)
we will write z <p y.) By definition, a uniformly c.e. sequence {R,} of
c.e. sets is a P- (or <p-)sequence if for all pairs z,y, © <p y implies that
R, C R,.

Note that we can easily redefine the n-c.e. sets for n < w according to
this definition. Indeed, if, for instance, for some c.e. sets A; D As D ... A,
we have A = (41 — A3)U...U(A,—1 — A,,) (where n is an even number),
then let Ry = A,,,R1 = A,,_1,...,R,_1 = A;. We have thus obtained an
n-sequence (n ={0<1<...<n-—1}) Ry C Ry C ... C R, such that

n—1
=
A= U (R2iy1 — Rai).

i=0
The sets from the first infinite level of the Ershov hierarchy are the w-

c.e. sets. They are defined using w-sequences of c.e. sets, i.e. sequences
{Rgs}zew, in which the relation R, C R, is consistent with the order type
ofw:{0<1<...}: RyCRiC....
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Definition 3.4. A set A C w belongs to level ¥ ! of the Ershov hier-
archy (or A is a X l-set) if there is an w-sequence {R,}.c, such that

A = U (Rap+1 — Ran). A belongs to level II;1 of the Ershov hierar-
n=0

chy (or A is a I '-set), if A € ;1. Finally, A belongs to level Al of

the Ershov hierarchy (4 is a Aj!-set), if A and A both are X !-sets, i.e.

AL =371 NTISE. A l-sets are also called w-c.e. sets.

Theorem 3.7. (Epstein, Haas, and Kramer [32]) A set A C w belongs to
level ;1 of the Ershov hierarchy if and only if there is a partial computable
function i such that for every x,
x € A implies Is(¢P(s,x) |) and A(z) = v (us(¥(s,x) |),x);
x ¢ A implies either ¥s(i(s,x) 1),
or 3s(v(s,x) ) & A(x) = P(ps(y(s,z) 1), z).
In other words, A C dom (¢ (us(¢(s,z) 1), x)), and for every x,

2 € dom (s (5,) 1)) implics A=) = (us((s.a) Do)

o0

Proof. (—) Let A = U (R2n+1 — Ray) for some w-sequence {R;}reu-
n=0
Define the required partial computable function (s, z) as follows: For a

given x, wait for a stage s such that z € Rop41,s for some (least) m. (If
this never happens then (s, z) 1 for all s.) Then define ¥(2m + 1,z) =1
and wait for a stage s; > s and a number n < 2m + 1 such that = €
R, s, — Rn—1,s,- Then define ¥(n,z) = 1, if n is an odd number, and
Y(n,z) =0, if n is an even number, and so on. Obviously, the function v
is the required function.

(+) Define c.e. sets R;, i > 0, as follows:

Ry = {z[¢(0,2) |= 0},

Ry = Ro U{al(0,2) 4= 1},

Rop = Ropp—1 U {$|¢(m, .T) \l,z 0}7

Romt1 = Rom U {z|tp(m, 2) |=1}.
Obviously, { Ry, }new is a uniformly c.e. sequence of c.e. sets R;,7 € w, and
Ry C Ry C
Now suppose that € A. Then there is an integer s such that ¥(s,z) |,
A(x) = ¢(s,x) =1, and if s > 0, then ¢ (s — 1 ,x) T. Therefore, © € Ropt1

for some (least) n, x ¢ U R,, and x € U Ront1 — Rap).

m<2n—+1
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Conversely, if © ¢ A, then either ¢ (s, z) 1 for all s, or there is an integer
s such that ¥(s,z) =0, and if s > 0 then ¥(s — 1,z) 1. Therefore, either
x ¢ R; for all i, or € Ry, for some (least) n and z ¢ U R.,. This

m<2n

means that x ¢ U (R2n+1 — Ran).

n=0

O

Definition 3.5. Let f be a total unary function. A set A is called f-
computably enumerable (an f-c.e. set), if there is a computable function g
such that for all s and z, A(z) = limg g(s, z), and

{s:g(s,2) # g(s + La)}| < f(a).

Theorem 3.8. a) There is an id-c.e. set (where id is the identity function)
which is not n-c.e. for any n € w;

b) Let f and g be computable functions such that I%°z(f(x) < g(x)).
Then there is a g-c.e., but not f-c.e. set;

c) There is a AS-set which is not f-c.e. for any computable function f;

d) Let A be an f-c.e. set for some computable function f, A # 0, and
let g be a computable function such that Vy3Ix(g(x) > y). Then there exists
a g-c.e. set B such that A =1 B.

Proof. For parts a)—c) use Cantor’s diagonalization argument. For part
d) let h be the following computable function: h(0) = 0, and h(x + 1) =
py{y > h(z) & g(y) = f(x +1)}. Define B = {z : 32 € A(x = h(2))}. Then
B is g-c.e. and B =7 A. O

Theorem 3.9. Let A C w. The following are equivalent:
a) A is w-c.e.
b) There is an w-sequence {Ry}pcw such that

U R, =w; and A= U (Ran+1 — Ran).

TEW n=0
c) A is f-c.e. for some computable function f.

d) There is a partial computable function ¥ such that for all x,

A@) = p(k,a), where k= pt((tz) ). (1)

(In this case we write A(x) = Y(ut(Y(t,x) 1), z).)
e) A is tt-reducible to (V.
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Proof. ¢) — d) Let A be w-c.e. and
A(z) =limg(s, ), [{slg(s +1,2) # g(s,2)}| < f(x)

for some computable functions g and f. Define a partial computable func-
tion v as follows: For any z

¥(f(x),x) = g(0,2).

If 3s(g(s + 1,x) # g(s,x)), then let s; be the least such s. Define
Y(f(x)—1,2) = g(s1+1,x). Further we proceed by induction: let ¢(f(x)—
i,x) = g(s; + 1,x) be the last value of ¢ defined this way. If 3s > s;(g(s +
1,2) # g(s,x)), then let ;11 be the least such s. Define ¢(f(z)—(i+1),z) =
9(si+1, 7). Tt is clear that the function v is partial computable and for all

z, A(z) = p(ps(¥(s, z) 1), z).
Part d) — a) immediately follows from Theorem 3.7.

a) = b) Let {Py}rew and {Qy }rew be w-sequences such that
A= U (Pony1 — Pop) and A = U (Q2n+1 — Q2,). Define a new w-

n=0

n=0
sequence {R; }rcw as follows: Ry = Fy. Forz >0, R, = P, UQ,—1. It is

clear, that A = U (Rant+1 — Rop) and U R, = w;.

n=0 rew
b) — ¢) Let A = U (R2n+1 — Ran) for an w-sequence {R,}se, such
n=0
that U R, = w;. Define computable functions g(s,x) and f(z) as follows:

rTEw

For a given x € w, first find the first stage ¢ such that either x € Ry
orx € Ryt — Ryp—1,4 for some m > 0. If z € Ry then f(z) = 0 and
g(s,z) = 0 for all s € w. Otherwise define f(z) = m, ¢g(0,2) = 1, if m
is an odd number, and ¢(0,z) = 0, otherwise. Further, for s > 0 define
g(s,xz) = g(s—1,x), if for any m, x € R, s implies z € R,,, s—1. Otherwise,
let n = pym(x € Rpy,s). Define g(0,z) = 1, if n is an odd number, and
9(0,z) = 0 otherwise.

Obviously, the functions g and f are computable, A(x) = lim, g(s, z)
for all z, and |{s: g(s,2) # g(s+ 1,2)}| < f(z).

¢) = e) Let A(x) = lim; g(s,z) and |[{s: g(s,z) # g(s+ 1,2)}| < f(x)
for some computable functions g and f. Define

M = {{i,z,a) : FH({s<t:g(s,z) #g(s+ 1, 2)}| =i &g(t,z) =a)}.
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Obviously, M is c.e. and x € A if and only if ((0,z,1) e M & (1,z,1) &
M& (1,2,00 ¢ M)V ((1,2,1) e M & (2,z,1) ¢ M & (2,2,0) € M) V...V
(f(x),z,1) € M.

The last condition can be written as a tt-condition and, therefore, A <4
M.

e) — ¢) For a given x we can effectively find an integer n, a Boolean
function a : {0,1}™ — {0, 1}, and a finite set {t1,...t,} such that z € A if
and only if «(K(t1),... K(t,)) = 1. Define

g(s,x) = a(Ks(t1),. .. Ks(tn))-

(Here K is the creative set {e : e € W.} and {K;}sen is an effective
enumeration of K.) It is clear, that A(x) = lim, g(s,x), and |{s : g(s,x) #
g(s+1,2)} < n. O

If we replace in part d) of Theorem 3.9 ut by a bounded search opeara-
tor put< n, then we obtain a similar description of the n-c.e. sets (more
precisely, the weakly n-c.e. sets) for 1 < n < w.

Definition 3.6. (Epstein, Haas, and Kramer [32]) A set A is weakly n-c.e.
for some n > 0, if there is a computable function g of two variables s and
2 such that A(z) = lim, g(s,x) and

[{slg(s + 1,2) # g(s,2)}| <n

(in the definition of n-c.e. sets the condition “g(0,z) = 0 for every z” is
omitted).

The following properties of the weakly n-c.e. sets are straightforward.

a) A set is weakly O-c.e. if and only if it is computable; b) Every n-c.e.
set also is weakly n-c.e.; ¢) A set A is weakly n-c.e. for an arbitrary n > 0
if and only if its complement A is also weakly n-c.e.; d) The sets A and A
are both (n 4+ 1)-c.e. (ie. A € A;}rl) if and only if they are both weakly
n-c.e.; e) For any n > 0 there is a weakly n-c.e. set A such that neither A
nor A is n-c.e.

Theorem 3.10. (Epstein, Haas, and Kramer [32], Carstens [15]) Let A C
w and n > 0. The following are equivalent:

a) A is weakly n-c.e.;

b)There is a partial computable function 1 such that for every x,

A(z) = p(pt< n(y(t, ) 1), z); (1)
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¢) A is bounded truth-table reducible to O with norm n.

Proof. a) — b) Let A(z) = lim, g(s, ) for some computable function g
and [{s|g(s+ 1,z) # g(s,z)}| < n for every x.
The required function 1 is defined as follows: for every z, ¥(n,z) =
g9(0,2). If 3s(g(s + 1,z) # g(s,x)), then let s1 be the least such s. Define
Y(n —1,2) = g(s1 + 1, x). Further proceed by induction: let ¥(n — i, x)
g(s;+1,z) be the last value of 1) which was defined. If 3s > s;(g(s+1,z)
g(s,z)), then let s;11 be the least such s. Define ¢(n — (i + 1), z)
(

g Sl+17 )
It is clear, that 1) is partial computable and (1) holds.

I N

b) — a) In this direction the proof is straightforward.

¢) — a) Let A be btt-reducible to the creative set K with norm n. This
means that for any x we can effectively find an n-place Boolean function
o, and a finite set F, = {t1,t2,...,t,} such that z € A if and only if
oz (K(th),..., K(t,)).
Define a computable function g as follows:

g(s,z) = a(Ks(z1),. .., Ks(zn)).
Obviously, A(z) = lim, g(s, x), and [{s|g(s + 1,z) # g(s,x)}| < n.

a) — ¢) The proof of this part is similar to the proof of part ¢) — e) of
Theorem 3.9. g

3.1.4. A description of the Ag-sets using constructive ordi-
nals

The w-c.e. sets are the first examples of sets from infinite levels of the
Ershov hierarchy. Later we will consider sets from other infinite levels of
the hierarchy exhausting all AJ-sets.

In what follows we use Kleene’s system of ordinal notations (O, <q)
(Kleene [43], see also Rogers [53]). Recall that if @ € O then |alp denotes
the ordinal o, which has O-notation a.

On O a computable function +q is defined which for all x,y and z, has
the following properties:

a) r,y €O > x+oy € O;
b) 2,y € O&y#1—x<gz+oy;
c) r,y € O = |z +oylo = |z|o + [ylo;
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d) z€e0&y<pzerxz+oy <o 4o 2.

Remark 3.1. In general, the relation y <o 4y does not necessarily hold
for all z,y € O. But it follows from part ¢), that for all z,y € O such that
1 <o x, we have the following: |y|o < |2 +0 ylo-

Definition 3.7. Let a,b € O and |alp = a,|blo = 8. We say that a is
monotonically reducible to b (written a <o b), if there is a partial com-
putable function h such that {z :  <g a} C domh, Va <g a(h(z) <o b),
and

1) (Ve,d <o a)(c <o d <> h(c) <o h(d)), and
2) (vd <o a)(ko(d) = ko(h(d))),

where kg is the partial computable function which is used in the definition
of O as a system of notations: then, for z € O, ko(z) = 0, if |z]p = 0;
ko(z) = 1, if |z|o is a successor; and ko(z) = 2, if |z|o is a limit ordinal.

It is clear that the relation =< is reflexive and transitive, and for all
a,b € O, a <o b implies 3,1 C Eb’l. Now the properties ¢) and d) of +¢
stated above imply the following useful property of notations from O which
will be used in Theorem 3.19.

Proposition 3.1. For all x,y € O, y <o = +0 y.

Definition 3.8. Let S be a univalent system of notations for constructive
ordinals, let « be an ordinal which has an S-notation, and let ¥ be a partial
computable function and f a unary function. We write ¥ —y, gy f, if for
all x € domf we have f(x) = ¥(n,z), where n is a notation for the least
ordinal A < a such that ¥(n,x) J.

For simplicity in this case we will also write (cf. Theorems 3.9 and 3.10)
F(@) = (pA< @)s(B(N)s, ) 1), ).

Let « be an ordinal. The parity function on ordinals is defined as follows:
« is an even ordinal if either it is 0 or a limit ordinal, or it is the successor
of an odd ordinal. Otherwise « is an odd ordinal. Therefore, if « is even
then o' (the successor of «) is odd and vice versa.

In the system of notations S the parity function e(x) is defined as fol-
lows: Let n € Dg. Then e(n) = 1, if |n|g is an odd ordinal, and e(n) = 0,
if |n|s is an even ordinal.

Let a be an ordinal which has a notation a in a notation system S, i.e.
lals = . Suppose that for a set A, a partial computable function ¥ and
for every x we have
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Az) = U((pA< @)s(U((N)s, 2) 4, 2)) (1)

(in symbols ¥ —r, g3 A).

We define an a-sequence of c.e. sets {R,} as follows: For every = <g a,

) [l 3t <o (W(t2) 1= 1)}, i e(r) £ elo);
Ro= {J RyU { (2| 3t <s 2(U(t,2) L= 0)}, if e(x) = e(a).

y<sx

Clearly,
A={z|3z <s a(z € Ry &e(z) # e(a) &Vy <5 x(z ¢ Ry)}. (2)

In particular, if & = w this agrees with our previous description of w-c.e.
sets via w-sequences, and if & = n < w (« is a natural number) with our
description of n-c.e. sets.

If a set A is defined as in (2) using some a-sequence {R,} such that
U R, = w, then the converse claim also holds: The set A can be defined

r<sa
as in (1) for some partial computable function W.

Indeed, let ¥ be the following function:

(a)

1, if z € Ry, e(x) #
= e(a)

U(x,z) =< 0, if z € Ry, e(x)
1, otherwise.

(&
(&

)
)

Since U R; = w we have Vz3z(V¥(x, z) |). Now it is easy to see that
r<sa

Ar) = ¥((pA< a)s(¥((N)s, 2) |, 7).

Remark 3.2. Here the condition U R, = w is necessary, otherwise the

r<sa

condition Vz3x(V¥(x, z) |), which we need for (1), does not hold. It is easy
to see that in (2) the a-sequence {R,} has this property.

We have proved the following:

Theorem 3.11. Let S be a univalent system of motations for construc-
tive ordinals, A C w and « an ordinal which has S-notation a. Then the
following are equivalent:

a) There is a partial computable function U such that for every x,

Alz) = W((pA< a)s(¥((A)s, ) 1, 2));
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b) There is an a-sequence {Ry}y<.q Such that U R, = w, and

rx<sa

A={z| Fr<galze R &e(z)#e(a)&Vy <sz(z ¢ Ry)}.

Theorem 3.11 generalizes the previously obtained descriptions of w-c.e.
and n-c.e. sets for n < w using w-sequences and n-sequences of c.e. sets
respectively. Now we will show that any A9-set has such a description for
some a-sequence {R,}, where a is a notation for some ordinal « in the
notation system S. Moreover, we will have that o < w?.

We first prove that any set which can be so defined using an a-sequence
{R,} for some a € 3, is a AY-set, i.e. these definitions do not take us out
of the class of AY-sets.

Theorem 3.12. Let S be a univalent and recursively related system of
notations, o a constructive ordinal which has a notation in S, ¥ a partial
computable function, and let f be a function such that ¥V —, sy f. Then
<o ¥

Proof. Let z be a given integer. To (/-compute f(z) find the first (if
any) integer n such that ¥(n,z) |. (If there is no such n, then f(z) 1.)
Let ¥(n,z) | for some n. Using the oracle ) find (if it exists) an
integer m such that vg(m) < vg(n) and ¥(m,z) J. This is possible since
S is recursively related. Now repeat the same, replacing n by m and so
on. Since the set «a is well-ordered we will repeat this process only finitely
many times. Now let m be an integer such that vg(m) is the least ordinal
such that ¥(m,z) |. We have f(x) = ¥U(m, ). O

Theorem 3.13. Let f <t (' be a total function. There is a partial com-
putable function ¥ such that for every x,

f(@) = T(lpA< w?[o(¥(|Ao, @) 1), 2).

Proof. Since O is a universal system of notations, it is enough to con-
struct a univalent and recursively related system of notations S and a partial
computable function ¥ such that for every =,

f(@) = T((pA< w?)s(T((N)s, @) 1), ).

Let f(x) = lims g(s,x) for all x and some computable function g. Let
0= sf <sf <...<si beall integers s, for which g(s,z) # g(s + 1,2).
Therefore k, is the number of different values of the function g on the set
of pairs {(s,x)|s € w}.
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Arrange all pairs (y,x) (or rather, the indices (y, z) of these pairs) into
an w?-sequence as follows:

<820, )s <520 +1,0), <520 + 2,0},...7<520 +7,0),...
<82071,0>, <82071 +1,0), <52071 +2,0),..., <820 —-1,0)
Block 0 € oo
(s9,0), (50 +1,0), (s +2,0),..., (55 —1,0)
(0,0),(1,0),(2,0),...,{s) —1,0)

(s,1€1,1>7 (s}Cl +1,1), (s}Cl +2,1),. ..,(s}Cl +4,1),...
(Sh—1 1), (sp, g+ 1,1), (sp,_y +2,1),..0, (s, — 1,1)
BLOCK 1€ oot

(st +1,1), (st +2,1),..., (s = 1,1)
1,1),(2,1),..., (st —1,1)

Each i-th row (except the 0th) of the z-th block (0 < z < 00) is filled with
numbers (s7,x), (s7 +1,z),(sf +2,2),...,(sf;; —1,z), and the Oth row
consists of the infinite sequence of numbers (sf + j, x) ,j = 0. Tt is clear
that z-th block of this matrix contains all numbers (j,z),j > 0, without
repetition.

Now, for each x, we transform rows of the z-th block so that its i-th
row for each 7 > 0 (not only for i = 0) contains infinitely many integers,
but nevertheless we still have the following conditions:

1) The first element of the i-th row is the number (sf _;, z),
2) Each block contains all natural numbers (j, z), j > 0 without repetition.

For this we fill the rows of the z-th block as follows: Sequen-
tially compute ¢(0,z),g(1,z),... and simultaneously fill with numbers
(0, ), (1,x),(2,z),... the positions of the last row from left to right un-
til we reach the number s7, for which we have g(s¥ —1,x) # g(s7,z). After
that we begin to fill with numbers (s7,z), (s7 + 1,z),... simultaneously
from left to right positions of the last two rows until we reach the number
s3, for which we have g(s3 — 1,x) # g(s3,2). Then we fill with numbers
(s¥,x),(s5 +1,x),... simultaneously from left to right positions of the last
three rows: the third to last, second to last and last (in this order), until we
reach the number s§ and so on. Let us denote this process of enumerating
elements of the constructed matrix by M, and by a;; the element of the
matrix which is in the j-th place of its i-th row.
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Thus, inside each block we have finitely many rows of order type w. It is
clear that for each pair (z,y) the number (x,y) belongs to exactly one row
of the matrix. Define a linear ordering <, on the elements of the matrix
as follows: a;; <, ag,, if either ¢ < k, or i = k, but j <. Therefore, each
of the w blocks has order type w - n for some n > 1, and all the numbers in
the matrix give order type w?.

Now we define a univalent system of notations S for ordinals < w? as
follows: We map, in an order-preserving way (and denoting this map as
vg) the integer a; ; to the ordinal w-i 47, 0 <47 < w: a < F if and only if
()s <¢ (B)s-

To verify that S is a univalent system of notations, define computable
functions kg, ps and a partial computable function gg as follows:

0, if s = sgo,xzo;
ks((s,z)) =42, if s=0V (s>0 & g(s,z) # g(s — 1,x));
1, otherwise.

Obviously kg is a computable function, and if kg(x) = 0, then vg(z) =
0; if vg(x) a successor, then kg(z) = 1, and if vg(x) a limit ordinal then
ks(x) = 2.

We define the function pg(z) as follows: If I(x) # s; ) for some
i < ke, then ps(e) = (U(x) — Lr(a)).

It is clear that pg is a partial computable function, and if vg(z) is a
successor then pg(z) is defined and vg(z) = vs(ps(z)) + 1.

To define the function ¢g consider the following two cases.

Case 1. = (n,0). (The number x belongs to the 0-th block of the ta-
ble.) Define gs(x) as an index of the following partial computable function
ffln< 520, then we sequentially compute values of g(n,0),g(n+1,0),...
until we obtain a number s > n such that g(s —1,0) # ¢(s,0). (It is clear
that if n = s) for some i < ko then s = s¥,,.) Define f(t) = g(s +1t,0) for
all t > 0.

Case 2. x = (n,m), m > 0. (The number x belongs to the m-th nonzero
block.) In this case gg(x) is an index of the following partial computable
function f: We define f(0), f(1),... sequentially as (0,m — 1),(1,m —
1),(2,m —1), ... (the subsequent elements of the last row of the (m — 1)th
block) and simultaneously compute g(n,m),g(n+1,m),g(n+2,m),... un-
til we again obtain a number s > n such that g(s — 1,0) # ¢(s,0). (It is
clear that if n = s} for some i < k,,, then again s = s} ;.) After that, the
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remaining values of the function f are defined as the subsequent values of
the function g(s +¢,m),t > 0.

It is easy to see that if vg(x) is a limit ordinal then gg(z) is defined and
{vs(Pys(2)(n)) fnew is an increasing sequence whose limit is vg(x).

Obviously vs(z) < vg(y) if and only if either r(x) < r(y) or r(z) = r(y),
but then I(x) < Il(y). Therefore S is also recursively related system of

notations for ordinals.

Now let

~g(s,x), ifx=1y;
\I/((s,y>,x) - {T’ otherwise.

Obviously, ¥ is a partial computable function and for every =,
fla) = U((uA< w?)s(T((N)s, @) 1), 2). O

Since O is a universal system of notations, Theorems 3.11, 3.12, and
3.13 imply the following:

Corollary 3.1. For any set A C w, A <7 0" if and only if there is an
a-sequence { Ry }z<oa, |alo < w?, such that U R, = w, and

rx<opa

A={z] Fr<palz € Ry &e(z) #e(a)&Vy <o x(z ¢ Ry)}.

Comment. Theorems 3.12 and 3.13 are due to Ershov [34]. In the proofs,
we have used an approach suggested by Epstein, Haas, and Kramer [32].
Theorem 3.11 is also from this work.

3.1.5. The infinite levels of the Ershov hierarchy

Since |alo has order-type ({z:2z <¢ a}, <o), the sentence “a-sequence of
ce. sets {R;}” for a € O has to be understood in the sense of Definition
3.3. Define for a € O the operations S, and P,, which map a-sequences
{Rgs}u<oa into subsets of w as follows:

Sa(R) = {z|3z <¢ a(z € Ry &e(x) # e(a) &Yy <o z(z ¢ Ry))}.
P,(R) ={z|3z <o a(z € Ry &e(z) = e(a) &Vy <o z(z ¢ Ry))}

U{w— U R,}.

rx<opa
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It follows from these definitions that P,(R) = S,(R) for all a € O and
all a-sequences R.

By definition the class ¥t (II;1) for a € O is the class of sets S, (R)
(P.(R), respectively), where R = {R,;}s<,q runs through all a-sequences
of c.e. sets. Let A1 =% 1NII; 1L

It is easy to see that for natural numbers n > 0 and for a € O such that
|alo = w these definitions coincide with the previous ones. (The finite levels
of the Ershov hierarchy are denoted by ordinals, not by their O-notations.)

Theorem 3.14. (Hierarchy Theorem) Let a,b € O and a <g b.
Then ;UM L C £, NIt

Proof. 1t follows immediately from the definitions of the classes of X7 1-
and TI; - sets that if a <o b then X7 UTI; T C S, ' NI, L. Tt is easy to see
that here all the inclusions are proper. O

Corollary 3.2. For every a € O, £, C 3§ N1IJ.

Proof. Suppose, for the sake of contradiction, that for some a € O we
have X1 = B3 NII3. Let b € O be a notation such that a <o b. Then,
by Theorem 3.14, ;! C ¥, '. Therefore, 3 N 113 = ¥ c %', a
contradiction. (|

Theorem 3.15. Let |alp be a limit ordinal. The set A belongs to the class
AL if and only if there is an a-sequence R such that A = S,(R) and

Ub<oa Rb = w.

Proof. (=) Let A € A;'. Then A = S,(Ro) and w — A = S,(R1) for
a-sequences of c. e. sets Ro = {Ro.z fv<pa a0d R1 = {R1.4 }a<oa-
We define a new a-sequence P = { P, },<,q as follows: If in {z | 2 <¢ a}
x is a notation for a limit ordinal, then we define P, = Ry 5, otherwise |xo
is the successor of an ordinal |y|o such that y <o z. Define P, = Ry ,UR1 .
Since A C U Ry, and w — A C U Ry, and for all y <o a we

rx<pa r<pa
have the inclusions Ry, € P, and Ry, C P,, where y <¢ = <g a, we

concluded that U P, = w. The verification of the condition A = S,(P)
r<opa
is straightforward.
(«+) Now suppose that A = S,(P) for some a-sequence P = {P,}r<a;
suppose also that U P, = w. Define a new a-sequence R = {R;}z<ya

z<oa
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as follows: Ry = (). Further, for an arbitrary z € O, 1 <¢ = <¢ a, we
set Ry = Uy<,aRy, if « is a notation of a limit ordinal in {z | z <¢ a}.
Otherwise, we set R, = P, for some y <g x such that |z| is a successor of
lylo. Again it is easy to check that w — A = S,(R). O

Theorem 3.11 now immediately implies the following:

Corollary 3.3. Let |a|g be a limit ordinal. The set A belongs to the class
AL if and only if there is a partial computable function VU such that for
every x,

Az) = ¥ (|pA< alo(¥(|Ao, ) I, 7).

The proof of the following theorem is similar to the proofs of Theorems
3.11 and 3.15:

Theorem 3.16. Let A Cw and a € O. The following are equivalent:

a) A belongs to the class ¥, 1;

b) There is a partial computable function ¥ such that for every x, x € A
if and only if (A< alo(([Mo,2) 4, 2)).

Generalizing Definition 3.4 of the w-c.e. sets to infinite ordinals we
introduce the following definition:

Definition 3.9. Let |a]p be a limit ordinal. If A € A, then the set A is
called an |a|g-c.e. set (or an a-c.e. set, if |alp = ).

It is clear that if A € X ! for some a € O, and B <,,, A, then B € ¥;1,
and if A is |alo-c.e. for some limit ordinal |alg, a € O, and B <,, A, then
B is also |a|p-c.e. set.

The following theorem is a direct corollary of Theorems 3.11, 3.12 and
3.13.

Theorem 3.17. | J¥;'= | ] 37'=x¢nm.
acO a€O0,|alp=w?
Theorem 3.17 cannot be strengthened:

Theorem 3.18. U £ ¥BINT1I.
a€0,|alp<w?

Proof. Let a,b € O be notations such that |alo = w?, |blo < w?. It is
easy to see that b =<¢ a, which implies Zb_l - Z;l. Therefore, for each
a € O such that |aly > w?, we have U Yty e sgnms.

beO, |blo<w? |
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Theorem 3.19. a) For any a € O there is a path Ty in O through a such
that | J 5, " = $9N1I3;
beTy
b) There is a path T in O such that |T|o = w* and U Yol =39n11.
acT

Proof. a) Let a € O, and let {bg,b1,...} be a listing of all b € O such
that |blo = w?. We define T as a path through cg,ci,ca, ..., where cg =
a, c¢1=a+opby, ca=(a+obo)+ob1,...,cn="_(..(a+0by)+0-..)F0bn.
Obviously ¢g <¢ ¢1 <¢ ¢c2 <g ..., and the order type of Tp is |a|o + w®.
Since for each n < w we have ¢, = d +¢ b, for some d € O, and for all z, y,
y =0 +oy (see Proposition 3.1), we have, for every n, that b, =<¢ ¢,. Now

it follows from Theorem 3.17 that U ¥, =x9nml.
beTy
b) Immediate by the preceding proof for a = 1. O

The following claim shows that Theorem 3.19 b) cannot be strength-
ened:

Proposition 3.2. If a path T in O is such that |T|o < w3, then U Yol £
acT
¥9 N 1y.

Proof. We first prove the following:

Lemma 3.2. For any a € O, U ¥, # XN,
a<ob,|blo—|alo<w?

Proof of Lemma. Let d € O be a notation such that a <o d and |d|p =

lalo +w?. Tt is not difficult to see that for every b € O such that a <o b and

|blo — |alo < w? we have b < d. Therefore, U Yty £

a<ob,|blo—|alo<w?

$9 N II. O (of Lemma)

(Proof of Proposition 3.2 continued.) Since |T|y < w®, in T there is
an element a such that for some ordinal p < w? we have |T|o = |alo + p-
Hence, if b € T and a <g b, then |bp — |a|o < w?. Therefore,

Ustc U It

beT agob,|b|07|a|o<w2

Now it remains to apply the preceding lemma. O

Comment. All results of this section are due to Ershov [34].
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3.1.6. Levels of the Ershov hierarchy containing Turing
jumps

M. C. Faizrahmanov [36] has investigated the levels of the Ershov hierarchy
containing Turing jumps. Not every level of the hierarchy contains the
Turing jump of a set. For instance, its finite levels contain Turing jumps
only of computable sets. Indeed, if A’ is n-c.e. and A is non-computable,
then there is a non-n-c.e. set B <7 A. Therefore B’ <; A’. It follows that
B <31 A’ and, hence, B is an n-c.e. set, a contradiction.

Theorem 3.20. (M. C. Faizrahmanov) If A’ € 1! for a set A and a
notation a € O, then A’ € A7

Proof. As usual, we denote dom®? by WA for every e € w. Here
{®4} .., is the standard enumeration of all unary functions partial com-
putable in A.

Since w — A’ € X!, then it follows from Theorem 3.16 that there
is a partial computable function ¥ such that z € A’ if and only if
U(|uA< alo(¥(|Ao, ) 4, 2)) = 1. (In this case we also say that w— A’ € X1
with function U.)

Let B={x:3t € O(¥(t,x) | & t <¢ a)}. Obviously, B is c.e. and
A’ C B. Let {Bs}sew be an effective enumeration of B. Since A is a AY-set,
there is a uniformly computable sequence {A;}se,, such that A = limg A;.
Let e be an integer that A’(z) = lim, We“}; (z) for all z.

Now we define a set U c.e. in A. Using the Recursion Theorem we
initially fix an index of U (in the enumeration {WA}.c,) and, therefore,
we can fix a computable function f such that

(Ve){z e U + f(x) € A'}.

Stage s = 0. Set Uy = 0.

Stage s > 0. Let (s)g = 1.
into Us.

Let U = J, U..

For every i we have f(i) € B. Indeed, suppose f(i) ¢ B for some
i. Then i ¢ U and, therefore, f(i) € A’. It follows that f(i) € B, a

contradiction.

If f(i) € By and ®Z (i) |, then enumerate i
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Now we define a partial computable function © as follows:

0, Wt f(x) =1
O, x) =q 1L, U f(z) l#1;
T, AEW(E, f(x) T
It is clear, that the function © defines A" as a A !-set. g
Theorem 3.21 is proved for the following natural system of notations

(D¢, |.|¢) for ordinals below w® with its domain D¢ and the map |.|¢ :
Do — w®.

De ={x:3Im, ko, ..., km(x = (m,ko,....km) & m#0— ko £0)},

[(m, ko, ... km)o = w™ko +w™ k1 4 - + k.

In this theorem the levels of the Ershov hierarchy ¥ II;! and A, ! are
also defined for a € C. It is clear that C' is a univalent and recursively
related system and for simplicity, in what follows we identify ordinals with
their notations.

Let o and B be ordinals < w* and

m—1

a=w"py+w" P14 - pm,

B=w"q+w™ g1+ o g,

for some m, Po, .-, Pms G0y -« - > G-
The ordinal a(+)f defined as

a(+)B=w"po+q) +w™ o1+ @)+ - P+ @)

is called the natural sum of a and .

Theorem 3.21. (M. C. Faizrahmanov) Let A C w.
a) Ifn >0 and A’ € $,%, then A’ € ALY,

wms w™

b) If m,n >0 and A’ € ¥ _1,,, then A’ € ALx;

w™m?’ w™

¢) For every n > 0 there is a set A such that A’ € A;Ll — Anx.

Proof. We present only part a) of the theorem. The proof of part b) is
based on part a) and uses induction on m. The proof of part ¢) is achieved
by means of a direct construction using a finite injury priority argument.

Let n > 0 and A’ € ¥}, Define
S={2"Q2y+1):xe€ A & yecw}
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It is clear that S recursively isomorphic to A’ and, therefore, there is
a partial computable function ¥ such that z € S if and only if (36 <
W) (U(B,z) =1 & (Vy < B)(¥(v,2) 1) (i.e. U defines S as a ¥ 1-set).

Define a c.e. set B as follows: B = {z : 38 < w™(¥(8,z) |)}. Let
{Bs}sew be a computable enumeration of B. Since A is a AS-set, there
is a uniformly computable sequence {As}sc. such that A = lim; A;. Let
S = lim, WA[s] for some integer e.

Define for all z, i and s

r(x,i) = 273,
q(x,iy8) = [{t < s: DL (r(x,0))[t] # @ (r(w, 0)[t + 1]},

p(x,i,8) = grritlya(e,is)

For each partial computable function ®,, we define partial computable
functions h{ and h7 as follows:

Let hify = hf, = (0. Suppose that hg, and hf  are already defined
and let i = min{k : h{ (k) T}. Let x < s be the least (if any) integer
such that @, s(r(z,7)) {€ Bs, ®ns(p(z,4,5)) L€ Bs, and ®2(r(x,4))[s] 1.
If there is such x, then define hg .,y = hi o U {(i,r(x,9))}, hf 11 = b7 U
{(i,p(x,i,s))}. Otherwise, define hij .1 = hi g, hi op1 = hi s Let hy =
U, hoso b = U, hT 5. Tt follows from the definitions of hy and AT that

0.s(2) | if and only if h7 ((7) |. Since the ranges of r and p are disjoint,
the ranges of values of h{ and A7 are also disjoint.

Now we construct set U c.e. in A. By the Recursion Theorem we can
initially fix an index of U and, therefore, fix a computable function f such
that x € U < f(z) € S. Let n be an integer such that f = ®,, and denote
hk = th hk,s = hﬁvs for k = 07 1.

Stage s = 0. Let Uy = 0.

Stage s + 1 consists of two steps.

Step 1. Let i = uj(j ¢ dom hg ). For each = < s,

(a) If @2 (r(x,d))[s] L and Ay [ pe(A,r(z,i))[s] = A | we(A,r(z,1))[s],
then enumerate r(z,4) into Usyq;

(b) Let 7 = max{p(A,r(x,i))[t] : t < s}. If A; [ # = A | # then
enumerate p(z,4, s) into Usy.

Step 2. For each j € dom hg s such that @ésﬂ(j) 1, enumerate ho 5(j),
hl,s(j) into U5+1.

Now let U = |J, Us. There are two possibilities:
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Case 1. The function hg is not total.
Let ¢ = min{k : ho(k) T}. In this case for all z we have that

f(r(z,i)) € B — r(z,i) € S.

Indeed, suppose that f(r(x,i)) € B. Since S = lim, WA[s], there is a
stage s such that A; [ # = A [ 7, where 7 is defined as above. Moreover,
the stage s can be chosen so that this equality will be preserved at all
subsequent stages. Then for all ¢ > s we have p(z,,t) € U and, therefore,
f(p(z,i,t)) € B. Since ho(i) is undefined, ®2(r(z,4)) is defined, which
means that r(z,i) € S.

It follows from part (a) of the construction that
{r(z,i) :r(z,i) € U} = {r(z,i) : r(x,i) € S}.

Therefore, if r(x,i) € S, then f(r(z,i)) € B and we have A’ <; B via
the reduction function g(z) = f(r(x,4)). This means that A’ is c.e. and,
therefore, A’ € A_+.

Case 2. The function hg is total.

It follows that h; is also total. Let ¢ € w be an arbitrary integer and
s be the least stage such that hgs4+1(7) |. By definition of hy we have
DA(ho(i))[s] 1. Let s = min{t < s : Vs' € [t,s](®A(ho(i))[s'] 1) }.
Obviously, for all ¢ € [sg,s) we have q(x,i,t) = q(z,i,t + 1). Hence
hi(i) = p(z,1, so). Also it is clear that p(x,i, so) & Us,-

Now either ho(i) & Ust1, or hi(i) & Usy1. Indeed, suppose that
ho(i) € Usy1. Then there is a stage t < s¢ such that ®2(hg(i))[t] J and
Ap | (A ho(D))[t] = A T we(A, ho(i))[t]. Since for all u € [so, s] we have
®A(ho(i))[u] T, we also have for all w € [so,s], Ay | h# A | h, where
h = maz{e.(A, ho(i))[v] : v < so}. Therefore, p(x,i,s0) & Usy1. Now step
2 of the construction ensures that

Vi(i € S < (f(ho(i)) € S & f(m(i)) € 5)). (1)

Now we define a function ©, which defines S as a A_i-set. Let U,
denote the part of the function ¥ defined at the end of stage s.

For a given ¢ find a stage v and ordinals (p,3; < w"™ such that
U, (Bo, f(ho(7))) 4 and W, (B, f(h1(7))) J. (Such ordinals 5y and 51 ex-
ist, since by construction for all j we have {f(ho(j)), f(h1(4))} C B.)

Define a partial computable function G so that

O0(Bo(+)B1,1) = Wu(Bo, f(ho(7))) - You(B1, f(R1(7)))-
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Now suppose that a partial computable function Oy is already defined
and for k € {0,1} let v = ud(Vyts(0, f(he(7)) 4). Define a partial com-
putable function O, so that

Os+1(v0(+)71,%) = Wurts(0, f(ho(9))) - Yors(y1, f(R1(7)))-

Let © = |J, ©s. To show that © defines S as a A_.-set, take an arbitrary
integer = and let oy, = pB(Y (S, f(hr(x))) ), K = 0,1. Then ap(+)as =
uwy(O(y,x) }). Since apg and a; are below w”, ap(+)a; < w™. Now it
follows from (1) that

S(z) = ¥(ag, f(ho(x))) - (a1, f(hi(z))) = Oao(+)au, x).
This means that A’ € A7} O

wn

3.2. The Turing Degrees of the n-c.e. Sets

3.2.1. The class of the n-c.e. degrees

The first results on the Turing degrees of the sets from different levels
of the Ershov hierarchy were obtained in 1970’s of the last century when
S.B. Cooper in his dissertation (Cooper [16]) proved the existence of a
Turing degree which contains a 2-c.e. set, but does not contain c.e. sets
(below such degrees are called properly 2-c.e. degrees), and A.H. Lachlan
(unpublished) proved that for any n > 1 below any properly n-c.e. degree
there is a non-computable c.e. degree. These two results show that the
class of n-c.e. degrees for n > 1 differs from the class of c.e. degrees as well
as from the class of degrees below 0’: By Lachlan’s above-mentioned result
no n-c.e. degree can be minimal while there are minimal degrees below
<0.

These results provoked a certain interest among mathematicians and
became the starting point for the investigation of properties of the n-c.e.
degrees. Generalizing Cooper’s theorem, M.Lerman and L. Hay established
that for any n > 1 there are (n + 1)-c.e. degrees ¢ and d such that the
interval {b| ¢ < b < d} does not contain n-c.e. degrees. They also noted
that combining Cooper’s proof with the permitting method, one can con-
struct below any non-computable c.e. degree a properly 2-c.e. degree.
Further, R.A. Shore and L. Hay combined Cooper’s method with Sacks’s
coding technique to construct a properly 2-c.e. degree above any given
T-incomplete c.e. degree. (These results are not published, they are men-
tioned in Epstein, Haas, and Kramer [32].)



The Ershov Hierarchy 7

More active investigations toward the development of the structural
theory of the n-c.e. (mainly the 2-c.e.) degrees began after publications by
Arlsanov [5, 6], and Downey [26]. In these papers the authors prove that
the elementary theories of the semilattices of c.e. degrees and n-c.e. degrees
are different. M.M. Arslanov proved that for any n > 1 and for any n-c.e.
degree a > 0 there exists a 2-c.e. degree d < 0’ such that aud = 0’. Earlier
S.B. Cooper and C.E.M. Yates (unpublished, see Miller [50]) independently
proved that this result fails in the c.e. degrees. This shows that these
theories are different at the ¥9-level. R.G. Downey proved that the four-
element lattice > which is also called the diamond lattice, is embeddable into
the 2-c.e. degrees preserving 0 and 0’ (earlier Lachlan [44] had proved that
this is impossible in the c.e. degrees). Therefore, these theories are different
also at the X9-level (at the X{-level they coincide, which easily follows from
Lachlan’s above-mentioned result on the m-c.e. degrees). In his paper
Downey also stated his famous conjecture on the elementarily equivalence
of the semilattices of n- and m- c.e. degrees for n # m,n,m > 1.

At present the structural theory of the n-c.e. degrees is worked out fairly
well. Most important results obtained in this area of research in the past
forty years are (in addition to the above-mentioned results of Arslanov and
Downey) the proof of the non-density of the ordering of the n-c.e. degrees
for any n > 1 (Cooper, Harrington, Lachlan, Lempp, and Soare [21]), the
recent work of Arslanov, Kalimullin, and Lempp [11] on the non-elementary
equivalence of the semilattices of 2-c.e. and 3-c.e. degrees, the work of Yang
and Yu [59], where it is proved that in the signature {<} the c.e. degrees
do not form a Xi-substructure of the n-c.e. degrees for any n > 2, and
a series of papers by Cooper, Li, Yi, and Ishmukhametov, in which the
authors investigated the splitting properties of the n-c.e. degrees for the
different n > 1.

But a whole number of natural and important questions still remain
open. First of all there is the problem of definability of the c.e. degrees
in the ordering of the n-c.e. degrees for n > 1 (in a more general setting
the question on definability of the m-c.e. degrees in the orderings of n-
c.e. degrees for 1 < m < n), the problem on the elementary equivalence
of the structures of n-c.e. degrees for different n > 2, the decidability of
the restricted fragments of theories of these structures, in particular the
problem of the decidability of the IV-theory of the 2-c.e. degrees.

Definition 3.10. A Turing degree a is n-computably enumerable (an n-c.e.
degree), if it contains some n-c.e. set; an n-c.e. degree a is properly n-c.e.
degree, if it contains no m-c.e. sets for any m < n.
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The set of all n-c.e. degrees we denote by D,,, the class of all Turing
degrees by D, and the set of all Turing degrees below 0’ by D(< 0') . D,
denotes the set of all w-c.e. degrees. We have

Dy CD1 CDyC...C D, CD(LO).

Theorem 3.22. (Lachlan, unpublished) Let a be a properly n-c.e. degree
for some n > 1. There are degrees aj,as...,a, such that 0 < a; < ... <
a, = a and for every m,1 < m < n, a, 1S c.e. in a,_1, and a; is a
properly c.e. degree. In particular, below any n-c.e. degree a > 0 there is
a non-computable c.e. degree.

Note that in this theorem we don’t require that every a,,, 1 < m < n,
must be a properly c.e. degree. It will follow from Corollary 3.5 that if az is
a properly 3-c.e. degree then as also must be a properly d-c.e. degree. We
don’t know whether this is true for any n > 3. Probably, not. An indirect
argument toward this conjecture is Theorem 3.29.

Theorem 3.22 allows us to transfer some properties of the c.e. degrees
to the case of the n-c.e. degrees for n > 1. We demonstrate this in the
following two examples.

It follows from Lachlan’s non-diamond theorem, Lachlan [44], that there
are no c.e. degrees, except 0 and 0’, which have complements in the
c.e. degrees. (By a complement of a c.e. degree a we mean a degree b such
that aUb = 0" and anb = 0. It is clear that 0 and 0’ are complements
to each other.) Later in Theorem 3.44 we show that this result does not
hold in the n-c.e. degrees for any n > 1, but it easily follows from Theorem
3.22 that a similar result holds in case of the n-c.e. degrees in the following
weaker formulation.

Theorem 3.23. For every n > 1 there is a n-c.e. degree which has no
complement.

Proof. Let a> 0 be a c.e. degree such that anb # 0 for any c.e. degree
b > 0 (Yates [60]). If there is an n-c.e. degree b > 0 such that anb =0,
then by Theorem 3.22 we have a N c = 0 for some c.e. degree ¢ > 0, a
contradiction. O

Further, it follows from Theorem 3.22 that if a pair (do, d1) is a minimal
pair of degrees in Dy then there is a pair (ag,a;) of c.e. degrees minimal
in R such that ag < dg and a; < dj. Therefore, Lachlan’s theorem



The Ershov Hierarchy 79

(Lachlan [46]) on the existence of a c.e. degree a > 0 such that there is no
minimal pair of c. e. degrees below a immediately gives the following:

Theorem 3.24. There is a non-computable c.e. degree such that below it
there is no minimal pair of d-c.e. degrees.

In Epstein [31] by a permitting argument below any given c.e. degree
a > 0 a minimal degree is constructed. Obviously, any such construction
produces an w-c.e. set. Therefore, we have the following:

Theorem 3.25. For every c.e. degree a > 0 there is a minimal w-c.e.
degree m < a.

3.2.2. The degrees of the n-c.e. sets in the n-CEA hierarchy

It follows from Theorem 3.22 that the hierarchy of the n-c.e. sets is closely
connected with the hierarchy of n-CEA (n-computably enumerable and
above) sets, which was first defined and studied in Arslanov [2, 4], and
Jockusch and Shore [40, 41].

Definition 3.11. The c.e. sets are 1-CEA sets. Further by induction, a
set A is an (n + 1)-CEA set for some n > 1 if it is c.e. in an n-CEA set
B <7 A. Furthermore, if a set A c.e. in a set B <7 A, then A is called a
B-CFEA set. A degree a is an n-CEA degree for some n > 1, if it contains
an n-CEA set.

By Theorem 3.22 every n-c.e. set is also an n-CEA set. The converse,
obviously, does not hold: For instance, the n-th jump of any c.e. set is
also an n-CEA set. Moreover, the hierarchy of the n-c.e. degrees does not
coincide with the hierarchy of the n-CEA degrees even among the degrees
below 0’:

Theorem 3.26. There is a 2-CEA degree a < 0', which is not an w-c.e.
degree.

Proof. Let d < 0 be a d-c.e. degree such that the interval (d,0’) does
not contain w-c.e. degrees (see Theorem 3.48 below). By Theorem 3.22 d
is CEA(a) for some c.e. degree a < d, and by the Sacks Density Theorem
(relativized to a) there is a degree b c.e. in a such that d < b < 0’. By
choice of d, the degree b is not w-c.e. O

The following theorem asserts that, conversely, for any n > 1 there are
n-c.e. degrees, which are not (n — 1)-CEA degrees.
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Theorem 3.27. (Arslanov [4], Jockusch and Shore [41]) Let n > 1. There
is an n-c.e. set D such that the degree of D does not contain (n —1)-CEA
sets.

Theorem 3.28. (Arslanov, LaForte, and Slaman [12]) Let C be an w-c.e.
set and let A be a c.e. set. If C <7 AP WA then there is a d-c.e. set D
such that C <t D <r Aa® W4,

Notice that the d-c.e. set D constructed in the above theorem is itself
c.e. in A as a set, rather than merely being of A-c.e. degree.

Corollary 3.4. If C is w-c.e., A is c.e., and the degree of C' is A-CEA,
then there exists a d-c.e. set D which is itself c.e. in A as a set such that
C =T D.

Proof. Take C =r A® W4 in the previous theorem. Then D <7 C, so
C =T D. U

Theorem 3.28 immediately yields the following:
Corollary 3.5. Any w-c.e. degree which is 2-CEA is also d-c.e.

It is natural to assume that a similar result holds for all n in the sense
that the n-c.e. and the n-CEA degrees agree on the w-c.e. degrees. But
this is not true:

Theorem 3.29. (Arslanov, LaForte, and Slaman [12]) There exists a d-
c.e. set D such that, for every n > 3, there exists a set A,, which is simul-
taneously D-CEA and (n+ 1)-c.e., yet fails to be of n-c.e. degree.

Now we turn to the discussion of the following question which has a
long history: Let a < 0’ be a non-computable c.e. degree. Is there a degree
b < 0’ CEA in a such that b is not c.e.? The following result is due to
Soare and Stob [57], and it is the first result in this direction.

Theorem 3.30. Let a be a non-computable c.e. degree such that a’ = 0’.
Then there is a non c.e. degree b > a c. e. in a.

In Arslanov, Lempp, and Shore [14] we answer this question negatively
in the following very strong form:

Theorem 3.31. There is an incomplete non-computable c.e. set A such
that every set CEA in A and computable in 0' is of c.e. degree.
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On the other hand, in this paper, we also obtain the following result in
the positive direction:

Theorem 3.32. Let ¢ < h be c.e. degrees such that c is low and h is high.
Then there is a degree a < h such that a is CEA in c.

Soare and Stob [57] also claimed that a modification of their strate-
gy for a low a would make b 2-c.e. They have since withdrawn this claim
(personal communication) but Theorems 3.30 and 3.32 suggest the following
conjecture:

Conjecture 3.1. For every low c.e. degree a > 0 there is a d-c.e. degree
b CEA in a which is not c.e.

Unfortunately, we did not succeed in answering this question. The only
results we obtained in this direction are Theorems 3.33, 3.34 and 3.35.

Theorem 3.33. (Arslanov, Lempp, and Shore [14]) For all high c.e. de-
grees h < g there is a properly d-c.e. degree a such that h < a < g and a
c.e. in h.

Theorem 3.34. (Arslanov, Lempp, and Shore [14]) There is a c.e. degree
a,0 < a <0, such that for any degree b > a c.e. in a, if b < 0 then b is
c.e.

Now suppose c is a low, non-computable c.e. degree and a the degree
CEA in c constructed by Soare and Stob [57].

Let C €cbeace. set and aset Acace. inC, A>2r C. Let ® be a
p.c. functional such that A = dom ®°. Since c is low there is a computable
function g such that ®¢ (z) | if and only if lim, g(s, =) = 1, and ®°(z) 1 if
and only if lim, g(s,z) = 0.

Let us construct a d-c.e. set V' which is c.e. in C:

For each x, wait for a stage s such that ®“(x)[s] | and g(s,z) = 1.
Enumerate < z,0 > into V and wait for a stage ¢ > s such that
Ci[p(C,x)[s] # Cs[o(C,x)[s] and g(t,z) = 0, then remove (x,0) from
V. Wait for a stage s’ such that again ®(z)[s’] | with a new value of
o(C,x)[s'] and g(s’,x) =1, then put (x,1) into V, and so on.

Obviously, V is a d-c.e. set c.e. in C such that V <y C & A.

Now, if in addition C” is w-c.e. (and, therefore, by Theorem 3.9 C’ <
(") then there are computable functions f and g such that for all z, C'(z) =
lim, g(s,z) and

{s:9(s +1,2) # g(s,2)}] < f(2).



82 M. M. Arslanov

In this case we have A <7 C & V: To compute A(z) find some i < f(z)
such that < x,i >€ V. If there is no such i then « ¢ A, if there is some
such 4 then z € A.

Therefore, if C' is an w-c.e. set then C & A =1 C &V, and the degree
a CEA in c¢ from Soare and Stob [57] is itself d-c.e., without an additional
construction. Recall that a set A is called superlow if A" =4 (/. A degree
is superlow if it contains a superlow set. Therefore, we have the following:

Theorem 3.35. Let a > 0 be a superlow degree. Then there is a properly
d-c.e. degree d > a such that d s c.e. in a.

3.2.3. The relative arrangement of the n-c.e. degrees

In this section we study the relative arrangement of degrees from finite
levels of the Ershov hierarchy. We begin with the following theorem which
generalizes an unpublished result of R. Shore and L. Hay and can be proved
similarly to Cooper’s proof of the existence of a properly n-c.e. degree.

Theorem 3.36. For all n > 1 there are n-c.e. sets V. <p U such that
between degrees V and U there are no (n — 1)-c.e. degrees.

The assertion of the following theorem is wrong if n = 1 (see Theorem
3.55 below).

Theorem 3.37. For alln > 1, if a is a properly (n+ 1)-c.e. degree, then
there is an n-c.e. degree b < a such that between b and a there are no c.e.
degrees.

Proof. Letn>1andlet Abean (n+ 1)-c.e. set of properly (n+ 1)-c.e.
degree. By Theorem 3.22 there is an n-c.e. set A such that A is an A-CEA
set. Obviously, A <7 A. Suppose that A <7t W <g A for some c.e. set W.
Then A is a W-CEA set and, therefore, 2-CEA. But then by Corollary 3.5
the degree of A is d-c.e., a contradiction. |

Suppose that in Theorem 3.36 one of the sets U >7 @ or V < (' is
fixed. It is natural to ask the following question: Is there another set such
that the claim of Theorem 3.36 still holds? In general the answer to this
question is unknown. But:

Theorem 3.38. (R. Shore and L. Hay, unpublished) There is, for instance,
ad-c.e. setV of low degree such that between V and O/ in Turing reducibil-
ity there are no c.e. sets.
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The properly n-c.e. degrees are situated dense enough among the de-
grees < 0, in particular, between any two c.e. degrees a < b there is a
properly n-c.e. degree, for any n > 1. For the case n = 2 this is proved in
Cooper, Lempp, and Watson [22], the proof for n > 2 is similar.

Theorem 3.39. Let V <1 U be c.e. sets. There exists a d-c.e. set D such
that V <p D <p U and Yx(W, #r D).

Is it possible in Theorem 3.39 to make the degree of D c.e. in V7 This
question has been extensively studied. It follows from Theorem 3.34 that
in general it is impossible even if U = (. Can we do that if V! =7 U = ('?
This is an open question (see Conjecture 3.1 above).

Theorem 3.40. (Cooper and Yi [25] for n = 2; Arslanov, LaForte, and
Slaman [12] for n > 2) For any c.e. degree x and any n-c.e. degree y, if
x <y then x <z <Yy for some d-c.e. degree z.

Proof. For n =1 this is the Sacks Density Theorem, and for n = 2 this
is Theorem 3.55, part (i¢i). For n > 2 use an induction argument: Assume,
that the theorem is proved for m-c.e. sets for all m < n and let B be
an (n + 1)-c.e. set, n > 1, and let A <p B be a c.e. set. There is an
n-c.e. set B <7 B, in which B is c.e. Then the set A ® B is also n-c.e.
If A <r A® B, then, by assumption, there is a d-c.e. set C such that
A<rC <y A® B <y B.If A=p A® B, then the (n + 1)-c.e. set B is
c.e. in A and, therefore, by Corollary 3.5 the degree of B is d-c.e. Now the
claim follows from the case n = 2. O

3.2.4. The cupping, capping and density properties
We begin with the following

Theorem 3.41. (Arslanov [5, 6]) Let a > 0 be an n-c.e. degree for some
n > 2. Then there is a d-c.e. degree d < 0’ such that aud = 0’.

Since there is a non-computable c.e. set A such that A @ U < @' for
every c.e. set U <r (' (Cooper, Yates, unpublished, see Miller [50]), it
follows from Theorem 3.41 that for every n > 2, the structures D,, and R
are not elementarily equivalent at the Xs-level.

Generalizing Theorem 3.41 Cooper, Lempp, and Watson [22], proved
the following,

Theorem 3.42. Ifa > 0 is a c.e. degree and h > a is a high c.e. degree
then there is a d-c.e. degree b < h such that aUb = h.
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In turn Harrington (see Miller [50]) strengthened the above mentioned
result of Cooper and Yates replacing 0’ by an arbitrary high c.e. degree.
Therefore, for every n > 2 and any high c.e. degree h, the structures
D,,(< h) and R(< h) are also non-elementarily equivalent at the $9-level.
Further, Arslanov and Cooper (unpublished, see Arslanov [8] for the case
h = 0’) generalized Theorem 3.42 in the following way:

Theorem 3.43. Let h be a high c.e. degree, a < h and b < h arbitrary

non-computable c.e. degrees. Then there is a d-c.e. degree d < h such that
h=aud=bud.

As we already mentioned, the diamond lattice is not embeddable into
the c.e. degrees preserving 0 and 0’. Downey [26], proved that in the n-c.e.
degrees such an embedding is possible for any n,n > 2.

Theorem 3.44. There are incomparable d-c.e. degrees a and b such that
aUb=0 andanb=0.

Therefore, for every n > 2, the structures D,, and R are not elementarily
equivalent at the Yo-level.

One can try to strengthen the Diamond Theorem 3.44 in several direc-
tions. First of all the following natural question arises: Is it possible in
this theorem to replace the degrees 0 and 0’ by arbitrary c.e. degrees
a and b, a < b, respectively? Further, it follows from Lachlan’s non-
diamond theorem, (Lachlan [44]), that in Theorem 3.44 at least one of the
d-c.e. degrees a or b cannot be c.e. Can we make one of these degrees
c.e.? Finally, Theorem 3.44 states that there is a non-trivial d-c.e. degree
d which has a complement in Ds. (A degree c is a complement for d if
dUc=0"and dnNc=0.) A natural question asks: Which degrees in Dy
have complements?

The first question is connected with a general question on the decom-
posability of a c.e. degree a over a given c.e. degree b < a into two
incomparable d-c.e. degrees, i.e. on the existence of incomparable d-c.e.
degrees cg and c¢1 such that cg > b, ¢; > b and a = coUcy. (It follows from
Lachlan’s non-splitting theorem (Lachlan [45]) that in R such an assertion
does not hold for a = 0’ and some c.e. degree b > 0.)

A negative answer to the first question was obtained by Kaddah [42]:

Theorem 3.45. In Dy below any c.e. degree a > 0 there is a c.e. degree
b < a non-branching in d-c.e. degrees. (A degree a is branching, if there
are degrees b > a and ¢ > a such thatbNc=a.)
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Therefore, there is, for instance, a low c.e. degree 1 > 0 such that the
diamond lattice is not embeddable between degrees 0’ and 1, preserving 1
as its least element.

The answer to the second question turned out to be positive. It follows
from the next theorem:

Theorem 3.46. (Li and Yi [49]) There are incomparable d-c.e. degrees
ag and ay such that for every n-c.e. degree x > 0, either agUx = 0', or
a;Ux=0".

Corollary 3.6. There are a c.e. degree a > 0 and a d-c.e. degree b > 0
such that aUb =0" and anb = 0.

Proof. Let ag and a; be as in Theorem 3.46. It is clear that ag N a; = 0.
Let d > 0 be an arbitrary d-c.e. degree. Suppose for definiteness that
dUag =0'. If dNag # 0, then there exists a c.e. degree b > 0 such that
b <d and b < ag. Since agNa; =0, bNa; = 0. Since bU ag = ag, we
have bU a; = 0’ by Theorem 3.46. Therefore, the desired pair of degrees
is either d and ag, or b and aj. O

Theorem 3.47. (Jiang [39]) For any high degree h there is a c.e. set
H € h such that in Theorem 3.44 the set O can be replaced by H.

This result can be also obtained using Cooper’s proof in Cooper [17]
where below any high c.e. degree a minimal pair of c.e. degrees is con-
structed. On the other hand, it follows from Theorem 3.24 that not every
c.e. degree a > 0 in Ds is the top of a diamond lattice.

The ordering of the n-c.e. degrees is not dense for any n > 1:

Theorem 3.48. (Cooper, Harrington, Lachlan, Lempp, and Soare [21])
There is a d-c.e. degree d <0’ such that there are no w-c.e. degrees b
such thatd <b < 0'.

For the class of 2-low n-c.e. degrees with n > 1 we have another picture:

Theorem 3.49. (Cooper [18]) For every n > 1 the partial ordering of
the 2-low n-c.e. degrees is dense. Moreover, if b < a are 2-low n-c.e.
degrees, then there are n-c. e. degrees ap and a3 such that a = ag U a;
and b < ag,ajy.

Theorem 3.48 states that there is a maximal d-c.e. degree. But there are
no maximal low d-c.e. degrees (Arslanov, Cooper and Li [9, 10]). Jiang [39]
strengthened Theorem 3.48 establishing:
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Theorem 3.50. For any n > 1, above any low n-c.e. degree there is a
mazimal d-c.e. degree.

On the other hand,

Theorem 3.51. (Yi, unpublished, see Cooper [20]) There is a high c.e.
degree h < 0" such that below h there are no mazximal d-c.e. degrees.

It follows from this theorem that the semilattices Dy and Dy(< h) are
not elementarily equivalent.

Theorem 3.49 leaves open the question on the elementary equivalence
of the semilattices of the lows c.e. and the lowy d-c.e. degrees. So far we
have no example which would distinguish these two semilattices.

3.2.5. Splitting properties

Let a > 0 be a properly n-c.e. degree for some n > 1, and let b be
a c. e. degree such that b < a. Since a is c.e. in some (n — 1)-c.e.
degree ag < a (Theorem 3.22), it follows from the Sacks Splitting Theorem,
relativized to ag U b < a, that a is splittable into two AY-degrees which
are above b, i.e. there are AJ-degrees ¢y and ¢; such that ¢y U c; = a and
b < cyg < a,b < c; < a. It turns out that such a splitting is possible also
in the d-c.e. degrees.

Theorem 3.52. (Cooper and Li [23]) Any d-c.e. degree a > 0 is non-
trivially splittable in Dy over any c.e. degree b < a.

Since the ordering of the d-c.e. degrees is non-dense, it follows that
in Theorem 3.52 we cannot replace the c.e. degree b by a d-c.e. degree.
Moreover, it follows from Theorem 3.48 that in general, this is impossible
even if a is a c.e. degree. However,

Theorem 3.53. (Arslanov, Cooper, and Li [9, 10]) Any c.e. degree is
splittable in the d-c.e. degrees over any low d-c.e. degree.

It follows from Theorem 3.49 that the properties of density and splitting
can be combined in the lows n-c.e. degrees. In the class of the lows c.e.
degrees this result also holds (Shore and Slaman [55]). These and some
other similarities between the lows c.e. and the lowy n-c.e. degrees for n > 1
suggest the following conjecture (Downey and Stob [28]):

Conjecture 3.2. The ordering of the lows n-c.e. degrees is elementarily
equivalent to the ordering of the lows c. e. degrees.
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For the lows n-c.e. degrees Cooper and Li [23] proved the following:

Theorem 3.54. For any n > 1, there is a lows n-c.e. degree a and a c.e.
degree b, 0 < b < a, such that for any splitting of a into n-c.e. degrees ag
and ay, at least one of the degrees ag or ay is above b.

(In this case we say that a is not splittable avoiding the upper cone of
degrees above b.)

Since in R such a splitting of the lows c.e. degrees is possible, it follows
that elementary theories of these two semilattices are different.

3.2.6. Isolated d-c.e. degrees

Cooper and Yi [25] defined the notion of an isolated d-c.e. degree. A d-c.e.
degree d is isolated by a c.e. degree a < d (we also say “a isolates d”), if
for any c.e. degree b, b < d implies b < a. Cooper and Yi [25] established
the following results about such degrees:

Theorem 3.55. (i) There exists an isolated d-c.e. degree;

(i) There exists a non-isolated properly d-c.e. degree;

(iii) Given any c.e. degree a and any d-c.e. degree d > a, there is a
d-c.e. degree e between a and d.

Theorem 3.56. a) (LaForte [47], and Arslanov, Lempp, and Shore [13])
Given any two comparable c.e. degrees v < u, there exist an isolated d-c.e.
degree ¢ and a non-isolated d-c.e. degree d between them.

b) (Arslanov, Lempp, and Shore [13]) There is a non-computable c.e.
degree a such that a does not isolate any degree b > a which is c.e. in a.

The following two results show that the c.e. degrees a not isolating
any d-c.e. degree d which is CEA in a are widely distributed in the c.e.
degrees.

Theorem 3.57. (Arslanov, Lempp, and Shore [13]) a) For every nmon-
computable c.e. degree c, there is a mon-computable c.e. degree a < ¢
which isolates no degree CEA in it;

b) If c is a degree c.e. in 0', then there is a c. e. degree a,a’ = ¢,
which isolates no degree CEA in it.

Suppose that a c.e. degree a isolates a d-c.e. degree d > a. Since
between a and d there are no c.e. degrees except a, then one might think
that the degrees a and d are situated “close enough” to each other. But it
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follows from Theorem 3.58 that this is not true (if we agree that the high
degrees are situated “close” to 0’, and the low degrees are situated ” close”
to 0).

Theorem 3.58. (Ishmukhametov and Wu [38]) There are a high d-c.e.
degree d and a low c.e. degree a < d such that a isolates d.

The following result is due to Wu [58]. It can easily be derived from
known results and is an interesting generalization of the idea of isolated
degrees.

Theorem 3.59. There are d-c.e. degrees a < b such that there is exactly
one c.e. degree ¢ between them. Moreover, the degree b can be included
into any given interval of high c.e. degree u and v, u < v.

Proof. Let uand v, u < v, be high c.e. degrees. Between u and v there
is an isolated d-c.e. degree b (LaForte [47]). Let ¢ < b be a c.e. degree
which isolates b. It is easy to see that u < c, otherwise the c.e. degree
u U c contradicts the choice of b. Therefore, since the degree u is high,
the degree c is also high. It is known (Cooper [20]) that for any high c.e.
degree, in particular for the degree c, there exists a c.e. degree d < c, such
that for every c.e. degree x < ¢ we have xUd < c¢. Also, in Cooper, Lempp,
and Watson [22] it is proved that for any high c.e. degree, in particular
for the degree c, and for any nonzero c.e. degree below it, in particular for
the degree d, there exists a d-c.e. degree a < ¢ such that aud =c. It
follows that between a and c there are no c.e. degrees. (Since for any such
c.e. degree x we would have x Ud = ¢, which contradicts the choice of d.)
Therefore, the c.e. degree c is the unique c.e. degree between a and b. O

3.2.7. A generalization

There are several ways to generalize the notion of isolated d-c.e. degrees.
Some of them can be found in Efremov [29, 30] and Wu [58]. Here we
consider the following common generalization.

Definition 3.12. Let A and B be classes of sets such that A C B. By
definition, a set A € A isolates a set B € B, if A <7 B and for any set
WeA W <r B— W <p A. In this case we also say that the set B is
A-isolated by the set A. A Turing degree b is A-isolated, if it contains an
A-isolated set.
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In particular, if A is the class of m-c.e. degrees, and B is the class of
n-c.e. degrees, m < n, then we obtain the notion of a n-c.e. degree which
is isolated by some m-c.e. degree, and of an m-c.e. degree, which isolates
some n-c.e. degree. (It is clear that if n = 2 and m = 1 this definition
coincides with the Cooper/Yi definition of isolated degrees.)

Definition 3.13. Let A and B be two classes of sets such that A C B, and
let A, B € B. We define a relation A <48} B on B by

A <tABY Bif and only if for any set W € A we have W <p A implies
W <r B.

If here A is the class of all m-c.e. sets and B is the class of all n-c.e. sets
for some 1 < m < n, then instead of A <{AB} B we write A <{mn} B,

If in this definition A = B, then we obtain the usual notion of Turing
reducibility. In particular, for any n > 1, A <{""} Bif and only if A <1 B.
Also, it is obvious that for all A C B, A, B € B,

1) A<y B— A<{AB B,
2) A<WB B B <IABH 0 5 A <IAB ¢,

We call the corresponding equivalency classes the (4B} -degrees. It
follows from 1), that every #4B}.degree is a collection of possibly several
Turing degrees.

These definitions are naturally connected with the notion of isolated
degrees. For instance, if a c.e. degree a isolates a d-c.e. degree b, then
this means that b <i12} a. Therefore, a =112} b, i.e. all isolated d-c.e.
degrees and their isolating c.e. degrees belong to the same {12}-degree.
Cooper and Yi’s theorem on the existence of an isolated d-c.e. degree d
now means that there exists a {1:2}-degree, which contains a c.e. degree
and a non c.e. d-c.e. degree. On the other hand, the existence of a non-
isolated d-c.e. degree means that there exists a {1:2}-degree, which contains
a d-c.e. degree and does not contain c.e. degrees. Theorem 3.66 states that
there exists a {12}-degree which consists of a single c.e. degree. Theorem
3.55, part (ii1) states that no c.e. degree d-c.e.-isolates a d-c.e. degree (on
the class of all d-c.e. degrees). Similarly, Theorem 3.40 states that no c.e.
degree d-c.e.-isolates any n-c.e. degree, for any n > 1.

Below, we will deal with the classes of d-c.e. sets and {2}-degrees.

It is clear that each {1:2}-degree contains at most one c. e. degree and, in
general, may contain several d-c.e. degrees. As usual, we call a {1:2}-degree
as a c.e. {12 -degree if it contains a c.e. degree.
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The following theorem states that each c.e. {1:2}-degree either does not
contain any non c.e. d-c.e. degree or contains infinitely many such degrees.

Theorem 3.60. Any c.e. 12} -degree either consists of a single c. e.
degree or contains an infinite descending chain of non c.e. d-c.e. degrees.

Proof. Let a c.e. 112} -degree contain a c.e. set A and a d-c.e. set D,
which is not T-equivalent to any c.e. sets. Since A =12} D, A <p D
and A isolates D. By Theorem 3.55 there is a d-c.e. set C such that
A <p C <p D. It is easy to see that the set A also isolates C, therefore
A =2 ¢ =112} D Now we repeat the same argument with A and C
instead of A and D and so on. |

It is easy to see that the c.e. {12}-degrees form an upper semilattice
where the least upper bound for the {12}-degrees of c.e. sets A and B is
the degree of the set A @ B. Indeed, if A <{1?} ¢ and B <2} C for
some set C then we have A <t C and B <7 C, otherwise the c.e. sets A
and B refute the {2} -reducibility of A and B to C, accordingly. Therefore,
A®B <r C and, hence, A® B <12} . We don’t know, whether the {1:2}-
degrees of the d-c.e. sets form an upper semilattice. In general, the join
operator A @ B does not give the least upper bound for the {1:2}-degrees of
sets A and B. (This can be easily proved by a routine finite injury priority
argument.)

Theorem 3.61. For each n > 2 there exists a {1’2}—degree, which contains
at least n incomparable Turing degrees.

Proof. The proof is a direct generalization of the proof of Theorem 3.55,
part (7). O

Theorem 3.62 states that there are no maximal {12}-degrees among the
low, degrees.

Theorem 3.62. Let D be a d-c.e. set such that D" =1 ("". Then there is
a c.e. set A such that D <{%2} A4 <{1.2} .

Proof. It is enough to consider only the case when the degree of D is not
computably enumerable. Otherwise, since a < b implies a <{2} b, the
theorem follows from the Sacks Density Theorem.

The following lemma is proved in Arslanov [3] (see also Soare [56, The-
orem XII.5.1]).
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Lemma 3.3. For any function 1 which is computable in ("', there is a
computable function g such that Wyey =1 Wy ey for all e.

Let S = {(i,j) | Wi = ®P}. It is easy to see that S € 115, therefore S is
computable in D" =1 (", i.e. S <7 0”". Now we define a function g <7 0":

. W, it ) € 8;
9((i.3)) ¢,  otherwise.

Since g is a total function and g <7 0", by Lemma 3.3 there exists a com-
putable function f such that Wy (; ) =1 Wi j))- Let B = S1<k<co W) -
Since for any k € w we have Wy <7 D and the degree of D does not con-
tain c.e. sets, the set F is computably enumerable and Vn{D <1 El<nl =,
S1<ncn Wi b

By Shoenfield’s Thickness Lemma (see Soare [56, Lemma VIII.1.1])
there is a c.e. set A <p E such that A is a thick subset of E (i.e. A C E,
and All == Elel) D ¢+ A. (We denote by X =* Y that (X —-Y)U(Y — X)
is finite, and let X[} = {(x,e) : (x,e) € X} be the e-th section of X.)

We have W, = <I>jD implies W; =p EW&D] = Al je. W; <7 D
implies W; <r A.

There are the following two possibilities:

1) A <p D. Then A isolates D. Let B be an arbitrary c.e. set such
that A <7 B <7 (/. We have D <{1:2} B <{1.2} .

2) A £ D. Then, obviously, D <12} A <{1.2} g, O

Remark 3.3. Analyzing this proof we can see that we have proved a
slightly stronger result. For instance, let D be a d-c.e. set such that its
degree is not computably enumerable and there is a computable function f
with the following properties:

a) Wiy <t D for any e € w;
b) (Ve € w)(We <7 D — (3z € w)[We <1 Wiea)).

Then, defining the set F again as B1<k<oo W) and repeating the con-
struction of the set A, we obtain that D <{1:2} A <{12} (/. Moreover, if we
have d-c.e. sets Dy and Ds such that D; <{%2} D, and if for the set D,
there is a computable function f with properties a), b), and the additional
property E <7 D,, then, again repeating the previous argument we obtain
that D; <12} A <{1.2} D, for some c.e. set A.
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3.2.8. Further results and open questions

The following questions are the main open questions on the arrangement
of the n-c.e. degrees for various n > 1:

e Is the relation “x is c.e.” definable in D,, for each n > 2?7 Are there
non-trivial finite sets of c.e. degrees definable in D,,? (For an infinite
definable set of c.e. degrees see Corollary 3.11 below.)

e Is the relation “x is m-c.e.” definable in D,, for each pair n,m, n >
m > 27

e Are {D,,,<} and {D,,<} elementarily equivalent for each n #
m,m,n > 2?7 (For the case m = 2,n = 3 see Corollary 3.10 below.)

e Are there n # m,m,n > 1, such that D,,(a,b) is elementarily equiva-
lent to D, (a,b) for some c.e. degrees a < b?

e Are there numbers n > m > 1 such that {D,,, <} is a X;j-substructure
of {D,, <}?

An investigation of the problems listed above is driven by the need to
better understand the level of the structural similarity of the classes of
c.e. and n-c.e. degrees for different n > 1, as well as of the level of the
homogeneity for the notion of c.e. with respect to n-c.e. degrees in the
sense of the level of the similarity of orderings of the c.e. degrees and of
the n-c.e. degrees which are CEA in some d.

a) Elementary equivalence.

We first consider questions on the elementary equivalence.

Theorem 3.63. (Arslanov, Kalimullin, and Lempp [11]) There are 2-c.e.
degrees d and e such that 0 < d < e and for any 2-c.e. degree u < e either
u<dord<u.

Theorem 3.64. (Arslanov, Kalimullin, and Lempp [11]) For all c.e. de-
grees x and 2-c.e. degrees d and e such that both d,e are c.e. in x and

0 < x<d< e, there is a 2-c.e. degree u c.e. in x such that x < u < e
and d|u.

The following theorem is a refinement of Theorem 3.63.

Theorem 3.65. a) In Theorem 3.63 the degree d is necessarily c.e. and
b) for each 2-c.e. degree e there is at most one c.e. degree d < e with this
property.
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Proof. By Theorem 3.22 the degree e is c.e. in a c.e. degree b < e. If
b > d, then by the Sacks Splitting Theorem we split b into two c.e. degrees
by and b; avoiding the upper cone of d (avoiding d, for short). At least
one of these degrees must be incomparable with d, a contradiction.

If b < d, then consider the c.e. degree c = b U a, where a < d is a c.e.
degree such that d is c.e. in a. Obviously, ¢ < d. If ¢ < d then we obtain
a contradiction with Theorem 3.64, since both the 2-c.e. degrees e and d
are c.e. in c. Therefore, d = c. Similar arguments prove also the second
part of the theorem. O

Corollary 3.7. (of Theorem 3.65). There are no strong minimal covers in
the 2-c.e. degrees.

Proof. Indeed, if b is a strong minimal cover for a, then by Theorem
3.65, a is c.e. and, therefore, by Theorem 3.55 there is a d-c.e. degree
strictly between a and b. a

Corollary 3.8. (of Theorem 3.65). There are no 2-c.e. degrees f > e >
d > 0 such that for any u,

(i) if u < f then either e <u oru<e, and
(ii) if u < e then either d < u oru < d.

Proof. If there are such degrees f > e > d > 0 then by Theorem 3.65 the
degree e is c.e. and by the Sacks Splitting Theorem is splittable avoiding
d which is a contradiction. (]

Question 3.1. Are there 3-c.e. degrees f > e > d > 0 with this property?

Obviously, an affirmative answer to this question refutes the elementary
equivalence of Dy and Ds.

Though this question still remains open, we can weaken a little this prop-
erty of degrees (d,e,f) to carry out the mission imposed to these degrees
to refute the Downey’s Conjecture. We consider triples of non-computable
n-c.e. degrees {(d,e,f) | 0 < d < e < f} with the following (weaker) prop-
erty: For any n-c.e. degree u,

(i) if u < f then either u < e or e < dUu, and
(ii) if u < e then either d < uor u < d.

(In the first line the former condition e < u was replaced by a weaker
condition e < dUu.)



94 M. M. Arslanov

We still have the following corollary from Theorems 3.63 and 3.64:

Corollary 3.9. There are no 2-c.e. degrees f > e > d > 0 such that for
any 2-c.e. degree u,

(i) if u < f then eitheru<e ore<dUu, and
(i) if u < e then either d < u oru < d.

Proof. Suppose that there are such degrees f >e >d > 0. Let f; < f
and e; < e be c.e. degrees such that f and e are c.e. in f; and eq,
respectively. Consider the degree x =d U ey Uf;. Obviously, d < x < f.
By Theorem 3.65 the degree x is c.e. and e £ x, otherwise x is splittable
in the c.e. degrees avoiding e, which is a contradiction. Also x # e, since in
this case we can split x avoiding d, which is again a contradiction. Finally, if
x % e then it follows from condition (7) that e < dUx = x, a contradiction.
Therefore, x < e. Since f and e are both c.e. in x, it follows now from
Theorem 3.64 that there is a 2-c.e. degree u such that x < u < f and ule,
a contradiction. (]

Theorem 3.66. (Arslanov, Kalimullin, and Lempp [11]) There are a c.e.
degree d > 0, a 2-c.e. degree € > d, and a 3-c.e. degree f > e such that
for any 3-c.e. degree u,

(i) if u < £ then either u < e ore<dUu, and
(ii) if u < e then either d < u oru < d.

Corollary 3.10. Dy # D3 at the Xo- level.

Theorems 3.63 and 3.66 raise a whole series of new questions, study of
which could lead to the better understanding of the inner structure of the
ordering of the n-c.e. degrees. Below we consider some of these questions.

Definition 3.14. Let n > 1. An (n+1)-tuple of degrees ap, as,...a,-1,a,
forms an n-bubble in D,, for some m > 1,if 0 = ag < a; < as < ... <
a,_1 < a,, ai is k-c.e. for each k,1 < k < n, and for any m-c.e. degree u,
if u < a;, then either u < ap_; or a;_; < u.

An (n+1)-tuple of degrees ap,a;, as, . ..a,_1,a, forms a weak n-bubble
inD,, forsomem>1,if0=ag<a; <as <...<a,_1<a,,ais k-ce.
for each k,1 < k < n, and for any m-c.e. degree u, if u < a; then either
u<ag_jorag_; <ulag_o.

Obviously, every n-bubble is also an n-weak bubble for every n > 1, but

we don’t know if the reverse holds. Theorem 3.63 and Corollary 3.8 state
that in the 2-c.e. degrees there are 2-bubbles and there are no n-bubbles
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(and even that there are no n-weak bubbles), for every n > 2. Theorem 3.66
states that in the 3-c.e. degrees there are 3-weak bubbles. Questions on the
existence of n-bubbles (and even on n-week bubbles) in the n-c.e. degrees
for n > 3, and on the existence of the n-bubbles in the m-c.e. degrees for
2 <m < n are open.

Conjecture 3.3. For every n,1 < n < w, D, contains an n-bubdble, but
does not contain m-bubbles for any m > n. (As we already saw this is true
form=2.)

Obviously, if this conjecture holds for some n > 1 then this means that
D,, is not elementarily equivalent to D,,, m > n.

b) Definability.

Definition 3.15. (Cooper and Li [23]). A Turing approzimation to the
class of the c.e. degrees R in the n-c.e. degrees is a Turing definable class
S, of n-c.e. degrees such that

(i) either R C S, (in this case we say that S, is an approximation to R
from above), or
(ii) S, € R (S, is an approximation to R from below).

Obviously, R is definable in the n-c.e. degrees if and only if there is a
Turing definable class S, of n-c.e. degrees which is a Turing approximation
to the class R in the n-c.e. degrees simultaneously from above and from
below.

There are a number of known nontrivial Turing approximations from
above to the class of the c.e. degrees in the n-c.e. degrees. For instance,
such an approximation can be obtained from Theorem 3.55 (iii).

A nontrivial Turing approximation from below can be obtained from
Theorems 3.1 and 3.65. Consider the following set of c.e. degrees: Ss =
{0} U{x > 0|(3y > x)(Vz)(z <y - z < xVx < z)}. It follows from
Theorem 3.65 that

Corollary 3.11. S C R and Sz # {0}.

Therefore, Sy is a nontrivial approximation from below to the class of
the c.e. degrees R in the class of the d-c.e. degrees. A small additional
construction in Theorem 3.63 allows to achieve that Sz contains infinitely
many c.e. degrees.
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Since each non-computable c.e. degree d from S, isolates some d-c.e.
degree e, it follows from Theorem 3.57 that Sa does not coincide with the
class of all c.e. degrees.

Open Question. Is there for every pair of c.e. degrees a < b a degree
c € & such that a < ¢ < b (i.e. Sy is dense in R)?

An affirmative answer to this question implies definability of R in Do
as follows: Given a c.e. degree a > 0 we first split a into two incomparable
c.e. degrees ag and a;, then using the density of S3 in R find between a
and a;,7 < 1, a c.e. degree c;,7 < 1, such that a = ¢g U ¢;. This shows
that in this case a nonzero 2-c.e. degree is c.e. if and only if it is the least
upper bound of two incomparable 2-c.e. degrees from Ss.

Conjecture 3.4. Fach c.e. degree a > 0 is the least upper bound of two
incomparable degrees from Sa and, therefore, the class of the c.e. degrees is
definable in Ds.

Question 3.2. Is R definable in Dy? Is D, definable in D, for some
l<m<n?

c) X1-substructures.

There are only a few known results in this direction.
(T. Slaman, unpublished) The partial ordering of the n-c.e. degrees is
not a Xi-substructure of {D(< 0'), <}.

(Yang and Yu [59]) The structure {R, <} is not a Xj-substructure of
{DQ, <}.

In Theorem 3.66 we have a c.e. degree d > 0 and a 2-c.e. degree
e > d such that every 3-c.e. degree u < e is comparable with d. Can this
condition be strengthened in the following sense: there are a c.e. degree
d > 0 and a 2-c.e. degree e > d such that every n-c.e. degree < e for
every n < w is comparable with d?

Question 3.3. Are there a c.e. degree d > 0 and a 2-c.e. degree e > d
such that for any n < w and any n-c.e. degree u < e either u < d or
d <u?

An affirmative answer to this question would reveal an interesting pro-
perty of the finite levels of the Ershov difference hierarchy with far-reaching
consequences. From other side, if the question has a negative answer, then



The Ershov Hierarchy 97

let d > 0 and e > d be a c.e. degree and a 2-c.e. degree, respectively,
and let n > 3 be the greatest natural number such that every n-c.e. degree
u < e is comparable with d and there is an (n+ 1)-c.e. degree v < e which
is incomparable with d. Now consider the following X;-formula:

olz,y,z) =Juz<y<z&u<z&u L y&y L u).

Let d and e be degrees and n be the integer whose existence is assumed
by the negative answer to the previous question. Then we have D,41 =
»(0,d,e), and D,, = —¢(0,d, e), which means that in this case D,, is not
a Yj-substructure of D,, 1. This is a well-known open question.

We see that an answer to this question in either direction leads to very
interesting consequences.

All sentences known so far in the language of partial ordering, which
are true in the n-c.e. degrees and false in the (n + 1)-c.e. degrees for some
n > 1, belong to the level V3 or to a higher level of the arithmetic hierarchy.
This and some other observations allow us to state the following plausible
conjecture:

Conjecture 3.5. For any n > 1 and for any IV-sentence ¢, D, E ¢ —
Dnt+1 E w. (The IV-theory of the n-c.e. degrees is a subtheory of the
AV-theory of the (n+ 1)-c.e. degrees.)

How many parameters are needed in formulas which are witnesses in
the proof that D; is not a Xj-substructure of D(< 0') and Dy?

e Slaman’s result (R Ax, D(0'): 3 parameters;
e Yang and Yu (R ZAs, D2): 4 parameters.

Question 3.4. Can these numbers be reduced?
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In this chapter the following model is considered: We assume that an
instance I of a computationally hard optimization problem has been
solved and that we know the optimum solution of such an instance. Then
a new instance I’ is proposed, obtained by means of a slight perturbation
of instance I. How can we exploit the knowledge we have on the solution
of instance I to compute an (approximate) solution of instance I’ in an
efficient way? This computation model is called reoptimization and is
of practical interest in various circumstances. In this chapter we first
discuss what kind of performance we can expect for specific classes of
problems and then we present some classical optimization problems (i.e.
Max Knapsack, Min Steiner Tree, Scheduling) in which this approach
has been fruitfully applied. Subsequently, we address vehicle routing
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problems and we show how the reoptimization approach can be used to
obtain good approximate solutions in an efficient way for some of these

problems.
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4.1. Introduction

In this chapter we illustrate the role that a new computational paradigm
called reoptimization plays in the solution of NP-hard problems in various
practical circumstances. As it is well known a great variety of relevant
optimization problems are intrinsically difficult and no solution algorithms
running in polynomial time are known for such problems. Although the
existence of efficient algorithms cannot be ruled out at the present state
of knowledge, it is widely believed that this is indeed the case. The most
renowned approach to the solution of NP-hard problems consists in resort-
ing to approximation algorithms which, in polynomial time, provide a sub-
optimal solution whose quality (measured as the ratio between the values of
the optimum and approximate solution) is somehow guaranteed. In the last
twenty years the definition of better and better approximation algorithms
and the classification of problems based on the quality of approximation
that can be achieved in polynomial time have been among the most impor-
tant research directions in theoretical computer science and have produced
a huge flow of literature [4, 36].

More recently a new computational approach to the solution of NP-
hard problems has been proposed [1]. This approach can be meaningfully
adopted when the following situation arises: Given a problem II, the in-
stances of II that we need to solve are indeed all obtained by means of a
slight perturbation of a given reference instance I. In such a case we can de-
vote enough time to the exact solution of the reference instance I and then,
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any time that the solution for a new instance I’ is required, we can apply a
simple heuristic that efficiently provides a good approximate solution to I’.
Let us imagine, for example, that we know that a traveling salesman has
to visit a set S of, say, one thousand cities plus a few more cities that may
change from time to time. In such case it is quite reasonable to devote a
conspicuous amount of time to the exact solution of the traveling salesman
problem on the set S and then to reoptimize the solution whenever the
modified instance is known, with a (hopefully) very small computational
effort.

To make the concept more precise let us consider the following simple
example (Max Weighted Sat): Let ¢ be a Boolean formula in conjunctive
normal form, consisting of m weighted clauses over n variables, and let us
suppose we know a truth assignment 7 such that the weight of the clauses
satisfied by 7 is maximum; let this weight be W. Suppose that now a new
clause ¢ with weight w over the same set of variables is provided and that we
have to find a “good” although possibly not optimum truth assignment 7/
for the new formula ¢’ = ¢Ac. A very simple heuristic can always guarantee
a 1/2 approximate truth assignment in constant time. The heuristic is the
following: If W > w then put 7 = 7, otherwise take as 7/ any truth
assignment that satisfies c. It is easy to see that, in any case, the weight
provided by this heuristic will be at least 1/2 of the optimum.

Actually the reoptimization concept is not new. A similar approach
has been applied since the early 1980s to some polynomial time solvable
optimization problems such as minimum spanning tree [16] and shortest
path [14, 32] with the aim to maintain the optimum solution of the given
problem under input modification (say elimination or insertion of an edge
or update of an edge weight). A big research effort devoted to the study of
efficient algorithms for the dynamic maintenance of the optimum solution
of polynomial time solvable optimization problems followed the first results.
A typical example of this successful line of research has been the design of
algorithms for the partially or fully dynamic maintenance of a minimum
spanning tree in a graph under edge insertion and/or edge elimination [12,
22] where at any update, the computation of the new optimum solution
requires at most O(nl/ 3logn) amortized time per operation, much less
than recomputing the optimum solution from scratch.

A completely different picture arises when we apply the concept of reop-
timization to NP-hard optimization problems. In fact, reoptimization pro-
vides very different results when applied to polynomial time optimization
problems with respect to what happens in the case of NP-hard problems.
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In the case of NP-hard optimization problems, unless P=NP polynomial
time reoptimization algorithms can only help us to obtain approximate
solutions, since if we knew how to maintain an optimum solution under
input updates, we could solve the problem optimally in polynomial time
(see Section 4.3.1).

The application of the reoptimization computation paradigm to NP-
hard optimization problems is hence aimed at two possible directions: ei-
ther at achieving an approximate solution of better quality than we would
have obtained without knowing the optimum solution of the base instance,
or achieving an approximate solution of the same quality but at a lower
computational cost (as is the case in our previous example).

In the first place the reoptimization model has been applied to classical
NP-hard optimization problems such as scheduling (see Bartusch et al. [6],
Schéffter [34], or Bartusch et al. [7] for practical applications). More re-
cently it has been applied to various other NP-hard problems such as Steiner
Tree [9, 13] or the Traveling Salesman Problem [1, 5, 8]. In this chapter
we will discuss some general issues concerning reoptimization of NP-hard
optimization problems and we will review some of the most interesting ap-
plications.

The chapter is organized as follows. First, in Section 4.2 we provide
basic definitions concerning complexity and approximability of optimiza-
tion problems and we show simple preliminary results. Then in Section
4.3 the computational power of reoptimization is discussed and results con-
cerning the reoptimization of various NP-hard optimization problems are
shown. Finally Section 4.4 is devoted to the application of the reoptimiza-
tion concept to a variety of vehicle routing problems. While most of the
results contained in Section 4.3 and Section 4.4 derive from the literature,
it is worth noting that a few of the presented results — those for which no
reference is given — appear in this paper for the first time.

4.2. Basic Definitions and Results

In order to characterize the performance of reoptimization algorithms and
analyze their application to specific problems we have to provide first a basic
introduction to the class of NP optimization problems (NPO problems) and
to the notion of approximation algorithms and approximation classes. For
a more extensive presentation of the theory of approximation the reader
can refer to [4].
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Definition 4.1. An NP optimization (NPO) problem II is defined as a
four-tuple (Z, Sol, m, opt) such that:

e 7 is the set of instances of Il and it can be recognized in polynomial
time;

e given I € Z, Sol(I) denotes the set of feasible solutions of I; for every
S € Sol(I), |S| (the size of S) is polynomial in |I| (the size of I); given
any I and any S polynomial in |I|, one can decide in polynomial time
if S € Sol(1);

e given I € 7T and S € Sol(I), m(I,S) denotes the value of S; m is
polynomially computable and is commonly called objective function;

e opt € {min, max} indicates the type of optimization problem.

As it is well known, several relevant optimization problems, known as
NP-hard problems, are intrinsically difficult and no solution algorithms run-
ning in polynomial time are known for such problems. For the solution of
NP-hard problems we have to resort to approzimation algorithms, which in
polynomial time provide a suboptimal solution of guaranteed quality.

Let us briefly recall the basic definitions regarding approximation algo-
rithms and the most important approximation classes of NPO problems.

Given an NPO problem IT = (Z, Sol, m, opt), an optimum solution of an
instance I of II is denoted S*(I) and its measure m(I, S*(I)) is denoted

opt(I).

Definition 4.2. Given an NPO problem II = (Z, Sol, m, opt), an approxi-
mation algorithm A is an algorithm that, given an instance I of II, returns
a feasible solution S € Sol(I).

If A runs in polynomial time with respect to |I], A is called a polynomial
time approzimation algorithm for II.

The quality of an approximation algorithm is usually measured as the
ratio pa(I), approzimation ratio, between the value of the approximate so-
lution, m(I, A(I)), and the value of the optimum solution opt([). For mini-
mization problems, therefore, the approximation ratio is in [1, c0), while for
maximization problems it is in [0,1]. According to the quality of approxi-
mation algorithms that can be designed for their solution, NPO problems
can be classified as follows:

Definition 4.3. An NPO problem II belongs to the class APX if there
exists a polynomial time approximation algorithm A and a rational value
r such that, given any instance I of I, pa(I) < 7 (resp. pa(l) > r) if IT is
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a minimization problem (resp. a maximization problem). In such case A is
called an r-approximation algorithm.

Examples of combinatorial optimization problems belonging to the class
APX are Max Weighted Sat, Min Vertex Cover, and Min Metric TSP.

For particular problems in APX a stronger form of approximability can
indeed be shown. For such problems, given any rational » > 1 (or r €
(0,1) for a maximization problem), there exists an algorithm A, and a
suitable polynomial p,. such that A, is an r-approximation algorithm whose
running time is bounded by p,- as a function of |I|. The family of algorithms
A, parametrized by r is called a polynomial time approrimation scheme
(PTAS).

Definition 4.4. An NPO problem II belongs to the class PTAS if it admits
a polynomial time approximation scheme A,..

Examples of combinatorial optimization problems belonging to the class
PTAS are Min Partitioning, Max Independent Set on Planar Graphs, and
Min Euclidean TSP.

Notice that in the definition of PTAS, the running time of A, is poly-
nomial in the size of the input, but it may be exponential (or worse) in
the inverse of |r — 1|. A better situation arises when the running time is
polynomial in both the input size and the inverse of |r — 1]. In the favor-
able case when this happens, the algorithm is called a fully polynomial time
approzimation scheme (FPTAS).

Definition 4.5. An NPO problem II belongs to the class FPTAS if it admits
a fully polynomial time approximation scheme.

It is important to observe that, under the (reasonable) hypothesis that
P + NP, it is possible to prove that FPTAS C PTAS C APX C NPO.

4.3. Reoptimization of NP-hard Optimization Problem

As explained in the introduction, the reoptimization setting leads to inter-
esting optimization problems for which the complexity properties and the
existence of good approximation algorithms have to be investigated. This
section deals with this question, and is divided into two parts: In Sub-
section 4.3.1, we give some general considerations on these reoptimization
problems, both on the positive side (obtaining good approximate solutions)
and on the negative side (hardness of reoptimization). In Subsection 4.3.2,
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we survey some results achieved on reoptimizing three well-known prob-
lems (the Min Steiner Tree problem, a scheduling problem, and the Max
Knapsack problem).

4.3.1. General properties

As mentioned previously, if one wishes to get an approximate solution on
the perturbed instance, she/he can compute it by applying directly, from
scratch, a known approximation algorithm for the problem dealt (on the
modified instance). In other words, reoptimizing is at least as easy as
approximating. The goal of reoptimization is to determine if it is possible
to fruitfully use our knowledge on the initial instance in order to:

e cither achieve better approximation ratios;
e or devise much faster algorithms;
e or both!

In this section, we present some general results dealing with reopti-
mization properties of some NPO problems. We first focus on a class of
hereditary problems, then we discuss the differences between weighted and
unweighted versions of classical problems, and finally present some ways to
achieve hardness results in reoptimization.

Of course, many types of problems can be considered, and for each of
them many ways to modify the instances might be investigated. We mainly
focus here on graph problems where a modification consists of adding a new
vertex on the instance, but show with various examples that the approaches
we present are also valid in many other cases.

4.3.1.1. Hereditary problems

We say that a property on graphs is hereditary if the following holds: If
G = (V, E) satisfies this property, then for any V/ C V', the subgraph G[V’|
induced by V' verifies the property. Following this definition, for instance,
being independent #, being bipartite, or being planar are three hereditary
properties. Now, let us define problems based on hereditary properties.

Definition 4.6. We call Hered the class of problems consisting, given a
vertex-weighted graph G = (V, E,w), of finding a subset of vertices S (i)
such that G[S] satisfies a given hereditary property (i) that maximizes

w(S) = Xyes w(v)-

2i.e. having no edge.




108 G. Ausiello, V. Bonifaci, € B. Escoffier

Hereditary problems have been studied before as a natural generaliza-
tion of important combinatorial problems [27]. For instance, Max Weighted
Independent Set, Max Weighted Bipartite Subgraph, Max Weighted Planar
Subgraph are three famous problems in Hered that correspond to the three
hereditary properties given above.

For all these problems, we have a simple reoptimization strategy that
achieves a ratio 1/2, based on the same idea used in the introduction. Note
that this is a huge improvement for some problems respect to their ap-
proximability properties; for instance, it is well known that Max Weighted
Independent Set is not approximable within any constant ratio, if P # NPP.

Theorem 4.1. Let II be a problem in Hered. Under a vertex insertion,
reoptimizing Il is approzimable within ratio 1/2 (in constant time).

Proof. Let I = (G,w) be the initial instance of II, I’ = (G’,w’) be the
final instance (a new vertex v has been inserted), S* be an optimum solution
on I, and S% be an optimum solution on I’. Notice that w'(u) = w(u) for
all u # v.

Getting a 1/2-approximate solution is very easy: just consider the best
solution among S* and (if feasible) S; := {v}. Solution S* is feasible by
heritability. We can also assume S; feasible, as otherwise by heritability
no feasible solution can include v, and S* must be optimal. Finally, by
heritability, S, \ {v} is a feasible solution on the initial instance. Then,
w'(S7) <w'(S*) + w'(v) = w'(S*) + w'(51) < 2max(w'(S*),w'(S1)). O

Now, let us try to outperform this trivial ratio 1/2. A first idea that
comes to mind is to improve the solution S; of the previous proof since
it only contains one vertex. In particular, one can think of applying an
approximation algorithm on the “remaining instance after taking v”. Con-
sider for instance Max Weighted Independent Set, and revisit the proof of
the previous property. If S}, does not take the new vertex v, then our
initial solution S* is optimum. If S}, takes v, then consider the remaining
instance I after having removed v and its neighbors. Suppose that we have
a p-approximate solution Sz on this instance Iz. Then SyU{v} is a feasible
solution of weight:

w(S2 U {v}) = p(w(ST) — w(v)) +w(v) = pw(ST) + (1 — pJw(v). (4.1)
On the other hand, of course :
w(S*) > w(Sy) — w(v). (4.2)

b And not even within ratio n'~¢ for any & > 0, under the same hypothesis [37].
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If we output the best solution S among S* and Ss U {v}, then, by adding
equations (4.1) and (4.2) with coefficients 1 and (1 — p), we get:

w(S) > 2Lw(s;‘,).

Note that this ratio is always better than p.

This technique is actually quite general and applies to many problems
(not only graph problems and maximization problems). We illustrate this
on two well-known problems: Max Weighted Sat (Theorem 4.2) and Min
Vertex Cover (Theorem 4.3). We will also use it for Max Knapsack in
Section 4.3.2.

Theorem 4.2. Under the insertion of a clause, reoptimizing Max Weighted
Sat is approzimable within ratio 0.81.

Proof. Let ¢ be a conjunction of clauses over a set of binary variables,
each clause being given with a weight, and let 7*(¢) be an initial optimum
solution. Let ¢’ := ¢ A ¢ be the final formula, where the new clause ¢ =
l1 ViIa V...Vl (where [; is either a variable or its negation) has weight
w(c).

We consider k solutions 7;, ¢ = 1,...,k. Each 7; is built as follows:

e We set [; to true;

e We replace in ¢ each occurrence of I; and I; with its value;

e We apply a p-approximation algorithm on the remaining instance (note
that the clause c is already satisfied); together with ;, this is a partic-
ular solution 7;.

Then, our reoptimization algorithm outputs the best solution 7 among
7*(¢) and the 7;s.

As previously, if the optimum solution 7*(¢’) on the final instance does
not satisfy ¢, then 7%(¢) is optimum. Otherwise, at least one literal in ¢,
say l;, is true in 7*(¢’). Then, it is easy to see that

w(ri) 2 p(w(r™(¢)) — w(c)) +wlc) = pw (7" (¢")) + (1 = p)uw(c).

On the other hand, w(7*(¢)) > w(7*(¢’)) — w(c), and the following
result follows:

1
w(r) > rpw(T*(éf’/))-
The fact that Max Weighted Sat is approximable within ratio p = 0.77 [3]
concludes the proof. O



110 G. Ausiello, V. Bonifaci, € B. Escoffier

It is worth noticing that the same ratio (1/(2 — p)) is achievable for
other satisfiability or constraint satisfaction problems. For instance, using
the result of Johnson [24], reoptimizing Max Weighted E3SAT® when a new
clause is inserted is approximable within ratio 8/9.

Let us now focus on a minimization problem, namely Min Vertex Cover.
Given a vertex-weighted graph G = (V, E, w), the goal in this problem is
to find a subset V' C V such that (i) every edge e € E is incident to at
least one vertex in V', and (ii) the global weight of V', that is, > ., w(v)
is minimized.

Theorem 4.3. Under a vertex insertion, reoptimizing Min Vertex Cover is
approximable within ratio 3/2.

Proof. Let v denote the new vertex and S* the initial given solution.
Then, S* U {v} is a vertex cover on the final instance. If S}, takes v, then
S* U {v} is optimum.

From now on, suppose that S7, does not take v. Then it has to take all
its neighbors N(v). S* U N(v) is a feasible solution on the final instance.
Since w(S*) < w(S},), we get:

w(S* UN (@) < w(Sh) +w(N(v)). (4.3)

Then, as for Max Weighted Independent Set, consider the following feasible
solution Si:

e Take all the neighbors N(v) of v in Sy;

e Remove v and its neighbors from the graph;

e Apply a p-approximation algorithm on the remaining graph and add
these vertices to Si.

Since we are in the case where S5, does not take v, it has to take all its
neighbors, and finally:

w(S1) < p(w(S7)—w(N(v)))+w(N(v)) = pw(S7)=(p=1)w(N(v)). (44)

Of course, we take the best solution S among S* U N(v) and S;. Then, a
convex combination of equations (4.3) and (4.4) leads to:

w(ST).

The results follows since Min Vertex Cover is well known to be approximable
within ratio 2. U

“Restriction of Max Weighted Sat when all clauses contain exactly three literals.
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To conclude this section, we point out that these results can be general-
ized when several vertices are inserted. Indeed, if a constant number k£ > 1
of vertices are added, one can reach the same ratio with similar arguments
by considering all the 2¥ possible subsets of new vertices in order to find
the ones that will belong to the new optimum solution. This brute force
algorithm is still very fast for small constant k, which is the case in the
reoptimization setting with slight modifications of the instance.

4.3.1.2. Unweighted problems

In the previous subsection, we considered the general cases where vertices
(or clauses) have a weight. It is well known that all the problems we
focused on are already NP-hard in the unweighted case, i.e. when all ver-
tices/clauses receive weight 1. In this (very common) case, the previous
approximation results on reoptimization can be easily improved. Indeed,
since only one vertex is inserted, the initial optimum solution has an abso-
lute error of at most one on the final instance, i.e.:

5% > S5 — 1.

Then, in some sense we don’t really need to reoptimize since S* is
already a very good solution on the final instance (note also that since
the reoptimization problem is NP-hard, we cannot get rid of the constant
—1). Dealing with approximation ratio, we derive from this remark, with
a standard technique, the following result:

Theorem 4.4. Under a vertex insertion, reoptimizing any unweighted
problem in Hered admits a PTAS.

Proof. Let e > 0, and set k = [1/e]. We consider the following algo-
rithm:

(1) Test all the subsets of V of size at most k, and let S; be the largest
one such that G[Si] satisfies the hereditary property;
(2) Output the largest solution S between Sy and S*.

Then, if S}, has size at most 1/, we found it in step 1. Otherwise, |S},| >
1/e and:
S0 ISil-1

— 2> —a 2> 1—e
|53 |53

Of course, the algorithm is polynomial as long as ¢ is a constant. g
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In other words, the PTAS is derived from two properties: the absolute
error of 1, and the fact that problems considered are simple. Following [30],
a problem is called simple if, given any fixed constant k, it is polynomial to
determine whether the optimum solution has value at most & (maximiza-
tion) or not.

This result easily extends to other simple problems, such as Min Vertex
Cover, for instance. It also generalizes when several (a constant number
of) vertices are inserted, instead of only 1.

However, it is interesting to notice that, for some other (unweighted)
problems, while the absolute error 1 still holds, we cannot derive a PTAS as
in Theorem 4.4 because they are not simple. One of the most famous such
problems is the Min Coloring problem. In this problem, given a graph G =
(V, E), one wishes to partition V into a minimum number of independent
sets (called colors) Vi,...,Vi. When a new vertex is inserted, an absolute
error 1 can be easily achieved while reoptimizing. Indeed, consider the
initial coloring and add a new color which contains only the newly inserted
vertex. Then this coloring has an absolute error of 1 since a coloring on the
final graph cannot use fewer colors than an optimum coloring on the initial
instance.

However, deciding whether a graph can be colored with 3 colors is an
NP-hard problem. In other words, Min Coloring is not simple. We will
discuss the consequence of this fact in the section on hardness of reopti-
mization.

To conclude this section, we stress the fact that there exist, obviously,
many problems that do not involve weights and for which the initial opti-
mum solution cannot be directly transformed into a solution on the final
instance with absolute error 1. Finding the longest cycle in a graph is such
a problem: adding a new vertex may change considerably the size of an
optimum solution.

4.3.1.3. Hardness of reoptimization

As mentioned earlier, the fact that we are interested in slight modifications
of an instance on which we have an optimum solution makes the problem
somehow simpler, but unfortunately does not generally allow a jump in
complexity. In other words, reoptimizing is generally NP-hard when the
underlying problem is NP-hard.

In some cases, the proof of NP-hardness is immediate. For instance,
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consider a graph problem where modifications consists of inserting a new
vertex. Suppose that we had an optimum reoptimization algorithm for this
problem. Then, starting from the empty graph, and adding the vertices one
by one, we could find an optimum solution on any graph on n vertices by us-
ing iteratively n times the reoptimization algorithm. Hence, the underlying
problem would be polynomial. In conclusion, the reoptimization version is
also NP-hard when the underlying problem is NP-hard. This argument is
also valid for other problems under other kinds of modifications. Actually,
it is valid as soon as, for any instance I, there is a polynomial-time solvable
instance I' (the empty graph in our example) that can be generated in poly-
nomial time and such that a polynomial number of modifications transform
I’ into I.

In other cases, the hardness does not directly follow from this argument,
and a usual polynomial time reduction has to be provided. This situation
occurs, for instance, in graph problems where the modification consists of
deleting a vertex. As we will see later, such hardness proofs have been
given, for instance, for some vehicle routing problems (in short, VRP).

Let us now focus on the hardness of approximation in the reoptimization
setting. As we have seen in particular in Theorem 4.4, the knowledge of the
initial optimum solution may help considerably in finding an approximate
solution on the final instance. In other words, it seems quite hard to prove a
lower bound on reoptimization. And in fact, few results have been obtained
so far.

One method is to transform the reduction used in the proof of NP-
hardness to get an inapproximability bound. Though more difficult than
in the usual setting, such proofs have been provided for reoptimization
problems, in particular for VRP problems, mainly by introducing very large
distances (see Section 4.4).

Let us now go back to Min Coloring. As we have said, it is NP-hard to
determine whether a graph is colorable with 3 colors or not. In the usual
setting, this leads to an inapproximability bound of 4/3 — ¢ for any € > 0.
Indeed, an approximation algorithm within ratio p = 4/3 — ¢ would allow
us to distinguish between 3-colorable graphs and graphs for which we need
at least 4 colors. Now, we can show that this result remains true for the
reoptimization of the problem:

Theorem 4.5. Under a vertez insertion, reoptimizing Min Coloring cannot
be approzimated within a ratio 4/3 — €, for any e > 0.
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Proof. The proof is actually quite straightforward. Assume you have
such a reoptimization algorithm A within aratio p = 4/3—¢. Let G = (V, E)
be a graph with V' = {vy,--- ,v,}. We consider the subgraphs G; of G
induced by V; = {v1,v2,---,v;} (in particular G, = G). Suppose that
you have a 3-coloring of G;, and insert v;11. If G;41 is 3-colorable, then
A outputs a 3-coloring. Moreover, if GG; is not 3-colorable, then neither is
Giy+1. Hence, starting from the empty graph, and iteratively applying A,
we get a 3-coloring of G; if and only if G; is 3-colorable. Eventually, we are
able to determine whether G is 3-colorable or not. O

This proof is based on the fact that Min Coloring is not simple (ac-
cording to the definition previously given). A similar argument, leading
to inapproximability results in reoptimization, can be applied to other non
simple problems (under other modifications). It has been in particular
applied to a scheduling problem (see Section 4.3.2).

For other optimization problems however, such as MinTSP in the metric
case, finding a lower bound in approximability (if any!) seems a challenging
task.

Let us finally mention another kind of negative result. In the reopti-
mization setting, we look somehow for a possible stability when slight modi-
fications occur on the instance. We try to measure how much the knowledge
of a solution on the initial instance helps to solve the final one. Hence, it
is natural to wonder whether one can find a good solution in the “neigh-
borhood” of the initial optimum solution, or if one has to change almost
everything. Do neighboring instances have neighboring optimum/good so-
lutions? As an answer to these questions, several results show that, for
several problems, approximation algorithms that only “slightly” modify
the initial optimum solution cannot lead to good approximation ratios. For
instance, for reoptimizing MinTSP in the metric case, if you want a ratio
better than 3/2 (guaranteed by a simple heuristic), then you have to change
(on some instances) a significant part of your initial solution [5]. This kind
of result, weaker than an inapproximability bound, provides information on
the stability under modifications and lower bounds on classes of algorithms.

4.3.2. Results on some particular problems

In the previous section, we gave some general considerations on the reop-
timization of NP-hard optimization problems. The results that have been
presented follow, using simple methods, from the structural properties of
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the problem dealt with and/or from known approximation results. We now
focus on particular problems for which specific methods have been devised,
and briefly mention, without proofs, the main results obtained so far. We
concentrate on the Min Steiner Tree problem, on a scheduling problem, and
on the Max Knapsack problem. Vehicle routing problems, which concen-
trated a large attention in reoptimization, deserve, in our opinion, a full
section (Section 4.4), in which we also provide some of the most interesting
proofs in the literature together with a few new results.

4.3.2.1. Min Steiner Tree

The Min Steiner Tree problem is a generalization of the Min Spanning Tree
problem where only a subset of vertices (called terminal vertices) have to
be spanned. Formally, we are given a graph G = (V| E), a non-negative
distance d(e) for any e € E, and a subset R C V of terminal vertices.
The goal is to connect the terminal vertices with a minimum global dis-
tance, i.e. to find a tree T' C E that spans all vertices in R and minimizes
d(T) = >_.crd(e). It is generally assumed that the graph is complete, and
the distance function is metric (i.e. d(z,y) + d(y, z) > d(z, z) for any ver-
tices x,y, z): indeed, the general problem reduces to this case by initially
computing shortest paths between pairs of vertices.

Min Steiner Tree is one of the most famous network design optimization
problems. It is NP-hard, and has been studied intensively from an approx-
imation viewpoint (see [18] for a survey on these results). The best known
ratio obtained so far is 1 4 In(3)/2 ~ 1.55 [31].

Reoptimization versions of this problem have been studied with modi-
fications on the vertex set [9, 13]. In Escoffier et al. [13], the modification
consists of the insertion of a new vertex. The authors study the cases where
the new vertex is terminal or non-terminal.

Theorem 4.6 ([13]). When a new vertex is inserted (either terminal or
not), then reoptimizing the Min Steiner Tree problem can be approximated
within ratio 3/2.
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Moreover, the result has been generalized to the case in which several
vertices are inserted. Interestingly, when p non-terminal vertices are in-
serted, then reoptimizing the problem is still 3/2-approximable (but the
running time grows very fast with p). On the other hand, when terminal
vertices are added, the obtained ratio decreases (but the running time re-
mains very low). The strategies consist, roughly speaking, of merging the
initial optimum solution with Steiner trees computed on the set of new
vertices and/or terminal vertices. The authors tackle also the case where
a vertex is removed from the vertex set, and provide a lower bound for a
particular class of algorithms.

Bockenhauer et al. [9] consider a different instance modification. Rather
than inserting/deleting a vertex, the authors consider the case where the
status of a vertex changes: either a terminal vertex becomes non-terminal,
or vice versa. The obtained ratio is also 3/2.

Theorem 4.7 ([9]). When the status (terminal / non-terminal) of a ver-
tex changes, then reoptimizing the Min Steiner Tree problem can be approz-
imated within ratio 3/2.

Moreover, they exhibit a case where this ratio can be improved. When
all the distances between vertices are in {1,2,---,r}, for a fixed constant
7, then reoptimizing Min Steiner Tree (when changing the status of one
vertex) is still NP-hard but admits a PTAS.

Note that in both cases (changing the status of a vertex or adding a
new vertex), no inapproximability results have been achieved, and this is
an interesting open question.

4.3.2.2. Scheduling

Due to practical motivations, it is not surprising that scheduling problems
received attention dealing with the reconstruction of a solution (often called
rescheduling) after an instance modification, such as a machine breakdown,
an increase of a job processing time, etc. Several works have been proposed
to provide a sensitivity analysis of these problems under such modifica-
tions. A typical question is to determine under which modifications and/or
conditions the initial schedule remains optimal. We refer the reader to the
comprehensive article [20] where the main results achieved in this field are
presented.
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Dealing with the reoptimization setting we develop in this chapter,
Schéffter [34] proposes interesting results on a problem of scheduling with
forbidden sets. In this problem, we have a set of jobs V = {vy, -+ ,v,},
each job having a processing time. The jobs can be scheduled in parallel
(the number of machines is unbounded), but there is a set of constraints
on these parallel schedules: A constraint is a set F' C V of jobs that cannot
be scheduled in parallel (all of them at the same time). Then, given a set
F ={F, -, F}} of constraints, the goal is to find a schedule that respects
each constraint and that minimizes the latest completion time (makespan).
Many situations can be modeled this way, such as the m-Machine Prob-
lem (for fixed m), hence the problem is NP-complete (and even hard to
approximate).

Schéffter considers reoptimization when either a new constraint F' is
added to F, or a constraint F; € F disappears. Using reductions from the
Set Splitting problem and from the Min Coloring problem, he achieves the
following inapproximability results:

Theorem 4.8 ([34]). If P #£ NP, for any € > 0, reoptimizing the schedul-
ing with forbidden sets problem is inapproxzimable within ratio 3/2—¢c under
a constraint insertion, and inapproximable within ratio 4/3 —¢ under a con-
straint deletion.

Under a constraint insertion Schéffter also provides a reoptimization
strategy that achieves approximation ratio 3/2, thus matching the lower
bound of Theorem 4.8. It consists of a simple local modification of the
initial scheduling, by shifting one task (at the end of the schedule) in order
to ensure that the new constraint is satisfied.

4.3.2.3. Max Knapsack

In the Max Knapsack problem, we are given a set of n objects O =
{01,...,0n}, and a capacity B. Each object has a weight w; and a value
v;. The goal is to choose a subset O of objects that maximizes the global
value > o, v; but that respects the capacity constraint ), o w; < B.

This problem is (weakly) NP-hard, but admits an FPTAS [23].
Obviously, the reoptimization version admits an FPTAS too. Thus,
Archetti et al. [2] are interested in using classical approximation algorithms
for Max Knapsack to derive reoptimization algorithms with better approx-
imation ratios but with the same running time. The modifications consid-
ered consist of the insertion of a new object in the instance.
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Though not being a graph problem, it is easy to see that the Max
Knapsack problem satisfies the required properties of heritability given in
Section 4.3.1 (paragraph on hereditary problems). Hence, the reoptimiza-
tion version is 1/2-approximable in constant time; moreover, if we have
a p-approximation algorithm, then the reoptimization strategy presented
in Section 4.3.1 has ratio ﬁ [2]. Besides, Archetti et al. [2] show that
this bound is tight for several classical approximation algorithms for Max
Knapsack.

Finally, studying the issue of sensitivity presented earlier, they show
that any reoptimization algorithm that does not consider objects discarded
by the initial optimum solution cannot have ratio better than 1/2.

4.4. Reoptimization of Vehicle Routing Problems

In this section we survey several results concerning the reoptimization of
vehicle routing problems under different kinds of perturbations. In particu-
lar, we focus on several variants of the Traveling Salesman Problem (TSP),
which we define below.

The TSP is a well-known combinatorial optimization problem that has
been the subject of extensive studies — here we only refer the interested
reader to the monographs by Lawler et al. [26] and Gutin and Punnen [19].
The TSP has been used since the inception of combinatorial optimization
as a testbed for experimenting a whole array of algorithmic paradigms and
techniques, so it is just natural to also consider it from the point of view of
reoptimization.

Definition 4.7. An instance I,, of the Traveling Salesman Problem is given
by the distance between every pair of n nodes in the form of an n x n matrix
d, where d(i,j) € Z4 for all 1 < 4,5 < n. A feasible solution for I, is a
tour, that is, a directed cycle spanning the node set N := {1,2,...,n}.

Notice that we have not defined an objective function yet; so far we
have only specified the structure of instances and feasible solutions. There
are several possibilities for the objective function and each of them gives
rise to a different optimization problem. We need a few definitions. The
weight of a tour T'is the quantity w(T) := >_(; ;) cr d(i, j). The latency of
a node i € N with respect to a given tour 7" is the total distance along the
cycle T from node 1 to node i. The latency of T, denoted by ¢(T), is the
sum of the latencies of the nodes of T'.
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Table 4.1. Best known results on the approximability of the standard and
reoptimization versions of vehicle routing problems (AR = approximation ra-
tio, II+ = vertex insertion, II— = vertex deletion, I+ = distance variation).
[ Problem II || AR(IT) Ref. | AR(II+) AR(II-)AR(II+) Ref. |
Min TSP unbounded [33] unb. unb. unb. [5, 8]
Min MTSP 1.5 [11] 1.34 - 1.4 [1, 9]
Min ATSP O(logn) [15] 2 2 - this work
Max TSP 0.6 [25] |0.66 — O(n~1) - this work
Max MTSP 0.875 [21] |1—-0O(n~1/?) - [5]
MLP 3.59 [10] 3 - - this work

The matrix d obeys the triangle inequality if for all ¢, j,k € N we have
d(i,j) < d(i, k) +d(k, j). The matrix d is said to be a metric if it obeys the
triangle inequality and d(i, j) = d(j,4) for all i,j € N.

In the rest of the section we will consider the following problems:

Minimum Traveling Salesman Problem (Min TSP): find a tour of min-
imum weight;

Minimum Metric TSP (Min MTSP): restriction of Min TSP to the case
when d is a metric;

Minimum Asymmetric TSP (Min ATSP): restriction of Min TSP to
the case when d obeys the triangle inequality;

Maximum TSP (Max TSP): find a tour of maximum weight;
Maximum Metric TSP (Max MTSP): restriction of Max TSP to the
case when d is a metric;

Minimum Latency Problem (MLP): find a tour of minimum latency; d
is assumed to be a metric.

TSP-like problems other than those above have also been considered in
the literature from the point of view of reoptimization; in particular, see
Bockenhauer et al. [8] for a hardness result on the TSP with deadlines.

Given a vehicle routing problem II from the above list, we will consider
the following reoptimization variants, each corresponding to a different type
of perturbation of the instance: insertion of a node (II+), deletion of a node
(II-), and variation of a single entry of the matrix d (II+).

In the following, we will sometimes refer to the initial problem II as
the static problem. In Table 4.1 we summarize the approximability results
known for the static and reoptimization versions of the problems above
under these types of perturbations.
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Some simple solution methods are common to several of the problems
we study in this section. We define here two such methods; they will be
used in the remainder of the section.

Algorithm 1 (Nearest Insertion). Given an instance I,,+1 and a tour
T on theset {1,...,n}, find anode i* € argmin, «;«,, d(i,n+1). Obtain the
solution by inserting node n + 1 either immedia%efy before or immediately
after ¢* in the tour (depending on which of these two solutions is best).

Algorithm 2 (Best Insertion). Given an instance I,,+1 and a tour 7" on
the set {1,...,n}, find a pair (i*,5*) € argming ;e d(i,n + 1) + d(n +
1,7) — d(4,j). Obtain the solution by inserting node n + 1 between ¢* and

*

7% in the tour.

4.4.1. The Minimum Traveling Salesman Problem

4.4.1.1. The general case

We start by considering the Min TSP. It is well known that in the standard
setting the problem is very hard to approximate in the sense that it can-
not be approximated within any factor that is polynomial in the number
of nodes [33]. It turns out that the same result also holds for the reopti-
mization versions of the problem, which shows that in this particular case
the extra information available through the optimal solution to the original
instance does not help at all.

Theorem 4.9 ([5, 8]). Let p be a polynomial. Then each of Min TSP+,
Min TSP—, and Min TSP+ is not 2P -approzimable, unless P=NP.

Proof.  We only give the proof for Min TSP—; the other proofs follow a
similar approach. We use the so-called gap technique from Sahni and Gon-
zales [33]. Consider the following problem, Restricted Hamiltonian Cycle
(RHC): Given an undirected graph G = (V, E') and a Hamiltonian path P
between two nodes a and b in G, determine whether there exists a Hamilto-
nian cycle in G. This problem is known to be NP-complete [28]. We prove
the claim of the theorem by showing that any approximation algorithm for
Min TSP— with ratio 2°(™ can be used to solve RHC in polynomial time.

Consider an instance of RHC, that is, a graph G = (V| E) on n nodes,
two nodes a,b € V and a Hamiltonian path P from a to b. Without loss
of generality we can assume that V' = {1,...,n}. We can construct in
polynomial time the following TSP instance I,,+; on node set {1,...,n,n+

1}:
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-dn+1,a)=db,n+1)=1;
- all other entries of the matrix d have value 2°(") . p + 1.

Since all entries are at least 1, the tour Tpy,, := PU{(b,n+1),(n+1,a)}
is an optimum solution of I,;1, with weight w(Z};,;) = n + 1. Thus,
(In41, Ty, ) is an instance of Min TSP—. Let 7}, be an optimum solution
of instance I,,. Then w(T)) = n if and only if G has a Hamiltonian cycle.
Finally, a 2P(")-approximation algorithm for Min TSP— allows us to decide
whether w(T}) = n. O

4.4.1.2. Minimum Metric TSP

In the previous section we have seen that no constant-factor approximation
algorithm exists for reoptimizing the Minimum TSP in its full generality.
To obtain such a result, we are forced to restrict the problem somehow.
A very interesting case for many applications is when the matrix d is a
metric, that is, the Min MTSP. This problem admits a 3/2-approximation
algorithm, due to Christofides [11], and it is currently open whether this
factor can be improved. Interestingly, it turns out that the reoptimization
version Min MTSP+ is (at least if one considers the currently best known
algorithms) easier than the static problem: It allows a 4/3-approximation —
although, again, we do not know whether even this factor may be improved
via a more sophisticated approach.

Theorem 4.10 ([5]). Min MTSP+ is approzimable within ratio 4/3.

Proof. The algorithm used to prove the upper bound is a simple combi-
nation of Nearest Insertion and of the well-known algorithm by Christofides
[11]; namely, both algorithms are executed and the solution returned is the
one having the lower weight.

Consider an optimum solution 7}, of the final instance I, 11, and the
solution 7' available for the initial instance I,,. Let ¢ and j be the two
neighbors of vertex n + 1 in 77, , and let 71 be the tour obtained from
T with the Nearest Insertion rule. Furthermore, let v* be the vertex in
{1,...,n} whose distance to n + 1 is the smallest.

Using the triangle inequality, we easily get w(T1) < w(T,;)+2d(v*, n+
1) where, by definition of v*, d(v*,n+1) = min{d(k,n+1) : k=1,...,n}.
Thus

w(Th) < w(T), )+ 2max(d(i,n + 1),d(j,n + 1)). (4.5)
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Now consider the algorithm of Christofides applied on I, 1. This gives
a tour T3 of length at most (1/2)w(T};, 1) +MST(I,,41), where MST (I, 41)
is the weight of a minimum spanning tree on I,,11. Note that MST(/,,11) <
w(T), 1) —max(d(i,n +1),d(j,n +1)). Hence

n

w(Ty) < gw(T;H) —max(d(i,n 4+ 1),d(j,n + 1)). (4.6)

The result now follows by combining equations (4.5) and (4.6), because
the weight of the solution given by the algorithm is min(w(Ty), w(7T2)) <
(1/3)w(T1) + (2/3)w(Ts) < (4/3)w(T;11)- O

The above result can be generalized to the case when more than a
single vertex is added in the perturbed instance. Let Min MTSP+k be the
corresponding problem when k vertices are added. Then it is possible to
give the following result, which gives a trade-off between the number of
added vertices and the quality of the approximation guarantee.

Theorem 4.11 ([5]). For any k > 1, Min MTSP+k is approzimable
within ratio 3/2 — 1/(4k + 2).

Reoptimization under variation of a single entry of the distance ma-
trix (that is, problem Min MTSP+) has been considered by Bdcken-
hauer et al. [9].

Theorem 4.12 ([9]). Min MTSP= is approzimable within ratio 7/5.

4.4.1.3. Minimum Asymmetric TSP

The Minimum Asymmetric Traveling Salesman Problem is another variant
of the TSP that is of interest for applications, as it generalizes the Metric
TSP. Unfortunately, in the static case there seems to be a qualitative differ-
ence with respect to the approximability of Minimum Metric TSP: While in
the latter case a constant approximation is possible, for Min ATSP the best
known algorithms give an approximation ratio of ©(logn). The first such
algorithm was described by Frieze et al. [17] and has an approximation guar-
antee of logy n. The currently best algorithm is due to Feige and Singh [15]
and gives approximation (2/3)log, n. The existence of a constant approxi-
mation for Min ATSP is an important open problem.

Turning now to reoptimization, there exists a non-negligible gap be-
tween the approximability of the static version and of the reoptimiza-
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tion version. In fact, reoptimization drastically simplifies the picture:
Min ATSP+ is approximable within ratio 2, as we proceed to show.

Theorem 4.13. Min ATSP+ is approximable within ratio 2.

Proof. The algorithm used to establish the upper bound is extremely
simple: just add the new vertex between an arbitrarily chosen pair of con-
secutive vertices in the old optimal tour. Let T be the tour obtained by
inserting node n+1 between two consecutive nodes ¢ and j in 7,;. We have:

w(T) =w(Ty)+di,n+1)+dn+1,7) —d(,j).
By triangle inequality, d(n + 1,5) < d(n + 1,%) 4+ d(3, j). Hence
w(T) <w(Ty)+d(i,n+1)+d(n+1,1).

Again by triangle inequality, w(T};) < w(T}, ), and d(i,n+1)+d(n+1,7) <
w(Tyr 1), which concludes the proof. O

n

We remark that the above upper bound of 2 on the approximation ratio
is tight, even if we use Best Insertion instead of inserting the new vertex
between an arbitrarily chosen pair of consecutive vertices.

Theorem 4.14. Min ATSP— is approzimable within ratio 2.

Proof. The obvious idea is to skip the deleted node in the new tour,
while visiting the remaining nodes in the same order. Thus, if ¢ and j are
respectively the nodes preceding and following n + 1 in the tour 7, ,, we
obtain a tour T such that

w(T) = w(T}y ) +d(i, §) — d(i,n + 1) — d(n + 1, j). (4.7)

Consider an optimum solution 7} of the modified instance I,,, and the node
[ that is consecutive to ¢ in this solution. Since inserting n+1 between ¢ and
[ would yield a feasible solution to I,,11, we get, using triangle inequality:

w(Ty,) < w(Tr) +d(i,n+1) +d(n+1,1) — d(i,1)
<w(T))+d(i,n+1)+d(n+1,i).

By substituting in (4.7) and using triangle inequality again,
w(T) < w(Ty;) +d(i, j) + d(5,9)-

Hence, w(T) < 2w(T})). O
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4.4.2. The Maximum Traveling Salesman Problem
4.4.2.1. Maximum TSP

While the typical applications of the Minimum TSP are in vehicle rout-
ing and transportation problems, the Maximum TSP has applications to
DNA sequencing and data compression [25]. Like the Minimum TSP, the
Maximum TSP is also NP-hard, but differently from what happens for
the Minimum TSP, it is approximable within a constant factor even when
the distance matrix can be completely arbitrary. In the static setting, the
best known result for Max TSP is a 0.6-approximation algorithm due to
Kosaraju et al. [25]. Once again, the knowledge of an optimum solution to
the initial instance is useful, as the reoptimization problem under insertion
of a vertex can be approximated within a ratio of 0.66 (for large enough n),
as we show next.

Theorem 4.15. Max TSP+ is approximable within ratio (2/3)-(1—1/n).

Proof. Let i and j be such that (i,n+ 1) and (n + 1, j) belong to T}, ;.
The algorithm is the following:

(1) Apply Best Insertion to T)F to get a tour T7;

(2) Find a maximum cycle cover C = (Cy,...,C}) on I,+1 such that:
(a) (4,n+1) and (n+ 1,5) belong to Cp;
(b) 1Col = 4;

(3) Remove the minimum-weight arc of each cycle of C and patch the paths
obtained to get a tour Th;
(4) Select the best solution between T; and Tb.

Note that Step 2 can be implemented in polynomial time as follows: We
replace d(i,n + 1) and d(n + 1,7) by a large weight M, and d(j,7) by —M
(we do not know ¢ and j, but we can try each possible pair of vertices and
return the best tour constructed by the algorithm). Hence, this cycle cover
will contain (i, + 1) and (n + 1,7) but not (j,¢), meaning that the cycle
containing n + 1 will have at least 4 vertices.

Let a :=d(i,n + 1) +d(n + 1, 7). Clearly, w(T,; ;) < w(T}y) + a. Now,
by inserting n + 1 in each possible position, we get

w(Th) = (1 =1/n)w(Ty) = (1 =1/n)(w(T; ) — a).

Since Cy has size at least 4, the minimum-weight arc of Cy has cost at
most (w(Cy) — a)/2. Since each cycle has size at least 2, we get a tour Th
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of value:
Co) — C) — w(C
(T 2 iy - MO8 €)= w(C)
~wC)+a S w(Ty ) +a
2T 2
Combining the two bounds for 77 and Tb, we get a solution which is
(2/3) - (1 — 1/n)-approximate. O

The above upper bound can be improved to 0.8 when the distance ma-
trix is known to be symmetric [5].

4.4.2.2. Mazimum Metric TSP

The usual Maximum TSP problem does not admit a polynomial-time ap-
proximation scheme, that is, there exists a constant ¢ such that it is NP-
hard to approximate the problem within a factor better than ¢. This result
extends also to the Maximum Metric TSP [29]. The best known approxi-
mation for the Maximum Metric TSP is a randomized algorithm with an
approximation guarantee of 7/8 [21].

By contrast, in the reoptimization of Max MTSP under insertion of a
vertex, the Best Insertion algorithm turns out to be a very good strategy:
It is asymptotically optimum. In particular, the following holds:

Theorem 4.16 ([5]). Max MTSP+ is approzimable within ratio 1 —
O(n=1/2).

Using the above result one can easily prove that Max MTSP+ admits
a polynomial-time approximation scheme: If the desired approximation
guarantee is 1 — ¢, for some € > 0, just solve by enumeration the instances
with O(1/€?) nodes, and use the result above for the other instances.

4.4.3. The Minimum Latency Problem

Although superficially similar to the Minimum Metric TSP, the Minimum
Latency Problem appears to be more difficult to solve. For example, in
the special case when the metric is induced by a weighted tree, the MLP is
NP-hard [35] while the Metric TSP is trivial. One of the difficulties in the
MLP is that local changes in the input can influence the global shape of the
optimum solution. Thus, it is interesting to notice that despite this fact,
reoptimization still helps. In fact, the best known approximation so far for
the static version of the MLP gives a factor of 3.59 and is achieved via a
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sophisticated algorithm due to Chaudhuri et al. [10], while it is possible
to give a very simple 3-approximation for MLP+, as we show in the next
theorem.

Theorem 4.17. MLP+ s approximable within ratio 3.

Proof. We consider the Insert Last algorithm that inserts the new node
n + 1 at the “end” of the tour, that is, just before node 1. Without loss
of generality, let T, = {(1,2),(2,3),...,(n—1,n)} be the optimal tour for
the initial instance I,, (that is, the kth node to be visited is k). Let T}y, | be
the optimal tour for the modified instance I,, ;1. Clearly ¢(T}, ) > ¢(T};)
since relaxing the condition that node n + 1 must be visited cannot raise
the overall latency.

The quantity ¢(T)) can be expressed as Y .-, t;, where for i = 1,...,n,
t;, = Z;;ll d(j,7 + 1) can be interpreted as the “time” at which node i is
first visited in the tour T}r.

In the solution constructed by Insert Last, the time at which each node
1 # n+ 1 is visited is the same as in the original tour (¢;), while t,4+; =
tn+d(n,n+1). The latency of the solution is thus S 77" t; = S0 ti+t,+
d(n,n+1) < 20(Ty) + (T, ) < 30(T}, ), where we have used £(T};, ) >
d(n,n + 1) (any feasible tour must include a subpath from n to n + 1 or
vice versa). O

4.5. Concluding Remarks

In this chapter we have seen how the reoptimization model can often be
applied to NP-hard combinatorial problems in order to obtain algorithms
with approximation guarantees that improve upon the trivial approach of
computing an approximate solution from scratch.

Apart from designing algorithms with good approximation guarantees
for reoptimization problems — and from obtaining sharper negative results
— there are some general open directions in the area. One is to investigate
the more general issue of maintaining an approximate solution under input
modifications. In our model we assumed that an optimal solution was
available for the instance prior to the modification, but it is natural to
relax this constraint by assuming only an approximate solution instead. In
some cases the analysis of the reoptimization algorithm can be carried out
in a similar way even with such a relaxed assumption, but this needs not
be always true.
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Another general question is that of studying the interplay between run-
ning time, approximation guarantee, and amount of data perturbation. If
we devote enough running time (for example, exponential time for prob-
lems in NPO) to the solution of an instance, we can find an optimal solution
independently of the amount of perturbation. On the other hand we saw
that for many problems it is possible to find in polynomial time an almost
optimal solution for any slightly perturbed instance. One could expect that
there might be a general trade-off between the amount of data perturbation
and the running time needed the reconstruct a solution of a given quality.
It would be interesting to identify problems for which such trade-offs are
possible.
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Logic has its origins in basic questions about the nature of the real world
and how we describe it. This chapter seeks to bring out the physical and
epistemological relevance of some of the more recent technical work in
logic and computability theory.
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5.1. Introduction

Logic has an impressive history of addressing very basic questions about
the nature of the world we live in. At the same time, it has clarified con-
cepts and informal ideas about the world, and gone on to develop sophis-
ticated technical frameworks within which these can be discussed. Much
of this work is little known or understood by non-specialists, and the sig-
nificance of it largely ignored. While notions such as set, proof and con-
sistency have become part of our culture, other very natural abstractions
such as that of definability are unfamiliar and disconcerting, even to work-
ing mathematicians. The widespread interest in Godel’s [46, 47] incom-
pleteness results and their frequent application, often in questionable ways,
shows both the potential for logicians to say something important about
the world, while at the same time illustrating the limitations of what has
been achieved so far. This article seeks to bring out the relevance of some
of the more recent technical work in logic and computability theory. Ba-
sic questions addressed include: How do scientists represent and establish
control over information about the universe? How does the universe it-
self exercise control over its own development? And more feasibly: How
can we reflect that control via our scientific and mathematical representa-
tions?

Definability — what we can describe in terms of what we are given in a
particular language — is a key notion. As Hans Reichenbach (Hilary Putnam
is perhaps his best-known student) found in the 1920s onwards, formalising
definability in the real world comes into its own when we need to clarify and
better understand the content of a hard-to-grasp description of reality, such
as Einstein’s theory of general relativity. Reichenbach’s seminal work [78]
on axiomatising relativity has become an ongoing project, carried forward
today by Istvan Nemeti, Hajnal Andreka and their co-workers (see, for ex-
ample, Andréka, Madardsz, Németi and Székely [2]). One can think of such
work as paralleling the positive developments that models of computation
enabled during the early days of computer science, bringing a surer grip
on practical computation. But computability theory also gave an overview
of what can be computed in principle, with corresponding technical devel-
opments apparently unrelated to applications. The real-world relevance of
most of this theory remains conjectural.

The capture of natural notions of describability and real-world robust-
ness via the precisely formulated ones of definability and invariance also
brings a corresponding development of theory, which can be applied in
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different mathematical contexts. Such an application does not just bring
interesting theorems, which one just adds to the existing body of theory
with conjectural relevance. It fills out the explanatory framework to a point
where it can be better assessed for power and validity. And it is this which
is further sketched out below. The basic ingredients are the notions of de-
finability and invariance, and a mathematical context which best describes
the scientific description of familiar causal structure.

5.2. Computability versus Descriptions

In the modern world, scientists look for theories that enable predictions,
and, if possible, predictions of a computational character. Everyone else
lives with less constrained descriptions of what is happening, and is likely
to happen. Albert Einstein [38] might have expressed the view in 1950 that:

When we say that we understand a group of natural phenomena, we
mean that we have found a constructive theory which embraces them.

But in everyday life people commonly use informal language to describe
expectations of the real world from which constructive or computational
content is not even attempted. And there is a definite mismatch between
the scientist’s drive to extend the reach of his or her methodology, and the
widespread sense of an intrusion of algorithmic thinking into areas where it
is not valid. A recent example is the controversy around Richard Dawkins’
book [32], The God Delusion. This dichotomy has some basis in theorems
from logic (such as Godel’s incompleteness theorems): but the basis is more
one for argument and confusion than anything more consensual. Things
were not always so.

If one goes back before the time of Isaac Newton, before the scientific
era, informal descriptions of the nature of reality were the common currency
of those trying to reason about the world. This might even impinge on
mathematics — as when the Pythagoreans wrestled with the ontology of
irrational numbers. Calculation had a quite specific and limited role in
society.

5.3. Turing’s Model and Incomputability

In 1936, Turing [100] modelled what he understood of how a then human
“computer” (generally a young woman) might perform calculations — lay-
ing down rules that were very restrictive in a practical sense, but which
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enabled, as he plausibly argued, all that might be achieved with apparently
more powerful computational actions. Just as the Turing machine’s primi-
tive actions (observing, moving, writing) were the key to modelling complex
computations, so the Turing machine itself provided a route to the mod-
elling of complex natural processes within structures which are discretely
(or at least countably) presented. In this sense, it seemed we now had a way
of making concrete the Laplacian model of science which had been with us
in some form or other ever since the significance of what Newton had done
became clear.

But the techniques for presenting a comprehensive range of computing
machines gave us the universal Turing machine, so detaching computations
from their material embodiments: and — a more uncomfortable surprise
— by adding a quantifier to the perfectly down-to-earth description of the
universal machine we get (and Turing [100] proved it) an incomputable
object, the halting set of the machine. In retrospect, this becomes a vivid
indication of how natural language has both an important real-world role,
and quickly outstrips our computational reach. The need then becomes to
track down material counterpart to the simple mathematical schema which
give rise to incomputability. Success provides a link to a rich body of theory
and opens a Pandora’s box of new perceptions about the failings of science
and the nature of the real universe.

5.4. The Real Universe as Discipline Problem

The Laplacian model has a deeply ingrained hold on the rational mind. For
a bromeliad-like late flowering of the paradigm we tend to think of Hilbert
and his assertion of very general expectations for axiomatic mathematics.
Or of the state of physics before quantum mechanics. The problem is
that modelling the universe is definitely not an algorithmic process, and
that is why intelligent, educated people can believe very different things,
even in science. Even in mathematics. So for many, the mathematical
phase-transition from computability to incomputability, which a quantifier
provides, is banned from the real world (see for example Cotogno [24]).
However simple the mathematical route to incomputability, when looking
out at the natural world, the trick is to hold the eyeglass to an unseeing
eye. The global aspect of causality so familiar in mathematical structures
is denied a connection with reality, in any shape or form. For a whole
community, the discovery of incomputability made the real universe a real
discipline problem. When Martin Davis [30] says:
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The great success of modern computers as all-purpose algorithm-
executing engines embodying Turing’s universal computer in physical
form, makes it extremely plausible that the abstract theory of com-
putability gives the correct answer to the question, ‘What is a compu-
tation?’; and, by itself, makes the existence of any more general form of
computation extremely doubtful.

we have been in the habit of agreeing, in a mathematical setting. But in
the context of a general examination of hypercomputational propositions
(whatever the validity of the selected examples) it gives the definite im-
pression of a defensive response to an uncompleted paradigm change. For
convenience, we call this response [31] — that ‘there is no such discipline as
hypercomputation’ - Davis’ Thesis.

The universal Turing machine freed us from the need actually embody
the machines needed to host different computational tasks. The importance
of this for building programmable computers was immediately recognised by
John von Neuman, and played a key role in the early history of the computer
(see Davis [29]). The notion of a virtual machine is a logical extension of this
tradition, which has found widespread favour amongst computer scientists
and philosophers of a functionalist turn of mind — for instance, there is the
Sloman and Chrisley [89] proposition for releasing consciousness from the
philosophical inconvenience of embodiment (see also Torrance, Clowes and
Chrisley [99]). Such attempts to tame nature are protected by a dominant
paradigm, but there is plenty of dissatisfaction with them based on respect
for the complex physicality of what we see.

5.5. A Dissenting Voice ...

Back in 1970, Georg Kreisel considered one of the simplest physical situa-
tions presenting mathematical predictive problems. Contained within the
mathematics one detects uncompleted infinities of the kind necessary for
incomputability to have any significance for the real world. In a footnote to
Kreisel [56] he proposed a collision problem related to the 3-body problem,
which might result in ‘an analog computation of a non-recursive function’.

Even though Kreisel’s view was built on many hours of deep thought
about extensions of the Church—Turing thesis to the material universe —
much of this embodied in Odifreddi’s 20-page discussion of the Church—
Turing thesis in his book [69] on Classical Recursion Theory — it is not
backed up by any proof of of the inadequacy of the Turing model built on
a precise description of the collision problem.
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This failure has become a familiar one, what has been described as a
failure to find ‘natural’ examples of incomputability other than those com-
putably equivalent to the halting problem for a universal Turing machine
— with even that not considered very natural by the mainstream mathe-
matician. One requirement of a ‘natural’ incomputable set is that it be
computably enumerable, like the set of solutions of a diophantine equation,
or the set of natural numbers n such that there exists a block of precisely
n 7s in the decimal expansion of the real number 7 — or like the halting
set of a given Turing machine. The problem is that given a computably
enumerable set of numbers, there are essentially two ways of knowing its
incomputability. One way is to have designed the set oneself to have comple-
ment different to any other set on a standard list of computably enumerable
sets. Without working relative to some other incomputable set, one just
gets canonical sets computably equivalent to the halting set of the universal
Turing machine. Otherwise the set one built has no known robustness, no
definable character one can recognise it by once it is built. The other way
of knowing a particular computably enumerable set to be incomputable is
to be able to compute one of the sets built via way one from the given set.
But only the canonical sets have been found so far to work in this way. So
it is known that there is a whole rich universe of computably inequivalent
computably enumerable sets — but the only individual ones recognisably
so are computably equivalent to the halting problem. Kreisel’s failure is
not so significant when one accepts that an arbitrary set picked from na-
ture in some way is very unlikely to be a mathematically canonical object.
It seems quite feasible that there is a mathematical theorem waiting to
be proved, explaining why there is no accessible procedure for verifying
incomputability in nature.

Since Kreisel’s example, there have been other striking instances of in-
finities in nature with the potential for hosting incomputability. In Off to
Infinity in Finite Time Donald Saari and Jeff Xia [86] describe how one can
even derive singularities arising from the behaviour of five bodies moving
under the influence of the familiar Newtonian inverse square law.

There is a range of more complex examples which are hard to fit into
the standard Turing model, ones with more real-world relevance. There is
the persistence of problems of predictability in a number of contexts. There
is quantum uncertainty, constrained by computable probabilities, but host-
ing what looks very much like randomness; there are apparently emergent
phenomena in many environments; and chaotic causal environments giving
rise to strange attractors; and one has relativity and singularities (black
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holes), whose singular aspects can host incomputability. Specially inter-
esting is the renewed interest in analog and hybrid computing machines,
leading Jan van Leeuwen and Jiri Wiedermann [105] to observe that ‘. .. the
classical Turing paradigm may no longer be fully appropriate to capture all
features of present-day computing.” And — see later — there is mentality,
consciousness and the observed shortcomings of the mathematical models
of these.

The disinterested observer of Martin Davis’ efforts to keep nature con-
tained within the Turing/Laplacian model might keep in mind the well-
known comment of Arthur C. Clarke [16] (Clarke’s First Law) that:

When a distinguished but elderly scientist states that something is pos-
sible, he is almost certainly right. When he states that something is
impossible, he is very probably wrong.

In what follows we look in more detail at three key challenges to the
attachment of Davis, and of a whole community, to the Turing model in
the form of Davis’ thesis.

There is a reason for this. At first sight, it may seem unimportant to
know whether we have computational or predictive difficulties due to mere
complexity of a real-world computational task, or because of its actual in-
computability. And if there is no distinguishable difference between the two
possibilities, surely it cannot matter which pertains. Well, no. Attached
to two different mathematical characterisations one would expect different
mathematical theories. And there is a rich and well-developed theory of in-
computability. This mathematics may well constrain and give global form
to the real world which it underlies. And these constraints and structur-
ings may be very significant for our experience and understanding of the
universe and our place in it.

5.6. The Quantum Challenge

In the early days of quantum computing, there was some good news for
Davis’ thesis from one of its most prominent supporters. David Deutsch
was one of the originators of the standard model of quantum computa-
tion. In his seminal 1985 article [33] ‘Quantum Theory, the Church-Turing
Principle and the Universal Quantum Computer’ in the Proceedings of the
Royal Society of London, he introduced the notion of a ‘universal quantum
computer’, and described how it might exploit quantum parallelism to com-
pute more efficiently than a classical Turing machine. But Deutsch is quite
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clear that real computers based on this model would not compute anything
not computable classically by a Turing machine. And, of course, there
are many other instances of successful reductions of ‘natural examples’ of
nature-based computational procedures to the Turing model.

But like Martin Davis, Deutsch [35] is keen to take things further —a lot
further — attempting a reduction of human mentality to the Turing model
in a way even Turing in his most constructive frame of mind might have
had misgivings about:

I am sure we will have [conscious computers], I expect they will be purely
classical and I expect that it will be a long time in the future. Significant
advances in our philosophical understanding of what consciousness is,
will be needed.

Be this as it may, there are aspects of the underlying physics which are
not fully used in setting up the standard model for quantum computing. It
is true that measurements do play a role in a quantum computation, but in
a tamed guise. This is how Andrew Hodges explains it, in his article What
would Alan Turing have done after 195/ in the Teuscher volume [98]:

Von Neumann’s axioms distinguished the U (unitary evolution) and R
(reduction) rules of quantum mechanics. Now, quantum computing so
far (in the work of Feynman, Deutsch, Shor, etc.) is based on the U
process and so computable. It has not made serious use of the R process:
the unpredictable element that comes in with reduction, measurement
or collapse of the wave function.

The point being that measurements in the quantum context are intrusive,
with outcomes governed by computable probabilities, but with the mapping
out of what goes on within those probabilities giving the appearance of ran-
domness. There are well-established formalisations of the intuitive notion
of randomness, largely coincident and a large body of mathematical theory
built on these (see, for example, Chaitin [15], Downey and Hirschfeldt [36],
Nies [67]). A basic feature of the theory is the fact that randomness im-
plies incomputability (but not the converse). Calude and Svozil [14] have
extracted a suitable mathematical model of quantum randomness, built
upon assumptions generally acceptable to the physicists. Analysing the
computability-theoretic properties of the model, they are able to show that
quantum randomness does exhibit incomputability. But, interestingly, they
are unable as yet to confirm that quantum randomness is mathematically
random.
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But quantum mechanics does not just present one of the toughest chal-
lenges to Davis’ thesis. It also presents the observer with a long-standing
challenge to its own realism. Interpretations of the theory generally fail
to satisty everyone, and the currently most widely accepted interpretations
contain what must be considered metaphysical assumptions. When we have
assembled the key ingredients, we will be in a position to argue that the sort
of fundamental thinking needed to rescue the theory from such assumptions
is based on some very basic mathematics.

5.7. Schrodinger’s Lost States, and the Many-Worlds Inter-
pretation

One way of describing the quantum world is via the Schrédinger wave equa-
tion. What Hodges refers to above are the processes for change of the wave
equation describing the quantum state of a physical system. On the one
hand, one has deterministic continuous evolution via Schrodinger’s equa-
tion, involving superpositions of basis states. On the other, one has proba-
bilistic non-local discontinuous change due to measurement. With this, one
observes a jump to a single basis state. The interpretive question then is:
Where do the other states go?

Writing with hindsight: If the physicists knew enough logic, they would
have been able to make a good guess. And if the logicians had been focused
enough on the foundations of quantum mechanics they might have been able
to tell them.

As it is, physics became a little weirder around 1956. The backdrop to
this is the sad and strange life-story of Hugh Everett III and his family,
through which strode the formidable John Wheeler, Everett’s final thesis
advisor, and Bryce DeWitt, who in 1970 coined the term ‘Many-Worlds’
for Everett’s neglected and belittled idea: an idea whose day came too late
to help the Everett family, now only survived by the son Mark who relives
parts of the tragic story via an autobiography [42] and appropriately left
field confessional creations as leader of the Eels rock band.

Many-Worlds, with a little reworking, did away with the need to explain
the transition from many superposed quantum states to the ‘quasi-classical’
uniqueness we see around us. The multiplicity survives and permeates
micro- to macro-reality, via a decohering bushy branching of alternative
histories, with us relegated to our own self-contained branch. Max Tegmark
has organised the multiplying variations on the Many-Worlds theme into
hierarchical levels of ‘multiverses’, from modest to more radical proposals,
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with even the underlying mathematics and the consequent laws of physics
individuating at Level IV. Of course, if one does not bother any more to
explain why our universe works so interestingly, one needs the ‘anthropic
principle’ on which to base our experience of the world — ‘We’re here because
we’re here because we’re here because we're here ...’, as they sang during
the Great War, marching towards the trenches. The attraction of this
picture derives from the drive for a coherent overview, and the lack of a
better one. As David Deutsch put it in The Fabric of Reality [34, p.48]:

... understanding the multiverse is a precondition for understanding re-
ality as best we can. Nor is this said in a spirit of grim determination to
seek the truth no matter how unpalatable it may be ...It is, on the con-
trary, because the resulting world-view is so much more integrated, and
makes more sense in so many ways, than any previous world-view, and
certainly more than the cynical pragmatism which too often nowadays
serves as surrogate for a world-view amongst scientists.

Here is a very different view of the multiverse from the distinguished
South African mathematician George Ellis [40, p.198], one-time collabora-
tor of Stephen Hawking:

The issue of what is to be regarded as an ensemble of ‘all possible’
universes is unclear, it can be manipulated to produce any result you
want ... The argument that this infinite ensemble actually exists can
be claimed to have a certain explanatory economy (Tegmark 1993),
although others would claim that Occam’s razor has been completely
abandoned in favour of a profligate excess of existential multiplicity, ex-
travagantly hypothesized in order to explain the one universe that we do
know exists.

The way out of this foundational crisis, as with previous ones in mathe-
matics and science, is to adopt a more constructive approach. In this way,
one can combine the attractions of Tegmark’s [96] Mathematical Universe
Hypothesis (MUH) with the discipline one gets from the mathematics of
what can be built from very small beginnings.

5.8. Back in the One World ...

A constructive approach is not only a key to clarifying the interpretive
problem. Eliminating the redundancy of parallel universes, and the reliance
on the anthropic principle, also entails the tackling of the unsatisfactory
arbitrariness of various aspects of the standard model. The exact values
of the constants of nature, subatomic structure, the geometry of space —
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all confront the standard model of particle physics with a foundational
problem. Alan Guth, inventor of the ‘cosmic inflation’ needed to make
sense of our picture of the early universe, asks [48]:

If the creation of the universe can be described as a quantum process,
we would be left with one deep mystery of existence: What is it that
determined the laws of physics?

And Peter Woit, in his recent book [106] Not Even Wrong — The Failure of
String Theory and the Continuing Challenge to Unify the Laws of Physics,
comments on the arbitrary constants one needs to give the right values to
get the standard model to behave properly:

One way of thinking about what is unsatisfactory about the standard
model is that it leaves seventeen non-trivial numbers still to be explained,

Even though the exact number of constants undetermined by theory, but
needing special fine-tuning to make the standard model fit with observa-
tion, does vary, even one is too many. This dissatisfaction with aspects of
the standard model goes back to Einstein. Quoting from Einstein’s Auto-
biographical Notes [39, p.63]:

... I would like to state a theorem which at present can not be based upon
anything more than upon a faith in the simplicity, i.e. intelligibility, of
nature ... nature is so constituted that it is possible logically to lay down
such strongly determined laws that within these laws only rationally
completely determined constants occur (not constants, therefore, whose
numerical value could be changed without destroying the theory) ...

What is needed is mathematics which does more than express mecha-
nistic relationships between basic entities. One needs theory expressed in
language strong enough to encapsulate not just relations on the material
world, but relations on such relations — relations which entail qualifications
sophisticated enough to determine all aspects of the our universe, including
the laws of nature themselves. Or, as Roger Penrose terms it [70, pp. 106—
107], we need to capture Strong Determinism, whereby:

... all the complication, variety and apparent randomness that we see all
about us, as well as the precise physical laws, are all exact and unam-
biguous consequences of one single coherent mathematical structure.

The article [13] of Calude, Campbell, Svozil and Stefanescu on Strong deter-
minism vs. computability contains a useful discussion of the computability-
theoretic ramifications of strong determinism.
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In the next section we examine some more approachable phenomena
than those at the quantum level. Even though the challenge these present
to Davis’ Thesis is less obvious than that of quantum uncertainty, they do
point us in the direction of the mathematics needed to make sense of strong
determinism.

5.9. The Challenge from Emergence

The waves on the seashore, the clouds scudding across the sky, the com-
plexity of the Mandelbrot set — observing these, one is made aware of limits
on what we can practically compute. The underlying rules governing them
are known, but that is not enough. When we talk about the problem of
‘seeing the wood for the trees’ we are approaching the gap between micro
and macro events from another direction. Either way, there are commonly
encountered situations in which either reduction, or seeing the ‘big picture’,
entails more than a computation.

Although an interest in such things goes back to Poincaré — we already
mentioned the 3-body problem — it was the second half of the twentieth
century saw the growth of chaos theory, and a greater of awareness of
the generation of informational complexity via simple rules, accompanied
by the emergence of new regularities. The most mundane and apparently
uncomplicated situations could provide examples, such as Robert Shaw’s
[87] strange attractor arising from an appropriately paced dripping tap.
And inhospitable as turbulent fluids might appear, there too higher order
formations might emerge and be subject to mathematical description, as
demonstrated by David Ruelle (see Ruelle [85]) another early pioneer in the
area. Schematic metaphors for such examples are provided by the cellular
automaton (CA) model, and famously by John Conway’s Game of Life.
Here is the musician Brian Eno [41] talking in relation to how his creative
work on ‘generative music’ was influenced by ‘Life’:

These are terribly simple rules and you would think it probably couldn’t
produce anything very interesting. Conway spent apparently about a
year finessing these simple rules. ...He found that those were all the
rules you needed to produce something that appeared life-like.

What I have over here, if you can now go to this Mac computer, please.
I have a little group of live squares up there. When I hit go I hope they
are going to start behaving according to those rules. There they go. I'm
sure a lot of you have seen this before. What’s interesting about this is
that so much happens. The rules are very, very simple, but this little
population here will reconfigure itself, form beautiful patterns, collapse,
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open up again, do all sorts of things. It will have little pieces that wander
around, like this one over here. Little things that never stop blinking, like
these ones. What is very interesting is that this is extremely sensitive to
the conditions in which you started. If I had drawn it one dot different
it would have had a totally different history. This is I think counter-
intuitive. One’s intuition doesn’t lead you to believe that something like
this would happen.

Margaret Boden and Ernest Edmonds [7] make a case for generative art,
emergent from automata-like computer environments, really qualifying as
art. While computer pioneer Konrad Zuse was impressed enough by the
potentialities of cellular automata to suggest [107] that the physics of the
universe might be CA computable.

An especially useful key to a general mathematical understanding of
such phenomena is the well-known link between emergent structures in
nature, and familiar mathematical objects, such as the Mandelbrot and
Julia sets. These mathematical metaphors for real-world complexity and
associated patterns have caught the attention of many — such as Stephen
Smale [6] and Roger Penrose — as a way of getting a better grip on the
computability /complexity of emergent phenomena. Here is Penrose [71]
describing his fascination with the Mandelbrot set:

Now we witnessed .. .a certain extraordinarily complicated looking set,
namely the Mandelbrot set. Although the rules which provide its defini-
tion are surprisingly simple, the set itself exhibits an endless variety of
highly elaborate structures.

As a mathematical analogue of emergence in nature, what are the dis-
tinctive mathematical characteristics of the Mandelbrot set? It is derived
from a simple polynomial formula over the complex numbers, via the ad-
dition of a couple of quantifiers. In fact, with a little extra work, the
quantifiers can be reduced to just one. This gives the definition the aspect
of a familiar object from classical computability theory — namely, a II9 set.
Which is just the level at which we might not be surprised to encounter
incomputability. But we have the added complication of working with real
(via complex) numbers rather than just the natural numbers. This creates
room for a certain amount of controversy around the use of the BSS model
of real computation (see Blum, Cucker, Shub and Smale [6]) to show the
incomputability of the Mandelbrot set and most Julia sets. The 2009 book
by Mark Braverman and Michael Yampolsky [9] on Computability of Julia
Sets is a reliable guide to recent results in the area, including those using
the more mainstream computable analysis model of real computation. The
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situation is not simple, and the computability of the Mandelbrot set, as of
now, is still an open question.

What is useful, in this context, is that these examples both connect
with emergence in nature, and share logical form with well-known objects
which transcend the standard Turing model. As such, they point to the role
of extended language in a real context taking us beyond models which are
purely mechanistic. And hence give us a route to mathematically capturing
the origins of emergence in nature, and to extending our understanding of
how nature computes. We can now view the halting set of a universal
Turing machine as an emergent phenomenon, despite it not being as pretty
visually as our Mandelbrot and Julia examples.

One might object that there is no evidence that quantifiers and other
globally defined operations have any existence in nature beyond the minds
of logicians. But how does nature know anything about any logical con-
struct? The basic logical operations derive their basic status from their as-
sociation with elementary algorithmic relationships over information. Con-
junction signifies an appropriate and very simple merging of information,
of the kind commonly occurring in nature. Existential quantification ex-
presses projection, analogous to a natural object throwing a shadow on a
bright sunny day. And if a determined supporter of Davis’ Thesis plays at
God, and isolates a computational environment with the aim of bringing
it within the Turing model, then the result is the delivery of an identity
to that environment, the creating a natural entity — like a human being,
perhaps — with undeniable naturally emergent global attributes.

There are earlier, less schematic approaches to the mathematics of emer-
gence, ones which fit well with the picture so far.

It often happens that when one gets interested in a particular aspect of
computability, one finds Alan Turing was there before us. Back in the 1950s,
Turing proposed a simple reaction—diffusion system describing chemical re-
actions and diffusion to account for morphogenesis, i.e. the development
of form and shape in biological systems. One can find a full account of
the background to Turing’s seminal intervention in the field at Jonathan
Swinton’s well-documented webpage [95] on Alan Turing and morphogene-
sis. One of Turing’s main achievements was to come up with mathematical
descriptions — differential equations — governing such phenomena as Fi-
bonacci phyllotaxis: the surprising showing of Fibonacci progressions in
such things as the criss-crossing spirals of a sunflower head. As Jonathan
Swinton describes:
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In his reaction-diffusion system [Turing] had the first and one of the most
compelling models mathematical biology has devised for the creation
process. In his formulation of the Hypothesis of Geometrical Phyllotaxis
he expressed simple rules adequate for the appearance of Fibonacci pat-
tern. In his last, unfinished work he was searching for plausible reasons
why those rules might hold, and it seems only in this that he did not
succeed. It would take many decades before others, unaware of his full
progress, would retrace his steps and finally pass them in pursuit of a
rather beautiful theory.

Most of Turing’s work in this area was unpublished in his lifetime, only
appearing in 1992 in the Collected Works [103]. Later work, coming to
fruition just after Turing died, was carried forward by his student Bernard
Richards, appearing in his thesis [79]. See Richards [80] for an interesting
account of Richards’ time working with Turing.

The field of synergetics, founded by the German physicist Hermann
Haken, provides another mathematical approach to emergence. Synergetics
is a multi-disciplinary approach to the study of the origins and evolution of
macroscopic patterns and spacio-temporal structures in interactive systems.
An important feature of synergetics for our purposes is its focus on self-
organisational processes in science and the humanities, particularly that of
autopoiesis. An instance of an autopoietic system is a biological cell, and
is distinguished by being sufficiently autonomous and operationally closed,
to recognisably self-reproduce.

A particularly celebrated example of the technical effectiveness of the
theory is Ilya Prigogine’s achievement of the Nobel Prize for Chemistry
in 1977 for his development of dissipative structure theory and its appli-
cation to thermodynamic systems far from equilibrium, with subsequent
consequences for self-organising systems. Nonlinearity and irreversibility
are associated key aspects of the processes modelled in this context.

See Michael Bushev’s comprehensive review of the field in his book [12]
Synergetics — Chaos, Order, Self-Organization. Klaus Mainzer’s book [61]
on Thinking in Complezity: The Computational Dynamics of Matter, Mind,
and Mankind puts synergetics in a wider context, and mentions such things
as synergetic computers.

The emphasis of the synergetists on self-organisation in relation to the
emergence of order from chaos is important in switching attention from the
surprise highlighted by so many accounts of emergence, to the autonomy
and internal organisation intrinsic to the phenomenon. People like Pri-
gogine found within synergetics, as did Turing for morphogenesis, precise
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descriptions of previously mysteriously emergent order.

5.10. A Test for Emergence

There is a problem with the big claims made for emergence in many different
contexts. Which is that, like with ‘life’, nobody has a good definition of
it. Sometimes, this does matter. Apart from which, history is littered with
instances of vague concepts clarified by science, with huge benefits to our
understanding of the world and to the progress of science and technology.
The clarification of what we mean by a computation, and the subsequent
development of the computer and computer science is a specially relevant
example here. Ronald C. Arkin, in his book [3, p.105] Behaviour-Based
Robotics, summarises the problem as it relates to emergence:

Emergence is often invoked in an almost mystical sense regarding the
capabilities of behavior-based systems. Emergent behavior implies a
holistic capability where the sum is considerably greater than its parts.
It is true that what occurs in a behavior-based system is often a surprise
to the system’s designer, but does the surprise come because of a short-
coming of the analysis of the constituent behavioral building blocks and
their coordination, or because of something else?

There is a salutary warning from the history of British Emergentists,
who had their heyday in the early 1920s — Brian McLaughlin’s book [64].
The notion of emergence has been found to be a useful concept from at
least the time of John Stuart Mill, back in the nineteenth century. The
emergentists of the 1920s used the concept to explain the irreducibility
of the ‘special sciences’, postulating a hierarchy with physics at the bot-
tom, followed by chemistry, biology, social science etc. The emergence
was seen, anticipating modern thinking, as being irreversible, imposing the
irreducibility of say biology to quantum theory. Of course the British emer-
gentists experienced their heyday before the great quantum discoveries of
the late 1920s, and as described in McLaughlin [64], this was in a sense their
undoing. One of the leading figures of the movement was the Cambridge
philosopher C. D. Broad, described by Graham Farmelo in his biography
of Paul Dirac [43, p.39] as being, in 1920, ‘one of the most talented young
philosophers working in Britain’. In many ways a precursor of the current
philosophers arguing for the explanatory role of emergence in the philosophy
of mind, Charlie Broad was alive to the latest scientific developments, lec-
turing to the young Paul Dirac on Einstein’s new theory of relativity while
they were both at Bristol. But here is Broad writing in 1925 [10, p.59]
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about the ‘emergence’ of salt crystals:

... the characteristic behaviour of the whole ... could not, even in theory,
be deduced from the most complete knowledge of the behaviour of its
components ... This ...is what I understand by the ‘Theory of Emer-
gence’. I cannot give a conclusive example of it, since it is a matter
of controversy whether it actually applies to anything ...I will merely
remark that, so far as I know at present, the characteristic behaviour of
Common Salt cannot be deduced from the most complete knowledge of
the properties of Sodium in isolation; or of Chlorine in isolation; or of
other compounds of Sodium, ...

The date 1925 is significant of course. It was in the years following that
Dirac and others developed the quantum mechanics which would explain
much of chemistry in terms of locally described interactions between sub-
atomic particles. The reputation of the emergentists, for whom such ex-
amples had been basic to their argument for the far-reaching relevance of
emergence, never quite recovered.

For Ronald, Sipper and Capcarrere in 1999, Turing’s approach to pin-
ning down intelligence in machines suggested a test for emergence. Part
of the thinking would have been that emergence, like intelligence, is some-
thing we as observers think we can recognise; while the complexity of what
we are looking for resists observer-independent analysis. The lesson is to
police the observer’s evaluation process, laying down some optimal rules for
a human observer. Of course, the Turing Test is specially appropriate to
its task, our own experience of human intelligence making us well qualified
to evaluate the putative machine version. Anyway, the Emergence Test
of Ronald, Sipper and Capcarrére [83] for emergence being present in a
system, modelled on the Turing Test, had the following three ingredients:

(1) Design: The system has been constructed by the designer, by describ-
ing local elementary interactions between components (e.g. artificial
creatures and elements of the environment) in a language £;.

(2) Observation: The observer is fully aware of the design, but describes
global behaviours and properties of the running system, over a period
of time, using a language £,.

(3) Surprise: The language of design £; and the language of observation
£y are distinct, and the causal link between the elementary interactions
programmed in £; and the behaviours observed in £9 is non-obvious
to the observer — who therefore experiences surprise. In other words,
there is a cognitive dissonance between the observer’s mental image of
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the system’s design stated in £; and his contemporaneous observation
of the system’s behaviour stated in £s.

Much of what we have here is what one would expect, extracting the
basic elements of the previous discussion, and expressing it from the point
of view of the assumed observer. But an ingredient which should be noted is
the formal distinction between the language £1 of the design and that of the
observer, namely £o. This fits in with our earlier mathematical examples:
the halting set of a universal Turing machine, and the Mandelbrot set,
where the new language is got by adding a quantifier — far from a minor
augmentation of the language, as any logician knows. And it points to the
importance of the language used to describe the phenomena, an emphasis
underying the next section.

5.11. Definability the Key Concept

We have noticed that it is often possible to get descriptions of emergent
properties in terms of the elementary actions from which they arise. For
example, this is what Turing did for the role of Fibonacci numbers in re-
lation to the sunflower etc. This is not unexpected, it is characteristic of
what science does. And in mathematics, it is well known that complicated
descriptions may take us beyond what is computable. This could be seen
as a potential source of surprise in emergence.

But one can turn this viewpoint around, and get something more basic.
There is an intuition that entities do not just generate descriptions of the
rules governing them: they actually ezist because of, and according to
mathematical laws. And that for entities that we can be aware of, these
will be mathematical laws which are susceptible to description. That it is
the describability that is key to their observability. But that the existence of
such descriptions is not enough to ensure we can access them, even though
they have algorithmic content which provides the stuff of observation.

It is hard to for one to say anything new. In this case Leibniz was there
before us, essentially with his Principle of Sufficient Reason. According to
Leibniz [60] in 1714:

... there can be found no fact that is true or existent, or any true propo-
sition, without there being a sufficient reason for its being so and not
otherwise, although we cannot know these reasons in most cases.

Taking this a little further — natural phenomena not only generate descrip-
tions, but arise and derive form from them. And this connects with a
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useful abstraction — that of mathematical definability, or, more generally,
invariance under the automorphisms of the appropriate structure. So giving
precision to our experience of emergence as a potentially non-algorithmic
determinant of events.

This is a familiar idea in the mathematical context. The relevance of
definability for the real world is implicitly present in Hans Reichenbach’s
work [78] on the axiomatisation of relativity. It was, of course, Alfred Tarski
who gave a precise logical form to the notion of definability. Since then
logicians have worked within many different mathematical structures, suc-
ceeding in showing that different operations and relations are non-trivially
definable, or in some cases undefinable, in terms of given features of the
structure. Another familiar feature of mathematical structures is the rela-
tionship between definability within the structure and the decidability of its
theory (see Marker [62]), giving substance to the intuition that knowledge
of the world is so hard to capture, because so much can be observed and
described. Tarski’s proof of decidability of the real numbers, contrasting
with the undecidability of arithmetic, fits with the fact that one cannot
even define the integers in the structure of the real numbers.

Unfortunately, outside of logic, and certainly outside of mathematics,
the usefulness of definability remains little understood. And the idea that
features of the real world may actually be undefinable is, like that of in-
computability, a recent and unassimilated addition to our way of looking
at things.

At times, definability or its breakdown comes disguised within quite
familiar phenomena. In science, particularly in basic physics, symmetries
play an important role. One might be surprised at this, wondering where
all these often beautiful and surprising symmetries come from. Maybe
designed by some higher power? In the context of a mathematics in which
undefinability and nontrivial automorphisms of mathematical structures
is a common feature, such symmetries lose their unexpectedness. When
Murray Gell-Mann demonstrated the relevance of SU(3) group symmetries
to the quark model for classifying of elementary particles, it was based
on lapses in definability of the strong nuclear force in relation to quarks
of differing flavour. The automorphisms of which such symmetries are an
expression give a clear route from fundamental mathematical structures and
their automorphism groups to far-reaching macro-symmetries in nature. If
one accepts that such basic attributes as position can be subject to failures
of definability, one is close to restoring realism to various basic sub-atomic
phenomena.
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One further observation: identifying emergent phenomena with material
expressions of definable relations suggests an accompanying robustness of
such phenomena. One would expect the mathematical characterisation to
strip away much of the mystery which has made emergence so attractive to
theologically inclined philosophers of mind, such as Samuel Alexander [1,
p.14]:

The argument is that mind has certain specific characters to which there
is or even can be no neural counterpart ...Mind is, according to our
interpretation of the facts, an ‘emergent’ from life, and life an emergent
from a lower physico-chemical level of existence.

And further [1, p.428]:

In the hierarchy of qualities the next higher quality to the highest at-
tained is deity. God is the whole universe engaged in process towards the
emergence of this new quality, and religion is the sentiment in us that
we are drawn towards him, and caught in the movement of the world to
a higher level of existence.

In contrast, here is Martin Nowak, Director of the Program for Evolu-
tionary Dynamics at Harvard University, writing in the collection [11] What
We Believe But Cannot Prove, describing the sort of robustness we would
expect:

I believe the following aspects of evolution to be true, without knowing
how to turn them into (respectable) research topics.

Important steps in evolution are robust. Multicellularity evolved at least
ten times. There are several independent origins of eusociality. There
were a number of lineages leading from primates to humans. If our
ancestors had not evolved language, somebody else would have.

What is meant by robustness here is that there is mathematical content
which enables the process to be captured and moved between different
platforms; though it says nothing about the relevance of embodiment or the
viability of virtual machines hostable by canonical machines. We return to
this later. On the other hand, it gives us a handle on representability of
emergent phenomena, a key aspect of intelligent computation.

5.12. The Challenge of Modelling Mentality

Probably the toughest environment in which to road-test the general math-
ematical framework we have associated with emergence is that of human
mental activity. What about the surprise ingredient of the Emergence Test?
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Mathematical thinking provides an environment in which major in-
gredients — Turing called them intuition and ingenuity, others might call
them creativity and reason — are easier to clearly separate. A classical
source of information and analysis of such thinking is the French mathe-
matician Jacques Hadamard’s The Psychology of Invention in the Math-
ematical Field [49], based on personal accounts supplied by distinguished
informants such as Poincaré, Einstein and Polya. Hadamard was particu-
larly struck by Poincaré’s thinking, including a 1908 address of his to the
French Psychological Society in Paris on the topic of Mathematical Cre-
ation. Hadamard followed Poincaré and Einstein in giving an important
role to unconscious thought processes, and their independence of the role
of language and mechanical reasoning. This is Hadamard’s account, built
on that of Poincaré [73], of Poincaré’s experience of struggling with a prob-
lem:

At first Poincaré attacked [a problem] vainly for a fortnight, attempting
to prove there could not be any such function ... [quoting Poincaré|:

“Having reached Coutances, we entered an omnibus to go some place or
other. At the moment when I put my foot on the step, the idea came to
me, without anything in my former thoughts seeming to have paved the
way for it ...I did not verify the idea ...I went on with a conversation
already commenced, but I felt a perfect certainty. On my return to Caen,
for conscience sake, I verified the result at my leisure.”

This experience will be familiar to most research mathematicians — the
period of incubation, the failure of systematic reasoning and the surprise
element in the final discovery of the solution: a surprise that may, over a
lifetime, lose some of its bite with repetition and familiarity, but which one
is still compelled to recognise as being mysterious and worthy of surprise.
Anyway, the important third part of the Emergence Test is satisfied here.

Perhaps even more striking is the fact that Poincaré’s solution had that
robustness we looked for earlier: the solution came packaged and mentally
represented in a form which enabled it to be carried home and unpacked
intact when back home. Poincaré just carried on with his conversation on
the bus, his friend presumably unaware of the remarkable thoughts coursing
through the mathematician’s mind.

Another such incident emphasises the lack of uniqueness and the spe-
cial character of such incidents — Jacques Hadamard [49] quoting Poincaré
again:



152 S. B. Cooper

“Then I turned my attention to the study of some arithmetical questions
apparently without much success ... Disgusted with my failure, I went
to spend a few days at the seaside and thought of something else. One
morning, walking on the bluff, the idea came to me, with just the same
characteristics of brevity, suddenness and immediate certainty, that the
arithmetic transformations of indefinite ternary quadratic forms were
identical with those of non-Euclidian geometry.”

What about the design, and the observer’s awareness of the design?
Here we have a large body of work , most notably from neuro-scientists and
philosophers, and an increasingly detailed knowledge of the workings of the
brain. What remains in question — even accepting the brain as the design
(not as simple as we would like!) — is the exact nature of the connection
between the design and the emergent level of mental activity. This is an
area where the philosophers pay an important role in clarifying problems
and solutions, while working through consequences and consistencies.

The key notion, providing a kind of workspace for working through alter-
natives, is that of supervenience. According to Jaegwon Kim [53, pp.14-15],
supervenience:

...represents the idea that mentality is at bottom physically based, and
that there is no free-floating mentality unanchored in the physical nature
of objects and events in which it is manifested.

There are various formulations. This one is from the online Stanford En-
cyclopedia of Philosophy:

A set of properties A supervenes upon another set B just in case no two
things can differ with respect to A-properties without also differing with
respect to their B-properties.

So in this context, it is the mental properties which are thought to supervene
on the neuro-physical properties. All we need to know is are the details of
how this supervenience takes place. And what throws up difficulties is our
own intimate experience of the outcomes of this supervenience.

One of the main problems relating to supervenience is the so-called
‘problem of mental causation’, the old problem which undermined the
Cartesian conception of mind-body dualism. The persistent question is:
How can mentality have a causal role in a world that is fundamentally
physical? Another unavoidable problem is that of ‘overdetermination’ —
the problem of phenomena having both mental and physical causes. For a
pithy expression of the problem, here is Kim [54] again:
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...the problem of mental causation is solvable only if mentality is phys-
ically reducible; however, phenomenal consciousness resists physical re-
duction, putting its causal efficacy in peril.

It is not possible here, and not even useful, to go into the intricacies
of the philosophical debates which rage on. But it is important to take
on board the lesson that a crude mechanical connection between mental
activity and the workings of the brain will not do the job. Mathemati-
cal modelling is needed to clarify the mess, but has to meet very tough
demands.

5.13. Connectionist Models to the Rescue?

Synaptic interactions are basic to the workings of the brain, and connection-
ist models based on these are the first hope. And there is optimism about
such models from such leading figures in the field as Paul Smolensky [90],
recipient of the 2005 David E. Rumelhart Prize:

There is a reasonable chance that connectionist models will lead to the
development of new somewhat-general-purpose self-programming, mas-
sively parallel analog computers, and a new theory of analog parallel
computation: they may possibly even challenge the strong construal of
Church’s Thesis as the claim that the class of well-defined computations
is exhausted by those of Turing machines.

And it is true that connectionist models have come a long way since Turing’s
1948 discussion [102] of ‘unorganised machines’, and McCulloch and Pitts’
1943 early paper [65] on neural nets. (Once again, Turing was there at the
beginning, see Teuscher’s book [97] on Turing’s Connectionism.)

But is that all there is? For Steven Pinker [72] ‘...neural networks
alone cannot do the job’. And focusing on our elusive higher functionality,
and the way in which mental images are recycled and incorporated in new
mental processes, he points to a ‘kind of mental fecundity called recursion’:

We humans can take an entire proposition and give it a role in some
larger proposition. Then we can take the larger proposition and embed
it in a still-larger one. Not only did the baby eat the slug, but the father
saw the baby eat the slug, and I wonder whether the father saw the baby
eat the slug, the father knows that I wonder whether he saw the baby eat
the slug, and I can guess that the father knows that I wonder whether
he saw the baby eat the slug, and so on.



154 S. B. Cooper

Is this really something new? Neural nets can handle recursions of
various kinds. They can exhibit imaging and representational capabilities.
They can learn. The problem seems to be with modelling the holistic
aspects of brain functionalism. It is hard to envisage a model at the level
of neural networks which successfully represent and communicate its own
global informational structures. Neural nets do have many of the basic
ingredients of what one observes in brain functionality, but the level of
developed synergy of the ingredients one finds in the brain does seem to
occupy a different world. There seems to be a dependency on an evolved
embodiment which goes against the classical universal machine paradigm.
We develop these comments in more detail later in this section.

For the mathematician, definability is the key to representation. As
previously mentioned, the language functions by representing basic modes
of using the informational content of the structure over which the language
is being interpreted. Very basic language corresponds to classical compu-
tational relationships, and is local in import. If we extend the language,
for instance, by allowing quantification, it still conveys information about
an algorithmic procedure for accessing information. The new element is
that the information accessed may now be emergent, spread across a range
of regions of the organism, its representation very much dependent on the
material embodiment and with the information accessed via finitary compu-
tational procedures which also depend on the particular embodiment. One
can observe this preoccupation with the details of the embodiment in the
work of the neuro-scientist Antonio Damasio. One sees this in the follow-
ing description from Damasio’s book, The Feeling Of What Happens, of the
kind of mental recursions Steven Pinker was referring to above [25, p.170]:

As the brain forms images of an object — such as a face, a melody, a
toothache, the memory of an event — and as the images of the object
affect the state of the organism, yet another level of brain structure
creates a swift nonverbal account of the events that are taking place
in the varied brain regions activated as a consequence of the object-
organism interaction. The mapping of the object-related consequences
occurs in first-order neural maps representing the proto-self and object;
the account of the causal relationship between object and organism can
only be captured in second-order neural maps. ...one might say that
the swift, second-order nonverbal account narrates a story: that of the
organism caught in the act of representing its own changing state as it
goes about representing something else.
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Here we see the pointers to the elements working against the classical in-
dependence of the computational content from its material host. We may
have a mathematical precision to the presentation of the process. But the
presentation of the basic information has to deal with emergence of a pos-
sibly incomputable mathematical character, and so has to be dependent on
the material instantiation. And the classical computation relative to such
information, implicit in the quotations from Pinker and Damasio, will need
to work relative to these material instantiations. The mathematics sets up
a precise and enabling filing system, telling the brain how to work hierarchi-
cally through emergent informational levels, within an architecture evolved
over millions of years.

There is some recognition of this scenario in the current interest in the
evolution of hardware — see, for example, Hornby, Sekanina and Haddow
[52]. We tend to agree with Steven Rose [84]:

Computers are designed, minds have evolved. Deep Blue could beat
Kasparov at a game demanding cognitive strategies, but ask it to escape
from a predator, find food or a mate, and negotiate the complex inter-
actions of social life outside the chessboard or express emotion when it
lost a game, and it couldn’t even leave the launchpad. Yet these are
the skills that human survival depends on, the products of 3bn years of
trial-and-error evolution.

From a computer scientist’s perspective, we are grappling with the design of
a cyber-physical system (CPS). And as Edward Lee from Berkeley describes
[59]:

To realize the full potential of CPS, we will have to rebuild computing
and networking abstractions. These abstractions will have to embrace
physical dynamics and computation in a unified way.

In Lee [58], he argues for ‘a new systems science that is jointly physical and
computational’.

Within such a context, connectionist models with their close relation-
ship to synaptic interactions, and availability for ad hoc experimentation,
do seem to have a useful role. But there are good reasons for looking for
a more fundamental mathematical model with which to express the ‘de-
sign’ on which to base a definable emergence. The chief reason is the need
for a general enough mathematical framework, capable of housing differ-
ent computationally complex frameworks. Although the human brain is an
important example, it is but one part of a rich and heterogeneous compu-
tational universe, reflecting in its workings many elements of that larger
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context. The history of mathematics has led us to look for abstractions
which capture a range of related structures, and which are capable of the-
oretical development informed by intuitions from different sources, which
become applicable in many different situations. And which provide basic
understanding to take us beyond the particularities of individual examples.

5.14. Definability in What Structure?

In looking for the mathematics to express the design, we need to take
account of the needs of physics as well as those of mentality or biology.
In his The Trouble With Physics [91], Lee Smolin points to a number of
deficiencies of the standard model, and also of popular proposals such as
those of string theory for filling its gaps. And in successfully modelling the
physical universe, Smolin declares [91, p.241]:

... causality itself is fundamental.

Referring to ‘early champions of the role of causality’ such as Roger Pen-
rose, Rafael Sorkin (the inventor of causal sets), Fay Dowker and Fotini
Markopoulou, Smolin goes on to explain [91, p.242]:

It is not only the case that the spacetime geometry determines what the
causal relations are. This can be turned around: Causal relations can
determine the spacetime geometry ...

It’s easy to talk about space or spacetime emerging from something more
fundamental, but those who have tried to develop the idea have found
it difficult to realize in practice. ... We now believe they failed because
they ignored the role that causality plays in spacetime. These days,
many of us working on quantum gravity believe that causality itself is
fundamental — and is thus meaningful even at a level where the notion
of space has disappeared.

So, when we have translated ‘causality’ into something meaningful, and the
model based on it has been put in place — the hoped-for prize is a theory
in which even the background character of the universe is determined by
its own basic structure. In such a scenario, not only would one be able
to do away with the need for exotic multiverse proposals, patched with
inflationary theories and anthropic metaphysics. But, for instance, one can
describe a proper basis for the variation of natural laws near a mathematical
singularity, and so provide a mathematical foundation for the reinstatement
of the philosophically more satisfying cyclical universe as an alternative to
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the inflationary Big Bang hypothesis — see Paul Steinhardt and Neil Turok’s
book [94] for a well worked out proposal based on superstring theory.

5.15. The Turing Landscape, Causality and Emergence ...

If there is one field in which ‘causality’ can be said to be fundamental, it
is that of computability. Although the sooner we can translate the term
into something more precise, the better. ‘Causality’, despite its everyday
usefulness, on closer inspection is fraught with difficulties, as John Earman
[37, p.5] nicely points out:

...the most venerable of all the philosophical definitions [of determin-
ism] holds that the world is deterministic just in case every event has a
cause. The most immediate objection to this approach is that it seeks
to explain a vague concept — determinism — in terms of a truly obscure
one — causation.

Historically, one recognised the presence of a causal relationship when a
clear mechanical interaction was observed. But Earman’s book makes us
aware of the subtleties beyond this at all stages of history. The success of
science in revealing such interactions underlying mathematically signalled
causality — even for Newton’s gravitational ‘action at a distance’ — has
encouraged us to think in terms of mathematical relationships being the
essence of causality. Philosophically problematic as this may be in general,
there are enough mathematical accompaniments to basic laws of nature
to enable us to extract a suitably general mathematical model of physical
causality, and to use this to improve our understanding of more compli-
cated (apparent) causal relationships. The classical paradigm is still Isaac
Newton’s formulation of a mathematically complete formulation of his laws
of motion, sufficient to predict an impressive range of planetary motions.

Schematically, logicians at least have no problem representing Newto-
nian transitions between mathematically well-defined states of a pair of
particles at different times as the Turing reduction of one real to another,
via a partial computable (p.c.) functional describing what Newton said
would happen to the pair of particles. The functional expresses the com-
putational and continuous nature of the transition. One can successfully
use the functional to approximate, to any degree of accuracy, a particular
transition.

This type of model, using partial computable functionals extracted from
Turing’s [101] notion of oracle Turing machine, is very generally applica-
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ble to basic laws of nature. However, it is well known that instances of a
basic law can be composed so as to get much more problematic mathemat-
ical relationships, relationships which have a claim to be causal. We have
mentioned cases above — for instance those related to the 3-body problem,
or strange attractors emergent from complex confluences of applications of
basic laws. See recent work Beggs, Costa, Loff and Tucker [4], Beggs and
Tucker [5] concerning the modelling of physical interactions as computa-
tion relative to oracles, and incomputability from mathematical thought
experiments based on Newtonian laws.

The technical details of the extended Turing model, providing a model
of computable content of structures based on p.c. functionals over the reals,
can be found in Cooper [19]. One can also find there details of how Emil
Post [75] used this model to define the degrees of unsolvability — now known
as the Turing degrees — as a classification of reals in terms of their relative
computability. The resulting structure has turned out to be a very rich
one, with a high degree of structural pathology. At a time when primarily
mathematical motivations dominated the field — known for many years
as a branch of mathematical logic called recursive function theory — this
pathology was something of a disappointment. Subsequently, as we see
below, this pathology became the basis of a powerful expressive language,
delivering a the sort of richness of definable relations which qualify the
structure for an important real-world modelling role.

Dominant as this Turing model is, and widely accepted to have a canon-
ical role, there are more general types of relative computation. Classically,
allowing non-deterministic Turing computations relative to well-behaved
oracles gives one nothing new. But in the real world one often has to cope
with data which is imperfect, or provided in real time, with delivery of com-
putations required in real time. There is an argument that the correspond-
ing generalisation is the ‘real’ relative computability. There are equivalent
formalisations — in terms of enumeration reducibility between sets of data,
due to Friedberg and Rogers [45], or (see Myhill [66]), in terms of relative
computability of partial functions (extending earlier notions of Kleene and
Davis). The corresponding extended structure provides an interesting and
informative context for the better known Turing degrees — see, for exam-
ple, Soskova and Cooper [93]. The Bulgarian research school, including D.
Skordev, 1. Soskov, A. Soskova, A. Ditchev, H. Ganchev, M. Soskova and
others has played a special role in the development of the research area.

The universe we would like to model is one in which we can describe
global relations in terms of local structure — so capturing the emergence of
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large-scale formations, and giving formal content to the intuition that such
emergent higher structures ‘supervene’ on the computationally more basic
local relationships.

Mathematically, there appears to be strong explanatory power in the
formal modelling of this scenario as definability over a structure based on
reducibilities closely allied to Turing functionals: or more generally, freeing
the model from an explicit dependence on language, as invariance under
automorphisms of the Turing structure. In the next section, we focus on
the standard Turing model, although the evidence is that similar outcomes
would be provided by the related models we have mentioned.

5.16. An Informational Universe, and Hartley Rogers’ Pro-
gramme

Back in 1967, the same year that Hartley Rogers’ influential book Theory
of Recursive Functions and Effective Computability appeared, a paper [81],
based on an earlier talk of Rogers, appeared in the proceedings volume
of the 1965 Logic Colloquium in Leicester. This short article initiated
a research agenda which has held and increased its interest over a more
than 40 year period. Essentially, Hartley Rogers’ Programme concerns the
fundamental problem of characterising the Turing invariant relations.

The intuition is that these invariant relations are key to pinning down
how basic laws and entities emerge as mathematical constraints on causal
structure: where the richness of the Turing structure discovered so far be-
comes the raw material for a multitude of non-trivially definable relations.
There is an interesting relationship here between the mathematics and the
use of the anthropic principle in physics to explain why the universe is as
it is. It is well known that the development of the complex development
we see around us is dependent on a subtle balance of natural laws and as-
sociated constants. One would like the mathematics to explain why this
balance is more than an accidental feature of one of a multitude, perhaps
infinitely many, randomly occurring universes. What the Turing universe
delivers is a rich infrastructure of invariant relations, providing a basis for
a correspondingly rich material instantiation, complete with emergent laws
and constants, a provision of strong determinism, and a globally originat-
ing causality equipped with non-localism — though all in a very schematic
framework. Of course, echoing Smolin, it is the underlying scheme that is
currently missing. We have a lot of detailed information, but the skeleton
holding it all together is absent.
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However, the computability theorists have their own ‘skeleton in the
cupboard’. The modelling potential of the extended Turing model depends
on it giving some explanation of such well-established features as quan-
tum uncertainty, and certain experimentally verified uncertainties relating
to human mentality. And there is a widely believed mathematical conjec-
ture which would rob the Turing model of basic credentials for modelling
observable uncertainty.

The Bi-Interpretability Conjecture, arising from Leo Harrington’s famil-
iarity with the model theoretic notion of bi-interpretability, can be roughly
described as asserting that:

The Turing definable relations are exactly those with information content
describable in second-order arithmetic.

Moreover, given any description of information content in second-order
arithmetic, one has a way of reading off the computability-theoretic def-
inition in the Turing universe. Actually, a full statement of the conjec-
ture would be in terms of ‘interpreting’ one structure in another, a kind
of poor-man’s isomorphism. Seminal work on formalising the global ver-
sion of the conjecture, and proving partial versions of it complete with key
consequences and equivalences, were due to Theodore Slaman and Hugh
Woodin. See Slaman’s 1990 International Congress of Mathematicians ar-
ticle [88] for a still-useful introduction to the conjecture and its associated
research project.

An unfortunate consequence of the conjecture being confirmed would
be the well-known rigidity of the structure second-order arithmetic being
carried over to the Turing universe. The breakdown of definability we see
in the real world would lose its model. However, work over the years makes
this increasingly unlikely.

See Nies, Shore and Slaman [68] for further development of the requisite
coding techniques in the local context, with the establishment of a number
of local definability results. See Cooper [18, 22] for work in the other direc-
tion, both at the global and local levels. What is so promising here is the
likelihood of the final establishment of a subtle balance between invariance
and non-invariance, with the sort of non-trivial automorphisms needed to
deliver a credible basis for the various symmetries, and uncertainties pe-
culiar to mentality and basic physics: along with the provision via partial
versions of bi-interpretability of an appropriate model for the emergence
of the more reassuring ‘quasi-classical’ world from out of quantum uncer-
tainty, and of other far-reaching consequences bringing such philosophical
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concepts as epistemological relativism under a better level of control.

To summarise: What we propose is that this most cartesian of re-
search areas, classical computability theory, regain the real-world signifi-
cance it was born out of in the 1930s. And that it structure the informa-
tional world of science in a radical and revealing way. The main features of
this informational world, and its modelling of the basic causal structure of
the universe would be:

e A universe described in terms of reals ...

e With basic natural laws modelled by computable relations between
reals.

e Emergence described in terms of definability /invariance over the result-
ing structure ...

e With failures of definable information content modelling mental phe-
nomena, quantum ambiguity, etc. ...

e Which gives rise to new levels of computable structure . ..

e And a familiarly fragmented scientific enterprise.

As an illustration of the explanatory power of the model, we return to
the problem of mental causation. Here is William Hasker, writing in The
Emergent Self [50, p. 175], and trying to reconcile the automomy of the
different levels:

The “levels” involved are levels of organisation and integration, and the
downward influence means that the behaviour of “lower” levels — that
is, of the components of which the “higher-level” structure consists — is
different than it would otherwise be, because of the influence of the new
property that emerges in consequence of the higher-level organization.

The mathematical model, making perfect sense of this, treats the brain
and its emergent mentality as an organic whole. In so doing, it replaces the
simple everyday picture of what a causal relationship is with a more subtle
confluence of mathematical relationships. Within this confluence, one may
for different purposes or necessities adopt different assessment of what the
relevant causal relationships are. For us, thinking about this article, we
regard the mentality hosting our thoughts to provide the significant causal
structure. Though we know full well that all this mental activity is emer-
gent from an autonomous brain, modelled with some validity via a neural
network.

So one might regard causality as a misleading concept in this context.
Recognisable ‘causality’ occurs at different levels of the model, connected
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by relative definability. And the causality at different levels in the form of
relations with identifiable algorithmic content, this content at higher levels
being emergent. The diverse levels form a unity, with the ‘causal’ structure
observed at one level reflected at other levels — with the possibility of non-
algorithmic ‘feedback’ between levels. The incomputability involved in the
transition between levels makes the supervenience involved have a non-

reductive character.
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6.1. Introduction

The notion of computability in mathematics and technics has become a
subject of great interest and study. This is largely motivated by the rapid
development and use of computers (in both theory and practice). An evi-
dence of this fact is the successful realization of the European programme
“Computability in Europe” (CiE), one of the aims of which is the organi-
zation of annual conferences gathering together mathematicians, specialists
in computer science, biology, chemistry, and philosophy.

On the one hand, there is a generally accepted (absolute) theory of
computability for (partial) functions and predicates on natural numbers —
a classical computability theory. On the other hand, various proposals for
generalized theories of computability have been accumulated. Such general-
izations are motivated by a wish for a better understanding of the absolute
theory and expansion of the possibilities of application (understanding) of
computability notions to subjects (structures) far from natural numbers,
in particular, to uncountable structures (such as, e.g., the field R of real
numbers).

Development of the classical computability theory raises the following
general methodological problem: How to “extend” the existing theory to a
wider class of objects. One of the (successful) approaches in this direction is
the theory of numberings [19, 35]. But this approach has strict cardinality
limitations, since numberings are defined for countable collections of objects
only. Another approach is the theory of computability on admissible sets
of the form HF(2(), for reasonably “simple” structures 2. Exactly this
approach is discussed in the present paper.

The development of the theory of admissible sets began with the gen-
eralization of computability on ordinals, initially on the first nonrecursive
ordinal (metarecursive theory) (Kreisel and Sacks, see [82, 83, 134]), then on
arbitrary admissible (and other) ordinals (Kripke and Platek, see [84, 112]).
It was completed in the papers by Barwise when he introduced admissible
sets with urelements. The introduction of urelements would seem to be
a technical improvement; however, now we know that just such an ex-
tension of the notion of the admissible set led to the universal theory of
computability based on the notion of definability by formulas with (in a
broad sense) effective semantics. Obviously, this theory generalizes nonde-
terministic computability unlike generalizations based on expansions of the
notion of (abstract) computing devices. Therefore, we can say that this
is a theory of constructively recognizable properties (predicates). Whereas
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the development of the classical theory of computability has shown that
study of computable functions is reasonable with the partial computable
functions only, the computability in arbitrary admissible sets shows that
computable (¥-) predicates are a natural environment for the study of par-
tial computable (3-) functions. We can even say that the notion of the
computable (X-) predicate is more fundamental than that of the (partial)
computable function.

A general theory of admissible sets is a remarkable synthesis of the main
directions in modern mathematical logic — set theory (including its classical
section — descriptive set theory), model theory (infinite languages), and
computability theory. The fundamental monograph of Barwise [11] is still
the main source of all the indicated aspects of the theory of admissible sets.
An intensive and profound study of the Turing reducibility on admissible
(and not only) ordinals can be found in the monograph of Sacks [134].

In the monograph of Barwise, the class of admissible sets of the form
HYP(() is regarded as the class of “minimal” admissible sets, probably
because the author considered the admissible sets of the form HF(2() to be
too simple and trivial. The authors of the present paper think different.

We believe that, for a better understanding of the general nature of
computability (constructive cognoscibility), one should develop the notion
of computability in admissible sets of the form HF(2A) — the hereditarily
finite superstructure over a structure 2, where 2l is either a model of a
reasonably “simple” theory or a model of classical subjects, e.g., such as
the field R of real numbers. It should be noted that the notion of search
computability in an arbitrary structure 2l introduced in [105], as well as
the notion of abstract computability in the sense of [90], coincides (in ac-
cordance with [45]) with the notion of computability in the admissible set
HF(2(). In Section 6.8, we compare HF-computability with some other
closely related approaches to generalized computability, in particular, with
BSS-computability. Theoretical computer science also requires the super-
structures of such kind for the development of the theory of computability.
In [39] an approach called semantic programming, based on the use of ef-
fective semantics as a programming language is proposed.

6.2. HF-Logic

On the one hand, HF-logic (or the weak second order logic) is a powerful
tool to introduce the notion of finiteness in first order logic. On the other
hand, it enables us to deal with natural numbers and, therefore, to introduce
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the notion of computability on arbitrary structures. By w we denote the
set of natural numbers. Also, we will often identify w with the set of all
natural ordinals. Let M be an arbitrary set. We construct the collection
of hereditarily finite sets over M as follows:

e HFy(M) = {o};
e HF,.1(M) = P,(M UHEF,(M)) (here P,(X) is the collection of all
finite subsets of X), n < w;
e HF(M) = |J HE,(M).
n<w

If 91 is a structure of some relation signature o then one can define a
structure HF(9) of a signature o U{U,@,€} (c N{U,2,€} = &) on M U
HF (M) so that

U]H[]F(E)JT) = M;

PHEON) — PP P ¢ g

GMEON) = & ¢ HFy(M);

cMFOM=cC (MU HF(M)) x HF(M)).

We will consider structures of at most countable signatures only. Moreover,
in most cases we shall restrict our considerations to finite signatures. As in
set theory (e.g., in ZF), one can define natural ordinals and finite sequences
on HF(9M). Indeed, HF (M) is an admissible set and, therefore, we can
apply methods which are used in KPU (see Section 6.9). A hereditarily
finite superstructure can be considered as a structure, so we can apply usual
model theoretic methods for studying it. The problem of nonrealizability
of some type on hereditarily finite superstructures has a simple solution.
We consider the following collections of formulas:

Oo(xo) = {3 distinet 1, ..., z,((21 € 2o) A ... (20 € 20)) | n < W},
01(zo) = {3 distinct z1,...,2,((x1 € To) Ao A (Tn € Tn—1))|n < w}.

If Op(x0) is satisfied on a then a has infinitely many elements, i.e., it has
an infinite width; if 64 (z¢) is satisfied on a then a has an infinite rank (in
absolute sense). Thus, no hereditarily finite superstructure realizes 6y(xq)
or 01(xp). Indeed, it follows from definability of the cardinality operation
on hereditarily finite superstructures that 6y(xo) and 61 (zo) are realized or
not simultaneously.

Lemma 6.1. Let HF(ON) be the hereditarily finite superstructure over M
and let T be its theory. If A is a structure of To on which 0y(xg) is not
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satisfied then A has the form HF(ON') for some structure 9’ = Th(M).
Conwversely, no hereditarily finite superstructure satisfies 0o (zo).

Let T be a theory of signature ¢. By a type of T in ¢ we mean
a consistent (possibly incomplete) under T collection of formulas of the
same signature with some fixed finite number of free variables. A type
&(xo,x1,...,xp—1) is called principal under T if there exists a formula
U(xo, ..., xx—1) such that T+ Vg ...Vor_1(¢ — ¢) for any ¢ € €. Other-
wise, this type is called nonprincipal.

Lemma 6.1 enables us to apply General Omitting Types Theorem
for constructing hereditarily finite superstructures with desired properties.
Namely,

Corollary 6.1. Let A be an arbitrary hereditarily finite superstructure in
some countable signature. Then for every countable collection S of non-
principal types of Th(A), there exists a hereditarily finite superstructure
HF (') = Th(A) on which no type from S is satisfied.

Since M < N implies S(M) C S(N), where S(M) is the collection of
types of Th(9M) satisfied on M, the downwards Lowenheim—Skolem Theo-
rem holds for hereditarily finite superstructures:

Proposition 6.1. If h < HF(9M) then h has the form HF(O') for some
m < M.

In general, the upwards Lowenheim—Skolem—Mal’cev Theorem does not
hold for hereditarily finite superstructures (see also Theorem 6.8). First we
define the following sequence of cardinals:

e Jy(w) = w;
o Jopi(w) =27
e (W) =U, <3 (w) if v is limit.

Theorem 6.1. [11, 118] Let HF(9M) be the hereditarily finite super-
structure over a structure M in some countable signature and let T =
Th(HF(9)) be its theory. Then the following statements are equivalent:

(1) for any infinite cardinal 8, there exists Mg such that HF(Mg) = T
and card(Mg) > B;

(2) there exists My such that HF(OMy) = T and card(My) = 3, (w);

(3) there exists My such that HE (M) = T and there is an infinite set
X C dom(My) of indiscernibles in some Skolem expansion of HIF(My);
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(4) there exists a countable structure Mg such that HF (M) =T and there
is an infinite set X C dom(My) of indiscernibles in some Skolem ex-
pansion of HF (D).

To apply this theorem for complete diagrams of hereditarily finite super-
structures over countable structures, we infer the Elementary Extension
Theorem. It follows from the following Theorem that 3, (w) is the Hanf
number for theories of hereditarily finite superstructures over countable
structures.

Theorem 6.2. [16, 118] For every ordinal o < w, there exists a structure
M, in some finite signature such that card(9M) = 3y, (w) and it satisfies the
following conditions:

(1) HF(9M,) has no proper elementary extension of kind HF(9);
(2) for every O, HF(M,,) = HF (M) implies HF (M) < HF(M,,).

Now we consider the problem of realizability of types on hereditarily finite
superstructures. To decide this problem, we apply one more Omitting
Types method. The language of hereditarily finite superstructures can be
considered as the language of w-logic and a hereditarily finite superstructure
can be viewed as an w-structure. In this case, ordinals of a hereditarily finite
superstructure play the role of naturals.

We describe the language of w-logic. A signature o corresponds to a
language £¢ which can be obtained from £, by adding one unary relation
symbol N and a collection {n | n < w} of constant symbols. Assume that
N and n, n < w, don’t occur in £,. Terms and formulas of £# are defined
just as in first order logic.

A structure 2 is called an w-structure if {n | n < w} C |A|. If A is an
w-structure of o, then it can be expanded to 2 = (A, N*" (n:n < w))

so that N = {n | n < w}. Let p(xo,21,...,25_1) be a formula of
L% and ag,aq,...,ax—1 € A. Then suppose that 2 | ¢(agp,a,...,a5_1)
if A¥ = ¢(ag,a1,...,a5_1) in the usual sense whenever n and N(x) are

interpreted as n and “z € N2“” respectively.

Let S be a collection of sentences of L% including {"(m = n) | m #
n} U{N(n) | n < w}. Then S is called w-consistent if it is consistent in
the usual sense and, for any formula ¢ (x) of £, if SU{3z(N(z) A (z))}
is cousistent then so is S U {¢)(n)} for some n < w. The notion of w-
consistency is not finitary, i.e., there are collections S of sentences that
every finite subset Sy C S is w-consistent but S is not.
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Let T be a theory of signature o U (N, (n | n < w)). The theory T is
called w-complete if, for every formula ¢ (z) in £, T+ Va(N(z) = ¢(z))
whenever T F ¢(n), for every n < w.

Given a set of sentences T, we write T' =, ¢ if  holds in all w-structures
of T.

Let T be a collection of sentences of L. A formula ¢ is a consequence
of T in w-logic, written T F, ¢, if ¢ is in the smallest set of formulas
containing T' together with the axioms of w-logic closed under the usual
rules and the w-rule:

If Tk, ¢(m) for every n < w then T F,, Yo(N(v) — ¢(v)).

The following Existence Theorems for w-logic holds:

Theorem 6.3. [111] If S is a countable w-consistent collection of sentences
of w-logic, then S has an w-structure.

Theorem 6.4. (w-completeness) Let o be countable and let T be a set
of sentences of LL. If ¢ is a sentence of LY, then T =, ¢ iff T Fu, o.

Now we turn to studying hereditarily finite superstructures. Let 2t be a
structure of o and let HIF(9) be the hereditarily finite superstructure over
M, o* = ocU{U, @, €}. As it is noticed above, any formula ¥ (zg, ..., zr_1),
k < w, of LY. is equivalent on HF(91) to some formula ¥y(xq,...,xx_1) of
o* whenever N and {n | n < w} are interpreted as the set of all ordinals and
definable representations of ordinals respectively. Thus, the Orey Theorem
sometimes enables us to construct a hereditarily finite superstructure on
which some fixed type is satisfied.

In [115], syntactical characterizations of properties of countable cat-
egoricity and categoricity in HF-logic are given. Recall that the theory
Th(HEF (D)) of the hereditarily finite superstructure HF(9t) over a count-
able structure 9 is called (countably) categorical in HF-logic if HF(9) =
HEF(9) implies HF(OT) = HF (M), for every (countable) structure 9.
Hereinafter, ‘% = 8’ means that 2 and B are isomorphic where 2 and ‘B
are structures. Using these characterizations we have the following:

Theorem 6.5. Let M be a countable structure of some countable signature.
Then Th(HF(9)) is countably categorical in HF-logic iff every hereditarily
finite superstructure of it is an atomic structure.

Theorem 6.6. Let 91 be a countable structure in some countable signature.
Then Th(HF(9N)) is categorical in HF-logic iff it is atomic and it has no
pair of hereditarily finite superstructures Ao, A1 such that Ay 2 Aq.
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It is clear that if 91 is a structure of (countably) categorical theory then
Th(HF (D)) is also (countably) categorical in HF-logic. We give examples
which demonstrate differences between these notions.

Examples 6.2.1.

(1) Let F be an algebraically closed field of some finite degree of transcen-
dency. Then Th(HF(F)) is categorical in HF-logic.

(2) Let F be an algebraically closed field of some infinite degree of tran-
scendency. Then Th(HF(F)) is countably categorical but not categori-
cal in HF-logic. In particular, Th(HF(C)) is countably categorical but
not categorical in HF-logic where C is the field of complex numbers.
Moreover, any two hereditarily finite superstructures over algebraically
closed fields with infinite degrees of transcendency having the same
characteristic are elementarily equivalent.

(3) It is evident that Th(HIF()) is categorical in HF-logic where 9 is the
standard model of arithmetic.

(4) Let Z be the set of integer numbers, 0 < n < w, and let < be the
lexicographic order on Z". Then Th(HF({Z™,<))) is categorical in
HF-logic.

In [13], an example of a finitely generated semi-group is constructed which
demonstrates that the condition of a theory to be atomic in Theorem 6.6
is essential. Moreover, the following holds:

Proposition 6.2. Let MM be a countable structure such that Th(HF (D))
is mot atomic and has no pair of hereditarily finite superstructures Ag, A1,
for which Ag 2 Ay. Then Th(HF(OM)) has 2%° pairwise non-isomorphic
hereditarily finite superstructures and all of them are minimal structures.

The notion of interpretability of one structure in another is one of the key
notions in the Model Theory. For simplicity, we assume that signatures con-
sist of relations symbols only (otherwise, we can replace all the operations
by their graphs) and the equality is a signature relation.

Definition 6.1. Let 91, 91 be structures of signatures oy and o7 respec-
tively. We say that 9 is definable in N if there are

e a sequence of elements @ = ag,...,a,—1 from |9, n < w (hereinafter,
given a structure N, by |M| we denote its universe);

e a formula ¥(zg,...,Tm-1,Y0,--,Yn—1) of 01;

e a map v from ¢(M™,a) onto |M;
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e a formula ¥p(Z1,...,Txp), Y0, -, Ym—1) of a1, for every P € o¢ of
arity #(P); T) has length m and all variables in Zy,...,Typ) are
distinct;

such that for any P € oy and b, ... ,bupy from (N™, @), we have:

m ): P(V(El), ey Z/(I_)#(p))) =N ): gDp(El, - ,b#(p),a).
M and N are bidefinable if M and N are mutually definable.

Definition 6.2. Let Ky, K1 be classes of structures of oy, o1 respectively.
We say that Iy is definable in ICq if there exists a single list .S of formulas
of o1 such that, for any 9, € Ky, there is My € Ky definable in M via S;
for every My € Ky, there is My € K in which M is definable via S. If Ky
and /C; are mutually definable then we say that Ky and Ky are bidefinable.

From now to the end of this section, all the signatures considered below are
assumed to be finite. We consider now several examples of bidefinability of
structures and hereditarily finite superstructures. Indeed, it is important
that in all examples considered below, there exists a transformation of
formulas of weak second order to ones of first order logic.

Definition 6.3. A language LY of weak second order logic consists of sym-
bols from L, new variables Xy, ..., X,,,..., and binary relation symbols €
and €. Formulas of L are constructed as usual from atomic ones includ-
ing atomic formulas of L and X; € X;, v; € X;, where v; is an individ-
ual variable of L. To obtain a structure 2 in LY we interpret symbols
from L as before; Xi,...,Xp,... are interpreted on HF(|A|) U |2 in the
following way: X; € Xj if and only if X; is an element from X; and
rnk(X;)=rnk(X;)+1; and v € X if only if there are A,,..., 4, € HF(]2|)
such that v € Ay € ... € A,, € A and rnk(4;) = 1.

All the classes considered below have the following property.

Proposition 6.3. For any formula ®(vg,...,vn—1) € LY (K), there ex-
ists a formula ¥(vg,...,vn—1) € L(K) such that A &= ®(a1,...,a,) iff
AETV(ay,...,an), for every A € K and ay, ..., a, € |A].

1. ff—Classes.

Definition 6.4. [159] We say that a class of structures K admits elemen-
tary definability of finite functions (K is a ff —class) if there is ®(x,y,Z) €
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L(K) such that, for any structure 2 € K and function f C || x |2 whose
domain is finite, there exists @ € || for which f(z) = y if and only if
A E O(z,y,a).

We give now some examples of ff-classes [159].
Proposition 6.4. The class of existentially closed groups is an ff—class.

Proposition 6.5. The class of unintentionally closed semi-groups is an

ff—class.

The proof of the following results can be found in [159].

Proposition 6.6. Let 1 : w — L(K) be a Gédel numbering of terms. There
ezists a formula ®(X,Y, z) € LY (K) satisfied on K-structure A if and only
if X is a number of a term T(z1,...,zk), Y is a sequence of the length k,
and z is the value of T from'Y in 2.

Proposition 6.7. Let v : w — L(K) be a Gddel numbering of I1,,-formulas
with free variables contained in {vo,...,vm-1}. There exists a formula
D(X,vg, ..., Um—1) which is satisfied on K-structure A on ay, ..., am, if and
only if X is a natural number and A satisfies v(X) on ay,...,am € |U|.

Corollary 6.2. Let K be an ff—class and let {®; | i € I} be an arithmetical
collection of 11, -formulas of L(K) with free variables from {vg, ..., Vm—1}.
Then there are formulas

@(’UQ, ...,Um_l), \I’(Uo,...,’vm_l)
such that for any K-structure A and ay, ..., an, € ||,
A= A Rilar, ... am) iff A= (as, ..., am)
i€l
and

AE \/ Di(ay,...,am) ff A E V(a1 ..., am).

icl

2. e—Fragments. A structure A = (A,¢e) of signature {e} is called an
e-fragment if the following conditions hold:

1) regularity: for any non-empty subset A" C A, there exists a’ € A’
such that a”’ea’ is not satisfied, for every a” € A'.

Let A, = {ala € A,Va' € A(—(d’ca))}; then, by 1), A, # @.
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2) extensionality: for any ag,a; € A\ A, we have
apg = a1 < Ciochl,

where d; = {ala € A,aca;}, 1 =0,1.

A structure of kind Ag = (A, ag,¢) is called a marked e-fragment if
(A,e) is an e-fragment and ag € A,; in this case, set Ag = A, \ {ao}-

If Ay is a marked e-fragment then one can define a correspondence
n(=sp,) A— HF(Ap) as follows:

#(a) = aif a € Ag;

#(ap) = &

#(a) = {s(d')|a’ € A,d’ca} if o' € A\ (AgU{ao}).

A subset A’ C A of a marked e-fragment Ay is called dense if A’ O A9,
where A° = {ala € A,Vd' € A(a ¢ a')}\ {ao}-

Let Ay = (A, ag, €) be a marked e-fragment and A’ C A its dense subset.
We say that (Ag, A') codes »#(Ag, A’) = {5(d')|a’ € A’} € HF(Ap). In
this case, (Ag, A’) is called a code.

Lemma 6.2. If (Ag, A"), By, B’) are codes and »(Ag, A’) = x(Bg, B'),
then Ay = By and there is a unique isomorphism ¢ : Ag — By such that
o | Ao =id4,, @(ag) = by, and p(A’) = B’. Conversely, if Ay = By and
there exists an isomorphism @, then »x(Ag, A') = %(Bg, B').

Lemma 6.3. If B is infinite then, for any S € HF(B), there is a code
(A, A"Y of S such that A € B.

Proof. Let Ag = sp(S) C B where sp is the support function (see section
6.9.2). Also, let S, C HF(B) be the least end subset of HF(B) containing
SU{@} as a subset. It is clear that S, is finite and, therefore, S, € HF(B).
The set S, can be defined as follows: s5 = TC(sg) for every sg € S\ Ag;

So = {so} if so € SN Ay. Then S, = {@}U | $o as desired. Let
SpES
p : S. — B be an injective map such that p(a) = a for any a € A,.

Suppose that A = p(S,) and a’ea < p~1(a’) € p~1(a) for any a,da’ € A;
then Ay = (A, &,a0(= p(2))) is a marked e-fragment, A" = {p(s)|s € S}
is a dense subset of Ay and, as it could be easily checked, s»(Ag, A’) = S.

O

Theorem 6.7. If there is a coding of all finite binary relations on M then
HEF(9) is definable in 9.
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3. Hereditarily listed superstructures.
Let M be an arbitrary set. We define the collection of hereditary lists
over M by induction on n < w:

o HLy(M)=MU{o};
® HLyi1(M)=HLy(M)U{(z,y) | z,y € HL,(M)};
o HL(M)=\J,_. HL,(M).

nw

Natural numbers are identified with the following elements from HL(M):
2, (2,0), ((2,2),2) ctc:

e 0=0;
e n+1=(n,o);
e w=1{0,1,2,...}.

Every z € HL(M) corresponds to I(z) and r(z) inductively as follows:

(@)=r(v) =9

l(z)=r(z)=1if z € M;

l(z)=z,1r(z) =y if z=(z,y).

Let 9 be a structure of some finite relation signature o. Then a
hereditarily listed superstructure HL(9T) over M is a structure of signa-
ture cU{l,r, (-,-)}, HL(M) its domain, such that [ and r are defined above
and symbols from o are interpreted on M only as before. Then HIF(9t)
and HIL(9T) are bidefinable.

4. Admissible Structures.

Let A be an arbitrary admissible set (definition, examples, and basic
properties of such objects are given in section 6.9). Then one can construct
a directed graph (|A|, R) without loops such that A and HF({JA|, R)) are
bidefinable [122]. Moreover, this transformation preserves the semilattice
of ¥-degrees considered in 6.6.1, the semilattice of m¥-degrees (see Section
6.4), and all descriptive set theoretical properties considered in Section 6.5
but quasiresolvability. However, it cannot be applied in studying T'>- and
eX-degrees (see Section 6.4) and semilattices of degrees of presentability
(see Section 6.7).

We mention one more result which gives a natural example of bidefin-
ability between special admissible sets and hereditarily finite superstruc-
tures. Namely, it was proved in [144] that HY P(9%) and HF(90) are X-
equivalent in case when 90 is a recursively saturated model of a regular
theory (in [9] it is proved that this X-equivalence is strong). For the defi-
nition of ¥-definability we refer the reader to Section 6.6.



HF-Computability 181

In Examples 3 and 4, the property to be a ¥-subset is preserved under
certain interpretations. This enables us to transfer semantic approaches to
computability from one object to another.

Now we consider problems of definability of structures in hereditarily
finite superstructures. First we discuss model theoretic properties.

Definition 6.5. A structure My is called saturated enough if there exists
an w-saturated structure Mty such that HF (D) < HF(D).

It is well known that any structure has some elementary w-saturated exten-
sion [16]. However, there are structures which are not saturated enough.
The standard model of arithmetic and the field of real numbers are exam-
ples of such structures. In [118], a series of structures of sufficiently large
cardinality is given which are not saturated enough. We give a nice model
theoretic property of structures saturated enough.

Proposition 6.8. [31, 33] Let My and My be structures saturated enough.
If My = My, then HF(mO) = H]F(ml) If My < My, then HF(mO) <
HF(91).

The following variant of the Lowenheim-Skolem-Mal’cev Theorem holds for
structures saturated enough.

Theorem 6.8. [31, 33] Let T be a complete w-stable or w-categorical
theory, let M be a structure of T saturated enough, and let an uncountable
structure N be definable in HF (D). Then for any infinite cardinals o and B
such that o < card(D) < B, there are structures My and Mg of T saturated
enough such that My < M and M, < Mg. The structure M, contains
all the parameters from | M| used in the definition of M in HF(IM). If N,
and Ng are structures definable in HF(OM,) and HF (D) respectively via
the same formulas and parameters as M in HF (M) then card(N,) = «,
card(Mg) = 5.

If the theory T is categorical in some infinite power, then 915 from Theorem
6.8 can be chosen so that 9t < M. The authors do not know whether Mg
could be always chosen in such a way.

In the end of this section, we consider several examples of definability
of classical structures.

Definition 6.6. Let A be an admissible structure, let A be its universe,
and let S C P(A). We say that S is definable in A if there are a sequence @
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of elements from A and a formula 1 (x, y, Z) such that SU{@} = {¢(A,b,a) |
be A}

A criterion of definability of the field R of real numbers in admissible sets
is contained in the following theorem.

Theorem 6.9. [117] Let A be an admissible set. Then R is definable in A
iff P(w) is definable in A.

Corollary 6.3. Let T be a theory categorical in some infinite cardinality
and M a structure of T. Then R is not definable in HF ().

Corollary 6.4. [33] Let T be either the theory of dense linear orders, the
theory of algebraically closed fields, or the theory of infinite sets in the empty
language. If M is a structure of T, then R is not definable in HIF(9N).

We give now one positive example of an application of this theorem.

Proposition 6.9. (Puzarenko) For any S C P(w), there is a linearly
ordered set Lg such that S is definable in HF(Lg).

Proof. Let S C P(w). We assume that S # @ and @ ¢ S.
We give now some method of coding of a set A € S. Fix a surjective
map [ :w+ w* — A and define an A-block as follows:

e for any n € w+ w*, we take a linear ordering L,,, containing f(n) + 2
elements so that if n,m € w + w* satisfy n <m and lg € Ly, l1 € Ly,
then [y < lq;

e for any n € w+ w*, we put L,, 5,41 isomorphic to the segment [0;1] of
rational numbers between L, and L, 1;

e we also put linear orderings isomorphic to [0; 1] before Ly, 0 € w, and
after Lo, 0 € w*.

Now we define a structure Lg. First we fix some surjective map g : 2*(w* +
w) = S. The domain of Lg will have the following form:

o for every n € 2¥(w* +w), we take some g(n)-block K,, so that if n,m €
2¥(w* + w) satisfy n < m and Iy € K, l1 € K,,, then Iy < ly;

e for every n € 2¥(w* 4+ w), we put a singleton K,, ,+1 between K,, and
Kppq (ifa € K1y b € Ky g1, then {a,b} is said to define the
n-block).

Now we show that S is definable in HF(Lg). First we give several auxiliary
assumptions.
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(1) “a € Ky pny1 for somen € 2% (w* 4+ w)” is definable in Ls by some
formula (denote this set as R). Indeed, a € R < JxTy[(x < a < y)AVE((t <
) = 2t <z <) AVEH((ly <t) = Fz(y < z <)) A 73z(z < 2 <
a) A 73z(a < z < y)l.

(2) “a,b} defines an n-block for some n € 2¥(w* 4+ w)” is definable
in Lgs by some formula (we denote this relation as Q, and the set g(n)
corresponding to it as Agp). Indeed, Q(a,b) < [R(a) A R(b) A (a < b) A
T3t((a <t < b) AR(L)))].

(3) The relation “n € Agp” from {(a,b) € Q and n € w is definable in
HF(Ls) by some formula. Indeed, n € A, p < [Q(a,b) AJzx((card(x) = n+

2)AVy € x(a <y <b)AFuIv3f((f: (n+4,<) > (xU{u,v}, <)) A(f(0) =
WA (fin+3)=v)AVm € n+3((f(m) < f(m+ 1)) A73z(f(m) < z <
Fm4+D))AVE(t <u) = Fz(t < z < u)) AVE((v < t) = Fz(v < z < 1))))]
To finish the proof, it remains to note that S = {4, | Q(a,b)}. O

Applying Proposition 6.9 to P(w) we have:

Corollary 6.5. There is a linearly ordered set L such that R is definable
in HF(L).

In comparison with the last result, R is not X-definable in HF(L), for
any linearly ordered set £ (see Section 6.6.2).

Additional information about the HF-logic can be found in [12, 108,
109, 158, 159].

6.3. 3-Subsets on Hereditarily Finite Superstructures

Here, by computability on hereditarily finite superstructures we mean -
definability, and (generalized) computably enumerable sets are identified
with Y-subsets.

The class of Ag-formulas is the least one containing atomic formulas
which is closed under V, A, —, 7 and restricted quantifiers Vz € y and
dr € y (Vx € yp and dx € yp are abbreviations for Vz(x € y — ¢) and
Jz(x € y A @) respectively.

The class of X-formulas is the least one containing Ag-formulas closed
under V, A, restricted quantifiers Vo € y, dz € y, and 3Jz.

A Y1 -formula is a formula of kind Juypy where g is Ag-formula.

It follows from Y-Reflection Principle [11] that any X-formula is equiv-
alent under KPU to some X;-formula.
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A Y-predicate is a relation definable by some -formula (possibly with
parameters). A A-predicate is a ¥-predicate whose complement is also 3.
A partial operation is called a (partial) X-function if its graph is X.

The following fact demonstrates that computability on hereditarily finite
superstructures is actually a generalization of the classical computability.

Proposition 6.10. [11, 33]

(1) There exists a one-to-one correspondence v between HF(@) and w
which is a X-function on HF ().

(2) A Cw is computably enumerable iff it is a X-subset of HIF ().

(3) A Cw is computably enumerable iff it is a X-subset of HF(N) (A can
be considered here as a subset of Ord(HIF(N)) or as a subset of |N|).

Hereinafter, by N we denote the standard model of arithmetic.

In the study of computability on hereditarily finite superstructures, an
approach of defining sets by infinite computable formulas is actively used.
This method is proposed in [162].

Before stating the method we consider the problem of constructiviz-
ability of hereditarily finite superstructures. The basic notions from the
constructible model theory can be found in [37]. Recall that a sequence
{A, }new of finite subsets of natural numbers is strongly computable if the
relation {(m,n) | m € A, } and the function n — card(4,,) are computable.

Proposition 6.11. Let (M, v) be a constructivizable structure. Then there
exists a constructivization vy of the hereditarily finite superstructure HF (907)
which satisfies the following conditions:

(1) v < vo;

(2) there exists a strongly computable sequence {An}new of finite sets for
which vo(n) = {vo(k) | k € An};

(8) vy '(P) is computably enumerable, for every X-predicate P on HF(ON);

(4) vy ' (P) is computable, for every A-predicate P on HEF(IN).

Proof. It is evident that a constructivization

[] if n =0;
vo(n) = < v(k) if n =2k +1;
{vo(ky) ..., vo(k))}  ifn =202 + ... +2R) Kk <... <k

has the desired properties. O



HF-Computability 185

Indeed, 2 implies 3, 4, and, therefore, this enables us to translate ele-
ments of the hereditarily finite superstructure into finite objects on natural
numbers, in particular, we can transfer restricted quantifiers on hereditarily
finite superstructures into ones on the standard model of arithmetic.

Notice that there are constructivizations of hereditarily finite super-
structures HF(9) over any constructivizable structure 9t which do not
satisfy 2, 3, 4 from Proposition 6.3. To understand this, it suffices to code
finite sets by computable but not strongly computable indices.

The identical map on w is a constructivization of N, so there exists
a constructivization of HF(N) which satisfies Proposition 6.3. From now
on we identify elements from |HF(N)| with their numbers under a fixed
constructivization of HF(N) satisfying Proposition 6.3.

We assign every element » € |HF(N)| a term ¢, in signature {@, {-}, U}
for which ¢,,(m) = s for some sequence of pairwise distinct ur-variables m
containing all the elements from sp(s) as follows ( n € w is here number of
free variables in this term; if n = 0 then it has no free variable):

ot (ug,...,up—1) =@ if 36 = &;

o ¢, (ug,...,up—1) =u; if 6 =14 € N;

. t%(uo,...,un_l) = {t,m(uo,...,un_l)} @] {tm(uo,...,un_l)} U...uJ
{ts, (Ugy -y un—1)} if 50 = {300, 51,..., 366} and 3¢9 < 301 < ... < 33,
kew\{0}.

By X-recursion, it is easy to check that (5, @) € |HF(N)| x |90]<“ — ¢,.(a) €
|HF(90%)| will be a X-function on HIF(90), for any structure 1. Notice also
that the collection of permutation groups S,.(= {7 € S(sp(»)) | t,.(w) =
t,.(7u)}) is strongly computable.

We say that s, € [HF(N)| are termally equivalent (and denote as
sy ~ 30), if (TC({30}),€,,sp(>0)) = (TC({s1}), €,2,5p(31)). If 50 ~
31 then for any hereditarily finite superstructure, there are tuples uw, v of
urelements such that HF(O) = Vavo(t,, (W) ~ t.,(v)). If, in addition,
we assume that elements of these tuples are distinct, then the converse
assumption is also true. We will write s5€s¢ if there are sy ~ s and
3¢y ~ s that x| € 5.

Remark 6.3.1. It is convenient to use “almost” single-valued representa-
tions, i.e., elements from |HF(N)| are chosen so that every element from the
hereditarily finite superstructure is in the range of some unique term with
some tuple of pairwise distinct urelements. Then the values of terms are de-
termined by some strongly computable sequence of groups of permutation
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of urelements. This is important in studying such principles on hereditar-
ily finite superstructures as uniformization, reduction, the existence of a
universal function etc.

For convenience, we will use different ur-variables ug, vg, u1,v1, ... for
urelements only and common variables xg, yo, Z1,¥1, - . - for all elements to
the end of this section.

Lemma 6.4. For any Ag-formula ® from ur-variables in signature o U
{U,2,€,U,{ }}, one can effectively construct 3— and V—formulas ®y and
D, respectively in signature o that

Moreover, if o contains constants or FV(®) # & then Py can be chosen
quantifier free.

Proof. Let ® be a formula in 0. We effectively construct a quantifier-free
formula U of cU{T, L} equivalent to it where T and L are logical constants
“true” and “false” respectively. We prove this assumption by induction on
the number of logical connectives. By an improper term in ® we mean a
term which is maximal under inclusion occurring in ®. We assume that
the implications do not occur in ®, the negations appear before atomic
subformulas of ® only, and all terms of {&, U, { }} improper in ® have the
form t,.(w) for some » € |HF(N)| and tuple @ with pairwise distinct ur-
variables. Also, all the restricted quantifiers appearing in ® have the forms
Vo € ... or dx € ... where z is a common variable. We consider several
cases.

(1) @ is atomic or the negation of atomic:

e if {U &, € U,{}} donot occur in & then ¥ = P;

o if ® = U(t,(u)) then ¥ = T whenever t,.(u) is an ur-variable;
U = |, otherwise;

o if & = (t,,(T) = t,, (V)), then ¥ = \/TFGS%0 (u =~ 7(v')) (v satisfies

HEF(M) | (£, (') & t.,(V))), whenever 3¢ ~ s and sp(s) # &;

T, if 50 ~ 51 and sp(s) = &; otherwise, ¥ = L;

if @ = (t,,,(U) € t,,(v)) then ¥ is obtained by the previous rule

from \/, ... (tx (W) =~ t., (V) whenever s€s1; U = L, otherwise;

e if ¥ is an atomic formula of o U {U, @, €,U,{ }} which is not con-
sidered above then we let ¥ = 1;

e T and "L are replaced with L and T respectively;
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(2) if® = (POVP) or @ = (POAPL) then ¥ = (VOV L) or ¥ = (TOATD)
respectively;

(3) if @ = Vz € t,.(@)®° then ¥ is obtained from A, [2°]f ) by the
previous rules (as usual, A @ = T);
(4) if ® = 3z € ,.(@)®° then ¥ is obtained from /.. [2°]f ) by the

previous rules (as usual, \/ @ = 1).

To finish the proof, it suffices to replace T and L with some quantifier-free
true and false formulas if such formulas exist; with formulas Ju(u ~ u),
Vu(u =~ u), and Ju"(u ~ u), Yu"(u ~ u) respectively, otherwise. O

Proposition 6.12. For every Xi-formula ® of o U{U,d,€,U,{ }} with
ur-variables, one can effectively construct some computable disjunction ®*
of 3-formulas of the signature o so that

HF(ON) = & < M = *.

Proof. We assume that any unrestricted quantifier appearing in ® acts
on a common variable. If ® = 32®%(z, ) then ¥ =\/, _ Fud’(t,(w),v).
This transformation is effective. To finish the proof, it remains to apply
Lemma 6.4. (|

Thus, we have proved the following:

Theorem 6.10. Let o be a finite relation signature. Then there ezists a
computable sequence A, n, for which the following conditions hold:

(1) if ®(zo,Y0,-.-,Yi—1) is a B-formula of cU{U, D, €} then Ag n consists
of 3-formulas of o;

(2) for any structure M of o, A is definable in HF(ON) by the X-formula
D(x0, S0, - - -, S1—1) with parameters so, ..., s1—1, | = 0 if and only if

A={t,(@W) | n€w, ME= p@,so,...,s1-1)) for some p € Apn}.
Moreover, an “almost” converse assumption holds:

Theorem 6.11. Let o be a finite relation signature. For any computable
sequence { Ap tnew in which every A, consists of 3-formulas of signature o,

A={t,(@W) |n €w, M f(n)@,so,...,51-1))}

is a X-subset of HF(9M) where M is a structure of . Moreover, a X-formula
defining A is independent of a choice of M and can be effectively found from

{An}new-
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To establish this assumption, it suffices to show that the truth predicate
for -formulas is ¥-definable.

Let HIF(9) be the hereditarily finite superstructure over a structure
M of signature o. By a X-operator we mean a map F : P(HF(M)) —
P(HF(M) U M) which is defined in the following way, for every X C
HF(M):

F(X)={a|3b[(a,b) € RA (b < X)]}

for some X-predicate R.

The notion of Y-operator generalizes the notion of enumeration oper-
ator. Like the enumeration operators, these operators have the following
properties:

continuity: = € F(X) = 3Y C X[card(Y) <w Az € F(Y)];
monotonicity: X; C Xy = F(X;) C F(X3).

Now we give a series of examples of Y-operators. Let ®(z, RT) be a
Y-formula of ¢ U {R}, #(R) = 1, R ¢ o, in which R occurs positively.
Then for any X C HF (M),

Fg(X) = {a | (HF(M), X) |= ®(a)}

is a Y-operator.

By monotonicity, every -operator has the least fixed point, namely,
there is Yy C HF(M) such that F(Yy) = Yy and VY7 C HF(M)[F(Y7) C
Yi=Y,CYi) Let I'g = @; Toq1 = F(Ta); Ty = U6<n I'g if 1 is limit;
then it is easy to check that ', = Ua<card(HF(zm))+ ', will be the least
fixed point of F'.

Theorem 6.12. (Gandy) Let HF(9M) be the hereditarily finite superstruc-
ture over M and F be a L-operator on HF(IMN). Then the least fixed point
T, of F is X on HF(9M). Moreover, Ty =T,,,.

It follows from the Gandy Theorem that for any structure 9, HIF(99t)
has a universal X-predicate. Let KC be a class of n-ary relations on HIF(90).
A predicate P C |HF(9)|" ! is called universal for K if K = {{(b1,...,bn) |
(ayb1,...,by) € P} | a € [HF(OM)|}. In particular, P is a universal %-
predicate if it is universal for the class of all n-ary Y-predicates on HF(9);
a partial X-function f(y, x1,...,xy) is universal if its graph I' is universal
for the class of graphs of all n-ary partial X-functions.
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Theorem 6.13. There exists a binary X-predicate Trs; on HF(ON) such
that for any L-formula ®(z) and a € HF (M) U M,

(®,a) € Try & HF (M) E P(a).

Theorem 6.14. There exists an (n + 1)-ary wuniversal X-predicate
T(e,x1,...,x,) on HF(ON).

Notice that not all hereditarily finite superstructures have universal X-
functions [49, 101, 132, 162].

The collection of X-subsets of w is one of the main computation invari-
ants of hereditarily finite superstructures.

Theorem 6.15. [101, 114, 133]

(1) For any admissible set A, the collection of A-subsets of w is closed
under @ and downwards under T -reducibility.

(2) For any admissible set A, the collection of X-subsets of w is closed
under @ and downwards under e-reducibility.

(3) For every T-ideal 1, there exists a hereditarily finite superstructure on
which the class of T-degrees of A-subsets coincides with 1.

(4) For every e-ideal 1, there exists a hereditarily finite superstructure on
which the class of e-degrees of ¥-subsets coincides with 1.

At the end of this section, we consider a series of examples of hereditarily
finite superstructures having universal 3-functions. Let HF(9) be the
hereditarily finite superstructure over a structure 9 of some finite relation
signature. A sequence of its subsets

AOQAlQ...QA,LQA,H_lQ...,nEw
is called a X-resolution of HIF(9) if the following hold:

(1) A, is a transitive subset of HF(9), for any n € w;

(2) Upew 4a = 4;
(3) {{a,n) |n €w, a€ A,} is ¥ on HF(IM).

Proposition 6.13. Let { A, }necw be a X-resolution of HIF(ON), let ®(x) be a
Y-formula with parameters mq,...,my € |M|, k € w, and let b € [HF(IM)|.
Then HF(OM) &= ®(b) if and only if HF (M) | A, = ®(b) for some n
satisfying {b,my,...,my} C A,.
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A sequence D,, = {a | a € HF (M), rk(a) < n}, n € w, is an example of
a nontrivial ¥-resolution of HF(91). A X-resolution {4, }new of HF (M) is
called a quasiresolution if

TrE({ATL}nGUJ) = {<7’L, (bv CL> | ne w, a S Ana
®(z) is a ¥ — formula, HF(O) | 4,, E ®(a)}

is A on HF(91).

Remark 6.3.2. If {A,}ncn is a X-resolution for HF(9?) then
Tr*({Ap }new) is always ¥ on HF(ON).

HEF(90) is said to be quasiresolvable if HF () has at least one quasires-
olution. If HF (M) is quasiresolvable then it satisfies reduction and has
a universal 3-function [33, 36]. There exist hereditarily finite superstruc-
tures which are not quasiresolvable but satisfy reduction and have universal
Y-functions [49)].

By a canonical X-resolution of HF() we mean the following ¥-
resolution:

o By = M = U(HF(I));
¢ B, = {t.(m) |me M", xc HF,(n)}, 0 <n < w.

Proposition 6.14. For any X-formula ®(ug,...,ux—1) and n € w, one
can effectively find an 3-formula of the signature of M so that

HF(W) r B, ): (I)(m(), A ,mkfl) =M ): (I)n(mo, - ,mkfl),

for each mo, ..., mi_1 € |9
Corollary 6.6. For every %-formula ®(ug,...,ux—1) and mo,...,mg_1 €
|91,

HF (D) = &(mo, ..., mx-1) < ME \/ @ulmo,...,me_1).

new

Proposition 6.15. The canonical S-resolution of HF(ON) is a quasireso-
lution if and only if M is 1-decidable in HF (M), i.e.,

{(®,a) | ® is I-formula, @ € |IM|<Y, M = ®(a)}
is A on HF(9M).
We give one important corollary of Proposition 6.15.

Proposition 6.16. Let 9 be such that for any V-formula ®(w) of the
signature of M, one can effectively find some I-formula V(u) satisfying
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M E Vu(®(u) < ¥(u)). Then the canonical X-resolution of HF(OM) is a
quasiresolution.

Notice that if 91 satisfies the conditions of Proposition 6.16 then Th(9t)
is model complete. In particular, these conditions are satisfied whenever
M is a structure of some regular theory T. Recall that T is regular if it is
decidable and model complete.

Proposition 6.17. [57] Let M be such that Th(IM) is w-categorical. Then
M is 1-decidable in HIF(ON) iff HF(ON) is quasiresolvable.

A structure 9 is said to be quasiresolvable if HF (90t) is quasiresolvable.

Theorem 6.16. [58] For any Ershov algebra U, the following conditions
are equivalent:

(1) A is quasiresolvable;

(2) A is 1-decidable in HIF(2A);

(3) 2 is the join of a non-atomic Ershov algebra and of a finite Boolean
algebra.

Theorem 6.17. [58] Let G be an abelian p-group and let R, D be its
reducible and its divisible parts respectively. The following conditions are
equivalent:

1) G is quasiresolvable;

2) if r(D) > w then R is finite; if r(D) < w then R = Ry © R1, where
Ry is finite and there is n > 0, for which Ry = C (C;O =0), a 2w (Cpn
is a cyclic group of order p™ here).

6.4. Reducibilities on Hereditarily Finite Superstructures

In this section, we consider generalizations of classical reducibilities on
hereditarily finite superstructures. We recall some lattice-theoretic notions.

Definition 6.7. Let £ = (L, <) be a partially ordered set.

e L is called an upper semilattice if any two elements a and b have a least
upper bound a Ub, i.e., for any a,b,c € L, we have: a < allb, b <alb
and (a <c)A(b<c)= (alUb< o).

e An upper semilattice £ is called distributive if for any a, b, c € L, there
are ag, bg € L such that (¢ < alld) = ((ag < a)A(bo < b)A(c = aglby)).

e A non-empty subset I C L is called an ideal of an upper semilattice £
if I satisfies the following conditions:
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(1) a,be I = albe I (it is closed under taking the least upper bound
operation);
(2) bel,a<b= aecl(itis closed downwards under <).

e a € L is the least (greatest) element if a < b (b < a), for every b € L.

Definition 6.8. Let HF(9) be the hereditarily finite superstructure over
M and B, C C |HF(O)|.

e We say that B is mX-reducible to C, written B <,,» C, if there exists
a binary X-predicate R on HF(9) such that Pri(R) = |HF(91)| and
(a,b) € R= ((a € B) <+ (b e 0)), for every a,b € [HF(M)].

e We say that B is TX-reducible to C, written B <pyx C, if there
exist two binary X-operators ®g and ®; on HF(9) such that B =
0o(C, [HF(I)|\ €) and [HE(I)|\ B = @ (C, [HF()| \ C).

o We say that B is eX-reducible to C, written B <.x C, if there exists a
Y-operator ® on HF(9) for which B = ®(C).

e Letr € {mX,TY, eX}. We say that B and C' are r-equivalent (B =, C)
if B, Cand C <, B.

o Letr € {mX,TY,eX}. A class w.r.t r-equivalence is called an r-degree.

We give some properties of these reducibilities:

(1) If HF(9) satisfies uniformization then the notion of mX¥-reducibility
can be formulated as in the classical case: B <,,» C if and only if
there exists a total X-function f such that « € B < f(a) € C, for
every a € |[HF(9)].

(2) Let HF(S) be the hereditarily finite superstructure over an infinite set
S. For any A C w, we define Sy = {(n,a) | n € 4;a = {ag,...,an_1) €
S™a; # aj,0 <14 < j < n} which is mX-equivalent to A. Then there
is no total 3-function establishing mY-reducibility S4 to A whenever
A is not computable.

The relations of m-, eX- and 7TX-reducibilities are preorders on
PHEF(M)]) \ {2, |HF(M)|} and, therefore, classes of corresponding de-
grees form partially ordered sets under the induced orderings. Moreover,
they are upper semilattices with least elements, namely, classes contain-
ing proper A-subsets of HF(9). Note that [B] U [C] = [B @ C] where
Ba C=(Bx{0})U(C x{1}).

By L,s (HF(9)), Lys (HEF(90)), Les (HF (91)) we denote upper semilat-
tices of classes of m3-, TX- and eX-degrees of proper subsets of HF'(M)UM
respectively. As it was shown in [114], the upper semilattice L,,x(HF(90))
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is distributive, for every structure 9. Furthermore, there exists a natural
isomorphism between L,,s.(HF(&)), Lyy (HF(2)), Lex (HF(2)) and upper
semilattices of m-,T-, e-degrees respectively.

Let 9 be an arbitrary structure and let r € {mX, T3, eX}.

Definition 6.9. A degree a € L, (HIF(90)) is called computably enumerable
if there exists a X-subset B € a of HF ().

Definition 6.10. A degree a € L,.(A) is called definable if there exists a
definable subset B € a of HF(9).

Recall that a theory T is called c-simple [33] if it is w-categorical, model
complete, decidable, and has a decidable set of complete formulas.

The following theorem describes relations between semilattices on hered-
itarily finite superstructures over structures of c-simple theories and classi-
cal ones:

Theorem 6.18. [113, 114] Let 9 be a structure of a c-simple theory
in some finite signature and v the natural embedding HF(2) into HF ().
Then the following conditions hold:

(1) @ induces an isomorphism between the upper semilattices of computably
enumerable m-(T'-) degrees and of computably enumerable m%-(T3-)
degrees;

(2) @ induces an isomorphism between the upper semilattices of definable
m-(T-,e-) degrees and of definable m¥-(T'Y-,eX-) degrees;

(3) @ induces embedding of the upper semilattices of m-(T-,e-) degrees into
Lyys (HF (D)) (Lys (HF(OM)), Les(HF(9N))) as ideals.

If 91 is a countable structure of some c-simple theory then the semilattice
Ly,s (HF(901)) is described up to isomorphism:

Theorem 6.19. [124, 125] Let M be a countable structure of a c-simple
theory in some finite signature. Then the upper semilattices Ly,s (HF(9))
and L., are isomorphic.

Additional information about generalized numberings and reducibilities
on admissible sets can be found in [5, 6, 33, 44, 52, 53, 116, 117, 121, 131,
160, 161, 163].
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6.5. Descriptive Properties on Hereditarily Finite Super-
structures

As in the classical computability, the existence of a universal X-predicate
implies that the class of Y-subsets is not closed under the complement
operation. To avoid this obstacle, properties from descriptive set theory are
sometimes applied. In this section, we discuss the problem of the existence
of hereditarily finite superstructures with respect to relations between such
properties. Recall the basic definitions.

Let A be a hereditarily finite superstructure and A its universe.

Definition 6.11.

(1) A is called recursively listed if there is a X-function f : w — A with
pf=A.

(2) A is called resolvable if there exists a X-function f : w — A with
Unew f(n) = A. Such an f is called a resolution for A.

(3) Let C be a X-subset of A.

e A is projectible into C' if there exists a Y-function f with §f C C
and pf = A such that f~1(z) € A for every z € A.

o A is quasiprojectible into C' if there exists a 3-function f with §f C C
and pf = A.

Definition 6.12. We say that A satisfies

e reduction if, for any Y-subsets By and Bj, there are disjoint 3-subsets
Oo g Bo and Ol Q Bl such that CO U Cl = Bo U Bl.

e separation if, for any disjoint Y-subsets By and By, there is a A-subset
C such that By C C C A\ By.

e cxtension if, for any partial X-function ¢(z), there is a total E-function
f(x) such that ', C T'y.

o uniformization if, for any binary 3-predicate R on A, there is a partial
Y-function ¢(x) with dp = Pri(R) and T', C R.

The main merit of a recursively listed hereditarily finite superstructure is
the existence of an effective function enumerating its range via natural num-
bers which enables us to transfer such principles from classical computabil-
ity as reduction, uniformization, the existence of a universal ¥-function
etc., [11]. Also, any infinite ¥-subset C' of A has an enumeration without
repetition, namely, a one-to-one -function f with 6f = w and pf = C.
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The notion of resolvable hereditarily finite superstructure is a generaliza-
tion of the notion of recursively listed hereditarily finite superstructure. As
for recursively listed hereditarily finite superstructures, in the study of the
properties of such structures, one can apply the method of constructing
Y-subsets by using effective approximations consisting of finite subsets. As
before, they satisfy reduction and have universal ¥-functions; however, in
general, uniformization does not hold on them. Moreover, the following is
true:

Proposition 6.18. Let HF () be resolvable. Then HF(9N) is recursively
listed if and only if HF(9N) satisfies uniformization.

An approach which avoids uniformization is to construct structures with a
small number of types and an infinite set of indiscernibles.

Theorem 6.20. [57] If M is a structure of some countably categorical
theory then HF(ON) does not satisfy uniformization.

Theorem 6.21. [9] If M is an w-saturated structure of some uncountably
categorical theory then HF(ON) does not satisfy uniformization.

E.g., if M is an algebraically closed field with characteristic zero (in other
words, a structure of the theory of the field of complex numbers), then
HIF(9t) does not satisfy uniformization, even if 9 is not w-saturated. How-
ever, if 91 is a structure of the theory Th(w, 0,s) of natural numbers with
zero and the successor relation, then HF(I) does not satisfy uniformiza-
tion iff 91 is w-saturated; moreover, if 91 is not w-saturated then HIF(N) is
recursively listed.

The notion of projectibility is one more generalization of the notion of
recursively listed hereditarily finite superstructure. This definition was in-
troduced in [11]. Hereditarily finite superstructures quasiprojectible into
w seem to be interesting; such structures have properties which look like
the corresponding ones on enumeration degrees. Further on, hereditarily
finite superstructures quasiprojectible into w will be called simply quasipro-
jectible.

Example 6.1. Let A C w. We define a structure 94 of signature {0,s, P}
as follows:

o M4l S wW{z, | a € A}, whenever z,, # 24, for a1 < az (hereinafter,
the symbol W means the disjoint union);
e 0" =0cw; (a,b) €™ & ({a,b} CwAb=a+1);
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o PP = {{a,z,) | a € A}.

The class of structures {HF(M4) | A C w} consists of hereditarily finite
superstructures projectible into w only. This class has a series of nice prop-
erties [49].

Now we give sufficient conditions of satisfiability of properties from de-
scriptive set theory on admissible sets. As is said above, we have the fol-
lowing:

Theorem 6.22. [33, 36] If A is a quasiresolvable admissible set then A
satisfies reduction and has a universal X-function.

In section 6.6.3, a criterion for the satisfiability of uniformization on hered-
itarily finite superstructures structures of kind HF(9t), where Th(9) is
regular, is given (see also [142, 157]). In general, the uniformization prop-
erty does not hold even on hereditarily finite superstructures of this kind.

The following theorem gives us a description of hereditarily finite su-
perstructures with respect to relations between the properties considered
here [123].

Theorem 6.23. The following implications between the properties on
hereditarily finite superstructures hold:
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All the implications in the diagram are proper. Hereditarily finite su-
perstructures over computable structures can be found in (0-5, 9). There
is no such structure in (6-8).

Now we give examples of hereditarily finite superstructures over clas-
sical and (or) computable structures (if it is possible) which demonstrate
differences between the properties considered above.

Examples 6.5.1. The numbering of examples coincides with the correspond-
ing implications from Theorem 6.23.

0 One can take here the standard model of arithmetic.

1 Let R be the field of real numbers. Then HF(R) satisfies uniformiza-
tion [142], however, for reasons of cardinality, this hereditarily finite
superstructure is not recursively listed. Indeed, there are countable
hereditarily finite superstructures which satisfy uniformization but are
not recursively listed, e.g., HF(M1) or a countable elementary sub-
structure of HF(R).

However, all the structures considered above are not computable.
Now we give an example of computable real closed field R* for
which HF(R*) is not recursively listed but satisfies uniformization.
Let Q(ag,a1,-..,an,...) be a purely transcendental extension of the
ordered field of rational numbers such that all the elements from
Q(ag, . ..,an—1) are infinitesimal w.r.t. a,, n € w. Then we set R*
as the real closure of Q(ag,a1,...,an,...) [33]. Then it is computable
(even decidable) and HIF(R*) has the desired properties.

2 If M is a structure of some decidable, model complete, countably cate-
gorical theory then HF () is not resolvable, uniformization does not
hold on HF (1) but this hereditarily finite superstructure satisfies re-
duction and has a universal 3-function. One can take here the set of
rational numbers with the natural order and a countable structure in
the empty language as .

3 In [123], a series of examples of hereditarily finite superstructures in-
cluding computable ones are given, however, these structures are not
classical.

4 We define a structure 91 of signature {P, @}, #(Q) = 2, as follows:

e PP and |M|\ P™ are infinite;
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e Q™ is the graph of a one-to-one function from P into [9]\ P™
such that (|91]\ P™) \ Pro(Q™) is infinite.

Then HF(91) does not satisfy reduction but has a universal X-function.
Notice that Th(91) is decidable and countably categorical, and there-
fore the unique countable structure of the theory is computable (even
decidable).

5 There exists a Ya-set A C w such that HF(914) does not satisfy reduction

and separation, and has no universal X-function [49].
In [132], an example of hereditarily finite superstructure over a count-
able structure of some decidable countably categorical theory without
universal Y-function is given. Furthermore, reduction and separation
does not hold on this hereditarily finite superstructure.

6 The hereditarily finite superstructure HIE‘(‘)“(Z%) satisfies separation but
does not satisfy extension. These conditions are satisfied on HF(G) for
some abelian group G [57]. To prove this, it suffices to apply methods
from [119].

7 In [119], examples of hereditarily finite superstructures satisfying exten-
sion are constructed. At this moment, examples of hereditarily finite
superstructures over classical structures have not been found.

8 A series of quasiprojectible hereditarily finite superstructures is given in
Example 6.1.

9 The hereditarily finite superstructure HF(DMy:) has the desired proper-
ties.

Additional information about the properties considered above can be
found in [7, 57, 58, 60, 66, 94, 114, 122, 133, 162].

6.6. X-Definability of Structures

The theory of constructive (computable) models is one of the important
research areas of the classical computability theory, as well as of the model
theory. Because of the evident cardinality limitations, in the classical com-
putable model theory only countable structures are considered. The ap-
proach regarding generalized computability as Y-definability in admissible
sets allows us to consider structures with arbitrary cardinality. Heredi-
tarily finite superstructures are the “simplest” admissible sets, from the
set-theoretical point of view. Besides of this, ¥-definability in hereditary
finite superstructures is one of the natural approaches generalizing classical
computability theory on natural numbers to the case of computability over
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arbitrary structures.
Hence, for a structure 9t the following problems naturally arise:

e to describe the structures 3-definable in HEF(90t);
e to describe the structures such that 9t is Y-definable in their HF-
superstructures.

Let us formalize the problems stated above. Let 9 be a structure of a
finite predicate signature (P, ..., P), where each P; is n;-ary, and let A
be an admissible set. To simplify the notations in this chapter, we write
M instead of |9|. The following notion is an effectivization of the model-
theoretical notion of interpretability of one structure in another, and also a
natural generalization of the notion of constructivizability of a (countable)
structure on natural numbers.

Definition 6.13. [24, 33] 9 is X-definable in A if there exist X-formulas

‘I’(Jﬂmy)a ‘1’(5507561,2/)7‘1’*(350,35179)’ ‘131(5307 cee 7Im—1’ll)7

DI (20 s Tny—1,Y)y - - s Pr(T0, o Ty —1,Y)s Pr(T0, -+ vy Tny—1, Y)s
such that for some parameter a € A, and letting
My = ®*(x0,a), n= U4 (xg,x1,a) N M
one has that My # @ and 7 is a congruence relation on the structure
Mo = (Mo, P, ..., P0),

where P = &% (xq,..., 2, 1) N M for all 1 <i < k,

U (20, 21, a) N ME = ME\ ¥ (x0, 21, 0),

@fA(xo, ey @py—1,0) N MY = M \‘P?(axo, ey Tp—1)

for all 1 < i < k, and the structure 9 is isomorphic to the quotient
structure ™ /.

Definition 6.14. 9 is A-constructivizable if there exists a map v from |A|
onto |9M| such that {(ag,a1,...,an,—1) | Pi(v(ao),v(a1),...,v(an,-1))},
1<i<k,and {{(a,b) | v(a) =v(b)} are A on A.

Proposition 6.19. Let A be an admissible set and M a structure. Then
M is X-definable in A iff M is A-constructivizable.
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Remark 6.1. Definition 6.13 can be naturally generalized to the case of
structures with infinite computable signatures. Namely, a structure 9t
with a computable predicate signature (P, P1,...), where each P; is n;-ary,
is called X-definable in A if there exists a computable sequence ®(zg,y),
U(zo,21,Yy), V*(xo,21,Y), Polxo,. -, Tng—1,Y), P5(T0s .-y Tng—1,Y)s -«
D (z0,. s Tnp—1,Y), Pr(T0,..., Tny—1,Y), ... of E-formulas and a param-
eter a € A, which forms a Y-definition of 9% in A, in the sense of Definition
6.13.

For structures 9t and N, we denote by 9 <y N the fact that 97 is
Y-definable in HF(D). From the definition it follows that the relation <y
is reflexive and transitive. We now look at the general properties of this
relation, regarding it as a kind of effective reducibility on structures.

6.6.1. X-Definability on structures: general properties

For any infinite cardinal «, we denote by K, the class of structures having
a finite signature and with cardinality less than or equal to «.

As usual, preordering <y generates on I, a relation of Y-equivalence:
A =5 B if A < B and B <y A. Classes of Y-equivalence are called
degrees of Y-definability, or Y-degrees. The poset

Ss(a) = Ko/ =x,<x)

is an upper semilattice with the least element, which is the degree consisting
of computable structures. We denote the Y-degree of a structure 2 by
[A]x. The notion of X-degree of a structure is invariant from the choice
of a semilattice Sy.(«), because all infinite structures of the same X-degree
have the same cardinality. For any structures 2,8 € K,, [z V [B]x =
[(2,B)]s, where (2, B) is a pair of 2 and B in the model-theoretical sense.
For a structure 2 € I, and infinite cardinals 8 < «a, v > «, the sets

Ig(A) ={[Blz |B € L, B AL, F(RA)={B]s[B ek, A<s B}

are, correspondingly, an ideal in Sx () (principal for § = «) and a filter
in Ss;(y) (principal for any v > «). The sets F,(2() in semilattices Ss(7)
are natural analogues of the spectrum of a structure 2. The sets Ig(2() in
semilattices Ss;(5) consist of X-degrees of structures X-presentable over 2.

A presentation of a structure 9 in an admissible set A is any structure
C which is isomorphic to 9 and whose domain C' is a subset of A (the
relation = is treated as a congruence relation on C, and it may differ from
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the standard equality relation C'). In what follows, we will identify the
presentation C (more precisely, its atomic diagram) with some subset of A,
fixing a Godel numbering of atomic formulas of the signature ogy.

Definition 6.15. A problem of presentability of a structure 9% in A is the
set Pr(9M, A) consisting of all possible presentations of 9t in A.

Denote by 2t the set Pr(9t, HF(@)) of presentations of 9t in the least
admissible set.

Since Y-definability in HIF(9) is equivalent to classical computability on
natural numbers, we get the following:

Proposition 6.20. Let M be a countable structure. The following are
equivalent:

1) M is constructivizable;
2) M is L-definable in HF ().

Moreover, there exist natural embeddings of the semilattices D of Tur-
ing degrees and D, of degrees of enumerability of sets of natural numbers
into the semilattice Ss(w) (and hence into any semilattice Ss(«)) via the
mappings i : D — Ss(w) and j : D, — Ss(w) defined below. These def-
initions show that the notion of ¥-degree of a structure, which is total,
i.e., defined for any structure, no matter countable or not, is a natural
generalization of the (partial) notion of a degree of a countable structure,
introduced in [127]. Also, we get that the semilattices Sx(a) extend in a
natural way the semilattices D and D..

Definition 6.16. Let 91 be a countable structure. We say that 901 has
a degree (e-degree) if there exists the least degree in the set of T-degrees
(e-degrees) of all possible presentations of 9t on natural numbers.

Using the equivalence of “V-recursiveness” and “J-definability”, in the
sense of [85] and [104] (see also [4] and [3]), we get:

Theorem 6.24. [150] For a countable structure M, the following are equiv-
alent:

1) M has a degree (e-degree);
2) there exists a presentation C € MM which is a A-subset (B-subset) of
HF ().
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We define mappings i : D — Sx(w) and j : D, — Sx(w) in the following
way: for every degree a € D, put

i(a) = [Ma]x, where M, is any structure having degree a.
Similarly, for every e-degree b € D,, put
j(b) = [My]x, where My, is any structure having e-degree b.

Lemma 6.5. The mappings i and j are well defined: For any (e-)degree
a there are structures having (e-)degree a. Moreover, for any countable
structures M and N, if M has (e-)degree a and M =5 N, then N also has
(e-)degree a.

Note, however, that the property of having a (e-)degree is not closed down-
wards w.r.t. <sx.

Definition 6.17. [152, 153] For a structure 2, a jump of the X-degree
[z (in the semilattice Sx(card(21))) is the 3X-degree of the structure

A = (HF(A), X-Satpr) ),

where ¥-Satyr () denotes the satisfiability relation for the set of ¥-formulas
in HIF(2().

The definition of ¥-jump is correct: For any structures 2l and B, from
A =5, B it follows that A’ =5, B’. It seems to be an open problem whether
the inequality 2 <sx 20’ holds for every structure 2.

Remark 6.2. In a similar way the jump operation was introduced in [10]
for the semilattice of s-degrees of countable structures. Also, in the same
way a notion of the jump of an admissible set with respect to various
effective reducibilities was introduced in [96, 122]. One more definition of
the jump of a structure, closely related to the notion of ¥-jump, was given
in [91].

The jump operation for ¥-degrees agrees with the jump operations for
Turing and enumeration degrees w.r.t. the natural embeddings: If a struc-
ture 2 has a (e-)degree a, then the structure 2’ has (e-)degree a’. Hence-
forth, we have the following:

Proposition 6.21. The mappings i« : D — Sy and j : D. — Sx are
embeddings preserving 0, V and the jump operation.
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The existence of an embedding of D in Sy, was first noted in [59].

The jump inversion theorem from the classical computability theory can
also be generalized to the case of the semilattices of Y-degrees of structures.
There is:

Theorem 6.25. [152, 153] Let A be a structure such that (0") <z 2.
Then there exists a structure B such that

%/ =¥ A

Remark 6.3. Relation of YX-reducibility, being defined on structures of ar-
bitrary cardinality, in the case of countable structures can be viewed as the
strongest reducibility in the hierarchy of effective reducibilities on struc-
tures [150, 151] (see Section 6.7). One of the weak reducibilities in this
hierarchy is the Muchnik reducibility. In [139, 140], the jump inversion
theorem for the semilattices of degrees of presentability of countable struc-
tures with respect to the Muchnik reducibility is proved. As a corollary of
Theorem 6.25, we get the jump inversion theorem for all known effective
reducibilities on countable structures (see Section 6.7).

6.6.2. X-Definability on special structures

As has already been mentioned, cardinality boundaries are unavoidable in
the classical theory of computability (CTC). Numberings allow us to use
CTC for countable objects. Admissible sets of the form HIF(9t) can have an
arbitrary cardinality. Hence, the following question naturally arise: Does
there exists a “reasonably good” theory T such that the class of admissible
sets of the form HF (), with 9 = T, allows to extend, in some natural
way, the classical theory CTC to the case of objects with an arbitrary
cardinality?

Recall that a theory T of a finite signature is called regular [33] if it
is decidable and model complete. Recall also, that a theory T is called
c-simple (constructively simple) [33] if it is regular, w-categorical, and has
a decidable set of the complete formulas.

Remark 6.4. In [33] such theories were called simple, but this terminology
was simultaneously used in the model theory for a different notion.

In the definition of a c-simple theory, w-categoricity gives the unique-
ness, up to an isomorphism, of a countable model of such theory. Model
completeness, decidability of a theory, and decidability of the set of its
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complete formulas, guarantee the autostability of every constructivization
of this countable theory, i.e., the uniqueness of the “computability” on its
countable models.

Furthermore, if T is a c-simple theory, My and 9y are any models
of T (M; =T, i =0,1), then HF(M) = HF(M;), since the models of
w-categorical theories are saturated enough ([33]).

Henceforth, for a c-simple theory T, the class of admissible sets of the
form HF(OM), M = T, extends “uniformly” the classical theory of com-
putability for arbitrary infinite cardinalities.

An example of a c-simple theory is the theory Tg of infinite structures
with the empty signature. But this theory is too “weak”, if we regard a
theory T being “strong” in case there are many uncountable structures 3-
definable in HF(91), M = T. The reason of the “weakness” of Tx is the
following property: For an arbitrary set X and arbitrary permutation f on
X, f can be extended (in a unique way) to an automorphism f* of HF(X).

Another example of a c-simple theory is the theory Thro of dense linear
orders (without endpoints). This theory seems to be quite reasonable candi-
date for a “correct extension of CTC for arbitrary cardinalities”. Below we
present two different characterizations of the theories having uncountable
models which are ¥-definable in HF(£), £ = Tbro.

We now formalize a desired property of Tpro to be the “strongest” in
the class of c-simple theories.

Conjecture 6.1. [34] Suppose a theory T has an uncountable model which
is X-definable in HF (M), for some structure M with a c-simple theory.
Then T has an uncountable model which is X-definable in HF (L) for some

LE=Tpro.

It is an open question whether this conjecture is equivalent to the fol-
lowing one (which is its formal consequence).

Conjecture 6.2. Any c-simple theory has an uncountable model which is
Y-definable in HF(L) for some £ = Tbro.

It is known that Conjecture 6.2 is true for rather a “rich” class of c-
simple theories (see Theorem 6.29 below).

Following [23, 32, 33], we present a characterization of the theories hav-
ing uncountable models which are X-definable in HF (L) for £ = Thro-

The category *w is defined as follows: Its objects are the sets of the
form [n] = {0,1,...,n—1}, n € w ([0] = @), and its morphisms are order-
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preserving embeddings. It should be noted that there is a unique morphism
from [0] into [n] for any n € w.

Definition 6.18. By a *w-spectrum we mean any functor S from the cat-
egory *w into the category Mod’, of structures (of some fixed signature o),
whose morphisms are all possible embeddings.

To define a *w-spectrum S, it is necessary to give an infinite sequence
Mo, M1,..., My, ..., n € w, of structures of signature o, and associate with
each order-preserving embeddings 4 : [n] — [m] an embedding p. : M, —
My, so that, if po : [n] — [m] and 1 : [m] — k], n < m < k € w, are
morphisms of the category *w, then (p1p60)« = f1xptos, and if g : [n] — [n]
is the unique morphism from [n] into [n] (= id[y)), then p, = idoy,, : M, —
M., n € w.

If the *w-spectrum S={M,,, p|n € w,p € Mor*w} has been defined,
then for any linearly ordered set £, it is possible to define the structure

M (M) as a direct limit h2_1n> M, of the spectrum
0

{Me,, oo, | L0 C &1 C &, & s finite},

where 9)2;30 = M, if £, C £ is finite and |£y| = n, and the embedding
Pgy.e, + My, — MG, is defined for finite Lo C £,(C £) as follows: If
£ = {lo <h<...< lmfl} and £9 = {lio < lil <. < li"71} (in which
case 0 < ip < 41 < ... < ip—1 < m) and p : [n] — [m] is defined as
w(j) = ij, j < n, then

— . / _ _ /
Py, 81 & Mx : 30—9ﬁn—>mm—9ﬁ£l.

If £ C £ are linearly ordered sets, then the structure ¢ can be identified
with a substructure of 9¢/ in a natural way.

Any isomorphism between linearly ordered sets £ and £’ induces an
isomorphism between 9te and Mge,. Also if £ C £ are dense linear orders
without endpoints, then e < Mes. As a corollary, if £ and £ are dense
linear orders without endpoints, then Mg = M.

Let po and g1 be morphisms from [1] into [2] such that po(0) = 0 and
#1(0) = 1. The condition

Hox # s (*)

is sufficient for |MM3| > |£] to hold for any linearly ordered set £.
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Definition 6.19. A system of numberings v, : w — M,, n € w, is called a
computable sequence of constructivization

(Mo, v0), M1, v1)s. oy, (M, V), ..., NEW,

if the following conditions hold (we assume that the signature o of the
structures Mo, Ny, . . . is finite and without function symbols):

1) E = {{(n,mg,m1)|n,mo, m1 € w,vy(mg) = vp(my)} is a A-predicate
on w;

2) Np = {i = (ng,n1,...,nx)|[n € W (v (n1), ..., Vng (i) € PPno}
is a A-predicate on w for any (k-ary) predicate symbol P € o;

3) for any constant symbol ¢ € o there exists a X-function f. : w — w
such that ™ = v, fo(n).

Every morphism g : [n] — [m] of the category *w is uniquely defined
by the number m and the subset u([n]) C [m]. This remark allows us to
define a one-to-one correspondence p* : A — Mor*w between the subset
A = {n|n € w,r(n) < 2™} C w and the set Mor*w, provided that n € A
is assumed to code the morphism g : [k] — [1] such that [ = I(n) and r(n)
is the number of the subset p([k]) C [1] = [I(n)] in some standard listing of

the finite subsets of w. It is evident that A is a A-subset of w.

Definition 6.20. Let S = {9M,,, u«|n € w, u € Mor*w} be a *w-spectrum.
By a constructivization of S we mean any computable sequence of construc-
tivizations

(Mo, v0), (M1, v1)ye. oy, M, ), ..., NE W,

together with a Y-function f : A X w — w such that, for any n,m, k € w
and p : [n] — [m] € Mor*w, if n* € A is such that p*(n*) = pu, then
e (k) = v f(n*, k).

A *w-spectrum S is called constructivizable if there exists a construc-
tivization for it.

Theorem 6.26. [33] Let £ be a dense linear order without endpoints. A
theory T has an uncountable model X-definable in HF (L) if and only if there

exists a constructivizable *w-spectrum S, satisfying condition (*), and such
that M3 =1T.

One of the important corollaries of this theorem is the first part of the
following result, showing that the field C of complex numbers is rather
“simple”. The second part shows that C is not “too simple”.
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Theorem 6.27. [33]

1) C is X-definable in HF(L) for any dense linear order £ of size contin-
uum;
2) C is not X-definable in HF(S) for any structure S with empty signature.

A structure 2 is called locally constructivizable [33] if Tha(%,7) is c.e.
for every @ € A<%. It is easy to verify that a structure 2 is locally con-
structivizable if and only if, for any @ € A<, there exist a constructivizable
structure B and a tuple b € B<“ such that (2,a) =1 (%B,b) (or, which is
the same, HF(A,@) =, HF(,b)). Symbol =,, here and further on, denotes
elementary equivalence w.r.t. the class of formulas with less than a groups
of alternating groups of quantifiers in the prenex normal form (0 < o < w).
Henceforth, the next definition is a generalization of the notion of local
constructivizability.

Definition 6.21. [151] A structure 2 is called locally constructivizable of
level @ (0 < a < w) if for any @ € A<“ there exists a constructivizable
structure B and a tuple b € B<“ such that

HF (2, @) =, HF(B,b).

Local constructivizability of any level is preserved by X-definability.
There is:

Proposition 6.22. [151] Let A and B be such that A <x B and B is
locally constructivizable of level o, 0 < o < w. Then A is also locally
constructivizable of level a.

Any structure with a c-simple theory is saturated enough [33] and lo-
cally constructivizable of level w. Moreover, its countable “computable
simulation”, in the terminology from [89], is unique up to the computable
isomorphism. The situation is different in the case of regular theories:
There are structures with a regular theory, which are not locally construc-
tivizable even of level 1. For example, consider the fields R and @, of real
and p-adic numbers.

Corollary 6.7. [33] For any linear order £, fields R and Q, are not X-
definable in HF(L).
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In some cases there are more simple criteria, for a given theory, of the
existence of uncountable models ¥-definable in HF(£), £ = Tbro. We now
present such a criterion for c-simple theories.

The next definition is a generalization of the model-theoretical notions
of order and total indiscernibility.

Definition 6.22. For structures 2, B and some k > 0, aset I C A*N B
is called a set of A-indiscernibles in B (with dimension k) if for any pair of
tuples 7,7 € I<% with the same length,

(,7) = (A,7) implies (B,7) = (B,7).

Proposition 6.23. Suppose 2 is uncountable structure, structure B is sat-
urated enough and locally constructivizable of level w, and let A <y *B.
There exist computable structures Ay and Bo such that Ay = A, By = B,
and there is an infinite computable set of (Bo, bo)-indiscernibles in Ay with
a dimension k, for some k > 0 and by € (Bo)<“.

For certain c-simple theories this necessary condition of ¥-definability of
uncountable models can be simplified (by assuming the dimension to equal
1), and turns out also to be sufficient. Namely, for theory Tpro of dense
linear orders without endpoints, and theory T of infinite structures with
empty signature, there is

Theorem 6.28. [145] Let T be a c-simple theory, and let 2 be any com-
putable model of T. Then

1) there exists an uncountable M = T such that M <x £, L= Tpro, if
and only if there exists an infinite computable set of order indiscernibles
in A (with dimension 1);

2) there exists an uncountable M = T such that M <x S, S = Tg, if and
only if there exists an infinite computable set of total indiscernibles in
A (with dimension 1).

Remark 6.5. This result is not true in the case theory T is not c-simple.
For example, there exists a computable algebraically closed field (with char-
acteristic 0) with an infinite computable set of total indiscernibles (see [62]),
but there are no uncountable algebraically closed fields (with characteristic

0) X-definable in HF(S), S = Tg.

We now present some applications of Theorem 6.28.



HF-Computability 209

Definition 6.23. Let n € w. A (first-order) theory T is called n-discrete
if every finite type of T is uniquely determined by its n-subtypes.

A theory T is called discrete if it is n-discrete for some n € w. If T
is n-discrete and has a finite number of n-types then T is w-categorical
and submodel complete in some expansion by a finite number of definable
predicates. Any regular n-discrete theory with a finite number of n-types is
c-simple. Also, any submodel complete theory of a finite relational signature
is n-discrete with a finite number of n-types, for some n € w, and any w-
categorical submodel complete theory of a finite signature is n-discrete with
a finite number of n-types, for some n € w.

A theory T is called sc-simple [154] if it is w-categorical, submodel com-
plete, decidable, and has a decidable set of complete formulas. Henceforth,
a theory (of a finite signature) is sc-simple if it is e-simple and submodel
complete.

From the Ehrenfeucht—Mostowski Theorem we get

Proposition 6.24. [154] If T is a sc-simple theory of a finite signature
then, in any computable model of T, there exists an infinite computable set
of order indiscernibles.

As a corollary of the above fact, we get

Theorem 6.29. [154] Let T be sc-simple theory of a finite signature. There
exists an uncountable model A of T such that A <s £, £ = Tphro.

In the case of an infinite signature there is a counterexample. Using a
construction from [63] together with Theorem 6.28, the following result was
proved in [145]:

Theorem 6.30. There is an sc-simple theory of an infinite computable
signature, such that, for any uncountable A = T and any £ = Tpro, we
have A L5 L.

We now present some examples of sc-simple theories. For a w-categorical
theory T', by a Ryll-Nardzewski function of T we mean the function rp :
w — w defined as follows: for any n € w, rr(n) is the number of (complete)
n-types of theory T'.

It is easy to check that, for any w-categorical decidable theory T', the
following are equivalent:

1) T has a decidable set of complete formulas;
2) T has a decidable Ryll-Nardzewski function.
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One of the methods for constructing w-categorical theories is the Fraissé
construction [46]. Let K be a class of finitely generated structures of some
fixed signature. K is said to satisfy, respectively,

1) the hereditary property (K |= HP) if, for any 2l € K and B, B C 2
implies that B € K

2) the joint embedding property (K = JEP) if, for any 2, B € K, there is
¢ € K such that there exist embeddings 2 — € and B — ;

3) amalgamation property (K = AP) if, for any 2,8, ¢ € K and embed-
dings f1 : € = A, fo : € — B, there are ® € K and embeddings
g1: A =D, go: B — D such that f1g1 = fago;

4) the property of uniform local finiteness (K |= ULF) if there is a function
f :w — w such that, for any 2l € K with no more than n generators,
the cardinality of 2 is no more than f(n).

If a class K of finitely generated structures satisfy the properties
HP, JEP and AP, then there is a unique, up to the isomorphism, submodel
complete countable structure 2, the class of finitely generated substructures
of which is equal to K, up to the isomorphism (see, for example, [46]). We
call such structure 2 a Fraissé limit of K (denoted as 21 = limp K).

Theorem 6.31 (see [46]). Let K be a countable class of finitely gen-
erated structures of some fized finite signature, satisfying the properties
HP,JEP, AP, and ULF. Then limg K is w-categorical.

We present some examples of sc-simple theories constructed via Fraissé
limits (see [62, 63] for the details related to decidability).

Let FinGraph be the class of all finite symmetric graphs. It is easy to
check that this class satisfies the properties HP, JEP, AP, and ULF.

Definition 6.24. A symmetric graph 2 is called random if, for any finite
X,Y C A such that X NY = {), there is a vertex v € A\ (X UY) such that
v is adjacent with all vertexes from X and not with vertexes from Y.

Proposition 6.25 (see [46]). If 2 is the Fraissé limit of the class
FinGraph then 2 is a random graph. Moreover, Th(2l) is sc-simple.

Corollary 6.8. [154] There is an uncountable random graph 2L such that
A<z £ £E=Tpro.
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Let o be a finite predicate signature. The class F'in(o) of all finite
structures of signature o satisfies the properties HP, JEP, AP, and ULF.

Definition 6.25. Let o be a finite predicate signature. A random structure
Ran(o) of signature o is the Fraissé limit of the class Fin(c).

Corollary 6.9. [154] There is an uncountable structure 2 = Ran(c) such
that A gg ,Q, £ ): TDLO~

For other computability properties of Fraissé limits we refer the reader
to [17].

6.6.3. Special cases of X-definability

In some cases, for structures 21 and B one can say more than just state
the fact that 2 <x B. For example, it is obvious that HF () <y A for
any 2, but, in case of the standard model of arithmetic N, much stronger
result is true: HF(N) is ¥-definable within N, not using the elements of the
superstructure.

In particular, a natural additional restriction on Y-definability of struc-
tures in admissible sets is the restriction on the rank of elements used in this
process. To describe the situation formally, we now give some definitions.

Fix some signature o, and let P be an unary predicate symbol not in o.
For any formula ® of the signature o U {€}, with the bounded quantifiers
of the form Vz € t and 3z € t, we define by induction the relativization ®F
of ® by P:

— if ® is an atomic formula, put ®° = ®;

—if @ = (®y * D), * € {A,V, =}, put &F = (®F % &L);

—if ® = =, put & = -0”;

—if @ = (Qx € y)¥, Q € {V,3}, put ¥F = (Qx € y)¥F;

—if @ = J2¥, put ®F = Jz(P(x) A UP);

—if ® = Va2, put ®F = Vz(P(z) — ¥P).

Let now A be an admissible set, B C A be some transitive subset of A,
and ®(xg,...,2,—1) be a formula of the signature . Define the set

((I)(IQ, . ,a:n_l))B = {<a0, ey U,n_1> c A" | <A, B> ': (I)P(CLQ, ey an_l)}.

Definition 6.26. [146] Let A be an admissible set, B C A be some
transitive subset of A. A structure of a computable predicate signature
(Py, Py, ...), where each P; is n;-ary, is called 3-definable in A inside B if
there exist a computable sequence

®(20,y), ¥(zo,21,Y), V" (20, 21,Y), Po(Z0, - - -, Tng—1,¥),
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D5 (xoy - oy Trg—1,Y)s -+ s Poc(@0y -+ oy =1, Y)s Pr(Toy e o oy Trp—1,Y)s - - -
of ¥-formulas of o, and a parameter b € B, such that, for the sets
My = B (20,b), My C B, 1= 9P (xg,z1,b) N M2,
the following holds: My # @, n is a congruence relation on the structure
Mo = (Mo, P, ..., P,
where P = (O (20, ..+, Tny—1))2 N MJ*, k€ w,

(\I/*(xo,;vl,a))B N Mg = Mg \ (\Il(acomcl,a))B7

(®F(20s -+ -y Tny—1,0)) B OV MI*F = MI*\ (®p(z0, ..., 2py—1))"
for any k € w, and the quotient structure 9 is isomorphic to My, 7.

For an admissible set A and a subset B C A, define the ordinal rnk(B)
as follows:

rnk(B) = sup{rnk(b)|b € B}.

Definition 6.27. [146] The rank of inner constructivizability of an admis-
sible set A is the ordinal

cr(A) = inf{rnk(B) | A is ¥-definable in A inside B}.

The next theorem gives the precise estimate for the rank of inner con-
structivizability of hereditarily finite superstructures. It can be viewed as
an effective analogue of some results from [90] on definability in higher order
languages.

Theorem 6.32. [146] Let M be a structure of a computable signature.
1) If M is finite then cr(HF(9N)) = w.
2) If M is infinite then cr(HF(ON)) < 2.

As a corollary of Theorem 6.32 we get the following. For structures 91,
I, and a natural number n € w, we denote by M <§ N the fact that M is
Y-definable in HF (M) inside the subset consisting of all elements with the
rank less or equal n. If 9 is an infinite structure then

M <5 M if and only if M < N

for any 9t and any n > 2.
Typical examples of structures Mt with cr(HF(91)) = 2 are infinite struc-
tures with the empty signature, dense linear orders, and, more interesting
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one, the structure (w, s) of natural numbers with the successor function.
This fact follows from the next proposition, taking into account the decid-
ability of Thywm ({(w, s)), where Thy (99) is the weak monadic second-order
theory of 91.

Proposition 6.26. [146] If Thywn (9M) is decidable then cr(HF(9N)) = 2.

An example of a structure I with cr(HF(91)) = 0 is, obviously, the
standard model of arithmetic. An example of a structure which hereditary
finite superstructure has rank of inner constructivizability 1 is the field R
of real numbers. There is the following;:

Proposition 6.27. [146] cr(HF(R)) = 1.

Another natural special type of a Y-presentation of a structure 9t in
an admissible set A, s.t. M C U(A), is a X-presentation preserving the
domain of a structure. For a signature ¢ and an ordinal n < w, we denote
by Formy (o) the set of (finite first-order) formulas of the signature o,
which have a prenex normal form with no more than n alternating groups
of quantifiers.

We assume that, for any signature considered, some G&édel numbering
[-] of its terms and formulas is fixed.

Definition 6.28. Let 9t be a structure of a finite signature o, A an admis-
sible set, and let M C U(A). The structure 9 is n-decidable in A (n < w)
if

{{[el,m) | ¢ € Formn(o),m € M=¥, 9 k= (M)}
is A-definable in A.

A structure M is computable in A if 9t is 0-decidable in A, and decidable
in A if 9 is w-decidable in A.

Proposition 6.28. If Th(9M) is reqular then M is decidable in HF (D).
The decidability is rather a strong condition. For example, there is:

Proposition 6.29. A liner order £ is 1-decidable in HF(L) if and only if
£ is a sum of a finite number of dense linear orders and points.

A structure 9 of signature o is n-complete [37] (n < w) if for any
formula ¢(Z) € Form,(c) and for any m € M <% such that M E o(m)
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there exists a 3-formula 9 (T) such that 9 = ¢(m) and M = VZ(Y(T) —
©(Z)). The following proposition follows immediately from the definitions.

Proposition 6.30.

1) Suppose M is n-decidable in HF (M) (n < w). Then M is n-complete
in some expansion of M by a finite number of constants.

2) Suppose M is n-complete and Th(IM) is decidable. Then M is n-
decidable in HEF(97).

Suppose M is 1-decidable in HF(9). Then HF(9M) is quasiresolvable,
and hence has a universal Y-function and satisfies reduction, but not nec-
essarily uniformization.

Let 90t be a structure of signature ¢ and let signature o3-gioiem consist
of all symbols of ¢ and new functional symbols f,(z1,...,2,) for all 3-
formulas ¢(zg,21,...,oy,) of signature o. The structure M’ of signature
03-Skolem 18 called an 3-Skolem expansion of M if M' = M, M [,=M' |,,
and for any 3-formula ¢(xg,z1,...,2,) of signature o

M =V .. Ve, Cee(z,z1, ..., 20) = @(fo(T1, .. Tn), T1, ..., Tn)).

Theorem 6.33. [142] If HF(9M) satisfies uniformization then some 3-
Skolem expansion of M is computable in HEF(IN).

In some cases, this necessary condition is also sufficient.

Skolem expansion 9% of a structure M is well defined if for every
o(xo,21,...,2,) € Form(o), every m € M"™, and every permutation p
of the set {1,...,n},

M = (¢(z0,M) ¢ (0, p(m))) implies M7 |= (f,, (M) = f,(p(M))),

where p(m) = <mp(1), . ,mp(n)>.

The next theorem is a reformulation (and correction) of the main result
from [142] (unfortunately, the property of well-definedness for Skolem ex-
pansions was not explicitly stated there, yet it was implicitly used in the
text).

Theorem 6.34. [142, 157] Suppose Th(M) is reqular. Then HF (M) sat-
isfies uniformization if and only if some well-defined 3-Skolem expansion
M of M is computable in HF(M).

Remark 6.6. As it was recently noted (see [157]), this theorem admits a
natural reformulation in terms of the s-reducibility on structures [10] and
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Proposition 6.31 can be viewed as a natural (and non-trivial) example of
s-equivalence.

One of the important corollaries of this criterion follows from the next
result.

Proposition 6.31. [142] There exist well-defined Skolem expansions R
and (Q,)°, of the fields R and Q,, respectively, such that R® and (Q,)°
are computable in HF(R) and HF(Q,), respectively.

Corollary 6.10. [142] Structures HF(R) and HF(Q)) satisfy uniformiza-
tion and have a universal 3-function.

For HF(R), the uniformization property and existence of a universal
Y-function was independently proved in [141] and [66].

The role of parameters in the X-definition of a structure is rather impor-
tant. For example, as it is easy to see, any countable structure is 3-definable
in HF(R), where R is the field of real numbers. The case of X-definability
without parameters turned out to be more interesting, as it was shown
recently in [100].

Theorem 6.35. [100] Suppose a countable structure M is X-definable in
HF(R) without parameters. Then M has a hyperarithmetic presentation.

This estimate is precise, as follows from the next theorem:

Theorem 6.36. [100] For any § < w&E there is a countable structure M
such that

1) M is X-definable in HF (R) without parameters;
2) for any H C w such that M has an H-computable presentation, holds
09 <7 H.

In case we fix some restrictions on the cardinality of the congruence
classes, the estimate of complexity becomes much lower.

Theorem 6.37. [100] Let MM be a countable structure with a finite signa-
ture. The following are equivalent:

1) M is 3-definable without parameters in HF(R), and all equivalence
classes are at least countable;
2) M is computable.
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For other results on computability (X-definability) on the reals and on
some topological spaces, we refer the reader to [65-70, 99], and [71-80, 117].

6.7. Semilattices of Degrees of Presentability of Structures

Relation <y of ¥-reducibility, being defined on structures of arbitrary car-
dinality, in the case of countable structures can be viewed as the strongest
reducibility in the hierarchy of effective reducibilities on structures, as it
was shown in [150, 151]. We overview briefly some of the results in this
field.

Let A be an admissible set. We define uniform reducibilities on fami-
lies of subsets of A, which are the direct generalizations of the Medvedev,
Muchnik, and Dyment reducibilities on mass problems. Let X, C P(A).
Then,

(1) X is Medvedev reducibleto Y (X < ) if there are binary -operators
Fy and Fy such that, for all Y € Y, (Y, A\Y) € 6.(Fp) N d.(F1), and for
some X € X, X = Fy(Y,A\Y)and A\ X = F1(Y,A\Y);

(2) X is Dyment reducible to Y (X <. Y) if there is a unary ¥-operator
F such that Y € 6.(F) for all Y € Y, and F()) C &

(3) X is Muchnik reducible to Y (X <, V) if for every Y € Y there are
binary X-operators Fy and Fy such that (Y, A\Y) € 6.(Fp) N d.(F1), and
for some X € X, X = Fy(Y,A\Y) and A\ X = F(Y,A\Y);

(4) X is weakly Dyment reducible to Y (X <. Y) if there is a unary
Y-operator F such that Y € §.(F) for every Y € Y, and F(Y) € X.

For any admissible set A and for any r € {e, ,w,ew} (here r = ’is

used to denote the Medvedev reducibility), we denote by M,.(A) the degree
structure (P(P(A))/ =, <,). We will write M, instead of M, (HF(2)) for
brevity. All structures of the form M, (A) are lattices with 0 and 1, and
M, M., and M,, are isomorphic to the Medvedev, Dyment, and Muchnik
lattices, respectively.

For a countable structure 91, we consider the following classes consisting
of structures that are effectively reducible to 90:

Ks () = {9 | N <z M},

Ke(O) = {9 | N < (M, m) for some m € M<¥},

KON = {N| N < (M, m) for some m € M<“},

]Cew(m) = {m ‘ N <ew ﬂ}v

Ko(9) = {0 N <, M.
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It is known [151] that for any structure 91, the following inclusions hold:
Ks(9) € K (M) € K(OM) € Ko (M),
and
Ke(M) C Kew () C ICop ().

In general, all these inclusions are proper [48].

For any r € {e, ,w,ew}, we define a relation <, on K, by setting
M <, M. (M) C K- (N) and letting S, = (K,,/ =, <,) be the structure
of degrees of presentability corresponding to this relation.

Theorem 6.38. For any r € {e, ,w,ew}, the structure S, is an upper
semilattice with 0, and the following embeddings (<) and homomorphisms

(—) hold:
DD, —Ss S —S— M.

As a corollary from this result and the Jump Inversion Theorem for the
semilattices of X-degrees we get:

Theorem 6.39. [152, 153] Let r be an effective reducibility, i.e., r €
{e, ,w,ew}. If A is a structure with 0" <, A then there exists a structure
B such that

B =, .

This result can be generalized to the case of degrees of presentability of
structures in arbitrary admissible sets, see [156].

For arbitrary structures 9t and 9 with the same signature and any n €
w, we denote by I =1 9 the fact that HF(ON) =, HF(M'). It is clear
that for n < 2, 9 =HF 9 if and only if 9t =,, M. In case n = 2, M =¥
M if and only if, for any computable sequence {@.mn(Tm,T,,)|m,n € w} of
quantifier-free formulas of signature oy,

M = \/ 3z, /\ VY, (T U,)
mew new
if and only if the same sentence is true in 91.

For arbitrary structures 9t and 91, we denote by 9 <3 I the fact
that, for any tuple T € M <%, there exists a tuple m € N<“ such that
Tha (M, m) <. Tha(M,m). In particular, if M is locally constructivizable
then MM <3 N for any structure 9. As was noted in [33], if M <z N and
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I is locally constructivizable then 9 is also locally constructivizable. A
straightforward generalization of this fact is as follows: 9t <y 91 implies
M <3 N.

Definition 6.29. A structure 9 is uniformly locally constructivizable of
level n (1 < n < w) if there exists a constructivizable structure N for which
m <HF o,

For instance, the structure (w{* <) is uniformly locally constructiviz-
able of level w since (W', <) <7 (WEK (14-7), <), where the last ordering
(known as the Harrison ordering) is constructivizable.

Proposition 6.32. If M <s N and a structure N is (uniformly) locally
constructivizable of level n (1 < n < w), then M is also (uniformly) locally
constructivizable of level n.

The next proposition states that a class of locally constructivizable (of
level 1) countable structures is downward closed w.r.t. <,,, which is weakest
among the reducibilities under consideration.

Proposition 6.33. Let 9 and N be structures. Then N <3 M if N €
Kw(ON). In particular, if M is locally constructivizable, then every structure
M e Kw(M) is also locally constructivizable.

A pair (1, M) is locally constructivizable iff so are 9t and 9; therefore,
a set of degrees generated by locally constructivizable structures is an ideal
in semilattices S, r € {X,e, ,w,ew}. Classes of locally constructivizable
structures of level n, n > 1, however, are downward closed w.r.t. <y only
(so they form initial segments in Sy;). For weaker reducibilities, this is not
the case. For example, we have:

Theorem 6.40. There exists a countable structure My which is locally
constructivizable of level 1 (strictly) and is such that My < M for every
nonconstructivizable countable structure M. Specifically, if M is locally
constructiwizable of level n > 1 but is not constructivizable, then Ks(9) &

Kom).

The proof makes use of the result (obtained by T. Slaman [137], and,
independently, S. Wehner [164]) which states that there exists a structure
whose problem of presentability belongs to the least nonzero degree of the
Medvedev lattice (which, in particular, means that a semilattice S of de-
grees of presentability has a least nonzero element). Every such structure
is locally constructivizable. Namely, in [150] was proved the following:
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Theorem 6.41. There exist a countable structure M and a unary relation
P C M for which (M, P) =M but (M, P) £x, M.

Theorem 6.41 is of interest in connection with the following result in [4]:
For any countable structure 91, a relation P C M™, n € w, is X-definable
in HIF(OM) iff PC is C | oon-c.e. for every C € (M, P).

The next result from [150] gives some sufficient conditions for the equal-
ity of the principal ideals generated by a structure 9t with respect to dif-
ferent effective reducibilities.

Theorem 6.42. If M has a degree then Ks(0M) = K (M) = K(M) =
Kw(ON). If M has an e-degree then Ks (M) = Ko (M) = Kew (IN).

A natural (open) question is, Are these sufficient conditions also necessary?
For structures M and N with card(M) < card(NN), consider the class

KO, 9) = {9 | Pr(9, HE(N)) < Pr((9M, ), HE(N)), m € M<“}.
Classes K. (9, N), KqypW (MM, N), and Koy (M, N) are defined similarly.

Proposition 6.34. Let M and N be countable structures and let N be a
structure of the empty signature, or dense linear order. Then Kx(9M) =
Ke (90, 91) = K£(901, 91).

As a consequence, there exist natural isomorphisms between a semilat-
tice Sy of degrees of X-definability and semilattices S(HF(91)) of degrees
of presentability, where 91 is a countable structure of the empty signature,
or dense linear order.

One more result on the equivalence of “V-recursiveness” and “d-
definability”, in the sense of [85] and [104] (see also [4] and [3]), is the
following:

Theorem 6.43. For any countable structures 9 and N and any relation
R CHF(M), the following conditions are equivalent:

1) R <.x C for every presentation C of M in the admissible set HF(I);
2) R is X-definable in HF (90, 91).

Definition 6.30. Let 21 and 91 be countable structures. Structure 9 has
a degree (an e-degree) over structure D if there exists a least degree among
all TY-degrees (eX-degrees) of all possible presentations of 9 in HF(N).
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An immediate consequence of 6.43 is a generalization of 6.24:

Theorem 6.44. Let M and N be countable structures. Then the conditions
below are equivalent:

1) O has a degree (an e-degree) over N;
2) some presentation C C HF(N) of M is a A-subset (X-subset) in
HIEF (91, 91).

Obviously, for 9 <3 I, the structure 9t has a degree, and also an
e-degree, over M iff M <y M. It is also clear that if M has a degree, and
also an e-degree, over N, and 9 <x I, then M has a degree, and also
an e-degree, over 9. Furthermore, we have for any countable structure
2, there exists a structure 91 which has a degree but is not ¥-definable in

As in the nonrelativized case, we have:

Theorem 6.45. Let M and N be countable structures. If M has a degree
over M, then Kx (M, N) = K (O, MN) = KON, N). If M has an e-degree
over N, then Kx (M, N) = K (N, N).

6.8. Closely Related Approaches to Generalized Com-
putability

Now, we overview some of the approaches to the computability over abstract
structures, looking for the differences and similarities of a given approach
and the approach based on HF-computability.

6.8.1. BSS-computability

All results of this section are from [8], and we use the original terminology
from this paper, saying “recursive” instead of “computable”. The following
definition is a generalization of the main definition from [14]. Let 9t be a
structure of a finite signature o.

Definition 6.31. A BSS-machine contains following:

1) a triple of positive integers (m,n, k), which are called input, work-
ing, and output dimensions, respectively, and are denoted by m=dim;M,
n=dimw M, and k=dimo M,

2) a flow chart of a program.
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A flow chart of a program is a connected directed graph having 4 types
of nodes, with each of which, either a tuple of terms or an atomic formula
of signature o is associated.

(1) There exists a unique node without incoming edges. It has just one
outgoing edge and the associated tuple of terms

(@1, )y e st (T, xm)), (1)

which is called an input node. Here m and n are the input and working
dimensions, respectively. We call this node an input node.

(2) There exists at least one node without outgoing edges.With each such
node we associate a tuple of terms

<t1($1,...,3}n),...,tk(l‘l,...,ajn)>, (2)

and we call it an output tuple. Here n and k are the working and output
dimensions, respectively. We call such nodes output nodes.

(3) A computation node has several incoming and one outgoing edge. As-
sociated with this node is a tuple of terms

(1, oy Tn),y - tn(T, .oy T0)), (3)

where n is the working dimension.

(4) A branch node has several incoming and two outgoing edges. One of
the outgoing edges is labeled by “0”, the other by “1”. Associated with
this node is an atomic formula ¢(z1,...,,), where n is the working
dimension, in the signature o.

Note that a flow chart may have no computation and branch nodes.

Each term t(z1, ..., z,) of signature o defines a term function f : M"™ —
M as follows: f(mq,...,m,) = t(mq,...,m,) for mq,...,m, € M. Each
tuple of terms (t1(z1,...,2r),...,ts(x1,...,2,)) defines a term function

f:M" — M? similarly.

We define an arbitrary BSS-machine S over a structure 9. The sets
I =A™ 8 = A", O = A* are called, respectively, input, working, and
outpul spaces.

Given any z € I, a BSS-machine does computations which either never
halt or halt and produce y € O. First, the machine sends  into an input
node, which computes the term function I(z) defined by the associated
tuple of terms (1). The resulting value z = I(x) goes along the outgoing
edge to the next node. At a computation node, the term function g defined
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by the tuple (3) is applied to z, and g(z) is sent along the outgoing edge.
When z € S reaches (if ever) a branch node, the truth value of associated
formula ¢(z) is computed. If ¢(z) is true, the element z goes to the next
node along the edge labeled “17; if not, it is sent along the edge labeled
“0”. At an output node, the element z € S is converted to y = O(z) of the
output space, where O is the term function defined by the associated tuple
of terms (2), and the machine S halts and produces y € O. If the machine
never reaches some output node, we say that the result is undefined.

If the machine S with input = € I outputs y, we write y = S(z).

The set

Q(S,M) = {x € I| S halts on input x}
is called the halting set of a machine S in the structure 9.

Definition 6.32. A function f : Q — MF, Q C M™, is said to be BSS-
computable if there exists a BSS-machine S such that Q = Q(S,91) and
f(x) = S(x) for all z € Q.

Definition 6.33. A set X C M™ is called recursively enumerable over 9
if and only if it is the domain of some BSS-computable function over 1.
A set X C HL(M) is called recursively enumerable (r.e.) if it is r.e. over
HL(9).

Definition 6.34. A set X C M™ is called recursive over 9 if X itself and
its complement M™ \ X are r.e. over M. Recursive sets X C HL(M) over
HIL(901) are called recursive.

Definition 6.35. A set X C M™" is called an output set over 9 if X is the
range of some BSS-computable function over 9. Output sets X C HL(M)
over HIL(OM) are called (simply) output sets.

Lemma 6.6. Fach recursive set over 9 is r.e. over M. Fach r.e. set over
M is an output set over M.

Proposition 6.35. The following statements are valid:

1) each r.e. set X C HL(M)™ is the projection of some recursive set
over HIL(ON);

2) X C HL(M)™ is the output set over HIL(OM) if and only if X is the
projection of a recursive set over M.
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Theorem 6.46. Each recursively enumerable set X C M™ over HL(9M) is
defined in M by a formula of the form

\/ wi(xla et a'rn)y

€W
where {p; | i € w} is a recursive set of quantifier-free formulas in the
signature o. Conversely, each set X C M™ defined by a formula

\ ei(z1,... xn),

1EW
where {@; | i € w} is a recursively enumerable set of quantifier-free formulas
in the signature o, is recursively enumerable over HIL(9).

Theorem 6.47. Each output set X C M™ over HIL(ON) is defined in M by
a formula of the form

\/(Hfi)goi(f’hyla DR ayn)7

P1EW
where {p; | i € w} is a recursive set of quantifier-free formulas in the
signature o. Conversely, each set X C M™ defined by a formula

\/ (Elfl)cpl(f’u Y, .- ayn)v

1EW
where {@; | i € w} is a recursively enumerable set of quantifier-free formulas
in the signature o, is an output set over HIL(IN).

For other results on BSS-computability (and similar machine-style ap-
proaches), see [5-7] and [15].

6.8.2. Search computability

We recall some of the central notions of the theory introduced in [105, 106],
together with the relationships with 3-definability established in [45].

Let 9 be a structure of a finite signature, and let HIL(9?) denote the
hereditarily listed superstructure over 1. The central notion is that of
a partial multi-valued function (p.m.f) from HL(M)¥ to the set of subsets
HL(M), where k < w. We use the following notations (here u € HL(M)*):

(u) = z,if z € f(u
(u) |, if f(u) # @
C

o f (We say that f(u) produces z);
o f

o [ < g ifVu(f(u)

o f=

o f

e say that f(u) is defined);

))
g, if (f Cg) (
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Substitution (superposition) of p.m.f. is defined in the natural way:

fx9(x,y),y) = 2 & Jul(g(xy) = u) A (f(x,u,y) = 2)].
Simultaneous substitution is interpreted as a successful substitution. In
particular,

[Fg(x), 9(x)) = 2] & FuBul(g(x) = u) A (g(x) = v) A (Flu,v) = 2)],
so that (in effect) a multi-valued term that occurs more than once in a
formula may have different denotations for each of its occurrences.

A v-operator is a nondetermined analogue of the minimization operator,
and is defined as follows:

vylg(y,x) = 0] = z & (9(z,x) = 0).

Now, we consider the construction schemes for multi-valued functions.
Let ® = ¢1,..., ¢ be a finite (possibly empty) list of p.m.f. on HL(M), ¢;
is n;-ary, 1 < 4 < [. In the schemes C0-C10, x € HL(M)", y € HL(M)™
n,m € w (possibly n = 0 or m = 0). We explain shortly the expressions in
the right parts.

CO. f(t1,---ytn;,X) =ity tn,), (0,n; +n, i)
ClL. f(X> =Y <17n’y>
C2. fly,x)=y (2,n+1)
C3. f(s,t,x) = (s,t) (3,n+2)
Cdo. f(y,x)=1(y) (4,n+1,0)
C4y. f(y,x) =r(y) (4,n+1,1)
C5. f(x) =g(h(x),x) (5,m,4g,h)
Cé. f(y,x)=g(y,x),ify € M; (6,n+1,9,h)
f(<57t ’X) = (f(S,X),f(t,X),S,t,X)
C7. f(x) =g(xjt1,21,...,Tj,Tjq2, ..., Tn) (7,m,j,h)
C8. f(e,x,y) = {e}(x) 8,n+m+1,n)
C9. f(x) =vylg(y.x) — 0] (9.m,9).

All schemes, besides C8, were defined previously. Schemes C0-C4 define
basic operations; C5, C7 corresponds to the superposition; C6 corresponds
to the primitive recursion; and C9 to the minimization. Scheme C8 corre-
sponds to the universal machine, with the expressions in the left playing
the role of function indices. More exactly,

CO'. If wi(t1, ... tn,) — 2, then {(0,n; +n,i)}(t1,. .., tn,,X) = 2.
cl'. {(1,n,y)}(x) = y.

C2'. {(2,n+ 1)}y, x) = y.

C3'. {(3,n+2)}(s,t,x) — (s,1).
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Cdo'. {{(4,n+1,0)}(y,x) = U(y).

C4y'. {{(4,n+1,1)}(y,x) = r(y).

C5'. If there exists a u such that {g}(x) — u and f(u,x) — z, then
{(5,m,9,B)}(x) — 2.

C6'. If y € M and g(y,x) — z, then {(6,n+ 1,9, h)}(y,x) — z;
if there exist u, v such that {(6,n + 1,9,h)}(s,x) — u, {(6,n +
1,g9,h)}(t,x) = v and {h}(u,v,s,t,x) = z, then
{(6,n+1,g,h)}((s,t),x) = z.

C7. If {g}(@js1, 21, Tj, Tjta,...,Tpn) — 2, then {(7,n,j, h)}(x) = 2.

C8'. If {e}(x) — 2, then {(8,n +m + 1,n)}(e,x,y) — 2.

C9'. If {g}(y,x) — 0, then {(9,n,g)}(x) = y.

A pm.f. f is called search computable relative to g, if it is constructed
with C0-C9, where CO may contain functions from p. A predicate R(u)
on HL(M) is called search computable relative to @, if its characteristic
function is search computable relative to B. A predicate R(u) on HL(M)
is called semi-search computable relative to @, if there exists a search com-
putable (relative to P) predicate Ry(y, u) such that R(u) < JyRo(y, u).

If a structure 9 is defined on the set M then (if not stated overwise), the
list ¥ consists exactly of characteristic functions of the signature predicates
of 9.

Theorem 6.48. [45] Let M be a structure of a finite predicate signature,
and R be a relation on HL(IN).

(1) R is semi-search computable on HIL(OM) if and only if R is a X-predicate
on HL(9M);

(2) R is search computable on HIL(OM) if and only if R is a A-predicate on
HL(9M).

In conclusion, we present an approach to relative computability of ab-
stract countable structures, introduced by I.N.Soskov in the framework of
search computability. Let us consider algebraic structures of the form

A=(U, N, =y, #v, R1, ..., Ry),

where U is an infinite countable set, N is the set of the natural numbers,
and R; C U% xN% a;, b; € N, 1 <3< n,a;j+b; > 1, are partial predicates,
which take only value true, whenever defined.

We use the so called Moschovakis enrichment. Let Uy = U U{o}, where
0 ¢ U and let (-,-) be an injective binary function defined on Uy with values
outside of Up. Let U* be the closure of Uy with respect to (-, -).



226 Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev

Let R} (3,%) be true if and only if R;(3, %) is true, for any 1 < ¢ < n and
(5,Z) € U% x Nb. Also define partial predicates &, O and II on the set
U* in the following way: U(s) is true if and only if s € U for each s € U*;
O(s) is true if and only if s=o for each s € U*; and II(s, ¢,7) is true if and
only if s = (t,r) for every s, t, r € U*.

By U, O and II denote the complement predicates of U, @ and II, for
example U (s) is true if and only if U(s) is false for each s € U*. Moschovakis
enrichment of 2 (x-structure of 2) is

9’[*:<U*7 Na =U~*, %U*a Z/[, H7 07 67 Ha ﬁv RT??R:L>

We write (2*, R) to denote the structure that is obtained by adding R to
2A.

The predicate R C U* x N™ is called SC-definable in A (write R <gc )
if and only if there exists a primitive recursive (m + 1)-ary function - and
t1,...,ty € U such that for all (3,7) € U¥ x N™ the following equivalence
holds:

R(3,T) is true <= 3n € N(v(y(n,7))(t,3) is true),
where v is some Godel numeration of positive 3-formulas.

Definition 6.36. For structures % = (U, N, =y, #y, RY, ..., R*) and
B = (U N, =y, #u, R, ..., R®), A is said to be SC-reducible to B
(A <sc B), if R? <g¢ B for each 1 <i < n.

The relation <g¢ is reflexive and transitive, and induces an equivalence
relation =g¢ in the class of all algebraic structure with the abstract sort U.
The respective equivalence classes are called s-degrees, and they form an
upper semilattice. For the results in this field we refer the reader to [10, 140].

6.8.3. Montague computability

The results from this section describe one of the very first generalizations
of computability theory over the natural numbers to the case of com-
putability over arbitrary structures. It was presented by R. Montague
in [90] as an attempt to look at the computability theory as a part of
the model theory, considering computability as definability in higher or-
der logics. The connections with the search computability introduced by
Y.N. Moschovakis [104, 105], another one of the first generalizations of
computability theory, are due to C. Gordon [45].
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Let 2 be a structure of a finite predicate signature (Rq,..., Rk), where
each R; is n;-ary, and let x be a cardinal. Define

S0n 4,
Sntlir = Lo C S™F | card(z) < K}.

Consider a language with relation symbols for the relations of 2l and
the membership symbol € and variables of type n to range over S™F.

Definition 6.37. S =
S0 = A,
Sntl = {x | 2 is a finite subset of S™}.
The elements of S™ are called objects of type n.

S™, where S™ is defined inductively:

necw

Definition 6.38. A system A" = (S, €, Ry,..., Rg, R},..., R}) is called a
t-extension of the system 2, where R} is the complement of R; relative to
Ani .

Definition 6.39. The language X! (for the structure 21*) has the following
symbols:

(a) For each n € w, a countable sequence vy p, v1,n, ..., of variables of
type n;

(b) Relation symbols Ry, ..., Ry, R},..., R};

(c) The symbols A, V, V, 3, €, (, ), and ,.

The formulas of 3¢ are defined inductively by:

(d) For i=1,...,k, if z1,...x,, are type 0 variables then R;(x1,...,2y,)
and Rf(x1,...,zy,) are formulas;

(e) If p and ¢ are formulas then (¢ A ¢) and (¢ V ¢) are formulas;

(f) If ¢ is a formula, x is a variable of type n and y is a variable of type

n+ 1 then (3z € y)p, (Vx € y)p and Jzp are formulas.

(Notice that z € y is not a formula of ¥t).

The interpretation of 3t in At is the obvious one with variables of type n
ranging over objects of type n.

The relations on 2 which are X definable in 2* are those which are
considered in [90] as analogs of the recursively enumerable relations.

Theorem 6.49. [45] Any St-relation on A is semi-search computable.
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Theorem 6.50. [45] If the equality relation on 2 and its complement are
t-relations in A then any semi-search computable relation on 2 is a Xt-
relation.

6.9. KPU. Examples of Admissible Structures

Now we give some general information about admissible sets. As it is said
above, it can be used in the HF-computability because any hereditarily
finite superstructure is an admissible set.

6.9.1. Elements of KPU

Recall the axioms of Kripke-Platek Theory with Urelements (KPU). Let
o be a signature which contains a binary symbol € and a unary symbol
U. They are interpreted as the membership relation and as the set of
urelements respectively.

Extensionality VzVy(("U(z) A "U(y)) = (Vz((z € 2) > (z € y)) = (z =
y));
Pair VaVy3z((x € 2) A (y € 2));
Union Vz3y("U(y) AVzVw(((z € ) A (w € 2)) = (w € y)));
Urelements Vz(U(z) — Yy (y € z));
Empty Set Existence 3z("U(x) AVy (y € x));
Foundation Scheme VzZ(Jzp(z,z) — Jz(p(z,z) A Vy(ly € z) —
~¢(y,Z%)))), for any formula ¢ of o in which y does not occur free.
It follows from Extensionality that a set without elements (i.e., an empty
set) is unique.
To formulate the remaining axioms, we need a definition of Ag-formula:

Definition 6.40. The class of Ag-formulas of signature o is the least one
which contains atomic formulas and is closed under the following logical
connectives: —, V, A, 7, Vy € t, Jy € t, where ¢ is a term of ¢ and y
is a variable (as before, Vy € t... and Jy € t... are abbreviations for
Yy(ly € t) — ...) and Jy((y € t) A...) respectively).

Ay Separation Scheme VzVz("U(z) — Jy("U(y) AVw((w € y) <> ((w €
x) A p(w,Z))))), for every Ag-formula ¢ of the signature o in which y
does not occur free;

Ay Collection Scheme VzVr("U(z) — (Vw € z3yp(w,y,Zz) — Juvw €
23y € up(w,y,Zz))), for every Ap-formula ¢ of the signature ¢ in which
u does not occur free.
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It follows from these axioms that, for any elements x, y, there exist the
pair {z,y}, the ordered pair (z,y) = {{z},{z,y}}, the union |Jz, and the
results of the usual set theoretic operations x Uy, x Ny, x \ y.

Structures of the theory KPU are denoted as A, B, C, ... (possibly
with indices); their domains are denoted as A, B, C, ... respectively (with
corresponding indices). Given a structure A of KPU, elements from U(A)
are called urelements and elements from A \ U(A) are called sets. The
axioms of KPU enables us to prove the existence of the Cartesian product
a X b for any sets @ and b. A structure with operations and relations can
be given on the set of urelements.

The theory KPU can be considered as a fragment of the theory ZF
with urelements and, therefore, we can define the notions of a transitive
set as a set containing all its elements as subsets and that of an ordi-
nal as a transitive set consisting of transitive sets only. Notice that for
any set x there exists the transitive closure TC(z), i.e., the least tran-
sitive set under inclusion containing x as a subset. Moreover, TC(x)
is a X-function. By using foundation [11, 33] one can prove that ordi-
nals on structures of KPU are linearly ordered by the membership rela-
tion and every non-empty definable subset of ordinals has the least el-
ement. A structure A of KPU is called an admissible set [33] if the
set Ord(A) of ordinals of the structure is well ordered under the mem-
bership relation. Such a definition is more abstract than the definition
from [11] because it is closed under all isomorphic images. However, any
admissible set is isomorphic to some admissible set in the sense [11]. An
ordinal « is called admissible if Ord(A) = «, for some admissible set
A.

As it is said above, hereditarily finite superstructures are admissible
sets. We give now a series of other examples of admissible structures:

(1) Any standard model of ZF with urelements is an admissible set.

(2) Let s be an infinite cardinal and let 9t be a structure (possibly, empty)
of some signature 7. Then a structure H,.(9) of 7 U {U, €} with its
domain {a € Vs | card(TC(a)) < s}, where Vj is the universe over
M(I1.1 [11])), is an admissible set with Ord(H,.(9t)) = . Thus, any
infinite cardinal is admissible.

(3) Let 9 be a structure. Then there exists the least admissible
set HYP(O) under inclusion containing 9 as an element. More-
over, its domain can be found constructively in any such admissi-
ble set, namely, there is a X-function L(a,«) that it coincides with
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Uaecoragmyeeny) L(M, a) [11, 33]. Consider HYP(91) where D is the
standard model of arithmetic. Then Ord(HYP(M)) = w{'¥ is the first
non-constructible ordinal and the collections of A- and X-subsets are
exactly A} and II} respectively. The properties of this admissible set
are studied in detail in [11].

(4) Given an admissible set A, {a € A | TC({a})NU(A) = @} is the domain
of an admissible set which is called the pure part of A. Generally,
admissible sets without urelements are said to be pure. As a corollary,
an ordinal « is admissible if and only if Lo, = (Us-,, L(2,8), €) is
admissible. Admissible sets of such kind are called constructible.

Indeed, the pure part of any admissible set whose ordinal is w coincides
with HF(2), i.e., the least admissible set under inclusion(II.2.12 [11]).

Notice that if A is an admissible set over 9t then HF (M) is exactly
the closure of the set M of urelements together with {@} under values of
set-theoretic terms {-} and U.

6.9.2. Y-subsets

In comparison with classical computability, an effectively presented relation
is the main object of study here, not a function. The main interest in these
relations lies in the method of defining them, as well as in the general
absence of a universal effective function.
The notions of Y-formulas, Y- and A-subsets, and >-functions on struc-
tures of KPU are defined like these for hereditarily finite superstructures.
We give examples of basic A-predicates and ¥-functions used here:

e Ord(z) (z is an ordinal);

e Nat(z) (x is a natural number; we often denote the set of finite ordinals
in admissible sets as w);

e TC(x) is the least transitive set containing = as a subset;

e sp(z) = {y € TC(z) | U(y)} is the support of x;

e rk(z) = sup{rk(y) + 1 | y € x} is the rank of .

As usual, (z,y) = {{z},{z,y}}, (x) = =z, (x1,22,...,Zpn_1,Zpn) =
({x1,%2,...,Tn_1),Zn). As in the classical case, it suffices to consider sub-
sets of admissible sets only because the ordered pair operation is definable
by some Ag-formula. Moreover, this formula is independent of choice of a
structure of KPU. We give now several equivalent definitions of 3-subsets
in any structure of KPU.
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Proposition 6.36. Let A be a structure of KPU and let B C A. Then the
following conditions are equivalent:

(i) B is a X-subset of A;

(ii) B is a Xq-subset of A;

(iii) B = 0F for some partial X-function F;

(iv) B = pF for some partial X-function F;

(v) B=@ or B=pF for some total X-function F.

Proof. (i) — (ii) follows from the Reflection Principle [11]. (ii) — (v)
Let B be a nonempty ¥q-subset and let Jypo(z,y) define B, where ¢ is a
Aop-formula. Take by € B and define a ¥-formula 1 (x,y) as follows:

Fudv((z = (u, v)) A ((polu,v) A (y = u)) V (Tpo(u, v) A (y = bo))))V
("(x is an ordered pair) A (y = bg))).

It is easy to check that a Y-formula 1 (x, y) defines the graph of some total
function f with B = pf. (v) — (iv) If B = & then a Y-formula ~(z = z)
defines the graph of nowhere converged function, in particular, the range
of it is empty. If B # @, then it is evident that (iv) is true. (iv) — (i),
(iii) — (i) Let a X-formula ¢(z,y) define the graph of F. Then Jz¢(x,y)
and Jy¢(z,y) define B in (iv) and (iii) respectively. (i) — (ili) Suppose
that B is definable by ¥-formula 6(z). Then (6(x) A (z = y)) defines the
graph of some function f whose domain coincides with B. O

An infinite X-subset B of A needs not have total X-functions “enumer-
ating” it without repetitions, i.e., one-to-one correspondences from A onto
B. Several examples are given.

Examples 6.9.1.

(1) Any admissible set has always a countable A-subset w C Ord(A).

(2) If an admissible set A satisfies w < Ord(A) then w cannot be enu-
merated without repetitions via a total Y-function, otherwise A € A,
by ¥-Replacement (1.4.6 [11]). Moreover, if a € A then a cannot be
enumerated without repetitions via a total 3-function.

(3) There exists a hereditarily finite superstructure over a countable struc-
ture of some finite signature which has an infinite ¥-subset B C w
such that any coinfinite 3-subset of B is finite (theorem 2.1 [101]).
In particular, B cannot be enumerated without repetitions via a total
Y -function or even a partial 3-function with domain w.
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6.9.3. Gandy’s Theorem

An approximation by some strongly computable sequence of finite sets is
one of the universal methods of defining computably enumerable sets in
classical computability. In general, this method cannot be applied in ad-
missible sets because Y-subsets cannot be constructed by ordinal steps in
some admissible sets. However, nondeterministic analogues can be used
here if elements of a certain kind play the role of steps.

Definition 6.41. Let 901, 9 be structures of some signature o O {€}.
A structure M is called an end extension of M (we write M <ena N) if
{b|be™a} ={b|be™a} for each a € M.

If A is a structure of KPU in some relation signature and a € A is tran-
sitive then A [ @ <e¢pg A. Any embedding of one structure into another
is extendible to some end extension, that is, given two structures 9t and
N such that M < N, there is an embedding ¢ : HF(IM) — Ay such that
1W(HF () <end Am, for every admissible set Ay over M.

Since ¥-formulas are preserved under end extensions (1.8.4 [11]) we have:

Proposition 6.37.

(1) Let A be a structure of KPU in some relation signature, ®(z) be a X-
formula in the signature with a parameter ag € A, and b € A. Then
A = ®(b) if and only if A | ¢ = ®(b) for some transitive set ¢ € A,
{ag,b} Cc.

(2) Let HF(ON) be a hereditarily finite superstructure in some relation
signature, ®(x) be a L-formula in the signature with parameters
mo,...,Me—1 from M, and b € HF(M). Then HF(ON) E ®(b) if
and only if HF (D) = ®(b) for some finite substructure My < M,
{mo,...,mp_1}Usp(b) C Mp.

An important circumstance is that both the approximations are defined by
some Y-formulas which can be effectively found from ®. It is convenient to
use variations of proposed approaches in practice.

Now we describe Gandy’s method of construction of a X-predicate as
the least fixed point of some Y-operator. In section 6.3, this method was
defined on hereditarily finite superstructures.

Let A be a structure of KPU. We define two topologies on P(A).

e The strong topology 75 is defined by an open basis consisting of sets of
kind V, ={M | M CAaC M}, ac A\U(A).
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e The weak topology T,, is defined by an open pre-basis consisting of sets
of kind V{43, a € A. In other words, sets of kind V,,, where a € A\U(A)
is a finite set, form an open basis of this topology.

Note that these topologies coincide on hereditarily finite superstructures. A
continuous map F : (P(A),7s) — (P(A), Tw) is called a weakly continuous
operator. Every weakly continuous operator F' is monotonic, i.e., M C N C
A= F(M) C F(N) and, therefore, it has the least fixed point which can
be found in the following way: I'o = @; a1 = F(Ta); I'y = Ug, Tss
if 7 is limit; then, as it is easily checked, I'v = U, <carq(a)+ [a is the least
fixed point of F.

A weakly continuous operator F is called a X-operator if I'y, = {(a,b) |
a€ A\U(A),be F(a)} is ¥ on A.

Theorem 6.51. [Gandy] Let A be an admissible set and F' be a X-operator
on A. Then the least fixed point 'y of the operator F is a X-subset of A.
Moreover, I'x = T'orq(a)-

We illustrate some applications of this theorem.

Let ¥(z, PT) be a Y-formula and Fy(M) = {b | (A,M) = V(b)},
for every subset M of an admissible set A. Then Fy is a X-operator on A.
Thus, the Gandy Theorem can be viewed as a generalization of ¥-Recursion
Principles.

Proposition 6.38. Let A be an admissible structure over 9M. Then
HFE(M) is a X-subset of A.

Proof. Let ¥(x, P") be
Ulx) v 3y3z(Py) AN P(2) A((z = {y}) V (z = y U 2))). O

Indeed, - cannot be replaced by A- in 6.38(V.2.6 [11]). However, the
following holds:

Proposition 6.39. Let A be an admissible set. Then HF(2) will be a
A-subset of A, HF (&) <end A and hence every X-(A-)predicate on HF (&)
is 3 (A) on A.

Proposition 6.40. Let A be an admissible set and let M be a A-(3-)subset
of A. Then {{n,a) |a € M™, n <w} will be A(X) on A.

Proof. Let Uo(x,y, PT) be
(y=1)A(x e M)V Iuv[(z = (u,v)) A (v e M)ATz(Nat(z) A (y =
z+1)A(z > 0) A P(u, 2))]
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and let ¥y (z,y,Q") be
“Nat(y)V(y=0)V((y=1)A(x g M))VvIz(Nat(z) Ay =z+1)A (2 >
0) AVu € TC(z)Vv € TC(x)("(z = (u,v)) V Q(u, z) V (v € M))). O

Corollary 6.11. Let A be an admissible set and let M be a A-(X-)subset
of A. Then M<¥ =] __M" is also a A-(X-)subset of A.

n<w

Gandy’s Theorem implies the existence of a universal X-predicate on any
admissible set. Let A be an admissible set and IC a class of n-ary relations
on A. A predicate P C A" is wniversal for K if K = {{(b1,...,b,) |
(a,b1,...,by) € P} | a € A}. In particular, P is a universal X-predicate
if it is universal for the class of all n-ary X-predicates on A; a partial -
function f(y,z1,...,xy) is a universal X-function if its graph I'f is universal
for the class of graphs of all n-ary partial X-functions.

We identify formulas with their Gédel numbers.

Theorem 6.52. There is a binary X-predicate Try on A such that, for
every X-formula ®(x) and a € A,

(®,a) € Try & A = O(a).

Theorem 6.53. There exists a universal (n + 1)-ary X-predicate
T(e,x1,...,xy) on A.

As is mentioned above (see Sections 6.3, 6.5), there are admissible sets
without universal X-functions [49, 101, 132, 162].
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Do physical processes compute? And what is a computation? These
questions have gained a revival of interest in recent years due to new
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7.1. Introduction

Digital machines, by their extraordinary logical and computational capa-
bility, are changing the world. They are changing it with their power and
their originality, but also with the image of the world they reflect: they
help perform thousands of tasks and enable radically new ones, they are
an indispensable tool for scientific research, but they also project their own
mathematical structure upon the processes they are involved in.

The aim of this paper is to present several situations (in a non-
exhaustive and rather kaleidoscopic way) where a precise confrontation of
digital capacities with real settings in natural sciences is possible, and, in
particular, to show how, in these situations, the computer science’s concept
of computability has to be carefully handled and sometimes not pertinent.

Digital machines are not neutral, as they have a complex history, based
on several turning points in terms of the thinking which enabled their inven-
tion. They synthesize a vision and a science which is very profound. They
are “alphabetic” in the specific sense of the encoding of human language,
produced by a bagpipe over strings, by means of discrete and meaningless
letter-units, an incredible invention which dates back 5,000 years. They
are Cartesian in their software/hardware duality and in their reduction of
thought to the elementary and simple steps of arithmetic calculus. They
are logical by stemming from a logico-arithmetical framework, in the tradi-
tion of Frege and Hilbert, during the 1930s (“proofs are programs”). And
this by the final remarkable invention, by Goédel: the number-theoretic en-
coding of any alphabetic writing. For all of these reasons, they contribute
to a reading of nature based on the computable discrete, from the alphabet
to arithmetic, on a space—time framed within discrete topology, of which
the access and the measurement are exact, just like in digital databases.

We will see why confounding physics, despite its great “mathematicity”,
with computations and calculus, in any form whatsoever, seems a mistake
to us. First, the idea that physics “reduces to solving” equations is an
erroneous idea. To be assured of this, one needs only to consider that a
great part of physics concerns variational problems in which the search of a
geodesic differs greatly from the search for the solution to an equation. And
this, without mentioning the singular quantum situation, to be discussed
below, nor the life sciences, which are not very mathematized and for which
the notions of invariant and of the transformation which preserves it, central
to mathematics, are far from being “stabilized”.
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The new importance of digital machines, in particular in the natural
sciences, requires a thorough analysis of the relationship between computa-
tions and natural processes. We will focus here on the relationships between
computations and, among the physical processes, those which we consider
as “natural”, that is, those that occur somehow “independently” of hu-
man intervention (because a machine also produces, or even is, a physical
process, but it is a result of a human construction which is extremely orig-
inal and theoretically rich). We will then ask the question: Do physical
processes compute?

The paper is organized as follows: Section 2 is devoted to a topologi-
cal discussion of the link between computability and continuity. It leads
to Section 3 where mathematics, especially computational mathematics,
is confronted to physics endowed with its peculiar “reality” property. We
show in particular how physics deals with a lot of concepts which escape
from any sense of “calculus”. Section 4 gives an epistemological example of
a mathematical object which, with the evolution of physics, lost its compu-
tational flavour after entering the game of modern physics. Sections 5, 6,
7, and 8 are somewhat the core of the paper. We first discuss the concept
of predictability in the mirror of chaoticity in dynamical systems. Then we
come back to topological remarks and consider the problem of determin-
ism, a fashionable subject in computer sciences nowadays. We then look at
the case of quantum mechanics, also a subject which entered strongly into
computer sciences lately. Section 9 discusses the position of randomness
inside dynamical systems, and we end up with some final remarks.

Let us mention once again that the scope of this paper is by mo means
to present a general theory of non-adequacy of computer sciences in natural
philosophy, but rather to present warnings concerning a general temptation
of overusing computational ideas in physics and mathematics, given the
magjor role of computing in today’s science.

7.2. Computability and Continuity

The naive, and unfortunately highly widespread response to the question
above is that yes, everything can be seen in terms of alphanumeric in-
formation and its computational elaboration. This thesis, under different
forms, is often called the “Physical Church Thesis”. So let’s return briefly
to Church’s thesis in its original form, which is purely logico-mathematical
and in no way physical.
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Church’s thesis, introduced in the 1930s after the functional equiva-
lence proofs of various formal systems for computability (and concerning
only computability over integers), is an extremely robust thesis: it ensures
that any finitistic formal system over integers (a Hilbertian-type logico-
formal system) computes at best the recursive functions, as defined by
Godel, Kleene, Church, Turing.... This thesis, therefore, emerged within
the context of mathematical logic, as grounded on formal systems for arith-
metic/discrete computations: the lambda-calculus (Church, 1932), a sys-
tem for the functional encoding of logical deductions, and Turing’s Logical
Computing Machine®, were the motors of various equivalence proofs®.

The very first question to ask is the following: If we broaden the formal
framework, what happens? For example, if we consider as basic support
for computation a set “greater” than the natural integers, is this invari-
ance of formalisms preserved? Of course, if we want to refer to continuous
(differentiable) physics-mathematics, an extension to consider may be the
following: What about the computational processing of these computable
“limit” numbers which are the computable real numbers? Are the vari-
ous formalisms for computability over real numbers equivalent, when they
are maximal? An affirmative response could suggest a sort of Church the-
sis “extended” to this sort of computational “continuity”. Of course, the
computable reals are countably many, but they are dense in the “natural”
topology over Cantor’s reals, a crucial difference as we shall see.

With this question, we then begin to near physics, all the while re-
maining in a purely mathematical framework, because mathematics on the
continuum of real numbers constitutes a very broad field of application to
physics, since Newton and Leibniz. In particular, it is within spatial and
often also temporal continuity that we represent dynamical systems, that

21936: “A man provided with paper, pencil and rubber, and subject to a strict discipline,
is in effect a Universal (Turing) Machine”, [31]. In fact, the reader/writer needs only to
know how to read/write 0 and 1 on an endless length of tape, then to move one notch to
the right or to the left, according to given instructions (write, erase, move right, move
left) to compute any formally computable function (see the next note).

PThe other definitions of computability are more “mathematical”: they propose, in
different ways, arithmetic function classes which contain the constant function 0, the
identity and the successor functions +1, and which are closed by composition, by
primitive recursion (in short: f(z + 1) = h(f(z),z)) and by minimalization (that is,
f(z) = miny[g(z,y) = 0]). It is a mathematically non obvious remark that by read-
ing/writing/moving Os and 1s left and right on a tape it is possible to calculate all of
these functions: there lies the genius of Turing and the origin of the 0 and 1 machine
which will change the world.
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is, most mathematical models (in logical terms: mathematical formalisms)
for classical physics. This does not imply that the world is continuous, but
only that we have said many things thanks to continuous tools as very well
specified by Cantor (but his continuum is not the only possible one: Law-
vere and Bell, [6], say, proposed another without points, but one which is
unfortunately not richer for the moment in mathematical terms — although
some may hope to use it to better address the geometry of quantum physics;
so, let’s rest on Cantor for the time being).

Now, from this equivalence of formalisms, at the heart of Church’s the-
sis, there remains nothing regarding computability over real numbers: the
models proposed, in their original structure, are demonstrably different, in
terms of computational expressiveness (the classes of defined functions).

Today, it is possible to roughly group different formal systems into four
main groups (however not exhaustive ones), in order to perform computa-
tions over real numbers:

- recursive analysis, which develops the approach to Turing’s computable
real numbers, or even the Turing Machine itself, by an infinite extension
recently formalized by Weihrauch (two tapes, one which can encode a com-
putable real hence infinite number, and the other which encodes the pro-
gram, see [35]; from the mathematical standpoint, the idea was first devel-
oped by Lacombe and Grezgorzcyk, in 1955-57);

- the Blum, Shub, and Smale BSS model (an infinite tape and a little
control system, see [7]);

- the Moore-type recursive real functions (defined in a more mathemat-
ical manner: a few basic functions, and closure by composition, projection,
integration, and search for the zero, see [24]);

- different forms of “analog” systems, among which threshold neurons,
the GPAC (General Purpose Analog Computer, attributable to Shannon,
[30], of which a first idea preceded classical recursivity: V. Bush, M.L.T.,
1931, [10]).

Each of these systems has its own interest. Besides, they confirm the
solidity of Church’s original thesis, since the restriction to integers of all
known models of computability over continua again produces classical re-
cursivity (or no more than that). What else could we say, concerning inclu-
sions, links, demonstrable passages, as for these formalisms for computabil-
ity on continua?

Of course, it is a matter of “relative” continuity: computable real num-
bers do not form a Cantor-type continuum, as we said; they are a denumer-
able set of measure 0. However, their “natural” (interval) topology is not
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the discrete topology (and mathematicians know what “natural” means:
the discrete topology over Cantor reals is not natural; one does nothing
with it). This is the crucial mathematical difference of computations on
reals from computability over the isolated points of the countable discrete:
the natural topology is not the discrete topology, but the induced one, by
intervals.

The difference is crucial with regard to physical modelling for the fol-
lowing reasons. In physics, the (Cartesian) dimension of space is funda-
mental. By dimension we mean both the number of independent variables
in functions and their “physical meaning” (the dimension of energy, say,
is different from that of force). Relativity and string theory, to use some
examples, make it into a constitutive issue, as for the dimension of space-
time; but also, the propagation of heat, or the mean field theory, to remain
in classical physics, depends in an essential way upon the dimension under
consideration, see [3]. Now, computability over integers is “indifferent” to
the Cartesian dimension: the expressivity of the machine does not change
by changing the dimensions of its databases, but only the polynomial effi-
ciency. This is due to the computable isomorphism < .,. > between N2 and
N. One may therefore define, without difficulty and for any discrete formal-
ism, the universal function U within the very class of computable functions
(that is, once the computable functions have been enumerated, (f;)ien,
function U(i,n) = f;(n) belongs to such class by the coding < .,. >).

These properties, quite interestingly, are a consequence of the rather
general fact that discrete topology does not force a dimension. In short,
in the discrete universe (the category of sets), any infinite set (integers,
in particular) is isomorphic to all of its finite (Cartesian) products. But
when discrete topology is no longer “natural”, within a continuum, say,
with Euclidean (or real) topology, for example, the spaces having differ-
ent dimensions are no longer isomorphic. We then say that the dimension
is a topological invariant, for topologies which derive from the interval of
physical measurement (Euclidean, typically). A remarkable relationship
between geometry and physics: the metrics (and the topology induced) of
the sphere (or interval) indeed corresponds to the “natural” physical mea-
surement, that of the intervals, and it “forces” the dimension, a crucial
notion in physics. So here is a fundamental difference for continuous math-
ematics (and for computability over continua, would they be just dense):
any bijective encoding of spaces with different dimensions is necessarily
non-continuous and, in order to define, typically, the universal function, it
is necessary to change dimension, hence to leave the given class.
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So let’s return to our question, which is, in our view, a rigorous way
to address the extensions of the Church thesis to the mathematics of
physics: Can we correlate different formalisms for computability over a
continuum, these being adequate for physical systems and which, there-
fore, make the Cartesian dimension into a fundamental issue, even if they
are non-equivalent? There are no extensions today of the Church thesis
to computable continua and just partial answers are provided by many
authors: [9, 21] present an overview and recent results which, by the addi-
tion of functions and operators which are highly relevant from the physical
standpoint, enable us to establish inclusions under certain conditions, these
being rather informative links. On the basis of these works, we should arrive
at a notion of a “standard system” for computability over the set of com-
putable real numbers which represent a reasonable extension of Church’s
thesis to computable continuity (all “standard” systems would be equiva-
lent, modulo the fundamental issue of dimensions), and therefore also find
an interesting link with the mathematics of physics.

However, for a large enough class, this standardization is not obvious
and we are far from having a Church-like equivalence between systems.
Moreover, it is clear that we remain, as in the case of the logico-formal
Church thesis, within mathematical formalisms®. And what about physical
processes?

7.3. Mathematical Computability and the Reality of Physics

Let’s ask a preliminary question to asking if nature computes: What could
nature actually compute? If we look at the object before looking at the
method, things may not be so simple. Vladimir Arnol’d recalls in his
book [2] the formula attributed to Newton: “It is useful to solve differ-
ential equations”. From another perspective, physics could very well be
expressed according to another formula, provided this time by Galileod.

°In what concerns the extension of the Church thesis to computer networks and to
concurrent systems in general, systems which are perfectly discrete but distributed over
space—time, this being better understood by means of continuous tools, we refer to [1] and
to its introduction: in this text, it is noted that this thesis, in such a context, is not only
false, but also completely misleading (the processes are not input-output relationships
and their “computational path” — modulo homotopy, for instance — is the true issue of
interest).

d«La filosofia scritta in questo grandissimo libro che continuamente ci sta aperto innanzi
agli occhi (io dico I’Universo) non si pud intendere se prima non s’impara a intender la
lingua, e conoscer i caratteri, nei quali € scritto. Egli ¢ scritto in lingua matematica,
e i caratteri son triangoli, cerchi, ed altre figure geometriche, senza i quali mezzi &



250 G. Longo & T. Paul

And from Galileo’s standpoint which is, however, far from being formal-
istic or number-theoretic but rather “geometric”, and which continues to
perceive “filosofia” as an intermediary between ourselves and the world, the
question asked above could very well be natural.

Newton—Arnold’s view point seems more modern. However, it is now
necessary to observe that the importance of an equation, or more gener-
ally, of a mathematical conceptual structure used in physics is often more
important in abstracto than its numerical solutions. But let’s nevertheless
look at what happens upwards to this.

Is there something to solve, to compute?

The description of a physical phenomenon takes place within a frame-
work of “modelling”, that is, within a fundamentally “perturbational”
framework. The isolation of a phenomenon, its intrinsic comprehension,
supposes that we neglect its interaction with the rest of the world. But to
neglect does not mean to annihilate: the rest of the world exists and creates
perturbations at this isolation. From this point of view, a model must be
immersed in an “open set” of models.

The isolation of a concept upon which one is working, for instance,
results from the choice of a given scale. Neighboring scales are then sup-
posed to be either inaccessible (smaller scales), or processable by averaging
(larger scales). In both cases, they can influence the model and the equa-
tion which yields it. Asking the question whether something which we
compute, physically, fits into a framework of computability, in the classical
sense, commands having precautions at least.

In particular, are there equations and only equations? A great part
of classical physics rests upon variational principles. The trajectory ap-
pears not only as the solution to an equation, but as a solution that is
chosen because it optimizes, extremizes a quantity (action). Of course, this
is equivalent to resolving equations (Euler-Lagrange), but this is only an
equivalence. Let’s recall that Feynman [14] preferred solutions to equations
for quantum mechanics. In this case, no more equations: all possible tra-
jectories (minimizing or not the action functional) are involved. This is
possible, but is so thanks to the functional integral, in an infinite dimen-
sional space. And what about computability in this case?

impossibile a intenderne umanamente parola; senza questi ¢ un aggirarsi vanamente per
un oscuro laberinto.” (Il Saggiatore, 1623.)
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Let’s look at another example: quantum field theory, a physical theory
which is not mathematically well founded yet, but which has been phenom-
enally successful in terms of precision, is based entirely on perturbative
calculations [26].

Thus it is obvious that, even without considering the lack of precision
of classical measurement, which we will address later on, the true situation
is somewhat fuzzy, largely perturbative, and hence that the problem of
computability in physics is multiple and complex.

Nevertheless let’s suppose that there actually are equations. And let’s
suppose that the true issue is really the solution, which is predictive. We will
then be compelled to remark that the situations where the solution’s values
are important are rare. A simple example: physicists like to draw curves,
even when a formula providing the solution is available. But what is left
of computability when the “result” is smoothed by the graphical process,
where only the general “trends” are important, not the exact values?

Let’s take a look at the dynamical systems provided by maps, the case
of the “baker’s map”, for instance. In principle, there is no mapping in
physics; there are flows. A map appears when we compute a flow at time 1
(which we will later iterate), but this flow at time 1 is actually computed
from equations. The Poincaré first recurrence map, and the dynamical
systems which followed, were invented as simpler tools, qualitatively and
quantitatively more manageable, but it would be wise to not identify them
too much with the initial systems.

In conclusion let us see whether it is possible to consider an isolated
equation in physics. As we observed, if equations come in families within
which (possibly continuous) parameters change, how must one apprehend
the problem of computability, so carefully defined within a discrete and
countable space? Maybe nature does compute, but knowledge, our theory of
nature, fundamentally rests in huge, infinite spaces (spaces of parametrized
equations, typically), which could very well escape any computationalistic
approach.

Let us examine carefully the example of the epistemological evolution
of the classical concept of “action”.

7.4. From the Principle of Least Action to the Quantum
Theory of Fields

The concept of differential equation is not the only one which provides a
way for computing dynamics in physics. As we mentioned, an alternative
approach consists in minimizing a certain functional (the action) among
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different candidates for the trajectory. More precisely to any path - going
from an initial point to a final one is associated a number, S(v), and the
“true” trajectory, the one that the particle is going effectively to follow,
is the one which provides the lowest (in fact any extremal) value of S(7v).
This principle of “least action” does not ask to solve an equation, it just
asks to evaluate the functional S at any possible path ~, and select the
extremal one. If it asks to compute something it doesn’t ask to compute a
finite number or set of numbers, it asks to evaluate a huge set of numbers,
and to find the smallest.

As a matter of fact it is true that the principle of least action is, in
many situations at least, equivalent to the so-called Euler-Lagrange equa-
tions, therefore shown to be embedded in the operational setting. But
the Feynman “path integral” formulation of quantum mechanics creates a

revival of this idea of evaluating instead of computing. The quantum al(rn)—
Sy

plitude of probability is obtained by summing expressions of the form " #
over all paths +: the process of minimizing the action of the path disap-
peared completely. Here again this formalism is shown to be equivalent to
the Schrodinger equation, getting back once more to the operational level.

The situation drastically changes with quantum theory of fields, a mix-
ing of quantum mechanics and partial differential equations. This theory,
conceptual basis of our deep understanding of elementary particles, is a
generalization of quantum mechanics to infinite dimension. The formalism
of quantum theory of fields is an extension of the “path integral” method to
the case where the “paths” + sit in infinite dimensional spaces. This is the
theory which provides nowadays the most accurate numerical agreement
with experimental data. It “lives” in an extremely huge space (the space of
infinite dimensional paths), and has, up to now, no equivalent operational
setting. Omnce more we are very far from any form of (extended) Turing
computability. Of course computers were of definitive usefulness in quan-
tum theory of fields, as heavy computations were involved. But this was
inside a perturbative approach (see [26]), and not at a conceptual level, as
the conceptual frames radically differ. The close analysis of this difference
is one of the enriching challenges (and the interest) of computing, today, in
physics.

7.5. Chaotic Determinism and Predictability

In what concerns the relationships between dynamical systems and their
capacity to predict physical evolutions, there is often a great confusion be-
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tween mathematics and physical processes. The notion of deterministic
chaotic system is purely mathematical and is given, in a standard way, by
three formal properties (sensitivity to initial conditions, topological transi-
tivity, and density of periodic trajectories, see [12]). However, it is legiti-
mate to speak of a physical process and to say that it is deterministic (and
chaotic, if such is the case): what is meant by that is that it is possible,
or believed to be so, to write a system of equations, or even an evolution
function, which determines its evolution (in time or regarding the relevant
control parameter). Chaos pops out when the formal properties above are
realized in deterministic systems (yet, weaker forms of chaos are possible,
“mixing systems” for example, [12])

Unpredictability is then a property which arises at the interface between
physical and mathematical processes. One gives oneself a physical process
and a mathematical system, which is supposed to “model” it (a system of
equations, typically, or even an evolution function — an iterated system thus
a discrete-time system, within a continuous space). Then the process with
regard to the system (or even with regard to any reasonable system which
we consider to modelize the given process) is said to be unpredictable.
A physical process “as such” is not unpredictable: one must attempt to
state or even predict, usually by mathematical writing, for there to be
unpredictability. Likewise, a mathematical system is not unpredictable, as
such: it is written and, if fed values, it computes.

And this is where computability comes into play. It happens that any
“reasonable” mathematical system would be characterized by effective writ-
ing: save a pathology (feeding a polynomial with non-computable coeffi-
cients, Chaitin’s Omega for instance!), we normally write evolution func-
tions which are computable (we will however see some counter-examples).
More specifically, any Cauchy problem (a very broad class of differential
equations) admits computable solutions (if solutions there are), in one of
the known systems for continuous computability. Interesting pathologies,
or counter-examples, do exist; for the moment, it suffices to mention some
solutions of the Poisson equation in [27], the boundary of a Julia set, in [5].

But the problem is not only there (not really there, as a matter of fact):
the choice of scale, of perturbative method, of phase space, (or of hidden
variables, or those which were explicitly or unconsciously excluded) shows
the constituted autonomy of mathematical language, because mathemat-
ics is constructed within a friction contingent to the world and then de-
taches from it by its symbolic autonomy. And this construction is a highly
non-computable historical decision, often an infinitary transition towards
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a limit concept. By this, mathematics is not arbitrary, but the result of a
constructed objectivity.

In summary, when we write a formalism, we give ourselves something
“computable” (grosso modo, because the different continuous systems for
computability are not yet unified, as we recalled above) but this is ob-
tained by an historical choice or limit process, which singles out finitistic
symbolic construction from the world. So the fact of the computability of
an evolution function, which we suppose to be adequate regarding the de-
scription (modelling) of a physical system, is the evidence which we deduct
from its writing. The logistic function, for instance, see [12, 22], is a sim-
ple and important chaotic system; a computable bilinear function, with a
coefficient k (well, only if one takes a non-computable k, a crazy choice,
it is not computable). A very famous variant of the logistic function is
also given by the “tent” function, a continuous but non-differentiable de-
formation which preserves many of its interesting properties. This function
modelizes, grosso modo, the movements of stretching and mixing of a piece
of dough by a baker who is a little stiff and repetitive in his movements.
These systems, as in the case of any formal writing, are effective and are
in no way unpredictable, as such. We give them values (computable ones)
and they compute: within the limits of the available (finite) machine, they
produce outputs. However, any physical system which is considered to be
modelized (formalized) by one of these functions is unpredictable, even if
by one of their non-differentiable variants (an ago-antagonistic system —
chemical action—reaction oscillations, for example, or the baker’s transfor-
mation, in the differentiable or non-differentiable case of which we were
speaking). As soon as we give the result of a physical measurement, that
is, an interval, to the function in question, this interval is mixed and expo-
nentially widened, quickly preventing any prediction of the evolution. Of
course, the machine which computes these non-linear functions can also
help appreciate chaos:

1 - it provides images of “dense” trajectories (sequences of points) in
the definition domain;

2 - a difference (at the 16th decimal, for instance) in the numeric input
gives very different values after few iterations (about 50 in our logistic cases,
see below).

However, if it is relaunched with the same initial values, in a discrete
context (and this is fundamental) it will always return the same trajectory
(sequence of numbers). The point is that, in discrete state machines, ac-
cess to data is eract: this is the crucial difference w.r. to access to the
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world by (classical) physical measure, which is given by the interval of
(approximated) measurement, by principle (there is at least the thermal
fluctuation).

And there lies also the advantage of the discrete state machine, of which
the access to the database is exact: it iterates identically, because it is,
firstly, an iterating machine. Iteration founds Goédel-type primitive recur-
sion, which is iteration and +1 in a register (see the note above). It enables
the portability of the software and hence its identical transferal and itera-
tion at will (and it works — without portability and iterability of software,
there would be no computing, nor market for software). You may launch a
program hundreds of times, thousands of times and it iterates.

Computer scientists are so good that they have been able to produce re-
liable and portable software (that is iterating identically) even for networks
of concurrent computers, embedded in continuous space—time, with no abso-
lute clock. Yet, the discrete data types allow this remarkable performance.
Note that identical iteration of a process is very rare in nature (fortunately,
otherwise we would still be with the universe of the origin or with the early
protozoans). We, humans, along our history, invented the discrete state
machines, which iterate. A remarkable human construction, in our space
of humanity, using the alphabet, Descartes dualism (software/hardware),
Hilbert’s systems, Godel’s numberings, Turing’s ideas. .., and a lot of dis-
crete state physics. Computing, programs and alike are not “already there”
in nature. Unfortunately, some miss the point and do not appreciate the
originality nor the founding principles of computing and claim, for example,
that “sometimes they do not iterate”, like nature. Of course, there may
be hardware problems, but these are problems, usually (and easily) fixed.
Instead, non-iteration, identically, is part of the principles of non-linear
dynamics, it is not “a problem”. Let alone life sciences where the main
invariant is... variability, even within “structural stability”, which is not
phenotypic identity.

But let’s go back to the interface mathematics/physics. The passage
from the physical process to the formal system is done by means of mea-
surement. If the only formalization/determination we have, or which we
consider to be relevant for a given process, is of the deterministic but chaotic
type, the (classical) physical measurement, which is always an interval (and
which we describe, in general, within a context of continuity) enables us to
only give an interval as input for the computation. And this has a further
fundamental connection with physics, that we already mentioned: the inter-
val topology yields the topological invariance of dimension, a fundamental
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property of the continua of mathematical physics. Now, given that non-
linear dynamics are mizing (the extremes and the maximum and minimum
points of any interval are “mixed” at each step) and have an “exponential
drift” as Turing puts it, this is a nice way, Turing’s way, to say what we
observed: the interval of measurement soon occupies in a chaotic — mixing
— way an increasing part of space and it is impossible to further predict the
evolution of the physical process. If we were to use as input not an interval,
but a rounded value, this would obviously not help prediction: the result of
the computation may have nothing to do with the physical evolution — for
the logistic function, with & = 4, a rounded value at the 16th decimal makes
any physical process unpredictable approximately from the 50th iteration,
— this is calculated using the value of the Lyapounov exponent, [12].

To return to the baker’s dough, a very simple and common example,
it is a physical process determined by a demonstrably chaotic evolution
function, thus unpredictable. It is a mistake to say, as we sometimes hear,
that it is non-deterministic; it is unpredictably deterministic, which is quite
different (the error, in this case, is exactly Laplace’s error, for whom deter-
mination should imply predictability). In physical terms, the forces at play
are all known; the “tent” function determines its evolution well, just as the
logistic determines that of the ago-antagonistic processes or as the equa-
tions of Newton—Laplace determine the evolution of Poincaré’s three-body.
In classical physics everything is deterministic, even a toss of dice! But
sometimes, it is impossible to predict or calculate evolutions because of the
approximation of physical measurement in conjunction with the sensitiv-
ity to contour conditions, proper to the intended, modelling, mathematical
systems (or with the excess of relevant but hidden variables in the process:
Einstein hoped to transfer this very paradigm to quantum physics).

So, in general, the mathematical systems which we write are computable
and predictable, at the formal level; some of these systems, being chaotic,
refer to unpredictable physical processes. In principle, the latter, as such,
do not “compute”, in the sense of the Church thesis or of its continuous
versions. Let’s specify this point once more.

Computation is an issue of numbers, in fact of the (re-)writing of integer
numbers: lambda-calculus, Turing Machines, are actually a paradigm of it.
Now, to associate a number to a physical system, it is necessary to have
recourse to measurement, a challenge and major issue regarding principles
in physics, as has been realized since Poincaré and Planck, extraneous to
the logic of arithmetic and, thus, largely forgotten by computationalists
(the world is a large “digital computer”). Classically, if we were to decide
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that a certain state of a physical process constitutes the input, and another
the output, and that we associate these states to measurement intervals
and if all we know of this process is mathematically unpredictable, then
it will be impossible, in general and after a sufficient amount of time (if
time acts as a control parameter), to compute or predict an output interval
from the input interval of the order of magnitude of the given physical
measurement. In short, if we launch a good old physical double pendulum, if
we manipulate a baker’s dough, it will be impossible to compute, within the
limits of measurement, its position after five or six oscillations or foldings,
although they may themselves be determined by two equations or by an
evolution function in which all is computable. So the double pendulum,
the stretched dough, as a physical machine/process, does not compute a
computable function. As for quantum mechanics, we will return to this
below.

But do they define a function, in the usual sense of a single-valued
relation? Because in the same initial (physical) conditions, they do not
generally iterate, and therefore do not even define a mathematical function
of an argument (which one?) within the initial interval of measurement,
that is a function which would always return the same value. In short, in
mathematics, f(xz) = y, when x is not time, is f(z) = y also tomorrow;
while in chaos, even the intervals are not preserved. It would therefore be
necessary to parameter them across time according to a physical reference
system: at best they would define a function with multiple variables of
which one is the time of the chosen reference system. This makes them
rather useless as machines for defining non-computable functions: they
cannot even be re-used, in time, to compute the same function, because at
each different moment we would have different values which are a priori
non-repeatable. And no one would buy them as “non-Turing” machines.

And here we are confronted once more with another common error: ex-
pecting that if the physical Church thesis were to be false, then the counter-
example should return a process which computes more than Turing. But
such is not the case. This is an error because a “wild” physical process (as
biologists would put it), in general, does not even define a function, that
is, a single-valued argument/value relation. The very idea that a process
could be reiterated suggests that it could be redone in the same (identical,
as within a discrete framework) initial conditions. And this, which is so
trivial (in both the English and French senses of the term) for a discrete
state machine, is unachievable in nature, except in very rare or artificial
cases, save the extension of the parameters to an additional temporal di-
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mension which considers the counting of the experience performed. In what
concerns life phenomena, do not by any means try to make the halting of a
Turing Machine computed by a paramecium and the movements of its two
thousand cilia: quite upstream to computation, paramecia do not define
functions by their activities (between the paramecium and computation
there is the “wall” of measurement: how to measure, what to measure,
using which level of approximation?).

Quite thankfully, we have invented an alpha-numeric machine that is
not wild at all, but well domesticated and ezact. It comes with its own
reference system and clock (hence the problem in concurrent networks,
where a spatiotemporal absolute is lacking). Thanks to its structure as a
discrete state machine, as Turing emphasized from the moment he produced
his invention®, this machine enables an access to the data and computations
and. .. it iterates, identically, when made to: there are the two reasons for
its strength. And even within computer networks, thanks to the discrete
aspect of databases, we manage to iterate processes, as we said, despite the
challenges entailed by concurrency within physical space-time.

7.6. Return to Computability in Mathematics

Let’s return to the issue of computability beyond the measurement which
we just addressed.

Mathematically, chaos is a long-time phenomenon: as for the sensitivity
to the initial conditions, it is the long-time asymptotic behavior which dif-
fers between chaos and integrability. What is the evolution of the baker’s
dough in the case of an infinite number of iterations? Let’s be more specific
and look at the case of ergodicity, a property of chaos which is actually weak
(and non-characteristic). A system is ergodic when, for almost all points
(the “ergodic” ones), the temporal and spatial averages of any observable
coincide at the infinite limit. This is a property “in measure” (measure
meant here in the mathematical sense) and it requires, in its “time” com-
ponent, an integration over an infinite time.

Clearly, the question of computability of average up to time ¢ for any
value of ¢t makes sense, and has a clear answer in terms of properties of com-
putability of ordinary differential equations, but the passing to the limit
t — oo shifts us towards these limits of which it was questioned earlier

€Or shortly after: in 1936, it was nothing more than a logical machine, “a man in the
act of computing”; it is only after 1948 that Turing viewed it also as a physical process
— a discrete state one, as he called it in [32] and [33].
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and which we will return to now. In particular, the rate of (mathematical)
convergence will intervene in the answer to the first question, and obtaining
information on the rate of this convergence is a very delicate problem es-
pecially in what concerns real, practical flows, those which nature provides
us with.

One must nevertheless not forget the huge contribution of computer
science: the computer, however fundamentally non-chaotic, “shows” chaos
amazingly well, suggests it, presents it to our eyes in a very spectacular and
now completely indispensable way. And this by the (approximated) images
of the density of trajectories, by the very different results in the change of
the 16th decimal or so etc. By developing turbulences of any sort in an
otherwise unfeasible way and showing them on a screen, a fantastic help to
scientific insight is achieved.

The passing to continuity

The passing from rational numbers to real numbers poses more problems
than it may seem: a quantum system in a finite volume is indeed represented
by a vector space of finite dimension. Yet, some caution is required; not only
must this space be bounded, but so must the momentum dimension, that is,
the phase space, of which the standard of measurement is Plank’s constant.
But the superposition principle immediately makes the number of states
infinite (to the power of the continuum): this is precisely the “vectorial
aspect” of the theory. Quantum mechanics resides in vector spaces and the
“finiteness” of space entails the finiteness of the dimensions of these spaces,
not their cardinals. It is impossible, for a set value of the Planck constant, to
put anything but a finite number, d = %, of independent vectors (states)
within a finite volume V, but thanks to (because of) the superposition
principle, it is in fact possible to put an infinite number of vectors, as many
as there are points in C¢. This doesn’t mean of course that, for certain
definitions of information, the “quantity” of information could not remain
bounded as the system remains confined in a finite volume, but this shows
the difference of the concepts of space in classical and quantum situations
(for a discussion of this discrete/continuous dichotomy see e.g. [25]).

One must then evoke the Rolls-Royce of mathematical physics: the the-
ory of partial differential equations (PDEs). A PDE can be seen as an
ordinary differential equation in infinite dimension, it is like a system of
ordinary differential equations, each of them labelled by a continuous pa-
rameter (by the way, it is precisely this aspect which the computer retains
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before discretizing this continuous variable): each point in space “carries”
a dynamic variable of which the evolution depends on immediately (even
infinitesimally) neighboring points. Contrary to ordinary differential equa-
tions which, in general, have a solution for all values of time, we can say
that a PDE has (still generally speaking, in the “hyperbolic” case) a limited
life span, in the sense that its solution can explode in a finite amount of
time. We therefore witness the emergence of two pitfalls: one passing to
infinity for space, and one passage to “finiteness” for time. This is another
example where the very notion of computability does not apply well to the
physico-mathematical phenomenon.

Let’s now ask ourselves why chaos was invented. The sensitivity to the
initial conditions has appeared as a negative result, preventing integrabil-
ity. The negation of integrability aims to be perceptible in a finite amount
of time (since integrability places us in front of eternity). But it is very dif-
ficult to demonstrate that a system is not integrable. An alternative result
consists in looking for a totally inverse paradigm: instead of stability, one
looks at instability. The theory of chaos, an extreme and antipodic point
of integrability, offers powerful and realistic results and shows, by this in-
version of paradigm and its qualitative (and negative, yet very informative)
fall-out, its limits with regard to computability.

7.7. Non-determinism?

In computer science, we often define non-functional relations as being “non-
deterministic”; in short, when we associate a number to a set. Let’s first ex-
amine the case of so-called “non-deterministic” Turing Machines, of which
the transition functions have precisely this nature (from a value to a set of
values). Calling them non-deterministic may be reasonable, as an a priori
as long as we remain within logico-computational formalisms, but makes no
physico-mathematical sense. Is there an underlying physical process which
will associate to an input number a set or an element of the set in question?
Not necessarily. So, if deterministic (classical) means (potentially) deter-
mined by equations or evolution functions, a “non-deterministic” Turing
Machine is indeed determined by a function which associates an output set
to an input value (an issue of asymmetrical typing, nothing more).

If there is indeed a choice of value to be made among a set, quantum
physics could certainly propose one: it is legitimate to say that quantum
measurement, by giving probabilities within possible values, performs such
an operation. Can we use a classical process for the same association? Why
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not: we can take a physical double pendulum, determined by two equations
or the baker’s dough, of which the evolution is described by the “tent” func-
tion — so there is nothing more deterministic than these two objects and
their evolutions. We give them an input number; the evolution starts off on
an interval of measurement which is roughly centered around this number,
but the result, which is unpredictable after a few iterations, can take a value
among all those within the space. This is what deterministic unpredictabil-
ity is. Yet, with a playful use of language (and a little bit of confusion),
computer scientists also say that this association (one value/one set) pro-
duces a non-functional relation and so consider it as non-deterministic. But
contextual clarity, necessary to the good relationship between mathematics
and physics, then disappears: all is grey and that which is not functional
(nor calculable) is the same, as there is no more difference between classical
unpredictable determination and quantum indetermination, typically.

In what concerns concurrent systems, the situation is more interest-
ing. Over the course of a process, which occurs within physical space-time,
choices are made among possible values, following the interaction with other
processes. In concrete machines, these choices can depend on classical, rel-
ativistic, quantum, or even human phenomena which intervene within a
network. In the first two cases, everything is deterministic, although de-
scribed by non-singled-valued relations and although there may be classical
unpredictability (which value within the determined set? A lesser temporal
discrepancy can produce different choices). In the other two cases (quantum
and “human”), the choice of value will be intrinsically non-deterministic,
but, in principle, for different reasons (not being able to give an appropri-
ate physical name to the will of humans acting upon a network). In some
cases, authors in concurrency, by non-determinism, refer to a “do-not-care”
of the physical “determination”: whatever is your hardware and your (com-
patible) operating system or compiler, my program for the network must
work identically. A new concept of “non-determination” a very interesting
one, probably with no analogy in natural sciences (my soul doesn’t work
independently of my body, this was Descartes’ mistake, nor it is portable —
this would be a form of metempsychosis).

It would be preferable to introduce a notion of “indeterminacy” spe-
cific to computer science corresponding to the absence of univocity of the
input—output relation with choices, in particular that which can be found
in “multitasking”, in the concurrence of network processes, etc.
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The discrete and the “myth” of continuity.

This loss of meaning of continuous physics can be found in Gandy’s
reflections on Church’s Thesis, for instance (he was one of the pioneers of the
physical Church thesis, [19]). He posits among other things a physical world
within which information is finite, because it is part of a finite universe.
So it is made to be discrete, all the while remaining within a classical
framework, and then deterministic chaos disappears, as happens with the
Turing Machine (Turing says this very clearly in [32], see also [23], and the
discussion on finiteness in quantum mechanics in the preceding paragraph).

Firstly, the mathematical definitions of chaos use continuity (to repre-
sent the interval of measurement); they will lose their meaning when the
natural topology of space considered is discrete topology (we keep returning
to this, because it is important: the access to the measurement of the pro-
cess will then become exact, because isolated points are accessed ezxactly,
mathematically — another way to summarize all which we have just said).

Now Gandy does not appear to have followed his master Turing, the in-
ventor of the “Discrete State Machine” (which is theoretically predictable,
says Turing, [32], though it may be practically hard to predict — very long
programs), in the adventure of the continuity of non-linear dynamics (the-
oretically unpredictable, Turing remarks, this being their most interesting
property, [33], see [23] for a discussion).

As a matter of fact, Turing had a deep understanding of this issue in
the later years of his life, making a remarkable contribution to the devel-
opment of what he called “continuous systems” (the name which he gives
to the linear and non-linear models of morphogenesis, [33], and which he
already uses in [32] in contraposition to his machine). In fact, continuity is
currently the best tool we have for addressing classical determination. It is
the “myth” of an underlying or abstract space, a mathematical continuum,
which leads us to think that any classical trajectory is deterministic: it is
“filiform” (widthless) and stems from a Euclid-Cantor point (dimension-
less, said Euclid). It is a “myth” in the sense of Greek mythology, because
it constructs knowledge, but is removed from the world. This limit, the
point, and Euclid’s widthless line are not given by measurement, our only
access to the physical world. The myth is at the asymptotic limit, like the
thermodynamic integral which gives us the irreversibility of diffusion at the
infinite limit (that is, which demonstrates the second principle, by suppos-
ing an infinity of trajectories for the molecules of a gas within a large, but
finite volume). The mythical (conceptual, if the reader prefers) limit makes
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us understand: how audacious this beginning of a science, this imagination
of the widthless line, of the point of no dimension. Without those limit
(infinitary!) concepts, which are not in the world, there would have been
no theory of the measurement of surfaces: it is necessary to have “width-
less” edges and dimensionless points at the intersections of lines, in order
to propose a general theory of areas, the Greek extraordinary invention
(how thick should otherwise be the border of a triangle?). Myths, as the
invention of something “which is not there”, are necessary to enhance the-
ories, beginning with Euclid’s continuum, lines, points. .. finiteness, as the
discrete of a naive and pre-scientific, pre-Greek perception, entails machine-
like stupidity.

In this context and since Einstein, we have gone further and have even
come to say that finite, for the universe, does not mean limited. Think of the
relativistic model of the Riemann sphere: it is finite but unlimited, contrary
to the notion of finiteness as limitation to be found with Euclid (infinite =
a-peiron = without limits). Why would the information on the Riemann
sphere be “finite” in such a model? Of which type of finiteness would we
be speaking of? Euclidean finiteness or modern unlimited finiteness? Be
it relativistic or quantum, “finiteness” contains infinity, as unboundedness,
by measure.

Except for great thinkers such as Turing, logicians and computer scien-
tists tend to have a culture of the finite/discrete/Laplacian, as Turing said
of his machine, which is difficult to escape. Its origin is the arithmetizing
perspective of Frege with regard to the “delirium” of Riemannian geome-
try, says he in 1884. But it is also in the philosophical incomprehension
of Hilbert, one of the great figures of mathematical physics, concerning
unpredictability, of even Poincaré’s type of undecidability (it is impossi-
ble to calculate — decide — the position of three planets after a sufficiently
long period of time), when he speaks of mathematics: 20 years later, he
will launch one decidability conjecture after the other, all of them being
false (Arithmetics, Choice, Continuum Hypothesis), despite the highly jus-
tified objections from Poincaré (Mr Hilbert thinks of mathematics as a
sausage-making machine!). Poincaré had already experimented with unde-
cidability, as unpredictability, though in the friction between mathematics
and physics (not of purely mathematical statements, Hilbert’s question).
However, this culture of predictable (and integrable!), of the determination
within a universe (a discrete, finite, and limited database), has given us
marvelous Laplacian machines. Let’s just make an effort to better correlate
them to the world, today. A good practice, and theory, of modelling and of
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networks, that of concurrency, impose them. They evolve within a space—
time which we understand better, for the moment, thanks to continuity.
Thankfully, there are also hybrid systems and continuous computability
which propose quite different perspectives. And likewise for the work of
Girard which tries to enrich logic with concepts that are central to the
field of the physico-mathematical: symmetries, operator algebra, quantum
non-commutativity.
But let’s return to quantum mechanics.

7.8. The Case of Quantum Mechanics

The quantum issue could at first glance present a perfect symbiosis be-
tween the two preceding sections: we are dealing with a fundamentally
fundamental equation, Schrédinger’s equation, which derives from nothing,
which must be at the center of any fundamental process, and of which the
mathematization is perfect, depending on only a single parameter (actu-
ally, is the value of Planck’s constant a computable number?). Moreover,
“measurement” takes on a whole new dimension. The interval, as such, no
longer exists and intrinsic randomness is introduced.

Let’s now mention the importance, particularly in the field of the physics
of elementary particles, of the role played by computers. The computation
of precise numeric values, for instance the calculation of the electron’s mag-
netic moment, and their literally “phenomenal” concordance with experi-
ence has doubtlessly had a crucial importance for the development of the
theory. And this precisely in the very field where computers have become
irreplaceable: numeric computation. Associating a number to hundreds, to
thousands of Feynman diagrams is an operation beyond human capability
and which computer science bravely accomplishes.

The results provided by quantum physics are precise, and have a level
of precision which any other physical theory has yet to attain. They are
also discrete, meaning that the richness of continuity has been lost, and
that we are facing a (discrete) play of possibilities. Of course, what we are
actually measuring is a classical object, a classical trace (bubble chamber,
photographic plate, etc.) with a quantum value. We are indeed at the
heart of the problem: a quantum measurement provides values belonging
to a discrete set (set of values specific to the Hamiltonian), hence a cer-
tain rigidity that is a source of stability and therefore of precision (those
of discrete topology). Seen from this angle, quantum “precision” seems
tautological in a way; we allow ourselves no leeway around discrete values



The Mathematics of Computing between Logic and Physics 265

which would enable us to extend into the voluptuousness of imprecision.
We could even say: let’s provide ourselves, once and for all, with all the
values specific to all the Hamiltonians of the world and we will have a field
of “outputs” which is discrete in its very essence.

But this is precisely forgetting that the result of such measurement is
obtained upon a classical object from which the result of the measure is
accessible to us. The atomic spectral lines appear on a photographic plate.
Therefore the classical continuum is, a posteriori, the locus of the quan-
tum result, together with its virtues, harmful because prone to introduce
imprecision. And so, what the fact that quantum mechanics is incredibly
precise really means is that, during experiments, it leaves classical traces of
an extreme level of precision, practically exhibiting a discrete sub-structure
of the continuum.

And this is not tautological at all.

In addition to this discreteness, and precision, quantum mechanics has
caused some difficulties by conferring a random aspect to the result of
measurement. Let’s say right now that something had to happen, because
the principle of quantum superposition prohibits a direct access, beyond
measurement, to the quantum space of states (we do not “see” superposed
states, or entangled states); more accurately, we “look” at them, and they
must be looked at to be seen, by getting measured, they “de-superpose”
themselves, they de-entangle. This random aspect immediately escapes
any computational system of... computability. No more determinism, no
more equations. Of course, it is possible to talk about statistics, and to
wonder whether these statistics are computable. We then return to the
non-deterministic algorithms of the preceding section, but with a different
problem.

Quantum algorithms are a perfect illustration of this. Let’s recall that
a quantum algorithm consists in a quantum system evolving from an initial
piece of data having, in a way, a classical “input”. By principle of super-
position, entanglement, at the end of an evolution, has done its job and
the final state is typically quantum, superposed in several states, of which
a single one contains the “output” sought. To get it, we then perform a
measurement that is supposed, by construction, to produce the good result
with a maximal probability.

What is Turing computable in all of this?

We can wonder regarding the first part of the quantum evolution related
to quantum “equational” evolution modulo the remarks made at the end
of Section 7.6 concerning PDEs (Schrodinger’s equation is a PDE after all,
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but a linear and not an hyperbolic one), and could possibly answer: yes,
this part of the quantum evolution is computable. But the last phase, that
of measurement, again escapes computational reduction: the random aspect
of measurement, let us rest assured, will never enable a quantum computer
to decode a credit card at the desired moment with certainty.

Quantum algorithms versus non-deterministic algorithms

It could be advisable to specify the important difference between quan-
tum and non-deterministic algorithms, a source, it appears, of many con-
fusions. Indeed, one could confuse two very different “parallel” aspects.

A quantum algorithm, in a way, works well in parallel; computation
is fundamentally vectorial because of the very nature of quantum dynam-
ics. But the final result, that which needs to be extracted from the final
quantum state, is a single one of the components present within the latter.
The other components, the whole “final state” vector, has no interest as
such: firstly because it is inaccessible, then because the other components
(other than the component containing the results) do not carry any infor-
mation related to the initial problem. So it is not an issue of dispersing the
information in order to parcel it out and hence increase the power of the
computation and then “patching the pieces back together”, in a way, but
rather of placing oneself within a space (a quantum space, and again, one
that has not yet been satisfactorily achieved experimentally) from which
one needs to suddenly return in order to finish the computation.

Because the essential is indeed there: the “computation”, the “process”
is finished only once the ultimate measurement is taken. It is this total pro-
cess which must be placed in the view of computability, and not the purely
quantum part which conveys no information. It is exactly the same idea
which is responsible for there being no “EPR paradox” because, although
we are acting from a distance upon the entangled vector, no information is
transmitted.

Let us mention also that logic based on the quantum mechanics
paradigm has been recently introduced by J.Y. Girard, without explicit mo-
tivation in the direction of quantum calculus [20]. We conclude by saying
that the randomness of quantum mechanics is intrinsic, it escapes compu-
tation. What about classical randomness?



The Mathematics of Computing between Logic and Physics 267
7.9. Randomness, Between Unpredictability and Chaos

In [4], classical randomness and deterministic unpredictability are identi-
fied, from the point of view of mathematical physics. Randomness would
present itself, we observed, at the interface between mathematics (or,
more generally, between language) and physical processes. It must how-
ever not be ignored that, in certain probabilistic, purely mathematical
frameworks (measure theory), we can also speak of randomness, away
from physical processes. By computation theoretic tools, Per Martin-
Lof advanced, 40 years ago, a purely mathematical notion of random-
ness. More specifically, one can, by means of computability, tell when
an infinite sequence of integers (of Os and 1s for example) is random,
without reference to an eventual physical generative process. In short,
a random sequence is Martin-Lof (ML) computable if it is “strongly” non-
computable, a definition which requires a little bit of work (see [29] for a
recent overview). In a sense, formal computability/predictability can tell
us when we leave its domain: this is like Gédel who, in his proof of incom-
pleteness, never left the formal, and who was yet able to give a formula
which escapes the formal (which is formally unprovable, jointly to its nega-
tion).

Moreover, what interests us here, this purely mathematical random-
ness, is “at infinity”, exactly like the randomness within chaotic classical
dynamics is asymptotic: a random Martin-Lo6f sequence is infinite (the ini-
tial segments are at best incompressible).

What can then be said of the relationship between this notion, purely
mathematical, and physics? From the statistical viewpoint, which was the
preoccupation of Martin-Lof at the time, every thing is fine: the distribu-
tion of the probabilities of a ML-random sequence, for a good probability
measurement, is that of the toss of a coin, to infinity. But what about the
relationship to the physico-mathematical of dynamical systems? How can
one pass directly, by mathematical means, without reference to the physical
processes that the two approaches modelize, from ML-randomness to un-
predictable determinism (systems of equations or evolution functions)? We
can see possible correlations in the recent PhD theses by M. Hoyrup and
C. Rojas (in Longo’s team): the points and the trajectories within chaotic
systems are analyzed in terms of ML-randomness, all the while using suit-
able notions of measure, of mathematical entropy and Birkhoff ergodicity.
In the two cases, those of sequences of integers and of continuous dynamics,
we work to infinity.
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Let’s be more precise. A dynamical system, as a purely mathematical
formalism for physics, is said to be “mixing” if the correlation of a given
pair of observables decreases at least polynomially with time. Like ergod-
icity, this is an asymptotic property of “disorder”, a weak form of chaos.
What was recently proved is that, in mixing dynamics, ergodic points co-
incide with ML-random ones (in fact for a slightly different definition of
ML-randomness, due to Schnorr). Thus deterministic unpredictability, as
ergodicity in mixing dynamics, overlap with a strong form of undecidability,
that is algorithmic randomness. In other words, if we want to relate physical
processes to effective computations, which is an issue of elaboration of num-
bers, we can, but, at the limit: all processes that are modeled by a some-
what chaotic system, produce non-computable, actually random, sequences,
within the mathematical system. Or, also, (strong) non-computability (as
algorithmic randomness) may be found in formal writings of the physical
world (dynamical systems are perfectly formalisable, of course). That is,
at the limit, we may say “no” to Laplace’s conjecture of predictability of
deterministic systems and, this, in terms of (a strong form of) undecidabil-
ity, & la Godel. Predicting, in physics, is a matter of “saying” (pre-dicere,
to say in advance) by a formal language or system about a physical process
in finite time, as we said several times: by these results, instead, Poincaré’s
finite unpredictability joins undecidability, asymptotically. In conclusion,
deterministic ergodic and mixing dynamics, which model “weakly chaotic”

physical processes, generate (highly) non-computable features!.

7.10. General Conclusions

The reader might have felt that the authors have a point of view “against”
a vision of nature that was too organized around computations. Once
again computers have brought so much to science that it is not necessary
to recall the benefit provided. It seems to us that this situation, where a
given viewpoint invades a whole field of science, happened several times in
the past. An example is the case of mathematical analysis at the turn of
the last century, a period where many new objects in mathematics were
born, such as nowhere differentiable functions, Cantor sets, summation
methods of diverging series. To focus on the latter let us quote Emile
Borel, in the introduction of his famous book on diverging series [8]. Borel
discusses the fact that analysis “a la Cauchy”, based on convergent Taylor
expansions of analytic functions, although it brought a considerable amount

fSee [16-18], [15] and http://www.di.ens.fr/~longo/ for ongoing work. Connections be-
tween algorithmic and quantum randomness are analyzed in [11].
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of progress in mathematics, fixed also into rigidity a lot of non-rigorous
methods used by the geometers (in the sense of physicists) of the older time:
“This revolution® was necessary: nevertheless one might ask if dropping
the less rigorous methods of the geometers (...) was good or not: (...) but
this period [of rigor] being passed, the study of former methods might be
wealthy...”.

Let’s see what we have done so far. We have reviewed certain aspects of
computation in physics and in mathematics. We have seen that many situ-
ations in physics, even classical physics, cause processes which are “beyond
computation” (in the sense of “calculus resolving equations”) to intervene.
We have also mentioned the calculatory contribution of computer science
and its essential role. Now, let’s not forget the importance as such of the
plurality of “visions” for understanding the natural sciences, a plurality
which has always existed in the sciences. The new perspective proposed
by the discrete, in great part due to the contribution of computer science,
is a conceptual and technical resource, which adds itself to the differen-
tiable physico-mathematical continuum, from Newton to Schrédinger (or
even consider, for example, the importance of computer modelling in biol-
ogy, to mention another discipline, [34]). On the other hand, the reduction
to a conceptual and mathematical dimension that is too “computational”
(in the excessively naive sense of the term) would, in our view, lead us to
sterile boredom, in which even the “nuances” of the post-Laplacian contin-
uum would be absent. Finally and in particular, within an “equational”
framework for the play between the continuum and the discrete, we have
discussed notions that appear to be fundamental to modern science, such as
those of determinism and of predictability, from where emerges the notion
of uncertainty. But let’s take a further look.

As compounded in [4], classical physical randomness is of an “epistemic”
nature, whereas that of quantum measurement is intrinsic or “objective”:
a distinction which should be solely an instrument of clarity, of conceptual
clarity if possible, and nothing more. By this we refer to several aspects
among which the one of interest to us is the following: classical random-
ness can be analyzed by means of different methods. In short, it is possible
to address dice, the double pendulum, the baker’s dough, etc. in terms
of statistically random sequences and of probability distributions (central
limit theorem, etc.), but also by means of the mathematics of chaotic de-

&The Cauchy and Abel rigorous vision of Analysis based on convergence of expansions
of Taylor series.
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terminism (if we have the courage to write the several equations needed for
the movement of dice; it is easy for the double pendulum and the baker’s
dough). Some people, mainly in the field of computer science as we have
seen, say that the toss of dice or that the baker’s dough (or even the three
bodies?) are non-deterministic because, by using the approximation of
measurement, it is possible to associate several numeric outputs to an ex-
act input number and the same wording is used for computational non-
determinism. It is an abuse of language which ignores the specifications
brought by the broadening by Poincaré of the field of determination, which
includes classical randomness in the field of chaotic determination (the non-
linearity of “continuous systems”, and the related “exponential drift”, says
Turing in 1952), and by the indetermination of quantum physics. This is
specific to the culture of the discrete, which is wonderful for our discrete
state machines, but which misses the 120 years of geometrization of physics
(geometry of dynamic and relativistic systems) and which fails to appreciate
the role of measurement (classical/quantum).

We thus see the apparition of three idealizations thanks to which we
could think it possible to discover and understand the world (classical).

1. The digital, discrete ideal which (possibly) shows nature as computing
and only as computing. Computing, iterating, and reiterating to infinity
with a wonderful and misleading precision.

2. The ideal of continuous mathematics, where nature (mathematics)
solves equations. In itself, this vision is perfectly deterministic, the equa-
tions have solutions.

3. The ideal of the equation, for which nature divides itself into different
scales, impenetrable to each other — for example the quantum world, the
classical one, hydrodynamics, celestial mechanics, cosmology etc.

These ideals (1,2,3) are placed in anti-chronological order: historically,
equations were the first to appear, followed by their mathematical models,
and finally by their digital simulation.

To conclude, let’s look at the connections and anti-connections between
these three worldviews, these three tiers that we could compare to Girard’s
three basements. This would be the result of the present work.

At first glance, we could easily go up from the third to the second and
then to the first level. Continuous mathematics seem perfect for equations,
and digital approximation has become so commonplace that one must al-
most hide to criticize it. But the elevator does not work properly: between
the third and second levels, Poincaré shakes things up (non-integrability
and sensitivity to the initial conditions, as it is, make difficult the practi-
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cal idea of a trajectory within continua), and between the second and first
levels we have lost, by climbing to the level of the discrete, a few aspects
that were important to continuity (the fluctuations below the threshold of
discretization as well as the discrete blackness of milk). If we take the stairs
to go down, we get dizzy: lack of computational equivalence for the pass-
ing to computational continua (Section 2), and loss of reliability with the
introduction of the interval of imprecision when passing from the second to
the third levels. . .

And there is quantum mechanics with its intrinsic randomness. Ideal
3 is then shattered during measurement: no more equations. Of course,
physics can make do without individual measurement processes: we have
not (yet) experimentally observed the reduction of wave packets during
unique events, all we can observe are averages, statistics. But recent physics
pushes towards the study and observation of simple quantum physical sys-
tems which are always better at conducting the “gedenken Experiment”" of
the founding fathers [28], and in any case the reduction of the wave packet
during measurement is, we believe, a necessary component of quantum for-
malism, an axiom which makes it coherent.

This situation is not new in physics: we do not observe Newtonian me-
chanics in a mole of gas. And yet it is thanks to such mechanics that we can
reconstruct the dynamics of gases and thermodynamics. Mind though, this
reconstruction is the result of the passing to infinity (the thermodynamic
integral) from a finite non-observable model.
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The Liquid State Machine (LSM) has emerged as a computational model
that is more adequate than the Turing machine for describing compu-
tations in biological networks of neurons. Characteristic features of this
new model are (i) that it is a model for adaptive computational systems,
(ii) that it provides a method for employing randomly connected circuits,
or even “found” physical objects for meaningful computations, (iii) that
it provides a theoretical context where heterogeneous, rather than stereo-
typical, local gates, or processors increase the computational power of
a circuit, (iv) that it provides a method for multiplexing different com-
putations (on a common input) within the same circuit. This chapter
reviews the motivation for this model, its theoretical background, and
current work on implementations of this model in innovative artificial
computing devices.
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8.1. Introduction

The Liquid State Machine (LSM) had been proposed in [26] as a computa-
tional model that is more adequate for modelling computations in cortical

microcircuits than traditional models, such as Turing machines or attractor-

275
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based models in dynamical systems. In contrast to these other models, the
LSM is a model for real-time computations on continuous streams of data
(such as spike trains, i.e., sequences of action potentials of neurons that
provide external inputs to a cortical microcircuit). In other words: both
inputs and outputs of an LSM are streams of data in continuous time.
These inputs and outputs are modelled mathematically as functions wu(t)
and y(t) of continuous time. These functions are usually multi-dimensional
(see Fig. 8.1, Fig. 8.2, and Fig. 8.3), because they typically model spike
trains from many external neurons that provide inputs to the circuit, and
many different “readouts” that extract output spike trains. Since an LSM
maps input streams u(-) onto output streams y(-) (rather than numbers or
bits onto numbers or bits), one usually says that it implements a functional
or operator (like a filter), although for a mathematician it simply imple-
ments a function from and onto objects of a higher type than numbers or
bits. A characteristic feature of such higher-type computational processing
is that the target value y(¢) of the output stream at time ¢ may depend on
the values u(s) of the input streams at many (potentially even infinitely
many) preceding time points s.

Another fundamental difference between the LSM and other computa-
tional models is that the LSM is a model for an adaptive computing system.
Therefore its characteristic features only become apparent if one considers
it in the context of a learning framework. The LSM model is motivated by
the hypothesis that the learning capability of an information processing de-
vice is its most delicate aspect, and that the availability of sufficiently many
training examples is a primary bottleneck for goal-directed (i.e., supervised
or reward-based) learning. Therefore its architecture is designed to make
the learning as fast and robust as possible. It delegates the primary load of
goal-directed learning to a single and seemingly trivial stage: the output, or
readout stage (see Fig. 8.4), which typically is a very simple computational
component. In models for biological information processing each readout
usually consists of just a single neuron, a projection neuron in the terminol-
ogy of neuroscience, which extracts information from a local microcircuit
and projects it to other microcircuits within the same or other brain areas.
It can be modelled by a linear gate, a perceptron (i.e., a linear gate with
a threshold), by a sigmoidal gate, or by a spiking neuron. The bulk of the
LSM (the “Liquid”) serves as pre-processor for such readout neuron, which
amplifies the range of possible functions of the input streams wu(t) that it
can learn. Such division of computational processing into Liquid and read-
out is actually quite efficient, because the same Liquid can serve a large
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Figure 8.1. Modelling a generic cortical microcircuit by an LSM. Template for a generic
cortical microcircuit based on data from [33], see [9, 10] for details. The width of arrows
indicates the product of connection probabilities and average strength (i.e., synaptic
weight) between excitatory (left hand side) and inhibitory (right hand side) neurons on
three cortical layers. Input stream 1 represents sensory inputs, input stream 2 represents
inputs from other cortical areas. Arrows toward the top and toward the bottom indicate
connections of projection neurons (“readouts”) on layer 2/3 and layer 5 to other cortical
microcircuits. In general these projection neurons also send axonal branches (collaterals)
back into the circuit.

number of different readout neurons, that each learn to extract a different
“summary” of information from the same Liquid. The need for extracting
different summaries of information from a cortical microcircuit arises from
different computational goals (such as the movement direction of objects
versus the identity of objects in the case where u(t) represents visual in-
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Figure 8.2. Hypothetical computational function of a generic cortical microcircuit in
the context of the LSM model. In general the projection neurons also provide feedback
back into the microcircuit (see Theorem 8.2 in Section 3).

puts) of different projection targets of the projection neurons. Data from
neurophysiology show in fact that for natural stimuli the spike trains of
different projection neurons from the same column tend to be only weakly
correlated. Thus the LSM is a model for multiplexing diverse computations
on a common input stream wu(t) (see Fig. 8.1, Fig. 8.2, and Fig. 8.3).

One assumes that the Liquid is not adapted for a single computational
task (i.e., for a single readout neuron), but provides computational prepro-
cessing for a large range of possible tasks of different readouts. It could also
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Figure 8.3. Multi-tasking in real-time. Below the 4 input spike trains (shown at the top)
the target outputs (dashed curves) and actual outputs (solid curves) of 7 linear readout
neurons are shown in real-time (on the same time axis). Targets were to output every
30 ms the sum of the current firing rates of input spike trains 1 and 2 during the preceding
30ms (f1), the sum of the current firing rates of input spike trains 3 and 4 during the
preceding 30ms (f2), the sum of f1 and fo in an earlier time interval [¢-60 ms, ¢-30 ms]
(f3) and during the interval [t-150ms, t] (f1), spike coincidences between inputs 1&3
(f5(¢) is defined as the number of spikes which are accompanied by a spike in the other
spike train within 5 ms during the interval [t-20 ms, ¢]), a simple nonlinear combination fg
(product) and a randomly chosen complex nonlinear combination f7 of earlier described
values. Since all readouts were linear units, these nonlinear combinations are computed
implicitly within the generic microcircuit model (consisting of 270 spiking neurons with
randomly chosen synaptic connections). The performance of the model is shown for test
spike inputs that had not been used for training (see [27] for details).

be adaptive, but by other learning algorithms than the readouts, for exam-
ple by unsupervised learning algorithms that are directed by the statistics
of the inputs w(t) to the Liquid. The Liquid is in more abstract mod-
els a generic dynamical system — preferentially consisting of diverse rather
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than uniform and stereotypical components (for reasons that will become
apparent below). In biological models (see Fig. 8.1, Fig. 8.2, Fig. 8.3) the
Liquid is typically a generic recurrently connected local network of neurons,
modelling for example a cortical column which spans all cortical layers and
has a diameter of about 0.5 mm. But it has been shown that also an ac-
tual physical Liquid (such as a bucket of water) may provide an important
computational preprocessing for subsequent linear readouts (see [7] for a
demonstration, and [8] for theoretical analysis). We refer to the input vec-
tor x(t) that a readout receives from a Liquid at a particular time point ¢ as
the liquid state (of the Liquid) at this time point ¢ (in terms of dynamical
systems theory, this liquid state is that component of the internal state of
the Liquid — viewed as a dynamical system — that is visible to some readout
unit). This notion is motivated by the observation that the LSM generalizes
the information processing capabilities of a finite state machine (which also
maps input functions onto output functions, although these are functions
of discrete time) from a finite to a continuous set of possible values, and
from discrete to continuous time. Hence the states x(t) of an LSM are more
“liquid” than those of a finite state machine.

Liquid memoryless readout,
trained for a specific task

ey FO=E0
0 =160

L
[»
o
 »
e
S

u(s) for
all s< ¢ <

\

x"(1)

= liquid state of the
Liquid State Machine

Figure 8.4. Structure of a Liquid State Machine (LSM) M, which transforms input
streams wu(-) into output streams y(-). LM denotes a Liquid (e.g., some dynamical
system), and the “liquid state” xM (t) € R* is the input to the readout at time t. More
generally, xM (t) is that part of the current internal state of the Liquid that is “visible”
for the readout. Only one input and output channel are shown for simplicity.
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This architecture of a LSM, consisting of Liquid and readouts, makes
sense, because it turns out that in many contexts there exist common com-
putational preprocessing needs for many different readouts with different
computational goals. This can already be seen from the trivial fact that
computing all pairwise products of a set of input numbers (say: of all
components of a multi-dimensional input u(t') for a fixed time point ¢’)
gives any subsequent linear readout the virtual expressive power of any
quadratic computation on the original input u(t'). A pre-processor for a
linear readout is even more useful if it maps more generally any frequently
occurring (or salient) different input streams u(-) onto linearly independent
liquid states x(t) [21], similarly as an RBF-kernel for Support Vector Ma-
chines. A remarkable aspect of this more general characterization of the
pre-processing task for a Liquid is that it does not require that it computes
precise products, or any other concrete nonlinear mathematical operation.
Any “found” analog computing device (it could even be very imprecise,
with mismatched transistors or other more easily found nonlinear opera-
tions in physical objects) consisting of sufficiently diverse local processes,
tends to approximate this requirement quite well. A closer look shows that
the actual requirement on a Liquid is a bit more subtle, since one typically
only wants that the Liquid maps “saliently” different input streams wu(-)
onto linearly independent liquid states x(t), whereas noisy variations of the
“same” input stream should rather be mapped onto a lower dimensional
manifold of liquid states, see [20, 21] for details.

An at least equally important computational pre-processing task of a
Liquid is to provide all temporal integration of information that is needed by
the readouts. If the target value y(t) of a readout at time ¢ depends not only
on the values of the input streams at the same time point ¢, but on a range of
input values u(s) for many different time points s (say, if y(¢) is the integral
over one component of u(s) for a certain interval [t —1, t]), then the Liquid
has to collect all required information from inputs at preceding time points
u(s), and present all this information simultaneously in the liquid state
x(t) at time point t (see Fig. 8.3 and Fig. 8.4). This is necessary, because
the readout stage has, by assumption, no temporal integration capability
of its own, i.e., it can only learn to carry out “static” computations that
map x(t) onto y(t). A readout does not even know what the current time
t is. It just learns a map f from input numbers to output numbers. Hence
it just learns a fixed recoding (or projection) f from liquid states into
output values. This severe computational limitation of the readout of an
LSM is motivated by the fact, that learning a static map f is so much
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simpler than learning a map from input streams to output streams. And
a primary goal of the LSM is to make the learning as fast and robust as
possible. Altogether, an essential prediction of LSM-theory for information
processing in cortical microcircuits is that they accumulate information over
time. This prediction has recently been verified for cortical microcircuits
in the primary visual cortex [28] and in the primary auditory cortex [18].

The advantage of choosing for a LSM the simplest possible learning de-
vice is twofold: Firstly, learning for a single readout neuron is fast, and
cannot get stuck in local minima (like backprop or EM). Secondly, the sim-
plicity of this learning device entails a superior — in fact, arguably optimal
— generalization capability of learned computational operations to new in-
puts streams. This is due to the fact that its VC-dimension (see [2] for a
review) is equal to the dimensionality of its input plus 1. This is the small-
est possible value of any nontrivial learning device with the same input
dimension.

It is a priori not clear that a Liquid can carry the highly nontrivial com-
putational burden of not only providing all desired nonlinear preprocessing
for linear readouts, but simultaneously also all temporal integration that
they might need in order to implement a particular mapping from input
streams u(+) onto output streams y(-). But there exist two basic mathemat-
ical results (see Theorems 8.1 and 8.2 in Section 8.3) which show that this
goal can in principle be achieved, or rather approximated, by a concrete
physical implementation of a Liquid which satisfies some rather general
property. A remarkable discovery, which had been achieved independently
and virtually simultaneously around 2001 by Herbert Jaeger [14], is that
there are surprisingly simple Liquids, i.e., generic preprocessors for a subse-
quent linear learning device, that work well independently of the concrete
computational tasks that are subsequentially learned by the learning de-
vice. In fact, naturally found materials and